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PREFACE

This book is cssentially a fext on experimental physies for
clementary students. The authors feel that students should be
given more than a set of laboratory instructions for performing
an cxperiment and have tried to bring out the connection which
an experiment has with other experiments of a similar nature.
In other words, students should look upon a laboratory physics
experiment as part of the larger subject of ¢ Experimental
Physics.”  This book can be used as a laboratory text in con-
junction with any general college physics text.

The chapters are so planned that experiments illustrating laws
which are governed by the same or by a similar set of physical
principles may be grouped together. Each chapter begins with a
discussion of the general theory, followed by directions for each
specific experiment.  If any experiment requires more details as
to the theory, these are given under the experiment heading.

The experiments are designed for even front; that is, enough
sets of apparatus are utilized to enable a whole class to work in
pairs on the same experiment. This makes it possible to use
apparatus which is of a simpler and less expensive type. Ocea-
sionally, when experiments are inserted for completeness which
by their nature require a more expensive picce of apparatus, a
demonstration laboratory period may be substituted.

The authors’ aim has been to make many of the electrical experi-
ments incxpensive by the substitution of commercial rheostats,
resistance units, ete., in place of the more expensive resistance
boxes when the experiment does not warrant the accuracy of the
latter. The apparatus mentioned is listed at the beginning of
each experiment. Many pieces of apparatus mentioned in this
text may be made cheaper and often better than those which can
be bought, provided the facilities of a machine shop are available.

The experiments are designed for at least a full two-hour period
of laboratory experimental work, but if one wishes, the period
may be shortened by leaving out parts of the experiment or by
taking fewer readings.

v



vi PREFACE

The book starts with a study of the precision of measurements
so that the student may make a statement as to the accuracy of
his work in cvery experiment performed. In the beginning,
sample data are given and tabular forms suggested. Such details
are made less definite, however, as the experiments progress.
The purpose of this procedure is an attempt to teach the student
to do his work in an orderly and systematic manner, first by
example, and finally, by working out some orderly system of his
own. The student is quite free to use his own ingenuity when
obtaining his data in any way that he thinks will give him the best
results. Iovery cxperiment is written in sufficient completeness,
-as to theory and laboratory instructions, so that the student may
start his laboratory work immediately upon entering the room
without instruction as to theory or procedure.

In order to make sure that the student will read the theory as
well as the experiment before he enters the laboratory, it is well
to require cach student to solve, before the laboratory hour, the
problems which have been placed at the end of each chapter for that
experiment. It should be noted that these problems, which
involve making statements concerning the theory as well as solving
cquations for numerical answers, cannot be done without some
knowledge of the theory contained in the chapter.

In addition, at the end of every experiment there are questions
concerning data, to be answered and passed in with the finished
report. These questions, when answered and submitted, will help
to make the student more careful in the taking of data and will
give him a better understanding of his experiment as a whole.
These questions will also serve, it is hoped, to suggest many other
and perhaps more helpful ones to the instructor.

The authors take this opportunity to thank their fellow-members
of the Physics Department at Washington Square College who have
contributed valuable criticism and help in the choice and arrange-
ment of material used in this text.

W. A S
L.B. H.
New York Crry
April, 1932
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EXPERIMENTAL PHYSICS
FOR COLLEGES

CHAPTER 1
INTRODUCTION

Physies, like the other sciences, is playing an ever-increasing
part in shaping our environment and our mode of living. Were
it not for the knowledge and application of the laws of Physies,
one could not travel through space, ride under the seqa, view the
hitherto unknown celestial bodies, or examine the minutest forms
of life and matter. Present-day labor-saving devices — the electrie
lights, radio, telegraphy, telephones, and the ocean eable — are often
taken for granted and little thought is given to the years of scien-
tific rescarch which produced them. What is the fascination
which makes great minds devote years of study to physical phe-
nomena in order to present to the world wonders which will all too
soon be labeled “ necessities ’?  Is it not because there are always
untold possibilities ahead — a story of surprises awaiting?

Tur LaBoratory

Let us then consider the laboratory, which is the workshop of
the scientist, as a place of interest where each one can perform for
himself the experiments which brought joy to the heart of the
man who first worked them out. Consider it a place where one
can learn by actual practice to understand better the principles
of and the care for mechanical devices which are used in everyday
life. Remember that secing and working with objective material
and apparatus gives one the first-hand knowledge which is so
valuable in rendering the descriptive more concrete, comprehensive,
and usable, and that it initiates a better understanding of the
formulation of laws, illustrates the working of a principle, con-
centrates attention to detail, and stimulates the exercise of

deliberate judgment.
1



2 EXPERIMENTAL PHYSICS FOR COLLEGES

Success with an experiment comes only when all possible knowl-
edge and underlying theory of the experiment have been obtained
before starting. The teacher helps the student to acquire this
in ways which he sees fit, and he points out certain delicate adjust-
ments of apparatus and means of taking advantage of situations
to obtain more accurate results, but it is up to the student to grasp
and retain the lessons taught in the laboratory. Others cannot
do this for him.

Conduct. The instructor expects his students to be honest
and interested in their experiments, careful of University property,
and mcthodical in replacing or leaving apparatus at the end of
each class session.  If the semester’s work in the laboratory does
not develop the habit of inquiry, the respect for scasoned opinions,
the ability to handle apparatus carefully and intelligently, and the
value of system and order in any work, then it has not accomplished
its purpose.

Written reports. The instructor decides upon the particular
method and form of the written report, but the following headings
might be remembered as important in any write-up of an experi-
ment : object, description, conventional drawing of apparatus,
theory, data, conclusion, and discussion of errors. The treatment
of each of these divisions will depend upon the wishes of the in-
structor. Avoid the use of personal pronouns in written reports.

UNITs

In laboratory work, generally speaking, results not given in
definite units mean little or nothing. For instance, the numerical
values of density depend upon the system of units used. Some
results, such as specific gravity and specific heat, appear as abstract
numbers because they are defined as ratios of numbers having the
same units.

There are three systems of units in common use: the c. g. s. sys-
tem (centimeter, gram, second), used almost exclusively by scien-
tists; thef. p. s. system (foot, pound, second) ; and the gravitational
system. The first two are called absolute systems because the
derived units bear the simplest possible relation to the funda-
mental units of length, mass, and time. Thus, in the two absolute
systems as stated, the unit of force (i.e., dyne, poundal) is defined
as that force which will give a unit mass, unit acceleration. In the
gravitational system, the unit force (pound weight) is the force
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acting on a unit mass (pound) duc to the attraction of the earth.
Since this force varies, depending upon the location, it is seen that
the pound weight is not an absolute unit of force. 1t is sufficiently
accurate, however, for practically all engineering work.

As an example of the use of units, suppose that a trainis observed
to have a steady velocity of 36 kilometers per hour for thirty
seconds. What distance was traversed in this time interval?
The distance (s) traveled would be the velocity (v) times the
time (2), .e.,

s = .
The answer in centimeters is

5 — 36X 1000 X 100 o0

It is better practice in general to convert all units, before using

them in equations, to fundamental units, 7.e., 36 l;m.

1r.

lent to) 36 X 1000 X 100 <M= op 36 X 1000 X 100 em. = opsop in
SeC.

<= (is equiva-

hr. © 60 X 60
turn = (equals to) 1000 :—;n;- Notice that dimensionally the prod-
sec.

. cm. .
uct, of, gives —-= - sec. or em. (The dot is often used to denote
sec.

multiplication.) This is the same as the dimension found on the
left-hand side of the equation (in other words, s).

Whenever large numbers are involved, it is better to express
them in positive powers of ten. Thus, the number 237,000,000
may be expressed as 2.37 X 10%. Likewise, all small decimal
quantities may be expressed in negative powers of ten, t.c.,
0.0000000237 = 2.37 X 10-8,



CHAPTER II

PRECISION OF MEASUREMENTS

Errors which enter into the results of a series of observations
may be classified as personal, accidental, systematic, and instru-
mental errors. The magnitude of the personal errors depends
upon the observer’s experience and follows the law of chance
unless there is a personal bias.

Personal bias. A common example of the personal bias of
beginners is their tendency to give to a first reading of a series
greater significance than the succeeding rcadings. A beginner
asked to take three readings of the length of a table with a meter

stick, to the nearest tenth millimeter,

A — — — —— - will bring back, generally, three readings
B _ all alike. Consider Figure 1, which rep-
resents a plan of the table top. Besides

C—fm————— === = inaccuracies in the placing of the meter
Fia. 1. — Measuring the stick, it should be observed that the
length of a table top. length must vary, depending upon whether

the measurements were taken at A, B, or C.

Personal errors. Personal errors include inaccurate settings,
inaccurate estimations of a fractional division, insufficient develop-
ment of onc or more of the six senses, and parallax. Matching of
color intensities, pitch of two sounds, and timing results are
examples of measurements depending upon the use of sense organs.
The error due to parallax will be discussed later (see page 17).

Accidental errors. Irrors which are beyond the control of the
observer are called “accidental.”  For instance, suppose galvanom-
eter readings are to be taken every fificen seconds. A sudden
jar will cause the galvanometer to alter its readings from an
otherwise good result. Other examples of “ accidental ” ecrrors
are found in fluctuations in magnetism, noise, temperature,
pressure, electricity, wind, and the like.

Systematic errors. Such errors are characterized by their
tendency to onc direction only, ‘.e., positive or negative. They

may or may not be easily traced. For instance, if a meter stick
4
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is always used by taking measurements from one end, then this
end may get worn and a constant error will occur in all measure-
ments made with this meter stick when measuring from this end.
If not detected, systematic errors may give a result far from the
true result, and are, moreover, not accounted for in any calcula-
tions of the experimental error.

Instrumental errors. New instruments are usually calibrated
to a certain degree of accuracy. If not, they should be calibrated
in the laboratory or sent to some place, such as the U. S. Bureau
of Standards for calibration. Once the required per cent accuracy
is decided upon as necessary for the experiment, one should see
that the apparatus used for any measurement has an accuracy
a little better than that demanded for the tests. However, a
calibrated instrument is of no value as a precision instrument
unless operated under conditions similar to those used in its calibra-
tion. For instance, a steel tape calibrated for 20° C. would not
be accurate for winter use unless its temperature coefficient is
known. Furthermore, a calibrated instrument is reliable only
with careful and intelligent use.

Arithmetical mean — most probable result. The accuracy of
an experiment, then, depends upon a number of factors or condi-
tions, many of which are not easily ascertained. In our discussion
we shall assume that the apparatus is sufficiently accurate for the
experiment and that there exists no personal bias nor any
systematic error. This leaves us with certain personal and
accidental errors which are subject to pure chance. With these
limitations as to the nature of errors to be considered, our judgment
tells us that the arithmetical mean of a number of observations
will give us the most probable result. Actually, this represents
the most probable reproducable result with the apparatus available
rather than accuracy. Accuracy is better checked by other
independent experiments using different methods of experimenta-
tion. Hence, such words as ‘“per cent of error,” ‘ probable
error,” etc., refer to the mean result as found, since the true result
is seldom known.

CarcuLaTiON OF ERrORS AND PErR CENT ERRORS

When an experimental result is to be obtained by direct measure-
ment, we take one or more readings, depending upon the accuracy
desired. Suppose a single measurement of length, less than a
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meter, is to be made with a meter stick. Let the measurement be
34.35 centimeters. All figures, except the last digit which has
the dash over it, are measured digits. The last digit (5) is doubtful.
The most inexperienced observer could estimate probably to a
half millimeter division. For the single reading above, we will
designate as the error + 0.05, the plus or minus sign (+) indicating
that the reading may be toc small or too large by this amount.
Such ecstimations on a single reading are generally taken large
enough to be called, with some reservations, a ‘ maximum possible
crror.””  For this reason, the term ‘‘ maximum possible error ” is
used by some authors. Our reading now becomes 34.35 + 0.05 cm.,
which gives a per cent error of 0.15 (u %Oi_ X 100) If any-
thing more than an approximate answer is required, more than
one reading is essential. However, when a single measurement
only is taken, we shall designate all digits, tncluding the first doubtful
figure, as stgnificant figures.

When a number of readings of a given length are taken, we must
deal with an average having a certain crror. Calculations of the
accuracy from such considerations is our present problem and is
important since the result of our experiment has to represent an
average of various readings and calculations. Consider, for in-

stance, the following readings to

Reading Deviations have been taken for a given dis-
152.28 — 0.048 tance: 152.28, 152.36, 152.30,
152.36 + .032 152.32, and 152.38 cm. Notice
152.30 - .028 that since the meter stick must be
152.32 - .008 reset at least once for cach meas-
152.38 4+ 052 urement of length, the individual
5)761.64 5)+ 0.168 errors now are greater than the
152.328 + 0.0336 error in the single mecasurement

Length = 152.328 + 0.034 cm. of less than a meter, as illustrated
in the previous paragraph. Hav-

ing five readmgq for the same length, how shall we now find the
number of significant figures? This is done by calculating the
average (152.328 cm.) and the average error (+ 0.034 cm.). The
average error is found by subtracting the mean from each reading,
adding the errors without taking into account the signs, and
dividing by the number of readings. In the above, the total
error, neglecting signs, in five readings is + 0.168, so that the
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average error is + 0.034 cm. Now, in casc of averages, we shall
retain two doubtful figures in the result. Hence, the number of
significant figures where averages are considered wnll be designated
as all digits including the first two doubtful figures. 'This gives as
the result of the above experiment a length of 152.328 + 0.034 cm.
The first doubtful figure is in the hundredths’ place, so that the
2 is in doubt by 3.4 while the 8 is in doubt by 34.

The theory of least squares. The reason for retaining two
doubtful figures in the case of averages is not given above, but may
be justificd if one studies the question of errors by means of the
theory of least squares. The theory of least squares is based upon
the probability curve. From this curve, we may find the “ prob-
able deviation,” a technical term the numerical magnitude of
which is such that the true error has equal chances of being larger
or smaller. Now the ¢ probable deviation ”” may be shown to be
0.6745 S, if S represents the root mean square error, which is the
square root, of the sum of the squarcs of the crrors divided by the
number of readings. In the previous example, where the length
was found to be 152.328 + 0.034,

S - \/@_.948)2 + (0.032)* + (0.028)* + (0.008)* + (0.052)?
5

=+ 0.037
and the probable deviation is
0.6745 S =+ 0.025 cm.,

which means that the true error is equally likely to be greater or
smaller than + 0.025. The theory of least squares, however, is
based upon an infinite number of readings, so that the above value
for the probable deviation error is only approximate. In general,
the small number of readings taken in elementary work is not
sufficient to conform very closely to the requirements of the theory.
Moreover, to use the complete theory of least squares would lead
us into detail which is beyond the scope of the present work.
However, if the above example is representative, it may be inferred
that the average error is a liberal estimate of the error of one’s
work. We shall use the average error in the estimation of accuracy
of our future work in the laboratory.

It is often desirable to express the error in per cent. Thus for
the measurement of the length referred to previously, the per cent
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of error is 12‘29%%8_ X 100) = 0.022%. It is to be observed that
this is a measure of reproductibility and is not necessarily a true
deviation from the ‘“real’” answer. For ordinary laboratory
experiments, from threc to five measurements are sufficient to
establish a working average.

When a series of measurements is to be taken and it is desired
to express the results graphically, one measurement is taken for
each point on the graph. Thus in plotting deflections of a gal-
vanometer, one reading is observed each on the ‘ black ”’ and
“red " side for a particular valuc of current, and then a new value
of the current is chosen. The curve itself will show qualitatively
the errors and characteristies of the instrument.

Errors in indirect measurements. So far, we have assumed
that the desired results depended only upon certain direct measure-
ments. An extension of the above rules for finding errors will be
necessary when the result is obtained by computation. Thus,
to find the moment of inertia I from the equation :

I = I, + mh?,

or, to find the surface of the sides of a cylinder from the equation :
S = 2l

or, to find the area of a circle from the equation:
A = mr

or, to find the value of g from the equation:

47
= e

one must perform the arithmetic calculations of addition, multi-
plication, squaring, and division respectively. It is assumed that
each of the factors involved is an average obtained from several
readings and that the error in each factor has been computed.
Upon these assumptions, the following rules for errors in com-
puting results are given:

Rule I. In addition or subtraction, retain as the error in the
final result the largest numerical error found in any one of the
quantities, e.g.?
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Addition Subtraction
Daistances in cm. PZ;_ T(;';mt Distances in cm. P 2’:1 (":f_”t
25.20 + 0.23 0.91 13.21 + 0.022 0.17
5312 + 0.021 0.39 7.315 + 0.026 0.35
1.2534 £+ 0.0025_ 0.20 589 + 0.026

31.76  + 0.23 em.

Thus, in the example of addition shown above, the result is
31.76 + 0.23 cm., while in the example on subtraction, the result
is 5.89 + 0.026 cin.

Rule 11. In madliplication or division, retain as the per cent
of error the largest per eent of error found in any one of the terms.
Thus the prodll(t (12.57 + 1.8%) X (1.325 + 1.3%), is 16.66 +
1.8%

+ 0.23, 1.8%

2:L + 0.018,  1.39

3771
1257
16.65525
Answer: 16.66 + 1.8%.

The above rules will give a sufficient estimation of the accuracy
of computed results for our purposes. These rules, in turn, give
us certain hints as to the aceuracy necessary in the various measure-
ments. Thus with additions and subtractions the numerical
error is important. This means that if the 25.20 em. in the
addition problem under Rule I had been measured with a meter
stick, the other distances which were to be added to it could have
been measured equally well with a meter stick. The accuracy
of the other two figures (5.312 and 1.2534) show that they were
measured with more accurate instruments. With multiplication
and division, however, it is the per cent of error which is important.
Hence, in this case, small quantities should be measured more
accurately.

One may raise a question as to the reason for retaining four
figures in the result of the multiplication. The reason for this
will be seen by observing that in the multiplication all doubtful
figures have a dash over them. The quantities to be multiplied
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show doubtful digits beginning with the third. Therefore, the
number of significant figures in the result is four. When a num-
ber is squared, its per cent of error is multiplied by two, since the
error in each factor would necessarily be in the same direction
and of the same amount. Similarly in taking a square root, the
per cent of error is divided by two.

When multiplying or dividing two factors, retain a number of
digits in the result equal to the number of digits in the factor
containing the smaller number of significant figures. In the
multiplication shown, the number of significant figures was four
in cach factor. Therefore, the number of significant figures in
the result is four. (In a product, such as 12572 X 134 = 1684648,
the result may be expressed as 168 X 10%.) This rule concerning
significant figures is itmportant especially where the result obtained
is to be multiplied or divided by a third factor.

Slide rule. 'The number of significant figures in one’s result
indicates whether one could use a slide rule profitably. There are
few caleulations in the elementary laboratories which have more
than three or four significant figures. Consequently, a slide rule
is a very great time-saver in the laboratory.

Per cent of error from some standard value. Occasionally, the
student is asked to check the value of a constant, say ¢, with his
cm.

apparatus. If the accepted value for his location is 980.2 ——
sec?,

ACID.V
see?.)
R ) Lo ae 980.2 — 978.5
from the accepted value is given as 9802
Per cent of error from the mean. If two results are given with
either one being equally probable, 1.e., 1281 and 1253, then the
per cent of error from the mean is given as

1281 — 1253

1281 + 1253

That is, take the difference, divide by the sum, and multiply by
one hundred.

and he gets an average value of 978.5 the per cent of error

X 100 = 0.17¢.

X 100 = 1.19%.

GraruicaL ResuLnrs

To show the relation between one variable and another, if any
definite relation does exist it is often best to resort to plotting a
curve. By this method, the mathematical relation -cxisting
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between the two quantities may sometimes be determined. Im
any case, a graph represents pictorially and in concise form the
nature of the results obtained. The curve should be drawn
smoothly so as to fall on as many points as possible. The points
which are noticeably in error should fall in approximate equal
numbers on each side of the curve. When such a curve has been
drawn, the magnitude of the errors is shown qualitatively by
the distance which the points in error fall outside the smooth
curve. If one wishes to find the value of the quantity for inter-
mediate positions on the curve where readings were not actually
taken, the curve is sufficiently accurate for that purpose. If the
accuracy of the final result is desired, the per cent of error should
be found by the methods outlined previously.

Whenever possible, the coordinates used for abscissae and ordi-
nates should be so chosen from the experimental data that the
plotted points will fall on a straight line within the limits of experi-
mental error. A straight line is the only graph easily examined.
If the graph is a curve,
one might have consider- v
able difficulty in deter-
mining whether it is a pa-
rabola, hyperbola, or even
an ellipse, particularly if
only a small portion is
shown. A few illustra- / :
tions of curve plotting N -4
are given. d o z

Example 1. Suppose
that in a certain experi-
ment it is found that y
varies directly with x, as shown in the diagram. The graph is a
straight line and any straight line can be represented mathemat-
ically by an equation of the form,

Fia. 2.— Graph of y = az + b.

y = ax + b.

If this line cuts the z and y axes at N and M respectively, then
it can easily be shown that the distance OM represents the value
of b, and the slope of the line (i.e., the tangent of the angle 6) is

represented in the equation by @, and in the diagram by ](37—]10/1
(Fig. 2).
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Example 2. 1If we plot y against ;1;, and obtain a straight line

through the origin, it means that

)

where ¢ is a constant. 1If y represents the pressure and z the
volume of a gas, then we have an cxperimental verification of

Boyle’s law (pv = ¢) if, when p is plotted against -1, a straight-line
graph results. v

Example 3. 1f the clectric current I is plotted against the heat-
developed H, the curve is not a straight line but will be a straight
line if I? is plotted against [{. The known rclation existing
between these two quantities is .

=12
J’

when R and J are constants.

When one finds that the quantities which are plotted on the
graph are not dircctly proportional to cach other, and one suspects
that one of the variables raised to some power is proportional to
the other raised to some different power, then it is better to take
the logarithms of both quantities before plotting them.

Thus, suppose the actual relation between z and vy is

yr = az™,

it being necessary to find the constants a, n, and m from the experi-
mental data. When the logarithm of both sides is calculated,
we have

nlogy = log a 4+ mlog x.

Now plotting log z against log y (Fig. 3), instead of x against y,
we get a straight line; and from the intercepts on the log = and

logy

log a

/ log a log x
m

F1c. 3. —Graph of n log y = log a 4+ m log .
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log y axes, we can find the constants log a, n, and m. In order to
facilitate this procedure and save time in ealeulating the logarithms
of the different values of z and y, it is possible to purchase log-log
graph paper in which the axes are marked off in logarithmic units.
In using this paper it is then only necessary to plot values of x and
y directly, and if a relation of the above type exists, a straight line
will result.

The following directions will be found helpful in plotting a use-
ful curve:

1. Use coordinate paper with rulings of one millimeter on shects
of convenient size (say 8% by 11 inches).

2. Plot to such a scale that all significant figures will be used.
The curve should be drawn to as large a scale as the sheet will
allow. :

3. Place a small dot (or cross) at every located point (Fig. 4).

10

. RN i
Relation of the Square
8t—— of Period of a Simple
S Pendulum to its Length / Data:
5 17 — / ata:
% / Period Length
2 b VT (sec.)  (em.)
&
T6 L/ 0.6 10
§ 1.0 25
a4 14 50
£ 2.0 100
9 3 - 2.8 200
£ d
g8, %
1 7,/
0

0 20 40 60 80 100 120 140 160 180 200 220
Length (Cm.)

Fia. 4.— An example of curve-plotting.

4. Every curve should have a title indicating which two quan-
tities are plotted along the two axes.

5. Draw heavy lines for the coordinate axes and label the axes,
the independent variable along the z axis and the dependent
variable along the y axis.

6. The origin of the coordinate axes need not be shown on the
curve.

7. If a relation exists between the quantities, draw, by means
of a flexible rule, a smooth curve through the points. If all the
points do not actually fall on a smooth graph, then draw the curve
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s0 that approximately as many points will be on one side as on
the other. A point that deviates from the curve markedly should
be discarded as an accidental error.

PROBLEMS

1. Express the following numbers in powers of 10 and state the number of
significant figures in cach, assuming that they are correctly expressed: 0.0231,
10.32, 10306, 101.30.

2. Express the following results with the correct number of significant
figures: 2.31 F 0.023, 1325 + 10, 123.5 + 13, 1.25127 with accuracy to 0.5%.

3. Write the following physical constants in powers of 10, giving the
proper number of significant figures:

Velocity of light = 29979600000 -+ 400000 <.
Sece.

Mecan radius of the carth = 637100000 + 3500000 cm.
Mass of a hydrogen atom = 0.0000000000000000000000016617 gms.
(error of 17 in 16617)

Mcchanical equivalent of heat (15° C.) = 41852000 £ 6000 Qﬂis'

cal.
Gravitational constant () = ().()00()009(3664 (error of 2 in 6664).

4. What are the significant figures for the results of the following cal-
culations:

(a) (1.372 £ 0.031) X (235 + 11) X (0.1765 + 0.0025)?

(b) (23.275 + 0.015) + (101.3 + 8.1) + (265.7 + 1.5)?

What is the per cent of crror in each of the above calculations?

6. Multiply 123 X 789 on the slide rule. Calculate your per cent of
error from estimation of the error in reading the instrument. How does your
resulting estimated per cent of error compare with the actual per cent of
error? Repeat the above calculations for the following multiplication on the
slide rule: 115 X 78 X 67.

6. The following readings of the time (in seconds) of 50 vibrations of a
simple pendulum arc found to be: 78.5, 78.1, 78.4, 78.2, 78.5. Calculate
the average deviation and the per cent error in the above readings.

7. List the various kinds of errors that may arisc in a physical measure-
ment and discuss briefly the possibility of eliminating or calculating the error.

8. Five stones are dropped over a cliff in order to estimate the height of
the cliff. The time (in seconds) noted in each case is 6.2, 6.8, 6.7, 6.7, and 6.3.

Assume that ¢ = 32.19 + 0.01 (—s{f«)2 Calculate the height of the cliff from
°C.
the formula
s = gt
where s is the height of the cliff in feet. Calculate the per cent of error in the
answer.

9. Plot a curve showing the relation between the vapor pressure (or
tension) of water (in cm. of mercury) and the temperature (from 0° C. to
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103° C.). Look up the values of this pressure at various temperatures in a
book of physical tables. Pressure should be plotted along the ordinate and
temperature along the abscissa.

10. Perform the following calculation, using logarithms:

4324 X (5692)* X 0.0003468
6824 X .3021 X 4568000




CHAPTER III
MEASUREMENT OF THE FUNDAMENTAL UNITS

THe MEASUREMENT OF LENGTH

This is perhaps the most widely performed, as well as the
simplest of the three quantities, length, mass, and time. In our
everyday experiences, we frequently have to measure some length
or other. Very scldom, however, do we stop to consider whether
we are really performing the measurement with the best rule or
apparatus for that particular purpose. Still less do we concern
ourselves with the question of accuracy of measurement. The
reason for this unconcern of ours is to be found in the fact that
someone has already considered these points very carefully and
the apparatus which we have used has been designed accordingly.
The same is truc when we have to measure mass and time, the
other two fundamental quantities.

In the physical laboratory, we cannot be satisfied with such a
superficial view, but must consider both the accuracy of our instru-
ments and our measurements carefully. They become of much
greater importance when a student of physics has devised some
new and easier method of performing a certain measurement,
which, according to his ideas, will give more accurate results.
In such a case, a knowledge of the accuracy and reproducibility
of his apparatus and of the precision of his result is necessary.
The research worker in the field of physics or chemistry must be
familiar with the different methods at his disposal, and with their
relative accuracy, as well as the methods of calculating or estimat-
ing the errors of observations.

In these first three or four experiments, therefore, the student
should try to discover for himself the precision that he has obtained
with his apparatus; and in the future, when measuring a length,
mass, or time interval, adapt the method to the precision required
in the result.

The meter rule. The simplest way of measuring length is with
the aid of an ordinary scale or rule. (A metric scale or ‘ meter

bar ”’ is most frequently used in the laboratory.)
16
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There are several errors that have to be considered when using
such an instrument. The inherent accuracy in the instrument is
limited by the fact that the lines on the scale have a finite thickness.
Observational errors occur when estimating the fraction of the
smallest division. When estimating the fraction of a millimeter
on an ordinary meter rule, an uncertainty of 0.1 of a millimeter
is about the limit of accuracy for all but the highest skilled ob-
servers. An crror of equal or larger amount is probable in placing
the object on the zero reading from which the measurement is
made. Errors of this type can be minimized only by taking a
sufficiently large number of readings. Another frequent source
of error is the error of parallax. This error occurs when a scale of
finite thickness is used and the eye is not always vertically above
the scale and point being read, or even in the same relative position
with regard to the scale. This will be more clearly seen in Fig-
ure 5. When the eye is placed at C and £, the distance AB will

PNY D g
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il 7/ 1

! A

i ‘ i

1

i / i
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2P // / P v v,

| L !

A B

F1g. 5. — Error of parallax.

be read correctly. This will not be the case, however, if the eye
should be placed at E and D. In practice, therefore, whenever
it is possible, the rule should be placed in such a position — on
edge in this case — so that the markings on the scale fall right on
the points A and B. The nearer the division marks on the scale
to the points being read, the smaller is the error due to parallax.
In very many pieces of physical apparatus this error of parallax
causes additional difficulties, and consequently a large number of
ingenious artifices have been invented to overcome this crror.
Such an example is shown in Figure 6, which represents the method
used very often with the better class of electrical voltmeters and
ammeters. Since in these cases the pointer has to swing freely
over the scale, the error of parallax may be present. It is over-
come in this type of instrument by mounting a mirror underneath
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the pointer. When looking into the mirror, right underneath the
pointer, an image of the latter will be seen. By adjusting the
position of the cye above the pointer, this image can be made to

A fowe
Pointer

Soale
Mirror

Fic. 6. — Arrangement of the points and scale in a voltmeter.

disappear underneath the pointer. When this is the case, the
eye is vertically above and the reading on the scale, keeping the
eye in this position, can then be taken accurately.

Very often the object or distance being measured cannot be
placed along the side of the scale, or vice versa. Such cases as the
inside or outside diameter of a vessel, the outside diameter of a
sphere, etc., come into consideration here. The method used
involves the use of transfer instruments whereby we transfer the
original dimension to a pair of dividers, or “ calipers ”’ as they are
called, and then measure
the distance on a scale be-
tween the legs of the trans-
fer caliper. Figure 7 shows
both inside and outside
calipers.

The vernier scale. In
taking a measurement with
an ordinary meter scale, we
try to estimate to tenths

Fia. 7.— Inside and outside calipers. ~ Of a division. This requires

a large amount of skill,
and, even then, when the divisions on the scale are small, an error
of one- or two-tenths is quite probable. A microscope will help
in such cases.

A very ingenious device was discovered by P. Vernier (1580-
1637) for the purpose of estimating this fraction of a division with
great accuracy. The great advantage of his method is that we
can measure to any fraction of a division, be it to tenths, twelfths,
twenty-fifths, hundredths, etc.
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The instrument consists of a scale — called the vernier scale —
which can slide next to the ordinary scale. This vernier scale
has divisions on it which may be either a little smaller or a little
larger than the divisions of the ordinary main scale along which
it slides. In most cases the divisions on the vernicr are smaller
than those on the main scale, and it is this case which we will con-
sider here in detail. The vernier scale is marked off into n equal
divisions, the one end being called zero and usually marked corre-
spondingly or with an arrow. 'Placing this zero mark of the vernier
on any main scale division, it will be scen that in the case under
consideration 7 divisions of the vernier correspond to n — 1
divisions on the main scale. Hence each vernier division is

n—1_ (1 - 1) of a main scale division. Consequently the
n n

vernier division is = shorter than a main scale division. This
n

quantity 1 5 a main seale division is called the least count of the
n

vernier and is usually expressed in centimeters or inches. Always
determine the least count of a vernicr before attempting to make
a measurement.

Suppose next that we wish to make a measurement and find the
zero of the vernier somewhere between two main scale divisions.
From what has been said above about the least count, we can

readily see that if the zero of the vernier is 1 givision (main scale)
n

beyond the division line of the main scale (Fig. 8), then the first

1 2 3 4
[ , (n Dv zsums) I 'Vernicr Scale
g | M+in Seale |
15\\; 18 19 20
Coincidence

Fic. 8. — Reading 14.1 if n =

vernier division should coincide with a division line on the main
scale.

Similarly, if the zero of the vernier should be 2 divisions to the
n

right of the main scale division, we should expect the second line
beyond the zero on the vernier to correspond with a main scale
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division. The reason for this, of course, is that the first vernier
division reduces the diserepancy between vernier division and

main division by la’ and the second by g, therefore making them
7 n

coincide on the second division of the vernier (see Fig. 9).

(n Divy tms) I l Vernicr Scale

l ’T Ma:m Scale {
14 19 20
Coincidence

I‘IG. 9.— Reading 14.2 if n = 10.

In general, then, if we find the &t division of the vernier coin-
cides with a scale division, we will be able to make out that the
part z, which we had to estimate with our eye previously, is

exactly k main scale divisions. Always bear in mind that it is the
n

zero mark on the vernier the position of which we are trying to locate
as accurately as possible on the main scale.

The procedure in reading an instrument having an attached
vernier scale is as follows:

1. First determine the least count. This is usually done by
moving the vernier along the main scale so that the zero mark
on the vernier coincides with some division on the main scale
Find out, by looking along the vernier, how many divisions or
the vernier are necessary until a vernier and a main scale division
coincide again. This enables one to determine the least count,

as described above (z.¢., 1 of a main scale division). Knowing the
n

value of the main scale division onc can express the least count
in inches or centimeters.

2. Set the vernier on the instrument so as to measure the
length of the required object and estimate approximately its
length, by noting the position of the zero of the vernier. In
Figure 9 this would be 14*. . ..

3. Determine the fraction z by noting which vernier division
coincides with a main scale division. In the above figure this

would be the second. This gives for a final result, then, 14 ;2'
main scale divisions.
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The least count is usually chosen as to give the required measure-
ment in convenient and practical ¢. g. s. or f. p. s. units. Common
arrangements on instruments are: in the c. g. s. system 0.01 cm.
(Fig. 10), and in the f. p. s. system 135 or +¢& inch.

o

6 7 8 9 10 , 11, 12 >
| || mm. ©

F1a. 10. — Vernicer caliper, reading 2.89 cm.

In the accurate measurement of angles by means of a vernier
the procedure is exactly the same. The verniers are usually
arranged to read to a minute of are (i.e., ¢ degree). This is very
often accomplished by using for the main scale division a unit of
% degree and placing thirty divisions on the vernier to correspond
with twenty-nine divisions (4 degree) on the main scale. When
this is the case, one should not forget part 2 of the above pro-
cedure. Be surc to see whether the fraction z is in the first or
second half of the larger degree divisions. If it should fall in the
sccond half, then we must add a half-degree to z in expressing our
result in degrees.

A little practice will help considerably in understanding the
above principles. A well-made vernier scale forms one of the
most useful, and therefore most frequently used, adjuncts to
physical apparatus having to do with the measurement of lengths
or angles.

The micrometer caliper. The measurement of the size of small
objects, or the comparison of lengths of objects that do not vary
very much in size, can be done with a higher degree of precision
by using a micrometer screw.

The instrument, which is shown schematically in Figure 11, is
usually made in a more or less semi-circular form and has two
so-called “ jaws.” One of the jaws is fixed and the other is mov-
able. The movable one is made to advance a certain fixed distance
for every revolution by having cut on it an accurate thread. The
pitch, or distance that the movable jaw advances per revolution,
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is usually made to be 1 mm. or 0.5 mm. in the ¢. g. s. system
and 4 inch in the f. p. s. system. If now we attach a “ head ”
on the end of the screw, which we divide up into a large number
of equally spaced divisions, then we can measure the fraction of a

- ~ 7
[T P 5
IO' LIS Iﬂ‘ L
\ A— =
/

Fra. 11.—Micrometer caliper.

turn that the screw is advanced. In the case of a 0.5 mm. pitch
serew with fifty divisions on the head, we can therefore measure
to ¢ of  mm. =}y mm. = 0.01 mm. Inaddition to the divisions
on the screw head a horizontal scale is usually engraved along a
fixed cylindrieal barrel so that the whole number of turns will be
indicated. Remember again that in this case the reading on the
head, which goes up to fifty, may be in the first or second half of
the millimeter, and if the latter is true, then 0.5 mm. must be
added. When the pitch happens to be 1 mm. and there are
100 divisions on the head, then the last precaution mentioned is
not necessary.

A good micrometer gauge or caliper has at the end of the
movable jaw a friction or ratchet device which, when used, pre-
vents too much pressure being applied to the jaws. This ratchet
device serves a double purpose. First, it prevents the operator
from applying too great a force to the jaws, thus damaging the
thread and jaws and so making them useless for accurate measure-
ments. Secondly, in many cases when too great a pressure is
applied, the object being measured will be slightly deformed and
an error introduced in the result.

The following procedure is suggested when using a micrometer
screw gauge :

1. Study the pitch of the screw by turning the head through a
certain number of counted revolutions and noting the movement
on the horizontal scale. Observe how many divisions there are
on the head and from this determine the amount that the screw
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advances for a rotation of only one division on the head (this
might be called the ‘“ least count ” in this case). In the above
example this amount is ¢ of £ mm. = 0.01 mm.

2. Study the zero setting. To test the zero, screw up the
movable jaw until it just touches the fixed jaw and see whether
the zero checks. If it does not, allowance must be made for a
zero correction in future readings. In the better-made instru-
ments the zero settings can be adjusted. This adjustment, how-
ever, should not be done by the student.

3. Insert the object between the jaws, using the ratchet device
to insure just the right pressure, and take the readings.

EXPERIMENT 1
THE MEASUREMENT OI' LENGTH

Part (a). To measure the length of an object by means of a meter
rule, vernier caliper, and micrometer screw, and to determine the
probable error in each case.

Part (b). To become familiar with vernier scales as used tn some
physical instruments.

Apparatus: Part («). An object such as a cylinder (metal) about

2 cm. in length (or even a coin), a metric rule, a vernier caliper, a

micrometer screw gauge.

Part (b). Instruments which have vernier scales attached,
such as a barometer, spectrometer, Jolly balance, sextant, ete., placed
about the laboratory.

Part (a). 1. Determine the diameter of the cotn using the metric
rule. Avoid errors of parallax. Take five readings of the diam-
eter yourself, using various parts of the metric rule. Ask your
partner to do the same. Ineach case estimate the fractions (tenths)
of a millimeter. Record all your readings in tabular form.

From the data obtain the average diameter, the average devia-
tion or “ error.”” Express your result (the diameter) finally with
its average error as well as the per cent of error.

2. Determine the diameter of the cotn using the vernier caliper.
Having studied carefully the least count, etc., determine first
the zero correction. Next insert the object in the caliper, being
careful not to force the jaws, and take five rcadings, turning the
object so as to get an average value should the coin not be round.
Ask your partner to take five more. Record all the readings in
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tabular form. From the data determine the average diameter,
the average error, and per cent of error. Pay strict attention to
* significant, figures.”

3. Determine the diameter using the micrometer screw. After
having studied the instrument, determine first the zero correction
(do mot force the juws). Insert the object, turning it if necessary,
and obtain all together ten readings. From the data determine as
before the average diameter, average error, and per cent of error.

Part (b). Inspect the various verniers on the instruments and
take a typical reading. Have the instructor check your reading.
Keep a record of the least count on each instrument.

DATA
Part (a). 1. Diameter of a coin using a metric rule.
ReADINGS (em.) DEvVIATIONS
2.43 4+ 0.011
2.45 -+ 0.031
2.43 + 0.011
2.42 + 0.001 Hence the mean diameter of the
2.42 + 0.001 coin = 2.419 + 0.011 cm.
2.41 — 0.009
2.40) —0.019 Error = 0.45%.
2.40 — 0.019
2.42 + 0.001
240 | —0009
Total 24.19 0.112

Average 2.419 -4+ 0.011

2. Diameter of a coin using a vernier caliper.

ReEADINGS (cm.) DEVIATIONS
2.42 =+ 0.005 Zero correction = 0,000 cm.
2.42 + 0.005 Least count = % main scale.
2.41 = 0.005 Divisions = (0.1 X 0.1)= 0.01 cm.
2.41 — 0.005
2.41 — 0.005 Hence mean diameter of the coin
2.42 + 0.005 (using vernier caliper) = 2.415
2.42 + 0.005 + 0.005 cm.
2.42 <+ 0.005
2.41 — 0.005 Error = 0.21%.
241 | —o0005
Total 24.15 0.050

Average 2.415 + 0.005
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3. Diamcter of a corn using a micrometer screw.

READINGS (cm.) DEVIATIONS
2-41:33 -+ 0.0009 Zero correction = 0.0000 cm.
2.4128 + 0.0004 Pitch of screw = 0.5 mm.
2.4122 — 00002 Least count = 0.01 mm.
_2-41_20 — 0.0004 Hence the diameter of coin (using
2.4123 — 0.0001 a micrometer screw) = 2.41240
2.4123 — 0.0001 + 0.00046 cm.
2.4120 — 0.0004
2.4113 — 0.0011 Error = 0.017%.
2.4130 —+ 0.0006
2.4128 -- 0.0004
Total 24.1240 0.0046
Average 2.41240 + 0.00046
Part (b).
Readings of setting on: Least count
1. Barometer C.gS. . . . .
f.p.s. . . . .
2. Spectrometer . . . . . . .
3. Jolly balanece . . . . . . .
4. Sextant . . . . . . . . .

QUESTIONS

(a). Which is the most accurate instrument of the three? How do the
results obtained show this?

(b). State the number of significant figures in Part (a) 1, 2, and 3.

(c). Does the average for Part (a) 3 lie within outer limits of Part (a) 2?
Give reasons for your answer.

(d). Find the s1um of the three results of Part (a) and state the error in the
result.

. State the least count as found in the instruments used in Part (b).

(f). Find the product of the three results of Part (a) and give the error of
the result.

(g). The density of a coin can be found by dividing its mass by its volume.
If the mass is given to 0.5%, which of the three instruments in Part (1) would
you buy in order to measure the dimensions?

(h). Draw a sketch of a micrometer, reading to 1o inch, when the setting
is 0.638 inch.

The spherometer. In certain indirect measurements of length,
such as the radius of curvature of a lens, use is made of a sphe-
rome-er (Fig. 12).



26 EXPERIMENTAL PHYSICS FOR COLLEGES

The principle of operation of this instrument is exactly the same
as J{or a micrometer caliper, since the device consists of a movable
micrometer screw attached to a head which is subdivided. The
movable leg or micrometer screw is usually
mounted vertically in a framework. This
framework is supported on three legs placed
at equal distances from each other. The
movable leg is placed so as to be equidistant
from the three fixed legs. Attached to the
framework is a vertical scale. In using both
the micrometer caliper and the spherometer
remember that they should be treated care-
fully and never forced, because the whole

. Courtesy Central .
Sctemtinc Company  gecuracy of such an instrument depends

Fia. 12. —Sphe- ypon the serew remaining accurate. This

rometer. will not be the case when subjected to ex-

cessive strains and excessive wear.

The procedure in using a spherometer is as follows :

1. First place the spherometer on a very flat and hard glass or
metal surface and adjust the center leg until it touches the surface.
When this has been done, the tips of all the four legs are in the
same plane. This gives the zero reading.

2. Then the required thickness of a plate can be measured
by placing the plate under the center leg only and measuring the
amount which this leg has to be raised.

Difficulty will be experienced in determining exactly when the
middle leg is just touching, unless the following or some similar
method is used. Gently move one of the side legs back and forth
while adjusting the center leg, and it will be found that as soon
as the center leg becomes a little longer than the others, the instru-
ment will rotate around this leg as a center. Perform the adjust-
ment by having the center leg too short and then screwing it down
until the spherometer just begins to turn on this middle leg and
take the reading. Repeat the same adjustment but starting with
the leg too long, and bring it back slowly until the instrument
just does not rotate around this leg any more. Take a numer of
readings approaching the setting from both sides. With a Yittle
practice this method will give very accurate settings. Another
way is to adjust the center leg so that the whole instrument will

not just rock on this leg.
t
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It will be found that this setting gives a reading somewhere in
the neighborhood of the middle of the vertical scale. In many
instruments the zero is consequently placed in the middle of the
vertical scale. This leads to confusion in casc we have to make a
zero correction (which is almost always the case). It is a much
better plan to call the lowest
division mark on the vertical
scale the zero of this scale,
and then take the readings
on the vertical scale with
this point as zero.

To Finp THE RADIUS OF
CURVATURE OF A
SPHERICAL SURFACE

Very often it becomes
necessary to find the radius
of curvature of mirrors and

lenses since this is an im- ‘\‘ /
portant property in deter- N o
mining their optical be- N e
havior. . The  sp herometer F1Ga. 13. — Spherometer placed on a
adapts itself admirably for spherical surface.

this purpose.

Let a portion of a lens, of which the radius of curvature R is
desired, be represented by the spherical cap WYZ of Figure 13.
This spherical cap is pictured as representing a portion 'of a sphere
with the desired radius 2. We wish to express R in terms of XL
and YL, which distances can be measured.

From symmetry, XL = BL = AL =d.
And if YL =h
then we can write,!
h2R —h) = d?
or, 2 Rh — b = d?
z.e _EtH
o 2h

1This follows from the theorem in geometry which states that when two chords
of a circle intersect within the circle, then the product of two parts of one chord is
equal to the product of the two parts of the other.
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EXPERIMENT 2
TIIE SPHEROMETIER

Part (a). To measure the thickness of a small gluss plate using a
spheromeler.

Part (b). To find the radius of curvature using a spherometer.

Apparatus: A spherometer, a microscope slide, a flat surface (glass or
metal about 10 X 10 em.), a concave or convex lens or mirror surface,
meter rule.

Part (a). First study the instrument, carefully determining
the piteh, size of divisions on the vertical scale, and number of
divisions on the head. This will enable you to calculate the
amount of advance of the screw for a single rotation of the head:

Next study the zero setting by placing the instrument on the
flat surface and adjusting the center leg as explained before. Make
about five settings and tabulate your results.

Lastly, determine the height through which the center leg must
be raised so as to touch the top surface of the microscope slide
which is placed on the flat surface under the middle leg.

From your data calculate the thickness of the slide and state
the error in your result.

DATA
Part (a).
ZERO READINGS (mm.) READINGS ON THE PLATE (mm.)
Readings (mm ) Denations Readings (mm.) Deviations
20.139 — 0.003 23.046 — 0.0012
20.141 — 0.001 23.048 -+ 0.0008
20.145 + 0.003 23.047 — 0.0002
20.142 0.000 23.048 -+ 0.0008
20.143 -+ 0.001 23.047 — 0.0002
Total 100.710 0.008 115.236 0.0032
Average 20.1420 + 0.0016 23.0472 + 0.0006
Hence,

Reading on glass = 23.0472 + 0.0006 mm.
Zero of spherometer = 20.1420 + 0.0016 mm.
Thickness of glass = 2.9052 + 0.0016 mm.
Error = 0.069%.
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Part (b). In order to find R (Fig. 13) it becomes necessary to
measure d and h as accurately as possible.

Having first found the zero reading of the spherometer, by taking
a reading of the instrument on a flat surface, place the spherometer
on the curved surface and adjust, as
explained before, until all four legs touch
the surface and again take the reading.
The difference between these two results
gives the required distance h (Fig. 13).

Since the lengths XL, AL, and BL are
not exactly the samc in practice, we find
the mean value of d by pressing the
spherometer, when the four legs are in 4 X
the same plane, not too heavily on the
data sheet as in Figure 14. This gives Fig. 14.— Measurement of d.
the points A, B, X, and L, so that XL,
AL, and BL may be measured with a meter rule and the average
value for d obtained.

B
I
1
|
1
|

d

|
i

DATA
Part (b).
To TFinDp A To Finp d
ZERO SETTING LEN8 SETTING Distance R(%'r;g It)‘ieoezsiq~
Reads e Readings e
ngs (mm.) Deviations (mm.) Deviations ALl 231 +0.30
BL {220 | —0.80
4.967 | +0.0032| 7.809 |+ 0.0084 XL|233 | +0.50
4.966 | + 0.0022 7.814 | 4 0.0034 Total 68.4 1.60
4.964 | + 0.0002|| 7.817 | + 0.0004 Mean ‘“d” |22.80 =+ 0.53
4.960 | — 0.0038]] 7.819 | — 00024

4.962 | — 0.0018(f 7.818 | — 0.0014

Total 24.819 .0112 || 39.077 .0160
Average 4.9638 + 0.0026(| 7.8174 + 0.0032

Hence, Hence,
h = (7.8174 + 0.0032) d = 22.80 + 0.53 mm.
— (4.9638 + 0.0026) (2.3%)
= 2.8536 4+ 0.0032 mm. (0.11%) d? = 519.8 + 4.6%.

h? = 8.145 + 0.22%.
Hence, R = Q%{—h_h? = 92.5 + 4.6% mm.
= 92.5 + 4.3 mm.
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QUESTIONS

(a). Discuss the least count of the spherometer which you used.

(b). What would be the volume of a sphere having this radius and what
might be the error in the volume (express in ce.)?

(c). Which affects the result (R) more, (1) the error in the measurement of
h, or (2) the error in the value of d? Why?

(d). Would this method of finding R be of any value if the surface were not
spherical ?  Give reasons for your answer.

T MEASUREMENT OF MASS

There are two common methods by which the mass of an object
may be determined. The one utilizes the principle of the lever,
while the other is based upon the principle of elasticity.

The principle of the lever states, for our purpose, that, given a
bar (called a lever), it is always possible to place it on some knife
edge (or fulerum) on which it may turn and be made to balance
by placing weights properly on either side. With equal arm
balances, such as the platform and fine balance, equilibrium will
be established with an equal quantity of mass on each side. Hence,
any standard series of masses may be used to determine the mass
of an unknown with equal arm balances. With unequal arm
balances, such as the fish scales and many standard scales which
employ more than one lever, the masses used in the process of
determining the unknown must be calibrated for the particular
scale. In any case, the result of the determination of mass is not
affected by changes in the force of gravity.

The principle of elasticity explains the behavior of elastic bodies
under twisting, stretching, or compressional forces. Any body,
which returns to its former position after a given distortion, is
serviceable for a balance. The spring balance is the commonest
and can be made quite sensitive. While it may be calibrated
and used to measure mass, it actually records the gravitational
attraction on the mass. For accurate work, it should be cali-
brated at every place used.

Two very useful kinds of balances sufficient for our purposes
will be described: the one, a platform balance which will weigh
objects up to one thousand grams with an accuracy of one-tenth
of a gram ; the other, a fine balance which will weigh objects up to
one hundred grams with an accuracy of one ten-thousandth of a
gram. Both of these balances are characterized by having pans
supported by knife edges (called fulcrums) at either end of a Jever
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arm and a third fulecrum at the center of the lever. The center
fulerum knife edge is raised slightly above the other two so that
the balance arm will be in stable equilibrium.

The platform balance is used for quick weighings and is very
useful where great accuracy is not necessary. The pans or plat-
forms supporting the known and unknown weights arc of heavy
construction and are kept rigidly in an upright position by support-
ing rods under the balance (Fig. 15). The knife edges, which

™y

Fia. 15. — Platform balance.

constitute the fulerum positions, are of steel construction and rest
on hardened steel or agate plates. The pans are balanced at the
factory by loading cups near the bottom of the balance under the
platform. An adjustment for student use is found over the center
fulerum in the form of a threaded cylindrical nut which advances
on a screw either to the left or to the right. A pointer travels in
front of a scale marked in arbitrary divisions. The last ten grams
of mass to be added to the load may be accomplished by a sliding
weight placed on a graduated scale in front of the balance. This
scale is graduated in tenth of a gram divisions. Because of this
scale, the unknown is generally placed on the left while the known
masses are placed on the right pan. Should the unknown be placed
on the right-hand side, that mass indicated by the slider must be
subtracted from the known masses placed on the left-hand pan.
The fine balance is used wherever an accurate determination of
the mass is necessary. The ordinary fine balance will weigh to
about one-tenth of a milligram. If much greater accuracy is
desired, the buoyancy effect of the air, due to the volumes occupied
by the known and unknown masses, must be taken into account.
The pans are suspended from agate planes on either end, which
in turn are supported by knife edges. The central fulecrum knife
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edge is supported on an agate plane which is imbedded in a pillar.
A pointer fastened to the lever arm swings in front of the pillar
and in front of the scale, which is graduated in arbitrary divisions
and located behind the lower end of the pointer. A small weight,
clamped by a set screw, is fastened on the pointer and may be
moved up or down so as to raise or lower the sensitivity.  When
the weight is raised on the pointer, the stability of the lever system
is lessened, but the balance becomes more sensitive.  When the
balance is made very sensitive, a long period of swing of the lever
system results and o longer time is required for the weighing.
Henee the sensitivity of the balance for general use is adjusted
to compromise between sensitivity and quick weighing.  The zero
position of the pointer on the seale can be adjusted by small
threaded weights placed at the two ends of the lever arm.  Iovery
fine balance has some kind of a ““ rider 7 or chain system to make
adjustments from 0.1 to 5 milligrams.  Very often the rider will
add or subtract from a load a maximum of 10 milligrams. The
whole mechanism is placed in a glass case.  When not in use, an
arrestment mechanism is provided to release the agate planes from
the knife edges or to raise the lever arm itself from its agate plane.
This is accomplished by use of a serew head at the bottom of, and
outside, the glass case of the balance. There is also a bution at
the left of this screw head, which may be pressed in to release the
pans so that they will swing freely.  When the button is pressed
in and turned slightly, it will eateh, so that the pans will be free
without further pressure. A level is provided at the back of the
balance, %o ns to indicate when the balance is horizontal. The
balance itself is supported on three legs. The two {ront legs are
threaded and adjustable in length.

Before attempting to weigh an object, especially when the bal-
ance is first set up, notice whether (1) the balance is level, (2) the
knife edges are in position, and (3) the pointer is swinging so that
the initial resting point is near the central division of the arbitrary
scale. If the lever arm does not swing freely upon release by the
serew head, the knife edges should be examined to see if they are
properly seated when lifted by the screw head. If the pans are
free to turn and the pointer does not have its zero position near
the central division of the seale, an adjustment of one or both of
the threaded units at each end of the lever arm should be made.
All such adjustments are generally made by the instructor. With
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continued use, the student learns to make these adjustments him-
self at the direction of the instructor.

The knife edges are frequently found out of position, because
of carelessness on the part of the student when weights (i.c.,
standard masses) are added or taken off the balance. Weights
should never be added or removed from the scale pan unless the
balance arms are locked by the arrestment devices. Moreover,
weights should always be lifted by tweezers, since the hand leaves
grease marks, which increase the mass of the weight.

Suppose that the unknown is on the left pan and certain known
masses are on the right pan, and we wish to see whether a balance
exists. Tirst, turn the serew head.  Then if the pans do not tip,
press in the button which frees the pans. If a balance does not
exist, release the button so as to bring the pans to rest and then
turn the screw head so as to lock the balance arms.  The known
masses are generally placed on the right-hand pan because of the
fact that the rider is attached to the right-hand balance arm.
Iach scale must be studied by itself to learn its particular arrest-
ment device.

Because of friction at the knife edges the exact resting point
cannot be found by allowing the pointer to come to rest because
it does not always come to rest at the same point. In a sensitive
balance the time taken to come to rest is also inconveniently long.
Hence a method of swings is used to overcome these difficulties.
Turn the screw head so as to release the balance arms and then
press in the button gently so as to give an initial swing of about
4 to 10 divisions. If the initial swing is not enough, wave the
hand in front of one of the pans to give it the desired initial swing.
Close the window so that air
currents will not affect the to-
and-fro motion of the pointer. l l W I | 1 l
Then take an odd number of A SR A,
consecutive readings of the ex- Fis. 16. — Pointer scale of a balance.
treme positions of the pointer.

Assume the readings to have been 8, 18, 8.5 (Fig. 16). Now in order
to calculate where the pointer would come to rest on the scale, first
average the two left-hand readings. Then find the mean between
this average reading and the reading on the right. In the example
shown, the resting point would therefore be 13.12. This is so
because the average left-hand reading is 8.25, and when the mean
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is found between this average and 18, the result becomes 18—+—8-'—29,
which equals 13.12. 2

The sensilivity of a balance is a very important constant in com-
paring balances and estimmating the accuracy to be expected. It
is defined as the mass which must be added to the scale pan in
order 1o deflect the pointer one division. A little consideration
will show that the sensitivity decreases somewhat, on account of
friction, with the increase of the load on the balance arms.

Beeause of the large number of small standard masses (i.e.,
weights) used in weighing with a fine balance, one tries to minimize
the number of weights both for simplicity and to cut down the
number of accumulative errors incident with each weight. The
minimum number of masses will be used when we start with the
weight next smaller to the one which overbalances the unknown
mass and continue to add each time that weight which is next
smaller than the one which overbalances the unknown. This
process continues until the smallest weight is used or until the
pointer stays on the scale without further addition of weights.
Most fine balances have a rider or other mechanism to furnish
readings of 5 milligrams or less.

With a large number of standard masses on the scale pan, there
is a fair probability of error in adding these masses mentally. To
avoid this it is good practice to write down the masses of the
weights taken from the box by a study of the empty spaces in the
box. Then check off the weights as they are taken from the scale
pan and replaced in the box.  This method is sure, saves one from
doubt, and often also the necessity of repeating a whole experiment.

If the arms are found to be unequal, the correct mass of the
unknown is found by placing it on each scale pan in turn and
weighing. Suppose that, when the unknown mass is in the left-
hand pan, the known mass in the right-hand pan is m,, while
when the unknown mass is in the right pan, the known mass in
the left-hand pan is m,, then the correct mass M is found by

theory to be M = Vmmo.

EXPERIMENT 3
THE MEASUREMENT OF MASS
Part (a). To measure the mass of an object with a platform balance.
Part (b). To find the sensittivity of a fine balance and to use this
sensitivity in weighing an object with the greatest possible accuracy.
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Apparatus: Part (a). Platform balance, set of weights (10-
500 grams), unknown mass.
Part (b). Fine balance, set of weights, unknown mass (e.g., a
coin), tweezers.

Part (a). Place the unknown first on the left-hand pan and
weigh, then on the right-hand pan. Repeat three to five times,
alternating the unknown weight from one pan to the other. Since
the sliding weight in front of the seale is made for weighing when
the known weights are on the right-hand pan, one should remember
to subtract this weight when the known masses are placed on the
left.  From the data caleulate the average mass for cach side and
its accompanying deviation. Find the per cent of error on cach
side, also the true weight.

DATA
Part (a).
UNKNOWN Mass IN GRrAMS
Lerr PaN Ricur Pan
Kngen, Maew on Deviations R e ™ I Deviations
165.3 + 0.10 164.6 - 0.17
165.2 0 00 164.6 — 017
165.0 -~ 020 164.9 | +0.13
165.3 +010 | 1650 | +0.23
Averages 165.20 £ 0.10 164 77 ! + 0.17
Per cent of
Crror 0.06 0.10¢;,

M =V165.20 X 164.77 = 164.98 grams.
Mass (M) = 164.98 grams with 0.05 per cent of error.

Part (b). First determine the zero resting point of the balance
when no load is on either pan. This should be found by the method
of swings (as described in a previous section) by taking three
consecutive readings of the position of the pointer on the scale
(say two on the left and one on the right). Trom these three
readings the zero resting point can be calculated. Repeat these
three observations three times, obtaining an average value for
this resting point. Record every reading on your data sheet.

Next place on the left pan the object to be weighed (having of
course first clamped the balance arm) and on the right pan the
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standard weights until a balance point is found somewhere near
the zero resting point as determined in the first part of this pro-
cedure. Determine this resting point now by taking as many
readings for it as were taken for the zero resting point. Let
us call the average value of this resting point the load resting
pownt 1.

The next part of the procedure is for the purpose of finding the
“ gsensitivity ” at this load. This is done by adding (or sub-
tracting) a small known weight to the others (say five milligrams)
and redetermining the resting point with this additional little
weight.  Call the value thus found load resting point 2. By sub-
tracting the two load resting points 1 and 2 we know how much
effect the small weight had on the resting point, and consequently
the sensitivity can be casily calculated since it is the weight neces-
sary to move the pointer one division on the scale.

Now, using the sensitivity, calculate the weight of the object. To
do this, it is to be noticed that what has to be calculated is the
weight which would have to be added to (or subtracted from) the
load at resting point 1, to bring it back to the zero resting point.
Knowing the sensitivity, and the number of divisions we should like
to have the pointer move to get it back to the zero resting point,
we get, by multiplying these two quantities together, the weight
which would have to be added (or subtracted) to bring the balance
to the zero resting point.

Finally, if a rider is available, check this calculated value by
using the rider on the balance arm. .

Repeat the whole experiment of Part (b) by placing the weight
on the left pan and the object on the right pan.

Calculations. Unknown on left pan: We see from the data
that 0.005 gram moves the pointer (12.65 — 11.88) = 0.77
divisions.

0.005
0.77

To bring the pointer back to the zero resting point from position 1,
it would have to move (12.65 — 10.43) = 2.22 divisions; or, in
other words, a mass of (2.22 X 0.0065) = 0.0143 gram would have
to be added to the standard masses.
Hence the final mass = 6.200 + 0.0143 = 6.2143 grams.
Unknown on right pan: Make calculations in a similar way and
find the final mass for the unknown on the right pan.

- Sensitivity = = 0.0065 gram/division.
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DATA
Part (b).
UNKNOWN ON LerT PaAN
MaXIMUM SWING TO
Descpre O | Tuiass A Reena” (MR
LEFT RigHT LeFT
1 3.0 18.0 3.0 3.00 10.50
“’;‘;i’r’lﬁtmng 2 10 | 195 | 15 | 125 | 1038
3 5.3 15.3 5.8 5.55 10.42 | 1043
Restin it L 6.0 19.0 7.0 6.50 12.75
sting point
(1) with load 2 9.0 14.0 9.5 0.25 11.63
of 6.200 gm. * -
3 9.0 18.0 9.3 9.15 13.57 12.65
Resting point 1 4.0 19.5 4.5 4.25 11.88
(2) with load 2 9.0 14.0 9.5 9.25 | 11.63
of 6.200 gm.
+ 0.005 gm. 3 7.5 16.5 8.0 7.75 12.13 | 11.88
UNKNOWN oN RiGHT PaN
MAXIMUM SWING TO
DEsGirmton of | Tuuass Ayrmace| Rpsrive | Avnasan
LerT RIGHT LeFT
1 1.3 19.0 2.0 165 10.32
Ze;‘(’)i;ef“ng 2 20 | 186 | 25 | 225 | 1042
3 5.9 15.1 6.0 5.95 10.62 | 10.45
Resting point 1 4.0 118 4.2 4.1 7.95
esting poin
(1) with load 2 0.0 15.8 0.3 0.15 7.98
of 6.200 gm.
3 2.0 14.0 2.4 2.20 8.10 8.01
Resting point 1 4.0 14.0 4.3 4.15 9.08
(2) with load | 2 4.3 14.0 4.7 4.50 9.25
of 6.200 gm.
-+ 0.005 gm. 3 6.3 12.0 6.6 6.45 9.23 9.19

The true mass (allowing for inequalities in the balance arms) is

M = Vmm,,

found by :

where m, and m. are the masses as found on the two sides.
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QUESTIONS

(a). What is the average sensitivity of the fine balance for the particular
load which was used? Express the result in milligrams per division.
(b). Calculate the per cent of error in finding the resting point 1, when the

load is on the left pan.
(c). Calculate the per cent of error introduced in the true mass by inequali-
ties in the lengths of the balance arms. Take the value as found for the load

on the left pan.
(d). How many divisions would the pointer on the fine balance move if

one milligram were added to the load ?

THE MEASUREMENT OF TiME

The measurement of time is the most difficult operation in
determining the three fundamental quantities: length, mass, and
time. There are several reasons for this inherent difficulty.

The scientific unit of time is the mean solar second which was
chosen, not for its convenience, but for lack of a better unit. This
unit of time has to be determined astronomically. Having once
established this unit, the next operation was to try to construct a
mechanically oscillating system which would give exactly isochro-
nous (i.e., equal period) vibrations. No such system has yet been
devised.

The greatest progress in this dircetion has been made within
recent years at our large research laboratories by using vibrating
crystals of quartz and recording their oscillations electrically.
Fortunately for most of our scientific observations, such extreme
accuracy is not demanded because other crrors are much more
important. Usually the procedure is to use a well-made clock
and then find the correction factor for this clock by comparison
with an astronomical clock.

Suppose for a moment that we did have a perfect clock, then
how should we record or measure a certain interval of time exactly ?
It cannot be done! Personal errors, errors of lag and inertia come
in and offset the accuracy of our clock. These errors —i.e.,
errors which we make in starting and stopping a clock exactly at
the beginning and end of an interval — are quite large and are
difficult to determine.

Another error peculiar to a watch is that we cannot read a
watch to parts of an oscillation of the flywheel. Every oscillation
of the flywheel by means of a pawl actuates the seconds pointer
and this pointer moves in jerks (e.g., } sec. jumps). This, then,



MEASUREMENT OF THE FUNDAMENTAL UNITS 39

limits the accuracy of reading such a watch to one-fifth of a
second.

Assuming that the future will be able to produce oscillating
systems with extremely constant oscillations, the difficulites of
recording intervals to accuracies even better than this become almost
if not just as difficult a problem itself. For most accurate work,
therefore, the measurement of time is extremely difficult and
requires the highest degree of skill and technique.

In this course we shall confine our attempts to measurements
of periods with a stop watch of known accuracy. With practice
this forms a fairly accurate, and certainly a comparatively simple,
way of observing certain time intervals. However, even here, in
order to obtain results which are to mean anything, certain rules
must be remembered and strictly adhered to.

First, it is to be noticed that the per cent of error depends upon
the lotal time for which the oscillations or period vs observed and not
upon the number of swings. Hence, if the period of swing is longer,
it is not necessary to observe as many swings. If the same per-
centage of accuracy is required, the times of observing the swings
in the two cases should be about the same. Of course lengthening
the time of observation increases the accuracy.

Secondly, it is to be observed that it is extremely difficult, if not
impossible, to estimate parts of a swing. For this reason 4t
becomes mecessary to find the time of a certain whole number of swings,
and not the number of suings in a certain ttme.

Thirdly, in order not to count one swing more or less than the
required number —a very common fault with beginners — the
following procedure is recommended and should be practiced by a
student for a few minutes before starting observations: Decide
from which end of the swing you will start counting. Call this
zero. Start counting backwards, from 3 say, until zero is reached,
and when zero is reached, start the stop watch and keep on count-
ing forward, finishing the measurement when the number designat-
ing the number of required swings is reached.
eg,3,2,1, 0, 1,2/ 3, . . . . . . . . 979899100

t t
Start watch Stop watch

By always following this procedure, this too frequent source of
error can be overcome.
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EXPERIMENT 4
THE MEASUREMENT OF TIME

To find the period of a simple pendulum of different lengths and to
record the results in the form of a graph.

Apparatus: A spherical pendulum bob of lead or brass about 2 to
2.5 c¢m. in diameter, flexible string 1.5 to 2 meters long, meter stick,
mounting clamp, stop clock.

Start. your experiment with the longest possible pendulum
length, making sure that the pendulum is secured to the support
(I'ig. 17) in such o way that the string swings always
with a definite and fixed length.  The amplitude of swing
!‘_‘_‘. [ [g of the pendulum should nol exceed 5° each side of the
“equilibrium position.

Since the time available for this experiment is de-
cidedly limited, we shall have to content ourselves with
allowing the total period of each observation to be about
one minute.  Time these swings as accurately as possible
T- with the stop wateh available, remembering that the
time for one complete to-and-fro swing of the pendulum is
called 7T

Record the time for two sets of oscillations for each

wise for two more. Record the results in the tabular

form as shown below. Calculate the per cent of error
«—— W in your timing.
Fia. 17.—  Measure the length of the pendulum from the point
‘}u:ll::;\}:x:: of the support to the center of the bob. Next make

the length about one-half, one-fourth, one-eighth, and
one-sixteenth of the original and carry out the same procedure
for each of these lengths, timing the pendulum always for about
one minute.

Calculate 7', the time for one complete oscillation, as well as T2,
Then draw a graph showing the relation between (1) the length
and T, and (2) the length and T (Refer to the previous
chapter for procedure in plotting graphs.) The two curves
should be plotted on the same sheet with T and 72 as or-
dinates.

Q length of the pendulum and let your partner do like-
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DATA

TorarL TivE (sec )

DeviarioN

63.3

63.6

63.5

63.6

Total 251.0
Average  63.50

— 0.20

+0.10
0.00

+0.10
0.40

+ 0.10

Torarn TivEe  (8ec )

0.15¢,

DeviarTioN

73.4 — (.08

73.7 + 0.22

73.5 + 0.02

73.3 — 018

Total 293.9 0.50

Average 73.48 + 0.13
0:18%

(3)

Toran TiME (sec.)

DEVIATION

66.9 + 0.10

66.7 — 0.10

66.8 0.00

66.8 0.00

Total 267.2 020

Average 06.80 + 0.05
0.075¢;

(€))

No. of swings =

TorarL TiME (sec.)

DEVIATION

66.1 + 0.3

65.8 0.0

65.8 0.0

65.5 — 0.3

Total 263.2 0.6
Average ©65.80 + 0.15

0.23%

Length = 159.6 + 0.2 em.

No of swings = 25.
ST = 2510 see. + 0.15¢.
1% = 6.452 sect + 0.309.

Length = 83.7 + 0.2 em.

40.

oo T = 1.837 see. + 0.18¢,
T2 = 3.375 sec2 + 0.36%.
Length = 443 + 0.2 cm.

No. of swings = 50.

T =

1.336 see. 1+ 0.0759,
T 0

1.785 sect. + 0159,

Length = 22.0 + 0.2 cm.

No. of swings = 70.

< T = 0.9400 sec. + 0.23%.
T% = (.8836 sect. + 0.46%.
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(5)
Toran TiMe (sec ) DEVIATION
[ Length = 12,4 + 0.2 em.

69 9 — 0.05

70.1 + 0.15 No. of swings = 100.

70.0 + 0.05
898 015 ST = 0.6995 see. + 0.14¢.

Total 279.80 + 0.40 T = 0 1893 sec?. + 0.28¢,.
Average 69.95 + 0.10
014y
QUESTICNS

(a). How can you increase the accuracy of the value of T' with the apparatus
which you used? :

(b). State the relation between the length () and T by examination of the
graph.

(c). For what length does the experimental period have the largest devia-
tion from the curve? Caleulate the per cent of error in the period for this
length.

(d). Calculate the length of a seconds pendulum (iLe., period of 2 sec.) from
each of the curves in your graph.

PROBLEMS
Experiment 1

1. Given that 1 inch = 2,51 em,, find a factor for converting miles into
kilometers.  Use this factor to convert 12 miles to kilometers.

2. A thin cireular sheet of brass has a dinmeter of 50.00 em.  Find its area
o = 3.142). Assuming that the material has a thickness of 1 mm., find.the"
weight. of the sheet in grams.  (Look up the density of brass in a book of
physical tables.)

8. Define ““ least count ” of a vernier.  Define ““ error of parallax.”

4. A scale is divided into sixteenths of an inch. It is required to read to
iz of an inch by a suitable vernier.  Caleulate the number of divisions on
the vernier and show by means of « diagram the position of the vernier on the
main scale when reading 34%5% inches.

6. A micrometer gauge has 40 threads per inch.  There are 25 divisions on
the revolving head. To what accuracy will this gauge read?

Experiment 2

6. A spherometer has its outer legs at the three corners of an equilateral
triangle of side 5 em. If the center leg is at a distance of 4 mm. above the
plane of the three corner legs when the instrument is placed on a lens surface,
find the radius of curvature of the lens.

7. Through how many revolutions would a spherometer head have to be
rotated if the center leg is to be raised 3.65 mm.? The pitch of the serew is
3 mm. and there are 50 divisions on the head.
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8. Plot a curve showing how R varies with h. Assume that d = 5 cm.
and A has values varying from 1 to 3 mm.

Experiment 3

9. A balance has a zero resting point of 8.6. A load of 6.430 grams is
placed on the left pan with the standard weights on the right.  The resting
pomt (1) is now found to be 7.1.  On addition of a 10-milhgram weight to
the right pan the resting pont is found to be 6.2, Caleulate the sensitivity
of the balanee and also the weight of the unknown load.

10. Caleculate the resting point, given the following consccutive readings
on the seale: 4.2, 13.8, +.7.  Why is this method used for finding the resting
point. of the balance?

11. Define what is meant by the sensitivity of a balanee. Finish the
caleulations and find the value of the sensitivity and the unknown mass when
placed on the right-hand pan. Determine also the true mass. (Refer to
data of Part (b), Exp. 3.)

Experiment 4

12. Given a swinging pendulum and a stop watch, what precautions would
vou take in finding the period of the pendulum with the greatest preeision?

13. Plot, two curves from the tabulated data on the pendulum (pages 41,
42) as follows: (1) length against time, (2) length against time squared (make
the length the abscissa).

14. From the curves in Problem 13, show what the length of a seconds
pendulum (i.e., a pendulum having a period of two seconds) must be.



CHAPTER 1V
STATICS

The branch of mechanics which deals with the equilibrium of
a particle, or of a system of particles distributed at fixed distances
relative to each other (i.c., a rigid body), is termed statics.

Whenever a body is at rest, it does not necessarily mean that
there are no forces acling on it. What more often occurs in
practice is that there are forces acting on the body, but they act
in such a way that they keep the body in equilibrium. Further-
more, should the particle or body be moving with a constant
velocity (either linear or angular or both), then if it keeps on
moving with the same velocity and in the same direction, we still
speak of the system as being in equilibrium, and the same laws are
true in this case as were true when the body or particle was being
held stationary. In this chapter, we shall study experimentally
some of the laws which govern the behavior of these forces which
keep a system in equilibrium.

In studying the laws of Statics, it is natural, from what has been
said above, to divide them into two groups, depending upon whether
we are dealing with a particle, which has mass but no appreciable
size, or a 7igid body, which has both mass and size.

Tue IqQuiLiBriuM CONDITIONS FOR A Ricip Boby

In this course we will simplify the general conditions by consider-
ing all the forces which act on the body to be in one plane. When
this is the case, then we can show that if the body is to be in com-
plete equilibrium, both the following two laws must be satisfied :

1. The vector sum of all the external forces acting on the body must
be zero.

Another way of stating this same law is to say that the vector
sum of all the components of the external forces in two directions
must add up to zero.

2. The sum of the moments of all the external forces acting on the
body must be zero around any axis which we wish to choose per-

pendicular to the plane in which the forces act.
44
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In order to be able to apply these two Laws of Equilibrium, it is
necessary to know how to deal with vectors, since forces fall under
the general heading of vectors. The following section applies to
vectors generally.

THE GEOMETRY OF VECTORS

Addition of vectors. In order to find the sum, or resultant
vector, of the four vectors, proceed graphically as follows: Repre-

B
(a) B (b)
3009 dynes 2900 dynes 2cm.
C
A
3 cem.
2000 dynes
3000 dynes c D
D R =18 cm. or 1800 dynes

Fia. 18.

sent force A by an arrow of suitable length and proper direction ;
then, at the top of the arrow A, place the heel of the arrow which
represents B, in magnitude and direction; at the tip of B, place
the arrow representing €' in direction and magnitude; and so on.
Continue in this way until all the vectors have been drawn (in this
case, four). Then finally draw an arrow from the heel of the first
arrow to the point of the last arrow. This vector represents both
in magnitude and direction the resultant or sum, shown as R in
Figure 18 (b).

Resolution of vectors. In
many cases in which we arc deal-
ing with a vector, the problem can
be much simplified, by splitting
a vector up into component parts
or vectors, so that the sum of

) X
these component vectors together Fi1g. 19. — Resolution of a vector
form the original vector. Then (A) into components.
for the purposes of the problem in
hand, we can neglect the original vector and deal only with the
component vectors (the so-called  components’’). Just asin algebra
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we can split 5 up into 2 + 3, 2.5 4+ 2.5, 1 + 4, etec., and do so in-
definitely, so we can find many components for a single vector.
For practical purposes we usually find the components of a vector in
two directions at right angles to each other. E.g., in Figure 19 we
see that the vector A can be split up into two components, X and
Y, at right angles to each other, in such a way that X + Y = 4
(.., when added as vectors). In this case we see that

X = Acos?
and Y = Acos (90 — 0) = A sin 6.

CONCURRENT FoRrcEus

The equilibrium of a particle. This is the simplest case of
cquilibrium to consider. Here the forces all meet at a point,
because the particle on which they act is negligible in size. Let
us also assume, for the time being, negligible mass. The law of
equilibrium of a particle states that when a number of forces A, B, C,
D, etc., act on a particle and keep it in equilibrium, the resultant force
is zero; or, in other words, when the lines representing the vectors
A, B, C, D, ete., arc placed end to end, they must form a closed
figure so that no sum or resultant vector (R above) is possible.

Space Diagram Vector Diagram

)

F1a. 20. — Four forces keeping a particle in equilibrium.

Example 1. TFigure 20 represents four forces acting on a particle
keeping it in equilibrium. All forces are known. The left dia-
gram shows the arrangement of the forces in space, whereas the
diagram to the right represents the vector diagram. Note that
since equilibrium exists, the four vectors form the sides of a closed
figure (the force-polygon).
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Example 2. 1In this case there are three known forces keeping
the particle in equilibrium. The vector diagram becomes a
triangle, as shown in Figure 21.

Example 3. Figure 22 represents a particle in equilibrium acted
upon by three forces, two of which are known. The problem is to
find the unknown force . There are two methods of procedure :

Space Diagram Vector Diagram

F1g. 21. — Three forces producing equilibrium.

Method 1. Draw the two known forces and complete the tri-
angle with the third vector (since we have equilibrium).

Method 2. Parallelogram of force method. Draw the known
vectors and complete a parallelogram with these two as sides.
The diagonal represents the sum R (check these and see that
it is the same as by the above method). Then R reversed
is the unknown vector x, which will give equilibrium.

Space Diagram Vector Diagrams

5 dynes

T

10 dymes

Method 8

Fia. 22. — Graphical method for finding an unknown force.

Example 4. Another example is to be found by a consideration
of the tnclined plane. It is much easier to solve questions involv-
ing motion or equilibrium on an inclined plane, if we resolve all
forces into components, either along the plane or perpendicular
to its surface.
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Suppose in Figure 23 (a) we have a particle being held in
equilibrium on a smooth plane by a force P— a string, for example
— acting up the plane. The remaining forces acting on this

X
o
Y
®

t (a)
w
Fia. 23. — Equilibrium of a particle on an inclined plane.

particle are the thrust of the plane on the particle B, and the force
of gravity W. Then we can resolve W into two components,
X and 7, respectively parallel and perpendicular to the plane,
i.e., in the directions of & and P, such that

X = Wsin 6,
Y = W cos 6.

Having done this, we need now only work with X and Y and can
neglect W. For equilibrium we see that £ must balance X, and
R must balance Y, hence

P = W sin 9,

R = W cos 6.

The equilibrium of a rigid body. A rigid body has to have an
additional test applied to it, to be sure it is in equilibrium. In
the above cases of a particle, the law of equilibrium states that
there can be no translational acceleration since the resultant force
acting on the particle was zero. This same law still holds for a
rigid body. This, however, is only half of the test for equilibrium,
since a rigid body as a whole might still be in translational equi-
librium while rotating around some axis. We need a further test
to see if the body is in rotational equilibrium. This test consists
in seeing whether it obeys the Law of Moments. This law states
that the sum of the moments around any axts must be zero. Re-
member that the moment of a force is the product of the force, and
the perpendicular drawn from the axis to the direction in which
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this force acts. A clockwise moment is usually called positive,
and an anticlockwise moment, negative.

Friction. In dealing with equilibrium, we may frequently en-
counter the so-called force of friction. Practically this force can
be of great help to us. For example, it is utilized in bringing
an automobile to rest. At other times, however, we would like
to eliminate this force. Its effect is to decrease the efficiency of
machines. Although the whole story of these various types of
frictional forces has not yet been told, the scientist has discovered
many important facts relating to friction. Consider a body at
rest on a rough surface, and let us try to slide it along the surface.
The force which the plane will exert on the body will be in some
unknown direction (not necessarily perpendicular to the surface).
We can think of this force as having
two components, (1) a thrust £ nor-
mal to the surface, and (2) a fric- —
tional force F' acting horizontally, ‘—_——J_'_'—‘
which comes into play when we try _£° —~
to move the body (Fig. 24). This Fia. 24.—The force of friction.
frictional force becomes larger and
Iarger the more we push, and finally reaches a limiting value just
before the body starts to slide. It is found experimentally that
the limiting frictional force F' depends upon the thrust R.

R

5 Push

The ratfo F i a constant and is called the coefficient of fric-
tion (u). e
In practice the force of friction is found to decrease slightly
once the body has started moving, and then remains constant
while the body is sliding along slowly without accelerating. This
fact leads us to be more specific and define :
(1) The coefficient of static friction,
(2) The coefficient of dynamic friction,
depending upon whether we are dealing respectively with the
frictional force necessary to start the body moving, or else with
the force required to move it slowly at constant velocity.

EXPERIMENT 5
THE EQUILIBRIUM OF A PARTICLE

Part (a). An experimental study of the law of equilibrium of a
particle.
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Part (b). Using the law of equilibrium, to find the mass of an
unknown body.

Apparatus: Force table (either horizontal or vertical type), four
hangers having known masses, assorted slotted weights, thin string
or heavy cotton thread, ruler, triangle, and an unknown mass.

Part (a). Draw a thin pencil line across a sheet of paper so
as to divide the paper into halves, as shown in Figure 25. On
the one half, plan to put the space diagram. This is simply a
transfer to this half of the paper of the known forces and their
directions from the actual conditions of the experiment. The
other half can then be used to construct the vector-addition
graphically. Now pin the paper by means of two or three thumb
tacks to the force table in such a way that the center of one-half
of the paper is approximately in the middle of the force board.
Tie three pieces of string of approximately the same length to-
gether in a small knot, passing the other end over three pulleys
arranged at the edges of the board. On these ends attach the
hangers and add known weights until the knot comes to rest
approximately at the center of the force table.

In order to obtain good results, two or three precautions have
to be taken. First, see that the pulleys have as little friction as
possible. Secondly, make sure that the strings are as close to the
paper as possible without the knot touching the board. This
point is usually taken care of in making the apparatus, but in
some instances the heights of the pulleys above the plane of the
board can be adjusted. Lastly, hefore taking any readings, see
that the pulley groove and the string as it comes off the pulley
are parallel. This necessitates having the pulley on a swivel.

Having made these adjustments, find the position of equilibrium
of the particle (in this case the knot) by displacing the system
slightly and noting the point to which it returns. If, on account
of friction, the particle does not always return to the same point,
displace the system several times, marking the points to which
the particle returns and then set the knot in the center of this
region.

The next problem is to transfer the directions of these forces
to the paper. This is best done by making two small dots (as
far apart as the paper will allow) with a sharp pencil immediately
underneath each string. This has to be done with care so as not
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to displace the system and also to avoid errors of parallax. Having
obtained these six points (in the case of three strings attached to
the particle), remove the sheet of paper and join the pairs of
points. Along these three directions write the corresponding
masses that were attached to the strings. The accuracy of your
results depends largely upon obtaining these directions exactly.
To construct the vector diagram. On the other half of the sheet,
adjoining the force diagram, starting at C, draw a vector CD rep-
resenting, on some suitable scale, the magnitude and direction of
the known force along AB. In drawing this direction it is best to
use a triangle and a

straight edge as shown
in Figure 25.. This fig-

M

Force Diagram

Y

Vector Diagram

Cond"

|
ure illustrates how a line X l
can be drawn through (' N ol l
(namely, D) accurately :
parallel to AB. The '
procedure is to place one B l
edge of the triangle to
coincide with the line
AB. Then put a ruler 4 AN
or other straight edge
along another side of the
triangle, being careful to
hold the triangle in place ] |
with one edge along AB. 5 ) P
Now keep the ruler fixed Fic. 25. — Constructing a triangle of forces.
and slide the triangle along the ruler until the side which was
parallel to AB now passes through C. Then draw CD, which
will be parallel to AB. From the end D, draw DE to represent
the second force (along XY). Finally construct EF to represent
the forcc along MN. Now if these forces had been represented
correctly, then according to the law of equilibrium of a particle,
the third vector should finish exactly where the first vector began (viz.,
at C).

Note the difference in your drawing between the points C and
F, and from a measurement of the length of this difference cal-
culate the error. Express the error in per cent (of the last force
represented) and note also the error in direction. Note in all
these constructions a fairly hard pencil with a sharp point must
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be used. Choose the scale of representation as large as the paper
will allow.

Repeat the experiment, arranging the particle so that four
known forces act and again find the error in your vector addition.

Part (b). Let the knot have three strings tied to it. Two
known forces are applied at the ends of two of these strings, the
third having some unknown force acting on it. The unknown
force in this case is the force of gravity acting on an unknown mass.

Proceed as before, obtaining first a space diagram on one-half
of another sheet of paper. Now, on the assumption that the Law
of Equilibrium is true we should find that the three vectors repre-
senting these forces, when placed end to end, form a closed tri-
angle if our drawing were done exactly and there were no friction.
Hence, in drawing the vector diagram to scale, draw the two known
forces end to end (using the triangle and ruler) and then join the
finishing and starting points. This vector then represents the
unknown force, and by finding the length of this vector determine
the mass of the unknown body. Check by finding its mass on a
balance and caleculate your per cent of error. (Note that if we
had drawn a parallelogram with the two known forces as sides,
then the magnitude of the diagonal of this figure can be made to
represent the magnitude of this unknown force. This is often
referred to as the method of the parallelogram of the forces.)

QUESTIONS

(a). Having done this experiment, what is your conclusion about the law
of equilibrium for a particle?

(b). How would you go about proving this law in terms of the components
of the forces?

(¢). Find graphically the magnitude of the components of all the forces
in the direction AB for Part (a), when three forces act.

EXPERIMENT 6

THE INCLINED PLANE AND A DETERMINATION OF THE
COEFFICIENT OF FRICTION

Part (a). To find the unknown mass of a rolling block on the
inclined plane.

Part (b). To find the coefficient of friction between a wooden block
and a horizontal surface.

Part (c). Determination of the coefficient of friction by finding the
limiting angle of repose.
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Apparatus: Inclined plane apparatus, rolling block, two sets of
slotted weights (10-500 gm.), string, hanger, friction block, platform
balance.

Part (a). Arrange the angle of the plane to be about 5° with
the horizontal (Fig. 26) and determine the force necessary to hold
the unknown rolling block in equi-
librium. In order to overcome the
effects of friction in finding this force,
it is mecessary to find the average
between the force required to make
the rolling block move wupward
slowly with constant velocity and
the force necessary to make the
same block move downward with the same velocity.

The force P pulling the rolling body should be kept parallel
to the plane. This is done by adjusting the pulley accordingly.
Obtain about six to eight readings, using different values of 6,
and from these calculate the value of the mass and also the average
error and the per cent of error. Check the mass by weighing on a
balance.

Fia. 26.

Py P, r

: __P
Force Up | Force DowN | AVERAGE Forcr o sin 8 W no

Part (b). The determination of the dynamic coefficient of fric-
tion consists in measuring the force of friction on a levelsurface.
This force of friction is meas-
ured by applying the force
P horizontally until the block
just slides with a very slow
and constant velocity. In the
above apparatus make 6 =0
and add ]us‘c the correct weights until the block slides slowly
(Fig. 27). This mlght‘ necessitate interpolation if the slotted

w
Fia. 27.
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weights which are put on the hanger are not provided in smal}
enough steps. Make three to five trials, adding weights to W,
and redetermine P. Enter your results in tabular form. Cal-
culate p, the coefficient of friction, and state the accuracy of your
result. Compare your result with the result given in a table of
physical constants for these two kinds of surfaces.

Part (c). The coeflicient of friction is found to be the tangent
of the limiting angle of repose. The proof for this can be found in
almost any physics text. The method consists in finding the
limiting angle to which the plane can be raised so as to have the
block slide down by itself slowly and with constant velocity.
Make two or three trials of this angle for the block alone. Then
try the effect of adding mass on top of the block, recording two
readings of 8 for cach mass added.

Put your results in tabular form and calculate u. Find the
per cent of difference between the two values. )

QUESTIONS

(a). Is this the dynamic or static cocfficient of friction?

(b). Which of the two methods described under Part (b) and Part (c) gives
better results for u?

(c). In Part (b) how does the coefficient of friction vary with the weight
of the body? Explain your answer.

(d). In Part (c¢) how does the coefficient of friction vary with the mass
added to the body? Explain your results.

EXPERIMENT 7

AN EXPERIMENTAL STUDY OF THE LAWS OF
EQUILIBRIUM OF A RIGID BODY

Part (a). Determination of the center of gravity of a non-unyform
bar.

Part (b). To find the mass of this bar being given a known mass
(say 60 grams).

Part (c). To find two unknown masses bei»m given a known mass.
Apparatus: A meter bar which is non-umformly leaded by little

metal slugs built into the bar, a knife-edged clamp which can be fixed

at any point along the bar, a vertical support for this knife-edge clamp,

several movable clamps from which to hang the known or unknown

masses, & known mass, and two unknown masses (Fig. 28).

Part (a). The position of the center of gravity of the bar can
be simply determined by balancing the bar on a knife edge. The
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vertical plane through the knife edge passes through the center
of gravity. Find the center of gravity by balancing the bar on

all four sides.
Part (b). Balance the bar on a knife edge when a known mass
of 50 grams is hung from some point along the bar. Having

ey
KT}

'I' ;‘) 1 IIYI] ll'
RS AR

Fra. 28. —- Arrangement for equilibrium of moments.

measured the distances from the fulerum, write down the condi-
tions of equilibrium and solve for W, the weight of the bar. (Note
that the known weight of the hanger must be included.) For
this calculation you may assume the position of the center of
gravity as found in Part (a).

Repeat, using different positions for the 50-gram mass. Tabu-
late your results, and find an average value for the mass. Calculate
the per cent of error in the mass. (If time allows, find the position
of the center of gravity and the weight of the bar as described in
Problem 9 at the end of this chapter.)

Part (c). Hang the two unknown masses X and Y from any two
positions along the bar (e.g., somewhere near the ends), and place
the fulecrum so as to ba*ance the system. Next add a known mass
to either X or Y and readjust the distances for a balance. Measure
the distances of all the forces from the fulcrum in either case (don’t
forget to consider W, the mass of the bar) and write down the con-
ditions for equilibrium. Solve for X and Y. Asa cheak find the
masses X and Y on a balance.

Repeat this part of the experiment by addmg the known mass

to the other unknown.
~ L1 Gra —_
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QUESTIONS

(a). Why does Part (a) give us the center of gravity?

(b). Suppose the bar came to rest at 45°, where would the center of gravity
be? Show by means of a sketch.

(c). Show clearly why the first condition for equilibrium is satisfied in
each case.

PROBLEMS
Experiment b

1. Find by graphical construction the vector sum (direction and mag-
nitude) of the following vectors: 5 North, 4 West, 3 East, 6 East.

2. If the vectors in Problem 1 represent a number of forces acting on a
particle, how will you determine whether the particle is in equilibrium? If it
is not, then what force would be necessary to keep it in equilibrium?

3. Two forces of 10 pounds each act on a point. Find by graphical con-
struction the resultant (or sum) of these two forces when the angle between
them varies from 0° to 180°. Plot a curve showing the relation between the
magnitude of the resultant and the angle between the forces.

Experiment 6

4. A body is moving up an incline of 35° with a velocity of 20 feet
per second. What are the components of this velocity horizontally and
vertically ?

6. A body of mass 10 pounds is held in equilibrium on a smooth incline
by a tension of 160 poundals acting upwards along the plane. Show that the
angle of the plane must be 30° and also that the sum of the component forces,
in any direction you wish to choose, must be zero.

+ 6.4 Define “ coefficient of friction,” and distinguish between static and
dynamic coefficients. Discuss practical conditions under which either one
or the other is used.

- 7.) Prove that the coefficient of friction is equal to the tangent of the
limiting angle of repose.

_8." A horizontal force of 9 pounds in weight can keep a load weighing
60 pounds in steady motion along a horizontal table. What is the coefficient
of friction? Now if the table is tilted slightly, what is the minimum angle of
tilt of the table for the body to slide down by itself without the 9-pound force?

Experiment 7

9. Without assuming the position of the center of gravity of the bar,
how can you find both this position and the weight of the bar, when balancing
the bar on a knife edge by means of the 50-gram mass twice?

10. A rod AB carries bodies weighing 5 pounds, 7 pounds, and 8 pounds,
at distances of 2 inches, 8 inches, and 14 inches, respectively, from 4. Neglect
the weight of the rod and find the point at which the rod must be supported
for equilibrium to be possible.



CHAPTER V
MACHINES

A machine is a device, or mechanism, which will transfer a force
from one point of application to another for some useful advantage.
The pulley system, the jack-screw, and the lever are everyday
illustrations of machines. The pulley is commonly used to hoist
heavy loads, such as steel girders, through great distances, while
the jack-screw and lever are employed to lift massive objects
through short distances. The primary object of these machines is
the utilization of a great force by the application of a small force.

There are many cases, however, where a change in direction of
the force is the primary object of a machine, but not a change in
magnitude. Illustrations are supplied by a single pulley, reversing
belts, and reversing gear wheels. More generally, however, the
machine is arranged to change both the magnitude and direction.
These characteristics are demonstrated by a study of the block
and tackle, the differential pulley, the transmission gear, the
wedge (i.e., double inclined plane), and the wheel and axle.

Mechanical advantage and efficiency. While machines enable
us to do work in an easier and more advantageous way, one should
not be misled into thinking that the total work put into the machine
(i.e., input) to accomplish the task is any less than that obtained
from the machine (i.e., output). In fact, it is genecrally greater
than that obtained from the machine because of frictional losses.

In sum, the useful advantage of a machine depends, theoretically,
upon a knowledge of the resultant and applied forces, and conse-
quently the frictional losses. The ratio of the force exerted by the
machine to the force applied by the operator is called the mechanical
advantage, while the ratio of the work obtained from the machine
(output) to that put info the machine (input) ts called the efficiency.
To express the efficiency in per cent, the ratio is multiplied by 100.
Notice that the mechanical advantage is a ratio of forces, while
the efficiency is a ratio of work. The latter determines the fric-

tional losses.
57
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Two possibilities are to be considered in the development of
the theory of machines, namely, (1) the tdeal case, (2) the actual
case.

The ideal case. The ideal casc is thought of as a machine having
no frictional losses. No such machines exist, but a few approach
the ideal condition (such as, for example, the lever). The ideal
case is useful to consider, however, since it gives us a limiting

minimum force and is found to be related to

. the actual efficiency of the machine.
The ideal mechanical advantage (I. M. A.)
1 is (Fig. 29) by definition
4 I M. A. ‘1‘,’,
Lz
and since, by the theory of conservation of
energy,
. I's = Wh,
provided there arc no frictional losses in the
‘ T Ih machine where s and h are the respective
E‘] a distances through which F and W operate,
we have .
F w S
i TMA =T
w

Fia. 29. — A pulley Tt will be seen that, in the pulley system
system — ideal casc. pictured in Figure 29 and Figure 30, when
M goesup 1 em., F will go down 3 cm. Hence the ideal mechanical
advantage equals 3, since

I. M. A = 3.

_E
h
The ideal mechanical advantage may be figured from the dimen-
sions of the machine as noted above. It should be noticed, how-
ever, that whatever is saved in force by the ideal machine is lost
in distance through which the force operates, so that the work done
is the same whether the machine is used or not. Consequently,

the efficiency in the ideal case is
Eff. = W2 — 1009,

Fs
The actual case. Frictional losses are always encountered in
practice. To illustrate, Figure 30 represents a mass M being
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lifted where the frictional force is found to be of the magnitude f,
while the ideal force (¢.e., force as found when there is no friction)
is F. The frictional force f is found by experiment. By definition
the mechanical advantage is

M.A =W

It is to be scen that in this case the work [(F + f)s] put into the
machine is greater than that (Wh) obtained from the machine,
the difference being dissipated by friction
inside the machine. The efficiency is given
by :

Eff. = output Wh

input  (F + f)s’
and since Wh = Fs,
Fs F
Eff. = = .
F+fs F+f

Note that we may write

go that the efficiency may be written as

Ef. — actual mechanical advantage F1a. 30.— Pulley system
ideal mechanical advantage — actual case.

When f is greater than F, the work to overcomne the friction becomes
greater than the output work of the machine. This gives us a
self-locking machine, the efficiency of which is less than 50 per
cent. The jack-screw, wedge, and the differential pulley are
examples of this type. The large mechanical advantage usually
associated with these machines makes them very useful for the
transfer or dislodgment of very massive objects.

PowEer

The rate at which work is done s called the power. Two machines
which exert equal forces can have very different power ratings
depending upon the rapidity with which the force moves and con-
sequently the rate at which the machine does work.
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The fundamental units of power will be :

(1) in the c. g. s. system = 1 erg per second.
(2) in the f. p. s. system = 1 foot-poundal per second.

In addition to these, two common units found in practice are :

1 ft.-lb./sec. = 32 ft. poundals/sce.
1 horse-power = 33,000 ft.-1bs./min.
1 watt = 107 ergs/sec.

= 1 joule/sec.
[Note. 1 H.P. = 746 watts.]

EXPERIMENT 8
PULLEYS

Part (a). To find the actual mechanical advantage, efficiency, and
force of friction in a pulley system.

Part (b). To calculate the horse-power oulput of the machine.

Part (c). To show graphically the effect of different loads on the
machine.

Apparatus: A mounted double and single pulley, a single pulley,
strong twine, two sets of slotted weights (10-500 grams), two hangers,
meter stick, and stop clock.

Part (a). Set up the apparatus as shown in Figure 30. Place

a standard mass (say 200 grams) in the pan meant for the load W.
This mass, together with the hanger and movable pulley (neglect
weight of string), constitutes the total load of weight W which the
machine exerts. On the other pan, which is to supply the force
applied to the machine, add a number of standard masses until
this side of the
pulley system falls
m m without acceleration.
' To offset the effect
of static friction,
S F Fof 2 give the system a
slight push to start

lf Tf it moving. These

masses, together
with the hanger,
give the force (F + f) necessary to raise the weight W. The two
separate forces, the ideal force F and the force f opposite and equal

m Moving Down m Moving Up

Fig. 31. — Vector representation of the forces.
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to the force of friction, are pictured in Figure 31. Then take off
masses on the side at which the force is applied until it will go up
without acceleration. This forceis F —f. Notice that the direction
of f has changed. In this case the frictional force, which is acting
equal and opposite to f, is directed downward. If the 10-grams
mass is not sufficiently small for adjustments of mass to secure
constant velocity for rise and fall, estimation of the correct mass
should be made.

Repeat the experiment with standard masses of 400, 600, 800,
1000, and 1200 grams placed in succession on the weight pan.
The following table will be found useful for recording the results.

Force (gm. weight)

W INCLUDING Wh w F
et | P N L e

Up
(F+/) (F-1)

Calculate from the data the ideal force applied to the machine
(i.e., F), the frictional force [f = (F + f) — FJ, the actual mechan-
F

F+f

ical advantage (?'l—ltl——?)’ and the efficiency ( ) for the various

loads.

Part (b). Note with a stop clock the time it takes to raise the
largest load with constant speed as far as the apparatus will allow.
Measure the distance and calculate from this the horse-power
output of the machine. This gives the horse-power output for
this particular load and speed.

Part (c). (To be done at home.) Plot on a single cosrdinate
paper the loads as abscissae against the efficiency, actual mechan-
ical advantage, and friction respectively as ordinates. The curves
are more easily observed if different-colored ink is used to trace
each curve. The ordinates for each curve should be inked in
corresponding colors. If colored ink is not available, the curves
can be distinguished by use of broken lines, dots and dashes,
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following some systematic scheme, such as dot-dash, long dash-
short dash, ete.

QUESTIONS

(a). How does the efficiency of the pulley system change with the load?
Explain your results.

(b). How does the actual mechanical advantage change with the load?
Explain your results.

(c). Express the power output (calculated) in terms of watts.

PROBLEMS

1. What is meant by the term “ mechanical advantage ”’?

2. Give examples of the use of machines where the ‘‘ mechanical ad-
vantage ”’ is less than one.

3. Explain the usc of the terms (F + f) and (F — f) as used in the theory.

4, Make two schematic drawings of pulley systems having a theoretical
mechanical advantage of 5 and } respectively.

b. Suppose that in a pulley system, as shown in Figure 30, M = 600 grams,
while the mass m nccessary to pull it up without acceleration is 230 grams.
Find the following: (1) ideal force F, (2) frictional force due to the pulley
system, (3) the actual mechanical advantage, (4) the efficiency. [Note.
Assume that the ideal mechanical advantage is given by the number of cords
supporting the mass of 600 grams.]

6. A painter is suspended to the side of a house by the pulley system in Fig-
ure 30. The upper block of the pulley system is fastened by a hook to the
cornice of the building. The painter may fasten the free or hoisting end of
the rope either to his staging or to the side of the building. If the weight
of the man and pulley system is 600 lbs., examine the force exerted on the
cornice of the building in each case.



CHAPTER VI

ELASTICITY

All bodies are deformed in some way by the application of a
force, no matter how small that force may be. A perfectly elastic
body will return to its original shape, or position, when the applicd
forces are removed. In any actual case, there is a limit to the
magnitude of the force which may be applied, if the body is to
return to its original state. This is called the elastic limit. A
greater force would cause permanent distortion and finally fracture.
Applications of the laws of elastic bodies may be seen in watch
springs, automobile springs, spring balances, ete.

One of the most important properties of an elastic body is that,
when it is bent, twisted, compressed, or stretched, the ratio of the
magnitude of the applied force to the deformation is constant. In
order that we may obtain the same constant for bodies, made of
the same material, no matter what the dimensions of the object
may be, we state that, within the elastic limit, the ratio of the
stress to the strain is a constant e,

__ stress.
strain

(This is Hooke’s Law, discovered by Robert Hooke in 1660.)
The constant e is called the modulus of elasticity. Stress is meas-
ured by the magnitude of the force per unit area causing distortion.
Actually, the term stress refers to the internal forces per unit area
set up to oppose the external force. These forces are, however,
equal and opposite for all cases which we shall consider.

The deformations may be, essentially, a change of shape, length,
or volume. In practice, the most important deformation, resulting
from a pulling or compressing force, is the change in length. For
our purposes, then, we will consider only deformations which are
essentially changes of length.

1.e.,

63
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STRETCHING OF MATERIALS

Consider a wire of length ! and of cross-section 4 (Fig. 32) to
be stretched by a force F' so that the new length is (I + Al). Ap-
plication of Hooke’s Law gives

3 F
Strejgs -A_ constant.
strain Al
l
A Instead of calling the constant e, we substitute for

it the letter ¥ (and call this Young’s modulus, in
honor of Thomas Young, who first gave physical
meaning to this constant), which expresses the re-
lation between stress and strain.

Consequently,

W

= Fl
Anl

BenpiNG Brams

‘-—l-— In engineering practice, considerably less ma-
terial is needed if girders be placed so that the
F1a.32.— Wire thin side is vertical, for bending is usually inversely
:g:zz"}}?‘d by 2 hroportional to the cube of the depth but only
to the first power of thickness. The 77 type steel
girder and the steel rail are examples of useful applications of the
law of bending beams. Theory and experiment show that the
bend B in a beam of rectangular cross-section is proportional
to the force F and to the cube of its length I; and inversely
proportional to its breadth b and to the cube of its depth d;
that is:

FI3
B « b
Fi3
B =Lt
or C e

where C is a constant, depending upon the mode of support and
the material of the rod. When the rod is supported by a fulcrum
at either end and the force is applied midway between them, then

=1y
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where Y represents Young’s modulus, and

== ._E&.-
4 Ybd?

Notice that bending is essentially a combination of stretching
and compression. This explains why Young’s modulus appears
in our equation. The top half of ,

the beam is compressed, while the | I

lower half is stretched. T TT ]

EXPERIMENT 9
YOUNG’S MODULUS

A determination of Young’s modulus
for materials in the form of long
wires.

11
)
;{!

Apparatus: Young’s modulus appa-
ratus, meter stick, weights (1-14 kg.).

The apparatus consists of two
wires of equal length, each having
one end fastened to a rigid support
or beam in the ceiling, while the
other end is attached to a rec-
tangular frame, as shown in Figure
33. The frame is loaded under each

wire with masses m and M. A ‘(___'-w‘

level with micrometer screw at- 3 Il Y i -

tachment tells us how much the ® ° g

wire is stretched for a given load. 2
The mass m is used to keep the W e

wire at a constant tension and, in
particular, to eliminate any kinks
in the wire. This mass m should
be one or two kilograms, depending
upon the size of the wire. The other mass M is variable and
is used to vary the tension on the second wire.

The procedure is to adjust the micrometer screw so that the
bubble in the spirit level is in the center when a load M, of one or
two kilograms, is applied. Then increase the value of M by two
kilograms and bring the bubble to its zero position by adjustment

Courtesy W. M. Welch Sclentific Company

Fia. 33.— Young’s modulus appa-
ratus.
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of the micrometer screw. Repeat until 10 or 12 kilograms have
been added. Now since Young’s modulus is given by the equation

_ stress _ FlL

strain ~ AAl

we can find Y by substituting our measured values of F, A, Al,
and ! in equation (1). In order to test idooke’s Law we shall plot
the stress (v.c., force per unit area) as ordinates and strain (z.e.,
change of length per unit length) as abscissac. If Hooke’s Law is
valid, a straight line should result. Provided the elastic limit has
not been exceeded, draw the best straight line through the plotted
points. If the line does not pass through the origin, draw a parallel
line that does. For large loads (i.e., when the elastic limit is
exceeded), the curve bends towards the horizontal.

Calculate Y from your straight line, which passes through the
origin, by taking the ratio of any ordinate to the corresponding

Use C. G. S. Unrirs

o FORCE, PER -1
T F UNiT AREA CHANGE IN LENGTH
OTAL HORCE P MICROMETER | pvyr a1 SrrETCH rEr UNIT LENGTH
a1 RrApiNGs Al
(dynes) £ (em.) 7

(dynes per
cm?,)

To FiNp DIAMETER OoF WIRE (cm.)

Trials Diameter

1
2
3
4
5

Total
Average
diameter
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abscissa. Choose an ordinate of reasonably large value in order
to minimize the error in reading your graph. The unit of Y
will, of course, depend upon the units in which the stress is
measured.

QUESTIONS

(a). What is the least count in centimeters for the micrometer screw in your
experiment on Young’s modulus?

(b). Which of the quantities that you measured in finding Young’s modulus
has the least per cent of error? If possible, give an estimate of the per cent
of error in your result.

(c). Supposc you had made an error of one centimeter in measuring the
length {, would the error be justified, considering the accuracy of the other
measurements ?

(d). If the micrometer screw which raises or lowers the level is not located
immediately under the wire to be stretched, will any correction be necessary ?
Explain your answer.

EXPERIMENT 10
BENDING BEAMS

A determination of the coefficients of the factors in the equations
representing the bend.

Apparatus: Bending beams apparatus, beam holder, weights
(1-1000 grams), battery and sounder or electric light, meter rule.

The equation representing the bend B of a beam under condi-
tions of the experiment have been given previously by the equation,
CFP FB
2 = e = .
@ bd* 4 Ybd?

We will now rewrite the above equation in the form,
3) B = CF**bmdr,

the object being to obtain experimentally the values of the expo-
nents h, k, m, and n. When these values are found experimentally
equation (3) should be identical to equation (2). Our experiment,
then, represents a method of establishing an equation experi-
mentally.

By taking the logarithm of equation (3), one obtains

(4) logB =1logC + hlogF + klogl + mlogb + nlogd.

Now, suppose that one wishes to find the value of 2. First, find
the bend B, when a force F, is placed on the hanger, and then,
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the bend B, when a force Fy is employed. When the force F, is
placed on the hanger, equation (4) becomes

(5) logB, =logC + hlog F,+ klogl+ mlogb + nlogd.

Similarly, with F» on the hanger, equation (4) gives:
6) logB; =1logC + hlogF'y + klogl + mlogb + n log d.

Solving equations (5) and (6) for h, gives

log B, — log B,
h = e e e 7~-——---,
™ log ¥y — log F,
which is the exponent of the force F. If equation (2) is correct,
then the experimental value of h should be 1 (within experimental
error).

Similarly, to find the value of k, one varies the length (I)of his
beam only, keeping the force constant. If there are bends B’
and B.’ corresponding to lengths [,” and 1./, then it may be shown
readily that )

log By’ — log B’
8 k= .
®) log Iy’ — log 1y’

The student may verify by methods similar to the above that

m = log By'' — log B,"’
log by'" — log b,"’

and
"= log B, — log Bl’”.
log d»""’ — log dy""’

However, the directions for the
=g cxperimental procedure will be
confined to the evaluation of A
and k.

The apparatus is pictured in
Figure 34. The beam is sup-
ported by two substantial knife
edges. At the center of the bar
a hanger is suspended from a

Courtesy Cmml Sclentific Company . .
Fia. 34.— Bending beams apparatus metal stirrup. The metal stir-

rup is provided with a knife edge
and binding post. The bend is measured by a micrometer screw
which makes contact with the top of the knife edge. Contact is
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indicated by the closing of an electric circuit which operates a
buzzer or lights a lamp. The micrometer screw should be ex-
amined before any measurements are taken to determine its pitch
and value of each division on the milled disc in terms of centimeters.
Then turn down the micrometer screw slowly in each case to make
contact. There is a small difference in reading of the micrometer
depending upon whether the micrometer is turned down to just
make contact or turned up to just break contact. The micrometer
should not be in contact with the bar when masses are being
added or taken off the hanger. It is a good policy to have a zero
load of 200 grams in the pan.

Suppose that we wish to find the valuc of h. Take the initial
reading of the micrometer screw with the zero load of 200 grams.
Now inercase the foree on the pan by adding a mass of 200 grams.
Take the new reading. The difference between the two readings
represents the bend B for a force of 200g dynes. Continue your
experiment by reading the micrometer screw for each additional
200 grams mass added to the pan until the maximum safe load is
obtained, say 1000 grams. Now, take the micrometer screw
readings as the load is reduced by 200g dyne steps.

To calculate h. From your data obtained when the loads were
increased by 200g dynes, calculate the mean value of h for the
following combination of forces: 200g and 600g, 400g and 800g,
600g and 1000g. Likewise, find the mean value of A from the
data obtained for the reduction of the loads in steps of 200g
dynes.

To find %, clamp the knife edges near the extreme ends of the
beam and take the micrometer reading of the 200g dyne zero
load. Now add a force of 500g dynes to the load and take the
new micrometer reading. Always keep the load exactly midway
between the knife edges. You now have a bend B for a length of
beam ! due to a load of 500g dynes. Now move each knife edge
in towards the center about 5 c¢m. and repeat the micrometer
measurements for the zero load of 200g and the 500g additional
load. Repeat the micrometer measurements two more times,
moving each knife edge in towards the center 5 cm. each time.
Remember that the measurement of the bend is made in each case
by the addition of the constant load of 500g dynes to the zero
load of 200g dynes. Obtain at least three values of & from your
experiment.
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To Finp h To Fino k

RELATION BETWEEN B AND F
Zero Load (200g) | Mucrometer Reading

! (cm.) Macrometer for an Additronal Load
Mass in Micrometer Reading of 500g Dynes
Grams Reading
200

Note. Measure the breadth b and depth d of the beam used to
find the value of k. These values will be needed in Question (b) below.

QUESTIONS

(a). What is the least count in centimeters for the micrometer serew in your
experiment on bending beams?

(b). From the data obtained in the calculation of exponent k, determine the
value of Y for the maximum value of L.

(c). Draw a curve between the bends as ordinates and the corresponding
lengths as abscissae from the data on the experimental determination of k.
Repeat for the logarithms of the bends as ordinates and the logarithms of the
corresponding lengths as abscissae (see page 12).

(d). Is either curve a straight line? What kind of curves would you expect
if you plotted in a similar fashion the data obtained in the experimental deter-
mination of A?

PROBLEMS
Experiment 9

1. Assume that a wire could be stretched to twice its original length, and
still remain within its elastic limit and that the change in its cross-section is
negligible. What expression would you obtain for Young’s modulus?

4. From an examination of the equation representing Young’s modulus,
what relation exists between the distorting force and stretch for any given
wire?

3. What is the object of the initial load of two kilograms suspended from
each wire before measurements are taken?

4. Are any corrections, due to the stretch of the initial load of two kilo-
grams on each wire, to be made in the calculations for Young’s modulus?
State reasons for your answer.

6. A flat brass rod and a flat copper rod, each 4 meters long and 0.2 square
centimeter in cross-section, are rigidly connected all along their lengths.
If a mass of 25 kilograms is suspended from one end of the combined rods,
what will be the resultant stretch of the bar and the restoring force exerted
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by each bar? Assume Young’s modulus for brass to be 9.2 X 10119&
for copper, 10 X 1011—L-

6. What will be t.he length of a brass rod which stretches one-half the
distance of a 5-meter steel rod when subjected to the same stretching force,
assuming that the steel rod is one-half the diameter of the brass rod. If the
stretching force is 15 kg. and the diameter of the steel rod is 0.5 mm., what

will be the stretch in this rod? Young’s modulus for stecl is 22 X 101 —1——
and for brass as given in Problem 5.

7. A 50-foot steel rod of diameter 3 inches changes in length 0.8 inch
due to the difference between summer and winter temperatures. Calculate
the mechanical force necessary to stretch the rod this amount.

8. Assuming Young’s modulus for brass to be 13.4 X 10% ==

diameter of brass wire will be necessary to sustain a load of 75 pounds?
Express your result in terms of the B and S gauge as well as in centimeters.

9. From the results of Problem 8, calculate the minimum thickness of a
brass wire that will be necessary to support a 150-pound weight.

Experiment 10

10. If the load in the experiment on bending beams is not applied at the
center of the rod, what portion of the theory of the experiment might you
expect to be altered?

11. Would you expect Young’s modulus to appear in an expression repre-
senting the bending of a beam? Explain your answer.

12. A beam 2 meters long, 5 mm. wide, and 1.1 em. deep is bent 8 mm. by
a load F placed at its center. Ilow long must a beam of similar material be
which is 4 mm. wide and 5 mm. deep so as to bend 1 cm. with a load of mag-
nitude 2 F placed at its center?

13. Assume that a brass and a steel bar of equal lengths are rigidly con-
nected along their lengths. If each is 1.8 meters in length and 0.6 X 0.6 cm?,
in cross-section, what will be the bend if the bars are supported at both ends
by knife edges and have a load of 50 gms. suspended from their centers?
Assume the combined rods are placed so that both the brass rod and the steel
rod are in contact with the supports and that Young’s modulus for each bar
is the same as values given in Problems 5 and 6. What will be the weight-
supported by each bar?



CHAPTER VII

PERIODIC MOTIONS

From Hooke’s Law we have seen (Chapter VI) that a distortion
is proportional to the distorting force. Hence in Figure 35, if a
force F displaces a mass m a distance z, against the restoring force

due to the springs, then

F « z, and our equation
m of motion becomes
T 1 F = kz,

F1g. 35. — Simple harmonic motion on a friction-
less table.

where k is a constant
to be determined. The
oscillatory motion of the mass m is called simple harmonic motion.
The equation tells us that simple harmonic motion ts a linear motion
such that the magnitude of the restoring force is proportional to the
displacement. In addition, the restoring force and displacement
are opposite in direction. This latter point is not indicated in the
equation for simple harmonic motion and »
is omitted to add simplicity in the later
development which may be accomplished
without use of the negative sign for the
displacement x. One of the most im- A
portant characteristics of simple harmonic Tz — S~ 7
motion is its period, or the inverse, which is
the frequency. Either of these could be
obtained readily from equation (1) by
the use of the calculus. Since the use - .
. Fig. 36. — Circular motion

of calculus is beyond the scope of the of point, P.
present work, we shall study the uniform
speed of a point on the circumference of a circle, projected on any
diameter. This projected motion is an example of simple har-
monic motion.

Consider the motion (Fig. 36) of a point P on the circumference

72
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of the circle of radius /2 and having a velocity ». We have from
the figure that : 2 = R

where  is the angular velocity; also that
= —]—l)’ =

The acceleration along the x axis is

a *R.

a;, = acos = ’R cos 0 = w'z
and the force in the x direction is

F = ma, = mwix.

Since by definition, o 2x
we have that : - T
4 m
(2) F = " x
This shows that the constant & for equation (1) has the value,
k= 47m
v ‘“Tz‘—‘

Our equation (2) gives us the expression

(3) T =27 -’jj—
Jo

for the period. It is the time interval taken by the object to pass
any point (e.g., the origin, Fig. 36) of reference two consecutive
times in the same direction while making its to-and-
fro excursions. In the case of a simple harmonic
motion R is often called the amplitude.

The motion of a simple pendulum may be treated
as simple harmonic if the oscillation occurs through
a sufficiently small angle. Referring to Figure 37,
if the initial angle 6 is less than 10° the oscillation
of mass m will be approximately simple harmonic
motion and the period of oscillation (a complete to-
and-fro motion) will be a constant quantity. Fre. 37. —

In the figure a small but massive spherical ball is Simple pendu-
fastened to a cord of negligible weight. When the -
spherical ball is small, we may consider the length of the pendulum
as the distance from the upper support to the center of the spheri-
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cal mass. When the pendulum is displaced a slight distance, the
restoring force I, due to gravity, is related to the displacement x
by the equation

F _z
mg 1

and from equation (3), we obtain i
@) T =2 7r\/£
g

as the approximate period of a simple pendulum. The inexactness

of the equation is due to the fact that z is not actually the displace-

ment as required in simple harmonic¢ motion. However, the error

for § = 10°is only of the order of 0.2, and

correspondingly less for smaller angles.

Hence, the pendulum may be made a

fairly accurate instrument for the de-

termination of the acceleration of gravity,

7 provided the period (T') can be measured
with accuracy.

The more accurate measurements of ¢
by the pendulum method, however, are
usually accomplished with some form of
a compound pendulum. In Figure 38 let
b represent a compound pendulum and
a, a simple pendulum. The essential
difference between the two pendula is, that the mass in a simple
pendulum is concentrated at a point the distance of which from
the point of support is [, while the mass in a compound pendulum
is distributed. It is always possible to find a simple pendulum
of a length | which has the same period as a given compound
pendulum.

Consider the simple and compound pendulum in Figure 38.
The compound pendulum is assumed to have equal periods when
suspended from points O and O’. These equal periods may be
proved to be equal to the period of the simple pendulum whose
length is the same as the distance between O and O’. The points
O and O’ of the compound pendulum have an important physical
interpretation. If the compound pendulum is struck at O’ by
a force in the plane of the paper and at right angles to 00’, it will
oscillate freely about O without any force of the blow communi-

(a) (b)
Fia. 38. — Pendula.
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cating itself to the point O. The point O’ is called the center of
percussion. Furthermore, if the compound pendulum is suspended
from O’, point O now becomes the center of percussion.

The center of percussion is often marked on baseball bats since
if the ball is batted from this point there will be no force reaction
(sting) on the hands. Of course, the center of percussion for the
thin end of the bat is of no practical use.

In our experiment, then, the problem is to find the two points
O and O’ about which the two periods for the compound pendulum
will be the same. When these two points are found, we shall
know that the distance between O and O’ represents the length of
simple pendulum, having the same period as the compound pen-
dulum suspended from O or O’. From this data the acceleration
due to gravity may be caleulated from the formula for a simple
pendulum by using equation (4), or

l
— 2 .
() g=+4n lE

The above description of the ideas underlying the use of a com-
pound pendulum to measure the acceleration due to gravity is
substituted for the more formal proof which belongs to more
advanced treatises.

TorsioN PeNDULUM

Moment of inertia (I) is defined as the summation
I =kgnmkrk2,
=1

where there are n distinct particles. The mass in each case may
be considered as concentrated at a point the distance of which
from the center of rotation is 7. The moments of inertia about
any axis arc usually found by the methods of calculus. Even by
these methods the procedure is very difficult, and sometimes
impossible when irregularly shaped bodies have to be considered.
The moment of inertia of any body can, however, be readily found
by experimental methods.

The student will probably have observed in his studies con-
cerning the dynamics of rotation that this quantity I, which hag
been called the moment of inertia, plays about the same rdle
there that mass does in the dynamics of translation.

Consequently, it can easily be shown that the general expression
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for the period of a simple harmonic motion of rotation has exactly
the same form as the gencral expression for the period in the
case of linear simple harmonic motion. For the linear case,

T = 27r\/"1';p, where z is the linear displacement produced by a
Al —
force F, whereas for angular simple harmonic motion, T = 2= \/ g,

where 6 is the angular displacement produced by a torque L, and
I represents the moment of inertia of the rotating body around the
axis of rotation.

A very convenient way of determining experimentally the
moment of inertia of a body of any shape (around an axis of rota-
tion) is to attach it to the end of a wire, clamped so that the wire
hangs vertically and then allow it to perform rotational simple
harmonic motion. The period of oscillation is carefully observed.
Next a body of known moment of inertia is added and the period
of the combination redetermined. From these two periods and
the known moment of inertia of the body which was added, it is
possible to calculate the unknown moment of inertia of the first
original body.

For the first condition (unknown body only),

@) T = 2#\/?,

4

where I is the unknown moment of inertia.
In the second case (unkncwn 4 known),

® SN (& 3

where I, is the known moment of inertia.
Dividing (7) by (8), we get

T, _ ,ZL
T, [+ 1)
i
or I ng - le Il,

from which I can be calculated.

In the apparatus used, the body added is in the form of a thin
ring of mass m and average radius r, whose moment of inertia I
around an axis through the center is known to be I = mr2

Note. If the ring cannot be assumed to be thin, but if instead
it has a thickness which is appreciable compared to the radius,
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then the more exact formula should be used in calculating the
moment of inertia of the ring, viz., I = 1 m(r? + r?).

EXPERIMENT 11
CENTRIFUGAL FORCE
A verification of the law of force for uniform circular motion.

Apparatus: Any form of centrifugal force apparatus, spring balance.

The type of apparatus to be used is shown in the diagram
(Fig. 39). A shaft AB can be made to rotate around its own axis.
A crosspiece, having suspended from
it a metal ball m, is rigidly attached
to this shaft. When the shaft rotates,
the ball will tend to fly outwards, but
is prevented from doing this by the
spring. When the proper speed is at-
tained and kept constant, the wire,

AN

supporting the ball, will be vertical G:)
and its position will be marked by a r 'j
fixed pointer P below. A string pass- B l l C{»;;
ing down the center of the spring acts I, 39. — Centrifugal force

as a safeguard in case the spring is apparatus.
stretched too much.

Several precautions must be strictly observed, otherwise the
ball, which has a considerable mass, might break off and cause
injury to someone. With just a little common sense and care
this is entirely unneccessary. The procedure should be somewhat
as follows: Before starting, check the apparatus. See that the
shaft AB is not too tight nor too lose in its bearings. Next see
that the pointer P is in the correct place. Do this by stretching
the spring (without rotation) and pulling the ball to the right until
the wire hangs vertical. The pointer should then be under the
projecting wire on the ball. Now gently start rotating the shaft,
first by giving it a twist with the fingers and then keeping it in
slow rotation by just running your finger along the shaft, helping
it or retarding it as the case may be. Practice for about five
minutes and see whether you can acquire the technique for holding
the speed constant. You will note that the number of revolutions
per second is not very large. Now practice keeping the speed
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such as to keep the ball exactly over the pointer. Let your partner
do the same.

Having mastered the technique, you are ready to start your
observations. We wish to show, within experimental error, that
the centripetal force acting toward the center is correctly given by
F = "l%)—z - Consequently the experimental measurements involve
measuring, (1) the mass of the ball m; (2) the velocity v; (3) the
radius of the circular motion . The linear velocity of the ball
is found by timing a certain number of revolutions with a stop
watch when the ball is running with constant speed, the speed
being the proper value to keep the two pointers over each other.
Time the system for 50 or 100 turns. Make about three trials,
recording each trial. Let your partner take three or four more.
Average all these trials and calculate the average period for one
revolution. Do not forget to calculate the error.

Next, to find R, it is necessary to measure only the distance from
the center of the shaft to the pointer P. This can be done by
measuring the distance from P to the shaft by means of a meter
rule and then adding one-half the diameter of the shaft as measured
with caliper.

Knowing now the time 7 for one revolution and the radius (in
cms.), it is a simple matter to calculate the linear velocity v, since
%Z;ﬁ = o. In this way find » and the per cent of error in the
measured value of ». TFinally, calculate F, and the per cent of
error, from the formula for the centripetal force.

Check this value roughly, experimentally, by attaching a spring
balance to the ball and pulling the latter out until theball is again
over the pointer P. Take the reading of the balance and cxpress
this force in dynes. Repeat two or more times in order to estimate
the precision of this measurement. Calculate the percentage
difference between the two values for the force.

QUESTIONS

(a). Which gives the more accurate method for finding F?

(b). Point out in your figure where and in which direction the centripetal
and the centrifugal forces act.

(c). What would be the objection to having the pointer P at a distance
from the axis of rotation not equal to that of the length of the arm ¢?
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EXPERIMENT 12

THE PERIOD OF OSCILLATION AND FORCE CONSTANT
OF A SPRING

Part (a). To determine the force constant of the spring.

Part (b). To determine expertmentally the period of oscillation of
the system for several masses.

Part (c). To check on the experimental period found in (b), by
calculation from the formula using the
force constant found in (a).

Apparatus: Spiral spring mounted on rods
and clamped rigidly to the table (Fig. 40),
slotted weights (up to 1000 grams), hanger,
stop clock, meter rule.

Part (a). Add to the hanger 100, 200,
300 grams, etc., up to 1000 grams. Place
the meter rule vertically and take readings I1e. 40. — Simple har-
of a certain point on the hanger before M¢PI¢ Motion apparatus.
and after each load. Record the stretch of the spring for every
100 grams added.

Tabulate your results as shown :

INITIAL Mass Mass Abpep | INITIAL READING | FINAL READING STRETCH (z)
(grams) (grams) (em.) (em.) (per 100 grams)

Examine the successive values found for the stretch x, when
additional loads of 100 grams are added. The value of z, of course,
sho®ld be constant since Hooke’s Law is assumed to hold. For
the smaller loads it is quite possible that « is not constant. This,
however, is due to negative tension in the spring which must be
overcome before the spring really becomes stretched. 1In averaging
your values to find z, take only those which show that beyond a
certain point the negative tension has been overcome.

Then the force constant = F_100g dynes/(cm.).
T av.zx
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Part (b). Determine the periods of three masses experimentally
by taking the average of one hundred oscillations for each mass.
Kach of the three masses should be in excess of that required to
overcome any negative tension of the spring.

Mass of the spring =

PeRr1OD OF Ma8Ss m

m INcLupes HANGER Nar b o, DIFFER-
AND } WEIGHT OF })I:(“u:(.::légg - LNCE FROM
SprING M By Theory THE MEAN

Part (¢) By Exp.

Part (c). Calculate from equation (3) the theoretical period
for each of the three masses in Part (b), using the value of F

x
found in Part (a). The mass m must include the weight of the
hanger as well as one-third the mass of the spring if the latter
mass is appreciable compared to the other masses. (The reason
for adding one-third the mass of the spring appears in more
extended treatises.)

QUESTIONS

(a). In your experiment what would be the (1) maximum restoring force
of the spring, (2) maximum acceleration of the mass, (3) maximum velocity
of the mass if the amplitude of swing was 3 cm. and the mass on the spring
was 500 gm. ?

(b). What will be the error in the period of the smallest mass used in Part
(b) if the mass of the spring is neglected?

EXPERIMENT 13
THE SIMPLE PENDULUM

To determine g, the acceleration due to gravity.

Apparatus: Same as in Experiment 4.

If the data for Experiment 4 are available, find the value of ¢
from the curve or other observations made at that time, using the

formula -
T = 27r\/—l~
g
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If the previously taken data are not available, repeat the experi-
ment.
QUESTIONS

(a). What must be the length of a simple pendulum in order that (1) the
period may be one second?  (2) The half period may be one second ?

(b). In Experiment 12 you have found a curve showing the relation between
T? and l. This should be a straight line passing through the origin. Prove

2
that. the slope of this line is equal to 4n,
g

(c). Suppose that you had found experimentally that the value of this
slope is 0.04, what is the value of g, the acceleration of gravity ?
(d). What value did your results give for the slope of thisline? @
[~

1
EXPERIMENT 14 3
KATER'S PENDULUM 5
To find the value of g.

Apparatus: Kater’s reversible pendulum and support,
meter stick, stop clock. 9

o

7

Kater’s pendulum consists of a bar with masses at- 1
tached so that one or all of them may be adjusted to
several positions. It is constructed to have one or 18
more suspension points from either end. The instru-
ment as shown in Figure 41 is a straight steel bar
weighing about 2} lb. with g-inch holes bored along 17
the bar beginning one inch from either end and spac-
ing two inches apart. They are slightly beveled and
have a groove to engage the knife edge. The length 21
of this pendulum bar is about 4% feet. The mass at
the top consists of two dises, each weighing about
14 1b. and bolted to the bar by a bolt § inch in diameter 4
and a wing nut. This mass is kept in the same position
throughout the experiment. The other mass, consist- 27|,
ing of two dises near the bottom, is fastened to tke bar  Fia. 41. —
in the same way as the one described above. The ¥ater's pen-

: : . . dulum.
weight of each of these discs, however, is approximately
0.9 Ib.

The method used in this experiment is to find the period from
either support O and O’ and to adjust the sliding mass m up or
down until the periods from each end are equal. The approximate
values of the periods for the preliminary work may be found by

16

19

N
<

28

Y O TR
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taking the average of ten complete oscillations. Suppose the
periods to be about the same when the mass m is bolted through
hole No. 20. To determine more accurately the period of oscilla-
tion for equal periods from each end, find the period about O and
0O’ by taking the average of fifty complete oscillations with the
mass m bolted to holes Nos. 18, 19,20, 21, and 22. Plot the period
about each point of support as an ordinate against the numbers
representing the holes. The intersection of the two curves for
the periods about O and O’ will give the period of a simple pendu-
lum the length of which is the distance between O and O’. The
distance between the supports O and O’ must be measured

carcfully.

PrELIMINARY READINGS FivaL ReapiNgs
Time ror 10 VIB. ABOUT TiME For 50 Vis, aAouT
Posirion Posirion
OF m OF m
0 (o4 (] o

MEASURE OF
DiSTANCE
BETWEEN
O anp O

()]

Value of T, the period, obtained from

the curve = g = 4l
T

Per cent of error from accepted value =

Average
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QUESTIONS

(a). Estimate the error in your experiment on Kater’s pendulum from the
data obtained. Compare with the per cent of error from the accepted value.

(b). Let the period of a simple pendulum of length 99.6 cm. be 2.10 seconds.
Find the distance between the two knife edges of a Kater’s pendulum which
has a period of 4.15 seconds at the same place.

EXPERIMENT 16
THE TORSION PENDULUM

To find the moment inertia of a disc.

Apparatus: Torsion pendulum with rod, table clamp and test tube
holder, inertia ring, stop clock, meter stick.

The apparatus consists essentially of a disc rigidly attached to a
wire of length I. The upper end of the wire is attached to a
cylindrical block, which, in turn, is held
rigidly by a clamp (Fig. 42). If the disc
of mass M is given a small twist, say a J
half-turn, it will oscillate back and forth
with a given period. If the ring of mass
M is now placed on top of the disc so that
the wire is at the center of the ring, the
period will be longer. From these two
values of the periods it is possible to l
obtain the moment of inertia of the disc
of mass M. This, therefore, is an experi-
mental method for finding the moment of
inertia of a disc.  The method is applicable
no matter what the shape of M. In order
to check the experimental determination, e
the body M is given a shape such that
it is also possible to calcula.te, by methods Tre. 42, — Torsion pon-
of calculus, the moment of inertia. When dulum.

M has the shape of a disc as shown in the

figure, then the calculation by calculus gives I (disc around a central
axis) = § Mr?, where M is the mass of the disc and r its radius.
Consequently in performing this experiment find the time, first
without and then with the ring, of 25 or more complete angular
oscillations. Make a number of observations of this same quan-
tity, recording each one in a table or form shown below. By
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averaging each set of readings and then dividing by the number
of oscillations, the period of a single oscillation can be calculated.
Unless the mass of the disc and the mass of the ring are already
given, it will now be necessary to weigh them on a balance.
Record also the radius of the dise and the inner and outer radius
of the ring. These can all be found by averaging a number of

readings taken with the vernier caliper.

If the approximate

formula is used for the ring (mr?), then r must be the mean radius.

To Finp e Perioo (Seconds)

TiMeE FOR 25 VIBRATIONS
TRIAL
25 Th Deviations 25T Deviations
1
2
3
Total
Average
To Finp Tue Rabir (em)
Diam. Diam. Diam.
oF Deviarions| (Insipe) | Deviations| (Oursipe) | DeviaTions
Disc RiNa Ring
Total
Average
Radius
Mass of the ring = grams
Mass of the disc = grams
Experimental value of 7 = sec.
Experimental value of T» = sec.
also I, (ring) = gm.-cm.?
hence I (disc) = gm.-cm.?
also I (cale) = gm.-cm.2
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QUESTIONS

(a). Using the more exact formula for the moment of inertia of the ring,
calculate the moment of inertia of the disc.

(b). Compare the two values for the moment of inertia of the disc as found
by experiment (using the approximate and the exact values for the moment of
inertia of the ring) and calculate the change in the error when the values are
compared with the c:tlculatedo alue of the moment of inertia of the disc
(i.e., I =3 Mr). “304' vy

¢ , PROBLEMS

Experiment 11 af

1. Suppose that, in Figure 39, the mass m revolves 50 times in 60 seconds.
What will be the tension in the spring if . = 500 gm. and radius B = 30 cm.?

2. What would be the time 7' for one revolution in the question above if
m = 1000 gm.?

3. What will be the time 7 for one revolution in Problem 1, if the tension
of the spring and the mass m remain unchanged, but the radius B = 60 cm. ?

Experiment 12 M il
4. Give a definition of simple harmonic motion.
6. What is the amplitude of a simple harmonic motion? *

,");6. Is the period of oscillation in any way dependent on the amplitude of
the oscillation ?

- 7.‘ [f the period of your spring, with a mass m, should be obtained in
another locality with a different value of g (the acceleration due to gravity),
would you expect the period to be altered? Explain your answer.

* *8. If a mass of 50 grams stretches a given spring 1 em., what would be the
period of the spring if 200 grams were placed on the spring?

Experiment 13 M W X )

9. Ts the oscillation of a simple pendulum an example of simple harmonic
motion? Explain your answer.

10. How does the period of a simple pendulum vary with (1) the length,
(2) the mass of the bob?

11. Would you expeet the period of a simple pendulum to be greater or less
at the top of a tall building when compared with the period at the base of the
building ?

12. A pendulum of length 99.5 cm. swings at a place where the acceleration

due to gravity is 980.2 %—, If it is intended to be a seconds pendulum
c.?

(period of 2 seconds), what time is lost or gained per day? What should its
length be?

Experiment 14

13. What is the meaning of the expression ‘ center of percussion ”?

14. When the period of a compound pendulum about O and O’ (Fig. 38 b)
is the same, what does this mean iw terms of a simple pendulum?
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16. What method is used in the experiment with Kater’s pendulum to
assure periods about two points O and O’ to be equal?

Experiment 15

16. Does the period of a torsion pendulum vary with the angular dis-
placement ?

17. Calculate the moment of inertia of a disc around an axis through the
center, given that the mass is 500 grams and the radius 10 cm.

18. Find the moment of inertia of a ring around a central axis if its mass is
500 grams and the inside and outside diameters are 12 and 14 cm. respectively.

19. Verify the equation I = [ 1(72-’1—177—;) for a torsion pendulum,
< 1



CHAPTER VIII

SPECIFIC GRAVITY AND DENSITY OF BODIES

The density of a body is defined as the mass per unit volume.
Consequently, if d represents the density, v the volume, and m the
mass, then gom

=
In fundamental units the density is expressed in LU Ibs.
: cm.? ft.3
Thus in the Inglish (f. p. s.) system the densities of water,
mercury at 20° C., and gold (cast) are 62.4, 845.6, and 1204.6 lflzsa

respectively, whereas in the metric (c. g. s.) system these densities
become 1, 13.56, and 19.3 gnl_;
em.

It is very common, in the case of liquids, to compare the weight
of a given volume to the weight of the same volume of some
standard substance. The standard substance gencrally taken is
water. This ratio 1s called the specific gravity of the substance.
Specific gravity can also be expressed as the ratio of two densities,
..,

Sp. gr. = dﬁ,
k
where d, and d;; are the densities of the unknown and known sub-
stances respectively. Referring to tne above figures for water
and mercury, it will be secen that in either system of units the
specific gravity of water is 1 and that of mercury is 13.56, if water
is chosen as the standard.

Density is a concrete number with dimensions dependent on the
system of units used; while specific gravity is an abstract number,
and hence without dimensions. The value of the specific gravity
of a liquid, therefore, does not depend on the system of units.
Because of the fact that in the metric system a unit volume of water
has a mass of 1 gram, the specific gravity and density in that

system have equal numerical magnitudes.
87
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EXPERIMENT 16
ARCHIMEDES PRINCIPLE AND THE DENSITY OF SOLIDS

Part (a). To find the density of solids heavier than water.
Part (b). To find the density of solids lighter than water.
Part (c). To measure the specific gramty of a liquid.
Part (d). To find the length of a tangle of wire.

Apparatus: Part (a). Solids insoluble in water, platform balance,
standard weights, thread.

Part (b). Solids lighter than water (e.g., paraffin, wood, etc.), a
sinker, balance as in Part (a).

Part (¢). A liquid such as carbon tetrachloride, or glycerin,
balance as in Part (a).

Part (d). TFinc balance, platform to fit over left pan of fine
balance, beaker (500 cc.), looscly tangled copper wire of approxi-
mately #22 B & S gauge, micrometer
screw, cleaning solution (see Part (d) of
experiment).

m

"1

Z Part (a). Weigh the solid in air and
let its mass be m. Then weigh the solid
(Fig. 43) in water. If the weight in
F1a. 43. — Solid denser than yvater is my, its _loss of weight in Wfttel‘
water. is m — m,.  This represents the weight
of water displaced, which numerically

is equal to the volume of the block. Hence, the density is

m — m,

d:,_L. Iml

Part (b). Attach a sinker to the
body of mass m, the density of which
is desired. If the weight of the com- i
bined masses with sinker just immersed d)
is m,, and with both solids immersed (5
is mq, then the density of the mass m
is (Fig. 44)

m F1a. 44.— Solid less dense than
d= —"F— water.

my — My
Part (c). Weigh a solid (insoluble in water or in the liquid
whose specific gravity is desired) in air and call its mass m. Then
weigh the solid immersed in water (Fig. 45), and then in the liquid
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x. If the weight of the solid in water is i), and in the liquid is
ms, then the specific gravity of the liquid is

Sp. gr. = T M,

"i‘g "glj\‘, m — m,
This results (1) from Archimedes’ principle, which states that
the loss of weight of a body immersed in a fluid is equal to the
weight of the fluid displaced ;

m

and (2) from the definition ny |\ 72
of specific gravity, which is
the ratio of the masses of the 7

two liquids when the volumes
are the same.
Part (d). In this experi- - LL

. Water Any Liquid
ment, one finds the volume Fig. 15.—A liquid.
of the wire by dctermining
the loss of weight in water by means of the fine balance, and
also the diameter d of the wire by means of a micrometer screw.
Thus if 1 is the length of the wire, then the volume (v) of the
wire is _— 4

v = Z(H, or [ = "

The loss of weight of the wire is found in the following manner :
Clean the wire in an alkali solution made of sodium hydroxide
(20 or more grams per liter) and rinse with clean water. Make a
tiny hook at one end of the wire and attach to a hook directly
under the left-hand knife edge of the balance arm. Then place a
platform over the left-hand pan and arrange the apparatus so that
the tangle is immersed in a beaker of water placed on this platform.
Exercise great care in placing the platform and beaker of water
over the scale pan so that no water is spilled on the balance.
Carelessness in this operation ruins a balance and in this case is
inexcusable. Weigh the tangled wire when immersed in the water.
The difference between the two weights is numerically the volume.
[Note. The length of the portion above water may be added to the
resultant length under water, as found by calculation, later.]

s

QUESTIONS

(a). What effect would bubbles of air, gathered on the side of the solid
when immersed in water, have on (1) the density of the solids in Part (a);
(2) the specific gravity of the liquid in Part (c)?
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(b). What kind of errors may be expected in Part (d) if the wire is tangled
too tightly or if the wire is not clean?

(c). Discuss and approximate the accuracy of each result in Parts (a), (b),
(c), and (d) of this experiment.

EXPERIMENT 17

THE DETERMINATION OF THE SPECIFIC GRAVITY OF
LIQUIDS

Part (a). By means of the specific gravty botile.
Part (b). By means of the U-tube.

Apparatus: Part (a). Fine balance and weights, specific gravity
bottle, liquids, heated compressed air for drying out the specific
gravity bottles.

Part (b). U-tube about one foot or morc in length, liquids,
meter stick, water, mercury, carbon tetrachloride, glycerin, ete.

Part (a). If the specific gravity bottle is not dry and clean, rinsc
with water and then dry by blowing heated compressed air into
the bottle. It is then weighed on the fine balance. Fill the bottle
with water and weigh again. Next, having emptied and dried
the specific gravity bottle, it is again weighed when filled with the
liquid the specific gravity of which is desired. The bottle should
always be exactly full when at room temperature. If m, m;, and
ms, in the order given, represent the mass of the empty bottle, the
mass of the bottle when filled with water, and the
mass of the bottle when filled with the liquid, the
specific gravity is

Sp. gr. = T2 T M,
m, —m

Note that there is a hole of capillary size along the

: axis of the ground stopper (Fig. 46). This hole is

FJG 46 — provided to allow excess liquid to escape from the

ﬁg‘éagcgm"lw bottle upon sealing with the stopper. The bottle

should be wiped after closing with the stopper. To

prevent the formation of bubbles within the bottle, insert the stopper

in such a fashion as to have one side touching the neck of the bottle
and the bottle tipped slightly.

Repeat your experiment one or more times and calculate the

per cent of error. Compare the value found by experiment with

the value as given in tables.
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Part (b). Fill the U-tube about one third to
one half full of the liquid, then add water to
one side until the tube is filled to a desired ~1

height. In Figure 47, the shaded portion rep- §
resents the liquid of which the specific gravity
is desired, while the unshaded portion is water. i

The water column of length I, is balanced by
the column of liquid of length .
It may be shown that -

lzdz = l1d1

and, therefore, we have

Fra. 47. — Specific

dy _ 1z gravity by U-tube
Sp. gr. = E: = —1_1 method.
QUESTIONS

(a). What is the accepted specific gravity of the liquid used? State the
source of information. What is the per cent of error of your experiment
(use your average result) {rom this accepted value?

(b). Could you perform the experiment if some water appears on both
sides of the tube?

(c). Compare the results of the specific gravity as found in Part (a) and
Part (b). ich method gives more accurate results?

‘:\Ug Tt d g Qv
¢~ _~_} PROBLEMS
Experiment 18 5y

1. State all the differences you can think of between the definitions of
specific gravity and density.

2. A spherical mass of cast gold weighing 100 grams is thought to have a
hollow center. When weighed in water, it
is found to weigh 90 grams. What is the

volume of the inclosed air space? (Density
Unknéwn
Liquid of gold = 19.3 E’E;s.
cim.

3. An alloy of silver and gold is made

to have a density of 13 ﬂs and a mass of
cm.

55 grams. What mass of silver was used?
Fia. 48. — U-tube with liquids [Note. Take the densities of silver and gold

as required in Problem 8. to be 10.5 5™ and 19.3 ™ respectively.]
F cm.? cm.?
4. A glass receptacle contains a Jayer of mercury and then a layer of water.
If a cast steel rectangle of densi 7.6%& dropped into the dish, what
‘ cm.
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portion of the depth of the rectangle will be above the mercury surface?

(Mercury has a density of 13.5 8-

em,’?

6. Do you think iron would sink to the bottom of the ocean?

Experiment 17

6. What advantage is obtained by the use of a specific gravity bottle with
the kind of stopper described in Experiment 17, Part (a)?

7. What is the theory that leads to the conclusion Iy, = Lid,? Would
the theory be altered if the U-tube had a larger diameter on one side than
on the other?

8. A U-tube contains liquids as shown in Figure 48. Assume that the
density of water and mercury are known and calculate the density of the
unknown liquid.



CHAPTER IX
EXPANSION OF SOLIDS, LIQUIDS, AND GASES

Most substances expand with an increase of temperature. A
few, however, contract with temperature, while others change
but little. The amount of expansion with heat seems to be related
very closely with the grouping of the molecules and the forces
between them. Thus with gases the motions of the molecules
are wholly at random and the cxpansions are very uniform for
many gases. In general, the expansions, with increase of tem-
perature, are less marked in the order: gases, liquids, and
solids.

By expansion, we may refer to the change in length, surface,
or volume, due to a change in temperature. Thus with the laying
of pipe lines, the building of bridges, or the construction of steel
buildings, it is the change in length that is important; while in
the construction of thermometer bulbs or the filling of liquid
containers, the volume expansion is important. Surface expan-
sions will not be considered.

The linear expansion of a solid is measured in terms of the
change of length per unit length per unit rise of temperature.
We call this the linear cocfficient of expansion of a solid, and it is
designated by the letter «. Thus, if Al represents the total change
produced in the length,

(1) Y

L At
Here « is the average linear coefficient of expansion for the tem-
perature interval At, and [ is the length at the initial temperature.
The average volume coefficient of expansion (8) for the temperature
interval At is defined in a similar way, namely,

(2) B:-—_,

where » is the volume at the initial temperature.
It will be noticed that if we let [, and [; be the initial and final
93
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lengths, while ¢, and {; are the initial and final temperatures, we
have from (1)

_ =1
* lo(ty — to)
or ll = lo [1 + a(tl b to)],
and if to = 0,
3) Iy = lo(1 + aty).
Similarly,
v1 =0 [1 + B(t: — t0)],

and when ¢, = 0,
4) v = vo(1 + Bty).

[Note. Many use the letter ¢ instead of At to represent the change
of temperature.]

Gases expand so markedly that the volume (or linear) coefficient
of expansion will have different values, measurable in the labora-
tory, if different initial temperatures from which the expansion
is measured are chosen. The initial temperature usually referred
to is 0° C.

The volume coefficient of expansion of a gas at constant pressure
with an initial volume (vo) at 0° C. is defined as
V1 — Vo

or v = vo(1 4+ Bpty).
Vol

Br =

The pressure coefficient of expansion at constant volume is

By = _E‘_—___.RQ, or p = po(l + thl)-

Dol
It may be shown that for a perfect gas
-8 = L
Bp = 0y To’

where T = 273 (to a first approximation), the temperature on
the absolute scale which corresponds to zero degrees on the Centi-
grade scale.

If we wish to study the expansion of gases where the initial state
of the gas is not given at zero degrees Centigrade, it will be found
more convenient, generally, to use the more general gas law,

pv = RT,

.., %9 = const. = R.
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In this equation, T is the temperature on the absolute scale and has
the relation to temperatures ¢ on the Centigrade scale that

T =273 4+t

EXPERIMENT 18
THE AIR THERMOMETER
To find the value of B by use of the air thermometer.

Apparatus: Air thermometer, ice, large beaker, steam jacket,
thermometer.

The apparatus (Fig. 49) consists of glass bulb with stem of
capillary bore, connceted to a flexible rubber tubing as shown.
A straight glass tubing of about 1 inch
in diameter is connected to the other side Pa
of the rubber tubing. Clean mercury
fills the space between the levels a
and b.

Keeping the volume of air inclosed in
the bulb constant, theory shows that the 3
pressure in the bulb is related to the tem- ' N
perature of the bulb in the following way :

B, = PL.— Do,
Pols

Conscquently it becomes necessary to
find the corresponding pressure in the
bulb for two or more temperatures.

In the experiment, place the bulb in a
mixture of chopped ice and water to ob- U
tain the pressure in the bulb for zero
temperature. This pressure (po), if a is
higher than b, will be:

Po = pa + (¢ — b) centimeters of Hg,

F1a. 49. — Air thermometer.

where p, is the atmospheric pressure in centimeters of mercury
(Hg), while a — b is the difference in height of the two sides of the
mercury column, measured in centimeters. The height of a and
b may be measured from the table top if the apparatus contains
no scale of its own. It may turn out that a is lower than b. In
such a case the pressure in the bulb is less than atmospheric
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pressure; hence the difference (b — a) is subtracted from p,.
The atmospheric pressure (p.) is to be obtained from any good
barometer.

Next insert, the bulb in a steam jacket to get the pressure (p,)
for steam temperature. Remember that you are to adjust your
apparatus so that the volume within the bulb is to remain constant.
This means that the top of the mercury column at b must remain
at the same position as before. To do this the other side of the
mercury column must be raised. Again find the pressure, now
at 100°C. From your results obtain a value for B. [Note.
Before you take the bulb from the steam bath, lower the side
which has the top of the mercury column marked with the letter a,
so that mercury will not go into the bulb when it cools.]

Having surrounded the bulb with a water jacket, find the
pressurc corresponding o temperatures in the neighborhood of
25, 50, and 75 degrees Centigrade to determine whether the state-
ment is true that the pressure increases linearly with the tempera-
ture. Plot your results with pressure as ordinate and temperature
as abscissa. IExtend your curve until it crosses the axis of the
abscissa and interpret the intercepts. Enter your data in a tabular
form as shown:

Baromerer HelGHT (po) =

Hzerenr or Hg
TemP. a-b pr=pa+(a—b)
a (Open) b (Closed)

®

~

Ice

Room
Medium
Hot

Steam

By =

QUESTIONS

(a). What does your “ curve ” tell you as to the relation between the pres-
sures and temperatures?

(b). At what temperature did your curve cross the axis of abscissa?

(c). What relation would you expect to find if you divided the pressure in
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the bulb by the absolute temperature for each of the four temperatures at
which the pressures were measured? Explain your answer.

EXPERIMENT 19
BOYLE’S LAW

To show that the product of the pressure and the volume of a gas (air)
1s a constant if the temperature is kept constant.

Apparatus: Any standard Boyle’s law apparatus.

In the apparatus to be described (Iig. 50), the closed side of
which the volume is to be determined is on the right, while an
open end is provided on the left. There
are two pieces of glass tubing of uniform
bore connected by a flexible rubber tub-
ing. Theapparatusis filled with mercury
to levels a and b, as shown. The volume
of the inclosed space is changed by alter- »
ing the height of the mercury column on .
the left side.

Since the tube is of uniform bore, <
Boyle’s law,

Pl

<o

D101 = P20y, ;
may be written in the form, - g
pili = pals, g

where A is the cross-sectional area of the
tube, and v, = Al;, and v, = Al,. The
pressure p inside the inclosed gas (air)
will be

GENUM IR

p=na+ (@—0) :

centimeters of mercury where p, is the Courtesy Central Sctentisic Company
pressure of the atmosphere. If we do not 116 50. — Boyle’s law appa-
alter the height of the tube on the right, ratus.
then the top of the closed tube (¢) will remain at some constant
reading on the scale, and the whole experiment may be done by
reading different positions of @ and b on the scale when the left-
bhand column is altered in height. Always allow the air in the
closed tube to stand for a few minutes after changing the level
to allow the air to acquire the temperature of the room.

Take several (8 to 12) readings by changing the height on the
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left-hand side and plot a curve between the reciprocal of the
length (I = ¢ — b) of the inclosed volume, as abscissae, agaflnst
the pressure in centimeters of mercury as ordinates. )

Pa = cm. of Hg c= cm.
RraDING oF Hg LEVELS
- 1
. , ?Cmb) p=pat@-bfl=(-b ol
(cm.) (cm.)
QUESTIONS

(a). In which way will a plot of 1/l against p prove Boyle’s law?

(b). Plot { against p for your experiment. What is the shape of the curve?

(c). Why is it necessary to insure that the inclosed air is always at room
temperature?

(d). Is the value of pl as found in the last column constant? If not, discuss
possible reasons for the variation of this quantity.

EXPERIMENT 20
LINEAR EXPANSION
To determine the linear coeflicient of expansion of a rod.

Apparatus: Lincar coefficient of expansion apparatus, thermometer,
steam gencrator, bunsen burner with rubber tubing, meter stick,
micrometer screw.

The apparatus (Fig. 51) consists of a hollow tube of copper or
brass, resting at the one end, which is notched, on a pointed support ;
at the other, on a spindle which carries a pointer. Since the
notched end is fixed, it follows that when the length changes,
the pointer turns in front of a dial graduated in degrees. Record
the temperature of the room near your apparatus, and assume it
to be the initial temperature of your expansion rod. Take the
initial reading of the dial. It is important not to disturb the
apparatus after this initial dial reading is taken. Then pass
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steam, which has a temperature of 100° C. at normal pressure,
through the hollow tubing. After a short interval of time the
dial will come to rest at a new position, the reading of which should

Naarad
Courtesy Central Scientific Company

T1G. 51.— Linear cocfficient of expansion apparatus.

be taken. Let the angular change in degrees between the initial
and final dial reading be called 6. Consequently the change in
length (Al) of the rod is
9
Al = 2 7rT360,

where r is the radius of the spindle. This radius is found by means
of the micrometer screw by taking the average of several readings
of the diameter and dividing by 2. The length [ of the rod under
consideration is, of course, the distance from the notch to the
spindle.

The average linear coefficient of expansion of the rod for the
temperature interval At = ¢; — ¢, is

= 1Al
[ At

Repeat the experiment two or more times. Allow the rod to
acquire room temperature before taking the initial reading.

o

QUESTIONS

(a). If the experiment is repeated only once, find the per cent of error from
the mean. If repeated more than once, find the maximum per cent of error
from the mean.

(b). Determine the per cent of error of your average result from the accepted
value.
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(c). Would you call the method for obtaining f, the initial temperature,
very exact or scientific? Can you think of any other procedure that may have
some merit ?

PROBLEMS
Experiment 18

1. Why is the hydrogen gas thermometer called a ‘“standard ther-
mometer 7 ?
2. Show that for a perfect gas, i.e., a gas which satisfies the relation
R = DPoro . _pie
To To 4+t
the following is true:

S0 WL R Tl . S
Br rob1 To . pota To

3. Would carbon dioxide make a good ““ standard thermometer "’ ?

4. Consult, a handbook and record the values of the volume coefficients of
expansion of five to ten representative gases, liquids, and solids. In which
state do you find (1) the greatest variation of this coefficient and (2) the
largest value for the volume coeflicient of expansion?

5. Why is it necessary to specify some initial temperature from which to
reckon the volume coefficient of expansion for gases while with solids the
exact position of the initial temperature is not so important ?

Experiment 19

6. Would Boyle’s law hold for carbon dioxide at ordinary (20° to 25° C.)
temperatures? Why?

7. A certain perfect barometer has a space of § cm. above the mercury level
when the atmospheric pressure is normal. A little air is allowed to enter the
barometer so that the level of mercury falls 3 em. If the diameter of the
barometer tube is 1 cm., what was the volume of air before it entered?

Experiment 20

8. With the pressure of the atmosphere as 74 ¢m. of Hg instead of normal
(76 cm.), what would be the per cent of error in the calculated coefficient of
expansion due to the temperature of steam being taken as 100° C.? Assume
the initial temperature to be 22° C., the length of the rod 55 cm., and the
expansion 0.5 mm.

9. How much will a steel bridge one mile in length expand between extreme
temperatures of — 20° C. and + 40°C.?



CHAPTER X

MEASUREMENT OF HEAT AND CHANGE OF STATE

The science of calorimetry deals with the measurement of quan-
tities of heat. Since the absolute heat energy in any body is a
rather vague quantity and of course would be very difficult to
measure, we confine ourselves in calorimetry to measurements
of heat changes and transfers from one body to another. In any
case, in our practical life it is only exchanges of heat and their
effects that are of interest to us.

Heat measurements have always formed a very interesting part
of practical physics, yet they are a very difficult part, however,
when extreme accuracy is attempted. We find in this field scien-
tists who have spent a whole lifetime in these researches and
have won fame for the degree of skill and technique which they
have developed. Such names as Joule, Rowland, and Regnault
will never be forgotten, and the student would find the time well
spent if he will read some of the records of the published works of
these men.

Units INVOLVED IN HEAT MEASUREMENTS

The unit of heat in the c. g. s. system is the calorie, which is
arbitrarily defined as the amount of heat necessary to raise the
temperature of 1 gram of water 1° C., at some specific temperature.
The unit varics somewhat, depending upon the temperature, but
the variation is so small that for ordinary work the difference is
negligible (less than 0.1% per degree change). We shall assume
that the unit is the same for all the temperatures that we will use.

The specific heat or heat capacity (s) of a substance is defined
as the amount of heat (measured in calories) necessary to raise
the temperature of 1 gram of the substance through 1° C.

The water equivalent of a body or vessel (w) is the amount of
water which would require the same amount of heat as the body,
in order to raise the temperature through 1° C. Hence:

w=m X s,
101
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where m is the mass of the calorimeter and s is the specific heat
of the metal of which it is made.

The latent heat of fusion (L) is defined as the amount of heat
(in calories) necessary to change 1 gram of the substance from a
solid to a liquid at the same temperature. (L = 80 calories per
gram for water and the change takes place at 0° C.)

The latent heat of vaporization (l) is defined as the amount of
heat (in calories) necessary to change 1 gram of the substance
from a liquid to a vapor at the same temperature. (I = 540 calories
per gram for water and the change takes place at 100° C.)

The following examples illustrate the use of these definitions.

1. The amount of heat necessary to change the temperature
of § kg. of water from 15° C. to 25° C. is ms(t. — ¢,) calories =
500 X 1 X (25 — 15) = 5000 calories.

2. The amount of heat necessary to raise 4 kg. of iron through
the same temperature interval would be

ms(ts — t1) = 500 X 0.115 X (25 — 15) = 575 calories.

3. The water equivalent of the iron block in example (2) is
57.5 grams because m X s = 500 X 0.115 = 57.5 grams.

4. The latent heat of fusion of lead is 5.4 calories per gram if
the amount of heat necessary to change 500 grams of lead at
327° C. (the melting point) to liquid lead at 327° C. is 2700 calories.

5. The latent heat of vaporization of water is 540 calories per
gram if 5400 calories are necessary to change 10 grams of water
into steam at 10C° C.

MeTHODS USED IN CALORIMETRIC DETERMINATIONS

Although the methods are numerous, they can be conveniently
grouped under two headings :

1. Method of mixtures, in which two or more systems having
different temperatures are placed in contact in such a way that
they interchange heat until all of them acquire the same tempera-~
ture, at which time the interchange stops. Writing down, then,
the fact that the bodies at the higher temperatures give out an amount
of heat equivalent to the heat absorbed by the bodies having a lower
temperature, we have usually sufficient data to find the unknown
constant, be it the specific heat or latent heat.

2. Methods employing steam or ice calorimeters (e.g., Black’s
and Bunsen’s ice calorimeter or Jolly’s steam calorimeter). The
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method here used depends upon a knowledge of the latent heat
of fusion or vaporization of water.

In the 2ce calorimeter the hot body, after having been raised to
a known high temperature, is allowed to give off its heat, and in
so doing melt part of a block of ice. The amount of ice melted
is found experimentally and thus a knowledge of the amount of
heat given off in cooling to 0° C. is obtained, enabling us to cal-
culate the specific heat.

In the stcam calorimeter (Jolly) the body at room temperature
is-suddenly surrounded by an atmosphere of steam. The amount
of steam condensed on the body before it finally acquires the
temperature of the steam is measured on a sensitive balance.
This again gives us a knowledge of the amount of heat necessary
to heat the body from its original temperature to the temperature
of the steam. From this we calculate the specific heat.

The experiments to be described here will be confined to the
method of mixtures. In this method the firstessential is the
calorimeter. This is usually a thin-walled copper vessel which
is polished or nickel-plated both inside and outside. It is
polished inside so as to reflect the radiant heat back into the
vessel, and polished outside so as to be a poor emitter and absorber
of heat.

Convection currents and radiation are minimized by surrounding
the calorimeter with another metal vessel polished also inside and
out and having as few contacts as possible with the inside calo-
rimeter. Often a Dewar vessel can be used very effectively.

An important source of error in accurate calorimetric work is
the error introduced by heat loss to the surroundings. Newton
has introduced a method for calculating and measuring this heat
loss and making correction to our calorimeter readings. The
method of correcticn is very instructive and gives good results,
but requires quite a little skill and practice. The student is
referred, for a description of the method and procedure of cor-
rection, to other texts on practical physics.

In the experiments to be described here, we shall minimize
this error as far as possible by arranging the experiment so that
during half the period the calorimeter has a temperature above the
surroundings, and gives off heat; whereas during the other half
the calorimeter is below the temperature of the surroundings and
absorbs heat from the surroundings. By arranging the experi-
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ment so that these two heats are approximately the same, this
error is minimized.

EXPERIMENT 21
METHOD OF MIXTURES

A determination of the specific heat of a solid.

Apparatus: A solid block (ec.g., aluminum or copper) with attached
thread for handling, calorimeter supported in an outer vessel (Fig. 52),
a vessel in which the solid can be raised to 100° C., burner, tripod,
balance, thermometer, and stirrer.

The method we shall use is the method of mixtures in which the
solid, the specific heat of which we wish to determine, is first
heated to 100° C. The hot solid is then quickly
transferred to a calorimeter containing water at a
known temperature. The temperature is observed
continuously until the final temperature of the solid
and water is reached. Then equate the heat given
out by the solid in cooling to the final temperature
and the heat absorbed by the water, and thus cal-
culate the specific heat s.

The first operation consists in finding the mass M

p of the unknown solid by weighing. Next suspend
Fia. 52.— Cal- the solid in a vessel in which water can be boiled,
orimeter. .14 leave it in the boiling water or steam for
at least fifteen minutes so as to be sure the whole solid has this
same temperaturc throughout. This will be a temperature of
100° C. (unless correction has to be made for atmospheric pressure
— see your instructor regarding this point). While the solid is
heating, get the calorimeter ready. This includes finding the
mass of the calorimeter (m,) first, when empty, and then when
half full of water. Let the mass of water in the calorimeter be m.
When the object is immersed, the calorimeter should be about
three-quarters full. The initial temperature of the water (t)
should be from 3 to 5 degrees below room temperature.

When the solid has acquired uniform temperature of 100° C.,
transfer it quickly into the water, being careful to transfer as little
condensed water along with the solid as possible, and also not to
splash out any of the weighed water in the calorimeter. Note the
temperature (fo) of the water, when the solid was introduced, and
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record the highest temperature ({;) attained by the water. The
solid should be kept moving slowly, the student being careful
never to have any part of the solid above the water. Record all
the data with proper labeling on a data form.

Write down the expression for the heat given out by the solid
in cooling from 100° C. to the final temperature ({;). This is
according to our definition ms(100 — ;). KEquate this to the
heat taken in by the water and water equivalent of the calorimeter,
which is (m + w) X (¢, — to), where w = water equivalent of the
calorimeter. (Note that the calorimeter is made of copper and
has a specific heat s = 0.095 cal./gram.)

Solve for s, the specific heat of the unknown solid. Repeat
the experiment if time allows.

[Note. The final temperature should be about as much above
room temperature as the original temperature was below. If too
large a difference exists, then error on account of radiation losses
becomes important.]

QUESTIONS

(a). Why does a graph showing temperature-time relations help ?
(b). Name possible sources of error in your experiment.
(¢). Compare your result with results as given for the metal in a book of

tables.

(d). In what way might you expect the water, which is transferred with the
solid from the bath at 100° C. to the calorimeter, to effect the value of the
specific heat as found in this experiment?

(e). Suggest a method by which the error referred to in question (d) may
be overcome.

EXPERIMENT 22

LATENT HEAT OF FUSION

To find the latent heat of fusion of ce.

Apparatus: Double-walled calorimeter, thermometer, stirrer, blot-
ting or filter paper, balance, ice.

In this experiment we shall again use the method of mixtures,
by placing a piece of ice into a calorimeter containing water and
noting the change in temperature produced when the ice has all
melted. Equating then the total heats given out by the water
and calorimeter and the heat absorbed by the ice, after equilibrium
has been reached, enables us to find L.



106 EXPERIMENTAL PHYSICS FOR COLLEGES

The procedure is as follows: The mass m; of the calorimeter

and stirrer must be found. The stirrer should be of special design

s0 as to keep the ice below the surface (Fig. 53).

Next, the calorimeter is half filled with water

and weighed. The temperaturc of the water

should be arranged to be about five or six

degrees above the room temperature. Let the

SO0 5 o5 mass of the water be m grams. A picee of ice

should be chosen which will conveniently go into

the calorimeter and does not contain many

corners or cracks that might have water clinging to them. The ice

should be placed on a piece of blotting paper, dried, and transferred

as quickly as possible to the calorimeter. Handle the ice as Litle as

possible, so as to prevent melting after drying. Note the tem-

perature of the water when the ice was introduced, and keeping

the ice below the water surface and the water stirred, note the

final lowest temperature (¢;) reached by the water. Finally weigh

the ealorimeter with its contents again and determine the mass M
of the ice which must have been added.

Calculation to find /.: The heat given out by the water and calo-
rimeter in cooling from ¢, to ¢; is given by (m + w)(to — i) calories,
where w is the water equivalent of the calorimeter and stirrer.

The heat taken in consists of two parts: (1) heat taken in
melting M grams of ice = ML calories (see definition of L), and
(2) heat necessary to change M grams of water from 0°C. to
t;°C. = M(t; — 0) calories. Hence the total heat taken in is
ML 4+ Mt,.

Now since the heat given out is equal to the heat taken in, we
have :

(@) ML + Mt; = (m + w)(to — ty),
from which L can be found.

[Note. The student should not try to remember formulae
such as (a) above; but should rather form the habit of following
the reasoning in order to be able to reason through similar and
allied cases of heat transfer.]

Fia. 53.—Stirrer.

QUESTIONS

(a). Name possible sources of error in the above experiment and state
whether the error would make L too large or too small.
(b). What should be the value of L? Calculate your per cent of error.
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EXPERIMENT 23
LATENT HEAT OF VAPORIZATION

A determination of the latent heat of vaporization of water.

Apparatus: Calorimeters, thermometer, steam generator, steam trap.

The principle used in this experiment consists in passing steam
into a known mass of water for a certain time. It will condense
and so raise the temperature of the water. The amount of heat
given to the water can be found if the temperature rise is known.
Knowing the amount of steam condensed, we can calculate L, the
latent heat of vaporiza-
tion, which is also the
heat necessary to con-
dense 1 gram of steam at
the boiling point.

The apparatus used is
shown in the photograph
in Figure 54. The experi-
mental procedure divides
itself into several parts :

Part (a) consists in get- F1e. 54. — Latent heat of vaporization appa-
ting the calorimeter ready ratus.
to receive the steam. Weigh the calorimeter and stirrer. Then
the calorimeter should be filled about two-thirds full of water which
has been cooled to about 5° C. by means of a piece of ice. Record
the mass m, of calorimeter and stirrer, as well as the mass of water m.

Part (b). Prepare the steam generator. This should have a
good stream of steam coming out before the steam is passed into
the calorimeter. The steam should be passed through a so-called
“steam-trap ”’ (Fig. 54) which really catches any water, con-
densed on the way over, and prevents it from getting into the
calorimeter. It 1s most important that no condensed steam be allowed
to get into the water tn the calortmeter if any accuracy is to be ob-
tained. In order to help prevent this condensation before reaching
the calorimeter, the tubing coming out of the steam-trap and
going into the calorimeter should preferably be heat-insulated by
lagging with cotton wool. Any drops that might otherwise adhere
to the glass nozzle should be shaken off before introducing the nozzle
into the calorimeter.
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Part (¢). Insert the nozzle into the water, recording the tem-
perature of the water at the moment of introduction. Stir the
water continuously while passing in steam. The nozzle of the
steam generator should not be inserted very far. Any steam that
escapes from the surface does not introduce an error because it
does not condense. Keep on passing in steam until the tempera-
ture is approximately as much above room temperature as the
water was below, when the steam was introduced initially. Then
remove the steam nozzle from the calorimeter but keep on stirring,
and record the maximum temperature reached. (The temperature
will drop after a while on account of cooling toward room tem-
perature.)

Part (d). Find the mass of the steam which has condensed by
weighing the calorimeter and contents after the steam has con-
densed and subtracting the previous mass before introducing the
steam. Let the mass of steam, so found, be M.

[Note. It is a good policy in recording the temperature of the
water to read this every minute before and after introducing the
steam and about every half-minute while the steam is being
introduced. Then plot time against temperature and determine
to and ¢, from your curve.] :

Calculation. The water and calorimeter and stirrer start with
a temperature ¢, and end with a temperature ¢;, The total mass
of water before introduction of the steam is the mass m of water
plus the water equivalent of the calorimeter, viz., m 4+ w. [Note.
w = m;s, where s = the specific heat of the copper vessel = 0.089
cal./gram.] Hence the heat taken in by the water and calorimeter

18 (m + w)(t; — to).

Now the steam had to supply this heat. The heat given off
by the steam consisted of two parts. One part was given off when
the M grams of steam condensed. For every gram this amount
is L, and hence for M grams this part will be ML calories. The
other part consists of heat given out by the M grams of steam,
which have now already condensed but are still at a temperature
100° C. and now cool until they reach the same temperature as
the rest of the water, viz., t;, The heat necessary for this part is,
of course, M (100 — t,).

Hence the total heat given out by the steam is:

ML + M(100 — t)).
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Equating the heat given out to the heat taken in we have:
ML + ]VI(IOU - t/) = (m + 'lI))(tj - to).
Solve this equation for L.

QUESTIONS

(a). Enumerate the various sources of crror in your experiment and state
whether the error would make L too large or too small.

(b). Do your calculations need correction for pressure of the atmosphere if
not normal? How would you make such correction?

EXPERIMENT 24
THE MELTING POINT OF A SOLID

To determane the melting point of a solid by the method of cooling.

Apparatus: Pyrex test tube about 1 inch in diameter clamped to
a stand, paraflin or acetamide, thermometer, burner, watch.

The method consists in heating the solid until it is molten.
Then, after insertion of a thermometer into the liquid, the sub-
stance is allowed to cool slowly. The temperature is observed
cvery minute. It will be found that on solidifying, the tempera-
ture remains constant for an appreciable time, until all the latent
heat has been given off, after which the tem-
perature falls again. The temperature at which 1
this occurs is the solidifying (or melting) point.

By applying heat gently, melt wax in the test
tube until the vessel is about half full. A thermom-
eter should be adjusted so that the bulb is nearly
in the center of the liquid paraffin. A loosely I
fitting stopper will help in making this adjust-
ment, or else the thermometer can be separately
clamped. The test tube should be so placed that
the thermometer can be conveniently read and
so that no drafts or air currents might cause
uneven cooling (Fig. 55). Record the time and
temperature every minute. Have your partner
plot these on a temperature (ordinate) — time
(abscissa) curve, after having recorded the read-
ings on the data sheet. The period of observa-
tion will be usually thirty minutes or more before the melting point
has been well passed (in the case of paraffin). This time, of course,

Frg. 55.— Melting
point apparatus.
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depends upon the substance and on conditions. Hence the advis-
ability of plotting the curve as the experiment progresses. The
substance should not be heated to a high temperature, but rather
to a temperature just sufficient to melt it all. Do this slowly so
as not to overheat the substance. Pick out from your curve the
horizontal pertion and thus find the melting point.

Check your result by looking up the value of this temperature
in a book of physical tables. [Note. Before leaving, heat up the
paraffin again so that it is just molten and remove the ther-
mometer. Do not try to remove it in any other way, for fear of
breaking it.]

An alternative and better way to measure the temperature is
by use of a ‘thermocouple, which has a very small heat capacity.
The description of this instrument and its calibration can be seen
from lxperiment 39, later. If the thermocouple is used in this
experiment, it is necessary to first calibrate it at two fixed tem-
peratures, 0° C. and 100° C., and adjust the resistances so that the
change in temperature from 0° C. to 100° C. will not cause too
much deflection in the galvanometer. Having calibrated the
thermocouple, the thermometer in the above experiment can be
replaced by the one junction of the thermocouple. In this case,
plot galvanometer deflections (ordinates) against time (abscissa).
Then convert the galvanometer deflection for the melting point
into temperature from the calibration.

QUESTIONS

(a). From your curve what can you say about the rate of fall of temperature
before solidification and after?

(b). Find the rate of cooling (approximately) at the melting point.

(c). Why do we not find the melting point by performing a similar experi-
ment when heating up the solid ?

(d). Why does the temperature remain fairly constant during solidification ?

PROBLEMS
General

1. Define: (a) the calorie; (b) specific heat; (c) water equivalent;
(d) latent heat of fusion; (e) latent heat of vaporization.

2. Convert 1 pound — degree — Fahrenheit into calories.

Experiment 21
3. A copper calorimeter weights 80 grams and has a specific heat of 0.095
cal./gram, How many calories of heat are necessary to change its tempera-
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ture from room temperature (15° C.) to 50° C.? What is the water equivalent
of this vessel?

4. A piece of iron of mass 120 grams and temperature 80° C. is put into
a calorimeter having 500 grams of water at 14° C. If the final temperature
acquired is 16.5° C., find the specific heat of iron. (The water equivalent of
the calorimeter = 50 grams.)

E. Lan you devise some experimental method for finding the water
equivalent of a vessel for which it would be difficult to calculate the water
equivalent hy the method used in this chapter?

6. Fifty grams of lead shot of specific heat 0.03 cal./gram and at a tem-
perature of 100° C. are poured into a calorimeter containing a liquid of mass
100 grams. The calorimeter has a water equivalent of 20 grams. The initial
temperature of the liquid was 15° C. and the final temperature 20° C. Find
the specific heat of the liquid.

Experiment 22

7. How much heat is necessary to change 20 grams of ice at 0° C. into
water at 30° C.?

8. What will be the fall in temperature if 40 grams of ice are put into a
copper calorimeter of mass 50 grams and containing 200 grams of water at
20° C.? (Specific heat ot copper = 0.095 cal./gram.)

9. Find the latent heat of fusion of ice, given that in a certain experiment
a piece of dry ice of mass 50 grams was put into a calorimeter, having a water
equivalent of 30 grams and containing 500 grams of water at 18° C. The
final temperature was found to be 9.5° C.

Experiment 23

10. Find the final temperature if 20 grams of steam at 100° C. are intro-
duced into a copper calorimeter of mass 100 grams containing 600 grams of
water at 20° C. (Specific heat of copper = 0.095 cal./gram.)

11. Find the amount of heat
necessary to heat 100 grams ot ice
from — 20° C. to steam at 120°C.
(Specific heat of ice = 0.54 cal./gram
and specific heat of steam = 0.42

cal./gram.) 400°C)
Experiment 24

12. Tind the latent heat of fuszon F1a. 56. — Cooling curve.
of a substance which has a cooling (See Problem 12.)

curve as shown (Fig. 56). The tem-

perature at which melting occurs is 400° C. The rate of fall of temperature
at A and B is 10° per min. The specific heat of the substance is 0.1 cal./gram.
The horizoutal portion A B lasts for 25 minutes.



CHAPTER XI
SURFACE TENSION

When a molecule of a liquid gets near the surface, forces of
attraction begin to exert a resultant force on this molecule. The
direction of this resultant force is vertically downwards if the
surface of the liquid is horizontal. The magnitude of this resultant
downward force on the molecule increases as the molecule gets
nearer the surface. (The reasons for this, based on the kinetic
theory, will be found in most textbooks on Physics.)

Hence, as far as the molecule is concerned, the surface of the
liquid behaves as if it had stretched over it a membrane, because
a certain force is necessary to enable the molecule to break through.

To be more specific, we define the surface tension of a liquid as
the tension acting on both sides of an tmaginary unit length in the

surface. In the c. g. s. system
this tension is measured in
dynes per em. (Fig. 57).
Another point which must be
mentioned in connection with
our definition is that, when we
speak of the surface tension,
we must specify the media on
Fia. 57. — Unit length of the surface of both sides of the surface.
a liquid. Usually when we refer to a
water surface, we assume water
below and air above. The value of T, i.e., the surface tension, will
be different if we have some other gas or liquid above the water.

MEeTHODS OF MEASUREMENT

There are several methods that could be, and are, employed in
measuring the surface tension of a liquid. These methods are
based mostly on the effects produced by surface tension and are
hence indirect methods. With practice and skill they lend them-

selves to accurate determinations of surface tension. In all
112
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surface tension measurements the main requirement for accurate
and reproducible results is cleanliness. The slightest amount of
foreign substance on the surface will cause large errors in the value
of T. This is especially true for small amounts of grease. Hence
the liquids or solids that are going to be in contact
should not be touched with the fingers. Unless this
precaution is observed, the value as found may
vary by as much as 10 per cent or more. L

Two methods will be deseribed. The first method -
using the so-called Jolly balance is straight-forward
in principle, but does not give such accurate results.
The other method, making use of the effect of sur- L
face tension in producing so-called capillary action, o
will give very good results, although a large amount
of skill and technique are required. It is included
here, therefore, as an experiment designed to test L
and develop the student’s technique in experimental N
procedure. If enough time were available, there is i
no reason why accurate results are not possible.

Direct determination of surface tension (Jolly
balance). The Jolly balance consists essentially of Fia. 58.—Jolly

. . . . . balance method.
a long spiral spring which hangs vertically and is

fixed above to a crosspiece. This crosspiece can be moved up
or down very slowly and the amount of motion measured by some
suitable means. Such means are the observa-
=2 tion of the motion of a certain point on the
5 spring on a scale engraved on a mirror surface
which remains stationary, or, by having a scale
and vernier engraved on the telescope tube

which moves up or down (Fig. 58).

At the end of the spiral is attached a care-
fully cleaned platinum or aluminum frame.
This frame is allowed to sink right into the
liquid, and then the force necessary to pull

Scals

Fia. 59.—Frameinthe  ° . .
liquid without film.  this frame through the surface is measured in

dynes. Let it be F dynes (Fig. 59).
Now the force F has to be applied against a film on each side
of the frame. Hence this force has to be exerted against a length

of film 21 (Fig. 60). Hence by definition 7' = 51% dynes per cm.
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Effect of surface tension in capillarity. The forces of adhesion
between glass and water molecules, being larger than the forces
of cohesion between the water mole-
cules themselves, cause the rising of the
surface of water whenever it comes in
contact with the glass. Although these
forces are small, they can be readily
shown to be appreciable if we make use

Fia. 60.—Framein the  of g capillary tube. The adhesive forces

liquid with film. will make the water rise in the tube
until these forces acting upwards just balance the force of gravity
acting downwards on the column of water.

Of course the adhesive force A (Fig. 61) equals the force of
surface tension acting all around the edge. Let the radius of the
tube be r and let the surface of the liquid (7.e.,
also the direction of T) make an angle 6 with
the surface of the tube. Then, by definition,
T is the force acting on the surface on every
centimeter and hence at the edge the total
vertical force acting will be T cos 6 X 27r
dynes. This is, therefore, the resultant force
which the adhesive forces exert upwards.

The mass of liquid elevated in the capillary
tube exerts a downward force Vdg, where V is
the volume of liquid in the capillary and d is the density.

A

C

Fia. 61.—Capillarity.

Hence:
2mrT cos § = Vdy.

If the liquid wets the surface, then the angle of contact is zero.
The volume of liquid in the capillary tube will then consist of a
column of area 7r* and of height A (being the height from the free
surface of the liquid in the vessel to the base of the meniscus) plus
a volume of liquid which is the difference between a cylinder of
height r and a hemisphere of radius r.

That is,
V =mrth + fwr2-r — %ar’]
= 7r2h + 4 713
=ar¥(h 4+ % 1) = ml,
where

l=h+3r.
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Now for all cases in which the liquid wets the surface, the angle
§ = 0, and hence for these cases,

T = f%dg dynes.

1t is often quite accurate enough to measure the distance & from
the surface of the liquid to the bottom of the meniscus and, neg-
lecting 7, to call this distance I.

EXPERIMENT 26
THE JOLLY BALANCE

Determination of surface tension by means of a Jolly balance.

Apparatus: Jolly balance or similar spring balance that can be
calibrated. A movable platform on which can be placed the glass
dish containing the liquid. Several platinum frames with stems and
hooks attached so that they can be easily attached to the end of the
spring. A cleaning solution (20 grams of NaOH per liter of water)
into which the frames can be dipped so as to remove grease, dirt,
ete. A few small weights for calibration purposes (1 up to 10 grams),
a meter bar, pair of tweezers, distilled water, soap solution. Other
metallic frames, such as aluminum and nickel, may be used with
proper cleaning solutions.

The experiment is divided into two parts as follows: (1) to
calibrate the spring balance; (2) to measure the force due to the
surface tension.

Part (a). To calibrate the spring balance, hang a very light
pan on the bottom of the spring and make a note of the position
of a certain convenient mark or pointer on the lower end of the
spring and read the scale. (This rcading can be in arbitrary
spring balance units.) Next, place the known mass on the scale
pan (say x grams). This of course will stretch the spring. The
balance is restored by moving the upper support of the spring
upwards until the point on the lower part of the spring, that was
observed before, comes to rest in the same position. The amount
of motion of the upper support is measured on the scale.

Having measured the elongation for  grams, it is a simple matter
to calculate the force necessary to give a stretch or elongation of
one scale division. Make several trials with the same mass and
calculate the mean. Express the force in dynes per division
elongation-
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Part (b). To measure the force necessary to overcome surface
tension, remove one of the frames by means of tweezers or forceps
from the cleaning solution and rinse in a dish of clean water from
the faucet. Care must be taken never to touch the frame with
the fingers once it has been removed from the cleaning solution,
nor must this frame be placed on a table, or allowed to come in
contact with anything which will leave foreign substances on it.
Hang this frame on the hook at the bottom of the spring and
arrange a clean dish of clean water from the faucet on the movable
platform, so that the legs of the frame hang centrally in the dish
and are immersed for about half their length. Move the upper
support down slowly until the whole frame is immersed. Then
stretch the spring slowly until the frame is pulled out of the water.
Note approximately how much the film can be stretched just
before it breaks. (Sometimes an adjustable marker is provided
which can be used to mark this point.) Now bring the legs of the
frame back slowly into the liquid up to the position which the
frame had when the film broke (being careful to see that there
is no film formed on the frame). Read this position on the
scale. The frame is now lowered into the liquid and pulled up
again, this time with the film formed on the frame tending to
keep the frame in the liquid. Raise the spring slowly until
the film just breaks. Take the reading on the scale when the
film just breaks. The difference gives the number of scale divi-
sions that the spring is stretched due to the surface tension.
Having previously determined the calibration of the spring,
these scale divisions can be converted into units of force (F
dynes). Measure the length (I) of the frame with a meter
rule. From a knowledge of the force F, in dynes, and the
length of the frame in em., T, the surface tension can be
calculated.

Repeat several times with the same frame, determining in each
case the stretch of the spring. Take the average of these and
determine the error in your experimental determination of the
stretch. If time allows, repeat these observations, using another
frame.

Record your results as follows (for one set of readings) :

Length of frame, l = cm.

No. of grams added in calibration = grams.
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CALIBRATION OF SPRING BALANCE DETE“?;’:};‘)’;&%OJYT;';E}’;P!‘:}:‘“A“‘)N
) Reading after Elongation Zero Reading Final Reqdmg Elongation
Zero Reading Adg:flzronr: of 1) without Film Wllt}e’:al";ctelm ®
Average elongation (1) = +
Per cent of error =
Average elongation (2) = +
Per cent of error =
Hence one scale division = dynes.
F = + dynes,
. F
and since T = E—l,
s T = + dynes/cm.

Repeat the experiment, using another liquid.

QUESTIONS

(a). Suppose the rectangular frame were a horizontal circular wire of
radius r, how would you determine the surface tension in this case?

(b). Will the surface tension be different if platinum or aluminum is used
in making the frames?

(c). Between which media are you really finding the surface tension?

EXPERIMENT 26
SURFACE TENSION IN CAPILLARY TUBES
Determination of surface tenston by the method of capillarity.

Apparatus: Small glass evaporating dish, transparent glass scale
with millimeter divisions, a burner, glass tubing of about 2 or 3 mm.
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diameter, a microscope with either a micrometer eye-piece or else a
finely divided scale placed in the focal plane of the eye-piece.

The experiment is divided into three parts as follows:

(a). Making the capillary tubes.

(b). Mecasuring the height of rise in the tubes.

(¢). Measuring the diameter of the bore of these tubes.

Part (a). The glass tubes which you are given have been well
cleaned inside by rinsing with caustic soda solution, then water,
then 109 nitric acid, and finally washed out with water again, and
dried. Heat the glass about 5 em. from the end until it is soft
(rotating the tube during the process of heating). Then remove
the heated glass tube from the flame and draw it out until a
capillary tube about 1 mm. external diameter has been obtained.
If the drawn-out scetion is long enough, cut or break it off into
picces about 15 ecm. in length. Using the remaining sections of
the original glass tube and holding by the drawn-out end, make
some finer capillariecs until about five have been obtained of
varying sizes, cach of length 10 to 15 em. Handle the capillaries
as little as possible.

Part (b). Fill the thin evaporating glass dish about half full
of clean water from the faucet. It is understood of course
that the glass dish itself has first been cleaned and is thoroughly
free from grease or dirt. Stand the glass scale up in the water
and next to it one of the fine capillaries. Usually the capillary
will adhere to the scale if the latter has been wet a little. The
water will rise in the tube. In order to be sure that the tube is
wet inside (7.e., 8 = 0) for the whole length of the capillary, lean
the tube over, still keeping the lower end in the water, until the
water fills the whole tube. Then tilt the capillary tube up again
to sce whether the water eomes back to the same height as before.
If this is not the case, reject this capillary and use another. If
the capillary and water are both clean, the water will always rise
to the same height.

Measure the height of the water column in the capillary, taking
the measurement from the outside water surface to the bottom of
the meniscus (the correction 4 can be added here if the tube has a
large radius, but in most cases this is negligible). Stick a small
piece of gummed paper to the tube about 2 millimeters above the
highest point of the column of water. Draw the capillary tube
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up about 5 mil.imeters and measure the height again, sticking a
small piece of paper 2 millimeters above this latter height. If the
tube is uniform, these two heights should agree. If there should
be a large difference between these heights, use a tube of more
uniform bore.

Repeat for two other sizes of capillary tubes. Be sure to mark
them so as to know which tube was used in finding the measured
elevations!

Part (¢c). By means of a fine file or a rough knife cut the
eapillaries off half-way between the gummed paper marks and
mount in the V groove, prepared especially for this purpose, in
front of the microscope. We wish to measure the diameter of
these tubes. On looking into the eyc-picce a scale will be seen.
Adjust the distarice of the microscope from the end of the capillary
tube until the latter is in focus and on some convenient mark on
the scale, and measure its diameter in micrometer scale divisions.
To find out what these micrometer divisions mean, the micrometer
which has the scale fixed in the eye-piece is moved back and forth
until it is exactly focused now on a standard scale placed where
the capillary tube was. In the cye-piece will be scen two scales,
the original eye-piece scale and also the divisions on the standard
scale. See how many microscope scale divisions are equal to a
whole number of standard scale divisions. Knowing the size
of the divisions of the standard scale, the size of the division on
the micrometer scale can be calculated in centimeters. In this way
the diameters of all the capillaries can be found.

Another method of finding the diameter, which gives greater
aceuracy, but requires considerably more technique and skill, is
to introduce a thread of mercury into the capillary, measure the
length of the thread, and find its mass on a balance. IFrom this
data, knowing the density of mercury, the diameter of the tube
can be found. By this method the uniformity of the bore can
also be tested.

Let r represent the radius to be determined, ! the length of the
mercury eolumn, m the mass of the mereury column, and d the
density of mercury.

Then m = mrid,

m

and r=N_=
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In order to get a thread of mercury into the tube it is possible to
insert the end of the tube into a small globule of mercury and
suck a little into the tube. However,
if this is not done carefully, the method
is dangerous since mereury is a poison.
A cheap rubber ball will serve the
purpose just as well if a small hole
is made in the ball and the capillary
inserted (Fig. 62).

Calculate the value of the surface
tension from the equation

Frg. 62. — Drawing mereury 1d
. X rldg
into a capillary tube. T = -;2--—-
Record your results as follows:
Liquid under investigation,
Division on microscope scale = division on standard scale.
1 division on standard scale = cm.
. 1 division on microscope scale = cm.
Part (b) Part (c)
REeADING IN CM. AT DIAMETER IN
Car- HElGHT
ILLARY ov . Rapius T
No. Outside Level | Meniscus Coromy %;i'izrln)?ifr in Cm.
1
2
3

Find the average value of 7. If time allows, repeat using a
different liquid.
QUESTIONS

(a). Which of the above measurements, r or !, will cause the largest error
in the result for 7" and what is approximately the per cent of error in each
of the auantities measured ?
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(b). If the angle of contact is not zero, what additional test would have to
be carried out?

(c). Why would the method of weighing (in order to find the diameter) be
more accurate?

(d). Do your results show what relation exists between r and 1?

(e). Would it be better, as far as accuracy is concerned, to take a very long
tube of extremely fine bore or a short tube of fairly large bore?

(f). From your results, what is the per cent of error in r, in I, and in T?

PROBLEMS
Experiment 26

1. Define surface tension, angle of contact.

2. A rectangular frame made of platinum has one edge cut away and is so
mounted that the two legs dip into a liquid. When the frame is immmersed
and pulled out again, it is found that a spring attached to the frame is stretched
2 cm. before the frame actually breaks through the surface. The length of
the rectangular frame (7.¢., the length of the platinum wire immersed, neglect-
ing the legs) is 8 em. If the surface tension is 60 dynes/cm., how much
elongation would a mass of 1.5 grams produce in the spring?

3. Find the surface tension of a liquid if a rectangular frame of length
9 em. immersed in the liquid requires a stretch of 5 cm. in a spring. It is
known that a mass of 3 grams will stretch the spring 20 em.

Experiment 26

4. Prove the expression for capillary rise in a tube, namely, I = M,
giving full reasons for each step. rdg

6. How would you prove experimentally the relation between :
(1) land r?
(2) land d?

6. The surface tensions of two liquids A and B are 35 dynes/cm. and
65 dynes/cm. respectively, whereas the angle of contact for glass and liquid A
is 45° and for glass and B is 50°. Using the same capillary tube in both liquids,
what is the ratio between the heights of the liquids 4 and B in this tube?
(Given that the density of liquid A : density of liquid B = 4:5.)

7. Find the surface tension of a liquid which wets a capillary tube and
rises in this tube of 3 mm. diameter to a height of 12 cm. The density of the
liquid is 8 gm./cc.



CHAPTER XII

RELATIVE HUMIDITY

The determination of the quantity of water vapor in the atmos-
phere per unit volume is an important adjunct to the study of
atmospheriec conditions. The number of grams of water vapor
per cubic meter is a common measure used.

The air is said to be saturated when it contains the maximum
number of grams of water vapor per cubic meter without con-
densing. The maximum quantity of water vapor per unit volume
increases with temperature, but not linearly.

The mass (in grams) of water vapor actually present in the
atmosphere per unit volume is called the absolute humaidity, while
the temperature to which the air must be reduced to reach satura-
tion is called the dew point. Below this point, the excess water
above the amount necessary for saturation will precipitate on some
solid or even in the air as mist, clouds, fogs, cte.

A term which is more frequently used to express the moisture
content of the air is called the relative humidity. This is defined
as the ratio of the mass of water vapor actually present per unit
volume (absolute humidity) to the maximum mass of water vapor
per unit volume that the atmosphere can hold at this temperature
(saturated vapor). To express the relative humidity as per cent,
multiply the above ratio by 100.

In finding the relative humidity, the procedure is first to find
the dew-point temperature. The number of grams of water vapor
per cubic meter the air can hold at the dew point gives the absolute
humidity. This quantity can be found from tables. Then look
in the handbook for the number of grams of moisture per cubic
meter the air can hold at the present temperature of the air. The
ratio of the absolute humidily to the vapor content, if the air
were saturated at the present temperature, gives the relative
humidity.

The relative humidity may also be found by use of a wet-bulb
and a dry-bulb thermometer if a current of air (say, greater than

3 meters per sccond) is directed towards the thermometers so that
122
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the water will evaporate from the wet thermometer without saturat-
ing the surrounding air layer. The greater the moisture content
of the air, the less the evaporation from the wet thermometer, and
consequently the smaller is the cooling effect due to evaporation.
This means that the difference between the temperature reading
of the wet and dry bulb becomes less the higher the moisture
content. When this method is used, tables are found in handbooks
for calculating the results in terms of the relative humidity.

EXPERIMENT 27
RELATIVE ITUMIDITY

To find the relative humidity of the atmosphere by (a) the dew-point
method; (b) the'wet- and dry-bulb thermomeler.

Apparatus: Part (a). Small nickel vessel, a medium-sized vessel,

salt, and ice; or a nickel tube fitted with bulb and ether, thermometer.

Part (b). Wet- and dry-bulb thermometer or a sling psychrom-
eter.

Part (a). The dew-point method. To determine the dew
point with ice and salt, chop the ice into small portions and add
slowly to water, which is to about one inch depth
in the polished nickel can. Stir with a thermom-
cter and take the reading of the thermometer
when the dew first appears. Now add lukewarm
water until the dew disappears and take the
temperature reading again. The average of these
two temperatures gives a fair estimate of the dew
point and becomes more accurately located the
smaller the difference between the two readings
for the appearance and disappearance of the dew.
Make several trials, recording all readings, and
find the average. Water should be removed from
time to time to keep the height about one inch.

Do not handle the polished side of the can with Sctentite Eompany

the fingers or breathe on the can while the experi-  Fia. 63.—Nickel
.. tube with com-

ment is in progress. pression. bulb.

When ether is used, partially fill the small
nickel tube, fitted with a compression bulb (Fig. 63), with ether.
The quantity of ether used depends upon the apparatus. The in-
creased evaporation brought about by forcing air through the ether
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with the compression bulb cools the apparatus. The dew point is
noted as in the previous salt and ice method, and the caleulations
for the relative humidity are made in a similar
manner. The method is very useful for obtaining
low temperatures. 1t is desirable not to inhale the
cther more than necessary. Repeat the experiment
out of doors.

Part (b). The wet- and dry-bulb thermometer
method. If a wet- and dry-bulb thermometer is
used (Fig. 64), sece that the container holding the
lower side of the wick is filled with distilled water
and then start the fan, which
should be at a distance of about
two feet from the wet- and dry-
bulb thermometers. When the
temperatures of the thermom-
eters cecase to change further,
take readings of both the wet-
and dry-thermometers. Re-

. Courtsy cemrat - peat two or more times, re-
Scientific Company

Fic. 64— locating the apparatus cach
Wet- and dry- time. Calculate your results
bulbthermom-  from tables found in a hand-
eter. book.

If a sling psychrometer is used (Fig. 65),
the procedure is much the same, except that
the instrument, consisting of a wet and a
dry thermometer fastened to a metal frame,
is whirled until both thermometers cease to
change any in temperature. In this instru-
ment, the wet-bulb thermometer is kept moist
by means of a wet cheese cloth which is
wrapped around the bulb. (Use distilled
water for this purpose.)

Tabulate and record all your observations.

Courtesy Central Scienttfic
Company

QUESTIONS Fia. 65. — Sling psy-
(a). When may ice, or ice and salt, be used in chrometer.
place of ether?
(b). What causes the appearance of dew on the side of the vessel?
(c). What would be the relative humidity out-of-doors today according



RELATIVE HUMIDITY 125

to your experiment? (Assume the dew point out-of-doors the same as in the
room where the experiment was performed.)

(d). What would the reclative humidity, according to the wet- and dry-bulb
thermometer experiment, have been if the temperature of the dry thermometer
had been found to be 10° C. higher than that actually found?

(e). What is the probable accuracy of Part (a)? Part (b)? Compare the
actual results to see if the figures and probable accuracy are compatible.

PROBLEMS

1. Does the maximum amount of vapor the air will hold (.e., saturated
vapor) increase linearly with temperature? Plot the mass per cubic meter of
saturated vapor as ordinates against temperature as abscissae between the
temperatures of — 20° to 35° Centigrade with intervals of 5 degrees between
each reading. Consult some handbook for the mass of saturated vapor per
cubic meter.

2. Is it necessary that the atmosphere next to the earth be saturated in
order to have rain?

8. Given that the absolute humidity of the air at noon is 13.5 (g_ry_;)’
m.

what is the relative humidity for 22° C.? Suppose the temperature near the
ground dropped to 12° C. that night, speculate on what may happen.

4. Which has the lower reading, the wet- or dry-bulb thermometer?

6. Under what conditions will the wet- and dry-bulb thermometer show
large differences? Why?

6. Why must the air be circulated about the wet- and dry-bulb thermometer
by a fan or by other methods?



CHAPTER XIII

ELECTRIC AND MAGNETIC FIELDS

All materials are composed of atoms or combinations of atoms
(molecules). The atoms are made up of electrons and protons.
The electron is found to be a negative charge of clectricity, prob-
ably with electrical inertia only, while the proton is the positively
charged hydrogen nucleus. All the mass scems to be associated
with the nucleus and the positive charge has, up to the present,
never been identified separately from the nucleus.

The electron is very mobile. Certain of the electrons are easily
removed from some substances by friction. On the other hand,
positive charges, being associated with the mass of the nucleus,
which is heavy compared to the electron, appear to be fairly
immobile so far as experiments have shown.

Evecrric PROPERTIES OF MATERIALS

Consider a hard rubber rod which is rubbed with fur, or a glass
rod which is rubbed with silk. The hard rubber takes on a nega-
tive charge because the fur loses electrons easier than hard rubber
does in the process of rubbing. The glass takes on a positive
charge because it loses more electrons than it accumulates. The
above substances are known as dielectrics (non-conductors)
because a charge will not flow from one point to another.

All substances may be charged by friction as above. If con-
ductors (i.c., metals) are to be charged, however, they must be
insulated so that the charge will not leak off as fast as it is gener-
ated by friction. Ebonite, hard rubber, sulphur, and dry air are
examples of good insulators. Moist air, however, is a much
better conductor than dry air and slowly conducts charges off
metallic surfaces. Many experiments in electrostatics are partial
or complete failures in damp weather. Moreover, the air becomes
more conducting in the presence of condenser discharges, radio-
active compounds, lighted matches, etc., which serve to ionize

the air.
126
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The fundamental law governing the force between charges is
Coulomb’s Law. This law states that for similar charges in air
or vacuum the force is one of repulsion and of amount

F = q_(}(g dynes,
where ¢; and ¢. represent the electric charges and d their distance
apart. - For unlike charges the force is one of attraction.

In speaking about charges it has become customary to refer to
the charge on an ebonite (or hard rubber) rod, when rubbed with
fur, as the negative charge. Consequently once this arbitrary
designation has been established, all other charges can be classified
as positive or negative, depending upon whether they attract or
repel charges on the hard rubber.

The region around an electric charge or system of charges is
called an electric field. When charges or uncharged bodies are
placed in this electric field, forces due to this field act on them.
It is necessary to define and measure what is usually termed the
Jield intensity or strength of the electric field.
There are two ways in which an electric field I/ can
be defined and measured. In the final analysis
the two methods can be shown to be the
same.

Trirst, the field intensity at a point P (Fig. 66) -
is defined as the force which would act on a unit
charge placed at the point in question. In order
to find the strength of the electric field at all
points in a certain region it would be necessary .

. . Fia. 66. — Electric
to put the unit charge at all these points and feld.
measure the force acting on it.

Secondly, the field intensity at any point P can also be defined
in terms of the space rate at which a quantity, called the potential

V, varies (Ea: =— -AAV) From this definition it can be seen
T

P

that a knowledge of the potential at all points in the field enables
us to find the field intensity. This method is similar to the
method used in geographical maps of representing the country
by lines having equal elevations. These topographical maps
show right away whether the country is fairly level or mountainous
and enable us to calculate the grade or steepness (corresponding
to field intensity in the electrical case).



128 EXPERIMENTAL PHYSICS FOR COLLEGES

In the electric field, lines of force are often drawn. These are
lines which show at all points through which they pass the direction
of the electric ficld. They also represent the direction in which
a unit charge will travel if allowed to do so on account of the
repulsion.

We will next analyze the effects produced by some electric
charges. Consider, for instance, the electrophorus (Fig. 67
and Experiment 28), the dielectric plate of which has been charged
negatively by whipping with catskin or flannel. The metallic
disec will have a positive charge induced on the under side when
in “ contact ”’ (I'ig. 67 a) with the dielectric. A negative charge
is induced on the upper side. The effect of the contact points
of the disc along the dielectric is negligible, for these points are
relatively few, and besides, charges in a dielectric are not con-

Insulating
Handle Metallic
Ihsc
= “Dielectric” - v2}= - _—

(a) (b)
Fig. 67. — Metallic disc charged by induction.

ducted from point to point. The induced negative charge is
allowed to flow to ground by touching the top of the metallic
dise with the hand (Iig. 67 b). Remove the hand and the metallic
disc has left a positive charge (Fig. 67 ¢). This is called charging
by induction. Referring again to Figure 67 b, we will call the poten-
tial of the metallic dise v, a “ ground ”’ potential. If the disc is
raised slightly, as in Figure 67 ¢, the “lines” are stretched and
work is required to raise the disc. Moreover, it may be shown
that these “lines” tend to separate from each other. That is,
there is a “ pressure,” or force, at right angles to the lines tending
to split the lines off from their present terminals. The higher
the plate is raised, the more work it takes and the greater the
number of lines split off so that a large number of lines (Fig. 67 d)
will now terminate on other surrounding objects and the charge
on the disc itself becomes less bound to the dielectric. This
means that the potential of the disc is now raised to a value ;.
The difference in potential (v, — v,) is measured by the work
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done in raising the disc with a charge ¢ from a potential »; to a
potential vy, .e.,

= q(v1 — 9),
where w is expressed in ergs if ¢ and (»; — v5) are measured in
electrostatic units.

By similar reasoning it may be shown that a body will hold a
greater charge (i.e., its capacity increased) for a given potential
if another conducting body, usually well grounded, is
brought near to it. This can be shown with the
electroscope which has a metallic dise attached to it
and charged as shown in Figure 68. The leaves
diverge an amount depending upon the charge given
to the system. Now bring a grounded conductor such

as a metallic disc (Fig. 69) into the

 vicinity of the electroscope. Theleaves Fra. 68.—
2/ of the instrument come closer together, S&igu:t elee-

indicating that the potential is lowered.

This means that the charge which the electroscope
arrangement could hold, for a given potential, is
increased.

-

Pz

MAGNETIC PROPERTIES OF MATERIALS

The magnetic properties of lodestone have been

Fia. 69.— known for centuries. The Greeks called it magnetite
Grounded me- (Fe;Qs). It has the property of picking up iron
tallic disc near filings and small pieces of iron. Later compasses
charged clectro- . .
scope. were discovered and the magnetic nature of the

carth was observed. Magnets have a north-seek-
ing (N) and a south-secking (S) pole. Like poles repel, while un-
like poles attract.

It is now known that an electric charge in motion produces a
magnetic field. The orbital motion of the electrons about the
nucleus of the atoms goes a long way toward explaining the mag-
netic properties of substances.

The space surrounding a magnet is called the magnetic field.
We can draw in this field lines of force which, in reality, are direc-
tions along which a positive (N) pole would travel if placed in the
field. These lines of force may be located readily by means of
iron filings or a small compass. The magnetic field around a
magnet is shown in Figure 70. This field will be distorted because
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of the effect of the earth’s magnetic field. In fact, the earth’s
field itself may be distorted at any given position in a building

because of the nearness of steel girders,
\{( /./\\ steam pipes, and other iron or steel struc-
/ tural work.
| s|

\ In Figure 71, one effect of interest due
M to the earth’s field is to cause two points
(P, and P,) to have no magnetic ficld in
Fra. 70. — Magnetic field any direction. A compass needle placed
surrounding a bar magnet. 4 "y oo points would have no tendency
to turn in any particular direction. These are called neutral points.
If the horizontal intensity of the earth’s field is found to be 0.2
gauss, it means that the field due to the magnet itself at £, and
P, is also 0.2 gauss with a direction opposite
that of the magnctic ficld due to the earth. I
This type of experiment gives us one way of North
determining the pole strength of a magnet,
knowing the strength of the earth’s field.
The pole strength of a magnet is measured in
terms of a wunit magnetic pole. This unit is
based on Coulomb’s experimental law which
states that if m, and m. represent the strength
of two “isolated ”’ poles, the force () of re- P
pulsion (if poles are alike in sign) will be

B,

Fia. 71. — Effect of

1mm
F ="t the earth’s field.

pod’

where d is the distance between them and u is the permeability.
The permeability for air is approximately unity. From Coulomb’s
law of force between two poles, we define unit mole as that pole
which, when placed a distance of 1 em. in a vacuwn from an equal
and like pole, will repel it with a force of one dyne. The expression

I-%? is known as the field intensity at a point P which is at a distance
d from an isolated pole of strength m, and is the force per unit
pole at P due to a single magnetic pole of strength m.

If there is more than one pole to be considered, the resultant
field intensity at a point is the vector sum of the separate field
intensities which are calculated from the known strength of each
pole. The field intensity is usually denoted by the letter H.
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EXPERIMENT 28

ELECTRIC CHARGES
Methods of obtaining and detecting electric charges.
Apparatus: Ebonite, scaling wax, glass rod, fur, flannel, silk,
pith ball, two aluminum-covered pith balls, condenser, electroscope

with metallic disc attachment, electrophorus, electrostatic voltmeter
(one is sufficient), stand with horizontal rod for suspending pith balls.

The electroscope (Fig. 72) is an instrument to detect (and
measure) electric charges. It consists essentially of an insulated
metal rod with very thin gold, or aluminum, leaves
attached to the lower end. The rod is suspended in
a metal container with glass windows by means of
the insulating plug, which may be made of ebonite
(or better, of amber or sulphur).

The electrostatic voltmeter is a form of calibrated
electroscope.

The electrophorus (Fig. 73), an instrument designed
to obtain large charges, consists of a dielectric, Fia. 72.—
usually inclosed in a metal dish, and a metallic disc Electroscope.
with an insulating handle. The procedure in obtaining a charge on
the metallic disc is as follows: The ebonite is charged negatively

by whipping or rubbing with flannel

Il or catskin. Bring the metallic dise
Metaltio down on the charged ebonite. The dise
/ touches the ebonite in relatively few

L Y 1, places, so that the metallic disc becomes
[ Sehing W or hone | charged by induction, positively on the
F1a. 73. — Electrophorus. 1 d d tively on th

ower side and negatively on the upper
side. Touch the upper side with the hand for an instant. The
negative charge becomes grounded. Remove the metallic disc.
It is now charged positively. We say that the plate was charged
positively by induetion. All charging by induction is carried out
in the above manner. If the metallic plate had been in contact
at all points with the charged dielectric, the former would have
become charged negatively by econduction.

Procedure. For the most part, the data are to be recorded by
transferring the diagrams to your data sheet, filled in with the
correct sign of charge (i.e., + for positive and — for negative)
and any other additional drawings to make the data sheet more
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complete. The experiment is to be done in parts as provided
below.

Part 1. Charge the cbonite rod with fur. Bring the ebonite
rod near bits of paper. The paper becomes charged by induction

oy

Small
Piece of
Paper
Ebonite (a) »
F1a. 74. — Refer to Part 1 Fra. 75. — Refer to Part 2
of the experiment. of the experiment.

and is drawn towards the rod. Indicate the nature of the charges
on the bits of paper and rod (Fig. 74).

Part 2. A charged cbonite rod is brought near a suspended
aluminum pith ball (FFig. 75 a) and attracts it. After hitting the
ebonite, it flies away (Fig. 75 b). Fill in the proper signs of elcetric
charges for Figure 75 a and b.

Part 3. Charge the electroscope negatively by conduction.
Record nature of the electrification on figures as in Figure 76 a, b,
and ¢. Note that the position of the leaves of the electroscope
as well as the nature of the charges in Figures 76 a, b, are left to
the student to supply. Write in the kind of rod used and indicate
its charge.

Part 4. Charge the electroscope negatively by induction.
Referring to Figure 77, record the results as above in Part 3

(a) b / /
A pproa?h of Con Ifu' t) (C)

Charged Rud (a) (b) (c)
Fia. 76. — Refer to Part 3 Fia. 77. — Refer to Part 4
of the experiment. of the experiment.

Part 5. Charge the electroscope and place a lighted match
near it. What happens?

Part 6. Place the metallic disc attachment on the electroscope
and charge the system negatively. Bring the metallic disc with
insulated handle near the charged electroscope with and without
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grounding the former (Fig. 69). What do you observe in each
case? Draw diagrams and explain, in your report.

Part 7. Charge the knob of the Leyden jar (condenser) by
mesns of the charged metallic disc of the electrophorus, repeating
until the condenser has acquired a considerable change. Bring
the inger near the knob.

Part 8. Discharge the charged metallic disc of the electro-
phorus once on the electrostatic voltmeter. Record the voltage

obtained.
QUESTIONS

(a). How could you tell whether an unknown charge was positive or nega-
tive by means of an clectroscope?

(b). Explain what happened in Part 5 of the experiment.

(c). What is the-cause of the result observed in Part 67

(d). Why is the magnitude of voltage (sce Part 8), which you have produced
by means of the electrophorus, usually dangerous but not so in this experi-
ment ?

EXPERIMENT 29
MAGNETIC FIELDS AND POLES

Part (a). To determine the field about a magnet for a given direction
of the poles.

Part (b). To find the strength of the poles from the position of the
neulral points.
Apparatus: Two bar magnets, two small magnetic compasses, two

drawing boards, thumb tacks, large sheet of paper (about 12 X 15 inches
for 4-inch magnets), meter rule.

It is desirable that each person should perform this experiment
by himself if the apparatus is available.

Part (a). Determine, by means of a small compass needle,
which is the north-south magnetic direction of the earth, for the
particular location of your experiment. Place the long edge of
the data sheet parallel to this direction and then tack the paper
down upon a drawing board or table top. Determine, next, which
is the north pole of your bar magnet and place it parallel to the
previously determined direction of the compass needle (conse-
quently also parallel to the edge of the paper), so that the north
pole of the bar magnet is in the same direction as the north pole
of the compass needle (Fig. 78). When determining the north-
south magnetic field of the earth by means of the compass necdle,
keep the bar magnet as far away as possible.
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Draw an outline of the magnet on the paper and also construct
a line AA’ bisecting the magnet at right angles. It can be shown

y P — o—— that the neutral point P, will lie on this
[ line AA’. It must satisfy the condition
H

that the earth’s field H must be just
N N equal in magnitude to the field E of the
) magnet. Consequently the resultant field
lE——— =17~ at Pyis zero. This point P; can be quite

N accurately located by moving the small
compass needle back and forth along
A4’

In order to plot some lines of force,
place the small compass on AA’ about
F1g. 78. — Plotting lines of one inch away from the magnet. Make

force. dots with a sharp pencil at both ends of
the compass needle. Now move the small compass so that the last
dot falls at the one end of the needle and make another dot at the

S

T

|
_Ix,

>

other end. Continue in this way, N
following up from the previous dot, ’{:
until the magnet or edge of the paper

is reached. Having drawn a line of 7

force through these points, plot other
lines by starting at points two, three,
four, five, and six inches away from
the magnet. A non-magnetic (e.g.,
wooden) pencil should be used for
this work.

Part (b). Tofind the pole strength,
consider the neutral point (P;) to ¥16. 79.— Measurement of pole
have been found (Fig.79). If there strength.
are no secondary poles, the distance from P, to the poles + m and
— m is the same. The position of each pole is found by noting
where the lines of force converge. The field intensity (H;) due
to + m is

=
H, = X

in the direction P,4, and the field intensity due to — m is
H9 = %

in the direction P,B.
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Now the magnitude of H, is equal to the magnitude of H,. The
distance d; (or dz) can be measured, so that the magnitude of m
may be calculated if H; can be found.

To find H,, construct a parallelogram as in Figure 79, where
P,C is drawn so that 1 cm. represents onc-tenth dyne of force.
Look up in a handbook the horizontal intensity for the earth’s
magnetic field for your locality. If it is 0.2 dyne per unit pole,
then make P,C two centimeters in length. From P; continue
the line drawn from + m to P;, and from C draw a line parallel
to the one from — m to P,. These two lines interesect at A. The
line AP, represents the magnitude of H, each centimeter of
length representing one-tenth dyne. Calculate the pole strength

from the relation,
v m=H 1(112.

QUESTIONS

(a). Inthe abovearrangement where should another neutral point be found ?

(b). In what way would secondary poles affect your result for the pole
strength? Draw a magnet with secondary poles.

(c). What does P,C represent, the resultant field due to the magnet or the
field due to the earth?

(d). What is the resultant field intensity at point P; in Part (b) (Fig. 79)?

PROBLEMS
Experiment 28

1. State two definitions for field intensity at a point.

2. What kind of charges are actually transferred, as far as we know, when
two dissimilar substances are rubbed together?

3. What is meant by the terms charging a body by (1) conduction,
(2) induction?

4. What is meant by an electric field ?

5. State Coulomb’s law in words and by formula.

6. What is meant by (1) difference in potential, (2) field intensity ?

7. What is the field intensity at a distance of 15 cm. from a charge of
450 e. s. u.?

8. Two pith balls, each with the same charge ¢, and each weighing one-
twentieth of a gram, are suspended from the same point by strings of 100 cm.
in length. Find the magnitude of the charge on each if they are separated
by a distance of 6 cm.

Experiment 29

9. If magnetism is a molecular property of iron, how would you expect
heat or hammering (in general) to affect the piece of steel which has been
magnetized ?
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10. Can magnetic poles be isolated ?

11. What would be the maganetic field intensity at a point on the longi-
tudinal axis of a bar magnet at a distance of 15 cm. from one end? The
poles are at the very end of tbe bar which has a length of 5 cm. Consider the
strength of each pole to be 50 clectromagnetic units.

12. Suppose the poles of the last problem were at the very ends of a magnet
of length 50 cm. What -vould be the error introduced if the far pole were
neglected in the calculation of the field intensity ?



CHAPTER XIV

THE MEASUREMENT OF CURRENT —GALVANOMETERS

Whenever a charge flows through a conductor we speak of an
electric current and define it as the rate of flow of charge past any
cross-section of the conductor. Hence,

g = :A_,Q,
Al
where Aq is the charge and At the time taken for this charge to

flow past. If the current is constant, we can simply write ¢ = %

The analogy between electric current and rate of flow of water
in a pipe (in, say, cubic feet per second) is seen to be a very close
one. In the casc of water some driving force is necessary before
the water flows. This is usually supplied by a pump or by having
a difference in level (potential energy) between the two ends of the
pipe. The same is true in the electrical flow of current. A poten-
tial difference e is necessary before the current flows.

Now it is found that the potential difference existing between
the two ends of a conductor is directly proportional to the current
flowing through this conductor, all other conditions remaining the
same. Hence we can state that

e 1.

The proportionality sign can be replaced by a sign of equality
if we put in a constant and write :

1) e =i,

where r is now a constant for the conductor and called its resistance.
This equation was first stated by G. S. Ohm and is known as
Ohm’s Law.

In the practical system of units we measure the potential dif-
ference in volts, the current in amperes, and the resistance in ohms.
The relation between these and the fundamental units (e. m. u.)

will be found in college physics texts and need not be given here.
137
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[Note. In these chapters we will use capital letters to signify
quantities measured in practical units (e.g., I in amperes, E in
volts, ete.) and small letters for the corresponding absolute units.]

An electric current can be measured by any one of the effects
which it produces. There are three of these that lend themselves
readily to observation and measurement. They are the heating,
chemical, and magnetic effects. All three are used, since we know
the laws governing the relation between current and any one of
these effects. The only question then is simply which of them
shall we use under the particular condition of convenience, acecu-
racy, speed, portability, etc. We shall discuss the measurement
of current under three headings, with particular reference to the
laws of the effects and the apparatus.

I. CuremicarL Errecr

The laws underlying the relation between current and amount
of chemical action have been fully stated by Faraday (sce Chapter
XVIL. This is really the way in which we should measure an
electric current, since the international ampere was defined, at
the Conference on Electrical Units and Standards held in London
in 1908, in terms of the amount of substance deposited chemically
by an electric current in a certain time. Unit current is that
unvarying current which, when passed through a silver nitrate
solution in water, in accordance with the specifications attached
to this resolution, deposits silver at the rate of 0.00111800 gram
per second.

The apparatus is called a silver coulometer. It consists simply
of a platinum vessel or crucible containing the silver nitrate solu-
tion and having immersed in it a disc of pure silver. Many pre-
cautions are necessary when great accuracy is desired. Although
the method is extremely difficult, long, and tedious, it has the
advantage that it will enable us to reproduce accurately or measure
a certain current, since the measurement finally becomes one of
measurement of mass, which can be determined anywhere. The
various burcaus of standardization still have to use this method.
Legally this represents the way current should be measured.

For ordinary commercial and practical work, when such great
accuracy is unnecessary, this method of measurement is out of the
question since the apparatus is not portable. It is messy, time-
consuming, and requires an expert to carry out the experiment.
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II. Tue Heatinag ErFrFeECT

An electric current flowing through a conductor heats the
material according to the law:

W = JH = I*Rt joules.

Stated in other words: The heat produced per second is directly
proportional to the square of the current. Hence by the heating
effect, we can measure an eclectric current if we can find a con-
venient way of measuring the amount of heat produced. Several
ways of doing this immediately suggest themselves, such as meas-
uring the change in length of a wire produced by the heating, or
else by allowing the wire to heat up a calorimeter with water and
measure the rise in temperature, etc. The method most commonly
used at the present consists in attaching a thermocouple junction
to the wire and so measuring the heat produced Heater
in the wire by means of the e. m. f. produced by
the thermocouple (Fig. 80). Such current-measur- Thermod
ing instruments arec known as thermo-galvanom-
eters and have a very useful field of application.
The thermo-galvanometer is used extensively
in measuring alternating currents, 7.c., currents
that reverse their direction of flow periodically.
The reason for their use in this connection is
because the most common forms of current-measuring instru-
ments (using the magnetic effect — see below) will not measure
currents that reverse their direction of flow. It becomes a difficult
problem to measure such alternating currents, especially when the
frequency of the alternation becomes higher and higher. This
heating effect furnishes about the only satisfactory means avail-
able at present for measuring frequencies of 10,000 alternations per
second and higher — usually referred to as radio-frequencies — a
field of current measurement becoming more and more important.
On account of heat losses to the air, wires, ete., it becomes
difficult to calculate the current from a knowledge of the tempera-
ture of the wire, etc., and hence these instruments are usually
calibrated by comparison with other ammeters or galvanometers.

I1a. 80. — Ther-
mo-galvanometer

III. MagnETIC EFFECT

This is by far the most common effect that is used in steady
current measurement. FEvery current flowing in a wire shows a
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magnetic field around it, and consequently a measure of the
magnetic field gives us also a measure of the current.

There are two ways of measuring a magnetic field produced by
a current: (1) by noting its effect on a magnet, or (2) by noting
the effect of another magnetic ficld on the conductor carrying the
current, when this other magnetic field is placed in the neighbor-
hood of the current to be measured. For these two methods, two
types of instruments have been developed to a remarkable (perhaps
limiting) degree of sensitiveness to current. These two types
are :

1. The moving-magnet type of galvanometer.

2. The moving-coil (or D’Arsonval) form of galvanometer.

1. The moving-magnet galvanometer or tangent galvanometer.
This apparatus consists essentially of a vertical coil of wire which
carries the current. At the center of the coil a small compass

ncedle is mounted. In order to enable
deflection of this small compass needle to
be observed, a long, thin aluminum pointer
mF is attached to this needle, usually at right
angles, and allowed to swing over a gradu-
ated circular scale divided into degrees.
When great sensitiveness is desired, the
needle is suspended by a very thin quartz
fiber and has a small mirror attached, so
Fia. 81. —Tangent gal-  that a beam of light reflected from the

vanometer. mirror can be used to replace a pointer.

Suppose in Figure 81 AB represents a cross-section of the coil
which has been arranged so that its plane is in the direction of the
earth’s field H. Then when a current ¢ flows through the coil,

the magnetic field at the center can be shown to be F = 27rm’
T

where n represents the number of turns and r the radius.

If now a compass needle is placed at the center, each pole of the
little magnet will be acted on by the resultant of these two forces
F and I, and hence will rotate until its direction is in line with
this resultant R. Therefore, if 6 is the angle through which the
compass needle turns when the current is passed through the coil,
we see that

tan § =




MEASUREMENT OF CURRENT —GALVANOMETERS 141

and solving for ¢, we get

i =M iang = Ktan o,
2mn

where 7 is measured in absolute units.

Since r, H, and » are all constants which are known or can be
found, we can sce that 7 « tan 6.

This is the reason for the name, tangent galvanometer.

In order to increase the scnsitiveness we want ¢ to be as small as
possible for a certain value of 6 (or tan #). This is done by making
r and H as small as practical and n as large as possible. A limit
is reached, however, for two reasons : first, increasing n, the number
of turns, means an increasing resistance and hence a smaller current ;
and secondly, if -I{ is made very weak, stray magnetic fields will
often cause spurious results.

2. The moving coil or D’Arsonval galvanometer. . The con-
ductor carrying the current to be measured is put in the form of a
coil and either suspended by means of a thin wire or strip, or else
mounted between delicately constructed jeweled bearings so as
to enable the coil to rotate. The magnetic field is supplied by a
permanent magnet. The interaction of the two fields produces
the rotation. With a carefully designed galvanometer of this
type, the current can be made to give deflections proportional to
this current. These instruments can be made very sensitive and
are not subject to as many of the difficulties in their use as is the
moving-magnet type.

The following table gives some idea of the sensitiveness of the
various types:

APPROXIMATE CURRENT VOLTAGE

RESISTANCE SENSITIVITY SENSITIVITY Perion

Tyre

Moving magnet | 1 —— 4000 | 1X 10~ amps. 1 X 10~ volts | about

(tangent galva- ohms to to 6
nometer) 3 X 107" amps. | 1 X 1077 volts | seconds

Moving coil 10— 2500 | 1 X 107 amps. | .2 X 10% volts | 2 to

(D’Arsonval) ohms 1 X 107 amps. 22

to
.5 X 1077 volts | seconds

In this table the sensitivities are all stated in terms of a standard
deflection, and the following definitions are used :
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1. A standard deflection is chosen as the deflection of 1 milli-
meter on a scale 50 cm. away from the galvanometer when viewed
through a telescope, the latter being also placed 50 centimeter
distant from the galvanometer.

2. The current sensitivity (figure of merit) is the current neces-
sary (usually given in amperes) to give a standard deflection.

3. The megohm sensitivity is the number of millions of ohms
(mcgohms) that must be placed in series with a galvanometer,
when one volt is applied, to give a standard deflection.

4. The voltage sensitivity is the potential difference (usually
given in volts) which must be applied to the instrument directly
to give a standard deflection.

5. The period is defined as the time for a complete vibration.

Ezxample: Suppose that the current sensitivity, or figure of
merit, is 10~% amperes per standard deflection, then the megohm
sensitivity would very approximately be

141
- ——)— = 100 > 5
(10_9) 105 000 megohms,

if the galvanometer resistance is neglected. Suppose that the
same galvanometer has a resistance of 100 ohms, then its volt-
age sensitivity would be 10~° X 100 = 10~7 volts per standard
deflection.

General precautions. Whenever a circuit is being wired up, it
should become a habit always to connect the battery or source of
supply into the circuit last. Iiven then, the battery should not
be connected unless the circuit has been carefully checked. This
precaution cannot be too strongly emphasized because much
valuable apparatus can be ruined if this precaution is not observed.
For the same reason, when disconnecting your apparatus, always
disconnect the source of supply first.

Another point of importance should be carefully observed:
When using a resistance box, see that sufficient plugs have been
removed in the high resistance range so that the circuit has a high
resistance. Never make connections to resistance boxes and
apply the battery or source until proper plugs have been removed
from the resistance box. In general, if the resistances are all as
large as possible, you are on the safe side and it is a simple matter
to reduce the resistance to the desired value. Place the spare
resistance box plugs flat on the top of the box so that they will not
become dirty or misplaced.
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EXPERIMENT 30
THE TANGENT GALVANOMETER

A measure of the earth’s horizontal intensity using a tangent gal-
vanometer.

Apparatus: A tangent galvanometer, about 3 feet of twisted leads, a
reversing switch, a low-range resistance box (or rheostat), an ammeter
to read a current of 0.1 or 0.2 ampere, dry cell.

Instead of using a tangent galvanometer to measure the value
of a current, we shall use it to measure the strength of the earth’s
field, H (i.e., the horizontal component). To find
H accurately in practice involves a long and difficult
experimentation. We can very easily get a fair
value for H by the following procedure :

The arrangement of apparatus will be seen from
Figure 82. It consists of a tangent galvanometer
T through which we can pass a known current, as
read on the ammeter A.

Knowing the current and the constants of the
galvanometer, we can calculate H, using the relation
between current through the galvanometer and the
tangent of the angle of deflection, as described
above. Fia. 82. —

There are, however, several sources of error which (]))feltlermmat“’“
have to be avoided, or else allowed for. Since we )
are going to measure H, the value of the magnetic field due to the
earth at a certain region, it is important not to introduce any
extraneous magnetic fields. It is for this reason that the ammeter
should be kept as far as possible from the tangent galvanometer,
and the leads through which the current flows should be close
together.

The next part of the procedure is to set up the tangent gal-
vanometer. Remember that the earth’s field is being measured
in the region in which the little magnetic needle is located. The
long aluminum pointer is attached to the little magnet simply to
facilitate reading the deflection. Before passing the current we
must arrange to have the plane of the coil in line or parallel with
the earth’s field, so that the magnetic field produced later by the
current will be at right angles to the magnetic field of the earth.
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After being sure the needle swings freely, turn the coil until the
plane of the latter is in line with the needle. A small straight
edge placed above and in line with the needle on the compass-box
will help to line up necedle and coil. When this has been done,
leave the coil now in this position and turn the compass-box scale
until the reading of the pointer on the scale is zero.

We are now ready to pass a current. Before closing the switch
see that a fairly large resistance is in the circuit and the ammeter
is connected into the circuit with proper terminals, using the
1.5 ampere range. The ammeter should be connected (4 of
ammeter to + of battery) right next to the battery as shown in
Figure 82. Close the switch and note the ammeter current and
galvanometer deflection. Adjust R until the deflection is between
30° and 60°. Note that throwing the switch the other way gives
an opposite deflection.

Finally, we wish to obtain the necessary data for finding H.
Between readings do not change the galvanometer adjustment,
although the current can be varied so as to give about four or five
different angles between 30° and 60°. Always measure the angle
by reading both sides of the pointer. Record your data as follows:

No. of turns =
Average radius =

Current | CurreNT | DEFLEC-
Zrro READING | Abs. Direcr | REVERSED TION Av

Cur- . "
LocaTioNn RENT DerrL. (Cale.)

End | End | gmpy | End | End | End | End | End | End ®
A B A B A B | 4 B

1. Three
feet from
south wall
and two
fect from
east wall Mean

2.

Find the value of H in as many different localities as time
allows.
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QUESTIONS
(a). If the current is doubled, does the angle of deflection become twice
as large?
(b). Do the angles measured by the end A and the end B of the needle
agree? If not, give reasons.
(c). Give the various ways in which you could increase the sensitivity of the
tangent galvanometer in practice.

EXPERIMENT 31
SENSITIVITY OF D’ARSONVAL GALVANOMETER

A determanation of the current sensitivity, megohm sensitivity, and
voltage sensitivity of a moving coil galvonometer.

Apparatus: D’Arsonval galvanometer, two high-range resistance
boxes, one low-range resistance box, one key, dry cell, voltmeter-
(0-3 volt range).

Theory. There are many circuits that may be designed to
measure the sensitivity of a galvanometer. They are all so
arranged that the current passed ¢
through the galvanometer is of the I, \/_//
proper magnitude so as not to burn
out the galvanometer by being ex-
cessive in amount, but rather to give L 7 11 o
a reasonable deflection.

Referring to Figure 83, it will be 1f
seen that the current through the —D; , /;\
galvanometer can be made small by
arranging P to be very small and R
and Q very large in resistance. Let F1o. 83.— Sensitivity of a gal-
I, = current through the galvanom- vanometer.
eter and I = main current through the battery. Then I, =

( P+ R ¥ G) (see next chapter, page 155), where G is the gal-

vanometer resistance. Since I = k approximately, where E is

Q
EP

QR +6)
approximately.
To adjust a galvanometer telescope and focus on the scale.
Before passing a current through the galvanometer, it is necessary

the voltmeter reading, we get
I, =
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to get the cross-hairs and scale in focus. Look through the tele-
scope and you will observe a cross-kair. This will be seen dis-
tinetly and sharply if the eye-piece end (the end you look through)
is moved slightly in or out. Next, without looking through the
telescope, you will find, if the scale is at all illuminated, that you
can see an image in the galvanometer mirror of this scale when
you get your cye at the proper level. Move your eye up or down,
next to the telescope, until you see this image when looking into
the mirror. Having spotted this image, sec that the telescope is
at the same height as your eye. (Use the raising or lowering
screw on the telescope arm for this purpose.) Now if you should
look through the telescope and it is pointing in the proper dircction
and is at the correct height, you will probably see the image of the
‘scale faintly or blurred. Bring this image finally into sharp focus
by the adjustment on the telescope tube (not the eye-piece).
When final adjustment is obtained, both cross-hairs and scale
should be in clear or sharp focus and no parallax should exist
between them. Having made these adjustments, try not to jar
the instrument any more. If you expericnce difficulty, do not
hesitate to ask the instructor for help in making these adjustments.

To obtain data for calculating the sensitivity. Having con-
nected the apparatus as shown in Figure 83, be sure that the
resistance in boxes I and @ is as high as possible and the resistance
in P is very low (say one ohm or less), before closing the key. The
first time you close the key, this should be done with extreme care.
Just press the key down for an instant. If there are any wrong
connections, this fact will show up in such a brief deflection, and
furthermore, such a procedure might save some valuable apparatus.
It is always a safe policy to call the instructor over to your desk
and have him check your connections. Having closed the key
after everything is connected up correctly, you will probably
find that the deflection produced, on looking through the telescope,
is very small. To obtain a larger deflection reduce the value of R.
In this experiment we would like to get a deflection right up to the
end of the scale, namely, 24 or 24.5 em. If reducing R does not
produce the required deflection, then reduce @ in steps, being
careful, however, not to make @ less than 50 ohms. If this manipu-
lation still does not give the required result, then use a larger
value of P.

Knowing that the deflection of 25 c¢m. can be obtained, adjust
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R and @ until the steady deflections to the right or to the left are
obtained approximately at the following points: 4, 8, 12, 16, 20,
24 cm. Read the voltmeter and deflection when the key is
depressed and the deflection is steady, stating on which side your
deflection was taken.

Record your data as follows:

Galvanometer resistance = ohms
Scale distance = cm,
N SENBITIVITY | .
p R Q DEFLECTION E SENSITIVITY (Mogohm) SENSITIVITY
(Ohms) | (Ohms) | (Ohms) (mm,) (Volts) a(sl‘;)r;‘;::’r: megohms/ ‘S(Yl?;'ﬁg;)

mm.

[Note. The calculation of sensitivity should be for a standard
deflection.]

Plot a curve with current sensitivity as ordinate and deflection
as abscissa. Draw a smooth curve and do not join the plotted
points.

QUESTIONS

(a). Can you think of any reason why it is better to use a constant value
of P through all the measurements?

(b). With the approximations made in the derivation of the formula for
finding I,, is it better to have P large or small? Explain.

(c). Why is the sensitivity not constant for all amounts of deflection?

(d). Over what range of the galvanometer which you used can you assume
lincarity between current and deflection?

(e). Explain the shape of the curve by a study of the nature of the magnetic
field in which the coil turns.

TaE CONSTRUCTION OF VOLTMETERS AND AMMETERS

A galvanometer, when combined with the proper resistances,
can be used to measure currents of any magnitude. The currents
to be measured we shall assume to be larger than the current
which the galvanometer, by itself, can carry without danger of
damage. By a proper choice of resistances also, the same gal-
vanometer can be made to indicate voltage or potential difference
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across its terminals. Of course it must be realized that a gal-
vanometer really gives a deflection because a current is flowing,
and in a well-designed instrument this deflection is proportional
to the current. But if we let this current flow through a resistance,
we can calculate the potential difference across this resistance,
the value of the potential drop being proportional to the current
if the resistance remains constant. In this sense a galvanometer
can be made to serve as a voltmeter.

The ammeter. When a current of large magnitude has to be
measured, then some provision must be made in an ammeter so

that most of the current will be

deflected through a branch circuit,

and only the proper amount passes
4 through the galvanometer.

This is accomplished, as shown
in Figure 83, by connecting a very
2 low resistance shunt S across the

Fic. 84.— Arrangement of gal- galvanometer. The resistance R’,
:&'ﬁ"’;‘éﬁf’r and shunt to form an g,wn dotted, is not really neces-

sary but, is inserted quite frequently
to aid in making adjustments when calibrating the deflections of
the galvanometer. This is done by comparison with the readings
of a standard ammeter connected in the main circuit.

The relation between main current I and galvanometer current
1, is easily shown to be (see Chapter XV):

I"=I(Sf—G '

In practice, if we wish to measure a fairly large current, then the
We

1
10¢
see from the above equation that the value of the term in the
brackets must be of the same order of magnitude. This can only
be accomplished by making the resistance of S a very small fraction
of the resistance of the galvanometer. In the case under con-
sideration, if the galvanometer had a resistance of 100 ohms,

ratio L is a very small fraction, perhaps of the order

S would have a value of approximately 0.01 ohm, so that g—f_——é

1
would be of the order 0"
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Since the currents to be measured mostly in practice are quite
large, a less sensitive galvanometer can be used. This means
that the coil does not have to be suspended by a very fine wire,
but can be mounted more ruggedly in conical jewel bearings, thus
making the instrument more portable.
Note that the resistance of an ammeter
(AB) s very low (less than that of the
shunt resistance).

The commercial ammeter, shown in
Figure 85, is of the multiple-range type.
The binding post at the extreme right
is marked -+, meaning that this side
should be connected to the positive (+)
pole of the battery. If the approximate
magnitude of the current to be meas-
ured is not known, connect the negative
side of your circuit to the negative FiG. 85.— Commerical am-
binding post of the ammeter showing meter.
the maximum range, which is 15 amperes in the diagram. If you
find that the current is less than 1.5 amperes, change your negative
terminal connection from the binding post marked 15 amperes
to the one marked 1.5 amperes. The same precaution should be
taken in using voltmeters.

The voltmeter. The use of a galvanometer for indicating poten-
tial difference is very easily arranged. As a matter of fact, it is a
very simple matter if we know the resistance of the galvanometer
and the sensitivity, since E = I,R, where R, = the resistance
of the galvanometer and I, = the current through the galva-

nometer, and hence E is proportional to the deflec-
tion. This is only possible, however, when the volt-
ages to be measured are very small. In general, it
" becomes necessary to insert a resistance R, in series
with the galvanometer, as shown in Figure 86, when
larger voltages have to be measured. Let us suppose,

Fie. 86.— for example, that the potential difference existing
Arrangement gacross the galvanometer when carrying its maximum
of a voltmeter. allowable current is 0.01 volt and we wish to measure
a potential difference across AB of 100 volts. This means that
we will have to insert a resistance at R so that most of the po-
tential fall occurs across R (namely, 99.99 volts) and only
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0.01 volt across G. If the current I, under these conditions is
say 0.001 amp., then R would have to have a value given by I,R
= 99.99, or B = 99,900 ohms. In this way, then, by applying
various potentials at AB, the deflections of the galvanometer
are proportional to the potential difference between A and B.
(Full scale above = 100 volts between A and B.) Note that a
voltmeter has a very high resistance.

EXPERIMENT 32

THE CONSTRUCTION OF VOLTMETERS AND AMMETERS
AND THEIR CALIBRATION

Part (a). To construct and calibrate an ammeter to read from 0
lo 1.5 amperes.

Part (b). To construct and calibrate a voltmeter to read from 0
to 1.5 volts.

Apparatus: Galvanometer (or milliammeter), a suitable low-resist-~
ance shunt (i.e., low-value resistance box will do nicely), a variable
high resistance or rheostat, standard ammeter (0 to 1.5 amps.), stand-
ard voltmeter (0 to 1.5 volts), 2-4-6 volt storage battery, about 15-
ohm rheostat to carry 1.5 amps., a 150-ohm rheostat.

Part (a). The apparatus is connected as shown in Figure 87.
The standard ammeter is shown at I and the home-made ammeter
to be calibrated by the apparatus, con-
sisting of resistances S, R’, and galva-
nometer G. All the apparatus connected
between A and B represents the home-
made ammeter. The variable rheostat
marked 11 Q is meant for varying the cur-
rent flowing through the main circuits.
Be sure to see that all the 11 ohms are
in the circuit to start with.

. Before depressing the key, or connect-
‘»—'i[l[l‘—mmn ing the battery into the circuit, have the
2or

11
Volts " instructor come to your desk and check
Fi1g. 87.— Calibration of

an ammeter your connections. The clips which con-

nect on the battery enable you to obtain
either two or four volts from the battery. Having made R’
and the rheostat (11 Q) as large as possible, close the key only
for an instant. Note whether the direction of deflection is correct.
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If the ammeter should read backwards, interchange the wires
leading to this instrument. The deflections should now be on the
scale of both instruments. The current can be varied by adjusting
the value of the 11 ohm rheostat. Use care in decreasing this
resistance, so that not more than 1.5 amperes pass through the
ammeter I.

Adjust next the value of R’ so that when the standard ammeter
reads 1.5 amperes, then the galvanometer reading will be a maxi-
mum also. Make this adjustment accurately. Now reduce the
current in the main circuit and take readings on both instruments
for about ten points on the scale (to do this you will have to work
out the main current value of a scale division on the galvanometer).
In taking these rcadings set the standard ammeter as exactly as
possible on a division line and read the galvanometer (estimating
to tenths of a division). Tabulate your results.

Part (b). The adjoining Figure 88 shows the connections.
Above the dotted line we have our home-made voltmeter, con-
sisting of galvanometer and a variable
high resistance B’. Be sure that R’ is
a very high resistance. We shall cali-
brate this voltmeter by comparison with
a standard voltmeter V. The 150 £ rheo-
stat serves as a’ potential divider (Fig. 95
in the next chapter). By varying the
position of the slider the potential differ-

ence applied to the two voltmeters can be D
varied from 0 to 2 volts, of which of i
course we will only need as much as 1.5

volts. Set the standard voltmeter ¥V on 1500

1.5 volts and adjust R’ so that G reads +
full scale. Calibrate as before for various R lom
points on the scale, tabulating your re- p . gs _ Calibration of a

sults. voltmeter.
QUESTIONS

(a). Draw correction curves for both the ammeter and voltmeter after
having found the deviation at each point. If the reading is too large, call
the deviation +, if too small, —. Then plot deviations (as ordinates) against
divisions on G as abscissae.

(b). Discuss these curves as to possible methods of correction.

(c). If the voltmeter V in Figure 88 were removed, would the home-made
voltmeter still give the same reading? Why?
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PROBLEMS
General
1. A current flows for five hours through a copper sulphate solution.
If, during this time, 300 coulombs have passed through the solution, what
was the average value of the current (1) in amperes, (2) in absolute electro-
magnetic units of current?

2. A resistance of 50 ohms has a current of 3 amperes flowing through it.
Find the potential difference across the terminals. How much e. m. f. would
be necessary to furnish this current if the battery has a resistance of 0.5 ohm?

3. If the current in the above problem also passed through a silver cou-
lometer, how much silver would be deposited in two hours?

4. How many calories of heat are produced in Problem 2 in two hours?

6. If a resistance of 50 ohms is connected across a 110-volt line, how much
heat will be gencrated in one hour?

Experiment 30

6. (1) Is there any thcoretical limit to the amount of current that can
be measured with a tangent galvanometer? Explain. (2) What are the
practical limitations of this method in measuring such large currents?

7. How many turns of wire are there in the coil of a tangent galvanometer
of radius 8 cm. if a current of 0.4 ampere gives a deflection of 45°in the earth’s
field of strength 0.2 gauss?

8. Find the value of the horizontal component of the earth’s magnetic
field, being given that a tangent galvanometer of 200 turns and an average
radius 10 cm. gives a deflection of 55°, when a current of 0.01 ampere flows
through the coil.

Experiment 31

9. A galvanometer of 500 ohms resistance has a current sensitivity of
2 X 107° amperes per mm. What is the megohm sensitivity? What is the
voltage sensitivity ?

10. A battery of e. m. f. 1.5 volts furnishes current to two resistances of
2 ohms and 16,000 ohms in series. Across the 2 ohm resistance is connected
a galvanometer of resistance 200 ohms. The deflection produced is 10 e¢m.
Calculate the current through the galvanometer and the current sensitivity.

11. A galvanometer has a resistance of 20 ohms, and requires a current of
40 milliamperes (0.01 amp.) to give full-scale deflection. What is the poten-
tial difference across the galvanometer when giving full-scale deflection ?

Experiment 32

12. The galvanometer of Problem 11 has a shunt connected across its
terminals. What must be the value of this shunt if the whole is to be used
as an ammeter for measuring a current of 50 amperes maximum value?

13. What resistance must be placed in series with the galvanometer of
Problem 11 so that now the instrument forms a voltmeter of range 0-50 volts?
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14. A galvanometer of resistance 50 ohms and sensitivity 10 amperes per
division deflection has a resistance R, connected in series with it. Across this
combination of galvanometer and resistance is connected a resistance of one
ohm. What must be the value of R so that the whole arrangement, forms an
ammeter of maximum range 1.5 amperes if there are fifteen divisions on the
scale?



CHAPTER XV

THE MEASUREMENT OF RESISTANCE

We have seen in the previous chapter that the constant which
gives the relationship between the current produced in a certain
circuit when an e. m. f. is applied is called its resistance. This
is usually expressed by the equation K = RI, which is referred
to as Ohm’s Law.

This law was extended by Kirchhoff to take into account the
continuity of the currents and the potential difference relations
in any kind of complex arrangement of conductors that may arise
in practice. These relations are put in the form of two laws,
known as Kurchhoff’s Laws.

Kirchhoff’s First Law: The algebraic sum of all the currents
meeting at a point is zero.

Karchhoff’s Second Law: In any closed circuit the algebraic sum
of the products of the current and resistance of each part of the
circuit is equal to the applied electro-

, motive force in that circuit.
As an example of the use of these two
L, s laws, consider a case which occurs often

Fia. 89.—Currents flowing i, practical work. Let us find the cur-
through resistances connected
in parallel. rent through one branch when two re-

sistances are connected in parallel into
a circuit having a current flowing in it.

This casc is shown in Figure 89.

Call the currents flowing into a point +, and the currents flowing
out —. Then for the point A we have (using the first law)

+I1-I1I,—-1,=0
or

1) ' I=1+1I.

Now use the second law and apply it to the closed circuit ASBR.

There is no applied e. m. f. in this circuit. Let us go around the
154



THE MEASUREMENT OF RESISTANCE 155

circuit in an anti-clockwise direction, starting at B. Then the

second law gives
+ RI, — 81,

and hence I, =

0,
SI,
r

Substituting this value of I, in (1), we get

1-1(1 +§ - (" + S),
or finally, P
@) L. = (R +5/)

This result is used so often that it is well to remember it as
follows: When a current enters two branches connected tn parallel,
the current through one branch (say S) equals the main current (I)
multiplied by the resistance of the other branch (R) and divided by
the total resistance of both branches (R + S).

These two laws of Kirchhoff are very general laws and enable
us to solve practically any case that may arise. A very frequent
application consists in finding the current in a branch of a com-
plicated network of wires when a certain e. m. f. is applied to the
network. Suppose we have a simple circuit with several resist-
ances, say R, I, Rs, etc., in series. Then by use of these laws
we can show that as far as the current is concerned these resistances
behave as if we had a resistance in the circuit of value R, where
R equals R, + R, 4+ R3, etc. When these resistances are con-
nected in parallel, then it can be shown that the equivalent resist-
ance R has a value such that

1
R RITF + +

EXPERIMENT 33
CURRENT FLOW IN NETWORKS

To analyze the currents and voltages existing in a complex network of
resistances and to find the values of these resistances by the voltmeter-
ammeter method.

Apparatus: A source of supply (for example, 110 volts D. C.); a
board on which are mounted the resistances as shown in Figure 90
(screw sockets with Ward Leonard mounted resistances to screw into
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these sockets will do nicely); sockets for insertion of plugs (“ parallel
prong "’ and ‘“ polarized ’’ prong types); single throw, single-pole
knife switches; a plug and cord to fit parallel-prong type socket; a
plug and cord to fit ““ polarized ”” type socket; ammeter (0-1.5 amps.
range); voltmeter (0-150 volts).

[Note. The resistances are chosen here so that a 110-volt line
can be used in conjunction with an ammeter of range 0-1.5 amps.
With suitable resistance changes, a 6-volt battery can be used with

the same ammeter and a volt-
meter reading from 0 to 6 volts.]

Amm. Plug Before connecting the net-
@300000000000@ work to the 110-volt Iine, be
Volt. Plug sure to analyze and check up

the conncctions in the wiring.
A S

Draw a schematic diagram of
'@ the circuit as arranged on the
) F! b board and mark on your dia-

a1

b

g

]

gram the values of the resist-
ances if they are given. Note
the sockets a, b, ete., are con-

é ¢ nected across the resistances
J @:C and are hence meant for meas-
Na uring the potential drops across

D
].__.@d_.[ @ these resistances by means of
s avoltmeter. Therefore be sure
N to see that the proper plug
e 4 is connected to the voltmeter.
[—@_" ﬁ This should be the plug which
2 7) has the two prongs parallel, one
?{17 under the other. The other
Volts plug in which the prongs are at

F1a. 90. — Network of resistances. right angles to each other is

the one that is connected to the ammeter. Note that the sockets
into which the ammeter plug fits are connected across knife
switches. Opening up a knife switch allows the rarrent to flow
through the ammeter.

Before applying the voltage have your apparatus checked by
the instructor. In your report tabulate all your readings, having
read them as accurately as you can estimate them on the instru-
ments. This experiment is a test of the accuracy and judgment
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that you are capable of exercising in reading a pointer-type instru-
ment. The following tests are to be carried out :

1. Measure the potential drops across a, b, ¢, d, ¢, f, g. Use
the 150-volt scale (z.c., binding posts marked + and 150).

2. Measure the currents at the various points A, B, C, D, E, F.

Calculate from your data the following:

1. The values of the various resistances (using Ohm’s law,
neglect the effect of the voltmeter and ammeter resistances —
see next scction on measurement of resistance).

2. Choose three points and show that Kirchhoff’s first law is
satisfied. (Give experimental error.)

3. Choose two closed circuits and from the above rcadings show
that Kirchhoff’s second law is satisfied. (Again calculate your
experimental error.)

4. Having found from (1) the values of all the resistances,
calculate the resistance of the whole circuit. (Do this by taking
the various branches part by part and combining their resistances
in proper fashion until the whole circuit has been replaced by a
single resistance.)

5. Knowing the voltage applied to the circuit and the total
resistance, calculate the current and compare with current as
read at E.

QUESTIONS

(a). What effect does the resistance of the ammeter have in the various
branches? How could you make correction for its effect and still calculate
the unknown resistance ?

(b). What is the similar effect and correetion neccssary in using the volt«
meter ?

(c). Do your experimental results check Kirchhoff’s two laws within what
you estimate to be the experimental error? If not, what explanation do you
have?

MEeTHODS USED IN THE MEASUREMENT OF RESISTANCE

In practical work, current and potential differences are usually
measured directly with instruments made for the purpose. These
instruments, we have seen, are called voltmeters and ammeters
and their indications give us the result directly. For most com-
mercial work these readings have the necessary accuracy. Other
and even more complicated methods must be resorted to if the
accuracy so obtained is not sufficient.
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The measurement of resistance, however, is not quite so simple
and direct. We shall discuss here only the measurement of re-
sistances of such magnitude as are commonly found in practice.

These values might range from 0.01 ohm to 100,000 ohms. For
values beyond these two limits, that is, larger than 100,000 ohms
and less than 0.01 ohm, the accurate methods are considerably
more complicated, require an exceptional amount of skill, and, in the
case of extremely high resistances, require a technique all their own.

The simplest way o measuring a resistance is the volt-ammeter
method. The principle of the method consists simply in measuring
the current through the resistance, and the potential difference
existing at the terminals. Then applying Ohm’s law in the form:

R = % we find the resistance. The difficulty comes when we
measure E and I. Using a voltmeter, as in Figure 91 (a), we note
that the voltmeter reads the P. D. across R, but the ammeter reads

r o the current through both R and V. We

want the current only through 2. How-

o (a) ever, the current through ¥V in Figure

91 (a) becomes relatively less important

B the larger the resistance of V relatiye to R.
_’——MNWWO_@'— Hence, assuming we are given a volt-

meter V having a fixed resistance (say
—@—__—(—b) 100 ohms per volt), the smaller the value
Fra. 91. — Volt-ammeter of I the more accurate our result will be.
method of measuring resist-  Jf we connect the voltmeter and
anee. ammeter as shown in Figure 91 (b),
we find that the ammeter reads the correct current through R,
but the voltmeter now measures the potential difference, not only
across R, but across A also. In this case, therefore, the smaller
the potential drop across the ammeter A relative to the P. D.
across I, the more accurate our result. Hence R should have a
relatively high value compared to the resistance of the ammeter.
Usually of course the ammeter has a fixed resistance of fairly low
value (say 0.01 or less), and hence the method is quite accurate
for resistances from 10 ohms up.
It can be shown! that the dividing line between methods (a)
or (b) occurs at a value R =V R,R,, where R, = resistance of the
voltmeter and R, = resistance of ammeter. Hence for resistances

1 A. W. Smith, Electrical Measurements, page 15.



THE MEASUREMENT OF RESISTANCE 159

less than this value, use the method shown in Figure 91 (a), and for
resistances larger than this, the method of Figure 91 (b). With
caution, therefore, the volt-ammeter method can be made to give
fairly accurate results. Its main advantage of course is itssimplicity.

The Wheatstone bridge. The method used for all accurate
measurement of the resistance, in the range under discussion, is
the Wheatstone bridge method. The method finds its application
in various forms of apparatus having entirely different appearances.
The principle of the balanced Wheatstone bridge network, however,
can be traced in each one. Consider the arrangement of resistances
as shown in Figure 92. The current entering at a splits into
two parts, one part going along ad and
the other along ab. The branch db is
connected to the circuit at d and b.
If a current is to flow through db, then
there must exist a potential difference
between d and b, because a current does
not flow unless a potential difference
exists. If, then, we say that there is
no current flowing between d and b (a
fact' which we can easily dctermi.ne by Fic. 92. — Wheatstone bridge
noting whether the galvanometer in this network.
circuit shows deflcetion), we can reason
conversely and say that no potential difference exists between the
points d and b. This does not mean that the potentials of the
points d and b are zero — they will not be — it simply means that
they are the same.

Consider then the two paths for the main battery current, viz.,
adc and abc. The potential of a is common to both, and we have
seen that b and d have the same potential, hence the potential
drop from a to d must equal the potential drop from a to b. Hence,

(3) R,;Il = R]IZ.
And similarly,
(4) . R:Jx = RzIz-

This, of course, is only true if no current flows from d to b or,
in other words, if the bridge is balanced. Eliminating I, and I,
from equations (3) and (4), we get,

R, _ Ry,

Ry, Rs
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Now if we had one resistance unknown (say X = X), and knew
the other three values, then we could find the unknown X by the

relation B, = X = R, (%)

Usually the battery and galvanometer are interchangeable in
their relative positions, but if the values of the resistances are
very different, say R, and R4 very large, and R» and K; very
small, then the galvanometer should be connected between the
points joining the two higher and the two lower resistances.

Only two common forms of apparatus will be described, although
the student should from this description be able to use any other
form, the similarity in their use being extremely close.

The slide wire bridge (meter bridge). Issentially this form
consists of a uniform wire exactly one meter in length stretched
along or above a meter rule. The

il L A ~ends of this wire are soldered to
l heavy copper or brass pieces shown
shaded in the diagram of Figure 93.

A slider which can make contact
on the wire is so arranged that its
a position can be read on the scale.
The two parts of the wire form two
arms of the bridge. The other two
resistances are inserted by means of binding posts at R;and R,. By
tracing through the remaining connections, the student will see the
exact analogy between this and the Wheatstone bridge. The stu-
dent should do this so as to be able to write down the conditions for
the balance. In using such a bridge, the unknown is inserted at,
say R4 a variabe standard resistance box being connected in
at R;. Balance is then obtained by moving the slider until the
galvanometer reads zero. Then assuming that the wire has
constant resistance per unit length,

Fia. 93. — Slide wire bridge.

Ry=X = R;,(%): RSZ-;,

where I, and [, are the distances between slider and the two ends
of the wire.

Although this form of apparatus is very simple to understand
and use, there are several possibilities of a considerable error being
introduced when accuracy is required. First, we have neglected
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the effects of the end pieces to which the wire has been soldered.
These should be included in the balance condition. The bar-
resistance from d to K3 and R, has also been neglected. Further,
the wires may not be soldered exactly at the 0 and 100 division
marks on the scale. (This is very difficult to accomplish in
practice.)

A good way Lo overcome or minimize these errors is to proceed
as follows: Place the unknown at the R, position and at Rj
insert a standard variable resistance box. Make a guess at the
value of the unknown resistance and put that value which you
have guessed into the standard resistance R;. Move the slider
near one end of the wire. Depress first the key in the battery
circuit and while this key is down make the contact with the wire
only for a short time — just long enough to sec which way the
galvanometer is going to swing. Next move the slider to the other
end, and if the connections are correct, the galvanometer should
now deflect in the opposite direction. If it does not, check up
your connection. Now move the slider along until the deflection
is neither one way nor the other. From the readings on the scale,
calculate approximately the value of the unknown. Unless your
guess has been very good, the chances are that the balance point
is not near the center (i.e., the 50 cm. mark). Having calculated
the approximate value of the unknown, change the value of the
resistance standard (R;) so as to have approximately this value,
and repeat, finding the balance point, this time very exactly. It
should now be somewhere near the middle of the wire. Next,
leaving the leads unchanged, interchange the positions of R; and
the unknown resistance, being careful not to change the value of
R;, and find the balance point again as accurately as you can.
Then it ean be shown quite easily that if I, and I’ are the readings
(in cm.) on the scale for the direct and reversed positions, then

Rior X _ 1000 + (I, — ')
R, 100.0 — (I, — Uy)

This procedure, although a little longer, eliminates many of the
errors that arise on account of contacts and corrections. This
method, however, is only effective if the balance points are arranged
to be near the center of the wire.

Another error which is likely to creep in is found in the fact that
the wire may not have been uniform originally, or else may have
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lost its uniformity by improper use. The only possible remedy is
to replace the wire or else calibrate it. The method for doing this
is beyond the scope of this book. The student should take special
precautions not to spoil the uniformity of the wire by depressing
the key too hard on the wire and producing kinks, which of course
will ruin the wire as far as accurate results are concerned.

RESISTIVITY OR SPECIFIC RESISTANCE

The property of a substance to conduct electricity is called the
electrical conductivity. When designing electrical instruments and
apparatus, it is essential that the designer have an accurate and
complete knowledge of the conductivity of the various materials
at his command. In all this work the property or quantity to
which reference is made is the so-called resistivity or specific re-
sistance.

This quantity is arrived at by the following considerations:
It is found experimentally that if the temperature of a substance
is kept constant, then the resistance of a piece of the material
depends upon its dimensions. The dimensions which affect the
resistance arc the length and cross-sectional area. We find, for
example, that the resistance varies directly with the length of the
specimen and inversely as the cross-sectional area.

l

R ot

Hence, o T
L
or R = P

where p is the proportionality constant which takes into account
the kind of the material ; p is called the resistivity of the substance

and 1 s called the conductivity.

p

[Note that p = R, if A =1 and [ = 1, which means that the
specific resistance (resistivity) is numecrically equal to the resistance
of a conductor 1 cm. in length and 1 sq. em. in cross-sectional
area.]

A measurement of p, as we see from the above equation, involves
a measurement of the total resistance (in ohms) of the sample,
the length (in em.) and the cross-sectional area (in sq. cm.).

Thus far we have assumed that the current has the same density
per sq. em. over the cross-sectional area, or, in other words, is
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uniform. In alternating currents this assumption is not valid,
the current density becoming more non-uniform as the frequency
becomes higher.

DEPENDENCE OF RESISTANCE ON TEMPERATURE

Since the electrical conductivity, and consequently the resistance,
vary with temperature (usually increasing with the temperature),
one of the important quantitics in elec-
trical measurements is the temperature )2
coefficient of resistance. In most cases if
the resistance is plotted for corresponding
temperatures and a graph drawn (Fig. 94), B
a smooth curve will be found to result
which is not far from a straight line, .
especially in the useful range of tempera- oL
tures. ) o T

In order to distinguish between the eC.
different behavior of materials in regard ¥e. 94.— Variation of re-
to this change in resistance we specify the sistance with temperature,
temperature coefficient of resistance (o) which is defined by the
relation,

R,

Ro(1 + af),
where
R: = Resistance at t° C.
Ro = Resistance at 0° C.
t = Change in temperature from 0° C. to ¢° C.

Determining experimentally the values for R: Ro, and ¢, we can
solve for a.

Should we not be able to find the value of the resistance at 0° C.,
we can still find the constant «, knowing the values of the resist-
ances at two other temperatures ¢, and ¢, as follows:

) for temperature ¢, we have R, = Ro(1 + o),
(6) for temperature ¢, we have R, = Ro(l + ats).
Dividing equation (5) by (6), we have
Ry _1+at
R: 1+ at
whence o=-T2= By

Rit: — Raty
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RESISTANCE STANDARDS

In the case of resistance standards, where permanence and
aceuracy are paramount, great precaution must be exercised to see
that the principles to be mentioned are carcfully considered and
taken into account.

It is important that the resistances used have a small tempera-
ture effect, 7.c., the temperature coefficient of resistance be very
small. The resistance wire used should also have a high resistivity
or specific resistance so as to economize in bulk and cost.

It is found that various alloys of copper-nickel, ete., can be
made to have high resistivity. It has been a difficult matter,
however, to find alloys which have at the same time a low tem-
perature coefficient. For example, German silver, which is an
alloy of copper, zinc, and nickel, has high resistivity but an objec-
tionable high temperature coefficient. The most satisfactory
material at present for use in the construction of resistance stand-
ards is manganin, an alloy of copper, nickel, and manganese. This
material has a very low temperature coeflicient and high resistiv-
ity. It has, however, another very important property which
has not been mentioned before —its thermo-electric e. m. f.
between it and copper or brass is very small. When we connect
in a resistance box with binding posts into a circuit, we do not wish
to introduce bothersome thermal electromotive forees which would
have to be allowed for. On account of this, such materials as
German silver and constantan are not desirable for use in elec-
trical measuring circuits.

Finally, great care and ingenuity must be exercised in the
mounting of resistances. The calibration should be permanent.
Temperature must not distort the forms on which the wires are
wound so as to strain the material. Humidity and dust should
not affect the insulation between coils, and, in the case of highest
precision, provision must be made to keep the coils at a constant
known temperature.

The student is referred to other more advanced texts on electrical
measurements ! for a detailed description of the methods used in
mounting resistance coils. The methods used in varying the
resistances arc of two types: plug or dial. In the use of such
resistance standards the student should not employ brute force

1See F. A. Laws, Electrical Measurements.



THE MEASUREMENT OF RESISTANCE 165

on the plugs or dials. Insert or remove plugs with & slight twisting
motion, pressing down gently while so doing.

CUrRrRENT LiMITING RHEOSTATS

In very many cases it is necessary to vary and control a current.
The nature of the variation required determines the type of
resistance to choose for the purpose. As long as the resistance
produces the required variations, we are not interested in its
actual value. For this purpose it is unnecessary to use a carefully
calibrated variable standard. Resistances designed for this pur-
pose are called rheostats.

In general we can divide rheostats into two classes: slide wire
types and carbon compression types. The first kind is used when
the range of variation is to be large and, for practical purposes, it
is satisfactory if the resistance change occurs in very small jumps.
Slide wire rheostats are used nowadays almost exclusively. When
large amounts of current have to be controlled and finer continuous
adjustment is necessary, a carbon rheostat is used. The resistance
change can be made practically infinitesimal by changing the
pressure on “he blocks slightly.

A word of caution should be given here to the student on the
use of rheostats, especially when used in power supply lines for
controlling current. The resistance and carrying capacity of the
rheostat are usually marked on it and should always be known.
The voltage being known on which the rheostat is to be used,
divide this by the resistance of the rheostat, and so calculate the
minimum current that will be produced when the rheostat is
connected on this voltage. The current so found should always
be well within the current-carrying
capacity as marked on the rheostat. !
Most of the variable rheostats have {"W'B
connections as shown in Figure 95. i <
Having three binding posts and a '
slider enables the rheostat to be used
as a potential divider (very commonly but erroneously called a
potentiometer). When the instrument is connected into a circuit
at A and C only, we have a variable rheostat. When connected
to a source of potential as shown by the dotted lines, then be-
tween A and C we have a variable potential difference, variable
from zero to the full potential difference of the battery.

; <
i 1000 .~ f amps.
F1c. 95.—Rheostat.
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EXPERIMENT 34

MEASUREMENT OF RESISTANCE WITH A SLIDE WIRE
BRIDGE

Part (a). To measure several resistances with a slide wire bridge.

Part (b). To check as accurately as possible the laws of combination
of reststances.

Part (c). To measure the reststance of a galvanometer.

Apparatus: A slide wire meter bridge, a standard plug or dial resist-
ance box, galvanometer of medium sensitivity, a good dry cell, a
single contact key, fairly heavy cotton-covered copper wire for con-
nections, a high resistance rheostat.

Part (a). Connect up the slide wire bridge as shown in Figure
93, putting in one of the unknowns at R, Find first the value of
the unknown by the simple relation 2y = X = R; %1

2
trials by changing the valuc of R; slightly. Record all data in
tabular form and find the average value of X together with its per
cent of error. The final setting should be somewhere near the
center of the slide wire. Measure in the same way all the other
unknown resistances.

Next repeat the measurement using the direct and reversing
method outlined above and obtain again several trials by changing
R; slightly. For each valued R; calculate X and find the average
value of X together with the per cent of error. Do the same for
the other resistances given. Record all data and put it in tabular
form. Label your data carefully so as not to get the ratio upside
down when interchanging R; and X.

Part (b). Connect the resistances that you have measured, and
measure in series by the simple method the resistance of the
combination. Find the total resistance by calculation from
Part (a) and also the per cent of error between calculated and
experimental value. Repeat for the parallel connection. Com-
pare the errors found in the calculated and experimental result.

Part (c). By means of a slight modification of the Wheatstone
bridge the slide wire bridge can be used to measure the resistance
of a galvanometer. The connections are as shown in Figure 96.
A second galvanometer is not necessary to tell when a balance is
obtained.

Note that in this case a high resistance (H. R.) is put in the

Make several
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battery circuit. Since a current is flowing through the galvanom-
eter all the time, even when a balance is obtained, the value of
H. R. should be kept such as to G Rs

limit the current through the gal-
vanometer @ to a safe value. Bal-
ance is shown by the fact that when
the key K is depressed, no change
is observed in the deflection of the 1 = R
galvanometer (k;, of course, being | X, —
closed first). The procedure in Fie. 96.— Measurcment of gal-
obtaining a balance is the same as vanometer resistance.
before. Obtain other settings by changing the value of I3 (still
keeping balance point near the center of slide wire). Calculate
the galvanometér resistance by the ordinary Wheatstone bridge
formula. Average all values and so obtain value of the galvan-
ometer resistance and the experimental error. Tabulate all your
results.

Ry Ky Ry

QUESTIONS

(a). Do your results show that the method of interchanging X and Rs
gives better results for the value of the unknown?

(b). In Part (b) is the error as calculated from the single resistances the
same as the error as found for the combination measurement ?

(c). Approximately what was the accuracy of setting of the slider on the
wire (i.e., how much movement could occur before a change would be noticed
on the galvanometer) ?

(d). Explain why the Wheatstone bridge formula holds in Part (¢). What
is the difference between this and an ordinary bridge?

EXPERIMENT 356
TEMPERATURE COEFFICIENT
To determine the temperature coefficient of resistance of copper wire.

Apparatus: Temperature coeflicient apparatus, thermometer,
Wheatstone bridge, burner.

As can be seen in Figure 97, the apparatus consists of a coil of
wire which can be immersed in a beaker of oil, preferably an oil
which is not inflammable (olive oil will do very well). This
beaker and coil is surrounded by another outer water jacket, the
temperature of which can be raised or lowered by heating the
water.

The resistance is found by means of a dial Wheatstone bridge.
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In using such a bridge the student should first study the apparatus
carefully, making frequent reference to the circuit as explained
in Figure 92. In this figure it will be seen
that two keys are needed: a key in the
battery circuit, and a key in the galvanom-
eter circuit. On the dial bridge these keys
[ are mounted and marked, BA(ttery), and
G A(lvanometer). Always close the battery
key before depressing the galvanometer key.
The latter key should be closed last, and
then only for an instant, to show the direction
of deflection.

Water In the theory of the Wheatstone bridge

Fig. 97. — Tempera- it was shown that when a balance occurs,
ture coefficient of resist-

ance apparatus. R4 = Ra(%) Now in order to find R4, it
2

|Stirrer

is only necessary to know the value of R; and the ratio between
R, and R, apd not the actual values of K, and R,. Hence in
most assembled bridge networks, provision is made to determine
and vary their ratio, rather than their actual resistances. A dial
is provided which performs this known ratio variation (marked
1,000, 100, 10, 1, 0.1, 0.01, 0.001). The remaining dials form the
variable resistance I2;, which is variable in steps of units, tens,
hundreds, and thousands.

When the experiment is in progress, there is no time to spare,
and measurements of the resistance have to be taken quickly and
accurately. Having become familiar with the parts of the bridge,
the student should next practice the following procedure and
manipulation. The galvanometer should be connected to the
binding posts marked (A (Ivanometer). The battery (a dry cell)
is connected to the proper terminals, and the resistance to be tested
at the binding posts marked X.

Since the student usually has no idea of the value of the resistance
under test, it is first necessary to find the approximate value of X.
Set the ratio dial on the ratio marked 1. Put a large value in
R (say 5,000) and note the direction of galvanometer swing when
the galvanometer key is depressed momentarily. Then put in a
small value (say 1 ohm) and again note deflection. If the deflec-
tion is in the other direction, then we can say that X lies between
these two values (1 ohm and 5,000 ohms). Now by changing
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Rs, narrow down the limits until you have a fair idea of the approx-
imate value of X (say between 8 and 9 ohms). Since the resistance
is to be measured as accurately as possible, it is necessary to use
all four dials (¢.e., measure to four significant figures) if this be
possible. In the case mentioned, the value of I3 would be made
8,000 and the ratio 0.001, because X = 8,000 X 0.001 = 8 ohms
approximately. Then by using the hundreds, tens, and units dial,
the balance can be found accurately (interpolating the last figure
if necessary). Suppose the value of R; so found is 8,235. The
value of X will consequently be 8,235 X 0.001 = 8.235 ohms.
Always remember to arrange your ratio such that R; can be made
as high as possible. This means a greater number of significant
figures and greater accuracy.

Having becéme familiar with the method of measuring a resist-
ance, the student should now be ready to start his experiment.
Stir the oil well by means of the stirrer provided so as to be sure of
a uniform temperature throughout. The first measurement of
the resistance should be made at room temperature. Close watch
should be kept on the thermometer to see whether the temperature
is settling down and becoming steady. Never take a reading
while the temperature is changing rapidly or the apparatus is being
heated up to another temperature. Control the heat supplied by
the flame until the temperature has settled down about 9 or 10
degrees higher. When the thermometer shows that the tempera-
ture is almost steady, then be prepared to measure the resistance
and record the temperature and resistance exactly when a balance
is obtained. Then raise through another 9 or 10 degrees and so
take readings up to the boiling point of the water. [Note. If the
student has become familiar and expert at measuring the resistance,
the variations in temperature of the oil and coil can be followed
much more closely by observing the change in resistance by the
drift of the galvanometer. When the drift is very small or zero,
then the temperature is practically constant. A thermometer
has a very appreciable lag which should always be considered.]
Tabulate all results, showing values for R;, ratio %—‘, temperature

2
and the calculated value of X.

If time permits, take measurements on cooling. Plot results
on graph paper as described in the section on temperature coeffi-
cient of resistance. In doing this, do not join the plotted points,
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but draw the best straight line representing the data and make
your calculations from this line. Check your result with the value
given in a book of tables.

QUESTIONS

(a). Why not join individual points and call this the graph of the resistance
versus temperature ?

(b). Calculate from your results on your curve the value of Ro (the resistance
at 0° C.).

(c). Estimate the accuracy of your resistance measurement.

(d). Estimate the accuracy of your temperature measurement.

(e). Estimate the accuracy of your calculated a.

(f). Would you expect points on the curve for heating to fall on the same
curve as for cooling? Give reasons for your answer.

EXPERIMENT 36

THE SPECIFIC RESISTANCE OF MATERIALS IN THE FORM
OF WIRES

The use of a dial Wheatstone bridge for measuring a fairly low
reststance such as occurs in finding the resvstivity of materials.

Apparatus: Dial form of Wheatstone bridge, dry cell (1% volts),
galvanometer, known length of wire mounted on a board with three
mercury cups.

In finding the specific resistance of a substance, we have seen
that three measurements are necessary: total resistance, length,
and cross-sectional area. Of these, the most difficult to measure

with acecuracy are the cross-sectional

[\ area and the resistance. Inorder that
PSS I the non-uniformity of the wire is rel-
T 590 £ E atively small and also to aid in
! measuring the cross-section, it is pref-
1000 100 erable to have the diameter of the
OO wire as large as possible. This means,

10, 41 .
* . . however, that for a given length the
Fia. 98. — Specific resistance ist i1l b 1 d ¢
apparatus. resistance will be very low and grea

precautions must be taken in meas-

uring such a low resistance accurately. Contact resistances must

be reduced to a minimum and even the values of the lead resist-
ances should be known.

In the above form of apparatus (Fig. 98), contacts are made in

mercury cups because this gives a uniform and low contact resist~
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ance. Thermal e. m.{.’s are to a great extent eliminated. The
procedure in finding the resistance of the wire of known length is
to connect by a copper strap cups 2 and 3 and measure the resist-
ance (say R.). This includes the unknown resistance plus leads,
etc. Then take out the strap between 2 and 3 and place it in
1 and 3, thus omitting the long wire. Measure this resistance
(say Rr). Then the required resistance is B, — Rp.

When measuring the resistances the same method should be
followed in finding a balance as in Experiment 35 (refer to the
experiment for details in manipulating the dial bridge). Measure,
in several places if possible, the diameter of the wire by means of
a micrometer screw (calculating the error). Obtain the length
of the wire and calculate the resistivity. Tabulate all data and
compare your results with tables.

Leave the mercury-coated copper strap in the mercury cups
when the apparatus is not in use.

QUESTIONS

(a). Compare the errors in the various measurements that you had to
make in finding p.

(b). Explain fully why p is the same for all sizes or dimensions of wire made
of the same material.

(c). What would be the effect of change of temperature on p?

Experiment 33 PROBLEMS

1. A battery has an internal resistance of 0.05 ohm and an electro-
motive force (i.e., the potential difference between the terminals when no
current is drawn from the battery) of 1.45 volts. A radio tube operating on
1.1 volts and requiring a current of 0.25 amp. is to be operated with this
battery. How much resistance must be put in the circuit (usually done with
a so-called rheostat) so that the tube will just be operating under the required
condition? What is the resistance of the radio tube?

2. Given two parallel circuits as shown in Figure 99. Calculate the
current through each branch, using first Kirchhoff’s laws and secondly the
rule as given in this chapter for two parallel circuits. Calculate also the total
resistance.

|
12 Amps.
| - SRR
| ULy
Fia. 99. Fia. 100.

8. In the network shown in Figure 100, calculate the total resistance and
also the current which the battery has to furnish.
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4. Apply Kirchhoff’s laws to Figure 101 and find the current flowing
through each 7-ohm resistance.

6. Calculate the total resistance of the circuit
shown in Figure 100.

Experiment 34
III'— 6. Write down the similarities between the slide

Vel ire bridge and the Wheatstone bridge. State all
the errors that come into a slide wire bridge meas-

urement and give methods of overcoming some of these.

7. How much resistance would have to be placed in parallel with two
parallel resistances of 80 ohms and 60 ohms, so that the total resistance be

30 ohms?

Fic. 101.

Experiment 36

8. Calculate the resistance of a coil of copper wire at 90° C. which has
a resistance of 20 ohms at 0° C. (Look up temperature coefficient of resistance
of copper in a handbook.)

9. Given that a certain wire has a resistance of 200 ohms at 20° C. and
208 ohme at 65° C., find the temperature coeflicient of resistance.

10. Define or explain the meaning of the term ‘temperature coefficient
of resistance.” What is the importance of a knowledge of this constant from
a practical standpoint ?

11. From the discussion in this chapter on the change of resistance with
temperature, does a method suggest itself to you for measuring temperatures ?

Experiment 36
12. Calculate the resistance of 40 miles of number 20 B and S gauge copper
wire (look up size of this wire and resistivity in a book of tables).



CHAPTER XVI

THE MEASUREMENT OF POTENTIAL DIFFERENCE BY
THE POTENTIOMETER METHOD

We have seen in a previous chapter (page 149) that a voltmeter
will measure the potential difference across its terminals. As a
matter of fact this formed a very quick and convenient way of
performing the measurement. This method, however, has two
drawbacks which in many types of measurement preclude this
method of measuring potential difference. These two are, first,
very limited accuracy, and secondly, the fact that the insertion
of the voltmeter changes the conditions in the original circuit (as
to current and potential difference) so that it is not possible by
this method to measure the original potential difference.

In such cases, where a voltmeter cannot be used, and in cases
when great accuracy is needed, especially in the case of thermo-
couple e. m. f.’s, the potentiometer will give excellent results.

The potentiometer uses essentially a null method tn tts measure-
ment of potential differences, meaning by this that when a balance
obtains, the instrument gives its reading, and no current is drawn
Srom the source of potential difference to be measured. Hence the
instrument measures the original potential difference.

In practical work, for example in power stations, the temperature
is measured by having a thermocouple in the furnace connected
by leads to the switchboard in front VR E
of the operator. The e. m. f.’s pro- ——AWVWWW +|..|;||[|____

duced are measured with a milli- {7 4 ¢ B
voltmeter, or a potentiometer when 2 C, °
greater accuracy is needed. In

many cases a continuous record of £hh= g

the temperature is kept on a record-
ing instrument which does the bal-
ancing of the potentiometer, and recording of the e. m. f. or tem-
perature automatically.
The thecory underlying the operation of a potentiometer can
be studied by reference to Figure 102. This figure represents,
173

Fia. 102. — Potentiometer circuit.
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schematically, the wiring of a simple potentiometer. A main
battery E furnishes the source of e. m. f. for the current I which
flows through a variable resistance V.R. and a uniform slide wire
AB. The current I can be varied by changing V.R.

Now when a current flows through the slide wire from A to B
a potential drop will exist from A to B (let us say about 2 volts).
From A to the middle of AB, ©.e., about C,, the potential difference
(drop) will be just one-half the value from AB (hence about 1 volt).
Let us next connect in at A another cell, ¢, so that the positive pole
of the battery e is connected to A. In series with this cell we place
a galvanometer G and then connect this end to the contact maker
or the slider. Suppose the contact, however, is not yet made,
1.e., C'; is not yet connected to a point C» on the slide wire. Now
if the cell, ¢, has an e. m. f. of 1 volt, then of course the potential
drop from A to C, even before making the contact between C, and
C,, must be 1 volt. But we have seen that when the current I
flows in the main circuit, the potential drop from A to C; is 1 volt,
hence if the drop from A to C,, and from A to C.—in each case
1 volt — and the potential A is common to both circuits, then C,
and C; must have the same potential even before the contact is
made. Now since no current existed in the circuit from A to C,
(i.e., through the galvanometer circuit) before making the C,C.
contact, no cufrent will flow after making the contact because
C, and C; had the same potential. If we had made contact at
some other point on the wire, then the potentials at the point of
contact would not have been the same and a current would have
passed through the galvanometer, in one direction when C, is to
the left of Cy, and in the other direction when C, is to the right of C..

Making use of this principle, suppose the slide wire, which we
shall assume to be a meter in length and marked off in milli-
meters, had across it a known potential difference of 2 volts, and
suppose that the battery e had an e. m.f. that was unknown.
Then in order to find the unknown e. m. f., the procedure would
be to move the slider along the wire until the point on the wire is
found at which C; and C, have the same potential, which fact, of
course, will be manifested by zero deflection of the galvanometer.
Suppose that the reading on the scale was 37.6 cm. The e. m. f.

therefore of the cell, e, will be 31%65 X 2 volts = 0.750 volt.  Using

this method, then, we see that it becomes possible to calibrate the
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potentiometer to ke direct-reading. In actual practice a means is
always provided on the instrument for making this adjustment.

The next question that naturally suggests itself is: How did we
know what the fall of potential across the slide wire originally was?
This leads us up to the question of the use of standard cells.

A standard cell, as the name suggests, is a source specially
designed to give a very steady and constant e. m. f. The develop-
ment of such a cell has required years of experimental research
with only the purest of chemicals. As a result, however, of this
intensive study, using certain prescribed chemicals and standard
methods of preparation, it is now possible to write down what the
e. m. f. will be, for a given temperature, to approximately 1 part
in 100,000.

For a Weston normal cell the e. m. f. at a temperature ¢° C. is
given by :

E. = 1.01830 — 0.0000406(t — 20° C.) — 0.00000095(t — 20° C.)
+ 0.00000001(t — 20° C.).

Such a cell has for its electrodes mercury and cadmium, the
solution being mercurous sulphate. The student should refer to
his textbook for a detailed description of standard cells.

Other standard cells have been constructed, two of which are
known as the Eppley cell and the Weston unsaturated cell. They
differ from the normal cell described above in that they have an
e. m. f. which is not quite as reproducible, when constructed over
and over again, but they have the advantage that their e. m. f.
does not vary considerably with change in temperature, as is the
case with the normal cell. They are usually calibrated, after
being constructed, by comparison with a Weston normal cell and
then used with this calibration.

As with all chemical sources of e. m. f., standard cells have the
disadvantage that they polarize. However, if small currents are
drawn from the cells, the polarization is negligible, and even if it
should occur, the cell will, when allowed to stand, rectify itself
again. Remember any appreciable current drawn from the stand-
ard cell will ruin its use as a standard source of ¢. m.f. Never
use a standard cell to furnish current. Even connecting a voltmeter
across a standard cell will spoil ut, the current used by the voltmeter
being too large. No current larger than 0.0001 ampere should
ever be drawn from the cell, and even then only for an instant.
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The importance of having only very small currents go through
the standard cell is taken care of in a potentiometer, by having a
number of high resistances which can be placed in series with the
standard cell in the galvanometer circuit. When one has no idea
as to where the balance point occurs on the wire, a very high
resistance is put into the standard cell circuit so that if the two
potential drops are not the same, and the standard cell tends to
furnish current, then this current will be cut down to a very small
value on account of this high resistance. As the balance point is
approached, the resistance can be cut out, but not before.

EXPERIMENT 37
THE POTENTIOMETER

Part (a). Method of calibration by the use of a standard cell.
Part (b). Measurement of the e. m. f. of several cells.
Part (c). To measure the internal resistance of a cell.

Apparatus: Slide wire mounted along a meter rule with the neces-
sary binding posts, variable rheostat (V. R. say 15 ohms), a 4 or 6 volt
storage battery, double-pole double-throw switch, single-pole knife
switch, single-pole double-throw switch, a fixed high resistance (say
1000 ohms), a galvanometer (portable type is satisfactory), standard
cell ¢ (standardized by the instructor by comparison with a Weston
or Eppley cell), Daniell cell, a variable resistance box p (total, 1000
ohms), several cells of various types and ages.

The purpose underlying this experiment is to acquaint the
student with the technique used in standard cell and potentiometer
methods. The first part of the experiment consists in calibrating
the main circuit (namely E, V.R., A, B, in Figure 103), so that we
will have a known potential drop from 4 to B. This is done by
using a standard cell whose e. m. f. we know. For the purpose of
this experiment, obtain from your instructor a new dry cell which
has been calibrated by him against a Weston or Eppley standard.

Note in this connection that the potentiometer which the
instructor uses is substantially the same as yours except that the
wire, instead of being stretched out straight, is wound into a circle.
Ask to have this potentiometer explained to you. Write down
the e. m. f. of the dry cell measured by him, and from then on treat
this dry cell of known e. m. f. as your standard; i.e., do not ever
let it furnish any appreciable current.



THE POTENTIOMETER 177

Next connect your apparatus as shown in Figure 103. In doing
so leave one wire off one terminal of each battery until your
hook-up has been checked by the i
instructor. Be careful to see that i —
your polarity is correct — the high 3y.r
potential or positive side of all bat-
teries should connect to A when
the switches are closed. Trace this —
through in your circuit. = —

Parts (a), (b). After your circuit
has been checked by the instructor,
start closing the circuits as follows: ¢ K L

The variable resistance is set tor | | !H Y |

maximum resistance and the main ¢ H.R.
battery circuit is closed. Next, see F1a. 103.— Measurement of the
that the contact-maker S is not ™[ Witha potentiometer.
connected (remove cntirely) and throw the switch connected to
the H. R. resistance to the proper side (to the right in the diagram)
such that the current will have to flow through this resistance.
Now close the switch K so that e is thrown into the circuit.

Before connecting in the contact-maker S, note carefully what
the purpose of the experiment is in Part (a). We want to know
the potential drop across the wire. This we wish to make 2 volts
across the 100 em. of wire. Knowing the e. m. f. of the stand-
ard, ¢, figure out at which point on the slide wire a balance
should occur and set the contact-maker at this point. The gal-
vanometer will defleet (precaution: be sure to have the H. R.
in the circuit), showing that the main current is not of the proper
value to give 2 volts across the wire. Adjust this current by means
of V. R. until the galvanometer reads zero. Now throw over the
switch L, cutting H. R. out of the circuit, and make a finer adjust-
ment of the main current. If an exact balance is now obtained,
then you have adjusted the main current so that the drop across
AB is exactly 2 volts. In further measurements in Part (b)
do not change this main current except in one case only, namely,
if when you return to the setting for the standard cell, e, you
should find that the main current has changed slightly and needs
readjustment.

Part (c). In order to measure the internal resistance of a cell
it is necessary to measure some potential differences. On the
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right side of the switch K is connected a Daniell cell or a dry cell
as shown in Figure 104. If you should have to move the Daniell
cell, be careful not to mix any more than necessary the two
o solutions of copper sulphate and zinc sulphate. A

I}j : variable resistance standard P (0 to 1000 ohms) is
= connected to the switch K. Start by having infinite
resistance across the cell (i.e., P on open circuit).

Fic. 104, — Be sure also that the positive pole (copper) is con-
Internal resist- nected to the correct side of the switch. If this is
ance of a cell. )¢ qone, a balance will never be obtained.

Next see that the resistance H. R. is in the galvanometer
circuit. Find the balance point on the slide wire, first approxi-
mately, then accurately, by cutting out H. B. TFrom the location
of the balance point on the meter scale calculate the potential
difference of the unknown Daniell cell, in this case when no current
is drawn from the cell.

Make sure of the proper balance point by approaching it from
both sides of the wire. Make a note also of the amount of move-
ment possible of the slider before a difference can be detected in
the balance of the galvanometer.

Repeat the measurement of the P.D. of the cell, furnishing
currents for the following resistances which are connected across it :
1000, 500, 200, 100, 50, 30, 20, 10, 5 ohms.

Also take the measurement again of the e. m. f. of the cell on
the open circuit.

For accurate work it is necessary from time to =
time to throw in the standard cell e, set the slider =
to the value for the standard, and see whether the
circuit is still balanced. If it is not, a readjustment
of V. R. is necessary to bring the main current back —MWWWW
to its proper value, assuming a drop of 2 volts -

X Fia. 105. —
across the wire. Relation be-

From the above data calculate the internal re- tween e. m. f.
sistance r of the cell. In Figure 105, P represents and P. D. of a
the external resistance and E is the e. m. f. of the
cell, E; being the potential difference measured. From this figure
we see that

I

B, =1IP = (P—]_”;_-;) P.

Hence solve for .
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DATA
Part (a).
E. M. F. of main battery =
E. M. F. of standard cell as obtained from the instructor =
Calculated setting of slider for standard cell balance =
Calibration of wire: 1 mm. =
Accuracy of setting (in mm.) =

Part (b).
E. M. F. of cell marked A
E. M. F. of cell marked B
E. M. F. of cell marked C =

Part (c).
b | om o | e | Agme |
A
0 E = 0.5 mm. =veragi Tohms
1000
500

Plot the values of r as ordinates against I as abscissa.

[Note. When you are finished with the experiment, see that the
Daniell cell when not in use always has a resistance of approxi-
mately 40 ohms across it. This is necessary to prevent the two
solutions from mixing.]

QUESTIONS

(a). What ‘s the maximum current that this particular Daniell cell can
furnish?

(b). Suppose you had to have more current, what would you do if you only
had Daniell cells at your disposal ?

(c). What effect would a slide wire of ten times the length have on the
accuracy of your measurement? What would have been the calibration in
this case?

(d). Suppose the resistance of the wire were 4 ohms, what is the current in
the main circuit when the current has been properly adjusted ?

PROBLEMS
Experiment 37
1. Acell of e. m. f. (Z.e., when not furnishing current) 1.52 volts is connected
10 a voltmeter which only reads 1.48 volts. If the voltmeter has a resistance
of 200 ohms, what is the internal resistance of the cell?
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2. Make a list of the important precautions that must be taken in using
a potentiometer and classify them under the headings (1) to take care of the
apparatus, (2) to care for the standard cell, (3) to obtain accurate results.

3. How can a potentiometer be made direct-reading in volts on a slide
wire ?

4. You are given a slide wire 100 cm. long and of resistance 5 ohms. This
is to be made into a direct-reading potentiometer of 1 mm. = 1 millivolt. If
the main battery is a storage battery of negligible resistance and e. m. f.
1 volts, work out the details of the necessary resistances to give the proper
calibration in the main circuit. Does the galvanometer circuit affect the
calibration?

6. Explain fully the advantages of a potentiometer in measuring potential
differences.



CHAPTER XVII

LAWS OF ELECTROLYSIS

When an electric current is sent through a chemical compound
in solution or a fused chemical, certain chemical changes take
place. We call this breaking down of the compound by the
electrical current electrolysts.

The current is gencrally led into the solution by means of metal
plates called electrodes. If a metal is deposited at one of the
electrodes, the  process is called electroplating. We shall confine
our discussion to the simple case of electro-deposition of copper
from an acid copper sulphate solution, because this example of
electro-deposition will be sufficient to illustrate the application of
the laws of electrolysis.

Consider a solution of copper sulphate, through which a current
is passed, as pictured in Figure 106. The electrode at which the
current, enters the solution is known as
the anode, while the other electrode is .
called the cathode. The copper sul- , . Catiwode
phate, which is ionized because of its + =
solution in water, begins to travel to-
wards the electrodes as soon as the || i
current is turned on. The negative
SO, ions move towards the positive @ @.
electrode pole, while the copper ions
are attracted to the negative elec- — ceson
tr'ode. rI.'he soluthn of copper sulphate Fra. 106, — Bloctrolytio cell.
will continue to dissociate as long as
energy is supplied to keep the ions in motion so that the electrodes
will be kept in a charged condition. The ions which reach the re-
spective electrodes lose their charge, the copper atoms are deposited
at the cathode, and the SO, ion reacts with the anode to produce
more copper sulphate.

The reactions at the electrodes are not always as simple as
described. We have chosen copper sulphate because of the ease

with which the laws of electrolysis, first stated by Faraday (1853),
181
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may be applied to this solution. Faraday’s laws may be sum-
marized briefly as follows :

1. The mass (M) of material deposited is proportional to the
quantity (Q) of electricity which flows through the solution.
2. The mass (M) of matertal deposited for different substances

18 proportional to the chemical equivalent (9), where m and v stand
v

for the atomic weight and valence respectively.

Hence the mass deposited is proportional to the product of the
two conditions as stated in Faraday’s Laws.

M<Q.
och

. 1m 1m
Th M=="0=2="p
at is, Fo Q yai A
where I is the current (in amperes) flowing for a time ¢ secs.
The constant of proportionality (F) is known as the Faraday, and

Z = %@_ is called the electrochemical equivalent, i.e.,
v
M = ZIt grams,

where Z can be defined as the number of grams of substance
liberated by one coulomb of electricity.

There are some practical difficulties in testing these laws because
of secondary reactions which may occur at or near the electrodes.
Thus, if a neutral solution of copper sulpkzte is used to test the
laws by weighing the copper deposited, one will find that the deposit
may be brown due to formation of a copper compound at the
cathode. This is caused by the alkaline condition at the anode
due to the reducing action of copper when being precipitated out.
This difficulty at the cathode is remedied by making the solution
acid.

A satisfactory solution for plating copper on copper, as done in
our experiment, is the following :

CuS0, - 5H,0. . . 200—250 gm./liter
H,S0, (conc.) . . . 50—80 gm./liter

Every object to be plated must first be cleaned. For our
purposes, polishing the copper strip with clean emery paper will
be sufficient. After cleaning, the fingers should not touch the
portion to be plated. Should a cleaning solution be found neces-
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sary, the following alkali bath is very useful, especially when
heated :

Sodium carbonate . . . 60 gm./liter
Sodium hydroxide . . . 15 gm./liter
or
Sodium carbonate crystals
(Na,CO; - 10H,0) . . 165 gm./liter
Sodium hydroxide . . . 15 gm./liter

The object should be dipped into the alkali bath, then into
water, and finally into very weak H,SO, solution. The last
dipping in the sulphuric acid solution is desirable when the object
is to be plated in an acid copper sulphate solution.

EXPERIMENT 38
THE COULOMETER

The calibration of an ammeter by means of the copper coulometer.

Apparatus: Copper coulometer, ammeter, resistance unit of about
15 ohms and 1.5 amperes capacity, knife switch, fine balance.

The apparatus is assembled as shown in Figure 107. A low
voltage supply of about 4 to 6 volts is connected to an adjustable
resistance which, in turn, is connected
in series with the copper sulphate so-
lution, ammeter, and knife switch. . j
The copper sulphate solution is made Cathode W@_/
up as described in the theory.

Before starting your weighing in this
experiment, the connections should be
inspected and current turned on to see
if the ammeter is connected so that the current will flow in the
proper direction. It is also necessary to adjust the rheostat to see
that an excessive current does not pass through the solution to
“burn ” the deposit. Adjust the rheostat so as not to deposit
copper at a rate in excess of 5 amp./dm? A current density of 3
to 4 amp./dm?. will give a rapid deposit and yet be well within
the safe limit.

Now throw the switch off and remove the cathode (strip of
copper to be plated). Rinse, dry; clean by polishing with emery
paper.mthen weigh accurately on the fine balance. Do not

_6v,

F1a. 107.—Copper coulometer.
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touch the portion to be plated with the hands after cleaning.
Replace the weighed cathode and deposit copper on it for one-
half to three-fourths hour. Take readings on the ammeter every
two minutes if the fluxations are small, or else keep the rheostat
adjusted so as to keep the current constant. Record the total
time during which the copper is being deposited. After the copper
has been deposited, clean with several rinsings of water, and dry.
The drying process is hastened considerably by pressing filter
paper against the surfaces of the deposit, but avoid any rubbing.
Handle the deposit as little as possible with the hands before
weighing. Weigh the plate. The increase in weight will be the
mass of copper deposited. The current, as found by the copper
coulometer, will be given by

-M

zy
where Z = 0.0003294 gm./coulomb for copper (valence 2). Cal-
culate the current from this equation. This method of determin-
ing the average current is very useful where the current, over a
long period, varies by small unknown amounts.

Average all the readings of the ammeter and so find the average
current recorded by the ammeter. Note the difference in per
cent of your calculated result from the value as given by the
ammeter.

I

QUESTIONS

(a). What data would be nceessary to calibrate your ammeter completely ?

(b). Examine the edges of the plate on which you deposited the copper.
How does it compare in color with the center of the plate?

(c). 1f all the copper sulphate is not removed from the cathode in the
rinsing just before the final weighing, will the current found experimentally
by deposition be too large or too small?

(d). Suppose all the copper deposited did not adhere to the cathode due to
a dirty portion of the surface, how would this affect the calculated value of the
current ?

(e). Calculate the approximate errors in your work to see if the percentage
difference between the two results, onc for the calculated current and the other
for the average ammeter reading, come within experimental error.

PROBLEMS
1. What is meant by (1) chemical equivalent, (2) electrochemical equiv-
alent ?

2. If a copper sulphate and a nickel sulphate solution are connected in
series with a source of current and it is found that 5 grams of .ﬁer have
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been deposited from the copper sulphate solution, how much nickel would be
deposited from the nickel solution? (Consult handbooks for electrochemical
equivalents.)

3. If nickel is to be deposited on a rectangular block of copper of dimensions
12 X 30 X 50 cm®. at the rate of 2 amperes per square decimeter, how long
will it take to deposit 300 grams?



CHAPTER XVIII

THERMOCOUPLES

Electromotive forces, in general, exist at the surfaces of separa-
tion of two dissimilar conductors. The surfaces of separation
may be liquid to liquid, metal to metal, or metal to liquid.

If two dissimilar metals such as iron

. @u and copper are joined as in Figure 108,

with the one junction heated and the

Fia. 108'_‘5;;‘)%1( offcet, Other kept cool, a current will flow from

the copper to iron at the hot junction and

from iron to copper at the cold junction. This is known as the
Seebeck effect, discovered in 1822,

The inverse effect was discovered by Peltier (1834) and is as
follows: If a current is caused to flow as indicated in Figure 109,
the junction at which the current flows from copper to iron becomes
cooled (heat absorbed), and the junction where the current flows
from iron to copper becomes hot (heat evolved). At the cold
junction, work is done upon the electric current. That is, the
current is made to flow from a lower to
a higher potential. At the hot junction,
heat is evolved since the current flows %4 ou Hov
from a highf'zr to lower potential and X Fia 109, — Peltier effect.
pends electrical energy. The electrical
energy necessary to force the current through the two junctions
is the difference between the heat absorbed at the cold junction
and the heat evolved at the hot junction.

In the Seebeck cffect (Fig. 108), heat is absorbed at the hot
junction and transformed into electrical energy by the thermo-
couple. At the same time this junction would cool due to the fact
that current is flowing (Peltier effect). At the cold junction, the
current flowing from a higher to a lower potential causes a decrease
of electrical energy, and therefore a heating effect. Hence the
cold junction would heat up if not kept cool by some agent (gener-

ally a mixture of ice and water).
186

Fe _l+ Fe
BN
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The resultant e. m. f. might be considered as due to the sum of
the Peltier effects at the junctions if it were not for another effect
called the Thomson effect, which alters the e. m. f.’s of the thermo-
couple. Therefore the thermoelectric force, as found in the
Seebeck effect, will be considered as due to the combined Peltier
e.m. f.’s at the junctions and the Thomson e. m. f.’s along the
conductors. The total e.m.f. produced is not constant but
depends upon the difference in temperature and rises to some
maximum, then returns to zero (and even reverses) at higher
temperatures. For smaller temperature differences and lower
temperatures, the curve appears approximately straight.

Thermocouples are widely used for measurements of tempera-
ture by means of the e. m. f.’s developed. They may be made
extremely sensitive to minute temperature differcnces. They
often have an advantage over mercury thermometers in that
they have a small heat capacity and absorb but little heat from the
source whose temperature is to be measured.

EXPERIMENT 39
THE THERMOCOUPLE

The electromotive force of a thermocouple as a function of the tem-
perature of the hot junction.

Apparatus: Base metal thermocouple, galvanometer, high series
resistance for the galvanometer, thermometer, ice, steam generator,
two small containers for chopped ice and water mixture.

The thermocouple consists of a constantan and a nickel-chromium
wire. The couple is fastened to a bakelite panel. The wire runs
in grooves on the back to binding posts at the right end (Fig. 110).
One wire leading from each junction R @
is insulated from the other by sections (| ] W 7
of porcelain tubing. The bakelite
panel hasa brass “ collar ”’ and clamp-
ing screw at the back with a hole of
sufficient size to allow clamping on a
standard rod. This provision en-
ables one to suspend the apparatus at any given height. Adjust
the hetght so that 1t will not be mecessary to bend the thermocouple
wires. Figure 110 shows a high resistance R in series with the gal-
vanometer G.

Fia. 110. — Thermocouple.
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Adjust your galvanometer (with £ = 0) to its zero reading by
placing bot 1 the hot and the cold junction of the thermocouple
in beakers containing ice (chopped) with just enough water to
cover. This mixture will then be at 0° C. If the galvanometer
does not come to rest on the zero, adjust to zero (see instructor),
or take the reading. Then place the cold junction in the chopped
ice and the hot junction in live steam. Adjust the resistance R
so that the deflection will be between 200 and 250 millimeters
(i.e., not off scale). After this adjustment of the resistance box,
record the steam temperature and the corresponding scale deflec-
tion. Then determine the temperature and scale deflections for
intervals of about 10° decrease in temperature until the difference
between the cold and the hot junction is less than 10° Centigrade.
Now place a low flame under the beaker containing the hot junc-
tion and take the temperature and scale deflections for intervals
of about 10° increase in temperature until the boiling point is
reached. When changing the temperature, always bear in mind
that the thermometer and couple do not change in temperature
at the same rate. This is because of their different heat capacities.
Always give the thermometer a chance to become steady before
readings.

Obtain from the instructor the sensitivity of the galvanometer.
Knowing the sensitivity of the galvanometer, the resistance of the
galvanometer, and R, we can calculate the e. m. f. of the thermo-
couple (i.e., product of the sensitivity, deflection, and total resist-
ance). The resistance of the thermocouple itself may be neglected
in comparison to other resistances. Plot on the same graph paper
a curve for each of the two sets of the data of e. m. f.”s obtained,
one for the temperature of the hot junction, decreasing and the
other for the temperature of the hot junction increasing. The
e.m. f.’s are to be plotted as ordinates and the temperature as
abscissae. The average of these two curves should be taken as

the correct curve.

DATA

Initial reading of the galvanometer =
R =

Resistance of the galvanometer
Temperature of the cold junction
Sensitivity of the galvanometer =
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Steam
QUESTIONS

(a). Are the plotted curves linear?

(b). Do your two curves coincide within the experimental error of
experiment? If not, how would you explain the non-coincidence ?

(c). If the e. m. f. of the thermocouple is a function of temperature ¢
how would your results be altered if the temperature of the cold junction
room temperature (say 25° C.) instead of 0° C.?

(d). Plot from your average curve as obtained in the experiment anc
curve, as follows: Obtain from your curve the increase in e. m. f. (AE) |

0° to 10° and divide by 10 (At = 10). Let this ratio (%‘%) be an ordi

which corresponds to AA]f , the average temperature (¢) of 5°C. Find Al
the temperature interval 10° to 20°, from which we may find ‘: f" for the ave

temperature ¢ of 15° C. Continue until the upper limit is reached. [I

The ratio % is known as the thermoelectric power.] What is the natw

the curve obtained? Do you think it will cross the axis of abscissae? V
is the physical significance if it crosses the axis of abscissae somewhere?

PROBLEMS

1. Explain the Seebeck effect on the assumption that the pressu
‘“free ”’ electrons at the junction of the two metals (Fig. 108) becomes gri
in one metal than in the other with increase of temperature.

2. What is the (1) Peltier effect, (2) Thomson effect ?

8. What is the order of magnitude of the e. m.f. developed by va
thermo-junctions? (See book of physical tables.)



CHAPTER XIX
THE MEASUREMENT OF CHARGE

The fundamental or absolute unit of charge is defined from
Coulomb’s law. This law states that when we are given two
electric charges ¢; and ¢, then the force cxerted by one on the other
is directly proportional to the magnitude of either charge and
inversely proportional to the square of the distance separating
them. Expressed in symbols we can therefore write :

) F= %‘f—z

The only other factor which we have to consider in evaluating
this force, F, is the medium separating the two charges ¢, and gq..
Experiment shows that this force is different in amount, depending
upon the medium.

Usually we express this by saying that we put into equation (1)

a constant (llc)’ which takes into account the medium and so
makes the law perfectly general. Hence,
1
2) F = % q&(gzr
where k is called the dielectric constant of the medium.

Next, the question of units must concern us. We note that,
in equation (2), the units for I and d are of course our fundamental
units of force and distance, viz., the dyne and the centimeter in
the e. g.s. system. Now since we dc not have any units for
charge ¢ we can use Coulomb’s law, to give us our unit for charge
as follows: studying equation (2) mathematically, we see that,
if gt =qs,and F=1,k =1, and d = 1, then ¢, = ¢» = 1, and
we have a unit charge. Put into physical terms, we have a unit
charge (e. s. u.) when we take two similar point charges (magnitude
and sign), place them a distance apart of 1 em. in vacuum (by
definition this makes ¥ = 1) and find that the force between them
is 1 dyne.

Now in measuring a charge, the first question to consider is:

190
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Is the charge at rest, or in uniform motion (constant velocity), or
does its velocity change? The method to be adopted in each case
is different.

In the first case, in which the charge to be measured is at rest
(such as in eclectrostatics) we use some form of electroscope or
electrometer. The method used by Coulomb, which consists in
finding the amount of twist in a wire when charges are placed at
the ends of an insulated crosspicce attached to the end of the wire
and the unknown charge placed near one of these, is theoretically
the most direct, but practically offers many experimental difficulties
and objections. At the present time the method used for qualita-
tive work, where great accuracy is not necessary, involves the use
of the leaf electroscope, in which the deflection depends upon the
amount of charge. The instrument of course must be calibrated.
For accurate work, a modified form of torsion balance, known as
a quadrant clectrometer, in which the unknown charge is made to
attract an oppositely charged suspended system, is used.

Now in the second case in which the charges are in uniform
motion we have a steady electric current. The methods used in
finding the strength of electric currents have already been dis-
cussed in the chapter dealing with the measurement of electric
currents (see Chapter XIV). If the currents are very small,
such as ionization currents in the air, then we must use electrom-
eter methods, by finding the rate at which charge accumulates on,
or leaks off, an insulated system.

In the last case, in which the currents are variable, the measure-
ment of charge resolves itself mostly into measuring the total
charge which has passed in a certain small interval of time. Some
important cases of common occurrence come in for consideration
here ; usually when a condenser charges up to a certain potential
through the application of a potential difference a definite amount
of charge flows into this condenser. This charge flows in rapidly
in the beginning and more slowly towards the end, the whole
process being over in a fraction of a second. A somewhat similar
process occurs when the discharge takes place.

When the condenser is fully charged, we have:

Q =CYV,

where Q = total charge, C = capacity, V = potential difference.
In practical units these are measured in coulombs, farads, and volts



192 EXPERIMENTAL PHYSICS FOR COLLEGES

respectively. Of course at any instant the current flowing is
defined as the rate of flow of charge, viz.,
i =44
Al

Any electrical system which is capable of holding or storing an
electrical charge when a potential difference is applied to the system
is called a condenser. The amount of charge it can hold for a certain
Jized potentral difference (one unit) vs called its capacity.

The unit in which we measure capacity is the ““ farad,” or more
commonly the ¢ microfarad ”’ (10~% farads), in the practical system
of units. In the absolute system of units (c. s. u.) we use a unit
called the ““ centimeter.”

A condenser will have a capacity of 1 farad when a potential
difference of 1 volt will store in it a charge of 1 coulomb. A con-
denser will have a capacity of 1 centimeter if a unit charge (e. s. u.)
will raise its potential by 1 unit (e. s. u.). The relation between
the farad and the cm. is that

9 X 10" ¢m. = 1 farad.
or 9 X 10° cm. = 1 microfarad.
or 0.9 em. = 1 micro microfarad.

o a o In practice, condensers mostly consist of two
__1, H H }* parallel metal plates separated by a dielectric,
such as, for example, air, mica, waxed paper, ete.
Fia. 111.—Con-  If gseveral of these are connected in series as
;fr’i‘::rs connected in gh own in Figure 111, then it can casily be shown
' that the total capacity is less than the capacity
of even the smallest condenser, in fact :
1 1 1 1
cTatate
If the condensers are connected in parallel or multiple as shown
in Figure 112, then the capacities may be shown

to give a total capacity 1
C=0Ci+C:+Cs ﬁ
In the above discussion of condensers we are 11

interested mainly in the resultant charge re- Fia. 112.—Con-
quired. Another very important class of elec- densers ~connected
trical measurement of charges which flow for a ™ parallel.

very short time occurs when dealing with induced currents. Sup-
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pose, for example, we have a closed coil of wire through which we
pass, very rapidly, one pole of a bar magnet. A current is induced
in the coil, the time for which the current flows being perhaps of the
order of 14y sec. It is difficult to find out what the current was at
every instant. But it is relatively simple to find out, experimen-
tally, how much total charge has passed. Then knowing how much
charge has passed, we can calculate the strength of the magnet.
Methods of this type are therefore most important in connection
with measuring the strength of magnets or magnetic fields and
also measuring the inductance of coils.

In all these measurements, of inductance and capacity, it
becomes necessary to measure a certain quantity of charge, inde-
pendent of the time for which this charge flows. The instrument
which will measure charges of this nature is called a ballistic
galvanometer.

The construction of a ballistic galvanometer is exactly similar
to the D’Arsonval galvanometer, except that we apply an addi-
tional condition to a D’Arsonval galvanometer. This condition
is, that all the charge flows through the galvanometer before the
coil has moved appreciably from its equilibrium position. The
coil then deflects after that, due to the impulse or “ kick ” which
it received initially. It can be shown theoretically that the
deflection then is directly proportional to the impulse, and con-
sequently also to the total charge that went through the coil in
the beginning. In order to satisfy this necessary condition of use,
the current must flow for an extremely short time. If this cannot
be assumed, then we must give the coil a very large moment of
inertia and consequently a very long period of swing. The coil
is usually made very broad so as to help in satisfying this condition.
Since a ballistic galvanometer therefore gives deflections pro-
portional to the total charge that has passed through it, we can
use it as an instrument for comparison of total charges.

Suppose, for example, we wish to compare two capacities C,
and C.. We shall apply the same potential difference to each one
and so charge them up. The total charge each will acquire will
be different because their capacities are different, but the potential
difference in this case will be the same. Hence we can write

Q1 = Cl v
for condenser C,, and
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for condenser C,. Now if the deflections produced, when these
two charges are allowed to pass rapidly through a ballistic galvano-
meter, are d, and d» then,
Ql (0] d;, or Ql = kdl,
and
Q2 oc dyy, or Q2 = kds,
where % is a constant of the particular galvanometer.
Hence we see:

which shows that the ratio between the capacities is simply the
ratio between the deflections produced.

We note in the above case that the constant of the galvanometer,
namely, k, does not enter when using a ballistic galvanometer for
purposes of comparison. If we wanted to know the magnitude
of the charge (i.e., @), then we would have to know k. Note
further that k is a constant whose value for different galvanometers
would give us some idea of the sensitivity of the galvanometer
in terms of the total charge which went through. To be more
specific, we define the charge or micro-coulomb sensitivity (k)
as the charge in micro-coulombs [Note. 1 micro-coulomb =
i% coulombs] necessary to give a standard deflection (see page 142).
Once we know the value of k, therefore, we can find @ very simply
from the relation Q = kd, since we observe the deflection.

Calibration of a ballistic galvanometer when measuring a
magnetic field or flux. When a ballistic galvanometer is con-

nected to a coil of wire (Fig. 113), the conditions
are not quite the same as when connected to a
condenser. In the latter case the resistance in
the galvanometer circuit may be considered to be
infinite and hence it makes little difference which
condenser we connect to the galvanometer. When
connecting a coil, however, to the galvanometer,
Fia. 118.—Meas- the resistance of the circuit of course depends
urement of flux. . . . . .
upon the coil, and in most cases this is quite low.
Suppose now we produce a magnetic field near the coil, then some
lines of force (N, say) will pass through the coil, and in doing so they

will induce an e. m. f. in the coil, of amount, e = — éA_]t!’ for each turn
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of the coil. Thise. m. f. will start a motion of charges through the
wire and consequently an electric current will flow for a short time.
The amount of current which will flow will of course depend upon
the resistance of the circuit, consisting of the external coil and
the galvanometer coil. The larger each one of these resistances
the less the current. The current now having passed, the coil
starts deflecting. As soon as it starts deflecting, however, the
induced current set up by the rotating coil, according to Lenz’s law,
is such as to oppose further rotation. The smaller the external
resistance the larger the induced current and so the less the deflec-
tion. When we calibrate a ballistic galvanometer in terms of
flux cut and deflection produced, it will be seen that we do so for
a particular circuit, consisting, in the above case, of an external
coil and a galvanomecter coil. Thus, by allowing the flux to
cut or pass through the coil, we can measure the amount of
flux cut.

We shall discuss one example of the use of the ballistic galva-
nometer in measuring flux. The problem is o study the nature of
the induced e. m. f. in a coil of wire which makes one complete
revolution in a magnetic field. This is done, with the apparatus
provided, by allowing the coil to move rapidly through a very
small angle (0) say in Figure 114 and

then measuring the total charge pro- Y :@_&

duced, which, in this case, is propor- N |— % - s
tional to the average induced e. m. f. \\
during this small interval. By measur- AN

ing the amount of induced e. m. f. for Fia. 11’*-—R0ﬁating coil in a
all these small steps we can plot the magnetic field.
amount of e. m. f. induced as the coil rotates in the magnetic
field with reference to the coil position. It will be seen that the
e. m. f. induced is a so-called * alternating ” e.m. f., reversing
its direction every 180° of rotation.

EXPERIMENT 40
BALLISTIC GALVANOMETER

Part (a). To measure the charge-sensitivity of a galvanometer.

Part (b). To compare capacities with a ballistic galvanometer.

Part (c). To check the laws of series and parallel connections of
condensers.
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Apparatus: Ballistic galvanometer, short-circuit key, standard
condenser, two or three unknown condensers, voltmeter (0-3 volts),
charge-discharge key, dry cell.

Part (a). The apparatus is connected as shown in Figure 115.
@ is the ballistic galvanometer; k, is a key which may be found
useful between measurements for bringing the
galvanometer to rest. Key ks is a two-way single-
pole switch. The dry ecell is connected at e with
_'/(“——‘ a voltmeter across it to measure the potential

l Zf difference which the battery furnishes for charg-
| ing the standard condenser. [Note. Be very

G

‘ ;:e ] careful to see that your connections at the key
ko are corréet. It would be better not to connect

® in the battery, e, until the instructor has checked

Fia. 115. — your circuit. Failure to do this might burn out

cMa:;’;Z‘i‘:;‘fnem' of the galvanometer coil — so be over-cautious.] The
connections of the unknown condenser block are
shown in Figure 116.

In reading a deflection the procedure is to throw k; on the
battery side for just a few moments, and then quickly throw it to
the galvanometer side of the switch. What is required is the
farthest deflection on the scale. If you did not get the first one,
repeat the charging and try again.

Record all your trials. The zero from -
which the deflection occurs does not Vs /J’_\
have to be the zeyo of the scale so o3

long as the zero position is recorded ::2 I ]- T
and is steady. The deflection is the } I

difference between the farthest de- p.. 116.— Condenser block.
flection and the zero reading. Record

both these for every trial. Average the deflections to find the
average deflection. Record also the value of capacity used, as
well as the P. D. of the battery and calculate the micro-coulomb
sensitivity.

Part (b). Use the largest value of the capacity as standard
and assume that the others are unknown. Find their capacity
by inserting them at C in Figure 115, and record the deflections
they produce.

Part (c). Connect as many of the condensers as you can in
parallel and measure their total capacity by comparison with the
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largest individual one assumed to be standard. Compare the
total capacity as measured with the sum of the measured individual

capacities.

Repeat this last part for as many condensers connected in

series as possible.
DATA

VALUE OF VOLTMETER ZERO Max.

Caracity (C)| ReapiNg (V)| READING | RuADING DErLECTION (d) | DEVIATION

REMARES

Average V Total
Mean +
Per cent of error =
Hence: Capacity .. ... farads (C)
P.D. + . volts (V)
Deflection ... . millimeters
and since
Charge C X V coulombs
~. Charge ..o + coulombs
Sensitivity ...... e + . coulombs/mm.
................ + micro-coulombs/mm.
Part (b).
VALUE or ZERO Max. DEFLEC- N Avrrage De-
CaraciTy Usep READING | READING rions  |PEVIATIONS|  FLECTION WITA

DuviaTiON

Standard (1-4)

% microfarad
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Part (b). — Continued.

AVERAGE DE-

VALUE OF ZERO Max DEeFLEC-
N DEVIATIONS FLECTION WITH
Caracity Usep READING READING ., TIONS DEVIATION
1-2

Hence the calculated values of capacity from the relation G _
give the following results : @ ™

Capacity
1-3 microfarads
1-2 microfarads

Part (c). Prepare your own data forms.

QUESTIONS

(a). Make a list of the various sources of experimental error, in finding the
sensitivity of the ballistic galvanometer.

(b). With the cell provided in your experiment, calculate from your results
obtained in Part (b) approximately the smallest and largest capacity that
you could measure with your galvanometer.

(c). Do the results you obtained for szries and parallel connections check
the laws for such connection within experimental error? Discuss this point
with reference to your experimental errors.

(d). Suppose you had to measure an unknown capacity by this method,
but with the galvanometer you used in this experiment the deflection was too
small to measure. How could you go about it ?

EXPERIMENT 41
LENZ'S LAW

Part (a). To compare the strength of two magnets by means of a
ballistic galvanometer.



THE MEASUREMENT OF CHARGE 199

Part (b). To demonsirate Lenz’s law.

Part (c). To show how the mutual induction falls off with distance
between two cotls.

Part (d). To find the nature of the induced e. m.f. (wave-form)
when a coil 1s rotated in a magnetic field (model dynamo).

Apparatus: Ballistic galvanometer, two bar magnets about 8 inches
long, a fixed coil of about 500 turns, movable coil of about the same
size, a dry cell, single contact key, model dynamo.

This experiment is designed to show how a ballistic galvanometer
can be used for many purposes in which we wish to investigate
either induced e. m. f.”s produced by coil cutting a known magnetic
field or else to measure magnctic fields by the use of a coil which
is allowed to move in this magnetic field. The three parts of this
exp:riment are independent of each other, and consequently if
the apparatus for any of these parts is not available, the remaining
parts can still be worked. )

The theory for this experiment may be summarized by noting
that from the equations ¢ = 1At and e = r (page 137), and

e =— %];—f (page 194), one may obtain the equation

AN
¢y ¢=-="
r
If the number of turns on the coil is n and if k is the sensitivity of
the ballistic galvanometer, then the deflection (d) of the gal-
vanometer will be, since ¢ = kd,

@ a=-"220

This equation is true if the time of flow of charge is short compared
to the period of the galvanometer.

Part (a). The galvanometer and fixed coil G
are connected together as shown in Figure
117. When the magnetic field inside the coil
is allowed to change, then an induced e. m. f.
is produced while the change takes place. = o o
Note what happens when the N pole of a g 117, _Tonss low.
magnet is thrust quickly into the coil, say
from left to right. Measure the deflection produced. Several trials
will be necessary to obtsin this deflection. Record them all to
find the average deflection and error. Repeat for the other magnet
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and thus compare their pole strengths. Construct your own data
form.

[Note. In obtaining the deflection it is necessary to read and
record the zero reading every time before observing the deflection,
the reason being that the galvanometer is usually overdamped
when a low-resistance coil is connected to it. This means that
the galvanometer takes an enormously long time to come back to
its original position, due, of course, to induced e.m. f.’s being
created when the coil tries to come back, these induced e. m. f.’s
opposing this motion. Since we cannot wait for the galvanometer
to come back to the same zero, we ordinarily use the position from
which it starts its deflection as zero. When using the galvanom-
eter this way, of course, the student should wait long enough so
that the zero does not drift very much. There are two other ways
of overcoming this effect of overdamping or lag settling back to
zero. One way is to open up the circuit somewhere, long enough
for the galvanometer to swing back, and then close it as before.
A better way sometimes is to induce a small e.m.f. in such a
direction as to bring it back to zero. This is done very simply
with the aid of a small magnet. The student should try any one
or all of these methods in obtaining a zero.]

Part (b). With the same set-up as in the previous part, perform
the following tests and explain your results, using diagrams.

1. Push an N pole of a magnet into the coil quickly and note the
magnitude and direction of the deflection (the pole only is pushed
through and not the whole magnet).

2. Pull out the N pole of the magnet rapidly (after having
inserted it as in (1)) and observe the direction and magnitude of
swing.

3. Push in the S pole — observe as before and show diagram-
matically the direction of flow of current.

4. Pull out the S pole — and explain as in (3).

5. Having inserted the N pole as in (1), pull it out with various
speeds, noting the deflection in each case. Record and explain
your results.

6. Pull the whole magnet (both poles) through very rapidly
and observe.

7. Connect another coil which can be placed close to the pre-
viously used coil and insert in series with this new coil a dry cell
and a contact key. Close the key, keep it closed, and then open
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the key, noting in each case the deflection. Draw a diagram to
show in which direction the current flows in each case. Explain
in terms of Lenz’s law.

Part (c). Using the apparatus as shown in Figure 118, note the
deflection in the galvanometer when A4 is placed at several distances
from coil B. Start with 4 as closc to B as
possible, close the key and take a reading for
the deflection produced when the circuit A is

opened (it is not necessary to record the de- Fizsd Coll
flection when circuit A is closed). Take the
mean of several trials. Increasing the dis- A B

tance between A and B, record the distance
and deflection together with their mean. Do
this for about ten distances until the readings
are too small to observe with accuracy. Since
this distance is unknown, it would be a wise
policy to separate them as far as is necessary
to get about a 2 or 3 mm. deflection, then divide the distance into
approximately ten parts and set the coils at these calculated dis-
tances. Record your results in tabular form and then plot on a
graph the deflection (or induced e. m. f.) as ordinate and distance
as abscissa.

Part (d). Connect the model dynamo to the ballistic galvanom-
eter. Note the mechanism for rotating the coil through 10° at
a time. The spring tension should be kept always about the same.
Arrange to start your readings from the position in which the plane
of the rotating coil is at right angles to the magnetic field pro-
duced by the poles of the magnets. Record your ballistic deflec-
tion every 10°, for a complete revolution (360°). Plot your results
on a graph with degrees as abscissa and e. m. f. or deflection as
ordinate. Draw a smooth curve through as many of the points

as possible. { v( £y

Fia. 118. — Induction
apparatus.

Y QUESTIONS

(a). What further information would you need in this experiment to cal-
culate the e. m. f. developed at any instant when an N pole is thrust into the
coil which is connected to the galvanometer?

(b). Does the induced e. m. f. (which of course depends upon the magnetic
field) in Part (c) fall off linearly with distance? Explain.

(¢). If the coil in Part (d) is rotated continuously, what would be the nature
of the e. m. f. produced by this coil?
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PROBLEMS
Experiment 40

1. Given that two similar charges, each of magnitude 200 e. s. u., when
separated in a medium by a distance of 10 cm. are repelled with a force of
50 dynes, find the dielectric constant of the medium, and then from a book of
physical tables find approximately the material of which the medium consists.

2. Calculate the amount of charge which flows into a condenser of capacity
4 microfarads when charged to a potential difference of 150 volts. Express
your results in coulombs.

3. Find the capacity (in farads, microfarads, micro-microfarads, and
centimeters) if a potential difference of 1.5 volts produces a charge in the con-
denser of three micro-coulombs.

4. Calculate the current in Problem 2 if the condenser could charge up
uniformly in y45s second.

6. Given three condensers of capacity 0.25, 1, and 3 microfarads, find the
total capacity when connected (1) in parallel and (2) in series.

6. A condenscr of capacity two microfarads is connected to a dry cell
giving 1.55 volts. When discharged through a ballistic galvanometer, the
deflection is 18 em. Find the micro-coulomb sensitivity. If another con-
denser is charged from the same battery and produces 4 em. deflection, find
the capacity of the second condenser as well as the amount of charge which
this second condenser had.

7. Distinguish carcfully between the use of a ballistic galvanometer and
a constant current galvanometer, pointing out their similarities and dif-
ferences in construction and use. Under what conditions could an ordinary
D’Arsonval galvanometer be used for both purposes?

Experiment 41
8. A coil having 250 turns is connected to a ballistic galvanometer. Tt is
known that 1000 lines of force are made to pass through this coil in 445 sec.
Find the e. m. f. induced in the coil.
9. Draw diagrams to illustrate Lenz’s law and current flow in the following
cases:
(a) a North pole is thrust into a coil.
(b) a South pole is withdrawn.
(¢) a current is made to flow in one circuit and induces a current in
the second.
(d) a current, is broken in the first circuit.
10. Derive an expression for the e. m. f. induced in a coil when it rotates
in a uniform horizontal magnetic field.



CHAPTER XX

VIBRATING SYSTEMS — SOUND

Waves are a means of transfer of energy from one point to
another. This transfer, when occurring in material media, is
brought about by some elastic property of the media.

Thus, when a wave travels along a rope as shown in Figure 119,
the elastic property is determined by the tension. In sound
waves, however, it is determined by the bulk modulus. These
two types of waves have one important difference, as to propaga-
tion characteristics, namely: in rope waves the vibrations of all
portions of the rope are at right angles to the direction of propaga-

A
x

Py Py

Py \

Fia. 119. — Wave along a rope.

tion of the wave, while in sound waves the vibrations of the medium
are back and forth in the direction of propagation of the wave.
The former is representative of a class called transverse waves
because the vibrations are perpendicular to the direction of motion.
The latter type are representative of longitudinal waves because
the vibrations are parallel to the direction of propagation.

Consider now a long train of sine waves, proceeding in one direc-
tion, known commonly; as progressive waves. Such a series of
waves might exist, for example, along a rope (Fig. 119) of very
great length. Figure 119 represents a portion of the series of
waves traveling to the right with peither the beginning nor end
of the train shown.

The distance from a point P, in the vibrating rope to another
point P,, the displacement and direction of vibration of which is
the same as that at P,, is called a wave length (\). The time it

203
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takes a wave to travel the distance A is called the period (T) of
the wave, so that the velocity is, by definition,

v = % = nA,

where 7 is the frequency with which the waves pass a given point
“per-second. Again, the maximum displacement of the segments
of the rope from their neutral positions is called the amplitude (a).

“While transverse waves are easily represented as in Figure 119,
sound waves may be represented by such a simple diagram only
if we represent the forward longitudinal displacements upwards
on the y-axis when the waves are considered as proceeding to the
right on the z-axis. Reference to Figure 120 shows one method

Wave Motion———=

Ciroles of Reference

Longitudinal Partiole Displacements

-— — -

Transverse Wave Representation
R/-—\o M

Fra. 120. — Wave representation.

of using this transverse representation of sound waves. At the
points where the particles pass through their equilibrium positions,
we have alternately condensations and rarefactions. At the
condensation, the particles are moving with the wave, while at a
rarefaction the particles are moving in the opposite direction.
It should be noted, however, that both the condensation and the
rarefaction as such are moving to the right each with velocity o,
and what the ear hears depends upon the magnitude (7.e., pressure
changes) and frequency of the condensations and rarefactions,
rather than upon the velocity of the gas particles. In Figure 120,
the circles are constructed so that a point in each circle is in con-
stant motion. The point in each succeeding circle represents an
earlier moment of time. The series of straight lines below the
circles represent the corresponding simple harmonic motions
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(1.e., longitudinal wave) and the curve is the transverse representa-
tion of the longitudinal wave.

Consider now a rope of finite length with one end fastened to a
wall (Fig. 121) and the other end P subjected to a vertical simple
harmonic force. This simple harmonic force may be produced
by attaching the string to one prong of a vibrating tuning fork.
This is an example of forced oscillation, and if the tension of the
rope is properly adjusted, stationary waves will be produced as
shown in Figure 121 (b). When this happens, the frequency of the
fork and string will be found to be the same, a special case of
forced vibrations, called resonance. These stationary waves have
places where there are no motions of the rope, called nodes (N), and

Wall

’ —
PN
p/\ N TN

(b)
Fra. 121. — Reflection of waves.
places of maximum displacements of the rope, called loops (L) or
antinodes. The presence of these nodes and loops may be ex-
plained if we consider a wave coming in from behind the wall
with a displacement equal in magnitude but opposite in direction,
as shown in Figure 121 (a). If you draw the resultant amplitude
for such a reflected wave and the approaching wave, at intervals
of one-eighth period over eight such intervals, for example, you will
find that the transverse displacements of the rope at a given point
will assume at the proper time intervals all values between the
extreme displacement of each point as shown in Figure 121 (b) and
zero displacement, for all points along the rope. If we call the
distance from one node to the next, I, then from the definition of
wave length, we have that A = 21, also that » = n\, or
n=-2x.

v
21
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It is known that the velocity of a transverse wave along a flexible
stretched wire, having a tension 7' (measured in dynes), is

\/?
v = 4=,
g

where ¢ is the mass per unit length. Hence, the frequency n of
the string represented in Figure 121 (b) will be
= 14T
20 Vo
If it is a sound wave that is being considered, then in order
to have standing waves produced we must confine the waves, in
some manner, such as in a hollow tube the diameter of which is
small compared to a wave length. We shall use as our applied,
simple harmonic force, a tuning fork. Hit the tuning fork with
a rubber hammer (or tap the tun-

(1) n

- ing fork against a rubber block
WK L L or cork stopper) and hold it over a
MI‘ hollow tube as shown in Figure
N N NIAl 122, If the tube is of the proper
(@) 2 length, standing waves will be
Lf | L produced in the air column. Fig-
M ure 122 (a), (b), (¢) represents
N N waves set up in three tubes of
(b) lengths d, 3 d, 5 d, ete., when the
L same fork is used, where d is the

distance from node to loop.
N In order to tell when these

Fie. 122. — Resonance in an ai(rC) standing waves are set up, listen
column. for the reénforcement of the sound

of the tuning fork, which is due

to the resonant vibration of the air column. The frequency of
the vibrating air column will be the same as that of the fork. This
is a well-known example of resonance in the study of sound waves.
The closed end represents the place of greatest change in pressure,
yet here there is no motion of the molecules if the walls are rigid,
and thus represents a node. The open end of such a tube will
be found to be a place of greatest change in velocity of the air
molecules with but little (if any) change in pressure because the
medium is less confined here of all positions which have anything
to do with the vibrating air column. Hence the open end repre-
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sents an antinode, or a loop. With these restrictions in mind as
to nodes and loops, the representation of nodes and loops in
Figure 122 (a), (b), and (c¢) should be clear.

Unfortunately, the loop L is not located exactly at the open end
of the tube but is a little beyond. It takes a short distance for
the equalization of the pressures to take place. This additional
distance is a function of the radius r and is usually between 0.6 r
and 0.8 7. One way to find the correction factor ¢ is to find the
resonance length as in Figure 122 (a), (b), with a tube of adjust-
able length. Call the length of the pipe for first resonance s,
and the length for second resonance s;. Then (¢ + s;) will be a
quarter-wave length or

2) - A = 4(c + s1),
also
(3) )\ = 2(82 - Sl)’

so that, eliminating N from the above equations, we have the cor-
rection factor
) = S2— 381,

2

While the wave length of a fork of unknown frequency may be
determined by use of equation (2), assuming a®value for ¢, the
determination of the wave length by the use of equation (3) is
more accurate because the correction factor does not enter. In
any case the frequency of the fork is determined from the equation
v = n\, where the velocity at ¢° C. is

v = 331.7 4+ 0.6 ¢t meters per second.

EXPERIMENT 42

STATIONARY WAVES IN A STRING ?
ves

To determine the pitch of a tuning fork by means of stationary wa
set up 1n a string.
Apparatus: Electrically driven tuning fork, flexible twine (fish
cord), hanger to hold lead shot, platform balance and weights, meter
stick.

The apparatus consists (Fig. 123) of an electrically driven
tuning fork mounted on a board so that it may be secured vertically
to rods and clamps or to an “ arm ”’ which may extend from the
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wall. One end of a string is fastened to one prong of the fork and

a hanger (made from an aluminum tea ball) is fastened to the
other end of the string.

The procedure is to start the fork into vibration and pour shot

into the basket until stationary waves of one or more loops are

formed. Find the distance ! between two nodes.

This is best done by taking an average of all the

nodes, remembering that the node formed at or near

the vibrating fork is not usually very definitely de-

fined. It is better to omit this node when possible.

Then weigh the basket with shot to find the ten-

sion, T = mg. The frequency n of the fork will be

‘ 1 [T
n = — il
21 Vg
where ¢ is the mass per unit length. Obtain this
Fia. 123. — constant from your instructor, or weigh the string

Standing waves and divide the mass obtained by the length.

in a string. Repeat two or more times, obtaining each time
a different number of segments (i.e., nodes and loops) by changmg
the load on the string.

Frequency marked on the tuning fork =

LENGTH OF SEGMENTS (I) .
No. oF AVERAGE T _l_\/l
SEQMENTS l

I1st | 2nd | 3rd | ete.

—

QUESTIONS

(a). Did you find any marked variation in the length of the segments
between successive nodes? Should there be any ?

(b). Calculate the probable accuracy of your work.
\-(c). Assuming that your result is correct, calculate the per cent of error
from the frequency as marked on the fork.
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EXPERIMENT 43
THE SONOMETER

Part (a). To lest the relation between frequency and length.

Part (b). To test the relation between frequency and mass per
unit length.

Part (c). To find the frequency of a given tuning fork by means of
the sonometer.

Apparatus: Sonometer equipped with a stecl and a brass wire of
different diameters, two tuning forks (say of frequencies 256 v. p. s.
and 384 v. p. s.), about 12 kg. of standard masses (4 two-kg. masses,
2 one-kg. masses, 4 one-half-kg. masses), hanger.

The sonometer (Fig. 124) consists of a hollow resonance box on
which are mounted two wires (one shown here). The tension is
determined by the known :
weights and the length of T
the string is controlled by a
movable bridge.

[Cautron : The twisted wire
at the anchorages becomes
weakened with use. Con-
sequently one should keep the eyes as far from any direct line of
the stretched wire as possible.]

Note that the distance between two nodes (), as used in equa-
tion (1), now becomes the distance between the fixed and movable
bridges when the wire vibrates in its fundamental mode.

Part (a). Place about 6 kg. in the hanger to which the steel
wire is attached. Adjust the movable bridge until the frequency
of the wire of length [ when plucked is the same as that of the one
fork. Record the length of the wire and the frequency marked
on the fork. Repeat using the other fork. Next carry out the
same procedure for the brass wire. From the theory [equation
(1)] it will be seen that nl should be a constant if the same wire
and tension are used.

There are two convenient methods for telling when the fre-
quencies of the fork and wire are the same. The one method is
to adjust the frequencies until no beats are heard. Beats are
heard when the frequencies are close together and disappear
either when the frequencies are the same or far apart. The other
method is to place a tiny paper rider on the wire at the center

F1a. 124. — Sonometer.
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between the fixed and movable bridge. Now start the fork into
vibration and place the tip firmly on the top of the resonance
board. When the frequencies are the same, the rider will jump off,
due to resonance of the string with the fork.

Some tuning forks are so constructed that but little vibration is
communicated to the stem of the fork. In this case, place the stem
of the vibrating fork near or on the movable bridge.

Part (b). To test the relation between the frequency and the
mass per unit length directly, a number of forks of different fre-
quencies would be required. If we make use of the information

gained in Part (a), namely, that n «l i then if n oL also, the

Vo

effect of both factors would be that n oc 1 or
e
IV ¢ = constant,
if n and T are constant.

Place 6 kg. on cach hanger and adjust the bridges so that each
wire will vibrate with the same frequency as one of the forks.
Record the lengths necessary to give the same frequency. Be
sure to have the tension on each wire the same. Obtain the values
of ¢ from your instructor or else weigh a known length of wire
on a balance.

Part (¢). Adjust the tension and length of the wire so that it
will be in tune with the fork. Record the length, tension, and
mass per unit length and caleulate the frequency from equation (1).
Repeat by changing the tension and length. If time allows,
repeat once more by using the other wire. Construct your own
data form for Part (c).

DATA
Part (a).
m e PEr 6ENT OF
Wire (ke.) n l nl AVERAGE DIFFERENCE FROM
' MEeaN
6 + hanger | 256
Steel

6 + hanger | 384

Brass
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Part (b).

Per CeNT OF
‘WIRE (km ) n l o Ve AVERAGE DIFFERENCE
g. FROM MEAN

Steel |6 + hanger | 256
Brass |6 + hanger | 256
Steel |6 + hanger | 384
Brass |6 4+ hanger | 384

QUESTIONS

(a). Calculate the value of é\/,z from the data obtained in Part (a) and
g
compare with your value of the constant »l for the steel wire.
(b). Calculate the value of ZLZ—' from the data obtained in Part (b), and

compare with your value of the constant IV for the steel wire.
(c). What is the per cent of difference between the calculated and marked
value of the frequency in Part (¢c)?

EXPERIMENT 44

THE RESONANCE TUBE
To find the frequency of a tuning fork by resonance and to determine
the end correction for the resonance tube. —

Apparatus: Two tuning forks (frequencies 512 and
768), resonance apparatus with resonance tube 22 to 24 ste
inches in length, cork stopper or rubber mat.

The apparatus consists of a tall jar filled with
water. A glass tube about 1 to 1} inches in
diameter is placed in the jar. The length is ad-
justed until resonance is obtained when the fork is -
struck against a cork stopper or other soft material
and held over the tubing as shown in Figure 125. Fro. 195 —/Res-
A rubber band around the glass tubing placed at the ~ g pance tube.
water line when resonance occurs aids materially in
obtaining more exact measurements. Assume the length of the
tubing is si, the corrected length is (s; 4+ ¢). Now find the second
resonance point and call the length of the tube s;. By means of
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equation (3) calculate the wave length A.  Using the known velocity
of sound find the frequency of the fork.
The end correction ¢ is determined by equation (4),
=2 =38,
¢ 2

Repeat for the other fork.

DATA

meters

v =331.7 4 061¢

scc.

_ v (cm./sec.) 82— 38
A (cm.) 2

FREQUENCY or FORk

(Manufacturer) a 5 i

Radius of the tube =

QUESTIONS

(a). Calculate the per cent of deviation of your result from the manu-
facturer’s value for each fork.

(b). Does the correction factor c appear to be essentially constant for dif-
ferent frequencies with your tube?

(c). Assuming that the correction factor is a linear function of the radius
of the resonance tube, let kr = ¢, where r is the radius of the tube and % is the
constant factor which is to be found. Calculate the value of k. How close
does your result agree with the theory?

EXPERIMENT 45

THE VELOCITY OF SOUND

To determine the velocity of sound in a metal by the Kundt’s tube
method.

Apparatus: Kundt’s tube apparatus, lycopodium powder, resin,
chamois, meter stick.

The Kundt’s tube apparatus (Fig. 126) consists of a hollow
glass tubing closed at one end (right side) with a disc which is
fastened to a movable rod a. A steel or other metallic rod b
is clamped to the other end (left) at its center. It also has a light
metallic disc at the end which is inside the glass tubing, but this
light disc does not touch the sides of the tubing. The tubing
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should contain some lycopodium powder or cork dust sprinkled
the whole length.

The procedure is to stroke the portion of the metallic rod b to
the left of the center with chamois which has powdered rosin

< L

*‘“ L H——-_a——

<—ll—>

FiG. 126. — Kundt’s tube.

sprinkled on it. A little practice will cnable you to obtain the
fundamental tone of the rod. Move the rod a back and forth
until the powdered dust particles within the tubing form sharp
heaps. Measure the distance between a number of these dust
heaps and divide by the number of segments included within your
measure. This will give the average distance !, between segments.
These dust heaps represent nodes, the places of no motion. Hence
ly is a half-wave length of frequency n, which is the tone being
emitted by the metallic rod. If the velocity of sound in air is
91, then

v = nh = n(21),
and if we call the velocity of sound in the metallic rod v;, then

Vy = n)\2 = n(2 lz),
since the two ends of the rod are loops if the rod is secured at the
center. Therefore

or . AN
vy = v;l H T N
IR N \

The value of v, (velocity of sound in air) for the temperature of
the room is found from the theory as given earlier in the chapter.
Repeat for two other positions of the rod a.

QUESTIONS

(a). Calculate the probable experimental error. What is the maximum
deviation from the mean result in per cent ?

(b). Look up in tables the values of the bulk modulus of elasticity and
density of the metallic rod b used in your experiment, and calculate the velocity

of longitudinal waves in the rod by the equation, v = J—g

(c). What differences might you expect in the frequency pattern of the
metallic rod if not secured at the center?



214 EXPERIMENTAL PHYSICS FOR COLLEGES

PROBLEMS
Experiment 42

1. Show by graphical construction the production of standing waves

Choose a sine wave and take the time interval between the waves as g sec.

2. If the distance between the loops of a vibrating cord, as shown in Figure
123, is shortened by one-half, what must be the change in tension?

8. A cord of length 40 ¢cm. and of mass 0.025 gm. is loaded as in Figure 123,
so that it vibrates in one segment when actuated by a tuning fork of 60 vibra-
tions per second. What is the tension (in dynes) in the string?

Experiment 43

4. Two wires, held at the same tension, have a mass per unit length ratio
of $. What will be the ratio of lengths to give the same frequency ?

6. Assume you had two wires, each supposedly of the same mass per unit
cross-section but which were not homogeneous in reality so that o varies
slightly from point to point in the following fashion: one wire a is a little
thinner at the center of the string than the average, while the other wire b is
a little thicker at the center than the average. These wires are tuned to
unison and then the movable bridge (Fig. 124) is adjusted so that the wires are
half the original length. The frequencies will be very approximately twice
the original values but beats will be heard. Explain briefly why. Which
wire will have the higher frequency ?

Experiment 44

6. Referring to Figure 122 (c), which overtone (z.e., 1st, 2nd, etc.) is repre-
sented by the drawing of the nodes and loops as shown? What is the fre-
quency relation between this overtone and the fundamental for this tube?

7. A closed organ pipe of 150 cm. length is tuned correctly when the tem-
perature is 20° C. What will be the change in frequency if the temperature
rises to 30° C.? What would be the change in frequency for an organ pipe
of 5 cm. length under the above conditions?

Experiment 45

8. Suppose that the distance !; between two adjacent nodes in the Kundt’s
tube apparatus, for a given metal rod, was 5 em. If the metal rod clamped
at its center was brass, determine its length. [Note. Look up in a handbook
the velocity of a longitudinal wave in brass.] Assumec that air was the gas
medium in the tube.

9. Suppose that the tube above had been filled with hydrogen, what would
have been the distance between adjacent nodes? [Note. Look up the
velocity of sound through hydrogen.]



CHAPTER XXI

PHOTOMETRY

Photometry is the science which deals with the measurement of
the intensity of light sources and illumination produced on absorb-
ing and reflecting surfaces.

These measurements are usually relative and are made by com-
parison with some standard source such as the German standard
Hefner lamp, which is a lamp burning amyl acetate at a certain
definite rate, with a definite height of flame and definite conditions
of air pressure, humidity, etc. This Hefner standard of light
intensity is found to be 90 per cent of the international candle.
The United States Bureau of Standards has standardized certain
incandescent lamps for routine testing. The maintenance of
standards is no easy task.

The instruments used to compare the intensities of light sources
are called photometers. The Bunsen and Lummer-Brodhun
photometers are representative of the simpler type, while the
flicker and integrating photometers are examples of the more
specialized forms.

The theory of our experiment is based on the fact that the light
is assumed to be radiating from a ‘ point”’ source out upon an
expanding spherical surface. Hence, the luminous flux falling
on one square foot of a surface gets less when the surface is further
removed from the source — in other words, the illumination of the
surface gets less. Now it is a general law, in connection with
radiation of energy from a point source, that the energy passing
normally through 1 sq. cm. falls off inversely as the square of the
distance from the source and hence the tllumination produced on a
screen by a point source of light falls off inversely as the square of
the distance between source and screen.

If we should place two point sources of light consecutively in
front of a screen and each produced the same illumination, as
observed by the eye, then we would conclude that the two sources

have the same brightness or intensity. On the other hand, if
215
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one were four times as intense, then according to the above it
would need to be placed at twice the distance from the screen.

The student should note that when we are dealing with the point
source of light, we are interested in its intensity, which is measured
in candle power by reference to the standard international candle.
If we are dealing with the illumination of a surface on which this
light, falls, then we measure the illumination in foot-candles. This
unit of illumination is, by definition, the illumination produced
on a surface at a distance of one foot from the standard inter-
national candle. If the intensity of the source remains the same,
then it is the illumination that falls off as the square of the
distance.

In Figure 127, suppose we wish to compare the intensities of
the two sources I, and I. (units of candle power). We place the
two sources so as to illuminate the
screens at B; and B,. The illumina-
tion produced can be observed visually.
Now if I, is the brighter source, then
it will have to be placed further from
Fig. 127.— Comparison of in- the sereen than I, the diminution of

tensities of sources. . . . .
illumination of the screen B, falling
off according to the inverse square law. Suppose that when
I, and I are in the positions shown, and the illumination of B,
and B, are the same, we can then write

I _ de,
I. dg
Knowing the intensity of I, (in ¢. p.) and measuring d, and d», we

can find the intensity of I,. This forms the basis of the photom-
etry of sources of light.

EXPERIMENT 46
THE PHOTOMETER
Variations of luminous efficiency of a source of light with voltage.

Apparatus: Photometer, standard incandescent lamp, two incan-
descent lamps of unknown candle power, rheostat, ammeter, volt-
meter.

The apparatus (Fig. 128) is a modified form of a Bunsen
photometer. You will find the apparatus connected as shown in
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Figure 128. Check the circuit. The device ¢, used for com-
paring the sources, consists of two thin rectangular pieces of paraffin
separated by a strip of tinfoil (or aluminum foil) and mounted on
a bench between two lamps. In our experiment, the lamps are
kept at a fixed distance from each other, usually 100 em. With
the switch open, insert the plug in the 110-volt circuit. The
standard lamp of candle power
I, will light. Now adjust the
rheostat, acting as a potenti-
ometer device, so that little or
no voltage will be across the
lamp whose candle power (I.)
is to be determined. After
the instructor has checked the
wiring, close the switch to see if the polarity through the voltmeter
and ammeter is correct. If not, withdraw the plug and reverse.
Then adjust the rheostat for maximum voltage through the
lamp.

For our purpose we shall take the candle power per watt as a
measure of the relative light efficiency of lamps because greater
efficiency is associated with greater candle power per unit power
consumption. Hence, with the rheostat set for maximum voltage
through the lamp, the procedure is to adjust the comparing device
¢ so that it is illuminated equally on both sides of the aluminum
foil when viewed from the side (i.e., perpendicular to the plane
of the aluminum foil). When this is done, the illumination on
both sides of ¢ from the two sources is the same. Record the
distances d; and d».

Then assuming the inverse square law and point sources, we have

L _de

I 2 1122

Fia. 128. — Photometer.

Reduce the voltage, approximately, in steps of 10 volts, keeping
the distance between the lamps constant, and repeat the above
measurement in every case until the low luminosity or difference
in color of the lights make further measurements useless. The
uncertainty of matching light intensities due to color differences
may be minimized by averaging the extreme distances in either
direction for which you are sure that no intensity match exists.

Repeat, using the other lamp.
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Data for one lamp :

B c EC 4 I CANDLE POowER
(Volts) (Amps.) (Watts) 1 (Cale.) PER WATT

di + d»

]

QUESTIONS

(a). Draw a graph with the candle power per watt as ordinates against E
as abscissae.

(b). Calculate from your data or graph (Question a) the per cent decrease
of the efficiency from its value at the maximum voltage, for voltages of 10, 20,
and 30 less than the maximum value.

(c). At what voltage would you operate the lamp for greatest economy ?

PROBLEMS

1. One electric lamp of 26 candle power is separated from another of
50 candle power by 200 cm. At what distance, or distances, on a line joining
the two lamps will the illumination from the two lamps be the same? Cal-
culate the distance from the lamp of smaller candle power. Calculate also
the illumination in foot-candles at this point of balance.

2. Two sources of light, each of 5 candle-power intensity, are placed at
distances of 2 feet and 4 feet respectively on the same side of the paraffin
block. At what distance must a source of intensity 10 candle power be
placed on the other side so as to produce equal illumination on both sides of
the paraffin block ?

3. What is meant by ‘ candle power” and wnat is meant by * foot-
candle ’? What does each measure? If the intensity of illumination pro-
duced on a screen 30 meters from an arc lamp is equivalent to that produced
by a standard Hefner lamp at 1 meter, what is the candle power of the arc
lamp?



CHAPTER XXII

REFLECTION AND REFRACTION AT PLANE SURFACES

When a beam of light strikes a surface of different density, we
notice that some of the light is reflected and the remainder trans-
mitted through the separating boundary. The relative amounts
depend upon the optical conditions at the surface. In this chapter,
we are interested only in the paths taken by a reflected or a trans-
mitted beam of light in an isotropic medium.

REFLECTION OF LIGHT AT A PLANE SURFACE

Consider the reflection of light, coming from a source S, and
striking a plane mirror as shown in Figure 129. Let SO and OR
represent, the paths of the incident and re-
flected ray respectively, and let ON be the
normal to the plane at the point of incidence.
The following two laws may be proved experi-
mentally :

1. When a ray of light strikes the surface
of the mirror at any point O, the angle of in- Z
c?dence (i) s equal to the angle of reflec- OfFilr(:(;i d(l'ige—z; ilngie:
tion (r). flection.

2. The plane determined by the normal and
the reflected ray coincides with the plane determined by the normal and
the incident ray.

N

Eye =

Applying these two laws to all the rays com-
ing from an object and being reflected at the
surface leads to the important result that the
image I of an object S will appear as far be-
\? hind the mirror as the object is in front of the

1Y 4 . o . . .
Fra. 130.— Image mirror. That is, referring to Figure 130:
of a point source in q=n.

a plane mirror.

R
(7%

Very frequently it becomes necessary to locate

the position of an image. The method of parallax is useful in such
219
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cases. Place a pin, which may be seen over the top of the mirror,
at the point I where you think the image is located. Now move
your eye back and forth in a direction perpendicular to the plane
defined by the pin and a line connecting
the image and source. This is called
locating an image by parallax. Parallax
is defined as the apparent angular sep-
aration of two objects due to a real
displacement of the observer. Thus in
A B A 8 Figure 131 (a) therc is parallax when
nga) (b) the eye is moved from the point A
G. 131. — Parallax. . i
to the point B. In Figure 131 (b) there
is negligible parallax, which vanishes entirecly when the pin and
image coincide.

It will be seen in Fig. 131 (a) that the angular separation of the
images at point A is greater than at point B. There is no such
difference in the angles at points A and B in Fig. 131 (b), and hence
in this case the parallax is not noticeable.

Pin Pin  Image

Image

REFrAacTION OF LIGHT AT A PLANE SURFACE

The laws of refraction of light from flat surfaces may be stated
briefly as follows:

1. The ratio of the velocity of light (vy) in the first medium to the
velocity of light (v») in the second medium s a constant (see Fig.

132).
2. The plane of the refracted angle coincides N

with the plane of the incident angle.

It may be shown that the angles 7 and r are
related to », and v, by the equation,

.. v
i an ! = constant = B1,2
v2  sinr v,
2
where p,,2 is the relative index of refraction for
these two substances. The subsecripts 1, 2, in- R

dicate that the light is considered as proceeding Fia. 132. — Re-
from medium of velocity v; to medium of veloc- fm?tion at a plane
ity v,. If the velocity of light in a vacuum is ¢, *" %

then the absolute index of refraction of light entering the first
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medium is u = ¢/v;, while that of the light entering the second

isp = ¢/vs. In an experiment we usually determine the index of

refraction by measuring any angle of incidence ¢ and the cor-

responding angle of refraction r, and calculate the ratio sTﬂ, which
sinr

by definition is u.

EXPERIMENT 47

THE BEHAVIOR OF LIGHT AT A PLANE SURFACE

A study of the laws of reflection and refraction of light at plane
surfaces.

Part (a). To show that the angle of incidence (i) is equal to the
angle of reflection (r), and that the tmage and object are at equal
distances from the mirror.

Part (b). To show that for light passing from one medium to an-
other, )

sin 7
sin r

= const. = u.

Part (c). To obtain the index of refraction of a prism by measure-
ment of the prism angle and the angle of minimum deviation.

Apparatus: Mounted mirror, four pins about 2 to 4 inches in length,
one rectangular picce of plate glass with two opposite sides polished,
glass prism, ruler, protractor, drawing board and thumb tacks.

Part (a). Tack a sheet of paper to the drawing board. In the
approximate center of the sheet draw one thin line XX’ and locate
the reflecting side of the mirror exactly along this edge. Place
two pins S; and S, (Fig. 133) in front 4
of the mirror. Insert two more pins =~
R, and R: in line with the two images
of S; and S, as seen in the mirror.
Remove the mirror and at the point
(0O) of intersection of S;S, with RR,
erect a normal to the surface (whose < Eys
trace is XX’). Measure ¢ and r with Fie. 133.—Reflection from a

. . plane mirror.
a protractor. Repeat this experiment
two or more times, using different values of angle ¢ each time.
Find the per cent of error from the mean of ¢ and r for each

experiment.
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Find the distance ¢ of the image from the mirror by using the
parallax method described above and repeat two or more times,
varying the distance p of the object from the mirror. Find the
per cent of error from the mean of p and ¢ for each experiment.

ANGLES Di1sTANCES
Per CeNt ERROR Per CeNT ERROR
FROM MEAN FROM MEAN
1 r P q

Part (b). Place the glass plate (Fig. 134) on your data sheet and
outline the edges (XX'Y'Y) with a pencil. Place a pin at each
X P x' of the points marked P and O. Now
with the eye brought close to the paper,
sight through the glass so as to bring
the pins O and P in line with each
EYB other. Place another pin at some point
D along the path. Remove the glass
and connect the points PO and OD with
straight lines. The lines may be ex-

Y 0, T" tended to any distance out from O.
Choose some point along OD, say E,
B—N\E, and determine the distance OE. Then

N+ ¥Bve  make OE’ on OP equal to OE. From
Fia. 134. — Refraction B and E’ erect perpendiculars to the

through rectangular plate pnormal NN’ drawn through O. By defi-

of glass. nition of the index of refraction of light

from glass to air we have Figure 134.

sint _ E'B’

sin r EB

Measure the angles ¢ and r, as well as the distances E'B’ and EB.

Hga =

l ’
Calculate pg, by means of the two ratios siz : and TE'-?;— Repeat

your experiment two or more times, using different values of the
incident angle 7.
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ANGLES DISTANCE AVERAGE VALUE OF
sini | E'B'
sin r EB
i r E'B’ EB sin 3 E'B"
sinr EB

|

Average value of
1

= Mag =

E'B
EB

Average value of
- — = u =
sing
sinr

Part (c). Place two pins A and B in your data sheet as in Figure
135. With your eye close to the sheet, look through the prism
towards the pins AB. When you get these pins in line, rotate the
prism back and forth, around an axis
at the apex of the angle A perpendicular -
to the paper until the angle D becomes g
a minimum. You can tell when D is a
minimum by noting the extreme ex-
cursion (towards the line OF) of the
image of AB through the prism. The
rotation desired may be conveniently
accomplished by causing a slight pres-
sure at the apex of the angle A. When the minimum angle
(D) is found, place pins at each of two points, such as C and
E. Draw the line AB, extending it to F ; also, the line CE, extend-
ing it to O’. The angle D, shown in the figure by EO'F, is also
the angle of minimum deviation. Measure this angle with a pro-
tractor. The index of refraction from air to glass may be shown
to be

Fia. 135.—Refraction through
a glass prism.

Repeat two or more times. Calculate the average index of
refraction, also the per cent of error.
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QUESTIONS

(a). In Part (b) of your experiment, what was the least count of (1) your
protractor, (2) your measuring rule?

(b). Which of the two ratios (i.e., §_m_1: and M) did you find the more
sin r EB

accurate for determining the value of pga in Part (b)? State the reasons for

your answer.

(c). Do the errors in Part (a) and Part (b) of your experiment appear to
be influenced in any way by the magnitude of the angle ¢?

PROBLEMS

1. Prove that the index of refraction (ue) from glass to

r
N~ air is given by the relation
s\—{z’ _E'B
i Hga EB
X (See Fig. 134.)
' il 2. If a perpendicular PL (Fig. 136) is dropped from
YA P and the line EO extended to K, prove that
: pon = OK.
B E “ " op
N 8. Prove, if D is the anglc of minimum deviation for a
Fra. 136 glass prism and A is the angle of the prism, that the index

of refraction from air to glass is given by the equation,
sind+ D
2
A

sin —

2

Hga =

4. Show that if 4 is very small in the above problem, say 5°, we may write
the deviation D as

D = A(pay — 1).



CHAPTER XXIII

REFLECTION AND REFRACTION AT CURVED SURFACES

The laws of reflection and refraction of a narrow beam or ray
of light as given in the last chapter for plane surfaces are applicable
to curved surfaces if we apply these laws to each individual point
of the curved surface where the light impinges. Consider a tangent
plane to be drawn at every point where the light strikes. Then
the laws of reflection and refraction apply to this tangent plane.
Since every such plane will be inclined at an angle to all others,
the reflected or refracted rays from an object will be spread out or
brought together in some manner depending upon the curvature
of the surface.

In dealing with light, reflecting at or passing through curved
surfaces, it is convenient often to speak of the wave front which is
perpendicular to the direction of the ray of light. The wave front
of any beam of light coming from a very distant source is, for all
practical purposes, plane. Another way of stating this same fact
is by saying that the radius of curvature of the wave front is
infinite.

MIRRORS

Consider a plane wave front proceeding towards a curved mirror
(Fig. 137). The latter can be thought of as being a small portion

of a sphere with its center

at C and of radius 7. The """ _ ""}"‘\
center of the mirror-sur- Pote
face is called the pole (Fig. C  _STET ]
137), and the line drawn —
from the pole perpendicu-  Prane —

lar to the spherical surface Fowe

at that point is called the Fie. 137. — Concave mirror with source at
infinite distance.

principal axis. The beam

will strike the mirror and be reflected such that, when the laws

of reflection are applied to each point on the mirror, the new

wave front is found to be spherical and converging towards one
225
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point F on the principal axis called the principal focus. The
distance f from the pole to the principal focus is called the focal

«\ distance.
\\ If the source P, the

light of which is being re-
P C QF flected, is at a finite dis-
l/
///
7/

tance p from the mirror

(Fig. 138), the reflected

%7 wave front (the dotted

< o — line) will converge or focus
Fia. 138.—Cofrillcliwgedi1;1€;;(;re'w1th source at at some point Q on the
principal axis at a dis-

tance q from the pole. The relation between p, ¢, and r is known
to be —
¢)) » + p
By definition, the focal length of a mirror is the distance from
the pole to the point at which light will focus when coming from
an infinite distance (p = o). Hence in the above equation, when

2,
:

p=o,q=for 2_ % That is, we may write the above equa-
r
tion for mirrors as,
1 ,1_1
(2) - + -= 7
p g9 f

if the focal length is given instead of the radius of curvature. The
proof of this equation can be found in almost any textbook on
college physics. )

While the above equation (2) was written for concave mirrors
(i.e., center of curvature towards source), it holds for all types of
spherical mirrors. To make it applicable for all cases, note first
that all distances (p, q, r) are positive for a real image formed by
the concave mirror and that the object, image, and center of curva-
ture are on the same side of the pole. When the image and object
are on opposite sides of the pole, the distance of the image from the
pole is negative. Likewise the radius of curvature (or focal length)
is negative if the center of curvature and object are on opposite
sides of the pole.

While the use of the wave-front method is convenient for develop-
ing mirror and lens formulae, it is not a convenient method for
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obtaining the more exact locations and relative sizes of images.
The location and sizes of images is usually carried out by the ray
method. Figure 139 represents the geometrical construction,
using rays, for finding the image. This image we found in Figure
138 by the wave method.

1
In this case, however, the ? =
relative size O of the object M
to the image I can be ob- TW
. . q
served by referring to Fig-
ure 139. . . . /
. Fia. 139.— Construction of images in concave
A convenient set of con- mirror.

ventions as to the loca-

tion of images is given as follows: (1) Draw from any convenient
point in the object a ray parallel to the principal axis. This ray,
by definition, will reflect and pass on through the principal focus;
(2) draw a ray starting from the same point in the object, through
the center of curvature. This ray will be reflected back along its
same path. The image of the given point in the object will be
found where these lines meet. Usually the two end points of the
object are sufficient for the location of the whole image. In fact,
if the image is considered perpendicular to the principal axis and
half of the object is above the prinecipal axis and the other half
below, then the image is readily located by drawing the two lines
mentioned above from one point only.

It will be noticed that the image in Figure 139 is inverted. This
always happens when the two rays of light actually meet after
reflection from the mirror. We ecall such an image, which is
formed by the actual crossing of the rays, a real image. Images
formed by rays which appear to cross, but actually do not, are
called virtual images. They are always erect.

It may be shown that the ratio of the magnitude of the image
to the object is given by the relation.

I _q
Z=94=pM,
0 p
where M is generally called the magnification.
The following general diagrams on the next page may be found
felpful in the construction of images formed by mirrors in specific
cases :
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CONCAVE MIRRORS

Example1. If p > r,

then r>q>f,
and -(15 <1 (Fig. 140)

—_— )
l ) % .

Fia. 140. Fia. 141,

Example 2. Iir > p > f,
then q>r,
I

5> 1 (Fig. 141)

e
Fia. 142.
Example 3. 1f p </,
then ¢ is on the opposite side of the mirror and is negative
numerically. (Fig. 142)

CONVEX MIRRORS

Example 4. 1f o >p >0,
then g <l/J.
i"_‘:}lt_}____
r
> \
Fig. 143.

For these mirrors, the numerical magnitudes of r, f, and ¢ are
negative. (Fig. 143)
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LENSES
Now, consider a plane wave advancing towards a double convex

lens (Fig. 144) as shown in the diagram. Upon passing through
the lens, it will come

to a focus at a point

on the principal axis T

called the principal Cs JIF— c
focus, which is at a _‘_

distance f from the
center of the lens. The Fic. 144. — Double convex lens with source at
X R o an infinite distance.
direction of the ray of
the advancing wave is parallel to the principal axis, which is
defined as a line, joining the two centers of curvature (C, and Cy)
of the spherical surfaces of the lenses.
If we consider a wave front (see Fig. 145) starting from a source
P at a distance p

/ from the center of

/ the lens, it will, upon

_r ¢ &G Q passing through
DE—— Atf\w——f;—l———~—» the lens, refract

T ? / L (dotted curve) so as

. nverge
F1e. 145.— Double convex lens with source at finite to_ co g. t(? a
distance. point @ which is a

distance of ¢ units
from the center of the lens. The relation between p, ¢, and f is
known to be

3) Ly1.1

where 1 p g lf {

i Lot n(+ )
f T T2

This formula holds not only for converging lenses, which are
thick at the center and thin at the edges, but also
for diverging lenses, which are thin at the center and
thick at the edges. A common form of a diverging
lens is the double concave lens shown in Figure 146.
As in the case of mirrors, if any of the distances Fiq. 146.—
(i.e., q, f, r, r2) are measured in a direction com- Double con-
pared to the source, opposite to that shown in Figure °*V® lens.
145, the sign becomes negative. Thus the focal length of a convex
lens is positive, while that of a double concave lens is negative.
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While the formula for a lens is readily obtained from the curva-
ture of the wave fronts, the geometrical construction of images
is, again, more readily obtained by use of the ray, or geometrical
method. We will redraw Figure 145, using the ray method. Our
new figure (Fig. 147) shows the object, of size O, at a distance p

from the center of the

2 ! lens. The method
N ’ of locating the im-

age of size I is as
—f—— \\J’._\;_\i follows: (1) Draw
¢ = "\ from some point in

the object a ray
parallel to the prin-
cipal axis. It will pass through the focal point; (2) draw another
straight line, starting from the same point O, through the optical
center of the lens and continue this line until it crosses the other
ray which was refracted. If the object is perpendicular to the
principal axis and symmetrical with it, the location and size of the
image can be drawn without further image construction.

The optical center N is the point through which the light passes
from one side of the lens to the other without change of direction.
There is a lateral displacement but this is negligible for thin lenses.

Just as in the case of mirrors, real images are inverted and the
refracted rays actually intersect. Virtual images are erect and
the refracted rays only appear to intersect.

It may be shown that the ratio of the magnitude of the image
to the object is o I ¢

D

Fic. 147.— Construction of images in a convex lens.

0 »
The following general examples are given tor rererence :

CONVERGING LENSES

Example 1. 1If w>p>2f
then f<g<2f,
and 51 <1 (Fig, 148)
o

fI

Fic. 148.
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Example 2. 1If 2f>p >,
then 2f<qg< o,
and é > 1 (Fig. 149)
|

Fia. 149.
Example 3. If f>p>0,
then w >q>0,
and ¢ is negative 'and the image virtual. (Fig. 150)

~
\‘\.

X
*y

Fra. 150.

DIVERGING LENSES

Example 4. 1If w>p >0,
then f>q¢>0, (Fig. 151)
where both f and ¢ have negative values and the image is virtual.

Fia. 151.

EXPERIMENT 48
THE BEHAVIOR OF LIGHT AT A CURVED SURFACE
A study of the reflection and refraction at curved surfaces.

Part (a). To determine the radius of curvature of a concave spherical
mirror by means of parallaz.
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Part (b). To locate, in general, any image by the method of parallaz.
Part (c). To determine the focal length of a double convex lens.

Apparatus. Mounted concave mirror, two mounted pins about four
inches in length, ruler, optical bench, convex lens, illuminated object,
screen.

Part (a). From the equation for mirrors, it is scen that, for a
concave mirror, when the object is at the center of curvature, the
image will be formed at the same place. Hence, place a pin in a
movable block and slide it towards the coneave mirror until a
position is reached such that there is no observable parallax
between the pin and the inverted image of the pin as observed in
the mirror. The distance from the pin to the center of the mirror
gives the radius of curvature of the mirror. Repeat the adjust-
ment two or more times.  Record all data.

Part (b). Place a pin in front of your concave mirror so that
its distance p in front of the mirror is greater than its radius of

- curvature r (Fig. 152). Locate the

image of this pin by means of paral-

lax. That is, place another pin

where you think the image of the

object O should be. Move your

S — head back and forth. The image

) » e is located where this latter pin and
Fia. 152. — Concave mirror. . . :

image do not displace relative to

each other upon to-and-fro motion of the head. Measure the dis-

tance p of the object, and the distance ¢ of the image from the

mirror and calculate r from the equation

1 ,1_2

p q T
Repeat for two or more positions of the object O, and find the
average value of . What is the value of f?

Part (¢). For this experiment, we have a source of light S, an
illuminated object O, say a copper grid, and a screen on which
the image I can be formed. These are all mounted on an optical
bench (Fig. 1563). When the copper grid is illuminated, an image
will form on the screen with the lens in some position such as
(1) in the figure, provided the distance d between O and I is such
that d > 4f. This image will be larger than the object. Now
move the lens to some position such as (2), when another image.
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but this time smaller than the object, forms. This second image
formation is to be expected, because of the symmetrical relation

between pand ¢ 4 . Sereen
in the lens for- 2 e—a @
2 :
mula. We also s .
see that position * )
. B s
(2) of the lens is ¢ - If ]
thesame as would IL I e
Mc. 153. — Location of an image with a convex lens.

be obtained if the
illuminated object and screen were interchanged. Because of this
symmetry, our measurements consist of finding the distance d and
the distance @ between the two positions of the lens. Then, for
purposes of calculation, if we consider the lens in position (1), we
have that

p=%d—a),
and
¢=13 (d+ a);
and thus obtain for the focal length f,
_ d2 —_ a2.
F="%a

Repeat two or more times with different values for d.

The above gives a very accurate method of finding the focal
length. If a distant illuminated object is available, compare the
"focal lengths obtained directly with the above experimental
method.

If the distance d is very much greater than 4 f, then the image
formed in the one case will be too large to focus sharply, and in
the other case too small to be seen.

QUESTIONS

(a). Did you notice whether there was a tendency for the image of the pin
to bend at the edges of the concave mirror? To what is this due if such an
effect exists?

(b). What is the per cent of error from the mean for your average values
of 7, the radius of curvature, as obtained each in Part (a) and in Part (b) of
your experiment ?

(c). Represent by a diagram, drawn to scale, the distance of the image
and object from the mirror and the relative sizes of the image and object for
any one experiment of Part (b). Indicate plainly which set of data you used.

(d). What happens in Part (¢), (1) ifd =4f, (2)ifd <4f?
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PROBLEMS

1. Show by use of the formula for spherical mirrors that one would expect
the image to appear at a distance bchind a plane mirror equal to the distance
of the object in front of the mirror.

2. When an object is placed 10 em. in front of a concave mirror, the image
of that object appears, by the method of parallax, to be 15 cin. behind the
mirror. Is the image real or virtual, erect or inverted? What is the radius
of curvature of the concave mirror? Find also the position of the image
graphically.

3. Prove for a double convex lens, the equation

Lilow-n(t+1)
r g T2
by the wave-front method (z.e., the sagitta method).
4. Show that for'Part (b) of Experiment 48,
_d —a
/ 4d
6. Tn Example 3 on page 231, let p = 10 cm. and f = 15 cm. How far is

the image from the lens? Draw a diagram showing the image, object, and
lens position and construct the rays showing how the image is formed.

6. Suppose that the radii of curvature of the two spherical surfaces of a
given double convex lens were 12 ¢cm. each. What would be the index of
refraction of the lens if its focal length was 20 cm.?



CHAPTER XXIV

THE TELESCOPE AND MICROSCOPE

In order to see distant objects in more detail, we either bring
the object nearer to the eye or go nearer to the object. That is,
we increase the angle subtended at the eye by the object. Usually
the eye, when normally adjusted and at ease, just brings to a focus
objects at infinity onthe

retina or receiving sur- .
face of the eye ball.  osfec

. Eye
When we wish to see

objects that are closer
to the eye, the self- g (a)
focusing lens in the eye ANY
has to be made more NG

convex s0 as to bring \
the image again on the
retina. This is done \
automatically by certain S\ et
muscles attached to this . A
lens. The lvmit of accom-  #7%0° Ew
-'B
“f-

modation (t.e., distinct
vision) is usually about /
25 cm. and we shall use

this figure in our calcula- /
tions. Consequently, if
we wish to see objects
in still greater detail, a
convex lens may be
placed in front of the
eye in order to make the effective focal length of the combination
much less. This serves to decrease the distance of the object for
distinct vision, so that it may be brought much nearer and thus
subtend a much greater angle.

The effect of a single convex lens is illustrated in Figure 154,
a and b. In Figure 154 (a), an object of length AB is seen at the

235

]

i

1

1

1 -
[}

1

|

B

Fia. 154. — Magnification by a convex lens.
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limiting distance (d) of distinet vision (i.e., 25 cm.). The angle
subtended at the eye by AB isa. Now place a lens of focal length,
f, between the object and eye as shown in Figure 154 (b). Adjust
the object so that the image will appear at the limit of distinct
vision. If the lens is close to the eye so that the angular opening
at the eye is essentially the same as that at the lens, then the new
angle subtended by AB is 8. Hence we may define visual mag-
nificatior M as the ratio of the angular opening at the eye when
arded to the angular opening at the eye when unaided, t.e.,

(1) M =2

It is often convenient to work with linear magnification, espe-
cially when the instrument to be considered has a number of lenses,
al each producing a given mag-
(AN . nification. Thus, if I is the
~ length of the image pro-

\ duced by the object whose

~ height is O, then the mag-

\ a nification M, as defined

=~ before, becomes in this

oo Vv case

T e =124

~ 0 P

-~ where ¢ and p represent

o the image distance and

- . object distance respectively
ﬁlle 155. — Magnification by a 1 from the lens.

o & Y 8 convexiens:  Thus, in Figure 155,

the magnification produced by a single double convex lens is

Y

~AB _g
AB 9’
or
d
M=%4
f ’

where ¢ = d, the limit of distinct vision.
’.I‘he astronomical telescope (Fig. 156) consists, essentially, of an
objective lens (L;) of focal length F and an eyepiece (L) of focal
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length f. Since the distance of the object AB is usually great
compared to the length of the telescope, the angle « is essentially the
same as that subtended by AB with the unaided eyc. Hence, the
magnification of the image A’'B’’ over the object AB is given by

approximately, or

That is, the magnification depends upon the relative magnitudes
of the focal lengths of the objective lens and the cyepiece. The
eyepiece consists very often of a combination of lenses. This
does not change the magnification, as given above, since f now
represents the effective focal length of the combination.

The compound microscope (Fig. 157) consists essentially of an
objective lens (L,) of very short focal length (f,) and an eyepiece
(L), also of short focal length (f,). While in practice these lenses
are made up of combinations to eliminate the various defects of a
single lens, we shall treat them as simple lenses for purposes of
obtaining an approximate magnifying power.

In order to calculate the approximate magnification of the
microscope, we will first find the magnification of each lens by
itself and then multiply the two separate magnifications to obtain
the resulting magnification of the instrument as a whole. The
object (Fig. 157) of length AB is placed just beyond the focal
length (f)) of the objective. A real image of length A’B’ will be
formed at a distance ¢, from the objective. Hence the linear
magnification M,, due to the objective, is given by the expression,
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A'B _ ¢ _ ¢
M,=="" =21 =2 — 1
'"AB  p N
or, approximately,
M, = 1.
1 fl

The eyepiece is focused so that a virtual image (A”’B’’) of the real
image (4'B’) is seen at the distance (d) of distinct vision. Hence

B"
N
\\
\\
\
\B'
A L,
ﬂ"< |
B E;
L A e
/
/ "fi’
< VAN
L4 / -
be———-d 4
- I’
/
,/
II/
/
V/
A"

F1a. 157. — Compound microscope.

the approximate magnification (M,) due to the eyepiece is seen
by equation (3) to be o A"B" _d

*TAB R
and the magnification M of the microscope is

d
M = MM, = 1%,
' f1f2

Since the focal lengths f, and f, are very short, the distance g,
is essentially L, the distance between the lenses. Hence we may
write the magnification of the microscope as

Ld
M= .
fifa
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EXPERIMENT 49
THE TELESCOPE

Part (a). Magnification produced by a telescope.
Part (b). Magnification produced by a macroscope.

Apparatus: A galvanomecter telescope, two convex lenses of very
short focal length mounted for a microscope, meter stick.

Part (a). The galvanometer telescope contains an eyepiece
and cross-hair arranged to slide in another tube containing the
objective lens. Separate the two tubes and obtain the focal
length of the eyepiece and objective by forming the image of a
distant object or electric light source on a piece of white paper or
cardboard. The distance from the lens to the image is the focal
length. Repeat this measurement three or four times, recording
all readings. The object used in finding the focal length is assumed
to be far enough away so that all rays coming from it to the lens
are parallel.

To measure the magnifying power of the telescope, mark off on
the blackboard, or on some cardboard placed several feet away, a
convenient scale. View this scale through the telescope with one
cye, and directly with the other. Note the number of divisions
seen by direct vision at the board between any two divisions as
seen through the telescope with the other eye. The number of
divisions found with the eye unaided between any two divisions
as found by the other eye looking through the telescope is the
magnification (v.e., ratio of apparent to real size). Make several
measurements estimating parts of divisions, if necessary. Always
record all measurements on your data sheet. Then calculate the
mean value and error. Compare your result with the result as
found from the equation deduced above; i.e.,

F

i)

Part (b). We shall construct the optical system of a simple
microscope by means of lenses which can easily be set up on an
optical bench. Find the focal length of each lens as in Part (a).
Again repeat the measurements several times for each lens.

The magnification is found in a manner similar to that in
Part (a), with the exception that in this case the lines are ruled
close together, and placed at a distance from the objective a little
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greater than its focal length. Make several trials and check your

result with the theoretical formula,
Ld
M =12
Jufe

where d = 25 cr.

QUESTIONS

(a). Did you notice whether the image through the telescope was erect or
inverted ?

(b). How would you have proceeded to make a telescope the image of
which is inverted compared to the one you observed ?

(c). Did you notice any imperfections in your instrument? If so, describe
them in a few words.

(d). Did you notice whether your image was erect or inverted ?

PROBLEMS

1. What will be the approximate magnification of a reading glass which
has a focal length of 4 cm.? (Assume 25 cm. as the limit of distinct vision in
these problems.)

2. Given that the objective and the eyepiece of a small telescope have
focal lengths of 96 cm. and 3 cm. respectively. When viewing a distant
object, what will be: (a) the magnification? (b) the distance between the
objective and eyepiece ?

3. Suppose that a building 200 feet high is viewed through the telescope of
Problem 2 at a distance of five miles. What is the size of the image due to
the objective? What are the magnitudes of the angles o and 8 in radians?

4. Suppose that a real image due to the objective of a compound micro-
scope is formed at a distance of 30 cm. from the objective and is then magnified
by the eyepiece of focal length 1.5 em. What is the magnification? (Assume
that the focal length of the objective is 1 ecm.) How far is the object from the
objective ?



CHAPTER XXV

THE DIFFRACTION GRATING

A physicist or a chemist in trying to discover new laws and
facts in connection with the properties and behavior of matter
finds very often that the eye is very limited in its scope. Of
course this is no serious criticism when onc considers what wonder-
ful mechanisms and optical instruments our cyes really are. We
marvel more and morc when we try to extend the scope and vision
of our eyes by building optical instruments based on the physical
laws and facts familiar to us. By means of a telescope we can
extend the limit of vision of the eye into larger distances, and by
means of a microscope we can extend our limit of vision into
smaller dimensions. In either case, however, the result achieved
is insignificant compared with the fact that our eyes can sce at all.
Just imagine how interesting it would be if our eyes could see
dimensions of the size of molecules of matter.

The diffraction grating is just another optical device, or part
of an optical instrument, designed to aid our eyes in * seeing ”’
smaller dimensions. The distances which interest us here are
the wave lengths of light waves. By means of a diffraction
grating wave lengths of the order of 0.00005 cm. or even smaller
can be measured with great accuracy. Very often a grating is
used for the same purpose for which a prism would be used;
namely, the breaking up of a complex light beam into its constitu-
ent colors or wave lengths in order to identify the nature of the
source emitting the light beam.

A grating consists essentially of a number of very narrow and
evenly spaced slits. The width of a slit or line is of the order
Tosos Of an inch. The difficuliies of constructing or ruling such
a grating are quite large and there are in existence only a very few
machines capable of ruling such fine lines with accuracy. Depend-
ing upon whether the lines are ruled on a glass surface or a metal
surface, the light either passes through, or else is reflected from,
the surface. The former is known as a transmission grating, the

latter as a reflection grating.
241
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For a detailed description the student should refer to a text.
A few equations necessary to clear up the experimental procedure
will be derived here. Let AB (Fig. 158) represent a cross-section
of a transmission grating with light falling normally on the surface
from the left. The light, after emerging from the slits, produces
little wavelets according to Huyghen’s
—~ principle which in turn produce a wave
7 o front. It is easily seen that a wave front
_LP;;\\I travels in direction ®. If necessary, this
wave front can be converged by means

| ®

| \\ of a lens to form a real image at the

I \\ focus of the lens. There are, however,
N O

) other directions in which wave fronts

\ may be formed. In a direction desig-

Fie. 158. — Transmission  pated by (O in the diagram it would be

grating. possible to have reinforcement of the light

waves from the various successive slits, if the difference in path

is just equal to onc wave length of light (). Along this direction

(D then, it is possible to get another image produced. Thisis called

the first order image. It is easily scen from Figure 158 that X = d

sin 0 where d is the distance between two slits or lines, and § = angle

between the direct image ® and the first order image (D. Similarly

if the difference in path is n\, we get the nth order image and hence
in general we have,

(A) n\ = d sin 6.

In practice it is found that the higher orders get so faint as to
be invisible. The case treated above assumes that all the light
coming through the slits is of one wave length. This is never the
case. Consequently, the image as seen really consists of several
images close together, but coming together in slightly different
directions. We usually say the light beam is spread out into a
spectrum.

Let us suppose then that the problem is to find the wave length
of a certain color. It becomes necessary only to measure § in
Equation A, since the distance d is usually known from the maker
of the grating.

Method of minimum deviation.! There is another way of using
a grating to measure a wave length. The reason for the necessity

B

1See L. W. Taylor's College Manual of Optics, page 57.
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of any change or refinement in the previously outlined method
is caused by the experimental difficulty, for it requires very elabo-
rate adjustments in order to be quite sure that the beam of light
coming from the left falls normally on the plane. These adjust-
ments for accurate work are, of course, necessary and are usually
studied in a more advanced course.

Using the idea of minimum deviation (compare with the case
for a prism in Chapter XXII), let us suppose that light (Fig. 159)
is coming in parallel rays
from the left in direction
S, making an angle 7 with
the normal to the grating.
The angle § is the devia-
tion, .., the angle be-
tween this direction and
the direction in which the
first order image will be
formed. If ¢’ is the angle
between the diffraction image (@) and the normal, it will easily
be seen from the above figure that

6 =1+1.
Now, as before, using Huyghen’s principle, it follows that if the
difference in path between the two beams, from the corresponding
parts of the consccutive slits K and K’, is n\, then we will have

the various order of spectra formed in directions O @) etc., when
n has the values 1, 2, 3, ---.

Fig. 159. — Transmission grating.

Hence a 4+ b = a\ for reinforcement.
But a =dsint, and b = dsin.
~onh = d(sin1 + sin¢’)

by using the theorem in trigonometry :
A+ B, A—B

2 T3

We can therefore write in this case,
7+ i — 1.

nN = 2dsin——2—cos 5

sin A + sin B = 2sin

Now in order to find the minimum value of § = ¢ + ¢/, we solve
for this quantity, viz.,
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2 =7
COS

P M ) 1
B) sin 5

2
Now & will have a minimum value when equation (B) is a minimum.
S,
1T —1

This will be the case when cos has its maximum value since

. . 1 —1
n and A remain constant. The maximum value for cos 5 = 1,

N4
Y = 0. Consequently i =i’ =2 is

N los

and this occurs when Z;

the condition for minimum deviation.

1f we, therefore, use this condition of minimum deviation, then
general equation (A) becomes
©) n\ = 2d sin 56

It is consequently not necessary, in performing the experiment,
to arrange the grating normal to the beam since we can measure
the position of minimum deviation. The position is easily found,
by slightly rotating the grating around a vertical axis, when it
will be seen that the first order image will move to an extreme
position and return. This extreme position is the necessary posi-
tion. Thus having measured §, it is only necessary to apply the
equation (C).

Finally, another method for finding the angle of deviation is
to set the grating by eye as nearly normal as possible to the
incident beam. Then, find the position of the first order image to
the left of the direct image and the first order image to the right.
Having read the angular scale readings for both those positions,
find the angle by subtraction. This will be twice the angle of
deviation 6. Then apply equation (A), namely, n\ = dsin 6,
since we are not here dealing with the case for minimum deviation.

[Note. The student should verify for himself that this angle
will be double the angle of deviation — assume that incidence is

not normal.]
The wave length of a light ray is very often stated in * angstrom

units,” 18A.U. = 1 cm.

LigHT SOURCES

The grating, as we have seen, will spread out the light coming
from a source into its characteristic spectrum. For a detailed
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description of the various types of spectra the student should refer
to his text. In the laboratory the three main types of spectra,
1.e., continuous, absorption, and line spectra, should be produced
and compared.

A continuous spectrum is obtained from sunlight, or, if this is
not possible, from an incandescent tungsten lamp, placed before
a slit and its light focused on the slit, the latter acting as source.

A line speetrum can be produced by a bunsen burner having in
the flame various salts of such elements as sodium, potassium,
etec. A mercury arc placed in a corner of the room and having
its light focused on the slit serves admirably. A necon- or hydrogen-
filled glass tube with sealed-in electrodes, which has an electrical
discharge through it, will furnish further spectra for purposes of
comparison or calibration.

An absorption spectrum is perhaps best typified by the famous
absorption lines (Fraunhofer lines) in the sun spectrum. Another®
example consists in a source of continuous spectrum (say an electric
lamp) of which the light has passed through various absorbing dye
solutions or filters.

EXPERIMENT 650
THE WAVE LENGTH OF LIGHT

To measure the wave length of light using a diffraction grating mounted
on a grating table.

Apparatus: Grating table, grating, slit, sodium burner, meter rule.

The arrangement is as shown in %8
Figure 160. A source of light giv- _Z 4
ing out monochromatic rays (e.g., a N \
sodium burner) is placed at S. A N \
slit of width about 1 or 2 mm. is AN \
placed in front of S. A grating AN
is placed at G normal to the light O\
coming from 8. On placing the eye NE
in front of the grating and looking A%@

along directions @ I, and @ I,
several images I, and I,, ete., of @
the slit will be scen. The eye serves  Fia. 160. — Grating table.
the purpose here of focusing the

beam emerging from the grating on the retina of the eye.
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These images correspond to the first and second order images
as described in this chapter. The angle 6 is the angle of deviation
of the beam of light coming from S.

In this experiment the data should be taken with the following
points in mind :

1. To get a measurement on as many orders of images as is
possible.

2. To measure the angle 6, or else the sin 6, and calculate the
wave length in em. and angstrom units for each order. [Note.

. oI,
Sine 0 = ?TG]

3. Place (7 at various distances from S. Repeat all observations
under (1) and (2).

4. If another source is available, repeat all three parts, (1), (2),
and (3).

[Note. The student should learn to make out a complete table
for data before taking any readings — obtain the value of d from
the instructor and calculate the wave length from equation (A).]

QUESTIONS

(a). What effect would you notice in the readings if the grating had ten
times as many lines per inch?

(b). What fact did you observe about the intensity of the higher orders of
the spectrum?

(c). What is the effect of a shorter wave length on the angle 07

EXPERIMENT 561
A STUDY OF SPECTRA

To study vartous types of spectra and to measure the wave length of
some lines tn line spectra.

Apparatus: Grating spectrometer, several light sources, grating.

The instrument used in this experiment is called a spectrometer.
A diagram of the essential parts is shown in Figure 161. The
purpose of the collimator is to make a parallel beam out of the
light coming from the slit S which now acts as a source. The
function of the telescope is to converge the parallel beam after
having passed through the grating to a point. The eyepiece
assists in observing this image.
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Important. Don’t touch the spectrometer until the following
instructions have been carefully studied. Before touching or turning
any adjustment screw, be sure to learn what the screw is for.
The spectrometer, as you receive it, will have had several adjust-
ments requiring much time and skill already made. Do not upset
these adjustments by turning a wrong screw. This is particularly
true of the telescope and collimator which have already been
focused for you. Let the instructor tell you which controls you
have to manipulate. Before starting the experiments, be sure
that you can read the scale and vernier.

The procedure in performing this experiment should be as
follows :

1. Note that the telescope arm is controlled by two thumb-
screws, & clamping screw, and a slow-motion screw. Never force
these screws — a slight pressure is suf-
ficient. Note that the clamping screw
must be screwed in before the slow-
motion serew has an effect. Practice
reading the angle on the scale for
various settings of the telescope.

2. Note the clamping screw and
slow-motion device on the center grat-
ing table.

3. Note the slit end of the collimator
—a knurled screw around@v the end
enables one to adjust the slit width.

4. A source (e.g., sodium flame or
incandescent bulb) is set up so as to form an image of the source
on the slit, cither by means of a lens, as shown in Figure 161 or by
means of a concave mirror, as shown
in Figure 162, large enough to cover
the slit opening. If a concave mirror
is used, the mirror should be placed
in line with the axis of the collimator.

5. See that the slit is partly open,
turn the grating until it is approxi-
F1a. 162. — Mirror for focusing mately at right angles to the collima-

light in collimator. tor and clamp.
. p

6. Locate approximately with the eye the direct image (exactly

in line with the collimator).

Eye-piece

Fig. 161. — Grating spec-
trometer.

e Collimator  fpzryor

-
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7. Set the telescope in this position and locate the cross-hair,
which is observed when looking through the telescope (using the
slow motion) exactly at the middle of the image. For this purpose
the slit must be narrowed down so that this setting can be made
accurately. Take a reading on the scale.

8. Now unclamp the telescope and move it slowly around to
the left. Make a note of what you observe. Repeat to the right
of the initial position and record all observations. Note also
what the effect is of widening or narrowing the slits.

9. In order to find the position of minimum deviation, set the
telescope on the first image to the left. Now loosen the clamping
screw on the grating table and turn the grating slowly in one
direction, noting the movement of the image through the telescope.
The position of minimum deviation is thus easily found and the
cross-hairs set on this position. Then clamp telescope and grating
table.

10. Record the setting as read on the scale. Now go back and
check the direct image setting. To do this unclamp only the
telescope (leaving grating set) and get a reading for the direct
image. The difference between the two readings gives the angle
of minimum deviation.

Having mastered the technique of the instrument, take the
readings necessary to fill in the table below.

The observations found in (7) and (8) are used to calculate the
wave length from equation (A). The position of minimum devia-
tion, as found from (9) and (10), requires, of course, the use of
formula (C) in the calculation of the wave length A.

DATA
Part (a). Grating has .. .. lines per inch, . d...... cm.
Method of double angle:

READ- | READ-

ParTIC- VaLoe READ- |ING FOR|ING FOR DousLe | ANaLe
ULAR A8 vG or | Firsr | Firsr || ANGLE |OF De- A
SoURCE | |, GIVEN oF DE- |viaTion| Usina | Re-
INE Dikect | ORDER | ORDER
Usep M IN VIATION (A) IN | MARKS
BAS- |m hrms IMAGE | IMAGE | IMAGE d—= 0=9 | AU
URED AU (a) Lerr | RiaRT b = 2 s
(AU) (®) = (o)

(®) (c)

Sodium | Yellow
burner

Copper
are
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Method of minimum deviation :

A IN AIN
PaARTIC- | VALUE R READ- | REaD- A.U. A.U.
. EAD- y U ¢ Ave
SOURCE ULAR A8 ING op [ING FOR|ING FOR SING ALCU-| AVER- | p.
UsEep LiNe | GIVEN |y eoc | First | SECOND || C CAL- | LATED | AGE A MARKS
Meuas- IN IMAGE ORDER | ORDER || curaTED| FrROM |IN A, U.

IMAGE IMAGE [[FrROM 18T 2ND
OrDER | ORDER

URED | TABLES

Sodium | Yellow
burner

Part (b). Investigate the types of spectrum obtained from
incandescent bodies such as a tungsten wire in a bulb — or if
possible use the sun as a source. Note how many orders are
visible and write down any further observations as to similarities
and dissimilarities with other types of spectra in Part (a).

Part (c). Place various filters or absorbers before the source
and note the effect produced on the spectrum. Record any ob-
servations that you may make.

QUESTIONS

(a). Classify the spectra as found in Parts (a), (b), and (¢) under the
headings: continuous, absorption, or line spectra.

(b). In each case how many orders of spectra were visible?

(c). Explain why the higher orders get weaker and weaker.

(d). How could the angle of minimum deviation be increased for a par-
ticular order of a spectrum ?

(e). Do your results under Part (a) show whether the double angle or the
angle of minimum deviation method is better?

PROBLEMS

Experiment 50

1. Distinguish between a continuous spectrum, absorption spectrum, and
line spectrum, both as regards appearance and also with respect to their
physical interpretation. (See any textbook on ‘ types of spectra.”)

2. Prove that for a diffraction grating, n A = d sin 6, where 6 is the angle of
deviation for a beam incident normal to the grating.

3. What must be the wave length of 2 monochromatic beam of light if it
falls normally on a grating and after having passed through the grating forms
an image of the slit 10 em. distant from the direct or central image on a
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screen? The screen is 50 cm. away and the grating has 10,000 lines per inch,
the screen being parallel to the grating.

4, At what distance from the central image will the third order image be
formed in the grating and screen of Problem 3?

Experiment 51

6. Prove that the second method, described in the theory for finding the
angle of deviation if the grating is not at right angles to the beam, gives the
correct deviation if we read the positions of the first order images on each side
of the central image and then divide this total angle by two.

6. Prove that for the position of minimum deviation

. b
n\=2d =
smz

7. Find the wave length of a monochromatic source in centimeters as well
as angstrom units, given that the angle of minimum deviation for the sccond
order spectrum is 60° when the grating has 10,000 lines per em.

8. Write down the ranges of wave lengths in centimeters and in A. U. for
the regions of the spectrum usually designated by ultraviolet, visible, infra-red.
(Look up the wave lengths in a textbook.)



APPENDIX

Tue TriconoMETRIC FUuNcTIONS FOR 30° 45°, anp 60°

In any right-angled triangle :

The sine of an angle — side opposite,
hypotenuse

The cosine of an angle = side adjacent,
hypotenuse

side opposite

T ont of angle = — -
he tangent of an angle side adjacent

D B
Fia. 163.
FunNcrioN 0° 30° 45° 60° 90°
. 1 1 V3
Sine 0 - —= -2 1
2 V2 2
. V3 1 1
Cosine 1 2 S ~ 0
2 V2 2
Tangent 0 L 1 V'3 ®
en =
£ N
MiscELLANEOUS

The circumference of a circle (radius r) = 2 7.

The area of a circle (radius r) = xr2.

The area of the surface of a sphere (radius r) = 4 =r2.
The volume of a sphere (radius r) = 4 =3,

1 mile = 5280 feet 1 kilometer = 1000 meters

1 foot = 12 inches 1 meter = 100 centimeters
1inch = 2.54 centimeters 1 centimeter = 10 millimeters
1 meter = 39.37 inches 1 pound = 453.6 grams

1liter = 61.0 cubic inches 1 kilogram = 2.205 pounds
251



FOUR PLACE LOGARITHMS

N|jo|l1|2 (3|4 5|6|7|8|9|123/456|T7809
101/0000{ 00£3{ 0085 0128{ 0170| 0212| 0253{ 029 0334 0374| 4 812 | 17 21 25 | 2953 37
11 ||0414] 0453| 0492/ 0531| 0569] 0607| 0645{ 0682( 0719/ 0755 4 8 11| 1519 23 | 2630 34
12 (10792{ 0828) 0864/ 0599] 0933 0969|1004 1038/ 1072 1106{ 3 710 | 1417 21 | 24 28 31
13 (| 1139{ 1173) 1206| 1239) 1271| 1303| 1335 1367| 1399 1430| 3 6 10| 1316 19 | 2326 29
14 (11461 1492| 1523 1553 1584| 1614| 1644 1673/ 1703/ 1732{ 3 ¢ 9| 121518 | 2124 97
15 (11761 1790| 1815 1847| 1875| 1903|1931/ 1959, 1957/ 2014 3 6 8| 1114 17 | 20 2225
16 (| 2041 2068) 2095 2122| 2148 2175| 2201( 2207| 2263( 2279 3 & 8| 1113 16| 18 2124
17 (12304 23301 2355 2380| 2405 2430| 2455 2480/ 2504| 25291 2 5 7| 1012 15| 17 2022
18 {| 2663{ 2577) 2601| 2625) 2648] 2672| 2695( 2718) 2742( 2765| 2 5 7| 9 1211 161921
19 || 2788 2810| 2833| 2856| 2678| 2000| 2923| 2045| 2967/ 2089| 2 4 7| 9 11 13| 151820
201/3010| 3032 3054| 3075( 3006| 3118 3139] 3160/ 3181/ 3201( 2 4 6{ 8 1113 | 1517 19
2113299] 8243| 3263) 3284| 3304| 3324| 3345|3365/ 3385 3404/ 2 4 6| 8 1012 | 141613
22| 3494] 3414 3461 3483{ 3502| 36221 3541] 3560( 35791 35981 2 4 6| 8 1012 | 141617
23 (| 3617| 3636| 3655| 3674| 3602|3711 3720| 3747|3766/ 3784| 2 4 6| 7 9 11| 131517
24 11 3802| 3820/ 3838| 3856| 3874 3802| 3009 3927| 3045/ 3962{ 2 4 G| T 9 11| 121416
25 || 30791 3097 10141 4031 4048( 4065| 4082 4099/ 4116/ 41331 2 4 5| T 9 10| 1214 16
26 || 4100] 4166 4183| 4200| 4216| 4232 4249) 4265/ 42814298 2 3 5| 7 8 10| 111315
27 (14314 4330| 4346/ 4362 4378] 4393 4400 4425/ 4440|4456/ 2 3 5| 6 8 9| 111214
28 (44721 4487| 4502 4518( 4553 4548| 4664( 4579|4594/ 4609( 2 3 5| 6 8 9| 111214
29 || 4624] 4639 4651| 4669{ 4683) 4698| 4713 4728/ 4742/ 4757/ 1.3 4| 6 7 9] 101213
| 80/14771) 4786| 4800 4814| 48201 4843| 4857/ 4871|4886/ 4000| 1 3 4| 6 7 9101113
31|4914| 49281 4942| 4955 4969] 4983| 4997| 5011/ 5024/ 5038 1 3 4| 5 7 8| 101112
32115051} 50G5{ 50791 5092{ 5105 5119| 5132| 5145/ 5159/ 5172 1 3 4| B 7 8| 91112
3315185| 5198| 5211| 5224| 5237 5250| 5263| 5276|5289/ 5302{ 1 3 4| 5 7 8| 91112
34 || 5315| 5328| 5340| 5353| 5366( 5378( 5301 5403/ 541654281 1 2 4| B 6 8| 91011
85 || 5441 5453) 5165| 5478| 5490| 5502 5514| 5527|5530/ 6651) 1 2 4| 5 6 7| 91011
36 || 5663| 5575/ 5587| 5599 5611| 5623{ 5635|5617/ 5658 5670/ 1 2 4| 5 6 7| 81011
37 || 5682| 5604| 5705| 5717| 5720| 5740 BT52| 5763\ 5775/ 5786 1 2 4| 5 6 T| 8 911
38 1| 5798{ 5809| 5821 B8i32| 5843| 5865 b8G6| 5877|5388 5890 1 2 3| 5 6 T| 8 910
39|(5911] 5922 5933| 5044| 5955| 5O66| 5ITT| 5988( 5999/ 6010/ 1 2 3| 4 5 7| 8 910
4016021 6031 6042 6053|6064 6075 6085{ 6096/ 6107 6117| 1 2 3| 4 5 6| 8 910
411(6128) 6138/ 6149| 6160| 6170| 6180| 6191/ 6201/6212( 6222 1 2 3| 4 5 6| 7 8 9
42116239| 6243| 6253| 6263| 6274| 6284| 6204|6304/ 6314/6325] 1 2 3| 4 5 6| 7 8 9
4316335| 6345 6355| 6365| 6375| 6385| 6305|6405/ 6415 6425) 1 2 3| 4 5 6| 7 8 9
44 116435| 6144/ 6454| 6464| 6474|6484 6493|6503/ 6513(6522| 1 2 3| 4 5 6| 7 8 9
45 1| 6532| 6542/ 6551| 6561| 6571 6580 6790{ 6599/ 660916618 1 2 3| 4 5 6| 7 8 9
46 || 6628| 6637 6646| 6656 6665| 6675| 6684{ 6693 6702/6712{ 1 2 3| 4 B 6| 7 7 8
47 |1 6721| 6730/ 6739| 6749| 6758| 6767 6776|6785/ 6794|6803/ 1 2 3| 4 & 6| 7 7 8
48 1| 6812| 6821| G830| 6839 6348| 6857| 6866( 6875/ 6854/6893| 1 2 3| 4 5 6| 7 7 8
4916902 6911| 6920| 6928| 6937| 6946| 6955|6964/ 6972/ 6981/ 1 2 3| 4 4 5| 6 7 8
50 || 6990f 6998) 7007| 7016) 7024| 7033| 7042| 7050/ 7059/ 7067/ 1 2 3| 3 4 B| 6 7 8
51117076 7084/ 7093| 7101 7110| 7118) 7126{ 7135/ 7143{ 7152| 1 2 3| 3 4 5| 6 7 8
52| 7160| 7168| 7177| 7185/ 7193| 7202 7210{ 7218 7226|7235/ 1 2 3| 3 4 5| 6 T 7
53||7243) 7251| 7259| 7267| 7275| 7284 7292{ 7300 7308( 7316| 1 2 2| 3 4 5| 6 6 7
B4 || 7324| 7332 7340| 7348) 7356 7364| 7372| 7380|7388/ 7306/ 1 2 2| 3 4 5| 6 6 T
Njoj1|8}8)4|5 |6 |7)|8|9|122|45¢6|789
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NATURAL TRIGONOMETRIC. FUNCTIONS

(}?{:;N SiNg CosINE TANGENT G{f}g;ﬂ SINE CosiNE | TANGENT
0 000 1.000 000 46 719 695 1.03
1 017 1.000 017 47 731 682 1.07
2 035 999 035 48 743 669 1.11
3 052 999 052 49 755 656 1.15
4 070 998 070 50 766 643 1.19
H 087 996 087 51 777 629 123
6 104 994 105 52 788 616 1.28
7 122 992 123 53 799 602 1.33
8 139 990 140 54 809 588 1.38
9 156 988 158 55 819 574 1.43
10 174 985 176 56 829 559 1.48
11 191 082 194 57 839 545 1.54
12 208 978 213 58 848 530 1.60
13 225 974 231 59 857 515 1.66
14 242 970 249 60 866 500 1.73
15 259 966 268 61 875 485 1.80
16 276 961 287 62 883 469 1.88
17 292 956 306 63 891 454 1.96
18 309 951 325 61 899 438 2.05
19 326 945 344 65 906 423 2.14
20 342 940 364 66 913 407 2.25
21 358 934 384 67 920 301 2.36
22 375 927 404 68 927 375 2.47
23 391 920 424 69 034 358 2.60
24 407 913 445 70 940 342 2.75
25 423 906 466 71 945 326 2.90
26 438 899 488 72 951 309 3.08
27 454 891 509 73 956 292 3.27
28 469 883 532 74 961 276 3.49
29 485 875 554 75 966 259 3.72
30 500 866 577 76 970 242 4.01
31 515 857 601 77 074 225 4.33
32 530 848 625 78 978 208 4.70
33 545 839 649 79 0982 191 5.14
31 559 829 674 80 985 174 5.67
35 574 819 700 81 088 156 6.31
36 588 809 726 82 990 139 7.11
37 612 799 754 83 992 122 8.14
38 616 788 781 84 994 104 9.51
39 629 777 810 85 996 087 11.4
40 643 766 839 86 998 070 14.3
41 656 755 869 87 999 052 19.1
42 669 743 900 88 999 035 28.6
43 682 731 932 89 1.000 017 57.3
44 695 719 966 90 1.000 000 0
45 707 707 ; 1.000
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(Boldface numbers refer to Experiments.)

Absolute humidity, 122
Absolute scale of temperature, 94
Absolute system, 2
Accommodation, limit of, 235
Accuracy, of a result, 9
of instruments, 16
Actual mechanical advantage, 57, 59
Addition of quantities having errors, 8
Adjusting the legs of a spherometer, 26
Adjustment on a fine balance, 32
Air thermometer, 95
Alternating e. m. f., production of an,
195
Ammeter, calibration of, 160, 183
construction of, 148, 149
Ampere, 137, 138
Amplitude of a wave motion, 204, 205
Angle of contact, 114
Anode, 181
Antinode, 205
Archimedes’ principle, 88
Arithmetic mean, 5
Average error, 6

Balance, fine, 31
platform, 31
resting point of, 33
rider of a, 32
spring, 30
Ballistic galvanometer, 193, 195
Bending of beams, 64, 67
Boyle’s law, experimental proof of, 97
graphical representation of, 12

Calibration, of a thermocouple, 187
of a voltmeter and ammeter, 160

Calipers, inside and outside, 18
micrometer, 21
Vernier, 18, 23

Calorie, 101

Calorimeter, 102, 104

Calorimetry, 101

Candle power, 216

Capacities, comparison of, 196

Capacity, 191
definition of, 192
Capillary action, 113, 114, 117
Capillary tubes, how to make, 118
how to fill, 120
Cathode, 181, 183
Center of gravity, determination of,
b4
Center of percussion, 75
Centrifugal force, 77
C. g. s. system, 2
Charging by friction, 126
by induction, 128
Chemical cffect of an eleetric current,
138
Circular motion with constant speed,
72
Cleaning solution, 89, 115, 183
Cocfficient, of expansion, 93, 94, 98
of friction, 49, 62
Coincidence on a Vernier, 19
Components of a vector, 45, 48
Compound pendulum, 75, 81
Concurrent forces, 46
Condensation, 204
Condenser, charge in a, 191
Condcnsers in series and parallel,
192 :
Conduct in the laboratory, 2
Conductivity, 162
Constantan, 164
Copper coulometer, 183
Copper plating, electrolytic solution
for, 182
Coulomb, the, 191
Coulomb’s law, 127, 130, 190, 191
Coulometer, silver, 138
copper, 183
Current, definition of, 192
Currents in two parallel branch resist-
ances, 155

Daniell cell, 178, 179
D’Arsonval galvanometer, 140, 141
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Density, definition of, 87
determination of, 88
linear, 208
units of, 87
Dewar vessel, 103
Dew point, 122
determination of relative humidity
by, 123
Diameter of capillaries, measurement
of, 119
Dielectric, 126
Diclectric constant, 190
Dafference of potential, 128
Dimensions, 3
Dircctions for plotting a graph, 13
Division of quantities having errors,
9, 10
Dyne, 2

Earth’s horizontal intensity, 143
Efficicney of a machine, 57, 58, 59, 61
Elasticity, 63, 64
Young's modulus of, 64
Elastic limit, 63
Electric charges, 131, 191, 195
Electric current,
chemical effect of, 138
definition of, 137
heating effect of an, 139
magnetic effect of an, 139
measurement of an, 138
Electric field, 126
characteristics of the, 127
strength of the, 127
Electric properties of materials, 126
Electrochemical equivalent, 182, 184
Electrodes, 181
Electrolysis, 181
Electrolytic cell, 181
Electromotive force, induced, 194, 199
of a cell, 178
Electrons, part played in charging by,
126
Electrophorus, 128, 131
Electroscope, 129, 131
Eppley cell, 175
Equilibrium of a particle, 44, 46, 49
of a rigid body, 44, 48, 64
Errors, accidental, 4
in addition, 8
in indirect measurements, 8
in multiplication, 9
in squaring, 10

INDEX

instrumental, 5
in subtraction, 8
in taking a square root, 10
maximum possible, 6
observational, 17
parallax, 4, 17
per cent, 5, 7, 8, 10
personal, 4
probable, 5
root mean square, 7
systematic, 4

Expansion, linear coefficient of, 93, 94,

98, 99

pressure cocfficient of, 94
volume cocflicient. of, 93, 94, 96

Farad, definition of the, 191, 192

Faraday, the, 182

Faraday’s Laws, 181, 182

Field intensity, electric, 127
magnetic, 130, 133

Flux, 194, 195, 199

Foot-candle, 216

Force constant of a spring, 79

Foree polygon, 46

Force triangle, 46

F. p. s. system, 2

Frequency, 204
of a tuning fork, 211

Friction, force of, 49

Frictional force in a pulley system,

59, 61
Fulerum, 30

Galvanometer, ballistic, 193, 195
D’Arsonval, 141, 146
sensitivity of a, 142, 146
tangent, 140, 141, 143
telescope of a, 146

Gas thermometer, 95

General gas law, 94

German silver, 164

Graph, straight line, 11

Graphical method for forces, 47

Graphical results, 10, 11, 13

Grating, reflection, 241
spectrometer, 247
table, 245
transmission, 241

Gravitational system, 2

Heat capacity, 101
Heat developed in a conductor of elec-
tricity, 12



INDEX

Heating effect, 139

Heat measurement, 101

Hefner standard lamp, 215

Hooke’s Law, 63, 79

Humidity, absolute, 122
relative, 122, 123, 124

Ice calorimeter, 103
Ideal mechanical advantage, 57, 58
Inclined plane, 52
Induced current, 192, 193
Intensity of a light source, 216
Internal resistance of a eell) 176, 178
International ampere, 138,

candle, 215
Inverse square law for light, 215
Tonization currents, 191
Tonizing the air, 126
Tons, 181

Jaws of a micrometer caliper, 21
Jolly balance, 113, 116

Kater’s pendulum, 81

Kirchhoff’s laws, 154

Knife edges, position in a balance, 31,
32

Kundt’s tube, 213

Latent heat, definition of, 102
of fusion, 106
of vaporization, 107
Law of moments, 48
Least count of a Vernier, 18
Length, measurement, of, 16
Lenses, concave, 229, 231, 236
convex, 229, 233
Lenz’s Law, 195, 198
Lever, principle of the, 30
Limiting angle of repose, 64
Linear cocfficient of expansion, 93, 98
Lines of electric force, 128, 129
Longtitudinal waves, 203
Loops, 205

Machines, 55, 57, 60
definition of, 57
efficiency of, 57, 59, 60
Magnetic effect of a current, 139, 191
Magnetic field, 125, 129, 133
strength of a, 130, 143, 144
Magnetic pole strength, 129, 133, 200
Magnetite, 129

257

Magnification, astronomical telescope,
237, 239
compound microscope, 238
lenses, 230
mirrors, 227
visual, 236
Main scale of a Vernier, 18
Maximum possible error, 6
Mean solar second, 38
Mecasurement, of charge, 190, 196
of current, 137
of flux, 194, 195
of length, 16, 23
of mass, 30, 34
of resistance, 157
of time, 38, 40
Mechanical advantage (actual), 57,
59, 60
(ideal), 58
Melting point of a solid, 109
Meter rule, 16
Method of mixtures, 102, 103, 104
Microfarad, 192
Micrometer caliper, 21
Microscope, 237, 239
capillary diameter by means of a,
119
compound, 119, 237
Minimum deviation, 223, 242, 248
Mirrors, concave, 225, 228, 247
convex, 226, 228
plane, 219, 221
Model dynamo, 201
Modulus of clasticity, 63
bulk, 203
Young’s, 64
Moment of inertia, 75
determination of, 76, 83
of a dise, 83
of a thick ring, 77
of a thin ring, 76
Moments of forces, 48, 55
Most probable result, 5
Multiplication of quantities having
errors, 9
Mutual induction apparatus, 201

Network of resistances, current flow
in a, 166

Neutral points around a magnet in
the earth’s field, 130

Newton’s method, correction for radi-
ation by, 103
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Nodes, 205

Ohm, 137
Ohm’s Law, 137, 154

Parallax, 17, 18, 220
Parallelogram method of vector addi-
tion, 47
Particle, equilibrium of, 44, 46
Pclticr effect, 186
Pendulum, compound, 74
Kater’s, 81
simple, 40, 74, 80
torsion, 75, 76, 83, 84
Per cent error, 8, 9
from some standard value, 10
from the mean, 10
Perfect gas, 94
Period of a galvanometer, 142
of a pendulum, 40, 73
of as. h.m., 73
of a wave motion, 204
of oscillation of a spring, 79
Permeability, 130
Photometer, 215, 216
Photometry, 215
Pitceh of & micrometer caliper, 21
Polarization of cells, 175
Poles of a magnet, 129
Pole strength of a magnet,
134
Potential, 127
Potential difference, 129
measurement, of, 158, 173
of a cell, 178
Potentiometer, 173, 176
Poundal, 2
Pound weight, 2
Power, definition of, 59
units of, 60
Powers of ten, 3
Precision of measurements, 4
Pressure coefficient, 94, 96
Pressure of a sound wave, 204, 206
Probable deviation, 7
Pulleys, 57, 58, 59, 60

130,

Quadrant electrometer, 191

Radiation losses, correction for, 103

Radius of eurvature by spherometer,
27, 28

Rarefaction, 204

INDEX

Reflection of light, from a curved sur-
face, 225
from a plane surface, 219, 221
laws of, 219
Reflection of waves, 205
Refraction of light, at curved surfaces,
229, 233
at plane surfaces, 220, 222, 223
laws of, 220
Relative humidity, 122, 123
Resistance measurement, 157, 166
Resistance of a galvanometer, 166
Resistances in series and parallel, 155
Resistance standards, 164
Resistivity, 162, 164, 167
Resolution of vectors, 45
Resonance in an air column, 206, 211
Resonance in wave motion, 205
Resonance tube, 211
Resting point of a balance, 33, 35, 36
Rheostat, 165
Rider of a balance, 32
Rigid body, equilibrium of, 44, 48, 64
Root mean square error, 7

Seebeck effect, 186
Self-locking machine, 59
Sensitivity of a balance, 34, 36
how to change the, 32
Scnsitivity of a galvanometer, defini-
tion of charge, 194
definition of current, 142, 146
measurement of the charge, 196
Shunt of an ammeter, 148
Significant figures, 6
Silver coulometer, 138
Simple harmonic force (wave motion),
205
Simple harmonic motion, 72
Simple pendulum, 40, 74, 80
Slide rule, 10
Slide wire bridge, 160, 161, 167
Sling psychrometer, 124
Slope of a lincar graph, 11
Solution for copper plating, 182
Sonometer, 209
Specific gravity, 2
definition of, 87
determination of, 88, 90 ; by the U-
tube method, 91
Specific gravity bottle, 90
Specific heat, 2, 101, 104
Specific resistance, 162, 170
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Spectra, 245, 246
Spherometer, 25, 28
how to adjust a, 26
Standard cell, 175, 177
Standard deflection, 142
Statics, 44
Stationary waves, 205
along a string, 207
Steam calorimeter, 103
generator, 107
trap, 107
Strength of the electric field, 127
of the magnetic ficld, 130
Stretching of a wire, 64
Subtraction of quantities
errors, 8
Surface tension, definition of, 112
by capillarity, 117
by the Jolly Balance, 115
method of measurement, 112
Systems of units, 2

having

Tangent galvanometer, 140, 143
Tangle of wire, determination of the
length of a, 89
Telescope, astronomical, 236
galvanometer, 239
to focus a galvanometer, 145, 146
Temperature cocfficient of resistance,
163, 164, 167
Theory of least squares, 7
Thermocouple, 186, 110, 139, 187
Thermoelectric e. m. f., 164, 186
Thermoelectric power, 189
Thermogalvanometer, 139
Thomson effect, 187
Torque, 76
Torsion pendulum, 75, 76, 83
Transfer instruments — calipers, 18
Transverse waves, 203

Unequal arm balance, method to cor-
rect for, 34
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Uniform circular motion, 72, 77
Unit current, 138
Unit of force, 2
Unit pole, 130
Units, 2
in heat measurements, 101
U-tube, specific gravity by means of,
90, 91

Vector diagram, method of drawing,
46
Vectors, addition of, 45
resolution of, 45
Velocity of sound in air, 207, 212
Velocity of transverse wave on a string,
206
Vernier caliper, 21
Vernicr scale, 18
Volt, 137
Volt-ammeter method for measuring
resistance, 158
Voltmeter, calibration of a, 160
constriction of a, 149
parallax in reading a, 18
Volume coefficient of expansion, 93

Water equivalent, 101, 105, 108
Wave form (alternating current), 199
Wave length, 203
Wave representation, 204
Waves (transverse and longitudinal)
203
Wave velocity (along a string), 206
Weston normal cell, 175
Wet and dry bulb thermometers, 122
123
Wheatstone bridge, 159
dial type, 168, 170
slide wire type, 160, 167
Writing up reports, 2

Young’s Modulus, 64, 66


















