I 0 -1 Γ m
 QA UC-NRLF ||| H68

IN MEMORIAM FLORIAN CAJORI

${ }^{20}$ VII
ri. Houple

Noots of Nameneal Quation

EXTRACTION

OF THE

REAL ROOTS

OF

NUMERAL EQUATIONS

OF ALL

DENOMINATIONS.

BY WILLIAM HOYLE。

LONDON:

PRINTED FOR ALL THE BOOKSELLERS, and
MAY BE HAD OF W, DEAN, MANCHESTER, AND J, WESTALL, ROCHDALE.

CAJORI

अxroer

QA 218 H68

INTRODUCTION.

THE following small treatise being chiefly intended for those who have already made some advance in the science of algebra, it will only be necessary to inform the general reader, that the extraction of the roots of an algebraic equation, and particularly the solution of the irreducible case in cubic equations, has been assiduously sought after during the last four centuries, by the most eminent mathematicians of Europe; amongst whom the following names (with regard to the subject of the present work) stand preeminent, viz. Scipio Ferreus, Nicholas Tartalea, Hieronymus Cardan, Lewis Ferrari, Raphael Bombelli, Vieta, Albert Girard, Harriot, Oughtred, Descartes, Sir Isaac Newton, Maclaurin, John and James Bernoulli, Fontaine, Euler, Waring, Simpson, Legendre, and Lagrange.

To the more advanced mathematician, who is already acquainted with the different methods employed by the above mentioned eminent persons, it will be necessary to give a demonstration of the system by which all the real roots (either positive or negative) of a numeral equation, containing only one unknown quantity, may be extracted.

In the following examples a number, as near the real root as possible, is assumed, which is placed in the quotient or root; the said number is then involved to within one power of the given equation, and the different powers multiplied by their proper coefficients, the products are then collected into one sum, due regard being had to the signs + or -, which sum being placed before the numeral (to which the equation is equal), may be supposed to act as a divisor in common arithmetic, the numeral as the dividend, and the root which has been involved as the quotient; multiply the divisor by the quotient and it will be the same as though the root had been involved to the proper powers of the given equation, as may be seen by the following; viz. ($x^{4}-2 x^{3}+$ $\left.4 x^{2}+5 x+1\right) \times x=x^{5}-2 x^{4}+4 x^{3}+5 x^{2}+x$; the product of the divisor and quotient is now subtracted from the dividend, the remainder will be the difference between an equation of the same order and coefficients, as the given equation, with the assumed number for its root; to the remainder bring down as many ciphers as there are units in the highest power of the given equation; another figure must be placed in the root, and managed according to the following formula.

The first figure in the root having had its powers extracted, may now be considered as known to be a part of the real soot, and therefore may be represented by a, the second figure, which is not yet known to be a part of the real root, by x; the first figure standing to the left may be considered as a tens figure and the second a unit; from whence the present figures in the root may be represented by $a+x$; we must now involve this binomial to the highest power of the
given equation; thus, let the given equation be of the fourth order, or $y^{4}+b y^{3}-c y^{2}-d y=0$, and the fourth power of a $+x=a^{4}+4 a^{3} x+6 a^{2} x^{2}+4 a x^{3}+x^{4}$, in which we may consider a^{4} to have been already extracted, and as the sum will have to be multiplied by x at last, we shall have $4 a^{3}+6 a^{2} x$ $+4 a x^{2}+x^{3}$, but as a may be considered to be ten times the value of the figure by which it is represented, we have, in the following examples, begun with x^{3}, and retreated one figure tothe left, it being the same way that is practised in common numeral multiplication, in order to save the repetition of ciphers: now, as y^{4} has only 1 for its co-efficient, the sum of $4 a^{3}+6 a^{2} x+4 a^{2}+x^{3}$. may be now left to represent y^{4}. Then $\overline{a+x}{ }^{8}=a^{3}+3 a^{2} x+3 a x^{2}+x^{3}$ where the same allowances for a^{3} and a lower power of x will have to be made as before, whence we shall have $3 a^{2}+3 a x+x^{2}$, which (as y^{8} is multiplied by $+b$) must be multiplied by b, and then $3 a^{2} b+$ $3 a b x+b x^{2}$ will represent $+b y^{3}$.

Then $\overline{a+x_{1}}{ }^{2}=a^{2}+2 a x+x^{2}$ where, proceeding as before, we have -2ac-cx to represent -cy ${ }^{2}$.

Then $a+x$ will be merely $-d$, to represent- $d y$, therefore we shall have $4 a^{3}+6 a^{2} x+4 a x^{2}+x^{3}$

$$
\begin{array}{r}
3 a^{2} b+3 a b x+b x^{2} \\
-2 a c-c x \\
-d
\end{array}
$$

which, added together, will give the second divisor.
But in the addition of numerals it will have to be observed, that x is a decimal, and that therefore as many ciphers must be prefixed to the right of $-d$ as there are units
within one in the highest power of the given equation; in the above case it will be $4-1=3$, the number of ciphers; and generally let n represent the number of decimals in the root and m the number of units in the highest power of the given equation, then the number of ciphers to be added will be

$$
\begin{aligned}
& y^{2}=m-1 \times n \\
& y^{2}=m-2 \times n \\
& y^{3}=m-3 \times n, d \tau .
\end{aligned}
$$

which will be readily seen by adding together the root, square, cube, \&c. of a decimal, as . 2

$$
\begin{array}{ll}
.2^{2}=.04 & .02^{2}=.0004 \\
.2^{3}=.008 & .02^{3}=.000008 \\
.2^{4}=.0016 & .02^{4}=.00000016
\end{array}
$$

where, to make an equal quantity of decimals in each line, it will be necessary to add 3 ciphers to . 2 two to . 04,1 to .008, 6 to .02, 4 to .0004, and 2 to . 000008 .

When the second divisor has been multiplied by the last figure in the root and the product subtracted, to the remainder as many ciphers must be brought down as before, and every thing brought on in the same manner.

The two figures in the root will now be known to be a part of the real root, and therefore will be a, the figure next put in the root will be x.

After the first two or three divisors have been got it will be easily seen what the next quotient figure will be, as the significant figures, or those to the left in the divisors, will not then vary much.

This treatise would not have been published in its present form, if the author could have got it inserted in any of the periodical publications.

The solution of three different forms of the irreducible case in cubic equations was sent to the editor of the Mechanics' Magazine, London, on the 1st of August ; its receipt was acknowledged on the 13th of August, but, as it has never yet appeared, what use the editor has made of it is not known. The solution of a cubic equation was sent to the editor of the Kaleidoscope, Liverpool, on the 12th of September, and appeared in it on the 4th of October; but the editor, in a note, November 1st, declined inserting, for the present, any thing more in mathematics.

Oldham, Dec, 1st, 1825.

$$
x=3,1+2 \pi, n+\pi+3
$$

SOLUTION

of

EQUATIONS,

CONTAINING ONLY ONE UNKNOWN QUANTITY.

Example I.

Given $x^{3}-15 x^{2}+63 x-50=0$.

$1 \times 1=1$	1	49)50(1.028 $=x$
+63	-15	49
64	-15	$357604) 1000000$
-15		715208
49	lst divisor.	35425744)284792000
		283405952
		1386048

$8 \times 8=$	64
$3 \times 102 \times 8=2448$	-15
$3 \times 102 \times 102=31212$	-30720
+63145744	
+6300000	
+66145744	
-30720000	

35425744 3rd divisor.

Solution 2. $\quad x^{3}-15 x^{2}+63 x=50$

	$\text { 9) } 50(6.576=x$
$6 \times 6=36 \quad 6$	-
+63 -15	-725)-4000
- -	-3625
$99 \quad-90$	-49301)-375000
-	- -345107
9 Ist divisor.	-4577004)-29893000
390.3.	-27462024
	-2430976

5×5	$=25$
$3 \times 6 \times 5=90$	125
$3 \times 6 \times 6=108$	-15
11725	-18750
+6300	-18025
+18025	-725

$\begin{array}{rr} 7 \times 7 & =49 \\ 3 \times 65 \times 7 & =1365 \end{array}$	$\begin{array}{r} 1307 \\ -15 \end{array}$
$3 \times 65 \times 65=12675$	11
	-1960500
1281199	+1911199
+630000	4)
+1911199	-49301 3rd diviso
$6 \times 6=\quad 36$	13146
$3 \times 657 \times 6=11826$	-15
$3 \times 657 \times 657=1294947$	
	-197190000
129612996	+192612996
$+63000000$	
+192612996	457,004 4th divisor.

When $x=6.576$.
$x^{3}=+284.371070976$
$-15 x^{2}=-648.656640$
$+63 x=+414.288$
-50 .
+.002430976 the above remainder.

SOLUTION OF EQUATIONS.

3×3	$=9$
$3 \times 7 \times 3$	$=63$
$3 \times 7 \times 7$	$=147$
$\frac{15339}{15330}$	-15
$\frac{21639}{2145}$	
	-21450
189	nd divisor.

9×9	$=81$
$3 \times 73 \times 9$	$=1971$
$3 \times 73 \times 73$	$=15987$
$\frac{1618491}{}$	-230000
2248491	
-2203500	
44991	
	rd divisor.

$5 \times 5=$	$=\quad 25$	14785-15
$3 \times 739 \times 5=$	= 11085	
$3 \times 739 \times 739=1638363$		
	163947175	-221775
	+ 63000000	
	226947175	
	-221775000	
	5172175	

When $x=7.395$.

$$
\begin{array}{r}
x^{3}=+404.403154875 \\
-15 x^{2}=-820.290375 \\
+63 x=+465.885 \\
+ \text { the above remainder } \begin{aligned}
+49.997779875 \\
50.0000000000
\end{aligned}
\end{array}
$$

The three values of $x\left\{\begin{array}{l}+1.028 \\ +6.576 \\ +7.395\end{array}\right.$

$$
+14.999\left\{\begin{array}{l}
\text { second term with its } \\
\text { sign changed. }
\end{array}\right.
$$

Ex. II. Given $x^{4}-8 x^{3}+14 x^{2}+4 x=8$; or to get the negative root $x^{4}+8 x^{3}+14 x^{2}-4 x=8$.

$$
\begin{array}{r}
7 \times 7 \times 7=343 \quad 7 \times 7=49 \\
8 \\
392
\end{array}
$$

7	$10063) 80000(.732$
14	$\frac{80441}{-732}=x$
9800	$\frac{89261841}{3920}$
343	$30855146488) 63281590000$
14063	$\frac{61710292976}{-4000}$
10063	lst divisor.

29753947 2nd divisor.			
$2 \times 2 \times 2=$	$=8$	$2 \times 2=\quad 4$	41462
$4 \times 73 \times 2 \times 2=$	$=1168$	$3 \times 73 \times 2=438$	14
$6 \times 73 \times 73 \times 2=$	$=63948$.	$3 \times 73 \times 73=15987$	
$4 \times 73 \times 73 \times 73=$	$=1556068$		20468
		1603084	
	1562474488	8	
	12824672000		
- 20	20468000000	12824672	
	34855146488		
	- 4000000000		
	30855146488	3rd divisor.	

47	4000
14	65800
658	53063
	+122863

$$
\begin{array}{rr}
2 \times 2 \times 2 & = \\
4 \times 273 \times 2 \times 2 & 8 \\
6 \times 273 \times 273 \times 2= & 8943488 \\
4 \times 273 \times 273 \times 273=81385668 \\
\hline
\end{array}
$$

$$
2 \times 2=\quad 4
$$

$$
3 \times 273 \times 2=1638
$$

$$
3 \times 273 \times 273=223587
$$

$$
\overline{22375084}
$$

$$
-8
$$

-179000672000
$+161943146488$

- 17057525512 4th divisor.

5462	4000000000
14	76468000000
6468	81475146488
	161943146488

	Solution 3. x^{4}	$x^{3}+14 x^{2}+4 x=8$.
343	$\begin{array}{rr} 49 & 7 \\ -8 & 14 \end{array}$	$\underset{71561}{10223) 8000(.763=x .}$
	-392 9800	13201896)84390000
	4000	79211376
	343	-
		39513408561
		12272831439
	- 10223	

$6 \times 6 \times 6=216$	$6 \times 6=36$	146
$4 \times 7 \times 6 \times 6=1008$	$3 \times 7 \times 6=126$	14
$6 \times 7 \times 7 \times 6=1764$	$3 \times 7 \times 7=147$	
$4 \times 7 \times 7 \times 7=1372$		20440000
	15996	4000000
1558696	-8	1558696
	-127968	25998696
in.lat		12796800

$3 \times 3 \times 3=$	27	$3 \times 3=\quad 9$	
$\begin{array}{r} 4 \times 76 \times 3 \times 3= \\ 6 \times 76 \times 76 \times 3= \end{array}$	2736	$3 \times 76 \times 3=684$	
	$\begin{array}{r} 6 \times 76 \times 76 \times 3=103968 \\ 4 \times 76 \times 76 \times 76=1755904 \end{array}$		$3 \times 76 \times 76=17328$
	1766328187	1739649	
		-13917192	

```
;1523
    14
21322000000
    4000000000
    1766328187
    27088328187
    -13917192000
    13171136187 3rd divisor.
    C
```


66509117736)403597590000 395054706416

4542883584

$2 \times 2 \times 2=8$	$2 \times 2=4$	102
$4 \times 5 \times 2 \times 2=80$	$3 \times 5 \times 2=30$	14
$6 \times 5 \times 5 \times 2=300$	$3 \times 5 \times 5=75$	-
$4 \times 5 \times 5 \times 5=500$		142800
	7804	4000
530808	$5-8$	530808
	-62432	$\begin{array}{r} 677608 \\ -624320 \end{array}$
		isor 53288

$$
3 \times 3 \times 3=\quad 27 \quad 3 \times 3=\quad 9
$$

$3 \times 3 \times 3=$	27	$3 \times 3=\quad 9$
$4 \times 52 \times 3 \times 3=$	1872	$3 \times 52 \times 3=468$
$6 \times 52 \times 52 \times 3=$	48672	$3 \times 52 \times 52=8112$
$4 \times 52 \times 52 \times 52=562432$		
		815889
	567317947	-8
Notpl		-6527112

1043 14
$\left.\begin{array}{l}146020000 \\ 4000000 \\ 567317947 \\ \hline 717337947 \\ -652711200 \\ 64626747 \\ \text { 3rd divisor. }\end{array}\right]$

$$
\begin{array}{rrr}
6 \times 6 \times 6= & 216 \\
4 \times 523 \times 6 \times 6= & 75312 \\
6 \times 523 \times 523 \times 6 & 9847044 \\
4 \times 523 \times 523 \times 523 & =572222668
\end{array}
$$

573208125736

Four values of $x\left\{\begin{array}{rr}-.732 & -1571297024 \\ +2.732 & -867358976 \\ +.763 & +12272831439 \\ +5.236 & +4542883584 \\ +7.999 & \text { ssecond term with its } \\ \text { ign changed. }\end{array}\right.$

Ex. 1I. Given $x^{4}-12 x^{2}+12 x-3=0$ to find the four roots.

34388125 3rd divisor.

$8 \times 8 \times 8$	$=\quad 512$	$5: 08$
$4 \times 285 \times 8 \times 8=$	-12	
$6 \times 285 \times 285 \times 8=$	-3898800	-68496
$4 \times 285 \times 285 \times 285=92596500$		
$\frac{92987110112}{12000000000}$		
$-\frac{-68496000000}{36491110112}$ 4th divisor.		

Solution 3. $x^{4}-12 x^{2}+12 x-3=0$.
64

4	$7264) 3.0000(.443=x$
-12	29056
-4800	2217024)9440000
12000	8868096
64	
	1748236667)5719040000
7264 1st divisor	r. 5244710001
	474329999

$3 \times 3 \times 3$	$=\quad 27$	883
$4 \times 44 \times 3 \times 3$	$=1584$	12
$6 \times 44 \times 44 \times 3$	$=34848$	10596
$4 \times 44 \times 44 \times 44$	$=340736$	
344236667		
-1056000000		
12000000000		
1748236667	3rd divisor.	

$$
\begin{gathered}
x^{4}-12 x^{2}+12 x-3=0 \\
\text { or to get a }- \text { root } x^{4}-12 x^{2}-12 x-3=0 .
\end{gathered}
$$

27

The four roots $\left\{\begin{array}{rr}2.858 & \pm .003064869104 \\ .606 & \pm .000030279696 \\ -3.943 & \pm .0004743299999906799\end{array}\right.$

$\begin{array}{rrr} 4^{4}=256 & 64 & 16 \\ 6 & -10 \end{array}$	
+384-160	16676496)81000000
+256	66705984
$\begin{array}{r} -160 \\ -448-112 \end{array}$	222139918096)1429401600000
-207-112	1334639508576
1 st div-175	$2310222205747456) 9476209142400000$
	9240888822989824

$$
\begin{array}{rr}
6 \times 6 \times 6 \times 6= & 1296 \\
5 \times 44 \times 6 \times 6 \times 6= & 47520 \\
10 \times 44 \times 44 \times 6 \times 6= & 696960 \\
10 \times 44 \times 44 \times 44 \times 6= & 5111040 \\
5 \times 44 \times 44 \times 44 \times 44= & 18740480 \\
& 192586012496
\end{array}
$$

$$
\begin{array}{rr}
6 \times 6 \times 6 & = \\
4 \times 44 \times 6 \times 6 & = \\
6 \times 44 \times 44 \times 6 & =69696 \\
4 \times 44 \times 44 \times 44 & =340736
\end{array}
$$

347769176 +6
208661505600 192586012496
401247518096 -178807600000

3rd divisor 222439918096

$6 \times 6=$	36
$3 \times 44 \times 6=$	892
$3 \times 44 \times 44$	$=5808$
$\frac{588756}{-10}$	-112
-58875600000	-99232
-99232000000	
-20700000000	
-178807600000	

$4 \times 4 \times 4 \times 4=$	256
$5 \times 446 \times 4 \times 4 \times 4$	142720
$10 \times 446 \times 446 \times 4 \times 4$	31826560
$5 \times 446 \times 446 \times 446 \times 4=$	3548661440
$5446 \times 446 \times 446 \times 446=$	197837875280 1981930598323456

$$
\begin{array}{rrr}
4 \times 4 \times 4 & = & 68544 \\
45446 \times 4 \times 4 & = & 4773984 \\
6 \times 446 \times 446 \times 4 & =354866144
\end{array}
$$

355343827904
+6

2132062967424000
1981930598323456

4113993565747456

- 1803771360000000

4th divisor 2310222205747456

4×4	$=16$
$3 \times 446 \times 4$	5352
$3 \times 446 \times 446$	$=596748$
59728336	
-10	-112

-597283360000000
-9994880000000000
-207000000000000
-1803771360000000
$x^{5}+6 x^{4}-10 x^{3}-112 x^{2}-207 x-110=0$, or to find a $\cdots \operatorname{root} 6 x^{4}-x^{5}+10 x^{3}-112 x^{2}+207 x-110=0$; on trying this, - 2 will be found to be a root.

Dividing the equation by $x+2$ we have $x^{4}+4 x^{3}-18 x^{2}-$ $76 x-55=0$; or to find a - root $x^{4}-4 x^{3}-18 x^{2}+76 x-$ $55=0$, whence -1 is evidently a root; and again dividing this equation by $x+1$, we have $x^{3}+3 x^{2}-21 x-55=0$: or to find a $-\operatorname{root} 3 x^{2}-x^{3}+21 x-55=0$; by inspection -5 is a root, and again dividing, we have $x^{2}-2 x-11=0$, we now have four roots. The original equation will only admit of one more, and by adding the roots together we find it must be - , therefore $x^{2}+2 x-11=0$.

486	4924
200	$\underline{2000}$
686	$\overline{6924}$

The five roots $\left\{\begin{array}{l}+4.464 \\ -2 \\ -1 \\ -5 \\ -2.464 \\ 6\end{array}\right.$

$$
\frac{3}{724}=1
$$

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.
This book is DUE on the last date stamped below.
$62^{\operatorname{lan} 6} 60 \mathrm{~V}$ [

