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PREFACE

This book is essentially a text on experimental physics for

elementary students. The authors feel that students should be

given more than a set of laboratory instructions for performing
an experiment and have tried to bring out the connection which

an experiment has with other experiments of a similar nature.

In other words, students should look upon a laboratory physics

experiment as "part of the larger subject of
"
Experimental

Physics." This book can be used as a laboratory text in con-

junction with any general college physics text.

The chapters are so planned that experiments illustrating laws

which are governed by the same or by a similar set of physical

principles may be grouped together. Each chapter begins with a

discussion of the general theory, followed by directions for each

specific experiment. If any experiment requires more details as

to the theory, these are given under the experiment heading.

The experiments are designed for even front; that is, enough
sets of apparatus are utilized to enable a whole class to work in

pairs on the same experiment. This makes it possible to use

apparatus which is of a simpler and less expensive type. Occa-

sionally, when experiments are inserted for completeness which

by their nature require a more expensive piece of apparatus, a

demonstration laboratory period may be substituted.

The authors' aim has been to make many of the electrical experi-

ments inexpensive by the substitution of commercial rheostats,

resistance units, etc., in place of the more expensive resistance

boxes when the experiment does not warrant the accuracy of the

latter. The apparatus mentioned is listed at the beginning of

each experiment. Many pieces of apparatus mentioned in thi?

text may be made cheaper and often better than those which can

be bought, provided the facilities of a machine shop are available.

The experiments are designed for at least a full two-hour period

of laboratory experimental work, but if one wishes, the period

may be shortened by leaving out parts of the experiment or by

taking fewer readings.
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The book starts with a study of the precision of measurements

so that the student may make a statement as to the accuracy of

his work in every experiment performed. In the beginning,

sample data arc given and tabular forms suggested. Such details

are made less definite, however, as the experiments progress.

The purpose of this procedure is an attempt to teach the student

to do his work in an orderly and systematic manner, first by

example, and finally, by working out some orderly system of his

own. The student is quite free to use his own ingenuity when

obtaining his data in any way that he thinks will give him the best

results. Every experiment is written in sufficient completeness,

as to theory and laboratory instructions, so that the student may
start his laboratory work immediately upon entering the room

without instruction as to theory or procedure.

In order to make sure that the student will read the theory as

well as the experiment before he enters the laboratory, it is well

to require each student to solve, before the laboratory hour, the

problems which have been placed at the end of each chapter for that

experiment. It should be noted that these problems, which

involve making statements concerning the theory as well as solving

equations for numerical answers, cannot be done without some

knowledge of the theory contained in the chapter.

In addition, at the end of every experiment there are questions

concerning data, to be answered and passed in with the finished

report. These questions, when answered and submitted, will help

to make the student more careful in the taking of data and will

give him a better understanding of his experiment as a whole.

These questions will also serve, it is hoped, to suggest many other

and perhaps more helpful ones to the instructor.

The authors take this opportunity to thank their fellow-members

of the Physics Department at Washington Square College who have

contributed valuable criticism and help in the choice and arrange-

ment of material used in this text.

W. A. S.

L. B. H,

NEW YORK CITY

April, 1932
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EXPERIMENTAL PHYSICS
FOR COLLEGES

CHAPTER I

INTRODUCTION

Physics, like the other sciences, is playing an ever-increasing

part in shaping our environment and our mode of living. Were

it not for the knowledge and application of the laws of Physics,

one could not travel through space, ride under the sea, view the

hitherto unknown celestial bodies, or examine the minutest forms

of life and matter. Present-day labor-saving devices the electric

lights, radio, telegraphy, telephones, and the ocean cable -arc often

taken for granted and little thought is given to the years of scien-

tific research which produced them. What is the fascination

which makes great minds devote years of study to physical phe-

nomena in order to present to the world wonders which will all too

soon be labeled
"
necessities

"
? Is it not because there are always

untold possibilities ahead a story of surprises awaiting?

THE LABORATORY

Let us then consider the laboratory, which is the workshop of

the scientist, as a place of interest where each one can perform for

himself the experiments which brought joy to the heart of the

man who first worked them out. Consider it a place where one

can learn by actual practice to understand better the principles

of and the care for mechanical devices which are used in everyday
life. Remember that seeing and working with objective material

and apparatus gives one the first-hand knowledge which is so

valuable in rendering the descriptive more concrete, comprehensive,
and usable, and that it initiates a better understanding of the

formulation of laws, illustrates the working of a principle, con-

centrates attention to detail, and stimulates the exercise of

deliberate judgment.
1
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Success with an experiment comes only when all possible knowl-

edge and underlying theory of the experiment have been obtained

before starting. The teacher helps the student to acquire this

in ways which he sees fit, and he points out certain delicate adjust-

ments of apparatus and means of taking advantage of situations

to obtain more accurate results, but it is up to the student to grasp

and retain the lessons taught in the laboratory. Others cannot

do this for him.

Conduct. The instructor expects his students to be honest

and interested in their experiments, careful of University property,

and methodical in replacing or leaving apparatus at the end of

each class session. If the semester's work in the laboratory does

not develop the habit of inquiry, the respect for seasoned opinions,

the ability to handle apparatus carefully and intelligently, and the

value of system and order in any work, then it has not accomplished
its purpose.

Written reports. The instructor decides upon the particular

method and form of the written report, but the following headings

might be remembered as important in any write-up of an experi-

ment : object, description, conventional drawing of apparatus,

theory, data, conclusion, and discussion of errors. The treatment

of each of these divisions will depend upon the wishes of the in-

structor. Avoid the use of personal pronouns in written reports.

UNITS

In laboratory work, generally speaking, results not given in

definite units mean little or nothing. For instance, the numerical

values of density depend upon the system of units used. Some

results, such as specific gravity and specific heat, appear as abstract

numbers because they are defined as ratios of numbers having the

same units.

There are three systems of units in common use : the c. g. s. sys-

tem (centimeter, gram, second), used almost exclusively by scien-

tists
;
the f . p. s. system (foot, pound, second) ;

and the gravitational

system. The first two are called absolute systems because the

derived units bear the simplest possible relation to the funda-

mental units of length, mass, and time. Thus, in the two absolute

systems as stated, the unit of force (i.e., dyne, poundal) is defined

as that force which will give a unit mass, unit acceleration. In the

gravitational system, the unit force (pound weight) is the force
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acting on a unit mass (pound) clue to the attraction of the earth.

Since this force varies, depending upon the location, it is seen that

the pound weight is not an absolute unit of force. It is sufficiently

accurate, however, for practically all engineering work.

As an example of the use of units, suppose that a train is observed

to have a steady velocity of 36 kilometers per hour for thirty

seconds. What distance was traversed in this time interval?

The distance (s) traveled would be the velocity (v) times the

time (0, i.e.,

s = vt.

The answer in centimeters is

36 X 1000 X 100

60 X 60
= 3 X 10 4 cm.

X 30

It is better practice in general to convert all units, before using

them in equations, to fundamental units, i.e., 36 -p^
o (is equiva-

lent to) 36 X 1000 X 100-^ or 3AX_1000 X_l_00 cm,, which in
hr. 60 X 60 sec.

turn = (equals to) 1000 ^^- Notice that dimensionally the prod-
sec.

uct, vt, gives
^L . sec> or cm . (Tne dot js often used to denote
sec.

multiplication.) This is the same as the dimension found on the

left-hand side of the equation (in other words, s).

Whenever large numbers are involved, it is better to express

them in positive powers of ten. Thus, the number 237,000,000

may be expressed as 2.37 X 10 8
. Likewise, all small decimal

quantities may be expressed in negative powers of ten, i.e.,

0.0000000237 = 2.37 X 10~8
.



CHAPTER II

PRECISION OF MEASUREMENTS

Errors which enter into the results of a series of observations

may be classified as personal, accidental, systematic, and instru-

mental errors. The magnitude of the personal errors depends

upon the observer's experience and follows the law of chance

unless there is a personal bias.

Personal bias. A common example of the personal bias of

beginners is their tendency to give to a first reading of a series

greater significance than the succeeding readings. A beginner

asked to take three readings of the length of a table with a meter

stick, to the nearest tenth millimeter,

will bring back, generally, three readings
all alike. Consider Figure 1, which rep-

resents a plan of the table top. Besides

inaccuracies in the placing of the meter

FIG. 1. Measuring the stick, it should be observed that the

length of a table top. lengthmust vary, depending upon whether
the measurements were taken at A, B, or C.

Personal errors. Personal errors include inaccurate settings,

inaccurate estimations of a fractional division, insufficient develop-
ment of one or more of the six senses, and parallax. Matching of

color intensities, pitch of two sounds, and timing results are

examples of measurements depending upon the use of sense organs.

The error due to parallax will be discussed later (see page 17).

Accidental errors. Errors which are beyond the control of the

observer are called
"
accidental." For instance, suppose galvanom-

eter readings are to be taken every fifteen seconds. A sudden

jar will cause the galvanometer to alter its readings from an

otherwise good result. Other examples of
"
accidental

"
errors

are found in fluctuations in magnetism, noise, temperature,

pressure, electricity, wind, and the like.

Systematic errors. Such errors are characterized by their

tendency to one direction only, i.e.j positive or negative. They
may or may not be easily traced. For instance, if a meter stick

4
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is always used by taking measurements from one end, then this

end may get worn and a constant error will occur in all measure-

ments made with this meter stick when measuring from this end.

If not detected, systematic errors may give a result far from the

true result, and are, moreover, not accounted for in any calcula-

tions of the experimental error.

Instrumental errors. New instruments are usually calibrated

to a certain degree of accuracy. If not, they should be calibrated

in the laboratory or sent to some place, such as the U. S. Bureau

of Standards for calibration. Once the required per cent accuracy
is decided upon as necessary for the experiment, one should see

that the apparatus used for any measurement has an accuracy
a little better than that demanded for the tests. However, a

calibrated instrument is of no value as a precision instrument

unless operated under conditions similar to those used in its calibra-

tion. For instance, a steel tape calibrated for 20 C. would not

be accurate for winter use unless its temperature coefficient is

known. Furthermore, a calibrated instrument is reliable only
with careful and intelligent use.

Arithmetical mean most probable result. The accuracy of

an experiment, then, depends upon a number of factors or condi-

tions, many of which are not easily ascertained. In our discussion

we shall assume that the apparatus is sufficiently accurate for the

experiment and that there exists no personal bias nor any

systematic error. This leaves us with certain personal and
accidental errors which are subject to pure chance. With these

limitations as to the nature of errors to be considered, our judgment
tells us that the arithmetical mean of a number of observations

will give us the most probable result. Actually, this represents

the most probable reproducable result with the apparatus available

rather than accuracy. Accuracy is better checked by other

independent experiments using different methods of experimenta-
tion. Hence, such words as

"
per cent of error,'

7 "
probable

error," etc., refer to the mean result as found, since the true result

is seldom known.

CALCULATION OF ERRORS AND PER CENT ERRORS

When an experimental result is to be obtained by direct measure-

ment, we take one or more readings, depending upon the accuracy
desired. Suppose a single measurement of length, less than a
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meter, is to be made with a meter stick. Let the measurement be

34.35 centimeters. All figures, except the last digit which has

the dash over it, are measured digits. The last digit (5) is doubtful.

The most inexperienced observer could estimate probably to a

half millimeter division. For the single reading above, we will

designate as the error 0.05, the plus or minus sign ( ) indicating

that the reading may be too small or too large by this amount.

Such estimations on a single reading are generally taken large

enough to be called, with some reservations, a " maximum possible

error/' For this reason, the term " maximum possible error
"

is

used by some authors. Our reading now becomes 34.35 0.05cm.,

which gives a per cent error of 0.15
(i.e., ^-f, r

X 100). If any-
\ *j4.oo /

thing more than an approximate answer is required, more than

one reading is essential. However, when a single measurement

only is taken, we shall designate all digits, including the first doubtful

figure, as significant figures.

When a number of readings of a given length are taken, we must
deal with an average having a certain error. Calculations of the

accuracy from such considerations is our present problem and is

important since the result of our experiment has to represent an

average of various readings and calculations. Consider, for in-

stance, the following readings to
Reading Deviations hayc been fakon for a giyen dig_

152.28 - 0.048 tance : 152.28, 152,36, 152.30,

152.36 + .032 152.32, and 152.38 cm. Notice

152.30 .028 that since the meter stick must be

152.32 .008 reset at least once for each meas-

152.38 + .052_ urement of length, the individual

^1ZU^ _ 5) + 0.168 errors now are greater than the

152.328 0.0336 error in the single measurement

Length = 152.328 0.034 cm. of less than a meter
>
as illustrated

in the previous paragraph. Hav-

ing five readings for the same length, how shall we now find the

number of significant figures? This is done by calculating the

average (152.328 cm.) and the average error ( 0.034 cm.). The

average error is found by subtracting the mean from each reading,

adding the errors without taking into account the signs, and

dividing by the number of readings. In the above, the total

error, neglecting signs, in five readings is 0.168, so that the
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average error is 0.034 cm. Now, in case of averages, we shall

retain two doubtful figures in the result. Hence, the number of

significant figures where averages are considered will be designated

as all digits including the first two doubtful figures. This gives as

the result of the above experiment a length of 152.328 0.034 cm.

The first doubtful figure is in the hundredths' place, so that the

2 is in doubt by 3.4 while the 8 is in doubt by 34.

The theory of least squares. The reason for retaining two

doubtful figures in the case of averages is not given above, but may
be justified if one studies the question of errors by means of the

theory of least squares. The theory of least squares is based upon
the probability curve. From this curve, we may find the

"
prob-

able deviation/' a technical term the numerical magnitude of

which is such that the true error has equal chances of being larger

or smaller. Now the
"
probable deviation

"
may be shown to be

0.6745 S, if S represents the root mean square error, which is the

square root of the sum of the squares of the errors divided by the

number of readings. In the previous example, where the length

was found to be 152.328 0.034,

Q _ ^ /(Q.Q48)'
2 + (0.032)

2 + (Q.028)'
2 + (Q.Q08)

2 + (0.052)
2

* - \ 5
'

= 0.037

and the probable deviation is

0.6745 S = 0.025 cm.,

which means that the true error is equally likely to be greater or

smaller than 0.025. The theory of least squares, however, is

based upon an infinite number of readings, so that the above value

for the probable deviation error is only approximate. In general,

the small number of readings taken in elementary work is not

sufficient to conform very closely to the requirements of the theory.

Moreover, to use the complete theory of least squares would lead

us into detail which is beyond the scope of the present work.

However, if the above example is representative, it may be inferred

that the average error is a liberal estimate of the error of one's

work. We shall use the average error in the estimation of accuracy
of our future work in the laboratory.

It is often desirable to express the error in per cent. Thus for

the measurement of the length referred to previously, the per cent
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of error is (J^i- X 10(A = 0.022%. It is to be observed that
\Ld2.o2iO /

this is a measure of reproductibility and is not necessarily a true

deviation from the
"
real

"
answer. For ordinary laboratory

experiments, from three to five measurements are sufficient to

establish a working average.

When a series of measurements is to be taken and it is desired

to express the results graphically, one measurement is taken for

each point on the graph. Thus in plotting deflections of a gal-

vanometer, one reading is observed each on the
"
black

" and
"
red

"
side for a particular value of current, and then a new value

of the current is chosen. The curve itself will show qualitatively

the errors and characteristics of the instrument.

Errors in indirect measurements. So far, we have assumed

that the desired results depended only upon certain direct measure-

ments. An extension of the above rules for finding errors will be

necessary when the result is obtained by computation. Thus,
to find the moment of inertia 7 from the equation :

I = 7o +

or, to find the surface of the sides of a cylinder from the equation :

S = 2 irrl,

or, to find the area of a circle from the equation :

A = Trr
2
,

or, to find the value of g from the equation :

fty ~~

rpz
>

one must perform the arithmetic calculations of addition, multi-

plication, squaring, and division respectively. It is assumed that

each of the factors involved is an average obtained from several

readings and that the error in each factor has been computed.

Upon these assumptions, the following rules for errors in com-

puting results are given :

Rule I. In addition or subtraction, retain as the error in the

final result the largest numerical error found in any one of the

quantities, e.g. :



PRECISION OF MEASUREMENTS 9

Addition Subtraction

Distances in cm. ^ErfoT* Distances in cm. ^Erro^

25.20 0.23 0.91 13.21 0.022 0.17

5.312 0.021 0.39 J7.<U5_ 0.026 0.35

1.2534 Q.QQ25 0.20 5.89 0.026

31.76 0.23 cm.

Thus, in the example of addition shown above, the result is

31.76 0.23 cm., while in the example on subtraction, the result

is 5.89 0.026 cm.

Rule II. In 'Multiplication or division, retain as the per cent

of error the largest per cent of error found in any one of the terms.

Thus the product, (12.57 1.8%) X (1.325 1.3%), is 16.66

1.8%.

12.57 0.23, 1.8%
1.325 0.018, 1.3%

J6285
2514

3771

1257

16.65525

Answer: 16.66 + 1.8%.

The above rules will give a sufficient estimation of the accuracy
of computed results for our purposes. These rules, in turn, give

us certain hints as to the accuracy necessary in the various measure-

ments. Thus with additions and subtractions the numerical

error is important. This means that if the 25.20 cm. in the

addition problem under Rule I had been measured with a meter

stick, the other distances which were to be added to it could have

been measured equally well with a meter stick. The accuracy
of the other two figures (5.312 and 1.2534) show that they were

measured with more accurate instruments. With multiplication

and division, however, it is the per cent of error which is important.

Hence, in this case, small quantities should be measured more

accurately.

One may raise a question as to the reason for retaining four

figures in the result of the multiplication. The reason for this

will be seen by observing that in the multiplication all doubtful

figures have a dash over them. The quantities to be multiplied
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show doubtful digits beginning with the third. Therefore, the

number of significant figures in the result is four. When a num-

ber is squared, its per cent of error is multiplied by two, since the

error in each factor would necessarily be in the same direction

and of the same amount. Similarly in taking a square root, the

per cent of error is divided by two.

When multiplying or dividing two factors, retain a number of

digits in the result equal to the number of digits in the factor

containing the smaller number of significant figures. In the

multiplication shown, the number of significant figures was four

in each factor. Therefore, the number of significant figures in

the result is four. (In a product, such as 12572 X 134 - 1684648,

the result may be expressed as 168 X 10 4

.) This rule concerning

significant figures is important especially where the result obtained

is to be multiplied or divided by a third factor.

Slide rule. The number of significant figures in one's result

indicates whether one could use a slide rule profitably. There are

few calculations in the elementary laboratories which have more

than three or four significant figures. Consequently, a slide rule

is a very great time-saver in the laboratory.

Per cent of error from some standard value. Occasionally, the

student is asked to check the value of a constant, say g, with his

apparatus. If the accepted value for his location is 980.2 -
(^
sec1

.

and he gets an average value of 978.5 -, the per cent of error
sec2

.

QQA o _ Q7ft Pi

from the accepted value is given as ^~- |i^ x 100 = 0.17%.

Per cent of error from the mean. If two results are given with

either one being equally probable, ?..<?., 1281 and 1253, then the

per cent of error from the mean is given as

1281 - 1253 _ _

That is, take the difference, divide by the sum, and multiply by
one hundred.

GRAPHICAL RESULTS

To show the relation between one variable and another, if any
definite relation does exist it is often best to resort to plotting a

curve. By this method, the mathematical relation existing
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between the two quantities may sometimes be determined. In

any case, a graph represents pictorially and in concise form the

nature of the results obtained. The curve should be drawn

smoothly so as to fall on as many points as possible. The points

which are noticeably in error should fall in approximate equal

numbers on each side of the curve. When such a curve has been

drawn, the magnitude of the errors is shown qualitatively by
the distance which the points in error fall outside the smooth

curve. If one wishes to find the value of the quantity for inter-

mediate positions on the curve where readings were not actually

taken, the curve is sufficiently accurate for that purpose. If the

accuracy of the final result is desired, the per cent of error should

be found by the methods outlined previously.

Whenever possible, the coordinates used for abscissae and ordi-

nates should be so chosen from the experimental data that the

plotted points will fall on a straight line within the limits of experi-

mental error. A straight line is the only graph easily examined.

If the graph is a curve,

one might have consider-

able difficulty in deter-

mining whether it is a pa-

rabola, hyperbola, or even

an ellipse, particularly if

only a small portion is

shown. A few illustra-

tions of curve plotting

are given.

Example 1. Suppose
that in a certain experi-

ment it is found that y
FIG. 2. Graph of y ax -h b.

varies directly with x, as shown in the diagram. The graph is a

straight line and any straight line can be represented mathemat-

ically by an equation of the form,

y = ax + b.

If this line cuts the x and y axes at N and M respectively, then

it can easily be shown that the distance OM represents the value

of 6, and the slope of the line (i.e., the tangent of the angle 6) is

represented in the equation by a, and in the diagram by -

(Fig. 2).
N0
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Example 2. If we plot y against -, and obtain a straight line
x

through the origin, it means that

* -
<;>

where c is a constant. If y represents the pressure and x the

volume of a gas, then we have an experimental verification of

Boyle's law (pv =
c) if, when p is plotted against ,

a straight-line

graph results.

Example 3. If the electric current / is plotted against the heat-

developed //, the curve is not a straight line but will be a straight

line if 72
is plotted against //. The known relation existing

between these two quantities is

II = I
M
J'

when 7? and J are constants.

When one finds that the quantities which are plotted on the

graph are not directly proportional to each other, and one suspects

that one of the variables raised to some power is proportional to

the other raised to some different power, then it is better to take

the logarithms of both quantities before plotting them.

Thus, suppose the actual relation between x and y is

it being necessary to find the constants a, n, and m from the experi-

mental data. When the logarithm of both sides is calculated,

we have
n log y = log a + m log x.

Now plotting log x against log y (Fig. 3), instead of x against y,

we get a straight line
;
and from the intercepts on the log x and

logy

log a

log a log x

FIG. 3. Graph of n log y =
log a -f m log x.
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log y axes, we can find the constants log a, n, and m. In order to

facilitate this procedure and save time in calculating the logarithms

of the different values of x and y, it is possible to purchase log-log

graph paper in which the axes are marked off in logarithmic units.

In using this paper it is then only necessary to plot values of x and

y directly, and if a relation of the above type exists, a straight line

will result.

The following directions will be found helpful in plotting a use-

ful curve :

1. Use coordinate paper with rulings of one millimeter on sheets

of convenient size (say 8% by 11 inches).

2. Plot to such a scale that all significant figures will be used.

The curve should be drawn to as large a scale as the sheet will

allow.

3. Place a small dot (or cross) at every located point (Fig. 4).

Data:

Period Length
(sec.) (cm.)

0.6

1.0

1.4

2.0

2.8

10

25

50

100

200

20 40 GO 80 100 120 140 160 180 200 220

Length (Cm.}

FIG. 4. An example of curve-plotting.

4. Every curve should have a title indicating which two quan-
tities are plotted along the two axes.

5. Draw heavy lines for the coordinate axes and label the axes,
the independent variable along the x axis and the dependent
variable along the y axis.

6. The origin of the coordinate axes need not be shown on the

curve.

7. If a relation exists between the quantities, draw, by means
of a flexible rule, a smooth curve through the points. If all the

points do not actually fall on a smooth graph, then draw the curve
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so that approximately as many points will be on one side as on

the other. A point that deviates from the curve markedly should

be discarded as an accidental error.

PROBLEMS

1. Express the following numbers in powers of 10 and state the number of

significant figures in each, assuming that they are correctly expressed : 0.0231,

10.32, 10306, 101.30.

2. Express the following results with the correct number of significant

figures: 2.31 0.023, 1325 10, 123.5 13, 1.25127 with accuracy to 0.5%.

3. Write the following physical constants in powers of 10, giving the

proper number of significant figures :

Velocity of light = 29979600000 400000
c

sec.

Mean radius of the earth = 637100000 3500000 cm.

Mass of a hydrogen atom - 0.0000000000000000000000016617 gins,

(error of 17 in 16617)

Mechanical equivalent of heat (15 C.) = 41852000 6000^?.
cal.

Gravitational constant (O) = 0.00000006664 (error of 2 in 6664).

4. What are the significant figures for the results of the following cal-

culations :

(a) (1.372 0.031) X (235 11) X (0.1765 0.0025)?

(6) (23.275 0.015) + (101.3 8.1) + (265.7 1.5)?

What is the per cent of error in each of the above calculations?

6. Multiply 123 X 789 on the slide rule. Calculate your per cent of

error from estimation of the error in reading the instrument. How does your

resulting estimated per cent of error compare with the actual per cent of

error? Repeat the above calculations for the following multiplication on the

slide rule: 115 X 78 X 67.

6. The following readings of the time (in seconds) of 50 vibrations of a

simple pendulum are found to be: 78.5, 78.1, 78.4, 78.2, 78.5. Calculate

the average deviation and the per cent error in the above readings.

7. List the various kinds of errors that may arise in a physical measure-

ment and discuss briefly the possibility of eliminating or calculating the error.

8. Five stones are dropped over a cliff in order to estimate the height of

the cliff. The time (in seconds) noted in each case is 6.2, 6.8, 6.7, 6.7, and 6.3.

Assume that g = 32.19 0.01 (^\. Calculate the height of the cliff from
\sec./

the formula
= i gt

2
,

where s is the height of the cliff in feet. Calculate the per cent of error in the

answer.

9. Plot a curve showing the relation between the vapor pressure (or

tension) of water (in cm. of mercury) and the temperature (from C. to
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103 C.). Look up the values of this pressure at various temperatures in a

book of physical tables. Pressure should be plotted along the ordinate and

temperature along the abscissa.

10. Perform the following calculation, using logarithms :

4324 X (5692)
2 X 0.0003468

6824 X .3021 X 4568000



CHAPTER IH

MEASUREMENT OF THE FUNDAMENTAL UNITS

THE MEASUREMENT OF LENGTH

This is perhaps the most widely performed, as well as the

simplest of the three quantities, length, mass, and time. In our

everyday experiences, we frequently have to measure some length

or other. Very seldom, however, do we stop to consider whether

we are really performing the measurement with the best rule or

apparatus for that particular purpose. Still less do we concern

ourselves with the question of accuracy of measurement. The
reason for this unconcern of ours is to be found in the fact that

someone has already considered these points very carefully and

the apparatus which we have used has been designed accordingly.

The same is true when we have to measure mass and time, the

other two fundamental quantities.

In the physical laboratory, we cannot be satisfied with such a

superficial view, but must consider both the accuracy of our instru-

ments and our measurements carefully. They become of much

greater importance when a student of physics has devised some
new and easier method of performing a certain measurement,

which, according to his ideas, will give more accurate results.

In such a case, a knowledge of the accuracy and reproducibility

of his apparatus and of the precision of his result is necessary.
The research worker in the field of physics or chemistry must be

familiar with the different methods at his disposal, and with their

relative accuracy, as well as the methods of calculating or estimat-

ing the errors of observations.

In these first three or four experiments, therefore, the student

should try to discover for himself the precision that he has obtained

with his apparatus ;
and in the future, when measuring a length,

mass, or time interval, adapt the method to the precision required
in the result.

The meter rule. The simplest way of measuring length is with

the aid of an ordinary scale or rule. (A metric scale or " meter

bar "
is most frequently used in the laboratory.)

16
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There are several errors that have to be considered when using

such an instrument. The inherent accuracy in the instrument is

limited by the fact that the lines on the scale have a finite thickness.

Observational errors occur when estimating the fraction of the

smallest division. When estimating the fraction of a millimeter

on an ordinary meter rule, an uncertainty of 0.1 of a millimeter

is about the limit of accuracy for all but the highest skilled ob-

servers. An error of equal or larger amount is probable in placing

the object on the zero reading from which the measurement is

made. Errors of this type can be minimized only by taking a

sufficiently large number of readings. Another frequent source

of error is the error of parallax. This error occurs when a scale of

finite thickness is used and the eye is not always vertically above

the scale and point being read, or even in the same relative position

with regard to the scale. This will be more clearly seen in Fig-

ure 5. When the eye is placed at C and E, the distance AB will

FIG. 5. Error of parallax.

be read correctly. This will not be the case, however, if the eye
should be placed at E and D. In practice, therefore, whenever

it is possible, the rule should be placed in such a position on

edge in this case so that the markings on the scale fall right on

the points A and jB. The nearer the division marks on the scale

to the points being read, the smaller is the error due to parallax.

In very many pieces of physical apparatus this error of parallax

causes additional difficulties, and consequently a large number of

ingenious artifices have been invented to overcome this error.

Such an example is shown in Figure 6, which represents the method

used very often with the better class of electrical voltmeters and

ammeters. Since in these cases the pointer has to swing freely

over the scale, the error of parallax may be present. It is over-

come in this type of instrument by mounting a mirror underneath
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the pointer. When looking into the mirror, right underneath the

pointer, an image of the latter will be seen. By adjusting the

position of the eye above the pointer, this image can be made to

Pointer

Scale

Mirror

FIG. 6. Arrangement of the points and scale in a voltmeter.

disappear underneath the pointer. When this is the case, the

eye is vertically above and the reading on the scale, keeping the

eye in this position, can then be taken accurately.

Very often the object or distance being measured cannot be

placed along the side of the scale, or vice versa. Such cases as the

inside or outside diameter of a vessel, the outside diameter of a

sphere, etc., come into consideration here. The method used

involves the use of transfer instruments whereby we transfer the

original dimension to a pair of dividers, or
"

calipers
"
as they are

called, and then measure

the distance on a scale be-

tween the legs of the trans-

fer caliper. Figure 7 shows

both inside and outside

calipers.

The vernier scale. In

taking a measurement with

an ordinary meter scale, we

try to estimate to tenths

of a division. This requires

a large amount of skill,

and, even then, when the divisions on the scale are small, an error

of one- or two-tenths is quite probable. A microscope will help

in such cases.

A very ingenious device was discovered by P. Vernier (1580-

1637) for the purpose of estimating this fraction of a division with

great accuracy. The great advantage of his method is that we
can measure to any fraction of a division, be it to tenths, twelfths,

twenty-fifths, hundredths, etc.

FIG. 7. Inside and outside calipers.
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The instrument consists of a scale called the vernier scale

which can slide next to the ordinary scale. This vernier scale

has divisions on it which may be either a little smaller or a little

larger than the divisions of the ordinary main scale along which

it slides. In most cases the divisions on the vernier are smaller

than those on the main scale, and it is this case which we will con-

sider here in detail. The vernier scale is marked off into n equal

divisions, the one end being called zero and usually marked corre-

spondingly or with an arrow. f

Placing this zero mark of the vernier

on any main scale division, it will be seen that in the case under

consideration n divisions of the vernier correspond to n 1

divisions on the main scale. Hence each vernier division is

I = / 1 \ of a main scale division. Consequently the
n \ n/

vernier division is - shorter than a main scale division. This
n

quantity
- of a main scale division is called the least count of the
71

vernier and is usually expressed in centimeters or inches. Always
determine the least count of a vernier before attempting to make
a measurement.

Suppose next that we wish to make a measurement and find the

zero of the vernier somewhere between two main scale divisions.

From what has been said above about the least count, we can

readily see that if the zero of the vernier is - division (main scale)
n

beyond the division line of the main scale (Fig. 8), then the first

ncidence

FIG. 8. Reading 14.1 if n

vernier division should coincide with a division line on the main
scale.

o

Similarly, if the zero of the vernier should be - divisions to the
n

right of the main scale division, we should expect the second line

beyond the zero on the vernier to correspond with a main scale
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division. The reason for this, of course, is that the first vernier

division reduces the discrepancy between vernier division and
1 2

main division by -, and the second by -, therefore making them
n n

coincide on the second division of the vernier (see Fig. 9).

6

I Vernier ScaleLJ.
Mdin Scale

19

incidence

FIG. 9. Reading 14.2 if n = 10.

In general, then, if we find the kih division of the vernier coin-

cides with a scale division, we will be able to make out that the

part x, which we had to estimate with our eye previously, is

k
exactly

- main scale divisions. Alwaijs bear in mind that it is the
n

zero mark on the vernier the position of which we are trying to locate

as accurately as possible on the main scale.

The procedure in reading an instrument having an attached

vernier scale is as follows :

1. First determine the least count. This is usually done by
moving the vernier along the main scale so that the zero mark
on the vernier coincides with some division on the main scale

Find out, by looking along the vernier, how many divisions or

the vernier are necessary until a vernier and a main scale division

coincide again. This enables one to determine the least count,

as described above (i.e.,
- of a main scale division). Knowing the
n

value of the main scale division one can express the least count

in inches or centimeters.

2. Set the vernier on the instrument so as to measure the

length of the required object and estimate approximately its

length, by noting the position of the zero of the vernier. In

Figure 9 this would be 14+ . . . .

3. Determine the fraction x by noting which vernier division

coincides with a main scale division. In the above figure this

2
would be the second. This gives for a final result, then, 14 -

n
main scale divisions.



MEASUREMENT OF THE FUNDAMENTAL UNITS 21

The least count is usually chosen as to give the required measure-

ment in convenient and practical c. g. s. or f. p. s. units. Common
arrangements on instruments are : in the c. g. s. system 0.01 cm.

(Fig. 10), and in the f. p. s. system T^ or y^nnr inch.

FIG. 10. Vernier caliper, reading 2.89 cm.

In the accurate measurement of angles by means of a vernier

the procedure is exactly the same. The verniers are usually

arranged to read to a minute of arc (i.e., -^ degree). This is very
often accomplished by using for the main scale division a unit of

^ degree- and placing thirty divisions on the vernier to correspond
with twenty-nine divisions ( degree) on the main scale. When
this is the case, one should not forget part 2 of the above pro-

cedure. Be sure to see whether the fraction x is in the first or

second half of the larger degree divisions. If it should fall in the

second half, then we must add a half-degree to x in expressing our

result in degrees.

A little practice will help considerably in understanding the

above principles. A well-made vernier scale forms one of the

most useful, and therefore most frequently used, adjuncts to

physical apparatus having to do with the measurement of lengths

or angles.

The micrometer caliper. The measurement of the size of small

objects, or the comparison of lengths of objects that do not vary

very much in size, can be done with a higher degree of precision

by using a micrometer screw.

The instrument, which is shown schematically in Figure 11, is

usually made in a more or less semi-circular form and has two

so-called
"
jaws." One of the jaws is fixed and the other is mov-

able. The movable one is made to advance a certain fixed distance

for every revolution by having cut on it an accurate thread. The

pitch, or distance that the movable jaw advances per revolution,
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is usually made to be 1 mm. or 0.5 mm. in the c. g. s. system
and tS" inch in the f. p. s. system. If now we attach a " head "

on the end of the screw, which we divide up into a large number
of equally spaced divisions, then we can measure the fraction of a

FIG. 1 1 . Micrometer caliper.

turn that the screw is advanced. In the case of a 0.5 rnm. pitch

screw with fifty divisions on the head, we can therefore measure

to
-g^-

of
\- mm. =

2 JQ.
mm. = 0.01 mm. In addition to the divisions

on the screw head a horizontal scale is usually engraved along a

fixed cylindrical barrel so that the whole number of turns will be

indicated. Remember again that in this case the reading on the

head, which goes up to fifty, may be in the first or second half of

the millimeter, and if the latter is true, then 0.5 mm. must be

added. When the pitch happens to be 1 rnm. and there are

100 divisions on the head, then the last precaution mentioned is

not necessary.

A good micrometer gauge or caliper has at the end of the

movable jaw a friction or ratchet device which, when used, pre-

vents too much pressure being applied to the jaws. This ratchet

device serves a double purpose. First, it prevents the operator

from applying too great a force to the jaws, thus damaging the

thread and jaws and so making them useless for accurate measure-

ments. Secondly, in many cases when too great a pressure is

applied, the object being measured will be slightly deformed and

an error introduced in the result.

The following procedure is suggested when using a micrometer

screw gauge :

1. Study the pitch of the screw by turning the head through a

certain number of counted revolutions and noting the movement
on the horizontal scale. Observe how many divisions there are

on the head and from this determine the amount that the screw
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advances for a rotation of only one division on the head (this

might be called the
"

least count
"

in this case). In the above

example this amount is -fa of ^ mm. = 0.01 mm.
2. Study the zero setting. To test the zero, screw up the

movable jaw until it just touches the fixed jaw and see whether

the zero checks. If it does not, allowance must be made for a

zero correction in future readings. In the better-made instru-

ments the zero settings can be adjusted. This adjustment, how-

ever, should not be done by the student.

3. Insert the object between the jaws, using the ratchet device

to insure just the right pressure, and take the readings.

EXPERIMENT 1

THE MEASUREMENT OF LENGTH

Part (a). To measure the length of an object by means of a meter

rule, vernier caliper, and micrometer screw, and to determine the

probable error in each case.

Part (b). To become familiar ivith vernier scales as used in some

phys ical instruments .

Apparatus: Part (a). An object such as a cylinder (metal) about

2 cm. in length (or even a coin), a metric rule, a vernier caliper, a

micrometer screw gauge.
Part (b). Instruments which have vernier scales attached,

such as a barometer, spectrometer, Jolly balance, sextant, etc., placed

about the laboratory.

Part (a). 1. Determine the diameter of the coin using the metric

rule. Avoid errors of parallax. Take five readings of the diam-

eter yourself, using various parts of the metric rule. Ask your

partner to do the same. In each case estimate the fractions (tenths)

of a millimeter. Record all your readings in tabular form.

From the data obtain the average diameter, the average devia-

tion or "
error." Express your result (the diameter) finally with

its average error as well as the per cent of error.

2. Determine the diameter of the coin using the vernier caliper.

Having studied carefully the least count, etc., determine first

the zero correction. Next insert the object in the caliper, being

careful not to force the jaws, and take five readings, turning the

object so as to get an average value should the coin not be round.

Ask your partner to take five more. Record all the readings in
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tabular form. From the data determine the average diameter,

the average error, and per cent of error. Pay strict attention to
"
significant figures."

3. Determine the diameter using the micrometer screw. After

having studied the instrument, determine first the zero correction

(do not force the jaws). Insert the object, turning it if necessary,

and obtain all together ten readings. From the data determine as

before the average diameter, average error, and per cent of error.

Part (b). Inspect the various verniers on the instruments and

take a typical reading. Have the instructor check your reading.

Keep a record of the least count on each instrument.

DATA

Part (a). 1. Diameter of a coin using a metric rule.

Hence the mean diameter of the

coin = 2.419 0.011 cm.

Error = 0.45%.

2. Diameter of a coin using a vernier caliper.

Zero correction = 0.000 cm.
Least count =

y\> main scale.

Divisions =(0.1 X 0.1)= 0.01 cm.

Hence mean diameter of the coin

(using vernier caliper)
= 2.415

0.005 cm.

Error = 0.21%.
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3. Diameter of a coin using a micrometer screw.

Zero correction = 0.0000 cm.
Pitch of screw =0.5 mm.
Least count = 0.01 mm.
Hence the diameter of coin (using

a micrometer screw) = 2.41240

0.00046 cm.

Error = 0.017%.

Part (b).

Readings of setting on :

1. Barometer c. g. s. . .

f. p. s. . .

2. Spectrometer
3. Jolly balance

4. Sextant

Least count

QUESTIONS

(a). Which is the most accurate instrument of the three? How do the

results obtained show this ?

(b). State the number of significant figures in Part (a) 1, 2, and 3.

(c). Does the average for Part (a) 3 lie within outer limits of Part (a) 2?
Give reasons for your answer.

(d). Find the sum of the three results of Part (a) and state the error in the

result.

i&. State the least count as found in the instruments used in Part (b).

(f). Find the product of the three results of Part (a) and give the error of

the result.

(g). The density of a coin can be found by dividing its mass by its volume.

If the mass is given to 0.5%, which of the three instruments in Part (a,) would

you buy in order to measure the dimensions?

(h). Draw a sketch of a micrometer, reading to -^^ inch, when the setting

is 0.638 inch.

The spherometer. In certain indirect measurements of length,

such as the radius of curvature of a lens, use is made of a sphe-

rome,er (Fig. 12).
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The principle of operation of this instrument is exactly the same
as for a micrometer caliper, since the device consists of a movable
micrometer screw attached to a head which is subdivided. The

movable leg or micrometer screw is usually
mounted vertically in a framework. This

framework is supported on three legs placed
at equal distances from each other. The
movable leg is placed so as to be equidistant

from the three fixed legs. Attached to the

framework is a vertical scale. In using both

the micrometer caliper and the spherometer
remember that they should be treated care-

fully and never forced, because the whole
Courtesy Central f . .

company accuracy of such an instrument depends
FIG. 12. Sphc- upon the screw remaining accurate. This

rome er. w jj ^^ ^e y^ <*&<& when subjected to ex-

cessive strains and excessive wear.

The procedure in using a spherometer is as follows :

1. First place the spherometer on a very flat and hard glass or

metal surface and adjust the center leg until it touches the surface.

When this has been done, the tips of all the four legs are in the

same plane. This gives the zero reading.

2. Then the required thickness of a plate can be measured

by placing the plate under the center leg only and measuring the

amount which this leg has to be raised.

Difficulty will be experienced in determining exactly when the

middle leg is just touching, unless the following or some similar

method is used. Gently move one of the side legs back and forth

while adjusting the center leg, and it will be found that as soon

as the center leg becomes a little longer than the others, the instru-

ment will rotate around this leg as a center. Perform the adjust-

ment by having the center leg too short and then screwing it down
until the spherometer just begins to turn on this middle leg and

take the reading. Repeat the same adjustment but starting with

the leg too long, and bring it back slowly until the instrument

just does not rotate around this leg any more. Take a number of

readings approaching the setting from both sides. With a little

practice this method will give very accurate settings. Another

way is to adjust the center leg so that the whole instrument will

not just rock on this leg.
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It will be found that this setting gives a reading somewhere in

the neighborhood of the middle of the vertical scale. In many
instruments the zero is consequently placed in the middle of the

vertical scale. This leads to confusion in case we have to make a

zero correction (which is almost always the case). It is a much
better plan to call the lowest

division mark on the vertical

scale the zero of this scale,

and then take the readings

on the vertical scale with

this point as zero.

To FIND THE RADIUS OF

CURVATURE OF A

SPHERICAL SURFACE

Very often it becomes

necessary to find the radius

of curvature of mirrors and

lenses since this is an im-

portant property in deter-

mining their optical be-

havior. The spherometer

adapts itself admirably for

this purpose.

Let a portion of a lens, of which the radius of curvature R is

desired, be represented by the spherical cap WYZ of Figure 13.

This spherical cap is pictured as representing a portion ,of a sphere

with the desired radius R. We wish to express R in terms of XL
and YL, which distances can be measured.

FIG. 13. Spherometer placed on a

spherical surface.

From symmetry,
And if

then we can write,
1

h(2 R -
A) =

or, 2 Rh -
/i

2 =

XL = BL = AL = d.

YL = h

^.e., R =
2h

1 This follows from the theorem in geometry which states that when two chords

of a circle intersect within the circle, then the product of two parts of one chord is

equal to the product of the two parts of the other.
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EXPERIMENT 2

THE SPHEROMETER

Part (a). To wvasure the thickness of a small glass plate using a

spheromctcr.

Part (b). To find the radius of curvature using a spherometer.

Apparatus: A spherometer, a microscope slide, a flat surface (glass or

rnetal about 10 X 10 cm.), a concave or convex lens or mirror surface,

meter rule.

Part (a). First study the instrument, carefully determining
the pitch, size of divisions on the vertical scale, and number of

divisions on the head. This will enable you to calculate the

amount of advance of the screw for a single rotation of the head:

Next study the zero setting by placing the instrument on the

flat surface and adjusting the center leg as explained before. Make
about five settings and tabulate your results.

Lastly, determine the height through which the center leg must
be raised so as to touch the top surface of the microscope slide

which is placed on the flat surface under the middle leg.

From your data calculate the thickness of the slide and state

the error in your result.

Part (a).

DATA

Hence,

Reading on glass == 23.0472 0.0006 mm.
Zero of spherometer = 20.1420 0.0016 mm.
Thickness of glass = 2.9052 0.0016 mm.

Error = 0.06%.
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Part (b). In order to find R (Fig. 13) it becomes necessary to

measure d and h as accurately as possible.

Having first found the zero reading of the spherometer, by taking
a reading of the instrument on a flat surface, place the spherometer
on the curved surface and adjust, as

explained before, until all four legs touch

the surface and again take the reading.

The difference between these two results

gives the required distance h (Fig. 13).

Since the lengths XL, AL, and BL are

not exactly the same in practice, we find

the mean value of d by pressing the

spherometer, when the four legs are in

the same plane, not too heavily on the

data sheet as in Figure 14. This gives FIG. 14. Measurement ofd
the points A, B, X, and L, so that XL,
AL, and BL may be measured with a meter rule and the average
value for d obtained.

DATA
Part (b).

To FIND h To FIND d

Hence,
h = (7.8174 0.0032)

-
(4.9638 0.0026)

= 2.8536 0.0032mm. (0.11%)

/i
2 = 8.145 0.22%.

Hence, R = ^-~~ = 92.5 4.6% mm.

= 92.5 4.3 mm.

Hence,
d = 22.80 0.53 mm.

(2.3%)

d? = 519.8 4.6%.
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QUESTIONS

(a). Discuss the least count of the spherometer which you used.

(b). What would be the volume of a sphere having this radius and what

might be the error in the volume (express in cc.)?

(c). Which affects the result (R) more, (1) the error in the measurement of

hj or (2) the error in the value of d? Why?
(d). Would this method of finding R be of any value if the surface were not

spherical? Give reasons for your answer.

THE MEASUREMENT OF MASS

There are two common methods by which the mass of an object

may be determined. The one utilizes the principle of the lever,

while the other is based upon the principle of elasticity.

The principle of the lever states, for our purpose, that, given a

bar (called a lever), it is always possible to place it on some knife

edge (or fulcrum) on which it may turn and be made to balance

by placing weights properly on either side. With equal arm

balances, such as the platform and fine balance, equilibrium will

be established with an equal quantity of mass on each side. Hence,

any standard series of masses may be used to determine the mass

of an unknown with equal arm balances. With unequal arm

balances, such as the fish scales and many standard scales which

employ more than one lever, the masses used in the process of

determining the unknown must be calibrated for the particular

scale. In any case, the result of the determination of mass is not

affected by changes in the force of gravity.

The principle of elasticity explains the behavior of elastic bodies

under twisting, stretching, or compressional forces. Any body,

which returns to its former position after a given distortion, is

serviceable for a balance. The spring balance is the commonest

and can be made quite sensitive. While it may be calibrated

and used to measure mass, it actually records the gravitational

attraction on the mass. For accurate work, it should be cali-

brated at every place used.

Two very useful kinds of balances sufficient for our purposes

will be described: the one, a platform balance which will weigh

objects up to one thousand grams with an accuracy of one-tenth

of a gram ;
the other, a fine balance which will weigh objects up to

one hundred grams with an accuracy of one ten-thousandth of a

gram. Both of these balances are characterized by having pans

supported by knife edges (called fulcrums) at either end of a lever
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arm and a third fulcrum at the center of the lever. The center

fulcrum knife edge is raised slightly above the other two so that

the balance arm will be in stable equilibrium.

The platform balance is used for quick weighings and is very
useful where great accuracy is not necessary. The pans or plat-

forms supporting the known and unknown weights are of heavy
construction and are kept rigidly in an upright position by support-

ing rods under the balance (Fig. 15). The knife edges, which

FIG. 15. Platform balance.

constitute the fulcrum positions, are of steel construction and rest

on hardened steel or agate plates. The pans are balanced at the

factory by loading cups near the bottom of the balance under the

platform. An adjustment for student use is found over the center

fulcrum in the form of a threaded cylindrical nut which advances
on a screw either to the left or to the right. A pointer travels in

front of a scale marked in arbitrary divisions. The last ten grams
of mass to be added to the load may be accomplished by a sliding

weight placed on a graduated scale in front of the balance. This
scale is graduated in tenth of a gram divisions. Because of this

scale, the unknown is generally placed on the left while the known
masses are placed on the right pan. Should the unknown be placed
on the right-hand side, that mass indicated by the slider must be

subtracted from the known masses placed on the left-hand pan.
The fine balance is used wherever an accurate determination of

the mass is necessary. The ordinary fine balance will weigh to

about one-tenth of a milligram. If much greater accuracy is

desired, the buoyancy effect of the air, due to the volumes occupied

by the known and unknown masses, must be taken into account.

The pans are suspended from agate planes on either end, which
in turn are supported by knife edges. The central fulcrum knife
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edge is supported on ah agate plane which is imbedded in a pillar.

AL pointer fastened to the lever arm swings in front of the pillar

and in front of the scale, which is graduated in arbitrary divisions

arid located behind the lower end of the pointer. A small weight,

clamped by a set screw, is fastened on the pointer and may be

moved up or down so as to raise or lower the sensitivity. When
the weight is raised on the pointer, the stability of the lever system
is lessened, but the balance becomes more sensitive. When the

balance is made very sensitive, a long period of swing of the lever

system results and a longer time is required for the weighing.

Hence the sensitivity of the balance for general use is adjusted

to compromise between sensitivity and quick weighing. The zero

position of the pointer on the scale can be adjusted by small

threaded weights placed at the two ends of the lever arm. Every
fine balance has some kind of a

"
rider

"
or chain system to make

adjustments from 0.1 to 5 milligrams. Very often the rider will

add or subtract from a load a maximum of 10 milligrams. The
whole mechanism is placed in a glass case. When not in use, an

arrestment mechanism is provided to release the agate planes from

the knife edges or to raise the lever arm itself from its agate plane.

This is accomplished by use of a screw head at the bottom of, and

outside, the glass case of the balance. There is also a button at

the left of this screw head, which may be pressed in to release the

pans so that they will swing freely. When the button is pressed

in and turned slightly, it will catch, so that the pans will be free

without further pressure. A level is provided at the back of the

balance, so ns to indicate when the balance is horizontal. The
balance itself is supported on three legs. The two front legs are

threaded and adjustable in length.

Before attempting to weigh an object, especially when the bal-

ance is first set up, notice whether (1) the balance is level, (2) the

knife edges are in position, and (3) the pointer is swinging so that

the initial resting point is near the central division of the arbitrary

scale. If the lever arm does not swing freely upon release by the

screw head, the knife edges should be examined to see if they are

properly seated when lifted by the screw head. If the pans are

free to turn and the pointer does not have its zero position near

the central division of the scale, an adjustment of one or both of

the threaded units at each end of the lever arm should be made.

All such adjustments are generally made by the instructor. With
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continued use, the student learns to make these adjustments him-

self at the direction of the instructor.

The knife edges are frequently found out of position, because

of carelessness on the part of the student when weights (i.e.,

standard masses) are added or taken off the balance. Weights
should never be added or removed from (lie scale pan unless the

balance arms are locked by the arrestment devices. Moreover,

weights should always be lifted by tweezers, since the hand leaves

grease marks, which increase the mass of the weight.

Suppose that the unknown is on the left pan and certain known
masses are on the right pan, and we wish to see whether a balance

exists. First, turn the screw head. Then if the pans do not tip,

press in the button which frees the pans. If a balance does not

exist, release the button so as to bring the pans to rest and then

turn the screw head so as to lock the balance arms. The known
masses are generally placed on the right-hand pan because of the

fact that, the rider is attached to the right-hand balance arm.

Each scale must be studied by itself to learn its particular arrest-

ment device.

Because of friction at the knife edges the exact resting point
cannot be found by allowing the pointer to come to rest because

it does not always come to rest at the same point. In a sensitive

balance the time taken to come to rest is also inconveniently long.

Hence a method of surings is used to overcome these difficulties.

Turn the screw head so as to release the balance arms and then

press in the button gently so as to give an initial swing of about

4 to 10 divisions. If the initial swing is not enough, wave the

hand in front of one of the pans to give it the desired initial swing.
Close the window so that air

i

currents will not affect the to-

and-fro motion of the pointer.

Then take an odd number of

consecutive readings of the ex- FlG> 16 .

__ Pointer scale of a balance.

treme positions of the pointer.

Assume the readings to have been 8, 18, 8.5 (Fig. 16). Now in order

to calculate where the pointer would come to rest on the scale, first

average the two left-hand readings. Then find the mean between

this average reading and the reading on the right. In the example

shown, the resting point would therefore be 13.12. This is so

because the average left-hand reading is 8.25, and when the mean

,

U I
i

I
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]C _[_
c 95

is found between this average and 18, the result becomes -----
,

which equals 13.12.

The sensitivity of a balance is a very important constant in com-

paring balances and estimating the accuracy to be expected. It

is defined as the mass which must be added to the scale pan in

order to deflect the pointer one division. A little consideration

will show that the sensitivity decreases somewhat, on account of

friction, with the increase of the load on the balance arms.

Because) of the large number of small standard masses (i.e.,

weights) used in weighing with a fine balance, one tries to minimize

the; number of weights both for simplicity and to cut down the

number of accumulative errors incident with each weight. The

minimum number of masses will be used when we start with the

weight next smaller to the one which overbalances the unknown

mass and continue to add each time that weight which is next

smaller than the one which overbalances the unknown. This

process continues until the smallest weight is used or until the

pointer stays on the scale without further addition of weights.

Mont fine balances have a rider or other mechanism to furnish

readings of 5 milligrams or less.

With a large number of standard masses on the scale pan, there

is a fair probability of error in adding these masses mentally. To
avoid this it is good practice to write down the masses of the

weights taken from the box by a study of the empty spaces in the

box. Then check off the weights as they are taken from the scale

pan and replaced in the box. This method is sure, saves one from

doiibt, and often also the necessity of repeating a whole experiment.

If the arms are found to be unequal, the correct mass of the

unknown is found by placing it on each scale pan in turn and

weighing. Suppose that, when the unknown mass is in the left-

hand pan, the known mass in the right-hand pan is Wi, while

when the unknown mass is in the right pan, the known mass in

the left-hand pan is w 2 ,
then the correct mass M is found by

theory to be M = Vm^.
EXPERIMENT 3

THE MEASUREMENT OF MASS
Part (a). To measure the mass of an object with a platform balance.

Part (b). To find the sensitivity of a fine balance and to use this

sensitivity in weighing an object with the greatest possible accuracy.
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Apparatus: Part (a). Platform balance, set of weights (10-

500 grams), unknown mass.

Part (6). Fine balance, set of weights, unknown mass (e.g., a

coin), tweezers.

Part (a). Place the unknown first on the left-hand pan and

weigh, then on the right-hand pan. Repeat three to five times,

alternating the unknown weight from one pan to the other. Since

the sliding weight in front of the scale is made for weighing when
the known weights are on the right-hand pan, one should remember

to subtract this weight when the known masses are placed on the

left. From the data calculate the average mass for each side and

its accompanying deviation. Find the per cent of error on each

side, also the true weight.

DATA
Part (a).

UNKNOWN MASS IN GRAMS

M = V165.20 X 164.77 - 164.98 grams.

Mass (M) = 164.98 grams with 0.05 per cent, of error.

Part (b). First determine the zero resting point of the balance

when no load is on either pan. This should he found by the method
of swings (as described in a previous section) by taking three

consecutive readings of the position of the pointer on the scale

(say two on the left and one on the right). From these three

readings the zero resting point can be calculated. Repeat these

three observations three times, obtaining an average value for

this resting point. Record every reading on your data sheet.

Next place on the left pan the object to be weighed (having of

course first clamped the balance arm) and on the right pan the
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standard weights until a balance point is found somewhere near

the zero resting point as determined in the first part of this pro-

cedure. Determine this resting point now by taking as many
readings for it as were taken for the zero resting point. Let

us call the average value of this resting point the load resting

point 1 .

The next part of the procedure is for the purpose of finding the
"
sensitivity

"
at this load. This is done by adding (or sub-

tracting) a small known weight to the others (say five milligrams)

and rcdetermining the resting point with this additional little

weight. Call the value thus found load resting point 2. By sub-

tracting the two load resting points 1 and 2 we know how much
effect the small weight had on the resting point, and consequently
the sensitivity can be easily calculated since it is the weight neces-

sary to move the pointer one division on the scale.

Now, using the sensitivity, calculate the weight of the object. To
do this, it is to be noticed that what has to be calculated is the

weight which would have to be added to (or subtracted from) the

load at resting point 1, to bring it back to the zero resting point.

Knowing the sensitivity, and the number of divisions we should like

to have the pointer move to get it back to the zero resting point,

we get, by multiplying these two quantities together, the weight
which would have to be added (or subtracted) to bring the balance

to the zero resting point.

Finally, if a rider is available, check this calculated value by

using the rider on the balance arm.

Repeat the whole experiment of Part (b) by placing the weight
on the left pan and the object on the right pan.

Calculations. Unknown on left pan: We see from the data

that 0.005 gram moves the pointer (12.65
-

11.88) = 0.77

divisions.

/. Sensitivity = = 0.0065 gram/division.

To bring the pointer back to the zero resting point from position 1,

it would have to move (12.65 10.43) = 2.22 divisions; or, in

other words, a mass of (2.22 X 0.0065) = 0.0143 gram would have

to be added to the standard masses.

Hence the final mass = 6.200 + 0.0143 = 6.2143 grams.
Unknown on right pan : Make calculations in a similar way and

find the final mass for the unknown on the right pan.
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DATA

UNKNOWN ON LEFT PAN

37

Part (b).

UNKNOWN ON RIGHT PAN

The true mass (allowing for inequalities in the balance arms) is

found by : M =

where mi and ra2 are the masses as found on the two sides-
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QUESTIONS

(a). What is the average sensitivity of the fine balance for the particular

load which was used ? Express the result in milligrams per division.

(b). Calculate the per cent of error in finding the resting point 1, when the

load is on the left pan.

(c). Calculate the per cent of error introduced in the true mass by inequali-

ties in the lengths of the balance arms. Take the value as found for the load

on the left pan.

(d). How many divisions would the pointer on the fine balance move if

one milligram were added to the load?

THE MEASUREMENT OF TIME

The measurement of time is the most difficult operation in

determining the three fundamental quantities : length, mass, and

time. There are several reasons for this inherent difficulty.

The scientific unit of time is the mean solar second which was

chosen, not for its convenience, but for lack of a better unit. This

unit of time has to be determined astronomically. Having once

established this unit, the next operation was to try to construct a

mechanically oscillating system which would give exactly isochro-

nous (i.e., equal period) vibrations. No such system has yet been

devised.

The greatest progress in this direction has been made within

recent years at our large research laboratories by using vibrating

crystals of quartz and recording their oscillations electrically.

Fortunately for most of our scientific observations, such extreme

accuracy is not demanded because other errors are much more

important. Usually the procedure is to use a well-made clock

and then find the correction factor for this clock by comparison
with an astronomical clock.

Suppose for a moment that we did have a perfect clock, then

how should we record or measure a certain interval of time exactly?

It cannot be done ! Personal errors, errors of lag and inertia come
in and offset the accuracy of our clock. These errors i.e.,

errors which we make in starting and stopping a clock exactly at

the beginning and end of an interval are quite large and are

difficult to determine.

Another error peculiar to a watch is that we cannot read a

watch to parts of an oscillation of the flywheel. Every oscillation

of the flywheel by means of a pawl actuates the seconds pointer

and this pointer moves in jerks (e.g., } sec. jumps). This, then,
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limits the accuracy of reading such a watch to one-fifth of a

second.

Assuming that the future will be able to produce oscillating

systems with extremely constant oscillations, the difficulties oj

recording intervals to accuracies even better than this become almost

if not just as difficult a problem itself. For most accurate work,

therefore, the measurement of time is extremely difficult and

requires the highest degree of skill and technique.

In this course we shall confine our attempts to measurements

of periods with a stop watch of known accuracy. With practice

this forms a fairly accurate, and certainly a comparatively simple,

way of observing certain time intervals. However, even here, in

order to obtain results which are to mean anything, certain rules

must be remembered and strictly adhered to.

First, it is to be noticed that the per cent of error depends upon
the total time for ivhich the oscillations or period is observed and not

upon the number of swings. Hence, if the period of swing is longer,

it is not necessary to observe as many swings. If the same per-

centage of accuracy is required, the times of observing the swings
in the two cases should be about the same. Of course lengthening
the time of observation increases the accuracy.

Secondly, it is to be observed that it is extremely difficult, if not

impossible, to estimate parts of a swing. For this reason it

becomes necessary to find the time of a certain whole number of swings,

and not the number of swings in a certain time.

Thirdly, in order not to count one swing more or less than the

required number a very common fault with beginners the

following procedure is recommended and should be practiced by a

student for a few minutes before starting observations: Decide

from which end of the swing you will start counting. Call this

zero. Start counting backwards, from 3 say, until zero is reached,

and when zero is reached, start the stop watch and keep on count-

ing forward, finishing the measurement when the number designat-

ing the number of required swings is reached.

e.g., 3, 2, 1, 0, 1, 2, 3, 97,98,99,100

t t

Start watch Stop watch

By always following this procedure, this too frequent source of

error can be overcome.
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EXPERIMENT 4

THE MEASUREMENT OF TIME

To find the period of a simple pendulum of different lengths and to

record the results in the form of a graph.

Apparatus: A spherical pendulum hob of lead or brass about 2 to

2.5 cm. in diameter, flexible string 1.5 to 2 meters long, meter stick,

mounting clamp, stop clock.

Start your experiment with the longest possible pendulum

length, making sure thai the pendulum is secured to the support

^^.^ (Fig. 17) in such a way that the string swings always
with a definite 1 and fixed length. The amplitude of siving

of the pendulum should not exceed o each side of the

cqu il'fbrium position.

Since the time available for this experiment is de-

cidedly limited, we shall have to content ourselves with

allowing the total period of each observation to be about

one minute. Time these swings as accurately as possible

with the stop watch available, remembering that the

time for one complete to-and-fro swing of the pendulum is

called T.

Record the time for two sets of oscillations for each

length of the pendulum and let your partner do like-

wise for two more. Record the results in the tabular

form as shown below. Calculate the per cent of error

in your timing.
Fio. 17. Measure the length of the pendulum from the point
A simple

f th support to t he center of the bob. Next make
pendulum.

* *

the length about one-half, one-fourth, one-eighth, and
one-sixteenth of the original and carry out the same procedure
for each of these lengths, timing the pendulum always for about

one minute.

Calculate T, the time for one complete oscillation, as well as T2
.

Then draw a graph showing the relation between (1) the length
and T, and (2) the length and J72

. (Refer to the previous

chapter for procedure in plotting graphs.) The two curves

should be plotted on the same sheet with T and T2 as or-

dinates.
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DATA
(1)

Length = 159.0 0.2 cm.

No of swings = 25.

/. T - 2.540 sec. 0.15%.
T- = 0.452 sec-. 0.30%.

Length - 83.7 0.2cm.

No. of swings = 40.

/. T = 1.837 see. 0.18%.
T2 - 3.375 sec2

. 0.36%.

Length - 44.3 0.2 cm.

No. of swings = 50.

.-. T = 1.330 sec. 0.075%
T* = 1.785 sec2

. 0.15%.

Length = 22.0 0.2 cm.

No. of swings = 70.

/. T = 0.9400 sec. 0.23%.
T2 = 0.8836 sec2

. 0.46%.

0.23%
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(5)

AL TIMK (HOC ) DEVIATION

Length = 12.4 0.2cm.

>. of swings = 100.

.'. T = 0.0995 sec. 0.14^.
T~ - 04893 sec2

. 0.28?;.

0.10

0.14%

QUESTTONS

(a). How can you increase (he accuracy of the value of T with the apparatus
which you used?

(b). State the relation between the length (/) and T by examination of the

graph.

(c). For what length does the experimental period have the largest devia-

tion from the curve? Calculate the per cent of error in the period for this

length.

(d). Calculate the length of a seconds pendulum (i.e., period of 2 sec.) from

each of the curves in your graph.

PROBLEMS
Experiment 1

1. Given that 1 inch 2.51 cm., find a factor for converting miles into

kilometers. Use this factor to convert 12 miles to kilometers.

2. A thin circular sheet of brass has a diameter of 50. (X) cm. Find its area

(v == 3.142). Assuming that the material has a thickness of 1 mm., find. the' 1

weight of the sheet in grams. (Look up the density of brass in a book of

physical tables.)

3. Define "
least count

"
of a vernier. Define "

error of parallax."

4. A scale is divided into sixteenths of an inch. It is required to read t-o

T^ ff
of an inch by a suitable vernier. Calculate the numl>er of divisions on

the vernier and show by means of a diagram the position of the vernier on the

main scale when reading 8f\
5
g inches.

6. A micrometer gauge has 40 threads per inch. There are 25 divisions on

the revolving he-ad. To what accuracy will this gauge read?

Experiment 2

6. A spherometer has its outer legs at the three corners of an equilateral

triangle of side 5 cm. If the center leg is at a distance of 4 mm. above the

plane of the three corner legs when the instrument is placed on a lens surface,

find the radius of curvature of the lens.

7. Through how many revolutions would a spherometer head have to be

rotated if the center leg is to be raised 8.05 mm.? The pitch of the screw is

\ mm. and there are 50 divisions on the head.
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8. Plot a curve showing how R varies with h. Assume that d = 5 cm.

and h has values varying from 1 to 3 mm.

Experiment 3

9. A balance has a zero resting point of 8.6. A load of 6.430 grams is

placed on the left pan with the standard weights on the right. The resting

point (1) is now found to be 7.1. On addition of a 10-milligram weight to

the right pan the resting point is found to be 6.2. Calculate the sensitivity

of the balance and also the weight of the unknown load.

10. Calculate the resting point, given the following consecutive readings

on the scale: 4.2, 13. 8, 4.7. Why is this method used for finding the resting

point of the balance?

11. Define what is meant by the sensitivity of a balance. Finish the

calculations and find the value of the sensitivity and the unknown mass when

placed on the right-hand pan. Determine also the true mass. (Refer to

data of Fart (b), Exp. 3.)

Experiment 4

12. Given a swinging pendulum and a stop watch, what precautions would

you take in finding the period of the pendulum with the greatest precision?

13. Plot two curves from the. tabulated data on the pendulum (pages 41,

42) as follows: (1) length against time, (2) length against time squared (make
the length the abscissa).

14. From the curves in Problem 13, show what the length of a seconds

pendulum (i.e., a pendulum having a period of two seconds) must bo.



CHAPTER IV

STATICS

The branch of mechanics which deals with the equilibrium of

a particle, or of a system of particles distributed at fixed distances

relative to each other (i.e., a rigid body), is termed statics.

Whenever a body is at rest, it does riot necessarily mean that

there are no forces acting on it. What more often occurs in

practice is that there are forces acting on the body, but they act

in such a way that they keep the body in equilibrium. Further-

more, should the particle or body be moving with a constant

velocity (either linear or angular or both), then if it keeps on

moving with the same velocity and in the same direction, we still

speak of the system as being in equilibrium, and the same laws are

true in this case as were true when the body or particle was being
held stationary. In this chapter, we shall study experimentally
some of the laws which govern the behavior of these forces which

keep a system in equilibrium.

In studying the laws of Statics, it is natural, from what has been

said above, to divide them into two groups, depending upon whether

we are dealing with a particle, which has mass but no appreciable

size, or a rigid body, which has both mass and size.

THE EQUILIBRIUM CONDITIONS FOR A RIGID BODY

In this course we will simplify the general conditions by consider-

ing all the forces which act on the body to be in one plane. When
this is the case, then we can show that if the body is to be in com-

plete equilibrium, both the following two laws must be satisfied :

1. The vector sum of all the external forces acting on the body must

be zero.

Another way of stating this same law is to say that the vector

sum of all the components of the external forces in two directions

must add up to zero.

2. The sum of the moments of all the external forces acting on the

body must be zero around any axis which we wish to choose

pendicular to the plane in which the forces a$t.

44
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In order to be able to apply these two Laws of Equilibrium, it is

necessary to know how to deal with vectors, since forces fall under

the general heading of vectors. The following section applies to

vectors generally.

THE GEOMETRY OF VECTORS

Addition of vectors. In order to find the sum, or resultant

vector, of tho four vectors, proceed graphically as follows : Repre-

tA

i 3000 dynea

R - 1.8 cm. or 1800 dynes

sent force A, by an arrow of suitable length and proper direction ;

then, at the top of the arrow A, place the heel of the arrow which

represents B, in magnitude and direction
;

at the tip of B, place

the arrow representing C in direction and magnitude ;
arid so on.

Continue in this way until all the vectors have been drawn (in this

case, four). Then finally draw an arrow from the heel of the first

arrow to the point of the last arrow. This vector represents both

in magnitude and direction the resultant or sum, shown as R in

Figure 18 (b).

Resolution of vectors. In

many cases in which we are deal-

ing with a vector, the problem can

be much simplified, by splitting

a vector up into component parts

or vectors, so that the sum of

these component vectors together

form the original vector. Then
for the purposes of the problem in

hand, we can neglect the original vector and deal only with the

component vectors (the so-called
"
components ") . Just as in algebra

FIG. 19. Resolution of a vector

(A) into components.



46 EXPERIMENTAL PHYSICS FOR COLLEGES

we can split 5 up into 2 + 3, 2.5 + 2.5, 1+4, etc., and do so in-

definitely, so we can find many components for a single vector.

For practical purposes we usually find the components of a vector in

two directions at right angles to each other. E.g., in Figure 19 we
see that the vector A can be split up into two components, X and

Y, at right angles to each other, in such a way that X + Y = A
(i.e., when added as vectors). In this case we see that

X = A cos 6

and Y = A cos (90
-

0)
= A sin 0.

CONCURRENT FORCES

The equilibrium of a particle. This is the simplest case of

equilibrium to consider. Here the forces all meet at a point,

because the particle on which they act is negligible in size. Let

us also assume, for the time being, negligible mass. The law of

equilibrium of a particle states that when a number of forces A, B, C,

D, etc., act on a particle and keep it in equilibrium, the resultant force

is zero; or, in other words, when the lines representing the vectors

A, B, C, D, etc., are placed end to end, they must form a closed

figure so that no sum or resultant vector (R above) is possible.

Space Diagram

FIG. 20. Four forces keeping a particle in equilibrium.

Example 1. Figure 20 represents four forces acting on a particle

keeping it in equilibrium. All forces are known. The left dia-

gram shows the arrangement of the forces in space, whereas the

diagram to the right represents the vector diagram. Note that

since equilibrium exists, the four vectors form the sides of a closed

figure (the force-polygon).
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Example 2. In this case there are three known forces keeping
the particle in equilibrium. The vector diagram becomes a

triangle, as shown in Figure 21.

Example 3. Figure 22 represents a particle in equilibrium acted

upon by three forces, two of which are known. The problem is to

find the unknown force x. There are two methods of procedure :

Space Diagram Vector Diagram

FIG. 21. Three forces producing equilibrium.

Method 1. Draw the two known forces and complete the tri-

angle with the third vector (since we have equilibrium).

Method 2. Parallelogram of force method. Draw the known
vectors and complete a parallelogram with these two as sides.

The diagonal represents the sum R (check these and see that

it is the same as by the above method). Then R reversed

is the unknown vector x, which will give equilibrium.

Space Diagram Vector Diagrams

Method t

FIG. 22. Graphical method for finding an unknown force.

Example 4. Another example is to be found by a consideration

of the inclined "plane. It is much easier to solve questions involv-

ing motion or equilibrium on an inclined plane, if we resolve all

forces into components, either along the plane or perpendicular
to its surface.
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Suppose in Figure 23 (a) we have a particle being held in

equilibrium on a smooth plane by a force P a string, for example

acting up the plane. The remaining forces acting on this

(b)

FIG. 23. Equilibrium of a particle on an inclined plane.

particle are the thrust of the plane on the particle R, and the force

of gravity W. Then we can resolve W into two components,
X and Y

t respectively parallel and perpendicular to the plane,

i.e., in the directions of R and P, such that

X = W sin 8,

Y = W cos 6.

Having done this, we need now only work with X and Y and can

neglect W. For equilibrium we see that P must balance X
y and

R must balance F, hence

P = W sin 0,

R = W cos 0.

The equilibrium of a rigid body. A rigid body has to have an

additional test applied to it, to be sure it is in equilibrium. In

the above cases of a particle, the law of equilibrium states that

there can be no translational acceleration since the resultant force

acting on the particle was zero. This same law still holds for a

rigid body. This, however, is only half of the test for equilibrium,

since a rigid body as a whole might still be in translational equi-

librium while rotating around some axis. We need a further test

to see if the body is in rotational equilibrium. This test consists

in seeing whether it obeys the Law of Moments. This law states

that the sum of the moments around any axis must be zero. Re-

member that the moment of a force is the product of the force, and

the perpendicular drawn from the axis to the direction in which
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this force acts. A clockwise moment is usually called positive,

and an anticlockwise moment, negative.

Friction. In dealing with equilibrium, we may frequently en-

counter the so-called force of friction. Practically this force can

be of great help to us. For example, it is utilized in bringing
an automobile to rest. At other times, however, we would like

to eliminate this force. Its effect is to decrease the efficiency of

machines. Although the whole story of these various types of

frictional forces has not yet been told, the scientist has discovered

many important facts relating to friction. Consider a body at

rest on a rough surface, and let us try to slide it along the surface.

The force which the plane will exert on the body will be in some

unknown direction (not necessarily perpendicular to the surface).

We can think of this force as having .

two components, (1) a thrust R nor-

mal to the surface, and (2) a fric-

tional force F acting horizontally,

which comes into play when we try .
**<

,
, / / / / / /

to move the body (Fig. 24). This FlQ 24.-The force of friction,

frictional force becomes larger and

larger the more we push, and finally reaches a limiting value just

before the body starts to slide. It is found experimentally that

the limiting frictional force F depends upon the thrust R.

j F
The ratfo i# a constant and is called the coefficient of fric-

X R
tion (/A).

In practice the force of friction is found to decrease slightly

once the body has started moving, and then remains constant

while the body is sliding along slowly without accelerating. This

fact leads us to be more specific and define :

(1) The coefficient of static friction,

(2) The coefficient of dynamic friction,

depending upon whether we are dealing respectively with the

frictional force necessary to start the body moving, or else with

the force required to move it slowly at constant velocity.

EXPERIMENT 5

THE EQUILIBRIUM OF A PARTICLE

Part (a). An experimental study of the law of equilibrium of a

particle.
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Part (b). Using the law of equilibrium, to find the mass of an

unknown body.

Apparatus: Force table (either horizontal or vertical type), four

hangers having known masses, assorted slotted weights, thin string
or heavy cotton thread, ruler, triangle, and an unknown mass.

Part (a). Draw a thin pencil line across a sheet of paper so

as to divide the paper into halves, as shown in Figure 25. On
the one half, plan to put the space diagram. This is simply a

transfer to this half of the paper of the known forces and their

directions from the actual conditions of the experiment. The
other half can then be used to construct the vector-addition

graphically. Now pin the paper by means of two or three thumb
tacks to the force table in such a way that the center of one-half

of the paper is approximately in the middle of the force board.

Tie three pieces of string of approximately the same length to-

gether in a small knot, passing the other end over three pulleys

arranged at the edges of the board. On these ends attach the

hangers and add known weights until the knot comes to rest

approximately at the center of the force table.

In order to obtain good results, two or three precautions have

to be taken. First, see that the pulleys have as little friction as

possible. Secondly, make sure that the strings are as close to the

paper as possible without the knot touching the board. This

point is usually taken care of in making the apparatus, but in

some instances the heights of the pulleys above the plane of the

board can be adjusted. Lastly, before taking any readings, see

that the pulley groove and the string as it comes off the pulley

are parallel. This necessitates having the pulley on a swivel.

Having made these adjustments, find the position of equilibrium

of the particle (in this case the knot) by displacing the system

slightly and noting the point to which it returns. If, on account

of friction, the particle does not always return to the same point,

displace the system several times, marking the points to which

the particle returns and then set the knot in the center of this

region.

The next problem is to transfer the directions of these forces

to the paper. This is best done by making two small dots (as

far apart as the paper will allow) with a sharp pencil immediately
underneath each string. This has to be done with care so as not
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force Diagram Vector Diagram

to displace the system and also to avoid errors of parallax. Having
obtained these six points (in the case of three strings attached to

the particle), remove the sheet of paper and join the pairs of

points. Along these three directions write the corresponding
masses that were attached to the strings. The accuracy of your
results depends largely upon obtaining these directions exactly.

To construct the vector diagram. On the other half of the sheet,

adjoining the force diagram, starting at C, draw a vector CD rep-

resenting, on some suitable scale, the magnitude and direction of

the known force along AB. In drawing this direction it is best to

use a triangle and a
, ,

straight edge as shown

in Figure 25. . This fig-

ure illustrates how a line

can be drawn through C
(namely, CtD) accurately

parallel to AB. The

procedure is to place one

edge of the triangle to

coincide with the line

AB. Then put a ruler

or other straight edge

along another side of the

triangle, being careful to

hold the triangle in place

with one edge along AB.
Now keep the ruler fixed

FIG. 25. Constructing a triangle 9f forces.

and slide the triangle along the ruler until the side which was

parallel to AB now passes through C. Then draw CZ>, which

will be parallel to AB. From the end D, draw DE to represent

the second force (along XY). Finally construct EF to represent

the force along MN. Now if these forces had been represented

correctly, then according to the law of equilibrium of a particle,

the third vector should finish exactly where the first vector began (viz.,

atC).

Note the difference in your drawing between the points C and

F, and from a measurement of the length of this difference cal-

culate the error. Express the error in per cent (of the last force

represented) and note also the error in direction. Note in all

these constructions a fairly hard pencil with a sharp point must
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be used. Choose the scale of representation as large as the paper
will allow.

Repeat the experiment, arranging the particle so that four

known forces act and again find the error in your vector addition.

Part (b). Let the knot have three strings tied to it. Two
known forces are applied at the ends of two of these strings, the

third having some unknown force acting on it. The unknown

force in this case is the force of gravity acting on an unknown mass.

Proceed as before, obtaining first a space diagram on one-half

of another sheet of paper. Now, on the assumption that the Law
of Equilibrium is true we should find that the three vectors repre-

senting these forces, when placed end to end, form a closed tri-

angle if our drawing were done exactly and there were no friction.

Hence, in drawing the vector diagram to scale, draw the two known
forces end to end (using the triangle and ruler) and then join the

finishing and starting points. This vector then represents the

unknown force, and by finding the length of this vector determine

the mass of the unknown body. Check by finding its mass on a

balance and calculate your per cent of error. (Note that if we
had drawn a parallelogram with the two known forces as sides,

then the magnitude of the diagonal of this figure can be made to

represent the magnitude of this unknown force. This is often

referred to as the method of the parallelogram of the forces.)

QUESTIONS

(a). Having done this experiment, what is your conclusion about the law
of equilibrium for a particle?

(b). How would you go about proving this law in terms of the components
of the forces?

(c). Find graphically the magnitude of the components of all the forces

in the direction AB for Part (a), when three forces act.

EXPERIMENT 6

THE INCLINED PLANE AND A DETERMINATION OF THE
COEFFICIENT OF FRICTION

Part (a). To find the unknown mass of a rolling block on the

inclined plane.

Part (b). To find the coefficient of friction between a wooden block

and a horizontal surface.

Part (c). Determination of the coefficient of friction by finding the

limiting angle of repose.
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Apparatus: Inclined plane apparatus, rolling block, two sets of

slotted weights (10-500 gm.), string, hanger, friction block, platform

balance.

Part (a). Arrange the angle of the plane to be about 5 with

the horizontal (Fig. 26) and determine the force necessary to hold

the unknown rolling block in equi-

librium. In order to overcome the

effects of friction in finding this force,

it is necessary to find the average

between the force required to make
the rolling block move upward

slowly with constant velocity and

the force necessary to make the

same block move downward with the same velocity.

The force P pulling the rolling body should be kept parallel

to the plane. This is done by adjusting the pulley accordingly.

Obtain about six to eight readings, using different values of 0,

and from these calculate the value of the mass and also the average

error and the per cent of error. Check the mass by weighing on a

balance.

w sin

FIG. 26.

Part (b). The determination of the dynamic coefficient of fric-

tion consists in measuring the force of friction on a level surface.

This force of friction is meas-

ured by applying the force

P horizontally until the block

just slides with a very slow
w and constant velocity. In the

,

IGi '

above apparatus make 6 =
and add just the correct weights until the block slides slowly

(Fig. 27). This might necessitate interpolation if the slotted
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weights which are put on the hanger are not provided in small

enough steps. Make three to five trials, adding weights to W
t

and redetermine P. Enter your results in tabular form. Cal-

culate /*, the coefficient of friction, and state the accuracy of your
result. Compare your result with the result given in a table of

physical constants for these two kinds of surfaces.

Part (c). The coefficient of friction is found to be the tangent
of the limiting angle of repose. The proof for this can be found in

almost any physics text. The method consists in finding the

limiting angle to which the plane can be raised so as to have the

block slide down by itself slowly and with constant velocity.

Make two or three trials of this angle for the block alone. Then

try the effect of adding mass on top of the block, recording two

readings of for each mass added.

Put your results in tabular form and calculate
/*._

Find the

per cent of difference between the two values.

QUESTIONS

(a). Is this the dynamic or static coefficient of friction?

(b). Which of the two methods described under Part (b) and Part (c) gives

better results for M ?

(c). In Part (b) how does the coefficient of friction vary with the weight
of the body? Explain your answer.

(d). In Part (c) how does the coefficient of friction vary with the mass

added to the body? Explain your results.

EXPERIMENT 7

AN EXPERIMENTAL STUDY OF THE LAWS OF
EQUILIBRIUM OF A RIGID BODY

Part (a). Determination of the center of gravity of a non-uniform
bar.

Part (b). To find the mass of this bar being given a known mass

(say 60 grams).

Part (c). To find two unknown masses bei^i given a known mass.

Apparatus: A meter bar which is non-inuformly leaded by little

metal slugs built into the bar, a knife-edged clamp which can be fixed

at any point along the bar, a vertical support for this knife-edge clamp,

several movable clamps from which to hang the known or unknown

masses, a known mass, and two unknown masses (Fig. 28).

Part (a). The position of the center of gravity of the bar can

be simply determined by balancing the bar on a knife edge. The
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vertical plane through the knife edge passes through the center

of gravity. Find the center of gravity by balancing the bar on

all four sides.

Part (b). Balance the bar on a knife edge when a known mass

of 50 grams is hung from some point along the bar. Having

FIG. 28. - Arrangement for equilibrium of moments.

measured the distances from the fulcrum, write down the condi-

tions of equilibrium and solve for W, the weight of the bar. (Note
that the known weight of the hanger must be included.) For

this calculation you may assume the position of the center of

gravity as found in Part (a).

Repeat, using different positions for the 50-gram mass. Tabu-

late your results, and find an average value for the mass. Calculate

the per cent of error in the mass. (If time allows, find the position

of the center of gravity and the weight of the bar as described in

Problem 9 at the end of this chapter.)

Part (c). Hang the two unknown masses X and Y from any two

positions along the bar (e.g., somewhere near the ends), and place

the fulcrum so as to fov^ince the system. Next add a known mass

to either X or Y and readjust the distances for a balance. Measure

the distances of all the forces from the fulcrum in either case (don't

forget to consider TF, the mass of the bar) and write down the con-

ditions for equilibrium. Solve for X and Y. As a check find the

masses X and Y on a balance.

Repeat this part of the experiment by adding the known mass

to the other unknown.
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QUESTIONS

(a). Why docs Part (a) give us the center of gravity?

(b). Suppose the bar came to rest at 45, where would the center of gravity

be? Show by means of a sketch.

(c). Show clearly why the first condition for equilibrium is satisfied in

each case.

PROBLEMS
Experiment 5

1. Find by graphical construction the vector sum (direction and mag-

nitude) of the following vectors : 5 North, 4 West, 3 East, 6 East.

2. If the vectors in Problem 1 represent a number of forces acting on a

particle, how will you determine whether the particle is in equilibrium? If it

is not, then what force would be necessary to keep it in equilibrium?

3. Two forces of 10 pounds each act on a point. Find by graphical con-

struction the resultant (or sum) of these two forces when the angle between

them varies from to 180. Plot a curve showing the relation between the

magnitude of the resultant and the angle between the forces.

Experiment 6

4. A body is moving up an incline of 35 with a velocity of 20 feet

per second. What are the components of this velocity horizontally and

vertically ?

6. A body of mass 10 pounds is held in equilibrium on a smooth incline

by a tension of 160 poundals acting upwards along the plane. Show that the

angle of the plane must be 30 and also that the sum of the component forces,

in any direction you wish to choose, must be zero.

.6.^, Define "coefficient of friction," and distinguish between static and

dynamic coefficients. Discuss practical conditions under which either one

or the other is used.

7/ Prove that the coefficient of friction is equal to the tangent of the

limiting angle of repose.

8, A horizontal force of 9 pounds in weight can keep a load weighing
60 pounds in steadv motion along a horizontal table. What is the coefficient

of friction? Now if the table is tilted slightly, what is the minimum angle of

tilt of the table for the body to slide down by itself without the 9-pound force?

Experiment 7

9. Without assuming the position of the center of gravity of the bar,

how can you find both this position and the weight of the bar, when balancing

the bar on a knife edge by means of the 50-gram mass twice ?

10. A rod AB carries bodies weighing 5 pounds, 7 pounds, and 8 pounds,
at distances of 2 inches, 8 inches, and 14 inches, respectively, from A. Neglect
the weight of the rod and find the point at which the rod must be supported
for equilibrium to be possible.



CHAPTER V

MACHINES

A machine is a device, or mechanism, which will transfer a force

from one point of application to another for some useful advantage.
The pulley system, the jack-screw, and the lever are everyday
illustrations of machines. The pulley is commonly used to hoist

heavy loads, such as steel girders, through great distances, while

the jack-screw and lever are employed to lift massive objects

through short distances. The primary object of these machines is

the utilization of a great force by the application of a small force.

There are many cases, however, where a change in direction of

the force is the primary object of a machine, but not a change in

magnitude. Illustrations are supplied by a single pulley, reversing

belts, and reversing gear wheels. More generally, however, the

machine is arranged to change both the magnitude and direction.

These characteristics are demonstrated by a study of the block

and tackle, the differential pulley, the transmission gear, the

wedge (i.e., double inclined plane), and the wheel and axle.

Mechanical advantage and efficiency. While machines enable

us to do work in an easier and more advantageous way, one should

not be misled into thinking that the total work put into the machine

(i.e., input) to accomplish the task is any less than that obtained

from the machine (i.e., output). In fact, it is generally greater

than that obtained from the machine because of frictional losses.

In sum, the useful advantage of a machine depends, theoretically,

upon a knowledge of the resultant and applied forces, and conse-

quently the frictional losses. The ratio of the force exerted by the

machine to the force applied by the operator is called the mechanical

advantage, while the ratio of the work obtained from the machine

(output) to that put into the machine (input) is called the efficiency.

To express the efficiency in per cent, the ratio is multiplied by 100.

Notice that the mechanical advantage is a ratio of forces, while

the efficiency is a ratio of work. The latter determines the fric-

tional losses.

57



58 EXPERIMENTAL PHYSICS FOR COLLEGES

Two possibilities arc to be considered in the development of

the theory of machines, namely, (1) the ideal case, (2) the actual

case.

The ideal case. The ideal case is thought of as a machine having
no frictional losses. No such machines exist, but a few approach
the ideal condition (such as, for example, the lever). The ideal

case is useful to consider, however, since it gives us a limiting

minimum force and is found to be related to

the actual efficiency of the machine.

The ideal mechanical advantage (I. M. A.)

is (Fig. 29) by definition

W
F'

I. M. A. =

and since, by the theory of conservation of

energy,
Fs - Wh,

provided there arc no frictional losses in the

machine where s and h are the respective

distances through which F and W operate,

we have

*w
Fia. 29. A pulley

system ideal case.
It will be seen that, in the pulley system

pictured in Figure 29 and Figure 30, when
M goes up 1 cm., F will go down 3 cm. Hence the ideal mechanical

advantage equals 3, since

I. M. A.

The ideal mechanical advantage may be figured from the dimen-

sions of the machine as noted above. It should be noticed, how-

ever, that whatever is saved in force by the ideal machine is lost

in distance through which the force operates, so that the work done

is the same whether the machine is used or not. Consequently,

the efficiency in the ideal case is

Eff. = = 100%.
Fs

The actual case. Frictional losses are always encountered in

practice. To illustrate, Figure 30 represents a mass M being
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lifted where the frictional force is found to be of the magnitude /,

while the ideal force (i.e.) force as found when there is no friction)

is F. The frictional force / is found by experiment. By definition

the mechanical advantage is

WM. A. -
F+f

It is to be seen that in this case the work [(F + f)s] put into the

machine is greater than that (Wh) obtained from the machine,
the difference being dissipated by friction

inside the machine. The efficiency is given

by:
I

TPff = output __ Wh
|

I m\and since Wh Fs,

TTA/V Fs F

F+f
Note that we may write

W
F _F +f

F+f W '

so that the efficiency may be written as

Fff = ac^ua^ mechanical advantage
ideal mechanical advantage

FIG. 30. Pulley system
actual case.

When /is greater than F, the work to overcome the friction becomes

greater than the output work of the machine. This gives us a

self-locking machine, the efficiency of which is less than 50 per
cent. The jack-screw, wedge, and the differential pulley are

examples of this type. The large mechanical advantage usually

associated with these machines makes them very useful for the

transfer or dislodgment of very massive objects.

POWER

The rate at which work is done is called the power. Two machines

which exert equal forces can have very different power ratings

depending upon the rapidity with which the force moves and con-

sequently the rate at which the machine does work.
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The fundamental units of power will be :

(1) in the c. g. s. system = 1 erg per second.

(2) in the f. p. s. system = 1 foot-poundal per second.

In addition to these, two common units found in practice are :

1 ft.-lb./sec. = 32 ft. poundals/scc.

1 horse-power = 33,000 ft.-lbs./min.

1 watt = 107
ergs/sec.

= 1 joule/sec.

[Note. 1 H.P. - 746 watts.]

EXPERIMENT 8

PULLEYS

Part (a). To jind the actual mechanical advantage, efficiency, and

force of friction in a pulley system.

Part (b). To calculate the horse-power output of the machine.

Part (c). To show graphically the effect of different loads on the

machine.

Apparatus: A mounted double and single pulley, a single pulley,

strong twine, two sets of slotted weights (10-500 grams), two hangers,

meter stick, and stop dock.

Part (a). Set up the apparatus as shown in Figure 30. Place

a standard mass (say 200 grams) in the pan meant for the load W.
This mass, together with the hanger and movable pulley (neglect

weight of string), constitutes the total load of weight W which the

machine exerts. On the other pan, which is to supply the force

applied to the machine, add a number of standard masses until

this side of the

pulley system falls

without acceleration.

To offset the effect

of static friction,

p-f F give the system a

slight push to start

it moving. These

FIG. 31 . Vector representation of the forces. masses, together
with the hanger,

give the force (F + /) necessary to raise the weight W. The two

separate forces, the ideal force F and the force /opposite and equal

m Moving Down m Moving Up
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to the force of friction, are pictured in Figure 31. Then take off

masses on the side at which the force is applied until it will go up
without acceleration. This force is F f. Notice that the direction

of / has changed. In this case the frictional force, which is acting

equal and opposite to /, is directed downward. If the 10-grams
mass is not sufficiently small for adjustments of mass to secure

constant velocity for rise and fall, estimation of the correct mass

should be made.

Repeat the experiment with standard masses of 400, 600, 800,

1000, and 1200 grams placed in succession on the weight pan.

The following table will be found useful for recording the results.

Calculate from the data the ideal force applied to the machine

(i.e., F), the frictional force [/ = (F + /) F], the actual mechan-
/ ~\KT \ / 77* \

ical advantage ( ),
and the efficiency ( )

for the various
Vr + J/ ^ + j/

loads.

Part (b). Note with a stop clock the time it takes to raise the

largest load with constant speed as far as the apparatus will allow.

Measure the distance and calculate from this the horse-power

output of the machine. This gives the horse-power output for

this particular load and speed.

Part (c). (To be done at home.) Plot on a single coordinate

paper the loads as abscissae against the efficiency, actual mechan-

ical advantage, and friction respectively as ordinates. The curves

are more easily observed if different-colored ink is used to trace

each curve. The ordinates for each curve should be inked in

corresponding colors. If colored ink is not available, the curves

can be distinguished by use of broken lines, dots and dashes,
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following some systematic scheme, such as dot-dash, long dash-

short dash, etc.

QUESTIONS

(a). How does the efficiency of the pulley system change with the load?

Explain your results.

(b). How does the actual mechanical advantage change with the load?

Explain your results.

(c). Express the power output (calculated) in terms of watts.

PROBLEMS

1. What is meant by the term " mechanical advantage
"
?

2. Give examples of the use of machines where the
" mechanical ad-

vantage
"

is less than one.

3. Explain the use of the terms (F -h /) and (F /) as used in the theory.

4. Make two schematic drawings of pulley systems having a theoretical

mechanical advantage of 5 and ^ respectively.

5. Suppose that in a pulley system, as shown in Figure 30, M = 600 grams,
while t-he mass m necessary to pull it up without acceleration is 230 grams.
Find the following: (I) ideal force F, (2) frictional force due to the pulley

system, (3) the actual mechanical advantage, (4) the efficiency. [Note.

Assume that the ideal mechanical advantage is given by the number of cords

supporting the mass of 600 grams.]

6. A painter is suspended to the side of a house by the pulley system in Fig-

ure 30. The upper block of the pulley system is fastened by a hook to the

cornice of the building. The painter may fasten the free or hoisting end of

the rope either to his staging or to the side of the building. If the weight
of the man and pulley system is 600 Ibs., examine the force exerted on the

cornice of the building in each case.



CHAPTER VI

ELASTICITY

All bodies are deformed in some way by the application of a

force, no matter how small that force may be. A perfectly elastic

body will return to its original shape, or position, when the applied

forces are removed. In any actual case, there is a limit to the

magnitude of the force which may be applied, if the body is to

return to its original state. This is called the elastic limit. A
greater force would cause permanent distortion and finally fracture.

Applications of the laws of elastic bodies may be seen in watch

springs, automobile springs, spring balances, etc.

One of the most important properties of an elastic body is that,

when it is bent, twisted, compressed, or stretched, the ratio of the

magnitude of the applied force to the deformation is constant. In

order that we may obtain the same constant for bodies, made of

the same material, no matter what the dimensions of the object

may be, we state that, within the elastic limit, the ratio of the

stress to the strain is a constant e,

__ stress
i.e., e 7

strain

(This is Hooke's Law, discovered by Robert Hooke in 1660.)

The constant e is called the modulus of elasticity. Stress is meas-

ured by the magnitude of the force per unit area causing distortion.

Actually, the term stress refers to the internal forces per unit area

set up to oppose the external force. These forces are, however,

equal and opposite for all cases which we shall consider.

The deformations may be, essentially, a change of shape, length,

or volume. In practice, the most important deformation, resulting

from a pulling or compressing force, is the change in length. For

our purposes, then, we will consider only deformations which are

essentially changes of length.
63
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STRETCHING OF MATERIALS

Consider a wire of length I and of cross-section A (Fig. 32) to

be stretched by a force F so that the new length is (I + AZ). Ap-
. plication of Hooke's Law gives

.= __= constant,
strain At

T
Instead of calling the constant e, we substitute for

it the letter Y (and call this Young's modulus, in

honor of Thomas Young, who first gave physical

meaning to this constant), which expresses the re-

lation between stress and strain.

Consequently,
Fl

(1) Y =
AAl

BENDING BEAMS

T"
FIG. 32.

stretched

force F.

In engineering practice, considerably less ma-

terial is needed if girders be placed so that the

-Wire thin side is vertical, for bending is usually inversely
by a

proportional to the cube of the depth but only
to the first power of thickness. The // type steel

girder and the steel rail are examples of useful applications of the

law of bending beams. Theory and experiment show that the

bend B in a beam of rectangular cross-section is proportional

to the force F and to the cube of its length I
;
and inversely

proportional to its breadth b and to the cube of its depth d'
t

that is :

or
pn

where C is a constant, depending upon the mode of support and

the material of the rod. When the rod is supported by a fulcrum

at either end and the force is applied midway between them, then
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where F represents Young's modulus, and

Fl*B
4 Ybd*

Notice that bending is essentially a combination of stretching

and compression. This explains why Young's modulus appears

in our equation. The top half of

the beam is compressed, while the

lower half is stretched.

EXPERIMENT 9

YOUNG'S MODULUS

A determination of Young's modulus

for materials in the form of long

wires.

Apparatus : Young's modulus appa-

ratus, meter stick, weights (1-14 kg.).

The apparatus consists of two

wires of equal length, each having
one end fastened to a rigid support
or beam in the ceiling, while the

other end is attached to a rec-

tangular frame, as shown in Figure

33. The frame is loaded under each

wire with masses m and M. A
level with micrometer screw at-

tachment tells us how much the

wire is stretched for a given load.

The mass m is used to keep the

wire at a constant tension and, in

particular, to eliminate any kinks

in the wire. This mass m should

be one or two kilograms, depending

upon the size of the wire. The other mass M is variable and

is used to vary the tension on the second wire.

The procedure is to adjust the micrometer screw so that the

bubble in the spirit level is in the center when a load M
,
of one or

two kilograms, is applied. Then increase the value of M by two

kilograms and bring the bubble to its zero position by adjustment

Courtesy W. M. Welch Scientific Company

FIG. 33. Young's modulus appa-
ratus.
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of the micrometer screw. Repeat until 10 or 12 kilograms have

been added. Now since Young's modulus is given by the equation

Y _ stress _ J^
strain AAl'

we can find Y by substituting our measured values of F, A, AZ,

and I in equation (1). In order to test Hooke's Law we shall plot

the stress (i.e., force per unit area) as ordinates and strain (i.e.,

change of length per unit length) as abscissae. If Hooke's Law is

valid, a straight line should result. Provided the elastic limit has

not been exceeded, draw the best straight line through the plotted

points. If the line does not pass through the origin, draw a parallel

line that does. For large loads (i.e., when the elastic limit is

exceeded), the curve bends towards the horizontal.

Calculate Y from your straight line, which passes through the

origin, by taking the ratio of any ordinate to the corresponding

USE C. G. S. UNITS

To FIND DIAMETER OF WIRE (cm.)
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abscissa. Choose an ordinate of reasonably large value in order

to minimize the error in reading your graph. The unit of Y

will, of course, depend upon the units in which the stress is

measured.

QUESTIONS

(a). What is the least count in centimeters for the micrometer screw in your

experiment on Young's modulus?

(b). Which of the quantities that you measured in finding Young's modulus

has the least per cent of error? If possible, give an estimate of the per cent

of error in your result.

(c). Suppose you had made an error of one centimeter in measuring the

length I, would the error be justified, considering the accuracy of the other

measurements?

(d). If the micrometer screw which raises or lowers the level is not located

immediately under the wire to be stretched, will any correction be necessary?

Explain your answer.

EXPERIMENT 10

BENDING BEAMS

A determination of the coefficients of the factors in the equations

representing the bend.

Apparatus: Bending beams apparatus, beam holder, weights

(1-1000 grams), battery and sounder or electric light, meter rule.

The equation representing the bend B of a beam under condi-

tions of the experiment have been given previously by the equation,

(2) B =
V '

4 Ybd?

We will now rewrite the above equation in the form,

(3) B = CFh
l
kbmd,

the object being to obtain experimentally the values of the expo-
nents h, k, in, and n. When these values are found experimentally

equation (3) should be identical to equation (2). Our experiment,

then, represents a method of establishing an equation experi-

mentally.

By taking the logarithm of equation (3), one obtains

(4) log B =
log C + h log F + k log I + m log b + n log d.

Now, suppose that one wishes to find the value of h. First, find

the bend B l when a force Fi is placed on the hanger, and then,
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the bend 2 when a force F% is employed. When the force F\ is

placed on the hanger, equation (4) becomes

(5) log Bi = log C + h log l\ + k log I + m log 6 + n log d.

Similarly, with F% on the hanger, equation (4) gives :

(6) log 2
- log C + h log Ft + k log I + m log 6 + n log d.

Solving equations (5) and (6) for h, gives

C7\ h = Lgj?2_j2jog.BiU;
log F 2

-
log F/

which is the exponent of the force F. If equation (2) is correct,

then the experimental value of h should be 1 (within experimental

error) .

Similarly, to find the value of fc, one varies the length (Z) of his

beam only, keeping the force constant. If there are bends B/
and TV corresponding to lengths Z/ and Z 2 ',

then it may be shown

readily that

M fr
-logft' -logS/8 _ ___

The student may verify by methods similar to the above that

m = log 2"- log 1"

Iog62"-log6 1

"

and
_

log d,'" - log d/"

However, the directions for the

experimental procedure will be

confined to the evaluation of h

and k.

The apparatus is pictured in

Figure 34. The beam is sup-

ported by two substantial knife

edges. At the center of the bar

Covnety Central ScUntificComvany
* ***&* 1S Suspended from S

FIG. 34. -Bending beams apparatus
metal stirrup. The metal stir-

rup is provided with a knife edge

and binding post. The bend is measured by a micrometer screw

which makes contact with the top of the knife edge. Contact is
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indicated by the closing of an electric circuit which operates a

buzzer or lights a lamp. The micrometer screw should be ex-

amined before any measurements are taken to determine its pitch

and value of each division on the milled disc in terms of centimeters.

Then turn down the micrometer screw slowly in each case to make
contact. There is a small difference in reading of the micrometer

depending upon whether the micrometer is turned down to just

make contact or turned up to just break contact. The micrometer

should not be in contact with the bar when masses are being
added or taken off the hanger. It is a good policy to have a zero

load of 200 grams in the pan.

Suppose that we wish to find the value of h. Take the initial

reading of the micrometer screw with the zero load of 200 grams.
Now increase the force on the pan by adding a mass of 200 grams.
Take the new reading. The difference between the two readings

represents the bend B for a force of 200g dynes. Continue your

experiment by reading the micrometer screw for each additional

200 grams mass added to the pan until the maximum safe load is

obtained, say 1000 grams. Now, take the micrometer screw

readings as the load is reduced by 200g dyne steps.

To calculate ft. From your data obtained when the loads were

increased by 200g dynes, calculate the mean value of h for the

following combination of forces : 200g and 600g, 400g and 800g,

600g and lOOOg. Likewise, find the mean value of h from the

data obtained for the reduction of the loads in steps of 200g

dynes.

To find ft, clamp the knife edges near the extreme ends of the

beam and take the micrometer reading of the 200g dyne zero

load. Now add a force of 500g dynes to the load and take the

new micrometer reading. Always keep the load exactly midway
between the knife edges. You now have a bend B for a length of

beam I due to a load of 500g dynes. Now move each knife edge
in towards the center about 5 cm. and repeat the micrometer

measurements for the zero load of 200g and the 500g additional

load. Repeat the micrometer measurements two more times,

moving each knife edge in towards the center 5 cm. each time.

Remember that the measurement of the bend is made in each case

by the addition of the constant load of 500g dynes to the zero

load of 200g dynes. Obtain at least three values of k from your
experiment.
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To FIND h To FIND k

RELATION BETWEEN B AND F

Note. Measure the breadth b and depth d of the beam used to

find the value of k. These values will be needed in Question (b) below.

QUESTIONS

(a). What is the least count in centimeters for the micrometer screw in your

experiment on bending beams?

(b). From the data obtained in the calculation of exponent k, determine the

value of Y for the maximum value of /.

(c). Draw a curve between the bends as ordinates and the corresponding

lengths as abscissae from the data on the experimental determination of k.

Repeat for the logarithms of the bends as ordinates and the logarithms of the

corresponding lengths as abscissae (see page 12).

(d). Is either curve a straight line? What kind of curves would you expect
if you plotted in a similar fashion the data obtained in the experimental deter-

mination of h?

PROBLEMS
Experiment 9

1. Assume that a wire could be stretched to twice its original length, and

still remain within its elastic limit and that the change in its cross-section is

negligible. What expression would you obtain for Young's modulus?

U. From an examination of the equation representing Young's modulus,
what relation exists between the distorting force and stretch for any given
wire?

3. What is the object of the initial load of two kilograms suspended from

each wire before measurements are taken?

4. Are any corrections, due to the stretch of the initial load of two kilo-

grams on each wire, to be made in the calculations for Young's modulus?

State reasons for your answer.

6. A flat brass rod and a flat copper rod, each 4 meters long and 0.2 square
centimeter in cross-section, are rigidly connected all along their lengths.

If a mass of 25 kilograms is suspended from one end of the combined rods,

what will be the resultant stretch of the bar and the restoring force exerted
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by each bar? Assume Young's modulus for brass to be 9.2 X 1011 ^n
f

-
;

i cm .

for copper, 10 X 1011 SZB.
cm2

.

6. What will be the length of a brass rod which stretches one-half the

distance of a 5-meter steel rod when subjected to the same stretching force,

assuming that the steel rod is one-half the diameter of the brass rod. If the

stretching force is 15 kg. and the diameter of the steel rod is 0.5 mm., what

will be the stretch in this rod? Young's modulus for steel is 22 X 10n ^~-
and for brass as given in Problem 5.

cm '

7. A 50-foot steel rod of diameter 3 inches changes in length 0.8 inch

due to the difference between summer and winter temperatures. Calculate

the mechanical force necessary to stretch the rod this amount.
Ibs

8. Assuming Young's modulus for brass to be 13.4 X 106
. what

in2
.

diameter of brass wire will be necessary to sustain a load of 75 pounds?

Express your result in terms of the B and S gauge as well as in centimeters.

9. From the results of Problem 8, calculate the minimum thickness of a

brass wire that will be necessary to support a 150-pound weight.

Experiment 10

10. If the load in the experiment on bending beams is not applied at the

center of the rod, what portion of the theory of the experiment might you
expect to be altered?

11. Would you expect Young's modulus to appear in an expression repre-

senting the bending of a beam? Explain your answer.

12. A beam 2 meters long, 5 mm. wide, and 1.1 cm. deep is bent 8 mm. by
a load F placed at its center. How long must a beam of similar material be

which is 4 mm. wide and 5 mm. deep so as to bend 1 cm. with a load of mag-
nitude 2 F placed at its center ?

13. Assume that a brass and a steel bar of equal lengths are rigidly con-

nected along their lengths. If each is 1.8 meters in length and 0.6 X 0.6 cm2
,

in cross-section, what will be the bend if the bars are supported at both ends

by knife edges and have a load of 50 gms. suspended from their centers?

Assume the combined rods are placed so that both the brass rod and the steel

rod are in contact with the supports and that Young's modulus for each bar

is the same as values given in Problems 5 and 6. What will be the weight-

supported by each bar?



CHAPTER VII

PERIODIC MOTIONS

From Hooke's Law we have seen (Chapter VI) that a distortion

is proportional to the distorting force. Hence in Figure 35, if a

force F displaces a mass m a distance x, against the restoring force

due to the springs, then

1 F oc x, and our equation

I of motion becomesL
(1) F = kx,

FIG. 35. Simple harmonic motion on a friction- , . . , ,

less table.
whcre * 1S a constant

to be determined. The

oscillatory motion of the mass m is called simple harmonic motion.

The equation tells us that simple harmonic motion is a linear motion

such that the magnitude of the restoring force is proportional to the

displacement. In addition, the restoring force and displacement

are opposite in direction. This latter point is not indicated in the

equation for simple harmonic motion and

is omitted to add simplicity in the later

development which may be accomplished

without use of the negative sign for the

displacement x. One of the most im-

portant characteristics of simple harmonic

motion is its period, or the inverse, which is

the frequency. Either of these could be

obtained readily from equation (1) by
the use of the calculus. Since the use

of calculus is beyond the scope of the

present work, we shall study the uniform

speed of a point on the circumference of a circle, projected on any

diameter. This projected motion is an example of simple har-

monic motion.

Consider the motion (Fig. 36) of a point P on the circumference

72

FIG. 36. Circular motion
of point P.
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of the circle of radius K and having a velocity v. We have from

the figure that:
v = R^

where co is the angular velocity ;
also that

a = ~ - co
2#.

JCL

The acceleration along the x axis is

a x a cos o/
2
fi cos 6 uPx

and the force in the x direction is

F max = tnuPx.

Since by definition, 2=
^~>

we have that :

(2) F-^-*-
This shows that the constant k for equation (1) has the value,

7
4 7r

2m
*
--3*-

Our equation (2) gives us the expression

(3) !T

for the period. It is the time interval taken by the object to pass

any point (e.g., the origin, Fig. 36) of reference two consecutive

times in the same direction while making its to-and- r

fro excursions. In the case of a simple harmonic

motion R is often called the amplitude.

The motion of a simple pendulum may be treated

as simple harmonic if the oscillation occurs through
a sufficiently small angle. Referring to Figure 37,

if the initial angle 6 is less than 10, the oscillation

of mass m will be approximately simple harmonic

motion and the period of oscillation (a complete to-

and-fro motion) will be a constant quantity. FIG. 37.

In the figure a small but massive spherical ball is ^P
16 Pendu'

fastened to a cord of negligible weight. When the

spherical ball is small, we may consider the length of the pendulum
as the distance from the upper support to the center of the spheri-
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cal mass. When the pendulum is displaced a slight distance, the

restoring force F, due to gravity, is related to the displacement x

by the equation

JL = 5
mg I

and from equation (3), we obtain

(4) T = 2

as the approximate period of a simple pendulum. The inexactness

of the equation is due to the fact that x is not actually the displace-

ment as required in simple harmonic motion. However, the error

for = 10 is only of the order of 0.2% and

correspondingly less for smaller angles.

Hence, the pendulum may be made a

fairly accurate instrument for the de-

termination of the acceleration of gravity,

\^i \ \ \ provided the period (T) can be measured

with accuracy.

The more accurate measurements of g

by the pendulum method, however, are

usually accomplished with some form of

^^^ a compound pendulum. In Figure 38 let

' (k) i represent a compound pendulum and
FIG. 38. Pendula. . , ,

, V ,. ,

a, a simple pendulum. Ihe essential

difference between the two pendula is, that the mass in a simple

pendulum is concentrated at a point the distance of which from

the point of support is /, while the mass in a compound pendulum
is distributed. It is always possible to find a simple pendulum
of a length I which has the same period as a given compound
pendulum.

Consider the simple and compound pendulum in Figure 38.

The compound pendulum is assumed to have equal periods when

suspended from points and 0'. These equal periods may be

proved to be equal to the period of the simple pendulum whose

length is the same as the distance between and 0'. The points
and 0' of the compound pendulum have an important physical

interpretation. If the compound pendulum is struck at 0' by
a force in the plane of the paper and at right angles to 00', it will

oscillate freely about without any force of the blow communi-
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eating itself to the point O. The point O
f

is called the center of

percussion. Furthermore, if the compound pendulum is suspended
from 0'

j point now becomes the center of percussion.
The center of percussion is often marked on baseball bats since

if the ball is batted from this point there will be no force reaction

(sting) on the hands. Of course, the center of percussion for the

thin end of the bat is of no practical use.

In our experiment, then, the problem is to find the two points

arid 0' about which the two periods for the compound pendulum
will be the same. When these two points are found, we shall

know that the distance between and O f

represents the length of

simple pendulum, having the same period as the compound pen-
dulum suspended from or 0' . From this data the acceleration

due to gravity may be calculated from the formula for a simple

pendulum by using equation (4), or

(5) (7
=
4^.

The above description of the ideas underlying the use of a com-

pound pendulum to measure the acceleration due to gravity is

substituted for the more formal proof which belongs to more
advanced treatises.

TORSION PENDULUM

Moment of inertia (7) is defined as the summation
* = n

I = S

where there are n distinct particles. The mass in each case may
be considered as concentrated at a point the distance of which

from the center of rotation is r. The moments of inertia about

any axis are usually found by the methods of calculus. Even by
these methods the procedure is very difficult, and sometimes

impossible when irregularly shaped bodies have to be considered.

The moment of inertia of any body can, however, be readily found

by experimental methods.

The student will probably have observed in his studies con-

cerning the dynamics of rotation that this quantity 7, which has

been called the moment of inertia, plays about the same role

there that mass does in the dynamics of translation.

Consequently, it can easily be shown that the general expression
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for the period of a simple harmonic motion of rotation has exactly

the same form as the general expression for the period in the

case of linear simple harmonic motion. For the linear case,

T 27TA/ ,
where x is the linear displacement produced by a

v
iTe

force F, whereas for angular simple harmonic motion, T = 2 TT -v -,

where 6 is the angular displacement produced by a torque L, and

/ represents the moment of inertia of the rotating body around the

axis of rotation.

A very convenient way of determining experimentally the

moment of inertia of a body of any shape (around an axis of rota-

tion) is to attach it to the end of a wire, clamped so that the wire

hangs vertically and then allow it to perform rotational simple

harmonic motion. The period of oscillation is carefully observed.

Next a body of known moment of inertia is added and the period

of the combination redetermined. From these two periods and

the known moment of inertia of the body which was added, it is

possible to calculate the unknown moment of inertia of the first

original body.
For the first condition (unknown body only),

(7) ^^Vj?,
where / is the unknown moment of inertia.

In the second case (unknown -f known),

(8) T, = 2^(I+
L
I^ e

,

where I v is the known moment of inertia.

Dividing (7) by (8), we get

'

from which / can be calculated.

In the apparatus used, the body added is in the form of a thin

ring of mass m and average radius r, whose moment of inertia 7

around an axis through the center is known to be / = mr*.

Note. If the ring cannot be assumed to be thin, but if instead

it has a thickness which is appreciable compared to the radius,
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then the more exact formula should be used in calculating the

moment of inertia of the ring, viz., I =
i m(n 2 + ^2

2
).

B fl

EXPERIMENT 11

CENTRIFUGAL FORCE

A verification of the law of force for uniform circular motion.

Apparatus : Any form of centrifugal force apparatus, spring balance.

The type of apparatus to be used is shown in the diagram

(Fig. 39). A shaft AB can be made to rotate around its own axis.

A crosspiecc, having suspended from

it a metal ball m, is rigidly attached

to this shaft. When the shaft rotates,

the ball will tend to fly outwards, but

is prevented from doing this by the

spring. When the proper speed is at-

tained and kept constant, the wire,

supporting the ball, will be vertical

and its position will be marked by a

fixed pointer P below. A string pass-

ing down the center of the spring acts

as a safeguard in case the spring is

stretched too much.

Several precautions must be strictly observed, otherwise the

ball, which has a considerable mass, might break off and cause

injury to someone. With just a little common sense and care

this is entirely unnecessary. The procedure should be somewhat

as follows: Before starting, check the apparatus. See that the

shaft AB is not too tight nor too lose in its bearings. Next see

that the pointer P is in the correct place. Do this by stretching

the spring (without rotation) and pulling the ball to the right until

the wire hangs vertical. The pointer should then be under the

projecting wire on the ball. Now gently start rotating the shaft,

first by giving it a twist with the fingers and then keeping it in

slow rotation by just running your finger along the shaft, helping

it or retarding it as the case may be. Practice for about five

minutes and see whether you can acquire the technique for holding
the speed constant. You will note that the number of revolutions

per second is not very large. Now practice keeping the speed

FIG. 39. Centrifugal force

apparatus.



78 EXPERIMENTAL PHYSICS FOR COLLEGES

such as to keep the ball exactly over the pointer. Let your partner

do the same.

Having mastered the technique, you are ready to start your
observations. We wish to show, within experimental error, that

the centripetal force acting toward the center is correctly given by

F = ^-- Consequently the experimental measurements involve

measuring, (1) the mass of the ball m
; (2) the velocity v

; (3) the

radius of the circular motion R. The linear velocity of the ball

is found by timing a certain number of revolutions with a stop

watch when the ball is running with constant speed, the speed

being the proper value to keep the two pointers over each other.

Time the system for 50 or 100 turns. Make about three trials,

recording each trial. Let your partner take three or four more.

Average all these trials and calculate the average period for one

revolution. Do not forget to calculate the error.

Next, to find R, it is necessary to measure only the distance from
the center of the shaft to the pointer P. This can be done by
measuring the distance from P to the shaft by means of a meter

rule and then adding one-half the diameter of the shaft as measured
with caliper.

Knowing now the time T for one revolution and the radius (in

cms.), it is a simple matter to calculate the linear velocity v, since

In this way find v and the per cent of error in the
T

measured value of v. Finally, calculate F, and the per cent of

error, from the formula for the centripetal force.

Check this value roughly, experimentally, by attaching a spring

balance to the ball and pulling the latter out until the ball is again
over the pointer P. Take the reading of the balance and express
this force in dynes. Repeat two or more times in order to estimate

the precision of this measurement. Calculate the percentage
difference between the two values for the force.

QUESTIONS

(a). Which gives the more accurate method for finding F?
(b). Point out in your figure where and in which direction the centripetal

and the centrifugal forces act.

(c). What would be the objection to having the pointer P at a distance

from the axis of rotation not equal to that of the length of the arm c ?
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EXPERIMENT 12

THE PERIOD OF OSCILLATION AND FORCE CONSTANT
OF A SPRING

Part (a). To determine the force constant of the spring.

Part (b). To determine experimentally the period of oscillation of

the system for several masses.

Part (c). To check on the experimental period found in (6), by

calculation from the formula using the

force constant found in (a) .

Apparatus : Spiral spring mounted on rods

and clamped rigidly to the table (Fig. 40),

slotted weights (up to 1000 grams), hanger,

stop clock, meter 'rule.

oo

o
8
L

Part (a). Add to the hanger 100, 200,

300 grams, etc., up to 1000 grains. Place _

the meter rule vertically and take readings
FlG - 40 - Simple har-

of a certain point on the hanger before
monio motion <Waratus -

and after each load. Record the stretch of the spring for every
100 grams added.

Tabulate your results as shown :

Examine the successive values found for the stretch x, when
additional loads of 100 grams are added. The value of x, of course,

shofHd be constant since Hooke's Law is assumed to hold. For
the smaller loads it is quite possible that x is not constant. This,

however, is due to negative tension in the spring which must be

overcome before the spring really becomes stretched. In averaging

your values to find #, take only those which show that beyond a
certain point the negative tension has been overcome.

Then the force constant = = &- dynes/ (cm.).
x av. x
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Part (b). Determine the periods of three masses experimentally

by taking the average of one hundred oscillations for each mass.

Each of the three masses should be in excess of that required to

overcome any negative tension of the spring.

Mass of the spring =

Part (c). Calculate from equation (3) the theoretical period

for each of the three masses in Part (b), using the value of -
x

found in Part (a). The mass m must include the weight of the

hanger as well as one-third the mass of the spring if the latter

mass is appreciable compared to the other masses. (The reason

for adding one-third the mass of the spring appears in more

extended treatises.)

QUESTIONS

(a). In your experiment what would be the (I) maximum restoring force

of the spring, (2) maximum acceleration of the mass, (3) maximum velocity
of the mass if the amplitude of swing was 3 cm. and the mass on the spring
was 500 gm. ?

(b). What will be the error in the period of the smallest mass used in Part

(b) if the mass of the spring is neglected?

EXPERIMENT 13

THE SIMPLE PENDULUM

To determine g, the acceleration due to gravity.

Apparatus : Same as in Experiment 4.

If the data for Experiment 4 are available, find the value of g
from the curve or other observations made at that time, using the

formula

T = 2
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If the previously taken data are not available, repeat the experi-

ment.

QUESTIONS

(a). What must be the length of a simple pendulum in order that (1) the

period may be one second? (2) The half period may be one second?

(b). In Experiment 12 you have found a curve showing the relation between

T- and L This should be a straight line passing through the origin. Prove

that the slope of this line is equal to -

9

(c). Suppose that, you had found experimentally that the value of this

slope is 0.04, what is the value of g, the acceleration of gravity ?

(d). What value did your results give for the slope of this line ?

EXPERIMENT 14 3

RATER'S PENDULUM 6

To find the value of g.

Apparatus: Kator's reversible pendulum and support,
meter stick, stop clock. 9

Rater's pendulum consists of a bar with masses at- u
tached so that one or all of them may be adjusted to

several positions. It is constructed to have one or 13

more suspension points from either end. The instru-
J5

ment as shown in Figure 41 is a straight steel bar

weighing about 2 Ib. with f-inch holes bored along *7

the bar beginning one inch from either end and spac-

ing two inches apart. They are slightly beveled and ,

have a groove to engage the knife edge. The length

of this pendulum bar is about 4^ feet. The mass at

the top consists of two discs, each weighing about 2S

If Ib. and bolted to the bar by a bolt f inch in diameter 25

and a wing nut. This mass is kept in the same position

throughout the experiment. The other mass, consist- 27

")

o'

ing of two discs near the bottom, is fastened to the bar FIG. 41.

in the same way as the one described above. The Water's pen"

weight of each of these discs, however, is approximately
0.9 Ib.

The method used in this experiment is to find the period from

either support. and 0' and to adjust the sliding mass m up or

down until the periods from each end are equal. The approximate
values of the periods for the preliminary work may be found by
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taking the average of ten complete oscillations. Suppose the

periods to be about the same when the mass m is bolted through
hole No. 20. To determine more accurately the period of oscilla-

tion for equal periods from each end, find the period about and

0' by taking the average of fifty complete oscillations with the

mass m bolted to holes Nos. 18, 19, 20, 21, and 22. Plot the period

about each point of support as an ordinate against the numbers

representing the holes. The intersection of the two curves for

the periods about and 0' will give the period of a simple pendu-
lum the length of which is the distance between and 0'. The
distance between the supports and 0' must be measured

carefully.

PRELIMINARY READINGS FINAL READINGS

MEASURE OF
DISTANCE
BETWEEN
O AND 0'

(I)

Value of T, the period, obtained from
4 TT

2
l

the curve = g -^

Per cent of error from accepted value

Average
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QUESTIONS

(a). Estimate the error in your experiment on Kater's pendulum from the

data obtained. Compare with the per cent of error from the accepted value.

(b). Let the period of a simple pendulum of length 99.6 cm. be 2.10 seconds.

Find the distance between the two knife edges of a Kater's pendulum which

has a period of 4.15 seconds at the same place.

EXPERIMENT 15

THE TORSION PENDULUM
To find the moment inertia of a disc.

Apparatus : Torsion pendulum with rod, table clamp and test tube

holder, inertia ring, stop clock, meter stick.

The apparatus consists essentially of a disc rigidly attached to a

wire of length I. The upper end of the wire is attached to a

cylindrical block, which, in turn, is held

rigidly by a clamp (Fig. 42). If the disc

of mass M is given a small twist, say a

half-turn, it will oscillate back and forth

with a given period. If the ring of mass
M is now placed on top of the disc so that

the wire is at the center of the ring, the

period will be longer. From these two

values of the periods it is possible to

obtain the moment of inertia of the disc

of mass M. This, therefore, is an experi-

mental method for finding the moment of

inertia of a disc. The method is applicable

no matter what the shape of M. In order

to check the experimental determination,

the body M is given a shape such that

it is also possible to calculate, by methods

of calculus, the moment of inertia. When
M has the shape of a disc as shown in the

figure, then the calculation by calculus gives 7 (disc around a central

axis) =
|- Mr2

,
where M is the mass of the disc and r its radius.

Consequently in performing this experiment find the time, first

without and then with the ring, of 25 or more complete angular
oscillations. Make a number of observations of this same quan-

tity, recording each one in a table or form shown below. By

FIG. 42. Torsion pen-
dulum.
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averaging each set of readings and then dividing by the number
of oscillations, the period of a single oscillation can be calculated.

Unless the mass of the disc and the mass of the ring are already

given, it will now be necessary to weigh them on a balance.

Record also the radius of the disc and the inner and outer radius

of the ring. These can all be found by averaging a number of

readings taken with the vernier caliper. If the approximate
formula is used for the ring (mr

2
), then r must be the mean radius.

To FIND THE PERIOD (Seconds)

To FIND THE RADII (cm )

Mass of the ring
= grams

Mass of the disc = grams

Experimental value of T\ = sec.

Experimental value of T% = sec.

also 7i (ring)
= gm.-cm.

2

hence 7 (disc)
= gm.-cm.

2

also / (calc) = gm.-cm.
2
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QUESTIONS

(a). Using the more exact formula for the moment of inertia of the ring,

calculate the moment of inertia of the disc.

(b). Compare the two values for the moment of inertia of the disc as found

by experiment (using the approximate and the exact values for the moment of

inertia of the ring) and calculate the change in the error when the values are

compared with the calculated value of the moment of inertia of the disc

(i.e., I =

U PROBLEMS
/)*YExperiment 11

1. Suppose that, in Figure 39, the mass m revolves 50 times in 60 seconds.

What will be the tension in the spring if m 500 gin. and radius R 30 cm. ?

2. What would be the time T for one revolution in the question above if

m = 1000 gm.?

3. What will be the time T for one revolution in Problem 1, if the tension

of the spring and the' mass m remain unchanged, but the radius R = 60 cm.?

Experiment 12

4. Give a definition of simple harmonic motion.

-*6. What is the amplitude of a simple harmonic motion? *

**G. Is the period of oscillation in any way dependent on the amplitude of

the oscillation?

7^Tf the period of your spring, with a mass m, should be obtained in

another locality with a different value of g (the acceleration due to gravity),

would you expect the period to be altered? Explain your answer.
'

*8. If a mass of 50 grams stretches a given spring 1 cm., what would be the

period of the spring if 200 grams were placed on the spring?

Experiment 13

9. Is the oscillation of a simple pendulum an example of simple harmonic

motion ? Explain your answer.

10. How does the period of a simple pendulum vary with (1) the length,

(2) the mass of the bob?

11. Would you expect the period of a simple pendulum to be greater or less

at the top of a tall building when compared with the period at the base of the

building ?

12. A pendulum of length 99.5 cm. swings at a place where the acceleration

due to gravity is 980.2 -^~- If it is intended to be a seconds pendulum

(period of 2 seconds), what time is lost or gained per day? What should its

length be?

Experiment 14

13. What is the meaning of the expression
"
center of percussion "?

14. When the period of a compound pendulum about and O* (Fig. 38 b)

is the same, what does this mean ii terms of a simple pendulum ?
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15. What method is used in the experiment with Kater's pendulum to

assure periods about two points and O r

to be equal?

Experiment 15

16. Does the period of a torsion pendulum vary with the angular dis-

placement ?

17. Calculate the moment of inertia of a disc around an axis through the

center, given that the mass is 500 grams and the radius 10 cm.

18. Find the moment of inertia of a ring around a central axis if its mass ia

500 grams and the inside and outside diameters are 12 and 14 cm. respectively.
/ 7' 2 \

19. Verify the equation I I } (
)
for a torsion pendulum,

\ 2Y T. i
2
/



CHAPTER VIII

SPECIFIC GRAVITY AND DENSITY OF BODIES

The density of a body is defined as the mass per unit volume.

Consequently, if d represents the density, v the volume, and m the

mass, then m
d = '

v

In fundamental units the density is expressed in ^^ or -^-

cm. 3
ft.

3

Thus in the English (f. p. s.) system the densities of water,

mercury at 20 C., and gold (cast) are 62.4, 845.6, and 1204.6 ~~
IL.

respectively, whereas in the metric (c. g. s.) system these densities

become 1, 13.56, and 19.3 -SIL-
cm. 3

It is very common, in the case of liquids, to compare the weight
of a given volume to the weight of the same volume of some
standard substance. The standard substance generally taken is

water. This ratio is called the specific gravity of the substance.

Specific gravity can also be expressed as the ratio of two densities,

i.e.,

where du and dk are the densities of the unknown and known sub-

stances respectively. Referring to tne above figures for water

and mercury, it will be seen that in either system of units the

specific gravity of water is 1 and that of mercury is 13.56, if water

is chosen as the standard.

Density is a concrete number with dimensions dependent on the

system of units used
;
while specific gravity is an abstract number,

and hence without dimensions. The value of the specific gravity

of a liquid, therefore, does not depend on the system of units.

Because of the fact that in the metric system a unit volume of water

has a mass of 1 gram, the specific gravity and density in that

system have equal numerical magnitudes.
87
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EXPERIMENT 16

ARCHIMEDES 7 PRINCIPLE AND THE DENSITY OF SOLIDS

Part (a) . To find the density of solids heavier than water.

Part (b). To find the density of solids lighter than water.

Part (c). To measure the specific gravity of a liquid.

Part (d). To find the length of a tangle of wire.

Apparatus: Part (a). Solids insoluble in water, platform balance,

standard weights, thread.

Part (b). Solids lighter than water (e.g., paraffin, wood, etc.), a

sinker, balance as in Part (a).

Part (c). A liquid such as carbon tetrachloride, or glycerin,

balance as in Part (a).

Part (d). Fine balance, platform to fit over left pan of fine

balance, beaker (500 cc.), loosely tangled copper wire of approxi-

m mately # 22 B & S gauge, micrometer

screw, cleaning solution (see Part (d) of

experiment) .

/zz Part (a). Weigh the solid in air and

let its mass be m. Then weigh the solid

(Fig. 43) in water. If the weight in

water is mi, its loss of weight in water

is m mi. This represents the weight
of water displaced, which numerically

is equal to the volume of the block. Hence, the density is

FIG. 43. Solid denser than
water.

d =
m nil

Part (b). Attach a sinker to the

body of mass w, the density of which

is desired. If the weight of the com-

bined masses with sinker just immersed

is mi, and with both solids immersed

is r??2, then the density of the mass m
is (Fig. 44)

i

d = m FIG. 44. Solid less dense than
water.

Part (c). Weigh a solid (insoluble in water or in the liquid

whose specific gravity is desired) in air and call its mass m. Then

weigh the solid immersed in water (Fig. 45), and then in the liquid
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x. If the weight of the solid in water is MI, and in the liquid is

w2 ,
then the specific gravity of the liquid is

Water Any Liquid x

FIG. 45. A liquid.

~kp.gr. = -

\v .\
j

This results (1) from Archimedes' principle, which states that

the loss of weight of a body immersed in a fluid is equal to the

weight of the fluid displaced ;

and (2) from the definition

of specific gravity, which is

the ratio of the masses of the

two liquids when the volumes

are the same.

Part (d). In this experi-

ment, one finds the volume

of the wire by determining

the loss of weight in water by means of the fine balance, and

also the diameter d of the wire by means of a micrometer screw.

Thus if I is the length of the wire, then the volume (v) of the

w*re *s
TT 4 v

v = 7 d2
l

y
or / = -

4 ira
2

The loss of weight of the wire is found in the following manner :

Clean the wire in an alkali solution made of sodium hydroxide

(20 or more grams per liter) and rinse with clean water. Make a

tiny hook at one end of the wire and attach to a hook directly

under the left-hand knife edge of the balance arm. Then place a

platform over the left-hand pan and arrange the apparatus so that

the tangle is immersed in a beaker of water placed on this platform.

Exercise great care in placing the platform and beaker of water

over the scale pan so that no water is spilled on the balance.

Carelessness in this operation ruins a balance and in this case is

inexcusable. Weigh the tangled wire when immersed in the water.

The difference between the two weights is numerically the volume.

[Note. The length of the portion above water may be added to the

resultant length under water, as found by calculation, later.]

QUESTIONS

(a). What effect would bubbles of air, gathered on the side of the solid

when immersed in water, have on (1) the density of the solids in Part (a) ;

(2) the specific gravity of the liquid in Part (c) ?
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(b). What kind of errors may be expected in Part (d) if the wire is tangled

too tightly or if the wire is not clean?

(c). Discuss and approximate the accuracy of each result in Parts (a), (b),

(c), and (d) of this experiment.

EXPERIMENT 17

THE DETERMINATION OF THE SPECIFIC GRAVITY OF
LIQUIDS

Part (a). By means of the specific gravity bottle.

Part (b). By means of the U-tube.

Apparatus: Part (a). Fine balance and weights, specific gravity

bottle, liquids, heated compressed air for drying out the specific

gravity bottles.

Part (b). U-tube about one foot or more in length, liquids,

meter stick, water, mercury, carbon tctrachloride, glycerin, etc.

Part (a). If the specific gravity bottle is not dry and clean, rinse

with water and then dry by blowing heated compressed air into

the bottle. It is then weighed on the fine balance. Fill the bottle

with water and weigh again. Next, having emptied and dried

the specific gravity bottle, it is again weighed when filled with the

liquid the specific gravity of which is desired. The bottle should

always be exactly full when at room temperature. If m, mi, and

ra 2 ,
in the order given, represent the mass of the empty bottle, the

mass of the bottle when filled with water, and the

mass of the bottle when filled with the liquid, the

specific gravity is

Sp. gr.
= ^=J5.

mi m

Note that there is a hole of capillary size along the

axis of the ground stopper (Fig. 46). This hole is

FIG. 46. provided to allow excess liquid to escape from the

Specific gravity bottle upon sealing with the stopper. The bottle

should be wiped after closing with the stopper. To

prevent the formation of bubbles within the bottle, insert the stopper
in such a fashion as to have one side touching the neck of the bottle

and the bottle tipped slightly.

Repeat your experiment one or more times and calculate the

per cent of error. Compare the value found by experiment with

the value as given in tables.
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Part (b) . Fill the U-tube about one third to

one half full of the liquid, then add water to

one side until the tube is filled to a desired

height. In Figure 47, the shaded portion rep-

resents the liquid of which the specific gravity

is desired, while the unshaded portion is water.

The water column of length 12 is balanced by
the column of liquid of length li.

It may be shown that

and, therefore, we have

Sp. gr.
- -* = -?

2 LI

FIG. 47. Specific

gravity by U-tube
method.

QUESTIONS

(a). What is the accepted specific gravity of the liquid used? Slate the

source of information. What is the per cent of error of your experiment

(use your average result) from this accepted value?

(b). Could you perform the experiment if some water appears on both

sides of the tube?

(c). Compare the results of the specific gravity as found in Part (a) and
Part (b). Wtich rnethoji gives more accurate results?

^<^ ^<^t PROBLEMS
Experiment li y V

1. State all the differences you can think of between the definitions of

specific gravity and density.

2. A spherical mass of cast gold weighing 100 grams is thought to have a

hollow center. When weighed in water, it

is found to weigh 90 grams. What is the

volume of the inclosed air space ? ( Density
Water

of gold = 19.3 EL.\
cm.3

/

-Mercury

3. An alloy of silver and gold is made

to have a density of 13 -S5[L and a mass of
cm. 3

55 grams. What mass of silver was used?

FIG. 48. U-tube with liquids
[Noie ' Take the densities of silver and gold

as required in Problem 8. to be 10.5.-^^ and 19.3 -i respectively.]
cm. 3 cm.3

4. A glass receptacle contains a layer of mercury and then a layer of water.

If a cast steel rectangle of density 7.6 -fSSi is dropped into the dish, what
I cm. 3
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portion of the depth of the rectangle will be above the mercury surface?

(Mercury
has a density of 13.5 -SHL. \

cm. 3
/

6. Do you think iron would sink to the bottom of the ocean?

Experiment 17

6. What advantage is obtained by the use of a specific gravity bottle with

the kind of stopper described in Experiment 17, Part (a)?

7. What is the theory that leads to the conclusion M? = Mi? Would
the theory be altered if the U-tube had a larger diameter on one side than

on the other?

8. A U-tube contains liquids as shown in Figure 48. Assume that the

density of water and mercury are known and calculate the density of the

unknown liquid.



CHAPTER IX

EXPANSION OF SOLIDS, LIQUIDS, AND GASES

Most substances expand with an increase of temperature. A
few, however, contract with temperature, while others change
but little. The amount of expansion with heat seems to be related

very closely with the grouping of the molecules and the forces

between them. Thus with gases the motions of the molecules

are wholly at random and the expansions are very uniform for

many gases. In general, the expansions, with increase of tem-

perature, are less marked in the order: gases, liquids, and

solids.

By expansion, we may refer to the change in length, surface,

or volume, due to a change in temperature. Thus with the laying

of pipe lines, the building of bridges, or the construction of steel

buildings, it is the change in length that is important; while in

the construction of thermometer bulbs or the filling of liquid

containers, the volume expansion is important. Surface expan-
sions will not be considered.

The linear expansion of a solid is measured in terms of the

change of length per unit length per unit rise of temperature.

We call this the linear coefficient of expansion of a solid, and it is

designated by the letter a. Thus, if A/ represents the total change

produced in the length,

Here a is the average linear coefficient of expansion for the tem-

perature interval A, and I is the length at the initial temperature,

The average volume coefficient of expansion (0) for the temperature
interval A is defined in a similar way, namely,

where v is the volume at the initial temperature.

It will be noticed that if we let Z and Ii be the initial and final

93
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lengths, while t Q and ti are the initial and final temperatures, we
have from (1)

lo(ti to)

or li
= I [l + a(ti t )],

and if t Q
=

0,

(3) h = Z (l + crfi).

Similarly,

t>i =^o[l + 0(*i
-

*o)L

and when =
0,

(4) v l
= v (l + &i).

[Note. Many use the letter t instead of A to represent the change
of temperature.]

Gases expand so markedly that the volume (or linear) coefficient

of expansion will have different values, measurable in the labora-

tory, if different initial temperatures from which the expansion

is measured are chosen. The initial temperature usually referred

to is C.

The volume coefficient of expansion of a gas at constant pressure

with an initial volume (VQ) at C. is defined as

or

The pressure coefficient of expansion at constant volume is

or pl =

It may be shown that for a perfect gas

PP = pv
=

-^r,
1

where TQ 273 (to a first approximation), the temperature on

the absolute scale which corresponds to zero degrees on the Centi-

grade scale.

If we wish to study the expansion of gases where the initial state

of the gas is not given at zero degrees Centigrade, it will be found

more convenient, generally, to use the more general gas law,

pv = RT,

i.e.,
2? = const. = 2?.
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In this equation, T is the temperature on the absolute scale and has

the relation to temperatures t on the Centigrade scale that

T = 273 + t.

EXPERIMENT 18

THE AIR THERMOMETER
To find the value of ft by use of the air thermometer.

Apparatus: Air thermometer, ice, large beaker, steam jacket,

thermometer.

The apparatus (Fig. 49) consists of glass bulb with stem of

capillary bore, connected to a flexible rubber tubing as shown.

A straight glass tubing of about % inch

in diameter is connected to the other side

of the rubber tubing. Clean mercury
fills the space between the levels a

and b.

Keeping the volume of air inclosed in

the bulb constant, theory shows that the

pressure in the bulb is related to the tem-

perature of the bulb in the following way :

fl
_ Pi

~
PO.PV -

;

prfl

Consequently it becomes necessary to

find the corresponding pressure in the

bulb for two or more temperatures.

In the experiment, place the bulb in a

mixture of chopped ice and water to ob-

tain the pressure in the bulb for zero

temperature. This pressure (po), if is

higher than 6, will be :

PO Pa + (a b) centimeters of Hg,

where pa is the atmospheric pressure in centimeters of mercury

(Hg), while a b is the difference in height of the two sides of the

mercury column, measured in centimeters. The height of a and

b may be measured from the table top if the apparatus contains

no scale of its own. It may turn out that a is lower than 6. In

such a case the pressure in the bulb is less than atmospheric

FIG. 49. Air thermometer.
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pressure ;
hence the difference (6 a) is subtracted from pa .

The atmospheric pressure (pa) is to be obtained from any good
barometer.

Next insert; the bulb in a steam jacket to get the pressure (pi)

for steam temperature. Remember that you are to adjust your

apparatus so that the volume within the bulb is to remain constant.

This means that the top of the mercury column at b must remain

at the same position as before. To do this the other side of the

mercury column must be raised. Again find the pressure, now
at 100 C. From your results obtain a value for j3. [Note.

Before you take the bulb from the steam bath, lower the side

which has the top of the mercury column marked with the letter a,

so that mercury will not go into the bulb when it cools.]

Having surrounded the bulb with a water jacket, find the

pressure corresponding to temperatures in the neighborhood of

25, 50, and 75 degrees Centigrade to determine whether the state-

ment is true that the pressure increases linearly with the tempera-
ture. Plot your results with pressure as ordinate and temperature
as abscissa. Extend your curve until it crosses the axis of the

abscissa and interpret the intercepts. Enter your data in a tabular

form as shown :

BAROMETER HEIGHT (pa)

QUESTIONS

(a). What does your
" curve "

tell you as to the relation between the pres-

sures and temperatures?

(b). At what temperature did your curve cross the axis of abscissa?

(c). What relation would you expect to find if you divided the pressure in
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the bulb by the absolute temperature for each of the four temperatures at

which the pressures were measured? Explain your answer.

EXPERIMENT 19

BOYLE'S LAW

To show that the product of the pressure and the volume of a gas (air)

is a constant if the temperature is kept constant.

Apparatus : Any standard Boyle's law apparatus.

In the apparatus to be described (Fig. 50), the closed side of

which the volume is to be determined is on the right, while an

open end is provided on the left. There

are two pieces of, glass tubing of uniform

bore connected by a flexible rubber tub-

ing. The apparatus is filled with mercury
to levels a and 6, as shown. The volume

of the inclosed space is changed by alter- pa

ing the height of the mercury column on

the left side.

Since the tube is of uniform bore,

Boyle's law,

may be written in the form,

Pill
= 7^2,

where A is the cross-sectional area of the

tube, and Vi = All and v2
= A1 2 . The

pressure p inside the inclosed gas (air)

will be

p = pa + (a b)

centimeters of mercury where pa is the co*rte*y central sctem-wc company

pressure of the atmosphere. If we do not FlG - 50 - Boyle's law appa-
ratus

alter the height of the tube on the right,

then the top of the closed tube (c) will remain at some constant

reading on the scale, and the whole experiment may be done by

reading different positions of a and b on the scale when the left-

hand column is altered in height. Always allow the air in the

closed tube to stand for a few minutes after changing the level

to allow the air to acquire the temperature of the room.

Take several (8 to 12) readings by changing the height on the
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left-hand side and plot a curve between the reciprocal of the

length (I
= c 6) of the inclosed volume, as abscissae, against

the pressure in centimeters of mercury as ordinates.

pa = cm. of Hg c = cm.

QUESTIONS

(a). In which way will a plot of 1/7 against p prove Boyle's law?

(b). Plot I against p for your experiment. What is the shape of the curve?

(c). Why is it necessary to insure that the inclosed air is always at room

temperature ?

(d). Is the value of pi as found in the last column constant ? If not, discuss

possible reasons for the variation of this quantity.

EXPERIMENT 20

LINEAR EXPANSION

To determine the linear coefficient of expansion of a rod.

Apparatus : Linear coefficient of expansion apparatus, thermometer,
steam generator, bunsen burner with rubber tubing, meter stick,

micrometer screw.

The apparatus (Fig. 51) consists of a hollow tube of copper or

brass, resting at the one end, which is notched, on a pointed support ;

at the other, on a spindle which carries a pointer. Since the

notched end is fixed, it follows that when the length changes,

the pointer turns in front of a dial graduated in degrees. Record

the temperature of the room near your apparatus, and assume it

to be the initial temperature of your expansion rod. Take the

initial reading of the dial. It is important not to disturb the

apparatus after this initial dial reading is taken. Then pass
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steam, which has a temperature of 100 C. at normal pressure,

through the hollow tubing. After a short interval of time the

dial will come to rest at a new position, the reading of which should

Courtesy Central Scientific Company

FIG. 51. Linear coefficient of expansion apparatus.

be taken. Let the angular change in degrees between the initial

and final dial reading be called 6. Consequently the change in

length (AZ) of the rod is

where r is the radius of the spindle. This radius is found by means
of the micrometer screw by taking the average of several readings

of the diameter and dividing by 2. The length I of the rod under

consideration is, of course, the distance from the notch to the

spindle.

The average linear coefficient of expansion of the rod for the

temperature interval A =
ti to is

-i*
I M

Repeat the experiment two or more times. Allow the rod to

acquire room temperature before taking the initial reading.

QUESTIONS

(a). If the experiment is repeated only once, find the per cent of error from

the mean. If repeated more than once, find the maximum per cent of error

from the mean.

(b) . Determine the per cent of error of your average result from the accepted

value.
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(cj. Would you call the method for obtaining to, the initial temperature,

very exact or scientific ? Can you think of any other procedure that may have

some merit?

PROBLEMS
Experiment 18

1. Why is the hydrogen gas thermometer called a " standard ther-

mometer "?

2. Show that for a perfect gas, i.e., a gas which satisfies the relation

T> = po/'o = pt"" "

To To + t

the following is true :

3. Would carbon dioxide make a good
" standard thermometer "?

4. Consult a handbook and record the values of the volume coefficients of

expansion of five to ton representative gases, liquids, and solids. In which

state do you find (1) the greatest variation of this coefficient and (2) the

largest value for the volume coefficient of expansion?

5. Why is it necessary to specify some initial temperature from which to

reckon the volume coefficient of expansion for gases while with solids the

exact position of the initial temperature is not so important?

Experiment 19

6. Would Boyle's law hold for carbon dioxide at ordinary (20 to 25 C.)

temperatures ? Why ?

7. A certain perfect barometer has a space of 5 cm. above the mercury level

when the atmospheric pressure is normal. A little air is allowed to enter the

barometer so that the level of mercury falls 3 cm. If the diameter of the

barometer tube is 1 cm., what was the volume of air before it entered?

Experiment 20

8. With the pressure of the atmosphere as 74 cm. of Hg instead of normal

(76 cm.), what would be the per cent of error in the calculated coefficient of

expansion due to the temperature of steam being taken as 100 C. ? Assume
the initial temperature to be 22 C., the length of the rod 55 cm., and the

expansion 0.5 mm.

9. How much will a steel bridge one mile in length expand between extreme

temperatures of - 20 C. and + 40 C. ?



CHAPTER X

MEASUREMENT OF HEAT AND CHANGE OF STATE

The science of calorimetry deals with the measurement of quan-
tities of heat. Since the absolute heat energy in any body is a

rather vague quantity and of course would be very difficult to

measure, we confine ourselves in calorimetry to measurements

of heat changes and transfers from one body to another. In any

case, in our practical life it is only exchanges of heat and their

effects that are of interest to us.

Heat measurements have always formed a very interesting part

of practical physics, yet they are a very difficult part, however,
when extreme accuracy is attempted. We find in this field scien-

tists who have spent a whole lifetime in these researches and

have won fame for the degree of skill and technique which they
have developed. Such names as Joule, Rowland, and Regnault
will never be forgotten, and the student would find the time well

spent if he will read some of the records of the published works of

these men.

UNITS INVOLVED IN HEAT MEASUREMENTS

The unit of heat in the c. g. s. system is the calorie, which is

arbitrarily defined as the amount of heat necessary to raise the

temperature of 1 gram of water 1 C., at some specific temperature.

The unit varies somewhat, depending upon the temperature, but

the variation is so small that for ordinary work the difference is

negligible (less than 0.1% per degree change). We shall assume

that the unit is the same for all the temperatures that we will use.

The specific heat or heat capacity (*) of a substance is defined

as the amount of heat (measured in calories) necessary to raise

the temperature of 1 gram of the substance through 1 C.

The water equivalent of a body or vessel (w) is the amount of

water which would require the same amount of heat as the body,
in order to raise the temperature through 1 C. Hence :

w = m X s,
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where m is the mass of the calorimeter and s is the specific heat

of the metal of which it is made.

The latent heat of fusion (L) is defined as the amount of heat

(in calories) necessary to change 1 gram of the substance from a

solid to a liquid at the same temperature. (L = 80 calories per

gram for water and the change takes place at C.)

The latent heat of vaporization (I) is defined as the amount of

heat (in calories) necessary to change 1 gram of the substance

from a liquid to a vapor at the same temperature. (I
= 540 calories

per gram for water and the change takes place at 100 C.)

The following examples illustrate the use of these definitions.

1. The amount of heat necessary to change the temperature
of

-| kg. of water from 15 C. to 25 C. is msfa ti) calories =
500 X 1 X (25

-
15) = 5000 calories.

2. The amount of heat necessary to raise ^ kg. of iron through
the same temperature interval would be

ms(h -
ti)

= 500 X 0.115 X (25
-

15) = 575 calories.

3. The water equivalent of the iron block in example (2) is

57.5 grams because m X s = 500 X 0.115 = 57.5 grams.
4. The latent heat of fusion of lead is 5.4 calories per gram if

the amount of heat necessary to change 500 grams of lead at

327 C. (the melting point) to liquid lead at 327 C. is 2700 calories.

5. The latent heat of vaporization of water is 540 calories per

gram if 5400 calories are necessary to change 10 grams of water

into steam at 100 C.

METHODS USED IN CALORIMETRIC DETERMINATIONS

Although the methods are numerous, they can be conveniently

grouped under two headings :

1. Method of mixtures, in which two or more systems having
different temperatures are placed in contact in such a way that

they interchange heat until all of them acquire the same tempera-

ture, at which time the interchange stops. Writing down, then,

the fact that the bodies at the higher temperatures give out an amount

of heat equivalent to the heat absorbed by the bodies having a lower

temperature, we have usually sufficient data to find the unknown

constant, be it the specific heat or latent heat.

2, Methods employing steam or ice calorimeters (e.g., Black's

and Bunsen'* ice calorimeter or Jolly's steam calorimeter). The
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method here used depends upon a knowledge of the latent heat

of fusion or vaporization of water.

In the ice calorimeter the hot body, after having been raised to

a known high temperature, is allowed to give off its heat, and in

so doing melt part of a block of ice. The amount of ice melted

is found experimentally and thus a knowledge of the amount of

heat given off in cooling to C. is obtained, enabling us to cal-

culate the specific heat.

In the steam calorimeter (Jolly) the body at room temperature

i^ suddenly surrounded by an atmosphere of steam. The amount
of steam condensed on the body before it finally acquires the

temperature of the steam is measured on a sensitive balance.

This again gives us a knowledge of the amount of heat necessary

to heat the body from its original temperature to the temperature
of the steam. From this we calculate the specific heat.

The experiments to be described here will be confined to the

method of mixtures. In this method the first essential is the

calorimeter. This is usually a thin-walled copper vessel which

is polished or nickel-plated both inside and outside. It is

polished inside so as to reflect the radiant heat back into the

vessel, and polished outside so as to be a poor emitter and absorber

of heat.

Convection currents and radiation are minimized by surrounding
the calorimeter with another metal vessel polished also inside and

out and having as few contacts as possible with the inside calo-

rimeter. Often a Dewar vessel can be used very effectively.

An important source of error in accurate calorimetric work is

the error introduced by heat loss to the surroundings. Newton
has introduced a method for calculating and measuring this heat

loss and making correction to our calorimeter readings. The

method of correction is very instructive and gives good results,

but requires quite a little skill and practice. The student is

referred, for a description of the method and procedure of cor-

rection, to other texts on practical physics.

In the experiments to be described here, we shall minimize

this error as far as possible by arranging the experiment so that

during half the period the calorimeter has a temperature above the

surroundings, and gives off heat
;
whereas during the other half

the calorimeter is below the temperature of the surroundings and

absorbs heat from the surroundings. By arranging the experi-
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ment so that these two heats are approximately the same, this

error is minimized.

EXPERIMENT 21

METHOD OF MIXTURES

A determination of the specific heat of a solid.

Apparatus: A solid block (e.g., aluminum or copper) with attached

thread for handling, calorimeter supported in an outer vessel (Fig. 52),

a vessel in which the solid can be raised to 100 C.. burner, tripod,

balance, thermometer, and stirrer.

The method we shall use is the method of mixtures in which the

solid, the specific heat of which we wish to determine, is first

heated to 100 C. The hot solid is then quickly

transferred to a calorimeter containing water at a

known temperature. The temperature is observed

continuously until the final temperature of the solid

and water is reached. Then equate the heat given

out by the solid in cooling to the final temperature
and the heat absorbed by the water, and thus cal-

culate the specific heat s.

The first operation consists in finding the mass M
of the unknown solid by weighing. Next suspend

FIG. 52. Cal- the solid in a vessel in which water can be boiled,
onmeter.

an(j jeave ^ m ^e boiling water or steam for

at least fifteen minutes so as to be sure the whole solid has this

same temperature throughout. This will be a temperature of

100 C. (unless correction has to be made for atmospheric pressure

see your instructor regarding this point). While the solid is

heating, get the calorimeter ready. This includes finding the

mass of the calorimeter (m\) first, when empty, and then when
half full of water. Let the mass of water in the calorimeter be m.

When the object is immersed, the calorimeter should be about

three-quarters full. The initial temperature of the water ( )

should be from 3 to 5 degrees below room temperature.

When the solid has acquired uniform temperature of 100 C.,

transfer it quickly into the water, being careful to transfer as little

condensed water along with the solid as possible, and also not to

splash out any of the weighed water in the calorimeter. Note the

temperature (2 ) of the water, when the solid was introduced, and
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record the highest temperature (//) attained by the water. The
solid should be kept moving slowly, the student being careful

never to have any part of the solid above the water. Record all

the data with proper labeling on a data form.

Write down the expression for the heat given out by the solid

in cooling from 100 C. to the final temperature (//). This is

according to our definition ws(100 /). Equate this to the

heat taken in by the water and water equivalent of the calorimeter,

which is (m + w) X (if
~

to), where w = water equivalent of the

calorimeter. (Note that the calorimeter is made of copper and

has a specific heat s = 0.095 cal./gram.)

Solve for s, the specific heat of the unknown solid. Repeat
the experiment if time allows.

[Note. The final temperature should be about as much above

room temperature as the original temperature was below. If too

large a difference exists, then error on account of radiation losses

becomes important.]

QUESTIONS

(a). Why does a graph showing temperature-time relations help?

(b). Name possible sources of error in your experiment.

(c). Compare your result with results as given for the metal in a book of

tables.

(d). In what way might you expect the water, which is transferred with the

solid from the bath at 100 C. to the calorimeter, to effect the value of the

specific heat as found in this experiment ?

(e). Suggest a method by which the error referred to in question (d) may
be overcome.

EXPERIMENT 22

LATENT HEAT OF FUSION

To find the latent heat of fusion of ice.

Apparatus: Double-walled calorimeter, thermometer, stirrer, blot-

ting or filter paper, balance, ice.

In this experiment we shall again use the method of mixtures,

by placing a piece of ice into a calorimeter containing water and

noting the change in temperature produced when the ice has all

melted. Equating then the total heats given out by the water

and calorimeter and the heat absorbed by the ice, after equilibrium

has been reached, enables us to find L.
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The procedure is as follows : The mass mi of the calorimeter

and stirrer must be found. The stirrer should be of special design

so as to keep the ice below the surface (Fig. 53).

Next, the calorimeter is half filled with water

and weighed. The temperature of the water

should be arranged to be about five or six

degrees above the room temperature. Let the

mass of the water be m grams. A piece of ice

FIG 53 Stirrer
should be chosen which will conveniently go into

the calorimeter and does not contain many
corners or cracks that might have water clinging to them. The ice

should be placed on a piece of blotting paper, dried, and transferred

as quickly as possible to the calorimeter. Handle the ice as little as

possible, so as to prevent melting after drying. Note the tem-

perature of the water when the ice was introduced, and keeping

the ice below the water surface and the water stirred, note the

final lowest temperature (/) reached by the water. Finally weigh
the calorimeter with its contents again and determine the mass M
of the ice which must have been added.

Calculation to find L : The heat given out by the water and calo-

rimeter in cooling from t Q to t/ is given by (m + w) (t Q tf) calories,

where w is the water equivalent of the calorimeter and stirrer.

The heat taken in consists of two parts : (1) heat taken in

melting M grams of ice = ML calories (see definition of L), and

(2) heat necessary to change M grams of water from C. to

tf C. = M(tf 0) calories. Hence the total heat taken in is

ML + Mtf.

Now since the heat given out is equal to the heat taken in, we
have :

(a) ML + Mtf = (m + w)(t
-

*/),

from which L can be found.

[Note. The student should not try to remember formulae

such as (a) above
;
but should rather form the habit of following

the reasoning in order to be able to reason through similar and

allied cases of heat transfer.]

QUESTIONS

(a). Name possible sources of error in the above experiment and state

whether the error would make L too large or too small.

(b). What should be the value of L? Calculate your per cent of error.
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EXPERIMENT 23

LATENT HEAT OF VAPORIZATION

A determination of the latent heat of vaporization of water.

Apparatus : Calorimeters, thermometer, steam generator, steam trap.

The principle used in this experiment consists in passing steam

into a known mass of water for a certain time. It will condense

and so raise the temperature of the water. The amount of heat

given to the water can be found if the temperature rise is known.

Knowing the amount of steam condensed, we can calculate L, the

latent heat of vaporiza-
l

tion, which is also the

heat necessary to con-

dense 1 gram of steam at

the boiling point.

The apparatus used is

shown in the photograph
in Figure 54. The experi-

mental procedure divides

itself into several parts :

Part (a) consists in get-
FlG - 54 -

~ Latent heat of vaporization appa-

ting the calorimeter ready
to receive the steam. Weigh the calorimeter and stirrer. Then

the calorimeter should be filled about two-thirds full of water which

has been cooled to about 5 C. by means of a piece of ice. Record

the mass mi of calorimeter and stirrer, as well as the mass of water m.

Part (b). Prepare the steam generator. This should have a

good stream of steam coming out before the steam is passed into

the calorimeter. The steam should be passed through a so-called
"
steam-trap

"
(Fig. 54) which really catches any water, con-

densed on the way over, and prevents it from getting into the

calorimeter. It is most important that no condensed steam be allowed

to get into the water in the calorimeter if any accuracy is to be ob-

tained. In order to help prevent this condensation before reaching

the calorimeter, the tubing corning out of the steam-trap and

going into the calorimeter should preferably be heat-insulated by

lagging with cotton wool. Any drops that might otherwise adhere

to the glass nozzle should be shaken off before introducing the nozzle

into the calorimeter.
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Part (c). Insert the nozzle into the water, recording the tem-

perature of the water at the moment of introduction. Stir the

water continuously while passing in steam. The nozzle of the

steam generator should not be inserted very far. Any steam that

escapes from the surface does not introduce an error because it

does not condense. Keep on passing in steam until the tempera-
ture is approximately as much above room temperature as the

water was below, when the steam was introduced initially. Then
remove the steam nozzle from the calorimeter but keep on stirring,

and record the maximum temperature reached. (The temperature
will drop after a while on account of cooling toward room tem-

perature.)

Part (d). Find the mass of the steam which has condensed by

weighing the calorimeter and contents after the steam has con-

densed and subtracting the previous mass before introducing the

steam. Let the mass of steam, so found, be M.

[Note. It is a good policy in recording the temperature of the

water to read this every minute before and after introducing the

steam and about every half-minute while the steam is being

introduced. Then plot time against temperature and determine

tQ and tf from your curve.]

Calculation. The water and calorimeter and stirrer start with

a temperature and end with a temperature t/. The total mass

of water before introduction of the steam is the mass m of water

plus the water equivalent of the calorimeter, viz., m + w. [Note,

w = mis, where s = the specific heat of the copper vessel = 0.089

cal./gram.] Hence the heat taken in by the water and calorimeter

is
(m + w)(tf

-
to).

Now the steam had to supply this heat. The heat given off

by the steam consisted of two parts. One part was given off when
the M grams of steam condensed. For every gram this amount
is L, and hence for M grams this part will be ML calories. The
other part consists of heat given out by the M grams of steam,

which have now already condensed but are still at a temperature
100 C. and now cool until they reach the same temperature as

the rest of the water, viz., tf . The heat necessary for this part is,

of course, M(100 tf).

Hence the total heat given out by the steam is :

ML + M(100 -
tf).
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Equating the heat given out to the heat taken in we have :

ML + M(100 -
tf)

= (m + w)(tf
-

to).

Solve this equation for L.

QUESTIONS

(a). Enumerate the various sources of error in your experiment and state

whether the error would make L too large or too small.

(b). Do your calculations need correction for pressure of the atmosphere if

not normal ? How would you make such correction ?

EXPERIMENT 24

THE MELTING POINT OF A SOLID

To determine the melting point of a solid by the method of cooling.

Apparatus: Pyrex test tube about 1 inch in diameter clamped to

a stand, paraffin or acetamide, thermometer, burner, watch.

The method consists in heating the solid until it is molten.

Then, after insertion of a thermometer into the liquid, the sub-

stance is allowed to cool slowly. The temperature is observed

every minute. It will be found that on solidifying, the tempera-
ture remains constant for an appreciable time, until all the latent

heat has been given off, after which the tem-

perature falls again. The temperature at which

this occurs is the solidifying (or melting) point.

By applying heat gently, melt wax in the test

tube until the vessel is about half full. A thermom-

eter should be adjusted so that the bulb is nearly

in the center of the liquid paraffin. A loosely

fitting stopper will help in making this adjust-

ment, or else the thermometer can be separately

clamped. The test tube should be so placed that

the thermometer can be conveniently read and

so that no drafts or air currents might cause

uneven cooling (Fig. 55). Record the time and

temperature every minute. Have your partner

plot these on a temperature (ordinate) time

(abscissa) curve, after having recorded the read-

ings on the data sheet. The period of observa-

tion will be usually thirty minutes or more before the melting point

has been well passed (in the case of paraffin). This time, of course,

I
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depends upon the substance and on conditions. Hence the advis-

ability of plotting the curve as the experiment progresses. The
substance should not be heated to a high temperature, but rather

to a temperature just sufficient to melt it all. Do this slowly so

as not to overheat the substance. Pick out from your curve the

horizontal portion and thus find the melting point.

Check your result by looking up the value of this temperature
in a book of physical tables. [Note. Before leaving, heat up the

paraffin again so that it is just molten and remove the ther-

mometer. Do not try to remove it in any other way, for fear of

breaking it.]

An alternative and better way to measure the temperature is

by use of a 'thermocouple, which has a very small heat capacity.

The description of this instrument and its calibration can be seen

from Experiment 39, later. If the thermocouple is used in this

experiment, it is necessary to first calibrate it at two fixed tem-

peratures, C. and 100 C., and adjust the resistances so that the

change in temperature from C. to 100 C. will not cause too

much deflection in the galvanometer. Having calibrated the

thermocouple, the thermometer in the above experiment can be

replaced by the one junction of the thermocouple. In this case,

plot galvanometer deflections (ordinates) against time (abscissa).

Then convert the galvanometer deflection for the melting point

into temperature from the calibration.

QUESTIONS

(a). From your curve what can you say about the rate of fall of temperature
before solidification and after?

(b). Find the rate of cooling (approximately) at the melting point.

(c). Why do we not find the melting point by performing a similar experi-

ment when heating up the solid?

(d). Why does the temperature remain fairly constant during solidification?

PROBLEMS
General

1. Define: (a) the calorie; (6) specific heat; (c) water equivalent;

(d) latent heat of fusion
; (e) latent heat of vaporization.

2. Convert 1 pound degree Fahrenheit into calories.

Experiment 21

3. A copper calorimeter weights 80 grams and has a specific heat of 0.095

cal./gram. How many calories of heat are necessary to change its tempera-
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ture from room temperature (15 C.) to 50 C. ? What is the water equivalent
of this vessel?

4. A piece of iron of mass 120 grams and temperature 80 C. is put into

a calorimeter having 500 grams of water at 14 C. If the final temperature

acquired is 16.5 C., find the specific heat of iron. (The water equivalent of

the calorimeter = 50 grams.)

5. Uan you devise some experimental method for finding the water

equivalent of a vessel for which it would be difficult to calculate the water

equivalent ^y the method used in this chapter?

6. Fifty grams of lead shot of specific heat 0.03 cal./gram and at a tem-

perature of 100 C. are poured into a calorimeter containing a liquid of mass

100 grams. The calorimeter has a water equivalent of 20 grams. The initial

temperature of the liquid was 15 C. and the final temperature 20 C. Find

the specific heat of the liquid.

Experiment 22

7. How much heat is necessary to change 20 grams of ice at C. into

water at 30 C.?

8. What will be the fall in temperature if 40 grams of ice are put into a

copper calorimeter of mass 50 grams and containing 200 grams of water at

20 C.? (Specific heat ot copper = 0.095 cal./gram.)

9. Find the latent heat of fusion of ice, given that in a certain experiment
a piece of dry ice of mass 50 grams was put into a calorimeter, having a water

equivalent of 30 grams and containing 500 grams of water at 18 C. The
final temperature was found to be 9.5 C.

Experiment 23

10. Find the final temperature if 20 grams of steam at 100 C. are intro-

duced into a copper calorimeter of mass 100 grams containing 600 grams of

water at 20 C. (Specific heat of copper = 0.095 cal./gram.)

11. Find the amount of heat

necessary to heat 100 grams ot ice

from - 20 C. to steam at 120 C.

(Specific heat of ice = 0.54 cal./gram

and specific heat of steam =0.42
, / x 400C

cal./gram.)

Experiment 24

12. Find the latent heat of fusion ^ ea ~ ,.

e .
, , i i- FIG. 56. Cooling curve,

of a substance which has a cooling ^gee p^lem 12 )

curve as shown (Fig. 56). The tem-

perature at which melting occurs is 400 C. The rate of fall of temperature

at A and B is 10 per min. The specific heat of the substance is 0.1 c&L/gram,
Tlie horizontal portion AB lasts for 25 minutes.



CHAPTER XI

SURFACE TENSION

When a molecule of a liquid gets near the surface, forces of

attraction begin to exert a resultant force on this molecule. The
direction of this resultant force is vertically downwards if the

surface of the liquid is horizontal. The magnitude of this resultant

downward force on the molecule increases as the molecule gets

nearer the surface. (The reasons for this, based on the kinetic

theory, will be found in most textbooks on Physics.)

Hence, as far as the molecule is concerned, the surface of the

liquid behaves as if it had stretched over it a membrane, because

a certain force is necessary to enable the molecule to break through.
To be more specific, we define the surface tension of a liquid as

the tension acting on both sides of an imaginary unit length in the

surface. In the c. g. s. system
this tension is measured in

dynes per cm. (Fig. 57).

Another point which must be

mentioned in connection with

our definition is that, when we

speak of the surface tension,

we must specify the media on

both sides of the surface.

Usually when we refer to a

water surface, we assume water

below and air above. The value of T, i.e., the surface tension, will

be different if we have some other gas or liquid above the water.

METHODS OF MEASUREMENT

There are several methods that could be, and are, employed in

measuring the surface tension of a liquid. These methods are

based mostly on the effects produced by surface tension and are

hence indirect methods. With practice and skill they lend them-

selves to accurate determinations of surface tension. In all

112

Fia. 57. Unit length of the surface of

a liquid.
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Scale

surface tension measurements the main requirement for accurate

and reproducible results is cleanliness. The slightest amount of

foreign substance on the surface will cause large errors in the value

of T. This is especially true for small amounts of grease. Hence
the liquids or solids that are going to be in contact

should not be touched with the fingers. Unless this

precaution is observed, the value as found may
vary by as much as 10 per cent or more.

Two methods will be described. The first method

using the so-called Jolly balance is straight-forward

in principle, but does not give such accurate results.

The other method, making use of the effect of sur-

face tension in producing so-called capillary action,

will give very good results, although a large amount

of skill and technique are required. It is included

here, therefore, as an experiment designed to test

and develop the student's technique in experimental

procedure. If enough time were available, there is

no reason why accurate results are not possible.

Direct determination of surface tension (Jolly

balance). The Jolly balance consists essentially of FlG - 58. Jolly
, . i . u . i i ,. 11 , . balance method,

a long spiral spring which hangs vertically and is

fixed above to a crosspiece. This crosspiece can be moved up
or down very slowly and the amount of motion measured by some

suitable means. Such means are the observa-

g^> tion of the motion of a certain point on the
<^> spring on a scale engraved on a mirror surface

*z=* which remains stationary, or, by having a scale

and vernier engraved on the telescope tube

which moves up or down (Fig. 58).

At the end of the spiral is attached a care-

fully cleaned platinum or aluminum frame.

This frame is allowed to sink right into the

liquid, and then the force necessary to pull

this frame through the surface is measured in

dynes. Let it be F dynes (Fig. 59).

Now the force F has to be applied against a film on each side

of the frame. Hence this force has to be exerted against a length
F

of film 2 I (Fig. 60). Hence by definition T = dynes per cm.

FIG. 59. Frame in the

liquid without film.
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FIG. GO. Frame in the

liquid with film.

Effect of surface tension in capillarity. The forces of adhesion

between glass and water molecules, being larger than the forces

of cohesion between the water mole-

cules themselves, cause the rising of the

surface of water whenever it comes in

contact with the glass. Although these

forces are small, they can be readily

shown to be appreciable if we make use

of a capillary tube. The adhesive forces

will make the water rise in the tube

until these forces acting upwards just balance the force of gravity

acting downwards on the column of water.

Of course the adhesive force A (Fig. 61) equals the force of

surface tension acting all around the edge. Let the radius of the

tube be r and let the surface of the liquid (i.e.,

also the direction of T) make an angle 6 with

the surface of the tube. Then, by definition,

T is the force acting on the surface on every
centimeter and hence at the edge the total

vertical force acting will be T cos 6 X 2 -nr

dynes. This is, therefore, the resultant force

which the adhesive forces exert upwards.
The mass of liquid elevated in the capillary a . ~ . ,'

r T7
Fia. 61. Capillanty.

tube exerts a downward torce Vdg, where V is

the volume of liquid in the capillary and d is the density.

Hence :

2 wrT cos 6 = Vdg.

If the liquid wets the surface, then the angle of contact is zero.

The volume of liquid in the capillary tube will then consist of a

column of area ?rr
2 and of height h (being the height from the free

surface of the liquid in the vessel to the base of the meniscus) plus
a volume of liquid which is the difference between a cylinder of

height r and a hemisphere of radius r.

That is,

V = Trr
2h + [7rr

2 -r

= vr^h + -j-
Trr

3

= ^(h + i r) =
where

Z = h + % r.
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Now for all cases in which the liquid wets the surface, the angle
=

0, and hence for these cases,

It is often quite accurate enough to measure the distance h from

the surface of the liquid to the bottom of the meniscus and, neg-

lecting r, to call this distance I.

EXPERIMENT 25

THE JOLLY BALANCE

Determination of surface tension by means of a Jolly balance.

Apparatus: Jolly balance or similar spring balance that can be

calibrated. A movable platform on which can be placed the glass

dish containing the liquid. Several platinum frames with stems and

hooks attached so that they can be easily attached to the end of the

spring. A cleaning solution (20 grams of NaOH per liter of water)
into which the frames can be dipped so as to remove grease, dirt,

etc. A few small weights for calibration purposes (1 up to 10 grams),
a meter bar, pair of tweezers, distilled water, soap solution. Other

metallic frames, such as aluminum and nickel, may be used with

proper cleaning solutions.

The experiment is divided into two parts as follows : (1) to

calibrate the spring balance
; (2) to measure the force due to the

surface tension.

Part (a). To calibrate the spring balance, hang a very light

pan on the bottom of the spring and make a note of the position

of a certain convenient mark or pointer on the lower end of the

spring and read the scale. (This reading can be in arbitrary

spring balance units.) Next, place the known mass on the scale

pan (say x grams). This of course will stretch the spring. The
balance is restored by moving the upper support of the spring

upwards until the point on the lower part of the spring, that was

observed before, comes to rest in the same position. The amount

of motion of the upper support is measured on the scale.

Having measured the elongation for x grams, it is a simple matter

to calculate the force necessary to give a stretch or elongation of

one scale division. Make several trials with the same mass and

calculate the mean. Express the force in dynes per division

elongation-
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Part (b). To measure the force necessary to overcome surface

tension, remove one of the frames by means of tweezers or forceps

from the cleaning solution and rinse in a dish of clean water from

the faucet. Care must be taken never to touch the frame with

the fingers once it has been removed from the cleaning solution,

nor must this frame be placed on a table, or allowed to come in

contact with anything which will leave foreign substances on it.

Hang this frame on the hook at the bottom of the spring and

arrange a clean dish of clean water from the faucet on the movable

platform, so that the legs of the frame hang centrally in the dish

and are immersed for about half their length. Move the upper

support down slowly until the whole frame is immersed. Then
stretch the spring slowly until the frame is pulled out of the water.

Note approximately how much the film can be stretched just

before it breaks. (Sometimes an adjustable marker is provided

which can be used to mark this point.) Now bring the legs of the

frame back slowly into the liquid up to the position which the

frame had when the film broke (being careful to see that there

is no film formed on the frame). Read this position on the

scale. The frame is now lowered into the liquid and pulled up

again, this time with the film formed on the frame tending to

keep the frame in the liquid. Raise the spring slowly until

the film just breaks. Take the reading on the scale when the

film just breaks. The difference gives the number of scale divi-

sions that the spring is stretched due to the surface tension.

Having previously determined the calibration of the spring,

these scale divisions can be converted into units of force (F

dynes). Measure the length (I) of the frame with a meter

rule. From a knowledge of the force F, in dynes, and the

length of the frame in cm., T, the surface tension can be

calculated.

Repeat several times with the same frame, determining in each

case the stretch of the spring. Take the average of these and

determine the error in your experimental determination of the

stretch. If time allows, repeat these observations, using another

frame.

Record your results as follows (for one set of readings) :

Length of frame, I cm.

No. of grams added in calibration = grams.
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Hence

and since

Average elongation (1) =
Per cent of error =

Average elongation (2)
=

Per cent of error =
one scale division =

F =

T =

dynes.

dynes,

2f
:. T dynes/cm.

Repeat the experiment, using another liquid.

QUESTIONS

(a). Suppose the rectangular frame were a horizontal circular wire of

radius r, how would you determine the surface tension in this case?

(b). Will the surface tension be different if platinum or aluminum is used

in making the frames?

(c). Between which media are you really finding the surface tension?

EXPERIMENT 26

SURFACE TENSION IN CAPILLARY TUBES

Determination of surface tension by the method of capillarity.

Apparatus: Small glass evaporating dish, transparent glass scale

with millimeter divisions, a burner, glass tubing of about 2 or 3 mm.
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diameter, a microscope with either a micrometer eye-piece or else a

finely divided scale placed in the focal plane of the eye-piece.

The experiment is divided into three parts as follows :

(a). Making the capillary tubes.

(b). Measuring the height of rise in the tubes.

(c). Measuring the diameter of the bore of these tubes.

Part (a). The glass tubes which you are given have been well

cleaned inside by rinsing with caustic soda solution, then water,

then 10% nitric acid, and finally washed out with water again, and

dried. Heat the glass about 5 cm. from the end until it is soft

(rotating the tube during the process of heating). Then remove

the heated glass tube from the flame and draw it out until a

capillary tube about 1 mm. external diameter has been obtained.

If the drawn-out section is long enough, cut or break it off into

pieces about 15 cm. in length. Using the remaining sections of

the original glass tube and holding by the drawn-out end, make
some finer capillaries until about five have been obtained of

varying sizes, each of length 10 to 15 cm. Handle the capillaries

as little as possible.

Part (b). Fill the thin evaporating glass dish about half full

of clean water from the faucet. It is understood of course

that the glass dish itself has first been cleaned and is thoroughly

free from grease or dirt. Stand the glass scale up in the water

and next to it one of the fine capillaries. Usually the capillary

will adhere to the scale if the latter has been wet a little. The

water will rise in the tube. In order to be sure that the tube is

wet inside (i.e.,
= 0) for the whole length of the capillary, lean

the tube over, still keeping the lower end in the water, until the

water fills the whole tube. Then tilt the capillary tube up again

to see whether the water comes back to the same height as before.

If this is not the case, reject this capillary and use another. If

the capillary and water are both clean, the water will always rise

to the same height.

Measure the height of the water column in the capillary, taking

the measurement from the outside water surface to the bottom of

the meniscus (the correction ^ can be added here if the tube has a

large radius, but in most cases this is negligible). Stick a small

piece of gummed paper to the tube about 2 millimeters above the

highest point of the column of water. Draw the capillary tube
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up about 5 miLimeters and measure the height again, sticking a

small piece of paper 2 millimeters above this latter height. If the

tube is uniform, these two heights should agree. If there should

be a large difference between these heights, use a tube of more

uniform bore.

Repeat for two other sizes of capillary tubes. Be sure to mark
them so as to know which tube was used in finding the measured

elevations !

Part (c). By means of a fine file or a rough knife cut the

capillaries off half-way between the gummed paper marks and

mount in the V groove, prepared especially for this purpose, in

front of the microscope. We wish to measure the diameter of

these tubes. On looking into the eye-piece a scale will be seen.

Adjust the distance of the microscope from the end of the capillary

tube until the latter is in focus and on some convenient mark on

the scale, and measure its diameter in micrometer scale divisions.

To find out what these micrometer divisions mean, the micrometer

which has the scale fixed in the eye-piece is moved back and forth

until it is exactly focused now on a standard scale placed where

the capillary tube was. In the eye-piece will be seen two scales,

the original eye-piece scale and also the divisions on the standard

scale. See how many microscope scale divisions are equal to a

whole number of standard scale divisions. Knowing the size

of the divisions of the standard scale, the size of the division on

the micrometer scale can be calculated in centimeters. In this way
the diameters of all the capillaries can be found.

Another method of finding the diameter, which gives greater

accuracy, but requires considerably more technique and skill, is

to introduce a thread of mercury into the capillary, measure the

length of the thread, and find its mass on a balance. From this

data, knowing the density of mercury, the diameter of the tube

can be found. By this method the uniformity of the bore can

also be tested.

Let r represent the radius to be determined, I the length of the

mercury column, m the mass of the mercury column, and d the

density of mercury.

Then m =

and r =
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In order to get a thread of mercury into the tube it is possible to

insert the end of the tube into a small globule of mercury and

suck a little into the tube. However,

(a)
< J if this is not done carefully, the method
+ / .* .

g (jangeroug since mercury is a poison.

A cheap rubber ball will serve the

purpose just as well if a small hole

is made in the ball and the capillary

inserted (Fig. 62).

Calculate the value of the surface

tension from the equation
FlO. 62. Drawing mercury

into a capillary tube.

Record your results as follows :

Liquid under investigation,

Division on microscope scale =
1 division on standard scale =

division on standard scale.

cm.

1 division on microscope scale = cm.

Part (b) Part (c)

Find the average value of T. If time allows, repeat using a

different liquid.

QUESTIONS

(a). Which of the above measurements, r or Z, will cause the largest error

in the result for T and what is approximately the per cent of error in each

of the Quantities measured?
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(b). If the angle of contact is not zero, what additional test would have to

be carried out ?

(c). Why would the method of weighing (in order to find the diameter) be

more accurate?

(d). Do your results show what relation exists between r and 11

(e). Would it be better, as far as accuracy is concerned, to take a very long

tube of extremely fine bore or a short tube of fairly large bore?

(f). From your results, what is the per cent of error in r, in I, and in T?

PROBLEMS
Experiment 25

1. Define surface tension, angle of contact.

2. A rectangular frame made of platinum has one edge cut away and is so

mounted that the two legs dip into a liquid. When the frame is immersed
and pulled out again^ it is found that a spring attached to the frame is stretched

2 cm. before the frame actually breaks through the surface. The length of

the rectangular frame (i.e., the length of the platinum wire immersed, neglect-

ing the legs) is 8 cm. If the surface tension is 60 dynes/cm., how much

elongation would a mass of 1.5 grams produce in the spring?

3. Find the surface tension of a liquid if a rectangular frame of length

9 cm. immersed in the liquid requires a stretch of 5 cm. in a spring. It is

known that a mass of 3 grams will stretch the spring 20 cm.

Experiment 26

4. Prove the expression for capillary rise in a tube, namely, I =
J
os

,

giving full reasons for each step.
^

6. How would you prove experimentally the relation between :

(1) I and r?

(2) Zandd?

6. The surface tensions of two liquids A and B are 35 dynes/cm, and

65 dynes/cm, respectively, whereas the angle of contact for glass and liquid A
is 45 and for glass and B is 50. Using the same capillary tube in both liquids,

what is the ratio between the heights of the liquids A and B in this tube?

(Given that the density of liquid A : density of liquid B = 4:5.)

7. Find the surface tension of a liquid which wets a capillary tube and

rises in this tube of 3 mm. diameter to a height of 12 cm. The density of the

liquid is 8 gm./cc.



CHAPTER XII

RELATIVE HUMIDITY

The determination of the quantity of water vapor in the atmos-

phere per unit volume is an important adjunct to the study of

atmospheric conditions. The number of grams of water vapor

per cubic meter is a common measure used.

The air is said to be saturated when it contains the maximum
number of grams of water vapor per cubic meter without con-

densing. The maximum quantity of water vapor per unit volume

increases with temperature, but not linearly.

The mass (in grams) of water vapor actually present in the

atmosphere per unit volume is called the absolute humidity, while

the temperature to which the air must be reduced to reach satura-

tion is called the dew point. Below this point, the excess water

above the amount necessary for saturation will precipitate on some

solid or even in the air as mist, clouds, fogs, etc.

A term which is more frequently used to express the moisture

content of the air is called the relative humidity. This is defined

as the ratio of the mass of water vapor actually present per unit

volume (absolute humidity) to the maximum mass of water vapor

per unit volume that the atmosphere can hold at this temperature

(saturated vapor). To express the relative humidity as per cent,

multiply the above ratio by 100.

In finding the relative humidity, the procedure is first to find

the dew-point temperature. The number of grams of water vapor

per cubic meter the air can hold at the dew point gives the absolute

humidity. This quantity can be found from tables. Then look

in the handbook for the number of grams of moisture per cubic

meter the air can hold at the present temperature of the air. The
ratio of the absolute humidity to the vapor content, if the air

were saturated at the present temperature, gives the relative

humidity.
The relative humidity may also be found by use of a wet-bulb

and a dry-bulb thermometer if a current of air (say, greater than

3 meters per second) is directed towards the thermometers so that

122
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the water will evaporate from the wet thermometer without saturat-

ing the surrounding air layer. The greater the moisture content

of the air, the less the evaporation from the wet thermometer, and

consequently the smaller is the cooling effect due to evaporation.
This means that the difference between the temperature reading
of the wet and dry bulb becomes less the higher the moisture

content. When this method is used, tables are found in handbooks

for calculating the results in terms of the relative humidity.

EXPERIMENT 27

RELATIVE HUMIDITY

To find the relative humidity of the atmosphere by (a) the dew-point

method; (>) the 'wet- and dry-bulb thermometer.

Apparatus: Part (a). Small nickel vessel, a medium-sized vessel,

salt, and ice
;
or a nickel tube fitted with bulb arid ether, thermometer,

Part (b). Wet- and dry-bulb thermometer or a sling psychrom-
eter.

Part (a). The clew-point method. To determine the dew

point with ice and salt, chop the ice into small portions and add

slowly to water, which is to about one inch depth
in the polished nickel can. Stir with a thermom-

eter and take the reading of the thermometer

when the dew first appears. Now add lukewarm

water until the dew disappears and take the

temperature reading again. The average of these

two temperatures gives a fair estimate of the dew

point and becomes more accurately located the

smaller the difference between the two readings

for the appearance and disappearance of the dew.

Make several trials, recording all readings, and

find the average. Water should be removed from

time to time to keep the height about one inch.

Do not handle the polished side of the can with

the fingers or breathe on the can while the experi-

ment is in progress.

When ether is used, partially fill the small

nickel tube, fitted with a compression bulb (Fig. 63), with ether.

The quantity of ether used depends upon the apparatus. The in-

creased evaporation brought about by forcing air through the ether

Courtesy Central
Scientific Company

FIG. 63. Nickel

tube with com-

pression bulb.
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with the compression bulb cools the apparatus. The dew point is

noted as in the previous salt and ice method, and the calculations

for the relative humidity are made in a similar

manner. The method is very useful for obtaining
low temperatures. It is desirable not to inhale the

ether more than necessary. Repeat the experiment
out of doors.

Part (b). The wet- and dry-bulb thermometer

method. If a wet- and dry-bulb thermometer is

used (Fig. 64), see that the container holding the

lower side of the wick is filled with distilled water

and then start the fan, which

should be at a distance of about

two feet from the wet- and dry-

bulb thermometers. When the

temperatures of the thermom-

eters cease to change further,

lake readings of both the wct-

and dry-thermometers. Re-

peat two or more times, re-

locating the apparatus each

time. Calculate your results

from tables found in a hand-

book.

If a sling psychrometer is used (Fig. 65),

the procedure is much the same, except that

the instrument, consisting of a wet and a

dry thermometer fastened to a metal frame,

is whirled until both thermometers cease to

change any in temperature. In this instru-

ment, the wet-bulb thermometer is kept moist

by means of a wet cheese cloth which is

wrapped around the bulb. (Use distilled

water for this purpose.)

Tabulate and record all your observations.
Courtesy Central Scientific

Company

CovrHsy Central
Scientific Company

FIG. 64.

Wet- and dry-
bulb thermom-
eter.

FIG. 65. Sling psy-
chrometer.

QUESTIONS

(a). When may ice, or ice and salt, be used in

place of ether?

(b). What causes the appearance of dew on the side of the vessel?

(c). What would be the relative humidity out-of-doors today according
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to your experiment ? (Assume the dew point out-of-doors the same as in the

room where the experiment was performed.)

(d). What would the relative humidity, according to the wet- and dry-bulb
thermometer experiment, have been if the temperature of the dry thermometer

had been found to be 10 C. higher than that actually found?

(e). What is the probable accuracy of Part (a) ? Part (b) ? Compare the

actual results to see if the figures and probable accuracy are compatible.

PROBLEMS

1. Does the maximum amount of vapor the air will hold (i.e., saturated

vapor) increase linearly with temperature? Plot the mass per cubic meter of

saturated vapor as ordinates against temperature as abscissae between the

temperatures of 20 to 35 Centigrade with intervals of 5 degrees between

each reading. Consult some handbook for the mass of saturated vapor per
cubic meter.

2. Is it necessary that the atmosphere next to the earth be saturated in

order to have rain?

3. Given that the absolute humidity of the air at noon is 13.5 (
^^Y
\m. 3/

what is the relative humidity for 22 C. ? Suppose the temperature near the

ground dropped to 12 C. that night, speculate on what may happen.

4. Which has the lower reading, the wet- or dry-bulb thermometer?

6. Under what conditions will the wet- and dry-bulb thermometer show

large differences ? Why ?

6. Why must the air be circulated about the wet- and dry-bulb thermometer

by a fan or by other methods?



CHAPTER XIII

ELECTRIC AND MAGNETIC FIELDS

All materials are composed of atoms or combinations of atoms

(molecules). The atoms are made up of electrons and protons.

The electron is found to be a negative charge of electricity, prob-

ably with electrical inertia only, while the proton is the positively

charged hydrogen nucleus. All the mass seems to be associated

with the nucleus and the positive charge has, up to the present,

never been identified separately from the nucleus.

The electron is very mobile. Certain of the electrons are easily

removed from some substances by friction. On the other hand,

positive charges, being associated with the mass of the nucleus,

which is heavy compared to the electron, appear to be fairly

immobile so far as experiments have shown.

ELECTRIC PROPERTIES OF MATERIALS

Consider a hard rubber rod which is rubbed with fur, or a glass

rod which is rubbed with silk. The hard rubber takes on a nega-

tive charge because the fur loses electrons easier than hard rubber

does in the process of rubbing. The glass takes on a positive

charge because it loses more electrons than it accumulates. The
above substances are known as dielectrics (non-conductors)

because a charge will not flow from one point to another.

All substances may be charged by friction as above. If con-

ductors (i.e., metals) are to be charged, however, they must be

insulated so that the charge will not leak off as fast as it is gener-

ated by friction. Ebonite, hard rubber, sulphur, and dry air are

examples of good insulators. Moist air, however, is a much
better conductor than dry air and slowly conducts charges off

metallic surfaces. Many experiments in electrostatics are partial

or complete failures in damp weather. Moreover, the air becomes

more conducting in the presence of condenser discharges, radio-

active compounds, lighted matches, etc., which serve to ionize

the air.

126
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The fundamental law governing the force between charges is

Coulomb's Law. This law states that for similar charges in air

or vacuum the force is one of repulsion and of amount

F = M2 dynes ,

where g t and #2 represent the electric charges and d their distance

apart. For unlike charges the force is one of attraction.

In speaking about charges it has become customary to refer to

the charge on an ebonite (or hard rubber) rod, when rubbed with

fur, as the negative charge. Consequently once this arbitrary

designation has been established, all other charges can be classified

as positive or negative, depending upon whether they attract or

repel charges on the hard rubber.

The region around an electric charge or system of charges is

called an electric field. When charges or uncharged bodies are

placed in this electric field, forces due to this field act on them.

It is necessary to define and measure what is usually termed the

field intensity or strength of the electric field.

There are two ways in which an electric field E can

be defined and measured. In the final analysis

the two methods can be shown to be the

same.

First, the field intensity at a point P (Fig. 66)

is defined as the force which would act on a unit

charge placed at the point in question. In order

to find the strength of the electric field at all

points in a certain region it would be necessary

to put the unit charge at all these points and
<IG '

field

measure the force acting on it.

Secondly, the field intensity at any point P can also be defined

in terms of the space rate at which a quantity, called the potential

V, varies [Ex = V From this definition it can be seen
\ A#/

that a knowledge of the potential at all points in the field enables

us to find the field intensity. This method is similar to the

method used in geographical maps of representing the country

by lines having equal elevations. These topographical maps
show right away whether the country is fairly level or mountainous

and enable us to calculate the grade or steepness (corresponding

to field intensity in the electrical case).
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In the electric field, lines of force are often drawn. These are

lines which show at all points through which they pass the direction

of the electric field. They also represent the direction in which

a unit charge will travel if allowed to do so on account of the

repulsion.

We will next analyze the effects produced by some electric

charges. Consider, for instance, the electrophorus (Fig. 67

and Experiment 28), the dielectric plate of which has been charged

negatively by whipping with catskin or flannel. The metallic

disc will have a positive charge induced on the under side when

in
" contact

"
(Fig. 67 a) with the dielectric. A negative charge

is induced on the upper side. The effect of the contact points

of the disc along the dielectric is negligible, for these points are

relatively few, and besides, charges in a dielectric are not con-

Metallic
/ Disc

M 1J

(a) (b) (c) Vd)

FIG. 67. Metallic disc charged by induction.

ducted from point to point. The induced negative charge is

allowed to flow to ground by touching the top of the metallic

disc with the hand (Fig. 67 b). Remove the hand and the metallic

disc has left a positive charge (Fig. 67 c). This is called charging

by induction. Referring again to Figure 67 b, we will call the poten-
tial of the metallic disc v>2 a "

ground
"

potential. If the disc is

raised slightly, as in Figure 67 c, the
"
lines

"
are stretched and

work is required to raise the disc. Moreover, it may be shown
that these

"
lines

" tend to separate from each other. That is,

there is a "
pressure,

"
or force, at right angles to the lines tending

to split the lines off from their present terminals. The higher
the plate is raised, the more work it takes and the greater the

number of lines split off so that a large number of lines (Fig. 67 d)

will now terminate on other surrounding objects and the charge
on the disc itself becomes less bound to the dielectric. This

means that the potential of the disc is now raised to a value v\.

The difference in potential (vi #2) is measured by the work
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done in raising the disc with a charge q from a potential

potential

to a

.e.,

w =

#2) are measured inwhere w is expressed in ergs if q and

electrostatic units.

By similar reasoning it may be shown that a body will hold a

greater charge (i.e., its capacity increased) for a given potential

if another conducting body, usually well grounded, is

brought near to it. This can be shown with the

electroscope which has a metallic disc attached to it

and charged as shown in Figure 68. The leaves

diverge an amount depending upon the charge given

to the system. Now bring a grounded conductor such

^ as a metallic disc (Fig. 69) into the

N ^ vicinity of the electroscope. The leaves FlG - 68-

of the instrument come closer together, tn^
indicating that the potential is lowered.

This means that the charge which the electroscope

arrangement could hold, for a given potential, is

increased.

MAGNETIC PROPERTIES OF MATERIALS

The magnetic properties of lodestone have been

known for centuries. The Greeks called it magnetite

Grounded me- (FesCX). It has the property of picking up iron
tallic disc near

filings an(j small pieces of iron. Later compasses

scope

6 6C r ~

were discovered and the magnetic nature of the

earth was observed. Magnets have a north-seek-

ing (N) and a south-seeking (8) pole. Like poles repel, while un-

like poles attract.

It is now known that an electric charge in motion produces a

magnetic field. The orbital motion of the electrons about the

nucleus of the atoms goes a long way toward explaining the mag-
netic properties of substances.

The space surrounding a magnet is called the magnetic field.

We can draw in this field lines of force which, in reality, are direc-

tions along which a positive (N} pole would travel if placed in the

field. These lines of force may be located readily by means of

iron filings or a small compass. The magnetic field around a

magnet is shown in Figure 70. This field will be distorted because
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of the effect of the earth's magnetic field. In fact, the earth's

field itself may be distorted at any given position in a building

because of the nearness of steel girders,

stearn pipes, and other iron or steel struc-

tural work.

In Figure 71, one effect of interest due

to the earth's field is to cause two points

(Pi and F 2) to have no magnetic field in

FIG. 70. Magnetic field any direction. A compass needle placed
surrounding a bar magnet. at ih^Q ^^ ^^^ no tendency
to turn in any particular direction. These are called neutral points.

If the horizontal intensity of the earth's field is found to be 0.2

gauss, it means that the field due to the magnet itself at PI and

P2 is also 0.2 gauss with a direction opposite

that of the magnetic field due to the earth.

This type of experiment gives us one way of

determining the pole strength of a magnet,

knowing the strength of the earth's field.

The pole strength of a magnet is measured in

terms of a unit magnetic pole. This unit is

based on Coulomb's experimental law which

states that if mi and m 2 represent the strength

of two "
isolated

"
poles, the force (F) of re-

pulsion (if poles are alike in sign) will be

w ___
Im 1m2

FIG. 71. -Effect of
f __

j.ke earth's field.

/* a-

where d is the distance between them and /z is the permeability.

The permeability for air is approximately unity. From Coulomb's

law of force between two poles, we define unit vole as that pole

which, when placed a distance of 1 cm. in a vacuum from an equal
and like pole, will repel it with a force of one dyne. The expression

- is known as the field intensity at a point P which is at a distance
/xa

2

d from an isolated pole of strength w, and is the force per unit

pole at P due to a single magnetic pole of strength m.

If there is more than one pole to be considered, the resultant

field intensity at a point is the vector sum of the separate field

intensities which are calculated from the known strength of each

pole. The field intensity is usually denoted by the letter H.



ELECTRIC AND MAGNETIC FIELDS 131

EXPERIMENT 2S

ELECTRIC CHARGES

Methods of obtaining and detecting electric charges.

Apparatus: Ebonite, scaling wax, glass rod, fur, flannel, silk,

pith ball, two aluminum-covered pith balls, condenser, electroscope

with metallic disc attachment, electrophorus, electrostatic voltmeter

(one is sufficient), stand with horizontal rod for suspending pith balls.

The electroscope (Fig. 72) is an instrument to detect (and

measure) electric charges. It consists essentially of an insulated

metal rod with very thin gold, or aluminum, leaves

attached to the lower end. The rod is suspended in

a metal container with glass windows by means of

the insulating plug, which may be made of ebonite

(or better, of amber or sulphur).

The electrostatic voltmeter is a form of calibrated

electroscope.

The electrophorus (Fig. 73), an instrument designed

to obtain large charges, consists of a dielectric, FIG. 72.

usually inclosed in a metal dish, and a metallic disc
E1ectroscope.

with an insulating handle. The procedure in obtaining a charge on

the metallic disc is as follows : The ebonite is charged negatively

by whipping or rubbing with flannel

or catskin. Bring the metallic disc

down on the charged ebonite. The disc

touches the ebonite in relatively few

places, so that the metallic disc becomes

charged by induction, positively on the

lower side and negatively on the upper
The

FIG. 73. Electrophorus.

side. Touch the upper side with the hand for an instant.

negative charge becomes grounded. Remove the metallic disc.

It is now charged positively. We say that the plate was charged

positively by induction. All charging by induction is carried out

in the above manner. If the metallic plate had been in contact

at all points with the charged dielectric, the former would have

become charged negatively by conduction.

Procedure. For the most part, the data are to be recorded by

transferring the diagrams to your data sheet, filled in with the

correct sign of charge (i.e., + for positive and for negative)

and any other additional drawings to make the data sheet more
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complete. The experiment is to be done in parts as provided
below.

Part 1. Charge the ebonite rod with fur. Bring the ebonite

rod near bits of paper. The paper becomes charged by induction

Small
Piece of
Paper

Ebonite (a) (b)

FIG. 74. Refer to Part 1 FIG. 75. Refer to Part 2

of the experiment. of the experiment.

and is drawn towards the rod. Indicate the nature of the charges
on the bits of paper and rod (Fig. 74).

Part 2. A charged ebonite rod is brought near a suspended
aluminum pith ball (Fig. 75 a) and attracts it. After hitting the

ebonite, it flies away (Fig. 75 b). Fill in the proper signs of electric

charges for Figure 75 a and b.

Part 3. Charge the electroscope negatively by conduction.

Record nature of the electrification on figures as in Figure 76 a, b,

and c. Note that the position of the leaves of the electroscope

as well as the nature of the charges in Figures 76 a, b, are left to

the student to supply. Write in the kind of rod used and indicate

its charge.

Part 4- Charge the electroscope negatively by induction.

Referring to Figure 77, record the results as above in Part 3.

(a)
Approach of x ,,,,, 1<LI, -, ~
Charged Rod (a) (b) (c) (d)

FIG. 76. Refer to Part 3 FIG. 77. Refer to Part 4
of the experiment. of the experiment.

Part 5. Charge the electroscope and place a lighted match
near it. What happens?

Part 6. Place the metallic disc attachment on the electroscope

and charge the system negatively. Bring the metallic disc with

insulated handle near the charged electroscope with and without
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grounding the former (Fig. 69). What do you observe in each

case ? Draw diagrams and explain, in your report.

Part 7. Charge the knob of the Leyden jar (condenser) by
means of the charged metallic disc of the electrophorus, repeating

until the condenser has acquired a considerable change. Bring
the linger near the knob.

Part 8. Discharge the charged metallic disc of the electro-

phorus once on the electrostatic voltmeter. Record the voltage

obtained.

QUESTIONS

(a). How could you tell whether an unknown charge was positive or nega-

tive by means of an electroscope?

(b). Explain what happened in Part 5 of the experiment.

(c). What is the cause of the result observed in Part 6?

(d). Why is the magnitude of voltage (see Part 8), which you have produced

by means of the electrophorus, usually dangerous but not so in this experi-

ment?

EXPERIMENT 29

MAGNETIC FIELDS AND POLES

Part (a). To determine the field about a magnet for a given direction

of the poles.

Part (b). To find the strength of the poles from the position of the

neutral points.

Apparatus : Two bar magnets, two small magnetic compasses, two

drawing boards, thumb tacks, large sheet of paper (about 12 X 15 inches

for 4-inch magnets), meter rule.

It is desirable that each person should perform this experiment

by himself if the apparatus is available.

Part (a). Determine, by means of a small compass needle,

which is the north-south magnetic direction of the earth, for the

particular location of your experiment. Place the long edge of

the data sheet parallel to this direction and then tack the paper
down upon a drawing board or table top. Determine, next, which

is the north pole of your bar magnet and place it parallel to the

previously determined direction of the compass needle (conse-

quently also parallel to the edge of the paper), so that the north

pole of the bar magnet is in the same direction as the north pole

of the compass needle (Fig. 78). When determining the north-

south magnetic field of the earth by means of the compass needle,

keep the bar magnet as far away as possible.



134 EXPERIMENTAL PHYSICS FOR COLLEGES

Northerly Direci

H

N

Draw an outline of the magnet on the paper and also construct

a line AA' bisecting the magnet at right angles. It can be shown
that the neutral point PI will lie on this

line A A'. It must satisfy the condition

that the earth's field H must be just

equal in magnitude to the field E of the

magnet. Consequently the resultant field

at PI is zero. This point PI can be quite

accurately located by moving the small

compass needle back and forth along
AA'.

In order to plot some lines of force,

place the small compass on AA' about
FIG. 78. Plotting lines of one jnch away from the magnet. Make

dots with a sharp pencil at both ends of

the compass needle. Now move the small compass so that the last

dot falls at the one end of the needle and make another dot at the

other end. Continue in this way,

following up from the previous dot,

until the magnet or edge of the paper
is reached. Having drawn a line of

force through these points, plot other

lines by starting at points two, three,

four, five, and six inches away from A
the magnet. A non-magnetic (e.g.,

wooden) pencil should be used for

this work.

Part (b) . To find the pole strength,

consider the neutral point (Pi) to FlG - 79. Measurement of pole

have been found (Fig. 79). If there strength.

are no secondary poles, the distance froir PI to the poles + m and
m is the same. The position of each pole is found by noting

where the lines of force converge. The field intensity (Hi) due
to + m is

TJ m

N

in the direction PIA, and the field intensity due to m is

in the direction PiB.
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Now the magnitude of HI is equal to the magnitude of H*. The

distance di (or d2) can be measured, so that the magnitude of m
may be calculated if Hi can be found.

To find Hij construct a parallelogram as in Figure 79, where

PiC is drawn so that 1 cm. represents one-tenth dyne of force.

Look up in a handbook the horizontal intensity for the earth's

magnetic field for your locality. If it is 0.2 dyne per unit pole,

then make P tC two centimeters in length. From PI continue

the line drawn from + m to PI, and from C draw a line parallel

to the one from m to PI. These two lines interesect at A. The
line APi represents the magnitude of HI, each centimeter of

length representing one-tenth dyne. Calculate the pole strength
from the relation,

m = Hidi2
.

QUESTIONS

(a) . In the above arrangement where should another neutral point be found ?

(b). In what way would secondary poles affect your result for the pole

strength? Draw a magnet with secondary poles.

(c). What does P\C represent, the resultant field due to the magnet or the

field due to the earth?

(d). What is the resultant field intensity at point PI in Part (b) (Fig. 79)?

PROBLEMS
Experiment 28

1. State two definitions for field intensity at a point.

2. What kind of charges are actually transferred, as far as we know, when
two dissimilar substances are rubbed together?

3. What is meant by the terms charging a body by (1) conduction,

(2) induction?

4. What is meant by an electric field?

6. State Coulomb's law in words and by formula.

6. What is meant by (1) difference in potential, (2) field intensity?

7. What is the field intensity at a distance of 15 cm. from a charge of

450 e. s. u.?

8. Two pith balls, each with the same charge q, and each weighing one-

twentieth of a gram, are suspended from the same point by strings of 100 cm.

in length. Find the magnitude of the charge on each if they are separated

by a distance of 6 cm.

Experiment 29

9. If magnetism is a molecular property of iron, how would you expect

heat or hammering (in general) to affect the piece of steel which has been

magnetized?
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10. Can magnetic poles be isolated?

11. What would be the magnetic field intensity at a point on the longi-

tudinal axis of a bar magnet at a distance of 15 cm. from one end? The

poles are at the very end of the bar which has a length of 5 cm. Consider the

strength of each pole to be 50 electromagnetic units.

12. Suppose the poles of the last problem were at the very ends of a magnet
of length 50 cm. What would be the error introduced if the far pole were

neglected in the calculation of the field intensity ?



CHAPTER XIV

THE MEASUREMENT OF CURRENT GALVANOMETERS

Whenever a charge flows through a conductor we speak of an

electric current and define it as the rate of flow of charge past any
cross-section of the conductor. Hence,

< = *2
At'

where Ag is the charge and A the time taken for this charge to

flow past. If the current is constant, we can simply write i = 2.

t>

The analogy between electric current and rate of flow of water

in a pipe (in, say, cubic feet per second) is seen to be a very close

one. In the case of water some driving force is necessary before

the water flows. This is usually supplied by a pump or by having
a difference in level (potential energy) between the two ends of the

pipe. The same is true in the electrical flow of current. A poten-

tial difference e is necessary before the current flows.

Now it is found that the potential difference existing between

the two ends of a conductor is directly proportional to the current

flowing through this conductor, all other conditions remaining the

same. Hence we can state that

e oc i.

The proportionality sign can be replaced by a sign of equality

if we put in a constant and write :

(1) e = n,

where r is now a constant for the conductor and called its resistance.

This equation was first stated by G. S. Ohm and is known as

Ohm's Law.

In the practical system of units we measure the potential dif-

ference in volts, the current in amperes, and the resistance in ohms.

The relation between these and the fundamental units (e. m. u.)

will be found in college physics texts and need not be given here.

137
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[Note. In these chapters we will use capital letters to signify

quantities measured in practical units (e.g., I in amperes, E in

volts, etc.) and small letters for the corresponding absolute units.]

An electric current can be measured by any one of the effects

which it produces. There are three of these that lend themselves

readily to observation and measurement. They are the heating,

chemical, and magnetic effects. All three are used, since we know

the laws governing the relation between current and any one of

these effects. The only question then is simply which of them

shall we use under the particular condition of convenience, accu-

racy, speed, portability, etc. We shall discuss the measurement

of current under three headings, with particular reference to the

laws of the effects and the apparatus.

I. CHEMICAL EFFECT

The laws underlying the relation between current and amount
of "chemical action have been fully stated by Faraday (see Chapter
XVII. This is really the way in which we should measure an

electric current, since the international ampere was defined, at

the Conference on p]lectrical Units and Standards held in London
in 1908, in terms of the amount of substance deposited chemically

by an electric current in a certain time. Unit current is that-

unvarying current which, when passed through a silver nitrate

solution in water, in accordance with the specifications attached

to this resolution, deposits silver at the rate of 0.00111800 gram

per second.

The apparatus is called a silver coulometer. It consists simply
of a platinum vessel or crucible containing the silver nitrate solu-

tion and having immersed in it a disc of pure silver. Many pre-

cautions are necessary when great accuracy is desired. Although
the method is extremely difficult, long, and tedious, it has the

advantage that it will enable us to reproduce accurately or measure

a certain current, since the measurement finally becomes one of

measurement of mass, which can be determined anywhere. The
various bureaus of standardization still have to use this method.

Legally this represents the way current should be measured.

For ordinary commercial and practical work, when such great

accuracy is unnecessary, this method of measurement is out of the

question since the apparatus is not portable. It is messy, time-

consuming, and requires an expert to carry out the experiment.
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II. THE HEATING EFFECT

An electric current flowing through a conductor heats the

material according to the law :

W = JH = PRt joules.

Stated in other words : The heat produced per second is directly

proportional to the square of the current. Hence by the heating

effect, we can measure an electric current if we can find a con-

venient way of measuring the amount of heat produced. Several

ways of doing this immediately suggest themselves, such as meas-

uring the change in length of a wire produced by the heating, or

else by allowing the wire to heat up a calorimeter with water and

measure the rise in temperature, etc. The method most commonly
used at the present consists in attaching a thermocouple junction
to the wire and so measuring the heat produced Heater

in the wire by means of the e. m. f. produced by
the thermocouple (Fig. 80). Such current-measur-

ing instruments are known as thermo-galvanom-
eters and have a very useful field of application.

The thermo-galvanometer is used extensively

in measuring alternating currents, i.e., currents

that reverse their direction of flow periodically.
IG>

, \
er"

* J
mo-galvanometer

The reason for their use in this connection is

because the most common forms of current-measuring instru-

ments (using the magnetic effect see below) will not measure

currents that reverse their direction of flow. It becomes a difficult

problem to measure such alternating currents, especially when the

frequency of the alternation becomes higher and higher. This

heating effect furnishes about the only satisfactory means avail-

able at present for measuring frequencies of 10,000 alternations per

second and higher usually referred to as radio-frequencies a

field of current measurement becoming more and more important.

On account of heat losses to the air, wires, etc., it becomes

difficult to calculate the current from a knowledge of the tempera-

ture of the wire, etc., and hence these instruments are usually

calibrated by comparison with other ammeters or galvanometers.

III. MAGNETIC EFFECT

This is by far the most common effect that is used in steady

current measurement. Every current flowing in a wire shows a
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magnetic field around it, and consequently a measure of the

magnetic field gives us also a measure of the current.

There are two ways of measuring a magnetic field produced by
a current : (1) by noting its effect on a magnet, or (2) by noting

the effect of another magnetic field on the conductor carrying the

current, when this other magnetic field is placed in the neighbor-

hood of the current to be measured. For these two methods, two

types of instruments have been developed to a remarkable (perhaps

limiting) degree of sensitiveness to current. These two types

are:

1. The moving-magnet type of galvanometer.

2. The moving-coil (or D'Arsonval) form of galvanometer.
1. The moving-magnet galvanometer or tangent galvanometer.

This apparatus consists essentially of a vertical coil of wire which

carries the current. At the center of the coil a small compass
needle is mounted. In order to enable

deflection of this small compass needle to

be observed, a long, thin aluminum pointer

is attached to this needle, usually at right

angles, and allowed to swing over a gradu-
ated circular scale divided into degrees.

When great sensitiveness is desired, the

needle is suspended by a very thin quartz
fiber and has a small mirror attached, so

FIG. 81. Tangent gal- that a beam of light reflected from the
variometer. i ^ * i .

mirror can be used to replace a pointer.

Suppose in Figure 81 AB represents a cross-section of the coil

which has been arranged so that its plane is in the direction of the

earth's field H. Then when a current i flows through the coil,

the magnetic field at the center can be shown to be F
,

where n represents the number of turns and r the radius.

If now a compass needle is placed at the center, each pole of the

little magnet will be acted on by the resultant of these two forces

F and //, and hence will rotate until its direction is in line with

this resultant R. Therefore, if 9 is the angle through which the

compass needle turns when the current is passed through the coil,

we see that

F 2irni= - =
,
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and solving for i, we get

-tan 6 = K tan 6,

where i is measured in absolute units.

Since r, //, and n are all constants which are known or can be

found, we can sec that i oc tan 0.

This is the reason for the name, tangent galvanometer.
In order to increase the sensitiveness we want i to be as small as

possible for a certain value of 6 (or tan <9). This is done by making
r and // as small as practical and n as large as possible. A limit

is reached, however, for two reasons : first, increasing n, the number
of turns, means an increasing resistance and hence a smaller current

;

and secondly, if II is made very weak, stray magnetic fields will

often cause spurious results.

2. The moving coil or D'Arsonval galvanometer. .
The con-

ductor carrying the current to be measured is put in the form of a

coil and either suspended by means of a thin wire or strip, or else

mounted between delicately constructed jeweled bearings so as

to enable the coil to rotate. The magnetic field is supplied by a

permanent magnet. The interaction of the two fields produces

the rotation. With a carefully designed galvanometer of this

type, the current can be made to give deflections proportional to

this current. These instruments can be made very sensitive and

are not subject to as many of the difficulties in their use as is the

moving-magnet type.

The following table gives some idea of the sensitiveness of the

various types :

In this table the sensitivities are all stated in terms of a standard

deflection, and the following definitions are used :
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1. A standard deflection is chosen as the deflection of 1 milli-

meter on a scale 50 cm. away from the galvanometer when viewed

through a telescope, the latter being also placed 50 centimeter

distant from the galvanometer.

2. The current sensitivity (figure of merit) is the current neces-

sary (usually given in amperes) to give a standard deflection.

3. The megohm sensitivity is the number of millions of ohms

(megohms) that must be placed in series with a galvanometer,
when one volt is applied, to give a standard deflection.

4. The voltage sensitivity is the potential difference (usually

given in volts) which must be applied to the instrument directly

to give a standard deflection.

5. The period is defined as the time for a complete vibration.

Example: Suppose that the current sensitivity, or figure of

merit, is 10~9
amperes per standard deflection, then the megohm

sensitivity would very approximately be

if the galvanometer resistance is neglected. Suppose that the

same galvanometer has a resistance of 100 ohms, then its volt-

age sensitivity would be 10~9 X 100 = 10~7 volts per standard

deflection.

General precautions. Whenever a circuit is being wired up, it

should become a habit always to connect the battery or source of

supply into the circuit last. Even then, the battery should not

be connected unless the circuit has been carefully checked. This

precaution cannot be too strongly emphasized because much
valuable apparatus can be ruined if this precaution is not observed.

For the same reason, when disconnecting your apparatus, always
disconnect the source of supply first.

Another point of importance should be carefully observed:

When using a resistance box, see that sufficient plugs have been

removed in the high resistance range so that the circuit has a high

resistance. Never make connections to resistance boxes and

apply the battery or source until proper plugs have been removed

from the resistance box. In general, if the resistances are all as

large as possible, you are on the safe side and it is a simple matter

to reduce the resistance to the desired value. Place the spare

resistance box plugs flat on the top of the box so that they will not

become dirty or misplaced.
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EXPERIMENT 30

THE TANGENT GALVANOMETER

A measure of the earth's horizontal intensity using a tangent gal-

vanometer.

Apparatus : A tangent galvanometer, about 3 feet of twisted leads, a

reversing switch, a low-range resistance box (or rheostat), an ammeter
to read a current of 0.1 or 0.2 ampere, dry cell.

Instead of using a tangent galvanometer to measure the value

of a current, we shall use it to measure the strength of the earth's

field, H (i.e., the horizontal component). To find

H accurately in practice involves a long and difficult

experimentation. We can very easily get a fair

value for H by the following procedure :

The arrangement of apparatus will be seen from

Figure 82. It consists of a tangent galvanometer
T through which we can pass a known current, as

read on the ammeter A.

Knowing the current and the constants of the

galvanometer, we can calculate H, using the relation

between current through the galvanometer and the

tangent of the angle of deflection, as described

above. FIG. 82.

There are, however, several sources of error which Determination

have to be avoided, or else allowed for. Since we
are going to measure //, the value of the magnetic field due to the

earth at a certain region, it is important not to introduce any
extraneous magnetic fields. It is for this reason that the ammeter

should be kept as far as possible from the tangent galvanometer,

and the leads through which the current flows should be close

together.

The next part of the procedure is to set up the tangent gal-

vanometer. Remember that the earth's field is being measured

in the region in which the little magnetic needle is located. The

long aluminum pointer is attached to the little magnet simply to

facilitate reading the deflection. Before passing the current we
must arrange to have the plane of the coil in line or parallel with

the earth's field, so that the magnetic field produced later by the

current will be at right angles to the magnetic field of the earth.
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After being sure the needle swings freely, turn the coil until the

plane of the latter is in line with the needle. A small straight

edge placed above and in line with the needle on the compass-box
will help to line up needle and coil. When this has been done,

leave the coil now in this position and turn the compass-box scale

until the reading of the pointer on the scale is zero.

We are now ready to pass a current. Before closing the switch

see that a fairly large resistance is in the circuit and the ammeter

is connected into the circuit with proper terminals, using the

1.5 ampere range. The ammeter should be connected (+ of

ammeter to + of battery) right next to the battery as shown in

Figure 82. Close the switch and note the ammeter current and

galvanometer deflection. Adjust R until the deflection is between

30 and 60. Note that throwing the switch the other way gives

an opposite deflection.

Finally, we wish to obtain the necessary data for finding H.

Between readings do not change the galvanometer adjustment,

although the current can be varied so as to give about four or five

different angles between 30 and 60. Always measure the angle

by reading both sides of the pointer. Record your data as follows :

No. of turns =

Average radius =

Find the value of H in as many different localities as time

allows.
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QUESTIONS

(a;. If the current is doubled, does the angle of deflection become twice

as large ?

(b). Do the angles measured by the end A and the end B of the needle

agree? If not, give reasons.

(c). Give the various ways in which you could increase the sensitivity of the

tangent galvanometer in practice.

EXPERIMENT 31

SENSITIVITY OF D'ARSONVAL GALVANOMETER

A determination of the current sensitivity, megohm sensitivity, and

voltage sensitivity of a moving coil galvanometer.

Apparatus: D'Arsonval galvanometer, two high-range resistance

boxes, one low-range resistance box, one key, dry cell, voltmeter

(0-3 volt range).

Theory. There are many circuits that may be designed to

measure the sensitivity of a galvanometer. They are all so

arranged that the current passed

through the galvanometer is of the

proper magnitude so as not to burn

out the galvanometer by being ex-

cessive in amount, but rather to give

a reasonable deflection.

Referring to Figure 83, it will be

seen that the current through the

galvanometer can be made small by

arranging P to be very small and R
and Q very large in resistance. Let FlG - 83. Sensitivity of a gal-

r A. xu i xu i vanometer.
Ig = current through the galvanom-
eter and I = main current through the battery. Then I = I

/ P \
( \

(gee next chapter, page 155), where G is the gal-
\P 4- R + Gi\P + R + G

vanometer resistance.

the voltmeter reading, we get

Since I = approximately, where E is

EP
Q(R

approximately.
To adjust a galvanometer telescope and focus on the scale.

Before passing a current through the galvanometer, it is necessary
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to get the cross-hairs and scale in focus. Look through the tele-

scope and you will observe a cross-hair. This will be seen dis-

tinctly and sharply if the eye-piece end (the end you look through)

is moved slightly in or out. Next, without looking through the

telescope, you will find, if the scale is at all illuminated, that you
can see an image in the galvanometer mirror of this scale when

you get your eye at the proper level. Move your eye up or down,
next to the telescope, until you see this image when looking into

the mirror. Having spotted this image, sec that the telescope is

at the same height as your eye. (Use the raising or lowering

screw on the telescope arm for this purpose.) Now if you should

look through the telescope and it is pointing in the proper direction

and is at the correct height, you will probably see the image of the

scale faintly or blurred. Bring this image finally into sharp focus

by the adjustment on the telescope tube (not the eye-piece).

When final adjustment is obtained, both cross-hairs and scale

should be in clear or sharp focus and no parallax should exist

between them. Having made these adjustments^ try not to jar

the instrument any more. If you experience difficulty, do not

hesitate to ask the instructor for help in making these adjustments.

To obtain data for calculating the sensitivity. Having con-

nected the apparatus as shown in Figure 83, be sure that the

resistance in boxes R and Q is as high as possible and the resistance

in P is very low (say one ohm or less), before closing the key. The
first time you close the key, this should be done with extreme care.

Just press the key down for an instant. If there are any wrong

connections, this fact will show up in such a brief deflection, and

furthermore, such a procedure might save some valuable apparatus.

It is always a safe policy to call the instructor over to your desk

and have him check your connections. Having closed the key
after everything is connected up correctly, you will probably
find that the deflection produced, on looking through the telescope,

is very small. To obtain a larger deflection reduce the value of R.

In this experiment we would like to get a deflection right up to the

end of the scale, namely, 24 or 24.5 cm. If reducing R does not

produce the required deflection, then reduce Q in steps, being

careful, however, not to make Q less than 50 ohms. If this manipu-
lation still does not give the required result, then use a larger

value of P.

Knowing that the deflection of 25 cm. can be obtained, adjust
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R and Q until the steady deflections to the right or to the left are

obtained approximately at the following points : 4, 8, 12, 16, 20,

24 cm. Read the voltmeter and deflection when the key is

depressed and the deflection is steady, stating on which side your
deflection was taken.

Record your data as follows :

Galvanometer resistance = ohms
Scale distance = cm.

[Note. The calculation of sensitivity should be for a standard

deflection.]

Plot a curve with current sensitivity as ordinate and deflection

as abscissa. Draw a smooth curve and do not join the plotted

points.

QUESTIONS

(a). Can you think of any reason why it is better to use a constant value

of P through all the measurements?

(b). With the approximations made in the derivation of the formula for

finding /, is it better to have P large or small? Explain.

(c). Why is the sensitivity not constant for all amounts of deflection?

(d). Over what range of the galvanometer which you used can you assume

linearity between current and deflection?

(e). Explain the shape of the curve by a study of the nature of the magnetic
field in which the coil turns.

THE CONSTRUCTION OF VOLTMETERS AND AMMETERS

A galvanometer, when combined with the proper resistances,

can be used to measure currents of any magnitude. The currents

to be measured we shall assume to be larger than the current

which the galvanometer, by itself, can carry without danger of

damage. By a proper choice of resistances also, the same gal-

vanometer can be made to indicate voltage or potential difference
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across its terminals. Of course it must be realized that a gal-

vanometer really gives a deflection because a current is flowing,

and in a well-designed instrument this deflection is proportional

to the current. But if we let this current flow through a resistance,

we can calculate the potential difference across this resistance,

the value of the potential drop being proportional to the current

if the resistance remains constant. In this sense a galvanometer

can be made to serve as a voltmeter.

The ammeter. When a current of large magnitude has to be

measured, then some provision must be made in an ammeter so

that most of the current will be

deflected through a branch circuit,

and only the proper amount passes

ry through the galvanometer.

This is accomplished, as shown
in Figure 83, by connecting a very
low resistance shunt S across the

FIG. 84. Arrangement of gal- galvanometer. The resistance R',
vanometer and shunt to form an ghown dotte(j fe not rfl neceg_
ammeter. ' J

sary but is inserted quite frequently

to aid in making adjustments when calibrating the deflections of

the galvanometer. This is done by comparison with the readings

of a standard ammeter connected in the main circuit.

The relation between main current 7 and galvanometer current

1Q is easily shown to be (see Chapter XV) :

In practice, if we wish to measure a fairly large current, then the

Weratio -2 is a very small fraction, perhaps of the order

see from the above equation that the value of the term in the

brackets must be of the same order of magnitude. This can only

be accomplished by making the resistance of S a very small fraction

of the resistance of the galvanometer. In the case under con-

sideration, if the galvanometer had a resistance of 100 ohms,
a

S would have a value of approximately 0.01 ohm, so that -

o + Or

would be of the order
10*
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85.- Commerical am-
meter.

Since the currents to be measured mostly in practice are quite

large, a less sensitive galvanometer can be used. This means
that the coil does not have to be suspended by a very fine wire,

but can be mounted more ruggedly in conical jewel bearings, thus

making the instrument more portable.

Note that the resistance of an ammeter

(AB) is very low (less than that of the

shunt resistance).

The commercial ammeter, shown in

Figure 85, is of the multiple-range type.

The binding post at the extreme right

is marked +, meaning that this side

should be connected to the positive (+)

pole of the battfty. If the approximate

magnitude of the current to be meas-

ured is not known, connect the negative
side of your circuit to the negative

binding post of the ammeter showing
the maximum range, which is 15 amperes in the diagram. If you
find that the current is less than 1.5 amperes, change your negative
terminal connection from the binding post marked 15 amperes
to the one marked 1.5 amperes. The same precaution should be

taken in using voltmeters.

The voltmeter. The use of a galvanometer for indicating poten-
tial difference is very easily arranged. As a matter of fact, it is a

very simple matter if we know the resistance of the galvanometer
and the sensitivity, since E = IgRg ,

where Rg
= the resistance

of the galvanometer and Ig
= the current through the galva-

G nometer, and hence E is proportional to the deflec-

\D I tion. This is only possible, however, when the volt-

ages to be measured are very small. In general, it

becomes necessary to insert a resistance R, in series

with the galvanometer, as shown in Figure 86, when

A B larger voltages have to be measured. Let us suppose,
FIG. 86. for example, that the potential difference existing

Arrangement across the galvanometer when carrying its maximum
me er.

ayowaj;)je current is 0.01 volt and we wish to measure
a potential difference across AB of 100 volts. This means that

we will have to insert a resistance at R so that most of the po-
tential fall occurs across R (namely, 99.99 volts) and only
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0.01 volt across G. If the current Ig under these conditions is

say 0.001 amp., then R would have to have a value given by IgR
=

99.99, or R = 99,900 ohms. In this way, then, by applying

various potentials at ABj the deflections of the galvanometer
are proportional to the potential difference between A and B.

(Full scale above = 100 volts between A and B.) Note that a

voltmeter has a very high resistance.

EXPERIMENT 32

THE CONSTRUCTION OF VOLTMETERS AND AMMETERS
AND THEIR CALIBRATION

Part (a). To construct and calibrate an ammeter to read from
to 1.5 amperes.

Part (b). To construct and calibrate a voltmeter to read from
to 1.5 volts.

Apparatus: Galvanometer (or milliammeter), a suitable low-resist-

ance shunt (i.e., low-value resistance box will do nicely), a variable

high resistance or rheostat, standard ammeter (0 to 1.5 amps.), stand-

ard voltmeter (0 to 1.5 volts), 2-4-6 volt storage battery, about 15-

ohm rheostat to carry 1.5 amps., a 150-ohm rheostat.

Part (a). The apparatus is connected as shown in Figure 87.

The standard ammeter is shown at I and the home-made ammeter

to be calibrated by the apparatus, con-

sisting of resistances S, R', and galva-

nometer G. All the apparatus connected

between A and B represents the home-

made ammeter. The variable rheostat

marked 11 is meant for varying the cur-

rent flowing through the main circuits.

Be sure to see that all the 11 ohms are

in the circuit to start with.

Before depressing the key, or connect-

ing the battery into the circuit, have theHA
2 or 4 vott* instructor come to your desk and check

FIG. 87. Calibration of ,. r v ,. ,

an ammeter y ur connections. The clips which con-

nect on the battery enable you to obtain

either two or four volts from the battery. Having made R'

and the rheostat (11 12) as large as possible, close the key only
for an instant. Note whether the direction of deflection is correct ..
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If the ammeter should read backwards, interchange the wires

leading to this instrument. The deflections should now be on the

scale of both instruments. The current can be varied by adjusting

the value of the 11 ohm rheostat. Use care in decreasing this

resistance, so that not more than 1.5 amperes pass through the

ammeter /.

Adjust next the value of R' so that when the standard ammeter

reads 1.5 amperes, then the galvanometer reading will be a maxi-

mum also. Make this adjustment accurately. Now reduce the

current in the main circuit and take readings on both instruments

for about ten points on the scale (to do this you will have to work

out the main current value of a scale division on the galvanometer).
In taking these readings set the standard ammeter as exactly as

possible on a division tine and read the galvanometer (estimating

to tenths of a division). Tabulate your results.

Part (b). The adjoining Figure 88 shows the connections.

Above the dotted line we have our home-made voltmeter, con-

sisting of galvanometer and a variable

high resistance R'. Be sure that R' is

a very high resistance. We shall cali-

brate this voltmeter by comparison with

a standard voltmeter V. The 150 12 rheo-

stat serves as a' potential divider (Fig. 95

in the next chapter). By varying the

position of the slider the potential differ-

ence applied to the two voltmeters can be

varied from to 2 volts, of which of

course we will only need as much as 1.5

volts. Set the standard voltmeter V on

1.5 volts and adjust R' so that G reads

full scale. Calibrate as before for various

points on the scale, tabulating your re~ FlG g8.' "calibration of a

suits. voltmeter.

QUESTIONS

(a). Draw correction curves for both the ammeter and voltmeter after

having found the deviation at each point. If the reading is too large, call

the deviation +, if too small, . Then plot deviations (as ordinates) against

divisions on G as abscissae.

(b). Discuss these curves as to possible methods of correction.

(c). If the voltmeter V in Figure 88 were removed, would the home-made
voltmeter still give the same reading ? Why ?
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PROBLEMS
General

1. A current flows for five hours through a copper sulphate solution.

If, during this time, 300 coulombs have passed through the solution, what

was the average value of the current (1) in amperes, (2) in absolute electro-

magnetic units of current ?

2. A resistance of 50 ohms has a current of 3 amperes flowing through it.

Find the potential difference across the terminals. How much e. m. f. would

be necessary to furnish this current if the battery has a resistance of 0.5 ohm?

3. If the current in the above problem also passed through a silver cou-

lometer, how much silver would be deposited in two hours ?

4. How many calories of heat are produced in Problem 2 in two hours?

6. If a resistance of 50 ohms is connected across a 110-volt line, how much
heat will be generated in one hour?

Experiment 30

6. (1) Is there any theoretical limit to the amount of current that can

be measured with a tangent galvanometer? Explain. (2) What are the

practical limitations of this method in measuring such large currents ?

7. How many turns of wire are there in the coil of a tangent galvanometer
of radius 8 cm. if a current of 0.4 ampere gives a deflection of 45 in the earth's

field of strength 0.2 gauss?

8. Find the value of the horizontal component of the earth's magnetic

field, being given that a tangent galvanometer of 200 turns and an average
radius 10 cm. gives a deflection of 55, when a current of 0.01 ampere flows

through the coil.

Experiment 31

9. A galvanometer of 500 ohms resistance has a current sensitivity of

2 X 10"9
amperes per mm. What is the megohm sensitivity? What is the

voltage sensitivity?

10. A battery of e. m. f. 1.5 volts furnishes current to two resistances of

2 ohms and 16,000 ohms in series. Across the 2 ohm resistance is connected

a galvanometer of resistance 200 ohms. The deflection produced is 10 cm.

Calculate the current through the galvanometer and the current sensitivity.

11. A galvanometer has a resistance of 20 ohms, and requires a current of

40 milliamperes (0.04 amp.) to give full-scale deflection. What is the poten-
tial difference across the galvanometer when giving full-scale deflection?

Experiment 32

12. The galvanometer of Problem 11 has a shunt connected across its

terminals. What must be the value of this shunt if the whole is to be used
as an ammeter for measuring a current of 50 amperes maximum value?

13. What resistance must be placed in series with the galvanometer of

Problem 11 so that now the instrument forms a voltmeter of range 0-50 volts?
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14. A galvanometer of resistance 50 ohms and sensitivity 10~* amperes per
division deflection has a resistance R, connected in series with it. Across this

combination of galvanometer and resistance is connected a resistance of one

ohm. What must be the value of R so that the whole arrangement forms an

ammeter of maximum range 1.5 amperes if there are fifteen divisions on the

scale?



CHAPTER XV

THE MEASUREMENT OF RESISTANCE

We have seen in the previous chapter that the constant which

gives the relationship between the current produced in a certain

circuit when an e. m. f. is applied is called its resistance. This

is usually expressed by the equation E RI, which is referred

to as Ohm's Law.

This law was extended by Kirchhoff to take into account the

continuity of the currents and the potential difference relations

in any kind of complex arrangement of conductors that may arise

in practice. These relations are put in the form of two laws,

known as Kirchhoff's Laws.

Kirchhoff
9

s First Law: The algebraic sum of all the currents

meeting at a point is zero.

Kirchhoff
9

s Second Law : In any closed circuit the algebraic sum
of the products of the current and resistance of each part of the

circuit is equal to the applied electro-

motive force in that circuit.

As an example of the use of these two

laws, consider a case which occurs often
FIG 89. -Currents flowing in practiCal work. Let us find the cur-

through resistances connected
J J

. . . . .

in parallel
ren^ through one branch when two re-

sistances are connected in parallel into

a circuit having a current flowing in it.

This case is shown in Figure 89.

Call the currents flowing into a point + ,
and the currents flowing

out . Then for the point A we have (using the first law)

+ 7 - L - Ir =
or

(1)

'

/ = L + Ir.

Now use the second law and apply it to the closed circuit ASBR.
There is no applied e. m. f. in this circuit. Let us go around the

154
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circuit in an anti-clockwise direction, starting at B. Then the

second law gives
+ RIr

- SL =
0,

and hence Ir
=

~j~-

Substituting this value of Ir in (1), we get

or finally,

This result is used so often that it is well to remember it as

follows : When a current enters two branches connected in parallel,

the current through one branch (say S) equals the main current (I)

multiplied by the resistance of the other branch (R) and! divided by

the total resistance of both branches (R + S).

These two laws of Kirchhoff are very general laws and enable

us to solve practically any case that may arise. A very frequent

application consists in finding the current in a branch of a com-

plicated network of wires when a certain e. in. f. is applied to the

network. Suppose we have a simple circuit with several resist-

ances, say 72 1, R, #3, etc., in series. Then by use of these laws

we can show that as far as the current is concerned these resistances

behave as if we had a resistance in the circuit of value R, where

R equals R\ + R% + Rs, etc. When these resistances are con-

nected in parallel, then it can be shown that the equivalent resist-

ance R has a value such that

R

EXPERIMENT 33

CURRENT FLOW IN NETWORKS

To analyze the currents and voltages existing in a complex network of

resistances and to find the values of these resistances by the voltmeter-

ammeter method.

Apparatus: A source of supply (for example, 110 volts D. C.) ;
a

board on which are mounted the resistances as shown in Figure 90

(screw sockets with Ward Leonard mounted resistances to screw into
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Plug

220n

these sockets will do nicely) ;
sockets for insertion of plugs (" parallel

prong
" and "

polarized
"

prong types) ; single throw, single-pole

knife switches; a plug and cord to fit parallel-prong type socket; a

plug and cord to fit
"
polarized

"
type socket; ammeter (0-1.5 amps,

range) ;
voltmeter (0-150 volts).

[Note. The resistances are chosen here so that a 110-volt line

can be used in conjunction with an ammeter of range 0-1.5 amps.
With suitable resistance changes, a 6-volt battery can be used with

the same ammeter and a volt-

meter reading from to 6 volts.]

Before connecting the net-

work to the 110-volt line, be

sure to analyze and check up
the connections in the wiring.

Draw a schematic diagram of

the circuit as arranged on the

board and mark on your dia-

gram the values of the resist-

ances if they are given. Note

the sockets a, 5, etc., are con-

nected across the resistances
c and are hence meant for meas-

uring the potential drops across

these resistances by means of

a voltmeter. Therefore be sure

to see that the proper plug
is connected to the voltmeter.

This should be the plug which

has the two prongs parallel, one

under the other. The other

plug in which the prongs are at

right angles to each other is

the one that is connected to the ammeter. Note that the sockets

into which the ammeter plug fits are connected across knife

switches. Opening up a knife switch allows the ^jrrent to flow

through the ammeter.

Before applying the voltage have your apparatus checked by
the instructor. In your report tabulate all your readings, having
read them as accurately as you can estimate them on the instru-

ments. This experiment is a test of the accuracy and judgment

FIG. 90. Network of resistances.
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that you are capable of exercising in reading a pointer-type instru-

ment. The following tests are to be carried out :

1. Measure the potential drops across a, 6, c, d, e, /, g. Use

the 150-volt scale (i.e., binding posts marked + and 150).

2. Measure the currents at the various points A, B, C, D, E, F.

Calculate from your data the following :

1. The values of the various resistances (using Ohm's law,

neglect the effect of the voltmeter and ammeter resistances

see next section on measurement of resistance).

2. Choose three points and show that Kirchhoff's first law is

satisfied. (Give experimental error.)

3. Choose two closed circuits and from the above readings show
that KirchhofP s second law is satisfied. (Again calculate your

experimental error.)

4. Having found from (1) the values of all the resistances,

calculate the resistance of the whole circuit. (Do this by taking
the various branches part by part and combining their resistances

in proper fashion until the whole circuit has been replaced by a

single resistance.)

5. Knowing the voltage applied to the circuit and the total

resistance, calculate the current and compare with current as

read at E.

QUESTIONS

(a). What effect does the resistance of the ammeter have in the various

branches? How could you make correction for its effect and still calculate

the unknown resistance ?

(b). What is the similar effect and correction necessary in using the volt-

meter ?

(c). Do your experimental results check Kirchhoff's two laws within what

you estimate to be the experimental error ? If not, what explanation do you
have?

METHODS USED IN THE MEASUREMENT OF RESISTANCE

In practical work, current and potential differences are usually

measured directly with instruments made for the purpose. These

instruments, we have seen, are called voltmeters and ammeters

and their indications give us the result directly. For most com-

mercial work these readings have the necessary accuracy. Other

and even more complicated methods must be resorted to if the

accuracy so obtained is not sufficient.
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The measurement of resistance, however, is not quite so simple

and direct. We shall discuss here only the measurement of re-

sistances of such magnitude as are commonly found in practice.

These values might range from 0.01 ohm to 100,000 ohms. For

values beyond these two limits, that is, larger than 100,000 ohms
and less than 0.01 ohm, the accurate methods are considerably

more complicated, require an exceptional amount of skill, and, in the

case of extremely high resistances, require a technique all their own.

The simplest way o measuring a resistance is the wit-ammeter

method. The principle of the method consists simply in measuring
the current through the resistance, and the potential difference

existing at the terminals. Then applying Ohm's law in the form :

/jj = _-
?
we find the resistance. The difficulty comes when we

measure E and /. Using a voltmeter, as in Figure 91 (a), we note

that the voltmeter reads the P. D. across R, but the ammeter reads

the current through both R and V. We
want the current only through R. How-

ever, the current through V in Figure
91 (a) becomes relatively less important
the larger the resistance of V relative to R.

Hence, assuming we are given a volt-

meter V having a fixed resistance (say

100 ohms per volt), the smaller the value

FIG. 91. Volt-ammeter of R the more accurate our result will be.

method of measuring resist- jf we connect the voltmeter and

ammeter as shown in Figure 91 (b),

we find that the ammeter reads the correct current through R,
but the voltmeter now measures the potential difference, not only
across R, but across A also. In this case, therefore, the smaller

the potential drop across the ammeter A relative to the P. D.

across R, the more accurate our result. Hence R should have a

relatively high value compared to the resistance of the ammeter.

Usually of course the ammeter has a fixed resistance of fairly low

value (say 0.01 or less), and hence the method is quite accurate

for resistances from 10 ohms up.

It can be shown l that the dividing line between methods (a)

or (b) occurs at a value R = \^RvRa ,
where Rv = resistance of the

voltmeter and Ra = resistance of ammeter. Hence for resistances

1 A. W. Smith, Electrical Measurements, page 15.
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less than this value, use the method shown in Figure 91 (a), and for

resistances larger than this, the method of Figure 91 (b). With

caution, therefore, the volt-ammeter method can be made to give

fairly accurate results. Its main advantage of course is its simplicity.

The Wheatstone bridge. The method used for all accurate

measurement of the resistance, in the range under discussion, is

the Wheatstone bridge method. The method finds its application
in various forms of apparatus having entirely different appearances.
The principle of the balanced Wheatstone bridge network, however,
can be traced in each one. Consider the arrangement of resistances

as shown in Figure 92. The current entering at a splits into

two parts, one part going along ad and

the other along ab. The branch db is

connected to the circuit at d and b.

If a current is to flow through db, then

there must exist a potential difference

between d and 6, because a current does

not flow unless a potential difference

exists. If, then, we say that there is

no current flowing between d and b (a

fact which we can easily determine by ^ .. . . .

1,1,, , A - i- FIG. 92. Wheatstone bridge
noting whether the galvanometer in this network.

circuit shows deflection), we can reason

conversely and say that no potential difference exists between the

points d and b. This does not mean that the potentials of the

points d and b are zero they will not be it simply means that

they are the same.

Consider then the two paths for the main battery current, viz.,

adc and abc. The potential of a is common to both, and we have

seen that b and d have the same potential, hence the potential

drop from a tod must equal the potential drop from a to b. Hence,

(3) RJ l
= 7Zi/2.

And similarly,

(4) RJ l
= #2/2.

This, of course, is only true if no current flows from d to b or,

in other words, if the bridge is balanced. Eliminating 72 and /i

from equations (3) and (4), we get,
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Now if we had one resistance unknown (say R = X), and knew
the other three values, then we could find the unknown X by the

relation _ Y - A> ( Kl\~ x ~H/7/
Usually the battery and galvanometer are interchangeable in

their relative positions, but if the values of the resistances are

very different, say RI and R very large, and Rz and #3 very

small, then the galvanometer should be connected between the

points joining the two higher and the two lower resistances.

Only two common forms of apparatus will be described, although
the student should from this description be able to use any other

form, the similarity in their use being extremely close.

The slide wire bridge (meter bridge). Essentially this form

consists of a uniform wire exactly one meter in length stretched

along or above a meter rule. The
ends of this wire are soldered to

heavy copper or brass pieces shown

shaded in the diagram of Figure 93.

A slider which can make contact

on the wire is so arranged that its

position can be read on the scale.

The two parts of the wire form two

arms of the bridge. The other two

resistances are inserted by means of binding posts at J? 3 and R*. By
tracing through the remaining connections, the student will see the

exact analogy between this and the Wheatstone bridge. The stu-

dent should do this so as to be able to write down the conditions for

the balance. In using such a bridge, the unknown is inserted at,

say Rt, a variab e standard resistance box being connected in

at R s . Balance is then obtained by moving the slider until the

galvanometer reads zero. Then assuming that the wire has

constant resistance per unit length,

j
l

FIG. 93. Slide wire bridge.

V T) f *-*'T\ 7> 1= A =
.ttsi -=r

)
^3 r-,

V/t/2/ /2

where li and lz are the distances between slider and the two ends

of the wire.

Although this form of apparatus is very simple to understand

and use, there are several possibilities of a considerable error being
introduced when accuracy is required. First, we have neglected
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the effects of the end pieces to which the wire has been soldered.

These should be included in the balance condition. The bar-

resistance from d to Rz and R^ has also been neglected. Further,

the wires may not be soldered exactly at the and 100 division

marks on the scale. (This is very difficult to accomplish in

practice.)

A good way to overcome or minimize these errors is to proceed
as follows : Place the unknown at the R position and at R$
insert a standard variable resistance box. Make a guess at the

value of the unknown resistance and put that value which you
have guessed into the standard resistance R 3 . Move the slider

near one end of the wire. Depress first the key in the battery
circuit and while this key is down make the contact with the wire

only for a short time just long enough to see which way the

galvanometer is going to swing. Next move the slider to the other

end, and if the connections are correct, the galvanometer should

now deflect in the opposite direction. If it does not, check up

your connection. Now move the slider along until the deflection

is neither one way nor the other. From the readings on the scale,

calculate approximately the value of the unknown. Unless your

guess has been very good, the chances are that the balance point

is not near the center (i.e., the 50 cm. mark). Having calculated

the approximate value of the unknown, change the value of the

resistance standard (R$) so as to have approximately this value,

and repeat, finding the balance point, this time very exactly. It

should now be somewhere near the middle of the wire. Next,

leaving the leads unchanged, interchange the positions of Rz and

the unknown resistance, being careful not to change the value of

72,3, and find the balance point again as accurately as you can.

Then it can be shown quite easily that if l\ and l\ are the readings

(in cm.) on the scale for the direct and reversed positions, then

Rtor X 100.0 + (h
-

l\)

Rs 100.0 - (h
-

Z'O

This procedure, although a little longer, eliminates many of the

errors that arise on account of contacts and corrections. This

method, however, is only effective if the balance points are arranged
to be near the center of the wire.

Another error which is likely to creep in is found in the fact that

the wire may not have been uniform originally, or else may have



162 EXPERIMENTAL PHYSICS FOR COLLEGES

lost its uniformity by improper use. The only possible remedy is

to replace the wire or else calibrate it. The method for doing this

is beyond the scope of this book. The student should take special

precautions not to spoil the uniformity of the wire by depressing

the key too hard on the wire and producing kinks, which of course

will ruin the wire as far as accurate results are concerned.

RESISTIVITY OR SPECIFIC RESISTANCE

The property of a substance to conduct electricity is called the

electrical conductivity. When designing electrical instruments and

apparatus, it is essential that the designer have an accurate and

complete knowledge of the conductivity of the various materials

at his command. In all this work the property or quantity to

which reference is made is the so-called resistivity or specific re-

sistance.

This quantity is arrived at by the following considerations:

It is found experimentally that if the temperature of a substance

is kept constant, then the resistance of a piece of the material

depends upon its dimensions. The dimensions which affect the

resistance are the length and cross-sectional area. We find, for

example, that the resistance varies directly with the length of the

specimen and inversely as the cross-sectional area.

Hence, R <x
,

or R = pi,

where p is the proportionality constant which takes into account

the kind of the material
; p is called the resistivity of the substance

and - is called the conductivity.
P

[Note that p R, if A = 1 and I = 1, which means that the

specific resistance (resistivity) is numerically equal to the resistance

of a conductor 1 cm. in length and 1 sq. cm. in cross-sectional

area.]

A measurement of p, as we see from the above equation, involves

a measurement of the total resistance (in ohms) of the sample,
the length (in cm.) and the cross-sectional area (in sq. cm.).

Thus far we have assumed that the current has the same density

per sq. cm. over the cross-sectional area, or, in other words, is
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uniform. In alternating currents this assumption is not valid,

the current density becoming more non-uniform as the frequency
becomes higher.

tc.

DEPENDENCE OF RESISTANCE ON TEMPERATURE

Since the electrical conductivity, and consequently the resistance,

vary with temperature (usually increasing with the temperature),
one of the important quantities in elec-

trical measurements is the temperature

coefficient of resistance. In most cases if

the resistance is plotted for corresponding

temperatures and a graph drawn (Fig. 94),

a smooth curve will be found to result

which is not far from a straight line,

especially in the useful range of tempera-
tures.

~"

In order to distinguish between the

different behavior of materials in regard
FlG - 94. Variation of re-

,,i.i . . . < <! sistance with temperature,
to this change in resistance we specify the

temperature coefficient of resistance (a) which is defined by the

relation,

where

Rt = Resistance at t C.

Ro = Resistance at C.

t = Change in temperature from C. to t C.

Determining experimentally the values for R t , RQ, and t, we can

solve for a.

Should we not be able to find the value of the resistance at C.,

we can still find the constant a, knowing the values of the resist-

ances at two other temperatures ti and 2 ,
as follows :

(5) for temperature ti we have Ri = R Q(l + aii),

(6) for temperature t% we have R z
= Ro(l +

Dividing equation (5) by (6), we have

Rz

1 +ati
1 + ah
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RESISTANCE STANDARDS

In the case of resistance standards, where permanence and

accuracy are paramount, great precaution must be exercised to see

that the principles to be mentioned are carefully considered and

taken into account.

It is important that the resistances used have a small tempera-

ture effect, i.e., the temperature coefficient of resistance be very

small. The resistance wire used should also have a high resistivity

or specific resistance so as to economize in bulk and cost.

It is found that various alloys of copper-nickel, etc., can be

made to have high resistivity. It has been a difficult matter,

however, to find alloys which have at the same time a low tem-

perature coefficient. For example, German silver, which is an

alloy of copper, zinc, and nickel, has high resistivity but an objec-

tionable high temperature coefficient. The most satisfactory

material at present for use in the construction of resistance stand-

ards is manganiU) an alloy of copper, nickel, and manganese. This

material has a very low temperature coefficient and high resistiv-

ity. It has, however, another very important property which

has not been mentioned before its thermo-electric e. m. f.

between it and copper or brass is very small. When we connect

in a resistance box with binding posts into a circuit, we do not wish

to introduce bothersome thermal electromotive forces which would

have to be allowed for. On account of this, such materials as

German silver and constantan are not desirable for use in elec-

trical measuring circuits.

Finally, great care and ingenuity must be exercised in the

mounting of resistances. The calibration should be permanent.

Temperature must not distort the forms on which the wires are

wound so as to strain the material. Humidity and dust should

not affect the insulation between coils, and, in the case of highest

precision, provision must be made to keep the coils at a constant

known temperature.
The student is referred to other more advanced texts on electrical

measurements l for a detailed description of the methods used in

mounting resistance coils. The methods used in varying the

resistances are of two types : plug or dial. In the use of such

resistance standards the student should not employ brute force

1 See F. A. Laws. Electrical Measurements.
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on the plugs or dials. Insert or remove plugs with & slight twisting

motion, pressing down gently while so doing.

CURRENT LIMITING RHEOSTATS

In very many cases it is necessary to vary and control a current.

The nature of the variation required determines the type of

resistance to choose for the purpose. As long as the resistance

produces the required variations, we are not interested in its

actual value. For this purpose it is unnecessary to use a carefully

calibrated variable standard. Resistances designed for this pur-

pose are called rheostats.

In general we can divide rheostats into two classes : slide wire

types and carbon compression types. The first kind is used when
the range of variation is to be large and, for practical purposes, it

is satisfactory if the resistance change occurs in very small jumps.
Slide wire rheostats are used nowadays almost exclusively. When

large amounts of current have to be controlled and finer continuous

adjustment is necessary, a carbon rheostat is used. The resistance

change can be made practically infinitesimal by changing the

pressure on *,he blocks slightly.

A word of caution should be given here to the student on the

use of rheostats, especially when used in power supply lines for

controlling current. The resistance and carrying capacity of the

rheostat are usually marked on it and should always be known.

The voltage being known on which the rheostat is to be used,

divide this by the resistance of the rheostat, and so calculate the

minimum current that will be produced when the rheostat is

connected on this voltage. The current so found should always
be well within the current-carrying _ , ,

capacity as marked on the rheostat, ^j
i

j

Most of the variable rheostats have r^-W^^
*

connections as shown in Figure 95.
j

? Q
Having three binding posts and a

' ! _ ^^" nmr>s
\

r j ui ^ u * 4. 4. u j FlG - 95. Rheostat,
slider enables the rheostat to be used

as a potential divider (very commonly but erroneously called a

potentiometer). When the instrument is connected into a circuit

at A and C only, we have a variable rheostat. When connected

to a source of potential as shown by the dotted lines, then be-

tween A and C we have a variable potential difference, variable

from zero to the full potential difference of the battery.



166 EXPERIMENTAL PHYSICS FOR COLLEGES

EXPERIMENT 34

MEASUREMENT OF RESISTANCE WITH A SLIDE WIRE
BRIDGE

Part (a). To measure several resistances with a slide wire bridge.

Part (b). To check as accurately as possible the laws of combination

of resistances.

Part (c) . To measure the resistance of a galvanometer.

Apparatus : A slide wire meter bridge, a standard plug or dial resist-

ance box, galvanometer of medium sensitivity, a good dry cell, a

single contact key, fairly heavy cotton-covered copper wire for con-

nections, a high resistance rheostat.

Part (a). Connect up the slide wire bridge as shown in Figure

93, putting in one of the unknowns at R. Find first the value of

the unknown by the simple relation 72 4
= X = 7 3 ^- Make several

62

trials by changing the value of 72 3 slightly. Record all data in

tabular form and find the average value of X together with its per

cent of error. The final setting should be somewhere near the

center of the slide wire. Measure in the same way all the other

unknown resistances.

Next repeat the measurement using the direct and reversing

method outlined above and obtain again several trials by changing

Rz slightly. For each valued 72 3 calculate X and find the average

value of X together with the per cent of error. Do the same foi

the other resistances given. Record all data and put it in tabular

form. Label your data carefully so as not to get the ratio upside

down when interchanging R s and X.

Part (b). Connect the resistances that you have measured, and

measure in series by the simple method the resistance of the

combination. Find the total resistance by calculation from

Part (a) and also the per cent of error between calculated and

experimental value. Repeat for the parallel connection. Com-

pare the errors found in the calculated and experimental result.

Part (c). By means of a slight modification of the Wheatstone

bridge the slide wire bridge can be used to measure the resistance

of a galvanometer. The connections are as shown in Figure 96.

A second galvanometer is not necessary to tell when a balance is

obtained.

Note that in this case a high resistance (H. R.) is put in the
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battery circuit. Since a current is flowing through the galvanom-
eter all the time, even when a balance is obtained, the value of

H. R. should be kept such as to

limit the current through the gal-

vanometer G to a safe value. Bal-

ance is shown by the fact that when
the key Jv 2 is depressed, no change
is observed in the deflection of the

galvanometer (fci, of course, being
closed first). The procedure in FlG - 06. Measurement of gal-

i ... , i , i vanometer resistance,
obtaining a balance is the same as

before. Obtain other settings by changing the value of R$ (still

keeping balance point near the center of slide wire). Calculate

the galvanometer resistance by the ordinary Wheatstone bridge

formula. Average all values and so obtain value of the galvan-

ometer resistance and the experimental error. Tabulate all your
results.

QUESTIONS

(a) . Do your results show that the method of interchanging X and R&

gives better results for the value of the unknown?

(b). In Part (b) is the error as calculated from the single resistances the

same as the error as found for the combination measurement ?

(c). Approximately what was the accuracy of setting of the slider on the

wire (i.e., how much movement could occur before a change would be noticed

on the galvanometer) ?

(d). Explain why the Wheatstone bridge formula holds in Part (c). What
is the difference between this and an ordinary bridge?

EXPERIMENT 35

TEMPERATURE COEFFICIENT

To determine the temperature coefficient of resistance of copper wire.

Apparatus: Temperature coefficient apparatus, thermometer,
Wheatstone bridge, burner.

As can be seen in Figure 97, the apparatus consists of a coil of

wire which can be immersed in a beaker of oil, preferably an oil

which is not inflammable (olive oil will do very well). This

beaker and coil is surrounded by another outer water jacket, the

temperature of which can be raised or lowered by heating the

water.

The resistance is found by means of a dial Wheatstone bridge.
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\stirrer

In using such a bridge the student should first study the apparatus

carefully, making frequent reference to the circuit as explained
in Figure 92. In this figure it will be seen

that two keys are needed : a key in the

j^tery circuit, and a key in the galvanom-
eter circuit. On the dial bridge these keys
are mounted and marked, #A(ttery), and

<7A(lvanometer). Always close the battery

key before depressing the galvanometer key.

The latter key should be closed last, and

then only for an instant, to show the direction

of deflection.

In the theory of the Wheatstone bridge

FIG. 97. Tempera- it was shown that when a balance occurs,
ture coefficient of resist- /R,\
ance apparatus. R* = ^ 3

( # )'
^w in order to find R 4 ,

it

is only necessary to know the value of R$ and the ratio between

R i and Rz and not the actual values of Ri and jR 2 . Hence in

most assembled bridge networks, provision is made to determine

and vary their ratio, rather than their actual resistances. A dial

is provided which performs this known ratio variation (marked

1,000, 100, 10, 1, 0.1, 0.01, 0.001). The remaining dials form the

variable resistance 72 3 ,
which is variable in steps of units, tens,

hundreds, and thousands.

When the experiment is in progress, there is no time to spare,

and measurements of the resistance have to be taken quickly and

accurately. Having become familiar with the parts of the bridge,

the student should next practice the following procedure and

manipulation. The galvanometer should be connected to the

binding posts marked (M(lvanometer). The battery (a dry cell)

is connected to the proper terminals, and the resistance to be tested

at the binding posts marked X.

Since the student usually has no idea of the value of the resistance

under test, it is first necessary to find the approximate value of X.

Set the ratio dial on the ratio marked 1. Put a large value in

#3 (say 5,000) and note the direction of galvanometer swing when

the galvanometer key is depressed momentarily. Then put in a

small value (say 1 ohm) and again note deflection. If the deflec-

tion is in the other direction, then we can say that X lies between

these two values (1 ohm and 5,000 ohms). Now by changing
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Rs, narrow down the limits until you have a fair idea of the approx-
imate value of X (say between 8 and 9 ohms). Since the resistance

is to be measured as accurately as possible, it is necessary to use

all four dials (i.e., measure to four significant figures) if this be

possible. In the case mentioned, the value of R 3 would be made
8,000 and the ratio 0.001, because X = 8,000 X 0.001 = 8 ohms

approximately. Then by using the hundreds, tens, and units dial,

the balance can be found accurately (interpolating the last figure

if necessary). Suppose the value of Rz so found is 8,235. The
value of X will consequently be 8,235 X 0.001 = 8.235 ohms.

Always remember to arrange your ratio such that # 3 can be made
as high as possible. This means a greater number of significant

figures and greater accuracy.

Having become familiar with the method of measuring a resist-

ance, the student should now be ready to start his experiment.
Stir the oil well by means of the stirrer provided so as to be sure of

a uniform temperature throughout. The first measurement of

the resistance should be made at room temperature. Close watch
should be kept on the thermometer to see whether the temperature
is settling down and becoming steady. Never take a reading
while the temperature is changing rapidly or the apparatus is being
heated up to another temperature. Control the heat supplied by
the flame until the temperature has settled down about 9 or 10

degrees higher. When the thermometer shows that the tempera-
ture is almost steady, then be prepared to measure the resistance

and record the temperature and resistance exactly when a balance

is obtained. Then raise through another 9 or 10 degrees and so

take readings up to the boiling point of the water. [Note. If the

student has become familiar and expert at measuring the resistance,
the variations in temperature of the oil and coil can be followed

much more closely by observing the change in resistance by the

drift of the galvanometer. When the drift is very small or zero,
then the temperature is practically constant. A thermometer
has a very appreciable lag which should always be considered.]

Tabulate all results, showing values for /2 3,
ratio ~1, temperature

/t2

and the calculated value of X.
If time permits, take measurements on cooling. Plot results

on graph paper as described in the section on temperature coeffi-

cient of resistance. In doirw this, do not join the plotted points,
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but draw the best straight line representing the data and make

your calculations from this line. Check your result with the value

given in a book of tables.

QUESTIONS

(a) . Why not join individual points and call this the graph of the resistance

versus temperature?

(b) . Calculate from your results on your curve the value of Ro (the resistance

atOC.).
(c). Estimate the accuracy of your resistance measurement.

(d). Estimate the accuracy of your temperature measurement.

(e). Estimate the accuracy of your calculated a.

(f). Would you expect points on the curve for heating to fall on the same
curve as for cooling ? Give reasons for your answer.

EXPERIMENT 36

THE SPECIFIC RESISTANCE OF MATERIALS IN THE FORM
OF WIRES

The use of a dial Wheatstone bridge for measuring a fairly low

resistance such as occurs in finding the resistivity of materials.

Apparatus: Dial form of Wheatstone bridge, dry cell (1 volts),

galvanometer, known length of wire mounted on a board with three

mercury cups.

In finding the specific resistance of a substance, we have seen

that three measurements are necessary: total resistance, length,

and cross-sectional area. Of these, the most difficult to measure

with accuracy are the cross-sectional

area and the resistance. In order that

the non-uniformity of the wire is rel-

atively small and also to aid in

measuring the cross-section, it is pref-

erable to have the diameter of the

wire as large as possible. This means,

however, that for a given length the
FIG. 98. Specific resistance . , .n , 1 j 4.

apparatus
resistance will be very low and great

precautions must be taken in meas-

uring such a low resistance accurately. Contact resistances must

be reduced to a minimum and even the values of the lead resist-

ances should be known.

In the above form of apparatus (Fig. 98), contacts are made in

mercury cups because this gives a uniform and low contact resist-
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ance. Thermal e. m. f.'s are to a great extent eliminated. The

procedure in finding the resistance of the wire of known length is

to connect by a copper strap cups 2 and 3 and measure the resist-

ance (say RL). This includes the unknown resistance plus leads,

etc. Then take out the strap between 2 and 3 and place it in

1 and 3, thus omitting the long wire. Measure this resistance

(say RT). Then the required resistance is RL RT .

When measuring the resistances the same method should be

followed in finding a balance as in Experiment 35 (refer to the

experiment for details in manipulating the dial bridge) . Measure,
in several places if possible, the diameter of the wire by means of

a micrometer screw (calculating the error). Obtain the length
of the wire and calculate the resistivity. Tabulate all data and

compare your results with tables.

Leave the mercury-coated copper strap in the mercury cups
when the apparatus is not in use.

QUESTIONS

(a). Compare the errors in the various measurements that you had to

make in finding p.

(b). Explain fully why p is the same for all sizes or dimensions of wire made
of the same material.

(c) . What would be the effect of change of temperature on p ?

Experiment 33 PROBLEMS
1. A battery has an internal resistance of 0.05 ohm and an electro-

motive force (i.e., the potential difference between the terminals when no
current is drawn from the battery) of 1.45 volts. A radio tube operating on
1.1 volts and requiring a current of 0.25 amp. is to be operated with this

battery. How much resistance must be put in the circuit (usually done with

a so-called rheostat) so that the tube will just be operating under the required
condition ? What is the resistance of the radio tube ?

2. Given two parallel circuits as shown in Figure 99. Calculate the

current through each branch, using first KirchhofPs laws and secondly the

rule as given in this chapter for two parallel circuits. Calculate also the total

resistance.

12 Amps.

FIG. 99. FIG. 100.

3. In the network shown in Figure 100, calculate the total resistance and

also the current which the battery has to furnish.
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4. Apply KirchhofFs laws to Figure 101 and find the current flowing

through each 7-ohm resistance.

5. Calculate the total resistance of the circuit

shown in Figure 100.
1 Volt

'3 Volt

FIG. 101.

Experiment 34

6. Write down the similarities between the slide

wire bridge and the Wheatstone bridge. State all

the errors that come into a slide wire bridge meas-

urement and give methods of overcoming some of these.

7. How much resistance would have to be placed in parallel with two

parallel resistances of 80 ohms and 60 ohms, so that the total resistance be

30 ohms?

Experiment 35

8. Calculate the resistance of a coil of copper wire at 90 C. which has

a resistance of 20 ohms at C. (Look up temperature coefficient of resistance

of copper in a handbook.)

9. Given that a certain wire has a resistance of 200 ohms at 20 C. and

208 ohms at 65 C., find the temperature coefficient of resistance.

10. Define or explain the meaning of the term "
temperature coefficient

of resistance.
" What is the importance of a knowledge of this constant from

a practical standpoint ?

11. From the discussion in this chapter on the change of resistance with

temperature, does a method suggest itself to you for measuring temperatures?

Experiment 36

12. Calculate the resistance of 40 miles of number 20 B and S gauge copper
wire (look up size of this wire and resistivity in a book of tables).



CHAPTER XVI

THE MEASUREMENT OF POTENTIAL DIFFERENCE BY

THE POTENTIOMETER METHOD

We have seen in a previous chapter (page 149) that a voltmeter

will measure the potential difference across its terminals. As a

matter of fact this formed a very quick and convenient way of

performing the measurement. This method, however, has two

drawbacks which in many types of measurement preclude this

method of measuring potential difference. These two are, first,

very limited accuracy, and secondly, the fact that the insertion

of the voltmeter changes the conditions in the original circuit (as

to current and potential difference) so that it is not possible by
this method to measure the original potential difference.

In such cases, where a voltmeter cannot be used, and in cases

when great accuracy is needed, especially in the case of thermo-

couple e. m. f/s, the potentiometer will give excellent results.

The potentiometer uses essentially a null method in its measure-

ment of potential differences, meaning by this that when a balance

obtains, the instrument gives its reading, and no current is drawn

from the source of potential difference to be measured. Hence the

instrument measures the original potential difference.

In practical work, for example in power stations, the temperature
is measured by having a thermocouple in the furnace connected

by leads to the switchboard in front VR E
of the operator. The e. m. f/s pro- , M/WVWW
duced are measured with a milli-

voltmeter, or a potentiometer when

greater accuracy is needed. In

many cases a continuous record of

the temperature is kept on a record-
, . i . i i ,111 FIG. 102. Potentiometer circuit.

ing instrument which does the bal-

ancing of the potentiometer, and recording of the e. m. f. or tem-

perature automatically.

The theory underlying the operation of a potentiometer can

be studied by reference to Figure 102. This figure represents,
173

I
A C2
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schematically, the wiring of a simple potentiometer. A main

battery E furnishes the source of e. m. f. for the current / which

flows through a variable resistance V.R. and a uniform slide wire

AB. The current / can be varied by changing V.R.

Now when a current flows through the slide wire from A to B
a potential drop will exist from A to B (let us say about 2 volts).

From A to the middle of AB, i.e., about C 2 ,
the potential difference

(drop) will be just one-half the value from AB (hence about 1 volt).

Let us next connect in at A another cell, e, so that the positive pole

of the battery e is connected to A. In series with this cell we place

a galvanometer G and then connect this end to the contact maker
or the slider. Suppose the contact, however, is not yet made,

i.e., Ci is not yet connected to a point C 2 on the slide wire. Now
if the cell, e, has an e. m. f. of 1 volt, then of course the potential

drop from A to C, even before making the contact between C\ and

C2 ,
must be 1 volt. But we have seen that when the current /

flows in the main circuit, the potential drop from A to (72 is 1 volt,

hence if the drop from A to Ci, and from A to C2 in each case

1 volt and the potential A is common to both circuits, then Ci

and (72 must have the same potential even before the contact is

made. Now since no current existed in the circuit from A to C\

(i.e., through the galvanometer circuit) before making the dC2

contact, no current will flow after making the contact because

Ci and C2 had the same potential. If ,we had made contact at

some other point on the wire, then the potentials at the point of

contact would not have been the same and a current would have

passed through the galvanometer, in one direction when Ci is to

the left of C2 ,
and in the other direction when Ci is to the right of C2 .

Making use of this principle, suppose the slide wire, which we
shall assume to be a meter in length and marked off in milli-

meters, had across it a known potential difference of 2 volts, and

suppose that the battery e had an e. m. f. that was unknown.

Then in order to find the unknown e. m. f., the procedure would

be to move the slider along the wire until the point on the wire is

found at which Ci and C 2 have the same potential, which fact, of

course, will be manifested by zero deflection of the galvanometer.

Suppose that the reading on the scale was 37.6 cm. The e. m. f.

07 c

therefore of the cell, e, will be ^ X 2 volts = 0.750 volt. Using
100

this method, then, we see that it becomes possible to calibrate the
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potentiometer to be direct-reading. In actual practice a means is

always provided on the instrument for making this adjustment.

The next question that naturally suggests itself is : How did we
know what the fall of potential across the slide wire originally was ?

This leads us up to the question of the use of standard cells.

A standard cell, as the name suggests, is a source specially

designed to give a very steady and constant e. m. f. The develop-

ment of such a cell has required years of experimental research

with only the purest of chemicals. As a result, however, of this

intensive study, using certain prescribed chemicals and standard

methods of preparation, it is now possible to write down what the

e. m. f. will be, for a given temperature, to approximately 1 part
in 100,000.

For a Westori normal cell the e. m. f. at a temperature t C. is

given by :

Et
= 1.01830 - 0.0000406(

- 20 C.)
-

0.00000095(2 - 20 C.)

+ 0.00000001 (t
- 20 C.).

Such a cell has for its electrodes mercury and cadmium, the

solution being mercurous sulphate. The student should refer to

his textbook for a detailed description of standard cells.

Other standard cells have been constructed, two of which are

known as the Eppley cell and the Weston unsaturated cell. They
differ from the normal cell described above in that they have an

e. m. f. which is not quite as reproducible, when constructed over

and over again, but they have the advantage that their e. m. f.

does not vary considerably with change in temperature, as is the

case with the normal cell. They are usually calibrated, after

being constructed, by comparison with a Weston normal cell and

then used with this calibration.

As with all chemical sources of e. m. f., standard cells have the

disadvantage that they polarize. However, if small currents are

drawn from the cells, the polarization is negligible, and even if it

should occur, the cell will, when allowed to stand, rectify itself

again. Remember any appreciable current drawn from the stand-

ard cell will ruin its use as a standard source of e. m. f. Never

use a standard cell to furnish current. Even connecting a voltmeter

across a standard cell will spoil it, the current used by the voltmeter

being too large. No current larger than 0,0001 ampere should

ever be drawn from the cell, and even then only for an instant.
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The importance of having only very small currents go through
the standard cell is taken care of in a potentiometer, by having a

number of high resistances which can be placed in series with the

standard cell in the galvanometer circuit. When one has no idea

as to where the balance point occurs on the wire, a very high
resistance is put into the standard cell circuit so that if the two

potential drops are not the same, and the standard cell tends to

furnish current, then this current will be cut down to a very small

value on account of this high resistance. As the balance point is

approached, the resistance can be cut out, but not before.

EXPERIMENT 37

THE POTENTIOMETER

Part (a). Method of calibration by the use of a standard cell.

Part (b). Measurement of the e. m. /. of several cells.

Part (c). To measure the internal resistance of a cell.

Apparatus: Slide wire mounted along a meter rule with the neces-

sary binding posts, variable rheostat (V. R. say 15 ohms), a 4 or 6 volt

storage battery, double-pole double-throw switch, single-pole knife

switch, single-pole double-throw switch, a fixed high resistance (say

1000 ohms), a galvanometer (portable type is satisfactory), standard

cell e (standardized by the instructor by comparison with a Weston
or Eppley cell), Daniell cell, a variable resistance box p (total, 1000

ohms), several cells of various types and ages.

The purpose underlying this experiment is to acquaint the

student with the technique used in standard cell and potentiometer

methods. The first part of the experiment consists in calibrating

the main circuit (namely E, V.R., A, B y
in Figure 103), so that we

will have a known potential drop from A to B. This is done by

using a standard cell whose e. m. f. we know. For the purpose of

this experiment, obtain from your instructor a new dry cell which

has been calibrated by him against a Weston or Eppley standard.

Note in this connection that the potentiometer which the

instructor uses is substantially the same as yours except that the

wire, instead of being stretched out straight, is wound into a circle.

Ask to have this potentiometer explained to you. Write down
the e. m. f . of the dry cell measured by him, and from then on treat

this dry cell of known e. m. f. as your standard
; i.e., do not ever

let it furnish any appreciable current.
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Next connect your apparatus as shown in Figure 103. In doing
so leave one wire off one terminal of each battery until your

hook-up has been checked by the

instructor. Be careful to see that

your polarity is correct the high

potential or positive side of all bat-

teries should connect to A when
the switches are closed. Trace this

through in your circuit.

Parts (a), (b). After your circuit

has been checked by the instructor,

start closing the circuits as follows :

The variable resistance is set tor

maximum resistance and the main

battery circuit is closed. Next, see Fl - 103. Measurement of the

, T , , l . , -, a . , e. m. f. with a potentiometer,
that the contact-maker o is not

connected (remove entirely) and throw the switch connected to

the //. R. resistance to the proper side (to the right in the diagram)

such that the current will have to flow through this resistance.

Now close the switch K so that e is thrown into the circuit.

Before connecting in the contact-maker S, note carefully what

the purpose of the experiment is in Part (a). We want to know
the potential drop across the wire. This we wish to make 2 volts

across the 100 cm. of wire. Knowing the e. m. f. of the stand-

ard, e, figure out at which point on the slide wire a balance

should occur and set the contact-maker at this point. The gal-

vanometer will deflect (precaution: be sure to have the H. R.

in the circuit), showing that the main current is not of the proper

value to give 2 volts across the wire. Adjust this current by means

of V. R. until the galvanometer reads zero. Now throw over the

switch L, cutting H. R. out of the circuit, and make a finer adjust-

ment of the main current. If an exact balance is now obtained,

then you have adjusted the main current so that the drop across

AB is exactly 2 volts. In further measurements in Part (b)

do not change this main current except in one case only, namely,

if when you return to the setting for the standard cell, e, you
should find that the main current has changed slightly and needs

readjustment.

Part (c). In order to measure the internal resistance of a cell

it is necessary to measure some potential differences. On the
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right side of the switch K is connected a Daniell cell or a dry cell

as shown in Figure 104. If you should have to move the Daniell

cell, be careful not to mix any more than necessary the two

solutions of copper sulphate and zinc sulphate. A
variable resistance standard P (0 to 1000 ohms) is

connected to the switch K. Start by having infinite

resistance across the cell (i.e., P on open circuit).

FIG. 104.

'

- Be sure also that the positive pole (copper) is con-

Internal resist- nected to the correct side of the switch. If this is

ance of a cell. no j. (jone
^
a balance will never be obtained.

Next see that the resistance H. R. is in the galvanometer
circuit. Find the balance point on the slide wire, first approxi-

mately, then accurately, by cutting out H. R. From the location

of the balance point on the meter scale calculate the potential

difference of the unknown Daniell cell, in this case when no current

is drawn from the cell.

Make sure of the proper balance point by approaching it from

both sides of the wire. Make a note also of the amount of move-

ment possible of the slider before a difference can be detected in

the balance of the galvanometer.

Repeat the measurement of the P. D. of the cell, furnishing

currents for the following resistances which are connected across it :

1000, 500, 200, 100, 50, 30, 20, 10, 5 ohms.

Also take the measurement again of the e. m. f. of the cell on

the open circuit.

For accurate work it is necessary from time to K
time to throw in the standard cell e, set the slider

to the value for the standard, and see whether the

circuit is still balanced. If it is not, a readjustment
of V. R. is necessary to bring the main current back

to its proper value, assuming a drop of 2 volts
,j . FIG. 105.

across the wire. Relation be-
From the above data calculate the internal re- tween e. m. f.

sistance r of the cell. In Figure 105, P represents
and p - D - of a

the external resistance and E is the e. m. f. of the

cell, Ei being the potential difference measured. From this figure

we see that

E IP (
^ \ P

Hence solve for r.

tff-
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DATA
Part (a).

E. M. F. of main battery =
E. M. F. of standard cell as obtained from the instructor =
Calculated setting of slider for standard cell balance =
Calibration of wire : 1 mm. =

Accuracy of setting (in mm.) =

Part (b).

E. M. F. of cell marked A =
E. M. F. of cell marked B =
E. M. F. of cell marked C =

Part (c).

Average r
= ohms

Plot the values of r as ordinates against / as abscissa.

[Note. When you are finished with the experiment, see that the

Daniell cell when not in use always has a resistance of approxi-

mately 40 ohms across it. This is necessary to prevent the two
solutions from mixing.]

QUESTIONS

(a) . What 's the maximum current that this particular Daniell cell can

furnish?

(b). Suppose you had to have more current, what would you do if you only
had Daniell cells at your disposal ?

(c). What effect would a slide wire of ten times the length have on the

accuracy of your measurement? What would have been the calibration in

this case?

(d). Suppose the resistance of the wire were 4 ohms, what is the current in

the main circuit when the current has been properly adjusted?

PROBLEMS
Experiment 37

1. A cell of e. m. f. (i.e,, when not furnishing current) 1.52 volts is connected

to a voltmeter which only reads 1.48 volts. If the voltmeter has a resistance

of 200 ohms, what is the internal resistance of the cell ?
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2. Make a list of the important precautions that must be taken in using
a potentiometer and classify them under the headings (1) to take care of the

apparatus, (2) to care for the standard cell, (3) to obtain accurate results.

3. How can a potentiometer be made direct-reading in volts on a slide

wire?

4. You are given a slide wire 100 cm. long and of resistance 5 ohms. This

is to be made into a direct-reading potentiometer of 1 mm. = 1 millivolt. If

the main battery is a storage battery of negligible resistance and e. m. f.

I volts, work out the details of the necessary resistances to give the proper
calibration in the main circuit. Does the galvanometer circuit affect the

calibration ?

6. Explain fuUy the advantages of a potentiometer in measuring potential

differences.



CHAPTER XVII

LAWS OF ELECTROLYSIS

When an electric current is sent through a chemical compound
in solution or a fused chemical, certain chemical changes take

place. We call this breaking down of the compound by the

electrical current electrolysis.

The current is generally led into the solution by means of metal

plates called electrodes. If a metal is deposited at one of the

electrodes, the' process is called electroplating. We shall confine

our discussion to the simple case of electro-deposition of copper
from an acid copper sulphate solution, because this example of

electro-deposition will be sufficient to illustrate the application of

the laws of electrolysis.

Consider a solution of copper sulphate, through which a current

is passed, as pictured in Figure 106. The electrode at which the

current enters the solution is known as

the anode, while the other electrode is

called the cathode. The copper sul-

phate, which is ionized because of its

solution in water, begins to travel to-

wards the electrodes as soon as the

current is turned on. The negative
SO 4 ions move towards the positive

electrode pole, while the copper ions

are attracted to the negative elec-

trode. The solution of copper sulphate
will continue to dissociate as long as

lorttod*

*-OT

FIG. 106. Electrolytic cell.

energy is supplied to keep the ions in motion so that the electrodes

will be kept in a charged condition. The ions which reach the re-

spective electrodes lose their charge, the copper atoms are deposited

at the cathode, and the SO 4 ion reacts with the anode to produce
more copper sulphate.

The reactions at the electrodes are not always as simple as

described. We have chosen copper sulphate because of the ease

with which the laws of electrolysis, first stated by Faraday (1853),

181



182 EXPERIMENTAL PHYSICS FOR COLLEGES

may be applied to this solution. Faraday's laws may be sum*

marized briefly as follows :

1. The mass (M) of material deposited is proportional to the

quantity (Q) of electricity which flows through the solution.

2. The mass (M) of material deposited for different substances

is proportional to the chemical equivalent (~\ where m and v stand

for the atomic weight and valence respectively.

Hence the mass deposited is proportional to the product of the

two conditions as stated in Faraday's Laws.

That is, M-VQ-Xlt,
where 7 is the current (in amperes) flowing for a time t sees.

The constant of proportionality (F) is known as the Faraday, and

Z = - is called the electrochemical equivalent, i.e..

F v

M = ZIt grams,

where Z can be defined as the number of grams of substance

liberated by one coulomb of electricity.

There are some practical difficulties in testing these laws because

of secondary reactions which may occur at or near the electrodes.

Thus, if a neutral solution of copper sulphate is used to test the

laws by weighing the copper deposited, one will find that the deposit

may be brown due to formation of a copper compound at the

cathode. This is caused by the alkaline condition at the anode

due to the reducing action of copper when being precipitated out.

This difficulty at the cathode is remedied by making the solution

acid.

A satisfactory solution for plating copper on copper, as done in

our experiment, is the following :

CuS0 4 -5H 20. . . 200-250 gm. /liter

H 2SO4 (cone.) . . . 50-80gm./liter

Every object to be plated must first be cleaned. For our

purposes, polishing the copper strip with clean emery paper will

be sufficient. After cleaning, the fingers should not touch the

portion to be plated. Should a cleaning solution be found neces-
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sary, the following alkali bath is very useful, especially when
heated :

Sodium carbonate ... 60 gm. /liter

Sodium hydroxide ... 15 gm./liter

or

Sodium carbonate crystals

(Na2CO 8 10 H 20) . . 165 gm./liter

Sodium hydroxide ... 15 gm./liter

The object should be dipped into the alkali bath, then into

water, and finally into very weak H2SO 4 solution. The last

dipping in the sulphuric acid solution is desirable when the object

is to be plated in an acid copper sulphate solution.

EXPERIMENT 38

THE COULOMETER

The calibration of an ammeter by means of the copper coulometer.

Apparatus: Copper coulometer, ammeter, resistance unit of about

15 ohms and 1.5 amperes capacity, knife switch, fine balance.

The apparatus is assembled as shown in Figure 107. A low

voltage supply of about 4 to 6 volts is connected to an adjustable
resistance which, in turn, is connected

in series with the copper sulphate so-
|

MVWWWVW =

lution, ammeter, and knife switch.

The copper sulphate solution is made

up as described in the theory.

Before starting your weighing in this

experiment, the connections should be ^ ,VT^ ,K
_

'
. _ FIG. 107. Copper coulometer.

inspected and current turned on to see

if the ammeter is connected so that the current will flow in the

proper direction. It is also necessary to adjust the rheostat to see

that an excessive current does not pass through the solution to
" burn

" the deposit. Adjust the rheostat so as not to deposit

copper at a rate in excess of 5 amp./dm2
. A current density of 3

to 4 amp./dm
2

, will give a rapid deposit and yet be well within

the safe limit.

Now throw the switch off and remove the cathode (strip of

copper to be plated). Rinse, dry, clean by polishing with emery

paperjjifcthen weigh accurately on the fine balance. Do not
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touch the portion to be plated with the hands after cleaning.

Replace the weighed cathode and deposit copper on it for one-

half to three-fourths hour. Take readings on the ammeter every
two minutes if the fluxations are small, or else keep the rheostat

adjusted so as to keep the current constant. Record the total

time during which the copper is being deposited. After the copper
has been deposited, clean with several rinsings of water, and dry.

The drying process is hastened considerably by pressing filter

paper against the surfaces of the deposit, but avoid any rubbing.

Handle the deposit as little as possible with the hands before

weighing. Weigh the plate. The increase in weight will be the

mass of copper deposited. The current, as found by the copper

coulometer, will be given by

!-M_1 ~
zt'

where Z = 0.0003294 gm./coulomb for copper (valence 2). Cal-

culate the current from this equation. This method of determin-

ing the average current is very useful where the current, over a

long period, varies by small unknown amounts.

Average all the readings of the ammeter and so find the average
current recorded by the ammeter. Note the difference in per
cent of your calculated result from the value as given by the

ammeter.

QUESTIONS

(a). What data would be necessary to calibrate your ammeter completely?

(b). Examine the edges of the plate on which you deposited the copper.
How does it compare in color with the center of the plate?

(c). If all the copper sulphate is not removed from the cathode in the

rinsing; just before the final weighing, will the current found experimentally

by deposition be too large or too small?

(d). Suppose all the copper deposited did not adhere to the cathode due to

a dirty portion of the surface, how would this affect the calculated value of the

current ?

(e). Calculate the approximate errors in your work to see if the percentage
difference between the two results, one for the calculated current and the other

for the average ammeter reading, come within experimental error.

PROBLEMS

1. What is meant by (1) chemical equivalent, (2) electrochemical equiv-
alent?

2. If a copper sulphate and a nickel sulphate solution are connected in

series with a source of current and it is found that 5 grams of jrftttaer have
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been deposited from the copper sulphate solution, how much nickel would be

deposited from the nickel solution? (Consult handbooks for electrochemical

equivalents.)

3. If nickel is to be deposited on a rectangular block of copper of dimensions

12 X 30 X 50 cm 3
, at the rate of 2 amperes per square decimeter, how long

will it take to deposit 300 grams?



CHAPTER XVIII

THERMOCOUPLES

Electromotive forces, in general, exist at the surfaces of separa-

tion of two dissimilar conductors. The surfaces of separation

may be liquid to liquid, metal to metal, or metal to liquid.

If two dissimilar metals such as iron

and copper are joined as in Figure 108,

with the one junction heated and the

FIG. 108. "seebeck effect.
otner kept cool, a current will flow from

the copper to iron at the hot junction and

from iron to copper at the cold junction. This is known as the

Seebeck effect, discovered in 1822.

The inverse effect was discovered by Peltier (1834) and is as

follows : If a current is caused to flow as indicated in Figure 109,

the junction at which the current flows from copper to iron becomes

cooled (heat absorbed), and the junction where the current flows

from iron to copper becomes hot (heat evolved). At the cold

junction, work is done upon the electric current. That is, the

current is made to flow from a lower to

a higher potential. At the hot junction,

heat is evolved since the current flows
ld<

from a higher to lower potential and ex-
FIQ 109^Tfeltier effect<

pends electrical energy. The electrical

energy necessary to force the current through the two junctions

is the difference between the heat absorbed at the cold junction

and the heat evolved at the hot junction.

In the Seebeck effect (Fig. 108), heat is absorbed at the hot

junction and transformed into electrical energy by the thermo-

couple. At the same time this junction would cool due to the fact

that current is flowing (Peltier effect). At the cold junction, the

current flowing from a higher to a lower potential causes a decrease

of electrical energy, and therefore a heating effect. Hence the

cold junction would heat up if not kept cool by some agent (gener-

ally a mixture of ice and water).
186
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The resultant e. m. f. might be considered as due to the sum of

the Peltier effects at the junctions if it were not for another effect

called the Thomson effect, which alters the e. m. f.'s of the thermo-

couple. Therefore the thermoelectric force, as found in the

Seebeck effect, will be considered as due to the combined Peltier

e. m. f.'s at the junctions and the Thomson e. m. f.'s along the

conductors. The total e. m. f. produced is not constant but

depends upon the difference in temperature and rises to some

maximum, then returns to zero (and even reverses) at higher

temperatures. For smaller temperature differences and lower

temperatures, the curve appears approximately straight.

Thermocouples are widely used for measurements of tempera-
ture by means of the e. m. f.'s developed. They may be made

extremely sensitive to minute temperature differences. They
often have an advantage over mercury thermometers in that

they have a small heat capacity and absorb but little heat from the

source whose temperature is to be measured.

EXPERIMENT 39

THE THERMOCOUPLE

The electromotive force of a thermocouple as a function of the tem-

perature of the hot junction.

Apparatus: Base metal thermocouple, galvanometer, high series

resistance for the galvanometer, thermometer, ice, steam generator,
two small containers for chopped ice and water mixture.

The thermocouple consists of a constantan and a nickel-chromium

wire. The couple is fastened to a bakelite panel. The wire runs

in grooves on the back to binding posts at the right end (Fig. 110).

One wire leading from each junction
is insulated from the other by sections

of porcelain tubing. The bakelite

panel has a brass
"

collar
" and clamp-

ing screw at the back with a hole of

sufficient size to allow clamping on a
, i i j rnu- FIG. 110. Thermocouple,standard rod. 1ms provision en-

ables one to suspend the apparatus at any given height. Adjust
the height so that it will not be necessary to bend the thermocouple

wires. Figure 110 shows a high resistance R in series with the gal-

vanometer G.
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Adjust your galvanometer (with R = 0) to its zero reading by

placing hot i the hot and the cold junction of the thermocouple
in beakers containing ice (chopped) with just enough water to

cover. This mixture will then be at C. If the galvanometer
does not come to rest on the zero, adjust to zero (see instructor),

or take the reading. Then place the cold junction in the chopped
ice and the hot junction in live steam. Adjust the resistance R
so that the deflection will be between 200 and 250 millimeters

(i.e., not off scale). After this adjustment of the resistance box,

record the steam temperature and the corresponding scale deflec-

tion. Then determine the temperature and scale deflections for

intervals of about 10 decrease in temperature until the difference

between the cold and the hot junction is less than 10 Centigrade.

Now place a low flame under the beaker containing the hot junc-

tion and take the temperature and scale deflections for intervals

of about 10 increase in temperature until the boiling point is

reached. When changing the temperature, always bear in mind

that the thermometer and couple do not change in temperature
at the same rate. This is because of their different heat capacities.

Always give the thermometer a chance to become steady before

readings.

Obtain from the instructor the sensitivity of the galvanometer.

Knowing the sensitivity of the galvanometer, the resistance of the

galvanometer, and R, we can calculate the e. m. f. of the thermo-

couple (i.e., product of the sensitivity, deflection, and total resist-

ance). The resistance of the thermocouple itself may be neglected

in comparison to other resistances. Plot on the same graph paper
a curve for each of the two sets of the data of e. m. f.'s obtained,

one for the temperature of the hot junction, decreasing and the

other for the temperature of the hot junction increasing. The

e. m. f.'s are to be plotted as ordinates and the temperature as

abscissae. The average of these two curves should be taken as

the correct curve.

DATA

Initial reading of the galvanometer =
R =

Resistance of the galvanometer =

Temperature of the cold junction =

Sensitivity of the galvanometer =
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QUESTIONS

(a). Are the plotted curves linear?

(b). Do your two curves coincide within the experimental error of

experiment? If not, how would you explain the non-coincidence?

(c). If the e. m. f. of the thermocouple is a function of temperature (

how would your results be altered if the temperature of the cold junction

room temperature (say 25 C.) instead of C.?

(d). Plot from your average curve as obtained in the experiment anc

curve, as follows : Obtain from your curve the increase in e. m. f. (&E) i

to 10 and divide by 10 (A = 10). Let this ratio
(

i be an ordi

which corresponds to =^-
t
the average temperature (t) of 5 C. Find AJ?

At
A 77*

the temperature interval 10 to 20, from which we may find for the ave
At

temperature t of 15 C. Continue until the upper limit is reached. [1

The ratio is known as the thermoelectric power.] What is the natui

the curve obtained ? Do you think it will cross the axis of abscissae? T

is the physical significance if it crosses the axis of abscissae somewhere ?

PROBLEMS

1. Explain the Seebeck effect on the assumption that the pressui
"
free

"
electrons at the junction of the two metals (Fig. 108) becomes gr<

in one metal than in the other with increase of temperature.

2. What is the (1) Peltier effect, (2) Thomson effect?

3. What is the order of magnitude of the e. m. f. developed by vai

thermo-junctions? (See book of physical tables.)



CHAPTER XIX

THE MEASUREMENT OF CHARGE

The fundamental or absolute unit of charge is defined from

Coulomb's law. This law states that when we are given two

electric charges qi and </2 ,
then the force exerted by one on the other

is directly proportional to the magnitude of either charge and

inversely proportional to the square of the distance separating

them. Expressed in symbols we can therefore write :

(1) F = M*.
v ;

The only other factor which we have to consider in evaluating

this force, F}
is the medium separating the two charges q\ and q^.

Experiment shows that this force is different in amount, depending

upon the medium.

Usually we express this by saying that we put into equation (1)

a constant f-\ which takes into account the medium and so

makes the law perfectly general. Hence,

(2) |--

where k is called the dielectric constant of the medium.

Next, the question of units must concern us. We note that,

in equation (2), the units for F and d are of course our fundamental

units of force and distance, viz., the dyne and the centimeter in

the e. g. s. system. Now since we do not have any units for

charge q we can use Coulomb's law, to give us our unit for charge
as follows: studying equation (2) mathematically, we see that,

if qi
=

#2 ,
and F =

1, k =
1, and d =

1, then qi
= q2

=
1, and

we have a unit charge. Put into physical terms, we have a unit

charge (e. s. u.) when we take two similar point charges (magnitude
and sign), place them a distance apart of 1 cm. in vacuum (by
definition this makes k =

1) and find that the force between them
is 1 dyne.

Now in measuring a charge, the first question to consider is:

190
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Is the charge at rest, or in uniform motion (constant velocity), or

does its velocity change? The method to be adopted in each case

is different.

In the first case, in which the charge to be measured is at rest

(such as in electrostatics) we use some form of electroscope or

electrometer. The method used by Coulomb, which consists in

finding the amount of twist in a wire when charges are placed at

the ends of an insulated crosspiece attached to the end of the wire

and the unknown charge placed near one of these, is theoretically

the most direct, but practically offers many experimental difficulties

and objections. At the present time the method used for qualita-

tive work, where great accuracy is not necessary, involves the use

of the leaf electroscope, in which the deflection depends upon the

amount of charge. The instrument of course must be calibrated.

For accurate work, a modified form of torsion balance, known as

a quadrant electrometer, in which the unknown charge is made to

attract an oppositely charged suspended system, is used.

Now in the second case in which the charges are in uniform

motion we have a steady electric current. The methods used in

finding the strength of electric currents have already been dis-

cussed in the chapter dealing with the measurement of electric

currents (see Chapter XIV). If the currents are very small,

such as ionization currents in the air, then we must use electrom-

eter methods, by finding the rate at which charge accumulates on,

or leaks off, an insulated system.

In the last case, in which the currents are variable, the measure-

ment of charge resolves itself mostly into measuring the total

charge which has passed in a certain small interval of time. Some

important cases of common occurrence come in for consideration

here
; usually when a condenser charges up to a certain potential

through the application of a potential difference a definite amount
of charge flows into this condenser. This charge flows in rapidly

in the beginning and more slowly towards the end, the whole

process being over in a fraction of a second. A somewhat similar

process occurs when the discharge takes place.

When the condenser is fully charged, we have :

Q = CV,

where Q = total charge, C = capacity, V = potential difference.

In practical units these are measured in coulombs, farads, and volts
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respectively. Of course at any instant the current flowing is

defined as the rate of flow of charge, viz.,

i-*.
At

Any electrical system which is capable of holding or storing an

electrical charge when a potential difference is applied to the system
is called a condenser. The amount of charge it can hold for a certain

fixed potential difference (one unit) is called its capacity.

The unit in which we measure capacity is the
"
farad,

"
or more

commonly the
" microfarad

"
(10~

6

farads), in the practical system
of units. In the absolute system of units (e. s. u.) we use a unit

called the
"
centimeter."

A condenser will have a capacity of 1 farad when a potential

difference of 1 volt will store in it a charge of 1 coulomb. A con-

denser will have a capacity of 1 centimeter if a unit charge (e. s. u.)

will raise its potential by 1 unit (e. s. u.). The relation between

the farad and the cm. is that

9 X 1011 cm. =0= 1 farad.

or 9 X 105 cm. o 1 microfarad.

or 0.9 cm, =0= 1 micro microfarad.

n Prac^ce
?
condensers mostly consist of two

parallel metal plates separated by a dielectric,

such as, for example, air, mica, waxed paper, etc.

FIG. ill. Con- If several of these are connected in series as
conncctod in shown in Figure 111, then it can easily be shown

q. o Q*

HI_| J_I I_^

1 I I I I

"

that the total capacity is less than the capacity
of even the smallest condenser, in fact :

(^ C* C* i*
vy ^ 1 ^ 2 v/ 3

If the condensers are connected in parallel or multiple as shown
in Figure 112, then the capacities may be shown

ft

to give a total capacity I
'

'

In the above discussion of condensers we are

interested mainly in the resultant charge re- FIG. 112. Con-

quired. Another very important class of elec- Censers connected

trical measurement of charges which flow for a
m para

very short time occurs when dealing with induced currents. Sup-
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pose, for example, we have a closed coil of wire through which we

pass, very rapidly, one pole of a bar magnet. A current is induced

in the coil, the time for which the current flows being perhaps of the

order of y^- sec. It is difficult to find out what the current was at

every instant. But it is relatively simple to find out, experimen-

tally, how much total charge has passed. Then knowing how much

charge has passed, we can calculate the strength of the magnet.
Methods of this type are therefore most important in connection

with measuring the strength of magnets or magnetic fields and

also measuring the inductance of coils.

In all these measurements, of inductance and capacity, it

becomes necessary to measure a certain quantity of charge, inde-

pendent of the time for which this charge flows. The instrument

which will measure charges of this nature is called a ballistic

galvanometer.

The construction of a ballistic galvanometer is exactly similar

to the D'Arsonval galvanometer, except that we apply an addi-

tional condition to a D'Arsonval galvanometer. This condition

is, that all the charge flows through the galvanometer before the

coil has moved appreciably from its equilibrium position. The
coil then deflects after that, due to the impulse or

"
kick

" which

it received initially. It can be shown theoretically that the

deflection then is directly proportional to the impulse, and con-

sequently also to the total charge that went through the coil in

the beginning. In order to satisfy this necessary condition of use,

the current must flow for an extremely short time. If this cannot

be assumed, then we must give the coil a very large moment of

inertia and consequently a very long period of swing. The coil

is usually made very broad so as to help in satisfying this condition.

Since a ballistic galvanometer therefore gives deflections pro-

portional to the total charge that has passed through it, we can

use it as an instrument for comparison of total charges.

Suppose, for example, we wish to compare two capacities Ci

and C2 . We shall apply the same potential difference to each one

and so charge thGm up. The total charge each will acquire will

be different because their capacities are different, but the potential

difference in this case will be the same. Hence we can write

Q. = C,F
for condenser C\, and

Q2
= C2 V
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for condenser C2 . Now if the deflections produced, when these

two charges are allowed to pass rapidly through a ballistic galvano-

meter, are di and d2 then,

Qi oo di, or Qi =
kdi,

and
Qz oc dZj or Q2

= kd 2 ,

where k is a constant of the particular galvanometer.

Hence we see :

which shows that the ratio between the capacities is simply the

ratio between the deflections produced.

We note in the above case that the constant of the galvanometer,

namely, fc, does not enter when using a ballistic galvanometer for

purposes of comparison. If we wanted to know the magnitude
of the charge (i.e., QO, then we would have to know k. Note
further that A: is a constant whose value for different galvanometers
would give us some idea of the sensitivity of the galvanometer
in terms of the total charge which went through. To be more

specific, we define the charge or micro-coulomb sensitivity (k)

as the charge in micro-coulombs [Note. 1 micro-coulomb =

- coulombs] necessary to give a standard deflection (see page 142).

Once we know the value of k, therefore, we can find Q very simply
from the relation Q kd, since we observe the deflection.

Calibration of a ballistic galvanometer when measuring a

magnetic field or flux. When a ballistic galvanometer is con-

nected to a coil of wire (Fig. 113), the conditions

are not quite the same as when connected to a

condenser. In the latter case the resistance in

the galvanometer circuit may be considered to be

infinite and hence it makes little difference which

condenser we connect to the galvanometer. When
connecting a coil, however, to the galvanometer,

FIG. 113.~-Meas- fae resistance of the circuit of course depends
urement of flux. ., ., , . , ,, . . .x ,

upon the coil, and in most cases this is quite low.

Suppose now we produce a magnetic field near the coil, then some
lines of force (AT, say) will pass through the coil, and in doing so they

will induce an e. m. f . in the coil, of amount, e = -
,
for each turn
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of the coil. This e. m. f . will start a motion of charges through the

wire and consequently an electric current will flow for a short time.

The amount of current which will flow will of course depend upon
the resistance of the circuit, consisting of the external coil and

the galvanometer coil. The larger each one of these resistances

the less the current. The current now having passed, the coil

starts deflecting. As soon as it starts deflecting, however, the

induced current set up by the rotating coil, according to Lenz's law,

is such as to oppose further rotation. The smaller the external

resistance the larger the induced current and so the less the deflec-

tion. When we calibrate a ballistic galvanometer in terms of

flux cut and deflection produced, it will be seen that we do so for

a particular circuit, consisting, in the above case, of an external

coil and a galvanometer coil. Thus, by allowing the flux to

cut or pass through the coil, we can measure the amount of

flux cut.

We shall discuss one example of the use of the ballistic galva-

nometer in measuring flux. The problem is to study the nature of

the induced e. m. f. in a coil of wire which makes one complete
revolution in a magnetic field. This is done, with the apparatus

provided, by allowing the coil to move rapidly through a very
small angle (0) say in Figure 114 and ^

then measuring the total charge pro- *^

duced, which, in this case, is propor- N
tional to the average induced e. m. f.

during this small interval. By measur-

ing the amount of induced e. m. f. for Fl - 114. Rotating coil in a

all these small steps we can plot the magnetic field,

amount of e. rn. f. induced as the coil rotates in the magnetic
field with reference to the coil position. It will be seen that the

e. m. f. induced is a so-called
"
alternating

"
e. m. f., reversing

its direction every 180 of rotation.

EXPERIMENT 40

BALLISTIC GALVANOMETER

Part (a). To measure the charge-sensitivity of a galvanometer.

Part (b). To compare capacities with a ballistic galvanometer.

Part (c). To check the laws of series and parallel connections of

condensers.
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Apparatus: Ballistic galvanometer, short-circuit key, standard

condenser, two or three unknown condensers, voltmeter (0-3 volts),

charge-discharge key, dry cell.

Part (a). The apparatus is connected as shown in Figure 115.

G is the ballistic galvanometer; ki is a key which may be found

useful between measurements for bringing the

galvanometer to rest. Key A: 2 is a two-way single-

pole switch. The dry cell is connected at e with

a voltmeter across it to measure the potential

difference which the battery furnishes for charg-

ing the standard condenser. [Note. Be very
careful to see that your connections at the key
&2 are correct. It would be better not to connect

in the battery, e, until the instructor has checked

your circuit. Failure to do this might burn out

the galvanometer coil so be over-cautious.] The
connections of the unknown condenser block are

FIG. 116.
Measurement of

capacity.

shown in Figure 116.

In reading a deflection the procedure is to throw 7c2 on the

battery side for just a few moments, and then quickly throw it to

the galvanometer side of the switch. What is required is the

farthest deflection on the scale. If you did not get the first one,

repeat the charging and try again.

Record all your trials. The zero from

which the deflection occurs does not

have to be the zejro of the scale so

long as the zero position is recorded

and is steady. The deflection is the

difference between the farthest de-

flection and the zero reading. Record

both these for every trial. Average the deflections to find the

average deflection. Record also the value of capacity used, as

well as the P. D. of the battery and calculate the micro-coulomb

sensitivity.

Part (b). Use the largest value of the capacity as standard

and assume that the others are unknown. Find their capacity

by inserting them at C in Figure 115, and record the deflections

they produce.

Part (c). Connect as many of the condensers as you can in

parallel and measure their total capacity by comparison with the



THE MEASUREMENT OF CHARGE 197

largest individual one assumed to be standard. Compare the

total capacity as measured with the sum of the measured individual

capacities.

Repeat this last part for as many condensers connected in

series as possible.

DATA
Part (a).

Per cent of error =

Hence : Gapacity farads (C)

P. D volts (7)

Deflection millimeters

and since

Charge C X V coulombs
.*. Charge coulombs

Sensitivity coulombs/mm.

micro-coulombs/mm.

Part (b).
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Part (b). Continued.

Hence the calculated values of capacity from the relation -~ = ~
give the following results :

2 2

Capacity Value

1-3 microfarads

1-2 microfarads

Part (c). Prepare your own data forms.

QUESTIONS
(a). Make a list of the various sources of experimental error, in finding the

sensitivity of the ballistic galvanometer.

(b) . With the cell provided in your experiment, calculate from your results

obtained in Part (b) approximately the smallest and largest capacity that

you could measure with your galvanometer.

(c). Do the results you obtained for series and parallel connections check

the laws for such connection within experimental error? Discuss this point
with reference to your experimental errors.

(d). Suppose you had to measure an unknown capacity by this method,
but with the galvanometer you used in this experiment the deflection was too

small to measure. How could you go about it ?

EXPERIMENT 41

LENZ'S LAW
Part (a). To compare the strength of two magnets by means of a

ballistic galvanometer.
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Part (b). To demonstrate Lenz's law.

Part (c) . To show how the mutual induction falls off with distance

between two coils.

Part (d). To find the nature of the induced e.m.f. (wave-form)

when a coil is rotated in a magnetic field (model dynamo) .

Apparatus : Ballistic galvanometer, two bar magnets about 8 inches

long, a fixed coil of about 500 turns, movable coil of about the same

size, a dry ceU, single contact key, model dynamo.

This experiment is designed to show how a ballistic galvanometer
can be used for many purposes in which we wish to investigate

either induced e. m. f.'s produced by coil cutting a known magnetic
field or else to measure magnetic fields by the use of a coil which

is allowed to move in this magnetic field. The three parts of this

expsriment are independent of each other, and consequently if

the apparatus for any of these parts is not available, the remaining

parts can still be worked.

The theory for this experiment may be summarized by noting
that from the equations q i&t and e = ri (page 137), and

e = (page 194), one may obtain the equation

If the number of turns on the coil is n and if k is the sensitivity of

the ballistic galvanometer, then the deflection (d) of the gal-

vanometer will be, since q kd,

(2) d=-S^.
kr

This equation is true if the time of flow of charge is short compared
to the period of the galvanometer.

Part (a). The galvanometer and fixed coil

are connected together as shown in Figure
117. When the magnetic field inside the coil

is allowed to change, then an induced e. m. f. ^^*
is produced while the change takes place. &^^
Note what happens when the N pole of a

FlQ . n7 . J]
magnet is thrust quickly into the coil, say
from left to right. Measure the deflection produced. Several trials

will be necessary to obtain this deflection. Record them all to

find the average deflection and error. Repeat for the other magnet
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and thus compare their pole strengths. Construct your own data

form.

[Note. In obtaining the deflection it is necessary to read and

record the zero reading every time before observing the deflection,

the reason being that the galvanometer is usually overdamped
when a low-resistance coil is connected to it. This means that

the galvanometer takes an enormously long time to come back to

its original position, due, of course, to induced e. m. f.'s being

created when the coil tries to come back, these induced e. m. f.'s

opposing this motion. Since we cannot wait for the galvanometer
to come back to the same zero, we ordinarily use the position from

which it starts its deflection as zero. When using the galvanom-
eter this way, of course, the student should wait long enough so

that the zero does not drift very much. There are two other ways
of overcoming this effect of overdamping or lag settling back to

zero. One way is to open up the circuit somewhere, long enough
for the galvanometer to swing back, and then close it as before.

A better way sometimes is to induce a small e. m. f. in such a

direction as to bring it back to zero. This is done very simply
with the aid of a small magnet. The student should try any one

or all of these methods in obtaining a zero.]

Part (b). With the same set-up as in the previous part, perform
the following tests and explain your results, using diagrams.

1. Push an N pole of a magnet into the coil quickly and note the

magnitude and direction of the deflection (the pole only is pushed

through and not the whole magnet).
2. Pull out the N pole of the magnet rapidly (after having

inserted it as in (1)) and observe the direction and magnitude of

swing.

3. Push in the S pole observe as before and show diagram-

matically the direction of flow of current.

4. Pull out the S pole and explain as in (3).

5. Having inserted the N pole as in (1), pull it out with various

speeds, noting the deflection in each case. Record and explain

your results.

6. Pull the whole magnet (both poles) through very rapidly

and observe.

7. Connect another coil which can be placed close to the pre-

viously used coil and insert in series with this new coil a dry cell

and a contact key. Close the key, keep it closed, and then open
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Fitted CtAl

FIG. 118. Induction

apparatus.

the key, noting in each case the deflection. Draw a diagram to

show in which direction the current flows in each case. Explain
in terms of Lenz's law.

Part (c). Using the apparatus as shown in Figure 118, note the

deflection in the galvanometer when A is placed at several distances

from coil B. Start with A as close to B as

possible, close the key and take a reading for

the deflection produced when the circuit A is

opened (it is not necessary to record the de-

flection when circuit A is closed). Take the

mean of several trials. Increasing the dis-

tance between A and B, record the distance

and deflection together with their mean. Do
this for about ten distances until the readings

are too small to observe with accuracy. Since

this distance is unknown, it would be a wise

policy to separate them as far as is necessary
to get about a 2 or 3 mm. deflection, then divide the distance into

approximately ten parts and set the coils at these calculated dis-

tances. Record your results in tabular form and then plot on a

graph the deflection (or induced e. m. f.) as ordinate and distance

as abscissa.

Part (d). Connect the model dynamo to the ballistic galvanom-
eter. Note the mechanism for rotating the coil through 10 at

a time. The spring tension should be kept always about the same.

Arrange to start your readings from the position in which the plane

of the rotating coil is at right angles to the magnetic field pro-

duced by the poles of the magnets. Record your ballistic deflec-

tion every 10, for a complete revolution (360). Plot your results

on a graph with degrees as abscissa and e. m. f. or deflection as

ordinate. Draw a smooth curve through as many of the points

as possible. ( ( t<\

> QUESTIONS

(a). What further information would you need in this experiment to cal-

culate the e. m. f. developed at any instant when an N pole is thrust into the

coil which is connected to the galvanometer?

(b). Does the induced e. m. f. (which of course depends upon the magnetic

field) in Part (c) fall off linearly with distance? Explain.

(c) . If the coil in Part (d) is rotated continuously, what would be the nature

of the e. m. f. produced by this coil?
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PROBLEMS
Experiment 40

1. Given that two similar charges, each of magnitude 200 e. s. u., when

separated in a medium by a distance of 10 cm. are repelled with a force of

50 dynes, find the dielectric constant of the medium, and then from a book of

physical tables find approximately the material of which the medium consists.

2. Calculate the amount of charge which flows into a condenser of capacity

4 microfarads when charged to a potential difference of 150 volts. Express

your results in coulombs.

3. Find the capacity (in farads, microfarads, micro-microfarads, and

centimeters) if a potential difference of 1.5 volts produces a charge in the con-

denser of three micro-coulombs.

4. Calculate the current in Problem 2 if the condenser could charge up
uniformly in n>Vtf second.

6. Given three condensers of capacity 0.25, 1, and 3 microfarads, find the

total capacity when connected (1) in parallel and (2) in series.

6. A condenser of capacity two microfarads is connected to a dry cell

giving 1.55 volts. When discharged through a ballistic galvanometer, the

deflection is 18 cm. Find the micro-coulomb sensitivity. If another con-

denser is charged from the same battery and produces 4 cm. deflection, find

the capacity of the second condenser as well as the amount of charge which

this second condenser had.

7. Distinguish carefully between the use of a ballistic galvanometer and

a constant current galvanometer, pointing out their similarities and dif-

ferences in construction and use. Under what conditions could an ordinary
D'Arsonval galvanometer be used for both purposes?

Experiment 41

8. A coil having 250 turns is connected to a ballistic galvanometer. It is

known that 1000 lines of force are made to pass through this coil in ^^^ sec.

Find the e. m. f. induced in the coil.

9. Draw diagrams to illustrate Lenz's law and current flow in the following
cases :

(a) a North pole is thrust into a coil.

(6) a South pole is withdrawn.

(c) a current is made to flow in one circuit and induces a current in

the second.

(d) a current is broken in the first circuit.

10. Derive an expression for the e. m. f. induced in a coil when it rotates

in a uniform horizontal magnetic field.



CHAPTER XX

VIBRATING SYSTEMS SOUND

Waves are a means of transfer of energy from one point to

another. This transfer, when occurring in material media, is

brought about by some elastic property of the media.

Thus, when a wave travels along a rope as shown in Figure 119,

the elastic property is determined by the tension. In sound

waves, however, it is determined by the bulk modulus. These

two types of waves have one important difference, as to propaga-
tion characteristics, namely : in rope waves the vibrations of all

portions of the rope are at right angles to the direction of propaga-

FIG. 119. Wave along a rope.

tion of the wave, while in sound waves the vibrations of the medium
are back and forth in the direction of propagation of the wave.

The former is representative of a class called transverse waves

because the vibrations are perpendicular to the direction of motion.

The latter type are representative of longitudinal waves because

the vibrations are parallel to the direction of propagation.

Consider now a long train of sine waves, proceeding in one direc-

tion, known commonly; as progressive waves. Such a series of

waves might exist, for example, along a rope (Fig. 119) of very

great length. Figure 119 represents a portion of the series of

waves traveling to the right with neither the beginning nor end

of the train shown.

The distance from a point Pi in the vibrating rope to another

point P, the displacement and direction of vibration of which is

the same as that at Pi, is called a wave length (X). The time it

203
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takes a wave to travel the distance X is called the period (T) of

the wave, so that the velocity is, by definition,

where n is the frequency with which the waves pass a given point

^per~seeohd. Again, the maximum displacement of the segments
of the rope from their neutral positions is called the amplitude (a).

While transverse waves are easily represented as in Figure 119,

sound waves may be represented by such a simple diagram only
if we represent the forward longitudinal displacements upwards
on the ?/-axis when the waves are considered as proceeding to the

right on the x-axis. Reference to Figure 120 shows one method

Cvroles of "Reference

Longitudinal Particle Displacements

I I I I I I I I I

Transverse Wave Representation

FIG. 120. Wave representation.

of using this transverse representation of sound waves. At the

points where the particles pass through their equilibrium positions,

we have alternately condensations and rarefactions. At the

condensation, the particles are moving with the wave, while at a

rarefaction the particles are moving in the opposite direction.

It should be noted, however, that both the condensation and the

rarefaction as such are moving to the right each with velocity 0,

and what the ear hears depends upon the magnitude (i.e., pressure

changes) and frequency of the condensations and rarefactions,

rather than upon the velocity of the gas particles. In Figure 120,

the circles are constructed so that a point in each circle is in con-

stant motion. The point in each succeeding circle represents an

earlier moment of time. The series of straight lines below the

circles represent the corresponding simple harmonic motions
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(i.e., longitudinal wave) and the curve is the transverse representa-

tion of the longitudinal wave.

Consider now a rope of finite length with one end fastened to a

wall (Fig. 121) and the other end P subjected to a vertical simple

harmonic force. This simple harmonic force may be produced

by attaching the string to one prong of a vibrating tuning fork.

This is an example of forced oscillation, and if the tension of the

rope is properly adjusted, stationary waves will be produced as

shown in Figure 121 (b). When this happens, the frequency of the

fork and string will be found to be the same, a special case of

forced vibrations, called resonance. These stationary waves have

places where there are no motions of the rope, called nodes (N), and

Wall

(a)

N N L N L N*

(b)

FIG. 121 . Reflection of waves.

places of maximum displacements of the rope, called loops (L) or

antinodes. The presence of these nodes and loops may be ex-

plained if we consider a wave coming in from behind the wall

with a displacement equal in magnitude but opposite in direction,

as shown in Figure 121 (a). If you draw the resultant amplitude
for such a reflected wave and the approaching wave, at intervals

of one-eighth period over eight such intervals, for example, you will

find that the transverse displacements of the rope at a given point
will assume at the proper time intervals all values between the

extreme displacement of each point as shown in Figure 121 (b) and

zero displacement, for all points along the rope. If we call the

distance from one node to the next, I, then from the definition of

wave length, we have that X = 2 I, also that v = nX, or

-rr
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It is known that the velocity of a transverse wave along a flexible

stretched wire, having a tension T (measured in dynes), is

N N
(a)

N

N

N

where a is the mass per unit length. Hence, the frequency n of

the string represented in Figure 121 (b) will be

(1)

If it is a sound wave that is being considered, then in order

to have standing waves produced we must confine the waves, in

some manner, such as in a hollow tube the diameter of which is

small compared to a wave length. We shall use as our applied,

simple harmonic force, a tuning fork. Hit the tuning fork with

a rubber hammer (or tap the tun-

ing fork against a rubber block

f
L

\ \
L or cork stopper) and hold it over a

hollow tube as shown in Figure

122. If the tube is of the proper

length, standing waves will be

produced in the air column. Fig-

ure 122 (a), (b), (c) represents

waves set up in three tubes of

(b) \ lengths d, 3 d, 5 d, etc., when the

same fork is used, where d is the

distance from node to loop.

In order to tell when these

_, 100 ~ . : standing waves are set up, listen
FIG. 1 22. Resonance in an air

,. ,, , A
. ,

column. f r ^e reenforcement of the sound

of the tuning fork, which is due

to the resonant vibration of the air column. The frequency of

the vibrating air column will be the same as that of the fork. This

is a well-known example of resonance in the study of sound waves.

The closed end represents the place of greatest change in pressure,

yet here there is no motion of the molecules if the walls are rigid,

and thus represents a node. The open end of such a tube will

be found to be a place of greatest change in velocity of the air

molecules with but little (if any) change in pressure because the

medium is less confined here of all positions which have anything
to do with the vibrating air column. Hence the open end repre-

I/I
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sents an antinode, or a loop. With these restrictions in mind as

to nodes and loops, the representation of nodes and loops in

Figure 122 (a), (b), and (c) should be clear.

Unfortunately, the loop L is not located exactly at the open end

of the tube but is a little beyond. It takes a short distance for

the equalization of the pressures to take place. This additional

distance is a function of the radius r and is usually between 0.6 r

and 0.8 r. One way to find the correction factor c is to find the

resonance length as in Figure 122 (a), (b;, with a tube of adjust-

able length. Call the length of the pipe for first resonance Si,

and the length for second resonance s 2 . Then (c + 1) will be a

quarter-wave length or

(2)
" X = 4(c + 0,

also

(3) X = 2(s 2
-

*i),

so that, eliminating X from the above equations, we have the cor-

rection factor

(4) c = * 2
- 3Sl

-

Li

While the wave length of a fork of unknown frequency may be

determined by use of equation (2), assuming a*value for c, the

determination of the wave length by the use of equation (3) is

more accurate because the correction factor does not enter. In

any case the frequency of the fork is determined from the equation
v = ri\, where the velocity at t C. is

v = 331.7 + 0.6 t meters per second.

EXPERIMENT 42

STATIONARY WAVES IN A STRING ^
To determine the pitch of a tuning fork by means of stationary waim

set up in a string.

Apparatus: Electrically driven tuning fork, flexible twine (fish

cord), hanger to hold lead shot, platform balance and weights, meter

stick.

The apparatus consists (Fig. 123) of an electrically driven

tuning fork mounted on a board so that it may be secured vertically

to rods and clamps or to an " arm " which may extend from the
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wall. One end of a string is fastened to one prong of the fork and

a hanger (made from an aluminum tea ball) is fastened to the

other end of the string.

The procedure is to start the fork into vibration and pour shot

into the basket until stationary waves of one or more loops are

I formed. Find the distance I between two nodes.

I

This is best done by taking an average of all the

I nodes, remembering that the node formed at or near
' the vibrating fork is not usually very definitely de-

fined. It is better to omit this node when possible.

Then weigh the basket with shot to find the ten-

sion, T = mg. The frequency n of the fork will be

where a is the mass per unit length. Obtain this

FIG. 123. constant from your instructor, or weigh the string
Standing waves an(j divi(je the mass obtained by the length,mas ring.

Repeat two or more times, obtaining each time

a different number of segments (i.e., nodes and loops) by changing
the load on the string.

Frefuency marked on the tuning fork =

QUESTIONS

(a). Did you find any marked variation in the length of the segments
between successive nodes? Should there be any?

(b). Calculate the probable accuracy of your work.

X.(c). Assuming that your result is correct, calculate the per cent of error

from the frequency as marked on the fork.
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EXPERIMENT 43

THE SONOMETER

Part (a). To test the relation between frequency and length.

Part (b). To test the relation between frequency and mass per
unit length.

Part (c). To find the frequency of a given tuning fork by means of

the sonometer.

Apparatus: Sonometer equipped with a steel and a brass wire of

different diameters, two tuning forks (say of frequencies 256 v. p. s.

and 384 v. p. s.), about 12 kg. of standard masses (4 two-kg. masses,
2 one-kg. masses, 4 one-half-kg. masses), hanger.

The sonometer (Fig. 124) consists of a hollow resonance box on
which are mounted two wires (one shown here). The tension is

determined by the known < l ^
weights and the length of

yi
i\

the string is controlled by a

movable bridge.
l_ _________

[Caution : The twisted wire

at the anchorages becomes
FIQ 124 .

_ Sonoraeter .

f=3'

weakened with use. Con-

sequently one should keep the eyes as far from any direct line of

the stretched wire as possible.]

Note that the distance between two nodes (I), as used in equa-
tion (1), now becomes the distance between the fixed and movable

bridges when the wire vibrates in its fundamental mode.

Part (a). Place about 6 kg. in the hanger to which the steel

wire is attached. Adjust the movable bridge until the frequency
of the wire of length I when plucked is the same as that of the one

fork. Record the length of the wire and the frequency marked
on the fork. Repeat using the other fork. Next carry out the

same procedure for the brass wire. From the theory [equation

(1)] it will be seen that nl should be a constant if the same wire

and tension are used.

There are two convenient methods for telling when the fre-

quencies of the fork and wire are the same. The one method is

to adjust the frequencies until no beats are heard. Beats are

heard when the frequencies are close together and disappear
either when the frequencies are the same or far apart. The other

method is to place a tiny paper rider on the wire at the center
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between the fixed and movable bridge. Now start the fork into

vibration and place the tip firmly on the top of the resonance

board. When the frequencies are the same, the rider will jump off,

due to resonance of the string with the fork.

Some tuning forks are so constructed that but little vibration is

communicated to the stem of the fork. In this case, place the stem

of the vibrating fork near or on the movable bridge.

Part (b). To test the relation between the frequency and the

mass per unit length directly, a number of forks of different fre-

quencies would be required. If we make use of the information

gained in Part (a), namely, that n oc
-, then if n oc -=. also, the
i Vo-

effect of both factors would be that n oc or

= constant,

if n and T are constant.

Place 6 kg. on each hanger and adjust the bridges so that each

wire will vibrate with the same frequency as one of the forks,

Record the lengths necessary to give the same frequency. Be
sure to have the tension on each wire the same. Obtain the values

of (7 from your instructor or else weigh a known length of wire

on a balance.

Part (c). Adjust the tension and length of the wire so that it

will be in tune with the fork. Record the length, tension, and

mass per unit length and calculate the frequency from equation (1).

Repeat by changing the tension and length. If time allows,

repeat once more by using the other wire. Construct your own
data form for Part (c).

DATA
Part (a).
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Part (b).

QUESTIONS

i Fr
(a) . Calculate the value of - -* / from the data obtained in Part (a) and

Li ji
0"

compare with your value of the constant nl for the steel wire.

(b). Calculate the value of- from the data obtained in Part (b), and
2 n _

compare with your value of the constant l^<r for the steel wire.

(c) . What is the per cent of difference between the calculated and marked
value of the frequency in Part (c) ?

EXPERIMENT 44

THE RESONANCE TUBE

To find the frequency of a tuning fork by resonance and to determine

the end correction for the resonance tube.

Apparatus : Two tuning forks (frequencies 512 and

768), resonance apparatus with resonance tube 22 to 24

inches in length, cork stopper or rubber mat.

The apparatus consists of a tall jar filled with

water. A glass tube about 1 to 1^ inches in

diameter is placed in the jar. The length is ad-

justed until resonance is obtained when the fork is

struck against a cork stopper or other soft material

and held over the tubing as shown in Figure 125.

A rubber band around the glass tubing placed at the

water line when resonance occurs aids materially in

obtaining more exact measurements. Assume the length of the

tubing is i, the corrected length is (s\ + c). Now find the second

resonance point and call the length of the tube $2. By means of

FIG. 125. Res-

onance tube.
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equation (3) calculate the wave length X. Using the known velocity

of sound find the frequency of the fork.

The end correction c is determined by equation (4),

Repeat for the other fork.

_ s2
- 3 .sx

2

DATA

v = 331.7 +0.6*
meters

sec.

Radius of the tube =

QUESTIONS

(a). Calculate the per cent of deviation of your result from the manu-
facturer's value for each fork.

(b). Does the correction factor c appear to be essentially constant for dif-

ferent frequencies with your tube ?

(c). Assuming that the correction factor is a linear function of the radius

of the resonance tube, let kr =
c, where r is the radius of the tube and k is the

constant factor which is to be found. Calculate the value of k. How close

does your result agree with the theory ?

EXPERIMENT 45

THE VELOCITY OF SOUND

To determine the velocity of sound in a metal by the Kundfs tube

method.

Apparatus: Kundt's tube apparatus, lycopodium powder, resin,

chamois, meter stick.

The Kundt's tube apparatus (Fig. 126) consists of a hollow

glass tubing closed at one end (right side) with a disc which is

fastened to a movable rod a. A steel or other metallic rod 6

is clamped to the other end (left) at its center. It also has a light

metallic disc at the end which is inside the glass tubing, but this

light disc does not touch the sides of the tubing. The tubing
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should contain some lycopodium powder or cork dust sprinkled
the whole length.

The procedure is to stroke the portion of the metallic rod b to

the left of the center with chamois which has powdered rosin

B

FIG. 126. Kundt's tube.

sprinkled on it. A little practice will enable you to obtain the

fundamental tone of the rod. Move the rod a back and forth

until the powdered dust particles within the tubing form sharp

heaps. Measure the distance between a number of these dust

heaps and divide by the number of segments included within your
measure. This will give the average distance li between segments.
These dust heaps represent nodes, the places of no motion. Hence

Zi is a half-wave length of frequency n, which is the tone being
emitted by the metallic rod. If the velocity of sound in air is

Vi y
then

Vi n\i = n(2 li),

and if we call the velocity of sound in the metallic rod #2, then

#2 = n\z = n(2 2),

since the two ends of the rod are loops if the rod is secured at the

center. Therefore

#2 ^2

or
"

*

\ >v ; ^
h ?V

f ^x ^*-*-
v

^
x v

The value of Vi (velocity of sound in air) for the temperature of

the room is found from the theory as given earlier in the chapter.

Repeat for two other positions of the rod a.

QUESTIONS

(a). Calculate the probable experimental error. What is the maximum
deviation from the mean result in per cent ?

fb). Look up in tables the values of the bulk modulus of elasticity and

density of the metallic rod b used in your experiment, and calculate the velocity

of longitudinal waves in the rod by the equation, v =
*\l

(c). What differences might you expect in the frequency pattern f the

metallic rod if not secured at the center?
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PROBLEMS
Experiment 42

1. Show by graphical construction the production of standing waves
T

Choose a sine wave and take the time interval between the waves as sec.

2. If the distance between the loops of a vibrating cord, as shown in Figurt

123, is shortened by one-half, what must be the change in tension?

3. A cord of length 40 cm. and of mass 0.025 gm. is loaded as in Figure 123,

so that it vibrates in one segment when actuated by a timing fork of 60 vibra-

tions per second. What is the tension (in dynes) in the string?

Experiment 43

4. Two wires, held at the same tension, have a mass per unit length ratio

of . What will be the ratio of lengths to give the same frequency ?

5. Assume you had two wires, each supposedly of the same mass per unit

cross-section but which were not homogeneous in reality so that cr varies

slightly from point to point in the following fashion : one wire a is a little

thinner at the center of the string than the average, while the other wire b is

a little thicker at the center than the average. These wires are tuned to

unison and then the movable bridge (Fig. 124) is adjusted so that the wires are

half the original length. The frequencies will be very approximately twice

the original values but beats will be heard. Explain briefly why. Which
wire will have the higher frequency ?

Experiment 44

6. Referring to Figure 122 (c), which overtone (i.e., 1st, 2nd, etc.) is repre-

sented by the drawing of the nodes and loops as shown? What is the fre-

quency relation between this overtone and the fundamental for this tube ?

7. A closed organ pipe of 150 cm. length is tuned correctly when the tem-

perature is 20 C. What will be the change in frequency if the temperature
rises to 30 C. ? What would be the change in frequency for an organ pipe
of 5 cm. length under the above conditions?

Experiment 45

8. Suppose that the distance li between two adjacent nodes in the Kundt's
tube apparatus, for a given metal rod, was 5 cm. If the metal rod clamped
at its center was brass, determine its length. [Note. Look up in a handbook
the velocity of a longitudinal wave in brass.] Assume that air was the gas
medium in the tube.

9. Suppose that the tube above had been filled with hydrogen, what would
have been the distance between adjacent nodes? [Note. Look up the

velocity of sound through hydrogen.]



CHAPTER XXI

PHOTOMETRY

Photometry is the science which deals with the measurement of

the intensity of light sources and illumination produced on absorb-

ing and reflecting surfaces.

These measurements are usually relative and are made by com-

parison with some standard source such as the German standard

Hefner lamp, which is a lamp burning amyl acetate at a certain

definite rate, with a definite height of flame and definite conditions

of air pressure, humidity, etc. This Hefner standard of light

intensity is found to be 90 per cent of the international candle.

The United States Bureau of Standards has standardized certain

incandescent lamps for routine testing. The maintenance of

standards is no easy task.

The instruments used to compare the intensities of light sources

are called photometers. The Bunsen and Lummer-Brodhun

photometers are representative of the simpler type, while the

flicker and integrating photometers are examples of the more

specialized forms.

The theory of our experiment is based on the fact that the light

is assumed to be radiating from a "
point

"
source out upon an

expanding spherical surface. Hence, the luminous flux falling

on one square foot of a surface gets less when the surface is further

removed from the source in other words, the illumination of the

surface gets less. Now it is a general law, in connection with

radiation of energy from a point source, that the energy passing

normally through 1 sq. cm. falls off inversely as the square of the

distance from, the source and hence the illumination produced on a

screen by a point source of light falls off inversely as the square of

the distance between source and screen.

If we should place two point sources of light consecutively in

front of a screen and each produced the same illumination, as

observed by the eye, then we would conclude that the two sources

have the same brightness or intensity. On the other hand, if

215
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one were four times as intense, then according to the above it

would need to be placed at twice the distance from the screen.

The student should note that when we are dealing with the point

source of light, we are interested in its intensity, which is measured

in candle power by reference to the standard international candle.

If we are dealing with the illumination of a surface on which this

light falls, then we measure the illumination in foot-candles. This

unit of illumination is, by definition, the illumination produced
on a surface at a distance of one foot from the standard inter-

national candle. If the intensity of the source remains the same,

then it is the illumination that falls off as the square of the

distance.

In Figure 127, suppose we wish to compare the intensities of

the two sources I\ and 72 (units of candle power). We place the

two sources so as to illuminate the

screens at B\ and 5 2 . The illumina-

tion produced can be observed visually.

Now if 1 1 is the brighter source, then

it will have to be placed further from
FIG. 127. Comparison of in- the screen than J 2 ,

the diminution of
tensities of sources. .n ,. r ,, or IT

illumination of the screen BI falling

off according to the inverse square law. Suppose that when
7i and 1 2 are in the positions shown, and the illumination of BI

and J5 2 are the same, we can then write

7i = d

h dt

Knowing the intensity of /i (in c. p.) and measuring di and d 2 ,
we

can find the intensity of 72 . This forms the basis of the photom-
etry of sources of light.

EXPERIMENT 46

THE PHOTOMETER

Variations of luminous efficiency of a source of light with voltage.

Apparatus: Photometer, standard incandescent lamp, two incan-

descent lamps of unknown candle power, rheostat, ammeter, volt-

meter.

The apparatus (Fig. 128) is a modified form of a Bunsen

photometer. You will find the apparatus connected as shown in
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Figure 128. Check the circuit. The device c, used for com-

paring the sources, consists of two thin rectangular pieces of paraffin

separated by a strip of tinfoil (or aluminum foil) and mounted on

a bench between two lamps. In our experiment, the lamps are

kept at a fixed distance from each other, usually 100 cm. With
the switch open, insert the plug in the 110-volt circuit. The
standard lamp of candle power
/i will light. Now adjust the

rheostat, acting as a potenti-

ometer device, so that little or

no voltage will be across the

lamp whose candle power (7 2)

is to be determined. After

the instructor has checked the
FIG. 128. Photometer.

wiring, close the switch to see if the polarity through the voltmeter

and ammeter is correct. If not, withdraw the plug and reverse.

Then adjust the rheostat for maximum voltage through the

lamp.
For our purpose we shall take the candle power per watt as a

measure of the relative light efficiency of lamps because greater

efficiency is associated with greater candle power per unit power

consumption. Hence, with the rheostat set for maximum voltage

through the lamp, the procedure is to adjust the comparing device

c so that it is illuminated equally on both sides of the aluminum
foil when viewed from the side (i.e., perpendicular to the plane
of the aluminum foil). When this is done, the illumination on

both sides of c from the two sources is the same. Record the

distances di and d%.

Then assuming the inverse square law and point sources, we have

h df

Reduce the voltage, approximately, in steps of 10 volts, keeping
the distance between the lamps constant, and repeat the above

measurement in every case until the low luminosity or difference

in color of the lights make further measurements useless. The

uncertainty of matching light intensities due to color differences

may be minimized by averaging the extreme distances in either

direction for which you are sure that no intensity match exists.

Repeat, using the other lamp.
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Data for one lamp :

QUESTIONS

(a). Draw a graph with the candle power per watt as ordinates against E
as abscissae.

(b). Calculate from your data or graph (Question a) the per cent decrease

of the efficiency from its value at the maximum voltage, for voltages of 10, 20,

and 30 less than the maximum value.

(c). At what voltage would you operate the lamp for greatest economy?

PROBLEMS

1. One electric lamp of 26 candle power is separated from another of

50 candle power by 200 cm. At what distance, or distances, on a line joining

the two lamps will the illumination from the two lamps be the same? Cal-

culate the distance from the lamp of smaller candle power. Calculate also

the illumination in foot-candles at this point of balance.

2. Two sources of light, each of 5 candle-power intensity, are placed at

distances of 2 feet and 4 feet respectively on the same side of the paraffin

block. At what distance must a source of intensity 10 candle power be

placed on the other side so as to produce equal illumination on both sides of

the paraffin block ?

3. What is meant by
"
candle power

" and what is meant by
"
foot-

candle "? What does each measure? If the intensity of illumination pro-

duced on a screen 30 meters from an arc lamp is equivalent to that produced

by a standard Hefner lamp at 1 meter, what is the candle power of the arc

lamp?



CHAPTER XXII

REFLECTION AND REFRACTION AT PLANE SURFACES

When a beam of light strikes a surface of different density, we
notice that some of the light is reflected and the remainder trans-

mitted through the separating boundary. The relative amounts

depend upon the optical conditions at the surface. In this chapter,
we are interested only in the paths taken by a reflected or a trans-

mitted beam of light in an isotropic medium.

REFLECTION OF LIGHT AT A PLANE SURFACE

Consider the reflection of light, coming from a source S, and

striking a plane mirror as shown in Figure 129. Let SO and OR
represent the paths of the incident and re-

flected ray respectively, and let ON be the

normal to the plane at the point of incidence.

The following two laws may be proved experi-

mentally :

1. When a ray of light strikes the surface

of the mirror at any point O, the angle of in-

ddence (i) is equal to the angle of reflec-
FIG. 129. Angles

,
N

of incidence and re-
twn W- flection.

2. The plane determined by the normal and

the reflected ray coincides with the plane determined by the normal and

the incident ray.

Applying these two laws to all the rays com-

ing from an object and being reflected at the

surface leads to the important result that the

image / of an object S will appear as far be-

\

Q hind the mirror as the object is in front of the

Fi 130 ima* e
mirror - That is referring to Figure 130 :

of a point source in
q
= p f

a plane mirror.

Very frequently it becomes necessary to locate

the position of an image. The method of parallax is useful in such

219
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Pin Pin Image

cases. Place a pin, which may be seen over the top of the mirror,

at the point / where you think the image is located. Now move

your eye back and forth in a direction perpendicular to the plane
defined by the pin and a line connecting
the image and source. This is called

locating an image by parallax. Parallax

is defined as the apparent angular sep-

aration of two objects due to a real

displacement of the observer. Thus in

Figure 131 (a) there is parallax when
the eye is moved from the point A
to the point B. In Figure 131 (b) there

is negligible parallax, which vanishes entirely when the pin and

image coincide.

It will be seem in Fig. 131 (a) that the angular separation of the

images at point A is greater than at point B. There is no such

difference in the angles at points A and B in Fig. 131 (b), and hence

in this case the parallax is not noticeable.

A B A
(a) (b)

Fia. 131. Parallax.

REFRACTION OF LIGHT AT A PLANE SURFACE

The laws of refraction of light from flat surfaces may be stated

briefly as follows :

1. The ratio of the velocity of light (vi) in the first medium to the

velocity of light (vs) in the second medium is a constant (see Fig.

132).

2. The plane of the refracted angle coincides

with the plane of the incident angle.

It may be shown that the angles i and r are

related to i)\ and v<t by the equation,

sm i

sin r

= constant =
jui|2 ,

where ^1,2 is the relative index of refraction for

these two substances. The subscripts 1, 2, in- *R

dicate that the light is considered as proceeding FIG. 132. Re-

from medium of velocity vi to medium of veloc- fraction at a plane

ity 2 . If the velocity of light in a vacuum is c,

then the absolute index of refraction of light entering the first
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medium is M =
c/#i, while that of the light entering the second

is M =
c/t>2. In an experiment we usually determine the index of

refraction by measuring any angle of incidence i and the cor-

responding angle of refraction r. and calculate the ratio S5J: which
sinr

by definition is ju.

EXPERIMENT 47

THE BEHAVIOR OF LIGHT AT A PLANE SURFACE

A study of the laws of reflection and refraction of light at plane

surfaces.

Part (a). To show that the angle of incidence (i) is equal to the

angle of reflection (r), and that the image and object are at equal

distances from the mirror.

Part (b). To show that for light passing from one medium to an-

other,

^2_1 const. =
/i.

sin r

Part (c). To obtain the index of refraction of a prism by measure-

ment of the prism angle and the angle of minimum deviation.

Apparatus : Mounted mirror, four pins about 2 to 4 inches in length,

one rectangular piece of plate glass with two opposite sides polished,

glass prism, ruler, protractor, drawing board and thumb tacks.

Part (a). Tack a sheet of paper to the drawing board. In the

approximate center of the sheet draw one thin line XX' and locate

the reflecting side of the mirror exactly along this edge. Place

two pins Si and S2 (Fig. 133) in front

of the mirror. Insert two more pins

R i and fl 2 in line with the two images
of Si and S 2 as seen in the mirror.

Remove the mirror and at the point

(0) of intersection of SiSz with RiR%
erect a normal to the surface (whose

trace is XX'). Measure i and r with FlG - 133. -Reflection from a

, ^ , , , . . , plane mirror,
a protractor. Repeat this experiment
two or more times, using different values of angle i each time.

Find the per cent of error from the mean of i and r for each

experiment.
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Find the distance q of the image from the mirror by using the

parallax method described above and repeat two or more times,

varying the distance p of the object from the mirror. Find the

per cent of error from the mean of p and q for each experiment.

ANGLES
PER CENT ERROR

FROM MEAN

Part (b). Place th3 glass plate (Fig. 134) on your data sheet and

outline the edges (XX'Y'Y) with a pencil. Place a pin at each

of the points marked P and 0. Now
with the eye brought close to the paper,

sight through the glass so as to bring

the pins and P in line with each

other. Place another pin at some point

D along the path. Remove the glass

and connect the points PO and OD with

straight lines. The lines may be ex-

tended to any distance out from 0.

Choose some point along OD, say E,

and determine the distance OE. Then
make OE' on OP equal to OE. From

FIG. 134. Refraction E and E' erect perpendiculars to the

through rectangular plate normal AW drawn through 0. By defi-

gass '

nition of the index of refraction of light

from glass to air we have Figure 134.

sin i

sin r

E'B'

EB

Measure the angles i and r, as well as the distances E'B' and EB.

Calculate noa by means of the two ratios ^^ and -7^7-- Repeat

your experiment two or more times, using different values of the-

incident angle i.
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AVERAGE VALUE OP

Average value of

Average value of

1- --
:
= Mao

sinj
sin r

Part (c). Place two pins A and B m your data sheet as in Figure
135. With your eye close to the sheet, look through the prism
towards the pins AB. When you get these pins in line, rotate the

prism back and forth, around an axis F
at the apex of the angle A perpendicular /''
to the paper until the angle D becomes

a minimum. You can tell when D is a

minimum by noting the extreme ex-

cursion (towards the line OF) of the

image of AB through the prism. The

rotation desired may be conveniently

accomplished by causing a slight pres-

sure at the apex of the angle A. When the minimum angle

(D) is found, place pins at each of two points, such as C and

E. Draw the line AB, extending it to F
; also, the line CE, extend-

ing it to 0'. The angle D, shown in the figure by EO'F, is also

the angle of minimum deviation. Measure this angle with a pro-

tractor. The index of refraction from air to glass may be shown

to be

A

FIG. 135. Refraction through
a glass prism.

sin (A + D\\2^)
sm :

Repeat two or more times. Calculate the average index of

refraction, also the per cent of error.
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QUESTIONS

(a). In Part (b) of your experiment, what was the least count of (1) your

protractor, (2) your measuring rule ?

(b). Which of the two ratios (i.e..
^^ and iLl*l\ did you find the more

V sin r EB /

accurate for determining the value of p a in Part (b) ? State the reasons for

your answer.

(c). Do the errors in Part (a) and Part (b) of your experiment appear to

be influenced in any way by the magnitude of the angle it

N'
FIG. 136.

PROBLEMS

1. Prove that the index of refraction (nga) from glass to

air is given by the relation

E'B'
Mj/o

=
EB

(See Fig. 134.)

2. If a perpendicular PL (Fig. 136) is dropped from
P and the line EO extended to K, prove that

OK
M'

=
OP'

3. Prove, if D is the angle of minimum deviation for a

glass prism and A is the angle of the prism, that the index

of refraction from air to glass is given by the equation,

fi ;
A + D

Uga

4. Show that if A is very small in the above problem, say 5, we may write

the deviation D as

D = A(n.a
-

1).



CHAPTER XXIII

REFLECTION AND REFRACTION AT CURVED SURFACES

The laws of reflection and refraction of a narrow beam or ray
of light as given in the last chapter for plane surfaces are applicable

to curved surfaces if we apply these laws to each individual point
of the curved surface where the light impinges. Consider a tangent

plane to be drawn at every point where the light strikes. Then
the laws of reflection and refraction apply to this tangent plane.

Since every such plane will be inclined at an angle to all others,

the reflected or refracted rays from an object will be spread out or

brought together in some manner depending upon the curvature

of the surface.

In dealing with light, reflecting at or passing through curved

surfaces, it is convenient often to speak of the wave jroni which is

perpendicular to the direction of the ray of light. The wave front

of any beam of light coming from a very distant source is, for all

practical purposes, plane. Another way of stating this same fact

is by saying that the radius of curvature of the wave front is

infinite.

MIRRORS

Consider a plane wave front proceeding towards a curved mirror

(Fig. 137). The latter can be thought of as being a small portion

of a sphere with its center

at C and of radius r. The
center of the mirror-sur-

face is called the pole (Fig.

137), and the line drawn

from the pole perpendicu-

lar to the spherical surface *""""

at that point is called the FlG - 137. -Concave mirror with source at

, . ., , infinite distance.
principal axis. The beam
will strike the mirror and be reflected such that, when the laws

of reflection are applied to each point on the mirror, the new

wave front is found to be spherical and converging towards one

225
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point F on the principal axis called the principal focus. The

distance / from the pole to the principal focus is called the focal

% \ distance.

If the source P, the

light of which is being re-

flected, is at a finite dis-

tance p from the mirror

(Fig. 138), the reflected

wave front (the dotted

<- -n-
* r

^
line) will converge or focus

FIG. 138. -Concave mirror with source at ^ gome mt Q Qn the
finite distance. ^

principal axis at a dis-

tance q from the pole. The relation between p, #, and r is known
to be

By definition, the focal length of a mirror is the distance from

the pole to the point at which light will focus when coming from

an infinite distance (p
= oo ). Hence in the above equation, when

2 1
p oo

, q
=

/, or - = - That is, we may write the above equa-

tion for mirrors as,

(2)
i + i-l
p v f

if the focal length is given instead of the radius of curvature. The

proof of this equation can be found in almost any textbook on

college physics.

While the above equation (2) was written for concave mirrors

(i.e., center of curvature towards source), it holds for all types of

spherical mirrors. To make it applicable for all cases, note first

that all distances (p } q, r) are positive for a real image formed by
the concave mirror and that the object, image, and center of curva-

ture are on the same side of the pole. When the image and object

are on opposite sides of the pole, the distance of the image from the

pole is negative. Likewise the radius of curvature (or focal length)

is negative if the center of curvature and object are on opposite

sides of the pole.

While the use of the wave-frontmethod is convenient for develop-

ing mirror and lens formulae, it is not a convenient method for
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obtaining the more exact locations and relative sizes of images.
The location and sizes of images is usually carried out by the ray
method. Figure 139 represents the geometrical construction,

using rays, for finding the image. This image we found in Figure
138 by the wave method.

In this case, however, the

relative size of the object

to the image / can be ob-

served by referring to Fig-

.

'

. . FIG. 139. Construction of images in concaveA convenient set of con- mirror.

ventions as to the loca-

tion of images is given as follows : (1) Draw from any convenient

point in the object a ray parallel to the principal axis. This ray,

by definition, will reflect and pass on through the principal focus
;

(2) draw a ray starting from the same point in the object, through
the center of curvature. This ray will be reflected back along its

same path. The image of the given point in the object will be

found where these lines meet. Usually the two end points of the

object are sufficient for the location of the whole image. In fact,

if the image is considered perpendicular to the principal axis and
half of the object is above the principal axis and the other half

below, then the image is readily located by drawing the two lines

mentioned above from one point only.

It will be noticed that the image in Figure 139 is inverted. This

always happens when the two rays of light actually meet after

reflection from the mirror. We call such an image, which is

formed by the actual crossing of the rays, a real image. Images
formed by rays which appear to cross, but actually do not, are

called virtual images. They are always erect.

It may be shown that the ratio of the magnitude of the image
to the object is given by the relation.

,

p

where M is generally called the magnification.

The following general diagrams on the next page may be found

helpful in the construction of images formed by mirrors in specific

cases:
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CONCAVE MIRRORS

Example 1. If p > r,

then r > q > f,

and < 1. (Fig. 140)

f
FIG. 140.

Example 2. If r > p > /,

then q > r,

FIG. 142.

FIQ. 141.

(Fig. 141)

Example 3. If p < /,

then q is on the opposite side of the mirror and is negative

numerically. (Fig. 142)

CONVEX MIRROKS

Example 4. If

then

FIG. 143.

For these mirrors, the numerical magnitudes of r, /, and q are

negative. (Fig. 143)
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LENSES

Now, consider a plane wave advancing towards a double convex

lens (Fig. 144) as shown in the diagram. Upon passing through

the lens, it will come

to a focus at a point

on the principal axis

called

focus,

FIG. 144. Double convex lens with source at

an infinite distance.

the principal

which is at a

distance / from the

center of the lens . The
direction of the ray of

the advancing wave is parallel to the principal axis, which is

defined as a line, joining the two centers of curvature (Ci and C%)

of the spherical surfaces of the lenses.

If we consider a wave front (see Fig. 145) starting from a source

P at a distance p
from the center of

the lens, it will, upon

passing through
the lens, refract

(dotted curve) so as

to converge to a

point Q which is a

distance of q units

The relation between p, q, and / is

4-1=1
ff ?

FIG. 145.- - Double convex lens with source at finite

distance.

from the center of the lens.

known to be
1

(3)

where

(4)
i

p

This formula holds not only for converging lenses, which are

thick at the center and thin at the edges, but also

for diverging lenses, which are thin at the center and

thick at the edges. A common form of a diverging

lens is the double concave lens shown in Figure 146.

As in the case of mirrors, if any of the distances

(i.e., q, /, ri, r2) are measured in a direction com-

pared to the source, opposite to that shown in Figure

145, the sign becomes negative. Thus the focal length of a convex

lens is positive, while that of a double concave lens is negative,

FIG. 146.

Double con-

cave ens *
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While the formula for a lens is readily obtained from the curva-

ture of the wave fronts, the geometrical construction of images

is, again, more readily obtained by use of the ray, or geometries.?

method. We will redraw Figure 145, using the ray method. Our

new figure (Fig. 147) shows the object, of size 0, at a distance p
from the center of the

1
lens. The method

of locating the im-

age of size / is as

follows : (1) Draw
from some point in

FIG. 147. Construction of images in a convex lens.
G

^ e a ra^
parallel to the prin-

cipal axis. It will pass through the focal point ; (2) draw another

straight line, starting from the same point 0, through the optical

center of the lens and continue this line until it crosses the other

ray which was refracted. If the object is perpendicular to the

principal axis and symmetrical with it, the location and size of the

image can be drawn without further image construction.

The optical center N is the point through which the light passes

from one side of the lens to the other without change of direction.

There is a lateral displacement but this is negligible for thin lenses.

Just as in the case of mirrors, real images are inverted and the

refracted rays actually intersect. Virtual images are erect and

the refracted rays only appear to intersect.

It may be shown that the ratio of the magnitude of the image
to the object is ^ __ J __ q

p

The following general examples are given tor reierence :

Example 1.

then

and

CONVERGING LENSES

If 00 > p > 2f,

f < q < 2/,
7

< 1. (Fig. 148)

FIG. 148.
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Example 2. If

then

and

2/ < q < oo,

FIG. 149.

Example 3. If / > p > 0,

then oo > q > O
y

and g is negative and the image virtual.

FIG. 150.

DIVERGING LENSES

(Fig. 149)

(Fig. 150)

Example 4. If oo > p > 0,

then f > q > 0, (Fig. 151)

where both / and 5 have negative values and the image is virtual.

FIG. 151.

EXPERIMENT 48

THE BEHAVIOR OF LIGHT AT A CURVED SURFACE

A study of the reflection and refraction at curved surfaces.

Part (a). To determine the radius of curvature of a concave spherical

mirror by means of parallax.
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Part (b). To locate, in general, any image by the method of parallax.

Part (c). To determine the focal length of a double convex lens.

Apparatus. Mounted concave mirror, two mounted pins about four

inches in length, ruler, optical bench, convex lens, illuminated object,

screen.

Part (a). From the equation for mirrors, it is seen that, for a

concave mirror, when the object is at the center of curvature, the

image will be formed at the same place. Hence, place a pin in a

movable block and slide it towards the concave mirror until a

position is reached such that there is no observable parallax

between the pin and the inverted image of the pin as observed in

the mirror. The distance from the pin to the center of the mirror

gives the radius of curvature of the mirror. Repeat the adjust-

ment two or more times. Record all data.

Part (b). Place a pin in front of your concave mirror so that

its distance p in front of the mirror is greater than its radius of

curvature r (Fig. 152). Locate the

image of this pin by means of paral-

lax. That is, place another pin

where you think the image of the

object should be. Move your
head back and forth. The image

^ P ^
js located where this latter pin and

PIG. 152. Concave mirror. .
-,

, ,. i , ,. ,

image do not displace relative to

each other upon to-and-fro motion of the head. Measure the dis-

tance p of the object, and the distance q of the image from the

mirror and calculate r from the equation

1+1=?.
p q r

Repeat for two or more positions of the object 0, and find the

average value of r. What is the value of/?
Part (c). For this experiment, we have a source of light S, an

illuminated object 0, say a copper grid, and a screen on which

the image I can be formed. These are all mounted on an optical

bench (Fig. 153). When the copper grid is illuminated, an image
will form on the screen with the lens in some position such as

(1) in the figure, provided the distance d between and / is such

that d > 4/. This image will be larger than the object. Now
move the lens to some position such as (2), when another image,
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but this time smaller than the object, forms. This second image

formation is to be expected, because of the symmetrical relation

between p and q

in the lens for-

mula. We also

see that position

(2) of the lens is

the same as would ....
K K+

"

r\ 'f f V IfiG. 153. Location of an image with a convex lens.

illuminated object and screen were interchanged. Because of this

symmetry, our measurements consist of finding the distance d and

the distance a between the two positions of the lens. Then, for

purposes of calculation, if we consider the lens in position (1), we

have that

p = ^ (d a),

and

and thus obtain for the focal length /,

& - fi*

Repeat two or more times with different values for d.

The above gives a very accurate method of finding the focal

length. If a distant illuminated object is available, compare the

"focal lengths obtained directly with the above experimental

method.

If the distance d is very much greater than 4/, then the image
formed in the one case will be too large to focus sharply, and in

the other case too small to be seen.

QUESTIONS

(a) . Did you notice whether there was a tendency for the image of the pin

to bend at the edges of the concave mirror? To what is this due if such an

effect exists?

(b). What is the per cent of error from the mean for your average values

of r, the radius of curvature, as obtained each in Part (a) and in Part (b) of

your experiment ?

(c). Represent by a diagram, drawn to scale, the distance of the image
and object from the mirror and the relative sizes of the image and object for

any one experiment of Part (b) . Indicate plainly which set of data you used.

(d). What happens in Part (c), (1) if d = 4/, (2) if d < 4/?
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PROBLEMS

1. Show by use of the formula for spherical mirrors that one would expect
the image to appear at a distance behind a plane mirror equal to the distance

of the object in front of the mirror.

2. When an object is placed 10 cm. in front of a concave mirror, the image
of that object appears, by the method of parallax, to be 15 cm. behind the

mirror. Is the image real or virtual, erect or inverted ? What is the radius

of curvature of the concave mirror? Find also the position of the image

graphically.

3. Prove for a double convex lens, the equation

P Q.

by the wave-front method (i.e., the sagitta method).

4. Show that for'Part (b) of Experiment 48,

f =
& -

fl2
-

6. In Example 3 on page 231, let p = 10 cm. and / = 15 cm. How far is

the image from the lens? Draw a diagram showing the image, object, and

lens position and construct the rays showing how the image is formed.

6. Suppose that the radii of curvature of the two spherical surfaces of a

given double convex lens were 12 cm. each. What would be the index of

refraction of the lens if its focal length was 20 cm. ?



CHAPTER XXIV

"Eye

THE TELESCOPE AND MICROSCOPE

In order to see distant objects in more detail, we either bring

the object nearer to the eye or go nearer to the object. That is>

we increase the angle subtended at the eye by the object. Usually
the eye, when normally adjusted and at ease, just brings to a focus

objects at infinity on the

retina or receiving sur-

face of the eye ball.

When we wish to see

objects that are closer

to the eye, the self-

focusing lens in the eye

has to be made more

convex so as to bring

the image again on the

retina. This is done

automatically by certain

muscles attached to this

lens. The limit of accom-

modation (i.e., distinct

vision) is usually about

25 cm. and we shall use

this figure in our calcula-

tions. Consequently, if

we wish to see objects

in still greater detail, a

convex lens may be

placed in front of the

eye in order to make the effective focal length of the combination

much less. This serves to decrease the distance of the object for

distinct vision, so that it may be brought much nearer and thus

subtend a much greater angle.

The effect of a single convex lens is illustrated in Figure 154,

a and b. In Figure 154 (a), an object of length AB is seen at the

235
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FIG. 154. Magnification by a convex lens.
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limiting distance (d) of distinct vision (i.e., 25 cm.). The angle

subtended at the eye by AB is a. Now place a lens of focal length,

/, between the object and eye as shown in Figure 154 (b). Adjust
the object so that the image will appear at the limit of distinct

vision. If the lens is close to the eye so that the angular opening
at the eye is essentially the same as that at the lens, then the new

angle subtended by AB is ft. Hence we may define visual mag-

nification M as the ratio of the angular opening at the eye when

aided to the angular opening at the eye when unaided, i.e.,

(1) M =
a

It is often convenient to work with linear magnification, espe-

cially when the instrument to be considered has a number of lenses,

A i each producing a given mag-
nification. Thus, if / is the

length of the image pro-

duced by the object whose

height is 0, then the mag-
nification Mj as defined

before, becomes in this

case

(2) M = --M
Op'

where q and p represent

the image distance and

^ object distance respectively
B '

from the lens.
FIG. 155. Magnification by a convex lens. r . ^. - eeft J

Thus, m Figure 155,

the magnification produced by a single double convex lens is

M _ A'B' = q

AB P
or

M = 2 + 1,

where q =
d, the limit of distinct vision.

The astronomical telescope (Fig. 156) consists, essentially, of an

objective lens (LO of focal length F and an eyepiece (L2) of focal



THE TELESCOPE AND MICROSCOPE 237

length /. Since the distance of the object AB is usually great

compared to the length of the telescope, the angle a is essentially the

same as that subtended by AB with the unaided eye. Hence, the

magnification of the image A"B" over the object AB is given by

156. Astronomical telescope.

A'B'

approximately, or

A 'B '

F

-/*

That is, the magnification depends upon the relative magnitudes
of the focal lengths of the objective lens and the eyepiece. The

eyepiece consists very often of a combination of lenses. This

does not change the magnification, as given above, since / now

represents the effective focal length of the combination.

The compound microscope (Fig. 157) consists essentially of an

objective lens (Li) of very short focal length (/i) and an eyepiece

(L 2), also of short focal length (/2). While in practice these lenses

are made up of combinations to eliminate the various defects of a

single lens, we shall treat them as simple lenses for purposes of

obtaining an approximate magnifying power.
In order to calculate the approximate magnification of the

microscope, we will first find the magnification of each lens by
itself and then multiply the two separate magnifications to obtain

the resulting magnification of the instrument as a whole. The

object (Fig. 157) of length AB is placed just beyond the focal

length (/O of the objective. A real image of length A'B' will be

formed at a distance q\ from the objective. Hence the linear

magnification Mi, due to the objective, is given by the expression,
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Ml =

or, approximately,

AB Pl

Ji

The eyepiece is focused so that a virtual image (A"J3") of the real

image (A 'B') is seen at the distance (d) of distinct vision. Hence

'Eye

FIG. 157. Compound microscope.

the approximate magnification (Af2) due to the eyepiece is seen

by equation (3) to be A n/ ,

M2
=

47757-
=

T>A B /2

and the magnification M of the microscope is

M = M 1M2
= |yJl/2

Since the focal lengths /i and /2 are very short, the distance q\

is essentially L, the distance between the lenses. Hence we may
write the magnification of the microscope as

M - Ld
.

JLrJL
~~~ ~~~ ~
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EXPERIMENT 49

THE TELESCOPE

Part (a). Magnification produced by a telescope.

Part (b). Magnification produced by a microscope.

Apparatus: A galvanometer telescope, two convex lenses of very

short focal length mounted for a microscope, meter stick.

Part (a). The galvanometer telescope contains an eyepiece

and cross-hair arranged to slide in another tube containing the

objective lens. Separate the two tubes and obtain the focal

length of the eyepiece and objective by forming the image of a

distant object or electric light source on a piece of white paper or

cardboard. The distance from the lens to the image is the focal

length. Repeat this measurement three or four times, recording

all readings. The object used in finding the focal length is assumed

to be far enough away so that all rays coming from it to the lens

are parallel.

To measure the magnifying power of the telescope, mark off on

the blackboard, or on some cardboard placed several feet away, a

convenient scale. View this scale through the telescope with one

eye, and directly with the other. Note the number of divisions

seen by direct vision at the board between any two divisions as

seen through the telescope with the other eye. The number of

divisions found with the eye unaided between any two divisions

as found by the other eye looking through the telescope is the

magnification (i.e., ratio of apparent to real size). Make several

measurements estimating parts of divisions, if necessary. Always
record all measurements on your data sheet. Then calculate the

mean value and error. Compare your result with the result as

found from the equation deduced above ; i.e.,

M-l.

Part (b). We shall construct the optical system of a simple

microscope by means of lenses which can easily be set up on an

optical bench. Find the focal length of each lens as in Part (a).

Again repeat the measurements several times for each lens.

The magnification is found in a manner similar to that in

Part (a), with the exception that in this case the lines are ruled

close together, and placed at a distance from the objective a little
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greater than its focal length. Make several trials and check your
result with the theoretical formula,

M- Ldm ~
77~>
Jl/2

where d = 25 cm.

QUESTIONS

(a). Did you notice whether the image through the telescope was erect or

inverted ?

(b). How would you have proceeded to make a telescope the image of

which is inverted compared to the one you observed ?

(c). Did you notice any imperfections in your instrument? If so, describe

them in a few words.

(d). Did you notice whether your image was erect or inverted?

PROBLEMS

1. What will be the approximate magnification of a reading glass which

has a focal length of 4 cm. ? (Assume 25 cm. as the limit of distinct vision in

these problems.)

2. Given that the objective and the eyepiece of a small telescope have

focal lengths of 96 cm. and 3 cm. respectively. When viewing a distant

object, what will be: (a) the magnification? (b) the distance between the

objective and eyepiece ?

3. Suppose that a building 200 feet high is viewed through the telescope of

Problem 2 at a distance of five miles. What is the size of the image due to

the objective? What are the magnitudes of the angles a. and /3 in radians?

4. Suppose that a real image due to the objective of a compound micro-

scope is formed at a distance of 30 cm. from the objective and is then magnified

by the eyepiece of focal length 1.5 cm. What is the magnification? (Assume
that the focal length of the objective is 1 cm.) How far is the object from the

objective?
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THE DIFFRACTION GRATING

A physicist or a chemist in trying to discover new laws and

facts in connection with the properties and behavior of matter

finds very often that the eye is very limited in its scope. Of

course this is no serious criticism when one considers what wonder-

ful mechanisms and optical instruments our eyes really are. We
marvel more and more when we try to extend the scope and vision

of our eyes by building optical instruments based on the physical

laws and facts familiar to us. By means of a telescope we can

extend the limit of vision of the eye into larger distances, and by
means of a microscope we can extend our limit of vision into

smaller dimensions. In either case, however, the result achieved

is insignificant compared with the fact that our eyes can see at all.

Just imagine how interesting it would be if our eyes could see

dimensions of the size of molecules of matter.

The diffraction grating is just another optical device, or part

of an optical instrument, designed to aid our eyes in
"
seeing

"

smaller dimensions. The distances which interest us here are

the wave lengths of light waves. By means of a diffraction

grating wave lengths of the order of 0.00005 cm. or even smaller

can be measured with great accuracy. Very often a grating is

used for the same purpose for which a prism would be used
;

namely, the breaking up of a complex light beam into its constitu-

ent colors or wave lengths in order to identify the nature of the

source emitting the light beam.

A grating consists essentially of a number of very narrow and

evenly spaced slits. The width of a slit or line is of the order

T-OOOO- of an inch. The difficulties of constructing or ruling such

a grating are quite large and there are in existence only a very few

machines capable of ruling such fine lines with accuracy. Depend-

ing upon whether the lines are ruled on a glass surface or a metal

surface, the light either passes through, or else is reflected from,

the surface. The former is known as a transmission grating, the

latter as a reflection grating.
241
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For a detailed description the student should refer to a text.

A few equations necessary to clear up the experimental procedure

will be derived here. Let AB (Fig. 158) represent a cross-section

of a transmission grating with light falling normally on the surface

from the left. The light, after emerging from the slits, produces

B little wavelets according to Huyghen's

principle which in turn produce a wave

front. It is easily seen that a wave front

travels in direction . If necessary, this

wave front can be converged by means

of a lens to form a real image at the

focus of the lens. There are, however,

other directions in which wave fronts

may be formed. In a direction desig-
FIG. 158. Transmission nated by Q in the diagram it would be

gra mg '

possible to have reinforcement of the light

waves from the various successive slits, if the difference in path

is just equal to one wave length of light (X). Along this direction

then, it is possible to get another image produced. This is called

the first order image. It is easily seen from Figure 158 that X = d

sin 6 where d is the distance between two slits or lines, and 6 = angle

between the direct image (D and the first order image . Similarly

if the difference in path is nX, we get the nth order image and hence

in general we have,

(A) n\ = d sin 0.

In practice it is found that the higher orders get so faint as to

be invisible. The case treated above assumes that all the light

coming through the slits is of one wave length. This is never the

case. Consequently, the image as seen really consists of several

images close together, but coming together in slightly different

directions. We usually say the light beam is spread out into a

spectrum.
Let us suppose then that the problem is to find the wave length

of a certain color. It becomes necessary only to measure 9 in

Equation A, since the distance d is usually known from the maker

of the grating.

Method of minimum deviation.1 There is another way of using

a grating to measure a wave length. The reason for the necessity

1 See L. W. Taylor's College Manual of Optics, page &7.
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of any change or refinement in the previously outlined method
is caused by the experimental difficulty, for it requires very elabo-

rate adjustments in order to be quite sure that the beam of light

coming from the left falls normally on the plane. These adjust-
ments for accurate work are, of course, necessary and are usually
studied in a more advanced course.

Using the idea of minimum deviation (compare with the case

for a prism in Chapter XXII), let us suppose that light (Fig. 159)
is coming in parallel rays
from the left in direction

S, making an angle i with

the normal to the grating.

The angle 8 is the devia-

tion, i.e., the angle be-

tween this direction and

the direction in which the

first order image will be

formed. If V is the angle

between the diffraction image and the normal, it will easily

be seen from the above figure that

6 = i + i'.

Now, as before, using Huyghen's principle, it follows that if the

difference in path between the two beams, from the corresponding

parts of the consecutive slits K and K', is ?i\, then we will have

the various order of spectra formed in directions @ etc., when
n has the values 1, 2, 3, .

Hence a + b = n\ for reinforcement.

But a = d sin i, and b = d sin i'.

.*. n\ = d(sin i + sin i')

FIG. 159. Transmission grating.

by using the theorem in trigonometry :

sin A + siuB = 2 sin Aj cos
A ~ B

We can therefore write in this case,

nX = 2 d sin cos

Now in order to find the minimum value of 6 = i + i', we solve

for this quantity, viz.,
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(B) sini^f-J--^.
2

Now d will have a minimum value when equation (B) is a minimum.
i i'

This will be the case when cos - has its maximum value since

i i
f

n and X remain constant. The maximum value for cos =
1,

and this occurs when - = 0. Consequently i = i' = - is
2 2

the condition for minimum deviation.

If we, therefore, use this condition of minimum deviation, then

general equation (A) becomes

(C) n\ = 2dsin--

It is consequently not necessary, in performing the experiment,

to arrange the grating normal to the beam since we can measure

the position of minimum deviation. The position is easily found,

by slightly rotating the grating around a vertical axis, when it

will be seen that the first order image will move to an extreme

position and return. This extreme position is the necessary posi-

tion. Thus having measured 5, it is only necessary to apply the

equation (C).

Finally, another method for finding the angle of deviation is

to set the grating by eye as nearly normal as possible to the

incident beam. Then, find the position of the first order image to

the left of the direct image and the first order image to the right.

Having read the angular scale readings for both those positions,

find the angle by subtraction. This will be twice the angle of

deviation 6. Then apply equation (A), namely, n\ = d sin 0,

since we are not here dealing with the case for minimum deviation.

[Note. The student should verify for himself that this angle

will be double the angle of deviation assume that incidence is

not normal.]

The wave length of a light ray is very often stated in
"
angstrom

units>" 108 A. U. =0= 1 cm.

LIGHT SOURCES

The grating, as we have seen, will spread out the light coming
from a source into its characteristic spectrum. For a detailed



THE DIFFRACTION GRATING 245

description of the various types of spectra the student should refer

to his text. In the laboratory the three main types of spectra,

i.e., continuous, absorption, and line spectra, should be produced
and compared.
A continuous spectrum is obtained from sunlight, or, if this is

not possible, from an incandescent tungsten lamp, placed before

a slit and its light focused on the slit, the latter acting as source.

A line spectrum can be produced by a bunsen burner having in

the flame various salts of such elements as sodium, potassium,

etc. A mercury arc placed in a corner of the room and having
its light focused on the slit serves admirably. A neon- or hydrogen-
filled glass tube with sealed-in electrodes, which has an electrical

discharge through it, will furnish further spectra for purposes of

compc
firison or calibration.

An absorption spectrum is perhaps best typified by the famous

absorption lines (Fraunhofer lines) in the sun spectrum. Another**

example consists in a source of continuous spectrum (say an electric

lamp) of which the light has passed through various absorbing dye
solutions or filters.

EXPERIMENT 50

THE WAVE LENGTH OF LIGHT

To measure the wave length of light using a diffraction grating mounted

on a grating table.

Apparatus : Grating table, grating, slit, sodium burner, meter rule.

The arrangement is as shown in

Figure 1GO. A source of light giv- fe

ing out monochromatic rays (e.g., a

sodium burner) is placed at 8. A
slit of width about 1 or 2 mm. is

placed in front of 8. A grating

is placed at G normal to the light

coming from 8. On placing the eye
in front of the grating and looking

along directions I\ and @ /2,

several images I\ and /2, etc., of

the slit will be seen. The eye serves FIG. 160. Grating table,

the purpose here of focusing the

beam emerging from the grating on the retina of the eye,
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These images correspond to the first and second order images
as described in this chapter. The angle 6 is the angle of deviation

of the beam of light coming from S.

In this experiment the data should be taken with the following

points in mind :

1. To get a measurement on as many orders of images as is

possible.

2. To measure the angle 6, or else the sin 6, and calculate the

wave length in cm. and angstrom units for each order. [Note.

Sine 6 = -~~}

3. Place G at various distances from S. Repeat all observations

under (1) and (2).

4. If another source is available, repeat all three parts, (1), (2),

and (3).

[Note. The student should learn to make out a complete table

for data before taking any readings obtain the value of d from

the instructor and calculate the wave length from equation (A).]

QUESTIONS

(a). What effect would you notice in the readings if the grating had ten

times as many lines per inch?

(b) . What fact did you observe about the intensity of the higher orders of

the spectrum?

(c) . What is the effect of a shorter wave length on the angle ?

EXPERIMENT 51

A STUDY OF SPECTRA

To study various types of spectra and to measure the wave length of

some lines in line spectra.

Apparatus : Grating spectrometer, several light sources, grating.

The instrument used in this experiment is called a spectrometer.

A diagram of the essential parts is shown in Figure 161. The

purpose of the collimator is to make a parallel beam out of the

light coming from the slit S which now acts as a source. The

function of the telescope is to converge the parallel beam after

having passed through the grating to a point. The eyepiece

assists in observing this image.



THE DIFFRACTION GRATING 247

Important. Don't touch the spectrometer until the following

instructions have been carefully studied. Before touching or turning

any adjustment screw, be sure to learn what the screw is for.

The spectrometer, as you receive it, will have had several adjust-

ments requiring much time and skill already made. Do not upset

these adjustments by turning a wrong screw. This is particularly

true of the telescope and collimator which have already been

focused for you. Let the instructor tell you which controls you
have to manipulate. Before starting the experiments, be sure

that you can read the scale and vernier.

The procedure in performing this experiment should be as

follows :

1. Note that the telescope arm is controlled by two thumb-

screws, a clamping screw, and a slow-motion screw. Never force

these screws a slight pressure is suf-

ficient. Note that the clamping screw

must be screwed in before the slow-

motion screw has an effect. Practice

reading the angle on the scale for

various settings of the telescope.

2. Note the clamping screw and

slow-motion device on the center grat-

ing table.

3. Note the slit end of the collimator

a knurled screw around the end

enables one to adjust the slit width.
IG ' 161. Grating spec-

trometer.
4. A source (e.g., sodium flame or

incandescent bulb) is set up so as to form an image of the source

on the slit, either by means of a lens, as shown in Figure 161 or by
means of a concave mirror, as shown
in Figure 162, large enough to cover

the slit opening. If a concave mirror

is used, the mirror should be placed

in line with the axis of the collimator.

5. See that the slit is partly open,
turn the grating until it is approxi-

FIG. 162. Mirror for focusing mately at right angles to the collima-
light in collimator. .

-, -,

tor and clamp.
6. Locate approximately with the eye the direct image (exactly

in line with the collimator).
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7. Set the telescope in this position and locate the cross-hair,

which is observed when looking through the telescope (using the

slow motion) exactly at the middle of the image. For this purpose
the slit must be narrowed down so that this setting can be made

accurately. Take a reading on the scale.

8. Now unclamp the telescope and move it slowly around to

the left. Make a note of what you observe. Repeat to the right

of the initial position and record all observations. Note also

what the effect is of widening or narrowing the slits.

9. In order to find the position of minimum deviation, set the

telescope on the first image to the left. Now loosen the clamping
screw on the grating table and turn the grating slowly in one

direction, noting the movement of the image through the telescope.

The position of minimum deviation is thus easily found and the

cross-hairs set on this position. Then clamp telescope and grating

table.

10. Record the setting as read on the scale. Now go back and

check the direct image setting. To do this unclamp only the

telescope (leaving grating set) and get a reading for the direct

image. The difference between the two readings gives the angle

of minimum deviation.

Having mastered the technique of the instrument, take the

readings necessary to fill in the table below.

The observations found in (7) and (8) are used to calculate the

wave length from equation (A). The position of minimum devia-

tion, as found from (9) and (10), requires, of course, the use of

formula (C) in the calculation of the wave length A.

DATA

Part (a). Grating has .... lines per inch, .'. d cm.

Method of double angle :
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Method of minimum deviation :

Part (b). Investigate the types of spectrum obtained from

incandescent bodies such as a tungsten wire in a bulb or if

possible use the sun as a source. Note how many orders are

visible and write down any further observations as to similarities

and dissimilarities with other types of spectra in Part (a).

Part (c). Place various filters or absorbers before the source

and note the effect produced on the spectrum. Record any ob-

servations that you may make.

QUESTIONS

(a). Classify the spectra as found in Parts (a), (b), and (c) under the

headings : continuous, absorption, or line spectra.

(b). In each case how many orders of spectra were visible?

(c) . Explain why the higher orders get weaker and weaker.

(d). How could the angle of minimum deviation be increased for a par-

ticular order of a spectrum ?

(e) . Do your results under Part (a) show whether the double angle or the

angle of minimum deviation method is better?

PROBLEMS
Experiment 50

1. Distinguish between a continuous spectrum, absorption spectrum, and

line spectrum, both as regards appearance and also with respect to their

physical interpretation. (See any textbook on "
types of spectra.")

2. Prove that for a diffraction grating, n A = d sin 6, where is the angle of

deviation for a beam incident normal to the grating.

3. What must be the wave length of a monochromatic beam of light if it

falls normally on a grating and after having passed through the grating forms

an image of the slit 10 cm. distant from the direct or central image on a
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screen? The screen is 50 cm. away and the grating has 10,000 lines per inch,

the screen being parallel to the grating.

4. At what distance from the central image will the third order image be

formed in the grating and screen of Problem 3 ?

Experiment 51

5. Prove that the second method, described in the theory for finding the

angle of deviation if the grating is not at right angles to the beam, gives the

correct deviation if we read the positions of the first order images on each side

of the central image and then divide this total angle by two.

6. Prove that for the position of minimum deviation

nX = 2 d sin -
2i

7. Find the wave length of a monochromatic source in centimeters as well

as angstrom units, given that the angle of minimum deviation for the second

order spectrum is 60 when the grating has 10,000 lines per cm.

8. Write down the ranges of wave lengths in centimeters and in A. U. for

the regions of the spectrum usually designated by ultraviolet, visible, infra-red.

(Look up the wave lengths in a textbook.)



APPENDIX

THE TRIGONOMETEIC FUNCTIONS FOE 30, 45, AND 60

In any right-angled triangle :

The sine of an angle
hypotenuse

hypotenuse
The cosine of an angle =

The tangent of an angle = ^
side adjacent

FIG. 163.

MISCELLANEOUS

The circumference of a circle (radius r)
= 2 ir\

The area of a circle (radius r)
= Trr

2
.

The area of the surface of a sphere (radius r)

The volume of a sphere (radius r) = 4 TTT*.

1 mile = 5280 feet

1 foot = 12 inches

1 inch = 2.54 centimeters

1 meter = 39.37 inches

1 liter = 61.0 cubic inches

1 kilometer = 1000 meters
1 meter = 100 centimeters
1 centimeter = 10 millimeters
1 pound = 453.6 grams
1 kilogram = 2.205 pounds
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INDEX

(Boldface numbers refer to Experiments.)

Absolute humidity, 122

Absolute scale of temperature, 94

Absolute system, 2

Accommodation, limit of, 235

Accuracy, of a result, 9

of instruments, 16

Actual mechanical advantage, 57, 69

Addition of quantities having errors, 8

Adjusting the legs of a spherometer, 20

Adjustment on a fine balance, 32

Air thermometer, 95

Alternating e. m. f., production of an,
195

Ammeter, calibration of, 150, 183

construction of, 148, 149

Ampere, 137, 138

Amplitude of a wave motion, 204, 205

Angle of contact, 114

Anode, 181

Antinode, 205
Archimedes' principle, 88
Arithmetic mean, 5

Average error, 6

Balance, fine, 31

platform, 31

resting point of, 33
rider of a, 32

spring, 30

Ballistic galvanometer, 193, 195

Bending of beams, 64, 67

Boyle's law, experimental proof of, 97

graphical representation of, 12

Calibration, of a thermocouple, 187
of a voltmeter and ammeter, 150

Calipers, inside and outside, 18

micrometer, 21

Vernier, 18, 23

Calorie, 101

Calorimeter, 102, 104

Calorimetry, 101

Candle power, 216

Capacities, comparison of, 196

Capacity, 191

definition of, 192

Capillary action, 113, 114, 117

Capillary tubes, how to make, 118
how lo fill, 120

Cathode, 181, 183

Center of gravity, determination of,

54
Center of percussion, 75

Centrifugal force, 77

C. g. s. system, 2

Charging by friction, 126

by induction, 128

Chemical effect of an electric current,
138

Circular motion with constant speed,
72

Cleaning solution, 89, 115,, 183

Coefficient of expansion, 93, 94, 98

of friction, 49, 52

Coincidence on a Vernier, 19

Components of a vector, 45, 48

Compound pendulum, 75, 81

Concurrent forces, 46

Condensation, 204

Condenser, charge in a, 191

Condensers in series arid parallel,

192

Conduct in the laboratory, 2

Conductivity, 162

Constantan, 164

Copper coulorneter, 183

Copper plating, electrolytic solution

for, 182

Coulomb, the, 191

Coulomb's law, 127, 130, 190, 191

Coulorneter, silver, 138

copper, 183

Current, definition of, 192

Currents in two parallel branch resist-

ances, 155

Daniell cell, 178, 179

D'Arsonval galvanometer, 140, 141
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Density, definition of, 87
determination of, 88

linear, 208

units of, 87

Dcwar vessel, 103

Dew point, 122

determination of relative humidity
by, 123

Diameter of capillaries, measurement

of, 119

Dielectric, 126

Dielectric constant, 190

Difference of potential, 128

Dimensions, 3

Directions for plotting a graph, 13

Division of quantities having errors,

9, 10

Dyne, 2

Earth's horizontal intensity, 143

Efficiency of a machine, 57, 58, 59, 61

Elasticity, 03, 64

Young's modulus of, 64
Elastic limit, 63

Electric charges, 131, 191, 195

Electric current,
chemical effect of, 138

definition of, 137

heating effect of an, 139

magnetic effect of an, 139

measurement of an, 138

Electric field, 126

characteristics of the, 127

strength of the, 127

Electric properties of materials, 126

Electrochemical equivalent, 182, 184

Electrodes, 181

Electrolysis, 181

Electrolytic cell, 181

Electromotive force, induced, 194, 199
of a cell, 178

Electrons, part played in charging by,
126

Electrophorus, 128, 131

Electroscope, 129, 131

Eppley cell, 175

Equilibrium of a particle, 44, 46, 49
of a rigid body, 44, 48, 64

Errors, accidental, 4

in addition, 8

in indirect measurements, 8
in multiplication, 9

in squaring, 10

instrumental, 5

in subtraction, 8

in taking a square root, 10
maximum possible, 6

observational, 17

parallax, 4, 17

per cent, 5, 7, 8, 10

personal, 4

probable, 5

root mean square, 7

systematic, 4

Expansion, linear coefficient of, 93, 94,

98,99
pressure coefficient of, 94

volume coefficient of, 93, 94, 96

Farad, definition of the, 191, 192

Faraday, the, 182

Faraday's Laws, 181, 182

Field intensity, electric, 127

magnetic, 130, 133

Flux, 194, 195, 199

Foot-candle, 216
Force constant of a spring, 79
Force polygon, 46
Force triangle, 46
F. p. s. system, 2

Frequency, 204
of a tuning fork, 211

Friction, force of, 49

Frictional force in a pulley system,

59, 61

Fulcrum, 30

Galvanometer, ballistic, 193, 196

D'Arsonval, 141, 145

sensitivity of a, 142, 145

tangent, 140, 141, 143

telescope of a, 146

Gas thermometer, 96
General gas law, 94

German silver, 164

Graph, straight line, 11

Graphical method for forces, 47

Graphical results, 10, 11, 13

Grating, reflection, 241

spectrometer, 247

table, 245

transmission, 241

Gravitational system, 2

Heat capacity, 101

Heat developed in a conductor of elec-

tricity, 12
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Heating effect, 139

Heat measurement, 101

Hefner standard lamp, 215
Hooke's Law, 63, 79

Humidity, absolute, 122

relative, 122, 123, 124

Ice calorimeter, 103

Ideal mechanical advantage, 57, 58
Inclined plane, 52

Induced current, 192, 193

Intensity of a light source, 21G

Internal resistance of a cell, 176, 178

International ampere, 138,

candle, 215

Inverse square law for light, 215
Tonization currents, 191

Ionizing the air, 126

Ions, 181

Jaws of a micrometer caliper, 21

Jolly balance, 113, 116

Kater's pendulum, 81
Kirchhoff's laws, 154

Knife edges, position in a balance, 31,

32

Kundt's tube, 213

Latent heat, definition of, 102

of fusion, 106
of vaporization, 107

Law of moments, 48

Least count of a Vernier, 18

Length, measurement of, 16

Lenses, concave, 229, 231, 236

convex, 229, 233
Lenz's Law, 195, 198

Lever, principle of the, 30

Limiting angle of repose, 64
Linear coefficient of expansion, 93, 98
Lines of electric force, 128, 129

Longtitudinal waves, 203

Loops, 205

Machines, 55, 57, 60

definition of, 57

efficiency of, 57, 59, 60

Magnetic effect of a current, 139, 191

Magnetic field, 125, 129, 133

strength of a, 130, 143, 144

Magnetic pole strength, 129, 133, 200

Magnetite, 129

Magnification, astronomical telescope,

237, 239

compound microscope, 238

lenses, 230

mirrors, 227

visual, 236
Main scale of a Vernier, 18

Maximum possible error, 6

Mean solar second, 38
Measurement of charge, 190, 196

of current, 137
of flux, 194, 195

of length, 16, 23
of mass, 30, 34
of resistance, 157
of time, 38, 40

Mechanical advantage (actual), 57,

59, 60

(ideal), 58

Melting point of a solid, 109

Meter rule, 16

Method of mixtures, 102, 103, 104

Microfarad, 192

Micrometer caliper, 21

Microscope, 237, 239

capillary diameter by means of a,

119

compound, 119, 237
Minimum deviation, 223, 242, 248

Mirrors, concave, 225, 228, 247

convex, 226, 228

plane, 219, 221

Model dynamo, 201
Modulus of elasticity, 63

bulk, 203

Young's, 64
Moment of inertia, 75

determination of, 76, 83

of a disc, 83

of a thick ring, 77

of a thin ring, 76

Moments of forces, 48, 55

Most probable result, 5

Multiplication of quantities having

errors, 9

Mutual induction apparatus, 201

Network of resistances, current flow

in a, 166

Neutral points around a magnet in

the earth's field, 130

Newton's method, correction for radi-

ation by, 103
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Nodes, 205

Ohm, 137

Ohm's Law, 137, 154

Parallax, 17, 18, 220

Parallelogram method of vector addi-

tion, 47

Particle, equilibrium of, 44, 46

Peltier effect, 186

Pendulum, compound, 74

Katcr's, 81

simple, 40, 74, 80

torsion, 75, 76, 83, 84
Per cent error, 8, 9

from some standard value, 10

from the mean, 10

Perfect gas, 94

Period of a galvanometer, 142

of a pendulum, 40, 73

of a s. h. m., 73

of a wave motion, 204
of oscillation of a spring, 79

Permeability, 130

Photometer, 215, 216

Photometry, 215
Pitch of a micrometer caliper, 21

Polarization of cells, 1 75
Poles of a magnet, 129

Pole strength of a magnet, 130,
134

Potential, 127

Potential difference, 129

measurement of, 158, 173

of a cell, 178

Potentiometer, 173, 176

Poundal, 2

Pound weight, 2

Power, definition of, 59
units of, 60

Powers of ten, 3

Precision of measurements, 4

Pressure coefficient, 94, 96
Pressure of a sound wave, 204, 206
Probable deviation, 7

Pulleys, 57, 58, 59, 60

Quadrant electrometer, 191

Radiation losses, correction for, 103

Radius of curvature by spherometer,
27,28

Rarefaction, 204

Reflection of light, from a curved sur*

face, 225
from a plane surface, 219, 221
laws of, 219

Reflection of waves, 205
Refraction of light, at curved surfaces,

229, 233
at plane surfaces, 220, 222, 223
laws of, 220

Relative humidity, 122, 123

Resistance measurement, 157, 166

Resistance of a galvanometer, 166

Resistances in series and parallel, 155

Resistance standards, 164

Resistivity, 162, 164, 167
Resolution of vectors, 45
Resonance in an air column, 206, 211
Resonance in wave motion, 205
Resonance tube, 211

Resting point of a balance, 33, 36, 36

Rheostat, 165

Rider of a balance, 32

Rigid body, equilibrium of, 44, 48, 64

Root mean square error, 7

Seebeck effect, 186

Self-locking machine, 59

Sensitivity of a balance, 34, 36
how to change the, 32

Sensitivity of a galvanometer, defini-

tion of charge, 194

definition of current, 142, 146

measurement of the charge, 196
Shunt of an ammeter, 148

Significant figures, 6

Silver coulometer, 138

Simple harmonic force (wave motion),
205

Simple harmonic motion, 72

Simple pendulum, 40, 74, 80
Slide rule, 10

Slide wire bridge, 160, 161, 167

Sling psychrometer, 124

Slope of a linear graph, 11

Solution for copper plating, 182

Sonometer, 209

Specific gravity, 2

definition of, 87
determination of, 88, 90

; by the U-
tube method, 91

Specific gravity bottle, 90

Specific heat, 2, 101, 104

Specific resistance, 162, 170
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Spectra, 245, 246

Spheremeter, 25, 28
how to adjust a, 26

Standard cell, 175, 177

Standard deflection, 142

Statics, 44

Stationary waves, 205

along a string, 207
Steam calorimeter, 103

generator, 107

trap, 107

Strength of the electric field, 127

of the magnetic field, 130

Stretching of a wire, 64

Subtraction of quantities having
errors, 8

Surface tension, definition of, 112

by capillarity, 117

by the Jolly Balance, 115

method of measurement, 112

Systems of units, 2

Tangent galvanometer, 140, 143

Tangle of wire, determination of the

length of a, 89

Telescope, astronomical, 236

galvanometer, 239

to focus a galvanometer, 145, 146

Temperature coefficient of resistance,

163, 164, 167

Theory of least squares, 7

Thermocouple, 186, 110, 139, 187

Thermoelectric e. m. f., 164, 186
Thermoelectric power, 189

Thermogalvanometer, 139

Thomson effect, 187

Torque, 76
Torsion pendulum, 75, 76, 83
Transfer instruments calipers, 18

Transverse waves, 203

Unequal arm balance, method to cor-

rect for, 34

Uniform circular motion, 72, 77
Unit current, 138
Unit of force, 2

Unit pole, 130

Units, 2

in heat measurements, 101

U-tube, specific gravity by means of,

90, 91

Vector diagram, method of drawing,
46

Vectors, addition of, 45
resolution of, 45

Velocity of sound in air, 207, 212

Velocity of transverse wave on a string,
206

Vernier callper, 21

Vernier scale, 18

Volt, 137

Volt-ammeter method for measuring
resistance, 158

Voltmeter, calibration of a, 160
constriction of a, 149

parallax in reading a, 18

Volume coefficient of expansion, 93

Water equivalent, 101, 105, 108

Wave form (alternating current), 199

Wave length, 203
Wave representation, 204

Waves (transverse and longitudinal)
203

Wave velocity (along a string), 206

Weston normal cell, 175

Wet and dry bulb thermometers, 122

123

Wheatstone bridge, 159

dial type, 168, 170
slide wire type, 160, 167

Writing up reports, 2

Young's Modulus, 64, 66












