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INTRODUCTION 

Some  time  ago  the  author  came  across  a  certain  little 
book,  and  although  he  was  supposed  to  know  all  about 
the  things  explained  in  it,  he  found  a  great  delight  in 

reading  it.  In  so  doing  he  re-learned  several  things  he 
had  forgotten  and  learned  a  few  others  he  had  not 
chanced  to  meet  before.  But  the  most  useful  know- 

ledge he  derived  from  reading  this  truly  delightful  little 

book — Calculus  Made  Easy — was  that,  indeed,  it  is 

possible  to  make  the  study  of  such  mathematical  pro- 
cesses as  those  of  the  Calculus  so  easy  that  one  may 

learn  them  by  oneself  without  the  help  of  a  teacher, 

provided  one  has  in  one's  hand  the  necessary  guide  and 
faithfully  follows  it  from  beginning  to  end. 

There  are  few  branches  of  mathematics  which  seem 

more  puzzling  to  beginners  than  the  study  of  imaginaries 

and  hyperbolics  ;    indeed,  many  students  who  are  no 

longer  looking  askance  at  —  or  at  the  sign  I  confess 

that  the  appearance  of  i  in  a  mathematical  expression 

gives  them  a  nerve-shattering  shock,  while  the  sight  of 
sinh  or  cosh  is  the  signal  for  undignified  retreat.  It  has 
been  suggested  to  the  author  that  there  is  no  more 



x  INTRODUCTION 

difficulty  in  exorcising  the  evil  spirit  lurking  in  i  and  in 

the  members  of  the  hyperbolic  tribe,  and  in  rendering 
these  impotent  to  scare  anyone  approaching  them  with 
the  proper  talisman  in  his  hands,  than  there  was  in 

taming  -~  and    I   and  rendering  them   docile.     Trial 

showed  that  this  was  indeed  true. 

While  gathering  material  for  this  purpose,  the  fact 

became  evident  that  if  various  secondary  stumbling- 
blocks  could  be  preliminarily  removed  from  the  path 

of  the  unwary,  the  treatment  of  the  more  unwieldy 

material  would  greatly  gain  in  homogeneity  and  con- 

tinuity. Also,  several  interesting  and  elementary  pro- 

perties of  "  epsilon,"  not  usually  met  with  in  text  books, 
were  encountered  on  the  way  and  deemed  to  be  likely 

to  bring  to  sharper  focus  the  conceptions  a  beginner's 
mind  might  have  formed  concerning  this  remarkable 
mathematical  constant. 

The  outcome  of  this  preparatory  prospecting  raid 

into  the  field  of  "  imaginaries  "  and  "  hyperbolics  "  is 
the  birth  of  this  little  brother  to  Calculus  Made  Easy. 

This  newcomer  has  no  pretension  to  equal  its  elder,  but 
it  is  setting  forth  with  the  desire  to  be  worthy  of  its 

kinship,  and  it  certainly  could  not  choose  a  better 
example  to  emulate. 

The  author  gladly  acknowledges  his  grateful  indebted- 
ness to  Mr.  Alexander  Teixeira  de  Mattos  for  his  kind 

permission  to  borrow  the  matter  of  the  preliminary 

pages  from  one  of  Henri  Fabre's  most  charming 
chapters. 



PRELIMINARY. 

As  an  introduction  to  this  little  book,  the  writer  will, 

for  a  first  chapter,  yield  the  pen  to  another  and  merely 

assume  the  humble  part  of  a  translator — a  translator 
whose  task  is  far  from  easy  if  he  is  to  retain  some  of 

the  captivating  quaintness  of  style  and  of  the  combined 
wealth  and  simplicity  of  phraseology  of  the  French 

original.  Henri  Fabre,  that  most  remarkable  per- 
sonality in  the  army  of  Truth  seekers,  shall  tell  you 

here  how,  in  his  studies  of  the  insect  world,  he  came  to 

meet  the  ubiquitous  e  dangling  on  a  spider's  web,  and 
how  he  was  compelled  awhile  to  let  the  mathematician 

in  him  step  into  the  entomologist's  shoes  ;  for — luckily 
for  us — he  was  both. 

*  "  I  am  now  confronted  with  a  subject  which  is  at  the 
same  time  highly  interesting  and  somewhat  difficult : 
lot  that  the  subject  is  obscure,  but  it  postulates  in  the 

'eader  a  certain  amount  of  geometrical  lore,  substantial 
are  which  one  is  apt  to  pass  untasted.  I  do  not  address 

nyself  to  geometricians,  who  are  generally  indifferent  to 

*  Quoted  by  permission  of  Mr.  Alexander  Teixeira  de  Mattos,  the 
lolder  of  the  English  copyright,  from  the  Souvenirs  entomologiques 
i  J.  Henri  Fabre  (Paris :  Librairie  Delagrave ;  London :  Hodder  & 
Itoughton  ;  New  York:  Dodd,  Mead  &  Co.).  The  full  text  of  Mr. 

Vixeira's  translation  will  be  found  in  the  Appendix  to  the  volume 
ntitled  "  The  Life  of  the  Spider." 

e  "  a 
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facts  appertaining  to  instinct.  I  do  not  write  either 
for  entomologists,  who  as  such  are  not  concerned  with 

mathematical  theorems  ;  I  seek  to  interest  any  mind 

which  can  find  pleasure  in  the  teachings  of  an  insect. 

"  How  can  I  manage  this  ?     To  suppress  this  chaptei 
would   be   to   leave   untouched   the   most   remarkabl 

feature  of  the  spider's  industry  ;    to  give  it  the  fuln 
of  treatment   it   deserves,    with   an   array   of   lean 
formulae,  would  be  a  task  beyond  the  pretension 
these  modest  pages.     We  will  take   a   middle   com 

avoiding  alike  abstruse  statements  and  extreme  ign< 
ance. 

"  Let  us  direct  our  attention  to  the  webs  of  Epeira 
preferably  to  those  of  the  silky  Epeira  and  the  stripe 
Epeira,  numerous  in  autumn  in  my  neighbourhood,  ar 

so  noticeable  by  their  size.     We  shall  first  observe  th«* 
the  radial  threads  are  equidistant,  each  making  eqt 
angles  with  the  two  threads  situated  on  either  side 

it,  despite  their  great  number,  which,  in  the  work  of  tr 

silky  Epeira  exceeds  two  score.    We  have  seen  *  by  wha 
strange  method  the  spider  attains  its  purpose,  which  is  t( 
divide  the  space  where  the  net  is  to  be  woven  into  a  grea 
number  of  equiangular  sectors,  a  number  which  is  nearl; 

always  the  same  for  each  species  :  disorderly  evolution1 
suggested,  one  might  believe,  by  wild  fancy  alone,  resul 

in  a  beautiful  rose  pattern  worthy  of  a  draughtsman' 
compass. 

"  We  shall  also  observe  that  in  each  sector  the  variou 
steps  or  elements  of  each  turn  of  the  spiral,  are  paralh  I 

*  See  Souvenirs  Entomologiques,  IXeme  Serie, 
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ar 
to  one  another,  and  close  gradually  upon  one  another 

as  they  near  the  centre.      They  make,  with  the  two 
radii  which  limit  them  at  either  end,  an  obtuse  and  an 

acute  angle,  on  the  side  away  from,  and  towards  the 
centre,   respectively,    and  these   angles   are   the   same 

hroughout  the  same  sector,   because  of  the  parallel 
^position  of  these  elements  of  the  spiral. 

"  More  than  this  :    in  different  sectors  these  obtuse 
d  acute  angles  are  the  same,  as  far  as  one  can  rely  on 
le  testimony  of  the  eye  unaided  by  any  measuring 
strument.     As   a   whole,   the   funicular   structure   is 

therefore    a    series    of    transverse    threads    which    cut 

ibliquely  the  various  radii  at  an  angle  of  invariable 
nagnitude. 

"  This  is  the  characteristic  feature  of  the  logarithmic 
viral.     Geometricians   give   this   name   to   the   curve 

/hich  cuts  obliquely,  at  a  constant  angle,  all  the  straight 
ines  radiating  from  a  centre,  called  the  pole.     The  web 
)f  Epeira  is  nothing  else  but  a  polygonal  line  inscribed 

'in  a  logarithmic  spiral.     It  would  coincide  with  this 
spiral  if  the  radii  were  unlimited  in  number,  so  that  the 

rectilinear   elements    were   indefinitely    short    and   the 
oolygonal  line  modified  into  a  curve. 

;'  To  give  an  insight  into  the  reasons  which  make  this 
spiral  a  favourite  subject  for  the  speculations  of  scientific 
minds,  let  us  confine  ourselves  to  a  few  statements,  the 

demonstration  of  which  may  be  found  in  treatises  on 
advanced  geometry. 

4  The  logarithmic  spiral  describes  an  infinite  number 
of   circumvolutions   about   its   pole,    which    it  always 
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approaches  without  ever  reaching  it.  The  central  point, 
nearer  at  every  turn,  remains  for  ever  inaccessible.  It 

goes  without  saying  that  this  property  does  not  belong 
to  the  realm  of  facts  of  which  our  senses  are  cognisant. 
Even  with  the  help  of  the  most  precise  instrument,  our 

sight  could  not  follow  the  spiral's  endless  circuits,  and 
would  speedily  refuse  to  pursue  farther  the  subdivision 
of  the  invisible.  It  is  a  volute  to  which  the  mind  con- 

ceives no  limit.  Alone,  cultivated  reason,  more  acute 

than  our  retina,  sees  clearly  that  which  defies  the  eye's 
power  of  perception. 

"  The  Epeira  obeys  as  faithfully  as  possible  this  law 
of  endless  winding.  The  spires  of  its  web  close  up  more 

and  more  as  they  approach  the  pole.  At  a  certain 

distance  from  it,  they  stop  suddenly,  but  there,  con- 
tinuing the  spiral,  is  the  thread  which  was  woven  during 

the  first  stages  of  the  construction  of  the  web,  as  a 
scaffolding  to  support  the  spider  in  the  elaboration  of 

its  net,  and,  as  such,  destroyed  as  the  work  progresses, 
but  allowed  to  subsist  in  the  vicinity  of  the  pole  which 

it  approaches,  like  the  rest  of  the  spiral,  in  circuits 
which  become  closer  and  closer  together  and  hardly 

distinguishable  from  one  another.  It  is  not,  evidently, 
of  rigorous  mathematical  accuracy,  but,  nevertheless, 
it  is  a  very  close  approximation  to  it.  The  Epeira 
winds  its  thread  nearer  and  nearer  to  the  pole  of  its 

web  as  closely  as  it  is  enabled  to  do  so  by  the  imper- 
fection of  its  tools,  which,  like  ours,  are  inadequate  to 

the  task  ;  one  would  think  that  it  is  deeply  versed  in 

the  properties  of  the  spiral. 
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"  Without  entering  into  explanations,  let  us  mention 
a  few  other  properties  of  this  curious  curve.  Imagine 
a  flexible  thread  coiled  upon  the  logarithmic  spiral.  If 

we  uncoil  it,  keeping  it  tight  the  while,  its  free  end  will 
describe  a  spiral  in  every  respect  similar  to  the  first,  but 
merely  shifted  to  another  position. 

"  Jacques  Bernouilli,  to  whom  Geometry  is  indebted 
for  this  beautiful  theorem,  caused  the  parent  spiral  and 

its  offspring,  generated  by  the  unwinding  thread,  to 
be  engraved  upon  his  tomb,  as  one  of  his  greatest 
titles  to  fame,  together  with  the  motto  Eadem  mutata 
resurgo  (I  rise  again,  changed  but  the  same).  With 
difficulty  could  Geometry  find  anything  better  than 
this  inspiring  flight  towards  the  Great  Problem  of  the 
Beyond. 

"  Another  geometrical  epitaph  is  no  less  widely  cele- 
brated :  Cicero,  when  questor  in  Sicily,  sought  under  the 

veil  of  oblivion,  cast  by  brambles  and  wild  grasses, 
the  tomb  of  Archimedes,  and  recognised  it  amongst  the 

ruins  by  the  geometrical  figure  engraved  upon  the  stone :  aj 

cylinder  circumscribing  a  sphere.  Archimedes  was  the' 
first  to  know  the  approximate  ratio  of  the  circumference 

to  the  diameter,  and  from  it  he  deduced  the  perimeter 
and  surface  area  of  the  circle,  together  with  the  surface 
area  and  the  volume  of  the  sphere.  He  demonstrated 
also  that  the  latter  has,  for  surface  area  and  volume, 
two  thirds  of  the  surface  area  and  volume  of  the  cir- 

cumscribing cylinder.  Disdaining  a  pretentious  inscrip- 
tion, the  Syracusan  geometer  relied  upon  his  theorem 

alone  as  an  epitaph  to  transmit  his  name  to  posterity. 
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The  geometrical  figure  proclaimed  the  identity  of  the 
remains  underneath  as  clearly  as  alphabetical  characters. 

"  To  bring  our  description  to  a  close,  let  us  mention 
one  more  property  of  the  logarithmic  spiral.  Cause  the 

curve  to  roll  upon  a  straight  path,  and  its  centre  will 
describe  a  straight  line.  The  endless  winding  leads  to 

the  rectilinear  trajectory  ;  perpetual  variation  engenders 
uniformity. 

"  Is  this  logarithmic  spiral,  with  its  curious  properties, 
merely  a  conception  of  the  geometers,  who  combine  num- 

ber and  space  at  will  to  open  a  field  wherein  to  practise 
mathematical  methods  ?  Is  it  but  a  dream  in  the  night 

of  the  intricate,  an  abstract  enigma  intended  to  feed 
our  understanding  ?  Not  at  all.  .  .  .  It  is  a  reality  in 
the  service  of  life  ...  a  plan  of  which  animal  architecture 

makes  frequent  use.  The  mollusc,  in  particular,  never 
shapes  the  volutes  of  its  shell  without  reference  to  this 
transcendent  curve.  The  first-born  of  the  series  knew  it, 

and  copied  it,  as  perfect  in  primaeval  times  as  it  is  to-day. 

"  Consider  the  ammonites,  ancient  relics  of  what  was 
once  the  highest  expression  of  living  things,  when  the 

abysmal  slime  separated  itself  from  the  deep,  and  dry 
ground  appeared  on  the  face  of  the  earth.  When  they 

are  cut  along  a  median  plane,  the  fossils  exhibit  a  mag- 
nificent logarithmic  spiral  as  the  general  scheme  of  the 

building,  which  has  been  a  mother-of-pearl  palace  with 
multiple  chambers  intercommunicating  by  a  narrow 
canal.  .  .  . 

"  To-day,  the  last  representative  of  the  cephalopods 
with  multicellular  shells,  the  Nautilus  of  the  Indian 
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Ocean,  remains  faithful  to  the  antique  design.  It  has 
not  discovered  anything  better  than  its  distant  ancestor. 
It  has  only  modified  the  position  of  the  communication 

canal,  and  placed  it  at  the  centre  instead  of  in  its  former 

dorsal  situation,  but  it  still  winds  its  spire  logarith- 
mically, as  the  ammonites  did  in  the  first  ages  of  the 

world. 

"  We  must  not,  however,  entertain  the  belief  that 
these  highly  developed  molluscs  have  the  monopoly  of 
the  elegant  curve.  In  the  stagnant  waters  of  our 

sedge-lined  ditches,  the  flattened  shells,  the  humble 

Planorbes  or  water-snails,  sometimes  scarcely  larger  than 
lentils,  are  the  rivals  of  the  ammonite  and  the  Nautilus 

in  high  geometry.  One  of  them,  for  instance — the 

Planorbis  Vortex — is  a  marvel  of  logarithmic  winding. 

"  In  the  shells  assuming  an  elongated  shape,  the 
structure  becomes  more  complex,  although  still  governed 

by  the  same  fundamental  laws.  I  have  before  my  eyes 
some  species  of  the  genus  Terebra,  originating  from  New 
Caledonia.  They  are  very  tapering  cones,  almost  as  long 

as  the  hand.  Their  surface  is  smooth,  quite  bare,  with- 
out any  of  the  usual  ornaments,  folds,  knots,  or  strings 

of  beads.  The  spiraliform  structure  is  superb,  with 
its  simplicity  for  sole  ornament.  I  count  a  score  of 
whorls  which  gradually  diminish  and  are  lost  in  the 

delicate  details  of  the  point.  A  fine  groove  delineates 
them. 

"  I  trace  with  a  pencil  any  generating  line  of  this  cone, 
and,  relying  merely  on  the  evidence  of  my  eyes,  some- 

what trained  in  geometrical  measurements,  I  find  that 
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the  spiral  groove  cuts  this  generatrix  at  a  constant 
inclination. 

"  The  consequence  is  an  easy  deduction  :  by  pro- 
jection on  a  plane  normal  to  the  axis  of  the  shell,  the 

line  generating  the  cone,  in  each  of  its  various  positions, 

becomes  a  radius,  and  the  groove  which  whirls  in  ascend- 
ing from  the  base  to  the  apex  is  converted  into  a  plane 

curve  which,  meeting  these  radii  with  an  invariable 

inclination,  is  therefore  nothing  else  but  the  logarithmic 

spiral.  Inversely,  the  groove  on  the  shell  may  be  con- 
sidered as  the  projection  of  the  logarithmic  spiral  on  a 

conical  surface. 

"  We  can  even  go  a  step  further  :  conceive  a  plane 
normal  to  the  axis  of  the  shell,  and  passing  through  the 

apex.  Imagine  also  a  thread  wound  in  the  spiral-shaped 
groove.  If  we  unwind  it,  keeping  it  tight  without 

slipping  off  the  groove,  and  to  this  end  maintaining  it 
normal  to  the  line,  generating  the  cone,  which  passes  by 
the  point  where  the  thread  leaves  the  surface  of  the 

shell,  the  extremity  of  the  thread  will  remain  on  this 
plane  and  describe  in  it  a  logarithmic  spiral.  It  is, 
with  a  greater  complexity,  a  variation  of  the  eadem 
mutata  resurgo  of  Bernouilli :  The  conical  logarithmic 

spiral  changes  itself  into  a  plane  logarithmic  curve. 

"  A  similar  geometry  is  found  in  the  construction  of 
the  other  shells  whether  affecting  the  shape  of  an  elon- 

gated or  that  of  a  flattened  cone.  The  shells  coiled  in 

globular  volutes  are  no  exception  to  the  rule  .  .  .  all, 

down  to  the  humble  snail,  are  constructed  on  a  loga- 

rithmic  pattern.     The   spiral,    famous   among   geome- 
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tricians,  is  the  general  plan  copied  by  the  mollusc  in 
coiling  its  stone  sheath. 

"  Of  this  celebrated  curve,  the  spider  elaborates  but 
an  elementary  frame,  which  nevertheless  proclaims  the 
principle  of  the  ideal  edifice.  The  spider  works  on  the 
same  lines  as  the  mollusc  having  a  convoluted  shell. 

"  The  latter,  to  construct  its  spire,  takes  whole  years, 
and  attains  in  its  coiling  an  exquisite  perfection.  The 
spider,  to  fashion  her  web,  takes  only  one  hour  at  most, 

so  that  the  swiftness  of  execution  entails  greater  sim- 
plicity of  construction.  It  abbreviates,  so  to  speak, 

limiting  itself  to  the  sketch  of  the  curve  which  the  other 

describes  in  its  full  perfection.  It  is  therefore  learned 
in  the  geometrical  secrets  known  to  the  ammonite  and 

the  Nautilus,  and  merely  simplifies,  in  putting  them  in 
practice,  the  logarithmic  lines  beloved  by  the  snail. 

What  is  its  guide  ?  Necessarily,  the  animal  must 

have  in  itself  the  virtual  design  of  its  spiral.  Never 

could  chance,  however  fecund  in  surprises  we  suppose  it 
to  be,  have  taught  it  the  high  geometry  where  our  mind 

goes  astray  without  a  preliminary  training. 

"  Can  it  be  premeditated  combination  on  its  part  ? 
Is  there  calculation,  mensuration  of  angles,  verification 
of  parallelism,  by  sight  or  otherwise  ?  I  incline  to 

believe  that  there  is  nothing  of  all  that  .  .  .  nothing  but 
an  innate  propensity  of  which  the  animal  has  not  to 
regulate  the  effect,  no  more  than  the  flower  has  to 
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regulate  the  disposition  of  its  petals.  The  spider  prac- 
tises advanced  geometry  without  knowing,  without 

caring.  .  .  .  The  process  goes  by  itself,  the  initial  impulse 
having  been  given  by  an  instinct  conferred  at  the 
origin. 

"  The  pebble  thrown  by  the  hand,  in  returning  to 
the  ground,  describes  a  certain  curve  ;  the  dead  leaf, 

detached  and  carried  away  by  the  wind,  in  performing 
its  journey  from  the  tree  to  the  soil,  follows  a  similar 

curve.  In  either  case  no  influence  of  the  moving  body 

regulates  the  fall  .  .  .  nevertheless,  the  descent  is  per- 
formed according  to  a  scientific  trajectory,  the  parabola, 

of  which  the  section  of  a  cone  by  a  plane  has  furnished 

the  prototype  for  the  meditation  of  geometers.  A  figure, 
the  fruit  of  a  speculative  concept,  has  become  tangible 
by  the  fall  of  a  stone  out  of  the  vertical. 

"  The  same  speculations  take  up  the  parabola  once 
more  and  suppose  it  to  roll  on  an  indefinite  straight 

line,  and  enquire  into  the  nature  of  the  path  followed 
by  the  focus  of  the  curve.  The  reply  is  that  the  focus 

of  the  parabola  describes  a  catenary,  a  line  of  very  simple 

shape,  but  for  the  algebraical  expression  of  which  we 
must  have  recourse  to  a  cabalistic  number,  at  variance 

with  all  systems  of  numeration,  and  which  digits  refuse 

to  express  exactly,  however  far  one  may  pursue  theii 
orderly  array.  This  number  is  called  epsilon,  being 

represented  by  the  Greek  letter  e.  Its  value  is  the 
following  series  indefinitely  continued  : 

e=1+^+^T2+^7273"fl.2.3.4+,,'  * 



PRELIMINARY  11 

f  the  reader  has  the  patience  to  perform  the  calcu- 
ition  of  the  first  few  terms  of  this  series,  which  has  no 

mit,  since  the  sequence  of  natural  numbers  is  itself 

ndless,  he  will  find  e  =  2*7182818  ...  . 

"  With  this  strange  number,  are  we  now  restricted  to 
he  rigid  domain  of  the  mind  ?  Not  at  all :  the  catenary 

ppears  in  the  realm  of  reality  whenever  gravitation 
nd  flexibility  act  jointly.  This  name  is  given  to  the 

urve  formed  by  a  chain  suspended  by  two  points  not 
ituated  on  the  same  vertical.  It  is  the  shape  naturally 
aken  by  a  flexible  tape  the  two  ends  of  which  are  held 

i  one's  hands  ;  it  is  the  outline  of  a  sail  inflated  by  the 
rind ;  it  is  the  form  of  the  milk-bag  of  the  goat  re- 
urning  from  the  pasture  where  its  udder  became 
died  .  .  .  and  all  these  things  involve  the  number 

psilon. 

"  What  a  lot  of  abstruse  science  for  a  bit  of  string  ! 
jet  us  not  be  surprised.  A  pellet  of  lead  swinging  at 
he  end  of  a  thread,  a  drop  of  dew  trembling  at  the  end 

>f  a  straw,  a  puddle  ruffled  by  ripples  under  a  puff  of 
ir,  a  mere  nothing,  after  all,  requires  a  titanic  scaffolding 

v7hen  we  wish  to  examine  it  with  the  eye  of  the  calculus. 
.  .     We  need  the  club  of  Hercules  to  crush  a  midget  1 

"  Surely  our  methods  of  mathematical  investigation 
re  full  of  ingenuity  .  .  .  one  cannot  admire  too  much 
he  powerful  brains  which  have  invented  them  .  .  .  but 

iow  slow  and  painstaking  when  facing  the  least  realities  ! 

'hall  it  ever  be  given  to  us  to  investigate  the  truth  in  a 
nore  simple  fashion  ?  Shall  mind  be  able  some  time  to 

o  without  the  heavy  arsenal  of  formulae  ?     Why  not  ? 
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"  Here  the  occult  number  epsilon  reappears  inscribed 

on  a  spider's  thread.  On  a  misty  morning,  look  at  the  web 
which  has  j  ust  been  constructed  during  the  night.  Owing 
to  its  hygroscopic  nature  the  sticky  network  has  become 
laden  with  droplets,  and,  bending  under  the  weight,  the 
threads  are  now  as  many  catenaries,  as  many  rosaries 

of  limpid  gems,  graceful  rows  of  beads,  arranged  in 
exquisite  order,  and  hanging  in  elegant  curves.  Let  the 
sun  pierce  the  mist  .  .  .  and  lo  !  the  whole  becomes 
iridescent  with  adamantine  fire  and,  in  lovely  garlands 

of  fairy  lights,  the  number  e  appears  in  all  its  glory  ! 

"  Geometry,  that  is,  the  science  of  harmony  in  space, 
presides  over  all  things.  It  is  in  the  arrangement  of 

the  scales  of  a  fir-cone,  as  in  the  disposition  of  the 

Epeira's  web  ;  it  is  in  the  shell  of  a  snail  as  in  the  rosary 

of  a  spider's  dewladen  thread,  as  in  the  orbit  of  a  planet ; 
it  is  everywhere,  as  majestic  in  an  atom  as  in  the  world 
of  immensities.  ... 

"  And  this  Universal  Geometry  speaks  to  us  of  a 
Universal  Geometer,  whose  divine  compass  has  measured 

all  things.  ...  As  an  explanation  of  the  logarithmic 
curve  of  the  Ammonite  and  of  the  Epeira,  it  is  perhaps 

not  in  agreement  with  the  teachings  of  to-day  .  .  .  but 

how  much  loftier  is  its  flight !  .  .  .  " 



PART  I. 

HE  SIMPLE  ME  A  NING  OF  SOME  A  WE-INSPIRING 

NAMES  AND  OF  SOME  TERRIBLE-LOOKING, 
BUT  HARMLESS,  SIGNS. 

CHAPTER  I. 

THE  TRUTH  ABOUT  SOME  SIMPLE  THINGS 
CALLED  FUNCTIONS. 

Iathematicians  are  very  fond  of  the  word  "  function, " 
nd  indeed  they  are  to  be  excused,  for  every  time  they 
se  it  they  avoid  a  long  sentence.  The  expression,  in 
act,  is  so  convenient  that  we  shall  certainly  use  it  often 

'Ur selves,  therefore  we  must  make  sure  of  its  exact 
ignificance  so  as  to  be  quite  clear  what  is  meant  by  it. 

A  "  function  "  of  a  certain  thing  is  simply  some- 
hing  which  varies  when  that  thing  varies.  The 

weekly  pay  of  a  workman  is  a  function  of  the  number 

>f  hours  he  works  per  week,  since  his  pay  varies  with 

he  number  of  working  hours  he  "  puts  in  "  ;  similarly, 
he  unburned  length  of  a  candle  is  a  function  of  the 
ime  elapsed  since  it  was  lit,  since  it  is  different  for 

various  intervals  of  time  during  which  the  candle  has 13 



14  EXPONENTIALS  MADE   EASY 

been  burning  ;  the  weight  of  a  healthy  child  is  a  function 

of  his  age,  since  his  weight  alters  as  the  child  becomes 
older  ;  the  cost  of  an  engine  is  a  function  of  the  size  of 

the  engine,  etc.  As  a  matter  of  fact  it  would  be  difficult 
to  find  something  which  is  not  a  function  of  something 
else  :  the  length  of  the  pencil  with  which  you  write  is 
a  function  of  the  number  of  words  you  have  written 

with  it  (supposing  no  breakage) — the  more  numerous 
the  words  the  shorter  the  pencil ;  the  value  of  the 

clothes  you  wear  is  a  function  of  the  wear  to  which 

they  are  subjected,  since  as  wear  takes  place  their  value 

will  steadily  diminish.  Everything  practically  is  a 

function  of  the  time,  since  it  is  bound  to  change — 

possibly  in  an  imperceptible  manner — as  time  goes  on. 
So,  when  we  say  that  y  is  a  function  of  x,  for  instance, 

we  mean  that  the  value  of  y  varies  when  the  value  of 

x  varies,  that  is,  that  the  value  of  y  depends  upon  the 
value  taken  by  x.  This  fact  we  express  by  the  notation 

y  =  function  of  x,  or  one  of  its  many  abbreviations : 

y=f(x),  y=F(x),  y=(j>(%),  y=^(x),  etc.  All  these 

are  read  "  y  equals  a  function  of  x."  You  know  now 
what  a  function  is  ;  you  see  it  is  quite  a  simple  thing 

despite  its  imposing  name. 
One  must  first  notice  that  the  thing  in  terms  of  which 

a  function  is  expressed  must  necessarily  be  capable  of 

taking  different  values,  that  is,  it  must  be  what  mathe- 

maticians call  a  "  variable  quantity "  or  simply  a 
"  variable,"  to  distinguish  it  from  a  "  constant,"  or  a 
quantity  which  has  always  the  same  value.  In  the 

examples  stated  above  the  number  of  working  hours 
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put  in  "  by  the  workman,  the  time  elapsed  since  the 

candle  was  lit,  the  age  of  the  child,  the  size  of  the  engine, 

the  number  of  words  written  by  the  pencil,  the  wear  of 
the  clothes,  are  quantities  the  value  of  which  is  liable 
to  considerable  variation.  In  the  last  case  it  is  not 

so  easy  to  conceive  how  the  value  may  be  expressed 
numerically,  but  the  means  by  which  the  variability  is 
expressed  matters  little,  the  main  facts  are  :  first,  a 

variability  ;  second,  this  variability  must  cause  a  corre- 
sponding variation  of  the  thing  which  is  stated  to  be  a 

function  of  the  variable  quantity,  and  this  thing  is 

therefore  also  necessarily  a  "  variable." 
Since,  when  we  write  y  =  a  function  of  x,  we  wish  to 

express  that  the  value  of  y  depends  upon  the  value  of  x, 

y  is  called  the  "  dependent  variable  "  and  x  is  called  the 
"  independent  variable,"  that  is,  the  variable  which  can 
take  any  suitable  arbitrary  value.  In  the  examples 
above,  the  number  of  working  hours,  the  time  elapsed 
since  the  candle  was  lit,  the  age  of  the  child,  etc.,  may 

have  any  likely  value  according  to  the  case  :  these  quan- 
tities are  independent  variables  ;  on  the  other  hand, 

the  weekly  pay,  the  length  of  unburnt  candle,  the 
weight  of  the  child,  etc.,  depend  on  the  value  given  to 
the  former  quantities  respectively,  and  these  latter 
quantities  are  therefore  the  dependent  variables. 

But,  although  the  statement  that  "  y  is  a  function 
of  x "  conveys  the  important  information  that  the 
variation  of  y  depends  upon  that  of  x,  it  does  not  tell 
us  anything  about  the  manner  in  which  y  varies  when  x 

changes  in  value.    It  does  not  tell  us  even  whether  y 
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gets  larger  or  smaller  when  x  increases,  and  so  it  is  really 

a  very  vague  statement.  Yet,  in  many  cases,  it  is 

useful  to  be  able  to  write  a  relation  such  as  y=f(x) 
between  two  variables  x  and  y,  but  little  can  be  done 

as  a  rule  unless  we  know  how  y  varies  when  x  varies, 

that  is,  unless  we  know  the  "  form  "  of  the  function, 
because  there  is.  an  infinite  number  of  ways  in  which  y 
can  respond  to  changes  in  the  value  of  x. 

In  the  examples  above,  for  instance,  the  weekly  pay 
P  of  the  workman  is  the  product  of  the  number  N  of 

working  hours  put  in  and  his  hourly  wages,  p,  P  and  p 
being  expressed  in  terms  of  the  same  unit,  say  in  shillings, 

so  that  not  only  can  we  write  P=f(N)  but  we  have 

P=pN  for  the  "  form  "  of  the  function,  P  being  the 
dependent  and  N  the  independent  variable.  We  can 

now  find  the  value  of  P  corresponding  to  any  value  of 

N,  provided  we  know  the  value  of  the  constant  p.  In 
the  case  of  the  candle,  the  length  I  left  unburnt  decreases 
as  the  time  t  of  burning  increases  ;  if  I  is  in  inches  and 
t  in  minutes,  and  if  L  inches  was  the  initial  length  of 

the  candle,  while  a  is  the  length  in  inches  consumed  in 

one  minute — this  depends  on  the  diameter  of  the  candle, 
size  and  trimming  of  wick,  material  of  which  the  candle 

is  made,  supply  of  air,  etc.,  and  is  a  constant  for  that 
particular  candle  as  long  as  the  external  conditions 

affecting  the  combustion  remain  the  same — then  it  is 
evident  that  l  =  L  -at,  and  this  is  the  form  of  the 

function  enabling  us  to  find  I  for  any  value  of  t,  pro- 
vided we  know  the  value  of  the  constants  L  and  a.  A 

similar  expression,  namely,  l=L—an,  will  express  the 
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Ogth  /  of  the  pencil  as  a  function  of  the  number  n  of 

Lousand  words  written,  say,  if  a  is  the  shortening — i.e. 
le  wear — corresponding  to  the  writing  of  one  thousand 
ords. 

In  many  cases  it  is  impossible  to  state  mathematically 
le  form  of  a  function.  If  W  is  the  weight  of  a  child, 

ad  A  his  age  in  weeks  or  months  or  years,  there  is  no 

tpression  which  will  exactly  represent  the  numerical 
Nation  between  IT  and  A,  simply  because  IF  depends 

a.  so  many  other  things  besides  A — food,  state  of  health, 
:c. — that  its  variation  is  altogether  erratic,  that  is,  it 
impossible  to  calculate  the  value  of  W  for  any  given 

alue  of  A.  It  is  likewise  difficult  if  not  impossible  to 
ive  a  form  to  the  value  of  a  suit  of  clothes  as  a  function 

f  the  wear  to  which  it  is  subjected. 
Even  when  we  know  the  form  of  a  function,  however, 

e  are  not  able  to  calculate  the  value  of  the  dependent 
ariable  from  given  values  of  the  independent  variable 
nless  we  know  the  numerical  value  of  the  constants 

ccurring  in  the  expression  of  the  function.  We  cannot 

nd  the  workman's  weekly  pay  P  when  he  works  30, 
5  or  40  hours  per  week,  say,  until  we  know  what  is  p, 

is  rate  of  pay  per  hour  ;  as  soon  as  we  know  that  p  is 
ly  3  shillings  per  hour,  we  know  that  his  weekly  pay 

orresponding  to  the  above  number  of  hours  is  90/-  or 

4|,  105/-  or  £51  and  120/-  or  £6  respectively.  Like- 
ise,  it  is  only  when  we  know  that  .the  candle  was 

litially  8  inches  long  and  burns  2-4  inches  per  hour  or 
01  inch  per  minute  that  we  can  say  that  the  length 

miaining  after  10,  20,  30  minutes  is  8-0-04x10  =  7-6 
G.  E.  B 
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inches,  8-0-04x20=7-20  inches,  8-0-04x30=6-8 
inches  respectively ;  similarly  for  the  length  of  the 
pencil.  In  these  last  two  cases,  a,  the  length  burned 
per  minute  or  the  length  used  per  thousand  words  is  to 
be  found  by  actual  experiment. 

It  is  also  evident  that  if  we  give  a  definite  value  to  a 

dependent  variable,  expressed  as  a  function  of  another 
(independent)  variable  with  numerical  coefficients,  the 

value  of  this  independent  variable  cannot  be  anything 
we  please,  but  must  be  such  as  to  correspond  to  the 
value  given  to  the  dependent  variable.  The  value  of 

the  independent  variable,  therefore,  depends  on  the  value 
of  the  dependent  variable  just  as  much  as  the  value  of 

the  latter  depends  on  that  of  the  former.  The  depend- 
ence is  reciprocal,  and  the  function  can  generally  be 

expressed  in  such  a  way  that  the  independent  variable 
becomes  the  dependent  variable  and  vice  versa.  For 
instance,  in  the  case  of  the  candle  mentioned  above, 

instead  of  l=L—atwe  may  write  t=   .     The  new 

function  is  then  said  to  be  the  "  inverse  function  "  of 
the  original  one.  It  is  usual  to  represent  the  inde- 

pendent variable  by  x  and  the  dependent  variable  by 

p,  so  that  y=f(x),  the  inverse  function  being  x=f1{t/), 
yi  simply  indicating  that  the  function  has  another  form 
than  the  form  denoted  by/. 

In  all  the  above  cases  where  the  form  of  the  functior 

could  be  stated,  one  of  the  quantities,  y  for  instance 
has  been  directly  expressed  in  terms  of  the  other  quan 
tity  x.     Which  of  the  two  variables  is  the  independem 
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and  which  is  the  dependent  one  is  therefore  clearly  or 

explicitly  stated,  and  the  variable  y  is  said  to  be  an 

"  explicit  function  "  of  the  (independent)  variable  x. 

For  instance,  in  t=  -   ,  t  is  an  explicit  function  of  I, 

while  in  l=L—at,  I  is  an  explicit  function  of  t.  If, 
however,  it  is  not  clear  from  the  form  of  the  expression 

which  of  the  two  quantities  is  the  independent  variable, 

although  their  interdependence  is  implied,  as  when  we 

write  l—L=at,  then  one  of  the  variables  is  an  "  implicit 
function  "  of  the  other. 
A  quantity  may  be  a  function  of  several  different 

variables.  In  the  examples  given,  the  workman's  weekly 
pay  P  is  a  function  not  only  of  the  number  N  of  hours 
he  works  in  the  week,  but  also,  as  we  have  seen,  of  the 

hourly  pay  p  he  receives.  The  length  of  the  candle 
after  burning  t  minutes  is  a  function,  not  only  of  t,  but 

of  the  original  length  L — if  several  values  are  possible 

for  L — and  of  the  rate  of  burning  a — if  this  rate  can 
take  several  values.  The  existence  of  this  complex 

dependence  on  several  variables  is  evident  from  the 
form  of  the  functions  considered,  since  a  change  in  the 
value  of  p  in  the  first  case,  or  of  L  or  a  in  the  second, 
causes  a  change  in  the  value  of  P  or  of  I  respectively. 

The  relationship  would  then  be  expressed  in  a  general 

manner  by  the  notations  P=f(p,  N)  and  l=f{t,  L,  a) 
respectively.  Similarly,  in  the  case  of  the  pencil, 

l=/(n,  L,  a)  would  be  the  general  form  of  the  function. 
A  very  interesting  and  useful  exercise  consists  in 

"  plotting  " — that  is,  in  drawing  on  squared  paper — the 
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graph  of  a  function  of  which  the  form  and  numerical 
constants  are  known.  Giving  various  suitable  values  to 

the  independent  variable  x,  one  calculates  the  corre- 

sponding values  of  the  dependent  variable  y,  and  by  plot- 
ting the  successive  pairs  of  values  one  obtains  (generally) 

a  curved  line  which  represents  the  variation  in  value 

of  the  dependent  variable  y,  that  is,  of  the  value  of 

the  function  itself,  as  the  independent  variable  x  varies 

through  the  range  of  the  possible  values  it  can  assume. 



CHAPTER  II. 

THE  MEANING  OF  SOME  QUEER-LOOKING 
EXPRESSIONS. 

When  we  write  a3,  we  mean  axaxa,  that  is,  the 
product  of  3  factors,  each  equal  to  a,  or,  better  still, 

Ixaxaxa,  the  product  of  unity  by  three  factors 

each  equal  to  a.  Similarly,  when  we  write  an  we  mean 
the  product  of  n  factors  each  equal  to  a  or  unity  multi- 

plied by  n  factors  each  equal  to  a.  Logically,  one  would 
think  that,  when  we  find  before  us  such  an  expression  as 

a0,  which  is  read  "a  to  the  power  zero,"  it  means  the 
product  of  zero  factors  equal  to  a,  namely,  zero,  and  a 
beginner  is  therefore  invariably  puzzled  when  told 

that  a°=l.  According  to  our  second  definition  above, 

however,  a0  means  unity  multiplied  zero  times  by  a, 
and  this  is  obviously  unity,  so  this  definition  holds  good 
in  this  particular  case.  As  a  matter  of  fact,  anything 
raised  to  the  power  zero  gives  unity  as  the  result  of  the 
operation.  This  follows  directly  from  the  rule  we  have 
seen  in  algebra  for  the  division  of  powers  of  the  same 

quantity,  namely :  xm[xn=xm~n,  for,  if  we  apply 
this  rule  to  the  case  xm/xm=l,  we  get  xm~m=x°=l. 
This  is  true  whatever  is  the  value  of  x,  so  that,  as 

21 
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a  certain  humorous  continental  teacher  used  to  tell 

his  pupils  to  impress  them  with  this  fact,  (cow)°=l  or 

(slipper)°=l. 
So,  following  a  well-established  rule,  we  found  a 

result  which  has  no  meaning  if  we  try  to  explain  it  by 
the  definition  hitherto  available.  Starting  again  at  the 

beginning,  however,  and  following  another  method, 
we  find  another  result  about  which  there  is  no  possible 

doubt.  The  two  results  are  evidently  equivalent,  one 

being  merely  a  different  way  of  writing  the  other,  so 

that,  in  the  case  just  considered,  x°  is  only  another  way 
of  expressing  unity.  Such  expressions,  the  meaning 
of  which  can  only  be  found  by  independent  investigation, 
are    often   met   with   in   mathematics.     For   instance, 

-=0,  since  nothing,  divided  by  any  number  you  like, (X 

gives  always  a  result  equal   to   nothing  ;    also  ̂   =  an 

infinitely  great  number,  since  the  smaller  the  denominator 

of  a  fraction,  the  larger  the  value  of  the  fraction,  so 

that  if  the  denominator  be  very  small,  the  value  of  the 

fraction  is  very  large,  and  when  the  denominator  is  so 

small  that  we  can  write  a  zero  in  its  stead  without  per- 
ceptible error,  the  value  of  the  fraction  is  greater  than 

any  number  we  can  conceive,  that  is,  it  is  infinitely 
large.  Once  the  meaning  has  been  found,  we  can  either 
substitute  its  proper  and  simpler  meaning  to  it  or  we 
can  use  it  whenever  convenient.  Henceforward,  for 

instance,  whenever  we  shall  come  across  such  expres- 

sions as  a0,  (a?+3)°,  (sin  0— 3  tan  0)°,  etc.,  we  shall  know 
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that  each  is  equivalent  to  unity  and  may  be  replaced  by  1, 

30  that  3a°=3,    sin6>(;£+3)c=sin6», 

(sinfl-3tan<ft)°_     1     . 

cos2#  —  cos2#' 
also,  «=«x(any  expression  we  like)0,  for  instance 

A     .        ,  4^tan0     .         \» 
a  =  a[7  smx-\   2     — l°ge</>)  • \  X  / 

The  same  rule  of  algebra  leads  us  yet  to  another  curious 

expression;  consider  a2/a5,  this  is  equal  to  a2~5=a~3 

or  a  "  to  the  power  minus  three,"  another  puzzling  result 
for,  according  to  our  definitions  a~3  means  the  product 
of  minus  three  factors  each  equal  to  a — this  is  quite 
another  thing  than  the  product  of  three  factors  each  equal 

to  —a — or  unity  multiplied  minus  three  times  by  a,  both 
of  which  are  meaningless.  If,  however,  we  consider 

that  a2/a5=l/a3,  we  see  that  a~z  is  only  another  way 

of  writing  1/a3,  that,  similarly,  a-4  is  the  same  as  l/«4 

and  so  on  ;  and  the  "  minus  multiplication  "  above  is 
explained  as  meaning  a  division  :  unity  divided  three 
times  by  a,  so  that  the  second  definition  is  here  still 

susceptible  of  an  interpretation.  It  follows  that  we 

can  always  replace  such  expressions  as  l/xn,  l/(a-\-x)2, 

l/(sin  0+9)  by  x~n,  (a+x)~2,  (sin  O+O)-1.  The  sign  - 
in  front  of  an  index  therefore  means  simply  :  "  put  the 
expression  to  which  this  index  is  affixed,  exactly  as  it  is, 

but  without  this  —  sign,  as  denominator  to  a  fraction 

the  numerator  of  which  is  1."  Such  an  expression  as 
l/xn  is  called  the  "  reciprocal  "  of  xn,  so  that  x~n  is 
the  "  index  form  "  of  the  reciprocal  of  a?n. 
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We  also  often  meet  in  mathematics  expressions  such 

as  a2/3,  xmln,  etc.,  which  one  reads  "  a  to  the  power 
two-thirds,"  x  to  the  power  m  over  n"  etc.  Evidently 
these  expressions  cannot  be  explained  by  either  of  the 

definitions  of  an  quoted  above.  xmln  is  not  obtained 

by  applying  the  rule  xmXxn=xm+n  or  xm\xn=xm-n  to 
any  particular  case,  so  we  must  try  to  find  how  we  arrive 
at  such  expressions,  in  order  to  discover  their  meaning. 
Now,  we  have  seen  in  algebra  that  to  raise  to  any  power, 

say  the  fifth  power,  a  power  of  a  quantity,  such  as  x2, 
one  must  multiply  the  two  indices  together,  so  that 

(x2f=x2X5=x10.  More  generally  (xm)n=xmXn.  If  we 

apply  this  rule  to  «2/3  we  get  (a2lzY  =  a?**=a*.  But  we 
also  get  (*/a2)3=a2.  It  follows  that  a213  is  the  same 

thing  as  £/a2  since,  by  raising  both  to  the  cube  or  third 

power  we  get  the  same  result,  namely  a2.  More  gener- 

ally, xmfn  is  only  another  way  of  writing  Zjxm ;  it  is,  ir 

fact,  what  is  called  the  "  index  form  "  of  ̂ /xm — which  i? 
called  the  "radical  form."  Note  that  the  "order"  o1 
the  root,  3  and  n  in  the  above  examples,  appears  as  £ 
denominator  to  the  index. 

We  have,  up  to  now,  made  acquaintance  with  three 

queer-looking  expressions,  and  we  know  now  exactl) 
what  they  mean,  so  that  we  shall  not  be  puzzled  by  then 
any  more  ;  they  are  : 

x°,  "  x  to  the  power  zero,"  the  value  of  which  is  1. 
xrn,  "  x  to  the  power  minus  n,"  which  is  exactly  th« 

same  as  l/xn. 

xmln,  "  x  to  the  power  m  over  n"  which  is  exactly 
the  same  as  ̂ xm. 
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[oreover  these  equivalent  expressions  are  absolutely 

general,  instead  of  x  we  can  put  anything  we  please,  so 
that,  for  example, 

[3^3-(loge0)+5]3/5=4/(3^_logt.6>+5)3. 
It  is  very  useful  to  be  able  to  pass  readily  from  one 

form  to  the  other,  as  in  this  way  some  complicated 
expressions  can  sometimes  be  simplified  considerably. 

The  following  worked  examples  will  help  you  to  see  how 
this  is  done. 

Example  1.  Simplify  3a~2/5  by  expressing  it  with  a 
positive  index. 
Remember  that  an  index  only  affects  the  letter  (or 

bracket)  to  which  it  is  affixed,  and  nothing  else  ;  for 

instance,  3a2  means  3xa2  and  not  9xa2,  while  (3a)2 
means  9a2.  Here  the  index  —2  only  affects  the  letter  a, 
and  has  nothing  to  do  with  the  coefficient  3  in  front  of  a, 

so  that  3a~2/5  is  the  same  as  %a~2.  But  a~2=l/a2, 
hence  the  given  expression  becomes  3/5a2.     That's  all ! 

Example  2.     Simplify  a°/x~z. 
We  know  that  a°=l  and  that  x~z=l/x3,  so   that 

a°/x~s=l/^  =  xK 

Example  3.     Simplify  3  (x + 1  )-*  X  ̂ (x + 1  )2. 
We  know  that  £/(x+l)2=(x-\  1)2/3. 

We  get  therefore 

Sxix+l^xix+l^^x+tf-^Hx+l)-1/* 
=3/4/^+1. 
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Example  4.     Simplify  (2x)~3/^x~1. 
It  becomes  successively 

^i-^=(l/8a!»)^3/a?=(l/&iJ»)  xa?/3  =  l/24a* 

Example  5.     Simplify  x~2Jx^  X  (3^2)0. 
We  write 

#-2V^(3^2)°=ar2  x#3/2  x  l=#*-2=af*A     or     1/VS, 
whichever  is  most  convenient. 

3#r2a2/3 
Example  6.     Simplify   r=. 

2  (2a)  V«3 
Proceeding  as  above  we  get  successively 

3(l/^2)a2/3    _  3  xa2/3  x8a3_  24q°+3 

2(l/(2a)3x^2~  2x«2x^2      2^  -1Za35/
**^ 

or  preferably  12an/3/x7J2. 

Example  7.     Simplify  ̂ m"2^1/2)4. 

We  get    34(m-2)4  X  (k~1^= 81  (1/m2)4  X  lft&Pf 
=  81x(l/m8)x(l//f2) 

=  8llm8k2. 
We  could  also  have  proceeded  as  follows  after  the  first 

transformation  : 

34  (m~2)4  X  (Ar1'2)4 = 81  X  m~8  x  k~2 = 81m8k2. 

Example  8.     Simplify  (2s/mXx-2)~2. 
We  get 

2-2  x  (mi/2x_2)  x  (1/^-4)  =  (1/4) (l/m)  (l  / 1)  =  ajt/4wi \  /  x  * 

or,  by  another  way  1    [2  Xm1/2X—J  =zA/im  as  before. 
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Example  9.    Simplify  (2art€T1^)"a^(^^f. 
Deal  with  each  bracket  separately. 

(2t»-2a-1/3)-a=l/(2^-2a;-1/3)«-l/2a(l/^2o)(l/aa/3) 
=  ̂ 2oxa°/3/2a. 

Also         (^r)2=  (3xatW2)2=9xa  xa. 
So  that  the  whole  expression  becomes 

x2a  x  aa/3    ̂   x2a-aa%-l  ̂ j(fa%-  1 

2ax9xaxa~    9x2a     ~9x2a* 
Both  transformations  should  proceed  simultaneously, 

as  in  the  next  example. 

Example  10.    Simplify 

We  Set  m-i/2aa/aP       X  m    %    7 

^2^2  x(l/a?ap/g)  xm'8-1'/2  x(l/m°/3)(l/3^6) 

(l/m1/2)^1/2* 
21/2m(a-l)/2ml/2 

^,3W2  x^1/2^  xxv>*  xma'z 
a-1    1    a 

3p      1      p  —        10p2+3  ' a?2    2p   »  X    fc> 

This  may  be  written  :     ̂ jj^> 
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Try  now  the  following  exercises.  They  are  no 

important  in  themselves,  but  they  will  help  you  to  ge 
quite  familiar  with  all  sorts  of  indices. 

Exercises  I.     (See  p.  244  for  Answers.) 

Express  with  positive  indices  and  simplify : 

(1)  a'1.        (2)  x~\  (3)  2m-2.        (4)  l<t,,-\ 

(5)  2-1.*?.       (6)  (i)-W.      (7)  (3-2,r)2.      (8)  (2a"1)3 

(9)  g.  (10)  2-3a-  (11)  (3a2)"1. 

(12)  2~1ax/a-3.       (13)  a1'2.  (14)  8X%2. 
(15)  2«/a1/3.  (16)  Vftx-i/Sx1!*.    (17)  ̂ a~ll2. 

(18)  2x-2'\  (19)  4-1%-*/2.         (20)  2-1a2/a~a 

(21)  (i)-V/3.  (22)  3m-1/5.  (23)  7x°crK 
(24)  120a?-1.  (25)  3-%^.         (26)  S^/ar3. 

(27)  2-2/amx-K  (28)  2a*la-*ar1. 
(29)  (2~1aa;m-2)0.  (30)  (S-Ve1/2)"1. 

(31)  3(2-1«-a:)-2.  (32)  (3~V#*")"*. 
(33)  40^-3a1/2/a^1/3.  (34)  4^-2  (3#2 -2a?-1/3). 

(35)  a'^x-^a^x^iSdux!)0. 

(36)  8^(^V+8"^ 

(37)  4/(m2a-3)-f-aVm-3. 

(38)  m-^+^U'^imJcfl2. 
(39)  2ar2a^-(#3«)1/2.  (40)  [(a-3)*^-*)3/2]1'2. 

(41)  (3a-2/^2/3)-^(a3/2/2.T-3). 

(42)  (2^-1/3)-2/«^-(2-a^a/3)1/2- 



CHAPTER  III. 

EXPONENTIALS,  AND  HOW  TO  TAME  THEM. 

n  exponential  function — also  called  simply  an  "  ex- 
onential " — is  simply  an  expression  in  which  one  of 
le  variable  quantities,  usually  the  independent  one, 

ppears  in  the  index  or  exponent  of  some  power  of 
Qother  quantity  ; 

y=5x,    y  =  aZx,    y=(a-l)1tx,    y=k~x+x-\ 
re  explicit  exponential  functions  of  x,  in  which  x  is 

le  independent  and  y  the  dependent  variable,  as  it 
i  evident  that  if  x  is  given  various  values,  y  will 
ike  corresponding  values.  The  above  expressions  are 

iad  :  "  five  to  the  power  a?,"  "  a  to  the  power  a?,"  "  a 
linus  one  to  the  power  one  over  a?,"  "  h  to  the  power 

linus  x  plus  x  to  the  power  minus  h  "  respectively,  and 
i  on. 

Exponentials  are  not  quite  so  easy  to  deal  with  as 

ther  expressions  simply  because  if  we  are  told  that 

n  unknown  quantity  x  is  to  be  raised  to  a  known  power, 
quare  or  cube,  say,  we  know  exactly  what  to  do  with 

his  unknown  quantity,  as x2=xXX,  x*=xXxXx,  and 
o  on  ;   but  if  we  are  told  that  a  known  quantity  has  to 

29 
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be  raised  to  an  unknown  power,  there  is  no  way  of 

expressing  the  question  in  a  definite  manner,  and  3*, 
say,  has  to  remain  3*.  If  we  have  2  = xz  we  have  at 
once  x=£/2  and  the  value  of  x  is  obtainable  at  once ; 

but  if  we  have  2  =  3*,  and  try  to  proceed  along  similar 
lines,  we  get  £/2=3,  and  x  has  only  been  shifted  to  an 
even  more  awkward  place. 

It  is,  however,  possible  to  bring  an  exponential 
function  to  a  simpler  algebraical  form  by  the  use  of 

logarithms.  Nowadays,  every  schoolboy  knows  how 
to  use  a  table  of  logarithms,  and  he  knows  that  the 

logarithm  of  the  power  of  a  number  is  found  by  multi- 
plying the  logarithm  of  the  number  by  the  index  of  the 

power,  so  that  log(3x)=a?xlog  3,  the  exponential 
becoming  an  ordinary  product,  since  log  3  =  0-4771,  a 
mere  number. 

If  2  =  3*  then  log2=#xlog3  or  0-3010=04771  xx, 

and  a?=  A77V  We  can  use  logarithms  to  perform  the 

division  in  the  usual  way,  so  that 

log  a>=log  0-3010-log  0-4771     and    #=0-6310. 

"  What !  These  are  already  logarithms  !  "  I  hear  yor 

exclaim.  "  Shall  we  take  the  logarithm  of  a  logarithm  ? ' 
Why  not  ?  A  logarithm  is  only  a  number.  Treat  it  a.' 
a  number  and  go  ahead  !  In  mathematics  rules  an 

general. 
Whenever  we  have  an  exponential  function  we  ear 

always  state  it  as  an  expression  containing  logarithms 

and  this  will  generally  be  found  easy  to  deal  witli 



EXPONENTIALS  31 

y  =  5x  becomes  log y=xx log 5,  that  is,  logy =0-699a?; 

i/=ax  becomes  log?/=a?xlog«  ;  y=(a—  l)1/x  becomes 

logy=-log(<x— 1)  and  so  on.     As  will  be  seen  in  the X 

examples  below,  a  wicked-looking  exponential  often 
becomes  most  tame  at  the  mere  sight  of  a  logarithmic 
table. 

It  may  be  stated  here  that  logarithms  are  closely 

related  to  exponentials,  for  if  we  write  10^=3,  say, 
then  x  is,  by  definition,  the  common  logarithm  of  3. 

That  is,  the  common  logarithm  of  any  number  is  merely 
the  index  indicating  to  which  power  the  number  10 
must  be  raised  in  order  to  obtain  the  first  number.  For 

instance,  the  common  logarithm  of  7-2  is  the  value  of  x 
for  which  10*=7-2.  It  follows  that  since  10J  =  10,  the 
common  logarithm  of  10  is  unity. 

That,  if  10*= 7-2,  then  a?=log  7-2,  is  evident,  for,  since 
the  expression  10* =7 -2  is  an  exponential,  we  have, 
from  what  we  have  seen  above,  #xlog  10=log7-2,  and 

as  log  10=1,  #=log7-2.  Similarly,  if  0-00183=  10™, 

then  m  =  log  0-00183.  In  fact,  whenever  we  are  given 

such  an  expression  as  10fc=iV,  we  can  always  write 
at  once  A*=logiV. 

You  will  notice  that  the  number  which  is  raised  to  the 

power  x,  or  m,  or  Jc,  is  always  10.  10  is  selected  because 
it  is  the  basis  of  our  system  of  numeration,  and  the 
logarithms  used  in  connection  with  it  are  therefore 

called  "  common  logarithms,"  10  being  called  the 

"  base  "  of  the  system  of  common  logarithms.  These 
are  the  ones  given  in  any  ordinary  table  of  logarithms. 
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In  such  a  table,  the  logarithm  of  10  will  be  found  to  be  1, 

that  is,  to  have  0-0000  for  its  decimal  part  or  mantissa. 
Instead  of  10  we  could  have  any  other  constant 

number.  For  instance,  if  7  x  =  13,  then  x  is  the  logarithm 
of  13  in  a  system  of  logarithms  the  base  of  which  is  7 ; 

to  avoid  this  long  sentence,  we  use  the  notation  #=log7 13 
the  number  7  placed  in  this  way  after  the  name  logarithm 
(or  its  abbreviation)  means  that  the  base  of  the  system 

is  7.  We  should  have  written  above  log107-2  for  "  the 

common  logarithm  of  7-2,"  but,  for  common  logar- 
ithms, it  is  understood  that  the  number  10  needs  not 

be  appended  to  the  abbreviation  "  log."  Similarly 
^=loga2V  means  :  "  h  is  the  logarithm  of  N  in  a  system 
the  base  of  which  is  a,  that  is,  it  is  the  same  statement 

exactly  as  ak=N.  The  fact  that  these  two  state- 

ments Jc=\ogaN  and  ak=N  are  always  simultaneous, 
so  that  one  necessarily  implies  the  other,  is  absolutely 

general,  and  is  of  great  importance  in  dealing  with 
exponentials.  It  holds  good  whatever  are  the  symbols 
used.     For  instance,  if 

(1  +#)  auV^=^ls/(tQJi  9), 

then  sin  20/ \/ 9  is  the  logarithm  of  a?7/\/(tan  9)  in  a 

system  the  base  of  which  is  (1+a?),  that  is  : 

sin  20Js/9  =  log(1+x)(xels/(t2Ln  9). 

Or,  to  be  again  incongruous,  if  catcow=dog,  then 
cow=logcatdog. 

It  follows  that,  in  every  system  of  logarithms,  since 

1  =(base)°,  log  1  =  0,  whatever  the  base  may  be.  Also  the 
logarithm  of  a  number  smaller  than  1  is  negative  if  the 
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»ase  is  greater  than  1,  since,  if  N<1  and  a>l,  N  =  ax 

lecessitates  x  to  be  negative,  so  that  iV=— ,  where  x  is 

ax 

,  positive  power  of  a  number  greater  than  1.     A  system 
f  logarithms  can  then  be  conceived  the  base  of  which 

3  any  number  we  like.     Such  a  system  could  be  used  for 

alculations  just  like  common  logarithms,  provided  we 
iave  first  calculated  a  table  of  logarithms  in  this  system. 

^here  would  be,  however,  no  particular  advantages  in 
tsing   such   a   system,  and    some    disadvantages,    and 
q   practice   common   logarithms  are  always  used   for 

alculating. 

There  Is,  however,  another  system  of  logarithms,  of 
ven    greater    importance    in    mathematics    than    the 

ystem  of  logarithms  in  the  base  10.     Its  base,  strangely 
nough,  is  not  an  easy  whole  number,  but  an  awkward 

ndless  decimal :    2-7182818284596...  ;    note  that  it  is 
tot  a  recurring  decimal,  as  one  might  think  from  a  glance 
t   the   first   nine   decimals.     This   number   occurs   so 

requently  in  mathematics  that  it   is   represented  by 

he   Greek  letter    "  epsilon,"    e,   just   as   the   number 
-•1415926535 ...    is    represented    by    the    Greek    letter 

1  Pi,"  7T.1    Why  this  particular  number  was  selected  we 
hall  see  later.     Logarithms  in  this  system  are  called 

Napierian  logarithms,  from  the  name  of  the  mathema- 
ician  John  Napier,  who  is  generally  credited  with  their 

nvention.     They  are  also  called  Natural  or  Hyperbolic 

ogarithms,  for   reasons   which   we  shall   soon  under- 
tand. 

1  In  many  text-books  the  letter  e  is  used  instead  of  e. 
g.e.  c 
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The  Natural  logarithm  m  of  a  number  N  is  therefore 

represented  by  ra  =  log6iV,  and,  as  we  have  seen,  this 

is  equivalent  to  em  =  N,  €  standing  for  2-718,  neglecting 
the  other  decimals. 

Of  course,  Napierian  logarithms  can  be  used  for 

calculations  just  like  common  logarithms,  or  logarithms 

in  any  other  system.  They  have,  besides,  many  impor- 
tant properties  with  which  we  shall  become  better 

acquainted  later  on. 

When  the  common  and  Napierian  logarithms  are 
used  together,  the  common  logarithms  should  be  denoted 

fully  as  shown  above,  log10N,  say,  to  avoid  confusion. 
In  calculating,  when  only  common  logarithms  are 
used,  the  notation  may  be  simplified  by  omitting  the 

suffix  10,  so  that  log  N  means  the  same  as  log^A7. 
The  Napierian  logarithms  are  of  such  importance  in 
mathematics,  however,  that  whenever  the  notation 

log  A7"  is  employed  without  a  suffix,  except  in  actual 
calculation,  the  Napierian  logarithm  is  always  intended. 

The  Napierian  logarithm  of  any  number  can  easily 
be  calculated  from  its  common  logarithm,  as  follows  : 

suppose  we  want  loge4-8;  if  a?=loge4-8,  then,  ̂ =4-8 
or  2-718*  =  4-8,  that  is,  a?xlog102-718  =  log104-8.  But 
log102-718  =  0-4343 — an  easy  number  to  remember — so 

that  0-4343,^ =log10 4-8  and  ;c=loge  4-8=0-6812/0-4343 
=1-5686.  As  multiplication  is  quicker  than  division, 
and  since  1/0-4343=2-3026,  the  same  result  can  be 
more  readily  obtained  by  performing  the  operatior 
2-3026x0-6812=1-5686.  Hence  the  familiar  rule  :  U 

get  the  Napierian  logarithm  of  a  number,  multiply  tht 
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mimon  logarithm  of  the  number  by  2-3026.  Inversely, 

ig!02V = 0-4343  x  log.  iV,  so  that  if  log,  4-8  =  1-5686  be 
iven,  then  log104-8= 0-4343x1  -5686  =  0-6812. 
You  are  advised  to  work  through  the  following 

samples  so  as  to  become  quite  familiar  with  the  process 

-  f  reducing  exponentials  to  a  harmless  condition. 

Example  1.     Given  e  =  2-718,  find  loge  13-2. 

If  #=loge13-2,  then  e*=13-2  or  2-718*=  13-2. 

Hence         x  xlog  2-718=log  13-2, 

a?=log  13-2/log  2-718  =  1-1206/0-4343  =  2-580; 

ence  loge  13-2=2-580. 

Example  2.     Find  x  if  0-31* =0-0048. 

We  have         x  xlog  0-31  =  log  0-0048. 
#xT-4914  =  3-6812. 

T-4914may  be  written  -1+0-4914,  that  is,  -0-5086  ; 

iimilarly,  3-6812  =  -3+0-6812  =  -2-3188,  so  that 

a? =-2-3188/  -0-5086  =4-559. 

Example  3.     Find  x  if  3^=7,  and  hence  find  log37. 

We  get  x  xlog103=log107,    ̂ =0-8451/0-4771  =  1-772. 

Hence,  since    31-772  =  7,     l-772  =  log37. 

Example  4.     Solve  the  equation  l-5(a5+1,=2-4. 

We  get      (a?+l)logl-5=log2-4 

#+l=log2-4/logl-5 

=  0-3802/0-1761  =  2-16. 
Hence  x =1-16. 

* 
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Example  5.     If  1463<?2=12,  find  the  value  of  0.    Wege 
302xlogl46  =  logl2, 

6>2=log  12/3  log  146  =  1-0792/3  x  0-1644=2-19 
and  0  =  1-48. 

Try  now  the  following  exercises  : 

Exercise  II.     (For  Answers  see  p.  244.) 

(1)  Find  the  value  of  x  if  12  =  5*. 

(2)  Find  the  value  of  x  if  3  =  1-5*. 

(3)  Find  the  value  of  y  if  3*=2(*+3). 

(4)  Find  the  value  of  m  if  7=2™+1. 

(5)  Find  x  and  y,  iiy=?>x—l  and  1-8^=5-3*. 

(6)  Find  k  if  345  =  1  -18*2. 

(7)  If  1-5^=0-2  find  t 

(8)  Solve  the  equation  146  =  5-21/*. 

(9)  If  3x4-3-*=l,  find  x. 

(10)  If  3-2m/5-7n  =  l,  and  m+n=3,  find  m  and  n. 

(11)  Find^if  1241/*  =  l-62*2. 

(12)  Solve  the  equation  0A{x-1)  =  h2-1'x. 

(13)  If  yx  =  x{l°zy+l),  find  y  when  a?=l-72,  and  als 
x 

whenlog10a?=r^. 

(14)  Find  the  angle  0  if  (3/8)8i»*-2  =  0. 

3  log  I- 
(15)  If  742    *    =10  and  ̂   =  100,  find/,-  and  x. 

(16)  Given    e  =  2-718,    calculate   loge2,  loge5,  logel 
and  verify  that  loge  10=loge  2  +loge  5. 

(17)  Given  e=2-718,  calculate  loge3-2  and  log,  0-11. 
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(18)  Calculate   TrTaR — >  usmg  Napierian  logarithms 

ilculate  the  logarithms  if  no  table  is  available). 

(19)  From  10=5*  calculate  x,  and  hence  find  the  value 
the  logarithm  of  10  in  the  system  the  base  of  which 
5. 

(20)  Calculate  #=log106/log6 10. 

(21)  From  loge  3  =  1-0986  derive  the  value  of  e. 

(22)  Find  the  base  of  the  system  of  logarithms  in 

rich  the  logarithm  of  24-8  is  0-8. 

(23)  Calculate  log73,  log74,  log79,  log712  and  log727, 
d  with  these  verify  experimentally  that  a  system  of 

rarithms  to  the  base  7  can  be  used  exactly  in  the 
me  way  as  common  logarithms  to  calculate  products 

x4),  quotients  (27  -i- 9),  powers  (32)  and  roots  (4/27). 

(24)  In  what  system  is  the  number  5  equal  to  its  own 
$arithm  ? 

(25)  In  what  system  of  logarithms  is  the  number  100 

■ual  to  20  times  its  own  logarithm  ? 

(26)  Calculate  1-53  using  logarithms  whose  system  has 
for  base. 

.   ?~V=(H<3*+2). 

(28)  If  y-**=yx0-31l3x  find  the  value  Of  ij  when 
=111  and  the  value  of  x  when  y= 0-001 11. 



CHAPTER  IV. 

A  WORD  ABOUT  TABLES  OF  LOGARITHMS. 

Consider  the  three  lines  below  : 

...e-3  =  l/e3     e-2=l/e2     e-^l/e     e°  e1  e2  e3.... 
Numbers 

...00498        01354       03679      1     27183    73876    200793.... 

Indices  =  Logarithms 
...-3  -2  -10         1  2  3.... 

The  second  line  gives  the  numerical  value  of  tl 
terms  in  the  first  line  ;  the  third  line  consists  of  tl 

indices  of  e  in  the  first  line,  that  is,  of  the  Napieria 

logarithms  of  the  numbers  in  the  second  line.  Tl 
second  and  third  line  together  constitute,  in  fact, 

small  bit  of  a  table  of  Napierian  logarithms,  only  \ 

have  but  powers  of  epsilon  among  the  numbers,  and  t' 
natural  sequence  of  numbers  among  the  logarithms. 

Note  that,  in  the  second  line,  each  number  is  obtain 

by  multiplying  the  number  immediately  to  the  1< 
of  it  by  a  constant  number,  here  epsilon ;  such 
sequence  of  numbers  is  called  a  geometrical  progressk 
Note  also  that,  in  the  third  line,  each  number  (here 

logarithm)  is  obtained  by  adding  the  same  number 
this  case  unity)  to  the  number  immediately  to  the  1 

38 
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>f  it  ;    such  a  sequence  of  numbers  is  called  an  arith- 
netical  progression. 
Well,  in  any  system  of  logarithms,  whatever  may  be 

he  base,  we  shall  always  find  these  features  : 

(1)  The  sequence  of  numbers  form  a  geometrical 

progression ; 

(2)  The  sequence  of  logarithms  form  an  arithmetical 

progression ; 

(3)  The  term  of  the  former  corresponding  to  zero  in 

the  latter  is  unity  ;     (base  °=1.) 

(4)  The  term  of  the  former  corresponding  to  unity 
in  the  latter  is  the  base  of  the  system  of 

logarithms  itself. 

Whenever    these    conditions    are    fulfilled,    the    two 

progressions  form  a  system  of  logarithms. 
In  the  bit  of  Napierian  Table  above,  we  only  have 

powers  of  epsilon  and  the  sequence  of  natural  numbers. 

The  gaps  can  be  rilled  up  easily  if  we  keep  in  view  the 
two  first  conditions  stated  above.  For  instance,  if  we 

want  to  place  a  number  between  e2  and  e3,  if  x  is  the 
constant  factor  by  which  each  term  of  the  new  geo- 

metrical progression  is  to  be  multiplied  in  order  to  get 
the  one  immediately  following,  we  must  have  : 

e2xx=N    and    Nxx  =  e3    or    N=e3/x, 

hence         e2xx=e*/x,    x2  =  e,     s/e  =  1-6487 

and  AT-e2Xl-6487  =  12-1850. 

Its  logarithm  is  evidently  2-5. 
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Similarly,  putting  a  number  between  e°  and  e1  and 
between  e1  and  e2,  we  get  log  1-6487  =  0-5000  and 
log  4-4817  =  1-5000.  We  can  in  this  way  put  a  number 
and  a  logarithm  in  the  middle  of  each  gap  of  our  bit  of 
table,  then  in  the  middle  of  each  gap  of  the  table  so 

obtained,  and  so  on,  until  we  get  a  table  of  numbers 

advancing  by  such  a  small  step  each  time  that  it  will 
contain  the  sequence  of  the  natural  numbers. 

Clearly  this  is  not  practical.  The  method  has  only 
been  outlined  to  illustrate  an  important  difference 

between  Common  and  Napierian  logarithms. 
If  we  deal  as  explained  above  with  common  logarithms, 

we  have 

...io-3 

10-2 

io-1 
10° 

101 

102 

IO3.... 

Numbers ...0001 001 01 
l 

10 
100 1000.... 

Indices  =  Logarithms ...-3 

_2 

-1 

0 l 2 3.... 

Introducing  a number in  each gap 

by 

the  method 

explained  above, we  get 

s/io 
=  3-1623  for  the  constanl 

factor. 

Numbers 

...001     0-3162-28    01    0-316228     1     316228     10    31-6228     100.... 

Logarithms 
...-2         -1-5      -1        -0-5       0        0-5         1         1-5  2.... 

which  may  be  written 

...20000  2-5000   1-0000   1-5000     0  0-5000  10000  1-5000  20000.... 

where  the  figures  under  the  minus  sign  are  negative  anc 
the  decimal  parts  (mantissae)  are  positive. 

A  fact  is  evident  at  first  sight :  the  numbers  0-0316228 
0-316228,  3-16228,  31-6228...,  which  only  differ  by  th< 
position  of  the  decimal  point,  have  the  same  decimal 
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lamely,  0-5000,  in  their  logarithms,  the  integer  alone  of 
he  latter  being  different.  This  characteristic  is  moreover 

•asily  found,  as  every  schoolboy  knows,  being  positive  and 
me  unit  less  than  the  number  of  integers  if  the  number  is 

greater  than  unity,  and  negative  and  numerically  equal 

o  unity  added  to  the  number  of  noughts  immedi- 
itely  on  the  right  of  the  decimal  point  if  the  number  is 

smaller  than  unity.  It  follows  that,  in  a  system  of 
common  logarithms,  we  need  not  tabulate  the  logarithms 
3f  all  the  numbers,  but  only  the  decimals  of  the  logarithms 
)i  the  numbers  from  say  1000  to  10000,  or  10000  to 
100000,  according  to  the  size  of  the  table.  If  we  have 
n  the  table  the  decimal  of  the  logarithm  of  76835,  for 

instance,  we  can  get  the  logarithm  of  any  number  con- 
sisting of  these  figures,  whether  it  be  76,835,000,000  or 

0-00000076835  ;  it  is  only  a  matter  of  giving  the  proper 
characteristic  to  the  tabulated  decimal. 

Nothing  like  this  is  to  be  found  in  the  system  of 
Napierian  logarithms.     We  have  seen  that 

loge  12-1850=2-5000 

loge  4-4817  =  1-5000 

loge  1-6487  =  0-5000 

and  it  is  evident  that  no  such  single  relation  exists. 

It  follows  that  in  a  table  of  Napierian  logarithms  there 
must  be  as  many  logarithms  as  there  are  numbers,  from 

the  greatest  integer  imaginable  down  to  the  smallest 
decimal  fraction  we  can  think  of.  For  this  reason, 

Napierian  logarithms  are  not  used  for  performing  calcula- 
tions, as  it  would  be  impossible  to  make  a  complete 
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table,  and  even  for  a  restricted  range  of  numbers  con- 

sistent with  general  usefulness,  its  size  would  be  pro- 
hibitive. The  great  importance  of  Napierian  logarithms 

resides  in  their  intimate  connection  with  important 
series  and  mathematical  functions  which  causes  them  to 

appear  in  many  mathematical  investigations,  as  we 
shall  see  later. 



CHAPTER  V. 

A  LITTLE  CHAT  ABOUT  THE  KADIAN. 

In  the  pages  which  follow  we  shall  often  deal  with  angles, 
and  it  is  necessary  that  you  should  be  quite  familiar 
with  the  measure  used  by  mathematicians  when  they 
want  to  ascertain  the  magnitude  of  an  angle.  This 
measure  is  the  radian.  You  are  accustomed  to  form  an 

idea  of  the  magnitude  of  an  angle  by  stating  how  many 

degrees  and  fractions  of  a  degree — minutes  and  seconds — 

it  contains.  These  units  are  called  "  sexagesimal " 
units,  because  the  principal  unit,  the  degree — which  is 
defined  as  the  -fa  part  of  a  right  angle,  is  subdivided  into 

sixty — six  times  ten — equal  parts  or  "  minutes  " —  i.e. 

"  smalls,"  each  minute  being  divided  into  sixty  "  second 

minutes,"  as  they  were  originally  called,  that  is,  "  smalls 
of  the  second  order,"  later  called  "  seconds  "  for  short- 

ness ;  the  seconds  are  subdivided  decimally.  It  may 
be  noted  here  that  minutes  and  seconds  of  arc  should 

always  be  denoted  by  the  symbols  '  and  "  respectively, 
never  by  m  and  s,  these  being  used  for  minutes  and 
seconds  of  time. 

Now,  whenever  we  want  to  combine  together  several 

quantities  of  the  same  kind,  it  is  convenient — and  often 43 
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sin  0 

etc.,  and    7^,  -^— ,,     etc.,     are 

even  necessary — that  they  should  be  expressed  in  terms 
of  the  same  unit.  For  instance,  when  finding  the  area 
of  a  rectangular  room,  the  length  and  breadth  must 

both  be  expressed  in  feet  or  yards  or  some  other  unit ; 

similarly,  when  finding  the  capacity  of  a  cylindrical 

vessel,  the  height  and  the  radius  must  both  be  expressed 

in  feet  or  inches  or  any  other  suit- 
able unit.  Now,  in  trigonometry, 

we  continually  use  such  ratios  as 
SAT    ,     a    AP  ftK      ,v 

m,  t™0=m  (Fig.  1), 
BN    AP 

OB'  OA' merely  the  measure  of  the  length 
of  BN,  AP,  etc.,  when  OB  or 

OA,  namely  the  radius  of  the  arc 
BQA,  is  used  as  a  unit.  In  other 
words,  when  we  deal  with  such 

ratios — which  we  call  "  circular 

functions"  because  their  value  depends  on  the  magnitude 
of  lines  drawn  in  a  certain  definite  way  with  respect  to 

the  circumference  of  a  circle — the  unit  of  length  which 
we  use  is  the  radius.  Now,  it  is  not  only  logical,  but 
essential  to  correct  mathematical  reasoning  and  to  the 
results  derived  from  it,  that  the  same  unit  should  be  used 

for  measuring  the  length  of  all  the  lines  connected  with 

the  given  angle  9,  and  among  these  is  the  arc  BQA  itself. 
How  can  we  measure  the  length  of  this  arc,  since  it 

is  a  curved  line  ?  Very  easily,  if  we  remember  that  the 

length  of  any  arc  is  exactly  proportional  to  the  magnitude 



A  CHAT  ABOUT  THE  RADIAN     45 

of  the  angle  it  subtends  at  the  centre  of  the  circle. 

Suppose,  for  instance,  that  we  have  ascertained  the 
magnitude  of  the  angle  subtended  at  the  centre  of  the 
circle  by  an  arc  of  the  circumference  the  length  of  which 
is  exactly  the  same  as  the  length  of  the  radius  of  the 
circle,  that  is,  by  an  arc  of  unit  length.  Then,  as  many 

times  as  this  angle  is  contained  in  any  given  angle,  as 

many  times  the  length  of  the  unit  of  arc  will  be  contained 
in  the  length  of  the  arc  corresponding  to  the  given  angle. 
This  angle,  corresponding  to  unit  arc,  is  taken  as  unit 

angle  and  is  called  the  radian.  The  radian  is  called 

the  "  circular  unit  "  of  angular  measurement  because 
it  is  derived  from  the  measurement  of  an  arc  of  circle. 

It  is  divided  decimally. 
Mathematicians  always  express  angles  in  radians,  so 

that  it  is  superfluous  to  note  the  unit.  By  "an  angle 
0,"  they  mean  always  "  an  angle  of  0  radians,"  and  this 
is  the  same  as 

length  of  arc  corresponding  to  angle  9 
length  of  radius  of  the  circumference  to  which  this  arc 

belongs, 

so  that  9  =   !*     (see  Fig.  1)  or,  if  I  be  the  length  of  an 

arc  and  r  be  the  length  of  the  radius  of  the  circle  to 

which  it  belongs,  while  9  is  the  angle  subtended  at  the 

centre  of  the  circle  by  the  arc  I,  then  9=-  or  l=rO, 
the  angle  9  being  expressed  in  radians. 

It  follows  that  an  angle  of  four  right  angles =   =27r 

radians,  while  an  angle  of  two  right  angles  is  an  angle 
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of  7r  radians  ;    likewise,  one  right  angle  is  an  angle  of 

-„  radians.     The  notations  27r,  77-,  and  ̂ ,  the  radian  being 

the  unit  implied,  of  course,  are  therefore  used  instead 

of  360°,  180°  and  90°  respectively. 
It  is  worth  while  noticing  here  that  sin  9,  tan  9,  etc., 

retain  exactly  the  same  value,  whether  9  is  expressed 

in  radians  or  in  sexagesimal  units,  as  this  value  depends 

solely  on  the  actual  magnitude  of  the  angle  9,  and,  being 
a  ratio  of  two  lines,  is  quite  independent  of  the  unit 

employed  in  measuring  these  lines  or  the  angle  itself. 
It  follows  that  the  tables  of  trigonometrical  functions, 
which  give  the  values  of  sin  9,  tan  9,  etc.,  and  in  which 

the  angles  are  usually  expressed  in  sexagesimal  units, 

degrees  and  minutes,  can  be  used  with  angles  expressed 
in  circular  units  provided  one  can  readily  pass  from  one 

system  of  units  to  the  other.  Now,  this  is  very  easily 

done,  as  we  have  just  seen  that  4  right  angles  =  360°  =  2 ir 
or  6-283184  ...  radians,  from  which  we  find  at  once  that 

1   radian  =  -  OQ91Q. —  degrees  or  57°-29577 ...  that  is, 

57° -30  approximately. 
The  use  of  the  radian  as  a  unit  of  angle  simplifies 

considerably  all  problems  involving  the  length  of  an  arc. 
For  instance,  let  it  be  required  to  find  the  length  of  an  arc 

of  the  circumference  of  a  circle  of  radius  7J  inch,  corre- 
sponding to  an  angle  9.  If  we  first  suppose  the  angle  9 

to  be  given  in  sexagesimal  units,  say  41°  15',  then 

length  of  circumference  _  360° 

~lengthof  arc-       ~  4PTF ' 
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2irr_  360 
;natis  t    -41.25> 

.    6-2832x7-25x41-25     K  QO  .     * 
lence  1=   s^   =  5-22  inches. 

The  operation  by  which  the  result  is  obtained  involves 
four  numbers. 

Now  suppose  the  angle  0  to  be  given  in  circular  units, 

say  0-72  radians  ;  then  1=  6r= 0-72  x  7-25 =5-22  inches. 
The  simplification  is  so  great  that  it  is  often  quicker  to 
convert  angles  expressed  in  term  of  the  degree  and  its 

subdivisions  into  radians  before  proceeding  with  the 
required  calculations.  There  are  tables  which  allow  of 

this  conversion  being  made  by  mere  inspection.* 
The  following  worked  examples  will  help  to  clear 

any  haziness  yet  lingering  in  the  beginner's  mind. 

Example  1.  Express  in  radians  an  angle  of  68°  26', 
and  express  in  sexagesimal  units  an  angle  of  0-36  radian. 
Find  in  each  case  the  length  of  the  subtending  arc  on  a 
circumference  of  20  inches  radius. 

(a)  68o26'  =  68o+26o/60=68°-4333. 

Since  1  radian =57° -30,  the  number  of  radians  in  the 
angle  is  684333/57-30=1-1943  radian,  hence  the  length 
of  the  arc  is  1-1943x20=23-886  inches.  (The  more 
exact  value  57-29577  gives  1-1944  radian.) 

*  Such  a  table  is  given  in  Cargill  G.  Knott's  Four-Figure 
Mathematical  Tables  (W.  &  R.  Chambers,  Ltd.).  This  cheap  little 
book  of  tables  contains  also,  besides  the  usual  tables,  tables  of 
exponential  and  hyperbolic  functions,  which  the  reader  will  find  very useful. 
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(6)  0-86  radian=0-86x57-30  degrees 
=  49°-278  =  49°  16'  40"-8. 

The  length  of  the  arc  is  0-86  x  20  =  17-2  inches.     (The 

more  exact  value  57-29577  gives  49°  16'  27"-7.) 
Example  2.  On  a  circumference  of  radius  3  ft.  3  in.,  ar 

arc  is  taken  equal  in  length  to  that  of  an  arc  of  38°  or 
a  circumference  of  5  ft.  6  in.  radius.  Find  the  angh 
subtended  at  the  centre  by  the  arc  taken  on  the  firsl 
circumference. 

The  simplest  way  to  do  this  is  as  follows  : 

Length  of  arc  of  second  circumference 

=38x5-5/57-30=3-648  ft. 

This  is  also  the  length  of  the  arc  on  the  first  circum- 
ference, hence  the  angle  in  radians  subtended  at  th( 

centre  is  3-648/3-25=1-123  radian,  that  is 

1-123  x  57-30  =  64°-348  =  64°  20'  52"-8. 

Example  3.  What  is  the  radius  of  the  circumferenc( 

on  which  a  length  of  10  inches  subtends  at  the  centre 

an  angle  of  153°  ? 

153°=153/57-30  radians=2-67  radians. 
Hence  2-67  X  radius  =  10  inches  and 

radius  =  10/2-67  =  3-745  inches. 

Example  4.  Find  the  value  of  ?/=sin  $+30  wher 

0=20°.  Remember  that  although,  if  convenient,  one 
can  take  the  angle  in  degrees  when  using  the  trigono 

metrical  tables,  yet  in  any  other  case  the  angle  is  alwayi 
in  radians,  so  that  we  have  : 

y=sin  20°+3  x20/57-30=0-3420+l-0472  =  l-3892. 
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i  i  pie  5.  A  cyclist  riding  on  a  circular  track  could 

ach  the  centre  of  the  track  in  2m  17s  at  the  speed  at 
iich  he  follows  the  track.  What  angle  does  he  turn 

rough  in  5  minutes  ? 

Expressing  the  times  in  seconds,  the  length  of  the  arc, 
radians,  is  evidently 

5^To=2-190radian=2-190x570-30=125°29,13/,-2. 
By  working  through  the  following  exercises  you  will 
alize  the  simplification  brought  about  by  the  use  of 
ie  radian. 

Exercises  III.     (For  Answers,  see  p.  245.) 

(1)  Find  the  length  of  an  arc  of  0-6  radian  in  a  circle 
7-3  inch  radius. 

(2)  Express  71°  15'  in  radians  and  0-715  radians  in 
xagesimal  units. 

(3)  Express  in  radians  angles  of  1°,  1',  1"  respec- 
vely,  and  find  the  length  of  the  corresponding  arcs  in 

circle  of  1  foot  radius.     (Take  1  radian  =57°-296.) 

(4)  If  the  smallest  subdivision  possible  in  the  gradua- 

on  of  a  protractor  is  0-01  inch,  find  the  radius  of  the 
aallest  protractor  to  read  (a)  to  degrees,  (b)  to  minutes, 
id  (c)  to  seconds  of  arc. 

(5)  One  angle  of  a  triangle  is  0-576  radian  and 

lother  angle  is  79°  34'.  Find  the  third  angle  in  circular 
id  in  sexagesimal  units. 

(6)  Find  the  angle,  in  radian,  at  the  centre  of  a 

rcle  of  8  inches  radius,  corresponding  to  an  arc  5-6  inch 
i  length. 
G.E.  D 
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(7)  Find  the  radius  of  the  circle  in  which  an  angle 

1-2  radian  at  the  centre  subtends  an  arc  the  length 
which  is  10  inches. 

(8)  Find  the  radius  of  the  circle  in  which  an  ang 

of  3°  is  subtended  at  the  centre  by  an  arc  equal  in  leng 
to  an  arc  of  48°  12'  on  a  circumference  of  radius  3  feet 

(9)  Find  the  value  of  x  =  -. — j\  and  of  ?/=^2v/tai v  '  sm#  J 

with  0  =  50°.     (Do  not  replace  30  by  150  !) 
(10)  Find  the  value  of 

sin2#  ,       JW 
2/  =  7T7T  + 

6>+l^tan(6>+i)' 
with  6>  =  42°. 

(11)  Find  in  sexagesimal  units  the  value  of  the  angle 

if  3W=5. 

(12)  The  coordinates  x,  y  of  a  point  on  the  cycloid  i 

given  by  the  formulae  x  =  R(0— sin  0),  y=R(l—cos 
where  9  is  the  angle  turned  through  by  the  generati 

circle.  Find  the  value  of  x  and  y  when  R=10  incl 

and  0=4:6°  ;  hence  find  the  distance  of  the  correspond: 

point  of  the  curve  from  the  point  for  which  0=0°, 
origin  of  the  curve. 
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CHAPTEE  VI. 

IPREADING  OUT  ALGEBRAICAL  EXPRESSIONS. 

rHEN  a  complicated  thing  is  difficult  to  understand,  it 
in  often  be  grasped  if  it  can  be  taken  to  pieces,  so  to 
)eak,  and  each  piece  examined  separately.     Obviously, 

[1  the  little  pieces  together  occupy  more  space  than  the 

riginal  thing  they  made  up,  which  has  been  expanded 
1  the  process.     Similarly,  a  great  many  mathematical 
xpressions  which  are  found  too  difficult  to  deal  with 

3  they  are  can  be  quite  easily  tackled  by  splitting  them 
own  into  many  smaller  bits,  the  sum  of  which  makes 

p  the    original    expression    exactly,    or   to    a    given 
pproximation  which  usually  can  be  made  as  close  as 
ne  cares  to  have  it.     This  process  is  called  expanding, 
nd  the  result  of  the  process  is  called  the  expansion  of 

he  expression.     This  process  of  expanding  an  expression 
i  so  important  that  there  is  hardly  any  mathematical 
nalysis  of  some  importance  in  which  one  does  not 
esort  to  it. 

It  is  a  curious  fact  that  beginners  are  very  much 
iraid    of   expansions.     They   look   in   dismay   at   the 

rray  of  terms,  and  foolishly  think  that  their  number 

vill  make  the  whole  thing  absolutely  unmanageable, 

51 
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when,  as  a  matter  of  fact,  it  is  exactly  the  reverse.  On' 
cannot  swallow  a  plum  pudding  without  cutting  it  into 
slices,  and  the  slices  into  spoonfuls,  but  once  the  sub 

division  has  been  performed,  see  how  easily  it  disappears 
The  difficulty  is  absolutely  imaginary,  as  you  will  agre 
yourself  when  we  get  to  the  end  of  the  chapter. 

First  of  all,  let  us  remember  two  expansions  you  kno^ 

already  ;  they  are  short  ones  : 

{aJcx)2=a2jr2axJcX2. 

{a+x)3=a*+3a2x+3ax2+x*. 
Note  that  we  arrange  the  terms  in  the  expansion  i 

a  definite  order  :  the  first  term  does  not  contain  x — w 

can  say  it  contains  x  to  the  power  zero,  since 

a?=a2xl=a2xx°, 

and  similarly  az=az  Xx° ; 

the  second  term  contains  x  to  the  power  1,  or  x  mereb 

the  third  term  contains  x  to  the  power  two,  or  x2,  an 
so  on,  the  index  of  x  in  successive  terms  increasing  b 

unity  each  time. 

Did  you  ever  wonder  what  (a-\-xY  would  be  like 

It  is  easy  to  calculate,  it  is  {a  +x)3  X  (a  +x).  Perf ormir 
the  operation  in  the  ordinary  way,  we  get 

Similarly, 

{a+x)b={a+xyx(a+x) 

or        (a+x)5=a5+5a*x+l0a3x2+10a2x*+5axi+x* 
Note  also  that  the  terms  become  more  and  mo  i 

numerous  as  we  expand  higher  powers  of  (a-\-x).     1  ■ 
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ch  expansion,  the  number  of  terms  is  one  more  than 
e  index,  and  we  shall  find  this  is  always  the  case  as 

ag  as  the  index  is  a  positive  integer.  Note  again 
at  these  terms  are  perfectly  simple  terms  like  those 

alt  with  at  school  by  small  boys  just  beginning 

*ebra.  In  other  words,  each  power  of  the  quantity 
thin  the  brackets  has  been  split  into  many  simple 

tie  terms.  The  higher  the  power — and  therefore  the 
)re  complicated  the  expression — the  greater  the 
mber  of  terms,  but  these  terms  remain  quite  simple  : 

complexity  is  introduced  by  their  greater  number. 
However,  their  number  might  be  a  source  of  trouble 

we  had  a  great  many,  but — and  this  is  the  beauty  of 
lis  process — the  expansion  of  functions  is  usually  done  in 
ses  where  the  terms  get  gradually  smaller  and  smaller, 
that  after  a  few  terms,  sometimes  as  few  as  three, 

even  two,  all  the  following  terms  can  be  entirely 

lored,  as  they  are  too  small  to  affect  the  result  appreci- 
ly.  It  follows  that  the  useful  expansion  of  a  function 

generally  limited  to  a  very  few  quite  simple  terms, 
that  the  fact  that  the  actual  number  of  terms  is  very 
iat  does  not  matter  in  the  least.  In  most  cases,  in  fact, 

3  number  of  terms  is  indefinitely  large. 
Let  us  make  sure  that  we  understand  this  most  im- 

rtant  feature  of  the  use  of  expansions  by  an  example : 
us  return  to  the  expansion  of 

(a+x)5=a5+5a*x+l0a3x2+l0a2x3-\-5ax*+x5. 

o:  Suppose  x  is  very  small  compared  to  a,  for  instance 

1  )pose  a=\  and  #=0-01. 
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Then  to  find  the  value  of  (a-\~x)5  we  have  1-015  to 
calculate.  It  is  easy — but  tedious — to  calculate  this 

by  ordinary  calculation ;  we  get  1-0510100501  with 
10  places  of  decimals.  But  most  probably  we  did  no1 

want  10  places  of  decimals,  so  a  portion  of  the  laboui 
is  wasted.  Suppose  we  only  wanted  three  decimals 

and  that  we  have  no  table  of  logarithms  at  hand.  Sine* 

the  expansion  is  equivalent  to  the  given  expression,  w» 
may  use  the  expansion,  by  replacing  in  it  a  by  1  anc 

x  by  0-01  respectively.    We  get 

l5+5xl4x0-01+10xl3x0-012+10xl2 
x0-013+5xlx0-014+0-01{ 

or  1  +0-05+0-001  +0-00001  +0'00000005+0'000000000: 

Note  how  the  terms  are  rapidly  dwindling  down  to 

negligible  value.  Since  we  only  want  three  places  ( 

decimals,  we  can  neglect  all  the  terms  after  the  thin 

and  write,  using  the  sign  §  instead  of  =  to  mea 

"  approximately  equal  to  "  : 

(1-01)5§  1+0-05+0-001    or   (1-01)5  §  1-051. 

Had  we  wanted  (1-01)23  correct  to  three  places 
decimals,  the  expansion  would  have  contained  23  +  1 
24  terms,  but  we  should  not  even  need  to  write  the 

down,  for  we  would  need  only  the  three  or  four  first  one 

Yes,  you  will  say,  but  how  shall  we  get  the  three 

four  first  ones,  for  (1-01)23  or  (a+x)23  is  obtained  frc 

multiplying  (l-01)22xl-01   or   (a+x)22x(a+x),  so 
need  first  calculate  the  23  terms  in  the  expansion 

(1-01)22  or  (a+x)22. 

I 
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If  it  were  so,  the  prospect  before  us  would  not  be  a 

ight  one,  but,  luckily,  it  is  not  so.  There  is  a  most 
jautiful  law  that  runs  through  the  whole  domain  of 

athematics — a  law  called  the  Principle  of  Mathematical 
iduction,  which  is  this  :  If  a  certain  process  is  applied 

i  a  certain  quantity,  and  yields  a  certain  result,  and 
exactly  the  same  process,  applied  to  several  graduated 

ight  modifications  of  that  quantity,  yields  results 
hich  are  gradually  modified  in  some  regular  manner, 
len,  as  the  quantity  is  further  modified  in  exactly  the 

ime  way,  the  results  obtained  by  submitting  it  to  this 
ame  process  will  continue  to  be  modified  according  to 
le  regular  manner  which  has  become  evident  in  the 
irlier  stages,  however  far  the  modifications  of  the 

uantity  are  pushed. 
Let  us  take  an  easy  example  to  illustrate  this 

jatement. 

Consider  the  number  of  integers  (that  is,  of  whole 

umbers)  of  one  figure,  of  two  figures,  of  three,  four, 
ve  figures,  etc. 
We  can  easily  form  the  following  little  table  : 

Number  of  integers  of  1  figure  :  9  or  9  x  10°. 

2  figures:       90or9xl01. 
3  „  900or9xl02. 
4  „         9000or9xl03. 

The  number  of  figures  in  the  integer  is  the  quantity 
vhich  is  regularly  modified,  as  it  takes  the  values 
,  2,  3,  4,  ...  etc.  ;  the  process  to  which  it  is  submitted 

s  the  finding  of  the  number  of  integers  having  that 
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particular  number  of  figures  ;  the  results,  if  rewritten 

as  shown  on  the  right,  evidence  at  first  sight  a  law  of 

formation  :  the  number  of  integers  is  9  multiplied  by  a 
power  of  10  whose  index  is  equal  to  the  number  of  figures 
in  the  integer  less  one.  We  can  now  without  any  more 
thinking  write  down  at  once  the  continuation  of  the 
table  : 

Number  of  integers  of  5  figures  :  9  xlO4 =90,000. 

6      „         9  XlO5 =900,000. 
and  so  on. 

When  finally  we  get  to  an  unknown  number  of  figures, 
say  x,  we  still  have  : 

Number  of  integers  of  x  figures  =9  X lO*"1. 
All  we  have  done  is  this  :  we  have  assumed  that 

the  law  of  formation  of  the  successive  results  remaim 

the  same  throughout ;  we  have  found  that  this  law  i.' 
true  for  the  first  few  cases  which  we  could  easily  calculate 

and  then  we  have  applied  it  to  cases  which  were  of  les.' 
easy  calculation,  or  which  we  could  not  calculate  at  al 
because  letters  were  used  instead  of  numbers.  Thes< 
results  are  found  to  be  correct. 

This  principle  is  often  used  to  obtain  further  term; 

of  a  sequence — or  series — when  enough  terms  are  givei 
to  show  what  is  called  the  law  of  formation  of  th- 

successive  terms.  For  instance,  if  it  is  required  t< 
continue  the  series 

2     3#     9x2   .     27 x*     . 2    '  2x4  ' 2x4x6 
and  to  find  the  term  of  position  n. 



I ALGEBRAICAL  EXPRESSIONS  57 

The  series  can  be  written 

S°x°  ,  31.*;1  32#2 

1     '  1x2'n(1x2)x(2x2) 

33#3 

+  ... 
1  (Ix2)x(2x2)x(3x2) 

The  next  term  is  evidently 

3ixi   __        81a;4 

(1  x2)  x  (2  x2)  x  (3  x2)  x  (4  x2)~  2  x  4  x  6  x  8' 

and  the  next  is        ̂  — -. — 5 — 5 — ^ . 2x4x6x8x10 

The  rank  of  any  term  is  one  more  than  the  index  of  x 

in  the  numerator,  or  than  the  highest  multiplier  of  two 
in  the  denominator,  hence  the  term  of  rank  n  is 

2x4x6x...x[(n-l)x2] 
The  term  of  rank  w+1  will  be  more  convenient  to 

write  ;  it  is 

Znxn 2x4x6x...x2w 

Now,  if  we  could  find,  in  some  similar  manner,  the 

law  of  formation  of  the  expansions  of  the  expressions 

(a-\-xY  (a-\-x)z ...  etc.,  successively,  we  would  be  able 
to  write  down  the  expansion  of,  say,  (a+x)2Z  without 
the  extremely  tedious  process  of  multiplying  out,  merely 
by  following  that  law  of  formation;  we  could  also  write 

the  expansion  of  (a-\-x)n,  which  we  cannot  get  otherwise, 
since  we  get  it  by  working  out  the  product  of  n  factors 

each  equal  to  {a-\-x),  an  operation  which  of  course  we 
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cannot  perform  actually,  since  we  do  not  know  what 
number  n  represents. 

Note  that  in  seeking  the  way  in  which  the  number  of 

integers  of  n  figures  may  be  found,  we  rearranged  the 
expressions  so  as  to  put  in  evidence  the  analogy  of  their 

features,  for  instance,  since  90=9  xlO1,  for  9  we  wrote 
9x10°,  and  so  on. 

Let  us  try  if  we  cannot  do  anything  similar  with  the 
expansions  so  far  obtained.     We  get 

2  2x1 
(a  -\-xf  =  a2jr  2ax+ x2  =  a2-\-  T  ax+j---~  x2 ; 

(a+xf=az+3a2x+3ax2+x* 

3    3    2     ,3x2      2,3x2x2    3 
-*+10*+lx2aa?+ix2x3a?  ' 

(a+x)i  =  a*+±a3x+6i2x2+4ax*+x* 

= «4+  j  a3x + y^2  a2x2 

4x3x2      3    4x3x2x1    . 

+  Ix2x3aa?  +Ix2x3x4a?- 
2  2x1 

How  we  came  to  write  T  instead  of  2  in  2 ax,  ■= — -n  x2 1  1x2 

instead  of  x2,  etc.,  does  not  matter  at  all.  The  important 
fact  is  that  if  we  do  the  multiplications  shown  and 

simplify  the  coefficients,  we  fall  back  on  the  correct 
expansion,  showing  that  these  coefficients  have  been 

correctly  split  into  their  various  factors  and  divisors. 
If  you  like,  it  is  only  a  certain  way,  found  by  trial,  to 
arrange  these  factors  and  divisors  so  as  to  get  the 
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•equired  symmetry,  just  as  there  is  a  certain  way 
30  arrange  the  pieces  of  a  jig-saw  puzzle  to  make  a 
picture. 

By  so  doing  we  find  that,  while  the  value  of  the  expan- 
sions remains  unchanged,  the  way  in  which  the  various 

terms  change  as  the  index  of  the  power  of  (a  -fa?)  increases 
gradually  is  now  quite  clear.  We  see  now  that  the 
first  terms  of  the  successive  expansions  are  respectively 

a2,  a3,  a4,  a5,  a6, ...  an,  that  the  second  terms  are 
respectively 

2         3   2      4   3      5   4      6   5  n   n_x 

that  the  third  terms  are  respectively, 

2x1  0  2  3x2   2  4x3  2  2  5x4  3  2 
1x2    '  1x2   '  1x2    '  1x2 

6^5  4T2     rc(rc-l)   2  2 
1x2   '  '■''   1x2  a     x> 

and  so  on. 

We  can  make  a  table  of  these  as  shown  on  next 

page. 
Starting  from  the  third  line,  the  columns  may  be 

completed  both  upwards  and  downwards  as  shown. 
In  each  column  the  law  of  formation  is  manifest, 

and  we  can  see  now  how  the  successive  terms  of  any 

expansion  are  found.  The  first  term  is  always  a  raised 

to  the  same  power  as  (a-\-x),  the  second  term  has  always 
for  coefficient  the  index  of  that  power,  and  consists  of 

the  letter  a  to  a  power  indicated  by  the  index  of  (a-\-x) 
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3ss  one,  and  of  the  first  power  of  x,  the  third  term  has 
or  coefficient  the  index  of  (a+x)  multiplied  by  this 
ndex  less  one,  and  divided  by  1x2,  and  consists  of  a 

aised  to  a  power  indicated  by  the  index  of  (a-\-x)  less 
wo.  and  of  the  second  power  of  x ;  and  once  we  have 
he  three  first  terms  of  the  series,  it  is  easy  to  continue 
t,  as  we  have  seen  a  few  pages  above. 
It  is  useful  to  note  that  if  the  indices  of  the  powers 

)f  a  and  of  x  in  any  one  term  are  added  together,  the 
*ame  number  is  obtained,  namely  the  index  of  the 

power  of  (a-\-x),  whatever  the  term  may  be.  Mathe- 
maticians express  this  by  saying  that  the  expansion 

is  a  "  homogeneous  "  expression. 
Let  us  try  it  on  (a-\-x)5  ;  we  get 

a^a^x+^^a^x2 

5(5-l)(5-2)  5(5-l)(5-2)(5-3) 
+      1x2x3      a     X±        1x2x3x4        a     x 

5(5-l)(5-2)(5-3)(5-4) 

1x2x3x4x5  a     X 

5(5-l)(5-2)(5-3)(5-4)(5-5) 

1x2x3x4x5x6 
 x-f-..., 

or     (a+x)5=a5+ja*x+j^a3x2+l*2*3a2x3 

, 5x4x3x2   4 , 5x4x3x2x1  0  « 
+  Ix2x3x4a^+lx2x3x4x5a^ 
5x4x3x2x1x0  _j  6 

+  Ix2x3x4x5x6a  x+  — 
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The  last  term  written  is  0  x  «-  =  0,  and  clearly  all  the 

following  terms  are  zero,  since  zero  is  a  factor  of  their 
coefficients.     We  have  therefore  finally  : 

(a+xY=a5+5aix+l0a*x2+l0a2xz+5axi+x5, 

which  is  exactly  what  we  have  obtained  above  by  long 
and  tiresome  multiplications. 

In  a  similar  way,  in  order  to   expand  (a-\-x)2z  we 
would  merely  write 

(a+x)2*=a2*+^a22x+^^a21x2+... , 
and  so  on. 

Is  it  not  easy  %    Well,  there  is  no  other  difficulty 
lurking  behind  it ! 

You  can  now  expand  anything  you  like,  for  instance  : 

(3  +  ̂)7  =  37+736d+7x635^+g6g34e, 

^6x5
x4 

1x2x3
x4 

=  2187+5
1030+5

103  

02+2835
03 

+  94504+...  ,  etc   
(You  notice  that,  if  0  is  very  small,  the  terms  decrease 

rapidly.) 

Or  again  this : 

G+')"-©'^)'x*4i(D'** 
5x4x3/l\2 

+Ix2x3 

g)  x23+- 
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Is  it  now  quite  clear  ?  Very  well,  let  us  see  if  we  can 
iow  find  the  expansion  when  the  index  of  the  power  is 
10  more  2,  or  3,  or  any  other  integer,  but  a  letter,  for 
nstance  n.  We  follow  exactly  the  same  method,  and 

ve  get 

n(n-l)(n-2)  ^n_  3 
1x2x3 

an-*x6Jr... 

This  equality  is  called  the  Binomial  Theorem.  It  is 
the  statement  of  the  most  general  case,  and  from  it  we 

can  derive  all  others  by  replacing  a,  x  and  n  by  their 

respective  values. 

When  n  =  1  we  get 

(a+x)1=a1+,a°x-\ — \     ~  )a-1x2=a+x. 1  1  x  z 

When  n=0  we  get 

(a+x)0  =  a0+^a-1x+°^^a-2x2  +  ...  =  a0  =  l, 
and  so  on  for  any  other  value  of  n,  or  of  a,  or  of  x ... . 
What  makes  the  Binomial  Theorem  a  thing  of  such 

great  importance,  however,  is  the  fact  that  it  is  abso- 
lutely general,  that  is,  the  equality 

(a+x)n  =  a«  +  ~an~1x+n^~2)  an~*x2+... 
holds  good  whatever  we  put  for  a,  or  x,  or  n. 
You  will  perhaps  jokingly  ask  now  what  is  the 

expansion  of  (cow -f  book) pin,  thinking  you  are  going 
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to  score...  .  But  nothing  is  easier  to  expand;  here 
it  is : 

(cow+book)pin  =  cowpin+^cowpin-1  book 

+pin(pin-l)cowPin_2boQk2+ 

and  so  on  as  long  as  you  like,  for  we  shall  never  reach  a 

zero  coefficient.  Of  course,  the  expression  is  meaningless 
and  appears  incongruous,  because  we  do  not  know 

the  real  meaning  of  "cow,"  "book,"  or  "pin."  It 
is  really  not  more  incongruous  than  (a-\-x)n.  It  is 
merely  intended  here  as  a  quaint  way  of  bringing 
Lome  to  you  the  fact  that  the  expansion  can  always 
be  written. 

Since  the  Binomial  Theorem  is  true  for  any  value  of  a, 

x,  or  n,  it  is  true  if  a  =  \.    This  gives 

1  1  x^ 

■  n(n-l)(n-2)   n_3 

+       1x2x3       *      X+'~ 

-L+nx-}-    lx2    x+      1x2x3      n+'"> 

since  all  powers  of  1  are  equal  to  unity. 

It  is  also  true  if  we  have  —x  instead  of  x,  then 

[a  +  (-x)]n  =  (a-x)n=an+jan-1(-x) 
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This  is  how  one  must  always  write  the  expansion 

rst ;  it  is  then  easy  to  write  it,  without  mistakes,  in  its 
nal  form  : 

i—x)n  =  an—nan-1x 

n(n-l)„n-2^    n(«— i>(«— 2)   .  8  . !#2-^ — "   0    'an-dxA  +  . 
1      1x2  ~  1x2x3 

It  will  be  noticed  that  in  all  the  expansions  there 

gures  in  the  denominators  the  product  of  consecutive 
ictors  the  first  one  of  which  is  unity,  such  as  1x2, 

X2x3,   1x2x3x4...  etc.  ;    each  of  these  products 

called  a  "  factorial,"  1  X  2  is  read  "  factorial  two," 

X2x3  is  read  "factorial  three"  ....  and  so  on.  They 
re  represented  by  the  notation  |2  or  2!  and  |3  or  3! 

espectively.     For  instance,  "  factorial  five  "  is 
1x2x3x4x5, 

md  is  represented  by  15  or  5!,  "factorial  n"  or  \n  or 
!  is  1x2x3x4...  X(n-2)(n-l)n. 
The  Binomial  Theorem  can  therefore  be  written rn 

+^rl)  an-w  +n(n-l)(n-2)  a^.^+^  _ 
Do  you  begin  to  realize  the  real  significance  of  the 

fact  that  this  is  true  for  all  values  of  a,  or  x,  or  of  n  ? 

It  is  true,  for  instance,  if  n  has  the  value  —  1.  Some 

think  that  the  expansion  of  (a+x)'1  is  less  easy;  but 
it  is  just  as  easy.  Do  not  go  too  quickly,  write  it  step 

by  step  ;    then  you  can  re-write  it  again  in  its  final 
G.E.  E 
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form.     In  this  case,  a  remains  a,  x  remains  x,  but  when- 

ever we  have  n  we  must  put  —  1.     We  have  then  : 

-1    -i  i     .  -lx(-l-l)      !  2   . 
(a+*)-*=«r*+-y-«-?"* 1x2 

-ixt-i-iM-i-^^       j 1x2x3 

=  a~1—a~2x-\-a~zx2—a~ixz -{-... , 

1         1     xx2    xz 

a+x~a    a2    a3    a4     '""' 
the  number  of  terms  being  indefinitely  great. 
And  we  can  write  almost  at  sight  the  quotient  of 

unity  by  any  binomial  expression,  or  even  by  any  one 
of  its  powers,  since 

7   :   r~  =  {a  +  x)-n 

=a~n-\ — =— «-n_1a?H   ^ — ^ — ^"n-2#2  +  ... 1  1  x  ̂  

=a-n-na-{n+1)x+n{?l+^a-{n+2)x2-{-... i  x  ̂  

_  1       w#?      w(?a  +  l)a?2 
~~ a"- rcn+1  +  l  x  2  x  an+2     "' ' 

But  even  this  is  not  all.  The  Theorem  is  true  if  i, 

has  any  fractional  value,  1/2,  1/3,  1/7,  3/11,  etc.,  ... 
so  that  we  can  also  write  almost  at  sight  the  resull 
of  extracting  the  corresponding  roots  : 

(a  +  x)1'2    or    s/(a+x),    (a-fa?)1/3    or    i/(a+x), 

(a+xf'n    or    y(a+^)3...etc,.,.. 
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This  is  done  just  as  easily  as  before  : 

+2^«H,*+        1x2x3       ai~3*3+- 
11  1     1     3 
2     2  222 

~rt  +2^    8a3/2+16rt5/2     -etc-'- 
Similarly, 

IS-1) 
=«2/3+^3-g$3+- etc   

One  can  get  just  as  easily  l/^(«+^)2,  for  this  is  the 
■ame  as  (a+#)_2/3,  that  is  : 

2/,  ,  /    2\    _,  .      .   \     3/\     3V      ,  a    a  , 

a-^+f-gja  *~lx-\   5-^3   as~2x2+... 
2    5 

1        2a;       5#2 
a2/3       3a5/3    «    9^8/3        -> 

and  so  on ;  one  is  almost  as  easy  as  another. 
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When  dealing  with  a  less  simple  binomial  expression 

the  method  is  exactly  the  same  ;  try    -?  • 

'  V(s."fc") 

3/    3 
5 
M-'W 
1X2 

(i)-(-^+... 
1      .  3     1     7  2  ,  3     8        1 

m"3'5  '  5  m-8/5        '5    5     1x2 
1 

m 

= m3'5 + f  ̂2m8/5 + H^^»n13/5 + •  •  ■ 

X_-13/5^  2      •  *| 

and  so  on. 

Try  also  this  : 

(l-coa9)$  =  le+9xle'1(-cosd) 

+^^l'-2(-cos0)*+... 

^l-flcosfl+^^cos^ 1  X  £ 

1X2X3    '«*«+
-'*< and  this  : 

(lH-a)ta=lto+/^Xlto-1a+^^)lto-2«2+... 

,  ,  ,        ,  h.i'ikx—  I) a2  .         , 
=  l+feg«+        lx2        +",etc... 
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You  notice  that  the  last  expansions  we  have  con- 
!  dered  can  be  continued  indefinitely,  just  as  the  decimals 
f  7r  or  of  e  can  be  continued  indefinitely,  the  exact 

alue  being  never  reached.  Also,  you  notice  that  the 
iccessive  terms  contain  gradually  increasing  powers  of 
ie  second  term  in  the  binomial;  for  instance,  in  the 

xpansion   of    (a-\-x)n,    the    successive   terms    contain 
or  x°,  x1,  x2,  x3 ...  etc      It  follows  that,  if  the  second 
erm  of  the  binomial  is  small  compared  with  the  first 
erm,  the  successive  terms  become  smaller  and  smaller 

s  we  advance  along  the  expansion.     This  is  evident 

ince  (a+x)n  =  \a(l  +  -)     =an(l  +  -)  ,  and  since  x 

s  smaller  than  a,  x/a  is  a  fraction,  and  the  powers 
)f  a/x  get  smaller  and  smaller  in  value  as  the  indices 
ncrease.  It  follows  that  after  a  certain  number  of 

;erms  have  been  calculated  we  get  finally  a  term  small 
enough  to  be  neglected  for  our  purpose ;  and  as  all  the 
;erms  that  follow  are  smaller,  we  can  generally  neglect 
:hem  also.  The  expansion  is  then  said  to  be  convergent. 

When,  on  the  other  hand,  the  terms  become  larger  and 

larger  as  we  proceed,  the  expansion  is  said  to  be  divergent. 
The  skilful  mathematician  tries  always  to  arrange  his 

expansions  so  that  the  terms  converge  rapidly,  that  is, 
become  negligibly  small  very  soon,  so  that  he  needs  to 
calculate  only  two  or  three,  or  four,  according  to  the 

degree  of  accuracy  required. 
The  following  examples  will  make  this  clear,  and  will 

also  serve  to  show  various  uses  to  which  the  Binomial 

Theorem  can  be  put. 
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Example  1.     Calculate  (1'005)7  to  5  places  of  decimals. 
We  get 

(i-oo5)^(i+^)7=i^^i«x^+[^ 
(    5    \2,7x6x5w    5    v» 

A     U000'  ̂ 1x2x3     VlOOO/  ̂ "" 
35       21x25        35x125 

+ 1000 + 1000000  + 1 000000000 + ' " ' 

=  l  +  -035+-000525+-000004375  +  ...  . 

We  stop  when  we  arrive  in  the  expansion  at  a  term 
the  first  five,  or  better  six,  decimals  of  which  are  zeros. 

Here,  clearly,  the  fourth  term  is  the  last  one  to  take ;  so 

that,  adding  these 

(l-005)7«l-035529  or  1-03553  to  5  places. 

The  result  could  be  obtained  by  continued  multi- 
plication, a  very  tedious  process,  or  by  logarithms  if 

tables  are  available. 

Example  2.    Calculate  4/1*07  to  5  places  of  decimals. 

^•°7  =  (1  +  I5o)  °=11/5+51' 
100 

-I1-!) 

i5^5    V»Y7)ai.... 
^    1x2  UOO/  ̂  

Of  course  it  is  not  necessary  to  write  the  factors 

l^""1),  l^~2\  etc.  ... ,  but  you  are  advised  to  write  them 

as  shown  until  you  "get  your  sea  legs,"  as  it  will  help 
you  to  get  the  general  expression  well  in  your  mind, 
and  save  you  from  omitting  terms. 
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This  then  becomes 

7  2x72       6x73       21  x74 

+5xl02     52xl04+53xl06     S^IO8"1"**" 

The  calculation  can  be  simplified  by  multiplying  both 

3rms  of  the  fractions  by  2,  22,  23  ...  respectively,  so  as 
o  leave  only  powers  of  10  in  the  denominators.  We 
et  then 

,  7x2     2x72x22     6x73x23    21x74x24 
+  103  106       +       109  1012       +'" 

=  1  -4-0014  -0-000392  +  0-000016464 
-0-000000806736... 

We  need  only  the  four  first  terms  ;  these  give 

^/l  -07  « 1-01362. 

You  have  been  taught  how  to  extract  square  roots 

md  cube  roots  of  numbers,  and  you  found  the  latter 
;o  be  a  much  more  complicated  operation  than  the 
ormer.  Have  you  ever  wondered  how  complicated 

vould  be  an  extraction  of,  say,  a  fifth  root  ?  With 
:he  Binomial  theorem,  the  method  is  the  same  for 

^oots  of  all  orders,  and,  as  you  see,  it  is  quite  an  easy 
method. 

Example  3.  Calculate  ̂ /2205  to  5  places  of  decimals. 

When  extracting  square  and  cube  roots  by  the  ordinary 

method,  we  first  sought  the  highest  square  or  cube  con- 

tained in  the  given  number.  In  this  case,  too,  we  pro- 
ceed in  a  similar  manner,  and  find  the  highest  seventh 
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power  contained    in    2205,  this  is  37=2187,  so  tha" 
2205-2187+18,  and 

V2205  =  ̂ /(37  + 18)  =  (37 + 18)1/7 

-[*(i+»r-('+»r-('+sr- 
Now,  expanding  we  get 

,7(7~1)(7~2)/2\3,       "I 

+       1x2x3       \3V  +0,,,J 

(dropping  all  the  factors  such  as  IT"1,  etc. ...) 

-qTl-U-J^      3x2^      13x23        "I 
L      7x35    72x3loi"73x315     •"J =3[l  +  6-001175-0-00000415...], 

as,  clearly,  the  fourth  term  is  negligible ;  so  that 

^2205-3-00351. 

Example  4.  Calculate  ̂ /2180  to  5  places  of  decimals 

The  highest  seventh  power  contained  in  2180  is  27=  12£ 
since  37=2187.     So  that 

2180=  27 +2052  =  27(1 +2052/128). 
Then 

or.  ,  1     1026  ,  7l7_V/1026\2.      1 

=2(l+2-290178-^15-734753  +  ...). 
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What  is  the  meaning  of  this  1  The  next  term  will  be 

/idently  larger  still.  In  fact,  the  terms  grow  in- 
afinitely  instead  of  gradually  diminishing.    The  series 
diverging  !    Is  the  method  going  to  fail  us  then  ? 

When  we  expanded  (a-\-x)n  in  a  converging  series, 
e  stipulated  that  x  was  small  compared  to  a.  In 

le  above  case,  a=l,  x=  2052/128=  16  nearly ;  not 
t  all  small,  but  indeed  large  compared  to  1 .  We  only 

btain  what  we  should  expect,  namely,  a  divergent 

xpansion. 
What  shall  we  do  then  ?    Note  that 

2180=2187-7=37-7=37 

uence 

f>Ks'(i4)r=s('4)M.-?4,: 
+     1x2     Uv  1x2x3         V3V  J 

\       37     313     321     '") 

=-3(1  -0-000457-0-0000006) 

-3x0-999543=2-998629. 

The  diverging  expansion  obtained  above  shows  that 

in  some  cases  the  expansion  is  not  the  true  mathematical 
equivalent  of  the  indexed  form  of  the  binomial.  We 

shall  find  that,  when  this  occurs,  if  the  expression  is 
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put  in  the  form  (l  +  a?)n,  then  x  is  greater  than  1.    In 
other  words,  such  an  expansion  as,  say, 

(l-#)-2=l  +  2#+3a?2  +  4#3+... 
is  only  arithmetically  true  if  x  is  smaller  than  1 . 

This  seems  to  throw  a  doubt  on  the  generality  of  the 

equality  ( 1  -f  x) n  -—  1  +  nx  +  -~ — ~  x2  +  •  •  • ,  generality 

upon  which  so  much  stress  has  been  laid  in  the  previous 

pages.    It  is  worth  while  investigating  this  more  fully. 
Take 

n    ■  \m     *  .  n(n—l)    9    n(n—l)(n—2)    „ 
(i_a.).=i_waH-v_ip»_  <ix»x3  V+-. 
If  n  has  the  value  —1,  say,  then 

(l-x)-1=l-\-x-\-x2+x3+x*  +  .... 

This  is  not  numerically  true  if  x>l;   for  instance, 
let  x=2. 

(l-2)-1  =  (-l)-1=-^I= -1=1+2+4+8+16  +  ..., 

an   equality   which   obviously   will  never   be   satisfied 
whatever  is  the  number  of  terms  taken. 

Now,  if  S  is  the  sum  of  all  the  terms  up  to  the  on( 

of  rank  m  in  the  expansion  of  (1— a?)-1,  then 

S=l  +  x+x2+xz+...  +  xm-h 
Multiply  by  x, 

xxS=x+x2+x3+...  +  xm-1+xm. 
Hence,  taking  the  difference, 

xS-S=S(x-l)  =  x™-l    and    S x—\       1—x 
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0        1         xm 
1— x    \—x 

If  x>l  the  second  term  increases  indefinitely  as  m 

icreases,  that  is,  as  we  take  more  terms  of  the  expan- 
on.     If  x<l,  as  m  increases  xm  decreases,  and  the 
-jcond  term  becomes  negligible  when  x  is  very  great. 

hen  S  =  n   i=(l—  ooY1,  that  is,  the  equality  is  veri- (1—  x) 

ed.     In  other   words,    the    expansion   of   (l  +  a?)n   is 
[ways  arithmetically  correct  when  x<l. 

The  foregoing  examples,  accessible  to  the  very  be- 
,  inner,  give  an  idea  of  the  usefulness  of  the  Binomial 
^eorem.  The  following  example  is  of  a  more  advanced 

dnd,  although  quite  simple  for  readers  of  Calculus  Made 

fmy.  It  can  be  skipped  without  inconvenience  by  others 
fho  have  not  yet  overcome  their  terror  of  the  calculus. 

Example  5.  Obtain  an  expression  with  which  one  can 

alculate  easily  the  length  0  of  an  arc,  given  its  trigono- 
netric  tangent  x\  that  is,  expand  6=  arc  tan  x. 
If  0  =arc  tan  x,  then  x=  tan  0. 

Hence    -^r=sec2#  =  l  +  tan2#=l+a?2    (see  Calculus 

Male  Easy,  p.  168). 

And  therefore  g=l/g=1-l^=(l+^)-1. 
Expanding  this  by  the  binomial  theorem  we  get 

^  =  l-X2+X*-X«  +  X*   (1) 
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Binomial  expressions  are  not  the  only  ones  which  can 
be  expanded  in  a  series  of  terms  similar  to  the  ones  we 
have  obtained  by  means  of  the  Binomial  Theorem. 

For  instance,  let  us  suppose  that  6  can  be  expanded  in 

such  a  series  ;  the  expansion  of  0  will  be  an  expression 
such  as 

6=A0+A1x+A2x2+A3x*+Aixi+...  ,    (2) 
where  A0,  Av  A2...  are  numerical  coefficients,  some  of 

which  may  be  zero,  the  corresponding  terms  being  then 
missing  in  the  series. 

If  we  differentiate  the  above  expansion  with  respect 
to  x  we  get : 

^=A1+2Aix+3A3x*+iAix3+   (3) 

We  have  two  different  expressions  for  ̂ -,   (1)  anc 

(3) ;  these  two  expressions  are  necessarily  identical!) 
equal,  so  that 

l-x2+x*-x«+x8+... 

=A1+2A2x+3A3x2+4:Aixz   (4 
Now,  when  two  such  expressions  in  x  are  identically 

equal,  and  do  not  contain  x  either  in  denominator  o 

under  the  sign  indicating  the  extraction  of  a  root,  tin 
coefficients  of  the  same  powers  of  x  are  identically 
equal.     Here  we  have,  therefore, 

A±  =  l,  A2=0,  3A3=—  1  or    A3=—  ̂ , 

AA=0,    5A5=-{-l     or    A5  ==,   etc.... 
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Replacing  in  (2)  we  get 
/>»3  /y»5  sy>7  /y»" 

a  which  A  0  is  still  unknown. 

But  when  a?=0,   0=0  obviously,  hence  0=^40+0, 
,nd  A  0=0,  so  that 

/>»  /y>3  /yj5  /y»7 

vhich  is  the  required  expression,  6  being,  of  course,  in 
radians  (see  p.  45). 
This  expansion  is  convenient  for  small  arcs,  as  it 

converges  then  rapidly.  For  arcs  near  45°  it  converges 
:oo  slowly  to  be  of  any  use.  For  arcs  larger  than  45°, 
#=tan#  is  larger  than  unity,  and  the  expansion  is 
divergent,  as  explained  in  the  last  example. 

For  instance,  find  to  5  places  of  decimals  the  arc  the 

tangent  corresponding  to  which  is  0-3.    Here  x =0-3. 

,      ,     -3*     -35     -3V39 

or  6  «  -3  -  -009  +  -000486  -  -000031  +  -000002  =  -29146 
radians. 

To  convert  in  degrees,  multiply  by  57-29577.  (See 

p.  46.)    We  get  16°42'  very  nearly. 
You  can  now  work  through  the  following  exercises  : 

Exercises  IV.     (For  Answers,  see  p.  245.) 
Expand  to  4  terms  : 

(1)  (a)  (1+2*)';  (6)  (2x+f)4; (c)  ( ax+Z)  (d)  (l-2y) 
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W  (2-f)6;  (/)  (a-lJ; 
(g)  (1+*)1'3;       (*)  (1+*)3'4;       (*)  (1+x)3 

(2)  (l+3«)-2.      (3)  (1-a;)-5.         (4)  (1-sc*)- 

(5)  (2+x)~\        (6)  ̂(1+20).     (7)  1M1+2*! 

(8)  1M1-4   0)  lM«-2*)3-(10)  ZJ(e+ff- 

(11)^-0*).  (12)  l/(l-sin0)*. 

Calculate,  correct  to  5  places  of  decimals  : 

(13)  4/613.     (14)  ̂ /324.     (15)  4/3145.     (16)  ̂ 3443. 

Expand  to  4  terms  : 

(17)  (l+cosa;)9.  (18)  (l_e*)*«» 

<19>  V(^-c-o^)'       <2°>  (1+^- 
(21)  Expand  #=arc(sin#),  and  find  6  when  a?  =0'2. 

(Remember  that  -j-  =  l/s/(l—oo)2). 

(22)  Expand  (5—  3  tan  a?)-1  to  4  terms. 

(23)  Expand  (1  +  0)™  to  4  terms. 

(24)  Expand  Ik   )     to  4  terms. 



PART  II 

CHIEFLY  ABOUT  "  EPSILON." 

CHAPTER  VII. 

A  FIRST  MEETING  WITH  EPSILON : 

LOGARITHMIC  GROWING  AND  DYING  AWAY. 

]very  schoolboy  knows  what  is  meant  by  simple 
iterest ;  he  knows  that  if  £100  produces  £3  interest  in 

ne  year,  it  is  said  to  be  invested  at  "three  per  cent.," 
written,  in  mathematical  symbols,  3%.  He  knows  also 

hat  every  £100  of  a  sum  of  money  so  invested  produces 
!3  for  every  year  during  which  it  is  invested,  so  that  if 
\P  is  the  sum  invested  or  principal,  and  n  the  number 

>f  years  during  which  it  is  invested,  the  sum,  after 

i  years,  of  the  yearly  interests  (supposing  they  have 
)een  put  regularly  in  a  drawer  or  a  stocking  just  as  they 

p 

vere  received)  will  be  £^-rX^x3.     More  generally,  if 

:he  rate  of  interest  is  £r  for  £100  per  year,  the  total 
p 

nterest  in  n  years  is  £j-^xwxr. 
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The  yearly  growing  of  the  principal  can  be  represented 
by  the  straight  line  AB  (see  Fig.  2),  OA  being  the  original 
principal  and  XB  the  principal  plus  the  interests  it  has 
produced.  BC  is  then  the  total  interest  produced  ir 

n  years,  and  is  made  up  of  n  equal  increments,  eacl 
of  which  is  \\n  of  the  total  increment. 

This  is  what  may  be  called  "  arithmetical  growing." 
Obviously  there  will  be  a  certain  number  of  year? 

for  which  the  total  increment   will  be  equal  to  th< 

Fig.  2. 

original  principal.  Suppose  rj  is  this  number  of  years 
each  yearly  interest  will  be  1/rj  of  the  total  interest,  tha 
is  £P/r). 

Then,  after  ?/  years,  the  interests  will  amount  t 

£Pr)r /100,  and  this  is  equal  to  P,  so  that  7/r/100=l  an 
*7=100/r. 

At  4%,  for  instance,  it  will  take  100/4  =  25  years  i 
double  any  principal.  To  double  it  in  24  years  wou] 

require  a  rate  of  interest  r=  100/24  =  4 J  per  cent. 
Most  schoolboys  are  also  acquainted  with  the  meanir 

of   "compound  interest."     They  know  it  means  tha 
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i  t  the  end  of  definite  equal  periods  of  time,  say  at  the 
id  of  each  year,  the  interest  itself,  instead  of  being 
ut  away  in  a  drawer,  is  invested  at  the  same  rate 

3  the  principal  which  produced  it,  so  that  it  is  as  if 

lis  principal  was  growing  by  continually  increasing 

icrements — but  otherwise  giving  no  interest — until  at 
le  end  the  increased  principal  is  withdrawn  from  the 
lvestment.  The  total  amount  of  increment  is  the 

Dmpound  interest. 
Let  us  see  what  a  principal  P  will  become  if  we 

west  it  during  the  time  just  found  to  be  necessary 

d  double  it  at  simple  interest,  that  is,  during  ?/  =  100/r 
ears. 

At  the  end  of  the  first  year,  the  interest  is  £P  x  T— J  100 
Pr         (        r  \ 

nd  the  principal  has  become  P±=P  +  —-=Pn  +  y~~  )> 

»eing  the  original  principal  plus  the  interest.     This  new 

>rincipal  Pl=P[l-\-  =-^J  is  re-invested  during  the  second 

rear,  the  interest  derived  from  it  being  of  course  Px  r— 
/  \  J-UU 

>r  P(  1  +  Tnrj  )taa>  so  ̂ a^  a^  ̂e  enc^  °^  ̂ne  second  year 

we  principal  and  the  interest  together  amount  to 

;hat  is,  to 

p(l+m)(1+m)  °r  p(1+,4)2' G.E, 
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Similarly,  at  the  end  of  the  third  year,  the  principal, 
together  with  the  compound  interest,  amount  to 

P*=P 
(»+*j 

Using  the  Principle  of  Mathematical  Induction  (see 

p.  55)  we  see  that  at  the  end  of  n  years  the  principal, 
swelled  by  the  compound  interest,  has  become 

p-=p(1+mf 
After  being  invested  for  r\  years  at  r  per  cent,  at 

compound  interest,  the  principal  P  becomes 

P,=P(l+rA00)'. 
Now,  in  this  particular  case 

p(i+~y. 
1 

100~//'  "        —  *  —  y  i  nt 
If,  while  we  keep  the  period  of  investment  to  tin 

same  value  of  r\  years,  we  shorten  the  time  betweei 

the  successive  additions  to  the  principal  of  the  interest 

this  principal  is  producing,  these  additions  will  occu 

more  frequently,  but  the  increments  will,  naturally,  b 
less  in  amount. 

If  the  interest  is  added  to  the  principal  at  the  end  o 

every  half  year,  for  instance,  the  interest  added  the  firs 

time  will  only  be  £r/2  instead  of  £r,  for  every  £10' 
invested,  and  this  will  be  done  2rj  times,  so  that  th 

expression  for  the  final  value  of  the  principal  become 

P^P(l-)-r/200)^=P(l+l/27;)2",  sinec  r/200=l/2*. 
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If  we  add  the  interest  to  the  principal  every  month, 

hen  the  first  interest  will  be  =-~,  and  there  will  be  12// 

Editions  to  the  principal  in  rj  years,  so  that 

Pr?=P(l+r/1200)12'>=P(l+l/12;?)12'>. 
Similarly,  if  the  operation  is  done  every  week,  we  get 

P,==P(l+l/52^, 

>r  every  day,        P„=P(1  +1/365//)365", 

>r  every  hour,      Pr,=P(l+l/8,760^)8'760", 

>r  every  minute,  PT?=P(l+l/525,600^)525'600", 

or  every  second,  P^=P  (1+ 1/31, 536,000>/)31'536'000l>. 
We  see  that  both  the  denominator  and  the  index 

remain  identically  the  same,  and  that  both  increase 
3ontinually  as  the  number  of  times  the  interests  are 

added  to  the  principal  during  the  r\  years  increase  in- 
definitely.   If  this  is  done  n  times  a  year, 

Pv=P(l+l/nri)n\ 
and  if  nXrj=N  =  the  total  number  of  additions  of  the 
interest  to  the  principal  during  the  r\  years, 

P,=P(1+1/AT. 

By  the  same  Principle  of  Mathematical  Induction,  we 
can  say  that  when  this  number  of  additions  of  interest 

to  principal  in  the  r\  years  is  anything  we  like,  repre- 
sented by  anything  we  choose,  whether  N,  x,  a  or  cat, 

the  principal  after  rj  years  will  be 

P,=P(l+l/tf>*    or  P(l+l/a>)«, 

or  P(l+l/a)a,    or  P(l  +  l/cat)cat!.... 
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If  we  imagine  the  interest  being  added  continualhj 

to  the  principal,  as  the  water  of  a  gradually  swelling 
rivulet  adds  itself  to  a  lake,  instead  of  being  added  at 
short  intervals,  as  if  the  water  was  thrown  one  bucketful 

of  increasing  magnitude  at  a  time,  then  the  number  of 

times  the  addition  is  performed  during  the  r\  years  is 

greater  than  anything  one  can  conceive.  Mathema- 
ticians express  this  fact  by  saying  that  the  number  is 

infinite  and  represent  it  by  the  symbol  oo  .  We  still  can 

write  the  expression  for  Pv,  it  is  P(l+l/oo)°°,  but  it 
has  for  us  no  more  meaning  than  P(l+l/cat)cafc,  above  ! 

Now,  if  we  expand  (1  -f-l/oo  )"  by  the  binomial  theorem, 
we  get  easily  an  expansion,  but  it  will  be  meaningless 

to  us  ;  in  fact,  the  binomial  theorem  fails  to  give  intel- 

ligible results  when,  in  (a-\-x)n,  x  is  infinite.  Yet  we  can 

reasonably  expect  that,  since  (l+l/31,536,000;?)31'536'00(h' 

gave  some  sort  of  result,  (l+l/oo)00  should  also  give 
some  sort  of  intelligible  result.     What  can  we  do  % 
Remember  what  we  did  when  we  were  confronted 

with  the  symbol  a0  ;  we  sought  its  value  by  some  other 

method  than  the  one  which  gave  a0.  Let  us  try  to  do 

the  same  in  this  case.  We  got  (1 -f-l/ao  )*  from  (1  -\-l/N)M 
by  causing  N  to  grow  indefinitely  ;  but 

N(N-l)(N-2)   1 

"*"       1x2x3        N*"*"' 

and  if  we  cause  N  to  grow  indefinitely  in  the  expres- 
sions on  both  sides  of  the  sign  =,  we  must  of  course  get 
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;he  same  result.     But  if  we  do  this,   (1+1]N)N  be- 

comes (l+l/oo  )"  ;  then  the  right-hand  expression  must 

nVe  us  the  value  of  (l+l/oo  )". 
Now,  the  expansion  may  be  written  : 

l+l+TTTo-4 
1x2    '     1x2x3     '  "' 

and  if  N  grows  till  it  is  infinite,  when  2V=cc ,  since 
the  quotient  of  unity  divided  by  a  very  large  number  is 

very  small,  1/x  =0,  we  get  l/iV=0,  l/iV2=0,  1/A73=0, 
etc.,  so  that 

(1+1/oof  =1+1+1+1+1 +...=2-71828182846..., 

so  that  P^exP.  We  meet  unexpectedly  epsilon,  the 
base  of  Napierian  logarithms. 
Then,  when,  at  simple  interest,  the  principal  P 

merely  doubles  itself,  at  continuous  or  "  true  "  com- 
pound interest,  this  principal  becomes  e  times  greater. 

We  see  that  just  as  the  ratio  of  the  length  of  any  cir- 
cumference to  its  radius  is  it =3 -141592  ... ,  so  the  ratio 

of  the  true  compound  increased  principal  to  the  original 
principal,  during  an  interval  of  time  which  would  double 

this  original  principal  at  simple  interest,  is  e=2-71828  ... . 
The  increase  of  the  principal  can  also  be  represented 

by  a  graph.  Here,  the  first  step  or  increment  is  1/N 
of  the  original  value,  so  that  each  ordinate  is  1+1/iV  or 

(N-\-l)/N  of  the  ordinate  before,  and  as  the  ordinates 
grow  steadily,  each  increment  is  greater  than  the  one 

before,   so   that   the  growth   of    the   principal   can   be 
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represented  by  the  line  AB  (see  Fig.  3),  OA  being  the 
original  principal,  andXB  the  compound  increased  prin- 

cipal, so  that  C2?=l-7183x0^4,if  the  growing  follows 
a  true  compound  interest  law. 

The  characteristic  feature  of  this  mode  of  growing 

is  that  the  increment  at  any  time  is  proportional  to 

the  actual  magnitude,   at  that  time,   of  the  growing 

Fig.  3. 

thing  itself.    If  this  magnitude  is  A,  the  increment  is 

A/r],  the  new  magnitude  being  A+A/rj  or  A(\-\-\jt]). 

Inversely,  the  "  dying  away  "  of  a  thing  may  follow 
a  similar  law,  the  decrement  being  proportional  to 

the  actual  magnitude  of  the  thing  which  is  diminishing  ; 

in  this  case,  the  new  magnitude  is  A  —A\r\  or  A  (l—l/?i). 
Many  physical  processes  follow  a  similar  law ;  the  loss 

of  temperature  of  a  hot  body  in  any  small  interval  of 
time  is  proportional  to  its  excess  of  temperature  above 

that  of  the  medium  in  which  it  is  cooling  ;  the  loss  of 
electrification  of  a  charged  body  in  a  small  interval  of 

time  is  proportional  to  the  quantity  of  electrification 
left  on  it ;   the  loss  of  light  of  a  beam  passing  through 
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thin  portion  of  an  absorbing  medium  is  proportional 
o  the  intensity  of  the  beam  entering  that  portion,  and 
o  on. 

But  whatever  made  epsilon  come  into  it  ?  Let  us 
Ty  to  find  out. 
If  yx  is  the  final  value  of  the  principal  a  invested  at 

;ompound  interest  r/100  for  x  years,  then 

2/x=a(l+r/100)x  after  x  years. 

After  x— 1  years   yx_1=a(l+r/100)x_1. 
The  ratio  of  the  two  values  is  (l+r/100),  and  it  is 

uhe  same  whichever  are  the  two  consecutive  values 
considered. 

Let  the  value  of  this  ratio  be  p.    Then  yx=apx. 

Let  also  logep=C.  Then  p=ec  (see  p.  32),  and 

yx=a{ec)x,  or  yx=aeCx. 
This  is  the  exponential  form  of  the  compound  interest 

law  ;  it  is  exactly  equivalent  to  the  formula  given  above, 

t=a(l+r/100)a!. 
This  can  be  easily  verified  ;  for  instance,  £100  at 

3  per  cent,  compound  interest  becomes  in  4  years 

£100(l-03)4=£112-5509 

by  the  first  formula  ;  using  the  other  formula  we  get, 

since  log,  1-03  is  0-0295587, 

?/4=100x2-718280-0295687><4. 
Using  common  logarithms  for  the  calculation  we  get 

logio2/4=2  +0-1 18235  x  043429  =2-0513483, 

hence  y4=l  12-5508. 
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Since  it  can  be  so  expressed  in  terms  of  the  base  of 

Napierian  logarithms,  the  compound  interest  mode  of 

growing  is  called  "  logarithmic  "  growing. 
If  p<l,  Ioge/?  =  —  C  (see  p.  40)  and  y=ae~Cx. 
This  is  a  very  important  exponential,  representing  the 

"  logarithmic  "  dying-away  process.  e~Cx  is  the  dying- 
away  factor ;  x  is  usually  a  time  t.  If  the  constant  C 

be  also  taken  to  represent  a  time,  let  C=l/T,  then 

y=ae~t/T.  T  is  then  called  the  time  constant,  because 

if  t=T,  y=ae~1=aje,  that  is,  in  the  time  T,  y  is  reduced 
to  1/e  or  to  0-3678  of  its  original  value. 

The  growth  of  intensity  of  a  continuous  electric  current 
after  it  is  suddenly  switched  on  is  expressed  by  such  a 

E 
dying-away  expression.    Its  theoretical  value  is  1  =  ̂ , 

but  at  first  it  differs  from  it  by  an  amount  which  is 

rapidly  dying  away,  hence  it  is  given  by 

I=EIR(\-e-t'Tl 
and  T,  the  time  constant,  depends  on  the  resistance  R 

and  on  the  self  induction  L  of  the  circuit ;  T  =L/R,  so  that 

I=E/R(l-€-RtiL). 
The  following  worked-out  examples  on  logarithmic 

growth  and  decay  will  help  you  to  work  out  the  exercises 
which  you  will  find  at  the  end  of  the  chapter. 

Example  1.  At  3.15  p.m.  the  temperature  of  a  piece 

of  iron  cooling  in  a  room  the  temperature  of  which  is 

20°  Cent,  is  found  to  be  330°  Cent.  At  3.25  p.m.  it  is 
86°  Cent.  Find  the  time  constant,  and  also  at  what 

time  the  temperature  was  100°  Cent. 
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If  0t  is  the  excess  of  the  temperature  of  the  iron 
bove  that  of  the  room  at  the  time  t,  and  00  the  initial 

scess,  then  (see  p.  86) 

Here  66=2>l0e-l°lT. 

Solving  for  T  we  get 

log  66=log  310-(10/T)  log  e; 

ence  0-6719=4-343/T  and  T=6-46  minutes,  or  6  mins. 
8  sees. 

The  equation  is  therefore,  numerically,  6t=00e~t/8'46. 
^VTien  the  temperature  was  100°  Cent.,  the  excess  was 
'0°  C,  hence  80 =U0e~l 'Z646.  This  time  we  solve  for  t 
3  the  same  way :  log  80=log  310— (£/646)  log  e,  hence 

-4343J/646  =0-5883  and  £=8-76  minutes,  or  8m  46 

econds.    The  temperature  was  100°  at 

3h  15m+8m  46s =3h  23ra  46s. 

Example  2.  Light  is  absorbed  by  fog  according  to 

he  law  Ii=IQe-Kl,  where  It  is  the  intensity  of  the 
ight  after  passing  through  a  thickness  I  of  fog,  K  being 
i  constant.  It  is  found  that  the  intensity  of  a  source 

>f  light  is  reduced  by  one  half  when  it  is  seen  through 
» metres  of  fog.  At  what  distance  will  the  source  be  just 

risible  to  an  eye  which  is  able  to  perceive  a  light  the 
utensity  of  which  is  one  thousandth  of  the  intensity  of 
he  source  ? 

Since,  after  passing  through  5  metres  or  500  centi- 
netres,  the  light  has  lost  half  of  its  intensity,  we  have 

0-5J0=Z02-7183-*x500, 
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or  0-5=2-7183-500*andlog0-5  =  -500Zx  log  2-7183. 
1-6990= -500  X0-4343Z  or  0-301  =217-157L 

#=0-00139. 

When  light  is  reduced  to  one  thousandth  of  its  inten- 

sity, 7,=0-001/0=/02-7183-°-0<)13^ 
and  0-001  =2-7183-000139^ 

log  0-001  =  -0-00139/  x  0-4343. 

3-0000= -0-4343  x  0-00139/. 

3=0-0006/  and  /=5000  centimetres. 

The  light  will  just  be  visible  at  a  distance  of  50  metres 

approximately. 
Example  3.  Light  is  absorbed  by  a  certain  medium 

according  to  the  law  Ii=HQe~Kl,  where  I0  is  the 
initial  intensity  of  the  beam,  It  is  the  intensity  aftei 

passing  through  a  thickness  /,  h  and  K  are  constants. 
If  the  intensity  of  a  beam  of  light  is  reduced  by  12% 

after  passing  through  10  cms.,  and  by  18%  after  20  cms., 
find  the  intensity  after  1  metre. 
We  must  first  find  the  numerical  values  of  the  twc 

constants.    We  have 

^  =  0-88J0  =  #V-10*. 

/,  =  0-82/0  =  £/0e-20*. 
0-88     c-^K 

0-82     €~20K 

log  0-88 -log  0-82  =  lOiHog  2*718, 

'-SB""""- 
Then  0-88 =&<r0-0707. 
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Solving  for  k  we  get 

]og0-88  =  log£-0-0707xlog2-718, 

•9752  =  log  k,    £  =  0-9445. 

So  that  the  numerical  equation  is 

/<  =  0-9445  Jo<r0,007(m. 

After  1  metre  It  =  0-9445Z0e-°-707. 

^  =  0-9445e-0707. 

log  ̂  =  log  0-9445 -  0-707  xlog  2*718  =  1-6681. 

^  =  04657  or  Ji  =  0-466Z0. 0 

The  intensity  is  reduced  by  53-4  per  cent. 

Example  4.  In  a  room  at  20°  C,  a  lump  of  metal 
cools  from  200°  C.  to  100°  C.  in  10  minutes.  What 
should  be  the  temperature  of  the  room  in  order  that 
the  same  lump  of  metal  should  cool  twice  as  quickly 

through  the  same  range  of  temperature  ? 

I
 
 

Here,
  as  b

efore
, 

_

 

log  80  =  log  180-^  log  2-718 

1-9031  =  2-2553-^? 

We  T=o-JSr12-3- 
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The  law  of  the  cooling  of  this  particular  lump  o: 

metal  is  therefore        0=0  p-t/n-s 

If  0 x  is  the  unknown  temperature  of  the  room,  thei 

since  Qt  and  00  are  the  differences  of  temperature  of  th< 
lump  of  metal  above  that  of  the  room, 

100-^  =  (200-^)e-^12-3, 
with  t=5  minutes. 

log  (100-^)  =  log  (200-0,)-^  xO-4343 

2-1715     :      200-0*     A1_K 

"W^TM^0'1765' 

hence  y^ — ^=1-5  very  nearly. 

It  follows  that         6t  =  - 100°  C. 

As  a  check,  calculate  the  time  required  for  the  luni] 

to  cool  when  placed  in  an  enclosure  at  —100°  C. 

Here  the  equation  becomes  200  =  300e~//12"3. 

2-301  =  2477-^^  or  0-352*= 0-176, 

and  t=5  minutes. 

You  can  now  try  the  following  exercises  : 

Exercises  V.     (For  Answers,  see  p.  247.) 
1.  The  temperature  of  a  piece  of  iron  cooling  in  ai 

at  0°  C.  falls  from  400°  C.  to  200°  G.  in  4  minutes.    Ho> 

long  will  the  piece  of  iron  take  to  further  cool  from  200°  ( 
to  100°  C.  and  10°  C.  respectively  ? 
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2.  How  long  will  it  take  for  a  beaker  of  boiling  water 

cool  down  to  20°  C.  in  a  room  the  temperature  of 
hich  is  16°  C.,  if  it  cools  to  80°  C.  in  4  minutes .? 
3.  The  quantity  of  electricity  on  a  body  is  found 

•  be  10  units  one  hour  after  charging  it,  and  2  units 
)  minutes  later.    Find  the  initial  quantity  of  electricity 

the  leakage  follows  the  law  Q^^e-^,  where  Qt  is 
ie  quantity  of  electricity  on  the  body  t  minutes  after 
te  time  at  which  the  quantity  had  the  initial  value  Q0,  jut 
jing  a  constant. 

4.  In  how  long  will  the  charge  on  a  body  be  reduced 

>  half  its  original  value  if  it  diminishes  by  one  hundredth 
i  the  first  minute  ? 

5.  Find  the  resistance  R  through  which  a  condenser 

E  capacity  K=3  x  10~6  units,  charged  to  an  initial 
otential  V0,  is  discharging  if  the  potential  falls  to 
alf  its  value  in  half  a  minute,  and  if  the  fall  of  potential 

)Uows  the  law  Vt=V0e~t/KB,  t  being  in  seconds. 
6.  Compare  the  opacity  of  two  mediums  if  in  one 

beam  of  light  is  reduced  in  intensity  by  50  per  cent. 

i  passing  through  2  metres  of  it,  while  in  the  other 

b  is  reduced  by  10  per  cent,  in  passing  through  40  cms. 

■f  it,  the  law  of  absorption  of  the  light  being  Il=I0e~Kl. 
7.  The  pressure  p  of  the  atmosphere  at  an  altitude 

i  kilometres  is  given  by  p=p0e~kh,  p0  being  the  normal 
>ressure  at  sea  level,  namely,  76  centimetres,  and  h 

>eing  a  constant.  Find  the  average  fall  of  pressure  per 
LOG  metres  up  to  a  height  of  2  kilometres,  if,  at  1  kilo- 
netre,  the  pressure  is  67  centimetres. 
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8.  The  initial  strength  i0  of  a  telephonic  currei 
in  a  line  of  length  I  kilometres  falls  at  the  end  of  tl 

line  to  a  value  ix  given  by  it=i0€~pl,  where  ft  is 
constant.  If  /3= 0-0125,  find  the  attenuation  or  dimini 
tion  of  intensity  at  the  end  of  a  similar  line  10  kilometr 
in  length. 

9.  The  initial   strength   of  a   telephonic   current 
reduced  by  20  per  cent,  at  the  end  of  a  line  the  length 

of  which  is  32  kilometres.    Find  the  length  of  a  simili 

line  for  which  the  current  strength  is  reduced  by  one  hal 

10.  A  beaker  of  boiling  water  cools  to  50°  C.  in  1 

minutes  in  a  room  the  temperature  of  which  is  —  5°< 
At  what  surrounding  temperature  would  the  coolii 

through  the  same  range  take  place  twice  as  slowly  1 



CHAPTER  VIII. 

A  LITTLE  MORE  ABOUT  NAPIERIAN 
LOGARITHMS. 

*N  a  previous  chapter  we  have  seen  that 

(l+ar=l+wa+%^^+w(w-13)i(w-2)a«+.... 
Now,  since  this  is  true  for  all  values  of  a,  it  is  also 

rue  if  a  has  the  value  \jn,  in  which  case  we  have 

n(n-l)(n-2)  fl\* 
3! 

.  IV\lll  J-   /    \IV  i->  )      I    1     \  . 

md  we  have  seen  that  when  n  grows  until  it  is  greater 

han  any  conceivable  quantity,  that  is,  becomes  in- 
initely  great,  then 

(l  +-)"=  2-71828...  =e. \      n/ 
Now 

{('+s)T-('+i)"-'+-© 
,«^v,<^     *//*  V    nx{nx—\)(nx— 2)  /1\3 
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*(H*)^*4)(HD 
or      e*  =  l+x+     x2!        +—   '-jf   — +...  (1 

If  we  suppose  again  n  to  become  infinitely  great 
1  2 

then  all  the  terms  such  as  -,  -  . . .  ,  become  zero.  an< n  n 
we  get 

e?=1+tf+J+fr+   (5 
But  if  l/n<l,  that  is,  if  n>l,  we  have  seen  that  th 

equality 

x(x — ) 

-t-- 

n> 

i       l\nx 

(1+  )  =1+a;+ 9  1 

X(X-n)(X~l) 3! 

is  arithmetically  true,  that  is,  if  we  give  any  vah 
to  x  and  calculate  the  value  of  the  left  and  of  the  righ 

hand  members  respectively,  we  get  the  same  number  I 

We  have  therefore  ex=N,  or  ̂ =logeA7. 
We  fall  naturally  upon  the  system  of  Napierfc 

logarithms,  and  for  this  reason  they  are  also  call« 
Natural  logarithms.  Now,  we  could  give  x  any  val 

we  like,  and  calculate  the  number  AT  corresponding  i 
it.  This,  however,  would  be  working  the  wrong  w. 
about ;  what  we  want  is  to  find  the  logarithm  of  ai 

given  number,  not  the  reverse. 
Now,  the  equality  (2)  remains  true  for  all  the  vah 

of  x ;    it  is  true  if  instead  of  x  we  put  anything  el  - 
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instance,  ex — the  x,  of  course,  being  different — and 
have  z.2^2     ,,3^3 

Why  did  we  do  that  ?  Because  we  want  to  bring 
e  Napierian  logarithm  of  any  number  directly  into  the 
pression,  and  then  try  to  find  a  value  for  it ;  if  we 

ite  now  ec=a  then  c=\ogea,  and  we  have 

x2{\ogea)2    x3(\og€a)3 

+       2!     _i~       3!     ~~t"" 
This  is  numerically  true,  since  it  is  derived  from  (1), 

lich  we  know  to  be  a  numerical  equality,  since  in  it 
n  is  smaller  than  unity. 

To  express  now  log,  a  as  a  convergent  series,  in  order  to 

j  able  to  calculate  it  with  any  approximation  we  like, 

ill  require  the  use  of  a  little  dodge  :  since  c  can  be  any- 
ing  we  like,  a  is  necessarily  also  anything  we  like.  We 
,n  therefore  put  1  +y  instead  of  a.     We  get  then 

./• 

(l+y)*  =  l+a?logi(l+y)+|i-{log.(l+y)}«+   (3) 
it  we  have  also  by  the  binomial  theorem  : 

i  „  \x     i  .         .  oc(x-l)   „  .  x(x—l)(x—2)   ,  , 
4-y)  ==1+vy+    2i    y^ — — 3p — V+- 

-14-^1  x*y*  «*".«V  3jgV  1 2xu* . 
-i-t-o?y-h-yj      If +"81         si    +  3!  +••• 

G.E. 0 
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We  can,  as  we  have  done  for  the  binomial  theorer 

write  the  coefficient  of  x  so  as  to  put  in  evidence  tl 
law  of  formation  of  the  successive  terms,  as  follows  : 

(-l)x(-2)x(-3)  x 

1x2x3x4     r+-;+- we  get  finally 

(l+y)"=l  +*(2/-|2+|3-^+-)  +   ( 
Now,  the  left  hand  expressions  in  (3)  and  (4)  are  iden 

cally  the  same,  therefore  both  right  hand  expression 
must  also  be  identically  equal,  and 

l+^loge(l+^)  +  ...=  l  +  ̂ ^-|2+^-^+. ..)  +  .. 
As   we   have   seen   before    (see  p.   76),  in   such 

equality,  the  coefficients  of  the  same  power  of  x  f< 
identically  equal,  so  that  we  have  at  last 

hg<(l+y)  =  y-1l+?l-£+   

This  sequence  of  terms  is  called  the  "  logarithr 
series."  We  arrived  at  this  by  a  rather  long  success: 
of  steps,  but  each  step  was  quite  easy,  and  so  we  j 
to  our  goal  without  much  effort. 

In  this  particular  case,  even  if  y=l,  the  series  is  s 
convergent,  for 

loge(l  +  l)  =  loge2  =  l-i+i-i  +  ." 

=  1  -  0-50000  4-  0-33333  -  0-25000 + . 
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ie  terms  diminishing  gradually.  We  shall  be  able 
i  calculate  loge2  as  we  have  calculated  the  value  of 
itself,  but  with  what  labour  !  Try  it,  remembering  that 

>  get  four  places  of  decimals  correct  you  should  go 

1  till  you  get  a  term  less  than  0-00001.  The  terms 
iminish  very  slowly,  or,  to  put  it  in  a  mathematical 
>rm,  the  series  converges  slowly,  and  we  get  near  the 

xlue  we  require  by  zig-zagging,  so  to  speak,  each  term, 
hether  added  or  subtracted,  carrying  us  always  beyond 
ie  mark.  It  is  easy  to  see  that  to  get  down  to  the 

?rm  0-00001  or  1/100000,  we  shall  have  to  take  100,000 
?rms  !  Nevertheless,  it  could  be  done  ;  we  should  find 

>ge  2 —  0-6931.    If  we  give  now  to  y  the  value  J,  we  get 

og£(l  +  |)=loge|=loge3-loge2 

_i_i    ii    r_i    i_ 
~~2     2X22+3X23     4X24  +  '" 

=0-50000-0-12500+0-04167 -0-01562+.... 

This  converges  much  more  rapidly.     We  get  after 
leven  terms 

Dge3-0-6931^ +0-5493-0-1438    and    log.3«l-0986. 

Likewise,  making  y=\  we  get  ' 

og,(l+|)=loge|=log.4-loge3=log€4-l-0986 

m<l     log, 4  « 1-3863, 

he   series   again   converging   still   more   rapidly   than 
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for  loge3,  and  so  on ;  y  =  \  will  give  loge5,  y=\  wil 
give  loge6,  etc.,  and  as  the  denominator  in  the  value  o 

y  gets  larger,  we  want  fewer  terms  to  get  the  logarithn 
with  a  given  degree  of  approximation.  However 

mathematicians  want  to  get  the  values  they  need  mor 
quickly,  by  the  calculation  of  fewer  terms.  This  i 

easily  obtained  by  a  little  skilful  manipulation  easy  t 
follow. 

We  have  found  \oge(l+y)=y-?-L+qjr -'-£+...  tru 
as  long  as  y  is  not  greater  than  unity,  as  we  have  seei 

It  will  be  also  true  if  y  is  negative,  provided  that  w 

still  have  y<\.  If  y  is  negative,  the  expression  (I 
above  becomes 

log.(l-y)  =  -j,-|2-^-f   (( 
Subtracting  (6)  from  (5)  we  have 

1 
a 

loge(l+^)-loge(l-^)  =  logeg=^-|2+|3-^+. 

\     U     2      3      4 "7 

■*i3-»(*Wr*-~)   < 
We  have  got  rid  of  half  the  terms,  and  precise 

those,  too,  which  were  giving  our  approach  to  the  fir 
value  the  zigzagging  feature  which  made  progress 
slow. 

This  new  expression  is  true  again  for  all  values  of 

provided  that  y<l,  since  it  is  derived  from  (5)  and 

i 
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Suppose  p  =  \/(2n  +  l)  with  n>l,  then 

l+y  =  l  +  l/(2n+l)  =  (2n+2)l(2n+l), 

l-y=l-l/(2n+l)=2«/(2n+l), 

»ce  (l+y)/(l~y)=(2w+2)/2%=(»-fl)M 
id 

°ge1T~    12^+1 +3(2^+l)3+5(2w+l)5+,'7"(  } 
'  replacing  in  (7)  ?/  by  1/(2/1+1). 
If  we  now  make  w=l  we  have 

-=el        1.3^3x27^5x243^  "7 

-2(0-33333+001234+0-00082+0-00007) -0-6931, 

ving  loge2  correct  to  4  places  of  decimals  with  four 
rms  only. 
If  we  make  n  =  2  we  have  likewise 

logef=loge3-loge2  -0-4055    and    loge3 -1-0986, 
id  so  on. 

You  can  therefore   calculate   a   table   of  Napierian 

garithms.     There  is  nothing  at  all  mysterious  about 
em,  as  you  see  ! 

Now,  if  ex=N,  x=\ogeN. 

And  if  l0v=N,  y  =  \og10N. 

But         e*=l&f=2Ti  or  Z/7x=ex'y=l0, 

*ice      x/t/=\oge  10  =  2-3025851 ... ,  let  us  say,  2-3026, 

;nce  #=2-3026xi/,  or  logeiV  =  2-3026  xlog10AT, 

id    log10i\T=logeAT/2-3026  =  0-434294 .-..  x  logeA^, 
y,  0-4343  logeAT. 
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It  follows  that  we  can  readily  get  the  common  loga 
rithm  of  a  number,  knowing  its  Napierian  logarithm 
and  vice  versa.  The  number  04342945  ...  is  called  th 

modulus  of  common  logarithms. 

We  can,  however,  calculate  common  logarithm 
directly  as  follows  : 
We  found  that 

ge    n    ~    U+lt3(2w+l)3+5(2w+l)5"t",7' 
What    error   do  we   commit  when  we   neglect  all  tlj 

terms  except  the  first  one  ?    Evidently 

ZU(2rc+l)3^5(2rc+l)5^"/ 
Now,  this  is  obviously  smaller  than 

2  (        1  1         l  I         1  I  1  1 
V3(2w+l)2^3(2rc+l)3^3(2^  +  l)4^3(2rc  +  l)5^'" 

since  this  last  expression  contains  more  terms,  and  t 

terms  containing  the  same  powers  of  2n-j-l  have 
smaller  multiplier  in  the  denominator,  that  is,  i 

larger  than  the  corresponding  terms  in  the  fi 

expression. 
Hence,  we  have 

2/111 

err0r<3(2n  +  l)2l~h2^  +  li"(2>i+l)2     (2^+l)3_h" 
The  expression  in  the  bracket  is  such  that  each  te 

is  equal  to  that  one  immediately  before  it  multip] 
by  a  constant  factor,  here  l/2w+l ;  we  have  seen  t 
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ich  a  sequence,  or  series,  is  called  a  geometrical  pro- 
cession. It  is  very  easy  to  get  the  value  of  the  sum 

E  any  number  of  terms,  even  if  this  number  is  infinitely 
reat,  without  calculating  the  terms  themselves,  as 
)llows  : 

Call  Sp  the  sum  of  p  terms. 

Sp  =  1  +  2^+I  +  (2»+l)*+ '"•  ' 
We  see  that  the  index  of  the  power  of  2n-\- 1  is  always 
}ual  to  the  rank  of  the  term,  diminished  by  unity, 
le  index  in  the  5th  term,  for  instance,  being  4 ;   it 

)llows  that  the  term  of  rank  p  is  -rx   ttttt. 

*        (2n+l)p~1 We  have  then 

[ultiply  both  sides  by  ,  we  get 

*X2^+T  =  2^PT+(2m  +  1)2+',,  +  P^+1)p'    (?>) 
Subtracting  (6)  from  (a)  we  get : 

Bp-Sp  x  2^pi=^(l  -g^pi)  =  i  -(^tt?' d  that 
1 

sP=—L^-<22±?-.  (o) 
1     2w+l     X     2rc+l 
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Now   if   p   becomes   greater    and    greater,     ̂ ~ — pr 

becomes   smaller   and   smaller,   and   when  p  become 

infinitely    great     (2/i+l)p    becomes    infinitely    great 

—   —  becomes  zero,  and  the  second  term  of  (c)  di.s 

appears,  leaving  us  with 

Sp  = 

1  2n+ 
2n 

2rc+l 
'2  2rc  +  l 

Hence,        error  <^-pTy2X-^r, 
or  error  <  l/3w(2w  +  l). 

It  follows  that,  if  we  want  to  calculate  a  table 

common  logarithms  from  1  to,  say,  100,000,  it  is  enouj 
to  calculate  them  from  10,000  to  100,000,  for,  as  we  ha 

seen,  the  decimal  parts,  or  mantissae,  of  the  logarithi 

of,  say,  3,  71,  508,  8612  are  exactly  the  same  as  t 
mantissae  of  the  logarithms  of  30,000,  71,000,  50,8( 

86,120  respectively.    We  can  begin  with  n  ==10,000, 
the  error  will  be  then  smaller  than  1/(30000x2000 

as  we  have  just  seen,  that  is,  smaller  than  0-0000000' 

and  it  gets  smaller  as  n  increases.     It  follows  th  • 
taking  only  the  first  term  of  (8),  we  shall  certai) 
obtain  seven  places  of  decimals  correctly.     We  hi 
then,  to  that  degree  of  accuracy, 

w+1         2 l0^^r-2rc+r 
w+1     2x0434294.. 
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1A1    ,        ,     ,  ,x     i  0-868588...         , 
If   ?a  =  104,    log10(rc  +  l)-log10rc=— 2oooT~ ' 

since  log10w  =  4, 

log10 10001  «  4  + 0-0000434  «  4-0000434. 

Now  let  w=  10001. 

10002  _0-868588... 
gl° 10001 ~     20002     ' 

log1010002-  4-0000434+0-0000434-  4-0000868, 

and  so  on,  only  the  difference  between  two  successive 

logarithms  will  not  always  be  0-0000434,  it  gradually 
diminishes  as  n  increases. 

You  know  now  everything  about  logarithms,  even 

how  to  calculate  logarithmic  tables.  It  is  monotonous 

work,  but  there  is  nothing  difficult  in  it.  The  actual 

calculations — divisions,  etc. — are  performed  by  calcu- 
lating machines. 

As  an  exercise,  show  that 

/•  OOOI        =■        '  °°o1 

JL       l-OI  =  -0****3 



CHAPTER  IX. 

EPSILON'S  HOME :   THE  LOGARITHMIC  SPIRAL. 

The  position  of  a  point  P  (Fig.  4)  may  be  denned  by 
its  distance  OP  from  a  given  fixed  point  O  (called  the 

Pole),  together  with  the  angle  AOP  which  the  line  01 
makes  with  a  given  fixed  line,  such  as  OA.    The  anglt 

AOP  is  usually  represented  b} 
the  Greek  letter  theta,  0  ;    th( 

length  OP  is  called  the  radiiu 
vector,  and  is  usually  representee 

by  the  letter  r.     The  positior 
of    the    point    P    is    then    re 

presented   by   the    notation   i> 

meaning  a*  length  of  length  r,  making  an  angle  6  wit! 
the  fixed  direction  OA,  which  is  agreed  to  be  alwayf 
horizontal  and  extending  from  O  to  the  right.    In  th< 

Fig.  5  the  point  Q  is  given  in  position  by  4^,  the  lengtl 
Oa  representing  one  unit  of  length. 

To  avoid  ambiguity,  other  conventions  are  necessary 

The  angles  are  positive  if  reckoned  from  OA  in  tht 

direction  of  the  arrow  ;  they  are  negative  in  the  oppositt 

direction.    For  instance,  if  the  angle  AOS  is  45°,  then  £ 106 
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\+  direction 

vill  be  given  in  position  by  2  -45°  or  by  2+315o,  since  the 
lirection  of  the  radius  vector  OS  may  be  reached  either 

3y  rotating  a  line  initially 
coincident  with  OA,  and 

pivoted  at  0,  either  through 

an  angle  of  315°  in  the  posi- 
tive direction  or  through  an 

angle  of  45°  in  the  nega- 
tive direction.  Also,  for 

a  given  angle,  when  r  is 

positive,  its  length  is  taken 
from  O  along  the  arm  of 

the  angle,  while  if  r  is 

negative  its  length  is  taken 
in  the  opposite  direction, 
produced  backwards 

Fig.  5. 

on  the   arm   of  the  angle 

For  instance,  the  position  of  T  is 

given  by  —  480° ;  it  is  also 
represented  by  4_260o. 

Such  a  way  of  repre- 
senting the  position  of  a 

point  is  very  useful  in  the 
study  of  certain  curves, 
as  it  enables  the  curve 

to  be  represented  by  a 

very  simple  equation  in- 
stead of  a  complicated 

one.  For  instance,  a 
circumference  of  circle  of 

centre  0  and  radius  a  is  represented  by  the  equation 

r=af  simply,  since  the  length  r  is  always   the  same, 

Fig.  6. 
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namely  a,  whatever  may  be  the  angle  6,  which  angle 
therefore  does  not  enter  into  the  equation  at  all. 

The  same  circle,  in  rectangular  or  x,  y  co-ordinates, 

would  be  represented  by  x2+y2=r2,  since  this  relation 
is  satisfied  for  any  point  P  of  the  circumference,  as 

may  be  seen  in  the  triangle  OPN,  Fig.  6.  Similarly, 
suppose  that  we  are  dealing  with  a  certain  curve 

such  that  at  any  instant,  P  being  a  point  on  the  curve, 
OP  is  equal  in  length  to  the  cosine  of  the  angle  AOP 

(Fig.  4).  The  curve  will  clearly  be  represented  by 
r  =cos  9. 

You  are  now  acquainted  with  what  mathematicians 

call  "Polar  Co-ordinates, "  a  very  imposing  name  for 
quite  a  simple  thing.     (See  p.  242,  Appendix.) 
Among  all  the  curves  one  can  imagine,  there  are  some 

belonging  to  a  class  which  has  very  interesting  pro- 
perties, and  which  are  called  spirals.  These  curves  start 

from  the  pole  and  describe  an  endless  number  of  evei 

widening  circumvolutions.  Various  spirals  have  different 

properties.  We  are  concerned  here  with  a  spiral  whicr 
can  be  drawn  by  an  interesting  little  apparatus  whicr 
we  shall  first  describe. 

A  cylinder  O  (see  Fig.  7)  has  a  compass  point  and  z 
rectangular  slot  in  which  a  rod  BC  can  slide  smoothly 
At  the  end  of  the  rod  is  a  circular  frame  D  fitted  witl 

a  ring  E,  which  can  be  turned  round  so  as  to  allov 
of  the  spindle  aa  of  a  small  sharp  wheel  F  being  se 

in  any  direction.  A  small  handle  G  allows  the  apparatu: 
to  be  held  between  the  thumb  and  the  two  first  fingers 
It  will  be  found  that,  since  the  wheel  F  cannot  mov< 
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ddeways  owing  to  its  sharp  edge,  the  hand  can  only 
nove  in  one  direction,  namely,  in  the  direction  of  the 
olane  of  the  wheel  F.  As  the  wheel  revolves,  if  the 

ingle  <f>  it  makes  with  the  direction  AO  be  a  right 
angle,  it  would  have  no  tendency  to  alter  its  distance 

from  O.  If  the  angle  <p  be  less  than  a  right  angle,  how- 
ever, the  wheel  F  will  tend  to  get  further  from  0  as 

fig.  7. 

it  revolves,  and  it  will  do  so,  the  rod  CB  sliding  in  the 

slot  0.  It  is  easily  seen  that,  since,  for  any  particular 
setting  of  the  ring  E,  the  plane  of  the  wheel  always 
makes  the  same  angle  with  the  rod  BC,  the  trace  of 
the  wheel  on  the  paper  will  always  make  the  same 
angle  with  the  line  joining  any  point  P  on  this  trace 
with  the  pole  0.  In  other  words,  the  curve  traced  by 

the  wheel,  a  curve  which  is  evidently  a  spiral,  will  make 

a  constant  angle  with  the  radius  vector.  For  this 

reason  the  curve  is  called  an  equiangular  spiral. 
Consider  an  arc  AR  of  equiangular  spiral  traced  by 

the  wheel  set  in  such  a  way  that  the  constant  angle 
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between  the  curve  and  the  radius  vector  at  any  point 

is  45°  (see  Fig.  8).  Let  the  arc  begin  at  A,  at  a  distance 
of  1  inch  from  the  pole  0,  and  let  the  angle  AOR  be 

unity,  that  is,  one  radian.  Suppose  this  angle  AOR  U 
be  divided  into  a  large  number,  n,  of  equal  angles,  AOB 
BOC,  etc.  Then  each  of  these  small  angles  is  1/n  radian 

Since  n  is  large,  the  angles  are  very  small,  and  we  car 

therefore  consider  the  smal' 
arcs  AB,  BC,  CD,  etc.,  af 

short  straight  lines.  Dro] 

A  a,  Bb,  Cc  perpendicularly 
to  OB,  OC,  OD  respectively 
The  angles  aBA,  bCB 

cDC ...  are  angles  of  45° 
hence  the  small  triangle; 

AaB,  BbC,  CcD ...  ar« 
isosceles  triangles,  an( 

Aa=aB,  Bb=bC,  Cc=cD 
etc.  The  figure  does  not  sho\ 

the  equality  of  the  sides  At 
and  aB,  Bb  and  bC,  etc. ;  this  arises  from  the  fact  that,  r 

order  to  limit  the  size  of  the  figure,  the  angles,  OB  A ,  OCB 

ODC  ...  etc. ...  have  actually  been  made  greater  than  45c 
Also,  since  the  angles  AOB,  BOC  ...  are  very  smal 

we  may  suppose  OA=Oa,  OB=Ob,  OC=Oc,  etc 
without  introducing  any  appreciable  error.  Lasth 

since  length  of  arc  =  radius  x  angle  in  radians  (see  p.  44 

we  have  Aa  =  OA  x  1/n  =  1  X  1/n  =  1/h  , 
Bb  =  OBxl/)i, 

Cc=OCxl/n}  etc. 

Fig.  8. 
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We  have  therefore  : 

OA=l, 

OB=Oa+aB=OA+Aa=OA+OAxlln 
=OA(l+l/n)=l+l/n, 

OC=OB+bC=OB+Bh=OB+OBxl/n 
=OB(l+lln)=(l+llnf, 

OD=OC  +  cD=OC+Cc=OC+OCxl/n 
=OC(l+lln)=(l+l/nF, 

,nd  so  on. 

We  can  make  then  the  following  little  table  : 
Radius  Vector.  Angle. 
1  inch. 0  radian. 

(l+l/n)*. 
(l+l/nf. 

lfn. 
2/n. 

Z/n. 

(i+iM)n. n/n=l  radian. 
If  the  number  of  angles  is  indefinitely  great,  n=oo  ; 

out  we  know  that  in  this  case  (see  p.  84) 

(l+l/n)n=t 
•=2-7183...  . 

It  follows  that  (l+l/n) 
=#?=€**, 

(Hl/w)2 (l+l/nf 
3o  that  we  have  : 

=(el/«)3  =  63/n  _  9  an(J  so  on# 

Radius  Vector  r. 

1  inch. 
Angle  0. 

0  radian. 

el/n e2'n. l/n. 
2/n. 

■n/n=€.  »M=1  radian. 
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In  every  case  the  length  of  the  radius  vector  is 

power  of  e,  the  index  of  which  is  the  correspondin 

angle  in  radians.     The  equation  representing  the  curv 

is  therefore  r=e9  for  this  particular  spiral.    It  follow 
that  #=logE  r,  and  the  radian  measure  of  any  angle  is  th  | 
Napierian  logarithm  of  the  length  of  the  correspondin 

radius  vector.     For  this  reaso 

this  type  of  spiral  is  also  calle  ; 
the  logarithmic  spiral. 

If  we  consider  a  radius  vect( 

OB,  of  angle  a  (see  Fig.  9),  ar  i 
another  radius  vector  OC,  ■ 

angle  /3=oc+l,  then 

OB =6-,    OC=e*+1, 

OC/OB=e^1/^=€. 
We  have  then  found  anoth 

definition    for    e.     Just   as 

is  the  value  of  the  ratio  of  the  lengtji  of  the  circui 
ference  of  a  circle  to  that  of  its  diameter,  e  is  the  val 

of  the  ratio  of  any  two  radii  vectors  of  the  45°  eq 
angular  spiral  at  an  angle  of  1  radian  to  one  anoth 

If  a=0,  then  a+l=l  and  OCjOA=e1/e°=€ ;   t 
actual  value  of   e  can  therefore  be  obtained  from  t 

curve  by  measuring,  in  inches — since  OA  is  suppos 
to  be  1  inch  long — the  radius  vector  corresponding 
the  angle  of  1  radian. 

We  see  also  that  if  we  want  to  multiply  two  numb 
we  may  mark  off  the  two  numbers,  in  inches,  by  me; 

of  a  compass,  at,  say,  OB  and  OC  (see  Fig.  9) ;   add 

Fig.  9 

" 

i 

■ 
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1  the  two  angles  AOB,  AOC,  which  are  the  loga- 
ms  of  their  radii  vectors  respectively,  we  get  the 
le  AOD,  which  is  the  sum  of  the  logarithms,  so  that 

length  in  inches  of  the  corresponding  radius  vector 

'  is  the  product  of  the  two  given  numbers. 
he   equiangular  or  logarithmic   spiral  is   therefore 
tiing  else  but  a  graphical  table  of  logarithms.     The 

3  of  the  system  depends  on  the  direction  given  to 

spindle  of  the  tracing  wheel.    For  an  angle  of  45°, 
system  is  the  Napierian  system  of  logarithms. 

'he  most  general  equation  of  the  spiral  is  r=kam9, 
ire  k,  a,  m  are  constants.    Since  a  and  m  are  constants, 

can  always  find  a  number  n  such  that  am=en  and 

equation  becomes  r=ken9,  having  only  two  arbitrary 
stants,  that  is,  two  constants  which  may  take  any 
;able  independent  values.      Obviously  k  gives  the 
le  to  which  the  spiral  is  drawn,  and  n  depends  on  the 
;le  cj>  at  which  the  curve  cuts  the  various  radii  vectors. 

from  the  equation  of  a  curve,   all  the  properties 
the  curve  may  be  investigated  mathematically.     In 

present  case,  the  equality  r=kenB  implies  the  funda- 
atal  property  of  this  particular  spiral,  namely,  the 
ustancy  of  this  angle  (p. 
iow,  when  we  say  that  a  curve  makes  a  certain 

;le  with  a  line,  this  is  rather  a  loose  way  of  expressing 
ngs.  It  is  more  accurate  to  say  that  the  tangent 
the  curve  at  the  point  of  intersection  of  the  curve 
1  the  line  make  a  certain  angle  with  this  line.  Let 

therefore  examine  a  little  the  properties  of  the 
igent  to  a  curve. 
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If  we  consider  a  chord  PP'  (see  Fig.  10),  and  if 

suppose    the    point   P'    to    approach    indefinitely   1 

point  P,  then  the  chord  PP'  gradually  approaches  1 
direction  PT,  which  it  reaches  when  P'  coincides  w 
P.    PT  is  tangent  to  the  curve  AB  at  P,  since  it  ] 

only  one  point  in  common  with  the  curve.     This 

expressed  by  saying  that  the  tangent  is  the  limit 

position  of  the  chord  PP'  wl 
P'  continuously  approaches 
.You  can  easily  verify  this 

yourself  by  drawing  any  cm  ■ 

taking  two  points  P,  P'  on 
putting  a  pin  in  at  P,    a* 
placing  a  ruler  so  that  it  alw  i 

touches  the  pin,  drawing  a ~i cession  of  chords  of  decreas 

length.   When  the  length  of 
chord  has  become  very  sn 

you  will  see  that  it  is  aln 
indistinguishable    from  a  true  tangent   to  the  cu 
drawn  at  P. 

The  position  of  the  tangent  PT  is  defined  by 

angle  a.  it  makes  with  the  radius  vector  OP.  This  a 

is  the  limit  towards  which  the  angle  OP'P  tends  \n 
P'  continuously  approaches  P.  This  also  is  easily  s 

Drop  PN  perpendicular  to  OP'.  In  the  right-an 
triangle  PP'N  we  have  : 

cos  NP'P=NP'IPP',    sin  NP'P=NP/PP'. 

Fig.  10. 

Let         POP'=dO,    PP'=ds,    NP'<(r: 
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here,  as  you  know,  the  letter  d  placed  in  front  of 

.  n,  r,  means  simply  "  a  little  bit  of."  As  a  matter  of 

ict,  you  see  that  when  P'  approaches  P,  dd,  ds  and  di- 
ll three  get  smaller  and  smaller. 

NPjPO  =  sin  PON,  hence  NP  =r  sin  (dO)  =r  dO,  for, 
nee  d9  is  very  small,  sin  (dO)  =dQ. 

When  P'  practically  coincides  with  P,  the  angle  NP'P 
ecomes  the  angle  OPT'=cl.    We  have  then 

cos  0L=dr/ds,  smoL=rd9/ds,  tana=   =rd6jdr, COS  OL 

,  Idr UncL=rlw 
Let  us  pause  a  moment  at  this  stage  and  apply  our 

resh  knowledge  to  another  type  of  spiral,  called  the 
Lrchimedian  spiral,  which  has  for  equation  in  polar 

o-ordinates  r=k6,  k  being  a  constant.  In  this  curve 
he  radius  vector  to  any  point  is  proportional  to  the 
adian  measure  of  the  corresponding  angle. 

Idr Now  we  have  just  seen  that  tan  a.=r  H* ,  and  in  this 

^ase  drldO=k,  so  that  tan  OL=r/k.  ' 

It  follows  that  if  OA  is  an  arc  of  Archimedian  spiral 

see  Fig.  11),  if  we  draw  a  circle  of  radius  Jc,  cutting 

;he  curve  at  P,  then  r=k  ;  at  P  we  get  for  the  direction 

)f  the  tangent  tan  oL=rlk^k/k=l  and  oc=45°. 
It  follows  that  the  tangent  PT  to  the  curve  at  P 

s  the  bisector  of  the  right  angle  OPW. 
In  the  case  of  the  logarithmic  spiral,  the  equation 

5  r=ken9.    Do  you  remember  how  to  get  dr/dO  ? 
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Let  en9=u,  then  dujdO=nenB.    (See   Calculus  Made 
Easy,  p.  150.)    r=ku  gives  dr/du=k  ;  then 

duxde~dd~kne  ' 
Idr 

hence  tan  a.=r I ̂ =r/hi€n9=r/nr==l/n=constajit9 

showing  that  the  angle  of  the  tangent  to  the  curve 
at  any  point  with  the  radius  vector  at  that  point  is  a 

constant.  This  angle  is,  of  course,  the  angle  at  which  th 
curve  cuts  the  radius  vector,  since,  just  at  that  point,  th 
curve  and  its  tangent  may  be  considered  as  coincider 
along  an  indefinitely  small  portion  of  the  curve. 

In  particular,  in  the  spiral  r=ke9,  n=l,  tanoc= 

and  the  angle  a  is  45°,  whatever  the  scale,  that  is,  wha 
ever  is  the  value  of  k. 

Suppose  k=l  ;  when  #=0,  r=l.  For  a  complei 

circumvolution  of  the  spiral  r=en9, 

0=360°  =2tt,    *•=€*•=€***    and    2n7r=loger, 
so  that    n=log€r/27r    and    tan«.=l/w=27r/loger. 
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In  the  spiral  r=e9,  after  one  complete  circumvolution, 
=2tt,  r=e62832=537  inches,  44f  feet ! 
If  we  want  r  to  be  10  inches  only,  after  one  complete 

3ircumvolution 

tan  oc=27r/loge  10=6-2832/2-3026  =2-729  ... 

and  oc=69°  53',  while  w=0-3665,  so  that  r=e^mbe. 
This  is  a  very  curious  spiral,  much  closer  than  the 

45°  logarithmic  spiral. 

When  r=2,  2=e°'3665<?,  solving  for  0  as  we  have 
learned  to  do  in  Chapter  III.  we  find  0  =  1-894. 

Now  0/2tt=1-894/6-2832=O-3O1O  of  a  revolution,  and 

0-3010  is  log102,  the  common  logarithm  of  2. 

Similarly,  if  r=3  we  find  (9=2-997,  and  0/2tt  =0-4771 
of  a  revolution  =log103,  and  so  on.  When  r=10,  we 

have  0=6-2832  and  0/2tt=1  revolution  =log10 10. 
That  is,  for  this  spiral,  the  number  of  revolutions 

(or  the  fraction  of  revolution)  is  the  common  logarithm 
of  the  corresponding  radius  vector.  It  follows  also  that, 

since  log  20=log  10+log  2,  log  20  corresponds  to  1-3010 
revolutions,  the  decimal  is  the  same.  We  see  that  a 

small  range  of  logarithms  will  really  give  an  unlimited 
range  of  values,  as  we  have  seen  to  be  the  case  with 
common  logarithms. 

In  order  to  obtain  the  common  logarithmic  spiral, 

however,  the  only  condition  needed  is  r=en9  with  r=10 
when  0=1;  then  10=en,  1  =wxlog10e =0-4343  Xn, 
and  w =2 -3026,  so  that  the  equation  of  the  common 

logarithmic  spiral  is  r=€2'm69. 
Then,  also,  tan  0=1/2-3026=0-4343  and  0=23-|  very 
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nearly.     This  gives  a  very  wide 
after  one  circumvolution  we  get 

sweeping  spiral,  for 

r=e •3026  x  6-2S32 . 1920000  inches, 

or  160000  feet,  just  above  30  miles  ! 
If  an  arc  of  circle  be  described  with  a  radius  «y  cutting 

the  e  and  the  common  spirals  at  P  (see  Fig.  12)  and  0  be 
measured  by  means  of  a  protractor  divided  in  radians. 

10  spiral  I 

€  spiral 

0  will  be  loger  on  one  spiral  and  log10r  on  the  other, 

as  we  have  seen.  In  the  latter  spiral,  r =e=2-7183  occurs 
at  an  angle  of  04343  or  1/2-3026  radian,  while  in  the 
e  spiral  r=\0  occurs  at  2-3026  radian.  It  follows  thai 
2-3026  =loge  10,  while  0-4343  =log10e,  and  we  see  thai 
log.10=l/log10€.. 

The  three  spirals  are  shown  to  scale  on  Plate  I. 

Note  also  that  since  logeAT=2-3026xlog10AT,  if  w( 
make  a  sector  of  2-3026  radian  and  divide  it  into  ter 

equal  parts  subdivided  decimally,  and  if  we  apply  r 

on  the  e  spiral,  we  shall,  instead  of  2-3026,  read  1 
Every  reading,  in  fact,  will  be  read  off  as  if  it  was  divide* 



I 

2  radians 

PLATE  I. 

To  30  miles  *  /1 

after  1  revolution]  ■ 

•>  45  feet 
ter  1  revotVtiofT 

K   r=f0-3&6Sd 
To  10  inches  •*■  \ 
after  Involution  \ 

14 

2-30260; 

^ 
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by  2-3026,  so  that  we  shall  read  common  logarithi 
directly  from  the  e  spiral.     Such  a  sector  is  the  materi  | 

ization  of  the  modulus  of  common  logarithms.* 
In  fact,  in  every  spiral,  tan  a.  is  the  modulus,  and  c  | 

can  pass  from  any  equiangular  spiral  to  all  the  oth 
by  a  suitable  change  in  the  unit  of  angle.  As  an  exerci 

you  are  advised  to  plot  the  spirals  r=e9,  r=e0'3 
and  r=€tS02O9J  and  verify  by  actual  measurerm 
the  mathematical  properties  of  the  spirals  toucl 

upon  in  this  chapter.  It  will  be  both  a  profitable  a 
an  interesting  work. 

Before  we  leave  the  logarithmic  spiral,  however 

most  curious  property  calls  our  attention.  If  a  pi 
of  cardboard  is  cut  so  that  its  outline  is  a  logarith: 

spiral,  r=e9,  and  if  a  small  hole  is  made  in  the  ca 
board  at  the  place  occupied  by  the  pole  of  the  spi 
then,  if  the  cardboard  is  made  to  roll  with  its 

outline  against  a  straight  ruler,  the  path  of  the  p 
marked  by  the  point  of  a  pencil  inserted  through 
hole,  will  be  found  to  be  a  straight  line. 

You  should  verify  this  first  by  actually  cutting 
piece  of  cardboard  to  fit  one  of  the  spirals  given  in  Plat 
and  by  causing  it  to  roll  along  a  ruler,  and  marking 
the  position  of  the  pole  in  every  new  position  of 
cardboard  template. 

But  the  proof  is  not  difficult.    Consider  the  logai 

mic  spiral  ANR  and  the  straight  line  AT  tangen 

it  at  A  (see  Fig.  13),  A  being  the  point  correspond  | 

say,  to  #=0  and  r=\ — any  other  point  on  it  would 
*  E.  A.  Pochin,  Proc.  Phys.  Soc.  Vol.  XX. 
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Suppose  the  spiral  rolls  on  AT,  so  that  N  and  R 

come  successively  in  contact  with  it  at  N'  and  R" ; 
then  3ltcAN=AN'  and  arc  ANR=AR",  O,  0',  0",  etc., 
being  the  successive  positions  of  the  pole. 

Now,  we  have  seen  above  that  the  tangent  to  the 

curve  at  one  point  makes  a  constant  angle — here  45° — 
with  the  radius  vector  at  that  point.     It  follows  that 

N'
 

Fi
a.
  

13.
 

OA,  ON',  O'R",  etc.  ...  are  parallel  lines.  Draw  AB 

parallel  to  00' ,  AC  parallel  to  00",  etc.  (until  we 
have  proved  that  0,  0' ,  0" ,  etc.  are  on  the  same 
straight  line,  we  must  assume  AB  and  AC  are  different 

lines)  ;  then  OA=0'B,  OA=0'C,  etc.,  so  that 

OA=0'B=0"C=  ...  etc.  ...  =1. 

Now,  in  Calculus  Made  Easy  (last  edition,  pp.  277 
and  278)  we  were  shown  how  to  find  the  length  of  any 

arc  of  the  logarithmic  spiral  r=e9,  from  the  point 
corresponding  to  0=0  (A,  in  this  case)  to  any  other 
point  N,  R,  etc.,  corresponding  to  6=6^  0=92,  etc. 
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We  were  shown  there  that  the  lengths  of  an  arc  of  the 

spiral  from  <9=0and  0  =  91  is  s/%(&— 1). 
Calculating  this  for  various  values  of  0,  we  get  the 

following  table  : 

#•  t.  Increase  of  r.  s  (measured  from  A). 

0.        OA  =  l.       0.  0. 

0V    0'N'=e\    BN'=6^-1.    AN'=j2(e^-l). 

62.  0'R"=e\    CR"=€9*-1.    AR"=s/2(e9«—l). 

etc.        etc.  etc.  etc. 

It  follows  that  the  increase  of  length  of  the  parallel 

lines  OA,  O'N',  O'R" ,  etc.,  is  proportional  to  the  dis- 
tances AN',  AR",  etc.,  hence  their  extremities  O,  0',  0' 

etc.,  must  be  on  same  straight  line. 

We  see,  as  a  matter  of  fact,  that  BN' '=AN' '/s/% 

CR'=AR'\J%  etc.,  showing  that  AN',  AR",  etc. 
are  equal  in  length  to  diagonals  of  squares,  the  sides  oi 

which  are  equal  in  length  to  BN',  CR",  etc. 

Since  the  angles  AN 'B,  AR"C,  etc.,  are  45^,  the  figures 

ABN',  ACR",  etc.,  are  the  half  squares  themselves 
and  the  angles  ABN',  ACR",  etc.,  are  right  angles 
Since  OA,  ON',  O'R" ,  etc.,  are  parallel,  AB,  AC,  etc. 
being  perpendicular  to  them  must  be  one  same  straigh 

line,  and  as  OA=0'B=0"C,  etc.,  O,  O' ,  O" ,  etc.,  ar- 
also  on  one  same  straight  line. 

The  equiangular  spiral  is  not  the  only  curve  wit! 
which  epsilon  is  intimately  connected.  In  the  nex 
chapters  we  shall  deal  with  another. 
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CHAPTEE  X. 

A  LITTLE  ABOUT  THE  HYPEKBOLA. 

n  the  first  chapter  of  this  little  book  we  have  seen 

rhat  is  meant  bya"  function,"  and  we  have  seen  how 
he  variation  of  any  explicit  function  with  one  variable 
nly  can  be  represented  by  a  curve  traced  on  paper, 

.ith  reference  to  two  scales  or  "  axes  "  usually  at  right 
ngles  to  one  another.  To  every  such  function  corre- 
ponds  a  particular  curve,  and,  inversely,  to  any  curve, 
Lowever  complicated,  corresponds  a  particular  equation, 

n  the  case  of  complicated  curves,  however,  the  corre- 
ponding  equation  may  be  itself  too  complicated  to  be 

)f  any  use,  and  while  it  is  easy,  though  tedious,  to  plot 
he  curve  corresponding  to  a  complicated  equation,  the 

•e verse  operation,  that  is,  to  find  the  equation  corre- 
sponding to  a  given,  curve,  may  be  impossible,  although 

such  an  equation  exists,  merely  because  of  its  extreme 
complexity. 

Curves      which     exhibit    regular    and    symmetrical 

"eatures  can,  besides,  usually  be  obtained  by  a  geomet- 
rical construction.    The  position  of  each  point  is  defined 

<ome    geometrical   condition,    and   all   the    points 
together  constitute  the  curve.     For  instance,   in  the 

123 
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case  of  the  simplest  of  all  the  curves,  the  circle,  th 
condition  is  that  all  points  are  equidistant  fror 

the  centre.  In  the  case  of  the  ellipse,  the  sum  of  th 

distances  of  any  point  from  two  fixed  points — each  calle 
a  focus, — is  constant,  that  is,  is  the  same  for  every  poir 
of  the  curve,  and  so  on.  We  can  therefore  trace  sue 

curves  geometrically,  either  by  finding  a  succession  ( 
points  close  to  one  another  and  then  drawing  carefull 

free-hand  a  smooth  curved  line  through  them  all,  o 
in  the  simpler  cases,  by  means  of  a  device  which  en 
bodies  the  mechanical  realisation  of  the  particuh 

geometrical  construction  required,  such  as  a  compass  1 
trace  a  circle,  or  a  loop  of  thread  and  two  drawing  ph 
to  trace  an  ellipse. 

A  simple  curve  may  therefore  be  considered  geometi 

cally,  that  is,  from  the  point  of  view  of  its  geometr 
properties,  and  also  from  the  point  of  view  of  its  equatio 

that  is,  "  analytically." 
A  circle,  of  centre  O  and  radius  r  (see  Fig.  6),  f 

instance,  has  many  properties  which  may  be  investigat< 
by  geometry  only,  without  writing  a  single  algebraic 
symbol.  These  properties,  however,  may  also 
studied  by  algebra  alone,  from  the  equation  of  the  curv 

without  drawing  any  line  or  figure  whatever ;  but  figui 
are  useful,  although  not  necessary,  to  illustrate  t 

algebraical  analysis  and  make  it  clearer  to  the  mir 
In  the  case  of  the  circle,  for  instance,  if  we  adopt  G 

and  OY  for  axes  of  co-ordinates,  whatever  may  be  t 
position  of  the  point  P,  it  is  clear  that  we  shall  alwa 

have  the  relation  x2-\-y2=r2  (see  Fig.  6);   and  tl 
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e  equation  of  the  circle  when  the  axes  of  co-ordinates 
tersect  one  another  at  the  centre.  From  this  equation 

ery  geometrical  property  of  the  circle  may  be  deduced 
thout  having  recourse  in  any  way  to  geometrical 
>nsiderations. 

The  above  equation  is  an  implicit  function  of  x  and  y 

ee  p.  19)  ;  it  may  be  written  y=±s/r2~x\  an  ex- 
icit  function  of  x,  which  allows  the  curve  to  be  plotted 

>y  giving  various  suitable  values  to  the  independent 
variable  x. 

Among  the  simpler  curves,  we  are  specially  concerned 

vvith  a  curve  made  up  of  a  double  branch  symmetrical 

with  regard  to  either  the  line  XX'  or  the  line  YY' 

[see  Fig.  14),  and  called  a  "  hyperbola."  Its  principal 
property  is  that  the  ratio  of  the  distances  of  any  point  P 

on  it  to  a  certain  fixed  point  F — called  the  focus — and 

to  a  certain  fixed  straight  line  ZZ' — called  the  directrix 
— has  always  the  same  value,  which  value  is  greater 
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than  unity.     In  other  words,  if  P  is  any  point  on  th< 

curve,  PF/PE=e^>l,  e  being  a  constant  number. 

Since  there  is  evidently  a  point  P'  such  tha 
P'F/P'G=e,  e  having  the  same  value  as  before,  ther 
is  another  branch  on  the  left  of  ZZ,  and  this  implie 

the  existence  of  a  second  focus  F'  and  of  a  secom 

directrix  UU'. 
The  value  of  e  may  be  anything.  Provided  that  thi 

value  is  greater  than  unity  we  get  a  hyperbola. 

If  we  give  to  e  various  values,  each  particular  valu 
will  give  a  particular  curve,  but  all  these  curves  wil 
have  similar  features.  In  Plate  II.,  for  instance,  th 

right-hand  branches  of  hyperbolas  for  which  e  has  th 

values  10,  5,  2,  1-2  respectively  are  shown,  the  focu 
and  directrix  being  the  same  for  all.  All  those  curve 

which,  are  obtained  by  giving  a  different  value  to  ; 

constant  are  said  to  belong  to  the  same  "  family." 

We  may  remark  here  that  if  e=l  the  left  branc" 
ceases  to  exist,  as  it  is  clearly  impossible  that  a  poin 

P'  should  exist  to  the  left  of  ZZ  such  that  P'F\P'G= 
or  P'F=P'G.  The  geometrical  properties  of  the  curv 
are  also  modified.  The  curve  is,  in  fact,  no  more  calle< 

a  hyperbola  ;  it  has  become  a  "  parabola,"  shown  dotte< 
on  the  figure. 

If  e  happens  to  be  smaller  than  unity  a  curious  thin 
happens  :  the  branch  on  the  left,  which  vanished  whe: 

e  became  equal  to  unity,  now  reappears  on  the  righi 

with  its  focus — just  as  if  it  had  turned  right  round  behin 
the  paper.  It  meets  the  branch  that  had  become 

parabola  to   form  an   elongated   closed   curve — whic] 



PLATE  II. 

Hyperbola 
<?=io  e=5    c=2 e=\-i 
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you  know  is  called  an  "  ellipse  " — with  corresponding 
new  changes  of  properties.  As  e  becomes  smaller  and 

smaller,  the  two  foci  approach  one  another,  and  the 
ellipse  becomes  less  and  less  elongated.  Plate  II.  shows 

ellipses  for  which  "the  value  of  e  is  0-8.  0-5,  0-2  and  0-1. 
Finally,  if  e=0,  the  curve  becomes  a  circle,  with,  again, 
corresponding  modifications  of  geometrical  properties. 

Here  you  see  that  as  e  becomes  smaller  the  ellipses 
become  smaller  also,  and  when  e  becomes  zero  the 

ellipse  is  reduced  to  a  mere  point  at  F.  This  gradual 
shrinking  of  the  ellipse  is  due  to  the  fact  that  we  kept  the 
directrix  at  a  constant  distance  from  the  point  F,  as  may 

be  easily  seen.  When  e=0,  in  order  to  have  a  circle 
the  radius  of  which  is  not  indefinitely  small,  the 

distance  DF  should  be  infinitely  great,  that  is,  the 
directrix  should  be  at  an  infinite  distance,  which  is 

the  same  as  to  say  that  it  would  be  infinitely  remote, 
or  absent ;   hence  a  circle  has  no  directrix. 

Various  curves,  all  belonging  to  the  parabola  family, 

may  be  obtained  by  varying  the  distance  of  the  focus 
from  the  directrix,  e,  of  course,  remaining  always  equal 

to  unity.  This  is  the  same  as  if  we  varied  merely  the 

scale  of  the  figure,  however,  so  that  there  is  really 
but  one  parabola.  Likewise,  for  each  value  of  e,  by 

varying  the  distance  of  the  foci  from  the  directrix  and 
from  one  another,  an  infinite  number  of  hyperbolas 

and  ellipses  can  be  obtained,  which  are  only  the  same 
curve  drawn  to  a  different  scale  each  time.  Only  when 

e  varies  do  we  obtain  really  different  curves  of  the  same 

family.     There  is,  likewise,  but  one  circle,  as  all  the 



THE  HYPERBOLA 129 

•ircles  we  may  conceive  are  exactly  alike,  and  differ 
>nly  in  size,  that  is,  in  the  scale  to  which  they  are 
Irawn. 

We  see,  therefore,  that  the  hyperbola  family  is  one 

)f  four  closely  connected  types  distinguished  merely  by 

)he  value  of  e,  which  may  be  greater  than,  equal  to,  or 
ess  than  unity,  or  zero ;  two  of  these,  the  parabola 
md  the  circle,  consist  but  of  a  single  individual. 
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Fig.  15. 

Let  us  now  try  to  apply  the  geometrical  property  of 
the  hyperbola  to  construct  points  belonging  to  it,  so 

that,  by  joining  these  points  by  a  continuous  curved 
line  we  may  draw  the  hyperbola  corresponding  to  any 
relative  position  of  directrix  and  focus,  and  to  any 
suitable  value  of  e.  We  shall  only  consider  the  right 
side  branch  of  the  curve,  as  the  left  side  branch  is 

obtained  in  exactly  the  same  manner. 

If  ZZ'  be  one  directrix  (see  Fig.  15)  and  F  be  the  cor- 
responding focus,  then  e  being  given  numerically,  if  we 

G.E.  I 
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suppose  that  the  point  A  is  such  that  AF/AD=e,  or 
AF=exAD,  A  is  evidently  a  point  of  the  curve.    If 

we  take  any  point  AT  on  XX'  and  draw  SS'  through  A 
perpendicularly  to  DF,  DN=EP  is  the  distance  fron 

the  directrix  ZZ'  of  a  certain  point  P  of  the  curve 
and   we  simply  need  to  ascertain  the  position  of  JF 

along  SS'  so  that  the  fundamental  relation  PF/PE=t 
or  PF=exPE  is  satisfied.    Since  we  know  the  valu< 

of  e,  in  order  to  do  this  we  have  only  to  find  the  lengtl 

exND,  this  being  the  same   as   exPE=PF.    One 
this  length  is  obtained,  taking  F  as  centre,  we  dra^ 

two  arcs  of  circle,  of  radius  PF — found  as  we  hav 

explained — intersecting  SS'  at  P  and  P\     These  tw 
points  belong  to  the  hyperbola,  since  they  both  satisf 

the  condition  defining  the  curve,  namely,  PF/PE= 

and  P'F/P'E'  =e.     Other  points  may  be  obtained  in 
similar  manner  by  selecting  another  position  for  tr 

point  N. 
The  curve  is  very  easy  to  draw,  and  it  will  be  four 

that  once  the  position  of  A  is  known,  three  points  on 
on  each  half  of  the  branch,  one  situated  approximate 
above  or  below  F,  one  between  A  and  P,  and  one  beyoi 

P  will  allow  you  to  draw  the  curve  free-hand  with  ve 
fair  accuracy.  The  point  A  is  easy  to  find,  becau 

DF  is  a  known  given  length,  and  if  DA,  AF  are  repi 

sented  by  v,  Z  respectively,  then  vJrz=DF  and  %  =t 

from  which  we  get  v+ev=DF,  v(l-\-e)=DF,  a] 
v=DA=DF/{l-\-e). 

To  get  the  other  branch,  find  A',  so  that  FA'=e  xD; 
This  is  again  quite  easy,  for  if  DA'.  FA'  are  represei 
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>y    v',    %'   respectively,   then   since  FA' —BA'^FD, 
'—v'=FD  and  as  z'=ev\  ev'—v'=FD,  so  that 

v'(e-l)=FD    and    vf=DA'=FD/(e-l). 

Bisecting  A  A'  gives  O,  and 
OD'=OD,  OF'=OF 

^ives  the  position  of  the  directrix  UU'  and  focus  F' 
)f  the  left  branch  respectively.  These  will  vary,  of 

•ourse,  for  each  value  of  e,  with  a  given  position  for  F 
md  D.  The  construction  may  then  be  repeated,  or, 

nore  simply,  lines  such  as  EP  may  be  produced  to 

neet  UU'  at  E" ,  and  P'E"  taken  equal  to  EP  ;  P"  is 

:hen  a  point  of  the  left  branch  of  the  curve.  A  and  A' 
ire  each  called  a  vertex  of  the  curve,  and  the  length 

0A=OA'  is  usually  represented  by  a. 
This  method  of  constructing  the  hyperbola  requires, 

however,  scale  measurements  of  lines  and  arithmetical 

calculations,  and  for  this  reason  it  is  rather  cumber- 
some. There  is  a  much  simpler  method  of  constructing 

the  hyperbola,  based  on  another  geometrical  property 
which  is  of  more  practical  importance  than  the  first 
one  we  have  given,  namely,  that  the  difference  between 

the  distances  of  any  point  on  the  curve  from  the  two 
foci  is  always  the  same  whatever  the  position  of  the 

point,  and  is  equal  to  the  distance  A  A' ;  that  is, 
F'P-FP=AA'  (see  Fig.  15). 

This  can  be  easily  shown  to  be  the  case,  for  if  we 

drop  PN  perpendicular  to  FF',  then  we  have 
PF=e  xPE=e  xDN=e(ON-QD) 

and        PF'=e  xPE"=e  xDN=e(ON+OD'). 
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Hence,  subtracting 

PF'  -PF=e(ON+OD'  -ON+OD)=2exOD, 

since  OD=OD', 
and  as  2xexOD  is  a  constant  length,  the  first  par 
of  the  above  statement  is  verified. 

Also,  since  FA=eDA  and  FA'=exDA',  we  hav 

FA'  -FA  =e  xDA'  -e  xDA  =e(DA'  -DA), 
and  this  can  be  written 

AA'=e{DA'+DA  -DA  -DA} 

or  AA'=e{(DA'+DA)-(DA+DA)}=e(AA,-2AD< 
=e{AA'  -{AD+A'D')}=exDD'=2exOD. 

As  A  A'  =20 A,  it  follows  that  OA  =  ex  OD ;  but  we  ha^ 
found  above  PF'-PF=2eOD,  hence 

PF'-PF=20A=AA'. 

We   can   now    quickly    obtain    as    many   points 

the  hyperbola  as   we  nee 

being    given    the    two    fc 

F,  F'  and  the  length  2a, 
follows  : 

Draw  any  line  F'K  thron 
F'  (see  Fig.  16).  Ta 
F'R=2a.  If  a  is  b 

given,  but  only  the  direct] 
ZZ'  and  the  focus  F,  reme 
ber  we  have  just  seen  tr 

A  A '  =2a  =2e  X  OD,  hence  a  =e  X  OD  ;  now 

Fig.  16. 

OD  =OA  -DA  =a  -DF/(l  +e)> 
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Qce  DA=DF/(l+e),  and,  since  a=exOD,  we  have 
DF\ 

a=e 
(       I 

-he/' 
nd  a{e-l)=DFxe/(l+e),  hence  a=DFxej(e2-l), 
ience  we  get  a.  If  now  we  join  RF  and  bisect  it  at  W 

>y  a  perpendicular  to  RF  meeting  F'K  at  P,  P  is  a 
»oint  of  the  curve,  since  by  construction 

PR = PP,    PF'  -PP  =PP'  -PP  =F'R =2a. 

This  can  also  easily  be  performed  by  means  of  a 
nechanical  model,  and  the  curve  traced  as  a  continuous 

Fig.  17. 

line.  If  we  suppose  a  rod  F'K  (see  Fig  17)  so  arranged 
as  to  turn  round  a  pin  F'  fixed  just  on  its  edge,  and 
fitted  with  a  thread  fixed  at  F  and  L,  if  the  rod  is  of 

such  length  I  that  l—(PL+PF)=2a,  and  if  the  thread 
is  kept  taut  by  a  tracing  point  at  P,  as  shown,  then, 

for  any  position  of  the  rod  F'K  we  have 

PF'  -PF=PF'  +PL  -PF-PL 
=(PF+PL)-(PF+PL)=l-(PL+PF)=2a, 

so  that  the  tracing  point  P  is  always  on  the  curve. 
Make  one  with  a  flat  ruler,  a  piece  of  string  and 
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three  pins,  and  see  by  yourself  how  the  curves  differ 

when  you  alter  the  position  of  the  pin  L. 
Now  that  we  can  draw  any  hyperbola  we  choose,  let 

us  see  how,  from  the  geometrical  properties  we  know, 
we  can  derive  its  equation. 

Being  given  the  directrix  ZZ'  and  focus  F,  we  have 

seen  that  we  can  easily  obtain  the  vertices  A,  A',  and 

the  "centre"  O  by  bisecting  AA '.  The  line  YY', 
perpendicular  to  FF'  at  O,  is  evidently  an  axis  of 
symmetry  (see  Fig.  15) ;  so  is  also  FF'.  Now,  a  little 
consideration  shows  that  the  equation  of  a  curve  will 

be  the  simplest  when  the  axes  of  co-ordinates  are  axes 

of  symmetry.  We  shall  therefore  take  YY'  and  FF' 
for  axes  of  coordinates. 

Remembering  that  FA/AD=e  and  FA'IDA'=e. 
we  get  FA=eAD,  FA=eA'D,  hence  (Fig.  15) 

FA+FA'=e(AD+A'D)=exAA'; 

but  FA=F'A',  hence  we  may  write 

FA+FA'=F'A'+FA'=FA+AA'+F'A'=FF' 
=2FO=exAA'=2exAO. 

Hence  OF=ae ; 

but  we  have  seen  above  that  20A=2exOD;  it  follow 

thatOZ)=—  =  -.' 
e       e 

O  is  our  "  origin "  or  intersection  of  our  axes  o 
coordinates.  If  P  is  a  point  on  the  curve,  its  coordinate 

are  ON=x  and  PN=y. 

Now,     FP  =e  x  PE,     FP2  =e2PE*  =e2ND\ 

but  FN2+NP2=PF2=e2ND2. 
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Also  FN  =ON  -OF=x-ae 

DN=ON-OD=x-a/€. 

Hence  (x—ae)2+i/2=e2(x—aje)2. 

This,  being  a  relation  between  x  and  y  and  constants 
a  and  e,  is  the  equation  of  the  curve.  It  can  be  simplified 
as  follows  : 

Multiplying  out,  we  get 

x2  —2aex +a2e2 +y2  =e2x2  —2aex-\-a2 

or  y2+x2(l-e2)=a2(l-e2), 

and  y2l[a2(\  -e2)]+x2/a2=l. 

Now,  e>l,  therefore  (1—  e2)  is  negative;  let 

at(l  _<£)=-&* 
the  equation  becomes 

x2\a2-y2\b2=\   (1) 

In  this  equation  a  is  half  the  distance  separating 

the  two  branches  along  the  line  through  the  foci,  and 

b=aJd^-\. 
We  can  easily  find  a  geometrical  definition  for  b, 

for,  from  x2ja2—y2jb2=\,  multiplying  by  a2b2,  we  get 

b2x2—a2y2=a2b2    or    a2y2=b2(x2—a2), 

hence  y/±\/x2—  a2=b/a    or    y  =  ±(bja)\/x2—a2.  (2) 

This  is  the  equation  of  the  hyperbola  when  put 
in  the  form  of  an  explicit  function  of  x.  It  can  be 
used  for  plotting  the  curve  by  giving  suitable  values 
to  x. 

Now,  on  ON  as  diameter,  draw  a  circle  (see  Fig.  18). 
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Draw  an  arc  of  centre  0  and  radius  OA=a,  cutting 
this  circle  at  Q,  then  OQ=a,  and,  since  ON  =x,  and 
the  angle  OQN  is  a  right  angle, 

NQ=±  s/ON2-OQ2= ±  s/x^a2. 

With  centre  N,  draw  an  arc  of  radius  NQ,  meeting 

OF  in  C,  then  CN =QN  =  ±  J'o^a2 ;  also  join  CP, 

Fig.  18. 

and  draw  OS  parallel  to  CP,  meeting  at  H  the  tangent 
AT  to  the  vertex. 

The  two  triangles  OAH,  CNP  have  their  sides  parallel 

to  one  another,  hence  they  are  equiangular,  and  we  have 

the  proportion 

NPICN=AH/OA     or    yl  +  x/tf^^AH/a, 

that  is  y = ±  (.4ff /a)  Jx2-a2, 
it  follows  that  AH=b. 

OS  has  the  peculiar  property  of  being  gradually 

and  continually  approached  by   the   hyperbola   with- 
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t  ever  being  touched  by  it;  in  other  words,  the 

•per  half  of  the  left  branch  of  the  hyperbola  gets 
ntinually  nearer  to  the  line  OS,  as  it  gets  further  from 
without  ever  touching  it,  however  far  the  curve  may 

traced.  Such  a  line  is  called  an  "  asymptote  "  to 
e  curve. 

If  we  take  OB=AH=b,  then  there  is  a  twin  sister 
the  original  hyperbola,  shown  on  the  figure,  passing 

•  B  and  having  the  same  asymptotes,  the  other  branch 

ing  symmetrical  with  respect  to  XX'.  This  twin 
ter  is  called  the  "  conjugate  hyperbola  "  of  the  first ; 
i  see  that  its  b  is  the  a  of  the  first  hyperbola,  and  its 
is  the  b  of  this  first  hyperbola. 

We  see  that  the  asymptotes  are  the  diagonals  of  a 

stangle  of  sides  a  and  b.  It  follows  that,  given  a  and  b, 

r  drawing  a  rectangle  2ax2b  and  its  two  diagonals 
oduced,  one  can  readily  draw  the  two  branches  of  the 

rperbola  free-hand  with  fair  accuracy. 
A  case  of  particular  interest  occurs  when  a=b.    Then 

a ^2~~=l  or  x2-y2=a2  and  y=±Jx2-a2. 

le  asymptotes  are  then  at  right  angles,  and  the  curve 

then    called    a    "  rectangular,"    or    "  equilateral," 
/perbola. 

Sometimes  the  two  asymptotes  are  taken  for  axes  of 

tordinates.     Some  simple  considerations  will  enable 
i  to  find  its  equation  in  that  case. 

If  the  equation  of  a  curve  contains  a  term  in  y2, 
ien,  treating  it  as  a  quadratic  equation  and  solving 
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for  y  we  get  a  radical  sign  with  a  -f-  and  —  sign,  that  us 
we  get  two  values  of  y  for  each  value  of  x.    This  is 
case  for  the  hyperbola  referred  to  the  two  axes  we  hav< 
used  so  far. 

For  instance,  suppose  that  the  expression 

2y2+3xy-5y+2=0 

is  the  equation  of  a  curve.     This  can  be  written 

and  its  solution  is 

Zx  -5       //3a?  -  5\2     I 

y= — ptvHr)'-"-L 
For  each  value  of  x  there  are  two  values  of  y.  Sim 

larly,  if  the  equation  contains  a  term  in  x2,  for  eac 
value  of  y  there  will  be  two  values  of  x,  as  in  the  ca* 
of  the  hyperbola  referred  to  axes  of  symmetry. 

If  the  hyperbola  is  referred  to  the  asymptotes  i 

axes  (see  Fig.  19),  there  is  only  one  value  of  x  correspon< 
ing  to  each  value  of  y,  and  vice  versa.  The  new  equatk 

of  the  curve  cannot,  therefore,  contain  any  terms  in  x2 
y2.  It  cannot  contain  any  terms  in  x3  or  y3,  as  equatio 
containing  such  terms  are  known  to  give,  when  plotte 

altogether  different  curves — try  a  few.  Now,  if  we  lo< 
at  the  figure  we  see  that  the  curve  is  symmetrical  wi 

regard  to  the  point  O,  that  is,  when  x  becomes  —x, 
must  become  —y.  It  will  be  readily  seen  that  it  folio 
that  there  cannot  be  any  terms  in  x  and  y  in  the  n< 
equation,  or  else  y  would  not  reverse  its  sign  and  \ 
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ep  the  same  value  when  the  sign  of  x  changes.    There 
only  one  term  possible  then,  besides  constants,  that 

Fig.  19. 

5,  a  term  containing  xy,  and  the  equation  of  the  hyper- 
ola  referred  to  its  asymptotes  is  xy  =  m,  where  m  is  a 

Y 

<xj   (*2)       (xz) 
Fig.  20. 

constant.    The  obvious  particular  geometrical  property 
)f  the  curve  then  is  that  the  rectangle  of  the  coordinates 
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of  any  point  P  has  a  constant  area,  whatever  may  be  the 
position  of  P,  that  is  (see  Fig.  20), 

P1M1xP1N1=P2M2xP2N2  =  ...  =  ABxAC  =  m. 

The  particular  case  where  m=\  is  specially  interesting. 

Consider  the  point  P,  of  abscissa  x>l  ;  let  x1=s/xi 

then  ay*=a?,  and  evidently  xx>\. 
Let  the  points  Plt  P2,  Pz ...  P  have  abscissae  xv  afc 

xz  ...  x  such  that 
/y»   ryi     \y  /y»       /yj    2 
e</2   1*/2  ̂   ̂   I    vis  I     j 

*£"3 — X2  s\  i//j  — tt/j  , 

We  can  write  at  the  beginning  1=^°,  and  •  x1  =» 
so  that  we  have  the  complete  sequence 

l=a?i°, 

x1=x11,  and  since  x1y1=l,  y1=l/x11, 
x2=x±2,  and  since  x2y2= 1,  y2=^lxi2> 

x3=x13,  and  since  a?3y3^l,  y9=llxj, 

x=x1n,  and  since     xy—\,  '  ?/=l/^1n. 
The  first  terms  are  in  geometrical  progression  (se- 

p.  38),  having  n—  1  terms,  and  the  constant  multiply 
ing  factor  is  xv 

It  follows  that  we  have  for  the  areas  of  the  successiv 

small  rectangles  ABN1Q1P1N1N2Q2,  etc. : 

Area  of  ABN& 

=lx(x1— l)=x1— 1, 
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rea  of  /',  V^V /^ 

=t/1X{x2-x1)=-(x12-x1)=-Xx1(x1-l)=x1-l, 

rea  of  P22\yV3Q3 x\ 

id  so  on  ;  all  these  rectangles  have  the  same  area. 
le  can  now  form  the  following  table  of  the  total  areas 

lade  up  by  the  rectangles  included  between  the  ordinales 

[B  and  QXNV  Q2iV2,  etc.,  successively,  corresponding 
d  the  abscissae  xv  x2,  oc3,  etc.    We  have 

Abscissa.  Area. 

x=x1n.        n{x1—l). 

Generally  speaking,  by  the  principle  of  mathematical 

uduction  (see  p.  55),  when  the  abscissa  is  x±A,  the  total 
irea  of  the  rectangles  built  on  it  is  A  (xx— 1). 
We  see  that  the  abscissae  form  a  geometrical  pro- 

portion of  constant  multiplying  factor  xv  and  that  the 
ireas  form  an  arithmetical  progression  of  constant 

idditive  term  (x1—l).  We  see  also  that  the  term  of  the 
atter  corresponding  to  1  in  the  former  is  zero. 

We  have  seen  in  Chapter  IV.  that  when  these  condi- 
tions are  satisfied  the  two  progressions  form  a  system 

of  logarithms  with  a  certain  base  B,  which  we  have  to 

ascertain.    The  base  B  will  be  the  term  of  the  geometrical 

1 0 
xv 

1(*1-1). 
X2=X\  . 2K-1). 
X^  =  Xi  . 3fe-l). 
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progression — here  an  abscissa- — corresponding  to  unity 
in  the  arithmetical  progression — here  area  unity. 

When  we  wrote  x1=\/x,  we  did  not  specify  n; 
if  we  suppose  it  to  be  very  large,  then  all  the  rectangles 
are  reduced  to  very  thin  strips,  which  decrease  in  length 

very  gradually,  and  all  the  little  triangles  resulting 
from  the  encroachment  of  the  rectangles  beyond  the 

Fig.  21. 

hyperbola  become  very  small  (see  Fig.  21).  If  n  become; 
infinitely  large,  the  strips  become  so  narrow  that  thes< 
triangles  can  be  neglected  altogether,  and  the  area 

tabulated  above  will  become  for  all  practical  purpose 

hyperbolic  segments,  that  is,  areas  included  betweei 
the  axis  of  x,  the  curve  itself,  the  ordinate  AB,  and  an; 

ordinate  to  the  right  of  AB  corresponding  to  any  par 

ticular  abscissa.  For  instance,  n(x1— l)=area  of  seg 
ment  APNB  of  the  rectangular  hyperbola,  and  we  hav 

area  segment  of  hyperbola =\ogB  abscissa, 

B  being  a  certain  base  which  we  can  find  by  trial,  b 
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easuring,  with  a  planimeter,  say,  the  area  of  various 
gments  until  we  found  a  segment  of  area  unity,  the 

>scissa  of  the  right-hand  ordinate  would  then  give  the 
due  of  B.  The  only  sensible  way  to  do  this  would  be 

measure  the  areas  corresponding  to  various  abscissae, 

id  to  plot  the  values  found.  Then  the  abscissa  corre- 
>onding  to  area  unity  on  the  graph  so  obtained  will 
ve  the  value  of  B. 

We  can,  of  course,  calculate  B  exactly ;    we  have 

>en    that    to   an    abscissa    xxA   corresponds    an    area 
\.(xx—\).     Suppose  that  this  area  is  the  base,  that  is, 

]JA=B,  then  A(x1—l)  =  l,  since  the  areas  are  numeri- 
ally  the  logarithms  of  the  abscissae, 

log(x1A)=\ogB=A(x1-l)  =  l, 
hen 

ELl  =  l/A,  xx=l+llA  and  x1A  =  B=(l+l/A)A. 
Tow,  we  took  n  infinitely  great,  and  since  xx=  ̂ x,  xx 

5  infinitely  small;  also,  since  xxA=B,  x1  =  \/B,  so 
hat  A  must  be  infinitely  large.  It  follows  that 

3=(l-\-l/A)A,  with  A  infinitely  large.  Do  you  remem- 
>er  what  this  is  equal  to  ?  Epsilon  !  Epsilon  again  ! 
see  p.  85). 
In  fact,  the  areas  of  the  hyperbolic  segments  and  the 

corresponding  abscissae  form  a  system  of  Napierian 
ogarithms.    We  have 

area  of  hyperbolic  segment 
between  abscissae  1  and  x    \ 

Now   you   see   why   Napierian   logarithms   are   also 

sailed  hyperbolic  logarithms. 
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Instead  of  the  above  method  we  might  use  the  knov 

ledge  so  pleasantly  acquired  when  reading  Calculi 
Made  Easy,  and  proceed  as  follows.  We  need  not  tal 

m=\,  we  can  work  with  the  general  equation  xy=ii 

or  y=m/x.    We  know  that  \dxj  x  =  \ogex.    The  area  , 

between  x  —  xx  and  x  =  x2  is  (see  Calculus  Made  Eas 
p.  206) 

ex*  r^-i  r  -\x2 

A  =  \    ydx=\    mdxlx=m\\ogex  +  C\ 

=  ra{(loge#2  +  0)-(logea?1+  C)}  =m\og€(x2/x1). 

If  a?j=l  and  x2=--x,  we  get  ̂ .=mlogea?. 
If  ra=l  then  A=\ogex  as  before. 
There  is  no  need  for  the  axes  of  coordinate  to  be  at  rig] 

angles  to  one  another ;  we  can  start  from  the  general  cas 

Fig.  22. 

If  they  are  inclined  at  an  angle  6,  the  equation  remai  i 
the  same,  but  the  ordinates  are  inclined  at  an  angk 
to  the  horizontal  (see  Fig.  22).     Each  element  of  ai 
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ich  as  PQN2N^  is  no  more  a  rectangle,  but  a 

irallelogram,  and  its  area  A  is  N^zXPM,  where 

*M  is  the  perpendicular  distance   between  PQ  and 
yV,,  or  A=NlN2xPJSrism6,  then 

dA  =  ysmddx=m  sin  0  dxjx, 
ence 

tL  =  \m  sin  0  da?/# = m  sin  0  I  dx/x = m  sin  0  loge  x  +  0. 

When  #  =  a?0,  when  il  =0,  then  0  =  m  sin0  \ogex0  +  C 

'  nd  C  =  —  m  sin  0  loge  x0 ,  hence 

A  =  m  sin  ̂   (loge  a?— logea?0)  =  m  sin0  loge(a?/a?0)- 

If  0  =  90°,  sin 0  =  1,  and  A=m\oge(xlx0). 
If  m=l,  A  =  \oge(xlx0).  If  P  is  the  apex,  x0  =  l, 

nd  we  have  ̂ 4=logea?  as  before. 
As  an  exercise,  plot  an  equilateral  hyperbola  from  its 

quation  xy=l  to  a  large  scale.  Measure  the  areas 
•f  various  hyperbolic  segments  by  any  method  you 
ike,  and  plot  a  graph,  with  areas  as  ordinates  on  the 

:orresponding  abscissae,  and  obtain  in  this  way  a  value 
or  epsilon. 



CHAPTER  XL 

EPSILON  ON  THE  SLACK  ROPE :  WHAT  THERE 
IS  IN  A  HANGING  CHAIN. 

Nature  seems  to  take  a  delight  in  antitheses.  He: 
greatest  pleasure  seemingly  is  to  put  in  the  simples 
thing  the  most  exquisite  mathematical  complexity  o 

the  most  charmingly  elaborate  delicacy  of  texture 

A  falling  drop  of  water — what  is  there  more  common 
place  ?  Yet  an  exhaustive  treatment  of  its  feature 
will  tax  the  power  of  an  able  mathematician  and  fi] 

several  volumes.  Lower  the  temperature,  and  lo  !  w 

behold  the  perfect  loveliness  of  the  almost  unlimite< 

varieties  of  the  six-branched  star  patterns  we  all  hav 
seen  in  flakes  of  snow. 

What  more  commonplace,  too,  than  a  chain  suspende< 

from  both  ends  ?  Have  no  misgivings,  no  attempt  wi' 
be  made  here  to  study  all  its  many  properties  ;  but  th 
little  we  shall  learn  about  it  will  show  us  how  wondei 

fully  interesting  this  simple  object  is  in  reality. 

We  suppose  it  to  be  a  chain,  and  not  a  string,  becaus 
we  must  surmise  a  perfect  flexibility,  always  lackin 
in  a  string  ;  also,  in  order  to  take  its  natural  shap( 
the  existence  of  a  certain  weight  is  necessary. 

146 
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A  first  glance  tells  us  that  the  chain  hangs  in  an 

elegant  curve.  We  have  been  told  that  every  curve 
)an  be  mathematically  represented  by  an  algebraical 
expression.  Let  us  see  if  we  can  obtain  the  equation 

A  the  curve  assumed  by  a  hanging  chain :  the  curve 

tfhich  the  French  aptly  call  "  chainette  " — that  is, 

ittle  chain — and  which  we  pedantically  call  "  catenary," 
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Fig .  23. 

from  the  Greek.  The  shape  of  this  hanging  chain  evi- 
dently depends  on  the  forces  acting  upon  it.  We  must 

therefore  investigate  those  forces. 

Consider  a  portion  AC  of  the  chain,  A  being  its 
lowest  point.    It  is  acted  upon  by  three  forces : 

1.  Its  weight  W  (see  Fig.  23)  acting  at  the  centre  of 
gravity  G  of  the  portion  of  the  chain  considered,  that 
is  AC ;  since  the  chain  is  uniform,  AG=GC. 

2.  The  tension  or  pull  T  exerted  by  the  upper  part 
CD  of  the  chain  in  resisting  the  weight  of  the  portion 
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of  the  chain  situated  below  C.  The  direction  of  this 

pull  is  along  the  curve  at  C,  that  is,  along  the  tangent 
to  the  curve  at  C. 

3.  The  horizontal  pull  a  exerted  by  the  portion  of 

the  chain  situated  at  the  left  of  A  ;  this  pull  gradually 

brings  the  chain  in  a  horizontal  direction  at  A,  it  is 
exerted  along  the  curve  at  A,  that  is,  horizontally. 

The  portion  of  the  chain  we  consider  is  in  the  condition 

mathematicians  call  "  state  of  equilibrium,"  that  is, 
it  is  at  rest  under  the  action  of  the  forces  acting  upon 
it — forces  which  balance  one  another  so  that  there  is  no 

tendency  for  the  chain  to  move  in  any  way. 
Now,  a  force  can  be  represented  just  in  the  same 

manner  as,  in  polar  coordinates,  we  represented  the 

distance  of  a  point  from  the  pole  by  a  line  at  a  certain 

angle  to  the  horizontal  (see  p.  106).  The  direction  of 
the  force  is  represented  by  an  arrow  in  the  direction 

of  the  force,  the  length  of  the  shaft  of  the  arrow  repre- 
senting to  a  certain  scale  the  magnitude  of  the  force, 

as  seen  in  the  figure  for  the  forces  marked  T,  W  and  a. 
When  three  forces  balance  one  another  in  this  way, 

quite  elementary  books  in  mechanics  show  that  the 
lines  representing  them,  if  displaced  in  a  suitable  manner 
without  altering  their  direction  or  length,  must  necessarily 
form  a  triangle,  with  the  directions  of  the  separate  forces 

following  one  another  right  round  the  triangle. 
If  we  produce  the  lines  of  action  of  T  and  a  and 

displace  the  line  of  action  of  W  till  it  passes  through 

any  point  of  the  curve  to  the  right  of  G,  say  through  the 
point  C,  then  we  form  a  triangle  CMN,  and  the  three 
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sides  CN,  NM,  MC  represent  therefore  the  forces  W, 

a  and  T  respectively,  to  a  certain  scale.  What  scale 
does  not  actually  matter  at  all ;  it  merely  depends 
on  how  far  we  have  displaced  the  line  representing 
the  force  W.    In  this  triangle  we  see  that 

CM2=MN2+CN\ 

that  is  T2  =  a2+W2. 
To  get  the  equation  of  the  curve  we  must  first  select 

two  axes  of  coordinates',  at  right  angles  if  possible,  as 
we  have  done  for  the  hyperbola.  Let  us  take  vertical 
and  horizontal  lines  through  A  for  axes  of  y  and  of  x 

respectively.  The  first  one  is  an  "  axis  of  symmetry," 
and  its  use  will  therefore  simplify  the  equation  we 
seek. 

We  must  next  find  the  connection  between  the 

geometrical  shape  of  the  curve  and  the  forces  which 
compel  the  chain  to  take  this  shape. 

Consider  a  small  link  ah  of  the  chain.  If  the  length 

of  the  portion  AC  be  called  s,  then  the  link,  being 

"  a  little  bit  of  s,"  will  be,  as  we  know,  represented  by 
ds.  In  the  small  triangle  abc,  bc=dy  and  ca=dx 
will  be  little  bits  of  the  ordinate  y  and  of  the  abscissa  x 

of  the  centre  c  of  the  link.  We  can  simplify  the  condi- 
tions of  the  problem  by  noting  that,  since  the  chain 

is  uniform,  the  weight  of  any  portion  is  a  measure  of 

its  length,  so  that  instead  of  saying  a  length  of  5  inches, 

of  s  inches,  we  may  say  a  length  of  5  ounces  (or  grammes), 
of  s  ounces  (or  grammes).    Then  we  see  that,  numerically, 
8=W. 
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The  triangles  ahc,  MCN  are  equiangular,  and  there- 
fore similar,  so  that  we  have 

dxlds=MN/MC=alT=al(s/a2+W2)=a/s/(a2+s2), 

hence    dx=ads/s/(a2+s2)    and    x=a\dsls/(a2jrs2). 

Let  us  do  the  integration  together :  let  ,J(a2-\-s2)=v—  s, 

v  being  a  variable  (see  p.  14),  then  v=s-\-s/(a2-\-s2). 
Squaring,  we  get 

a2-\-s2=v2—  2vs-\-s2    or    a2=v2—2vs. 

To  differentiate  this,  since  both  v  and  s  are  variable 

quantities,  we  first  suppose  s  constant  and  differentiate 

with  respect  to  v ;  since  the  differentiation  of  a  variable 
gives  zero,  and  since  a  is  a  constant,  we  get 

d  (a2)  =0=2vdv-2sdv. 

We  then  suppose  v  constant  and  differentiate  with 

respect  to  s ;  we  get 

c[(a2)=0=0-2vds=  -2vds. 

Since  the  supposed  variation  of  a2  (variation  which  is 
nil  really,  since  a  is  a  constant)  is  made  up  of  the  varia- 

tion of  both  v  and  s,  the  total  variation  is  made  up  of 
both  the  above  variations  ;  it  follows  that 

0=2v  dv—2v  ds— 2s  dv 

or  (v-s)dv=vds    and    ds=(v—s)dv/v. 
Substitute  in  the  value  of  x. 

[v—s  1     .    1  (dv 
x=^a\   dvx   =a\ — . 

J   v  v—s      J v 
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I  (1 X 

urely  you  remember  I— -  ?    Whenever  the  numerator 
j  x 

3  the  differential  of  the  denominator  the  integral   is 

oge  x  --}-  C.    It  is  because  of  this  that  Napierian  logarithms 
ure  so  useful  and  occur  so  often ;    they  continually 

'  crop  up  "  in  the  least  expected  places. 

Here    x=a  \ogev+C=a\oge[s+J(a2+s2)]  +  C, 

vhere  C  is,  as  we  know,  the  integration  constant. 

What  is  the  value  of  C?     Well,  if  x=0,  s=0,  and 
;hen  the  equality  above  becomes 

0=ax\oge(0+a)+C> 

-,hat  is  C= — a  loge  a, 

?o  that       x=a  loge  [s+^/(a2fs2)]-  a  loge  a 

)Y 
x=a  loge      vv — — L, 

a  ,      i      s+J(a2+s2) 
and         xja = loge       vv — ■ — '-, Co 

that  is, 

[s+J(a2+s2]\la=e*la    and    s+v/(^2+s2)=a^/°, 

and  we  find  epsilon  again  appearing  on  the  scenes. 
The  above  seems  somewhat  arduous  because  it  con- 

tains an  integration.     If  we  had  merely  written 

,/• a  \dslJ(a2+s2)=a  loge
  s+x/(^2+s2) 

it  would  have  been  much  shorter,  but  you  might  have 
felt  rather  lost ! 
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Now  let  us  get  y.     We  have 

dy/ds= CN/CM=  W/T=Wi/J(a2+W2)=sls/(a2+s2) 

or     dy^sds/^/iaP+s2)    and    y=\sdsls/(a2+8?), 

and  we  have  another  integral  to  negotiate.    Here  le1 

s/(a2+s2)=v  and  a2-\-s2=u,  then  v=u112  and 

dv/'du=^u~lf2, 

while  2sds=^du,  and  du/ds—2s,  so  that 

dv     du    dv     1      t/o.o  5 

du     ds     ds     2  /v/a2+s2 

dv  =--  s  ds/s/a2 +s\ 

and       v= jdte= Js  MJ(<**+f)=s/(<**+#)+C, 

since  we  have  supposed  v=x/(a2+s2). 

Hence     y=  is  ̂/x/(^2+«2)=x/(a2+s2)+C3 

C  being  again  the  integration  constant.     To  get  it 

value,  note  that  when  y=0,  s=0,  so  that 

0=s/(a2+0)  +  C    and     C=-a, 

so  that  y+a=J{a2+s2). 

Here,  again,  this  seems  to  be  very  laborious  becaus 

of  the  integration  ;    \sds/\/(a2+s2)  being  what  math( 

maticians  call  a  "  standard  form,"  that  is,  an  expre* 
sion  the  integration  of  which  is  so  well  known  that 

can  be  written  down  at  once,  in  reality  all  we  shoul 
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■avetodoistowrite^^^W^H^ 

ust  the  same  as,  to  solve  the  quadratic  x2-\-mx-\-n=0, 

ye    write    straight  away  x=—^±/J(^7-—q)  without 

:roubling  as  to  how  this  last  expression  is  obtained. 

We  have  then  got  so  far  : 

,J(a*+&)=y+d    and    /J{a2+s2)+s=aex'a. 

Now    [s/(a2-\-s2)+s][s/{a2+s2)-s]=a2+s2-s2=a2 

or  ac^fl[V(a2+*2)-*]=a2, 

and  therefore  ^/{aP+s2)— s=ae~xla, 
but  we  have  seen  that 

s/(a2+s2)+s=ae+*la. 

Adding,  we  get    2s/(a2+s2)=a(e+xla+e-x'a) 

Or  y+aJ±  (€+*/a_|_e-a!/a)e 

If  we  take  a  new  axis  of  x,  OX',  at  a  distance  AO=a 
below  AX,  then  y+a  becomes  the  new  y  that  is,  the 

equation  becomes  y=-^(€+x'a-\-6~xla). 

This  is  the  equation  we  sought.  It  was  not  so  very 
complicated  after  all,  was  it  ? 

As  an  exercise,  take  a  =6,  and,  taking  values  of  x 
between  0  and  +4,  plot  the  values  of  y. 

It  is  worth  noticing  that  the  above  reasoning  does 

not  require  the  two  points  of  suspension  of  the  chain 

to  be  on  the  same  level.     They  can  be  placed  anywhere, 
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one  high  and  the  other  one  low,  as  can  be  verified 

experimentally  :  having  hung  a  light  chain  on  two  pins 
D  and  B  (see  Fig.  23),  placed  in  any  position,  drive 

a  pin  through  one  of  the  links  at  B\  say,  and  with- 
draw the  pin  at  B ;  no  alteration  whatever  takes  place 

in  the  shape  of  the  chain. 
Remember  also  that  a  is  the  tension  or  pull  at  A. 

Since  we  have  used  a  unit  of  weight  to  express  the 

length  AC,  and  since  a  is  also  expressed  in  terms  of  a 

unit  of  weight — being  a  pull  or  force — a  represents  a 
length,  the  length  of  chain  the  weight  of  which  is  equal 
to  the  tension  at  the  vertex,  a. 
We  were  able  to  obtain  the  value  of  e  from  direct 

measurement  of  the  logarithmic  spiral.  We  have  seer 
also  that  we  can  obtain  this  value  from  measurement* 

of  the  rectangular  hyperbola.  The  presence  of  e  ir 
the  formula  of  the  catenary  suggests  that  we  can  alsc 
obtain  the  value  of  e  from  measurements  on  the  curv( 

itself.  Professor  Rollo  Appleyard  *  showed  how  thii 
could  be  done  in  a  very  elegant  manner. 

In  Calculus  Made  Easy  (last  edition,  p.  272)  we  hav« 

obtained  the  length  s  of  the  catenary  whose  equation  i; 

r*!  (€*/•+€-«**),   (] 
and  we  have  found  for  this  length  the  expression 

s==|(€*/«_e-z/«)   (2 

*  See  Proceedings  of  the  Physical  Society,  1914. 
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At  the  point  F  of  the  curve  (see  Fig.  24),  correspond- 

g  to  x—a,  and  y=y',  we  get,  by  replacing  in  (1) 
id  (2)  x  and  y  by  their  value 

ad 

»-?(•+}). 
'-!(-!). 

(3) 

^ 
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^
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i 

0'
 

Fig.  24. 

G                X 

'  being  the  length  AF  of  the  curve.    Adding  (3)  and  (4) 

ve  get  y,Jrs'=ae,  and  therefore  e=-   . 

Also,  subtracting  (4)  from  (3)  we  get 

(i      _  i    1    y'—s' V s'=—     and    -— ■- e  e a 

Taking  a  as  unit  of  length,  a—1,  then  e=y'  -\-s'  and 

-=y'—s',  that  is,  e  is  represented  by  the  length  FG 
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plus  the  length  AF  of  the  chain.  Hence  we  can  get 
by  measurement  on  the  actual  chain.  This,  however 

is  not  so  easy  as  it  appears  at  first  sight.  It  is  eas; 
enough  to  hang  a  thin  light  chain,  but  once  this  is  don 
we  must  find  the  value  of  a  for  the  particular  curv 

assumed  by  the  chain.  Since  a  is  the  horizontal  tensioi 

at  the  vertex  A,  if  one  supposes  a  length  of  the  chai] 

hanging  at  A  and  passing  over  a  minute  frictionles 

pulley  (see  Fig.  25)  so  place- 
that  the  tangent  to  the  curve  a 
A  is  horizontal,  then  the  weigh 

a  of  this  length  of  chain  wi 

be  equal  to  the  horizontal  pu 

at  A,  the  pulley  merely  defleci 
ing  the  pull  due  to  this  weigl 
from  the  vertical  to  the  hor 

zontal  direction.  A  sufficient] 

small  f  rictionless  pulley,  howeve 
could  not  be  obtained,  and  it  was  found  necessary  1 
resort  to  another  device. 

If  a  fine  thread  is  fixed  at  one  end  at  any  point 

(see  Fig.  24),  and  if,  at  the  other  end  A,  it  is  mat 
into  a  loop  through  which  the  chain  is  passed  for 

portion  of  its  length,  and  if  the  end  D  of  the  chain 
moved  until  the  tangent  at  A  is  horizontal  and  tl 

thread  AB  is  at  45°  to  the  horizontal,  then  the  leng 
of  the  hanging  portion,  a,  of  the  chain  is  equal  to  t. 
horizontal  tension  at  A. 

This  follows  at  once  from  the  equilibrium  of  fore 

explained  at  the  beginning  of  this  chapter  (see  p.  14r 

Fig.  25. 
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here  are  three  forces  acting  at  A  :  the  pull  along 

te  string  AB,  the  horizontal  pull  a  of  the  chain  AD, 
id  the  weight  of  the  vertically  hanging  portion  of  the 
lain,  and  these  three  forces  balance  one  another.  It 

llows  that  the  lines  representing  them  form  a  triangle, 
id  as  one  is  horizontal  and  another  is  vertical,  while 

le  third  is  at  45°  to  either,  it  follows  that  the  triangle 
list  be  such  that  the  vertical  side  is  of  same  length 

5  the  horizontal  side,  that  is,  the  weight  of  the  hanging 
ortion  is  necessarily  equal  to  a. 

The  difficulty  of  deciding  when  the  tangent  at  A  is 

xactly  horizontal  is,  however,  very  great,  and  a  small 
rror  in  the  position  of  the  tangent  causes  a  large  error 

i  \J ,  so  that  only  a  rough  value  of  e  can  be  obtained 
y  this  means.  In  order  to  obtain  the  correct  position, 
emember  that  we  have  found  (see  Calculus  Made  Easy, 

ist  edition,  p.  262)  that,  in  the  case  of  the  catenary,  the 
entre  of  curvature  at  the  vertex  has  for  coordinates 

?=0,  y=2a,  the  axis  being  O'Y  and  O'X  (see  Fig.  24). 
lie  centre  of  curvature  is  therefore  at  O.  We  also 

ound  the  radius  of  curvature  at  the  vertex  to  be  r=a. 

Ve  have  taken  a  as  our  unit  of  length,  so  that  r=l. 
The  circle  of  curvature  can  be  drawn,  its  radius  being 

he  length  of  chain  hanging  below  A,  a  length  which 
ve  take  arbitrarily.  The  line  AB  can  also  be  drawn, 

md  the  end  of  the  thread  fastened  at  any  point  B  on 
he  line  AB.  The  point  of  suspension  D  is  then 
noved  until  a  position  is  found  where,  while  the  thread 

4.B  is  at  45°,  the  chain  in  the  vicinity  of  A  follows  as 
closely  as  possible  the  circle  of  curvature.    A   fairly 
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good  approximation  to  the  value  of  e  can  be  obtainec 
in  this  way. 

We  see  again  that  e  is  not  a  mere  number,  but  i 
definite  length. 

Note  the  physical  meaning  of  the  constant  a  ;  if  i 

is  large,  the  hanging  portion  of  the  chain  will  be  large 

the  vertex  A  will  be  high  above  the  axis  O'X  ;  the  hori 

zontal  tension  is  great,  so  that  the  chain  will  be  widel 
deflected  from  the  vertical  through  D,  and  will  affec 

the  form  (I)  (see  Fig.  26).  If  a  is  small,  the  curve  wi 

have  its  vertex  near  the  axis  O'X,  and  as  only  a  sma 
horizontal  force  is  deflecting  the  chain,  the  curve  wi 
affect  the  shape  (II). 

After  the  circle,  the  catenary  is  perhaps  the  curv 

which  has  been  materialised  in  man's  engineering  wor 
on  the  greatest  scale  of  all,  for  the  graceful  appearanc 
of  a  suspension  bridge  is  due  to  the  fact  that  the  cable 
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o  which  the  bridge  itself  is  suspended  are  curved  so  as 
o  form  an  exact  copy  of  the  catenary  curve. 

The  catenary  is  also  naturally  obtained  by  dipping 
t  circular  wire  in  soapy  water  and  raising  it  gently, 

Fig.  27. 

seeping  it  in  a  horizontal  position.  A  soap  film  will 
bhen  be  found  to  exist  between  the  wire  ring  and  the 

surface  of  the  water,  and  the  profile  ACD  of  this  film 

is  a  true  catenary  (see  Fig.  27). 
You  are  advised  to  plot  several  catenaries  from  two 

points  ten  units  apart,  let  us  say,  using  various  values 

for  a,  such  as  5,  1  and  0-1. 



CHAPTER  XII. 

A  CASE  OF  MATHEMATICAL  MIMICRY : 
THE  PARABOLA. 

We  have  seen  (p.  126)  that  if  F  is  a  point  (focus)  and  ZZ 

is  a  straight  line  (directrix)  (see  Fig.  28),  any  point  I 
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Fig.  28. 

such  that  PF/PE=e=l  (PE  being  perpendicular  t 

ZZ')  belongs  to  a  certain  curve  which  we  have  called 
parabola.  The  equation  of  this  curve  is  very  easy  i 
obtain,  and  it  is  equally  easy  to  get  geometrical] 

various  points  of  the  curve  for  the  purpose  of  drawii 160 
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free-hand,  as  we  have  done  for  the  hyperbola.  Let 
X  be  a  perpendicular  to  the  directrix  through  the 

cus  F.  A,  half-way  between  D  and  F,  is  a  point  of 
ie  curve,  since  AF/AD=1.  The  distance  DA  is 
>ually  represented  by  a.  Drop  PN  from  P  on  to  DX . 

hen  FN=DN-2DA=x-2a.  Also  PF=PE=x,  so 

tat,  since  PF2=PN2+NF2, 

x2=y2+{x—2a)2   and    y2=4=a{x—a). 

If  we  draw  the  tangent  YY'  at  the  point  A ,  called  the 
3rtex,  and  take  it  for  the  axis  of  Y,  then  x—a  becomes 

I  ie  new  x,  and  the  equation  of  the  curve  becomes 
-=\ax. 

By  varying  a,  one  can  obtain  various  curves,  which, 
3  we  have  seen,  will  only  be  copies  of  the  same  curve 
rawn  to  a  different  scale. 

If  we  join  EF  we  see  at  once  a  very  simple  construe- 

on  for  the  parabola,  for,  being  given  the  directrix  ZZ' 
nd  the  focus  F,  if  we  take  any  point  E  on  the  former, 

nd  join  EF,  then  by  bisecting  EF  at  right  angles  at  W, 

,Te  have  a  first  line  WP  on  which  P  is  situated,  and  as 

*  is  also  on  the  perpendicular  EP  to  ZZ'  through  E, 
7  is  at  once  found,  and  similarly  for  other  points.  It 
5  easy  to  see  that  the  point  W  is  always  on  the  tangent 
o  the  curve  at  the  vertex  A. 

The  parabola  is  specially  interesting  from  a  practical 

>oint  of  view,  as  the  trajectory  of  a  projectile  fired  from 
i  gun  and  supposed  free  from  the  disturbing  effect  of 
he  atmosphere,  is  a  parabola  concave  to  the  ground  ; 

tlso  the  parabolic  shape  is  copied  in  various  appliances, 
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such  as  the  so-called  parabolic  reflectors,  throwing  ou 
a  parallel  beam  of  light.  Here,  however,  it  claims  ou 
interest  owing  to  a  remarkable  peculiarity. 

To  put  it  in  evidence,  let  us  go  back  to  the  catenar} 

You  have  plotted  one  for  which,  say,  a  =5  (see  p.  153 

that  is,  the  curve  y=f(exl5-\-e~xl5).  If  we  take  for  ax 
of  a?  a  line  through  the  vertex,  we  know  that  the  equatic 

is,y+5=-iHea:/5+e~aj/5)- 
Let  us  plot  this  curve  from  a? =+4  to  x=  —  4.  F< 

these  two  points  we  have 

y/+5=f(2-2255+0-4493)=l-687. 

Let  us  find  the  equation  of  the  parabola  which  pass- 

through  these  two  points,  #  =  +4,  y= +1-687,  x  =  — 

y= +1-687,  and  also  through  the  vertex  of  the  catenar 
The  parabola  stands  now  on  its  vertex,  so  that  i 

x  has  become  y,  and  reciprocally.  Its  equation  is  ther 

fore  x2=iay.  It  will  pass  through  the  vertex  of  t] 
catenary  if  we  take  the  same  axis  of  y — since  bo 

curves  are  symmetrical  with  respect  to  this  axis — ai 
for  axis  of  x  the  tangent  to  the  vertex  of  the  catenar 
for  we  have  seen  that  the  above  equation  correspon 
to  these  axes,  and  that  the  vertex  of  the  parabola 
then  at  their  intersection,  which  is  also  the  vertex  of  t 

catenary.  The  parabola  will  pass  through  the  U 
required  points  if  we  give  to  a  such  a  value  that  t 

equation  x2=iay  will  be  verified  when  we  give  x  t 
values  ±4  and  y  the  value  1-687. 
We  have  then 

(±4)2=4xl-687xrt    and    a =16/6-748=2-370. 
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equation  of  the  parabola  is  therefore 

#2=4x2-370x?/,   or  #2=9-480y. 
Plot  this  curve  on  the  same  axes  as  those  used  for  the 

catenary  2/+5  =  5(ea;/5_|_e-a;/5)# 

The  two  curves  are  so  nearly  alike  that  it  is  hardly 

possible  to  show  them  distinct  on  a  diagram  of  the  size 
of  this  page  ;  they  would  almost  exactly  coincide.  The 

parabola,  then,  apes  the  catenary  to  an  extraordinary 
extent,  so  that  it  is  possible  to  use  the  one,  with 
the  much  simpler  formula,  instead  of  the  other,  which 
is  more  complicated  to  calculate.  This  remarkable 

mimicry  is  limited  to  cases  when  the  two  points  selected 
are  not  far  from  the  vertex,  as  in  the  present  case. 
To  show  this  better,  the  values  of  the  ordinates  of  the 

catenary  and  of  the  parabola  for  equal  values  of  x  are 
tabulated  below :  The  last  value  is  given  to  show  how 

y,  Catenary y,  Parabola 
Difference, 

y  +  5  =  |(e*/5 +  €-*/*). y  =  a;2/9-480. y  parabola  -  y  catenary. 

0 0 0 0 
1 0100 0105 0  005 
2 0-405 0  422 0017 
3 0-927 

0-949 
0022 

4 1-687 
1-687 

0 
10 13-81 10-53 

-3-28 

the  curves  gradually  separate  beyond  the  two  points 
selected. 

The  more  stretched  the  chain,  that  is,  the  greater  the 
value  of  a,  the  less  the  difference  between  the  two. 
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It  is  easy  to  show  the  reason  for  the  likeness  of  the  two 

curves  near  the  vertex  ;  we  have  seen  (see  p.  96)  that 
/v»2       /y»3  ™,2        v»3 

e»=l+a?.+^+g-I  +  ...  and  6-^=1-^+- -_+..., 

but  the  equation  of  the  catenary  is 

y+ae£(c4'+r*fr) 

•y»2  /y»3  .-y»4 

2a2"r6a3+24^+" 
rv*  y»2  /y»3  /y»4 -      --  «*/       .        e^/  eft/  .         c4/ 

+      ar2a^~W^2W 

If  a?/a  be  small,  that  is,  a  large  (tight  chain)  and  ./• 
small  (portion  in  vicinity  of  vertex)  we  can  neglect 

all  the  higher  powers  of       after  the  second  power,  and 
we  have 

yjra=a+^  or  y=^  and  x2=2ay, 

equation  of  the  parabola  a?2— 4(  ~J  y. 

We  obtained  the  value  of  e  from  the  catenary,  car 
we  then  obtain  it  from  the  parabola  also  ? 

Imagine  a  parabola  cut  out  of  cardboard,  make  i 
hole  where  its  focus  is,  and  lay  it  flat  on  the  table  witl 

its  vertex  against  the  edge  of  a  straight  ruler.  Not 
make  the  parabola  roll  along  the  ruler  without  sliding 

on  either  side  of  its  first  position,  so  that  the  verte 
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ooines  back  exactly  to  the  same  spot  on  the  edge  of  the 

ruler.  In  each  position  of  the  parabola,  mark  off  the 

position  of  its  focus  by  pressing  the  point  of  a  pencil 
through  the  hole  made  at  the  focus  (see  Fig.  29).  The 
various  points  so  obtained  will  lie  on  a  smooth  curve  ; 

have  you  any  idea  as  to  what  this  curve  is  ?  Let  us 

try  to  get  its  equation,  it  is  not  too  difficult  for  us, 

fig.  29. 

although  the   search   is   somewhat  long.      Let  us  go 
through  it  together. 

We  shall  make  use  of  a  useful  property  of  the  parabola, 

namely,  that  if  any  tangent,  such  as  TT'  (see  Fig.  32), 
meets  the  tangent  at  the  vertex  at  R,  then  FR  is  perpen- 

dicular to  TT'.*  This  is  not  difficult  to  show,  for  if  we 

draw  any  chord  PP'  (see  Fig.  30)  and  produce  it  to  meet 

the  directrix  at  K,  then  PKIPK=P'M'/PM=P'F/PF, 
since  P'M  =P'F,  PM=PF.  Since  P'K\PK=P'F\PF, 
it  follows  that,  by  a  well-known  Euclid  proposition,  FK 
is  a  bisector  of  the  angle  PFQ. 

*On  Fig.  32  the  point  M,  where  TT'  is  tangent  to  the  curve, 
happens  to  be  on  a  perpendicular  to  AX  through  F,  but  the 

property  is  true  for  a  tangent  at  any  point. 
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If  now  P'  is  made  to  approach  P  so  that  PP'  becomes 
a  tangent  to  the  parabola  at  P,  the  angle  PFQ  becomes 

Fig.  30. 

two  right  angles  (see  Fig.  31).    But  all  the  time  P'  is 
approaching  P,  the  angle  PFK  is  one  half  of  the  angle 

Fig.  31. 

PFQ,  as  we   have  just  seen;   this  is  still  true  when 

P'  is  so  near  to  P  as  to  be  almost  coincident  with  it, 
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it  remains  true  when  P'  and  P  are  actually 
jincident.  It  follows  that  the  angle  PFK  is  a  right 

ngle,  and  therefore  the  angle  KFQ  is  a  right  angle 
lso. 

Now,  the  triangles  MPK,  PKF  are  equal,  being 

ight  angled  at  M,  F,  with  KP  common  and  MP=PF, 

.ence  angle  MPT  =  angle  TPF;  since  MP  is  parallel 
o  DX,  angle  MPT  =  angle  PTF,  hence 

angle  PTF =angle  TPF  and  FT  =  FP  =  MP  =  DN. 

lence  TD  =  FN,  and  since  AD=AF,  it  follows  that 

IT  =  AN  and  that  ̂ 4  bisects  TiV,  so  that  if  now  we 
Iraw  the  tangent  at  the  vertex,  meeting  PT  at  7?,  R 

bisects  TP,  and  the  triangles  TRF,  PRF  are  equal,  so 

;hat  angle  TRF=  angle  PRF=&  right  angle. 

Y 

/ 
9 

a  Jr 

//dx
 

y\dy 

R^ 

/a/ 
c 

ly ~a/\ 

B 

sX 
TVV 

\  A 
/ 

< 
Y 

1 X 

Fig.  32. 

Let  the  perpendicular  to  ̂ 4X  at  P  meet  the  parabola 
at  M  (see  Fig.  32).    Draw  TT  tangent  at  M  and  let 
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it  meet  AY  at  R  and  AX  produced  at  T.  We  ai< 
seeking  the  equation  of  the  curve  of  which  F  is  one 

point,  when  the  parabola  is  rolJing  along  the  line  TT' 
When  seeking  the  equation  of  any  curve,  it  is  advisabL 

to  choose  for  axes  of  coordinates  either  axes  of  sym 

metry,  or  else  lines  playing  a  specially  important  par 
in  the  generation  of  the  curve.  A  most  important  lin< 

is  obviously  TT' ,  the  line  on  which  the  parabola  i 
rolling.  Now,  if  s  is  the  length  of  the  parabolic  ar< 

AM,  and  if  we  take  MS=s,  when  the  parabola  roll 

on  TT'  without  slipping,  it  is  evident  that  the  point  z 

will  touch  the  line  TT'  at  S.  A  perpendicular  SH  to  TT 
at  S  will  evidently  be  an  axis  of  symmetry  of  the  ne\ 
curve.  Let  us  then  take  as  axes  of  coordinates  the  tw< 

lines  TT'  and  SH.  As  F  is  a  point  of  the  new  curve 

then  it  follows  that  FR=y'  is  the  y  of  a  point  of  thi 
curve,  and  SR=x'  is  its  x;  the  coordinates  are  rect 
angular,  since  we  have  seen  above  that  the  angle  TR1 

is  a  right  angle. 

Let  the  length  RM  be  represented  by  t,  then 

SR  =  s—t=x',  the  new  x. 

To  get  s— t  we  shall  find  expressions  for  ds  and  for  a 
respectively  (a  little  bit  of  s  and  a  little  bit  of  t),  an 
we  shall  then  at  once  obtain 

x'=s— t- [d(s-t)  =  {ds-  [dt=\{ds-dt). 

To  get  ds,  since  (ds)2=(dx)2-\-{dy)2  we  shall  need  d 
and  dy,  x  and  y  being  the  coordinates  of  M  on  th 

parabola. 
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Let  oc  be  the  inclination  of  the  tangent  TTf  to  the 
axis  AX;  in  the  small  triangle  abc  taiia.=dyldx. 

Since  y2  =  iax, 
dy/dx=2a/y, 

so  that  tan  oc =2  a  /y, 

or  ?/=2&/tanoc=2«cotoc. 

Differentiating  this  we  get  (see  Calculus  Made  Easy, 

p.  40) 

j  _tanocx0  — 2«xsec2oce?oc_     2a da 
•*  tan2  a  sin2  a 

I
l
s
o
,
 
 

we 
 hav
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= y2/4
:a  

=  ia2 
 
cot2
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= a  cot2

  
oc = a  cos2
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.) 
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  a
 
 

' 

to  get  d(a  cos2  a)  let  £=acos2oc  and   cosoc=v,  then 

z = av2,      dz=2av  dv,    dv=  —  sin  oc  da. 

and  dz—  —  2a  cos  oc  sin  a  da.. 

Similarly,  d(sin2a,)  =  2  sin  ex  cos  a  da.,  so  that 

2a  sin3  acosa.da.-2a  cos3  a  sin  a  da. 
dx= sin*  a. 

2a  (sin2  oc  -f  cos2  a)  cos  ada_     2a  cot  a  cfoc 
sin3oc  sin2oc      ' 

smce  sm2oc+cos2oc=l 
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Now, 

(ds)2=(dx)2  +  (di/)2 

_±a2cot2a,(da)2    4a2(c7a)2_4a2(l+cot2a)(cfa)2 
sin4  a  sin4  a  sin4  a. 

_  4a2  cosec2  a  (doif  _  4a2  (da.)2 
sin4  a  sin6  a.    ' 

so  that,  finally,  ds  =  — 2a  da./ sin3  a,   (1) 

The  sign  is  minus,  since,  when  a  increases,  s  decreases, 
and  vice  versa. 

We  have  obtained  an  expression  for  the  length  of  a 

small  arc  of  the  curve.  Let  us  now  seek  an  expression 

for  the  length  of  "  a  little  bit "  of  the  tangent  on  which 
the  curve  is  rolling,  that  is,  let  us  get  dt. 

In  the  right  angled  triangle  REM, 

RE=RM  cosoc,     or    x=tcosa., 
so  that 

t=xj  cos  a.=a  cot2  a/cos  a.  =  a  cos  oc/sin2oc. 

Differentiating,  and  remembering  that  differentiating 

sin2oc  gives  2  sin  a  cos  a.  da.,  we  get 

sin2oc  (— a  sin  oc da.)  —  a  cos  oc  x  2  sin  oc  cos  oc da. 

sin4  a 
dt 

or 

ado.     2a  cos2  a.  da. 
dt= sin  a  snra 

Now,  we  can  simplify   this  by  a  little  artifice  :    add 

,      ,,       ,    2ada.    ,,    ,  .     2asm2a.da. 
and  subtract,  -:   ,  that  is,    ^   ,  we  get 

sin  a.  sin3  a 
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j._/Za.doL    adaS\     /2acos2oid<x    2asw.2a.doL\ 

~  \sinoc      sin  a/     \      sin3oc  sin3a      /' 
.  .          1JL    adoi    2a  (sin2  oc-f  cos2  a)  den 

iat  is,       dt=-   -r-x   — , sina  siroc 

7j    ado.    2adoi  /ft. 
ad  eft=^   ^r—   (2) 

sin  a     sira  x  ' 

We  can  now  proceed  as  outlined  above  : 

7       7j      7/      ̂         2«doc    ffi^a  .  2ada.        ado. 
ds—dt=^d(s  —  t)  =  —  ̂ >   -.   — ^— =  — - — . sin*  a     sma     sira         sinoc 

s  — 1=\ d(s—t)  =  —  I a efoc/sin  a=  — a  cZa/sin a. 

To  integrate  this  we  must  remember  what  we  got 

hen  we  differentiated  ?/  =  logetan(#/2).  (Here  is 
psilon  coming  on  the  scene  !) 

Let  s=tan^,  then  y=\ogez. 

dyldz=llz=lltan{x/2),    dz/dx=(ll2)sec2(x/2) 
see  Calculus  Made  Easy,  p.  172,  Ex.  6),  so  that 

dy     dz_(fy_l  1  2/    /o\ 
^X^~^-2Xtan(#/2)Xsec  {X'Z) 

=  l/2sin(^/2)cos(^/2)=l/sin2(^/2)=l/sin^, 

o  that  dy=dx/ sin  x,  and  therefore 

|d#/sina?=   £&/=*/=  loge  tan  (a?/2)+C; 

o  that  here 

s  —  t=—a  logetan(a/2)  +  C. 
Find  now  the  value  of  C. 
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When  a=90o  =  7r/2=l-5708,  t=s=0, 
s-^=0=-alogetan(7r/4)  +  C=-alogel  +  C=0+C3 

and  therefore  C=0. 

Hence  s  =  t— alogetan(a/2). 
Now  AF=a.  In  the  right  angled  triangle  AR. 

AF=FR  xsmARF,  and  angle  ARF =xng\e  ATR=t 
because  the  sides  of  the  two  triangles  ARF  and  AT 

are  perpendicular  to  one  another  respectively,  so  th* 

FR  =  a/ sin  ol;  also  SR  =  s— 1=—  «logetan(a/2).  Tl 
coordinates  of  F  on  the  catenary  with  respect  to  tl 

axes  TT',  SH,  are  therefore 

y=ajsmcL,    x=—  «logetan(a/2) ; 

the  last  expression  may  be  written  —  a?/a=logetan(a/I 

that  is,  tan(oc/2)  =  €-*/«. 

Now     cot  (a/2)  =  l/tan(a/2)  =  \je-xla=  exla. 
We  have  therefore 

f*  +  r*=ta(«/2)+cot(a/2)=8inia|!+fS v   '    '  \   i   i     cos  (a/2)     sm(a/2 

_  2[sin2(a/2)+cos2(a/2)]=     2  x  1 

2  sin  (a/2)  cos  (a/2)     "  sin  2  (a/2) ' or 

€a;/a  +  e-^a  =  2/sina  =  2?//«. 

It  follows  that   y  =  (aj2){6xla  +  e-*la),  which  is  t 
equation  of  the  path  followed  by  the  focus  F  duri 

the  rolling   of   the  parabola  along  TT'.     This  is   a 
the  equation   of   the  catenary.     From  a  parabola 
can  therefore   obtain   a   catenary.    The  similitude 

form  is  not  merely  a  matter  of  chance,  the  two  cur 
are  cousins,  after  all ! 



CHAPTER  XIII. 

raERE  EPSILON  ATTEMPTS  TO  FORETELL :  THE 

'ROBABILITY  CURVE  AND  THE  LAW  OF  ERRORS 

^HE 

"  All  Nature  is  but  Art,  unknown  to  thee, 

All  Chance,  Direction  which  thou  can'st  not  see, 
All  Discord,  Harmony  not  understood." 

Pope  (Essay  on  Man). 

future  holds  very  few  certainties.  It  is  by  no 

neans  absolutely  certain  that  to-morrow  will  come — 
neaning  by  it  the  return  of  daylight  on  the  portion  of 
he  Earth  on  which  we  live.  Only,  its  return  is  so 

nfinitely  probable  that  we  are  justified  in  discarding 
entirely  the  extremely  remote  possibility  of  its  failure 
;o  return. 

On  the  other  hand,  it  is  absolutely  certain  that  time 

will  be  going  on  for  ever,  even  in  an  absolutely  void 

Universe,  with  nothing  to  mark  its  progress,  nothing 
bo  give  a  unit  by  which  this  progress  may  be  measured. 
Equally  certain  is  the  fact  that  space  will  exist  for  ever, 

possibly  entirely  vacant,  devoid  of  anything  that  could 

give  the  notion  of  its  existence,  still  less  of  its  magnitude. 
Time  and  space  are  abstract  things  which  can  exist 

by  themselves  apart  from  any  other  consideration — 
in  fact,  their  absence  is  inconceivable.     The  return  of 

173 



174  EXPONENTIALS  MADE  EASY 

daylight  is  an  event,  and  the  occurrence  of  an  even 

postulates  the  existence  of  some  concrete  thing,  th 
existence  of  which  at  any  future  time  is  by  no  mear 
certain  ;  hence  there  is  no  certainty  in  the  definit 
occurrence  of  any  future  event.  All  that  can  be  sai 

is  that  a  particular  event  is  probable,  some  events  bein 

more  probable  than  others,  according  to  the  case,  an 

for  some  events,  the  possibility  of  the  non-occurrenc 
of  which  is  so  exceedingly  remote  as  to  be  all  bi 

absolutely  negligible,  the  probability  is  spoken  of  as 
certainty,  although  not  strictly  so  in  reality. 

There  are  various  degrees  of  probability,  from  th 

so-called  certainty  to  impossibility,  which  is  on! 
negative  certainty.  These  degrees  are  usually  expresse 
by  the  use  of  words,  the  only  way  available  whenevc 

means  are  lacking  to  express  the  probability  of  son 
event  as  a  mathematical  statement  which  will  constitui 

a  definite  piece  of  information.  It  is  "  certain  "  th* 
the  daylight  will  return  in  a  few  hours ;  it  is  extremel 

probable  that  I,  a  strong  healthy  man,  shall  live  ti 

to-morrow  to  see  it ;  it  is  very  probable  that  this  o! 
seedy-looking  man  will  do  the  same.  In  the  case  of 

sick  person  this  is  probable,  or  possible — that  is,  hard] 
probable — or  improbable ;  in  the  case  of  a  dead  perso: 
as  we  understand  death,  it  is  impossible. 

There  are  two  kinds  of  probabilities.    First,  there 

the  probability  of  events  that  are  entirely  left  to  chanc 
that  is,  the  circumstances  determining  the  occurren 

of  which  are  absolutely  beyond  control.     Such  is,  f- 
instance,  the  probability  of  throwing  double  six  at  die 
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or  of  turning  up  four  aces  by  taking  at  random  four  cards 
out  of  a  pack,  or  of  pulling  out  a  black  or  a  white  ball 
from  a  bag  containing  balls  of  either  colour.  This  kind 

of  probability  is  specially  interesting  to  the  gambler. 
Secondly,  there  is  the  probability  of  events  that  are 

influenced  in  some  definite  way  by  agents  which  act 

consistently  so  as  to  eliminate  as  much  as  possible  all 
elements  of  chance,  without  being  able  to  eradicate  them 

completely.  A  gunner,  for  instance,  will  consistently 
direct  his  efforts  towards  the  attainment  of  a  hit  exactly 

at  the  centre  of  the  target ;  an  astronomer  endeavouring 
to  ascertain  the  mean  distance  of  the  moon  from  the 

earth,  or  a  physicist  engaged  in  the  determination  of 
the  specific  heat  of  some  substance,  will  concentrate 
all  their  mathematical  and  experimental  skill  on  the 
obtainment  of  a  value  as  nearly  correct  as  possible. 

Yourself,  while  trying  to  extricate  the  value  of  epsilon 

from  measurements  of  an  arc  of  rectangular  hyperbola, 
strove  to  avoid  all  causes  of  discrepancy  between  your 
own  result  and  the  known  value.  In  other  words,  the 

dice  are  loaded ;  mere  chance  is  out  of  the  question 

as  a  ruling  factor.  It  is  not  eliminated  altogether,  how- 
ever ;  it  remains  an  important  factor  in  determining 

the  discrepancy  between  the  result  sought  and  the 

result  obtained,  between  the  centre  of  the  target  and 
the  spot  actually  hit,  between  the  values  found  for  the 

distance  of  the  moon,  the  specific  heat  of  the  substance, 

or  your  value  of  epsilon,  and  the  correct  value  for  these 

quantities  respectively.  This  kind  of  probability  is 
cially  useful  to  the  scientist. spei 
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Of  the  first  kind  of  probability  we  shall  say  little. 
It  is  easily  expressed  numerically,  and  lends  itself  to 

elaborate  mathematical  treatment,  but,  as  every 
gambler  has  found  by  dire  experience,  practical  attempts 
to  verify  the  mathematical  laws  which  are  supposed  to 
govern  it  generally  lead  to  disappointment  even  in  the 

simplest  cases.  For  instance,  there  is  evidently  one 

chance  in  six  of  throwing  one  particular  number  of  points 

in  a  one-dice  throw,  but  if  we  throw  a  dice  repeatedly, 
a  great  many  times,  and  observe  how  many  times  each 

number  of  points  turns  up,  we  shall  probably  find  that 

the  number  of  aces,  twos,  etc.,  thrown  up  differs  from 

one  sixth  of  the  total  number  of  throws  to  a  greater 
extent  than  theoretical  considerations  would  lead  us  to 

expect. 

As  this  statement  may  be  criticised  as  being  by  no 
means  correct,  it  seems  worth  while,  in  order  to  avoid 

misunderstanding,  to  state  in  detail  the  result  of  one 

particular  experiment  made  to  ascertain  to  what  extent 
one  may  expect  the  mathematical  law  to  be  verified 
that  is,  the  analysis  of  the  result  of  twelve  him  dree 

throws  of  a  single  dice,  given  in  the  following  table 
The  throws,  performed  as  uniformly  as  possible,  were 
divided  into  20  sets  of  60  throws  each,  so  that,  theoreti 

cally,  each  face  of  the  dice  should  be  thrown  up  tei 
times  in  each  set.     Of  course,  no  one  would  expect  thi 
to  occur  in  any  set ;  but  what  one  would  expect  is  that 
as  the  number  of  throws  increased,  the  result  of  accumu 

lated  sets  should  approach  nearer  and  nearer  to  an  equa 
distribution  of  the  throws  between  the  six  faces  of  th 
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ce.  This  will  not  generally  occur,  in  any  practical 
periment  which  is  pushed  far  enough.  In  the  table, 
e  occurrences  which  are  in  agreement  with  the  theory 
e  shown  in  heavier  type  (their  number  is  surprisingly 
mil.  17  only,  out  of  120,  in  the  left  half  of  the  table,  and 

only,  out  of  120,  in  the  right-hand  half  of  the  table. 

1 

No.  of  times  that  each  face 
of  the  dice  turned  up  in 

each  set. 

Total  number  of  times  that  each 
face  of  the  dice  turned  up  in 

all  the  throws. 

o  °  . 

82:1 1 

10 11 

3 

13 

4 

11 

5 

7 

6 

8 

1 2 3 4 5 6 

10 11 13 ri 7 8 
10 

2 14 6 9 12 9 10 24 17 22 
23 

16 18 20 

3 9 12 9 11 10 9 33 29 
31 

34 
26 27 

30 
4 8 12 11 9 9 11 41 41 42 

43 
35 

38 40 

5 10 14 6 5 15 10 51 55 48 
48 

50 
48 50 

6 10 10 5 12 9 14 61 65 53 
60 

59 62 60 
7 6 9 12 11 13 9 

67 
74 65 71 72 71 70 

8 8 7 11 5 17 12 75 81 76 76 
89 83 80 

9 10 7 9 11 11 12 85 88 85 87 
100 95 

90 10 9 12 6 10 15 8 94 100 
91 

97 115 103 100 

11 8 8 9 14 8 13 102 108 100 111 123 116 
110 

12 13 5 11 10 7 14 115 113 111 121 
130 130 120 

13 8 10 12 12 8 10 123 123 123 
133 138 

140 
130 

14 7 7 15 11 10 10 130 130 138 144 148 150 
140 

15 11 11 8 7 13 10 141 141 146 151 161 
160 150 

16 12 7 11 8 12 10 153 148 157 
159 173 170 

160 

17 12 11 12 10 7 8 165 159 169 169 180 
178 

170 

18 8 14 11 11 10 6 173 173 180 180 190 
184 

180 

19 13 1 12 8 17 9 186 174 192 188 207 
193 

190 

20 16 9 9 5 9 12 202 183 201 
193 216 

205 

200 

The  left  half  of  the  table  s 
hows  the  "  occurrence  "  of 

ach  face  of  the  dice,  that  is, the  number  of  times  that 

ach  face  of  the  dice  turn< id  up  in  each  set  taken 
G.E.                        M 
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individually,    while   the    right    half   shows   this   sai 
number   of    times   for   all    the    sets   together,    as  t 

experiment   went   on.     The   left   portion  of  the  tal 
shows  that  in  the  first  set  the  greatest  departure 

any  occurrence  from  the  theoretical  one,  10,  is  3, 
30  per  cent.  ;    in  the  first  two  sets,  taken  togeth 

this  greatest   departure   is   4,   and   as   the  theoreti 
occurrence  is  20,  this  is  a  discrepancy  of  20  per  cen 
while  in  the  first  three  sets,  taken  together,  the  great 

discrepancy  is  4  in  30  or  13-3  per  cent.,  for  the  first  f( 
sets  it  is  12-5  per  cent.,  for  the  first  five  sets  it  is 
per  cent.,  and  so  on.    The  relative  discrepancy  decrea 
gradually  as  one  would  expect,  as  the  greater  the  occ 
rence,   the  smaller  the  discrepancy  becomes  in  cc 

parison,   even  if  it  actually  increases  numerically, 
it  did  here,  rising  from  3  in  the  first  set  to  4  in  the  f 
two  and  also  in  the  first  three  sets  together,  to  5  in 
first  four  and  also  in  the  first  five  sets  taken  togetl 

What  it  is  intended  to  convey  by  the  statement  t 

practical  attempts  to  verify  the  theory  generally  leac 
disappointment   is   that   this   gradual   approach  t< 
theoretical  result  does  not  as  a  rule  continue,  even  w 

dealing  with  a  large  number  of  chance-elements  (• 
throws  in  this  case).    This  gradual  approach  is  aire 

upset  when  considering  the  six  first  sets  together  (grea 

departure,  7,  or  11-7  per  cent.,  a  relative  discrepa 
higher  than  the  one  before,  which  was  10  per  cer 
but  one  would  expect,  occasionally,  such  irregular 
in    a    distribution    of    numbers    entirely    governed 

chance,  as  long  as  the  number  of  chance-element 
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nail,  and  the  six  first  sets  only  represent  360  throws. 

s  we  proceed,  we  would  however  expect  the  relative 
screpancies  to  diminish  in  value.  But  chance  always 
)lds  in  reserve  the  unexpected,  which  here  appears 

the  19th  set,  in  which  a  "  two  "  turned  up  once  only 
'  sixty  throws,  while  a  five  turned  up  seventeen  times, 
his  gives  for  the  1140  throws  (a  fairly  respectable 

imber  of  chance-elements)  a  departure  of  17  for  the 

/es,  or  a  relative  discrepancy  of  8-9  per  cent.,  whereas 
»r  the  7  first  sets  (420  throws)  this  was  7-1  per  cent, 
lly.  In  other  words,  by  nearly  trebling  the  number 

:  throws,  from  420  to  1140,  we  got  further  from  the 
leoretical  result  instead  of  nearer  to  it. 

It  will  be  objected  that  1140  is  by  no  means  a  great 

umber.  This  is  a  mathematician's  argument,  and 
ad  the  number  been  20,000  his  objection  would  have 
een  the  same.  This  is  exactly  what  is  meant  by  the 

;atement  that  practical  verifications  are  disappoint- 
ig  :  however  far  they  are  pushed,  chance  will  play 
icks,  which  will  upset  all  theory,  and,  in  fact, 

othing  but  an  infinitely  great,  that  is,  an  unpractical, 
umber  of  throws,  in  this  case,  would  allow  the  variety 
i  these  tricks  to  be  exhausted  fairly  with  respect  to  the 
x  faces  of  the  dice,  so  as  to  secure  an  even  distribution  ; 

fter  a  few  scores  of  thousands  of  throws,  several 

undred  throws  without  a  single  occurrence  of  one 
articular  face,  or  with  an  abnormal  recurrence  of  the 

ime  face,  may  perfectly  well  occur,  which  will  upset 
verything. 

Now,  was  the  deficiency  of  "  twos  "  and  the  excess  of 
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"  fives  "  due  to  a  defect  of  the  dice  ?  The  followii 
little  table,  which  gives  the  particulars  of  groups  i 
which  the  same  face  of  the  dice  turned  up  consecutive! 

will  answer  the  question.  From  it,  it  is  seen  that  grou] 

of  three  consecutive  "  fives "  occur  four  times,  ar 

that  groups  of  three  consecutive  "  twos  "  were  obtain* 
three  times,  and  groups  of  four  consecutive  "  twos 
were  obtained  twice  ;    the  chance  seems  therefore  1 

Face  of  the  dice. 

1 o 3 4 5 

(i 

3 3 3 3 3 3 
4 4 4 5 3 3 
3 3 3 3 3 3 
3 3 3 3 3 
4 4 3 3 

3 
3 

favour  the  "  twos  "  and  not  the  "  fives."  Moreov 

groups  of  three  "  sixes "  were  obtained  in  not  1< 
than  seven  instances,  and  a  group  of  five  consecuti 

"  fours  "  was  obtained  once.  From  this  table  one  woi 

expect  a  deficiency  of  "  threes  "  and  an  excess  of  ac 
"  fours  "  and  "  sixes,"  yet  the  "  threes  "  were  norm 

the  "  sixes  "  only  in  slight  excess,  and  the  "  four 

were  deficient  in  number.  The  supposition  of  a  "  loade< 
dice  is  therefore  not  supported  by  the  results  genera 

It  is  not  supported  either  by  an  examination  of  the  h 
hand  half  of  the  table  showing  the  distribution  of  poi 

in  the  experiment. 
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It  is,  in  fact,  absolutely  hopeless  to  predict  future 

;  hance-events  from  a  study  of  the  similar  chance- 
|  vents  which  have  just  taken  place. 

Not  so,  however,  with  the  second  kind  of  probability, 

/liich  is  for  this  reason  of  much  greater  interest  and 
cientific  utility.  The  initial  numerical  nature  of  the 

hance-element  of  the  former  type  of  probability  is 
iere  generally  entirely  lacking.  We  can  only  replace 

'  he  looseness  inherent  to  the  use  of  words  by  the  precision 
»f  a  mathematical  expression  by  gathering  statistical 
»bservations.  In  other  words,  we  cannot  state  a  priori 

yhat  the  probability  is  (as  one  sixth  in  the  case  of  a  single 
hrow  of  a  dice),  but  we  must  observe  the  number  of 
imes  a  stated  event  occurs,  and  we  can  then  derive 
rom  the  observations  a  numerical  statement  which 

vill  convey  a  definite  meaning  as  to  the  probable 
)ccurrence,  in  the  future,  of  the  event  under  observation. 

3y  -;  probability,"  then,  we  mean  the  value  of  the  ratio  : 
number  of  times  an  event  occurs 

total  number  of  possible  occurrences' 
For  instance,  from  the  fact  that  a  gunner  has  hit 

:he  centre  of  the  target  once  for  every  ten  rounds  he 
las  fired,  we  may  surmise  that  the  probability  of  the 

3entre  of  the  target  being  hit  by  him  in  subsequent  firing 

:S  once  out  of  ten  rounds,  or  one  in  ten,  that  is,  1/10, 
supposing  all  the  conditions  to  remain  exactly  the  same. 

This  is  a  precise  numerical  statement,  but  it  must 

not  be  forgotten  that,  although  its  verification  will  in 
general  be  found  more  satisfactory  than  with  the  other 
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type  of  probability,  its  precision  is  more  apparent  tha: 

real ;  in  fact,  it  is  only  a  probability.  We  have  put  i: 

italics  a  sentence  that  must  always  be  present  in  one' 
mind  :  the  number  expressing  the  probability  is  onl 
of  any  value  if  the  conditions  obtaining  while  th 
statistical  observations  were  made  continue  to  exif- 

during  the  period  over  which  the  verification  of  th 

probability  is  pursued. 
There  is  no  way  of  securing  this.  The  best  gunm 

will  become  affected  by  fatigue,  the  rifling  of  the  gu 
will  wear,  the  wind  will  vary,  the  barometric  pressui 
and  the  temperature  will  alter,  and,  with  them,  tl 

tenuity  of  the  atmospherical  resisting  medium  throug 

which  the  shot  travels  ;  despite  care  in  manufactu: 

charges  are  not  absolutely  uniform,  and  with  a  fres 

batch  of  ammunition  a  perceptible  difference  may  pe 

sist  during  the  rest  of  the  firing,  altering  permanent 
the  conditions  under  which  it  takes  place. 

Besides,  there  is  always  the  possibility  of  the  unfor 

seen.  A  charge,  now  and  again,  will  be  faulty,  somethii 
will  fail.  Clearly,  the  numerical  probability  is  only 
guide,  and  close  verification  is  not  to  be  expected. 

Is  there  any  way  by  which  we  can  make  it  mo 
reliable  ?  Yes.  By  taking  a  very  large  number 
observations  under  all  possible  conditions,  favourat 

and  otherwise.  The  figure  expressing  the  probabili 
of  the  event  will  then  include  every  factor  which  c 

modify  its  occurrence,  even  the  unforeseen  circumstanc 

These  will  have  possibly  taken  place  repeatedly  if  t 
number  of  observations  is  very  large,  but  this  very  lai 
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umber   of    observations    will   precisely    restrict   their 

lfluence  to  its  proper  magnitude. 

A  simple  example  will  make  this  clear.     If  we  take 

3n  persons  at  random,  and  ask  them  to  put  down  the 
orrect  time  as  obtained  from  their  watches,  it  will  be 

)imd  most  likely  that  not  two  watches  agree,  and  that 

ot  one  of  them  is  actually  quite  correct.    It  is  also  most 
kely  that  some  of  the  watches  will  be  slow  and  the 

thers  will  be  fast ;    it  is  highly  improbable  that  all 
hould  be  either  slow  or  fast.     Hence,  by  taking  the 

.verage  of  the  ten  times  put  down  we  shall  get  what  we 

aav  call  the  "  observed  correct  time,"  and  this  will 
nost  likely  be  nearer  the  actual  correct  time  than  most 
>f  the  times  put  down.    But  what  about  the  unforeseen  ? 
tVhat  if  one  of  the  persons  had  just  arrived  from  Cairo 
md  had  not  yet  set  his  watch  to  Greenwich  time,  and 
lad  forgotten  to  inform  us  that  it  is  two  hours  fast  ? 

)ur  "  observed  correct  time  "   would  be  seriously  in 
>rror,  being  fast  by  120/10  minutes,  or  12  minutes  fast. 
Instead  of  10,  take  100  people  ;  the  absent-mindedness 

)f  our  Cairo  friend  will  only  throw  out  the  "  observed 

correct  time  "  by  120/100  minutes,  that  is,  1  minute  and 
12  seconds.    With  1000  people  the  effect  is  reduced  to 
7-2  seconds. 

But  with  the  increased  number  of  people,  other 

unforeseen  causes  of  error  will  probably  have  been 
introduced.  What  if  one  watch  has  stopped  altogether, 
undetected  ?  An  ordinary  watch,  that  is,  one  with  a 

dial  divided  into  12  hours,  cannot  possibly  be  wrong  by 
more  than  6  hours,  and  the  greatest  possible  error  arising 
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from  the  fact  would  therefore  be  720/100=7-2  minute 
or  7  minutes,  12  seconds  with  100  people,  and  43- 
seconds  with  1000  people,  while  with  10,000  people 

would  only  amount  to  4-32  seconds. ,  If  several  watch* 
have  stopped,  it  is  likely  that  some  will  be  put  dow 
as  fast  and  others  as  slow  ;  for  instance,  if  it  is  actual] 

3  p.m.  a  watch  which  stopped  at  8  a.m.  will  be  believe 
to  be  5  hours  fast,  while  a  watch  which  stopped  i 

11  a.m.  will  be  thought  to  be  4  hours  slow.  In  this  wa 
the  errors  will  balance  one  another  to  a  certain  exten 

as  well  as  being  reduced  to  insignificance  by  the  gre* 
number  of  observations.  By  multiplying  the  observe 

tions  so  as  to  include  all  possible  conditions  and  unfor* 
seen  circumstances  a  twofold  result  is  therefore  achieved 
errors  balance  one  another  and  the  effect  of  accident 

errors  is  rendered  negligible. 

There  seems,  at  first  sight,  to  exist  a  great  different 
between  the  case  of  the  watches  and  the  case  of  tl 

gunner.  The  "  observed  correct  time  "  will  certain 
be  a  very  close  approximation  to  the  true  correct  tim 

that  is,  the  verification  will  be  very  good.  In  the  ca; 
of  the  gunner,  the  verification  may  turn  out  to  be  vei 

bad.  It  is  quite  possible — although  hardly  likely — tha 
although  the  probability  of  a  hit  at  the  centre  of  tl 

target  is  1/10,  five  or  six  shots  in  succession  should  happt 
to  be  central  hits.  The  uncontrollable  element  of  chan 

here  steps  in.  However,  in  the  long  run,  if  the  conditio] 
of  firing  remain  the  same  as  before,  if  the  estimate 

based  on  a  sufficiently  great  number  of  observatioi 
and  if  the  verification  also  spreads  over  a  sufficient 
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great  number  of  shots  to  restore  its  proper  magnitude 
to  the  effect  of  fortuitous  circumstances,  it  will  be 

found  that  the  probability  will  allow  of  a  fair  verification. 
In  the  case  of  the  watches,  the  numerical  result  was 

not  a  probability  of  the  occurrence  of  an  event  at  all, 
it  was  the  value  itself  of  a  certain  quantity.  In  the  case 

of  the  gunner,  the  fraction  1/10  was  the  probability  of 
the  occurrence  of  a  central  hit,  not  the  actual  location 

of  the  hit  itself,  hence  the  difference.  The  two  illustra- 
tions are,  however,  as  a  matter  of  fact,  exactly  similar. 

Each  time  noted  down  is,  so  to  speak,  a  "  shot  "  aiming 
at  the  correct  time  ;  for  each  watch  giving  exactly  the 

correct  time,  a  central  "  hit  "  is  secured.  If  one  watch 
in  every  ten  is  exactly  correct  on  the  average,  the 

probability  is  that  as  we  consult  a  further  number  of 
watches,  one  out  of  every  ten  will  be  correct,  yet  it  is 

quite  possible — although  hardly  so — that  five  or  six 
watches  examined  consecutively  should  be  correct.  If 

the  gunner  is  shooting  at  a  particular  mark  on  a  blank 

target,  the  mark  being  invisible  to  us,  by  averaging  all 

his  shots  we  shall  certainly  get  a  close  approximation 
to  the  exact  position  of  that  mark  (see  Fig.  33).  The 

above  considerations  have  a  great  importance  in  experi- 
mental science,  for  an  observer,  whether  he  is  attempt- 

ing to  find  the  moon's  distance  or  the  specific  heat  of  a 
substance,  or  the  value  of  epsilon  from  the  rectangular 

hyperbola,  is  merely  trying  to  secure  a  central  hit  at  a 

target — the  "  bull's  eye  "  is  here  a  mere  number — by 
eliminating,  or  making  allowance  for  all  the  factors 

affecting   the   accuracy   of   his    "  firing,"   just    as    the 
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skilled  gunner  makes  allowance  for  the  range,  the 

motion  of  the  target,  the  "  drift  "  of  the  projectile, 

the  "  jump  "  of  the  gun,  the  wind,  the  attenuation  of 
the  atmosphere  in  high  angle  firing,  etc.  Each  result 

obtained  is  a  "  shot  "  which  may  usually  be  recorded 

on  a  "  target  diagram  " — as  such  diagrams  are  very 

Fig.  33. 

aptly  termed.  The  points  about  which  the  "  shots  n 
cluster  represent  the  average  value  obtained  for  the 

sought  quantity  ;  the  distance  between  each  "  shot " 
and  this  point  represents  the  error  of  the  corresponding 

individual  determination. " 
A  particular  feature  of  such  observations  isjthat  the 

"  bull's  eye  "  is  absent,  the  observer  "  fires  "  at  a  blank 
target  :  the  correct  value  of  the  sought  quantity  is 

generally  unknown — except  in  the  case  of  purely  ex- 
perimental observations  performed  for  an  educational 
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purpose,  like  our  graphical  determinations  of  epsilon 

— in  fact,  the  correct  value  of  the  sought  quantity  can 
only  be  approximated  by  taking  the  arithmetical  mean 
of  the  results  given  by  all  the  observations  made  to 

ascertain  it.  This  is  on  the  assumption  that  a  suffi- 
ciently great  number  of  observations  have  been  made 

to  diminish  the  effect  of  exceptionally  large  errors,  and 
that  there  is  an  equal  tendency  for  errors  to  be  in  excess 
or  in  default,  by  which  it  is  meant  that  if  one  of  the 

values  found  is  too  great  by  a  certain  amount,  there  is 

amongst  the  other  values  found  one  which  is  too  small 
by  practically  the  same  amount,  so  that,  as  far  as  these 

two  values  are  concerned,  their  average  gives  the 

correct  value  of  the  required  quantity. 
This  is  no  doubt  a  correct  assumption  if  the  errors  are 

governed  by  chance  alone,  being  what  are  called 

"  accidental  "  errors.  It  is  not  correct  if  some  cause 
is  making  the  observed  results  either  consistently  too 

low  or  consistently  too  high,  introducing  what  are 

called  "  systematic  "  errors,  that  is,  causing  a  tendency 
for  the  "  shot  "  to  deviate  always  in  the  same  direction, 
although,  owing  to  the  effect  of  accidental  errors,  the 
amount  of  the  deviation  is  variable.  For  instance,  to 

return  to  our  illustration  of  a  gunner  firing  at  a  target, 
a  defective  charge  is  a  cause  of  accidental  error,  while 

the  wind,  if  not  allowed  for,  is  a  source  of  systematic 
errors.  The  whole  skill  of  an  observer  is  chiefly  directed 
towards  the  elimination  of  systematic  errors,  whether 

by  doing  away  with  their  causes  or  by  allowing  for 
their  effects.    If  he  is  successful,  then  the  arithmetical 
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mean  of  his  results,  if  fairly  numerous  observations 

have  been  made,  will  be  a  very  close  approximation 
indeed  to  the  true  value  he  seeks.  This  true  value, 
let  it  be  remembered,  is  unknown,  and  in  most  cases 

will  remain  for  ever  unknown,  being  in  fact  known  only 
from  the  results  of  the  observations  made  to  ascertain 

it,  observations  which  are  each  of  them  affected  by 
unknown  errors  which  the  Calculus  of  Probabilities 

enables  us  to  guess  more  or  less  successfully,  without 

allowing  us  really  to  know  if  the  guess  is  good  or  bad. 

We  only  know  that,  given  a  very  large  number  of  observa- 
tions free  from  systematic  errors,  the  guess  is  a  good 

one,  but  in  many  cases  we  probably  are  never  sure 

there  are  no  unsuspected  systematic  errors.  The  only 

way  to  approach  immunity  in  this  respect  is  to  van- 
as  much  as  possible  the  methods  of  observation  and  the 
instruments  used ;  the  systematic  errors  will  then 
assume  to  a  certain  extent  the  character  of  accidental 

errors  affecting  the  aggregate  of  the  results  obtained, 
as  some  will  tend  to  make  the  results  too  high,  while 
others  will  tend  to  make  it  too  low. 

By  the  error  of  an  individual  observation  belonging 

to  a  group,  then,  we  mean  the  difference :  result  oi 
individual  observation — arithmetical  mean  of  all  the 

results  of  the  observations  belonging  to  the  group 

This  is  called  the  "  absolute  error,"  or,  in  some  cases 
the  "  residual  "  of  the  individual  observation  concerned 
Now,  always  supposing  that  the  number  of  observa 

tions  or  "  shots  "  is  very  large,  it  is  evident  a  prior 
that 
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(1)  Errors  in  one  direction  (that  is,  making  the  result 
too  large,  say)  will  be  just  as  frequent  as  errors  in  the 

opposite  direction  (making  the  result  too  small). 
(2)  Large  errors  will  not  occur  as  frequently  as  small 

ones. 

(3)  Very  large  errors  in  either  direction  will  not  occur 
at  all. 

If  x  be  the  magnitude  of  an  error  and  y  the  frequency 

of  its  occurrence,  that  is,  its  probability,  x  and  y  must 
be  connected  in  such  a  way  that  the  graph  of  the  function 

expressing  their  connection  possesses  very  definite 
features,  illustrating  the  three  facts  stated  above ; 
that  is : 

(1)  The  graph  must  be  symmetrical  with  respect 
to  the  axis  of  y,  since  the  frequency  is  the  same  for 

positive  or  negative  equal  values  of  x. 

(2)  The  graph  must  pass  through  a  maximum  for 

x=0,  since  small  values  of  x  occur  more  frequently. 
(3)  As  x  increases  numerically,  y  must  decrease, 

and  become  nil — or  at  any  rate  negligibly  small — when 
x  becomes  large. 

And  our  search  for  such  a  function  leads  us  again  face 

to  face  with  epsilon,  for  such  a  graph  is  found  to  have 

for  equation  a  function  such  as  y=e~x2.  Why  a  minus 
sign  ?  Remember  that  y  must  be  small  when  x  is 

large,  and  this  will  occur  if  //^1/e*2.  Why  square  the 
index  ?  So  as  to  get  the  same  value  of  y,  whatever 
may  be  the  sign  of  the  error,  that  is,  of  x.  The  above 
function  gives  a  very  definite  curve  ;  we  want  a  function 

which  can  adapt  itself  to  all  the  cases  that  we  may 
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have  to  consider.  We  give  it  more  elasticity  by  intro- 

ducing two  constants.  It  becomes  then  y=ke~°*:fi, 
where  h  and  a  have  numerical  values  depending  on 
the  particular  conditions  governing  the  distribution  of 

the  "  shots." 

Here  it  may  be  asked  :  "  Why  use  epsilon  when  any 
other  constant  would  give  the  same  kind  of  curve  ?  " 
The  reason  lies  in  the  fact  that,  whether  we  differentiate 

or  integrate  ex,  we  still  get  ex.  To  use  another  constant, 

such  as  2  or  3,  instead  of  2*718,  would  not  upset  the 
probability  apple  cart,  but  it  would  lead  to  unwieldy 
differentials  and  integrals,  and  would  complicate  matters 
needlessly. 

In  one  respect  the  mathematical  formula  fails  to 

represent  what  occurs  in  practice.  It  allows  of  very 

great,  even  of  infinitely  great  values  for  x,  while,  in 
practice,  as  we  have  seen,  very  large  errors  do  not  occur. 
The  greatest  error  of  an  ordinary  clock  is  6  hours,  it 

cannot  possibly  be  more  ;  even  if  fired  in  the  opposite 
direction  to  that  of  the  target  a  shot  will  not  pass  an 

infinite  distance  away  from  it ;  even  careless  measure- 
ments on  a  clumsily  drawn  rectangular  hyperbola 

cannot  give  values  less  than  zero,  and  will  not  give 
values  greater  than  4  or  5  at  the  outset.  But,  with 
this  exception,  the  formula  follows  very  closely  what 

actually  happens  in  practice,  and  it  is  called  for 
this  reason  the  Law  of  Errors ;  its  graph,  called 

the  Probability  Curve,  gives  as  ordinate  the  proba- 
bility of  the  occurrence  of  the  corresponding  error  as 

abscissa. 



THE  PROBABILITY  CURVE 191 

We  see  that  k  and  a  can  have  different  values  accord- 

ing to  the  particular  way  in  which  errors  do  occur. 

If  we  suppose  a=l,  then  y=k€~x2  ;    if  now  we  give  k 

values  1,  2,  3,  4,  etc.,  we  get,  for  each  value  of  k,  a 
particular  curve  as  seen  in  Fig.  34.  These  various  curves 
are,  however,  merely  copies  of  the  same  curve,  namely, 

y=e-x",  to  a  different  scale  of  y.    This  is  evident  from 
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the  position  k  occupies  in  the  equation  ;  it  is  simply  a 

multiplier.  Now  when  x=0,  y=7ce°=k.  That  is.  /•  ii 

the  ordinate  at  x=0,  and  this  is  the  probable  frequency 

-of  zero  error.  The  greater  the  probability  of  very 

small  errors  the  more  "  peaked  "  will  be  the  curve, 
the  greater  will  be  k,  and  inversely.  By  altering  in 
this  way  the  scale  to  which  y  is  plotted,  we  introduce 
in  the  mathematical  equation  whatever  causes  influence 

Fig.  35. 

the  probability  of  small  errors,  that  is,  the  accuracy 
of  individual  results.  Otherwise,  k  has  no  effect  whatever 

on  the  shape  of  the  curve,  that  is,  on  the  relative  dis- 
tribution of  errors  ;  if  we  double  k,  we  double  the 

number  (or  probability)  of  large  errors  as  well  as  the 
number  (or  probability)  of  small  ones. 

If  we  make  k=l,  then  y=e~a2x2,  and  if  we  give  to 
a  values  1,  2,  3,  4,  etc.,  for  each  value  of  a  we  again 

get  a  particular  curve,  as  shown  in  Fig.  35.  In  this 
case,  however,  all  the  curves  are  different ;  they  all 

cut  the  axis  of  y  at  the  same  point,  since  h  is  the  same 

for  all,  but  the  greater  a  is  the  more  "  peaked  "  is  the 
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arve.  The  physical  fact  corresponding  to  a  "  peaked  " 
urve  is  a  greater  proportion  of  small  errors,  that  is, 

greater  general  accuracy  of  the  group  of  observations 
onsidered.  For  this  reason  a  is  called  the  accuracy 
iodnlns  or  modulus  of  precision.     The  actual  values  of 

and  k  in  any  particular  case  depend  on  the  con- 
istency  or  otherwise  of  the  observations  themselves, 

'his  will  be  more  evident  as  we  proceed. 
Bessel  (Fundamenta  Astronomiae)  has  examined  a 

eries  of  470  astronomical  determinations  made  by 

Bradley,  in  order  to  compare  the  theoretical  frequency 

>f  the  errors  with  the  distribution  of  the  actual  departures 

>f  all  the  results  obtained.     He  gives  :  * 

Magnitude  of  error. 
Observed  number 

of  errors. 
Number  of  errors 

given  by 

Between  0"0  and  0"1 94 95 
0"]    „    (T-2 

88 89 

0"-2    „    0"-3 
78 78 

0"-3    „    0"-4 
58 64 

n        0"-4    „    0"-5 
51 50 

0"-5    „    0"-6 
36 

36 

„        0"-6    „    0"-7 

26 
24 

o"-7  „  o"-8 
14 

15 

O'-S    „    0"-9 
10 

9 

0"-9    „     l'-O 
7 5 

There  are,  besides,  eight  observed  errors  greater  than 

l"-0  against  the  five  given  by  theory.     It  will  be  found 
that  there  is  generally  a  tendency  for  large  errors  to 
be  somewhat  more  frequent  than  theory  would  lead  us 

to  expect. 

*  See  Taylor's  Scientific  Memoirs,  vol.  ii.  1841. 
g.e.  N 
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The  close  agreement  of  the  observed  and  calculatec 

frequencies  of  errors  is  illustrated  by  the  diagram  o 

Fig.  36.  The  curve  represents  the  theoretical  frequency 
while  the  dots  represent  the  observed  frequency  plotte( 

at  the  middle  of  the  successive  spaces  of  0"-l  representing 
the  successive  error  magnitudes,  that  is,  at  the  pointi 
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Fig.  36. 

corresponding  to  the  mean  magnitude  of  each  grou 
of  errors.  The  agreement  is  indeed  remarkable,  an 
gives  confidence  in  the  mathematical  deductions  whic 
arise  from  the  law  of  errors  and  form  the  basis  of  tr 
Calculus  of  Probabilities. 

The  arithmetical  mean  of  a  number  of  values  obtaine 

by  measuring  the  same  quantity  is,  however,  liable  1 
be  affected  itself  by  some  error,  as  it  is  conceivab 
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bat  the  sum  of  all  the  +  errors  should  not  exactly 

alance  the  sum  of  all  the  —  errors,  specially  if  the 
bservations  are  not  very  numerous.  From  the  general 

jatures  of  the  grouping  of  the  results,  however,  it  is 
ossible  to  form  an  idea  as  to  the  probable  error  of  their 
rithmetical  mean,  so  as  to  ascertain  two  values  (upper 
nd  lower  limits),  between  which  the  true  value  of  the 

uantity  measured — as  given  by  the  set  of  observations 
nder  consideration — is  situated.  This  possible  dis- 
repancy  between  the  arithmetical  mean  and  the  true 

alue  is  called  the  "  probable  error,"  and  is  denoted 
>y  r.  For  instance,  if  the  arithmetical  mean  of  the 

esults  of  a  group  of  observations  is  52-84,  and  it  is 
ound  that  the  probable  error  r  is  0-02,  it  means  that 
he  true  value  is  somewhere  between  52-82  and  52-86, 
,nd  this  is  expressed  by  stating  the  result  as  being 
.2-84  +  0-02. 

The  value  of  this  probable  error  is  such  that  the 

lumber  of  errors  greater  and  smaller,  respectively,  is 
he  same.  In  other  words,  if  all  the  errors  are  arranged 
n  order  of  magnitude,  the  error  which  occupies  the 
>osition  at  the  middle  of  the  list  is  the  probable  error. 

•Jow,  the  area  of  the  graph  representing  the  law  of 
Trors  is  evidently  proportional  to  the  number  of 

)bservations,  since  the  height  of  each  successive  strip 
9  proportional  to  the  number  of  errors  of  any  particular 
nagnitude,  while  the  width  of  the  strip  corresponding 
o  each  error  magnitude  is  the  same.  It  follows  that  the 

nagnitude  of  the  probable  error  of  the  arithmetical 
nean  of  a  group  of  observations,  as  defined  above,  is 



196         EXPONENTIALS  MADE  EASY 

the  abscissa  of  the  ordinate  which  divides  equally  ea< 
of  the  two  equal  areas  included  between  the  probabili 
curve,  the  axis  of  x  and  the  axis  of  y  respectively  (s 

Fig.  36).  In  the  figure,  the  shaded  area  is  exactly  o: 

quarter  of  the  total  area  between  the  graph  and  t 
axis  of  x,  and  represents  one  quarter  of  the  number 
observations.  The  ordinate  AB  is  merely  the  pi 

bability — or  frequency  of  occurrence — of  this  particul 
error  of  value  r. 

It  is  not  possible  to  lay  too  much  stress  on  the  is 
that  this  determination  is  based  on  a  hypothesis  whi 

is   only   correct   when   an   infinitely  large  number 
observations  is  obtained,  by  such  methods  that  01 
chance  can  affect  their  results,  without  the  possibil 

of  any  systematic  errors  or  of  any  bias  on  the  part 
the  observer.     The  first  part  of  this  condition  cann 

of  course,  be  actually  satisfied  ;  however,  the  theoreti 
considerations    outlined    above    are    supposed    to 

approximately  true  in  the  case  of  even  a  limited  num 
of  observations,  provided  these  are  only  affected 
accidental  errors.     It  is,  however,  still  impossible  to 
how  close  to  the  true  value  is  the  arithmetical  m 

value  derived  from  the  observations,  all  we  can  do  i 

ascertain  the  probability  that  the  error  of  this  ar 
metical  mean  value  is  less  than  any  particular  gi 
value  ;  the  true  value  remains  always  unknown. 

There  is  another  conclusion  to  be  derived  from 

fact  that  the  area  of  a  given  portion  of  the  probab 

curve  represents  the  number  of  observations  correspi  j 

ing  to  the  two  ordinates  between  which  it  is  situs 
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,nd  also  the  probability  that  the  final  error  is  between 

he  limits  indicated  by  the  corresponding  abscissae, 

"or  the  whole  area,  the  two  limits  are  —  °o  and  +00 . 
between  these  two  limits  all  the  possible  values  of 

he  final  error  are  evidently  included,  so  that  the 
jrobability  that  the  final  error  is  between  these  limits 

s  a  certainty.  We  can  represent  certainty  by  unity, 
since  this  corresponds  to  an  occurrence  of  a  hundred 

per  cent,  of  the  possible  events.  It  follows  that  the 

area  of  the  curve  must  be  equal  to  unity — to  some 
scale — in  every  case,  and  the  constants  h  and  a  must 
be  of  such  value  that  this  is  obtained.  As  a  depends 

on  the  accuracy  and  consistency  of  the  observations,  k 

must  depend  on  the  value  of  a.  For  instance  if  a=\ 
(see  Fig.  35),  k  will  be  small  so  as  to  lower  the  curve, 
which  otherwise  would  have  too  great  an  area,  while 

if  a =10,  the  peak  of  the  curve  being  very  narrow,  k 
must  be  large  so  as  to  give  a  tall  peak,  and  thereby 
raise  the  area  to  its  correct  value.  In  this  way,  k, 

that  is,  the  scale  of  ordinates,  adjusts  itself  automatic- 
ally, so  that  the  probability  curve  shall  satisfy  all  the 

necessary  conditions. 



CHAPTER  XIV. 

TAKING  A  CURVE  TO  PIECES :  EXPONENTIAL 
ANALYSIS. 

Have  you  ever  built  up  a  curve  from  two  others  ?  Th 

game  is  as  follows  :  on  a  sheet  of  squared  paper  yoi 
draw  at  random  two  curves  such  as  I.  and  II.  (Fig.  37) 
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Then,  at  equidistant  points  a,  b,  c,  d,  etc.,  you  dra^ 
ordinates,  and  add  the  ordinates  of  one  curve  to  th 

corresponding  ordinates  of  the  other.  For  instance 

the  length  aa'  is  addea  to  the  length  aa"  to  get  a  point  A 

the  length  bb'  is  added  to  the  length  bb"  to  get  the  poirj 
B,  and  so  on.    Finally  a  curve  is  drawn  through  th 

198 
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>oints  A,  B,  etc.    This  curve  is  built  up  of  the  curves 
.  and  II.    Of  course,  the  ordinates  of  more  than  two 

urves  may  be  added  up  in  this  manner,  but  we  shall 
oncern  ourselves  chiefly  with  only  two. 

Instead  of  taking  two  curves  at  random,  one  may 

ake  curves  given  by  their  equation,  such  as  y1=x2, 
f2=x-\-2.     Adding   the   ordinates   will   give   a   curve 

i=i/l-\-y2=x2-{-x-\-2.      This  is  a  way  which  can  be 
ised  for  plotting  a  curve,  the  equation  of  which  may 

>e  split  into  several  terms  which  are  easy  to  plot  separ- 
itely  from  tables  ;    for  instance,  if  it  were  required  to 

)lot  the  graph  of  v/=sin  6-\-e9,  the  quickest  way  would 
De  to  plot  the  graph  of  yx  =  sin  6  from  tables  giving 

<inO-l,  sin  0-2,  etc.  (since  6  is  in  radians),  and  on  the 

4ame  piece  of  squared  paper  to  plot  the  graph  of  y2=eB 

Erom  tables  giving  e01,  e0"2,  etc.,  then  to  add  the  ordi- 
nates of  both  graphs.     The  resultant  graph  ]/=]/i~{-]/2 

would    clearly    be    the    graph    having    for    equation 

//=sin  d+e9. 
When  we  consider  the  inverse  problem  (that  is,  given 

a  graph  obtained  in  this  way  by  adding  the  ordinates 
of  two  curves  which  have  been  subsequently  obliterated 

to  find  these  two  curves  again)  we  discover,  as  a  rule, 

that  this  is  not  possible,  except  in  simple  cases,  that  is, 
cases  in  which  the  curves  which  have  been  added  are 

very  simple  and  few  in  number.  It  has  been  found 
possible  to  solve  the  problem  of  resolving  a  curve  into 
the  curves  from  which  it  has  been  obtained  by  the 
addition  of  ordinates,  whatever  may  be  the  number  of 

these  component  curves,  when  they  are  all  sine  curves. 
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This  can  be  done  even  when  the  amplitudes — or 

greatest  ordinates — and  the  starting  points  of  these  sine 
curves  are  different,  provided  their  periodic  times  have 
some  simple  relation  with  one  another,  that  is,  provided 

that  the  length  occupied  by  one  complete  portion  of 

one  curve — corresponding  to  180° — is  an  exact  fraction 
of  the  length  occupied  by  a  certain  number  of  such 

complete  portions  of  another  curve,  so  that  if  both 
curves  were  continued  indefinitely,  both  would  cross 

the  axis  of  x  (here  an  angle)  together  at  equidistant 
intervals.  In  this  case,  the  operation  of  resolving  a 

curve  into  its  component  sine  curves  is  called  "  harmonic 
analysis."  It  is  a  process  of  the  greatest  scientific 
value,  as  it  enables  the  calculator  to  unravel  the  com- 

plicated result  of  several  causes,  each  of  which  act? 
according  to  a  sine  law,  and  to  trace  this  result  to  it* 

various  simple  elemental  causes.  For  instance,  the 

height  of  the  tide  at  any  instant  is  the  result  of  i 
great  number  of  causes,  each  one  of  which  is  simple 

and  follows  a  sine  law  ;  and  by  observing  the  tides  fo: 
some  time,  one  can,  from  the  plotted  observations 

deduce  the  several  component  curves  representing  th< 
separate  variations  of  water  level  which,  added  together 
produce  the  tides,  and  in  this  manner  deduce  the  exac 

features  of  each  particular  cause.  These,  once  obtaine( 

in  any  particular  case,  can  be  added  up  again  for  year 
to  come,  and  in  this  manner  it  is  possible  to  predict  th 
tides  a  long  time  in  advance. 

From  some  theoretical  considerations,  it  was  though 

by  several  mathematicians  that  there  should  be  a  solu 
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bion  to  the  problem  of  splitting  a  curve  into  its  con- 
stituents in  the  case  of  a  curve  built  up  of  several 

simple  exponential  curves.  Several  attempts  were 

made  to  find  the  solution  of  the  problem  in  this  case — 
by  Dr.  Silvanus  Thompson  and  by  the  writer  among 

others — but  these  attempts  were  either  failures  or 
attracted  little  attention,  and  remained  unknown 

except  to  a  few,  probably  because  the  question  was 
treated  in  a  widely  general  manner,  which  caused  it 
to  be  forbidding  to  all  but  skilled  mathematicians. 

For  instance,  Professor  Dale  gave,  in  1914,  a  general 
method  of  analysis  of  which  the  present  problem  is  but 
a  particular  case.  The  solution  of  this  particular  case, 

the  "  exponential  analysis  "  or  the  splitting  into  its 
constituents  of  a  curve  made  up  of  exponential  com- 

ponents, has,  however,  been  given  quite  recently  by 

Mr.  J.  W.  T.  Walsh,*  in  a  very  simple  manner,  and 
we  shall  explain  in  detail  how  this  unravelling  of  the 
unknown  curves  can  be  successfully  done. 
We  should  like  first  to  remark  that  it  is  commonly 

thought  that  there  is  nothing  left  to  be  discovered  in 

elementary  mathematics.  Nothing  is  farther  from  the 

truth.  The  writer  has  occasionally  come  across  original 

proofs  of  geometrical  propositions  discovered — uncon- 

sciously, of  course — by  some  of  his  pupils.  It  is  quite 
possible  for  any  one  to  hit  upon  an  untrodden  track  in 

the  field  of  elementary  mathematics,  and  to  discover 

curious,  important,  and  sometimes  extremely  valuable 

*  See  Proceedings  of  the  Physical  Society  of  London,  vol.  xxxii. 
p.  26. 
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propositions,  either  in  the  domain  of  arithmetic,  algel>i<i. 
geometry  or  trigonometry.  The  problem  with  which 
we  are  dealing  is  a  case  in  point ;  here  was  a  problem 
which  ought  to  have  been  solvable  in  a  simple  manner 

if  only  it  could  be  tackled  in  the  proper  way — a  problem 
of  great  importance  for  its  practical  applications,  an 

answer  to  which  could  apparently  have  been  found  by 

a  mere  schoolboy,  yet  which  was  still  begging  for  solu- 
tion well  into  the  twentieth  century  !  It  is  true  that 

the  line  of  approach  to  the  solution  did  belong  to  mathe- 

matics somewhat  beyond  the  schoolboy's  grasp,  and 
that  only  a  student  of  relatively  advanced  mathema- 

tical attainment  would  have  followed  the  author's 
exposition  of  his  method  ;  but  this  is  chiefly  because 
he  does  not  confine  himself  to  a  limited  number  of 

components  at  first,  and  because  he  leaves  in  his 

reasoning  gaps  which  those  who  are  not  experts  in  the 

handling  of  mathematical  tools  would  find  practically 

impossible  to  bridge.  Following  the  author's  method 
step  by  step  in  the  simple  case  of  two  component  curves, 

and  entering  fully  into  the  mathematical  transforma- 
tions (which  mathematicians  generally  skip,  to  the 

discomfiture  of  their  readers,  either  without  any 

remark  at  all,  or,  adding  insult  to  injury,  with  the 

casual  remark  that  "  one  can  easily  see  that  "  or  "it 
is  evident  that  "),  we  shall  see  that  the  process  is  very 
simple — the  egg  of  Columbus  itself — once  the  dodge  of 
smashing  the  end  of  the  egg  on  the  table  is  thought  of. 
Each  of  the  exponential  component  curves  has  for 

equation  an  expression  of  the  form  y=Aeax.     Generally 
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peaking,  a  curve  is  given,  either  as  such  or  by  several 

•rdinates  (in  practice  the  latter  are  values  given  by 
■bservations  or  experiments),  this  curve  being  known 
o  have  been  obtained  by  the  addition  of  the  ordinates 

»f  two  exponential  curves,  the  equations  of  which  are 

--A2€a*xy  where  A±,  A2,  av  a2  are /1=Aleaix  and   y2 
inknown  constants. The  equation  of  the  given  curve 

Fig.  38. 

is  y=y1-\-y2  or  y=A1ea*x+A2ea-x.  The  problem  is 
to  discover  the  correct  values  of  Alt  A2i  ci\  and  a2. 

It  must  be  remembered  that  only  a  portion  of  the 

curve  is  given,  and  that  this  portion  may  not  include 
the  intersection  of  the  curve  with  the  axis  of  y,  or,  in 

other  words,  it  may  not  have  any  point  the  abscissa  of 

which  is  zero.  It  may  also  be  given  by  ordinates  on 
both  sides  of  the  axis  of  y,  none  of  which,  however, 

correspond  to  an  abscissa  x=0,  the  intercept  on  the 
axis  of  //. 

Let  y0,  ylt  y2  and  y3  be  four  equidistant  ordinates  (see 
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Fig.  38),  the  first  one  of  which  has  x0  for  abscissa,  and 

let  S  be  the  constant  difference  between  the  correspond- 
ing abscissae,  that  is,  the  space  between  any  two  con- 

secutive ordinates.  Let  x  be  reckoned  from  the  first 

ordinate  yQ,  so  that  the  abscissae  (expressed  in  terms 

of  x)  corresponding  to  y0,  ylt  y2  and  y3  are  respectively 
0,  x±=S,  x2=2S,  and  x3=3S. 

The  suffixes  0,  1,  2  and  3  indicate  the  place  of  each 

ordinate  in  the  series,  or  the  number  of  spaces  each 

equal  to  S  which  separate  it  from  the  initial  ordinate  yQ. 

This  number  of  spaces  can  be  expressed  generally  by 

— Y~ -,  where  x  is  reckoned  from  the  origin. 

In  order  to  obtain  a  relation  from  which  we  can 

derive  the  four  unknown  quantities  A±,  A2,  ax  and  a2, 
we  must  take  into  consideration  the  portion  of  the 

group  of  four  ordinates  y0,  yv  y2  and  yz  with  respect 
to  the  origin,  that  is,  introduce  into  the  equation  some 
quantity  which  will  express  whether  the  ordinates  are 

near  or  far  from  the  origin.  Such  a  quantity  is  x0,  and 
in  order  to  introduce  it  in  the  equation,  we  assume 

A1=7s1€^x<>  and  A2=k2ea&\  where  kx  and  h2  are  sucl 
numbers  that  the  above  equations  are  numericalh 

satisfied.  This  is  the  process  corresponding  to  th< 

smashing  of  the  end  of  the  egg  on  the  table  ;  the  res- 
follows  as  a  matter  of  course. 

The  equation  of  the  given  curve  becomes  then 

that  is,  y=k16a^+x)jrk2ea^o+x)t 
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Now,  for  y—y0,  x=0,  since  x  is  reckoned  from  the 
first  ordinate  yQ,  so  that 

^0=:/-ie«i^o-|-^2e«^oj 

that  is,  y0=A1+A2   (1) 

Also,  for  y~Pi,  x=8,  so  that 

yx = Jcx  eai*o  e«i$  _|_^2  e«^o  e«2s. 

Let  eaiS=z1  and  ea^=z2,  then  we  have 

2/1=^1^1+^2^2   •   (2) 

Similarly,  for  y=y2,  x=2S,  so  that 

■  
ij2  =kx  ea^  e2a^  +k

2ea#>  e2^ 

y^A^f+A^f, 

or  finally  y2=A1z12+A2z22   (3) 

Finally,  for  y=y3,  x=3S,  so  that 

y3  =kt  6^o  e^s +£2  eaox0  e3M 

or,  lastly,  yz=Axz?+A2z2z   (4) 
Now,  we  can  imagine  an  equation  with  one  unknown 

having  two  solutions  zx  and  z2 ;  such  an  equation  will 

be,  of  course,  a  quadratic  equation  of  the  form 

z2+p1z+p2=--0   (5) 

This  we  shall  call  the  "  principal  equation." 
Since  %x  and  z2  are  solutions,  if  we  replace  z  either 

by  zx  or  by  z2  we  shall  have  a  numerical  equality,  or 

Sl2+Pl2l+^2 

=0./ 
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Nothing  is  changed  when  every  term  of  the  same 

equation  is  multiplied  by  the  same  quantity.  Multiply 

all  the  terms  of  the  first  equation  by  zxn  and  all  the 

terms  of  the  second  equation  by  z2n,  where  n  is  a  whole 
number  which  is  limited,  as  we  shall  see,  by  the  condition 

that  it  must  be  smaller  than  the  number  of  components 
we  are  seeking  to  find  (so  that,  here,  n  must  be  either 
0  or  1),  we  get : 

i  ~i  -r/Vi*i  -rPi 
z2"  =  0.) 

^2   ̂ 2      I  JJ1^2^2    ~T1J2<~2    ~ 

This  is  the  same  as 

~  n+2_t_A-)   «  n+l_|_,j-)   *>  n 

z2n+2+2hZ2n+1+lh< 

Multiply  now  all   the   terms   of   the  first   equation 

by  Ax  and  all   the  terms  of  the  second  equation  by 

A2;  we  get: 

A2z2n+2+p1A2z2n+1+p2A2z2n=0.j 

Adding  the  two  members  on  the  left  and  the  two 

members  on  the  right,  we  still  get  an  equality  : 

(A^+t+A^+^+pAA^^+A^1) 

+p2{A1z1n+A2z2n)=0   (6) 
The  highest  power  of  ̂   we  have  to  deal  with  in 

this  case  is  3,  hence  n-\-2  cannot  be  greater  than  3, 
that  is,  n  is  either  1  or  0. 

If  n=0  equation  (6)  becomes,  since  2?!°=!  and  z2=\, 

(A^+A^+pAA^+A^+p^+A^O.    (7) 
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Replacing  the  brackets  in  equation  (7)  by  their  values 

from  equations  (3),  (2)  and  (1)  respectively,  we  get  : 

yz+PiVi+lWJo^O   (8) 

If  w=l,  equation  (6)  becomes 

(A1zl9+Atzz9)+p1(A1z12+Aazt2) 
+2h(A1z1+A2z2)^0.     (9) 

Replacing  the  brackets  in  equation  (9)  by  their  values 

from  equations  (4),  (3)  and  (2)  respectively,  we  get : 

y3+2h!/2+2WJi=0   (10) 

These  equations  (8)  and  (10)  we  shall  call  the  "  pre- 

liminary equations,"  because  they  are  the  first  ones 
which  are  written  down  and  solved  when  actually 

dealing  with  the  analysis  of  an  exponential  curve  into 
its  components.  They  constitute  a  system  of  two 

equations  with  two  unknowns,^  and^)2,  since  y0,  ylt  y2 

and  yz  are  given,  hence px  and^2  can  be  easily  calculated. 
Replacing  px  and  p2  by  their  value  in  equation  (5) 

and  solving  that  equation,  we  get  zx  and  z2,  the  two 
solutions. 

Since  y0=A1+A2   (11) 

and  y1=A1z1-\-A2z2,       (12) 

knowing  z1  and  z2,  since  y0  and  y1  are  given,  we 
easily  get  Ax  and  A2.  For  this  reason  we  shall  call 

the  equations  (11)  and  (12)  the  "  final  equations." 
Now  Zi=eai&  and  zv  e  and  S  are  known,  (S,  remember, 

is  the  interval  between  any  two  consecutive  ordinates 

among  the  four  equidistant  ordinates  y0,  yXl  y2  and  y3) ; 
it  follows  that  ax  can  easily  be  calculated. 
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Similarly,  z2=€a^  gives  readily  the  value  of  a2. 
We  have  therefore  obtained  numerically  the  value  of 
the  four  constants  Av  A2,  ax  and  a2,  and  we  can  write 
the  numerical  equation  of  the  curve.     That  is  all ! 

Let  us  apply  this  method  to  an  example. 
Let  it  be  required  to  analyse  the  full  line  curve  of 

Fig.  39  into  its  two  exponential  constituents. 

We  measure  four  ordinates,  say,  at  x=0,  a? =2,  x =4 

and  x =6,  and  find  ?/0=0-35,  ̂ =0-71,  y2=\-§§  and 

?/3=3-67. 
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We  get  therefore  for  the  preliminary  equations  : 

1-56+0-71^-fO^j^o.j   (8') 
3-67 +1-56^  +0-71^2=0. J    (10') 

The  simplest  way  to  solve  such  equations  is  as  follows  : 

v        ,Q,v            .                1-56+0-71^ 
From  (8)  we  get   p^   0^5~- 

v        n^           *             3-67+1-56^ 
From  (10  )  we  get  p2==   ^    1  *. 

Hence  '       *  ̂6 +0-71^     3-67+1-56^ 
MenCe         ;       0-35  ~0Tl         ' 

Using  four-figure  tables  and  taking  the  products  to 
three  places  we  get 

1-107  +0-504^=1-284+0-546^!, 

'thence  ^=—4-215. 

Replacing  in  one  of  the  values  of  p2,  say  the  first  one, 

we  get  1-56-4-215x0-71 

*■  =  "      ̂ 35"      -=4'°93- 

These  two  values  give  the  principal  equation : 

s2-4-215z+4-093=0,   (5') 

or  £2-4-215s+4-436  =  -4-093+4436, 

/4'215\2 
where  4*436= ( — ^ — J  ,  so  that  the  left-hand  member  of 

the  equation  is  a  perfect  square ;  hence 

(z-2-1075)2=0-343, 
s-2-1075  =  ±0-5857, 

hence  ^=2-69     and    s2=l-52. 
G.E.  O 
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J 

Since    y0=A1-\-A  2    and    y1=A1z1  +A  2z2, 

the  two  final  equations  are 

0-35  =AX+A  2, 

0-71=2-69^+1-52,4, 

the  solutions  of  which  are  A  x  =0-146,  ̂ 2  =0-204. 

We  had        y^--Ax+A2=Axz?  +A2z2°, 

y1=zA1Zi-\-A2z2=A1zl  -\-A2z2  , 

in  each  equation  the  index  is  equal  to  the  suffix  of  y, 
and  indicates  the  corresponding  number  of  spaces, 

(x—x0)/S  (see  p.  204),  here  (#— 0)/2=a?/2,  generally, 
so  that,  for  any  ordinate  y  of  abscissa  x,  we  have 

y=A1z1^+A2z2^, 
x  being  now  reckoned  from  the  origin  throughout.     The 
equation  of  the  given  curve  is  therefore 

y=0-146  x2-69*/2+0-204  xl-52^2. 

It  must  be  put  in  the  form  y=A1e(llX-{-A2ea&>  that  is 
we  must  solve  the  two  equations 

2-69*/2=2-718*i*     (1 

and  l-52*/2=2-718fl*   (b[ 

This  is  easily  done  by  logarithms  as  follows  : 
0-2149 

(a)  \x  log  2-69  =«!« log  2-718,     "i=^4343=°-495> 
0-0909 

(b)  \x log  1-52-CM? log 2.718,    «2=|j^=0-209. 
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The  numerical  equation  of  the  given  curve  is  therefore 

'    y=0-146e°-495a;+0-204e0-209a;. 
This  can  be  verified  by  calculating  the  values  of  y  for 

x=0,  x=2,  x=i  and  x =6,  and  comparing  with  the 
*iven  ordinates. 

The  best  and  quickest  way  to  do  these  calculations 

is  by  tabulating,  as  follows  : 

«- 

OS 

© 
X 

© 

6 bo 

+ 

1 
< OS 

© 

o 

coos 

cocq i 
CM 

© 

+ 

f 
< 

§.3 

a 
B 

5fc 0146 

0-204 

035 035 

0-990 0  4300 1-5944 0-393 0-418 
01815 

1-4911 0-310 0-703 

071 
1-980 0-8300 0-0244 1058 

0-836 0-3631 1-6727 0-471 1-529 
1-56 

2-970 1-2900 0-4544 
2-847 1-254 0-5625 1-8721 0-745 3-592 

3-67 

(For  x=0,  e°*»5x=l  and  €o2o9a;=1)  so  that  ̂  
logarithms  are  not  necessary.) 
The  agreement  is  satisfactory.  The  discrepancies 

are  due  merely  to  the  fact  that  the  given  ordinates  were 

taken  to  two  places  of  decimals  only,  and  were  there- 
fore somewhat  inaccurate. 

The  curve  was,  as  a  matter  of  fact,  obtained  by 

plotting  the  equation 

7/  =  0-15e°'5a;+0-2e0"2a;. 

Here  one  may  ask  :  "  But  what  would  happen  if  we 
had  given  to  the  two  solutions  of  the  equation 

z24-p1z-\-p2  —  0,    the   wrong   symbols,    that   is,    called 
2-69, and   1-52,  zx,  since  nothing  indicates   which 



212  EXPONENTIALS  MADE  EASY 

is  zx  and  which  is  z2,  f°r  it  is  mere  chaDce  which  of 

the  two  we  obtain  first  in  the  calculation." 
The  answer  to  this  is  very  simple  :  Nothing  would 

happen !  For  if  zx  became  z2,  and  z2  became  zl9  then  it 
would  follow  that  Ax  would  become  A2  and  A2  would 

become  Alf  and  in  the  end  the  two  quantities  which 

ought  to  be  together  in  the  equation  of  the  curve  would 

naturally  come  together,  being  designated  by  corre- 
sponding symbols,  Al9  zx  in  one  case,  A2,  z2  in  the 

other.  One  need  not  therefore  trouble  as  to  which 

solution  is  called  zx  or  %2. 

As  a  second  example,  let  us  take  the  same  curve,  and 

use  the  ordinates  ?/0=  0-491,  ̂ =1-036,  y2=  2-371  and 

yz  =  5-778,  corresponding  to  a?=l,  a? =3,  x  =  5  and 
x=7,  respectively. 

Following  exactly  the  same  method,  we  get  the  two 

preliminary  equations  : 

2-371 +1-036^+0-491^2=0, ) 
5-778+2-371^+1-036^2  =  0.  J 

Solving,  we  get  px=  — 4-189,  ̂ 2  =  + 4-010. 

Hence  we  have  the  principal  equation  : 

^-4-189^+4-010  =  0. 

Solving  this  equation  gives  ̂   =  2-709  and  z2  =  1-480 
The  two  final  equations  are : 

!/o=A'+A", 

We  shall  use  A'  and  A"  instead  of  Ax  and  A2  U 
remind  ourselves  of  the  fact  that  these  values  corre 

h+A'zt.f 
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*pond  to  values  of  x  reckoned  from  the  point    x  =  l, 
vvhile  A1  and  A2  correspond  to  values  of  x  referred  to 

jhe  origin  x  =  0. 
Here,  these  two  equations  become  numerically 

0'49l=A'  +  A", 
l-036  =  2-709^'  +  1480^"J 

or  l-330  =  2-709^'+2-709^", 
l-036  =  2-709,4'  +  1480^ 

From  which  we  get  0-294  =  1-229^4",  whence  ̂ "=0-239, 
and  ̂ '=0491 -0-239=0-252. 

^ow,   yQ,    yx,  y2  and  y3   correspond   to   successive 

numbers  of  spaces  0,  1,  2,  3,  or,  generally,  — ~— °,  here 

—^ — ,  so  that  the  general  equation  in  y  is  really 
x-l  x-l 

or,  numerically, 

y  =  0-252  x  2  -709^  +  0-239  X  1 480^ , 

where  x  is  reckoned  from  the  point  x=l. 
This  equation  must  be  put  in  the  shape 

y=A1ea^+A2ea^x, 

where  x  is  reckoned  from  the  origin. 
To  do  this  we  note  that 

x-l 

0-252x2-709  2  =Aleaix,     (a) 
x-l 

and  0-239x1-480  -  =A2ea>*.     (b) 
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Taking  logarithms  we  get 

(a)  log  0-252  +  ̂ —  log  2-709  =  log Ax+axx log  e, 

or       1-4014  +£  X  0-4328-^  X  0-4328 

=  -0-5986  +0-2164^-0-2164 

=  -0-8150+0-2164# 

=     T-1850+0-2164a?  =  log^1+0-4343rt1a?. 
Hence, 

log^^l-1850,    and   ̂ =0-153, 

and     0-2164=0-4343^    or    ai=^^^=0'^8- 

(b)  Similarly, 

log0-239+^^logl-480=log^2+a2^loge, 

L3784+I X  0-1704  — |  X  0-1704 

=  -0-6216+0-0852^-0-0852 

=  -0-7068+0-0852^ 

=     1-2932+ 0-0852  x=  log  A  2 +04343  a2x, 

whence  log  .4  2  =  1-2932  and  ,4 2  =  0-1964. 

(As  a  check,  A  t  +A  2  =  0-3496  or  0-35  nearly,  the  ordi 
nate  at  the  origin.) 

Also 

0-0852=0-4343a2,    or    a2=^|||=0-1965, 

the  equation  of  the  curve  being 

y  =  0-153  e°"498*+0-1964e°'1965x. 
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The  equation,  as  we  have  seen,  is  really 

0.15e0-5;,  +  0.2eO-2*# 

The  answer  is  a  satisfactory  approximation,  considering 
that  the  ordinates  were  given  with  but  three  places  of 
decimals,  that  is,  not  strictly  accurate. 

As  a  third  example,  let  us  take  the  same  curve,  with 

the  ordinates  y0= 0-143,  y1  =  0-255,  y2= 0-491,  and 
y3  =  1-036,  corresponding  to  x  =  —  3,  x=—l,  x=-\-\ 
and  a?  =  +3  respectively,  the  value  of  x0  being  negative, 

with  x0=— 3.    We  get  the  two  preliminary  equations: 

0-491  +  0-255j»1+0-143p2,1 
1  036  +  0-491^  +  0-255p2,  J 

which  give  jp^  — 4-422  and  p2  =  4-452. 
(It  will  be  found  that  to  get  three  places  of  decimals 

correct,  one  must  work  the  intermediate  calculations  to 

five  or  six  places.) 

From  this  we  get  the  principal  equation 

z2-  4-422s  +  4-452  =  0, 

from  which  we  get  2X  =  2-872  and  z2  =  1-550. 
These  values  give  for  the  final  equations  : 

0-U3=A'+A",  | 
2-872^,  +  l-550^",J 

^"=0-11778. 

0-255: 

from  which  we  get  ̂ '  =  0-02523, 
The  equation  is  therefore 

x+3  x+3 

?/  =  0-02523  x  2-872  a  +0-11778x1-550  2  j 

and  must  be  put  in  the  form  y=A1ec 
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We  shall  work  this  example  with  a  greater  accuracy 
than  heretofore,  for  a  reason  which  will  be  soon  apparent. 
Taking  logs  to  five  places,  we  get 

(a)  2-40192 +|x  0-45818+^x0-45818 
=log^41  +  a1a?loge, 

-l-59808+0-22909a?+0-68727=log^1+04343a1a>. 

Hence      log ̂ x  =  1-0892    and   ̂   =  0-1228. 

Also         0-2291=  0-4343  ax  and  a2 =0-528. 

(b)  1-07108+|x0-19039  +  |x0-19039 
=log^2+a2a?loge, 

-0-92892+0-095195^+0-28558=log^2+0-4343f7o./-. 

Hence    log  ,4  2= 1-3567    and    A  8= 0-2273. 

Also   0-095195  =  0-4343^2  and  a2  =  0-228. 

The  equation  of  the  curve  is  therefore 

#  =  0-r228  e0-528* + 0-2273  e0'228*. 
This  is  not  in  good  agreement  with  the  known  equation 

of  the  curve,  namely, 

//  =  0-15e°'5a:+0-2e0-2a;. 

The  reason  is  that  the  curvature  of  this  portion  of  the 

curve  is  small,  and  the  selected  ordinates  do  not  vary 

so  much  as  in  the  portions  of  the  curve  considered 
in  the  previous  examples.  It  follows  that  a  slight 

inaccuracy  in  the  value  of  the  ordinates,  such  as  occurs 

when  limiting  the  number  of  decimals  to  three,  as  we 
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iave  done,  introduces  a  relatively  more  considerable 

;rror  than  is  the  case  for  more  curved  portions  of  the 
:urve.  In  the  present  case  the  range  of  variation  of  the 

>rdinates  is  1-036 -0-143  =0-893,  and  a  difference  of 
)-001  in  an  ordinate  constitutes  an  error  of  1  in  893  ; 

vhile  in  the  second  example  the  range  is  5-778—0-410 
—5-368,  so  that  a  difference  of  0-001  constitutes  an  error 
of  only  1  in  5368.  Had  we  worked  with  ordinates 
3orrect  to  four  places  of  decimals  and  calculated  with 

a  corresponding  accuracy,  we  would  have  obtained  a 

closer  approximation.  (Do  it,  and  satisfy  yourself  that 
it  is  so.) 

As  a  fourth  and  last  example  let  us  consider  a  curve 

in  which  ax  and  a2  are  negative. 

Let  ?/0=3090-15,  ̂ =143-56,  y2=9-40,  y3=M0  be 
four  ordinates  corresponding  to  x=  — 10,  x=  —  6, 

,  x = —  2  and  x = +2  ;  here  x0  =  — 10  and  S  =4.    We  have 

MO+9-40/^+143-56^ 

J} 9-40+143-56^+3090-15^2: 

Whence  we  get 

Pl  =  -0-2429    and    p2= +0-008244. 

We  have  therefore  the  principal  equation 

s2 -0-24292 +0-008244=0, 

the  solutions  of  which  are  s^  =0-2022  and  z2  =0-0408. 
So  that  we  have 

3090-15  =,4'  +A", 

U2>-m=A'z1+A"z2=0-2022A'+0-0mA", 
from  which  ̂ "=2981-8  and  ̂ ^lOS-3. 
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The  equation  of  the  curve  is  therefore 
z+10  x+10 

y =108-3  +0-2022   4   +2981-8+0-0408  4  . 

From  this,  we  have,  taking  logarithms 

(a)  2-03464+|  xT-30578+|x  1-30578 
^log^+a^loge 

hence  ^=1-99    and    ̂   =  -0-3996. 

(b)  3-47449  +f  x  2-61066+|x2-61066 

=\ogA2+a2x\oge 

which  gives    A  2 =1-003     and    a2=—  0-807. 

The  equation  of  the  curve  is  therefore 

y = 1 .99e-°,3996a: + 1  -003e-°-807a;. 

We  have  worked  this  example  with  a  high  degree  o 

accuracy,  to  show  that,  when  the  curvature  is  we] 

marked,  one  can  get  a  very  close  approximation,  foi 
in  this  case,  the  equation  from  which  the  given  dat 

was  obtained  is  y  =2e-°'ix +e~°"8a;,  practically  identica 
with  the  equation  obtained  by  calculation. 

The  previous  examples  show  clearly  how  to  procee« 
whatever  may  be  the  given  position  of  the  curve  whic 
it  is  required  to  analyse  in  its  components. 

The  calculations  are  rather  tedious,  the  solution  c 

two  equations  with  two  unknowns  being  necessary  t 

obtain  the  principal  quadratic  equation.  These  calculi 
tions  may  be  simplified  as  follows. 
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When  analysing  a  curve  into  two  components,  we 

lave,  generally  speaking,  the  three  equations  : 

#2 +M/i +^22/0=0,       (a) 
y a  +pm+p*yi=Q>     (b) 

£2+/^+£»2=0   (C) 

We  only  want  p1  and  p2  in  order  to  find  2,  otherwise 
the  values  of  p±  and  p2  are  not  required  at  all.  Instead 
of  calculating  px  and  p2,  therefore,  we  can  eliminate 
these  two  quantities  from  the  above  system  of  three 

equations,  the  result  will  be  an  equation  containing 

2  and  y0,  yv  y2  and  t/3,  the  last  four  quantities  being 
known  numerically. 

In  order  to  eliminate  px  between  (a)  and  (b)  we 

multiply  (a)  by  y2  and  (b)  by  ylt  and  we  get 

p22+PiyiU2+P2Uoy2=0,\ 

y&i  +PiPiy2  +P2?h2= o,  J 
and,  by  subtracting  : 

or  P2^x-y^j2)=y2-yzy^ 

so  that  ?/22-.?/3?/i 
yx-y^i2 

Similarly,  in  order  to  eliminate  p2  between  (a)  and 

(6),  we  multiply  (a)  by  yl5  and  (b)  by  y0,  and  we  get 

2/22/i+/?i2/i2+p22/o2/r 

iNh+Piy2yQ-\-P2ihy( 
and  subtracting 

?/2//i-//32/o+Pi2/i2-Pil/22/o=0 

ri=0,) 

'o=0,J 
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so  that  «     MCM, 

Replacing  px  and  £>2  in  the  third  equation  (c),  we  get 

„2  I  lMh-y&i„  ■  ?/22-.?/3//i==0 

or   &fxi-if^i)^+(if4f«-ysifi)*+(yt*-y^i)=o.     (rf) 
This  transformation  is  really  what  we  have  done  in 

each  case  for  every  particular  example  worked  out  in 

the  previous  pages,  only  we  worked  with  particular 
numerical  data  instead  of  generally,  as  we  have  just 
done. 

It  is  really  equation  (d)  which  is  wanted,  and  if  wc 

could  write  it  down  straight  away  we  would  be  spared 
the  solution  of  the  system  of  the  two  preliminary 

equations.  It  is  not,  however,  easy  to  remember  ae 

it  is,  and  as  a  slip  in  writing  this  equation  would  leac 
naturally  to  a  wrong  result,  it  would  not  be  advisable  tc 

adopt  this  method  of  shortening  the  calculation,  namely 

the  writing  down  of  equation  (d)  at  once  from  the 

numerical  values  of  y0,  ylt  y2  and  y3,  if  it  were  nol 
for  the  fact  that  a  very  simple  and  easily  rememberec 
expression  is  exactly  equivalent  to  this  equation  (d). 

Consider  the  following  little  table  : 
z2     z      1 

Vi     Hi     ?/o 

2/s    2/2    Vi 

This  is  what  mathematicians  call  a  "  determinant.' 
You  need  not  be  frightened  by  the  name  ;   it  is  mereh 
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short,  convenient  and  easily  remembered  way  of 

writing  the  equation  (d). 
What  has  that  table  to  do  with  equation  (d)  you  will 

3xclaim  in  wonder  :   nothing  could  be  more  unlike  it ! 

But  wait  a  moment !  You  must  surely  notice  that 

both  this  little  table  and  equation  (d)  have  something 
in  common  :  all  the  letters  and  symbols  used  in  equation 

(d)  are  to  be  found  in  the  table,  and  reciprocally ;  in 
fact,  the  table  is  but  a  short  way  of  representing  the 

algebraical  expression  constituting  the  left-hand  member 
of  equation  (d),  so  that,  given  the  table,  one  can  readily 
deduce  from  it  the  corresponding  expression. 
When  the  table  is  such  a  small  one,  with  only  nine 

elements,  people  who  know  all  about  determinants  can 

write  down  the  expression  at  sight  merely  from  looking 
at  the  table.  It  is  easy  to  learn  how  to  do  this,  for 

the  letters  or  digits  forming  the  lines  and  columns  of 
the  table  are  put  precisely  in  such  a  definite  position 
that,  by  picking  them  up  in  a  definite  manner,  always 
the  same,  the  correct  expression  is  obtained,  and  none 
other.  In  the  case  of  a  simple  determinant  of  this  kind, 
the  expansion  or  development  of  the  determinant,  that 
is,  the  writing  down  of  the  corresponding  algebraical 

expression,  can  be  done  very  easily  quite  mechanically 
if  we  proceed  as  follows  : 

To  the  right  of  the  little  table  above,  let  us  copy 
the  first  and  the  second  column,  so  : 

z* 

%          1 
i"2         /*> 

1/2 
//i    //o 1/2        l/l 

1/b 
1/2       !/l VZ       1/2 
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Now  let  us  draw  diagonal  arrows,  like  this  : 

s2 

z          1 
«2          2 

\l \ A X/ 
V A 

)            2/2         2/i 

\A  \ A    \ V* 
%     # 1              V2              2/2 

Let  us  now  form  the  products  of  the  quantities 

which  are  on  any  one  arrow,  and  take  this  product  as 

being  one  term,  and  let  us  give  the  sign  -f  to  the  terms 
corresponding  to  the  arrows  pointing  in  one  direction 

and  the  sign  —  to  the  terms  corresponding  to  the 
arrows  in  the  other  direction.  Which  set  of  terms 

is  -f-  and  which  is  —  is  not  really  of  any  import- 
ance, but  it  is  usual  to  give  the  sign  +  to  the  terms 

corresponding  to  the  arrows  which  slope  down  to  the 

right. 
We  have,  then,  for  the  terms  corresponding  to  the 

several  arrows  : 

Arrow  No.  1.  -\-y-fz2. 
No.  2.  +#<&&. 

No.  3.  +y2*. 
No.  4.  -yYyz. 

No.  5.  -y0y2z2. 
No.  6.  -y1y2z. 

Adding  algebraically  these  various  terms  we  have  : 
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/hich  is  exactly  the  left-hand  member  of  the  equation 
d).  To  complete  the  equation  it  is  only  necessary 
o  express  that  this  is  equal  to  zero,  and  we  have 
herefore 

s2     %       1 

1/2     Vi     !/o 

y*   y*   Vi 

0. 

Expanding  this  determinant,  as  we  have  just  done, 

jives  immediately  the  principal  equation.  The  arrange- 
nent  of  letters  is  quite  easy  to  remember  without 

:  nistakes.  It  may  happen  that  the  signs  are  everywhere 

vrong  in  the  principal  equation  we  get  in  this  way. 
This  does  not  matter  in  the  least,  since  both  sides  of  the 

equation  (d)  can  be  multiplied  by  —1,  which  will  have 

'or  effect  to  change  all  the  signs.  The  signs  of  the 
principal  equation  merely  depend  on  the  manner  in 
which  the  preliminary  equations  have  been  solved, 
whether  the  first  equation  has  been  subtracted  from 
the  second  or  the  second  from  the  first. 

This  method,  however,  can  only  be  used  for  deter- 
minants having  nine  elements.  It  will  lead  to  wrong 

results  if  applied  to  determinants  having  more  than 
three  lines  and  three  columns.  Other  methods,  less 

easy  but  nevertheless  quite  simple,  must  be  resorted 

to  when  expanding  determinants  of  the  latter  kind.* 
Let  us  now  return  to  the  examples  we  have  worked 

out,  and  see  how  this  shorter  method  works. 

*  See  Determinants  Made  Easy,  by  the  same  author,  to  be  published 
later. 
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Example  1.     Here  we  have  : 

^2  *» 

Us 

z2        z          1 

=0  becomes 1-56     0-71     0-35 

3-67     1-56     0-71 

=0. 

Repeating  on  the  right  the  first  two  columns  on  th 
left,  we  get  : 

z2         z  1  z2         % 

1-56     0-71     0-35     1-56     0-71 

3-67     1-56     0-71     3-67     1-56. 

This,  as  we  have  seen,  leads  to  the  expression  : 

0-71x0-7l£2+3-67x0-35s+l-56xl-56 
-3-67  xO-71  -1-56  x0-35s2-l-56  x0-71*=< 

Working  the  products  to  three  places  of  decimals  b 

four-figure  logarithms,  we  get : 

0-504s2+l-284s+2-434-2-606-0-546z2-M08£=0. 

That  is,  -0-042s2+0-176s-0-172=0, 

or  multiplying  both  sides  by  —1  and  dividing  by  0-42 

z2  -4-215s +4-095=0, 

which  is  practically  the  equation  which  we  obtain* 
before,  and  we  solve  it  to  get  the  two  final  equatior 
as  we  did  above. 

Example  2.     Proceeding  similarly,  we  write  : 

z2          z           1 

z2 

z 

2-371     1-036     0-410 2371 
1-036 

5-778     2-371     1-036 
5-778 

2-371, 
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•036  x  1 -036s2 +0-41  x5-778s-f 2-371x2-371 

-1-036x5-778-041  x2-371z2-2-371  xl-036z=0, 

l-073z2+2-837z+5-620-5-985-1464£2-2-456z==0, 

at  is,  -0-091s2+0-381z-0-365=0, 

,  multiplying  both  sides  by  —1  and  dividing  by  0-091  : 

s2-4-187z+4-012=0, 

hich   is   practically   the   same   equation   as   the   one 

und  by  the  longer  method  first  shown. 
You  are  advised  to  try  this  method  and  to  use  it  to 

mfy  the  principal  equations  obtained  in  Examples  3 
id  4  above. 

We  know  now  how  to  perform  the  analysis  of  an 

cponential  curve  into  two  components.  The  same 

iethod  exactly  applies  to  three  or  more  components, 
ily  the  short  and  simple  method  of  developing  the 
eterminant  fails  in  this  case,  and  we  are  restricted 

)  the  longer  method.  The  principal  equation  can  be 
ideed  expressed  as  a  determinant  of  sixteen  elements 

nstead  of  nine),  and  developed  so  as  to  give  that 

]uation  ;  but  the  method  of  developing  is  not  so  simple 
s  in  the  case  of  (9)  elements,  and  we  must  leave  it  for 
nother  time. 

For  three  components,  y=A16aiX+A2€a-2X-\-A36a-iX,  six 
quidistant  ordinates,  ?/0,  ylt  ?/2,  ?/3,  ?/4  and  y5  are 

ecessary.  (Generally,  one  needs  twice  as  many  ordi- 
ates  as  there  are  components  searched  for.) 
G.E.  P 
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Proceeding  as  we  have  done  for  two  components, 

obtain  the  preliminary  equations  : 

Po  =A  x  -\-A  2  -\-A.  3,   

y1=A1z1+A2z2JrA3z3,      

y2=A1z12-\-A2z22-hA3z32,      

y^A^+A^+A&s3,      

yi=A1z1i+A2z2/'+A3z3i,    ....   

y5=A1z15-\-A2z25-{-A3z35,     

The  principal  equations  must  have  three  solution 

Zl=6ia&,  z2=ea-^  and  z3=e(^s,  and  it  will  be  of  the  form 

Z?+PlZ2+p2Z+P3=0   i 
Hence  we  have 

Zl3+PlZl2  +P2%1  +i>3  =0,' 

^33+^1^32+J»2»3+i>3=0.. 

Multiplying    both    terms    of    these    equations 

%in,  z2n,  z3n  respectively,  where  n  is  a  whole  num 
smaller  than  3,  so  that  either  n=0  or  n=\  or  n- 
we  get : 

^i3^in+/>^i2-in+^2^i^in+^3^in=o; 

z2%n  +p1z22z2n  +p2z2z2n  +p3z2n  =0, 

z33z3n  +PiZ32z3n  +p2z3z3n  +p3z3n  =0. . 
That  is, 

n+3   1,,-,  a>  n+2   !  ai  »  «+l. 

^2n+3+^1^2n+2+^2~2ri+1+/->3^2n=0,| 
S3n+3+^^3n+2+P2«3W+1+/>3-3"^0J 
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Multiplying  the  terms  of  these  three  equations  respec- 
ively  by  Av  A2,  and  A3,  we  get 

^i^n+8+Mi%n+?+Pa^i«i,M'1+ps41«1«^0,,| 

A  3z3n+*+PlA  3z3n+*+p2A  &+*  +p3A  sz3n  =0.  J 

Adding  together  the  three  left-hand  members  and  the 
hree  right-hand  members,  we  still  get  an  equality  : 

+Pl(A  1z1»+* +A  2z2n+* +A  3£3W+2) 

+p  2  (A  &»* +A  #f* +A  3z3^) 
+^3(^l^in+^2^2n+^3^3n)=0   (8) 

When  n=0,  n=l  and  n=2   this  equation  becomes 
successively  : 

;x41.t13  +  ̂2-23+^3^3)+^1(A1^12+^2~22+^3~32) 
+P2(A1z1+A&2+A3zi)+pi(A1+A2+Aa)=0. 

[A^+A^+A^+pAA^+A^+A^ 

+p2(A1z12+A2z22+A3z32)+p3(A1z1+A2z2+A3z3)=0. 

(iA5+4AH4^35)+PiMrf^2^4+43»34) 
^P^A^+A^+A^) 

+p3(A1Z12+A2Z22+A3Z32)=0. 
Replacing  the  brackets  by  their  equivalents  given  by 

the  set  of  preliminary  equations,  we  have  : 

y2+Pi!/2+2^yi+PzPo=OA   (9) 

yi+ihy3+P2?j2+P3yi=o,  \    (io) 

//5+Pi;/4+^2?/3+p3?/2  =  0,J        (11) 

three   equations  in  which  y0,  ylf  y2,   y3,  j/4,    and  y5 

are  known  numerically,  and  pl9  p2,  p3  are  unknown. 
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They  can  be  solved  in  the  usual  manner,  and  the  numer: 

cal  values  of  pv  p2  and  p3  ascertained,  so  that  we  ge 

the  final  equation  z3-\-p1z2-\-p2z+])3=0. 
This  equation  being  solved  gives  three  solutions,  I 

z2  and  z3,  the  values  of  which,  being  replaced  in  an 

three  of  the  preliminary  equations — the  three  first  on< 

are  evidently  the  simplest  to  use — will  give  Alt  A 
and^43. 

From  21=€ai8  22=^  and  z3  =  e^s,  av  a2  and  a9  ai 
easily  calculated,  so  that  we  know  fully  the  three  ei 

ponential  components  of  the  curve. 

To  solve  the  equation  z3-\-p1z2+p2z+p3=0,  we  m& 
conveniently  use  a  graphical  method ;  for  instanc 

we  may  put  the  equation  under  the  form 

and  one  may  plot 

V=z3+P3    and    y=-p!Z2-p2z, 

and  find  the  points  of  intersection  of  the  two  curv* 
There  will  be  three  such  points.     At  each  of  these  thr 

points  the  ordinates  of  both  curves  are  the  same, 
follows  that  the  value  of   the  corresponding   abscise 

that  is,  the  value  of  z  corresponding  to  this  value 

of  y  which  is  common  to  both  curves  at  one  point 
intersection,  is  a  solution  of  the  equation,  since  it  sat 

fies  simultaneously  both  equalities 

y'=z3+p3    and    y'  =  —p1z2—p2z, 
and  therefore  satisfies  the  equation 

z3+p3=-piZ2-p2z    or    z3+p1z2-}-p2z-hpz=0. 
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These  values  of  z,  read  off  the  graph,  are  not  very 
accurate.  To  obtain  more  accurate  values,  larger 

scale  graphs  must  be  plotted,  restricted  to  the  neighbour- 
hood of  the  points  of  intersection.  These  give  a  closer 

approximation,  which  can  be  made  to  yield  yet  a  closer 
result  by  using  it  to  plot  a  still  more  restricted  portion 
of  a  graph  on  a  still  larger  scale. 

The  method  is  complicated,  the  plotting  of  the  graphs 

being  somewhat  cumbersome.  It  is  possible  to  simplify 
the  work  considerably  in  transforming  the  equation 

z3jrp1z2jr.p2^+Pz=^  mt°  another  equation  of  the  form 
z*-\-q1z-\-q2=0,  that  is,  not  containing  any  term  with 
z2.  The  plotting  is  reduced  then  to  y=zz,  a  very 
simple  graph  which  can  be  done  once  for  all  in  ink, 

and  y=qiZ-\-q2,  a  straight  line  which  requires  but  two 
points  to  be  completely  determined  in  position,  and 
which  can  be  drawn  with  a  light  pencil  by  means  of  a 

ruler,  and  rubbed  out  afterwards  to  allow  the  principal 
equation  of  another  curve  to  be  solved  in  a  similar 

manner.     The  term  in  z2  is  easily  eliminated  as  follows  : 

Let  z=z'+k,  then  the  equation  becomes 

(z'+W+2H(z,J<-Jc)2+p2(z'+k)+p3=0, 
or 

z'*+3z'?k+3z'k2+k*+p1z'2+2p1z'k+p1k2 

that  is 
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If  we  chose  such  a  value  for  k  that  Sk-\-p1=0,  tha 

is,  k=—px/3,  then  the  coefficient  of  z'2  is  zero,  henc 
this  term  vanishes,  and  the  equation  becomes 

which  is  of  the  form  s^+^s'+g^O. 
This  equation,  solved  graphically,  as  has  been  ex 

plained  above,  gives  three  values  for  z' .  It  must  b 
borne  in  mind  that  these  values  of  z*  are  not  the  require 
values  of  z,  since  z—  z'-\-k,  so  that  one  must  ad' 

k  =  —p1/3  to  these  values  of  z'  to  get  the  sought  value 

of  z,  that  is,  z=a'— jpi/3. 
We  shall  make  the  process  clear  by  working  fully  on 

example. 

Let  six  ordinates  of  a  compound  exponential  curv 

be  given  : 

x:  -2  0  +  2  +4  +6  +8 

y:    yo=2-415    ft*UH    y2=M55    y3=l-755    y4  =  3-768    y5  =  9-2i 

and  let  it  be  required  to  resolve  this  curve  into  thr* 
components. 

Here,  x0=—  2. 
We  have  the  three  preliminary  equations  : 

l-755+l-155p1+l-350/>2+2415>3=0.|..   ( 

3-768+l-755^1+l-155^2+l-350^3=0.|   ( 
9-222+3-768p1+l-75^2+l-555/>3-0.J   ( 

Eliminating  p 3  between  (1)  and  (2),  we  get 

6-731  +2-679/>!  +0-966p2=0. 
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Proceeding  similarly  with  (2)  and  (3),  we  get 

8-097 +3-06ty1+l-03Sjp2=0. 

Solving  now 

6-731  +2-679p1+0-966>2=0,'| 
8-097 +3-O60>p1+l-O35pa=Oj 

nultiplying  the  first  equation  by  1035  and  the  second 

>y  0-966,  we  get 

6-967+2-773/>1+l-000p2=0,)      (4) 
7-822+2-956p1+l-00()p2=0,J 

md 

0-855+0-183^=0    and    p1=-^|=-4-672. 

Replacing  in  (4)  we  get 

6-967-12-955+p2=0    and    p2=5-988. 

Replacing/?,  andp2  in  (1),  we  get 

1  -755  -5-396  +8-084  +2-415p3  =0. 
4-443 

Whence  p„  =  —  —  — 1-840. ^a         2-415 

(As  a  check,  replacing  pv  p2  and  p3  by  these  values 

in  equations  (1),  (2)  and  (3)  respectively,  we  get  —0-002, 
+0-001  and  +0-002,  a  sufficiently  accurate  verification.) 
The  principal  equation  is  therefore 

s3-4-672s2+5-988s-l-840=0   (5) 

Let      £=-^=+1-557,   and  let   z=z'+k; 

we    get    then,    as    shown    above,    an    equation    in    %' 
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without  any  term  in  z'2,  and  this  equation  is,  as  has 
•been  shown : 

That  is,  in  this  case  : 

s'8-l -288s' -0-068=0   (6 
To  solve  this  graphically  we  write  it  in  the  fonr 

z'3 =1-288/  +0-068,  and  we  plot 

y=z'z    and    //= 1-288/ +0-068. 
We  get  the  graphs  shown  in  Fig.  40,  from  which  we  ge 
a  first  approximation 

(a)  ~/  =+l-16,    (b)  ,~2'  =  -0-04  and  (c)  £3'  =  -l-10. 
For  a  closer  approximation,  we  plot  the  same  graph 

between  the  limits  (a)  +1-1  and  +1-2  for  2/,  (6)  0  am 

-0-1  for  z2',  (c)  -1-05  and  -1-15  for  z3'. 
This  is  really  quite  a  simple  matter.  First,  the  follow 

ing  table  is  made  (only  two  points  are  needed  for  th 
straight  line,  and  three  points  are  enough  for  the  curve) 

(a) 

(&) 
z\ 

y=z''i. 

y=l-288z'+0-06S. 
2'. 

y=z'K 

?/  =  1-288-r' +0-068 

+  11 
+  115 

+  1-2 

+  1-331 

+  1-521 
+  1-728 

'    +1-485 

+  1-614 

0 
-005 
-01 0 

-  000125 
-001 +  0  069 -0-061 

W 

2'. 

y  =  z'i. 

,V=l"2882'+0-068. -105 
-11 

-115 

-1158 
-1-331 

-1-521 

-1-284 

-1-413 
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The  graphs  are  now  plotted  (see  Figs.  41a,  416  and 
41c).     The  plotted  points  are  shown  as  the  centres  of 

/ 

i«! 

•06 

04 

02 

•02 

-04 

-06 

Fig.  41&. 

small  circles.     The  values  obtained  from  these  large 

scale  graphs  are  respectively 

(a)  .^'=1-160,  (b)  s2'  = -0-053  and  (c)  £8'  =  -1-107. 
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Z'-M5  -MO     -105 
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\ z&m 
ztffi 

VI 

-1-2 

-1-3 

•1-4 

1-5 

y 
Fig.  41c 

It  is  advisable  to  check  them  by  replacing  z'  in  the 
equation  (6)  successively  by  these  three  values,  and 
verifying  that  a  numerical  equality  is  obtained.    Doing 
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this  in  this  case  we  get  —001,  -0-002,  +0-001  ;  there 
is  therefore  no  serious  error,  bearing  in  mind  that  the 

third  place  in  the  values  of  z  is,  of  course,  only  approxi- 
mate, being  obtained  graphically,  and  as  we  raise  these 

values,  to  the  cube,  a  small  error  is  magnified  in  this 
check. 

The   values   of    z    are   z -\-li  or   s'  + 1-557,   that   is, 
^  =  +2-717,  s2  = +1-504  and  z3  = +0-450  respectively. 

It  is  worth  while  to  check  these  also  by  replacing  in 

(5),  although  this  check  is  more  laborious.  One 
will  then  make  sure  that  no  mistakes  were  made 

in  the  elimination  of  the  term  in  z2.  Doing  this, 
we  find  -0-003,  0-000  and  0-000,  which  is  quite 
satisfactory. 
We  have  then 

!,0=2.415=A'+A"+A'", 

=2-717,4'+l-504^"+0-45^"', 

y/2=l-155=^V+^V+^"V 
=7-382,4'+2-262^"  +  0-2025,4'". 

Solving  for  A',  A"  and  A'",  we  get 

6-562=2-717.4'+2-717^"+2- 

l-350=2-717^'+l-504^4"+0-450.4/ 

Or  5-212=  l-213,4"+2-267^'". 

also       17-828=7-382,4'+7-382,4"+7-3821A'", 

M55=7-382,4'+2-262,4"+0-2025.4"'. 

Or         16-673=  5-120^"+7-180^"\ 

■mA'"\ 

450,4 '"J 
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Now, 

5-212=l-213A"+2-267il'",l 
16-673=5-120A"+7-180^'".J 

„     fr212-2-2MA'"    16-m-7'mA'" 

1-213  5-120~ 

26-685-ll-607A'"=20-224-8-709ii"/, 

6461=2-898A'"     and    A'"=|^=2-229, 

16-673-16-011     -662 

~  5-12  ~5-12  y' 

^,=2415-(^"+A,,,)=2415-2-358=0.057. 

The  equation  is  therefore  : 
x+2  oc+2  x+2 

?/  =  0-057x  2-717  2  +0-129x1-504  »  +2-229x0-450  2  ' 

We  can  make  the  same  remark  as  before  concerning 
the  allocation  of  the  symbols,  zlt  z2,  z3  to  the  three 

solutions  of  the  equation  zz-\-p1z2-\-272z-\-p3  =  0.  To 
whichever  solution  we  give  any  particular  symbol  does 

not  matter,  as,  automatically,  the  symbols  A',  A"  and 
A'"  will  fall  to  the  corresponding  values  of  A,  so  that  the 
corresponding  pairs  of  values  will  be  correctly  coupled 
together  in  the  equation  of  the  curve. 

We  proceed  now  in  putting  the  equation  in  the 
general  form 

y = A  j  e°ix  -\-A  2  €a>x  -\-A  3  e^x 

as  shown  in  the  previous  examples. 
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(a)  Iog0-057+|log2-717  +  log2-717=log^1+a1o?log€> 

2-7559  + |x0-4341+0-4341=log^1+0-4343a1#, 

-l-2441  +  0-2171a?+0-4341=log^1+0-4343a1a?. 

Hence    -0-8100=^^,   or   T-1900=log^1 

and  ^!  =0-155. 
0-9171 

Also    0-2171  =0-4343 ax,    ai  =  &^=°'5°> 

The  first  component  is  therefore  0-155e°'5a;. 
Proceeding  similarly,  we  get : 

(6)  ̂ 42=0-194,  ̂ 2=0-204,  giving  for  the  second  com- 

ponent 0-194e°-204a;. 

(c)  ̂4  3 =1-003,  rt3  = -0-399,  say,  -0-4. 

the  third  component  being  l-003e~°*4a!. The  curve  is  therefore  : 

y=0-155e°,5a;+0-194e0-204a;+l-003e-0-4a\ 

As  a  matter  of  fact,  the  given  compound  curve  had 

been  obtained  by  plotting  the  equation  : 

so  that  the  result  of  the  analysis  is  quite  satisfactory. 
It  is  so  easy  to  make  examples  by  taking  any  two 

or  three  exponential  equations,  adding  equidistant 
ordinates  and  working  upon  the  data  so  obtained  in 

order  to  get  back  to  the  equations  one  has  started  from, 

that   it   would   seem   almost   superfluous   to   give   any 
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further  exercises.  However,  we  give  the  following 
cases,  calculated  ordinates  being  given  in  every  case 
so  as  to  start  from  a  data  as  accurate  as  possible. 

Exercises  VI.     (For  answers,  see  p.  247.) 

Resolve  in  two  components  the  exponential  curves 
of  which  the  following  ordinates  are  given  : 

(i) 

(3) 

(5) 

(7) 

X V (2) X y 

+  2 
0-42 

+  2 +  0-4205 
+  3 

0-50 
+  3 +  0-4994 

+  4 
0-60 

+  4 +  0-5943 

+  5 0-71 
+  5 +  0-7085 

X y W t y -5 

0-0787 

+  1 

1-589 -3 

01982 +  2 

1-627 -1 

0-4225 +  3 
1-872 

+  1 0-2896 +  4 
2-244 

X V (6) X y 

+  1 
1-589 

-10 

004 

+  1-5 

1-573 

-8 

011 
+  2 

1-627 

-6 

0-29 

+  2-5 

1-731 

-4 

0-71 

X y (8) 9 y 
-10 

00417 +  10 10-589 
-8 

01133 +  20 

7-773 -6 

0-2882 +  30 
5-935 -4 

0-7083 +  40 

4-705 
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X y 
-4 

0 
+  4 
+  8 

6-33 
1-50 
1-27 
1-50 

(10) X y 

-4 

0 

+  4 

+  8 

0-774 
0-900 
0-999 
0-997 

(11)  Resolve  in  three  components  the  curve  of  which 

he  following  ordinates  are  given  : 

. 

X y X y -4 
-2 

0 

6-29 
2-50 
1-40 

+  2 
+  4 
+  6 

111 
104 
103 

2)  The  decay  of  activity  of  a  radio-active  substance 
las  been  observed  to  vary  as  follows,  t  being  the  number 

)f  days  and  B  the  activity  on  some  arbitrary  scale. 

Analyse  the  decay  of  activity  into  two  components. 
From  Proc.  Phys.  Soc,  vol.  xxxii.  p.  27.) 

t B 

100 

400 

700 
1000 

278 
107 
70 
50 
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POLAR  COORDINATES.     (See  p.  106.) 

The  following  exercises  on  plotting  polar  coordinate} 
will  provide  interesting  and  useful  practice,  by  mean} 
of  which  one  will  become  familiar  with  this  kind  o 

graphical  representation  of  functions,  which  is  specially 
useful  in  connection  with  trigonometrical  functions 

Some  of  these  give  very  elegant  star,  leaf  or  ros 

patterns.  Plotting  the  functions  in  rectangular  co 

ordinates  will  also  be  both  instructive  and  interesting 

Exercises  VII.     (See  p.  248  for  Answers.) 

Plot  in  polar  coordinates  the  following  function} 

giving  0  values  between  0°  and  360°. 

(1)  r=sin0. (2)  r=cos0. 

(3)  r=sin0  +  cos0. 
(4)  r=sin#- 

-  COS  0. 

(5)  r=C0SQ  —  sin  6. (6)  r=sing. 

(7)  r=cos^ (8)  r=sTgH 
0 

-cos  
g 

/m         sin  0          6 
(9)  r=~2   cos^- (10)  r=sin|. 

242 
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(11)  r=cos 
e 

/10,         cos#      .    0 
(13)  r=-g   sin^. 

(12)  r=am^-\ — 2~- 

(14)  r=2+cos30. 

(15)  Plot  on  the  same  pole  and  on  the  same  scale : 

(a)  r=9;    (b)  r=e»;     (c)  r=2e°i2. 

(16)  r=4(l— cos0).  Plot  this  curve  with  the  same 
pole  and  on  the  same  scale  as  (6)  above. 

(17)  In  an  aeroplane  (monoplane),  if  Pn  is  the  pres- 
sure on  the  plane  when  inclined  at  an  angle  a  to  the 

direction  of  relative  motion  of  plane  and  air,  and  P 

is  the  pressure  on  the  plane  when  the  angle  a  is  a 
2  sin  a 

right  angle,  it  is  found  that  Pn=P 

resistance  to  advance  R=Pnsina=P 
l  +  sin2a' 
2  sin2  a 

1  +  sinV 

The 

The 

lifting  power  at  soaring  speed  L 

„  „  2  cos  a  sin  a 
=Pn  cos  a =P    1   ,     .   2   

l  +  sin2a 
Taking  P= unity,  plot  these  three  quantities  with  the 
same  pole  and  on  the  same  scale,  for  angles  from 

a=0°  to  a=90°. 



ANSWERS 

Exercises  I.    (p.  28.) 

(1)  l/a.  (2)  l/xa.  (3)  2/m2.  (4)  al3x. 

(5)  jc/2.  (6)  2a3.  (7)  032/81.  (8)  8/a3. 

(9)  16/as.  (10)  l/8a*.  (11)  l/3a2.  (12)  ±a*+3. 

(13)  sfa.  (14)  2a2.  (15)  2#a*  (16)  ~=- 

(17)  9/N^a.         (18)  2/V^2.  (19)  1/2n/o*         (20)  £a*+2. 
(21)  bVx.  (22)  3/^m.  (23)  7/a.  (24)  Ifx. 

(25)  a*2/3a*.       (26)  V&e3.  (27)  ̂ 3/4am.        (28)  2a*sc 

(29)  1.  (30)  9/Va.  (31)  12a?*.  (32)  S^"1. 

(33)  1/x/a^0.  (34)  6-3-^=. 

(35)  a*+8AB*  (36)  3^a*~+4^. 

(37)  #?l^3/a3.  (38)  isJ(J<?/m5). 

<39>  tW  <40>  4' 
(41)  __?   .  (42)  (*-\  "tl*. 

Exercises  II.    (p.  36.) 

(1)  1-544.            (2)  2-705.  (3)  5-13.  (4)  1*807. 

(5)  x  =  6-137,  y  =  17*411.  (6)  fc=2*735.        (7)  t  =397 
(8)  .x  =  033.  (9)  x  =  0753. 

244 
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(10)  ni  =  V8in  =  l2  (11)  a;  =  1*39 

(\2)  aj=l-170andaj=-0-17].    (13)  y = 144,  y= 1-0028. 

(14)  (9  =  224°  57'  or  315°  3'.  (15)  &  =  7'502,  a;  =  2'283. 

(16)  loge 2=06931,  loge 5  =  1-6094,  loge  10  =  2-3026. 

(17)  loge 3-2  =  1-1632,  loge 0-11= -2-2073  =  3-7927. 

(18)  loge 74  3  =  43082,    loge  1-808  =  0'5922, 

loge  10-95  =  2-3935,  the  answer  is  12"27. 

(19)  x  =  1  -4306,  log5 10  =  1  -4306.  (20)  x  =  0*6055. 

(21)  €  =  27182.                                          (22)  55'35. 

(23)  log73  =  0-5645,      log74=0-7124,    log79  =  li291, 
log7 12  =  1-2770,    log7  27  =  1-6937. 

(24)  In  system  of  base  1"38.  (25)  In  system  of  base  2'512. 

(26)  log12l -5  =  0-1631,  log12  answer =0*4893,  answer  =  3374. 

(27)  x  =  +  0-395  and  x  =  -  3'074. 

(28)  y  =  1-001055,  aj=  -0-0767  and  -0-2567. 

Exercises  III.    (p.  49.) 

(1)  4-38  inch.  (2)  1"244  radians,  40°  58'. 

(3)  1°  =  0-01746,  l'  =  0-000291,  1"  =  0-00000485  ;  Clinch,  -0035 
inch,  -000058  inch. 

(4)  (a)  0-573  inch  ;  (b)  2  ft.  10-4  in.;  (c)  172  feet. 

(5)  67°  26',  1-177  radian.  (6)  0*7  radian. 

(7)  8-33  inch.  (8)  48-2  feet. 

(9)  (a)  3-41  ;    (b)  0-83.               (10)  0"779. 

(11)  84°  0'.  (12)  0-783  in.,  2'929  in.,  303  in. 

Exercises  IV.    (p.  77.) 

(1)  (a)  l  +  14^  +  84£c2  +  280.^+.... 

(b)  \Qxi  +  l6xiy  +  6x'iy2+xy3+... . 
_ 
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(d)  1  -  10//  +  40?/  -  80?/3  + . . . . 

(e)  64  -  96a;  +  60a;2  -  20a;3  + . . . . 

/  ,,     ,    21a6  ,  189a5    945a4  , 

(h)  l+^-^^  +  yfsa;3-.... 

{k)  i  +  ̂ -^+^a;3-.... 

(2)  l-6a;  +  27a;2-108a.'3+.... 

(3)  l  +  5a;  +  15a32  +  35^+....         (4)  l+3a:2+6a;4+10a;6+.... 

(5)  rl+w"w+""      (6)  1+0-1**+**-.- 
/»\  -i        .  «5a5-    ox?  ,  /r.\  ,  .  x  ,  oa;  .  oa^  . 
(7)  !-*+— —+....  (8)  1 +-+_  +  _  +.... 

(q)     1     ,   3a;      15a;2      35ar» 
w  a3/2'1"^/*"^7/2    2a9/2 ■*"•••• 

(10)€5/3  +  |€2/3a.  +  3^3-^-3+.... 

*"'  p/1       2  8  16       •"•• 

(12)  l  +  2sin0  +  3sin20  +  4sin30  +  .... 

(13)  4-97583.  (14)  6-86828. 

(15)  5-00638.                                     (16)  15-10007. 

(17)  l  +  ̂cosa;  +  ̂̂ -)coS2^  +  ̂-1>^-2)cos^+.... 

/1D.   _     ,  o  ,  tana;(tana;-l)  . 
(18)  l-tanice2H   *^=   -e4 

tan  a;(tan  x  -  l)(tan  a;  -  2)  G 

6  
€ 

(19)  x1'2- 2X1/2  cosO~ 8x3i'2cos^d~  l6x*l2cos3$~  "" 



ANSWERS  247 

(on  e=x+*+*g+^+™*+...,  0=0-201367 radian. 

/oo\  1     Stance     9tan2#     27  tan3a^ 

«  1  +  l+(l-m)^+(l-m)(l-2m)^+    >t v    '        m         2m2  6m3 

(24)  ]^-kk^+ttkz™)k- K    '  K        m*K  2m4      * 
fe(fc-w)(fc-Mi  —  , 

6m6  *   "  "*"••" 

Exercises  V.    (p.  92.) 

(1)  4  minutes  and  17  minutes  18  seconds  respectively. 

(2)  14  min-  42  secs-   44  min-  44  8ecs- 

(3)  ix  =0-0805,  Q0  =  1252  units. 

(4)  /x=0'01  nearly  ;  69i  minutes.  (5)  1443  megohms. 

(6)  Kx  =0-00346,  7T2  =  0-00264,  the  1st  medium  is  1*3  times 
more  opaque. 

(7)  Jc  =  0-126  ;  0-845  centimetre.  (8)  12  per  cent. 

(9)  ft  =000697,  Z  =  100  kilometres  very  nearly. 

(10)  The  constant  T  is  15*45  ;  28°  Cent. 

Exercises  VI.    (p.  240.) 

(Note. — The  following  are  the  actual  equations  from  which 
the  data  given  to  work  from  have  been  calculated,  and 

very  close  approximations  to  these  should  be  obtained, 

as  in  the  worked  out  examples.  In  the  case  of 

Exercises  (1)  and  (6),  in  which  the  data  is  given  to  two 

places  only  to  simplify  the  calculations,  the  approxi- 
mation will  not  be  so  good,  but  on  reworking  with  the 
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same  ordinates  given  to  four  places  (Exercises  (2)  and 

(7))  a  much  closer  approximation  should  be  obtained.) 

(1)  and  (2)  2/=0-lc°  lr  +  0-2e°-2* 

(3)  y  =  €°-5x-0-5ex.  (4)  y  =e02t  +  €-t. 

(5)  Ft  =  °-2*  +  €-*  (6)  and  (7)  y  =  bi»-*x -&^. 

(8)  2/  =  lO€-°-o50  +  5€-°-ol0.  (9)  ?/  =  0-5€-0-6*+e0-05r. 

(10)  ̂   =  €°,05a;-0-l€0-2r.  (11)  |/  =  €005x  +  0-5€-°-6z-0-l€0-2x. 

(12)  5=154-3e-°-00118<  +  331-4e-0-00855'. 

Exercises  VII.    (p.  242.) 

(1)  The  graph  is  a  circle  of  diameter  =  unity,  with  the  pole 
at  its  lowest  point. 

(2)  As  (1),  but  with  the  pole  at  the  left  end  of  a  horizontal 
diameter. 

(3)  A  circle  of  diameter  =  \%  with  the  pole  at  the  lower  end 

of  a  diameter  sloping  down  at  45°  to  the  left. 

(4)  As  (3),  the  diameter  sloping  at  45°  to  the  right. 
(5)  As  (4),  the  pole  being  at  the  upper  end  of  the  diameter. 

(6)  A  round  leaf  outline  with  the  point  of  attachment  of  the 

stalk  on  the  right,  at  the  pole.     (Length  of  central  rib  =  unity.) 

(7)  As  (6),  but  the  pole  and  point  of  attachment  of  the 
stalk  are  on  the  left. 

(8)  and  (9).  Two  dissymmetrical  round  leaf  outlines,  greatly 

overlapping,  with  both  points  of  attachment  of  the  stalks 

coinciding  at  the  pole,  in  the  lower  portion  of  the  graph,  which 

is  symmetrical  with  respect  to  a  vertical  line  through  the  pole. 

(10)  A  nasturtium  leaf  outline  having  the  point  of  attachment 

of  the  stalk  at  the  pole  and  a  loop  between  this  point  and  the 

base  of  the  blade  (upper  portion). 

(11)  As  (10),  but  the  base  of  the  blade  is  on  the  left  and  tin- 
round  limb  on  the  right  of  the  graph. 
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(12)  and  (13).  Two  overlapping  leaf  outlines  as  (10)  or  (11), 
a  large  one  on  the  right  and  a  smaller  one  on  the  left,  with  a 

common  loop  on  the  right  of  the  pole,  between  their  two  bases, 

the  graph  being  symmetrical  with  respect  to  a  horizontal  line 

through  the  pole. 

(14)  A  three  bladed  ship's  propeller  with  a  blade  horizontal 
on  the  right  of  the  pole,  which  is  at  the  centre.  (Length  of 

blades =3  units.) 

(15)  Three  spirals. 

(16)  As  (6),  but  slightly  different  in  shape,  as  will  be  seen  if 

both  curves  are  plotted  on  the  same  scale  and  with  the  same 

pole,  as  instructed. 

(17)  Pn  gives  a  half  ellipse  on  the  right  of  the  minor  axis 

which  is  vertical  and  of  length  =  unity,  the  pole  being  at  the 
lowest  point  of  the  ellipse.  R  gives  a  half  oval  on  the  right  of 

the  minor  axis  of  the  above  ellipse,  the  point  of  the  oval  being 

at  the  pole.  L  gives  a  smaller  and  narrower  full  oval,  approxi- 
mately symmetrical  with  respect  to  the  radius  corresponding  to 

0  =  35°,  and  the  point  of  which  is  at  the  pole. 
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Absorption  of  light,  87,  89,  90. 
Accuracy  modulus,  193. 
Addition  of  ordinates  of  curves, 

198. 
Aeroplane,  pressure  on  planes  of, 

243. 
Ammonites,  6. 

Analysis  (exponential),  2  com- 
ponents, 198. 

— ,  3  components,  225. 
—  (harmonic),  200. 
Appleyard  (Rollo),  154. 
Arc,  length  of  circular,  44. 
— ,    length   of   small   parabolic, 

168. 
Archimedes,  5. 
Archimedian  spiral,  115. 
Area     of     hyperbolic    segment, 

143. 
Arithmetical  growing,  80. 
—  progression,  38. 
Asymptote,  of  hyperbola,  137. 
Atmosphere,  fall  of  pressure  with 

height  of,  93. 
Attenuation  of  telephonic  cur- 

rent, 94. 
Axis  of  symmetry,  149,  168. 

Base  of  system  of  logarithms,  31, 
141. 

Bernouilli,  5. 
Bessel,  193. 
Binomial  Theorem,  63. 
Bradley,  193. 
Bridge  (suspension),   158. 

Calculation  of  Napierian  logar- 
ithms, 98. 

—  of  common  logarithms,  102. 
Capacity,  93. 
Catenary,  10,  11,  147. 
— ,  equation  of,  153. 
— ,  materialisation  of,   158. 
— ,  mimicry  of  parabola  by,  163. 
Centre  of  hyperbola,  134. 
Chain,  suspended,  see  Catenary. 
Chance,  probability  of,  174. 
Circle,  124,  128,  248. 
Common  logarithms,  see  Log- 

arithms. 
Compound  interest,  see  Interest. 
Condenser,  93. 
Construction  of  hyperbola,  132, 

133. 

—  of  parabola,  161. 
Continuous  tracing  of  a  hyper- 

bola, 133. 
Cooling  of  a  body,  86,  88,  91,  92, 

93,  94. 
Co-ordinates  (polar),  108. 
— ,  plotting  of,  242. 
Current  (electric),  growth  of,  88. 
— ,  telephonic,  94. 
Curves,  19,  123,  242. 
— ,  building  of,  from  two  others, 

198. 

— ,  mimicry  of,  160. 
Cycloid,  50. 

Dale  (Prof.),  201. 
Dependent  variable,   15. 

250 
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determinant,  220. 
— ,  rule  for  expanding,  221. 
Dice,  result  of  throws  of,  176. 
Directrix   of  ellipse,    128. 
—  of  hyperbola,  125. 
—  of  parabola,  161. 

Electrification,  loss  of,  86,  93. 
Ellipse,  124,  128,  249. 
Epeirae,  2. 
Epsilon,    10,    12,    33,    85,    112, 

143,  158. 
—  from  catenary,  154. 
—  from   equilateral   hyperbola, 

145. 
—  in  Law  of  Errors,  190. 
—  on  the  slack  rope,  146. 
Equation,  of  catenary,  153. 
—  (final),  in  exponential  analysis, 

207. 

—  of  hyperbola,  135. 
—  of  parabola,  162. 
—  (preliminary),  in  exponential 

analysis,  207. 
Errors,  absolute,  188. 
— ,  accidental,  187. 
—  in    calculation    of    common 

logarithms,  102. 
—  frequency,  curve  of,  194. 
— ,  law  of,  189. 
—  (probable),  195. 
—  (systematic),  187. 
Evolution  by  Binomial  Theorem, 

70. 
Expansion,  50. 
— ,  convergent,  69,  99. 
— ,  divergent,  69,  73. 
— ,  law  of  formation  of,  59. 
—  of  length  of  arc,  75. 
— ,  number  of  terms  in,  53. 
— ,  sum  of  terms  of,  74. 
Expression,  homogeneous,  61. 

Fabre  (Henry),   1. 
Factorial,  65. 
Family  of  curves,  126. 
Focus  of  ellipse,  128. 
—  of  hyperbola,  125. 

Focus  of  parabola,   161. 
—  of  parabola,  path  of,  165. 
Function,  13,  123. 

—  (explicit),  19,  125. 
—  (exponential),  29. 
—  (implicit),  19,  125. 
—  (inverse),  18. 
—  (trigonometrical),  242. 

Geometrical  progression,  38,  140. 
Graphs,  see  Curves. 
Growth,  arithmetical,  80. 
—  of  electric  current,  88. 
—  logarithmic,  88. 
Gunner  and  target,  175,  182,  184. 

Homogeneous  expression,   61. 
Hyperbola,  122. 
— ,  area  of,  141. 
— ,  asymptote  of,  137. 
— ,  centre  of,  134. 
—  (conjugate),  137. 
— ,    construction    by    points    of, 

132. 
— ,  continuous  tracing  of,  133. 
— ,  directrix  of,  125. 
— ,  equation  of,  135. 
—  (equilateral),  137. 
— ,  family  of,  126. 
— ,  focus  of,  125. 
—  in  oblique  co-ordinates,  144. 
—  (rectangular),  137. 
—  referred  to  asymptotes,  139. 

Independent  variable,  15. 
Index,  fractional,  24. 
—  minus,  23. 
—  zero,  21. 
Index  form,  24. 

Induction  (mathematical),  prin- 
ciple of,  55,  83,  141. 

Integers  of  n  figures,  number  of, 55. 

Intercept  on  the  axis  of  y,  203. 
Interest  (compound),  80. 

— ,  principal  doubled  by,  81,  85. 
— ,  true,  85. 
Interest  (simple),  79. 
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Leaf  patterns,  242,  248. 
Light,    absorption    of,    87,    89, 

90. 
Logarithms,  31. 
— ,  base  of  system  of,  31,  141. 
— ,  calculation  of,  98,  102. 
—  (common),  31,  34,  40,  117. 
— ,  graphical  table  of,  113. 
—  (hyperbolic),  33,  143. 
—  of  a  logarithm,  30. 
— ,  modulus  of,  102,  120. 
—  (Napierian),   33,  34,  39,  42, 

95,  112,  143,  151. 
—  (Natural),  33,  34,  96. 
— ,  system  of,  39,  141. 
— ,  tables  of,  38. 
Logarithmic  tables,  38. 
—  growth,  88. 
—  spiral,  3,  106,  112,  115,  117, 

243. 

Mimicry  of  curves,  160. 
Modulus  (accuracy),  193. 
Modulus  of  common  logarithms, 

102,  120. 
—  of  precision,  193. 
Monoplane,   pressure   on  planes 

of,  243. 

Napier  (John),  33. 
Nasturtium  leaf,  248. 
Nautilus,  6. 
Number  of  integers  of  n  figures, 

55. 

Opacity  of  medium,  93. 
Ordinates    of    curves,    addition 

of,  198. 
Oval,  249. 

Parabola,  10,  126,  161. 
— ,  equation  of,  162. 
— ,  length  of  small  arc  of,  168. 
— ,  mimicry  of  catenary  by,  163. 
— ,  path  of  focus  of,  165. 
— ,  properties  of  tangent  to,  165. 
Pi  or  7T,  33. 

Planorbes,  7. 
Plotting,  19,  120,  123,  159,  228. 
—  in   polar   co  ordinates,    242. 248. 

Pochin,  120. 
Polar  co-ordinates,  see  Co-ordin- 

ates (polar). 
Pole,  3,  106,  248. 
—  path    of,     in    rolling    logar- 

ithmic spiral,  120. 
Potential,  93. 
Powers,  see  Index. 
Pressure   (atmospheric)    fall    of 

93. —  on  planes  of  aeroplane,  243 
Principal,  79. 
—  doubling  of,  81,  85. 
Probability  of  an  error,  192. 
—  of  an  event,  181. 
—  for  the  gambler,  175. 
—  for  the  scientist,  175. 
Probability  curve,  190. 
—  area  of,  197. 
Probabilities  ;  two  kinds  of,  174 

175. 
—  (calculus  of),  194. 
Progression   (arithmetical),   38. 
—  (geometrical),  38,  140. 
Projectile,  trajectory  of,  161. 
Propeller,  249. 

Radian,  43,  45. 
— value  of,  46. 
Radio-active    substance,    deca 

of  activity  of,  241. 
Radius  vector,  106. 
Reflector  (parabolic),   162. 
Residual,  188. 
Rose  pattern  242. 

Series,  convergent,  69,  99. 
— ,  law  of  formation  of  terms  o 

56. 

—  (logarithmic),  98. 
Shells,  7,  8. 

Ship's  propeller,  249. 
Simple  interest,  see  Interest. 
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Sine  law,  200. 
mki|)  film,  shape  of,  159. 
Spirals,  108,  249. 
—  (Archimedian),  115. 
—  (equiangular),  109. 
— ,  instrument  for  tracing,  108. 
—  (logarithmic),  3,  106,  112,  115, 

117,  243. 
— ,  rolling  of,  120. 
Star  pattern,  242. 
Symmetry,  axis  of,  149. 

Tangent  to  a  curve,  113. 
—  to    parabola,    properties    of, 

165. 
Target  diagram,  186. 
Telephonic  current,  94. 
Tide,  prediction  of,  200. 

Time  from  a  number  of  watches, 
183. 

Time-constant     of     dying-away 

process,  88. 
Trajectory  of  projectile,   161. 
Triangle  of  forces,  148,  156. 

Units  (circular),  45. 
—  (sexagesimal),  43. 

Variable,  14. 
— ,  dependent,  15. 
— ,  independent,  15. 

Walsh  (J.  W.  T.),  201. 
Watches,  time    from  a  number 

of,  183. 
Web,  of  Epeirae,  2,  4. 
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