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Abstract

In this paper, we report a generalization of the results of Foley
and Guesnerie on the second welfare theorem to economies with
arbitrary nonconvex production sets. The nature of marqinal cost
prices in such economies is clarified through the use of the
Clarke tangent cones.





I. Introduction

It has often been argued, beginning with Hotelling [1939],

that even if some firms exhibit increasing returns to scale,

optimality demands the establishment of marginal cost prices. A

rigorous and general proof of such an assertion was first offered

by Guesnerie [1975] but only for economies with certain kinds of

nonconvex production sets. Guesnerie 's theorem specifically

rules out production sets with "inward kinks". It has remained

an open guestion as to whether this restriction on production

sets can be dispensed with. In this paper we show that the

validity of the second welfare theorem does not depend in any way

on the nature of production sets, other than the assumption of

free disposal. We also extend our result to economies with

public goods and in so doing, generalize a corresponding result

of Foley [1970]. This extension is the only result known to us

that provides a normative basis for Lindahl pricing in economies

with increasing returns to scale in production. As such, it is

overdue.

For a proof of his result, Guesnerie modified the, by now

classical, argument of Arrow [1951] and Debreu [1954], whereby

the aggregate endowment is separated from the sum of the "better

than" sets and production sets. By using the fact that the

production sets have no inward kinks, Guesnerie could show that

the resulting hyperplane furnishes marginal cost prices for each

individual set. Unfortunately, we cannot apply this argument in

our generalized set-up and need to consider each set
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individually rather than their sum. We thus offer a proof

different from that of Arrow-Debreu-Guesnerie. It is worth

remarking that the structure of our proof is inspired by the work

of Guesnerie on second-best-optimality , see Guesnerie [1979].

However, unlike Guesnerie we do not use a theorem of Laurent

[1972]. Our work also suggests that the arguments presented here

can be used to generalize Theorem 1 of Guesnerie [1979] to the

case where the cones of interior displacement are not necessarily

convex.

Section II is devoted to our formalization of marginal cost

prices and relates the tangent cones used in this paper to those

used by Beato [1982], Brown _et_ _al_. [1983], Cornet [1982] and

Guesnerie [1975,1979]. Section III is devoted to the results and

their proofs.

II. Discussion of Tangent Cones and Marginal Rates of
Substitution

For concreteness , consider a single input, single output

production set as shown in Figure I with the set of technologically

efficient points summarized by a "production function" f(«)

which associates with every input level a corresponding level of

output. The notion that the marginal rate of substitution at a

point is given by the derivative of f(«) at that point, provided

such a derivative exists, needs no reference. However, the notion

that these rates at points of non-differentiability such as (a)

and (b) are given by the shaded cones in Figure I is almost as old

and can be traced at least to Samuelson's Foundations (1947).

Already, there Samuelson argued that necessary conditions for
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profit maximization would lead a firm to choose production plans

at which the prices would lie in the "cone" of the marginal rates

of substitution; such a cone being determined by conventional left

and right derivatives.

Subsequent emphasis on the convexity assumption of production

sets allowed one to ignore production plans such as (b) and (d)

and to formalize the marginal rates of substitution as the cone of

"subdif ferentials" of a concave function, the existence of which

did not even require left and right derivatives. A full

development of this point of view can be found in Rockafellar

11970] .

In a pioneering paper, Guesnerie [1975] began an

investigation of nonconvex production sets. He could not use the

definition of marginal rates of substitution in the sense of

convex analysis simply because the non-convexity of Y did not

allow the use of the separating hyperplane theorems. Instead,

Guesnerie followed Dubovickii and Miljurin and considered cones

of interior displacement. Heuristically , this simply magnifies

and transfers to the origin the "local" shape of the production

set at a particular production plan. Thus, the cone of interior

displacement at (a) in Figure I is a convex cone generated by the

vectors ab and ao but with (a) shifted to the origin. For

Guesnerie, the marginal rates of substitution at (a) are the

normals to the cone of interior displacement at (a), i.e., thi

shaded cone at (a). As another example, the cone of interior

ie
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displacement at (d) is the half-space under the tangent to f (
•

)

shifted to the origin. In this case, there is a unique normal

which coincides with our conventional notion of a marginal rate of

substitution in the dif ferentiable case.

The problem with the Dubovickii-Mil jurin cone is apparent

when we consider the production plan (b). Here the cone of

interior displacement is no longer convex as opposed to those at

(a), (c) and (d) and it is clear that the normal to such a cone is

only the null vector. It is precisely because of this that

Guesnerie [1975, 1979] and Beato [1982] rule out production sets

with "inward kinks", i.e. , points leading to nonconvex cones of

interior displacement.

From an economic point of view, it is, of course, clear that

the relevant cone of the marginal rates of substitution at (b) is

the one shown in Figure 1. It is the set of normals not to the

cone of interior displacement but to minus its complement. This

simple idea leads us to precisely the Clarke tangent cone which

has been recently introduced in the economics literature by Cornet

[1982] and used subsequently by Brown et al. [1983] . This cone is

always convex and its interior coincides with the cone of interior

displacement whenever the set is convex. To bring the circle of

ideas back to Samuelson, for the production plan (b) to be a

profit-maximizing plan, a necessary condition is that the price

vector lies in the normals to the Clarke tangent cone at (b) .

Indeed, if there is any vector of prices p such that at a production

plan y, the necessary conditions for profit maximization are satisfit
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at y then p must belong to the set of normals to the Clarke

tangent cone at y (see Clarke [1983] Corollary to Proposition

2.4.3). Thus, if we define the marginal rates of substitution to

be the set of prices which satisfy the necessary conditions for

profit maximization then this set is precisely the set of normals

to the Clarke tangent cone.

We devote the remainder of this section to a formal
• -

presentation of these ideas.

Let Rn denote n-dimensional Euclidean space with R as

its nonnegative orthant and with >>, >, > as the ordering on

vectors. For any set A £ Rn , CI A, Bdry A and Int (A) will

be used to denote its closure, boundary and interior respectively.

B (y) denotes the open ball with center y and radius e.

Definition 1. The cone of interior displacement for Y C Rn

relative to y £ R n is the set

K(Y,y) = {x S R
n

|
3 n > 0, e > 0, such that

V X € [0, n ] , {y} + XB
£
(x) C Y}.

This definition is the one used in Guesnerie [1979] and,

under the assumption of free disposal, identical to the one used

in Guesnerie [1975]. In order to see that this definition

formalizes the fact that the cone of interior displacement

magnifies and transfers to the origin the "local" shape of the

production set at a particular production plan, consider the sets

given by the shaded areas in Figure II and their cones of interior

displacement at the origin. In this case y = in Definition 1

and no transfer to the origin is necessary. In Figure Ila,
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K(Y,0) is the interior of the set itself. To see that x is

in K(Y,0), we have to find an e > and a control number

n > such that the e-ball around x, B (x), when multiplied by

any non-negative number less tnan or equal to n , remains in the set

Tnis is clearly so for B (x) shown in Figure Ila for any cnoice of

n < e. In Figure lib, x is no longer in K(Y,0). Here the

control number n is crucial in ruling out x since XB (x) is

in Y for all X > 1 but no n > can be found such that

XB (x) C Y for all X e [0,nl- On the other hand, in Figure
e —

lie, x is in K(Y,0) but B (x) is not contained in Y.
z

However, XB (x) C Y for small enough X and here too n in
e —

controlling for the small enough value of X, plays a determining

role.

The Clarke tangent cone is given in the next definition.

Definition 2. The tangent cone for Y C Rn , relative to y £ CI ^

is the set

n i
k k

T(Y,y) = {x E R For any sequence t 4- , y + y

k kwith y G CI Y, 3 a sequence x + x such that for all

k k k 6
large enough k, y + t x G CI Y}.

Note that Clarke defines his tangent cone only for closed

sets while we are extending his definition to an arbitrary set by

simply considering its closure. In fact, for y e CI Y, by (3.3)

of Rockafellar [1980], T(C1 Y,y) = T(Y,y). The comparison with

K(Y,y) is facilitated if we consider the interior of T(Y,y).
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Proposition. For Y £ Rn and y e CI Y, Int T(Y,y) is the set

{x S R
n

|
3 n > 0, £ > 0, 6 > 0, such that

VX e [0,n], {y'} + XC1 B (x) C Y for all

y' E (CI Y H CI B
5
(y))}.

Proof. It is clear that, in the set defined in the Proposition,

replacing Y by CI Y leaves the set unchanged. Theorem 2

of Rockafellar [1979] can now be used to complete the proof.

The reader should now compare the characterization of Int

T(Y,y) in the Proposition to that of K(Y,y) in Definition 1.

The interior of the Clarke tangent cone simply replaces {y} in

the definition of K(Y,y) by {y'} where y' is in the

intersection of a closed 6-ball around y, CI B.(y), with
o

CI Y. To see what difference this makes, consider Figure Ila. In

this case Int T(Y,0) "shrinks" K(Y,0) to the area enclosed by

the dotted lines. To see why x does not belong to Int

T(Y,0), note that one cannot find any e-ball around x and

any 6-ball around and any control number n > such that

X CI B (x) plus the intersection of Y and CI B
5
(°) is

'in Y. This can also be seen through Definition 2.

Choose {y } to be a sequence on the lower boundary of Y and

one which tends to y = 0. There is no way one can find a

k k k k
sequence {x } tending to x such that (y + t x ) is in Y

for large enough k and for any sequence {t } of positive

numbers going to zero. This can only be done if x is in the

area enclosed by the dotted lines.
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As our verbal discussion makes clear, the primary objects of

interest are not the tangent cones but their normals, i.e. , their

polar cones.

Definition 3 . The polar cone of a set A C R n , is the set

A+ = {p G R
n
|pa <, Va G A}.

Let N(Y,y) = T(Y,y) +
. Since A+ = (CI A) +

, N(Y,y) =

(Int T(Y,y)) +
.

In the remainder of this section we state and prove

properties of Int T(Y,y) and its associated normal cone

N(Y,y) that we shall need for the proofs of our results. Similar

results for cones of interior displacement were used by Guesnerie

[1979] in his study on second-best optimality.

Lemma 1. Let K , . . . , Km be non-empty, open convex cones with

vertex such that n k
1

* ( <j>
} . Then, (O K

L
)

+
C \ K

1 +
.

i i i

Lemma 2. Let Y
1 C R

n
, i = 1, ..., m and y€H CI Y . Then,

i

Int T(H Y
X
,y) => n Int T(Y

1
,y).

i i

Lemma 3. Let n i n t T(Y
1
,y) t {<}>} and r\ G N(H Y

X
,y). Then,

i i

there exist r\
e NCY 1 ^) such that r\ =

I n •

i

Lemma 4. Let Y = R, Y and y = (y x ... x y ) £ Y, where

y
1 e y 1 C Rn, i = 1, . . . , m. Then

Int T(Y,y) = n. Int T(Y
1
,y

1
)

N(Y,y) = n. NCY^y 1
).
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Lemma 5. Let A = {x e R |f(x) < 0} where f is a continuous

function. If f is dif ferentiable at x* and f(x*) = 0,

then N(A,x*) = U \ grad fCx*).
\>0

Lemma 6. Let Y £ Rn and y^ CI (Y). Then Int T(Y,y) t {$} if

either

(a) Y is convex and has an interior

or

(b) Y + R^
+
C y

or

n
(c) Y - R^

+
C Y.

Before considering the formal proofs of these lemmata, a

heuristic discussion as to their meaning is warranted. This has the

further advantage of familiarizing the reader with the tangent and

normal cones used in this paper. As regards Lemma 1, let K be the

shaded halfspace given by AOB and K the hatched halfspace given

by COD in Figure III. If the frontiers are not included, K 1 and

2
K are non-empty, open convex cones with vertex and whose

intersection is given by the open cone enclosed by COA. Now the

polar cone of COA is given by FOE and it is easy to see that any

point in FOE can be obtained by the sum of points in 0E and OF which

are respectively the polars of K 1 and K 2
. This is what Lemma 1

asserts to be the case in general.

For Lemma 2, let Y 1 and Y 2 be as in Figure IV. Then Int

T(Y 1
/ y) is the halfspace below AB and Int T(Y 2

,y) is the area

enclosed by 0C and Oy. Thus Int T(Y 1
,y) H int T(Y 2

,y) is the

negative orthant. However, Y 1 n Y 2 is given by the set COyE and
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Int TCY 1 n Y ,y) is the area enclosed by OH and OA. This contains

the negative orthant which is being asserted in general in Lemma 2.

1 p
It can also be checked that N(Y X n Y ,y) is the area enclosed by

DOG while NCY^y) is OD and N(Y 2
,y) is the area enclosed by

GOB. It is now easy to see that any point in DOG can be written as

the sum of a point in OD and one within GOB which is being asserted,

in general, by Lemma 3.

Lemma 4 states that the interior of the tangent cone of a

cartesian product of a finite number of sets at some point is the

cartesian product of the interiors of the respective tangent cones

at the respective projections of that point, i.e., heuristically

,

the cartesian product operator and the interior of the tangent cone

operator commute. Lemma 5 is an assertion that a normal to a set

"enclosed" by a dif f erentiable function is the gradient of the

function. Lemma 6 provides conditions typically used in economic

theory which guarantee non-emptiness of the tangent cone.

We now present the formal proofs of these lemmata and the

reader, if so inclined, may move on to the model and results without

any loss of continuity.

Proof of Lemma 1. We first show that CI (H k
1

)
D

(
£ K

1+
)

+
. Pick

i i

q E
(I K

1+
)

+
. Then, qx < for all x e I

K
1

. Since
i i

€ K 1+ for all i, qx 1
< for all x 1 G K 1+ , i = 1,
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1++
. .., m. Hence, q <= n K . Since K 1 is a non-empty

i

convex cone, by Rockafellar ([1970], p. 121), K
1++

= CI K 1

Thus, q G n CI K
1

. By Rockafellar ([1970], Theorem 6.5)

CI (H K
1

) = n CI K
1

and thus, CI (
n K

1
) 2 (£ K

1+
)

+
.

By taking polars and again using the fact that A = CI

A if A is a non-empty convex cone, we obtain

(H k
1 )* £C1(£ K

1+
). It remains only to be shown that

i i

I K
1 +

is closed. By Debreu ([1959], p. 23) K
1+

+ K
2+

is
1

1+ 2+
closed if K and K are positively semi-independent.

Thus, to prove that £ K is closed it suffices to show
i

that K 1+ and K^ + are positively semi- independent for

i * j, i,j = 1, ..., m. Towards this end consider q ^ K

and q-1 6 K^ such that q
1 + q^ = 0. We need to show that

q = q-1 = 0. Since K* and K^ are open and K
1 n K 3 * {$},

there exists e > and x * such that B (x) S K
1 H k j

.

Now q x < and q
J x < for all x G B (x). Since

i j i i
q = -q , q = q

J = 0, and the proof is complete.

Proof of Lemma 2. Let x G n int T(Y
1
,y). By the Proposition we

i

can assert that 3 e
1

> , 6
1

> , A
1

> such that y
1

+ t
X
x* S

CI Y
1

for all y
1

G CI Y
1 O CI B .(y),

5
1
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t 1 G [O^ 1
], x' €C1 B .(x). Let (e,6,A) = Min" (e

1
,5

1
,X

1
)

e i

Then, for all i, y
1

+ tx ' G CI Y
1

for all

i' 6 C1 y
1 n CI B-(y) , t e [0,1] , x' 6 CI B-(x).

o e

This implies that, for all i, y
1 + tx 1 G CI Y

1
for all

y « G n ci Y
1 n Cl B-(y), t 6 [0,1], x' € CI B-(x), i.e.

,

i
6 £

y' + tx' ^n Cl Y
1

. Thus, x G Int T(H Y^y).
i i

Proof of Lemma 3. Follows from Lemmata 1 and 2.

Proof of Lemma 4. This is straightforward; the reader may see,

for example, the Corollary to Theorem 2.4.5 of Clarke [1983].

Proof of Lemma 5 . See Corollary 1 of Theorem 2.4.7 and Definition

2. 3.4 of Clarke [1983].

Proof of Lemma 6 . If (a) holds we can find x G R n such that

x + y e Int (Y), and, therefore, 3 e > such that

Cl B (x) + Cl B (y) C y. This implies that y' + x' e Y
e e —

for y' E Cl Y n Cl B (y) and x 1 £ Cl B (x). Since Y is

convex, we also have y 1 + tx 1 G Y for all t G [0,1]. Thus,

from the Proposition, x G Int T(Y,y).
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If (b) holds, consider e > and x E R such that

CI B (x) 6 R*\. Then,
e ++

y' + tx' e Y for y 1 £ CI Y, t >

and x" E CI B (x), i.e., x£ Int T(Y,y).
z

If (c) holds, we can show that -R++ £ Int T (Y,y) by the

above argument.

III. The Model and Results

We shall index consumers by t, t = 1, ..., T each having a

consumption set X C r and a preference relation ^ t . Let the

1- t tbetter-than-set for t at x u be given by P (x )
=

jyG x |y } x }. Firms are indexed by j, j = 1, ..., F each

having a production set Y^ C Rn . The aggregate endowment

is denoted by w G R++ * An economy is thus denoted by

& = ((X , y ) , ( Y^ ) , w) and we shall make the following assumptions

on it.

(A. 1) For all t and all x
t G x

t
,

x G CI P (x ) and either P (x ) is convex and has an

interior or {x } + r" C p ( x ).

(A. 2) For all j, Y j - R^ <Z Y^ .

We shall need the following economic concepts
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*t * nt "1

Definition 4. ( (x ) , (y ) ) is an allocation of & if for all

*t t
t = 1, ..., T, x G X , for all j = 1, ..., F f

y J G Y J and £x-£y J =w.
t j

*t *iDefinition 5. An allocation ((x ), (y ) ) is Pareto optimal if
" " * i ^ -,— i ... — -

there does not exist any other allocation ( (x ), (y )) such

that x
t e P

fc

(x
t

) for all t.

We can now present

* t *iTheorem 1 . If ((x ) , (y
J

) ) is a Pareto optimal allocation and

(Al) and (A2) are satisfied, then there exists p* £ R , p* ^ ,

such that

(a) -p* G.N(P t (x* t
) ,x*

t
) for all t,

(b) p* S N(YJ,y*J
) for all j.

i *iN(Y J
,y

J
) is the set of marginal cost prices for j at

* ;
i

y . For a convex set the normal cone coincides with the cone of

normals in the sense of convex analysis (see Clarke [1982] ,

. . t *tProposition 2.4.4). Thus, if P (x ) is convex, (a) implies

that $ ^ ep t
( x

t
) with p*x fc

< p*x t for all t. We leave

it to the reader to compare Theorem 1 to Theorem 6.4 of Debreu

[1959] and Theorem 1 of Guesnerie- [1975] .

Our proof of Theorem 1 is based on a separating hyperplane

argument involving the interior of the tangent cones of the

production sets and the better-than-sets. In this respect the fact

that the tangent cone is always convex makes it better suited for
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our purposes than the cone of interior displacement. It does,

however, involve some additional problems but fortunately these can be

handled without additional assumptions. Firstly, in general, the

interior of the tangent cone is contained in the corresponding cone of

interior displacement' and may be empty even if the cone of interior
... 4

displacement is not. By Lemma 6, given (Al) and (A2) this does not

occur. Secondly, we cannot use the conventional argument (as in Arrow

[1951] or Debreu [1954] ) and separate the tangent space of the

aggregate production set. This is simply because p G N(Y,y) does

not necessarily imply that there exist y G Y such

that £ y = y and p G N(Y ,y ) for all i. We circumvent this
i

problem by applying the separation argument to production sets and

preference sets considered individually.

Before we consider the formalities of the proof of Theorem 1, we

clarify some basic notation. Let k = n(T+F). We shall use the

convention that v e R can be written as v = ((x t ),(y^)) where

x fc and yj belong to Rn for all t and j. For any v in R
,

(v) . is the projection of the vector v to the coordinates
x

corresponding to x fc in R , i.e., the coordinates n(t-l) to

nt. Similarly, (v) . is the projection of v to the coordinates
y-3

corresponding to yJ in Rk , i.e., the coordinates n(T+j-l) to

n(T+j). Furthermore, (v) and (v) . are respectively the n(t-l)

+ l and n(T+j-l) + i coordinates where £ runs between 1 and
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I,

n. For any set A in R , we shall denote an element of its normal

cone at a given point by A . It is important to be clear that A
a a

k
is an element of R and that it would have projections as discussed

above.

Proof of Theorem 1.

«

Let k = n(T+F) and any v € Rk be denoted by (x 1
, ..., xT , y

1
,

..., y
F

) where x t e Rn and yj £ Rn for all t = 1, ..., T and

all j = 1, ..., F. Let v = ( (x ) , (y
J
)) and define the following

ksets in R

W^ = {v € R
k
\l x

t
<

j; y
j + w j £ « lf ..., n

t j

v(x*) = n
t
P
t
(x*

t
) x n.Y^

M = n W .

The basic idea of the proof is to separate the sets Int

T(V(x*),v*) and Int T(M,v*). Since these sets lie in R , so does

the separating hyperplane p*. We then use the construction of M tc

show that p* is of the form (p*,p* ... p* , -p*, ... -p*) where

each p* is in Rn . The construction of V(x*) then implies that

t *t *t-p* is in the normal cone of P (x ) at x and p* is in the

normal cone of Y^ at y J for all t and j. We now spell out

these ideas in detail.

*t *iClearly, if ((x ) , (y
J

) ) is Pareto optimal, (A2) implies

that V(x*) n M = {<j>}. We now show that Int T(V(x*),v*)

n Int T(M,v*) =
((f»}. Suppose not. Then, there exists
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v e Int T(V(x*),v*) n Int T(M,v*). Notice that by (Al), v* G CI

V(x*). By definition of M, v* € M so that the tangent cones are

well defined. In accordance with our notational convention, v can

be written as v =
( (

x

fc

) , (y
3

) ) . By Lemma 4, x t G Int T(P fc

(x
t
),x

t
)

for all t and y
3 € Int T(Y J

,y
3

) for all j. By the Proposition,

t i m *t
there exist positive real numbers n , n and n such that x

+ x
t
x
t e p

t
(x*

t
) vx

fc e [o f n
fc

]/
y* j + x 3

v
3 e y 3 v x

j g [0, n
j

]

for all t and j and v* + x
m
v G M VX™ G [0,n

m
]. Let

r\ = Min [Min (n )r Min (n )/ n ]• This implies that for

X e [0,nl, x*
fc

+ xx G p
t

( x
* t

) Vt, y*^ + Xy^ G y^ for all j and

I (x*
t

+ \x
t

)
-

I (y* 3 + \y
3

) < w. Thus, v* + Xv G V(x*) H M,
t j

contradicting V(x*) n M = {<}>}.

We now verify that Int T(V(x*),v*) and Int T(M,v*) are non-

empty. By Lemma 4, Int T(V(x*),v*) = II Int T(P
fc

(x
t

) , x
t

)

i *i
x n • Int T(Y J

,y
J

). Given (Al) and (A2), Lemma 6 implies that

Int T(P fc

(x
t
),x

fc

) and Int T(Y :j

,y
3

) are non-empty for all t

and j. Thus, Int T(V(x*),v*) *
{ <j>

} . It is easy to check that M

is convex and has a non-empty interior. We can, therefore, apply

Lemma 6 to assert that Int T(M,v*) * ($}.

We can now apply the separating hyperplane theorem to assert

that there exists p* * such that p* e N(M,v*) and

-p* G N(V(x*),v*). Lemma 3 then implies that there exist vectors

W
n

G N(W „,v*) such that
la I

(i) y w
n

= p
*.

For any v G Rk and I - 1, ..., n, let v
p

=

((xj),(yj)) G R
T+F

. Define g ( v ) =
I x\ -

J y\ - w and
t j
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T+F

i

* t * i

G = (v G R
j g ( v ) < 0}. Since £ x -

£ y = w , we can appeal21
t j

to Lemma 5 to assert that N(G ,v*) = U X grad g (v*). Given the
£ £

x>0
£ £

construction of g , this clearly implies that any element of

N(G ,v*) must be a T+F dimensional vector of the form (p*/ •••, P

- p*, . .., - p*) for some p* 6 R.

<

We shall now show that for all t and j,

(i) (W
£a

)
t

= P *£
l = 1 n

X
£

(ii) (W ) = -p* i = 1, ... , n
£a J £

1
£

(iii) (W ) = (W
o

) .
= £ * q.

a
x ^

a
v J

q y
q

Notice that W has been constructed such that its projection on
£

J

coordinates corresponding to v is G while its projection on the

remaining (T+F)(n-1) coordinates is R. We can, therefore, apply

Lemma 4 to assert that (W ) £ N(G ,vj) and, as argued above, it ca

be written as (p*/ • ••/ p* t - P*i •••/ - pt)« This establishes (i) an:

(ii). Since N(R,z) = for any z G R, Lemma 4 also yields (iii).

Letting p* = (pt, ..., p*)/ we can now assert that £ W
n

£

= (p*, ..., p*, -p*, ..., -p*). By (1) p* = (p*, ..., p*, -p*,

..., -p*). Since p* * 0, p* * 0. Now, -p* e N(V(x*),v*) implies,

given Lemma 4 and the definition of V(x*), that -p* e

N(P
t
(x

t
),x

t
) for all t and p* G N(Y J

,y
3

) for all j.
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Our next result extends Theorem 1 to economies with public

goods. Let the first n commodities be private goods and the

next m be public goods in the sense that their consumption is

identical across individuals. An economy with public goods

& G = ((xS)" )w (Y 3
)

F
, w) is such that for all t, Xt =

(X , X ) where X R , X c R are its projections onto the
ir g 7i

— + g ~ +

space of private and public goods respectively. We assume that

X
fc

= X for all t; that Y 3 C Rn+m for all j and that
g g - J

w = (w ,0), w 6 R, ,. Let x „ and x „ refer to the consumptionTTTT++ 7t£ ql

of the i private and public good respectively.

* t * i cDefinition 6 . ((x ) , (y J
) ) is an allocation of £^ if for all

t = 1, ..., T, x* t G X t
, for all j = 1/ ..., F, y*J G Y 3

,

*

t

*t * i
x = x* for all t and {\ x ,x*) -

[ y J = w.

The definition of a Pareto optimal allocation for £G is then

identical to the one given in Definition 5. We shall also need an

assumption on the desirability of public goods.

(A. 3) For all t, if ^ < x
t

, then (x
t
,x

t
) S P

t
(x

t
).

g g ir g r

We can now present our second result.

* t * t * iTheorem 2 . If ((x ,x ),(y J
) ) is a Pareto optimal allocation

it g

and (Al) - (A3) are satisfied, then there exist p* = (p*,p*) G
tt g

_n+m , _ , _ n . *t ,- „m , LlR , p* t and, for all t, p G r t such that

(a) V p* fc
= p*

g g g

(b) - (p*,p
t

)
S N(P

t
(x

fc

),x
fc

) for all t

(c) p* G N(Y J
,y -1

) for all j.
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We leave to the reader to compare Theorem 2 to Theorem 1 in

Foley [1970].

The proof of Theorem 2 is along the lines of the proof of

Theorem 1 with the only difference that additional sets

corresponding to public goods have to be introduced in the

construction of the set M. An additional notation that has to be

kept in mind is that pertaining to the distinction between public

and private goods. Thus, for any commodity bundle x , in x

I runs from 1 to n while in x , I runs from n+1 to n+m.
g x.

Proof of Theorem 2.

Let k = (n+m)(T+F) and define the following sets in R .

W „ ={v^Rk |yx t
n <yy :)

n
+wl i - 1, ... , n

W
fc

„ = |v ^ R
k
|x

t
< I y^ j I = n + 1, ..., n+m

t = 1, . . . , T

v(x*) = n p
t
(x

l
) x n.Y 3

*- j

m = n w n w
t

.

i
" 2

*,t
gl

*t *iClearly, given (A3), if ((x )/(y )) is Pareto optimal

V(x*) H m = {(j)}. This implies, as in the proof of Theorem 1, that

Int T(V(x*),v*) n int T(M,v*) = {<})}. We can also use the argument

of the proof of Theorem 1 to show that Int T(V(x*),v*) and Int

T(M,v*) are non-empty.
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We can now apply the separating hyperplane theorem to assert

that there exists p* * such that p* G N(M,v*) and

- p* € N(V(x*)/V*). By Lemma 3, there exist vectors W e
7T la

N(W „,v*), W
t

n
G N(W fc

.v*) such that
it l g Jca g £

(2) y w „ + y'" w
fc

n
= p

*.

J
tt£q

t
L
fl

g£a P

As in the proof of Theorem 1, we can use Lemma 4 to show that

(W „ ) = p* for all t where p* e R and
T\la * *T\l ttJl

Ki
(W „ ) . = - p* for all j. Also, (W

fc

n )
= p* fc

tt£cx j ^tt£ j g£a t F
g £

Y
tt£

X
g£

t *t
t and (W „ ) . = - p

-

for all j. Thus (2) yields
gia j

Fg£ J y

Y g£
*t.

) for

for all

(P*)
fc

= (P^Pg^ f0r a11 t ^"d (P*) j = " (Pj» [ P
(

*tall j. Since p* * 0, p* = (p*, ) p ) * 0. By Lemma 4,
7T £ g

- (pSp^) G N(P
fc

(x
t
),x

t
) for all t and p* G N(Y^y*^)

it g

for all j.
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FOOTNOTES

1. This is stated precisely below.

2. For a precise reason, see the discussion preceding the proof

of Theorem 1 below.

3. See Guesnerie [1975] for references.

4. Similarly the cone of interior displacement at (c) is the

half-space under the tangent to f(») at (c) shifted to the

origin.

5. A precise reference is Laurent ([1972], Theorem 1.3.4) and

Rockefeller ([1980], Theorem 1).

6. In the definition of T(Y,y), Rockafeller [1979] states "for

all k". It is clear that he means "for all large enouqh

k".

7. This follows, for example, from Proposition 3.4 (b) of Cornet

[1982] taking account of the fact that I()(y) and J i(y) i- n

that paper correspond to Int T(Y,y) and K(Y,y) of this

paper.
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