(

THE FAMILIES AND GENERA OF
LIVING RODENTS

THE FAMILIES AND GENERA

 OF
LIVING RODENTS

BY
J. R. ELLERMAN

WITH A LIST OF NAMED FORMS (1758-1930)

BY
R. W. HAYMAN and G. W. C. HOLT

VOLUMIE I. RODENTS OTHER THAN MURIDAE

LONDON:

PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM

Sold at Thf British Musecm (Nistral History), Cromwell Road, S.W.7, and by
B. ©eariteh, Ltd; Dtal \& (o., Ltd.;
and the Oxford LNiversity Press

IADE AND PRLITED IN GREAT BRITAIN HY JARROLD AND SUNS LTD. NORWICE

THIS WORK IS
UEDICATED
TO THE MEMORY OF
MY FRIEND
WILIAAM COX

PREFACE

As the result of several years devoted to a careful study of the rich recent collections belonging to this muscum, the author has prepared the following review of the families and genera of living Rodents; he has also supervised the preparation ly Mr. R. W. Hayman and Mr. G. W. C. Holt, members of the Museum staff, of a list of all the species and subspecies of rodents, described from the roth edition of Linnacus's Systema Natura, 1756, down to the end of 1936. Such a review and such a list have long been two of the most needed desiderata of zoologists.

The author has endeavoured in each case to find out not only' what characters have been assigned to a given genus, but what characters it in fact possesses, and to test their value and constancy. Genera are recognized by their intrinsic characters; a mere geographical differentiation of genera does not exist. Whenever the author has been able to study a genus for himself he has included it in his "lies""; when not seen personally he merely gives a note of the ascribed characters. 'The carrying through of this great examination has led to a considerable reduction in the number of genera here recognized; thus, of 44° forms or groups given, at some time or another, full generic rank, only 343 (5 51 non-murine, 192 murine) are now regarded as valid genera. Indeed, had the Museum collections of North American Rodents been more extensive, and had it been possible to make a really detailed survey of the South American Nuridae, a further much-needed reduction of genera would doubtless have taken place.

With regard to major classification, the author excludes the Duplicidentata from the Order Rodentia. He reviews the more recent classifications of the Order (so restricted), to wit, those of Oldfield Thomas, 1896; Tullberg, 1899: Weber, 1904 and 1928; Miller 太 Gidlev, 1918; and Winge, 1924. He then proposes a new classification of the families and genera, which, while necessarily sharing some features with one or uther of the older systems, on the whole appears to be a great improvement upon any of the systems previously proposed.

Of great interest is the chapter on distribution and the conclusion reached by the author that, as regards its peculiar Muridae, Australasia may be claimed as an evolutionary centre. That view, in face of the characters of the group in question and the very high antiquity of the Order, appears to me to be perfectly sound.

T'o conclude these general remarks the author is to be congratulated on having performed a colossal task, and we are indebted to him for providing an honest one-man view which cannot fail to be of service to all who wish to study this great and complex Order in future.

With regard to the list of named forms, every endeavour has been made to make it complete and accurate, but it is too much to hope that nothing has escaped the compilers.

The beautiful drawings of skulls and teeth prepared by Mr. A. J. Engel Terzi greatly enhance the value of this work; with the exception of Figs. 62, 63,
 hut originally published in Miller's Catalogue of the Mammals of ll'estern Europe, 1912, all the figures have been specially drawn for this solume.

Owing to the heary work undertaken by the artist and to the prevalent war conditions, considerahle delay has occurred in the publication of Vol. 1, which deals with the general natters discussed above and with the families and genera of non-murine rodents.

Vol. 11, dealing with the murine rodents, is already in type; in order to asod further delas it is proposed to issue it immediately without waiting for the preparation of its full complement of figures.

Sol. III, to be published hater, will be an "Atlas" containing all the figures of Vol. I repeated; the full complement of figures for Vol. 11; to these it is hoped to add drawings of some of the more interesting and important external characters and of dissections of jaw muscles.

MARTIN A. C. HNTTON, Keeper of the Department of \%oology.
British Museum (Natural Ilistory) 25th Warch, I940

AUTHOR'S FOREWORD

In 1896 Oldfield "Thomas proposed a classification of Simplicidentate Rodents in which he recognized 156 genera.

In 1904, Trouessart in his Catalogue of Mammals listed 205 genera of this section of mammals.

At the present day, more than four hundred and forty forms have been given, at some time or another, full generic rank, so that in the last thirty-five years there has been an increase of approximately two hundred and forty genera.

The object of this work is primarily to inquire into the status of these named genera, and to give, in each family and subfamily, a key which will indicate as reasonably, clearly and hriefly as possible, the differences between such genera as are supported on characters which appear constant through the various groups, and worthy of generic recognition.

This has led on the one hand to a careful study of the classification of the families and superfamilies or major groups of all authors who have attempted an arrangement of the Order based on adequate material and including all the principal leading genera of all families as recognized to-day (Thomas, 1896: 'Thllberg, iS99; Weber, 1904. 1928; Niller \& Gidley, 1918; and Winge, 1924), and on the other hand to the collection of a list of all named forms (species and subspecies) which have been named in the order since linnaeus (75 S), up to and including the year 1936 .

It is not my intention to enter into a detailed description of the skeleton, soft parts, etc., of each genus; this has been done already in a far more competent manner than I could attempt (Tullberg, 1899). Ninety-nine out of a hundred genera are based on cranial, dental, and external characters, or to put it more crudely, "skull and skin" characters. This work is based almost entirely on these characters. It must be noticed that in cranial, dental and external characters, very many specimens of a species or genus may usually be at hand for examination, so that whether such a character is constant or not can generally be checked easily: generic names based on skeleton, soft parts. or characters such as the baculum, which has been used for generic names (here not retained) in the Siciuridae, can as a rule only be examined for one species and often one specimen of a genus; therefore it is not possible to give full notes on such a character throughout a whole gemus or, if it is so, the notes refer to a restricted number of specimens only: Under these circumstances, it seems wiser not to pay too much attention to names which have been based solely on such characters.
'Mhis work is based entirely on the collection of the British. Nuseum, to the authorities of which 1 am much in deht for their kindness and consideration throughout the compilation of this work. No genus which is nut represented in that collection is included in my keys; as it is difficult to include in a key any form which has not bece cxamined, and in the case of certain Muridac.
impussible. 1 lowever, there are only five non-Murine genera at present unrepresented in London, and about sistecn (out of nearly two hundred) Muridae; notes on these will be included, but generally speaking no comments. Of the genera which are included, I have endeavoured to give in each case the approximate range, the number of forms at present recognized (t) 1936), a list of these forms, and a short description of the main cranial, dental and external characters.

Concerning the dental characters, in this Order, great difference of opinion exists regarding the homologies of the various parts of each tooth. American authors use in the main a series of names for each cusp which are figured and cxplained by Goldman, North Amer. Fauna, 43, p. ir, igis; Miller \& Gidley, IgLS, divide the greater part of the Order into "tritubercular" and "quadrituhercular" series: Winge apparently uses quite a different theory which he takes throughout Alammalia; and Ilinton uses still a different notation. With the exception of the Alurinae, in which a series of eight or sometimes nine main cusps go through the entire subfamily, no attempt has been made in this work to use a definite formula; I have endeavoured to describe the dentition of each genus as I see it, and am content to leave the working out of cusp homologies to those with more experience than I have.

The view that the dental pattern of modern Rodentia is generally speaking derived from a much more complex pattern than is now present, expressed by Ilinton, Monograph of Voles and Lemmings, 1926, Ewolution of Molars, pp. 102-124, is here accepted. However, it is not the purpose of this paper to enter into an argument as to whether this view is correct, or the view frequently held that a complex dentition in a living Rodent is a secondarily acquired one. Take for instance two cases, Mapalomys, a very complex-toothed Rat (Murinae) as compared with Ruttus (normally a simple-toothed Rat); in this work, Mapalomys is considered the primitive type, Rattus the specialized one; but turn these siews round, and the two genera will still be at the opposite end of two extremes, which is broadly speaking what I set out to prove in each case.

So far as the list of named forms of each genus is concerned, I list those which are named, making no attempt to guarantee the validity of any subspecies or species. How many of these names will ultimately be reduced to synonymy is not clear; but I believe that very many of them will prove invalid with more material available. I have attempted in each case in which a genus has not been revised, where pussible, to divide the genera into "specific groups" as is now done by American authors. These groups indicate certain characters within the different species of each genus, but must be regarded as provisional. The attitude, however, is held that a list of names in some semblance of order, no matter how provisional, is hetter than a string of meaningless alphabetical names. At least I hope it gives a start to those who are interested in the characters which run through the species of the various genera. I expect however that a large number of South American Mice (Cricetinac) will have for the time heing to be abandoned, and listed alphabetically. It is perhaps not too much to hope that these lists will act as a deterrent to authors who rush to give names to new forms before consulting all the literature on the genus in question. Though great care has been taken I can give no guarantee that the list of
named forms is complete, particularly in the ease of some of the older synonyms, to which less attention has been paid than to names described more recently. The list was originally based on that of Trouessart (Cat. Namm. Viv. et Foss, 1904); names which appear in synonymy in this work have in most eases been ineluded here as they appear in 'Trouessart's list, and their position has not been verified. I have listed sixty-four hundred forms which are supposed to be valid at the present day. Subspecies, cxcept in cases of a genus which is definitely revised, are listed as far as possible geographically. Each named form is listed under its present aecepted name, or the name which appears to be correct; in many cases not under the generic name under which it was described, for instance "Sminthus loriger," Nathusius, 18 \&o, is now listed as "Sicista subtilis loriger," etc., etc.

The Order is absolutely dominated by one family, the Muridae, both in number of genera and named forms, as proved by the following figures, which must be taken as approximate.

Twenty-two families of Rodents other than Muridae:
I5I valid genera containing 2,773 named forms.
Family Muridae:
I92 valid genera containing 3,600 named forms.
I have had therefore to divide the work into two volumes, the first of which contains all Rodents not belonging to the family Muridae, the second devoted entirely to that family.

This work is based solely on Rodents which are living, or assumed to be living, though I have added short notes on the fossil history of each family, chiefly from a distributional point of view.

My sincere thanks are due to the offieials of the British Museum for their kind help and consideration throughout the time I have been preparing this work; especially I must mention Captain Guy Dollman, who originally made it possible for me to undertake this review; Mr. M. A. C. Hinton, who has undertaken the task of editing the work; Mr. Hayman and Mr. Holt, who have between them got together the references and type localities of more than sixty-four hundred names in the Order, and the former for much assistance in dealing with some of the species of the more unwieldy genera; Dr. 'Fehernavin, who has translated several papers from Russian, enabling me to give some details concerning the distribution of the various groups of Rodents oceurring in the U.S.S.R.; Mr. A. J. Engel Terzi, who has made drawings of the more important genera; Mr. J. L. Chaworth-Musters, to whom I am indebted for nearly all my knowledge of Palacarctic Rodents; also I must thank Mr. E. R. Newman, who has given me much help throughout the compilation of the work. and Miss R. Blizard and Mr. F. C. Mitch, who have assisted during the later stages. Lastly I would thank my wite for numerous working drawings of specimens and continuous help in other ways. The indulgence of readers is sought for any typographical or other small errors in this work. 'The writing of the hook itself was finished in June last, but the revision of the final proofs had not heen completed when war broke out. Since then it has been possible for me to give only the most cursory and intermittent attention to such revision.

CONTENTS

Page
Preface vii
At'thor's Foreword is
limits of the Orier Rodintia I
Variation in Roneats 3
Previocs Classfications of the Order 5
Oldfield Thumas, 1896 5
'Tullberg, 1899 S
Weber, 1904, 1928 II
Niller \& Gidley, 1918 13
Winge, 1924 18
Octline of Clastification here adopted 22
Zygomasaeteric Strictire 42
Distribetion. 47
Lists of Genera and Principal Species dealt with in this Yollame 57
Palaearctic 57
Nearctic 6
Indo-Nalayan 6.4
African 60
Neotropical 69
Order RODENT1A 7
Key to Superfamilies 7
Superfamily BATHIYERGOIDAE 79
Family Bathyergidae 79
Genus Bathyergus, Illiger 8
Genus Iheliophobius, Peters r_{t}
Genus Georychus, Illiger So
Genus Cryptomys, Gray 86
Genus Heterocephalus, Rüppell $9+$
Superfamily HISTRICOIDAE 96
Family Echamidae. 101
Subfamily Echmyman 100
Genus Echimss, Cuvier 108
Genus Isothrix, Wagner 113
(icnus Diplumus, Thomas 115
rAGE
Genus I'rochimes, Allen 115
Genus Ihoplomss, Allen 122
Cenus Cercomys, Cuvier 123
Genus Euyzygomatomys, (boeldi 124
Genus Chomys, 'Thomas 125
Genus Carterodon, Waterhouse 125
Genus Mesomys, Wagner 126
Genus Lonchothix, Thomas 127
subfamily Capromivinaf 128
Genus Cafromys, Desmarest 128
Genus Geocapromys, Chapman 131
Genus Procupromys, Chapman 132
Subfamily Plagiodontinae 133
Genus Plagiodontia, Cuvier 133
Subfamily Dactilomyinae 134
Genus Thrinacodus, Günther 135
Genus Dactylomys, Geoffroy 136
Genus Kamahateomys, Jentink 137
Subfamily Myocastorinae 139
Genus Myocastor, Kerr 140
Subfamily Thryonomyinae 144
Genus Thryonomys, Fitzinger 144
Subfamily Prtromyinae 149
Genus Petromas, Smith 149
Suhfamily Abrocomicae 151
Genus Abrocoma, Waterluuse 152
Subfamily Octodontinay 155
Genus Octomys, 'Thomas 156
Genus Acomaemy's, Ameghino 157
Genus Octodon, Bennett 159
Genus Octudontomes, Palmer 159
Genus Spalacopus, Wagler 100
Genus Ctenomys, Blainville 161
Family Divomyidae. 170
Genus Dinoms, Peters 171
Family Erethizontidae 173
Subfamily Chaetomivinae $17+$
Genus Chuetomys, Gray 175
PAGE
Subfamily Erethizontinae 177
Genus Erethizon, Cuvier 178
Genus Echinoprocta, Cray 181
Genus Coendou, Lacepède 182
Family Dasyproctidae 189
Genus Dasyprocta, Illiger 190
Genus Myoprocta, 'Thomas 196
Family Mrstricidae. 197
Genus Trichys, Günther 203
Genus Atherurus, Cuvier 205
Genus Thectrus, Lyon 209
Genus IIystrix, Linnaeus 212
Family Cuniculidae 220
Genus Cuniculus, Brisson 221
Family Cuinchillidae 226
Genus Chinchilla, Bennett 227
Genus Lagidium, Meyen 229
Genus Lagostomus, Brooks 233
Superfamily CAVIOIDAE 237
Family Cavinae 237
Subfamily Caviinaf 238
Genus Cavia, Pallas 240
Genus Galea, Meyen 242
Genus Caziella, Osgood 243
Genus Kerodon, Cuvier 2.46
Genus Dolichotis, Desmarest 247
Subfamily Hydrochofrinae 249
Genus Hydrochoerus, Brisson 250
Superfamily APLODONTOIDAE 253
Family Aplodontiddae 253
Genus Aplodontia, Richardson 255
Superfamily SCIUROIDAE 259
Family Scuuridae 259
Outline of previous classification of the family 261
Classification here adopted 269
Genus Belomys, Thomas $2-6$
Genus Trogopterus, Iteude 279
Genus Pteromiscus, 'Thomas 280
P.IGE
Genus Petaurista, Link 281
Genus Afomus, Rohinson A Kloss 290
Genus I'toromss, C'uvicr 291
Genus Glaucomys, 'lhomas 294
Genus Eoglancomes,] howell 247
Genus M-lopetes, 'Thomas 20.8
Gentus Petmomys, 'Ihomas 300
Genus Petauillus, Thomas 302
Genus lomys, Thomas 303
Genus Eupetaurns, 'Thomas 304
Gemus Myosciurns, 'Thomas 312
Genus Kimnoscinrus, 'Yrouessart 313
Genus Scimilhes, Thomas 317
Genus Microsciurus, Allen 319
Genus Sintheosciums. Bangs 321
Genus Sciurns, Linnaeus 321
Genus T'amiascimus, Trouessart 345
Genus Callusciurus, Gray 3.48
Genus Funambulus. Lesson 376
Genus Dirmomes, Heude 350
Genus Ratufa, Gray $3{ }^{3} 3$
Genus Mentes, Thomas 390
Genus Lariscus, Thomas \& Wroughton 391
Gemus Ghyphotes, 'Thomas 393
Giemus Rheithrosciurus, S;ex 393
(ienus Rhinosciums, (iray 395
Gemun Mrascimur, Tate \mathbb{E}. Irchbold 396
(ienus Mchinciumus, Trouessart 394
Gemus Paraverus, Forsyth Major 405
Genus F'umisciurus, 'Trouessart 410
Genus Protwemer, Forsyth Wajor 415
(ienus Myrsihes, Thomas 416
(jemus Efiverne, Thomas 417
Genus Verus, Jhemprich \& Ehenherg 418
Gemus Allmtoxerns, Fursth Xajor 422
Gienus Spemophilopsis, Blasius 423
Genus Scimotamiers, Viller 425
Crenus Tamias, Illigen $42(1)$
CONTEN"IS xvil
Genus Citellus, Oken $+37$PACE
Genus Marmota, Blumenbach 454
Genus Cunomes, Rafinesque Genus Cinomys, Rafinesque 461
Superfamily CASTOROIDAE 464
Family Castoridae 464
Genus Castor, Linnacus 465
Superfamily GEOMIOID.AE 468
Family Ileteromyidae 470
Subfamily ILeteromyinaf 47
Genus Heteromys, Desmarest $+72$
Genus Liomys, Merriam 476
Subfamily Dipodomyinate 479
Genus Perognathus, Wied 480
Genus .Microdipodops, Merriam 492
Genus Dipodomys, Gray 494
Family Geomyidae 505
Genus Thomomus, Wied 507
Genus Geomps, Rafinesque 524
Genus Pappogeomss, Merriam 527
Genus Cratogeomys, Merriam 328
Genus Platygeomys, Merriam 530
Genus Orthogeomys, Merriam 531
Genus Meterogeomys, Merriam 532
Genus Macrogeoms, Merriam 533
Genus Zygogeomys, Nerriam 534
Superfamily ANOMALUROID.AE 535
Family Acomaluridafe 535
Subfamily ANomaltrinae 537
Genus Anomalurus, Waterhouse 537
Genus Anomalurops, Natschie 541
Subfamily Imitrinae 542
Genus Idiurus, Matschic 543
Genus Zenkerella, Matschic 55^{6}
Superfamily PEDETOIDAE 57
Family Pedetidaf 547
Genus Pedetes, Illiger 549
Superfamily CTENODACTYI.OIDAE 553
Family Ctenodactylidae 553
PMGE
Genus Pectmator. Blyth 555
Conus Ctomortactylus, Gray 556
Genus Maswhtiora, Iataste 559
Genus Feloria, Lataste 559
Superfamily Dll'(O)()ll). IJ 560
Family Diporidase 56
Suhfamily Sucternata 564
Genus Sicista, Gray 564
Suhfamily Zapouncia 568
Genus Eozupus, Prehle 568
Genus Zapus, Coues 569
Genus Vapueozapus, l’reble. 573
Subfamily Carinocraninsaf 574
Genus Salpingotus, Vinogradov 574
Genus Cardiocramius, Satunin 575
Suhfamily EichorectiNaf 576
Genus Euchorentes, Sclater 5う
Suhfamily Dipodinaf 579
Genus Allactasa, Cusier 580
Genus Alactasulus, Nehring 587
Genus Prseretmus, Gloger 588
Cienus Paralifus, V'inogradov 589
Genus Dipus, Zimmermann 590
Genus Scirtopode, Brandt 591
Genus Jaculus, Erxlehen 593
(;enus Eremodipus, Vinogradov 597
Superfamily NLROJD.AE 599
Family Nuscardinidaf 600
Subfamily (seaphitrixaf 603
Genus Graphinms, Smuts 60.
Subfamily Mlezarincinaf 612
Genus Eliomss, Wagner 613
Genus Dwomss, 'Thomas 616
Genus Glimhus, Thomas 620
Genus Glis, Brisson 620
Genus Muscardims, Kaup 623
Genus Myomimus, Ognev 626
Subfamily l'latacanthomyonae 626
Genus Platacanthomys, Blyth 62
Genus Typhlomss, Milne-Edwards 629
Family Lophiomynal 6132
Genus Lophomss, Milne-Edwards 632
Family Spalacidae 636
Genus Spalax, Guldenstaedt 638
Family Rhizomyidae ${ }^{6}+7$
Genus Rhizomess, Gray $6+6$
Genus Cannomys, Thomas 651

LIS'I OF TEXT-FIGURES

LIST OF TEXT-FIGURES				xxai
fig.				PUEF
70.	Lagostomus maximus, Desmarest	- -	Skull - ${ }_{5}$	235
71.	do.		Cheektecth $\times 2 \frac{1}{2}$	235
72.	Caciella australis joannia, 'Thomas	.	Skull $\times 2$	244
73.	do.		do.	245
74.	do.		Cheekteeth $\times 6$	245
75.	Hydrochoerus hydrochaeris, Linnaeus	. -	Skull $\times \frac{1}{2}$	249
76.	do.		do.	250
77.	do.		do.	251
78.	do.		Cheekteeth $\times 1 \frac{1}{2}$	252
79.	Aplodontia rufa, Rafinesque	- .	Skull \times I	256
So.	do.		do.	257
81.	do.		Nandible $\times 1$	257
			Cheekteeth \times_{4}	
82.	Belomy's pearsoni trichotis, Thomas	-	Skull $\times 2$	$2-8$
83.	do.		do.	278
84.	Trogopterus xanthipes mordax, Thomas	. .	Skull $\times 5$	280
85.	Petaurista philippensis, Elliot	.	Skull $\times 1$	282
86.	do.		do.	283
87.	do.		Cheekteeth $\times 4$.	283
88.	P'teromys rolans, Linnaeus	. .	Skull $\times 2$	292
89.	do.		do.	292
90.	do.		Cheekteeth $\times 5$	293
91.	Myosciurus pumilio, Le Conte .	. -	Skull $\times 3 \frac{1}{2}$	314
92.	do.		do.	314
93 a.	Myosciurus pumilio, Le Conte .		Skull $\times 2$	315
	Sciurillus pusillus, Desmarest .	. .	do.	
	,, murinus, Müller \& Schlegel		do.	
d.	Callosciurus tenuis surdus, Miller	. .	do.	
94.	Sciurus rulgaris, I innaeus	-	Skull $\times 1 \frac{1}{2}$	328
95.	do.		do.	329
96.	do.		Cheekteeth $\times 5$	329
97.	Rheithrosciurus macrotis, Gray		Skull $\times 1$	394
98.	do.		do.	394
99.	Rhinosciurus laticautatus tupaioides, Gray		Skull $\times 2$	397
100.	do.		do.	397
101.	Funisciurus pyrrhopus lconis, Thomas	- -	Skull $\because 2$	410
102.	do.		do.	411
103.	do.		Checkteeth $\times 8$	41

x.x

FIG.
142. Ctenodactylus gumli, Rothman

Skull - $1 \stackrel{1}{2} 557$
143 do.
1+4. Sicista subtilis loriger, Nathusius
${ }^{1} 45$.
146 .
147. Zapus hudsonius, Zimmermann

14 S do.
149.
150. Euchoreutes naso, Sclater

151 .
152.
153. Allactaga euphratica, 'Thomas
154.
155.
156. Jaculus jaculus, Linnaeus

157 .
do.
158 .
159. Graphiurus hucti, Rochehrune

I60. do.
161.
162. Eliomys quercimus, Linnaeus
I_{3}. do.
164.
165. Dyromys nitedula, Pallas

166 . do.
167.
168. Glis glis, Linnaeus

169 .
do.
170.
do.
171. Muscardimus azellanarius, Linnaeus

Iー2. do.
173.
do.
174. Platacanthomys lasiums, Blỵth
175.
do.
176. do.
177. Typhlomys cincrews, Milne-Edwards I-8. do.

Nandible $\therefore 1 \frac{1}{2} 558$
Cheekteeth $\times 7$
Skull $\times 4 \quad 565$ do. $\quad 565$
Cheekteeth $\times 9 \quad 566$
Skull • 32 $\quad 570$
do. 570
Checkteeth $\times 15 \quad 571$
Skull 3 578 do. 578
Cheekteeth \times II $\quad 579$
Skull $\times 2 \frac{1}{2} \quad 5 \mathrm{SI}^{2}$ do. $5 S_{1}$
Cheekteeth $\times 8 \quad 582$
Skull $\times 2 \frac{1}{2} 594$ do. 594
Checkteeth $\times 11559$
Skull < 2 21205 do. 605
Cheekteeth $\times 10 \quad 606$
Skull $\times 2$ 21 4 do. 6I4
Cheekteeth $\times 10615$
Skull $\times 3 \frac{1}{2} \quad 6 \pm 7$
do. 6IT
Cheekteeth \times Io 6I8
Skull <2 62I do. 621
Cheekteeth $\div 10 \quad 622$
Skull $\times 3 \frac{1}{2} \quad 624$ do. 624
Cheekteeth :-10 625
Skull $\times 2$! 628 do. 62 S
Checkteeth $\times 10629$
skull $\times 4 \quad 630$ do. 630

(N.B.-In the figures of checkteeth the left-hand figure (in a few cases lettered a) shows the upper tooth row of the right side seen from below; the right-hand figure (occasionally lettered b) shows the lower tooth row of the left side seen from above.)

LIMITS OF THE ORDER RODENTIA

In 1912 (Science, New lork, n.s. XXXVI, p. 285), Gidley proposed a separate Order for the Rodentia Duplicidentata (Leporidae and Ochotonidae), and restricted the Order Rodentia to the great mass of animals usually known as Rodentia Simplicidentata. 'This division is currently accepted by American authors, usually not so elsewhere (excepting Flower, 1927, Vertebrate List, Zool. Soc. London, 182S-1927, Mammals, p. 239).

Whether it is a classification that is likely to be universally followed seems open to question. Gregory in his excellent work The Orders of Nlammals, Bull. Amer. Mus. N.II. XXVII, 19Io, inclined to the contrary opinion, though stating that no fossil forms have yet been discovered that will connect the Duplicidentata with the Simplicidentata.

I can only say that in my opinion the Lagomorpha may reasonably be regarded as an Order distinct, and that for the purposes of the present work they are regarded as such. The fundamental differences in the appearance of those parts of the skull to which jaw-muscles are attached may surely at once be stated in the lagomorpha to be a much more important character than the retention of the functionless second upper incisor which seems to be quoted always as the main difference between the two groups.

To those of the contrary opinion 1 must plead guilty of saying: notes on the characters of three hundred and forty-five genera containing sixty-four hundred forms proved enough work for one; I do not look for extra forms to include in an Order as vast as this; and I have no intention of including in this Order forms which may very well not belong there. Before including the Lagomorpha in the Order, let us wait until an intermediate family is discovered fossil between the two groups. Because the fact that both Rodents and Jagomorphs are adapted for gnawing does not seem to prove conclusively that they must of necessity be so nearly related as to he included in the same Order.

The Order Rodentia, therefore, as here understood, has been defined by' Niller \& Gidley as follows:
"Terrestrial and fossorial, occasionally arboreal or semi-aquatic placental mammals with both brain and placentation generalized in type; feet unguiculate; elbow joint always permitting free rotary motion of forearm; fibula never articulating with calcaneum; masseter muscle highly specialized, divided into three or more distinct portions, having slightly different functions; caecum without spiral fold; dental formula not known to exceed $i . \frac{1}{1}, ~ c . \frac{1}{5}, \mathrm{p} . \frac{2}{1}$, m . $\frac{3}{3}=22$ permanent teeth; incisors scalpriform growing from persistent pulp, the enamel of upper tooth not extending to posterior surface; distance between mandibular and maxillary toothrows approximately equal, hoth pairs of rows capable of partial or complete opposition at the same time, the primary motion of the lower jaw in mastication longitudinal or oblique."

For further notes on the essential characters of the Order see Tullberg,

Ueher das System der Nagetiere, 8 gag: Fower \mathbb{E} I ydekker, Mammals Living and Extinct, isq1, pp. $443^{-}+4^{8}$; (iregory, (orders of Mammals, 1910, p. 323;
 (the separation of the Order Lagomorpha from Redentia, and differences between the two Orders); larsoms, isot, Proc. Zool. Soc. London, P. 251, Myology of Sciuromomphine and lystricomorphine Rodents, ete.

VARIATION

The great variation or diversity in structure within the Order is one of the features that makes it such an interesting study; it is perfectly safe to say that nowhere among all Orders of mammals is such diversity found in a single Order with the possible exception of the Narsupials.

Great specialization has been attained independently again and again within this order for various modes of life. Among these may be mentioned extreme modification for aquatic life, most developed in $H y d r o m y s$ and immediate allies (Muridae, Ilydromyinae); Ichthroms and immediate allies (Muridae, Cricetinae); to a lesser degree in Ondatra (Muridae, Nicrotinae), Myocastor (Echimyidae), and Castor (Castoridae); modification attaining a high degree for arboreal life; two families contain "flying" genera, with a flying membrane which enables them to take Alying leaps from tree to tree (Sciuridae, Pteromys group), and all genera of Anomaluridae except Zenkerella); in non-flying arboreal types, the Erethizontidae show great specialization of the feet, the hallux sometimes being replaced by a broad movable pad (Coendou, Echinoprocta, Chaetomy's); and many Muridae (\$Iurinae) of the Indo- Malayan region have a fully opposable hallux, as Hapalomys, 「andeleuria, Chiropodonys, Chiromyscus, etc. Xlany genera are fully modified for underground life, with Nole-like appearance, and either immensely developed incisors, or immensely developed claws for digging. In the Muridae, examples are Ellobius and Prometheomys (Microtinae), Votiomys (Cricetinae), and . Irospalax (.Xyospalacinae). The Spalacidae (Spalax) go a step further than any in that even the eyes are suppressed. The Geomyidae, quite unrelated to the above, are all as highly specialized for underground life as any Murine; as are the African Bathyergidae, another isolated group. And in South America, certain Hystricoid genera, as Ctenomys and Spalacopus, have taken to this form of life and become just as modified in external form. High specialization towards bipedal saltatorial life is developed in three or possibly four unrelated families, with Kangaroo-like form and elongated hindlimbs and tail; the Dipodidae (all genera except Sicista), the Pedetidae, the Heteromyidae (Dipodomys and Microdipodops), and probably one member of the Nuridae, Notomys (Murinae), from Australia. Also perhaps some Gerbils.

Cursorial specialization, with form like that of a primitive Ungulate, and reduction of the digits of the hindfoot to three has taken place twice in South America, in the Dasyproctidac, and in the Cavidae (Dolichotis).

Great specialization of the covering of the body into spines is shown in the Hystricidae, being in this family at extreme development superior to that of any other Rodent and perhaps any other dammal. Other families which have a more or less specialized spiny covering are the Erethizontidae (most effective!), certain genera of Echimyidae (not highly developed), and certain Muridae, as in some species of Rattus, and in Acomys; also to a lesser degree in the Cricetine
genus Teacomys. One genus of Nuscardinidae, Platacanthomss, is spiny. And in two families of Rodentia extraordinary and abnormal development in the skull has taken place, the Cuniculidae, with their enormous bony cheekplates, and the Lophomyidae, in which the temporal fossae are roofed in by bony plates.

PREVIOUS CLASSIFICATIONS
 OF ORDER

OLDFIELD THOMAS, IS96
(Proc. Zool. Soc. London, 1896, p. 1012)
(Suborder SIMPLICIDENTATA)

```
A. ANOMIAIURI
    Family A.vonalleridae
            Anomalurus, Idiurus.
B. SCIUROMORPHA
    Family Scu'ridae
        Subfamily Sciurinae
            (a) Rheithrosciurus, Terus, Sciurus, Tamias, "Spermophilus"
            (=Citellus), Cyomys, "Arctomy's" (= Marmota)
            (b) Eupetaurus, Petaurista, "Sciuropterus" (= Pteromys)
            Subfamily Nannosciurinae
            Nannosciurus
    Family Castoridae
            Castor
C. APLODONTTIAE
    Family Aplodonthidae
            Aplodontia
D. MYOMORPHA
    Family "Gliridae"
            Subfamily "Glirinae"
            Glis, Eliomys, Muscardimus, Graphiurus
            Subfamily Platacanthomyinae
            Platacanthomys,Typhlomys
    Family Mleridae
            Subfamily Hydromyinae
            Hydromus, Leromys, Chrotomys
            Subfamily Rhynchomyinae
            Rhynchomys
            Subfamily Phloeomyinae
            Phloeoms's
            Subfamily Gerbillinat
            Gerbillus, Pachyuromy', Psammomys,.Meriones, Rhombomys
            Subfamily Otomyinae
            Otomys, "Oreimomvs" (- Otomvs)
```

Subfamily Dendromyinae
Deomis，Dendromas，S＇teatomys，Malacothrix，Leimacomys
Subamify Murinate
Mus，Nisokia，Crictomys，Malacomys，Lophuromys，Saccostomus， Acomys，Aricanthis，Golunda，I andelewia，Chiropodomys，Bat－ umbs，（＇anpomys，＂Chinuromys＂（－Pogonomys），Ilapalomes， Pithecher，Crateromys，＂Cranrothris＂（ Echiothix），Mastac－ ombs，Lromys，Comilurns
Subfamity Lophiomyinate
Lophiomss
Subfamily＂Sigmuchntinae＂
＂Hamister＂（Cricetus），Mystromys，Brachytarsomis，Vesomys， ＂Hallomss＂（ Vesomys），Brachynomes，İypogeomss，Elurius， Gymmomes，（Onschoms＇s，Peromyscus，Rhipidumys，Tylomys， IIolochilus，Sigmodon，Orysomys，Reithrodontomys，Etigmodontia， Veotomys，Recithrodon，Phyllotis，Scapteromys，Ichthyom＇s，Akodon， （Oymbctores，Blarinomss，Notiom＇s
Subfamily Nentominae
Veotoma，Senomy＇s，Hodomys
Subfamily Microtinac
Phemacomss，＂Eiotomys＂（＝Clethrionomys），．Vicrotus，Synapt－ omys，Lemmus，Dicrostonlx，Ellohins
Subfamity＂Siphneinae＂
＂Siphm＂us＂（ Myospalax）
Family Spalacidaf
Subfamily Rhizomyinae
Rhizomys，Tachyructes
Subfamily Spalacinae
Spalax
Family Geomymar
Geomys，Thomomys
Family I Ieteromifidae
Subfamily Dipedomyinae
Dipodoms＇s，＂Perodipus＂（Dipodomys），Microdipodops
Subfamily Iteteromyinae
Perognathus，Ileteromys
Family Bathyergiome
Buthyergus，Georychus，＂Myoscalops＂（ Ifliophobius），Metero－ cephalus）
Family Diponidae
subfamily＂sminthinae＂
＂Sminthus＂（－Sicista）
Subfamily Zapodinae
Zapus
Subfamily Dipotinace
Dipus，Allactaga，＂Platycercoms＂（ Prgeretmus），Euchorates

```
E. HYSTRICOMORPIIA
Family l'edetidae
    Pedetes
    lamily Octodontwaf
        Subfamily Ctenodactylinae
        Ctenodactylus, Massouticra, Pectinator, Petromys
        Subfamily Octodontinate
            Ctenomys, Aconaemıs, Spalacopus, Octodon, Abrocoma
        Subfamily "Loncherinae"
            (a) Dactylomys, Thrinacodus, Kannabateomys, "Loncheres"
                (-Echimys)
            (b) "Thrichomys" (: Cercomys), Cercoms', Carterodon, Mesomys,
                "Echinomys" ( = Proechimys)
        Subfamily Capromyinae
            Myocastor, Capromys, Plugiodontia, Thryonomys
Family Hystricidae
            Mystrix, Atherura, Trich's
Family Erethizontidae
    Subfamily Erethizontinae
    Erethizon, Cocndou
    Subfamily Chaetomyinae
    Chaetomys
Family Chinchillidae
    Chinchilla, Lagidium, Lagostomus
    Family Dasyproctidae
    Dasyprocta, "Coelogens's" (=Ciniculus)
    Family Dinomifidae
    Dinomys
    Family Catidae
    Cazia, Dolichotis, IIydrochoerus
```

'This classification is admittedly nothing more than a rearrangement and bringing up to date of an earlier classification of Alston. It may at once be discarded as unnatural, as being based mainly on the character of the fusion or separation of tibia and fibula. In the " 1 yyomorpha" of Alston these bones are fused; in the "Sciuromorpha" and "Iystricomorpha" they are separate.

Alston states that "in the few cases in which the cranial differences fail us in separating the Sciurine Rodents from the Murine, and the latter from the llystricine, the complete ankylosis of the lower part of the tibia and fibula in the second group comes to our aid." As Bathyergidae (which have Hystricine mandible formation) are placed in "Wyomorpha" on account of the fibula structure, presumably this was considered the chief character in placing a Rodent systematically.

But a Rodent did not hecome a Rusent because its fibula fused of remained separate. If Flower and Lydekker's hook Nammals Living and Extinct is looked through with relation to the classification of other Orders. it may be seen
that in one family of Insectivora, the Centetidae (now I believe known as Tenrecidae), in one branch of the family the tibia and fibula are described as fused (Oryzorictinae, p. 638), in the other hranch they are distinct (Centetinae, p. 637). If therefore these two conditions may exist in the same family of Insectivora, the character is surely one which can scarcely be used for superfamily arrangement in another Order.

A Rodent becomes a Rodent hecause it gnaws, and its gnawing is done with its incisors (which do not vary throughout the genera of modern Rodentia sufficiently for any superfamily grouping to be arranged on this account), and with its jaw-muscles; and the jaw-muscles have modified thuse portions of the skull, to which they are attached, in various ways throughout the larger groups, as recognized by all other authors who have comparatively recently attempted a classification of the Order. I venture to suggest that if Rattus, for example, had never taken to gnawing, whatever the condition of its hindleg bones it woukl not be classed in the present Order to-day; or if Oryarictes had by chance taken to this form of life and developed the characteristic Rodent skull, dentition, and jaw-muscle arrangement, whether or not its tibia and fibula were fused, it would automatically have come under the heading of "Rodent" as understood to-day. If the Order is to be dumped into three superfamilies or "waste-paper baskets" the "Sciurnmorpha," "Xyomorpha," and "Ilystricomorpha" (into which as I see it the families will not naturally go), it shoud be on a very different basis from that of Alston and 'l'homas, and more like that of Tullherg (below), with a separate group "Bathyergomorpha" for the Bathyergidae, and probably one also for the Aplodontiidae, the Sciuromorph branch to include Geomyidae, the Nyomorph branch to include Ctenodactylidae, Anomaluridae and l'edetidae, etc.

TLLLBERG, 1899
(Leber das System der Napethere, Nova Acta Reg. Sice. Sol. Upsalıensis, whl. X'lli, No. i)
(Suborder SIMIPLICIDENTATI)

l'ribus i. HYSTRICOGNATYI

Subtribus 1. B.ATIIERGO./ORPHI
Family Bathyergidae
(Gomychus, Bathyergus)
Subtribus 2. HY'STRICOMORPII
Family llystricidae
(Hystrix, Athemura)
Family Camidae
("Coelogenys" (=Camiculus), Dasyprocta, Cazia, Dolichotis, Iydrochocrus)
Family Erethizontidae
(Erethizon, Coendou, Chaetomy's)

Family Cunchulindae (Chinchilla, Lagidium, Lagastumus)
 Family "Aleacombae" ("Aulacodus" (=7hryonomys))

Family Echinomyibae Subfamily " Nyopotamini" ("Myopotamus" (=.Myocastor)) Subfamily Echinomyini

Echinomyes
("Echinomus" (= Proechimys), "Velomvs" (based on a species of Cercomvs), \bar{h}^{*} (amubateomis)
Octodontes
("Itabrocoma" (=Abrocoma), Octodon, Spalacopus, Ctenomys)
Family Petromyidae (Petromis)

Tribus 2. SClUROGNATHI

Subtribus a. . MYO.MORDIII
Sectio 1. Ctenoductyloidei
Family Ctenonactylidae (Ctenoderctylus)
Sectio 2. Anmmalwoidei
Family Avomalleridae
(Anomalurus)
Family Pedetidae (Pedetes)

Sectio 3. Myoidei

Subsectio i. Myoxiformes
Family "Mronadse"
(Graphiurus, "Myoxus" (=Gis), Eliomys, Muscardimus)
Subsectio 2. Dipodiformes
Family Dipoditate
("Sminthus" (=Sicista), Zapus, Dipus (based on faculus), Allactaga)
Suhsectio 3. Muriformes
Family" Spalacidae
("Siphneus" (= Maspalax), Spalax, Rhizomss, Tachyoryctes)
Family Nesomýnat
(Gymmuromss, Vesumbs, Ehurus, Brachuramse, Brachitarsomys)
Family Cricetidas
(Cricetus)

Family Lophiomyibaf
(Lophiomss)
Family Akvicolimas
(Ellohins, Araicola, Neofiber, "Fiber" (= Ondatra), "Cumiculus" (-Dicrostonyx), "Myodes" (= Lemmus))
Family Hesplenciydiae
(Hesferomys (based on Peromyscus), Neotoma, Sigmodon, Nectomys, Oxymycterus)
Family Meridae
Subtamily Hurini
(Mus, Vesokia, Chiropodomys, "Hapalotis" (based on Votomys), Iydromys, Dendromus, Steatomys, Saccostomus, Cricetomy's, Deomy's, Lophuromys)
Suhfamily Phbeomyini
(Phlocomys)
Subfamily Otomyini
(Otom's)
Family Gerbillidae
(Gerbilhs, Psammom's)
Subtribus 2. SCILROMORPII
Sectio 1. Scimroidei
Family "Haplodontimae"
("Haplodon" (=Aplodontia))
Family Scturidae
(Sciurus, "Sciuropterns" (= Pteromys), "Pteromys" (Petaurista)."Arctomys" (= Marmota), Cinomus, "Spermophilus" (= Citellus), Tamias)
Sectio 2. Ciestoroidei
Family Castorinae
(Castor).
Sectio 3. Geumboidei
Family Gromymase
Subfamily Dipodomyini
("Perodipus" (-Dipodomss), Iipodomis, Perognathus, Heteromus)
Subfamily Germyini ((ieomys, Thomıms)

This is in my mind perhaps the hest classification of the Order that has been done. 'The only points which seem monatural are the too close association of Aplodentiidae with Sciuridae, the lumpine together of all the Old World Nurine "burrowers" as a family Spalacidae (Rhizomss, Myospalux, Tachyaryctes, Speldex), and the lumping together of the Dasyproctidae and Cuniculidae with the Cariidace

```
MAN WEBER, rgoq, and ed., rgzS
    (1)1e Säuctetierc, 1928, 11, p, 23%)
        (Living forms only)
(Guborder SIMIPLICIDENTATA)
```

'Pribus r. HAPLO円ON'TOLDE:
Family "Haplodontinaf."
(Aplodontia)
Tribus 2. SCIUROHDEA
Family Scilridat:
(Sciurus, Neosciurus, Rheithrosciurus, Callosciurus, Tamiasciurus,
Ratufa, Meliosciurus, Funisciurus, . Vannosciurus, Fumambulus)
Family Pteromyinae
(Eupetaurus, Pteromys (-Petaurista), "Sciuropterus" (- Pter-
omis), (ilaucomys)
Family Xeridaf
(.Verus, Geosciurus)
Family Tanuldaf
(Tamias, Eutamias, Citellus)
Family Marmotidae
(Cynomys, Marmota)
Tribus 3. CAS'TOROIDEA
Family Castoridae
(Castor)
'Tribus + GEOMFODDEA
Family Heteromyidae
(Iipodomss, Heteromys, Perognathus)
Family Geomyidae
(Geomys, Thomomis)
'Tribus 5. ANOMALEROFDEA
Family Anomalliridaf
(Anomalurus, Idiurus, Zenkerella)
Family Pedetidae
(Pedetes)
Tribus 6. " 1 MYOSODDEA"
Family ".hyoxidae"
(Graphiurus, Muscardinus, Glis, "Dryomvs" (==) , romss),
Eliomys)
Family Platacantiomymar
(Platacanthomys, Typhloms)
Tribus 7. DIPODOHDEA
Family Sicistidaf.
(Sicista)

Family Dipolidaf
(Zapus, Allactaga, "Scarturus" (=Allactaga), Dipus, Jaculus, Euchorentes, Pigeretmus)
'Tribus 8. MYOIDEA
Family Spalacidie
(Spalax, Rhisomys, Tachrowctes,"Myotalpa" (=hyospalax))
Family Nesomirmae.
(Brachyuromys, Nesomys, Brachytarsomys, Eliurus)
Family Mtridae
Subfamily Cricetinae
(Cricetus, Mesocricetus, Cricetulus, Mystromys, Hesperomys, Peromyscus, Oryzom's, Reithrodontomys,"Sigmodon, Tylomys, Molochilus, Nectomys, Eligmodontia, Ichthzomys)
Subfamily Lophiomyinae
(Lophiom's)
Subfamily Microtinae
(Lemmus, Myopus, Dichostonyx (groun Lemmi); Ellobius (group Ellobii): "Ezotomys" (=Clethionomys), "Fiber" (= Ondatra), Microtus, Pitymys, Areicole (group Microti))
Subfamily Murinae
("Epimys" (-Ratus), Mus, Apodemus, Micromys, Nesokia, Phloeomys, Pithecheir, Cricetomys, Saccostomus, Otomys, "Oreomis" (Otomys), Dendromus, Deom's, Mastacomy's, Lepovillus, Zromys, I/allomss, Comilurus, "Chirwromys" (-Pogonomys))
Subfamily Cerbillinae (Gerbillus, Pachywoms, Meriones, Rhombomys, Psanmomy's)
Subfamily Itsdromyinae (Hydromis, Leptomis, deromys, Celaenomys, Chrotomis, Crunomys, Rhynchomys, "Cranothrix" (=Echothrix))
Tribus g. BATHYERGOIDEA
Family Bathyfrgidae
(Bathyergus, Georychus, "Mascalops" (Meliophohius), Heterocephalus)
Tribus io. HISTRICOHDEA
Family IHstricidae
(Ifystrix, Atherma, Trichys)
Family Ereturzontidae (Erethizon, Coendou, Chuetomys)
Family Cimidse
Subfamily Dmomyinac
(Jinomys)
Subfamily Dasyproctinae ("Cuchogems" (- Cumiculus), Dasyprocta, Mroprocta)

Subfamily Caviinae
(Caria)
Subfamily lydrochoerinae
(IIydrochoerus, Dolichotis)
Family Chinchillidae
(Chinchilla, Lagidium, "V゙izcacia" (=Lagostomus))
Family Capromyidae
(Myocastor, Capromys, Plagiodontia)
Family Octodontidaf:
(Echimys, Octodon, Ctenomys)
Family Ctenodactylidae
(Ctenodactylus, Pectinator, ''etromys)
Family Thryonomyidae
(Thryonomys)
So far as Superfamily grouping is concerned, this classification is followed in the present book, with some modifications, as for instance the separation of Pedetidae from Anomaluridae; also following Tullberg I cannot credit that the Ctenodactylidae should be referred to the IIystricoid branch (Petromus is here transferred to the Echimyidae), and also on account of intermediate forms I am unable to find characters to keep the Muscardinidae separate as a superfamily from the Muroidae.

Several of Weber's divisions into families appear unnecessary or unnatural, as the dividing up of the Sciuroidea into five "families"; the retention of the old family Spalacidae; the retention of the "family Nesomyidae"; the lumping together of Dinomys, Cuniculus and Dasyprocta with the Caviidae; and the formation of a suhfamily Ilydrochoerinae including Dolichotis (obviously very nearly allied to Cavia) against the Caviinae with Cavia only.

MILLER \& GIDLEY, 1918
(Journ. Washington Acad. Sci., VIII, No. 13, p. +31, igis)

The Order, including Rodentia as here understood only (the Lagomorpha not included), is divided into five superfamilies based on zygomasseteric structure.
Superfamily SClUROID.Al:
Three-cusped series
Family Scitridae
Subfamily Sciurinae (the entire family except the two following groups)
Subfamily Nannosciurinae
(Nannosciurus, Myosciurus, Sciurillus)
Subfamily Pteromsinae (Flying-Squirrels)
Family Geosiyidse
Subfamily Entoptychinae (fossil)
(Entoptichus)

Subfamily Geomyinae (Vorth American Pocket-Gophers)

Family Ilrtronamase (North American Pocket-Xice and Kan-garoo-Rats, Oligocene (Heliscomss) to Recent)
Four-cusped series
Family Anjonacamar: (fussil)
(Adjidanmo)
Family Extypomymar (fossil) (Eutspomss)
Family Chalicomyodate (fossil)
(Chalicomys (Steneofiber) and related genera; Trogonotherium. P'alacocustor, Eucastor and related genera)
Family Casturidaf
(Castor)
Family Castoromodae (fossil) (Castorvides)

Superfamily MUROID.AE
Three-cusped series
Family Nescarmnidae
(Eliomys, Deromus, Glis, Muscardimus, also Leithia (forsil))
Four-cusped series.
Family lschyronyimae (fossil)
(Ischyomms)
Family Cricetidae
Subfamily Cricetinae (Cricetinae, Sigmodontinae, Neotominae and Nesomrinae of authors)
Subfamily Gerbillinae (Gerbillinae of authors)
Subfamily Nierotinae (Nicrotinae of authers)
Subfamily Lophiomyinae (Lophomers)
Family Platacanthonymae (Platucanthomis, Typhlom's)
Family Rhizomyonaf
Subfamily fachyorvetinae (Tachyorvetes)
subfamily Rhizomyinac (Rlizumbs and related genera)
Subfamily liraminae (fossil)
(Bramius (Elluhius), a Microtine; see llintor, Monogr. Voles \& Jemmines, 1, p. S-, rgzt
Family Spalactidat
Subfamily Myospalacinae (Mrospalax)
Subfamily spalacinae (Spalax, Recent; Prospalax (fossil))

PREVIOUS CLASSIFICATIONS: MLLIER \& GIDLEY
Family Meridae
Subfamily Dendromyinae (Dendromyinae of authors)
Subfamily Murinae (Murinae of authors)
Subfamily Phloeomyinae
(Phloeomis)
Subfamily Otomyinae
(Otomys)
Subfamily Hydromyinae (Hydromyinae of authors)
Superfamily DIPODOIDAE
'Three-cusped series
Group A
Family Paramyinaf (fossil)
(Paramys, Mysops, Prosciurus and related genera)
Group B
Family Graphicridae
(Graphiturus)
Group C
Family Allomyidae (fossil)
(Allomys, Ilaplomys, Meniscomys, Mylagaulodon)
Family Aplodontindae
(Aplodontia, Recent; Liodontia, fossil)
Family Cylinidrodontidae (fossil)
(Cylindrodon)
(Position of group doubtful)
Four-cusped series
Group A
Family Pseldoscicrinate (fossil)
(Pseudosciurus)
Group B
Family Mylagallidae (fossil)
(MIlagaulus, Ceratogaulus, Epigaulus)
Group C
Family Anomalleridae
(Anomalurus)
Family Inickidae
Suhfamily Idiurinae
(Idiurus)
Subtamily 'Zenkerellinae
(Zenkerella)
Group I)
Family Soleravide (fossil)
(Scinrarus)
Family Zapoudide
Subfamily Theridomyinae (fossil) (Theridomyidae of authors) Subfamily Sicistinae
(Sicista, Recent; :Eomss, fossil)

Subfamily Kapodinac (Eozapus, Kapus, Vapacozapus)
Family Dipobldaf Subfamily I'rotuptychinae (fossil) (Patoptechus)
Subfamily Dipodinae (Dipodidae of authors, who recognize Zapodidae as a distinct family)
Family Conodactylinae
(Ctcmodactylus and related genera)
Family Penetione (Pedeter)

Superfamily BATllle
family Bathyfrione (Bathyergidae of authors)
Superfamily HYSHRICOIDAE
Lateralis series.
Group λ.
Family Hystrichase
Subfamily Hystricinac
(Hystrix, Acomthiom, Thecurus)
Subfamily Atherurinae
(Athermus, Trichas)
Family ERETMzosthata:
(New World Porcupines except Choetomys; fossil genera, Asteromss, Eostchomys, Parasteiromys, Steiromys; PMhomys, ? Metaphomus)
Family E(momymas
Subfamily Echimyinae
(Spiny kats, provisionally including Chatomys; llutias (Capromiss, Plugioduntia, etc.); many extinct genera, among them Acarmys, Boromys, Brotomys, Colpustemna, Eocardia, Euetodom, Graphims, Gyignophus, Maplustropla, Heteropsomys, Ilomopsomys, Isobolodon, Prospamiomys, Protadelphomes, Protacaremys, Sciamys, Soleromys, Spanioms, Stichamss, Strophastephamus, Tribodom) Suhfamily ()etodontinae
(Ctenomiss, Octodom, Octodontomys, Spalacopus. Amongst fossil senera are Cephaloms, Dicoelophorus, Euevelophorus, Litodontomus, Neophanomys, I'alecoctodon, Phtoramys, Pithanotomis, Plataomus, Sotomys)
Family Proronymate
(Pettomys)
Family Tyocastoridaf
(Myocastor and related fossil genera)
Family Thryoxomymae
(Thryonomys)

Family Dinomyinae
(Includes the living Dinomys and extinct genera Amblyrhiza, Briaromys, Discolomy's, Elasmodontomy's, Gyriabrus, Megamys, Neoepiblema, Olenopsis, Potamarchus, Tetrastylus)
Family Cuniculidae
(Cuniculus)
Family lleptayodontidafe (fossil)
(Heptaxodon; ?.Morenia)
Group B
Family Dasyproctidae (Dasyproctidae of authors with Cumiculus removed, and Neoreomys (fossil) added)
Family Chinchillidae (Chinchilla, Lagostomus, "I iscaccia" (= Lagidium); extinct genera: Euphilus, Perimys, Pliolagostomus, Prolagostomus, Scotaeumys, Sphaeromys)
Family Abrocomidae
(Abrocoma)
Medialis series
lamily Cavildae (Caviidae of authors, with Hydrochoerus and allies removed ; extinct genera: Anchimys, Neoprocaria, Orthomyctera, Palaeocazia, Plugatherium, Procardiotherium)
Family Hydrochoeridae
(Hydrochocrus and extinct allies, Plexochoerus, Prohydrochoerus, Protohydrochoerus; perhaps Cardiomys, Catiodon and Cardiotherium)

Great attention has been paid to this classification, on which the present work was originally based. It attends much more strictly to detail characters than either those of Weber or Winge. But it seems to break down where the "Dipodoidae" (for instance, Graphiurus) and Muroidae are compared; it does not appear good classification to separate Graphiurus from the Muscardinidae so far that it is placed in another superfamily; moreover, it appears that the Murine genus Dcomys has the "Dipodoid" zygomasseteric structure as defined by Miller \& Gidley; and should be referred to that superfamily if this classification was maintained. As already noted by Wood in his monograph of Ilcteromyidae, there is a very wide distinction between the zygomasseteric structure of Paramys, and the Mylagaulidae and that of the Dipodidae, both referred to "Dipodoidae" of Miller \& Gidley; from descriptions Paramys and Mylagaulidae have similar zygomasseteric structure to that of Aplodontia, here considered the most primitive living Rodent as regards this arrangement; Wood states, "'The character of zegomasseteric structure as given by Niller \& Gidley... includes widely different types, which appear to have reached their present condition in widely different manners. In Paramys and the Mylagaulidae . . the zyomatic plate is nearly horizontal because that is the primitive condition for Rodents, and the growing masseter has not as yet 2-L.iviny Rodents-I
effected any great change. In the Dipodidae . . the zygomatic plate is horizontal because the masseter has passed through the infraorbital fenestra and, on expanding, has forced the zygoma down until it becomes even lower than in the primitive forms."

In Xiller \& Gidley, the families appear in some cases to be over-split. For the undesirability of separating "Cricetidae" from Nuridae, see Hinton, Alonogr. Voles \& Lemmings, 1926, p. 121 .

WINGE, 1924

(l'attedyr Slacgter, vol. II, Rodentia, p. I)
The Order is divided into nine families, one of which, the Leporidae, corresponds to the Suborder Duplicidentata or Order Lagomorpha.

1. Lepuridae
(Leporini: Palacolagus (fossil), Lepus; "Lagomyini": "Lagomys" $=$
Ochotona)
2. "Mallemontinafe"

Allomyini (fossil)
Allomys
Ischyromyini (fossil)
Paramys, Scimazus, Ischuromys
Mylagaulini (fossil)
Mylagaulus, Ceratoganhus
"Haplodontini"
"Haplodon" = Aplodontia (sole living genus)
3. Anomalurihat

Pseudosciurini (fossil)
Psendosciurus, Sciuroides
Trechomyini (fossil)
Trechomys
Anomalurini
Anomalums, " Aethnms" = Zenkerella, Idiurus
Tharidomyini (fossil)
Theridomy's, Issiodoromys, Archatomy's
Pedetini
Pedetes
4. Diponidae

Eomyini (fossil)
Eomys
Dipoctini
"Sminthi"
"Sminthus" = Sicista; "Jacuhas" based on Zapus
Euchoreutac
Euchorentes
Dipodes
"Scirtetes" $=$ Allactaga, Dipus

Spalacini
Spalax
5. "MyomidaE"

Graphiurini
Graphiurus
"Myoxini"
"Myoxi"
Eliomy's, Leithia (fossil), IIypnomys (fossil), " M/yoxus" $=$ Glis, Muscurdinus
Platacanthomyes
Platucanthomys
6. MuridaE:

Rhizomyini
Cricetodontes (fossil)
Cricetodon, Eumys
Rhizomyes
Nesomys, Brachytarsomss, Gimmuromys, Etiurus, Brachyuromys, Tachyorvetes, Rhizomys
Cricetini
Criceti
Cricetus, Calomyscns, Lophomys, "Sipheus" = Myospalax Hesperomyes

Hesperomys, Sigmodon, Veotoma, "Habrothrix" (apparently based on , Akodon), Oxymycterus, Ichthromys, Scapteromys, "Calomy" (species or genera referred to this group not clear), Rhipidomys, Nectomys
Arvicolae
"Hypudaeus" (=Clethrionomys plus Dolomy's plus Phenacomys),
"Fiber" = Ondutra, Ellobius, Arvicola (including Microtus), Dicrostony:x, "Myodes" = Lemmus

Murini

Mures
Mus, "Spalacomys" = Vesokia, Phloeomys, Crateromys, Carpomys, Echothrix, Rhinchomes, Lenomis, Vädeleuria, Chiropodomis, Hapalomys; Chiruromis, Notomis, Mastacombs, Zyzomys," Hapalotis" ${ }^{\prime \prime}$ Conilurus: Acomys, Cricetomys, Saccostomus, Stcatomys, Dendromus, Deomys, Oenomys, Otom's
Gerbilli
Gerbillus, Rhomboms
llydromyes
Seromis, Crunoms, Hydromys, Chrotomys. Celaenomys
7. Hystricidae

Bathyergini
Bathyergus, Heterociphalus, Georychus, Heliophobius

Hystricini
Hystrices
Trichys, Athenura, IIstrix
"Sphinguri"
Steiromys(fossil), Erethizon,"Sphinghtus" = Coendou, Chaetomys
Capromyini "Anlacodus" = Thwonomys, "Myopotamus" = Myocastor, Capromys, "Plagiodon" = Plagiodontia; Isobolodon (fossil)
Ctenodactylini
Petromys, Pectinator, Ctenodactylus
Dasyproctini
Dinomyes
Dinoms: Elasmodontomys (fossil)
Dasyproctae
Dasyprocta: Neoromys (fossil); "Coelogen's" = Cumiculus
Caviae
Schistomys, Eocardia (both fossil), Cazia, Dolichotis, Hydrochoerus
"Eriomyini" $=$ Chinchillini
"Eriomyes"
"Eriomys" $=$ Chinchilla, Lagidium
Lagostomi
Scotacumys, Perimys (both fossil), Lagostomus.
Octodontini
Echinomyes
Cercomys ($=$ what?, not Cercomys as here understood), Dactylomys," Thrinacodus, "Lasimom's" = Isothrix, "Loncheres" $=$ Echimys, "Echinomys" = Proechimys, "Nelomys" = Cercomys, Alesomys (based evidently on Clyoms and Euryegomatomy's); Casterodun
Octodontes
Acaremys, Sciams (both fussil); Dicolprmus (fossil); "Habrocoma" - Abrocoma, "Schizodon"" = Aconaemys, Spalacopus, Octodon, Ctenomys
8. Sciurimat

Castorini
Eutyponys, Steneofiber, Euhapsis (all fussil), Castor; Trogontherium, Castorovides (fossil)
Sciurini
Sciuri
Tamias, Otospermoplilus, Sciurus, Pteromus, Enpetaurus, Derus
"Arctomyes"
"Arctomvs" = Marmota, "Spermophilus" $=$ Citellus, Cimomys
9. "Saccomymbar" $=$ I Leteromyidae

Gymnoptychini
Gymnoptyclus ($=$ Adjidaumo? fossil)

```
"Saccomyini"
    Heliscomys (fossil), "Saccomys" = Hetcromys, Perognathus, Dipo-
    domys
Geomyini
    Pleurolichus, Entoptychus (both fossil), Thomomys, Geomys.
```

"I Form af Stamtrae" (phylogenctic tree)

The theory behind this work is brilliant, but the detailed characters are incorrect many times, and the nomenclature is deplorable. The classification of the "Hystricidae" seems in particular unnatural, with the inclusion of the Bathyergidae, the lumping together of Hystricidae and Erethizontidae, the whole family based more or less on the formation of the paroccipital process which in the British Nuseum material seems at any rate in Dactylomys and Capromys a variable character even within a genus. Further, if I understand the work rightly, the infraorhital foramen is supposed to transmit muscle (or to have transmitted muscle, which cannot be proved), in many groups in which it does not do so (Sciuridae, Castoridae, Geomyidae, Heteromyidae, Bathyergidae). Pedetes is regarded as with "fibula free," which is not so; M. I is regarded as larger than M. 2 in Cricetini and Murini, which is not constant (Anisomy's agreeing with Winge's Rhizomyini in this character, as do some Neotropical Cricetines), etc., etc.

OUTLINE OF CLASSIFICATION HERE ADOPTED

'1"ne present clasification is a combination as far as possible of points which appear to be correct from the five classifications listed above. It is based on characters which are constant thronghout all the various genera referred to cach famity, and has heen the subject of great care and ohservation.

The Order is here divided into twelse superfamilies. In case it may he thought that too many of these are retained, and that forms which share characters have been ton widely separated, 1 would quote a passage from Wood, who in his review of fossil and recent Ileteromydae, states, "The most important point to be emphasized is that "parallelism, parallelism, more parallelism and still more parallelism' is the evolutionary motto of the Rodents in general."

I have already stated that the Oreler is dominated to such a degree hy one famity, the Thuridae, that it is necessary to devote a separate volume to that family alone. It is necessary, therefore, for me to place this group last on the list (certainly not because it is considered the most highty specialized!); I, therefore, tilie first the group called Hystricognathi hy Tullherg, in which the mandihle is more highty specialized, and last the Sciurognathi of Tullberg, which inchudes the Thuridae, and in which the mandible is comparatively unmodificd.

With regard to the structure of the tibia and fibula, the following skeletons have been examined:
"Fibula reduced, fully fused with the tihia in lower portion "
P'edetidae: Pedetes
Bathyergidae: Bathyergus, Georychus
Geomyidae: Geomys
Spalacidae: Spalax
Dipodidac: Alactagulus, Allactaga, Faculus, Sicista
Lophiomyiclac: Lophomys
Nuscardinidac: Glis, Eliomys, Muscordinus
Muridae. (As this group is not dealt with in the present volume, less attention has heen paid to them, as they are clearly separable from other families without this character. Howerer, it has been checked in a very small number: Mas and tpodemus representing Murinac; , Wesocricetus and Phodopus representing Cricetinas: Gerhillus and Pachyomys representing (ierbillinac; and Tachyorgctes and Brachyuroms representing 'Tachyoryctinae.)
All examined are perfectly clear in this character, with the exception of Glis, in which the bones are widefy separate, and only fused at extreme hase.

So Ifeteromydace are availahle for examination, hut Dipodomys as figured hy lowell agrees with the uther Rodents.
"Fibula not reduced, not fully fused in lower portion with the tibia"
Ctenodactylidae: Ctenoductylus, Pectinator
Anomaluridac: Anomalurus
Aplodontiidae: Aplodontic
Castoridac: Castor
Sciuridae: Petaurista. Citellus, Spermophilopsis, Sciurns, Xerus, Tamias and Marmota
Echimydae: Dactulomys, Octodon, Aconaemys, Ctcnomys, Capromys, I/yocastor, Thrtonomys, Isothrix, Petromus
Erethizontidae: Ercthizon, Coendou, Chatomys
Dasyproctidae: Dasyprocter
Cuniculidae: Cuniculus
Hystricidae: IIystrix, Thecurus, Atherurus
Caviidae: Cazia, Dolichotis, Mydrochocrus
Chinchillidae: Chinchilla, Lagidium, Lagostomus
No skeletons of Dinomys nor of the Idiurinae are available.
In this group, Castor appears in the adult to have fusion suggested in these bones, though not complete, and the Hystricoid Myocastor seems precisely similar, another interesting case of parallel development in these two unrelated genera. The fibula is becoming reduced in Ctenomys. But much the most interesting result obtained is that in the skeletons seen of the three genera of Chinchillidae, Chinchilla, Lagidium and Lagostomus, the fibula, though still not fully fused, is escessively reduced, slender and threadlike; the xeduction reaching an extreme degree in Lagostomus, which one might have expected to be not the case.

It must he noted that, with regard to the formation of the forefoot, the extreme reduction, almost or completely to disappearing point of the pollex, is such a usual feature that no attention has been paid in the classification to this character.

HY'STRICOGNATHI

Lower jaw highly specialized, either by distortion outwards of the angular process by masseter lateralis, or by a conspicuous ridge extending along outside of mandible below level of the toothrow for attachment of masseter medialis. Angular portion of mandihle never pulled inwards (inflected), and lower incisor root never forming conspicuous knob heside condylar process.

1. Bathyergomorph Series

Infraorbital foramen not or scarcely transmitting muscle.

First Superfamily: BATHYERGOIDAE

Nandible with angular portion strongly distorted outwards by specialized limb of masseter lateralis. Infraorbital toramen not or scarcely transmitting
muscle. Zygomatic plate narrow, completely beneath the infraorbital foramen, not broadened for attachment of masseter lateratis.

Skull much modified for fossorial life. Jugal moderately long, or in Heterocephahus shortened, and Murine. Bullae without special peculiarities.

Cheekteeth $\frac{3}{3}, \frac{4}{4}$ or in IHeliophobius, at full dentition, $:$ (in this genus the cheekteeth are normally not all in place together). Cheekteeth rooted, but extremely hypsodont, near simplification in pattern.

A tendency present for the upper incisors to extend behind the toothrow, at extreme development into the pterygoids.

Fibula fully fused with the tibia below. Digits of hindfoot five. External form much modified for underground life.

Mlalleus and incus fused (Tullberg). Radiale and intermedium separate (Tullberg; fused in all other members of the Order examined by him except Ctenodactylidae).

Family 1. BATHYERGIDAE

With the characters of the Superfamily.

Group Bathyergi

Bathyergus, Heliophobius, Georychus, Cryptomys.
Group Heterocephali
Heterocephalus.
(A key to all generic groups here recognized will be given below, when dealing with the families.)

2. Hystricomorph Series

Infraorbital foramen much enlarged for muscle transmission.

Second Superfamily. HYSTRICOIDAE

Nandible with angular portion distorted outwards by specialized limb of masseter lateralis. Infraorbital foramen very large, always transmitting muscle. Zygomatic plate remaining narrow, and beneath the infraorbital foramen, not broadened for attachment of masseter lateralis.

Skull usually broad, lacking interorbital constriction in the majority. Paroccipital process usually well developed, prominent. Jugal normally not approaching lachrymal; frequently with downwardly or upwardly directed process present. Bullat variable; in certain groups much inflated.

Cheekteeth $\frac{1}{\frac{1}{2}}$, the premolars not reduced in size in the majority; the pattern flatcrowned, reduced heptamerous, laminate, or sometimes approaching complete simplification.

Fibula not becoming fused with the tibia high on the leg, and usually, but not always, not specially reduced. Digits of hindfoot 5, 4, or 3 .

Malleus and incus fused (Tullberg).

Family 2. ECHIMIYDAE

Cheekteeth rooted or rootless; when rootless or strongly hypsodont the pattern not a series of transverse plates. Digits of hindfoot 5 , excepting Thryonomyinae. Bullae well inflated, sometimes extremely so. Feet never abnormally specialized for arboreal life. Spiny covering present or absent, but when present, never to an extremely specialized degree. External form never modified for cursorial life. Paroccipital process long, either curved forwards under the bullae, or lengthened and standing apart from bullae, Zygoma very generally complex, with downwardly or upwardly directed processes present.

Subfamily ECILIMYINAE

Cheekteeth not hypsodont, and not simplified in pattern; usually the pattern is reduced heptamerous. Bullae not abnormally inflated, except Chomys. Paroccipital process curved forwards under the bullae. Externally Rat-like or slightly modified for arboreal life, sometimes with spiny covering developed.

Echimy's, Isothrix, Diplomy's; Proechimy's, Hoplomy's, Cercomys, Euryzygmatomys, Clyomys, Carterodon, Mesomys, Lonchothrix.

Subfamily CAPROMYINAE

Like the Echimyinae, but checkteeth evergrowing, the re-entrant folds well filled with cement, so that simplification of pattern is suggested. Upper molars with more than one external re-entrant fold. Paroccipital process usually but not always standing apart from bullae. External form arboreal or terrestrial; fur not developing spines.

Procapromy's (not seen), Capromys, Geocapromis.

Subfamily PLAGIODONTINAE

Cheektceth evergrowing, the upper series with only one external re-entrant fold, which is unusually deep and placed obliquely; the single inner re-entrant fold also unusually deep, and running parallel to the outer fold. Paroccipital process considerably lengthened. Zygoma simple.

Plagiodontia.

Subfamily DACTYLOMIINAE

Cheekteeth rooted, abnormally broadened, nearly prismatic in appearance, and evidently with pattern not changing much during life. laroccipital process either standing apart from the bullac, or curved forwards under them. Habits (said to be) arboreal; a tendency present towards elongation of the two central digits of forefoot and hindfoot.

Thrinacodus, Dactylomss, Kamabateomys.

Subfamily NIOCASTORINAE

Cheekteeth extremely hypsodont, but not evergrowing, reduced heptamerous in pattern, the pattern changing little during life. Bullae reminiscent of the
type found in Castoridae, though less specialized than in that family. Skull prominently ridged for attachment of muscles. External form considerably specialized for aquatic life. Paroccipital process much lengthened, the lateral process of paroccipital process enlarged.

Myocastor.

Subfamily ABROCONIINAE

Checktecth evergrowing, the upper series more or less simple, the lower series prismatic, and complex. Auditory bullac much inflated, the paroccipital process curving forwards under them. Part of lachrymal canal open on side of rostrum.

Alrocoma.

Subfamily OCTODONTINAE

Cheekteeth evergrowing, both upper and lower series nearly or completely simplified. Bullae and paroccipital process as in Abrocominae. No part of lachrymal canal open on side of rostrum. External form generalized or modified for underground life.

Octomis, Aconacmys, Octodon, Octodontomys; Spalacopus; Ctenomys.

Subfamily l'ETROAIYINAE

Checkteeth strongly hypsodont, nearly complete simplification in pattern, but not evergrowing. Auditory bullae much inflated. External form without special peculiarities.

Petromus.

Subfamily 'TllRYONOMY'NAE

Digits of hindfoot reduced to four. Cheektecth moderately hypsodont, rooted, the re-entrant folds well marked and surrounded by heary enamel. External form heavy, terrestrial-fossorial. Auditory bullae of moderate size; paroccipital process lengthened, standing apart from the bullae. lncisors much thickened, the upper ones heavily three-grooved. Skull massive, excessively prominently ridged for muscle attachment. Shoulder-blade abnormal ('Tullberg).

Thryonoms.
Family 3. DINOMITDAE

Cheekteeth evergrowing (?) or excessively hypsodont, the pattern a series of transverse plates. External form heavy, terrestrial. Digits of hindfoot four. (lncisors thick, bullae moderate, paroccipital process not lengthened, no part of lachrymal canal open on side of rostrum, and angular portion of mandible powerfully distorted outwards, compare Chinchillidae.)

Dinomys.

Family 4. ERETHIZONTIDAE

Externally more specialized than in the Echimyidae; feet becoming abnormally modified for arboreat life, the hallux in progressive forms being replaced with a broad movable pad (and skeleton of foot correspondingly much modified).

Tail muscular, prehensile in progressive genera. Fur conspicuously spinous, the spines not long, and not modified into thick circular quills. Bullae relatively large; paroceipital process not lengthened. Kygoma usually simple. Checkteeth typically with wide re-entrant folds (parallel-Anomaluridae), or in Chaetom's with structure much as in complex-toothed Echimyinae.

Subfamily CIIAETOMYINAE

Orbit almost surrounded by greatly thickened jugal and short postorbital process. Cheekteeth with narrow re-entrant folds. Spiny covering weakly dereloped. (Feet at highest specialization.)

Chaetomys.

Subfamily ERETHIKON'IINAE

Orbit large; skull without postorbital process; jugal not specially thickened. Cheekteeth with very wide re-entrant folds. Spiny covering at maximum specialization. (Feet moderately to extremely specialized.)

Erethizon, Echinoprocta, Coendou.

Family 5. DASYPROCTIDAE

External form highly modified for cursorial life; digits of hindfoot reduced to three: clavicles suppressed. Part of lachrymal canal open on side of rostrum. Bullae relatively large; paroccipital process not specially lengthened. Cheekteeth strongly hypsodont, but not etergrowing, the re-entrant folds narrow, isolating on crown surface with wear as narrow islands.

Myoprocta, Dasyprocta.

Family 6. HYSTRICIDAE

External form heavy, terrestrial; digits of hindfoot five. Fur always conspicuously spinous, in progressive species attaining specialization in this respect not known elsewhere in the Order. 'Fail always with modified bristles or quills present. Spines of body usually partly modified into thick circular quills. Skull in progressive species characterized by great inflation of nasal bones. Auditory bullae relatively small. No part of lachrymal canal open on side of rostrum. Paroccipital process not specially lengthened. Zygoma simple. Cheektecth moderately to extrencly hypsodont, but not evergrowing, their pattern paralleling that present in 1)asproctidae. Clavicles present but incomplete. Lungs abnormal ('lullherg). Contrale not free ('Jullberg; this character unique in the Order so far as known except Cuniculidae).
Group Atheruri
Trichys; Atherurus.
Group Hystrices
Thecurus, Instrix.

Family 7. CUNICULIDAE

Skull extremely modified by growth of conspicuous bony cheekplate, a structure not known elsewhere in the Order. Cheekteeth strongly hypsodont, but not evergrowing, their pattern like that present in Dasyproctidac and Ilystricidae, but rather more complex. External form heavy, terrestrial. Digits of hindfoot five. Clavicles present, but incomplete. Paroccipital process considerably lengthened. Centrale not free (Tullberg; on this character see remarks under family H ystricidac).

Cuniculus. ${ }^{1}$

Family S. CHINCHILLIDAE

Cheekteeth evergrowing, the pattern a series of transverse plates. Lower jaw with angular portion rather weakly distorted outwards, the jaw to a certain degree transitionary towards that of the Cavioidae. Digits of hindfoot four or three (probably three functional only in all genera). Jugal tending to approach the lachrymal, or to come in contact with it. Some part of lachrymal canal open on side of rostrum. Incisors relatively thin. A tendency present towards extreme inflation of mastoids and hullac. Paroceipital process relatively short (Chinchilla, Lagidinm), or considerahly lengthened (Lagostomus). Fibula extremely slender, much reduced (skeletons of the three genera have been examined).

Group Chinchillae

Chinchilla, Lagidium.

Group Lagostomi

Lagostomus.

Third Superfamily. CAYIOIDAE

Essential characters as in 11ystricoidae except: angular portion of mandible not distorted outwards by specialized limb of masseter lateralis; masseter medialis the chief agent in modifying form of lower jaw, the outer side of which has a long and conspicuous ridge extending helow and beside toothrows for attachment of this muscle. Cheektecth evergrowing, relatively simple, but with sharp folds present, the effect more or less prismatic. Malleus and incus fused (Tullberg).

Family 9. CAVIIDAE

With the characters of the Superfamily. Paroccipital process moderately to extremely enlarged; bullae normally prominent. Cheekteeth strongly unilaterally hypsodont. Digits of hindfoot reduced to three; external form ambulatory or cursorial. Clavicles suppressed. 'l'ibia and fibula as in normal Hystricoidae. Part of lachrymal canal open on side of rostrum, except in Dolichotis.

Subfamily CAVIINAE

Paroccipital process not excessively lengthened. M.3, upper series, not enfarged. Pattern of cheektecth relatively simpler. Palate shortened from before backwards.

Group Caviae

Cazia, Galea, Caziella; Kerodon.

Group Doilichotides

Dolichotis.

Subfamily HIDDROCHOERINAE

Paroccipital process excessively lengthened. N. 3 upper series extremely enlarged and elongated. Cheektecth with more complex pattern. Palate not shortened from before backwards. (Size largest in the Order.)

IIdrochoerus.

SCIUROGNATHI

1.ower jaw not highly specialized, never with the angular portion distorted outwards, and never with long conspicuous ridge extending below level of toothrow for attachment of masseter medialis. Angular portion of mandible may be strongly pulled inwards (inflected). In some genera, the root of the lower incisor forms conspicuous knob beside the condylar process.

1. Sciuromorph Series

Infraorbital foramen not or scarcely transmitting muscle.

Fourth Superfamily. APLODON゙TOIDAE

Infraorbital foramen not transmitting muscle. Nasseter lateralis not extending attachment on outer side (forepart) of zygomatic plate, which remains narrow and unspecialized, completely below the infraorbital foramen. Nandible with angular portion inflected to an abnormal degree.

Skull fossorial in aspect. Jugal lengthened. Bullae with neck directed horizontally outwards, and region of braincase greatly widened.

Cheekteeth $\hat{\forall}$, evergrowing, near complete simplification of pattern.
libula not reduced, nor fused with the tibia high on the leg. Nalleus and incus free ('lullberg).
Family 1o. APLODONTIIDAE

With the characters of the superfamily.
Aplodontia.
('This famity is douhtfully referred to the sciuromorph series, and is regarded as one of the most isolated and primitise living Rodents.)

Fifth Superfamily. SCIUROIDAE

Infraorbital foramen not or scarcely transmitting muscle. Nasseter lateralis superficialis with anterior head distinct from zygoma, and masseter lateralis extending its line of attachment on to zygomatic plate, which is to a greater or lesser degree broadened and tilted upwards, the muscle typically rising upwards on zrgomatic plate to superior border of rostrum. Nandible with angular process sumetimes strongly inflected (Cynoms); usually with a tendency for this formation to be present.

Skull with, in progressive species, well developed postorhital processes present (these processes ahwy traceable). Jugal long, usually approaching or reaching the lachrymal. Bullae without special modifications, usually prominent.

Cheekteeth ${ }_{4}$ or $\frac{4}{4}$, cuspidate, very rarely approaching simplification, in which cases (Lariscw, Rheithrosciurus) the original pattern may usually be traced; the pattern normally a series of transverse ridges and corner cusps (in the upper series), the lower series most often basin-shaped, with cusps at each curner. Cheekteeth rooted, brachyodont or hypsodont.

Fibula not fused with the tibia. Digits of hindfoot five. External form modified for arboreal or terrestrial life; a tlying-membrane may be present, attached to sides; tail always completely haired.

Nalieus and incus free (Tullberg).

Family ir. SCIURIDAE

With the characters of the Superfamily.

Group Pteromyes

Belomys, Trogopterus, Pteromyscus, Petaurista, Aeromys, Pteromys, Mylopetes, Pefinomis, Eoglaucomys, Glaucomys, Petaurillus, Iomys, Eupctaurus.

Group Sciuri
Myosciurus, , Vamosciumus, Sciurillus; Microsciurus, Syntheosciurus, Sciurus, Tamiusciurus, Callosciurus, Fumambulus, Dremomys, Ratufa, Mcnetes, Lariscus, Glyphotes, Rhcithosciums, Rhinosciurus, Hyosciurus, Heliosciurus, Paraverus, Fimisciurus, Protoxerus, Mirsilus, Efixerus; Atlantoverus, Xerus, Spermophilopsis; Sciurotamias, Tamias; Citcllus, Mamota, (immuss.

Sixth Superfamily. CASTOROIDAE

Zygomasseteric structure essentially as in Sciurodae. Mandible without special peculiarities.

Skull with no well-marked postorhital process; jugal lengthened, approaching lachrymal, and extremely broadened anteriorly. Bullae with neck directed outwards and upwards.

Cheektecth i, extremely hypsodont, but not evergrowing, the pattern

Hatcrowned, reduced heptamerous, the enamel folds narrow, the pattern changing little during life.

Fibula not fused with the tibia, but tending to become reduced, so that in adult life fusion is suggested.

Digits of hindfoot fise. Externally much specialized for aquatic life. Caudal vertebrae broadened; tail naked, much broadened and flattened (unique in the Order in structure and appearance).

Nalleus and incus free ('Tullberg).

Family 12. CASTORIDAE

With the characters of the Superfamily.
Castor.

Seventh Superfamily. GEOMYOIDAE

Zygomasseteric structure closely resembling that of the Sciuroidac; infraorbital foramen extremely reduced, and rather more modified; mandible with angular portion somewhat reduced. Large externally-opening cheekpouches present. Skull highly fossorial (Geomydae), or becoming specialized by extreme inflation of auditory bullac and braincase, and narrowing of rostrum ("saltatorial type") (progressive Ileteromyidae). Jugal always short; sometimes the zygomatic arch may he complete without it; in Heteromyidae, the whole zygoma is threadlike.

Cheekteeth \ddagger hypsodont, usually near complete simplification of pattern, and often evergrowing.

Fibula (so far as known) fully fused with the tibia, high on the leg. Digits of hindfoot five, or in saltatorial genera may be reduced to four.

Nalleus and incus free (Tullberg).

Family 13. HETEROMIIDAE

Nastoids in progressive genera greatly inflated. Zygoma extremely narrowed. Infraorbital canal "with orifice protected from muscle pressure by countersinking in a vacuity which extends transversely through rostrum" (Xiller © Gidley). External form Nurine or modified for saltatorial life. Checkteeth rooted except in Dipodomys, and as a rule less simplified than in Geomyidae.
Subfamily lIETEROAHYNAE

Cheekteeth preserving pattern for a longer time; auditory bullae not specially inflated; form Murine.

Heteromys, Liomys.

Suhfamily DHPODOMIMNAE

Checkteeth losing their pattern earlier; auditory bullae and mastoids considerably to abnormally inflated: external form Nurine or saltatorial. (In Dipodoms the cheekteeth are rootless and simple.)
Group l'erognathi
Perognathus; Ilicrodipodops.

Group Dipodonyes
Dipodomys.
(The arrangement of this family is based on the classification of Wood, 1935.)

Family 14. GEOMYIDAE

Mastoids not inflated. Zygoma robust, the jugal extremely shortened. Infraorbital foramen with its "orifice protected from muscle pressure by countersinking in an oblique sulcus" (Mitler \& Gidley). External form and cranial characters highly modified for underground life. Cheekteeth in living genera always evergrowing and always, excepting the premolar, completely simple.

Thomoms, Geomys, Pappugeomys, Cratogeomys, Platygeomys, Orthogeomys, Heterogeomys, Macrogeomys, Zygogeomys.

2. Myomorph Series

Infraorbital foramen always clearly enlarged for muscle transmission.

Eighth Superfamily. ANOMALUROIDAE

Infraorbital foramen much enlarged for muscle transmission; masseter lateralis not extending its line of attachment on to forepart of zygomatic plate, which remains completely bencath the infraorbital foramen, and is narrow. Mandible without special peculiaritics.
(It may be noted that in this and the next three superfamilies, Pedetoidae, Ctenodactyloidae, and Dipodoidae, the zygomasseteric structure as regards the arrangement of the forepart of the skull (infraorbital foramen and zygomatic plate) is very similar to that of Hystricoidae and Cavioidae).

Skull not abnormal in the typical suhfamily; in the Idiurinae, much modified by abnormal enlargement of infraorhital foramen, much constricted palate, thickened incisors, etc. Jugal long. Bullat large, hut not abnormaliy inflated.

Cheekteeth ${ }_{4}^{4}$, rooted, not hypsodont, the pattern typically reduced heptamerous, the re-entrant folds wide.

Fihula, so far as known, not fused with the tibia (no skeletons of Zenkerella and Idiurus available for examination). Digits of hindfoot five. External form suited to arboreal life; usually a flying-membrane present, attached to sides. Underside of the tail with scaly outgrowths near the body. Malleus and incus frec (Tullberg).

Family 15. ANOMLALURIDAE

With the characters of the Superfamily.
Sulfamily ANOMALURINAE
Infraorbital foramen not greatly enlarged. Palate not much narrowed. Incisors moderate; toothrows not reduced. "Anterior point of masseteric
insertion on mandible bencath hineler part of M.I " (Niller \& Gidley). (Flyinemembrane present.)

Anomaluras, Anomalurops.

Sublamily IDIURINAE

Infraorbital foramen extremely enlarged, the zygomatic plate projected forwards to a point nearly immediately behind the incisors. Palate much narrowed. "Anterior point of masseteric insertion on mandible in front of P.4" (Niller \& Gidley). Incisors much thickened from before backwards. Tootbrows strongly reduced. (Flymg-membrane present or absent.)

Zenkerella; Idiurus.

Ninth Superfamily. PEDETOIDAE

Zygomasseteric structure not essentially different from that of the Anomaluroidae (infraorbital foramen extremely enlarged, the \%ygomatic plate projected forwards, much as in Idiurinae).

Skull with extremely broad frontals; jugal much thickened, lengthened, ascending to lachrymal; mastoids extremely inflated.

Cheektecth i, evergrowing, and near complete simplification in pattern,
Fibula reduced and fully fused with tibia high on the leg. Digits of bindfoot four. Externally much modified for bipedal saltatorial life. Nletatarsal bones normal, not tending to fuse (compare specialized Dipodidae).

Walleus and incus free ('Iullberg).

Family if. PEDETIDAE

With the characters of the superfamily.
Pedetes.

Tenth Superfamily: C'TENODACTYLOIDAE

Zygomasseteric structure not essemally different from that of the Anomaluroidae in so far as it affects the general shape of the skull. Infraorbital foramen large but not abnormally so. Mandible with the angular portion drawn backwards to a degree, but not distorted outwards; coronoid process absent; a weak short ridge may be developed, reminiscent of the "meelialis ridge" of Cavioidae, though much less developed than in that superfamily:

Skull considerably modified, flattened, the jugal long, the zygoma in two portions, a horizontal and a vertical (parallel-Dipodinate). Auditory bullae and mastoids much inflated.

Cherkteeth at full dentition $:$, the premolars lost in the adult, or (Pectimator). 'The teeth evergrowing, and near complete simplification of pattern.

Fibula not fused with the tibia. Digits of hindfoot redueed to four.
External form without special peculiarities; tail fully haired: some of the digits with stiff bristle-hairs present (parallel-Petromus, Octedontinae, (hinchillidae).

[^0]Talleus and incus fused ('Tullberg).
Radiale and intermedium can be separate (fused in all other Rodents examined by Tullherg except Bathyergidae).

Family if. C'TENODAC'TYLIDAE

With the characters of the Superfamily.
Pectinator, Ctenodactylus, Massoutiera, Felozia.

Eleventh Superfamily. DlPODOIDAE

Zygomasscteric structure not essentially different from that of Anomaluroidae, the infraorbital foramen always large, sometimes extremely so, the zygomatic plate always completely heneath it. In primitive genera the infraorbital foramen is conspicuously wider below than above (compare the primitive Muroidae, Graphiurus, Deomys). Nandible with angular portion weak, sometimes perforated; occasionally strongly inflected, and usually with this formation suggested.

Skull in progressive species characterized by much broadened frontals, greatly inflated mastoids and auditory bullae, and specialized zygoma. In primitive species, the skull more or less Murine in general aspect (except the infraorbital foramen). Jugal long, usually extending to the lachrymal.

Checkteeth $\frac{1}{3}$ or the extra premolar when present much reduced in size; the tecth rooted, cuspidate, with re-entrant folds which are fairly well open as a rule; occasionally becoming flaterowned, in which case the re-entrant folds are narrow (specialized /apodinae).

Fihula much reduced, fused high on the leg with the tibia. Digits of hindfoot in primitive species five; or may become reduced in progressive forms to three functional, or three only. External form much modified for bipedal saltatorial life, excepting the genus Sicista.

In specialized genera, the three central metatarsal hones fuse to form a camombone.

Nalleus and incus free ('lullberg).

Family is. DIPODIDAE

With the characters of the Superfamily.

> Subfamily SlClSTINAE

External form not modified for saltatorial life. Zygoma simple. Auditory bullac not inflated. Netatarsal bones normal. Cheekteeth quadritubercular, chapidate, not tending to become flaterowned.

Sicista.

Subfamily ZAPODINAE

External form modified for saltatorial life (as in all remaining members of the fambly). Checktecth semi-hypsolont, not quadritubercular, tending in progressive species to become flatcrowned, in which case the re-entrant folds are
narrow, and usually isolate on crown surface as islands. Wygoma simple, unspecialized; auditory bullae not intlated; metatarsal bones normal.

Eozapus, Zapus, Napueazupus.

Subfamily CARIIOCRANIINAE

Auditory bullae and mastoids ahnormally inflated. Zygoma in two portions, a horizontal and a vertical, these portions connected by a curvature. Metatarsal bones normal, not fused. (heekteeth (apparently) as in Dipodinac. Digits of hindfoot may be reduced to three.

Cardiocramius (not seen), Sulpingotus.

Subfamily IEUCIIOREUTINAE

'The three central metatarsal bones fused to form cannonbone. Auditory' bullae much inflated. Zygoma unspecialized, simple, like that of Zapodinae. Cheekteeth cuspidate, with unusually high cusps. Rostrum much lengthened. Ear much enlarged. M. 3 (evidently) vestigial. (II indfoot with three functional digits.)

Euchoreutes.

Subfamily DIPODINAE

'Three central metatarsal bones fused to form a cannonbone. Auditory bullae and mastoids considerably to excessively inflated. Wygoma in two portions, a horizontal and a vertical, these portions not connected by a curvature. Cheektecth with moderate cusps; rostrum weak; car less enlarged; M.3 not restigial. (Hindfoot with three functional digits.)

Group Allactagae

Allactaga, Alactagulus, Prgeretmus.
Group Dipodes
Paradipus; Dipus, Scirtopoda, Eremodipus (the last not seen), Faculus.

Twelfth Superfamily. MLROIDAE

Zygomasseteric structure primitively (Graphitrus, Deomys), nearly as in Sicistinae, except that the infraorbital foramen is less enlarged, and is not conspicuously wider below than abose.

In two hundred other genera evamined helonging to the group, the zygomatic plate is broadened and tilted upwards to a greater or lesser degree: maseter lateralis extends its line of attachment on to zrgomatic plate, and masseter lateralis superficialis has its anterior head distinct, so far as known, from zysoma (see figures in T'ullherg). Infraorhital foramen always transmitting muscle, never extremely enlarged, usually less so than in the preceding families of Myomorph Rodents; and sometimes (Rhizomyidae) becoming moch reduced. Nandible with angular portion not distortcel outwards; in Muscardinidae this portion is relatively weak, may shon signs of inflectoon, and may be pertorated.

Skull usually with constricted frontals; auditory hullae in the majurity not
much enlarged, but may become so ((ierbillinae); or may be much reduced, as in Phlueomys, Lophiomys, certain species of Rathus, and others. Jugal typarly comsiderahly shortened; hut long in Muscardindae, Tachyorvetes, ete.

Cheekteeth : (Anscardininae, (iraphiminae), (the greater part of the superfamily), (genus Desmodilliscus), or (Rhanchoms, some Hydromyine genera): rooted except in II yospolax, Rhombomys, and the majority of the Aicrotimate.

Fibula so far as known reduced, and fused high on the leg. Digits of hindfoot five with one exception (Malacothrix). External form as a rule small, seneralized; sometimes highly modified for underground life (Spalax, to a lesser degree Myuspalax, Ellohius, Prometheomys, Notiomss, etc.); sometimes highly specialized for aquatic life, cranially as well as externally (Ichthyomys and allies, Mydromys, (Trossmys); sometimes specialized for arboreal life, with fully upposahle hallux (h iropudom's, (hiromyscus, Hopalonys and others): in one case, Notomss apparently filly specialized for bipedal saltatorial life, Spiny covering may he monlerately developed (Acombs, some species of Rattus, Platacanthomys). 'lail typically naked, scaly; umiformly haired in most Nuscardindac, Cratoromys, Luphomys, one species uf Nicotoma, most Gerbillinae, and others.

Nalleus and incus frec ('loullberg).
Caecum suppressed in Nuscardinidae, so far as known, except in Typhomes: becoming much reduced in Ichthyomys ('lhomas).

Family ig. MUSCARDINIDAE

Skull without spectal moxification; jugal usually relatively long; bullae large and to a degree inflated except in l'latacanthomyinae.

Checktecth ${ }^{*}$ or ${ }^{3}$, primitively with hasin-shaped crowns and corner cusps, becoming flatcrowned in progressive genera, in which case they become a serics of relatively narrow transverse ridges (which are always traceahk, even in primitive forms), the general dental effect strongly reminiscent of that of the Sciuridae.

Mandible with angular portion sometimes inflected, and sometimes with perforation.

Extermally slighty spectalized for arboreal life; tail fully haired evcept in Wymmems (not seen) and Typhlomys. Cardiac portion of stomach with horny layer absent (Tollberg), (This character mot known regarding IPatacanthomyinae ; but present, so far as known, in all other members of the superfamily.)
('aceum suppressed, so far as known, excepting in Typhlomys.

Subfamily GRAPIIURINAE

Zyematic plate remaining completely beneath infraorbital foramen; masseter lateralis not extending its line of attachment on forepart of zygomatic plate. (Cheekteeth ${ }_{4}^{4}$).

Gaphinms.

Subfamily MUSCARDININAE

Zygomatic plate tilted strongly upwards; masseter lateralis extending line of attachment on to forepart of zygomatic plate. Checktecth ${ }_{4}$. Bullae large, nomally. Checktecth when flat-crowned with the depressions (between the ridges) not tending to become isolated with wear. Palate without a series of foramina (or a single large pair) situated between the toothrows.

Mromimus (not seen), Eilioms, Dyroms, Glirulus, Glis; .Muscardinus.

Subfamily PlATACANHHOMIINAE

Like the Muscardininae except: premolars suppressed, cheekteeth (flatcrowned) with the depressions (hetween the ridges) tending to become isolated on crown surface with wear; bullae small; palate with a large pair of foramina, or a series of foramina, between the toothrows. (Zygomatic plate much narrowed, parallet-llydromyinae). (A caecum is present in Typhlomys.)

Platacanthomys, Tiphomys.

Family 20. LOPHIOMIIDAE

Like the Muridae (helow, no. 23), but more specialized: skull with temporal fossae roofed over by bony plates rising from jugal, frontal, and parietal, a structure not known elsewhere in the Order. Cheektecth $\frac{3}{3}$; pattern as in cuspidate Cricetinac. External form modified for arboreal life. (Ilallux partly opposable: bullae much reduced.)

Lophiomys.

Family 21. SPALACIDAE

Like the Mluridae (below, no. 23), hut more specialized; skull and external form extremely modified for underground life, the eyes suppressed. Infraorbital foramen relatively large, and zyomatic plate nearly horizontal and below it (secondarily acquired? masseter lateralis superficialis with anterior head distinct, as in Juridac, as figured by lullherg). Cheekteeth with re-entrant folds which isolate on crown surface in adult.

Spalax.

Family 22. RIIZOMIIDAE

like the Nuridac (below), hut zygomasseteric structure unusual infraorbital foramen extremely reduced, owing to the fact that masseter lateralis rises to an abnomally high degree on zergomatic plate (which is very strongly tilted upwards), extending its line of attachment beside the infraorbital foramen on its inner side. Externally and cranially more or less modified for fossorial life; checktecth with re-entrant folds isolating as islands on crown surface in adult. (Infraorbital foramen not V-shaped below.)

Rhizomus, Camomıs.
(E.N. OF First Volcme)

Family 23. MURIDAE

Infraorhital foramen typically specialized into a wider upper portion for muscle transmission and a narrower lower one for nerve transmission, its lower border very generally V-shaped (not nearly straight as it is in Rhizomyidae). Jugal normally strongly reduced (except Tachyorgctes and some genera from Dhadgascar). Cheekteeth laminate, cuspidate, heptamerous or prismatic, but never reminiscent of those of Sciuridae, i.e. never agreeing in pattern with those of Muscardinidac. External form various, but when subfossorial, eyes retained, and zygomatic plate not specially narrowed nor turned downwards (compare Spalacidae). Temporal fossae never roofed in by bony plates (compare Lophiomyilae). Nasseter musele, so far as known, not rising beside infraorbital foramen on its inner side (compare Rhizomyidae).

The order in which the suhfamilies are listed here is provisional.
Only valid genera which have been actually examined are included in the present list.

Subfamily DEOMYINAE

Zygomatic plate remaining completely beneath the infraorbital foramen. (Pattern of cheekteeth as in Dendromyinae).

Deomy's.

Subfamily MURINAE

Zygomatic plate (as in all remaining subfamilies) broadened and tilted upwards to a greater or lesser degree.

Cheekteeth laminate or cuspidate; when laminate, the laminae tightly pressed together: when cuspidate, the cusps of the upper molars arranged in three longitudinal rows.

Group Eliuri

Eliurns.

Group Anisomyens

Ansomys.

Group Mures

Hapulomess, Pegonomys, Lenomys, Chirapulomys, I'andelemien, Micromys, Apratemus, Thambomss, Grammomys: Carpomys. Butomes, Pithechior, Cratermus, Myomss, Malloms, (onilurus, Zysmis, Laomys, Mesombriomes; ()entmis, Dasimys, Mydomss, Arricanthis, Lemmiscomys, Rhadomys, Petomis,
 cephations, Acthomys, Thellomss, Rottus, Gyom's," l.cporilhes, Psendomys, Apomers, Mchonvs, Lromss, Cochmus, Malicomis, Llacromys, Zelotomis, Chiromssens, Leigghtina, Mas, Mamicilus, Mylenomys, Mycterimys, Colomis,
 Acomss, Eranoms; Lophomys; Eihuthrix; Randicota, Nesokia; Beomus, Succostomus: (ricetomes: Phlieomys.

Subfamily RHYNCHOMIINAE

like the Murinae, but incisors and cheekteeth ($\frac{2}{2}$) so reduced as to appear almost functionless.

Rhynchomys.

Subfamily HYDRONYINAE

like the Murinae, but cheekteeth (often $\frac{2}{2}$) with a pattern characterized by a series of hasin-shaped lobes (evidently the outer row of cusps of Murinae have become suppressed).

Zygomatic plate much narrowed, though strongly tilted upwards. Infraorbital foramen may be more enlarget than is usual. N. 3 when present restigial.

Leromys, Leptomys, Chrotomys, Celaenomys; Paralydromys, Crossomys, Hydromys.

Subfamily DENDROMIYNAE

Like the Ahurinae, but cheekteeth with the inncr row of cusps of upper molars hecoming suppressed; M. vestigial.

Dendromus, Steatomys; Malacothrix; Prionomys; Petromyscus.

Subfanity OTOMIVJNAE

Cheekteeth with pattern of a scries of transverse plates; in the upper series N. 3 becoming the dominant twoth; cheekteeth hypsodont. Bullae may become much inflated.

Otomys, I'arotomys.

Subfamily CRICETINAE

Checkteeth laminate, cuspidate, prismatic or heptamerous; when cuspidate the cusps arranged in two longitudinal rows, when laminate the laminae separated hy wide folds; when prismatic, checktecth rooted, and skull not much modified by ridges for muscle attachment (compare Wicrotinae).
(Orvomys, Neacomys, Megaloms, Vectomys, Thomasomys, Rhipidomys, Phacnomys, Chilomys, Nyctomys, Fylomys, (hotylomys, Rhagomys, Nesomys, Reithrodontomys, 'Peromiscus, Baiomss. ('atomiscus, Onvihomivs, Akodon, \%ygodontomys, Microxus, Lenoxus, Oxymbterus, Blarinoms, Notioms, Scaptiromys, SCotinomys, Cricetulus, Phodopus, Cricetus, Mesocricetus, Hystromys, Hesperomys, Eligmodomita, Graomss, Dhyllotis, Chinchillula, Irenomys, Rcithrodon, Eiuneomis, Chelemiscus, Ycotomis, Signomys, Sigmodon, Iolochilus, Andinomys, Veotomodon, Veotoma, Hodomws, Velsonïa; Hypogeomys; Rheomys, Ichthyomis, Anotomus.

Subfamily GY入INUROMY゙JNAE

Checktecth flatcrowned, laminate, the laminae excessively tightly packed together, the pattern a series of isolated folds, these folds line-like and extremely narrowed. M. 3 shightly larger than . 1.2 , and M. 2 slightly larger than M.s.

[^1]Subfamily GERBILIINAE

Skull specialized by inflation of auditory bultae and braincase, and narrowing of rostrum ("saltatorial type"). (heekteeth tending to become a series of transverse plates, these separated by wide folds, in progressive genera; in primitive forms, the teeth are cuspidate at hirth, the cusps arranged in two longitudinal rows, in the upper molars. Xl. 3 usually strongly reduced. ('The cheekteeth are evergrowing in the genus Rhombomys.) External form modified for terrestrial plains or desert life, perhaps saltatorial in some cases; tail usually fully haired; limbs often lengthened to a certain degree.

Microdillus, Gerbillus, Taterillus, Tatera; Desmodillus, Desmodilliscus, Pachyuroms: Ammodillus; Meviones, Brachiones, Psammomys; Rhombomys.

Subfamily TAClIYORIC'TINAE

Checkteeth moderately or strongly hypsodont, rooted, the pattern consisting of thick cursed parallel ridges of enamel extending across crown surface. External form generalized or fossorial.

Group Brachyuromyes
 Brachyaromys.

Group 'Tachyoryctac

(Infraurhital foramen \vee-shaped below, compare Rhizomyidae.)
Tachoryctes.

Subfamily MYOSPALACIN, AE

Checktecth evergrowing, the pattern prismatic. Infraorhital foramen relatively large, zygomatic plate not strongly tilted upwards. Skull and external form modified for underground life, the lambdoid erest slanting forwards about to level of posterior zeqomatic root (parallel-Spalacidat).

Myospalax.

Suhfamily NICROTINAE

Checktecth prismatic in pattern, frequently but mot always evergrowine. Infraorbital formen small, narrowed; zygomatic plate strongly tilted upwards. Skull much modificel by ridges for muscle attachment (tendency to develop median internhital crest, sumamosal erests, etc.). Lambdoid crest not slanted forwards to level of posterin zyonmatic root.

Group Brachytarsomyes
Brachytarsomss.
Group Lemmi
Dicrostomy: Synaptomys, Myopus, Lemmus.
Group Microti
Clethionomys, Aschizoms, Eathenomys, Anteliomys, Atticula, Myperachus;

Dolomys; Phenacomys; Ireicola, l'itymys, Blanfordimys, Phaiomys, Verdon, Pedomis, Orthriomis, Herpetomys, I'roedromys, Microtus, Lasiopodomys: Lagurus; Ondatra, Veofiber; Prometheomys, Ellobius.

The "Family Nesomyidae" or subfamily Nesomyinac of some authors in which all the Rats of Madagascar are ineluded is here regarded as not definable. Nor can all these Rats be referred to the Cricetinat, as is often done, for it seems clear that for the most part they are not closely related to each other.

Exceilent figures of zygomasseteric structure of all the leading families of Rodentia are published by 'Fullberg, Nova Icta Reg. Soc. Sci. Upsaliensis, 3, XVIII, igoo (i899).

Before dealing in detail with the various families, it may be mentioned that in this work, fifty-two families and subfamilies are recognized in the Order, and that about three hundred and thirty-six genera have been examined, included in the keys, and retained as valid.

ZYGOMASSETERIC STRLCTURE

Without entering into any detailed account of the variations of the arrangement of the jatw-muscles of the Rodentia, it is necessary to note certain characters by which these muscles modify the skull, and with which it is usually possible at once to identify the "superfamily" position of any living Rodent.

There are three parts of the skull which become greatly affected in the various families, namely the infroorbital foramen, the zygomatic plate, and the formation of the mandible.

The formation of the mandible has usually been used by most authors to divide the "Hystricomorph" series from the remainder of the others; 'Tullberg made this his major division of the Order, and divided it into "Hystricognathi" (including Bathyergidae) for forms in which the mandible has the angular process lifted outwards hy the specialized limb of masseter lateralis superficialis, and the "Sciurognathi," in which this does not take place.

The angular portion of the mandible is as just described, to a greater or lesser degree, but (with rare exceptions) strongly and clearly marked, in the families Bathyergidac, IIystricidae, Erethizontidae, Echimyidae, Dinomyidae, Cuniculidae, Dasyproctidae, and Chinchillidae. It is at its weakest in the Chinchillidae, and in this family there is some approximation towards that structure, next to be deseribed, found in Caviidae. It is also relatively weakly developed in more primitive Mystricidae, as Atherurus; but in most of the genera comprising the above-mentioned families (including Petromus which I refer to the Echimyidae, but which has frequently been lumped with the Ctenodactylidae), it is strongly and clearly marked, and reaches its highest degree of strength in such forms as Thryonoms, Myocastor, Capromys and certain Dichimyidae, and in the Bathyergidae.

The angular portion of the mandible is not lifted outwards by the lateralis muscle in any other family or genus of Rudent, so far as J have seen.

In the Cavidace (Cariu, Galea, Kerodon, Caviella, Dolichotis, Itydrochoerus), the mandible is not by any means typically Hystricoid, though these Rodents have universally been placed in the Ilystricoid series; here it is according to Milier \& Gidley the medialis portion of the masseter which influences the jaw: a very deep ridge is cleveloped along the jaw slightly below the level of the touthrows: though this structure is suggested in Ctenodactytidae and more so in Chinchillidae, the Caviidae have as far as I have seen an entirely unique formation of the lower jaw in degree of development. Waterhouse suggested that if the lower incisors of the Caviidae were longer and continued further hackwards the mandible would be typically Hystricoid, and included them in his Hystricoid serics. Be that as it may, unfortunately the mandible is not so, and therefore Caviidae cannot be looked upon as typical Hystricoid Rodents to-day, whatever they may have heen derived from.

In other families of Rodentia, the mandible may have the angular portion
pulled inwards instead of lifted outwards, or may be comparatively without peculiarity.

The pulling inwards is developed to a most abnormal degree in the Aplodontidae. It is also to be found in certain Sciuridae, certain Dipodidae; it is evidently nearly as in Aplodontia in the genus Cynomys (Sciuridae); and in the genus Cardiocramius (Dipodidae; not seen).

The mandible of the Ctenodactylidae, so often placed in the Hystricoid series, is ahnormal, but not in the least like the Hystricoid type. The coronoid is suppressed; the angular process drawn backwards to a degrce; and a faint medialis-ridge, reminiscent of that of the Caviidae may be traced.

I can call to mind no special peculiarities with regard to the mandible of the vast number of genera and species I have examined in the Muridae. Rarely the coronoid is suppressed. In the Muscardinidae, and in certain Dipodidae, the angular portion may be perforated. In the former family sometimes traces of the pulling inwards of the angular, so highly developed in Aplodontia, will he secn. The mandible may be noted as weak in the Heteromyidae.

In some genera with the "non-Ilystricine" mandible, the lower incisor extends so far backwards that it forns a conspicuous process between the condylar and angular processes; examples are Spalax, Geomyidae, Rhizomyidae, Nesokia, etc. This never occurs in genera with Hystricine type of mandible. Pedetes, sometimes placed in the llystricoid series (as by 'Ihomas), has certainly not a Hystricine type of mandible, with its reduced relatively small angular process.

In mandible structure, therfore, Rodents divide very broadly speaking into three classes:
Angular process lifted up and distorted outwards by specialized limb of masseter lateralis superficialis:

Bathyergidae, IIystricidac, Erethizontidae, Echimyidae, Dinomyidae, Cuniculidae, Dasyproctidae, Chinchillidae.
Angular process never lifted up as above described.
Lower jaw deeply molified by conspicuous ridge extending below level of toothrows on outer sicle, for attachment of masseter medialis:

Caviidac.
Lower jaw without extreme moclitications, cxeept in certain cases by root of lower incisor: or by strong inflection of angular process (extreme suly in Aplodontiidare):

Iplodontiidac, Sciuridac, Geomyidae, Ileteromyidac, Castoridac, Dipodidae, ('tenodactylidae, Anomaluridae, Pedetidae, Nuscardinidae, Spalacidae, Lophomytare, Rhizomyidae, Muridace.
The infraorbital foramen is enlared to transmit the masseter muscle in a fery large number of Rodents. Degree of enlargement, and shape and size of this foramen varics evecedingls.

Even in those forms which are regarded here as not transmitting muscle, in two families, sciuridae and particularly Bathergidae, is certain variation
found. In Protoxerus and Tamias (Sciuridae), the infraorbital foramen is more enlarged than in the other Squirrels, and prohably may transmit a small strand of the muscle. In these cases however it is not so far as 1 can judge anything like so enlarged and clear as in any Rodent which is regarded here as a form with muscle transmission of this foramen present. In the lathyergidae, certain species of the genus Cryptoms appear to he starting to transmit musele through the infraorbital foramen; it may rarely, as in C. mellondi, even he as much enlarged as in the much reduced type found in the Rhizomyidae. This is evidently a variable character, and in Crytoms the foramen may even be more enlarged on one side of the skull than on the other, in individual cases. In the Aplodontiidae, most authors state that the canal does not transmit muscle; however in those examined it is on the large side for this section of the Order.

The infraorbital foramen does not transmit muscle in Geomyidae, Heteromyidae (excessively reduced in these two families), Castoridae, Sciuridae with the abose noted exceptions, Aplodontidae and Bathyergidae, with the above noted exceptions.

In all other Rodents it is clearly enlarged to do so. 'There are then broadiy speaking two types of infraorbital foramen structure to be discussed, with the one exception of the Rhizomyidae. In Hystricidae, Erethizontidae, Echimyidae, Dinomyidae, Dasyproctidae, Chinchillidae, Caviidae, Pedetidae, Anomaluridae, Ctenodactylidac and Dipodidae, it is round, completely ahove the zygomatie plate, and normally extremely enlarged. This enlargement reaches its greatest derelopment probahly in the Pedetidae, and in the Idiurine subfamily of Anomaluridae; and in certain sections of the Dipodidae. In the Cuniculidae, the infraurhital foramen is secondarily reduced by the growth of the enormons cheekplates. In two genera of Rodents which are here referred to the Naroid superlamily, Deom's (Xuridae), and Grophimus (Xuscardindae), the infraorbital foramen, though not ahormally enlarged, is completely above the zygomatic plate.

In the remainder of the Order, the infraorbital foramen, though sometimes varying in actual size of enlargement, is never aboormally enlarged; in vast sections of the family Mluridae, it is specialized into a wider portion above for muscle transmission, and a narrower lower one for nerve transmission. In the Sublamily Microtinac, it has hecome, correlated probably with the increase in general strength of jaw-muscles in this group, much reduecd. It is abnormally reduced in the Rhizomyidae (R/asomys and Camomps); in this group, the zegomatic plate is strongly broadened and tilted upwards, and the foramen becomes reduced to a small aperture situated at the top of this plate; the masseter muscle rises up insite of it, a condition according to Jullberg not known elsewhere in the Order.

It may be noted that Winge puts furward the theory that in all Rodentia living, Aplodontia excepted, the infraorhital foramen has transmitted muscle, and has beeome scondarily closed in the Geomyidae, Sciuridae, Castoridae, Bathyergidae, Heteromyidae. Without wishing to enter into a discussion on matters such as these, it appears to me to be singularly unlikely that, having taken such a large step forward in evolution as the enlargement of this eanal
for muscle transmission (as it seems an unusual character anong Nammalia to say the least), these families should go even further in evolution and, so to speak, develop covering over this canal so that it does not transmit again. There is not a wide difference in the arrangement of the zygomatic plate between Aplodontiu and a primitive Sciurine such as Belomys; it would seem so much more likely that the Sciurine arrangement of jaw-muscles was developed from a type not widely distinct from Aplodontia as regards arrangement of infraorbital foramen and zygomatic plate; far more likely than that the infraorbital of Belomys is secondarily closed to muscle transmission.

In the Spalacidae (Spalax alone), the infraorbital foramen is larger than usual for a Muroid Rodent and the zygomatic plate, though to a degree broadened, appears to be nearly Hattened to a horizontal position. 'This however may well have been brought about by the fossorial habits of this animal.

Summarizing: the infraorbital foramen does not, or scarcely transmits muscle in Sciuridae, Geomsidac, Ileteromyidae, Castoridae, Bathyergidae, Aplodontiidae.

It is enlarged, and usually very much enlarged for muscle transmission in Hystricidae, Erethizontidae, Echimyidae, Dinomyidae, Cuniculidae (see note above), Dasyproctidae, Chinchillidae, Caviidae, Ctenodactylidae, Anomaluridae, Pedetidae, Dipodidae.
It is enlarged, but very rarely much enlarged for muscle transmission in Muridae, Lophiomyidae, Spalacidae, Muscardinidae, and Rhizomyidae (see note above).
The zygomatic plate is less variable in structure, broadly speaking, than either the infraorbital foramen or the mandible. Among the Rodents it is found in two conditions only. It is narrow, usually very narrow, and strictly horizontal, semaining completely beneath the infraorbital foramen, in Aplodontiidae, Bathyergidae, Dipodidae, Anomaluridae, Ctenodactylidae, Pedetidae, Hystricidae, Erethizontidae, Eehimyidae, Dinomyidae, Dasyproctidae, Chinchillidae, Cavidae, and in the genus Graphiurus (Nuscardinidae), and Deomys (Muridae).

In the Cuniculidac it is much distorted by the growth of the bony checkplates.

In other Rodentia, to a greater or lesser degree, it is broadened and tilted upwards. In these, according to Miller \mathcal{E} Gidley, and supported by 'Tullberg's figures, masseter lateralis superficialis is distinct from the zygoma, " not attached to any part of zygoma except occasionally to a point at extreme base of zyoumatic plate."

In the Sciuridae, Castoridae, Geomyidae and lleteromyidae, in which the infraorbital foramen does not transmit muscle, the zygomatic plate is very generally strongly broadened and tilted upwards, the only exceptions being found among the Sciuridac: such as Tamias, and most members of the Pteromys group except Pteromys. In these families, the fateralis muscle rises to the superior border of rostrum and excludes masseter medialis from so doing. In the Muridae, so far as known, except Deomis, the Muscardinidae.
except Graphinras, the Lophiomyidae, the Spalacidae, and the Rhizomyidae, the zygomatic plate is broadened and tilted upwards to a certain degree, but masseter medialis is transmitted through the infraorbital foramen so that it is not excluded from the superior horder of the rostrum, and masseter lateralis as a rule does not extend so high on the forepart of the skull. The zygomatic plate in these families only approaches the Sciurine type of specialization as regards broadening in the Rhizomyidae, 'The degree of broadening, narrowing, and tilting upwards varies extremely through the Muridae, as might be expected in such a vast group. In Hydromyinae, though tilted up strongly, it is narrow. In such genera as Oxymyterns, and Lophuroms, it is very little tilted upwards; but only in Deomys of the vast number examined does it appear to me to be absolutely indistinguishable from the Dipodoid type as defined by Miller \& Gidley.

Notwithstanding this, although 'Fullberg's figures show clearly that there is a wide distinction between Glis and Graphimms in the Muscardindae, and between Deomys and Oxymycterus in the Muridae, as regards zygomasseteric structure of the forepart of the skull, I am not persuaded of the desirability of transferring Graphiurus to a separate superfamily from Gits, as was done hy Miller \& Gidley, nor Deoms to a separate superfamily from the remainder of the Muridae, although it must be admitted that to identify the superfamily relationships of Deomys (here considered a Aluroid), from Sicista (a primitive Dipodoid), is not possible on this character alone. It would seem however that the close resemblance in all other main characters between Graphinms and say Eliomys, and between Deomys and say Dendromme indicate that the Xturine type of zygomatic plate and arrangement of jaw-muscles has been derived from the Dipodoid type, or vice-versa.

The zygomatic plate therefore in the Order is narrow, and completely beneath infraorbital foramen, showing no signs of becoming broadened and tilted upwards, in Hystricidae, Erethizontidae, Echimyidae, Dinomyidae, Dasyproctidae, Caviidae, Pedetidae, Ctenodactylidae, Anomaluridac, Dipodidae, Aplodontidae, Bathyergidae, Chinchillidae, Muscardinidae, part, subfamily Graphiurinae, and Xuridac, part, suhfamily Dermyinar only.
It is much modified by growth of elacekplate in Cuniculidae, but presumably possessed the aboue character originally as in the rest of the llystricoidae.
It is broadened and tilted upwards to a greater or lesser degree in Sciuridae, Casturidae, (icomyidae, Ileteromyidae, Lophiomyidac, Rhizomyidae, Spalacidae (see note abose, P. 45), Muscardinidae, part, exeept Graphiurinate, and Muridae, part, all except Deomyinae.

The presumed relationship between Deomys and the Dendromyinae, and between Graphiurus and the remainder of the Muscardinidae indicate that it is not wise to base superfamily grouping on zygomasseteric structure alone, as was done hy Miller \& (idley.

DISTRIBUTION

The Rodentia is the only Order of non-Marsupial land mammals inhabiting Australia. The one family of Rodents, the Muridae, must have either got there early from South-east Asia, which is the view currently held, or evolved there, which is the view suggested in the present paper. It is curious that if the Muridae alone came from South-east Asia, some members at least of the families Tupaiidae, Soricidae, Erinaceidae, Galcopteridae, Viverridae, Mustelidae, 'I'arsiidae, Cercopithecidae, 'I'ragulidae, Cervidac, Sciuridae, Hystricidae and Manidae, to quote only some of the families widely or at least comfortably distributed throughout the Indo-Mlalayan islands to the north-west of New Guinea, did not do so. It is remarkahle to say the least if not one genus of this vast assemblage entered the Australasian region, and yet such a large number of Muridae did so. For in New Guinea and Australia, and immediately adjacent islands such as Ceram, there are two hundred and forty-five named forms of Muridae, belonging to twenty-five genera and two subfamilies. It is to my mind as likely that a large section of the Muridae evolved in Australia and came into Asia via some islands as Celehes and the Philippines which may have for a time been separated from Asia and joined Australia, but later separated from Australia and joined Asia, than that all these Australian types came from Asia unaccompanied by any other genus of non-murine mammal. (The presence of the genus Sus in New Guinea is usually beld to be due to introduction.) This view suggests that the Muridae are among the most archaic of mammals, which appears on account of their universal distribution to be likely.

The main Australasian genera of Muridae are Rattus (many species totally distinct from the "ship-rats" rattus and norvegicus, and including one group, concolor which ranges to some of the Pacific Jslands), Cromys (doubtfully distinguishable from Rattus), and the isolated and distinct genera Zyzomys, Mesembriomys, Notomys, Conilurus, Leporillus, and Mastacomys (Australian or 'Tasmanian)', and Mallomys, Myomys, I'ogonomy's, Macruromy's, Vesaromys and Anisomys (New Guinea or Ceram). Leggudina (Australian), appears to represent a widd ally of the cosmopolitan genus Wus, which is I think not indigenous to the area under consideration. All these belong to the subfamily Murinae; the subfamily Hydromyinae, which is prohably derived from Murinae, and closely allied to it, has half a dozen representatives in the area, as IIydromys (Australia and New Guinea), and the more restricted Keromys (Queensland), Crossoms: Paralydromys, Leptomys, etc. (New Guinea), most of which are little known and rare.
 of species within the larger genera. Only Sciuridae, Hystricidae, Rhizomyidae, Muscardinidae (Malabar and South (hina), and Nuridae have penetrated the area, and only Sciuridae, Mystricidae and Muridae to any great extent. Roughly twelve hundred forms are named from the area, about half of which are Muridae.

In this family, of the typical subfamily, the genus Rottus (largest genus in named forms in the Order), has its headquarters in the present region, with over three hundred and fifty named forms ranging over the whole area, and containing in the area about twenty specific groups, eight of which range through the greater part of the area except Peninsular India, and in some cases Celebes, two of which are peculiar to l'eninsular India, and several of which are confined cither to Celehes or the Philippines. The genera Bandicota and Chiropodomvs, and to a lesser degree M/us, range through most of the area except that Chiropodumbs is not known from l'eninsular India nor Celebes, and Bundicota does not range further east than Java. Apart from these the Murine genera of the Malay lslands are rather different from those of the mainland. In the lhilippines, highly specialized genera such as Phloeomes, Crateromus, Carpoms and Crunomys occur, and are not known outside the islands; they may be allied to certain Australasian types, as the New Guinea Malloms, etc. The highly aberrant genus Echiothrix is confined to Celebes. A few other rather unimportant genera are named from Sumatra, Java, Borneo, closely allied either to Rattus or Mus, excepting Pithecheir (Sumatra, Malacca).

In the eastern portion of the mainland which constitutes this area (Burma, Siam, Indo-China region), a few genera as the isolated Ilapalomys, and types such as Dacnomys and ILadrom's are confined. I'andeleuria, wholly Indomalayan, ranges into the area from l'eninsular India, In South China, the Palacarctic genera Micromys and Apodemus occur. In this area, and Siam, the genus Mus appears to end its natural Eastern Range (except perhaps for its presence in the lhilippines).

Peninsular India appears to have types rather different from those of the eastern Indomalayan; among these may he mentioned Gohmada and Millardia, which range more or less through the area, and in the north occurs a species of Acomys (African and Palaearctic chietly), and Nosokia.

A distinctly Australasian element is seen in the Philippines in the presence of the Hylromyinat (Chrotomss, Celuchomys). From the same island comes Rhynchoms, which is here resarded as type of a subfamily the Rhynchomyinae.

The Dturidae of the Malay lslands, other than the lhilippines, all belong to the typical subfamily. In the northern part of the mainland area, a few Mlicrutinae, as Eothonomys (Southern China, Burma), Noodon (Sikkim), and some others have their southernmost range limit in the Old World. In Peninsular India, the Gerbillinae are represented by Tatera which occurs throughout the area; the subfamily is not known from the remainder of the Indomalayan.

The family Rhizomydae (Rhisambs, Camomss) is more or less confined to the area, ranging out of it only in parts of Szechuan, the group extends through Gouth China and from Nepal south through Siam to Malacca and Sumatra.

The Muscardindate is represented by two rare eenera which form a wellmarked subfamily (Platacanthomyinac), and are confined to the Malabar coast of India (Ilatacanthomss), and to South China (Typhoms). The llystricidae very probably evolved in the present area since all the most primitive known types seem to be grouped in it. 'Two, Trich's and Thecmus, are contined to the islands (Sumatra, Borneo, and in the case of Thecurns, the Philippines) (Trichys
reaches Malaccal). 'lhe more widely ranging genera Atherurus and Mystrix occur throughout much of the area; IIystrix scems absent only from the Philippines and Celebes; Atherurus ranges from Sumatra at least, north to Assam and South China. 'The species of Mystrix in the area are with the exception of the form found in Peninsular India, which also ranges over much of Palaearctic South-west Asia, of the more primitive type, at any rate as regards development of external covering of quills and spines.

The Sciuridae present a great number of forms in the area, and a high degree of specialization. In Peninsular India, only two genera of non-flying squirrels occur, Fumambulus (confined to the area), and Ratufa, which ranges over the whole region east to Borneo, but evidently not much in South China, though known from the island of llainan. In Nepal and Burma, many more genera occur; Callosciurus (not very clearly distinguishable from the I Iolaretic genus Sciurus), heading the list with about three hundred named forms. Marmota ranges into the area from the lalaearctic, in Nepal and lunnan. Dremoms and Menetes may be mentioned as types typical of the eastern part of the mainland; the former ranges to Malacca and Borneo. When Malacca is reached, many new forms start their ranges, some of which are highly specialized. Lariscus and Rlimoschurus, both ranging to Borneo, are among the more important. 'The l'ygmy Squirrels of the genus Nannosciurus go through the whole of the larger Malay lslands, from Sumatra to the Philippines, except Celebes, where they are represented evidently by a species, murimus, which agrees more in characters with the allied genus Sciurillus. Other peculiar types are Rheithrosciurus and Glyphotes, both of Borneo. None of the above-mentioned are known outside the Indomalayan region, except that Callosciurus has a few forms ranging into Palaearctic China. And it seems that the further south one goes the more highly specialized or aberrant hecome the distinct genera, though the more normal types as Callosciurus and Ratufa go through much of the area, the former even including Celebes and the Philippines. This is one of the few regions in the world where the named forms of Sciuridae actually exceeds the number of named forms of Murinae, for in addition to the above-mentioned, the area scems to be the headquarters of the Flying-squirrels; Petaurista, the giant Flying-squirrels, and smaller forms as $1 /$ ylopetes and Petinomys, range more or less throughout the whole area except that Petaurista does not occur east of Borneo, Mylopetes does not enter l'eninsular India, and neither Mylopetes nor Petmomys appear to go very far into South China. Belomy's is an important genus confined to the north-eastern part of the area (Sikkim, Tongking, Formosa, etc.).

To the Malay lslands, some very distinct generie types are restrieted, the most noteworthy being loms. It will he seen that, as indicated above, only three families of Rodents have gained a real footing in this region, which is a very different state from that present in most of the other large areas of the World.

Palaearctic Ronents. The Patacarctic as here understood contains all land in the Old World lying north of the langtsekiang River, the 30 line of latitude through northern lndia (i.e. including Kashmir), and broadly speaking

[^2]
DISTRIBUTION

the remainder of South-west Asia and the coastal regions of Africa which lie north of this line, or just south of it (as South Persia). Arabia should probably be regarded as forming part of the African rather than the Palaearctic region.

From this area roughly eleven hundred forms are named. The Muridae is very much the dominant family here in that seven hundred and fifty forms approximately belong to it. Six other families have a wide or moderate range in the area, and two, Ctenodactylidae (coastal regions of North Africa, Ctenodactylus, Massutiera) and Rhizomyidae (Szechuan, Rhizomys), just touch it.

The Microtinae is here the dominant subfamily of Muridae; the genus Hicrotus, which oecurs almost throughout the whole region except most of North Africa, being the sole Rodent genus with more than a hundred forms named from the area alone. Other Microtine genera with a wide range are Clethrionomss, and Arecola, the former like Microtus extending across into North America. Ellobius and Prometheomss, the two subfossorial Voles, are restricted to the area. 'The Lemmings, Dicrostonvx (Aretic regions), Lemmus and Myopus range across the northern portion. The two former also cross into North' America. 'I he most interesting of the rather numernus remaining genera in the area are Lagumus, Alticola, Dolomys, Pitymys and Blanfordimys. Pityms has a wide range in Cuntinental Europe, but is not met with further east of the Caucasus until it turns up again in Eastern North Ameriea, though several forms as Neodon occurring to the East in the Palaearctic are closely allied to it. Lagurus is also known from America. Dolomys and Blanfordimys are rare and local (Montenegro region, and Afghanistan region respectively).

The Murinae are well represented, but by only a very few genera, at any rate compared with the huge numbers of genera to be found in any of the tropical portions of the Old World. Indced, only five have a real range in the area. Apodemus is probably naturally the most widely distributed, as well as one of the most primitive members of the group, and appears to extend its range even to Iceland. Mus and Ruttus are now cosmopolitan in the Palacarctic owing to artificial human distribution, but both probably have a naturally wide range in the area, especially the former. Nicromys ranges intermittently from England to Japan; and Nesokia is common in the more southern portions of the Asiatic part of the area (Syria (into Egypt), across Persia and Russian Turkestan to Kashmir and Sinkiang). Of the rest, some four genera touch the coastal part of Africa, one of which, Acomys, is known from Crete and Syria, and three genera range north from India into the Kashmir region, the most important of which is Golumda. 'The Subfamily Gerbillinae has a wide range in the l'alaearctic east of western Europe: Meriones is the main genus, having more named forms from the area than any other Palaearctic Rodent except Microtus and Apodemus; Rhombomys, the most highly specialized member of the subfamily, is from the Palaeartic only; hut apart from these no member of the group ranges as far north as Siberia, being mostly confined to the Syrian-P'ersian region (as Tatera), or North Africa (Gerbillos, Psummomy's, etc., both of which range into Syria). The peculiar "Fat-tailed (ierbils" of the genus Peachyuromy's seem more or less restricted to the Palaearctic portion of Africa.
'The subfamily Cricetinae has a fairly wide range in the area, though only
five genera are met with, the group being primarily American; Calomyscus, surely a very ncar relative of the American Peromyscus, is restricted to Persia, Russian 'Iurkestan, and Baluchistan; the more typical Hamsters, which seem not to have very near allies in North America, have a wider range; Cricetus oceurring from Central Europe as far west as Belgium, east to Central Siberia; Cricetulus covcring a very large part of China, as well as Greece, South Russia, Syria, S.W. Siberia, and Kashmir; the other genera occurring in the area being Mesocricetus and Plodopus. In addition to the four great subfamilies of Muridae being well represented as indicated above, there is a very interesting subfamily confined apparently to Palaearctic China and adjacent parts of Siberia only, the Myospalacinae, with one genus, Myospalax. 'I'he family Spalacidae, which is here restricted to the genus Spalax alone, is purely Palaearctic, ranging round the eastern end of the Mediterranean Sea from Ilungary and the Balkan States to Egypt, and occurring in South Russia. The family Muscardinidae, represented by the typical subfamily, is more or less western in general distribution, though represented in Japan. The four better known genera, Eliomy's, Dyromys, Glis and Muscardinus all appear to meet in Central Europe, so far as their range is concerned. Dyromys goes east to 'Tianshan and Zungaria, but not west of Central Europe; Glis ranges to Spain and the Atlantic, also east to the Caucasus and Turkestan; Eliomy's does not range east of European Russia, but occurs again in Sinai and North Africa, as well as the Iberian Peninsula; Muscardimus is not known from Spain nor east of European Russia, but ranges naturally in England and in Scandinavia, which none of the otliers reach except by introduction. The family Dipodidae has its headquarters in the Palaearctic. Of the more primitive groups, the Sicistinae (Sicista) has the widest range, occurring from Scandinavia, the Balkans, and IIungary, more or less across the area evidently, in suitable localities. The Chinese Eowapus represents the American subfamily Zapodinae (the only subfamily occurring in that continent). The Cardiocraniinae, containing two extremely rare types, Cardiocranius and Salpingotus, appears to be restricted to the more inaccessihle parts of Chinese Central Asia, except that a species of Salpingotus is known from Afghanistan. Of the more specialized groups, the Euchoreutinae (Euchoreutes) is restricted to the deserts of Inner China; the Dipodinae have, however, a wide range outside Western Europe. Allactaga and Dipus both appear to range from South Russia across much of the Asiatic portion of the area, east more or less to the North Chinese Pacific coast; Yaculus ranges across North Africa from Morocco to Egypt and east as far as Persia; and generic types worthy of note confined to the Palaearetic with more restricted ranges are Scirtopoda, Paradipus, and Pygeretmas.

The Sciuridae have, as usual, a wide distribution in the area; only in contrast to the normal element (arboreal) in tropical areas, most of the Palaearetic genera are Ground-squirrels. Citellus and .Iarmota have the widest ranges, both occurring in Europe as well as much of Asia, and both occurring again in North America. Tamias, principally American, ranges in North Russia, Siberia and China. Atlantoxerus, confince to Morocco and adjacent region. represents a somewhat different type of Ground-squirrel found chietly in

Africa, and evidently not represented in either America or the Indo-Malayan; Spermophilopsis from Russian 'lurkestan area is probably a distant ally. Another type of semi-terrestrial Squirrel is the Chinese Sciurotamias, which seems nearest to Tamias in relationships. 'Free-squirrels are represented by Sciurus, which occurs throughout Europe, across Kussia and Northern (wooded) Siberia, and parts of Eastern China, as well as in the Caucasus, but is absent from North Africa, and much of the plains regions of S.WV. Siberia. The Indumalayan Callosciurus sends a few forms north into China. Of the llying-squirrels, Pteromys has the widest range, from Scandinavia across U.S.S.R. to Japan and N.E. China. Contrary to Thomas's classification of Flying-squirrels, the genus is here held to he an isolated specialized type with no very near aflies, not a near ally either of the American Glatcoms or the Indomalayan IIvlopetes. Petaurista, from the Indomalayan, has a wide range in China, and includes Japan and the Kashmir region, hut is not known west of Kashmir nor in any part of Siberia. Eupetuurus is confined to Kashmir, and Trogopterus to parts of China (though this genus touches the Indomalayan in some parts of China south of the langtsc). Eoglatucomys from Afghanistan completes the Palaearctic list of Sciuridae. 'Two other families occur in the area, the Castoridae (with one genus, Castor), now restricted to various localities in parts of Europe, such as Scandinavia, and some of the larger Central European rivers, parts of Russia, and the Mongolian Altai (the genus ranging across to North America), and the Hystricidae, with one gemus, Mystrix, specialized species of whieh extend from India through Persia and 'Turkestan to Syria, and again in Italy, Sicily (where they might have been originally introduced), and North-western Africa. This section of the genus, however, finds its widest distribution in Africa south of the Saliara.

The Nearctic region (Canada and the United States) contains roughly eleven hundred named forms of Rodents distributed among eight families. The Nuridae are here in the minority as compared with all the others, only four hundred forms approximately belonging to them, white about six hundred and ninety are named for the other families. 'Ihis contrasts widely with the condition found in the Palaearctic. Only two subfamilies of Nhridae reach America naturally at all (apart from the ILouse-rats, and Ilouse-mice (Murinae), Rattus and Mus, which were originally introluced accidentally by man). These two subfamilies are the Cricetinae and Microtinae. The Microtinae contain types mostly much like those of the Palataretic, as for example Microtus, Cletlirionomys (ranging over much of the arca), Dicrostons:, Lemmus (northern and Arctic), Lugurus and Pityms (with more restricted ranges). Genera peculiar to the area are Ondatra (the largest momher of the subfamily), Simaptomys (a Lemming), Phenacumys (one of the must primitive known Voles), and Neofiber (confined to Florida).

The Cricetinae of North America appear to have "come up from the south" rather than "in from the west," in that they are apparently more nearly related to South American types rather than to lalaearctic C'ricetiade. Of the seven genera known north of Nexico, three only reach as far north as Canada, Peromyscus (which appears to cover the entire continent), Neotoma, and Onvchomis.

The genera Reithrodontomys, Sigmodon, and Oryzomys have a fairly wide range in the warmer parts of the United States, and all the above without exception continue their ranges south into Nexico, all but Onychomys into Central America, and the three last-named range into South Ämerica. Outside the Nuridae, three families occur which also range in the Palaearctic, and four are at the present day confined to the New World.

The Sciuridae are represented, as in the Palaearctic, mostly by Groundsquirrels, of which Marmota, Citelhus, and Tamias (all also in the Palaearctic), each cover a great portion or most of the area. Cynomys, a rather isolated type of Ground-squirrel, is purely North American; 'Jree-squirrels are represented by Tamiasciurus (American only), and the more widely ranging genus Sciurus, which, however, covers relatively little of the area. Filying-squirrels are represented only by Glaucomys, which has, however, a very wide range. The Castoridae are represented by the sole genus, Castor, which is Holarctic in distribution. The Dipodidae are represented onty by the primitive subfamily Zapodinae (Vapacozapus, Zapus), which, however, covers almost the whole area but seems not to occur south of it. We may now turn to four solely American families. The Aplodontiidae, with one genus, Aplodontia, represents an archaic type of Rodent confined at present to the western side of the Rocky Mountains, but known to have occurred formerly in East Asia. The Erethizontidae, a member of the Hystricoid branch, is represented by Erethizon, noteworthy as being the only Hystricoid adapted for a life in cold climates. Other members of the family occur in the warmer portions of the Neotropical, from Mexico southwards. The Geomyoid branch of the Order contains two families both confined at present to America, extending south to Panama and Ecuador though chiefly northern in distribution. Of these the Heteromyidae is widely distributed in the western portions of the United States, represented by the more primitive Perognathus, which touches western Canada, and the highly specialized saltatorial Dipodomys and Microdipodops. The Geomyidae are represented by Thomomys, with very many named forms from the western and central U.S.A., and ranging into western Canada, and Geomys, from the central and eastern United States, including Florida. So far as I have traced it this branch of the Order is not known fossil outside America.

The neotrofical area has more named forms than any other of the great areas, if Mexico, the West Indies, and Central America are included in it. Notwithstanding this, although South America is currently referred to as being the "headquarters" of the Rodents, once Panama is passed there is a surprising general similarity of type through the various groups found in that continent, the members heing either Cricetine Muridae, or Sciuridae, or Caviidae, or members of the superfamily lystricoidae (all of which are more or less closely allied to each other). (A genus of Heteromyidae oceurs in the extreme north.) There is a lack of that wide divergence of structure which makes the study of Palaearctic, Nearctic, or African Rodents so interesting, and recalls the state of allairs present in the Indomatayan. In fact, su far as the "superfamilies" recognized in this work are reckoned, fewer of them occur in South. America than in any other of the great areas exeept the Indo- Walayan

Even in the Muridae there is incessant repetition of a single (Cricetine) type, very different from the interesting differences to be met with in the different subfamilies that occur in all the other great areas, even including the lndomalayan. Of about fifteen hundred named forms, roughly eight hundred are Nuridae, roughly seven hundred belong to other families.

In Central America (with Mexico and the West lndies), already a great increase in Cricetinae and a great decrease in the more northern Microtinae is met with. In the Cricetinae north of Panama, as well as the North American genera Neotoma, Peromuscus, Onychoms, Reithrodontomy's, Orysomys and Sigmodon being well represented, about fourteen more genera start their ranges at once. Confined to the Central America area are Nyctomvs, Nelsonia, Ototylomys, Scotinomys, Hodomys and others; while Tylomys, Nectomys, and one of the "Fishing-rats," Rheomys, range north from northern South America. 'The Nicrotinae range south to Guatemala only; the chief genera in the area being Wicrotus and Pitymys.
'The Sciuridae are very much the same, as regards genera, as in the Nearctic, except that Marmoter and probably Tamiasciurus are absent. Few range south of Mexico; but the genus Sciurus has many named forms from this area, and extends into South America. Glaucomys comes into Central America; while Wicrosciurus comes up into Nicaragua from South America; but apart from Sciurus and Microsciurus, no genus which occurs north of Panama crosses south of it. 'The Castoridae touch extreme North Mexico. The Heteromyidae are widely distributed through Central America, the primitive genera Meteromys and Liomys occurring more or less throughout, while Dipodomys and Perognathus are represented in Mexico. The Geomyidae are likewise common in the area, and one genus, Macrogeomys, ranges as far south as Panama. 'This group (Heteromyidae + Geomyidae) is, however, not known in South America except for a few forms of Heteromys from the extreme northern countries.

Four families belonging to the Ilystricoid branch occur in Central America; of these the Erethizontidae is represented by Coendou (Nexico southwards), while the Dasyproctidae (Dasyprocta), and the Cuniculidae (Cumiculus) start their range which is, as in the case of Coendon, from Mexico southwards over the greater part of tropical South America. The Echimyidae are represented by three subfamilies, twu of which, Capromyinae (Geocapromys, Capromys), and Plagiodontiinac (Plagiodontia), appear to be confined to the West Indies (where surprisingly few genera of Rodents occur), except that a member of the Capromyinae has been described from Venezuela; the other, the more generalized Echimyinae, being represented by Proechimys, Diplomys, and Hoplomys, from Nicaragua southwards. The Caviidae are represented by IIydrochoerus which e'xtends north to Panama.

South of Panama, vast quantities of Cricetine Muridae swarm, belonging to a very large number of named genera, which are in many cases not or barely distinguishable from each other. These group themselves round the following main types: Oryzomys, which appears to occur in all parts from Patagonia to Colombia, and has many close allies as Nectomys, Rhipidomys, Thomasomys, and perhaps leads to the specialized and isolated North Argentine Scapteromys;

Akodon, with a very wide range in the continent, and with several allies the best known of which is Oxymycterus; probably leading to the specialized subfossorial Notiomys of Patagonia; Phy/lotis, with its allies Hesperomys, Ehigmodontia, which series may lead to such dentally highly modified types as Chinchillula and Irenomys; and Molochilus, with its allies Neotomys and Reithrodon which seem to correspond to the Nearctic Sigmodon type.

By far the most interesting of the Neotropical Cricetines are the Fishingrats, Ichtlyomys and Anotomys, which must be among the most specialized of all Muridae, and in cranial characters parallel to a large degree the Australasian aquatic members of the llydromyinae.

The Squirrels of South America are, with the exception of Sciurillus from the Guianas, which appears to be a type which one might consider archaic and allied to the Indomalayan Namosciurus, all essentially types which agree to such a degree with the northern Sciurus that there appears no necessity to separate them from that genus, except for a closely allied type Microsciurus. The family ranges south to Jujuy (North Argentine) only. The type of Squirrel found in South America suggests that the family has "come in" recently, comparatively speaking, from the north, and has not been isolated from more or less Eocene times or before in the Continent when it was (as generally admitted) an island, as I suggest most of the Cricetines and Hystricoid types have. The Caviidae, represented by two subfamilies Ilydrochoerinae (IIydrochoerus only; tropical portions), and the Caviinae, containing the more specialized Dolichotis from the southern plains, and the more primitive Kerodon (Brazil), and Cazia and its immediate allies which between them cover the continent, are confined to the area. They are in this work not regarded as typical Hystricoidae, but referred to a separate superfamily on account of the formation of the lower jaw. The Hystricoid branch of the Rodents is represented in South America as follows:

Northern tropical forest area: Family Echimyidae: two subfamilies, the Dactylomyinae, Thrinacodus and Dactyloms; the Echimyinae, several genera among which the arboreal Echimys and Mesomys and the terrestrial Proechimys have the widest ranges. From South Brazil are known two rather distinct types referable to the latter subfamily in Clyomys and Carterodon. Family Erethizontidae: two very distinct subfamilies, the Chaetomyinae (Chaetomys only, distribution evidently local), and the Erethizontinae (Echinoprocta: Colombia; and Coendou, distribution general). Family Dasyproctidae: Dasyprocta and Myoprocta (distribution general). Family (uniculidae: Cuniculus (distribution general?). The l'amily Dinomyidae (Dinomy's) is confined to Peru and Ecuador region. The Subfamily Octodontinae (Echimyidae) is represented by Octodon and Ctenomys as far north as Peru on the western side of the continent. In P'erualso Lagidium represents the Family Chinchillidae. In the plains and mountains of the southern part of the continent the following Hystricoid types occur: Family Chinchillidae (Chinchilla, Lagidium, Lagostomus). Family lichimyidac: three subfamilies, Myocastorinae (Myocastor only). Abrocominae (Abrocoma only), and the Octodontinae, of which Ctenomys, Spalacopus. Aconaemys, Octomys and Octodon are the main genera. Besides these types, the genus Heteromys (Ileteromyidac) occurs in Colombia, Venezuela, and Ectador.

Africa is the only geographical area remaining to be discussed. This continent must surely be considered the present headquarters of the Order so far as variation in character gocs, in that it contains more superfamilies than any other arca, four (out of eight) of which are now confined to the continent. Roughly cleven hundred and fifty forms are named from the area; here once again the Xhridae are very much the dominant feature in that ahout eight hundred of the above forms helong to the fimily. 'I'he African types, both of Squirels and Rats and even l'orcupines, have a rather different aspect from these of the Palacarctic or Indomalayan, and appear to be rather well separated from them in general.

The Durinae pussess a very large number of genera, most of which appear to have a very wide range on the continent, and very few of which are at present known from any other continent. 'The most distinct genera are Cricetoms and Sacostomus. Other aherrant but more typically Nurine types are Lopharomys, Acomys, Lranomys, Mylomys, Thamomys, Beamss, Dasymys, Avzicanthis and its immediate allies (Articanthis ranging north te ligypt and occurring in Arabia, as does Acomss), Ocnombs, Zelotomys, Colomes, ete. Besides these occur many indigenous wild species of Mus, and various groups of Rathus, some of which have received generic names which appear quite unretainable. The Dendromyinae is a group confined to the continent, very closely allied to the Nurinae, and containing Dendromus and Stcatoms which have a wide range, and Prionomys and Alalacothrix, which are more restricted, the latter being one of the most aberrant members of the whole family. Deoms, here regarded as type of a distinct subfamily the Deomyinae, is confined to the Congo. The Otomyinae, with two valid genera Otums and Parotoms, are an interesting group confined to the area. 'The subfamily (ierhillinae is very widely distributed through the continent in suitable areas, containing more generalized types in Tatera, Gerbillus, etc., and some more local specialized genera as Desmodillus, Desmodilliscus, Ammodilhus, etc. The Cricetinae is represented by one genus only, Mistromys, from the south; but the Microtinat are not known except in the Palacarctic coastal region. Even this does not exhaust the list of subfamilies, as Tachyorytes, type of the Tachyoryctinae, though not hitherto currently referred to the Muridae, is here regarded as a member of the family; this genus is known from the eastern and central portion of the continent.

The Muscardinidac are represented by the suhfamily Graphiurinae, the genus Grapliuras ranging over most of the continent.

Eliom's, a Palacarctic type belonging to the typical subfanily, ranges south to the Rio de Oro. Loptriomys, here regarded as type of a family the Lophiomyidae, is confined to the eastern part (Abyssinia, Somaliland, Kenya, Sudan). The Dipodidae is represented by Faculus in the Sahara and Somaliland. 'The family does not range south of this area.

The Ctenodactylidae is another northern African group, with very much the same range collectively as the Dipodidae; the principal genera are Pectintotor, Massouticra and Ctenoductylus. 'The group is known Jossil from South Europe, and from India. 'The Pedetidae, with one genus, Pedetes, is confined to the continent, ranging in the south and east. 'Ihe Anomaluridac is another family
peculiar to Africa, occurring mainly in the western forests, and containing two subfamilies, the Anomalurinae (Anomalurus, Anomalurops), and the Idiurinae (Zenkerelle and fliurus), these groups sometimes being given family rank.

The African Sciuridae consist of a relatively small number of forms, one of which (Aerus) is terrestrial, and is represented as indicated already in parts of the lalacarctic, one of wheh, Wosciums, is a pyemy form perhaps not distantly related to the Indomalayan Vamosciurus, and the remainder of which are arboreal types of which Protoxerns, Heliosciurus, Funisciurus, and Paruxerus have the widest ranges. 'The Hystricidae ate widely distributed through the continent; the genus Hystrix is the dominant form of this family and here reaches its highest degree of specialization; while the genus Atherurus is found in the western and central forests, with species of a rather more advanced type than their Indomalayan cousins. 'l'wo other Hystricoid genera occur: 'Fhryonomys, which is best referred to the family Echimyidae (otherwise American) as type of a subfamily, which ranges through most of the continent, and which is known fossil from India; and Petromus, which seems best referred to the same family (as type of a subfamily), and which is known only from South-west Africa. Yet another exclusively African family, the Bathergidae, some of the most isolated living Rodents, range collectively through most of the area: Cryptomys has the widest range; other more highly specialized hut more restricted types are Bathyergus and Heterocephalus; and Heliophobius which appears unique in the whole Order in dental formula has a moderate range on the eastern side.

In Madagasear Rodents are unknown save for half a dozen peculiar Muridae. It has been the custom of late years to refer these to a subfamily (or family) the Nesomyinae or to place them in the Cricetinae. I have been able to find no characters which keep them apart as a distinct subfamily, nor do they all appear to be Cricetinae. In the present classification I have had prosisionally to refer them to no less than five different subfamilies. The names of these genera are Eliurus, Brachyuromys, Vesomys, Gymnuromys, Hypogeomys and Brachytarsomys. Their status will be discussed in the volume set aside for Muridae.

RODENTS OF THE PALAEARCTIC
 (OTHER THAN MURIDAE)

Genera, Principal Spfcifs, and Approximate Ranges
SCIURIDAE
Genus Trogopterus
xanthipes. China; Tibet to Chihli.
Genus Petaurista
alborufus. China; 'Tibet to llupel.
sulcatus. China; Chihli.
albiventer group. Kashmir; Japan, Manchuria; Szeehuan.
Genus I'teromys
rolans. Seandinas ia across Siberia to Japan, Kansu.
Genus Eoglaucomys
fimbriatus. Afghanistan, Kashmir.

Genus Eupetaurus cinereus. Liashmir.
Genus Sciur us
Tulgaris group. All Europe; Siberia, to Manchuria, Chihli, Japan. anomalus group. Caucasus area.
Genus Ciallosciurus
maclellandi group. 'Tibet; Chihli.
erythracus. Szechuan. (Indomalayan type.)
Genus Dremomys
permy. China: Szechuan, I Iupeh. (Indomalayan type.)
rufisenis. China: Szechuan. (Indomalayan type.)
Genus F'unumbulus
palmaram group. North I'unjab. (Indomalayan type.)
Genus Atlantoxerus
getulus, Morocco.
(ienus Spermophilopsis
leptoductylus. Afghanistan, 'Turkmenia.
(ienus Scimrotamias
deridiomus. China; Kansu and Szechuan to Chihli.
Genus Tamias
sibivicus. North Russia, Siberia, China north of Yangtze, to Japan. (ienus Citellus
citellus group. South-eastern Europe, Russia, Asia Minor; Shansi,
Kansu, Mongolia, Transbaikalia (dauricus, etc.).
suslicus. East Europe, South Russia.
fulcus. East Russia, 'Turkestan, Persia.
prgmueus group. South Russia, Turkestan; Mongolia (pallidicauda).
ceersmami. Russian Altai to East Siberia, North Nongolia.
Genus Marmota
marmota. Alps and Carpathians.
bohak group. Poland, Russia, Altai, North Mongolia, Kansu, 'Transbaikalia, 'T'ibet.
caudatagroup. Kashmir, Afghanistan, Russian Turkestan, Chinese 'Turkestan.
caligata group. Nurth-east Siberia.
CASTORIDAE
Genus Castor
fiher. Main rivers of Central Europe; Scandinavia; parts of Eurnpean Russia; Mongolian Altai.

C'IENOD.AC'IYLIDAE
(jenus Ctenodactylus
gundi. North Aggeria.
Genus Massoutiera
maabl group. North Algeria.

DIPODIDAE

Genus Sicista

subtilis group. Scandinavia, Denmark, Hungary, Balkans, Russia, Siberia to Lake Baikal.
concolor group. Caucasus, Altai, Kashmir, Kansu, Nanchuria, Sakhalin.
Genus Eozapus
setchuanus. Szechuan, Kansu.
Genus Cardiocramius
paradoxus. Nanshan, Sinkiang (China).
Genus Salpingotus
koaloai. Mongolia; Gobi.
crassicauda group. Mungolia; Gobi, and in Afghanistan.
Genus Eucliorcutes
maso. Chinese 'Turkestan, Inner Mongolia.
Genus Allactaga.
major group. Southern Russia, Russian Turkestan.
sibirica group. Eastern Caspian region to Kansu, Mongolia, Transbaikalia, Chihli.
elater group. Caucasus to Persia, Afghanistan, Kashmir, Chinese Turkestan; also Mesopotamia (euphrutica).
rilliamsi. Caucasus, Asia Minor.
tetradactla. North Egypt.

Genus Alactagulus

pumilio. Caucasus, Russian Turkestan, Inner Mongolia.
Genus Pygeretmus
platyurus. Western Russian Turkestan.
shithozi. Eastern Russian Turkestan.

Genus Dipus

sagitta. Caucasus across Russian Turkeston to Mongolia and Chihli.
Genus Scirtopoda
telum group. South Russia, Russian Turkestan, Mongolia.
odipus
Genus Eremodipus
lichtensteini. Turknenia.
Genus Jaculus
orientalis. Palaearctic North Africa.
juculus. Across Palacarctic North Africa, Syria, Persia.
Genus Paradipus
ctenoductulus. 'I'urkmenia.

> HYS'IRICIDAE

Genus Atherwrus
Genus II Ystrix
mucrourus. China: Szechuan. (Indo-Malayan type.) subcristatus. China; Szechuan. (Indo-Malayan type.)
(Hystra) leucura. Punjah, Afghanistan, Russian 'Turkestan, 'Transcaucasia, Asia Minor, Syria, I'alestine.
cristata. Sicily, South Italy, North-western Africa.

MLSCARDNNIDAE

Genus Myomimus
personatus. 'Transcaspia.
Genus Eliomys
quercimes group. Continental Europe south of Baltic; Syria, Northern Africa westwards from Tunis. Central and southern Russia,
Genus Dromys
nitedula. Central Europe (Switzerland), eastwards across Russia, to N.W. Frontier (N. India), 'l'ianshan, Zungaria. South in Europe to Grecec. Asia Minor.
Gemus Glis
glis. Continental Europe south of Baltic; Asia Minor, Caucasus, North l'ersia; Southern and Central Russia; South 'I'urkmenia.
Genus Glirulus
japonicus. Japan.
Genus Muscardimus
arellanarius group. Europe, except therian Peninsula, including England, sweden; parts of Russia.

SPALACIDAE

Genus Spalax

kirgisorum group. Kirghiz Steppes(?), Syria, Palestine, North Egypt and Libya.
monticola group. Hungary, Roumania, Balkans, Asia Minor, Caucasus.
microphthalmus group. Southern Russia, represented in Greece, Rumania, Potand.
giganteus. Eastern Russia.

RHIZOMIYIDAE

Genus Rhisomys

cestitus. Secchuan.
RODENTS OF THE NEARCTIC (OTHER THAN MURIDAE)
Genera, Princtpal Spfcis, and Approxintate Rangeg

APLODON'IIDAE

Ginus Aplodontia
1ufa. Western L.S..... from California into southern British Columbia, Pacific side Rocky Mountains.

SCJURIDAE

Genus Cilaucomys

zolans. Eastern U.S.A., from New York and Ninnesota southwards, including Florida.
sabrimus. Labrador; across most of Canada; Alaska; Pacific coastal States of U.S.A., cast to Idaho; Virginia.
Gemus Scimus
carolinensis. Eastern U.S.A. and southern East Canada, west to Minnesota, Oklahoma, including Florida.
griseus. Califurnia, Oregon.
aberti. Colorado, Arizona, New Mexico.
miger group. Eastern U.S.S., from 'J'exas and South W"isconsin castwards, including liforida; Arizona.

Cienus Tomiasciurus

Indsonicus group. Nost of Canada; Alaska; Western U.S.A., south to California, Arizona, New Mexico; Central U.S.A. (Ninnesota, South Dakota, etc.); Eastern U.S.A., south to North Carolina at least.
Genus Tamias
alpinus. California.
mimimus group. Western U.S.A., east to Wisconsin, west to California and Pacific States; north to Yukon, Mackenzie, and to Lake Superior.
amoenus group. Western U.S.A., coastal states, east to Montana, north into Alberta and British Columbia.
quadrivittatus group. Montana, Idaho; California cast to Colorado; Arizona, 'Texas, New Mexico.
toansendi group. Coastal states of western U.S.A., east to Utah, New Mexico.
striatus group. Eastern L゙.S.A., west to Oklahoma and Minnesota, south to South Carolina, north to Canada (Ontario).

Genus Citellus

tozusendii group. Washington, Oregon, Idaho, Utah.
zeashingtoni group. Washington, Idaho.
richardsoni group. California, Oregon, Nevada; IVyoming; Saskatchewan.
parraii group. Oregon and Idaho north to Arctic Canada (Wackenzie and east to Hudson Bay), and Alaska.
tridecomlineatus group. Western and West Central C.S....., from Arizona, New Mexico and lexas north to Mimnesota, the Dakotas, and Montana.
spilosoma group. Arizona, New Mexico, Texas, north to (?) Nebraskia.
framklimi group. Saskatchewan south to Oklahoma and Illinois. c'ariegatus group. 'Fexas and Colorado west to Californiand Oregon.
(Ctellus) harrisii group. Texas, Colorado, Arizona, California.
tereticaudns group. California, Arizona, Colorado.
lateralis group. Arizona, Colorado, Myoming and Montana west to l'acific conastal states, north into Canada (Allserta).
Genus Marmota
monas group. Aeross Canada from Labrador to Alaska, and Eastern U.S.A., south to North Alahama, west to Kansas and Ninnesota.
fiariventris group. Western U.S.A., from South Dakota, Colorado and New Mexico to Pacific states. Into British Columhia.
caliguta group. Western ('anada and Alaska, south to Mashington and Montana, east to Mberta.
Genus Cymomys
ludoziciams group. The Dakotas and Montana south through West Central L.S.A to Texas and Arizona.
gumnisomi group. Slightly to the west of the range of Indericiomus; Wyoming south into Arizona and New Mexico.

CASTORIDAE

Genus Ciastor
comodensis. "Most of North America from Alaska and Labradur to the Rio (irande" (Anthony).

> 11ETEROMYIDAE

Genus Liomus
irobatus. Southern Texas.
Genus Perognathus
fasciatus group. 'The Dakotas, Nehraska and Texas west to Wyoming, Colorado, Arizona.
longimembris group. California to Utah and Arizona.
paraus group. California and Pacific states north into British Columbia, east to Utah and Wyoming.
formosus group. Utah, California.
baileyi group. Arizona, Calitornia.
hispidus group. Kansas, Oklahoma.
penicillatus group. 'lexas, Arizona, California.
intermedius group. New Mexico, Arizona, ('alifornia.
culifornicus group. California.
spinatus group. California.
Genus Microdipodops
megacephalus group. California, Nevada, Oregon.
Genus Dipodomys
heermanni group. California, Oregon.
spectubilis group. Arizona, New Mevico.
phillipsii group. 'l'exas.
merriami group. 'Гexas and Utah west to California.
(Difodomys) ordï group. Oklahoma, 'Texas, Wyoming west to Oregon and California.
ugilis group. California. compactus group. 'l'exas. microps group. Oregon, California, Arizona. deserti group. California.

GEOMIIDAE

Genus Thomomys

tozensendi group. California, Nevada, South Idaho.
bottae group. Oregon, Nevada, California, Colorado, Arizona, New Mexico, 'lexas.
alpinus group. California.
perpullidus group. New Mexico and Utah west to California.
fulzus group. Arizona, New Mexico, Texas.
umbrimus group. Arizona.
talpoides group. Colorado, Idalo and North Dakota, west to Washington, north to Canada (Saskatchewan).
fossor group. California and Oregon east to Colorado and Wyoming.
douglasii group. Washington, Oregon.
monticola group. California, Oregon.
fuscus group. Washington, Oregon, Idaho, Montana, north into Alberta.
bulbizorus group. Oregon.

Genus (ieomys

tuza group. Bastern U.S.A. (Alabama, Georgia, Florida).
bursarius. Upper Mississippi Valley, to Kansas, Missouri, Illinois; West to Nebraska and the Dakotas.
breziceps group. Central L'.S.A.; Nebraska south to New Mexico, 'Texas, and Louisiana.
Genus Cratoseomys
custanops. Colorado, New Nexico, Texas.
DIPODIDAE
Genus \%apus
Indsonius group. Evidently inost of Canada and U.S.A., east to Labrador and North Carolina, west to Alaska, British Columbia
(;enus Napacozapus
insignis, Eastern Canada and L.S...., from Ontario and Wisconsin to North Carolina.

ERETHHIZONIIDAE
Genus firethizon
dorsatum group. "Most of forested North . Imerica north of 40
(Erehizon) and south 11 the Rockics almost to Mexican boundary" (Anthony). North to Labrador and Alaska.
'The more I examine North American faunal lists the more I am convinced that foo many specific groups are almitted, at kast in the Order Rodentia.

RODENTS OF THE INDOMALAYAN REGION (OTIIER TIIAN MURIDAE)

Genfra, Princtpal Spechis, and Aprroxinhate Ranges
SCIURIDAE

Genus Relumys
pearomi. Sikkim, Assam, 'Vongking, Formosa.
Genus Trogopterus
wanthipes. lunnan. (Palaearctic type.)
Genus Petaurista
petaurista group. Fukien; Formosa; Maky Peninsula, Sumatra, Java, Bornea.
alborufus group. Yunnan, Formosa.
punctutus. Nalacea, Burneo.
allizenter group. Ceylon, Peninsular India, Nepal, Burma, Siam, Annam, Vumnan.
Genus Pteromysus
pulverulentus. Nalacea, Sumatra, Borneo.
Genus Aeromys
tephromelas group. Nalacca, Borneo.
thomasi. Borneo.
Genus IIylopetes
albonger group. Nepal, North Burma; Philippines (nigripes).
sugitta group. Burma, Laos, Malay Peninsula, Sumatra, Java, Borneo, Natunas.
Genus Petinomys
fuscocupillus group. Ceylon, Suth India.
hageni group. Sumatra; Philippines (crinitus).
gemibabis group. Java, Bomeo, Malacca, Hainan (electilis).
setosus group. Sumatra; Tenasserim.
Genus Petaurillus
hosei group. Malacea, Borneo.
Genus Iomys
horsficldi. Malacea, Sumatra, Bornen, Java.
Genus Namnosciurus
exilis group. Sumatra, Borneo, Philippines.
athiteheadi. Bomen.
melanotis group. Sumatra, Java, Borneo.
Genus Schurillus
murimus. Philippines.

Genus Callosciurns

maclellandi group. Nepal, Assam, Burma, Yunnan, Fukien, Hainan, Formosa, Cochin-China, Siam, Annam.
erythraeus group. Jainan, Formosa, Yunnan, Kwantung, Issam, Burma, Siam, Annam, south to Pahang.
caniceps group. Chekiang; Tongking, Tenasserim, Siam south to Malacca.
pygerythrus group. Nepal, Bengal, Assam, Burma.
quinquestriatus group. Yunnan, Burma.
prezosti group. Malacca, Sumatra, Borneo, Celebes.
notatus gruup. Malacca, Sumatra, Java, Borneo.
hippurus group. Nalacea, Sumatra, Borneo, Philippines.
temuis group. Malacca, Sumatra, Borneo.
lozi gruup. Nalacca, Sumatra, Borneo.
leucomus group. Celebes.
rubrizenter group. Celebes.

Genus Dremomys

pernyi group. Burma, Yunnan to Fukien, Hainan.
octstoni. Formosa.
ezcretti. Borneo.
lokriah group. Nepal, Assam, Burma.
rufigenis group. Nalacca, 'Tenasserim, Burma, Annam, Laos, Yunnan, Hainan, Hupeh.
Genus Funambulus
palmarum group. Peninsular India, Ceylon.
layardi. South India, Ceylon.
sublineatus. South India, Ceylon.
Genus Ratufa
macroura. South India, Ceylon.
indica. Peninsular India.
gigantca. Assam, Nepal, Burma, Yunnan, Hainan.
bicolor, and other species. Burna, Tenasserim, Siam, Annam,
Genus Menetes
Malacca, Sumatra, Java, Borneo, Bali, Natunas.
berdmorci. Burma, Tenasserim, Annam, Siam.
Genus Lariscus
insignis group. Malay P'eninsula (southern), Sumatra, Java, Borneo. hasci. Borneo.
Genus Glyphotes
simus. Borneo.
Genus Rheithrosciurus
macrotis. Borneo.
Genus Rhimosciurus
laticandatus. Nalsy Pemmsula (southern), Sumatra, Borneo.
Genus / brosciurus
heinrichi. (chenes.

Genus Marmota

bobak group (himalayana); Nepal, Y'unnan. (Palaearctic type.)
Genus Sciurotamias forresti. Уunnan.

HYSTRIClDAE

Genus Trichys
lipura group. Nalacca, Sumatra, Borneo.
Genus Athermus
macrowns. Hainan, Southern China, Tongking, Assam, Malacea, Tenasserim, Sumatra.
Genus Thecoms
pumilus group. Philippines; Sumatra (sumatrae).
crassispimis. Burnco.
Genus Mrstrix
brachyurus group. Nalacea, Sumatra, Jasa, Borneo, Sumbawa, Flores.
subcristatus group. Sikkim, Assam, Burma, T'enasserim, Yunnan, Fukien, Anhwei, Hainan, (?) Annam.
leucura group. Cevlon, Peninsular India, Nepal.

MUSCARDINLDAE

Genus Platacanthom's
lasiurus. South P'eninsular India.
Genus Tiphlomys
cinerews. 'Tongking, Fukien.

RHIZOMYIDAE

Genus Rhizomys
restitus group. Burma; Fukien (duvidi).
simensis group. Assam, Iunnan, Kwantung; South Siam, I'erak (pannosus).
sumatrensis group. Tenasserim to Sumatra.
Genus Cannomys
badius. Nepal, Burma, Siam.
RODEN'TS OF AFRICA (OTHER TIIAN MURIDAE)
(With Arabia, but not including Palaearctic North Coastal Area)
Genfra, Principal Specifs, ani Approximate Ranges

BA'I'HYER(FIDAE
(ienus Bathergus
suillus. South Africa; Cape Province.
janetta. South ACrica; Namaqualand.

Genus Gcorychus
capensis. South Africa; Cape Colony.
Genus Cryptomys
mechozei group. Angola, Rhodesia.
hottcntottus group. Cape, Rhodesia, Nyasaland, 'Tanganyika.
lechei section. North Nigeria, French Shari, North Congo, Kalahari, Rhodesia, Portuguese East Africa.
zechi. West Africa ('logoland).
ochraceocinereus. Sudan.
bocagei. Angola.
Genus Heliophobius
argctutcocinereus group. Portuguese East Africa, Rhodesia, Tanganyika, South Congo, Kenya.
Genus Heterocephalus
glaber group. Somaliland, Abyssinia, North Kenya.

Genus Myosciurus

pumilio. West Africa; Cameroons, Gaboon.

Genus Hcliosciurus

gambiatus. Gambia east to Abyssinia, south to Angola and Portuguese East Africa.
ruzenzorii. Belgian Congo, Ruwenzori.
poensis. Fernando Po, Gold Coast, Gaboon.
lucifer. Nyasaland.
Genus Paraxerus
cepapi group. Kenva (ochraceus) south to Transval, Portuguese East Africa, Kalahari, and Ovamboland.
palliatus group. Rhodesia, Portuguese East Africa, Zululand, to Kenya, Somaliland.
flavizittis group. Portuguese East Africa, to Tanganyika and Kenya.
boehmi group. Congo, Sudan, Ruwenzori.
Genus Funisciurus
lemniscatus group. Gaboon, Cameroons, Congo.
congicus group. Angola and South Congo.
pyrrhopus group. Sierra Leone east to Congo, Angola, and Ruwenzori.
Genus Protoxerus
stangeri. Gold Coast and Nigeria east to Kenya, south through Congo to Angola.
Genus Myrsilus
aubinii group. Liberia, Ashanti.
Genus Epiverus
wilsoni. Gaboon.
ebii. Gold Coast.

(ienus forms

rutilus group. Somaliland, Exitrea, Abyssinia, Kenya.
eythropus group. Sudan, Kenya, Uganda, Sahara (Air), Lake Chad, to Sierra Leone.
capensis group. South and South-west Africa.

ANOMALURIDAE

Genus Anomahuris

fraseri. Gold Coast east to Cganda (?Kenya), Tanganyika, south through Congo to Angola.
peli. Cumea Corast, Ashanti
pusillus. Clongo, (aaboon.
Genus Anomaherops
beerofti. Sierra Leone castwards to Congo.
Gemus Zenkerella insignis. Spanish Guinea.
Genus /diumes
zenkeri. Camernons, Congo. macrotis group. Cameroons, Congo.

PEDETHDAE
Genus Pedetes
fafer group. Kenya and Angola to Cape Province.
('JENOI)AC'IYIIDAE
Genus Pectinator spekei. Ahyssinia, Bomaliland, Eritrea,
Genus Ctenoductllus
gundi group. 'Pripoli (northern Sahara, west to Noroceo).
Genus Massontiera
madoi group. Sahara, suuth to Asben.
Genus telvita
que henegrat.

DIPODIDAE

Genus fuculus

 jaculus, Sahara, south to Asben, Sudan, Somaliland; and Arabia. ('The other species, orientahs, appears labaearetic in distribution.)
ECHINITIDAE

Genu: Petromus typicus. South-west Africa.
(ienus Thryonomys
sacinderianus group. Bahr-el-ghazal and Uganda to Nigeria, Angola, South Africa. gregoriumus group. Congo, Kenya, Nyasaland.

Genus Atherurus

africanus group. Cambia, Sierra Leone, Nigeria, Congo, to Kenya Genus Mystrix
leucura group. Arahia.
cristuta group. Sencgal, Ashen, Somaliland, Kenya, Uganda, Tanganyika.
africaeaustralis group. South Africa, South-west Africa, Portuguese Last Africa, to 'Tanganyika.

MUSCARDINIDAE

Genus Graphiurns

ocularis. Cape Province.
platyops group. South-West Africa, Rhodesia.
hueti group. Senegal, Liberia, Cameroons.
crassicaudatus. Liberia, South Nigeria.
surdus. French Congo.
monardi. Angola.
woosnami. Kalahari.
murimus group. Ashen, North Nigeria, Sudan, Somaliland, Kenya, Gold Coast south to Cape Province.
Genus Eliomys
quercinus group. (lirom Palaearetic) south to Rio de Oro.
LOPHIOMIYIDAE

Genus Lophiomys

imharsi. Somaliland, Abyssinia, Sudan (Kassala), and Kenya.

RODEN'TS OF THE NEOTROPICAL (OTHER TIIAN MURIDAE)

(According to Flower \& Lydekker, Mexico should be included in this region.)
Genfra, Princlpal Siecifs, and Approminate Ranges
SCIURIDAE
Genus Sciurillus
pusillus. Guianas.
Genus Syntheosciurus
brochus. Panama
Genus Microsciurus
alfari group. Nicaragua south to Peru and Upper Amazon.
Gemus Sciurus
rariegatoides group. Nexico to I'anama.
deppei group. Nexico, Nicaragua.
aberti group. Northern Mevico.
(Sourus) miger group. Mevico.
hoffmami group. Nicaragua to Venezuela, Ecuador; Peru; North Argentine (Jujuy).
aestuans group. Guanas, Venezuela, Eastern Brazil to Winas Gerites.
stramincus group. Ecuador, Peru.
pucherani group. Colombia, Peru, Bolivia.
rhoadsi. Ecuador.
flammifer. Venezuela.
langsdorffi group. Venezuela, Colombia, Peru, Ecuador, Bolivia, Brazil to Natto Grosso.
Genus Tamias
quadrivittatas group. North Mexico. (Nearctic type.)
Genus Citellus
mexicanns. Mexico.
spilosoma. Mexico.
zariegatus group. Mexico.
annulatus group. Mexico.
tereticandus. North Mexico.
lateralis group. North Mexico.
Genus Cynomys
mexicamus. North Mexico. (Nearctic typc.)
Genus Glaucombs
zolans. Through Mexico to Honduras.

CASTORIDAE

Genus Castor
canadensis. Extreme North Mexico. (Nearctic type.)
11ETEROMIIIDAE
Genus Heteromys
anomalus group. Venezueta, Colombia, Ecuador.
desmarestiams group. Mexico to Panama.
gaumeri. Mexico (Yucatan).
nelsomi. Mexico (Chiapas).
Genus Liomys
pictus group. Mexico.
crispus group. Nexico to l'anama.
irroraths group. Mexico.
Genus Perognathus
fasciaths group. North Mexico. (Nearctic type.)
longimembris group. North Mexico. (Nearctic type.)
balleyi group. North Nexico. (Nearctic type.)
hispidus group. Northern Mexico.
penicillatus group. North-western Mexico. (Nearctic type.)
intermedius group. Northern Mexico.

```
Genus Dipodomys
spectabilis group. Northern Mexico.
phillipsii group. Mexico.
merriami group. Northern Nexico.
ordii group. Northern Mexico.
desertigroup. North Mexico (Sonora). (Nearctic type.)
```


GEOMYIDAE

Genus Thomomys

bottae group. North Mexico, Sonora. (Nearctic type.)
perpallidus group. North Mexico, Sinaloa. (Nearctic type.)
umbrinus group. Mexico.

Genus Geomys

breviceps group. N.li. Mexico (Tamaulipas). (Nearctic type.)
Genus Pappogeomys
bulleri group. Mexico; Jalisco.
Genus Cratogeomy's
castanops group. 'Through Mexico.
Genus Platygeomys
glimnurus group. South Central Mexico.
Genus Orthogeomys
grandis group. South Mevico to Honduras, Salvador.
Genus Heterogeomy's
hispidus group. Southern Mexico.
Genus Zygogeomys
trichopus. Mexico; Michoacan.
Genus Macrogeomy's
heterodus group. Nicaragua, Costa Rica, Panama.

Genus Cazia
(CIVIIDAE
aperea group. North Argentine (Tucuman, Corrientes), north to Peru, Colombia, Venczucla, British Guiana.
Genus Galea
spixii group. Southern Brazil, Bolivia, Argentine (to Lpper Rio Negro).
Gemus Cariella
australis. Argentine to latagonia.
shiptomi. Argentine (Cutamarca).
mata. Bolivia.
Genus Kerodon
rupestris. Liastern (i) Brazil.
Genus Dolichotis
patagona group. Argentine t" Patagonia (Cordoba southwards.) salinicola group. Arecatine.

Genus Hydrochoerus
hydrochaeris group. Warmer portions of South America (exact range not traced), north to Panama. Known to occur in Brazil, Paraguay, British Guiana, Venezuela.

CHINCIIHLLIDAE

Genus Chinchillar

laniger. Northern Chile.
Genus Lagidium
ziscaccia group. Peru, Bolivia, Argentine, Chile (south to $50^{\circ} \mathrm{S}$.). Genus Lagostomus
maximus. Argentine.

DINOMIYIDAE

Cenus Dinomys

b̄ramickii. Peru, Colombia, Ecuador, Upper Amazonia.

ECIHMYIDAE

Genus Echimys

dassthrix group. East Brazil; Bahia to Rio Grande do Sul.
blaincillei group. East Brazil; Bahia to Paraná.
thomasi. Island off Bahia, East Brazil.
armatus group. Guianas, Brazil (North?), Venezuela.
chrysurus group. Dutch Guiana, N.E. Brazil (Para).
saturnus. Ecuador.
grandis group. Peru, Upper Amazonia.

Genus Isothrix

pictus group. East Brazil (Bahia).
bistriatus group. Peru, Venezuela, Brazil south to Matto Grosso.
Genus Diplomys
camiceps group. Panama, Colombia.
Genus Proechimys
cayennensis group. Nicaragua southwards to Guianas, Peru, Jolivia, Minas Geraes.
canicollis. Colombia.
iheringi. Island off São Paulo, Brazil. ('゙ão Sebastian Island.)
setesns group. East Brazil; Bahia.
Genus Hoplomys
gymmurus group. Nicaragua, Panama, Ecuador.
(ienus Cercomys
cuniculdrius. Paraguay, and East Brazil (Minas Geraes, Bahia, P'ernambuco).
Genus Euryzugmatomys
spinosus. 1'araguay, South-eastern Brazil.
Gemus Chomys
laticeps. S.E. Brazil (Santa Catharina).

DIS'TRIBUTION
Genus Carterodon
sulcidens. South Brazil; (? Lagoa Santa).
Genus Mesomys
hispidus group. Amazonia; 'Tocantins River to Ecuador, Peru.
Genus Lonchothixix
cmiliae. Central Brazil; Rio 'Tapajoz.
Genus Procapromys
geayi. Venczuela.
Genus Capromys
pilorides. Cuba.
melanurus. Cuba. mana. Cuba.
Genus Geocapromys
brozcnii. Jamaica.
thoracatus group. Swan Island (off Honduras), and Bahamas.
Genus Plagiodontia
aedium. Dominican Republic.
Genus Thrinacodus
albicauda group. Colombia, Venezuela.
Genus Dactylomys
dactylinus. Ecuador, Bolivia, Brazil (Amazonia). perwanus. Peru.
Genus Kamnabatcomys
amblyonyx. Paraguay, S.E. Brazil (São Paulo).
Genus Myocastor
coypus. Chile, Patagonia, Paraguay, Argentina.
Genus Abrocoma
bemntti. Chile.
cinerea. Northern Argentina.
Genus Octomys
mimex. North Argentine (Catamarca, San Juan).
Genus Aconaemy's
fuscus group. Southern Chile, Argentina (Andes).
Genus Octodon
degus group. Chile, Peru.
Genus Octodontomys
sliroides. Bolivia.
Genus Spalacopus
cyamus group. Chile.
Genus Citenombs
magcllanicus section. Paraguay, North Argentina to Patagona. torquatus section. South Brazil, Bolivia, North and Central Argentine.
leacodon. Botivia.
opimus section. South I'eru, Bolivia to Chile and l'atagonis. boliziensis section. Bolivia.

ERETMIIZONTIDAE

Genus Chactomys
subspinosus. Brazil; tropical? (exact locality not traced).
Genus Echinoprocta
mufescens. Colombia.
Genus Coendon
prehensilis group. Colombia, Mrazil (Matto Grosso, ? Pernambuco), Bolivia.
bicolor group. Bolivia, Peru, Ecuador, Panama (rothschildi).
mexicanmm group. Nexico, Panama.
paragayensis group. Paraguay, S.E. Brazil, Eastern Brazil?
restitus. Colombia, Venezuela.

DASYPROC'TIDAE

Genus Mroprocta
acouchy. Cayenne, Amazonia.
pratti. Peru, Ecuador, Colombia, east to Manaos region, Brazil.
Genus Dasyprocta
punctata. Mexico to l'anama.
cariegata. Peru, Ecuador, Colombia, Bolivia, Matto Grosso.
uguti. Guianas, Brazil. Allied forms in Lesser Antilles.

CUNICULIDAE

Genus Cumiculus

paca group. Mexico, I'anama, Ecuador, Colombia, Brazil, Cayenne. Probahly south to Paraguay.
taczanozeskii group. Ecuador, Venezuela. ?Peru.

DISTRIBUTION OF RODENTS:
 SPEClAL IVORK.' OF REFERENCE

Miller: Catalurue of Mammals of Wistern Europe, 1912.
Vinogradov: Rodents of U.S.S.R., I933, Tab. Anal. Faune de L'URSS. Inst. Zool. Ac. Sci. $10, \mathrm{p} .1$.
Tate: Some Xlundac of the Indn-Australan Region, Bull. Amer. Mus. Nat. Hist. LXXI1, p. 501, 1936.
St. Lfier: Kiey to Famhees and Gencra African kodents, 193r, I'Z.S.s. p. 957.
Ilolleter: Smiths. Inst. Bull. 99, 1919; East African Alammals in U.S. Natmal Auseum.
Milefr: List of North American Recent Nammals, 1023, Smiths. Inst. U.S. Nat. Nus. Bull. izS.
Anthosi: Field book of North Amencan Nammals, Iutnam, 1928.
Flower: Mammals of Egypt, P.Z.'., p. 360, 1932.
 (1919), p. 352.

Aharonit: Murdac of Syra and lalestine, Zeatschr. für Säugethierk. Bd. 7, 1932.
Robrison $\&$ Kloss: Nominal List of Oriental Sciuridae, 10 i \& Rec. Ind. Mus. XV, IV, P. 171 .

Robinson - List of Sumatran Mammals, Journ. Fed. Malay States Mus., VIll, appendix. 1918.

TAytor: Mammals of I'hulippone Islands, Nanila, 1934.
Iredale \& Trougiton: Check List of Mamnals recorded from Australia, Nemoir V'l, 1934.

Gitdenstolpe: Neotropieal Cricctinar, Kungl. Svenska. Vetens. Hand. 11, no. 3, 193z. Tate. Taxonomy of Neotropical Hystricoid Rodents, 1935; Bull. Amer. Mus. Nat. Hist., LXVIJI, p. 295.
Blanford: Fauna of British India, 1888 , London.
Jones : Nammals of South Australia, Adelaide, 1923.
Shelford: A Naturalist in Borneo, 1916.
Gee: Bull. Dep. Biol. Yenchiang Univ, J $2 \geq 9-30,1,2$; List of Nammals occurring in China.
Shortridge: Nammals of South-West Africa, London, Heinemann, 1934.
Allen, G. M.: Check List of African Mammals, Bull. Mus. Comp. Zool. LXXXIII, 1939. Rcmalek: Die Systematik und Verbreitung der Muriden Neuguineas, sond. Mitt. Zool. Mus. Berlin, 23, heft $1,1938$.
Osgood, W. II. : Manmals of the Kelley-Roosevelts and Delacour Asiatic Fxpeditions, Field. Mus. Publ. Zool. 18, 1932, pp. 193-339.
Dammermann: On the Zoogeography of Java, Treubia, Vol. XI, livr. s, ivzy, Appendix I, Manmals, pp. 33-39.
Schwarz, E.: On the Evolution and Radiation of Mammalian Faunat. Aet. \%ool. Stockholm, 5, 1924, Pp. 393423 .
.

Order RODENTIA

Key to Superfamilas herf recognized

Lower jaw much specialized, either by distortion outwards of the angular portion, by specialized limb of masseter lateralis superficialis, or by a conspicuous ridge extending along outside of jaw below level of toothrow, for attachment of masseter medialis.
Infraorbital foramen not or scarcely transmitting muscle. Fibula reduced and fully fused with tibia. (Aasseter lateralis chief agent in modifying form of mandible.)

Superfamily Bathyergoidat:
Infraorbital foramen much enlarged for muscle transmission. Fibula rarely reduced, not fully fused with tibia.
Nasseter lateralis chief agent in modifying form of mandible.
Superfamily Hystricomaf
Nasseter medialis chicf agent in modifying form of mandible.
Superfamily Cavordae
Lower jaw not much specialized, never with angular portion distorted out wards and never with deep ridge extending along outside of jaw for attachment of masseter medialis.

Infraorbital foramen not or scarcely transmitting muscle.
Zygomatic plate completely beneath the infraorbital foramen.
Superfamily Aplodontordas
Zygomatic plate more specialized, broadened and tilted upwards to a greater or lesser degree, never completely beneath infraorbital foramen.
Jugal bone long, usually extending to lachrymal; fibula so far as known not fully fused with tibia. No externally-opening cheekpouches present. Checkteeth normally complex.
Skull without well-marked postorbital processes; jugal much broadened; checkteeth extremely hypsodont, not cuspidate in pattern; external form much modified for aquatic life, tail broadened, flattened, naked, the vertebrate broadened. Superfamily Castoroidal.
Skull with postorbital processes, well developed in the majority; jugal not specially broadened, cheekteeth usually not hypsodont, cuspidate in pattern;

RODENTIA

esternal form never modified for aquatic life, tail normal, always fully haired. Superfamily Scuromafe ${ }^{1}$
Jugal hone strongly reduced, never approaching lachrymal, the zygoma sometimes complete without it, the whole zygoma in some cases reduced, threadlike. Fibula, so far as known, fully fused with the tibia. Large externallyopening cheekpouches present. Cheekteeth with tendency to become simplified. Superfamily Gfoaryoidae
Infraorbital foramen always enlarged for musele transmission.
Zygomatic plate very generally tilted upwards and broadened to a greater or lesser degree (two exceptions out of approximately two hundred genera). The infraorhital foramen never much enlarged. Fibula fused with the tibia.

Superfamily Muroidae
Zygomatic plate never tilted upwards, always narrow and completely below the greatly enlarged infraorbital foramen.
Premolars becoming suppressed, either absent, vestigial, or shed in the adult.
Fibula fused with the tibia; cheekteeth rooted, complex in pattern; angular portion of mandible weak, not drawn backwards. Superfamily Dipodoidae
Fibula free from tibia; cheekteeth evergrowing, simplified in pattern; angular portion of mandible strong, drawn backwards to a certain degree.

Superfamily Ctexodactylomae
Premolars not suppressed, not shed in the adult, normally as large as the molars, and not reduced.
Fibula fused with the tibia; checkteeth evergrowing, simplified in pattern; external form saltatorial; mastoids much inflated. Superfamily Pedetoidae
Fibula free from tibia, so far as known; cheekteeth rooted, complex in pattern; external form arboreal; mastoids not much inflated. Superfamily Anomaluroinae
I would point out, before dealing with the families and genera, that subgenera as here retained are equivalent in rank to sub-genera as understood by American authors; and are not groups which must at once be given full generic rank, as has been done so often by authors other than Americans, because they form "natural groups" or because of convenience.

Some excellent remarks on the status of genera and sub-genera are given by Osgood in his revision of the American genus Peromscus, to which 1 would refer my readers.
${ }^{1}$ For the wide differences between Castor and the Sciuridae in external characters see Pocnck, Proc. Zool. Soc. London, p. 1171, 1922.

The present author inclines to the view that systematic classification would be none the worse if sub-genera were abolished altogether.

Superfamily BA'THYERGOIDAE

Is here understood this contains one living family.

Family BATHYERGIDAE

\&806. Thomas: Mromonpha, part; lamily Bathyergidae.
1899. Tullbere: Ilvstricognathi; Bathyergomorpha, Family Bathyergidae.
1918. Nıller S Gidley: Superfamily Bathyergoidae; Family Bathyergidae.
1924. Winge: Family Hystricidae, part, Bathyergini.
1928. Weber: Bathyergoidea; Family lathy̌ergidae.

Geographical Distributiox.-Africa: from Sudan, Abyssimia and Somaliland, and from Gold Coast to the Cape.
Number of Genera.-Five.
Characters.-Zygomasseteric structure unique in the order; mandible with angular portion distorted outwards to "allow passage of a specialized and enlarged distal anterior limb of masseter lateralis superficialis" (Miller \& Gidley); paralleling the Hystricoidae in this respect, but if anything even more developed than in the most specialized of these. Infraorbital foramen small, not or scarcely transmitting muscle; if so, only a small strand in certain species, the degree of enlargement of infraorbital foramen evidently in some cases variable individually.

Skull and external form much modified for fossorial life.
Number of cheekteeth sarying in the different genera; cheekteeth strongly hypsodont, but not evergrowing; normally simplified to ring-pattern in adult (excepting the genus Georychus).

A tendency present for the upper incisors to extend into the pterygoids. Fibula reduced, fully fused with the tibia.

Remarks.-The peculiar jaw-muscle structure combined with the variability of the number of cheekteeth, and the variability of the infraorbital foramen serve to isolate the Bathyergidae completely among living rodents.

Elsewhere, there is a strong uniformity in the dental formula of any one group; in some cases, as Sciuridae (cheekteeth ; or ${ }^{4}$), Dipodidae (cheekteeth or ${ }^{3}$), there is a difference in the formula, it is true; but in almost all cases the extra premolar retained is vestigial and going; in a vast group like the Nuridae the formula of sheektecth is very general, only a very few Australian and Philippine genera having it reduced to \quad. But in this family, three completely different dental formulas, or possibly even four, are to be found in five genera.

These rodents certainly cannot be lumped in "Myomorpha," as was done by Thomas and earlier authors, on account of the comparatively trivial character of the fusion of the tibia and filoula; nor can they be transferred to the Hystricoidea, "Hystricidac," as was done by Winge, presumably on account of the similarity of the lower jaw in the two groups, though in Winge's Hystricidac
the Ctenodactylidae are included, which do not possess the Hystricoid type of mandible. Nor does the infraorbital foramen transmit muscle here, as apparently Winge is of the opinion that it does (or did), exeept to a very smatl degree occasionally, as discussed below; nor in the Hystricoidat are the tibia and fibula fused, though this is a character which Winge has used elsewhere as a division in other families (Anomaluridae against Dipodidae, etc., page 7).

In zygomasseteric structure the Bathyergoidae differ from the Hystricoidae chiefly in that in the latter group the infraorbital foramen is always very much enlarged to transmit muscle, whereas in the present group it is usually not enlarged at atl; this fact, combined with the lack of broadening of the zygomatic plate present, appears to be a primitive condition.

According to Tullberg's figures, the temporalis muscle in this family appears less reduced than is usual, taking up the whole of the hinder part of superior portion of skult, and extending forwards nearly to level of anterior zygomatic root (Georychus cupensis).

Digits of forefoot and hindfoot five, none reduced.
According to 'Tullberg, the radiale and intermedium of members of this family are separate, alone of rodents (examined by him) except Ctenodactylidae. Nalleus and incus fused according to Tullberg, as in Hystricoidae, Ctenodactylidae, but unlike the remainder of the order.

Thomas, Ann. Mag. Nat Hist., 8, IV, p. 1H1, 1go9, suggested that the cheekteeth present in the various genera are probably as follows:

Heliophobins	$\frac{6}{6}$		$\frac{2.3 .4}{2.3 .4}$		$\frac{1.2 .3 .}{1.2 .3 .}$
Bathyergus and Georychus	$\frac{4}{4}$	p.	$\frac{3 \cdot 4}{3 \cdot 4}$	m.	$\frac{1.2 .}{1.2 .}$
Heterocephahs	3	p.	$\frac{3 \cdot 4}{3 \cdot 4}$	m.	$\frac{1 .}{1 .}$
"Fomarina" (-IHetrrocephalus phillipsi)	$\frac{2}{2}$		$\frac{3 \cdot 4}{3 \cdot 4}$		

Mitler \& Gidley, with reference to Heliophobins which exceeds their highest formula for a rodent ($\left.\begin{array}{l}1 \\ 4\end{array}\right)$, state: "In the Genus Heliophobius, with the greatest number of teeth, there are never more than functional at one time; the apparent addition of one tooth in the upper jaw and two in the lower jaw to the maximum Rodent formula is probably due to a specialized condition of the milk-dentition."

Discussion of Genera.-The genus Bathyergus appears to have evolved in a rather different way from the remainder of the family in that the digging is done not so much with the incisors as with the foreclaws. This has led to great enlargement of these claws, but not to any great lengthening of the upper incisor roots, so that the upper incisors do not show any inclination to extend to the back of the palate, or the pterygoids. A
parallel to this, between Bathyergus (a "claw-digger") and Georychus (a "tonthdigger"), is seen in Spalax against Myospalax; the two fossorial Microtinae Ellobius against Prometheomys; etc.

In all other Bathyergidae, the claws remain relatively small, but the upper incisors extend over the cheektecth to the back of the palate or at extreme development into the pterygoids.

Heliophobius is remarkable in that, as indicated above, it is the only rodent known with : checkteeth, and appears to be erupting teeth more or less through life.

Cryptomys and Georychus are closely allied types, with a dental formula of ${ }_{4}$; Georychus, confined like Bathyergus to a small range in South Africa, is the only member of the family without simplified cheekteeth in the adult; Cryptomys with a large number of named forms extends over most of the Continent.

Heterocephalus, from Abyssinia and Somaliland, is a most extraordinary animal; alone among the rodents it has become practically naked, having lost the fur almost entirely. Various other characters such as the fact that D. 3 in the manus is noticeably longer than D.4, the more strongly shortened and Murine jugal, and the reduction of the cheekteeth to $\frac{3}{3}$, or even sometimes $\frac{3}{2}$, leads me to believe that it should be separated from the rest as a "generic group."

Key to the Generic Groups of Bathyergidae

Fur reduced to a few scattered hairs. D. 3 in manus markedly longer than D.4. Jugal short, supported anteriorly by the zygomatic process of the maxillary, its general form Murine. Cheekteeth becoming reduced numerically: $\frac{3}{3}$ or $\frac{2}{2} \quad$ Heteracephalus Group (Heterocephali)
Fur normal. D. 3 in manus never markedly longer than D.4, usually slightly or considerably shorter. Jugal long, forming the greater part of the zygoma. Cheekteeth not becoming reduced numerically: $\frac{4}{4}$, or in one genus, at full dentition, $\frac{6}{6}$. Bathyergus Group ${ }^{4}$ (Bathyergi)

The Bathyergus Group

Fur normal; eyes and ears, as usual in the family, greatly reduced; usually D. 2 in manus longer than D.3, the digits reduced in size from D. 2 to D. 5 evenly; pollex not restigial, clawed. Hindfoot with D. 3 remaining main digit, except in Heliophobius.

General cranial characters as follows: Skull with frontals moderately or rarely strongly constricted, nasals usually narrow; posterior root of zygoma noticeably broad, and \%ygomata widely spreading. A prominent ridge developed in all genera extending along centre of skull from posterior part of nasals to lambdoid crest. Occipital region usually prominent, outstanding and strongly ridged. Jugal long. Bullae small-moderate, not abnormal. Palate normally excessively constricted between toothrows ; extending behind level of toothrows, in which position it is broader, excepting Heliophobius. Incisise foramina
obsolete. Angle of mandible powerfully distorted outwards; usually not produced far backwards, except in Bathyergus. Incisors thick, pro-odont.

Key to the Gevera of the Bathyergus Group

Cheekteeth $\frac{4}{4}$.
Upper incisors not extending behind toothrows, and heavily grooved. Foreclaws much enlarged. Angular portion of mandible produced considerably backwards.

Bathiergus
Upper incisors extending behind the toothrows, in extreme development into pterygoids, not grooved. Foreclaws not specially enlarged. Angular portion of mandible not produced far backwards.
Cheekteeth simplified to ring-pattern in adult. Posterior tooth cut early in life.

Cryptomys
Cheekteeth retaining one inner, one outer fold to old age; posterior tooth cut late in life.

Genrychus
Cheekteeth at full dentition $\frac{6}{6}$.
(Upper incisor extends into pterygoids; cheekteeth ring-shaped; foreclaws not enlarged; angular portion of mandible not produced far backwards.)

Heliophobit's

Fig. i. Mathyergus sulalés sullets, Schreber.

Fig. 2. Bathyerges scilles slillios, Schreber. B.M. No. 5.8.10.10. ${ }^{\circ} ; \times 1$.

Fig. 3. Bathyergis sthitce, Schreber. Nandible from belos: 1 .

Genus i. BATMIERGUS, llliger
i8it. Bathyergus, Hliger. J'oudr. syst. Ammm. p. S6.
Type Species.-.Mus maritimus, Gmelin.
Ravge.--South Africa: Cape Province, and Namaqualand: coastands.

Nimber of Forms－Three．
Characters．－．Sull essentially as described above：frontals in the type species much constricted：occipital region extremely ridged and fowerful in old age，Angular portion of mandible produced considerably backwards，the mandible heing perhaps proportionately larger in relation to the upper part of the skull than in any other member of the order．

Upper incisors one－grooved，lowers plain；roots of upper incisors not extending to nor approaching fosterior part of toothrow．

Cheekteeth hypsodont，wider than long，when cut，with an inner and outer fold，which quickly wear down so that the tooth is rinc－shaped in adult．Infra－ orbital foramen normal（small）．

Size largest for the family in the type species；ear conch absent：tail as long as hindfoot，thick and flat，with long hairs growing outwards each side giving a feather－like effect．Claws immensely developed in forefoot，particularly of digits 2.3 and 4 ．D． 2 longer than D．3．Hindfoot with the centre digit longest． D． 2 slighty longer than D． 4 ．hallux slighty longer than D．5．Claws of hindfoot medium．Pollex with short claw，not restigial．

Two well－marked species are known，the＂giant＂suillws，and the moderate－ sized janetta，which appears to have a less heavily ridged skull．

Forms examined：suillus，jonetta．
Liet of Named Forms
－BATHIERGLS sLILLLE sLILLLS，schreber
1／82．Säugt．IV．p．－15．pt．204B．
South Africa：Cape．
Synonybi：maritimus，Gmelm， $1,-84$ ，Linn．Syst．Nat．i，p．iqo．
africana，Lanarck．Voyages de＇Thunberg au Japon．ete．．4， 348，1－96．
＝BATHYERGLS NLILLLミ NTERXEDILS，Roberts
1926．Ann．Transtaal Mus．XI，p． 261.
Glaver，Cape Province
ふ．BATHYERGL＇S JAN゙ETTA．Thomas \mathbb{S} sthuan
1904．Abstr．Proc．Zool．Soc．London，no．2，p． 6. Port Nolloth，Little N゙amaqualand．

Genus 2．HELIOPHOBIUS，Peters

iSt6．Helfophobits，Peters，Monats，Ber．Akad．Berlin，p． 59.
1890．Myoscalops，Thomas，Proc．Zool Soc．London，p．448．New name to replace Heliophotius on the assumption that it was proocsuped by Heliophobus，Boisduval．
Type Species．－Heliophobius argentiocinereus．Peters．
Range．－Eastern and Central Tropical Africa：Kenya，Tanganyika，South Congo，North Rhodesia，Jyasaland．
Nymber of Forms．－Eight or nine are recognized．
Characters．－Cheekteeth at full dentition \therefore ．The teeth are vers infre－ quently all in place together；the anterior premolars being shed before the fusterior molars are cut．In fifty shulls available for examina－ tion only one No．I8．0．r 5.0 has all sis teeth in place together（one side of the jan
only）．I have not seen one with the six lower teeth in place together．The normal number in place at once appears to he either ${ }_{4}^{6}$ or ${ }_{4}^{4}$ ，but sometimes there may be ${ }_{5}^{5}$ ，etc．and frequently there will be 5 teeth on one side of the jaw and 4 on the other．The last tooth appears to be cut late in life．The teeth when eut are with one external and one internal fold，but soon simplify to a ring－pattern．

Upper incisor roots extending into pterygoids．Palate excessively narrow， differing from that of Bathyergus，（＇ryptomys and Georychus in that it does not extend behind the toothrows．Infraorbital foramen very small．Other essential elaracters of skull as already described．

Tail and cars obsolete．Claws not excessively lengthened．Hindfoot differ－ ing from that of Bathyergus in that D． 2 is the main digit rather than D．3，as in the forcfoot，though the hallux remains slightly longer than D． 5 ．

Forms seen：albifrons，angonicus，argenteocinereus，emini，kapiti，marungensis， robustus，spalax．

List of Named Forms

Mr．R．W．Hayman has been kind enough to look through this genus for me and reports that all the named forms＂cannot in my view be more than races of argenteocinereus，except spalax，which has the narrow posterior nares reaching the level of last molars，and is distinguishable on this from all the others．＂I fully agree with this conclusion．

1．HELIOPHOBIUS SPALAX，Thomas
1910．Ann．Mag．Nat．Hist．8，VI，p． 315.
＇Taveta，near Kilımanjaro．
2．HELIOPHOBIUS ARGENTEOCINEREUS ARGENTEOCINEREES，Peters
1852．Reise nach Mozambique，Zool．Säug．P．I4o．
Tette，Lower Zambesi．
3．HELIOPHOBIUS ARGENTEOCINERELS ANGONICUS，Thomas
1917．Ann．Mag．Nat．Hist．8，XX，p． 314.
Bua River，Angoniland，East Rhodesia．
\＆HELIOPHOBIUS ARGENTEOCINERELS ROBLSTLS，Thomas
1906．Ann．Mag．Nat．Hist．7，XVII，p．179．
Mpika，N．E．Rhodesia．
5．HELIOPHOBIU＇S ARGEズTEOCINEREI＇S MARC゚NGEN゚SIS，Noack
1887．Zool．Jahrb．Syst．II，p．223．pl．ix，fig． 25.
Marungu，South－east Conco．
6．HELIOPHOBIES ARGBNTEOCINERELS EMINI，Noack
1894．Zool．Jahrb．Syst．VII，p． 559.
Simba Mucnna，near Mpwapwa，Tanganyika．
7．HELIOPHOBIES ARGENTEUCINERELS KAPITI，HeNER
1909．Smiths．Misc．Coll．LII，part 4．p． 469.
Kapiti Plains，Kenya．
S．HELIGPHOBIL＇S ARGENTFO（TNERELES ALBEFRONS，Gras
1864．Proc．Zool．Soc．London，p． 123.
＂East Africa．＂
Synonym：？pallidus，Gray，is04，P．7．S．London，9．124．＂East Airica．＂
9. HELIOPHOBHLS MOTTOULEI, Schouteden. (Not seen) 1013. Rev. Zool. Afr. 2, p. 203.

Kilongwe, near Lake Kisale, Belgian Congo.
Genus 3. GEORYCHUS, Illiger
1811. Georycuus, Illiger. Prodr. Syst. Mamm. p. 87.

Type Species.-Mus capensis, I'allas.
Ravge.-South Africa: Natal and Namaqualand to the Cape.
Number of Formis.-Threc.
Characters.-Like Cryptomys, next to be described, but upper cheektecth with one narrow inner and outer fold each, the folds persisting; lower cheekteeth with one outer fold persistent and one inner fold which tends to become weak or obsolete. Posterior checkteeth cut late in life. Upper incisor roots extending into pterygoids. Infraorbital foramen normal (small). Externally with no special peculiarities; claws not enlarged; the digits arranged about as in Bathyergus.

Forms seen: capensis, canescens.
List of Namel formis

1. GEORYCHLS CAPENSIS CAPENSIS, Pallas

ェラ79. Glires, pp. 76, 172, pl. V11.
Cape Colony.
Synonyms: buffoni, Curier, Ann. Sci. Nat. 1\&34, 1, p. 106.
kwops, Lichtenstem, Forsters Desc. Anim. Iter. ad. Maris Aust. Teras Suscepto, p. 364, 1844.
2. GEORICIUL CAPENSIS CANESCENS, Thomas \& Schwann
1000. Proc. Zool. Soe. Iandun, p. Ios.

Kinysna, soutl Cape Colony:
3. GEORYCIILS CAPENSIG YATESI, Roberts
1913. Ann. Transvaal Mus. IV, p. 92. Transvaal.

Genus 4. CRYPTOMIS, Gray

1564. Cryptomys, Ciray, Pruc. Zool. Soc. Landan, p. iz.4. siof. Coetanys, Gray, l'roc. Zool. Sok. London, p. 125. (Based on coecutiens and damarensis).
Type Speens:-Georychus holvsericcus, Wagner.
Range.-Africa, widely distributed: Togoland, Nigeria and Bahr-el-Ghazal to the Cape; evidently not occurring in lienya, nor Abyssinia, nor somaliland.

Nember or Forms.-Aproximately forty-nine have been named.
Charactrrs.- - ikull, excepting in some species the infraorbital foramen, without special peculiarity; about as usual in the family; frontals not much constricted; mandille with angular portion not much produced backwards. Upper incisors plain, their roots extending behind the
toothrow. Cheektecth i, a simple ring in adult, one inner, one outer fold when unworn.

Claws normal; length of digits as Bathyergus, or with considerable tendency towards D. 2 and I. 3 in the manus being subequal, or even in some seen D. 3 is very slightly the longer. D. 2 and D. 3 in the hindfoot also often subequal. Mammae usually 2- $1=6$ (Thomas). 'Tail shorter than hindfoot.

Infraorbital foramen variable, sometimes even individually. In some cases, as in the giant species, mellandi, it becomes as large relatively as in some Muroid rodents, as Rhizomys, and surely must transmit muscle. Skull no. 20.11.3.227 at the British Museum shows a specimen in this state. In C. coecutiens, as figured by Tullberg, a small strand of musele passes through the foramen.

The infraorbital foramen is normal (small), or but very slightly enlarged in damarensis, lugardi, beirae, zechi (type not seen), molyneauxi, micklemi, foxi, lechei, kummi, and ahytei (slightly enlarged); in the type of mimrodi, the infraorbital foramen of one side of the skull is small, on the other side slightly enlarged (which proves that no specific groups may be based on this character); it is very little enlarged in ansorgei (one of the giant mechowi group); moderate in blainei (same group); relatively large in bocagei, coecutiens (type not seen), darlingi, jorisseni; largest in amatus, hottentotus (type not seen), mellandi and mechowi (type not seen).

The above notes, except when stated to the contrary, are based on type skulls; there may be some individual variation perhaps within some of the species.

Four forms, mechowi, mellandi, ansorgei and blainei, separate rather sharply as a group from the others on account of their relatively very large size.

Forms seen: amatus, ansorgei, beirae, blainei, bocage i, coecutiens, damarensis, darlingi, foxi, holosericeus, hottentotus, jorisseni, kummi, lechei, lugardi, mechowi, mellandi, micklemi, molyneauxi, mimrodi, talpoides, whytei, zechi.

List of Named l'orus

Mr. R. W. Ilayman has kindly looked through the large collection of the genus Cryptomys at the British Nuseum, with a view to getting it into some semblance of order, and reports as follows:
"'The lBritish Museum material of this genus seems to me to be divisible into five groups, based primarily on presence or absence of white head-spot (this is more reliable than was expected), secondarily on colour and size. Cranial characters seem to be unrcliable and cannot be correlated with the groupings given here. It is ohvious that many of the so-called species listed here will eventually be relegated to sub-specifie rank.

1. Without head-spot.
(a) mechozi group. Large to very large, head and body 200 up to 260 . Very pale brown in all forms.
2. mechoat, Peters. North Angola.
3. mellandi, Thomas. North Rhodesia and Angola.
4. amsorget, Thomas $\mathbb{\&}$ Wroughton. Central Angola.
5. blainei, Hinton. C'entral Ingola.
(b) hottentotus group. Small to medium-sized, head and body 100-150. Drab of fawn, exceptionally hackish (talpoides).
6. hottentotus, Lesson. Cape Colony and Natal.
7. h. talpoides, Thomas \& Schwann. Cape Colony.
8. h. occhusus, Alten \& Loveridge. S.W. Tanganyika 'lerr.
S. h. zelvtei, Thomas. N.W. Nyasa, N.E. Rhodesia. (Treated as a race of hottontotas by Alten \mathcal{E} Loweridge, Bull. Nus. Comp. Zool. Harv, LXAV, No. 2, p. 125.)

Fig. 4. Cryptomys damarensis, Ogilby.
B.M1, No. 25.12.4.190. 字: 2.
9. coccutiens, Lichtenstein. Cape Colony.
ro. holosericeus, Wagner. Cape Colony, Orange Free State, 'Transvaal.
I I. jorisseni', Jameson. 'Transvaal.
12. mimrodi, de Winton. S. Rhodesia.
13. amatus, Wroughton. N. Rhodesia and Katanga.

II'ith heud-spot.
(a) lechei group. Size medium to large, head and body about 125 to 200 . Colour ranging from blackish through seal-brown to slate and silvery-fawn.
14. lechei, 'Thomas. N.E. Congo, N. Uganda. (Only 3 Uganda skins seen, all lacked spot.)
15. kummi, 'Thomas. French Shari.
16. foxi, 'Thomas. North Nigeria.
17. Lugardi, de Winton. S.W. Africa and Kalahari.
\&. micklem, (humb, N.W. Khodesia. (St. Leeger, Jroc. Zow). Soc. London, 1932, p. 90t, considers micklemi lugardi.)
19. molyneauxi, Chubb). N.W. Rhodesia.
20. darlingi, Thomas. S. Rhodesia.
21. beirce, 'Thomas. J'ortuguese East Africa.

Fig. 5. Cryptomys damarensis, Ogilby. B.MI No. 25.12.4.190, \% ; $\times 2$.
(b) damarensis group. Size medium; head and body about 150 . Pale sandy brown.
22. damarensis, Ogillyy. S.W. Africa.
23. ochraccocinereus, Heuglin. Bahr-el-Ghazal, Sudan.
24. zechi, Matsehic. Togoland, West . Vfrica.

Authentic examples of 23 (ochraceocinereus) not seen. This is perhaps a more artificial group than the preceding one, but Nos. 22,23 and 24 do not seem to fit elsewhere.
3. With or withont head-spot.
bocagei group. Colour cinnamon to drab: size small to medium, up to 150. Head spot very variable.
25. bocagei, de Winton. Angola.
26. Rubangensis, Monard. Angola."

On account of the variability of the head-spot 1 think it will be desirable to treat the hottentotus, lechi, dimarensis and bocagei groups as sections of one specific group, particularly bearing in mind the amount of variability met with in the genus Ilcliophobius in this character. I must add that it was I who originally suggested to Mr. Hayman that the presence or absence of this spot might be used to divide Cryptomes into groups.

The mechori group is unquestionably very distinct from the remainder.

mechowi Group

i. CRYPTOAIS'S MECllowt, Feters

18\$i. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 133.
Malanje, North Angola.
2. CRY'TOMIS MELLANDI, Thomas
1906. Ann. Mag. Nat. IIst. 7. XVII, p. 178. Mpika, N-E. Rhodesia.
3. CRYPJonlys ANsorgei, Thomas \& Wroughon
1905. Ann, Mare. Nat. Hast. 7, X'VI, p. 175.

Bthe, Central Ancola.
4. CRYPToMIS BLAMEI, Hintem
1921. Ann. Alag. Nat. Ilist. y, VII, p. 372.

Loando River, Central Angola.

hottentotus Group
 (typical section)

5. CRYPTONHS HOTTENOOTUS HUTTENTOTL'S, Lesson
6. Voy. Coq. Zool. i, p. 166, pl. in, fig. 2.

Paarl, Cape.
6. CRYPTOMYS HOTTENTOTUS TALPOIDES, Thomas \& Schwam 1906. Proc. Zool. Suc. London, p. 166.

Kinssna, Cape Colony.
7. CRYPTOMIS HOTTENTOTLS OCCLUSUS, Anten \& Lowndae
1933. Bull. Mus. Comp. Zonl. LXXV, no. 2, p. 125.

Uzungwe Musntains, S.-IW. Tanganyık.
8. CRYPTOMYS HOJ'TENTOTUS WHYTEI, Thomas
1897. Proc. Zool. Soc. London, p. 432.

Karonga, Lake Nyasa.
9. CRYPTOAIS COECUTIENA, L, Chtenstem
1827. Brants. Muiz. p. 37.

Natal.
Synonym: ludeiki, Smith, is29, Zool. Journ., P. 439 . A synonym of C. hottentotus, fide G. N. Allen.
10. ('RYPTOAIYS HOLOSERICEUS, Wamer

18 +2 . Schrch. Säuct. sunpl. III, p. 373.
Graaf Remet, Cape Colony.

1896. Proc. Zool Suc. Lomdon, p. Sost.

Bulaway", Rhodesia.
12. CRYPTOAIYS AMATL゙S, Wroughton
1907. Manchester Mem. 51, no. 5, p. 2\$.

Alali Plateau, North Rhodesia.
13. CRYP TOMIS JORLSSEN1, Jameson
1909. Ann. Mage. Nat. Hist. S, IV, p. 4 t,f.

Waynek, Waterburg District, Transvaal.
（lechei section）
14．CRYP＇IOMSS LECIIEJ，＇lhomas
1895．Ann．Mag．Nat．I Iist．6，XV1，p．241，
Bellima，Monbuttu，N．E．Congo．
15．CRYP「OMIS K゙UMARF，Thomas
1911．Ann．Mag．Nat．Hist．S，VII，p． 592.
French Shari Protectorate，Ironside Plateau，about $8^{\circ} \mathrm{N} .22 \mathrm{~B}$ ．
16．CRYPIONI＇S FON゙1，＂lomomas
1911．Ann．Mag．Nat．Hist．S，V゚ll，p． 462.
Danyam，North Nigeria．
17．CRYPTOMES LLGNRDI，de Wintom
1898．Ann．Nag．Nat．I list．7，I，p， 253.
Kalahari，between 1＇alapye and Ngami．
Synonym：micklemi，Chubb，1909，Ann．Nag．Nat．Hist．8，111，1． 35. Upper Zambesi．
18．CRYPTOMYS MOLYNEAUNL，Chubb
1908．Ann．Mag．Nat．Hist．S，II，p． 4 5ı．
Loano Valley，N．－VV．Rhodesia．
19．CRYPIOMYE DARLIN゙GI．Thomas
IS95．Ann．Nag．Nat．Hist．6，XVI，p． 239.
Salisbury，Rhodesia．
20．CRYPTONIS BEIRAE，Thomas \＆Wroughton
1907．Proc．Zool．Soc．London，p．7So．
Beira，Portuguese East Africa．
（damarensis section）
21．C＇RYP＇0OM1S DAMLARFASIS，（gyby
1838．Proc．Zool．Soc．London，p． 5. Damaraland．
22．CRYP＇JOAIS LECDH，Natsche
1900．Sitz．Ber．Ges．Nat．Fr．Merlin，no．4，p． 1.46. Middle Volta．＇logeland．

23．CRYPTOMSS OCHHRCEOCINRRELS，Herglin
18ot．Nov．Act．Ak．Caes．Leop．Dresden，NXXI，p． 3. Bahr－ed－Ghazal，sudan．

> (bocagei section)

24．CRYPTOMY゙ IBOCAGEl，de Wmant
1897．Ann．Mas．Nat．Ihst．6，X゙X．R． 323.
llanla，Aneola．

1033．Bull．Suc．Veuchatel．Sci．Nat．57．p． 5 s．
Cubangu River，Mussamede＇s，Angola．
＇There then remain to be discussed twenty－three＂species＂（？）of Roherts． some comments on some ol these have already been made hy Otdield lhomat． Inn．Mag．Nit．Hist．S．SX，P．＋t＋，11）$\%$

It is useless attempting any remarks on these, as all are unrepresented; they are therefore listed alphabetically.

2t. CRYPTOMIS ABERRANS, Roberts
1913. Ann. Transv, Mus. 1V. p. y8. Port St. Johns, Cape Province.
$2-$ CRYPIONIS ALBLS, Roberts 1913. Ann. Transs. Mus. IV, p. 100.

Wynberg, Cape Colony.
zs. CRYPLOMVS ANOSLALUS, Roberts 1913. Amn. 'Jransr. Mus. IV, p. 96. 'Transvaal, I'returia.
24. CRIPTOMY'S AREXARILS, Roberts 1913. Ann. Transv. Mus. IV, p. 96. Trunsvaal. Pretoria.
30. CRYPTONYS BIGALKEI, Roberts 1924. Ann. Transv. Mus. X, p. 73. Glen, Orange Free State.
31. CRIPTONIS CRADOCKENSIS, Roberts 1924. Ann. Transr. Mus. X, p. 73.

Cradock, Cape Province.
32. CRYPTOAIS JANIESONI, Roberts 1913. Ann. Transv. Mus. IV, p. 95.
'Transvaal, Johannesburg.
33. CRIPTONYS JUNODI, Roberts 1926. Inn. 'Transv. Mus. XI, p. 260. Masiene, Portuguese East Africa.
34. CRYPTONYS KOMATIENSIS, Roberts 1917. Ann. 'lransv. Mus. V, p. 272. Arnhemburg, 'Transwal.
35. CRYPTONIY LANGI, Roberts 1929. Ann. 'Transv. Mus. NIII, p. 119. Keerkloof, Natal.
36. CRYPTONIS MAIHALI, Roberts 1913. Ann. Transr. Mus. IV, p. 108. 'Transvaal.
37. CRYPTONY゙ NELANOT1CUS, Roberts 1926. Ann. 'Transv. Mus. XI, p. 260. Makoetsi River, N.E. 'Transvaal.

3\%. CRYPTONYタ NONTANUS, Roberts 1926. Ann. Transv. Mus. X1, p, 260. Klapperklop, I'retoria, Transvaal.
39. CRYPIONIS NATALENSIS, Roberts
1913. Ann. Transs. Mus. IV, p. 94.

Natal, Wakkerstroom, 'Transvaal.

CRYPTOMYS

40．CRYP＇ONIS ORANGIAE，Roberts 1926．Ann．Tramsv．Nus．N1，p． 25% ．

Gilen，Orange Free State．
41．CRY＇POAISS I＇ARKK，Robert
191\％．Ann．Transv．Mus．V1，P． 5.
Vaal River，＇l＇ransvaal．
42．CRYP＇YOAIS IRETORLAE，Roberts
1913．Ann．＇l＇ransv．Nus，IV，p，oq．
＇「ransvaal，Pretoria．

1917．Aon．＇Transv．Mus．V，p． 272.
＇Tzaneen，＂lranssati．
4．CRYPTOMY：STELAATLS．Robets 1017．Ann．Transv．Mus．V，p． 272.

Komatipoort，＇Transvaal．
45．CRYPTOAS゙S TRANSVAALENGIS，Roberts 1924．Ann．＇Transs．Mus．X，p． 73. Pretoria district．
46．CRYPTOMIS VANDANII，Roberts 1917．Ann．Transv，Mus．V，p． 273. Leydsdorp，T＇ransvaal．
47．CRYPTONYS VETEえ゙SIs，Roberts 1926．Ann．＇Transv．Mus．X1，p． 259.

Vet River，Orange Free State．
48．CRYPTOMYS VRYBLRGENSIS，Roberts
1917．Ann．Transv．Mus．V．p．274．
Vryburg，British Bechuanaland．
Addendum：
（RYPTOMYS NATALENSIS NEMO，G N．Allen．
1939．Bull．Nus．Comp．Zool．LX゙メ゙1ll，p． 429.
Manetsi River，near Jlalala，Zoutspansberg district，Transval．
Synonym：pallidus，Roberts，1917，Ann．Trans．Mus．V，p．278．Not of Giay：

The Heterocephalus Group

Cheekteeth or $\frac{3}{3}$ simplified in adult．Size smaller than in other members of the family．Fur practically absent，the hairs occurring singly， scattered，throughout the body，most developed on the feet．Tail longer than hindfoot．Eyes and ears extremely small，no ear conch．Forefoot with five digits，the centre of which is the longest． 15.5 and especially the pollex shorter than D． 4 and D．2，which are subequal．Ilindfont like forefoot，hut hallux about as long as 1 ． 5 ．

Essential eranial characters as in Bathwergots group，but jugal reduced；more Murine in appearance；palate not continuing behind molars，and in appearance rather less constricted normally than in other genera；upper incisors extending behind the toothrows．

Genus 5. HETEROCEPHALUS, Rüppell

1842. fleterocephalis, Rúppell, Mus. Senckenberg. Abh. 3. Ifeft 2, p. 99. 1903. Forviriva, Thmas, Proc. Zorl. Soc. London, P. 336. (Heterocephalus phillipsi, Thomas.)
Type Species.-Hetcroceplalus glaber, Rüppell.
Range-LKown from Abyssinia, Somaliland, Kenya.
Number of Forms.-Four are here listed.

Characters.-As indicated above. Frontals little constricted; nasal, appear rather broader than in other genera; palate shorter than in other genera except He liophobius. Cheekteeth simple in adult, the usual folds found elsewhere in the family present when unworn; normally ; in II. phillipsi, so far as known, reduced to $\frac{\ddot{\#}}{\#}$, evidently at a certain age or stage of wear; this species is represented in the British Aluscum only by three skulls; two of these have two upper teeth on cach side, the third has three upper checkteeth on one side, the posterior one minute, two on the other side, the posterior one apparently hating been shed. 'This species was made the type of a genus "Fornarina" by 'Thomas, but much more evidence on the condition of this form is required before any generic scparation can be done; I should he
quite content to assume that if enough specimens could be brought to hand phillipsi would turn out to be no more than a race of H ．glaber．${ }^{1}$

In the few available for examination，including skulls which have been made types of two or three＂species，＂there is much variation in the size of the cheek－ teeth， $\mathrm{M}_{3} 3$ being in some only slightly，and some very considerably smaller than M．2，and of the incisors，which reach their maximum size in the type of dumil． There is also variation in the form of the coronoid．

1lollister，1919，East African Nammals in the U．S．National Museum， synonymizes several forms with the typical race；this classification is here followed．Provisionally I list all named forms as either synonyms or races of the type．

Forms seen：ansorgei，glaber，dumni，plullipsi．

Fig．7．Heterocephills glaber glaber，Rüppell．
B．M．No． $32.2 .19 .9,=3 \frac{1}{2}$
List of Nimed loorats
3．IIETEROCLPlLAI．L GLABER GLABER，Rüppell
1842．Mus．Senckenberg，Abh．3，Iteft 2，p．99．
Shoa，Abyssinia．
Synonym：glaber progreduns，Lönnberg，1911，Kungl．Sv．Vet．Abad． Handl．I3d．＋S．no．5，p．102．North of Guaso Nyiro，ドenvia． ansorget，＂Thomas，rgo3．Proc．Zool．Soc．London，p． 330. Makndiu district，Kicnvoa．
stygise，Allen，1912，Bull．Nus．Comp，Zool．LIV．p．$+4+$ Neumann＇s Boma，Nith．Guaso N゙iro，Kenya．
${ }^{1}$ since the above was written，the Check List of African Nammals of G．M．Allen hav been published：in this H phillipsi ss consudered a synonsm of $I I$ ．glaber．
2. IIETEROCEPIIALUS GLABER SCOR'TECCII, de Beaux

103t. Atti. Soc. Ital, Sci. Nat, LCXII, p. 283.
Gardo. Italian Smmahland.
(A synonym of 2. glaber, according to G. M. Allen)
3. HETEROCFPLALETS GLA1BER DLNNI, Thomas

Igoo. Ann. Mag. Nat. Hist. S, IV. p. Iog.
Wiardairi, Central Somahland.
(A synonym of g. glaber, according to G. M. Allen)
4. HETEROCEPHALUS GLABER PHHLLIPSI, Thomas

ISS5. Proc. Zerol. Sose Limolon, p. G1工.
Somadnand.
(A synonym of g. slaher, according to G. M. Allen)
The references and type localities for all members of the family Bathyergilae are the work of Mr. R. W. llayman.

The family have been described fossil from the Oligocene of Mongolia. This indicates a former wide distribution for the group, and contrasts with some of the other African families as Anomaluridae and Pedetidae which do not seem to be known outside the Continent.

BATHYERGIDAE:
 SPECIAL IIORKS OF REFERENCE

'Tullberg, Nova Acta Reg. Soc. Sci. Upsaliensis. XVIII, set. 3, no. i, i8g9.
Hollister, Smiths. Inst. Bull. 99, P. 159, 1919: East African Mammals in the U.S. Nat. Nus. Note on status of some forms of Heterocephalus.
St. Leiser, Key to Families and Genera of African Rodentia, Proc. Zool. Soc. London, 1931. p. 976.

Thomas, Ann. Nay. Nat. Hist. ser. S, vol. IV, p. 110, 1909 . Note on dental formula in the family.

Superfamily HYSTRICOIDAE

This group is equal in rank to the "lateralis-series" of the superfamily Hystricoidae of Miller \& Gidley; or to the "1lystricomorpha" of authors not inchuding Caviidae (Catia, Galea, Caziella, Kerodon, Dolicholis, IIydrochoerus) nor Ctenodactylidae; it is here divided into seven families.
iS96. Thomas: Hystricomorifa, part, included Pedetidae, Cavidae, Ctenodactylidae.
1899. Tullberg: Hystricognathi: Hystricomorpha; part, included Cavidae.
igi8. Miller \& Gidley: Superfamily Hystricoidae, part, lateralis series. (Included,
as medralis sertes, the Cavidace.)
1924. Winge: Family Hystricidae, part, included Bathyergidae, Ctenodactyldat and Caviidae of this work.
1928. Weber: Hystriculdae, part; included Cavidae, Ctenodactylidae.

Geographical Distribution.-The greater part of the American Continent from Canada to Patagonia (evidently absent only from certain areas of southern U.S.A.); the greater part of the African Continent; the lndo-Malayan region. from the Himalayas to Ceylon and from Southern China to Borneo and the Philippine Islands; represented in the Palaearetic in Italy, coastal regions North-west Africa, and in Southwestern Asia (north into southern Siberia).

Charactizs.-Zygomasseteric structure differing from that of all members of the order, except Bathyergidae, in that the lower jaw, paralleling the Bathergidate, has the angular portion of the mandible distorted outwards, to a greater or tesser degree, "to allow passage of a specialized and enlarged distal anterior limb of masseter lateralis superficialis, its general direction parallel with zygoma" (Miller $\&$ Gidley); combined with the fact that the infraorbital foramen is very much enlarged to allow passage of masseter medialis; the zygomatic plate is narrow, and remaining completely below it, the general arrangement of the forepart of the skull as regards muscle insertion (infraorbital foramen, zygomatic plate), essentially as in Anomaluridae, Ctenodaetylidae, Pedetidae and Dipodidae.

Skull normally specialized, with broad frontals, which rarely show much signs of interorbital constriction, a tendency present towards complexity of zygoma (Echimyidac), and lengthening and specialization of paroccipital processes.

Dental formula: i. $\frac{1}{1}$, c. $\frac{0}{o}, \mathrm{p} \cdot \frac{1}{1}, \mathrm{~m} . \frac{3}{3}=20$.
Checktecth usually flatcrowned, usually hypsodont, often evergrowing, not cuspidate in adult.

A tendency present towards reduction of the digits of the hindfoot (in some forms, Dasyproctidae, Lagostomus, hindfoot with three digits only).

The matleus and incus are fused according to Tullberg, though in some cases apparently not completely so.

The tibia and fibula remain distinct, or are not fully fused.
Remarks.-This group has been recognized as one of the major groups of the order by all authorities. But many forms which appear to me not to belong are currently included in it. 'The Iyystricomorpha or Ilystricoid series are always described as with the angular process distorted outwards, as indicated above; if this is a sufficiently important character on which to base superfamily grouping, and it apparently is so (Tullberg divided the whole order into two great groups, Hystricognathi and Schurognathi, based on its presence or absence), it seems clear that forms which do not agree in mandible structure with typical Hystricoidae must be exchuded from that superfamily, no matter what their ancestors may have heen. 'This takes the Caviidae into another branch of the order, as they cannot by the longest stretch of imagination be regarded as with typically Hystricoid mandible formation. The close association of Caviidat with such forms as Dasyprocta and Cuniculus by many authors, 'fullberg among them, has long struck me as extremely unnatural; Cumiculus is of course one of the most isolated and aberrantly specialized living rodents, and has not even the feet structure and external specialization of Cavidace and Dasyprocta; but the last two named, both clearly parallels in evolution, both highly modified for cursorial life, with digits of hindfoot reduced to three, are yet so clearly totally different when lower jaw structure and dental structure are looked into. Such an association appears as unnatural to me as dumping Castor and Myocastor into a family together hecause both swim!

Of the forty-three genera belonging to the group, thirtv-six are confined to the neotropical region. One is peculiar to North Imerica: of the remainder, two

[^3]are African, two (1 lystricidae) the Malay Islands, the remaining two (1lystricidae) cover a wide area in the southern patacarctic, the African and the Indo-malayan regions.

This group, together with the Cavioidae, contains all the giants of the order (except Castor), and exhibits some extreme types of external specialization. Taking all their characters into consideration, it appears to me that this group is without doubt, broadly speaking, the most highly specialized and progressive branch of the order, particularly such forms as MIstrix cristata, though in all cases such species grade down quickly to relatively low primitive allies.

The division of the group into families is not easy. As many as thirteen have been recognized by various authors. It appears to me to he both unnecessary and inconvenient to divide them into as many as this; particularly taking into account that all seem closely allied to each other, and that elsewhere vast groups like the Muridae (with Cricetinae, Microtinae, Gerhillinae, Myospalacinae, etc., etc.), are usually retained as one family. Flower \& Lydekker, 1891, Mammals Living and Extinct, recognized (of Jlystricoidae as here understood) only five families, the Octodontidae ($=$ Echimyidae of this paper), 1lystricidae, Chinchillidae, Dasyproctidae and Dinomyidae. Thomas in a 896 very properly separated the American "Porcupines" from the Hystricidae as a distinct family; and Willer \& Gidley, Pocock and others have recognized Cuniculus as type of a distinct family. With these two modifications I retain the classification of Flower \& Lydekker.

The Echimyidae as here understood contain a large quantity of neotropical rodents and two African genera (Thryonomss, Petromus); broadly speaking this group contains forms which have not become much modified externally (exceptions: Myocastor, Thrvonomys, Dactyominae, part), but which seem to have their specialization in the skull characters (lengthened or specialized paroccipital process, some tendency to enlargement of bullac, very general tendency for complex zygoma, etc.) ; and in dental characters (such as the rootless simple tecth in Octodontinac). Normally the size is relatively small, though Myocastor and Thronomys provide exceptions to this. The retationships of the various groups will be discussed helow.

Apart from the evergrowing plain laminate cheekteeth, there is little to distinguish the Dinomyidae from them; and certain species of Echimyidae may attain laminate cheekteeth, though this not combined with extreme hypsodonty. But Dinomys is evidently rather an isolated specialized type, and is best retained as a family. The Chinchillidae are dentally like Dinomys, but cranially with their poorly-ridged mandible, the tendency either to lengthening of paroccipital process or extreme inflation of mastoids and bullue, they stand rather apart not only from Dinomys hut as a group from all other Ilystricoids apparently; the functional digits of the hindfoot are reduced to three. 'J'he lerethizontidac are more primitive than the lechmyidae cranially and dentally (as a rule), but very much more highly specialized externally, the feet attaining arboreal specialization not seen clsewhere in the order, and the spiny covering of the body being in a very different class from that of the few spiny members of the Echimyidac, in all but the very lowest. The 1 ystricidae are held not to be closely related
to the Erethizontidae, but rather to Dasyproctidae; once again their lower members are less speciatized than in Echimyidae, as regards cranial characters, their higher ones very much more so, with tendency to extreme inflation of nasals without parallel in living rodents. 'l'he external covering presents extreme specialization in development of spiny covering, but goes through an interesting series of grades of development, so that the lowest is much less specialized in spiny covering than the higher members. The Dasyproctidae are very similar to the IIystricidae in cranial and dental characters; externally they are very different, and not less specialized in their way, being modified for cursoria! life, with three digits only to the hindfoot, and in external form calling to mind a type that primitive ancestral ungulates must have at one time passed through in their evolutionary history. Finally the Cuniculidae in the development of their rast bony cheek-plate present cranial charactersvery widely different from any other rodent.

Key to this Families of Hystricoidae

Entire zygomatic region abnormally modified by growth of bony cheekplates. (Cheekteeth strongly hypsodont, the folds of the teeth isolating as islands on crown surface; form heavy; digits not numerically reduced on hindfoot, the claws thick, more or less hoof-like.)

Family Cusiclladae
Zygomatic region not abnormal, always without bony check-plates.
Cheekteeth evergrowing, or extremely hypsodont, the pattern one of a series of transverse plates.
Nandible with angular process strongly distorted outwards; incisors powerful; form heavy, limbs not lengthened; hindfoot with four well-developed dicits: no tendency present for excessive enlargement of loullat and mastoids nor for lengthening of paroccipital process.

Family Dwomynate
Mandible with angular process rather weakly distorted outwards; incisors relatively thin or medium; form more slender, limhs to a degree lengthened; hindfoot with three welldeveloped digits; a marked tendency present either to excessive enlargement of bullae and mastoids, or to lengthening of paroccipital process. Family (hunchullifide
Cheekteeth when evergrowing or extremely hypsodont never with pattern of a series of transwerse plates.
Ilindfeet excessively specialized for arhoreal life, or becoming so; the hallux being replaced by a broad movable pad. (four conspicuously spinous, the spines short; bullae rather large, prominent; cheektecth either with very wide re-entrant folds, or nearly laminate in structure, rooted; no lengthening of paroccipital process: zagoma simple.)

Family Eretuizontidae

Ilindfeet never excessively modified for arboreal life, hallux never replaced by broad movable pad, and never suppressed in arboreal genera.

Extermal form modified for cursorial life, the digits of the hindfoot reduced to three, the claws thick, more or less hooflike. (Checkteeth semi-rooted, the re-entrant folds isolating as narrow islands on crown surface in adult; fur not developing spines.) Family Dasyproctione

External form never modified for cursorial life; digits of hindfoot never reduced to three; claws not hoof-like in structure.

Externally showing a progressive series of modification of fur into spiny covering, at extreme develupment highly specialized (the spines long); bullae relatively small; paroccipital process not specially lengthened nor modified; zygoma simple. (Cheekteeth semi-rooted or rooted, the re-entrant folls isolating as narrow istands on crown surface in adult; a tendency present towards extreme inflation of nasals in progressive species; form heary, terrestrial.) Family Hystricidae
Externally without extreme modifications (in one case to a degree specialized for aquatic life); spiny covering of hody when present relatively weak (as compared with 1 lystricidac) ; bullae relatively large; paroccipital process enlarged, cither curving forward under the bullate or lengthened, tending to stand apart from them; zygoma very generally with upwardly directed process on posterin border, or downwardly directed process on posterior border, or both. (Checkteeth various; sometimes crergrowing, when evergrowing most uften approaching or reaching complete simplification of pattern; when with a pattern of islands isolating on crown surface in adult, usually brachy(xdont.)

Family Echmiynae
These families it will be noticed are based chiefly on the external characters. So many fossils are known helonging to this uroup that care must be taken if defining the families on cranial and dental characters, as it may be that in many cases fossil forms will prove intermediate between certain groups, or break these characters down. Hso the cranial characters of these Hystricoids are, generally speaking, so similar that if not known living, all except Cimiculus could readily be referred to one family. 'Jhe extreme external specializations reached by some members of this group are in my upinion just as important as any cranial or dental character.

Family ECHIMYIDAE

1896. Thomas: Ifystriconorpha, part, Family Octodontidae, part (included Ctenodactyldae); subfamilies Echimyinae (included Dactylomyinae), Capromyinae (Capromys, Plagiodontia, Myocastor, Thryonomys), Octodontinae (included Abrocoma), Ctenodactylinae, part (Petromus).
1897. Tullberg: Instricomorpha, part, Family Échinomyidac; subfamily " My yoporamini" ($=$ Myocastorinac); subfarnily Echinomyini (groups, Echinomyes, Echimyinae and Dactylomyinae as here understood); and Octodontes (Octodontinae and Abrocominae as here understood). Family Aulacodidae ($=$ Thryonomyidace. Family Petromyidac.
1898. Miller \mathfrak{A} Gidley. Superfamily Ilystricomde, part; Family Echimyidae, part (included Chattomys); Subfamily Echimynae ("Spiny-Rats, Hutias," etc.); subfamily Octodontmae. Family Petromyidac. Family Myocastoridae. Family 'Thryonomyidae. F'amily Abrocomidae.
1899. Winge: Family Hystricidae, part: Capromyini (Capromys, Plagiodontia, Myocastor, Thryonomy's); Octodontini, groups Octodontes (Octodontinae and Abrocominae as here understood), Echinomyes (Dactylomyinae and Echimyinae as hese understuod); Ctenodactylini, part (Petromus).
1900. W"eber: Hystricoldes, part. Famıly Capromyidae (Capromys, Plagiodontia, A/yocastor) ; Family Octodontrdac (Echimys. Octodon, Ctenomys); Family Ctenodactyladae, part (Petromus); Fanuly Thryonomyidae.
Geographical Distribltion.-Neotropical region, from Nicaragua southwards to I'atagonia; Cuba and the West Indies; Africa widely distributed south of the Sahara.

Number of Gexera.-- As here understood the family contains twenty-eight genera, one of which, Procapromys, has not been examined and is not represented in London.

Characters.-7ygomasseteric structure eypically Hystricoid in formation. Checkteeth when evergrowing never a scries of transwerse plates (compare Chinchillidae, Dinomyidae); feet never abnormally modified for arboreal life (compare Erethizontidae): zygomatic region without bony check-plate (compare Cuniculidace); coternal form never modified for cursorial life, digits of hindfoot more than three (ahways five except four in Thryonoms) (compare Dasyproctidae); bullae prominent, and paroccipital process lengthened, and zagoma usually more angular, also tail never with specialized quills or bristles in spiny gencra, and spiny covering when present usually not highly developed (compare llystricidac).

As thus defined the group includes the great eentral mass of genera of 11 sistricoid rodents which have not hecome abmormally specialized in any external particulars. 'The checktecth may he evergrowing (Ahrocominae. Octodontinae. Plagiodontinae, Capromyinae), evtremely hypodont (Nyocastorimae, 1'etromyinae), or moderately so hut rooted (the remainder). In the Octodontinate, the structure approaches complete simplification of pattern; in the throcominae the upper checktecth are simplified, hut the lower series remains complex; certain simplification has taken place in Plagiodontinae, which appears unique as regards dental chatacters, and in Petromyinate. 'These sublamilies have one external fold only in the upper checkecth; all other subfamilies hase
more than one, typically three. The skull is normally remarkable for the paroccipital processes, which may be extremely lengthened, as in Myocastorinae, moderately so and standing apart from the bullae (Caprominyae, Plagiodontinae, Thryonomyinae), or curved forwards to a greater or lesser degree under the bullae (Echimyinae, Petromyinae, Abrocominae, Octodontinae). This fact has led some authors to form two families, Capromyidae and Octodontidae, but in the Dactylomyinae, as proted hy Pritish Nuseum material, either condition may exist; Kamabateomws and Thrinacudus, and some specimens of Dactylomys agree with the Echimyinae, but some large skulls of Dactylomys are quite indistinguishable in paroccipital structure from Capromyinae, in which group there is also some variation apparently.
'The zygoma is usually rather broad, and frequently of a complex type, with a downwardly directed process on posterior lower horder, and sometimes an upwardly directed one present above also.

The bullae may be much inflated, as in Abrocominac, Octodontinae, Petromyinae: they are relatively large as a general rule.

The external form varies; in Myocastorinae, which contain relatively very large forms, it is modified for aquatic life, with enlarged hindfeet, most of the digits of which are wehbed; this group has also bullae, which recall the type found in Castoridae, though less spectalized than in that family. Elsewhere the genera are not aquatic. Some genera of Octodontinae are remarkable as being the only Hystricoids which have taken to a subfossorial life (Ctenomys, Spalacopus, Aconaemys); Spalacopus must be ahout the smallest living Ilystricoid genus. A tendency to develop spiny covering, most pronounced in Mesomys, Lonchothrix and Hoplomys, is present in some of the Echimyinat; the spiny covering is, hroadly speaking, very rudimentary compared with Ilystricidae (Trichys perhaps excepted), and even Erethizontidac.

The Dactylomyinac present a curious feature in that except in Thrinacodus the third and fourth digits of fore-and hindfect are much clongated; these animals are said to be arhoreal in habit. In all the genera of the family four functional digits in manus and five functional digits in pes are present excepting Thryonomyinae, in which the manus has three main digits only, D. 5 being excessively shortened, though hearing a thick claw, and the hallux is entirely suppressed; this group possesses an abnormally massive and heavily ridged skull, perhaps more so than in any other living rodent, and extremely thickened three-grooved upper incisors. 'The form is heavy, and of terrestrial or slightly fossorial type.

I provisionally divide the group into mone subfamilies, most of which have at some time or other been regarded as distinct families. But if a vast group like the Juridae are kept together as one family, and the Hystricoid branch is divided up into about seventeen families, the classification of the Order does not appear very consistent. The simple-toothed Octodnatinae are connected with the main branch by such forms as Abrocoma and Plariodontia; the African genera appear to possess no essential characters which will keep them apart as families distinct. Petromus has of late been associated with the Ctenodactylidae by some authors, but the typical Hystricoid mandihle of Petromes differs very widely from that of Ctenodactylidae, which are fully discussed elsewhere and

Which are here considered not related to the Hystricoid group. Thryonomys is undoubtedly a very distinct type, but the only character which seems valid to keep it apart as a family is the formation of the shoulder-blade, which, aecording to 'lullberg, differs considerably from that of other Echimyidae; but unfortunately this character cannot be examined throughout the genera at the British Museum, Petromus, for one (one of the most important genera), being not represented so far as this character is concerned; so that until the skeleton of all the genera bere included can be examined it seems more reasonable not to separate any group on this structure alone. The digits of Thryonoms are reduced, but this is an acquired character.

Myocastor, which is sometimes made the type of a family, is undoubtedly a highly specialized form, but aquatic speciatization alone is not sufficient to base family groups on unless accompanied by some definite cranial or dental characters (compare, for instance, other families, many of which have aquatic offshoots beside normal generalized types, as Hydromyinae, Cricetinae, etc.); and the structure of the paroccipital process, though highly specialized in Myocastor, is too variable elsewhere in the group.

Miller \& Gidley divided the llystricoid lateralis series ($=11$ ystricoidae as here understood) into two groups based on the lachrymal canal, which is stated to be closed in one branch, but open in the other branch on the side of the rostrum. Abrocoma as thus defined comes in a different group from the remainder of those here. But this character seems not too constant elsewhere, for instance both conditions are to be found in the Caviidae of Miller $\mathbb{\&}$ Gidley, and 1 do not attach too great importance to this character. The family as here understood in fact is the family Octodontidae of Flower \mathbb{E} Lydekker, and earlier authors, except that of course the Ctenodactylidae are removed.

The subfamilies must be regarded as provisional; though easily recognizable in living genera, it may be that among the large number of neotropical IIystricoid fossil rodents sone forms would be found which are intermediate between some of the groups in the characters here noted.

Kily to thll Sebfalilies of Echimyidae

Cheekteeth beeoming strongly simplifical, the outer side of the upper series with not more than one re-entrant fold.

The lower cheekteeth prismatic and angular in appearance; the upper series cight-shaped. Part of lachrymal canal open on side of rostrum. (Cheekteeth evergrowing; bullae much intlated: zygoma more or less simple; form terrestrial; digits of hindfoot five; skull not heavily ridged for muscle attachment.)

$$
\begin{gathered}
\text { Subfanily Abrocominaf } \\
\text { (Abrocoma) }
\end{gathered}
$$

The lower cheekteeth not essentially different in pattern from the upper series; no part of tachrymal canal open on side of rostrum. Cheektecth rooted, the pattern uttimately wearing out; inner side of upper and outer side of fower teeth elevated. (Bullat
much inflated, the paroccipital process joining them; digits of hindfoot five; zygoma more or less simple; skull not heavily ridged for muscle attachment; form terrestrial, tail fulty haired.)

Cheekteeth evergrowing, the pattern not or scarcely changing during life. Inner side of upper and outer side of lower teeth not elevated.
Folds of checkteeth very deep and long, set obliquely; each upper tooth with a well-marked outwardly pointing projection on external side. (Paroccipital process lengthened, standing apart from hullae, which are not extremely inflated; aygoma simple; form generalized, tail naked; skull not heavily ridged for muscle attachment.)

Subfamily Plagionontinae
(Plagiodomtia)

Folds of checkteeth not specially deep and long, set less ohliquely, or not so. Upper cheekteeth either eightshaped, or "kidney-shaped." (Bullar normally much inflated, the paroccipital process curved forwards under them to a greater or lesser degree, and joining them; zygoma comples, always with an upwardly pointing process un posterior border; skull normally not heavily ridged for muscle attachment (sagittal crest if present weak) ; external form terrestrial, or modified for subfossorial life; digits of hindfoont five.)

Subfamily Octodontinae
(Octomys, Octodontomys, Octodon, Aconaemys;
Spulacopus; (Atenomss)
Cheekteeth less simplified, the outer side of the upper molars with at least two, typically three, re-entrant fokds.
Externally considerably modified for aquatic life (bodily size largest of family): paroccipital process much elongated; checkteeth extremely hypsodont, but not evergrowing, with well-marked re-entrant fidds which are long retained, the teeth decreasing in size markedly from M1. 3 forwards; skull considerably ridged for muscle attachment (palate constricted anteriorly; digits of hindfoot five; zygoma complex).

> Subfimily Mrocastorinae
> (Myocustor)

External form never moslified for aquatic life; paroccipital process less or not elongated; checkteeth less or not decreasing in size from Ml .3 forwards.

Skull massive, abnormally heavily ridged for muscle attachment; incisors thick, the upper ones heavily threegrooved; forefoot with three functional digits (D. 5 clawed but extremely shortened); hindfoot with four digits only; checkteeth rooted; external form heavy, terrestrial-fossorial (bullae not muchinflated, paroceipital process lengthened to a degree, and standing apart from bullae; zygoma much broadened, jugal nearly reaching lachrymal). (Slooulder-blade differing from American gencra ('lullberg).) 'Subfamily Thryonomyinae
(Thryonomys)
Skull much less heavily ridged for muscle attachment; incisors not three-grooved (plain except in Carterodon); forefoot always with four and hindfoot always with five functional digits; jugal usually complex, with upwardly or downwardly projecting process present on posterior border, and normally not approaching lachrymal.

Cheekteeth extremely broadened, the re-entrant folds deep and persistent, the teeth rooted; palate with a tendency towards anterior constriction; paroccipital processes tunding to stand apart from bullac in larger species, or curved forwards under them in smaller forms; tendency present towards considerable elongation of middle digits of forcfoot and hindfoot; (fur not spiny). Subfamily Dactyonayinae
(Thinacodrs, Dactylomys, Kamabatcomys)
Cheekteeth not spectally hrowdened; no tendency present towards any lengthening of the digits.
Checkteeth evergrowing, the folds filled up with cement, the teeth thaterowned; fur not developing spines; paroccipital processes usually standing apart from the bullace (not always) palate slightly constricted anteriorly; form usually not rat-like (modified for arhoreal or terrestrial life). Suhfamily (Aapromyinie (Procapromss (not seen), Capromss, (icocaproms)
(Checktecth ronted, the folds normally isolating as narrow islands in adndt, or rarely (Echimys and allies) more persistent, the dental pattern more complex, or in extreme derelopment becoming a series of bamserse plates. Extermal form usually rat-like; modified for arboreal, terrestrial, or slightly for fossorial bife; a tendeney present for the fur to be spiny; paroccipital
processes curved forwards under the bullae, which are large but not abnormally so, exeepting (\%omys; palate not constricted anteriorly:

Subfamily Echimyinae
(Echimys, Isothrix, Diplomys: Procchmys, Hoptomys, Euryzuomatomys, Clyomys, Cartorodon, C'rcomys, Mesomys, Lonchothix)

Subfamily ECIIIMYINAE

Geographical Distribution.-Neotropical region from Nicaragua south to Paraguay and South Brazil.

Number of Genera.-Eleven.

Characters.- Cheekteeth ruoted, not specially broadened, flatcrowned with inner and outer re-entrant folds which become isolated on crown surface with wear; or with a heavier dentition, more comples, and tending to hecome a series of transverse plates (Echimys, Isothrix, Diplomys). Bullae prominent; paroccipital processes curved forward under the bullae. Skull with broad frontals, little or not constricted. Externally more or less rat-like; a tendency present for development of spiny covering, which is in rare cases strongly developed.

Compared with the Capromyinae, the cheekteeth are brachyodont and rooted, and of a less simple general appearance, the pattern changing during the animal's life; compared with the Dactylomyinae, there is no broadening of the cheekteeth, which never show traces of the almost prismatic pattern peculiar to Dactylomyinae; and nu digit elongation takes place; compared with the Myoeastorinae, cheekteeth more brachyodont, and pattern not long maintained; also externally not modified for aquatic life ; skull much less heavily ridged, size smaller, form much less heavy, and paroccipital processes not lengthened; compared with Thryonomyinae, skull much less heavily ridged; forefoot with four and hinelfoot with five clearly developed digits.

In the remainder of the subfamilies the checkteeth are more simplified.
There seems in this group a tendency for the tail to be lost during life, paralleled by the Old Work porcupine Trichys; in the case of Trichys it is suggested that the males may bite off the tail of the female when courting; but whether this might apply to this group is not known.

The subfamily contains two sections, in one of which the teeth are much heavier, more complex, the folds usually not isolating as islands; in extreme development the tecth become a series of transserse phates. The genera contained in this section have the feet modified for arboreal life.

Echants is the main genus, with five or more rather well-defined specific groups, and a wide range in South America; a species, E. armatus, is said to occur in the Lesser Antilles (Martimque). The fur may be strongly spinous, or weakly so): Isothrix appears to he indistinguishable cranially or dentally from Echimys, but has soft fur, and a bushy tail; Diplomis is a (chiefly) Central American
genus in which both lower and upper molars are a series of transverse plates, though in a section of Echimys the upper molars are already so, so that Diplomys is not widely separated from Eichimes.

The simpler-toothed branch of the subfamily, in which the dentition is lighter, and the folds isolate as islands in the adult, contains eight genera; l'roecumis is much the most widely distributed, having a range coincident with with that of the subfamily, and very many named forms; this genus has spiny fur in adult, though not highly developed, and is terrestrial; Hoploay's stands near Proechimys, but the spiny covering is very much more developed, and the cheekteeth are more complex; the genus ranges from Nicaragua to Ecuador. Euryzygomatontis is like Proechimys, but is more modified for fossorial life (though not highly so); the tail is strongly reduced; the cheekteeth are more simplified than in normal Proechimys, and the skull is less ridged posteriorly, but the zygoma is greatly broadened. Clyontys is near Euryzygomatomys, but alone in the group has ahnormally inflated bullae. Carterodos is not unlike the last two named in cranial characters, but has deeply grooved incisors (unique in the subfamily), and softer fur. 'These three genera are rare and have a restricted range in Brazil, the last two being very little known. Cercomys agrees with the last named in essential cranial and dental characters, but is not in any way modified for fossorial life; the tail is long and fully haired, the fur soft. Mesomys is an arboreal type ranging across the tropical portions of northern South America; the fur is densely spiny, the teeth are of the Proechimys type. Finally Lonchothris, rare and little known, is much like Mesomys externally except for the heasily tufted tail, but dentally differs from all in the considerable width of the re-entrant folds of the molars.

Key to the Genera of Echimyinae

Checkteeth lighter, with narrow folds, which typically become isolated as islands in adult; the teeth never tending to become a series of transverse plates.
The hindfeet broadened, noticeably modified for arboreal life. (Fur densely spiny; D. 5 himdfoot relatively long; tail long, usually longer than head and body.)
Cheekteeth with strong wide folds; tail conspicuously tufted terminally.

Lonchothrix
Cleekteeth with weaker narrower folds; tail not or scarcely tufted terminally. Nesoatrs
The hindfect narrow, long, terrestrial in type. (D. 5 hindfoot relatively short; tail in general shorter than head and body.)
Jugal thickened anteriorly; zygomatic region noticeably broadened, Tail strongly reduced.
Upper incisors grooved; fur soft; foreclaws less enlarged. Carterodon
Upper incisors plain; fur bristly: foreclaws to a greater or lesser degree enlarged.

Bullae abnormally inflated.
Clyonys
Bullae moderate.
Euryzygomatomys
Jugal not or rarely thickened anteriorly, zygomatic region narrower.
Tail not strongly reduced. (Upper incisors plain; hullae never abnormally inflated.)
Fur soft; tail well haired; palatal foramina broadened; folds of cheekteeth tend less to isolate.

Cercomys
Fur spiny; tail poorly haired; palatal foramina not noticeably broadened; folds of cheekteeth tend to isolate to a greater degree.
Modification of hair into spines at highest development; cheekteeth more complex, outer side of upper cheektecth with clear traces of four folds. \quad loplomys
Modification of hair into spines much less developed; cheektecth relatively simpler, outer side of upper cheekteeth with clear trace of three folds or less. Proechimys
Cheekteeth heavier, with more persistent folds, the general effect complex;
the folds isolating late, or not isolating; or cheekteeth tending to
become a series of transwerse plates. (Feet adapted for arboreal life.)
The lower molars a series of transverse plates, as well as the upper series.

Diplonys
The lower molars not becoming specialized into a series of transverse
plates; (the upper cheektecth may or may not be so).
Fur bristly or spiny; tail not bushy. Echimys
Fur soft; tail bushy,

Genus 1. ECIIMMSS, Cuvier

1811. Lonchfres, Mliger, Prodr. Syst, Mamm. et Arium, p. Do. (Myovus chrysums, Zmmermann).
1837. Nelonve, Cuvier, Ann. Sci. Nat. Paris, 2, V111. N. 370. (Nelomysblamzillei, Cuvier). 18+1. I'hyllomys, Lund, Afh. K. Danske Vid. Selsk, f, VIII, p. 2+3. (Phyllomys brazilionsis, Waterhouse.)
1840. Echinomis, Waguer, Abh. Jayer. Akad. 3, p. 203. (Emendation of Echimys.)

Type Species.-Myowns chrysurus, Zimmermann.
Range.-Neotropical; Colombia, Eecuador, l'eru, houthern Brazil, Eastern Brazil, Amazon region, the Guianas, Venezucla. E. armatus is recorded from Martinichac, Lesser Antilles.

Numbrr of Forms.- 'Tinenty-two are named.
Characters.-Skull with hroad frontals, and as a rule well marked supraorbital ridges; in larger species the parietals are well ridged. Infraurbital foramen with no canal for transmission of nerve. Bullae prominent, the paroccipitals curved forward under them. Palate varying in width in
different species, but tends to he narrow. Palatal foramina normally short. Zygoma relatively broad, the jugat usually with process both above and below on posterior border. Mandible well twisted and ridged.

Cheekteeth complex; apparently usually there are two outer and two inner folds in the upper series, and there is a strong tendency for these teeth to be divided into a series of transverse plates. 'They are completely so in some Southern Brazilian types as medius, thomasi, lamarum, dasythrix, etc., for which Thomas revived the generic name Velomys. T'ate synonymizes this with Echimy; some of the northern speeies come so near this formation that I do not think the name can be used. The lower cheekteeth are characterized by one outer and two inner folds, except the premolar, a complex tooth with three or sometimes four inner folds; the folds of the lower teeth are usually rather well open.

Externally, the feet are broad and modified for arboreal life, with D. 5 relatively long, and claws prominent; the fur is always spiny, though the spines vary in their development in different groups, being in some very strong, in others relatively weak. The length of the tail is little shorter than head and body to longer than this measurement; it may be well haired or nearly naked.

Not very much material of this interesting genus is available for examination, but the forms seen seem to divide sharply and easily into five main groups. These groups should be regarded, however, as provisional, as it may be with more material that some of the characters would not be constant.

The blamaillei group as here understood is equivalent to part of the genus Nelomys of 'lhomas; containing species in which the upper molars are apparently completely specialized into transverse plates; the tail is longer than the head and body, and is more or less completely haired; blainzillei has the spines strongly developed in the one skin seen; medur has the spines weakly developed; thomasi is like medius but much larger (hindfoot 45 as against about 38 or less in allies). E. braziliensis is listed as "hairy-tailed" by 'late, and is provisionally ineluded here, as it was based on the genus "Phyllomys" which is considered ly ' Thomas synonymous with Kelomy's.

The dasithrix group contains the rest of the genus Nelomus of Thomas; it is closely allied to the last, and from the same area (Southern Brazil), but the tail appears to be not longer than the head and body, and is naked. The spines are strong. It may he that blainzillei might be considered an intemediate form between these two groups.

The armatus groups contains forms in which the upper teeth are normally not separated into transwerse plates; the tail is naked, or in punctatus rather intermediate between the "hairy-taiked" and "naked-tailed" types. "the spines are strong, well developed. L. currikeri, not seen, appears to stand near punctatus from the description; longirostris is stated to be near armatus, as is obscura, according to 'late. I can see no specific difference between armatus and accosius, and treat the latter as a sumpecies. E. flazidus is described as an insular form of punctatus.
'The chrisurus group contains wo striking forms; the tail is longer than the head and boty, coloured white from ahout half its length or more to the
end; a white headspot present; spiny covering strong to cxtreme (at maximum for the genus). The tail is well haired; the dentition agrees with armatus.

Fig. S. Echiniys armates armates, Geoffroy:
B.AI. No. 3.4.5.40, 平; $1 \frac{1}{2}$

Fig. 9. Echimis armatus armatus, Genffroy.

$$
\text { IB.M. No. 3.4.5.40, 7; } 1 \frac{1}{2} \text {. }
$$

E. saturnus, a giant species (hindfoot 5 1), was thought by 'Thomas to be near the above group; it is evidently known by one skin only. I am inclined for now to refer it to the grandis group (below), on account of the much less development
of the spiny covering, which is relatively weak. 'I'here is no white headspot. The tail is only white at the extreme tip. With a larger series it may be that saturmus could be shown to belong to the chrysurus group, but with the limited material at present at hand there is no doubt that it is very different from that group. ('lhe tail is long and fully haired.)
'The grandis group contains western forms with tail sub-equal to or shorter than head and boly, not white terminally, and well haired. Spiny covering weak or weak-medium. E. grandis is a very large form (hindfoot 53); dentition usually as in armatus group.

Fig. io. Echinis armaty's armates, Geoffroy.
Checkeeth: a, upper; b, lower. B...ו. No. 3.4.5-4, 7; $\times 7$.
'The spines may vary through the animall's life, and be an age character throughout this family, within closely related species; but I do not think there is any question of such a diffurence hetween groups listed here as "strongspined" or "weak-spincd." In adult grandis, for instance, the spines are very weak; in adult chrosurus abnormally strong.

Other species not represented at the British . Museum I am unable to altocate to groups.

Forms seen ; armatus, Waincillei, braziliensis, chrysurns, dasythrix, " guianae," grandis, lamarum, medius, occasius, paleacea, punctatus, rhipidurus, saturmes, thomast.
Lhet of Nimed Formi
('lhe references and type tocalities for all members of the famity Echimvidae have been collected for me by Mr. (; W゙. C. Holt.)

Not sech and not allocated to groups

1838. Revue Zoul. 1, p. 101.

New Ciremada, Colombia.
2. ICHIDIYS NACRLRA, Wagner
1842. Archiv. für. Naturg. 1, p. 360.
lorba, Ru Madeira, Mrazil.
3. ECHDMYG V N(OOLOR, Wagner 1842. Archiv. für. Naturg. 1, P. 361.

Brazil.
4. I:CIIIMYS NIGRISPINA, Wagner
18.42. Archiv. für. Nature. 1, p. 361.

Ypanema, Silo Paulo, Brazil.

dasythrix Group

1872. Abh. Akad. Merlin, p. 49.

Rıo Grande do Sul, Brazil.
6. ECllliyis I AXAARIS, Thoman
1916. Ann. Mag. Nat. Hist \&, XVIll, p. 297.

Lanarao. Babaa, Brazıl.

blainzillei Group

1837. Ann. Scı. Nat Paris, 2, V1ll, p. 371.
simall Island near Bahoa, lirazal.

rgog. Anm. Mar Nat. Hist, S', IV, p. 234.
Ruca Nowa, Parana, 1srazul.

1897. Revista Paulista, in, p. 17r.
lslanel of Situ Sebastian, near ISaha, IBrazil.

$1848 . N$ Nat. Hist. Namm, 11. p. 330.
Lagoa Santa, Mmas (ieraes, Brazil.

amatws Group

1838. Revac Zarloggyue, 1, P. 101.

Casemme, lirench (iviana.
Syonym: quantuc, 'Ihomas, 1888, Ann. Mag. Niat. I Iist. 6, It, p. 326. British Ciulana.
astancur, Allen \& Chapman, isy3, Buhl. Amer. Mus. N. H.
V. P. 2ュ2. I'rancetown, 'Trindad.

[^4]
1921. Amer. Mus. Nov. no. 19, p. 5.

Ľartabo, Brıtish Guiana.
14. EClHM1S obsceURA, Wagner

18\&0. Abh. Akad. Wiss. Münch. iii, p. 196.
Brazil.
15. ECHMNY' PENCTATLS, Thomas
1899. Ann. Mag. Nat. Hist. 7, III, p. 153.

Caicara, R1o Ormoco, Venezuela.
16. ECMIMAS ILADHCLS, Iollister
1914. I'roc. Biol. Soc. Washington, XXVII, p. 143.

El Valle, Jargarita Island, V'enezuela.
17. ECHILNY'S CARRIKER1 Allen
1911. Bull. Amer. Mus. Nat. Hist. XXX, p. 251.

San Esteban, near Venezuela.
chrysurus Group
18. l:CHINI'S CHRYSURUS, Zimmermann
1780. Geogr. Gesch. ii, p. 352.

Surinam (Dutch Guiana).
Synonym: cristatus, Desmarest, 1817, Nour. Dict. d'Hist. Nat. and ed., X. p. 55.
19. ECHIDIY'S PALEACEA, Hliger

18if. Prodr. Syst. Mamm. et Avium, nom. nud. 1820, Lichtenstein, Abh. Ak. Wis. Berlin, p. 187.

Province of Pará, Brazil.
grandis (iroup
(sathmus section)
20. ECHIMMY SAVLURNUS, Thomas
1928. Ann. Mag. Nat. Hist. 10, II, p. 409.

Ecuador, Rio Napo, Prov, del Oriente.
(typical section)
2r. ECHIDMY GRANDIS, Wagner
1845. Archiv. für Naturg. I, p. 146.

Nanagueri, Upper Amazon, Brazil.
22. ECHIMY'S JRHIPIDURLS, Thomas
1928. Ann. Mag. Nat. Mist. 10, II, p. 291.

Pebas, Rio Marañon, Peru.

Genus 2. ISOTMIRIX, Wagner

1845. Isothixix, Wagner, Archiv, für. Naturg. i, p. It5.
1846. Lasilhomsis, Deville, Rev. Mag. Zool. 2, IV, D. 353. (Lasuromys zillosus, Deville.)
Type Speches.-Isothrix bistriatus, Wagner.
Range.-Venezuela, Brazil and Peru. (South evidently to Matto Grosso.)
Number of Forms.- Eight are named.
s-l, Ming kulenti-l

Characters.-Like Echimys cranially and dentally; (parietals ridged; upper checkteeth not tending to become separated into transverse plates).

Fur soft, showing no tendency to develop bristles or spines. Tail long, bushy, almost Sciurine. Fect of arhoreal type.

Remarks.-In a group of this description where considerable specialization is sometimes present towards modification of fur into spines, I think the difference in the coat between Echims and Isothriw is sufficient for their generic separation.

Forms scen: molliae, negrensis, urinoci, pagurus, pictus, zillosus.
Two groups may be recognized among the material examined, pictus, with its highly specialized black (or dark brown) and white colour pattern, and the rest which are much more sober in coloration.

Mr. 'Tate stated that pictus is an Echimys; but it definitely belongs here according to our specimens; some months ago when he was in London we looked at the species together, and he was in agreement with me on this point.

List of Named Formis pictus Group

ィ. ISOTIRIN PICTUS, Pictet 1841. Notice An. Nouv. Mus. Genève, p. 29. Bahia, Brazil.

bistriatus Group

2. ISOTHRIX BISTRIATU'S BISTRIATUS, Wagner
3. Arch. Naturg. I, p. 146.

Rio Guapore, Brazil.
3. ISOTHRIX BISTRIATU'S ORINOCI, Thomas
1899. Ann. Mag. Nat. Ilist. 7, JV, p. 382.

Maipures, Upper Orinoco, Venezuela.
4. ISOTHRIX BISTRIATUS NEGRENSIS, Thomas
1920. Ann. Mag. Nat. Hist. 9, VI, p. 277.

Acajutuba, Lower Rio Negro, Brazil.
5. ISOTHRIN PACHYLRA, Wagner
1845. Archiv, für Naturg. 1, p. 146.

Cuyaba, Matto (irosso, Brazil.
Synonym: crassicaudus, Wagner, Abh. Akad. Münch., p. 291, i847. Brazil.
6. ISOTHRIX Pafluk Sh, Wagner
1845. Archiv, für Naturg. I, P. 146 .

Borba, Rio Maderra, Brazil.
7. ISOTHRIN VILLAst's Tilloosus, Devalle
1852. Rev. Nag. Zowl. 2, IV, p. 560.

Mission de Sarayaeu, Rio Urubanba, Peru.
8. Isuthrix vhlusit's alolldaE, Thomas 1924. Ann. Mag. Nat, Hist. n, NHII, p. 53+.

Tushemo, Masisea, Rıo Ucayali, Peru.
The "hirsmbes" of Burmeister which has been confused with this genus is a Sigmodon (Cricetinac).

Genus 3. DIPLOMIS', Thomas
1916. Diplonys, 'Thomas, Ann. Mag. Nat. Hist. 8, XVill, p. 240.
'l'ype Spfies.-Loncheres caniceps, Günther.
Range.-Panama and Colombia.
Nlaber of Forms.-Four.
Characters.-In general like Eichimys, but the lower cheekteeth in a serjes of transverse plates as well as the upper teeth. 'There are four laminae in each of the upper teeth; in the lower series there are four in P'. 4 , three in the molars.

Externally, the fur is harsh but not spiny; tail moderately haired, but with the seales visible; feet of arboreal type.

Remaris.-The genus is not well represented in London; I assume the dental characters to be constant.
Forms seen : caniceps, labilis.

> List of Named Formis

1. DIPLOMIS CANICEPS, Gunther
2. Proc. Zool. Soc. London, p. 745.

Medellin, Colombia.
2. DIPLONY: LABILIS, Bangs
1901. Amer. Naturalist, KXXV, p. 638. San Miguel Island, Janama.
3. DIPLOMIS DARLINGI, Goldman
1912. Smiths. Nisc. Coll. LX, no. 2, p. 12.

Marraganti, Rio Tuyra, East Panama.
4. DIPLOMI'S RUFODORSAlIS, Allen
1899. Bull. Amer. Mus. Nat. Hist. Ňll, p. 197.

Onaca, Santa Marta district, Colombia.
Genus 4. PROLECHIMIMS, Allen
1S99. Proechinys, Allen, Bull. Amer. Mus. Nat. Hist., Xll, p. 257.
192r. Trinonys, Thomas, Ann. Mae, Nat. Hist. 9, VIll, p. ito. Proechimys albrspinus, Geoffroy. Valid as a subgenus.
'Type Species.-Echimy's trinitatis, Allen \& Chapman.
Range.-From Nicaragua, Costa Rica and Panama to Colombia, Ecuador, Peru, Bolivia, Southern Brazil, East Brazil, the Amazon region, the Guianas, Venezuela, 'l'rinidad.

Number of Forms. - Approximately fifty are named.
Characters.-Rostrum relatively narrow and pointed; incisors typically opisthodont: supraorbital ridges present and usually well developed; parietals usually ridecd. Canal for transmission of nerse in infraorbital foramen present, weak or absent, never strongly developed. Palatal foramina well open, but not excessive; palate relatively broader as a rule than in Echimys; toothrow rather short, far forward in skull, the pterygnid fossace long. Jueal normally thin, but ridece posteriorly and tending to have a weak
process on posterior lower border; thickend only, so far as seen, in theringi (considerably, but not as extremely as in Eurbygomatoms), to a degree in the subgenus Trinomys, and to a degree in dimidiatus. Bullac largish; paroccipital

Fig. if. Proechimys cayennensis, Desmarest.
IB.M, No. 3-4.5.44, 우: $\because \frac{1}{2}$.

Fig. iz. Promechims catennensis, Desmatest.

processes curved forwards under them, as is usual in the subfamily. Nandible strongly ridged, the angular process clearly lifted outwards, its lower border broad; coronoid process low; angular portion slightly drawn backwards at lower border.

Upper cheekteeth normally with three outer and one inner folds each, these soon becoming isolated as islands. A few species, which will be discussed below, vary slighty in pattern. Lower cheekteeth normally reverse the pattern of the

Fig. 13. Proechimys cayencevisis, Desmarest.
Cheekteeth: a, upper; b, lower. B.M. No. 3.4.5.44, $f ;<8$.
upper series. P. 4 sometimes with extra island anteriorly. Spines always present in adult, but not highly developed, at any rate as compared with such genera as Mesomys and IIoplomys. Tail rather shorter than head and body, naked or moderately haired. Hindfeet long and narrow, the outer digits shorter than the central three, hallux shorter than D.5; forefoot not abnormal, pollex rudimentary.

Trinomys was erected as a subgenus for the species albispinus and setosus, on the ground mainly that the folds of the cheekteeth are in these species reduced from three (external) to two. (One skull seen in which the teeth are cutting has a normal P.q, however). 'The checktceth may vary slightly elsewhere in the genus; P. racillator has it appears M. 2 and $\mathbf{~ I} .3$ as Trinomys; the type of l^{\prime}. dimidiatus appears to be going the same way, though rather worn. One skull seen of P. canicollis seems also to be transitionary towards the Trinomys type. It should also be noted that I^{\prime}. iheringi seems not quite normal dentally; the teeth in this case appearing a little more comples than usual.

PROECHIMYS

Other characters of Trinomys are cranial, "shorter muzzle, less developed supraorbital ridges, and orthodont or sliglatly pro-odont incisors." Also the spiny covering seems to be much more developed than in the other species.

Forms seen: albispinns, bolizianus, brezicauda, calidior, cavennensis, canicollis, centralis, cherriei, chirigumus, chrysuoolus, colombiamus, decumamus, dimidiatus, gocldii, gorgonae, suiarae, gularis, hendeei, hilda, ihesingi, longicandatus, mincae, oris, pachita, panamensis, rattimus, voberti, rosa, securus, semispinosus, setosus, sertomius, simonsi, trinitatis, arichi, z'acillator, zuarreni.

Of the fifty named forms of this gemus, twelve have not been seen.
Nost of the remainder are standing at the present day as "distinct species." A very large number, however, seem to conform to one essential type, so that ncither in external nor cranial characters, so far as I can see, are they more than racially distinct.
P. coyennensis, Desmarest, 18_{17}, is the oldest name for this type of SpinyRat. It is true that Tomes has pointed out characters by which his semispinosus may be distinguished from cayenemsis; but these seem to me to be relatively unimportant subspecific characters. All forms occurring north of Panama are at present regarded as races of semispinosus.

The type and a large or moderate series of skins have been examined in
 pachita, hilda, bolizitmus, securus, oris and roberti, and a moderate or large series of skins of mincae, guiarue, trinitatis, urichi, gorgonae, longicaudatus, and goeldii. Not one of the above names seem to me to be retainable as full species.

There are slight colour variations present; there are quite noticeable size variations (but the smallest connected with the largest by intermediate forms); there are variations in the length of the tail, though in animats of this kind, which frequently lose the tail during life, this seems to be a character to which tor much attention should not be paid.

1 propose provisionally to treat all the above-mentioned forms, and semispinosus and its races, as subspecies of coyenmensis. Should this prove in any case incorrect, it may be noted that numbers 14 to 20 are regarded now as semispinosus and its races, and numbers 21 to to as "distinct species."
P^{\prime}. zacillator is kept separate on account of the dental characters noticed above, though it must be admitted that on external characters atone it would certainly be regarded as a race of cayennensis. P. cambollis differs in colour from the above; hendeei and rattinus are darker than usual, and with rather weak spines; 'lhomas regarded these as forming a section of the genus; they are accordingly kept apart as species. P. ihering is kept apart as a group on account of the characters of the zygoma. P. dimidiatus, of which one skull only has been seen, might befong to that group, or to the typical one; until more specimens come to hand the question must remain open. P. alhispims differs from the only other species referred to the subgenus Trinomys in colour, so far as seen.

The forms bere referred as races to cavemensis are mostly supposed by Thomas to be "species" on tribling skull characters, such as the absence of the parietal ridges (age character ?), the length of patatal foramina, " narrow muzzle," ete.

> List of Named Forms
> Subgenus Proechimy', Allen
> Not seen, and not allocuted to group.

1. PROECHIMYS OCHRACEUS, Osgood
2. Field Mus. Pub. Zool. Ser. X, p. 56.

El Panorama, Rio Aurare, Zulia, Venezuela.
2. PROECHIMIS MACROLRU'S, Jentink
1879. Notes Leyden Mus. 1, note 23, p. 97.

Surinam.
3. PROECHIMYS O'CONNELLI, Allen
1913. Bull. Amer. Mus. Nat. Hist. XXXII, p. 479. Villavicencio, Colombia.
4. PROECHIMIYS POLIOPUS, Osgood 1914. Field Mus. Nat. Hist. Zool. ser. X゙, p. 141. San Juan de Colon, Tachira, Venezuela.
5. Proechinys steerei, Goldman
1911. Proc. Biol. Soc. Washington, XXIV, p. 238. Hyutanaham, Rio Purus, Brazil.
6. PROECHINYS KERMHTi, Allen
1915. Bull. Amer. Mus. Nat. Hist. XXXIV, p. 629. Lower Solimões, Brazil.
7. PROECHIMYS BOIMENSIS, Allen
1916. Bull. Amer. Mus. Nat. Hist. XXXV, p. 523. Boim, Rio Tapajoz, Brazil.
8. PROECHINY'S ELEGANS, Lund
1841. Afh. K. Danske Vid. Selsk, 4, VIII, p. $2+5$. Lagoa Santa, Minas Geraes, Brazil.
9. PROECHAMY LEUCOMYSTAX, Ribeiro
1914. Comm. Linhas. Telegr. Annex. 5, p. 43. Utiarity, Rio Papagaio, Matto Grosso, Brazil.
to. PROECHIMIS MYOSUROS, Lichtenstein
1820. Abh. Akad. Wiss. Berlin (:818-1819), p. 192. Bahia, Brazil.
1i. PROECHIMY'S LEPTOSOMA, Brants
1827. Muizen, p. 150.

Bahia and São Paulo, Brazil. Synonym: cinnamomeus, Lichtenstein, 1830 , Darstellung, pl. 36, fig. 2.
12. PROECHIMYS FUliginoste, Wagner
1842. Schreher Säug. Suppl. III, p. 343 . Brazil.

From the descriptions, ochraceus (no. 1), o'comnelli (no. 3), stcerei (no. s), kermiti (no. 6), appear near cavennensis or perhaps races; poliopus (no. 4) is probably distinct, boimonsis (no. 7), is clearly distinct from others, and macrowns (no. 2), is described as a form with an unusually long tail (head and body 221 , tail 320).

cayennensis Group

```
13．PROECHHNYS CAYENNENSIS CAYENNENSIS，Desmarest 1817．Nouv，Dict．d＇Hist．Nat．2d Ed．S，p． 59. Guiana．
14．PROECHHMYS CAYFNNENSLS SENHSPlNOSLS，Tomes 1860．Proc．Zool．Soc．London，p． 265. Gualaquiza，Eastern Ecuador．
15．PROECHIMY＇S CAYEズNEズミls BLRRLTS，Bangs 1901．Anser Naturalist，SXXV，p． 640. San Migue！1sland，Panama．
16．PROECHINIS CAYY VNENSIS CEN1RALIS，Thomas 1896．Ann．Mag．Nat．Hist．6，XVIll，p． 312. San Emolio，Lake Nicaragua，Nicaragua．
17．PRUECHINIS CAY゙ENNLX゙SJS PANANENSIS，Thomas 1900．Ann．Mag．Nat． 11 lst .7, V，p． 220. City of Panama，Panama． Synonym：contralis chiriquinus，Thomas，1900，Ann．Mag．Nat．llist． 7,
```

V，p．220．Bogava，Chariqui，Panama．
I8．PROECHINEY CAYENXENSIS RLBELLLS，Hollister 1914．Proc．Biol．Soc．Washington，XXVII，p． 57. Angostura Valley，Costa Rica．
19．PROECH11NYS CAYLNNENSIS COLOMBLANLS，＇Thomas 1914．Ann．Mag．Nat，Hist，S，XIV，p． 60.

Condoto，Choco，Western Colombia，
20．PROECHINLY CDAENNENSIS CDAIJDJOR，Thomas 1911．Ann．Mag．Nat．Hist．S，VIll，p． 254. San Javter，Lower Rio Cachavi，Ecuador．
21．PROECHIMYS CAYENNENSIS CHRYSAEOLUS，Thomas 1898. Ann．Nag．Nat．Hist．7，1，p．244． Muzo，north of Bogota，Colombia．
22．PROECHINYS CAYENNEXSIS MHNCAE，Allen I899．Bull．Amer．Nus．Nat．Hist．Xill，p． 198. Minca，Santa Narta district，Colombia．
23．PROECHINHG CAYENNENSIS GORGONAE，Bangs 1905．Bull．Nus．Comp．Zool．Harvard，f6，p． 89. Gorgona Island，Colombia．
24．PROECHINHS CAYENXENSIS DECLYNANL＇S，Thomas 1899．Ann．Mag．Nat Hist．7．1V，p． 282. Chongon，Prov．Guayas，Ecuador．
25．PROECHINHS CAYENNENSIS ROSA，＇Ihomas 1900．Ann．Mag．Nat．Hist．7．V，p． 219. Santa Rosa，Gouth－west Ecuador．
26 PROECHINHY（AYENNEN゙SLE GLLARIS，Thomas ini i，Ann．Mag．Nat．Hist．8，Vlll，p． 253. Canelos，Rı Bobomaza，Eeuador．
27．PROACHHNY＇CAYENNEABIS BREVICAUDA，Gunther 1876，Proc．Zool．Soc．I andon，p． 748 ． Chamacuros，IIuallaga River．Puru．

28．PROJCIHNYS CAYENNENSIS SJXION゙SI，Thomas 1900．Amn．Nag．Nat．Jist．7，Vl，p． 300. Perene River，Prov．Junin，Peru．
29．PROECHIMIS CAYENNENGIG PACHITTA，Thomas 1923．Ann．Nag．Nat．Hist．9，X II，p．694． P＇uerto Leguia，Rio Pachita，Peru．
30．PROECHINMS CAYENNENSIS HILDA，Thomas 1924．Ann．Nag．Nat．Hist．9，XIII，p． 534. San Lorenzo，Rio Narañon，Peru．
32．PROECIHMYS CAYENNEN゙SIS BOIJMANUS，Thomas 1901．Ann．Mag．Nat．Hist．7，VIII，p． 537. Mapiri，Upper Rio Beni，Bulivia．
32．PROECHIMYS CAYENNEN゙SIS SJCLRUS．Thomas 1902．Ann．Mag．Nat．Hist．7，IX，p．j fo． Charuplaya，Securé River，Bolivia．
33．PROECHIJMY゙S CAYEべ入ENSIS WARREN1，Thomas 1905．Ann．Mag．Nat．Hist．7，XVI，p． 312. Comaccka，Demerara River，British Guiana．
34．PROECHHMY CAYENNENSIS GLAIRAE，Thomas 1901．I＇roc．Biol．Soc．Washington，XIV，p． 27. La Guaira，Venezuela．
35．PROECHIAY＇S CAYENNENRSI LRICHI，Allen 899．Bull．Amer．Nus．Nat．Hist，KII，p． 199. Quebrada Scca，Prov．Sucre，Venezuela．
36．PIROECHIMYS CAYENNENSIS CHERRIEJ，Thomas 1899．Ann．Mag．Nat．Hist． 7, IV，p． 381. Munduapo，Upper River Orinoco，Venezuela．
37．PROECHINYS CAYENNENSIS TRINITATIS，Allen \＆Chapman 1893．Bull，Amer．Nus．Nat．Hist，V，p． 223. Princestown，Trinidad．
38．PROECHIMYS CAYENNENSIS GOELDII，Thomas 1905．Ann．Nag．Nat．Ilist．7，NV，p． 587. Santarem，Rio Tapajoz，Brazil．
39．PROECHINIS CAYLNXENSIS ORIS，Thomas 1904．Ann．Mag．Nat．Hist．7，XIV．p． 195. Igarapé－Assu，near Pari，Brazil．
40．PROECHHAY＇S CAYENNEN゙タls ROBERTH．Thomas 1901．Ann．Mag．Nat．Mist．7，VIll，p． 53. R1o Jordão，Araguary district，Minas Geraes，Brazil．
 1830．Naturg．Säug，Paraguay，p． 236. North of Paraguay，Narto Grosso，Brazil．
42．PJROECHIIMY＇S VAC＇HANA＂OR，＇Thomas
1903．Ann．Mag．Nat．Jist．7，XI，p． 490. K゙anuku Mountans，Mritish Guiana．
43．PROECHINMY゙ HENDEEI，Thomas 1926．Ann．Mag．Nat．Hist，9，SVIIII，P． 162. Pueo Tambo， 50 miles cast of Chachapoyas，Peru．

4 4 PROIECIHMIYS RATTINL'S, Thomas
1926. Ann. Mag. Nat. Hist. 9, KVIII, p. ı64.
'I'ushemo, Masisea, Rio Ucayali, Peru.
45. PROECHIMYS CANICOLLIS, Allen
1890. Bull. Anver. Mus, Nat. IIst. XII, p. 200.

Bonda, Santa Marta district, Colombia.
4b. IRROECHIMY' DIMHDLATCS, Gunther
1876. Proc. Zool. Soc. London, p. 747.

South Brazil.

iheringi Group

47. PROECIIINIS's IIIERINGI, Thomas
48. Ann. Mag. Nat. Hist. S, V111, p. 252.

Island of São Sebastiao, Sio Paulo, Brazil.
Subgenus Trinomy's, 'Thomas
48. PROLCLIINYS ALBISPINUS ALBISPINUS, Geoffroy 1838. Ann. Sci. Nat. X, p. 125.
llha de Deos, near Bahia, Brazil.
49. PROECIIMY'S ALBISPINUS SERTONIUS, Thomas
1921. Ann. Mag. Nat. Hist. 9, Vlll, p. 142.

Lamarão, Bahia, Brazil.
50. PROECHIMIS SETOSUS, Geoffroy

18ı7. Desmarest, Nouv. Dict. d'Mist. Nat. X, p. 59. Brazil.

The anomalus of Kuhl, i820, Beitr. Zool., p. 17, is, according to Tate, based on Heteromys anomalus, 'Thompson.

Genus 5. IlOPLOMYS, Allen
1908. Hoplomys, Allen, Bull. Amer. Mus. Nat. Hist. NXIV, p. 649.

Type Species.-Iloplomy's truei, Allen.
Range.-Known from Nicaragua, Panama and Ecuador.
Number of Forms.-Three.
Characters.-Skull much like Prochimys; bullae appear a little smaller. Cheekteeth with four (at least) outer folds in the upper series, longer than Prochimys, placed more obliquely, but isolating in the same way, the folds stretching further across the tooth, and sometimes tending to divide up more when isolated. Lower molars reversing the pattern of the upper series. Frontals and parictals strongly ridged.

Feet as Prochimy's; spines much more developed, at maximum for the family, more or less concealing the fur, coarse and strong. Tail shorter than head and hody, scaly, naked. Size about largest of subfamily (truei: head and hody 380 mm .).

Furms seen: givmmurns.

According to Goldman (Smitlis, Misc. Coll., LXIX, no. 5, p. 124, 1920) all forms may be regarded as races of the oldest name, gymmurus.

list of Named Forms

\author{

1. HOPI,OMY'S GYMNURL'S GYMNLRLS, Thomas
 1897. Ann. Mar. Nat. Hist. 6, XX, p. 550.
 Cachavi, North licuador.
 2. HOPLOAIYS GYMNURUS GUJTHALSL, Goldman
 1912. Smiths. Misc. Coll. LVI, no. 36, p. 10.
 Rio Indio, near Gatun, Canal Zone, Panama.
 3. 1[OPLOMYS GYMNLTRUS TRUEI, Allen
 1908. Bull. Amer. Mus, Nat. I Iist. XXIV, p. 650. Lavala, Matagalpa, Nicaragua.
 \section*{Genus 6. CERCOMYS, Curier}
}

18z9. Cercomys, Cuvier, Hist. Nat. Nammalia, iii, pl. 60.
1881. Thrichonys, Trouessart, Cat. Mamm. Bull. Soc. Etudes Sci. Angers, p. iz9. (Nelomys antricola, Lund).
'IYpe Species.-Cercomys cunicularius, Cuvier.
Range.-East Brazil (Pernambuco) southwards(?); known also from Bahia, Lagoa Santa and Paraguay.
Number of Forms.-Four.
Characters. - Skull broad, rather less heavily ridged than Proechimys and Hoplomys, braincase appearing rather broader, and parietals not or scarcely ridged. Jugal not thickened anteriorly, zygoma narrow, and usually with weak process on lower posterior horder. Infraorbital foramen with separate canal for nerve transmission. Bullae large. Upper cheektecth with two outer folds and one inner one, the folds usually clear and straight, not tending to isolate so completely as in Hoplomys and Proechimys. Lower cheekteeth reversing the pattern of the upper series; P.toften with a small extra inner fold.

Palatal foramina usually abnormally broadened.
Externally with soft fur, showing no signs of developing bristles; tail slightly shorter than head and body, thickly haired. leet essentially as Proechimys.

Remarks.-This genus has in the past been compared with Dactyloms and Mrocastor; but from the dental characters and the characters of the feet I am convinced that it has nothing to do with these genera, but seems to bear very nearly the same relationship to Prochimys that Isothrix does to Echimss, namely a hairy-tailed soft-furred representative. A paper has heen published (Boker, 1929, Verh. Anat. Ges. Jena, XXXVIII, P. I9) on the bipedal leaping adaptations of a caprivity specimen of this genus.

Forms seen: laurentur, fosteri, apereodes.

I am convincel that all the three forms seen are not more than racially distinet from each other, though the first two were deseribed as species.

Thomas states (Proc. Biol. Soc. Washington, Iorz, XXV, p. 115) that aperoodes is symonymous with the earlier deseribed cunicularius.

Aceording to 'Thomas there are four mammae (luurentins).

```
                    List of Named Forms
    I. CERCONIYS CUNICLLARILS CUN゙1CLILARLLTS, Cuvier
1829. Hist. Nat, Namm, 1ii, fig. 276.
                            "Capitanerie des Nines," Brazil.
                            Synonym: apereoides, Lund, 1841, Afh. K. Danske Vidensk Selsk 4,
                            VIII, p. 9S. Lagoa Santa, Minas Geraes, Brazil.
                            antricola, I_und, i84I, Afh. K. Danske Vidensk Selsk 4,
                                    VIIJ, p. 242. Brazil.
    2. CERCONIYS CINICULARILS LAL'REN'INL'S, 'Thomas
1004. Ann. Nag. Nat. Hist. 7, Sll, p. 254.
            Sâo Lourenço, near P'emambuco, Brazil.
    3. CERCONIY'S CLNLCLLARILS FOSTERI, Thomas
1903. Ann. Mag.Nat. Hist. 7, K1, p. 227.
            Sapucay, Paraguay.
    4. (ERCOMIY' INERNIIS, Pictet. (Not seen)
18&j. Notice An. Nouv. Nus. Genève, ii, p. }33
            Bahia, Mrazil.
```

> Genus 7. EURYZYGOAIATOAYS, Goeldi
1901. Euryzygomatomys, Goeldi, Bol. Mus. Paraense, III, p. 179.

Type Species.-Echimys spinosus, Rengger. (See 'late, i935, Taxonomy of Neotropical IIystricoid Rodents).
Range.-"Probably throughout the pampas country of Paraguay, northern Corrientes, Paraná, Santa Catharina and Rio Grande do Sol" (Tate).

Number of Foras.-'Ihree are named.
Characters.-Skull broad, with poorly marked supraorbital ridges, relatively broad rostrum, prominent bullae (these not excessively inflated). I'alate narrow and rather short; palatal foramina short and broad. Infraorbital foramen with a separate canal for nerve transmission. Jugal long, greatly thickened anteriorly, but with posterior projecting process not well marked; the zygoma more robust than in the genera dealt with above. Mandible heavily ridged and twisted; coronoid higher than in Proechimys. Upper cheekteeth with two outer, one imner folds, beenming isolated as islands with wear; general effect nearer Cercomys than I'occhimps. Lower teeth with this pattern reversed.

Fur bristly, spines about as well developed as in the less spiny members of Proechimys, or feerhaps less si. Feet narrow, essentially of Proechimy's type;
claws of forcfoot slightly clongated. 'I'ail strongly reduced, not much longer than hindfoot, well haired.

Forms seem: spinosus, ratellus.
I do not think that the above two forms are more than racially distinet from cach other.

List of Nanjel loorms

1. HLRYZYGOMATOMIS SPINOSL'S SPINOSUS, Desmarest 1817. Nouv. Dict. D'Hist. Nat. 2d Ed. K., p. 57.

Atira, 8 leagues cast of Asuncion, Paraguay.
Synonym: brachyurus, Wagner, 1843, Schreber Säug. Suppl. iii, p. 346. Brazil.
rufa, Lichtenstein, 1818, Abh. Akad. Berlin, p. 192. Brazil.
2. EURYZYGOMATOMY'S SPINOSUS CATELLUS, Thomas 1916. Ann. Mag. Nat. Hist. S, XVIII, p. 301.

Joinville, Santa Catharina, ISrazil.
3. EURYZYGOMATOMIS GUTARA, Brandt (Not seen)
1835. Nem. Acad. St. Petersb. 6, III, P. 432. Y'paneme, são Paulo, Brazil.
The status of this form appears doubtful ('Tate, Bull. Amer. Mus. Nat. Ilist. LXVIll, p. 405).

Genus 8. CLYOMIYS, Thomas

1916. Clyones, Thomas, Ann. Mag. Nat. Hist. 8, XVIII, p. 300.
'Type Specres.--Echimys laticeps, 'Thomas.
Range.-Described from Joinville, Santa Catharina, Brazil.
Number of Foras.-One.
Characters.-Essentially like Euryzygomatomys in cranial characters except that the bullae are abnormally inflated, very much more so than in other members of this subfamily, a great part visible external to the paroccipitals when viewed from behind. Dental characters of the one skull seen too worn for notes.

Externally like Euryzygomatomys, but foreclaws noticeably more developed.
Forms seen: laticeps.

> List of Named Formis

1. CliOOMIS LATICPES, Lund, 184t, nom. nud., Thomas
2. 'Thomas, Ann. Mag. Nat. 1 list. S, 1V', p. 240.

Joinville, Santa Catharina, Mrazil.
(1841, Jund, nom, nud.. Afh. K. Danske Vid. Siclsk. 4, VIII, p. 99)

Genus 9. CARTERODON, Waterhouse

184S. Carteronon, Waterhouse, Nat. Hist. Mammalia, ii, p. 351.
'Type Spfcies.-Echimy's sulcidens, 1,und.

Ravge.-Brazil (? Lagoa Santa).
Number of Forms.-One.
Characters.-Jugal thickened anteriorly, as in Enryzygomatomys and Clyomys: supraorhital ridges dereloped, and slight interorbital constriction present in the one skull examined. Nasals broad. Bullae prominent, but not extreme. No canal for nerve transmission in the inftaorbital loramen. Alandible heavily twisted. Zygoma with moderate process on posterior lower border. Upper incisors one-grooved. The outer side of these tecth yellow, the inner side white, as remarked by Waterhouse. Lower incisors plain. Upper checkecth with two outer, one inner folds, the enamel surrounding them thick; lower teeth reversing the pattern.

Size relatively small; fur soft, at any rate compared with most of the genera of this group; tail shortened, well haired, evidently not so reduced as in Euryzygomatomys; feet narrow and long, as in Proechimys; claws moderate.

Forms seen : sulcidens.

Last of Named Forms

1. CARTERODON SLLCIDEN゙ゥ, Lund
2. Afh. K. Danske Vid. Selsk, 4, VIII, p. 99.
(Originally described fossil from Lagoa Santa, Brazıl.)
This genus was uriginally described from fossil remains, but subsequently found living.

Genus io. MESONYS, Wagner

1845. Nesomis, Wagner, Arch. für Naturg. i, p. 145.

Type Specirs.-Mesomys ecandatus, Wagner.
Range.-Amazonia; "From the Tocantins River to eastern Peru and Ecuador" ('Tate).

Number of Fordis.-Approximately seven.
Characters.-'This genus was descrihed by 'Thomas as having the skull, ears and feet of Echimss, but the tecth of Procchimys. Skull with short and narrow rostrum, and well marked supraorbital ridges. Frontals tending to be very hroad, parietals not or scarcely ridged. No canal for transmission of nerve in infrarbital foramen. Bullae relatively large; jugal not specially broadened, with weak process on pusterior border both below and sometimes above. Jalatal formina shot: foothom far forward in skull.

Lipper checktecth of Ironchimys type, with narrow folds, usually traces of four external in the upper series, the lower teeth reversing the pattern.

Size small, usually or always under 200 mm . head and body, fur heavily spiny, comparable to that of Hoplomys hindfect very broad, of arboreal type, D. 5 long ; claws promment. 'Tail usially shahtly longer than head and body, scaly, poorly hared except terminally.
loorms seen: fomuincus, hispidus. lemiots,s, spiodus, stimulex.
'The few species admatted are all sery closely allied to each wther.

LIST OF NAMED FORMS

1. MESOMSS HISPIDLCS, Desmarest
2. Nouv. Dict. D'IIist. Nat. 2d. Ed. X, p. 58.
"South America."
Synonym: ecaudatus, Wagner, ${ }^{8}+5$, Arch. für. Naturg. 1, p. 145. Jorba, Rio Madeira, Brazil. (For status see Thomas, Ann. Nag. Nat. IIst. 8, XVIII, p. 298, 1916.)
3. NESOMY゙S FERRUGINEU'S FERRUGINEECS, Günther
4. Iroc. Zool. Soc. London, p. 750.

Chamicuros, Rio Huallaga, Peru.
3. MESOMI'S FERRLGINEL゙S SPICATES, Thomas
1924. Ann. Mag. Nat. Hist. 9, XIII, p. 535.

Tushemo, near Masisea, Rio L'cay̧ali, Peru.
4. MESOMY'S LENICEPS, Thomas
1926. Ann. Mag. Nat. Hist. 9, XVIII, p. 348.
lambrasbamba, Amazonas, Peru.
5. NESONI'S STIMLLAX, Thomas
1911. Ann. Mag. Nat. Hist. 8, VIJ, p. 607.

Cameta, Lower Tocantins, Brazil.
6. NESOMY'S DIDELPHOIDES, Desmarest. (Not seen)
1817. Nouv. Dict. d'Hist, Nat. and Ed. X, p. 58. Probably from Brazil.
7. MESOMY'S OBSCURLS, Wagner. (Not seen)
1840. Abh. Akad. Wiss. Münch. iii, p. 196. Brazil.

Genus ri. LONCIIO'THRIX, Thomas
1920. Lonchothrix, 'Thomas, Ann. Mag. Nat. Hist. 9, VI, p. 113.
'TyPE Species.-Lonchothrix emiliae, Thomas.
Ravge.-Described from Yilla Braga, Rio Tapajoz, Brazil.
Number of Forms.-One.
Cuaracters.-Skull closely similar to that of Mesomys. Cheekteeth compared by Thomas to those of a small Erethizon; upper molars with three outer, one inner folds, these noticeably wide and deep; lower cheekteeth evidently with only two inner folds, one outer in all molars; P. 4 with traces of four folds (three main, one vestigial); the folds wide in the lower series.

Externally the form is striking owing to the heavily tufted tail, which is considerably longer than the head and body, but hairy at the end only, the upper part scaly and covered with short spines. Fore and hindfeet broad, of arboreal type, as in .hesomus. Spines of body very highly developed comparatively, even the helly heing semi-spinous.
little appears to be known of this genus; the teeth do not appear very
typical of this section: I include it here on account of the resemblance to Mesoms in cranial and external characters.
forms seen: emiliae.

> List of Namel Forms

1. LONCHOTHRIX EMILIAE, 'Thomas
2. Ann. Mag. Nat. Hist, 9, VI, p, ily.

Villa Braga, Rio Tapajoz, Brazıl.

Subfamily CAPROMIYINAE

Geographical Distribution--Cuba, Jamaica, Bahama Islands, Swan Island (Gulf of Honduras), and one form named from Venczuela.

Nember of Geners.- As here understood the group contains three genera, of which one is not represented in the British Museum.
Characters.-Not essentially different from the Echimyinae, but cheektecth evergrowing, characterized by two outer, one inner folds in the upper series, the folds in adult completely filled with cement, the teeth flaterowned and changing little or not at all during the animal's life.

Paroccipital processes usually, not always, tending to stand apart from the bullae. Form usually robust, not Rat-like; tail haired, long and prehensile or strongly reduced; habits terrestrial or arboreal.

Key to the Genera of Capromylnae, not including the genus Procapromy's (not seen)
Tail considerably longer than himdfoot; claws more prominent; (habits arboreal). (Tail prehensike, constant?). Capronys
'Tail scarcely longer than hindfout; claws less prominent; (habits terrestrial).

Gfocapromys
Genus 1. CAPROMIS, Desmarest
1822. Capromys, Desmarest, Bull. Soc. Philom. P'aris, p. 185.

Type Spectus.- Caprombs foumieri, Desmarest = Isodon pilorides, Say.
Rangr.-Cuba, including the Iste of Pines.
Nember of Forms.-Six.
Characters.--Skull long and rather that, a pusturbital-like ridge can be present; parietals may be well ridged; jugal with well marked and strong backwardly directed process. Bullae prominent. Paroccipital processes usually slightly lengthencel, and standing apart; in the one skull seen of ('. nama (adult female), the paroccipital processes juin the bullae, about as in Echimyinae.

Infraorbital foramen with no canal for nerve transmission．lalate slightly constricted anteriorly，but less so than in Myocastor or Dactylomys；palatal foramina nectiom．Nandible with angular process drawn backwards，and strongly lifted outwards；condyle high；coronoid process low．Incisors narrow．

Upper cheekteeth as already described；the lower series reverse the pattern of the upper series，the premolar has also a vestigial extra inner fold．

Externally rather large as a rule；fur harsh；feet broad，of arboreal type，or more or less；claws prominent，D． 5 retatively long，hallux medium．A tendency in the few skins examined for D． 4 to he a little longer than D．3．Forefout with four digits well developed，pollex small．＇l＇ail long，haired，said to be prehensile in at least one species，and may be so throughout the genus．

The species of Capromys were revised by Chapman，1g01，Bull．Amer．Mus． N゙at．Ilist．，sol．X゙IV゙，p． 313.

Forms seen：prehensilis，pilorides，melanurus，nana．
C．nama，of which one stull alone is available，seems considerably smaller than the remainder；it was originally described as fossil，but subsequently found living．C．melanurus，of which one specimen only has been seen，has a much more heavily haired tail than the remainder．C．prehensilis and C ．pilorides are distinguishable from each other on length of tail，and the latter is stated to have a much heavier skull．The genus is not very well represented in London．

List of Namel Forms

（＇The references and tepe localities of all Capromyinae are the work of Mr．G．W．C．Iloht．）

1．C：APRONIC＇S PIIORJDES PlIORIDES，sa：
1822．Journ．Acad．Philadelphia，ii，p． 333.
Cuba．
Synonym：fournieri，Desmarest，1822，Nem．Soc．Hist．Nat．1，p． 43 ． Cuba．
？quemi，Fischer．Add．ad Synops．Mamm．1830，p． 380 ．

1911．Bulh．Mus．Comp．Zool．Harbard L＇nis．54，p． 207.
Casas Mountains，Nueva Gerona，Isle of Pines，Cuba．
3．C．APROMIS PREHENSHLAS PREHEXSHALS，Pouppig
1824．Journ．Acad．Philadelphia，4，p．I1．
Wooded parts of Southern Cuba．
Synonym：poeli，Guerm， 1834 ，Nay．Zool．IV，Pl．XV， 5 pp．，and poepfingi，Lesson， $18+2$, Nouv．Tabl．Reen．Anmm．p． 124.
＋CAPRONIS JREHENSILIS GL NDLACHI，Chapman
1901．Bult．Amer．Mus．Nat．Hist．NIV，p． 317.
Nueva Gerona，Isle of Pines．
5．CAPROMI＇S MELANLRTE．Peter
1864．Non．Ber．Akad．Wiss．Berlin，p． 3 Sq． Manzanillo，Cuha． Synonym：pallidus，Jeters， 180 ，Mon．Ber．Akad．Wiss．Marlan．p． $3^{8} 4$. Cuba．
y－lisung Kodent－I I

6. CAPROMY'S NAN゙A, (i. N. Allen
1917. Proc. New England Zool. Club, VI, p. 54.

Sierra de llato Nuevo, Irovince of Natanzas, Cuba.
The "Capromys" elegans of Cabrera, 1901, is a nember of the Murine genus Phlocomys.

Fig. 16. Geocapromys brownif, Fischer. Chereteeth: B.M. No. 1334C.; :

Genus 2. GEOCAPROMI'S, Chapman

1901. Geocapromis, Chapman, Bull. Amer. Mus. Nat. Hist. NW, p. 313.
'Type Species.-Capromys brozon, Fischer.
Ravgr - Jamaica, Swan Island, and the Bahamas.
Number of Forms.-Three.
Cilaracters.-Like Cupromis, hut tail strongly shortened, scarcely longer than hindfoot; feet with less prominent claws, and pollex more reduced (the feet, however, do not seem very different in formation Irom those of Capromss); habits terrestrial. "Dentition and cranium as Capromss, but ascending portion of maxillary arch of zxgoma wider, superior margin of squamosal narrower, and without process, and occipital region lower" (Chapman). I am inclined to doubt the constancy of these cranial characters between the two groups, particularly when C. mona, not known in Chapman's das, is compared. The skull may have a sagittal ridge in adult; it may be that this is
present also in Coprombs，hut not in our small series；the paroccipitats in Geo－ coprombs appear relatively short．The dentition is as in Caproms；in the cutting teeth of a newly hom animal，the folds are quite open and well marked， but even as early in life as that the dentition is redatively simple．In M．s lower， the restigial inner extra front fold of Capromys is more clearly marked．

The eroup was proposed as a subgenus，but has since been given generic rank；the differences in habit and tail characters between the two groups seem， I think，to warant their separation．The hroader ascending portion of the maxillary seems very well marked in all our series ol Geocapromys with one exception，which might be wrongly identified；other than this it seems a clear distinction betwecn（iencaproms and Caprombs．

The spectes were revised hy Chapman，1gor，Bull．Amer．Mus．Nat．Hist．， vol．XIV，pp．313－323．broathisems rather larger，and with a rather heavier skull than thoracotus and ingrohami，which appear very doubtfully distinct from each other．Certain cranid characters are said to distinguish brozenil from thorucutus， and the form of the ear．

Forms seen：brownii，thoracutus，ingrahami．

List of Namel）Forms

1．GEOCAPROMIS BRONWII，Fischer
1829．Syn．Mamm．Addenda，page $389(=\mathrm{p} .5 \mathrm{gon})$ ．
Jamaica．
Synomym：brachywus．Hill，1851，in（sosse，Nat．Sojourn in Jamaica， p．+7 r Jamaica．
2．GEOCAPROMIS TIJORACATCS，True
18is．Proc．U．S．Nat．Nus．X゙1，p． $4^{\text {ton．}}$
Little Swan Island，（Gulf of Honduras．

1891 ．Bull．Amer．Mus．Nat．Ihst．III，p． 329.
Plana Kerss，between Acklin 1sland and Mariquama，Mahama Islands．

Genus 3．PROCAPROX1YS，Chapman

11901．Procapromys，Chapman，Rull．Amer．Nus．Nat．Hist．X1V，p． 322.
Type spectas．－Capombs seari，Pousargues．
Raxif．－Described from Venczuela，central coastal region．
Nubire of Forsin．－One．
Reanarks．－Not represented in the British Wuseum；differing in dental details from Capromes and Gencaproness．
＂Size smaller than the smallest known species of Coprombs，tail half as long as bead and hody－enamel sutline in the first thee upper molars continuous， with two external and one internal folds；the fourth，last melar with three dis－ tinct and disconnected transwerse enamel ellipses，the posterior one about half the size of either of the anterior two；enamel ontline in the four lower molars continums，the first molar with three internal and one external folds，the first
and second interior folds heing more extended than in the corresponding tooth of Capromys; the remaining three lower molars each with two internal and one external folds, the enamel enclosed space on the posterior margin of the last molar being scarcely wider than the enamel itself" (Chapman).

Chapman suggests that this represents the ancestral mainland type from which Capromys and Geocaproms deseended.

> List of Nimed Forms

1. PROCAPRONIYS GEAYI. Pousargues
2. Bull. Mus. Paris p. 150.

Mountainous coastal region on the slopes of the range which separates the town of Caracas from the port of La Guaira, Venezuela.

Subfamily PLAGIODONTINAE

Geographical Distribetiox-Dominican Republic.
Number of Gexera.-One.
Cuaracters.-Not unlike the Capromyinae, but cheekteeth differing markedly from any Ilystricoid Rodent examined; the upper molars with only one fold each side, these folds very long and deep, penetrating far into tooth, running parallel to each other and set obliquely; folds well filled with cement, as in Capromyinae; each upper tooth with (in the one examined) a strong outwardly-pointing external projection on the outer side, adjacent to the external horder of the outer fold. Cheekteeth evergrowing. Lower cheekteeth with two long, deep inner and one shallow outer folds. Paroccipital processes much lengthened. Jugal simpler than in Capromyinae, without processes on upper or lower border. 'lail naked.

Remarks.-The status of this genus must remain provisional; it does not appear to agree with Capromyinae sufficiently to be included in the same subfamily, in dental characters: but only one skull is available for examination.

Genus 1. Plagionontla, Cuvier

1836. Phachodontia, Cusier, Ann. Sci. Nat. Paris, 2, VI. p. 347.

TYpe Species.- Plagiodontia aedium, Cuvier.
RaNge.-As in the subfamily.
Nomber of Forms- Jwo.
Charactirs - Miller compared his l'. hylarum with (ieocapromys brozmii; the most noteworthy differences quoted were (in Plagiodontia) the less breadth between the fachrymats, the more anterior positions of the swellings caused by the frontal sinuses, the zyoma much more slender. the upper part not hearing an orbital process, the jugal slender, without posterior concasity and posteroinferior process, the excessively long paroccipital processes. the smaller incisive foramina, the greater wodth of the mandihular masseteric
ridge. Some interorbital constriction is apparent. 'likere is no canal in the infraorbital foramen for nerve transmission. 'The skull appears depressed, or slanting downwards, posteriorly; the palate is slightly constricted anteriorly.

The checkteeth are as described above.
The feet are heary, the tail naked, of moderate length, the ears small. Claws well developed; D. 5 hindfoot relatively long.

Xiller suggested that the animal is more nearly related to Adelphomys, a Patagonian fossil, than to living Hutias, with which it is currently associated. Forms seen: hylacum.

List of Namen Forms

1. PLAGIODONTMA AEDICN, Cuvier

I 836. Ann. Sci. Nat. Paris, 2, VI, P. 347.
Dominican Republic.
2. PLAGIODONTIS HY゙LAELN, Miller
1927. Proc. U.S. Nat. Mus. LXXVII, no, i6, p. 4.

Guarabo, io miles east of Jovero, Samana Provonce, Dommican Republic.
The type species does not appear to be known at present as a living animal. Originally described in 1836 , little more was heard of the genus until Niller deseribed hylaeum ninety years later. In 1916 Miller described some bones taken in the Dominican Republic; the impression at that time was that the animal was extinct.

Subfamily DACTYLOMYINAE

Gfograpilical Distribution.-South America: Venezuela, Colombia, Amazonia, Ecuador, Peru, Bolivia, Para-

guay, S.E. Brazil, etc.

Number of Genera.-'Three.
Characters.-Checkteeth brachyodont, excessively broad and heary, the pattern essentially consisting of a decp re-entrant fold in the middle of each upper molar more or less completely dividing each tooth into two lobes, each of which is subdivided by a broad external fold. The pattern varies slightly within the genera, but the general somewhat prismatic effect is unmistakahle. There is a strong tendency towards anterior constriction of the palate, as in Myocustor; the paroccipital processes are usually as in Echimys, i.e. curved forward under the bullae, but in some specimens of Dactylomys dectylimus, they stand apart from the bullac and cannot be distinguished from those of Geocapromss, which makes the former separation of this section of Rodents into forms with large paroccipitals (family "(apromyidae") and forms with paroceipitals curved under the bullac (family Echimydae, hitherto including Dactylomys) unretainable. Skull number 22.5.4.4. in the British Muscum appears just as Geocapromys, in paroccipital structure. 'The palatal foramina are small or nearly obsolete; the palate is very narrow and extends to a level with hinder part of $X \mathrm{l}, 3$ or slightly behind it.

The fur is soft，not developing spines．I feature of the group is the extreme clongation of certain digits in the manus and pes of all except Thrinacodus，a character very unusual or unique within the Order．I am told that these are climbing animals，and that they grasp the branches between their third and fourth digits．＇The tail is usually much longer than the head and body，and may be heavily hared，or naked and reptilian in appearance．

If the families Capromyidae，Myocastoridae and Thryonomyidae are to be retained as distinct from the Echimyidae，I suggest the present group should also form a special family，Dactylomyidae．For the purposes of the present work，however，all these groups are kept within one family，as already noted．

Key to the Genera of Dactylomyinae

Digits three and four of both fore and hindfeet not specially elongated， and not broadened．
Digits three and four of both fore and bindfeet much elongated，and considerally hroadened．
Palate much constricted anteriorly；main lobes of upper cheekteeth not united by enamel bridges．

Dactylontys
Palate scarcely constricted anteriorly；main lobes of upper cheekteeth united hy narrow enamel bridges．

Kannabateomys

Genus i．TIIRINACODUS，Günther

1879．Thrinacode＇s，Günther，Proc．Zool．Soc．London，p．if4．
TYpe Species．－Thrinacodus albicauda，Günther．
Range．－Colombia and Venezuela．
Nlaber of Formis．－Three．
Characters．－Essential cranial and dental characters as Dactylomys，next to be described．Palate as Dactylomys．Digit elongation at minimum for the subfamily；the foreclaws sharper than in related genera； pollex as usual in the group scarcely traceable．Digits narrow；D． 3 and D． 4 longer than the outer digits in forefoot；D．2 longer than D．5．Hindfoot with digits not abnormal，essentially like those of forefoot except that a short hallux is present．Fur thick and soft；tail longer than head and body，moderately to poorly haired．
（The paroccipital processes agree with those of the Echimyinate．）
Forms seen：edax，albicauda．
＂The three forms are at present regarded as species；I am not very convinced as to their distinctness frome each other，and they should perhaps be regarded as races．
LIST of N゙MmD Forms

1．IIIRIN゙ACODLS MABICACD．A，（iunther
1879．Proc．Zool．Soc．London，p．it4．
Near Medellin，Colombia．
2. TIIRINACODUS AJPOLNAR1, Allen
1014. Bull. Amer. Mus, Nat. Hist., NXXIII, p. 387.

Tonteque, Bogota district, Colomba
3. THRINACODLS EDAX, Thomas
1916. Anm, Mag. Nat. Ilist. S, SVIll, p. 299.

Sierra de Mérida, Venezuela.
Cemus 2. DAC'IVILOMV'S. Genffory
1838. Dactylomys, (icoffery, Ann. Sci. Nat. Paris, 2, N. p. 120. 1916. Lacheoms, Thomas, Ann. Mag. Nat. Hist. 8, XVIII, p. 298. (Dactyomys peruanus, Allen). Valid as a subgenus.
Type Species-Dacty/omys typus, Geoffroy-Echimys dectylimus, Desmarest.
Ravge.-Known from Ecuador, Peru, Amazonia, and Bolivia.
Number of Fermis.- Five.
Characters.-Skull typically with weak postorhital-like ridges, and a sagittal crest developecl in adult; paroccipital processes, as noted above, in the type species tending to stand apart from the bulke (age character?), or in smaller forms about as in Echimys. Jugal not thickened anteriorly, but relatively hroad, with small process on upper and lower border posteriorly. Bullae moderately large. Infraorbital foramen with no canal for nerse transmission. Palate constricted anteriorly so that the premolars abmost touch each othor. Upper checkteeth as lescribed ahove, the inner side of the lobes narrow and contracted; lower molars with two inner folds, the hinder one completely dividing the tooth; lower premolar with a small extra lobe anteriorly, behind which it is not so completely divided into lobes as are the molars.

Size rather large; fur solt; tail longer than head and body, typically aimost completely naked except the portion joining the body, which is well haired. Forefont with the two eentral digits greatly lengthened, hroadened to a degree: D. 2 also considerahly lengthened; D. 5 short; pollex untraccable normally. Claws weak, natl-like. Ilindfoot not very different from forefoot except that the hallux is moderately developed, and the claws are more prominent.

Lachnomys, propused as a subgenus by Thomas for D. perumus, is given generic rank by 'Tate, though it scarcely seems even a valid subgenus. 'The fur is much thicker, and the tail is fully haired thromehout. The dental details given by Thomas to divide the two subgenera are not clear to me in our series.

Forms seen: ductymus, comescens, permams.
'I'se species tolizionsis appears from description to be very closely allied to the type species.

List of Nameis loorms
Suhgenus Dactylomys, Geoffroy

1. DAC"TYL،OMYS DACTYIANUS DACTYILNUS, Desmarest
2. Nouv. Dict. d'Hist. Nat. and Ed. X, p. 57.

No localty in original description.
Synonym: typus, Geoffros, 183 B , Ann. Sal Nat. Paris, 2, X, p. 127. lsrazil (?)

2．DAC＂YYONY＇S DAC＂TYINUS CANESCENS，Thomas
1912．Ann．Mag，Nat．Hist．S，XI，P．87．
Itacoatiara，Midlle Mmazons，Irazil（below Manaos）．

1921．Arehiv．für Zool．XIV，no．4，P． 3 ．
Banks of Rio Curaray，Ecuador（Prov．del Oriente）．
4．D．ACJYLOMIS BOLIVIEN゙LS，Anhony
1920．Journ．Mamm，Balıimore，I，p，8z．
Mission San Antonio，Cochabamba，Bolivia．
Subgenus Lachnomers，＇Thomas

1900．Bull．Amer．Mus．Nat．Hist．SIlI，p． 220.
Juliaca，Peru．
（Benus 3．K．NNNABATEOAIYS，Jentink
189ı．Kannabateouys，Jentink，Notes Leyden Mus．Nilli，p．iog．
＇Pype Sprcies．－Dactyomys amblyonsx，Wagner．
Ravge，－Paraguay and South－eastern Brazil．
Numbir of Forms－＇Iwo．
Characters．－＇lhe palate very shightly constricted anteriorly；the check－ teeth not completely divided into lobes，the lobes being connected by a small bridge；the enamel folds more nearly perpendicular to the molar series than in Dactyloms．＇The lower cheektecth with an anterior V－shaped fold，and a posterior elongated one，as in Dactylomss，but the lobes thus formed united by a small bridge．Lower premolar like that of Dacty／omss， but anterior lobe larger．

Skull much like that of Dactyloms；apparently a sagittal ridge is not formed； the paroccipital processes curte under the bullae．

Externally rather smaller than typical Dacty／omis；the fur thick，soft． Forefeet much as in Dactyloms：hindfoot relatively hroad，essential digit arrangement as in Dactylomys．＇Tail very long，relatively well haired．

Remarks．－Very eloselyallicd to Dactylomys．The character of the palate is perhaps the most important in keeping the two genera sepatate．
Forms seen：amblyonse，pallidior．

List of Nimm loorns

1845．Archiv．für Naturg．1，p． $1+6$.
Ypanema，Province of sio Paldo，Brazil．
2．K゙ANNABATEOMS゙タ ANBLYONYX PAEIIIOIOR，Thomas
1903．Ann．Mag．Nat．Ilist．7，SI，p．+89.
Sapucay，l＇araguay．

Fili. 17. Kandabatemiss anblyonyx Amblyonsx, Whager, B.M. No. I 6.6.6.7, ; $1 \frac{1}{2}$.

a

Fig. 19. Kanyabateomys amblyonyx amblyonix, Wagner.
Cheekteeth: B.M1. No. 1.6.6.67, ;' $\times 5$.

Subfamily MYOCASTORINAE

Geographical Distribution,-Southern South America.
Number of Gexfra.-One.
Cuaracters.-The external form robust and heavy, the size larger than in other members of the farnily; the genus is quite one of the giants of the Order. The external characters show strong specialization towards aquatic life; the hindfeet have four of the toes webhed; D. 5 is free, and perhaps used for combing the fur. The hindfect are much larger than the forefeet, which bear a rather rudimentary pollex, and four well-developed main digits; all the digits are armed with sharp large claws.

The skull is more heavily ridged for attachment of muscles than in other Neotropical Echimyidae, and is the only member of the family which tends in this character to approach the African Thryonomys. The paroccipital processes are greatly elongated; the lateral process of each stands well apart from the main downwardly pointing lone.

The cheekteeth decrease markedly in size from MI_{3} forwards; they are semi-rooted, and broadened, with strong inner and outer re-entrant folds, which are long retained; the palate is strongly constricted anteriorly.
(ienus 1. M)OCASOR, Kerr.
1702. NHOCAstor, Kerr, Anim. Kimed., P. 225.

1No5. Nyopotants, Ceoffroy, Ann. Nus, dllist. Nat. VI, p. Sz. (Mropotamus bunariensis, Geotfroy.)
'Typf: Specien.-Mus conpus, Molina.
RssGe.-Southern south America; lollister in a revew of races represented in the American Meseum quotes as localities: Chile, the Straits of Magellan, Buenos Ayres, Santa Fe and Paraguay, Parana River; Rio Negro and Rio Salados, latagonia. Whether the genus ranges farther north than any of these has mot bern aseertamed; quoted by Waterhouse from Peru.

Nimber of Forns.-Three.
Chakacters.- The nasals are somewhat arched, the frontals broad and that, the parietals decply depressed, and in adults a very strong sagittal ridge is present. 'There is a sharply pointed hut short squamosal process and a small postorbital process to the frontals. 'The anterior zygomatic root is placed larther back than marmal, over the middle of the toothrow. The secipital region is high and prominent. The bullae tend to spread sideways, with the neck pointing outwards and upwards, approaching the type found in Castor, though much less developed than in that genus. The hamutar processes are thick, the palate very narrow anteriorly, broad posteriorly. Jugal thick, hroader posteriorly, with an upwardly projecting process on posterior horder. There is no special canal For nerse transmission in the infraobital foramen.

The mandible is immensely heasily ridged and distorted outwards, the angular process sharply drawn backwards. The coronoid process is obsolete.

The cheekteeth are extremely hypsodont; the fundamental pattern of the upper series, judging by young specimen, appears to be two external re-entrant folds, the front one placed far forwards, the second one about in the middle of the tooth, and two internal folds, the first almost meeting the second outer one, the second placed posterionty, rapidly extending actoss the tooth and cutting off the posterior part altogether. 'The enamel surrounding the folds is wide, the general effect of the dental pattern rather complex, probably not changing much during the animal's life. In the lower series, there are three inner and one outer re-entrant folds; ${ }^{\prime}$. thas one small extra inner fok. N. 3 is in both jaws considerably the largest tooth, in the adult; X. 2 is markedly larger than the anterior two teeth, which tend to wear down in old ase. In these front teeth, the folds tend to isolate, but the effect is considerably different from such types as Emraxematomy in which as the folds isolate the pattern tends to become simpler.

The general effect of the tecth is reminiscent to a degree of that of Costor, perhaps owing to the simblar life which these two unrelated animals lead.

The inciasts are brond and powerful.
The essential external characters are described above; the fur is soft and
thick, and of some commereial value ("Nutria"). 'I'he tail is moderate in length, scaly and poorly haired.

The largest of a small serics of skins at the British Nuseum is 586 mm . head and body; whether this would represent about the extreme development for the genus I do not know.

Forms seen: coypus.

Fig. 20. Myocastor moypls santaecrezaf, Hollister.
B.AI No. 16.10.3.55:

Lher of Nimbl forms
(References and type localities hy Mr. (; W. C. 11olt.)

1782. Sage. Stur. Natur. Chike, p. $2 \mathbb{R} 7$.

Chile.
 p. O_{1}.
chilensis, Lessun, 1i+2, Noun. Tabl. Reen. Anm, P. 12h.

Fig. 21. Mrocastor coipis santaecrizaf, Hollister. B.MI No. 16.10.3.85; , $\frac{4}{3}$.

Fig. zz. Myocamtor ruypes santaerrizae, Hollister. Mandible from below: B N1. 入o. 16.10.3.s5; ${ }_{6}^{6}$.

Fig. 23. Myocastor coype's santaecruzae, Alohister.
B.AI No. 16.10.3.S5;

 Chechteeth: 13 M1. Xi, 16.10.3.85: 2.

fioh, (18os). Ann. Mus. d'llist. Nat. V], p. Sz.
Paraguay.
Synonym: castorides, Barrow, i S_{15}, 'lyans. Linn. Soc. London, X'I, P.167. Brazil (?)

1014. Proc. Biol. Soc. Washington XXVIl, p. 57.

Rio Malado, near Los I'almaros, Santa Cruz. Argentina.

Suhfamily THRIONOMYINAE

Gfogrsphical Imtribltion.- Africa, widely distributed south of the Sahara. "Central and East Africa from Bahr-el-Ghazal and Uganda to Eastern Cape Province" (St. Leger); Nigeria; Angola; T. sacinderiums group; Kenỵa, Uganda, North Congo and Nyasaland, T. Segoriams group.

Number of Gfaer.t-One.
Charactirs.-Skull massive, excessively prominently ridged; checkteeth rooted, similar in pattern to some of the genera of Echimyinae; incisors powerful, the upper ones heavily three-groosed; paroccipital processes clongated; oceipital region of skull extremely powerfully developed. Arrangement of digits of fore and hindfont perissodactyle: hallux entirely suppressed; D. 5 of manus vestigial; claws thick and heaw, more or less fossorial. The shoulder-blade as described by 'Tullberg is apparently peculiar, and not like that of the other Echimyidae examined by him.

Remarks,- Is indicated above, without comparing the shoulder-blade of this animal with all other genera included here, it is not wise to base a separate famils on this alone. 'The digit reduction, unique in the present famils, is too uncertain a character in other groups to base family characters on. Nevertheless I am not sure that this animal is rightly referred to the present family, or if it is an entirely distinct offshoot; it seems to stand alone rather in the llystricoid group, though having no very striking characters to separate it off from the remainder of the more normal genera.

Genus 1. THIRYONOXIYS, Fitzinger

1827. Aulacodes. Temminck, Mon. Mam. Tab. Meth., p. Xxvi. (Nut of Eschscholtz.) (.Aulacodus sacinderianus, Temminck.)
1828. Thryonomys, Fitzinger, Mitz.-13. Ki. Akad. Wiss, Wien, Math. Nat. Cl., 56, p. ifi. 1922. Choeroniss, Thomas, Ann. Mag. Nat. Hist. 9. IX, p. 390. (Thryonomy's gregorianus, Thomas.)
Type Species.-. Hulacodus somipalmatus, Meuglin.
Range.-As in the subfamily 'Thryonomyinae.
Nember of Fornis.-Ten.
Characters,--Skull very prominently ridged; rustrum high, broad, rather reminiscent of Iedetes except that the nasals are less arched and the zygomatic plate is not specially projected forwards; jugal and zygoma
thick, not markedly angular, the jugal nearly in contact with the lachrymal, the \% gomatic region bearing some resemblance to that of Pedetes. Vrontals broad, with sharp angular depression immediately in front of the suture formed by the frontals and parietals each side, in adult. Infraorbital foramen very large, with well marked canal for nerve transmission. Parietals converging into an excessively high sagittal ridge; occipital region high and prominent; bullae moderate in size; paroccipital processes considerably lengthened (less so than Myocastor, probably more so than other Echimyidae). Bony palate extending slightly behind II.3; the palate straight, hroad; palatal foramina very broad and large. Mandible with moderate coronoid process, angular portion low, drawn backwards to a degree, the mandible very heavily ridged and distorted outwards.

Cheekteeth semi-hypsodont, broal and heary; the enamel surrounding the folds thick, the folds broad originally, tending to become narrower with wear, evidently not isolating on crown surface to any degree. Upper cheekteeth with two outer, one inner folds; lower teeth reversing the pattern, P. q with small extra inner fold. In old age, the pattern wears out.

Incisors very broad and powerful, probably more so than in any other Rodent, the upper ones three-grooved, the main groove normally placed centrally, the second and third placed between this and the inner edge of the teeth.

Externally, size rather large (perhaps approaching 600 mm . head and body); form heavy; fur harsh and bristly. 'Tail not long, comparatively well haired. l"orefoot with three main digits, the centre one longest, a minute pollex, and 1 .5 so reduced that it must be almost functionless, though the claw is about as well developed as those of digits 2,3 and 4. Hindfoot lacking hallux; the digits otherwise like those of forefoot, but longer; D. 5 greatly reduced. I am told that a specimen kept at the London Zoological Gardens "shed its tail" when picked up, thus recalling a feature which is common in the Echimyinae.

In the sainderianus group, the skull is much arched anteriorly; the gregariomus group was given the generic name "Choeromys" by Thomas on account of the "almost complete absence of the large fromtal sinuses present in Thrionomys, and so developed as to produce a totally different shape of the opening that leads from the cerebral to the olfactory fossa of the skull. The opening is narrow below, broad ahove in Choeroms, broad below, narrow above in Thryonoms, where its upper corners have been compressed by the large frontal sinuses; owing to this absence of sinuses the frontal area is flat instead of consex."
('Ihe tail was also stated to be more reduced in "Choeromys," but in this character T. sclateri is intermediate, having the tail nearly as long as in the typical group. But in any case the tail is strongly reduced comparatively in the whole genus.)

A cranial character such as this, though clearly marked, does not seem of generic importance when one takes into account the differences to be found in the skull of other 11 ystricoid genera, for instance. Coemdon, in which closels related forms (as laenatum and mexicommm) mat have the shull in the one case arched, in the other flat; or /1ystrix, in which the masals vary extremely, even in

[^5]

Fif 25. [Thryonomys gregohanus gregorlants, Thomas.

Fig, 26. Thrtosomis gregoriants gregoriavis, "Thomas.

Fig. 27. 'Phryonomys gregorianuts gregorianus, Thomas.
B.M. No. $34.6,2.68$, ; : 1.

Fig. 28. Thryonomis (iregormives grygortant's, Thomas.
(hereheceth 13. \1. No. 34.6.2.6.5, : +
the donedy alloce drican Crested Porcupines（oristata compared with afticae－ australis）；these two eroups of The vomomys are so essentially similar in all other chatracters that I do not think（horomys is worth retaining even als a subgenus．

Forms secon：ansulac，comsicus，sreqonamus，harisomi，raptoram，sclateri， sainderiames，cariugatus．

Latt of Namfi，Forms

（References and type localities hy Mr．（：W．C．Holt．） stionderiames Group

s827．Monorgr．Mamm．1，p． 24 S
Sicra Lewne．（For full range of specific group sce＂Subfamaly ＇Thryonmomae，＂page 14\＆．）
2．＇HHRYONOMY SWINDIR1ANLS VARIEGATL＇S，Peters
1852．Resse nach Nuzambique，Zowl．Süug，p．izs．
Arica．Whas first mentioned in Manuscript，Peters， $8 \$ 5$ ，and recorded from Tette，Macanga，sena and Buror．
Syonnym：calamophagus，de Beerst，［897，Bousargues，Bull．Nus． Paris，p．soo．Nyasa，Central Africa．
semifalmahrs，Heuglin， 1864 ，Nos．Act．Acad．Lenp．Dres－ den，SXXI，p．6．Central Africa
3．THRYONONIS SHINDER1ANLS RAPTORUXI．Themas
1922．Ann．Nag．Nat．Hist．9，IK，p． 392.
Nigeria，Lagos．
＋M11RYONON1S SWIDDERIANL＇A ANGOLAE，Thomas 1922．Ann Nag．Nat．Host．9，IX，p． 392.

Angola，junction of Luandu and Cuje Rivers．

glegorianms（iroup

5．JHRYONOMY \＆RLTSHLRIC゚LS，Lonnterg
1018．Stockholm．Vet，Ak．Handl．58，no．2，p． 78.
Central Africa，Rutshuru，east of Rutshuru River，half－way between Lake Albert Edward and Lake Kiru．
6．＇JIRION゙ッNYG GRIGORIANL G GREGORIANLS．Thomats
Isot．Ann．Nas．Nat．II 1 st．6，Xlll，p． 202.
Luiji Retu River，kiroyo，Kenya，

Nidi，＇Vatta Mrlls，Kenya．

1g07．Ann．Nag．Nat．Hist．7，XIX，p．3世\＆．
Lado（Anclo－ľryptian Sudan），Loka， 60 miles S．－VV．of Fort Berkeley．
1）THRYONOARS HARRLSON1 CONGICLS．＇Thomas
Iy22．Ann．Nag．Nat．Hist．9，1X，P． 300 ．
Lete River，Belesan Congo．

1897．Proc．Zuol．Suce．Lendon，P．432．
Nyyk l＇lateau，N゙yasaland．

Addenda (gregorianus group):

1936. Namm. Sauvages du Cameroun, Encycl. Biol. 16, P. 178.

Borders of Jogone, Chad district, French Equatoral Africa.
T. rutshuricus, not seen, is deseribed as a very short-tailed form, prohably nearest the gregorianus group. 'I'. harrisoni has a narrower skull than in allies.

Subfamily PETROMIINAE

Geographical. Distribt tion.-South-west Africa.
Number of Genera.-One.
Characters.- Cheekteeth rooted, but showing considerable simplification of pattern; only one fold on each side in the upper series; the internal side of the upper series and the external side of the lower series marked by two elevations, the teeth strongly hypsudont. External form small, generalized except for the bushy tail. Bullae much inflated; skull flattened; mandible typically 1 lystricoid in formation.

Genus i. PE'TROMU'S, Smith

1831. Petromis, Smith, \&outh Afr. Quart. Journ. i, no. 5. p. 10.

Type Species.-Petromus typicus, Sinith.
Ravge.-As in the subfamily:
Nember of Forms.-Four.
Characters.-Skull broad and flat, without any constriction in the interorbital region; infraorbital foramen with canal for nerve transmission; bullae considerably inflated, the paroccipital processes joining them: palatal foramina deep and lone, well open, extending to toothrow; palate extending slightly behind the toothrows, relatively narrow. Angular portion of mandible slanting downwards posteriorly, Incisors opisthodont.

Checkteeth as described above, the elerations clear and well marked, the teeth set obliquely, the folds broad. Lower teeth with one fold on each side in adult, as in the upper series. l'attern ultimately obliterated with wear.

External form more or less Rat-like except for the tail, which is bushy, and not very much shorter than the head and body. Feet narrow, with short claws; four main digits well developed on both fore and hindfeet, D.s nearly as long as the others: pollex restigial, hallux short. Some stiff bristle hairs present on hindtoes, as in Oetodontinae.

The zygoma is relatively broad, sometimes with weak process on the lower border. "J'he mandible is clearly distorted outwards in the angular process, like typicalllystricoiels, but unlike Ctenodactylidae, with which this genus has been associated; the coronoid is low, the angular portion drawn backwards.

Forms seen: typicus, tropicalis, cunealis.
cuncalis was described as a species, but is probably best regarded as a race as there seems very little essential difference between it and typious.

Fife 30. I'ftronmis typuts trillets, smith.
IB MI. No. 12.4.25.12 3; 2.

Fifs. 31. Petrome's typicis tepices, Smith.
Mandible trom below - 2; checkteeth 7; B. M. No. 12.4.25.12, 6 .

List of Nimpd Formis

(References and type localities by Mr. G. W. C. Holt.)

1. PETROMUS TYPICUS TYPICES, smith
2. South Afr. Quart. Journ. I, no. 5, p. 11 .

Jouth of Orange River, South Africa.
2. PETROMIUS TYPICLS TROPICALIS, Thomas \& Hinton
1925. Proc. Zool. Soc. London, p. 24I.

Karibib, S.-IV. Africa.
3. PETROMLCS TXPICU'S MARJORIAE, Bradfeld
1935. Descr. new races of Kalahari Birds and Mammals, 2 pp. 1935.

Khan River, S.-W. Africa.
4. PETROMIE TYPICLE CLNEALIS, Thomas
1926. Proc. Zool. Soc. London, p. 307.

Cuncne River Falls, S.-W. Ovamboland, S.-W. Africa.

Subfamily ABROCOMINAE

Geographical Distribetion- - Northern Chile and Argentina.
Nimbtr of Gianers-One.
Charactars- Cheekteeth evergrowing, the upper teeth simplified, each tooth cut into two lohes by one wide re-entrant fold on each side; lower teeth complex, with one outer, two inner deep folds, the spaces
caused by these folds sharply angular. Part of lachrymal canal open on side of rostrum in front of orhit. Bullae greatly inflated. External form not highly modificel; tail haired, relatively short.

Remarks.- Miller \mathbb{N} Gidley refer this form to a distinct family; for discussion of the retention of the genus in the Echimyidae see page 103 .

(ienus 1. ABROCOMA, Waterhouse

1837. Abrocona, Waterhouse, Proc. Zool. Soc. London, p. 30.
'Type Species.- Ibrocoma hemetti, Waterhouse.
Radge,-As in the subfamily Abrucominac.
Number of Forms.-Seven.
Characters.-Rostrum long and narrow, braincase round, not ridged, frontals considerably constricted (for a member of this group). No canal for transmission of nerve in the infraorbital foramen. Palate straight, short and relatively narrow; palatal foramina very long and narrow, totally different from that of Octodentinae, but reminiscent of the Chinchillidae. Zygoma simple. Anterior ascending maxillary portion of zygoma extremely narrow; jugal widely separated from the lachrymal. Bullae very large indeed,

Fig. 32. Albrecoma benvetti bennetti, Waterhouse.
B. XI No. +1.7.7. fें 1 ?

Fig. 33. Abrocoma benetti bennetti, Waterhouse. B. 11. No. 4.1.7.7., S; 1 ,

T-

1Fle. 34 . Abrowomin bendettil bencetti, Waterhouse. (hechtecth: B. M1. No. +1.7.7. ${ }^{3} ;$
the mastoids appearine to a degree in superior aspeet of skull. Incisors narrow. Tandinle with very narrow angular process drawn sharply backwards, a wide curved space separating the condyle from the angular process; coronoid low.
lobes of upper cheekteeth united by a narrow bridge; . .h. 3 with backwardly projecting heel caused by a small extra outer fold. The folds are strong, and rather wide. Lower teeth quite different in appearance from the upper series (a rare feature in the Order) ; two inner, one outer folds; general pattern not far removed from that present in Capromss, but effect very different, folds widely open, not filled.

Externally, fur very soft as a rule; tail usually short, but well haired, car relatively large. Forefoot short, with four digits, the claws small; hindfoot with a reluced hallux, D .5 shorter than the three central digits. Claws weak. Some stiff hristle-hairs present on the central digits of the hindfoot, as in Chinchillidae and Octodontinae.

According to Waterhouse the skeleton of A. bennetti bears a greater number of ribs than is usual; the number quoted is seventeen pairs, which he compares with Capromys and Coondou, in which genera sixteen are said to be present.

Two specific groups may be recognized, according to London material, the members of which do not seem to me to be more than racially distinct from each other.
'The bennetti group contains relatively larger forms (hindfont $3 \mathrm{I}-38$), colour more brown, posterior palatal foramina fused and conspicuous between toothrows.

The cincrea group contains relatively smaller forms (hindfoot 3 I or usually less), colour grey, posterior palatal foramina not conspicuous between toothrows, restigial.

Forms seen: bemetti, budini, cinerea, famatina, muruai, schistacea, zacanum.

Lisit of Naned Forms

(References and type localities by Mr. G. W. C. 1holt.)

hennetti Group

1. ABROCOMA BENXETTI BENNETTJ, Waterhouse
2. I'roc. Zool. Soc. London, P. 3 I.

Flanks of Cordillera, Aconcarua, Chile.
Synonym: ation, Waterhouse, is37, Proc. Zonl. Soc. London, P. 32. Salparaiso, Chale.
helcima, Wagner, 1842 . Arch. Nature. 1, p. 7. Chile.
2. ABR()COMA BENNETTI MLRRAYT, Wolfforn
1916. Rev. Chilena, p. 6.

Vallenar, I'ronnce Atacama, Chile.
cmerea Group
3. ABROCOMA (INEREA CINIRLA. Thomas
1919. Ann. Mag. Nat. Hist. 0, JV, p. 132.

Casabindo Volcano, lujuṣ, North Argentma.

4．ABROCOMA CINEEREA BLDINI，＇Thomas
1920．Ann．Nag．Nat．Hist．9，V＇，p． 475.
Otro Cerro，is kilometres north－west of Chumbicha，Catamarca， Argentina．

5．ABROCOMA CINEREA FAMATINA，Thomas
1920．Ann．Nag．Niat．IIst．9，VI，p． 419.
1．a Invernada，Rioja，Argentina（i\＆kilometres north－west of Nevada de Famatinal．
6．ABROMONI．CINEREA SCHISTACEA，Thomas
102：．Ann．Mag．Nat．Ilist．9，V111，p． 216.
Los Sombreros，Sierra Tontal，San Juan，Areentina．
7．ABROCOML CINEREA VACCARL N，＇Jhomas
1021．Ann．Nag．Nat．Hist．9．Vlll，p． 217.
P＇unta de Vacas，Mendoza，Argentina．

Subfamily OCTODONTINAE

Gforraphical Distribetion－Neotropical：Peru，Bolivia and Nato Grosso southwards to Southern Patagonia．
Nuaber of Genera．－Six．
Characters．－Checkteeth，both upper and lower，completely simplified， with，in the upper series，one fold each side in less simplified forms，general effect eight－shaped or＂kidnev－shaped．＂Bullae normally much inflated．No part of lachrymal canal open on side of rostrum．Externally generalized，or modified for suhfossorial life．Some stiff bristle－hairs present on toes of hindfeet．

The generalized forms include Octoms（tail thickly bushy，bullae largest in subfamily，cheekteeth eight－shaped）；Octodontomys（similar externally，but bullae slightly smaller，and cheekteeth completely simple）：and Octodon（tail less bushy，bullae smaller than the above genera，and cheekteeth more or less kidney－shaped in adult）．The subfossorial types include Aconaemys（cheek－ teeth like Octomys，upper incisors not abnormal，bullae moderate in size）： Spalacopus（small forms with the upper incisor extending backwards and almost overlapping the toothrows，bullae relatively small）；and Ctenomys（differing from the above two genera in the much larger foreclaws．more heavily ridged skull， particularly the zygoma，kidner－shaped cheekteeth，with vestigial 11.3 ：the bullae are relatively large；the incisors are not so extreme as in Spalacopus）．

In this group，there is always an upwardly pointing process on the posterior border of the jugal，which，however，varies in development，being most extreme usually in Ctenomus．

Kiey to the Ginera of Octodontinis

External form considerably modified for subfossorial life．Tail strongly reduced，not much longer than hindioot．

Checkteeth simpler, kidney-shaped; skull more heavily ridged for muscle attachment; foreclaws strongly lengthened. (hncisor root in upper serices not tending to oserlap toothrow; bullae relatively large.)

Ctevomis
Checktecth more complex, more ar less eight-shaped, or completely so; skull less heavily ridged for muscle attachment; foreclaws less lengthened.
Re-entrant folds of upper molars not meeting in middle of the teeth: upper incisorsstrongly pro-ndont, their rootsextending backivards, forming a projection by the side of and almost overlapping the upper toothrow; bullac small (for the subfamily).

Spalacopus
Re-entrant folds of upper molars meeting in middle of the teeth: upper incisors less pro-odont, not ahormal. Bullac larger.

Aconamiys
External form not molificd for subfossorial life. Tail not much reduced, little shorter than head and hody for may he longer than this measurment). (Bullae strongly inflated.)

Re-entrant folds of upper molars meeting in middle of the teeth: general dental effect clearly eight-shaped. (Tail bushy; builae at maximum for subfamily.)

Octomys
Re-entrant folds of upper molars not meeting in middle of the teeth: general dental effect not eight-shaped.
Cheekteeth completely simple, the folds ohsolcte. (Tail bushy; bullace relatively larger.)

Octonontomis
Cheekteeth not completely simple, the effect hecoming kidneyshaped, the folds not obsolete. (Tail less hushy; bullate relatively smaller.)

Octodon

Genus r. OCTOMIYS, 'Thomas
19zo. Octomys, Thomas, Amn. Mag. Nat. Hist. 9, VI, p. ift.
Trpe Specers.-ictomis mimax, 'Thomas.
Ravge,-Argentina (Catamarca, San Juan).
Nestber of Forms. - 'Two.
Characters.-Skull without constriction in interorbital region, and not prominently ridged for musele attachment. Occipital region relatively weak. Bullac large and much inflated, largest of subfamily, mastoids visible in superior aspect of skull: palate nearly straight, narrow, V-shaped posteriorly, relatively short. Palatal foramina short, broad, with broad median septum. Rostrum pointed, not shortened. Infraorbital foramen with a canal
for nerve transmission. A capsule on mandible at root of N.2. Coronoid process low.

Cheekteeth complex for the group; clearly eight-shaped, the folds meeting in the middle of the tooth; $\lambda .3$ the smallest tooth.

External form not modified for fossorial life; fur very soft; tail about as lone as head and body or shighty longer, heavily haired. Claws small; forefoot with four well developed digits and rudimentary pollex; himdfoot with halhus short, D. 5 shorger than the three central digits.

Forms seen: mimax, joamins.
I am listing "joamius" provisionally as a race, though I think it is very probable that the two forms are based on the same animal.

List of Nimpo Jiorme

(References and type localities for all species of Octodontinae have been collected by Mr. G. W. (. Ilolt.)

1. OCTONIY M MMAX MIMAN゙, Thomas
2. Ann. Mag. Nat. Hist. 9, VI, p. 118.

La Puntilla, 'l'inogasta, Catamarca, Argentma.
2. O"TOMIS MIMAS JoANMILS, Thumas
1921. Ann. Mag. Nat. Hsst. O, VIII, p, 217.

Pedernal, Sian Juan, Aremetina.

Genus 2. . 1 CON.VINMS, Amerhino

189). Aconiemys, Ameghino, Revista Areent. de Hist. Nat. 1, p. 245.
1841. Semzodos, Waterhouse, I'roce. Zool. Soc. London, p. 89. (Not of Agassiz.)

Type species.-Schisodon fuschs, Waterhouse.
R.asge.-Southern Chile and Argentina.

Nimber of Furas.-'Two.
Chidracters.- Essentially like Octomys dentally: cranially differing in the rather shortened rostrum; the palatal foramina short, small (infraorbital foramen with canal for nerve transmission) ; the bullae much smaller, of medium size. Coronoid process moderate. Incisors rather broad. Il_{3} tends to have the prosterior lobe reduced, hoth above and below.

Externally modified for fossorial life; arrangement of digits about as in Octumes; claws enlarged to a degree; ear moderate-sized, not strongly reduced; tail haired, not much longer than hindfoot.

Remarks. - This genus is very much the most generalized of the three fussurial Octodontinae, both in external and dental characters.
The two species are closely allied, and differ chiefly in the quality of the fur. Forms seen: fuscus, porteri.

List of Named Forme

1. A("ON.AEAYY F C"SCLS', W"aterhouse
is,i. Proc. Zool. Soc. London, p. 9i.
Valle de las Cuevas, eastern slope of Andes, Argentina.
2. ACON゙AENIY' PORTERI, Thomas
 Osomo, Southern Chile.

Genus 3. OCTODON, Bennett

1832. Oetonon, Bennett, Proc. Zool. Soc. London, p. 46.
'l'ype Spfeles.-Octodon cuminizi, Bennett.
Raxge--Chile and I'eru.
Number of Forari-Six.
Charactirs.-Skull essentially like that of Octomys; the weak parietal ridses may come together in old age; hullae relatively smaller than in either Octoms or Octodontomes; infraorbital foramen with canal for nerve transmission.

Cheekteeth becoming modified and transitionary towards those of Ctenomys; anterior part in upper series projecting outwards; lower teeth with posterior part pointing inwards. The upper teeth have a small inner fold retained; the lower teeth are more eight-shaped than in Ctenomys, but much less so than in ()etomss and Aomaemys. When cut, though simple, they are nearer the Octomys type; the folds of the upper series nearly meet, though the adult pattern is suggested already.

External form somewhat Rat-like; fur typically much less soft than in Octodontoms and Octomis. Lar large: tail rather shorter than head and body,
less well haired than in Octomys，scales traceable；moderately haired except at end，which is slightly bushy．O．bridgesii is a softer－furred form．

Forms seen：bridgesii，clizorum，degus．
Waterhouse synonymized pallidus and cumingii with degus；they are pro－ visionally listed here as subspecies，though I have seen neither，and they may prove either synonymous or valid．

> List of Named fiorms

1．OCTODON DEGL゙ら DEGL゚，Nolina
17S2．Sagg．Storr．Niat．Chili，ist Ed．，p． 303. Chile．
2．OCIODOS DEGU CLIVORL Cl ．Thomas
1927．Ann．Mag，Nat． 1 Iist．9，太゙1N゙，p． 556.
Puente Alto，Santiago，Chile．
3．OC＇FODON DEGL＇S PERLANA，Waterhouse
1848．Nat．Hist．Mammalia，is，p． 257.
San Juan de Matucana，Lima，Peru．
4．OCTODON DEGL＇S CL゙MINGII．Bennett
1832．Proc．Zool．Soc．London，p． 47.
Between Valparaiso and Santrago，Chile．
5．OCJODON゙ DEGL＂S PALLIDL＇s，Wagner
1845．Arch．Naturg．2，p． 33.
Chile．
f．OC＇TODON BRIDGESII，Waterhouse
1844．Proc．Zool．Soc．London，p． 155.
Chile．
The name franziusi listed by Trouessart in this genus（Cat．Namm．vir． foss．1got，Supjl．，p．500），is according to Tate a Geomyid．

Genus 4．OC＇TODON＇TOMIS，Palmer

1902．Neoctodon，Thomas，Proc．Zool．Soc．London，i，p． 114 （pre－occupied）．
1903．Octodontomys，l＇almer，Science， 2, NVII，p． 873.
Type Species．－Veoctodon simonsi，Thomas＝Octodon stiroides，Gervais \mathbb{A} D＇Orbigny．
Range．－Bolivia．
Ncmber of Forms．－One．
Characters．－Checkteeth simpler than in Octodon，the folds obsolete．a slight concavity on outer side of upper molars；lower molars with slight median constriction each side．Skull essentially as in Uctoms except the relatively smaller bullac，which，however，are larger than those of Octodon． Infraorbital foramen with canal for nerve transmission．

Essential external characters as Octomys；tail thickly bushy，fur very soft．
Forms seen：gliroides．

List of Nimen formas

1844. Bull. Soc. Philom. p. 22.

Bolivan Andes, near La l'az.
Synonym: simonsi, 'I'homas, 1902, Proc, Zool. Soc. Londun, i, p. 115. Potosi, Bulivia.
(ienus 5. SPALACOPUS, Wagler
1832. Spalacores, Wagler, Isis, NXV, p. 1219.

Type Species.-Spalacopus poeppigi, Wagher.
Range.-Chile.
Nimber of Formi.-Two.
Characters.--Skull with the same essential characters as Octomys, but frontals appear narrower, and upper incisors strongly proodont, and much lengthened, extending backwards to a level of about M.r and forming a projection by the side of and almost overlapping the toothrow.

Fif: 36. Sipalampis cianes, Mohma
B.N1. . No. 1.3.21.14, 3; 2!.

Bullae smaller than in all other Octodontinac, not much inflated. Palatal foramina small. Infraorbital foramen with no separate canal for nerve transmission. Coronoid process prominent.

Checkteeth eight-shaped, but the folds not meeting in the middle of the
tootli, the general effect rather simpler than Octomys; N1.3 above and below smaller, simpler.

Externally typically smaller than other genera, about the smallest living llystricoid Rodent. Colour very dark. Considerably modified for fossorial life; tail short, hairy, little longer than hindfoot; elaws not greatly enlarged. Arrangement of digits about as Octomy's. Ear small.

Remarks.-The broad abnormally lengthened upper incisors differentiate
this genus elearly from all allies, and notwithstanding its small size it may be considered one of the most specialized of the group. The teeth too are more simplified than in Octomy's and Aconaemys, but the smaller bullae suggest a more generalized character.
S. tabanus appears to represent a larger form than the type, but is not well known.

Forms seen: cyumus, tabanus.
List of Named Forms

1. SPALACOPL'S CYANUS, Molina
2. Sagg. Stor. Nat. Chili, ist Ed. p. 300.

Chile.
Synonym: poeppigi, Wagler, 1832, Isis, XXV, p. 1219. Quintero, Rio Aconcagua, Chile.
ater, Cuvier, 1834, Ann. Sci. Nat. 1, p. 323. Coquimbo. noctizagus, Poeppig, 1835, Arch. Naturg. 1, p. 252. Quintero, Rio Aconcagua, Chile.
2. SPAIACOPL'S TABANUS, Thomas
1925. Ann. Mag. Nat. Hist. 9, NV, p. 585.
south Chile.
Genus 6. CTENOMYS, Blainville
1826. Ctenomys, Blainville, Bull. Soc. Philom. p. 6z.
1916. Haptomys, Thomas, Ann. Mag. Nat. Hist. 8, XVIII, p. 305 ; subgenus for C. leucodon, Waterhouse.

T'ype Species,-Ctenomys brasiliensis, Blainville.
Rasge.-South Brazil (Matto Grosso), Bolisia, Paraguay, Argentina (Buenos Ayres region, Jujuy, Salta, 'Tucuman, Catamarca, San Juan, Cordoba, Mendoza, etc.), Patagonia south to 'l'ierra del Fuego; Chile.

Number of Forms. - Approximately sixty-one are named.
Characters.-Skull with broad rostrum, postorbital process usually present to frontals, their development variable; parietals well ridged, though evidently most often a sagital crest is not formed; lambdoid erest prominent; bullae large, pear-shaped, spread sideways; paroccipital processes large, curved under them (the bullae show prominently on each side when skull is siewed from behind). Palate essentially as in other Octodontinae: palatal foramina usually short; jugal with extremely prominent upwardly projecting process in larger forms; this process always present, usually well developed.

11-Linane Kodent- -1

Fig. 37. Ctenomys tuconax, Thomas.
H.MI. No. 25.3.1.19. ${ }^{\prime}$; $1 \frac{1}{2}$.

Fig. 3 '. Ctenomise ticondi, 'Khumas.
B.N. No. 253.1.1\%. $;$; 1 .

Infraorbital foramen with no camal for nerve transmission. Upper incisor root extending far backwards, and showing on inner border of infraorbital foramen, though not so extremely as in Spalacopus. Mandible with angular processes widely spreading, sharply distorted outwards; coronoid process moderate.

Incisors much thickened, usually not pro-odont, except in leucodon and lewisi. Checkteeth like Oetodon, but simpler, the small inner fold obsolete in the upper molars. M. s vestigial.

Fig. 39. Ctenoays tleonax, Thomas.
Mandible from belou, X_{12}; Cheekiecth, : 6: B.M. No. 25.3.1.19, ..

Externally much modified for subfossorial life; eyes and ears reduced; forefoot with extremely large claws (pollex less reduced than is normal); hindfoot with moderate claws; hallux rather less reduced than in other Octodontinac, otherwise general arrangement of digits like allied genera; tail strongly shortened though not vestigial, moderately or poorly haired.

Forms seen: antonii, azarae, barbarus, bergi, boliviensis, budini, coludo, dorsalis, emilianus, fochi, fodax, frater, fueginus, fumosus, fulvus, goodfellowi, haigi, johannis, juris, knighti, latro, lentulus, lewoodon, lewisi, luteolus, magellanicus, mendocina, mordosus, nigriceps, occulus, opimus, perrensi, pontifex, porteousi, recessus, saltarius, sericeus, steinbachi, sylahus, talarum, torquatus, tuconax, tucumanus, tulduco, utibilis, aperimus.

This genus is undouhtedly in great need of revision. The forms seem exircmely closely allied to each other, generally speaking, though most of them are
standing at present as distinct "species." 'There is great difference in size between some of the forms, emilianus, tucomax, and migriceps having a hindfoot measurement of 38 mm . and forms like recessus and occultus only 26 mm . But intermediate forms exist between both extremes, so that all hindfoot measurement figures exist within the genus between the figures 38 mm . and 26 mm . leucodon and leatisi, the latter described as semi-aquatic, have more pro-odont upper incisors than the others. Three large Bolivian types, boliviensis, goodfellozi and steinbachi, appear to have a skull which is broader than normal, particularly in the region of the muzzle.
'The genus has been reviewed by Rusconi, 1928 (Anal. Soc. Arg. Geogr. "Gaca," III, p. 235), who shows the subgenus "IIaptomys" to be no longer retainable.

I propose for the purposes of the present work to divide the genus into sections. No attempt is made to reduce forms to subspecies, the genus being far too big for a revision to be attempted in the present work; undoubtedly very many "species" now standing will ultimately be regarded as races. There are many forms not represented in the British Museum, though in the case of those that have been seen, except in very few cases, a large and representative series of stins have been examined.

So far as Patagonia is concerned, on British Museum material, there are two well-marked groups, very small types like magellanious, and very large types like fodax present only. But elsewhere, there are the "small," "medium," and "large" sections living apparently more or less side hy side, the measurements of which grade into each other.

The sections here recognized are as follows, though it must be borne in mind that the plan followed here is no more than provisional, and an attempt to get some order out of considerable chaos.

1. marellanicus section: small forms, smallest of genus; hindfoot usually under 30 , rarely exceeding this measurement, never more than 32 ; often 24, 25, 26.
2. torquatus section: moderate-sized forms, not becoming very large; hindfoot rarely under 30 , never less than 28 , usually measurement $3 \mathrm{I}-35$; never more than 37.
3. opimus section: like the last, but becoming large, approaching maximum for the genus; hindfoot usually over 36 , not under 35 excepting one race of opimus (luteolus), which agrees with the larger members of section 2. At maximum, hindfoot up to 48 (fodax); in others as a rule not more than 39 .
4. boliviensis section: agreeing in measurement with the last, but skull unusually broadened, particularly in the muzzle region. (Bolivia: boliaiensis, goodfclloadi, steinbachi.)
5. Icucodon section: incisors strongly pro-odont; hindfoot measurement about 30 (not many seen).
6. leavis section: incisors alse pro-odont, hindfort measurement 32-37; water-side dwelling type. Thomas suggested that this was not a near ally of leucodon.

Last of Named lorms

magellanicus section
1．C＂IENOMYS IIAIGI HAIGI，Thomas
1919．Ann．Nag．Nat．I Iist．9，III，p． 210.
Maiten，Western Chubut，Argentina．
2．C＇IEN゙OMV゙
1919．Ann．Mag．Nat．Ilist．9，III，p，2II．
Ilacañeu，Upper Rio Negro，Argentina．
3．C＇TENONIS SERICEUS，Allen
1903．Buil．Amer．Mus．XIX，p． 187.
Cordilleras，upper Rio Chico de Santa Cruz，Patagonia．
4．CTENCOMYS MAGELLAN゙LCUS，Bennett
1835 ．I＇roc．Zool．Soc．London，p． 190.
Port Gregory，Straits of Magellan．
Synonym：neglectus，Nehring，1900，Zool．Anz．XXIII，p．535．Pata－ gonia．
5．CTEN゙ONIS TALARLM TALARUM，Thomas
iS9S．Ann．Mag．Nat．Hist．7，I，p． 285.
Los＇「alas，linsenada，La Plata，Argentina．
6．CIENOMIS＇TALARUM ANTONII，Thomas
1910．Ann．Mag．Nat．II ist．S．V，p． 242.
Los lingleses ranch，Ajo，eastern Buenos Ayres．Argentina．
7．CTENONIS TALARLN RECESSLS，Thomas
1912．Ann．Mag．Nat．Hist．S，IX，p． 241.
Bahia Blanca，Argentina．
\＆．CTENOMYS MENDOClNA，1hilıppi
1869．Arch．für Naturg．p． 38.
Mendoza，Argentina．
9．CTENOXIS PONTIFEX，Thomas
1918．Ann．Nag．Nat．Hist．9，I，p． 39.
East side of Andes，Province of Mendoza，Argentina（near Fort San Rafael）．

1o．CTENOMIS BERGI，Thomas
1902．Ann．Mag．Nat．Hıst．7．IX，p． 241.
Cruz de Eje，Cordova，Argentina．
11．CTENOMIY 1 $O C H 1$ ，Thomas
1919．Ann．Mag．Nat．Hist．9，III，p． 117.
Chumbicha，Catamarca，Argentina．
12．C＇IEN゙OMY゚S＇IC＇CLMANL＇S，＇Ihomas
1900．Ann．Mag．Nat．Hist．7．Vl，p． 301.
＇Tucuman，Argentina．
13．CTEN゙OM1Y゙ L．ATRRO，＂Thomas
191א．Ann．Mag．Nat．Hist．9，I，p． 38.
＇Tapia，＇rueuman，Argentma．

1920. Arm. Maer. Nat. I List. o, V1, p. 243.

Nonteagudo, so kilometres south-east of 'Fucuman City, Argentina.
15. CTENOMIS SALTARIUS, Thomas

Salta, Northern Argentina.
16. COENOMY゙S JURIS, Thomas
1920. Amm, Nag. Nat. Hist. 9, V, p, r9f.

Ef Chaguaral, Jujuy, Argentina, zo kilometres east of San Pedro de Jujuy, between San Pedro and Villa Carolina.
17. (TENOMIS DORSALIS, Thmmas
1900. Ann. Mag. Nat. IIist. 7, VI, p. 38_{5}

Northern Chaco, Parasuay:

torquatus section

18. CTENONIS FERRENSI, Themas
19. Ann. Mas. Nat. 1list. 6, XVVIII, p. 3 II.

Goya, Cormentes, Argentina.
19. CTENONIYS AZARAE, Thomas
1903. Ann, Mag. Nat. Hist. 7, Xł, p, 22S.
3745^{\prime} S. 65° W., 7 So kilometres south-west of Buenos Ayres, Buenos Ayres l'rosince, Argentina.
20. CTENONYS PORTEOLSI PORTEOUSI, Thomas
1916. Ann. Mag. Nat. Hist. 8, NVIIl, p. 304.

Bonifacio, South-west Bucnos Ayres, Argentina.
21. CTENOMYS PORTEOUSI AUSTRALIS, Ruscona
1934. Rev. Chili. Nat. Hist. 38, p. ros.

Province Buenos Ayres, Argentina.
22. ("TENOMY'S TULDLCO, Thomas 192r. Ann. Mag. Nat. Mist. 9, V1lf, p. 218.

Los Sombreros, Sierra Tontal, San Juan, Argentina.
23. CTENOMIY FANIOSUS, Thomas
1920. Ann. Mag. Nat. Hist. 9, V1, p. 420,

Potrerillo, Rioja, Argentina.
24. CTENONIYS COLCDO COLLDO, Thomas
1920. Ann. Mag. Nat. IList. 9. V], P. 119.
1.a Puntilla, Tinngasta, Catamarea, Argentma,
25. C'TENOAIS COLLDO JOIIANNIS, Thomas
1921. Ann. Mar. Nat. Hist. 9, V11, p. 523.

Cañada IInda, San Juan, Argentina.
26. CTENOMY'S VIPERINUS', Thomas
1926. Amm. Mag. Nat. Hist. 9, X゙VII, p. 605.
'fablebands abose Noreo, Vipos, Dept, of 'Trancas, Tucuman, Arcentma.
27. CPENUNYS SYLVANUS SYLVANLS, Thomas

1p19. Ann. Mag. Nat. Hist. y, 1V, p. 155.
'Partagal, Prosince Salta, Argentma.
28. CTENOMYS SYLVANU.' L"PIBHIS, 'Thomas
1920. Ann. Mag. Nat. Ilist. 9, V, p. 193.

Yuto, Kın San Francisco, Argentina, 20 kilometres east of San Pedro de Jujuy.
29. C'IENONIYS SYLNANUS NORDOSL'S. Thomas
1926. Ann. Mag. Nat. Hist. 9, XVII, p. 325.
'Tambo, 75 kilometres cast of 'Iarija, Bolivia.
30. CTENOMYS BUDINI BUDINI, Thomas
1913. Ann. Nag. Nat. Hist. 8, XI, p. Ift.

Cerro de Lagunita, Jujuy, Argentina.
31. CTENOMY'S BUDINI BARBARUS, Thomas
1921. Ann. Mag. Nat. Hist. 9, VII, p. 185.

Sunchal, Jujuy, Argentina.
32. CTENOMYS FRATER, Thomas
1902. Ann. Mag. Nat. IIist. 7, IX, p. 228.

Potosi, Bolivia.
33 CTENOMYS TORQUATUS, Lichtenstein
1830. Darstell. Säugethiere, text of PI. XXXI.

Southern Provinces of Brazil and banks of Uruguay River.

leucodon section

34. CTENONIS LEUCODON, Waterhouse
35. Nat. IIist. Mammalia. II, p. 28s.

San Andres de Machaca, Bolivia (Dept. of La Paz).

lewisi section

35. CTENOMYS LEWISI, Thomas
36. Ann. Mag. Nat. Hist. 9, XVII, p. 323.

Sama, 50 kilometres west of Tarija, Bolivia.
opimus section
36. CTENONI'S EMHLAANL'S, 'Thomas \& St Leger
1926. Ann. Mag. Nat. Hist. 9, XVIII, p. 637.

Chos Malal, Neuquen, Aryentina.
37. CTENONIS FOD.AX, Thomas 1910. Ann. Mar, Nat. IIst. 8, V, p. 243.

Valle de Jago Blanco, Chubut, Patagonia.
38. CTENOMYS FUEGINLS, Ihilappi
1880. Arch. fïr Naturg. p. 276.

Eastern Island of Tierra Del Fuego.
39. CTENOMIS FLLVCS, Phulipps
1860. Reise. Atacama IIalle, p. 857

Desert of Atacama, Chile.
40. CTENONYS KNIGHTI, Thomas
1919. Ann. Wag. Nat. Ilist 9. Jll, p. qos.

Otro Cermo. 45 kilmotres best of Chumbicha, Catamared, Argentifi.
41. CTENONIS TC(ONA., Themas
1025. Ann. Mag. Nat. Hist. 9, XV, p, 583

Conespeom, Tucuman, Argentma.

1848. Archiv. für Naturg, I, P. 75. Bolivaa.
43. CTENOAYS OPINIUS NIGRICEPS, Thomas
1900. Ann. Mar. Nat. Hist. 7, N1, p. 383.

Tetirs, Pumo Noquegua Road, South Peru.
+4 CTENONIS OPINUE LUTEHLUS, Thomas
1900. Ann. Mag. Nat. Hist. 7, VI, p. $3^{8} 4$.

Cordilleras of Juguy, Arcentina.

boliciensis section

45. CTENOMYA BOLIVIENSIS, Waterhouse
ists. Nat. Hist. Mammalia, ii, p. 278.
Plains of Santa Cruz de la Sierra, Bolivia.
46. CTENOMYS STE1NBACHI, Thomas
47. Ann. Mag. Nat. Hist. 7, XX, p. 164.

Campe of Province Sara, Bolivia.
47. CTENOMYS GOODFELLONI, Thomas
1921. Ann. Mag. Nat. Hist. 9, V11, p. 136.

Esperanza, Concepcion, Eastern Bohvia.
Not seen, and not allucated to section
48. CTENOMY BRASLLENSIS, Blainvile
iS26. Bull. Soc. Philom. p. 62.
Ahnas Geraes, Brazıl. (Waterhouse treats torquatus, number 33, as a synonym of this species.)
49. CTENOMYS OSGOODI, Allen
1005. Report Princetown Linv. Exped. to Patagonia, p. 101.

Rof Chico de Santa Cruz, Patagonia.
Sinomym: ruhustus, Allen, not of Phlippi, 1903, Bull. Nus. Nat. Hist.
XIX, p. 1855 . Patagonia. According to measurements from description, this spectes will belone in the magellanicus sectom.)
so. CTENOMY'S COLBLRNI, Allen
1903. Bull. Amer. Mus. Nat. [hist. NXX, p. 188.

Arroyo Aike, 50 miles south-east of Lake Buemos Ayres. Patagonal (According to measurements from descrupton this spectes probably belones in magellamicus sectum.)
51. C'TENOMIS MIDETLS, Nehrmer
1585. Gitz. Ber. (ies Nat. Fr. Berlin, p. 47.
"Campos," bast of Mundo Nowo, Rw ((rancle do Sul, Brazal.
52. (CTENOMYS RONDOMI, Kharo
1914. Comm. Linhas, Tel. Amexo, 5, p. 39.

Jurucna, Matto (irossm. Rrazk.
53. C"ILNOMFY BICOLDR, Raberro
1914. Comm. Linhas. I'el. Annexo, 5, p. 41. Natto Grosso, Mrazil.
54. C゚ГENOMV゙S NATTERER1, Wagner 18, 8 . Archiv, fïr. Naturg. 1, p. 72. Caissora, Matto (irosso, Brazil.
55. CTENOMIS PLNDTR, Nehring 1900. Zool. Anz. XXIIII, p. 420.

Alejo Iedensa, Cordowa, Arcentina.
56. C"TENUNIS ATACAMENS1S, Philipp1
1860. Reise. Atacama Halle, p. 157. Desert of Atacama, Chile.
57. C'TENONY'S ROBUSTUS, Philippi
1896. An. Nus. Nac. Chile, no. i3, p. It. Canchones, near l'ica, Tarapaca, Chile.
5. C'IENOMIYS PALLIDLS, I'hilippi iso6. An. Mus. Nac. Chile, no. 13. p. 13. Breas, desert of Atacama, Chile.
59. CTENOMFS PERNKK, Philippi

I S96. An. Mus. Nac. Chile, 13, p. 55.
Near Aguas Calientes, Chile.
60. CTENOMS CHILENSIS, Philippi
s S96. An. Mus. Nac. Chile. 13, p. i6. Linares, Chile.
61. CTENOMYS MAULINLS, Philippi
1872. Zeitschr. f. ges. Naturw, XL, p. 44^{2}

High Andes of Province of Maule, Chile.
Tate lists also a "cinerea," Thomas, which is evidently a mistake for Abrocoma cinerea, 'Ihomas.
'lhe family lichimyidae contains according to Miller \& Gidley very many Veotropical fossil genera. The Octodontinae are quoted from the Oligocene; one of the genera, Cephaloms, had a deciduous P.t (Gregory, Orders of Mammats, igro), a character not known in living Hystricoids; the Echimyinae (with which Jiller \& Gidley include Capromyinae and Dactylomyinae) are quoted from the Sliocene; some of the genera, as Isobolodon (Porto Rico), Brotomys (Dominican Republic), and Borombs (Cuba), are thought to have esisted recenty. 'Ihe 'Thryonomyinae have been described from the Niocene of \ln nita.

> EC11I\IIID.NE:
> (FINER.II, HORKS OF NEFEREXCE

Waterhot SE , $\mathrm{Si}_{4} \mathrm{~S}$, Natural Hstory of Nammalia: Rodentia. General review of all forms then known.
'TATf, 1935, "l'axonomy of Neotropical Hystricoid Rodents, Bull. Amer. Mus. Nitr Ilist. 1NVIII, P. 295.
Pocock, Jroc. Zonl. Soc. London, $1922, \mathrm{p} .365$: external characters of Ilystricomorph Rodents (notes on Octodon, ('upramiss. Myocostor, Dactylomys, Ctenomys, Thryenomys).

Charmix, 1go1, liull. Anzer. Mus. Nat. Hist. vol. XIV, p. 3I3. Revision of llutias (Capromyinae).
Ruscosit, Revich of Ctenomys, 192 S , An, Suc. Arg. Geugr. "Ciaca," III, p. 235.
'Thomas, races of Thryonomy's szsinderiamus, Ann. Jag. Nat. Hist., 9, 1.K, p. 392, 1922. Miller, Proc. U. S. Nat. Nus, LXXII, no. 16, p. \&, 9927 (Plagiodomia hylacum).
JentiNk, Notes Leyden Juseum, XIIl. 1891, p. 105. On Dactylomys dactylmus and Kanmabatcomys amblyonys.
And numerous papers by Oldfeld 'lhomas (Echimyinae, Octodontinae),

Family DINOMIHDAE

i 896. Thomas: Hestricomorpha; Family Dinomyidae
1899. Tullberg: Hystricomorpha; (?) Family Dinomyidae.
iol\&. Miller \& Gidley: Hystricoldae; Family Dinomyidae.
1924. Winge: Family Ilystridae; Dasyproctmı, part, group Dmomyes.

192S. Weber: lfrstriconlofs; Fimaly Cavidae, part, subfamily Dinomymae.
Geographical Distribution. South America; Peru, Colombia, Ecuador and Western Amazonia.
Number of Geners.-One.
Characters.-Cheekteeth extremely hypsodont, or probably evergrowing, a series of transverse plates. External form heavy, terrestrial; forefeet and hindfeet with four digits, the fect broad, the claws long and powerful. Limbs not lengthened. Palate constricted anteriorly. Zygomasseteric structure typically Hystricoid, as regards the formation of the lower jaw.

Remarks.-Except by those authors who merge Cumiculus and Dasyprocta with the Caviidae and who have regarded this genus also as a member of that family, Dinomys has usually been regarded as an isolated type among Hystricoidae. 'There is not the slightest reason to suppose that the animal is near the Caviidae, the lower jaw being typically Hystricoid in formation, and therefore differing from that family; nor does the genus seem closely connected either with Cimiculus or Dusyprocta, differing from both in tooth formation as well as the feet and digits. The palate and cheekteeth are similar to those of the Chinchillidae, but from these Dinomys differs hy its typically ridged and distorted angular portion of the mandible, the general external form, the absence of part of the lachrymal canal open on the side of the rostrum, as well as by no tendency to great inflation of bullae.

Goeldi in a paper on some captivity specimens states that the animals are slow-moving, unlike Dasypracta and the Chinchillidae. He mentions the fact that like Dasyprocta but unlike Cuniculus they will sit up on their haunches and use the front paws when feeding. 'The claws on dried skins of Dinomys appear to be fossorial in type, but Goeldi states that he has not seen the captivity specimens use the claws for digging.

The breadth of the manubrium has been used as a character to chistinguish this genus as a family or subfamily from Dasyproctidac or Cavidae (Winge and others); it should be notel that this character, according to Tullberg's notes, may vary within some of the wther families.

Long and Narrow
Lafostomms (Chinchillidac)
Dolichotis (Caviidae)

Broad
Chinchilla (Chinchillidae)
Cazia (Caviidae)

It is stated to be long and narrow in Dasyprocta and Cuniculus, broad in Dinomys.

The clavicles in Dinomys are stated to be complete.

Genus i. DlNO.MY'S, Peters

1873. Dinomse, Peters, Mon. Ber. Ak. Wiss. Berlin, p. 55 t.
'T'ype Species.-Dinomys branickii, Peters.
Range.-As in the family Dinomyidae.
Number of Forms.-One only is now recognized; revised by Sanborn, 1931, Field. N11s. N.J1., zool. ser. XVIII, p. i 49.
Characters.-Skull heavy and broad, with long broad frontals; the parietals are depressed for muscular attachment, but a sagittal crest is not formed in any of the few skulls examined. No separate canal in infraorbital foramen for nerve transmission. Bullae medium sized; paroccipital processes not lengthened. Jugal long, broad, but evidently simple. Palate of a similar type to that found in Chinchillidae, but mesopterygoid fossa much broader; the palate is continued farther backwards, to slightly behind the toothrows. Palatal foramina small. Lachrymal large.

Incisors broad and heary; cheekteeth a series of transverse plates; four of these in each upper tooth; four evidently in the lower teeth, but the anterior one restigial.

Externally large, heavy, bearing a superficial resemblance to Cuniculus; but tail longer than hindfoot (fully haired). Hindlimbs not lengthened; the feet broad, the claws long and heavy; no great discrepancy between the lengths of the (four) digits; forefoot with four digits, the claws large and powerful, though apparently narrower than in Cumiculus.

The genus is not well represented at the British Nusenm.
Forms seen: branickii, "occidentalis."

List of Named Forms

(The references and type localities are the work of Mr. G. W. C. Holt.)

[^6]

Hiff. 41. Ihnomys mRANiflill, leters.
I3 XI. Ni, $3+1$, IO.I! , \hat{j} :

The family Dinomyidae as defined by Miller \& Gidey (Lachrymal canal closed in front of orbit; like the Echimyidae, but cheekteeth combining a multilaminar structure with excessive hypsodonty), is known fossil from the Niocene of South America and the Greater Antilles; many extinct genera are quoted by these authors.

Family ERETHIZON'TIDAE

1896. Thomas: ilystriconorpha, part; Family Erethizontidae, with subfamilies Erethizontinae and Chaetomyinae.
1897. Tullherg: 1lystricomorpha, part; Family Erethizontidae.
1898. Miller \& Gidley: Superfamily Hystricoidae; Family Erethizontidae. Family Echimyidac, subfamily Echimyinae, part (Chaetomys).
1899. Winge: Family 11ystricidae; Hystricini, part: "Sphinguri."

1928 . Weber: Hystricoidea, part; Family Erethizontidae.
Geographical Distribltion.-America; Canada, Western United States; Mexico, Central America, and the greater part of Tropical South America.

Number of Genera.-Four.
Characters.-Not essentially different from the Echimyidae, but externally more highly specialized; feet becoming abnormally modified for arboreal life; function of hallux being taken over in specialized forms by a broad movable pad, the sole becoming abnormally wide; body hair modified partly or completely into short sharp spines. Bullae prominent, but paroccipital processes not lengthened. Cheektecth rooted, typically with the re-entrant folds extremely wide; external form thickset, heavy.

Remarrs.-Presumably because these animals are also known as "Porcupines," or because their fur is spiny, most earlier authors placed them in the family Hystricidae. Thomas very properly formed a distinct family for them, and most subsequent authors have retained the distinction. 'Tullberg states that there is hardly a single common feature between the Old World and New World Porcupines except the spines, and even these are of a considerably different structure. The two families differ entirely in the structure of the feet, the structure of the cheekteeth, the formation of the bullae, the structure of the tail; even in the essential arrangement of spiny covering. 'They agree in zygomasseteric structure, which proclaims them both members of the Hystricoidea, but this seems about all they lave in common. In fact, it would seem from cranial and dental characters, at least, that the American representatives of the Hystricidae (if that family has American representatives, and the resemblance is not due to convergence) are the Dasyproctidae; certainly not the present group.

In Erethizontidae the paroccipital processes are less lengthened and evidently of a more generalized structure than in Echimyidae. The zygoma is simpler than in that family. "The cheektecth of the typical subfamily, which contains Erethizon, Echinoprocta, and Coendou, and which has been incorrectly split into
two subfamilies by some authors (see notes on Echinoprocta below), are remarkable for the wielth of theil reentrant folds, paralleling in this formation certain Squirrels as Funisciurns, also the Anomaluridae, and to a degree reminiscent of some of the more complex-toothed Neotropical Cricetinae.

Chuctomys, on the other hand, has teeth more like those of Echimys. This is an isolated type, the relationships of which are by no means clear, so that it might he quite correct to refer it to a distinct family Chactomyidae. Agreeing with most specialized Erethizontinae in the structure of the feet, it differs to a very wide degree from them in cranial and dental characters. The orhit is almost completely surrounded by bone, a very rare feature in the Order; and in no member of the Order which I have seen is this specialization so nearly complete. Moreover, the teeth are not in the least like those of Erethizon and Coendou. It is a rare genus, the exact locality of which 1 have so far been unable to trace, and evidently little is known about it. The spiny covering of the body is very poorly developed compared with other members of the family. Miller \& Gidley transferred it to the Echimyidae, but it seems not to belong there in cranial characters, and the feet are as highly specialized as in Coendou, and evidently in exactly the same manner.

Thomas expressed the opinion that mainly on this account it might be retained in this family, and formed a subfamily for its reception. This view is here adopted.

Kiy to the Subfamlies of Eretimzontidae

Orbit almost surrounded by extremely thickened jugal and short postorbital process of frontals. Cheekteeth with narrow re-entrant folds, the structure of the upper series not far removed from laminate. Subfamily Chaetomyinae. Chaetomys

Orbit large; frontal without postorhital process; jugal not specially thickened. Cheekteeth with wide re-entrant folds.

Suhfamily Erethizontinae
Erethizon, Echinoprocta, Cocndou
The mandible in this family is characterized by the length of the symphysis; the angular process is not so conspicuously distorted as in the Echimyidae, and a weak ridge below the condyle similar to that sometimes found in Chinchillidae, and presumably for the attachment of masseter medialis, foreshadowing that which is so much lengthened and such an important feature of the jaw in Cavidae, can be present. In Erethizon the lower border of the angular process is conspicuously hroadened.

Subfamily CHAETONITINAE

Geggraphical Distriblition-—Brazil.
Number of Cifnera.-One.
Characters.-As indicated in the above key.

Gemus r. CHAETOMYS, Gray

1843. Chaftomys, Gray, List Specimens Mamm. in Coll. Brit. Mus. p. 123.
'Type Spectes.-Iystrix subspinosa, Kuhl.
Range.-Brazil; exact locality apparently not known.
Number of Forms.-One.
Characters.-Frontals extremely hroad, but some narrowing present in front of the well-marked postorbital process. Parietals strongly ridged, but the posterior part of the skull broad, and parictal ridges showing no signs of coming together. Palate relatively narrow; short. Palatal foramina very short, far in front of toothrows.

Bullae relatively large, the meatus produced sharply sideways, forming sharp angle. Paroccipital processes short. Nasal chamber appears less open than is usual in Erethizontinae. Jugal with anterior part immensely broadened, nearly in contact with the postorbital process; the jugal nearly extending to the lachrymal. No canal for nerve transmission in infraorbital foramen. Mandible with low coronoid; angular process relatively small, the lower border not specially widened, but this part of the jaw clearly distorted outwards.

Fig. 43. Cuatumys absponoses, Kuhl. B.\. Nor, 3.リ \& 80, ; 1 .

Upper checkteeth are divided into three lobes, the middle one being simple, straight, separated from the front and the hind ones, which are each subdivided by a well-marked onter re-entrant fold. The lower cheekteeth are not unlike those of Eichmys; there are one outer and two inner folds present. Incisors narrow.

The spiny covering of the back is rudimentary, consisting of long wavy bristles only; the head is densely covered with sharp spines, which extend over the neek and forelimb. Feet as specialized as in any member of the family; four digits present on fore and hindfeet, these bearing long curved claws, the pollex and hallux minute, replaced by a broad pad. Tail relatively long, sealy, and moderately haired, the underside, near the body, clothed with stiff bristles, as in Coendou.

Forms scen: subspinosus.

List of Named Fornis

('The references and type localities of all Erethizontidae are the work of Mr. G. W. C. Molt.)

1. CHAETOMYS SUBSPINOSUS, Kuhl.
2. Beitr. Zool. Mamm. p. 71.

Brazil (?).
Synonym: tortilis, Olfers, 1820 , Neue Bibl. Reis, XV, p. 2 II. Brazil. moricandi, Pictet, I $8 \neq 3$, Rev. Zool. p. 227. Brazil.

Subfamily ERETHIZONTINAE

Geggraphical Distribetion.-As in the subfamily.
Number of Genera.-']hree.
Characters.-Differing from the Chaetomyinae in the large orbit, the lack of postorbital process, the lack of extreme thickening of the jugal, the pattern of the cheektecth, which are with wide inner and outer reentrant folds (three outer, one inner in the upper series), and the greater development of spiny covering of the back. The feet may be highly specialized, or in Erethion less so. The tail may he short (Erethizon, Echinoprocta), or long and prehensile (Coendon).

Rfaiarks. - l'ocock in 1922 proposed to divide this group into two subfamilies, Erethizontinae and Coendinae; he does not include in his key the genus Eehinoprocta which is precisely intermediate in the main character (the tail), between P'ocock's two "subfamilies."

Kex to the Genera of Erethizontinae

Hallux well developed, and no well-marked pad taking its place on the hindfoot; inner side of forefoot not or less expanded; tail short, non-prehensile.

Erethizon
Hallux vestigial or absent, its function taken over by a broad movalle pad; inner side of forefoot more expanded.
12-Living Rolents-I

Tail short, non-prehensile, little longer than hindfoot.
Tail long, prehensile (as far as known), much longer than hindfoot.
Coendor
Gemus i. ERE'THZZON, Cuvier
iS22. Erethizon, Cuvier, Mem. Mus. IIist. Nat. LX, p. 425.
TYpe Species.-Hystrix dorsata, Linnaeus.
Range, -North America; "Most of forested North America north of $40{ }^{\circ}$ and south in the Rocky Mountains almost to Mexican boundary"
(Anthony). Forms named from Labrador, Nebraska, California, Arizona, British Columbia, Alaska.

Number of Forms.-Seven.
Characters.-Nasals wide, widely open anteriorly; frontals broad, strongly ridged, these ridges extending hackwards to form a sharp sagittal crest. Palate narrow anteriorly, very broad behind, and short. Zygoma simple, jugal broader anteriorly. Bullae large, the external meatus produced slightly sideways. I'alatal foramina medium in size. fncisors relatively thin.

Mandible with low coronoid, relatively low condylar process, this thickened; the area beside the condyle with noticeable ridge presumably for attachment of masseter medialis; this short, not so pronounced as in some Chinchillidae. Angular portion distorted outwards fairly strongly, the lower border abnormally thickened.

Upper checkteeth with one external and one internal main persistent folds, the other two outer folds (anterior and posterior) tending to isolate, and to take up most of the lobes formed by the central folds. Usually a trace of a small posterior fold in the back of each tooth.

The lower teeth reverse the pattern of the upper series.
The infraorbital foramen has no separate canal for transmission of nerve, in this respect agrecing with all other members of the subfamily.

Entire body, limbs, head, tail, and sides of feet covered with thick hair which completely conceals the highly effective spiny covering below it. 'The spines are short, with barbed tip, and detach very easily; once sticking in an object they are sometimes quite difficult to take out (this feature common to all Erethizontinac).

Tail short and bushy, covered with spines more or less throughout. Hindfoot lacking the inner pad characteristic of Coendou, and with a well-developed hallus, which is, however, shorter than the remaining four digits; claws curved, powerful. Forefoot broad, with four functional digits. Nammae \& (Anthony). Size relatively large; up to ahout 34 inches head and body.

The genus is noteworthy as being the only 1 lystricoid adapted for life in cold climates.

Two closely allied species are admitted.
Forms seen: dorsatum, epixantham, meops.

Fig. 45. Erethizon lphantho myops, Merriam. B. M1. Nos. 4.11.30.1; : I.

B. MI. Xin. f.t1-30.1; I.

Fig, + Er. Erethizo fpixatheal ayops, Merfam. Chechtecth: 4.11.30.I; $2 \frac{1}{2}$

List of Named Formis

1. ERETHIZON DORSATUM DORSATUM, Linnaeus
2. Syst. Nat. 1, p. 57.

Eastern Canada.
Synonym: hudsonis, Brisson, 1756, Regn. Anim. Quadr. p. 128. America. 'Trouessart quotes as synonym: pilosus americamus, Catesby, 1/731, Nat. Hist. Carolina, 1, sxx.
2. ERETHIZON DORSATUAI PICINUAI, Bangs
1900. Proc. New Engl. Zool. Club, II, p. 37.

L'Anse au Loup, Strait of Belle Isle, Labrador.
3. ERETHIZON EPINANTHUM EPIXANTHUM, Brandt
1835. Mem. Acad. St. Pctersb. pl. I, p. 390.

California.
4. FRETHIZON EPINANTHUN BRUNERI, Swenk
1916. Univ. Studies Lincoln Nebr. vol. XVI, p. 3. 3 miles cast of Mitchell, Scotsbluff County, Nebraska.
5. ERETHIZON EPINANTHUM COUESI, Mearns
1897. Proc. U.S. Nat. Mus. XIX, p. 723. Fort Whipple, Yavapai County, Arizona.
6. ERETHIZON EPINANTHUM NIGRESCENS, Allen
1903. Bull. Amer. Mus. Nat. Hist. XLX, p. 558. Shesley River, British Columbia, Canada.
7. ERETHIZON EPINANTHUM MyOPS, Merriam
1900. Proc. Washington Acad. Sci. II, p. 27. Portage Bay, Alaska Peninsula, Alaska.

Genus 2. ECHINOPROCTA, Gray

1865. Echinoprocta, Gray, Proc. Zool. Soc. London, p. 321.

Type Species.-Erethizon rufescens, Gray.
Range.-Colombia.
Number of Forms.-One.
Characters.-Cranially and dentally not essentially different from small species of Coendou (next to be described); a sagittal crest evidently formed; frontals not specially inflated; zygoma simple; a little constriction noticeable in interorbital region.

Size smaller than is normal in Coendou; the spines of the back long and bristly, gradually becoming thicker and stronger as they approach the rump, on which they are as strong as in Coendou. Head covered with sharp spines.

Feet, including the bone formation of the specialized pad of the hindfoot (as figured by 'Trouessart), similar to Coendou; hallux suppressed. Tail short, little longer than hindfoot, hairy, non-prehensile.

Forms seen: rufescens.

> List of Named Forms

1. ECHIRNOPROCTA RUTEESENS, Gray
2. Proc. Zool. Soc. 1, ondon, p. 322.

Colombia.

Genus 3. COENDOU, Lacepéde

1790. Coevnot, Lacepede, 'Tabl. des Divisions des Mamm. p. it.

1尺゙25. Srlefoctres, Curier, Dents. Mamm., p. 256. (Sphiggure, 1822, Mem. Mus.
Nat. Hast. Paris, IX, p. 427.) (S"phiggurus spinosus, Cuvier.) Valid as a Subeieves. 1825. Sinoetheres, Cuvier, Dents Mamm. p. 256. (Hystrix prehensilis, Linnatus.) 1835. Cercolabes, Brandt. Thm. Acad. St. Petersburg, 6, iii, p. 301. New name for Coendou, Lacepide.
Type Species.-Hzstrix prehensilis, Linnaeus.
Range.-Nexico (through Central America:), to Panama; Venezuela, Colombia, Ecuador, Peru, Bolivia, Brazil south to Paraná and Rio Grande do Sul. One form named from Chile, and one "said to be from the West Indies"; there seems reason to doubt both these localities.

Nimber of Forms-Twenty-nine.
Characters - Skull broad, sometimes characterized by somewhat extreme inflation of frontals (this most developed in prehensilis group, also to a certain degree in bicolor and mexicanum); the skull in these species sloping sharply downwards in front, and more gradually so behind; in smaller species as paragavensis, the portion of the skull over the posterior zygomatic root is the highest part ; between these extremes exist intermediate forms. Nasals well open anteriorly, usually short. Parietals ridged, and a sagittal crest may be formed (this evidently a variable character). Palate wide, especially posteriorly; hamulars thick, usually joining the bullae, which are prominent. Palatal foramina usually relatively short. Paroccipital processes not lengthened. Jugal rather long; zygoma simple. Nandible like Erethizon except that the lower border is usually less extremely broadened; there is a tendency in this group for the degree of distortion outwards of the angular process to be weak. Cheekteeth essentially as Eiethizon.

Externally the body is covered in short thick spines, which probably do not much exceed four inches in length at highest development. 'Tail prehensile, so far as known; its length variable in the different species; sometimes slightly longer than the head and budy, but usually rather shorter. The lower part at the end is naked, curling upwards when grasping an object. The underside near the body is covered with stiff sharp bristles, which it has been suggested perform a similar function to the caudal scales of the Anomaturidae, to assist the animal's balance when resting on a branch.

The upper part of the tail near the body is spiny. 'The feet are very highly specialized, the pad on the hindfoot at its highest development; the claws are long and curved; both fore and hindfeet with four functional digits onls; there is no very marked discrepancy in their lengths. The pads of the hindfoot are supported by a bony structure, which is well described and figured by Waterhouse, 184 , Nat. Hist. Namm., p. 405, and pl. 88 , fig. 4.

Some forms have the spiny covering of the back mixed with or covered by long thick fur; the hair of the chest and belly is usually in these forms less bristly, or soft. For these the subgeneric name Sphiggurus is used by 'Tate; it is here retained.

Fig. 49. Coevdol prehensills boliviensis, Gray.
B.MI. No. 50.6.5.2; . 1.

 BM DO. 50.n.5.: 1 .

FIf: 51. COHNDOU PREYENSILIS BOLIVIINSIS, Gitay. B. 11 Nor. 50.6.5.2; 1.

\qquad

Fir. 52. Cofndu prehensilis bolimiensis, Gray, Chetkteeth: B.M. No. 50.6.5.2; • 32.

Forms scen : bicolor, boliziensis, centralis, "couty" (=paragayensis), insidiosus, laenatum, melamurus, mexicanum, pallidus, prehensilis, pruinosus, quichua, roberti, rothschildi, simonsi, tricolor, zestitus, zillosus, lucatamiac.
'I'he genus is in need of revision; it appears to be in a more chaotic state even than is usual among these Neotropical Rodents, many "species" being apparently based on only one skin, with exact locality unknown.

It appears to me to divide, broadly speaking, into four or possibly five groups. Subgenus Coendou (the spines not mixed with hairy covering):
prehonsilis group: large animals (largest of genus), with frontals normally at maximum inflation for the genus; general effect silvery as regards colour, the spines white terminally (evidently main spines black terminally in all others). Long-tailed types.

With prchensilis, boliziensis, which is probably a synonym, or at most a race of prchensilis, coutralis, described as near brandti; brandti, which seems very near prehensilis; and tricolor, the status of which is doubtful, the type skull (broken) appears to be less arched in the region of the frontals than in allies, and the colour of the one skin seen, on the identification of which there is some doubt, rather different. Perhaps this species should be placed incertae sedis. C. sanctaemartae, not seen, is described as a member of the group.
bicolor group: presenting typically the following features: spines black terminally, general effect of animal dark; head and shoulders covered by a profuse mantle of moderately long thick bristle-like spines (not sharp, nor effective as weapons of defence). Relatively large; frontals markedly inflated, but less extremely than in prehensilis group. C. simonsi is evidently not more than a subspecies of bicolor. C. quichua, a smaller form, with less developed mantle on head and shoulders; the mantlespines white-tipped in the type skin. Skull not arched in frontal region. C. rothschildi, near quichua, differing in colour.

Incertae sedis species: platycentrotus, near prehensilis according to Waterhouse, but placed in neighbourhood of bicolor group by Tate; and nocthemera, stated by Waterhouse to be synonymous with bicolor, but this identification questioned by Thomas; and listed by Tate as a member of subgenus Sphiggurus.
Subgenus Sphiggurus (the spines mixed with and typically covered by long woolly hair).
mexicanm group. Larger, very dark types, from Central America. 'Typically the skull considerably intlated in the frontal region (about as in bicolor:). Includes lacnatum, in which the frontals are flat, with no trace of inflation. Goldman (Xlammals Panama, Smiths. Misc. Coll. 69, 5, p. 133,1920) states that intergradation may take place here, and refers lacnatum to mexicanum as a subspecies; this indicates that too much attention should not be paid to cranial characters in this group, as the skulls of lacnatum and the mexicamum (with yucatamiac) examined are very distinct from each other.
paragayensis group: normally smaller lighter types. (It is not easy to give exact measurements of these species, as comparatively few of the skins examined bear measurements.) So far as seen the frontals never inflated.
paragavensis (or the skins bearing the name "couin," which according to 'Tate must be reqarded as a synonym of paragayensis), if identified rightly, are remarkable for the fact that the spines of the head and shoulders are exceptionally strong, and not covered by any hair, which is present, however, on the lower part of the back. The type skin of roberti is similar, but even less hairy on head and shoulders.
insidiosus (or skins bearing this name) have the head and back normally. hairy; the skulls of these three last-mentioned species are very similar. Thate suggests that spinosus of Cuvier is probably a synonym of paragayconsis. C. zillosus is probalbly a synonym of insidiosus according to Waterhouse; it appears to be treated as such at the British Nuseum. C. nigricans, not seem, is considered near zillosus by Waterhouse. C. melanurus is a type much like the above-mentioned, but with a jet-black tail; the skull is flat. C. pallidus, based on a young animal "said to be from the West Indies," is a similar type of animal, but much lighter coloured (albinistic?); rather short-tailed.

A rather distinct section is seen in restitus and pruinosus, which differ from each other in colour; both have no intlation of the frontals; the spines are of two kinds, the normal mixed with longer "bristle-spines"; covered as usual in the subgenus with thick hair. In restitus the tail appears shorter than in any other; it is still, however, considerably longer than Echimoprocta, and partly naked, as in Coendon.

Finally chilensis, affinis, and sericeus are not represented in London; the first-named was said to come from Chile, but Tate, p. 299, states: "It secms improbable that any Porcupine exists in the wild state in Chile."

List of Named Foras
 Subgenus Coendou, Lacepéde
 prehensilis Group

1. COENDOL IPEHENSILIS IREHENSILIS, Lmnacus

155\%. Syst. Nat. 10 th Ed. p. 57.
Brazil. (F'robably near Pernambuco.)
 lirazh.
longicandatus, Lacepéde, igor, 'Tabls. des Dis. des Namm. P. 1. Cayenne.
2. COENDOU PREHENSLLA BOLIVIENSIS, GTAY
1850. Ann. Nat. IIst. V. p. 3i\%o.

Bolisra.
3. COENDOL CENTKALIS, Thoman
1903. Proe. Zonl. Guc. Lontion, n, $2 \neq$.

Chapada, Natto Cirossu, Brazil.

4．COENDOC BRAMDTII，Jentmk
1879．Notes Levden Mus． 1, p．gh．
Jatto（irosso，Brazal（？）．
5．COEDDOL SANCTAEMARTAE，Allen
1904 ．Bull．Amer Mus．Nat．Ilist NX，p．+41.
Bonda，Santa Warta district，Colombia．
6．COFADOL TRICOLOR，Gray
1850．Ann．Nat．Ilist．V，p． 3^{81} ．
Bolivia（？）．

bicolor Group

7．COEXDOU BICOLOR BICOLOR，Tschudi
1845．Vauna l＇eruana，p． 186.
Woods between Rivers Tullamayo and Chanchamayo，Peru．
S．COENDOU BICOLOR SLNONSI，Thomas
1902．Ann．Mag．Nat．Hist．7，IX，p．1f1．
Charuplaya，Securé River，Yungas，Bolivia．
9．COENDOU QU1CHUA QLICHL＇A，Thomas
1899．Ann．Nak．Nat．Hist．7，IN，p． 283.
Puembo，Pichincha，Ecuador．
10．COENDOL QLICHLA RICHIARDSONI，Allen
1913．Bull．Amer．Mus，Nat．Hist．NXVII，p． 4^{-8} ．
Esmeraldas，Ecuador．
II COEXDOL ROTHSCHILDI，Thomas
1902．Ann．Mag．Nat．Hist．7，X，p． 169.
Sevilla Island，off Chiriqui，Panama．

incertae sedis

12．COENDOC PLATYCENTROTLS，Brandt
1835．．Itm．Acad．St．Petersb．p． 399.
＂America australıs．＂
13．COENDOU N゙YCTHENERA，Kuht
1820．Beitr．Zool．Mamm．p． 71.
No localty．Brazil（？）．

Subgenus Sphigourus，Cuvier
 mexicantom Group

1792．Anim．Kined．p．214．
Nountains of Mexico．
Sy nonym：nozaehispomite．Brisson，1756，Reg．Anam．p．127．Mexica． （IFor status of Irrisson＇s specific names see Tate，Bull． Amer Mus．Ni．1H．INVIll，1935，p．297．1
liebmamni．Reinhart，1844，Arch．Nature．p．2＋1．Nexico．
15．COENDOL NINICANC゚N YCCATANIAE，Thonas
1902．Ann．Mag．Nat．Hist． 7, N，p．-41 ．
Yucatan，Mexico（probably near 1\％amal）．
16．COENDUE LAENATL M，Thomas
1903．Ann．Mag．Nat．IIst． 7 ，NI，p．3内1．
Boquete，Chiriqui，Panama．

paragavensis Group

（Typical Section）
1\％．COEXDOL PARAGAJENSIS，OkEn
I\＆i6．Lehrbuch der Zoolagite，p．8\％0．
Paraguay．
Synonym：couiy，Desmarest，i822，Nammalogic，i1，p．345．Brazil．
is．COENDOU SIINOSLS，Cuver
1ڭzz．Ném．Mus．Hist．Nat．，IX，p． 433.
No locality（？Rrazil）（？Baset on paragayensis，Oken）．
19．COENDOL KOBERT1，Thomas 1002．Ann．Mag．Nat．Hist．न，18，p． 63. Roça Nova，Parana，Brazil．
20．COENDOU JNSIDIGふUS，Kuhl 3820．Beitr．Zool．Mamm．p． 7 I ． No locality（？Brazil）．
2．COENDOU VILIOSLS Cuvier ibzz，Ném．Mus．Hist．Nat．IK，p． 434. Brazıl．
22．COENDOU NIGRICANS，Brandt 1835．Nem．Acad．St．Petersb．p． 403. Brazil．
23．COENDOU NEIANLRUS，Wagner 1842．Archis．für Naturg．I，Г． 360 ． Barra，Ra，Negro，Brazıl．
24．COENDOL PALLIDLiN，Waterhouse 1848．Nat．Hist．Namm．ii，r． 434 ．
＂Said tu be－－the West Indres．＂ （aestitus section）
25．COENDOU VES＇TITC＇S，＇Thomas 1890 ．Ann．Mag．Nat．Ilist．7，IV，p． 284 Culumhia．
26．COENDOU PRLINOSLE，Thomas 1905．Amn．Mas，Nat．Hist．7．NVI，p． 310. Nontañas de la Pedregosa，Nerida，Venezuela．

Not allocated to group；not seen
27．（ソEN゙DUL AFJIN゙S，Brandt
1835．Mem．Acad．St．J＇etersb，P， 412 ．
Brazil．
28．CONDOL SERILELS，Cope
18Se．Amer．Naturalist，NXIH，p．I 36.
Sion Joain do Nlonte Négro，Ruo Cirande do Sul，Brazal．
2\％．CUENDOL CHILLENIS，Nolina
finon．Fioogr．Nat．and Curll llist．of Chale，p． 242 ． Chile．
Numbers 27，28，24 hate inot been seen；they are listed hy Tate as members of the subgenus Spliggonms．

ERETHHZONTIDAE:
 SPECIAL IFORKS OF REFEREVCE

Waterhotse, 1848 , Natural History Mammalia, Rodentia.
Tate, 1935, Taxonomy of Neotropical Hystricoid Rodents, Bull. Amer. Mus. Nat. Hist. 1.XVIH. p. 295.

D'ucock, Proc. Zool. Soc. London, 1922, p. 365. External Characters of some Hystricomorph Rodents (Coendou, Erethizon).
Trolessart, Echinoprocta, Bull. Mus. Hist. Nat. 1920, no. 6, p. $4+8$.
Allex, North American Rodentia, p. 385, 1876. "Hystricidae" (Erethizon).
'Telberg, Nova Acta Reg. Soc. Sci. Upsaliensis, NVIIJ, 3, I, 1899.
The family is known fossil from the Oligocene from America.

Family DASYPROCTIDAE

1896. Thomas: Hystricomorpha: Family Dasyproctidae, part, included Cuniulus ("Coelogenys").
1byg. Tullberg: Jystricomorpha: loamily Caviidae, part.
1897. Miller \& Gidey: Hystricoman: Famly Dasyproctidae.
1898. Winge: Family Hystricidae, part, Dasyproctini, part, Dasyproctae, part (included Cuniculus).
192\%. Weber: Hystricomea: Family Cariidae, part, subfamily Dasyproctinae, part (included Cuniculus).
Geographicat Distribetion.-'Iropical America, from Nexico through Central America to Bolivia and Paraguay, Ecuador and Peru. Trinidad. Lesser Antilles.

Number of Genera.-Two.
Characters.-External form much modified for cursorial life; hindlimbs lengthened; hindfeet with three digits, forefoot with four functional digits, the claws hooflike. Cheekteeth semi-rooted, extremely hypsodont, closely paralleling the structure present in the Hystricidae. Clavicles undeveloped.

Remarks.-This family has (together with Cuniculus) often been united with the Cavidac. This association appears most unnatural. The lower jaw is totally distinct in the two groups, Dasyprocta being typically Hystricoid in this formation; the cheekteeth show an entirely different pattern in the two groups.

The similarities between such genera as Dasyprocla and Dolichotis in the arrangement of digits and parts of the skeleton for swift running appear to be parallel evolution brought about by a similar mode of life, comparable to the similarities between such types as Batluergus and, say, Geomys, which resemble each other externally to a large degree and yet in which the zygomasseteric structure and the cheekteeth are totally different. One of the reasons which has been advocated for classing Dasuprocta with the Caviidae is the formation of the penis, which is said to be armed witly a pair of horny spikes in these genera: it is therefore interesting to note that according to Pocock the penis of Dolichotis and of Hydrochoerus, hoth members of Caviidae, lack these spikes, disagreeing in this character from Catia and other members of the Caviidae, as well as from

Dasppocta and Cumiculus. But in any case the penis does not furnish a sufficiently reliahle character on which to base family distinetions.

Kify to the (ienera of Dasyproctidae

'Tail not obsolete, approaching half length of hindleg; toothrow reduced, "teeth smaller both relatively and absolutely than in any species of Dassprocta" ('lhomas).

Myoprocta
'Tail obsolete; teeth relatively larger, and tonthrow less reduced. D.syprocta
These two gencra are not well marked, and might be regarded as subgenera of one genus. Myoprocta contains much smaller forms than is normal in Dasyprocta.

Genus 1. DASYPROCTA, Illiger

isif. Dasyprocta, Illiger, Prodr. Syst. Mamm. et Avium, p. D3.
Type Spectes.-Mus aguti, Linnaeus.
Ravge.-As in the family Dasyproctidae; south to South Brazil.
Nuaber of Forms.- About forty-sic are named.
Characters.-The skull is less ridged than in other Ilystricoids of a similar size; the nasals shorter than the frontals, which are broad, flat, and with a well-marked though short postorbital process at suture of frontals and parictals. A weak short sagittal crest is developed in the adult. The bullae are moderately large; the paroccipital processes prominent, though not so lengthened as in Cimiculus. 'The palate is straight, and extends back to level of M. 3 i the hinder part being formed much as in the HystriciJae. l'alatal foramina short, far in front of tnothrow. Lachrymal much enlarged, forming most of upper zygomatic root, and part of the lachrymal canal is open on the side of the rostrum, immediately in front of the anterior part of toothrow. There is no canal for nerve transmission in the infraorbital foramen, which is of medium size. Zygoma generally simple. Nandible with angular portion powerfully distorted outwards, and its lower border slightly drawn backwards; coronoid process low; condylar process rather broad.

Cheekteeth strongly hypsodont; like those of the Hystricidae in essential pattern; one more or less persistent narrow inner fold in the upper series; the outer folds soon isolate as islands, and there is a tendency for the islands to divide on the surface of the torth, so that there may be sesen or eight or more minute islands in a worn tooth. Lower cheekteeth like the upper series, but with the pattern reversed. Incisors relatively thin, compressed.

Externally the form is slender, cursorial, the hindlimbs lengthened, the hindfoot very long and narrow, with three digits which bear sharp hoof-like claws; the central digit is the longest, D.f is a little shorter than D. . ; the sole is naked; in the skeleton of the foot the metatarsal bones for the outer digits are absent or vestigial. The forefoot is less elongated than the hindfoot; the digits are four, hut the appearance of the foot is pcrissodactyle owing to D. 5 being considerahly reduced; the pollex is represented by a knob. The fur on
the hinder part of the body is very long and thick. 'The ears are of medium size. The tail is obsolete. 'The head and hody measurement may approach 580 mm .

Forms seen: aguti, azarae, boliziue, catrinae, cayennae, coibae, cristata, croconota, flazescens, fuliginosa, isthmica, lucifer, lunaris, maraxica, migra, paraguayensis, pandora, prymnolopha, punctata, ruatanica, rubrata, variegata, yungarum.

Fig. 53. Dasyprocta plectata isthmica, Alston. B.A. No. $9^{8.11 .6 .10 ; ~: ~}$

List of Nimely Forms

(References and type localities for all forms of Dasyproctidae are the work of Mr. G. W. C. Holt.)

Tate divides the genus into three sections: " Eastern or red-rumped Agoutis." "Central American Agoutis," and "Dark-grey Agoutis." The material examined does not support these divisions; moreover, I have been quite unable to

Fifs, 5t. Dasyprocta pleitata istimatid, Alstom. B.aI No ysir.6.10; I.

Fig. 55. Dasyprocta prectata isthmica, Alston. ('hecktecth: B.X. No. qX.11.6.Io; 4.
(In the lower jaw the anteroor tonth is the nuch wern malk molar - seen m profile in fige 54 ,
 shed mik molar is seen to the right or mner sude of tha tooth. I
get this large and unwieldy gemus into any definite order, and therefore list geographically.

The real darkegrey types like colombiana or fuliginosa grade quickly into dark unicolorous types, which in turn grade into reddish-rumped types, which seem to grade into the red types like aguti. Sometimes a blackish middorsal area may be present, as in prymolopha.

How many species should be recognized I am not prepared to say, but it seems clear that far too many are at present standing, and many could he reduced to the rank of subspecies. It is to be hoped that someone will attempt a revision of this genus, which is much needed.
I. DASIPROClA NOBLEl, Allen 1914. Proc. New. Engl. Zool. Club. V. p. 69.

Goyave, Guadeloupe, Lesser Antilles.
2. DASYPROCTA AIBBDA, Gray
1842. Ann. Mag. Nat. Ilist. I, X, p. 264. St, Vincent, Lesser Antilles.
3. DASYPROCTA ANTTILLENSIS, Sclater
1874. Proc. Zool. Soc. London, p. 666. St. Lucia, Lesser Antilles.
4. DASYPROCTA RLBRATA RLBRATA, Thomas rS98. Ann. Mag. Nat. Hist. 7, 11, p. 272. Savannah Grande, Trinidad.
5. DASIPROCMA RLBRATA FLAVFSCELS, Thomas 1898. Ann. Mag. Nat. Hist. 7, II, p. 273. Caripe, Cumana, Venezuela.
6. DASYPROCTA LLCHFER LLCHEER, Thomas 1903. Ann. May. Nat. Ilist. 7, X1, p. 491. Caicara, Rio Orinoco, Venczuela.
7. DASYPROCTA LLCHFR CAYENNAE, Thomas
1903. Ann. May. Nat. Hist. 7, X1, p. 492. Approvague, Cayenne.
8. DASYPROC"TA CAYANL'S, bacepede
1802. 'Tahl. des Dis' des Mamm, p. 78. Cayenne.
9. DAsirrocta IRYMNOLOPIA, Waglet

183t. Isis, XX'N, p. 619. Guiana.
10. DAstiprocta NigRICLL NIs, (ssaod
1915. Field. Mus. Nat. Hist. Puhl. Zool. ser. Xi, p. 192. São Marcello, upper Rıo I'reto, Bahia, Brazil.
1f. DASYPROC"FA CROCONOTA, Wagler
1831. Isis, XXIV, p. 6IS.

Amazon River, Brazil (mouth of Rio Madeira).
12. DASTPROCTA AGC'TI AGL'TI, Linnacus
ro66. Syst. Nat. izth. ed. p. So. Brazıl.
131 wins Fowlent I
(D. agutiaguti)

Synonym: (?) leporima, Limnaeus, 1758 , Syst. Nat, 10 hh. etl. p. 59. Unknown (prohably undentifiable, according to 'late.) bicolor, Boddaert. 1785. Elenchus Amm. p. 103.
13. D.ASIPROC"ГA AGUT' MARANICA, Thomas
1923. Ann. Mag. Nat. list. 9, XII, p. 34 I .

Marajo Island, Amazon River, Brazil.
14. DASYPROCTA ACUTV ELNARIS, Thomas
1917. Ann. Mag. Nat, llist. 8, XX, p. 259.

Noon Nountains, British Gutana.
15. D.ASYPROCTA AZARAE AZAR.AE, lichtenstein
1823. Doubl. Zool. Mus. Berlin, p. 3.

Sà Panlo, Mrazil.
f6. DASYPROCTA AZARAE CATRCNidE. Thomas 1917. Ann. Mar. Nat. Hist. 8, XX, p. 311.

Santa Catharina, Southern Brazil.
17. DASY'PROCTA ALREA, Cope
1889. Amer. Naturalist, p. 138.

Chapada, Mattr Grosso, Mrazel.
15. DASYPRUNT: (ALDATA, I und
1841. Afh. K. Danske. Vid. Selsk. 4, viii, p. 286.

Rio das Velhas, Nlinas Geraes, Brazil.
19. DASYPROXTA PARAGLAYENSIS, Liais
1872. Climats, Gérlogie, Vaune et Gengraphie Britanique du Bresil. p. 53^{66}.

Paraguay.
Synonym: felicia. 'Thomas, 1917, Ann. Mag, Nat. IIrst. N, XX, p. 310. Near Concepcion, l'araguay.
20. DASYPROCTA MEXICANA, Saussure
1860. Rev, Mag. Zoml 2, N11, p. 53.
"Hot zone of Nexico," probably in State of Vera Cruz.
21 DASYPROKNA PNEDATA PLNCDTA, Gray
ISq2. Ann. Mag. Nat. Ilist. I, X, p. 264
Realcjn, west coast of Nicarasua.
22. D.ASYPROE"I' I'UCTATA RICHNONDI, Goldman 1917. Proc. Biol. Sik. Washingtom XXX, p. II4.

Escondido River, 50 miles above $13 l u e f i e l d s$. Nicaragua.
23. DASYPROMA PLNC"IATA CHIDAIENSIS, Goldman 1013. Smiths. Mise. Coll. L., nu. 22, p. 13.

Huchuetan, Chapas, Mexico.

1013. Smaths. Mise. Coll. Lス, mozz, p. 12.

Apazute, Campeche, Nexico.
25. D.ASYPROCTA IU Ne"TATA LXDERUOODI, Goldman 1931. Journ. Washineton Acad. So XXI, p. tió.

Sun Geronmo, district of Jorris, West Costa Ruca.

Near head of Rio Limom, Nt I'rri, Eastern I'anama.

27．DASYPROCTA PUNC＂AlA NCCHALIS，Goldman 1917．I＇roc．Biol．Soc．Washington LẊ゙，p． 113.

Divala，Chiriqui，Panama．
28．DASY＇PROCTA PUNC＂TATASTHAICA，Alston 1876．Proc．Zool．Soc．London，p． 347.

Colon，Paoama．
29．DASYPROCDA RUATANICA，Thomas 1901．Ann．Mag．Nat．Hist．7，VIII，p． 272.

Ruatan Island，Bay of Honduras．
30．DASYPROCTA CAILLIDA，Banes 1901．Amer．Naturalist，XXXV，p． 635. San Miguel Jsland，l＇anama．
31．DASYPROC＇IA COIBAE，Thomas 1902．Nov．Zool．IX，p． 136.

Coiba Island，Panama．
32．DASYPROC＂IA PANDOR．A．Thomas 1917．Ann．Mag．Nat．Hist．8，X．p， 313.

Gorgona Island，off Colombia．
33．DASYPROCTA VARIEGATA VARIEGATA，Tschudi 1845．Fatuna Peruana，p． 190.

Chanchamayo region，Eastern Peru．
34．DASYPROCTA VARIEGATA ZANORAE，Allen 1915．Bull．Amer．Mus，Nat．Hist．，X．XIV，p． 627. Zamora，Eastern Eucador．

35．DASIPROCTA VARJEGATA（H0COEXVIS，Allen 1915．Bull．Amer．Mus．Nat．Hist．SXXIV，p．627． Los Cisneros，Choco district．Colombia．
36．D．ASYPROCTA VARIEGATA COLOMRIANA，Bangs 1898．Proc．Biol．Soc．Washington XIJ，p． 163. Santa Marta，Colombia．

37．DASYPROCIA VARHEGATA l＇NGARL＂XI，Thomas 1910．Ann．May．Nat．Hist．S，V＇，p． 505.

Chimosi，Yungas，Bolivia．
38．DASSPROCTA VARJEGATA BOIJIVAE，Thomas 1917．Ann．Mag．Not．Hist．S．XX，p． 312.

Charuplaya，Bolivia．
39．DASYPROCTA VARIEGATA URLCCOMA，Allen 1915．Bull．Amer．Mus．Nat．Hist．X゙メ゙バ，p． 634. Urucum，near Curumba，Matto Cirosso，Brazil．
 1832．Isis，X゙SV，p． 1220. Near Amazon River，Brazil．（Borba，Rio Madeira．） Synonym：nigra，Gray，Ann．Mag．Nat．Ilist．1，X．p．264，1842． nigricans，Wagner，i842，Archiv，für Naturg．I，p． 362. Borba，R．Nadera，Brazil． caroliniensis，Cuvier，Gervais，Mamm．1．1854，P． 329.

4i. DASHPROCTA tiLLFGINOS. (CANDELENSIS, Allen
1915. Bull. Amer. Mus, Nat. Hist, NXXIV, p. 625,

La Canelela, Ituila. Colombai.
42. DASV'PROCTA FLTAGEVOSA NESATHA, Cabrera
1917. Madrid Trab. Mus. Nac. Ci. Nat. 31, p. 53. Tarapote, Ecuador.
43. DASYPROCTA CRISTATA, Desmarest

18i6. Nouv. Dict. d'Hist. Nat. 2d. Ed. 1, p. 213 . Surinam, Dutch Guiana,
44. DASY゙PROCTA KALINOW゙Skll, Thomas
1897. Ann. Mag. Nat. Hist. 6, NX, p. 219.

Idma, valley of Santa Ana, Cuzco, Peru.

Genus 2. NYOHROC"It, Thomas

1903. Myoprocta, 'Thomas, Ann. Mag. Nat. Hist. 7, XII, p. 464.
'Typi Spferes.-Caria acouchy, Erxleben.
Range. Guianas, Brazil, Culombia, Ecuador, Peru.
N'tmber of Forms.-' Cen.
Characters.-Like Dasyprocta, hut smaller (about 380 or less, head and body); the tail less reduced, approaching about half the length of the hindleg, slender, hairy. Essential cranial and dental characters as in Dasyprocta, hut thothrow reduced, the teeth "smaller both relatively and absolutely than in any species of Dasyprocta" ("Yhomas); the sagittal crest appears to be in old individuals rather Ionger than in Dasyprocta. There may be a small backwardly dirceted process on anterior portion of jugal, just behind its point of junction with zygomatic process of maxillary.

Forms seen: acouchy, cavmanum, leptura, limunus, milleri, pratti, puralis,
There appears some doubt on the status of exilis. Apart from this the forms divide inte two groups, the type species, reddish above, and the pratti group, dulfer greenish tepees.

> List of Nined Foris
> (acouchy Section)

1. MYOPROCHA ACOCHI, Exteben
2. Syst. Regn. Anיm. p. 354.

Cayenne.
2. NY(oprocta bleptera, Wagner

IStt. Schreber Säug, Suppl. IV, p. 49.
Rio Negro, Iorazil.
(pratti Section)
3. NYOPROCTLA IRATII PRATTL, Pucock
1913. Ann. Mass. Nat. H1st. S, SII, p. Iro. Pongo de Rentema, Rin Marañon, Peru.
4. NYOPROCTA PRATTI ARCHIDONAE, Lonmberg
1925. Journ. Mamm. Baltimore, VI, p. 274. Archidona, Province Oriente, Ecuador.
5. NYOIROCTA PRATTI PURALIS, Thomas
1926. Ann. Mag. Nat. Jlist. 9, SVII, p. 639.

Ayapua, about 300 kilometres south-west of Manaos, Brazil.
6. NY゙OPROCTA PRATIII CAVMANUN, Thomas
1926. Ann. Mag. Nat. Hist. 9, XV'll, p. 638.

Canabouca, Parana de Jacare, 120 kilometres south-west of Manaos, Brazil.
7. MYOPROCTA PRA'YTI LIMANUS, Thomas
1920. Anm. Mag. Nat. Hist. 9, VI, p. 279.

Acajutuba, Rio Negro, Brazil.
8. MYOPROCTA NILLEER, Allen
1913. Bull. Amer. Mus. Nat. Hist. XXXII, P. 477.

La Nurelia, Caqueta, Colombia.
Not allocated to section; not seen
9. MIYOPROCTA EXILIS EXILIS, Wagler
1831. Isis, XXIT, p. 621 .

Amazon, Brazil.
10. MYOPROCTA EXILIS I'ARVA, Lannherg
1921. Ark. Zool. KIV, no. t, p. 41.

Rio Curaray, Prov. Oriente. Ecuador.

DASYPROCTIDAE:
 SPECIAI, IIORKS OF REFERE.VCE

Waterhouse, i $\$_{4} 8$, Natural History Mammalia, vol. I1, Rodentia.
TATE, 1935, Bull. Amer. Mus. Nat. Hist. LX゙VHI, p. 295. Taxonomy of Neotropical IIystricoid Rodents.
Pocock, I'roc. Zool. Soc. London, p. 365, 1922. External Characters of some Hystricomorph Rodents.
The Dasyproctidae are known fossil from the Niocene, from the Neotropical region only.

Family HYSTRICIDAE

1896. 'Jhomas: Hystricomorpha: F'amily Hystricidae.

I899. Thullberg: I Hestriconorpha: Family Hystricidae.
19if. Niller \& Gidley: Superfamily Hsisticombaf: Family Hystricidae, with subfamilies Hystricinae and Atherurinae.
1924. Wince: Famaly Hystricidae, part, Hystricini, part, Hystrices.
1928. Weber: Hystricoldea: Family Hustricidae.

Geggraphical. Distribetion:-Tropical parts of the Old World: the greater part ol the African Continent: ltaly and Sicily; 'Iranscaucasia; Southern Patacarctic Asia (Arabia, Syria, l'ersia, Jesopotamia, Afghanistan, Russian 'lurkestan); Peninsular lndia and Cevlon:

South China (south of the Yangtsekiang), Hainan, Assam, Burma southwards to Nabacca, Sumatra, Jawa and islands to the east of it (Sumbawa, Flores); Borneo; represented in the Philippine Islands.

Numbfr of Gexpri.-Four.
Charactars.-External form heary, terrestrial-fossorial; modification of hair into spiny covering always well deteloped, at extreme development reaching a grade of specialization not seen elsewhere in the Order; tail always bearing a group of modified quills or bristles: digits of hindfoot five. Cheekteeth moderately to extremely hypsodont, semi-rooted in progressive genera, the re-entrant folds isolating early on crown surface as narrow enamel islands; bullae relatively small, and paroccipital processes not lengthened. Uccipital region of skull strongly ridged, prominent; zygoma simple; a tendency present towards extreme inflation and lengthening of nasals; clavicles imperfect; habits entirely terrestrial.

According to 'Tullberg, the carpus has no free centrale (Atherurus, Hystrix), unique in the Order among those examined by him except in Cuniculidae. According also to this author, the lungs are abnormal, being divided into a number of small lobes.

Remarks.- Lyon in 1907 proposed to divide the family into two subfamilies, the llystricinac and the Atherurinae, on account of the differences of the length and structure of the tail between the two groups, the fact that there are only three sacral vertebrae present in Atherurinae as against four in the Ilystricinae (at the same time remarking that there is apparently some variation in the number of the vertebrae, especially lumbar, sacral, and caudal).

But although the Atherurus group is much less specialized than the Hystrix group hoth in spiny cowering, reduction of tail, and in the more brachyodont checktecth, there appear to be too many essential characters common to both aroups for this division to be maintained; the pattern of the cheekteeth and the structure of the feet, for example, are essentially similar in both groups; and the cranial characters of Thecurus, the lowest member of the Hystrix group, are very similar to those of Atherwous, including the rather important character of lencth of nasals.
('hefotfetir- - The checkteeth vary individually, but the essential pattern throughout the family is, in the upper series, one inner and three outer folds, the folds isolating as islands almost immediately on the flat crown surface; like the Dasyproctidae, there is a stroner tendency for the isolated folds to divide, particularly the posterior one, so that on the outer side of the tooth there are usually at least four isolated islands in the adult. The lower checkteeth reverse the pattern of the upper series. The milk premolars are shed comparatively late in life.
(senfral External Characters of principal species, as regards the development of spiny covering.
For note on details of formation of hollow "rattling-quills" (caudal quills) of Hystrix group, see P. 20 S .

Trich's lipura is the most primitive species in development of spiny covering, in all respects. No true quills are developed; the body is covered with relatively short flattened weakly developed spines; the tail is more or less naked, and bearing a brush of unmodified bristles at the end; the head is hairy.
Atherurus macrourus presents the next stage of development; the body is covered with spines of a similar nature, but sharper, longer, and evidently more effective as weapons of defence; the head is similar to Trichys; the tail long, less naked, covered with spiny short hairs, and the end hears a cluster of much more specialized bristles, these heing alternatively expanded and contracted; but, as far as seen, no quills are as yet developed.
Atherurus africunus and related African forms present a higher stage of development in that among the spines of the back there are present a few thick circular quills, of the type found in all higher Porcupines; these vary in their development; they may be quite strong or, in some skins I have seen, very weak, so that perhaps if a really large series of skins came to hand from Africa it might be that some "quill-less" ones would be among them. Otherwise the external characters are as in the Asiatic Atherurus.

It is interesting that, judging by a specimen of Atherurus at the London Zoological Gardens, very much the same noise can be made by the rattling of the tail bristles as that produced by the smaller species of Hystrix.
Thecurus pumilis, from the Philippines, to which T. sumatrae evidently bears a close resemblance in general spine characters, appears to be the lowest true Porcupine; in this species, as in all the Hystrix group, the tail has become strongly reduced and its end bears a cluster of small and very poorly developed hollow "rattling-quills" which reach such a high stage of specialization in the higher Porcupines; some of these tend to be closed at the tip. A certain number of short thick true quills are developed; the spines of the hody extend to the rump from the upper part of the back: the head is hairy, much as in the Brush-tailed Porcupines.
Hystrix (Acanthion) jazamicum represents the next stage; the caudal quills are very weakly developed, essentially as in Thecurus pumilis; the head remains hairy; the quills of the back are perhaps slightly more developed than in Thecurus pumilis; judging by the few skins seen they appear, as in Thecurus, to be tightly wedged in the body, so that I should imagine they are very infrequently shed, but I have not seen this animal in captivity; on dried skins they do not give to the touch as do the quills of most higher Porcupines.
Thecurus crassispinis from Borneo stands rather alone in development of spines, and presents a mixture of generalization mixed with extremely high specialization. The quills of the back are enormously thick, relatively as thick as those even of the most highly developed forms of Hystrix, or so it seems to me. But no long thin quills are developed to eover them, as they are in Msstrix cristato and leucura groups: the head
remains hary, with no trace of a crest; and the caudal quills remain at their lowest development.
Hystrix (Acomthon) hodgsoni represents a stage of development typically not very much higher than in jazanicum; the quills, though not as well developed as in Thecurns crassispinis, are profuse and well developed, less tightly wedged in the boely apparently than in jaramionm; there is a certain growth of long hair-like quills on the lack, not met with in those described heretofore; a vestigial crest may be present (or suggested) on the head; but the caudal yuills remain very poorly developed. Whether certain intergradation takes place letween this and such forms as klossi from the same area I do not know; there seems to be a rather distinct difference as a rule between skins seen of hodgsomi, as compared with klossi, as regards crest, caudal quills, ete.; comparable to the difference seen between jazamicam and brachyurns.
Hystrix (Aranthion) brachumas (with longicauda, mülleri) reaches a rather higher state of specralization; the caudal quills are as a rule larger than in hodgsomi, more open, and apparently less primitive; the quills of the body are powerful and profuse, though not attaining any great length.
Hyatrix (Acomthom) klossi is very similar in external characters to brachamus, though on cranial characters belonging to a different group; there are a few long hair-like quills present, as in hodgsom; the crest tends to become less abortive, and quite well marked; this type, I believe, leads on to the Chinese Porcupine subrristatus, in which the crest is said to be quite well developed, but skins of which I have not seen unless a very small juvenile labelled " bmmonensis," from Annam, which has for it size surprisingly dereloped caudal quills and quite conspicuons crest, represents this species, as from these characters I suspect it may do.
HIrstrix leucura (with harsufirostris) marks the highest development to be attained in a Porcupine; a long crest of hairs is present on the head; the quills are exceedingly profuse on the back; the short ones found in the preceding species being more or less covered by an outgrowth of long thain quills, each with several rings instead of only one as in the ahove species. 'The catall quills are large, well open, and at their highest development; there are many short white (urdinary) quills in the neighourhood of the tail. Sometimes the lons yuills tend to be narrower than in cristata and other African Poreupines. 'The bodily size is usually larger than in other Asiatic loreupines.
IIsstrix cristata, II. galdeta, II. africacanstralis are indistinguishable from ome another externally; the quills may tend tw be thicker, perhaps longer and more poserful than in lencura, otherwise the external covering is essentially similar, including the long crest and powerful tail-efuills; the size, in galeata, hecomes the largest in the genus.
For the last thirteen years these anmals have heen a special hohby of the author, in the Loncton Ziological Gardens, and a few words on their captivity habits may not be amiss.

The temperament of $1 /$. cristotu compared with the smaller 11 . brochywras
type of animal is as different as that of a dog from a cat. The smaller Porcupines never display, so far as \mathbf{I} have observed them, the slightest nervousness, and gencrally seem to tame down and come to hand almost on arrival, and to be the most friendly of animals, though occasionally exhibiting an unpleasant streak in their character which I have only once observed in cristata (an old specimen newly imported from abroad which might have been ill-treated).

On the other hand all cristata Porcupines I have ever seen are most abnormally nervy animals, extremely hard to tame; it is nothing, for instance, for a specimen of this kind to take sixtcen weeks before ever feeding from hand. But once they get over their first nerves, and brace their courage sufficiently to come to hand, they are most engaging animals, with an excellent temperament, and, I think, with a good memory for people; although it has been my experience that they never completely lose their distrust, so that the least thing outside routine, such, for instance, as a sudden movement, or a sneeze, will send them scurrying for shelter in a panic, and if it is an animal which does not know one well, it will be some time before the animal can be coaved back. One cristata only I have known who allowed himself to be stroked. This was an individual who seemed to delight in being seratched and rubbed all over; on this animal, the belly, shoulders, and limbs are covered with bristles which are not harsh to the touch; the skin of the back when reached through the mass of quills is completely naked, flesh-coloured, soft and velvety. 'This nakedness is probably not a constant character; I have noticed a certain growth of hair under the quills of the back on other Crested Porcupines, which is also present in H. hodgsoni. II. cristuta definitely sheds the quills much more freely and frequently than the hodgsom-brachyurus type of animal; and on occasion can do very much more damage with them; but any Porcupine will draw blood immediately (even accidentally'), or if touched or handled when not in the mood, and speaking from personal experience it can be agonizingly painful.

Noreover, they can attack with their spiny covering by running sideways or backwards into their enemy, usually leaving some of the quills in anything they run into. The quills in cristata may reach extreme length; I once had one in my possession measuring twenty-one inches. But it is not these, but the short thick quills which do the damage. 'The young have sharp little hristles at birth; and these will develop into sufficiently sharp spines within ten days to make handling impossible. In captivity there are one or at most two young in a litter, so far as my experience goes. H. hodgsom, which has the caudal rattling quills poorly developed, dues not use them except in moments of great excitement, and even then the noise produced is feeble; but in cristata, in which these hollow quills are at maximum development, they are normally used constantly, though I have known more than one specimen which appeared quite unable to make any sound with them at all. The sound produced by cristata is entirely different from that produced by hodssoni, and in moments of anger or excitement it can be terrific; a noisy motor-bicycle is the only thing to which I can compare it; but I have never been able to ascertain whether all this noise is caused by the quills, or whether the animal roars at the same time. It must be stated, not for the first time, that the belief that these animals shont their
quills is a myth. But the origin of that story may be explained as follows: a Porcupine will normally be carrying a few loose quills on the body (sometimes these may even be picked out in very tame specimens, as in "Joe," a famous hodgsoni (or jaz'anicum?) which lived in the London Zoo for about twelve years or more). When the animal wakes up suddenly, he shakes himself, and on rare occasions one of these loose quills is shot out and hurtles across the cage, giving the effect that the animal has shot it.
'The captivity life is good; best of all Rodents, according to Flower's valuable paper on the subject; in this paper a specimen is mentioned which attained the great age of twenty years; but normally I suppose twelve or fifteen would be the absolute limit. It may be added that their gnawing powers are prodigious and that they use extreme ingenuity on certain occasions; for instance, I once saw one trying to shake open a door; after some ineffective pawing attempts, he ran backwards and then took a run at the door, just as a human being might do. which I thought showed high reasoning power.

Kel to Genfric Groups

'lail relatively long, its end bearing a tuft of bristles; checkteeth rooted, more brachyodont; spiny covering not highly developed (thick circular quills on back most often absent); anterior zygomatic root over P.t.

Athercrus Group. Atheruri Trichys; Atherurus
Tail short, bearing a cluster of highly modified hollow quills; cheekteeth usually strongly hypsodont, semi-rooted; spiny cosering highly developed, always with thick circular quills present on back; anterior zegomatic root over middle of toothrow.

Ilystrix Giroup. Histrices Thecurus, Mystrix

The Atherurus Group

Characters.-As indicated in the above key. The size is relatively smaller usually than in the Hystrix group; the spiny covering less specialized. Skull with no inflation of nasals, and usually no inflation of frontals. The thick quills on the back, characteristic of true Porcupines, are not developed in Trichys nor in the Asiatic section of Atherurus; in the African section of the latter semus they are usually present. 'This indicates a higher grade of specialization for the African forms of this genus, which is paralleled by the Mystrix group, which are at their lonest in the lndo-Walayan region, and at their highest in Africa.

Key to the Geners of the Atherurus Croup

Skull with well-marked postorbital process, and strong interorbital constriction; lower incisors more compressed; tail long, scaly, its tip hearing a cluster of parallel-sided hristles; body clothed with flexible spines: a prominent horizontal groove on surface of jugal.

Skull with scarcely marked postorbital process (or this absent), and little interorbital constriction; lower incisors not compressed; tail long, less naked, its tip bearing a cluster of bristles which are alternately expanded and contracted; body clothed with sharper bristles, sometimes mixed with quills; no groove on surface of jugal. Atherurus

Genus 1. 'TRICIlY's, Günther
1876. 'f'richys, Günther, Proc. Zool. Soc. London, p. 739.

Type Species.-Trichys lipura, Günther.
Range.-Sumatra, Borneo, and southern Malay Peninsula (Nalacca, Perak, etc.).
Number of Forms.-Two.
Characters.-Skull rather long and narrow; a prominent sagittal ridge present in adult; well-marked postorbital processes present, behind which skull is considerably constricted; nasals short, narrow, shorter than the frontals, extending back to anterior zygomatic root. Rostrum slender. Occipital region high, strong; paroccipital processes not lengthened; bullae relatively small. Palate straight, moderately wide; hamular process long; palatal foramina very short, situated far in front of toothrow.

Infraorbital foramen relatively small for a Hlystricoid Rodent; no canal for nerse transmission. Zygoma simple; jugal long, though not extending to lachrymal, a prominent groove running along it, on exterior border, throughout most of its length. Nandible with angular portion well distorted outwards; the hinder part of the jaw flattened, as in all llystricidae (i.e. no backward prolongation of angular process). Coronoid high, nearly as high as condyle in type skull.

Checkteeth as already described, rooted; toothrow short.
Externally covered with flat grooved spines scarcely more developed than in some Neotropical Echimyidae; head and underparts hairy. Tail moderately long, poorly haired, scaly, its end bearing a cluster of straight bristles. There is a tendency present for this animal to lose the tail during life. Forefoot rather broad, with four well-developed digits bearing thick claws, the two central digits slightly longer than the outer ones. Pollex rudimentary. Hindfeet similar to the forefeet, but longer, and the hallux more developed than the pollex; otherwise digits like those of forefoot.

Size smaller than is usual in the family.
Forms seen: lipura, macrotis.
The two species are very closely allied, and might be considered as not more than races; their chief difference lies in the size of the ear.
List of Nampis Forms
(References and type localities of all Hystricidae are the work of Mr. G. W. C. 1lolt.)

Fig. 56. 'Tricuys macrotis, Miller. 13.N. Ň. 16.11.16.2; - 1.

1. TRICHY'S \&IPCRA, Gunther
2. Proc. Kool. Soc. London, p. 739.

Borneo.
Synonym: guentheri, Thomas, 1889 , Proc. Zool. Soc. London, p. 235. Kina Balu, Bornco.
2. TRICIIV'S MACRO'TLS, Niller

1903 . Proc. U.S. Nat. Mus. XXVI, p. 469.
N.-IV. Sumatra, Tapanuli Bay.

Genus 2. d'llifRURU'S, Cuvier
1829. Athertre's, Cuvier, Dict. Sci. Nat. LIX, p. 483 .
'T'ype Species.-Mystrix macrourus, Linnaeus. (See Lyon, Proc. U.S. Nat. Mus. XXII, 1907, p. $5^{8} 4$).
Range.-Indo-Malayan: Southern China, Tongking, Hainan, Assam, Tenasserim, Malay l'eninsula, Sumatra. (Other Malay Islands?) Africa: Nigeria, Fernando Po, Sierra Leone, Senegambia, Congo, Uganda, Kenya. (ln China occurring as far north as Szechuan.)

Number of Forits.-'Thirteen.
Characters.-Skull with short nasals, extending back about to anterior margin of infraorbital foramen; frontals long, becoming arched and slightly inflated in africames; usually no postorbital process, but this can be slightly marked, and usually very little interorbital constriction. Sagittal crest formed in adult. Zygoma simple, but jugal broader anteriorly, and tending to be longer in African species than in Nalayan ones; in many cases it reaches the lachrymal in African group. Bullae relatively small. Palate essentially as Trichys. Occipital region of skull as in Trichys. Nandible with fow coronoid, rather low condyle; angular process moderately to weakly distorted outwards; traces of a ridge beside the condyle, as found in Erethizontidae and Chinchillidae, may be present. Infraorbital foramen without canal for nerve transmission; relatively small for a llystricoid Rodent, particularly in africamus, in which the frontal inflation is present. Palatal foramina much reduced. Cheekteeth as described above; rooted.

Externally covered with spines, stronger and more powerful than in Trichis; head hairy. Tail moderately long, with short spiny hairs on the scales, and a thick tuft of bristles at the end, the bristles alternately expanded and contracted (up to about five times or more); in the Ifrican species these expansions tend to be nearer to each other and rather more numerous than in the lndoNalayan type. Feet essentially as in Triches. Head and body length up to 525 mm . or perhaps more.

These may be described as much faster-moving animals than members of the genus Mystrix, judging by specimens observed in the London Zoological Gardens.

In the African species the thick round quills, characteristic of all the members of the Hystrix group, are present; these vary in their development from scarcely traceable to rather strong; it may be that with a large series, Ifrican
types might come to hand which lack them. They are always absent in the Indo-Nalayan forms so far as I have examined.

Forms seen: africanus, assamensis, burozesi, contralis, macrourus, stezensi, tionis, turneri, zygomaticus.

The forms are here provisionally treated as two distinct groups, based on the presence (African species) or absence (Nalayan types) of true quills.

Of the Indo-Xalayan forms, from descriptions and from those 1 have examined I eannot credit that there is more than one species; trivial skull characters have for the most part been used to separate the various forms, and probably all are hest regarded as races.

The African types divide sharply into two on skull characters, though the form turneri seems to me to be intermediate between the two types to a certain degree; it must also be noted as a form in which apparently the quills are weak.

In africanus, the frontals are arched, the skull is broader, the infraorbital foramen, due no doubt to the inflation of the frontals, seems smaller, and the jugal appears consistently to extend up to the lachryal.

In centralis, the frontals are not or less arched, the skull is narrower, and more like the Asiatic types, and the jugal may or may not extend so far anteriorly. A. burrozsi, based on a skull without a skin, is best regarded as a race of contralis.

List of Naned Forais
 macrourts Group

1. ATHERLRLS MACROLRUS MACROLRUS, Linnacus
2. Syst. Nat. Ioth Ed. no. 4, p. 57.

No exact locality".
Synonym: (?) fasciculata, Shaw, isor, Gen. Zuml. ii, i, P. if, pl. iz4.
(Thas name used by Lyon, I 907 , fur the Malaccan Trichys.)
orientalis, Brisson, 1756, Regn. Anim, p. 131. East Indies.
2. ATHERURUS MACRいURUS PEAANGHAS, Rubinson
1912. Ann. Mag. Nat. Hist. 8, X, p. 590.

Johore Archipelago (Mlalaya) ; Pulau Pemanggil, between Pulau Aor and Pulau Tioman, S. China Sea.
3. ATHERLRU'S MACROLRL゙S sTEVENS1, Thomas
1925. Proc. Zowl. Soc. London, p. 505.

Ngai-Tio, 'l'ongking.
4. ATHERURLS MACROURUS ASSANENSIS, Thomas
1921. Journ. Bombay Nat. Ilist. Soc. XXVII, p. 598.

Cherrapunji, Assam.
5. ATEERLTRUS MACROURLS HAINANUS, Allen
1906. Bull. Amer. Nus. Nat. Hist. XXIJ, p. 470.

Hainan.
5. ATHERURUS MACROURUS TERUTAUS, Lyon
1407. Proc. U.S. Nat. Nus. NXXII, p. 587.

Pulou Terutau (Malay Peninsula).

Fig. 58. Athertirt's thrieri, St. Leger.

$$
\text { B.MI. No. 34.6.2.77, ©; } x^{\prime} 1 \text {. }
$$

Fig. 59. Athirtres tireeri, St. Leger.
B.2ा. No. $34.6,2.77$ j: 1.
7. ATILERLRLS MACROLRLS TIONLS, Thomas Iyos. Journ. Fed. Malay States Mus. Vol. II, no. 3, p. 105.

Juara Bay", 'Yoman Island (Nalay J'eninsula).

- ATIERCRLS MACROLRLS ZNGOMIATICUS, MAllGT

1003. Smiths. Misc, Coll. no. 1420, 45, p. 42. Pulau Aor, Johore, Malay Peninsula.

africanus Group

4. ATHERLRLS CLNTRALIS CENTRALAS, Thomas

IMy5. Ann. Mag. Nat. Hist. 6, JVV, p. So.
Nonbuttu, Congo, Central Africa.
10. ATHIERLRLSCENTRALIS BLRRUWSI, Thomas 1902. Ann. Mag. Nat. Ilist. 7, IX, p. 271.

Lower Aruwima River, Congo.
1r. ATHERLRU'S TLRNERI, St. Leger
1932. Ann. Nag. Nat. Ifist. Io, X, p. 231.

West K゙enya Colony; K゙akamega Forest, near Kamosi, North Kavirondo.
12. ATHERLRLS AFRICANLS, (iray
1842. Ann. May, Nat. Hist. S, p. 26 r .

Sierra Leone.
incerter sedis
13. ATHLRLRL* ARMATLS. Gurvak. (Not seen.)

1H54. Nat. Ilist. Namm. I, p. 33t.
Senegambia.
(Description evidently based on external characters only.)
The genus. Athermens provides a good example of discontinuous distribution, no form being known livine between Assam and liena. It is interesting to note that the genus lives side by side with Mystrix throughout much of its ranse; and that the primitive member of the Athernas group (Triches) is restricted to the Malay Islands area, exactly as is the primitive member of the Hystrix group (Thecturn).

The Hyshix Group

The Hystrix group differs from the Atherurns greup primarily in the reduction of the tail, which is short, and as indicated abose bears a cluster of hollow "rattling-quills," developed to a greater or lesser degree. These quills have a flower-like effect, heing secured to the tail by a stalk, above which they open ont int, the hollow terminal part. When the anmal is nervos, the tail is apparently shaken, and the quilts, being lightly attached, are rattled together to protuce the warning signal. I have written at some length above on this fact, and the hahits of certain species of the genus concerning it. There are always on the back some thick circular çuills, the extremities of which are very sharp.

The cheekteeth in this section are extremely hypsodont, usually semi-rooted.

Key to the (ienera of rhe Mystrix Group
Nasals narrower, shorter, confined to rostrum (essentially Atherurus-like in appearance), extending back to about anterior inargin of infraorbital foramen, shorter than the frontals.

Thecerls
Nasals broader, longer, not confined to rostrum, extending back about to the level of the lachrymal in primitive species, or in progressive species tending to reach level of posterior zygomatic root; frontals shorter than the nasals.

IIystrix
The nasals of all IIystrix seen are considerably broadened, even in primitive forms like jazanicum. So far as I can trace, and from our skulls, the percentage of the nasal length against the occipitonasal length does not exceed 33 per cent in Thecurus, and averages 3 r in our series, 32 in a serics of sumatrae the measurements (taken against the "total length" of skull) published by Lyon. In IIystrix, its lowest adult appears to be a specimen from Flores with the percentage 394 ; two specimens from Java, juvenile or subadult have the percentage $39^{\circ 6}$ and $39^{\circ} 8$; others measured are over to per cent. Some measurements included below:

Genus 3. THECLRUS, Lyon
1907. Thectrus, Lyon, Proc. L'S. Nat. Mus. XXXill, p. 582.

Type Speces.-Thecurus sumatrae, Lyon.
Rasge.-Sumatra, Borneo, and Paragua, Philippine Islands.
Number of Forms.-Three.
Characters.- Like smaller species of Hystrix (next to be described), but skull transitionary towards the Atherurus type, the nasals narrow, extending back only to about the level of anterior margin of infraorbital foramen. Rostrum narrower; skull appearing flatter than in any IIystrix seen. Frontals longer than nasals; interorbital constriction may be suggested. Palate not narsowed in front of toothrows; palatal foramina as usual very small; infraorbital foramen, as in Hystrix, with no canal for nerve transmission. Bullae relatively small. Cheekteeth strongly hypsodont; pattern as already described (ultimately the pattern of the teeth appears to become obliterated).

Remarks.- On account of the Atherurus-like skull (regarding the area of the nasals) this group may, I think, stand as a genus, though it is not very well separated from smaller species of Hystrix like jazanicum. There is, howerer, an undoubted and elear diflerence in the skulls of these two types. Lyon in his original genus description compared Thecurus to "Acanthon" and remarked that the caudal rattling-quills are much smaller; hut, as indicated above, they are essentially in formation as those of H. jazanicum (which Lyon evidently did not seet, and H. hodgsom from Nepal, which I, yon did not use in his notes for comparing the two types.

He also mentioned a mmber of skeletal characters in which the two groups 14-Lump Rodents-I

Fig. 60. Theclures crassispinis, Günther.
B.M. No. 92.9.6.17: $\times 1$.

Fig. 6i. Thretre's erassispints, Günther.
B.MI, No. 12.9.0.17, 1 .
differed; such as, for instance (compared with Acanthion), "instead of having a large laterally compressed neural spine on the axis, that vertebra bears a relatively short triprismatic spine, not compressed laterally any more than it is anteroposteriorly," etc. But before accepting such characters as these for gencrie purposes it is surely necessary to examine skeletons of all known Hystrix-group l'orcupines.

As indicated above in my notes on external characters of main species in the family, two wery well-marked groups may be recognized: the pumilis group, in which the covering is at its lowest development among true Porcupmes, and the crussispinis group, containing a larger animal in which the quills of the back reach a surprising degree of thickness for a relatively generalized l'orcupine of this type.

Forms seen: crassispiuis, pumilis, and a recently acquired specimen from Sumatra which I take to represent sumatrae.

List of Nanifd Forms
 pumilis Group

1. THECURU'S PUMIHIS, Günther
2. Ann. Mag. Nat. Hist. 5, IV, p. 106.

Paragua, Philippine Islands.
2. THECURLS SLMATRAE, lyon
1907. Proc. U.S. Nat. Mus. NXXIf, p. 583.

Aru Bay, east coast of Sumatra.
crassispinis (iroup
3. TIECLRU'S CRASSISPINIS, Günther
1876. Proc. Zool. Soc. London, p. 736.

Mainland of Borneo, opposite Labuan.
Nasal, Frontal and Occipitonasal Measurenients (in mm.) of
British Museum Series of Skllls (other than broken ones)

				occtpronasal
7. ${ }^{\text {Specirs }}$	number Nat	nasal length	frontal length	levgit
T. pumulis	79.5.3.17	25	C. 34	S7
, ". .	94.2.1.15	27	32	91
T. crassispinis	76.9.20.15 (the type)) 33	3^{8}	c. 110
,,	92.9.6.17	37	40	114
"	92.10.1.5	34	39	111
"	95.5.7.7	35	37	107
"	8.4.5.19.7	35	36	106

Neasurements for comparison, of brachyurus Group of Mystrix in British Museum (small species with nasal percentage of occipitonasal length less than 50 per cent)
H. jazanicum,
50.12.2.16
$43 \cdot 5$
29
IO9
H. brachyurus
5.9.27.1

51
36
122

	\Andl Lfeng11	1.kental lengit	achiritumasal
11. brachrorus 3.2.6.7t	63	$3+$	Lexatil
H. miilleri(?),			
from borneo 93.3.4.8	625	$3+$	128
Frost Collection, 1933°. Not vet registered.			
Flores, adult female juranicum	43	31	109
Flores, adult male joramicum	45	31	109
East Java, adult male joranicum	$\begin{aligned} & 51 \cdot 5 \mathrm{left} \\ & 48 \text { right } \end{aligned}$	315	$11+$
East Java, old female južanicum	H	315	10.4
East Java, sub-adult jatamicum	42	32	106

All other Mystrix, so far as traced, have the percentage of nasals against occipitonasal length more than 50 per cent except sometimes H. leucura (47 , fide Lönnberg).

Genus \& HYSTRIX, Linnaeus
1758. Hystrix, Linnacus. Syst. Nat. 10th. Ed. 1, p. 56.
1822. Acanthon, Cuvier, Mem. Mus. Hist. Nat. NX, p. 425. (Acanthion jaranicum, Cuvier.) Valid as a subrenus.
Type Species- - Ilystrix cristata, Linnaeus.
Range.-The greater part of the African Continent (Morocco, Asben (Sahara), Upper Égypt, Senegal, Gambia; Uganda, Kenya, Somaliland, 'Tanganyika, Portuguese East Africa, South-west Africa, South Africa); Italy and Sicily; Palestine, Syria, Asia Minor, Mesopotamia, South Arahia (specimens in IB.M.), Afghanistan, probahly Persia; Transcaucasia (Talysh); South-western Siberia (Turkmenia, Semirechia, Kopet-Dag mountains, Karakum), (Vinogradov); Paluchistan; Peninsular India (Punjab, Rajputana, Central Provinces, Palanpur, Cutch, Kathiawar, Deccan, Mysore, Coorg, Nilgiris, Malabar); Ceylon; Nepal, Sikkim, Bhutan, Assam; Burma, 'Tenasserim, South China (Szechuan, Yunnan, Fukien, Anhwei); Mainan; Malay Peninsula, Sumatra, Java, Borneo, Sumbawa, Flores.

Number of Forms.-Approximately thirty-five.
Characters.-Nasals, even in the most primitive forms, longer and broader than in Thecurus, extending ahout to lachrymal level in brachymus group, progressively lengthened in most other species; broader to a degree and much longer in suberistatus group; relatively short in Iencura group, and not wider behind than in front; relatively short in africaenstralis group but enormously broadened, much wider behind than in front; considerably broader behind, and also much lengthened in cristata group, ultimately approaching the level of the posterion zygomatic root. In these larger African species the skull hecomes much arched. A prominent sagittal crest normally present in adult. Occiput thick, strongly ridged, prominent. Bullae relatively small; paroccipital processes not much lengthened. Palate broad, extending about to end of toothrows behind, and straight; not depressed in front of thothrows;
palatal foramina short, far in front of toothrow. Infraorbital foramen of moderate size for a Hystricoid Rodent, relatively small in some in which the nasals reach their maximum inflation; no canal for nerve transmission. Zygoma broad but simple; jugal not approaching lachrymal as a rule; zygomatic plate projected forwards, appearing as an anterior prolongation of zygoma; lachrymal moderately large. Incisors broad. Nandible with hinder part flattened, the angular portion powerfully ridged and distorted outwards. Coronoid process low:

Externally becoming very large in progressive species (" 38 inches" and $\delta_{10} \mathrm{~mm}$. the largest (measured) skins seen, galeata type). Forefeet broad, with four well-developed digits bearing thick claws; hindfeet longer but essentially similar except that the hallux is quite well developed, the two central digits slightly longer than the outer ones.

I have already written at length on the external characters as regards arrangement of head-crest, body quills and spines, and caudal rattling-quills, of the various species, on Pp. 199, 200.

The cheekteeth are essentially as already described under the heading "Family Hystricidae" (p. 198). 'They are strongly hypsodont, the pattern is long preserved though ultimately obliterated, and the premolar is shed late in life.

Remarks.- The genus is frequently divided into two, Hystrix and Acanthion. Great as are the differences between the highly specialized H. cristata (type of Hystrix), and the relatively primitive $1 H$. jaanicum (type of Acanthion), it becomes clear that so many intermediate forms exist that this classification cannot be retained. 'This is made very clear in a paper by Lönnberg, 1923 (on the Chinese Porcupine II. subcristatus, Swinhoe with remarks on other members of the genus, Arkiv. för Zoologi, Band 15 , No. 18, pp. 1-10), and in other papers by this author.

In 1912 Miller restricted the genus Hystrix to the European and African species only, on account of the "inflation of facial regions of skull at maximum for the family; nasal bones extending to glenoid level." But this appears to include in Hystrix the Chinese subcristatus, currently referred to Acanthion, and to exclude the African crested species africueaustralis, which is naturally a Hystrix. It is quite clear that on nasal structure alone this genus will not divide into two.

In my opinion, in an animal of this description, the external characters (development of quills, etc.) must be regarded as being just as important as any cranial character. There is a definite break in the species between cristata, africaeaustralis, leucura groups (Crested Porcupines) on the one hand, and subcristatus(?) (skin not seen, but description fits in with Acanthion as here suggested), klossi, brachyurus, jazanicum types on the other. For the present I suggest that Acanthion may be used subgenerically for the latter group (with crest poorly developed, vestigial or absent; caudal-quills moderately to poorly developed; body quills thick but without the profuse mantle of many-ringed longer quills present and covering them). If on the other hand subcristatus proves to be an intermediate between the two groups, the name. Acanthion will have to he placed in synonymy.

Suhgenus ACANTIHION

(With characters as just indicated; quills with one ring only.)
There are two groups here recognized, a "short-nasal" group containing brachyurus, of the Malay Peninsula and Islands (with longicauda and millleri as races or synonyms), and jazamicum, and a "long-nasal" group. H. brachyurus group (nasals in percentage of occipitonasal length averaging $45^{\circ} 3$ in our specimens; 49 in five measured by Lyon (nasals against "total length" of skull). 11. jazanicum has an average percentage of 40.9 in the few adult skulls represented in London; sumbatae, Schwarz, from Sumbawa has a slightly lower measurement, $30 \cdot 2$, in the figures published. This might or might not be a race of jazanicum; specimens received from Flores (which is beyond Sumbawa eastwards from Java), appear quite indistinguishable from typical jazanicum. I divide this group into two sections, the typical, and the juranicum section (several skins of which have been seen), these sections differing from each other in the external characters indicated on pp. 199, 200. Although between these two sections there is quite a clear difference in the material examined, perhaps if enough material was collected, the two types would intergrade.
H. subcristatus group (with long nasals) contains subcristatus, klossi (with millsi, based on skulls the external characters of which are unknown, provisionally treated as a race), and hodgsomi. Nasals in percentage of occipitonasal length in subcristatus $5(7 \cdot 6-57 \cdot 7$ (Lönnberg), (and mesopterygnid space unusually wide in our skulls); the percentage in hodgsoni averages $55^{\circ h}$ in four measured; the same in klossi (four measured), is 53.6 . 'This group is divided into two sections, in precisely the same way as the brachyurus group; in hodgsomi the external characters are more primitive than in $k l o s s i$; but probably intergradation would take place in these external characters, if enough specimens came to hand. 'These characters have been noted on p. 200.

The measurements of the skulls just quoted are:

species	Number	Nasal length	Frontal length	UCCIPITONASAL LeNGTH
11. klossi	14.12 .8 .224	80	31	139
,, ,, (type)	14.12 .8 .223	75	34	145
" "	15.11 .4 .220	71	30	136
,, ,, (millsi; type)	21.7 .16 .4	68	33	128
11. hodgsoni	53.8 .16 .11	64	24	115
" "	45.1.S.8	65	20	116
'" "	21.10.4. 35	66	23	115
" "	79.11 .21 .637	61	24	114

'Two of the main difficulties of dealing with animals of this description are (1) the rarity, and (2) the frequently had condition, in which they come to hand.

But even if these notes are based on insufficient material, they do at least give a preliminary survey of all the main species of the whole genus, and not sections of it (for instance, lönnberg's paper compares only subcristatus with the larger crested types; Lyon's paper compares only the Indo-Nalayan ones. I have seen no paper which compares klossi, hodgsomi, etc., with either of these, or either of these groups with each other).

Subgenus IIVSIRIX

(With more highly specialized development of external characters; crest long, fully developed; caudal rattling-quills at maximum development; a profuse

Fig. 6z. Hystrix cristata, Linnacus.
(From Miller's Catalogue of the Mammals of Hestern Europe.)
$-\frac{1}{2}$.
growth of very long many-ringed quills covering the short thick ones of Acanthion. For detail notes see p. 213 .)

Lönberg states that these Porcupines (with subcristatus) should divide into three groups, as follows:
"Nasal cavity widened chiefly by means of prolongation backwards of nasals. Proc. nasales of premaxillaries truncate behind, only little widened. subcristatus."
"Nasal cavity much enlarged by extremely broad proc. nasales of pre-maxillaries-. lencura, galcata."
(He suggests this group might divide into two, one for lencura (Indian, Asiatic types), the other for the African galeata.)
"Nasal cavity enlarged by expansion of nasals, proc. nasales of premaxillaries wedge-shaped behind, not or only moderatcly enlarged. "fricaeaustralis, cristata."
(lle suggests that this group might also divide into two, one for cristata and senegalica type, one for africaeaustralis.)

But there is a very profound difference between leucura and galeata. Skulls referred to galeata in London seem to vary individually in the shape of the nasals. I believe that all species of African Jorcupines excepting africafanstralis would prove to be referable to one species cristata if enough of them came to hand, and that the shape of the nasals would be found to vary individually so that galeata would become merged into cristata. II. leucura with hirsutirostris seems to me to be a perfectly natural group, sharply differentiated on nasal structure from all African Porcupines. 'The nasals are not or scarcely broader posteriorly than anteriorly; the whole skull lacks that broadening characteristic of African Crested Jorcupines. Further, the nasals in percentage of occipitonasal length are short; (47-4) leucura, $48 \cdot 2-49 \cdot 6$ hirsutivostris) (fide Lönnberg); a lencura measured for comparison with these figures has the percentage 51%. This is markedly shorter even than in africacaustralis.

Russian authors give lirsutirustris full specific rank, but there seems no
reason to believe that it is clistinct from the Indian lencurd. I am therefore treating all named forms of this group as subspecies of the earlier name lencura.

The africacaustralis group, from South and Southern Africa, appears on the material examined to be clearly separable from the cristata group as here understood. Compared with lewcura, the nasals are much broadened, always as far as seen considerably broader posteriorly than anteriorly; compared with the cristata group, they are short (percentage of occipitonasal-nasal length 5t55%, fide Lönnberg; this percentage slightly exceeded ($55^{\circ} 9$), in British Museum material). H. stegmanni, not seen, appears from Lönnberg's percentage figures and remarks to belong in this group.
Fig. 63. Hystrix cristata, Limnaeus. Checkteeth; I ${ }^{3}$.

The cristata group contains all other African Porcupines, as here understood. The nasal length is maximum for the genus, and is combined with great broatening, but the shape is very variable both individually and between some of the species (cristata, percentage 58.9-65, senegalica, 69; galeata, 61.1-66.8; galeata ambigna. 607,
fide Lomberg）．＇The nasals extend much farther back than in the africue－ australis group．II．aerula，from Asben，is a small form allied to senegalica． In my opinion probably all North African Porcupines are no more than races of cristata，including occidanea，not seen，as figured by Cabrera．

Forms seen：aerula，africaeaustralis，＂bengalensis，＂brachyurus，cristata， cuneiceps，＂cuicri，＂galeata，hirsutirostris，hodgsoni，jazanicum，klossi，leacura， millsi，mülleri，senegalica，schmidti，somaliensis，subcristatus．

List of Nimed Forms
Subgenus Acamthon，Cuvier
brachaurus Group
（juranicum section）

r．HYSTRIX JAVANICLX，Cuvier
1822．Mem．Mus．Nat．Hist．N．，p． 43 b．
Java．（Occurs also in Flores．）
Synonym：torquata，van der Hoev，1836，Tijdschr．iii，p． 1 10．Java．
brezispinosa，Wagner，1844，Schreber，Säug．Suppl．11，p． 20. Java．
ecaudata，van der Hoer， 1836 ．Tijdschr．iii，p．iro．Java．
2．HYSTRIX SLAMBAWAE，schwar2
191s．Ann．Mag．Nat．Hist．8，VH，p． 639.
Dompu，Sumbawa，East Indian Archipelago．
（typical section）
3．HYSTRIX BRACHYCRLS BRACHYCRLS，Lmnaeus
1758．Syst．Nat．Ioth Ed．p．57，no． 5.
Malacca．
Synonym：grotei，Gray，1866，Proc．Zool．Soc．London，pl．31．p． 310. flemingi，Gray， 1847 ，Proc．Zool．Soc．London，p． 103.
4．HYSTREX BRACHYLRL＇s LONGICALDA，Marsden
1811．Hist．Nat．Sumatra， 3 rd Ed．p． 1 is．
Sumatra．
5．HY＇SRRN BRACHYしRL＇s MÜUILIRI，Marshan
1871．Proc．Zool．Soc．London，p．235．（Sce Lyon，Proc．U．S．Nat．Mus．XXXII，1907， p． 5 \％o．）
Padane，Sumatra．
（An animal of this type occurs in Bornen．）

> subcristedus Giroup
> $($ hodgsoni section)

6．HYSTRIX HODGSONI，Gray
1847．Proc．Zool，Soc．Lomdon，p． 101.
Nepal， 1 hmalayas．
Synomem：bengalensis，Blyth，1851，Journ．As．Soc．Bengal．XX，p．1／o． alophus，IIIodgson，ist7．Journ．As．Soc．Bengal，NYT，p． 271. Ilimalayas．

（typical section）

7．HISTRRLK KLUs．
1916．Ann．Mag．Nat．IHst．S，XVH，p． 139.
Tenasscrim Town．
s．Hエ゙sTRLX K゙LUSSI MHLISI，Thomas
1922．Journ．Bombay Nat．Hist．Soc．KXVIII，no．2，p． 431. Sangrachu，Assam．

9．HYSTRIS SUBCRISTATL゙S SUBCRISTATUS，Swinhou
1870．Proc．Zool．Soc．London，p．638． South China；Fokien Province．

10．HY゙STRIX sLBCRISTATUS PAPAE，Alten 1927．Amer．Mus．Nov．no．290，p． 3.

Haınan．
Not allocated to Group
11．HYSTRIX YUNNANENSIS，Anderson
IS78．Anat．and．Zool．Res．Yunnan，p． 332.
West Yunnan．
（According to Thomas based on a short－nosed species allied to jazanicum．）

Subgenus Hystrix，Linnaeus
 leucura Group

12．HYSTRIX LELCCRA LELCURA，Sykes
1831．Proc．Zool．Soc．London，p． 103.
India；Sayul of Mahrattas．
Synonym：zeylonensis，Blyth， 185 I ，Journ．As．Soc．Bengal，XX，p． 17 I ． Ceylon．
malabarica，Sclater，1865，Proc．Zool．Soc．London，p． 353. Cochin，India．
indica，Gray \＆Hardwicke，1833－34，HIl．Indian Zool．ii， pl． 14.
13．HYSTRIX LELCLRA CUNEICEPS，Wroughton 1912．Journ．Bombay Nat．Hist，Soc．KXI，p． 771.

Nokania，Cutch，India．
14．HYSTRIX LELCERA IIIRSLTTIROSTRIS，Brandt 1835．Namm．Exot．Nov．p． 39.

Afghanistan．
15．HYSTRIS LELCLRA BLANFORDI，Nuller 1y11．Sitz．Ber．Ges．Nat．loreunde Berlm，p．izi．

Jalk，Baluchistan．
16．IIYSTRIX LELCLRA SATUNINI，Nulley
1911．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 117.
Transcaspıa，Geok＇lepe，east of Caspian Lea，752 E．， $3 \mathrm{~S}^{1} \mathrm{~N}$.
\％－HY゙STRIX LELCLRA MERSIN゙AE，Múller
1011 ．Sitz．Ber．Ges．Nat．Freunde Berlın，p． 122.
Mersina，south－east of Taurus，Asia Minor．

8．HYSTRAX LELCURA AHARONII，Nuller 1911．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 123. Palestine；Emmaus，west of Jerusalem．
19．HY＇STRIX LELCCCRA SCIIMIT7，Nuller 1911．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 126. Palestine；Ain Dcheier，N．－W．of Dead Sea，Jordan valley゙，

20．HV゙STRIX LFLCLRA NNAYNENSIS，Nuller 1919．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 67. Naryn，Tuskestan．

1920．Zool．Anzeiger，5r，p． 198. Jebel Abdul Azir，N．－E．Syria； $40^{\circ} 20^{\prime}$ E．， $36^{\circ} 20^{\prime} \mathrm{N}$ ．

africaeanstralis Group

22．If STRRIX AFRICAEAU゙STRALIS AFRICAEACSTRALIS，Peters 1852．Reise nach Mossambique，Säugeth．p． 170.

South－East Africa；Querimba，Tette； $1 I^{\circ}$ to 17° south． Synonym：copensis．Grill，i\＄5\＄，Zool．Anteckningar af．J．F．Victorin， p． 19.
23．HYSTRIX AFRICAEALSTRALIS PRITTWITZI，Muller
1910．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 3 II．
Tabora，Tanganyika Territory．
24．HYSTRIX AFRICAEALSTRALIS ZL゙LUENSIS，Roberts
1936．Ann．Trans．Mus．XVIII，p． 240.
Zululand，White Umfolosi River．
25．HYSTRIN STFGMANNI，Múller 1910．Arch．f．Naturgesch．Jahrg．76，Band r．p． 186. Kissenji，north－east of Lake Kivu，＇Tanganyika．

cristata Group

26．HYSTRIX CRISTATA CRISTATA，Linnaeus
1758．Syst．Nat．1，ioth Ed．p． 56.
Near Rome，Italy：（See Miller，Cat．Mamm，W．Europe，1912．p．543．） Synonym：cueicri，Gray，$\$_{47}$ ，Proc．Zool．Soc．London，p．ioz． Locality not known．
（？）daubentoni，Cuvier，1822，Mém．Nus．Nat．Hist．IS． p． 43 r．Locality unknown；perhaps best regarded as unidentifiable．
alba，de Selys－Longchamps， 1839 ，Études de Micro－ mamm．p．152，nom，nud．
europaea，Kerr，1792，Anim．Kingd．p． 213.
（Some specmens in B．M．labelled＂moroccana＂；the reference to this name has not been traced．）
27．HY゙STRIK CRISTATA OCCIDANEA，Cabrera
1924．Bol．Soc．Esp．Hist．N゙at．X゙XVV，p． 220.
Mogador，West Morocco．
28．HリSTRIS CRISTATA SENEGALICA，Cuvier
1822．Mem．Mus．Hist．Nat．IX，p，+30.
Senegal，West Afrea．

29．HY＇STRIX（＇RISTATA AERLLA，Thomas
1925．Ann．Mag．Nat．Ilist．9，XVI，p．igh． Aouleras，Asben，Sahara．
30．HYSTRUX GALI．ATA GALEATA，Thomas f Sig3．Snn．Nag．N゙at．1list．6，X1，p． 230. Lamu，Lienya．
31．IHGTTRIX GALEATA SOAIDENSIS，Lomberg 1912．Kungl．Sv．Vet．Akad．Handl．Band．+8 ，no．5，p．Io！．

32．HY゙̆RIX（；AJBATA AXHBIGLA，Lombery ıos．Sjost．Kilhmanj．Neru．Exp．p． 20. Kibonoto，Kilımanjaro，East Africa．
 1910．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 314. Fondna－1 rangı，＇Tanganyika．

34．HYSTRRIX GALIATA（ONRADSI，Nuller 1910．Sitz．Ber．Ges．Nat．Freunde Berlin，p． 314. Ukerewe Island，I ake Victoria．
35．H1YS＇TRIX GALEATA LONNBERGI，Muller 14）10．Sitz．Ber．Ges．Nat Freunde Berlin，p． 315. Kilimanjaro，East Africa．
The family llystricidac is known fossil from the Upper Miocene，from the Ohd World only．

HYSRICIDAE：
 SPECAHL HORKS OF REFERENCE

Waterhouse， 1848 ，Natural History Mammalia；Rodentia（Vol．II）．
Pocock，1922，l＇roc．Zool．Soc．London，1922，p．365．External Characters of some Hystricomorph Rodents．
Ttllberti，i899，Nova Acta Reg．Soc．Sci．Upsaliensis，XVIII，3，I．
Lron．l＇orcupmes of the Malay I＇eninsula；Proc．U．S．Nat．Nus．XXXII，1907，pp． 575－5け4．
Lönvil： R ；On the Chinese Porcupine Iystrix subcristatus，Swinhoe，Arkiv．for Zoologi， 13d． 15, no．18，p．1， 1923.
Millfr，Catalogue of Nammals of Western Europe，1912，p．542．Hystricidae．（IIystrix （ istata）．

Family CUNICULIDAE

i So6．＇Thomas：Hystrifonorpha：Dasyproctidae，part．
isog．Tullibets：lls＇strmomorpha：Cavidae，part．
19is．Miller \＆Gidley：Hystricoidae：Famly Cuniculidac．
1924．Winge：Family Hystricidae；Dasyproctin，part，Dasyproctae，part．
1g28．Weber：Hystriomea：Cavidae，part；subfamily Dasyproctuae，part．
（jegrraphical Distrmaton．－Tropical America，From Mexico to South Brazil．
Number of Genira．－One．
Chakacters．－Skull highly abnormal，the greater part of the maxillary and jusal expanded to form large bony cheek－plates，the surface
of which tends to become rugose. Cheekteeth hypsodont, semi-rooted, characterized hy deep re-entrant folds which isolate as long islands on crown surface. External form heavy, terrestrial, the limhs not lengthened; feet with digits of sub-ungulate type, the claws extremely thick; hindfoot perissodactyle, with three main digits, but both D. 5 and haltux present though strongly reduced; forefont artiodactyle, with four main digits.

Clavicles not suppressed, but (said to be) incomplete. According to Tullberg, the carpus lacks a free centrale, alone of all Rodents examined by him excepting the Hystricidae.

Remarks. - The differences between this genus and the Dasyproctidae with which it has often been associated have been discussed at length by l'oeock (Proc. Zool. Soc. London, 1922, p. 4^{24}), who, following Miller $\mathbb{\&}$ Gidley, refers the animal to a distinct family. I am entirely in agreement with this classification. The unique skull structure in the family indicates evolutionary development along a very different line not only from that of Dasyproctidae hut from all other Rodents; the feet do not agree with those of the Dasyproctidae, nor are the limbs lengthened; the cheekteeth do not agree exactly with those of the Dasyproctidae. (The relationships of Dasyproctidae as compared with Caviidae, with the latter of which Cuniculus has also been associated, have been fully discussed when dealing with the family Dasyproctidae.)

As indicated already, the cranial characters of this genus differ entirely from those of any other Rodent; in this particular it must be looked upon as the most aberrantly specialized member of the whole Order.

Genus i. CUNlCUlUS, Brisson

1762. Cunicilus, Brisson, Regn. Anim. ed. 2, p. 13.
1763. Acoutı, Lacupède, Ordres et Genres Mamm. 9. Agouti paca (=Mus paca, Linnaeus).
1764. Coelogenes, Cuvier, Ann. Mus. Hist. Nat. Paris, X, p. 203. (Mus paca, Linnacus.)
1765. Stictomys, 'Thomas, Ann. Mag. Nat. Hist. 9, XIII, p. 238. (Coelogenys taczanozrskii, Stolzmann.)

Type Species.-Mus paca, Linnaeus.
Raxge.-Forms are named from Mexico, Panama, Cayenne, Ecuador, Colombia, Brazil, Venezucla. Specimens in British Museum from Paraguay, Peru; according to Thomas ranging to South Brazil.

Number of Forms.-Ten approximately.
Characters.-Skull with zygomatic region abnormally modified by outgrowth from maxillary and jugal, of bone forming a checkplate which extends downwards and conceals a large part of the mandible, the maxillary part of this plate being deeply hollowed internally. The infraorbital foramon is smaller than in other II stricoidae, in adults becoming strongly reduced, being dwarfed by the cheek-plate. Infraorbital foramen with a separate

Fic: 64. Crevet les paca, Linnatus.
B.M. No. $13,10,24,6 \mathrm{f}, \mathrm{o}^{2}$ slightly more than $\frac{1}{2}$.
canal for nerve transmission. Nasals broad, relatively short; frontals broad, very long; parietals depressed, and a sagittal ridge formed in adult; well marked postorbital processes occur at the suture of the frontals and parietals. Paroccipital processes thick and rather long; bullae relatively small. Palate broad, not constricted anteriorly, the anterior part extending beyond the toothrow as a

Fig. 65. Cunieulets paca, Linnaeus. Cheekteeth: B. M. No. 13.10.24.61, ©: : 21 .
marrow shelf bordered by two high longitudinal ridges which extend nearly to the incisors, and on either side of which lie the enormous cavities caused by the cheekplates. Palatal foramina obsolete. On account of the cheek-plate, the skult of the typical species appears nearly as broad as long. There is a marked tendency for the check-plate in old specimens to become rugose, and for the frontals to assume a similar character, this being apparently especially marked
in males. The hinder part of the mandible is more or less flattened, as in Mystricidac; coronoid process relatively low; degree of distortion outwards of angular process moderate. Cheektecth rather complex; upper series apparently with two imner and three outer re-contrant folks, eacept $\mathrm{N1.3}$, which is the largest tooth of the series, and in which the number of folds appears to be reversed. Sometimes there is a tendency for 3.1 to become reduced in size and elements, with wear. Nost of the folds isolate as long persistent islands almost immediately; the umworn tooth shows, as usual in this Order, an extremely complex pattern. Some of the isolated forlds become suppressed with wear. Lower teeth with one outer, thece inner folds each; the premolar may have an extra inner fold.
hncisors thin, compressed.
Externally typically the fur is harsh, the sides of the body with longitudinal rows of spots. Hindfoot with D. 5 much reduced, but with moderate claw (though less strong than those of $1.2,3,4$) ; hallux rudimentary; three main digits long, hearing very sharp somewhat hoof-like claws. Forefoot with four main digits; D .2 is longer than D .5 , but shorter than the central pair; pollex represented by a knoh. 'Tail ,bsobete. Form heavy, and size large, one of the Jargest members of the Order. ('lhe largest skin examined is 685 mm . head and body, but this measurement probably may be exceeded.)

It is probable that the habits of these ammals are not cursorial (compared with Dasyprectidac): Pacas are said to take to the water when alarmed.

In the tucanozeskii group (Mountain Pacas), the fur is thicker, less harsh. This group was referred to a distinct gemus hy Thomas, on account of "the narrow compressed claws and much more profusely granulated soles; cranially by the proportionately longer nasals, much smaller orbits, more anteriorly situated postorbitals- the zygomata narrower, generally much less rugose, though as usual there is much variation in this respect-finally the incisors are orthodont." Alammae $1-1=4($ sicwue $)$, (Thomas).

But there are far tox many essential characters shared by the two groups for there to be any question of even subgeneric separation, in my opinion. These characters indicate that the plains Pacas and mountain Pacas belong to distinet species. It may be stated that in a skin of sierrat, the chaws seem even thicker than a specimen of paca with which it was compared; there is certainly no deneric difference so far as clans are concerned; (compare, for instance, Chindhilla with Lagostomus; Cazia with Korndon): when two groups have gone so far together in specialization (cranial characters), it not only seems unnecessary but bad classification to give them generic mames on small eramial differences such as the above.

An interesting account of the formation of the check-ponches of the genus is given by Mr. K. 1. Pecosck (under the name of Cioelogenys), Proc, Kool. Soc. fondon, 1922, p. 376 .

Forms seen: puca, ghanta, tucamorskii, siertae.
1 can sce no specific difference hetween the last two forms, the latter being deseribed as a distinet species.

List of Named Forms

（References and type localities collected hy Mr．G．W．C．Holt．）

paca（iroup）

1．CUNICULUS PACA PACA，Linnaeus
1766．Syst．Nat．1，p．81．
Cayenne．
Synonym：fulvus，Cuvier， 1807 ，Ann．Mus．X，p． 207.
subniger，Cuvier， 1807 ，Ann．Mus．X，p．206．Tobago．
2．CUNICULU＇S PACA NELSONI，Goldman
1913．Smiths．Mise．Coll．LX，no．22，p． 9.
Catemaco，Southern Vera Cruz，Mexico．
3．CUNICLLUS PACA VIRGATUS，Banes
1902．Bull．Mus．Comp．Zool．Harvard Univ．XXXIX，p． 47.
Divala，Chiriqui，Panama．
4．CUNiCULUS PACA ALBA，Ketr
1792．Anim．Kingd．p． 217.
St．Francis River，Brazil．
5．CUNICULUS PACA MEXIANAF，Hagmann
1908．Arch．Rassenbiol．5，p． 25.
Mexiana Island，Amazonian estuary，Brazil．
6．CUN゙ICULUS PACA GUANTTA，LÖnnberg
1921．Ark．f．Zool．Band SIV，no．4．p． 45.
Pacto，below Gualea，Ecuador．
7．CUNICULUS PACA SUBLAEXIS，Gervais
1 $\$_{54}$ ．Gervais Mamm．1，p． 326.
Colombia．

tacsanowskï Group

8．CUNICUIUS TACZANOWSK゙II TACZANOWSKIl，Stolzmann 1885. Proc．Zonl．Soc．London，p． 161.

Ecuador；forests on either slope of the Andes，between 6，000 and $10,000 \mathrm{ft}$ ．
9．CUNICLLU＇S TACZANOW゙SK゙H ANDINA，Lönnberg
1913．Ark，f．Zool．Band VIII，no．16，p． 28.
Mount Pichincha，Ectador．
10．CUNICULUS TACZANOWSK゙II SIERRAE，Thomas
1905．Ann．Mag．Nat．Hist．ser．7，XV，p． 589.
1＇edregosa Muntains，Sierra de Merida，Venezuela．
＇Tafe quotes＂thomasi，＂nom．nud．（？）ex Thomas，Bull．Amer．Aus．Nat． Hisi，L．NVIII，2，p．34， 1935.

CUNICULID．AE：
 SPlECHL IHORK゙S OF REFEREVCE

Pocock，1922，Proe，Kool．Soc．Lundon，1022．p． 365. External Characters of some IIystricomorpin Rodents；p． 376 ，account of the mechanies of the cheek－pouches． I5 lewne：Rexients－I

Watpriouse, 1848 , Natural IIstory Mammalia, Rodentia.
'Tate, 1435, 'Vaxonomy Neotropical I!ystricoid Rodents, Bull. Amer. Mus. Nat. Hist. LXVIII, p. 295.
'Tulbbrfi, Nova Acta Reg. Soc. Sci. LPpaliensis, XVIll, 3, 1, tímo.

Family CHINCHILLIDAE

: So6. Thomas: Hystriconorniat: Family Chinchillidae.
1899. Tullbere: Ilystracomorpila: Family Chinchillidac.

19nS. Willer \& Gidey: Hrstricordae: Fammy Chinchilladae.
1027. Winge: Family Hystricidae, part; "Eriomymi" (= Chinchilhni).
1928. Weber: Hystricuides: Famıly Chinchillidac.

Gfographicill Distribetion.- Western and Southern South America, from Peru, Bolivia and North Argentina
southwards.
Neaber of Gienfra- Three.
Charactars. - Checktecth evergrowing, the pattern one of transverse plates.
Mandible with no sharply defined ridge for attachment of
masseter lateralis; the angular portion less strongly distorted outwards than is usual in Hystricoidae; a weak ridge below condylar process presumably for attachment for masseter medialis may be present, foreshadowing the structure present in Cavioidae, but much shorter and less developed than in that group. Jugal usually in contact with lachrymal; zygoma simple, but normally thickened anteriorly. A tendency present towards great inflation of mastoids and bullae; paroccipital processes relatively long. Palate much constricted anteriorly; palatal foramina usually very long, narrow. Incisors relatively narrow. External form slender, the hindfeet lengthened (semi-saltatorial or cursorial Rabbit-like types); digits of hindfoot three or four, D. 5 when present extremcly reduced, perhaps functionless.

The lachrymal is large; part of the lachrymal canal is open on side of rostrum in front of orbit.

A skeleton has been examined in each of the three genera, and each presents the feature that the fibula, though not fused with the tibia, is excessively reduced, a structure rather different from that of other llystricoid Rodents examined for this character.

The Chinchillidae fall into two well-marked groups, one containing Lagostomus only, the other Chinchiller and Lagidium.
'The differences between the skulls and the digits of these groups are rather extreme, and they have been regarded as subfamilies (I^{\prime} ocock, 1922). But these differences seem rather adaptive; and I have seen it stated that Chinchilla has bred with "the much larger hut related Vizcacha" (Jennison, 1929). They are therefore here treated as groups only.

Paroccipital processes long, standing apart from bullate, which are not specially inflated; oceipital region of skull strong, frominent; skull
more prominently rideed for muscle attichment; digits of hindfoot three, the chaws heavy, prominent, excessively sharp; palatal foramina shorter; checktecth, excepting M.3, upper series, bilaminate.

Lagostones Group. Ligostonil Lagostomus

Paroccipital processes closely applied to bullae, not or less elongated: bullae considerably to extremely inflated; occipital region of skull weak; skull not prominently ridged for muscle attachment; digits of hindfoot four; the claws blunt and weak; palatal formmina long and narrow; cheekteeth trilaminate. Chinchilla Group. Chinchilabe Chinchilla, Lagidium

The Chinchilla Group

Characters.-As indicated in the above key.

Key to the Genfri of tife Chinchilla Grolp

Bullae abnormally inflated, the mastoids showing prominently in superior aspect of skull. Jugal usually not in contact with lachrymal. Laminae of cheekteeth straight.

Chinchilla
Bullae less abnormally inflated, the mastoids scarcely showing in superior aspect of skull. Jugal in contact with lachrymal. Laminae of cheekteeth curved.

LAGIDIUM

Genus 1. ChllNCHILA, Bennett

1829. Chincmila, Bennett, Gard. and Menagerie Zool. Soc. i, p. i.
1830. Errowys Lichtenstein, Darstell. Süug. V'l, pl. 2S. (Eriomys chinchilla, Lichtenstein).
Type Species.-Mus laniger, Molina.
Range.-Chile. ? Bolivia.
Nlaber of Forms.- One is recognized.
Characters.-Mastoids and bullae abnormally inflated, the mastoids showing prominently each side and at back of skull. Considerable interorbital constriction evident. No canal for nerve transmission in infraorbital foramen. Palatal foramina very long; palate narrow, considerably so anteriorly. Jugal usually not extending to lachrymal, broad. Paroccipital processes moderate, closely applied to and dwarfed by the bullae. Nandible with narrow angular process, which is sharply drawn backwards; the ridge outside the condylar process weak.

Cheektecth like Lagidium (next to he (lescribed), but the laminae straighter; three lobes per tooth, the hinder one in M .3 pointing backwards, as a heel. The anterior lobe of the lower teeth short, reduced.

Externally, with very soft fur; the tail long, though not as long as head and body, heavily haired throughout. Hindfeet long and narrow; stiff hristle hairs

Fig. 66. Chivehrlea laniger, Mulina.
B. N. No. 1.8.24.1, j: I! !

Fig. 67. Chinemilla Linmidk, Mohma. B.入I No. 1.8.2+1, i: $1!$
present on inner digit; three main digits; D. 5 placed high on foot, and not nearly reaching base of D.4; extremely short. Lar large. Forefoot short; four main digits; pollex represented by a tuberele. Rudimentary cheek-pouches present (Pocock).

Forms seen: laniger.

List of Named Formis

(References and type localities of all Chinchillidae are the work of Mr. G. W. C. IIolt.)

1. CHINCHILLA LANIGER, Molina 1782. Sagg. Stor. Nat. Chile, p. 301. Northern Provinces of Chile. Synonym: chinchilla, Meyen, 1833 , Nova Acta, XVI, 2, p. 586. Chile. brezicaudata, Waterhouse, 18 \& 8 , Mamm. II, p. $2 \neq 1$. Bolivia. relligera, Prell, 1934, Zool. Anzeig. Leipzig, Bd. 108, p. 100. Chile.

As is well known, these animals were nearly exterminated on account of the value of their fur; now it appears they are being farmed, and it is hoped they will be saved from extinction.

Genus 2. LAGIDIUMI, Meyen

1833. Lagidim, Meyen. Nova Acta Ak. Caes. Leop. Car. XVI, 2, p. 576. 1816. Viscaccia, Oken, Lehrb. Nat. iii, 2, p. 835.
"The rulings of the International Zoological Nomenclature have reduced 「"iscaccia, Oken to a synonym of the later described Lagidium" (Tate). 1833. Lagotis, Bennett, Proc. Zool. Soc. London, V, p. 58. (Lagotis curieri, Bennett).

Type Species.--Lagidium peruamum, Meyen.
Range.-Peru, Bolivia, Argentina, Chile; south in Argentine to $50^{\circ} \mathrm{S}$., or nearly to Magellan.
Number of Foras.-Twenty-one are named.
Characters.-Skull narrow, with long rostrum; a tendency present for the frontals to be depressed between the orbits; the braincase flat, round; no sagittal ridge formed. Bullae very large, but not distorting the occipital region of the skull as they do in Chinchilla, and not appearing much in superior aspect of the skull. Paroccipital processes straight, joining the bullae. Palatal foramina long and narrow; palate much constricted anteriorly. Jugal rery broad, in contact with lachrymal anteriorly, and with small upwardly directed process on hinder upper border. Infraorbital foramen with no canal for nerve transmission. Nandible near that of Chinclitla; the angular process narrow, drawn backwards to a degree, the angular process not much distorted outwards (older specimens seem more developed in this respect), the short ridge beside the condyle very weak as a rule.

Cheekteeth each with three laminae, the laminae curved; the upper series with the third plate of each tooth shorter than the other ones; M. 3 with a backwardly pointing heek. In the lower series the front lobe of each tooth is reduced (three laminae per tooth).

Externally larger than Chinchilla; fur thick and soft; usually a black middorsal stripe present. Ear large. Hindfeet narrow, with four digits; D. 5 much as in Chinchillo, extremely short. Claws weak and blunt. Forefect with four digits. 'Tail shorter than head and body, but of considerable length, and heavily hairy.

Forms scen: arequipae, boxi, cuscus, famutinue, inea, luteum, lockwoodi, moreni, pallipes, peruanum, perlutewm, punensis, surae, saturatus, subrosea, tontalis, tucumanum, ziseuceia, z'uleani, z'istorum, wolffsolmi.

Mr. R. W. Hayman has looked through the considerable British Museum material with a view to getting the twenty-one "distinct species" in this genus into some sort of revision. He reports as follows:
"There appear to be four species in this genus, two of them containing eighteen of the twenty-one named forms recognized here.
"In Peru, extending southwards as far as the Bolivian and Chilian borders is a group of small forms having the following features in common: smallish size, dorsal stripe mostly absent or indefinite, rostrum short and teeth small. Perucunm is the earliest name for this group.
"Southwards from North Bulivia to Chubut in the Argentine Andes is a second group having the following in common : larger size, dorsal stripe usually well marked and contrasting sharply with the usually greyish pelage, long rustrum and large teeth.
"I iseacciu is the earliest name in this group. Both this and the preceding group have the hindfeet usually conspicuously paler than the body colour, and in both the proportionate ear to head and body length may range from 17 per cent to 21 per cent.
"In the southern Argentine Andes another group occurs, clusely related in skull characters to the ciscaccia group, but characterized externally by very short ears in proportion to large overall size, the percentage being from I_{3} to I_{5}, and by the hindfeet being uniformly coloured with the body. Boxi, sarae and zolffsolmi belung here, the latter being the most southerly species of the genus.
"Except for the three last-named, all are here listed as subspecies of riseaceia and perumum. Although small skulls of culcani, one of the northern races of aiscactia, closely approach in proportions large skulls of inca, the most remosed geographically of the peruonum group, the skins are quite distinct.
"Actually where the two species approach each other geographically they are most distinct (compare pumensis and arequipae of South Peru with lutea, cuseus and perlutea of North Bolivia).

1. i. risenecta.
2. て'. luted.
3. \%. euscus.
4. 2. perlutea.
1. ₹. culcami.
2. i. themmana.
3. i. lockewoodi.
4. z. famatimat.
5. r. tontalis.
6. z. riatorum.

1 I. 2 . moreni. (5-1I inclusive doubtfully separable).
12. p. perwamum.
13. p. pallipes. I'ossibly a synonym of 12 .
14. p.inca.
15. p. subroseu.
16. p. saturata.
17. P. punensis.
18. p. arequipae. 17 and 18 doubtfully distinct.
19. b. bowi.
20. b. sarae.
21. wolffsohini."

Note.-L. wolffsohni differs clearly in colour pattern from all the remainder.

List of Named Forms

1. LAGIDIUN VISCACCIA VISCACClA, Molina
2. Storr. Nat. Chile, p. 307.

Chile.
Synonym: Iutescens, I'hilippi, 1896, Ann. Mus. Chile, 13, p.8. Tacapuca, Northern Chile.
curieri, Bennett, 1833, Proc. Zool. Soc. London, p. 58. Peru. aureus, Geoffroy © D'Orbigny, 1830, Ann. Sci. Nat. AXI, p. 29r. Corrientes, Buenos Ayres. criniger, Gay, 184%, Fauna Chile, 5, p. 49. Chile. crassidens, Philippi, 1896, Ann. Mus. Nac. Chile, 13, p. 10. chilensis, Oken, 1816, Lehrbuch Naturgesch. ii, p. 836, Chile. crinigerum, Philippi, 1896, Ann. Mus. Nac. Chile, 13, p. ro. Chile.
riscaccica, Brandis, 1786 , Versuch einer Naturgesch. von Chile, p. 272.
2. LAGIDIUM VISCACCIA LLTEA, Thomas
1907. Ann. Mag. Nat. Hist. 7, NK, p. $4+3$.

Esperanza, Mount Sajama, Bolivia.
3. LAGIDIUM VISCACCLA CLSCL'S, Thomas
1907. Ann. Mag. Nat. Hist. 7, XIN, p. ++3 .

Paratani, Bolivia.
4. LAGIDIUMI VISC:ACClA PERLUTEA, Thomas
1907. Ann. Mag. Nat. Hist. 7, N1X, p. 443. I'ampa Aulliaga, Bolivia.
5. LAGHDHUM VISCACCHA VLLCANI, Thomas
1919. Ann. Mag. Nat. Hist. 9, IN, p. 133. Cerro Casabindo, Jujuy, Argentina.
6. LAGIDILA VISCACCLA TLCLMANA, Thomas
1907. Ann. Mag. Nat. Hist. 7, XIX, p. 44.

Cumbre de Mala-Mala, sierra de Tucuman, Argentina.
7. LAGIDILA VLACACC1 LOCKWOODI, Thomas
1919. Ann. May. Nat. IList. 9. Ill, p. fo9. Otro Cerro, Rioja, Areentina.
8. LAGIDIUN VISC'ACCLA IANATINAE: Thomas
1920. Ann. Mag. Nat. Hist. 9, VI, p. +2I.

La Invernada, Rioja, Argentina.

1921. Ann. Mar. Nitt. IIist. 9, VIlI, p. 219.

Lus Sombreros, Sierra Tontal, west of San Juan, Argentina.
10. LAGIDIUN VISCACC1A VIATORLM, Thomas
1921. Amn. Mag. Nat. Hist. g, VlJI, p. 220.

I'unta de Vacas, Mendoza, Argentina.
11. LAGIDILM VIACACClA MURENI, Thomas

IS97. Ann. Mas. Nat. IIst. 6, XIX, p. 467.
Hulls near Chubut, Argentina.

1833. Nova Acta Ac. Nat. Cur. SVI, p. 578.
southern P'eru.
13. LAGIDIUNI PERCANLM PALJIPES, Bennett 835. Proc. Zool. Soc. London, p. 67.
(Believed to be) Chihan Andes.
14. LAGIDIUMIPERUANETM INCA, Thomas
1907. Ann, Mag, Nat. Hist. 7, SIX, P. 442.

Incapirca, Zezioro, Junin, Peru.
15. LAGIDILN PERUANUNI SLBRUSEA, Thomas 1907. Ann. Mag. Nat, Hist. 7, X1X, p. 442.

Gialera, west of Oroya, Dept. Lima, Peru.
16. LAGIDILM 1BRUANLAI SATLRATA, Thomas 1007. Ann. Mar. Nat. Hist. 7, X1X, p. 442.

Limbane, Inambari, Dept. of Puno, P'eru.
17. LAGIDILXI PERUANLMI PUNENSIS, Thomas 1907. Ann. Nag. Nat. Hist. 7, XIX, p. 443.

I'uno, Lake 'Jiticaca, I'cru.
18. 1.AGIDILTA PERUANUTM AREQUIPAE, Thomas
1907. Ann. Mag. Nat. Hist. 7, XIS, F. 442.

Sumbay, near Arequipa, l'eru.
19. LAGIDILA] BONI BONI, Thomas
1921. Ann. Mag. Nat. I Iist. 9. VII, p. 179.

Prlcaneu, Rıo Negro, Argentina.
20. LAGIDIL M BOSI sidRAE, Thmmas \& st. Leger
1926. Ann. Mag. Nat. Hist. 9, XVIII, p. 639.

Pino Hachirdo, Neuquen, Argentina.
21. LAGIDIUM WOLFFSOLNN, Thmman
1907. Ann. Nag. Nat. Hist. 7, XIX, p. 4.40.

Sicrea de los Mareuales y de las Yizeachas, 50 50'S., $7220^{\prime} \mathrm{W} . \mathrm{A}$ on boundary between Chile and Argentina.

The Lagostomus Group

Differing chicfly from the Chinchilla group in the bullac, which are not greatly inflated, the parnccipital processes, which are lengthened and stand apart from the bullace, the extremely sharp chaws of the feet, the complete suppression of 1) 5 in the hindfoot, the skull more heavily ridged for muscle attachment.

Fig. 68. Lagostomis mamiges mamits, Desmarest.
B..2. No. 17.5 .2 .18 ; . $\frac{4}{3}$.

Genus 3. LAGOSTOMLS, Brooks

1828. Lagostome's, Brooks, 'Mrans. Limn. Soc. XV' p. p. 9^{6}.
1829. Mizcacha, Schinz. Nature, und Abbid. Salueth. p. 243. (This name is not to be used as it is a homonym of l'iscoctio, Oken. (Thate).)

Trye splenes.-Lagostomus michodactylus, Brooks = Dipus maximus, Desmarest.

Range.-Argentina. One form, from Peru, is probably extinct.

Number of Forms.-Four.
Characters.-Skull flat, with broad frontals, which bear quite well-marked postorbital processes. Nasals relatively long and narrow.

Fig. 6n. Labertomis maxinit's mamme's, Desmarest.
B.M. No. 17.5.2.18; 5.

A well-marked sagittal crest present. Paroccipital processes lengthened (probably about as much as in Throntoms); bullae not much inflated compared with the Chinchilla group, though appearing to a certain degree behind, each side of occipital region. A prominent canal present in infraorbital foramen for nerve

Fig. 7o. Lagostomes mamines manhits, Desmarest. B. МI. No. 17.5.2.18; . 告.

Fig. 71. Lagostomes manams maximis, Desmarest.

LAGOSTOMUS

transmission. Palate strongly constricted anteriorly. Jugal slanting sharply upwards anteriorly, and in contact with lachrymal. As in other members of the family, the upper zygomatic root is placed far backwards, over the middle of hinder part of the toothrow. Mandible with rather strong ridge heside condyle for attachment of masseter medialis; this, however, much shorter than in Cariidae. Coronoid low; condylar process relatively low; angular process distorted outwards rather weakly.

Cheekteeth set at an angle, the upper series with their outer edge pointing forwards; all upper and lower teeth with two laminae only except M. 3 upper series, which is the largest tooth in the series and has three laminae. Incisors medium in width, their surfaces covered with faint longitudinal grooves. According to Pocock the penis differs considerably from that of other Hystricoid genera examined by him, including Chinchilla; see also note on breadth of manubrium on p .171 , which indicates yet another wide distinction from the Chinchillae.

Externally relatively large (up to 470 mm . head and body in London collection); fur less soft than in Chinchilla group; tail not long, fully haired; forefoot with four digits armed with stout claws; hindfoot rather long, with three digits only, the claws in their development comparable to those of Cuniculus, excessively thick and sharp. Stiff bristle-hairs present on D.3, which is the longest digit; D. 2 is shorter than D. 4 .

Forms seen: crassus, immollis, maximus.

List of Named Forus

1. LAGOSTOAUS MAXIMUS MAXINIUS, Desmarest

1Si7. Nouv. Dict. d'Hist. Nat. xiii, p. 117.
Argentima (?). (Locality unknown.)
Synonym: trichodactylus, Brooks, Trans. Linn. Soc. NTI, p. 96, 1828. Argentina.
diana, Griffith in Cuvier, I827, Anim. Kingd. 111, p. 170.
riscaccia, Genffroy 太 D'Orbigny, iszo, Ann. Sci. Nat. xxi, p. 291.
criniger, Lesson, 1842 , Nouv. Tabl. Rigne. Anim. p. 105.
pamparum, Schinz, 1825 (IS2f) Naturs. und Abbild. Säugeth. P. 24.
americana, schanz, is25. Cuviers Thierreich, IV, p. 429.

```
    2. LAGOSTONIC'S MANINIUS INMOOLLS,'Thomas
1910. Ann. Mlag. Nat. l11st, ser, S, V, p, 2+5.
    Tapia, Tucuman, Arwentina.
    3. LAGOSTONHTS MASINIUS PETtLIDENS, Hollster
1914. Proc. Biol. Soc. Washington XXVVIl, p. 5S.
    & miles suth of Carmen de Patagones, Bouthern Argentına.
    4. LAGUSTOMIUS CRASSLS, Thomas. (Extinct:)
1910. Amn. Mag. Nat. Hist. ser. 8, V, p. 2f6.
    Santa Ana, Cuzco, Peru. (Known from cranial characters only.)
```


CHINCHILLIDAE:
 SPECIAL HORKS OF REFERENCE

Waterhouse, 1848, Natural History Mammalia, Rodentia.
Tate, 1935 . Taxonomy of Neotropical Hystricoid Rodents, Bull. Amer. Mus. Nat. Hist. LXVIII, P. 295.
Pocock, Proc. Zool. Soc. London, 1922, p. 365. External Cbaracters of some Hystricomorph Rodents.
'Tellberc, Nova Acta Reg. Suc. Sci. L'psaliensis, Ni'Ill, 3, no. 1, 1899.
The family is known fossil from the Miocene, from the Neotropical region only. Miller \& Gidley quoted several extinct genera.

Superfamily CAVIOIDAE

1896. Thomas: Hystricomorpha, part.
1897. Tulberg: Hystricognathi, Hystricomortha, part.

1918 Niller \& Gidley: Superfamily Ihstricoldan, part, mediatis series.
1924. Winge: Famly Ilystricidae, part.
1928. Weber: Hystricoides, part.

This Superfamily is equal to the medialis series of the Hystricoidae of Niller \& Gidley, and contains one family, the Caviidae, containing the genera and subgenera Cavia, Galea, Caziella, Monticazia, Nanocazia, Kerodon, Dolichotis, Paradolichotis and Iydrochoerus only.

1 have elsewhere, when dealing with the Hystricoidae (Hystricoidae, p.97) remarked on the desirahility of removing the Caviidae from the typical Ilystricoid series, on account of the different formation of the lower jaw. Apart from this structure and the formation of the cheekteeth they appear to agree in essential characteristics with the Hystricoidae; but although Chinchillidae may show a certain resemblance in mandible formation to Caviidae, I am unable to regard the Caviidae as typical Ilystricoidae now, whatever their ancestors may have been.

Family CAJIIDAE

1896. Thomas: IIrstricomorpha: Family Cavidae.
isg9. 'Tullberg: Hrstriconorpha: Family Caviddat, part, ineluded Dasyprocta and Cuniculus ("Coelogenvs").
19 \&. Niller \& Gidley: IIstricoldae (Medulis series). Family Cavidae: and Family
Hydrochoeridae (1 ydrochocrus and fossil allies).
1897. Winge: Famly Hystricidae, Dasyproctini, part, group Caviae.

192s. Weber: Hrstricoidea: Fomily Cavidae, part, subfamilies Cavinae (Cazia), and Hydrochocrinae (Hydrochoerus, Dolichotis).
Geographical Distribetion.- The ercater part or the whole of South America: extending north to Panama.
Number of (ievers.-Sin.
Characters.-Zygomasseteric structure differing Irom that of the Hystricoidac in the formation of the lower jaw, which has the angular process drawn backwards but not distorted outwards, and possesses a deep horizontal ridge, for the insertion of masseter medialis according to

Niller \& (sidley) present on side of mandible stightly below alveolar tevel and eatending from the level of the condyar process to about as far as the hinder fart of XI. I Infraomital foramen very large, as in Hystricoidac, and zygomatic plate marrow, remaining completely bencath it.
 crally hypsodont, normally comparatively simplified in structure, but with slarp folds and angular projections, the general effect more or less prismatic.
'libia and fibula not fully fused.
Clavicles suppressed. External form ambulatory or cursorial; digits of hindfoot reduced to three. 'Tail obsolete. Lachrymal large; part of lachrymal canal open on side of the rostrum, except in the genus Dolichotis.
'fwo well-marked subfamilies may be recognized, which are sometimes considered as families; but which, notwithstanding the high specializations of the Ilydrochoerinac, appear to agree in very many essential features.

Key to the Subfaillifs of the Catiddaf

M. 3 not greatly enlarged; pattern of cheekteeth comparatively simple; palate short to extremely short (from hefore backwards); paroccipital processes not aboormally elongated. Subfamily Cavinas
(Caria, Galea, Caziella, Kerodon; Dolichotis)
N. 3 extremely enlarged (upper series); pattern of cheekteeth comparatively complex; palate not short (from before backwards) ; paroccipital processes abommally lengthened. Subfamily llynrochorranae
(Hydrochoerns)

Subfamily CAVIINAE

Geographical Distribution.-As in the family, except not known from Panama.
Number of Genera.-Five.
Remarks.-The Caviinae fall into two well-marked groups, the Cazia group, smaller genera with short limbs, shorter ears, and moderate claws (or in Kerodon blunt nails), and the Dolichotis group, containing a single genus, with larger size, long limbs, long ears, sharp houf-like claws, the external form more modified for cursorial life.

Dolichotis seems to he too nearly allied to the Caviae for these groups to be regarded as subfamilics, as has been done (Pocock, Tate).

The Cazia group was revised by Osgood in 1915 (Ficld. Mus. Nat. Hist. Publ. Zool. scr. X, no. 13, pp. 194, 195), who rightly restricted the genus Koradon to the species mpestris, and proposed the subgenera Galea and C'aviella for those species of Caria with mare simple checktecth. 'Thomas in igif treated Galea and Cozitle as full genera, and erected Momticatia for the specics mata (referred by (Skgood to (ariclla). Later 'Thomas erected Nanocazia for a new species shiptoni, allicel to Coriclla and Monticaria.

The Caviinae have recently been revised at some length by Kraglievitch, 1931, Ann. Mus. Nac. Buenos Aires, XXXV1, p. 77. He divides the suhfamily

Cavinae into the two groups here recognized. The genera Ciazia, Gialea, Caziella, Monticazia, and Ferodon are retained in the Cazia group; Nanocazia he reduced to a subgenus of Monticaria.

On this aceount I retain Galea and Cariella as full genera, though I am bound to say that 1 feel convinced that it would be wiser to retain Osgood's original classification, in which these two groups are regarded as of subgeneric value only, as the characters which separate them from each other are of very doubtful value.

But Monticazia is so closely allied to Caziella that 1 cannot treat it as more than a subgenus. The main differences between Monticazia and Caziella are that the heel in M. 3 of Monticaria is less sharply defined, and that the incisors are in Monticazia more pro-odont. But Liraglievitch gives the measurement of the angle of the incisors of Caviella as between 88° and 110°, and that of Monticaria (Nanocazia) shiptoni as $11 I^{\circ}$, so that the difference in this respect appears to amount to one degree between the two "genera," which is hardly sufficient to base a generic name on!

Kerodon is a distinct genus, which cannot be confused with any of the other members of the Cavia group, whatever their status may be.

Key to the Groups of the Cavinnae

'The limbs shorter; ears short; claws not hooflike, less broadened, or may be blunt; nasals not narrowed and pointed anteriorly; interorbital region narrower; paroccipital processes less lengthened.

Cavia Group (Calae)
(Cazia, Galea, Caziella; Kerodon)
The limbs longer; ears long; claws powerful and hooflike; nasals markedly narrowed and pointed anteriorly; interorbital region very broad; paroccipital processes more lengthened.

Dolichotis Group (Dolichotides) (Dolichotis)

The Cazia Group

Characters as indicated in the above key. Size medium or small, not becoming large.

In all the genera, the jugal is broad but rather short, and zvgoma not angular ; incisors relatively short, narrow; palate extremely constricted anteriorly, the premolars almost touching; upper cheekteeth much higher on inner side than outer side, the lower cheekteeth much higher on outer side than inner side.

Mandible with coronoid process obsolete; condylar process of medium height; angular process drawn far backwards, but not distorted outwards. Beside and below the condylar process and extending forwards about to level of hinder part of $\mathrm{M} . \mathrm{I}$ is an extremely deep and prominent ridge for insertion of masseter medialis.

> Kfy to the Gexprs of the Cazia Grole

Claus blunt. Sternum narrow and rounded (Osgood). 1ierodox

Claws sharp. Sternum broad and that (Osgood).
Posterior lobe of upper cheekteeth with a clear and deep outer reentrant fold; dental pattern less simplified.

Cavia
Posterior lobe of upper cheekteeth with no re-entrant fold; dental pattern more simplified.
Orbital branch of maxillae completely interrupted by the lachrymal; incisors pigmented; skull not bowed.
Orbital branch of maxillae not completely interrupted by the lachrymal; incisors not pigmented; skull bowed to a greater or lesser degree. Caviflla
The differences between Galca and Caviella are based on characters which are in other groups very variable; for instance, in Dolichotis the interruption of the orbital branch of the maxillae by the lachrymal may be present or absent. The incisors may or may not be pigmented within many genera elsewhere in the Order, for instance, Ctenoms, Xerus (Geosciurns), and others. The orbit is more circular in Caziclla than in Galea.

Genus 1. CAV1A, Pallas

1766. Cavia, Pallas, Misc. Zool. p. 30.
'Type Species.-Cazia cobaya, Pallas = Mus porcellus, Linnaeus.
Range.-South America; Brazil, the Guianas, Venezucla, Colombia, Peru, Bolivia south to Northern Argentina.
Number of Forms.-Approximately seventeen.
Characters.-Skull with some interorbital constriction apparent, and a sagittal crest developed in the adult. Infraorbital foramen broader below than above; a canal present for transmission of nerve. Bullae relatively large. Paroccipital processes noticeably elongated. Palate short, extending about to front of M.3. Palatal foramina short, narrow. Jugal medium, not approaching the lachrymal. Incisors not pigmented.

Upper cheektecth divided into two lobes by inner re-entrant fold in the upper serics, the hinder lobe larger than the anterior one, and with a deeply indenting fold in its outer burder. M. 3 with posterior projection. Lower cheekteeth with one deep outer fold dividing tooth into two lobes and with an inner fold in the posterior lohe. Mandible as already described.

Externally the limbs not specially elongated, the hindfeet long, with three digits, the central digit the longest; the chaws sharp. Forefeet with four digits, D. 3 the longest, D. 5 the shortest; D. 4 rather longer than 1).2. Ears relatively short.

This genus is quite well differentiated from Galea and Caviella hy the more complex cheektecth.

Forms seen: anolaimae, aperea, aこarat, festina, fulgida, suianae, nana, pamparum, pallida, porcellus, rosida, stoldda, tscludii, umbrata.

For notes on the species of Cazta see 'Ihomas, Ann. Mag. Nat. Hist. S', XIX, p. 152. 1917.

Lat ar Nimed Forms

(References and type localities of all named forms for the Caviitare are the work of Mr. G. W. (C. Holt.)
a. CAVIA GUJANAE, Thomas
1001. Non. Mag, Nat. I list. 7, V"lli, p. 152.

K゙anuku Mountains, British Cuiana.
2. CASIA SENF:ZUELAE, Allen
1911. Bull. Amer. Mus. Nat. Hist. NX゙X, p. 250.

Altagracia, Immataca district, Venezuela.
Considered by 'Thomas as doubtfully distinguishable from guianae.
3. CAVIA ADEREA APEREA, Erxlchen
1777. Syst. Regn. Anim. 1, p. 34S.

Brazil.
Synonym: leucopyga, Brandt, 1835, Mém. Acad. St. Petersb. 6, iii, p. 436 . Brazil.
4. CAVIA APEREA AZARAE, Lachtenstein
1823. Doublet. Zool. Mus. Berlin, p. 3.

Ipamena, Province Sio Paulo, Brazil.
5. CAVIA ROSIDA, Thomas
1917. Ann. Mag. Nat. Hist. S, X1X, p. 154. Roca Nova, East Parana, 13razil.
6. CAVIA PANIPARUN, Thomas
1901. Ann. Mag. Nat. ITist. 7. VIII, p. 539.

Goya, Corrientes, Argentina.
7. CAV1A TSCHUDII TSCHUDll, Fitzinger
1567. Sitz.-Ber. K. Akad. Wien (Math. Nat.), LV1, p. 154.

City of Yca, 70 miles east of I'isco. Western Peru.
8. CAVIA TSCIIUDII UMIBRATA, 'I'homas
1917. Ann. Mag. Nat. Hist. S, XIX, p. 157.

Incapirca, Zezioro, Central Peru.
9. CAlIA TSCIlUDII AREQUIPAE, (osgood 1919. Journ. Mamm. Baltimore, p. 34.

Arequipa, Peru.
Synonyn: tschudii pallidior, Thomas, 1917, Ann. Mag. Nat. Hist, δ, XI., p, 15 S. Not (niata) pallidior, Thomas. 'The nime arequipae was proposed in case Monticazia was regarded as not distinguishable generically from Cacia. P'erhaps pallidior should stand in the present work, as niata pallidior is regarded as a Caziella.
so. Cilbli TSCHLDII stol, DA, Thomas 1926. Ann, Mag. Nat. Hist, 9, XVIII, p. 166.

Rio Utcubamba, 15 mile's south of Chachapoyas, I'eru.

1. CAYIA 'lSCIICDII FESTMNA, 'Thomas
2. Ann. Mag. Nat. Hist. 9, lX, p. 6ot.

Huaraca, Junin, Peru.
12. CAVIA 'SCDEDML SODALIS. 'Thomas 1926. Ann. Mag. Nat. Hist. 9, NV'll, p. 607.

Norco, 20 hilometres north-sest of Vipos, I'rov. 'Tucuman, Argentima.
(1) I.sumg Futents - I

13．CAVIA TSCHCDII ATAHLALIAE，（）sgood
1913．Field Mus．Nat．IIst．I＇ulnl．Zonl．ser．Si，no．I3，p． 98. Cajamarea，I＇eru．
1ұ．C＇AVIA NANA，Thomas
1017．Ann．Mag．Nat．IIrst．X, XIX，p． 158.
Bolivian Ilighlands（Chulumani，Yungas）．
15．CAVIA FULGIDA，Wagler
1831．1sis，XXIV，p． 512.
Amazonta．
Synonym：rufescens，Iund，18，1，Afh．Ǩ．Danske．Vid．Selsk．4，VIII， p．284．Lagoa Santa，13razil．
nigricans，Wagner，1841，Schreber，Säug．Suppl．IV，p．64． Brazil．
16．CAVIA ANOLAIMAE，Allen
1916．Bull．Amer．Mus．Nat．Ifist．X゙X゙XV，p． 8_{5}.
Anolaima，west of Bogota，Colombia；on a branch of Rıver Bogota．
17．CAV゙1A PORCELLU゙S，Linnaeus．（Domestic）
1758．Syst．Nat．1oth ed．，I，p． 59.
Brazul．
Synonym：aperoides，Lund，Blak．Dyr．pl．25．Brazl．
robusta，Lund， 1841 ，Blik．Dyr．pl．25，fig． 16.
brasilicusis，Linnacus，1754，Mus．Adolphi．Friederici，p． 9. gracilis，Lund， 184 I, Blik．Dyr．pl． 25.
cutleri，Bennett，i835，Proe．Zool．Soc．London p． 191. Lima，Peru．
cobaya，Naregrave， 1648 ，Hist．Nat．Bras．p．224．Peru．
lougipilis，Fitzinger，I879，Sitz．－Ber．K．Akad．Wien （Math．Nat．），LXXX，Ab．1，p． 431 ．Japan．

Genus 2．GALEA，Neyen
1833．Galfa，Meyen，Nova Acta Ak．Caes．Leop．XVI，2，p． 597.
Type Specifs．－Galea musteloilles，Meyen．
Range．－Bolivia，North Argentina，Chile and Brazil．
Number of Forms．－l＇en．
Characters．－Like Caziu but cheekteeth simpler，each upper tooth cut into two lobes by one inner fold； M .3 with weak backwardly projecting heel．Lower teeth two－lobed；I＇：t with short anterior prolongation．

Orbital branch of maxillary completely interrupted by lachrymal．Incisors pigmented．

Forms seen：auceps，boliziensis，comes，demissa，flazidus，littoralis，negrensis， palustris，spixii．

List of Named Formis
r．GALEA MUSTELOIDES MLSTELOIDES，Meyen
1833．Nova Acta Ak．Cues．Leop．XV1，2，p． 508.
Pass of Tacara and＇Iajorn，Andes，Nonth－west Bolivia．
Synunym：bolizienses，Waterhouse，ists，Nat．Ilist．Namm．in，p．i75． Molivia，highlands between Cochabamba and La l＇az．
comes，Thomas，1919．Ann．Mag．Nat．Hist．9，1V，p． 134. Maimara，Jujuy，Argentina．
2. GAIEEA NUS゙1VLOIDES LIELCOBLEPIARA, Burmeister 1865. Reise dureh La I'lata, II, P. 425.

Mendoza to 'lucuman, Argentina.
3. GiLLEA MLSTFLODDES LIT"FOIRALIS, Thomas
1901. Ann. Mas. Nat. Ilist. 7, V ll, p. 195.

Babia Blanc:1, Argentina.
Synonym: musteloides megrensis, Thomas, 1919, Ann. Nag. Nat. Hist. 9, III, P. zri. Pılcaneu, Upper Rjo Negro, Argentina.
4. GALEA MUSTELOIDES DEMIs.SA, Thomas
1921. Ann. Mas. Nat. Ilist. 9. V'If, p. 623.

San Antonis, l'arapita, Bolivat.
5. GALEA MESTELODDES ALCEP'S, Thomas
1911. Ann. Mag. Nat. Mist. S, VIII, p. 255.

Guarina, Lake 'I'iticaca, Bolivia.
6. GALEA MINIMES, Molina
1782. Sagg. Stor. Nat. Chili, ist ed., p. 306.

Chile.
Considered a subspecies of musteloides by Tate; if this is so, the name antedates musteloides, and all races must be regarded as races of minimus.
7. GAlEA SPIXII, Wagler
1831. Isis, XXIV, p. 512.

Brazil.
Synonym: saxatilis, I, und, 18 , A. Afh. K. Danske Vid. Selsk. 4, VIlf, p. 286 . Lagoa Santa, Brazil.
8. GALEA W'ELLLSI, Osgoud
1915. Field Mus. Nat. Hist. Publ Zool. ser. K., no. 13, p. 196.

São Marcello, Bahia, Brazil.
1). GALEA PALUS'TRIS, 'Thomas
1911. Ann. Mag. Nat. Hist. S, VII, p. 60 .

Cameta, Iower Rio Tocantins, Brazil.
ro. GALEA FLAVIDENS, Brandr
1835. Ném. Acad. St. Petersh. p. 439.

Brazil.
Synonym: obscurus, Lichtenstein, i823, Doublet. Z. Mus. Berlin, p. 3. Brazil.
bilobidens, Lund, I8\&1, Afh. K. Danske Vid. Selsk, \&. VIII, P. 286. Brazal.

Genus 3. C.lVIELI.d, Osgood

1915. Caviella, Ospood, Field. Mus. Nat. Ilist. Publ. Zool. ser. X. no. 13, p. 194.

Regarded by Kragleyteh as indistmguishable from Microcaria. Gervais and Ameghino, 1880, Mamm. Foss. Amer. Sud. p. 50, a fossil genus.
1916. Monticavia, Thomas, Amn. Mag. Nat. Hist. S, NVIII, p. 303. Cario niata,

Thomas. Valed as a suberenus.
1925. Navocavia, Thomas, Ann. Mas Nat. Ilist. n. XV, p. 418 . Nanocazia shptomi, Thomas. Vahic as a subrenus.
'TYpe Specirs.-Cazia australis, Geoffroy \& D'Orbigny.
Range.-Bolivia and Argentina, south to latagonia.
Numbfr of Forms.-Eight.
Characters.-Skull with rostrum slanting downwards anteriorly, more bowed than in allies, the highest part of the skull uswally about over posterior zygomatic root. Palatal foramina larger than in preceding

Fig. 72. Cayiella alstralis joannia, Thomas.
B.M. N゙o. 71.12.29.12, f; : 2.
genera, triangular, placed more clusely to toothrows. Sagittal crest present in old age. Bullae relatively larger, and orbit more circular than in Cazia and Galea. Incisors without pigment. Checkteeth like Calea, but usually M. 3 with deeper posterior fold.

Monticazia, here regarded as a subgenus of Caziella, has more pro-odont incisurs, the angle with the line of toothrow about 115 . N. 3 is less complicated, the heel a short projection, without internal notch. Skull more bowed anteriorly.

Nanocaria, as remarked above, is intermediate between typical Caziella and Monticutia in the angle of the incisors; the bullace are considerably smaller than in either, the portion appearing on occipital surface of skull practically uninflated.

Fig．73．Caviella aistralis joannia，Thomas．
B．M．No．7r．12．29．12，学；で 2.

Fle．74．C＇Midela ustruis jond．va，＇lhomas． Cherkteeth：13．入i．No，フ1．12．20．12，；6．

Forms seen: australis, juamia, maenas, niata, "migriana," pallidion, salinia, shiptoni.

List of Namin Fornis
Subgenus Cariella, Osgood

1. CAVIELIA AUSTRALIS AUSTRALIS, Gcolfroy \& D'Orbigny
2. Nag. Zool. 1, pl. 12.

Rio Nesto, Patagonia.
Synonym: australis nigriana, 'Thomas, 1921, Ann. Mag. Nat. Hist. 9, VII, p. 446. Neuquen, Rio Negro, Argentina.
2. ('AVIELLA ALSTRALIS KINGIT, Bemett
1835. Proc. Zool. Soc. London, p. 190.

Port Desire, I Patagonia.
3. CAVIELLA ALSTRALIS JOANN゙IA, Thomas 1921. Ann. Mag. Nat. Hist. 9, VII, p. 446.

Cañada Honda, San Juan, Argentina.
t. CAVIELLA ALSTRALIS MAENAS, Thomas
i898. Ann. Nag. Nat. Hist. 7, 1, p. 284.
Chilecito, Rioja, Argentina.
5. CAVIELIA AL'STRALIS sALINIA, 'Thomas
1921. Ann. Mag. Nat. Hist. 9, VII, p. 447.

South-east Catamarca, Argentina.

Subgenus Nanocazia, 'Thomas
6. CAVIELIA SHIPTONI, Thomas
1925. Ann. Mag. Nat. Hist. 9. K'V', D. 419.

Laguna Blanca, Catamarca, Argentina.

Subgenus Monticaria, Thomas
7. CAVIELIA NIATA NIATA, 'Thomas
1898. Ann. Mag. Nat. Ilist. 7, I, p. 282.

Esperanza, 50 km . from Nt. Sahama, Bolivia
8. CATJELLA NIATA PALJIDIOR, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 229.

I'ampa Aullaga, Lake Poopo, Bolivia.

Genus 4. KERODON, F. Cuvier
1825. Kerodon, F. Cuvier, Dents. des Mamm. p. 151.

Type Species.-Ciaria rupestris, Wied.
Range.-Brazil. (British Museum specimens from Bahia.)
Number of Furas.-One.
Characters. - Nuch like Cavia cranially. Sagittal ridge feeble or absent. Infraorhital foramen with no canal for nerve transmission.

Palatal foramina excessively narrowed. Rostrum relatively narrow. Bullae moderate; paroccipital processes rather long. Upper checkteeth two-lobed; M. 3 with a weak backwardly projecting heel. P.4 lower with a well-marked extra anterior projection; heel of 3.3 (lower) poorly defined. Differing, according to Osgood, in several details of the skeleton from Cavia and allies, the chicf of which is that the stermum in this genus is narrow and rounded instead of hroad and flat, the spinous processes of the lumbar vertebrae are thick, heary, and depressed, and the large neural spine of the axis fully overlaps the first cervical.

Externally differing markedly from all allies in the fact that the digits are armed only with hlunt nails.

Remarks.-Whatever the status of Galea and Caziella compared with Cazia, there is no doubt that on account even of the nails alone, this genus is distinct from that group.

Forms seen: rupestris.

List of Named Formis

1. Kerodon rupestris, Wied
2. Isis, VI, p. 43.

Rio Grande de Belmont, Rıo Pardo, etc., Brazil.
Synonym: maco, F. Cuvier, Dents. des Mamm. 1825, p. 15 I. Brazil. sciureus, Geoffroy, 1826, Dict. Class. IX, p. 120. Brazil.

The Dolichotis Group

Becoming larger than the Cavia group; to very large (head and body 690, or more: :) : hindlimbs lengthened, general form modified for cursorial life. Hindfoot very long, with three digits bearing hooflike claws; arrangement of digits perissodactyle. A rudimentary tail present. Forefoot artiodactyle, the four digits armed with sharp claws. Frontals much broadened, and nasals considerably specialized.

Genus 5. DOLICHO'l'S, Desmarest

1819. Dolichotis, Desmarest, Journ. Phys. Paris, LXXXVIII, p. 211. (Cazia patachonicha, Shaw.)
1820. Werenbergilia, Ǩraghevitch, Physis, Vill, p. 579. Subgenus for Dolichotis salinicola, Burmeister. Name preoccupied.
1821. Paradolichotis, Kraghevitch, Physis, VHI, p. 594. Dolichotis salinicola, Burmeister. Valid as a subgenus.
1822. Pedrolagus, Marelli, Mem, Jardm Zool. Ia Plata, vol. III, p. 5. Dolichotis salinicola, Burmeister.
1823. Lagospedius, Marelli, Physis, IX, p. 103. Dolichotis salinicola, Burmeister.

Type Species.-Cazia patachonica, Shaw.
Ravge.-Patagonia and Argentina.
Nuaber of loram.-About fise have been named. There appear to he only two species.
Characters.-Nasals large, much pointed anteriorly, considerably excised at the side on joining the maxillate in the typical subgenus.

Nasals not extending as far forwards as the premaxillae. Frontals very broad, the orhits roofed in hy expansion of the frontal bone, which is deeply notched anteriorly. Occiput relatively weak, sloping forwards; paroccipital processes considerably elongated, much more than is normal, hut not comparable to the structure found in Msdrochoerus. Bullae moderately large. Palate very short, extending only to about level of $\mathrm{Nl.2}$; toothrows nearly meeting anteriorly. l'alatal foramina long and narrow. Jugal broad, short; often a small upwardly directed process on posterior border. Nandible as normally in Caviidae, the masseteric ridge sometimes less deep than in the Cazia group. Lachrymal very large, but apparently the canal is practically or completely closed in front of the orhit. Cheekteeth evergrowing, unilaterally hypsodont as in Cavia group. Upper cheekteeth each two-lobed, except $\mathrm{N}_{1} .3$, which is cut into three lobes by two re-entrant folds. Lower cheekteeth with one outer lold cutting the teeth into two lobes; P. 4 with an extra anterior prolongation.

No separate canal for nerse transmission in the infraorbital foramen.
Ears long; essential external characters as described above.
Paradolichotis is proposed as a suhgenus for the smaller species salinicola (head and body to about 460 in few skins seen), differing in the lower anterior prolongation of the nasals being rudimentary or absent, and in several parts of the skeleton (there are no skeletons of this species in London). For further details see Kraglievitch, 1931 , Anales Museo Nac. Buenos Ayres, xxxvi, p. 77.

According to locock the penis of Dolichotis differs considerably from that of members of the Caria group.

Forms seen: magellanica, centricola, salinicola.
It appears that magellanica and patachomicha may be regarded as synonyms of the oldest name patagonum; I have never seen any notes in which these forms have been compared or regarded as distinct.

List of Namen Formis
Subgenus Dolichotis, Desmarest

1. DOLICIIOTIS PATAGONA PATAGONA. Zimmermann

17\%o. Geogr. Gesch. II, p. 32 R.
Patagonia.
Synonym: (?) patachonica, Shaw, 1Sor, (ienl. Zoology, 2, 1, p. 226. (?) magellanica, Kerr, 1792, Anim. Kined. p. 220. Magellan.
2. DOLICIIOTIS PATAGONA CENTRICOLA, Thumas
1902. Ann. Mag. Nat. Ilist. 7, IX, p. 242.

Cruz del Eje, Central Cordova, Argentma.
Subgenus Paradolichotis, Kraglievitch
3. DOLICHOTIS SALINICOLA, Burmeister
1875. Proc. Zool. Soc. London, p. 635.

Stations Totoralejo and Recreo, Central Argentine Railway. $29^{\circ} \mathrm{S}$. $65^{\text {W. }}$
Synonym: (2) centralis, Weyenbergh, 1877, Versk. Ak. Amsterdam, Xil, p. 247. Cordova, Argentina. Status fide 'Thomas, '「rouessart.

Subfamily HYDROCHOERINAE

Gfographical Distribction.-'The warmer parts of South America, north

 to Panama.Number of Geners.-One.
Characters, - Cheekteeth more complex than in the Caviinat; M. 3 enormously enlarged, exceeding the combined length of the three anterior teeth in size; paroccipital processes extremely elongated, very much more so than in any other Rodunf; bodily size largest in the Order; (habits semi-aquatic).

B.M. No. 27.2.11.112. .;

Genus a. IIYDROCHOERUS, Brisson

1762. Hydrochoerus, Brisson, Regn. Anim. zd Ed. p. 12.
'Type Specirs.-Sus hydrochacris, Linnaeus.
Ravge.- Is in the subfamily, Forms named from Brazil, Paraguay, and Panama. Specimens in British Museum from British Guiana.

B.入. No, 272.11.112, ; !

Said to necur in Vencruela, and also to extend to Peru and Bolivia; but the evact range of this genus has not been traced.

Nimber of Formis-'Three.

Characters.-Skull heavy, rather tlat; nasals broad; frontals broad and long; occiput relatively narrow, and evidently a sagital ridge is not formed. Lachrymal large, with part of lachrymal canal open on side of rostrum. Bullae proportionately smaller than in Caviidae; palate much longer, extending back to hinder part of M.3; palatal foramina large; palate constricted anteriorly; pterygoid fossae very deep; infraorbital foramen without canal for nerve transmission. Paroccipital processes abnormally elongated. Nandible

Fig. 77. Hydrochoert's hydrochaerts hydrochaeris, Linnaeus.
B.M. No. 27.2.16.112, ; ; $\frac{1}{2}$.
typically Cavioid in formation, the masseter medialis ridge moderately to strongly developed. Jugal broad, zygoma heary.

Incisors broad, faintly one-grooved. Cheekteeth remarkable for the amount of cement present. In the upper series, P.4, N.1, and $\lambda .2$ are each divided into two lobes, the lobes united by cement, and each lobe with a further deep outer fold; the lobes narrowed internally and pointing forwards. 11.3 with nine or ten narrow transverse plates joined to each other, and to an anterior and a posterior lobe, the anterior lobe like those of the other molars, the posterior
lobe consisting of two transwerse plates joined externatly. In the lower teeth, $l^{\prime} . f$ and $\lambda 1.1$ are each divided into three lohes; in the premolar each tobe has an inner fold; in Ma the two anterior lobes are with one inner fold, the posterior lobe with an outer fold. $\lambda .2$ and Nl 3 have each four lobes, the central two of which are simple transverse plates, the anterior with an inner fold, the posterior

Fig. 78. Itydrochoert's hydrochafris hydrochaeris, ímnaeus.
Checktecth: B.MI.ふo, 27.2.11.112, : 11.
with an outer fold. $\lambda 1.3$ is the dominant tooth of the series, but is very much less enlarged than M. 3 in the upper series.

External form very large, easily the largest member of the Order, though not of course comparing with "very large" forms of other Orders. Head broad, ears short; fur harsh; limbs not greatly lengthened. Forefoot perissodactyle: D. 3 the longest digit; 1 . 5 considerably shorter than the others.
llindfoot perissodactyle, with three digits only, the digits webbed, but the wehbing poorly developed. Claws heavy, thick. 'lail rudimentary.

The largest specimen seen is 1175 mm . head and body, but I should imagine that this does not represent the extreme development for the genus.

Contrary to the opinion of some I have discussed the subject with, my very limited experience with these animals in captivity, at the London Zoological Gardens, indicates that they possess considerable intelligence; more so indeed than in any Rodent I have ever tried to establish contact with.

Forms seen: hidrochueris.

Last of Nimen formis

1. HYDROCHOERL'S HYDROCHAERIS HYDROCHAERIS, Linnaeus 1766. Syst. Nat. 12th Ed. p. 103. Brazil.
Synonym: capybara, Erxleben, 1777, Syst. Regn. Anim. p. 193.
2. HYDROCHOERUS HYDROCHAIERIS NOTIALIS, Hollister

1914 . Proc. Biol. Soc. Washington XXV'II, p. 58. Paraguay.
3. HYDROCHOERUS ISTHMIUS, Goldman
1912. Smiths. Misc. Coll. LK, no. 2, p. 11.

Marraganti, Rio Tuyra, Eastern Panama.
Remarks.-Notwithstanding the extreme specializations of this genus, such as the lengthened paroccipital processes, lengthening of $\mathrm{M}_{.3}$, and cnormous bodily size, I think that there are far too many essential characteristics shared between it and the Caviidae for $\Pi y d r o c h o e r u s$ to be referred to a separate family, as has recently been advocated (Pocock, Niller \& Gidley).

The Caviinae and Hydrochoerinae are both known from the Niocene from South America. 'The Hydrochourinae are also known from the Pleistocene of the South-eastern United States.

$$
\begin{gathered}
\text { CAIIIDAE: } \\
\text { SPECIAL HORKS OF REFERENCE }
\end{gathered}
$$

Pocock, 1922, P.Z.S. p. 365. External characters of some Hystricomorph Rodents. Waterholse, 1848 , Natural History Mammalia, vol. II (Rodentia).
Tate, 1935. Taxonomy of Neotropical Hystricoid Rodents, Bull. Amer. Nius. Nat. Hist. LXVIII. 2, p. 295.
Tellberg, 1899 , Nova Acta Reg. Soc. Sci. Upsaliensis, XVIII, 3, i.
Osgoon, i915, Field. Mus. Nat. Hist. Publ. Zool. ser. X, no. 13, p. 195.
Kraghmyitch, An. Mus. Nac. Buenus Aires, NXX゙V゚1, 1931, page 59.

Superfamily APLODONTOIDAE

As here understood this contains one living family:

Family APLODONTIIDAE

1896. 'Thomas: Aplonontiae: Family Aplodontudae.
1897. 'I'ullherg: Scicromorpha: Sciuroidi, part; Famly Aplodontiidae.

1gisi. Miller 太 Gidtey: Superfamily Dupodotdae, part; Family Aplodontidae.
1924. W"inge: II \&plobostede, part: I Iaplodontini.

102太. Weber: Haplodontonfea: Family Iaplodontidac.
Geographical Distribution.-Nearctic; Western North America; the lacific side of the Rucky Mountains, from California to extrme Southern British Columbia.

Number of Genera.-One.
Characters.-Zygomasseteric structure of a type differing from any found elsewhere in the Order. Masseter lateralis superficialis attached anteriorly to zygoma; but infraorbital foramen not transmitting muscle; zygomatic plate very narrow, completely below the infraorbital foramen; mandible with angular portion not distorted outwards by specialized portion of lateralis muscle, but with its outer border sharply pulled inwards.

Skull flattened, greatly widened posteriorly. Bullae with neek directed horizontally outwards. Cheektecth evergrowing, simplified in pattern, the dental formula $\mathrm{i} . \frac{1}{1}, \mathrm{c}, \frac{2}{1}, \mathrm{~F}, \frac{2}{1}, \mathrm{~m} \cdot \frac{3}{3}=22$. Fibula not reduced nor fully fused with the tibia, at any rate as compared with Murine or Dipodoid genera. External form more or less modified for lossorial life.

Remarks.- 'The Aplodontidae were included by Miller \& Gidley in their Superfamily Dipodoidae; but the genus is evidently very far removed from other members of that group as understood by these authors. The main difference as regards jaw-muscles is that in this case the infraorbital foramen does not transmit muscle, or scarcely does so; (according to ' $a y l o r ~ i t ~$ definitely does not do so; Coues states that it does transmit a small strand, and from skulls examined it appears that it could do so; as figured by Tullberg, and as stated by Winge, it does not; but the difference between this type of jawmuscle structure, even if it does transmit a small strand, is very widely different from that present in such specialized families as Dipodidae, Pedetidae, and Anomaluridae, with which this family is associated by Miller \& Gidley). It should be noted that the main difference between the Hystricoidae and the Bathyergoidae of Miller \& Gidley is that in the latter the infraorbital foramen does not transmit muscle, and in the former it does so; so that it would appear that if the classification of Ailler $\&$ Gidley were retained, this family should be separated from "Dipodoidae" if only on the grounds of consistency.

Coues, 'lullberg, and other writers have come to the conclusion that Aplodontio is a Sciuroid; 'Pullberg places the genus as a family together with the Sciuridae in his section Sciuroidei, a section of Sciuromorpha equal in importance to his Castoroidei, and Geomyoidei. But unce again it appears that the zygomasseteric structure of Aplodontia is widely different from either Sciuridae, Castoridae, or Geomyidae, all of which have evolved a more specialized arrangement of the forepart of the skull for attachment of masseter muscles in that the zygomatic plate is broadened, to a highly specialized degree in all but a few genera of the Pteromys group, and even in these the difference between Aplodontio and such primitive forms as Belomys is alrcady quite well estahlished. In these families, masseter lateralis rises up the broadened zygomatic
plate to the superior border of the rostrum, and masseter lateralis superficialis has become distinct from the zygoma; but in Aplodontia this is not the case; so that as far as zygomasseteric structure is concerned it appears that Aplodontia is not to be considered anear ally of either Sciuridae, Castoridae, or Geomyidae.

The extraordinary inflection of the angular portion of the mandible is so far as I have seen without parallel in the Order, though certain Sciuridac, as Cynomys, and certain Dipodidac, as I believe Cardiocranius, and certainly to a degrec Zapus, approach it.

Apart from this, it would seem that Aploduntia stands nearest what one might consider the primitive or ancestral type of zygomasseteric structure of Rodentia; this apparently is the theory of Winge, who derives directly or indirectly all familic's of Rodentia as here understood from his family "Haplodontidae."

The jaw muscles, though arranged in a different manner from most members of the Order, are according to 'Tullberg very strongly developed. 'The temporalis muscles are strong and extensive.

The family contains one living genus.

Genus s. APLODON'TIA, Richardson

1829. Aplodontia, Richardson, Zool. Journ., vol. 4, p. 334.

Type Species.-Aplodontia leporina, Richardson =Anisonyx rufa, Rafinesque.
Range.-As in the family. A good map of the range is published in Anthony, Field Book of North American Mammals, 1928, p. 455 .
Number of Forms.-Nine.
Characters.-As in the superfamily: The skull is abnormally broadened posteriorly, and considerably so anteriorly; behind the anterior zygomatic root the frontals are abruptly and considerably narrowed. The parietal ridges are well marked, but not fused in the few skulls examined. 'The zygomata are widely spreading. The skull is much flattened. 'The width of the occipital region is about equal to two-thirds of the length of the skull. 'I'he auditory bullae are Hask-shaped, with the neck directed horizontally outwards. 'The posterior zygomatic root is noticeably at right angles to the supraoccipital. Incisive foramina not large, situated far in front of the palate, which is broad, and extends behind the toothrows.

Wandible with the outer side of the angular process pulled inwards to an abnormal degree; to such an extent that the posterior border is horizontal, and the two edges of this process form the base of a triangle which has for its apex the eondylar process. "This is perhaps best expressed by noting that if the two halves of the mandible are separated eath half may be made to stand up on a table resting on the angular portion. Coronoid process very high and curved backwards.

As noted above, the infraorhital foramen appears sufficiently enlarged to transmit a very small strand of muscle; in appearance it is round; hut it is very
small compared with any Redent in which the infraorbital may be said definitely to transmit muscle, and acoording to all authors I have read on the point with the exception of Comes it does not do so.

Incisors powerful.
Cheektecth evergrowing, $; P^{\prime} .3$ minute, probably functionless, the pattern of the other teeth in the adult nearly simplified to a ring, the inner side of those of the upper serics circular, the outer side of each tooth with an externally pointing projection on either side of which is a slight depression.

Lower teeth like those of the upper series, but with the pattern reversed, and with tendency for a small re-entrant external angle to be present, this wearing out with age.

Form thickset, heavy; fur thick and soft; limbs short; cyes and ears small; tail more or less restigial, much shorter than hindfoot. Claws, particularly those of the forefoot, enlarged and powerful. Forefoot with all digits present, hut pollex very short. D. 3 the longest digit, then 1).4, nest D.2, last D. 5 . llindfont with the three centre digits roughly equal, the hallux and D. 5 shorter than these. Nammac o (Taylor).

Fig. So. Aplodontia refa rtea, Rafinesque.

$$
\text { B.M. \o. 48.9.25.1, f: } \times 1 .
$$

Fig. 81, Aplobovtia RtFa ktid, Rafinesque.
Mandable from helow, I: thecktecth 4: B.MI. No. 98.9.2\$. i,
The species of Aplodontio are described as burrowing, mainly nocturnal animals, living in colonies in dense wet forests, in which they construct numerous tunnels, and feed on bark, leases, and twigs. 'I'her are sad not to hibermate.

The family Aplodontidae is known from the Niocene of Western North America. A closely related genus is deseribed fossil from Eastern Asia.

Though this work is concerned with lising Rodents, mention may be made 17-Lismg Rexdent-I
of an interesting fossil family from North America which appear to have had a similar zygomasseteric structure to the Aplodontiidae, and are referred to that family by Winge, namely the Mylagaulidae. They appear to have developed along lines noticeably different from any lising eroup of Rodents, and I feel that no general work on Rodentia would be complete without reference to them.

"Family Miligatlidae

"Skull excessively fossorial, oceipital region obliquely truncate, with lambdoid crest moned forward nearly to level of zygomatic root; frontal with short postorhital processes; hony horn-cores on rostrum in two gencra, absent in a third; cheektecth highly modified from normal heptamerous structure, the grinding function of toothrow in adult almost completely taken over by the greatly enlarged fourth premolar. General structure of skull much as in the Aplodontiidae; cheekteeth or a $\frac{4}{4}$ a reduced heptamerous pattern evident in slightly worn crowns, but this giving place with wear to a system of narrow longitudinal and oblique lakes. Wolars relatively small, soon crowded out hy the premolar, an excessively hypsodont laterally compressed tooth closed at base and rapidly increasing in crown length from the unworn surface downwards. Skeleton highly modified for underground life.
"Mylugaulus, Ceralogaulus, and Epigamlus, North American Wiocene and tliocene" (Athller \& Gidley).

APLODONTIIDAE:
 SPECHAL IIORKS OF REFEREVCE

Taylor, L'niv. Calif. Publ. Zonl., MYII, pp. 43-504, 1918. A full revision of the genus.
Coces, Monograph of North American Rodents, p. 549, 1877 . Monograph of genus. Tillberg, Nuva Acta Reg. Sue. Su. Upsalensis, NVIII, zrd ser., no. i, i 890.

Forms examined: mfa, pacifica, olsmpica, "major."
List of Nimifd Formis
Nine forms are now recognized, ath regarded as races of the type species.
Revised by 'Taytor, mas, Univ. ('alif. Publ. Zool., XVII, t'. 435. The references and type localities are the work of Mr. K. W. Itayman.

1. APLODONTIA RLPA RLPA, lRafnesulue

1\$17. Amer. Monthly Mar. 2. p. 45 . Columba River, ${ }^{\text {O }}$ regon. Synonymu: leporina, Ruchardson, iszo, Zowl. Journ, t. p. 335. grisea, Taylor, igin, Uns: Cahf. Pub. Zool. XII, p. 497. (Near Scattle, Washinyton.)
chrystola, Kelloge, 1094. Chis: Calıf. Publ. Zoxil. XiII, p. 295.
(Jacksun Lake, Califorma.)
2. AILODONTIA RLFA MIMAPICA, Metram
iSum. Proc. Burl. Sioc. Washnetom, X111, p. 20. Quinault Lake. Chehals County, Washneton.
3. APLODONTJA RUFA COLCMBIAN゙A, Taytor 1916, Univ, Calif. Publ. Zool. Xill, p. q90

Vicinity of Ilope, British Columbia.
4. APLODONTMA RUJFA RAIXIERI, Merram
\& S99. Proc. Biol. Soc, Washington kill, p. 21.
Paradise Creek, south side Mount Rainier, Washington.
5. Al'ODONT'IA RU1'A PACIFICA, Nertam
1899. Proc. Biol. Soc. Washington, XIII, p. 19.

Newport, Yaquina Bay, Lincoln County, Oregon.
6. APIODON゙TH RUFA HUTMBODDYLANA, Yavlor 1916. Proc. Biol. Soc, Washington XKl. Carlotta, Humboldt County, California.
7. APLODONTHARUFA CALIFORNICA, Jeters 1864. Monatsber. k. Preuss, Akad. Wiss. Berlin, p. 179.
(Assumed to be) Sierra Nevada, California.
Synonym: major, Merriam, i886, Scjence, 7, p. 219, Ann. New Sork Ac. Sci., III, pp. 312, 3 16. (California, Sierra Nevada Mountains.)
8. APLODON'TLA RUFA NIGRA, Taytor
1914. Univ. Calif. Publ, Zool. XII, p. 297.

Point Arena, Jendocino County, California.
9. APLODONTIA RLFA JHAEA, Nerriam
1899. Proc. Biol. Soc. Washington, X][1, p. 20.

Point Reyes, Marin County, California.

Superfamily SCIUROIDAE

This as here understood contains one family only.

Family SCIUTRIDAE

1896. Thomas: Sciuromorpha: Family sciuridae (with subfamilies Sciurinae and Nannosciurinae).
1897. 'Tullberg: Scturonorpha: Sciuroidei (part, included Aplodontidae): Family Sciuridat.
1898. Miller \& Gidley: Superfamily Semtrondae, part: Family Sciuridae, with subfamilies Sciurinae, Nannosciurinac and Pteromyinae.
1899. Winge: Family Sciuridae, part ; Sciurini.
1900. Weber: Sciurondea: Families Sciuridae, Pteromyidae, Xeridae, Tamiidae, Marmotidae.
Geographical Distributiox- - Practically cosmopolitan; absent only from the Justralasian region, Madagascar, and Southern South America (Patagonta, Chile, most of Argentina). Also absent from certain desert regions, as Arahia, and Egypt, etc.

Nubber of Gexeri.-I have retained forty-four genera.
Characters.-Zygomasseteric structure as follows: infraorbital foramen not transmitting muscle, or scarcely so; masseter lateralis superficialis with anterior head distinct from zygoma; zygomatic plate broadened.
tilted upwards, forming loase for masseter lateralis to rise ohliquely to superior border of rostrum, which it does to the exclusion of masseter medialis. Mandible never highly modified; ustally with the angular portion pulled inward to a degree, as in Mascardinidae, Dipodidae, Aplodontiidae, etc.

Dental formula i. $\frac{1}{1}$, c. $\frac{0}{0}, \mathrm{p}, \frac{2}{1}$ or $\frac{1}{1}, \mathrm{~m}, \frac{3}{3}=20$ or 22 .
Checkteeth rooted, brachyodont or hypsodont, their pattern usually characterized hy prominent cusps and ridges, the lower series most often basin-shaped, the pattern as a rule complex. 'libia and fibula not fully fused. Jugal long, usually in contact with the lachrymal. Skull with well-marked postorbital processes, which may in rare cases be poorly developed (for instance Myosciurus). Tail always fully haired, usually thick and bushy. External form suited to arhoreal or terrestrial life. Digits of hindfoot five.

This is one of the largest and most widely distributed groups of living Rodents, and possesses about thirteen hundred named forms.

Cranal Characters.-The following cranial characters are general in the group.
There are, as intlicated above, always postorbital processes present. 'Ihere is very rarely any strongly marked interorbital constriction present, though this becomes noticeable in some members of the Pteromys group. The jugal is long, usually in contact with the lachrymal. The bullae are rarely excessively inflated, hut as a rule evenly rounded and of relatively large size. The palate is broad as a rule, and usually terminates slightly behind the toothrows, or about on a level with the hinder molars. In the Jerus section it is much produced backwards. The incisive foramina are always situated considerably in front of the toothrows, and are as a rule very short. The incisors are usually laterally compressed in the arbureal genera (with some exceptions), and less or not so in the terrestrial forms.

Dextal Characitrs. - The cheekteeth of all the genera seem referable to a single ariginal pattern, though varying considerably in the various erenera. In Lariscus and Rheithosciurus they are almost simplified. The original plan appears to be, in the upper series, that of four transverse ridges, a more or less marked cusp marking the outer border of each of these; the ridges run aeross to the inner border of the tooth, which is normally formed by" one large inner cusp, exeept in some primitive Flying-squirels, in which the three inner cusps are retained; each of these transverse ridges has between them a depressiun; the second and third ridges are the highest; the first and fourth mark respecticely the anterior and posterior terminations of the tooth. 'The fower cheekteeth are normally with a large central basin-shaped depression, often tendine to take up most of the tooth, and surrounded by cusps, of which there is usually a main one at each corner, though sometimes the posterointernal cusp may he hardly developed. 'The anterointernal cusp is in almost every case the highest one.

If Winge's theory, that the infraorhital foramen of this family once transmitted muscle and has become secondarily closed to muscle transmission, is
correct, we have in this family and others which share its zygomasseteric structure (Castoridae, Ileteromyidae, Geomyidae), one of the most highly specialized arrangement of jaw muscles known in the Order. But primitive genera like Belomys appear to be so (comparatively) near the Aplodontiidae in zygomatic plate and infraorbital foramen formation that I very much doubt whether this is so, and think it more probable that the arrangement has heen derived from something like the Aplodontoid type of zygomasseteric structure.

All forms belonging to this family, including the Flying-squirrels, which have often been referred to a distinct family, appear to me to be so obviously closely related, and so obriously offshoots of one essential stem, that I can recognize no subfamilies. I have provisionally divided the family into two groups, the Flying-squirrels and the Non-flying-squirrels, though when dealing with the Anomaluridae I have endeavoured to point out that a flying-membrane is not a structure on which subfamilies should he based; this membrane may have been developed independently in the present group on more than one occasion, and I must admit that this division into groups is largely for convenience owing to the rery large size of the family.

Key to the Grolys of Sciuridae

A flying-membrane present attached to sides. Cheekteeth often but not always with tendency towards abnormal complexity. Zygomatic plate often but not always low, weak, and little tilted upwards. Pteromys Group (Pteromyes)
(Bclomys, Trogopterus, Pteromyscus, Petaurista, Acromys, Pteromys, Glaucomys, Eoglaucomys, HyHopetes, Pctinomys, Pctaurillus, Lomys, Ėupetaurus.)

No flying-membrane present. Cheekteth never with tendency towards abnormal complexity. Zygomatic plate often but not always strongly tilted upwards.

Scitres Group (Sciert)
(.Dyosciurns, Nannosciurus, Sciurillus, Microsciurus, Syntheosciurus, Sciurus, Tamiasciurus, Callosciurus, Funambulus, Dremomis, Ratufa, Menetos, Lariscus, Glyphotes, Rheithrosciurus, Khinosciurus, Mosciurus, Heliosciurus, P'araxcrus, Fiunisciurus, Protoxcrus, MIrsilus, Fpixerus, .Jerus, Atlantoxerus, Spermophilopsis, Sciurotamias, Tamius, Citcllus, Marmotu, Cinomys.)

Oftline of Previous Classification of Pavily Sciuridae
1891. Flower A Ledekker, Mammals Living and Extinct.
'len lising genera were recognized in the Family Sciuridae, which was divided into the subfamilies Sciurinae and Arctomyinae ($=$ Narmotinae), the latter "so intimately connected with the preceding subfamily that the division into two groups is purely a matter of consensence."

The genera were:

1. Sciurus. (All Tree-squirrels except number 2.)
2. Rheithrosciurus.
3. Vorus.
4. Tamias.
5. Pteromps (- Petamista).
6. Sciuropterus (-Ptcromis).
7. Eupetaurus.
S. Arctomys $(=$ Marmota).
8. Cinomys.
9. Spcomophilus ($=$ Citcllus).

Two years later Forsyth Najor, published his paper on the dentition of the Sciuridae (1893, Proc. Zool. Soc. London, p. 179) which has formed the basis of most modern classifications of the family. Ile recognized three subfamilies, the Sciurinae (including Xarmotinae of Flower $\mathbb{\&}$ Lydekker), the Pteromyinae, (Flying-squirrels), and the Nannosciurinae containing the Old World Pygmysquirrels. Ile recognized ten genera as in Flower \& Lydekker except that Vamosciurus was raised to generic rank, and that Tamias was suppressed and regarded as a subgenus of Sciurus. Several of the species, forming the genus Sciurus of former classifications, were referred, on account of dental characters, to the genus Kerus. His arrangement was as follows:

Scilerinae

1. Rhaithrosciurus
2. Nerus

Subgenus Protoxerus ($=$ the modern Protoxorus, Epixerus and Myrsilus)
Subgenus Ierus
Subgenus Atlantoverus
Subgenus Paraverus (= the modern Paraxcrus and Fumisciurus)
Subgenus "Eoverus" ($=$ the modern Funambulus, Menctes, Lariscus, and Rlinosciurus)
3. Sciurus

Subgenus "Eosciurus" (= Ratufa)
Subgenus Sciurus. American, Palaearctic, and African forms currently referred to Sciurns, Callosciurus, Heliosciurus.
Subgenus Tumias
4. Spermophilus (=Citellus)
5. Arctomys (= Marmota)
6. Cyomys

Pteromifinae
7. Sciuropterus ($=$ the modern Pteromss and related genera)
8. Pteromys (=Petcurista)
9. Eupetaurus

Nannosciurinage
10. Nannosciurus (- the modern Namoscimus and Masciurus)

This arrangement was followed by 'Ihomas in 1896 in his classification of the whole Order except that the Pteromyinae were not regarded as forming a distinct subfamily, being referred to the Sciurinae, and Tamias was again given generic rank.

In 1897 (Proc. Zool. Soc. London, p. 933) 'I'homas proposed that all subgencra of Najor's classification except Atlantoxerus should be given generic rank, substituting the name Funambulus for Eoverus, and Ratufa for Eosciurus.

In 1908 (Journ. Bombay N. H. Soc., SVIII, 2, p. 244) 'Thomas gave a revised list of Asiatic genera of non-flying Squirrels, recognizing altogether twelve.

1. Sciurus. (The group subsequently referred to Callosciurus and "Tomeutes.")
2. Zetis, which had formerly been referred to Funambulus, but was separated in the paper now under discussion; the name is antedated by Dremomys, Ileude.
3. Glyphotes (erected by Thomas, i89§).
4. Ratufa.
5. Tamiops, which had heen erected by Allen for Sciurus maclellandi.
6. Rhinosciurus, which had been separated from Fumambulus by Miller.
7. Menctes, which was separated from Funtmbulus by Thomas in the paper now under discussion.
8. Funambulus. (Restricted to the forms now referred to it.)
9. Lariscus. ("Laria," Gray, preoccupied.) (Formerly had been referred to Funambulus.)
10. Rheithrosciurus.
11. Sciurotamias, which had been erected hy Miller for Sciurus daridianus.
12. Namosciurus.

This classification is retained in the present work except that I am unable to regard Tamiops as a genus distinct from Callosciurus.

In the same year (Ann. Mag. Nat. Hist., S, I, p. 1) Thomas revised the Flying-squirrels, recognizing eight genera:

1. Petaurista.
2. Eupetaurus.
3. Trogopterus, which had been previousty erected by Ileude.
4. Joms.
5. Belomys.
6. P'teromyscus.
7. Petaurillus.
S. "Sciuroptcrus" (= 'lcromys), with suhgenera Glaucoms', IIvopetes, and Petinomys; all these subgenera have subsequently been given gencric rank and appear to me to be clearly distinct from Peroms as now restricted (Scandinarian, Kussian, Siberian, and Japancse small Flying-squirrels), but more doubtfully so from each other.
The following year (Ann. Mag, Nat. Mist., S, III, p, f67) Thomas revised the African genera of Sciuridae, recognizing twetse genera:
8. Sciurus. ('The group subsequently referred by 'Thomas to Aethosciurus, and shown by ilollister, Bull. U.S. Nat. Mus., 99, p. 9, 1919, to be not distinguishahle as a full genus from Heliosciurus.)
9. Heliosciurus.
10. Mysilu, (Separated from Protoverus.)
11. Paraverus.
12. Funisciurus. (Separated from Paraxerus.)
13. Protoxerus.
14. Epixerus. (Separated from Protoverus.)
15. Atlantoverus.
16. Demes.
17. Eurerus.
18. Geosciurus., (Both separated from Verus.)
19. Myasciurus.

This classification is followed in the present work except that Euverus and Geosciurus are regarded as subgenera of Xerus only: Aethosciurus, following Hollister, is referred to IIeliosciurus; and I think that with representative material it is likely that hoth MIrsilus and Epiverus (here retained) would be better referred to Protoverus.

In 1912, Miller (Catalogue of Nammals of Western Europe) regarded the Flying-squirrels as forming a distinct family, the Petauristidae (the sole character being the fresence of the flying-membrane, $\mathrm{p} .9 \mathrm{f}_{0}$). In 1918 in Miller \mathbb{E} Gidley (Classification of Rodentia) he very properly reduced the group to the rank of subfamily.

In 1915, J. A. Allen (Bull. Amer. Mus. Nat. Hist., XXXIV, p, 1+7) restricted the genus Scimus to the Palaearctic, and divided the Squirrels occurring in America into no less than seventeen genera. 'These names, based mostly on mammary formula (for b) and the relative length of the rostrum, have for the most part heen disregarded, and appear to be based for the most part on specific groups. His "genera." with remarks on subsequent treatment, are listed below:

1. Tamiasciums. Retamed hy Miller, 1923 (List of North American Recent Mammals) as a subgenus of Sciurus. Given generic rank hy P'ocock (Proc. Zool. Soc. London, p. 237, 1923) on account of the suppression of the baculum. Retained as a full genas by Howell regs (North. Amer. Fauna, $56, \mathrm{p}, 1$) in his classification of genera of North American Sciuridat.
2. Veosciurus. Regarded as a symmym of Scimus, subernus Sciurns by Miller, 11ر23. Revived as a stibsenus of Scimus by Howell, 1933° (including "Batoscturus" and "Echinosciurns").
3. Otorciurus. Regarded as a symonym of Sciurus, subgenus Sciurus by Miller, 1y23. Revived as a suhgenus of Sciurus hy llowell, 1938.
4. Hesperosciums. Reqarded as a synonym of sciurus, suhgenus Sciurus by Miller, 1923. Revived as a subgenus of Sciurus by Howell, 1938.
5. Echinosciurus. Regarded as a synonym of Sciurus, subgenus Sciurus by Miller, r923. Regarded as a synonym of Sciurus, subgenus人̀eosciurus by Jowell, 1938.
6. Baiosciurus. Regarded as a valid subgenus of Sciurus by Miller, 1923. Regarded as a synonym of . Sciurus, subgenus Veosciurus by Ilowell, 1938.
7. P'arasciurus. Regarded as a synonym of Sciurus, subgenus Guerlinguetus by Niller, 1923. Revived as a valid subgenus by Howell, 1938.
8. Syintheosciurus. Currently retained as a full genus.
9. Wicrosciurus. Currently retained as a full genus.
10. Sciurillus (Thomas). Currently retained as a full genus. Transferred to the subfamily Nannosciurinae by Thomas, and by Miller \mathbb{E} Gidley, 19i8. (In the present paper it has been thought desirable to include in this genus certain Squirrels from Celebes (mwinus group), which as far as examined agree in cranial characters with this genus.)
11. Leptosciurus. Regarded as a suhgenus of Sciurus by Thomas (Ann. Mag. Nat. Hist. Io, II, p. 290, 1928) (as all Neotropical "genera" (of Allen).
12. Notosciurus. Remarks as Leptosciurus.
13. Wesosciurus. Regarded as a synonym of Sciurus, subgenus Guerlinguetus by Miller, 1923, and by Howell, 1938.
14. Guerlinguetus. Regarded as a valid subgenus of Sciurus by Miller, 1923, and by Ilowell, 1938. (But in a wider sense than accepted by Allen.)
15. Hadrosciurus. Remarks as Leptosciurus.
16. Coosciurus. Regarded as indistinguishable from Sciurus, subgenus Hadrosciurus by 'Mhomas, 1928 (Ann. Nag. Nat. Hist. 10, 11, p. 290, 1928). Shown by lönnberg, 19zi, to be not retainable on cranial characters suggested by Allen.
17. Simosciurus. Regarded as not distinguishable on cranial characters from either lladrosciums or Crosciurs by Lönnherg, 1921. (Author's note: but dentition normal, noticeably different from Hadrosciurus and Lrosciunus. Here regarded as a synonym of Sciurus, subgenus (iucrlingutus.)

Willer and Gidey, 1918 , in their classification of the Order Rodentia divided the family into three subfamilics, the Sciurinae, Pteromyinae and Nannosciurinae, the latter based solely on cramial characters (but originally proposed by Forsyth Major on dental characters).

Nibler (List of North American Recemt Nammals, L.S. Nat. Nus. Bull. 128), 1923, listed twelve genera occurring north of Panama:

1. Marmota.
2. Otospermophilus. (I lad beers separated since earlice classifications of Thomas and Forysth Major, from Citellus.)
3. Callospermophilus. (ILad heen separated since earlier classifications from Tamias.)
+. Citellus.
4. Ammospermophilus. (Remarks as Callospermophilus.)
5. Cinoms, with subgenus Leucocrossuromys.
6. Eutamias. (llad been given generic rank by Nerriam, separated from Tamias.)
7. Tamias.
8. Sciurus, with subgenera Tamiasciurus, Sciurus, Baiosciurus, and Gucrlinguetus.
9. Microsciurns.
10. Sintheosciurus.
11. Glaticumys.

Howell, whs, has made some modifications in this arrangement. Callospermophilus, Ammospermophilus, and Otospermophilus are referred to Citellus as subgenera. In the present work, Eutamias is shown to be not a valid genus.

In 1915 , Thomas introduced the system of dividing generically on the structure of the penis-bone or baculum, and a few genera have since been erected, based on this character, alone. 'Ihese genera are not retained in the present work, for the following reasons. Out of numerous named forms, very few appear to have been examined as regards this structure; those that have, have been shown in some cases to vary in this character from subspecies to subspecies (Osman Hill, 193t, Fumambulus). In other families of Rodents, no generic names have heen given to forms which vary in haculum characters; or at most subgeneric names only (for instance, Dipodidae (Vinogradov), Cricctinae (Argyropulo)). If these mammals are given subgenera only on this structure, which seems to me to be scarcely necessary (or at most of subgeneric value except in cases of total suppression of the baculum), I fail to see why such names as Tomertes in the present family must he given full generic rank. It may also be argued that the baculum refers to the male animal only. Pocock has suggested that there may be corresponding modifications in the reproductive parts of the female, and suggests that these might be worked out later. But the work on this whole problem is so far from being finished that it seems absurd to recugnize names based on the shape of the baculum alone.

On the uther hand, it is admitted that the genera, all currently accepted, Callosciurus, Funumbulus, Helioscimms, and Sciurus are not in all cases distinguishable from each other on cranial and dental characters. In cases like these there are wide differences between the ferw forms heretofore examined in penial characters; Heliusciurus is said to have the baculum suppressed; while the other three are referred to as many distinct subfamilies by Pocock. 'These genera are here provisionally retained, partly on this character, partly on average differences in cranial and dental characters, partly on account of the great convenience of so dring, though some doubt is felt on the advisability of their retention.

Pocnck (Proc. Zuol. Soc. London, 1923, Pp, 209-2 6 6) classified the whole family on characters of the baculum alone, with ears and feet used if the haculum
had not been examined, but leaving cranial and dental characters out altogether. But if this character is given such importance, I fail to see how fossil forms are to be considered; and it seems that if eranial and dental characters have been used primarily for elassification since the days of Linnaeus one cannot be blamed for wishing to continue to give more importance to these characters than to an external character which has only been definitely verified in a very small percentage of named species and races, and found to be subspecifieally variable in at least one case.

Pocock classified the family (not including the Flying-squirrels) as follows:

Subfamily Scurinae

Sciurus, with subgenus Tenes for persicus; all the American genera or subgenera, Veosciurns, Parasciurus, Echinosciurus, etc., except Tamiasciunus, (?) Rheithrosciurns.

Subfamily Tamiasciurinae

Tamiasciurus. ("Penis . . flexible tbroughout owing to the suppression of the baculum" (compare Heliosciurns).)

Subfamily levambelinate

("A highly diversified group of genera, with glans penis exceedingly variable in size and structure, and baculum either relatively very large (Fumambulus, Tamiodes), relatively small (Protoxerus, Rutuf(a), minute (Funisciurus, Paraxerus, Aethosciurus), or absent (Heliosciurus).")

Funambulus, Tamiodes, Ratufa, Protoxerus, Aethosciurus, Funisciurus, Paraxerus, IHeliosciurus, and probably other African genera admitted by Thomas, including possibly even Myosciums.

Subfamily Calloscturinae

Callosciurus, Menetes, Tomeutes, Rhinosciurus, Lariscus, Dremomys, Tamiops, Vannosciurus, probably others.

Subfamily Xfrinaf
Atlantoxcrus, Xerus, Euxerus, Gcosciurus.
Subfamily Marmotivae
Marmota, Marmotops, Cymomus, Citellus, with many subgenera. (i) Tamias, Eutamias.
'The subfamily Nannosciurinae was done away with by Thomas and Pocock because, as might be expected, the hacuhum of iyyosciurus differs from that of Namosciurus. The dental characters of the group diagnosed by Forsyth Najor appear to be not strictly constant in all cascs; and the cranial characters diagnosed by Miller \& Cidley appear to be not so distinct in all cases as was at
first supposed; for instance, the genus . Microscimus (Sciurmat) appears to be rather transitionary towards Sciurillus (Nannosciurinat) which, in turn, connects with Vamnosciurus.

Winge, $192+$ (Pattedyr Shacgter, II, p. St), reognized nine genera only of sciuridae as bere understeod, but refered the Castoridae to the family.

Group Sciuri

1. Tamias.
2. Otospormophilus.
3. Scinrus.
4. Ptcromss (with Petamista).
5. Eupritailus.
6. Xerns.

Group "Arctomyes"
7. Arctomys $(=$ Mameta).
8. Spermophilus (= Citcllus).
9. Cunoms.s.

Howell, 1938, has revised the genera and subgenera nccurring in North America north of Pamama, and recognizes:

1. Tamias.
2. Eutamias (subgenus Neutamias).
3. Marmota (subgenus Marmotops).
+. Comemss, with subgenus Lencocrossuromys.
4. Citellus, with subgencra Citellus (tomonsemdii, awashingtoni, nichordsomii, and perryi groups); letidoms (tidecemlineatus and spilosoma groups) ; Otospermophilus; . Votocitellus (subgenus n. for ammulatus); Anmospermoplitus; Calluspermuphilus; Serospermophilus (tereticomdus group); Poliocitollus (subgenus n. for fromklimii).
5. Gilancomys.
6. Synthosicimus.
7. .hiconscimus.
8. Sciurns (typical subgenus restricted to Palaearctic). Subgenera Neasciurus (with symonyms Baiosciurus and Echinosciurus); Hesperasciurus (grisens); ()tosciurus (aberti); Parasciurus (with synonym Aratenciurns); Guerlinguetus (with syonym Mesosciunus).
9. Tamiascimus.

This arrangement is followed in the present paper except that Eutamias is not considercid a valid genus, and that Marmotops (based on the presence of a functiontess diest) is regarded as a syonym of . Wamota.

In forming the key to the genera, I dor not include the followine three charaters which have frequently been used for generic purposes, but in my opinion certainly should mot be so.
(1) Presenee or absence of functionless upper premolar (1).3). This feature has been pointed out to he a character of little importance already by

Hollister and Pocock. The tooth in question is either present or absent in the genus I'amiusciurus, and may oceasionally appear in typical Heliosciurus, which was originally given generic rank on the sole character "cheekteeth ?" instead of ${ }_{4}^{5}$. In any case except in certain Narmots the tooth appears to have ceased to be of much functional importance.
(2) Colour pattern. Nearly all Squirrels with a Tamias-like series of tongitudinal stripes on the hack have received generic names. I do not think that genera can be retained on this ground alone, unless coupled with definite characters elsewhere. Examples are "Tamiscus" and "Taniops." Citellus tridecemlineatus, for instance, has the most specialized colour pattern known in the family, but many other species of Citellus are uniformly coloured. Also a striped colour pattern occurs in Funisciurus (lemniscatus group) side by side with species without it.
(3) Geographical distribution. I am not persuaded that because a Squirrel comes from Africa it is of necessity distinct generically from one that comes from the Malay region, or even from America.

Classiftcation Here Adopted

Thirteen genera of Flying-squirrels are here retained, and thirty-one genera of non-flying Squirrels. In this family above all others generic names have been bestowed freely, and for no apparent reason, again and again. It is not an easy group, and it may be that the key I have endeavoured to get together will not hold in all cases; also some of the genera are at the moment only separable on average characters, or on characters of the haculum which may break down at a later date when more forms have been examined. I ean see no necessity of retaining more than thirty-one genera of non-Alying Squirrels, and would be quite content personally to regard even several of those that have been retained as of not more than suhgeneric value.

I have divided the non-flying Squirrels into seren sections which may in some cases be of doubtful value. 'These will be discussed later.

The Pteromys Group
I have made no changes in this group, the thirteen named genera being all retained.

The Sciurns Group
A. Vannosciurus section (Pygmy Syuirsts with ahnormal cranial characters).

Genus r. Myosciurus, Thomas.
Sole species: M. pumilio.
(jenus 2. . Vannosciurus, 'Trouessart.
I'rincipal species: . . exilis group; ‥ ahiteheadi group; \therefore. melanotis group.
Genus 3. Sciurillus, Thomas.
Principal species: S. pusillus group; S. murinus group (Celebes).
B. Sciurus section. ('lypical 'Tree-squirrels; all genera except Ratufa and possibly Microsciurus are mot casily distinguishable from the genus Sciurus.)

Genus 4. Microsciurus, Allen.
Principal species: M. alfari group.
Genus 5. Synthcosciurus, Bangs.
Sole species: S. brochus.
Genus 6. Sciurts. Linnaems.
Subgenus a. Sciurus, Linnaeus.
Principal species: S. zulgaris group (with lis).
Subgenus b. Tenes, 'Thomas.
Principal species: S. anomalus group.
Subgenus c. Neosciums, 'l'rouessart. (Considered valid by Howell, 193 \%.)
Principal species: S. carolinensis group; S. deppei group; S. aureogaster uroup, with poliopus, colliaei, swialis, griseoflazus, bucatanonsis, variegatoides, etc.
Subgenus d. Otosciurus, Nelson. (Considered vatid by Howell, 938 .)
l'rincipal species: S. aberti group.
Subgenus e. Hesperasciurus, Nelson. (Considered valid by Howell, 193%.)
Sole species: S. griseus.
Subgenus f. Parasciurus, Trouessart. (Considered valid by Howell, 1938.)

Principal species: S. niger group (oculatus, arizont'rsis, ctc.)
Subgenus g. Guerlinguetus, Gray.
Principal species: S. hoffmani group (with gerrardi, etc.); S. aestums group; S. pucherani group (ignitus, boliviensis); S. stramineus group.
Subgenus h. Totosciurus, Allen.
Sole species: S. Moadsi.
Subgenus i. Itadrosciurus, Allen.
Principal species: S. flammifer; S. langsdorffi group ("Lrosciurus" as understood by Allen).
Genus 7. Tamiasciurus, Trouessart.
Principal species: T. hudsonicus group.
Genus 8. C'allosciurus, Gray.
Subgenus a. Tamiops, Allen.
Principal species: C. maclellondi group. Subgenus b. Callosciurus, Gray.

Principal species: C. tenuis group, with jcutinki; C. lozi group; C. erythraeus group (with sladeni, ferrugineus, finlaysoni, flarimanus, bocouthi, gemmaini, griseimanus, atrodorsalis); (. caniceps group; (: prezosti group; C. notatus
group (with zitlatus, migrozittatus); C. pygerythrus group (with lokroides, phayrei); (', quinquestriatus group; C. hippurus group (with pryeri, brooki, melanogaster, philippinensis and other specics from Philippines); C. leucomus group; C. rubrizenter group.
Genus 9. Fiunambulus, Lesson.
Principal species: F. palmarum group, with pennanti, tristriatus, wroughtoni; F. layardi group; F. suhlineatus group.
Genus 10. Dremomys, Heude.
Principal species: D. lokriah group; D. rufigenis group; 1). pernyi group, with (i)ozstoni, (:) everctio.
Genus 11. Ratufa, Gray.
Principal species: R. macroura; R. indica; R. bicolor; R. gigantea; R. melanopepla; R. affinis; R. ephippium.
C. Lariscus section. (Not a natural group, but containing genera from the Indo-Malayan region, all of which are much specialized and clearly distinct from Sciurus generically.)

Genus 12. Wenetes, Thomas.
Principal species: M. berdmorei and races.
Genus i3. Lariscus, 'Thomas \& Wroughton.
Principal species: L. insignis group; L. hosei.
Genus 1f. Glyphotes, Thomas.
Sole species: G. simus.
Genus 15. Rheithrosciurus, Gray.
Sole species: R. macrotis.
Genus 16. Rhinosciurus, Gray.
Sole species: R. laticaudatus.
Genus 17. Myosciurus, Tate Archbold.
Sole species: $/$. heinrichi.
D. African arhoreal gencra. (All but Heliosciurus are clearly distinct generically from Sciurus. Meliosciurus appears to lead into Paraxerus in cranial and dental characters.)

Genus 18. Heliosciurus, 'lyouessart.
Subgenus a. Heliosciurus, 'Trouessart.
Principal species: 1/. gambianus group.
Subgenus b. Aethosciurus, 'Thomas.
Principal species: /h. poensis group; H. ruazenzorii; 1). lucifer.

Genus 19. Parawerus, Forsyth Major. (Synonym: Tamiscus, 'Thomas.)
Principal species: P'. cepapi group (with ochracous); P. palliatus group; P^{\prime}. flazivittis group; P. bochmi group, with emini, etc.

Genus 20. Finiscimms, Trouessart.
Principal species: F. lommiscatus group; F. congicus group; F. pyrhopus group, with auriculatus, mustax, carruthersi, ete.
Genus 21. Protoserus, Forsyth Major.
Principal species: P. stangeri and races.
Genus z2. . Myrsilus, 'Thomas.
Principal species: M. anhinii.
Genus 23. Epiverus, Thomas.
Sole species: E. ailsom; E. cbï.
E. Verus section. (African and some Palacarctic Ground-squirrels with peculiar cranial characters.)

Genus 2.4. Atlemtoxerus, Firsyth Major.
Sole species: A. getulus.
Genus 25. Virus, Hemprich EXhrenherg.
Subgenus a. Vorus, Hemprich \& Ehrenherg.
l'rincipal species: X. rutilus group.
Subgenus b. Euserus, Thomas.
Principal species: .V. crytlropus group.
Subgenus c. Geosciurns, Thomas.
Sole species: X . capensis, X . princeps.
Genus 26. Spermophilopsis, Blasius.
Principal species: S. leptodectylus.
F. Tamias section. (Chipmunks; semi-terrestrial types, in some ways connecting Citellus-Marmota section with Sciurus section.)

Genus 27. Sciurotamues, Niller
Subgenus a. Scimotamias, Miller.
Principal species: S. dãidiams.
Suherenus h. Rupestes, Thomas.
Sole species: S. forresti.
Genus 2R. Tamias, Illiger.
Subeents a. Tamias, llizer.
Sole species: T. striatus and races.
Subgenus b. Eutamias, 'Trouessart.
Sole species: T. sibivicus and races.
Suherenus c. Nentamias, Howell.
Principal species: T.alpinus group; T.minimus group; T. amochus group; T. quadrivittatus group; T. tuansendii group. (As revised by Howell, 1931.)
(j. . Warmota section. (Ground-squirrels without the peculiarities of the palate and lachrymal of the Xerus section, without the peculiarities of the infraorlital foramen of the Tamias section, and usually, not always, with ahormal dental characters.)

Genus 29. (itellus, Oken.
Subgenus a. Citellus, Oken.
Principal species: Palatarctic- C. fulzos group;
C. pyomacus group (with erythrogenys and others); C. citellus group (with xanthoprymas, alaschanicus, dauricus); C. suslicus group; C. ezersmanni group. Nearctic (arrangement of Howell, 1938, followed)-C. toansendii group; C. ziashingtomi group; C. richardsonii group; C. parryin group (with columbiamus).

Subgenus b. Ictidomys, Allen.
Principal species: C. tridecemlineatus group (with mexicams); C. spilosoma group.
Subgenus c. Poliocitellus, Howell.
Sole species: (". franklinii.
Subgenus d. Otospermophilus, Brandt.
Principal species: C. zarigatus, C. beecheyi.
Subgenus e. Notocitellus, 1 Howell.
Sole species: C. ammulatus, C. adocetus.
Subgenus f. Ammospermophilus, Merriam.
Principal species: C. leucurus.
Subgenus g. Xerospermophilus, Nerriam.
Principal species: C. moharensis, C. tercticaudus.
Subgenus h. Callospermophilus, Merriam.
Principal species: C. lateralis.
Genus 30. Marmota, Blumenbach.
Principal species: M. monax group; M. flavirentris group; M. caligate group (with camtschatica); M. caudata group (with aurea, dichrous, etc.); M. bobak group (with sibirica, baibacina, himalayana); M. marmota group.
Genus 31. Cinomys, Rafinesque.
Subgenus a. Cynomys, Rafinesque.
Sole species: C. Iudozicianus, C. mexicanus.
Subgenus b. Leucocrossuromis, Hollister.
Principal species: C. gunmisoni group.
All specific groups recognized here, except in cases of genera which have been definitely revised, must be regarded as prosisional.

The Pteromys Group

Geographical Distribition.- Indo- Malayan region from limalayas to Ceylon, and to Sumatra, Java, Borneo and the Philippines (not Celebes); Palatarctic, from North Scandinavia across the northern portion of the region to Japan; Ifghanistan, Kashmir, Tibet; much of China north of the langtsekians. Nearetic; from northern Canada south to Guatemala.

Characters.-This group difiers from the 'Sciurus group in the presence of a flying-membrane attached along the sides of the fody, rising from the wrist, and from the ankles.

SCIURIDAE

The cheekteeth are usually, not always, with a tendency towards excessive complexity of pattern, which reaches its extreme development in the genera Belomys and Frogopterus, in which the cheekteeth are more complex in pattern than in any other genera in the entire Order so far as my obsersations go, Further, as a general rule, the zygomatic plate is low, wery little tilted upwards, and weak in general appearance; though this is not the case in the genus Pteromys and perhaps some others. Bullae abway prominent. Cheekteeth i, except in the genus Ioms.

The characters of the zygomatic plate and checkteeth tend to show, in my opinion, that this aroup should be regarded as more primitive than the Sciurus group.

Extiraid Charactirs.-The genera referced to this group agree in all essential characters rather closely. In all genera the flying-membrane is, as indicated above, attached to the wrist and supported by a cartilaginous outgrowth. Posteriorly it is attached just above the ankle. In Petaurista and. Jermms, the tail is more or less narrow and round, and there is a well-developed interfemoral membrane present; in the remainder, so far as seen, there is no well-developed interfemoral membrane, and the tail is wider, flatter, having an appearance very much like a large feather.

In the forefoot there are four well-developed digits, the two centre being the longest, D. 4 slighty or considerably longer than 1).3, the two outer digits subequal and a little shorter; the pollex, as usual in the group, is more or less untraccable. In the hindfoot, the hallux, though well developed, is the shortest digit; D. 5 is usually slightly shorter than the central three, but may sometimes tend to be as long as them; D. + is usually slighty the longest. Chaws usually heary, curved and puwerful. 'The size is extremely variable; Petawillus must be one of the smallest of all Squirrels, while certain species of Petaurista are as large as any rother member of the family excepting certain giant forms of Marmota. So far as known, the habits of these ammals are nocturnal, thereby differing from the non-flying squirrels.

Thirteen eroup have in this branch of the family heen given generic rank in recent years. The animals are not as common in ㄱuseums as the non-flying Squirrels, and many of the forms are very little known. I think it is reasonable at the moment to retain all these genera; indeed it may be that even more will be needed as the Indo-Atalay forms become better known.

> Kis T, The (;cxirts wf the Iteromys (srocep
(heckeeth strongly hapsondont; (fur excessively thick and heavy). Exfetadres Checktecth not strongly hypsodont; (in the majority, fur not excessively thick and heary).
Cheekteeth alows in the lower series and usually in the upper series characterized by signs of extreme complication due to wrinkline: the esential pattern of the cheekteeth usually more or less masked.

1. 4 conspicuously enlarged. (Bullae not specially inflated.)

Cheekteeth semi-hypsodont; P. 4 extremely enlarged. Trogoptert's
Cheekteeth brachyodont; P. + more moderately enlarged. Belomys P. 4 not specially enlarged.

Bullae much inflated; the basi-occipital narrowed. Pteromyscts
Bullae not specially inflated, the basi-occipital noticeably wide.
(Usually the tail is narrowed.) Petallistat
Cheekteeth with a more normal pattern, the wrinkling though sometimes traceable never excessive, and never masking the essential pattern.

Cusps and ridges of cheekteeth poorly marked; P. 4 noticeably smaller than N.i.

Cusps and ridges of cheekteeth well marked; P. + not smaller than M.I.

Inner side of upper cheekteeth formed by two well-marked approximately equal-sized cusps, the formation of the teeth square. Lower cheekteeth with the central depression considerably narrowed. (General dental pattern somewhat simplified in appearance.)

Iontys
Inner side of upper cheekteeth never formed by two wellmarked approximately equal-sized cusps, the formation of the teeth not obviously square. Lower cheekteeth with the central depression not becoming narrowed, excepting the genus Pteromys in which the general dental pattern is extremely complex in appearance.

Tail rounded and narrowed.
Aeromys
Fail broad, Hat, feather-shaped.
Bullae low and Hattened, scarcely rising above general level of the base of the skull. Petinomys

Bullae without special peculiarities.
$\lambda .3$ with two clear ridges between the anterior and posterior margins of tooth; second main ridge of 1 .4. M.1 and M. 2 with re-entrant folds cutting off central supplementary cusp; central depression of lower molars, particularly . 1.3 , tending to become narrow and reduced; N1.3 lower with four ridges and three depressions; inner side of upper cheektecth usually with three cusps present or

SCIURIDAE: BELOMYS
traceahle; zygomatic plate strongly heightened and tilted upwards; incisive foramina long.
N. 3 with only one ridge between anterior and posterior margins of tooth; second main ridge of P.4, M.I and M.2 with no re-entrant folds cutting off central supplementary cusp); central depression of lower checkteeth not tending to become reduced; Xt. 3 lower never with fout ridges and three depressions; inner side of upper cheekteeth as a rule with only one long cusp present (as in normal Sciuridace): zygomatic plate low, little tilted upwards (except Eoglaucomus); incisive foramina short.

Cheektecth relatively simpler, with small extra ridges and depressions not or harely tractable.

Zygomatic plate low, little tilted upwards; hindfoot with no metatarsal pad.

Glaccomiss
Zygomatic plate high, well tilted upwards; hindfoot with metatarsal pad present.

Eoglaucomys
Cheektecth relatively more complex, with small extra ridges and depressions normally present.

Hylopetes
The last three genera it must be admitted are not very clearly distinguishable from one another.

The character of the tail, which I have used for retaining the genus Aeromys, is I think of sufficient importance to he used in a generie sense, in that the tail seems to be a definite organ used hy these animals for their "flying." Very much the same state occurs in the Dipodidac, the genera Scirtopode and Pygeretmus being based chiefly on the tail formation, which in these eases is used for jumping. (Certainly if the tail in these externally specialized forms is not considered a generic character the genus Pygertmms will be indistinguishable from the genus Alactagnlus.)

(icmus i. BELOMIS'S 'Thomas

moos. Belomys, Thomas, Ann. Mag. Nat, Hist, S, I, p. 2.
Trpe Species.-Scimopterus pearsomi, Gray.
Raxige-Indo- Malayan; Sikim, Assam, Manipur, Fongking; formosa.

Nombre of Format lioce．
Characters．－Skull with depressed frontals，and moderately developed postorbital processes．Bullae large．Zygomatic plate very primitive，little tilted upwards，only a little more spectalized than the type found in Aplodontidate；\％ygoma，as in most other members of the group，long and horizontal，being somewhat reminiscent of the zggoma of the Anomaluridae． The ridge of the superior portion of the eygomatic plate does not extend further forward than the level of the upper part of the infraorbital foramen．

Checkteeth $\frac{5}{4}$ ，excessively wrinkled and complicated．P． 3 is small，P． 4 much enlarged in the upper series，its anterior portion extending beyond the small premolar in front of it，which is closely applied to the inner side of P．4． ＇fhe inner side of the upper teeth differ from most Sciuridae in that instead of being formed by one large elongate cusp，there are three cusps present which evidently do not join，the front one being the smallest．The teeth are extremely complex；what might become a normal sciurine pattern can be vaguely traced among the mountain－like elevations and deep depressions covering the whole surface of the tecth；the elevations are arranged in three primary longitudinal rows．A well－marked external projecting angle is present on each upper tooth， the centre of which is divided by a deep re－entrant fold；this appears to corre－ spond to the space between the two main ridges in normal Sciuridae．M． 3 ，even in these teeth，appears more simplified than the other molars，this being a very common feature throughout the lamily：

L．ower tecth exceptionally complicated；M． 3 the longest tooth．Four main cusps present，or may be traced，the anterointernal one as usual the highest． In $\lambda 1.3$ there appear to be at least five transverse ridges extending across the central part of the tooth，but each is much broken up．

Essential external characters as already described；ear rather large，with a tuft of long bristles or hairs at base．

Forms seen：pearsoni，kaleensis，trichotis，blandus．
I am not consinced that there is more than one species of this rather excep－ tional genus，and accordingly treat all named forms provisionally as races of the type．

List of Named Forms

（The references and type localities to all forms belonging to this group are the work of Mr．R．W．Mayman．）

1．BELOMY゙S PPARSON1 PEARSONI，Grav゙
1842．Ann．Mag．Nat．Ilist．，X，1． 263.
Darjiling，Sikkim．
2．BELOMIS PEARSON゙I BLANDL゙S．Osgood
1932．Field Mus．Nat．Hist．Zool．，XV゙III，no．2，p． 260.
Muong Moun，south of Lai Chau，Tongking．
3．BELGNIYS Plarsont VHLLOSLS，BIyth
1847．Journ．Asiat．Soc．Bengal，XVI，p． 866.
Upper Assam．

Fig. 8z. Beloniys pearsoni trichotis, Thomas.
B. त1. No. $15.5 .5 .43,3$: $=$

Fig. 83. Bflonys pearsoni trichotis, Thomas.
B.MI. No. $15 \cdot 5 \cdot 5 \cdot+3,3 ; 2$.
＋BELOMYS PEARSONI TRICHOTIS，Thomas
1908．Ann．Mag．Nat．Mist．S，1，p． 7.
Machi，Manipur．
5．BELOMYS PEARSONI KALIENSIS，Swinhoe
1862．Proc．Zool．Soc London，p． 359.
North Formosa．

Genus 2．TROGOPTERUS，Iteude

1898．＇Trogoptert＇s，Heude，Mem．Hist．Nat．Chinois，IV，pt．i，pp． $4^{6-47 .}$
I＇ype Species．－Pteromys xanthipes，Milne－Edwards．
Range．－China；known from＇libet，Szechuan，Ichang，Shensi，Yunnan， Chihli，etc．
Number of Foras．－Five．
Characters．－Like Belomys，but P．q even more enlarged in the upper toothrow，and cheekteeth semi－hypsodont（brachyodont in Belomys）．Zygomatic plate like Belomys，but with a prominent knob under the infraorbital foramen for muscle attachment；this knob，often present in Sciuridae，I shall refer to as the＂masseter－knob．＂The upper part of the zygomatic plate is more ridged than in Belomys．Bullae large．Upper cheek－ teeth excessively wrinkled，the elevations arranged in three primary rows．The external projection in the main upper teeth present，though usually smaller than in Belomys．P． 3 present，closely applied to the inner side of P．t，which projects anteriorly considerably beyond it，and is extremely large．＇Teeth large and heavy；the general effect complex in the extreme．Lower teeth with four main cusps，one at each corner，but the pattern as complexly wrinkled and folded as in the upper series． $\mathrm{N}_{3} 3$ relatively less enlarged than in Belomys． Nandible with angular portion rather sharply pulled inwards；coronoid high， recurved．

Essential external characters as in Belomys；sole may be partly haired．
Forms seen：xanthipes，mordax，minax，himalaicus，edithae．
Thomas has divided the limited British Mluseum material into five separate species．I do not think that there is more than a racial difference between any of the named forms．Until more material comes to hand it seems to be more correct to regard all named forms as subspecies of xanthipes．

List of Nimed Forms

1．＇TROGOPTERL＇S X゙AN゙THIPES N゙AN＂THIPES，Minne－Edwards
1867．Ann．Sci．Nat．Zool．，VIII，p．376．
Chihli，North China．
2．TROGOP＇TERLS XXAN゙THIPES MURD．A．，Thomas
191 ＋．Journ．Bombay Nat．Hist．Soc．，K゙J゙ll1，2，p． 230.
lchang，Jangtze－kiang，China．
3．TROGOPTERLS XANTHILPES HIMAL．AICUS．Thomas
1914．Journ．Bombay Nat．Hist．Soc．，XX゙III，2，p． 231.
Gyantse，Chumbı Valley，Tibet．
4. 'TROGOPTERLS N゙AN'TH1PES EDITHAE, 'Thomas
1923. Ann. Mag. Nat. I Iist, 19, XI, p. 658.

North-west flank of Likiang Range, Yunnan.
5. TROGOPTERUS XANTLIPES NIINAX, Thomas

1923, Ann, Mag. Nat. I Iist. 9, N1, P. 660,
Won Cauen, Lpper Min River, Szechuan, China,

Fig. S4. Trogopterus xanthipes mordax, Thomas.

Genus 3. PTEROAISCUS, Thomas
igos. Pteromyscts, Thomas, Ann. Mag. Nat. Hist. 8, I, p. 3.
Tipe Species.-Schuropterus pulzerulentus, Günther.
Range.-l'enang, Sumatra, Borneo.
Nember of Forms.- Two.
Characters - Much like Belomys, but with 1'. 3 sestigial, and P. 4 not conspicunusly larger than X.i; also differmen in details of the pattern of the upper tecth, and with the ballae relatively very much enlarged.
'The teeth when worn appear to present a rather more normal, less wrinkled appearance, but in founger skulls the complexity of the molars is great. The external projection in the upper molars is kess marked than in Belomps, and apparently there are only two inner cusps present, the small anterior one being harely traceabie. 'The lawer teeth are more or less as in Belomys; M. 3 considerably elongated.
lixternally like Belomys, but ear smaller and without tufts.
Forms seen: pulzerulentus, borneamus.
List of Namel Formis

1. PTEROMYSCCS PULVERLLENTLS PCINERLLENTCS, Gunther
2. Proc. Zool. Soc, London, p. ti3, pl. xxxwiii.

Penang, Malay Peninsula.
2. PTEROMYSCLS PULVERULENTUS BORNEANUS, Thomas
1908. Ann. Mag. Nat. Hist. S, I, p. 7.

Baram, Sarawak, Borneo.

Genus t. PETALRISTA, Link

1795. Petalrista, Link, Zool. Beytr., 1, pt. ii, pp. 52, 78.

Type Species.-Sciurus petauristu, Pallas.
Rasge.-Palaearctic and Indo-Xalayan; Ceylon, Peninsular India (southern portion, Surat, Orissa); Punjab, Kashmir; Kumaon, Nepal, Sikkin; Burma (Chindwin, Chin Itills, Arakan, Shan States), Tenasserim; lunnan, Fukien, Hainan, Formosa, Tongking, Sam, Annam, Malay Peninsula; Sumatra, Java, Borneo, Natunas. Also in Szechuan, Hupeh, and China north of the Yangtsekiang; South Kansu; Tibet; Chihli, South Manchuria, Korea, and Japan.

Nimber of Forms.-About sixty-one.
Characterk.-Skull characterized by very large postorbital processes standing nearly at right angles to the braincase; frontals deeply depressed; parietal ridges well marked but showing no signs of joining or even approaching each other in any seen. Jugal with superior process pointing upwards below postorbital process, a structure often to be seen in the present group. Bullae usually large but not extremely so; palate broad. Zygomatie plate similar in general type to that of Belomys, but more prominenty ridged. Cheektecth somewhat intermediate between the wrinkled type of Belomys and Trogopterus and the more normal type found in Hylopetes and others. In the upper toothrow each main upper tooth has three inner main cusps originally, but in worn tecth these tend to come together; but a wellmarked posterior re-entrant fold (originally between cusps 2 and 3) appears always to be retained; sometimes three inner folds are present. The fold which is retained sometimes appears as a pit; it is present in M.3, which is normally as complex as the other molars, not simplified as is usual in Sciuridae. The normal Sciurine pattern of four ridges and three depressions is traceable, but there is often a tendency towards wrinkling, though less marked than in Trogopterus and Belomss. P. + is sometimes rather larger than M.1. P. 3 well developed. The lower checkteeth agree with those of Trogopterus and Relomys, and are excessively complex; M. 3 is not elongated. The central depression is barely traceable as a rule, and the crown surlace when worn usually presents
four or more broken up isolated depressions, and with many small ridges rmming across the surfaces of the tecth. A well-marked depression in front of the anteroesternal main cusp present, and usually one between the two outer main cusps present. 'leeth semi-hypsodont.

In P. sulatus, not represented in London, the upper incisors are described as hood, and groosed. The describer states that fultimus may have faintly groned incisnts, and dees not consider the character generic; but it makes the retention of such genera as Sintheosciuns more than doubtful. The upper incisors are nomatly plain in this genus.

Size large; up th $f^{6}+$ mom. head and body or perhaps more. Interfemoral

membrane usually more developed than in other genera; tail usually longer than head and body, as a rule narrowed and rounded though fully haired; but in some forms, as lentogonys, perhaps on account of the cold climate in which they lise, the tail appeats in adult to be much broader, and approaching the formation found in the smaller lilying-squirrels, though a young lewogenys seen has a narrow tail, as in normal Petumista. D. + considerably longer than D. 3 in manus, as a rule.

Forms seen: albicenter, alborufus, amnamensis, badiatus, barroni, batuana, birrelli, condidulus, caniceps, castancus, cinderclla, cineracens, clarki, elewans, fuleimus, gorkhali, srandis, hintoni, inomatus, lanka, lena, leucogemss, lyei, magnificus, marchio, marica, melanotis, mergulus, nigricaudatus, mikkomis, mitidula, nobilis, ochraspis, mal, oreas, petawista, plulippensis, primrosei, tumetata, rajah, reath, senex, sibylla, taylori, tosue, zenningi, xanthotis, yumanchis.

Fig. 86. Petalrista philippensis philippevsis, Elliot. B.M. No. 13.8.22.35, है; $\times 1$.

Fig. 87. Petalrista philippensis philippensis, Elliot.

This gemus contains very many standing distinct species, which are most difficult to arrange in any natural order. Nany of the species are known only by very few specimens; some are hased on one skin without a skull.

Wroughton (1011, Journ. Bomhay Nat. Ilist. Soc. XXi, + , p. Iorz) has keyed the majority of the Indo- Walayan species, but does not include the Palatarctic omes; Robinson \mathbb{N} Kloss, with the exception of the Xalay Island forms, did not attempt any revision as regards the reducing of the more doultaful species to races.

1 am inclined provisionally to recognize four groups, whe of which contains the majority of the genus and is divisible into several sections.

The Alborifers group contains forms with a striking and highly specialized red and white colour-pattern (the head white, the back mostly deep red, with or without a white or brownish dorsal patch). Large thick-furred forms, with bushy tail. China, south to Yunnan, cast to 'libet; and Formosa (lena).

The remaining groups have no well-marked specialized colour-pattern as indicated abore.
'The petairista group contains forms which are mostly unicolorous; most often deep red in general coloration, or in one race blackish; rather short-furred types; back not grizzled. Chietly Malay Islands, though a race is named from South China.

All other groups examined have a certain amount of grizzling apparent, sometimes strongly marked, on dorsal surface.
'Ihe albiventer group contains the remaining forms in the genus which are represented in London, and divides apparently into the following sections:
punctatus section: back with conspicuons white spots present. Malacca, Borneo, and marica from lunnan. These are very distinct types, but do not appear to he well known, and it has been soggested that the peculiar coloration is in these skins due to discase. Rather small forms.
philippensis section: hrownish grizzled white, the white always conspicuous. Rather thick-forred species. 'Tail usually longer than head and body. Containing philippensis and the other species from Ceylon and Peninsular India, also lyki and cineracens from siam. 'lhis section rather grades into the
albizenter section: upper portion usually without conspicuous white grizzling, less frosted in general appearance; frequently more or less reddish in coloration. 'lail not specially broadened, or less densely bushy than in lencosenys section; fur thick to extremely thick. The most inaportant species referred to this section are inornatus, caniceps, albizenter (all very thick-furred), and magnificus, from the llimalayas; and apparently mergulus from islands of the Nergui Archipelage. "Pteronys" gorkhali is a Petamista very closely allied to or perlaps a subspecies of caniceps. The group appears to be represented in Burma by condidulus, which has
white grizaling present, but is much redder in general coloration than any member of the philippensis section.
leucogenys section: this is closely allied to the last, but appears to differ in the very general broad appearance of the tail (more so than in other P'etaurista); the immensely thick fur, and rather Eupetaurus-]ike general appearance; and contains the Japanese and Manchurian leucogents, and xanthotis from 'ribet. P. melanmpterus, not seen, is usually considered as allied to this branch.

The silcates group contains one species (not seen) differing apparently from the others in the grooved incisors, though it must be borne in mind that the incisors can be grooved in individual cases etsewhere in the genus.

This arrangement must be regarded as provisional.

List of Nimed Forms

petaurista Group

1. PETALRISTA ELEGANS, Temminck

1839-4. Müller \& Schlegel, Verhandl. Nat. Gesch., pp. 107, 112, pl. xvi, figs. 1-3. Island south of Nusa Kumbang, South Jara.
2. PETACKRISTA PE'TALRISTA PETALRISTA, Pallas 1766. Misc. Zool, p. 54.

West Java.
Synonym: nitida, Desmarest, 1818 , Nouv. Dict. Hist. Nat., NXVII, p. 403. Java.
taguan, Link, 1795 , Zool. Beytr. 1 (2), p. 78.
3. PETALRISTA PETALRISTA NigRICALDATUS, Robinson \& Kloss
1918. Journ. Fed. Malay States Mus., VII, p. 223.

Ongop Ongop, Banjoewangi, East Java.
4. PE'TALRISTA PE'TALRISTA MELANOTLS, Gray
1837. Charlesworth's Mag. Nat. Hist., I, p. $5^{8} 4$
"Nepal" (error), Malay Peninsula substituted.
5. PETALRISTA PETALRISTA CICCR, Robinson \& Kiloss
1914. Ann. Mag. Nat. Hist. 8, XIII, p. 223.

Bandon, Siamese Malaya.
6. PeTAl盾ISTA PETALRISTA RAJAH. Thomas
1908. Ann. Mag. Nat. Hist. 8. I, p. 251.

Mount Dulit, Baram, Borneo.
7. PETALRISTA PETALRISTA NITIDLILS, Thomas
1900. Nor. Zool., VII, p. 592.

Bunguran, North Natuna Islands.
8. PETALRISTA PETALRISTA BATLANA, Mhler
1903. Smiths. Misc. Coll., XLV, p. 27.

Tana Bala, Batu Islands, IV. Sumatra.
Synonym: marchio, Thomas, 1908 , Ann. Mag. Nat. Hist. S, i, p. 251. Si Ramba, sumatra.
9. PETALRESTA PETALRESA TERL TALS, Lyon
1907. Proc. Bool. Soc. Washington, X゙X, p. 17.

Terutau Island, northern Straits of Malacca.
10. PETALTRISTA PETALRISTA MHAICUS, Nhller
1913. Smaths. Misc. Coll., LXI, no. 21, p. 27.

I'ulau Rupat, East Sumatra.
11. PETALRISTA PETALRISTA LAMHOLTZE, GyIdenstulpe
1019. Stockholm Vet. Akad. Handl. 60, 6, p. 26.

Puerok 'Tjahoe, Central Borneo.
12. PETAURISTA DETALTRISTA RUFIPES, G, Allen
1925. Amer. Mus. Nov. I63, p. 13.

Y'ungan, Fukien I'rovince, China.
13. PETAURIS'A GRANDIA, Swmhou
1862. Jroc. Zool. Sicic. London, p. 358 , pl. xls.

Formersa.

alborufus Group

14. PETALRIS'S ALBORLFUS ALBORUFUS, MAlne-Edwards 1870. Compt. Rend., LXX, p. $3+2$.

Moupin, Szechuan.
15. METALRISTA ALBORLTFUS LELCOCEPHALUS, IHIzheimer 1906. Zuol. Anz., XXIX, p. 208.

Tibet.
16. PETALRIS゙TA ALBORUFL'S CASTANEUS, Thomas 1923. Ann. Mag. Nat. Ilist. 9. XIl, p. 172.

Ichang, Middle langtseliang, China.
17. PETALRLCTA MLBGRLFIT OCHRASPIS, Thomas 1923. Ann. Mas. Nat. I Iist. 9. XII, p. 172.

Likiang Range, N.-WV. Yunman.
18. PETALKIS'IA LEEAA, Thomas
1907. Ann. Mag. Nat. Ilist. 7, XX, p. 522.

Tapposha, Central Vormesa.
albitenter Group
(punctatus Section)
19. PE'PACRISTA PUNCTA'IL'S I'LNCTATUS, Gray
1846. Ans. Mag. Nat. Hist., XVIII, p. 21 s.

Malacca.
20. PETALRISTA PUNCTATLS BANKSI, Chasen 1934. Bull. Raffles Mus, 8, r. rot. Dusint Kima Balu, Borneo.
21. PETAURISTA PUNCTATUS MARICA, Thomas 1912. Ann. Mag. Nat. Hist. 8, IX, p. 687.

Yunnan; probably near Nongtae.
22. PETALRISTA PLNCTATL'S SYBILJ, A, 'Thomas

191\%. Journ. Bombay Nat. Hist. Soc., NXIV, 3, p. 423.
Chin Hills, near Kindat, Upper Burma.
(philippensis Section)
23. PETALRISTA PIHLHPENSIS PMHAPPENSIS, RHIOt
1839. Nadras Journ. Lit. and Sc., X, p. 217.

Near Madras, India.
Symonym: (?) griscizenter, Gray, $18+3$, List Mamm., ก. 133.

1842．Calcutta Journ．Nat．I Iist．，II，p．40I，pI．XI． Singhbum district，lengal．
25．PETAURISTA PHILIPPENSIS CLNDERELLA，Wroughton 1911．Journ．Bombay Nat．IIst．Soc．，XX，4，pp．1014， 1018. Surat district，Bombay．
 1911．Journ．Bombay Nat．Ilist．Soc．，XX，4，Pp．IOI4， 1017. Ceylon．
27．PETXURISTA CLNERACILS CINERACEUS，Blyth 1847．Journ．Asiat．Soc．Bengal，XVI，p． 865. Arakan．
2か．PETAURISTA CINERACELS ST゚かCKLEYI，Carter 1933．Amer．Mus．Nov．，674，p．1． Nelamoong，N．－ll．Siam．
2\％．PE゙「ALRISMA LY＇LEI LY＇EE，Bonhote 1900．Proc．Zool．Soc．London，p． 192. Doi Sritepe，Chiengmai，\＆v．Simm．
30．PEIVAURIS＂RA LYLEI VENNINGG，Thomas 1914．Journ．Bombay Nat．Ifist．Soc．XX11I，1，p． 27 ． Kalaw，Southern Shan States，Burma．
31．PETALRISTTA LYLEA BADIATLA，Thomas 1925．Proc．Zool，Soc．，London，p． 501. Sgai－＇Tio，Central Jonkin．

（albizenter Section）

32．PETALRISTA MERGULL゙ MERGLLE゚か，Thomas 1922．Journ．Bombay Nat．Hist．Soc．，SXVIII，p． 1067. Ross Island，Mergui Archipelago．
33．PETAL＇RISTA NERCLILUS REGLLLI，Thomas 1926．Journ．Bombay Nat．IIst．Soc．，XXXI，p． 22. King Island，Mergui Archspelago．
34．PERC．DLRISTA MERGLELS PRIARROSEL，Thomas 1926．Journ．Bombay Not．Hist．Soc．，XX̌I，p． 22. Sullivan lsland．Mergui Archipelago．
 1914．Journ．Bombay Nat．Mist．Soc．，XXlll，2，P． 204. Bali，Nha－Trang，South Amam．
 1916．Journ．Nat．Hist．Soc．Siam，II，p． 33. Mup Bon，Sriracha，S．－E\％．Siam．
37．PETALRISTA YL＇NNANENSIS，Anderson
1875．Ann．Mag．Nat．Hist．\＆，SVI，P． 282. Moncin，Yunnan．
38．PETALRISTA（＇．INDHD I．ES，WFoughton
1911．Journ．Bombay Nat．IIst．Sise．，ภ犬，4，pp． $1014,1022$. Kindat，Lpper Chudwm，l\}urma.

39．PLTALRJSTA TAJMORJ，Thomas
$101+$ Journ．Kombay Nat．Hist．Soc．，XXIII，p． 205. Bankason，South＇Tenasserim．
40．PETALRISIA FULNJNLS，Wroughton
3011．Journ．Nat．Hist．Soc，Bombay，SX，f，pp， $1014,102 \mathrm{I}$ ． simla，West Ifmalayas．
11．PETALRESTA ALBIVLNTER，Ciray
1834．IIl．lnd．Zool．，pl．xviii． Nolocality．（Occurs Nepal，Kumaun（Wroughton）．）
＋2．PE＂FALRISTA M．1GNIFICLS，Hudesun
1836．Journ．Asiat．Soc．Beneal，V，p． 231 ．
Nepal． Synonym：nobilis，Gray， $18+2$ ，Ann．Mag．Nat．I Hist．，X゙，p．263．Darjiling． chrsothix，Hodgson， $184+$ Journ．Asiat．Soc．Bengal， SIII，p． 67.
43．PETAUR1NTM IN゙ORスATLA，Genffroy
1844．In Jacquemont＇s Voyage，1V，Namm．，p．62，Atlas ii，pl．iv． North India．
44．PETACRIS゙lit BIRRELIJ，Wroughton
1915．Journ．Bombay Nat．Hist．Suc．，XX゙，\＆pp，ioit，iorg． Murree，Ilazara，Punjab．
45．PETALRISTA CANICIミS，Gray
1842．Ann．Mag．Nat．Hist．，X，p． 262.
Sikkm．
Synonym：sent，Hodgson，184t，Journ．Ablat．Soc．Bengal，Xilli，p． 68. Nepal．
46．J＇EALKISTA GORKHALI，LAnday
1929．Journ．Bombay Niat．Hist．Soe，XXXIll，3，p． 5 66． Gorkha，Nepal（i2，000 ft．）．
47．PETALRISTA CLARLEI，Thomas
1922．Ann．Mag．Nat．Ilist．9，X，p． 396.
Mekong Valley，Yunnan．

（lencogenss Section）

＋8．PETALTRISTA XANTHOTIS，Ninne－Eduards
1872．Ann．Sct．Nat．Zool．，p． 301.
＂Fibet＂（probably Noupin，Szechuan）．
49．PETA（RISTA LELCOGEDYS LELC（OLNYS，Temminck
IR27．Mon．Namnı．1，Tab．Néthod．p．xxvii．
Japan．
50．PETALRISJ．LJLCOMENY゙S NHKんONIS，Thomas 1905．Ann．Mag．Nat．Hist．，7，XV，p． 488. Nkko，Central Hundo，Jupan．
51．PETALRESTA LEL（OGEXYS OREAS，Thomas 1go5．Ann．Mag．Nat．Hist．， $7, \mathrm{XV}, \mathrm{p}, 485$.

Wakayana，south Imondo，Japan．
 1905．Ann．Mas．Nat．Hist．，7，XV，p． 488. ＇Tosa，sikoku limad，Japan．

53．PE＇TAURISTA LEL（UGBNY HINTONI，Mon
1923．Journ．Mamm．Baltumore，4，p． 191.
Scoul，Korea．
Synonym：thomasi，K゙uroda 太 Nori，1923．Journ．Namm．Baltimore，\downarrow ， p．27．Scoul，Korea．
54．PETALRISTA WATASEI，Neri
1927．Annot．Zool．Jap．，11，ii，p． 107.
Mukden，S．Manchuria．
55．PETALRISTA MELANOPTERL＇S，Mhne－Edwards
1867．Ann．Sci．Nat．Zool．，VIII，p． 375.
Tcheli，China．

sulcatus Group

56．PEJIALRLSTA SLIC．ATI＇S，Howell
1927．Journ．Washington Acad．Sci．XV1I，p． 82.
Hsinlungshan， 65 miles north－east of Peking，Chih－li，E．．China．

Sot seen and not allocuted to group
57．PETAURISTA RUBICLND［゙ふ，Howell
1927．Journ．Washington Acad．Sci．XVII．p．Sz． Mapientung，Szechuan，China．
58．PETALRISTA HANAN゙A，G．M．Allen
1925．Amer．Nus．Nov．163，p． 14. Nam Fone，Hainan．
59．PETAURISIA PEC＇TORALIS，swanhoe
1870．Proc．Zool．Soc．London，p．634． Takow，S．IV．Formosa．
60．PETALRIS＂A FH．CHNERINAE，Matschie 190S．Exp．Filchner China \＆Tibet，Zool．Bot．Ergebn．，p． 208. Si－ning－Fu，China（Lpper Hwane－Ho，Kansu）． Probably＝xanthotis，according to Howell．
Addenda：
PETALRISMA PETAURISTA PENANGENSIム，Kloss
1918．Journ．Fed．Malay States Mus．VIl，p．224．
＇Telok Bahane，Penane Island．
PEPALRIS＂ГA，PL゚NC゙IATA SL゙MATRAN゙A，К゙loss
1921．Journ．Fed．Malay States Mus．K，p． 230. Padang IJichlands，15．Sumatra．

For references purposes I include Wroughton＇s key to the species of Petau－ rista occurring in India（1919，Journ．Bombay Nat．Ilist．Soc．XXVI，No．2． p．354）．All these forms are regarded as belonging to the albirenter group．

[^7]Larger, hindfoot So-s.
Back of ears and fortarm baly; tail drab-grey. cineraceus No bay marking; tail black.

Limbs and parachute dark maroom, under surface salmon buff. lylei (lylei acmingi)
Limbs and parachute like the back, at most with a rufous tinge; under-surface white.
Limbs and parachute with a rufous tinge.
plitippensis
Limbs and parachute like the back.
General colouring rufous or fulvous.
Size larger, hindfoot over 80 mm .
Colour darker; hack tufts behind the ears. talori
Colour paler, dark bay tufts behind the ears. candidulus
Size smaller, hindfoot $65-7$.
larger, hindfoot 70-77.
A well-marked dark saddle-patch extending forward to the crown; hindfoot 73.
nobilis
No sadelle patch.
Back of ears black.
Colnur darker, srizzled bay and buff. birelli
Colour paler, grizaled brown and white. inornatus Back of ears coloured like head.

Face sres. comiceps Face like head and back.

Darker (bay): no pale area on shoulders; hindfeet hack. albizenter
Paler (ferruginous): shoukders slightly paler than hack; feet coloured like back.
fut inus
Smaller, hindforst 60-65. sibylla"
'The forms orel, inderelle and lenka are regarded as subspecies of philippensis by Robinson \& khoss in their list of Oriental sciuridac; sibylla is regarded as a race of punctutus in this paper (as is also mariea from lunnan); these authors use the name mosnificurs instead of nobilis.
(ienus 5. AEROMYS, Robinson \& kloss
1015. Aerenms, Ruhinsun \& Kluss, Joum. Fed. Malay States Mus. VI , p. 23.
'lype Speces.-Ptormys tephomelas, Günthor.
Kivgr-P'enaner, Borneo and Sumatra.

Charamors-D Dermal characters, including the interfemoral and the narmw round tail (which is much narrowed and very long) essentially as in Pefourister. Skull near Petaurista. But cheektecth with in the adult mo wrinkling, relatively simple, and of similar pattern to Mylopetes (helow),
with which group 'Thomas in 1908 associated the genus. Forsyth hajor pointed out that this group agrees in dental characters with the smaller Flying-squirrels, rather than with the Petaurista type. But in a skull in which the teeth are just being eut, the wrinkling is extreme.

For remarks on the desirability of retaining this genus see p. 276 .
Forms seen: hartelsi, phaermelas, tephromelas, thomasi.
Two groups may be recognized here prowisionally, teplemelas and plaeomelas, very dark blackish forms, and thomesi which has a very attractive deep red colour.

List of Named Forme
\section*{tephromelas Group}

1. AEROMY'S TFPIIROMELAS, Gunther
2. Proc. Zool. Soc. London, p. 413, pl. xexvii.

Penang, Malay Peninsula.
2. AERONYS PHAEONELAS. Gunther
1873. Proc. Zool. Soc. London, p. 413.

Borneo. (Should be regarded as a race of tepiromelas?)
3. AEROMYS BARTELSI, Sody
1936. Natuurk. Tijschr. Ned. Ind. 96, p. 146.

Pagar Djawa, Pematang Siantar, Deli, N.. Sumatra.
(Described doubtfully as Petaurista; now seen to be Aeromys.)

thomasi Group

4. AEROMYS THOMASI, Hose
5. Arn. Mlag. Nat. Hist. 7, V. p. 215.

Baram, Sarawak, Borneo.

Genus 6. PTEROMIS, Curier

tsoo. Pteromys, Cuvier, Tabl. Elem. Hist. Nat. Anim. p. 135.
1825. Scilropteris, F. Cuvier, Dents. des Mamm. 161-162, pl. 56, p. 255. S'ciurus rolans, Linnacus.
'Tipe Species.-Sciurus zolans, Linnaeus.
Ravge-Palaearctic; Northern Scandinavia, Finland, Lithuania, Latria, Estonia: European Russia, south to former Minsk, Smolenst, Riazan, Vladimir, Kasan and Orenberg governments (Vinogradov); across wooded Siberia; quoted by Vinogradov from Parlodar district, North Kazakstan; Anadyr region: 'Iransbaikalia. Manchuria, Korea, Japan; Sakhalin; Kansu.

Nember of Forms.--Thirteen.
Characters - Cygomatic plate much morespecialized than in othermemhers of the group, being considerably heightened, powerfully ridged on its superior border, the ridge extending beyond the general line of the zygomatic plate, which is hollowed to a certain degree. Nasseter knob

Fig, 88. P'teromys bolasic bolive, Limmatus.

Fig. So. P'tirnays galans volans, Immatus.
B.M. No. 1.0.9.1, b; 2
of infraorbital foramen prominent．Prontals depressed，brancase smooth and strongly depressed posteriorly．Bullac large．Incisive foramina larger （longer）than in most other llying－squirrels．Nandible with angular portion strongly pulled inwards．Checkteeth without the excessive wrinkling character－ istic of Belomys and allies，but much more complex in general appearance than in Clancomys and allies．P．3 small．（＇peer series with the inner side of the tooth composed of three more or less distinet cusjs；gencral pattern otherwise not lar removed from that of Simms，hut the second main ridge of $\mathrm{P} .4, \mathrm{M} . \mathrm{i}$ and M .2 is cut by a deep re－ entrant fold which together with another depression next to the raised inner border of the tooth isolates the ntermediate portion of the ridge as a high and distinet cusp，traces of this to be seen apparently at all times； a further peculiarity is that M .3 is not simplified，but retains two high main transwerse ridges between the anterior and posterior margins of the tooth，a very rare feature in this family：In the lower teeth，M． 3 is greatly clongated；the cusps and ridges of the teeth are very prominent ；the cusp between the two outer main cusps usually takes the form of a ridge；the posterointernal cusp is high and broad，and the central depression characteristic of most Sciuridae is rather reduced．A

Fig． 90.
Pteromys volans．
Cheekteeth；： 5 ． high ridge rounds off the posterior portion of $\mathrm{M}_{3} 3$ ；in this tooth，usually there are traceable three depressions between four transverse ridges，the second and third of which are rather low．

External characters as usual in the group；sole densely haired in all examined； size not large．

The genus Pteromys，＂Scimropterns，＂as arranged by Thomas in igos， contained Glancomys，İylopetes and I＇etinomys as subgenera．Whatever may he the fate of these，there is no doubt in my mind that by the unique dental charaeters combined with the strongly specialized zygonatic plate the genus Pteromis must he restricted to the northern Palaeartic small Flying－squirrels， and is very distinct from all others．It is regrettable that the name＂Iteromys，＂ which has in the past been used for the large Flying－squirrels of the genus Petamista cannot be dropped in favour of the much more widely known Scinropterns．

F＇orms seen：＂mssicus＂（＝rolans），aluco，athene，amygdalei，momonga．
It is not clear whether there is more than one valid species belonging to this genus．

List of Named Forats
1．PTEROMIS VOR．AN゙S VOLAN゙ー，Linnacus
1758．Syst．Nat．，toth Ed．，vol．1，p．64．
sueden．
Sybonym：russicus，Ticelentam，sios，Zondogse，wol．1，p．15t．F＇inland． sibiricus，Desmarest，Mammologe，II，p．342，i \＄22． a figaris，Wiagner，Schreber，Säugt．Suppl．III，p，228，is 43.

2．PTERONYS VOLANS OGNEVI，Strogamo
1936．Zuml．J．N1ascon，15，p．534，554．
lake Peno，Liaminschen Region，in estuary of the Volga，Gonv．Twer， Russia．
3．P＇TEROMIS VOLANS GLRARI，Ognev
1935．Bull，Suc．Nat，Moseow，43，1934，Pp，304， 311 ．
West Siberia，district of Trontzk，formerly lijsk．

［＇enmsula K゙nty，Baikal，Siberia．
5．PTLRUMYS VOLANS BETULINLS，Serebrenniko
1030．Zentschr．für Säugeterk．4，Ileft 3，P，142．
l＇avlodar，Semipalatinsk，Siberia．
b．P＇TEROMDS VOLAN゙S INCANLS，Mhler
1918．Proc．Bial．Soc．Washingtom，X．XX1，p． 3.
East Siberia；Verklune ľulymssk．
7．PTERONYS VOLAN゙S ATHENE，Thomas
1907．Proc．Zool，Soc London，p．fog．
Korsakoff，Saghalien．
8．PTEROMY゙S VOLAN゙S ALUCO，Thomas
1907．Proc．Zool．Soc．Londom，p． 464.
Kaloguai， 55 miles nurth－east of Sooul，korea．
1．PTEROMIS VOLANS ARSENJEVI，（IEREV
11135．Bull．Soc，Nat．Noscow，+3 （1934），pp．309， 3 I4．
Ussurı．
10．PTEROMIS BLECIINERI，Satumin
1003．Ann．Mus．St．Ietersh．，VII，p． 549.
Kansu，China．
11．PTEROMMS ORII，Kuroda
1921．Journ，Mamm．Baltimore，2，p．208．
Uyenai，lburi l＇rovince，llokkado，Japan．
12．PTERONIS MONONGA MOMONGA，Temmmek
18．47．Faun．Japon，p．47，pl．14．
Interior of Japan．
13．PTEROAIY ALOAION（iA ANYGDALEI．Thomas 1006．Proc，Zool．Suc．London，p．34．4．

Washakamehi，Nara Kien，South Central Hundo，Japin．

Genus 7．Glat
1008．Glalcomys，Thomas，Ann．Mag．Nat．Hist．，ser．S，whl，I，p． 5.
＇lype Specifs．－Mus aolans，Limatus．
Ravge．－North America：Alaska，Keewatin，Labrador，Manitelba，Alherta， British Columbia，Washinuton，Oregon，Idaho，California，Utah， Texas，Alabama，Florida，Virginia，New York（gool distribution maps pub－ lished by Anthony（after Howell），Fied Book North．Amer．Mamm．1928，for all forms occurring north of Alexico）；South Mexico，I Ionduras．

Number of lorms－－Therty．
Characters．－Checktecth redatively simple，not essentially different in gencral arrangement from S＇ciurus，and with no traces of the extra complieations seen in the Malayan Mylopetes and Petinomys．In the lower teeth，M． 3 is less enlarged than in Pteromis，and the central depression is not reduced，so far as seem．

In the upper checktecth，$\lambda .3$ is simple，as usual in the family，lacking the third（second main）transverse ridge of Pteromss．Bullac large．Incisive fora－ mina very short．Frontals not depressed．Zygomatic plate low and primitive， not comparing with P＇teromss，and much lower than in Englaucomys in all seen． Postorbital process relatively small．

Size rather small．Soles，at any rate in winter，densely haired，the metatarsal pad characteristic of most members of the group being absent．Nammae S ．

Not many specimens of this genus have been available for examination，but the genus has been fully revised by llowell（North Amer．Fauna，No．44，i9i8）． In this paper very many skulls are figured，and the genus is fully compared with Pteromys．Two groups are recognized，the zolans group，evidently rather smaller forms from eastern U．S．A．and Mexico，with the ventral surface lighter； and the sabrinus group，from Labrador，across much of Canada，to Alaska，and in the western U．S．A．；usually larger，and with ventral surface darker．

Forms seen：rolans，sabrimus，alpinus．

> List of Nimed Forms
> colans Group

1．GLALCOMY＇s VoldANS VOLANS，Linnaeus
1758．Syst．Nat．，roth Ed．，vol．1，p．64．
Virginia．
Synonym：zolucella，True， 1885 ，Proc．U．S．Nat．Mus，VII，p． 596. silus，Bangs， 1 Sg6，Proc．Biol．Soc．Washington，A，p． 163. İatis Mountain，Greenbrier County，West Virginia． nebrascensis，Swenk，1915．Univ．Nebraska Studies，p．15， pl． 151 ．
2．GLALCONYS VOLANS SATLRATLS，Howell
1915．Proc．Biol．Soc．Washington，X゙XVIII，p．ito．
Dothan，Ilenry County，Alabama．
3．GIALCOMY゙S VOLANS QUERCETI，Bangs
1896．Proc．Biol．Soc．Washington，X，p． 166.
Citronelle，Citrus County，Jlorida．
4．GLAt＇OOMY゙S VOLANら TVAENSIS，IIowell
1915．I＇roc．Biol．Soc．Washingion，XXlillj，p． 110.
Sour I ake，I Iardan County，Texas．
5．GLALCOMY＇S VOLANS GOLDDMANI，Nelson
1904．Proc．IBiol．Soc．Washingeton，K．p．it
Twenty miles south－cast of＇reopisea，Chiapas，Nevico．
6．GLALCOMIS VOLANS IHERRERAN゙L゙ッ，Goldmars
1936．Journ．Wiashington Acad．ACi．，SXVI，p． 463 ．
Mountains of Vera Cruz．Mexico．
－GiAAUOMYS VOLAN゙S MADREN゙SIS，Goldman
1936．Journ．Washineton Acad．Sol．SXVI，p． 4^{63} ．
Sietra Madre，Chihuahua，Mexico．
s．GIAUCONIY V OHANS L＇NDFRHOODI，（iondwn 5036．Amer．Nhas．Nov．，no，Sos，p． 1.

Zambrano，＇Tecuciealpa，Honduras（a village half－way between＇${ }^{\text {teguci－}}$ galpa and Comayagua）．

sabrimus Group

9．（i」Al＇いNHS SABRINLS SABRINLS，Shaw
180r．Cien．Zoul．2，p． 157.
Severn Rever，Keewatin，Canada．
Synomyn：hudsonius，＇］＇rue，I＇roc．U．S．Nat．Nus．V＇1I，1885，p．500，
10．GLALCいNHY SABRINLS MAKKOVIKENSIS，Nornborger
1900．Ottawa Naturalist，X1V，P． 48.
Nakkowk，Labrador．

1899．Proc．L＇．S．Nat．Nus．XVI，p． 353.
Catskill Mountans，Green County，New York（Hunter Mountann）．
12．GLALCONIY AABRINLS CANESCENS．Howell 1915．Proc．Brol．Soc．Washington，LXV1！1，P． 11 ．

Portage la Prairie，Nanitoba，Canada．
13．GLALCOMY゙ SABRINL゙A BANGS1，Rhonds
1897．Proc．Acad．Not．Sci．Philalelphia，P． 321 （fuotnote）． Idaho County，Idaho．
 1828．Zool．Journ．3，p． 519. Jasper House，Alherta，Canada．
 1900．North Amer．Finuma，no．19．p． 25.

Camp Daridson，Yukon River，near Alaska－Canada boundary，Yukon， Canata．

16．GLAUCOMIS SABRLNE＇S ZAPHEAELS＇，Osgood Inos．Proc．Binl．Soc．Washington，XVlIJ，p． 133.

Cleveland Pemmsula（Helm Bay），S．－E．Alaska．
17．GiLAUCONIYS SABRINUS OREGONENSLS，Bachman
fí39．Journ．Acad．Nat Sor．Phidadephia，Vlli，p，roi． Columba County，Oregon（probably near St．Helen）．

1915．Proc．Binl．Soc．Washington，X̌オVIll，P． 11 ．
（）kanagan，British Columbia

ríny．Proc．Acad．Nat．Sci．Phaladelphia，P． 321.
Cascade Jountains，near Marton Station，Kittitas County，Washeneton．

 Glacier，British Columbia．

21．GLALCOMIY ォABRINLS OlNXPICLS，Elliot
1899．Field Columb．Mus，Puhl．30，zool．ser．，vol．r，p． 225. Happy Lake，Chailam County，Washington．

1915．Proc．Biol．Soc．Washington，X゙さVIIl，p． 113.
Sawtooth lake，east base of Sawtooth Nountains，Idaho．
23．GIALCOMYS SABRINLS KLAMATHENSIS，NErram
1897．I＇roc．Biol．Soc．Washington，X1，p． 225.
Fort Klamath，Klamath County，Oregon．
24．GLALCOMIS sABRLNL゙งILAVIVENTKIS，Howell
1915．Proc．Biol．Soc．Washington，XXVIll，p． 112.
Bear Creek，Trinity County，California．
 1899．Proc．New England Zool．Club，I，p． 69.

Tallac，El Dorado County，California．
26．GLALCOMIS SABRINLE CAIAFORNICLS，Rhoads
1897．Proc．Acad．Nat．Sci．Philadelphia，p． 323.
San Bernardino Mountains，San Bernardino Co．，California．
27．GLALCOMYS SABRLNLS sTEPHENAI，Jerram
1900．Proc．Biol．Soc．Washington，XIII，p．i5i．
Sherwood，Mendocino County゙，California．
28．GLALCOMFY＇S sABRINES GRISEHFRONS，Howell
1934．Journ．Namm．Baltimore， 15. p．64．
Lake Bay，Prince of Wales Island，Alaska．
29．GIAL＇COMY＇s sABRINLS LLC＇IFLGL心，Hall
1934．Occ．Papers Mus．Zool．Unix．Michigan，296，p． 1.
Summit County，Utah； 12 miles east of Kamas．
30．GLALCONIY SABRINLS FL゙BCLS，NIher 1936．Proc．Bıol．Soc．Washington，XLIX，p．1＋3．

Cranberry Glades，Pocahontas Countri，West Virginia．

Genus 8．EOGLALCONIS．Howell

1915．Eoglatcoms，Howell，Proc．Biol，Soc．Washington，XXVill，p． 109.
＇Type Species．－Sciuropterus fimbriatus，Gray．
Raxge．－Palaearctic；Afghanistan and liashmir，Punjab．
Nomber of Formis－Two．
Characters．－－＇This species was originally included in Glaucomys hy Thomas．It differs from Glaucoms，as well as by the characters such as the depressed frontals and mach larger postorbital processes due to the greater size of the animal，in that 1 ＇3 is divided into two cusps and that the metatarsal pad is present on the hindfont．＇lhe zxyomatic plate is much more strongly tilted upwards，and tends to approach Pteromys in this respect． The upper and lower cheekteeth are much like Glaucomis differing from Hylopetes in heing relatively simpler．Lars longer and more pointed than Glancomes．Nammac S．

It differs from Perombs in the fact that the inner sides of the upper molars have only the one main cusp; the second main ridge of P.4, A. I, M. 2 has no purtion of it isolated as a cusp in adult; M. 3 has, as is uswal, only one main ridge; there is no tendency for the central depression in the lower molars, particularly M. 3 , to become reduced; N. 3 lower is not specially lengthened: the zrgematic plate is less extreme; and the palatal formina are short (normal for the group).

Forms seen: fimbriatus, baberi.

List of Named Forms

IB37. Ann. Mag. Nat. IIsst. I, p. 58.
Himalayas: Simla.

1847. Journ Asiat. Soc. Bengal, XVI, p. 866.

Morontain district of Nigrow, Kohistan, Afghanistan.

Genus y. IlyLOPETES, Thomas

wos. Hylopites, Themas, Amm. Mag. Nat. Hist. 8, I, p. 6.
Type spleies.-Sciuropteris ezereth, Thomas.
Range-Indo-Małavan; Sikkim, Nepal, Iumnan; Burma, 'Tenasserim, Lass: Nalay Peninsula, Sumatra, Java, Borneo, and adjacent islands; Philippine lslands.

Nember of Forms--Seventcen.
C'haratitrss. - Not essentially different from Eoglancomys but checkteeth with traces in hoth upper and luwer series of a more complex pattern, and chatacterized by the usual presence of several small pits and depressions in addition to the usual sciurine ridges. 'The zyemomat plate is primitive, of Beloms type, not high. In large forms, as alboniger, the postorbital process stands out well, the frontals are depressed; in small species, as spediceus, the frontals are Alatter, the postorbital process short. 'l'he infraorbital foramen may be rather well upen; in aurantiacus, the portion of the zygomatic plate behind it is much narroned. Epper checkteeth with the essential pattern of Eoglancomys, but with the ridges often with small depressions traceable in them, and the goins of the three original inner cusps are sometimes traceable in the inner side of the teeth. 'The difference between this genus and Englancomys in dental characters is comparable to that between Scimus and Collosciurus. Lower checkteeth with M .3 clongated, and I' 4 rather the smallest tooth; more complicated as a rule than in Englamomss, and with a short well-marked fold present in front of the anteroxternal cusp except in much worn teeth, and with many small faint pits and lines present, these more clearly marked in the larger species. Thamme (6. 'Tail hroad, feather-shaped. 'The bultae are normal.

This genus was uriginally proposed as a subgenus of Pterombs, from which
it is unquestionably distinct．It might be more correct to refer this genus，with Eoglancomys，to the genus Glaucomys；but for the present I retain all named genera in this group．

Forms scen：albomiger，aurantiacus，belone，eqeretti，harrisoni，leonardi，laotum， migripes，platyurns，probus，playrei，sasitta，spadicens．
＇This genus divides into two well－marked groups on size characters，the much larger abomiger group（head and body length over 200），containing albonger from Nepal，lunnan，Burma，and nigripes from the Philippines；and the smaller sagitta group，containing all other forms．The size in the second group is rather variable，but seems to grade down from the largest to the smallest；approsimate head and body measurements of the main species are： phayrei，about 170；sagitta，about 150；anmatiacus，about 140；belone，about 135；spadiceus，about 126 ；and platyurus about 100 ．I／amoems，not seen，is 165．II．ezeretti is about the same size as phavei，and rather more brightly coloured than the majority of the remainder．

List of Namfd forms
 sasitta Group

1．HYLOPETES PLATYCRL＇S，Jentink
1\＄90．Notes Leyden Mus．，X1I，p．147，pl．vii，figs．7，S．
Deli，N．－E，Sumatra．
2．MY゙IOPETES SPADICEU゙S，Blyth
1847 ．Journ．Asiat．Soc．Bengal，NiVI，p． 867.
Arakan．
3．HYLOPETES BELONE，Thomas
1908．Ann．Mlag．Nat．Hist．8，XI，p． 305.
Pulau Terutau，Malacca．
4．HYLOPFTES SAGITTA，Linnacua
1766．Syst．Nat． 12 th ed．1，p．SS．
Java．
5．HYJOPYETES LEPIDCS，Horsfield
1824．Zool．Res．Java，p．173，pl．
Java．
（A synonym of sagitta according to Thomas \＆Wroughton，rgog， Proc．Zool．Suc．Londun，P． 387. ）
6．HYLOPETES HARRISON：HARRISONI，Stone
8900．Proc．Acad．Nat．Sci．Philadelphia．XLII，p． 462.
Menbuang River，Sarawak，Borneo．

1919．Stockhom Viet．Akad．Handl，60，no．6，p． 29.
East loorneo．
8．HYLOPETES ALRANTIACLS，Wamer
18＋1．Münch．（iel．Anz．，XII，p．＋3s．
Banka Island，off Sumatri．
9．HYLOMETES AMOENL゙S Muler
1907．Proc．U．S．Nat．Mus．，XXX゙1，p． 26.4
Kundur Island，Rhio Archipelayo，Malaya．

sisor. Journ, Asiat, Soce Bengal, XXVIII, p. 27 S. Rangomon, Burm:

 Mount lopa, Burmat.

 Lans Mountains.

1805. Nov. Zaml. 11, p. 27.

Bunguran Island, Natunas,

albomiger Group

Nepal.
Synonym: tambulli, Gray, 1837 , I'roe. Zowl. Sose. Leondon, p. 68.

1021. Journ. Bombay Nat. IIst. Soc., XXVII, 3, P. 501.

Kachin Prosince, North Burma.

18o3. Ann. Nag. Nat. Hist. 6, XII, p. 30. Puerta I'rincesa, Palawan, Philppine Istands.

19is. Proc. Phol. Soc. Washington, XXXI, p. 1 . Bancalan Island, Pholippine Islands.

Genus ro. PETINOMYS 'Themas

Trye Specirs.-Scimopterus lusens, 'Thomas.
Ravgr.-Indo-Malayan; Ceylon and South India; Hainan; Tenasserim; Malacca, Sumatra, Jaya, Bornen; Basilan Island (Philippines).
Nember of Forms.-Thirteen.
Characters.- Lake Mylopetes, hut the bullae, although large, are flattened. described by Thomas as "fairly large horizontally, but peculiarly low and flatened, searecly rising above the general lesel of the base of the skull, their substance unusualiy thick and opaque." As in IIylopetes, this senus includes some large forms, as fuscocupillus, with depressed frontals and more powerful postorbital processes, and sume very small forms, as setosus, with less modified skulls. In the larger species the parictal ridges are quite well derectoped.

Cheektecth like //ylupete, sumetimes tending to be a little more complex. Zygomatic plate generally how and primitive, a little less son than is usual in the fuscocupillus group. Nammac + or t.
＇Though the peculiar thateming of the bullae is less strongly marked in fuscocapillus than the others，it seems reasonable to regard this group as a genus．

Four well marked groups have been examined：
the foscocaphlets group of South India，targe，head and body length about 296 mm．，bullae not quite typical of the genus（hindfoot about 52 ）；
the mageni group，about as large；bullae typical of the genus；including hogeni and lugens，from sumatra and adjacent islands，and（：）crimitus （head and hody 3 ro，not seen），of the Philippines．The head and hody measurement of lugens is 230，of hegeni， 313 mm ．（Jentink）；
the genibarbis group：moderate－sized forms，hindfoot about 30 ；Borneo， Java，Malacca；the llainan species（not seen），head and body 172 mm ．is provisionally included here：
the setosus group：pygmy forms；hindfoot 20－24，head and body 120 in phipsont，probably 100 or less in setosus；includes phipsoni of＇＇enasserim， setoxus of Sumatra，and zordermami of Billiton（head and bedy 100）．
Forms seen：borneornsis，fuscocapillus，genibarbis，hageni，layardi，lngens， maluecames，phipsomi，setosus．

List of Namel Forms
setosus Group

1．PE＇TNOMYS SE＇MOSUS，Temminck \＆Schlegel
IS＋7．Fauna Japon，Mamm．，p． 49. Padang，Sumatra．
2．PEMNNOMYS PHIPSONI，Thomas
1916．Journ．Bombay Nat．Hist．Soc．，XXIV，3，p． 421. Tenasserim Town，Tenasserim．

3．PE＇TIVOMYS VORDERMIANN1，Jentank
1890．Notes Leyden Mus．，NII，p．150，pl．vii，figs，13，14． Billiton Istand，off Sumatra．

genibarbis Group

4．PETINOAIS GENHBARBIS GENODARBIS，Horstield
1824．Zool．Res．Java（description and plate）．
Eastern Java．
5．PETINONIS GENIBARBLA BORNEOENGLS，Thomas
1908．Amn．Mag．Nat．Ilist．8．II，p．30f．
Bakong River，Fast Sirawak，Borneo．

1908．Ann．Nag．Nat．IIst．8，Il，p．304．
Malacca．

1925．Amer．Nus．Nov．163，p． 16.
Nam Fong，Ilamam．

hateni（iroup

8．PETINONYS 1, OENS，Thomas

Si Oban，Sipura Island，W：Sumatra．
15．PETIXONIS M．HFRINS，Millet
1003．Smiths．Misc．Coll．XIV，p． 26.
Corth I＇agi Island，west of Sumatra．
10．PETINOMIG HAGEXI．Jentmk
anss．Notes I．eyden Mus．．XI，p． 26. Deli，Sumatra．
11．PETLNOMY（RIXITLS，Hollister
1011．Proc．Ban］．内人，Washongton，XXIV，p． 185. Bavilan Island，I＇hippones．

fuscucapillus Group

12．PETINONIS FLSCOCAJILILS，Jerdon（an Blyth）
IS47．Journ．Asiat，Soc，Bencal，XVI，p． 867.
South India．
13．PETINOMY＇S IAYARDI，Kemart
IA50．Journ．Roy．Astat．Soc．Ceylon，XI，p． 328.
Cevlon．

Genus ir．PETALRIILES，＇lhomas
igos．Petalrilets，Thomas，Ann．Mag．Nat．Hist．8，1，p． 3.
Type Specifs－Sciuropterns hosei，＇Thomas．
Raxge．－Known from Selangor and Bornen．
Nember of Forms．－Three．
Characters－l＇ygmy Flying－squirrels，rather sharply differentiated from the other genera by the simpler checkteeth and the relative size of the upper teeth．P．t is noticeahly smaller than $\mathrm{Il.1}^{\text {；}}$ but P． 3 is quite well developed，so that the three anterior teeth decrease evenly in size from M．I forwards．The checktecth with low ridges，the pattern not distinct，though cridently much as in normal sciuridae．1＇．+ lower noticeahly reduced；cusps of lower teeth low．＇tygomatic plate a little higher and broader than is usual． Bullae large．Size very small．

The forms of this genus are not well known．
Forms seen：husei，emiliae，kinluchi．
List ol Nimen Forms

5000．Inn．Mag．Sat．IIかt．7，V，p． 275.
Thent Raser，Baram，Siarawak，Bumen．
2. PETACRHELE LBMLIAE, Thomas
1908. Ann. Nag. Nat. Hist. 8, I, p. S.

Baram, Sarawak, Bormen.
 1911. Journ. Fed. Malay States Mus., [V, R. 171. K゙apar, Selaneror, Malay I'mensula.

Genus i2. IOM1YS, Thomas

1908. Iomy's, 'Thomas, Ann. Mag. Nit. Ilist. S, I, p. i.
'TYpe Spectes.-Pteromys horsfieldi, Waterhouse.
Ravge.-Nalacca, Sumatra, Borneo, Java.
Nember of Forms.-Five.
Characters.-Skull, including the low zygomatic plate, essentially as Belomys. Cheekteeth \ddagger, in appearance square, and differing noticcably from all other members of the group. The two main ridges of the upper checkteeth rise inwardly as well as outwardly into two cusps, so that each tooth has a well-marked cusp at each comer. The depressions in front of the two main ridges are well marked, but the posterior depression is obsolete. No marked discrepancy in size between any of the upper cheekteeth. $\mathrm{P}^{3} \cdot 3$ absent. \$1.3 with only one main ridge, hut the two inner cusps are present. P. + with its small foremost cusp placed in front of the tooth, nearly centrally. Lower cheektecth with four well-marked cusps on each tooth, the anterointernal not or little higher than the others, which is a very rare feature in the family. The central depression is much narrowed, and appears as a re-entrant fold; opposite to it is a narrow external fold which is separated from it by a narrow ridge joining the two outer cusps. 'This tooth formation rather suggests the specialized lower molars of Funisciurus among the Sciurus group.

Externally with no special features. Lar rather large.
Forms seen: thomsoni, horsfieldi, daa isoni.
The named forms are all regarded as races of the type by Robinson \& Kloss, 1918.

Lift of Nimed Forms

1. IOXIS HORSFIELDD HORSIVIELDI, Waterhouse
2. I'roc. Zool. Soc. London, p. \$7.

Java (or Sumatra).

```
    2. IONIKS HORSFIELDI DAVINONI, Thomas
ssish. Proc. Zool. Soc. London, p. it, pl. vi.
            Nalacca.
    3. 1ONIK'S HORSFIELDI THONKONII, Thomas
1900. . Ann. Mag. Nat. IList. 7. V, p. 275.
            Bakong River, Maram, Sarawak, Borneo.
    4. I(NMY& HORSPIELDI 1.FPHDL`, Lyon
1981. I'roc. L'.S. Not. Mus.. NL, p. -S.
            Kendawancan Rwer. S.-U*. Borneo.
```


1928. Proc, Zoul. Soc, loondon, Ig27, p, Sio.

Sipora Island. Sumatra.

Genus 13. lELPETAURUS, 'Thomas

1888. Empetatres, 'Thomas, Joum. Asiat. Soc. Bengal, LV'll, p. 256.

Typl: Specirs.- Eupetumus cinctus, 'Ihomas.
Ravge.-Kashmit.
Nember of Fomas-One.
Charactirs.- "Skull distinct from that of Peromys" (- Petaurista) by its longer trumpet-shaped muzzle, more marked supraorbital notches, longer anterior patatine foramina, and shorter bony palate. Teeth strikingly contrasted with those of any of the other Sciuridae by heing hypsodont instead of brachyodont, while their essential pattern remains unchanged. Thus, while the crown of cach tooth is cnormously lengthened vertically, the grooves ordinarily present on the grinding surface of the molars of 'Pterom's' are reproduced as deep sertical foldings of the enamel, which when seen in the natural section produced by wear give the teeth very much the general appearance of those of many of the Hystricomorpha . . the teeth also apart from their hypsodont structure, are distinguishable by their very large proportional size, by being set more obliquely than is the case in other Squirrels, and by presenting . . . a sharp posterointernal angle, markedly different from the evenly convex internal border of the teeth of 'Pteromys.' The implantation of the large upper premolar is also peculiar, in that of the three distinct roots it has in the allied forms, the anteroexternal and the internal have coalesced into a single broad that root. . ." ('Thomas). As figured by Thomas, P. 4 is rather longer than Xl.t in the upper series.

This genus is represented at the British Musemm hy a few skins, hut as yet by no skull. 'Tail very thickly haired throughout; it appears to be of the Pteromss rather than the Petanista type, and there is evidently no well-marked interfemoral membrane. Ear luw. Whole body covered in excessively thick soft woolly fur, that of the ventral surface being lighter than that of the dorsal. Even the hindfont is, except for the pads, heavily haired. Size large.

Forms secon: cimereus (skins).

List of Nimen liorne

1. ELPETAL RU'S CINEREL'S, Thomas

1sisg. Journ. Astat. Sine Bengal, LV1I, p. 258, pls, xxn, xxin. Grlent Valley, Himalayas, Kashmir.

The Sciurus Group

Geographical Distribt tion.-As in the family Sciuridae.
C'haractars.-This group differs from the Iteromys group in the invariable absence of tyying-membranc. 'The cheekteeth are never so cacessively complex as in certain liying-squirrels as Belomas, Trogopterus, ete,;
but on the other hand some Flying-squirrels as Glaucomys are quite as simplified dentally as any of the present group; in the Sciurus group, usually the zygomatic plate is higher and more tilted upwards than in the more primitive members of the P'teromys group.

Key to Genera of Scickes Grotp

'The rostrum extremely elongated.
Upper incisors much reduced; cheekteeth tending to wear down to the roots in adult; infraorbital foramen barely forming a canal; claws not enlarged.

Rhisoosclerus
Upper incisors strong, not reduced; checktecth evidently without peculiarities; infraorbital foramen forming a long canal; claws much enlarged.

Hyoscieres
The rostrum not extremely clongatce. (Upper incisors not abnormally reduced; the cheekteeth never tending to wear down to the roots during life.)
The upper incisors greatly strengthened, either much thickened anteroposteriorly, their surfaces with many parallel grooves, or much broadened.
Upper and lower incisors much thickened anteroposteriorly, with many parallel grooves on their surfaces. Premolars considerably reduced; toothrows reduced, and cheekteeth simplified in pattern. Rostrum lengthened. Rheithrosciures
Upper and lower incisors much broadened, the lower part of the upper teeth and the upper part of the lower teeth diverging from each other, their anterior surfaces without grooves. Cheekteeth (so far as ascertainable) normal. Rostrum short.

Glyphotes
The upper incisors without extreme abnormalities; (in genera in which these teeth are becoming thickened, their anterior surfaces are without grooves).
Skull abnormal, the orbit circular, placed far backwards; postorbital process much reduced or vestigial, situated above level of posterior zygomatic root. Lachrymal over middle or hinder part of toothrow: Zygomatic plate appearing nearly vertical.

Infraorbital foramen forming no canal, the portion of the zegomatic plate behind it exccedingly reduced, situated in front of tooth-row. Ectopterygoid absent. P. 4 (upper series) much reduced. (Cranial characters as indicated above carried to extrome degree; size smallest of family.) Wroseltats
20- I.N"me: tuxleme 1

Infrownital foramen forming a camal, the portion of the aggomatic plate behind it normal, situated over hinder part of twothrow. Eetopterygoid present. P. (upper series) not specially reduced.
Cramial characters as indicated above carried to extreme degree; postorhital process vestigial. X. 3 more recluced than is normal in the family. Palate usually narrowed.

Cranial characters as indicated above not or less extremely developed. Ponstorbital process less vestigial. \$1.3 not reducel. Palate not narrowed. Scitrilles
Skull less abnormal; orbit not circular, not placed unusually far hackwards; postorbital process usually situated considerably in front of posterior zygomatic root (cxcepting the genus Microsciurus); lachrymal usually over or in tront of part of toothrow; zygomatic plate strongly oblique. ${ }^{1}$
Checktecth simplified, losing all traces of normal pattern practically from birth. Lariscus
Cheektecth not simplified, not losing all traces of normal pattern till adult or usually late in life.
Externally modified for terrestrial life; D. 3 in the manus always (so far as seen, possihly excepting Atlantoxerus) longer than D.4. (Cheekteeth in progressive species becoming strongly hypsodont; tail shorter than head and body, often considerably reduced; infraorbital foramen forming a canal.)
Lachrymal considerably enlarged. Palate extending conspicuously behind toothrows. Bullae enlarged, well inflated.
'l'iil short, little longer than hindfoot; claws of foreand hindfeet excessively thickened and dereloped; bullae not evenly rounded.

Sprriophilopsis
Tail relatively long, sometimes approaching head and hody length; claws of fore- and hindfeet not excessively thickened, less developed; bullac evenly rounded. (Fur always hristly, compare Atlantoxerus.)
Lachrymal not specially enlarged.
Palate extending conspicuously hehind toothrows.
' F'osmble exceptions to, sume of these characters may be shown in the Celebes Callosciurus leucomus, very fers skulls of which have been exammed.
(Bullae large, evenly rounded; fur not bristly, compare .lerws.) Atlantoxlers
Palate not extending conspicuously behind toothrows. (Usually, upper checkieeth with tendence towards constriction on inner side, so that they become roughly three-sided instead of more or less rounded or four-sided, as is normal; this constant in Cymomys (strongly developed), Alarmota (moderately developed), and a large portion of Citellus (strongly developed).
'Toothrows markedly convergent posteriorly. Dentition extremely heavy. Skull with prominent ridges for muscle attachment. Nandihle with angular portion strongly inflected. Pollex not restigial. Crivomes
Toothrows not or scarcely convergent posteriorly. Dentition rarely or not extremely heary. Pollex restigial.
Skull massive, with heary prominent postorbital processes, a strong sagittal crest normally present. Ridges for muscle attachment on skull prominent. Mandible with angular portion normally less inflected. Marmota

Skull lighter, with moderate or weak postorbital processes, a sagittal crest most often not developed. Ridges on skull for muscular attachment never excessive. Mandible with angular portion normally strongly inflected. Citelles
Externally semi-terrestrial or arboreal in external characters: D. 3 in manus never constantly longer than D.f (except in the genera Tamias and .'ciurotamias there is a very general tendency for D. 4 to be longer than D.3). (Palate never produced conspicuously behind toothrows; upper checktecth with no tendency towards constriction on inner side.)

Infraorbital foramen furming no canal, and normally relatively large, round and well open, usually at maximum for the subfamily. (The position of the genus Epixerus must be regarded as provisional.)
$1) .3$ and D. 4 in manus nomally approxmately equal in length. Skull more or less flat, and with reduced postorbital processes. (Ventral surface of hody normally furred; checkpouches present; tail not conspicuously bushy.) Incisors not specially thickencel. 'I'mas
1). 4 in the manus lonerer than D.3. Skull not flattened, the postorhital processes not reduced. ('Tail conspicunusly hushy.) Incisors considerahly thickened.
Ventral surface of body normally haired. Checkteeth (of all specimens examined) with clear and well-marked ridges and depressions (compare Protoverus). Infraorbital foramen well open (compare Episerus.)

Myrsilus
Ventral surface of body poorly haired, often almost naked.
'Toothrows considerably reduced. Infraorhital formmen narower, less well open.

Epixerts
Toothrows not specially reduced. Infraorbital foramen large, well open. (Checkteeth usually without clearly marked ridges and depressions (compare Myrsilus).) Protoxrres ${ }^{1}$
Infraorhital foramen less open, always forming at least a short canal.
The lower checktecth specialized, becoming transversely ridged, as in the upper series, the central depression characteristic of normal genera much reduced and appearing as a re-entrant fold

Zygomatic place normal, the ridge on its upper border extending beyond level of the infraorbital foramen. L pper checktecth simplifying early in life, in the adult usually with only one clear re-enterant fold retained; the central depression of the lower molars often becoming isolated.

Menetrs

[^8]Zygomatic plate shortened, the ridge on its upper
borker stopping abruptly above the infraorbital foramen. Lpper cheekecth not simplifying carly in life, usually in adult with three clear re-entrant folds present. Lower teeth with the central depression normally not isolated.
Lower checktecth with cusps obsolete, and crowns almost completely flat. Ftwiscierces lower checkzecth with cusps strongly marked, the crowns not becoming flat.
The lower cheekteeth much less specialized, or not so; not tending to become transversely. ridged as in the upper series.
Skull flattened, little depressed posteriorly, narrow in general appearance, and with strongly retuced postorbital process. Zygonatic plate not strongly tilted upwards. 1).3 and D. + in manus usually approximately equal in length. (Infraorbital foramen barely forming a canal, only a little less open than in Tamias.)

Scherotamia,
Skull not specially flattened, usually strongly depressed posteriorly, and with postorhital process never much reduced except in very small species. Zygomatic plate well tilted upwards. (Infraorbital foramen clearly forming a canal.)
Postorbital process extremely thick and prominent; cheektecth with very lou cusps, the pattern almost always indistinct; feet much specialized for arboreal life, the inner side of forefoot with conspicuous expansion (evidently taking the functional place of pollex).
Postorbital process usually not extremely
Ratefa promment ; cheekteeth with moderate or high cusps, the pattern almost alwass clear and definite at least at some stage of life; feet less conspicuously specialized for arhoreal life,

SCIURLS GROLP
the expansion on the inner side of fortoot absent or less conspicuous.

Postorbital process tending to be situated nearly or exactly over the posterior zygomatic root. (U'pper incisors pro-odont.)

Nterosejeres
Postorbital process situated clearly in
front of posterior zygomatic root.
(The remainder of the genera are not at all times distinguishable from each other on cranial and dental characters alone.)

Jaculum, so far as known, suppressed or restigial.
Zygomatic plate cither slanting upwards or forwards, with strong ridge on superior border, and with prominent masseter knob present under the infraorbital foramen; or with the ridge not approaching the superior border of rostrum, and stopping abruptly above the infraorhital foramen. Lower cheekteeth with a narrow transverse valley extending from first outer main cusp to the anterointernal cusp.

Helioscitire's
Zygomatic plate without ahnormalities. Lower checkteeth without well-marked narrow transverse balley extending from first wuter main cusp to anterointernal cusp (so far as seen).

Tamiasciérles
Baculum, so far as known, retained. (The characters of the genus Syonthosciurus in this respect are not known.)
Rostrum progressisely clongated throughout every species of the genus, at its extreme
development becoming abnormat. Dremoays

Rostrum never consistently elongated throughout every species of a genus, at extreme development never abnormal.

Cormonid process relatively low; cusps of cheekteeth noticeably high, and central depression of lower cheekteeth often tending to be relatively smaller; zygomatic plate usually slanting upwards far forwards, and rather prominently ridged (M. 3 lower series not specially clongated). Fevamblele:

Coronoid process in the majority high, well developed; cusps of cheektceth usually less noticeably high, and central depression of lower cheektecth not reduced normally; zygomatic plate most often not slanting uprards far forwards, and not conspicuously ridged.
Upper cheekteeth with small outer (third) cusp usually, not always, absent or obsolete; pattern of cheektecth usually: definite, clear, and rather more complex: M. 3 lower series normally tending to be noticeably elongated. Cillosciures

ITpper checkteeth with small onter (third) cusp retained or traceable; pattern of cheekteeth usually comparatively indistinct: 11.3 lower series rarely or not elongated.
UPper incisors not prowdont, plain. Scieri's
Upper incisors proodont, onegroosed.

Synthenseiures
'The genera Callorciurus and fomambulus are retaned, it must be admitted, more for convenience than because of the conviction that the are of necessity distinct generically from Sciurus, though Pocock transferred them on baculum structure to three different subfamilies. Apart from this structure, they are separable only on average characters; the same applies to Dremomys, which possesses intermediate species grading into Callosciurus to which it evidently stands nearest. Comparing Fumambulus with Sciurus and Cullosciunus, Pocock writes, regarding the baculum of his "Funambulinae": "It is when present always a simple bone, without the spatulate expansion at the apex seen in the Sciurinae and without the accessory blade of the Callosciurinae."

Section A. Nannoscicres Section: Pygmy Squirrels with highly abnormal cranial characters; the Nanosciurinae of Niller $\mathbb{\&}$ Gidley, and Forsyth Najor.

Genus 1. WYOSCIURL'S, 'thomas

1gog. Myustlerts. Thomas, Ann. Mag. Nat. Hist, 8, Ill, pp, fon, 474
Type Species.-Sciurus pumilio, Le Conte.
Range.-W'est Africa; Cameroons, Gaboon.
Number of Forvis.-Onc.
Characters.-Skull with extremely broad frontals; postorbital process vestigial, situated over posterior zygomatic root. Zygomatic plate almost vertical, slanting upwards over or behind toothrow. Infraorbital foramen immediately in front of toothrow, the portion of the zygomatic plate behind it abnormally narrowed, also placed in front of toothrow. No ectopterygoid. I'alate straight, considerably narrowed. Jugal hroad, as in allied genera. Incisors pro-odont. Cheektecth \ddagger. Accordine to forsyth Major, writing of this genus and Namosciurus, "The pattern of the crown differs from that found
in the Sciuromorpha generally in presenting only three complete transverse crests in the upper molars instead of four，and three in the lower molars．The third crest ．．．is very reduced in these pygmy squirrels，sometimes not more than a minute cusp．A further peculiarity of these molars is the large develop－ ment of the anterior transverse valley both of the superior and inferior molars ．．sometimes almost equalling that of the posterior valley．This last，owing to the partial suppression of the third crest，oecupies the area of the median as well as that of the posterior transverse valley in the teeth of Sciuromorpha．＂ On this account he referred these genera to a separate subfamily；but sometimes， as in skull No．9．10．2．36 at the British Nuseum，the ordinary Sciurine ridges （four）and depressions（three）may be traced in the main tecth．The toothrow is reduced．Another peculiarity is that in this genus M． 3 is turned over，and faces outwards．Upper and lower premolars very reduced in size．

Size very small indeed，head and body about 75 mm ．Tail much narrowed， shorter than head and body（about three－quarters this length or slightly more）． Digits as in normal＇Tree－squirrels．

This genus is undoubtedly the most aberrant of the section，as shown chiefly by the abnormal infraorbital foramen，and also the lack of ectopterygoid and the extremely small size．

Forms seen：pumilio．
List of Named Forma
（References and type localities of all members of Sciurus group by Mr．R．WV． Hayman．）

1．MYOSCHIRL＇S PCMIHIO，Le Conte
1857．Proc．Ac．Nat．Sci．Philadelphia，p． 1 I．
Gaboon．
Synonym：minutus，du Chaillu，IS6I，Proc．Boston Soc．Nat．Hist．，VII， p．366．Gaboon．
mimutuhus，Hollister，1921，Proc．Biol．Soc．Washington， ぶ心1゚，p． 135.

Genus 2．NANNOSCILRUS，＇l＇rouessart
isto．Nanioscheres，Trouessart，le Naturaliste，p． 292.
＇Type Species．－Sciurus melanotis，Müller S Schlegel．
Range．－Indo－Malayan；Sumatra，Borneo，Java，and the Philippine Islands．
Niatizer of Forms．－Fourteen．
Characters．－Like Myosciurus but with the ectopterygoid present，and infraorbital foramen forming a short canal，the portion of the zygomatic plate behind it less recuced，normal．Coronoid process as in Myosciurus，much reduced．＇The cheekteeth are similar to those of Mysciurus， though the elements of the usual Sciurine pattern may be sometimes iraced，as in skulls No．92．11．8．6 and 10．4．5．113 at the British Nuseum．．II． 3 not facing outwards，relatively small，more reduced than is usual in Sciurinae； P ． 3 present： P．f as a rule not specially reduced．P．f lower smaller than the other lower molars；

Fig. 91. Myumblerts pemble, Lee Come. B.M. No. 5.5.235, ${ }^{\circ} \mathrm{B}$ 3!.

Fiti, ile. Mroséll mats pralio, Le Conte.
B \I. No. 5.5.23.5, 今; 3⿳.
cusps in lower tecth nearly obsolete, and the main central depression appears to give way to a transverse ridge. Pabate usually narrow.

Eixternally slightly larger than Myosciurns, or becoming so. 'Tail tending to be narrow, shorter than head and hody length. Arrangement of digits not abnormal.

Fig. 93. (a) Myosciures pemilio, Le Conte. : z 2.
(b) Sculrilés pesilles pusilets, Desmarest. $\therefore 2$.
(c) Solurillus nerines ampines, Jülier \& Schlegel. 2.
(d) Calloscieres tentis strdés, Miller. 2.

Three groups are recognizable in this genus: melanotis group, paler, with black ears and white face markings; exilis group, darker, without face markings; and whiteheadi group, like the last but with ear-tufts present and conspicuous, in some cases extremely long. (These absent in exilis group.)

Forms seen : bormeanus, concinnus, exilis, melanotis, pulcher, retectus, samaricus, whiteheadi.

LISt of Named Forms
exilis Group

1. NANNOACHELS MNLIS EXillts, Muller \& Schleged
2. Tiids. Natur. Ges., p. i48.

Batang singalur, Sumatra.

2．NANNOSCHERUS IXHIS REOTECTLS，Thomas
1010．Ann．Mag．Nat．1list．S，V，p． 387.
Banguey Island，North Borner．

192S．Journ．Nalay Branch Roy．As．Soc．，VI，pt．r，p．ft．
Long Temelan，Middle East Borneo．
4．N゙ANNOGCORLS CONCINNS，Thomas
1siss．Ann．Mag．Nat．Jlust．6，XII，p． 407.
Isabella，Basilan lsland，Sulu group，Philoppunes．Considered a sub－ species of cailis by Robinson $\mathbb{\&}$ likoss， 1918.

18o7．Ninutes Zoml．Soc．Landon， 15 th Junc，P．1．189N．＇Trans，Zool．Soc．London，
SIV，p． $380, \mathrm{pl} .30$, fig． 2.
Samar，lhilippine Islands．
6．NANVOsClLRL：SLRRLClLLis，Hollaster
1913．］＇roc．U．S．Nat．Nus．KLVI．F． 3 I3．
Mount lBhss，Mindanan，Philippine lamds．
7．NANNOACILRUS LUNCLEORDI，Tostor
1934．Dhappine Land Mammals，p． 373.
Saub，Cotabato，Mlindanao，Philippine Islands．

whitcheadi Group

8．NAN゙NOLClURL＇S WHITEHEAD！，Thomas
1887．Ann．Mas．Nat．list．5，XX，p． 127.
Nount kina lBalu，North Eorneo．

melanotis Group

4．NANNOSCHERE MELANOTIS MELANOTIS，NELIE \＆Schlege
1844．Tenmenck＇s Verhandelinger，Zomlogie，pp，87，88，pl．xiv，fig． 4.
Java．
Synonym：soricimus，Waterbouse， 183 ，Cat．Namm．，P． 46.
10．NANNOACILRLS MELANOTIS SLTMATRANCA，LNON
root．Proc．Biol．Six．Washington，JIX，p． 53.
Tarussan Bay，West Sumatra．
 1902．Proc．Acat．Nat Sci．Philadelphia，p． 153.

Sinkep Island，near Sumatra．
12．NANNOSCIIKLS MELANOTIS BANCANUS，Lyon 1906．Proc．Bobl．Sok．Washington，XIX，p． 55.

Klabat Bay，Bangka Island，East Sumatra．
13．NANNORCIURES MELANOTIS BORNEANUS，LyOn
anof．J＇rue Brol．Soc．Washmgton，SlX，P． 54.
Sangean，West burner．
 1リこS．Journ．Malay Branch．Ruy．As．Suc．，VI，pt．1，p． 43.

Lone Pochoses，Madde last Borneo．

Genus 3. SClURILALUS, Thomas

1914. Schralle's, Thomas, Abstr, Proc. Zool, Soc, London, May 12th, p. 36; id., l'roc. Zool. Soc. London, 1914, p. 416.

Type Spectes.-Sciurus pusillus, Desmarest.
Range- - Neotropical; Guianas, extending south to the Amazon. IndoNalayan; Celches (murimes group provisionally included here).
Number of Forms.-Five.
Characters.-In cranial characters clearly a member of the Namosciurns section. lectopterygoid present. Skull much like that of Nannosciurus except that the palate is hroad and normal, and the whole cranial effect is a little less extreme owing presumably to the fact that the animals are rather larger. Jugal in both specifie groups included here very broad. Postorbital process less vestigial than in Nannosciurus. In the type species the opening of the infraorbital foramen is carried upwards on front part of zygomatic plate as a curved groove. P. 3 present. M. 3 not reduced. Only much worn teeth examined in the type species; the ridges not clear, obsolete, the cusps low. P'. 4 lower, somewhat reduced.

Externally (type species) rather larger than Namosciurus, head and body reaching 107 mm . Tail more normal, longer, about as long as head and body, bushy. Digits not ahnormal, arboreal type.

There are also at the British Nuseum three specimens from Celebes labelled "Sciurus murinus." Whether these represent true murimus or not I have been unable to find out, as I have not seen any description or reference to this species which mentions cranial characters. But all cranial characters of the Nannosciurinae as diagnosed by Miller \& Gidley, except the fact that the middle of orbit (like typical Sciurillus) is not behind the middle of the skull, are clearly: present in these skulls from Celebes. 'The species is evidently a transitionary' type between Namnosciurus section and Sciurus section, and is evidently the Celebes representative of the former; "giant" representatives, if one can call a Squirrel a giant, which must measure less than six inches in head and body length. The dentition is about as in normal Squirrels apparently, but much worn in the three examined; the proportions of the teeth agree with those of Sciurillus rather than Namosciurus, as do the main cranial characters. It is not my intention to burden this Order with more generic names than can be avoided, so I transfer this group provisionally to Sciurillus, though it may be that later the group will need a generic name. Should true murinus prove to belong to Callosciurus in cranial characters, these skulls must represent a new and undescribed species, but one which I should not feel justified in leaving in Callosciurus on cranial characters. It is interesting to note that Nomosciurus is not known from Celebes. It is to be hoped that further material will come to hand. The form eaidens, which is described as near murinus, I provisionally list here, though I have not seen it.

Forms seen: pusillus, glaucinus, murimes.

List of Nanted Forais
 pusillus Group

marimus Group
3. SCILRILLC'S MLRINU'S MLRINUS, Muller \& Schlegel
1844. Verhandl. Zoul., p. 87.

Celebes.
4. SCIURILLES MLRLNLS NECOPINLS, Maller \& Hollister
roze. Proc. Brol. Soc. Washington, XXXIV, p. 98.
Goenoeng Lehio, Middle Celebes.
5. SCILRIELUS ($:$) EVIDENS, Maller \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIS, p. 99. Puloh Lemheh, N.-E. Celebes.
The infraorhital foramen of the murimus group is normal, without the abovenoted peculiarity of the pusillus group.

Since the above was written, we have been fortunate enough to obtain three more of these Celebes Prgmy Squirrels, through Mr. W. Frost. Their cranial characters are precisely as in the skulls at present in the British Museum and mentioned above. This indicates that at any rate these skulls did come from Celebes, and also apparently that a small Squirrel of this type is common there, as Mr. Frost writes that Gquirrels have not been easy to ohtain, and these were the first that came to hand; and it strengthens my supposition that they probably are true mumims, and that the species should certainly not remain in the genus Callosciurrs. The dentition of the new skulls indicates that the pattern is probably as in normal Squirrels; P. 3 is relatively well developed.

The head and body length is $1,30 \mathrm{~mm}$. ; the tail is shorter than this measurement (average 7o).

Note.-.Since the ahove was written I have seen an important paper on the genus Sciurillus (South American section) by Tate \& Anthony, Amer. गlus. Nov. 7So, Feb. It, 1935, notes on South American Mammalia, no. i, Sciurillus. These authors state that the form kulhlii, (iray, 1867, Ann. Mag. Nat. Hist. 3, X., p. 433, Pehas, Peru (see the above-mentioned paper, p. 10), is a race of Sciurillus pusilhus, and not a synonym of Scimus aestmans, as listed here. I have not seen kuhlii.

Section B. Scieres Section: typical Tree-squirrels. In this section are placed very many forms belonging to about eight genera, from the Ilolarctic, South America, and the Indo-Malayan.

Except for Microsciurus and Rutufa, the genera are not clearly distinguishable from one another on eranial and dental characters. On characters of the baculum, some of them have been arranged in three different subfamilies (Pocock); but other than the two genera noted above all might quite easily be referred to a single genus Sciurus. The African genus Meliasciurus, which I have placed in section D, is another genus which is separable only on baculum characters from Sciurus or its allies.

Genus 4. MICROSCIURUS. Allen

1895. Microscturts, Allen, Bull. Amer. Mus. Nat. Hist., Vil, p. 332.
'Iype Spechs.-Sciurus alfari, Allen.
RaNge.-Neotropical: Nicaragua, Costa Rica, Panama, Colombia, Ecuador, Peru, and Rio Negro (Amazon).
Number of Forms.-About twenty-one.
Characters.-Skull strongly depressed posteriorly, and postorbital process situated nearly or exactly over posterior zygomatic root, as in
Nannosciurus and Sciurillus; but zygomatic plate slanting gradually upwards as in normal Squirrels, and orbit less circular than in these genera. Frontals very broad, nasals short. Jugal broad. Upper incisors pro-odont, usually extending beyond plane of tip of nasals. Palate normal. Bullae rather small. Cheekteeth as in Sciurus, though the small outer (third) cusp of the upper molars is often barely traceable. P. 3 present, and rather well developed, except in the type of manarius, in which there seem to be no traces of this tooth.

Externally: size small; tail rather narrow or occasionally much narrowed, rather shorter than head and body as a rule; digits as in normal Tree-squirrels.

This genus suggests the Sciurillus type of skull, but is in all respects a little nearer to Sciurus in cranial characters. The lachrymal is usually situated rather further back in relation to the toothrow than in members of the present section.

Forms seen: alfari, azunculus, boquetensis, broani, flaziventer, isthmius, manarius, mimulus, napi, otinus, palmeri, rubrirostris, similis, simonsi.

The species were revised by' Allen (Bull. Amer. Mus. Nat. Hist., NXXIII, p. ${ }^{145}, 1914$). All seem very closely related to each other, except perhaps manarius, as noted above.

List of Nimed Foris

1. NICROSCILRLS AI.FARI ALFARI, Allen

1S95. Bull. Amer. Nus. Nat. Hist., VII. P. 333.
Volcan de Turrialba, near Jimenez, Costa Rica.
2. MICROACCILRL's ALFARI VENU"STLL゙S, Goldman
1912. Smiths. Misc. Coll., LVI, 36, p. 4.

Gatun, Panama.
3. NICROSCILRLS ALFARI BROWVI, Banes
1902. Bull. Nus. Comp. Zool. Harvard Univ, XXXIX, 2, p. 24. Bogava, Chirigui, Panama.

4．NICROSCIURLS BoめtETENSLS，Nelson
1903．Proc．Rat．Suc．Washington，XVI，P．I2I． Iboyuete，Chiriqui，Panama．

18ot．Bull．Amer．Jus．Nut．Hist．，XII，p． 78. Cali，Cauca Valley，Colombia．

6．MICROSClL RLS SIMLIAS FLACLLLUS．Thomas 1qio．Ann．Mag．Nat．I Iist．S，VI，p． 503.

Juntas，Rio San Juan，Choco District，Colombia．
－NHCROSClLRUS OTIN゙しS，Thomas
1901．Ann．Mas．Nat．Ilist．7．VII，p．193．
Sedellm，Colombia．
8．NHCRONCDLRLS ISTHADILS LSTHALILS，Nelson
1890．Bull．Amer．Mus，Nat．IIist．，XII，p． 77.
Truandn Raver，Isthmus of Darten．Colombia．
q．NIICROSCILRLE IsTHIXILS VIVATCS，Goldman
1912．Smiths．Misc．Coll．，L．
Cana，Pirri Range，Eastern Panama．
10．NICRUSCILRLS NIDULLLS，Thomas
isigh．Ann．Jas，Nat．Hist．7，II，P． 266. Cachavi，Esmeraldes，Ecuador．

1i．AICROSC＇ILRL＇S PAIAlERI，Thumas
1909．Ann．Nag，Nat．Hist．8，IV，p．234． Sipi，Rio Sipi，Rin San Juan，Choco district，Colombia，

12．MICROSC＇ILRLE SIMONSI，Thomas
1900．Ann．Hag．Nat．Hist．7，VI，p． 294.
Porvenir，near Zaparal，Bolivar Province，Ecuador．
13．MICROSCILRLTS PERLANLS，Allem
1897．Bull．Amer．Mus．Nat．Hist．，1X，p． 115. Guayahamba，N．－W．Peru．

14．NHCROSClLRL＇S NAPL，Thomas
1900．Ann．May．Nat．Hist．，7．VI，F． 295.
Ro Cioca，Lpper Rio Napo，Ecuador－Colombia boundary．
15．NIICROSCILRL｀RLBRIROSTRIS，Allen
1914．Bull．Amer．Mus．Nat，Hist．，NXXill，p． 163. Chanchamayo，Central P＇eru．
16．NICROAC＂ILRLS゙ FLORENCIAE，Allen
1914．Bull．Amer．Jus．Nat．Hist，X゙X゙XIIl，p－Ib4．
Flomencia，Caqueta District，S．－VV．Combomb．
17．WICRUACILRL＇S AVCNCLIAS，＇Thomas
moit．Ann．Nas．Nat．Hist． 8 ，NllJ，p． 574.
Gualaquza，Eastern Ecuador．
18．AllCRONCOLRLS SHPTENTRIONALS，Anthony
1920．Journ．Namm．Baltimore，i，P．8ı．
Gabalos，on Run San Juan，at junction of Rıo Sabalos，Nicaragua．

19．MICROSCIURUS SABANHLLAE，Anthony
1022．Amer．Nus，Nov．32，p． 2.
South Fecuador，Sabanilla，Prov．de Loja；5，700 ft．
20．MLCROSCIURUS MAN゙ARIUS＇，Thomas
1920．Ann．Mag．Nat．Hist．9，VI，p． 275.
Acajutuba，Rio Negro，Amazonas．
21．MHCROSCHURUS FLAVIVENTER，Grav
1867．Ann．Mag．Nat．Hist．3，XX，p． 432.
Brazil．

Genus 5 ．SYNTHEOSCHURUS，Bangs

1902．Syntheoscil＇res，Bangs，Bull．Nus．Comp．Zool．Harvard Univ，Nililly， no．2，p． 25.
Type Species．－Syntheosciurus brochus，Bangs．
Ravge．－Panama．
Number of Forms．－One．
Characters．－Skull with no special peculiarities；rostrum rather long， bullae relatively small，postorbital process moderate．Cheek－ teeth ${ }^{5}$ ，evidently like Sciurus（only two skulls with much worn teeth seen）． Upper incisors pro－odont，extending beyond plane of tip of nasals，and one－ grooved．

Fur very thick and soft；tail rather shorter than head and body；digits normal arboreal type；ear strongly reduced．

Remarks．－－This genus is retained by North American authors，including Howell in his recent key to genera occurring north of South America．But the sole character，pro－odont grooved incisors，appears to me to be questionable． Elsewhere the incisors may be pro－odont，as in Callosciurus precosti；and grooves may appear from time to time，as in，for instance，Heliosciurus，in other genera． The present species is a little known form．It is probably not more than sub－ generically scparable from Sciurus．

Forms scen：brochus．

List of N゙amed Formis

1．Š゙NTTHEOSCIURUS BROCHL゙S，Bangs
1902．Bull．Nus．Comp．Zool．，Harvard Unix．SX゙オIX，no．2，p． 25.
Buquete，Chiriqui，Panama．Altitude， $7,000 \mathrm{ft}$ ．

Genus 6．SCILRUS，Linnaeus

1758．Schrt＇s，Linnacus，Syst．Nat．，1oth Ed．，vol．1，p． 63.
1899．Baloscicres，Nelson，Proc．Acad．Sici．Washington，1，p．31．Sciurus depper， Peters．
1880．Echinoschrels，Trouessart，le N゙aturaliste，2，p．292．Sciurus hypopyrrhus，Wagner． 1880．Neoschtres，Trouessart，le Naturaliste，2，p．292．Sciurus carolinensts，（imelin． Valid as a subgenus：see Howell， 1938 ，N．A．Fauna， $56, \mathrm{p}$ ． 1.
1899．Hesperoscilert＇s，Nelson，Proc．Acad．Sci．Washington，1，p．2\％．Sciurus griseus， Ord．Valid as a subgenus：see Howell，193 8.
21－Laing Rudents－I

Siftris (continued)
siog. Otoscileres, Nelson, Proc. Acad. Sici. Washmgton, 1, p. 28. Sciurus aberti, Woodhouse. Valid as a suhgenus: see Howell, 1938.
moon. Texes, Thomas, Ann. Mag. Nat. Ilist. S, IlI, p. 468 , footnote. Simurn persicus, Erxleben ($=$ anomalus, Guldenstaedt). Valid as a subgenus.
1935. Orfoscilqles, Ognev, Abstr. Works. Zool. Inst. Moseow, 2, p. 50. Sciurus anomalus, Guidenstaedt.
1821. Glerlingletts, Gray, London Ned. Repos., XV, p. 30f. Sciurus guerlinguetus, Gray ($=$ Sciurns aestuans, Limnaeus). Valid as a subgenus.
1S23. \acroxus, F. Cuvier, Dents des Danm., p. ror. Le Guerlinguet (Stharus aestuans, Linnaeus).
is So. Parasclerts, Trouessart, le Naturaliste, II, p. 292. Sciurus niger, Linnaeus. Valid as a subgenus: see Howell, 1938.
189g. Araeoscherls, Nelson, Proc. Washington Acad. Sci., I, p. 29. Sciurus oculatus, Peters.
1915. Desoscicris, Allen, Bull. Amer. Nus. Nat. Hist., XiXilv, p 2ı2. Sciurus aestuans hoffmani. Peters.
1915. Histriosciures, Allen, Bull. Amer. Mus. Nat. Hist., XXXIV, p, 213. Sciurus gerrardi, Gray.
19r5. Simosciurcis, Allen, Bull. Amer. Mus. Nat. Hist., JXXIV, p. zSo. Sciurus stramineas, Eydoux \& Souleyet.
1915. Hadroscilites, Allen, Bull. Amer. Mus. Nat. Hist., XXXIV, p. 265. Sciurus flammifer, Thomas. Valid as a subgenus.
1915. Urosciltres, Allen, Bull. Amer. Mus. Nat. Hist., XXXIV, p. 267. Scimus tricolor, Poeppig.
1915. Leptoscilvés, Allen, Bull. Amer. Nus. Nat. Hist., XXXIV, p. ig9. Sciurus pucherani, Fitzinger.
1914. Notosciurus, Allen, Bull. Amer. Mus, Nat. Hist., XXXIII, p. 585. Notosciurus rhoatsi, Allen. Valid as a subgenus.
'The arrangement of these names subgenerically is as follows:
Subgenus i. Sciurus, Linnacus (restricted by Howell, i938, to Palaearctic zulgaris group).
Subgenus 2. Tenes, Thomas.
Synonym: Oreosciurus, Ognev.
Subgenus 3. Neoscileres, Trouessart.
Synonym: Echinosciurus, Trouessart 1 (see Howell, Baiosciurus, Nelson \quad 1938).
Subgenus 4. Ilespfrosciurus, Nelson.
Subgenus 5. Otosciurus, Nelson.
Subgenus 6. Pariscileres, Trouessart.
Synonym: Araeoscimus, Nalson.
Subgenus 7. Guerlinguetus, Gray.
Synonym: Macroxus, Cuvier.
Mesosciurns, Allen.
Mistriosciurns, Allen.
Simosciurus, Allen.
Leptosciumus, Allen.
Subgenus 8. Notosciurlis, Nllen.
Subgenus 9. Hadrosciurus, Allen.
Synonym: Urosciurus, Allen.
Type Species.-Sciums aulgams, Linnaeus.

Range.-Europe, from Ireland eastwards and from North Scandinavia to the Mediterrancan; the greater part of European Russia; south to Crimea; Caucasus, Asia Minor, parts of Syria and Persia; Siberia, east to Anadyr region, and south to Altai, 'Transbaikalia, Amur, Ussuri; North Mongolia; Manchuria, Chihli, Korea, Saghalien, Japan. South-eastern Canada (Ontario); U.S.A.: Oregon, Mlinnesota, California, Arizona, Colorado, New Mexico, Texas, Louisiana, Florida, eastern States generally; Mexico south through Central America to Colombia, Eeuador, Peru, Bolivia, Jujuy (North Argentina), Brazil generally. the Guianas, Venezuela, 'lrinidad, 'Tobago.

Nimber of Forms.- About a hundred and ninety.
Characters.-The skull, typically, is with moderately developed postorbital process; the braincase is strongly depressed posteriorly; there are no prominent ridges present for muscle attachment; except in the South American subgenus Hadrosciurus, the parietal ridges very rarely show signs of joining together. The frontals tend to be slightly depressed. The palate is broad, rather square posteriorly, and terminating just behind the toothrows. The incisive foramina are small, far in front of toothrows. The bullae are usually relatively large. The zygomatic plate slants gradually upwards, its ridge moderately or weakly developed; the zygomatic plate not tending to become narrowed in the upper border, the front face usually appearing broad and flat. The infraorbital foramen always forms a canat; the masseter knob is weak. The length of the rostrum is in the genus variable, but never tends to become extreme. Nandible with no special peculiarities.

In the upper cheekteeth there are on the main teeth four transterse ridges, the second and third of which are higher than the first and fourth which respectively form the anterior and posterior margins of the tooth. The two centre ridges are nearly parallel and extend across to the inner side of the tooth, which is rounded and formed as usual in the family by one large inner cusp. The outer sides of the second and third ridges are formed by well-marked cusps, which are usually originally fairly high; between these is placed a small outer cusp, which may become very low but is usually traceable. M. 3 has only one prominent transverse ridge, the second; the third ridge of the other teeth is obsolete in this tooth, which has a corresponding wide depression behind the second ridge. P.3 present or absent; when present, vestigial as a general rule.

In the lower teeth, the premolar is usually noticeably smaller than the other teeth, and M. 3 is not much elongated as it often is, for instance, in Callosciurus; each tooth has a more or less well-marked cusp at each corner, and with the exception of certain forms of the subgenus Madrosciurus, the main central depression is always well marked. 'The anterointernal cusp is the highest, the posterointernal the lowest. Between these two, and between the two outer main cusps, is placed a small extra cusp each side.

Externally, size moderately large or moderately small; the tail always thickly bushy, very rarely showing signs of becoming narrow; it may be longer than the head and body, as in some forms of stramineus, or subequal in length to this
measurement, or considerahly shorter, as in anomalus. In the type species, the sole of the hindfoot is densely hairy in winter. The digits are arranged as characteristic of all arboreal Sguirrels; D.f the longest digit in the hindfoot, D. 3 and D. 2 suceessively each a little shorter; D. 5 well developed, nearly as long as D.2; hallux moderate. In the forefoot, D. 4 is longer than D. 3 (slightly); the two other main digits are subequal, and a little shorter than the central two digits. The ear is usually prominent; in andgaris and aberti, conspicuous eartufts are present, the development of which in rulgaris varies seasonally.

Subgenus Sciurus (Palaearetic range of the genus except the Caucasus, Syria, Persia, and Asia Ninor); this has once again been restricted to the Palacarctic, by Howell, 1938, though formerly Miller, 1923, regarded the majority of the North American speeies as belonging to it. Plantar pads 4; ear tufted; sole densety haired in winter. Cheekteeth i. Mammae δ (Niller). Includes anlgaris, with numerous races, and the Japanese lis, which in the absence of knowledge of detail chatacters such as the baculum appears to me to he doubtfully specifically distinct from zulgaris.
Subgenus Tenes (Caucasus, Syria, Persia, Asia Minor); anomolus and races (synonym "Orosciurus," Ognev). Plantar pads 6; mammae 10 ; baculum said to differ from zulgaris (Ognev) ; ears not tufted; cheekteeth normally +. (Fur less thickened than is usual in zulgaris.) Tail rather short, averaging about 70 per cent of head and body length in a comparatively small series of specimens examined.
Subgenus Neosciurus (Eastern U.S.A., Eastem Canada, Mexicu, 1 londuras, Guatemala, Nicaragua, Costa Rica). (Synonym "Echinosciutins," "Baiosciurns'").
"The skull of S. curolmensis (type of subgenus Neosciurus) does not differ widely in general shape from that of S. zulgaris, but is relatively longer, with braincase shallower and more elongated, . . . and rostrum longer and relatively narrower ; postorbital process shorter and stouter. . .
"In S. deppei (type of Baiosciurus, Nelson), P.f averages slightly more quadrate than the same tooth in Neosciurus, but examination of a large series of deppei and carolinensis shows that the character is too slight and inconstant to serve as a basis for subgeneric distinction.
"S. a. hypopyrdus and the large group of Mexican forms associated with it by Nelson in the subgenus Echinosciurs differ in general from carolinensis in having a shorter and relatively broader rostrum, and a more or less prominent depression in the frontals; these differences, however, are considered ton slight to warrant the recognition of the group" (Howell, 1938).

The baculum of corolinensis is said to be essentially as in aulgaris; according to Howell, this character is in deppei and adolphei dorsalis (one of the ambogaster group ($=$ "Echinosciurns")) essentially as in carolinensis. There are 6 mammae in deppei, which species appears to have a rather lower coronoid process than is usual, though this character
may be present also in some of the South American forms. Checkteeth, in this subgenus, 点.
Subgenus I Aespreoscourus (Calilomia, Oregon; "Western Gray Squirrels"). "The skull of S. griseus resembles that of carolinensis very closely except that it is larger. . . the jugal relatively lighter (shallower). Baculum widely different from Neosciurus, resembling more elosely that of S. aberti" (Howell, 1938). I'. 3 in our small series relatively well developed.
Subgenus Otosciures (Arizona, Colorado, New Mexico, and Northern Nexico; aberti group). "In general shape the skull of S. aberti elosely resembles that of S. zulgaris. P. 3 relatively larger and more strongly developed, the crown being subject to wear with the rest of the molars. . . Compared with Neosciurus, this subgenus differs in having braincase and interorbital region relatively broader, postorbital breadth less than interorbital breadth, postorbital process larger and longer, postorbital noteh deeper, P. 3 more strongly developed" (Ifowell, 1938). The baculum differs widely from Neosciurus, and is nearer griseus. The baculum of each of the four subgenera occurring in the United States is figured by Howell, 1938, N.A. Fauna, no. 56, p. 35.
Subgenus Parasciurus. (Synonym "Aracosciurus.") (Eastern United States including Florida; 'T'exas, Arizona, Mexico) (niger group). "Compared with Neosciurus, the skull of very similar shape, . . the frontals slightly elevated on posterior half; a distinct interorbital notch; the baculum closely similat to that of S. carolinensis. Cheekteeth reduced to 4 . The parietal ridges are in the few skulls examined tending to be prominent, and probably would join, though actually no skull has been scen with this feature. Relatively large Squirrels.
Subgenus Guerlinguetus. (Synonym "Mesosciurus," "Histriosciurus," "Simosciurns," "Leptosciurus.") "Skull differs from Parasciurus in having a shorter rostrum, more swollen brainease, and position of notch in maxillary plate of zygoma . . . there is one upper premolar, which is subeircular or quadrate in shape, differing thus from Parasciurus in which this tooth is subtriangular" (llowell). 'This group ranges from Nicaragua southwards over most of South America, south to Jujuy.

In 1915 Allen divided the South American Squirrels into many "genera." 'lhese names were based simply on mammary formula (6 or 8), the bodily size, the relative length of the rostrum (shown subsequently in some cases to be incorrect), the geographical distribution. He keyed these genera as follows:
"Nammae 6. Premolars !

Size small, total length $320-380$. Tail shorter than head and body.
Soles naked, phantar pads normal. Leptosciurus Soles heavily furred nearly the whole length: plantar pads all near base of toes. Notosciurus

Size medium, total length 375-450. Tail subequal to or shorter than head and body. . Mesosciurus
Nammae 8 s.
Premolars i; tail as Jong as or Jonger than head and body. Size small, tail narrow. Guerlinguetus Size large, total length $490-580$, tail broad and bushy.

Skull hroad and heavy, rostrum short. Hadrosciurus
Skull long and narrow, rostrum slender. Urosciurus Size large, tail very long and narrow, rostrum very broad and short.

Simosciurus"
It will be seen that "Mesosciurus" differs from Guerlinguetus in having mammae 6 instead of 8 , and "Simosciurus" differs in being larger.

The majority of these names, based on characters such as these, have naturally been currently disregarded. Hadrosciurus, Lrosciurus and Simosciurus have been shown by Lönnberg to be quite indistinguishable from each other on the cranial characters proposed by Allen.

Thomas stated that L'roscinrus was not distinguishable from Hadrosciumus. Those forms occurring in South America have not been revised like the forms occurring north of Panama (Howell, Niller, etc.). I think there is no doubt that, pending a full revision of all the forms all will have to stand as synonyms of the oldest name Guerlinguetus except perhaps Notosciurus (not seen), and certainly IIadroscimus, which as I shall endeavour to show is so distinct dentally that it might almost form a genus.

In addition therefore to the aestuans group (typical Guerlinguetus), the subgenus will include the hoffmani group, "Mesosciurus," regarded as a synonym by bath Xiller and Howell; the stramineus group, "Simosciurus," large attractive long-tailed Squirrels from Peru and Ecuador with, however, absolutely no distinctive features cranially and dentally; and the pucheromi group, "Leptosciurus"; this subgenus was described as "Skull similar in general form and proportions to S. aestuans; differing from Gurlinguetus in the structure of the upper molars, the outer border of the crowns having only two prominent cusps instead of three, the intervening cusplets usually prominent in Gucrlinguetus and most other American 'Tree-squirrels are practically obsolete or entirely absent." But I have seen some specimens belonging to this group with this character not clearly developed; and I have seen specimens of aestuans which appear to me to be indistinguishable from Leptosciurus; Ithink it is highly improbable that this is a constant feature dividing the two groups into subgenera.
Subgenus Notosciurus (rlioadsi, Ecuador. Not seen).
"Size small, tail of medium length-naked portion of plantar surface of hindfeet restricted to distal half, the rest heavily furred; the posterior pad large, nearly square, occupying the whole breath of the sole, close to the toe pads" (Allen). This is evidently based on one young individual, the milk premolar heing retained, according to Allen, in the one skull, so that it is not known whether the permanent dentition would include
P.3. Originally proposed as a genus; but hairiness of sole is certainly not a valid character; compare winter specimens of Sciurus vulgaris.
Subgenus Hadrosciurus. (Syuonym; "Uvosciurus.") (Venezuela, Peru, Brazil, Colombia, Ecuador, Bolivia).

This is a very distinct group of Squirrels, which may ultimately have to be regarded as a genus, which seem to be paralleling to a certain degree such forms as Episerus and Rheithrosciurus, in that the incisors are becoming thickened, and the toothrows rather strongly reduced. The muzzle is pointed, the palate relatively narrow. In the upper teeth, the cusps are evidently low, at all times, but the normal eusps and ridges are traceable. In the lower teeth, a rather different appearance from normal Sciurus is frequently present. 'There is often a well-developed transverse ridge extending across the middle of the tooth and connecting the small intermediate cusps; this ridge may isolate as an island. The small anterior transverse ridge in the lower teeth regarded by Hollister as characteristic of the African Heliosciurus is in this subgenus usually well developed. It would be interesting to examine a large series of lower molars of this group, and ascertain how far this general pattern is constant, or if it is present in some races, and not in others, as the material examined appears to tary somewhat in development. The central depression in those forms with the pattern fully developed becomes reduced, which as far as I have seen does not happen elsewhere in the genus. A short sagittal crest is often present.

Some figures have been obtained in order to see if the group would stand as a genus on the reduction of the toothrow, but the results are disappointing as some of the other groups overlap. The percentages of toothrow compared with total length of skull are given below, throughout the genus, in a small number of skulls measured.

The species referred to Hadrowiurns are relatively large forms.

The species of Sciurus occurring in Western Europe are revised by Miller, Cat. Mamm. Mestern Europe, 1912, p. 897.

Species occurring in Mexico and Central America by Nefson, isyy, Proc. Washington Acad. Sci., I, Pp. 15-106 (under a number of subgeneric names).

Species occurring in South America by Allen, i915, Bull. Amer. Mus. Nat. llist., XXXIX, Pl, 147-288 (under a number of generic names).
'I'he North American sulgenera are, as indicated above, revised by Howell, 1938, N.A. Fauna, no. 56, which together with a revision of Nearetic Citellus

Fig. 94. Sciuru's vilgaris vulgaris, Limacus.
B.MI No. 17.4.11.1, ö; Il.
clears up much misunderstanding as regards the status of genera and subgenera of Squircels occurring in North America, and has made my task very much more simple, as the North American collection of Sciuridae at the British Ahuseum is not representative.

Forms scen: aberti, arstuans, alloni, alphunsei, anomalus, amnalinm, anthonvi, argenteus, argentimus, anreugester, bolaciensis, bondue, boothiae, "brnmeoniger," carolinensis, castus, chapmami, chiriquensis, "cinerchs," cucalis, cocos, collinei, concae, croaticus, "cuscimus," deppei, dursalis, duransi, flammifer, "fraseri," frumentor, fulminatus, fuscoater, fuscomigricans, fuscorubens, soldmani, sriseoflazus, griseogena, griscus, guayame, hyporhodus, igniventris, infuscatus, ingrami, imouratus, italicus, juralis, "khagesi", langsdorffi, leucotis, leucourus, lilaens, lis, muccomelli, mantchuricus, martonsi, medellinensis, melania, melanotis, meridensis, "millert" (=leonis), nulymensis, mayratensis, mhonvi, nelsomi, nemoralis, nesuens, miger, "migrescens," mgripes, mumatius, oculatus," ochrescens," orientis, pallescens,
paraensis, pucherani, pyrhinus, pyrhonotus, quelchi, "quercinus" (=hernandezi), quindianus, rigidus, rufirenter, rupestris, russus, segurue, sinaloensis, steinbachi, stramineus, taedifer, teparius, tobagensis, tricolor, "variabilis" (=gerrardi), variegatoides, zarius, "versicolor" (=inconstans), zulgaris, yucatancnsis.

Fig. 95. Scicrl's wilgaris itlgaris, Linnaeus.
B.M. No. 97.4.11.1, ©; 1!.

Fig. 96. Sehtres velgaris viliarti, Linnacus.
Cheekteth: 5.
List of Nimhed Formis
"Natios." "morphs" and other sub-sub-species of Russian authors are not accepted.

Subgenus Sciurus．Linnaeus

i．SCICRUS VLLGGARIS VULGARIS，Linnacus
1758．Syst．Nat．，Ed． 10,1, p． 63.
L＇psala．Siweden．
Synonym：curopacus，Gray，1843，List，Mamm．，p． 139.
rufus，Kierr，i792，Anim，K゙ingd．，p． 255.
albonotatus，Billberg，Synopsis Faunae，Scandinavitu，p． 2 Southern Sweden．I827．
albus，Billberg，same reference．Skane，Sweden．
niger，billberg，same reference．Skane，Sweden．
typicus，Barett－Hamilton，Proc．Zool．Soe．London，p． 6 1899.

2．SCICRLS VLLGAlRIS VARIUS，Brisson
1762．Regn．Anim，p． 106.
Corthern Europe．
Synonym：cinercus，lischer， 1829 ，Synops．Namm．1． 353.
3．SCILRLS VULGARIS LELCOLRUS，Kerr
1702．Anim．Kingd．，p． 256.
England．
＋．SClURU＇S VULGARIS RL＇SSUS，Miller
1907．Ann．Mart．Nat．llist．7，KX，p． 427.
Dinan，France．
5．SCICRE＇S VULGARIS JUSCOATER，Altum
1876．Furstzuologie，and ed．，I，p． 75.
Harz Nountains，Germany．
Synonym：migrescons，Altum，same reference．
brimmea，Altum，same reference．
graeca，Altum，same reference．
gothardi，Fatio，Arch．Sci．Phys．Nat．Geneve，qth ser．，six， p．512，1905．South slope of Nlt．St．Gothard，Switzer－ land．
rutilans，Miller，Amn．Nag．Nat．Hist．，7，XX，p． 426, 1907．Rudolstadt，＇Thïringen，Germany：
6．SCIURLS VULGARIS ITALICUS，Bonaparte
1838．lconog．Poun．Ital．，i，fasc． 23.
ltaly．
Synonym：meridionalis，Lucifero，Revistaltal．Sci．Ňat．Siena，KiJill， P．45，1907．Sila，Calahria，ltaly．
7．SCIURUS VLLGARIS LILAEL＇S，Miller
1907．Ann．Nag．Nat．Hist．7，XX，p． 429.
Agorians，Greece．（North side of Lyakura（larmassus）mountans．）
S．SCIURLS VULGARIS ALPINU＇S，Desmarest
1822．Mamm．，Il，p． 543.
lyrenees．
9．SCIURLS VULGARIS N゙UNANTIUS，M1ller
1407．Ann．Nag．Nat．Ilist．7，XX，p． 428.
Binares de Ouintanar de la Sierra，Burgos，Spain．
10．SClURUS VULGARIS INFUSCATUS，Cabrera
1905．Bol．Real．Soc．Españ．IIist．Nat．Madrid，V，p． 227.
las N゙avas，Avla，Spain．

11．SCIURUS VLLGARIS SEGCRAE，Miller
1909．Ann．Mag．Nat．JJist，S，III，p．+18.
Molinicos，Sierra de Segura，Albacete，Spain．
12．SCILRUS V゙ULGARIS BAEPICUS，Cabrera
1905．Bol．Real．Soc．Españ．I list．Nat．Madrid，V，p． 228. Alanis，Sevilie，Spain．

13．SCIURUS VULGARIS SILANCSS，Hecht
1931．Zeitschr．für Säugetierk．Berlin，6，p． 238.
Silansia，Italy．
14．SCIURUS VULGARIS A．MELIAE，Cabrera
1924．Bol．Real Soc．Españ．Hist．Nat．Madrid，SXIV，p． 420.
Grecce，Kontinoplo，Mt．Olympus．
15．SCIURUS VULLGARIS CROATICUS，Wettstein 1927．Anz．Akad．Wien，J，p．I．

Croatia，Apatisanska Duliba Forest，south－east of Krasno．
16．SCIURUS VLLGARIS BALCANICLS，Heinrich 1936．Bull．Inst．R．Hist．Nat．Sophia，9，p． 41.

Walder am Unterlauf der lsamtschija，Ostauslaufer des Balkan，Bulgaria．
17．SCIURUS VULGARIS ISTRANDJAE，Heinrich 1936．Bull．Inst．R．Hist．Nat．Sophia，9，p． 41.

Dorf．Karamlek，Strandjabalkan，Bulgaria．
18．SCIURU＇S VULGARIS RHODOPENSIS，Heinrich 1936．Bull．Inst．R．Hist．Nat．Sophia，9，p． 4 I．

Dorf Tschepelare，Central Rhodopen，Bulgaria．
19．SCILRL＇S VULGARIS N゙ADYMENSIS，Serebrennikov
192S．C．R．Acad．Sci．U．S．S．R．．p． 422.
Nadym River，West Siberia．
20．SCILRL＇S VULGARIS MARTEN゙SI，Datsche
1901．Archiv．für．Naturgesch．Jerlin，p． 313.
Lower lenesei River，Siberia．
21．SCIURLS VLLGGARIS ALTAICLS，serebrennikov 1928．C．R．Acad．Sci．U．S．S．R．，p． 422.

Kok－Su River，mouth of Yamanush River，Altai Mountains．（Listed as a valid race by Vinogradov，1933．）
22．SCILRLS VULGARIS FLSCONIGRICAN＇S，Dwigubski
1804．Prodromus Faunae Rossicae，P． 85.
Bargusin，Transbaikalia．
23．SCICRUS VULGARIS FC＇SCORCBENS，Wwigubski
1804．Prodromus Faunae Rossicae，p． 8 ． East Siberia．
24．SCILRL＇S VLLGGARIS DLI．KEITI，Ognev
1929．Zool．Anz．，83，p． 76.
Amuka River，Great Shantar Islands，east coast of Siberia．
25．SCICRLS VLIGGARIS MANTCHURICES，Thomas
1909．Ann．Mag．Nat．Ilist．8，IV，p．501．
K’hingan，Manchuria．

26．SCIURLS VLLGBRIA RLPRSTRIS，Thomas
1907．Proc：Zonol．Soc．Landon，p． 4 io．
1）arme 25 miles N．W．of Korsakoff，Sachalien．
27．SCIURUS VULGARIS IAALBIDUS，I＇allas
177ぶ．Nox．Sp．Quadr．Glir．Ord．，p． 374.
Localıty not known．（Distribution：Western Siberia．）
2s．SClURUS VULGBRIS JACLTENSIS，（gnev
1930．Bull．Pacif．Sta．Vladivostock，2，no．5，pp．ifi， 4 ．
Yakutsk，Siberia．
29．SCOLRLS VCLGARIS FLDJUSHINA，Ognev
1935．Abstr．Works，Zool．Inst．Mascow，z，P． 43.
Minsk．West Russia．

1935．Ahstr．Works．Zort．Inst．Noscow，2，p． 4 ．
Nijm－Norgorod，Russia．
31．SClCRL＇s VLTGARRIS ISASHK゙lRICL゙S，（gnes
1035．Abstr．Works．Lool．Inst．Moscow，2，P． 45.
Sunara，Kussia．
Synonym：tulgaris baskirious nato malonsis，Ognev，same reference， P． 7^{6} ．Ural．
32．SCIURUS VULGARIS JENISNEJENSIS，Ognev
1935．Abstr．Works．Zool．Inst．Noscom，2，p． 47.
Lower＇Tunguska，＇Puruchansk，East Siberia．
33．SCILRUS VULGARIS COREAE，Sowerby
1921．Amn．Nag Nat．Hist．9，V＇ll，p． 252.
Kalelguai， 55 miles N．E．of Scoul，Kurea．
34．SCIURUS VULGARIS CIILLIENSIS，Sonerby
1921．Ann．Mag．Nat．Hist．9，V＇ll，p． 253.
＇T＇ung－ling， 75 miles north－e＇ast of Peking，Chima．
35．SCIURLS VLLGARIS KLSSLERI，Migum
1928．Prot．Plant Ukrame，no．3－4，P．83．
Zhitomir and Shepetorka，West Ukranse，Luropean Russa．a．
3n．SClLRUS VLLGARIS LKRRANKC゙S，Migulin
Igzs．Prot．Plant Ukraine，no．3－t，p．Siz．
Sumsk district，Ǩharkon，Russaa．
37．SCILRLS VLTLGARIS OGNEVI，Mgulan
192S．Prot．Plant Ukraine，no．3－t，p． 8_{4} ．
Rynski village，Burorski listrict，Kharkov gont．，Russma．
35．SCILTRLS VLLGARIS ARC＇TLCLS，Trouessart
1gob．Bull．Nus．Mist Nat．6，P． $3^{6} 5$.
Lena River，North Siberia．
39．SCILTRUS VULGARIS ORIENTIS，＇Thoma
1906．Proc．Zanol．Soe Lamdon，1905，ii，p． $3+5$.
Acsama，łlokkando，Japan．
40．SCIURLS VLICAARIS K゙NLBLNENSIS，Selewn
1935．Bull．Univ．＇Tachkent，19，pp．75－77．
Altai，west ol Irtish．
4. SCIURL's VULGARIS ARGENTEUS, Kert 1792. Inim. Kingul., p. 256.

Altai.
S'ciurus rulgaris calotus, Hodgson, 18+2, Calcutta Journ. Nat. I Inst., in, p. 22t, "high regions of Central Asia," is currently rekarded as unidentifiable.
+2. SCIURUS LIS, 'Temminck
1842. Fauna Japonica, p. +5. pl. xii, figs. 1-4.

Central Japan.

Subgenus Tenes, 'Thomas
 (Synonym: Orcasciurus, Ognev)

43. SCIURUS ANOMALL'S ANOMALUS, Guldenstaedt
44. Schreber Säuth., IV, p. 78 r.

Sabeka, 25 kms . south-west of Kiutais, Georgia, Caucasus.
Synonym: caucasicus, Jallas, isi1, Zoogcogr., 1, p. is6.
russatus, Wagner, 1842,'Schreber's Säugth. Supph., III, p. 155.
historicus, Gray, 1867, Ann. Mag. Nat. Hist., 3, NX, p. 273.
44. BClurus anomallis Pallescens, Gray
1867. Ann. Mag. Nat. Hist. 3, NX, p. 285.

Asia Minor.
+5. SCILRES ANOMALUS FLLLLS, Blantord
1875. Ann. Mag. Nat. Hist. \& NVI, p. 311.

Shiraz, Persia.
46. SCILRL'S ANOMALL'S SYRIACLS, Ehrenberg
1829. Symp. Phys., I, pl. S.

Lebanon.
Ognev has also listed persicus (Exxleben, Syst. Regn, Inim. r, p. 417 , 1777) as a vald form, but there is reason to believe that this name was based on a Durmuse, Glis glis.

Subgenus Neoscinnus, 'Trouessart
(Synonym: Baiosciurrs, Nelson.
Echinosciurus, Trouessart.)
carolinensis Group
(Revised by Bangs, Jroc. Biol. Soe. Washington, N, pp. 153-159, 1896.)
47. SCILRUS CAROLINENSIS CAROLINENSIS, Gmelin 1788. Syst. Nat., 1, p. 148.
"Carolina."
Synonym: migratorius, Audubon \& Bachman, 1854, Quad. 1, p. 265. cincrens, Schreber, Säugth., IV, p. 766, 1792. hiemalis, Ord, 1815, Guth. Gcog., 11, p. 292.
to. SCILRUS CAROLINENSIS EXTIALEA, Bams
1 K96. Proc. Biol. Soc. Washington, X, p. 15%.
Miami, Florida. (Dade Countes.)
42. SCICRLS CAROLINENSES FLLIGLNOSL's, Bachman
ins. Iroc. Zowl. Soc. Londun, p. 97.
Near New Orlcans, Ionuisiana.
50. SCOLURLS CAROIINENSIS MYPOPHAELS, Merriam
1886. Science, V11, p. 351 .

Elk River, Sherburne County, Minnesota.
51. SCIURLS CAROLINENSIS LELCOTIS, Gapper
1830. Zool. Inum., V. p. 206.
between York and ILake Simcoe, Ontario, Canada.

atroosaster Group

52. SCIUTRL'S ALTREOGASTER AUREOGASTER, F. Cuvter
53. Hist. Nat. Namm, 6, livr, 5\%, pl, with text (Binomial published at enal of work maly, vol. 7 , tabl. gén. et. meth., p. $4,18+2$).
"California," really Eastern Mexico.
Synonym: rafizenter, Lichtenstein, 1830 , (1827) Ab. K. Akad. Wiss. lierlin, 116.
leucogaster, Cuvier, Suppl. H.N. Buffon, 1, p. 300, 1831.
mustelimus, Audubon \& Bachman, 184 A , l'roc. Aead. Nat. Sci.
Philadelphia, p. 100.
ferrugineizentris, Audubon \& Bachman, same reference, $\mathrm{p}, 101$.
chrysogaster, Giehel, Säugeth., p. 650, 1 '855.
hypowanthus, Geoffroy, Voy. de la Venus, Zonl., p. $158,1855$.
54. SCILRLS ALIREOGASTER HYPOPYRRHLS, Wagler 1831. Isis. p. 510.

Mexico, probahly in Vera Cruz.
Symonym: morio, Gray, Ann. Mag. Nat. Hıst. 3, X゙X, p. 424, 1867.
maurus, Gray, same reference, p. 425 .
nigrescens, Bennett, l'roc. Zoul. Soc., London, p. +1, 1833.
54. SCLURUS ALREOGASTER FRLMENTOR, Nelson
1898. 1'roc. Biol. Soc. Washington, XII, p. 154.

Las Vegas, Vera Cruz, Mexico.
55. $\dot{S C}$ CHLRLS POLIOPUS POLIOPLTS, Fitzinger
1867. Sitz-Ber. Akad. Wiss. Wien. Math. Nat. Cl., LV', Nbth. 1, p. 47内.

Cerro San Felipe, Oaxaca, Mexico.
Synonym: zeagneri, Allen, 1 8gS, Bull. Amer. Nus, Nat. 1 list., X. p. 453.
alhipes, Waener, 8837 , thh. math,-phys. (Cl.k. bayer. Akad.
Wiss. Jlunchen, 1I, p. 501, not of kerr.
lemops, Gray, Ann. Nag. Nat. Ilist., 3, XX, p. 427, 1867.
56. SCILRLS POLIOPLS HERNANDEZI, Nelson
1898. Science, N.S., V1Il, p. 783.

Nountains 15 miles thest of Oaxama, Nexien.
Synonym: quercinus, Nelson, sos, l'rue. Bunl. Soe. Washingtom, Sll, F. I50, not of Erxleben.
57. SCILRL: POLIOPL'S PEREGRINATUR, Nelson
1904. Proc. Biol. Soc. Washington, XVII, p, iqn.

Piaxtla, I'uchla, Mexien.
58. SCIURL'A POLIOPLS NEMIORALIS, Nelsm
1808. Proc. Biol. Soc. Washineton, Xill, p. 15 :
l'atzenaro, Michoacan, Mexico.
54. SCILRLS POLIOPLS SENEX, NeIson
1904. Proc. Biol. Soc. Washington, XV'll, p. 1 \&

La talada, S.-E. Nichoacan, 40 miles south of Uruapan, Nexien.
60. SCIURUS POLIOPUS CERVVICALIS, NHEn
1890. Bull. Amer. Mus. Nat. Itist., III, p. 183. Hacienda San Marcos, Jalisco, Nexico.
61. SCILRLS POLIOPUS COLIMIENSIS, Nelson
1698. Proc. Biol. Soc. Washington, XH, p. 152. Hacienda Magdalena, Colima, Mexico.
12. SCLLRUS POLIOPUS EFIUGICS, Nelson shgS. Proc. Biol. Soc. Washington, Xll, p. 152. Mountains west of Chilpancines, (iuerrero, Mexico.
63. SCILIRUS POLIOPUS TIPICANUS, Allen 1yo6. Bull. Amer. Nus. Nat. Hist. XXII, p. $2+3$. Rancho Palo Amarillo, Nayarit, Nexico.
64. SCIURUS NELSON゙I NELSONI, Nerriam
shg3. Proc. Biol. Soc. Washington, VIII, p. 144. Muitzilac, Morelos, Mexico.
65. SCILRUS NELSONI HIRTUS, Nelson 1898. Iroc. Biol. Soc. Washington, X11, p. 153. ''ochmilco, Puebla, Mexico.
66. SCIURUS COLLIAEI COLLIAEI, Richardson
1839. Voyage H.M.S. Blossom, Zool. p. S. San Blas, Nayarit, Mexico. Synonym: griseocaudatus, Gray, 184t, Zool. Sulphur, i, P. 34.
67. SCIURUS COLLIAEI NLCHALIS, Nelson
1899. Proc. Washington Acad. Sci. 1, p. 59. Manzanillo, Colima, Mexico.
65. SCILRUS SINALOENSIS, Nelson 1899. I'roc. Washington Acad. Sci. I, p. 60. Mazatlan, Sinaloa, Mexico.
(3y). SCILRUS TRLEI, Nelson 1899. Proc. Washington Acad. Sci. I, p. 61. Camoa, Rio Mayo, Sonora, Mexico.
7\%. SCIURUS SOCIALIS SOCIALIS, Wagner
1837. Abh. math.-phys. Cl. k. bayer. Akad. Wiss. München, II, p. 504. Near Tehuantepec City, Oaxaca, Mexico.
71. SCIURLS sOCIALIS COCOS, Nelsor:
1898. Proc. Biol. Soc. Washington, S゙II, p. 155.

Acapulco, Guerrero, Mexico.
72. SCIURUS SOCIALIS LITTORALIs, Nelson
1907. Proc. Biol. Soc. Washington, N. N , $\mathrm{S} \rightarrow$.

Puerta Angel, Oaxaca, Mexico.
73. SCIURUS GRISEOFLAVL'A GRISEOFLAVLS, Gray
1867. Ann. Mag. Nat. Hist. 3, X. $\mathrm{X}, \mathrm{p}+27$.

Guaternala.

1899. Proc. Washington Acad. Sci.. I, p. 60.

San Cristobal, Chiapas, Mexico.
75. SCIURLS YUCATANENSIS YCCATANENSIS, Allen
1877. Momogr. N. Amer. Rodents, p. 705.

Merida, Yucatan, Nexico.
76. SCILRUS YUCATANENSIS BALIOLUS, NeIson 1901. Jroc. Biol. Soc. Washington, SlV, p, i3d.

Apazute, Campeche, Mexico.
77. SCILRCS YC'ATANENSIS 1PHAEOPUS, Goodwn 1932. Amer. Mus. Nov: $57+$ p. 1.

Guatemala, Secanuuim, district of Alta Verapaz,
78. SCILRLTS VARIEGATUIDES VARIEGATOIDES, Ogilby 1839. Proc, Zool. Soc. London, p. id7.

San Salvador, Central America,
Synonym: pyladei, Lesson, 1842, Rev. Zool. Paris, V, p. 130.
(For a revision of S. variegatoides and its subspecies see Harres, 1937, Misc. Publ. 38, Univ. Michigan.)

```
    79. SCIURLS VARIEGATOIDES LNDERIVOODI, Goldman
1932. Journ. Washington, Acad. Sci. XXII, p, 275.
                            Honduras; Monte Redondo, 30 miles north-west of Tegucigalpa.
    So. SCIURUS VARIEGATOIDES GOLDMIANI, NeIson
1808, Proc. Biol. Soc. Washington, X1I, p.149.
                        Huehuetan, Chiapas, Mexico.
    8I. SCIURLSS VARIEGATOIDES BANGSI, Drekey
1928, Proc. Biol. Soc. Washington, NLI, p. 7.
                            Barra de Santiago, Dept. Ahuachapan, San Silvador.
    8z. SCIURUS VARIEGATOIDES BOOTHIAE;,Gray
1843. List. Spec. Namm. Brit. Nus., p. }139
    Hlonduras.
    Synonym; fuscozariegetus, Schinz, 1845, Syn. Mamm. 11, p. 15.
                            (?) boothiae amualitm, 'Thomas, r905, Mnn. Nag. Nat. Hist., 7,
                                    KVl, p. 309. Ilonduras.
    83. SCLCRUS VARILGiJTODDES BELTTI, Nelson
1809. Proc. Washington, Acad. Sci. 1, p. 78,
                            Escondida Ruver, 50 miles ahove Bluefoelds, Nicaragua.
    S+. SCIERLS VARIEGAT'HDES ADOLPIIEI, ICOsom
1842. Nouv. Tabl. Regn. Anim. Mamm., p. 112.
            Realejo,Nicaragua.
    85. SCIURUS VARIEGATOIDES MANAGLEXSIS, Nelson
1898, Proc. Bio1. Soc. Washingtom, N1I, p. I50.
            Managua River, Guatenma,
    86. SCIURUS VARIEGATOIDLS AUSTINI, Harris
1933. Occ. Jap. Nus, Zool. Univ. Nichigan, 266, p. i.
                            C'osta Raca: Las Agrigas, Prov, wl I'untarenas.
    87. SCIURL'S VARIEGATOHDES ATRIRUFLS, Harms
1930. Occ. Pap. Nus. Zaol. Univ, Michıgan, 210, p. 2.
    Costa Rica: 'ambor, Nicoya I'enmsula.
```



```
1848. Jroc. Zool. Soc. London, p. 33%.
    "Caratas.Venezucha" (crroneous); Liberia, Costa Ruca.
    Synomym: intormelius, (iray, 1867, Ann. Nag.Nat. Hi<t. 3, XX, p. 421,
        and mioyama, (iray, sanse reference, p. 423.
```

89. SCIURU'S VARIEGATOIDES RIGIDUS, Peters
90. Monatstuer. k. preuss, Akad. Berlin, p. 652. San José, Costa Rica.
91. SCIURUS VARIEGATOIDES THIOMASI, Netson
92. Proc. Washington Acad. Sci. 1, p. 71. 'Ioulamanca, Costa Rica.
93. SCIURUS VARIEGATOIDES MFLANIA, Gray
94. Ann. Mare. Nat. Ilist. 3, XX, P. 425. Point Berica, Costa Rica.
95. SCIURUS VARIEGATOIDES HELVEOLES, Goldman
96. Smiths. Misc. Coll. LVI, no. 36, p. 3. Corozal, Canal zone, l'anama.

> deppei Group
93. SCIURUS DEPPEI DEPPEI, Peters
1863. Monatsber. k. preuss Akad. Wiss. Berlin, p. 654.

Bapantla, Vera Cruz, Mexico.
Synonym: tephrogaster, Giray, Ann. Mag. Nat. Hist. 3, NX, p. 431 , 1867. taeniurus, Gray, same reference.
94. SCIURL'S DEPPEI MATAGALPAE, Allen
1908. Bull. Amer. Mus. Nat. Hist. XXIV, p. 660.

San Rafael del Norte, Nicaragua.
45. SCIURUS DEPPEI VIVAX, Nelson
1901. Proc. Bjol. Sac. Washington, XIV, p. i31. Apazote, Campeche, Mexico.
96. SCIURUS NEGLIGENS, Nelson
1898. Proc. Biol. Soc. Washington, XII, p. 147.

Alta Nira, Tamaulipas, Nexico.
Subgenus Hesperosciurus, Nelson
97. SCIURL'S GRISELS GRISIEL's, Ord
i8ı8. Journ. de Phys., LXXXVII, p. 152.
The Dalles, Wrasco County, Oregon.
Synonym: fossor, Peale, 1848 , Namm. Birds. U.S. Explor. Exp., p. 55. heermami, Leconte, Proc. Acad. Nat. Sci. Philadelphia, p. $149,1852$.

Itporimus, Henshaw, Ann. Rep. Engin., 18-6, p. 310.
98. SCILRLS GRISELS ANTIIONVI, Nearns
1897. Proc. U.S. Nat. Mus. XX, p. 501, i So8.

Campbell's Ranch, Laguna Nountains, San Diego Countr, California.
99. SCIURL's GRISELS NIGRIPES, Bryant
1889. Proc. Calif. Acad. Sci. 2, 11, p. 25.

Coast region of Sian Nateo County, California.
Subgenus Otosciurus, Nelson

[^9]101 SCIURUS ABERTI BARBERI，Allen
1y04．Bull．Amer，Mus Nat．Ilist．NX，p． 207.
Colonia Garcia，Chihuahua，Nexico．
102．SCIURLS ABERTI FERRELS，True 1000．Proc．Biol．Soc．Washineton，XIII，P． 183.

Loveland，Larmer County，Coloradn．
Synonym：concolor．＇True， 1894 ．Diagnoses of new N ．Amer．Mamm． p．1．Reprinted Proc．U．S．Nat．Nus．XV＇IJ，p． 241. （Preoccupicd．）
103．SClURL＇s ABERTY MIMLUS，Nerriam 1904 ．Proc．Biol．Soc．Washington，N゙V11，p． 130.

Hall Peak，Cimarron Mountams，Nora County，New Mexico．
104．SCIURUS ABERTI PHAEURUS，Allen
1004．Bull．Amcr．Mus，Nat．Hist．，NX，p． 205.
La Cienega，N．－W．Durango，Mexico．
105．SCILRU＇S ABERTI CHUSCENSIS，Goldman
1931．Proc．Biol．Soc．Washington，XLJV，p． 133.
N．－W．New Nexico：Chusea Mountains．
106．SCIURU＇K゙AIBABENSIS，Mertiam
1904．Proc．Biol．Soc．Washingtom，XVII，p． 129.
Bright Angel Creck．Kaibab Plateau，north side of Grand Canyon of Colorado，Coconino Co．Arizona．

107．SCIURUS DURANG1，Thomas
1893．Ann．Mag．Nat．Hist．6，XI，p． 50.
Ciudad Ranch， 100 miles west of Duraneo City，Durango，Mexico．
Subgenus P＇urasciurus，＇Trouessart
（Synonym：Araeosciurus，Nelson．）
108．SCIL＇RUS NIGER NIGER，Limnacus
1758．Syst．Sat．，Ed．10，I，p．64．
South Carolma．
Synonym：zulpinus，Gmelin，1788，Gim．Syst．Nat．1，p． 147

```
    100. SCHLRUS NIGER AVICENNIA, Howell
1919. Journ. Namm, Baltimore, 1, p. 37.
    Everglade, Lee County, Florida.
    110. SCIURUS NIGER TEXIANUS, Bachman
1838. Proc. Zool. Soc. London, p. $6.
    Coast of Louisiana or Mississippi.
    11%. SCIURUS N'GER NEGLECTUS,Gray
1867 Ann. Mag. Nat. IIst. 3, \゙X゙, p. +25.
                            Wilmmgtan, Delaware (Newcastle County).
                            Synonym: cinereas, True, Proc. U.S. Nat. Nus. VII, P. 595. (1884).
                                    zicimus, Bangs, 18g6, Proc. Bral. Soc. Washmogton, X, p. }150
                                    (West Virginia.)
    112. SClURUS NIGLR BRYANTII, Bates
19zo. Hailey Mus. 太 Labr. Nat. Ihst. Newport News, Va. Bull. 1, p. 1.
    Dorchester County, Maryland.
```

[^10]147
Nonterey, Nuevo Leon, Nexico.
is. SCIURUS NAAYARITENSIS, Allen
1890. Bull. Amer. Mus. Nat. 1list., II, p. vii, footnote.
Sierra Valparaiso, Zacatecas, Mexico.
Synonym: alstoni, Allen, i889, l3ull. Amer. Nus. Nat. Hist. 11, p. 167.
(Not of Anderson, 1878.)
119. SClL'RL'S APACHE, Allen
1893. Bull. Amer. Mus. Nat. Hist. V', p. 29.
X.-WV. Chihuahua, Mexico.
120. SCIURLS CHIRICAHLAE, Gohdman
1933. Proc. Biol. Soc. Washington, Xl, V1, f. Tr.
Chiricahua Nlountains, Cochose County, Arizona.
121. SCIURUS ARIZONENSIS ARIZONENSIS, Coues
1867. Amer. Nat. I, p. }357
Fort Whipple, Yavapai County, Arizona.
122. SCIURUS ARIZONFNSIS IlCACHLCCA, Allen
1894. Bull. Amer, Nlus. Nat. IInst. VI, p. 349.
Iluachuca Nountams, Southern Arizona.

```
}

123．SCILRRLS ARIZONEN゙SIS CATAL，NAE，Doutt
1031．Ann．Carn．Nus．20． P ． 27 r ．
Santa Catalina Nountains，Arizona．
Subgenus Gucrlinguetus，Gray
（Synonym：Mesosciurus，Allen．
Histriosciurus，Allen．
Macroxus，Cuvier．
Simosciurus，Allen．
Leptosciurus，Allen．）

\section*{hoffnuani Group}

124．SCILRL＇S HoFFMANI HOFIVMANI，Peters
1863．Monatsher．k．Akad．Wiss．MerIn，p． 654.
Costa Rica．
Synonym：xanthotis，Gray， 1867 ，Ann．Nay，Nat．Hist．3，XX，p． 429 ．
rifoniger，True，Iroc．U．S．Nat．Mus，i884，VII，p． 595.
125．SCILKLS HOFFMANI CHHRIQCEN゙SIS，Bangs
1902．Bull．Comp，Zoul．NXXIX，no．2，p． 22.
Divala，Chiriqui，Panama．
126．SCILRLS HOFFMAN゙I MANAV＇1，Allen
19I4．Bull．Amer．Mus．Nat．Hist．NXXIII，p． 589 Manayi，Ra de Oro，Ecuador．

127．SCILRUS HOFFMLAN QU1NDLANLS，Allen
1914．Bull．Amer．Mus．Nat Hist．NXXIII，p．587．
Run Frio，Central Andes，Colombia．
128．SLILRLS HOFFMAN゙ HYPORRHODLS，Gray
1867．Ann．Nam Nat．Hist．3，XK，p． 419. Bengota，Culombia．
120．SCILRLS HOFFMANI SODERSTROMI，Stone
1914．Proc．Acad．Sci．Phifadelphia，LXVI，p．it． Ecuador．

130．SCILRL A MRAVALLENSIS，Harris
1931．Occ．Pap．Zool．Nus．Univ，Michigan，227，p． 1. Volcan de Niravalles，Costa Rica．

133．SCJLRLS RICHMONDI，Nelson
ISys．Pruc．Biol．Soc，Washington，SII，p． 146. Escondido River， 50 miles abuve PIucfelds，Nicaragua．
132．SCILRLSGRISEOGENA GRISEOGENA，Gray
1867．Anm．Nag．Nat．Hıst．3，NX，p． 429. Venezuela． Synonym：Klagesi，Thomas，1914，Ann．Mar，Nat．Hist．8，KIV，p． \(2+0\) ． Near Caracas，Venezuela．

133．SCILRLS GRISEOGENA NIERIDENSIS，Thomas
ryoi．Ann．Nag．Nat．Hist．7．VII，p． 192.
Escorial，sierra de ．Neride，Venezuela．
Synonym：tamac，Oserod，iolz，Field Nus．Nat．Ilist．Zool．Ser．X， no．5，P．48．Paramo de＇Tama，Colombia－Venezuela bound．ry．
134. SCIURUS CIAAPMANI CHAPMANI, Allen
1899. Bull. Amer. Mus. Sat. Hist. JII, p. 16.

Caparo, 'Irinidad.
Synonym: aestuans quebradensis, Allen, : 899, Bull. Amer. Nus. Nat. Hist. SIl, p. 217. Quebrada Secca, Venezuela.
```

 135. SCIURUS CHAPMANI 'T'OBAGENSIS, (syood
 1910. Field Mus, Nat. IHst. Zool. Ser. k, no. 4, p. 27.
'Iobago, West Indies.
136. SCIURUS NESAEUS,G. Allen
1911. Proc, Biol. Soc. Washington, KV, p.93.
Margarita Island, Venezuela.
137. SCIURL'S GRISEIMEMBRA, Allen
1912. I3ull. Amer. Mus. Nat. Hist. XXXIII, p. 589.
Buenavista, Eastern Andes, Colombia.
138. SCIURUS CANDELENSSIS CANDELENSIS, Allen
1913. Jull. Amer. Nus. Nat. Hist., XXXIII, p. }590
Huila, Colombia.
I39. SCILRUS CANDELENSIS SUMACO, Cabrera
1914. 'Trab. Mus. Nac. Ci. Nat. 31, p. 51.
San José, East Ecuador.
1чо. SCILRUS ARGENTINL'S, Thomas
1915. Ann. Mag. Nat. Hist. 9, VIII, p.609.
Jujuy, North Argentina.
1+1. SCIL'RL'S FERNHNAE, Cabrera
1916. 'Trab. Mus. Nac. Ci. Nat. Madrid, 31, p. 49.
Bueza, East Ecuador.
1+2, SCIURUS GERRARDI GERRARDI, Gray
186i. Proc. ZooI, Soc. London, p. 92, pl. NVI.
"New Grenada," probably Medellin, Colombia.
Synonym: variabilis, Alston, 1878, Proc. Zool. Soc. London, p. 665,
not of Geoffroy.
1+3. SCICRUS GERRARDJ LEONIS, Lawrence
1917. Journ. Namm. Baltimore, 14, p. 369.
Colombia.
Synonym: milleri, Allen, 1912, Bull. Amer. Mus. Nat. Hist. XXXI, p,91.
(Preoccupied.) Cocal, W. Colombia.
144. SCIURUS GERRARDI JNCON゙STAN゙S, Osgood
1918. Journ. \amm. Baltimore, 2, p. 40.
Ecuador.
Synonym: iersicolor,Thomas, Igoo, Ann. Mag. Nat. Hist. 7. VI. p. 385.
(Preoccupied.) Cachabi, Prov. Esmeraldas, N. Ecuador.
1919. SCIURLS GERRARDI NORLLL'S, Bangs
1920. Proc. New England Zool. Club, II, p. 43.
Loma de! Leon, I'anama.
146. SCHURL'S GEIRRARDI CHOCO,Goldman
1921. Smiths. Misc. Coll. LN. no, 22, p. 4.
Cana, Pirri Noumtams, Eastern Panama.
```

147．SCILRLTS GERRARDI S゙ALAOLEN゙SIS，Allen tota．Bull．Amer，XIts．Nat．Ilist．XXXIII，p． 592. Rio Salaqui，N．－VV．Colombia．
48．SCILTRUS GERRARDI ZLEIAE，Osgood 1910．Field Mus．Nat．Ihst．Zool．Ser．K，4．p． 26. Zulia，Venezuela．

149．SClURLS GERRARDI CLCUTAE，Allen 1914．Bull．Amer．Nus．Nat．Jist．K゙ズXIII，p． 592. El Guayabal，Colombia．
150．SCILTRLS（iERRARDI BAUDENSIS，Allen 1915．Bull．Amer．Mus．Nat．Ilist．XX゙オIV，p． 308. Baudo，West Colombia．
151．SCILRE＇S GERRARDI VALDIVIAE，Allen 1915．Bull．Amer．Mus．Nat．Jist．，KXXIV，p． 309. luerto Valdivia，Colombia．
152．SCIURLS SPLENDIDUS SPLENDIDUS，Gray 1842．Ann．Mar．Nat．Hist．i，X，p． 263. Santa Marta，Colombia． Synonym：saltuensis magdalenae，Allen，19ri，IBull．Amer．Nus．Nat． Hist．XX゙オIII，p．593．Rto Magdalena，Colombia．
153．SCIURC゚S SPLENDIDL＇S SALTCEN゚SIS，Bangs 1898．Proe．Miol．Soc．Washington，XlI，p． 185. Santa Marta，Colombia．

154．SCIURLS SPLENDIDLTS BONDAE，Allen
1899．Bull．Amer Mus Nat．Hist．XII，p． 213. Bonda，Santa Marta，Colombia．
155．SClURUS PYRRHIN゙CS，Thomas 1898．Ann．Mag．Nat．Hist．7．11，ए． 265. Vitoc，Peru． aestuans Group
156．SCHLRUS AESTUANS AESTUANS，Linnacus 1706．Sỵst．Nat．Ed． 12,1, p．is． Surmam． Synonym：kuhlii，Gray，\({ }^{1}\) 1867，Ann．Mag．Nat．IIst．3，XX，p．+33. guianensis，Jeters， 1863 ，Monatsber．Akad．Wiss，Berlin， P． 655.
157．SCILRLS AESTLANS GHLVIGLLARIS，Wagnet 18．43．Archiv．f．N゙aturg．11，p． 43.

Borba，Srazil，near mouth of Rio Madeira．
158．SCICRUS AESTUANS MACCONXELLI，Thomas rgor．Ann．May，Nat．Jist．7．V］ll，p．1\＆8，footnote． Nlt．Rorama，British Guiana．
15\％．SCICRUS AESTUANS QUELCHI，＇Thomas 1001．Am，Mag，Nat．Jlist．7，VIII，p．1＋7． Kanuku Jountains，British Guiana．
foo．SCLURUS AESTCANS VENUSTUS，Allen 1915．I3ull．Amer．Mus，Nat．Mist．，XXXIV，p． 260. Ris C＇unacunuma，neat Mt．Dusda，Venezuela．

161．SCIURUS AESTLAN゙S GARBEI，Pinto
193．Rev．Mus．Paulista，XVII，p． 294.
Esperito Santo，Bahia，Brazil．
162．SCIURUS ALPllONSE1 ALPIIONSE1，Thomas
1906．Ann．Mag．Nat．Hist．7，XV1lI，p． 442.
Pernambuco，Brazil．
Synonym：roberti，＇fhomas，1903，Ann．Mag．Nat．Hist．7，XII，p．463．
（Not of Bonhote）．S．Lourenço，near Pernambues．
163．SCIURUS ALPHON゙SEI PARAENSIS，Goctdi
1904．Bol．Mus．Goeldi，IV，p． 70.
Para，Brazil．
1ft．SCIURUS INGRANI，Thomas
1901．Ann．Mag．Nat．Hist．7，V＇II，p． 368.
Tunnel，Southern Minas Geraes，Brazil．
stramineus Group
165．SCIURUS STRAMINEUS STRAMINELS，Eydoux \＆Souleyet I8．1．Yoy．Bonite，Zool．I，p． \(3^{8, ~ p l . ~ I . ~}\)

Omatope，Peru．
Synonym：fraseri，Gray，1867，Ann．Mag．Nat．Hist．3，XX，p． 430. Ecuador．

166．SCIURUS STRAMINELS NEBOUKI，Geoffros
\({ }^{1} 855\) ．Voy．de la Venus，Zool．p．163，pl．xii．
Near Payta，Peru．
167．SCUURU＇S STRANHNEUS GUAYAN゙U゙S，Thomas 1900．Ann．Mag．Nat．Hist．7，V，p． 150.

Balzar Nountains，West Ecuador．
108．SCIURUS STRAMINEUS ZARLMAE，Allen
1914．Bull．Amer．Nus．Vat．Hist．，XXXIII，p． 597. Zaruma，S．－W＇．Ecuador．

\section*{pucherani Group}

169．SClURUS PUCHERANI PUCHERAN゙1，Fitzinger
1867．Sitz．－Ber．Akad．Wiss．Wien Nath．Nat．Cl．LV，Abth．ı，p． 487.
Vicinity of Bogota，Colombia．
Synonym：rufoniger，Pucheran， 1 S45，Rev．Zool．VIlI，p． 336. chrisuros，Pucheran，same reference，p． 337.

170．SCIURL＇s PLCHERAN゙ NEDELLINEX゙SIs，Gray
1872．Ann．Mag．Nat．Hist．4，X．p． 408.
Medellin，Colombia．
171．SC1URUS PUCHERANI CALCEN゙SIS，Nelson I S99．Bull．Amer．Nus．Nat．Hist．XII，p． 79.

San Antonio，Western Andes，Colombia．
172．SClURU＇S PLCHERANI SAlENTENSIS，Allen
1914．Bull．Amer．Nus．Nat．Ilist，NXXIll，p． 587.
Near Salento，Central Andes，Colombia．

17チ．SClURL＇S IGNITLS IRRORATUS，Gray
1867．Ann．Nag．Nat．M1st．3，X゙X，p．+31 ．
Upper Roo Ueayali，Jeru．
175．SCIERES BOLIVIIENSIS，Osgood
1921．Journ．Mamm．Baltimore，2，p． 39.
Santa C＇ruz de la Sierra，Bolivia．
Synonym：leucogaster，Gray，1867，Ann．Mag．Nat．Hist．3．XX，p．+30 ． （Preoceupied．）

Subgenus Notosciurus，Allen
17n．SClltRLS RHOADSI，Allen
rort．Bull．Amer．Mus，Nat．Mist．XXX1Jl，p． \(5^{8} 5\).
Pagna Forest，Chunchi，Ecuador．
Subgenus Hadrosciurus，Allen
（Synonym：Urosciurus，Allen）
177．SCIURUS FLAMRIIFER，Thomas
1904．Ann．Mag．Nat．Inst． 7, XIV，F． 33.
Caura district，Niddle Ormoen．Venezuela．
17s．SCILRLS＇IRRICOLOR，Poeppig
184．Tsehudi Fauna Perwana，I，Therologie，p．156，pl．xı．
North－tast P＇eru．
Synonym：（？）fumigatus，Gray，1867．Ann．Mag．Nat．IIist．，3，XX， P． \(42 \%\) ．
bramtomiger，（iray，same reference．P．420．
174．SCIURLS NIGRATUS，Pinto
1031．Rer．Mus．Paulisto，XV11，p． 309.
Rio Jurua，Amazon．
18o．SCICRUS DUIDA，Allen
1914．Bull．Amet，Aus．Nat，I Inst．，XXXII1，p． 504.
Rio C＂unucunuma，south of Mt．Duela，Venezuela．
18ı．SCILRLS IGNIVINTRIS IGNIVENTRIS，Wagnet
1842．Wiegmanms Arch．f．Naturgesch．I，P． 360.
Upper Rio Negro，Srazıl．
Symonym：morio，Wagner，Abh．Math．Phys．（＇l．K．B．Akad．Wiss． Nünchen，V， \(1850, \mathrm{p}, 275\).

Hュ，ACLURL＇S ICNIVENTRIS＇TAEDIFER，Thomas
1103．Anm．Mars Nat．Ilist．7，XI，p． 487.
50 miles south－east of Rogota，Colmmbia．

183．SCIURUS IGNIVENTRIS COCALIS，Thomas
1900．Ann．Mag．Nat．Hist．7，VI，p． 138.
Upper Rio Napo，Ecuador．
184．SCIURUS IGNIVENTRIS ZAMORAE，Allen 1914．BuIl．Amer．Mus．Nat．Hist．，ぶメ゙ざIII，p． 594. Zamora，Ecuador．
185．SCIURUS IGNIVENTRIS JLINMNATUS，Thomas 1926．Ann．Mag．Nat．Hist．9，XVII，p． 637. Manacapuru，Lower Rio Negro，Brazil．
186．SCIURUS PYRRHONOTL＇S PYRRHONOTUS，Wagner
1842．Wiegmanns Archiv．f．Naturgesch．1，p． 360. Borba，near mouth of Rio Madeira，Brazil．
187．SCIURUS PY＇RRHONOTL＇S TAPARIL＇S，Thomas 1926．Ann．Mag．Nat．Hist．9，XVJI，p． 635. Santarem，Lower Amazons．
188．SCIURUS PYRRHONOTUS CASTLS，Thomas 1903．Ann．Nag．Nat．Hist．7，SI，p． 488. Chimate，Upper Rio Beni，Bolivia．
189．SCIURUS PYRRHONOTCS JURALIS，Thomas 1926．Ann．Mag．Nat．Hist．9，XVII，p． 636. Jurua River，Upper Amazons．
190．SCILRUS LAXGSDORFFI LAN゙GSDORFF1，Brandt
1835．Nem．Acad．Sci．St．Petersb．6，Nath．Phys．Nat．JII，2，p．425，pl．xi． Cuyaba，Matto Grosso，Brazil．
191．SCIURUS LANGSDORFFI URUCU．VUS，Allen
1914．Bull．Amer．Nus．Nat．Hist．KXXIlI，p． 595. Urucum，Rio Paraguay，Natto Grosso．
192．SCIL＇RUS 1．AN゙GSDORJFI STE1NBACHI，Allen 1914．Bull．Amer．Mus．Nat．Hist．，NズスIII，p． 596. Santa Cruz de la Sierra，Bolivia．

Genus 7．＇TAMIASCIURUS，Trouessart
1880．＇Tamascilre＇s，Trouessart，le Naturaliste，2，no．37，p． 292.
＇Type Species．－Sciurus hudsonicus，Erxleben．
Rasge．－North America：Canada and U．S．．A．；forms named from Alaska， Hudson Bay，British Columbia，Mackenzie，Washington，Oregon， Idaho，Wyoming，South Dakota，Minnesota，California，Lower California， Arizona，New Mexico，North Carolina，Maine，Connecticut．

Comber of Forms．－Twenty－seven．
Characters．－The generic difference between this and Sciurus is the com－ plete suppression of the baculum（Pocock，＇Tullberg，Howell）． though whether all the forms have been examined in this respect 1 do not know．

It appears，from＇Tullberg＇s notes on genera throughout the whole Order， to be a sufficiently rare character in Rodents on which to warrant the retention of generic names．

Skull characters much like normal Sciurus; the parietal ridges may join; bullae relatively more enlarged than is usual in Sciurus; braincase not strongly deflected posteriorly; palate extcuding slightly behind toothrows. Cheekteeth near Sciurus andgais in type; P. 3 may be present or absent; in all skulls but two examined in the British Museum (a very small series) it is absent; Allen in his revision of the genus, \(\mathbf{1 8 9 8}\), remarks that it is absent in about 3 o per cent of those examined.

External characters rather reminiscent of Sciurus zulgaris; tail relatively short ( 40 per cent total length, Allen); ears tufted seasonally; sole hairy in most skins seen, also evidently a seasonal character. Digits normal (arboreal type).

The complete or almost complete suppression of the baculum is also found in the African genus Heliosciurns.

Forms seen: albolimbatus, donglasi, fremonti, hudsonicus, loquax, richardsoni, zanconterensis.

The species and races were revised by Allen, Bull. Amer. Mus. Nat. Hist. XX, pp. 249-298, 189S.

\section*{List of Nanied Forms}
I. TAMIASCILRUS HLDDSONICUS HUDSONICUS, Erxleben
1777. Syst. Regni. Anim. I, p. 416.

Hudson Strat.
Synonym: mbrolineatus, Desmarest, Namm. II, p. 333, 1822.
2. TAMIASCIURUS HUDSONICUS GYMNICLS, Bangs
1899. Proe. New England Zuol. Club, 1, p. 28.

Grcenville, near Noosehead Lake, Maine. (l'iscataquis County.)
3. TAMIASCIURUS HUDSONICUS LOQUAS, Bangs
1806. Proc. Bal. Soc, Washington, X, p. 16 .

Liberty Hill, New London County, Connecticut.
4. TAMIIASCIURUS HUDSONICUS MINNESOTA, Allen
1899. Amer. Nat. XXXIII, p. 640.

Fort Snelling, Hennepin County, Minnesota.
5. TANHASCIURUS HUDSONICUS DAKOTENSIS, Allen
1894. Bull. Amer, Mus, Nat. Hist. VI, p. 325.

Squaw Creek, Black Hills, Custer County, South Dakota.
6. 'TAMIASCIURUS HUDSONICLS BALLEYI, Allen

189S. Bull. Amer. Mus. Nat. Hist. X', p. 261.
Bighorn Mountains, Washakie County, Wyoming,
7. TAMIASCIURUS HUDSONICUS VENTORUM, Allen
1898. Bull. Amer. Mus, Nat, Hest, X, p, 263.

South Pass City, Wind River Nountams, Fremont County, Wyoming.
8. TANIASCIURUS HUDSONICUS RICHARDSONI, Bachman
1838. Proc. Zonl. Soc. London, p. 100.

Head of Big Lost River, I'remont County, Idaho.
』. TAMIASCIUTRLS HUDSONICU'S STREATORI, Allen
\({ }_{1898}\) Bull. Amer. Nus, Nat. Hist. X, p. 267.
Ducks, British Columbia, Canada.

10．TAMIASCHURU＇S HUDSONICL＇S V̌NCOUVERENSIS，Alen
18go．Bull．Amer．Nus．Nat．IIst．1ll，p． 165.
Duncan Station，Vancouser Island，British Columbia．
11．TAMIASCIURUS HUDSONICE＇S PICA＇JL＇S，Swarth
1921．Journ．Mamm．Baltimore，2，p．92．
Jupreanof Island，S゙－E．Alaska， 25 miles south of Kake Village， southern end of Keku Straits．
12．TAMIASCIURLS HUDSONICL＇S PE＇TULANS，Osgood 1900．North Ancr．Fauna，No．19，P． 27.

Glacier，White Pass，Southern Alaska．
13．TAMIASCILRL＇S HUDSON゙ICL＇S ABIETICOLA，Howell
1929．Journ．Namm．Baltimore，10，p． 75.
Highlands，N．Carolina．
14．TANIIASCIURUS HUDSONICUS COLUMIBIENSIS，Howell 1936．Proc．Biol．Soc．Washington，XLIX，p． 135.

Raspberry Creek，about 30 miles south－east of Telegraph Creek， Northern British Columbia．

々．TAMIASCJURUS HUDSONICUS IKENAIENSIS，Howell 1936．Proc．Biol．Soc．Washington，XLIX，p． 136.

Hope，Cook Inlet，Alaska．
16．TAMIASCIURUS IHUDSONICL＇S PREBLIEI，Howell 1936．Proc．Biol．Soc．Washington，XLIX，p． 133.

Fort Simpson，Mackenzie，Canada．
17．TAMIASCILRUS REGALIS，Howell
1936．Occ．Pap．Mus．Univ．Nich．no．338，p．r．
Belle 1sle，Isle Royale，Michigan．
18．＇IANILASCIURLS DOL＇GLASII DOL＇GIASII，Bachman 1S38．Proc．Zool．Soc．London，p． 99.

Near mouth of Columbia River．
Synonym：belcheri，Gray，Ann．Mag．Nat．Hist．1842，p． 263.
suckleyi，Baird，Pr．A．Phil．1855，p． 333.
19．TANIIASCIURUS DOLGLASII MOLLJPILOSUS，Audubon \＆Bachman
184i．Proc．Acad．Nat．Sci．Philadelphia，i，p． 102.
Coast of Northern Calitornia．
Synonym：orarius，Bangs，i S97，Proc．Biol．Soc．Washington，SI，p． 2 Sı． Phalo，Mendocino Co．，California．
20．TANIASCIURUS DOUGLASII CASCADENSIS，Allen
18gS．Bull．Amer．Mus．Nat．Hist．X，p． 277.
Mount Hood，Oregon．
（According to Osgood，rgo7，this will probably stand as lamuginosus， Bachman，1838．Proc．Zool．Soc．London，p．1os．llunter Island，Britush Columbia．）

21．＇TAMIASCIURL＇S DOLGLASII ALBOLIABATL＇S，Allen
18gS．Bull．Amer．Mus．Nat．Hist．．．p． 453.
Blue Canyon，Placer County，California．
Synonym：californicus，Allen， 1890 ，Bull．Amer．Nus．Nat．IIist．III， p．165．（Not of Lesson．）
22. TANIASCICRUS DOUGLASII MEARNSI, 'Townsend 1897. Proc. Biol. hoe. Washington, Xl, p, iq6.

San Pedro Martir Mountains, Lower Califormia.
23. TAMIASC'IURES FREAIUNTI FREMONTI, Audubon \& Bachman 1854. Quadr. N. Amer. 3, p. 237.
"Rocky Mountams," probably in Park region of Central Colorado.
24. TANIIASCIURUS FREMIONTI NEOMEXICANUS, Allen
isgs. Bull. Amer. Nus. Nat. Hist. X, p. 29 I.
Rayado Canyon, Colfax Co., New Mexico.
25. TANHASCJURLS FREMIONTI LYCHNUCHUS, Stone \& Rehn 1903. Proc. Acad. Nat. Sci. Philadelphia, p. 18.

Forks of Ruidoso, Lincoln County, New Nexico.
26. TAMIIASCIURUS FRlBNONTI MGGOILUNENSIS, Mearns
1890. Auk, vol. 7, p. 49. Bull. Amer. Nus. Nat. I Hist. 11, p. 277.

Quaking Asp Settlement, summit of Mogollon Mtns.. Yavapai County, Arizona.
27. TAMIASCJURUS FRENJONTI GRAHANENSIS, Allen
1894. Bull. Amer. Mus, Nat. Hist. V1, p. 350.

Graham Mountains, Graham Co., Arizona.

\section*{Genus 8. CALLOSCIURUS, Gray}
1867. Calluscicre's, Gray, Ann. Mag. Nat. Hist. 3, XX, p. 277.
1880. Heterosciurts, 'Trouessart, le Naturaliste, 1, p. 290. (Scimus erythracus, Pallas.)
1915. 'Tombttes, 'Thomas, Ann. Mag. Nat. Hist. 8, XV, p. 385. (Sciurus lokroides,

1lodgson.)
rgo6. 'Tanhops, Allen, Bull. Amer. Mus, Nat. Hist., XXII, p. 475. (Sciurns maclellandi,
Hursficld.) Valid as a subgenus.
Type Species.-Sciurus rafflesii, Yigors \& Horsfield.
Range.-From Tibet (subgenus Tamiops), Chihli (subgenus Tamiops), Szechuan, China south of the langtsekiang; llainan, Formosa;
Bengal, Nepal, Sikkim, Assam, Burma, Siam, south through Malay region to Sumatra, Java, Borneo, Celebes and the Philippine Islands.

Number of Forms.-Approximately three hundred and twenty. This genus is second in number of named forms to Rattus only in the Order.

Characters.-This genus was originally divided from Sciurus by Thomas on the structure of the haculum. I have already remarked that this suems usually a very questionable character on which to base generic names, particularly on account of the relatively few forms in which this character has been definitejy verified. Thomas wrote: "All Indian and Malay species hitherto referred to. Sciurus have bacula totally different from true Sciurus, and themselves are divisible into two types, with an essential community between the two." Exactly how many forms have been examined on this character 1 do not know, though some months ago 1 endeavoured to make a list of those 1 had
come across which had been; there seems to be a constant wide distinction, as far as one reads, between those Squirrels currently included in this group and those currently referred to Sciurus which bave been examined, in this character. Also there is a certain difference in the teeth, not altogether constant, yet noticcable in most of the leading species referred to this genus. N. 3 in the lower jaw is very often noticeably clongated, particularly on the inner side; the anterointernal cusp in the lower teeth is as a rule very high; the subsidiary small cusps on the outer side of the upper molars are very frequently almost obsolete; the ridges of the upper molars are often higher and more definite in this group; there is often a tendency towards complexity due to the presence of extra small ridges and depressions on the crown; and the anterior extra ridge cutting off a depression in the lower teeth and running from the anteroexternal to the anterointernal cusp, characteristic of the genus Heliosciurus, is usually present and well marked; further, P. 3 is strong as a rule, whereas in most members of Sciurus it is restigial. Also often, but not always, in the present genus the upper incisors tend to become proödont.

The group is probably a natural one, though it is largely for convenience that it is here regarded as a full genus distinct from Sciurus. According to 'Thomas and Pocock, Tamiops which I refer to this genus as a subgenus, and the closely allied Dremomys both agree in bacular characters with the "Tomeutes" section of this genus. Tomeutes was erected as a genus by Thomas based solely on the formation of the baculum. I have already commented on the inadvisability on P. 266 of retaining it. In the present state of our knowledge I do not think it advisable to retain it even as a subgenus. Pocock, 1923, writing of Callosciurus and Tomeutes, states that "distinct as the bacula of these two kinds are, there are indications of intergradation between them," and "in Tomeutes, the variation is so great that it is impossible to affirm any character by which the baculum of Tomeutes can be distinguished from the bacula of Dremomys, Rhinosciurus, Tamiops and Lariscus." This author states that the species rittatus is a "Tomeutes." This species appears to me to be indistinguishable from notatus, or very questionably so, on cranial and external characters. 'Гo refer it to a distinct subgenus seems absurd (notatus is a "Callosciurus" on penial characters, so far as known). Furthermore there are forty-six named subspecies of rittatus. It would be interesting to examine the baculum in all of them. I'robably it might be found that there is a complete intergradation in the species alone, though this is sheer surmise. 'Therefore until very much more work is done on this character in these Malay Squirrels, and bearing in mind that the baculum evidently varies from local race to local race in Funambulus, and in different species of Ratufa, all these Indo-Malayan Squirrels should be referred to a single genus only.
'The skull is in the group not essentially different from Sciurus; in some species there is a tendency for the rostrum to be slightly elongated; the parietal ridges often do not join, but in others quite a sharp crest is formed by them (further notes on this character below). The cheekteeth are as described abose; the large internal cusp of the upper molars may be seen in some specimens to be composed of three separate elements when cut. In \(C\). prevosti and others
the frontals appear unusually broad, and the postorbital processes are strongly developed. The zyomatic plate is usually much as in Sciurus, but in some species there is a tendency for it to be more prominently ridged, a little inclined to be narrowed above, and slanting upwards far forwards.
C. mbrizenter, from Celebes, is the most distinct species seen; it appears to be larger than all others; the cheekteeth are (in the two skulls seen) rather worn, but simpler than is usual; the parietal ridges are very prominent, and unite to form a sagittal ridge more or less close behind the postorbital process, this ridge being much longer than in any other species seen. This form might perhaps form a distinct subgenus.
C. leucomus, from Celebes, appears in two skulls seen to be almost transitionary to the Nimmosciums-Sciurillus type of skull, with postorbital process situated unusually far backwards, and lachrymal situated farther back than is usual. Whether these characters are constant 1 do not know. A large collection of Celebes Squirrels would be most welcome, as it is curious that out of only about ten skulls examined from this island, every form seems aberrant and different from the more normal Indo-Walayan Squirrels; the species murimus I have had to refer to the genus Sciurillus, a member of the Nannosciurus section.

External characters as in normal Tree-squirrels; D. + normally longer than D. 3 in manus. The colour, as might be expected, varies enormously throughout the genus. In \(S\). temuis, and \(S\). jentinki (small species), the tail is usually much narrowed. Prominent car tufts are present in leucomus, rubricenter and rosenbergi.

Tanhops was proposed as a genus by Allen and has usually been accepted. The upper cheekteeth are, as often in Callosciurus, with the third outer cusp (which is present in Sciurus) absent or vestigial. This, though the genus was established mainly on this character, can hardly be regarded as of generic rank. P. 3 is relatively large, as in Calloscimus. The lower cheekteeth resemble Callosciurus; M. 3 is elongated to a degree, and the cusps are well marked. The skull is not abnormal. The size is small. Back with conspicuous black stripes (usually five in number, though these vary in development). Digits as in normal Tree-squirrels, with D.f in the manus normally slightly longer than D.3. Tail usually much narrowed.

The group was compared with Sciums only by Allen; but unfortunately in differentiating between this group and Sciurus on dental characters he has merely repeated the condition usually found in Callosciurus. 'The narrow tail turns up again in Calloscimus temuis. The colour pattern alone remains of Allen's characters, which in my opinion is not a valid generic character (see p. 269).

A skeleton has been compared with Callosciurus skeleton, but does not show any essential difference in general formation. The only difference appears to be that in "Tamiops" there are 26 tail vertebrae, whereas in Callosciurus temis there are only 23. But this is hardly a generic character; for instance, in Ratufa indica, as quoted by Flower (Osteolngy, p. 85, 1885), there may be either 24 or 25 . Under these circumstances 1 have no alternative to reducing Tamiops to a subgenus of the present genus.

Forms seen: alacris, albescens, albicexilli, andreasi, amnellatus, aoris, aquilo,
atratus, atrodorsalis, balstoni, baluensis, bangueyae, barbei, bartoni, bellona, besuki, blutanensis, bilimitutus, "bilineatus," blanfordi, blythi, bocki, bocourti, bonhotei, borneanus, brookci, canicips, curev, carimonensis, caroli, castaneozentris, centralis, chimensis, cinnamomeus, clarkci, cockerelli, concolor, condurensis, contumax, crotalius, crumpi, dactylimus, dazisoni, dextralis, domelicus, dulitensis, erebus ( = piceus), erythraeus, epomophorus, erythrogaster, famulus, ferwgineus, finlaysoni, flazimanus, flozeri, "fluminalis," folletti, formosamus, forresti, frandseni, fraterculus, fryomus, germaini, glozeri, gordoni, grayi, griseicauda, griseimamus, griseipectus, gunong, harmandi, harringtoni, hastilis, hendeei, hippurellus, hippurosus, hippurus, humei, ictericus, imarius, imitator, inconstans, inquinatus, janetta, jentinki, juzencus, kinneari, kongensis, kuchingensis, lancavensis, luotum, leucomus, leucopus, leucotis, lokroides, lozi, lylei (race of bocourti), İlei (Tamiops, here renamed holti), maclellandi, madurae, mamipurensis, maprazis, maritimis, mearsi, melanogaster, menamicus, mentazi, "meticulosus," michianus, maporensis, microrlınchus, midas, millardi, milleri, mindanensis, miniatus, moheius, mohillus, moi, monticolus, nagarum, nakanus, natunensis, nazigator, nesiotes, nigrozittatus, ningpoensis, notatus, nox, olivaceus, orestes, owensi, panjioli, panjius, pemangilensis, peninsularis, perhentiani, phanrangis, phayrei, philippinensis, pierrei, pipidomus, pirata, plasticus, pluto, "portus," prezosti, proteus, pryeri, punctatissimus, pygervthrus, quantulus, quinquestriatus, raffesi, roberti, robinsoni, rodolphei, rosenbergi, rubex, rubricenter, rufoniger, rupatius, sylvester, samarensis, sarawakensis, scotti, seimundi, shanicus, shortridgei, "siamensis," similis, singapurensis, sinistralis, sladeni, sordidus, "splendidus," steerei, stezensi, styani, subluteus, suffusus, sullicamus, surdus, swinhoei, tabaudius, tachardi, tacopius, tahan, tamansari, tapamulius, telibius, tenuirostris, tenuis, terutacensis, thaizanensis, tiomanicus, zanakeni, virgo, zittatus, watsoni, wellsi, williamsoni, wrayi, youngi, zimmecnsis.

So far as subspecies are concerned, the classification of Robinson \& Kloss, 1918 (Rec. Indian Mus. XV, pt. IV, pp. 171-250), is followed.

The forms in which the baculum structure is definitely verified, so far as at present traced, are : maclellandi, prezosti, notatus, castaneoventris, atrodorsalis, qittatus, lokroides, hippurus, miniatus, robinsomi, tahan, caniceps, erythraeus, pluto, sladeni, similis, phayrei, blanfordi, pygerythrus, janetta, pryeri, philippinensis, melanogaster, temis, brooki, lowi, stezensi, blythi.

This list is probably incomplete.
The division of this genus is very difficult; but provisionally I think it is reasonable to divide the genus into twelve groups.

It must, however, be borne in mind that this arrangement is very provisional, and how many of the groups would stand in a detailed revision of the whote genus I do not know.
1. temis group. Small Squirrels, hindfoot usually under 36 mm ., and upper incisors less proödont. Malay Peninsula, Sumatra, Borneo. The tail is normally much narrowed.
tenuis, jentinki, probably fraterculus.
2. lonci group. Size as in group 1 , but as far as seen upper incisors strongly proodont. Tail not much narrowed, but often relatively short. Malay

Peninsula, Sumatra, Borneo. Both these groups have the baculum of the "Tomentes" type so far as known.

All other forms of the typical subgenus are larger animals, with hindfoot measurement usually more than \(3^{6} \mathrm{~mm}\).
3. erythraens group. This contains the majority of the Squirrels belonging to the genus from the northern part of the range, i.e. South China to Siam, with the baculum, so far as known, of "Calloseiurus" type as diagnosed by 'Thomas. Usually, but not always, the upper incisors do not tend to be proödont. 'The colour is extremely various, hut there appear to be intermediate forms between all the extremes. As examples may be quoted some races of ferrugineus (unicolorous red); cockerelli, mostly red above, white below; finlaysoni, typically unicolorous white; bocourti, typically black above, white below; germaini subspecies, unicolorous black. C. ervthraeus is typically greenish above, red below, but some races are whitish below. 'There are no flank stripes except in a race of sladeni, which has black ones. The colour is never black above, red below, as in prezosti. C. atrodorsalis has usually a black mid-dorsal region.
erythraeus, sladeni, fermgineus, finlassoni, bocouti, germaini, flavimamus, atrodorsalis, cockerelli, griseinamus.
4. comiceps group. Doubtfully distinct from erythraeus group, but upper incisors very generally tending to be proölont. C. camiceps is typically orange above, and with hlack tailtip, but as usual there is much variation in colour in races (as arranged by Robinson \& Kiloss). 'Tenasserim and Siam to Malacca.
5. prezosti group. Related to the above two groups so far as known in bacular characters; black above, red helow, always as far as seen, with or without white flank stripe which may in some forms be broadened so that it takes up most of the back; shades extremely variable; in some cases these appear to he the most beautifully marked of all Squirrels. Nalacca, Sumatra, Borneo, Celebes. 'The upper incisors are very generally' proödent.
6. notatus group. Closely allied to the above; bacular characters so far as known like the "Callosciurns" type of Thomas, except apparently rittetus (but onc? out of forty-six races examined; see remarks on p. 349). Tery generally with a white stripe over a black stripe on the flanks (one race only in all forms examined with white flank-stripe only). Body usually green above; red or in migrazittatus greyish below. Upper incisors very generally proödont. notatus, vittatus, misurittatus. Malay Peninsula and islands to Borneo. In the last four groups, the parietal ridges of the skull, so far as scen, very rarcly tend to come together, and the zygomatic plate is rarely heavily ridged.
7. Pygervthrus group. Squirrels from Burma, Assam, and Nepal, with so far as known the baculum of the "Tomeutes" type of 'Ihomas. 'The parietal
ridges may come together, though this is not a usual feature of the skull. There is a tendency for the exgomatic plate to be rather more powerfully ridged, and it may extend upwards farther forwards than is usual. The colour is typically duller than in the ervthraeus group, though this varies; no tlank stripes except in phayrei, in which they are black. The incisors most often do not tend to be projected forwards.
pigerythrus, lokroides, blythi, stezensi, phayrei.
8. quinquestriatus group. Very similar to group 7, but with the belly typically longitudinally banded black and white, and with a well-developed black mid-ventral stripe, so far as seen. This feature seems sufficiently rare to warant the formation of a group for this species. Yunnan, Burma.
9. hippurus group. "Ihis contains several squirrels agreeing, so far as at present known, with the prgerythrus group in the structure of the baculum, from the southern portion of the range of the genus (Walacca, Sumatra, Borneo, Philippines). Wost often the general colour is somewhat darker than in the pigerythrus groun: frequently more or less unicolor, as in brookei, philippinensis, etc. melanogaster is a dark form with a black belly, and differs from the other species, included here, so far as seen, in the more proödont upper incisors. 'The colours are more strongly contrasted in hippurus, pryeri, and steerei. 'The tail in hippurus is extremely bushy; this species tends to become largest of the genus except rubrizenter. A short sagittal crest is a normal feature of the skull, so far as seen, in lippurus, melanogaster, and all species examined from the Philippine Istands, but is not so in brookei.
hippurus, pryeri, brookei, philippinensis, steevei, juzencus, mindanensis, samarensis (? other Philippine species), melanogaster.
10. lencomus group. I have not seen enough material to be able to frame a definition of this group. About seven species are described as members of the group (or near leucomus or rosenbergi), which are not represented in london. 'The skull of leucomus seems aberrant, as noted above, though how far this is a constant feature I do not know. Conspicuous car tufts are present in both species seen which are allotted to the group (in this respect differing from all other groups except the rubrizenter group and the subgenus Tamiops); but this is not a constant character in some other described forms. C. leucomus has well-marked white spots behind the ears, not seen in other members of the genus, but these are absent in rosenbergi and others. Celches. (lewomuts, rosenbergi the sote species examined.)
11. rubrizenter group. Very large; earstufted; upper incisors strongly proödont; a long sagittal crest present in hoth skulls seen. Celebes.
12. maclellandi group (subgenus Tamiops). L'sually smaller than the other species of the gemus 'rail usually much narrowed. I Tamias-like colour pattern of parallel black stripes on the back. Lar usually mufed. Burma, South China, Siam, Hainan, Formosa, to Tilect, Chihli.
23 Isuns R゙xlent- -

This arangement is, as remarked above, very provisonal, and it may be that many of these groups will break down when the whole genus is carefully revisad; for such a revision there is much nead. It seems to me to be a more natural arrangement at any rate than lumping the spectes into two "genera" hased on a single external character that cannot yet have been verified in a third of the named forms.

List of Nabife Forme
Subgenus Tamiops, Allen \({ }^{1}\)
I. CALLOACILRLS MACLELIANDI MACLELLANDI, Horsfield
1839. Proc. Zonk. Soe. London, p. 152.

Assam.
Synonym: pembertom, Blyth, 18+2, J. A.S. Beneal, SI, p. SS7. Bhutan. lewotis, 'Temminck, i853, Esy. Zow. Cote de Gume', p. 252. Malacea.
2. CALLOACILRLS MACLELLANDI MANIPLRENSIS, Bonhote IGOO. Amm. Mas Nat. Mist. 7, V, p. 5 I.

Amole, Mampur.
3. CABLOSCIURL's MACLELIANDI MARITIMUS, Bonhote 1400. Anm. Mas. Nat. Hist. 7, V, P. 51.

Foochow, China.
4. CALLOSCILRLS MACLESAANDI MONTICOLC'S, Bonhote 1900. Anm. Mas Nat, Mist. 7, V, P, 52.

Ching Fen Lang, Fokien, China.
5. CALLOSCILRUS MACLILLANDI FORMOSANUS, Bonhote 1000. Anm, Mag. Nat. Mist. 7, V, p. 52.

North Formosa.
6. CALAOSCILRL'S MACLELLANDI BARBEI, Blyth
1847. Journ. Asiat. Soc. Beneak, XVI, P. 875.
le, 'lenasserme.
 1901. I'roc. Zonl. Soc. London, 1, p. 55.

Rabeng, Siam.
\(\therefore\) CADAOACILRE MACLELLANDI NODEMLINEATLS, Mifer 1903. Prow. Bul. Soc. Washmgton, XVI, p. I47.
' Trane, Siamese Malaya.
 1867. Rew. Naq. Zoul. N1X, p. 227.

Cochim-China.
10. CALLOHCJ RLS MACLElLANDI HAINANLiか, Allen
a gof. I:ull. Amer. Mus Nat. Hist. XXII, p. 476.
Leco-.Nus Non, LTaman (mountams).
11. CALLOse It KL's NACLELLANDI SALTERI, Allert toit. Bull. Amer. Mus. Nat. Hist. NXX, p. 339.

Chip Chip, Northern Formosa.
 reon. Bull. Amer. Mus Nat. IIst. XXVll, p. 477.

Ruclon, Haman (plans).
\({ }^{1}\) Fur further motes on the se ferms, see p. 653.

1919. Journ. Nat. Ilist. Soc. Siam, III, no. 4, p. 370.

Cape Liant, S.-E. Siam.
14. CALSOACILRES MACLELAANOI LAOTLX, Robinson \& Kloss 1922. Ann. Mag. Nat. Ilist. 9, LX, p. 92.

Pak IIin Bung, Mekong River, Laos.
15. CALLOSCOLRLS MACLELEAND) MOI, Robinson \& Kloss
1922. Inn. Mag. Nat. Hist. 9, IX, p. 92.

Langbian l'lateau, S. Annam
16. CALLOSCILRU'S MACLILLACDI RUSSEORCN, Jacobi
1923. Ahh. Mus. Dresden, i6, no. i, p. if.

Tibet.
17. CAIAOSCILRUS MACLELLANDI FORRESTI, Thomas 1920. Ann. Mag. Nat. Hist. 9, V, p. 305.

Lichiang Range, Vunnan.
18. CALLOSCILRUS MACLELLANDI OLIVACECSS, Osgood 1932. Field Nus. Nat. Hist. Publ. Zool. Ser. XVIll, p. 292.

Mit. Fan Si Pan, near Chapa, Tongking.
19. CALLOSCIURL'S SWINIIOEI, Dilne-Edwards
1874. Rech. des Mamm. p. 30 S.

Moupin, 'Tibet.
(Listed as a distinct species by Robinson Niloss, 19r8.)
20. CALLOSCILRL'S INCON゙STAN゙S, Thomas
1920. Ann. Mag. Nat. Hist. 9. V, p. 306.

Mongtze (?), \unnan.
21. CALLOSCILRLS CLARKEI, Thomas
1920. Ann. Mag. Nat. I Iist. 9. V, p. 304.
lantze Valley, Iunnan (North).
22. CALLOSCIURL'S SPENCEI, Thomas
1921. Jourr. Bombay Nat. Hist. Soc. XXV'II, p. 503.

North Kachin Province, N. Burma.
23. CALEOSCILRLS HOLTI, New Name
(Fo replace Tamiops ( Callosciurus) Iylet, Thomas)
1920. Ann. Mag. Nat. Hist. 9, V. p. \(30 \%\).

Coast 50 miles south of Bangkok, S.-E. Siam. Not Callosciurus lylet. Bonhote.

1913. Proc. Biol. Soc. Washington, LXVIll, p. 115.

Hsin-Lune-Shan, 65 miles north-east of Peking, China.

\section*{Subgenus Callosciurms, Gray \\ temus (iroup}

1824. Zool. Res. Java, p. 153.

Sincapore Istand.

 1900. Droc. Acad. Sci. Washoneton, XI, p. So.

Trang, Siancese Malaya.
 fg1t. Ann. Mare Nat. Mist. S, VII, p, ifo.

Great Redang Islind, off 'Trengganu, East Malay I'enmsula
2*. CALLOACIURL'S TENUIG TIONANVCLS, Robinson
1917. Journ. Fed. Malay states Mus. VII, p. 103.

Toman Island, east coast of Malay Penmensula
29. (ALLOCCIURLE TENLIS TAILAN, Bonhote
1908. Journ. Fed. Malay States Wus. III, p. 6.

Mt. Tahan, Pahang, Malay Pemensula,

1914. Journ. Fed. Malay States Mus. V, p. ifo.

Kao Nong, Bandon, Stamese Malaya.
31. CALLOACLURL'S TENLIS MODOETLS, Muller
1839. Tommincks Verhandelinger Zoologit*, Inlesdung, n. 55

Nt, Singealang, Sumatra.
32. CALLOSCILRLS TENLIS ALTITLDINIS, Robmson \& Kiloss
1916. Journ. Straits Branch Roy. Asiat. Soc. 73, P. 260. Kormchi I'eak, Sumatra, 7.300 ft .
33. C.ALJOLCLERLS TEXLIS MA.NAALARIS, Miller
1903. Proc. L. S. Nat. Mus. XXVI, p. +5I.

Mansalar Island, W. Sumatra.
it Citlonstlerlis TEN゙LIS BATLS, lxon
ェяth. Jroc. U. S. Nat. Mus. Lll, p. +43.
'Tana Bala, Batu Islands, W. Sumatra.

1903. Proc. U. S. Nat. Mus. X.V.t, p. +51.

Bangkaru Island, Banjak I lands, W. Sumatra.

1903. Smaths. Misc. Coll. XIVV, F. 15.

South I'agi Island, W. Sumatra.

190:. Proc. Bul. Soc. Washungton, XIV, p. 33. sarawak, Borneo.

192S. Journ. Malay Branch Roy. Astat. Soc. 6, p. 33. Anamba Islands, Sinuth China Sca.

Igos. Proc. Washmgton Acad. Scı., X, P. 122.
Bunguran Island, North Natunas.

\(188 \%\) Ann. Mar. Nat. Hist. 5, XX, p. \(128^{\circ}\)
Kina Balu, Nurth Borner.

\section*{CALLOSCIURUS}

41．（CAISOACIERLS FRATVRCLLL＇S，Jhomas
1895．Ann．Mus．Civ．Stor．Nit．Genova，2，XIV，p． 10.
Sipori，Wentanci Jslands，West Sumatra．

\section*{lowi Group}

42．CALLOSCJLRES LOWI LOWI，＇Ihomas
1892．Ann．Mag．Nat．Hist，6，1N，p． 253.
Sarawak，Borneo．
43．CALLOSCILRLS LOWI BANGCLIAAE，Thomas
1910．Ann．Mag．Nat．Hist．8，V，p． 3.7.
Banguey Island，North Borneo．
44．CALLOACIERLS LOWI SATL NENSIS，Thomas 1895．Nov．Zool．11，p． 26.

Sirhassen Island，Natuna group，South China Sea．
45．CAL．LOSCILRLS LOWI ROB1NSONI，Bonhote 1903．l＇asciculi Malayenses，Zool．I，p．24，pl．i． Bukit Besar，Patani，Malay Penmsula．
 1913．Smiths．Nlisc．Coll．LXI，no．21，p．24．

Kateman River，East Sumatra．
4\％CALLOSC゚U゙RL＇S LOW V゙ANAKEN゙I，Robmson \＆Kloss 1916．Journ．Straits Branch Roy．Asiat．Soc．73，p．270．

Barisan Range， \(\mathbf{N}\) ºrmehi，Sumatra．
48．C：VLLOSClURLS LOWI PINIENSIS，Miller 1903．Smiths．Nisc．Coll．XLV，p．It． Pinie Island，Batu group，West Sumatra．
49．CALLOSCICRLS LOWI BAAAL．Niller 1903．Smiths．Nisc．Coll．SLV，p．it． Tana Bala Island，Batu group，WV．Sumatra，
50．CALLOSCIURLS LOWI SEIMLNDE，Thomas ※ Wroughton 1909．Ann．Mag．Nat．Hist．S，111，p． \(4+0\). Kundur Island，Rhio－Lingega Vrchipelago，East Sumatra．
51．CALLOSCILRL＇S LOWI ALACRIs，Thomas rgoS．Ann．Mag．Nat．Hist．S，II，p． 306. Semangko Pass，Selanyor－l＇ahang houndary，Jlalaya．
52．CALLOSCILRLS LoM1 SIBERL．Chasen \＆Kloss 1928．Proe．Konl．Sac．London（1927），p．8z4．

Siberut Island．WV．Sumatra．
 1901．Proc．Washington Acad．Sci．．Il1．P． 123. l＇ulo Lingung，North Natuna Ishands．

\section*{erythratis（iroup}

54．CALLOACILRI S ERY゙THR．VFLS I RYTIIRAEL゙S，Pallas
177S．Nox．Sp，Quadr．Glar．Ord．מ．377．
Locality not knows．
5. CALLOSCIERUSERYTHRAELABHLCTANRANLS, Bonhott 1901. Amn. Mas. Niat. Mist. 7, VII, p, ibl.

Bhutan.
 1916. Journ. Bombay Nat. Inst. Soc. XXIV, p. 228. Sadiya, Assam.
 1842. Journ. As. soc. Bengal, X1, p. 970.

Manpur.
 3867. Ann. Mag. Nat. Hist. 3, XX, ए. 283.

Cachar, Assam.
54. CALLUAC1LRLSERYTIHRAELS INTLRNEDIUS, Anderson 1879. Zool. \& Anat. Res. Yuman, p. 241.

Assam.
Do. CALAOSCHERESERY"THRAELS GORDON1, Anderson 1871. Proc. Zool. Soc. Iundon, p. 140.

IShamo, L'pper Burma.
61. CALIUnClCRL's ERYTHRAELS KiNXIARI, Thomas \(\mathcal{S}\) Wroughton 1916. Journ. Bombay Nat. 11ist. Soc. NXIV, p. 229.

Tatkon, Kindat, L'pper Chondwin, Burma.
62. CALLOSCILRL A EKYTHRAEU'S HYPERY"HKLS, Blyth 1855. Journ. As. Soc. Bengal, XNIV, p. 474.

Tenasserim. (? Moulmem.)
 1003. Smiths. Misc. Coll. XLV, P. 22.

Khow Saı Dow, Trong, Siamese Malaya.
 19iq. Ann. Nag. Nat. Ilist. 8, XlII, p. 224.

Gunong Tahan, 5,000-6,000 ft. N. Pahang, Malaya.
15. CALAOMCJLRC\& ERYTHRAELS CASTANEかNKNTRIS, Gray 1842. Ann. Nay, Nat. Ifist., X, p. 263.

Ilainan.
 1921. Jumrn. Bombay Sat. Mist. Soc. X̌XVII, p. bor

Dibong River, Sadiya, Assam.
 1021. Journ. Bombay Nat. Hist. Soc. XXVII, P. 502.

Nasohuka, WV. Szechuan, China.
68. CALAOCIURLS IERYTHRAELS NVGP(NENSIS, Bunhote ino i. Ann. Maz, Nat. Hist. 7, V'll, p. IG3.

Ninepo, China.
Syonym: tsmataumsis, Halzhemer, suo5, Zonl. Amz. XXIX, p. 298. 'Tsingtau, China.

1547. Journ. As, Soc. Bengal, XVT, p. S73.

Locality not known.

70．CALIOSCILRU S ERY゙IHRAEL® STYANI，Thomas
1S94．Ann．Mak．Nat．Ilist，6，Xlll，p． 363.
Between Shanghan and Ilangchow，probably kahang，（Chas．
 1911．Journ．Fed．Nalay States Nus．IV．p．234．

Chin Chien San，Szechuan，China．
72．CABMOLCILRLS ERY＂IHRAFLS MICHANCLS，Hobinson \＆Wroughton 1911．Journ．Fed．Malay States Mus．，IV．p． \(23+\) ．

Mee－chee，Yunnan．
73．CALJ．OACJLRLS FRE＂IHRAI：LA H．AL：MOBAPLHES，G，M．Allen 1912．Proc．Bol．Soc．Washington，Xオ゙V，p． 177.

Chih－Ping，S．－E．Vumnan．
74．CAI．LOSCICRRLS ERSTTHRAELS TIIAIVANENSIS，Bonhote 1901．Ann．Mar．Nat．Hist．7，V1l，p． 165. Baksa，S．Formosa．

75．CAJJOSClLRL＇S ERY＇THRAEL゙S CFNTRAIAS，Bonhote 1901．Ann．Mag．Nat．Hist．7，VIl，p． 166.

1 ak－Ku－Li，Central Formosa．
76．CALHOSCHLR1S ERYTHRAELS ROHERTI，Bonhote 1901．Ann．Mag．Nat．Hist．7，Vll，p． 166.

N．－W．Formosa．
77．CALLOACILRLS FRYTHRAEI S CRL MPI，Wroughton 1916．Journ．Bombay Nat．Hist．Soc．XXIV，p．+25.

Sedonchen，Sikkim．
78．CALLOSCILRLミFRYTHRAELS IN゙sLLARIS，Allen 1906．Bull．Amer．Nus．N゙at．Hist．，XXII，p． 43.

Lei－Nut－Mlon，IIainan．

1932．Ficld．Nus．Nat．IIst．Puhl．Zool．Ser．XVIII，p． 270. Chapa，Toneking．
 19：6．Journ．Bumbay Nat．Hist．Soc，XXilV，2，p． 220.

1hkamti，Chindwm，Burma．
 1921．Journ．Bombay Niut．IIst．Soc．SXVII．p． 775.

Shanepune，Jaintia lalls，Assam．
 1935．Journ．Mamm．Daltimore，P．28゙s． Riran，＇Tatto，S．－L̇．Formosa．
 1931．Occ．Vap．Mus．Zool．Lniv．Mich．22以．p． 5.
l．ung－Tan， 25 miles cast of Nangking，Kiang－Su，China．



Fouranc，Annam．
 1927．1＇roc．Zool．Soc．I andon，P． 51. Xieng Kihouang，Lius，Annam．
so．C＇ALIOSCILRLS FHAVIMANLS DAC＂IVLINL心，Thomas 1427．I＇roc．Zool．Soe．I mondon，p．52．

Dakito，Amam．
 1927．I＇roc．Zowl，Soc．Lamdun，p． 52. Fontoum，south of Dak－to，Annam．
88．CALLOACILRES FIAVIJANLS PIRATA，Thomas 1929．Proc．Zonl Soc．Lomdon（1028），p． 836. Napi，Jaos，Annam．

 I＇aksong，Bolosen Ilatean，Laos，Annam．
yo．（ALLASCILRLS SLADINI SLADENI，Anderson 187s．Proc．Zoal．Soc．London，P．I 39.

Thesyann，L＇pper Burma． Synonym：kemmisi，Wroughton， 1908 ，Ann．Mag．Nat．Hist．8，XI， p． 49 r．Katha，Upper Irrawaddy．
11．CALLOSCOURLS SLADENI NIDAS，Thomas
1014．Journ．Bombay Nat．IIst．Soc．KXIll，p，ig
Myitkyma，Upper Bumma．
ひ2．CABLOSCDLRLS stADENI RLBEK，＇Thomas
 Lankin，Myrtkyina district，Upper Burna．

93．（ALLASCTLRUS SLADFNI BRRTONI，Thomas 101t．Journ．Bombay Nat．Hist．Soc．XXIIl，p．reg．

U＇yu River， 50 miles east of I homalm，LPper Chindwin，Burma．
 1916．Journ．Bombay Nat．Ilist．Sot．NXll，p．232，pl．fig．I． Hkanti，Lpper Chimewin，liurna．
 1917．Journ．Bombay Nat．IIst．Soc．XXIV，p，23z，pl，fig．z． Ansin，Cpper Chindwn，Burma．
 ［916．Journ Bombay Nat．I Iist．Sise．XXIV，p．233，pl．fig． 3. ＇Tamanthe，Upper Chondwn，Burma．
 toos．Ann．Marr Nat．IIst．7，X゙VI，p． 314.

Mounmkan，Upper C＇handwin，Burma．
 mif1．Journ．Bombay Nat．IIst．Soc．XXIV，p．234，pl．fig． 5.
l＇yaungbyn，fo mules north of Kimatat，LPper C＂hndwin，Bumaa．

 IImmatm，Upper C＇handum，Isurnas．

s82g．Hist．Nat Mamm．ai，pl． 23 \％
1＇esu，Lower lsurnia．

19to．Proc，Zool．Soc．I ondon，P．qto．
Ǩoh Chane Island，S．－F．Stasn．

1853．Visq．Zool．Côte de Guine，p． 250.
Camboxlia．
 1922．Ann．Mag．Nat．llist．9，lぶ，p．go． Xicng lhan，Mekone Racr，Siam．
 1922．Ann．Nag．Nat．Hist．9，1X．p． 90. llup Bun，near Sriracha，S．＝E．Siam．
 1022．Nmm．Mag．Nat．II ist．9，IX，p．91． Phu（buoc Island，Cambodia．
206．CALAOACILRLSFERRL GIVELS PHANRANGIS，Robmson \＆Nloss 1922．Ann．Nag．Nat．Ilist．9，1X，p．g1． Tour Cham，near l＇hanrang，S．Annam．
 1929．Proc．Zool．Soc．London（192S），p．S39． Nan，N．Siam．
108．UALAOACILRLS FERRUCINELA ANWELAATLS，Thomas 1929．Proc．Zool．Soc．London（1928），p．S39， Angkor，Cambodia．
 1928．Ann．Mag．Nat．llist．10，11，p． 100. N゙an，N゙．Sianr．
 1824．Zool．Res．Java，p， 151.
koh si Chang I slands，Bught of Bangkok，siann．
Syannym：keraudremi，lessun．1830．Cent．Zonl．pl．1．Burma．
siomensis，（ifay，skoo，Ann．Mag．Nat．Hist．．3．V．p． 500. sian．
portus，K゙luss，wot5，Jourta．Nat．Ilist．Soc．Siam，I，p．I5s． kioh si Chang lshands．

1015．Journ．Nat．Ihst．Soce Siam，I，p． 159. lioh Phai，Inner（iulf of Siam．
 1916．Journ．Fed．Nalay Stated Jlus．Vll，p． \(3^{\prime \prime}\) ． Kyabin，Contral Sam．

 Koh Lan Island．Inner（iult of Simm．

 1かった．Res．Zonol．P．103．

Ayutha，Siam．
Synomym：hocouphalus，Bonhote，l＇rue．Zowh．Sixe．Iandon，1901，P． 54.

fS76．Bull．Soc．Phalom．6，Xll．P．S．
Island l＇hu：Quoc，off Chantabun，Siam．
 rgos．Ann．Mar．Kist．Jlist．S，ll，p． 399.

J＇ichut，Xenam River，Central Siam．
 roos．Ann，Mag．Nat．1list．S，11，p． 400.

Kampeng，Lower Me－l’ing Valley，Siam，
 son7．Kungl．Sivenska Vet．Akad．Handl，LVIl，no．2，p． 37. lang Huc long，N．Siam．
 190\％．Ann．Nag．Nat．Hist．R，II，p． 40 I．

Chenemai，N．Siam．
 1901．Ann．Nag．Nat．Hist．7，VII，p． 455.

KJong Morn，near Bangtiok，Siam．
 180\％，Rev．Zoos．p．103．

Pulau Condor，off Cambodran coast．
```

 122. CALLOSCHKRLS GISRNAINI ALBIVEXILLI, KJOS
 1910, [roc, Zool, suc. London, p. 47.
K゙oh liut 1sland, S.-E. S゙am.
123. CALA,NC'ILREX GBRNLALN NON, W'roughton
gyos. Ann. \are.Nat. llist, 8, 11, p. 397.
Sca eonst south-east of Bangkok, Sham.

```

```

1842. Amn. Mag. Nat. llist. X, p. 263.
Bhutan (error), substitute Moulmein.
```

```

1917. Journ. Nat. llist. Soc. Slam, Il, P. 2N5.
Rahoner, C'. Sram.
126. C.ALA.)
191+. Joumm. Bombay N'at. llist. Sore, XXII, p.6tiz.
Goktuk, N. Sham States, Bummat.
```

```

1qaf. Joumm. Fed. Nalay States Mus. Vll, p. 91.
Chienemas, N. slam.

```

```

1016. Journ, Nat. IHist. Gise. Siam, 11, p. 178.
'Jachm, C. Siam.
```
129. CALLOSCILRC'S AOROMOORSALAS PRANIS, Kloss 1916. Journ. Nat. Hıst. Soc, Siam, 11, p. 178.

Koh Lak, Pran, S.- WV. Siam.
 s867. Rev. Zool. p. 195.

Cambodia.
131. CALAOMCJURLS GRISEINANLS LALCOPLS, Gray 1807. Ann. Mag. Nat. Hist. 3, X. Cochun Chma.

1907 Proc. Zool. Soc. London, p. 9 (footnote).
Ninh Iloa, Annanr.
Synonym: Calloschurus griseimanus fumigatus, Bonhote, 1907, Abstr. Proc. Zool. Soc. London, Jan. 15th, p. 2. Ninh Hoa, Annan. I'coccupied by fumigatus, Gray, 1867.
caniceps Group
13.3. CALLOSClLRUS IMITATOR, Thomas
1925. I'roc. Zool. Soc. I,ondon, 2, p. 502.

Thai-Nien, 'longking.
134. CALLOSCILRLS CANICJPS CANICEJS, Gray
1842. Ann. Mag. Nat. Hist. S, p. 263.

Bhutan (error), substitute N . 'l'enasserim.
Synonym: chrysonotus, Blyth, 1847, Journ. Astat. Soc. Bengal, SVI, p. 873. Amherst, Tenasserim.
epomophorus fluminalis, Wroughton \& Robinson, 1911, Journ. Feed. Malay States Mus. IV, p. 233. Neping Rapids, N. Siam.
135. CALLOSC'ILRLS CANICEPS DASISON゙1, Bonhote 1901. Ann. Mag. Nat. Hist. 7, V1I, p. 273.

Bankachon, S. Tenasserim.
 1916. Journ. Nat. Hist. Soc. Siam, II, p. 178.

Koh Lak, Pran, S.-W゙. Siam.
Synonyn: (?) helgei, (;yldenstolpe, rot\%, Kumgl. Svenska. Vet. Ak.
Handl. LVII, 2, P. 34. South of Koh Lak, S.-IV. Siam.
337. CALAOSCLERES CANLCLPS SLLLNANUS, Miller 1903. Smiths. Mise. Coll. XLV, p. 17.

Sullivan lsland, Nergui Archipelago.
 1903. Smiths. Misc. Coll. KIN, f. 18.

Momel lsland, Mergui Archipelaso.
 1903. Smiths. Nise. Coll, XIX, P. 19.

Bentunck Island, Iergur Archipelago.

1003. Smiths. Nise. Coll. XIX', p. 19.

St. Nathew Island. Mereui Archupelago.
 1003．Smenths．Nise．Cill NilV．P． 20.

St．I ahe lshand，Nerexi Arehapelago．
 1003．Smiths．Nisc．Coll．SIV，p． 20.

Chance Islanel，Nereru Archapelagu．
 1003．Smitlas，Nisc．Coll．SI，V＇， 2 I．

Ifah lslanel，Mergur Arehapelago．



Gakang or Jumk Ceylom Island，Siamese Nalaya．
 1921．Amn．Jiag．Nilt．Hist．サ，VIl，p．119

 192r．Ann．Mag．N゙at．Hist．9．VJI，p． 120.

I＇ulau l＇anjang Anak，morth of I＇．Panjang，l＇eninsular siam，



Kint Naka，mear Salamera，Penmosular Siam．
 Ig21．Ann．Nag．Natt，Hist．9，Vll，p．I 20.

Koh Daprau，mear Salanga，Puninsular Stama．
 Io21．Atan．Ma\＆．Nat．Hist．（1，NTl，D．I21，

Koh P＇pudon，near Salanga，Deninsular Sitam．
 1921．Ann．Nag．Nat．Hist．9，V＇ll，p． 121.

Koh Kah，＇Jacopah，Penmsular Siam．
 1922．Journ．Bombay Nat．Hist．Soc．SXVIll，f，R．iofo．
＇「avoy Island．Nérebi Archmpelago．
 1923．Journ．Bunbay Nat．Hist．Boc．XXIX，2，p．377．

Hastings lsland，Nügui Archipelago．
 IOII．Joutn．Fed．Jalay States XIus．IV，P．2．3．
＇Tromer，siamese Malaya．



Krbh Gamen，Bandern，Siamese Nataya．
 ［014．Anm．Aite Natt．Kist．太，NllJ，J，225．

Koble Jemman．Bandom，Simese Malaya．
 1rooz．Amoths．Mise，Cill．KI，P． 16

Pulan lanmbinw，strasts of Malacea．

1903. Smiths. Nisc. Coll. XLV, p. 17.
'ulau Adang, Butang Arehipelago, Straits of Malacea.
58. CALLOACIURL゙S CANJCEP TERLTAVENSIS, Thomas \& Wroughton
1909. Anth. Mag, Nat. Ilist. S, IV, P. 535.

Pulau 'l'erutau, Strats of Nalacea.

1930. Journ. Mamm. Baltimore, p. 72.

Koh loun, east coast of Malaỵ Peninsula.
16o. CALLOSCIURUS CANICHPA (ANIGINLS, Howell 1927. Journ. Washington, Acad. Sci., Nill, p. Si.

Hayenhsien, Hanechow Bay, Chekiang, China.
16t. ('AlSOSClURU'S CANJCEPS (CONCOLOR, Blyth
1855. Journ. As. Soc. Bengal, SXIV, p. +74.

Nalacea.
Synonym: erubescens, Cabrera, 1917, Bol. Real. Soc. Espan, 17. p. 518. Selangor.
162. CALIOSCILRCS CANJCEPS "IFLIBIL'S. Thomas \& Robinson 1921. Ant. Mag. Nat. Hist. 9, VIl, p. I21.

Pulau Telibun, coast of Trang, Peninsular Siam.
163. CAJJOSCILRLS MOHEIUS MOHEIL A , Thomas \(\&\) Robinson 1921. Ann. Mag. Nat. Hist, 9, VII, p. 122.
l'ulau Nohea (north), near Trang, Nalaya,
164. C ALLOSClLREL MOHEILS MOJHILLILS, Thomas \& Robinson 1921. Ann. Nag. Nat. Hist. 9, Vll, p. 122.
- I'ulau Mohea (south), near 'Irane, Malaya.

\section*{preaosti Group}
65. CALAOSCILRES PREVOSTI PRFVOSTI, Desmarest
1822. . Vamm., p. 335.

Malacca.
Synonym: rufogularis, Ciray, 1842, Ann. Nag. Nat. Hist. X, p, 263. pretosti prezosti "subsubspecies" meticulosus, Robinson, 1916, Journ. Fed. Nalay States Nus. VII, p, 20. 'Trang, S.-W. J'ahang, Malaya,
 182S. Zool. Journ. IV, p. 113, pl. iv.
sumatra; probably Bencoolen.

1901. Ann. Mag. Nat. Hist. 7, Vll, p. 1 ,o.
litanes selangor, Malay Peninsula.
 1910. Journ. Fed. Malay States Mus. IV, p. iqs.

Kuala Lipis, l’hang, Nalaya.
 1902. Proe Acad Nat Sci, Philachelpha, p. I5t.

Indragira Raver, \&.-E. Sumatra.

```

!goí. I'me. LT, S. Nat. Nus. N
\IV, p.637.
Pulaw Permali, [\therefore. Sumatata,

```

```

1002. Iruc. tcad. Nat. Sci. I'haladelphaa, I,IV, R. ı32.
(:umonte Su\&s, I amaponges, S.-E, S'umatrar.
```


```

 l'ulau Ivumdur, Rhio-I ingma Arehipelamo.
    ```

```

roon. Proc. L.\&. Nat. Nus. SXXI, P, 工61.
Great kiarmmon Island, Rhus-Lingga Archipelago.

```


```

 Bamgka Island, E.Sumatra.
    ```

```

1000. Jroc. L.S. Nat. Mus. NXXI, p. 5No.
I'ulau. \ermdanau, west or Bulliton.
```

```

1900. I'ruc. U.S. Nat. Nus. \XXI, R. 57.
larmmata lsland, off Burnean coast.
```

```

1007. Jruc* L.S. Nat. \us. NXXIll, p. 554.
Sanggatu, W. Borneo.
```

```

101!. Prmc. U.S. Nat. Nlus. NI, P. S2.
I"ulau P'amebangan. west coast of Jomneo.

```

```

1011. Prom, U.S. Nat. NIus. NL, p. 刃工.
I'ulau ['tlapis, West coast of Bormeo.
So. (ALIGNCILIRUS PRIVGNJI BORNEOENSIS, NIuller \& Schleqe]
1830-44. \erhancll. P. S6.
lontanak, IBomet.
```

```

1907. Jruc. [.\&. Nat. Nus. S\XIII, п,553.
Nurth bank of liapuas River, \V. Borneo,
```

```

190%- Smoths. Misc. Coll. NI, VIII, P. 275.
!ulau Temaju, W. Burneo.

```

```

1807. Amn. Mag. Nat. IIst. 3,
, P. з刀7.
Sarawak, \berne=s.
```

```

1001. Annm. Nag, Nit. Hist. T, \II, f. 17%.
Kuchane, Sarawak, Borneo).
```

```

1\$(1?. Ned. 'Tıjd. Dicrk, 1, p, 27, pl. i1, fig. 1.
Kapuass Ravitr, W. Bormeos.

```

1913．Smiths．Mise．Coll．I Nit，21，P． 23.
＇Ialisaian Mountain，1 uteh S．－li．Borneo．

1901．Anm．Mag．Nat．Hist．7，Vll，p． 173.
baram，Borneo．（I ow country．）
188．CADAGACIURUS PREVOSTI GRLGELCACDA，Bonhote
1901．Aun．Mag．Nat．Hist．7，V11，p． 174.
Mount K゙alulone，Baram，Borneor．

1853．Esq．Zool．Côte de Cuiné，p． 2.48.
Menado，N．－UV．Celebes．
190．CAISOSCHCRL A PREVOSTI SCIHAEGELI，Gray 1867．Ann．Mag，Nat．Hist．3，XX，p． 278.

Noma，Celtbes．
191．CALI．OSC＇ICRLS PREVOS゙1＂I BALUENSIS，Bonhote 1901．Mmn．Mag．Nat．Hist．7，VII，p． 174.

Mt．Kina Balu，N゙．Borneo．
192．CALLOSCIURLS PREVONGIJ SLIFESSS，Bonhote 1901．Ann．Mag．Nat．Hist．7，VlI，p． 175.

Tutong River，N．－IV．Bornco．
193．CALLOSCJCRCS PREVOSTJ RLFON゙IGLR Gray
1842．Ann．Mag．Nat．Hist．X，p． 263.
Labuan Island，ぶ．－IV．Borneo．

1867．Ann．Mar．Nat．Hist，3，NX，p． \(2 \mathrm{~S}_{3}\).
Sarawak，Borneo．

1866．Proc．Zool．Soc．London，p．+29.
＇Type locality uncertain．
Synonym：erebus，Miller，1903，Proc．U．S．Nat．Mus．XXV1，p．456．
＇Tapanuli Bay，N．－IV＇，Sumatra．

1908．Proc．U．S．Nat．Mus．XXX1V，p． 63 S.
Pulau Rapat，E．Simatra．
197．CALAOSCIURE SREVOSTI 入AVGATOR，Bonhote
1901．Ann．Mag．Nat．Hist．7，Vll，p． 171.
Sirhassen，Natuna islands．

1900．Vroc．W’ashington dead．Sci．，II，p． 218.
Pulau Wai，＇lambelan Islands．
 1900．Proc．Washington Acad．Sei．，II，P． 219 ．

St．Barbe Island，\(\stackrel{i}{ }\)（＇hma sea．

1932．Bull．Ratlles Mus．6，Г．25．
Balambangan latand．N．Bornco．

1023．Bull．Raffles Mus，s，p． 105.
Baran district，Burnet．

Imoz．Ned．＇「ijds．Derk．1，P． 25.
sumatra．

1820．Verh．Ned．Ind．Inst．Amsterdam，H，p，243．
（？）Sumatra（＂East Indies＂）；quoted hy Ruhinson m sumatran Shammals list．

\section*{notatus Group}
 1ぶュ．Zoul．Rus．Java．p．If！．

Java；probably east central parts．

```

IM2I. Journ. Fed. NFalay States SHus. X, p. 231.
Tamansari, Idjen Massif, Itoo ft., E. Java.
zon. ('ALIO\&CILRL`S NIGRONIITATL's BLISNHTATLS, Mmler
Ig03. Smiths. Misc. Coll. NLN, p.s.
Tanjong Labula，Trenceanu，E．Malay Peninsula．

```
 ir，II．Journ．Fed．Malay States Nas．IV，p．IGo． Pelepak，Juhore，Nalisya．
 190\＆．Journ．Fed．Mal．States Mus．II，p．Ift．

Juara Bay，Pulau Tioman，coast of Pahang．
 10t1．Journ．Fed．Dalay States Nus．IV，p．16\％．

Pajo，Padane I Heghanads，W＇．Sumatra．

1Sus．Anm．Mage．Nat．H1st．6，太V，p，530．
Mt．Dulit，Maran，Bormen．
 1900．I＇roc．Washineton，Acad，Sij．II，p． 225

Saddle Island，Tambelan Grour）．

1920．Nit．＇Tijds．Ned．Ind．Aro，P． 103.
Meserahe，Java．


Wist Java．

plemtemi，Ljunge，Vet．Akad．Handl．1801，「． 99. Jasa．
 Java．
semqiams，Shaw，Gon，Zoul．2，P．147，1801．

 1928．Journ．Fed．Malay Sitates Mus．X，p． 230.
＇Tamansari，Idjen Massif， 1600 ft. Li．Java．
215．CALAOSCHELES NOTATLA MADERAE，Thomas 1910．Ann．Nag．Nat．lhist．S，V＇，p．3N6．

Marengan，near Soemenep，l：．Madura lsland，N．－F．．Java．
216．CAL，OSCICRL＇S NOTATLS BALSONI，Robinson \＆tiroughton 1911．Journ．Fed．Malay States Nus．IV，p．234．

Tjilatjap，s．Central Java．
 1913．Ann．May．Nat．llist．8，XI，p． 505.

Balcling，Bali．
28．CAI，\＆OCHLRLS NOTAFLs MICROTHA，Jentink 1859．Notes Leyden Mus．1，p． 4 ．

Salever lsland，Java Sea．
 1926．Journ．Nalay Branch Roy．Asiat．Suc．t．p． 260. ＇l＇engeot lsland．Nalay Peninsula．
220．CALLOACILRLS NOTATLS VINHELRN1，Sody 1929．Nat．Tijds．Nect．Ind．88，p． 327.

Tjipanas，Garoct，Java．
221．CAILOACILRLS N゙OTATLS VERBEEKI，Sody
1929．Nat．Tijds．Ned．Ind．88，p． 330.
Bandar，Distr．I＇adangan，Rembang，Java．
222．CALIOsClLRL＇s NOTATL＇S MALAW゙ALJ，Chasen \＆K゙loss 1932．Bull．Raffles Mus．6，p． 26.

Mallewalle Island，Ni．Borneo．
223．CALlosClLRLS NOTATLS NHCOTIANAE，sody 1936．Nat．Tijds．Ned．Ind．96，p． 217.

Kampong Silalas，near Nedan，Deli，N．Sumatra．

1913．Smiths．Wisc．Coll．1X1，no．21，p． 22.
Lo Bon Bon，Dutch S．－E．Burnew．
225．CALLOAClLRL＇S ANDREWSI，Bonhote 1901．Ann，Mag，Nat．llist．7．V＇ll，p．450．

T＇jigombong，Java．
226．CAHAOSClCRLS VITTATLS VITTHTLS．Raffles
1822．Trans．Limn．Soc．X111，［． 259.
Bencoolen．WV．Sumatra．
Synonym：tarussamus，Lxon，190\％，smiths．Nisc．Coll．Xl．V1ll． p．279．Tarussan Ray， 11 ．Sumatra．
22～．CALIOSCHERLS YITTATLS ※ATLRATL心，Mhller 1903．Proc．Ľ．．Nat Nus．X゙オV゙I，p． 453.

Pulau Dlansalar，off Tapanuli Bay，WV．Sumatra．
22S．CALLOACILRLS VIT＂IATLS PRETIOALS，Maller 1903．J＇roce．L．．．Nat Nus．NXV＇I，p．454．

Pulau Bangkaru，Banjak Islands，IV．Sumatra．
\(=1\) Lsenis krotent－ 1
 two3. I'roc. U.s. Nat, Nus. XXVI, p. 455.

P'ubau 'Tuangku, Banjak Islands. W'. Sumatra.


'Tapanuli Bay, H. Sumatra.
 1103. mmaths. Nisc, Cull XLJ', p. 10.

N bank of Endau River, S.-E. Pahang, Malaya.
 100尺. I'roc. U.S. Vat Mus. X゙XXIV, p. \(0+0\).

Pulatu Rupat, E. Sumatra.
233. CALIOACILRUS VITTATL'S SLBLLCTELS, Thomas \& Wroughton 1900. Ann. Ming Nat. Hist. X, IlI, p. \(4+0\).

Si Karang, S. -E. Johore, Malaya.
234 (ALLOSCILRLS VITTATLS SINCAPLRENSLS Robmson qob J. Jurn. Feal. Malay states Nus. V'll, p. 73.

Changs, Singapere Island.
235 CALSOACIURL 1916. Journ. Fed. Malay States Mus. VII, p. 64.

Pulau Napor, Rhio-Lingga Archupetago.
230. CALIOACDLRUS YTYTAPLS NESHOTES, Thomas \& Wroughton ryor. Ann. Mag. Nat, Hist. \&, 11], p. \(4+0\).

Pulau Batam, Rho-Lingea Archipelaga.
237. CALLOSClLRLS VTTTAILS TENLIROSTRIS, Mhlter
1000. Proc. Washington Acad. Sci, II, p. 221.

Tiuman Island, off coast of Jahang.
 1900. Proc, Washingtom Acad. Scı., 11, p. 223.

I'ulau Siantan, Anamba Islands.
 1000. Proc. N'asheneton Acad. Sci., II, P. 224.

Bey Tambedan Istand, S. Chma Sea.
 1003. Smeths. Misc. Coll. XLV, p. io.
['ulau Aur, near P'ulan'Tioman.
 1912. Ann. Mag. Xalt. IIst. S, X, p. 592.

Pulau Dayane, near P'ulau Aor, S. China Sca.
 1103. Smiths. Misc. Coll. XL', p. Ir.

I'ulau Panau, Atas Islands, S. Chona Sica.
243. CALLOSCIURLS VTTTATLAS PLMANGILENSIS, Maller 11)03. Smoths. Mise. Cioll. XLV, p. 9.

I'emangal Istand, near f'ulau ' \(\boldsymbol{T}\) imman.

\footnotetext{
 1903. Smiths. Misc. Coll. NIIV, p. 12.

Tana Bala, Batu lsland, W, Sumatra.
 1906. I'roc. U.S. Nat. Mus. NXXI, p. 5s.

Pulat Serutu, Kiarimata Islands.
 1909. Proc. U.S. Nat. Mus, XXXVI, p. 509.

Direttion Island, S. China Sea.
 1001. Droc. Washington Acad. Sci., H1I, p, 124.

Sirhassen 1sland, Natuna Islands.
24*. CALAOSCIERLS VITTATES LAMCOOTANLS, Lyon 1918. Proc. U.S. Nat. Nus. NL, P. 85.

Pulau Lamukotan, W. IBorneo.
 1911. Proc. L.s. Nat. Nus. KL, p, S6.

I'ulau Dato, W'. Borneo.
 1911. Proc. U.S. Nat, Mus, NL, p, S7.

Pulau Mata Siri, Java Sea.
251. CALLOSClURL'S VTTTA'1"'s ARENDSLS, Lyon 1911. Proc. U.S. Nat. Mus. K1, p. 87.

Arends Island, Java Sea.
 191i. Proc. U.S. Nat. Mus. Kle, p, 89.

I'ulau Laut, off S.-l:. Borneo.
253. CALIOSCIURU'S V'ITTATCS L.AU'TENSIS. Miller 1901. Proc. Washington Acad. Sci., III, p. 128.

Pulau laut, N. Natuna lslands.
 igoi. Proc, Washington Acat. Sci., 111, p. 126.

I'ulau Nidei, S. Natuna lslands.
 1001. Proc. Washington Acad. Sci., 1II, p. 127.

Runguran, Natuna Islands.
 1001. Proc. Washington Acad. Sci., 111, p, 125.

Pulau Seraia, Natuna Islands.
257. (Al.JOAClURL'S VITTVTLS ALBESCENS, Bonhote 1001. Ann. Nag. Nat. 11ist. 7, VII, p. \(44^{\text {ti. }}\)

Acheen, N. Sumatra.
 1001. Ann. Nag. Nat. Hist. 7, VII, p. 451.

Mount Dulet, IBaram, Borneo.
 1013. Smiths. Nisc. Coll. I, N1, no. 21, P, 23.

Tanjone Batu, s.-E. lkornes.
}


Pamukang Bay，\(\stackrel{L}{ }\) ，Burnen．
 vocupicd．

100\％，I＇rox．［＇．S．Nat．N］us．X゙X゙1，p．501．
＇T＇anjone＇Jcelong，Banka lsland．


budneng bay，Brlliton Island．

tooz．Prox．Wamhineton Acad．Scl．，11，p． 79.
＇Trang，Stamese Malaya．
 10II．Ann．Nlag．Nat．JHist．\＆，VIl，p． 117.

Bedunes lsland，off＇Trengeanu，E．Malay leninsula．

1011．Anm．Mar．Nat H1st．\＆V V I ，p． 117.
Great Redane Island，wf＇rengganu，E．Malay＇Pemmsula．
 1011，Ann．Xate．Nat．Ifist．灻，VII，p， 118.

W．P＇erhentian Island，of＇T＇reneqamu，E．Nalay l＇eninsula．

Ig1I．Ann．Mar．Nat．llist．S，VIl，p．118．
E．Perhentian Jiland，off Treneganu，E．Malay Penmsula．
 1911．Ann．Mar．Nat．Ilst．X，VI］，p． 118.

Lantmga Island，off＇Trengema，E．Nalay l＇enmsula．

1924．Journ，Malay Branch Roys Astat．Soce 2，p． 58. ］＇enange Island，Malaya．
 1924．Journ，Malay Branch Roy，Astat．Suc，2，p．5\％． Burtane Islancl，Malaya．
 1ust．Journ．Malay Branch Roy．Astat．Soc．2，p．58． Bulan 1 stand，Malaya．

 N．Sarawak，Borneo（Daram Rorer）．

Digervthus Group

1836．Jwurn，As．Sixe．Benzal，V，p，232．
Skl：m．
Symonym；assamensis，Ciray，ex MeClelland．ist3，list．Namm，p．143； 110m．nud
 1916．Journ．Bombay Nat．Ihıst．Soc．NXIV，p． 236.

Minsin（east bank），Upper Chodwin，Burma．

1867．Ann．Nag，Nat．Ifist．3，K犬，p． 281 ．
sikkim．

1854．Ann．Nak．Nat．Hist．2，S1V，p．172．
I acca，Bengal，India．
277．CALAOOCHLJRLS RLSTHI MEARSI，Bonhote
1906．Ann．Nag．Nat．Hist．7，XVIII，P． 337.
Chinbyit，Lower Chindwin，Jurma．
278．CALLOSCILRL＇S B1，YTull 131：1．LONA，Thomas \＆Wroughton
1916．Journ．Bombay Nat．Hist．Soc．NXIV，p．420．
Kin，NIddle Chindwin，Burma．
2\％9．CAlJ．OsCll＇RLS B1，Y＂THI V1JRGO，Thomas \＆Wroughton 1916．Journ．Jombay Nat，Hist，Soc．ふXIV，p．+21.

Tatkon，Cpper Chindwin，Burma．
280．CALJOSCILRL＇S sTEVEXSI，Thomas
1908．Journ．Bombay Nat．llist．Soc．XVlll，p． 246.
Beni－Chang，Abor－Miri Hills，Cpper Assam．
2St．CALAOSCJURUS PYGERY＇THRL A PYGERYTHRUS，Geoffroy
1832，Nag．Zool．Cl．i：Belanger Voy，Zool．p．I45，pl．vii，is 47.
I＇egu，Burma．
Synonym：inornatus，Giray，Ann．Nag．Nat．Hist．i 867 ，3，XX，p． 2 S2．
282．CALIOSCILRCS PYGERYTHRLS JANETTA，Thomas
1914．Journ．Bombay Nat．Hist．Soc．XXIIII，p． 203.
Nandalay，Upper Buma．
283．CALLOSCIL゙RL＇S PHAJREI PMAY＇REI，Blyth
1855．Journ．Asiat．Soc．Bengal，太オVIV，pp．472， 476 ．
Moulmein，Jurma．
28＋C：MLLOSCILRL：PHAYREI BLANFORDI，Blyth 1862．Journ．Asiat．Soc．Beneal，XXX1，p． 333.

Ava，Lpper Burma．

\section*{quinquestriatus Group}

285．CALIOSCIC＇RLS QUJNOLJE゙MRIATL゙A QUINQLESTRIATLS，Anderson 1871．Proc．Zool．Soc．London，p．142，pl．x．

Ponsee，Kakhyen \(1 \mathrm{H} l \mathrm{ll}\) ，Yunnan border．
Synonym：beebei，Allen，igri，Bull．Amer．Jus．Nat．Hist．KXX． p． 33 ．Kuching，Sarawak（erroneous）．
286．CALLOSCILRLS QU1NQUEATRLATL＇S INARJL＇S，Thomas 1926．Ann．Nag，Nat．list．9，Sill，p．6qo．

K゙achin，N゙．Burna．
 1926．Ann．Nag．Nat．Hist．9．太̇ll，p． 041 ．

Schweli－Salwe＇n Dıvide，IV．Yunnan．

\section*{hippurus Group}
 IS？2．Mag，Zool．Cl，1，pi．VI．

Java（erroncous），substitute Walacea．
Symonym：rufogaster，Gray， 1842 Ann．Nag．Nat．list．X，p． 263.
Malacea．
280．CALLOSC＇ICRUS HHPPLRUS GRAYI，Bonhote
1901．Ann．Nag．Nat．llist．7，Vll，P． 171.
sarawak，Burneo．

1007．Smiths．Misc．Coll．L，Pt．1，P． 26.
Carussan Bay，W．Sumatra．
201．CALDOSCILRLS：HHPPCRL＇S HIPPLRELLLS，Lyon
1007．Smiths，Misc．Coll．L，I＇t．1，P． 27.
Batu Ampar，Landak Range，W．Borneo．
292．CALLOLC＂URLS PRYERI PRYERI，Thomas
1892．Ann．Mag．Nat．Hist．6，X，p． 214.
Near Sandakan，Britash N．Borneo．
293．CALLOSCICRE＇S PRIERI INOLINATLS Thomas
1908．Journ，Bombay Nat．Hist．Suc．XVIll，p． 247.
Lawas River，N．－WV．Borneo．
294．C．ALIOSCJLRLS MELAN゙のGASTER ME1ANOGASTER，Thomas 1895．Ann．Mus．Civ．Stur．Genoa，XIV，p． 668.

Sipora，Mentawei Islands，W．Sumatra．
295．CALLOSCELRLS ME1ANOGASTER ATRATLS，Niller
igo3．Smiths．Misc，Coll．XLV，p． 13.
N．Pagi Island，W．Sumatra．
 1928．Proc．Zool．Sue London，p．Szz．

Siberut Island，W．Sumatra．
297．CALALOACICRC＊BR（O）KEI．Thomas
1Soz．Ann．Mag．Nat．Hist．6，IX，p． 253.
surawak，Burneo．
248．（ADLOSCOLRLS SADARENSIS，Stecte
1 igoo．List Birds，Mamm．Steere Exp．Ihilippines，P． 30.
samar，Philppune Islands．
249．CALAOCILRLか MHNDANENSF，Stecre
1 Kigo．List Burds．Namm．Steere Exp．Ihihppines，p．2g．
Aindanas，I＇hilippine Isands．
Synonym：agst，Meyer，i Soo，Proc．Zool．Soc．London，p． 600. Davao，S．Mindanao．

300．CALLOSCICRLS PHLLJPPLNENSIS，Waterhouse 1839．Proc．Zool．Sor 1 Iondom，P．II7．

Mindanas，＇bhlippine Islands．

1876．Proc．Zool．Soc．Lomdon，p．735，pl．xix，fig． 1.
Balabac Island，I＇hilippine Islands．

302．CALLOSCILKU＇S JVIXCl＇S，Timomas 1908．Ann．Mur．N゙at．llist．S，II，p．\＆9\＄．

Palawan，I＇happone lstands．

1808．Sit\％．Ber．Ces．犬゙at．Fr．IBerlm，5，P． 41 ．
Calamianes，Philippone Islands．
304．CALILOSCllRL＇S ALBIC＇AL＇DA，Natsche 1898．Sit\％，Ber．Ges．Nat．For，Berlin，5，p． 42. Calamanes，Phappine｜slands．

\section*{leucomas Group}

305．CALIOSCICRUS LELCOMLS LIELCONLS M，Muller \＆Schlegel 1839．Verhandl．Nat．Gesch．，p． 87. Celcbes．
306．CALLOSCJLRECS LIECOONLSOCCIDEN゙TALIS，Neyer 1898．Abh．Nus．Dresden，no．t．p． 2. Wiest Celebes．
307．CALLOSCILRL＇S TOPAPLEN゙SIS，Roux 1910．Kool．Anz．35，p． 518. Nit．Topapu，Central Celebes．
30\％．CALLOSCILRL＇S NOWEWKスSIS，Rous 1910．Zool．Anz．35．p． 519.

Nowewe，S．－E．Celebes．
309．CALLOSCILRL＇S ELBERTAE，Schwarz
1911．Ann．Mag．Nat．Hist．S，V11，p． 639.
E．Kabaena，off Celebes．
310．CALAOACJLRES TONKEAスじS，Never s896．Abh．Mus．Dresden，no．6，p．25，pl．x，fig．i． ＇Ionkean，Celebes．
311．CALLOSCILRLS SARASINORLX，Wever 1898．Abh．Mus．Dresden，no．4，p． 1. Central Celcbes．
312．CALI．OSCILRLS WEBIERI，Jentink
1890．Weber．Zool．Ergebn．I，p．i15，pls．vini，x． Central Celcbes．

313．CAL．A．OCILRLS TINGAHII，Never 1596．Abh．Mus．Dresden，no．6，p．27，pl．x，tie．4． singir Istands，Celebes．
 1879．Notes Levden Mus，p． 37.

Sangir Islands，Celebes．

> rwbriaenter Group

35．CALAOACIURLS RLBRIVEN゙TER，Forster 1839．Nuller 太 Nchlegel．Verhandl．Nat．Gesch．p． 86.

Minaluassa，X．Celebes．

3ith. Cill.USCILRL* AlsTuNI, Anderson
15-2. Zoml. W. Yunnan. p. 252, pl. xxi.
(?) Bornco.

1579. Niotes Levden NIus. 1, p. 39.

Nusa liambangan, off Tjilatjap, Jaヶa.
318. CALEOSCILRL® CHINENSis, Gray 1867. Ann. Mag. Natt. Hist. 3, NX, p. 282.
" ("hina" (based on a specimen of temus?).
Addenda:

\section*{maclellandi Group}

1921. Inurn, Nat. Hist, Soc. Siam, IV, p. 101.

Jompong Som Bon, Cambodia.
avthracus (irump
(CAlJ. NACIURUS FINLAYSONI RAJASINA. Kloss.
1920. Journ. Nat. Hist. Soc. Simm, 1V', p. 103.

Lat Bua Kian, East Siam.

1916. Jumm. Nat. Hist. Snc. Siam, JI, p. 16.

Lirahan, Central Siam.
'lhere are also at the British Museum skulls bearing the names "mgrozittatus mbrigula" and "caniceps tabitus." 'The references to these races have not been traced.

\section*{Genus g. FUNAMBULUS, Lesson}
1835. Finamblems, Lesson, Illustr. de Zool. (15) pl. 43, 2 pp. text.

I Byo. Euxertis, Forsyth Major, Proc. Zoul. Sue. Lundon, P. I B9, part, subuenus of Ferus containng species now referred to this genus, Menetes, Lariscus and Rhinosciurus.
1923. Taninds, l'ocock, I'roc. Zool. Soc. Londm, p. 215. (Fumambulus tristriatus, Waterhousc.)

Type Spfors--V'uramhulus indicus, Lesson - Sciurus palmarum, Linnaeus.
Raxge.-Ceylon, Gouthern Peninsular India, north to Surat, Palanpur, Central Prosinces, Bihar, Rawalpindi (North Junjab), and Baluchistan.
Nomber of Forms.-Twenty-four.
Characters.-Skull with more or less clongate rostrum; postorbital process not large; parictal ridges frequently joined together. Zygonatic plate as a rule slanting upwards far forwards, and relatively prominently ridged. Infraorbital foramen normal. Palate normal. Coronoid process usually low. Cheekteeth with upper series characterized in the young by noticeably high cusps; P. 3 well developed; the ridges high and the depressions deep,
in the main teeth; the small outer third cusp, usually present in Sciurus, is generally absent or scarcely traceable in this genus. Lower checkteeth with four wellmarked cusps each tooth, the small subsidiary cusps of Sciurus usually not clear; the eentral depression tending to be ratler smaller than is usual in Scierus or Callosciurus; the transverse ridge extending from the anteroexternal to the anterointernal cusp present.
lorsyth Major transferred this group to Verus (with Menetes, Lariscus, Rhinosciurus, etc.), evidently rather on cranial than dental characters, remarking, "the less semibypsodont oriental S. tristriatus and S. palmarum tend to connect the Acrus type with the Sciurus rulguris type (of tooth) in approaching the form of molar of most of the middle-sized Oriental Squirrels" (referring to Callosciurus).

But no one, so far as \(\mathbf{t}\) have traced, has ever defined this genus, and to do so is no easy matter. Thomas proposed that all subgenera of Forsyth Najor (of Xerus and Sciurus) should he given generie rank; but the above-mentioned dental characters are searcely of generic importance. The characters of the baculum, so far as 1 have read, while very variable within the genus, are not those either of Sciurus or Callosciurus. Other than the fact that the cusps are noticeably high as a rule in the cheekteeth (when young), and that the coronoid process appears rather low, and the zygomatic plate which seems different from Sciurus, though not from Callosciurus in every case, I can find no constant difference between this genus and Callosciurus on the one hand, Sciurus on the other. As I feel uncertain to which of these Frummbulus stands nearest, and it has long been regarded as forming a natural group, \(t\) retain it. Externally with three prominent white stripes usually present (five in pemmenti); the central one is mid-dorsal. In sublineatus, a small thick-furred type with the tail normally more narrow than is usual, these stripes much reduced. In layardi, all but the mid-dorsal stripe are becoming reduced. 'Ihese two species are rather darker than the other forms. Fur normally rather coarse and short. Tail not reduced in length; digits normal (arboreal type).

Pocock erected Tamiodes in 1923 , based solely on formation of baculum, for \(F\).tristriatus. In 1936, Osman Ilill (Ceylon Journ. Sci. Section B, Zool. \& Geol., SX, pt. 1, p. 100) revicwed the penial characters of the squirrels of Ceylon, and remarks: "The Striped Squirrels . . . form a very difficult problem. According to l'ocock's definitions, the Cevlon race of palmarum would fall into the genus Tamiodes. whilst lasd \(d i\), with its ennical appendage on the tip of the glans would fall into Funambulus. Prohably sublineatus on the characters of its glans would fall between the two, though on its haculum it would require a new genus. It seems almost ahsurd that different geographical races of what would otherwise be regarded as one and the same species should on their penial characters require separate genera, though theoretically one is bound to admit that this is the correct procedure. Entil more species have heen examined. . . I consider that it is hest to retain Fumambulus for all these seriped-squirrels, despite their penial differences. The alternative is to re-define the qenera Tamiodes and Funambulus to fit the new knowledge, and probably in addition to institute a third genus for sublineatus." In the same paper he writes: "Ratufa would appear to be very
different from the smaller syuirrels in its penial characters, but there is apparently less uniformity through the genus than wouk have been expected. The differences of \(R\). macroura from the others canot at this stage, however, be granted to be of generic importance, though differences of smitar order have been used by Pocock in separating some of the smader Squirrets generically:"

It is clear that if each species (or subspecies) which differs in this respect is to he given a new seneric name, we shall soon have to deal with over a theusand genera in this Order! But whereas differences in haculum may be valid as regards solving the problem of whe the two forms belong to the same species or not, I am strongly of opinion that no generic names based solely on the shape of this organ can be retained. This view is hed by llowell, \(1933^{\circ}\), whe remarks: "The writer does not believe, however, that in the absence of trenchant cranial characters, the morphology of the baculum alone shoutd be considered of generic value."

\section*{List of Named Formis \\ palmarum Group}

1766. Syst. Nat. 1, p. N6.

Madras.
Synonym: penicillatus, Leach, 1814, Zanl. Misc. 1, p. 6, pl. r.
mdous, Lesomn, 1835 , 11lustr. de Zool. (15) pl. 43 .

ryo5. Juurn. Bumbay Nat. Hist. Suc. XVI, p. 41 .
Trisandrum, 'Travancore.
3. FL'NAMBLILE PALABARL A BELLARICL'S, Wroughton
1916. Journ. Bumbay Nat. H1st. Soc. NXIV, p. \(6+7\). Vizayanagar, Bellary, South Indra.
4. FLCAMBLELS PALALARIM FAVONICLS, Thomas \& Wroughton 1915. Journ. Bombay Nat. 11sct. Suc. XXIV, P. 39 . Udugama, Southern Prounce. Ceylon.
5. FCXAMBLLLES PALTARL MI KELAARTI, Layard
1849. Blyth, Journ. Asiat. Suc. Bengal, XV1II, p. 602, footnote, id. ©p. cit. AXX, p. 166, 1852.

Hambalote, Ceylon.
6. FLXAMBLLEX PALABRL M BRODIEX, Blyth
1849. Journ. Asiat. Soc. Bencal, XV111, p. 602.

Pount Pedro. Ceylon.
7. FLNAMBLLL'S PALAMAREO WLYMPILS, Thomas \& Wroughton
1915. Journ. Bumbay Nat. Hist. Soc. XXIV, P. 41.

Urugalla, llighlands of Central Ceylon.
 1916. Journ. Bombay Nat. Hist finc. NXIV, p. 647. Pachmarha, Hoshansabad. Central Provinces, Inda.

 Hazaribash, Bengal (num Bihar).

10．FLNAMBCL．LS PALNARUM MATV＇GANENSIS，LAndsay
1926．Journ．Bombay Nat．Hist．Soc．NXXI，p． 239. Natugama，Western Province，Ceylon．
11．FCN゙ANBLLES JIIOALASI，Wroughton \＆Davidson 1919．Journ．Bombay Nat．IIst．Soc．NXVI，3，p． 729. Khandalla，Bombay I＇residency．
12．FUNANBLLL：GosisEl，Wroughton \＆Davidson 1919．Journ．Bombay Nat．Hist．Soe．XXVI，3，p． 730. Kotageri，Nilgeres，India．

1905．Journ．Bombay Nat．Hist．Soc．NiVl，3，p．+11 ． Mandvi Taluka，Surat district，Bombay．
14．1：NAMBLTLS JENNANTI ARGENTESCENS，Wroughton 1905．Journ．Bombay N＇at．Ilist．Soc．SV1，p． 413. Rawalpindi，North Punjab．
15．FLNAMBLLEビタ PENNAN゙TI LETESCENS，Wroughton 1916．Journ．Bombay Nat．Hist．Soc．NXIV，p． 430. Deesa，P＇alanpur．
16．IVNNAMBLLC゚ TRRISTRIATE＇S TRRISTRIATLS，Waterhouse 1837．Charlesworth＇s Jlag．Nat．Hist．1．pp．＋96－9． Madras（by designation）．
Synonym：dussumieri，M！ilne－Edwards，1867，Rev．Zool．N1X，p． 226. Nalabar．
17．FLN゙ANEBLLLS TRISTRIATLS NUMARIL心，Wroughton 1916．Journ．Bombay Nat．Hist．Soc．NXIV，p．646． Helwak，Satara district，Western Ghats，Bombay．
18．FCN゙AMBLLUS TRISTRIATLS ANNANDALEI，Robinson 1917．Kec．Ind．Mus．Nilll，p． 4 ．

Shasthancotta，west of Western Ghats，Travancorc．
19．FLNAMIBLLCE WROLGIITONI，Ryley
1913．Jours．Bombay Nat．Hist．Soc．XKII，p． 437. Makut，S．Coore．

\section*{lavardi Group}

20．FUNAMBL＇LLS LAYARDI LAYARDI，Bly th
1849．Journ．Asiat．Soc．Bengal，NVIII，p． 602.
Ambegamoa Hills，Cevton．
21．FLN゙ANIBLLC＇S LAYARDI DRAVHDI．NVLS，Robinson
1917．Rec．Ind．Mus．NIII，p． 42.
West side Western Ghats，Trasancore．

1924．Ann．Nag．Nat．Hist．9，Nill，p． 241.
Ratnapura，S．Ceylen．

\section*{sublineatus Group}

23．FUNXXBLIL＇S SCDBINLATLS SLBLINEATLS，Waterhouse
1838．Proc．Zool．Soc．London，p． 19.
Nilgiris，India．
Synonym：delesserti，Gervais，18．f1，L＇Institut，p．171．Nilgiris．

18S6. Verh. Zooh. But, Ges. Wien, XXXVV, p. 525.
Cplands of Cevlon.
Symonm: kafleomae, 'lhemas \& Wroughton, Journ. Bombay Nat. IIst. Soc. SXIV, p. 38, rois. Kottawa, South Prownce, C'eylon.
thimentus, Kelaart, Prodr. Faun. Zevkon, p. 54, is5z; for status see Robinson \& Kloss, Nommal List Oriental Scumblae, Rec. Indam Mus. XV, pt. 4.
Forms seen: argentescons, hellaricus, brodici, comorimes, farmicus, sossei, kathlecmae, lecharti, laymdi, lutescons, matusumensis, mumarius, obscurns, olympus, palmarum, pennomti, rohertsoni, signatus, sublineatus, thomasi, tristriatus, zuoughtoni.

Genus ro. DREMOMIS', Ikeude
isigs. Dremoniys, Iteude, Mem. IIst. Nat. Emp. Chinois, IV', pt. 2, p. 54.
190S. Ze:tis, Thomas, Journ. Bumbay Nat. IIst. Soc XVIII, p, 245. (Sciurus rufigenis, Blanforl.)

Typl: Spletes --Sciurus pernyi, Mhatne-Edwards.
Raics.-Indo-Malayan chictly, hut touching extreme south of Palaearctic China. Hupeh, Szechuan; Fukien, Kweichow, Anhwei, Kwantung, Yunnan; Formosa, J Iainan; Nepal, Sikkim, Assam, Burma, Tenasserim; 'Tongking, Annam, south to Sclanger; Borneo.

Number of Forms.-About twenty-ninc.
Characters.-'This genus, which is said to agree with the "Tomentes" section of Callosciurus in the characters of the baculum, is only separable on average characters from that genus. The rostrum becomes progressively elongated until at extreme development it is abnormal, heing second only to the extreme genus Rhinosciurus. But in \(D\). lokriah, which is the shortest-mosed species of the genus, the rostrum is probably not longer than in some forms of Callosciurus.

The lachrymal is situated farther back in retation to the toothrows than is normal, and the postorbital process is not very far in fiont of the level of the posterior \%ygomatic ront. The parietal ridges evidently do not join, or very rarely tend to come together. Bullae often relatively small. /yyomatic plate moderately ridged, not essentially different from Sciurus. Frontals brod; postorbital process moderate. Checkteeth evidently not essentially different from Sciurus. 1, wer cheekteeth without aboormalities. P. 3 fresent. Forsyth Major referred a species of this genus to Schures, in his paper on the dental characters of the family; later the group was transferred, with Rhinosciurus, Mfortes, and Lariscus, to the genus Fummbulns; still later 'I homas erected Zetis for the group, which is antedated by Dremom's, 1 leude. It is evidently a natural group, though as indicated above very close to Callosciurus.

Tail rather shorter than head and body. Fur thick and soft. IIindfoot rather narrow; digits arranged in the maner charateristic of normal 'lreesquirels. 'Ihe rostrum apparently reaches its extreme detelopment in members of the rufigenis group.

Forms seen：adamsom，beffeldi，bhotia，calidior，chimtalis，everethi，flazior， faschs，saromm，srischer，gularis，hovelli，imus，laomache，lichiensis，lukriah， macmillani，mentosts，modestus，opimus，ormatus，ozestomi，pernyi，probhomerus， rufigenis，senex，＂subflarteontris．＂

1 am inclined provisionally to recognize three groups in this genus：
rufigenis group）：rostrum usually estreme，cheeks usually red，underside of tail bright red throughout its length．
lokiah group：rostrum apparently shortest of genus；belly bright yellow． 1）．mencmillani appears to me to be not more than racially distinet from lokriah．Underside tail and cheeks not red，so far as seen．
pernyigroup：the other species；rostrum moderate to extreme；underside tail and cheeks not red，so far as seen；belly usually white（transitionary towards lokriah in I．oatstoni）．D．eieretti，Bornco，appears to have a narrower shorter tail than is usual in the genus．

\author{
List of Nimhe Fordis \\ tokriah Group
}

1．DREMOMIS LOKRRAH L．OLRRAH，Hodgson
1836．Journ Asiat．Soc．Bengal，V，p． 232. Nepal．
2．DREAJOXIYS LOKRLAH BHLOTLA，Thomas
1916．Journ．Bombay Nat．Hist．Soc．XXIV，p． 426. Sedonchen，E．Sikkim．
Synonym：（？）subflazizentris，Ciray，1843，Hand List Mamm．Brit．Mus． p．144．（？）Assam．Considered a nomen nudum by Robin－ son 太 Kloss． 1918.

3．DREMOMYS RORRRAII GARONUM，Thomas 1922．Journ．Bombay Nat．Hist．Soc．XXV1H1，2，p． 430. Tura，Garo Hills，Assam．
4．DREMOMIY LOKRIAH MACMHLLANI，Thomas
1916．Journ．Bombay Nat．Hist．Soc．XX1V，p． 238.
Kindat，Chindw in R1ver，Upper Burma． （Listed as a valid species by Robinson \＆Kloss．）
permy Group
5．DREAOMIY PERNYI PERNYI，Mine－Edwards
1867．Rev．et Mag．Zool．p．230，pl．XIX． Szechuan，China．
6．DREMONIS PIERNYI FLAVIOR，Allen
1912．Proc．Biol．Soc．Washington，NX゙V，p． 178. S．－F．Yunnan，China．

7．DRFMOMYS PERN゙Y GRISFLD．A，＇Thomas
1916．Ann．Mag．Nat．Ilist．S．XV＇li，p． 392.
Napchuka，W．Szechuan，China

\section*{DRENIOMVS}
\(3 n 2\)
8. DRE TUMIS PIRNY' NODESTLS, 'Themas
1916. Ann. Nag. Nat. Hist. 8, SVII, p. 303.

1912. Mem. Mus. Ifarvard, NL, no. \& p. 229. Ichang, Chma.
10. DRENONIY P PERNYI CHINTALIS, Thomas
1916. Ann. Nag. Nat. Hist. S, SVII, p. 304. Chunteh, Inh-wei, Chura.
11. DRENOMYS PERNYI CALIDIOR, Thomas 1916. Ann. Mar, Nat. Hist. S, XVII, P. 394. Kuatum, N.-VV. Fo-Kien, China.
12. DREXIOXIY PERNYI LICHIEX

13. DRETIONIS PERNYI HMWELIL, Thomas 1922. Ann. Mag. Nat. IIst. ", X, p. for
14. DREXIOMIY PFRNYY N1ENTOLCS, Thmmas
1922. Ann. Mag Nat. Hist. ', X, P. qor.
15. DREMONIY PERCYI INLCS, Thomas
1022. Anm. Mar. Nat. Hist. 9, X, p. 402.

Mount Lmaw Bum, N. Burma.
16. DREDOMIS (OWSTON1, Thomas
1908. Journ. Bombay Nat. Hist, Soc. XVIII, p. 248.

Nount Arizan, Central Formosa.
17. DRENIOAIYS EVERETTJ, Thomas
1890. Ann. Mag. Nat. Hist. 6, VI, p. 71.

Penrisen, Sarawak, Borneo.

\section*{rufigemis Group}
18. DREXIONIS RLFIGENIA RLFIGENIS, Blanford
1878. Journ. Asmat, Soc, Bengal, XL\11, 2, p. 156 , pl. viii.

Nount Jooleyit, Central 「enasserim.
19. DRENGOLYG RLFIGENIS REIFELELDI, Bonhote 1908. Journ. Fed. Malay States MFus. III, 叩. Q, pl. I.

Nountains of Selangor, Nalay Peninsula.
20. DREAIOMIY RUFIGENIS FLSCLS, Bonbote 1907. Abstr. Proc. Zool. Suc. London, p. 2; Proc. Zool. Soc. London, 1907 , P. Io.
21. DRENOXIY REFIGENIS ADANLSONI, Thomas
1954. Journ. Bumbay Nat. IIst, Soc. SXIIf, p. 25 .

Naymyo, Upper Buma.
22. DRENONIY'S RLFIGENLS ORNATCS, Thumas
1914. Journ. Bombay Nat. Hist. Soe. X.XIII, p. 26.

Near None-tze, Yunnan.

1916．Journ．Bombay Nat．Inst．Soc，NXIV，p． 237. Ilkanti，L＇pper Chindwin，Burma．

1895．Ann．Mag．Nít．Hist．6，XVI，p．фフ2．
Ichang，China．

1906．Bull．Amer．Nus．Nat．Ilist．XXIf，p． 472. Riudon，Hainan．

1932．Fietd Mus．Nat．Hist．Publ．Zool．Sicr．XVllf，p．284． Nt．Fan Si Pan，near Chapa，＇longking．

1921．Ann．Mag．Nat．llist．9，VII，p． 182. Ban Hoi Mak，near Pak Hin Bun，Mekong River，Laos．
2S．DRENIONITS RLFEGENIS I．EN゙IC゚S，Howell
1927．Journ．Washington Acad．Nat．Sci．，NVII，p．So． Wenchaunshein，Szechuan，China．

\section*{incertae sedis}

29．DREXIOMYS NELIL，Natschic
1922．Beitr．Faun．Sinica，8S．10，p． 23. Mountains east of Shiuchow，lwantune Province，China．

\section*{Genusir．RATUTA，Gray}

1867．Rattex，（iray，Ann．Mag．Nat．Hist．3．XX．p． 273.
1880．EOscierts，Trouessart，Le Naturaliste，ii，no．37，p．291．（Sciurus bicolur． Sparmann．）
1867．Rikila，Gray，Ann．Mag．Nat．Ilst．3，XX．pp．275－276．（Sciurus macronrus． l＇ennant．）

Type Species．－Sciurus indicus，Erxleben．
Range．－Indo－NJalayan；Ceylon，Southern India（Malabar，Coorg，Mysore）； Bumbay，Surat，Central Provinces，Orissa；Nepal；Bengal，Assam， Burma，Fenasserim；West Yunnan；Hainan；Annam，Siam，Malay Peninsula and small adjacent islands；Sumatra，Java，Borneo；Banka，Billiton，Bali，Natunas．

Number of Forms．－About seventy－two．
Characters－Very large arboreal Squirrels with heary broad skull，sery prominent postorbital processes，brachyodont checkteeth in which the cusps are low and the pattern as a rule not clear，and feet considerably specialized for arhoreal life．

Skull with somenhat depressed frontals，and large heary postorbital process which stands out noticeably from the skull in all species of the genus．Braincase smooth，the hinder portion depressed downwards posteriorly．Rostrum short and broad；frontals very broal．＇Ithe parietal ridges evidently show no sign ol coming together．Weromatic phate hrod，moderately ridged on its upper border and slanting gradually upwards，as in Sciurus．Infraorbital foramen normal，
forming canal, and with masseter knoh present. Nandible normal, angular process not much inflected. Bullae rehatively large; palate broad, normal. Incisors without special pecuharities.

Cheektecth : Originally there is evidently a pattern characteristic of the family in the upper series, but the cusps are abways extremely low, and the pattern is usually whecured by many small depressions and pits, and appears ahays less definite than in Scimms. The lower cheekteeth with the central depression normally moderately well marked, but the cusps much flater than in Sciurus and allies, even the anterointernal cusp nomally being only very slightly raised above the general bevel of the tooth, and sometimes wearing down alogether. I short re-entrant fold between the two onter main cusps normally traceable.

Size large, usually orer 250 mm . or even orer 300 mm , up to 470 head and body length, or perhaps mere. Tail long, thickly bushy, rarely a little shorter than head and body, often much longer. Forefoot extremely hroad, and rather reminiscent in some ways of that of the Erethizontidae; D.f longer than D.3; D. 5 and 1 1.2 shorter, subequal; the inner pad is very much expanded and probably takes the place of the pollex and is used for gripping. Ilindfoot broad, with well-developed hallux and normal arrangement of the digits, D. 4 being the longest. Claws thick, powerful. The plantar and palmar pads, which are evidently considerably specialized, hate been deseribed by Pocock, Proc. Zool. Suc. London, 1922, p. 1185.

As noticed under the genus Fumambulus there is some variation in the shape of the baculum in this genus.

Forms scen: affims, aureizonter, baliensis, baramensis, bengalensis, bicolor, hunguranensis, carmonensis, celacnopepla, centralis, ceylonica, condurensis, conspicma, cothumata, dandolema, dealbata, decolorata, ephiptuian, felli, fretensis, gigantea, hainana, indica, insignis, johusensis, laenata, leucogernes, lutrima, macronra, macruroides, marana, masae, maxima, melanuchia, melanopepla, nanozigas, pelliata, penangensis, phaenpepla, pimensis, presonota, sandukancnsis, sinhalu, sinus, simhassensis, smithi, stigmosa, superams, tementi, tiomentensis.

The classification of Rohinson \(\mathbb{N}\) Kloss, r918, Ree. Indian Mus, \(\mathrm{A} V\), ft, IV, pp. 171-250, Nominal List of Oriental Sciuridae, is accepted.

The genus apparently dues not divide clearly into groups; it may be mentioned that the ear is hearity tutted in indica, all races of which except dealbata are coloured red so far as seen, and which appears distinct from most of the other forms; the ear also is tufted in gigantea, and more or less so in macroura.

> List of Nanel Formis
I. RATLFA MACROLRA MACROLRA, Penmant
1709. Ind. Zool. i, IPl. i.

Itahlands of Ceylon.
Synunym: celomiow, Erkleben, 1777, Syst. Regn. An. p. qi6. Ceylon. temumth, Blyth, 85 I , Journ. Asiat. Soc. Bencal, XX, p. I65.

Nountains, Ceylon.
acylanious, Ray, 1693, Syn. Quadr, P, 215 (fide Trouessart).

2．RATUFA MACROCRA NHWANOCHRA，Thomas \＆Wroughton
1915．Journ．Bombay Nat．I list．Soc．，NXilv，p． 36.
Kottawa，Southern Ceylon．
3．RATLFA MACROLRA AIBHPES，Byth
1859．Journ．Asiat．Soc．Bengal，X゙オV1ll，p． 287. Locality unknown．
4．RATCFA MACROLRA DANDODENA，Thomas \＆Wroughton
1915．Journ．Hombay Nat．Hist．Soc．，NXIV，p． 36.
Wellaway，Uva，Lowland Ceylon．（This race is also known from s．India．）
5．RATLFA MACROCRA \(\rightarrow\) NILALA，Philıps
1931．Ceylon Journ．Sci．Sec．l；，XVI，p． 215.
Nikawewa，near K゙antalai，Eastern Province，Ceylon．
6．RATLFA INDICA 1NDICA，Erxleben
1777．Syst．Regn．An．p． 420.
Lombay Presidency．
Synonym：purpureus，Zimmermann，1777，Spec．Zool．Geogr．Quad． p．518．Bombay．
（i）elphinstonci，Sykes， 183 s ，Proc．Zool．Soc．London， p．103．Deccan．
（？）malabarica，Schinz，i 845 ，Syn．Namm．If，p．32．Nlalabar．
7．RATLlFA 1ND1CA SUleRANS，Ryley
1913．Journ．Bombay Nat．Hist．Soc．，NXII，p． 436.
Wotekolli，South Coorg，India．
8．RATLFA 1NDICA BENGALENSIS，Blanford
1897．Journ．Bombay Nat．Hist．Soc．，X1，p．303，l＇l．B，fig． 2.
Locality not precisely specified．
9．RATLFA INDJCA CENTRMIIS，Ryley
1913．Journ．Bombay Nat．Hist．Soc．，XX11，p． 436 ．
Hoshangabad，Central l＇rovinces，India．
10．RATLFA 1NDICA MAXIMA，schreber
1784．Säugth．IV，p． \(7 S_{4}\) ，Pl．CCXXIl，B．
Malabar，India．
11．RATCFA NNDICA DEALBATA，Blanford
1897．Journ．Bombay Nat．Hist．Soc．，KI，p．299，Pl．A，fig．i．
Surat Dangs，India．
12．RATLFA BlCOLOR BICOLOR，Sparmann
1778．Gotheb．Wet．Seversk．HandI．1，p． 70.
Anjer，West Java．
Synonym：major，Miller，lgit，Proc．Riol．Soc．Washington，KXIV， p．28．Anjer．West Java，
（？）albiceps．Desmarest，1817，Nous．Dict．Hist．Nat．，X， p．105．Java．
javensis，Kammermann，Geog．Ges．，II，17So，P． 342.
（？）leschenaulti，Desmarest，Mamm．，1820，p． 335.
（2）humeralis，Coulon，Nem．Soc．Sei．Nat．Neuchatel，i\＄35， 1，p．12z．
13．R．JTCFA BICOHOR BALAENSHA．Thomas
1913．Ann．Nag．Nat．Ilist．S．XI，p． 506.
Tjetockambawane，［3ali．
25－Livmg Kotent－I

14．RATCHEA BICOLOR PALJJATA，Miller 1902．Proc．Acad．Nat．Sci．Philadelphia，LIV，p． 147. lndragiri River，E．Sumatra．

15．RATUFA BICOIOR LAENATA，Niller 1903．Proc．U．S．Nat．Mus．，NXV1，p． 449. Pulau I＇uangku，Banjak Islands，W．Sumatra．

16．RATUFA BICOLOR BATLANA，Lyon
1916．Proc．U．S．Nat Nus．，LlI，p． 445.
Tana Bala，Batu Islands，W．Sumatra．
17．RATCFA BICOL，OR SNITTHII，Robinson \(\&\) kloss 1922．Ann．Nag．Nat．Hist．9．IX，p．So． Langbian Peaks，South Annam．

18．RATLFA NOTABILIS NOTABILIS，Miller 1902．Proc．Acad．Nat．Sci．Philadelphia，p． 150. Lingga 1 sland，Rhio－Lingga Archipelago．
19．RATUFA NOTABILIS INSJGNIS，Niller
1903．Smiths．Misc．Coll．，SLV，p． 4.
Pulau Sugi，Rhio－Lingga Archipelago．
20．RATUFA NOTABILIS BUIANA，Lyon
1909．Proc．U．S．Nat．Mus．，X゙XXV1，p． 482.
Pulau Bulan，Rhio－Lingga Archipelago．
21．RATL＇FA NOTABILIS CARINIONENSIS，Miller
1906．Proc．U．S．Nat．Mus．， \(\mathrm{SXXI}, \mathrm{P} .257\).
Great Karimon Island，Rhio－Lingga Archipelago．
22．RATUFA NOTABILIS CONDURENSIS，Niller
1906．Proc．U．S，Nat．Mus．，NXXI，p． 258.
Julau Kundur，Rhio－Lingga Archipelago．
23．RATLFA NOTABILJS（ONFINIS，Niller
1906．Proc．U．S．Nat．Nus．，XXXI，p． 259.
Sinkep Island，Rhio－Lingega Archipelago．
24．RATUFA NOTABII，IS CONBPICUA，Miller
1903．Smiths．Misc．Coll．，XLV＇，p． 5. 1＇ulau Bintang，Rhio－Lingga Archipelago．

25．RATCFA EPHHPPIUA EPMHPPICX，Muller
1838．Tijds．Nat．Gesch．Physiol．，V，P． 147.
S．－F．Borneo，low cruntry．
26．RATLFA F\＆H1PPlC
1911．Proc．U．S．Nat．Nus．，Xl，p． 93.
Mount l＇alung，near Sukadana，WV．Bornen，
27．RATLEA EIHIPPILAl BARAXENSIS，Bomhote
ryoo．Ann．Mas．Nat．Ilist．7，V，p． 496. Baram district，Sarawak，Borneo．

28．RATUFA I．PHIPIUN SANDAKANENS1S，Bonhote
1000．Ann．Mag．Nat．Itist．7．V，p． 497.
Sandakan，Brıtish N．Borneo．

29．RATUFA EPHHPPLCD GRISEICOIDIS，Lyon
191t．I＇roc．U．S．Nat．Mus．，Xl，P．94．
Panebangen Island，W．Bornco．
30．RATUFA EPHIPPICN VITVIATA，Lyon
191t．Proc．U．S．Nat．Nus．，Šl，p．94．
Pulau l，aut，S．－F．Borneo．
31．RATCIA EPHIPPIUM VIITATCLA，I．von
1911．Proc．U．S．Nat．Mus．，XI，p． 95.
Pulau Sebuku，S．－E．Borneo．
32．RATUFA EPHIPPIUAI BCNGURANENSIS，Thomas \＆Hartert 1894. Nov．Zool．1，p． 658.

Bunguran Island，Natunas．
33．RATUFA EPHIPPIUM SIRHASSINLENSIS，Bonhote
1900．Ann．Mag．Nat．Hist．7，V，p． 498.
Sirhassen lsland，Natunas．
34．RATUFA EPHIPI＇JUM NAXOGIG．AS＇，Thomas \＆Hartert 1895．Nov．Zool．，II，p． 491.

Pulau Laut，N．Natunas．
35．RATUFA EPIIIPPIUXI POLIA，I，yon
1906．Proc．U．S．Nat．Nus．，XXXI，p． 585. Billiton Island，between Sumatra and Borneo．
36．RATL゙FA EPIIIPPIUXI BANCACA，Lyon 1906．Proc．U．S．Nat．Mus．，NXXI，p． 587. Banka Island，off Sumatra．
37．RATLFA EPIHPPICM LC MHOLZZ，Lönnberg
1925．Ann．Mag．Nat．Hist．9，XV1，p． 514.
Pipoh Boelengan，E．Central Borneo．
38．RATLJ＇A EPIIPPICXI DLLITEN゙らIS，Lonnberg \＆Mjoberg
1925．Ann．Nag．Nat．Hist．9，NVI，p．5iq．
Nount Dulit，Borneo．
39．RATCH゙A AFFINIS AIFINIS，Raffes
1822．＇Trans．Linn．Soc．，Xill，p． 258.
Singapore．
40．RACLIA AFIFNIS HYPOLELC＇CA，Horstield
1824．Zool．Res．in Java，p． 165. Bencoolen，Sumatra．
4t．RATUNA AFFINIS CATEMANA，Lyon
1907．Proc．U．S．Nat．Nus．，X．EXII，p． \(4+3\). Kateman River，S．－F．Sumatra．
42．R．ATLFA AFFINIS JOHORENSIS．Robinson \＆Kloss
1911．Journ．Fed．Malay States Mus．，IV，p．24́．． Padang＇I＇uan，Segamat，X．－W．Johore．
43．RATL゙FA AFHINIS ALRIVENTER，Is．Geotfroy
1832．Mag．Zool．Cl．ı，pl．v．
＂Java＂（in error）：substatute Malacea．
4．RATCFA AFFINIS ARESINL A，LBon
1907．Proc．U．S．Nat．Mus．，X．XII，p．442．
Aru 13ay，N．－E．Sumatra．
45. RATLEA AFFINA I'LRSOMOMA, Mhler 1900. Proe. Washington Acad. Sci., II, P. 75.

Trang, Siamese Malaya.
fh. RATLFA AFFINIS FEDIORALIS, Niller 1903. Proc. U.S. Nat. Mus., XXVI, p. \(4+7\).

Pulau T'uancku, Banjak Islands, off W. Sumatra.
47. RATLFA AFFINIS NGGRESCENS, Mther 1903. Proc. U.S. Nat. Mus., NXVI, p. \(4+8\).

Pulau Mansalar, near Tapanuli Bay, W. Suntatra.
48. RATUFA AFFINIS BALAE, Niller 1903. Smiths. Nisc. Coll., XLV, p. 7.

Tana IBala, Batu Islands, W. Sumatra.
49. RATLFA AFPINIS MASAE, Mather
1903. Smiths. Nisc. Coll., XLV, p. S.
'Tana Masa, Batu Islands, WV. Sumatra,
5o. RATUEA AFFINIS PINIENSIS, Milet 1003. Smiths. Misc. Coll., XLV, p. 7.

Pulau Pinie, Batu Islands, W. Sumatra.
51. RATUFA AFF1NIS BANCLEY1, Chasen \& Kiloss 1932. Bull. Raffles Mus. 6, p. 22. Banguey Island, N. Borneo.
52. KATCOFA AFFLNIS INTERPOSITA, kloss 1933. Bull. Raffles Mus. 7, p. 2. Selangor, Nalaya.
53. RATLFA AIFINS FRONTALIS, Kloss
1933. Bull. Raffles Nus. 7, p. 2. Perak, Malaya.
54. RATLFA GIGANTEA GIGAN'TEA, Nacclelland 1839. Proc, Zool. Soc. Landon, r. 150. Assam.
55. RATLFA GIGANTEA LUTRINA, Thomas \& Wroughton 1916. Journ. Bumbay Nat. Hist. Soc. XXIV, p. 226. West bank of Upper Chandwin, Upper Burma.
56. RATLFA GIGANTEA WACHLROIDES, Hodgson 1849. Journ. Asiat. Soc. Bengal, XVIII, p. 775. Bengal.
57. KATLFA GIGANTEA FELLJ, Thoma, \& Wroughton 1916. Journ. Bumbay Nat. Hist. Suc. XXIV, p. 226. Vin, Lower Chondwin, Burma.
58. RATLFA GIGANTEA HANANA, Allen 1906. Bull. Amer. Mus. Nat. Ilist., XXlI, p. 472. Cheteriane, Haman.

5\%. RATLF. (ilGANTEA STIGMOsi. Thomas 1023. Journ. Bombay Nat. Ilist. Soc., XXIX, 1, p. 86 Dut Gritepe, Chiengmai, Siam.

60．RATUFA PMAEOPEPLA PHAEOPDPLAA，Miller
1913．Smiths．Misc．Coll．，L．JI，no．21，p． 25.
Sungei Balak，S．Tenasserim．
（Robinson \＆Kloss evidently consider this species doubtfully dis－ tinguishable from melanopepla．）

61．RATLFA PHAEOPEPLA MARANA，＇Thomas \＆Hroughton 1916．Journ．Bombay Nat．Hist．Soc．，XXIV，p． 227. Mount I＇opa，Burma．
62．RATUFA PWAEOPEPLA LELCOGFNYS，Kloss
1916．Proc．Zool．Soc．London，p． 43. Lem Ngop，S．－E．Siam．

63．RATUFA IMAEOPEPLA SINU＇S，Koss 1916．Proc．Zool．Soc．London，p． 44. Koh Kut Island，S．－E．Siam．
64．RATUFA MELANOPEPLA MELANOPEPLA，Mher 1900．Proc．Washington Acad．Sci．，II，p． 71. ＇Telibon Island，＇Trong，Siamese Nalaya．

65．RATUFA MELANOPEPLA PENYN゙SLTAE，Mhller 1913．Smiths．Nisc．Coll．，LXI，21，p． 25. Lay Song Hong，Trong，Siamese Nalaya．
66．RATUFA NELANOPEPLA DECOLORATA，Robinson \＆K loss 1914．Ann．Mag．Nat．Hist．S，XIII，p． 227.

Koh Samui Island，Bandon Bight，Siamese Nalaỵa．
67．RATUFA MELANOPEPLA CELAENOPEPLA，Niller 1913．Smiths．Misc．Coll．，L．XI，no．21，p． 26. Domel Island，Mergui Arehipelago．
68．RATLFA NELANOPEPLA FRETENSIS，Thomas \(\&\) Wiroughton 1909．Ann．Mag．Nat．Hist．8，IV，p． 535. Pulau Langkawi，Malaya．
69．RATEFA NELANOPEPLA PENAN゙GENSSE，Robinson \＆Kloss 1911．Journ．Fed．Nalay States Nus．，1V，p． 242. Telok Bahang，I＇enang Island．
70．RATLEA NELANOPEPLA TIONANENSIS，Miller 1900．Proc．Washington Acad．Sci．，II，p． 216. Pulau Tioman，E．coast Malay Peninsula．

71．RATLFA NELAN（OPEPLA AN゙AMHAE，Miller 1000．Proc．Washington Acad．Sci．，II，p． 215. l＇ulau Jimaja，Anamba Islands．
72．RATUFA NELANOPEPLA ANGGSTICEPS，Nhiler 1901．Proc．Washington Acad．Sci．，III，p． 130. Pulan Lingung，Natuma Islands．

Section C．Spechizen Indo－Malayai（iexera，all clearly distinct from Sciurus and immediate allies．In this section，which is not a natural group as regards relationships，but rather holds several very distinct
ofishoots from the more normal Sciurus branch， 1 include Menetes， Laviscus，Glyphotes，Rheithrosciurus，Rhinosciurus and Hyosciurus．

\section*{Genus i2．MENETES，＇Thomas}

1008．Menetes，Thomas，Journ．Bombay Nat．Hist．Soc．，XVIII，no．2，p． 244.
T＇ype Species．－Scinrus berdmorei，Blyth．
Range．－Northern portion of Nalayan region；Siam，Annam，Cambodia， Burma，Tenasserim．
Number of Forms．－Ten．
Characters．－Skull Jong and narrow，with markedly elongated rostrum； postorbital process medium in size or relatively small．In－ fraorbital foramen and zygomatic plate rather variable；in some specimens the part of the zygomatic plate behind the infraorhital foramen is sery narrow， and the foramen is well open；in others，there is an approach to the condition found in more normal genera．A well－developed masseter knob is present． The parictal ridges may join．＇The cheekteeth approach the type of the African Paraxerus，but the pattern tends to wear down very quickly．P． 3 present，strong． The central depression in the upper main teeth remains in adult as a well－ marked re－entrant fold，but the anterior and posterior folds tend to wear out， so that the tooth takes on a more or less horseshoc－like shape．Lower teeth quickly wearing down to a two－lobed structure from a pattern originally like that of Poraserus；the central depression becomes quickly reduced，and remain－ ing as a deep narrow pit，often isolated in the centre of the tooth in old age． Posterointernal cusp and its adjoining ridge strong．The upper incisors rather shortened；the lower ones long．

Tail shorter than head and body．Digits with the arrangement characteristic of arhoreal squirrels．Black and white flank－stripes present，usually strong； in M．b．decoraths the pattern takes on a superficial resemblance to Tamias， including a hack mid－dorsal stripe．Nammae 6 （Thomas）．

Forms seen ：herdmorei，consularis，decoratus，moerescens，mouhotei，peminsularis， nufescens，umbrosus．

\section*{List of Naned Formis}

1．MENETES BERDMOREI BERDNIOREI，Blyth
1849．Journ．Asiat．Soc．Bengal，XVlII，p． 603.
Thoungyeen district，Lower Burma．
2．NENETLES BERD．MORFI AMIOTLS．Mhler
1913．Smiths．Misc．Coll．，LX1，no．2r，p． 24.
Domel Jsland，Mergui Arehipelago．
3．NENETES BERDMORLI K゚のRATENSLS，Gyddenstolpe
1917．Kungl．Svenska．Vet．Akad．Handl．，LVII，no．2，p． 39.
Sakerat，near K゙orat，E．Siam．
4．NENETEA BERDMIOREI MOLHOTEI．（iray
1861．Proe．Zool．Soc，london，p． 137.
Cambodia．
Synonym：pyrociphalus，Milne－Edwards，1867．Rev．Nag．Zonl．2， XIX，P．225．Cochm China．
5. MENETES BERDMOREI DFCORATL'S. Thomas
1914. Journ. Bombay Nat. Hist. Soc., XXIII, p. 24.

Nount Popa, Burma.
6. MENETES BERDMOREI MOERESCENS, Thomas
1914. Journ. Jombay Nat. I Hist. Soc., XXIII, p. 25. Bali, near Nhatrang, Annam.
7. MENE:TES BERDMOREI CONCSULARIS, Thomas
1914. Journ. Bombay Nat. Hist. Soc., XXXIII, p. 24. Nan, North Siam.
8. NENE'TES BERDMOREI UMBROSLSS, Kloss 1916. Proc. Zool. Soc. London, p. 49. Kioh Chang Island, S.-E. Siam.
9. MENETES BERDNOREI RUFESCENS. Kloss
1916. Proc. Zool. Soc. London, p. 50. Koh Kut Island, S.-E. Siam.
10. MENETES BERDMOREJ PENINSULARIS, Robinson \& k゙loss 1919. Journ. Nat. Hist. Soc. Siam, JII, no. 4. p. 375. Ban Kok Klap, Nakon Sritamaret. Peninsular Siam.

Genus I3. IARISCUS, 'Thomas \& Wroughton
1867. Laria, Gray, Ann. Mag. Nat. Hist. 3. XX, p. 276. (Not of Scopoti.)
1909. Lariscus, Thomas \& Wroughton, Proc. Zool. Soc. London, p. 389.
'Type Species.-Sciurus insignis, Cuvier.
Range.-Southern part of the Malay Peninsula, Sumatra, Java, Borneo, and neighbouring small islands.
Number of Forms.-Fourteen.
Characters.-Checkteeth hypsodont, almost completely simplified in pattern. 'The lower series are roughly two-lobed, and even in the very young the pattern is nearly lost. 'Ihus, when cut, the central depression is already narrow and much reduced. Upper cheekteeth with a vague pattern reminiscen: of Fumisciurus sometimes traceable, but usually completely simple; P. 3 present. A short sagittal ridge may be present in old age. Rostrum tending to be long. Bullace rather small as a rule. Zygomatic plate near the Sciurus type; infraorbital foramen normal.

Tail relatively short, usually ahout sixty per cent of length of head and body. Digits as in normal arboreal genera. The type and allies have three black stripes present; hosei is rather more brightly coloured, and has four black stripes. Nammae, type species of (Thomas).

Forsyth Najor in 1893 (1'roc. Zool. Soc. London, p. 185) wrote fully on the dentition of this genus. Ile states that the simplification of the teeth is probably due to the food. comparing these Syuirrels with certain Bats, which feed on juicy fruits whose contents need not be chewed, and differ in a similar manner from their allics ("Macroglessi, Pteropus scapulatus, Epomophori, compared with other Pteropi"). Ile remarks that the species of Lariscus are Ground-squirrels.

Forms seen：diversus，formeatus，hosei，insignis，jalorensis，jazanus，meridion－ alis，niobe，sibern，zencamis．

Robinson \(\mathbb{E}\) kloss， 1918 ，considered all forms other than hosei as races of insignis，thoush mobe is sometimes considered as a distinct species．

\section*{List of Namet Forms} insignis Group
 1821．Ilist．Nat．Namm．（ii） \(34, \mathrm{pl}, 233\).

Sumatra．
2．LARISCl＇S JNIGNIS JALURENSIS，Bonhote
1903．Fascic．Malay．Zool．1，p． 25.
Jalor，N．Malay Peninsula．
Synonym：peminsulae，Mhller，1903，Smiths．Mise．Coll．，NLV，p． 25. Khow Sai Dow，Trong，Siamese Malaya．
3．LARJSCL＇S INSIGNIS MERIDIONALIS，Robmson \＆Kiloss
1911．Journ．Fed．Nalay States Mus．，IV，p．I72．
Chang1，Singapore Island．
4．LARJSCL゙S IN゚SGONLS FORNICATL゚S．Robinson
1917．Journ．Fed．Malay States Mus．，V11，p．102．
Tioman Island，E．coast Malay Penmesula
5．LARISCL A INSICHIS J）］VERSLS，Thomas
1898．Ann．Mas．Nat．Hist．7，II，p． 248.
Baram district，Borneo．
6．LARISCL A NSIGNIS CASTANHLS，Muller
1900．Proc．Acad．Sci．Washington，11，p． 217.
Pulau Siantau，Anamba Islands．
7．LARISCLS INSIGNIS SATERATLSS，Chasen
1934．Bull．Raffles．Mus．9，p．or．
Rhor Archoplaso，Nalaya；Bintang Island．

1898．Ann．Mag．Nat．Hist．7，II，P．249．
Pajo，heghlands of W．Sumatra．
9．J．ARISCL＇s INGICXIS ABIBIRL，Chasen \＆Kloss
1928．Proc．Zanl．Soc．London，r．827．
Sberut，Mentawei Islands，W．Sumatra．
10．LARISCじ INSICNIS VLLCANLS，Kloss
1921．Jurn．Fed．Malay States，Mus．，Ǩ，p． 233.
Ongop Ongop，Idjen Massif，5，700 ft．，Besockı，E．Jaxa，

1909．Proc．Zool．Soc．Londun，Abstr．，p．19，id．twm．cit．，P． 3 Su， Buitenzorg，W．Java．

1903．Smaths，Nisc．Coll．，XLV＇，p．23，pl．1，fig． 2.
South Pagi Island，WV．Sumatra．
13. LARISCITS INSIGNIS ROSTRATLS, MAller 1903. Smiths. Misc. Coll., XIV, p. 24.
'I’ana Mala, Batu Islands, W'. Sumatra.

\section*{hosei Group}
14. LARIECUS IIOSEL, 'Thomas
1892. Ann. Mag. Nat. Hist. 6, Xㅓ. p. 215, 216.

Mount Dulit, Baram district, IBorneo.

\section*{Genus if. GlyPllO'ES, Thomas}
1898. Glyphotes, Thomas, Ann. Mag. Nat. Hist. 7, II, p. 251.

Type Species-Glyphotes simus, 'Thomas.
Range.-Borneo.
Number of l'orms.-One.
Characters.-A small Squirrel with peculiar and specialized incisors. Muzzle short and broad; nasals short. Postorbital process small. /ygomatic plate slanting upwards somewhat vertically (though not comparable to Vamosciurus section); infraorbital foramen rather well open, the part of the zygomatic plate behind it rather reduced. Nandible weak, with coronoid process very low, and condylar process slender. Upper incisors very broad, but not thickened anteroposteriorly; their lower tips tending to curve away lrom each other. Lower incisors similar, but their upper portions more strongly divergent from each other. Checkteeth \({ }_{4}^{5}\), the pattern evidently not abnormal; P. 3 small.

Lxternally with no special features; tail rather narrow, relatively long; flank-stripes present (white over black).

Forms seen: simus. (Only the type skull and skin.)

> L.Ist of Namel Forms
1. GHJHHOTES SINLS', Thomas
1898. Ann. Mag. Nat. Hist. 7, II, p. 251.

Kina Ialu, Ň. Borneo.
Genus 15. RHEITIIROACCLRL'S, Gray
1867. Rheithrosciurt's, Graỵ, Ann. Mag. Nat. Hist. 3. XX, p. 272.
'Iypl: Spectes.-Scimuras macrotis, (iray̌.
Range- Borneo.
N゙umaer of Fords.- One.
Characters.-Skull and tecili abnormal, the incisors greatly thickened from before backwards, the toothrow much reduced, in these characters paralleling the African Anomaluroid genera Zenkerella and IChurus. lncisors with a strong subapical notch present. "lheir anterior faces clearly.


Fig. 97. Rheithroscilutes macrotis, Gray.
13.\1. Nón. 27.8.6.5, 3; 1 .


Fig. g\%. Rheithrmeierts macrotis, Gray.
13. \1. No. 2, 8.8.6.5, ü: 1
marked with very many narrow parallel grooves, a structure traceable also in Tamias and Marmota, though in these genera not so well marked. The incisors are much compressed. 'Ioothrow considerably reduced, the premolars of both upper and lower series smaller than the molars. All teeth brachyodont, basinshaped, nearly simplified in pattern; those of the upper series near Lariscus, and with traces of pattern nearly obliterated in all skulls seen; the lower teeth square, with a more or less well-marked small cusp at each corner.

The hinder part of the mandible is more rounded than usual, the angular process higher, well ridged below, the coronoid not reduced, but not higher than the condylar, the bone running from one to the other nearly straight. Palate depressed between toothrows, ending abruptly just behind them, the posterior termination forming three sides of a square with the hamular processes. Rostrum much elongated; zygomatic plate slanting abruptly upwards, flat, not heavily ridged, placed rather far back; but orbit as in normal Sciurinae. Infraorbital foramen forming a long canal, its anterior opening far in front of P.f. Frontals broad; postorbital processes moderately well developed.

Size large; about 23 inches head and body length (or more?); ear large, with extremely enlarged ear-tufts. 'Tail excessively thick and bushy, relatively long. Fur crisp and harsh. Digits of hindfoot as in normal Tree-squirrels. Nanus with normally D. + longer than D.3, though evidently there may be some variation in this character.

Mr. W. Frost told me that these animals are Ground-squirrels.
Remarks.- One of the most specialized and distinct genera in the group.
Forms seen: macrotis.

> List of Named Forms
1. Rheithrosciltres macrotis, Gray
1856. Proc. Zool. Soc. London, p. 34t, pl. XLVM.

Sarawak, Borneo.
Genus i6. RllINOSCIURUS, Gray
1843. Rhinoscri'rt's, Gray, List. Mamm., p. 195. (According to Tate, 1935, Amer. Mlus. Nov., 807, R. tupaioides, Gray, is nom. nud. and the name Rhinosciurus should date from Blyth, \(\mathbf{8} 85\), with type S. laticaudatus, Müller \& Schlegel.)

Type Speches.-Rhinosciurus tupaioides, Gray.
Radge.-Southern portions of the Malay Peninsula, Sumatra, Borneo, and adjacent islands.
Number of Forms.-Seven.
Characters.-Skull highly abnormal, with immensely elongated rostrum: upper incisors much reduced, very narrow, nearly vestigial; upper checkteeth rapidly wearine down and simplifying. The rostrum in its length is quite unique in the family, except Hyosciurus, in which it is even longer. Postorbital process short. Bullac considerably enlarged. Zygomatic
plate with its upper border ridged but short, and the portion behind the infraorbital foramen, which is rather well open, much narrowed. Palatal foramina far in front of toothrows.

Upper incisors appearing hardly functional; lower incisors long, not much reduced. Upper cheekteeth originally with rather complicated pattern, cusps and ridges well marked, but the pattern quickly wearing down, the main depression remaining at first as a wide outer fold, later simplifying and wearing away altogether. Lower cheekteeth with the same clements as the upper series as regards the change of pattern brought about by wear; posterointernal cusp originally well marked; the central depression seems in this genus to take the form of an outer re-entrant fold rather than an inner one, differing from other genera in this respect. P. 3 large, well developed.

Hindfoot narrow, but arrangement of digits as usual, D. 4 slightly longer than D.3. Forefoot with arrangement of digits as usual. 'Tail bushy, considerably shorter than head and body length. Of the habits of this genus Robinson \& Kloss write: "lhey are strictly terrestrial and very shy . . . their diet, judging from numerous specimens examined, is principally insectivorous, consisting of large ants and beetles. 'The tongue is very long, and remarkably protrusile, and it is probable that gritty matter taken up with the insects by means of this organ accounts for the rapid wear of the teeth."

The genus appears to show certain resemblances in the infraorbital foramen, original pattern of upper teeth, and tendency to elongation of rostrum, to Menetes, which genus is, however, much less specialized.

But 1 think in this genus we have probably a parallel in evolution to the remarkable Murine genus Rlynchomys. In Rhynchomys there is the same elongation of muzzle, while the upper incisors are even more reduced; but the cheekteeth in this case have become so reduced as to be nearly invisible. Thomas thought that this Rat was insectivorous; it appears that Rhimosciurus in many respects is going well on the same road, in fact had some tecth, for instance the premolars, become suppressed, the parallel between these two unrelated genera would be nearly complete.

Furms seen: leo, laticaudatus, tupaioides, robinsoni, rhionis.

\section*{List of Named Forms}
1. RIANOECHLRL'S LATICAUDATU'S LATICALDDA'TUS, Muller \& Schlegel 1839. Verhandl. Nat. Gesch. p. ıoo, pI. XV, figs. I, II, JIJ.

Pontianak, Borneo.
2. RIINOSCILRUS LATICAUDATUS SATUKATUS, Robinson \& Kloss 1919. Journ. Fed. Halay States Mus., VII, p. 274. Barisan Range, W. Sumatra.
3. RLIINOSClLRL'S LATICALDATLA TLPAIOIDIS, Gray

IR43. List. Mamm., p. 195.
Singapore.
Synonym: peracer, Thomas \& Wroughton, igog, Ann. Mag. Nat. Hist.
8, III, p. 44o. Perak.


Fig. 99. Rhinoscicris laticacdatis tupaioides, Gray,
B.MI. No. 9.4.1.228; 二 2.


Fig. 100. RHivosiot ris latmaldmtts tipamodes, Gialy.
\[
\text { B... } \mathrm{N} .
\]
4. RIINOSCILRUS IATICAUDATLS LEO, Thomas \& Wroughton
1909. Ann. Mag. Nat. Hist. S, III, p. +10.

Changi, Singapore lsland.
5. RHINOSCILRUS 1ATICAUDATUS RHIONIS, Thomas \& Wroughton
1909. Ann. Nag. Nat, I Iist. \&, III, p, 441.

Karimon, Rhio-Lingga Archipelago.
6. RHINOSCLERES IATICALDATLS ROBBNSONI, Thomas
1908. Joumn. Fed. Malay states Mus., II, p. Iot.
'T'ioman Istand, E. Malay Peninsula.
T. RHIN゙OSCILRL'S IATICALDATLS JNCLITTE, Lẙon
1916. Proc. LT.S. Nat. Mus., LII, p. 444.

I'ulau Tuanku, Banjak Jslands, W. Sumatra.

\section*{Genus 17. HYOSCIURUS, Tate \(\&\) Archbold}
1935. Hyoscilres, Tate \& Archbold, Amer. Mus. Nov. 807, p. 2.
'IYPE SPECEE.- Myosciurus heimrichi, T'ate \& Arehbold.
Ravge,-Celehes.
Number of Forms.-'Two.
'This genus was not represented in the British Museum when this. work was originally written, but a fine series of a dozen has been obtained in 1939 by Mr. Frost from the Molengraff Range, Mid Celebes.

Charactrrs.- Skull with extremely elongate rostrum, if anything more so than in Rhinosciurns. P'ostorbital process smafl. In the adult, the temporal ridges fuse to form a short but strong sagittal ridge. Infraorbital foramen forming a long canal. Zygomatic plate slanting upwards anteriorly, rather flat, and much less projecting forwards than in Rhinosciurns. Nasals projecting anteriorly far forwards over the incisors. The upper incisors are not reduced, hut are thick and strong (compare Rhinosciuris). Bullae medium-small. Palatal foramina far in front of tonthrows; palate normal. Handible stronger than in Rhinosciurus, the angular portion inflected to a degree (not extremely so, for instance, not comparing with that of Cynomys). lower incisors robust, not extremely long, Cheekteeth molars quite normal, Sciurine in pattern, without the peeuliarities of Rhinnsciurns. M. 3 is rather small. In the oldest specimen seen, a male with pattern of teeth ohliterated and a strong sagittal ridge to the skull, there is not the slightest sign of the extreme deterioration in the molars which takes place in Rhinosciums with wear.
'Tail very short. Claws enormous, particularly those of the forefoot, but even sll, less strongly enlarged than in Spermophilopsis.

Forms seen: heinuichi.
List of Named Forms

1935. Amer. Nus Noy. Sor, p. 2.

Latmodjone MIountains, S. Celebes.
2. Hy゙OSCILRLS HEINRICHIL ILA:IIE, Tate \& Archbold
1936. Amer. Mus. Nox. 846, p. 1,

He-ile, N. Celehes; i 700 m .
Mr. J'rost states that it is a burrowing form, living underground, or more or less, and that the natives know it as a species of Rat.

Section D. African Arborfal Glinera. All except Heliosciurus are clearly distinguishable from Sciurus on dental characters, and there is a tendency present for the lower molars to lose the central depression characteristic of normal Squirrels, and for these teeth to become transversely ridged, as in the upper series. In Protoxerns and allies the infraorbital foramen is normally unusually large, and forms no canal.

\section*{Genus 18. HELJOSCIURUS, Trouessart}
1880. IIeliosciurus, Trouessart, le Naturaliste, 11, no. 37, p. 292.
1916. Aethosciurus, Thomas, Ann. Mag. Nat. Hist. 8, XVII, p. 271. Schurus poensis, Smith. Yalid as a subgenus.
Type Spectes.-Sciurus gambianus, Ogilby.
Rangr.-Africa: Sudan, Abyssinia, Kenya, Uganda, Tanganyika; Senegal, Gambia, Sierra Leone, Liberia, lvory Coast, Gold Coast, Nigeria, Cameroons, Fernando Po, Congo, Angola, Rhodesia, Nyasaland, Mozambique.

Number of Foras.-About fifty-two.
Rfmarks.-'The genus was originally given generic rank by Thomas in 1909 on the single character that, compared with Sciurus, P. 3 is absent. 'I'his is not a valid character. 'To the genus Sciurus in the same paper were referred three African Squirrels, S. poensis, S. lucifer, and S. ruvenzori. In \(1916^{\circ}\) Thomas referred these to a new genus Aethosciurus, on the grounds that the baculum differed from Sciurus (zulgaris), though only poensis had been examined.

Hollister, 1919 (U.S. Nat. Mus. Bull. 99, P. 9), pointed out that the teeth of Heliosciurus and Aethosciorus agreed with each other and differed from those of Sciurus zulgaris in certain details, and treated the two groups as a single genus, remarking that it was not wise to give Aethosciurus generic rank simply on account of the small extra premolar, which was also known to be present occasionally in typical Heliosciurus.

But the dental characters pointed out by Hollister, while constant, and separate from Sciurus zulgaris, agree with certain Asiatic forms, such as Callosciurus.
'lhere are then only two characters which seem to me to separate the present genus clearly from Callosciurus. First the baculum, which according to Pocock is absent in Hcliosciurus (apparently a very rare feature in the Order, but known elsewhere in the American Tamiasciurus in the present family), and minute in Aethosciurus (poensis). But it must be admitted that only punctatus, rufobrachium, and poensis were examined or mentioned in Pocock's paper: so that it may be that this character will later be found to be inwalid; though it must be stated that
all typical Heliosciurus are apparently so eloscly related that Ingoldby has suggested that all forms should be referred to one species only.

Secondly, the zygomatic plate, which seems to me to be constantly more strongly ridged, and with an extremely powerful masseter knoh present, in typical Heliosciurus and in Aethosciurus rutenzorii. The other species referred to Aethosciurns agree with Paranerus and Fumisciurus in the curiously shortened zygomatic plate, with the ridge stopping abruptly over the infraorbital foramen, and not approaching the superior horder of rostrum. Further, rmenzorii has a vestigial \(\mathrm{P}_{3}\). while this tooth is quite well developed and relatively large in all other Acthosciurus seen (as in Paraxerus). The baculum is minute also in Fimiscuurus and Paraxchs, or those of this genus which Pocock examined. Apart from poensis and ruzensorii, I very much suspect that the other species named for Aethescimus, namely lucifer, zexillaris, will be found when a representative collection comes to hand, to belong to Paraxerus. The lower cheekteeth, which afford the only character by which Acthosciums may be separated from Paraxrms, appear to me to be very suggestive of Paraxerus in all skulls examined, but all seen are much too worn for me to be able to say. "Aethosciurus" bratti is definitely hased on a Paraverus, so far as the type skull shows, and is here transferred to that genus. But pocnsis, though agreeing in zygomatic plate formation with Fumisciurus and Paraxerus, has definitely the unspecialized teeth found in //eliosciurus and must remain in this genus; and the same remarks apply to ruacnzorii, which is probably a primitive Meliosciurns s.s. in which the minute premolar has nut yet hecome suppressed.

Characters.-Skull often with parictal ridges, which may tend to join. Postorbital process usually rather well developed. Bullae of moderate size. Palate normal. Infraorhital foramen usually rather well open, the upper part of the zygomatic plate prominently ridged, approaching the Xerus type though less extreme, slanting upwards far forwards, and there is a very strong masseter knob present. The upper incisors are in rare individual cases with a faint groove traceable. Upper cheektecth like Sciurus, but with the main ridges strongly convergent internally, particularly the third ( \(=\) the second principal) ridge, which runs almost from the outer corner to the middle of the inner part of the tooth. 'Ihe inner side of M.I and. I. 2 nearly square. The anterior cusp of \(\mathrm{P} .+\) is extremely well developed, projecting forwards, the depression immediately behind it well marked. Lower cheekteeth with elements not very different from Sciurus, but with a narrow transwerse valley extending from first outer main cusp to the anterointernal cusp; this structure is present in some of the Indo-Xalayan Squirrels. It eridently marks the beginning of the type of tooth found in P'araxerus and Fumisciurus. The central depression is not obliterated, and is usually present as an important feature of the teeth.

External characters as in normal 'l'ree-squirrels. Tail long. Back not striped.
The subgenus //chorciurus contains the gambianus group only, all the members of which are referred to a single species by Ingoldby (Proc. Zool. Soc. London, \(1927, \mathrm{~F} .47 \mathrm{I}\) ).

The sulgenus Aethociurus at the moment consists of thrce groups: matenzorii, P. 3 minute, zygomatic plate more as in typical /heliosciurus; poensis, P. 3
rather large；sygomatic plate as in Paraxerus，size smaller than is usual in the genus，head and body less than 200 mm ．（St．Leger）；and the lucifer group， zygomatic plate and \({ }^{\mathrm{P}} .3\) as in poensis，but size larger，over 200 ；this group will probably ultimately be found to be referable to the genus P＇araxerus．lucifer may be remarked on as a species with an attractive colour pattern．

Forms seen：acticola，annulatus，aubryi，bongensis，brauni，canaster，caurimus， coenosus，daucinus，elegans，emissus，gambianus，hardyi，isabellinus，kaffensis， keniae，lateris，leonensis，lihericus，loandius，lualabae，lucifer，maculatus，madogae， multicolor，mutabilis，nyansae，obfuscutus，omensis，pasha，poensis，punctatus，rho－ desiae，rufobrachium，ruzuenzorii，semliki，senescens，undulatus，vexillaris，zulcanius．

> List of Named Forms
> Subgenus Heliosciutus, Trouessart
（Revised by Ingoldby，Proc．Zool．Soc．London，1927，p．471）
1．HEIJOSCJCRL＇S GAMBIANLS GAMBIANLS．Ogilby
1835．Proc．Zool．Soc．London，p． 103.
Gambia．
Synonym：（？）ammulatus，Desmarest，1822，Mamm．ii，p．338．This species often regarded as unidentifiable． ammlaris，Schinz， 1845 ，Syn．Dlamm．Bd，I1，p． 14. albina，Gray，Ann．Nlag．Nat．Hist．3，ぶズ，p．329， 1867, nom．nud．
2．IIELIOSCILRLS GAMBIANL＇S SENESCENS，Thomas
1909．Ann．Mag．Nat．Hist．8，IV，p． 544.
Thies，Senegal．
3．HELIOSCICRL＇S GAMBBANL＇S LIMBATLS，Schwarz
1916．Wiesbaden Jahrb，ver Natk．6S，p． 65.
E．Cameroons．
＋HELIOSCILRLS GAMmANLAS BONGEXGIS，Heuglin
1877．Reis．Nord．Ost．Afr．，11，p． 59.
Bahr－El－Ghazal，Sudan．
5．HELIOSCILTRUS GAMBIANUS CANASTER，Thomas \＆Hinton
1923．Proc．Zool．Soc．London，p． 256.
Jebel Marra，Darfur．
6．HELIOSCICRES GAMBiANLS MLLTiCOLOR，Ruppell
1835．Neue Wirbelth，p．38，pl． 13.
Valleys of Kulla and east slope of coast range，Abyssinia．
7．HELIOSCIURLS GAMBIANL＇S LATIERIs．Thomas
1909．Ann．Mag．Nat．Hist．S，IV，p． 102.
Lado，Sudan．
8．HELIOSCILRE＇S GAMBBANL＇S ELEGANS，Thomas
1909．Ann．Mlag．Nat．Hist．8，IV＇，p． 103.
Mount Elgon，kenya．
9．HELIOSCILRES GAMBIANUS COENOSLS．Thomas
1909．Ann．Mag．Nat．Hist．8，IV，p． 104.
\(19^{-} 30^{\circ} \mathrm{E}\) ．on Rucr \(\mathrm{L}^{\prime}\) banequ，Coneo．
20－Livng Rodents－I
10. HEEIOSCILRL'S GAMBIANL'S OAIENSIS, Thomas
1909. Ann. Mag. Nat. Ilist. 8, IV, p. 1o.t.

Lower Omo River, near Lake Rudolf, E. Africa.
if. HELIUSCILRL゚A GAMBLANUS MADUGAE, Heller 1911. Smiths. Misc. Coll. 56, no. 17, p, I,

Uma, 50 miles north ol Nimula, Uganda.
12. HELJOSCILRLS GAMBIANUS FAFFENSIS, Neumann 1902. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 57.

Anderatscha, Kiaffa, Abyssinia.
13. HELIOSCILRLS GAMBLANL'S ABASSENSIS, Neumann 1902. Sitz. Ber, Ges. Nat. Fro Berlin, p. 57.

South of Lake Abassi, Abyssinia.
14. HELIOSCLERUS GAMIBIANL'S RHODESIAE, Wroughton 1907. Manch. Mem. Lit. Phil. Soc., no. 5, p. 15.

Plateau west of Mlchunga Escarpment, N. Rhodesta-
15. HELIOSC'IURLS GAMBHANUS LUANDICUS, Thomas 1923. Amn. Mag. Nat. Hist. 9, XI, p, 521.

N'dola 'l'ando, Northern Angola.
If. HELIOSCIURUS GAMBIANLS NLTABILIS, Peters
1852. Monatsber. Ak. W'iss. Berlin, p. 273.

Boror, Portuguese E. Africa.
Synonym: shirensis, Gray, 1867 , Ann. Mag. Nat. Hist. 3. NX, p. 327. Shure River, Nyasaland.
17. HE1IOSCILRLTA GANIBIANLS BEIRAE, Roberts
1913. Ann. Transv, Mus., 1V, p. 78.

Ieira, Portuguese E. Africa.
18. HELIOSCIURL'S GAMBIANLS CIHRINDENSIS, Roberts
1913. Ann. Transv. Mus, IV, p, 78.

Chirinda Forest, S.-E. Mashonaland.
19. HELIOSCHURUS GAMBIANUS UNDULATUS, True
1892. Proc. U.S. Nat. Mus., XV, p. 465.

Kilimanjaro, Tanganyika.
Synonym: undulatus marzitzi, Müller, 1911, Zool. Anz, 37, p. 82 Kilimanjaro.
20. HELIGSCHURUS GAMIBLANUS DALCINUS, Thomas
1909. Ann. Mag. Nat. Hist. S, lV, p. 101.

Mombasa, Kenya.
2i. HELIOSCILRLTS GAMBIANUS DOLOSUS, Thomas
yyog. Ann. Mag. Nat. Hist. 8, IV, p. ioo.
Mafia Island, 'l'anganyika.
22. HELIUSCIL'RLA GAMBIAN゙S SHINDI, Heller
1914. Smiths. Misc. Coll., LXIll, no. 7, p. 7.

Mt. Unengo, 'Taita Hills, Kienya.
23. HELIOSCILRLS GAMIBIANUS PLNC'IATLS, Temminck
1853. Esq. Zuol. Cote de Ciuiné, p. 138.

Gumea Cuast.

24．HELIOSCIURUS GABIBIANUS SAVANNIUS，Thomas 1923．Ann．Mag．Nat．Hist．9，XI，p． 521. Beoumi，Ivory Coast．

25．HELIOSCIURUS GAMIBAANUS KENIAE，Ncumann 1902．Sitz．Ber．Ges．Nat．Frr．Berlin，p． 176.

Mount Kenya．
26．HELIOSCIURUS GAMIBIANUS RUTOHRACIHUM，Waterhouse
1842．Ann．Mag．Nat．Hist．1，X，p． 202 （published November）．
Fernando Po．
Synonym：rufobrachatus，Waterhouse，1842，Iroc．Zool．Soc．London， p． 128 （published January， 1843 ）．
aubryi，Milne－Edwards，1867，Rev．Zool．，XIX，p． 228. Gaboon．

27．HELIOSCIURLS GAMBIANLTS PASHA，Schwann
1904．Ann．Mag．Nat．Hist．7，XIII，p． 72.
Bellima，Monbuttu，N．－E．Congo．
28．HELIOSCIURUS GANIBIANUS BENGA，Cabrera
1917．Bol．Real．Soe．Espanola，17，p． 517.
Cabo San Juan，Spanish Guinea．
29．HELIOSCILRUS GAMBLANUS ISABELLINUS，Gray
1867．Ann．Mag．Nat．Hist．3，XX，p． 329.
Lower Niger．
30．HELIOSCIURUS GANBIANUS I，EONENSIS，Thomas 1923．Ann．Mag．Nat．Hist．9，XI，p． 523.

Sierra Leone．
31．HELIOSCIURL＇S GAMBIANUS EMHSSUS，Thomas
1923．Ann．Mag．Nat．Hist．9，XI，p． 520.
S．－E．Nigeria．
32．HELIOSCIURUS GAMBIANL＇S ACTICOLA，Thomas 1923．Ann．Mag．Nat．Hist．9，XI，p． 525.

Fernando Po．
33．HELIOSCILRUS GAMBIANUS CALRINLS，Thomas 1923．Ann．Mag．Nat．Hist．9，XI，p． 523.

Gumal，Portuguese Guinea．
34．HELIOSCILRUS GAMBHANLS HARDYI，Thomas 1923．Ann．Mag．Nat．Hist．9，XI，p． 519.

Beoumi，N．Ivory Coast．
35．HELIOSCILRU＇S GAMBIANL＇S OBFLSCATLS，Thomas
1923．Ann．Mag．Nat．Hist．9，XI，p． 526.
Oban district，S．－E．Nigeria．
36．IIELIOACIURU＇S GAMBLAN゙US MACLLATUS，Temminck
1853．Esq．Zool．Côte de Guiné，p． 130.
＂Guinea．＂Prohably Gold Cuast．
Synonym：aschantiensis，Neumann，1902，Sitz．Ber．Ges．Nat．Fr． Therlin，P．175．Ashanti，Gold Coast． zaterhousii，（iray，Ann．Mag．Nat．Hist．3，ぶX，p． 328 ， 1867.
 1002．Sitz．Ber．Ges，Nat．Fr．Berlin，p． 56.

Kwa Kitoto，Kavirondo，Uganda．
 1907．Ann．Mag．Nat．Hist．7，NIX，p． 120.

Bent，Semliki，Congo．
39．HELIOSC＇ILTLS GANBLANLS MEDJIANLS，AHEN 1922．Bull．Amer．Mus．Nat．Ilist．，SLV11，p． 46.

Medje，Itur Forest，Congo．
40．HELHOLCJLRLS（：AMBIANL＇S RLBRICATL＇S，Allen 1922．Bull．Amer．Mus．Nat．Hist．，XI，VII，p． 47.

Near Lubila River， 50 miles \(\mathrm{S} .-\mathrm{W}\) ．of Avakubi，Congo．
41．HELIOSCIIRUS GAXBIANUS ARRHENII，Lombert 1917．Stockholm Vet．Akad．Handl．58，2，p．68．

Massisi，near Lake Kisu．
42．HELIOSCILRL＇S GAMBIANUS LLALABAE，Thomas 1923．Ann．Mag．Nat．Hist．9，XI，p． 520.

Lodja，Upper Lukenge River，S．Congo．
43．HELIOSCILRLS GAMBBANUS LIBLRICLS，Miller 1900．Proc．Washington Acad．Sci．，J1，p． 633.

Mount Coffee，Liberia．
4．HELIOSCILRUS GANBBANL＇S BRALNI，St．Leger 1935．Nov，Zool．XXXIX，p． 252.

Fazenda Congulu，Amboim district，Angola．
Subgenus Aethosciurus，＇Thomas
rиモensorï Group
45．ILELAOSCIURLが RLTWLN゙ZORJI RUWENZORRF，Schwann 1904．Ann．Mag．Nat．Jlist．7，XIIl，p．71．

Lums Valley，Ruwenzori．
46．HELIOSCILRL＇か RLWENZORII V＇ULCAN゙ILS，Thomas 1909．Ann．Mag．Nat．Hist．8，IV，p． 476.

Volcanoes north of Lake Kivu，Belgian Cringo．

\section*{poonsis Group}

47．HELIOSCLLRLS IOOXSLA POEN゙SLS，Smith
1830．S．Afr．Quart．Journ．，2，P．I \(2 \mathcal{R}\) ．
Fernands Po．
Synonym：diraceus，Milne－Edwards， 1807, Rev．Mag．Zool．，X゙1ズ， P． 228.
affinis，Rhoads，iS96，l＇roc．Acad．Philadelphia，p． 521.
48．HELIOSCILRL＇S POENSLS MUSCULINLS．Temminck
1553．Esq．Zool．Corte de Guiné，p．Ifr．
＂Giunea．＂Probably Gold Coast．
4．HEDAOSCIURUS POENSLS SLBNIRIDESCENS，Le Conte
1857．Proc．Acad．Philaduphia，p． 1 r．
Gaboon．

\section*{hucifer Group}
(For remarks on generic status of this group see p. foo.)
50. HELIOSCILRLS LUCHFER, Thomas
1897. I'roc. Zool. Soc. London, p. 430.

K゙ombe Forest, Nasuku Range, N゙. Nyasa.
51. HEL, OSC'JLKRLS VENILLARIL's, Kerhaw
1923. Ann. Nag. Nat. Hist. 9, Xil, p. 591.

Usambara, Janganyika.
incertae sedis
52. HELIOSCILRLS(!) BAYONH, Bocage
1890. Jorn. Sci. Lisbon, II, p. 3.

Braganca, Angola.
(A Funisciurus according to G. NI. Allen, 1939.)

\section*{Genus 19. PARAXIERUS, Najor}
1893. Paraxercs, Forsyth Major, Proc. Zool. Soc. London, p. 189.
1918. Tamiscus, Thomas, Ann. Mag. Nat. Hist. 9, I, p. 33. Sciurus emini, Stuhlmann.

Type Species.-Sciurus cepupi, Smith.
Range.-Eastern and South Africa: Sudan, Somaliland, Kenya, Uganda, Tanganyika, Zanzibar, Congo, Rhodesia, Mozambique; Southwest Africa, Bechuanaland, Zululand.

Nember of Formis.-About forty-four.
Characters.-Cheekteeth semihypsodont, the upper molars with the three depressions, particularly the second, tending to take the form of re-entrant folds, the pattern clear and definite, and apparently usually long retained. Nh. 3 with two depressions, the second very broad, or occasionally in this tooth three depressions traceable. P. 3 present, well marked; P. 4 with no prominent anterior cusp. In the lower teeth, the posterointernal cusp is strong, the teeth are more or less transversely ridged, with three depressions separating four ridges; the second, which corresponds to the main depression of less specialized Sciurinae, appearing as a broad inner re-entrant fold, with a small outer re-entrant fold opposite to it. The cusps, particularly the anterointernal, moderately high. In old age, the teeth are more or less simplified to a twolobed structure.

Skull essentially as in Fiunisciums (next to be described), except that the rostrun does not tend to become clongated.

External characters as in normal Tree-squirrels.
'The boehmi group were referred to a genus Tamiscus by 'Thomas, which Hollister regarded as a subgenus, on account of their dorsal stripes, the infraorbital foramen said to be less open (but the difference is very small; there appears to be less difference to me hetween 'raraverus and "Tamiscus" than between individual specimens of . lenetes berdmorei); the "molars less hypsodont, the crowns more abruptly marked off from the roots . . . the large internal
root narrow, well spaced from its neighbours on each side, and abruptly broadens out ahove at crown." 'The incisors are more proödont, but within other genera this is a very variable character ; compare, for instance, Callosciurus. This division may be of subgeneric valuc, but to me Tamiscus seems no more than a specific group of \(l^{\prime}\) araserus.

Forms seen: alexandri, angnstus, amimosus, antoniac, aruscensis, boehmi, bridgemami, byatti, capitis, cepapi, electus, cmini, exgeamus, flazizittis, frerci, ganana, gazellac, ibeanus, jacksoni, lastii, lunaris, mossambicus, ocluraceus, ornatus, palliatus, percizali, phalacha, quotus, simel, soccatus, sponsus, suahelicus, swymertoni, twac, zulcanorum, valei.

I am inclined provisionally to divide this genus into four groups:
bochmi group: smallish striped squirrels; usually four black stripes bordering three lighter ones, general effect Tamias-like; bochmi is coloured rather differently from the other species referred to the group; the stripes can become faint ; the genus "Tamiscus" of 'lhomas.
flazivittis group: Athantoxerus-like forms; usually pale, with thick white flank-stripe prescnt.
palliatus group: usually larger than cepapi group, becoming about maximum size for genus; tail red or orange; belly red; sometimes head red. \(P\). bridgemani is a type which tends to be intermediate between this group and the cepapi group.
cepapi group: usually smaller than the last; dull-coloured squirrels with no red or orange markings, so far as seen. Includes ochraceus.
Not allocated: byatti, hitherto referred to Aethosciurus, is a Paraverus as regards the dental formation of the type skull. I have not seen the subspecies deseribed by Allen \& Loveridge.
This arrangement must be regarded as provisional.

\author{
List of Named Forms \\ cepapi Group
}
1. PARANERUS CEPAPI CEPAPI, Smith
1836. App. Report Explor. S, Africa, p. 43 .

Marico River, Rustenburg district, 'Transvaal.
Synonym: mutabilis, Huet, 1880, Nouv. Arch. Mus., p. 143 (not of Peters).
(?) superciliaris, Wagner, Schreb. Säugth. Suppl., III, \(18+3, \mathrm{p} .212\).
2. PARAXERUS CEPAPI CHOBIENSIS, Roberts
1932. Ann. Transv. Nus., X'V, p. 9.

Kabulabula, Chobi River, N. Bechuanaland.
3. PARAXERUS CEPAPI MAUNENSIS, Roberts
1932. Ann. Transv. Mus., XV, p. 9.

Naun, Ngamuland.
4. PARAXERUS CEPAPI soc'CATUS, Wroughton
1909. Ann. Mag. Nat. Hist. 8, 111, p. 515.

Hewe River, N. Angoniland, Nyasaland.
5. PARANERUS CEPAPI PIAAIAENA, Thomas
1926. Proc. Zool. Soc. I.ondon, p. 296.

Between Ukuambi and Ondongwa, Ovamboland.
6. JARAXERUS CEPAPI SINDI, 'Thomas \(\mathbb{E}\) Wroughton 190S. I'roc. Zool. Soc. London, p. 543.

Tete, Lower Zambesi.
7. PARAXERUS CEIAPI KALAHARICLS, Roberts 1932. Ann. 'Iransv. Mus., XV, p. 10. Mabeleapudi, Kalahari.
8. PARAXERUS CEPAPI AURIVENTRIS, Roberts 1926. Ann. Transs, Mus., XI, p. 250.

Magudi, Portuguese E. Africa.
9. PARAXERUS CEPAPI QUOTLS, Hiroughton 1909. Ann. Mag. Nat. Ilist. S, III, p. 516. Katanga, Congo.
10. PARAXERUS CEPAP1 YULE1, Thomas 1902. Proc. Zool. Soc. London, p. 120. Muezo, near Lake Mweru.
11. PARAXERUS OCHRACEUS OCHRACECS, Huet
is8o. Nouv. Arch. Mus., p. 154, pl. VII, fig. 2. Bagamoyo, near Dar-es-Salaan, Tanganyika.
12. PARANERUS OCHRACEUS ARUSCENSIS, Pagenstecher
1885. Jahrb. Hamb. Wiss. Aust. 2, p. 42.

Pangani River near the coast and Aruscha, Mt. Meru, Tanganyika.
Synonym: (i) pauli, Matschie, 1894 , Sitz. Ber. Ges. Nat. Fr. Berlin, p. 256. Tanganyika.
13. PARAXERLS OCHRACELS SALU'JANS, Thomas
1909. Ann. Mag. Nat. Hist. 8, IV, p. 106.

Dar-es-Salaam, T'anganyika.
14. PARAXIERUS OCHRACJES ELECTLS, Thomas
1909. Ann. Mag. Nat. Hist. S, IV, p. 106. Elgeyo, Kenya Colony.
15. PARAXERUS OCHRACEUS ANHMOSUS, Dollman
1911. Ann. Mag. Nat. Hist. S, VIII, P. 655.

Mount Nyiro, Kenya Colony.
16. PARANERCS OCHRACELS PERCIVALI, Dollman
igia. Ann. Mag. Nat. Hist. 8, VIII, p. 653.
Marsabit, Kenya Colony.
(According to G. N. Allen the correct name for this subspecies is P.o. affinis, Trouessart, Cat. Mamm., Viv. Foss. pt. 3. p. 406. 1897.)

Synonym: ochracetes angustus, Dollman, 1911, Ann. Mag. Nat. Hest. S. VIlI, p. 654. Marsabit, Kenya.
17. PARANERLES OCHRACEL'S KAlHARI, Heller
1911. Smiths. Misc. Coll. LVI, no. 17, p. 2.

Meru Boma, north-east of Mount Kenya.

18．PARAXERLS OCIFRACLES JACKSON゙，de Winton
1807．Ann．Mag．Nat，Hist．6，X゙1ス，p． 574.
K゙ikuyu，Kenya Colony．
Synonym：jacksmi capitis，Thomas，1900，Anm．Nlag．Nat．IIst．8，IV， p．105．Nairohi Forest．
19．PARAXIRLS UKHRACELS GANANA，Rhoads
ı806．Proc．Acad．Sci．Philadelphia，XLVIII，p． 522.
Ganana Rover at Bar Nadu，Abyssinia．

\section*{palliatus（iroup}

20．PARAXERL＇S BR1DGENANNI，Doilman
1914．Ann．Mag．Nat．Hist．S，XIV，p． 152.
Panda，Portuguese E．Africa．
21．1＇ARANERL PALIJATLS PAIALATLS，Peters
1852．Monatsher．Akad．Wiss．Berlin，p． 273.
Mozambique．
22．PARAXERLS PALLIATUS ORNATLS，Gray
is64．Proc．Zool．Soc．London，p．13，pl．i．
Zululand．
23．P．1RAXERUS PALALATLS SCAHELICLS，Neumann
1902．Sitz．Ber．Ges．Nat．Fr．Berlin，p． 178.
＇Tanganyika ceast，oppusite Zanzibar．
24．PARAXERLS PALLHATL＇S FRERE1，Gray
1873．Ann．Mag．Nat．Hist．4，XII，p． 265.
Zanzihar．
25．PARANERLS PALLIATCS LASTH，Thomas
1906．Ann．Mag．Nat．Hist．7，XVIll，p． 297.
Zanzibar．
（According to St．Leger probably not distinguishable from frevei．）
26．PARAXIERLS PALIJATLS SWYNX゙ERTONI，Wroughton
1908．Ann．Mag．Nat．Hist．8，I，p． 305.
Chirinda Forest，N．Rbodesia．
27．PARAXERL゚ B PALLATCS TANAE，Neumann
1902．Sitz，Ber．Ges．Nat Fr．Berlin，p． 178.
＇Tana River，Kenya Colony，
2N．PARAXERUS PAlALATLS BARAWEXSIS，Neumann
1902．Sitz，ker．Ges Nat．Nr Berlin，p．I7S．
Somaliland．
2り．PARAXERLS SPONELS SP（）XSLS，Thomas \＆Wroughton
1907．Proc．Zowl．Suc．London，p． 292.
Inbambane，Zululand，
30．PARAXLRLA SIONSLS TONEEASIS，Roberts
1931．Ann．Transv．Mus．，XIV，p． 229.
Mangusi Forest，N．Zululand．
flazizittis Group
31．PARAXERUS FLAVIVTTTAS HLAVIVITTAS，Jeters
1852．Reise Mossamb．，I，taf．XXIX．
Mossimba，near Nozambique．
```

 32. PARANERLS FLAVHVY"ILS NHOS.ANIBICCS, Thomas
 1919. Ann. Mag. Nat. Hist. 9, N", p. 31.
Lumbo, Portuguese E. Africa.
33. PARANERLS FHAVIVITTIS ISGEANOSS, Hinton
1920. Amn. Nag, Nat. Hist. 9, V, p. 311.
Kilwa K"isiwani, 'I'anganyika,
3+. PARASERES FLAVINIFMES IBIANNLS, Hinton
1921. Ann. Nag. Nat. Hist. 9, V'., p. }312
Mombasa, Kenya.
```

\section*{bochmi（iroup}
```

35．PARAXERUS BOIILXII，Reichenow 1886．Zuol．Anz．，IX，p． 315.
Narungu，S ．Congo．
36．PARANERL＇S ENINI EMIN1，Stuhlmann 1894．Mit．Emin．Pasha Herz．Afrika，p． 320.
Upper Semliki River，Belgian Congo．
Synonym：emini ugandae，Neumann，1902，Sitz．Ber．Ges．Nat．Fr． Berlin，p．iSo．Uganda．
37．PARANERL＇S EALINII GAZELHAE，＂Thomas
1918．Ann．Nag．Nat．Hist．9，I，p． 34.
Meridi，Bahr－el－Ghazal．
35．PARAX1FRLS VULCANORLX VLJCANORLX，Thomas 1918．Ann．Nlag．Nat．Hist．9，I，p． 35.
Buhamba，near Lake Kivu，Belgian Congo．
39．PARANERLS VLLCANORLM LLNARIS，Thomas 1918．Ann．Mag．Nat．Hist．9，I，p． 36.
Mubuku Valley，Rumenzori East，
40．PARANERLS ILLCANORLX TANGANVIKAE，＇Thomas 19：S．Ann．Mag．Nat．Hist．9，1，p． 36.
10 miles west of Baraka，Burton Gulf，Lake Tanganyika．
41．PARAXERCS ALEXANDR1，Thomas \＆Wroughton 1907．Ann．Mag．Nat．Hist．7，NIX，p． 376.
Gudima，R．Iri，L＇pper Welle．
42．PARANERL＇S AN＇TONLAE，Thomas \＆Wroughton
1907．Anr．Mag．Nat．Hist．7，N゙N，p． 377.
Ponthierville，Upper Congo．

```

\section*{Not allocated to group}
```

43．PARAXERCS BYATTI BYATTI，Kershaw
1923．Ann．Mae．Nat．Ilist．9，XI，p． 592.
Moshi，Kilimanjaro．
4．PARANERL＇S BY゙タTTT LAE＂T゙S．Allen \＆Loveridge
1933．Bull．Mus．Comp．Zool．Harvard，LX．ふV，no．2，p． 96. Ukinea Mountains，north of Lake Nyasa，Tanganyika．

```

Genus zo. FLNLSCIURLS, 'Trouessart
1850. Finiscierus, Treucssart, le Naturaliste, 1 I , no. 37, p. 293.
'Type Spferes.-Sciurus lemmiscatus, Le Conte.
Ravge.-Africa: Gambia, Sierra Leone, Ivory Coast, Gold Coast, Nigeria, Cameroons, Fernando Po, Gaboon, Congo, Angola, Tanganyika, Ruwenzori, S.-W. Africa.

Numbfr of Forms.-'Thirty-four.


Fib. ion. Funisclury pyrrhopes Leonis, Thomas.
B.M. No. 1938.6.10.9. F: 2.

Characters.- Skull weakly ridged, the parictal ridges usually not joining. Postorbital process moderate. Palate normal. Zygomatic plate well ridged, but short, the ridge stopping abruptly above the upper border of the infraorbital foramen, not approaching the superior border of the rostrum. Nasseter knob weak or absent. Infraorbital foramen sumetimes with a ridge curving upwards from its upper border and joining the forepart of ridge of zygomatic plate. Rostrum tends 10 become elongated. Cheektecth more specialized than in P'araxerus, or for that matter almost all other Squirrels; tending to become completely flat-crowned, or nearly so; semihypsodont. P.3


Fig. ioz. Finisciurus pyrrhoples leonis, Thomas.
B.M. No. 1938.6.10.9, \(=\times 2\).


Fig. 103. Funisclerts prrahopus leonis, Thomas. Cheektecth: B.M. No. 1938.6.10.9, \(\approx: 8\).
well developed. Lower molars like those of Anomalurns or Erethizon in general appearance; three wide inner re-entrant folds, and one wide outer re-entrant fold present. Upper molars flat in adult, the three depressions more or less appearing as re-entrant folds; the first sometimes curving round and joining the third; the second depression the widest. M. 3 usually with elements as the other teeth, and often relatively small.

Esternal characters as in mormal Tree-squirres. Aceording to Pocock, baculum minute in this gentis and in Paraverus, of those he examined.

Forms seen: akka, anerythus, amiculatus, bandaram, beatus, bovai, caruthersi, chrysippus, comsicus, erythogenys, flacimus, interior, isabella, lemniscatus, leomis, leucustigmar, mundingo, malumbichs, mystax, migrensis, nizeatus, oclungaster, wenone, atiellus, aliciae, pembertoni, pyrrhopus, raptorm, substriatus, talboti, tanganuikat.

Thire groups are recognizable among the material examined, though these must be treated as provisional:
lemniscotus group: back longitudinally striped, as in Paraxarus boelmi group; tusually four black stripes bordering three pater ones.
congicus group: hack without longitudinal stripes; usually pale forms reminiscent of Atlantoverus or Paraveras flatizittis group; with a wellmarked whitish flank-stripe each side; only the race interior is darker in colour.
prrhopus group: all others. Normally darker than congicus group (which perhaps should be referred to present group); limbs and head red in prohopus, usually, which in most cases has a narrow light flank-stripe present; auriculatus has some red colouring on head and rump, but not on the limbs, and the flank-stripe is present; carruthersi is a dark form, without stripes. But intermediate forms appear to exist between these types.

\section*{List of Named Formis \\ lemmiscatus Group}
1. FUNHGCILRUS LEDNISCATLS LEXINISCATUS, Le Conte
1857. Proc. Acad. Nat. Sci. Philadelphia, p. II.

Roo Muni, Gaboon.
Synonym: sharpei, Riray, iS73, Ann. Nag. Nat. Ilist. 4, XlI, p. 265.
Gaboon.
2. IUNISCHERLS LETNISCATUS 1sABLLLA, Gray

186z. Proc. Zool. Soc. London, p. iso, pl. XXIV.
Cameroon Mountan.
3. FLN゙SCILRUS MAILNBICLS, Kershaw
1923. Rev. Zool. Afr., S1, t, p. 363.

Ganda Sundi, Mayumbe Province, Lower Conge.
4 FUNVSC'IURUS POOLII, Jentink
1900. Notes Leyd. Nus., XIVIII, r. 139.

Stanley l'alls, Lpper Congo.

\section*{compicus Group}

1820．Beitr．Zool．，p． 66.
Canboca，\(\times\) ．Angola． synonyn：practextus，Wैagner，Schreb．Säug．Suppl．3，p．216，i \(8+3\) ．
6．I＇L N゙LSCIURUS CUN゙GICL゙s OLIVELLC（S，Thomas
1904．Ann．Nag．Nat．Hist．7，Nlll，p． 4 io． Cunga，N゙．Angola．
 1904．Ann．Mag．Nat．Hist．7，XIII，p． 41 ． Capongombi，S．Angola．
8．FUぶlSCURUS CONGGLC゙S OEN゙UNE，Thomas 1926．Proc．Zool．Soc．London，p． 297. Cunene Falls，Ovamboland．
9．FC゙N゙LSCJURLS CONGICL＇s NTERIOR，Thomas
1916．Ann．Mag．Nat．Hist．S，XVIII，p． 236. Inkongo，South Congo．

\section*{pyrhopus Group}

10．FUNLSCIURUS PYRRHOPLS PYRRHOPLS，F．Cuvier
1833．Hist．Nat．Namm，IV（66），p． 2.
Gaboon．
Synonym：ruhripes，du Chaillu，1860，Proc．Boston Soc．Nat．Hist．VII， p．366．Gaboon．（A valid race according to G．M． Allen，1939．）
erythrops，Gray，1867，Ann．Mag．Nat．Hist．3，SX，p． 330.
1．トUCNISCIURL＇S l＇VRRIIOPU＇S LEON゙IS，Thomas
1905．Ann．Mag．Nat．Hist．7，XV，p． 79.
Bo，Sierra Leone．
12．FLNISCILRL＇S PYRRHOPLS AK゙K゙A，de Winton
1899．Ann．Mag．Nat．Hist．7，IV，p． 356 （footnote）．
＇Tingasi，Monbuttu，N．－E．Congo．
Synonym：emim，de Winton，1895，Ann．Mag．Nat．Hist．6，犬iVl，p． 197.
Not of Stuhlmann．
sintoni，Neumann，1900，Zool．Jahrb．，13．p．547．
13．FUN゙SCIURUS LELCOSTIGMA LELCOSTIGMA，Temminck
1853．Esq．Zool．Côte de Guiné，p． 133.
Gold Coast．

1909．Ann．Mag．Nat．Hist．8，IV，p． 478.
Oban，S．－E．Nigeria．
15．1＂C＇NISCIURE＇S LELCOSTIGNA NIV1ATL＇S，Thomas
1923．Ann．Nag．Nat．Hist．9，XI，p． 522.
Beoumi， 12 miles east of Bandama．Ivory Coast．
16．FLNOCLLRL：PEALBERTUNI，Thomas
1904．Ann．Mag，Nat．Hist．7，XIV．p． 201.
Dondo，Cuanza Kiver，Angola．（A race of \(F\) ．pyrrhopus according to （i．M．Allen．）
17. FLNISCILRLS RAPTORLM, Thomas
1903. Ann. Mar. Nat. Hist. 7. NI, p. So.

Forcados, Luwer Nigersa.
is. FUNLECILRLS ANERYTHRL'S ANERRY'THRL'S, Thomas
1Sgo. Proc. Zool. Suc. London, p. 447.
Buguera, west of Lake Albert, Congo.
19. FLNISCILRLS ANERYTHRLS BAND.ARL'M, 'Thomas
1915. Ann. Mag. Nat. Hist. 8, XV1, p. 146.

Bammeta Reser, Upper Shari.
20. FUNLSCIURUS ANERV"THRL's NAPU, Allen
1922. Bull. Amer. Mus. Nat. Hist., XLJII, p. 52.

Niapu, Belgian Congo.
zr. FUNISCILRLS AURICLLATUS AURICULATLSA, Natsche iSol. Archiv. Naturg., I, 3, P. 353.

Kribi, Cameruons.
22. FLNLSCILRL'S ALRIC'LLATLS BEATUS, Thomas igio. Ann. Mag. Nat. Hist. S, V, p. 196.

Benito River, French Congo.
23. FLNISCILTLTS AURICLLATLS BOYDI, Thomas 1910. Ann. Mag. Nat. Hist. \&, V, p. 196.

Mussaka, Lower Mongo River, east of Cameron Mountain.
24. FLNISC'ILRL'S AURICLLATLS OLIVIAE, Doliman
1911. Ann. Nag. Nat. Hist. 8, VHI, p. 733.

Oban, S.-E. Nigeria.
25. FUNISCIURLS MYSAX MYSTAX, de Winten 1898. Ann. Mag. Nat. Hist. 7, II, P. 9.

Benito River, French Congo.
26. FUNISCIURUS MYSTAX OCHROGASFER, Cabrera \& Ruxton
1926. Ann. Mag. Nat. Hist. 9, XVII, p. 597.

Luluabourg, Kasai, S. Congo.
27. FlNisCIURUS JEL'COGENYS, Waterhouse
1842. Ann. Mag. Nat. Hist. S, p. 202.

Fernando Po.
Synonym: erythrogenys, Waterhouse, IS43, Proc. Zowl. Soc. London, P. \(129,1842\).

28 FUNISCILRUS SUBSTRIATLS, de Winton
1899. Ann. Mag. Nat. Ilist. 7, IV, p. 357.

Kintampo, Gold Coast.
29. FUNISCILRES MANDINGO MANDINGO, Thumas
1903. Ann. Mag. Nat. Hist. 7. S1, p. 79.

Nianimaru, Gambia.
30. FUNLSCILRLS MANDINGU NIGRENSIS, Thomas
1909. Ann. Mag. Nat. Hist. \&, IV, p. 478.

Abutschi, Lower Niger.
31. FUNISCILRL心 CARRLTHERSI CARRLTHERSI, Thomas 1gote. Ann. Mag. Nat. IIst. 7, XVIII, P. 140.

Rusienzori East.
32. H'NLSCILRLS CARRUTHERSI I'ANGANYIKAE, Thomas 1909. Ann. Mag. N゙at. Ilist. \(8,1 \mathrm{~V}, \mathrm{p} .477\).

Usumbura, north end of Lake Tanganyika.
33. FINISCIL'RL'S CARRL"IILERSI CHRE゙SIPPUS, Thomas 1923. Ann. Mag. Nat. Mist. 9, XI, p. 522.

Wabembe, north-west of Lake 'langanyika.
34. FUNISCIURLS CARRU"IHERSI BHRLNCENSIS, Gyldenstolpe 1927. Arkiv. Zoologi, Band 198, no. 6, p. I.

Nount Karissimbr, Birunga voleanoes, East Congo.
Genus 21. PROTOXERUS, Forsyth Major
1893. 1'rotoxfre's, Forsyth Major, Proc. Zool. Soc. London, p. I89.

Type Species.-Sciurus stangeri, Waterhouse.
Raxge.-Africa: Kenya, Uganda; Gold Coast, Nigeria, Cameroons, Fernando Po, Gaboon, Congo, Angola.
Number of Forms.-Fourteen.
Characters.-Infraorbital foramen large, round, and at maximum development for the family, not forming a canal, and apparently well open enough to transmit a small strand of muscle. The portion of the zygomatic plate behind it considerably narrowed. Zygomatic plate strongly ridged, but less so than in Xerus, though it approaches the type found in that genus. Frontals broad, postorbital process moderately developed; rostrum short, broad. Parietal ridges not heary, but joining in adult. Palate normal. Bullae not reduced. Toothrows not reduced. Cheekteeth \(\frac{4}{4}\), relatively brachyodont, in structure suggesting the Xerus type; the usual four ridges and three depressions traceable in the upper series, but the whole effect usually rather simple. The centre depression rather broad, the anterior and posterior ones narrow. Forsyth Major suggested that this was the type of tooth from which the normal Xerus dentition was derived. Central depression in lower molars not becoming obliterated, but in most seen the pattern is not clear. Upper and lower incisors considerably thickened anteroposteriorly, their surfaces plain; there is a certain tendency towards this character in all genera of African Tree-squirrels.

Size large, up to 310 mm . head and body. 'Fail densely bushy, often rather longer than head and body. Digits with the arrangement characteristic of arboreal types. Ventral surface of body poorly furred, often tending to be nearly naked, a rare feature in the Order.

Forms seen: bea, caliurus, centricola, dissonus, eborizorus, loandae, moerens, nigeriae, notabilis, signatus, stangeri, temmincki.

\section*{List of Named Forms}
1. PROTOXERLS STANGERE STANGERI, Waterhouse
1842. Proc. Zool. Soc. London, p. 127.

Fernando Po.
Synonym: nordhoffi, du Chaillu, 1860, Proc. Boston Soc. Nat. Hist., VII, p. 363. Gaboon.

IS74．Nonatsher．Akad．Wiss．Berlin，p．707． Cameroons．
3．PROTOSFRL A SIANGGRI DLSSONLS，Thomas 1923．Ann．Nag．Nat．Hist．9，X1，p． 527. Bitye，Ja River，Cimeruons．
4．PROTOSIRL．STANGERI NGGERIAE，Thmmas 1006．Ann．Mag．Nat．Hist．7，NVIII，p． 296. Abutschi，Lower Nicer．
 \＆8フリ．Zoul．Yunn，P． 239 （note）． Ciuld Coast． Synonym：canicops，Temmmek，1853．Esq．Zool．Ciote de Gumé，p．127， Cold Coast．Not of Gray，i8q2．
6．PROTOXIRRS STANGERI EBORIN゚ORLS，duChatlu sfino．Proc．Boston sine．Nat．Hist．，VII，p． 363. Gaboon． Synunym：（？）subalbidus，du Chanllu，same reference，p． 365.
7．PROTOXIRLS ぶTANGERI PERSONAT゚Lシ，K゙ershaw 1923．Rev．Zool．Afr．，SI，4，p． 364. Makia Ntete，Lomer Mayumbe，Congo．
8．PROTONERLS STANGLRI TORRE NTLL A，Thomas
1923．Ann．Mag，Nat，Hist．9，NI，P． \(5 \geq 9\).
stanley Falls．Cungo River．
D．PROTONERES STANGERI NOPABLIt，Thomas
1923．Ann．Nag．Nat．Hist．9，XI，p．528．
Avakubi，Ituri Forest，Belgian Congo．
10．J＇RO＇TOXERL゚S STANGERI NOERENS，Thomas 1923．Ann．Nag．Nat．Ilist．9，XI，p． 527. Lohn，near Angu，Lelle River，Belgian Congo．
1．PROTOXERES STANCERI SIGNATES，Thomas 1910．Ann．Mas．Nat IIst． \(8, V\), p． 85.

Ledja，near L＇pper I ukenye River，S．Congo．
12．PRUTOXERLS STANGERI LOANDAE，Thomas
1906．Ann．Naq．Nat．Hist．7，NVIII，p． 206.
Canhoce，N．Angola．
13．PROTONERLS SIANGGERI CIENTRICOLA，Thomas
1906．Ann．Mag．Nat．Hist．7，S゙VIII，p． 297.
Entebbe，Utganda．
14．IRGTOXERLS STAN（ifRI BLA，lleller
1912．Smiths．Mise，Coll．，LJX，no．16，p． 2.
Lukisa Riser，liakamega Forest，Kenya．

\section*{Genus 2z．MIYRSHLES，Thumas}

1909．Myrsilt＇s，Thomas，Ann．Mag．Nat．Hist．S．Il I，p． 470.
Type Spfeifs．－Sciumas amhimii，Gray．

Range.-West Africa: 1iheria, Ishanti.
Nember of Forms--'Jwo.
Characters- - Essential skull characters, including the large infraorhital foramen, as I'rotoverus, but skull higher in frontal region, and nasals slanting downwarels anteriorty: Zygomatic plate rather weaker. In the four skulls examined, the ehcektecth have much more elearly marked ridges and depressions than the majority of Protoverus. P. 3 present, very small. Ineisors of similar type to those of Profozerus.

Externally differing from Protoxerus in the normally furred belly, and the narrower tail, which is less densely bushy. Smaller than Protoverus.

Remarns.-This genus is not very clearly distinguishable from Protoverus, but prohably must stand, at any rate provisionally, untit more material comes to hand. The well-furred belly and the more strongly ridged cheektecth (constant?) are the main distinguishing characters.

Forms seen : authimii.

\section*{List of Nampi forms}

1873. Ann. May. Nat. II ist. 4. XII, p. 65.

Fantee, Ashanti, W, Africa.
2. MYRSILE'S ALBINNII SALAE, Jentmk
1881. Notes Levden Mus., III, p. 63.

Liberia.
Genus 23. EPIXERLS., Thomas
1909. Epixert's, 'Thomas, Ann. May Nat. Hist. S, III, p. 472.
'TYpf Spferfs.-Sciurus azilsoni, du Chailh.
Ravge.-West Africa: Gold Coast, Cameroons, Gaboon.
Nuaber of Forms.-'foro.
Characters,-Closely related to Protoxerus; skull longer and narrower: infraorbital foramen of similar type, but much less open in adult skulls examined, its appearance slitlike, thuogh scarcely forming a canal. Frontals relatively narrower, and muzzle longer. Bullae considerably reduced. Palate extending very slightly more behind toothrows. Toothrows strongly reduced. In all skulls seen, the depressions tend to take the form of re-entrant folds. Cusps low. Lower checketeth with the elements apparently near Xems; a well-marked outer re-entrant fokd appearing between the outer main cusps. P. 3 absent. Incisors plain, much thickened anteroposteriorly.

Finternally large; tail thickly hushy, rather longer than the head and body; belly poorly furred, nearly naked oftem, as in Profoxerus; digits of arboreat type.

Remarks. - Not clearly very separahte from Protoxerus.
Forms scen: wilsoni, ebii.


\section*{LAs" (af Nahan lormas}
```

 1. FPINEERL& MHANONI, du Chatla
 INoo. Proc. Boston sinc. Nat. Ilist. VII, p. 364.
Gaberen.
2. FPINERLS EBII, Tamminck
IS53. Esq. Zool. Cinte de Guine, p, Izo.
Fiorests of Ciumen, most abundant at Dabocrom,

```

Section E. Nercis. African and Palaearetic terrestrial Squirrels presenting the following features: lachrymal usually much enlarged; bultae usually more condared than is normal; palate always extending considerably behind the toothrows; claws prominent to extremely enlarged; fur most often bristly.

\section*{Genus 24. NERUS, Jemprich \& Ehrenbere}
i833. Neris, Ilemprich \& Ehtenberg, Symb. Phys. Namm. i, text to pl. IX.
1834. Ginsettres, Smith, S. Afr. Quart. Journ., ii, F. I2 S. Scturus capensis, Kerr. Vald as a subvenus.
190\%. Elxikis, Thmmas, Ann. May, Nat. IIst, S, 111, p. +73. Sciurus erythropus, Geoffros. Valid as a subzenus.
 Cretzchmar.
Range,-Africa: Sudan, Sahara, Abyssinia, Somaliand, Kenya, Uganda; Senegal, Sierra Leone, Gaboon; South-west Africa, Siouth Africa.
NiMable af Foras-Nincteen.
Chaksumers-Palate produced posteriorly considerably behind level of last molars; bullae large, round and inflated; lachrymal conspicuously enlarged. Zgomatic plate much narrower, particularly above, very strongly ridged along anterior border; infraorhital foramen with well-developed masseter knoh. P'ariotal ridges, though not well marked, joining in old age. llamular processes thick, long, joining bullae. Postorbital process short, dirceted backuads. lncisors so far as seen without trace of grooring (compare Atlantencous).

Checketeth ; in Korus s.s. and Geosciums; the extra premolar present, minute, in Euxerus. 'The depressions are well marked; the cusps and ridges not high; originally the re are three depressions hetween four ridges; in old age, the posterior ridese and depression tend to become obliterated. \$1.3 smaller and rather simpler than X. 1 and ⒈2. Lower cheekteeth with well-developed posterointernal cusp, and the central depression of each tooth more or less compressed, and restricted, not taking up the irreater part of the tooth, as it does in most genera. With wear the depression takes the form of a wide re-entrant fold. 'The anterointernal cusp, as usual the highest, hut the cusps not particularly developed. Clucekteeth strongly hypsodont in Euverus and Geosciurus; less so in typical lemes.


Fig. rof. Xeres ritilis hithles, Cretzchmar.
IBM. 人o. 4-s.9.11, ; ; \(1 \frac{1}{2}\).




Fur in the form of short bristles，whels coser the head，limas and more or less the whole hody．D）． 3 in the forefoes definitely lomere than D．+ ，which is longer than D．2 and 1）．5．Ilindfoot rather lane，the three central digits longer than the outer two，D． 3 very slightly the main digit．＇Tail bushy，nearly as long as lead and hody．Ear short．

In the trpical subgenus，there is nu side－stripe，but in both the other suh－ genera there is a white stripe on cach flank．

Euxerns retains the extra small promolar，which is said to be lost early； and has a narrow skull，and reduced postorhital processes．

Geosciurns，from south Africa，has a much broader skull than is normal in the esenus：the skull is not unlike that of Spermophilopsis except that the hullae are more evenly inflated，the interparietal is not so clearly marked， and the parietal ridges tend to join．The hindioot is as a rule relatively larger than in allies．

These two groups are currently given full generic rank，but the time，I think， has come not to recognize genera on the least or raguest excuses．＇The three groups are essentially congencric in all main characters；much more nearly allied to e：leh other than are some of the numerous subgenera now refered to Citellus in North America．

The following tahk should indicate that it is no longer necessary to retain Euxerus and Geasciurus as full genera，in that the characters of the three groups intergrade to a considerable degree．
\begin{tabular}{|c|c|c|c|}
\hline & Terus & Euxerus & Geoscinrus \\
\hline Head and Body Length & 230－230（St．Léger） & 240－300 & 250－290 \\
\hline Flank－strinc & Absent & Present & Present \\
\hline Clueckteeth & Mure brachyodont & Hypsudont & Hypsodont \\
\hline P．3 & Absent & Present & Absent \\
\hline Skull & Rather hroad & Narrow & Brond \\
\hline
\end{tabular}

Forms secn：agalims，capensis，chadensis，dobocolla，dorsalis，cryehopus， fulzior，internus，lecustris，lencomabrinus，limitaneus，marstus，microdun，namaquen－ sis，primecps，rufifoms，rutilus，saturatus，stephaniens．

> List of Nbafe Forais

Suhgenus Jerus，Hemprich \＆Ehrenherg

1ふまわ．Ruppell Atlias，P．50，pl．24．
Eostern slope of Abyssmia．
Symanym：bathyotis，Hemprach \＆Ehenberes，1832，Symp．I＇hys．，I， text to pl．H．
\({ }^{2}{ }^{2}\) ahessimious，（imerin，Syst Nat I，P．140．178S．



l＇robably Éritrea．

1904．Ann．Mig．Nat．Hist．7，XIV，p． 100.
Gerlogubi Wells，Somalnand．

rgo6．Ann．Nag．Nat．Ilist．7，XVVII，p． 301.
Lake Stephanie，Abyssinia．

19I！．Ann．Mag，Nat．Jlist．8，VIl，p．sid．
ㄷ．Guaso Nyiro，Kenya．
Synonym：（？）flazos．Minne－Edwards， 8 867，Rev．Mar．Zool．229． ＂Gaboon＂error＂Somaliland．Not of linnacts．
6．N1ERL゚S RL＂ГILU゙S SATLRRATLS，Neひmann
1900．Zool．Jahrb．Syst．，LIH1，p． \(5+6\).
Kibwezi，Kenya．
－SERLSRLTHLL＊DORSARIS，Dollman
1911．Ann．Mar．Nat．Hist．S，Vll，p．519．
Lake Barngo．Kenya．
Subgenus Euverus，Thomas

1803．Cat．Nanmi．p．178．
W．Africa；possibly Senegal．
Synonym：alborittatus，Desmarest，J8ı7，Nouv．Dict．Hist．Nat．．X， p． 110.
（？）simplex，Lesson， 1836 ，Hist．Nat．Namm．，V，p．foz． Senegal．
marabuths，lesson，Comp．Buffon，2，Paris，1， \(467,1530^{\circ}\). prestigiator．lesson，same reference，p． 468.
lessomi，Fitzmger， 1867, Sitz．K．Ak．Wiss．Wien．math． nat．CI．55，1， 488.

1910．Ann．Mag．Nat．Hist．8，V，p． 419.
Daru，Sietra Leone．
 1921．Nov．Zool．XXVIII．p． 6.

Agades，Air，Sahara．
11．SERUS ERS＂TIROPL゙S（Cl1ADFOLith，Thomas
1905．Ann．Mas．Nat．Hist．7，XV，p． 387.
lo，Lake Chad．

1905．Ann．Mag．Nat．IIst．7．SV．p． 3 sh．
Masmd，Linvoro，Ľganda．

1923．Proc．Zool．Soc，London，P． 255.
Zalıneci，Darfur．S゙udan．
 \& 35 . Neue Wirh. Fauna Abyss. Säugeth. p. 3 S.

Abyssinia or Sudan.
15. SERES FRY'TllROPLS MLRODON, Thomas
wos. Ann. May. Nat. Hist. 7, XV. p. 3 Kiog.
Kıtui, Kenya.
Synonym: morodon fultior, Thomas, 1005, Ann. Mag, Nat. Hist. 7. dV, p. 3 8o. Fort Hall, Kenya.

Subgenus (reosciurus, Smith
16. XERLS INAURIS NNALRRS, Zmmemman

178o. Geogr. Geschichte, 2, 344
Kaffirland, 100 miles north of Cape of Good Hope.
Synonym: lcaillanti, Kuhl, s\&zo, Bert. Zool. 67. setusus, Smuts, i\$32, Enum. Mamm. Cap. 33. capensis, Kerr, 1792, Linn. Anim. Kingd. 266. gimginiamus, Shaw, Gers Zool. 2, pt. 1, 147, 1801 dschinshicus, Gmelin, Syst. Nat. I. p. 151, 178S. africame, Shaw, Gen. Zool. 2, pt. 1, 172, ISor.
17. SERUS INAURG NAMAOUENSIS, bechtenstem
1793. Cat. Rer. Nat. p. 2.

Orange River, Namaqualand,
18. NERVミ PRINCEPS, Thomas
1929. Proc, Zonl. Soc. London, p. 106.

Otjotundua, Central Kiaokoveld.
The incisors are white in X. cupensis, but normal (yellow) in X. princeps.

Genus 25. ATLANTOXERUS, Forsyth Major
1893. Atlantoxfres, Forsyth Major, Proc. Zool. Soc. London, pr. isg.
'Type Srecies.-Siturus getulus, Linnacus.
Range,-Pdacarctic section of Africa (North-west): Moroceo, Algeria: "All the Grand Atlas from the Atlantic coast between the Uad Tensift and Lad Sus, at extreme east of the chain extending to the middle Atlas and the Alecrian Sahara" (G, M. Allen).

Number of Fupas.-Onc.
Charactars - Like Terus, hut fur not definitely bristly, though short and stiff. D. 4 appears in the manus to be relatively longer, so that rarcly D. 3 and D. 4 may be subequal. A prominent white stripe on each flank, and sometimes a mid-dorsal stripe may he indicated. Skull Hatter than is normal in Xerus; upper incisors frequently with traces of a groove.
l'arictal rideses poorly marked, evidently not tending to join. I'3 present, fairly well developed; dentition essentially as Serus. Lachrymal not specially conlarged.

Remarks.- The smaller lachrymal, and fur which is not bristly, may be used for retaining this genus. It is evidently a primitive member of the Xerus section, with the characters of that section at least development. It is the only Squirrel in Africa north of the Sahara.

Forms seen: getulus.

> List of Nimme forms
1. ATLANTOXBRUS GETLI』S, I, innacus
1758. Syst. Nat. 1, 1oth Ed. p. 64.

Agadir, Morocco.
Synonym: trizithatus, Gray, 1842 , Ann. Mag, Nat. Hist., N, p. 264.
There is at the British Museum a skull labelled "barbarus." The reference to this name has not been traced.

Genus 26. SlPERMOIDIILOPSIS, Blasius
1884. Spermophilopsis, Blasius, Tageblatt 57 ten. Versamml. Deutsch Naturf. Magdeburg, 5. pp. 322-325.

Type Spectes.-Spermophilus leptodacty/us, Lichtenstein.
Ravge.-Afghanistan and Russian 'Turkestan (from Caspian Sea to Semircehyia district) (Vinogrador).
Number of Forars.-Ihree.
Characters,-In essential cranial characters this genus is clearly a member of the Xicrus section. It differs from all Sciuridae scen in the extreme development of the claws, except \(H\) yoscium from Celebes. The frontals are very broad inded, the braincase hehind the postorbital process wide. I'ostorbital process not very large. In none of the skulls is there the slightest sign of the parictal ridges coming together; the interparietal is well marked. Oecipital region relatisely weak. Infraurhital foramen well open, barely forming canal. Bullae not esenly inflated, though larger than is usual. Palate rather shorter posteriorly than Xerus.

P'3 minute. In all the skulls seem, the upper checkteeth are more or less flat-crowned and well on the way towards complete simplification, but all are much worn. The tecth are strongly hepsodont. One main outer re-entrant fold is traceable in all teeth, with sometimes a short fold in front of it. The teeth in extreme age seem to wear down to a simple ring-shape. Lower cheektecth of all seen with one short outer and one long inner fold; or tending to become completely simple at later development. The dentition appears to indicate a nearer relationship with the . lerwsection rather than with the Citellus section.
D. 3 of forefoot the longest. Claws of all digits of hindfoot, and the four nain digits of forcfoot, excessisely long, thick and powerful. Pollex very short, but chawed. Sole thickly haired in those examined. Summer pelage rough, almost bristly as in lerus; winter pelage long, silky, Nammate 6 or 8 (Obokensky).

 B. 11 No, \(4 .+3.23 . \quad\) : 1 !

 13.11 Ni, \(13+3.23, \cdots \frac{1}{2}\).
'lail strongly reduced, not much longer than hindfoot. Cheek-pouches present (Vinogradov).

Forms seen: leptodactylus.
The genus is revised hy Ololensky, 1927, C.K. Acad. Sci. Leningrad, p. is \(\$\).

List of Named Forms
1. SPRRMOPHILOPSIS LEPTODACTYLL'S LEPTODACTYLLS, Lachtensten
1823. Eversmann. Reise, p. 119.

Rarata, \(1 \neq\) versts north-west of Bokhara.
Synonym: turcomanus, Eichwald, Reise I, p. 305, 1834.
2. SPERTIOPHHOOPSIS LIPTODA("FYLLA SCHCXAKOVI, satunin
1908. Mitt. Kauk. Nlus. p. 255.

Kushka, S. Transcaspia.
3. SPERMOPIHLOPSAS BACTRIANLS, scully
1888. Journ. Asiat. Soc. Bengal, LVI, p. 70.

Khamah, North Afghanistan.
Considered by Vinogradov, 1933, Rodents of U.S.S.R., as probably a subspecies of leptodactylus.

Section \(\mathrm{F}^{2}\) Thmas and Allies. Semiterrestrial Squirrels with narrow rather Hattened skull, relatively small postorbital process, cheek-pouches present, digits 3 and \(f\) of manus about equal to each other in length (neither constantly longer than the other), dentition of Sciurus type.

\section*{Genus 27. SCILROTAMIAS, Niller}
1901. Scherotamas, Miller, Proc. Bol. Soc. Washington, NHV, p. 23.
1922. Rurestes, 'Thomas, Ann. Mag. Nat. H1st. 9, N. P. 398. (Rupestes forresti, Thomas.) Valid as a subgenus.

Type Spfeces.-Sciurus dazidianus, Milne-Edwards.
Range.-China: Moupin, Stechuan, Kansu, Shensi, Shansi, Chihli; Yunnan.
Nocabrer of Formis.-Five.
Characters.-Skuli much like Asiatic Tamias, but infraorbital foramen not abnormally open, though more so than is usual in Sciurinae. 'lail thickly bushy; no colour pattern; and differing " in the direction of Sciurus in the reduction of the capacity of the cheek-pouches." Skull long, relatively narrow, with smooth braincase, much reduced postorhital process, and with posterior portion of skuil not depresed posteriorly, agreeing in this respect with Tamias, but differing from Sciurus. Zygomatic plate, as in Tamias, short and little tilted upwards, the ridges of its superior border weak. Infraorbital foramen searecly forming canal; masseter knob weak or ahsent. Upper cheekteeth as in Tamias; l'. 3 present, though vestigial. Lower cheekteeth not essentially different fron Tomias; palate normal.

Tail ahout threc-qumers of head and hody length, hushy: D. 3 and D. + in manus subequal in length. Hindfoot rather broad, with sole hary; arrangement of digits as in Tamias, with tendency for D. 4 to be stightly longer than D.3. Fiur thick and soft.

Upper inctisors rather short.
Rupestes described as a full genus by 'Thomas is not distinguishable in cranial and dental characters in any way that could be considered as of generic value. \(\mathrm{l}^{\prime} 3\) is absent. The hindfoot is narrow, with naked sole, and an additional sole pad halfway between hect and digital pad at base of hallux. Fur and digit arrangement as in normal Sciurotamus. Three pairs of mammae (Thomas). Further specimens would be weloome to make the exact status of this species clear: at the moment there are no characters which distinguish it as a genus except the form of the hindfoot, which may be very variable ctsewhere within a genus.

Forms seen: daridianus, consobrinus, forresti.
```

 Llist of Namen Forkis
 Subgenus Sciurotamias, Nitler
 8. SCILTROTANIIAS DAVIDIANUS D.\VIDIANLS, MIInc-Jdwarals
 1867. Rev. Nar. Zoml. p. mon.
N. China, mountams near Pekm.
3. -CHLROTANIAS DNIIDIANC'. 'TILAY'ERI, (i, Alten
[013. Nem. Nus. Comp. Zool. 40, P. 231.
Wiashan, W. Szechuan, China.
```

```

IMosi. Rech. Hist. Nat. Namm, P. 305.
Noupur, Szechuan, Chana.
4. SCHLROTANIAS DAVHDIANES OWSTONI, Nllen
1gor, Bull. Amer. \us, Nat. Hist., XXVI, p. +24.
'T:n-l'a-Shmar Mts,, Shen-si, Chma.
Suberenus Rupestes,'Thomas
%. SCIC'IROTAAMIAA FODRRENTI, Thomas
1022. Ann. Nag. Nat. Ilist. 0, N, p. 398.
Mckoner-Yangtze Divide, 27 N., Y'uman, Chma.

```

\section*{Gonus 2R. TAMIAS, llliger}




``` Alken.) Valad as a subsemus.
'Typi species-Sonmus striatus, Limateds.
```

Range--Holarctic: U.s.s.R., castwards from River Dwina and Kama, northwards from $5^{8} \mathrm{~N}$. in European Russia, also widely distributed in wooded and wood-steppe districts of Siberia and lar Last (Vinogradov): Altai, Ussuri; Manchuria, Chihli, Korea, Shansi, Shensi, Kansu, Szechuan; Japan, Kurile Ishands; Jukon, Mackenzie, Ontario, Alberta, British


Fig. 108. Thinas dorsalls durialis, Baird.
R.M. No. S8.9.24.1, $0^{\circ} ;>2 \frac{1}{2}$.

Columbia, Washington, Oregon, Jaho, Montana, Wyoming, Wisconsmn, California, Lower California, Nevada, Ltah, . Vrizona, Colorado, New Mexico, Texas, New York, South Carolina; south into Northern Mexico.

Nimber of Fornis.- About cighty-one.
Remarks.-This genus is usually split into two, Tamias and Eutamus, the former containing the type species only.
The subgenus Eiutamias was originally proposed hy Trouessart with the single character that the premolars are $\frac{2}{2}$ instead of $\frac{1}{1}$ as in typical Tamias. Nerriam in 189 ; (Proc. Biol. Soc. Wishingenn, XI, p. 1Sg), gave Emtambes full generic rank, stating, " it will be observed that the name Eutamius, proposed by Trowessart in 1880 as a subgenus of Tamias is here adopted as a full gemus. 'This is
hecause of the constetion that the superficial resemblance between the two groups is accidental parallelism, in no way indicative of affinity. In fact the two groups, if my motion of their relationship is correct, had very different ancestors, Tamias being an offshoot of the ground-squirrels of the subgenus /ctidomys of Hene and Eintamias of the subgenus Ammospermophilus, Acerram." At the same that he gives no characters which would separate the two "genera."

Howell in 1020 (Revision of the (hipmunks, North Amer. Fauna, No. 52, p. 1, 1920), erected a new subgenus for American "Limamias," and keys the three groups thus:


Upper premolars two; dorsal stripes unequally spaced (median bordered on either side by a much broader band).

Genus Tamias
Upper promolars four; dorsal stripes cefually spaced (all of approximately (qual width).

Genus Ectamas
Anteorfatal foramen suborbicular; postorhital processes broad at basc.

Subgenus Eutamias
Antcorbital foramen marronly wal; postorbital processes narrow at basc.

Subgenus Neotamias
This key convinces me that all these forms must be referred to one genus only. "The characters given to suparate "Pimtamias" from Tamias are hased only on the absence or presence of the functionless premotar, and on the colour pattorn. If colour pattern is tor be used as a deneric character, it seems Citellus susticus will require a new name when compared with C. citcllus, ete.

The Asiatic Chiphank is intermediate between typical Temmeas and the
smaller American forms in many characters. Comparing Veotamias with Eutamias, Howell, writing of the batter, states, "the ears are broad, rounded, of medium height, much as in Tamius; postorhital broad at base, tapering to a point, much as in Tamias; interorlital constriction shight, as in 'amias; upper molariform toothrows slightly convergent posteriorly, as in Tamias." He also states, "Elutamias of Asia resembles T'amias of North America and differs from Americans Eafomias in a number of characters, notahly the shape of the anteorbital loramen, the postorbital process, the breadth of the interorbital region, the development of the lambdoidal erest, and the shape of the external cars. On the other hand, American Eatamias agrees with the Asiatic members of the genus in the shape of the rostrum, the well-defined striations of the upper incisors, the presence of the extra peg-like premolar, and in the pattern of the dorsal stripes."

It becomes clear that these forms agree in far too many essential characters for the Eutamias group to be retained longer as a distinct genus.

Cuaracters.-(Subgenus Eutamias; Palacarctic). Skull lightly built, narrow, and with no prominent ridges for muscle attachment, except the upper border of the zygomatic plate, which is ridged superiorly, though not tilted upwards as much as is ustal owing to the skull being flatter than in most Sciuridac. Postorhital process small and weak, though broader than in subgenus Neotamias. Bullae relatively large. Palate broad, normal, not continued far backwards; lachrymal not much enlarged. Infraorbital foramen forming no canal, large, round and apparently well open enough to transmit a strand of muscle. 'The part of the zygomatic plate behind it is narrow; a small masseter knob is usually present. Jandible with angular portion somewhat pulled inwarel.

Cheektecth of Sciurus type; 1'3 present, but vestigial. The ridges and depressions well marked originally, but evidently tending to wear down rather early. 'The lower teeth are not unlike those of Citellus, but without the great height of the cusps characteristic of normal members of that genus, and the posterointernal cusp more developed: the ridge connecting the two outer main cusps weaker. Upper incisors with traces of many minute grooves, as in Marmota.

Externally, tail relatively long, though rather shorter than the head and hody, as a rule; not densely hushy, though fully haired. In the manus, D.f and D. 3 are ustally roughly equal to each other in length. It has been stated (Winge, Weber) that D. 3 is the longest digit; but out of two hunded and wenty-seven skins examined (incheding Astatic and American species of the genus), only fifty-two had the middle digit slightly longer than the fourth; and sometimes D. 4 may be slightly the longer: in some skins of Asiatic Tamias, the digit lengths rary in the two hands. Sole usually partly haired. IIndfout with the outer digits shorter than D. 3 and D.t, with a tendency for D.f to he slighty the longest; hallux rather reduced. The back typically with fise black stripes, bordering four white ones. There is some varation in colour pattern: in (Neotamias) dorsalis, only one mid-dorsal stripe is elearly marked.

Neotamias, containing the American forms with a roughly similar colour
pattern and P .3 present, have the infraorbital foramen rather kess open and less rounded, hot still of large size eompared with most seiuridae. 'The pustorbital process is narrower at the base, and lighter. The skull is less heavily built. But as shown above, Asiatic Tamias connects these forms with the typical subgenus. 'The haculum is sad to differ from subecons Eutamias.

Tamias s.s. has I. 3 ahsent, and there are only two white thank-stripes each side, though the five black ones of the other forms are present. The rostrum is less abruptly constricted near the base, and narrowing evenly from base to tip; the upper incisors have the grooves shallow or absent. Further, Howell states that the palate is relatively longer (hut the differences in British Museum material seems to amount to very little); and that the bullae are relatively smaller. 'The tail is usually rather shorter. 'This subgenus is confined to eastern North America.

Tamias and Eutamias contain a single species each. Neotamias is divided by Jowell into five specific groups:
The alpinus group: small, skull 30.3-3I 7 in length; interorhital region broader than in other small species; (coloration rather pale).
The minimus group: small-medium in size; hindfont $26-35 \mathrm{~mm}$.; skull length 28.7-34.2.
'The amocmus group: evidently not very clearly distinguishable from the minimus group (hindfoot 29.5-35; skull length $3 \times 3-35 \cdot 1$ ); "certain forms in the two groups . . . inhabiting widely separated areas are so elosely similar both in external and eramial characters that many specimens are difficult to identify without recourse to the locality lahel" (Howell).
The quadriaittutus group: size medium: hindfoot 32-30; skull larger than races of minimus or amoerus. 34 -5-3t.8.
'The tor'mscndii group: large; hindfoot $34-39$; skull $36 \cdot 8-40 \cdot 8$.
Forms seen: alpimus, ammentes, "asiaticus" = sibiricus, buralis, bulleri, callipeplus, cincreicollis, consobrimus, dorsalis, froter. hindsi, intercessor, inyoensis, lincatus, lysteri, merriami, minimus, heglectus, "heroscms, ,rdinalis, orientalis, panamintimus, pilie, quadrimaculatus, quadrizittatus, scmescons, senex, speciosus, striatus, toansendi.

List of Namfo Forms
Subgenus Nootamias, 1 lowell
alpinus Group
f. TAMIAS ALPDNLS, Merram
1803. Proc. Bmol. Sic. Washington, Vlll, p. 137

Ber Contonword Meadows, south of Mount Whitneys Tulare County, Calderma.
minimus Group

1830. Jenem, Acad. Nat. Sici. Philadelpha, VIII, pt, i, p, 71.

Near (ireen Raser City, Swectwater County, Wyoming.
3. Thamas miname's pertes, Allen
: 890. Bull. Amer. Mus. Nat. IIst., III, p, 115 .
Kelton, Boxelder County, Ltalt.
Synony: minimus melumorus, Merfiam, 1890 , N. A. J'auna, No. 4. p. 22. Snake R., Blackfoost, Bingham County, Idaho.

1925. Journ. Mamm. Baltimore, 6, p. 52.

Farmer, Douglas County, Washington.
5. TAMAAS MHNIML SARYI, Merriam

1gos. Proc, Biol. Soc. Washington, NXI, p. it3.
Medano Ranch, san Lais Valley, Costilla County, Colorado.
6. TAMHAS MINIMES PADAIDE'S, Allem

1874 . Proc. Boston Soc. Nat. Hist., NVI, p. 289. Camp 'Thorne, near Cilendive, Dawson County, Montana.
7. TAMHAS MHNALES CACODLALE'S, Cary
1906. Proc. Biol. Soc. Washington, NIS, p. So.

Sheep Mountain, Isig Isad Lands, South 1 Makota; Fall River County.
$\therefore$ 'mamat MiNDMES confinis, Honell
1925. Journ. Mamm. Baltimore, 6, p. 52.

Crescent Lake, Oneida County, Wisconsin.
(1). TAMMAS mNint's consobrentes, Allen
1890. Bull, Amer. Mus. Nat. Hist, III, p. IIz.

Wasatch foothulls, is miles cast of Salt Lake City, Utah.
Synonym: clarus, Bailey, 1918, Proc. Biol. Soc. Washington, XAXI, p. 31. Swan Lake Valley, Yellowstone Natonal Park. lectus, Allen, 1905. Mus. Brooklyn Inst. Arts \& Scı: Sa. Bull. 1, p. 117. Beaver Valley, Beaver County, Utah.
10. TAMIAS MINIMUS GPERARILS, Merram
1905. Proc. Biol. Soc. Washington, XVIII, p. 164 .

Gold Hill, Boulder County, Colorado.
11. TAMAAS MINLILE ATRLSTRLATLS, Bales
1913. Proc. Biol. Soc. Washington, XXVI, p. 129.

Penasco Creek, Sacramento Mountains, Lincoln County ( 12 miles cast of Clouderoft), New Mexico.
12. TAMHAS MANAHES ARIZONENSIC, Howell
1922. Journ. Namm. Baltimore, 3. p. 178.

Prieto Plateau, Blue Rance, Greenlee County, Arizona.

1897. Proc. Biol. Soc. Washington, XI, p. 207.

Summit Mountain, Flathead County, Montana.
14. TAMIAS MINIML'S BORFAEIS Men
1877. Monogr. N. Amer. Rodents, p. F93

Fort Liard, Mackenzic. (anada.
Synonym: Meglectus, Allen, isyo, Bull. Amer. Mus. Nat. Hist, IlI, p. 10t. Mouth of Montreal River, Lake Superior, Canda.

1900. North Amer. Fauna, No. 19, p. 28.

Lake Lebaree, Yukon, Canads.

1025．Joum．Namm．Baltmore，6，p． 53.
Creseent Lake，Onema C＇onnty，Wiseonsm．
 1034．Unix．Cahf．Publ，Zool．40，P． 321.

Near Blaneo Mountam，Whate Mountams，Nono County，Califorma．

## amocnus Group


shoo．Bull．Amer．Mus．Nat．Ilist．，JIl，p．go．
Fort Klamath，Klamath County，Oregon．
Synomym：amoemus propmqus，Anthony，1o13，Bull．Amer．Mus，Nat． Hest，XXXill，p，6．Jronside，Malheur County，Oregon．
19．TAN11AS ANORXL心（MHRACELE，Howcil
1025．Journ．Namm．Baltimore，6．p．54．
Studhorse Canyon，Siskiyou Mountains，Califomia，
 1916．Univ．Calif．Publ．Zowl．a7，p． 3.

Warren Fork，Mono County，California．
26．TAMHAS ADMONLS LETEIVENTRIS，AHEn
I890．Bull．Amer．Nus Nat list．，IJJ，P．Ior．
Chief Nountam Isake（Waterton Lake）．Alberta， $3 \frac{1}{2}$ miles north of U．S．A．－Canada boundary．

22．＇TAMIAS IN1OIENLS V＇ALLICOLA，Howdl
1922．Journ．Namm．Baltimore，3，p． 179. Bass Creek，near Stevensville，Ravalli County，Montana．

23．TAMIAS ANGENUS CANICALDOLS，Mernam
1003．Proe，Bisl．Soe．Washmeton，NVI，p． 77. Spokane，Spokane County，Washington．

isino．Bull．Amer，Mus，Nat Hist，111，p． 103. Ashoroft，British Columbia．
 wo1：Smiths．Misc．Coll．，LXI，no．z6，p， 1.

Yellowhead Lake，Britash Columbar．
26．T＇ANILAS ADIOENL＇S FELSX，Rhoads

Church Nountain，Nount Baker Range，Britesh Cobumbia New Westmonster district）．

27．TAN1AAS ANIONXL＇s（＇ALRINLSA，Mermam

Near head of Soleduc Rover，Olympe Mountains，Clallam County， Washmeton．

2S．TANIAS PANAXINTINT：PAN゙ANINTTINE゙S，Nurmam

Johnson Canyon，I＇anammt Nountans，J nyo County，Califomia．
29. TAMIAS PANANINTINUS JUNIDERUSE, Burt
1931. Journ. Mamm. Baltimore, 12, p. 298.

Charleston Nountains, Clark County, Nevada.

## quadrivittatus Group

30. 'TAMIAS QUADRIVITTA'TUS QUADRIVITTATUS, say
31. Long's Exp. Rocky Mountains, 2, p. 45.

Arkansas River, Colorados, about 26 miles below Canyon City, Pueblo County.
Synonym : quadrizittatusgracilis, Allen, $\mathbf{1 8 9 0}$, Bull. Amer. Mus. Nat. Ilist.,
III, p. g9. San Pedro, Socorro County, New Mexico. quadrivittatus animosus, Warren, 1909, Proc. Biol. Soc. Washington, X.XII, p. 105. Las Animas County, Colorado; Irwin's Ranch.
31. TAMIAS QUADRIVITPATUS HOPIENSIS, Merriam 1905. Proc. Biol. Soc. Washington, XVIII, p. 165.

Keam Canỵon, Navajo County, Arizona.
32. TANILAS QUADRIVITTATL'S INYOENSIS, Merriam
1897. Proc. Biol. Soc. Washington, X1, p. 20 S.

White Mountains, Inyo County, California.
33. TAMIIAS QUADRIVITTATCS FRATER, Allen 1890. Bull. Amer. Mus. Nat. Mist., III, p. 88.

Donner, Placer County, California.
34. TANIAS QUADRIVITTATL'S SEQUOIENSIS, Howell
1922. Journ. Jamm. Baltimore, 3, p. iso.

Mineral King, east fork of Kaweah River, Tulare County, California.
35. TAMIAS QUADRIVITTATLS SPECTOSUS, Merriam

18go. Bull. Amer. Mus. Nat. Hist., 1I1, p. 86.
Head of White Water Creek, San Bernardino Mountains, San Bernardino County, California.
36. TAMIAS QUADRIVITTATC'S NEVADENSIS, Burt
1931. Journ. Namm. Baltimore, 12, p. 299.

Sheep Mountains. Clark County, Nevada.
37. TAMIAS CALLIPEPLUS, Merriam
1893. Proc. Biol. Soc. Washington, V'llI, p. 136.

Mount Piños, Ventura County, California.
38. 'TAMILAS PALMERI, Merriam
1897. Proc. Biol. Soc. Washington, XII, p. 208.

Charleston Peak, Clark County, Nevada.
39. TAMHAS ADSITUS, Alten
1905. Mus. Brooklyn Arts \& Sci.: Sci. Iuull. 1, p. 118.

Briggs Meadows, Beaver Mountains, Millard County, Utah.
40. TAMHAS UMBRINUS, Allen
1890. Bull. Amer. Mus. Nat. Hist., III, p. 96.

Black Fork, Uinta Mountains, Utah.
28-Living Rodents-1

41 TAMHAN RUFICALDUS RUPICAUDUS，Howell
1020．Proc．Babl．Soc．Washmeton，XXX゙lll，p．gi
Upper St，Mary lake，Glacier County，Montana．
 1922．Journ．Mamm．Baltimore，3．p．179．

Coreur d＇Alene，Koontenal County，Idaho．

18゙ョo．Bull．Aneer．Mus，Nat．Hist．III，P． 94. Sam Prancisco Nountain，Coconino County，Arizona，
＋4 TAMLAS CLDREICOLIS CNERELSA，Baley
1013．I＇roc．Brol．Soc．Washington，XXVI，p． 130.
Magdalema Mountans，Socorro County，New Mexien．
45．TAMISAS CIVEREICOLLIS（ANJPES，Buley
1002．Proc．Bol．Soc．Washington，XV，p． 117.
Guadaloupe Dountans，II Paso County，Texas．
t＇ThMIRS BLLLERI BLTLLERI，Aller
1889．Bull．Amer Nus．Nat．Ilist．，I！，p． 173. Sterra de Valparaiso，＇／acatecas，Mexico．
4न TAMIIAS BLLLIERI DCRANG，AE，Allen
1903．Bull．Amer．Mus．Nat，Hist．，X JX，p． 594.
Arruyw de Bucy，ズ．－WV．Durango，Nexico．
Synonym：mexus，Elliot，Igo5，I＇roc．Bmol．Soc．Washington，XVILI，p． 233.
Coyotes，Durango，Mexico．
48．TAMIAS BLLIERI SOLIVAGL゚S，Honcl！
1922．Journ．Mamm．Baltimore，3，p． 179.
Sicrra Ciuadalupe，C＇ohunla，Mexico．

## teronsendii Group

4）TAAHAS TOWNSENDII TOWNSENDH，Bachman
1839．Journ．Acad．Nat．Sci．Philiadelphia，V1ll，pt．1，p． 68.
Lower Columbia River，Oregen．
Synonym：hindsi，Gray，IS42，Ann．Mag．Nat．Hist．，X，p．26．4．Fort Vancouver，Washington．
torensendic Ittoralis，Elliot，1903．Field Columh．Nus，pub． 74，zool．ser．3，P．153．Marshfield，Oregon．
50．TANHAS TOM゙ NSLNDH COOPERI，Bard
1855．Proc．Acad．Nat．Sel．Philadelphia，p． 334.
Khekstat Pass，Cascade Mountains，Washongton；Skamamia County．

fout．Proc．Bool．Suc．Washington，Xl，p． 105.
Mendocira，Mendocino County，Califormia．

1922．Journ．Mamm．Baltmore，3，p．I8o．
Near summit of Whate Vountan，Siskiyou Countr゙，Califurnia．
53 ＇JAMHAS TOHNBENDH SLNEX，Allen
18go．Bull．Amer．Mus，Nat．Ilist，lll，p． 83.
Summat of Donner Pass，Placer County，Calforma．
54. TANHAS TOWNSENDII SONOMAE, Grmmell
1915. Univ. Calif. Publ. Zool. 12, p. 321.

Guerneville, Sonoma County, California.
55. TAMLAS ALLFN゙1, Howell
1922. Journ. Mamm. Baltimore, 3, p. is's.

Inverness, Marin County, California.
Synonym: hindsi, Merriam, Proc, Biol. Soc, Washington, XI, p. 19t. 1897. Not of Gray.
56. TAMHAS QUADRINACULA'lUS, Gray
1867. Ann. Mag. Nat. Hist. 3, XX, p. +35.

East of Michigan Bluff, Placer Count;, California.
Synonym: macrorhabdotes, Merriam, 1886, Proc. Biol. Soc. Washington, III, P. 25. ISIue Canyon, Placer County, California.
57. 'TAMHAS MERRIAMI MERRIAMI, Allen
1889. Bull. Amer. Nus. Nat. Hist., II, p. 176.

San Bernardino Mountains, San Bernardino County, California.
Synonym: merriami mariposae, Grinnell \& Storer, 1916, Univ. Calif. Publ. Zool. 17, p. 4. El Portal, Mariposa County, California.
58. MAMIAS MERRIAMI PRICE1, Allen
1895. Bull. Amer. Mus. Nat. Hist., VII, p. 333.

Portola, San Mateo County, California.
59. T'AMMAS MERRIAMH KERNENS1S, Grinnell \& Storer 1916. Univ. Calif. Publ. Zool. 17, p. 5.

Fay Creck, Kern County, California.
60. TAMLAS MERRLANI OBSCLRE゚S, Allen
1890. Bull. Amer. Mus. Nat. Hist., III, p. 70.

San Pedro Martir Mountains, Lower California, Mexico.
61. TAMIAS MERR1AMI MERIDIONALIs, Nelson \& Goldman
1909. Proc. Biol. Soc. Washington, XXII, p. 23.

Aguaje de San Esteban, north-west of San Ignacio, Lower Califurnia.
62. TANIIAS DORSALIS DORSALIS. Baird
1855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 332.

Fort Webster, Gila River, Grant County, New Mexico.
Synonym: canescens, Allen, rgo4, Bull. Amer. Mus. Nat. Hist., XX, p. 208. (iuanacevi, Durango, Mexico.
63. TAMIAS DORAALIS LTAHENSlA, Nerram
1897. Proc. Biol. Soc. Washington, XI, p. 210.

Ogden, Weber County, Ltah.

1931. Journ. Namm. Baltimore, 12, p. 300.

Sheep Mountains, Clark County, Nevada.
Subgenus Eutamias, Trouessart
65. FANHAS AHBIRICL's SHBIRICL's, Laxman

1769 . Sibirisches Briefe, p. 69.
Barnaul, Siberia.
Synonym: asiathcus, (imelin, 178S, Syst. Nat. p. 150. Barnaul, Siberia. pallast, 13ard, 1556 . Ann. Rep. p. 55 (fide Trouessart).

1912．Proc．Brol．Soc．Washington，XX，p． 183.
＇I＇apucha，Altall Mountans，siberia．
67．＇TAMIAS SHBIRICLS ORIENTALAS，Bonhote INo，Amn．Mat．Nat Hest．7，1V，P． 385.

Sungatscha River，Upper Ussuri，East Sibera．
os．TAMIAS SIBIRICLU UTHENSIS，Pallas
1831．Zoograph．Rosso－Asiat．i，p．i 8 g．
Uda River，N．－E．Sıberna．
6，＂TAMIAS siblRICじら ORDINALAS，Thomas inos．Abstr．Proc，Zool．Soc．London，p．44；Proc，Lool．Soc．London，p． 968. Iu－lin－fu，Shensi，China．
70．TAMHAS GHBIRICUS LTMBROSLCS，Howell 11）27．Journ．Washington Acad．Scı，XVII，P．So． 140 mules south of Lanchowfu，vicinity of Archuen，Minshan Moun－ tains，Kansu，China．
71．TAMIAS SHBIRICLS INTERCESSOR，Thomas
fyos．Abstr．Proc．Zowl．Soc．Landon，p．4＋；Proc，Zool．Soc，London，p． 969.内ing－wu－fu，Shensi，Chma．
72．TANILAS SHBlRRCLS AbBOGLLARIS，Allen Igor．Bull．Amer．Mus．Nat．Hist，ŇVI，p． 429. Tar－pa－shiang，Shensi，China．

73．TANIAS SIBIRICLSA SENESCEN゙，MIllet ISos．Proc．Acad．Nat．Sci．PhiladeIphia，p． 349.

15 miles west of Peking，China．
74．TAXIIAS SIBIRICUS（OFADAE，Kuroda 1932．Journ．Namm．Baltimore，13，p． 5 S．

Alt．Chachanupuri，Kunashiri Island，South Kurile Istands．
75．TANIAS SIBIRICUS IINLATLS，Stebold 1824．Spic．Faun．Japon in Diss．Hist．Nat．Japon，p．I3． Japan．
76．TANIAS SIBIRICLS JACUTENSIS，（gnew 1935．Wiss．Ber．Moskaeur Staats．Univ．4．P． 93. Yakutsk，East Siberia．

## Subgenus Tamias，Illiger

77．TANIIAS STRLATLS STRIATLS，Linnaeus
175\％，Syst．Nat．Ed．1o．1，p．64．
Unknown；probably near Savannah River，South Carolina． Synonym：americamus，Gmelin，Syst．Nat．1，p． $150,17 \mathrm{SB}$ ．

78．TANIAS STRIATR F FLSHERL，Howell
1925．Journ．Namm．Baltimore，6，p． 51.
Merritts Corners，Ossining，New York．
79．TAMIAS STRRDTLS LXSTERI，Rachardson
1820．Fauna Boreali－Americana，1，p．181，
Pentanguishene，Georgian Bay，Ontario，Canada．

IKig. Bull. Amer. Mus. Nat. Hist., JII, P. 231.
Foort Snelling, I Iennepin County, Minnesota.

1896. Proc. Biol. Soe. Washington, S, p, 137.

Sthwell, Adair County, Oklaboma.
Section G. Marmota Section. Ground-squirrels with the following characters. Palate not produced far behind last molars, and lachrymal not enlarged. Infraorbital foramen forming a canal, postorbital process usually well developed, and D. 3 in manus so far as seen constantly longer than D.4. 'Tendency present for upper main cheektecth to become much constricted on inner side; usually strongly hypsodont.

## Genus 29. CITELLUS, Oken

1816. Citelles, Oken, Lehrbuch der Zoologie, pt. 3, vol, 2, p. $8+2$.
1817. Avisonix, Rafinesque, Amer. Monthly Mag. 2, 1, 45. (Anisonyx brachyurus, Rafinesque $=$ Arctomys rolumbiconus, Ord.) $^{\text {. }}$
1818. Spernophills, F. Cuviet, Dents des Mamm. 160, 161, pl. LV, p. 255.
1819. Colobotis, Brandt, Bull. CI. Phys. Math. Acad. Imp. Sci. St. Petersb. II, no. 23, 24, pp. 365, 366. (Spermophilus fulvus, Lichtenstein.)
1820. Otospernophiles, Brandt, Buil. CI. Phys. Math. Acad. Imp. Sci. St. Petersb. vol. 2, p. 379. (Sciurus grammurus, Say.) Valid as a subgenus.
1821. Ietidomys, Allen, Monogr. Nith. Amer. Rodentia, p. 821. (Sciurus tridecemlineatus, Mitchill.) Valid as a subgenus.
1822. Xerosperalophile's, Merriam, Proc. Biol. Soc. Washington, VII, p. 27. (Spermophilus moharensis, Merriam.) Valid as a subgenus.
1823. Ammospermophiles, Merriam, Jroc. Biol. Soc. Washington, VII, p. 27. (Tamias letucurus, Merriam.) Valid as a subgenus.
1824. Callosperniophiles, Merriam, I'roc. Biol. Soc. Washington, XI, p. i89. (Sciurus lateralis, Say.) Valid as a Subgenus.
1825. I'tidomoldes, Mearns, Mamm. Mex. Boundary, U.S. pt. i, p. 328. (Sciurus mexicunus, Erxleben.)
1826. Urocitelle's, Obolensky, C. R. Acad. Leningrad, p. 192. (Spermophilus eversmanni, Brandt.)
1827. Notocıtelles, Howell, North Amer. Fauna, No. 56, p. 162. (Spermophilus anmulatus, Audubon \& IBachman.) Valid as a subgenus.
1828. Poliocitelles, Howell, North Amer. Fauna, No. 56, p. I33. (Arctomys franklinii, Sabine.) Valid as a subgenus.
Type Species.-Mus citellus, Linnacus.
Ravge.-Hlolaretic: Silesia, Bohemia, Galicia, Hungary, Rumania, Bulgaria, Grecee, 'lurkey, Asia Minor, Caucasus; the whole of southern European Russia, north to Rivers Kama and Oka; most of South-western Siberia (K゙azakstan area), south into l'ersis, north to Ural River, Irtish River, Semipalatinsk, e'te.; Altai; Zungaria; Transbakalia, East Siheria (Okhotsk, Verhoiansk, Anadyr districts, ete.); Nongolia, Nanchuria, Shansi, Shensi, Kansu; Maska, Mackenzie, Saskatchewan, Mherta, British Columbia; Washington, Oregon, Idaho, Montana, Wyoming, Minnesota, California, Nevada, Utah, Arizona, New Mexico, lexas, southwards to Central Mexico.


Fig. ifo. Citellés citelles citelles, Limnacus.
B... No. 8.9.10.7, 千; 2.


Fig. ili, Citellts citelles citelles, Linnaeus.
B.MI No. 8.0.10.7, ; 2.

Nimber of Forms.- Ahout a hundred and forty-four.
Remarks.-The American forms of this genus have been recently revised by Howell, 1938 (Noth Amer. Fauna, No. 56). This revision has long been needed, and completes the list of all large Nearctic genera revised. The genus is made much larger by Howell, by the inclusion of the groups hitherto regarded as distinct genera, Callospermophilus, Ammospermophilus and Otospermophilus. I had endeavoured to keep these three names standing as valid genera, and except in the case of Ammospermophilus had found it no easy matter. 'They are all evidently much better regarded as subgenera of Citellus, being at once distinguishable from Tamias, with which they were formerly classed, by the character of the infraorbital foramen which is quite normal, whereas in Tamias it forms no canal and is relatively very large. But their inclusion in Citellus makes it desirable to make some of the other Sciurine genera, as, for instance, Yerus, wider than they are at the moment currently accepted. llowell very rightly states that in many cases the genera recognized to-day are little better than specific groups.


Fig. ifir. Citellu's citeldés. Cheekteeth; : 5.

Oholensky revised the Palaearctic Citellus in 1927 (C. R. Acad. Sci. Leningrad, p. 188). These were arranged in three subgenera, Citellus (citellus and suslicus groups as here understood), soles haired, tail one-fifth to a thitd head and body length, interorbital region relatively narrow; Colobotis (fulcus and pygmaeus groups as here understood), with bare soles, tail length and interorbital region about as in Citellus s.s.; and Crocitellus (ezersmanni group), with haired soles, tail a third to a half head and body length, interorbital region relatively broad. Howell regards these groups as belonging to Citellus s.s. The dentition of all Palaearctic forms examined agrees with Howell's Citellus s.s.; and I am of the opinion that Obolensky's names must be disregarded; the Palaearctic Citellus form with the North American typical subgenus of Howel! a natural group as far as I have had occasion to examine.

Characters.-(Citellus s.s.). Lpper cheekteeth noticeably constricted on inner side, so that the teeth appear roughly threc-sided instead of rounded or nearly square as in most Sciurinae. Skull with slender postorbital processes, which always appear well dereloped in the typical group. Certain constriction is usually apparent in front of the postorbital processes; braincase not flattened. Palate extending very slightly behind toothrows, which are not or scarcely convergent posteriorly. Infraorbital foramen often rather well open; masseter knol at its lower border prominent. Zygomatic plate with upper border strongly ridged, extending upwards far forwards, and with upper part much narrowed. Sagittal ridge rarely formed by parietal ridges in materia!
examined; if present, never as conspicuous or heavy as in Marmota or Cymomys, in British Thseum material, though a skull of parryiif figured by llowell appears to have a rather conspicuous ridge present. Nandible with angular portion as a rule strongly pulled inwards.

L'pper ehcekteeth with inner side strongly hypsodont; P. 3 very little reduced, and functional; main teeth with three strong outer cusps present; the ridges from the second and third cusps high, converging to the inner cusp. The anterior ridge, from the lront cusp, is short. The main ridges separated hy deep depressions. M. 3 with only one well-marked main ridge, the posterior part of the tooth flatter, and with less defined elements. Lower teeth with two very high anterior eusps, the anterointernal one the lighest, the two cusps joined by a ridge; and a moderately high posteroexternal cusp; the three main cusps of the teeth surrounding a deep depression. Posterointernal cusp estigial or absent. M.3, as in the upper series, tends to be the largest tooth. The two outer main cusps in the lower teeth joined by a short ridge.

External characters somewhat variable, hut always in the whole genus so far as I have seen chatacterized by the fact that the digits are arranged in the manner of terrestrial forms, D. 3 being in the manus the main digit. Hindfoot with the two outer digits, particularly the hallux, shorter than the three central ones. Pollex much reduced. Ear small. 'Tail always considerably shorter than head and hody; from about half this measurement to little longer than hindfoot. Claws as a rule prominent; particularly in such forms as parryii; never so developed as Spermoplilopsis.

Nammae 10,12 or if in Pataearctic species (Obobensky), io, 12 or 8 according to Howell in Nearctic species, cheek-pouches present.

In the Palaearctic, I provisionally recognize five species groups; the eversmami (characters indicated abose, p .439 ); the citcllus group (characters as above); the suslicus group, like citellus but with a well-marked spotted colourpattern, this much more developed than in any other Palaearetic species seen; the pygmacus group, like citellus group but with naked soles; and the futrus group, which has a much heavier skull and dentition than is normal in the genus.

Eight suhgenera are recognized by Howell as occurring in America. Ile keys them as follows:
Molars relatively hypsodont; parastyle ridge on M.i and M.2 joining protocone with an abrupt change of direction.
Metaloph of P. 4 continuous.
Citellus s.s.
Wetaloph of P. + not continuous. Ictidomys
Molars relatively brachyodont, parastyle ridge on M. 1 and M. 2 rising evenly to join protocone, without abrupt change of direction.
Anterior upper premolar simple, kess than one-fourth size of P.4.
Upper incisors relatively stout, distinetly recurved.
Braincase rounded on upper surface.
Supraorbital foramen open.
Otospermophilus Supraorbital foramen closed.

Braincase flattened on upper surface.
Amamereramphill's
Upper incisors relatively slender, not distinetly recurved.
Postorbital process long and slender; rostrum longer.
Callosperalophilt's
Postorbital process short and stout; rostrum shorter.
Serosperatophilis
Anterior upper premolar more than a quarter size of P.4,
bearing two cusps and a functional cutting edge. Poliocitelles
Sulgenus letidomis. This includes tridecemlineatus, also according to Howell the species mexicanus and spilosoma. The braincase is relatively narrower than Citellus; l'3 is relatively much smaller, and the upper incisors are said to be shorter and stouter.
C. tridecemlineatus has the most specialized colour-pattern of any living Squirrel. The postorbital process appears to be much smaller than in Citellus s.s. C. mexicamus has a spotted colour-pattern; and spilosoma, of which very few are in the British Museum, is described as spotted, though apparently in some forms the spots may be faint. 'Tail 60-So per cent head and hody length (Howell).
Sulbgenus Poliocitellus. This is based on franklinii only; a plain non-striped species which in many respects appears to me to resemble the tridecemlincatus group (e.g. cranial characters). P. 3 is more reduced than in Citellus s.s. 'lhe dentition is, however, not like that of typical Citellus, but more transitionary to the Tamias or Sciurus-like type found in all the remaining subgenera. The tail is more than half head and body length. 'The zygomata are less expanded than in normal Citellus.
Subgenus Otospernophiles. Rather large forms, in which the postorbital process is relatively large, and a sagittal erest present in all adult skulls seen. The teeth have no tendency to the internal constriction of typical Citellus (in the upper series). Zygomatic plate as in normal Citcllus. Externally more Sciurus-like; cars moderately large; tail about two-thirds head and body length, bushy; upper incisors stout. 'The cheekteeth are not very different from those of Sciurus. P. 3 is small.
Subgenus Notocitellus. Based on anmulatus, heretofore placed in Otospermophilus. Not seen, not represented in the British Nuseum. 'l'ail described as more than two-thirds head and hody length. Supraorbital foramen closed (differing from Otospermophilus in this character). P. 3 relatibely small.
Subgenus Amospermophitis. 'This group seems to me to be the most distinet of all Howell's subgenera. Bullae large and inflated in all skulls examined. l'alate usually ending in long and conspicuous spinous process. Dental characters not essentially different from Sciurus or Tamias. Externally very reminiscent of the African Euxerus, except
for the much shorter tail, which is said to be carried over the back when the animal is running, and is about half head and body length. Fur sometimes slightly bristly. A white stripe on each Hank. Ears small. Postorbital process slender; incisors stout; infraorbital foramen narrower than in normal (itellus (agreeing with Otospermophilus).
Subgenus Xerosperamphilus. 'This is based on mohatensis and the tereticoudus group. Very few have been seen. The claws are described as long, sharp; the sole is heavily haired; ears very low; tail $40-60$ per cent head and boty length. Xolars (said to be) near Otospermophilus.
Subgenus Callosperaophills. Postorbital process rather prominent; cranial characters near Otospermophilus, except that sagittal crest, so far as seen, is usually absent, the masseter knob moderate or small, the postorbital process rather lighter; upper incisors relatively more slender. Tail usually more than half head and hody length. Ear low. Form Tamiaslike, with the white tlank-stripes bordered usually by four black ones: but no mid-dorsal stripe.
Forms seen: becchevi, beldingi, bernardimus, brauncri, brezicauda, carvuthersi, chrysodeirus, citcllus, cinerascens, concolor, datricus, douglasi, elegans, crythrogenys, eiersmanni, fisheri, franklimil, fultus, gradojezici, grammurus, harrisi, herbicola, jacutcnsis, kodiakensis, lateralis, leucurus, macrourus, mexicamus, mollis, mongolicus, mugosaricus, nelsoni, oregomus, aviamus, pallidus, parthiamus, paryiil, peninsulac, planicola, pugmaeus, ramosus, richardsomi, rufescens, spilosoma, suslicus, tereticaudus, toznsindi, tridecemlinecatus, umbratus, zariegatus, zimulus, zortmani, xanthoprymmus.

The differences in the four groups rccognized by Howell in American Citcllus s.s. refer mainly apparently to size and colour. C. washingtoni is described as a spotted species, in colour near the Old World guttatus (suslicus). Nembers of the parrii group are, according to Howell's key, also spotted or mottled.

In his revision some new forms are described, which, however, are not listed here as, in all other genera, forms described to 1936 only are included.

> List of Named Foras
> Subgenus Citellus, Oken
> Palatarctic Species
> incritae sedis

[^11]
## fultus Group

3．CITELEES FULVUS FLLVES，Lichtenstein
1823．Eversmann Reise．p． 119.
River Kuwandzaliur，čast of Mugodsharski Mountains，north of Sea of Aral，Siberia．

4．CITELLES J゚ULVES ONLANLS，Thomas
1915．Ann．Mag．Nat．Mist．8，NV，p． 422.
50 miles south－west of Bokhara．
5．CITELIUS FUIVUS PARTHIANUS＇，Thomas
1915．Ann．Nag．Nat．Hist．8，XV，p． 423.
Neshed，N．．－E．Persia．
6．CITELLL＇S FL゙LVUS CONCOLOR，Geoffroy
1834 ．Belanger，Voyages，p． 151.
Sultenia，near Kazvin，N．－W．Persia．
7．CITELLUS FULNL゙S HYPOLEUCES．Satunin
1909．Ann．Mus．Zool．St．Petersb．I4，p．I．
Kutshun，Central Persia．

## Pygmaens Group

8．CITELIE：RLFESCINS RLFESCENS，Keyserling \＆Biasius
184o．Wirbelth．Europas，p． 42 ．
Ural Mountains，Russia．
Synonym：undulatus，Eversmann， $\mathbf{1} 840$ ，Bull．Nat．Moscou，p． 35 （fide Trouessart）．
9．CITELLU＇S RLEESCESS ERYTHROCENYS，Brandr
1841．Bull．Acad．Sci．St．Petersb．p． 41.
Altai．
10．CITEI．LE゙S RUFESCEズS UC゙GAE，Martano
1923．Ann．Mus．Zool．Petrograd，24，p． 23.
Kirghiz Steppes．
II．CITFLIUS PALIIDICACDA，Satumin
1902．Ann．Nus．Zool．St．Petersb．，V1I，p． 5.
Mongolian Altai；Cholmu Noor，Ullyn－Bulyk，River Baidarak．
12．CITELLLS PYGMAE゙L゙S PY＇GMAEC＇s，Pallas
177S．Nov．Spec．Quadr．Glir．Ord．p．Iz2．
Between Emba and Ural Rivers．
13．CITELILS PYGMAELS BREVIC：AL＇DA．Brandt
1843．Bull．Acad．Sci．St．Petersh．．I，23．P． 364.
Altai．
Synonym：intermedius，Brandt，l．c．p． 378 （fide Trouessart）．
I4．CLTKLIACS PY＇GMAELS MLGOSARICLS，Lichtenstem
1823．Eversmann Reise，p． 19.
Nugodshary ．Wountains，Kirghisia．
15．CITILIELS PVGMAECS ILERBICOL．1．Dartino
1916．Ann．Nus，Zool．Petrograd，21，pp．269－301．
North Kirghısia．

16．CITELALC PYGMLALE SEPTYNTRIONALIS．Obolensky
1927．C．R．Acad Sei．Leningrad，p． 190.
Ferapontorka，samara．
 To replace pallidus，Orlow \＆Feniuk
192．，Nat．Contr．Famn．Lower Volga，1，p． 63 Not of Allen， 1877.
Kalmouk Steppes，near Astrakhan，South Russta．
18．CIIELLL\＆HGMAEUS PLANICOLA，Satunm ıgos．Nitt．Kauk．Nus．p． 46 ．

Karanogai Steppes，Kizljar，C＇aucasus．
10．CITELLLS PYGMAELS NE＇SICLS，Ménétriés 1832．Catal．Rais．p． 21.

Elburz，Caucasus．
20．CIJELLEA PYGDAELS SATUKINI，Sviridenko 1922．Bull．Mus Georgie，I，pr，6o． Daghestan，Caucasus．
21．CITELILE PYGMAELS BRALNERI，Martino 1920．Notes Crimea Soc．Naturalists， 3.

Ecatermoslar，Crmea，South Russia．
2ュ．CJTELLLA PYGスAELS N1FOLSKll．Heptner 1934．Foha Zonl．Hydrob．6，p． 20.

Aral Lake Shore．
23．CITELILiS PYG\LAELS KAZAK゙STANICUS，Goodwn 1035．Amer．Nus．Nov．769，p． 5.

Kazakstan，Centrul Asia；Tuz Budak， 150 miles north of K゙ızatorda （l＇erossk）．
24．CITELLC\＆PYGMAEL＇S CARRUTHERSI，Thomas 1912．Ann．Mag．Nat Hist．S．IN，p． 393.

Barlik Mountains，N．－WV．Dzungaria．
25．C＇TEILLE RE1．ICTCS，Kashkarov
1923．Trans．Sici．Soc．Turkest，p． 185.
＇T＇alass－Alatau，Namanghan，F＇erghana．

## citellus Group

26．C＇ITELLUS CITELILS CITELDUS，Lmnacus
1760．Syst．Nat．I． 12 th Ed．p．So．
Austria．
27．CITliLIU（CITERIUS GRADO）IEVICl，Nartmo
Iy 20 Journ．Mamm．Baltimore，io，p．76．
Djerdjclija，Nacedoma．

1934．Zètschr．für Siagetierk，o，p． 106.
E．Remanaa；Muntenai．
24 CHTELLE 883．Prac．Zaml．Soc．Londun，p． 90.

Erzerum，dsia Minor．Jhas species is probably not more than a sub－ spectes of $(\therefore$ ．citellas．

190S．Mitt．Kauk．Mus．IV，p． 2 S．
＇T’ranscaucasja．
31．CITELLL＇AbASCHANICUS ALASCHANICL゙S，Buchoer
1888．Wiss．Res．Preewalski Central－Asien Reven：Zool．Th．I，Säugeth．，p．it． South Alashan，Moneolia．
32．CITES．ILS ALASCHANICL＇S DIL，L＇IC゚S，Formozov
1927．C．R．Acad．Leningrad，p． 192.
Ikhe－Bogdo，Nongotian Altai．
33．CITEII．L＇S AIASCHANICLS OBSCCRUS，Buchne1
1888．Wiss．Res．Przewalski Central－Asien Reisen：Zool．Th．I，Säugeth．，p．at． Kansu，China．
34．CITEL，L’S ALABCHAN゙ICLS SICCLS，G．M．Alleo 1925．Amer．Nus．Nov．163，p． 3.

Shansi，China， 10 miles west of Taiyuanfu．
35．CITELLL＇s DALRICLS DALRICL＇S，Brandt
1843．Bull．Acad．St．Petersb．p． 379.
South Transbaikalia．
3ヶ．CITELLU゙タ DAURICL＇S NON゚GOIICUS．MIne－Edwards
1867．Ann．Sci．Nat．p． 376.
Danchuria；Pekin．
37．CITELALS JALRICLS LXBRATLS，Thomas
1908．Proc．Zool．Soc．I．ondon，p．970．
Taboul， 100 miles north－west of Kalgan，Nongolia．
38．CITEJILS DALRICES RAMIOSL＇s．Thomas
1909．Ann．Mag．Nat．Hist．8，IV，p． 501.
Fan Chia Tun，Kirin Province，Nanchuria．

## suslicus Group

39．CITELIL＇S SUSLICLS SL゚SLICL゙ッ，Guideostaedt
1770．N．Comm．Ac．Sc．Petr．xiv，pt．1，p． 389.
Voronezh，Russia．
Synonym：guttatulus，Schinz， 1895 ，Synop．Namm．，II，p． 70.
leucopictus，Donndorff，1792，Zool．Beyträge，1，P． 4 \＄6．
40．CITELLES SLSLICL＇S GL＇TTATLS，Palias
1770．N．Comm．Ac．Sc．Petr．xiv，pt．1，p． 506.
Locality not known．
4．CITELLUS SL゚ALJCLS AVERINI，Migutm
1927．Proc．Nat．Iist．Soc．İharhov，p．50．pt． 2.
Russka Lesonia， 18 km ．north of Kharkov，Russia．

1927．Proc．Nat．Hist．Soc．Kharkor，50，pt． 2.
Environs of Odessa，Kussia．
exersmanmi（iroup

184，Bull．Acad．St．Petersb．p． 43 ．
Altai Nountans．
Synonym：altacus，Evermmann，1S\＆1，idd．Zoor．R．Abat．fasc．2，p．i．

44．CITELIUS ENIRAMINNNI STRANINEUS，Obolensky
1027．C．R．Acad．Sci，Leningrad，p． 192.
バ．W．Nongolia．
ts．CITELLE S ENERSMIANN1 LELCOSTICTUS，Brandt
I843．Bull．Acad．Sci．St．Petersh．，II，p． 379.
Okhotsk River，N．－E．Siberia．

1903．Bull．Amer．Mus，Nat．llist．，$\lambda^{+} L^{-}$，p． 130.
Gichiga，west conast Okhotsk Sea－ezersmami leucostictus according to Chaworth－Musters，Ann．Mag．Nat．Hist．，1934，Io，XIIl，p． 555.
47．CITELL，U゙\＆EVERSMANNI TRANSBAICALICLS，Ubolensky
1927．C．R．Acad．Sci．Leningrad．p．192．
Lake Ivan，Transbaikalia．
48．CITELLLA IVERSMANNI J．ACUTENSIS，Brandt
184．4．Bull．Ac．Sci．St．Petersb．，II，23－24，p． 378.
Yakutsh，Siberia．
49．CITELLLE EVERSMANNI STEJNEGER1，Allen
1903．Bull．Aner．Mus，Nat．Hist．，XIX，p． 142.
Kamtchatka．
Nearctic Forms．Revised by Howell， 1938.
tozonsendii Group

1839．Journ．Acad．Nat．Sci．Philadelphia，VIII，p．6i．
Columbia River，about 300 miles above its mouth，near mouth of Walla Walla River，Washington．
Synonym：mollis yakimensis，Merriam， 1898 ，Proc．Biol．Soc．Washine－ ton XII，p，7o．Mabton，Yakima County，Washington．

1898．Proc．Biol．Soc．Washington，XII，p． 70.
Antelope，Wasco County，Oregon．
52．CITELLIS TOM゙NSLNDII VIGILIS，Merriam
1913．Proc．Biol．Soc．Washington，XXVI，p．I37．
Viale，Nalheur County，Oregon．

1863．Proc．Acad．Nat．Sci．Philadelphia，p． 157.
Camp Floyd，near Fairfield，Wasatch County，Utah．
Synonym：stophensi，Merriam，a 808，Proc．Biol．Soc．Washington，Xill， p．69．Esmeralda County（Queen Station），Nevada． zeashoensis，Merrram，1913，I＇roc．Biol．Soc．Washington， XXVI，p．i38．Carson Valley，Douglas County，Nevada． lewrodim，Merriam，1913，Proc．Biol．Soc．Washington， XXVI，p．136．Murphy，Owyhee County，Idaho．

1913．Proc．Brol．Soc．Washington，XXVI，p． 137.
Burch Creek，Fremont County，Jaho．
Synonym：pessemus，Merriam， 1913 ，Proc．Bool．Soc．Washington， XX11，p．138．Bry Lost River，Fremont County，Idaho．

1913．Iroc．Brol，Soc．Washington，XXV1，p． 335.
l＇ayette，Iayette County，Idaho．
acashingtoni Group

（1938）．North Amer．Fauna，No．56，p．Gog．
Touchet．Walla Walla County，Washington．
Synonym：tozonsendi，Dice，voro，Journ．Danm．Baltmore r，p．is，not totresendi，Bachman．

57．C1TYLLL＇S BRLN゙NLL＇s，Howell
1928．Proc．Biol．Soc．Washington，Xll，p． 2 it．
New Meadows，Adams County，Idaho．
richardsomi Group
5\％．（CTELIU＇S RICHARDSONI RJCHARDSONI，Sabine
1822．Trans．Linn．Soc．，XIHI，p．589．
Carlton House，Haskatcheswan．
5\％．CITELJE R LCHARDSONI ELEGANS，Kenmeot 1863．Proc．Acad．Nat．Sci．Philadelphia，p． 158.

Fort Bridger，Uinta County，Wyoming．
60．CITELALS RICHARDSON1 NEVAD！NSIS，Howell 1928．Proc．Biol．Soc．Washington，XLI，p． 211.

Paradise，Humboldt County，N゙evada．
61．CITELLE：ARMATLS，Kenmeott
1863．Proc．Acad．Nat．Sci．Philadelphia，p． 158.
Near Fort Bridger，Uinta County，Wyoming．
6z．ClTFRLLS BELDINGI BELDLN（；1，Nemam
1888．Ann．New York Acad．Sci．4，p． 317.
Donner，Placer County，Califormia．
63．CITILLL＇S BELD）NGI ORI：GONLS，Merriam
1898．Proc．Biol．Soc．Washington，XII，p． 69.
Swan Lake Valley，Klamath County，Oregon．

## parryii Group


1815．Guthrie＇s Gengraphy゙，and Amer．Fd．vol．2，p． 292.
Camas prairice，between forks of Clearwater and Kooskooskie，Lincoln County，Idaho．
Synonym：brachiura，Ratinesque，1817，Amer．Nonthly Mag．，2，p． 45. erythrogluteius．Richardson，$\$$ S29．Fauna Boreali－Americana 1，p． 161.
columbianus albertere，Allen，1903，13ull．Amer．Mus．Nat． Mist．，XIX，p．537．Canadian National Park．Alberta．
65．CITELLUS COLCMBAANT R I ICALDU゚S，Howell
1928．Proc．Brol．Soc．Washington，ぶL．I，p． 212.
Wallowa Lake，Oreson．

1825. Appendix to l'arry's second Voyage, p, 316.

Frie Itanser Bay, L, yon Inlet, Melville Peninsula, FrankIin, Canada,
Symomion: empitra, True, 1885, I'roc, LT.S. Nat. Mus., VII, p. 59q.
pheteognathes, Richardson, r\&zり, Fauna Borealı-Americana, P. 1o土, Ifudson Bay.
kemmoth, Rass, isha, Canadan Nat. \& Ceol. 6, p. 434. Matkenzic, near Fort Gond Hope.


```
1000. Proc. Washmyton Acad. Sco., II, f. 10.
 Poment Barrow, Alaska.
 Synonym: heringensis, Nernam, 1000, Proc. Acad. Sci. Washington, II,
 p. 20. Cape l,sburne, Alaska.
```



```
1000. North Amer. Fauna. No, 10, p. 29.
 Benmett City, head of Lake Bennett, Britsh Columbo.
 60. CITELILUS PARRYIII ABLESLS, (0smend
1003. Proc. Biol. Suc. Washington, XVI, p. 25.
 Nushacak, Alaska.
 Synonym: stonei, Allen, 1903, Bull. Amer. Mus, Nat. Ifist., NIX, p.s37.
 Stevana Flats, Alaska D'eninsula, Alaska.
 70. C1TELLLIS PARIN\II NEBLLICOLA, Osgood
1003. Proc. Bu,l. Soc. Washington, XVI, p. 26.
 Nagai Island, Shumaemn Islands, Alaska.
 71. CITELILUS PARRYII LYRATU'S, Hall & Gimmore
1933. Unv`. Calif. Publ. Zool. 28, p. 306.
 St. Lawrence Island, Behring Sea.
 72. CITIELUS KOOJACLNSIS, Allen
18,4. Prox. Bostum Soc. Nat. Hist. 16, p, 292.
 Koviak Island, Alaska.
 73. CITELLLS'SSGOODDI, Merram
1000. Proc. Washington Acad. Sei., II, P. 18.
 Furt Yukon, Alaska.
```


## Subgenus Ictidomys, Allen tridecemlineatus Group

if. Citeblut tridechalineatu's tridechmineatus, Mitchill
1821. Med. Repus. n.s. wol. 6 (21), p. 248 .

Cientral Minnesota.
Synonym: huodi, Sabine, 1822, Trans, Linn, Soc, XIII, P. 590.
75. CITJELICS TRRIDECEMLINEATLS TTEXKNSIS, MErram
t Sos. Proc. Biol. Soc. Washmeton, XIll, p, 7I.
Gainessille, Cooke County, Texas.
Simonym: badius, Bangs, 1 Sgo, Proe. New Engl. Clut, 1, p. 1. Stotesbury, Missouri.

1gzi. Proc. Bmo. Soc. Washangton, XLI, P. 213.
Pendennos, Kansas.

7．CITELLUE TRIDECLALLINEATES PALIMDUS，Allen
1877．Monogr．North Amer．Rodents，p．872．
Plains of Lower leflowstone River，Montana．
Synonym：olizates，Allen，isgs，Bull．Amer．Mus．Nat．Ilist．Vll， p．337．Custer，Custer County，South Daknta．
－8．CITELIUS TRIDECEMLINEATES MILENI，Merriam isgS．Proc．Biol．Soc．Washington，XII，p． 71.

Byhorn Mountains，Washakic County，Wyoming．
79．CLTEILUU TRIDECEMLINLETES IIOLIISTERI，Bailey 1913．Proc．Biol．Soc．Washington，XXV1，p． 131.

Elk Valley，Sacramento Mountains，Lincoln County，New Mexico．
so．CITHELUS TRIDECEMLINEATLS MONTICOLA，Howed 1928．Proc．Biol．Soc．Washington，Klı，p．zit．

Narsh Lake，White Nountains，Arizona．
81．CITELLUS TRIDECEMLINIEATE゙S PARIUUS，Allen 1895．Bull．Amer．Mus．Nat．Hist．VII，P． 337.

Uncompahgre Indian Reservation，Ni－E．Utah．
82．C＇ITELLLS MENICANUS MEXICANLS，Efxleben 1777．Syst．Rean．Anim．vol．1，p．＋28．

South Central Mexico．
83．CITELALS MEK゙ICANU＇S PARVIDENS，Nearns iS96．Prelim．diagn．new Mamm．Mex．Border LT．s．，p．i，（Reprint：Proc，L＇S．Nat． Dlus．SVHI，p．+43 ）．

Fort Clark，Kinney County，Texas．

## spilosoma Group

 1833．Proc．Zool．Soc．London，p． 40.

N．Nexico and extreme W．Texas．
85．CITEJ，Jl＇S APILOSOMA PALLESCliN＇S，Howell
1928．Proc．Biol．Soc．Washington，XLI，p． 212.
Ia Ventura，Coahuila，Mexico．
86．CITEIJL゙S SPIDOSOMA CANESCESS，Merriam
s Sqo．North．Amer lyana，No．＋．p． 3 \＆．
Wilcox Cochise County，Drizona．
Synonym：macrospilotus，Merriam，isoo，North．Amer．Fauna，No t，
P． 3 §．Oracle，linal County，Arizona．
arens，Baley，1goz，Proc．Biol．Soc．Washington，ly， p．118．EI Paso，＇Texas．
87．ClTELLE＇S SPllOSOXA MAJOR，Nerriam
1890．North Amer．Fauna，No．t．p． 39.
Albuquerque，Bernalillo County，N゙ew Mexien．
Synonym：marginaths，Bailey，1902，Proc．Biol．Soc．Washington．XT， p．1s\％．Apine，Brewster County，Texas．
8S．CITELLE S SPlLOSOMA ANNECDFNS，Nerriam
\＆893．Proc．Bool．Soc．Washington，VIll，p． 132.
Padre Island．Cameron County，Fexas．
20－Livine kodent－I

Sio. CJTELLLS SPllosonla PRATENSHA, Nerram
I S90. North Amer. Fauna, No. 3, p. 55.
I'se Plateau at north foot of San Francisco Mountan, Coconino County, Arizona.
Sẙ๐myฺm: obsidiams, Merriam, i89o, North Amer. Fauna, No. 3, p. 56. (North-cast of San Francisco Nountain, Coconino County, Arizona.)
vo. CITELLLES SPLLOAOMAA CRYPTOSPILOTUS, Mermam
i Soo. North Amer, Fauna, No. 3, p. 57.
Tenebito Wash, Painted Desert, Coconimo County, Arizona.

1. ClTELILLS SPILOSOMA OBSOLEJUS, Konnicott
${ }_{1} \mathrm{SG}_{3}$. Proc. Acad. Nat. Sci. Philadelphia, p. 157.
Extreme W. Nebraska.

2. Proc. Biol. Soc. Washington, VIII, p. 331. I'crote, Vera Cruz, Mexico.

Subgenus Poliocitellus, 1 Iowell
93. CITELLUS IRANKLINIl, Sabine
1822. Trans. Linn. Sioc. X゙lll, p. 587.

Vicinity of Carlton House, Saskatchewan, Canada.
Subgenus Otospermophilus, Brandt
94. CITELI.LS VARJEGATL'S VARIEGATL'S, Eraleben
1777. Syst. Ikegn. Anim. I, p. 42 I .

South Central Mexico.
Synonym: buccatus, Lichtenstein, Abl2. k. Akad. Wiss. Berlin, 1827 (1830) , P. II7.
matcurus, Bennett, 8 33, Proc. Zool. Soc., London, p. 41. Nexica.
95. CITELLUS VARIEGATLS RLPESTRIS, AIEN

1903, Bull. Amer. Nus. Nat. Hist. NIX, p. 59 .
Rio Sestin, N.-W. Durango, Nexico.
96. CITELLUS VARIEGATLS COLCHII, Baird
1855. Proc. Acad. Nat. Sci. Philadelphia, VII, P. 332.

Santa Catarina, Nuevo Leon, Nexico.
97. CITELLUS VARIEGATLS BLCKLEYI, slack

186i. Proc. Acad. Ňat. Sci. Philadelphia, p. 314.
I'acksaddle Nountam, Llano County, Texas.
98. CITELLUS VARIEGA'JUS GRAMIHURUS, SHay
1823. Long's Exp. Rocky Mountains, r. 72.

Purgatory R1ver, near mouth of Chacuaco Creck, Colorado, Las Animas County.
Synonym: juglans, Bailey, 1913, l'oc, Jiol. Soc. Washington, XXVI, p. 131. Glenwood, R10 San Francisco, Socorro County, New Mexico.
yの. CITELLUS' VARIEGATUS TLLAROSAE, Benson
1932. Univ. Calif. Publ. Zuol. 38, p. 335.

New Mexico: French's Ranch, 12 miles north-west of Carrizozo, Linculn County.
100. CITELLUS VAKIEGATUS U'TAH, Merriam 1903. l'roc. Biol. Soc. Washington, XVI, p. 77.

Foot of Wasatch Nountains, near Ogden, Weber County, Utah.
201. CITELLUS BEECHEYI BPIFCHEYI, Richardson
1829. Fauna Boreali-Americana, 1, p. 170.

Neighbourhood of San Francisco and Monterey, California.
102. CHTELLUS B1:ECHEYI DOUGLASI, Richardson
1829. Fauna Boreali-Americana, 1, p. 172.

I3anks of Columbia River, Oregon.
103. CITELLUS BEECHEYI FISIIEIRI, Merriam 1893. Proc. Biol. Soc. Washington, VIII, p. 133. South Fork, Kern River, Kiern County, 3 miles above Onys, California.
104. CITEL.LU'S BEECHEYI PARVULUS, Howell 1931. Journ. Mamm. Baltimore, 12, p. 160. Shepherd Canyon, Argus Mountains, California.
105. CITELLUS BEECIIEYI NUDIPI:S, Huey
1931. Trans. S. Diego Soc. Nat. Hist. 7, p. 18. Hanson Laguna, Sierra Guarez: Lower California.
106. CITELLUS BEECHEY1 RUPINARUAI, Huey
1931. Trans. S. Diego Soc. Nat. Hist. 7, p. 17.

Catavina: Lower California.
107. CITELLL'S BEECHEY] NESIOTICUS, Elliot
1904. Field Columb. Nus. publ. 90, zool. ser. vol. 3, p. 263.

Santa Catalina Island, Santa Barbara lslands, California.
1o8. CI'TELJUS ATRICAPILLUS, Irryant
18S9. Proc. Calif. Acad. Sci. ser. 2, vol. 2, p. 26.
Comondu, Lower California, Nexico.
Subgenus Notocitellus, Howell
109. CITELLCS ANNULATUS ANNULATCS, Audubon $\mathbb{N}$ Bachman

18f2. Journ. Acad. Nat. Sci. Philadelphia, S, pt. 2, p. 319.
Unknown; probably WV. Mexico.
110. CITELLUS ANNL LATUS GOLDDIAN゙, Merriam
1902. Proc. Biol. Soc. Washington, X゙V, p. Go.

Santiago, Nayarit, Mexico.
1ı. C1TELLUS ADOCETUS, Merriam
1903. Proc. Biol. Soc. Washincton, XVI, p. 79.

La Salada, 40 miles south of Uruapan, Nexico (Nichoacan).
Subgenus Ammospermophilus, Merriam
112. CITELLLS IIARRISII HARRISII, Auduhon \& Bachman
1854. Quadr. N. Amer., vol. 3. p. 267.

Unknown; probably S.-W. Arizona.
113. CJTELLL'S HARIRISII SAXICO) AA, Ncarns
1896. Prelim. diagn. Namm. Mex. border ['..., p. 2. Reprint, Proc. U.S. Nat. Nus.


Tinajas Atlas, Gila Mountains, Iuma County, Arizona.

1889．North Amer．Fauna，No．z，p． 20.
San Coryonio Pass，Riverside County，C＇aliformia．
Synonym：rimulus，Ellunt，1903，Fitild．Columb．Nus，publ．87，zool． ser．24t．Kecler，Jnyo County，California．
115．CITELIUS LELCLOLT＇S TERSLS．Goldman 1920．Journ．Washinetun Acad．Sci．In．P． 435.

Arizona：Prospect Valley，Grand Canyon，Hualpai Indan Reservation．
116．C＇ITELALS LJLCLRLS CINNANONIELS，Merriam
189o．North Amer．Fauna，No．3，p． 52.
Echo Cliffs，Painted Desett，Coconino County，Arizona．

1931．Journ．\anm．Batmore，12，P． 162.
Grand Junctun，Colorado．
is．CITELLU＇S LELCLRLS PENXVSLLA\＆，Allon 1893．Bull．Amet．Mus，Xat．IIist．V．P． 197.

Gan Telmo，Jower Cahfomia，Mexien．
11\％．CITELIU＇1 JLCURU＇s CANJIE1DAE，Hu＊y
1929．Trans．Gan Diego Suc，Nat．Hist．5，p． 243.
Punta Prieta，Lower California．
120．CITLLILS LJECLRLA EXTLXILS，Netson \＆forddman
1929．Journ．Wash．Acad．Sci．19，p． 281.
Lower Calafornia；Siaccaton， 15 miles north of Cape San Lucas．
121．CITE1，LUS INTTRPPRES，Mertam
1890．North Amer．Fauna，No．t．p． 21.
Ll Paso，El Paso County，＇I＇exas．
122．CITELJES 1NSLLARIS，Nekon \＆Goldman
190g．Proe．Marl．Sme．Washinerton，XXII，p．24．
Esperitu Santo Island，Gulf of Califorma，Mexted．
123．ClTELL」か ぶノLSが1，Merriam
1893．Proc，Buol．Snc．Washington，VIJJ，P， 129.
Tipton，San Joaquin Valley，Cahfornia，Tulare County．
Synonym：amplus，Taytor，1916，Univ．Calif．I＇ubl．Zool．if，p． 15. ＇Twenty miles south of Las Banos，Merced County， Califorma．

## Subgenus Serospermophilus．Merriam


1889．North Amer．Fauna，No．2，p． 15.
Nohave River，San Bernardino Ciounty，Californa．
125．C＇ITELLUS TERETICALDL＇S TERETICALDLS，Bard
1857．Namm．N．Amet．．P． 315.
Old Fort Vina，Imperal County，California．
Synonym：a uaferans，Huey，1927，I＇roc．Biol．Suc．Washineton，XXXIX． p．29．San Felipe，Lower Califorma．
eremonomus，llloot，ivo3，Field Columb．Mus．，publ．57， 3，p．243．Furnace Creck，Death Valley，Jnyo County， California．

126．CTTELLL＇s TERETICALDL＇\＆NEGLECTUS，Merriam
1889．Korth Amer．Fauna，No．2，p．17．
Dolan｀s Spring，Nohave County，Arizona．
Synonym：sonoricnsis，Ward，i891，Amer．Nat．25，p．158．Hermosillo， Gonota，Nexico．
 105．＇Tempe，Maricopa County＇，Arizona．
127．CITELLU＇S TERETICALDE＇s CIILORU゚S，EILIot
1903．Fitd Mus．Columb．Publ．S7，zool．ser．3，p． 242. I＇aln Springs，Riverside County̆，California．
：28．CITELI．L TERETICALDL＇S APRICL＇S，Huey
1927．Trans．S．Dieqo Soc．Nat．Hist．5．p．S5．
Lower California，Valle de la Trinidad．

## Subgenus Callospermophilus，Merriam

12サ．CITELI．LS LATERALIS LATERAIIS，say
1823．Long＇s Exp．Rocky Mountains，2，p． 46.
Arkansas River，below Canyon City，Pueblo County，Colorado．
130．CITELLLS LATERALIS WORTMANI，Allen
1895．Bull．Amer．Mus．Nat．Hist．VIl，p． 335.
Kinney Ranch，Bitter Creek，Wyoming（Sweetwater County）．
131．CITELLUS LATERALIS ARIZONEN゙SIS，Bailey
1913. Proc．Biol．Soc．Washington，SXVI，p． 130.

Arizona，San Francisco Nlountain．
132．（＇ITELLL＇S LATERALIS CARY゙l，Howell
1917．Proc，Biol．Soc．Washington，XXX，p． 105.
Seven miles south of Fremont Peak，W＇ind River Mountains．Fremont， Wyoming．
133．CITELLUS LATYRAEIS CEAFRASCENS，Merriam
1890．North Amer．Fauna．No．t．p． 20.
I Helena，Lewis and Clarke County，Montana．
134．ClTELLES LATERALIS TESCORLN．Hollister
1911．Smiths．Mise．Coll．LV゙l，no．26，p． 2.
Head of Noose Pass Branch of Smoky River，Alberta，Canada．
135．CITELICLS LATERALIA CASTANURUさ．Merriam
1890．North Amer．Fauna，No．t．p． 19.
Park City，Wasatch Mountains，Summit County，Utah．
136．CITELILA LATTERALIS CIIRYSODEIRUS，Merriam
1890．North Amer．Fauna，No．t，p． 91.
Fort Klamath，Klamath Country，Oregon．
137．CITELLL＇S LATERAl．IS CONNETENS，Howell
1931．Journ．Namm．Baltimore，12，p． 161.
Homestead．Oregon．
138．CITELLAS LATERMLIS TRIEPIDt - ，Taylor
1910．Univ．Calif．Pub．Zool．5，p．2S3．
Head of Big Creck，Pine Forest Mountains，Humboldt Countr，Nevada． Şnonvm：perpallidus，Cirinnell，1018，Unis．Calif．Pub．Zool．17，p． 429. Bir I＇rospector Méadow，White Mountains，Nono County，California．

140．CITELLLU゙ふ LATERALIS BERNARDINせ゚S，Merriam 1sos．Science，n．s．\＆，p，782．

San Bernardino County，Califomia；San Bernardino Peak． synonym：brecicoudus，Mernam，IS93．Proc．Biol．Soc．Washington VIII，F．134．Not of Brandt，i844．

```
 141. CITELLCS LATERALIS MITRATCS, Howell
1931. Journ. Nlamm. Baltimore, 12, p. 16r.
 South Iolla Bolly Mountain, California.
 142. CITELLE`S LATERALIS TRINITATIS, Merriam
1901. Proc. Biol. Soc. Washington, XIV, p. }126
 Trinity Nountains, Humboldt County, California (east of Hoopa Valley）．
 843. CITELLL's sATURATUS, Rhoads
1895. Proc. Acad. Nat. Sci. Philadelphia, p. 43.
 Lake Keechelus, Kittitas County, Washington.
 144. CITELLUS MADRENSIS, Merriam
1901. Proc. Washington Acad. Sci. 111, p. 363.
 Sierra Mladre, Chihuahua, Mexico, near Guadalupe y Calvo.
```

Genus 30．NARMOTA，Blumenbach
1779．Narmota，Blumenbach，Handb．Naturgesch，i，p． 79.
1780．ARCTomys，Schreber，Säugthiere，pls．CCVIl－CCNI，ibid．text，IV，721－743，1782． 1922．Marnotops，Pocock，Proc．Zool．Soc．London，p．1200．（M．monax，Linnaeus）．

Type Species，－－1 Ius marmota，Linnaeus．
Ravge．－Ilolarctic：Aps（France，Switzerland，North Italy）and Car－ pathians；Poland，North Rumania（Bukowina）；European Russia （steppes of Rivers Don，Donez，Middle and Lower Volga，Mid Ural），northern Kazakstan；Fergana，Pamir，Semirechyia，Altai，Tomsk；Transbaikalia； Verhoyansk district，Anadyr region，and Kamtchatka（Russian localities quoted by Vinogradov）；Tibet，Chinese Turkestan，Kansu，northern Mongolia， Manchuria；Afghanistan，Kashmir；Nepal，Sikkim，to Yunnan．

The greater part of Canada and the United States，from Alaska to Labrador and the Atlantic coast of U．S．A．；south to California，New Mexico，and northern Oklahoma，and Alabama．（Distribution maps of Nearctic species are published by Howell，and in Anthony，Field Book North American Mammals，1928．）

Number of Forsis．－About fifty．
Characters．－Skull much more powerfully ridged for muscle attachment than in Citellus，and size becoming very large，largest of family，head and hody up to 620 mm ．Postorbital process very thick and heavy；little sign of interorbital constriction；parietal ridges usually join to form
a sharp sagittal crest near hinder part of postorbital process. Frontals depressed. Occiput strong, prominent. Infraorbital foramen wider below, but not well open; masseter knoh appears less produced than is usual in Citellus; upper horder of zygomatic plate well ridged, relatively narrow. Jugal, as usual in the family, long and extending to lachrymal. Palate not narrowed posteriorly. Mandible as a rule less angular than in Citellus or Cynomy's. P. 3 very little reduced, functional. Upper cheekteeth like those of Citellus, but rather less constricted internally; strongly hypsodont, particularly on the inner side. Cusps and ridges high, depressions deep, as in Citellus; often the third depression, at the back of the main teeth, wears out, like Citellus in this feature, but unlike the few Cynomys examined. N. 3 the largest tooth, with its posterior clements more or less obliterated as a rule. Lower teeth like those of Citellus, the posterointernal cusp not developed. Incisors, both upper and lower, usually with traces of several faint grooves. Cheek-pouches (said to be) rudimentary or absent. In the above notes "Citellus" refers to Citellus s.s.

Form thickset; tail less than or rarcly excceding a third head and body length except in caudata group, in which it approaches half this measurement, and perhaps in caligata group. Ear short. Hindfoot rather broad, with digits arranged as in other terrestrial genera. Forefoot with D. 3 the main digit ; pollex rudimentary; or absent in the type species. On this account Pocock restricted the genus to the type specics, and erected "Marmotops" for the others; but the presence or absence of a minute and functionless digit of this type is of no importance, and an examination of the skeleton of the manus of $M$. marmota and M. caudata representing "Marmotops" presents very little essential difference. Claws usually well developed, powerful. Nammae 10 in flarirentris, caligata, marmota, bobak; $S$ in monax.

It must he added that Marmotops is recognized as a subgenus by 110 well, 1938.

The American species were revised by llowell in 1915 (North Amer. Fauna, no. 37). Three specific groups are recognized: the monax group ("Woodchucks": inammae S, sagittal crest according to llowell weaker, less developed; general appearance and coloration distinct at a glance from all others judging by material cxamined); the flazizentris group (Yellow-bellied Tarmots; of western U.S.A.) ; and the caligata group (dark thick-furred types from Alaska, extreme west Canada and adjacent parts of L.S.A.; also from North-east Siberia; becoming rather larger than the above; apparently darkest of genus in general coloration, and tail apparently tending to be rather longer). In both the two latter groups, the mammae are 10.

In flazientris group, the car is stated to be smaller than in monax group, and the tail is relatively longer. 'The monax group ranges right across Canada, and in much of the castern U.S.A. Good distribution maps of the three groups are published by Howell, and in Anthony, 1928. Field Book North American Mammals.

The Palacarctic species are not yet revised. Other than the Siberian representatives of the caligata group, I provisionally recognize three groups; marmota group (Alps; tail approximately 27 per cent head and body length; general


Fig. IIf. Marmota marmota, Immmelis.
B.MI, No. 7.1.t.195 bis; 1.
appearance as regards coloration at once distinguishable from all other species; mammae 10) ; caulata group (tail longest of genus, about 45 per cent head and body length; rather large; thick-furred) includes caudata (yellowish, with conspicuous black mid-dorsal area noticeably contrasting with sides), aurea, from which littledalei seems not more than racially distinct, dichrous and stirlingi, differing from each other in minor colour distinctions, but all clearly separable from caudata.
M. bobak group: provisionally including all other I'alaearetic forms examined; tail normally strongly reduced, about a quarter length head and body (or slightly more); coloration principally light, often more or less unicolor; and typically with short fur. Includes babak, the related but larger himalayana, sibirica (evidently differing in colour), and centralis, a thicker-furred form, which is now regarded as a race of baibacina;


Fig. 115
Marmota marmota, Linnacus. Checktecth: $<2$ 。 robusta is, I think, a race of himalayana.

Forms seen: culrea, baibacina, bobak, caligata, camtschatica, caudata, centralis, cliftoni, dichrous, flazimus, flazizenter, himalayana, littledalei, marmota, monax, okanagana, robusta, sibirica, stirlingi.

## List of Nanied Formis <br> monax Group

1. MARMOTA MONAX MONAN, Linnaeus
2. Syst. Nat., roth Ed., vol. 1, p. 60.

Maryland.
2. MARMOTA MONAX RUFE:CCEDE, Howell
1914. Proc. Biol. Soc. Washington, Xivll, p. 13.

Elk River, Minnesota, Sherburne County:
. MARNOTA MONAX PREBHORUN1, Howell
1914. Proc. Biol. Soc. Washington. SXVII, p. it.

Wilmington, Middlesex County, Nassachusetts.
t. MARNOTA MONAX fGNAVA, bangs
1899. Proc. New England Zool. Club, 1, p. 13.

Black Bay, Strait of Belle Isle", labrador.
5. MARNOTA MONAX CANADENSHS, Erxleben
1777. Syst. Rean. Inim. i, p. 363.

Quebec, Canada.
Synonym: empetro, Pallas, Nov. Sp. Quadr. Ghr. Ord., p. 75. 17-8.
6. AARMOTA NONAX PETREXSIA, Howell
1915. North Amer. Fauna, No. 37, p. 33.

Revelstoke, Brotish Cohumbia, Canada.
7. MARMOFA NONAX OCHRAClA, Swarth
1911. Univ. Calif. Publ, Zool. 7, p. 203.

Forty-mile Creek, Maska.

## MARSIOTA

8．MARNOTA NONAX BLNKERI，Black
1935．Journ．Mamm．Baltimore，16，p． 319.
Lawrence，Douglas County，Kansas．

## flariventris Group

9．MARMIOTS IJAV゙IVNNTRIS PLAVIVENTRIS，Audubon \＆Bachman 18＋i．Proc．Acad．Nat．Sci．IPhadelphia，p． 99.

Nount Ilood，Oregon．
10．MARMOTTA FLAVIVENTRIS AVARA，Bungs
180g．Proc．New England Zool．Club，i，p． 68.
Okanagan，British Columhia，Canada．
11．MARMIOTA FLAVIVEN゙IRIS sJERRAE，Howell
1915．North Amer．Fauna，No．37，p．＋3．
llead of Kern River，Mount Whitney，California，Tulare County．
12．MARMOTA FLAVIVENTRIS FORTIRO，TTRIS，Gmmell 1921．Univ．Calif．Publ．Zool．2I，p． 242.

NeAfee Neadow，White Nountains，Nono County，California．
13．MARNOTA FHAVIVENTRIS PARVLIA，IIomell
1915．Proc．Biol．Soc．Washington，SXV1l，p．it．
Jefferson，Nye County，Nevada．
14．MARNUTA FLAVIVENTRIS EN（ijlLHARDTI，Allen 1905．Nus．Brooklyn lnst．Arts \＆Sci．Science，Bull．i，p． 120.

Briggs Meadows，Beaver Range Mountains，Beaver County，Utah．
 1914．Proc．Biol．Soc．Washington，XXV＇II，p． 15.

Wıllow Creek，Alontana，Ravalli County， 7 miles east of Corvalls．
 1880．North Amer，Fauna，No，2，p．S．

Custer，Black Ihils，Custer County，South Dakota．
17．MARNIOTA FLAVIVINTRIS LSTEイLA，Howell
1914．Proc．Biol．Soc．Washington，XXVIl，p． 15.
Woods Post Otlite，Medicine Bow Mountams，Albany County， Wyoming．

```
 18. NARNIOTA FLAVIV`ENFRRIS (ANIPIONI, FIgGras
1915. Proc. Biol. Soc. Washington, NXVIl], p. I47.
 Fight moles north of Iligho, Jackson County, Colorado.
 19. AIARNIOTA FLASIILNNTRIS WARRRENI, Howell
mat. Pruc. Biol. Suc. Washington, XXVIl, p.ab.
 C'rested Butte, Gunnism County, Colorado.
 20. MARDIOT:A FIAVIVI:NTRIG OHSCLRR, Hmmell
Igr4. Proc. Biol, soc. Washmegton, NXVII, p. If.
 Wheeler l'eak, 'Tans County, New \lexion; 5 miles south of Twining.
 21. MARA[OTX FIAVIVENTRES NOTIOROA, Warten
1034. Journ. Damm. IGaltimore, 15, p,62.
 Marmon Lake, West Dountains, Custer County, Colorado.
```

caligata Group
22．MARMOTA CADIGATA CAEIGATA，Vschscholt\％
1829．Zool．Atlas，pt．2，p．1，pl． 6.
Near Bristol Bay，Alaska．
synonym：（？）prwinosus，（imelin，1788，Syst．Nat．1，p．144．Regarded as unidentifiable by IIowell， 1915.

23．MARMOTA CAIIGATA V＇lGILIS，I Ieller
1909．Univ．Calif．Publ．Zool．，5，p． 248.
West shore of Glacier Bay，Alaska．
24．MARMO＇IA CALIGATA SIJFLDONI，Howell
1914．Proc．Biol．Soc．Washington，x̌VII，p． 18. Montague Island，Alaska．

25．MARNOTA CALIGATA ONY＂ONA，Hollister 1914．Science，n．s．，vol．39，p． 251.

Moose Pass Branch，Smoky River，Alberta，Canada．
Synonym：sibila，Hollister， 1912 ，Smiths．Misc．Coll．LVI，35，p． 1 （not of Wolf， 1808 ）．

26．MARMOTA CALIGATA OKANAGANA，King 1836．Narr．Journ．Shores Arctic Ocean，vol．2，p． 236. Gold Range，British Columbia，Canada．
27．MARMOTA CALIGATA NIVARIA，llowell
1914．Proc．Biol．Soc．Washington，XXV1I，p． 17.
Mountains near Upper St．Mary＇s Lake，Teton County，Montana．
28．M1ARMOTA CALIGATA CASCADENSIS，Howell
1914．Proc．Biol．Soc．Washington，XXVII，p． 17.
Mount Rainier，Pierce County，Washington．
20．MARNOTA CALIGATA RACEXI，Anderson
1932．Bull．Nat．Mus，Canada， 70, p． 112.
British Columbia；Itcha Mountains，Chilcotin Plateau．
30．NARNOTA CALIGATA BROWER1，IIall \＆Gilmore
1934．Canad．Field Nat．，48，p． 57.
North Alaska；Point Lay，Arctic coast．
31．MARMOTA OLXMPUS，Merriam
1898．Proc．Acad．Nat．Sci．Philadelplia，p． 352.
Ilead of Soleduc River，Olympic Nountains，Clallam County，Wash－ ington．
32．MARAIOTA VANCOUVERENSIS，swarth
1911．Univ．Calif．Puht．Zoot．7．p． 201.
Mount Douglas，Vancouver Island，British Columbia．
33．HARMOTA CAMTSCHATICA CAMTSCIATICA，Brandt
${ }^{1} 843$ ．Bull．Acad．St．Petersb．，11，p．36．4．
に゙amtchatka．
34．MARMOTA CAMMCIHATC：BU゙ダGEI，K゚ascenko 1901．Ann．Mus．St．Petersb．，V1，p． 615.

Omoloy，Verhoyansk Mountains，S．Siberia．
 1922．Ann．Mus．Kool．．tead Su．，XXII，4，So pages．
＇The upper reaches of the River Nergili（east shore of Lake Baikal， 50 km ．northwards from Siatoi Nos）．

1002，Ann．Mag．Nat．Mist．7，IS，p．＋f＋．
Versiansk Mountains，Yakutsk，N．－E．Siberia，

## bobak Group

37．MARNOTA BOBAK゙，Muller
1776．Natursyst．Suppl．Rerist．Band，p． 40.
lobind．
Sinonym：arctomys，I＇allas， 1778 ，Nov．Sp．Quadr．Glir．Ord．，p． 75. （Poland．）

3ल．MARMOJ＇A HIMALAYANA IUMINAYANA，Hodgson 18．fi．Journ．Asiat．Suc．Bengal，X，p． 777.

Nepal．
Synonym：tataricus，Jameson，i847，L＇Institut，XV，p． 384.
hodgsoni，Blanford，i876，Yarkand Mission，Mamm．，p． 35. Nepal．
hemadhalamus，I Iodgson，1843．Juum．Asiat．Soc．Bengal， SII，p． 4 io．Nepal．

3\％．MARMOTA HIMALAMANA ROBCGl＇A，Mine－Eduards is；o．Nouv，Aich．Mus．，VII，Isull．，p． 92. Moupin，Szechuan．

4o．MARNIUTA SIBIRIC＇A，Radde
186z．Reise Sud．Ost．Sibir．，p． 159.
＇Iransbaikala．
41．TINRMOTA BAllACLNA BAIBACLNA，Brandt
1843．Bull．Acad．hei．St．Petersb．，II，p． $3^{6}+$. Altai．

72．MARXUTA BNHBACLNA CENTRALIS，Thomas
1go9．Ann．Mag．Nat．Ilist．S，III，p． 260.
Aksai Plateau， 120 miles north of Kiashear，＇Turkestan．
candata Group
43．NARNOTA CALDATA，Jacquemont
I8ft．Voy．dans I＇Inde，IV，Zool．，p． 66. Hashmir．

44．MARMIOTA AUREA AUREA，Blanford
1875．Journ，Asiat．Suc．Beneral，SLIV，pp．106， 123. Alountans west of Yarkand（E．Turkestan）．

45．NARNOTA ALTREA IJTTLEDAL，IE，Thomas
1gorg．Ann．Mas．Nat．IIst．S，III，p． 254.
Alas Mountains，I＇amar．
ft．MARMIO＇A ALREA ドLAVINでS，＇Thomas
1909. Inn．Mag．Nat．Hist．S，Ill，p． 259. Hissar Muntantains， 100 mıles east of Samarkand．

## 47．MARMOTA S゙Tlkl．ING；Thomas

1916．Journ．Bombay Nat．Hist，Soc，XXIV，p， $3+1$ ．
Head of Chitral Nullah，Chitral（N．－WV．Ǩashmir）．
4s．AIARMOTA DICHROCis，Anderson
1875．Ann．Nat．Hist．，NVI，p．283．
lills north of Kabul，Afghanistan．
marmota Croup
4\％NARMOOTA MARMOT：A， 1 innatus
1758．Syst．Nat．，roth Ed．，vol．1，p． 60.
Alps．
Synonym：alpima，lklunenbach，1779．I Iandb．der Naturg，1，p．So．
tigrima，Bechstein， 1801, Gemeinn Naturg．1，and ed．， p． 1029.
alba，Bechstein，same reference，p． 1030.
migra，Bechstein，same reference，p．Iozo．
Not seen，and not allocated to group
50．MARTIOTA MENZDIERI，K゙ashkarov
1925．Trans．Sci．Soe．Turkestan，2，P．+7 ．
＇「ian－Shan，Central Asia．
Genus 31．CYNOMYS，Rafinesque
1817．Cynomys，Rafinesque，Amer．Nonthly Nag．，1I，no．i，p． 45.
1916．Lelcocrosseromis， 1 lollister，North Amer．Fauna，No．40，p．23．Spermophilus gutmisoni，Baird．Valid as a subgenus．
Type Species．－Cynomys socialis，Rafinesque＝Arctomys hudoziciana，Ord．
Ravge．－Western United States：forms named from Upper Missouri River， Arizona，Wyoming，Utah，Colorado，New Mexico；and Coahuila， nothern Mexico．Good distribution maps of this genus are published by Hollister，and in Anthony，Field Book North American Nammals， 1928 ， PP．219，221．

Nember of Foras．－Seven．The genus is revised by Hollister， 1916. North Amer．Fauna，no，to．
Characters．－Dentition extremely heavy．Cheekteeth with the general plan of Citellus，the inner border of each main tooth strongly constricted．P．3 very little reduced，nearly as large as P．f．Upper cheekteeth extremely hypsodont on inner side，and slanting outwards．Three depressions on each tooth evidently remaining for a long time；these separate the four main ridges；also …3，which in related genera shows signs of simplification normally， does not do so in this genus，the clements luing as in the other molars（i．e．two main ridges），and tending to persist．Lower cheektecth about as in Citellus； the posteroesternal cusp rather low，and in worn teeth separated from the cusp in front of it by a small but well－marked re－entrant fold；M． 3 with a narrow depression running down the centre of the tooth．

Skull massive and angular．＇Toothrows markedly converging posteriorly． Occipital region prominent．A well－marked sagittal crest developed in all
skulls seen. Infraorbital foramen triangular, its outer horder much thickened, and with a prominent masseter knob present. Zygomatic plate with upper horder well ridged, the infraorbital foramen apparently situated farther forward with relation to this ridge than in related genera. Zygomatic width relatively great. Mandible angular, powerfully ridged, the angular portion strongly pulled inward, probably more so than in any other genus of squirrel.

Nammae $S$ to 12 (Hollister). External form heavy, with tail much reduced, probably not exceeding a quarter of head and body length. Digits of forefoot, including the pollex, all with strong claws; D. 3 the main digit, D. 2 and D. 4 subequal. Hindfoot with digits arranged as usual in terrestrial types.

In the typical subgenus, the jugal bone is described as strong, its outer surface at angle of ascending branch very broad, triangular. C. mexicames is stated to have bullae larger than is usual in the genus.

In the subgenus Leucocrossuromys, the jugal is "weak, thin and flat, the outer surface at angle of ascending branch only very slightly thickened, the margin rounded, not triangular. . . . Tceth smaller than in subgenus Cynomys, not so much expanded laterally." The tail is tipped with white, instead of black (as in the typical subgenus).

Remaris.-A very distinct genus. Not well represented in the British Museum.
Forms seen: ludaricianus, gumnisoni.

```
 List of Named Forms
 Subgenus Cynomy's, Rafinesque
 1. CYNONHYS LUDOVICIANU'S LL'DOVICIANL'S, Ord
ISI 5. Guthrie's Gengraphy, 2nd Amer. ed., vol. 2, p. 292.
 Upper Nlissouri River.
 Synonym: socialis, Rafinesque, i8r7, Amer. Monthly Mag., II, p. }45
 firrhotrichus, Eliot, 1905, Proc. Biol. Soc. Washington,
 SVIII, P. 139. Otlahoma.
 missouriensis, Warden, I8Ig, Stat. Pol. Hist. Acc. U.S. I,
 p. 226.
 latrans, Harlan, i825, Faun. Amer., p. 306.
 2. CYNONIYS LUDONICIANUS ARIZONENSIS, Mearns
ISgo. Pull. Amer. Mus. Nat. Hist. II, P. }305
 Point of Nlountain, near Wilcox, Cochise County, Arizona.
 3. CYNONIYS NEX゙ICANUS, Merram
ISgz. Proc. Fiol. Soc. Washington, VIl, p. 15%.
 La \entura, Coahuila, Mexico.
 Subgenus Leucocrosswomys, Hollister
 4. CYNOMIS LEUCURUS, Merriam
1890. North Amer. Fauna, No. 40, p. }34
 Fort Bridger, Wyoming, Uinta County.
 Synonym: leaviti, Allen, Rull. Amer. Nus. Nat. Hist. S, p. 456, i Sg8.
 Not of Audubon & Bachman, a Marmota from shores of
 of Columbja River (see Hollister, North Amer. Fauna,
 No.40, p. 26,1916).
```

5．CYNOMYS PARVHDENS，Allen
1905．Mus，Brooklyn Inst．Arts 太 Sici．，Science lBull．I，p． 19. Buckskin Valley，Iron County，Utah．
6．CYNONYS GUNNISONI（；UNN1SONI，Baird
1855．Proc．Acad．Nat．Sci．Philadelphia，VII，p． 334. Cochetopa Pass，Saguache County，Colorado． Synonym：columbiamus，＇I＇rue，I＇roc．U．S．Nat．Nus．，VII，P．593，1885．
7．CYNOMYS GUNN1SONI ZUNILNSIK，IIollistar
1916．North Amer．Fauna，No．4o，p． 32.
Wingate，McKinley County，New Mcxico．
The family Sciuridae is known fossil from the Oligocene．

## FAMILLY SCIURIDAE： <br> GENERAL WORKS OF REFERENCE

Fonsy＂u Major， 1893 ．Proc．Zool Soc，London，i893，p．179．On some Miocene Squirrels，with remarks on the dentition and classification of the Sciuridae．
Thomas， 1908 ，Journ．Bombay Nat．Hist．Soc．，XVIII，p．244．On the generic position of the groups of Squirrels typified by Sciurus berdmorei and pernyi respect－ isely．（Rearrangement of genera from the Indo－Nalayan region，other than Flying－ squirrels．）
Thomas，igos，Ann．Mag，Nat．Mist．8，I，p．1．＇The genera and subgenera of the Sciuropterus group．（Rearrangement of genera of smaller Flying－squirrels．）
「homas，1909．The generic arrangement of the African Squirrels：Ann．Nag．Nat． Hist．S，III，p． 467 ．
Alien，1915，Review of the South American Sciuridae．Bull．Amer．Mus．Nat．Hist．， ぶXXIV，p． 147.
Thomas， 1915 ，Ann．Mag．Nat．Hist．8，X゙V＇，p．383．The penis bone or baculum as a guide to classification of certain Squirrels．
Miller，1912，Catalogue of Nammals of Western Europe，pp．897－946：Sciuriclae and Petauristidae：Sciurns，Citellus，Marmota，Sciuropterws（－Pteromis）．
Pocock，1923．Classification of Sciuridae on the baculum．Proc．Zool．Soc．I ondon， р．209， 1923.
Pocock，1922，I＇roc．Zool．Soc．London，p．It71．On the extemal characters of the Beaver and some Squirrels．
Howeli， $193^{\circ}$ ，North Amer．Fauna，No． 56, p．1．Revision of North American Citcllus and rearrangement of genera and subgenera of North Anserican Squirrels．
Allex， 1877, Monograph of North American Rodents，p．637．Sciuridae，
Tulbberg， 1 Sgo，Nova Acta Reg．Soc．Sci．Upsaliensis，XVIII，3，i．
Wrot＇ghtos，1911，Journ，Bombay Nat．I Iist．Soc．，XX，p．soiz．Key to the Indo－ Malayan species of Petaurista．
Wrovgrron，1919，Journ．Bombay Nat．Jlist．Soc．，XV＇1，p．352．Indian Mammal Survey：Sciuridae．
Vinogrador＇，1933，＇Tab，Anal，Faune de l＇URSS，Inst．Zool．Acad．Seiences，10，p．i． Key to Rodents of the U．S．S．R．：Sciuridae：Sciurus，Eutamias，Spermophilopsis， Citellus，Marmota，Iteromys．
Hosvell，r9i8，North Aner．Fauna，No．4t．Revision of genus Glancomys．
＇］＇homas， 1888 ，Journ．Asiat．Soc．Benцal，LVII，p．258．E゙upetabrus．
Allex，1914，13ull．Amer．Mus．Nat．Ilist．X゙XXIll，p．145．Review of Jficroscimus．
NelsoN， B Sg9．Proc．Washington Acad．Sci．，I，P． 38 ．Revision of Mexican and Central American Squirrels（Sciaras）．
Allen， 1 SoS，Bull．Amer．Mus．Nat．Mlist．S，p．249．Revision of Tamiasciuras．
 of Oriental sciurdate. (Arrangement of species and subspecies of Pefaurista, Eupetaurus, Lomus, Belomys, Pteromyscus, Petanrillus. IIylopetes, Petinomys, Seromys, Englancomys, Rutufa, ('allasciurns, "Tomoutcs,". Manefes, Lariscus, Dremombs, Rhinosciurus, Rheithrosciurus, (3lyphotes, "Tamiops," Fumamhuhs, Namosciums.)
Ingoldrs: 1927, I'roc. Zool. Soc, London, r, 771 . Revision of Helioschurus.
Howele, 1929, North Amer. Fauma, No. 52, P. I. Revicion of Chipmunks, Tamias "Eutumias."
Obolensky, 1927, C.R. Aead. Sici. Lenmgrad, p. 189. Revision of Palaearctic Groundsquarrels: Citcllws. Spermophilopsis.
Howell, 1915 . Revision of American species of Marmota, North. Amer. Fauna, no. 37. Holelster, 1916, Revision of genus Cyomys. North Amer. I'ama, no. 40.
Hollister, East Africam Mlammals: Sicimidar. Smiths. Inst. L. S. Nat. Nus. Bull. 99, 1919, p. 1.

## Superfamily CASTOROIDAE

As here understood this contains one living family.

## Family CASTORIDAE

1896. Thomas: Scurounrpha, part: Family Castondae.
1897. Tulbery: Schromarphs, part: Castoroidei, Family Cistordae.

1898. Winge: Fomily Sciuridac, part: Castorinı.

192 W. Weber: Catoromea: Family Castoridac.
Geographecal Distribition.- Palacarctic and Nearctic. In North America forms have been described from Hudson Bay, Newfoundland, Alaska, Vancouver lsland, Carolina, Michigan, North Dakota, 'lexas, California, New Mexico, and Sonora (near Mexican boundary line), Mexico. The genus fomerly probably extended over the greater part of the contincont, and Anthony in Ficld Book of North American Nammals, 1928 , gives as the range for C'astor candensis, "most of North America from Alaska and Labrador to the Rio Cirande." In Europe, formerly extending across most of the Continent, and inchuding England; hut now restricted to Norway, and prohably some of the main risers of Central Enrope, as the Rhone, Elbe, Danube and Pripet (Flower); occurs in parts of the U.S.S.R. (quoted by Vinogradoy from hasins of Risers Vistula and Dnieper, former Minsk, Smolensk, Chernigor, Poltasa goxts., former Voronej gove, hasin of River Sosva (north Ural mountains), and Mongolian Altai).

Nember of Genfra.-One.
Characters:-Skull and external form heay ; zygomasseteric structure as in typical specialized sciuridate: the infraorbital foramen forming a canal. Dental formula i. $1, c .9, p, 1, m$. $=20$. Cheektecth excessively hypsodont, but not evergrowing, the pattern changing little during life, and characterized by narrow inner and outer enamel folds, as in certain Hystricoid genera; bullae with neck protruding upwards and outwards; a pit-like depression in basi-occipital; jugal in contact with the lachromal, and immensely thickened


B. I1. No. 19.7.7.28\&1; 1 .


Chechiceth; 3 .
Fin, 118 . CASTOR H IBrk. Linmatus.
Chethterth; I)
30-l.inner kukents-I


Fig. ilg. Castor haer, Linnaeus.
(From Miller's C'atalugue of the Mammals of We'stern Europe)
anteriorly; externally highly modified for aquatic life, the hindfeet much enlarged, the digits webbed; tail broad, llat, scaly and naked, the caudal vertebrae flattened; anal and urinogenital orifices open within a common cloaca; tibia and fibula united at base, but not fully fused (i.e. not comparing in this specialization with Muridae, Dipodidae, etc.).

Remarks.- The differences between Castor and the Sciuridae appear to relate entirely to the internal characters (other than the cheekteeth), so far as superfamily separation goes. Tullberg mentions that it may be that Castor has more in common with the MIuridae than the Sciuridae, and that it is possible that instead of forming a supergroup containing Sciuridae, Castoridac and Geomyidae as he did, and one containing Muridae, Anomaluridae, Ctenodactylidae, it might be correct to unite Castoridae, Geomyidae and Muridae in one group, and possibly Ctenodactylidae, Anomaluridae and Sciuridae in another. Bearing this in mind, and also that Weber regards the group as a superfamily, it is retained as such here, though some doubt is felt as regards the desirability of this classification; in most essential cranial characters the family stands close to the Sciuroidac.

It may be noted that, according to Miller \& Gidley, many Castoroid genera of Rodents are known fossil from the Holarctic and have been distinct from the Sciuridae since the Oligocenc; at least in their classification both groups are quoted from that period.

There is one living Castoroid genus.

## Genus i. CASTOR, Linnaeus

1758. Castor, Linnacus, Syst. Nat., roth Ed., vol. i, p. 58.

Type Spfcifs.-Castor fiber, Linnacus.
Range.-As in the family Castoridae.
Nuaber of Forsts.-Twenty.
Citaracters.-Skull with narrowed frontals, narrow braincase, rostrum thick and relatively short. Temporal ridges forming a sharp sagittal ridge in the adult, which divides anteriorly, the ridges extending forward to about half-way along orbits, and forming short postorbital notches. Lambdoid crest thick, occipital region prominent and angular. Paroccipital process of medium length. Jugal greatly broadened anteriorly, a process directed upwards on the anterior half of the upper border; jugal in contact with lachrymal. Bullae of moderate size, the neek protruding sharply upwards and backwards, appearing in superior vew of skull as a conspicuous upwardly projecting tube, on either side of the squamosals. Basioccipital with a pit-like depression situated near base of foramen magnum. Palate slightly wider posteriorly than anteriorly, ending in a short spinous process, at level just behind M.3. Incisive foramina relatively small, narrow and situated considerably in front of the toothrows, as in the Sciuridae. Nandible with coronoid process high, considerably higher than the condylar, and angular portion thattened and rounded; the mandibular
symphysis extending back to P.f in adult. Ufper part of zygomatic plate deeply ridged. Nasals noticeably longer in Palacarctic forms than in American species, so far as seen.

Incisors thick. Checktecth extremely hypsodont, decreasing in size from P. 4 to 11.3 . Upper series with three long narrow enamel folds externally and one internally, which tends to meet the first outer fold. Lower teeth with this pattern reversed, the outer fold curving backwards between the second and third inner folds.

Size very large, second only to $H$ ydrochocrus in the Order at extreme development. Form thickset; legs short; ears very small; hindfeet large, hroad, with fire well-developed digits, the digits whbed, the claws powerful. D. 2 with a horny supplement rising beneath the claw, this probably used for dressing the fur. Forefoot much smaller than hindfoot, with fise well-developed digits, and long curved claws, that of the pollex quite well developed, but noticeably weaker than the others. D. 3 the main digit. Fur very thick, consisting of a dense soft underportion, and abundant growth of cuarser longer hair. Tail much broadened, almost without a vestige of hair, though slightly furred at extreme base; of medium length (unique in the Order as regards structure).

The habits of these animals are too well known to need more than passing mention, though that an animal of this size can cut down trees is remarkable to say the least.

It is to be hoped that the excellent work in the preservation of these animals by the late "Grey Owl" will he carried on and will prescrue them from extinction.

Nore or less closely allied forms are known fossil from the Ilolarctic, as already mentioned; the Castoroididae, containing a genus (Castoroides) with evergrowing laminate checktecth and slightly modified zygomasseteric structure (Pleistocene), and the Chalicomyidae (Chalicomys, Luropean Miocene and Pliocene, Trogontherium, European Plocene to Pleistocene, Pataeocastor and others, North American Oligocene and Pliocene (Niller \& Gidley)), seem worthe of mention.

Forms examined: fiber, canadensis.

## CASTORIDAE: SPECIAL HORKS OF REFERENCE

J. Allen, Monoyraph North American Rodentia, 1877, P. 43 .

Pocock, On the external characters of the Buaver and some Squirrels, Proc. Zool. Soc. London, p. 1171, 1922.
Miller, Cataluque of Mammals of Western Eurupe, 1912, p. 947: Castoridae.

## List of Named Forns

(The references and type localities are the work of Nr. R, W. Hayman.)
As already noted, so far as seen the Palacarctic forms differ from the North American ones in the length of the nasals.

## canadensis Group

1．CASTOR CANADENSIS CAN゙ADENSIS，Kuhl
1820．Beitrige z．Zoologic，p．6q．
Hudson lay．
Synonym：americames，Richardson，Faun．Bor．Amer．，1829，p． 105.
2．CAS＇OR CANADENSKS BELLGAE，Taylor
1916．Univ．Calif．Publ．Zool．12，p．+29.
Beluga River，Cook Inlet region，Alaska．
3．CASTOR CANADENSIS PHAELS，HEHET
1909．Univ．California Publ．Zool．5，p． 250.
SInmiralty Island，Alaska．
4．CASTOR CANADEN゙SIS SAGITTATUS，Benson
1933．Journ．Mamm．IBaltimore，14，p． 320.
Indianpoint Creek，morth－east of Barkerville，British Columbia．
5．CASTOR CANADENSIS LECCODONTA，Gray
1869．Ann．Nag．Nat．Hist．4．IV，p． 293.
Vancouver Island，British Columbia．
Synonym：pacificus，Rhoads，＇Trans．Amer．Philos．Soc．，n．s．，vol．ig， p．422，1898．Lake Keechelus，Cascade Mountains， Washington．
6．CASTOR CANADENSIS MUCIIGANENSIS，Bailey
1913．Proc．Biol．Soc．Washington，K゙V゙VI，p． 192.
Tahquamenaw River，Luce County，Michigan．
7．CASTOR CANADENSIS MSSOLRIFNSIS，Bailey 1919．Journ．Namm．Baltimore，1，p． 32.

Apple Creck， 7 miles east of Bismarck，Burleigh County，North Dakota．
8．CASTOR CANADENSIS CAROLINEN゙BIS，Rhoads
iSgS．Trans．Amer．Philos．Soc．，n．s．，19，p． 420.
Dan Rwer，Stokes County，North Carolina．
9．CASTOR CAN゙ADEN゙SIS REPENTINUS，Goldman 1932．Journ．Namm．Baltimore，13，p． 266.

Bright Angel Creek，Grand Canyon，Arizona River，Colorado．
10．CAsTOR CANADENSJS BALLEYI，Nelson
1927．Proc．Biol．Soc．Washington，SLI．p． 125.
llumboldt River，near Winnemucea，Nevada．
11．CANTOR CAN゙ADENSル JたNEN゙けs，Bailey
1905．North Amer．Fauna，Nio．25，p． 122.
Cummines Creek，Colorado County，Texas．
12．CASTOR CANADEズSIS MEX゙しCAN゙じミ，Baiky
1913．Proc．Biol．Soc．Washington，K゙オV1，p． 191.
Ruidoso Creek， 6 miles helow Ruidoso，Lincoln Countri，New Nexico．
13．CAsTOR CANADENSIS FRONDATOR，Mearns
1897．Prelim．diag．new Mamm．Nexican border of C．S．A．，p． 2 （Reprinted Proc．C．．A．
Nat．Nus．XX゙，p．502．189S）．
San Pedro River，Sonora．Nexico，near monument No．on of the Nexican boundary line．
14. CASTOR CAECATOR, Bangs
1913. Bull, Jus. Comp. Zool. 54, P. 513.

Near IBay St. George, Newfoundland.
15. CASTOR SLBAURATLS SUBALRATUS, Taylor
1912. Univ. Calif. Publ. Zonl. 10, p. 167.

Grayson, San Joaquin River, Stanislaus County, California.
16. CASTOR SLTAURATLS AHASTENSIS, Taylor
1916. UTnis. Calif. Puhl. Zowl. i2, p. 433.

Cassel, Ditt River, Shasta County, Califormia.

## fiber Group

17. CASTOR FIBER FIBER, Linnaeus
18. Syst. Nat., 10 th Ed., vol. 1, p. 58.

Sweden. (Range: Western European range of the genus.)
Synonym: albicus, Matsehic, 1907, Sitz. Iker. Ges. Nat. Fr. Berlin, p. 216 . Anhalt. Germany.
balticus, Matschie, ryo7. Sitz. But. Ges. Nat. F'r. Berlin, P. 217. Pomerania.

Nıller, Catalogue Nammals of Western Europe, also quotes as synonyms:
albus, Kerr, 1792, Aninz. Kingd., p. 222.
solitarius, Kerr, same reference, p. 224.
zaricgatus, Bechstein, Gemeinn. Naturgesch, Deutschlands i, and ed., P. 913, 180 r .
fultus, Bechstein, same reference.
galliae, Geoffroy, 1803 . Cat. Mamm. Mus. Nat. Hist, Paris, p. 168. (Rhone, France.) iSo3.
niger, Desmarest, 1822, Nammalogie, pt. II, p. 27S.
z'arius, Desmarest, same reference.
flarus, Desmarest, same refurence.
gallicus, Fischer, Synops. Mamm., p. 257, 1829.
proprius. Billberg, Limn. Samf. p. 34, 1833.
18. CASTOR IIBER V'1STULANUS, Matsche 1907. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 219.

West Poland.
(Listed as a valid race by Vinogradov, Rodents occurring in
U.S.S.R., 1933.)
19. CASTOR FIBER POHLEI. Serebrennikoy
1929. C.R. Acad. Leningrad, p. 275.

River Leplja, tributary of the N. Sosva, east slope of N. Urals, Russia.
20. CASTOR IIBER BIRLIAA, Serebrennkor
1929. C.R. Acad. Leningrad, p. 276.

Rivier Bulungun, south of Kobdo. Mongolian Altai.

## Superfamily GEOMYOIDAE

This group contains as here understond two familics, the Geomyidac and the Ieteromyidae.
1806. Thomas: Myomorpha, part: Family IHeteromyidae (with subfamilies Heteromyınac (Heteromys, Perognathus), and Dipodomynae (Dipodomys, Microdifutops)). Fanuly Geomyidae.
1809. Tullberg: Scurnomorpina, part: Geomyoidei. One family only recognized, the Geomyidae, with subfamilies Dipodomyini and Geomyini.
19r8. Miller \& Gidley: Superfamily Sctromdae: Family Geomyidae (living genera referred to subfamily Geomyinae) ; and Family Heteromyidae.
1924. Winge: Family "Saccomyidae" (=-Heteromyidae): Saccomyini and Geomyini. 1928. Weher: Geomyondea: Family lleteromyidae, and Family Geomyidae.

Geograpilical Distribution.-America: the greater part of the United States; South-western Canada; Mexico and Central America south to Venezuela, Colombia and Ecuador.

Characters.-Zygomasseteric structure essentially as in Sciuridae or Castoridae, but rather more modified than in either group; infraorbital foramen excessively reduced; zvgomatic plate tilted strongly upwards.

Checktecth frequently evergrowing, and frequently becoming completely simplified in pattern. Dental formula i. $\frac{1}{1}, \mathrm{c} . \frac{9}{6}, \mathrm{p} \cdot \frac{1}{1}, \mathrm{~m} . \frac{3}{8}=20$, the premolars not or rarely showing any sign of reduction.

Large externally opening cheek-pouches present.
Fibula reduced and fully fused with the tibia high on the leg.
Zygoma abnormal; either extremely reduced and slender (Heteromyidae), or comparatively robust, but with strongly shortened jugal which becomes progressively reduced until the zygomatic arch is in specialized forms complete without it (Geomyidae).

External form primitively Murine (Perognathus, Liomys, Heteromys); or modified for bipedal saltatorial life (.Microdipodops, Dipodomys), in which genera the mastoids and auditory bullae become abnormally inflated, and the digits of the hindfoot may be reduced to four; or in all Geomyidae much specialized for underground life.

Remarks.-No doubt is felt in retaining this group as a superfamily. Nost zoologists who have classified the Order and given proper consideration to zygomasseteric structure have placed this group in the neighbourhood of the Sciuromorph series of Rodents, where they appear to belong.

In some ways the Geomyidac appear to me at their highest development to be among the most highly specialized of all living Rodents.

## Key to the Fanilles of Gfonyoldae

Skull and external form modified for subfossorial life; cheekteeth always evergrowing in living members of the group, their structure always near complete simplification. Incisors thick and powerful. Zygoma comparatively robust, the jugal becoming progressisely reduced until the zygomatic arch is complete without it. Bullae and mastoids never abnormally inflated. Palate much narrowed. Frontals relatively narrow to extremely so. Family Geomyidae
Skull and external form never modified for subfossorial life; cheekteeth rarely evergrowing (Dipodomys only), and their structure rarely near complete simplification (adult Dipodomys only"). Incisors thin
and compressed. Zygoma much narrowed and reduced, threadlike. A marked tendency towards great inflation of mastoids and hullae. Palate not narrowed. Frontals relatively hroad to extremely so.

Family lleteromyidae

## Family HETEROMYIDAE

1896. Thomas: Myomorpha, part: Heteromyidae, with subfamilies lleteromyinae (Heteromys, Perognathus), and Dipodomyinac (Microdipodops, Dipodomys).
i igg. T'ullbere: Scuronoripha, part: Gcomyoide'; Family Geomyidac, part, subfamily Dipodomyini.
1897. Miller \& Gidey: Superfamily Suromare, part: Family Heteromyidae.
1898. Winge: "Saccomyidae" (=heteromyidac), part: "Saccomyini."
rys 8 . Weber: Geomyomea, part : Famly Heteromyidae.
Geographical Distribution.-Western North America, from British Columbia southwards: west in U.S.A. to the Dakotas and Texas; through Mexico and Central America south to Ecuador, Colombia and Venczuela.

Number of Genera.-Five.
Characters.-As indicated in the above key. "Orifice of infraorhital foramen protected from musele pressure by countersinking in a vacuity which extends transversely through rostrum" (Miller \& Gidley). (Compare Geomyidae, p. 505.) Hindfoot long and narrow; in specialized forms of bipedal saltatorial type. Cheektecth hypsodont, but not evergrowing except in Dipodomys; molars in adult usually with a two-lohed pattern, in Dipodomys more or less simple.

The family is the subject of a recent and most extensive monograph by Wood (Ann. Carnegic Mus, XX1V, p. 75, 1935); in this paper all known fossil and recent forms have heen very fully dealt with.

Wood divides the family into three subfamilies: I Teteromyinae, Perognathinae, and Dipodomyinae. The Heteromyinae contain, of living genera, Heteromys and Liomys only. 'The Pcrognathinae contain Perognathes and Microdipodops. 'The Dipodomyinae Dipodomes alone. He remarks, diseussing the Dipodomyinae, "this subfamily is definitely related to the Perognathinae, to which it shows much eloser relationships than does either to the Ileternmyinac ; it may be that a more correct idea of relationships within the family would be attained by consolidating these first two subfamilies."

For the purposes of the present work I propose to d" so, recognizing only two subfamilies, the Dipolomyinae to inelude Perognathus and Microdipodops and to be divided into two gencric groups. 'The classification here adopted is based on Woot's monograph, therefore, with the above modification; this being the most up-to-date work on the entire family, which in common with many other North American groups is not well represented at the British Muscum.

At first sight the family seems composed of two types of animal, the "murine" Iteferoms (from which, though uncuestionably closely related to it, Liomys was separated hy Nerriam in 1 goz and is currently accepted as a full
gents by American authors), and Perognathus; and the "Dipodide" saltatorial type, Microdipodops and Dipodomys.

It is therefore of great interest that, according to Wuod, Microdipodops is more closely allied to Perognathus (see notes under genus Microdipodops), and not to Dipotomys as has heen previously held; and that Ileteromys (with Liomys) stands rather apart from the rest of the family. From the teeth of the one skull of Microdipodops examined it would appear that the above assumption as to its relationship with Perognathus rather than Dipodomys is correct, and that the external saltatorial characters and the abonormal inflation of mastoids and bullae has in each genus heen developed independently.

## Key to the Subfamilis of Meteromyidae

"lophs of lower premolars uniting first at buccal side, next at lingual; those of upper premolars uniting first at lingual, next at buccal; those of upper molars always and lower molars usually uniting at the two ends surrounding a central hasin; pattern of cheekteeth preserved for a long time" (Wood). Bullae showing no signs of excessive inflation, and never reaching the level of grinding surfaces of molars. (Incisors as far as seen not grooved.)

Subfamily Heteroniyinae (IIcteromy's, Liomy's)
"Lophs of lower premolars uniting at centre of tooth; those of upper premolars uniting first at or near centre of tooth; those of upper molars uniting progressively from lingual to buccal margins; those of lower molars uniting primitisely at buccal margin, progressively at centre of tooth; the pattern being lost early in life" (Wood). Bullae always well inflated; at highest development extremely so.

Subfamily Dipononiyinae
Checkteth not evergrowing, in adult the pattern not completely simplified; anterior zegomatic root not greatly enlarged. Bullae moderate (Perognathus), or abnormally intlated (. Microdipodops). Perognat/ms Group (Perogniathi) (Pcrognathus, Microdipodops)
Checktecth evergrowing, in adult and usually carly in life the pattern near complete simplification; anterior zygomatic root greatly enlarged; bullac much inflated.

Dipodomys Group (Dipodoarfas)
(Dipodomys)

## Subfamily HETERONIINAE

Geographical Distribetion--Southern "lexas and Mexico southwards to Panama, Colombia, Venezuela, Ecuador.
Characters.-As indicated in the above key. Skull with bullae little inflated, the mastoids not or scarcely showing in superior aspect; nasals thick and projecting lar forwards over incisors, which are narrow
and opisthodont. Frontals normally scarcely constricted at all, and usually with relatively well-developed supraorbital ridges which extend backwards over the sides of the braincase. Palate moderately broad; two pairs of pits present for the pterygoid museles; hamulars not joining the bullae. Infraorbital foramen, as is usual in the family, minute, and situated far forwards, on side of rostrum. Incisive foramina very small, and situated far in front of toothrow Upper incisors (of those seen) plain. Lower jaw small and weak. External form Murine, not specialized for saltatorial life. Fur usually bristly.

Containing two closely allied genera.

## Key to the Genera of Heteromyinae

Adult pattern of cheektecth less complicated, the enamel islands wearing out; posterior loop of P.+ with no deep re-entrant anterior fold.

Liomys
Adult pattern of cheekteeth not simplified, the enamel islands persisting; posterior loop in crown of P.t with a deep re-entrant anterior fold.

Ileteromys

## Genus i. IlETERONYS, Desmarest

1817. Heteromys, Desmarest, Nouv. Dict. Hist. Nat., vol. 14, p. 181.
1818. Sacconys, Cuyer, Dents des Mamm., p. 186. (Saccomy's anthopilus; this name is usually considered synonymous with Heteromys; the type species of Saccomys is presumably unidentifiable.)
1819. Xillomys. Merriam, Proc. Biol. Soc. Washington, XV. p. 43. Heteromys nelsoni, Merriam. Valid as a subgenus.
'Type Species.-Mus anomalus, Thompson.
Range.-Southern Nexico (Vera Cruz, Oaxaca, Yucatan), through Guatemala, Salvador, Honduras, Nicaragua, Costa Rica and Panama to Ecuador, Colombia and Venezuela.

Number of Forms.-Twenty-two.
Characters.-Skull as described above; upper molars of adult in two loops with a median enamel island which is long, frequently open exteriorly, and persistent. P.t with a fold extendine across and dividing the twoth completely into two lobes, and with a well-marked fold entering anteriorly into the inner side of the hinder lobe. Lower molars with the same elements of the upper teeth, but the folds when open do so interiorly. P. + also with a small anterior outer fold, which may wear out. N. 3 is not reduced in size. Tail longer than head and budy as a rule, poorly haired, with scales visible. Fur normally bristly or spiny. Forefoot with medium elaws; D. 5 short, three centre digits longer; pollex rudimentary, Ilindfoot narrow, long though not extremely


Fig. izo. Heteromys anomales anomlales, Thompson. B.MI. No. 97.4.7.2, 7 ; $\therefore 2 \frac{1}{2}$.


Fig. Iz1. Hfteromiys anomalts avomalts, Thompson.
B.M. No. 17.4.7.2. ; $2 \frac{1}{2}$.
so; with the theee central digits much elongated, D. 5 shorter, the hallux short. This arrangement of digits is constant in all non-saltatorial members of the family I have seen.
II. nelsoni, not represented at the British Museum, is separated subgenerically as Nyloms, with the following characters:
"l'elage soft, without stiff bristles . . . skull light, hraincase high and rounded, supraorbital beads small and faint; upper surface of maxillary root of zygomata large, heary and rectangular: frontals much elongated, pushing nasals and premaxillae far forward; underjaw hroad, without trace of tubercle over root of incisor and with angle very slightly everted. Dentition heary. Posterior prism of last upper molar more or less completely doulde, the crown of the tooth



Fig: 122. Heteromis anomall's anomalles, Thompson.

presenting two complete transverse loops and a more or less perfect posterior loop."

The species of Hetermys are fully revised by Goldman (North Amer. Fauna, No. 34, P. 14, 1911). Akey to these will be seen on consulting the abovementioned work. With the exception of H.gameri, all seem very closely allied. In gameri, the sole is hairy from near posterior tubercle to the heel; in all other species it is naked.

Forms seen: anomalus, australis, hiculor, desmarestiamus, gaumeri, goldmani, longicandatus, "melanolencas," repens.

## List of Ṅmel Forats

(The references and type localities in all genera of Ileteromyidae are the work of Mr. G. W. (. Ilolt.)

Subgenus Heteromys, Desmarest

1. HETEROMIY ANOMABLES ANOMALUS, Thompson
2. Trans. Linn. Soc. NI, p. rit.

St. Ann's Barracks, island of 'lrinidad.
Synonym: melanolcucus, Gray, i868, Proc. Kool. Soc. London, p. 204. Venezuela (sec Alston, Biol. Cent. Amer Namm., p. 167 , Ann. Mag. Nat. Hist. 5, V1, 1880 ).
2. HETEROMIS ANOMAALCH BRACHIALIS, Ospood
1912. Field Mus, Zool. Pul). Bo. p. 54. El Panorama, Rıo Aurare, Venezucla.
2. HEPEROAIYS JESLPA, Allen
1899. Bull. Amer, Mus. Nat. Hist. X̌If, p. zor. Colombia.
+. HETEROMHS BICOLOR, GDAY
1868. Proc. Zool. Soc. London, p. 202. Salle, Honduras.
5. HETEROMYS LOAITENEIS, Alkm
1912. Bull. Amer. Mus. Nat. Hist, XSXI, p, 77. Las Lomitas, Cauca, Columbia.

1. HETEROMYS ALSTRAIS ALSTRALIS, Thomas
2. Ann. Mag. Nat. Hist., ser. T, Vll, p. 194. St. Javicr, Lower Cachabi River, N. Ecuador.
3. HETEROAIYS ALSTRALIS CONGCLLS, Goldman
4. Smiths. Misc. Coll. LK, no. 22, p. 8. Cana, mountains of E. Panama.
5. HETEROMY'S DESMARESTAANLS DESMARESTIANLS, Gray
6. Proc. Zool. Soc. London, p. 204. Coban, Guatemala.
7. HETHEROMFS DESMARESTIANLS GRISJE'S, Merriam
8. Proc. Biol. Soc. Washington, XV. p. 12.

Mountains near Tonala, Chiapas, Mexico.
10. HETEROMYS DESMARESTIANLS PBAKASTUS, Dickey
1928. Proc. Biol. Soc. Washington, NLI, p. 10.

Los Essemiles, Dept. Chalatenango, El Salvador.
11. METEROMIS ZONALJ, Goldman
1912. Smiths. Misc. Coll. LXI, no. 36. p. 9.

Rio Indio, near Gatun, Canal zone, Panama.
12. HETEROMYS LONGICALDATLS, (imos
1868. Proc. Zool. Soc. London, p. 204. Aexico.
13. HETEROMES GOLDMANL, Merriam
1902. Proc. Biol. Soc. Washineton, XV, p. 11 .

Chicharras, Chiapas, Mexico.
14. HETERGAIS IEPTCRES, Mernam
1902. Proc. Biol. Soc. Washington, N゙V, p. +2.

Mountains near Santo Domango, Oaxaca, Mexico.
15. HETEROMI'S TEMDORAIIS, Goldman
iot t. North Amer. Famma, no. 34, p. 26. Motzotongo, V'era Cruz, Mexico.
16. HE'CEROMLY REPENS, Bangs
1902. Bull. Nus. Comp, Zool. KXXIX, p. 45.

Boquete, southern slope of Volean de Chiriqu, Panama.
17. HETEROMIS ORL心JYRLS, Harrs
1032. Occ. Pap. Mus. Zool. Univ. Michigan, no. 248, p. \&

El Copey de Dota, Cordillerade Talamanca, Costa Rica.
18. HETEROAIS FANANHENSIA, Goldman 1912. Smiths. Nisc. Coll. LVI, no. 36, p. 9.

Cerro Azul. near headwaters of Chagres River, Panama.
10. HETEROMIYS (RASSIROSTRIS, Goldman
1912. Smiths. Misc. Coll. LA, nu. 2, p. Io.

Near head of Rio Limon, Mount Pirri, E. Panama.
20. HETEROMI'S [CSCATLSS, Allen

190S. Bull. Amer. Mus, Nat. IIist. XXIV, p. 652.
Tuma, Nicaragua.
2r. HETEROMIYS GAUMER1, Allen \& Chapman
1897. Bull. Amer. Mus. Nat. Hist. IX, p. 9.

Chichenitza, Yucatan, Mexico.
Subgenus Xylomys, Merriam
22. HETEROMIY゙ NEISONI, Metriam
1902. Proc. Biol. Soc. Washington, XV, p. 43.

I'mabete, Chiapas, Mexico.

Genus 2. LIOMYS, Merriam
1902. Lionys, Nerriam, Iroc. Biol. Soc. Washineton, XV', p. tt.

Type Species.-Meteromys alleni, Coues.
Range-Southern Texas, Mexico, Guatemala, Nicaragua, Honduras, Costa Rica and Panama.

Number of Forms.-'Iwenty-ninc.
Charactirs - Like Heteromys, but angle of mandible more strongly everted, and teeth becoming more simplified, the enamel islands not persistent, but wearing out with age; P. 4 with the posterior loop slightly notched but with no deep re-entrant angle.

This genus is revised hy Goldman (North. Amer. Fanna, p. 32, no. 34, 1911). He recognizes three specific groups:
the irroratus group, with light grevish coloration and five-tuberculate soles on hindfect;
the pictus group, characturized by rich orange rufous lateral lines, and sixtuberculate hindfeet; and
the crispus group，including small species with short tails，plain coloration， and peculiar dental characters．
（＇Ihe dental characters do not seem to be constant，according to Wood．）
Forms seen：alspersus，alleni，bulleri，＂hispidus，＂irroratus，nigrescens， obscurus，piclus，salimi．

List of Nanhe Forms<br>pictus Group

1．LIOMV゙S PICTUS PICTUS，Thomas
1893．Ann．Mag．Nat．Hist．6，XII，p． 233.
Mineral San Sebastian，Jalisco，Mexico．
Synonym：hispidus，Allen，1897，Bull．Amer．Mus．Nat．Hist．IX， p．56．Compostela，Nayarit，Mexico．
2．LIOMI＇S PICTUS ESCUINAlAJ：，Allen 1906．Bull．Amer．Mus．Nat．Hist．X゙XII，p． 211.

Escuimapa，Sinaloa，Mexico．
3．LIOMV＇S PCTUS SONORANLS，Merriam
1902 Proc．Biol．Soc．Washington，X゙V，p． 47.
Alamos，Sonora，Mexico．
4．LIONYS PICTUS PLANTIN゙ARENSIS，Merram
1g02．Proc．Biol．Soc．Washington，XV，p．$\downarrow 6$.
Plantinar，Jalisco，Mexico．
5．LIONIS PICTLS PARVICEPS，Goldman 1904．Proc．Biol．Soc．Washington，XV1I，p．S2．

La Salada，yo miles south of Liruapan，Nichoacan，Mexico．
6．L．IOגY＇S PlCTUS ROSTRATUS，Nerriam 1902．Proc．Biol．Soc．W＇ashington，XV，p． 46.

Near Ometepec，Guerrero，Mexico．
7．LIOAIV＇s PICTL＇S PIAAELRLS，Nerriam
1902．Proc．Biol．Soc．Washington，XV，p． 48.
Pinotepa，Oaxaca，Mexico．
8．1，IOMY＇S PICTLS ISTHLDILS，Mermam
1goz．I＇roc，Biol．Soc．Washington，XV，p． 46.
Tehwantepec，Oaxaca，Mexico．
（9．HOAIS PICPLS VERAECRLCH，Nerram
1902．Proc．Biol．Soc．Washington，XV，p． 47.
San Andres Tuxtla，Vera Cruz，Mexico．
Synonym：orbitalis，Merriam，1902，Proc．Biol．Soc．Washington，XV， p．48．Catemaco，Vera Cruz，Nexico．
10．L．IOAIY PICTLS OBSCLRLS，Merram
s902．Proc．Biol．Soc．Wiashingtun，XV，p．$\psi^{8}$
Carrizal，Vera Cruz，Mexieo．
Simonym：paralius，Elliot，Tro3，Fichd Columb．Nus．Publ．So，zuol． ser．，vol．3，p．233．San Carlos，Vera Cruz．

```
 11. LIOMMS ANNECTENS, Murriam
IyOz. Proc. Biol. Soc, Washington, XV, p. 4.3.
 gluma, Oaxaca, Nexico.
```


# crispus Group 

12．L．JOM1Y（RISPLSCRISPCS，Memam
1002，Proc．Biol．Sinc．Washmetom，SV，p．$q 9$.
＇Tonala，Chapas，Nexico．
13．LIOMLS CRISPLSETOSLS，Merram 1902．Proc．Biol．Snc．Washineton，XV，p． 49

Juchaetan，Chapas，Mexien．
14．L．10NIY：VLLCANE，Ahen
190S．Bull．Amer．Mus．Nat．Hist．SXIV＇，p． 652.
Volvan de Chinandega，Nicaragua．
15．HIONIS HE＇TERGTHRIX，Mernam
1902．Proc．Biol．Soc．Washington，XV，p． 50.
San Pedro Sula，IJonduras．
1क，JIONIY SALVIN1 SALVINI，Thomas
1893．Ann．Mag．Nat．Mist．6，XI，p． 331.
Duenas，Guatemala．
17．LJUNY゙ SALXINI NIGREACLNS，Thomas
1893．Ann．Nag．Nat．Hist．6，XIl，p． 23 4．
Costa Rica．
1s．LIOMIS ANJHONV1，fondwin
1932．Amer．Mus．Nov．no．52S，p． 2.
Sacapulas，Central Guatemala．
19．LIOMIS ADSPERSC゚S，Peters
1874．Nonatsh．k．preuss．Akad．Wiss．Berlin，p．357．
Panama．

## iroratus Group

20．LIOMIS IRLRORATU IRRORATL゙か，（irus
i868．Proc．Zuol．Suc．Londan，p． 205.
State of Oaxaca，Nexico．
Synonym：abolimhatus，Gray，l＇roe，Zool，Soe．Lundon，p．205， 1868. La Parada，Oaxaca，Mexico．
21．LIOMIY＇ H ［RRORATLE TORRIDL $\therefore$ ，Mermam
1902．Proc．Biol．Soc．Washengtom，XV＇，p， 45.
Cuicatlan，Oaxaca，Mexico．
Sỵnonym：exiguas，Ellont，Field Columb．Mus，I＇ubl．71，zool．ser．， vol．3．P．146，1903．P＇uente de Jxtla，Marelos，Mexico．

1902．Proc．Biol，Soc．Washungtom，XV，p． 45.
Huajuapam，Oaxaca，Mexicu．
23．LIONIY＇IRRORATLS ALLJNI．Coues
1881．Bull．Mus．Comp．Zool．Marvard Coll．V1ll，p，is7．
$\mathrm{K}_{10}$ Virele，San Lus Iotosi，Mexiea．
24．LIONIYS HRRORATLS PRETIOSL＇s，Goldmar
1915．North Amer Fauna，no．34，p．5\＄．
Nethaltoyuca，Pucbla，Nexico．
25. LIO.MYS IRRORATLS TEXKNSLS, Merriam
1902. Proc. Biol. Soc. Washington, XV, p. 44.

Brownsville, Cameron County, 'I'exas.
26. JIONIS IRJRORATLS CANL゙S. Dermam
1902. Proc. Biol. Soc. Washineton, SVV, p. 4t.

Near Parral, Chihuahua, Mexico.
27. J.IOMJS JRRORATLS JALJECENSIS, Allen
1906. Bull. Amer. Mus. Nat. Hist., XXII, p. 251.

Las Canoas, about 20 miles west of Zapotlan, Jalisco, Mexico.
28. I.IONYS BLLIIERI, Thomas
1893. Ann. Mag. Nat. Hist. 6, XI, p. 330.

Laguna, Sierra de Juanactlan, Jalisco, Mexico.
29. LJOMYS GUERRERENSIS, Goldman
1911. North Amer. Fauna, no. 34, p. 62.

Omilteme, Guerruro, Nexico.

## Subfamily DIPODONIYINAE

Geograpilical Distribetion.-The northern part of the range of the family, south to Central Aexico.
Number of Genera.-As here understond three, divided into two generic groups.
Characters.-As indicated in the key, p. 471; external form Nurine in Perognathus, otherwise specialized for bipedal saltatorial life. Skull characterized by wide braincase and moderately or abnormally inflated bullae, the skull becoming gradually narrower towards the anterior zygomatic root; frontals not or scarcely constricted, as in Heteromyinae; rostrum slender; nasals projecting far forwards over incisors, which are narrowed, opisthodont, and grooved in living genera. Incisive foramina very small; palate relatively broad. Cheekteeth hypsodont, at extreme development evergrowing: 11. ${ }^{3}$ tending to become reduced in size.

A key to the two generic groups is given on p. 471.

## The Perognathus Group

Cheekteeth not evergrowing, not becoming simplified in pattern; anterior zygomatic root not greatly enlarged on joining the lachrymal.

Key to the Gextra of the Perogxatut's Grotep
Mastoids and bullae not abnormally inflated; hindfoot shorter; not specialized for saltatorial life. Pfrognathes
Alastoids and bullae alnormally inflated, at maximum for family and perhaps for the whole Order; hindfoot longer; specialized for saltatorial life.

Misronipodops

## Genus 1. PEROGNATIIUS, Wied.

1834 Perownthes, Wied, Nova Acta Phys. Med. Acad. Caes. Leop. Carol, XIX, pt. 1, F. 368.
184K. Cricetodipl', Peale, Namm. and Ornith. Wilkes Exped., Mill, znd ed., p. 52. (Cncetodipus pareus, I'eale.)
188\%. (haetodipys, Merriam, North Amer. Fauna, no. 1, p. 5. Perognathus spinatus, Merriam. Valıd as a subgenus.

Type Species.-Peregnathus fasciatus, Wied.
Range.-Wentern North America from British Columbia to Central Mexico (in C.S.A. known from Washington, Oregon, Idaho, Wyoming, North and South Dakota, Nebraska, California (and Lower California), Nevada, U'tah, Arizona, Coloradh, New Mexico, Kansas, Oklahoma, 'lexas).

Nember of Foras.-About one hundred and twenty-six.
Characters.-Frontals scarcely constricted, with supraurbital ridges feebly marked or absent; bulfae inflated, the mastoids in the typical subgenus appearing in superior aspect of the skull; the bullae nearly meeting anteriorly, lncisive foramina minute; palate broad, extending to N. 3 .

Cheekteeth originally showing marked signs of three longitudinal rows of cusps (to be seen for instance in No. 2.3.6.27, P. hispidus, 'Iexas, at British Museum); but soon wearing down; general adult plan not unlike that of Heteromss; a long fold more or less separating the molars into two lobes; premolar with narrow anterior lobe and much wider posterior one; M. $\frac{3}{8}$ very small. P.4 lower with four cusps, one at each corner, apparently more or less persistent; this tooth reduced, smaller than $\mathrm{M} . \mathrm{I}$; and with three folds, one external, one internal, one anterior; lower molars much like the upper series in seneral arrangement; in very young teeth, there is a pattern apparently strongly reminiscent of Murinae, i.e. three rows of cusps, the outer row very much reduced.

Size usually small to very small; tail about subequal to head and hody, or may be longer, well haired; hindfoot moderately long. general arrangement of the digits as in Heteromys; forefoot not ahnormal. Spines present on the rump of some species (subgenus Chatodipus).

Two well-marked subgenera are admitted: the typical, and Chaetodipus, . .lerriam.

In Chactodipus, the soles are naked, the pelage harsh, often with spiny bristles on rump.

In Perognathus ss. the pelage is normal, without spines; the soles are usually hairy (except formosus).

In Chuetodipus, the bullae are less inflated than in Perognathus, the mastoids relatively small, not projecting beyond plane of occiput; the "mastoid side of parietal is equal to or shorter than the other sides" (Osgood), the audital bullae are separated by full width of hasisphenoid, and the ascending branches of the supranecipital are heary and laminate, instead of slender and threadlike in


Fig. i23. Peroginthe's hispides hispides, Baird.
B...I. No. 2.3.6.47, $=$; 31.


Fig. 124. Peronexthis himpldis hispldes, Baird.
B. \1. Nu. 2.3.6.4\%. +; 31.

Perognathers proper. As inclicated ahove, the characters of the bullae of Perogmathus s.s. do not agree with one of these characters.
'The genus has been fully revised by Osgood (North Amer. Fauna, no. i8, 1900).



From Osgood's key, it would appear that the essential characters of the ten specific groups currently recognized are as follow:

Suhgenus Perognathes

1. Antitragus not lohed; hindfnot 20 or less.
fasciatus group: tail about equal to head and hody, or slightly shorter; Hower premolar smaller than or subequal to XI .3 .
longimembris group: tail longer than head and body except pacificus; lower premolar larger than M .3 .
2. Antitragus lobed; hindfoot more than 20.
pareus group: sole normal for subgenus; tail moderate.
formoses group: sole naked; tail long and heavily crested.

## Sulgenus Chatompus

1. Rump with spines or bristles.
californicus group: lateral line present; bristles moderate, usually confined to rump; ears clongated.
intermedius group: similar to californicus, but ears not elongated. (Rump not spiny in artus.)
spinatus group: no lateral line, or this very faint; pelage very hispid, with bristles extending to sides.
2. Rump without bristles.
hispidus group: tail not erested, shorter than head and body; skull with supraorbital bead in adult.
baileyi group: tail crested; no supraorbital bead in adult; tail much longer than head and body; interparietal width about equal to interorbital width.
penicillatus group: tail slightly longer than head and body, crested; interparietal width exceeds interorbital width.
Forms seen: flazus, formosus, infraluteus, lordi, parzus, panamintimus; angustirostris, femoralis, hispidus, inormatus, peninsulae, permix, pricei.

## List of Named Formis

## Sulgenus Perognalhus, Wied <br> fasciatus Group

1. PEROGNATHUS FASCLATUS FASCIATLS, Wied
2. Nova Acta Phys. Med. Acad. Caes. Leop. Carol., XIX, pt. i, p. 369. L'pper Missouri River, North-western N. Dakota.
3. PEROGNATIIL'S FASCIATLS INFRALUTELS.S Thomas
4. Ann. Mag. Nat. Hist. 6, II, p. 406.

Loveland, Latimer County, Colorado.
3. PEROGNATHLS FASClATUS LTTLSA, Cary

191 1. Proc. Biol. Soc. Washington, KXIV, p. 6 r.
Sun, Sweetwater Valley, Fremont County, Wyoming.
4. PEROGNATIIL'S FLAVESCRA FLAVESCENS, Merriam 1889. North Amer. Fauna, no. i, p. ir.

Kennedy, Cherry County, Nebraska.
5. PEROGNATHLS FLATEGCFNS COPEI, Rhoads
1893. Proc. Acad. Nat. Sci. Philadelphia, p. 404.

Near Mobeetie, Wheeler County, $\Gamma$ exas.
f. PEROGNATIUS Flatiencenc PERNiGER, Osmood
1904. Proc. Biol. Soc. Washington, XVII, p. 127.

Vermilion, Clay County, South Dakota.
7. PEROGNATILE'S MERRLAMI MIRRRBAMI, Allen
1892. Bull. Amer. Mus. Nat. Hist., IV', p. 45.

Brownsville, Cameron County, 'Texas.
Synonym: mearnsi, Allen, isgt, Bull. Amer. Mus. Nat. Hist., VHil. p. 237. W'atson's Ranch, Bexar County, Texas.

igoo. North Amer. Fouma, nor, i8, p. 22. Eddy, near Carlsbad, Eddy County, New Mexico.
0. PERのMVスTł!
1555. Proc. Acad. Nat. Sci, Philadelphia, VII, P. 332. El Paso, El Paso County, Texas.
10. PER(M;NATIT: FLAJLS PIPERL, Goldman 1917. Proc. Bol. Soc. Washington, XX. . p. Ifs.

Twenty-three miles south-west of Newcastle, Weston County, Wyoming.

is's. North Amer. Fauna, no. 1, p. 12.
Fort Whipple, Yavapaı County, Arizona.
12. F FRGGNATJILS FLAVUS FLLIGINOSLS, Merriam 1890. North Amer. Fauna, no. 3, p. 74. Cedar belt north-east of San Francisco Mountain, Coconino County, Arizona.
 I894. Proc. Acad. Nat. Sci. Philadelphia, p. 265. Thalpam, Federal district, Nexico.
14. IPROGNATIILS FLAVLS HOIDEXSIS, Condman
ro32. Proc. Biol. Soc. Washington, XLV, p. 89. Orabs, Hopi Indian Reservation, Navajo County, Arizona.

1934. Journ. Washington Acad. Sci. XX1V, p. 267. Custa Rica Ranch, Sonora, Mexico.
16. [EROGXATHLS APACJIE APACIIE, Merriam 1889. North Amer. Fauna, no. 1, p. I4. Keam Canyon, Ipache County, Arizona.
17. PIEROCNATYLS APACHE CLEOMOPHLLA, Goldman 1918. Proc. Biol. Soc. Washington, XXX1, p. 23. Winona, Coconino County, Arizona.
18. PEROG \ATHLS ADACHE CARYI, Goldman r9I8. Proc. Biol, Suc. Washingtom, XXXI, p. 24. Eight moles west of Rifle, Garficld County, Colorade.
19. PERGONATIILS AI'ACHE NLELANOTIS, OAmod
1900. North Amer Fauna, no. 18, p. 27.

Casas Cirandes, Chihuahua, Nexico.
20. FEROGNATHLS (BYPS, Du*
1929. Occ. Pap. Nus, Zool. Univ. Mich., 203, P. 1.

New Mexico: White Sands, 12 miles south-west of Alamogordo, Otero County.
21. [EROGXATHES (AI.EASTLS, Osgood
1000. North Amer. Fauna, no. 18, p. 28. Kinney Ranch, Swectwater County, Wyoming.

## longimembris Group

22．PEROGNATHUS ELIBATUS，İlliot
1903．Field Columb．Nus．Publ．S7，zool．ser．，vol．3，p． 252.
Lockwood Valley，near Mount Pinus，Ventura County，California．
Regarded by Gsgood as identical with longimembris longimembris （Proc．Biol．Soc．Washington，X．̉．̉l，p．96，19i8）．

23．PEROGNATIHUS LONGLNEXIBRIS IONGMNENHRIS，COUES 1875．Proc．Acad．Nat．Sci．Philadelphia，p． 305.

Old Fort＇「ejon，Tehachapi Mountains，Kern County，California．
24．PEROGNATHL＇S LONGHNEMIBRIS PANAMHN゙IINL゙S，Xerriam 1894．Proc．Acad．Nat．Sci．Philadelphia，p． 265.

Perognathus Flat，Panamint Mountains，Invo County，California．
25．PEROGNATHLS LONGIMIENIBRIG AREN゙ICOLA，Stephens 1900．Proc．Biol．Soc．Washington，XIII，p． 153.

San Felipe Nountains，San Diego County，California．
26．PEROGNATHL＇S LONGGIEMBRIS BANGGI，Mearns 1898．Bull．Amer．Nus．Nat．Ilist．X，p． 300.

Iralm Springs，Colorado Desert，Riverside County，California．
27．PEROGN゙ATHUS LONGHNEAHBRIS BREVINASL＇S，Oskood 1900．North Amer．Fauna，no．18，p． 30. San Bernardino，San Bernardino County，California．
28．PEROGNATHUS LONGIMEABBRIS AESTIVLS，Huey 192S．Trans．S．Diego Soc．Nat．Hist．5，p．87．

Sangre de Cristo，Jower California，Mexico．
20．PEROGNATHUS LONGINLEDBRIA VENLSTUS，Hues
1930．Trans．S．Diego Soc．Nat．Hist．6，p． 233.
Lower California，Mexico，San Agustin．
30．PEROGNATILS LONGLNEAIBRIS ARIZONENSIS，Goldman 1931．Proc．Biol．Soc．Washington，XJIN，p． 134.

North side of Marble Canyon of Colorado River，Arizona．
31．PEROGNATIILS IONGINEXABR1S CANTWELLI，Bloeker 3932．Proc．Biol．Soc．Washineton，XLV，p．I28．

Hyperion，Los Angeles County，California．
32．PEROGNATHUS LONGMMIAIHRIS N゙INOEN゙SIS，Huey
1935．Trans．S．Diego Soc．Nat．Hist．8，p． 73.
Bahia Kino，Sonora，Mexico．
33．PEROGNATILTS LONGMNEMBRIS ARCC゙S，Benson 1935．Univ．Cal．Pub．Zool．XI，P． 45 I ．

Utah：Rainbow Bridge，San Juan County．
34．PIEROGNATHL゙S PERICALLFS，Ellot
1903．Field Columb．Nus．publ．87，zool．ser．vol．3，p． 252.
Keeler，Owens Lake，Inyo County＂，California．
35．PEROGNATHUC＇S BOAHBY゙CIN（＊S，Osgood
1907．Proc．Biol．Soc．Washington，オ犬，p． 10.
Yuma，Vuma County，Arizona．

36．PEROGNATHES NENADENSB，Merriam
1894 ．Proc．Acad．Nat．Sci，Philadelphia，p． 264.
Halleck，E．Humbuldt Valley，Elko County，Nevada．
37．PEROGNATHILS fACIFICLS，Mearns
1898. Bull．Amer．Nlus．Nat．Hist．X，p． 299.

Mexican boundary monument no． 258 ，shore of Pacific Ocean，San Dego County，California．

38．PEROGNATIITS AMPLUS ANPLLE，Osgood
1900．North Amer．Fauna，no．18，p． 32.
Fort Verde，Yavapai County，Arizona．
39．PEROGN゙ATIILS AMIPLU＇S＇TAYLORI，（Goldman
1932．Journ．Washineton Acad．Sci．X゙犬゙II，p． 488.
Santa Rita Range Reserve，Pima County，Armzma．
40．PEROM：NATIIL＇A AMIDLS ROTCXDLis，Goldman
1932．Journ．Washington Acad．Sci．XX゙1I，p． 387.
Wellton，Y＇uma County，Arizona．
41．PEROGNATHLS ANPLLS I＇LRGRACII，IS，Goldman
1932．Journ．Washington Acad．Sci．SXIII，p． 387.
Hackberry，Nohave County，Arizona．

1933．Journ．Wasthington Acad．Sci．XXIII，p． 465.
I＇avapai County，Arizona．
43．PEROGNATIILS ANIPLLS CINERLS，Benson
1933．Proc．Biol，Soc．Washington，XLVI，p． 100.
Viupatki Ruins，Coconino County，Arizona．
44．PEROGANTHUS AMPLLS AMNOMOYTES，Benson
1933．Proc．Siol．Soc．Washineton，KLVI，p． 110.
＇I＇wo miles south of Cameron，Coconino County，Arizona．

is89．North Amer．Fauna，no．1，p． 15.
Fresno，Firesno County，California．
 1912．Univ．Calif．l＇ubl．Zoot，K，p， 155.

Melittrick，Fiern County，Califurnia．
pareas Group

184S．U．S．Explor．Lxped．vol．8，mamm．\＆ornith，p． 53.
Oregon：prolably neighbourhood of the Dalles，Wasco County，
Synunym：monticola，Baird，1857，Namm．X＇．Amer．p．422．Montana．
48．PERUGNATHUS P．ARVL＇S IDAHOENAIS，Goleman
1022．Iroc．Biol．Soc．Washineton，XXXV，p． 105.
Echo Crater， 20 miles south of Aren，Blane County，Idaho．

1S75．Proc．Acad．Nat．Sci．Philadelphia，p． 296.
Fort Crook，Shasta County，Calıformia．

50．PEROGNATILS J＇ARVL＇S OLIVACEL＇S，Nerriam
1889．North Amer．Fauna，no．i，p． 15.
Kelton，Boxelder County，Utah．
Synonym：olizaceus amoenus，Merriam，North Amer．Fauna，no．i， p．16．Nephi，Juab County，Utah， 1889.
51．PEROKNATIILS PARVU＇S CLARUS，Cioldman
1917．Proc．Biol．Soc．Washington，XXX，p． 147.
Cumberland，Lincoln County，Wyoming．
52．IPEROGNATIILS PARIL＇S MAGRLDERENSIS，Osgood
1900．North Amer．Fauna，no．iS，p． 3 S．
Mt．Magruder，Nevada，near boundary between Inyo County，Cali－ fornia，and Esmeralda County，Nevada．
53．PEROGN゙ATHLS NANTHONOTLS，Grinnell
ig12．Proc．Biol，Soc．Washington，MX゙V，p． 128.
Freeman Canyon，Kern County，California．
54．PERGGNATHUS ALTICOIA AL＇TICOLA，Rhoads
1893．Proc．Acad．Nat．Sci．Philadelphia，p． 412.
Squirrel Inn，San Bernardino Mountains，San Bernardino County， California．

55．PEROGNATIUCS ALTICOLA IN゙EXPECTATLS，Huey
1926．Proe．Biol．Soc．Washington，オ゙オIX，p． 121.
Fourteen miles west of Lebec，Kern County，California．
56 PEROGNATHLS LANGI，Anderson
1932．Bull．Nat．Mus．Canada，70，p． 100.
British Columbia，Anarchist Nountain，near Osoyoos－Bridesville summit，about 8 miles east of Osoyoos Lake．
57．PEROGNATHUS LORDI LORDI，Gray
1868．Proc．Zool．Soc．London，p． 202. Southern British Columbia，Canada．
58．PERGGNATILS LORDI COLLMHBAALCS，Merriam
1894．Proc．Acad．Nat．Sci．PhiladeJphia，p． 263. Pasco，l＇ranklin County，Washington．
formosus Group
59．PEROGN゙ATHLS JOORMOSLS FORMOSL＇S，Nerriam
1889．North Amer．Fauna，no．i，p． 17.
St．George，Washington County，Ǔtah．
60．PEROGNATHICS FORXIOSLS CINERACCENS，Nelson \＆Goldman
1929．I＇roc．Biol．Soc．Washington，Xlil，p． 105.
Lower Calıfornia：San IPelıpe．

1903．Field Columb．Nus．pubI．87，zool．ser．vol．3．p． 251. Palm Springs，Riverside County，Califorma．

## Subgenus Chaetodipus，Nerriam <br> bailevi Group

62．PEROGNITHLS BAMEEY B．AHIEII，Nerram
1894. Proc．Acad．Nat．Sci．Philadelplaia，p． 262.

Nagdalena，Sonora，Nexico．

63．PEROONATYLL B BALLEST RLDDNORIS，EHIOt 1903．Field Columb．Mus．publ．7t．zool．ser．wol．3，p． 167. San Qumtan，Lower Califumia，Mexico．

64．PEROGNATHLE BADBEYI NELBARIS，Tunnsend
1912．Bull．Amer．Mus．Nat．Hist．XXXI，p． 122. Tiburon Island，Gulf of Califorma，Sonora，Mexico．

65．P®ROGNATILE BALLEYI DOMFN゙SLA，Goldman
1928．Proc．Biol．Soc．Washingtom，Xl，I，p， 204.
Arizona：Castle Dume，at base of Castle Dome Peak．

1928．Proc．Biol．Soc．Washington，XLII，p． 106.
Lower California：San Felipe．
6．PEROGNATILCS BALLEXJ FORNLCATLS，lisurt
1932．＇Trans．S．Diego Soc．Nat．Mist．7，p． 164.
Montserrat Island，Gulf of California．
68．1PRROGATHUS K゙NEKじら，VHot
1903．Field Columb．Mus，publ．74，zool．ser．vol．3．p． 169. Rosarito，San I＇edro Martır Mountains，Lower California．

## hispilus Group


1857．Mamm，N．Amer．p，+21 ． Charco Escondido，Tamaulipas，Mexico． Synonym：paradowe spilotus，Nerriam， 1889 ，North Amer．Fauna，no．I， P．25．Gainesville，Cook County＇，Texas．
70．PEROGNATILL HISPIDLS JARADOXUS，Mermam
1859．North Amer．Fauna，no．I，p． 24. Banner，＇Irego County，Kansas． Synonym：latirostris，Rhoads，Amer．Nat．NXVIII，p．185，189＋．Rocky Dountains．
condith，Allen，I Sog，Bull．Amer．Nus．Nat．IIst．VI， p．318．San Bernardimo Ranch，Cochisa County， Arizona．

1903．Field Columb．Nus．publ．S7，zool．ser．vol．3，p． 253.
Noble，Cleveland County，Oklahoma．
72．JEROGNATULS HISPIDLA ZACATECAF，Usgood
1900．North Amer．Fauna，no． $18, \mathrm{p} .45$.
Valparaiso，Zacatecas，Mexico．

## penicillatus Group

73．FEROGNATHL B PENCHLLATLH PENICHLIATCN，Woodhouse 1852．Proc．Acad．Nat．Sci．Phladelphia，VI，p． 200.

San Francisco Mountain，Coconıno County，Arizona．
74．PERUGNATJILS PENICULATUS ALBULL゙S，Nelson E（Foldman 1923．Proc．Biol．Soc．Washington，XXXV＇，p． 159.

Magdalena Island，Lower California，Nexico．

75．PEROGNATHUS PINICHDATLS ANCOCTIROSTRES，Osgood
1900．North Amer．Fimma，no．18，p． 47.
Carriso Creek，Colorado Desert，Imperial County，Calıfornia．
76．PERGGNATIIL＇S PENLCHAAATES PRICEI，Allen
1894．Bull．Amer．Mus．Nat．Mist．VI，P． 318.
Oposura，Sonora，Mexico．

1898．Bull．Amer．Mus．Nat．Iist．X，p． 300.
Fort Ilancock，E1 Paso County，Texas．
78．PEROGNATIJLS PENICILIATC＇s ANAIOPllIL．L＇S，Osgood
1907．Proc．Bjol．Soc．Washington，XX，p． 20.
Margarita Island，Lower California，Mexico．
79．PEROCNATHLS PENHCHILATLS SICCLS，Osgood
1907．Proc．Biol．Soc．Washington，XX，p． 20.
Ceralbo Island，Gulf of California，Mexico．
 1912．Proc．Biol．Soc．Washington，S．JV，p． 116.

Tiburon Island，Gulf of California，Sonora，Mexico．
Synonym：goldmani，＇lownsend，1912，Bull．Amer．Mus．Nat．Hist． XXXI，p．122．Same locality．
s．PEROGNATILS PENICHLLATUS MININICS，Burt
1932．＇Trans．S．Djego Soc．Nat．Hist．7．p．164．
Turner Island，Gulf of California．
82．PEROGNATHL＇S HELLERI，FHint
1903．Field Columb．Mus．publ．74，zool．ser．vol．3，p． 166. San Quintin，Lower California，Mexico．
83．PEROGNATHUS STEPLENSI，Merriam 1894．Proc．Acad．Nat．Sci．Philadelphia，p． 267. Mesquite Valley，Inyo County，California．
84．PEROGNATHUS ARENARIUS AREN゙ARIC＇S，Merriam 1894．Proc．Calif．Acad．Sci．ser．2，vol．4，p． 461. San Jorge，near Comondu，Lower California，Mexico．
85．PEROGNATHUS AREXARIL゙S ALBEACENS，Hues 1926．Proc．Biol．Soc．Washington，ぶメズ1X，p． 67.

L．ower California：San Felipe．
86．PEROGVATHES ARJENARIES ANHBIGLL＇S，Nelson \＆Goldman 1929．Proc．Biol．Soc．Washington，XLII，p． 108.

Lower California：Iubay， 30 mes south－east of Calamahue．
 1929．Proc．Biol．Soc．Washington，XLII，p．iog．

Lower California：La Paz．
88．PEROGNATHES PERNIN PERNIX，AHEn
isqS．Bull．Amer．Mus．Nat．Hist．X゙，p．I49．
Rosario，Sinaloa，Mexico．
89．PEROCNATILLS PERNIN ROSTR．XTLES，Usgood 1900．North Amer．Fauna，no．18，p． 51.

Camoa，Rio Mayo，Sonora，Mexico．

## intermedius Group

yo．PEROGNATHES INTERAEDHLS INTERNIEDIUS，METHAM
1889．North Amer．Fauna，no．1，p． 18.
Mud Spring，Mohave County，Arizona．
Synonym：obscurtus，Nerriam，1889，North Amer．liauna，no．i，p． 20.
Camp Apache，Grant County，New Mexico．
（1）．JEROGN゙ATIILS INTERMEDDL＇S PHASNLA，Goldman
1918．Proc．Biol．Soc．Washington，XXXI，p． 22.
Tinajas Atlas，Gila Mlountains，Juma County，Arizona．
92．PJJOOGNATHILS INTERMEDILS ATER，DICe
1929．Occ．Pap．Mus．Zool．Univ．Mich．no．203，p． 2.
New Nexico：Malpais Spring，Otero County，I 5 miles west of Three Rivers．
93．PERO（iNATHLS INTERXIEDILS RLPESTRIS，Benson
1932．Univ．Cal．Pub．Zool．XXX゙VIlI，p． 337.
New Mexico：Lava beds nearest to Kenzin，Dona Ana County．
94．PERUGNXTULTS INTERMIIDIUS N゙IGRINIONTIS，Blossom
1933．Occ．Pap．Mus．Zool．Univ．Mich．265，p．i．
Arizona：Black Mountain， 10 mules south of Tucson，Pima County．
95．PEROGNATIIL゙S INTERRMEDIUS CRINITLS，Benson
1934．Proc．Biol．Soc．Washington，XLVII，p． 199.
Arizona： 2 miles west of Wupatki Ruins，Coconino County．
46．PEROGNATIILS NTERMEDILS LIMDBROSLS，Benson
1934．Proc．Biol．Soc．Washington，XLV1I，p． 200.
Camp Verde，Yavapai County，Arizona．
1．7．PERUGNATHLE INTERNIEDIUS PINICATE，Blossom
1933．Occ．Pap．Mus．Zool．Univ．Mich．273，p． 4.
Sonora，Mexico：Papago＇Tanks，I＇macate Mountains．
が．PER（）GNA＇THLES NELSONI NELGONI，Merrmam
1894．Proc．Acad．Nat．Sci．Philadelphia，p． 266.
Hacienda la Parada，San Luis Potosi，Nexico．

1S9．4．Proc．Acad．Nat．Sci．Philadelphia，p． 267.
Jaral，Coahuila，Mexico．
100．PEROGN゙ATHES GOLDMANI，Oigood 1goo．North Amer．Fauna，no．18，p． 54.

Sinaloa，State of Sinaloa，Nexico．
101．PBROMNATIFLA ARTLis，Ispood
1900．North Amer．Fauna，no．18，P． 55.
Batopilas，Chihuahua，Mexico．
102．PEROONATJLCS FALIAX FALLAX，MErmam
1889．North Amer．Fama，no．1，p． 19.
Reche Canyon，San Bernardino County，Califorma．
103．PEROGN．1JHIU＇FALILAX PALIIDUS，Meams
1901 ．Proc．Biol．Soc．Washington，XIV，p． 135.
Nountain Spring，halfway up east slope of Coast Range Nountains， Imperial County，Californa．

104．PEROGNATHES FALIAX IN゙OPINL゙S，Nelson \＆Goldman 1929．Proc．Biol．Soe．Washington，XLII，p． 1 io．

Lower California：＇Turtle Bay．
105．PEROGNATHL゙S ANTHONYI，Osgood
1900．North Amer．Fauna，no．18，p． 56. South Bay，Cerros Island，Lower California，Mexico．

## califormicus Group

106．PEROG．NATHUS FENIORAIIS FENIORALIS，Ahen 1891．Bull．Amer．Nus．Nat．Ilist．III，p． 281. Dulzura，San Diego County，California．

107．PEROGNATHUS FEMORALIS MESOPOLJC＇S，Elliot 1903．Field Columb．Mus．publ．74，zool．ser．vol．3，p． 168. Piñon，San I＇edro Martir Mountains，Lower California，Mexico．
ros．PEROGNATHUS CALHFORN゙ICLS C ALAFORNECUS，MCrram 1889．North Amer．Fauna，no．r，p． 26. Berkeley，Alameda County，California． Synonym：armatus，Merriam，1889，North Amer．Fauna，no．1，p． 27. Nt．Diablo，Contra Costa County，California．

109．PEROGNATHUS CALIFORNICL＇S DISPAR，Osgood
1900．North Amer．Fauna，no．18，p． 58. Carpenteria，Santa Barbara County，California．

1ロ．PEROGNATITUS CALIFORN゙ICUS OCHRUS，Osgond 1904．Proc．Biol．Soe．Washington，XVII，p． 128. Santiago Springs， 16 miles south－west of McKittrick，Kern County， California．

111．PEROGN゙ATHLS CALEFORNICLS BERNARDINL゙S，Benson 1930．Univ．Calif．Publ．Zool．XX゙XII，p． $4+9$. san Bernardino County，California．

## spinatus Group

112．PEROGNAT11ES SPINATES SPINATC＇s，Nerriam 1889．North Amer．Fauna，no．1，p． 21. Colorado River，San lernardino County，California（twenty－five miles below the Needles）．

113．PEROGNATHUU SPIN゙A＇TLS PVNIN゙SL゙LAE，Merriam
1894．Proc．Calif．Acad．Sci．ser．2，vol．t，p． 460. San Jose del Cabo，Lower California，Mexico．
114．PEROGNATHES SPINATLS ALAGDALENAE，Usgood 1907．Proc．Biol．Soc．Washington，XX．p． 21. Magdalena Island，Lower Califormia，Mexico．

115．PEROGNATEIUS SPINATLA（OCCLLTLS，NeIson
1912．Proc．Biol．Soc．Washington，X゙オV，p． 116.
Carmen Island，Lower California，Nexico．
Synonym：spinatus nelsoni，Townsend，1912，Bull．Amer．Nus．Nat． I list．XXXI，p． 122.

1930．Univ．Calif．Publ，Zool．XXXłI．p． 452.
Espiritu Santo Island，Lower California，Nexico．
117．PERGGNAFHLS SPNATLS RLFESCENS，Hury 1930．Trans．S．Diego Soc．Nat．Hist．6，F． 231.

Nouth of I＇alm Canyon，Borego Valley，San Diego County，California
1月 P PEROGNATHLE SPINATLS PRLETAEE，HuEy
1930．Trans．S．Diego Soc．Nat．Hist．6，p． 232.
Lower California： 25 miles north of I unta Prieta．
119．PEROCNATHL゙S SPNATUS MARCOSEN゙Sに，Burt 1932．Trans．S．Deegn Goc．Nat．Hist．7，p． 166.

S．Narcos Island，Gulf of California．
 1932．Trans．S．Diego Soc．Nat．Itist．7，p． 165.

Angel de la Guardia Island，Gulf of Califorma．
121．PEROGN゙ATHU゙か SPINATC゙心 ICLLLCS，Burt
1932．＇Trans．S．Diegn Soc．Nat．Hist．7．p． 166.
Coronados 1 sland，Gulf of California．
122．PEROGNATHUS SPINATCS SEORSU゙S，Burt
1932．Trans，S．Diego Soc．Nat．Hist．7，P． 167.
Daurzante Jsland，Gulf of California．
123．PERGGNATHES SPINATES LATIJCGLIARIS．Butt 1932．Trans．S．Deego finc．Nat．Hist．7．p． 168.

San Francisco Island，Gulf of California．
124．PEROGNA＇THUS BRYANTI，Merriam 1894．Proc．Calif．Acad．Sci．ser．2，vol．4，P． 458.

San Jose Jsland，Lower California，Mexico．
12n．IPROONATHES MARGARITAE，Merriam
1894．Proc．Calif．Acad．Sci．ser．2，vol．4．P． 459.
Marganta Island，Jower California，Mesico．
 1929．Proc．Binl．Soc．Washington，XLII，p．iff．

Lower California：Mejia Island，near north end of Angel de la Guardia Island．

## Genus 2．MICRODIPODOPS，Merriam

ISgi．Nicrodipodops，Nerriam，North Amer．Fauna，no．5．p．II5．
Type Spfectes．－Microdipodops megacephalus，Merriam．
Range．－Western U．S．A．：known from California，Oregon and Nevada．
Number of Forms．－Seven．
Characters．－As indicated above，this genus has usually been regarded as most clusely allied to Dipodomys，but Wood states that＂many of the resemblances to Dipodomys are obviously connected with its ricochetal
habits and are not necessarily significant of close relationships. The foot structure seems indicative of relationship with Perognathus." And further, "Of the characters allying Microdipodops with Dipodomys, all but two, the transverse processes of the caudal vertchrae and the process of the pubis at the anterior end of the obturator foramen, are either obviously habitus characters or else are shared with Perognathus too."

This genus is represented by one skull and skin only at the British Museum.
Essential skull characters near Dipodomys, but anterior zygomatic root not abnormally inflated, and bullae and mastoids even larger, extending relatively further forward in the skull, almost in contact superiorly, and nearly half as long as the skull at greatest length. (This excessive inflation of bullae is reminiscent of that present in some of the Old World genera as Salpingotus and Cardiocranius (Dipodidae), and to a lesser degree Pachyuromys (Gerbillinae).)
"Upper molars form enamel lakes by surrounding median valley as Liomys; P. 4 as in Perognathus; M. $\frac{3}{3}$ much reduced; cheekteth extremely highcrowned, but apparently not evergrowing" (Wood).

The dental pattern seems much nearer Perognathus than Dipodomys in the one skull seen.

Tail not tufted, well haired; hindfoot greatly lengthened, sole densely hairy; five toes present.

The bullae curve forward at the sides, and overlap the posterior portion of the zygoma; the abnormal inflation found in this genus is carried to a further degree than in any other Rodent genus I have examined.

Forms seen: megracephatus.

## List of Named Forms

1. MICRODIPODOPS MEGACEPHALĽ MEGACEPHALC゚s, Merram
2. North Amer. Fauna, no. 5. p. ir6.

Halleck, East Humboldt Valley, Elko County, Nevada.
2. MHCRODIPODOPS MEGACEPHALC'S OREGONLS, Nerriam 1901. Proc. Biol. Soc. Washington, XIV, p. 127.

Lake Alvord, Alvord Desert, Harney County, Oregon.
3. NICRODIPODOPS NEGACEPHALLS LUCIDLS, Goldman 1926. Proc. Biol. Soc. Washington, X.XX1X, p. $12 \%$.

Clayton Valleys, Blair, Nevada.
4. NICRODIPODOPS NIEGACEPHALU̇ DICKEYI, Goldman
1927. Proc, Biol. Soc. Washington, XL, p. 115.

Three miles south-cast of Oasis, Mono County, California.
5. NILRODIPODOPS CALIFORNICLS, Derram
1901. Proc. Biol. Soc. Washington, KlV, p. 128.

Sierra Valley, near Vinton, llumas County, Calıfornia.
6. MHCRODIPODOPS P.XIIADt's, Murriam
1901. Proc. Biol. Soc. Washington, XIV, p. 127.

Ten males east of Stllwater, Churchill County, Nevada.
7. NICRODIFODOPG P()AIONOTLS, Grinnell
1914. U'niv, Calif. Publ. Zool. XII, r. 302.

Acheeser's Ranch, 2 miles south of Benton Station, Mono County, Califormia.

## The Dipodomys Group

Cheektecth evergrowing, early in life completely simplified in pattern. Anterior zegomatic root greatly enlarged on joining lachrymal. External form hipedal saltatorial; hallux present or absent; a tendency present towards fusion of some of the cervical vertehrac (parallel-Dipodimac).

Containing one genus only,

## Genus 3. DIPODOMIS, Gray

1841. Diponomys, Gray, Ann. Mag. Nat, Hist, YH1, p. 521.
1842. Perodipts, Fitzinger, Sitzber. math.-nat. Cl. k. Akad. Wiss. Wien. LVI, abth. 1, p. 126). (Dipodomys agilis, Gambel.)
iSgo. Dipodops, Merriam, North Amer. Fauna, No. 3. p. 71. (Dipodomys agilis, Gambel.)

Trpe Species.-Dipodomys phillipsii, Gray.
Ravge.-Western United States, and Mexico (in U.S.A. known from Oregon, Wyoming, California, Utah, Arizona, Colorado, New Mexico, Oklahoma, Texas, also Lower California; and in Mexico south to Vera Cruz).

Nuniber of Forais.-Eighty-two.
Remarrs-Formerly the genus "Perodipus" was recognized to contain the forms with the minute hallux present; hut this division is not now maintained, and it seems that the hallux may be even absent or present in different specimens of the same species, which demonstrates clearly the inadvisability of retaining generic names for forms in which a minute and functionless digit usually present may have become suppressed; as for instance such forms as "Scarturus" or "Marmotops."

If two species have gone 99 per cent of the way towards suppressing a digit and one of them goes the other a per cent and loses the digit altogether, it is surely at very most a specific, perhaps even a racial distinction; certainly not a generic one.

Charactars.- ipices of hullae in contact for a short distance behind the posterior portion of the palate. \astoids enormously inflated, taking up most of the posterior part of superior border of skull, and projecting considerably herond the occipital plane. Skull progressively broader from back of lachrymals to mastoids; at atl points very hroad. Superior border of zygomatic plate usually heavily ridged, but degree of spreading and ridging of this portion of the skull variable in the different species. Skull differing markedly from Microdipodops in the large expansion of the upper part of the anterior zygomatic root. Nasals projecting conspicuously forward beyond the


Fig. 126. Dipodomys merriami Melatitres, Mertiam.
B.AI No. 98.3.1.15!, j; $\times 2 \underline{1}$.


Fig. 127 Dipodomys Merrianli mplavirts, Metriam.

incisors; the top of the nose in the living animal can be seen on close inspection to he curiously projecting forwards, no doubt caused by this hone formation. Mtandible with angular process somewhat pulled inwards, and coronoid process small. Oceipital region much reduced, between the mastoids. In D. deserti the mastoid inflation reaches its greatest degree.

Lower incisors said to be frequently grooved in $D$. spectabilis, as well as the upper ones.

Checkteeth evergrowing, "with tendeney for thinning and hreaking of enamel on buccal and lingual margins of teeth leaving only an anterior and


Fig. 128. Dipodonys merriami melantre's, Merriam.
Cherekteeth: B...I. No. 48.3.1.158, 万ै; 13.
posterior blade in more progressive species." Upper cheekteeth wider than long, simplifying to a ring pattern in adult, P.4 slightly the largest, and M. 3 slightly the smallest tooth. Lower teeth like the upper series except that P. 4 appears to retain one inner and one outer shallow indentation normally.

When cut, the teeth present a more complicated pattern, which is said to vary somewhat in the different species. Calcaneum articulating with the navicular. Some of the cervical vertehrae tend to fuse.

Size largest of family. Form Dipodide. Llindlimbs elongated, foot very long and narrow, soles hairy. Lindfoot with three main digits; D. 5 moderately developed; hailux vestigial or ahsent, when present placed high on the leg, as in Allactaga; but hindfont differing from this genus in the length and position of D.5. Tail considerably longer than head and hody as a mule, well haired, tufted terminally. Lar large. Forefont with minute pollex; the two centre digits ( 3 and 4 ) subecual and tending to be slightly longer than D. 2 and D. 5 so far as scen. Claws long, sharp.

Forms seen: agilis, ambigmus, columbianus, deserti, exilis, lecipes, melanurus, merriami, nitratrides, ordii, richadsoni, simiolus, spectebilis," streatori."

Nine specific groups are currently recognized. As no revision of the genue has heen published, no description or key to these groups is at present available. Six of them are eharacterized by Grinnell, A Geographical Study of the Kangaroo-Rats of California, L'nix. Calif. l'ubl. Zool., XXIL', p. r, 1922.

Wood keys certain species which have been examined by him on dental characters. It is results were as follows:
"Crowns of teeth persist an appreciable time after all teeth are erupted.
Enamel complete through life.
compactus
Enamel interrupted slightly after much wear. mitratoides
Enamel interrupted slightly after little wear. merriami
Crowns of teeth destroyed by or shortly after the time the last tooth has been crupted.
Enamel breaks small, developing late.
Unworn teeth with oval ends. ordii
Unworn teeth with square ends. agilis
Enamel breaks small 10 medium, with an appreciable period before they show on grinding surface.
Unworn teeth with square ends. hecrmanni
Unworn teeth with oval ends. spectabilis
Enamel breaks very large, developing very carly. deserti."
Further characters which 1 have compiled from Grinnell's diagnosis of his groups are:

## Maxillary arches

In heermanni group, very broad, widely spreading and as a rule with posteroexternal angles prominent and sharp.

In ordii group, broad, spreading fairly widely as a rule, with angles more or less well developed.

In merriami group, broad, widely spreading, sharply angled.
In agilis group, rather narrow, narrowly spreading, and as a rule weakly angled.

In microps group, very narrow, spreading narrowly, and very weakly angled.

In deserti group, extremely narrow, with very narrow posteroexternal angles, indicated but faintly.
The spectabitis group, which appears to consist of the largest forms of the genus as a rule (other than deserti, which is nearly as large), agrees as far as I have seen with the broad "maxillary-areh type," as heermanmi.

Normally four toes are present in the hindfoot in the groups typified by heermanin, spectabilis, phillipsii, merriami, descrti; and normally five toes are present in the groups typificed be agilis, ordii and microps.

In the hecrmanni group the metatarsal of the first toe is cleveloped, according to Grinnell.

In both cramial and dental characters D. deserti appears to be very distinct from other forms of the genus.

For the characters of 1 ）．phillipsii sce Therriam，Proc．Biol．Soc．Washington， VIII，p．83，1893，＂Rediscovery of the Mexican Kangaroo－rat Dipodomys plillipsii，Gray．＂＇The mastoids are described as＂both actually and relatively smaller than in any other species．＂

The remaining characters given by Grinnell appear for the most part not to divide the groups very clearly，nor are the measurements given by Anthony in Field Book of North American ．Wammals ig2 8 for the forms occur－ ring north of Xexico indicative of any clear size distinction between the various groups，except that，as indicated ahove，the spectabilis group and the deserti group approach the maximum size，and that the smallest forms belong to the merriami and the compactus groups；but even here the measurements of total length overlap those of the smaller members of the ordii group．

## List of Named Forms

leemanni Group

```
1．DIPODOAIS HEERMANNI HELRMANNI，Le COnte
1853．Proc．Acad．Nat．Sci．Philadelphia，VI，p． 224.
Sierra Nevada，California．
Synonym：streatori，Werriam，is94，Proc．Bool．Soc．Washington， IS．，p．113．Carbondale，Amador County，Cahfornia．
```


## 2．DIPODOMIS HEIRMANNI CAIIFORNICLS，AErriam

1890．North Amer，Fauna，no．4，p． 49.
Ukrah，Mendocino County，California．
Synonym：californicus trinitatis，Kellogg，1916，Unis．Calif．Publ．Zool．
XII，p． 366 ．Hellena，Trinity County，California．
alifornicus pallidultus，Bangs，1899，Proc．New Engl．Zool．
Club．I，F．65．Sites，Colusa County，California．
3．DIPGDOMI＇S HEERMANNI ENIMIUS，Grinnell
1919．Proc．Bool．Soc．Washington，XXXIII，p． 205.
Marysville Buttes， 3 miles north－west of Sutter，Sutter County，Cali－ fornia．

4．DIPODOA1Y＇s HEFRMANSI TLLARENSIS，Merriam
1904 ．Proc．Biol．Sac．Washington，XVII，p，i＋3．
Ahla，now Earlimart，Tulare County，California．
5．DHMDOAMY HEERXANNI DLSON1．Grmnel？
1919．Univ．Calif．Publ．Zool．ぶぶ1，p． 45.
Delhi，near Merced River，Merced County，California．
6．DIPODONHS HERRAANXI BERKFLFYENSIS，（finnell
1919．Proc．Phol．Soc．Washineton，NXXII，p． 204.
Berkeley（Head of Dwight Bay），Alameda County，California．
7．DIPGDOMIY＇IHFIRMAANI GOLDMANI，Merriam
r90．4．Proc．Biol．Sne．Washington，SVII，p．it3．
Salınas，Mtonterey County，California．
\＆DIPODOXIY HIELRALANI JOLONCNBIS．Grmnell
1910．Proc．Biol．Soc．Washington，NXXII，p 203.
One mile south－west of Jolon，Monterey County，Californa．

9．DHPODOMI゙S HELRMANSI SWARTHH，Gmmell
1919．Univ．P＇uhl．Calif．Kool．XXI，p．＋4．
Seven miles south－e ast of Simmler，Carrizo Plain，San［uis Obispo County，California．

1929．Unis．Calif．Publ．Zool．X゙X．p． 453.
Nesa，near Dales，Tehema County，California．

1925．Proc．Biol．Soc．Washington，NXXVIII，p． 33.
Brownsboro，Jackson County，Oreqon．
12．DIPODOMLS MORROEXSI A，Merriam
1907．Proc．Biol．Soc．Washington，X゙X，p． 78.
Morro，San Luis Obispo County，California．
13．DIPODOMIS MOHAVEX゙SIS，Grmnell
1918．Univ．Cal．Publ．Zool．XV11，p． 428.
Warren，Kern County，California．
14．DIPODOMIS 1．ELCOGENYタ，Gmnell
1919．Univ．Calif．Publ．Zool．KX1，p． 46.
Pellisier Ranch， 5 miles north of Benton Station，Mono County， California．

15．DIPODONIS PANAMINTIN゚S，Nerriam
1894．Proc．Biol．Soc．Washington，IK，p．IIt．
Willow Creek，Panamint Mountains，Inyo County，California．
16．DIPODOMIS STEPHEXSI，Merriam
1907．Proc．Biol．Soc．Washington，SX，p． 78.
San Jacinto Valleঙ，Riverside County，California．
17．DIPODOMIS INGENS，Merriam
1904．Proc．Biol．Soc．Washington，XVII，p．Iti，
Painted Rock， 20 miles south－east of Simmler，Carrizo Plain，San Luis Obispo County，California．

18．DIPODONIS GRAVIPES，Ilues
1925．Proc．Biol．Soc．Washington，X゙XXVIll p． 83.
Santo Domingo Nission，Lower California，Nexico．

## spectabilis Group

19．DIPODOMYS SPECTABILIS SIECTABILIS，Merriam
1890．North Amer．Fauna，no．4．p． 46.
Dos Cabezos，Cochise Countre，Arizona．
20．DIPODOM1：$\triangle P E C T A B I L I S$ BA1LEI＇l，（soldman
1923．l＇roc．Biol．Soc．Washington，ズざメ゙VI，p．iqo．
Forty miles west of Roswell，Chaves County，New Mexico．
21．DHOUOMI＇SPEC＂IABILAG CRATODON：Nerriam
1907．Proc．Biol．Soc．Washington，XX，p． 75.
Chicalote，Aquas Calientes，Nexico．

1923．Proc．Biol．Soc．Washincton，S．XV1，p．Ito．
Parral，Southern Chihuahua，Nexico．

23．D1P（O）ON1YS SPE TABILAS PERBLANDL゙S，Goldman
1933．Journ．Washangton Acad．Sci．SXIII，p， 466.
Calabassus，Santa Cruz County，Arizona．
2．DHPODONIS SPEC＂PABHEIS CLARENCEL，（ioldman
1033．Journ．Washmeton Acad．Sci．XX＇lll，p． 467.
Blaneo，San Juan County，New Mexico．
25．D）［PODOMIYS NELSONI，Merriam
1907．I＇roe．Biol．Sue．Washington，XX，p， 75.
La Ventura，Coahma，Mexico．
phillipsii Group
26．DlP（1DOALYS PHILLHPSI，Gray
I84i．Ann．Mar，Nat．Hist．V1l，p．522．
Valley of Xexico，Mexico．
Synonym：halticus，Wagner， 1846 ，Arch．Naturg．p． 176.
27．DIPODOAMS ELATOK，Merriam
1894．Proc，Biol．Soc，Washington，1X，p．Iog．
Henrietta，Clay County，＇Texas．
28．DJlODOM1Y＇PEROTENSIS，Merriam
1894 ．Proc．Mool，Sne，Washington，1X，p． 111 ．
Perote，Vera Cruz，Mexico．
29．DIl（ODONIS olRNATLS，Merriam
1894. Proc．Biol．Sue．Washington，1X，p． 1 o．

Berriozabel，Zacatecas，Mexico．

## merriami Group

30．DIPODOMIY：MERRIAXII MERR1AMI，Mearns
I8go．Bull．Amer．Nus．Nat．Hist．11，p． 290.
Sew River，Maricupa County，Arizona．
Synonym：merriami nezadensis，Merriam，i894，Proc，Biol．Soc．Wash－ ington，IX，p．iti．l＇yramid lake，Washoe County， Nevada．
merviami hitratus，Merriam，i894，Proc．Bol．Soc．Wash－ ington，IX，p．Itz．Fecter，lnyo County，California， merriami mortizallis，Elliot，Igo3，Field Columb．Mus．lubl． \＄7，zoul．ser．wol．3．p．250．Furnace Creek，Inyo County，California，
merriami kethensis，Merriam，1007，I＇roc．Biol．Soc．Wash－ ington，XX，f．77．Onyx，Kern County，Califormia，
31．D1PODOMY゙ム MERRJAMI AMMRGCL゙S，Merriam
1890．North Aner．Fama，no．4，p． 42.
El Paso，El Paso Comoty，Texas．
32．DHPODONIY゙S MERRIANI ATRON゙ASIか，Memmm
1894．Proe．Bisl．Soc．Washangon，1．．p． 113.
Hactenta la Parada，Sian l，uis Putosi，Mexico．
33．DIDODOMIY NIFRRIAXII HARVCS，Rtorads
1894 Amer．Nat．NXVIII，p． 60.
Reche Canyon，San bernardino County，Califormia．

34．DIPODONEY NHERRIANH SINIOLUS，Rhoads
1893．Proc．Acad．Nat．Sci．Philadelphia，p． 410.
Agua Calionte，near l＇alm Sprines，Kiverside County，California．
Synonym：similis，Rhoads，iS93，Proc．Acad．Nat．Sci．Philadelpha，
p．fit．Whitcwater，Riverside County，California．
35．DIPODOMY゙G MERRLAMI ARENIVAGUS，Elliot 1903．Vield Columb．Mus．Puhl．87，zonl．ser．vol．3，p． 249. San Felipe，Lower Californa，Nexico．

36．DIPODOMYS MERRIRIAII MELANT1RLS，Merriam 1893．Proc．Calif．Acad．Sci，ser．2，vol．3，p． 345. San Jose del Cabo，lower Califomia，Mexico．
37．DIPODONIY゙\＆MERRRLAMII SEMIPALLIDCS，Huey 5927．Trans．S．Dieqo Soc．Nat．Hist．5，p． 65.

Santa Catarina，Lower Califoma，Mexico．
38．DIPODONY＇S MERRIAXII MAYPNSIS，Goldman 192S．Proc．Biol．Soc．Washington，XLI，p．iq1．

Alamos，Sonora，Mexico．
39．DIPODOMY＇S MERRIANI VLUCANI，Benson

Towoweap Valley，Nohave County，Arizona．
40．DIPODOMYS MEIRIRIANII FRENATUS，Bole
1936．Sci．Publ．Cleveland Nus．5，no．1，p． 1.
Toquerville，Washington County，Utah．
4r．DIPODOMY＇S NITRATOIDES NITRATOIDES，Nerriam
1894．Proc．Biol．Soc．Washington，IX，p． 112.
Tipton，San Joaquin Valley，Tulare County，California．
42．DIPODOMV゙S NITRATOIDES EN゙LLIS，Merriam
1894．Proc．Biol．Soc．Washington，IN，p． 113.
Fresno，Fresno County，California．
43．DIPODOMY＇S NITRATOIDIS BREVINASL゚S，Grinnell 1920．Journ．Nanm．Baltimore，1，p，179．

Hayes Station，Fresno County，California（ig miles south－west of Mendota）．

4．DIPODONI＇S PLATYCEPHALES，Nertiam
1907．Proc．Biol．Soc．Washington，XX，p． 76.
Calmalli，Lower California，Mexico．
45．DIPODOMIY MARGARITAL：Merrmam
1907．Proc．Biol．Soc．Washington，K゙メ，p， 76.
Margarita Island，Lower California，Mexico．
46．DIPODONY＇S NSL゙I ARIS，Nerrimm
1907．Proc．Biol．Soc．Washinerton，KX，p． 77.
San José Island，Lower Calafornia．Nexico．
47．DIPODOMV゙S MITCIIILIL．Mearss
1897. Proc．U．S．Nat．Nus．Nレス，p． 719.
＇Miburon Island．Gulf of California，Sonora，Mexico．
ordii Group
48．DIPODOMIY゙ ORDIL ORDII，Wiomhouse
IS53．Proc．Acad．Nat．Sci．Philadelphia，V1，p．224．
El Paso，El Paso County，＇lexas．
＋＇．DIPGDOMK゙（ORDJI COLCMBBANLS，Mertian
1894．Proc．Biol．Soc．Washington，IX，p． 115.
Unatilla，Umatilla County，Oregon．
30．DIP（1）（）NIY（ORDJI AlONOEASIS，Girinnell
1919．Univ．Calif，Publ，Kool．KXl，p．$\downarrow 6$.
1＇ellisier Ranch， 5 miles north of Benton Station，Nono County，Cali－ forma．

1904．Proc．Biol．Soc．Wash．KVll，P．It3．
Ogden，Weber County，Utah．
52．DIPUDOMY＇ORDH CHAPMAN゙I，Mearns
1890．Bu！l．Amer．Nat．Hist．1I，p． 291.
Fort Verde，Vavapai County，Arizona．
53．DIP ODON1Y（ORDH OBSCLRES，Allen
1903．Bull．Amer．Nus．Nat．Hist．XIX，p． 603.
Rio Sestin，Durango，Mexich．
54．DIPODONRY ORDII NONTANL゙S，Bard
1855．Proc．Acad．Nat．Sci．Phitadelphia，VII，p． 334.
Fort Massachusetts（now Fort Garland），Custilla County，Colorado．
55．DIPUDOMIY＇ARDII IONGBPLSA，Merriam
1890．North Amer．Fauna，11o．3，p． 72.
Foot of Echo Cliffs，Painted Desert，Cummino County，Arizona．
5t．DIP（）DOMIY ORDII LETTEOLL＇S，Goldman
1917．Proc．Biol．Soc．Washington，XXX，p． 112.
Casper，Natrona County，Wyoming，
57．DIPODOXIY ORDII RKCHARDSON，Allen
1891．Bull．Amer．Nus，Nat．Hist．IIl，p． 277.
One of the sources of Beaver River，Beaver County，Ollahoma．
58．DIPODOMIY（ORDII J＇ALALERI，Allen
1891．Bull．Amer．Nlus．Nat．Hist．III，p． 276 ． San Luis Potosi，State of San Luis Potosi，Mexico．
5\％．DHODONIY（）RDII（CLPDDINELS，Goldman
1924．Journ．Washmgton Acad．Sci．KlV，p． 372. Fanab Wash，Arizona（southern boundary of Fainah lndian Reserva－ tion）．
fo．JIPODOMIS（ORDI IV1SLS，Goldman
1933．Journ．Washmerton Acad．Sci．XXIII，p． 468. salicla，Chaffee County，Colorado．

1933．Journ．Washineton Acad．Sci．XXIIl，p． 469 ． Coconino County（Winoma），Arizona．

62．DIPODODIY＇S ORIII XVIXIl．IS，Goldman 1933．Journ．Washington Acad．Sci．，XXIII，p． 470.

Naturita，Montrose County，Colorado．

## compactus Group

 1889．Proc．U．S．Nat．Mus．，IJ， 1888, p． 160.

Padre Island，Cameron County，＇I＇exas．
64．DHPODONXS SENNETTI，Allen
1891．Bull．Amer．Mus．Nat．Mist．，IlI，p． 226.
Santa Rosa，Cameron County，＇I＇cxas．

## agilis Group

65．DIPODOAFY AGBllIS AGILIS，Gambel
1848．Proc．Acad．Nat．Sci．Philadelphia，IV，p． 77.
Los Angeles，Los Angeles County，California．
66．DHP（）DOMYS AGHLS SLALLANS，Merriam
1904．Proc．Biol．Soc．Washington，XVII，p． 144.
Dulzura，San Diego County，California．
67．DIPODOMIV゙タ AGILIS PENLN゙SLLARIム，Nerriam
1907．Proc．Biol．Soc．Washington，조，p． 79.
Santo Domingo，Lower Califurnia，Nexico．
68．DIPODONIS AGIJIS CABF：ZONAE，Nerram
1904．Proc．Biol．Soc．Washington，XVII，p．Ift．
Cabezon，San Gorgonio Pass，Riverside County，California．
69．DIPODONIY AGILIS PFRPLEXĽタ，Merriam
1907．Proc．Biol．Soc．Washington，XXX，p． 79.
Walker Basin，Kern County，California．
70．DIPODONIY AGILIS MARTIRENSIS，Huev
1927．Trans．S．Diego Soc．Nat．Hist．5，p． 7.
La Grulla，Sierra San Pedro Martir，Lower California，Nexico．
71．DIPODONI＇S AGlLIS 1ATIMAXILIARIS，Huey
1925．Proc．Biol．Soc．Washington，X゙X゙V゙III，p．84．
Two miles west of Sianto Domingo Mission，Lower California；Lat． $30^{\circ}+5^{\prime} \mathrm{N} .$, Long． $1155^{\prime} \mathrm{W}$ ．

1904．Proc．Biol．Soc．W゙ashington，SVIIT，p． 142.
Santa Cruz，Santa Cruz Countỵ，California．
 1919．Proc．Biol．Soc．Washington，X゙XXI，p． 204.

One mile south of Jolon，Monterey County，California．
74．DIPODOMIV ELEPILANTN゙じ心，Grinnell
1919．Univ＇．Calif．Publ．Zool，K゙ズ，p． 43.
One mile north of Cook I＇．O．，Bear Valley，San Benito Valley，Cali－ fornia．
 1004. Vroc. Miol. Soc. Washugton, XVII, p. 145.

Lone I'ine, Owans Valley, Inyo County, Californa.

1921. Journ. Mamm, Baltimore, 2, p. 233.

Narrows, Malheur Lake, Harney County, Oregon.
77. DIPODOAIY: . IICROPS CELSCS, Goldman 1924. Journ. Washington Acad. Sci, XIV, r. 372.

Six mules north of Wolf Hole, Arizona.
78. ĐIPODONIY's MICROPA LELCOTIS, Goldman

193t. Proc. Biol. Soe. Washington, XLLIV, p. 135.
Houserock Valley, Narble Canyon, Colorado River, Arizona.
Fo. DIPGDOAYS NICROPS AQLILONILS, Willett 1935. Journ. Mamm. Daltimore, 16. p. 63.
'Three miles east of Eagleville, Modoc County, California.
So. DIPODOMIS LEVIPES, Nerriam
1904. Proc. Biol. Soc. Washington, XVII, p. 145.

Perognathus Flat, Panamint Mountains, Inyo County, Californa.

## deserti Group

81. DIPODOMIS DESERTI DESERTI, Stephens
82. Amer, Nat. XXI, p. 42.

Mohave River, San Bernardino County, Calfornia.
Synonym: deserti helleri, Elliot, 1903. Field. Columb. Nus. Publ. Zool. ser. vol. 3, p. 249. Keeler, Owens Lake, Inyo County, California.
82. DIPODONIY DESERTI SONORIENSIS, Goldman 1923. Proc. Biol. Soc. Washington, SXXVI, p. 139.

La Libertad Ranch, 30 miles east of Sierra Seri, Sonora, Mexico.
'The family Heteromyidae is known fossil from the Oligocene, from North America only. Wood recognizes five extinct genera placed in the living subfamilies, as well as a number of Oligocene types.

## GENERAL WORKS OF REFERENCE

Wood, Ann. Carnegic Mus. XX゙V, p. 53, 1935. Alonographic review of living and fossil Heteromyidac.)
Goldalan, North Amer. Fatma, no. 34, igil. Revision of the genera Feteromps and Liomis.
Osgood, North Amer. Fauna, no. I8, 1900. Revision of the arenus Perognathus.
Grinnell, A Ceugraphical Study of the Kangaron-Rats of California, Cniv. Calif. Publ. Zool. XXIV, p. 1, 1922.
Howell, s93z, Proc. Amer. Acad. Arts Sci. Boston, LXVII, p. 37\%. The Saltatorial Rodent Dipodomys, Functonal and eomparative anatomy of its muscular and osseous systems.
Coces, Monograph North American Rodentia, p. 487, 1877. "Saccomyidae,"

## Family GEOMIIDAE

1896. Thomas: Myomorpina, part: Famity Geomyidac.
1897. Tullberg: Schromorplia. part: (jeomyoidei : Family Geomyidae, part, subfamty Geonvini.
1898. Thitier \& Gidley: Superfamily Scilroidaf, part: Family Geomyidae.
1899. Winge: Family" "Saccomydae" ( Ileteromyidae), part, Geomyini.
1900. Wieber: Geomyondea, part: Family Geomyidae.

Glograplical Distribetion.- North America, and Central America; from İritish Columbia through Western and Central United States, and also from Florida and Texas, south through Nexico to Panama.

Number of Gesera.-Nine are currently recognized.
Ciaracters.-Cheektecth ${ }_{4}^{4}$, evergrowing in living genera, simplified in pattern. Skull much modified for subfossorial life. Fibula reduced, and fused with tibia high on the leg (as in Muridae). Externally specialized for underground life; digits of hindfoot five; claws of forefoot strongly lengthened. Incisors thick. Infraorbital foramen always forming long canal, "its orifice protected from muscle pressure by countersinking in an ohlique sulcus" (Miller \& Gidley). Nastoids never excessively inflated. 7ygoma robust (at any rate as compared with the Heteromyidae); the jugal progressively shortened until the zygomatic arch is in extreme forms complete without it.

The infraorbital foramen seems more reduced in this family, and in the Heteromyidae, than in any living Rodents.

Skull characters. According to Merriam, it may be mentioned that there are strong cranial differences between the sexes in this group.

The skull is flattened, the bullae moderately large, with neck directed forward and outward; mastoids noticeable in back view of skull between the exoccipital and the upper border of the supraoccipital. Squamosals largely developed. Palate long, very narrow, a deep pit each side between last molars, "posterior to which the palatines usually unite with the pterygoids to form a palatopterygoid plate on each side of the posterior nares." Incisive foramina excessively small, jugal short, never approaching lachrymal. Anterior border of zygomatic plate usually prominently ridged. Occipital region powerfully developed, though relatively low; squamosals usually with strong ridges present, which frequently unite to form a sagittal crest. Lower incisor forming powerful process between condylar and angular processes. Coronoid higher than condyle. Incisors thick, the upper ones prominently grooved, except in Thomomys. Premaxillae very large and heary, nasals usually narrow.

Cheekteeth rootless and simplified, the premolar, the largest tooth in the series, being more or less eight-shaped, with an outer and an inner fold. Other molars ring-shaped, except sometimes M.3. which may have a posterion lieel.

As figured by Nerriam, the unworn teeth are less simplified when cut than in the adult, evidently they simplify very soon in life.

Dxternal form as in other underground Rodents, thickset, with eyes and cars small. large cheekpouches present, which open externally. Tail usually naked, moderately hary in the more morthern species, rather longer than the hindfoot, the tip said to be supplied with tactile nerves, and to he used as a guide when the animal runs hackwards, which according to Aerriam they do as easily as they rum forwards.

Forefoot with five digits, hearing very large and powerful claws, D. 3 the longest, the pollex and I). 5 the shortest.

According to Merriam the development of the claws varies greatly, and the hairiness on the tail of northern species varies seasomally. Hindfeet with general arrangement of digits the same as in forefoot, hut claws less enlarged.

The (ieomyidae, exclusive of Thomomys, were monographed very fully by Alerriam, North American Fauna, no. 8, 1895, pp. 11-25\%. I Ie divided the former senus Gcomys into eight genera, hased mainly on the presence or absence of enamel plate in the upper premolar and first two molars; the number of grooves of the incisors, and certain bones in the interior part of the skull. Most authors have retained these genera.
'The family as a whole is so inadequately represented at the British Museum that I have mostly to give abridged versions of Merriam's original genus descriptions.

I have seen only two skulls of Cratogeomys, one of Platygermys, four of Orthogeomys, une of Zigogcomys, and few, at any rate less than ten, of Macrogeomys and Heterogeoms.

As regards the presence or absence of enamel plate, the following teeth have a constant pattern throughout the family, excepting the genus Thomomys:

Lower motars: a single posterior enamel plate only.
Lower premolar: four enamel plates always present.
Third upper molar: three enamel plates, one inner, one outer, one anterior.
In Thomomys, there are present in:
Lower molars: two enamel plates, an anterior and a posterior.
Lower promolar: as in the rest of the family.
'Third upper molar: two enamel plates only.
It is perhaps not out of place to remark that there is a very strong resemblance between all the genera included in the family as regards essential cranial and dental characters, and that two famous zoologists at least have considered that the seven extra genera of 才lerriam are of at most subgeneric value only.

> Key to the Gevers of Geonimidae
> (modified from that of Merriam)

Frontals with no marked constriction between the orbits.
Orthogeomys Frontals strongly constricted between the orbits.

Third upper molar with two enamel plates; lower molars with an anterior enamel plate; forefoot relatively more slender, and
claws lighter (Bailey). lncisors not grooved, or with a single fine sulcus on inner side.
'Tifomonys
'lhird upper molar with three cnamel plates; lower molars without anterior enamel plate; forefoot relatively heavier. Incisors strongly grooved.

No enamel plate on posterior surface of upper premolar.
Posterior enamel plate present on N.i and M.z.
Upper incisor bisulcate.
Geomye
Upper incisor unisulcate.
Pappogeomys
Posterior enamel plate absent on M.I and M.z.
Breadth of cranium across squamosals much less than zygomatic width; lambdoid crest not sinuous; angle of mandible short. Cratogeomys
Breadth of cranium across squamosals greater than zygomatic width; lambdoid crest strongly sinuous; angle of mandible very long. Platygeomys
Enamel present on posterior surface of upper premolar.
Posterior enamel present on inner side only of M.ı and M.z; incisors bisulcate (zyoma complete without jugal). Zygogeonis
Posterior enamel complete on $\lambda 1.1$ and N.2. Incisors unisulcate.
Postorbital process absent; palatopterygoid long and slender, the pterygoid part narrow. Heterogeomys
Postorbital process strongly marked; palatopterygoid short and broad, the pterygoid part broad. Macrogeomys

The key is weakened by the fact that in Orthogeomys, posterior enamel plate may be present or absent in the upper premolar. It is, according to Nerriam, becoming suppressed, and when present ( $O$. latifrons), is restricted to the inner fourth. In other species of Orthogeomys it is absent.

In addition to the characters indicated above, the genus Thomomys appears to differ from the other genera, as regards those examined, in that the cheekteeth are less rounded in aspect, though whether this character is absolutely constant I do not know.

Genus 1. THOMOMISS, Wied
1839. Thomomys, Wied, Nova Acta Phys. Med. Acad. Caes. Leop. Carol. NLN, pt. i, p. 377.
1903. Negascanimets, Elliot, Field Columb. Mus. Publ. 76, Zool. ser. vol. 3, p. 190. (Diplostoma bulbizorum, Richardson.) Valid as a subgenus.
'Type Speches.-Thomomys rufescens, Wied.

Rasge.-"From the Valley of Mexico and Nount Orizaba nothward to British Columbia and North Saskatchewan River: and from l'acific coast castuard to the great Plains" (Merriam).

Neaber of Forms-I have listed one hundred and ninety-two.
Characters.- Is alteacly noted, the arrangement of the enamel of the lower molars and M. 3 differs from the other genera in that there are tho enamel plates on the lower teeth instead of one, and that there are only


Fifi iz9. Thonionis's perpallides perpallides. Nertiam. B. \1. No. 20.11.7.43, ; 21.
two enamel plates on $\lambda 1$. 3 instead of the usual number of three. There are also two enamel plates on X.i and $\backslash 1.2$; in P. 4 there are four enamel plates.

Upper incisor plain, or with a narrow sulcus close to the inner side of the tooth, the main groove characteristic of other genera of the family absent. The sulcus when present may rarely, as in monticola, he relatively large and deep. Molars, so far as seen, less rounded than in Geomys and allies, the upper teeth with a tendence to print outwards at the centre of each tooth, the lower teeth With tenclency to point inwards. Lower incisor root forming large process


Fig. 130. Thonomy perpallide's perpallides, Merriam.

$$
\text { B...1. No. } 29.11 .7+43, \quad 21
$$




Fig. 13f. Thomoms perpallides perpaliddes, Mertiam.

[^12]which turns angular portion of mandible noticeably outwards. 'The basioccipital seems in those seen to tend to be relatively narrower than in other gencra. Sagital crest rarely formed in skulls seen, and more often than not undereloped in the large series of stulls figured by bailey in his revision of the genus.

Externally differing from allied genera in the relatively smaller size of the forcfors.

The species bulthorur, the largest known form, is separated as a sulgenus Weguscuphous by American authors, differing in the following characters from normal Thomomys:
" Central surface of exoceipital next condyle occupicd by a decp groove running ohliquely tu axis of skull: bullac flater, less inflated; pterygoids broad laterally, concave internally, with hamuli converging at tips."

This genus was fully revised by Bailey (North Amer. Fauna, no. 39, 1915).

I le divides the genus into twelve specific groups, and he keys these groups as follows:
"Rostrum deep and evenly sloping in front of upper molars.
l'terygoid concave on inner surface and convex on uter, mammae in four pairs.
hulbivarus group
Pteryguid flat and straight.
Nammae in three pairs (inguinal 2, pectoral 1). umbrinus group
Nammat in four pairs (inguinal 2, pectoral 2).
Skull short and wide; colour mainly lark or light ochraceous.
bottae group
Skull not conspicurously short and wide. Skull long and narrow; colour dark.
alpimus group Skull not conspicuously long and narrow; colour mainly pale.
Colour pale buffy yellowish, or grey and black.
Colour huffy yellowish (except apache). perpallidus group Colour grey and hlack. toznsendi group Colour tawny.
fulzus group
Rostrum slender, abruptly arched in front of upper molars.
Nammale in sis pairs or more.
talpoides group
Nammae in four or five pairs.
Nammae in five pairs (inguinal 2 , pectoral 3). fossor group
Mammae in four pairs (inguinal 2, pectoral 2 ), Ears rather large and rounded at tips. doughasi group Ears large or small and pointed at tips.

Ears relatively large and pointed. momticola group Ears relatively small and pointed. fuscus group."
It may be noted as a matter of interest that only two groups, talpoides and fuscus, appear to range as far north as Canada.

Forms examined: anitue, alticolu, atranarius, anuluris, altizallis, bottae, bulbizorus, douglasi, momicola, perpallidus, tatpoides, toltecus, umbrinus.

## Ligt of Named Forms

（＇The references and type localities for all members of the family（ieomyidate are the work of Mr．G．W．C．Ilolt．Mr．Holt has also provided me whth notes on the relationships of the distinct species recently described．）

Subgenus Thomomss，Wied
tozensendi Group

1839．Journ．Acad．Nat．Sci．Ihifadelphia，V1ll，p． 105.
l＇robably Southern ldaho，near Nampa，Caryon County．
Synonym：nevadensis atrogrisens，Bailey，1914，Proc．Biol．Soc．Wash－ ington，ボメ゙VII，p． 118 ．Southern Idaho．

1897．Proc．Biol．Soc．Washington，N1，p． 213.
Austin，Lamber County，Nevada．
3．THOMOAR＇S RELICTLSA，Gmel！
1926．Univ．Cal．Publ．Zool．N゙ズ犬゙，p． 2.
Susanville，Lassen County，Califormia．
botlae Group
4．THONOABS BOTTAE BOTTAE，Eydous \＆Gervais
1836．May，de．Zool．V1，p． 23.
Coast of California．
5．＇THOMOAIS BOTTAE LATICEPS，Bard
1855．Proc．Acad．Nat．Sci．Philadelphia，VIl，p． 335.
Humboldt Bay，Humboldt County，California．
6．ThOMOMYS BOTTAE LILCODON，Merriam
1897．Proc．Biol．Soc．Washington，X1．p． 215.
Grant Pass，Rogue River Valley，Oregon．

1901．Proc．Biol．Soc．Washington，X゙lV，p．irz．
Red Bluff，＇Tehama County，California．

1908．Proc．Biol．Soc．Washington，XX1，p． 146.
Raymond，Madera County，California．


```
19t4. Proc. Biol. Soc. Washingtun, XXY11, p. ito.
 Fort Brage, Mendocmo County, California.
```



```
1914. U'Niv. Cal. Tubl. Zool. Xll, p. 313.
 Sweeney's Ranch, Diablo Range, Merced County, Cahtornia.
```



```
1897. Proc. Biol. Suc. Washington, N1, p. 214.
 Los Banos, Merced Counts, Calıfornia.
 33-Livm! Kiorlents-1
```


1895. Proc．Acad．Nat．Sci．l＇hilaclelphia，p． 36.

Grapelands，Sim Rernardno Valley，San Bernardino County，Cali－ forma．

I914．Univ．Cal．lubl．Zonl．XII，p．sit．
Seven miles south－east of Simmer，Carrizo l＇lain，San Luis Obispo Counts，Californta．
14．THOMIOXNS BOTTAE NIGRICANS，Rhoads
1895．Proc．Acad．Nat．Sci．Philadelphia，p． 36.
Witch Creck， 7 males west of Julan，San Diemo County，Cahfornia． Symmym：aphorastus，Elliot，1403．Fielel Columb．Mus．Puhl．79，zool． ser．vol．3， r .219 ．San Tomas，lower Califomm．
15．THONOMIS BOTTAE PASCA1，1s，Merram
1901．Proc．Biol．Soc．Washington，XlV，p．iti． Fresmo，San Joaquin Valley，Fresno Countr，Califomia．

1914．Univ．Calif．Publ，Zool．XII，P． 315.
La Puerta， 5 mies west of Vallecitos．Eastern San Dego County， Cahforna．

17．TIFONISIYS BOTTAE ANITAE，Allen
1898 ．Bull．Amer．Nlus．Nat，Hist，X，p．ift． Santa Anita，Jower California，Mexico．
\＆．Tllo
1899. Bull．Amer．Mus．Nat．Hist．XII，P． 13. Sierra Laguna，Lower California，Mexico．

1909．Proc．Biol．Soc．Washineton，XXII，p， 25. San Angel， 30 miles west of San Ignacio，Lower Calfornia，Mexico．

20．TIMOMOMYS BOTVAE ABBOTYI，Huč
1928．Trans．S．Dégu Soc．Nat．Hist．5，p．So． El Rusarm，Lower Califorma，Mexico．

1932．Unis．Calif．Puhl．XXXY＇lll，p． 326.
Churehall Comoty，Nevada（Dixie Jleadows，at south end of Ilumboldt Salt Narsh）．
22．TH（OMUNIYS Ber］TAE CINERELS，Hall．
1932．Univ．Calıf．Publ Zool．X゙X犬゙ソIIl，p． 327. Simoth＇s Vialley，Iston County，Nevada．

1932．Univ．Calıf．Publ．Zool．XXXVIII，p． 328. Arkenont，Esmeralda County，Nerada．

I9，32．Univ，Calif．l＇ubl．\％ool．XXXV111，p， 320 ．
San Antomo，Nye County，Nevada．

1932．L＇niv．Cahf．’ubl．Zool．XXXVIII，p． 329.
Moore＇s Creek，Nye County，Nevada．

1932．Univ．Calıl．Publ．Zool，XXXV111，p． 331. Whiterock Spring，Nye County，Nevada．
27．THONIONIS BOTVAE BRELVDDENS，Hall 1932．Univ．Calif．Publ．Zool XXXVIIl，p． 330. Breen Creck，Nye County，Nevada．
28．THOMOMIY BOTVAE NASLTLS，Hall
1932．Proc．Biol．Soc，Washington，XLV，p． 96.
Black River，Apache County，Arizona．
29．THODOMSS BOTTRAE RLIDOSAE，Hall
1932．Proc．Biol．Soc．W＇ashington，XLV，p． 96.

30．THONONYS BOTTAE LLClDL＇s，Hall 1932．Proc．Biol．Soc．Washington，SLV，p． 67.
Las Palmas Canyon，Lower California，Nexico．
31．THONOMYS BOTTAE CATAVNNNSIS，Huey
1932．Trans．S．Diego Soc．Nat．Hist．7，p． 45.
Catavina，Lower California，Mexico．
32．THOMOMIS BOTOLE INGENS，Grinnell
1933．Unis，Calif．Publ．Zool．XXXVIIf，p． 405.
Millux，liern County，Californa．
33．THOAIOAY＇S BOT＇TAE DIVERGENS，Nelson \＆Goldman 1934．Journ．Namm．Baltimore，15，p． 122.
Huachinera，Sonora，Mesico．
34．THOMOMY゙S BOTTAE CONVERGENS．Nelson \＆Goldman 1934．Journ．Mamm．Baltimore，15，p． 123.
Flermosilla，Sonora，Mexico．
35．＇HIONOMIS BOT＇TAE SAXATILIS，Grmmell
1934．Proc．Biol．Soc．Washington，SI．VII，p． 193.
Susanville，Lassen County，California．
36．THOMOM1＇s BOTTAL TRLXBLLLEN゙Is，Hall \＆Davs
1934．Proc．Brol．Soc．Washington，XIVII，p． 51.
Nixon String，Mount Trumbull，Nohave County，Arizona．
37．THO．DOMY B BOTTAE VANROSSE．DH，Huer
1934．Trans．S．Diego Soc．Nat．Hist．S，p． 1.
Punta Penascosa，Sunora，Nexico．

1935．L゙mis，Calif．Puhl．Zonl．Kll．p． 3 S9．
Nount Jefferson．Nye Corunty．Nevada．

1935．Univ．Cilff．Publ．Zoml．XL．p． 390.
Monitor Valley，Nve Comnty，N゙evada．

1935．Univ．Calif．Puhl．Zoul．Jil．P． 30 r．
＇Tulle Peak，Nec Connty，Newda．

```
 +1 THONOONY's BO"T"DE LATLES, Hall & Davis
1935. Univ, C'alif. l'ub]. Zawl. X1, p. 393.
 Cherry Creck, Whote Pane County, Nevada.
```



```
1935. Proc. Biol. Soc. Washangton, SL\VI], p. 149.
 Willenx, Cochise County, Armona.
```



```
1935. Proc. Biol. Suc. Washington, XLVJII, p. I50.
 Las Palomas, Sterra County, New Mexicu.
```



```
1936 Journ. Washington Acad. Sci. NXVI, p. 119.
 Thurty-five mules teast of Rock liprings, Texas.
```



```
1936. Journ. Washmeton Acad. Sci. NXV'T, p. 296.
 Clawson Dary, 5 moles north of Albuquerque, Bernalıllo County, New
 Nlexico.
 46. THONIONIY'S BOTTAE DESITLS, (moldman
1936. Journ. W"ashmeton Acad. Sci. SNVI, n. II3.
Bur sandy River Valley and desert region south-eastward to Wicken-
 burg, Arizona.
 47. THONOMIV BOTTTAE GLAD.ALLPENSIS,Goldmam
1936. Journ. Washmerun Acad. Sci. XIVVI, p. II7.
 MeFintrick Camvon, Guadelupe Nountams, Jecras.
 48. T1&ONIOMIYS BOTTAE HOWELL, Gohmman
1936. Journ. Washmngton Acad. Sei. MXVI, p. II6.
 Grand Junction, Mesa County, Colorado.
 40. THIONONIYS BOTTAE. N'TERNATL'S,Goldm,m
1936. Journ. Washington Acad. Sci. S\VI, P. II5.
 Salida, Chatfee County, Colurado.
```



```
1936. Journ. Washmetom Acad. Sci SXVI, p. II3.
 Ilualpai I'ak, Hualpas Nountains, \ohave County, Arizona.
```



```
1936. Journ. Washington Acad. Nor. XNV], p. iff.
 C'osentry, Naturita Creek Valley, Nontruse County, Coloracin.
 52. 'THONOMFYG BrM"IAE DE'TUNMDDE's, Grmmell
I436. Univ. Calaf. Jubl. Zorl. Nl, p. 405.
 One and a half males south of town of Pistol Roser, Curry County,
 (Oremon.
 53. THONOMIS BOTTAE ACRHRONTRATLS, Gmmal!
Ir,3f. Univ. Calif ए'abl Zoml. NL, p. yo&.
 Valley of Sad River, }7\mathrm{ moles abowe Ruth, Trinty ('ounts, Cahfurnma.
 54 'THON|ONIS BOT"IAL, A(FRICOH.ARIS, Grmncll
1936. L'niv. C'alif. I'ubl. Zoul. \I, p. for.
 Stralock Farm, }3\mathrm{ miles West of Davis, Solo Cinonty, Calufomia.
```



```
1936. Lnav. Calif. lubl. Zowl. SL, p. tob.
 Near Coyote Peak, 3,000 ft, altutude, Humbuldt County, Calafurnia.
```


1936. Proc. Biol. Soc. W'ashington, XEIX, p. ro3.

Kern County, Califorma: French Gulch, Piute Wountans, 2! miles north-west of Claraville.
57. 'THOMOMLS MLRALIS, Goldman
1936. Journ. Washington Acad. Sci. XXVl, p. 112.

Lower end of Prospect Valless, Grand Canyon, Hualpai Indan Reservation, Arizona.

1909. Proc. Biol. Soc. Washington, S.SII. p. 24.

Magdalena Island, Lower California, Mexico.
sy. THOMOMI'ה AIITIMAILIS, Rhoads
1895. Proc. Acad. Nat. Sci. Philadelphia, p. 34.

San Bernardino Mountaıns, California.

## alpinus Group


1897. Proc. Biol. Soc. Washington, Ni, p. 216.

Big Cottonwond Meadows, 8 miles south-east of Mount Whitney Peak, Tulare County; Cahiornia.
61. THOMOMIS ALPINLS AWAHNEE, Merriam
1908. Proc. Biol. Soc. Washington, SXI, p. 146.

Yosemite Valley, Mariposa County, California.
62. THONOMI'S NEGLECTE'S, Bailey
191.4. Proc. Biol. Soc. Washington, N゙XVII, p. 117.

Bear Flat Neadows, San Antonio P'eak, San Gabriel Mountains, Los Angeles County, California.

1914. Proc. Calif. Acad. Sci. 4, IV, p. 154.

Round Valley, San Jacinto Mountains, Riverside County, Calafornia.
G4. THOMOMY゙S MARTHREXSLL, Alhen
1898. Bull. Amer. Mus. Nat. Hist. X, p. 147.

San Pedro Nartir Nountains, Lower California.

## perpallidus (iroup


1886. Science, Villi, p. 588.

Palm Springs, Riverside County, California.


West side of Colorddo River. at Old Ilanlon Ranch, Imperial Counte, California.

```
 n-. THIONIOMIYS PERPAI,LHDL& NOHIAVEASIS, Grmnell
1918. Lniv, Calif. Publ, Zool. SVlI, p. 427.
Mohase River bottom near Victorville, San Bernardino County, California.
```


912．Univ．Calif，I＇ubl，Zool．A，p． 174.
Ehrenherer，Cuma County，Arizona．

igor．Proc．Biol．Soc．Washington，NlV，p，ifi，
Lone Pine，（ Mwen＇s Salley，Inyo County，Californja，
Synonym：scapterus，Elliot，1003．Field Columb，Mus．Publ．S7，zool． ser．rol．3，P．د4\＆，Ilannopec Canyon，Panamint Alountains，Inyo County，Cahforma．
 1921．Univ．Calif．Publ．Zool，XXI，p． 239.

Shoshonc，Amargosa River，Inyo County，California．
 1910．Proc．Biol．Soc．Washington．X゙XIII，p． 79.

Deep Hole，Smoke Creek Desert，Whashoe County，Nevada．
72．THONIOAIS PERPALLIDLAS ALRELIS，Alten 1893．Bull．Amer，Mus．Nat．Hist．V，p， 49.

Bluff City，San Juan County，LTah．
73．THONOMSY 1＇RRPALLIDLS APACHE，Raney 1910．Proc．Biol，Soc．Washington，XXIII，P． 79.

Lake la Jara，Jicarlla Apache Indian Reservation，New Nexicu，

```
 7+ THONJONIYG FJRPALLJDLS ALBICALDATLTA, Ha|l
1930. Univ. Calif, Publ. Zool. NXXIII, p. 44.4.
 l'rovo, LTah County, L'tah.
 75. THONONDS' PERPALLHDCS AUREINENTRIS, IHal1
1930. LTniv. Calif. Publ. Zool. NXXIlI, P. 444.
 Kielton, Bos Elder County, Utah.
 76. 'HHONIONY'S PERJAJ,LJDLS CEN゙JRALIS, Ha|
3930. Univ. Calif. l'ubl. Zool. NXXII, p. 445.
 Baker, Whate I'me County. Nevada.
 77. '1HON|ONY'S IEIRJALLIDES F'LANIRUS'IRJS, Burt
1931. Proc. Biol, Soc. Washington, XLIV, p. 38.
 %mm Natumal Peak, Washungton County, Utah.
```



```
1931. Journ. W゙ashm@tum Acad. Sci. \゙\1, p. 424.
 I lankssulle, Wayne County, L'ah.
```



```
1931. Journ. Washongton Acad. Sci. LXI, p, 425.
 Mrunt Ellen, (;arfield Comonty, Ttah.
```



```
1931. Journ. Washmyton Acad. Sci. XN1, P. 425.
 llouscrock V'alley, ('ocommo) County, Drizona.
```



```
1936, Journ. Namm, laltmmore, 17, P, 4.
 Bust loace Tamajas Altas Monontains,7 miles south of Raven Butte,
 Y(mmal Cumbty, Arizona.
```


1936．Journ．Mamm．Baltimore，17，p．4．
Blythe，Riverside County，Califomia．

1932．Univ，Calif．Publ．Zool．X゙XVIII，ए． 1.
Providence Range，San Bernardino Countro，Cabfornia．
84．＇THONIONYS OREOECLS，Burt
1932．Trans．S．Diego Soc，Nat．Ilist．7，P． 154.
Greenwater，Black Nountans，Jnyo County，Califormia．
s．＇1\％HONOMY＇ARGUSBNSIL，Huty
1932．Trans．S．Diego Soc．N＇at．Ilist．T．P．+3.
Argus Mountans，Inyo County，California．
86．THOXIOAIS PHEL．LEOECLSB，Burt
1933．Journ．Mamm．Baltimore，1．t，p． 56.
Sheep Nountains，Clark County，Nevada．
$8_{7}$＇ 1 HON1OMI＇s SOLITARILS．Grancll
1926．Univ．Calif．Publ．Zool．N゙XK，p． 177.
Stewart Valley，Mineral County，Nevada．
88．THIOMONHS ALEXANDRAE，Goldman
1933．Journ．Washington Acad．Sci．X．XIII，p．＋6．t．
Rainbow Lodge，Coconmo County，Arizona．

1918．Univ．Calif，Publ．Zool．ŇIl，P．+25.
Iig Prospector Meadow，White Mountains，Mono County，Cahfornia．
（10．THONOMM＇S CABEZON゙AE，Derram
1901．Proc．Biol．Soc．Washington，XIV，p． 110.
Cabezon，San Gorgonio Pass，California（Riverside County）．

1S97．Proc．Biol．Soc．Washington，N1，p． 215
K゙celer，east side Owen＇s Lake，Inyo County，Califorma．

1901．Proc．Biol．Soc．Washington，Kly，p．so－．
Little Colorado River，l＇ainted Desert，Coconino C＇ounty゙，Arizona．
中3．THONHONIS CERVINLis，Nlen
1895．Mull．Amer．Nus．Nat．Hist．V1l，p， 203. Phoenix，Maricopa County，Arizona．

193h．Journ．Mamm．Baltimore，17，p． 7 ． Rancgras I＇lam， 10 miles west of 1 loper，luma County＇，Arizona．
95．THOAlOM1＇s shNLOAE，Nerram
1901．Proc．Biol．Soc．IVashington，Nll，p． 100. Altata，Sinaloa，Nexico．

## fulcus Group


1852．Proc．Acad．N゙at．Sci．Phildelpha，\I，p． 201. San Prancisco Jountam，Coconino County，Arizona，


```
moi. Proc. Buol. Soc. Washineton, \JV, p, i
 Espanola, Santa Fie County, New Mexico.
```



```
1goi. Proc. Jiol. Soc. Washington, XIV, P. II4.
 Mud spring, Detrital Valley, Mohave County, Arizona.
```



```
1807. Proc. U.S. Nat. Nus. NIX, p. 719.
 Summit of Huachuca Nountains, Southern Arizona.
```


1002. Proc. Biol Soc. Washington, XV, p. 119.
IJead of Jimpaa Creck, David Nountains, Jeff Davis County, Texas.

1893. BuIl. Amer. Mus Nat. Hist. V, p. 52.
Juarez, Chihuahua, Mexico.
102. 'THONHMIS FULDETS SLBOLEA, Goldman
1928. Proc, Brol. Soc. Whashingtom, XLI, p. 203.
Old Searchlight Ferry, Colorado River, north-west of kingman, Arizona.
103. THOMIOMNS FULVLS FLAVDLS, Gokman
1931. Journ. Washmeton Acad. Sci. XXII, p. 417.
l'arker, Vima Cuunty, Arizona.

1931. Journ. Washmeton Acad. Sci. XXJ, p. +18.
La Osa, Pima County, Anzona.

1931. Joum. Washington Acad. Sci. XXI, p. 4 ro.
Summerhaven, l'ima County, Arizona.

1931. Journ. Washineton Acad. Sci. XIJ, p. 420.
Graham Mountains, Grahan County, Arizona.

1931. Journ. Washington Acad. Sci. XXI, p. q2i.
I'ly Park, Corhise Comoty, Arizona.

1931. Journ. Washmgen Acad. Sci. XXI, p. q22.
Conote Mountains, I'ma County, Arizuna.

1931. Joutn. Washmeton dead Sci. XXI, p. 423.
Wheatficld Creck, 'Tumeha Jountains, Apache County, Arizona.
110. THONLOMVS FUGNLS PHASNA, Goldman
1933. Proc. Ruol. Six. Washangton, XI,VI, p. 72.
'Tho males south of 'Tule 'Tank, Tule Desert. Arizona ( Yuma County).

1933. Proc. Buol. Soxe. Washmaton, SIVJ, p. 74.
I larquahala Nountams, Vuna County, Arızona.

1933. Proc, Biol. Soc. Washington, XlV'l, p. 75.

Camp Verde, V:ampal County, Arizona.

19.33. Proc. Biol. Soc. Washington, SL.VI, p. 76.

Animas Iark, Inimas Nountains, I lidalgo County, New Nexico.
14. 'TlOMUOMIS MEXRNSI, Baley
1914. Proc. Biol. Soc. Washingtom, XXVIt, p. 117.

Gray's Ranch, Anmas Valley, south-west corner of Grant County, New Mexieo.
 1901. Proc. Biol. Soc. Washington, Nilv, p. 109.

Sierra Btanca, El I'asu Counts, 'l'exas.

1933. Univ. Calif. Duhl. Zool. SXXVIIf, p. +11.
'Fularosa, Otero County', New Mexico.
117. THONOXIV'S JACHEGLILLA LACHLGUILLA, Bailey
1902. Jroc. Biol. Soc. Washington, NV, p. 20.

Vear El Paso, El I'aso County, ' Cexas.
 1936. Journ. Washington Acad. Sci. XXVVI, p. if8.

Four miles west of Boquillas, Brewster County, 'Texas.
110. THONOOMYS PECTORAI,IS, Goldman
1936. Journ. Washington Acad. Sci. SXVV, p. 120.

Vicinity of Carlshad Cave, Carlsbad Cave National Monument, Edely County, New Mexico.
\& 2 . TIIONOMIS BL'RTI BL'R'TI, Hues
1932. 'Trans. S. Diego Soc. Nat. Ilist. 7, p. 158.

Madera Canyon, Santa Rita Mountains, Arizona (Santa Cruz County).
121. THOMOMY BURTI (LEJRCLNUS, Burt \& Campbell
1934. Journ. Mamm. Maltimore, 15, p. 150.

Péna Blanca Sprine, P'ajarito Mountains, Arizona (near Mexican boundary).
122. TJOMIOMY'S BLRTI PRONIALCS, Burt \& Campbedt
1934. Joum. Mamm. IBaltimore, 15, p. 151.

Santa Rita Mountans, I'ma County, Arizona.
ambunus Group

i Sag. l'atuna Bereah-. Imericana, vol. i, p. 202.
southern Mexico; probably the vicinity of Boca del Monte, Vera Cruz.

1893. Proc. Bol. Lioc. Washimgton, VIII, p. 145.

Sount Orizaba, P'uebla, Xexico.

ISo3. Proc. Biol. Soc. Washington, VIII, p. tq. Salazar, State of Mexico, \exien.
 1934. Journ. Wamm. Baltmonte, 15, p. tof. El Chaco, storra de Pachuea, Hadge, Mexico.
 1934. Journ. Mamm. Baltmore, is. p. 10א'. San Martin 'Texmeleuan, Pucha, Mexas.
 1934. Journ. Mamm, Baltmore, 15. p. Ioy. Volcano of Toluca, Nexico.
 1934. Journ. Namm. Baltmone 15, p. ioy. I'rpocatepetl, Mexico.
 1934. Journ. Mamm. Baltimore, 15, p. 110. Santa Rosa, Guanajuato, Mexico.
 1934. Journ. Mamm. Baltimore, 15, P. 111 . La T'inaja, San Lus I'otosi, Mexico.
 1934. Journ. Mamm. Raltmmote, I5, p. 1 II. Alvarez, San Luis Potosi, Mexico.

ェ33. THOMIMIYS UTABRINES ZACATECAE, Netsom S Roldman 1934. Journ. Mamm. Baltmone, 15, p. 112. Berriuzabel, Zacatecas, Mexice.

134 THOMOMIY (TMRRINUS ENISUS, N゙clson \& Goldman 1934. Journ, Mamm. Baltimore, 15, P. 112. Sierra Moroni, Zacatecas, Mexico.
135. THOMOMYS LMBRLNU CRASSIDEXS, Nedsm \& Goldman 1934. Journ, Xamm. Baltmore. 15, D. 113. Sicrea de Valparaso, Zacatecas, Mexico.
 1034. Journ. Mamm, Baltimore, 15, p, 1 it. Sterea Madre, Chihuahua, Mexion.
137. THOAIONIK LTMBRINU'S DC'RANG1, NClon \& dioldman 1934. Journ. Namm. Baltumore, 15. p. I14. Duraner, Durango, Mextco.
 1934. Journ. Wamme. Baltmore, 15, p. 115 . Momont San (iahriel, Durange, Mexico.
 1034. Journ. Mamm, Baltmmore, I5, P. 113 l'ilares Canyon, Colonia Giarcia, Mextoo.
 1934. Journ. Namm. lisltmore, i5, p. if 6 . Altmirane, Sicra Madre, Chbhahua, Mexico.

44．＇JIONONSS IMIBRINUS CHIRICNHLAE，Nelson \＆Goldman 1934．Journ．Namm．Balitmore，15，p． 117. Chrricahua Mountans，Srizona，

142．＇TIUONOMY゙S LDMBRINE＇S SODORLENSIS，Nelson \＆Goldman 1934．Journ．Mamm．Bultimore，15．ค． 118. Chimapa，Sonora River Valley，Mexico．
14．3．＇IHOMOMIY LMBRINLS J：K＇IMMUS，Nelson \＆GokIman 1934．Journ．Mamm．Baltimore，15，P． 119. Colomo，Nayarit，Mexico．
$14+$＇IHONIOMY゙＇L＇MBRINL゙s NLSCLLLS，Nelson \＆Gobman 1934．Journ．Mamm．Baltimore， 15, P． 119. Sierra de Teponahuaxtla，Nayarit，Mexico．
45．THOMIOMIS UMBRINLS ENIMHUS，Nelson $\mathbb{\&}$ Goldman 1934．Journ．Namm．Baltimore，15，p． 118 ． Choix，Sinaloa，Nexico．

146．＂lllomonlys NELSONI，Merriam 1901．Proc．Biol．Soc．Washington，NIV，p． 109. Parral，Chihuahua，Nexico．
147．＂THOMOMS＂S SHELDONI，Banley 1915．North Amer．Fauna，no．39，p． 93. Santa 「eresa，Nayarit，Nexico．

148゙．THONONI＇S GOL．DNANL，Netriam 1901．Proc．Biol．Soc．Washineton，XIV．p． 108. Mapimi，Durango，Mexico．
14\％．THONIONISE PERDJTLS，Mermam 1901 ．Proc．Biol．Soc．Washington．SlV，p．ros． Lampazos，Nuevo Leon，Mexico．
150．THONJONI＇S ATROVARILS，Allen 1898．Bull．Amer．Nus．Nat．Ilist．X，p． 148. Tatemeles，Sinaloa，Nexico．
 1934．Journ．Namm．Baltimore，15．p． 120. Alamos，Southern Sonora，Mexico．
 1934，Journ．Nanm．Baltimore，15．F．121． Chacala，Western Duramgo，Mexico．

## talpoides Group


182S．Zool．Journ．vol．3，p． 5 i8．
Near Fort Carlton，Saskatewan，Canada，
Symonym：borealis，Rachardson，oth Ann．Rept．Brit．Assn，for 1836 ， V．1p．150．15\％，is37（frde Bailey）．

1839．Nova Acta．Physs．Med．．Mead．C．nes．Leop．Carol．XIX．pt．i，p． 375.
Dhmentaree V゙blage，fum Obl lourt Clark，about 6 miles somth of Stanton，Nereer（ $n$ mons，Noth Dakota．

I875．Proc．dead．Nat．Set．l＇hiladelphia，p． 38.
Brider Pass．if males south－west of Rawhas．Carbon County，Wyo－ mans．

1914．Proc，Biol．Soc．Washington，XXVII，p．it5．
Powderville，Custer County，Montana．
15\％．THOMOMNA TALPOLDES NEBLLOSL゙，Batey
1914．Proc．Biol．Suc，Washington，XXVIl，p． 116. Jack Boyden＇s Ranch，Sand Creck Canyon，Crook County，Wyoming．

1914．Proc．Biol．Soc．Washmeton，XXVVIl，p． 115.
I Iead of＇Trapper Creck，Bighorn Mountams，Bighorn County，Wyo－ mung．
159．THONIONİS TALPOIDES PRYORI，Baley
1914．Proc．Biol．Sirc，Washington，XX゙VIl，p． 116. Sage Creck，Pryor Mountains，Montana．

100S．Proc．Biol．Soc．Washineton，XXl，P．Ift．
Nedano Ranch，San Luis Valles，Colurado．

1920．Proc．Culorado Jus．（1．P． 4 I ．
1）＇Arcy Ranch，Parker，Douglas County，Colorado．
1か2，THONIOMYS COLUMBBANTS，Baley
191．Proc，Biol．Soc．Washington，SXVIl，p．if7．
Touchet，Walla Walla County，Washington．

1901．Proc．Biol．Soc．Washington，NlV，p．IIt． Six miles south－west of Old Fort Bradger，Linta County，Wyoming．

1901．Proc．Brol，soc．Washington，XIV，p，It． Birch Creek，Fremont County，Idahn．
165．THONOMES PYGMAIUS，Merram
1901．Proc．Biol．Soc．Washington．XlV，p． 1 I5．
Nontpelier Crcek，Bear County，Idaho．

> fossor Group

1893．Bull．Amer．Nus．Nat．Hist．V＇，p． 5 I． Florida，La Plata County，Colorada．
107．THOMIONIY FRIDEFER1，Nerram
rgol，Proc．Biol，Soc．Washington，XIV，p，if 3 ．
Six miles suth－west of Old Fort Bradere，Uinta County，Wyoming．

```
 168. 'THOMIONM'S LINTA, Nerram
Igor. Proc. Biol. Soc. Washineton, XlV, p. 112.
 Black's Fork, north base of Gilbert's Peak, Uinta Nountains, Summit
 County, Utah.
```

16\％．THOM1OMY＇S OLADRADC＇S（LADRATUS，Mermam
1897．D＇roc，Biol．Soc．Washington，S1，p．214．
The Dalles，Wiaseo County，Oregon．
 190t．Proc．Bol．Soc．Washinetot，XV，p．it．

Beckwith，Sierra Valley，Plumas County，California．

1933．Proc．Biol．Soc．Washington，NLVI，p，f1．
Catherine Peak，＇lelocaset，Oreson．

1934．Trans．S．Diego Soc，Nat．Hist．7，p． 373.
Dexter Creek Meadow，Mono County，California．
173．THOAIONYS FALCHEER，Gimnell
1926．Univ，Cal，Publ，Zool，KXX，p． 1 So．
Bell＇s Ranch，Nye County，Nevada．
douglasii group
1\％4．T＂IOMONY゙S DOL GLASII DCHGLALII，Richardson
1829．Fauna Boreali－Americana，vol．1，p． 200.
Near mouth of Columbia River，Oregon．

1809．Proc．Biol．Soc．Washington，XIlI，p． 21.
Penino，Velm l＇rairic，＇Thurston County，Washington．

1901．Proc．Biol．Soc．Washington，XIV，p． 215.
Ely，near Oregon City，Clackamas County，Oregon

1919. Proc．Biol．Soc．Washington，XXXIl，p． 169.

Six miles south of Tacoma，Pierce County，Washmeton．
178．＇THONOMYS DOLGLASII MELANOPS，Mermam
\＆899．Proc．Biol．Soc．Washington，Xill，p． 21.
Timberline at head of Soleduc Roer．Olympic Sountains，Clallam County，Washangton．

1921．Proc．Biol．Goc．Washingtom，XXXIV，p． 121.
Owyhigh Lake，Mount Rainier，Pierce County，W＂ashington．

1901．Proc．Biol．Soc．Washington，XIV，p． 116.
Whate Salmon，Gorge of the Columba，がlackitat County，Washongton
18t．＂lllonlonly＇s NlGER，Merrimm
1901．Proc．lhiol，Soc．Washingtom，NIV，P．ift．
Seaton，Cmpqua Raver．Dmarlas County，Oreyon．
momticold Group

1803．Bull．Amer，Mus．Nㅁat．Ilist．V．p．q＇
Nount＇Tallac，El Duradu County，California．

Is G THONOMIS MONTHCOLA MAKADA，M．rmam 18゚った．Prox．Biol．Soc，Washington，Sl．p．214．

Anna Creck，near Crater Lake＇，Mt．Mazama，Klamath County，Oregon．
 1899．North Amer．Fauna，no．16，p． 97.

Sissun，Siskiyou County，C＇alifornia．
Symonym：monticola premavillaris，Grinnell，sys4，Univ．Calif．Publ． Zooi．Sll，p．3Iz．＇Twommes south of S．Yolla Bolly Nountan，＇Tehama County，Californa．
185．THONOXAY XIONTLCOLA NASICUS，Mernam
1807．Proc．Biol．See．Washimeton，SI，p． 216.
Farewell Bend，Deschutes Raver，Crook County，Oregon．
 1003．Field Columb．Mus．Publ．Zool．Ser．74，vol．3．p． 165. Goldbeach，Rugue River，Curry County，Oregon．

## fuscus group

1．57．THOAIOMHS FUSCL＇S FLTSCUS，Merriam
ISgr．North Amer．Fauna，no．5，p． 70.
Meruntains at head of Btg Lost River，Custer County，I daho．
188．THOMOMAYS FUSCUTS SATURATUS，Batey
1014．Proc．Mal．Soc．Washineton，XXVII，p． 117.
Slver，near Saltese，Coeur D＇Alene Mountans，Missoula County， Montana．
180 TlloMonvis Flsctos Lorincir，Bancy 1914．Proc．Bul．Soc．Washington，ズメソ11，p． 118. South Edmonton，Alberta．Canada．

140．THONIONYS FUSCUS MYOPS，Mernam 1901．Proc．Bul，Soc．Washington，Xly，p．Ifz． Conconully，east base of Cascade Range，Okanogan County，Washing－ ton． 1u1．THINMOMYS HESPERLS，Nevriam
1901．Proc．Bul．Soc．Washington，KlV．p．Ito． ＇Fillamook，Tillamonk County，Oregnn．

Sulbgenus Mesascapheus，Elliot
 1829．Fauna Borcali－Americana，どol，i，p． 206. Columbar Raver，probably near Portland，Orequn．

## Genus 2．Gilohis．Rafinesque

18if．Geomss，Rafinestuc．Amer．Monthly Mas．Il．P．+5.
Typl：Spretes－Gcomus pinetis，Kafinesque－Mus thad，Barton．
Rax̧e．－＂Jiddle L．S．A．from Red River Valley in North－west Dinnesota and north－eastern North Dakota to Mexican houndary along Rio Grande；also southeru half ol Alabama and Georgia，and nortiern half of

Florida." Evidently now known to extend across the border into North-eastern Mexico (T'amaulipas).

## Number of Forms.-Ninetcen.

Characters.-Upper premolar with posterior enamel plate absent. Ih. 1 and N .2 with two emamel plates each, the posterior one incomplete. N1.3 with no well-marked heel. Upper incisors with two grooves, the main one placed centrally. "Orbitosphenoid small and narrow, not reaching alisphenoid . . .alisphenoid short posteriorly . . . pterygoids large, ahays forming more than half of palatopterygoid extensions."
(Further characters appertaining to the detail cranial characters of this genus will be found in p. 109 of Merriam's monograph (reference on p. 506).)

Merriam gives a most interesting account of the activities of a live PocketGopher in which the anmal's method of using the cheekpouches is fully explained. He states: "A live Geomys from Vernon, 'Texas, has been carefully obscrved for the purpose of ascertaining how the reserve food is placed in the cheekpouches. The animal soon became sufficiently tame to eat freely from hand, and was commonly fed bits of potato of which he was particularly fond. The manner of eating was peculiar and interesting, and showed an ability to use the huge forefect and claws in a way previously unsuspected. After satisfying the immediate demands of hunger it was his practice to fill one or both cheekpouches. . . . The usual course is as follows: a piece of potato, root or other food is seized between the incisor teeth and is immediately transferred to the forepaws which are held in a horizontal position, the tips of the claws curving toward one another. If the food required reduction in size, the trimming is done white held in this position. The piece is passed rapidly across the side of the face with a sort of wiping motion which forces it into the open mouth of the pouch. Somctimes a single rapid stroke with one hand is sufficient, at other times both hands are used . . . in such cases the long claws of one hand are used to draw down the lower side of the opening, while the food is poked in with the other. It is obviously impossible for the animal to pass food from the mouth to the pouches without the aid of the foreclaws. The most remarkable thing connected with the pouches is the way they are emptied. The forefeet are brought back simultaneously along the sides of the head until they reach a point opposite the hinder end of the pouches. They are then pressed firmly. against the head and carricel rapidly forward. In this way the contents of the pouches are promptly dumped in front of the animal."

In connection with the last paragraph, it may be of interest to note that 1 have seen very much the same way of emptying pouches practised by the Goldern Hamster, Mesocricefus auratus; though in this case of course the cheekpoucti does not open externally.

The tail is already noted in these amimals as being used apparently for feeling purposes; the tails of those examined appear, though sometimes naked, to be quite devoid of any scales.

The species of Gcomys were revised by Nerriam, who recognized three specific groups: the tuza group, in which the tail is more naked than in the others:
the buranus eroup, contaning a large form, differing from the wher species in cranial chatacters, anome which the sagittal crest is said to be more strongly developed; and the breticeps group, containing forms which Merriam regards as the most promitise of the genus.

Forms cxamined: tusa, bursarius, persomatus, fleridames.

## Lser or Nimpl Forvis

(For status of " Seomers mevicames," Lichtenstein, nec Kerr, Anim. Kingd., 1. 207, 1792, sce Nerrim, 1895 , Nerth Amer. Fauna, no. S, p. 201.)

> tuะa Group

1. GIDMY: TLKA 'TCZA, Bartom
2. Voigt's Mag. der Naturkunde, vol. 12, p. 48 .
(icorqia.
Synenym: pinetis, Rafinesque, Amer, Monthly Mag, 11, p. 45, isi7.

3. North Amer. Fauna, no. 8, p. 119.

Point Clear, Mobile Bay, Baldwin County, Alabama.

1854. Quadr. N. Amer. vol. 3, p. 242.

St. Augustine, St. Juhn County, Florida.
4. GEOAISS FLORIDANLS Al'STRRNUS. Bangs
1898. Proc. Boston Sioc. Nat. Hist. 2א, p. 177.

Belleair, Hillsboru County, Forida.
5. (ifonlys coboNus, Banes
1898. Proc. Bostom Soc. Nat. Hist. 28 , p. 178. St. Jary's, Camden County, Genrgia.
6. GLoMIS CLAMBRLANDICS. Banss

1 1898. Proc. Boston Soc. Nat. Hist. 28, p. iso. Stafford Ilace, Cumberland Island, Camden County, Georgia.

## bursatius Group

7. GEOAIY BCRGARICS BLRSARILSA, Shaw
8. Trans. Limn. Soe, V, p. 227.

Upper Mississippi Valley; exact locality unknown. Syonom: fusce. Rafinesque, isi7, Amer. Monthly Mag, II, p. 45. cinerar, Rafinesque, 1817. Sanne reference. (chacdenses, Lehtenstem, Ab. Akad, Berlin, p. 20, 1 Nzz. sactatus. Mitchall. N. Y". Med. Reposs xvi, 1821.
(The aboue names equoted as symmams by Trouessart.)

[^13]10. GEOMYS BREVICLI's BREVICRIS, Bard
1855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 335.

Prairic Mer Rouge, Morehouse l'arish, Louisiana.

1895. North Amer. Fauna, no. 8, p. ı34.

Clear Creck, Galveston Bay, (;alveston County, ' Texas.

1895. North Amer. Fauna, no. 8, p. 135.

Rockport, Aransas County, 'Iexas.
13. GJoonlis BREVICEP LIANENSIS, Batey
1905. North Amer. Fauna, no. 25, p. 129.

LJano, Llano County,' Texas.
14. GEOMVY THENENSLA, Jlerram
1895. North Amer. Fauna, no. 8, p. 137.

Mason, Mason County, 'Texas.
15. GEOMIS ARENARIES NREXIRIIS, Merriam
1895. North Amer. Fauna, no, 8, p. 139.

Et l'aso, El Paso County, Texas.

1932. Proc. Biol. Soc, Washington, N1LV, p. 97.

Tularosa, Otero County, New Mexico.
17. GEOM1Y P PERGONATLS PRRSONATCS, True 1889. Proc. U.S. Nat. Mus. 11, i88S, p. 159.

Padre Island, Cameron County, Texas.

1895. North Amer. Fauna, no. 8, p. 144.

South side of Nueces Bay, Cameron County, Texas.

1915. Proc. Biol. Soc. Washington, X゙V゙VII, p. 134.

Alta Mira, 'lamaulipas, Mexico.

Genus 3. PAPPOGEOM15S, Merriam
1895. Papiogeoniss, Nerriam, North Amer. Fauna, no. 8, p. i45.

Tryp Speors.- Geomys bulleri, 'Thomas.
Radge.-Jaliseo, Mevico.
Nimbrer of loorma--Tiwo.
Characters - Aramecment of chamel plate on molars and promolar as in (eomus. M. 3 an imperfectly developed double prism, a sulcus on (uter side, behind which crown narross to form a moderate hed. Lpper incisors one-grooved. No sugital erest developed. Zygomata stender. "Palatopterygoids little mere than iertical lamellae. Orbitosphenoids hroad, articulating firmly with alisphenoids" (compare Geoms). lior further eranial details see p. ifs of Merriamis monograph.

Forms evamined: bulleni.


## List of Nampe Forms


1892. Ann. Mas. Nat. IItist. 6, Х, p. 106.

Near 'Talpa, Sierra de Mascota, JaIisco, Mexico.
Synonym: melsoni, Merriam, i Soz, Proc. Biol, Soc. Washington, VIt, p. 16.4. Sierra Nevada of Colima, Jalisco, Nexico.

1895. North Amer. ['auna, no. 8, p. 149.

Alemajac, Gundalajara, Jalisco, Mexico.

## Genus f. CRATOCilOMYS, Merriam

1\$95. Cratogeomys, Merriam, North Amer. Fauna, no. 8, p. i50.
'I'ype Species. - Germis merriami, Thomas.
Range.- "Great Plains of U.S.A., from Arkansas River in Eastern Colorado southward, and eastern tableland of Mexico, to extreme southern edge, in the states of Mexico and Puebla" (Merriam).

Number of Pormis.-'Twenty-four are now named.
Charactprs.-Enamel of upper premolar as in Geom's, hut M.i and M. 2 with one cnamel plate each, the posterior one absent. M. 3 with deep sulcus on outer side. Upper incisors one-grooved. "Orbitosphenoids short and broad, articulating with alisphenoid anteriorly." (Further cranial details will be found in Merriam's monograph, p. 150.) Sagittal crest usually developed, apparently.

Differing from Platyeomys, which has a similar arrangement of enamel plate, in the following characters: breadth of cranium posteriorly much less than zrgomatic lreadth; breadth of occipital plane not more than twice its height; lambloid crest broadly convex pusteriorly; mandible including incisors longer than browe ; squamosal expansion chiefly towards median line.

Cratogeomys is the only genus hesides Thomomys and Geomys which ranges north intor the United States, the other six being entirely either Mexican or Central American.

Forms examined: morriami, estor, castanops (skin).

## List of Named Forms


1893. Ann. Nas. Nat. Hist. 6, XII, p. 271.

Southern Mexico, probably in the Valley of Mexico.


```
1034. Proc. Bmol, Soc. Washingtom, XL\II, P. It9.
 Atlinet, Puchla, Nexicos.
```




```
 Irola, IIrdalgo, Mexita.
```


1895. North Amer. Famma, no. S, p. 154.

Cofre de Ierote, Vera Cruz, Mexico.
5. CRATOGEOMY'S ESNOOR, Merram
1895. North Amer, F'auna, no. 8, p. 155.

Las Vigas, Vera Cruz, Nexico.

1895. North Amer. Fauna, no. 8, p, 56.

Mt. Popocatepetl, Sitate of Mexico, Mcxico.
7. CRATOGEONSS PEREGRANLS, METHAM
1895. North Amer. Fauna, no. S. p. 158.

Mt. Iztaccihuatl, State of Mexico, Mexica.
8. (RATOOEOMY'S CASTMNOIS CASTVNOPS, Baird
1852. Report Stanshury's Exped. to Great Salt Lake, p. 313.

I'rairic Road to Bent's Fort, near present town of Las Animas, bent County, Colorado.
Syonym: clarkii, Baircl, Irox. Acad. Nat. Sci. Philadelphia, 1855, p. 332.
9. CRATOGEONIS CASTANOPS GOLDNANI, Merram
1895. North Anser. Fauna, nu, \&, p, ito.

Canitas, Zacatecas, Mexico.
fo. CRATOGEOMIS CASTANOPS PIERPLANU'S, Nelson \& Goldman 1934. Proc. Biol. Soc. Washington, XLVIl, p. ${ }^{3} 36$. 'Tascosa, Oldham County, 'Texas.
it. CRATOGEOMYS CASTANOBS LACRIMALAS, Nelson \& Goldman 1934. Proc, Biol. Soc. Washington, XLVIl, p. 137.

Roswell, Chaves County, New Mexico.
12. CRATOGEOMY: CASTANOPS JHRTLSA, Nemon \& Goldman 1934. Proc. Biol, Soc. Washington, NLVIl, p. 138. Albuquerque, New Mexica.
13. CRATOGEOAIYS CASTANOPG ANGESTICEPS, Nelson \& Goldman 1934. Proc. Biol. Soc. Washington, NLVII, p. 139. Eagle Pass, Texas.
14. CRAJOGEOMY'S CASTANOPS CONSITL゚S, Nelson \& Goldman 1934. Proc. Biol. Soc, Washington, XlVII, p. ifo.

Gallego, Chihuainua, Mexico,
15. CRATOGEOMIY CASTAXOHS TAMIU"LIPENSIS, Nelson E Goldman 1934. Proc. Binl. Soc. Washington, XilVil, p. rqi.

Matamoros, T’amaulipas, Mexico.

1934. Proc. Biol. Sinc. V*ashneton, Nillil, P. 143.

San Pedro, Coahuila, Mexieo.

1934. Proc, Biol. Soc, Washmeton, NI.V11, D. 144.

Jaral, Coahuila, Dexico.

 C'arnerus, Comhuila, Mexico.
 1034. Proc. Biol. Suc. Washingtam, Xl, V11, p. 1 \& Mupuihuana, Nuevo Jeon, Nexco.
 1934. Proc. Bmol, Soc. Washington, SlVill, p. itz. I, as Vacas, Coahuila, Mexico.
 003. Proc. Bul. Suc. Washington, XTV1I, p. if8. R(a) Verde, San l uis I'otosi, Mexico.
 1934. Proc. Piol. Soc. Washington, XLV1I, p. 147. soledad, San Luis Potosi, Mexico.
 1 \&igs. North Amer. Fauna, no. S, p. 16r. Chalchicomula, ]'uebla, Nexico.
 1934. Proc. Biol, Soc. Washington, NLVJI, p. 152. Perote, Vera Cruz, Nexicn.

## Cienus 5. l'LA'YGBOMIS, Merriam

1895. Platygfonss, Mermam, North Amer. Jouna, no. S, p. i6z.

Type Speres- (icomys gymurus, Mertiam.
Ravie.- - "Louthern border of Nexican tableland; States of Colima, Jaliseo, Ahchoran, Mexion and llidalgo."
Neabler of Forme.-Six.
Charactirs.- Irrangement of enamel plate un upper premolar and mobars as in roatosermys. Upper incisor anc-groned. "llinder part of crammen estraordinarily boad and that, the great hreadth chiefly due to the bateral expansion of the squamesals, which completely areh over and conceal the postglenoid notch. Wegematic arches massive, brodily speading anteriorly; jugal mormally large, forming an impertant part of the arch. Ptergends vertical lamellace with inferine berder everted. Orhitusphenoids larger than in Cratosomms, hut not nermally arviculating with alisphenoid. . . . Lambdoid crest sinoous, pesenting three posterion concavities. Wandible very moch hroader than long, the angular process eatrencly long and sprading, reaching so far out laterally that the knots of the root of the incisar is madway between condyle and end of ansular process."
forms examincal: fumosus.

1.ist of Named Fornis

[^14]
1895. North Amer. Fauta, no, i, p. 167.
'Tula, IIdalgo, Nexieo.

1903. Proc. Biol. Soc. Washington, NVI, p. 8s.

Patamban, Michoacan, Mexico.

1902. Proc. Biol. Soc. Washington, XV, p. 68.

Cerro de la Calentura, about 8 miles north-west of Pual de Amoles, Queretaro, Mexico.

1895. North Amer. Fauna, no. 8, p. 168.

Volcan of 「oluca, State of Mexico, Mexico.
6. PLATVGEOMYS FLMOSL゚S, Nerriam
1895. North Amer. Fauna, no, 8, p. 170.

Colima City, Colima, Mexico.
Genus 6. ORTHOGEOMYS, Merriam
1895. Orthogeomys, Nerriam, North Amer. Fauna, no. S, p. if2.

Ther Species.-Gcomys scalops, Thomas.
Raxge-Daxaca and Chiapas in extreme Southern Mexico and adjacent parts of Guatemala. Kanging into Guerrero; and known also from llonduras and Salsador.

Nlaber of Foram.- Twelve.
Characters.- Lepper premotar with three or four enamel plates, the posterior one, when present (latifrons only, according to Nerriam). restricted to the inner fourth. $\lambda .1$ and 3.2 with two enamel plates each. Upper incisors one-grooved. $\mathrm{Xl}, 3$ with hackwardly projecting heel. "Skull as a whole much elongated. Frontals extraordinarily broad and flat, much broader than muzzle, with sides nearly parallel. Kygomata narrow or moderately spreading. Angle of mandihle shott. Orhitosphenoids rather large. articulating with anterior part of alisphenoids; . . third endoturbinal larger and much hroader than second, a unique condition in the family. Palatopterygoids long and narrow, of nearly equal hreadth throughout." (For further cranial details see p. Iz of Nerriam's momograph.) Sagital crest so far as seen developed. The members of this geturs are large forms, with conse pelage, apparently easily distinguishable from other genera by their unconstricted frontals.

Forms scen: scalops, wrandis.
List of Named Foralis

1905. Proc. Bosl, Soc. Washington, NVIII. p. $23+$.

Yautepec, Oaxaca, Nexico.
2. ORTHUGHONIVA sciAlops, Thomas
1804. Ann. Mag. Nat. Hist. 0, Nilli, p. 437.
'「ehuantepec, Oaxaca, Mexico.

180,3. Ann. Nag. Nat. Hist. 6, XII, p. 270. Ducnas, (iuatemala.
$\pm$ ORTHOOFOMIS GRAXIOLS ALLEXI, Nelson \& Goldman 1030. Journ. Namm. Baltimore, if, p. 156.

Acapulco, Guerrero, Mevico.
 1030. Journ. Namm. Baltimore, if, p. 157. Curro San Felipe, Oaxaca, Mexico.
 1030. Journ. Namm. Baltimore, ir, p. 158. El Limon, La Unom, Guertero, Mexico.
7. ORTHOGEONYS GRANDIS VL'LCANI, Nelson \& Goldman ig30. Proc. Biol. Soc. Washington, XI,IV, p. 105. Vulcan Santa Maria, Cruatemala.
8. URTHOGEONIS GRANDIS PLATO, Lawreme
1933. Proc. New England Zool. Club, 13, p. 66. Cerro Cantoral, Tegucegalpa, Honduras.
 1933. Proc. Biol. Soc. Washington, XLVI, p. 195. 'Tuxtla Gutierrez, Chiapas, Nexicu.
10. (ORTHO)(ilonls NELGONI, Nerram 1805. North Amer. Fauna, no. 8, p. 176. Nount Zempoaltepec, Oaxaca, Mexico.
 1895. North Amer. Fauna, no. 8, p. 178. Guatemala; exact locality unknown.
 1928. Proc. Biol. Suc. Washington, XLI, p. 9. Cacaguatique, San Xiguel, EI Salsudor.

## Genus 7 . HETEROGBOMis, Merriam

1805. Hetermenmys, Merriam, North Amer. Fauna, no. 8, p. 179.

Type Speces -Gcomys hispidus, Le Conte.
Ravge.-Alexico, Vera Cruz to Campeche, extending sonth into Guatemala.
Number of Forms-Seven.
(inaractrrs.-Upper premolar with four enamel plates, the posterior one restricted to the inner half. M.i and M..2 with two enamel Whates. N.; a double prism, crown longer than broad, the heel well developed. "ikull as a whole high and narrew; frontal hroad and flat : . . . temporal depeessions anteriorly defining a well-marked frontal shidd. Inferior surface of
palatopterygoid cuneate-linguate, long and slender, the palatal arms much elongated; pterygoid part small and postpalatal pits deep. Orbitosphenoids shield-shaped, rather narrow and long, not articulating with alisphenoids. . . Mandible with angular process short." I'elage harsh.

Forms seen: hispidus, torridus.

Last of Named Formis

1. HETEROGDOMIS HISPDDC'S HISPIDCS, Le Conte
2. Proc. Acad. Nat. Sci. Philadelphia, VI, p. 158.

Near Jalapa, Vera Cruz, Nexico.
2. HETEROGEOMY'S HISPIDL's CONCAVC's, Nelson \& Goldman
1929. Droc. Biol. Soc. Washington, XIII, p. iq8.

Pinal de Amoles, Queretaro, Mexico.

1929. Proc. Biol. Aoc. Washineton, XLH, p. 149

Jaltipam, Vera Cruz, Nexico.
4. HETEROGEOMI'S HISPIDUS YCOATANENSIS, Nelson \& Coldman
1920. Proc. Biol. Soc. Washington, XLII, p. 150.

Campeche, Mexico.
5. HETEROGEOMY' HISPIDI: CHAAPENSIS, Nelson \& Goldman 1929. Proc. Biol. Soc. Washington, SLJI. p. 151.

Tencjapa, San Cristobal, Chiapas, Mexico.
6. HETEROGROMYS LANLCS, FIliot
1905. Proc, Biol. Soc. Washington, XVHI, p. 235.

Xuchil, Vera Cruz, Mexico.
7. HETEROGEOMY'S TORRIDI'S, Merriam
1895. North Amer, Fauna. no. 8, p. $1 \mathrm{~S}_{3}$

Chichicaxtle, Vera Cruz, Mexico.

## Genus 8. MaCROGEOMIS, Merriam

1895. Macrogeomys, Jerriam, North Amer. JFauna, no. S, p. 185.

Type Species.-Gcomys heterodus, l'eters.
Ravge-Now known from Nicaragua, Costa Rica and Panama.
Neviber of Forms--Nine.
Characters.-Upper premolar with four enamel plates, the posterior restricted to the inner third. M. 3 with deep outer sulcus and elongated heel which is greatly developed, attaining the maximum size known in the family. [ pper incisor one-grooved. "Frontals broad, flat, depressed or concase along median line, deeply excavated laterally between orbits, the notch immediately succeeded by a strongly developed postorbial process. Palatopterygoids broad, short, and truncated posteriorly, the horizontal part composed above wholly of palatal, the pterygoid simply capping the
end and abruptly upturned at right angles．Braincase rising above posterior root of zygoma．．．＂he occipital plane is flat and slopes strongly forwards as in Heterogermys．＂

There is a marked tendency apparently for the jugal to become abnormally reduced：in more than wne specimen seen it is nearly as in Zysugeomys in that the zygomatic arch appears complete withont it ；also in costaricensis，according t1）Merriam，the zyeroma is in this condition．

Apecies of this genus are large lorms．A sagital crest is evidently developed in the adult．
lorms seen：cazetor，haterolus，dohichocphalws．

## Last（h Nanhb Foras

1．MACROGEOMIS HDOERODOTS．Peters
1864．Monatsber．k．preuss．Akad．Wiss．Berlin，p． 177.
Costa Rica．

1895．North Amer．Fauna，no．S．p．isy．
San Juse，Costa Rica．
3．HACROGEOMIS（：AVATOR B B mes
1902．Bull．Mus．Comp．Zool．llarvard Conl．XXXIX，p．+2. Bequete，Chiriquı，Panama．

1912．Smuths．Mise．Coll．LX，no．2，p．S．
Coma，mountans of Eastern I＇anama．

1002．Bull．Mus．Comp．Zool．Harvard Coll．JXXIX，p．tu． Bogava，Chiriqui，Panama．

1895．North Amer．Fauna，no．S，p． 102. P＇acuare，Costa Rica．

1K93．Bull．Amer．Nus．Nat．Hhst．V，p． 337. Santa Clara，Costa Rica．

1010，Bull，Amer．Mus，Nat．Hist．XXVIll，p． 07. I＇eña Blanca，Natagalpa，Nicaragua
 1931．Field．Nus，Publ．Zool．18，p．143． Alto de Jabillo Firris，Western Corsta Ruca．
（ienus y．ZYGOGLOALYA，Merriam
1895．Zyeugfoniss，Nerriam，North Amer，Fauna，nu．s，p． 195.
＇Tvpl：Speries．－Zyguscomys trichopus，Xerriam．

Range- - Nexico: "'hac Sicra Madre of Nichoacan, from Patzouaro w Nahuatzin; strictly limited to the pine zone, between altitudes of 6,800 and 9,500 leet '" (Miller).

Nomber of Forms-Onc.
Cmaracrers.- Lpper premolar with four comam plates, the pesterior restricted to the lingual third. M.s and M. 2 with two enamed plates cach. N1.3 with crown longer than broad, the heel well developed; upper incisors two-grooved. "Cranium as a whole long and narrow; zygomata not widely spreading; . . . zygomatic arch normally complete without the jugal, maxillary and scuamosal arms in contact above it ; jugal inferior, rudimentary, and ehiefly external. Rostrum long and narrow. . . Pterygoids vertical lamellate as in Thomomys, meeting or nearly meeting in median line behind palate. . . Nandible rather long and sknder, as in Geomys bursarius. Orbitosphenods relatively targer than in any other genus in the family, closing upper part of the sphenoidal fissure except for a foramen at apex, and ankylosed broadly with the alisphenoid as in some species of Thomomys." Sagittal crest well developed in the one skull seen.

Forms examined: trichopus.

## List of Namhe loorme

1. ZYCOCBOMYS TRICHOPL'S, Merriam
2. North Amer. Fauna, no. S. p. 196. Nahuatzin, Michoacan, Mexico.

## GEOMIYDAE: <br> SPECYAL HORKS OF REFERENCE

Merriam, North American Fauna, no. \$, pp. 11-258, 1895. Nonograph and full revision of all forms then known of all genera except Thomomys.
Baley, North American launa, no. 39, Nov. 15, 1915. Full revision of Thomomys with figures of skulls of all leading species.
Couts, Monograph of North American Rodents, 1877: Geomyidae: p. 607.
The family Geomyidae is known lrom the Oligocene, but apparently not outside the North American continent.

## Superfamily ANOMALUROIDAE

As here understood this contains one family, the Anomaluridae, with two widely separated subfamilies the Inomalurinae and the ldiurinae, the last regarded as of family rank by Niller © (iddley.

## Family ANOMALCRIDAE

[^15] lurus): Family Idiurjdae, the latter with subfamilies Idiurinae (Idiurus), and Zenkerellinac (Zenkerella).
1924. Winge: Jamely Anomaluridae, part, Anomalurins.

19zS. Weber: Anoalaleromba, part, Family Anomaluridae.
Geographical Distribution.-Africa, Western and Central: from Sierra Leone to Lganda, Tanganyika and Northern Rhodesia.
Number of Ginera.-Four.
Characters.-Zygomasscteric structure (so far as it affects shape of skull) essentially as defined by Miller \& Gidley for their Superfamily Dipodoidae, "Masseter lateralis superficialis with anterior head not distinct, this purtion of muscle attaching along a considerable area on anterior border of zygoma; zygomatic plate nearly horizontal, always narrow and completely beneath infraorbital foramen; angular portion of mandible not distorted outwards to permit . . . passage of branch of masseter lateralis." Infraorbital foramen large, transmitting muscle, extremely enlarged in the subfamily Idimrinae; skull with no special peculiarities in the typical subfamily; zygomatic region comparatively unmodified; jugal long; auditory bullae not excessively inflated.

Dental formula i. $\frac{1}{1}, c_{2}^{2}, p . \frac{1}{1}, m .3=20$, the cheekteeth rooted, flaterowned, relatively brachyodont, characterized by a pattern of narrow cross ridges separating wide recurrent spaces.

Externally considerably modified for arboreal life; form usually Pteromyine; a flying-membrane usually attached to sides; underside of tail with scaly outgrowths on posterior portion near the hody. Tihia and fibula (so far as known) not fully fused.

Remarks.- The Anomaluridae have by some authors been placed in the neighbourhond of the Squirrels. But so far as zygomasseteric structure is concerned there exists between the two families a very wide distinction.

Divisions,-Two well-marked subfamilies may be recognized, as indicated above. Although the Idiurinate are sery much more specialized in cranial characters, the two groups present many features in common, so that it seems undesirable to refer them to two separate families.

## Kfy to the Subfamilies of Anomall ridae

Infraorbital foramen moderate in size, and zygomatic plate not projected forwards conspicuously, the upper and lower zygomatic roots above one another. Checkeceth not reduced in size, less brachyodont. Incisors not greatly thickencd. Palate not excessively narrowed. Bullae more inflated. Anterior point of masseteric insertion on mandible beneath hinder part of M. 1 (Miller \& Gidey).

Subfamily Anomalurinae
(Anomalurus, Anomalurops)

Infraorbital foramen extremely enlarged, owing to zygomatic plate being projected forwards to a point nearly immediately behind the ineisors. Checkteeth extremely brachyodont, greatly reduced in size. Incisors much thickened from before backwards. Palate much narrowed. Bullae less inflated. Anterior point of masseteric insertion on mandible in front of I'. ( Willer \& Gidley).

Subfamily lolerivae (Zenkerella, Idiurus)

## Subfamily ANOMALURINAE

Geographical Distribltion.-As in the family Anomaluridae.
Number of Genfra.-Two.
Charactirs.-Cranial characters as indicated in the above key. Flyingmembrane always present, the bony outgrowth supporting it anteriorly rising from the clbow; the membrane extending to the hindfoot; a well-developed interfemoral nembrane present. Tail well haired, relatively long though usually somewhat shorter than head and body; usually thickty bushy terminally, and well haired; two thick rows of jagged scates are present on underside near the body and extend downwards for about a quarter or a third of its length. Digits of hindfoot five, the hallux shortest, the others subequal, each digit bearing a prominent curved claw; functional digits of forefoot four, all well developed, and with prominent claws.
'lhis group has been revised recently by Rümmler. He recognizes two genera, as here retained, and four distinct species only.

## Key to the Generi of the Anomalurinae

Cheektecth with three transverse ridges surrounded by four depressions; tail broader, terminal tuft stronger. ANoalaltre's
Cheekteeth with two transverse ridges surrounded by three depressions; tail narrowed, terminal tuft weaker.

ANonallerops

## Genus r. ANONALLRUS, Waterhouse

IS42. ANomaltre's, Waterhouse, Proc. Zool. Soc, Jondon, p. iz4.
1915. ANomalirodon, Matschie, S.13. Ges. Nat. lr. Berlin, p. 350. (A. ahzembergeri, Matschie $=$ A. peli, Temminck.)
1915. Avomalleblla, Matschic, L.B. Ges. Nat. Ir. Berlin, p. 350. (A. pusillus, Thomas.)

Type Species.-Anomalurus frascri, Waterhouse.
Ravge.-About as in the famity Anomaluridae; perhaps not extending farther west than the Gold Coast.

Ninaber of Forns:-sixteen.


FIG. 132. ANomidit Rt's frabert fackiont, de Winton. 13. М. No. 35.1.6.82, $7^{\prime} ; 1 \frac{1}{2}$.


Fig. 133. Avomali ris arberi jat kovi, de Winton.


Characerfrs.-Skull with molerate frontals, little constricted; short nasals thick, widely open anteriorly; frontals depressed, and bordered by moterately developed rideses which may appear as a small postorbital process, behind which the ridees tend to extend over the braincase, but show no signs of coming together. Incisive foramima medium, in front of toothrows. Palate tends to be slightly constricted anteriorly. Bullae relatively large, well inflated. Jugal long, forming most of zygoma, but not extending to lachrymal, its posterior upper border somewhat raised up. Infraorbital foramen moderately large, well open; zygomatic plate completely bencath it, and narrow. Mandible without special peculiarities.


Fige 134. Avomali ris erasfre jackioni, de Winton. Checkterth: I3. \I \o. 35.I.6.82, : 5.

Upper checkecth "ith three narrow transserse ridges cutting the tooth into four wide depressions; flaterowned in athalt, the pattern ultimately obliterated. Lower checkteeth like the upper series, but atso with one prominent external fold to cach tooth.

Externally as clescribed above; fur soft; car prominent.
'Tullberg mentions that the pairs of ribs in the specimens examined by him were nine (the highest number he quotes for any Rodent), and that the palmar and phantar tubercles are more numerous than in any other Rodent he examined.

Anomalurus has been revised hy Rummker (Sitz. Ber. Gess. Nat. Fr. Bertin, 1933, p. 389 ). He recognizes three spectes, which in his key are hased entirely on size.

Ilindfoot more than $05:$ peli.
1 lindfoot less than fo: pusillus.
llindfout longer than 40 , shorter than 65 : frasem.
Neasurments of condybohasal length, total length, and upper toothrow will he found for the three species in the above-mentioned paper.
A. peli may he noted for its spectalized hack and white colour pattern.
A. batesi, de Winton, he symonymizes with pusillus; there appears a tangible difference in the size of the hullae in the type skulls of the two species; and also apparently in the colour. Mr. R. W. Mayman has suggested to me that in his upinion batesi should not be regarded as a synonym, and I propose to retain it here as a valid race.

Forms seen : hatesi, cinereus, crwhronotus, fraseri, griselda, imperator, jackson, jordani, neazei, migrensis, oriomtalis, peli, permstus, pusillus.

## List of Named Forms

('The references and type locatities for all members of the Anomaluridae are the work of Mr. R. W. Hayman.)

## fraseri Group

1. AN゙OATALLRES FFRASERI FRASERT, Waterhouse

1S42. F'rect Zoul. Soc. Londun, P. I24.
Fernando Po.
Synonym: derbiamus, Gray, $1 S_{42}$, Ann. Nag. Nat. Hist. X, p. 262.
squamicaudus, Schinz, 1845, Syn. Namm. 2, p. 58.
chrysophamos, Dubois, isiss, Bull. Soc. Zool. Paris, Xlll, р. 23.
beldeni, du Challu, isia, Proc. Buston Snc. Nat. Hist. VII, p. 303.
2. ANMAALCRLS FTRASLRI LATIC"FS, Aquilar-Amat
1922. Bull. Inst. Catal. N.II Barcelona, 2, 2, p. 52, pl. ז.

Fernando Po.
(A synomym of frasin frasem accordme to G. N1. Allen, 1930.)
3. ANOMALCRLS FRASLRI GRISEDIDA, Dolman

10I4. Ann. Nas. Nat. Ilist. S, XlV, p. 490.
Botye, Soutl Camernoms.

1879. C.R. Acad Sci. I'aris, LXXXIX, p. 77f.
(iabeem.
5. ANOALALLRLS FRASERI NIGRENSIS, Thomas

1004 . Abstr. I'me Tool. Soe London, no. ro, p. Iz.
Abutscha, Ionver Niger.

1011. Ann. Nas Nat. JIst. 8, VTII, p. 257.

Bhbamaha, (iold Const.

1017. Stuckluhm Vet. Mkat. I Iandl. 5s, no. 2, p. 60.
(Central Afrad: no exact locality"; specimens quoted from Masisi, near Kisu, and forent west of Bens.

8．AN゙OMALURUS FRASFRI PERUSTLUS，Thomas
191t．Ann．Mag．Nat．Hist．8，XVIIT，p． 235.
River 1 dubefu， 75 miles north of Lusambo，$S$ ．Congo．

1909．Ann．Mag．Nat．Ilist．S，III，F． 351.
K゙atanea，South Congo．
10．ANOMALURLS FRASFRI JORDANI，St．Lecker 1935．Nov．Zool．，XXX゙IX，p． 25 t．

Near Amboin，Angola．
11．ANOMALURUS 1たRASERI JACK゙とON゙I，de Winton 4898．Anm．Nag．Nat，IIist．7，1，p． 251.

Entcbbe，Uganda．
12．ANONAL．CRUS IRRASLRJ ORJFN゙T．ALIC，Peters
1880．Monats．Ber dkad．Berlin，NLV，p．rot．
Zamzibar（？Mainland）．
13．ANOMIALLRUS FRASERI ClNERELS，Thomas
1895．Ann．Nag．Nat．Hist．6，XV，p．is8．
Upper Rosuma River，near lake Nyasa．

## pelif（iroup

I4．ANOMAALLRLS PEJAI，Temmanck
18＋5．Verhandl．Nat．（ies．Ned．Bez．1，2，p． 100.
Daboerom，（wold Coast．
Syonym：auzemberseri，Natschic，10It，S．l\}. Ges. Nat. Fr. Berlan, f．350．Near boundary between Liberia and Ivory Comst；mudle Cavalle River．
pusillus Group
15．ANONLALCRLS PLSHLAC＇S PLSII，LES，Thoma： 1887．Ann．Mag．Nat．1list． 5, N．．p． $4+0$.
－Bélima，Monbutu，大－－I：．Congo．
16．ANOMALIRLO PLSHLLS BATESI，de Wmiton
1897．Ann．Mag．Nat．Hist．6，XX，P． 524
Como River，Gaboon．

Genus 2．INO．JIM，LRODS，Natschie
1914．Anomalerops，Matschie，Sitz．Ber．Ges，Nat．Fr，Berlin，p， 351.
Type Species．－Inomaluras beecrofii，Fraser．
Range．－Africa：Sicrra Leone to Congo（Ituri）．
Number of Formis．－Four．
Cuaracters．－I．ike Anmmelurus，hut cheektecth with，in the upper series， only two transserse ridges and three depressions，the anterion and posterior depression isolated，but the centre one remaining widely opern． Lower cheektecth with four depressions，the anterior and posterior ones isolated： the other two caused by one external and one internal fold．

Eaternally differing from Anomalurus in the tail, which is much narrower, and less hushy at the end.

Remarks. - The considerable difference in the pattern of the checkteeth seems to warrant the separation of the wo genera.
Fioms seen: hecrufti, arachtens, citrimus, "lamiger," "fulgens."
(Revised by Rummler, sit\%. Ber. (ies. Nat. Fr. Berlin, 1933, P. 3 So.)

## lat of Named Forms


1852. Proc. Zonl. Soc. London, p. 17. pl. 32.
lemando I ${ }^{\text {ber }}$.
Synonym: fulgets, Gray, Ann. Nag. Nat. IIst. 4, III, p. 467, i 869 . (;abum,
laniger, Temmunck, 1853 , Esu. Zool. Ciste de Cininé, p. 149. ( oold Corast.

1922. Bull. Amer. Nus. Nat. Hist. XLVII, p. 65. Medje, Ituri.
3. ANONALCROPS BELECROFTI CITRINLS, Thomas
1016. Ann. Nag. Nat. Hist. \&, XVVIII, p. 236.

Benito River, Spanish Gunnea.

1904. Ann. Mag. Nat. Hist. 7, NIll, p. 70.

Abutschi, River Niger.

## Subfamily IDIURINAE

Geographical Distribetiox.-Tropical Africa: Camerouns and Congo, cast to Lake Kivu.
Natber or Genfra.-Two.
Characters.- Size snaller than in Anomalurinae; infraorbital foramen greatly colarged owing to anterior prolongation of the zygomatic plate, which projects far forwards to a level immediately behind the incisors, and is extremely narrow. Incisors greatly thickened from before backwards, and with prominent subapical notech. Checktecth extremely reduced and hrachyodont. Palate sreatly narrowed. Bullice less inflated. Flyingmembrane present or absent.

Remarks.- This sulfamily was regarded as a distinct family by Miller $\mathcal{E}$ Gidley, and further divided into two subfamilies the Idiurinae and the Zenkerellinate mainly on account of the presence or absence of the Alying-menlhranc.

This division ludes the close relationship obviously existing between Zenkereller and Ifimas; further, the presence or absence of a flying-membrane certainly does not seem indicative of subfamily distinctions if one helieves what one has read about the relationships oceuring in the family lhalangeridae
(Marsupialia). In this group, apparently, a tlying-membrane has been developed, independently in three cases; and each of these three genera appear more closely allied to a non-flying member than to each other; indeed the large Flying-phalanger, Petcuroides, is sometimes referred to a distinct subfamily, the Pseudochirinae, containing also the non-flying Pseudochirus; while the smaller flying genera Acrobates and Petaurus are usually held to be related not to each other, but more to Distaechurus and Gymnobelideus respectively, neither of which has a flying-membrane.

If cranial characters or resemblances are to be trusted, Idiurus is certainly so closely allied to Zenkerella that there is no need for referring them to two distinct subfamilies.

Key to the Genera of Inillinae
Cheekteeth with two complete transverse ridges; infraorbital foramen less widely open; flying-membrane present.

Idicrus
Cheekteeth with one complete transverse ridge; infraorbital foramen
more widely open; flying-membrane absent.
Zenkerella

Genus 1. IDIURUS, Matschie
1894. Idiurus, Matschie, Sitz. Ber. Ges. Nat. Fr. Bertin, p. 194.
'Type Spectes.-Idiurus zenkeri, Matschie.
Ravge.-As in the subfamily.
Nuaber of Formis.-Five.
Cilaracters.-Anterior portion of skull rendered abnormal by the great anterior prolongation of the zygomatic plate, which slants downwards and forwards from the ascending root of the zygomatic process of the maxillary to a level just behind the incisors. Infraorbital foramen with no canal for nerve transmission. 'The bones forming the upper margin of the infraorbital foramen broadened, so that the foramen is less open than in Zenkerella. Nasals short, narrow, well open anteriorly. Frontals with moderately developed supraorbital ridges. No sign of postorbital process. Braincase smooth and rounded. Zygoma not essentially different from Anomalurus. Bullae medium, smaller than in Anomalurus relatively. Palate very narrow, extending back to M.3, continued forwards as a straight shelf far in front of level of premolars. Incisive foramina very small, situated far forwards, between zygomatic plates. Incisors greatly thickened from before backwards, much compressed.

Toothrow extremely reduced; cheektecth sery small; M. 3 considerably reduced in all skulls seen. Upper tecth cut into three subequal depressions by two narrow transverse ridges; lower teeth similar in pattern to the upper series, but apparently the outer fold present in Anomalurus can he present, and .3 .3 is not specially reduced. . Wandible high in proportion to its length.

Size very small for the family, head and body not exceeding ir 6 mm . in those examined. Fur soft. Ear large, "its form strongly" suggestive of that of
some of the smaller Bats" (Xiller: Idiurus macrotis). Tail considerably longer than head and body, the upper part moderately or well haired, and long hairs present throughout its length, the tail ending in a moderate brush. Scales on underside moderately developed, less so than in Zenkerella and Anomolurus evidently. Flying-membrane present, its formation apparently similar to that of Anomalurus, hat the interfemoral membrane appears less developed than

in that genus. Functional digits of forefont Sour, the pollex not traceable in dried skins; elaws prominent, curved. Hindfont with five digits, the hallux shorter than the others; claws as in forefoot.

Forms examincel: zenkeri, macrotis.
Two well-marked species are represented at the British Museum, the type, much smaller, head and body about $85-90$ or less, and macrotis, Miller, with head and body measurement of 105-110 or more.

But Allen, 1922, described two new forms, of the macrotis group, one of which has a head and body measurement of only 73 , or is about the size of acnkeri.


Fit. 136. Iditres macrotis, Niller.
B.M. No. 3.2.+.16. 7 ; 3 2t.


Fig. i37. limbrts wherotis, Miller.
Checktecth: B.M1. \o. 3.2.4.16. - 15

The difference between the two groups, if Allen's species are to he regarded as species and not races, therefore lies in the measurement of the ear and the tail. 'The tail in Allen's measurements is at the highest roS in zenkeri (none of our specimens exceed 93); while Allen's lowest tail measurement for the macrotis group is 117 . The car averages 13.6 in a series of male zonkeri, and $13+$ in a series of females (the highest measurement being 14 ), whereas in the macrotis group the lowest measurement is 14 , the average being in langi $15 \%$, in punga 17.3 and in macrotis (two specimens quoted), 16 or 15.5 .

The total length measurements quoted for the various species are in Allen, 187 highest, zenkeri (100-187); 218 (207-224) for langi; 206 average (199-212) pamya; and 228-241 for macrotis.

Fult details will be found in Allen's paper.

> List of Namel Formis
> zenkeri Group

1. IDILRL \& ZENKFRI ZFNKERI, Natsche
2. Sitz. Ber. Gees. Niat. Fr. Berlin, p. 197.

Saunde, S. Camerons.

1917. Stockholm Vet. Akad. I IandI. 58, no. 2, p. 67.

Masisi, about 40 miles north-west of Lake Kivu, lelgian Congo.
macrotis Group
3. JDILRLS NACROTlS, Naler
a8gS. Proc. Biol. Soc. Washington, X1I, p. 73, figs. 15-19.
Efulen, Camervons.

+ DDIERE LANGI, Allen
192z. Bull. Amer, Mus, Nat. Hist, SLVII, p. fig. Dedje, 1turi.

5. IDIERU\& PANCi. Alten

I922. Bull. Amer. Nus. Nat. Hist., XLVII, p. 70.
I'anga, Ituri.

## Genus 2. ZIENKliRELAA, Matschic

 ISgh. Aftherts, de Wintom, Proc. Zool. Soc. London, p. +5o, pls. XXXIV, XXXV. (Athurus glainus, de Winton - Zenkereller insignis, Matschac.)
'Type Species-Zonkerelta insigmis, Watschie.
Ravge.-West Dfrica: Cameroons.
Nomber of Fornis.-One.
Characters - General cranial characters much as Idimins; frontals appear relatively narrower, straight and well ridged, with no postorbital process. Infraorhital foramen more widely open. Nandible high in
proportion to its length, the ascending portion from the incisors to the eoronoid being straight; angular process relatively small. Jugal and lachrymal in contact in the one skull seen.
P..t and M. 3 both considerably reduced in size. Cheekteeth simpler than Idiurus; one transverse ridge divides the tooth into two lobes, most of which are oceupied by a deep depression; lower molars like the upper series, P.f much redneed.

Size larger than Idiurus; tail long, naked for about a fifth of its length near body, then thickly haired and bushy for the remainder of its length. Seales on underside very coarse and large. Digits of forefoot four; hindfoot broad, with five digits; general digit arrangement as in other genera; a tuft of brush-like hairs present on ankles. Ears large. Flying-membrane absent.
'The genus is evidently very rare.
Forms scen: insignis.
List of Named Forms

1. ZENKERELIA INSGGNIS, Matschie
2. Sitz. Ber. Ges. Nat. Fr. Berlin, no. 4, p. 24.

Yaunde, Cameroons.
Synonym: glirinus, de Winton, 1898 , Proe. Zool. Soc. London, p. $45^{\circ}$. Benito River, French Congo.

Nothing appears to be known of the fossil history of the family.

## ANOMALURIDAE: <br> SPECIAL HORKS OF REFERENCE

Tulberg, Nova Acta Reg. Soe. Sei. Upsaliensis, XVili, ser. 3, no. 1, 1899. (Anomalurus.)
Rëmaler, Sitz. Ber. Ge's. Nat. Fr. Berlin, p. 389, 1933. Revision of Anomalurus and Anomalurops.
Miller, Proc. Biol. Soe. Washington, XII, 1898, p. 73. Description of a new Rodent of the genus Idiurus.
De W゙intos, Proc. Zool. Soc. London, 1898 , p. 450. (Deseription of Aethurus $=$ Zenkerella.)
Alston, On Anomalurus, its structure and position: Proe. Zool. Soc. London, 1875. p. 8 SS .

## Superfamily PEDETOIDAE

As here understood this contains one living family.

## Family PEPETIDAE

1896 . Thomas: Hystricomorpha, part. Family Pedetidae.
1899. Tullberg: Schrognathi: Myomorpha: Anomaluroidei, part: Family Pedetidae.
1918. Niller \& Gidley: Superfamily I ipodordan, part. Family Pedetidae.
1924. Winge: Family Anombluridae, part: l'edetini.
1928. Weher: Avomamroidea, part: Family Pedetidae.

Geographical Distribétiox- - Central and Southern Africa: from Kenva and Angola to Cape Province.

Number of Geners.-One.
Characters.-Zygomasseteric structure essentially as in Anomaluroidae, so far as it concerns the shape of the mandible, infraorbital foramen (which is ureatly enlarged), and zagomatic plate. According to 'lualherg's figures, the temporalis muscles of Pedetes are much more reduced than in Anomahrus; and the pterygoid muscles and pits for their insertion are much more extensise in Pedetes (being apparently very weak in all Anomaluridace). Skull massive and Hystricoid in general appearance, but mandible with angular portion small, not distorted outwards; zygomatic region much thickened; mastoids extremely inflated; cheekteetherergrowing, simplified in pattern; dental formula i. $\frac{1}{1}$, c. $11, \mathrm{p} \cdot \frac{1}{2}, \mathrm{~m} . \frac{3}{8}=20$, the premolars not reduced in size. Fibula reduced and fully fused with the tibia in adult. External form modified for bipedal saltatorial life; digits of hindfoot reduced to four, the metatarsals normal, not becoming fused (compare specialized Dipodidae).

Remarks.-Great disersity of opinion has prevailed on the systematic position of this family. Most authoritics are now agreed that the relationship with the Dipodidae, in which it was formerly classed, is remote. Winge, 'Tullherg, and Weber place the family in the Anomaluroid division. But there seems to be remarkably little in common hetween Pedetes and the Anomaluridae as known to-day other than that both are clearly somewhat archaic groups of Rodents. Although the zygomasseteric structure is essentially the same in the two groups, the following characters appear to me to indicate a rather wide gap between the two families, and show that the Pedetidae are very much more specialized in many ways than the Anomaluridae:
Cheektecth evergrowing in Peletes; rooted and brachyodont in the Anomaluridac.
Pattern of cheekteeth simplified in Pedetes; very rarely showing any sign of simplification in the Anomaluridace, usually of the rather primitise complex type found in some Sciuridae, Erethizontinae. (Only in Zenkerella, in which the whole toothrow is extremely reduced, is there sign of simplification in the one skull seen.)
Fibula fused with the tibia in Pedetes, as far as known separate or not fully fused in Anomaluridae.
Digits rechuced in the pes to four in Pedetes; not so in Anomaluridae.
Skull specialized, characterized by large intlated mastoids, thickened zygoma, massive frontals, heary rostrum, deepened pterygoid fossate in Pedetes; not so in Anomaluridae.

Some of the alowe may he adaptive characters. But taken altogether they seem to indicate a wide difference to-day, whatever the ancestors of the two groups may have had in common.

The two families camot in my opinion be regarded as so closely allied to each wther as, say, any two families of Ifystricoidac, or any two families of Muroidac.

On the other hand 'Tullborg lists a number of foints which are shared by

Pedetes and the Anomaluridae, some of which are in the alimentary canal; the lachrymal foramen is placed high up; the great similarity in the hyoid bone of the two genera (he evidently did not examine Idiurus and Zenkerella); the number of cheekteeth (but this also applies, for instance, to Muscardinidae!); the large infraorbital foramen (as Dipotidae, Ctenodactylidae, etc.); and the absence of a transverse canal in the corpus of the sphenoideum.
'fhomas transferred the family to the Hystricomorpha, remarking: "while many maturalists have noticed the Hystricomorph affinities of Pedetes, no one in modern times (except Dobson, who transferred the whole of the Dipodidae) seems to have thought of actually placing it among them. To me this appears to he clearly the proper course as there seems to be scarcely a character in its skull or teeth which is not found in one member or another of that group." But the "Hystricomorpha" of Alston, on which 'lhomas's classification is hased, are defined as with the tibia and fibula persisting as free bones, whereas in Pedetes they fuse. Taking into account that this structure is not a sufficiently important one on which to base major groups, the fact remains that though there may be a suggestion of the "twisted" lower jaw characteristic of the Hystricoidae in Pedetes, it is nothing like fully developed; indeed, the angular process is in this genus reduced; and in Tullberg's figures of the zygomasseteric structure of Pedetes, on the lower jaw it will be seen that the portion marked mls. (masseter lateralis superficialis), which in every member figured of his Hystricognathi (= Bathyergidae + Hystricoidea) except the Caviidae, takes up the greater portion of the jaw, is in Pedetes, as in Ctenodactylus, Anomalurus and others, small and unimportant.

There appears to be to me no alternative to the classification of Pedetes as a superfamily distinct from all others in living Rodentia.

Genus 1. PEDE'TES, Illiger
i8ir. Pedetes, Illiger, Prodr. Syst. Mamm. \& Avium, p. Si.
'l'ype Species.—Mus cafer, Pallas.
Range.-As in the family Pedetidae.
Number of Forms.-Ten or eleven.
Characters.-Skull with broad nasals, extremely broad frontals; mastoid portion of bullae appearing conspicuously in superior aspect of skull; lower zygomatic root projected forwards to a point immediately behind the incisors, the zygomatic plate continued forwards and forming nearly a right angle with the ascending portion of the maxillary frocess of zygoma, as a consequence of which the infraorbital foramen is greatly enlarged. No canal for nerve transmission in the infraorbital foramen. Jugal immensely broadened anteriorly, and in contact with the lachrymal. Bony palate short, extending backwards only to M.I or the front portion of M.2. Basisphenoid much narrowed; pterygoid fossae deep. A pitlike depression is situated in front of the toothrows, which extends forward to incisors and lies between the zygomatic plates.


Fig. i38. Pedetes sirdaster larvalis, Hollister. B.M. No. 28.12.7.14; 1.


Fig. 139. Pedftes strddaster larvilis, Hollister. B.M No. 28.12.7.14; 1 ,

Mandible with angular portion short and somewhat reduced; coronoid process much reduced; a strong ridge for muscle attachment on lower border of angular portion, which is, however, not "lifted outwards" as it is in Hystricoidae and Bathyergidae.

Incisors thick. Cheektecth evergrowing, each tooth divided into two lobes by a re-entrant angle, in the upper series externally, in the lower series internally.

The tceth when cut are not entirely simplified, and traces of more than one inner cusp may be seen in the inner side of the centre of the upper molars; but the lower molars of the one very young specimen examined are practically simple.


Fig. ifo. Pedetes sirdastir larvalis, Hoflister. Checkteth: B.M. Nu. 28.12.7.14; 4.
Externally like a giant Jerboa. Hindfoot perissodactyle in arrangement of digits, elongated; claws more or less hooflike; hallus absent; D. 5 short but well developed. Tail about as long as head and body or frequently longer than this measurement, heavily haired, with a thick black brush terminally. Ears prominent. Nanus with five digits, the claws strong, that of the pollex apparently in no way reduced and as large as the others (a rare feature in the Order).
l'ocock states, with reference to the fact that this genus is not to be associated in the llystricoidae, that "the penis is elongated . . . but there is no trace of the glandular pouch which is so characteristic of the hlystricomorphs."

The family is, as far as 1 have traced, not known fossil outside Africa, though a related fossil genus, Parapedetes, has been described from that continent.

The species admitted are unquestionably very closely related to each other.
Forms examined: ansolae, cafer, oranciae, salinue, surdastor.

## SIECLAL HORKS OF REFERENCE

Tullberg, Nova Acta Req, Soc. Sci. Upsaliensis, XVIII, 3, no. 1. 1899.
Hollister, East African Mammals in the Umied States National Nuseum: Smiths. Inst. Bull. 99, p. 156, 1919.
Pocock, External Characters of Scarturus and other Jerboas compared with Zapus and Pedetes: Proc. Zool. Soc. London, p. 659, 1922.

## List of Named Forms

(The references and type localities have been collected by Mr. R. W. Hayman.)

1. PEDETES (AFER CAFER, Pallas
2. Nov. Spece (2uadr. Glir. Ord., P. 87.

Cape Colony:
Synonym: copensis, Forster, Srensk. Vet. Acad., p. ios, pl. III, i77S. typicus, Smuth, III. S. Afr. Zool, IB49, p. 20.
2. PEDETES CAFER ORANGGAE, Wroughton
1907. Ann, Mag, Nat, Ilist. 7. XX, p. 32.

Aberfeldy district, Orange River Colony.
3. PEDETES CAFER SALINAE, Wroughton

1ro7. Ann, Xag, Nat. Hist. 7. XX. p. 33.
Woodbush, Zoutspansherg district, N.-E. Transvaal.
4. PEDETES CAFER DANARIENSIS, Roberts
1926. Ann. Tramstaal Mus. XI, p. 261.

Okahandja, S.-VV. Africa.
5. PEDETES CLAFER TABORAE, Allen \& Joreridge 1927. Proc. Boston Nat. Hist. Soc. $38, \mathrm{p} .+38$.

Tabora, Tanganyika,
(2. PEDETES CAFER DENTATLS, Miller 1927. Proc. Biol. Soc. Waskington, XL, p. 113.

Dudoma, Tanganyika.
7. PEDETES CAFER ANGOLAE, Hinton
1920. Ann. Mas Nat. Ifist. 9, VI, p. 102.

About 20 miles north-cast of Bithe, Angola.
\&. JEDETES \&LRDASTER SLRDAGTYR, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 440.

Aorendat, male 365 of Uganda Radway, Navasha, Kenya.

1918. Smiths. Misc. Coll. LXVIIf, no. io, p. 3.

Kiabalalot Hill, Sotsk, K゙enya.
10. PEDETEA SLRDASTRER IARVALIS, Hollister
r9i8. Smiths. Misc. Coll. IKVIII, no, ro, p. 2.
Ulukenia Hills, Athi Plains, Kenya.
'There are specimens at the British Museum lahelled "Pedete's cafor bradfieldi," from the Nalahari. 'The reference to this form has not been traced.

## Superfamily CTENODACTYLOIDAE

As liere understood this contains one living family.

## Family CTENODACJYLIDAE

1896. 'Ihomas: Hystriconorpha: Family Octodontidac, part, Subfamily Ctenodactylinae, part, included Petromys.
1897. 'I'ullberg: Scurogiathi: Myomorpha: Ctenodactyloidei: Family Ctenodactylidae.
1898. Miller © Gidley: Superfamily Dipodoman, part. Family Ctenodactylidae.
1899. Winge: IIystricidae, part, Ctenodactylni, part, included Petromys.

192\%. Weber: Ifistricoides: part, Famly Ctenodactylidae.
Geographical Distriblotiosi-Worthern Africa: from Senegal and Mofocco (including Palaearctic coastal area) to Somaliland.
Number of Genera.-Four.
Characters.-Zygomasseteric structure, so far as it affects the shape of the skull, about as in Dipodidar, though the mandible is slightly more modified than in that family. Dental formula i. $\frac{1}{1}, \mathrm{c} . \frac{1}{6}, \mathrm{p} \cdot \frac{1}{1}$ or $\frac{2}{2}, \mathrm{~m} \cdot \frac{3}{3}=20$ or 24 , at full dentition. The extra upper and lower premolars in the genus Pectinator are shed before the posterior molars are cut; in the remaining genera, with cheekteeth at full dentition normally $\frac{1}{4}$, the premolar is shed early during life, and is rarely present in the specimens examined. Cheekteeth evergrowing, practically or completely simplified in pattern. Auditory bullae and mastoids considerahly inflated, the mastoids normally a prominent feature in the superior aspect of the skull. Jugal divided into two portions, a horizontal and a vertical, as in the subfamily Dipodinae. Lachrymal large. Nandible with no coronoid process, and usually a weak ridge present for (presumably) attachment of masseter medialis, this structure foreshadowing that present in Caviidae but very much less developed than in that family. Angular portion of mandible produced backwards to a greater or lesser degree, not excessively so. Digits of both fore and hindfoot reduced to four. 'lail fully haired, much shortened. Tibia and fibula not fused.

Remarks.-The Ctenodactylidac have been associated with the Instricoid Rodents by Thomas, Weber, and Winge. Niller © Gidley place the family among the Dipoloidac, in the neighbourhood of Dipodidae and l'edetidae; Tullherg regards them as more nearly related to Muroid (and Dipodoid) Rodents than to the llystriconds. Pocock states: "lhe clams of Ctenodactylus, indeed, to a place in the II'stricomorphs seem to me to be more than questionable."

Peters in an extensive paper on the genus Pectinator came to the following conclusions: "The ("tenodactyli canot be associated with the Dipodes, their relation to them being not greater than that of the Chinchillat. Octodontes, and

Echinomys ; they show in nearly every part of their structure their near relationship with the last-named groups, and deviate from them only in a very few points, the form of the hyoid hone, of the sacral and caudal vertelsal column, of the development of the crest of the humerus and femur, in which they do not show any inclination towards the Dipodes, hut rather some affinity with the Whrinae; they form a peculiar group of the llystricidae as understood by Waterhouse, which in some points is more allied to the Chinchillae, in other points to the Octodontes. Petromss is not to be associated with the Ctenodactyli, but with the Octodontes."
(It may be noted that Waterhouse divided his Ifystricidae into six groups, the Hystricina, Echimyina, Octodontina, Dasyproctina, Chinchillina, and Caviina.)

None of the authors who place the Ctenodactylidae in the llystricomorph series note, however, that the form of the mandible in Ctenodactylidae does not agree with either that present in Hystricoidae, as here understood, or with that of the Cavidae. It may be transitionary towards the latter, but it certainly, so far as 1 have had occasion to examine, does not agree with it in structure.
'This being the case, the zygomasseteric structure of this family cannot be said to agree with that of the Hystricoidae. I do not think that the faint resemblances between these animals and the Caviidae in lower jaw structure need indicate any close relationship.
'Tullherg has dealt extensively with the relationships of this group, and comes to the conclusion that on account of the formation of the mandible they cannut he regarded as llystricoid Rodents, a view which I fully support. He is evidently of the opinion that they may not be distantly related to the Anomalu-roid-Pedetoid branch of the Order. He writes extensively on the parallel evolution of this group and the Chinchillidae.

The separation of Ctenodactylidae from the ltystricuidae is supported by Miller \& Gidley, who rightly place it in a superfamily (1)ipodoidae) in which the angular portion of the mandible is not distorted outwards.

Further characters which should be mentioned are that according to 'l'ullberg the radiale and intermedium are separate, alone in Rodents (as examined by him) excepting the Bathyergidac; and that the malleus and incus are fused, as in Hystricoidae and Bathergoidae, but unlike the remainder of the Rodents.

Four rather closely allied genera are now admitted.
Of these Poctimator secms to be the most primitive, in that the full dentition is instead of the palate is relatively shorter, and the tail appears rather less reduced than in allied forms. Massoutiera and Felozia have the "eight-shaped" type of checkecth found in South American Octoxlontinae in the genera Octomys, Aconaemys and Spalacopus; Ctemodactylus parallels the Octodont genera Ctenomys and Octodon in having "kidney-shaped" cheektecth, and in this genus the tail reaches its greatest reluction in the family; also Ctomodactylus appears to tend to be a little larger than other members of the family.

Skull Charactirs.- The following skull chatacters appear constant in the family:
'The skuli is flattened, with broad frontals; it is wider posteriorly than
anteriorly; the rostrum is moderate or narrow and inclined to be bowed downwards. 'The supraorbital ridges are comparatively well developed: and a small postorlital-like ridge on the parietal is situated immediately in front of and above the squmosal roots of the \%rgoma, similar to that present in 'faculus. The apices of the bullae are not in contact. Jugal extending up to the lachrymal. General scheme of zygoma like that of Juculus, but horizontal portion about as broad as the vertical portion, and the vertical part does not rise to such a high degree, due perhaps to the much lower skull. Incisive foramina large and well open, extending about to the toothrows, broader posteriorly. Paroccipital process closely applied to bullae, and quite large. A prominent canal on maxillae running through the infraorbital foramen, the latter much enlarged. Exeept in the genus Pectinator the tonthrows tend to converge in front, and the palate projects behind M.3. In all genera the upper incisors are opisthodont.

## Key to the Genera of Ctevonactylidae

Cheekteeth at full dentition $\frac{5}{5}$; lower checkteeth less simplified, with two well-marked inner folds. Palate not extending behind toothrows.

Pectinator
Cheekteeth at full dentition ${ }_{4}$. Lower cheekteeth simpler, with one inner fold only. Palate normally extending behind toothrows.
Upper cheekteeth simpler, with mo inner fold, the general effect "kidney-shaped."

Ctevodactylus
Upper cheekteeth less simple, with inner fold present, general effect becoming "eight-shaped."
Inflation of bullae and mastoids at maximum for the family; outer fold of upper cheekteeth very marrow. Massol'tiera
Inflation of bullae and mastoids at minimun for the family; outer fold of upper clseekteeth remaining widely open. Feeova

## Gemus 1. PECTINATOR, Blyth

1855. Pectinator, Blyth, Journ. Asiat, Soc. Mengal, AXIL', p. 294.
'Type Sipeches.-Pectimator spekei, Blỵth.
Ravge.--Africa: Abyssinia, Somaliland, Eritrea,
Neable of Foras.-Three.
Characters.-l'alate shorter than Ctenodactylus, not extending hehind last molars. Bullae and mastoids considerably inflated. Cheekteeth ${ }_{5}$ at full dentition (it may be mentioned that this genus and the Bathergoid Moliophobius are the only living genera of Rodents with a cheekteeth
 premolars shed hefore the posterior molars are cut as a rule. The upper cheekteeth are tolerably similar to those of Ctenolactws, but in addition to the shallow
outer open fold there is a very small imner fold. 'The lower checkteeth are more complicated than in other members of the family; there are two sharp wellmarked inner fulds, and one outer one.

Form more or less (iuncapig-like. Fur soft. Digits of forefoot four, subequal, the claws not laree. Digits of hindfoot four, the two inner digits with well-developed brush of comb-like hristles, the outer digits with similar structure rather kess developed. Ilindfoot relatively narrow; tail bushy, a little longer than hindfoot.

Pocock, writing of this genus and Ctonoduct $/$ lus, states: "Assuming that their cars are similar, these two genera differ markedly not only from all the llystricomorphs but from all other Rodents known to me in the structure of this organ."
forms examined: spekei.
List of Nialed Foras
1 PKCTINATOR ふPENEI SPEKEI, Blyth
1855. Journ. Asiat. Sne. Bengal, X゙XIV, p. 294, pl. II, fig. I.
somaliland, II $40^{\circ} \mathrm{N}$.
$\therefore$ PICTINATOR SPEKEI DIRRIDIONALIS, de Beauษ
1922. Atti. Soc. Ital. Sci. Nat. 6i, P. 27.

Dolo, somaliland.
3. Píc TK
1934. Atti, Soc. Ital. Sci, Nat. 73, P. 293.

Assab, Eritrea.

## Genus 2. CTENOU)ACTYLUS, Gray

1828. Ctenodactylis, Gray, Spicil. Zuol., p. 10.
'T'yer Srecis - Ctonodactylus massonii, Gray.
Range,-Northern Africa: Noroceo, Algeria and Tripoli.
Nember of Forms.-Four.
Charactars.- Checktecth ; at full dentition. In nearly all specimens
examined there are only : hut as pointed out by lataste, the premolar is present, though shed early. This author takes from a series of specimens sewn skulls, each with different teeth in place, and describes first the newly-horn, with two teeth, P. 4 and M.I, the teeth deseribed as tuherculated; next a young skull, with the four teeth in place, the posterior one being cut; the next stage with only three, the front premolar having been shed; then with the same teeth present, hut P. 4 heing cut; then with the four teeth in place; then an older animal with three tecth hut with a scar marking where the premolar had heen shed; finally the adult, with three cheektecth only, and all trace of P'. lost.

Checkteeth simple, reminiseent to a certain degree of those of Ctomomy; whe no inner fold in the upper series, but with a shallow widely open outer


Fig. ifi. Ctevonactylis gusdi gundi, Rothman.
B. 11 No. 9 -. 0.9 .19 . ; $1 \frac{1}{2}$


Fig. iqz. Ctevonactriles glivi gtwot, Rothman.
B.M1. 入口. 9-.0.0.19. - : 13.
fold in all teeth. Lower checktecth with one widely open wuter and inner re-entrant fold in all tereth.

Palate longer than in P'stimutor. Bultae and mastoids considerably intated, most so in C. arali.

Baternally like Pectimator escept that the tail is considerably shorter than the hindfont, and almost ohsolete.

These animals are described as being born hairy, and not blind, and able to run at birth.


FiG. 143. Ctexodactyles glxdi stam, Rothman.


Two species are at present admitted, which as indicated above differ in the size of the mastuids and bullae; whether such differences would be valid in the event of a really large number of specimens coming to hand is at the moment not known.

Forms examined: gumdi, massumii, zali.

> List uf Named Furis

1. ("1LNOH)RC"YELA GLNDI GLNDI, Rothman 1776. Schlozer's Briefwechsel, P. 339.
(Gharıan, 8o km, suuth of Tripoli.
Synonym: arabicus, Shaw, Gen. Zool., II, ison, p. 123.
2. CTINODBCTYILSGUND MASBANII, (fray

182S. Spicil. Zool., P. 10, pl. 10.
Biskra, south shope of Atlas Mountams.

3．（＂IENODACTYILS VAl．I，＂Thomas
1902．Proc．Zool．Soc．London，p， 11.
Wadi Bey，north－west of Bonjem，Tripoli．
4．（＂IENODAC＂Y＇leLs J6H．EALDI，Hem de Balsac
1936．Suppl．I3ull．Biol．de France et de Belgique，Paris，21，p． 315. Bemi Ounif，Jebel Nelias，Algeria．
Genus 3. \IASiOLTIERA, Lataste

1885．Massol＇tier．，Lataste，Le Vaturaliste，no．3．p． 21.
＇Type Species．－．Massoutiera mabbi，Lataste．
Range－－Africa：Central and Western Sahara．
Number of Forms．－Three．
Characters．－Like Ctenodacty／us，but mastoids typically more inflated，and checktecth less simplified；those of upper series divided into two lobes by narrow folds，the folds meeting in the middle of the teeth，the structure in general reminiscent of that present in the South American Aconaemys．M． 3 the largest tooth．Lower cheekteeth with the same elements， but rather more angular，the folds more open．Tail less reduced than in Ctenodactylus，about as long as hindfoot；bushy；other essential external characters as in Ctenodactylus．

Three species are admitted in this genus at present：harterti，with mastoids and bullae at maximum inflation for the family；rothschildi，in which the bullae are more moderate；and maabi，in which they are smallest for the genus，but still relatively very large．Each appears to be known，so far as the London collection is representative，by a comparatively small number of specimens．

Forms examined：harterti，rothschildi，mzabi．

## List of Named Forais

1．MASSOL＇TIERA MZAB1，I atastし
188i．Bull．Soc．Zool．France，VI，p． 314.
Ghardaia，Agerian Sahara．
2．MASSOLTIERA ROTHACHILDI，Thomas \＆Hinton
1921．Nov，Zool．，SXVIIJ．p．if．
Mount Baguezan，Asben，Sahara．
3．MASSOL＂I＇IERA HARTERTI，Thomas
1913．Nov．Zool．，SX゙，p． 31.
Oued Mya，south of Fort Mirabel，Western Sahara，about $25^{\circ} 30^{\prime}$ N． 3 E．
Genus \＆FELOVIA，lataste
1886．Felovia，Lataste，Le Naturaliste，iii，p． 287.
Type Species．－Felozia ciae，Lataste．
Ravge．－Known from Senegal（N゙．－W．Africa）．
Nember of Forms．－Onc．
$3^{2}$ r－Ining ludents -1

Characters--Like Massoutiera, but hullae and mastoids considerably less inflated, appearing on the top of the skull to a lesser degrec than in any other member of the family.

Cheekteeth differing from Massontiera in that the outer fold of the upper series remains widely open. In the lower series $\lambda 1.3$ has a short backwardly pointing heel. The upper incisors are faintly grooved. Externally like Massoutiera.

Remarks.- Though closely allied to Massoutiera, the differences indicated above seem sufficient to warrant the retention of this genus.
Forms examined: rout $^{\text {. }}$

## Lett of Named Forms

1. FELOXI. VAE Lataste
2. Le Naturaliste, iii, p. 287.

Felou, Medina district, Upper Senegal River, Senegal.
'The references and type localities to all named forms of this family have been collected for me by Mr. R. W. Ilayman.

The Family Ctenodactylidae is known from the Plivene, from the Nediterranean region. Pectinator has heen described fossil from the Miocene of India.

## CTENODACTYLIDAE:

## SPECIAL HORKS OF REFERENCE

Tullbere, Nova Acta Regiale Soc. Sci. Upsaliensis, XVIII, ser. 3, no. 1. 1899 . (Ctenudacty/us).
Peters, Contribution to the knowledge of Pectinator, a genus of Rodent Mammalia from North-eastern Africa: Trans. Zool. Soc. London, VIl, p. 397, 1871.
Lataste, Le Naturaliste, 1885 , p. i. Sur le systéme dentare du uenre Ctenodacty/us, Gray.
St. Legfr, Keyy to Famhes and Genera uf African Rodenta: I'roc. Zonl. Soc. London, 1931, P. 978.

## Superfamily DIPODOIDAE

This contains, as here understood, one family, the Dipodidae, with subfamilies Sicistinac, Zapodinae, Cardiocraniinae, Euchoreutinae, and Dipodinae, the relationships and characters of which are fully discussed below:

## Family DIPODIDAE

1896. 'Ihomas: Jyonorpha, part: Family Dipodidate Subfamılies Sminthmae
( sicistinac), Zapodnat, and Dipodinat.
1897. Tullberg: Mionsurplia: Dipodifurmes, Family Dipodudae.
1898. Miller \& Gidley: Superfamily Dipono1dat: Family Zapodidae (Subfamilies Sicostinae, Therusomynae (frossil), and Zapodinac); Family Dipodidae (Subfamhes Protoptychinae (fossil), and Dipodinae).
1899. Winge: Famly Dipodilae, part (includes Spalax): Dipodini.
1900. Weber: Dipodoidea: lamily Sicistidae (Sicista only), and Family Dipodidae.

Geographical Distribition.-llolarctic region: Europe from Norway, Denmark, Ilungary and Bulgaria, eastwards across Asia south to Kashmir, Syechuan, Afghanistan, Arabial cast to Sakhalin. Africa, northern, from Senegambia and Morocco to Exypt and Somaliland; North America from Alaska to the Atlantic coast, covering the greater part of Canada and the United States but evidently not occurring in Mexico.

Nilaber of Genera.-Fifteen are here retained, based as far as possible on Vinogradov's papers on the family. "The only modifications I make are that licarturus is here considered a synonym of Allactaga; and that .Vapaeozapus and Eozupus are, following American authors, here gisen full generic rank, chiefly on account of their dental peculiarities.

Characters.-Infraorbital foramen greatly enlarged for muscle transmission; zegomatic phate narrow and remaining completely below it; mandible weak, the angular process not distorted outwards, this part of the jaw frequently with a perforation present.

Dental formula i. $\frac{1}{1}, \mathrm{c} . \frac{4}{n}, \mathrm{p} . \frac{1}{6}$ or $\frac{1}{n}, \mathrm{~m} . \frac{3}{3}=16$ or I 8 . When present, the extra premolar usually very small. It should be noted that in a skull in the British Dluseum of Allactaga elater there is a minute extra tooth at the back of the series. 'This might suggest that apparently, as in Muridae, reduction has taken place from behind so that the formula might be more correctly written as $\mathrm{p} . \frac{2}{1}$ or $\frac{1}{3}, \mathrm{~m}$. $\frac{2}{2}$. But for consenience I adopt the notation given above.

Cheekteeth rooted, usually cuspidate, with broad re-entrant folds, the pattern often reminiscent of that of Cricetinae; in /apodinae tending to hecome flatcrowned, in which ease the re-entrant angles in progressive forms become narrow.

Tibia and fibula fused high on the leg, the fibula reduced, thread-like.
Externally showing a progressive serics of adaptations towards hipedal saltatorial life, except in the genus Sicista; at highest development more specialized for saltatorial life than in any other Rodents, the three central metatarsal bones fusing to form a cannonbone (Dipodinae (imcluding Allactaga group), Euchoreutinae). Some of the cervical vertebrae tend to become fused in Dipodinac. Zygoma in progressive forms divided into two portions, a horizontal and a vertical, these portions forming a sharp angle with each other. Infraorbital foramen ahways with a separate canal for nerve-transmission. Incisors compressed, frequently grooved. Hindfoot with hallux reduced or absent; three functional digits only present in all members of the family except Cardiocranius (not seen), Sicista, and the Zapodinat. In progressive genera, skull extremely specialized, by modification of zygomatic region, as indicated above, broadening of frontals and still more of hraincase, and in certain abnormal cases by extreme inflation of mastoids and bultate.

Remarks.- The Dipodidae have frequently been referred to (Forsyth Major, Winge, etc.), as being the forerunners of the Muridae; in the opinion of Forsyth Major evidently they are to be considered more primitive than the Muridae.

All members of the present family with the exception of Sicista and probably Zapus seem to me to be so very much more highly specialized than any member of the Muridae or any momber of the Superfamily Nuroidae as here understood, in so many ways, that I very much question if this assumption is correct, and would regard them as at most parallel offshoots of a common ancestor in which the present group has become much more highly developed.

Divisions.-In Vinogradow's earlier paper, on the genital organs of the Dipodidac, he recognizes two families, /apodidae and Dipodidae, and seven suhfamilies. In his later paper, on cranial characters, he states that the Zapodidae are best referred to the Dipodidae, and he reduces his subfamilies to five, hy referring Salpingotus to the Cardiocraniinae, and Sicista to the Zapodinae. His classification is in the main followed, though I prefer to keep Sicista apart as type of a subfamily from the Zapodinae, and I think that the Allactaginae and Dipodinae of Vinogradov, though sharply separated as "groups," have too many characters in common for it to be necessary to refer them to separate suhfamilies.

Miller \& Gidley, and many American authors, referred the Zapodinae to a separate family chiefly on account of the lack of fusion of the three central metatarsals of the hindfoot. The discovery that the metatarsals are free in the exceedingly rare Palaearctic Pygmy Jerboas, Salpingotus and Cardiocranius is of great interest, and seems to render this course no longer necessary, striking as the differences are between the specialized fused metatarsals of higher members of the group and the more normal lower type found in Sicista, Zapodinac, and Cardiocraniinae.

Salpingotus and Cardiocranius appear to be true members of the Dipodidae as currently understood, agreeing with the higher forms, as far as one reads, in dental structure, foreshadowing them in the structure of their zygoma, and even exceeding them in inflation of the bullae and mastoids.

Euchorcutes, on the other hand, agreeing with Allactaga and Dipus in the fusion of the metatarsals, presents several cranial resemblances to the Zapodinae, as, for instance, the normal zygoma.

It would seem therefore that there are two alternatives, to recognize three families, based on metatarsal structure alone, the Zapodidae. Cardiocraniidae, and Dipodidae, the last including Euchoreutes, or to unite them altogether as a family, as do most Russian authors of to-day. Personally 1 am in agrecment with the latter course. It must be noted, however, that the differences between the most generalized member of the present group, Sicista, and the most specialized member, say faculus or Allactaga, are greater than between those of the lowest and highest members of the other famities in the Order.

According to 'Tullberg the malleus and incus of Sicista agree with or resemble those of Cricetus and the Muridae, but those of Zapus differ not only from Sicista but also from Allactaga and Yaculus.

## Key to the Subfanilles of Dipodidae

The three central metatarsal bones not fused to form cannonbone.
Auditory bullae not inflated, relatively small. Jugal slanting gradually upwards to the lachrymal, zygoma simple.
Checkteeth brachyodont, cuspidate, quadritubercular, with moderately marked re-entrant folds, the teeth not showing tendency to become flaterowned. Hindfoot not lengthened; externally not specialized for saltatorial life. Subfamily Sicistinae
(Sicista)
Cheekteeth semihypsodont, not quadritubercular; primitively with strongly marked re-entrant folds; showing a tendency to become flatcrowned, in which case the re-entrant folds isolate on crown surface, or become narrowed. External form considerably modified for saltatorial life, the hindfoot lengthened.

Subfamily Zapodinae
(Eozapus, Zapus, Napaeozapus)
Auditory bullae and mastoids abnormally inflated, about at maximum development for the whole Order; occupying about a third of upper surface of skull. Jugal in two portions, a horizontal and a vertical, these portions connected by a curvature. (External form saltatorial.) Subfamily Cardiocraniinae (Cardiocranius (not seen), Salpingotus)
The three central metatarsal bones fused to form a cannonbone.
Jugal slanting gradually upwards towards lachrymal, the zygoma simple; cheekteeth with extremely high cusps and shallow re-entrant folds; M. 3 vestigial (so far as ascertainable); skull narrowed at a point considerably behind lachrymals; rostrum elongated. (Ear abnormally enlarged; mastoids well inflated.)

Subfamily Euchoreutivae (Euchorentes)
Jugal in two portions, a horizontal and a vertical, these portions forming a sharp angle with each other, and not connected by a curvature. Cheekteeth with moderate or low cusps, and wellmarked re-entrant folds. 11.3 not vestigial. Skull not narrowed, or very slightly so immediately behind lachrymals; rostrum not elongated. (Ear less enlarged; mastoids well to extremely inflated.)

Subfamily Dipodisae
Mastoids and bullac little inflated (comparatively); upper incisors pro-odont; ears usually larger; functionless lateral digits of hindfoot not suppressed; infraorbital foramen more widely open, and anterior vertical portion of jugal not greatly broadened; os penisabsent (Vinogradow). Allactaga Group(Allactagae)
(Allactaga, Alactagulus, Pigeretmus)

Thastoids and bullae considerably to extremely inflated; upper incisors not pro-odont ; cars usually smaller: lateral digits of hindfoot suppressed; infraorhital foramen less widely open, and anterior vertical portion of zygoma greatly broadened; os penis present ( Vinogratov). Dipus (iroup (Dipodis) (Paradipus, Dipus, Scirtopoda, Yaculus, Eremodipus (not seen))

## Suhfamily SICISTINAE

Gfographical Distrebttion,-Palacarctic: Central Norway, Denmark, Finland, Eastern Roumania, Bulgaria, Itungary; European Russia (Ckraine, Crimea, the Caucasus; surroundings of leningrad, Hoscow, former Tver gove, lower part of Kiver Pechora, former Archangel district, North ('ral); Asiatic Russia; Kazakstan east on former Kusnetzk, Krannoiar, Minusmsk and lrkutsk districts, Altai; East coast Lake Baikal; Tianshan mountains: Sakhalin, and Ussuri region (all Russian localities as quoted by Vinogrador, 1933). Also known from Chinese Turkestan, Xanchuria, Szechuan, Kansu, Kashmir.

Neaber of Gidrera - One.
Characters.-As indicated in the above key. Skull little specialized; braincase rounded; hullae relatively small; upper and lower zygonatic roots above one another; jugal slanting gradually towards lachrymal, hut not in contact with it; rostrum modetately long. External form Murine, limbs not lengthened, not modified for saltatorial life. Size very small. Checkteeth 责.

As compared with Graphiurus and Deomys, the unly two genera incheded here in the Nlurvidae which present a similar arrangement of the zegomatic plate and infraorbital foramen, it appears that the infraorbital foramen of the present genus is relatively more widely open, and shaped differently, being considerably hroader belon than in either of the two genera mentioned above, and more or less triangular in shape. The infraorhital foramen of Zapus agrees essentially with that of Sicista.

> Cionus i. Slelsta, Gray
1827. Sucleta, Ciray, Ciriffith's Anm, Kingd., V, p. 227.
1540. Sminthr, Nathusus, A.V. Nordmann in Demidnff Vos. Russie, int, p. 49. Sminthus lariger. Nathusus.
'TYpy Speries - Thus subtilis, Pallas.
Ravge.- Is in the subfamily Sicistinae.
Number of Forms.- About seventeen.
Characters-Frontals constricted at considerable distance behind lachrymals, degree of constriction moderate. Palate projecting beyond 11.3 , terminating in a spinous process, the palate broad. Nasals not projecting beyond premaxillat. Skull without supraorhital ridges. Incisive foramina large, well open, extending about to toothrow.


Fig. fft. Sicista subtilis loriger, Nathusius. B.M1. No. 12.12.17.13. : 4.



> [3 \1. \o. 12.12.1\%.13. ; f

I'. 4 very small; M. 3 small. M.I and M.2 with four main cusps, the outer of which tend to be larger than the inner, the cusps, which are situated roughly at the corners of the teeth, separated by relatively wide folds. The cusps are evidently long retaind, and the general effeet is complex. Lower molars like those of the upper series, but $M .3$ less reduced, and the folds separating the cusps appear as a relatively more important element in the thoth. The general dental effect is reminiscent to a degree of that present in Cricetimae.

Incisors not grooved. Nandible without per-


Fic. 146
Sicista sibtilis lurigir. (Checkteeth: シり. foration in the angular process.

Size very small indeed, under 100 mm . head and body kength as far as seen. 'Thail considerably longer than head and body, moderately haired. Forefont without peculiarities. Hindfoot with very short hallux, D. 5 somewhat reduced, the foot very narow.

There are 8 mammae in a specimen of $S$. norvegica given to me by Mr. J. I. ChaworthMusters, who tells me that this species hibernates for a considerable portion of the year in Norway. I am much obliged to Mr. Chaworth-Musters for much information concerning this genus.
Forms seen: betulina, caudata, concolor, leathemi, loriser, montuna, norzegica, subtilis, tianschanica, tıĩona.

Two groups are currently recognized, those species in which there is a middorsal stripe present, typified by subtilis, and those in which this is absent, typified by concolor.

The synonymy of the subtilis group has been published by ChaworthMusters, Ann. Mag. Nat. Hist. ser. 10, vol. xiv, p. 554, 1934; in this paper the range of some of the races will he found.
$S$. betulina differs from $S$. subtilis in the relatively longer hindfoot and tail. The concolor group appears to consist of forms which are rather doultfully separable from each other as full species, with the exception of napaea, which was described as near flarus, but which, according to Vinogradur, has many characters which separate it from the concolor group, including the genitalia.

## List of Named Forms

(The references and type localities for all members of the family Dipodidae are the work of Mr. G. W. C. Itolt.)

## Not allocated to group

[^16]
## subtilis Group


1773．Reise，i．，p． 705.
Nouth of Ural River，Siberia．
Synonym：ragus，Pallas，1778，Nov．Spec．Quadr．Glir，Ord．p．327． Russua．
lineatus，Lichtenstcin，I 823，Eversmann＇s Reis．Buch．，p． 123.
3．SICISTA SLBTILIS LORICBER，Nathusius
1840．Nordm．Voy．Demidoff，iii，p． 49.
Odessa，Gouth Russia．
Synonym：nordmami，Kevserline \＆IBasius，18；0，Wirb．Europ．X， p． $3^{8 .}$ ．Crimea．

4．SICISTA SCBTHLIS PALLIDA，kanchkaroff，ex Vinogradov 1926．Rodents of Furkestan，p．II，in C＇shekistan Exp．Plant．Prot．

Djetysu，＇Turkestan．
5．SICISTA SLBTILIS＇IRIZONA，Peteny
1882．Termeszetrajzi Füzetek，V＇，p．103．
I Iungary．
With alternatives interzonus，interstriatus，tripartitus，zirgulosus and tristriatus：same reforence．
n．AICISTA SUBTILIS SHBLRICA，Ognex
1935．Abstr．Works，Zool．Inst．Nuscow，2，P．54．
Central part of Russian Altai．
7．SClSTA SCBTILIS SEVFRFZOW゙1，（gnew
1935．Abstr．Works．Zool．Inst．Moscow，2，p． 54.
Kamennaja Stuppe，Bobrow，Vuronesh，South Russia．

1778．Nov．Spec．Quad．Glir．Ord．，p． 90.
Banks of River Ischim，Siberia．
9．SICISTA BETULIN゙A MON゙TAN゙A，Néhely
1913．Allattani kozlem，12，p． 69.
Zuberecz，Hungary．
10．SICIS゙TA BFTTLLINA NTRANDI，Formozov
1931．Folia Zool．Hydrob．Riga，3，p． 79.
Caucasus，Ortschaft Irerá Höhe，2，100 m．Distrikt Utschkulak， Ǩaratschai．

1927．Ann．Nar．Nat．Hist．9，SlS， O .542
Surendal，Nordmore，Nornay．

## concolor Group

12．SCISTA（ONCOLOR，Buchner
1892. Mél．Biol．Acad．St．P＇etersb．，xiii，p． 268.

Si－ning，Karısu，China．
Synonym：（？）zeigoldi，Jacobi，1023．Wbh．Mus．Dresden，16，no．1，p． 15. Ilsuesehaw，Wiest Chma．

Iz SICISTA IFATHETH, Thomas
1803. Ann. Mag. Nat. M1st. 6, XI, p. 184. Krishnece Valley, Wardwan, Kashmir.
14 SIClSTA 1IAVES, True
i894. Proc. LT.S. Nat. Mus. Washington, SVVI, p. 341.
K゙ashmir.
I5 SICISTA TlANECHANEX, Batensty
1903. Ann. Nus, St Jentersb., vai, p. 17.

Thian Shan, Chinese Turkestan.
ith SICISTA CALJATA, Thomas
1907. Proc. Zool. Suc. London, p. 413 .

Korsatuff, Saghalien.
17. SIClsiTA CALCASICA, Vinogradov
1925. Pruc Zool. Soc. Londun, p. 58t.

Kuban, North Caucasus.

## Subfamily ZAPODINAE

Geographical Distribution.-'The greater part of Canada and the United States; China, states of Kansuand Szechuan.
Number of Gevera.-'l'hrec.
Characters.-.Skull not essentially different from the Sicistinae; interorbital constriction moderate; jugal in contact with lachrymal; anterior end of nasals projecting beyond premaxillae; palate not continued backwards behind M.3; and not terminating in spinous process. Cheekteeth semihypsodont, becoming flaterowned in American genera, but with relatively high cusps in the Asiatic genus, which has also wide re-entrant folds. External form considerably modified for bipedal saltatorial life; hindlimbs and tail lengthened. Cheekteeth $\frac{4}{3}$. Bullae relatively small, not inflated. (Metatarsals normal. Zygoma simple.)

## Key to the Genera of Zapodinae

Checktecth with high cusps and broad re-entrant folds, showing no sign of hecoming flaterowned (so far as ascertainable).

Eozapus
Checkteeth with low cusps and moderate re-entrant folds, the folds considerably narmwed; or the teeth hecoming flatcrowned.
Checkteeth nearly completely flaterowned, with numerous narrow isolated islands on crown surface in adult.

Napaeozapus
Cheektecth less flaterowned, without numerous small isolated islands on crown surface in adult.

Zapus

Genus i. EOZAPUS, Prehle
1899. Eozapl's, Preble, North Amer. Fauna, 0. 15. p. 37.

Type spreis.-Zapus setchuanus, Pousargues.
Ravge--China: Szechuan and Kansu.
Nimblar of Forms.-G'wo.
Ciaracters.--Like Zapus, next to be described, but with, in the three skulls examined, a considerably different dental pattern. The cheektecth have very wide re-entrant folds separating high cusps and ridges. Four outer, one inner folds in the upper main teeth (XI.1 and M1.2); in the lower teeth there is one very wide main outer fold, and a small extra one in front of it; three inner folds, and in M.i also an anterior fold. 'leeth more or less prismatie, showing no sign of becoming flaterowned; it would be desirable to examine a much larger number before giving any guarantee that these characters are constant. In the upper jaw, N1.3 is considerably reduced; I'f is present, and minute.

Forms seen: setchuames, zicinus.

List of Named Forms

1. EOZAPL AETCHUANL'S SETCHLANLS, Pousarques
2. Bull. Mus. Paris, no. 2, p. 13.

Szechuan, China.
2. EOZAPL'S SETCHUANU'S VICINLS, Thomas
1912. Ann. Mag. Nat. Hist. \&, N. p. 402.

Kansu, China; 46 miles south-east of Tao-chou.

## Genus 2. KAPUS, Coues

1876. Bull. U.S. Geol. \& Geogr. Surv. Terr., ser. 2, vol. 1, p. 253.

Type Species.-Dipus hudsonius, Zimmermann.
Range.-Canada and the Itnited States; forms named from Alaska, Hudson Bay, I abrador, Saskatchewan, British Columbia, Oregon, Idaho, Wyoming, California, Nevada, Utah, Colorado, New Mexico, Pennsylvania.

Number of Forms.-Twenty-six.
Characters.-Superior margin of canal for nerve-transmission frequently fused to maxilla in adult. Angular portion of mandible with no perforation, strongly ridged for muscle attachment, the inner side of the angular portion pulled inwards, after the manner of that of Aplodontia though less extreme than in that genus. Incisive foramina large, well open, generally extending to toothrows. Upper incisors one-grooved, lower incisors plain.

Cleekteeth ${ }_{3}^{4}$, the premolar minute; M. smaller than other molars. In the $^{2}$ upper series, there is one main fold internally, curving forwards, and apparently originally four outer folds, some of which tend to isolate as islands in the adult. The folds are wider and more definite than in Vapoeozapus, and never so far as seen isolate to the same extent. Lower molars with two outer, four inner folds.


Fig. 147. Zapts hudsonits hedsunics, Zimmermann.
B.МI No. $95.1,795,3 ; 31$.


Fig. iqf. Zapts hedsonics humsills, Zmmermann. B. M. No. 155.1.7.95, 3; 3!.

Mammac normally 8 (Preble). Ilindlimbs elongated, the hindfeet narrow, with the three central digits long, D. 5 reaching about to base of D.4, the hallux much shortened. Forefoot narrow; 1). 3 and D. 4 slightly Jonger than D. 2 and D.5: pollex rudimentary. 'lail very long, moderately or poorly haired, the scales visible: a small pencil at the end. Check-pouches present.

Forms seen: hudsomius, trinotatus, campestris, ladas.
'The genus is revised by l'reble (North Amer. Fauna, ${ }^{15}, \mathrm{p} .13,1899$ ). All species admitted appear closely allied to each other.


Fig. f49. Zaples hidsonits hedsonits, Zimmermann.
Checkteth: B.M. No. 95 1.7.95, 3; • 15 .

## List of Named Forms

1. ZAPUS HLDSONILS HLDGONIL'S, Zimmermann
2. Geogr. Gesch., vol. 2. p. 358.

Hudson Ray.
Synonym: hudsonius hardyi, Batchelder, Proc. New England Zool. Club, 1, f. 5, i899. Mount Desert 1sland, Hancock County, Mlaine.
Trouessart quotes as synonyms:
longipes, Zimmermann, l'ennants Arctic Zool., 1787, p. 131. canadensis, Davies, 'Trans. Linn. Soc., 1798, IV', p. 157.
labradorius, Turton, 1806, Syst. Nat., 1, p. 99.
nemoralis. Geoffroy, Dict. Class. Hist. Nat., V1I, p. 323, 1825.
daziesi and soricinus, Rafinesque, Somiol., p. It. isio.
leomurus and megalops. Rafinesque, Amer. Monthly Mag., 1818, p. 446 .
microcephahus, Ilarlan. 1839 . Proc. Zool. Soc. London, VIl, P. 1.
2. ZAPL'S HUDSONIL'S LADAS, Bangs
1899. Proc. New England Zool. Cluh, 1, p. io.

Rigolet, llamiton Inlet, labrador, Canada.

1897．Proc．Biol．Soc．Washongtom，Xl，p． 223.
Cakutat Bay，Alaska．
4．Z．APL゙\＆HLDSONHCS AMERICANLS，Barton
1790．Trans．Amer．Philos．Soc．，IV，p．II5．
Near Phadedeha，Pennsylyania．
5．ZAPLA HLDSONLEA CAMPESTRIA，Preble
1899．North Ammer．Founa，no．15，p． 20. Betar 1 ，odece Mountains，Cronk County，Wyoming．

1897．Proc．Bol，Soc．Washington，Xil，proz． Kamloops．Bratish Columba，Conada．

7．ZAPCS PRINCIPS PRINCEPS．Allen
1803．Bull．Aner．Mus，Nat．IIst．，V，p． 71. Florida，La Ilata County，Colorado．
s．Z．APES PRIN（IPタ MINOR，Prehle
1899．North Amer．Falma，no．15，p． 23. Wincrard，Carlton Ilouse，Saskatchewan，Canada．
19．ZAPUS PRINEEPS（TREGON゙くら，Preble
1899．North Amer．Fauna，no．15，p．24． Elgin，Unın County゙，Oregon．
10．ZAPC＇s PRINCEPS CINERELS，Hall
193i．Univ．Calif．Publ．Zool，SX̌VII，p． 7.
Pine Canyon，Raft Raver Mountains，Boxelder County，Utah．
i1．ZAPCS PRINCEPS CLRTATLS，Hall
1931．Univ．Calif．Iubl．Znol．XXXVII，p． 7.
Big Creck，Ilumboldt County，Nevada．
12．ZAICS PRINCEPS PALATINUS，Hall
1931．Univ．Cahif．I＇ubl．Zool．X．XXVII，p． 8. Wisconsm Creek Toyabe Jomatains，Nye County，Nevada．
13．ZAPC＇s PRINCEPG KOOFENAYENSIS，Anderson
1933．Bull．Nat．Jius．Canada，no．70，P．ios．
Jiritish Columbia，Canada，near summat of Green Jountam，head of Biurphy Crete，about 10 moles north of Rossland West Kootenay district．
14．ZAPC＇S PRINCLPG DAFOFANIS，Daves
1934．Journ．Mamm．Baltimort，15，p．221．
Talley Countr，Idaho， 5 mies east of Warm Lake．
15．ZAUCS PRLNCEP L＂IAHEXSIS，Hall
1934．Occ．Pap．Nus．Zool．XIach．，no．296，p． 3.
Beater Creek，Mamila，Daggett County，Ltah．
1t．ZAPLS MAJOR，Preble
1899．North Amer．Fauma，no．35，p．24．
Warner Mountams，Lake County，Oregon．
17．ZAPLS NEVADENSIS，Preble
1890．North Amer．Fauna，no．15．p． 25.
Ruby Mountans，Elko County，Nevada．

18．ZAPL゙S TRLNOTA＂IUS TRINOTATLS，Rhoads
1894．Proc．Acad．Nat．Sci．Philadelphia，p． 421.
Lulu Island，Fraser River，British Columhia，Canada．
Synonym：imperator，Elliot， 1899 ，Field Columb．Nus．Publ．30， 2001. ser．，vol．I，p．22\％．Sicg＇s Range，Elwah R．，Clallam County，Washington．
19．ZAPL＇TRINOTATLS ALIEXI，EHot
1898．Field Columb．Nlus．Publ．27，zool．Ser．，vol．1，p． 212.
Pyramid Peak，Lake＇l＇ahoe，Eldorado County，California．
20．ZAPL＇T TRINOTATLS ELREKA，Howell
1920．Univ．Calif．Publ．Zool．，XXII，p． 229.
Fair Oaks，Humboldt County，California．
21．ZAPLS LLTEUS LUTELSA，Miller
1911．Proc．Biol．Soc．Washington，X゙心IV，p． 253.
Espanola，Santa Fe County，New Nexico．
22．ZAPUS IUTELS ALSTRALIS，Bailey
1913．Proc．Biol．Soc．Washıngton，X゙エ゙V1，p． 132.
Socorro，Socorro County，New Mexico．
23．ZAPUS MON゙IANUS，Merriam
1897．Proc．Biol．Soc．Washington，NI，p． 104.
Crater Lake，Nount Nazama，Klamath County，Oregon．
24．7APL＇S ORARIUS，Prehle
1899．North Amer．Fauna，no．15，p． 29.
Point Reyes，Marin County；California．
25．7．APC＇S PACIFICL゙s，Merriam
s897．Proc．Biol．Soc．Washington，XI，p． 104.
Prospect，Rogue River Valley，Jackson County，Oregon．
26．ZAPUS SALTATOR，Allen
1899．Bull．Amer．Nus．Nat．Hist．，NII，p． 3.
Telegraph Creek，Stikine River，British Columbia，Canada．

## Genus 3．NAPAEOZAPUS，Preble

1899．Napaeozapus，Preble，North Amer．Fauna，no．15，p． 33.
Type Species．－Zapus insignis，Xiller．
Range．－Eastern North America；forms described from New Brunswick， Ontario，Wisconsin and North Carolina．
Nember of Forms．－Four．
Characters．－Like Zapus，hut M． 2 appearing relatively larger，and dental pattern differing；the tecth nearly completely flatcrowned， the folds extremely narrow，isolating and dividing on the surface of the tonth， so that there mav be ten or more small islands on the tooth surface in adult． Lower molars similar to the upper series．P． 4 absent．Interorbital constriction greater than Zapus（Preble）．

Essential external characters as Zapus（but tail with white tip）．

Remarrs.--The dental peculiarities of these three types seem sufficient to warrant the retention of Eosapus and Napacozapus as full genera. 'The three types are well figured in Prehle's revision of $Z a p u s$. A much larger serics, however, would be welome, as comparatively few skulls are represented in Londen.

Forms seen: insignis.

## List of Named Formes

(Genus revised by Preble, North Amer. Jauna, nu. 15, p. 33, 1899.)

1591. Amer. Nat., NXV, p. 743.
kestigouche River, New Brunswick, Canada.

1S90. North Amer. Fauna, no. 15, p. 35.
Roan Mountain, Mitchill Crunty, North Carolina.

1899. North Amer. Fauma, no, 15, p. 36.

Penusula I larbour, north shore of Lake Superior, Ontario, Canada.

r919. Proc. Biol. Soc. Washngtm, XXXII, p. 9.
Crescent Lake, Oncida County, Wisconsin.

## Subfamily CARDIOCRANIINAE

Geograpuical. Distribution.-Central Asia: Northern 'libet, Mongolia (Gohi, Altai), and Afghanistan.
Number of Genera.-Tiwo.
Remaris.- The two genera included in this sulfamily are represented at the British Museum by only one hadly smashed skull, type of Salpingotus thomasi.

The important character in this sulfamily is that the three central metatarsal bones of the hindfoot are not fused, in which the genera agree with Zapodinae and Sicistinac, hut differ from Euchoreutinac and Diporlinae. They agree, however, with the higher Jerboas in that the bullae and mastoids are inflated, this inflation indeed lecing carried much further in this group than in any other Jerboas, according to figures published of the skulls; and in the general form of the zygoma, which differs from Euchoreutes but stands nearer the form found in Dipodinae in that there are already two portions, a horizontal and a vertical; hut these portions are connected by a curvature in Cardiocraniinae, and do not apparently form such a sharp angle with each other as they do in the Dipodinae. The cheektecth apparently also agree more with Dipodinae than with Zapodinae.

## Genus a. SALPINGOTUS, Vinogradov

1923. Salpingotus, Vinogradov, Kozlow " Mongolia \& Amdo," p. 540.

Type Spfeifs.-Salpingotus kozlozi, Vinogradov.

Kange.-Known from the Gohi desert, and Afghanistan.
Number of Forms.-'Thrce.
Characters.-"Hindfoot with three tocs and three not-ankylosed metatarsals. Bullate as in Cardiocranius. Zygomata broad in their anterior half, a process directed obliquely downwards and backwards and rising from the middle of each zygomatic arch. Jugal not reaching lachrymal. . . . Infraorbital foramen relatively narrower than in true Jerboas. Bony palate spreading far backwards, pterygoids very short. A horizontal process rising externally between angular and articular process of mandible. . . . Upper incisors without grooves. Checkteeth, P'. $\frac{1}{1}, \mathrm{M} . \frac{3}{3}$; . . . 'Toes covered with long curved hairs which form a thick brush" (Vinogradov).

The mandible as figured is strongly reminiscent of the formation found in Aplodontia.

The degree of development of the downwardiy projecting process on the zygomatic arch differs, I belicue, in the different species. 'The tail is described as very long in the type species, and normal, but shorter and more or kess of the thickened shape in crassicauda, which has a perforation in the angular portion of the mandible. S. thomasi belongs evidently to the thicktailed group. 'The mastoids and bullae are enormous, the mastoids occupying about a third of the upper surface of the skull.

According to Vinogradov, the "tubercular structure of molars is visible only in young and subadult specimens."

Forms seen: thomasi.

> Sist of Named Forms
> kozlozi Group

1. SAJPINGOTUS KOZLOTI, V'inogradov
2. Kozlow "Mongolia \& Amdo," P. 540.

Gobi, Nongolia (near the ruins of Khara-khoto).
crassicauda Group
2. SALPINGOTUS THOMASI, Vinoцrados
1928. Ann. Mag. Nat. Hist. ro, I, p. 373.

Afghanistan.
3. SALPINGOTLS CRASSICAITMA. Vinogrados
1924. Zool. Anzeiger, 61, p. 150.

Gobi Altai.
These forms are here treated as separate groups on account of the tail formation, which has elsewhere in this family been used as a generic character. Vinogradov suggests that $S$. crassicauda may ultimately have to form a new genus. The mammace of this species are quoted by him as p. 2-2: i. 2-2.

## Genus 2. CARDIOCRANIUS, Satunin

1903. Annuaire Mlus. St. l'etersb., vii, p. 5 Sz.

Type Species-C'ardiocramius paradowns, Satunin.
37 Lemer korlenth 1

Range-River Scharogol-dschin, in Nian Shan, Central Asia.
Ňliber of Foris.-One.
Remarks.-This genus is not represented at the British Thaseum. I am not including any genus I have not seen in my keys, as to endeavour to key an unexamined genus is ahways difficult, in the case of a Throid impossible.

Tinogrador has keyed the genera Salpingotus and Cardiocranius in cranial characters as follows:
" Infraorbital canal complete, its external wall being in contact with wall of maxilla. Zygoma with well-developed process rising from its middle and dircted downwards posteriorls. Anterior ends of nasals projecting beyond premaxillae. Palate bones considerably longer than upper toothrow, projecting unusually backwards.

SalpiNGOTLS
Infraorbital canal incomplete, its external plate not reaching wall of maxilla. Zygomatic arch simple, without any process rising from its middle. Anterior ends of nasals not projecting beyond premaxillae. Palate bones about as long as upper toothrows, not considerably projecting backwards.

Cardiocranils"
In addition to these differences, it may be noticed that in Cardiocranius, as described, there are five toes to the hindfoot, the outer toes placed higher up than the central three, the hallux considerably higher than D. 5 , and functionless. The tail is described as broad and flattened, like that of Pyeretmus. Cheekteeth ${ }^{4}$, considered in the original description to be similar to those of Dipus and Allactaga, having nothing in common with those of Euchorcutes. Jugal not reaching lachrymal. Apices of bullae in contact. Cpper incisors grooved. Mastoids enormous, as in Salpingotus, and evidently mandible strongly inflected, in a similar manner.

Buth Cardiocranius and Salpingotus are very small forms; Cardiocranius has a head and hody measurement of 73 mm . (type).

The genus is, I belicve, exceedingly rare, and still only known by a very few specimens, though first described over thirty years ago.

List of Named Foris

1. CARDIACRAXILS PARADONLS, Satumn
2. Annuaire Jus St. Petersb., vii, p. 584.

Nan Shan (Scharogol-dschin), Central Asia.

## Subfamily EUCHOREUTINAE

Gengraphical Distrieution.-China: known from Yarkand, Chinese 'Turkestan, and the Alashan desert (Inner Tongolia, bordering Kansu).

Number of Genera.-One.

Characters.- Hindfoot with three eentral metatarsals fused to form a cannonlone. Differing from the Dipodinae, with which it shares these characters, in cranial and dental characters.

Jugal slanting gradually up towards lachrymal; rostrum much clongated; frontals with constriction placed considerably behind the lachrymals (skull as a whole Iroad, and constriction noticeable but certainly not excessive, at any rate as compared with a typical Nurine); lachrymal small; bullac considerably inflated, their apices in contact, mastoids relatively large; mandible with perforation in angular process. Incisive foramina large, and a large second pair are situated between the toothrows. Ear ahnormally large. Os penis present (Vinogradov); skeleton of hindfoot as in Allactaga group (Vinogradov). Cheekteeth, described below, differing considerably in pattern from Dipodinae; M. 3 (so far as seen, and as figured by Vinngradov) vestigial.

## Genus 1. ELCIIOREUTES, Sclater

1890. Euchoreltes, Sclater, Proc. Zool. Soc. London, p. 610.

Type Species.-Euchoreutes naso, Sclater.
RaNge.-As in the subfamily Euchoreutinae.
Number of Forais.-Two.
Characters.-As indicated above. Zygomata very narrow. Jugal in contact with lachrymal. Nasals projecting beyond promaxillae. Incisors white, the upper ones plain. Palate broad, projecting beyond M.3, terminating in spinous process. Pterygoid fossae deep.

Cheektecth $\frac{4}{3}$, hypsodont, narrow. $\$ 1.3$ extremely reduced, simple, smaller than P.4. (Two skulls seen only). M.1 slightly larger than M.2, with four main cusps, cach cusp separated from its neighbours by a deep valley. Posterior part of teeth straight, not rounded. Lower teeth narrow, like the upper series in pattern, but M.i with an extra shallow re-entrant fold posterior to second inner cusp, and $\lambda .2$ with this peculiarity, and with a very small extra cusp, external, anteriorly.

Cusps of cheekteeth high.
Nammae $S$ (Sclater). Ears extremely elongated, appearing about half the lengtl of head and body. Snout clongated. 'Tail considerably longer than head and body, well haired, with a black and white brush at the end. Forelimbs short, foot with five digits, claws well developed. Hindfoot extremely elongated, narrow; five digits present, but only three reaching the ground. Fur long and soft.

Remarks.-Although agreeing with Dipodinae in the highly specialized character of the skeleton of the hindfoot, this genus differs so markedly from them in dental characters and also in the important character of the zygoma (in which it is transitionary towards Sicista and Zapodinae), that 1 think the subfamily Euchoreutinae must be retained.

Forms seen: naso.


Fif. igo. Elthoreltes vaso Naso, selater.

$$
\text { B.AI. No. } 94.11 .5 .6, \ldots 3
$$




$$
\text { B.M. N1). 'm.11.5.6, : } 3 \text {. }
$$

## List of Named Forms

1．ECCHOREUTFS NASO NASO，Sclater
1890．Proc．Zool．Soc．London，p．6io．
Yarkand，Chinese Turkestan．
2．ELCHORFUPES NASO ALASCIDANCLS，Howell
192S．Proc．Biol．Soc．Washington，XLJ，p． 42
Inncr Mongolia，Alashan desert， 100 miles north－west of Ningsta， Kansu．


Fig．152．Fichorettes Naso Naso，Sclater．
Cheektecth：B．XI No．92．II．5．6，；；II．

It may be noted that according to Vinogradow＇s latest work on the family， the three metatarsals of Euchoreutes are less completely fused than in the Allactaga group or in the Dipus group（Faune de L’URSS，Inst．Zool．Ac． Sci．URSS．1937，III，no．＋p．＋9，fig．5）．

## Subfamily DIPODINAE

Geggrapheal Distribltion．－．Africa ：Senegambia and Moroceo to Egypt and Somaliland；Europe，across southern Russia nearly to Roumanian border（Dnieper）．Asia Ninor，Persia，Arahia， Afghanistan，large portions of Russian Asia；Bahuchistan，Kashmir；China east to Mongolia and Chihli．

Number of Gixara－－Is here understond，there are eight genera in two generic groups，the equivalent of the Allactaginae and Dipodinac of Vinogrator．

Characters.- Jugal in two portions, a horizontal and a vertical, the portions forming a sharp angle with each other, and not connected by a curvature (compare Cardiocranimac). Lachrymal enlarged. Frontals broad, very rately showing any constriction; if this is present, it is very slight, and situated immediately behind the lachrymals. Functional digits of hindfoot 3 . Three central metatarsals fused to form a cannonbone. Bullae moderately or greatly inflated. Externally highly specialized for bipedal saltatorial life.
'The subfamily is here divided into two generic groups; a key to these groups has already heen given ( $1 P$ p. 563, 564).

## The Allactaga Group

Anterior vertical branch of the jugal not greatly broadened. Bullae feebly inflated, their apices not in contact. Anterior ends of nasals not reaching alveoli of upper incisors. Upper incisors not grooved, pro-odont. Ears large (larger than in Dipus group, but smaller than in Euchoreutinae). Digits of hindfoot five (four in one species of Allactaga), three only functional. Os penis absent.

## Key to the Genera of the Allactaga Group

Cheekteeth relatively complex; upper main teeth with three external folds, lower main teeth with three internal folds. Vertical branch of zygoma about as broad as horizontal branch. Allactaga
Cheekteeth simplified; in adult upper main teeth with only two external folds, M.z lower with only two external folds. Vertical branch of zygoma narrower than horizontal branch.
Tail longer than head and body, narrow, evenly round, tufted terminally. Margins of supraorbital less angular.

Alactagulus
'Tail shortened, flattened and thick throughout most of its length, not tufted terminally: Margins of supraorbital more angular.

Pygeretmus
Genus 1. ALLACTAGA, Cuvier
1836. Allactaga, Cuvier, Proc. Zool. Soc. London, p. i41.
1841. Scartcrus, Gloger, Gemeinn. Naturgesch, 1, p. Iob. Dipus tetradactylus, Lichtenstein.
1844. Scirtomys, Brandt, Bull. phys.-math. Ac. Sci. St. Petersb., II, p. 220. Dipus tetradactylus, Lichtenstein.
1841. Scirtetes, Wa;ner, Gelehrte Anz. k. bay. Ak. HViss. München, XII, p. 413. New name for Allactaga. Cuvier.
'Type Species.-Dipus alactaga, Olivier.
Range.-North Egypt; Mesopotamia; North Arabia; Asia Minor; the Caucasus, and southern European Russia (quoted by Vinogradov from former Cherniguv, Kursk, southern part of Tula, Riasan, Tambor, Pensa, southern part of Kazan, Samara, Ufa govts., Westwards to Dnieper; also Astrakhan and Kalmuck districts, and the Crimea); North Persia; throughout


Fig. 153. Allactaga ecphratica, Thomas. B.M. No. 5.7.2.12, 今: *2?


Fig. 154. Allactalia elphratica, 'Thomas.
B. MI, No. 5.7.2.12, ; ; 21 .

Russtan Turkestan and South-west Siberia to Semipalatinsk and the Altai; Ifehanistan, probahly Kashmir; the Altai Mountains; Persian Bahuchistan; Kanso1, Chinesc 'furkestan, Mongolia, Shansi, North Chihli, and Transbaikalia.

Nimber of Forsis- - Nout twenty-ninc.
Characters,-Fruntals hroad, braincase very broad. Lachrymal large. Bullace fechly inflated except in bulluta (not seen), and slighty less than usual in hotsom. Mastoids not appearing in superior aspect of skull, so far as seen. Incisive foramina relatively large; usually a wellmarked second pair present between the toothrows. Skull without supraorbital ridges. Infraorbital foramen very large indeed. Aandible with angular process perforated, and root of incisor forms process below and beside condyle.


Fig. 155. Allactaga el phratica, Thomas. Cheekteeth: B. M1. No. 5.7.2.12, 3; 8.

Jugal in two portions, a horizontal and a vertical, as in all higher Jerboas.
Cheektecth s. semiloypsodont, very complex; P.4 normally minute; 11.3 considerably reduced, but larger than the premolar except in the sibirica group. M.I and M.a each with three external re-entrant folds, the middle one of which is small, and each tooth with one internal fold. Sometimes the small middle cxternal fold may wear out, and the whole pattern ultimately becomes lost. Occasionally traces may be seen of a very small fourth extra outer fold in the posterior part of tooth. 1.3 with one inner, three outer folds when cut, apparently.

In the lower teeth, M. has one small front fold, three inner folds, and two outer ones, the middle inner one being small; $\mathrm{M}_{2} 2$ is like M.i hut without the anterior fold. M. 3 with one outer fold, and one or two inner ones, which wear out.

Size moderately small to largest of family. Vars very large, though not comparing with those of Viuchoreutes. Forefoot with five digits, the pollex short; claws well developed; hindfoot perissodactyle with three functional digits, and with two subequal outer digits placed high on the leg, not reaching the ground. 'fail longer than head and body, with a black and white brush terminally, round and thin (normal) throughout most of its length. The tail well haired. Hindlimb enormously elongated, the claws of the three central digits with large pad present under each claw.

Lyon states: "Allactaga has the cannonbone of Dipus, but on either side of it is a small non-functional toe, consisting of a metatarsal and a digit; . . . the cervical vertebrae show a tendency towards consolidation, but not that complete fusion found in Dipus." The outer digits appear from Lyon's figure to be situated where the cannonbone finally breaks into three for the central digits.

In A. tetradactyla, North Egypt, the hallux is suppressed, but D. 5 remains. On this account it has long been regarded as type of a genus "Scarturus." But the presence or absence of a functionless digit is scarcely to be considered a character of generic importance, as is seen when dealing with the genus Dipodomys. Neither Pocock nor Vinogradow were able to find any differences between the skulls of "Scarturus" and Allactaga; Vinogradov remarks, "The skull of Scarturus is verys similar to that in Allactaga, especially the members of the $A$. euphratica group, the resemblance may be seen not only in general outlines but also in dimensions; the interorbital constriction is, however, considerably broader than in A. euphratica... the frontoparietal border of the squamosal has no incisure . . . the incisive foramina in Scarturus are somewhat broader and more opened than in Allactaga; it is impossible to find, however, more important cranial differences between the genera."

Compared, however, with Dipodomys it will he seen that both D. 1 and D. 5 in Allactaga are equal in size; whereas in Dipodomy's the hallux is much shorter than D.5, and higher on the leg. The complete disappearance of D.5 in A. tetradactyla in this case may, therefore, I think be regarded as a specific group character, in the present state of our knowledge, and it is curious that in the several specific groups of Allactaga only this one rare species has for no apparent reason entirely lost the digit on one side of the foot, but retains the other functionless digit normally and unreduced.

As remarked above ( $\mathrm{p} . \mathbf{5 0 5}^{6}$ ), a skull of A. elater in the British Nuseum, no. 13.12.1.3, appears to have a very small extra molar situated at the back of the series on one side of the jaw.

The $A$. sibirica group differ rather noticeably from the other species in that M. 3 has become more reduced, and apparently the premolar less so than in others, so that the premolar is only slightly smaller than M. 3. or subequal with it, or even sometimes, according to Vinogrador, a little larger than it. The bodily: size is larger than in the elater group. Vinogrador has keyed the species occurring in the U.S.S.R. The measurements here used are based on his measurements. and also on those of the British Nuseum specimens.

I am inclined provisionally to recognize five specific groups of Allactaga, as follows:

1. The sibirica group, with dental characters indicated above.
2. The tetradactyla group, with characters as indicated above.
3. The elater group. Small forms; hindfoot less than 65 mm . (usually about $4^{8-55}$ according to 13.31 . material) in clater, slightly larger on average, $52-58$ in cuphratica. Including hotsom (hindfoot 58 in type specimen; bullae more inflated than others).
4. 'The major group. Usually giant forms; typically hindfoot over 85 ; in secertzozi about 70-So.
5. The williumsi group. Like the last, but smaller, hindfoot $65-70$, or smaller than major group, larger than elater gronp, and differing from the major group in the characters of the penis, according to Vinogrador.
I am unahle to allocate A. bullata, Allen, as I have not seen it. It was deseribed as a species with audital bullae about three times the size of A. mongolica (sibirica group), which may indicate that it should form a group by itself.
'The proportions of the cheekteeth are, accordines to Vinogradov's key, normal, i.e. not agrecing with sibirica group (hindfout 70 mm .).

It should be noted that in tetradactyla, as far as known, the size (head and body about 110, hindfont about 57 ) agrees with the clator group, and it is probably a close ally of cuphratica.

The nomenclature of the species of the genus here differs from that of Vinogrador and follows that of Chaworth-. Wusters, who has published several papers on this point. My thanks are due to Mr. Chaworth-Musters for much information regarding this genus.

Forms seen: aralychensis, caucusica, decumana, elater, cuphratica, hotsoni, indica, "jaculus" (-majur), laticeps, mongolica, rüchbili, suli ns, sezertzoci, saltator, tetradartyla, williamsi.

> List of Namen Formis
> incertae sedis

1. ALIACTAGA ARLNDINIS, F . Cuvier
2. 'Trans. Zowl. Soc. Iondon, 11. P. 134.
"Barhary" (? error).
Not allocated to :roup
3. ALLACTAGA BLILATA, G. Allen
4. Amer. Mus. Now. for p. 2.
'Tsagan Nor, Mongolia.

## tetradactyla Group

3. ALLACTAGA TETRAD.ACTYLA, Lichtenstein
i823. Verz. Dosuhlet, Juヶ. Berlin, p. ב.
Exypt, near Alexandra.
Synonym: bructi, Lesson, Man. Namm., p. 253. 182.-. Parca.
abyssinicus, Illeer, ISO\&, Abh. ph. Kil.k. Akad. Wiss., Berlin, P. 77. (?) Erspt.
clater Group
4．ALLACPAGA ELPHRATICA，＂Homas
1881．Ann．Nas，Nat，llist．s，XVIll，p． 14.
Mesopotamia．
5．AI．LAC＂IAGA ELATER BHATER，Lichtenstein
1825．Abh．k．Akad．Wiss．Berlin，p． 53.
＇Iurkestan；desert region．
！．ALAACTAGA ELATER STRANDI，Heptner
1934．Folia Zool．Hydroh．6．p． 10.
Transcaspia，＂in der Nïhe von Merw，Transkaspien．＂
7．AJIAC PACA ELATER CALCASIA，Brandt
1855．Nél．Biol．Ac．St．l＇etersh．，11，p． 303.
＇Transcaucasia（Saljany，Muqan－Steppe）．
8．ALLACTAGA ELATER KIZIJARICLS，Satunin
1907．Mitt．Kaukas．Mus．3．p． 45.
N．－E．Caucasus．
จ．ALLACTAGA ELATER ARALYCHEN゙SIS，Satunin
1901．Zool．Anz．SVll，p． 461.
Transcaucasia．
10．ALLACTACA ELATER DZC＇NGARIAE，Thomas 1912．Ann．Mag．Nat．Hist．S，IX，p． 406.

Zungaria，Central Asia．
11．AlAACIICAA ELATER INDICA，Gray
1842．Ann．Nat．Hist．S，p． 262.
Simkoh Hills，Afghanistan．
Synonym：bactriana，Blyth，iS63，Cat．Mamm．，p．IIo．Afghanistan．
12．ALIAC＇TAGA HOTSONI，Thomas
1920．Journ．Bombay Nat．Hist．Soc．XXVI，p． 936.
Kant，Sih，Iersjan Baluchistan．

## williamsi Group

13．ALLACTAGA WHLLJAMEI WH．LIANSI，Thomas
1897．Ann．Mag．Nat．Hist．6，XX，p． 309.
Van，ドurdistan，Asia Minut．
14．Al．IACTAGA W＂ILLIANSI LATICEPS，Nehring 1903．Sitz．Ber．Ges．Naturf．Berlin，p． 357.

N．－W．Asia Minor．
15．ALLACTAGA WHLIAAMSI SCHMHDTI，Satumm
1907．Mit．Kaukas Mus．3．P． 239.
Cancasus，K゙asimabad，Kir．Geokcai．

## major Group


1925．Proe．Zool．Soe London．p．58．
＇Tomar－L＇tkul，district of Kopal，Prownce Semiretchensk，Russian ＇lurkestan．

1－．ALAAC＂「A（；A MVOR M．\JOR，Kerr
1フけス．Tnim．K゙ingd．，p．274．
Betueen Caspann Sea and Reser Irtish，Sibera．
Synonym：jaculus，I’allas， 1778 ，Xors Spec．（slir．Ord．，p．S7（pre－ oceupled）．
aulacotis，Wagner．18\＆3．Abh．Wkad．Wiss，Manchen IIl， р． 211 ．（？）．\ralıat．
macroths，Brandt，istt，IBull．Acad．Sici．St．Petersb．，Xl， P．220．
flazescens，Brandt，is 4 ，same referenee．
migricans，Brandt，is H $_{4}$ ，same referenct．
brachyotis，Mrandt．sidt，Bull．Acad．Imp．Sca．St．Petersb．， II，p，220．
For use of the name＂major．＂Kierr，instead of＂jaculus，＂auct．，see
Chaworth－Musters，Ann．Mag．Nat．Hist．10．XlV，ए．556，1934．
 1825．Abh．Akad．Wiss．Berhm，p． 154.

Barnaul，S．－MV．Altai．
19．ALLAC＂IACA MAJOR CHACLMA，Nartme
1930．Inn．\hus．Zowl．Aead．Lenmerad， 31 ，P． 200.
Karabulak Saissan，Russian Turkestan．
20．ALLACTACA MAJOR DECLMANA，LAChtenstem 1825．Thhand Akad．Wiss．Berlin，p． 154 ．
shatoust，Ural．

1924．Rodents N．Caucasus，Rostor－on－Don，p．S．
Tinchlossk，Kizljar，Dashestan，Caucasus．
22．AIIACTACBAMOR VEXILIARIS，Eversmann 1840．Bull．Nat．Muscum，p． $4^{2}$

Nolucalaty．

## sibirica Group

23．ALAAC＂LACB SHBIRICA $\rightarrow$ HBIRICA，Furster 17－8．F゙ongl．Vet．Dkad．Ilanell．XXXIX，p． 112.

Tramsbakalia．
Synonym：saluons，Shaw，1790，Nat．Misc．，val．2，p．1．＇Transbakalia．
madia．Kerr，1792，Anim，limgd．，ए．274．Tramsbakala． brachymas，Blamville，isı7，Nouv．Dict．，XIll，p． 126. halticus，Jlhers，in Lethenstem，Abhandl．Wiss．Derlin， iא25．P．I5t；see Chaworth－Wusters，Ann．Mag．Nat． Hist．，1934，10，X15，p． $55 \%$ ．
 For use of the name＂sibirica＂mstead of＂saliens，＂aute．，see
Chambith－，\usters，Ann．Mag．Nat．Ilsut，10，XS，p，ob，1937．
$2+$ AILACTAGA SHBIRICA ANCLLATA，Mimeriduards
186\％．Anm．Sti．Nat．V＇ll，p．37\％．
Mongenlia．

1900．Zool，Mnz．SXIlI，P．13：
Désert Ssasa kopa，south of lreris，Tureai．Kirerhiz Steppe．S．－W＂． shberia．
20. Al.I.ACIMCA SHBIRICA MONCOLICA, Radde

186r. Mél. Biol. Acad. Sci. St. Petersh., iii, p. 680.
North Gobi, Mongolia.
Synonym: (?) longior, Miller, igti, Proc. Biol. Soc. Washineton, ǨX゙IV, P. 54. lifteen miles north-east of Ching-ning-chow, Kansu, China.
27. ALIACTAGA SiBIRAC A RUC'KBl:ILI, Thomas
1914. Ann. Mag. Nat. Ilist. S, XIII, p. 571.

On banks of River Uszek, Djarkent, Semiretchensk, Central Asia.
28. ALIACTAGA SIBHRICA SALTATOR, E'versmann
1848. Bull. N゙at. Noscow, p. 18 s.

Tchuya Steppe, Altai.
29. ALLAC[ACA SHBIRICA (?)GRISFSCENS, Holhster
1912. Smiths. Misc, Coll. LX, no. If, P. 2.

Chuisaya Steppe, 8 miles south of Kosch Agatsch, Altai, Siberta.
Genus 2. AhAC'IAGULUS, Nehring
1897. Alactagulus, Nehring, S.B. Ges, Nat. Merlin, p. 154.

Type Speches.-Dipus acontion, Pallas.
Rangr:-North Caucasus, Volgo-Ural Steppe, Kazakstan, south to Termez region; Semirechyia; and in Ordos desert, Mongolia.
Nomber of Foras.- Three or four.
Characters,-Like Allactoga, but vertical branch of zygoma considerably narrower than horizontal hranch, and cheekteeth simpler, with only two outer folds in M.i and M. 2 in the upper series, the folds straighter than in Allactaga; dentition generally appearing simpler, crowns flatter: in the lower tecth X.i is similar to Allactaga, but M. 2 lacks the small extra central inner fold, having only two folds each side. Essential external characters as in Allactaga. P. 4 absent.

Vinogradov states: "Alactagulus differs from Allactaga not only in the number of the cheekteeth and their structure, but also by some peculiarities of the penis." "The genus does not seem very distinct from Pygeretmus; on this point Vinogradov states: "Prgevetmus platyurns is very closely related to Alactagulus, such resemblance exists also in the characters of the external genitals."

Forms seen: "acontion" ( = pumilio), dinniki.
List of Naned Forms

1792. Anim. Kingd., p. 275.

Between Caspian sea and Ruer Irtish, Siberia.
Synonym: acontion, Pallas, i8if, Zomeraph. Rosso-Asiatica, p. 182. Nirghiz Steppes.
 pygmacus, Hliger, 18 is, Ablı. Akal. Berlon, p, 62, mom, nud.

For use of name pmmilio in place of acontion, l'allas, auct. sec Chaworth-Musters, Inn. May. Nat. 11st. 10, N15. F. 550. 1934.
$\therefore$ DACNAGULLS PLMHLHODINNIKI, Satunm
1920. "1ras. Mus. (ieorgie Tiflis, no, 2, p. Ioto.
l’rkumsk Siteppe, Ciutasus.
3. ALAC"MGLLUS IPUNHLJO POTANINI, Vinngradov 1026. C.R. Acad. Leninerad, [. 233.

Ordos Desert, near Ulan Morin River, Mongolia.
In Vinogratov, 1933, list of Rodents of the U.S.ふ.k., there is quoted a race Ilactagulus promitio pallitus. 'I'he reference to this has not been found.

## (jenns 3. M'GEREXNUS, Gloger

18.1. Pyceretmis, Gloger, Gememn. Iland- u. Hilfsbuch d. Naturgesch., i, p. iob. 1844. Platycerconis, Brandt, Buli. phys-math. Acad. Sci. St. Petersb., ii, p. 225. (Dipus platyorus. Lichtenstein.)
'IYPE SPECIEZ.-Dipus platywns, Lichtenstein.
RANGE-S.-W. Siberia: Semirechia, and parts of balley of Ural, and adjoining plain, and Kuvan-Daria (Aral region).
Nombler of lơrMs.-'lwo.
C'HARACTERS-Like Alactagnlus; margins of interorbital region more angular ; interorbital constriction more marked; cheekteeth $\frac{3}{3}$, cssentially similar to those of Alactaulus in two skulls availahle for examination.

Externally differing from Alactagulus and Allactaga in the structure of the tail, which is relatively shorter, hroad, Hattened throughout its length, and not tufted terminally.
'Two species are known, evidently considerably distinct from each other; Vinogradov gives measurements as follows:
platymus : tail So-90; hindfoot 32-35.
shitlioni: tail $95-107$; hindfoot $40-43$.
Forms seen: platwous, shithori.
List of Namen louras
platymus Group

1. PYGERETMIUS PlATYLRLSA, Jichtenatem
2. In Exersmann"s Reise, p. i2i.

Aral Sca rexgion.

## shitkozi Group

2. PYGERETXLS SHITKOVI, Kuznecov

1ッ30. C.R. Acad. Sci. U.S.S.R., p. 623.
Kirghaz Steppes of Semipalatinsk, U.S.S.R.

## The Dipus Group

Inframbital foramen relatively smaller than in Allactaga group, and anterior vertical portion of zygoma greatly broadened. Bullae larger; mastoids considerably inflated, "their internal cavity consisting of two chambers separated
only by one very low septum; this chamber is communicated with the cavity of the tympanic bullae, as it can be observed even in lipus, with its relatively feehly inflated mastoids" (Vinogradov). Nasals reach alveoli of upper incisors. Incisors not pro-odont, the upper ones usually grooved. The ears smaller than in the - Illactaga group (possibly excepting Paradipus). Outer functionless digits of hindfoot entirely suppressed. Os penis present (Vinogradov).

## Key to the Genera of the Dapus Groch

(not inchading the genus Eremodipus, which is unrepresented in British Museum)
Padate terminating on level with hinder part of third molars. Apices of bullac not in contact. Ear relatively larger. Upper incisors piain. Mandible lacks process formed by root of lower incisor. Paradipe's
Palate terminating behind level of third molars. Bullae with apices in contact. Upper incisors grooved. Ear relatively smaller. Nandible with process formed by root of lower incisor.
Mastoids not projecting on lateral sides of posterior part of braincase: cheekteeth normally with more complex pattern. Dipe's
Mastoids projecting on lateral sides of posterior part of braincase; cheektecth normatiy relatively simpler.
Mastoids not greatly inflated. ' Sail not heavily tufted, gradually increasing in width from about halfway along its length to the end. Squamosal with nu ridge formed by lateral process of parietal.

Scirtopoda
Mastoids relatively enormously inflated. 'Iail heavily tufted terminally, long; thin and round throughout most of its length. Squamosal with ridge formed by lateral process of parictal.

Jaceles

## Genus 4. PJRIDIPUS, Vinogradoy

1930. Paradipls, Vinogradov, Bull. Acad. Sci. Leningrad, p. 333.

T'ype Species.-Scirtopoda stenodactyla, Vinogradov.
Range.-Described from Repetek, 'Turkmenia, U.S.S.R.
Number of Foras.-One.
Characters.-Posterior edge of palate terminating on level with third mokars, instead of considerably behind them. Anterointernal apices of bultae not in contact with each oher. Nastoids rather inflated, appearing in superior aspect of skull, but not so large as in faculus. Postglenoid fenestrae very small. Nandible without process formed by root of lower incisor. Cheektecth : Upper incisors plain.

One skull of this interesting Jerhoa has recentiy heen acquired by the British Muscum. It is evidently old; the cheektecth appear to me to be quite
different from those of other Jerboas examined; their crowns are completely flat, and with isolated enamed ishands, these stratght, surrounded by rather broad enamed, two on M.1, two on M.2, one on 3.3 , upper and lower series.

Evternally large; differing from other members of the Dipus group in the relatively large ears. "llindfont with three long subequal toes: under surface of lateral toes covered internally with brush consisting of hong hairs and cxternally it is furnished with a comb consisting of a row of thickened horny hristles ahout wice shorter than the long hairs." 'The ear is given as about 30 mm . by Vinogrados.

This genus, with its long ears, plain incisors, short palate, bullac with apices not in contact, and, if constant, rather ditferent appearance of worn cheekteeth, (simpler than others), stands isolated in the Dipus group.

Forms seen: ctomodactras.

List of Namied Formis<br>1. PARADIPL'S CTENODACTYLUS, Vmogradov<br>1929. C.R. Acad. Sci. Leningrad, P. 248.<br>Repetek, Turkmena, U.S.S.R.

## Genus 5. DIPUS, Zimmermann

17,io. Dıpes, Zimmermanm, Geng. Geschichte Menschen und vierfüss. 'Thierre, ii, p. 354. 1410. Dipodipus, 'Trouessart, Faune Mamm. Europe, p. 207 . (Mus sagitta, Pallas.)

Type Species.-M/us sagittu, Pallas.
Range.-U.S.S.R. and China; Kisljar district and North Caucasus; VolwoUral steppe; Kazakstan to south Semipalatinsk; Altai; Semirechie; Turkmenia, Usbekistan; Chinese 'Jurkestan, Mlongolia, to Shensi and Chihli.

Number of Forms.-Eight.
Charactrrs.-Like Jaculus, to be sulsequently described (Genus no. 7), in cranial characters, execpt: mastoids much less inflated. less so than in other members of the Dipus group; not appearing in superior aspect of the skulh. Pustglenoid fenestrae "open into cavity of hramease"; "partly or entirely closed by portion of petromastoideum in Sartopoda, faculus, Paradipus." Squamusal region without the ridge characteristic of Jaculus.

Cheektecth : semihypsodont. M.I in the upper series with a deep outer fold, placed far backwards, an anterior fold, and an inner fold. M. 2 with two outer, one inner folds, the anterior outer fold normally, so far as seen, retained (this fold becoming suppressed in allied genera). M. 3 smaller than M.2, but with the same elements originally. P. + minute.

The folds are deep, the cusps moderately high; four main cusps at corner of cach tooth.

Lower cheekteeth with two outer and two inner folds in M.i and M1.2; sometimes the folds nearly meet across the teeth; and N .3 with two outer, one
inner folds. In all these tecth, the front outer fold is considerably sinaller than the second one, which is mone persistent. Some of the folds wear anf in old age. Essential eaternal characters as faculus.

All deseribed forms are evidently regarded now as races of the type, by Vinogractov.

Forms seen: halli, lagopus, sozeerbyi, deraysi.
J.ist of Namfi) Forals

1773. Reise, ii, p. 706.

Siberta.
2. DIPL'S sAGITTA NogAl, sammin
1907. 'Tillis Mitt. K゙aukas. Mus. 3, p. 34.

N,-E. Caucasus.
3. DIPES SAGITTA INNAE, Ognev
1930. Zool. Anzeiger, 91, p. $20 \%$.

Astrachan Gouv., S.-E. Russia.
4. DIPUS SAGITTA LAGOPUS, Lachtenstein 1823. In Eversmann's Reise, p. 121.

Transcaspia.
5. DIPC'S SAGIT1A ZAISSANLENSH, selewin
1934. Bull. Unix, Tachkent, 19, p. 76.

Saissan-nor, Central Asia.
6. DIPLS AAGITTA DEAsY1, barrett-Hamilton
1900. P'roc. Zool. Soc. London, p. 196.

Nura, S. Chinese Turkestan.
7. DIPL'S SAGI'I"IA HALLI, Sowerhy
1920. Amm. Mag. Nat. Hist. 9, V, p. 279.
N.-E. Chihli, N. China.
s. DIPLES SAGITTA solwtribyI, Thomas
1908. Amn. Mag. Nat. Hist. 8, 11, p. $30 \%$.

Yu-lin-fu, Shensi, China.
Genus 6. SClR'IOPODA, Brandt
$18+4$. Scirtoroma, Brandt, Bull. phys-math. Acad. Sci. St. Petersbourg, ii, p. 212.
184. Hatirers, Brandt, Bull. phys.-mahh. Acad. Sci. St. Petershourg, ii, p. 213. (Dipus halticus, Higer.)
1925. Stylompis, Allen, Amer. Mus. Now., no. 161, p. 4. Stylodipus andreass, Allen: not seen: status fide V'inogradov.

Type Apmafs-Acoording to Vinogradov the fype is now taken fo be Dipus telum, lichtenstein.

Range.-Russia (Crimea, Ciscaucasia, Lower Volga, Kazakstan east to Saisan, Aral Sea and Lake Balkash regions, Semirechic, Karakum) (Vinogradov) : also known from Nangelia.

[^17]Number of Forms．－Seven．
Charactrrs．－Like Jaculus（next to be described）in cranial characters，but squamosal with no ridge formed by re－cntrant lateral process of parietal，and mastoids much less inflated，though in this genus they are more adranced than in Dipus in that they show in the superior aspect of skull each side of the braincase．Cheektecth normally ${ }^{3}$ ；＂in the type of＂Stylodipus＂ andreasi；hut according to Vinogradov a minute upper premolar may be present in the young，hut disappearing with age，in the other species．The pattern，as far as seen，not essentially different from Gaculus，but the teeth appearing rather flatter，less angular，and simpler than in Dipus．Upper incisors，as normal for this section，grooved．

Externally like faculus except that the tail is relatively shorter，with the tuft weaker，less terminal，less developed，the tail gradually becoming wider from about halfway up its length；the terminal portion not black and white．The tail in fact seems to be somewhat intermediate between the normal Allactaga or Faculus type，and the Pygeretmus type．

S．andreatsi，the type of Allen＇s genus Stylodipus，is regarded as a Scirtopoda by Vinogrados．It is not represented at the British Muscum；but it appears from the figures puhlished that it is a closely allied form to S．telum，and rightly placed in this genus．

Furms seen：tclum，proximus．

> Lint of Naned Forms

1．SCIRTOPGDA TELU\TELC゚入，Lichternstom
1823．In Eversmann＇s Reise，p． 120. Aral Sea region．
$=$ scirtopoda teldul filzFElNi，Ggnev 1916．Bull．Soc．Nat，Crimée，5，p． 101. Taurida district，Crimea，S．Russia．
3．SCIKTOPODA TELLXI＇ICRONI，Heptner
1934．Folia Zool．Hydrob，6，p．19．
Don Steppe，S．－E．Russia．
4．SCIRTOPODA TELL M KARELINI．selewn
1934．Bull．Univ．Tachkent，19，pp．76－78．
Kazakstan，Russia．Mlountans of Semej－Tau，near Semipalatinsk．
5．SCIRTOPODA TELUA ANEANKARAGAI，Selewn
1934．Bull．Unix．Tachkent，19，p． 76.
Kazakstan，Russia：Aman－Karagai，N．Kazakstan．
＊．SCIRTOPODA TELCM PROXIMLS，Farmare
1853．Rev．et，Mag．Zool．，P．I 45.
Jamankala，Ural．
－SCIRTOPODA ANDREWSI，Allen
1925．Amer．Nus，Nov．no．ifit，p．$q$ ．
Ussuk，Mongolia．
According to Vinogradur，S．andrezesi retains the restigial premolar in adult specimens；the hindfoot is larger（about 55）than telum（ $46-51$ ）．

## Gemus 7. JACULUS, Erxleben

1777. Jacllus, Erxleben, Syst. Regn. Amim, p. fot.
1778. 1latomys, Brandt, Bull. phys.-math. Acad. Sci. St. Petersh., ii, p. 215 . (Dipus aegyptius, Hasselguist).
(1922. Scirtopoda, Docock, hased on 7. orientalis; not as now accepted. (For note on the 1ype of the genus Scirtopodu sce X'inogradow, Bull. Acad. Sci. L'URSS, 1930, p. 332.)

T'ype Spectes.- Yaculus oriontalis, Erxleben (see St. Leger, Proc. Zool. Soc. Lundon, 1931: Genera of African Rodentia).
Ràige.-Northern Africa, Senegambia, Moroceo, across the Sahara to Lgypt and Somaliland; extending into Arabia, Palestine, Syria, lrag and Persia.

Neaber of Formis.-About twenty are named.
Characters.-Skull with extremely broad frontals, and even broader braincase, beeoning gradually narrower from behind forwards; rostrum narrow; lachrymal large. Jugal as usual in the group, with anterior vertical portion much hroadened. Superior margin of canal in infraorbital foramen for nerve-transmission fused to wall of maxilla in adult. Bullae greatly inflated, mastoids appearing prominently in superior aspect of skull, much more than in other 3 -toed Jerloons examined. Squamosal region with well-marked downwardly directed ridge formed by lateral process of parietal. Supraorbital region rather angular. Palate extending behind level of M.3; palatal foramina well open, relatively large, and a second pair present as pits between the toothrows. Nandible with perforation in the angular process, and a process formed by the lower incisor root.

Upper incisors one-grooved. Cheektecth s, the upper teeth with one wide inner and one wile outer re-entrant fold which is placed further backwards than the inner one; M.i also with anterior notch which tends to wear out; cusps lower than usual as a rule. N.1 the largest tooth, M. 3 the smallest.
l ower cheekteeth with two outer folds in M1.2, and one inner one; one outer fold persistent in M. 3 only; M.1 with a fold each side as a rule, and an anterinr notch.

Fur soft. Ear large, but considerably smaller than in members of the Allactaga group. Tail considerably longer than head and body, normal in shape (narrow, round, not thick, flat), and well-haired throughout, with a conspicuous black and white tuft terminally. Forefoot with five digits, 1.5 moderate but shorter than the central three, the pollex less reduced than is usual among non-fossorial Rodents; claws thin hut strong. Hindfoot immensely clongated, very narrow, with three digits; soles heavily hairy.
'lhe forclimbs are proportionately extremely shortened, and can only be seen in the living animal on the rare occasions when the animal is still. Jerboas of this type ( $\mathcal{F}$. jaculus) are very fond of scratching and rolling in their sand; they have a curious habit of lying down and stretching the hindleg as far backwards as it will go, then bringing it round and stretching it forwards. so quickly


Fig. 156. Jatiles Jatele Juthes, limnatus.
B. М1. No. S. +4.52 , $2 \frac{1}{2}$.



that the eye can scarcely follow the procedure; it is at such times that one gets a good idea of the elongation of the limb. 'Their leaping powers are prodigious, and they often walk along on their hindlimbs; they appear quite unable to go on all fours. 'the eye is very large.

According to Lyon, the axis and four succeeding vertebrat are completely fuscd into one large compound "axis." On the skeleton of the hindfoot all traces of the outer digits have disappeared. The femur is short, the tibia and cannonbone long. The upper caudal vertehrae are thick and powerful.


Fig. 158. Jaculers jactiles Jaccios, Linnaeus. Cheekteeth: B.MI. No. $8+4.52,+i$ II .

The genus name Scirtopodd was revived by Pocock for the Greater Egyptian Jerboa, $\%$. orientalis, on the grounds that the structure of the penis differs from that of the jaculus group. Vinogradow does not retain the division, and shows that Scirpopode is not available for the species ('l'homas having previously and apparently erroneously chosen the type of Scirtupoda for a different animal from $S$. Klum which X"inogradow states should be considered the type).

As 1 have endeavoured to show, when dealing with, Sciuridae, names hased solely on the structure of the haculum are not to be considered valid as full genera.
'Two clearly marked groups oceur, the smaller jaculus (hindfoot about bo, only one in British Juseum (blanfordi. P'ersia) exceeding 63), and the orientalis group, differing, as indicated above, in baculum structure, and larger size (hindfoot $-0-\mathrm{S}_{\mathrm{I}}$, exceeding any member of jaculus group, so far as seen).

All members of the jaculus group are regarded as of one species except blanford, which appears to be rather lareer than the others. I think that many of the races of jacalus will ultanately have to be placed in synonymy.

Forms secn: airensis, hanfurdi, butleri, centralis, dest rti, fuzonicus, flomention. gordoni, juculus, loftusi, orientalis, schlucteri, sofrius, syrius, cocutor, culturnus.

## Last uf Nampin Forme

incertae sedis
8．IACLIUS MICROTIS，Reichenow
1887．Zool．Anz．X，p． 369.
Simar，N．－E．Africa．
2．JACLILS MARROTARSL゙s，Wagner
1s．40．Ahh．Akad．Wiss．Münchern，III，P．2rt．
Arahia Petraca，Nount Sinai．

## wichtalis Group

2．IACLLLS ORIENMALS ORIENTALIS，Erxleben 1777．Syst．Regn，Anim．，p．fot．

Erypt
Symony：gerhoa，Oliviet，Bull．Soe．Phamo，1，2，No．fo，p． 121 ， isoo．Erypt．
locusta，llliger，i Sof－1815，Abh．Akad．Berlin，p． 77. Egypt．
bifes，Jichtenstein，i 823 ，Verz．Doublet．Nlus，Berlin，p． 5. Egyint．
（？）ateythius，Hasselpuist，174＋，Acta．Soc．R，Sci．Lpsala， P． 17 ．Egypt．
4．JACLLUS ORIFNTALIA MACRITANICLS，Duvernoy
IRtz．Nem．Suc，Ilist．Nat，Strasb．，iii，p． 30.
（）ran，Alectia．

## jaculus Group

5．JACLLL゙S JACCLUS JACLDUS，Linnaeus 175R．Syst．Nat．，toth Fd．，F．63．

N．Egypt．
Sinomym：（？）hartipes，Lichtenstein， 1823 ．V＇re．Douhl．Mus．Burlin， P．5．Near Assuan，Upper lieypt．

ゃ．JACLLA＇s IACLLL＇s BLTLLERI，＇Ihomas
1922．Ann．Mag，Nat．Jist．9，IX，P． 206.
lihartoum．

1003．1＇roc．Zool Soc．Londom，i，P． 200.
Fiaga llills，WV．Kordutan，Sudan．

1913．Ann．Nas．Nit．Hist．S，X゙J．p． 485.
Berbera，Somahland．



Aderhssmat，morth of Damergon，Sudan．
 1サ21．Nox．Zon！．KXV111，p． 11.

Gered el thiad，In－Galah，Air，Sahara．

11．JACULUS JACUI，US DESERTI，Loche
1867．Explor．Alger．，p． 100.
Ouargla district，N．Algerian Sahara． Synonym：darricarrerei，I ataste， 1883 ，Ann．Nus．Cix，Genowa，XVIII． p． 661 ．Bou－Saada，Ahreria．

12．JACULTS JACLLUS SEIFRILS＇＇Thomas \＆Hinton
1921．Nov．Zool．N゙さVIII，p． 10.
Ain－Sefra，Algeria．
13．JACUIITS IACULUS FAVONICLTS，Thomas
1913．Ann．Mag．Nat．Ilist．8，XI，p． 483.
＇Trarza country，S．－W．Nauritania．
1．1．JACUIUS JACU1，CS SCHLLETERI，Nehong
1901．S．lB．Ges．Nat．Fr．Berlin，p． 163.
［alestine．
15．JACULCS JACULUS SYRJU＇S，＇I＇homas
1922．Ann．Mag．Nat．Ilist．9，［X，p． 296.
Karyatein，Syrian Desert．
16．JACLLES JACLLL＇S FJORENTIAE，Cheesman \＆Hinton 1924．Ann．Mag．Nat．Hist．9，M15，p． 556.

Jabal Aquia，Jabrın，Central Arabıa．
17．JACUI，L＇S JACUI．US ORALIS，Cheesman \＆Henton
1924．Ann．Mag．Nat．Hist，9，XIIV，p． 557.
Koweit，N．－E．Arabia．
18．JACULI＇S JACU1」US VOCATOR，Thomas
1921．Ann．Mag．Nat．Hist．9，VIII，p．+ ＋1．
Sohar，Muscat，Arabia．
19．JACUHUS JACLLUS L（）FTLCSI，Blanford
1875．Ann．Mag．Nat．Hist．＋，XVI，p． 312.
Mohumrah，Mesopotamia．
20．JACCLUS BIANFORDI，Murray
1884．Ann．Mag．Nat．Hist．5，X゙IV，p．gS．
Bushire，I＇ersia．

Genus S．ERENODIlLS，Vinogradov
1930．Bull．Acad．Sci．Leningrad，p．334．
＇Iype Species．－Scirtopoda lichtensteini，Vinogrados．
RANGE－Vicinity of Merv，＇l＇urkmenis．
Number of Forms．－One．
Remarks．－＇！his genus is not represented at the British Jlusemm．It evidently stands nearest faculus．
Vinogradoy keys this genus agminst faculus as follows：
＂Lateral process of each parietal bone is furnished with a sharply develuped conical prong directed externatly and downwards．Postgronod
fenestrae are sery small，usually somewhat elongated．Superior marein of external wall of infraorhital canal not ankyosed to wall of mavilla．Ront of lower incisor forms a feebly developed alseolar process．

EREnodipis
Lateral process of each parietal bone is furnished with a sharply developed crista，its hase being formed by surrounding parts of the squa－ mosal．Postglenoid fenestrae are greatly enlarged and form nearly equilateral triangles．Superior margin of external wall of infra－ orbital canal is completely fused to wall of maxilla in adult speci－ mens．Root of lower incisor forms a prominent alveotar process．

## List of Nimed Forms

1．EREXGDIPLA LICHTEN゙心「EINJ，Vmogradov
1927．Zeitschr．f．Sugetierk．2，p．92．
Vicinity of Merv，Turknenia．
＇The family is known fossil from the d＇leistocene at least，from both the Otd and the New Worlds．

Niller \＆Gidley refer the European Eocene－Miocene family Theridomyidae to this group；Winge places them in the neighbourhood of the Anomaluridae．

## DIPODIDAE：

## GEJERAL IIORKS OF REFERENCE

Vinogranov， 1925 ，Proc．Zool．Soc．London，p． 577 ．Structure of external genitalia of Zapodidae and Dipodidae．
Visogradov，Bull．Acad．Sci．Leningrad 1930，p．331．Cranial Characters of genera of Fanily Dipodidae．
Lyon，Proc．U．S．Nat．Mus．7，XXIII，p．659，1901．Comparison of the osteoloyy of Jerboas and Jumping－mice．
Vinogradon， 1933 ，Tab．Anal．de la Fauna de L．URSS，Inst．Zool．Acad．Sci．1o，p．if． Rodents occurring in the U．S．S．R．（Sicistmac．Dipodinae．）
Vinogrador，1923，Kinzlow Mongolia \＆Amdo，p．5to．（Salpingotus kazlozi．）
Vinogradory， 192 K＇，Zonl．Anz．61，p． 150 ．（Sulpingotus crassicauda．）
Preble，North Amer．Fauna，no．15，p．13， 190 or．Revision of Jumping－mice（Zapus， Eozapus，Napacnaapus）．
Cotes，Monoer．North American Rndentta，p，＋h1，1877．Zapodidae．
Miller，Cat．Mamm．WV．Europe，1912，p．535．Zapodudae（Stista）．
Pocock，External characters of S＇arturus and other Jerbuas，compared with Zapus and Padetis，I＇roc．Zoul hoc．Landon，ig22，p． 659.
Sclater，Proc．Zuol．sic．London，isoo，p．ho．（Euchorcutes．）
Dobion，J＇ruc．Zool．Sic．Landon，18\＄2，p．6．40．（1）ipodidae transferred to the＂Hystri－ comerpha．＇）
Teelberc，Nowa Acta Reg，Soc．Sci．Upsaliensis，XVifi，3，ne．i， 1 Som．ESicista， Zapus，Allataga，＂Dipus aegyptius＂－Yaculus．）
Chamorth－Mlesters，Ann．Xay．Nat．Hist．10，NIV，p．556，193＋：Nomenclature of Hhatagulus and certan species of Hhectaga；Ann．Mag．Nat．Iist．10，XX．p． 96 ， 1937：Nomenclature of Allactaget sthirica；Ann．Mag．Nat．Hist．10，太1V，p． 554. 1934：Nomenclature of Sicista subth／es group．
 Dipodidate. (A Monograph of the Family, with figures of cranial, dental, skeletal and reproductive characters of all leading species, and distribution maps; Russian with English résume.)

## Superfamily MLROIDAE

1896. Thomas: Myonorpha, part, Familics ( (liridae (Glirinae and Platacanthomyinac); Mundae (Iydromyinae, Rhynchomyinae, Ihloeomyinae, Gerbillinae, Otomynae, Dendromyinae, Murinac. Lophomyinae, Siomodontinae, Neotominae, Xícrotinae, "Siphneinae" ( Myospalacinae)); spalacidae (Rhizomyinae, Spalacinae).
1897. 'Fullherg: Solerognatil, Myomorpha, Myoide1, part, Myoxiformes (Myoxidae Muscardinidae), and Muriformes; spalacidae. Nesomyinae, Cricetidae, Lophiomyjdae, Arvicolidae, Hesperomyidae, Mundae (Marini, Phloeomyini, Oromyinı), Gerbillidae.
1898. Miller \& Gidley: Superfamily Mtromae, part. Families Muscardinidae; Cricetidae (Cricetinae, Gerbillinae, Nicrotınae, Lophiomyinae); Platacanthomyidae; Rhizomydae (Tachyoryctinae, Rhizomynae); spalacidae (Myospalacinae, Spalacinae); Muridae (Dendromyinae, Alurinae, Phloenminae, Otomyinae, IJydromyinae). Superfamily DipodoidaE, part, Family Graphiuridae.
1899. Winge: Famity Myoxidae ( Muscardinidae): (Graphiurini, Myoxini). Family Muridae (Rhizomyini, Cricetini, Murini). Family Djpodidae, part, Mpalacini (Spalax only).
1900. Weber: Myoxomea, Myoxidae ( Muscardinidae) and Platacanthomyidae. Mtrotdea, Spalacidae, Nesomyidae, Muridae (Cricetinae, Lophiomyinae, Microtinac, Murinac, Gerbillinae, Hydromyinae).

Geographical Distribltion-Cosmopolitan, including Madagascar and the Australasian region.
Characters-I have already written at some length on the characters of the superfamily Muroidae as here understood, on pp. 35,36 . The infraorbital foramen always transmits muscle, but is never very much entarged, at any rate as compared with Dipodoid, Anomaluroid, Pedetoid or llystricoid types; except in the two genera Graphiurus and Deomys the zygmatic plate is tilted upwards to a greater or lesser degree. The tibuta is, so far as known, akwas fused with the tibia high on the leg. In the whole of the family Muridac, containing well over half the entire Order, there are, except in abnormatities, never more than " cheekteeth present.

In this group I inchude the Jnscardinidae, which, though typically very distinct from Muridace contains annectant forms such as Typhombs which make it not possible to keep them separate as a distinct superfamily; the Nuriwae, and a few highly specialized or aberrant genera which it has seemed desirable to make typer of distinct families, as Rhizomss, Spalax, and Lophoms.

## Kfi To the linilife of Merotdaf:

Upper and lower cheektecth with a pattern of many transwerse crossridges extending across crown; in primitive forms more or less basinshaped, as in sciurdake, and with well-marked corner cuspes, in progressive forms becoming flaterowned, with the ridges separated
by depressions. Premolars usually, not always, present. Caecum usually, not always, absent. Jugal bone usually relatively long. Family Muscardinidae
Upper and lower checktecth various, but never with pattern as just described. Premolars invariably absent (or cheekteeth formula not exceeding s, except in abnormalities). Caecum, so far as known, present. Jugal bone usually, not always, strongly shortened.
Temporal fossae roofed in by bony plates risine from jugals, frontals, and parictals.

Family Lophonyibate
'lemporal fossae never roofed in by hony plates.
Infraorbital foramen much reduced, its lower border nearly straight; zygomatic plate tilted very strongly upwards, and masseter muscle extending line of attachment on inside of infraurbital foramen (Tullberg). Family Rhizomyidae
Infraorbital foramen not much reduced, its lower border usually $V$-shaped: zygomatic plate tilted upwards less strongly; massete muscle so far as known never extending line of attachment on inside of infraorbital foramen.
Extermal form and skull extremely specialized for underground life; eyes suppressed; zygomatic plate much narrowed, and nearly completely below infraorbital foramen.

Family Spalacidae
External form and skull less extremely specialized for underground life; eyes always retained; in sub-fossorial genera, zygomatic plate not marrowed, and well tilted upwards. Family Muridae

## Family MUSCARDINIDAE

For use of the family name "Muscardinidae" instead of "Gliridae" see Palmer, Science, n.s., vol. X, no. 247, p. 412, 1899 .
s896. Thomas: Mronorpha, Fambly Glirudae; Suhfamily Glirmate (including Graphurus); Suhfamly llatacanthomemae.
1899. Tullberg: Mynorpha: Myoniformes. Famly Myoxidae.
1918. Maller \& Gidley: Superfamily Mleromae, part : Famly Museardinidae (Eliomys, Dyromys, Ghs, Muscardents); Famly Platacanthomydae (Plutacunthomys, Typhlomys). Superfamuly Dipodonde, part: Famly (iraphuridae (Graphiurus).
1924. Winge: Famuly Xlyovidae. Suhfamilies Graphiurini and Myoxini (the latter including Platacanthomys).
1928. Weber: Myoxoldea. Family Myoxidae (including Graphiurus); Family Platacanthomyidac.

Cimgraphical Distribltion.- Africa; Palacaretic region; parts of the Indo-Malayan region (Peninsular India and Soutli China).

Number of (ienfra.-Nine.

Charactrrs.-Zygomaseteric structure in progressive genera (all but (iraphiurinac), approaching or agreeing with that of the Mhridae; infraorbital foramen tramsmitting musele, though little enlarged, and comparatisely unspecialized; zygomatic plate tilted upwards to a eertain degree; mandible with angular portion usually pulled inwards, and sometimes with a perforation. In Graphurinae, the zygomatic plate remains beneath the small infraorbital foramen, and the masseter musele does not extend attachonent on its forepart; masseter lateralis superficialis has its anterior head not distinct (according to Miller \& Gidley and as figured by Tullberg), whereas in Muscardininae and Platacanthomymae this portion of the muscle, as in Muribae, is distinct from the zygona. The jugal is generally long.

Dental formula i. $\frac{1}{1}$, c. $\frac{1}{4}, ~ 1 . \frac{1}{1}, 1 m .: 20$ in Nuscardininae and Graphiurinat;
 always with pattern of a series of ridges extending across the crown. In more primitive genera, as Graphinrus, Elioms's, the cusps are well marked, and the pattern and arrangement of cusps and ridges is strongly reminiscent of that of the Sciuridae. In progressive types, Glis, and to a greater degree Muscardinus, the crowns become nearly flat, with obsolete cusps, and well-marked narrow ridges surrounding moderately wide depressions. In Platacanthomyinae, which are slightly more lyypsodont, the ridges become widened, and the depressions take on a more clear and definite pattern, and sometimes tend to isolate as islands.

Normally the bullae are large and well inflated, but are small in Platacanthomyinae, and flattened and rather reduced in Glirulus.
'The external form is slightly modified as a rule for arboreal life. The tail normally is bushy.

The caecum most often is suppressed; but this is not the case in Typhlomy's.
The systematic position of these animals is by no means clear, and has been one of the major problems of the present classification of the Order.

Winge recognized only eight families of Rodents as here understood, this group one of them (distinct from Muridae).

Weber has regarded the group as a superfamily.
'Fullberg evidently regards the group as a natural one, separate from the Muridae (in his Muroidei he has three equal groups, the "Myuxiformes" ( = Muscardinidae), Dipodiformes ( = Dipodidae), and Muriformes (Mturidae, spalacidat, Lophiomyidac and Rhizomyidae as here understood).

Niller \& Gidley refer Graphiurus to a separate superfamily, the Dipododiae, from other Wuscardinidae, whieh are placed in the Nuroidat. This arrangement is based entirely on zygomasseteric structure, but is in my opinion rather an unnatural division, in that Graphiurus seems to share very many essential characters with Eliomys (Xuscardininae). Platacanthomys and Typhloms these authors refer to a family Platacanthomydae in the "quadrituberenlate serics" of Nuroidae; whereas their . Iuscardinidae are referred to the "trituherculate series" of Muroidae.

If we take Graphiurus, and compare it with Elioms, as regards arrangement of zygomatic plate and infraorbital foramen, it is noticeable that if the infraorhital foramen of, say, Graphiurus huefi were slightly narrowed below and
considerably above, the result would be as is now in Eliomys. On looking through the skulls at the British Mhseum I was struck hy the fact that there seems a slight variation in form in the infraorbital foramen of various specimens of Graphiurus. In G. surdus, for instance, it is not far from the primitive . Murod type as characterizes Muscardimus, Glis, Ehomys and others.

In the Muridat, the African genus Deomys would certainly have to be referred to the "Dipoloidae" of Miller \& Gidley if their classification were followed to the letter.

Although Miller \& Gidley were nos of opinion that any of their superfamilies were derived one from another, I am inclined to suspect that in the present case, one zygomasseteric structure, say that of Muscardininae, has been derised from the other as typified by (iraphiurus. In zygomasseteric structure, as in many other characters, the present group seems to he one of the most primitive groups of Rodents, not very far removed, at any rate as regards arrangement of infraorhital foramen, from the type of kudent (? Aplodontoid) that probably gave rise to most or all of the modern families.

We have now to consider whether the Muscardinidae (all Dormice being referred to one family) are distinguishahle from the Muroidae as a superfamily. If we take Dyroms and compare it with, say, Grammomis representing the Muridae, we find the following differences.

The checktecth in Dyroms are basin-shaped, the upper and lower series being characterized by many narrow transverse ridges; in Grammomys the molars are cuspidate, the upper series bearing three longitudinal rows, the lower molars two longitudinal rows.
'The fourth premolar is present in Dyromys; in Grammomys it is absent (or at any rate only $\frac{3}{3}$ cheektecth are present in the latter). 'The mandible of Dyroms has the angular portion pulled inwards, after the manner of Dipodidae, Sciuridae, Aplodontiidae, etc. In Grammomys this is not the case. 'The jugal in Dyomys is long; whereas in Grammoms's it is becoming shortened; in very many other Muridae it is strongly shortened. In Dyromb the caecum is suppressed; in Grammoms, presumahly, this is not the case. 'the tail is thickly hushy in Dyoms; mostly naked and scaly in Grammomys. And in Drombs the zygomatic plate is relatively weak and narrow, in Grommomys it is broader and strongly tilted upwards, as is often the case in Muridae. The bullat are large, inflated in Dyromys, rather small in Crammomys.

Between these two therefore there are clear distinctions. But there are intermediate genera which appear to break down all these characters. In Platacanthom's (Muscardinidac), the premolars are suppressed, and the dental formula is as in Muridae. The mandible in Typhlomys (Xhuscardindae) has no perforation, and is reduced, and not noticeably inflected. The jugal in Tachoryctes, Brachyumbs and others (Muridae), is long, forming the greater part of the zygoma." The caecum is not suppressed in Typhlomys (Muscardinidae), but hecoming very reduced, according to 'Thomas, in Lehthomys (Mhridac). The tail is nearly maked in Typhoms (Thuscardinidac), thickly bushe in Crateromys (Alurilae). The yrgomatic plate is very narow in Hydromis (Ahuridac), very much as in Phatacanthomis representing the

Muscardinidae. The bullae are small in Glirulus (. Muscardinidac); very large in many Gerbillinae (. Ituridae). The cheekteeth alone remain. I can call to mind no members of the vast group referred to Muridae which bear any close resemblance to Muscardinilae. Perhaps Gymuromys of Madagascar stands nearest Platacanthomys in this respect. But pattern of cheekteeth seems scarcely a valid character on which to hase superfamilies. Compare, for instance, the teeth of Rattus, Cricctus, Microtus, Otomys, Siomodon. All appear widely distinct in pattern; yet all belong to the one family. Compare Ctenodactylus with Ctenoms's (essentially similar but belonging to different superfanilies) ; or Ihloeomys (Muridae) with Diplomys (Hystricoidae), which are also similar in general arrangement.

This being the case the Nuscardinidae are regarded provisionally as primitive and aberrant members of the superfamily Nuroidae.

Three subfamilies are here retained.

## Key to the Stbfamilies of Mescardinidae

Zygomatic plate very narrow, completely beneath infraorhital foramen. Subfamily Graphicrinale (Graphiurus)
Zygomatic plate broadened to a certain degree, always tilted upwards.
Cheekteeth $\frac{4}{4}$, with transverse ridges on crown moderately or well developed, always narrow, the depressions not tending to become isolated on crown surface, and not clearly marked as a rule. Palate without a series of foramina between the toothrows. Bullae usually large, well inflated. Subfamily Mescardicinae (.Iyomimus (not seen), Eliom's, Dyromvs, Glirulus, Glis, Muscardinus)
Checkteeth $\frac{3}{3}$, with transverse ridges clearly marked, broadened, and the depressions tending to become isolated on crown surface, always well marked. Palate with a series of foramina or a single very large pair between the toothrows. Bullae small, reduced.
subfamily PlatacanthomyNiae
(Platacanthomys, Tiphtomis)

## Subfamily GRAPHICRIN゙AE

Geographical Distribethon.- Dfrica, south of the Sahara.
N('abber of Gfafrs.-One.
Characters.-Is indicated in the key. (heekteeth $\frac{1}{1}$, hasim-shaped, the rikges weak, the pattern as a rule not clear.
Though currently relerred to three or four genera, it seems most convenient to regard all members of the present subfamily as betonging to one genus only.

## Genus i. GRAPIIILRLS, Smuts

1832. Graphitres, simuts. Enum. Mamm. Cap., fp. 32, 33.
1833. Aethonlls, Allen. Journ. Mamm. 17, p. 292. Graphiurus magtglasi, Jentink. 188s. Claviglls, Juntink, Notes Leceden Mus., f. +1. Claziglis rassicandutus, dentink. Vatid as a sulgenus.
1834. Glibiscte, Thomas \& Hinton, Proc. Zool. Soc. London, p. 232. Graphiurus platyops, Thomas. Vahd as a subgenus.
'Type spectis.-Sciurus ocularis, Smith. (Graphiarus capensis, Smats.)
Ravge,-Africa: Sudan, Sahara, Abyssinia, Somaliland, Kenya, Uganda, 'fongansika; Senegal, Liberia, Gold Coast, Nigeria, Cameroms, Congo; Angola, Rhodesia, Nyasaland, Mozamhique, South-west Africa, Bechuanaland, 'J'ranssaal, Cape.

Nember of lormis. - About fifty-three.
Characters.- Cagomatic plate not tilted upwards and completely beneath the infraorbital foramen. Skull considerably constricted between the frontals; braincase smooth and round; nasals projecting forwards. Palate relatively broad; palatal foramina situated considerably in front of toothrows. Bullae large and inflated as a rule; mandible normally without perforation in the angular process.

Crowns of checktecth concave, with two low main external cusps; the general arrangement in pattern evidently near Eliomys (below), but the ridges in most indistinct, and a general tendency towards simplification. The premolars are usually only moderately reduced; but in the type species are strongly reduced. G. mpicola has a rather reduced lower P.4.

Externally with thickly bushy tail (normally); hindfoot with five digits, the fifth relatively long, the hallux short; the feet are of arboreal type. Caecum (said to be) absent.

Thomas \& Hinton divided the genus into three main groups, which they kered as fullows:
Premolar minute, simple; surface of teeth with scarcely perceptihle ridges.

Grapliumus
Premolar little smaller than the molars, its outer edge, when unworn, notched as in the molars; surface of teeth with distinct ridges.
Skull of normal height, braincase strongly convex upwards. Claciglis
skull flattencd, muzale low, haincase scareely convex upwards. Gliriscus
In the first case, it must be pointed out that Gliviscus cannot be used in a generic sense if unly on the grounds of consistency. Ilinton (Xonograph of Voles and Lemmings, 1926, p. 44) writes, of the genus Alticola, "some remarkable species inhahiting the bare talus slopes of Central Asia, have acquired remarkahly flattened skulls fitting them for life in rock crevices; these have heen referred to a special subgenus Platycranias by Kascenko, but apart from the peculiar flattening of the skull there is nothing to distinguish them from


Fig. 159. Graphilurus hieti hueti, Rochebrune.
B.aI. No. $25 \cdot 10.24 .1 ; 2 \frac{1}{2}$.


Fig. igo. Graphicrt's hieti ineti, Rochebrune.
B. X1. No. 25.10.24: 21.
the more specialized forms of Ahcola"; and (on P. 325), "The subgenus I'laty Gramius seems to be an offisest of the genus. Alticula which has become specialized for life in the erevices of bare rocks; and in this habit and the correlated cramial characters it atfords a parallel to Glisiscus, a similar offshoot from (iraphiurns, the great African genus of Dormice."

No authors daaling with Palacarctic mammals have eror given Platyoramius full generic rank so far as I know. But when exactly the same specialization oceurs in Africa, it seems it must be generic! I have often failed to see why anmals most have full generic rank just hecause they inhabit the African Continent, but in many cases this seems to be the sole reason.


Fls: 16i. Graphicres bueti hueti, Rochebrune. Checkteeth: B..\I. No. 25.10.24.21; 10.

It may alsu be added that Graphimus s.s. has the skull just as flattened as in Gliriscus.

Between Graphiurus (ocularis) and other subgenera there is a wide distinction in the chcektecth; in the former the premolars are extremely reduced. But contra to the statement of the above key I have been quite unahle to detect any difference in the ragueness of pattern of Graphiarus and many forms referted to Clariglis. On the reduction of the premolars alone I do not care to give this species full generic rank, bearing in mind that there is a very eeneral tendency for certain reduction to take place throughout the genus in these teeth. 'llough $G$. ocularis has reached a stage rather sharply distinct from the others, it is rather at the end of a long series than so sharply distinct from all others that it must be considered as a full gentus.

At the othere end of the scrics stands the giant West African G. hueti. In $193^{6}$ Allen gave this species enencric rank under the name Aethoglis, on a number of characters which do not prove to distinguish it clearly from all other members of the genus.

One of the main characters was the animal's larger size. It seems unnecessary for me to have to point out that size cannot possibly be used in a generic sense
unless we have a genus name for almost every known species. Compared with Claciglis, the bultae are relatively smaller (the difference not great); the zygoma is said to be less bowed; the nasals narrowed throughout insteat of heine broad anteriorly. The vomer continuing to the posterior edge of bony palate, and disiding the posterior nares; the incisors face anteriorly normally, not turned inwards as in Claziglis; and I'. + is farther forward. But the species has evidently not been compared with the much smaller $G$. crassicaudutus, from the same area. In this species the nasals are precisely as in "Acthoglis," and the incisors are as in "Aethoglis." On the remaining characters it is difficult to regard the hueti group as more than a well-defined specific groap of the subgenus Claziglis. Even the "large size" character is covered by the Angolan species monardi.

The genus, which is in much need of resision, is extremely difficult to arrange in any natural order. Apart from the subgenera, Graphiurus, for ocularis, and Gliriscus for platyops group, there remains a large assemblage of more normal African Dormice. Both Mr. Ilayman and myself have tried to arrange these into groups, but without much success. Mr. Hayman reports:
"Subgenus Clariglis: this contains the remainder and by far the largest number of African dormice. Attempts have been made to divide them into groups of related forms, hut apart from perhaps four easily distinguished forms the remainder do not appear separable into definite groups. Variation in size is considerable in some forms, so that overlapping invalidates any arrangement based on size, while although extremes of colour in the subgenus are wide (from pale grey to brown), disision into groups based on colour breaks down when it is seen that in a sery large series from northern Rhodesia nearly all the colour shades found in forms from elsewhere in the range of the genus are represented.

The following forms are easily distinguished.
crassicaudatus, Jentink. Nasals and ineisors as "Aethoglis," but anterior end of toothrow behind zygoma root (not so in hueti group, but at base of it), and size small. ("lhe frontals anusually broad (J.R.E.).)
surdus, Dollman. Nasals as "Aethoglis"; size small. (lnfraorhital foramen formen apparently not as usual in the genus (J.R.E.).)
zoosnami, Dollman. Very pale grey form.
monardi, St. Leger. Size large, head and body $150-160$. Skall normal, in no characters resembling hueti, as suggested by author."
The remainder have a normal skull, with nasals expanded anteriorly to form part of sides of rostrum. Lead and hody from 7010116 .

Forms seen: ansorgei, angolonsis, brockmani, butleri, christyi, dorotheat, foxi, griselda, haedulus, husti, internus, johnstoni, lornaincus, microtis, monardi, montosus, murimus, namus, ocularis, olye, arobinus, parius, platyops, raptor, rupicola, saturatus, smithi, spurrelli, solewtus, surdus, woosnami.

Certanly monardi and crassicaudatus and, I think, probably awosmami and surdus are sufficiently distinct to be regarded as types of specific groups. The
remainder will have to be refered to a single group, in which it appears that there are far too many outstanding "distinct species" at the present day.

## LAET OF Named Foras

('lhe references and type localities for all Muscardinidae are the work of Mr. R. W. Hayman.)

Subgenus Graphiarus, Smuts
i. GRAPHIURLIS UCULARIS, Smith
1829. Zool. Journ. 1N, p. +39.

Plattenherg Bay, Cape Prownce.
Synonym: capensis, Cuyer, $\mathbf{N} 2 \mathbf{2}$, , Namm., pl. 254
tpicus, Smith, Afr. Zool., 1834. D. 65.
degans, Ogilby, I'roc. Zool. Sise. Lomdon, 1838, p. 5. (Damaraland).
cattoiri, Fisch. Synups. Mamm., p. 310, 1829 (indeter mmate accorting to G. M. Allen, ig39).

Suhgenus Gliviscus, 'Ihomas \& Hinton
2. GRAPHIILRL'S PLATYOPS, Thomas
1897. Ann. Nag. Nat. Hist. 6, X1N, p. 388.

Enkeldoorn, Alashonaland.
3. GRAPHILIRLS EASTWOODAE, Koberts
1913. Ann. Transv. Mus. IV, p. So.

Wondibush, Transvaal. (Stated to be related tom maris, but description does not bear this out; measurements suggest (shriscus (R.W.H.).)
4. GRAPhildut rleficola rlpicola, Thomas \& Hinton
1925. Proc. Zool. Soc. London, p. 232.

Karbib, S.-W. Atrica.
5. GRAPHICRUS RUPICOLA MONTOSUS, Thomas \& Hinton
1925. Proc. Zomil. Suc. London, p. 233.
(ireat Brukaros Mountain, S.-W. Africa.
Subgenus Clarighis, Jentink
hueti Group
6. GRAPHELRLS HUETI HUETL, Rochebrunt
1883. Fitune Soner., p. tog. pl. vi, fig. i.

Si. Lours, senegal.
7. GRAPIILRES HE"ETI ARGENTELTA, Allen
1936. Journ. Namm. Baltimote, 17, p. 293.

$\therefore$ GRAPHILRLS HCL:FI NiAGTGLASI, Jontenk
188s. Notes Leyden Mus., N, p. 38.

crassicandatus (iroup)
4. (iRAPHHLRLS CRASSICALDATLS LRASSICAUDATLS, Jentmk

1sis. Notes Levden Jus., p. 41 .
Du Oucah Rews, laberta.

10．GRAPHICRUS CRASSICATDATL＇S DOROTIEAE，Dollman 1912．Ann，Mag．Nat，Ilist．S，IS，P． 312.

Oban district，S．－I：．Nigeria．

## surdus Group

11．GRAPHILRUS SLRDUS，Dollman
1912．Ann．Nag．Nat．Hist．S，IN，P． 314.
Benito River，French Congo．
woosnami Group
12．GRAPHIURUS WOOSNAMH，Dollman
1910．Ann．Mag．Nat．Hist．8，VI，P． 393.
North of Okwa，Kialahari Desert．
monardi Group
13．GRAPHIURUS NONARDI，St．Leger 1936．Ann．Mag．Nat．Hist．so，NVII，p． 465.

Chiumbe River，Angola．

## murinus Group

14．GRAPHILTRLS OLGA，Thomas
1925．Ann．Nag．Nat．Hist．9，XVI，P．191．
Asben，South Sahara．
15．GRAPHIURUS OROBINLS，Wagner 1845．Arch．f．Naturgesch．，N1，1，P．1．4． Senaar，Sudan．
16．GRAPHICRL＇S BUTLERI，Dollman 1912．Ann．Mag．Xat．Hist．8，IX，p． 319. Jebel Ahmed Aga，Sudan．
ェ．GRAPHHURUS BROCKMANI BROCKMANI，Dollman 1910．Ann．Mag．N゙at．Ilist．8，V，p． 28 －． Burao，Somaliland．
18．GRAPHILTRT - BROCKINANI INTERNUS，Dollman
1912．Ann．Mar．Nat．IIst．S，IK，p． 3 \＆ 8.
Sorthern Guase Niro，Neny．
19．（iRAPHILRE゚S FON゙1，Dollman 19t4．Ann．Mag．Nat．Ilist．8，XIII，p． 106. Kabwir，Katheharsovince，… Nigeria．
20．GRAJ＇HILRL＇s PARVL＇s PARVLS，True

Tana River，Kenya．

1910．Field Mus．Vat．IIst，Zowl．ser．，S．no．3．P． 15.
CTukenya I Iills，Kienya．

1910．Trans．Zoul．Soč．London，XIX，p．quo．
Rumenそッチi。 L＂gandia．

23．GRAPHILRLS AOIAATLS COLLARIS，Allen \＆Losendee 1933．Bull．Mas．Comp．Zowl．llarsard Coll．I，犬゙さV，no，z，p， 122.

Lkings ．Wountams，north of Lake Xyasa，＇langanyka．

1011．Smuths．Nlisc．Coll．1，Vl，no．17，p．2．
Rhno C＇amp．Lado Enclase，X．Uyanda．
25．（；RAPHIURLS MURINLS NILRINUS，Desmarest
182z．Namm．Suppl．p．Sqュ．
C＇ape Colony．
Synomym：coupti，Cuskr，N1：mm，IS22，औ1．251．

（ineratas．Ruppell，Nus．Senck．3．IStz，p． 130 （fide ＇l＇rouessart）．

20．GRAPHILRLS MLRINUS TZANEENENSIS，Roberts
1913．Ann．Transe．Mus．lV，p． 79.
＇T「ranswal．
27．GRAPIIIURLS MURINUS ISOLATUS，Heller
1912．Smiths．Nisc．Coll．LIX，no．I 6，p． 3.
＇Tata Mulls，K゙enya．
28．GR．APIHILRC゚S MLRINLS GRISELS，Allen
1912．Bull．Mus．Comp．Zool．Harvard Coll．，LIV，p．$+\neq 0$.
Numhern Guasu Nyiro，Kemya．
Syinmym：johmstori，Heller，1912，Smiths．Misc．Coil．LIS，i6，p．2，not of＇lhomas．

29．GRAPHILRLS MILRINUS SATLRATLS，Dolman
1010．Amn．Mag．Niat．Hist．S，V，p． 204.
Dount Elgon，Renya．
30．GRAPHILRLS MLTRINLS RAPTOR，Dollman
1910．Ann．Dlag．Nat．Jlist．S，V，p． 96.
Joumt lienya．
31．GRAPHIERUS MICROTIS，Nouck
1887．Kool．Jahrh．，11，p．248，pl．ix．
Narungu，S．－E．Congo．
A synonsin of G．m．murimus，fude G．N．Allen， 1939.
32．（；RAPHILRES SMIITHH，Thomas
IS93．Ann．Mar．Nat．H1st．6，Kil，p．2f7．
Spete Gulf，Victoria Nvanza．
Synomym：（？）Subrufus，Keumann，moo，Zool，Jahrb．Syst．XIII， p．547．Tanga，Tanganyıka．
33．GRAPHILTRE：AN大ORGEI，Dollman
1912．Ann．Jag．Niat．Hist．S，IX，p． 317.
Alusamedes，S．Angola．
34．GRAPIIICRES LORRAINELS．Dollman
1910．Ann．Nag．Nat． 11 sst．A，V．p．zso．
Noleqbue，south of Setems Rapids，Lete Rwer，lelsian Congo．

3．GRAPHILRL＇S SPCRRLELAJ．Dollman 1912．Ann．Nas．Nat．Mist \＆，IS，p． 315.

Bibianaha，（jold Coast．
36．GRAPIIURUS H．VFDCLUS，Dollman 1912．Ann．Mag．Nat．llist．S，IN，p． 316.

Bumba River，Cameroons．
37．GRAPIIILRLS CHIRIS゙「Y゙I，Dollman 1914．Vxtr．Rev．Zowl．Afr．，IV，fasc．1，p．So．

Mamboka，E．Congo．
 1897．Ann．Mag．Nat．Miet．6，XX，p． 320.

Caconda，Angola．
3\％．GRAPHILRES ANGULENSIS JORDANI，Roberts 1929．Ann．Transs．Mus．Xlll，p． 95. lsokia，N．Rhodesia．
＋0．GRAPHILRL＇S GIRISELDA GRISFLDA，Achwann rgob．Proc．Kool．Soc．London，p．ros． Kuruman，Bechuanaland．
4．GRAPIILRUS GRISELDA PRI：TORIAE，Roberts 1913．Ann．Transs．Mus．IV，p． 79.

Wonderboom，l＇retoria，Transtaal． （A race of murinus according to G．M．Allen，1939．）
42．GRAPHIURU＇S KELI．ENI，Reuvens
1890．Die Myoxidae oder Schlatefer，p．35，pl．i，fig．i，pl．iii，fig． 3. Damaraland．
43．GRAPHILRUS NANLS，de Winton 1896．Proc．Zaol．Soc．London，p． 799. Mazoc，Mashonaland．
＋4．GRAPLIIURU＇S JOHNSTONI，Thomas
1S97．Proc．Zool．Soc．London，p．93．
Zomba，N゙yasaland．

Not seen and not allucated to group
45．GRAPMIJLRLE ALTICOIA．Roberts
1929．Ann．Transs．Mus．，XIII，p．9®．
Wakkerstroon，＇Transvaal．
th．GRAPIIILRL＇S I．ITIORAEIS，Ruberts
1929．Ann．＇lranss．Mus．XIll，p．p\％．
Masiene，coast of Portuguese E．Africa．
47．GRAPHILCRLS STREETERI，Roberts
1913．Ann．Transs．Mus．IV，p．So．
Transvaa！．

1929．Ann．Transs．Mus．，Xlll．p． 95.
（；welo，S．Rhoressa．

```
 49. (iRAl'\}ll['R['S VANDANII, Roberts
1りこの. Ann. Transt. Nus, XllI, p, 97,
 Lomer Olifants River, Portuguese E. Afrea.
```



```
1031. Aran. 'lransv. Mus., SIV', p. 220.
 LWombo Bush, North Zululand.
 51. GRAPlfllRUS SCHWNB], G. N. Allen
IGİ. Jull. Nus. Comp. Zoul. Harvard Coll. IJ J \({ }^{\top}\), p. \(4 \neq 1\).
 liribs, Cameroons:
```




```
1032. Bull. Soe. Neuch. Sci. Nat. 57 , P. 54 .
 Rio Nhale, Mussamedes, S. Angola.
```




```
Dount Karismbi，Birunga Volcanoes，Kivu，E．Congo．
```


## Suhfamily MUSCARDININAE

Geographical Distribution．－Palaearctic region：Europe from southern Scandinavia to the Mediterranean，and England eastwards；Asia Minor；Sinai；North Africa，south to Rio de Oro； across Russian Asia to Tianshan，Zungaria，and North－west Frontier（specimens of Dyromys from last locality in British Museum）；Japan．

Ntaber of Genera．－Six．
Characters．－Differing from the Graphiurinac in the more Nurine zygomatic plate，which is tilted upwards to a certain extent， the muscle attaching line of attachment on its furepart；masseter lateralis superficialis with anterior head distinct．No caecum（so far as known）．（heek－ teeth $\frac{4}{4}$ ．

In Elfonys，the cheekteeth are basin－shaped and cuspidate much as in Graphimus；the premolar is not reduced，and there are on all main upper teeth two high main outer cusps，and one long main inner cusp（as in normal Sciuri－ dac）；the cros－ridges are arranged much as in Sciuridae．In Dyronys，the premolars are reduced，and the cheekteeth are less coneare，hut the weneral dental effect is near Ehiomys．In Glis，the cheekteeth are more nearly flat－ crowned，with five or six low cusps on outer margin of upper main teeth；the skull is more strongly rideed than in the other genera；hut 11.1 is not con－ apicususly different in size from Mas；in Muscardints，a more specialized dental effect in present，the premolar heing vestigiad，the first molar much lareer than the second，the ridges arranged differently，and the crowns of the teeth are flat．
＇These four senera have been thoroughly deale with in Aliller，Catalugue of Nammals of Western Europe，p．549，1912．The remaining genera，Glirtlus and Densmans are very litele known；the latter is not represented at the british Museum．

Key to the (ienera of Mcscardininafe
(not including the genus hyomimus which has not been examined)
Crowns of cheekteeth flat; M.s much larger than $\mathrm{M1.2}$, the ridges of this tooth arranged differently, the depressions between them unusually wide (angular portion of mandible with perforation; tail not distichous). Slescardind:
Crowns of cheekteeth not completely flat; M.i not conspicuously larger than M.2, the ridges of this tooth not arranged differently, the depressions between them not unusually wide.
Bullae low, relatively small, and that, scarcely rising above general level of base of skull. (Mandible without perforation in angular process.)

Glirctlés
Bullae large, well inflated, rising clearly above general level of base of skull.
Outer side of upper main cheekteeth with five or six low cusps; crowns nearly flat. Angular portion of mandible not perforated. (Tail conspicuously distichous; skull with rather well-marked supraorbital ridges.)

Glis
Outer side of upper main cheekteeth with two high cusps; crowns concave. Angular portion of mandible perforated. (Skull without clear supraorbital ridges.)
Cheekteeth markedly concave; premolars clearly cuspidate; tail not uniformly haired. Elionys
Cheekteeth less markedly concave; premolars not clearly cuspidate; tail uniformly haired. Dýromys
The position of the genus Glirulus must be regarded as provisional owing to the scarcity of material available. The unrepresented genus .1 vomimus differs from all the above in the character of its tail, which is stated to be scantily haired, like that of a Mouse.

## Genus r. EldOMIS, Wagner

1843. Elomys, Wagner, Abh. Bayer. Akad. Wiss, München, math.-phys. III, p. r-6. 1885. Bifa, Lataste, Le Naturaliste, no. S, pp. 61-63. Bifa lerotina, Lataste.

Type Species.-Elioms melanurus, Wayner.
Range.-Continental Europe, from Herian Peninsula, France and laly, north to Baltic coast of Germany; Dalmatia; Balearic 1sles; Corsica, Sardinia; Sicily:; Russia (Iormer Smolensk, Leninerad, Novgorod. 'Jer, Orel, kiev, Clianov, Orenberg governments) (Vinogrador). . Lsia Minor (Miller). Sinai, Syria. North-western Aifica, from llunis, Cyrenaica, and Algeria to Morocco, south to Cape Blanco.

Number of Forms.-Thirteen.


F14: 162. Elionys ouercintis ( 11 fracios, I mnatus. B MI. No. S.8.4.64. . 2 !




Characerrs.-Skull strongly constricted between the frontals; rostrum relaticely long: superior portion of skull not or searcely ridged. Jugal relatively long. Palate broad, the patatal foramina situated considerably in front of toothrow, and narrowed anteriorly. Bullaw large and intlated. 'Ihe palate, as in allies, usually has a small pair of formina present at posterior horder. Infraorbital foramen narrow; zygomatic plate clearly tilted upwards, though relatively narrow compared with arerage Muridace, Angular portion of mandille perforated. Cheekteeth "ith crowns concave; in upper series, there are two high main cusps on the outer side, and me on the inner side; and four main transeerse ridges are present, separating three depressions, the general effect reminiscent of that of scmurdae. P. 4 slightly smaller than the molars, well cusped. X1.3 slightly smaller than M.z. Lower molars with three outer and two inner cusps; more basin-shaped than the upper teeth; four main ridges present, the anterior and posterior of which form the terminal margins of the teeth. Premolars with three cusps, one each side, one anteriorly, and with one ridge.


Fig. 164.
Elfomys elercines
Cheekteeth; : 10.

Mammace (quercimus), 'l'ail rather narrow, well haired but not conspicuously lushy, the hairs on the lower portion longer and more thick than those of the upper portion. llindfoot with D. 5 nearly az long as three central digits, and hallux short. Forefoot with four well-marked digits.

I do not think that there is more than one valid species of this genus in Europe. In fact I think with adequate material the North African species would mostly be referable to quercimus as races as well. A few skins seen of melunurus seem distinct by their paler coloration; and the bullae seem larger than in other forms except cyrenaicus, which also seems distinct externally in the uniformly dark and more bushy tail. But whether "mumbanus" is distinet from quercinus is at the moment not clear.

Forms seen: "amori," cyrenaicus, symnesicus, lerotimus, lusitanicus, melamurns, munbyomes, uccidemalis, ophinsac, pallidus, quercimes, sardus.

> Iat (of Ninhy foras

1766. Syst. Nat. 1, 12th Ed., p. S4.

Germany.
Synonym: hortualis, Cahrera, 1904, Bol, Real, soc. Espan. Hot. Nitt. N. P. Nis. Valencia, Spam.
hamiltoni, Cabrera, ino\%, Bol. Real. Soce Epan, Blat, Nat Vilf, p. 226. El lardo, near Madrid, Span.

2．FIJOMYS QLERRCINUS ALPERAN゙S，Ggnev \＆Stroganov
1036．Abs．Works Zool．Inst．Nersem titate Unw．3，p．8t．
Kalinn district，Penorsk region；River Jukepa，the right tributary of the Volsa（former Ostashos subdistrat of the＇Tier government） （Russia）．

ryo3．Ann．Mas．Nat 1Int．T．XI，p．404．
San Cristabal，Minotea．
＋ELIOMIS（NLRCNNLG PALLHDLS，Barrett－Hamiton
f Kou．Anm．Nage Nat．IIst．7，lII，p． 226 ．
Palermo，Sicity．
Synoman：emticauth，M1ller，190i，Proc．Bol．Soc．Washington，XIV， P．39．Sorrento，Italy：

1901．Ann．Nas Nat．Hest．7．VlI，p． 340 ．
＇Tricoh，sardinia．

ISgo．Die \ỵoxidac uder Schlaefer，p．2S，foomote．
Lashon，Portugal．
Synonsm：amori，（iraels，i897，Nen，Real．Acad．Sci．Madrid．XVII， p．481．Corduva，Span．
7．ELIONIS゙（LUERCINUS UPHIUSAE，Thomas
1g25．Ann．Nay．Nat．Hist．の．NVI，p． 3 So．
Formentera，Balearie Islands．
8．EldONYS N1LNBYANUS MLNBYANLS，Pomel
1856．C．R．Ac．Sci．Pares，XllIf，p． 653.
＇Tuns．
o．EJBOMYS MLNBY゙ANUS LEROTINLS，Lataste
\＆Sris．Le Naturaliste，p．Gi．
Ghardan，DIzah，Agerman Sahara．
8． $1 \Leftrightarrow 10 N Y S$ NUNBYANUS TUNETAF，Thomas
1903．Am，Matr Nat．Ilist．7，XI，p． 495.
I arrouanz，「umb．
（A symung of $E$ ．m．mubbumus，atcording tw G．N．Allen，1939．）
ri．ELIONIS オUMBYANUS OCCIDENTALIS．Thomas
1903．Nus．Zonl．N．P．300．Rio de Oro，W，Sahara．
12．ELIONIY CYRENAICLS，Festa
1922．Boll．Mus．Zawl．Anat．Comp．Tuman，740，p． 4. Chemanez，Cyrenate N．Africa．
13．ELROAIY＇MELANCRLS，Wamer
 sima．

Cinus 2．DYROXIY ．Thomas







Fig. i65. Dyromys sitedela sitedela, Pallas.
13. \1. No. 12.12.17.12; 3!

 BM. 人1, 12.12.17.12; 3

Voroncj ports．，Bessambia，Astrakan，Lower Volga，former Kasan govt．） （Vinogrador），Caucasus and Asia Minor to Russian＇l＇urkestan（＇Tashkent district，Fergana，Semirechia，former Semipalatinsk qout．），Persia，Tianshan， Dzungaria，and North－West Frontier（North


FiG． 167
Diromis Nifedtea
Checkeeth： 10. India）．

Number of Foras．－Dighteen．
Charactrers．－Very closely related to Eliomys；upper cheekteeth less concave；the main cusps arranged as in Eliomys；five main transterse ridges in upper teeth，the main central depression with quite a well－marked ridge，this vestigial in Elioms； premolar more reduced，not strongly cuspi－ date．Lower molars with four main ridges， and three rudimentary ones between them． Premolar reduced，and simple．

Parietals not narrowed to a point anteriorly， differing in this character from Eliomys． Size smaller，and tail more uniformly haired，flattened and moderately bushy． Mammae S（type species）．

Remarrs．－＇This genus is not very widely separated from Eliomys．The cheekteeth are tending to be a little less complex．

## List of Named Formis

1．DYRomis Nitiddta Nitedtlat，pallas
ェフプ．Nors．Spec．Quadr．Glir．Ord．，p．SK． Regron of Lower Yolga，Russia． Synomy：dryas，Schreher， 1782 ，saugth．，pl．CCXXV，B．

2．DEROMY＇S NITEDL＇LA NTERMIEDIL＇S，Nehrine
1902．Sitz．Ber．Ges．Nat．Fr．Merlin，p． 155.
Near Limz，Tirol，Austna．
3．DYROONIS NITEDULA WINGEI，Nehrmg
1902．Sitz．Ber．Ges．Nat．Fr．Merlin，p．s．
Parnassus，（ircece．
4．DYRONTS NITEDLLA CARPATIIICLS，Brohmer
1027．Die Tierw．Mitt．Europ．7，Hef．3，P． 32.
LTpper Sillesia．
5．DY゙ROXIY NitkDt LA PHRY＇；iLS，Thomas
1907．Ann．Mar．Nat I hest．7，K゙X，p．407．
Nurad Dash，L＇shak l＇rowince，Assa Jinor．
f．DYROXIY NITEDILA TICHOXHROWJ，Satum

「解々，Courasux．

7．［JYROMIS NITIDCIA OBOLEXSKII．Oqnes \＆Worobiev
1923．Fauna Woronesh，p．120．
Voronej gevernment district，Russia．
 1928．Zool．Jn\％．77，P． 278 ．

Daghestan，E．Caucamus．
 1928．Kool．Anz．75，p． 265.

Mikhathersky，Kupet－I）auh， q $^{6}$ miles west－south－west of Askhabad， Russian＇Iurkestan．

10．DYROMY＇N NTEDULA AN゙GE1U - Thomas
1906．Ann．Mag．Nat．Hist．7，XVVII，p．tzt．
＇I＇ian Shan，Central Asia；near Przewalsk．
11．DYROMYS NITEDULA CACCASICLS，omer \＆Turov
1935．Wiss．Ber．Moshauer Staats．Univ．t．p． 98.
Environs of Tarskaja station，Northern Caucasus（kormer ${ }^{\circ}$ Cersk Province）．

12．DYROMYS NITEDLLA DAGESTANCUS，Ognev S Turos
1935．Wiss．Ber．Moskauer Stats．Unir．t．p．qS．
Khasav－Jurt，Daghestan，Caucasun．
13．DYROMYS NTTEDULA KLRDISTANICLS，Ognev \＆Turov
1935．Wiss．Ber．Moskauer Staats．Lnis．4，p． 101.
Riv．Terter，Kurdistan．
if．DYROMIS NITEDULA PALLIDLS，Ognes \＆Turos 1935．Wiss．Ber．Moskauer Stats．Unit．t．p．IO2．

Vall．Ris．Busturgay，Karatau Nountains，former Province of Syr－ 1 arya，Turkestan．

15．DYROMYS NTTEDU1A＂TANATICじS，Ognč \＆IUrov
1935．Wiss．Ber．Noskater Staats．Kniv．t，p．9S．
Atamanovsky khutor，＇Tarasursky disirict（former Dun Irosince）， S．Russia．

```
1t．DYROMIS NITPDCLAAPIC＂ILS，Rantord
1875．Ann．Nag．Nat．Hist．，t．XVII，p． 31 I ．
Kohrud，south of Caspan，Persa．
```

17．DYROMYS MILLIERI，Thomas
1912．Ann．Mare Nat．Mint．\＆．IX，p．394．

＊．DYROMY＇ROBLSTLS，Diller
1910．Ann．Mag．V゙at．Hist．S．VI，p．tan．
Runtschuk，Bule：arat．
Forms setn：angelus，milleri，nitelula，wholenskï，pictus，phriesius，whustus， sainge $i$ ．
1906. Gelrlel's, Thomas, Proc. Zool. Soc. London, i905, p. 347.
'I'ype sprcifs.-Gruphiantes elegans, Temminck = Myoxus japonicus, Schinz.
Ratige.-Japan.
Nolaber of Foras.-One.
Cimaracters.-"With regard to the generic position of this Dormouse I think it cannot be assigned to any of the existing groups, and must have a special name of its own. It is no doubt most nearly allied to Eliomys (Dromis, suhgen. n.) nitedulus, Pallas, hut may be readily distinguished by the rather more complicated pattern of its teeth, its small bullae, the absence of the angular foramen in its mandible, and by its peculiar colour pattern" (Thomas).

There are only two skulls in the British Museum of this genus, and two specimens in spirit. 'The teeth are too worn in the skulls for any detailed notes, though apparently nearer Dyromys than Glis. The size is small, the tail bushy; according to Thomas the mammae are 8 . The main genus distinction is the possession of the small low flattened bullae, conspicuously different from those of other Muscardininae examined. The premolars are smaller than the molars, as in Deromys.

Forms secn: japonicus.

## List of Named Foras

1. GLIRLLCS JAPONICUS, Schmz (emended by Thomas from "jaranicus")
2. Syst. Verz. Saug., II, p. 530.

Japan.
Synonym: elegans, Temminck, $1 S_{45}$, Faun. Japon. Mamm., p. 53.
lasiotis, Thomas, I88o, Proc. Zool. Soc. London, p. 40.

Genus 4 (iLls, Brisson
1762. Glis, Brisson, Regn. Anim. Class, IX, 2nd ed., p. 13.
${ }_{17} 7$ So. Myox's, Zummermann, (ieogr. Ges. 11, p. 35I. (Sciurus glis, Linn.)
'l'ype Spectas.-Glis, Brisson = Sciurus glis, Linnaeus.
Raxge.-Continental Europe from Atlantic coast of France eastwards, north to North (iermany, south through Switzerland and Italy to Sicily: Northern Spain: Sardinia: Yugoslavia, Roumania; Asia Ninor, Persia; Russia (former Minsk, Pudol, Volyn, Kiev, Darkos, Astrakan, Samara, Saratov, Pensa, Llianos erovts.) (Vinogradow). Bessarahia, Caucasus, and Soutl ' 'urkmenia. Introduced in England.

Siaber uF Formis-Eleven.
(iharactrrs.- Jnterorhital region of skull well ridged, the ridges tending to unite in old age. Jugal approaching the lachrymal. Rostrum kes puinted than in Elom?s. Bublac prominent. Zygomatic spread relatively


Fiti, ifs. (illis glis glis, Linnaeus.
B M. Ni, $6.8_{4+1,}$ 干; 2.

yreat. The 2yoma is in some ways reminisent of that of Anomehurns, though in the latter genus the inframhital foramen has become much more widely open for musele-transmission whereas in
 Glis the zygomatic plate has become more broadened. Nandible without perforation in angular process; coronoid noticeably powerful. Clecekecth simpler than in Eliomys, more flat; the outer side of upper series with five low cusps, the inner sicle with four. M.i and M.2 with seven transserse ridges of which four are well developed, the three alternating between them weaker. P.f considerably smaller than the other teeth, and with its elements reduced. Lower teeth like the upper series in general arrangement.

Fur thick and soft; tail densely bushy; feet broad; general appearance of animal Squirrel-like. Size rather large for family (head and body up to 190 mm .). Nammae 12. D. 5 hindfent long, about equal to D.z.
Forms seen: glis, insularis, itclicus, melonii, "postus," spoliatus.

List of Named Forns

1. GIJIS GLIS (illis, Imnacus
2. Syst. Siat. I, izth Ed.. p. St.
(iermany.
Syomym: esculentus, Blumenbath, 1779 , Handb. Niat., p, 79.
を'mlgans, Oken, i8it, Lehrbuch, Naturs, IIl, pt. 二, p. 868. ( C sermany.)
arellamis, Owen, isto, Oduntugraphy, II, p. 25. pl. 105.
 l'als. I, p. $4+t$, nom. nud.
3. GLIS GiLIA ITALICLS, Barett-Hamitom
r8os. Amm. Nag. Nat. Hast. 7, JI, P. +24.
Scha, ltaly.
 III, P, asit. P'itermor, Situly.
 lugroslata.

[^18]4. GLIS Gl.IS ABRL"ITI, Alobe:lla
1924. Rend. Union. Zool. P. 30; fis. in Monitore Zonl. Ital. 35. S. Italy.
5. GLIS GLIS MINL'Jt's, Martine 1930. Proc. Russ. Sci. Inst. Beler. 2, p. 60. Serbia: Predejane, 30 km . south of Leskovac.
6. GLAS GIJS PYRENAICUS, Cabrera 190S. Ann. Mag. Nat. Hist. S, I, p. 193. Allo, Navarra, Span.
7. GIIS GLIS NELONII, Thomas 1907. Ann. Mag. Nat. Mist. 7, X1X, p. 445. Marcurighe, Ogliastra, Sardinia.
8. GIJI GLIS ORIENTALIS, Nehring 1903. Sitz. Ber. Ges. Nat. Fr. Berlin, p. IS7. Near Scutari, Asia Ninur.
9. GLIS GlIS SPOLIATLS, Thomas

I gob. Ann. Mag. Nat. Hist. 7, XVIII, p. 220. Khotz, near 'Trebizond, Asia Minor.
10. GLIS GLIS TSCHETSHENICLES, Satunin 1920. Trav. Nus. Georg. Tiflis, no. 2, p. 150. Caucasus.
11. GLIS GLIS CASPICLS, Satumm
1905. Mitt. Kaukas. Mus., II, p. 55. Aschabad, Transeaspia.
There is reason to believe that the name persicus, Erxleben, Syst. Regn. Anim. i, p. 417, 1777 (which has been used for Sciurus anomalus), is based on a form of this species.

## Genus 5. ML'sCardincts, Kaup

1829. Muscardnecs, Kaup, Entw. Ges. Nat. Europ. Thierwelt, I, p. I 34 .

T’ype Species.-Mus avellanarius, Linnaeus.
Range.-England; France; Southern Germany; Central Sweden; Italy, Sicily; Austria; Grecce: Asia Ninor; Russia (former Vitebsk, Minsk, Smolensk, Moscow, Madimir, Kostroma, Harkor, Kasan, Ulianor, Kiev, Poltava, Yolyn, Podol, Odessa governments, Bessarabia) (Vinogradov).

Number of Forms.-Five.
Cuaracters.-Zygomatic phate rather broader than in allied genera, its superior border ridged; infraorhital foramen small. Incisive foramina rather longer than usual, and not widened posteriorls. Weqomata widely spreading anteriorly. Palate sery short, not extending back to M.3. A small perforition in angular portion of mandible usually present. Bullae moderately inflated.

```
4% l.amm, lembont- - I
```


 developed ridges，the depressions heencen them vers howd the ridger whigue， the woth lengthened； $\mathrm{IN}_{2}$－with seeven transerse


Fル：1－
 Cheektecth． 10. ridges the depressions hetween flem nareon： N．：like M．2 hut smaller，with ridges less developed．P． t usually with two ridges．In the
 aross each tooth except the mach redued premelar；the lower lirst molar is less conlarged than the upper first molar，and its ridges less oblique．

Size very small，head and hody umater 100. Forchour with＂digits relatively longer than in the other European genera，and closing ohliquely inward so as to conce into opposition with the much enlarged inner tuberde，the unusund size of which ．．enables it to function as a low，broad thumh＂（Willer）．Ilindfoot with lour long diyits， and hallux more rudimentary than msual．＇Tail uniformly haired，said to he partly prehensile，more narrowed than is ushal in the group．Stomach extremely complex（Thomas）．Nammae（typespectes）s．

Revarks．－This genus is very distinct from the other members of the sub－
family，and in sereral ways its type of dentition seems to he leading towards that of the Platacanthomyinac．

Forms seen：＂anglicus，＂achlamaius，puldher，trapesims．

## last of Namen Forms


1758．Syst．Nat．1，woth Ed．，p．O2．
Cemtal sweden．
Synonyin：muscardinus，schreher，17S2，Sägrh．，pl．CCNXVll． Germany．
azellanarius anglias，Barrett－Hamilton．1900，I＇ros，Zonl． Soe Londen，p．So．Northampon，Enghand．
corilimun，leato，isto，liaune Vert．Suisse，1，p．1s．


Ahruzzi，haly．

1932．Ann．Mar．Nat．llist．10．1S，r． 170.
East slope Jlount Olypus，＇Thessaly，Grecec．


lerturia，las．



1908. Ann. Mag. Nat. Ilist. S, I, p. Go 'lrebizond, Asia Minor.

Gentus 6. NYOM1AMES, Ogner
1924. Nsomames, Ogner, Nature and spart in Ukrance, Kharkor, f. I

Trepe Spfers.-Mymimus persomatus, Ognex.
Ravge.-Described from 'lranscaspia, near the l'ersian frontier.
Nomber of Fobras.-One.
This genus is not represented in the British Muscum. The tail is deseribed as heing thinly haired, as in Mice. The checktecth are described as near those of $D$ yromss. In the skull as figured by Ognev \& l leptner, it may be noted that the bullae are well inflated, the angular portion of the mandible perforated, and the palate normal (not as in Platacanthomyinae).

## List of Named Fornis

1. MYOMIIMIL's PERSONATLS, Ognes
2. Nature \& Sport in Ukraine, Kharkow, p. I.
'Transcaspia: near l'ersan frontier.

## Subfamily PLA'TACANTHOMITNAE

Geographeal Distribetion.-Peninsular India; South China.
Nember of Gevert-Two.
Characters--Differing from Muscardininae in the suppression of the premolars, the more definite and more specialized pattern of the cheektecth, the presence of a large series of foramina or a single pair of very large foramina between the toothrows, the much smaller bullae, and in the genus Typhlomys the presence of a small caecum.

There may be some douht as to whether this group is rightly placed in the Xuscardinidae. Peters came to the conclusion that Platactanthomys was a member of the Nhridae showing signs of affinity with Pllocomys and Meriones. 'lhomas in his classification of the Order in 896 stated: "Dr. Winge has placed Platacanthomys in the Gliridae, from which it was remosed to the Muridae by Dr. Peters, and in this he has heen followed hy Dr. 'Tullberg, and I am informed by Dr. Forsyth Xajor . . that he holds a similar view. On the whole though I think there is crough cridence of Xhurine affinity in Plofacanthomys and its ally Typhlomys to make the question rather doubtful, I am inclined to agree to the reference of these zenera to the family Gliridae, on account of the structure of the teeth and interorhital region, the peculiar Glirine twisting of their mandibular angles, ant of their (at least the former's) want of a caceum, a character found in the Gliridae alone of Rodents." But some years hater 'Thomas discovered that in Typhloms a small caccum is present.

Willer \& Gidley, 1918, and Weber, 1928 , separate the two genera as a family the P'latacanthomydae, which the former define as "Like the Cricetidae but zygomasseteric structure unusual; infraorbital foramen of normal Cricetine form, but zygomatic plate much narrowed, and masseter lateralis profundus extending its line of attachment along upper aygomatic border to side of rostrum above foramen. Cheektecth subhypsodont, enamel pattern a modified heptamerous, with tendency to form oblique parallel cross-ridges (parallel Nuscardinidate."

But the zygomatic plate is no more narrowed than in $/ 1 y$ dromys, which these authors refer to their Nuridae; something similar judging from 'Fullberg's figure seems to occur in that genus, in the zygomasseteric structure.

It has been suggested to the present author that Typhlomys is a Dipodoid. But in dental structure, and in the much more important zygomasseteric structure, it is very clear that this is not the case.

I do not think that there is very much doubt that these two genera should form a well-marked subfamily of the present family. Muscardimus, as stated above, seems to be leading towards Ilatacanthomys in dental characters, though considerably less modified than in that genus. On the pattern of the cheekteeth 1 do not think the present group could be referable to the Muridae; and there is very little doubt that Typhlomys is a close ally of Platacanthomys.

## Key to the Genera of Platacanthomyinae

Caccum absent (Thomas). Tail thickly bushy, shorter than head and hody. Fur densely spiny. Skull with well-marked supraorbital ridges. Palate with one very large pair of foramina between the toothrows.

Platacanthonys
Caecum present (Jhomas). 'Tail longer than head and body, poorly haired except terminally. Fur soft. Skull with supraorbital ridges feeble or absent. Palate with a series of foramina between the toothrows.
'Typhlomys

## Genus 1. Pl, Al'ACAN'THOMLSS, Blyth

1859. Platacasthomis, Blyth, Journ. Asiat. Soc. Bengal, XXVILI, p. 288.

Type Species.-Platacanthomys lasiurus, Blyth.
Racige.-Southern India (Malabar, Coorg, I'ravancore).
Nexbbre of Forais.-One.
Characters.-Skull of the "arhoreal" type seen in many Nuridae, with hroad frontals, even broader braincase, and very large interparietal. lleaty supraorbital ridges present, extending backwards on to braincase. Zygomatic plate very narrow, but tilted strongly upwards.

Jugal not eatending so far forwards as in most Muscardinidac. Dalate broad; a large pair of foramina hetween the toothrows take up most of this


Fig. 174. Platacanthonis lashers, Blyth.
B.M. No. 13.8.22.57, ${ }^{3}$; 21.



spate. Incisive foramita very far forwards. Bullae small, reduced. Mandible with low coronoid, and angular portion without perforation, and pulled inwards as is usual in the family.

Upper cheektecth with four depressions appearing as reeentrant folds, the second one cutting right across the tooth; in X.I and M.2 the folds curving ohlicuely hackwards from outer side. 'The transwerse ridges (hetween the depressions) much broader than in Muscardininae. Lower cheekteeth with


Fig. if6. Platacantimmes lasiurlis, Blyth.
Checkteeth: B.M1. No. 13.8.22.57, 3"; $\because 10$.
four long re-entrant folds, the front one usually isolated on crown surface, the others placed externally. The pattern is clearer and more definite than in Muscardininae.
'I'ail thickly bushy terminally, less so on joining the body. Hindfoot very broad, hallux more reduced than in other members of the family, .Muscordimis perhaps excepted, and with no claw (from its appearance on dried skins, perhaps opposahle). D. 5 about as long as D.2. Back and sides covered with flattened spines.

Furms seen: lasinrus.
1.ST OF Ninhe Forvis
\&. PATACANTHOMIS L.ASIIRRO, BKth
1859. Journ, Asiat. Aoc. Rengal, XXVIII, p. z\% Alrpi, Malabar. India.

## Genus 2. 'TYlיllfollis, Milne-Edwards


Trep Sprese-Typhlomys cinereus, Nihe-lidwards.
Rwar.-Known Irom Fokien (houth (hina), and 'longking.


Fig. ${ }^{177}$. Typhlomys cinfrets anerels, Mhinc-Edwards.
B.AI. No. \& h.11.111, ; 4.


Fig. if8. Typhlomy's cinereus cinerev's, Mhine-Edwards. B.M. No. \&.8.IIIII, 马; 4 .

Number of Forms- - 'Vo.
Charactrrs.-Skull with rounded braincase and almost unconstricted interorbital region. Infraorbital foramen and zygomatic plate much like Platucanthomys. Bublace small. Palate with a series of foramina evtending from palatal foramina, which are as usual far in front of toothrows, to back of palate, the number of these foramina varying in different specimens. Coronoid low; angular process reduced, and scarcely pulled inwards. Cheekteeth narrow. Originally evicently there are five folds cutting obliquely across


Fig. 179. Typhlomys cinerees chnerets, Milne-Edwards.
Checkteth: B.MI. No. S.S.11.111, f; : 14
(ach tooth (often isolated on surface), but sometimes some of these wear out. lower teeth with five folds or depressions, less isolated than in the upper series, particularly the third and fourth, which are long. Only a small series of skulls at present avalable for examination.

Size very small. 'Taik considerably' longer than head and body, sealy, naked or with a faint growth of rather long hairs through the lower part of its length, Which at the end are produced into a brush. Fur without spines. Hindfoot evidently not specially hroadened, hat 1).5 long. Eyes much reduced. A small catcum present (lhomas).

Forms seen: cinerous, chapensis.

## List of Nimed Forils

1. TYPIL,omis ciNERELS CINERELS. Milne-Edwards 1877. Bułk. Soc. Philom. Paris, Xill, p. 9.

Fokien, China.
2. 'TYPMLOMY's CINERELS (IINPLNSIN, Osgood
1932. Field Mus. Nat. llist. Zool. Ser. XV1II, no. 1o, p. 298.

Chapa, 'Toneking.
'The family Muscardinidae is known fossil in the Palataretic region from the Midate Nisectac.

Before passing to the other Muroid families, all of which are very closely allied to each other, it must be noticed that according to 'Tullberg all other Nhorodat as here understood examined by him have a horny layer present in the cardiat portion of the stomach; but this is not the case in Nuscardinidae examined by him; I have no notes on the character in Platacanthoms and Typhloms.

> MLSCARD1N1DAE:
> SPECHA. HORKS OF REFERENCE

Millir, Catalogue of Xammals of Western Europe, i912, p. 549. Nuscardinidae. Tullberg, Nova Acta Reg. Soc. Sci. Upsahensis, i899.
Civier, Du genre Graphiure: Nouv. Ann. Mus. d'Hist. Nat. Paris, I, 1832.
Peters. On the systematic position of Platacanthomys lasiurus, Proc. Zool. Sinc. London, 1865 , p. 397.
Reurens, Die Nyoxidae oder Schlaefer, rigo, p. i.
The remaining lamilies in the Order are all closely allied to each other; the magority of the genera are referred to the Family Ahridae which contains well orer half the Order. 'Three groups, one containing two genera, the others a single genus each, appear to be too aberrantly specialized to be referred to the Aluridae.

## Family Lophioniyidat

1896. Thomas: Mromorpha, part: Family Muridae, part, Subfamity Lophiomyinae.
1897. Tullberg: Nyomorpha: Nuriformes, part: Family Lophiomyidae.
 myinae.
1898. Wince: Family Mluridae, Cricetmi, part, Criceti, part.
1899. Weber: Mtrodes, part: Family Muridae, part, Subfamity Lophiomyinae.

Geographical Distribetion--Lastern Africa: Abysinia, Somaliland, Kenya, and Sudan (Kiassala district).
Number of Genfra.-Ont.
Characters.- Wsomasseteric structure as in typical specialized Thridae, hut skull hishly abnormal, the temporal fossae roofed in by plates of hone rising from the frontals, parietals and jugals, a structure not
 checkteeth rooted laminate, each lamina separated by wide ralleys, and bearing two cusps (parallel-cuspidate Cricetinat). Fur with an erectile crest on the contre of the back. 'Tail densely bushy. Bullae reduced, small. Feet considerably specialized for arhoreal life, with hallan partly opposable.

> (entes i. LOPllooMYs, Milne-bdwards
1867. Lofmomys, Mhlne-Edwards, L'Institut, col. 35. p. $4^{6}$.

Type Spectes.-Lophiomis imhuasi, Milne-Edwards.

Range.-As in the Family Lophomyidac.
Nolaber of Forme_-Sis.
Characters.-Temporal fossae of skull completely roofed by bone, the surface of which is granulated, rising from the frontals and parictals and joining the centre of the jugals; extending backwards from jugal independently of and above the posterior portion of zygoma. Orbit thus rendered very small. Under these hony plates it may be seen that the skull is


Fig. 180. Lophionss mhatsi mathesi, Nilne-Edwards. B.M. No. 26.5.12.100, 7; $\therefore 1!$.
constricted between the orbits, as in many Muridae. Paroccipital process relatively long; occipital region prominently ridged. The granulations of the skull usually extend on to the occipital region, and on the nasals and sides of rostrum. Bullae very small. Incisive foramina long, extending to anterior molars. Ilamular processes high and raised: palate with rather large lateral pits hetween posterior molars, and mesopteryoded space usually wide. Kysomatic plate of specialized Tharine tepe; tilted prominently upwards, well rideed on its superior


B M. Nu. 2t. 5.12.100, -: 11 .

 Checktecth: B. \I Vo. 2n. 512 IOO; 5.
border. Infraorbital foramen wider above than below, its outer side usally ridged. Nandible with hinder portion of angular process rather flat. Coromoid process well developed.

Incisors moderately broad. Checktecth decreasing in size from M. 1 to N.3; three laminac on M.1, two on the other teeth, eacla lamina formed by an outer and inner eusp, the eusps approximately equal in size to each other; each lamina separated from the one behind it by a broad outer and inmer reentrant fold, these folds separated from each other by a narrow ridge running down the centre of the tooth, the general effect much as in the genus Cricetus; the cusps of each lamina separated from each other by a furrow. Teeth, excepting the raised cusps and longitudinal ridges, coloured black. Anterior portion of M. 2 with a small inner and outer fold in front of the two anterior cusps. Lower teeth much like those of the upper series; the two anterior cusps on. I. r rather small; the furrow separating the two posterior cusps tending to take the form of an inner re-entrant fold.

Size rather large for a Muroid Rodent, head and body to 360 mm . Forefoot with four well-developed digits, of which D. 3 is slightly the longest, and a rudimentary pollex. Hindfoot rather broad, with six plantar pads, three central digits slightly longer than the hallux and D.5, which are more or less subequal. 'The hallux is opposable, though clawed, and in appearance much less specialized than certain Indo-Malayan climbing Rats as Chiropodomys, Hapalomys, ete. Tail very thickly haired throughout its length; shorter than head and body, and terminating evidently in a small knob, which I have seen in captivity specimens used as an aid to climbing wire-netting. Ear relatively small. Fur excessively thick, the central portion forming an erectile crest; when this is lifted up, a long more or less bare patch of skin running along the sides is to be seen in dried skins, and in the living animal. In the young animal, it is much more evident than in the adult, perhaps owing to the fact that the coat, even at ten weeks old, is seanty. Clavicles imperfect. Dorsal vertebrae more numerous than is usual; fifteen pairs in a skeleton in my possession.

Some time ago I was fortunate enough to obtain some of these interesting animals, some of which I gave to the London Zoological Gardens, and some of which were kept by a friend of mine. They lived quite well for a time, and, moreover, my friend bred and reared a single young one which lived for fourteen months. The diet was the chief difficulty in keeping these animals alive, and the problem was not solved. 'They seemed to thrive best in a temperature of about 60 degrees. They were rather strietly nocturnal, and at first not easy to tame; but when placed in a large cage and given a hollow log to sleep in and plenty of climbing facilities they soon got to know us, and would come to call and feed from hand in the evening. I have seen it stated that these animals cannot climb; my impression is that they are the most perfect and natural climbers. When provided with a cage about six feet high they lost no time in climbing to the top of $i$, and they abwas climh down rertical wire-netting head downwards and front feet first; even the young one which was bred doing this rather astonishing feat quite naturally; moreover, they seemed able to swarm up concrete for a short distance. On the whole they were very
slow-movins anmals, and it is rather a mystery how they have managed to survive.

The remarkable skull structure seems to make it desirable to refer these animals to a distinct family; though perhaps derived from Cricetine Muridae 1 think that sometimes there are more important features to be taken into account in classification than similarity of cheekteeth alone.

Forms seen: bozasi, hindei, iheamus, imhausi, testudo.
'Thomas evidently came to the conclusion that all the East African "species" were one, as there is a note in his tracts to this effect. I am inclined to go further and think that until more material comes to hand all forms must be treated as races of the carliest name imhansi. I believe there would be many differences which could be regarded as individual or sexual, in a large series. Though I have seen sery few alive, I must note that in every case the females seem to be larger than the males.

## List af Named Formis

(References and type localities of the Lophiomyidae have been collected by Mr. R. W. Hayman.)

1867. L'Institut, vol. 35, p. 46.

Somahland.
Synonym: smithi, Rhoads, 1896, Proc, Acad. Nat. Sci. Philadelphia, P. 524. Somahland.
berasi, Mustalet, 1902, Bull. Mus. Hist. Nat. ]aris, p. 400.
Coha, S. Abyssimia.
2. LOPHEONIY LXIHALSI AETHOOPICLS, Peters
1867. Zeitschr. Ges. Natur. XXIX, p. 195.

Near Liassala, Sudan.
(A synonym of L. i. imhausi according to G. N. Allen, 1939.)
3. LOPHMOMYS IMHAUSI MBEANUS, Thomas
1910. Ann. Mag. Nat. Hist. 8, VI, p. 223.

Xile 5 I 3 on Uganda Railway, between Londiani and Lumbwa Stations, Mau region, lienya.
4. LOPIIUOMYS INHALSI IILNDEI, Thomas
1910. Ann. Mate. Nat. Hist. \&, VI, p. 223.

Mutaragwa, Aberdare Mountains, K゙eņ̧a.
5. LOPHIOAYS IMHALSI TESTUDO, Thomas
1905. Anm. Mag. Nat. Hist. 7, XV, p. So.

Ravine Station, lienya.

19i2. Smiths. Nisc. Coll. LIX, no. i6, p. 4.
Mount Gargues, Mathews Ranee, lienya.

## Family SPALACIDAE

thon. Thomas: Xreomorfhe, part: I'amuly Spalacidac, part, Subfamily Spalacinate. song. Tullbere: Nivonorpila, part: Family Spalacidae, part, meluded Myospalay ("Siphums"), Rhizomss, Tachynyctes.
1918. Milfer \& Gidey: Meroidafe, part: Family Spalacidac, part, Subfamly Spalacinac.
1924. Winge: Family Dipodidae, part, Spatacini.
1928. Weber: Merompa: Fanily Spalacidae, part, included Rhizumys, Myospalax, Tachyoryctes.

Gagrabhical Distriblition.-Palaearctic: Eastern Wediterranean region: ( ${ }^{\text {alicia, }}$ Hungary, Roumania, lugosavia, Tharkey, Greece, Southern Russia to the Caspian Sea (Poltava, l larkov, Dnepropetrovsk, Voroncj, Saratov, Don, Stalingrad districts, Ciscaucasia, 'Transcatcasia) (Vinogradow); Asia Minor, Syria, Palestine, North Egypt, into Libya.

Niabibr of Gexera.-One.
Characters.-(As here understood the family contains the genus Spalax only.) Skull and external form extremely modified for subfossorial life. External eyes suppressed (in this character unique among Rodents). 'lail absent; car restigial. Claws not specially enlarged. Skull with supraoccipital region sloping forwards to level of the posterior zygomatic root, this region occupying a third or more of whole length of skull. Zygomatic plate relatively narrow, and nearly completely beneath the infraorbital foramen, which is large for a Muroid Roclent; masseter lateralis superficialis with anterior head distinct from zygoma (as figured by Tullberg), as in normal Ahuroid Rodents. Dental formula i. $\frac{1}{1}, \mathrm{c} . \frac{1}{0} \cdot \mathrm{p} \cdot \frac{\because}{\pi}, \mathrm{m}, \frac{8}{5}=16$. Cheekteeth rooted, the inner and outer re-entrant folds forming the pattern of the young animal soon becoming isolated on crown surface. Lower incisor forming powerful process on mandible beside the condyle.

Remarks.-As will be seen above, the family has in most previous classifications contained several uther genera, such as Myospalax. Rhizomys and Tachyoryctes. Willer \& (idley show in their classification of the Order that the zygomasseteric structure of Rhizomps is totally different from that of Spalax, indeed the two groups being at the opposite end of two extremes: Rhizomys and Tachyoryctes were accordingly referred to a family Rhizomydae by these authors, while Spalax and Myospalax were retained in the Spalacidae. But the genus Myospalax is very much less highly modified as regards the arrangement of zygomatic plate and infraorbital foramen than Spalax, if the two are compared with a normal member of the Muridae. Their cheektecth also are very different; and most authors are agreed in placing Myospalex in the Nhuridae, where its position seems to be in the neighbourhood of the Cricetinac (as indicated by Winge), or the Microtinae. Such superficial resemblance as exists between Spalox and Mrospalax eramally, such as the occipital region which is abnormally sloped forwards in hoth, is probably brought about by the similar mode of life which the two genera lead.

Winge regarded Rhizomys, Tachorvetes and Whospalax as Thuridae, but transferred Spalax to the Dipodidae. But according to 'lullberg the stomach of Spalax agrees with the Muridae rather than the Dipodidae: and the infraorhital foramen and zygomatic plate of Spalax are certainly not Dipodoid.

It should be mentioned that the family Spabacisae of earlier aththors appeared to contain all the Old World Rodents which live underground, and even formerly
inchuded the Bathergidae! I do not think that there is much doubt that the grouping tugether of Spalax, Myospalax, Tachyoryctes and Rhisomys is a very unnatural arrangement.

Genus i. SPALAX, Guldenstaedt
1770. Spalax, Guldenstacdt, Not. Com. Acad. Sci. Jnp. Jetrop. XJV, pt. i, p. 410.
1909. Macrospalax, Méhely, A Földi Ǩutyák lajai, Budapest, p, 23. (New name for Spalax s.s.)
1909. Mesospalax, Méhely, A Földi N゙utyák Fajai, Budapest, p. 22. (Based on Spalax monticola, Nehring, and $S$. /nmgaricus. No type designated. If the type has not already been chusen 1 here choose the former as type species.)
1898. Microspalax, Kehring, S.l. Ges. Nat. Fr. Berlin, p. 168 , for December 1897. "Smaller species of Spalax." Not of Trouessart.
1903. NaŇospalax, Palmer, Science, new ser., S'V1], p. S73. (To replace Microspalax, Nehring. If the type has not heretofore been designated I choose Spalax kirgisormm, Nehring.)
1922. Ujhelytana, Strand, Arch. Naturg. Berlin, 88 , Abt. A. Hft. 4, p. 442 . To replace Microspalax, Nehring.
'Type Spfocies.-Spalax microphthalmus, Guldenstaedt.
Range.-As in the Family Spalacidae.
Numbir of Formis. - About twenty-seven.
Characters.-Skull extremely fossorial; occiput high and broad, slanting forwards to level of the posterior zygomatic root. This region of skull roofs over the space between the auditory meatus and the posterior zygomatic ront. Frontals extremely constricted. Rostrum long and heary. Jugal short, reduced. Incisive foramina small, far in front of toothrow. Bullae of medium size. Zygomatic hreadth considerable, greatest near the posterior zygomatic root. Foramen magnum less than half the height of occipital shield. Palate narrow. Infraorbital foramen relatively large, higher than wide. Zygomatic plate narrow, nearly empletely beneath it. The ascending branch of the zygoma outside the infraorbital foramen is in some cases broader than the zygomatic plate. But compared, for instance, with faculus representing the Dipodidae, to which the genus was transferred by Winge, the infraorbital foramen is in this ease very much less enlarged, and the zagomatic plate is rather more Murine in general appearance. A small protuberance on the lower part of the inner side of the infraorbital foramen is present, and might mark the division between the muscle-transmitting portion and the nerve-transmitting portion. Nandible with the lower incisor root forming a large proeess between the condylar and the top of the angular portion, and projecting considerably outwards and upwards above these bones; coronoid process high and slender; angular portion low, rather spread sideways.
lncisors broad and heave, the root of the upper teeth formines a slight knoh in the side of the palate in front of X.1. Molars small, semihypsodont. M. I not much larger than M. 2 and $\lambda .3$ little smaller than this tooth. Good figures of the unworn teeth are supplied by Méhely; these shos that as usual in the Order the very young tecth are extremely complex. At a later stage, inner and outer re-entrant folds form the tooth pattern, in which in Xh. i and


Fig. 183. Spalax monticola dolbrogeae, Millet. B.M. No. 5.10.25.2, $=$ : 12.

[^19]N. 2 there are usually two backwardly cursed outer and one forwardly curved inner folds. The folds isolate as enamel islands, the second outer fold being the most persistent. N1.3 raries in pattern; in the subgenus Namospalax there are aluays two isolated nore or less parallel enamel islands; in the subgenus hesospalax there is one, the centre of which is joined as a rule by a short island at right angles to it. Typical Spalax appears to agree with Hesospalax. M. 3 in foung Niamospalex is S-shaped, formed by one inner and one outer re-entrant Fohd, and M. 2 is more or less similar, when very young, hut later seems to take on a pattern more like M. I or as deseribed above.


Fig. ist. Spalax monticola dolbrorieae, Miller.
Cheekteeth showing enamel pattern at varous stages of wear. Lpper row. manillary teth; lower ros, mandibular tecth (semi-diagrammatic); 5. (From Miller's Catalogue of the Xammats of Western Europe.)
In cach of the lower teeth there are in Mesospalax usually one inner and one outer fold in moderately worn specimens. In Nannospalax there appear to be senerally two inner folds on the two front teeth; the islands generally in this suhgenus are three on M.1, two on the other teeth; the other subgenera often lave only two islands on M.i.

Form Nole-like. I lead round, flat. External eyes absent; they are said to he more or less developed but quite functionless beneath the skim. Ears restigial. Tail absent. Forefont with five digits, the pollex very small, otherwise proportions of digits not unlike that of a homan hand. Hindfoot digit propertions much as in forefoot. Claws medium, not specialiy developed, the digsing leing done apparently with the incisors. A line of stiff hristles running across face from the nostrils about half-way to the ear present, otherwise fur rery short, suft.

The genus was thoroughly monographed by Nehely, Species Generis Spalax, 1900 , A Föld Kintyak l'ajai, Budapest. ${ }^{1}$ 'This author divided the genus into three subgenera, Mesospalas, Macrospalax, and .Microspalax. . Macrospalax is a "new name for Spalax s. str," and is therefore unnecessary and must be placed in synonymy. Microspalax is preocupied, and has heen renamed twice; consequently the nomenclature of the genus is somewhat complicated.

The three valid subgenera are at the present time Spalax (synonym . Macrospalax, Méhely); Mesospalax; and Mamospalax (synonyms ilicrospalax, (jhelyzana).

Their main differences pointed ons by Méhely are below.

	Suhgenus Vamospalax	Subgenus   Mesospalax	Subgenus Spulax
Length of Skull.	$4^{2-45 m m . ~}$	$47-54 \mathrm{~mm}$.	$53-74 \mathrm{~mm}$.
Supraoccipital	Shorter	Shorter	Very long
Foramen supracondyleum	Present	Present	Absent
Petromastoideum .	Short and broad	Short and broad	Longer
External auditory meatus	Wider and longer	Wider and longer	Narrow
Pterygoid fossae	More open	Mlore open	More closed
Condyle	Little lower than incisor knob	Considerably lower than incisor knob	Considerably lower than incisor knob
Angular process .	Spread out from body of lower jaw	Spread out from body of lower jaw	Very slightly removed from hody of tower jaw
M. 3 .	With two enamel istands	One enamel ishond	One enamel island
M. 1 and M.z. chewing surface	Two lingual folds	Two lingual folds, the posterior one carly replaced ly an island	One lingual enamel fold

[^20]This tahle briefly summarizes the main characteristics pointed out by Méhely. The material examined does not show much difference in the characters of pterygoid fossae, condyle and angular process; but very few skufls are available of Spalax s.s.

Forms scen: aggptiacus, anatolicus, captoram, corvbamtiam, dolbrogeae, chrenbergi, hellenicus, hungaricus, insularis, microphthalmus, nehringi, serhicus, thermaicus, transsylvanicus.
S. gigantens, not seen, is said to differ considerably from other members of subgenus Spalax in cranial characters (broadened rostrum, etc.).

## List of Named Forms

(References and type localities for Spalacidae are the work of Mr. R. W. Jayman.)

## Subgenus Namospalax, Pahner

(All members of this group are regarded as one species by Néhely under the name ehrenbergi; but kirgisorum has page priority, and so must be used.)

```
 I. SPALAX KIRGISOREN K'IRGISORUM, Nehring
I898 (for I 897). Sitz. Ber. Ges. Nat. Fr. Berlin, p. r}76
 Kirghiz Steppes. (? no Spalax of this type quoted by Vinogradov in
 Rodents of U.S.S.R.; according to Méhely comes from North
 Syria.)
 Synonym: intermedius, Nehring, 1898, Sitz. Ber. Ges. Nat. Fr. Berlin,
 Dec. i897, p. ISi, Syria.
 berytensis, Niller, 1903. Proc. Biol. Soc. Washington, XVV,
 P. I6z. Beyrout, Syma.
 2. SPALAX K゙lRGISORUM EHIRENBERGI, Nehrme
1898 (for I 897). Sitz. Ber. Ges. Nat. Fr. Berlin, p. 178.
 Jafla, Palestine.
 3. SPALAX KIRGISORUM AEGYPTIACUS. Nohmmg
1898. Sitz. Ber. Ges. Nat. Fr. Berlin. p. ISo.
 Ramleh, North Egypt.
```

                                    Suhgenus Mesaspalax, Méhely
    4. SPALAX MONTICOLA MONTICOLA, Nehrine
    t \& g S. Sitz. lker. Ges. Nat. Fr. Berlin, p. 6.
Kupres, Bosnia, Yugoslavia.
5. SPALAX MONTICOLA NEHRINGI, Satum
1898. Zool. Anz. XXXI, p. 314.
Kasikoporan, Armenia.
6. SPALAX MONTICOLA ARMENIACUS, Méhely
1900. A Fölli ľutýak Fajai, Budapest, p. 70.
Kura- (yuellan, Armenna.
7. SPALAX MIONTICOLA (IIJICICUS, Méhely
igor. A Földi K゙utyak Fajai Rudaperst, p. St.
Cilician 'Taurus, Asia Minor.

S．SPALAX MONTPCOLA ANATOLACLS，Méhely 1909．A Jöldi Ḱutyak l＇ajai，Budapest，p． 88.

Burnabad，near Sinyma，Asia Minor．
\％．SPALAX MONTICOIA HELIEENCL＇S，Méhey
1909．A Földi K゙utyák Fajai，Budapest，p． 100.
Lamia．Thessaly，（ireece．
10．SPALAX MONTICOH TLRCICLS，Nefhely
1909．A Földi Kutyak Fajai，Budapest，p． 105.
Makri－Koi，Constantinople，＇Turkey．
11．SPALAK NoNTICOLA DOLIBROCEAR：，Miller
1903．Proc．Biol．Suc．Washington，XV＇1，p． 161.
Dobrudselat，Roumania．
12．SPALAN MONTICOLA HERCEGOVINENSIS，Méhcly
1909．A Földi Ǩutyák Fajai，Budapest，p． 129.
Ulog－Obruga，Ilerzegovina，Y＇ugo－Slavia．
13．SPALAN MONTICOLA SYRMIENSIS，Méhely
1909．A Földi Kutyák Fajai，Budapest，p． 133.
Szerem，Slavona，Yugo－Slavia．
14．SPALAN MONTICOLA SERBICL＇S，Méhely
1909．A Földi K゙utyák Fajai，Budapest，p．ifo．
Serbia．
15．SPALAK MONTICOLA INLLLLARIS，Thomas
1917．Amm．Mag．Nat．llist，8，X゙X，p． 315.
Jsle of Lemnos，Greece．
1t．SPALAX NONTICOLA TIIERXIACLis，Hinton
1920．Ann．Mag．Nat．Jist．9，V，p． 313.
Salonica，Greece．
17．SPALAX MONTICOIA CAPTORLN，Hinton 1920．Ann．Mag．Nat．Hist．9，V，p． 3 IS．

Changria，Asia Ninor．
18．SPALAN MONTICOIA CORYBANTILX，Hinton
1920．Ann．Nag．Nat．Jist．9，V，p． 316.
One hundred and fifty miles east of Smyrna，Asia Minor．
19．SPA1．AX MONTICOLA JABALTMEI，Matschic 19：9．Sitz．Ber．Ges．Nat．Fr．Berlin，p． 35.

Eskischehir，Asia Minor．
20．SPALAK HLNGARICL＇HL NGARICLS，Nehring sog．Sitz．Ber．Ges．Nat．Fr．Berlin，p． 173.

Hungary．

1909．A Földi Kutyak Fajai，Pudapest，p． $15 y$ ．
＇Framssylvania．

Subgenus Spalax，Guidenstaedt

```
 22. SPALAX GRALCLOS GRAECLS. NChmme
```

18os. Zool, in\%. XXI, p. 22S.
？Neighbourhond of tinens，Grecte．

```
644
 23. SPALAX GRAECLS ANT]OULS, Nehelv
1gon. A Földi Kutyák Fajai, Budapest, p. 175.
 Roumania.
 =4. S以A1AX I&'TRICL`S, Méhely
IgO%. A Faldj liutyalk Fajai, Budapest, p. INo.
 Barza, Roumania.
 25. SP'{LAX IOLONVICLS. Néhe\y
1009. A Földi Kutyak Fajai, Budapest, p. IOt.
 lembere, Cralicia.
 2t. SPALAS NHCROPHTHHALNMLS.Guldenstaedt
1770. N. Comm. Ac. Sci, lmp. Petrop, SIV, pt i, p. 4it.
 Steppes of Nobochopersk, S. Russia.
 Symonym: typhlus, Pallas, 177S, Nov. Sp. Guadr.Glir. Ord., pp. 76,
 154, pl.8. S. Russia.
 podolica, Pennant, r771, Synop, Quadr. p. 277.
 xanthodon. Nordmann, ifito, Demidoft Voy. I, p. 35, pl. II.
 lewcodon, Nordmann, same reference, P. 34.
 pallasii, Nordmamn, Bull. Ac. St. Petersh. 1835, p. }200
 27. SPALAX GIGANTELS,Nehrong
1898. Sitz. Ber. Ges. Nat. Fr. Berlin (for 1897), p. I69.
 Petrovsk. Caspian Sea, Russia.
The family is known fossil from the Upper Oligocene, according to Miller \(\mathbb{E}\) Gidley, but only from the range given ahove.
```


## SPALACIDAE: <br> GENERAL WORKS OF REFEREVCE

Méhely, 1909 , Species Generis Spalax: A Földi Kutyák Fajai, Budapest.
Mifler, 1912, Catalogue Mammals Western Europe: Spalacidae, p. 887. (The "Spalax graccus" of this work is not graecus as understond by Mehely, but monticola hellenicus; see Thumas, 1917, Ann. Nag. Nat. Hist. 8, XX̌, p. 317.)

## Family RHIZOMIIDAE

1896. Thomas: Mynmorpha, part: Family Spalacidae, part, subfamily Rhizomyinae, part included Tachyoryctes.
sing. Tullbere: Myonorpha: Family Spalacidate, part.
inis. Ahller \& Gidley: Atroidae: Family Rhizomyidac, part, subfamily Rhizomyinae. 1924. Winge: Famly Muridae, part: Rhizomyini, part, included Tachyoryctes and all eenera of Muridae from Madacascar.
1897. Weber: Mleroinea: Family Spalacidae, part.

Gfograplical Distribltion.-Indo- Walayan region from China south of the langtsekiang (ranging north to Szechuan), and from the Eastern I Imalayas (Nepal) south through Siam and the Talay Peninsula to Sumatra.

Number of Gevers.-Two are here retained.

Charactirs.-Zygomasseteric structure more specialized than in the Muridae; \%gomatic plate tilted very strongly upwards; infraorbital foramen much reduced, its lower border nearly straight (instead of $V$-shaped as is very general in . Muridae), and situated on upper border of zygomatic plate, its neutral portion onliterated, the foramen usually broader than high. Skull modified for fossorial life; dental formula i. $\frac{1}{1}, \mathrm{c} . \frac{1}{5}, \mathrm{p} \cdot \frac{0}{5}, \mathrm{~m} . \frac{3}{3}=16$; cheekteeth semihypsodont, rooted, flatcrowned, characterized by a pattern of inner and outer re-entrant folds which become isolated on crown surface as islands; external form moderately specialized for fossorial life.
'The systematic position of the Rhizomyidae is not clear; by many authors the group has been referred to the Spalacidae, but I have already pointed out when dealing with that family that the zygomasseteric structure as regards arrangement of zygomatic plate and infraorbital foramen is very distinct in the two groups. "Thomas, 1896 , remarked, "It is doubtful whether Spalax and Rhizomys .. . are rightly put even in one family, their resemblances being perhaps more adaptive than generic." Forsyth Major regarded Rhizomys, also Spalax and Tachyoryctes (the former family Spalacidae), as primitive Nuridae; though in many respects these genera seem to me to be more highly specialized than is usual in the Nuridae. Winge transferred Rhizomys to the Muridae, and formed a subfamily or group Rhizomyini including Rhizomys, Tachyoryctes, Brachytarsomys, Brachyuromys, Eliurus, Nesomys, and Gymnuromys, based fundamentally on the character that . Al .I is not or scarcely larger than M.2, whereas in all other Muridae he states that M.s has become larger than M.2. But I have not found this the case, as I shall show when dealing with the Muridae. Miller © Gidley, i918, formed a family Rhizomyidae, defined as "1,ike the Cricetidae, but zygomasseteric structure unusual, the infraorbital foramen with neural portion reduced or obliterated by partial or entire fusion of zygomatic plate with side of rostrum." 'This family included Tachyoryctes, and also Bramus, a Pleistocene North African fossil genus which has since been shown by Hinton to be a synonym of the Wicrotine genus Ellobius.

Tachyoryctes has a much less specialized and abnormal infraorbital foramen than Khizomys and Cannomys, and differs from them conspicuously in dental characters. I do not think Tachyorctes is so closely allied to the Rhizomyidue as maintaincd by most authors. 'The genus is here referred to the Muridae, as its infraorbital foramen is clearly not highly abnormal, and as figured by Tullbers differs widely from the Rhizomyidae; whereas its cheekteeth are similar in pattern to one of the Rats of Madagascar (Brachyromys), which has always been regarded as a member of the Nuridae.

The Rhizomyidae are here kept apart from the Nuridae solely on account of their peculiar zygomasseteric structure, the masseter muscle as figured by 'Tullberg rising up the zygomatic plate inside the infraorhital foramen, a condition so far as 1 know without parallel elsewhere among Muroid Rodents.
'Thomas divided Rhizomys into three genera, Iyctocleptes, Rhizomys and Cannomys. Butintermediate forms are now known between. Victocleptes and Rhizomys, and the two groups are probably more correctly referred to a single genus.

## Key to the Genera of Rhizonyidae

Upper incisors strongly pro-odont; sole pads normal, not granulated. N.i never worn below level of M.2, and the largest tooth in the upper serics.

Cañonys

Lepper incisors not strongly pro-odont; sole pads granulated; XI.ı often smaller than 11.2 , and often worn below the level of the latter.

Rhizonys
Genus r. RIIIZOMY'S, Gray
1831. Rhizomys, Gray, Proc. Zool. Soc. London, p. 95.
1832. Nyctocleptes, Temminck, Bijdragen Nat. Wetensch. Amsterdam, VII, p. 7. pl. 1. (Mus sumatrensis, Raffles.) Valid as a subgenus.

Type Species.-Rhizomys sinensis, Gray.
Range.-Moupin, Assam, Burma, 'Tenasserim, Yunnan, Kwantung, Fukien, Siam, Indo-China, southern part of Malay Peninsula, Sumatra.
Namber of Forus.-Thirteen.
Characters.-Frontals much constricted; behind them in larger species a strong sagittal ridge is formed which extends to lambdoid crest.
Occipital region upstanding and prominent, rather sloped forwards, though not excessively so. Paroccipital process relatively long; zygomata widely spreading; rostrum heavy. Jugal thick and prominent, but most of anterior part of zygoma formed by zygomatic process of maxillae. Bullae large, the meatus directed outwards and upwards; the bullae appear conspicuously in back view of skull between the paroccipital process and the upper process of supraoccipital. Palate narrow; posterior nares typically compressed, higher than wide, but more open in $K$. senex and in subgenus Nyctocleptes. Zygomatic plate tilted very strongly upwards; infraorbital foramen reduced to a small orifice situated on its upper border, broader than high, its lower border as a rule nearly straight. Incisive foramina small, considerably in front of toothrows. Nandible with prominent knoh caused by lower incisor root, nearly as high as the condylar process. Coronoid process high.

Incisors very hroad, orthodont, or slightly pro-odont in Nyctocleptes. Cheekteeth semihypsodont; M.I in subgenus Rhizomys smaller than M. 2, considerably so in old individuals, and worn considerably below its level. M.i with one inner fold (more persistent), and three outer folds which usually isolate as islands. $\$ 1.2$ when cut appears to have one inner fold which cuts the tooth into two lobes; the inner fold breaks in two and forms a fold in the anterior lobe; a deep outer fold cuts across the posterior lohe; with wear this simplifies to a pattern of three external, one deep internal enamel islands. 入1. 3 appears to vary to a degree individually, but is not very different from M.2, and simplifies in a similar manner with wear. Lower series: M.i not very much smaller than N1.2; usually three enamel islands present in the first two molars; 11.3 appears to consist of two lobes, the anterior of which is the larger and has in the centre


Fig. 185. Rhizomys pricinosts preinosus, Blyth.
B. MI. No. 20.11.1.44, $; \times 1 \frac{1}{2}$.


Fig. ist. Rhizonis's prt wost prtinosts, Blyth.
B.MI No. 20.11.1.44, ; •!


Fig. is\%. Rhizumiss pretnosts pretindsts, Blyth.
B.aI No. 20.11.1.44, + : 12.


Front suw of skull: B.M. No. 20.11.1.4t. + ; 13.
a large isolated island. In the subgenus Nyctocleptes, M. u upper is not smaller than M.2, hut may be worn down to a lower level, as in typical Rhizomys.

Form more or less fossorial; fur very thick in the northern forms, becoming harsh and scanty in the tropical species. Eyes and ears small. Tail varying from about a third or more lengtl head and body to little longer than hindfoot, not well haired. Claws rather prominent. Forcfoot with D. 3 longest, J. 2 a little shorter but slightly longer than D.q; D. 5 shortest. Proportions of digits of hindfoot nearly as in forefoot, but D.2 may be relatively fonger, and hallux nearly as long as D .5 . hammae normally $\mathrm{I}-3=8$, though oceasionally a minute


Fig. isg. Rhzomys prisioses preinosus, Blyth. Cheekteeth: B.MI. Xo. 20.11.1.44, ; ;
anterior pectoral pair may be present as well as these, and in subgenus . Vyctocleptes, 2-3 $=10$ ('Ihomis).

Nyctocleptes was revised as a full genusby "homas, the differences heing the largersize (nota generic character), the infraorhital foramen oval or circular instead of subtriangular, but some specimens seen of $K$. senex appear in this formation indistinguishable from Nyctoclettes; the posterior nares well open, often nearly as wide as high (but $R$. senex is intermediate between the two groups in this character) ; the set of the incisors more pro-odont (but not approaching (camomys in this character), and M.i not smaller than M.2, and rarely worn to a lower level. The two posterior solepads are joined (separate in Rhizomys). Nso there is a strong ridge each side of the front of the palate which extends forwards to the premaxillac, which is more developed than in Rhizomss. But these
differences seem subgeneric rather than generic. 'lhe fur is harsh and short, and the size becomes very large, up to 450 mm . head and body, or more. 'lhe tail is nearly naked, and longest of genus. Ilindfoot $53-65 \mathrm{~mm}$. All named forms appear to belong to one species only.

Subgenus Ruzomys appears to me on the material examined to divide into two groups, and six species, as follows:

Sagittal ridge ahways strongly developed; occipital region of skull appearing higher; general colour grey; fur excessively thick; size at full development largest of subgenus. R. zestitus gromp. From Szechuan, Fokien, and North Burma. Includes qestitus (hindfoot $4^{8-53}$ ), and the much smaller daridi (hindfoot $3^{8-44}$ ).
sagittal ridge weak, or maybe not developed in adult (i.e. the ridges may not fuse); occipital region appears lower; fur not or less excessively thick. $R$. sincnsis group. R. sinensis, a little-known form from South China (hindfoot 4 ), has thicker fur than the remainder refersed to the group, and is greyer in colour; the supraorbital ridges join. 'The remainder are browner in general coloration, and often the supronbital ridges do not join; $l$. senex has the posterior nares well open, as in Nectocleptes (hindfoot 44 ; Yunnan); R. prumosus has the posterior nares narrow (normal) (hindfoot $4^{6-50 ;}$ Assam, Yunnan). 'These two species have moderate fur; in $R$. pannosus the fur is short and harsh, almost exactly like that of Nyctocleptes (hindfoot about 46 ; Perak, Siam).

Forms seen: cincras, dazidi, insularis, latouchai, pamosus, prainosus, senex, sinensis, sumatuonsis, umbriceps, restitus, wardi.

## List of Named Forms

(References and type localities for all Rhizomyidae are the work of Mr. R. W. Ilayman.)

Subgenus Razomys, Gray<br>restitus Group

1. RHHZONI'S DAVIDI, Thomas
2. Abstr. Proc. Zool. Soc. London, 90. p. 5 ; I'ruc. Zool. Soc. London, 1911, r. 179 Kuatun, N.-IV. Fukien, S. Chma.
3. RHIZOAIS VESTITLS VESTITCS, Milne-Edwards

187r. Nouv, Arch. Mus. Nat. Ilist., VII, Bull. p. 92. Moupin, Szechuan.
3. RHIZOAIS' VESTITE'S WARDA, Thomas
1921. Journ. Bombay Nat. Hist. Soc. XXVI1, p. 504.

Imaw Bum, Kachin Province, N. Burma.
sinconsis Group
4. RHIZOMIS'S SNENSHA, Giray
1831. Irone. Zool. Soce Londen, P. 95. S. China.
5. RHIZANISA SLNEX, Thmas
1915. Ann, Mar. Nat. Hist. S, XV'I, p. 313. Yunnan, S. China: probably neishburhood of Mongtze.

6．RHIIZONYS PRUINOSUS PRLINOSUS，Blyth 1856．Journ．Asiat．Soc．Rengal，NX，p， 519. Cherrapunji，Kihasia Ilills，Assam．
7．RHIKOMYS PRUINOSUS 1，ATOUCHEI，＇Jhomas 1915．Ann．Mag．Nat．Jist．8，NVI，p． 59. Quantung，S．China．

8．RHHZONIS PANNOSUS IANNOSUS，Thomas 1915．Ann．Mag．Nat．Ilist．8，NVI，p． 60. Chantabun，S．Siam．

9．RHIZONIS PANNOSUS UMBRICEPS，Thomas 1916．Ann．Mag．Nat．Hist．8，XV＇lil，p． 445. Perak，Malay I＇eninsula．

## Subgenus Nyctocleptes，＇Iemminck

10．RHIZONIYS SUNATRENSIS SUMATRENSIS，Raffes
1822．Cat．Zool．Coll．Sumatra，in＇Trans．Linn．Soc．London，XIIí，p． 258.
Nalacca．
Synonym：jazanicus，Cuvicr，1829，Régne Animal，I，p．211．
dekan，Tenminck，1835，Mon．Mamm．II，p．4t，pl． 33.
1．RHIZONIYS SUMATRENSIS PADANGENSlS，Brongersma
1936．Zool．Meded．Leiden，19，p． 154.
Koto Gadang（Singgalang），I＇adang Highlands，W．Sumatra．
12．RHIZONIY SUNATRENSIS NSLLLARIS，Thomas
1915．Ann．Mag．Nat．Hist．S，XVI，p． 58.
Deli，Sumatra．
13．RJJIZONIS SUMATRENSIS CINEREUS，MacClelland
1842．Calcutta Journ．Nat．Hist．II，p． 456.
Tenasserim．
Synonym：erwhrogenys，Anderson，iS77．Proc．Asiat．Soc．Bengal， p．150．Salween IIIl Tracts，Burma．

Genus 2．CiNNOMIS，＇Thomas
1915．Cannomys，Thomas，Ann．Nag．Nat．Ilist．ser．8，vol．NVI，p． 57.
＇lype Spleifs．－Khizomys badius，llodgson．
RANGE－N゙cpal，Burma，Siam．
N゙しゃhbr of Forms．－Six．
Cimaractrrs．Like Rhizomys，but incisors extremely pro－odont，and lengthened．Other eranial characters much as Rhizoms： supraorbital ridges evidenty joining，nombally，Infraorbital foramen sometimes extremely reduced；in some specimens it is slit－like，and about twice as wide as high．

Cheektecth decreasing in si\％c from W．ı hackwards；M． 2 smaller than X．t． M．i olten as Rhizomys in pattern，hout the anterior island maty wear out so that there are only two outer islands．Th． 2 with two isolated external islands，and
one inner fold；M． 3 as a ruke with only two small isolated istands．The enamet islands as a ruke more evident and the pattern more clear and definite than in Rhizomis．

Lonicr tecth：in adult there are usually two isolated islands on each tooth， though in young specimens a much more comples pattern is visible．

Size as a rule smaller than Rhisomys，usually not exceeding 250 mm ．head and body（hindfoot about 29－3（）．Fur tather thick．Tail of moderate length， about twice or more length hindfoot，nearly maked．Digits more or less as in Rhizumys．Mammate $2-2=8$（＇lhomas）．

Forms scen：castantus，badius，minor，plumbescens，pater．
1 do not think there is more than one valid species in this genus．

## List of Namfd Forais

1．CANNOMIS BADILS BADILEA，Hodgson
I8t2．Calcutta Journ．Nat．Hist．ii，pp．60， 410. Nepal．

2．CANNOXY＇S BADILS PATERR，Thamas
1915．Ann．Mag．Nat．Ilist．8．XVI，p． 315.
Mount Popa，dry zone of Burma．
3．CAN゙N゙ONIY BADILS CASTCANELS，Blyth
I843．Journ．Asiat．Boe．Bengal，XII，p． 1007.
（？）Arakan，Burma．
4．CAN゙NOMIY＇S BADIU＇S PLLMBESCENL，Thomas
1915．Ann．Mas．Nat．Ilist．S，X $\backslash$ II，p． 315.
Goktcik，N．Shan States，Burma．
5．CAN゙NUMIY BADILSA MINOR，Gray
1842．Ann．Mag．Nat．Mist．X，p． 266. S．Siam．

6．CAN゙NOMIY BADILS LON゙NBERGI，GyIdenstolpe
1916．Stockholm Vét．Ak．Handl．57，no．2，p． 47. E．Siam．
The group is known fossil from the Pliocene，from Eastern Asia only．

$$
\begin{aligned}
& \text { RIIZOMIY1DAE; } \\
& \text { SPECLAL HORKS OF REFERENCE }
\end{aligned}
$$

Forsyth Major，on the Malagasy Rodent Genus Brachyuromys，Proc．Zoml．Soc． London，p． 605,1897 ．Rhizomyidac，Spalax，Tachyoryctes and Rodents from Madagascar fully compared．

All other genera of Rodentia are here regarded as belonging to the Family Maridae．A separate volume will be devoted to this family．${ }^{1}$

1 The first volume was completed tur publecton on January 27 th， 1039 ．The second（and Jast）whlume was completed for puhlicatom on Jume zoth，193y．

Addendum to Subgenus Tamiops, Allen (p. $35+$ above) .
The forms of the subgenus Tamiops are reviewed hy Osgood, lield. Nus. Nat. Ilist. Kool. XIIII, Pf'. 286-97, 1932.

Ile arranges these in four species, as follows:
Calloscimrus szinhoci swinhoci, Milne-Filwards, $187+$
C. szinhoei clarkei.
C. szuinhoci vestitus.
( . monticolus monticolus, Bonhote, 1 goo.
(. monticolus olizacens.
( $\therefore$ monticolus spencei.
C. monticolus forresti.
(. monticolus russeolus, type locality Atentze, Tibet.
C. maritimus maritimus, Bonhote, 1900.
C. maritimus formosanus.
C. maritimus hainamus, with synonym riudoni (No. 12 of my list above).
C. maritimus lantum.
C. maritimus moi.
( . maclellandi maclellandi, Horsfield, 1839 , with () synonym munipurnsis (No. 2 of my list, above), "it stands directly between muclellundi and barbei and seasonal variations in both seem sufficient to cover its supposed characters."
( . maclellandi pembertoni, Blyth; listed above as a synonym of m. marlillandi.
(. maclellandi barbei.
(. machillandi novemlineatus.
('. machllandi liantis, with s!nonym holti, No. 23 of my list above, new name for lylei, Thomas, not of Bonliote.
(. maclellandi kongensis.
('. maclellandi rodolphei.
(. maclellandi dolphoides.
C. maclellandi incenstans.
(. m. suuteri, No. 11 of my list, is regarded as of doubtful status, hased on characters which are likely to he seasonal.
References to all these forms will be found on pages 354 and 355 . except dolphoides, which is on page 376 .

Addendum to genus Callosciurus.

```
 1OOA. CALI,OACILRLS FERRLGINELS SPLLNDENS,GFay
1868. Proc. Zoul. Sic. London, 5. 13%.
 S. Cambodia.
 (ommted fromp. 3th: in error).
```


## INDEX

ahassensse, Hehascaurus, toz
abbott, Callosciurus, 370
athbott, "Thomonvys, 512
aberrans, Cryptomys, 92
abert, sciurus, 324, 325, 327, 328,337
abessmicus, Xerus, 420
abieticola, 'Iamiasciurus, 347
abletormm, Napacozapus, 574
ablusus, Citcllus, $4+8$
ABROOCOMA, 26, 55, 73, 102, 103, 152
ABROOCOM11NAE, 26, 101, 103, 151
abrutti, Glis, 623
absonus, Thomomys, 516
abstrusus, Thomomys, 513
abyssintus, Allactaga, $58+$
ACANTl1JON, 209, 212, 213, 214, 217
ACONI'S, 3, $3^{6}, 3^{8}, 48,50,56$
ACONALITI $\because, 23,26,55,73,102,155,156$, 157, 161, 554
acontion, Alactagulus, 587
acrirostratus, Thomomys, 514
ACROBATES, 543
acticola, IJeliosciurus, +01, 403
acouchy, Myoprocta, 196
adansi, Callosciurus, 372
adamsoni, Dremomys, 381,382
adangensis, Calloscjurus, $3^{4} 5$
ADEJJHONI'S, 134
ADJJDAL MIDAE, $1+$
adolphet, sciurus, 336
adocetus, Citellus, +51
adsitus, Tamias, +33
ddspersus, Jionys, 477,478
acdium, Plagiodontıa, 134
degyptiacus, Spalax, 642
aceyptius, Jaculus, 506
AEROMIS, 30, 64, 274, 275, 276, 290
acrula, 11 ystrix, 217,220
aestivus, Peropnathus, 485
atstuans, Siciurus, 326,328
atstuans group, sciurus, $327,3+2$
w thiopreus, lophiomys, 63 3n
AETIJOGBLS, bot, 606, 60\%
AETLJOAISS, 38
AETJIOSCJLRLS, 264, 267, 399, 404
AETHILRLS. 546
affinis, Callosciurus, 355
affinis, Comdou, 186,188
athinis, Jehoschurus, to 4
affinis, 1'araverus, 407
affinis, Katufa, 354,387
affinis, Tamias, $4 i=$
africacaustrals, Ilystrix, 148, 200, 213, 216, 217,214
africaeaustrals group, 1 hystric, $2: 2$
AFRECAN TRODEX'TS, 6f, 67, 6N, bo

;ifricanus, Atherurus, 12\%, 206, 208
alricanus group, Atherurus, 208
africana, Bathyorgus, $8_{4}$
africanos, Xerus, +22
agadius, Xerus, $+20,421$
agilis. Drpodomys, 496,497
agilis group, Dipodomys, 497,503
A(;)OTl, 221
agrestis, 'Thomomys, 522
agricolars, Thomomys, 514
agut, Dasyprocta, 191, 193
aharonui, Ilystrix, 219
arcrisis, Jaculus, 595, 596
akka, Junisciurus, $+12,+13$
AKODON, 39, 55
alacris, Callosciurus, 350,357
alactiga, Allactaga, 586
ALAC'IAGULLSS, 22, 35, 59, 2, $6,580,587$. 588
alascensis, Zapus, 572
alaschanicus, Citellus, $4+5$
alaschanicus, Euchoreutes, 579
alba, Cuniculus, 225
alba, Hystrix, 219
alba, Marmota, $\boldsymbol{q}^{61}$
albatus, Thomomys, 515
albertac, Citellus, $4+7$
albescens, Callosciurus, 350,371
albescens, Perognathus, +89
albicauda, Callosciurus, 375
albscauda, Thrinacodus, 135
altheaudatus, Thomomys, 516
albiceps, Ratufa, 385
albicus, Castor, $4^{68}$
albida, Dasyprocta, 193
albifrons. Heliophobius, $8_{5}$
albigularis, 'I 'homomss, 520
albina, Heljosciurus, fo:
albinasus, Papposeomys, 528
albipes, Ratula, 385
albipes, Sciurus, 33+
alhmpmus, Procchimys, 117, 118, 122
albwenter, Petaurista, 282, 284,288
allowenter group, Petaurista, $28_{4}, 286$
albsexilli, Callosciurus, 350,362
alhogularis, Tamias, 436
alholimbatus, liomys, 478
alholimbatus, "Tamiasciurus, 34 t, 347
alhoniger, Hylopetes, 295, 292, 300
alhomger group, Hyloputes, 299. 300
albonotatus, sciurus, 330
alborutus, P'etaurista, 282, 280
alhorutus group, Petilurista, 284,286
albonntatus, Kerus, 421
albulus. Perognathus, fis
alhus. Cistor, 408
alいは，（ryptamys，12
alhus．Conarua，3．30
alčandrate．Thomwoms，517
alc vamdrn．P＇，raveras，fol，fon
altari，तhatinciurus，31＊



allent Cutchlus，+4
when，l．woms，＋7． $4^{-x}$
allem，（rtinneramys， 532
allem，sciurus，32K，330
allemi，＇Tommas，+35
allem，Zapua， 573
ALIADICIDAE， 15
aloplaus，Hystrix， 217
alphomser，scurus，32\％， 343
alpina，Narmat．，4ha
alpunt：（ ilaucomss，295，206
alpenus，Sciurus， 330
alpunus，Timmins， 430
alpunts Lroup，Tialuats， 430
alpume Thonmoms， 515
alpmus group，Thmmomys， 510,515
alktom，Caltomesurus， 575
alstons，Sulurus， 330
altatess，Citellus， 445
altalcus，scmores， 331
altancus，Tameas，+3 th
ALTIC（1LA，40，50，104， 106
alticala，Graphaurua， 6 It
altenda，l＇erognathus，4＇7
alticola，Thomomss． 510,512
altmentarss．Callosciurus， $3^{\text {th }}+4$
altutudnas，Callomenurus， 356
altualhs，Thommons， 516,515
aluco，Pteromys，293，29申
amankarapa1．Sirtopeda，5y2
amargosae．Thommmys． 51
amatus，Cryptoms， 87,10
ambiqua．Hystrix，21f， 220
amberues，Dipodams n，$+46,500$
ambiguus，Perognathus， 4 y
amehae，Solurus， 331
amblyonsx，Kannahateomys， 137
americunus．Castor，th7
antericana，Lagostumus，236
amencanus，Tamsers， 43 to
antericanus，Zapus， 572

ammodites，Perognathus， 486
amoenus． 1 fylopetes， 2 u
ammophilus，P＇evergathus，+80
 430．$+41,+51$
amontus，Pefognathun， 487
amoenus，＇Tamas， $430,+32$
amoentu uroup，＇Tamas， 430,432
amors，l．fomsts，his，toth
armotus，Wencter，300
amplan，（itellus， 452
amplas，P＇erognathus， 4 sin

anambace，R．atu！n，3ho
anmmbensts，（alloweturus，3，0
anatolicus，Spalan， $1+2,6+3$
anciona，（umxulus， 225
A入lldulls． 34
andrewsi，C＇allomerus $350,3 \mathrm{~m}$
andrensi，scaptopad： 502
anerythrus，I unsciurus， 412,414
ancelus，1）romm ，bin
anglicus，\ubeardmus， 025
ancolae，Pedeter，551，552
anmolace＂Thrymomes， 148
ancolensis，Cimaphurus，607，f11
amemacus．Ileluphoblus． 85
aneularis，＂1＇homumss，510，511
ancusticeps．（「ratorenmys，ミご）
arisusticeps，Katuta，3M，
aneustarostris，Perominathus，4 3 3，48
angustirustra，Phatuemes， 531
ancustus．Pataverus，toh． 407
anmeosus，Pardverus，＋06，407
anmomas，Timmas，+33

ANISOAY゙ $, 21,3 \%, 47$
ANBOMYス，+37
antate，＇Thomomys， 510,512
annalıum，fonurus， 328,336
annamenss，Petaurista， 282,257
imnandales．Funamhulus， 379
annectens，（＇itellus， $4+$＇）
annectens，Lumms， 477
annchatus，C＇allosciurus， 350,361
annexus，Orthogeomes， 532
annulans，Helosciurus，yo
annulata，Allactaga， 586
anmulatus，Citcllus， $4+1,451$
annulatus，liflansciurus， 401
anolumae，Casia，240， 242
ANOMALERELLA． 537
ANONIALLRIDAL，32，182，535，54
ANOMALLRINAE， 32,537
ANOMALLR（）HDA1，32，78， 535
ANOMALLRODON， 537
ANOTALLERけPS， $33,57,68,536,537,541$
ANOONALE RLS，23，33，57，65， 536,537
anomalus，scurus， $324,327,32 \mathrm{~S}, 333,623$
anomalus，Heteromes， $122,474,475$
anomalus，Cryptomys． 92
ANOTOMIS． 34.55
ansorge1，（iraphrurus，fioz，6： 0
ansorgei，Heterocephalus． 15
ansorke．Cryptomys，87，yo
A．NTELIONYS． 40
anthons，scourus，328． 337
antheny1． 1 domys． 478
antho ivi，levogenathus， 491
antulleriss，Disyprocta， $11 / 3$
antrẹus，spaslax，fit＋
antoniex，laraverus，foh．fon
antonin，（tenomys，1fis， 1 tis
antricolia，Curcomys， $12+$

apache，Petognathus，fit
apache, Sciurus, 330
apische, Thomembs. 516
aperea, ('avia, $240,2+1$
aperenides, Casia, $2+2$
apercoides, Corcomys. 123,124
aphrastus, Thomomiys, 512
APLODONTIA, 17, $23,29,44,45,53,60$ 254, 255
APL, (HOUNTHDAE: 29, 253
APLODONTOTD.AE, 29, 77, 253
AP()DEAILS, 22, $38,48,50$
apollinari, Thrinacodus, 136
APOMY'S, 38
apricus, Citellus, +53
ayuilo, Callusciurus, 350,358
ayuilonius. Dipodomys, $50+$
arabicus, Ctenedactylus, 558
ARAEOSCIL'RUS, 268, 322,325
aralychensis, Allactaga, $58_{4}, 585$
archidonae, Myoprocta, 197
arcticus, Sciurus, 332
ARCTON1Y'S, 262, 268, 454
arctonys, Narmot 1,460
arcus, Perognathus, +85
arenarius, Cryptomys, 92
arenarius, Geonys, 527
arenarlus, Perognathus, 489
arendsis, Callosciurus, 371
arenicola, Citellus, 448
arenicola, Perognathus, $4_{5}$
arequipar, Lagidium, 230, 232
arequipae, Cavia, 2+1
arens, Citellus, $4+9$
arenivagus, Dipodomys, 501
argentescens, Funambulus, 379,380
argenteucinereus, Heliophobius, 85
argenteus, Anomalurus, $5+2$
argenteus, Graphiurus, 608
argenteus, scrurus, 328,333
argentinus, Sciurus, 328,341
argusensis, Thomomys, 517
arizonae, (itellus, +53
arizonensis, (itellus, 453
arizonensis, Cynomys, +62
arizonensis, Perognarhus, +85
arizonensis, Sciurus, 339
arizonensis, "Tambas, +31
armalis, Callosciurus, 360
armatus, Atherurus, zos
armatus, Citellus, +77
armatus, Fchmys, 106, 111, 112
armatus group. Eichimys, 109, 112
armatus, Perograthus, fol
armenatcus, Spalax. 642
arrhenii, Heliosciurus, 104
arsenjevi, Pterombs, $2 \boldsymbol{y}$
artemesiate, Cucllus, 4 . 6
artus, Peropgathus, 453,490
arundinis, Allactaga, $5 \times$
aruscensis, Paraxerus, fo6, 40;
arustmus, Ratufa, 3if
ARVICAN"THAS, 3 \&, 玉o
ARVICOM, +1, $5^{\circ}$
aschantionsic, Ilchoscturus, 403
ASCHIZUNIYS, to
issaticus, Tamias, $+30,435$
assamensis, Atherurus, 206
ansamonsis, Calleseiurus. 372
atacamaensis, (tenomss, 16 m )
atahualpae, Cavia, $2+2$
atcr, Spalacopus, 16 t
ater, Perognathus, +20
athene, J'teromys, 293.294
ATlILRLRI, 27, 202
AIIIERLRLS,23,27, +2, 49, 57, 59, 66, 69, 198, 203, 205, 208
ATLANTONERLS, $30,51,58,262,263$, $26+, 267,272,307,422$
atratus, Callosciurus, 351.374
atricapilla, Citellus (Orlov), +2
atricapllus, Callosciurus, 366
atricapillus, Citellus (Bryant), +51
atrirufus, Sciurus, 336
atristriatus, Callosciurus, 360
atristriatus, 'Tamias, 431
atrodorsalis, Callosciurus, :51, 352, 362
atrodorsalis, Thomomys, 520
attogriseus, Thomomys, 511
atronasus, Dipodomys, 500
atrovarius, Thomomys, 510,521
atroventris, Sciurus, 339
atrox, Callosciurus, 367
attwateri, Geomys, 527
aubinii, Nyrsilus, 417
aubryi, Heliosciurus, fo1, 403
auccps. Galea, $242,2+3$
audubonii, Sciurus, 339
AL'ACODC:S, $1+4$
aulacotis, Allactaga, 586
aurantiacus, Hylopetes, 298, 299
auratus, Mesocricetus, 525
aurea, Dasyprocta, 194
aurea, Narmota, $+57,460$
aureiventer. Ratufa, 384,387
aureiventris, Thomomys. 516
aureogaster, Sciurus, 328, $33+$
aureogaster group, Sciurus, 327, 334
aureus, lasidium, 231
aureus, 'Thomomes, 516
aurculatus, Funiscturus, $+12,+14$
aurnentris, Paraxerus, +07
alustini, Sclurus. 336
australis, (ariella, 246
australss. Ctenomys, 166
australis, lleteromys, 474.475
australis, Zapus, 573
austrinus, Geomys, 526
auzemberteri. Anomalurus, $5+1$
a a ara, Warmota, 45 S
avellanarius, Muscardinus, 625
avellanus, Gilis, $6 \geq 2$
averina, (itellus. 445
avicennia, scıurus, 338
arunculus, Microsciurus, 310,320
awnhnee, 'Thomomys. 515
aれarae, Cania, $240,2+1$

## h5

azarae，Ctenomys， 163,166
azarac，Dasyprocta，ios，19t
haberi，linglaucomys， 296
bactranat，Allactitea， $5 \mathscr{5}$
hacerianus，Spermophilopsis，+25
hadiatus，Petaturisti， 282,287
hadging．C＇allosciurus， 36.8
わisduc，（＇annormys，6ラ2
hadrus，（istellus， $44^{\circ}$
batticus，Liciurus， 331
hashacata，Marmota，457，fio
babley，Comsor，q67
hanleyi Dipotomss，foo
baleyigroup，Peromeathus， 483,487
banleyi，Pemonnathus， $4 \mathrm{Ni}_{7}$
bialcy，＇l＇mmasciurus， 346
balest，Thomomys，510
BAIGNV゚ S． 39
B，Al（S゙CIURUS，265，266，268，321，324
batae，（alloserurus， 357
balae，Katufa， 388
balcanucus，ticjurus， 3.31
balatossa，Ratufis，3が，385
baldolus，scumes． 33 f
balstomi，（allosciurus，351，360
balticus，C＇astor， fors $^{\text {b }}$
baluensis，Callosemurus，351，367
bancana，Katufa，3S7
bancanus，N＇anmoscrurus， 3 IG
bancarus，Callosciurus， 356
handarum，Funiscuurus， $42,+14$
BANDICOГА． 38,48
hangkanus，Callosciurus， 366
hangsi，Glaucomys，206
hanges，Perognathun， 485
hangss，Scıurus， 336
hangues ate，Callosciurus，351， 357
banguesi，Ratufa， 388
bankss，C＇allosciurus， 36 S
banksi，Petaurista， 286
haramensis，Ratuta， $38+, 386$
harawensis，Parakerus， 408
barbarus，Ctenomes， 563,167
harbei，Callosejurus，351，354
barbers，Scourus． 33 B
barrone，Petaurssta， 282,287
barrowensis．Citellus， $4+8$
bartels．Aeroniss，201
hartonl，（＂illoseburus， 351,360
hashkiricus，hcourus， 332
hatess，Allomalurus， 540,541
13ATIIにKGI，24，81
B．さなHVERGIDAE，ュ4， 79
BATIIV゙にK（iOID，AE，23，77，79
BATHYERGOXIORPH iFRIE： 23
BATIISERGL4，22，24，57，66，80，81，82， 83,180
BA＇I
batuama，Jetaurista， $282,28=$
batuana，Ratula， 386
batus，C＂allonesurus，356
baudenss，siciurus， $3+2$

INDEX
bayonii，Heliosciurns， 405
lea．Protoxerus， 415,416
BEAMY゙S，3S，56
beatus，lomsciurus， 412,414
recher，Calloschurus， 373
beecheyi，（itellus， $4+2,+5$ s
beecrofts，Anomalurops， $54^{2}$
beirate，Cryptomys．87，9，
herrae，I Ielfosemorus， 402
belehers，「ambasemurus， 347
beldeni，Anomalurus， $5 t_{0}$
beldngi，（itellus， $4+2,4+7$
belficldi，Dremomys， $3 \mathrm{Ki}, 3 \mathrm{~B} 2$
bellaricus，F＇unambulus， 378 ， 380
bellona，Callosciurus， 351,373
BLI，ONIS， $30,45,49,64,254,263,274,275$ ， 276，270， 304
helone，Hylopetes，299
belti，siciurus， 376
helugat，C＇astor， 467
benga，Hubosemurus， 403
berngalensis，liunambulus， 378
hengalemses，Ifystrix， 217
hengalensis，Ratuta， 384,385
bennette，Ahrocomat， 154
bennetti group，Abrocoma， 154
bentincatus，（＇allasejurus， 363
berdmorei，Menetes，3100， 105
hergi，（＇ternomys， 163 ， 165
hermgensts，（itellus， $4+8$
berkeleyenses，Dopodomys， 49 S
bernardinus，Citellus， $4+2,454$
bernardinus，Ieroenathus， 491
berytemss，Apalax，6．42
besulis，Calloserurus， 351,368
hetulma，Sicistir， 560,567
betulinus，I＇teromys． 294
bbotia，Dremomys， 38 I
hhutamensis，C＇illonsciurus， $351,35 \mathrm{~S}$
bucosur，Condum， $182,185,187$
bicolur yroup，（nendou， 185,187
bicolor，（tenomste 169
bicalor，Dasyprocta， 194
bicolor，Heteromys，474， 475
bicolor，Ristufa， $3^{8}+385$
131FA，613
bugalkiej，Cryptomys， 92
hilmmatas，（＂illosciurus， $35 \mathrm{I}, 36 \mathrm{~S}$
hilneatus，（alloschurus， 351,368
bilkjewicz，Dy romys，6i9
bilitonus，（alloscourus， 372
bilobsdens，（siales， 243
bimaculatus，I＇eromotbus， $48+$
hinmmonatus，（itellus，+42 （footmote）．
hipes，Jiculus，5rfo
burrellt，l＇ctaursta，2א̊2，288
hirulan，C＇istor，fus
brosegeriss，I＇umscourus，+15
bistriatus，Isotherx，ift
hestratus droup，Isothrix，ift
hame＂，Cryptomss， 87 ，yo


blandus，Belemys， 277
blanfordi，Cillosciurus，351， 373
hantordi，Hystrix，218
blanfordi，Jaculus，595， 507
131，ANFOROIMYS，41， 50
BLARINOMISS，39
blythei，Callosciurus， $351,353,373$
bobak，Narnot．1，455，457，460
bobak group，Narmota，457， 4 6o
bocagei，Cryptomys，87，91
bocki，C＇allosciurtis，351， 3 8 8
bocourts，Calloseturus，351，352，362
hochma，Paraserus，fo6， 400
bochmi group，Paraserus，405，406， 409
boimensis，Proechmys， 119
boliviare，Dasyprocta，191，195
bolivianus，Proechimys，if 8 ， 121
boliviensis，Coendou，185，186
holiviensis，Ctenomys， $163,104,168$
boliviensis，Dacty Iornys，136， 137
boliviensis，Galea， 242
bolivionsis，Sciurus，328， 344
bolovensis，C＇illose murus， 360
bombycinus，Perognathus， $4 \mathrm{~S}_{5}$
bonariensis，Myocastor， $14+$
bondae，sciurus， 328,342
bongensis，Heliosciurus， 401
honhotei，Callosciurus， 351,359
bonthiae，Sciurus，328， 336
boquetensis，Microsciurus， 349,320
horealis，Tamias，$+30,431$
borealis，Thomomys， 521
borneanus，Callosciurus， 351
borneanus，Nanosciurus，315， 316
borneanus，Pteromyscus， 281
borneoensis，Callosciurus， 366
borneonsis，Petinomys， 301
BOROMNS，\＆69
bottae．Tbomonys，510， 5 II
bottate group，＇Ihomomys， 510,511
boxi，Lagidium，230， 232
boydi，Funisciurus， 412,414
bozasi，Lophiomys， 636
brachialis，Heteromys， 475
BRACIIONES，to
brachiura，Citellus， $4+7$
brachyotis，Allactaga， 586
brachyotis，Xerus， 420
BRACHITARSOMIYS， $40,57,645$
BRACHITARSOMIV゙N，to
BRACHIUROMİS，22，＋0，57，602， 645
BRACHYCRONYIN，to
brachyurus，Allactaga， 5 St
brachyurus，Euryzgomatomys， 125
brachyurus，Geocapromys， 132
brachyurus，Hystrix，200，211，212，213． 214. 217
brachyurus mroup，Hystra，212． 217
BR，AMMNSE， 4
13RAN1じ土 $6+5$

brimickii，Dunomss， 171
brasticusis，（＂asha，242
brasiliensis，Ctenomys， 168
hrameri，Citellus，442， 444
hrauthi，Heliosciurus，40：， 404
braziliensis，Ecbumys，III，112
brevicauda，Citellus（Brandt），442，443
brevicauda，Proechimes， 118,120
brevicaudata，Chinchilla， 221
brevicaudus，Citcllus（Alerriam）， 454
breviceps，Geomys， 527
breviceps group，Geomys， 526
brevidens，Tbomonys， 513
bresinasus，Dipodomys， 501
brevinasus，Perognathus， 485
brevirostris，Geomys， 527
brevispina，Hystrix， 217
brugemani，Paraxerus， $406,40 \%$
bridgeri，Tbomomys， 522
bridgesii，Octodon， 159
brochus，Syntheosciurus， 321
brockmani，Graphiurus，607，fioy
brodiei，Funambulus， 378 ， 3 8o
brooki，Callosciurus，351，353． 374
BROTOOMIS， 169
broweri，Marmota， 459
brownii，Geocapromys，132，133
browni，Microsciurus， 319
brucei，Allactaga， 584
bruneri，Erethizon，isi
brunnconiger，Sciurus，328，344
brunnea，Sciurus． 330
brunneus，Citellus， 447
bryanti，Perognathus， 492
bryanti，Sciurus， 338
buccatus，Citellus， 450
buckleyi，Citcllus， 450
budini，Abrocoma，154， 155
budini，Ctenomys，163， 167
buechneri，Pteromys， 294
buffonii，Genrychus， 86
bulana，Ratufa， 386
bulbivorus，Thomomys，510， 524
bulbivorus group，＇Thomonys， 510
bullata，Allactaga， $58 \mathrm{~S}_{2}, 5 \mathrm{~S}_{4}$
bullatus，Glaucomys， 297
bullatus，Thomomys， 522
bulleri，Liomys，477，+79
bullert，Pappogeomys，527，528
bulleri，Tamias， 430,434
bunguranensis，Ratufa， $3^{84}$ ， 38 ，
bungei，Marmota， 459
bunkerı，Marmota， 458
bursartus，（icomys， 526
hursarius eroup，Gcomys， 526
hurrowsh，Atherurus，206， 208
burrus，Proechimys， 120
burta，＇Thomomys， 519
butheri．Graphiurus，60\％，602
butieri，Jaculus， 505,506
bustome，（＇itcdlas， $4 \psi^{\prime}$ ）
byatth，「araseruc，$+00,406,40 \%$
caluezonare，［13podoms：503
cabezonate，Thomons s． $5:$
cacodenaus，＇「amms． 4.1
caccater，Castar．pos
cacdis，Callonchurus．3ht
cater．J＇edetes，551，552
cases，Callencturne， 374
calammphacus，Thrymomys， $1+8$

caludere，I＇rocehimes，11N， $1=0$
californica，Aplodonta），25a
califormicus，Depodomse，tes
califormeus．Macrodipodops，＋93
califormocus，Blaucomys， 207
californicus．I＇erognathus，+191
califormicus group，P＇erognathus，482，＋り1
californicus，＇Tamascmurus， $3+7$
calegata，Marmota，$+55+5 \%+51$
caligata group，Marmota，$+55,+59$
caligmosus，Thommors， 520
callida，Dasyprocta， 195
callipeplus，＇Tamias，$+30,+33$
callistus，1erognathus，is $t$
calhurus，I＇rotoxerus，$+15,+16$
CALIASCHLRLS，30，49，52，58，65，203， 266，267，270，311，312，348，377，380
CAILOEFPERXOPHILL $⺀, 266,268,437$. 431， $4+1,4+2,453$
CALONISCLS，39， 51
calotus，Sciurus， 333
campestris，Zapus，571，572
camporoni，Marmota， $45 \delta^{\circ}$
camtschatica，Marmota，457，＋59
canadensis，Castor，$\downarrow 6,4,46 \%, 407$
camadensis group，（astor， $4^{67} 7$
canadensis，Geomys， 520
canadenss，Marmota，+57
canadensas，Zapus， 571
canaster，Helinsciurus，fol
candelensis，Dasyprocta， 1 ， 6
candelensis，Scurus， $3+1$
candidulus，I＇etaurasti， $282,284,287$
canescens，Citcllum， $4+4$
canescens，Dactelomys，13（1， 137
canescens，Gewrschus，So
canescens，（\％inuchnys，zot
cancscens，Permbathus，＋\％
canescens，＇T＇amanas，435
canficldae，（＇itellus， 452
cancaudus，Tamma，＋32
canceps．Calloncourts． $25 \mathrm{I}, 3^{6 / 3}$
canceps yroup，（ialloscturus， 352,363
camoeps，Drplomys． 115
camceps．Irotomerus， $41 /$

camceps，＇Fammas＋21
cangenus，（alloscturus， 345
cancollis，P＇roce himass， $117,118,122$
campes，Tamas，+34

cantucllı，I＇crompathus，tris
catrus，（itcllus， $4 \neq 6$
canus，Thomemys， 5 th
canus，Lumas． $47^{\circ}$
（＇Al＇RO）NIIISAE，＂ 134
（．MPROMIYNAR，25．101，102．105，128＇ （611）
CARR（INISS，21，23，25，t2，54，73，128， 132，154
capenses，Gearychas，ion
caponsis，Graphurus，nos
capenss，Ilystrix， 219
capeners，Pedetes， 552
capensis，Xerus． 420,422
capistratus，Sicuarus， 334
caphens，Paraxerus，for fos
captorum，Spalax，0，2，107？
capybara，Ifydrochererus， 253
CARDIOCRANIINAE， $35,513,574$
CARDIOCRANILS，35，43，5r，59，493， $561,562,575,5 \% 6$
carcyi．Callosciurus，351，360
carmatac，Callosciorus． $3^{\text {tho }}$
carimomensis，Callosciurus， $35 \mathrm{f}, 3^{60} 0$
carimomensis，Ratufa， 3 St． 3 Sk
carchl．Callosciurus． $351,3^{19} 7$
carmli，Hylopetes． 209
carolmensis，Castor，+67
carolmenses，Dasyprocta，I95
carolnensis group，Semrus， 333
carolinensis，Sourus， $324,327,328,333$
carpathicus，Dyromys， 018
CARIONIYS． 38,48
carrakert，ELhimss， 104,113
carruthersi，Citellus，$+42,+44$
carruthersi，Funisciurus，$+12,+1+$
C＇ARTER（DDON，25，55，73，107， 125
caryi，Citellus，+53
caryi，Perognathus， 48 ，
caryi，Tammas， 431
cary，Thomumys， 522
cancadenses，Marmata，+54
cascadensss，Famiasciurus， $3+7$
casensis，Calloscurus， $36+$
caspicus，Glis， 623
castancosentris，Callosciurus， 351,358
cistaneus，Cannomys， 652
castaneus，R．chimys， 112
dastaneus，Lariscus， 342
castaneus，Petaurista， 282,286
castanops，Cratogemmys，52K，529
castamentus，Sciurus， 337
castanurus，Citellus， 453
 1．40， 465
（ASTORHDAI $31,255.464$

（ASTOROMDES，д解
easomonders，Myracastor，itt
（AST゚ ORODDIDAE， $14+4$
costus，Sichurus， 32 K， $3+5$
catalmae，Scrurus， 3 to
（atalmak＇，＇Thomomss， 5 \＆
catavomers．Thomomes， 513
cutellus，Luryzyematomys， 125
catcmana，Ratuta， 3 K 7
（itrmace，IJas？procta，101，10t
cattomrs，（iraphares，6o．
caucasia，Allactama，584，585
cancasica，Sicista， 568
catucasicus，1）remys， 619
catucasicus，Siciarts， 333
calucensis，Sciurus， 343
caudata，Dasprecta， 104
caudati，Darmotat，455，457， 460
caudata eroup，Nammota， $455.45 \%$ tho
caudata，Sicista，56fa， 568
caurimus，IIdinsciurus，401， 403
caurinus．「amias，+32
cavator，Dacrobeomys， 534
（＇AllA，13，23，20，55，71，171，189，224．234， 230， 240
CAVIAE，29， 239
CAVIELAA，29， $71,238,239,240,243,246$
OIIIIDAE， $2 \mathrm{~S}, 46,97,170,1 \mathrm{~S}, 221,237$
CAVHNAE，29， 238
CAVIOIDAF，28，77， 237
cayanus，Dasyprocta， 193
cayennac，Dasyprocta，191， 193
cesyennensis，Proechimys，118， 120
cifonnensis group，Procchimys， $1 \geq 0$
caymanum，Dasyprocta，196， 197
CIELAENOMIS， 39,48
celaenopepla，Ratufa， 384,389
celsus，Dipodomys， 504
CENTETIDAE，S
centralis，Atherurus，206， 208
centralis，Callosciurus， 351,359
centralis，Coendou， 185, i 86
centralis，Dolichotis， 248
centralis，Jaculus， 595,596
centrals，Xarmota，$+57 .+60$
centralis，Proechimys，11S， 120
centralis，Ratufa， 384,385
centrals，＇Thomomys， 516
centricola，Dolichotis， 248
centricola，Protoxerus， 415,416
copapi，Paraxerus， 406
cepapi group，Paraxerus， 406
CEPHALOAIY゙S，169
CERATOGALLL゙S， 25 S
CERCOLABFS， 82
CERCOM15，25，72，107，108， 123
certus，Citellus， 454
cervicalis，Sciurus， 335
cervinus，＇Thomomys． 517
cevlonica，Ratufa， 384
chaclovi，Allactaga， 586
chadensis，Xerus，$+20,421$
CIAAETONIPCS，48O， 432,45
CHAETOMININAE，27， 174
CHAETOMIYS， $3,23,27,55,74,174,175$
CHALICOMIYOASE， 14.460
CHALICOMIS＇s， 460
chapenses，Typhlomys，63x
chapini，Amomalurops， $5+2$
chapmani，Dipodoniss，502
chapmani，sciurus， $32 \%, 3+1$
（HELIAMSCLS，3＂
cherret，Nacrobeomys， 534
cherriel，I＇roechmms，if s， 121
hiapensis，Disyprocta，but
chapensis，Ileterogeomy，533
chapensis，Scuurus， $335^{\circ}$
chiblumsis，sciuru－ 3.32
chahuahuae，＇Thomomys， 520
chulensess，Cocndou， 186,185
Chbensis，Jagidrum， 231
chikonsis，Ctenomys， 160
chatemas，Myocastor， 141
（1111．0．NYS， 39
CHINCHILAA，23，28，55，72，17，22中，226， 227
chinchilla，Chinchilli， 221,
CHINCHILIAE， 28,227

CHINCHILLELA，39， 55
chantalis，Dremomys， $381,33_{2}$
chimensts，Callosciurus， 351,376
chiricahual，Sciurus， 339
chiricahuare，＇Thomomys， 521
chirindensis，Heliosciurus， 402
chariquensis，Sciurus，328， 340
chiriquinus，Proechimys，iss， $1=0$
CHIROMISCLS，3， 36,3 ）
CHIROPODOMIY， $3,36,38,45,635$
chlorus，Citellus， 453
chobiensis，Paraverus，foh
choco，siciurus， 341
chocoensis，Dasyprocta， 105
CHOERONYS，I44， 145
christyi，Graphiurus， 607,611
（HROTOMラ゙S，39， $4^{8}$
chrysacolus，Proechimes，in $\$, 120$
－hryseola，Aplodontia， 258
chrysippus，Funisciurus， 412,415
chrysodeirus，Citellus， $4+2,453$
chrysogaster，Sciurus， $33+$
chrysonotus，Callosciurus， 363
chrysonotus，Thomonys， 510
chrysophaenus，Anomalurus， 540
chrysothrix，Petaurista， 288
chrysuros，Sciurus， 343
chrysurus，E．chimys，111， 113
chrysurus group，Echimys，10y， 113
chuscensis，Sciurus， $338^{\circ}$
cicur，Petaurista， 285
cilicicus，Spalax，642
cincticauda，Eliomys， 616
cinderella，Petaurista， 282,287
cincraceus，Craphiurus， 610
cinerascens，Citcllus， $4+2,453$
cincreicollis，Tamias， $430,+34$
cincraceus，Petaurista，282，2ヶ4，2＊7
ciberascens，Perognathus， 457
cherca group，Abrocoma， 154
cinerea，Abrucoma，154，ing
ctnerea，（3comys． 526
cincreus，Anomalurus， $340.54 t$
cmercus，lupetauras， $30-4$
cincreus，Rhizomys，650， 651
chncrevs，sciurus， $328.330,233,33 \%$
chncocos，＇lamias， 434
cincreus，Thomamas， 512

Pが2
chnerems，Typhlomys， 031
concreus，Xapus． 572
coners．D＇erognathes， 7 mo
connamomeds，Calloschurus． 353,3 31
connamonews，Cucllus，+52
conmammeus，Proechimys， 111
ClTE1， $15,23,30,51,53.54,61,70,262$,
$2661,267,268,260,272,307,328,437$,
440.455
atellus，Citellus， $42 \mathrm{~K}, 4+2,4+4$
catellus group．（ittellus，$+40,+4+$
citrimus，Anomalurops， $54^{2}$
clarencei，Dipodomes， 500
clarkes，Callosciurus，351， 355
clarkel，P＇etaurista，282，2kin
clarku，（＇ratogeomys， 521
clarus，Perognathus， i $^{8} 7$
clarus，l＇masas， 431
CLAVICII，IS， 104 ，607， 10 os
cleomophala．Dipodomes， 502
cleomonhila，Pcrognathus， a $_{4}$
CLETHRRIONOMYS，40，50， 52
cliftoni，Marmota，45ス， $4^{\prime 10}$
clnorum，Octodon，is！
clusus，Thomomys． $5 \geq 2$
CLYONIS゙S，25，55，72，107，108， 125
cohara，C＇avia， $2+2$
cockerell，Colloscmurua，351，352，361
cocalis，scurus，328，345
cocos，solurus，328， 335
coecutions，Cryptomss， 8 ． 7,10
（OELO）（1NNし「．221，224

COEJONJYS． 36
（OENDOL，3，23，27，54．55．74，145，154，

coenosus，Helinscauras，yor


colburni．Ctenoms， 16.5
colimenses，sciurus， 335
collars．Graphrurus，tho
colltate，sciurus，32\％， 335
collinus，Thomomes， 51 s
cOLOBOTAK，＋3\％＋3ッ
（0）1，onlys． 3 \％．56
colonus，（icomys．s，526
coludo，C＇tenoms S． 163 ．1the
columbeana，Aplndentia，254
columhana，Dasypructa， 113, I95
columbianus，Citellus，+47
columbranus，Cynomes， 413
columbsanes，Dipodemss，fufa， 502
columhanus，Perognathus， ins $_{5}$
columbunus，Proch hinve，its， 120
columbsanus．Thumomys， 522
columbsensis，Glaucomss， 2,8,
columbensis，Tamasciurua，3＋7
comes，Galea， $2+2$
cromornus，Funambulus，37s， 350
compratua．Dipodomss，497， 503
compactu－gronup．Dipodormys，＋48，503
concal us，fleteragenmys， 533

## INDEX

concinnus，Nimnosciurus，315，316
conctior，Thomomss， 513
concolor，Calloscurus， 351,365
concolor，（itcllus， $4+2,+43$
concolor．Rattus． 77
concolor，Scmins． 3.3 K
concolor，sisosta，5ife．567
concolor group，sicstat，506， 567
comelte，Perognathun，qus
condurensts，（allosciurus，351，36th
condurenss，Ratufa． $3^{3}+480$
confinalis．Thomomers． 514
confinis，Ratufa， 3 Wh
continis，Tameas， 431
congicus，Funsecrurus，$+12,+13$
congicus group，Fumberurus，$+12,+13$
congicus，Thryonrmys，its
CONILCRL®． 38,47
contpus．Calloscturus， 372
connectens，（itellus， 453
connectens，Thonmomys， 514
comradsi，Hystrix， 220
conscius，Heteromss， 475
consitus，Cratomeomys． $5=0$ consohrinus，ticurotamsas． 426
consohrmus，Tamas，$+30,+31$ comspicua，Ratufa， $3^{8}+386$ consulans，Menetes， 3100,391 contumax，Calloschurus，351，360
convergens，Thomomess，513
convexus，（ratoseomys， 530
conpers．Tamas，+34
copen．Perosmathus， d $^{\prime} 3$
coreac，Scıurus． 328,332
cornimum，Muscardmus， 625
corshantum，Spalax，6＋2，643
costaricensis，Nacrugermes， 534
cothurnata，Ratufa， $38+3$ ino
couchar，Citellus，+50
couesi，Fitethizon．isi
crusy，Coendou，ists． 188
coruper，Graphiurus， 610
conpus，Myocastor， 141
cradockens1s．Cryptomys，पz
cramsicauda group．Salpughtus， 575
crasscauda，sulpmentus， 575
crasscaudutus，Graphurus， 107,608
crasucaudatus broup，Crapheures，to 8
crisscaudatus，Isothria．I14
crassdens，I．asidium， 231
crassidens．Thumomys， $5 \geq 0$

crassispinss，＇Thecurus，1以＂，200， 211
crabsispinis eroup，＇Thecurus， 211
cratodon，Dipodomys，foy
crassus，lagestomus， 236
（RATEROMIS，31，38，48， 102
（RATOGL：©MIS5，32，63，71，506，507， 528
＂（RICETHOAE，＂ N
CRICETINAL， $3 \cdot$
CRLETODIPL
CRICETOMIYS， 3 ， 50
（RICHTLILS． $3 \%, 51$

CRICEIC＇s，39，5s，562，603
crimiper，I absulam， 231
criniger，Istontomus， 236
crinigerum， 1 abidium， 23 t
crinitus，Perograthus， $4 \%$
crinitus，letinomys， $30 \mathrm{~s}, 302$
crispus，J．1omys， $47^{-8}$
irspus group，I．domys． 477,478
cristata，Dasyprocta，Jot， 106
 217.239
cristata mroup，1］ystrix，zız
cristatus，lichamys， 113
croaticus，Scurus． $328,3,3 \mathrm{t}$
crocunotit，Dasyprocta，101， 193
CR（）sis0） $15.36,39,47$
crotidius，Cillosciurus， 351,359
crumpi，Callosciurus，35s，350
CRLNOMIS， 38.48
CRS］l $0 . \ 1$ ゾ心， $24,4+57,67,8 t, 82,86$
cryptosrilotus，（itellus，+50
CTINOD）ACTSIIDAE：34，96，102，553
CTENODACTID，ODDAE，33，$-8,553$
CTL゙さ゚○D．ACTY」【 $5,23,34,50,56,58,6 心$, $553.554 .=55.556,603$
ctenodactylus，Jaradipus， 590
 $161,240,554,603$
cuandu．Coendou，I 86
cuculae，sciurus． $3+2$
cumberlandianus，Geomys， 526
cumangii，Octodon， 159
cuncals，Petromus， $1+9,151$
cuneiceps，Hystrix，217，218
cunicularius，Cercomys， 124
CLJICLILDAJ：2S．99． 220
CLNJCU1， $5,13,23,28,54,55,74,97$, $100,170,171,189,190,221$
cuniculus，Orthogeonys， 531
cupidineus，Dipodomys， 502
currax，Pedetes， 552
curtatus，Thomomys， 512
curtatus，Zapus． 572
cuscinus，Sciurus， $328,3+4$
cuscus，I agidium，230， 231
cutleri，（＂ava， 242
cuticri，Abrocuma， 15 t
cuviers，Fsstix，217．219
cuvters，lagedrum， 231
cyanus，Bpalacopus， 161

 $268,273,307,461$
cyrenaticus，Eliomys，6i5， 110
dabagalla，Xurus， 420,421
dacota，Mirmotit，45s

dactyrimus，（＇alloschorus，35t，3t1o
dacteln us，Dactwlomss， 134,13 th
1）AC＂IVI．O．\IVI．II＂，25，96，102，105．134， 100

1）．ACIY1，（MI）$, 21,23,25,55,73,102,123$ ， $120,135,136,137$
damestimucus，Jyromys，6u川
datootensas，＂Jamiasciurus， 346
damaremsis，（ryptomys， 87,0 ）
damarensis，Preletes，552
dimetolena，Ratutis， $35+3$ 合 5
dariensis，Dasyprocta， 104
daricnsis，Macrogeromys， 534
darlmen，Cryptomys． 87, in
darlmei，Diplomys， 115
darricarrerei，Jaculus，इo7
DASMMV゙，38， 56
D．ANIPR（）（＂ГA，13，23，27，54，55，74，170， 149．190，106
 1 $73,189,221$
dasythrix，Fichimys，Ioy．III， 112
dasthrix group，Echımys， 109.112
datus，Callosciurus，371
daubentoni，Jlystrix， 219
daucinus，Jelinsciurus， 401,402
dauricus，C＂stellus， $4+2,4+5$
davidi，Khzomys， 650
davidianus，Sciurotamias， 426
daviesi，Zapus， 571
davisoni．Callosciurus，35s， 363
davisoni，lomys． 303
dealhata，Ratufa， $38+385$
deays1，Dipus， 591
decolorata，Ratufa， $384,3 \mathrm{Si}$
decoratus，Nenetes．390，301
decumana，Allactaga， 584,586
decumanus，Prouchimss， 118,120
degus，Octodor， 159
dekan，Rhizomys，65ı
delesserif，Fonambulus， 379
demussa，（；alea， $2+2,2+3$
DENJROM11
DENDRONIVJNE， 39
dentatus．Jedetes，552
DEOMIIN゙AE， 38
DJ：OMIS心， $7,3+, 35,4+, 45,46,56,564,599$
depauperatus，Thomomys，5i6
deppes，＊＇ciurus， $32+327,32 \%$
deppes eroup，sciurus， 337
depressus，＇Thomomys， 512
derhanus，Anomalurus， $5+0$
descrti，Dipodomss， $496,407.504$
deserti ieroup，Dapodomass，49\％．504
deserti，Jaculus，505， 597
desertorum，Thomonss． 518
desitus．＇Thomomes，514
devmarestianus，IIeteromys， $4 \rightarrow 4,45$


detumidus．＇I homomys， 514
destrals，C＇allosciurus， $351,3 \neq 2$
disholl，＂Thomomse， 51 i
dadra，I agostomus， 236
diardi，Callonciurus， 376
dichrous，Warmota， 4.97 ，+ tor
dichess，Nicrodipodops，+13
b）l（ROSF（NYX゙，＋0，50，52
dudelphodes，Mesomss，127
dhlutus．Calliscuraras， 371
dilutus．Citellus， $4+5$
dimindiatus，Procchimys，iff1，117，118，122
dmmaki，Alactagulus，587． 588

DINOMY： $13,26,55,72,46,176$
DIPl，（1．11Y－25，54，72，Icf1，108，115， 603

DIP（ग）IDAE．3＋， 560



DP＇（1）OMMYS，32， $471,42+$
blponoulylNaE，31，＋71， 479
1）［P（1）（1）115，3，22，31，32，53，54，62，71， ＋10，＋70， $771,+93,494,553$
DHODMPS．＋リt

director，Callosciurus． 371
dispar，Perognathus， 42
dissimulis，Thomomys，5it
dissonus，Protoxerus，$+15,416$
DISTAECHURUS， 543
divergens，Thommoss，513
divetsus，Lathenes， 302
dixom，Dipidamys，千！
dolhrogeat，spaliax， $6_{1}+2,6+3$
dolichocephatus，Macrugeomys，53．4
DOLIClfoTlbES，20，239， 247
D（OLKCHOTH，3，13，23，24，55，71， 171, $189,238,240,247,248$
dollmani，Graphurus，boy
DOL，MMYS，＋1， 50
dolosus，Helmasciurus，toz
dolphondes，Callosciurus， 370
domelicus，Callosciurus，351， 363
domenss，Perognathus，+88
doppelmayri，Marmota， tho $^{2}$
dorotheae，Graphimess， 107,609
dorsalis，Ctenomys， 163, Ithe
darsalis，sciurus， $324,32 \%, 336$
dorsals，Tamias， $420,+30,+35$
dorsalis，Sicrus，$+20,+21$
dorsatum，Erethizon， 178, i8i
douslasi，Citcllus，$+22,+51$
douglası，Tammasciurus， $34^{\text {th，}} 347$
douglasi，＇Thomomys，510， 523
dourlas：group．Thomomys，510，523
dravidanus．Funambulus， 379
DRENIOMISS， $30,46,58,65,263,267,271$, 311，312， $3+11,380$
dryas，Dyromys，ond
DRYOMIY＇，oto
dschmschocus，X゙rus， 422
dunda，Silurus， 344
dukenth，simurus， 331
dulotensis，C＇allosesurus，351， 378
dulitenss，Ratuta， 387
durams．Ileternetphales， 95,94
durangac，＇Tamsas， 434
duraman，inciurus，32h，33
durangi，Thomomys，5：0
dustumicri， 1 unambulus， 370
1）YROMIYK，37，5r，60，602，6u3．612，613， 616
d／angarine，Allactac： 585
castwoodac，Graphiurus， $60{ }^{6}$
（．）．11，Epinerus，417，＋18
clomborus，F＇ratoxerus， 415,716
ceandata，Mostras， 217
cenudatus，Nesomys， 127
F（IIIMIYID．AE， $25.18,100,101,173$
ECHHMYIAAE， $25,106,104$
I：CHIMMY： $25,55,72,106,108,114,123$, 13．17＋
FCHINOMI゙S， 10 多
 178，186， 186
E（HINOSCHORUS，265，267，208，321，324
ECIHOTHRIN， 38,48
cdan，＇Thrmacodus， 135,136
whthac．Trogepterus，2；9， 280
eftumits，Scturus， 335
chrenhergh，Spalax，htz
eldsomdontus，Hylupetes， 300
cliter，Allactaga， $501,53_{3}, 58+55^{3}$
clater eroup，Allactaga， $584,5 \% 5$
clator，Dipodomes， 500
clbertac，（alloscmurus， 375
electhes，Petinomys， 301
dectus，Paraxerus，tot，to7
decans，Capromys（Phlocumys），1，3
clegans，Citellus，$+42,+47$
clegans，Graphurus， 608
clegans，Glirulus，two
clegans，Ifelosciurus，tor
clegans，Petaurista，282， $2 \mathrm{~S}_{5}$
clegans，I＇roechum＇s， 119
clephantinus，Dipodomys， 503
elihatus，Perognathus，+85
FLIGMODONT1A，31， 55
EHACMIYS，22，37，46，51，56， $10,64,601$ ， 602，603．612， 613
ELILRI， $3^{4}$
EALLRT－5， $38,57,6+5$
FLLIOBIL＇S，3，36，＋1，50，81， $6_{4}$
clphmstonei，Ratufa， 385
emilace，Lanchothrix， $12 \mathrm{~S}^{\prime}$
cmblat，Petarillus，302，303
emilanus，Ctenomys， $163,164,167$
emini，Helirphobius． 85
cmm，l＇aranerus，qob，$+0,9$
emin，Funisciurus，+13
embsus，Ilehoscuurus，for， 403
cmotus．＇Thomomys， 510
empetra，（itellus． $1,+4$ S
empetra，Marmota， 457
chgeibardt，Marmota，+5
emsus，＇Ihmomys， 320

I：0（3LALCOM15，30，52，57，276，297，24
EOMYIN゙，\＆

EOTHIN：NMIY $+40,48$
IONFRLS，262，263，376
E，O\％AP1 S，35．51，59，568
ephippuma，Ratufa， $3 \$_{t}, 386$
EPICAUML心， 258
IFINCNERL＇5，30，67，264，272，308，327， 417
epormophorus，Calloseiurus，351， $3^{\text {64t }}$
cpixanthem，lirethizon， 178 ばi
crebus，（＇allosciutus，351， $3^{67} 7$
eremacus，Perognathus， 489
ERENODIPLS，35，59，597，598
eremonomus，Citullus， 452
ERE＇llIIZON， $23,27,53,63,173,174,177$, 178
ERETILIZONTIDAE，26，98，99， 173
ERETIIIZONTINAE，27，174，177
ERIOMIS： 227

## EROPEJI， $\mathrm{CS}, 38$

erubescens，Callosciurus， $3^{65}$
erythratus，Callosciurus，351，352， 357
erythracus group，Calloscmirus， 352,357
erythrobronchus，Graphiurus， 610
erythrogaster，Callosciures， $351,35^{\circ}$
erythrogenys，Citellus，$+42,+43$
erythrogenys，Funisciurus，$+12,+14$
erythrogenys，Rhizomys， 651
erythrogluteius，Citellus，+47
erythromelas，Callosciurus， 367
erythronotus，Anomalurus， 540
erythrops，Fumisciurus，+13
erythropus，Xerus， 420,421
escuinapae，Liomys， 477
esculentus，Gilis， $62 z$
estor，Cratogeomys，528，529
ELCIJORELTES，35，51，59，562，563，577
ELCHOREUT1NAE，35，561，563，576
ELNEOMIS， 39
EUPl：TAURU＇S， $30,52,58,262,263,268$ ， $27+, 304$
cuphratica，Allactaga， $58+5{ }^{8} 5$
cureka，Zapus， 573
europaea，Hystrix， 219
europaeus，Sciurus， 330
ELRI゙ZY゙GOMATOMLYS，25，72，107，10N， 124．： 40
LE＂ГANIAAS，266，267，268，$+26,427,+28$, 435
にし＂TMOMY゙IDAK，it

cveretti，Dremomys， $38_{1}, 38_{2}$
everetti，IIylopetes，209， 300
eversmammi，（itellus， $4+2,4+5$
eversmanai group，Citellus，$+40,4+5$
eversmanni，Perognathus，+92
evexus，Dipodomys，soz
erexus，＂Thomomys， 520
evidens，Sourllles， 3 is
caillodus，ticiurus， 3.32
excelsus，Cratogeomss，524
execanas．Paraxerus， 406,409
expuas，Lamos．478
exuls，Dipodomys，＋9en，50：
exalis，Myoprocta， 197
exals，Namoscinrus， 315
cxalis group，Nammaciuru， 315
eximius，Dipodomys， $40^{3}$
eximits，＇Thomomss， 521
extenuatus，＇Thomome＇s， 514
extimus，Citellus， 152
extimus，Scintus， 333
extimus，Thomomy＇s， 521
falcifer，＇Phomomys， 523
fallax，Callosciurus， 364
fallixx，Geonnys， 527
fallax，Perognathus， 400
falzfini，Scirtopoda， 592
famaina，Ahrocona，154， 155
famatinae，hagidium， 230,232
famosus，Ctenomys， 163,166
famulus，Callosciurus，351，370
fasciatus，Perognathus， 483
fasciatus group，Perognathus， 482,483
fasciculata，Atherurus， 206
favonicus，Funambulus， $378,3 \%$
favonicus，Jaculus，595， 597
fedjushrini，Sciurus， 332
felicia，Dasyprocta， 104
felipensis，Orthogeomys， 532
felix，Tamias， 432
felli，Ratufa， $3^{84}, 388$
FELOV1A，34，68，554，555， 559
femoralis，「erognathus， 483,491
femoralis，Ratufa， 388
ferminae，Sciurus， $3+1$
ferreus，sicimrus， 338
terrugineiventris，Sciurus， 334
ferrugineus，Callosciurus，351，352， 361
ferrugineus，Mesomys，126， 127
festina，Casia， $2+0,2+1$
fiber，Castor， 460,469
fiber group，Castor， 468
filchnerinate，Petaurista， 289
fimbriatus，Eoslaucomys， 298
fimaysoni，Callosciurus， $351,352,361$
fisheri，Citellus，$+42,+51$
fisheri，Tamias， $43^{6}$
tisheri，Thomomys， 523
tlammifer，Sciurus， $32 \mathrm{~S}, 344$
flavescens，Allactaga， 586
flavescens，Citellus， $4+2$
flavesceris，Dasyprocta，191，193
Havescens，Perognathus， $4^{83}$
flowjdus，Echimys，109，is 3
Havidus，Galea， $242,2+3$
flavadus，Thomontys， 518
Havimanus，Callosciurus，351，352，359
Havinus，Funisciurus，$+12,+13$
flavinus，Xarmota，457， 410
thavior．Dremomys． 3 St
Hanisenter，Mactosciurus， 3110.321
thav iventris，Glaucomys，207
Haviventris，Marmotal，455， $45 \% .458$
thamentris group，Nommuta， 455.454

## 666

Alavittes group，Paraxerus，foh，for
Harivitts，Paranerus，fof，for
Hasus，Castor， 468
月a（as，Perogmathus， $453,4 \mathrm{~S}_{4}$
Havus，Sicista，50，
Hasus，Xerus，+21
flemingi，lystrix， 217
florenciate，Nicrosciurus， 320
flomentaze，Jaculus，505， 507
floridanus，feomys， 526
Howeri，Callosciurua， 351,3 h2
thumnalis，Calloscourus，351，363
fochi，Ctenomys， 163,165
todax，Ctenomys，163，164，167
follett，（allosciurus， 351,361
formosanus．Callomciurus， $351,35+$
formosevi，scurus， 332
formosus，Perognathus， $4 \mathrm{~S}^{3} 3,487$
formosus group，Perognathus， 482,487
FORNARINA，8o， $9+$
formeatus，Lariscus． 302
formeatus，Peregnathus，fisis
fortestı，（＇allosciuru，351， 355
firresti，ficiurotamas，$+2 f 1$
fortior，Anomalurus， 540
fortirostris，Marmots， $45^{8}$
fossors，sicturus， 337
fossor，Thomomiss， 522
fossor group，Thomimys， 510,522
fosteri，Ciscomys，123，124
fournict，Capromys，i20
foni，Cryptomys， 97,11
foxı，Graphiurus，foo hou）
frandseni，Callosenurus，351，301
tranklum，C＇itellus， $4+1,4+2,450$
framziusi，＂Octodon，＂ 159
fraseri，Anomalurus， $540^{\circ}$
fraseri group，Anonialurus， 540
fraseri，Sciurus，328， 343
frater，Ctenomys，163， 167
frater，＇Tamias，$+30,433$
fraterculus，C＇alloscuurus，351，357
fremonti，Tamiasciurus， $346,3+8$
frenatus，Dipodomys， 501
frerci，Paraserus，fo6，yos＇
fretensis，Ratufa， $3^{8} 4.3^{89}$
fromdator，Castor， 467
frontalis，Ratufa， 3 s 8
frumentor，Siciurus，328， 334
frutectanus，Napaenzapus， 574
fryanms，C＇alloscurus． 351 ， 3 ho
fuegmus，Ctenomyss， 163.167
fuletens，Anomalurons， $5+3$
tulenda，Cavaa，240， 242
fulymosia，Dasspricta，101，103，19う
tuliginosus，（ f aucomys．zof
fuhgenosus，Perognathus， ista $_{4}$
fulamersus，Proechamys，IIり
fulgmonus，serurus， 333
tulnmatus，telurus． 328,345
fulvencens，（ratageomys，530

tulvint，Xerus． 420,422

## INDEK

fuluns，Castor， 468
fulsus，Citellus， $4+2,4+3$
fulvus group，（itellus， $4+70,443$
fulvus，Ctenonys，163，iti7
fulvus，Cuniculus， 225
fulvus，Sciurus， 333
fulvus，Thonombs， 517
fultus group，Thonmonys，510， 517
fumegatus，＇＇allosciurus， 363
fummatus，sciurus， 344
fumosus，Platypeomys． 530,531
fumosus，Thomomys， 512
FLNAMBLILC， $50,49,58,65,263,266$ $267,271,311,312,3+9,376,340$
IUNISCIURL心，30，57，67，174，264，267， 2609，272，30\％， 410
funca，Gemmys， 526
fuscatus，Hefermays， $47^{6}$
fusconter，sciurus． 328,330
fuscocapillus，letmemys， $300,301,302$
fuscmapillus uroup．Petmonys，301，302
fuscomisricans，scumes， 328,331
fuscorubens，scourus， 325 ， 331
fuscovaricyatus，sichurus， 336
fusculus，Aicrosciutus， 320
fuscus，Aconamys， 158
fuscus，Allactaga， 5 bh
fuscus，Dremomys， $3 \$ 1,382$
tuscus，Glaucomys， 297
fuscus，＇I＇homomys， $52+$
fuscus group，Thomomys，510， 524
fuseus，Kerus， $4 \geq 0$

Labrtebom，Dipodomys， 490
GALIEA，24，71，238，239，240， 242
raleata，Hystrix，200，216，217，220
gallace，Castor， 468
galheus，Castor， 468
gambanus，lleliosciurus，for
ganana，Paraxerus，406，408
garbei，Sciurus， 343
garonum，Dremomys， 38 I
gaumeri，Heteromys， 474,476
gazellace，l＇araserus，4oh，you
geası，Procapromys， 133
genibarbes，Petnomys， 30 r
gentharbis eroup，Petinomys． 301
GROMPROMIS $5,25,54,73,128,131,134$
（ikollilloAl：，32，255，$+69,505$
（1E0MM（）］DA1，31， 78,468
（EOON15， $22,32,53,63,71,150,506,507$. 524
（iEORICHLS，22，24，67，So，81，82， 83
GikOLCILRLS，264，267，418， 420
（BERBILLNXIA，＋o
（ilRR131］，！S，22，＋0，50． 56
дertora．Jaculas．side
germana，（＇allometurus，351，352，362

getulus，Atlantwetus，+23

memotera，Ratula， $38+385$
giganteus, Spalax, 642,64+
gigas, Dinomys, 171
giglis, Glis, 622
gilvigularis, Sciurus, 342
gilvus, Perognathus, $48+$
gingianus, Callosciurus, 368
gioginianus, Xerus, 122
glaber, Heterocephalus, 95
GLAUCOMIS: 30, 52,53, 54, 61, 70, 263. 266, 268, 276, 293, 294, 297, 299, 325
glaucinus, Sciurillus, 317,318
glirinus, Zenkerella, $5+7$
gliroides, Octodontomys, 159,160
GLIRISCL'S, 604, 606,608
GLIRULUS, $37,60,601,603,612,613,620$
GLIS, 22, 37, 46, 51, 60, 601, 602, 603, 612, 613,620
glis, Glis, 333. 622
gloveri, Callosciurus, 351,358
G1,YPHOTES, $30,49,65,263,271,305,393$
gocldii, Procchimys, it8, 121
goelthasi, Hoplomys, 123
goldmani, Citellus, $45^{1}$
goldmani, Cratogeomy's, 529
goldmani, Dipodomys, $49^{8}$
goldmani, Glaucomys, 295
goldmani, Heterumys, $+74,475$
goldmani, Perognathus, $4^{89}, 490$
goldmani, sciurus, 328, 336
goldmani, Thomomys, 521
GOLLNDA, $38,4^{8}, 50$
goodfellowi, Ctenomys, 163, 164, 168
gordoni, Callosciurus, 351,358
gordoni, Jaculus, 545, 596
gorkonae, Prouchimys, 118, 120
gorkhali, Petaurista, $282,284,288$
gossei, Funambulus, 379, 380
gothardi, Sciurus, 330
gracilis, Cavia, $2+2$
gracilis, Tamia,+33
gradojevici, Citellus, $4+2,+4+$
graeca, Sciurus, $33^{\circ}$
graecus, Spalax, 643, 644
grahamensis, Thomomys, 518
grahamensis, Tamiasciurus, $34^{8}$
GRAMMOMYS, 38,602
grammurus, Citellus, $+2,450$
grandis, Echmess 111, 113
grandis group, lichimys, 111, 113
grandis, Orthogeomys, $53 \mathrm{I}, 532$
grandis, Petaurista, 282, 286
GRAONISS, 39
GRAPHILRINAE, 36, 603
GRAPHIURLS, $34,3^{6}, 44,45,46,56,69$, $564,599,601,604$
цravipes, Depodomys, 499
grayi, Callosciurus, $351,37+$
gregorianus, Thryonomys, its
gregorianus proup, 'Thryonomys, 14t. 145, $14^{8}$
grinnelli, Tamias, +35
grisea, Aplodontia, 258
grisencauda, Callosciurus, 351,367
griscicollis, Ratufa, 3.97
Lriseifrons, Glaucomys, 297
grisemanus, Callosciurus, $351,352,363$
grisemembra, Sciurus, 3+:
greseiventer. Callosciurus, $36 \%$
griseiventer, Petaurista, 286
griselda, Anomalurus, 5 to
griselda, Dremomys, 381
griselda, Graphiurus, 607, 611
priseocaudatus, Sciurus, 335
griseoflavus, Sciurus, 328, 335
uriseogena, sciurus, $328,34^{\circ}$
griseopectus, Callosciurus, 351, 35 8
grisescens, Allactaga, 587
grisescens, Tamias, 43 I
griseus, Graphiurus, 610
griseus, Heteromys, 475
griseus, siciurus, $325,327,328,337$
griseus, 'Jamias, 437
grotei, Hystrix, 217
grutei, Callosciurus, 362
guadalupensis, Thomomys, 514
guairae, Proechimys, 118, 121
guanta, Cuniculus, 224, 225
guardiae, Perognathus, 492
guayanus, Sciurus, 328, 343
gubari, Pteromys, 294
guentheri, 'Trichys, 205
guerrerensis, Liomys, 479
guerrerensis, Orthogeony's, 532
GLERLINGLEIC'S, 265, 266, 268, 322 $325,326,340$
guianae, Cavia, 240, $2+1$
guanae, Echimys, $111,1 / 2$
guianensis, Sciurus, 342
guara, Euryzygomatomys, 125
guillemardi, Callosciurus, 360
gularis, Dremomys, 381,383
gularis, Proechimys, 118,120
gundi, Ctenodactylus, 558
gundlachi, Capromys, 129
gunnisoni, Cynomys, 462, 463
gunong, Callosciurus, 351, 356
guttatulus, Citellus, 445
guttatus, Citellus, $4+5$
gymnesicus, Ehomys, 615, bit
gymnicus, Tamiasciurus, 346
GYNINOBELIDECS, $5+3$
GYNNLROMYINAE, 39
GYMNLROMYS, $39,57,603,645$
gynnurus, Hoplomys, 122, 123
gymnurus, Platygeomys, 530
GYOM15, $3^{8}$
gypsi, Perognathus, 48

```
HADROMIIS, 36.48
```



``` 327, 344
haedulus, Graphturus, 607,081
haemobaphes, Callosciurus, 359
HAEROMHS. 3 .
hagens, Petmom!s, 30 s. 302
```

hageni eroup, Petmomes,301,302
hame (te nomys, 143,165
hamala, Petaurista, zes
hamana, Ratufa, 3N, 3 Kis
hamanus, Atherurus, zof
hamanus, Callosciurus, 35.4
halli, Dipus, 501
HA1.TICL
haltucus, Aldatama, 586
haltuous, 1) podemess, 500
HALTOMVS, 503
hamitom, linmos, 615
H.AY.1LOMYS, $11,3,36,38,48,035$

HAPTOMIS太, 161,164
hardy: Ilelicscumes, for, yoz
hatdyı, Zupus. 5-1
harmandi, C'alloserurus, 351, 362
harquahalae, Thomemys. 517
harmongoni, Calloscuarus, $35 \mathrm{I}, 3^{\text {ho }}$
harrisi, Citellus, 442,451
harrisoni, Callosenurus, zeth
harrison, Hylopetes, 200
hartsisni, 'Thryonoms s, 148, 14 '
harterti, Massoutiera, 551
hastulis, Callosciurus, 351, 364
heermanm, 10podomys, 47,408
hetrmannu group, Dipudnmys, 477 , 408
heermanni, Scuarus, 3,7
hemmehn, Hyoscmurus, 30N
helgen, Callosemurus, 363
HELIOHPHBILS, $24,57,67,80, S_{1}, \mathrm{~S}_{2}$, 84, 555
HELIOSCJCRLS, 30, 57,67, 264, 206, 267, $269,271,310,31 \%, 321,327,3+6,399$
hellemicus, Spalax, 642, 643, 64t
helleri, Dipodomys, 504
hellem, Perognathus, foy
hederi, Thomomys, 524
helveolus, iciurus. 337
helvina, Abrecoma, $15+$
helvus, Callosciurus. $3^{4} 5$
hemachalanus, Narmontia, 460
hendeen, ('allonserarus, 351.351)
hendee. Prosechums, 11 M , 121

herbert. (allosturus, oth
herboola, (itellus, $4+2,4+3$
hercegosinensis, hpalan, " 43
hernandezı, Sciurus, 329, 334
HERIETUNIS +4
herreranus, (ilaucomys, 245
HESPEROM15S, 30. 55
HESI'EROSCILRLS, 26\%, 268, 32t, 325, 3.37
hesperus, Thommonys, 524
HETEROCLEILALI, 24, Nぃ, 123

heterodus, Macromerms -534

HETIROMIYOA1, 35,470
HETIRONYINAI, 31,471
HET1 R1)MIS. 31, 54, 55, 70, 4(m), 4,0, 471, 472

HETEROSCILRLS, $3+8$
heterothrix, bomys, 478
hemalis, heiurus, 33.3
hulda, I'roechmos, ifs, 121
hmalincus, Trogepterus, 279
himalayana, Marmota, 457, f10
hindei, 1 anhiomys, b3t
hindsı, Tamias, $+30,434,435$
hintoni, Petaurista, 2 $\mathbf{S}_{2}, 2 \mathrm{SH}^{\prime}$
hippurellus, Calluscturus, 35 5, 374
hippuronus, Callorsurus, 351,374
hippuras, Calhosciurus, $351,353,374$
heppurus ernup. Calloscrurus. 353 , 37t
hirsutirustris, Hystrix. 200, 21f1, 217, 2 is
hirsutus, sigmodon, $11+$
hirtupes, Jaculus, 546
hirtus. (ratogeomys, 529
hirtus, sciurus, 335
hispudus, Heterogeomys, 533
hispidus, Lionys, 477
hispidus, Mesomys, 126, 127
hispudus, Perognathus, $480,483,488$
hispidus group, Perognathus, 483.488
historicus, Sicurus. 333
HISTRIOSC1LRLSA, 322, 325
hrudson, Marmota, frio
hodgson, Hystrix, 200, 201, 200, 214, 217
140DOMIYS. 39, 5t
hoffman, sclurus, $34^{\circ}$
hoffmant group, scjurus. 327, 340
hollistern, Citellus, 449
H(H6)CHILCS. 34, 55
holencriceus, Cryptomys, 87, 90
holts, Callosciurus, 351, 355
herdi, Citellus, $48^{\circ}$
hopiensis, Perognathus, 48.
heruensis, 'Tamias, 433
111H1,ONYS, 25,54,72, 102, 107, $108,117$. 122
horsfield, lomys, 303
hortualis, Eliomys, 615
horsci, 1 arnscus, 301, 302, 393
husei group, Lariscus, 343
hosei, Petaurillus, 302
hotsomi, Allactaga, $582,584,585$
hottentotes, Cryptomys, 87 , , 0
hottentutus group. Cryptomes, 90

howell, Thomomys, 514
husthucha, semorus. 330
hualpatens1s, Thomomy's, 514
hudsomens, T'amiascrurus. 34 '
hudsens, Lrethizon, is
hudsmmus, Glawconys, 2y,
hudomnus, Zapus, 571
huet1, (iruphurus, 601, (10f1, 607, 108
huts group, (iraphoutas, boh
huey, Perognathus, 4is
hembelelt anta. Aplodontra, 259
bumes, Cidlesciurus, 351, 365
humeralı, Ratut. $3 \mathrm{~N}_{5}$
humilis, Colloncturus, 357
hungaricus, spalax, $142,6+3$

IICBONI゙心。3
hydrochacris，Ildurochocras，-53

 250， 4 名
11Y＂गROMIVNAS，з！
HYDR（SN1S $5,3,36,30,47,602,127$
hylatum，Ilagiodontia， $13: 134$
11）1JNOM155，30
 298

HリO．15s，38， 47
HYPERACRILS，to
hyperythrus，Callosciurus， $35^{8}$
HYPOGEOMIYS，3\％， 57
hypolevea，Ratufa， 387
hypoleucus，Citellus， $4+3$
hypophaeus，Sciurus， 334
hypopyrrhus，scuurus， 324.334
hyporrhodus，sciurus， $328,3+0$
hyposanthus，Sclurus， 334
HYSTRICES， 27,208
H）STRICIDAE， $27,98,100,173,197$
HysTRICOGNATHI， 23
HY゙STRICOMIORPH SJRRIES， 24
HYSTRICOIDAE，24，77，96， 237
IISSTRIX，23，27，＋9，52，57，59，66，69，145， $198,208,201,212,215,258$
ibeanus，Lophionys， 636
ibeanus，Paraverus，fo6，to
ICHTHYONIS，3，36，39，55， 602
ictericus，Callosciurus， 35 1， 371
IC ГIDONIOIDES， 437
IC＇TIDOMSS， $268,437,440,4+1,488$
idahoensis，Citellus，+47
idahocnsis，Perognathus， 486
idahocrisis，Thomomys， 522
idahornsis，Zapus， 572
IDILRINAE，33， 542
IDIURUS， $33,57,68,537,5+2,543$
ignava，Narmota， 457
ignitus，Sciurus， $3 \not 44$
igniventris，Sciurus， 328,344
ihering1，＇Proechimys， $116,117,51 \mathrm{~N}, 122$
iheringi group，l＇roechimys， 122
ileile，Hyoscrurus， 399
illinoensis，Geomys， 526
imartus，Callosciurus，351， 373
imhausi，Lophiomys， 636
imitator，Callosciurus， 351,363
immollis，Lagostomus， 236
imperator，Anomalurus， 540
imperator，Zapus， 573
imus，Dremonys， 381,362
mauris，Xerus， 422
inca，Lagidium， 230,232
incanus，Pteromys， 294
meonstans，Callosciurus， 351,355
inconstans，Sclurus， $321,3+1$
moultus，Rhanosciurus， 30 夕
indica，Allactaga，584，565
indica，Ilystrix， 218
indica，Ratufa， $350,3{ }^{3}+385$
indues，Funambulus， 378
INDGNADAYAN R（）IOENTS，64．65，6，
mermis，Cercomys， 124
mexpectatus，Callosciurus， $3^{6,3}$
inexpectatus，l＇erognathus， 487
mifraluteus，Perognathus， 453
infrapallidus，Thomomys， 512
mfuscatus，Sciurus，328， 330
ingens，Dipodomys， $4 \%$
ingens，Thomomys， 513
ingrahamı，Gcocapromss，132
ingrami，sciurus， $32 \mathrm{~K}, 3+3$
innae，Dipus， 591
inmpinus，P＇erognathus， 40
mornatus，Callosciurus， 37.3
imbrnatus，Petaurista， $28_{2}, 2 \% 4,28 \%$
inornatus，Perognathus， 483 ， 4 sto
inquinatus，Callosciurus，351， 374
insidiosus，Coendou， $185,18 t$, 1．85
msignis，Lariscus， 392
insignts group，Lariscus，302
msignis，Napaeozapus， 574
insignis，Ratufa，384， $3^{86}$
insigms，Zenkerella， 547
insularis，Callosciurus， 359
insularts，Citellus， 452
insularis，Dipodomys， 501
in ularis，Glis， 622
insularis，Perognathus， 488
insularis，Rhizomys，650，651
insularis，spalax，642，6 $6+3$
intercessor，Tamias， 430,436
interior，Funisciurus，$+12,+13$
intermedius，Bathyergus， $8+$
intermedius，Callosciurus， 358
intermedius，Citellus， $4+3$
intermedius，Dyromys， 618
intermedius，Glis， 622
intermedius，Perognathus， 420
intermedius group，Perognathus， $4 \mathbf{3} 3,4 \% 0$
intermedius，Sciurus， $336,35 \mathrm{~S}$
intermedius，Spalax， 642
intermedius，Thomomys， 518
intensus，herus， 420,421
meternatus，Thomomys， 514
internus，Graphiurus，607，600\％
interpres，Citellus， $45^{2}$
interposita，Ratufa， 388
interstriatus，Sicista， 567
interzonus，sicista， 567
inyounsis，＇「amias， $430,+33$
IOMIYS， $30,49,64,263,274,275,303$
IRENOM1YS，30， 55
rolonis，Cratozeomys， 528
irroratus，Liomys，47\％，47
arroratus group，Limms， $4-6,4-4$
ircoratus，Siciurus， $32 \mathrm{~S}, 344$
1sabella，Fumscmurus， 412
sabellmus，Helmscurus，for +23


## INDEX


solatus，（irapharus， 610

sthmica，Dasyprocta，I！口，115
usthnacus．Iteterogeonms， 533
isthmius，Ilydrechoerus， 253
1sthmous，liommss．47
sthmalus，Necrosciuruei， 319,320
istrandjate．Sciurus， 331
istretus，C＂itellus，\＆みt
sstrous，©palax，6．4．4
itillecus，（ils， 022
1tahtus，Šumbus， $32 \mathrm{~K}, 330$
jacinteus，＂］hemomys， 515
jackson，Anmmalurus， $5 \neq 0,5 \neq 1$
jacksoni，J＇aranerus，fof， 408
jackonm，lerognathus，ab6
jackson，＂lamias． 432
JAC（1，டン，22，35，51，56，50，68，555，562， 58y，593，59S，f3 S
jaculus，Allactara， $58+586$
faculus，laculus， $503,595,596$
faculus proup．Jaculus，595，596
jacutenss，Citellus，$+42,+46$
jacutensis，Sourus． 332
jacutcnss，＇Jameas，$+3^{\text {h }}$
jaliscensis，$]$ monuse +7 ＇1
jalorensis，Lariseus，342
iancenno，Crptomys．リン
janett．，Bathergus， 8.4
janctta，（aflosciurus，351， 373
japonicus，Glirulus，tizo
javanicum，IJystrix，I！4，209，21I，213，214． 217
javanseus，Whizemys，65t
jatanus，Larseus，302
javenss，Katufa， 3 8̆
jennssejensis，tolurus， 332
fentmki，（＇allomesurus， $350,351,356$
fesuri，lfeteromys， 775
joanma，（＇astella，240
joannus．Octomss， 157
johamis，（＇termomys，ifiz， 166
johnstont1，（iraphumess， $107,610,611$
johoremsts．C＇alloscaurns， 368
pohorensis，Ratufir， 388 ， 3 S 7
foleathdi，C＇tenodactslas． 559
jolonemsis，Dipodomys， 40 k
jordanm，Anomalurus， $5+5,541$
jurdam，Ciraphames，for
porbsemi．（＇ryptomys．87，90
juglans，Citellus， 4.50
jumperus，＇Famas， 433
furnod．Cryptimoss，リン
purals，seiurus，32א，375
juris，（＇tertomqs，103，1fot
juseratus，Chlluserurus， $351,353,375$
kaffemsis，lledincuards，fo1，402
kahara，Paraxerus， 407
kababensss，scourus， 338
kalaharecus，Paranerus， 407
Kalhenensjs，Sciurus， 332
kalecorsis，Belomys，277．279
kalmowskii，1）asyprocta， 196
KANXABATLOM1Yタ，25，73，102，135， 137
kapti，Ifelmphubits， 85
karelmi，thertopmeda， 592
kathleemate，Fumambulus， 380
kazakstameus，C＇utellus， 444
kelaartı，Pumamhulus， 378 ，350
kellemi，Giraphurus，61！
kemmisi，C：allosemurus， 360
kenarensis，＇「abalacemrus， 347
kentae，llelimenurus，fo1， 403
kemmicotti，（ itellus， $44^{8}$
keraudreni，Callosciumus， 361
kermeti，J＇ruchamys， 119
hernensis， 1 1podamys， 500
kermenses，Tamose， 435
KlミRO1）（N，2v，55，7r，224，238，239， 246
kesslen．Scourus． 332
kimmears，Callusciurus，351，358
kamen，Cavitla，2．fo
knalnchi，l＇etaurallus，302，303
kumernsis，Perompathus， 885
kirgisorum，Apalax， $6+2$
kivuensis．Idrurus， $5 q^{6}$
kioljarsus，Allactaga， 585
klabesi，Sciurus， 328,340
klamathernsis，Glaucomys， 297
klosss，Callosciurus， 365
klons，Hystrix，200，213，214，217，218
knekus，l＇erognathus， 488
knighti，C＇tunomys，163，167
kodiacensts，（＂itellus， $4+2,4+8^{\circ}$
kimnatiensis，（ryptomys，y2
kongensis，（＇allosenurus，351，35t
kootcnayensss，／apus， 572
koratensis，Menetes， 300
Kozlewi，Salpingotus， 57.5
krzzon group，talpingotus， 575
kubangensis，（＇ryptomys，ol
kuchongensis，Callosenurus， $35 \mathrm{I}, 366$
kulait，Somurillus， $318,34^{2}$
kurdistancus，Dyrumss，619
kibmant，Cryptomys， 87,91
labaumei，spalax， 6.43
lablas，Diplomeys． 115
labraderius．Zapus． 571
LACHNONIS，136， 137
lachugualla，＇Thomomes， 510
lacrmalis，（ratugemmys， 521 ）
lacrymaho，Fhommomys， 512
lacustas，Nertu，420， 421
ladas，Zapus，5；1
lademaman，1lysira， $2=0$
lacnata，Ratuta， $38+386$
lacnatum．Coretou，145，185， 187
lactus，l＇araverus，foy
1．A（ill）ll $11,23,25,55,72,226,229$
1.AGONORPHA, I
lagopus, Dipus, 591
LAGOSPEDILS, 247
LAGOSTONH, 28, 227. 232
LAGOSTONLS, 23, 28, 55, 72, 97, 171, $224,226,233$
JdGOT1S, 229
L.AGURL'S, +1,50, 52
laingı, Perognathus, is
lalandianus, Graphurus, 610
lamarum, Echimvs, 109, $11 \mathrm{I}, 112$
lambi, l'erognathus, 492
lamucotanus, Callosciurus, 371
lancavensis, Callosciurus, 35 I, 364
langi, Cryptomys, 92
langi, Idiurus, 545
langsdorffi, Sciurus, 328, 345
laniger, Anomalurops, 542
laniger, Chinchilla, 229
lanius, Heterogeomys, 533
lanka, Petaurista, 282, 287
lanuginosus, Tamiasciurus, 347
laomache, Dremomys, $38 \mathrm{r}, 383$
LAOMYS, 38
laotum, Callosciurus, 351, 355
laotum, Hylopetes, 299, 300
LARIA, 39 I
LARISCL'S, $30,49,65,260,263,267,271$, 306. 349, 380, 391
larvalis, Pedetes, 552
lascivus, Glaucomys, 297
LASIOTODOMIYS, 41
lasiotes, Glirulus, 620
LASIUROMYS, II
lasiurus, Platacanthomys, 629
lastii, Paraverus, 406, 40 8
lateralis, Citellus, 442,453
lateris, Heliosciurus, 40 I
laticaudatus, Rhinoscrurus, 396
laticeps, Allactaga, $584,58_{5}$
laticeps, Anomalurus, 540
laticeps, Clyomys, 125
laticeps, Thomomys, 511
latifrons, Orthogeomys, 507. 332
latijugularis, Perognathus, 492
latimaxillaris, Dipodomys, 503
latipes, Glaucomys, 296
latirostris, Perognathus, 488
latirostris, Thomonys, $5: 7$
latouchei, Rhizomys, 650, 651
latrans, Cynormys, 462
latro, Ctenomys, 163,165
latus, Thomomys, $51+$
laurentus, Cercomys, 123,124
lautensis, Callosciurus, 371
layardi, Funambulus, $377,379,380$
layardi group, Funambulus, 379
layardi, I'etmomys, 301,302
leathemi, Sicista, $566,56 \mathrm{~B}$
lechei, Cryptonys, $87,1,1$
hecrus, Tamias, 43 t
legerae. Pectinator, 5 sh
LEGGADINA, 3S,47

1. MMMI, +o

LEMMCS, 40, 50, 52
lemniscatus, Funisciurus, +12
lemniscatus group, Funisciurus, +12
LEANISCONI'S. 3 年
lena, Petaurista, 282, 286
leniceps, Mesomys, 126,127
LENOMYS, 38
LENONLS, 39
lentulus, Ctenomys, 163,165
lentus, Dremomys, 383
leo, Rhinosciurus, $396,39^{8}$
leonardi, Hylopetes, 299,300
Ivonensis, Heliosciurus, 401,403
leonis, Funisciurus, 412,413
leonis, Sciurus, 328,341
leonurus, Zapus, 571
lepidus, Hylopetes, 299
lepidus, Iornys, 303
LEPORIDAE, 1,18
ILEPORHLLLS, 38,47
leporina, Aplodontia, 255
leporina, Dasyprocta, 194
leporinus, sciurus, 337
leptodactylus, Spermophilopsis, 423
LEPTOMYS, 39, 47
LIEPTOSCIERUS, 265, 322, 325
leptosoma, Proechimys, 119
leptura, Myoprocta, ig6
lepturus, Heteromys, 475
lerotinus, Eilomys, 615, 6:6
leschenaulti, Ratufa, 385
lessonii, Xerus, 421
leucoblephara, Galea, 243
leucocephalus, Callosciurus, 362
leucocephalus, Petaurista, 286
LELCOCROSSLROMYS, 268, 461,462
leucodon, Ctenomys, 163,164,167
leucodon, Spalax, 644
leucodon, 'Thomomys, 511
leucodonta, Castor, 467
leucogaster, Sciurus, 334,344
leucogenys, Dipodomys, 499
leucogenys, Funisciurus, 414
leucogenys, Petaurista, 282, 2h5, 2ns
leucogenys, Ratufa, 384.389
leucombrinus, Xierus, 420,422
leuconus, Callosciurus, $306,350,351,353$, 375
leucomus group, Callosciurus, 353.375
leucomystax, Proechimys, 119
leucopictus, Citellus, $4+5$
leucops, Georychus, 86
leucops, Sciurus, 33 t
Ieucopus, Callesciurus, 351,363
leucopyea, Саяı, $2+1$
lencostictus, Citellus, $44^{6}$
leucostiema, Funisciurus, 412,413
levcotis, Callosciurus, 351,354
leucotis, Dipodomys, 504
lencotrs, sciurus, 328,334
levcourus, sciurus, 328, 330
leucura, Hystrix, 200, 212.213, 217, 21\%

672
leucura group, Hystrix, 212, 216
lewcurus, (itellus, 442,452
lencurus. Cynomys, $46 z$
leuredon, Citellus, $44^{6}$
levallanti, X'ctus, 422
levpes, Dipodomys, 406,504
lewis1, C'tenomes, 163, 164, 167
lewisı, C'ynomys, 462
liantis, Calloscurus, 355
liberseus, Heliosciurus, 401, 404
lichionsis, Dremomys, 381 , 382
lichtenstemi, liremodipus, 598
helvmanni, Coundou, 187
lightı, Callosciurus, 372
lilacus, scmess, 328. 330
limanus, Myoprocta, 196, 107
limbatus, 1 Helioschurus. 401
limitancus, Xerus, 420,421
lmitaris, 'Thomomys, 519
limitis, Scurus, 339
limosus, Thomomys, 523
lineatus, Sicista, 567
line atus, Tamias, $+30,43^{6}$
limgungensis, Callostiurus, 357
L, 10, 115 S, 31. 54, 62, $70,469,470,471,472$. 476
lipura, 'Trichys, 199, 203, 205
lis, sciurus, $324,328,333$
Inttledalei, Mirmota, 457,460
littoralis, Galea, $2+2,2+3$
littoralis, Graphiurus, 611
littoralis, Sciurus, 335
littoralis, Tamias, $+3+$
litus, l'erognathus, 483
llanensis, Geomys, 527
loandae, Protoxerus, 415,46
loandius, Helinsciurus, to1, 402
lockwoodi, Lagidium, 230,231
locusta, Jaculus, 596
loftusi, Jaculus, 595, 597
logonensis, Thryonomys, 49
lokriah, Dremomys, 380,381
lokriah group, Dremomy's, 3 81
lokroides, Callosciurus, 351, 353, 372
lomitensis, Heteromy's, 475
LONCHERES, 108
LONCTIOTHRIX, 25, 73, 102, 107, 127
longicauda, Hystrix, 200, 217
longicaudatus, Coendou, 186
longicaudatus, Heternmys, 474, 475
longıcaudatus, Proechimys, 118 , 121
longmemhris, Perognathus, 485
Jongimembris group, Perogathus, 482, 485
longior, Allactaga, 587
longrpes, Dipodonys, 502
longipes, Zapus, 571
longiphis, Cavia, 242
longirostris, Echmys, 10\% 113
lonnberg1, Cannomys, 652
lonmbergh, Hystrix, 220
LOPDIIOMYSDAE, 37, 600,632
[,OPIIOM1SS, 22, $3^{6}, 37,56,69,599,632$
LOPHLRONY'S, $36,4^{66}, 56$

INDE.
loquax, Tamiasciurus, $34^{6}$
lordi, Perognathus. 4 83, $4^{87}$
loriger, Nicista, 566,567
lormgi, 'Themonys, 524
lorraneus. Graphiurus, 607, 610
lowei, Calloschurus, 351,357
lowel group, Calloschurus, 351, 357
lualabae, 1leliosciurus, 401, 404
lucas, Callosciurus, $3^{6}+4$
lucidus. Microdipndops, 493
luedus, Thomomys, 513
lucifer, Dasyprocta, 191, 193
lucifer, Heliosciurus, 400, 401, 405
lucifer group, Heliosciurus, 405
Jucifugus, Glaucomes, 297
ludibundus, 'Tamias, +32
ludovecanus, Cynomys, $4^{62}$
ludovicianus, sichurus, 339
ludwigh, Cryptoniys, go
lugardi, Cryptonys. 87, 21
lugens, Petinomys, 301, 302
lumholtzi, Petaurista, 250
lumholtzi, Ratufa, 387
luncefordi, Namosciurus, 316
lunaris, Callosciurus, 372
lunaris, Dasyprocta, 191, 194
Junaris, Paraverus, 406, for
lusitanicus, Eliomys, 615, 616
lutea, lagulum, 230, 231
lutejentris, Tamias, 432
luteolus, Dipodomys, 502
luteola, Narmota, 458
luteolus, ('tenomys, 163,164, 168
lutescens, Callosciurus, 37 I
lutescens, Funambulus, 379,380
lutescens, Geomys, 526
Jutescens, Lagidium, 231
Iuteus, Zapus, 573
lutrina, Ratufit, 384,388
lychnuchus, Tamasciurus, 348
lylei, Callosciurus, $351,355,362$
Jylei, Petaurista, 282, 284, 287
lylei, "Tamiops," 351, 355
lyratus, Citellus, $4+5$
Jysteri, Tamias, $430,+36$
macconnelli, Sciurus, 328,342
maclellandi, Callosciurus, 351, 354
maclelland group, Callosciurus, 353
macmillani, Dremomys, $3^{8 \mathrm{E}}$
MACROGEOMYS, 32, 54, 71, 506, 507, 533
macrorhahdotes, limmias, 435
MACROSPALAX, 638, 641
mactospilotus, (itellus, 44')
macrotarsus, Jaculus, 5y,
macrotis, Allactaga, 586
macrotis, Glaucomys, 2,6
macrotis, Idurus, $5+4,546$
macrotis group, ldurus, 546
macrotis, Rheithrosciurus, 395
macrotis, "Thomomys, 522
mac rotis, '1richys, 203, 205
macroura, Ratutio, 378, $38_{4}$
macroura, Aciuru-. 3.39
macrourus gromp. Atherurus, 206
macrourus, Atherurus, 199, zon
macrourus, Citellus, $4+2,+50$
macrourus, l'rocchmys, 1 I!
MACROXU'S. 322
macrura, Echmers, 12
macruroides, Ratufa, 3\$4, 368
MACRLROMS゙心, $38,+7$
maculatus, Ileliosciurus, 401,403
madogac. IHelronciurus, to1, toz
madrensis, (itellus, $+5+$
madrensis, (;laucomys, 206
madrensis, 'Thomonys, 520
madsoei, Callosciurus, 368
madurae, Callosciurtus. 351,369
maenas, Cavicllis, $2+6$
macrens, Perinomys, 302
maestus, Serus, $+20,+21$
magdalenac, Perognathus, for
masdalenae, Sciurus, 342
magdalenac, 'Thomomy's. 515
magellanica, Dolichotis, 248
magellanicus, Ctenomys, 163, 164, 165
magnicaudatus, Sciurus, 339
magnificus, Petaurista, $282,284,288$
magruderensis, Perognathus, 487
mahali, Cryptomys, 92
major, Allactaga, $58+586$
major group, Allactaga, 584, 585
major, Aplodonti:3, 258,259
major, ('itellus, $4+9$
major, Ratufa, 385
major, Zapus, 572
makkovikensis, Glaucomys, 206
malabarica, Hystrix, 21 H
malabarica, Ratufa, $38_{5}$
malaccanus, Petmomys, 301
MALACOMI'S, 38
MALACOTHRIX, $36,30,50$
malawal, Callosciurus, 369
NALLOMIYS, $35,47,+8$
manaquensis, Sciurus, 336
manarius, Nicrosciurus, 319, 321
manavi, sciurus, 340
mandingo, l'umisciurus, $+12 .+1+$
manipurensis, Callosciurus. $351,35+$
mansalarts, Callosciurus, 356
mantchuricus, sciurus, 325. 331
maporensis, (alloscourus, 551, 370
mapraves, Calloscourus, $351,36+$
marabutus, Serus, 421
matama, Ratufa, 38 .4, 389
maraxica, Dassprocta, 191, 104
marcho, Petauristi, $28_{2}, 2 \mathrm{~S}_{5} 5$
marcosensis, Perognathus, fizz
maryartike, Dipodomys, 501
margatita, Peremathus, 492
mashomatus, (itellus. 440
marmo, l'ctaurnta, 2S'2, 284, 280
mariposise, 'limmas, +35
marmsulans, Cillesciurus, 371
marntimuts, Bathecraus, it
maritimus, Callosciuru, 351, 35t
marjorate, Petromus, 151
MARMIOTA, 23, 30, +1, 51, 53. 50, 5. . 62, $66,262,265,265,268,27,3,27+, 307,454$
marmoti, Marmotit, $455,457,401$
marmeta group, Miarmotia, \&₹5, \& 1
"Xarmotmac." 261, 2hz
MARAMOTOPS, 267, 268, +54. 455. 4'4
martersi, Sciurus, 328, 331
martmensis, Thomemys, 520
martarensis, Dipudomys, 503
martirensis, Thomomys, 515
marungensis, Helophoblus, 85
marwitzi, Heliosciurus, toz
masae, Ratufa, $3^{8}+38 \mathrm{~K}$
massonii, (tenodactslus, 55 s
MASNOUTIERA, 34, $50,56,54,64,554$, 555,559
MASTACONYS, 38,47 matagalpac, Macrogeomys, 534 matagalpae, Sciurus, 337 matthaeus, Callosciurus, 303 mastugamensis, Funambulus, 35-3, 3no
maulinus, Ctenomys, 169
mauncnsis, Paraverus, fon
mauritanicus. Jaculus, 596
maurus sciutus. $33+$
maximus, Perognathus, 488
maxima, Ratufa, $3^{8}+3^{8} 5$
maximus, Lagostomus, 236
mayensis, Dipodomys, 501
mayumbicus, Funisciurus, 112
mazana, Thomomys, 524
mearnsi. Perognathus, 483
mearssı, Tamasciurus, $3+8$
mearnsi, Thomomys, 519
mearsi, Callosciurus, $35 \mathrm{r}, 373$
mechows. Cryptomys, 87,90
mechoni. aroup, Cryptomys, go
medellinenss, Sciurus, $328,3+3$
media, Allactaga, 586
madius, Echimys, 109, 111, 112
medjianus. Heliosciurus, yot
megacephalus, Microdipodops, 403
ME(:Al.OM15:S, 39
meqalop. Zapus, 571
NEGASCADHEL'S, 507, 5:0, 52t
melamia, iciurus, 328, 337
melanochra, Ratuta, 384.385
melanogaster, Callosciurus, 353, 353,374
melamoleucas, Heteromys, $+74+45$
melanopepla, Ratufa, $38+389$
melanops, Callosciurus, 365
melanops, '1'homomys, 523
melanopterus. Petaurista, $2 \$ 5,280$
melanoticus. Cryptonys, 12
melanotes, Nanmoseiurus, 315,316
melanotes group, Nannosciurus, $3^{\text {th }}$
melanotes, Perogmathus, $4^{8}+$
melanots, "homamys, 5i-
melanotis, sciurus, $32533 \%$.
melanots, Petaurista. 2h2, 255


médataras，Dipuchomys，fots， 50 ot

matantafus，「ammas， 4 ？
mellimds，（＇inptomys，t $4,87,40$





mendencma，（＇thomms， 162,105
 780， 390
menterwi，C＇allaselurum，351，37＋
thentesus，Dremsums s， 381,3 发2


merndmeradentalm，（1tellos， 445
mutadensis，sicherms，？2N， $3+0$
merndionala， 1 arjscus，3リン
metridionalis，I＇ectmator， 556
merrdimanles，Selurns． 3 30
mertidiomalns，＇I ammas，+35
NIERIONES，＋0．50
merramm，Cratugetmos，द2
merrimm，Dipedomiss，＋id．＋97． 500
metramai group， 1$)_{1 \text { puelamsys }}+97.500$
merriami，l＇erosuathus，fi゙s
merrimmi，Thmias， 430,435
mersmate，Jystris，21ふ
mesatia，Dimyprocta，fot
mesemationus．J＇emernathas．\＆＇す


MESO）\IY，25，55．73，102，107，117， 126
mesopolius，Perombathus，f＇）
mesonpotiankia，I Ivstrax，214


meticulosus，（inhiscumrus，351．365

mexicama，D．syporta，118t

mexicanam uroup，Coctadow， 165,187
mesicalus，C（istor，f197
mextionus．（＇ttellas，t＋1，$+42,+t^{\prime}$

mexcianus，（


michanmus，（＇allowethete， 351,359

maklemi，（＇rypommss， 87,1$)$
macrocepholus，Zipus，รファ

 $471,47^{1}, 49^{\circ}$
macreden，Serus， 420,422



matrops，I）puchants，5t

INIEX
macrorhenchus，Callonciums． $351,36.5$

 26， $8,270,310,319$
गll＇R6TI，to
AlCROTIN．AE： 36, to
merotis．C＇alloscourus． 3 mo
metrots，Grophturus，bo－7，bto
micruts，Jaculus， 50 ，
MIC＇ROTLS，＋1，50，52，54，1003

mulas，Calloscharus，351，3，10
mysatomus，somos， 333
MIILARDIA， 38 ，fís
millards，Callosecurns，351，300
 11．17
mallert，C＂allosemons． 351,3 3t
malleri，Dyroms，＂um
mallers，Myoprocta， 106,197
mallern，scurus，32s， $3+1$
malls1，Hystrix，214，217，21S
mimax，Octomys， 157
mimellus，Callosciurus， $3^{6 / 7}$
mmicus，Petaurista，zis6
mmentus，Calloseiurus， $3^{32}$
mamulus，Ancrosethrus，310，320
mmus，Sciurus， 3.5
manas，Trocenterus，27サ，2tio
munac，Proch
mondanenss，Calloscourns，351，374
mmatus．Calloschurus． 351,372
mmmus．G．alca， $2+3$
mamoms．Perognathus，tion
mmimus，Tamas，+30
mimmus group．Tamors．+30
mamesota，Tamiascturus， $34^{\prime \prime}$
maner，Alictagulus， 587
momer，Canmomys， 652
minor，Liomys， 478
muner，Thomomys， 511
monor，Zapus． 572
mmutulas，Nyosemuras，its
manutus，Alactasulus， 5 i 7
minutus，（ienomes，lis
mmutus，Glis， 623
mmutus，Maseurus， 313
maravallenss，scurus， $3 .+0$
maxumatisis．Chator，$\ddagger 67$
misuourtenss．Cinomys，floz
mitehedh，Dipodomys． 50 t
matratus，C＇itellas． 45
mobtents，Germins，526
muco，Keradom， 247
mothestus，Catoscrurus，351
monlestus．Dacts lomys， 137

modicus，Thommoms，ち心
murerens，I＇rotorerus，$+15,41 \mathrm{t}$
moterestens，Denemen，300，301
momerillemenses，Timmaturas， $3+8$


mohnsemss，Thomomys， 515 moheits，Calloscturus， 351,365 mohnlus，Calloscoman， 351,365 mut，（＇allosciurus，351， 355 mollendortif，C＇alloscourus， 325 monliase，Jmothris， 114 mollipilosus，I＇eromathus， fist $^{6}$ mollhpilosus，＇limmanciurus， 347 mollis，（itellus，$+22,+46$ molyneanux，Cryptomys，87，91 momongi，l＇teromys， $293,29+$ monardt，（iraphiurus， 107,609 monardi group，Graphurus，bou monas，Narmota， $455,+57$ monax group，Narmota，455，457 moneolica，Allactaga，58，587
moneolicus，（＇itellus， $4+2,4+5$
monocnas，Dipodomys，502
monoensis，Tanuias，+32
monoensis，Thomomys， 523
montana，Steisti，$; 66,567$
montanus，Crypomys， 92
montanus，Dipodoniys， 502
montanus，Zapus， 573
MONTICAV＇1A， $233^{\circ}, 239,243,244,246$
monticola，Citedus，+49
monticola，l＇erognathus， 486
monticola，Spalax， 042
monticali，＇l＇homomys，508，510，523
monticola group，Thomomys， 5 IO， 523
monticolus，Callosciurus， 351.354
montosus，Graphiurus，607，608
mordax，Ttopopterus，279
mordostus，Ct nomys， 163,167
morem，L，agidium，230， 232
moricand，Chactomys， 172
momo，siciurus， $33+34+$
moroccana，Hystrix， 211
morroensis，Dipodomys，494
mortivallis，Dtpodomes， 500
morulus，Sciurus， $3+1$
mossambicus，Paraxcrus，406， 401
mottoulei，Helophobius， 86
mouhotei，Menctes， 390
mowewensis，Calloscturus， 373
mugosaricus，（ Citellus， $4+2,4+3$
muller，Ifystrx，200，212， 217
multicoler，flelosecurus，tor
munbemus，Eliomys，615，616
murnlis，Thomumys，5：5
NITRI：S． 3 S
NHR1Clldis， $3^{5}$
N11 RID）A1．，38，599，600
NIRINAl，is
murmus，（iraphiurus， 607,610 murnas eroup，（iraphurus，foo murmus，Sclurillus， $49,317,3$ S
marmas proup，somathas， 3 IS

murrasi，Abrocoma，ist


NL＇ACARDIMINAL，37，603， 612

MUSCARDIN1S，22，37，51， $10,601,602$ 612，613，623，627
muscardinus，Muscardmus， 625
musculinus，Ilelioncrurus，tot
musculus，＇lhemomys， 521
musicus，Citclus，$+4+$
mustelinus，sclurus， 334
musteloides，Galea， $2+2$
mutabilis，Ileliosciurus，401，402
mutabiles，latraselus，fot
mutabilis，Thomomes， 519
MYCTEROMIY゙．is
MYLA（：ALLIDAE， $5,17,22 \mathrm{~N}$
NY＇LACAL＇LL＇S，25＇
N1LOMIS， 38,56
NYOCASTOR，3，23，26，＋2，55，73，97，98． $103,123,129,134,140,145$
MOCASIORINAE，25，101，102，104， 139
NIOMIMLS， $36,37,60,103,612,613,626$
NYOMIORPH SERHES， 32
NMOPOTANLS， 140
MIOlROC＂IA，27，55，74，［ヶ， 196
myops，Erethizon， $178,18 \mathrm{~s}$
myops，Thomomys， 524
MY＇I＇L＇s，$+0,50$
MIOSCALOPS， $8+$
NYOSC1LRLS．30，57，67，260，264，267， $2 t y, 305,312$
MYOSPALACINAE， 40
MY（OSPALAX，3，10，36，40，51，81，637
myosuros，Proechimys，II9
MYONL「S，6zo
MYRSIU，$S, 30,67,264,272,308,416$
mystax，lumisciurus， $4!2,+14$
MYSTROM1S， 39,56
mzabi，Massoutiera， 559
madymensis，sciurus，328，331
nagarum，Callosciurus， $351,35 \mathrm{~S}$
nagtylası，Graphurus， 608
nakanus，Callosciurus，351， 364
namaquensis，Serus，$+20,422$
nama，Capromys，128，129， 131
mana，（ab1a，240， 2.42

\AN．NOCLILRLS， $30,49,55,57,64,202$, $263,267,269,306,312,313,317$
NANMOSPMAAN，638，640，64，042
NAMCNIVA，238，234，243，244， $24^{\prime 3}$
nanompas，Katufs，384．3．7
nanus，Graphurns，607，61：
nanus，Thomomys． 513
napaca，sictota， 560

map，Murosciurus， 319.320
marynemsis，fystom，zi＂

naso，l uchorentes， 577,509
nasutus，Thonoms．， 51 ；
batalemsis．Crypuniss， 92
natteren，（ tenomss， 100
natumensis，Calloscturus，351，35：
$6-4$
ravigutar，Callosemurus，351，3\％
mavus，＇lhomomys，51：
nat，aratems心，Returus，32h，33．
NEMCOMIS．+30

neavel，Xemmalurus，540．5＋1
neberux，Semorus，328，3t3
nebrascembs，（ilatomas， 205
nebultonta，＇thellus， $4+8$
nebulonus，＇Thomomis． 522
necopmu，Scurillus， 31 h

nesarectus，（itellus， 453
neslectus，（＇tenmons，whs
meglectus，l＇e rommathus，fint
meglectus，llatygeomys． 531
neghectus，Schurus，is
neglectus，Tamas，$+30,4.3$

neglectus，Thomomys， | IS |
| :---: |

neglerens，＊ichurus． 3.37
meremsis，Galea，242 243
Debrenas．Isuthas， $11+$
nehrmgi，spalas， $6+2$
NELONYS．108． 100
nelsom，Citellus， $4+2,452$
nelsons，（unculus， 225
nelson，Dipidumus， 500
nelsont，Heteroms $+7+7,76$
nelsom，Fappogeomys， 528
nelsont，（1）thogeomys，5．32
nelsom，Perognathus，+10, for
nelsont，scurus，32h，335
nelsoni，Thamomys， 521
NELぐON1A，39， 54
nemo，Cryptomys． 93
nemoralis，sciurus， $32 \mathrm{~S}, 334$
nemoralis，Zapus， 571
NEの（＂TOD）（が，ェの
NEODON，＋1，\＆ 5 ， 50
NEQFIBER，+1.52
neontevicanus．Tamaschurus， $3+4$

NEOTAM1ASS， $266,+26,428,+20,+30$
NEOTOMAA， $3^{f 3}, 3+1,52,5+$
NEOTONI（O）
NEOTOMYs． 39.55
 72．73．74
nesatus，semurns，32 $8,3+1$
nesmotes，Callnmarus，351，370
nestoticus，Citellus，+51

＂NEAOMYIDAD，＂+1
NESOMIS

nevadensic，Cotellus，＋47
nevadensis，Dipodimess． 500
neesulensis，Peromather，$+\mathbf{i o n}$
nevadensts，Tamans， 433
nevadensis，＇Phomomys，5it
nevadensts，$\neq 1$ puc， $5 \div 2$
nexils，Dipodomys． 503


## IN゙DEス

whata，Caviell．， $24^{6}$
miapu．Funisciurus．$+1+$
nicothanase，Callosemarus， $3^{\text {fon }}$
noconana，Sciurus． 336
mer．Castor，fos
mogeriae．Protosetus，＋15， 716
mect，Sciurus，32S，330， 33 S
niger，＇Thomomys． 523
nigra，Aplodontia，254
nigta，Dasyprocta，113， 145
nera，Narmota， $4^{\text {hi }} 1$
mgratus，Scurus． $3+4$
merensis，Anomalurus， $5+0$
merensts，Fumscturus，$+12,+1+$
merescens，Erethizon，iNs
mareacens，Lomes．$+7 \% .+7$
murescens，Ratuta， 3 ss
mgrescens，Sculurus， $328,330.334$
umphana，Cintella， $2+$ f
mgricans，Allactaga， 5 sits
mgruams，Cava， 242
mericans，Comdou，186，iks
mgricans，Dasyprocta，w5
mgricans，＇Thonomy＇s， 512
megricaudatus，Petaumata， 285
mgrateps．Ctenomys， $1013,104,16 \mathrm{~s}$
mimelums，Dasyprota， 11,3
mestedersalis，Calloscourus， 359
merimontes．l＇erognathus， 7 \％o
nugripes，Hylopetes，24， 300
himpres，Schurus，32N， 337
marispina．Echamys， 112
nurrotittatus，Calfoscmurus，351，352．368
nokknas，Petauristo，2Nz，zNS
nakulskn，Citeilus，＋4＋
mmroh，Cryptoms．87，90
mmepoenss，Calloscmurus， $351,358^{\circ}$
nuthe，Lariscus， 3 奛
netedula，Dyromys， 0 i8，ord
netida，Petaurista， 285
nitidula，Petaurssta，282，2＊：5
nitratordes，Dipodomys，foi ，4．5， 501
nitratus，Dipodomys，500
nevaria，Marmota，+54
niseatus，Funsciurus，$+12,+13$
nemeus，Nuscardmus， 625
nohmis，Pctaursta，2n2， 205
nobler，Dasyprocta，I93
nemetwasus，spatacopus， 164
noga1，Dipus，5＇я
nordhoffi，Protoverus，$f 15$
nordmann，Sicista，567
borvegica，Sicrsta， 566,507
norvesgous，Kattus， 47
nosorphori，Marmota， $45^{8}$
motahils，I＇rotozerus，$+15,416$
notabils，Ratufa， 3 St
notatus，Calloscrurus， $349,354,352,3$ h8
notatus group，Callosciurus， 352,3 年
nutialt，Hydrochoerus， 253

moturos，Marmota，+58
NOTOCITHLI， $5,268,437+40,4+1,451$

Nolonlis, $36,36,47$

novah hispansac, (omendon, 18
nowemlineatus, ("allosciurus. 354
mox. Callosemans, 351,362
nuchalis, Dasyprocta, 105
muchalis, sciurus, 335
nudipes, (ittellus, 151
numantius, sciurus. 328, 3:30
mumarius, Fumamhulus, 379 , 380
nyansate, 1 leluschurus, 101,404
nethemera, (onendou, $\mathrm{S}_{5}, 1 \mathrm{~N}_{7}$

NY"1"OMISE, 39, 54
nux, (allosciurus, 367
ohfuscatus, IDeliosciarus, 4or, 403
obolenskii, Deromys, 619
obscuri, Lichmess, 109. 113
obscura, Marmota, 458
obscurus, Citellus, 445
ubscurus, Dipodomus, 502
ubscurus, Funambolus, 3 so
niscurus, Galea, 243
ohscurus. Lariscus, 392
obscurus. Liomys, 477
obscurus. Mesumys, 127
ohscurus, Perognathus, 4,0
obscurus, Tamias, 435
obsidanus, Citellus, 450
ubsoletus, Citellus, 450
ocoasius, Eehmys, 109, 111,112
ocodanci, Hystrix, 257, 219
occidentalis, Calloscturus, 375
oceidentalis, Dinomys, ifi
meadentalis. Ehomys, 615,616
occlusus, Cryptomss, yo
occultus, Ctenomes, $103.164,166$
occultus, Perognathus, 491
(1CHOT()NIDAE, 1
ochracea, Marmota, 457
wheractocinereus, Cryptomys, ys
whraceus, laraxerus, 40\%, 407
ochraceus, Irocchumys, 119
ochraceus, Pamas, 432
ochraspus, Petauresta, 282, 286
ochreseons, tiourus, 328, 344
ochrogaster, Funisciurus, 412,464
ochrogenys, 'Tamas, $+30,43+$
ochrus. Perognathus, $+\sqrt{2}$
ocius, 'Thomomys, 522
oconaclls, Prochamys, 1 :1
(1) T11)(N, 23, 20, 55, 73.155.156, 158, 554
() TODON'1NA1, $26,95,101,104,155$. : (x)


ocularss, (3raphurus, 600, 60-, 60:
oculatus, Scturus, 328., \{39
OENOMIA, 38, 50
oenone, Iruniscturus, +12, +13
ognevt, Dyromys, 019
ashevi, Pteromys, 204
Ggnesi, Sciurus, 332
okadac, 'lamais, $43^{6}$
okanagana, Marmont, 457,454
olga, Ciraphiurus, 607, boon
olivaceus, Cilloscumas. 351. 355
alivacens, (itellus, 4 .
olivacens, Heliosctorns, tot
mivaceus. P'rognathus, qio7
ulisellos. Funsciurus. $+12,+13$
olowae, luntsciurus, 412,414
olympicis, Aplesdontia, $25 \%$
olympicus, Blaucomes, 207
olvmpius, Funambulus. 37., 3ho
olympus, Narmota, 459
onemsis, Heliosciurus, 401, 402
()NDATRA, 3, 41,52
oNICHONIS, 39, 52, 53, 54 operarius, Tamias, +3 I
operarius. Thomomys, 517
ophinsae, Vhomys, 615. 616
opimus, Ctenomys, 163 , 1\%4, ith
opimus, Dremomes, $3 \mathrm{Br}_{\mathrm{r}}$, 78
optabilis, Thomomys. 514
opulentus, Thonomys, $51+$
oral, Petaurista, 282, 287
oralis, Jaculus, 597
orangiae, Cryptomys, 13
orangiae, P'edetes, 551, 552
urarius, Tamiasciurus. 347
orariuc, Zapus, 573
orbitalis, Liomss, 477
ordii, Dipodonvys, 496, 497, 502
ordii group, Dipodomys, 497, 502
ordinalis, Tamas, $430,+36$
oreas, Petaurista, $2 \mathrm{~S} 2,288$
oregonensis, Glaucomys, 20,6
oregonus, Citellus, $+42,4+7$
oregonus, .Nicrodipodops, 493
nergonus. Thomomys, 523
oregonus, Kapus, 572
oreocetes, Cratogeomys, 524
orencetes, Tamias, 43 I
oreoecus, Thomomys, 517
(ORIOSCIURLS. 322,324
orestes, Callosciurus, $351,30.4$
oresterus, Heteromys, +76
orientalis, Anomalurus, 540,541
orientalis, Atherurus, 206
orientalis, Glı, 623
orrentala, Jaculus, 505.596
orientalis group. Jaculus. $595.51,6$
ofermahs, Tammas, $+30,+36$
ormatrs, Sclurlus, 32N゙, 332
orn, Peromys, 294
onnoci, lsothon, itt
oris, Proch hmes. 118, 121
orkathe, 'lhomomys. 531
orlosi. Citellus, +4+
ornatus. Dipudom? $=500$
ornatus. Dremomes. 3-1, 5"2
ornatus. 1'arancrus, 400, , 40.
orobnus, (iraphurus, bot, noy

（）RllHRIい入IYS，\＆



usemad．（＇tenom？． 1 fis
oneords，Thommanys． 520
atemus，Xinrosciurus．310， 320

wowlys，so，st，bos

$40,44 \mathrm{I}, 450$



rmstoni，Dremomss， $3 \mathrm{Si}_{1,}$ ， $\mathrm{S}_{2}$

wimmus，Citellus，$+42,4.3$

wxytnat，Marmota，＋5＂）
pacs，Cuniculus，224，225
pala group，（＇unteulus，22
pacarma，Immoms． 171
pachita，Pruechmoss，I I ※＇， 12 I
pachyura，Isotlmix， 1 it

pacifica，Aplodontı，2ょふ，ここッ
pacificus，（astor， $4 t 7$
Pacticus，Perognathos，fin
pacificus，／apus．57？
padangensis，Rhazomes，65I
pagurus．Isothria， 1 If

PALAEOCATTOR，千象
palatinus．Zapus， 572
paleacea．Echmos， 111 ， 113
palks，Cryptomys． 13
pallass，Tamads，+5
pallass，Spalax，f＋t

pallescens，Sicourus，32か，3．3．3
pallescens，＂I＂bonsentss，512

palliatus，limancrus，fot，fois
pallatus group，laraterus，foh，fos
pallida，Cava， $2 \not+0$
pallidu，Sucista， 507
Pallidicauda，Citcllus，t＋3
paliddur，（avia，275
Falludur，（aviellas，2te
palludsir．Kiamabateotnys． 137
Falliculus．I Prodomuse $^{\text {puts }}$
pallidus，Alatamulus，ssi
pulludus，（＇apromess， 124

pallidus，（inendou，is a，inte，iks
pillodus，（ryptoms－1f3
paliddus，（＇tenomms，pel，
palbelus，I）yromss，forn
pallidus，limmors， 615,611
Pallidus，Helmphohos，is
pallidus，Microclipodops，+13
pallidus，Namonemurus， 316
pallidus，（）ctoden， 5 万）
pallidus，Peromathus，＋wo
pallidus．＇「＇amans， 411
pallupes．Lacidum，230，232
pahmarum．Funambulus，377，3－5， 380
palmarum group，Funambulus． 378
Palmeri，Dapodames． 502

palmeri，Tamas， 433
palustris，Calloschurnts， 3 ，（1）
polustris，Galua，242， 243
pamparum，Cava， $2+0,2+1$
mamparum，Lasmtomus， 2, ， 6


panamintomes．Itpodanss．$+\% 0$
patamintunus，Tımııs，＋30，+32
pananmimus，I＇rumpathus，＋isu，firs
pandora，Dasypromta，101， 195
panga，Idiurus，54f
panjah，（＇illoweturus，351，36．7
panjus，Calioscurus， 351,347
pannosus，Rhizomss， 650,651
pamonamas，C＇alloscturus，3，0
pansa，Ma rogeomys， 534
papae．Hystrix， 21 S
PAPPGOEONIVS，32，71，507，527
PARAD）IP $-8,35,51,5 \%, 589$
PARADOLICHOT1S，247． 24.8
paradoxus，（ardseramus，506
paradoxus，Peroenathus，4is
paraenss，Scrurus， $321,3+3$
paragayensm，Cisendou，isz，if5，186，18，
paragayenses group，Comduu，isio． 188
paraguayensis．Datyprecta，191，It）
PARAFIYDROM1 $\div$ ． 34.47
paralius，liomss， 47
PARAMIIDAE 15
PARANISS， 17
PARAPEDETEL，55\％
 327．338
PARAXERLS，30，57，67，262，264，267，271， 309，360， $400,405,+12$
PAROT（OMYS．3n．5t
parry，Citellus．$+40,4+2,4+3$
parrsiogroup，Cistellus， $4+7$
parthanus，Citellus，$+2=, 4+3$
par a，Myrprecta， 197
pariceps，famss，＋77
parsiceps，＇Thomomess， $5=1$
parsidens．（itellus，＋f＂

parsula，Mamota，$+55^{8}$
parsulus，Citcllus． 451
parrulus，Gitaphurus，b12
Farrus．（allosciurus， $35^{6}$ ）
partus，（itcllus． 4 ＋！
parcus，Deprodomas， 500
parsus，（ituphourus，ho7，600）
patius，Pernemathus，4h3， 486
parvus group，Perognathus，4゙2， 4 b6
pascalis，Thomomys， 512
pasha，Heliosciurus，401， 40 ？
patachonica，Dolichors， 248
patagona，Dolichotes， 248
pater，Camomess，6：2
nauli，Paraserus，q07
pearsoni，Belomss， 277
 555， $5^{\circ}$
peceroralis，Petaursta，zisy
pectoralis，Thomomys， 519
PEDETELS， $21,22,33,+3,54,0 N, 144,54 n, 549$
PEDETIDAE，33， 547
PEDETOIDAE，33，78， 547
PEDOMISA，＋1
1＇EDIOLAGUS， 247
pelapis，Calloscmarus， 366
pelii，Anomalurus， $540,5+1$
pelii sroup，Anomalurus， $5+1$

pemangilensis，Callosciurus， 351,370
pemangils，Atherurus，zo6
pembertoni，Calloserurus， 354
pembertoni，Funiscuurus，$+12,+13$
penangensis，Petauristi， 28 ，
penangensis，Riatufa， $3^{8} 4,3$ ， 0
penialus，Callosciurus， 366
penicillatus，Funambulus， $3: X$
penicillatus，Perognathus， 488
penicillatus group，Perognathus， 48,4 ， 8
penusulae，Citellus，$+42,452$
peninsulace．Lariscus， 392
peninsulae，Peromathus， $483,4 \% 1$
peninsulae，Ratufa， 3 So
peninsularis，Callosciurus， 351,570
peninsulares，Depodomys， 503
peninsularis，Nenetes， 390,301
pennanti，Funambulus， $372,379,350$
pennipes，Citellus， 452
peracer，Rhinoseturus， 396
peramplus，Thomomys， 518
perblandus，Dipodomys， 500
percivali，Paraverus，＋06， 407
perditus，Thomomys， 521
peregrinator，Sciurus， $33+$
peregrinus．Cratogeomys， 529
peregrinus，Thomomys， 519
pergracilis，Perognathus，$\$ 86$
perhentiani，Calloscturus， 351,372
pericalles．P＇erognathus， q $^{5} 5$
peridoneus，Cratogeomys， 5 3o
perlutea，lasidum，230， 23 ：
perniater，I＇erognathus， 483
pernix，Citenomes， 169
pernix．Peromnathus．483，ing
pernyi，Dremomys，isi
pernyi eroup．Dremonys， 381
PERODIPLS，＋94
PEROGNATHINAE，＋\％
PERO）（NATH11，31，471， 40
PEROGNATILCS．31，53， $54,62,70, f^{(0)}$ $+70,+71,479,480,+52,403$

perotensis，Citellus，+50
perotenss，（ratogeromy， 529
peroterass，Dipodomys， 500
perpallidus，Citellus， 4.3
perpallidus，Thonomys， 510,515
perpalhdus group，＇Thomoms， 510.515
perpes，＇Thomomys， $5: 5$
perplanus，（ratogenmys，：21）
perplecus，Dipodomys， 50.3
perrensi，Ctenomss，ifis．16f
persicus（Glis），623
persicus，Sciurus， 333
Personatus，Geomss， 520.527
persomatus，Graphiurus，hio
personatus，Myommus， 6,26
persenatus，Protoxerus，$+1 \%$
peruma，（Ictodon，15،
peruanum，I agidium，230，23：2
peruanus，Dactslomys， 136,137
peruanus，Microsciurus， 320
perustus，Anomalurus， 540,548
perragus，Thomomys， 51 h
pessimus，Citellus， $44^{\circ}$
PE＇TALRILLLS，30，64，263，274．275． 302
PETALRISTA， $23,30,49$, इ2，$-7.64,262$ ， $263,274,275,281$
petaurista，Petaurista， 282,285
petaurista group，Petaurista，2h4，2S5
＂PETAERISTID．AE，＂ 264
PETALROIDES， 543
PETALRLS， 543
petilidens，lagostomus， 236
PETINOMISS， $30,49,64,263,275,243,300$
petrensis，Marmota， 4.7
PETROMILS，13，23，26，33，＋2，57，615，リバ， 102，103，149，554
PETROMIINAE，26，101，104， 149
PETRONVSCLS． 30
petulans，Tamiasciurus，347
phata，Aplodontia， 259
PHAE COMISS，39
phaeocnathus，（itellus， $4+8$
phaeomelas，Aeromys， 291
phatopepla，Ratuf， 384,389
phacopus，sciurus， $33^{h}$
phacurus，Liomys， 477
phacurus，scourus，33\％
phaeus．Castor， 467
PHAICMMS．＋
IHALANGERIDAE，ョ\＆
philaena，Paraserus，＋o6，407
phananges，Calloseturus， 352,311
phasma，l＇erognathus， 400
phatma，Thomomys．5ih
phater．Callosciurus， $351,353,37$
phaser．Hylopetes，2si，300
phelleoccus，Thonamms， 517
PHJN．d（0．115
pholappinensis，C＇allosciurus， $351,353,374$
philippensis，Petdursta，2n2，2n＋200


phillapai，Heterocephatus，12t，105，wit phipenme l＇etinomss，sot


phryma，Dyromys，（aci，（but
PIYLA，INYS，ios， 100

peatus，Tamiachurus，ity

powum，Vircthizan，ist
motus，1）yromys，ory
mictus，lathrix， 114
metu，yroup，Isothas，114
poctus，Liomys， 477

potus，＇lamas，+31
parret，Callosciurus，351，361
palrimetes，Capromys，$: 21$
plosus americanus，Ftethzon，sís
punctorum，Thommons os 524
pincts，Geomys， $5=6$
pincatale，Perenghithus，foo
pinensis，Callosciurus， 357
puncensis，Rututu，3st，3ks
prpert，Perognathus，firt
prphonas，Callomenorm，351，364
parata，Callosciurus， $351,3^{360}$
PITHECHEIR，3s， is $^{3}$
IPTYMIS．＋1，50，52，54
putenss，Thomoms： 515
PLAGIUDONTIA，25，54，73，102，104， 133
PLA（GIODONTIIN゙さも，25，101， 133
planiceps，Platyeombs， 531
planionla，Citcilus，＋iz，4it
planfrons，Cratuseomss，530
pla mostrs，Thomumsis， 5 It
plantani，Callaselurus，sas
plantinarenss，Lomys， 477
plastucu，Callosourua， 351,372
IHATACANTHONIYINA，37，6ог， 603,626
PlAl＇A（ 601，102，603．626．627， 032
patseentrotus，Comdru， 185, ， 97
platycepherlus．Dipodames，sor
PLATYCLRCOMSK． 58
PLATYCRANIUS，60\％，6ot
PLATYGEOMIY，，3，71，506，507，52 M， 530
platyops，（iraphturus，tho7， 10 S
platyops sroup， 1 taphurus， 107
platyurus，Hylopetes，zo，
platyurus，F＇ygeremus， 5 ss
plateuran group，Psactiono． 58 s
plesius，Citellus， $44{ }^{8}$
plumbesecns，Canmomys， 0.52
pluto，Orthogeomys， 532
pluto，（：alloscturus，351，36，
pendolica，Spalam，＂4t
puensis，Helfoschurtu，too， 701, tot
pernsis group，Heloncturas，to 4
pocpmot，Caproms： 124

perit（1promys， 120


## INDEX

prohlei，Castur．$f^{\text {（is }}$
pola，Ratufa，3が
I＇OLIOC＇ITELLE：$-263,437,4+1,450$
polionotus．Mecodipoders， 4 时
poliopus，C 2 Insciurus， 372
poliopus，Prochimys，114
poliopus，sciurus．3．i＋
polonicus，Apalax， $14+$
pontitex．Ctemomis，10：3，165
perol，Funisciurus， 412
popelari，Ayocastor， $1+1$
porcellus，Cimsin， $2 \neq 0,2+2$
purtert，Acmarmys， $15 \%$
porteousi．（＇temomys，163，160）
portus，（ a llonemurus，351，361
postus，Glıs， 122
potanmi，Alactuqulus， 5 S＇
potosinus，Thomomys， 520
prachin，Callosedurus， 37 th
practextus．Fumbciurus， 41 ，
pranis．Callosemrus， 353
pratensis，Citellus， 450
pratti，Myoprocta， 1,6
prehiaci，Dipodumys， 504
prebleci，Tamasciurus， 347
prehlorum．Marmota， 47
prehensilis，（apromys， 124
prehensilis，Coendou，is5，ist，
prehensllis mroup．Cirendou，1it2，185，18f，
premaxillaris，Thommoss，524
prestiquator．Xerus，+2 I
pretiosus，（allosenurus， $3^{\text {（n）}}$
pretiosus，L． $10 \mathrm{mys}, 478$
pretorake，Cryptomss 9s
pretornace，（itupharus，bil
PREVIOLS CLASSLFICATIONS（ I
HCIIRIDAE，26，262，263，264，205
266，267，268
prevostr，Calloscturus， $321,3413.351,365$
previstt eroup，Callosciurus， 352, ， 2 5
pricti，Perognathus，$+\mathbf{B} 3,+\mathrm{sin}$
prece，Tamess， $430,+35$
pratac，Perngmathus，+12
promrosel，Petaurista，282，287
princeps，Kcrus，$+20,422$
pronceps，Zapus， 572
PREIONOMRS．39，56
protwitz，Hystrix， 219
probus，liylopetes，200，300
PROCAPROMIS $25,73.132$
procerus，（allasciurus， 350
 123

progredens，Heterocephalus， 95
PJROMETLIEOMYS， $3,3\left(3,41,50, S_{1}\right.$
propincpues．Tamas， 432
proprous，（＇intur， $46{ }^{\prime}$
proserpmoe，Calhascturus， 3 bo
proteus．Callencuraras，351，372
PROTOPTYCHINAE，I6
PROTONERLS， $30,4+57,67,262,264$. $267,272,30 \mathrm{~N}, 415,+17$
prosidetutatia, "lhonamms, 517
proximus, sortopoda, syz
proximus, Thomomys, 519
pruinosus, Cocndar, 185,1 sen, 1 sh
pruinosus, Narmetti, 459
pruinosus, khiomons, 650, 6.51
pryeri, ('allomerus, $351,353.374$
premnolopha, D.ssprocta, 1,1, 11,
pryori, 'lhomomss, 522
phakastus, Heteromes, 475
Psinlaionivis. to, so
PSELDOCH1HISS. $5+3$

PSELDOMYS, 38
"p'TEROMIVINAE," 13, 262
PTERGMIYES, 30, 260, 26:, 273
PTEROM1YE, $30,45,52,57,262,263,26 \mathrm{~N}$. 274, 276, 291, 293, 208
PTEROXIY: (18, 30, 64, 263, 275, 280
pucherani, sciurus, 329, 343
pucherand group, scourus, 327,343
puertat, 'Thomomys, 512
pulcher, Muscardmus, 625
pulcher, Nannosciurus, 315.316
pullus, Perognathus, 412
pulverulentus, Pteromyseus, 2 h 1
pumsio, Alactagutus, 587
pamalio, Myoseauras, 313
pumplis, Thecurus, 199,211
pumilis sroup, 'Thecurus, 21 :
pumilus, Callosciurus, 356
punctati, Dasyprocta, 191, 194
punctata, P'etamrasta, $282,284,2$, 6
punctatissmus. Callosciurus, 351, $35 \times$
punctatus, lichmss, 109, 111, 113
punctatus, Iheliosciurus, 401,402
pundis. Ctenomys, 160
punensis, Lagdium, 230, 232
purales, Myoprocta, 196,197
purpurcus, Ratufa, $3^{\mathrm{K}} 5$
pusillus, Anomalurus. $5+0,5+1$
pusillus group, Anomalurus, $5+4$
pusillus, sciurillus, 317,318
pusillus group, Scourallus, ith
pusillus. 'Thomomys, 518
pusilius, "lhryonoms. 1 th
proacanthus. Orthogeomss, $53^{2}$
 588
pyocrythrus. (alloscturus. $351,353.373$
pygerythrus group. Calloscisurus, 852372
pyemacus, Alactagulus. 587
pegmacus. Citchus, $++2,+43$
pygmacus eroup, Citcllus, $4+0,4+3$
pysmacus. Thonomss. 522
prlader, sciurus, 33t
pyroratos, Ciss, $6 \pm 3$
prownlys. an
pyrrhmus, sciurds. siag. itz
pyrrhomerus, Dremomss, $38 t$, in
pyrthonotus, scourus, $320,3+5$
pyrrhopus, Funuschurus, $+12,+13$
prohopus kroup, Funsecturus. 412,413
pyrhotrichus, (inombs, for
pyrrocephalus, Mencter, 3, 0
pyrsonota, Ratut., 3.3. 3m
quadratus, "Ihomomys, 523
quadrimaculatus, "amias, $430,+35$
quadranttatus, Commas, $470,+33$
quadrivitatus group, "lammes, $+30,433$
quantulus, (alloscurus, 351, 36o
quebradensis, Sourus, $3+1$
quelchi, Sciurus, $329,3+2$
quethi, Capromes, 120
quereetr, Glaucomys, 205
quercinus, Elomys, 615
quercanus, siciurus, 320, 3.3t
quarcinus, Thomomys, 5 (9)
quichua, Comendos, 185,187
quindanus, sciurus, 329, 340
quinquestriatus, Callosedorus, 15 t , 37
quanduestraztus group, Callosciurus, ?5.3. 373 quotus, Paraxerus, +o6. +o-
racevi, Marmota, 459
rafflesi, Callosciurus, 351,365
rafiventer, sciurus, 334
ramieri, Aplodonta, 259
rajah, Petaurista, 282,285
rajasima, Callosciurus, 37,
ramosus, Citellus, $4+2,4+5$
raptor, Graphsurus, 607, 610
raptorum, Funsciurus, $+12,+1+$
raptorum. Thryonomys, ith
rattinus, Procchimys, 115,122
R,ATTLS, sim. $3,8,36,38,47,+4,50,52$, 56, 603
rattus, Rattus, 4
RATLF.1, 30, +9, 65, 263, 267, 271, 30\%, 314. $3+1,377,383$
recessus. Ctunomys, 163, 164. 1h:
redimitus, Callosciorus, $3^{\text {th }}$,
regalis, lamisciurus, 347
reguli, Petaursta, 252, 257
REITHRODON 39.55
RE1THRODONTONín, 3\% ss. +
relictus, Capronss, 129
relictus, Citellus. $+4+$
relictus, Thomomys, 511
repens, Heteromys $474,4^{-6}$
expentanus. Castor, \& $^{67}$

KIIABDO.M15.38
R11.160.195.34
RHEOM1S. $39.5+$

$203,267,271,305,32-393$
 $305,3+2,3 n 0,395$
rhonis, Rhanosciurow, sele 3 ,
rhipidurus, lichmss, i: 1,113
RHHIDOMYッ з $5+$


1102
 が前 6．t． 646
thowdal，Relurus， $3+4$
thondebler，IIClumeiurus，for，for




：1elardnome，Citellus， $4+2,4+7$
rehardamm croup，citellos， 4 t



rechnomeds，D．syproct．d．19．4
reh hamonds，selurus，sto


ratudumersts， I remomes， $\mathrm{SH}_{3}$
riludotit，（＇alloscourus， $35 \%$
Fwanemsis，Noprewzapus， 574
tohertr，C＇alloserurus，351，35y


roberte，securus，it；

mbabsmon，（ 1 llasemurus， 351 ，ミ5フ

riohuta，Cisw，242
rebherta，Narmuata，+57, fio
rehustus．（tenomoss，ofsti，Ity
rabuntus，Dvenmss，for


rodolpher，Cialloncourts，351，35t
Tent dinns，（tenumys． 168
rnsa，Proechimss， $118,1=0$
rumenberes，（itjomedurus， $350,351,353,375$
rustela，（＇an 1．3．2\＆0， $2 \neq 1$
rostratus，Immacus， 393
rostratus，lamess，+77
rostritus，l＇erombathus，\＆\＆
rothsebuld，Coenden，I K5，ik7
roothechadd．，Massoutiera， 559
rotundar，Peromathus，qioh
ruatame：1，Dosprocti， 141,145
ruheculus，C＇allonesurus， 358
rubellur，Craterequmš， 530
rubellan，Jroechams， 120
5uber，Scorus， 3 S＇
fubes，Callosciurus，351，3to
rubscotadatus，securus， $33^{\circ}$
rubscumdus，l＇etimesta，zsor

rubrita，D．小s procta，101，143
rubresatus，llelame iurus， 404
rubrupes，Itumsenurus，+13
rubrirmetra，Micronelurus．35 9.320
rubriventer，C＇allosemurus， $350,351,375$
rubratenter eroup，Cillosciurus． 353,375
rubralare otus，＇［＇ammaseruras． $3 \psi^{6}$

vuedramers，l＇erognothus，\＆sin
ruta，Aplosetorita，25ふ

rufcscens，（＇in 1．1，242
rufescoms，（itellus， 442,443
rufescens．Eehinesprotit， $1 \mathrm{~S}_{1}$
rufescens，Miarmorta， 457
rufescens，Menctes， 3100 ， 311
rufescens，Pureemathus，for
rufescems，Thamazomeソ，521
ruticaudus，Cit llus，＋47
ruticouclus，＇T゙amme，434
rufforms，Derus，$+20,421$
rufirenis，Dremonoys， $3 \mathrm{Kl}_{1}, 3 \mathrm{k} 2$

rutipes，Petaurieta，zhis
rufiventer，\＆゙iulus， 320,330
rufohrachatus，］Heloscalirus，$\ddagger 0$ ；
rufobrachum，Helinselurus，for， 403
rufodrarsalis，Diplomes，II 5

rufigrulerss，（ialloseturus． 365
rufonger，C＇allosciurus， 35 I ， 367
rufomeger，Selurus， $3+0,3+3$
rufulus，Cryptomys，${ }^{2}$
rufus，iciurus． 330
ruidesale，Thomomoss．513
RLKAIA，3R3
rupatur，Callosemurus，351，370

rupest $1 \checkmark$ ．Citellus， 450
rupestris，Kerodom，247
rupentris，Perrignathus， 410
rupestris，sciurus，321，332
rupscula，Graphorus，6ot，ho7，fod
rupharrum，（itellus， 451
russitus，Belurus， 333
russeolus，＇Thomonys， 512
resseolus，C＇alloscuurus， 355
russicus，Iteromss， 293
russus，Licıurus， 320,330
retilans，Serurus， 3,30
rutaliventras，Callosciurus， 37 I
rutilus，Xerus， 420

rumenzorij group，Heloscourum，fo 4
runcenzorn，Helrascmurus，foo，for，fof
sahamllac，Nacromerurus， 321
stabraus，Glaucom？s，215，20t，
sabrmus group，Glauconyst，2ウよ，2ね6
shecatus，Geomss． $52 t$ ，
sincharals，Cratogromys， 52 H


sagrta，Dupus．5ry
sisitta，Hylupetes，zor
singttal そroup，Hylopetes，zou
selsittals，（icomys 527
sugattatus，C＇astor， 467
silue，Dlyrsulus，to 7

salentensis，scaurus， $3+3$
shle＂ts，Allactaga，584， 58 n
salinate，Pedeters， 551,552
salinia，（as icll 1， $24^{6}$
salinicola，Dolichoris， $2+8$
 $55^{-6}$
saltarius，Ctenomsys． 163.160
saltator，Allactama． $5 \mathrm{~s}+\mathrm{SN}_{7}$
saltator，\％ipus． 573
salturncis，siciurus， $3+2$
salutans，laraserus， 407
salumi，l－iomy $+777,47 K$
samarensis，Calloseturus，351，35．3，3．4
s：maricus，Natmoseturus， 315.316
samuicnsis，Calloschurus， 364
sanctacmartac，Coendou，185，157，
sancrluciace，Dipodomes， 503
sandahanensis，Ratufa， $38+3$ ． 36
satmpatus，Callascuurus，36f
santaecruzate Nyocastor， 144
sarac，Lagidum，230， 232
sarasmorum，Callosciurus， 375
sarawakensis，Callosciurus， 351,366
sardus，Eliomys，615，616
satumani．Citellus， $4+4$
satunini，Hystrix， 218
saturatus，Callosciurus． 3 h，
saturatus，Citallus， $45+$
saturatus，Chacomys， 295
saturatus，Graphiurus，607， 610
saturatus，Iimidium，230， 232
saturatus，Lariscus， 392
saturatus，Rhinosciurus， 306
saturatus，Thomomys， 524
saturatus，Xerus，$+20,421$
saturnus，Fchimş， $110,111,113$
sauteri．Calloscrurus． $3: 7$
savannius，Heliosciurus， 403
saxicola，Citellus， 451
sacatilis，Dipodomys， 499
saxatiles，G：alea， 243
saxatilis，Thomomys， 513
sayii，Scurus， 339
scalops，Orthogeomys，531，532
CADPCEROMMS，39，54
scapterus．＂Thomomys， 516
SCAR＇TLRL＇S．404，561，580， 583
schustacea．Ahrocoma，154， 155
SClIKODON， 157
schlegelt，Callosciurus， 367
schluetern，Jaculus，595，507
schmidti，Allactara， 585
schmidti，Citellus， 445
schmite1，Flystris，217． 219
schumakovi，spermophilopses， $4=5$
schwahi．Graphiurus， 612
SCIRTETLS．sho

 503．5ッ5
－（JlRAlli）AE， 15
somreus，Keroden， 247
S（1LRI，30，261，304
s（llRID）Aに，30，255． 259
 306， 317
SCllROGNATH1， 20
s（1LTROID）Aた，30，－ 259
sc｜lROMORTH SIRIIS， 20

S（ILROTANIIAS，30， $52,5 x, 64,26.3,272$, 301， 425
$\therefore$ CILRLS，23，30，4 $9,52,53,54,55,53,41$ ， （69，2f， $1,262,263,264,266,26,7,26,2 \%, 2 \%$ ， 312，321，377，350
sclateri，Thryonomys， $1+5,1+8$
sorsteccii，Heteroceplatua，wh
s（OTINOMY゙S，30．54
sconti，Callosciurus，351．372
scrutator，＇Famias，+32
securus，Proechamys， 1 If 121
setrius，Jaculus，505． 50
segurac．sciurus， 329,331
semmondi，Callosciurus，351，357
sempallidus，Dipodomys．501
semipatmatus，Thryonomys， 148
semuspinosus，I＇reechimss，118， 120
semuillosus，Echimss，ilz
sembiki．Heliosciurus，for，tot
senegahica，Hystrix，216，217，219
senescens，Heliosciurus，tor
senescens，Tamas， $430,4.56$
senex，Dremomys， $3 \$ 1,382$
senex，Petaurista， $28_{2}, 288$
senex，Rhizomys，649． 650
senes，ticiurus， 334
senex，Tamias，$+30,+3+$
schnetti，Dipocomys， 503
seorsus，Perognathus，+92
septentrionalis，Citellus， $4+4$
septentrmanalis，Microsciurus． 320
sequoioensis，Tamias，+33
seratae，Callosciurus， 371
serbicus，spala $.6+2,6+3$
seri，Perognathus． $4^{80}$
sericeus，Coendou，186， 1 is
s．ricuus，Ctemomys．163， 165
sertonius，I＇rocchims， 1 \＆8， 122
serutus，Callosciurus， 371
setchuanus，Eozapus． 50,
setosus，lammes， 478
setosus，P＇etimomys．300，301
sthosus group，P＇tmomss． 301
setosus，Proechimss， $117,115,122$
setorsus．Xerus． 422
severtzow，Allactaca．5゙4．5hs
scerteow，satista， 56
shameus，Calloseburus，351，3，2
sharper，leumscturas， 4 I2
shasternss，（intor．fon
shaw 1 ＂＂hommary，523
sheldons，Darmmen，＋5ed
sheldem，＇Thomoms s． 521
shathoni，P＇yeretman．Sh
shatkow proup．I＇？excemua，sth
shand，Helomemaria，to2
shptoni，dyello，239，2th

## (1.) +

sharenss, Ilclametulla, for
shmetridect, Callosemerus, sist, 3tio

sbatmmeds, (ablmemorus. 35t,

sheru, 1, miscta, 302
minl , Jammota, f50
shamses thactasen, 580

shbirica, Narmota, $+57,+60$
sharica, Sicista, 567
shinicus, I'teromis, 203
-hmicus, Tamias, +30, +35

skISTINAE, 34, 565,564
suctis, Citcllus, +35
stocus, Peromenathus, + ou
sactake, Cumculus, $22+, 255$
surat, Marmota, $45{ }^{\circ}$
$\rightarrow[5 \mathrm{MODON}, 39,5:, 5+55,603$
sIGDIONIS, 39
sumatus, Fumamhulus, 374, 3io
simmatus, Protoxerus, $+15,+16$
shonuk, hemarus, 331
shlus, Glaturoms, 2195
shlvifugus, 'lhomomes, $51+$
sumbis, Calloscaurus, 551,373
sumbis, Dipudamss, 501
smmhs, Mictosciurus, 310, 320
smmolus, Dipudomes, 496, 501
smonsi, C'nendru, 185, 187
stmons1, Wicroscuurus, 310, 320
smonsi, ( Cetodontumes, 160
smonsi, I'ruechimss, 118,121
SIXOSC'HLRLS, 265, 322, 325, 326
smplex, Serus, 421
smulans, Dipodomys, 503
smulans, 'Tamias, +34
smulus, Thamom!s, 52 I
smus, Glyphotes, 303
maloae, Thumomys. 517
moloensis, Scurus, 320,335
smdi. Paraxerus, fots. fo7
dumsis, Khizomys, 150
smonas aroup, Rhizomys, 650
smbapurensis, Callostiurus, 351,370
smhala, Ratula, $384,3 \mathrm{~S}_{5}$
smastrahs, Callusturus, 351, 362
SNOETHERLS, נRュ
smus, Ratuta, $38+3 \mathrm{Hon}$
sparid, lomys, $30+$

simensis, Calloocturus, 371
shkyou, Tammes, $+3+$
Shatem, Calloscmurus, 355, 352, 300

smath, \& iraphurus, 607, 610
smoth, I cophoms 4, 1,36

stheatus, 1'araxerus, foh. 407
suctatas, (ymomys, ftiz
smotals, sourus, 3.5
sudals, Cav $1.1,2+1$

## INIDEA

suderstrom, Scourus, 340
solvatus, (itaphaturas, 607, 1000
soltharus, ('intor, fis'
soliturus, 'Thomomys, 517,
solstapus, 'F:mman, +5
solutus, Callaschurus, zto
somahernsw, Ilvitris, 217, 220
somomat, 'Tomos, +55
somoranus, 1 foms a $^{2}+77$

somoriensis, Dipudamys. 504
somorensic, I'erogeathus, $f^{8}+$
somoriensts, Thombomes, 521
sordudus, Callosciurns, 351, 350
sordulus, Sanmoscaurus, 3 at
surichus, Xamoschurus, 310
soricinus, Zapus, 571
sowerby, Dipus, syr
spadiceus, Holopeters, zos, zom
SPAIACIDAE, 37, 100,636
SPALACOPLS, 3, 26, 55, 73, 102, 155, 156, 160, $55+$
SPAIAX, 3, 10, 22, 3th, 37, +3, 45, 51, 10. $\kappa_{1}, 509,637,638,11+0,6+1,6+5$
spalan, lymohobus, is
speciosus, Muscardmus, 125
spectosus, Timias, $430,+35$
spectabilas. Dipodomys, $+16,+97,494$
spectabilis eroup, Dipulomys, foた, +4,
speker, Pectmator, 556
spencei. Callosciurus, 355
SPERMOHHLLOPSLK, 23, 30, 52, 5 , 272, 306. 423

SPERNIOPHLLUS, 262, 268, 1.37

spectus, Mesomys, 12f1, 127
spiculum, Allactaga, 586
spilosoma, (itellus, $+t^{1},+42,+t^{\prime}$
spilosoma group, Citellus, $t^{\prime \prime}$
splotus. Permgnathus, 48 s
spmatus, Peromathus, +91
spinatus group, Perogemithus, 483, for
spanosus, Condou, 186, $1: 8$
spinosus, Euryzgematomss, 125
spuxi, Galca, $2+2,2+3$
splemedens, Calloseruras, 351, 36:
splendidus, Sohurus, 342
spoliatus, Glis, $622,6 \geq 3$
sponsus, laraxcrus, fols, for'
spurrelh, Graphiurus, 607, 111
squamicauditus, Anommalurus, 540
staneers, Protinerus, 15
STEATOMIS, 30, 50
stecres, C'alloscuras, 351, 353,37t
steerel, I'roechmes, i11
stegmame, Hystrix, 216, 2 s
stembath, Sciurus. 324, 345
stembillh, C'tenomss, 163, 10q, 168
stejnesert, Citellus, $+4^{\text {d }}$
stellars. Calloschurus. 372
st llatus, (ryptomes, 93

stephanicus, Xerus, 420,421
stephousi，C＇itellus， $44^{6}$
stephems，Dipodomss，foy
sephensi，Giducomss， 297
sephensi，P＇erognathus，4．＇es
－tevensi，therurus， 206
－teronsi，Callosejurus，35t，353， 373

shemosit，R，itufin， 384,388
s Mmulax，Nesomy｀， 126,127
surbags，Natancta， $457.4^{63}$
sockleyi．Petandista，25\％
stolimes，（intu，240，242
stonci，（＂itullus． 488
stranmencus，（itsilus， 446
strammeus，sciurus，32．，329，343
stamincus group，Sciurus． 327,343
strandi，Allactande，5N5
serandi，Sicinta， 567
streatori，Dipedomys，fo6， 40 s
stratori，Tamiasciurus，34＇
steceteri，Graphiurus，for
stresemami，Callosciurus， 309
stratus，Tamias， 430,436
styani，Callosciurus，351， 359
srygus，Heterocephalus， 95

suahelicus，Paraxerus， 406, ， 0 s
suhalludus，Protoxcrus， 46
subamatus，Cistor，fos
subauratus，siciurns， 339
subcristatus，1Hystrix，200，214．216，217，218
subcristatus group，Hystrix，212，213，217
subthamentris．Dremomys， 3 s
sublavers，Cumiculus， 225
sublancatus，lumanhulus， $377,374,3$ so
subimeatus group，Fumambulus． $35^{\circ}$
sublucidus，Perognathus，firy
sublateus，Callosciurus， $35 \mathrm{I}, 370$
sublutcus，Cratogeomys， 530
subniger，Cuniculus， 225
submubitis，Cratogeo nys， 530
subeles，Thomomys，sis
subrosea，Lagedrum，230， 232
subrufus，（iraphiurus，610
subsimiles，＇lhemomys， 518
subsimus，（ratugeomys， 520
subspmasus，Chictomiss，：7\％
suhstriatus，Fumaciurus，$\$ 12,714$
subtulis，sicusta， $506,56{ }^{\circ}$
subulis quoup，Sicosta， $566,5 \times 7$
subviridescens，Heliosciurus，tot
suckleys，Tambiscuras， $3+7$
sutlusus，Calloscturus， $35 \mathrm{t}, 3 \mathrm{y}$
sualius Bathyerpus，st
sulcatus，l＇etaurist．， $2 \mathrm{~S}_{2} 2.2 \mathrm{So}$
sulcatus proup，P＇etaurista，2が5．2No
sulciders，Carterodme， $1=6$
sullwamus，Calloscurus，35s，30；
sumbaco，ichurus， $3+1$
sumatrac，＇I＇hecurus，19y，zぃ
sumatrana，Cabloselurus， 368
sumatrami，Petaturnas，zki，
sumatrama，入amoscturns， 316
sumatrensis，Khimonava， 050,651
sumberwate，llystrix， 214,217
super，uns，lifomis，6，
superams，Ratuta， $38_{4}, 3{ }_{5}$
supercaliaris，l＇araxerus，for
supermus，＇Thomomys， 520
surdaster，Pedetes，551，552
surdus，（atloscimens，351，35\％
surdus，（iraphiurus，602，60－7 100
surdus gmop，Giraphurus，fion

$\therefore$（СS． 47
suschkini．Allactaga， 5 so
suslicus，Citellus，$+28,+42,+45$
sumlicus kroup，C＇itellus， $4+0,4 \%$
swarth，Dipedomys，que
swanderanus，Thryonomes， $1 \not+8$
swinderianus group，＇Thryonom：$: 14.145$ ． 4 4
swinhoed，Callosciurus， 351,355
swymertons．Parakerus， $40 \%$ ，fos
sydilla，Pctaurista，282， 280
syvinus，Cimomys，16．3．166，
sylvester，Callosciurus，351， 373
s）NA1MON15，$+0,52$
 270，252，312，321

syriacus，Sciurus， 333
syrius，Jaculus， 595,507
symmonsis，Spaliz，643
tabandius，Callosciurus， 351 ， 3 ht
tabanus，spalacopus， 161
taborae．Pedetes， 552
thehard，（＇allosciurus，351，3h1
tachon，Calloscturus， 3 toz
＇1＇ACHOORIC＇TAE， 40
TACHYORYC＂TINAE，qo
＇IACHYORYC＇IES，10，22，3\％，to，5h，1002， 637,645
tacomenses，＂lhomomys， 523
tacopias，（allosciures，351， $3^{\text {th．}}$
t．1cranowskn．（Unsculus，224，225
taczanowskii group．Cunculus，22f．225
taedifer．Sciurus，329，3ft
taknurus，Sciurus． 33,
tagum，P＇etautista， 285
tahan，Callosciurus，351，35h
talarum，C＇tomomys．169． 165
Althoti，funiscaurus， 412,413
1．1pondes，（ r yptomys． 87 ， 10
r．1podes，＇lhomonys，510，521
talpoides group，Thomomus， 510,521
tamate，somutus， 340
fumbinsari，Calloncuurus．351．3t，1）
tamoulpenss，（ratogeomss， 520
 70，202，203，2616，26－，20，，2－2，30\％+25, 426， 49
 $26 \%, 20 \mathrm{~S}, 200,270,310,345$ ，301

 $35-4$

t．112me，I＇ntacras，for，for

tancamskan，Fornerus，for

tapanuhus，（allociurus，351，3，0
t．parals，Scourus，324， $3+5$
tarusamme，Callosciums．3n，
tasmam，©r．phiurus， 611
tatarバ心，\armota，＋ho
＇IXTERA，＋0，＋h，50，56


twore，Perognathun，féa
tedongua，C＇allonemorus， 372
thibus，（＇allomeruses，351， $3^{65}$ telam，Surtupuda，5ッ2
temmancis，P＇rotoceras，$+15,+10$
tempuralo．Heteromys，+2 h
TENEか，267，322，324，333
tenellus，Zapus， 572
tenmants，Ratufa， $3^{\text {® }}+$
temuirostris，Callmeturue，351， 370
tenurs，Callosemurns， $350,351,355$
tenus group，Callamentis，351， 355
tephrmedster，scrurus， 337
tephrmmelas，Aeromes，291
tephromelas eroup，Aeromys， 201
tepreanus．Scturus， 335
teretuadus，Citellus，$+2^{2}, 452$
tersus，Citellun，+52
terutaus，Atherurus，zof，
terntaus，I＇ctamestal， 2 N 5
terutavensm，Callasemurus，351， 365
tescormm，Citellus， 453
testudo，Laphommsa， 130
tetradactyla，Allactaga， $5^{5} 3,58+$
tetradinetya eroun，Allactaga， $58+$
tesemss．Lidetnr，fot
texemoss，fitellus，$+4^{8}$
tavinste，Geomys． 527
texemess，filatucmys，205
texemss，Lumys，＋7＂
texensis，＂lhomomys， 518
texanus，Sourus． $33^{\circ}$
thas．Callancmaras， 3 itz

THALJいMノ゙ム，ふ
THANAOMIY，3א， 5 ，
thavern，forerotamus． 420

THERIDAMI IOAE．15，548
thomamus，spalax， $6+2,6+3$

TAON OF（ORDER，5，6，7
thombat，Actomss． 291

thomain，（＇untcules． 225
thomadse，l chams，1019，111， 112
thomas，Juramtrulus，37\％．380
thontasi，Laphomys，＂zio
themasi，Pethurnsta，2xis
thomasi，Salpmemtus，574． 575
thomasi，Sciurus， 337
＇TIIONASONIS．30， 54

themsem，lomys， 303
thoracatus，Geocapromys， 132
＇THRICIONIS＇， 123
IHRINACODUS，25，55，7：，102， 135

THRYONONIS，23，26，＋2，57，6N，115． 101. 103， 139.144

tichommons．Dyromys，ofs
tigrmas，Marmota，fos
theahn，Callosemarus， 375
tomanemsis，Ratufa． $36+, 3 \mathrm{~m}$
thmanicus，Callosciurus，351， 354
thoms，Atherurus，20h，201s
tabagenss，Sciurus， $320,3+1$
tultecus，Thomomys， 510,518
tolucac，sciurus． 339
tolutat，＇1＇homomys， 520
＇TOMEE＇TES，263，260，265，3＋8，3＋9
thmensis，I＇araserus，fors
tonkeamus，Callosciurus， 375
tontalis，Lagdrum，230，232
topropuenses．Callosciurus， 375
torquata，Hystrix， 217
torquatus，Ctenomys，1f，3，164，197
torrentmom，Protoserus，+16
torridus，Heterogcomys， 533
torridus，Luomys， 475
tortilis，Chatomys， 177
tosale，Petaurstal，282， 288
thmmsemd，C＇itellus， $4+2,4+5,47$
twwisende group，Citellus， $14^{6}$
thmnsendr，Tamas，$+30,+3 \mathrm{r}$
twonsend eroup，Tamias，$+30,+3+$
townsendi，Thonomes， 5 t1
twnasendr group，Thomomss，510， 511
transbacalicus．C＇itcllus， $4 t^{\text {to }}$
transsilancus，Fpalax， $6+2,6+3$
tramsaalensis，Cryptomess， 13
trapezius，Muscardinus，625，62t，
＇TRECHONY＇IN1，心
trepudus，Citellus，+53
tribhodactulus，Lagestomus， 236
trichopus．Z．\＆ogeomess． 535
truhotis．Belomys，277，279
＇IRICIIYS，27，＋8，6f，102，106，194，202．
203，zoi＇
tricolor．Coendun， 1 N 5, ， N
tricolor，sulurus， $329,3+t$
tridecemaneatus，Citellus，2（o）， $4+1,4+2,4+8$
trakecminmeatus gromp，（＇itellun，+4 ＇
tribneatus，Funambulus，sito
whinatm．Citellus， $75+$

trmutatin，l’wehmes，いが，121

trimatatus，Zapus，571， 573

Thpartitus, Sucsta, 567
tratmatu, F'umambilus, 377, 379. 3No
trostriatus. Sicisea, 567
trivitatus, hemomerus, 423
trumora, Sicostia, zath, 567
'TROGONOTHIERIL A, que
 $275,279,304$
tropuals. (icomts, 527
tropicalis, Petromus, 149, 151
troter, Callosciurns, 364
truei, lloplomys, 122, 123
truci, sicuras, 335
trumbullensis, 'Thomomss, 513
tsehersehemicus, (3los, 623
eschudii. ('asia, 240, 241
tsmgtaturns, Callusciurus, 358
tuconax, (ivoomss, $163,164,168$
rucumanus, ('tenomes, 163, 165
tucumanus, 1 agidium, 230,231
tularensts, Dopodomys, 498
tularosae, Citellus, 450
tularosat, Thomomys, 519
tuldacos, (tenomys, 163 , 166
TLILIBIERG, CIASSIFICAMION OF
()RDER, \&, у. о
turntat, Fhomys, 616
tupaiosdes, Rhinosciurus, 306
turcocus, spalan, $6+3$
turcomanus, Spernsophalopsis, 425
turnbull. Hylopetes, 300
turnen, Atherurus, 206, 208
turovi, l'termins, 29.4
turovi, Scintopola, 592
ruza, Geonys, 526
tuza group, Geomys, 525,526
'liboMlis, 34, st
thorhmus, latymeomes, 531
TYPlILOM1Y: $36,37,43,66,599,601,602$, $626,627,629,632$
typhlus, Spalax, 6++
typicus, (iraphiurus, bok
typseus, Pedetes. 552
typicus. Petromus, $1+1$. 151
typicus, sciurus, 330
typas. Dactylomys. 136
taanecrisis, Graphiurus, 610
ubericolor, Callowturus, 370
ugandac. P'arnerus, for $^{2}$
unt.1, "Themomys, 522

whramucus. tourus. 332
umbrat., (avin, $240,2+1$
umbratus, Cltellus, $+42,+45$
umberceps, Rhummes, 650.6ざ
umbrinus, 'Tamids, 433
umbmus, Thomoms s. 510.519
wanhmus group, 'lhomomss.510.5ry
untrusum, Nenctos, 300, 391
undousus, Perognathus, fyo
umbensus, 'l'amals, $+3^{6}$.
underwood, D, myprocta, 19t
underwondi, flaucoms: 20,6
underwood: \atrogeomen, 53t
anderwond, scourus, 336
undulatus, C'itellus, 443
undulatus, lelionciurus, 401, 402
ungat, Citellus, 4.3
uniculor, EChmys, 112
uralensis, Somoras, 332

urich, Provehmes, 11 N, 121

I ROMIYS, $3^{6,47}$
1"R()ACOLLRLS, 265, 322, 326, 327
urucuma, Daspprocta, 195
urucumus, scharus, 345
utah. Citellus, 451
utahensis, Dipodomys, 502
wtahensis, C'amias, 435
utahenss, Zapus, 572
uthensis, Timbas, +36
utibils, Ctenomss, 163, 165
vaccartum, Abrocoma, 154, 155
vacillator, Proechmys, 11\%, 118, 121
vae, Felos 1in, 360
vagus, Sicista, 367
valdsiak, sciurus, $3+2$
vali, Ctenndactylus, 55S, 55y
vallicola, Tamias, 432
vanakeni, Callosciurus, 351, 357
sancourerensis, Marmota, +59
vancouverensis, Tamaschurus, 346 , 347
sandami, Cryptonys, 93
sandam, Graphiurus, 612
VADDELEIR1A, 3, 3 N, 4h
vanheurai, Calloscrurus, 369
vanrossemi. Thomomys, 513
variahiles, íciurus, $329.3+1$
varegata, Dasyprocta, 191, 195
varseqatudes, ficiurus, 321, 336
varmeatus, Castor, 468
varnegatus. Citellus. $++2,450$
variegatus, Thryonomys, 14)
varius. Castor, 4 os ${ }^{\circ}$
bamus, Sciurus, 329.330
vassall, Callosciurus, 363
vellugera, (Chatholla, 220
benczuclae, Civa, $2 \neq 1$

bentoram, Tamsascuras, 3+0
wembatulas, Dlecoscaurus. 31 ,
bethestus, Dipodemens. 50:
venustus, D'eromathos, + 85
benustor, Silurus. 342
senustur, '1amass, +37
semaceructs, Lemmys. 47
wertecti. Lathocturus. son
Berscolor, sourth. 320 . $5+1$
-cscus, "1hemumas: 513
ventitus. Callescourus. 35
ventus, Comblow, 1 ns. int. ins

ふが
Uestutlos，Rharamys， 650

betenss．（＇ruptomas，os
sevallarss，Allactas， 58 on
：evilarma，Hehomemos，＋oo，401，405
：13torum，l．ardum，230，232


varlas．Citellas， $4 f^{\circ}$
vanla，Marmat．s，fis
－ 1 llm m ，Belomys， 277
wilosus．Comendou，ios，180，int
11losus，Innthras， $11+$
smulus．（＇itellus，＋42，452


vren．Cislonedurus，351，3．3
virculasuc，sicosta， 56
VIGCACClA． 220


bseaccial，1aghdum， 231
vistulmus，Custor，fois
sittutio，Ratufa， 387
（1ttotus，Calloncturus，3＋1），351，352， 609
vittatula，Ratuta， 3 ST
11atus，Micmentitus，320

VIZCACIL， 233
vocator，Jaculus， 505,547
sociferans，Citellus，+52
wolans，Glaucomys， 215
volans group，（ilatombs，205
colans，Pteromys， 243
volucello，（ilatucomys，295
wordermam，Petmamss，zor
vryburgensis．Cryptomas， $1 / 3$
sulcan，Dipedomes， 501
wheam，Lagdam，230，231
vulcam，Lumas，+7 ＇s
valcant，Ortheremmys， 532
rulcanicus，（iraphumes， 1,2
sulcamus，Helmomurus，for，fot
vulcmius，＇Thommmys， 520
vulcanorum，Paraxerts，fol，，fo：
sulemus，Lamacus， 312
vuluarns，Glis，6zz
valyarn，P＇teroms， 243

vulpmus，Schurus， 33 h
vulturnus，Jaculas，シッร，5ot

Wagrever，heturus，334
wallowa，＇Thomomoy． 523
watd，Rhzomys，$\quad$ ，5o
warrem，Ammota， 45
warrem，Proch homss，11ヶ，121
washmetum，（ ikellus，$+42,++7$
wwhametam eroup．C＇itellus，+77
Washota心は，（itellus，44t，
watdeel，l＇ethurata，zhol

INDEX
waterhousin，fedioseiurnc， 403
watsom，Calloscmens，351， 372
 I1，12， 13
Weben，Callosciurus， 375
wergoldi，Sieist？， 54
wells，Callosciurus， 351,359
wellsı，Galea， $2+3$
WE\ENBERGHHA，247
whiteheadi，Nannosciurus，315．316
Whetebeadi group，Namonciurus， 316
whyte，（＇ryptomys， 87.90
whlimmi．Allactaga， $56+$ ． 585
willams，group，Allactaga， $5{ }^{3} 4,5 \mathrm{~S}$
whllamsoni，Calloschurus， 351 ， 3 gi
whom，Eprorus，$+17,+$ M
WINGE，CLASSHFICATION OFORIORR， 18，14，20， 21
＂angri，Dyromys， 618,619
wmtam，Funisciurus， 413
wolffsohni，Lagidum，230，232
nood，Calloscuurus， 359
wousnami，Graphiurus，607， 601
woosnamı gromp，Graphurus，604）
wormani，Citellus， 442,453
＂rayr，Calloschurus， 351,365
＂roughton，Funambulus，379，3\％o
xanthipes，Trognpterus，274
xanthodon，Spatax，644
dimthonotus，Perognathus， 487
dimfhoprymmus，Citellus，4＋2，4＋t
xanthotis，Petaurista，282，285，288 2ho
sinthotis，Sciurus， 340
KहROMS゙ 30,47
 $+4^{2},+52$
NERL心，23， $30,57,18,240,260,262,26,4$. $267,268,272,306,377,418$

yakmem，Cotellus，+46
yates，（icorychun， 86
ychmensm，Thomomys， 523
soungr．Calloscmurus， $351,35 \mathrm{~S}$
yucatancoss，Heterogeomys， 533
yucatanensis，howurus，324， 336
yucatamiae，Comdou， 185,187
yucatanca，Dustprocta，iot
yukon $1 \mathrm{an} . \mathrm{s}$ ，（staucomys，29t
yuler，Paraxerus，406， 407
fungarum，Dasy procta，101， 195
yumancoss，Hystrix， 218
momancols，Petaursta， $2 \mathrm{~S}_{2}, 2 \mathrm{~N}_{7}$
zacatecale，Perograthus，firs
sacatecace，＇Fhomomys， 520
zaissanemsis, Dipus, 591
zamorae, Dasyprocta, 195
zamorac, Sciurus, 345
\%aphatus, Glaucomys, 296
VAIP(ODINAE, 3t, 561,562,563,568
7.APLS, 35, 53,63, 562, 564, 568, 569
zarumae, Sciurus, $3+3$
acchi, Cryptomes, 87, 91
ZELOTONY'S. 38, 56
\%ENKERLILA, A, 3, 33, 57, 68, 537,542,543, 546
zenkeri, ldiurus, 544, 546
zonkeri group, Jdiurus, 546
"/E'lls, 26?, 3Ro
\%eus, Muscardinus, 625
zeylanicus, Ratufa, $3 \$_{4}$
zeylonensis, Hystrix, 218
zimmeensis, Callosciurus, 35t, $3^{602}$
zonalis, Ileteromys, 475
zulate, Sciurus, 342
zuluensis, Graphiurus, 6,2
zuluensis, IIystrix, 219
zuniensis, Cynomys, 463
ZYGODONTONYS, 39
ZYGOGJOMAYS, 32, 71, 506, 507, 534
zygomaticus, Atheruruc, zof, 208
zygomaticus, Dipodomys, 4on
/Y゙\%OMY's, 38,47


[^0]:    

[^1]:    Gymnuromys.

[^2]:    + Jwing Kodents-1

[^3]:    

[^4]:    
    192I. Ann. Nag. Nat. Ilist. 9. VlI, P. 450.
    (iualea, Mt. I'ichmeha, Ecuador. ('This locahty is quenced by Tate, 1935.)

[^5]:    10-Liong Kinfents I

[^6]:    t. DINOMHS BRANICKII, P'eters
    1873. Mon. Ber. Akad. Berlin, p. 552.

    Central Peru; Montaña de Vitoc, Colonia Amable Naria.
    Synonym: branickii ocodontalis, Lönnberg, 1921, Ark. Zool. Nill, no. 4 , p. 49. Ilambo, near Gualea, Ecuador.
    gigas, Anthony, 192t, Amer. Mus. Nov. no. 11). p. 6. Colombia.
    pacarana, Ribeiro, r919. Arch. Escola Sup. Ayric. Med. Vet. 2, P. 13. Amazon, Brazil.

[^7]:    ＂General colour blackish or grevish，never rutous or fulvous．
    Smaller，hindfoot 70－77．
    Smaller，hindfoot -2 ．
    oral
    Larger，hindfoot 77 ．
    cinderella
    1y－Lang Kadent－I

[^8]:    ${ }^{1}$ With representatuse materal it may be that Protoxerus. Epmems and Myrshus would be better considered as all of the one genus Protoxerus mily.

[^9]:    100. SCIURUS ABERTI ABFRTI, Woodhouse
    101. Proc. Acad. Nat. Sci. Philadelphia, V'1, 1852, P. 220.

    San Francisco Mountan, Coconino County. Ariznna.
    Synonym: castanotus, Baird, is5s. Proc. Acad, Nat, sci. Philadelphia, VIl, P. 332. Conpper mines, New Mexico.
    2:-Kivng Kodent, I

[^10]:    113. SCILRUS NIGER RLEVVENTMER, Geoffroy
    114. Cat. Namm. Nus. Nat. Ilist. Daris, p. 176.

    Nississippi Vallev.
    Synonym: ludoniciams, Custis, 1806, Burtons Med. \& Phys. Journ. 2, pt. 2, p. +7
    ruber, Ralinesque, 1820, Ann. of Nat. p. 4.
    macroura, Say, Longs Exp. Rocky Mtns. 1, p. 115, 1823. magnicaudatus, Ilarlan, Faun. Amer. p. 178, 1825.
    (?) subateratus, Hachman, Proc. Zool. Soc. London, 1838 , ए. 87.
    (?) audubonii, Bachman, Proc. Zool. Soc, London, 1838 , p. 97.
    rubicaudaths, Aud. \& Bach. Quadr. N. America 11, p. 30, 1851.
    sayii, Aud. \& Bach. Quadr. N. America II, p. 274, 85 r.
    atrozentris, Engelmann, Trans. Ac. Sci. St. Louis, 1, p. 329 , 1859.
    14. SCIURUS NIGER LIMIITIS, Baird
    1855. Proc. Acad. Nat. Sci. Philadelphia, VIl, p. 331.

    Devil's River, Valverde County, Texas.
    115. SCIURUS OCULATUS OCULATUS, Peters
    1863. Monatsber. k. Akad. Wiss. Berlin, p. 653.

    Nexico, probably near Las Vegas, Vera Cruz.
    Synonym: niger melanotus, 'I'homas, 1890 , Proc. Zool. Soc. London, p. 73. Las Vegas, Vera Cruz, Mexico.
    capistratus, Lichtenstein, Ab. Akad. k. Wiss. Berlin, 116 , 1830 (1827). (1'reoccupied.)
    116. SCIURUS OCULATUS TUICCAE, Nelson

    1898 . Proc. Biol. Soc. Washington, SlI, p. 148.
    North slope of Volcano of 'Toluca, State of Mexico, Nexico.

    ```
 117. SCIURUS ALLENI, Nelson
 1898. Proc. Biol. Soc. Washington, X11, p. ```

[^11]: 1. CITELIUS I'LAVESCENS, Pallas
 2. Nov. Spec, Quadr. Gilir. Ord. p. 122.

 Locality nut known.
 Not secm; not allocated to group
 2. CITELLUS ATRICAPHLA, Orlor ${ }^{1}$
 1927. Nat. Contra fauna L. Volga, i, p. 92. Lower V'olga, U.S.S.R.
 ${ }^{1}$ This appears to be proscupied by atricapillus. Bryant, No. rof of this list. I theretore rename it bummanas.

[^12]: Cheekiecth: B...1. No. 21.13.7.43. . 6

[^13]: 1931. Journ. Namm. Baltmore, 12, p. 405.

 Momence, Kankalec Comety, Illinois.
 bratiops Group

 1890. North Amer. Fauna, no, 4, p. 51. Birdwoud Creek, Lanciln County, Western Nebraska.

[^14]:
 (Syz. Proc. Bal. Sice. Washington, V11, p, 160 . Zapotlan, Ialsen, Mexien.

[^15]: 1896. 'l'homas: Avomall'ri: Family Ammaluridac.
 1897. Tullbere: Screrocisatiti: Momorpha: Anomaluroidei, part: Familv Anomaturidac.
[^16]: 1. SICLS'TA NAPAEA, Hollister
 2. Smiths. Misc. Coll., LX, no. 14, p. 2.

 Tapucha, Altai Mountains, Siberia,

[^17]: is laving liorlent I

[^18]: 3. (illis (ills INTERDEDIUS, Atobelfo
 4. Fauna dell' Abruzzo č del Nolise. Nammiferi, III (Rodentia), p. 22.

 Abruzzi, Italy.

[^19]: 41 Iswing Korlent - I

[^20]: text and ditis.

