THE UNIVERSITY

OF ILLINOIS

LIBRARY

From the collection of

Julius Doerner, Chicago

Purchased, 1918.

$$
\begin{aligned}
& \lim 37-0.2200537 \\
& 88.30-9.999864 \\
& 200-301830 \\
& 332-2.521418 \\
& 213-213 \\
& 332.213
\end{aligned}
$$

$$
\begin{aligned}
& 532.2-7,274007 \\
& 132.2=2,121831 \\
& 0
\end{aligned} 20430
$$

$$
\begin{array}{r}
132.2=2.789 .306430 \\
7 \operatorname{con} 11^{\circ} 4-\frac{9.301668}{2.53-801}
\end{array}
$$

$$
\begin{array}{r}
\sin \begin{array}{l}
8.54-0.810481 \\
\sin 156^{\circ} 25 \\
200 \\
5021-
\end{array}+\frac{9.301030}{2.713661}
\end{array}
$$

$\operatorname{Sin} 42^{\circ} 29-0.170465$
\sin

$$
\begin{aligned}
& \lim 42.29-9.996751 \\
& 89-2.301090 \\
& 200-\frac{2.46236}{2.468-} \\
& 294.081154 \\
& 8.15-2.356026 \\
& 2.27- \\
& 70^{\circ} 35-\frac{9.547138}{8.984318}
\end{aligned}
$$

FIELD-BOOK

IfR
¿AILROAD ENGINEERS

FIELD-BOOK

FOK

RAILROAD ENGINEERS.

CONTAINING

FORMUL.

HOR LAYING OUT CURVES, DETERNINING FROG ANGLES, LEVELLING, CALCULATING EARTII-WORK, ETC., ETC.,

TOGETHER WITH

TABLE

OE HADII, ORDINATES, DEFLECTIONS, LONG CIORDS, MAGNEIIC VARIA TION, LOGARITIMS, LUGAIITIIMIC AND NATCIRAL SLNFS, TANGENTS, ETC., ETC.

BY

JOIIN B. HENCK, A.M.. CIVILENGINEER.

N EW YORK:
D. APPLETON \& COMPANY, 549 \& 551 BROADWAY.

LONDON: 16 LITTLE BRITAIN
18%.

Eivened, according to 1 t of Congress, in the year 15.54 , Ry D. APILETON \& CO., In the Clerk's Office of the District Court of the United States for the Southern District of New York.

H38f 1877

PREFACE.

The object of the present work is to supply a want very generally felt by Assistant Engineers on Railroads. Books of convenient form for use in the field, containing the ord nary logarithmic tables, are common enough; but a book combining with these tables others peculiar to railroad work, and especially the necessary formulæ for laying out curves, turnouts, crossings, \&c., is yet a desideratum. These formula, after long disuse perhaps, the engineer is often called upon to apply at a moment's notice in the field, and he is, therefore, obliged to carry with him in manuscript such methods as he has been able to meet or collect, or resort to what has received the very appropriate name of " fudging." This the intelligent engineer always considers a reproach; and he will, therefore, it is hoped, receive with favor any attempt to make a resort to it inescusable.

Besides supplying the want just alluded to, it was thought that some improvements upon former methods might be made, and some entirely new methods introduced. Among the processes believed to be original may be specified those in $\$ \$ 41-48$, on Compound Curves, in Chapter II., on Parabolic Curves, in $\$ \$ 106-109$, on Vertical Curves, and in the article on Excavation and Embankment. It is

$$
469448
$$

but just to add, that a great part of what is said on Reversed Curves, Turnouts, and Crossings, and most of the Miscellaneous Problems, are the result of original investigations. In the remaining portions, also, many simplifications have been made. In all parts the object has been to reduce the operation necessary in the field to a single process, int. cated by a formula standing on a line by itself, and distinguished by a 1 Tois . This could not be done in all cases, as will be readily seen on examination. Certain preliminary steps were sometimes necessary, and these, whenever it was practicable, have been indicated by words in italics.

Of the methods given for Compound Curves, that in $\$ 46$ will be found particularly useful, from the great variety of applications of which it is susceptible.
Methods of laying out Parabolic Curves are here given, that those so disposed may test their reputed advantages. Two things are certainly in their favor; they are adapted to unequal as well as equal tangents, and their curvature generally decreases towards both extremities, thus making the transition to and from a straight line easier. Some labor has been given to devising convenient ways of laying out these curves. The method of determining the radius of curvature at certain points is believed to be entirely new. Better processes, however, may already exist, particularly in France, where these curves are said to be in general use.

The mode of calculating Excavation and Embankment here presented, will, it is thought, be found at least as simple and expeditious as those commonly used, with the advantage over most of them in point of accuracy. The usual Tables of Excavation and Embankment have been omitted. To include all the varieties of slope, width of roar-bnd, and depth of cutting, they must be of great extent, and untitued
for a field-book. Even then they apply only to ground whose cross-section is level, though often used in a mannes shown to be erroneous in $\$ 128$. When the cross-section of the ground is level, the place of the tables is supplied by the formula of $\$ 119$, and when several sections are calculated together, as is usually the case, and the work is arranged in tabular form, as in $\$ 120$, the calculation is believed to be at least as short as by the most extended tables. The correction in excavation on curves ($\$ 129$) is not known to have been introduced elsewhere.

In a work of this kind, brevity is an essential feature. The form of "Problem" and "Solution" has, therefore, been adopted, as presenting most concisely the thing to be done and the manner of doing it. Every solution, however, carries with it a demonstration, which is deemed an equaily essential feature. These demonstrations, with a few unavoidable exceptions, principally in Chapter II., presuppose a knowledge of nothing beyond Algebra, Geometry, and 'Trigonometry. The result is in general expressed by an algebraic formula, and not in words. Those familiar with algebraic symbols need not be told how much more intelligible and quickly apprehended a process becomes when thus expressed. Those not familiar with these symbols should lose no time in acquiring the ready use of a language so direct and expressive. It may be remarked that it was no part of the author's design to furnish a col!cction of mere " rulcs," professing to require only an ability to read for their successful application. Rules can seltom be safely applied without a thorough understanding of the principles on which they rest, and such an understanding, in the present case, implies a knowledge of algebraic formulæ.

The tables here presented will, it is hoped, prove relia
ble. Those specially prepared for this work have been computed with great care. The values have in some cases been carried out farther than ordinary practice requires, in order that interpolated values may be obtained from them more accurately. For the greater part of the material composing the Table of Magnetic Variation the author is indebted to Professor Bache, whose distinguished ability ir conducting the operations of the Coast Survcy is equalled only by his desire to diffluse its results. The remaining tables have been carcfully examined by comparing them with others of approved reputation for accuracy. Many errors have in this way been detected in some of the tables of corresponding extent in general usc, particularly in the Table of Squares, Cubes, \&c., and the Tables of Logarıthmic and Natural Sines, Cosines, \&c. The number of tables might have been greatly increased, but for an unwillingness to insert any thing not falling strictly within the plan of the work or not resting on sufficient authority.

J. B. 11 .

Bostoy, F'ebruary, 1854.

TABLE OF CONTENTS.

CHAPTER I.

CIRCULAR CURVES.
Article I. - Simple Curves.
sect P4GZ
2. Definitions. Propositions relating to the circle 1
4. Angle of intersection and radius given, to find the tangent 3
5. Angle of intersection and tangent given, to find the radius 3
6. Degree of a curve \&
7. Deflection angle of a curve 4
A. Method by Deflection Angles.
9. Radius given, to find the deflection angle 4
10. Deflection angle given, to find the radius 1
11. Angle of intersection and tangent given, to find the deflection angle s
12. Angle of intersection and deflection angle given, to find the tangent 5
13. Angle of intersection and deflection angle given, to find the length of the curre 6
14. Deflection angle given, to lay out a curve 7
16. To find a tangent at any station 8
B. Method by Tangent and Chord Defiections.
17. Definitions 8
18. Radius given, to find the tangent deflection and chorl deflection 9
19. Deflection angle given, to find the chord deflection 3
21. To find a tangent at any station 9
22. Chord deflection given, to lay out a curve 10

C. Ordinatcs.

SECT.PAES
24. Definition 11
25. Deflection angle or radius given, to find crdinates 11
26. Approximate value for middle ordinate 13
27. Method of finding intermediate points on a curve approxi- mately 14
D. Curving Rails.
29. Deflection angle or radius given, to find the ordinate for curv- ing rails 14
Article II. - Repersed and Compound Curtes.
30. Definitions 15
31. Radii or deflection angles given, to lay out a reversed or com- pound curve 16
A. Reversed Curves.
32. Reversing point when the tangents are parallel 16
33. To find the common radius when the tangents are parallel 16
34. One radius given, to find the other when the tangents are par- allel 17
35. Chords given, to find the radii when the tangents are parallel 18
36. Radii given, to find the chords when the tangents are parallel 18
37. Common radius given, to run the curve when the tangents are not parallel 19
38. One radius given, to find the other when the tangents are not parallel 19
39. To find the common radius when the tangents are not parallel 21
40. Second method of finding the common radins when the tan- gents are not parallel 22
B. Compound Curves.
41. Common tangent point 23
42. To find a limit in one direction of each radius 24
44. One radius given, to find the other 25
45. Second method of finding one radius when the other is given 26
46. To find the two radii 27
47. To find the tangents of the two branches 24
48 Second method of finding the tangents of the two branches 30

Article III. - Turnouts and Crossings.

nect. Page
49. Definitions 31
A. Turnout from Straight Lines.
50. Radins given, to find the frog angle and the position of the frog 32
51. Frog angle given, to find the radius and the position of the frog 33
52. To find mechanically the proper position of a given frog 34
53. Turnouts that reverse and become parallel to the main track is 4
54. To find the sccond radius of a turnout reversing opposite the frog. 35
B. Crossings on Straight Lines.
55. References to proper problems 36
56. Radii given, to find the distance between switches 36
C. Turnout from Curves.
57. Frog angle given, to find the radius and the position of the frog 38
58. To find mechanicaily the proper position of a given frog 41
59 Proper angle for frogs that they may come at the end of a rail 41
60 Radius given, to find the frog angle and the position of the frog 42
62 Turnout to reverse and become parallel to the main track 44
D. Crossings on Curves.
63. References to proper problems 45
64. Common radius given, to find the central angles and chords 45
Article IV. - Miscellaneous Problems.
65. To find the radius of a curve to pass through a given point 46
66. To find the tangent point of a curve to pass through a given point 47
67. To find the distance to the curve from any point on the tan- gent. 47
is Sccond method for passing a curve through a given point 47
69. To find the proper chord for any angle of deflection 48
70. To find the radius when the distance from the intersection point to the curve is given 48
71 To find the distance from the intersection point to the curve when the radius is given 49
38CT. PASA
i2. To find the taugent point of a curve that shall pass through a given point 5C
73. To find the radius of a curve without measuring angles 51
74. To find the tangent points of a curve without measuring an- gles 52
i5. To find the angle of intersection and the tangent points when the point of intersection is inaccessible 52
76. To lay ont a curve when obstrucuons occur 55
77. To change the tangent point of a curve, so that it may pass through a given point 56
78. To change the radins of a curve, so that it may terminate in a tangent parallel to its present tangent 57
79. To find the radius of a curve on a track already laid 53
80. To draw a tangent to a given curve from a given point 59
81. To flatten the extremities of a sharp curve ذy
82. To locate a curve without setting the instrument at the tan- gent point 60
8.3. To measure the distance across a river 6.3
CHAPTER II
PARABOLIC CURVES.
Article I. - Locating Parabolic Curies.
84. Propositions relating to the parabola 65
85. To lay out a parabola by tangent deflections 66
36. To lay out a parabola by middle ordinates 67
87. To draw a tangent to a parabola 67
59. To lay out a parabola by bisecting tangents 68
90. To lay out a parabola by intersections 69
Aisticte II. - Radius of Cervatere.
92. Definition 71
93. To find the radius of curvature at certain stations 71
95. Simplification when the tangents are equal 76

CHAP'TER III.

LEVELIING.

Arficle I. - Heights and Slofe Staklis.
agr96. Definitions
97. To find the difference of level of two points18
98 Datum plane 79
99. To find the heights of the stations on a line SC
100. Sights denominated plus and minus 81
101. Form of field notes 82
102. To set slope stakes 82
Abticle II. - Correction for the Earth's Curvature and for Refraction.
103. Earth's curvature 84
104. Refraction 84
105. To find the correction for curvature and refraction 85
Article III. - Vertical Curveg.
106. Manner of designating grades 86
107. 'To find the grades for a vertical curve at whole stations 86
109. To find the grades for a vertical curve at sub-stations 88
Article [V.- Elevation of the Outer Rail on Curves.
110. To find the proper eievation of the outer rail 89
11. Coning of the wheels 89
CHAPTER IV.
EARTH-WORK.
Artiche I. - Prismoidal Formula.
. 12 Definition of a prismoid 92
113. To find the solidity of a prismoid 92
Article II - Borrow-Pits.114. Manner of dividing the ground93
bect. pAQA
115. To find the solidity of a vertical prism whose horizontal sec- tion is a triangle 93
116. To find the solidity of a vertical prism whose horizontal sec- tion is a parallelogram 94
117. To find the solidity of a number of adjacent prisms having the same horizontal section ?
trticle III. - Excavation and Embankiment.
A. Centre Heights alone given.
119. To find the solidity of one scction 97
120. To find the solidity of any number of successive sections 98
B. Centre and Side ILeights given.
121. Mode of dividing the ground 99
122. To fird the solidity of one section 100
123. To find the solidity of any number of successive sections 104
125. To find the solidity when the section is partly in excavation and partly in embankment 105
126. Beginning and end of an excavation 107
C. Ground very Irregular.
127. To find the solidity when the ground is very irregular 108
128. Usual modes of calculating excavation 109
D. Correction in Excavation on Curves.
129. Nature of the correction 110
130. To find the correction in excavation on curves 112
132. To find the correction when the section is partly in excava tion and partly in embankment 113
TABLES.
I. Radii, Ordinates, Tangent and Chord Deflections, and Or- dinates for Curving Rails 115
II. Long Chords 118
III. Correction for the Earth's Curvature and for Refraction PAQE
IV. Elevation of the Outer Rail on Curves 120120
V. Frog Angles, Chords, and Ordinates for Turnouts 121
VI. Length of Circular Ares in Parts of Radius 121
VII. Expansion by Heat 122
VIII. Properties of Materials 123
IX. Magnetic Variation 126
X. Trigonometrical and Miscellaneous F(rmulæ
XI Squares, Cubes, Square Roots, Cube Roots, and Recip- rocals. 137
XII. Lugarithms of Numbers 155
XIII. Logaritnmic Simes, Cosines Tangents, and Cotangents 171
XIV. Natural Sines and Cosines 219
XV. Natural Tangents and Cotangents 229
ZVL Rise per Mile of Various Grades 242

EXPLANATION OF SIGNS.

The sign + indicates that the quantities between which it is placed are to be added together.
The sign - indieates that the quantity before which it is placed .s to be subtracted.

The sign \times indicates that the fuartities between which it is placed are to be multiplied together.

The sign \div or : indicates that the first of two quantities between which it is placed is to be divided by the second.

The sign $=$ indicates that the quantities between which it is placed are equal.

The sign us indicates that the difference of the two quantities between which it is placed is to be taken

The sign . . stands for the word "hence " or "therefore."
The ratio of one quantity to another may be regarded as the quo. tient of the first divided by the second. Hence, the ratio of a to b is expressed by $a: b$, and the ratio of c to d by $c: d$. A proportion ex presses the cquality of two ratios. Hence, , proportion is represented by placing the sign $=$ between two ratios; as, $a \cdot b=c: d$

In the text and in the tables tle foot has been taken as the unit ot measure when no other unit is specified.

FIELD-BOOK.

CHAPTER I.

CHRCULAR CURVES.

Article I. - Simple Curves

1. Tue railroad curves here considered are either Circular or Para bolic. Circular curves are divided into Simple, Reversed, and Com jound Curves. We begin with Simple Curves.
2. Let the arc $A D E F B$ (fig. 1) represent a railroad curve, unit

ing the straight lines $G A$ and $B H$. The length of such a curve is measured by chords, each 100 feet long.* Thus, if the chords $A D$. $D E, E F$, and $F B$ are each 100 feet in length, the whole curve is said to be 400 feet long. The straight lines $G A$ and $B H$ are always, tangent to the curve at its extremities, which are called tangent points. If $G A$ and $B H$ are produced, until they meet in $C, A C$ and $B C$ are called the tangents of the curve. If $A C$ is produced a little beyond C to K, the angle $K C B$, formed by one tangent with the other produced, is called the angle of intersection, and shows the change of direc. tion in passing from one tangent to the other.

The following propositions relating to the circle are derived from Geometry.
I. A tangent to a circle is perpendicular to the radius drawn through the tangent point. Thus, $A C$ is perpendicular to $A O$, and $B C$ to $B 0$.
II. Two tangents drawn to a circle from any point are equal, and if a chord be drawn between the two tangent points, the angles betwein this chord and the tangents are equal. Thus $A C=B C$, and the angle $B A C=A B C$.
III. An acute angle between a tangent and a chord is equal to hal! the central angle subtended by the same chord. Thus, $C A B=$ $\frac{1}{2} A O B$.
IV. An acute angle subtended by a chord, and having its vertex in the circumference of a circle, is equal to half the central angle subtended by the same chord. Thus, $D A E=\frac{1}{2} D O E$.
V. Equal chords subtend equal angles at the centre of a circle, and also at the circumference, if the angles are inscribed in similar seg. ments. Thus, $A O D=D O E$, and $D A E=E A F$.
VI. The angle of intersection of two tangents is equal to the central angle subtended by the chord which unites the tangent points. Thus, $K C B=A O B$.
3. In order to unite two straight lines, as $G A$ and $B H$, by a curve, the angle of intersection is measured, and then a radius for the curre may be assumed, and the tangents calculated, or the tangents may be assumed of a certain length, and the radius calculated.

[^0]4. Problem. Given the angle of intersection $K C B=I$ (fig !) and the radius $\Lambda O=R$, to find the tangent $A C=T$.

Solution. Hraw $C O$. Then in the right triangle $A O C$ we have Tab. X. 3) $\frac{A C}{A O}=\tan . A O C$, or, since $A O C=\frac{1}{2} I(\$ 2, \mathrm{VI})$ $\frac{\boldsymbol{T}}{\hat{\kappa}}=\tan . \frac{1}{2} I ;$
[7ד $\quad \therefore T=R \tan \cdot \frac{1}{2} I$.
Example. Given $I=22^{\circ} 52^{\prime}$, and $R=3000$, to find T. Here

$$
\begin{array}{rlrl}
R & =3000 & 3.477121 \\
\frac{1}{2} I & =11^{\circ} 26^{\prime} & \tan .9 .30586 \\
T & =60672 & & 2.782990
\end{array}
$$

5. Probleın. Given the angle of intersection $K C B=I$ (. $\AA j$. 1), ind the tangem $A C^{\prime}=T$, to find the radius $A O=R$.

Solution. In the right triangle $A O C$ we have (Tab. X. 61 $\frac{A O}{A C}=\cot . A O C$, or $\frac{R}{T}=\cot . \frac{1}{2} I$;
t要 $\quad \therefore R=T$ cot. $\frac{1}{2} l$.
Example. Given $I=31^{\circ} 16^{\prime}$ and $T=950$, to find R. Here

$$
\begin{array}{rlr}
T & =950 & 2.977724 \\
\frac{1}{2} I & =15^{\circ} 38 & \text { cot. } 0.553102 \\
R & =3394.89 & \\
3.530826
\end{array}
$$

6. The degree of a curve is determined by the angle subtended at its centre by a chord of 100 feet. Thus, if $A O D=6^{\circ}$ (fig. 1), $A D E F B$ is a 6° curve.
7. The defiection angle of a curve is the acute angle formed at any point between a tangent and a chord of 100 feet. The deflection angic is, therefore ($\$ 2$, III.), half the degree of the curve. Thus, CAD or $C B F$ is the deflection angle of the curve $A D E F B$, and is half $A O D$ or half $F O B$.

A. Method by Deflection Angles.

8. The usual method of laying out a curve on the ground is by means of deflection angles.
9. Problenis. Given the radius $A O=R$ (fig. 1), to find the $d \epsilon$. flection angle $C B F=D$.
Solution. Draw $O L$ perpendicular to $B F$. Then the angle $B O L$ $=\frac{1}{2} B O F=D$, and $B L=\frac{1}{2} B F=50$. But in the right triangle $O B L$ we have (Tab. X. 1) $\sin . B O L=\frac{B L}{B O}$;

$$
\text { 证 } \quad \sin . D=\frac{50}{12} \text {. }
$$

Example. Given $R=5729.65$, to find D. Here

	50
$R=5729.65$	1.698970
$D=30^{\prime}$	$\sin \overline{7.758128}$

Hence a curve of this radius is a 1° curve, and its deflection angle is 30^{\prime}.
10. Problem. Given the deflection angle $C B F=D$ (fig. 1), ta find the radius $A O=R$.

Solution. By the preceding section we have $\sin . D=\frac{50}{R}$, whenee $R \sin . D=50$;
सु

$$
\because R=\frac{50}{\sin . D}
$$

By this formula the radii in T'able I. are calculated.
Eramplc. Given $D=1^{\circ}$, to find R. Here

$$
\begin{aligned}
& \quad 50 \\
& D=1^{\circ} \\
& l=2864.93
\end{aligned}
$$

$$
1.698970
$$

$\sin .8241855$
3.457115
11. Problem. Given the angle of intersection $\mathbb{K} C B=I$ (f ig. 1), and the tangent $A C=T$, to find the deflection angle $C A D=D$.

Solution. From § 9 we have $\sin . D=\frac{50}{R}$, and from $\S 5, R=$ T 'cot. $\frac{1}{2} I$. Substituting this value of R in the first equation, we get $\sin . D=\frac{50}{T \cot \cdot \frac{1}{2} I}$;

$$
\therefore \sin . D=\frac{50 \tan \cdot \frac{1}{2} T}{T}
$$

Example. Given $I=21^{\circ}$ and $T=424.8$, to find D. Here

50	1.698970
$\frac{1}{2} 1=10^{\circ} 30$	tan. 9.267967
	0.96695%
$T=4248$	2.628185
$D=1^{\circ} 15^{\prime}$	$\sin .8 .338752$

12. Problem. Given the angle of intersection $K C B=1$ ($f g .1$) and the deflection angle $C \Delta D=D$, to find the tangent $A C=T$.

Solution. From the preceding section we have $\sin . D=\frac{50 \tan . \frac{1}{2} 1}{T}$. Hence, $T \sin . D=50 \tan . \frac{1}{2} I$;

$$
\text { TTT } \quad \therefore T=\frac{50 \tan \cdot \frac{1}{2} 1}{\sin . D}
$$

Example. Given $I=28^{\circ}$ and $D=1^{\circ}$, to find T. Here

$$
T=\frac{50 \tan .14^{\circ}}{\sin 1^{\circ}}=714.31
$$

13. Problem. Given the angle of intersertion $K C B=I$ (fiy. 1), and the deflection angle $C A D=D$, to find the length of the curve.

Solution. By $\$ 2$ the length of a curve is measured by chords of 100 feet applied around the curve. Now the first chord $A D$ makes with the tangent $A C$ an angle $C A D=D$, and each succeeding chord $D E, E F$, \&c. subtends at A an additional angle $D A E, E A F$, \&c. each equal to D; since cach of these angles ($\$ 2, I V$.) is half of a central angle subtended by a chord of 100 feet. The angle $C A B=$ $\frac{1}{2} A O B=\frac{1}{2} I$ is, therefore, made up of as many times D, as there are chords around the curve. Then if n represents the number of chords, we have $n D=\frac{1}{2} I$;

$$
\therefore n=\frac{\frac{1}{2} I}{D} \text {. }
$$

If D is not contained an even number of times in $\frac{1}{2} I$, the quotient above will still give the length of the curve. Thus, in fig. 2, suppose D is contained $4 \frac{5}{8}$ times in $\frac{1}{2} I$. This shows that there will be four whole chords and $\frac{5}{8}$ of a chord around the curve from A to B. The angle $G A B$, the fraction of D, is called a sub deflection angle, and $G B$. the fraction of a chord, is called a sub-chord.*

The length of the curve thus found is not the actual length of the are, but the length required in locating a curve. If the actual length of the arc is required, it may be found by means of Table VI.

Example. Given $I=16^{\circ} 52^{\prime}$ and $D=1^{\circ} 20^{\prime}$, to find the length of the curve. Here $n=\frac{\frac{1}{2} I}{D}=\frac{8^{3} 26^{\prime}}{1^{0} 20^{\prime}}=\frac{506^{\prime}}{80^{\prime}}=6.325$, that is, the curve is 632.5 feet long.

To find the are itself in this example, we take from Table VI. the length of an are of $16^{\circ} 52^{\prime}$, since the central angle of the whole curve is equal to I ($\$ 2$, VI), and multipiy this length by the radius of the curve.

$\operatorname{Arc} 10^{\circ}$	$=.1745329$
$" \quad 6^{\circ}$	$=.1047198$
$" \quad 50^{\prime}$	$=.0145444$
$" \quad 2^{\prime}$	$=.0005818$
$" \quad 16^{\circ} 52^{\prime}$	$=.2943789$

[^1]Darts $B I I$ and $C K$ of the same length as the chords. Draw $C H$ and $D K . B G$ is called the tangent deflection, and $C H$ or $D K$ the clurrd deflection.
18. Problenn. Given the radius $A O=R$ (fig. 3), to find the tanyent deflection B, and the chorld deflection C II.

Solution. The triangle C ' $B H$ is similar to $B O C$; for the angle $B O C=180^{\circ}-(O B C+B C O)$, or, since $B C O=A B O, B O C$ $=180^{\circ}-(O B C+A B O)=C B H$, and, as both the triangles are isosceles, the remaining angles are equal. The homologous sides are, therefore, proportional, that is, $B O: B C=B C: C H$, or, representing the chord by c and the chord deflection by $d, R: c=c: d$;
(2ixis

$$
\therefore d=\frac{c^{2}}{R}
$$

To find the tangent deflection, draw $B M$ to the middle of $C 11$, bisecting the angle $C B I$, and making $B M C$ a right angle. Then the right triangles $B M C$ and $A G B$ are equal ; for $B C=A B$, and the angle $C B M=\frac{1}{2} C B I=\frac{1}{2} B O C=\frac{1}{2} A O B=B A G$ (\$2, III.). Thercfore $B G=C M=\frac{1}{2} C H=\frac{1}{2} d$, that is, the tangent deflection is half the chord deflection.
19. Problersr. Given the deflection angle D of a curve, to find the chord deflection d.

Solution. By the precedins section we have $d=\frac{c^{2}}{R}$, and by $\$ 10$, $R=\frac{50}{\sin . D}$ Substituting this value of R in the first equation, we find

$$
\text { (स) } \quad d=\frac{c^{2} \sin \cdot D}{50} \text {. }
$$

This formula gives the chord deflection for a chord c of any length though D is the deflection angle for a chord of 100 feet ($\$ 7$). When $c=100$, the formula becomes $d=200 \sin D$, or for the tangent deflection $\frac{1}{2} d=100 \sin . D$. By these formulæ the tangent and chord deflections in Table I. may be easily obtained from the table of natural sines
20. The length of the curve may be found by first finding D ($\$ 9$ or \$11), and then procceding as in $\$ 13$.
21. Problenn. To draw a tangent to the curve ut any station, us B (fig. 3).

Solution. Bisect the cinord cieflection $H C$ of the next station in M.

A line drawn through B and M will be the tangent required; for it has been proved ((8)) that the angle $C B M$ is in this case equal to $\frac{1}{2} B O C$, and $B M$ is consequently ($\S 2$, III.) a tangent at B.

If B is at the end of the curve, the tangent at B may be found without first laying off $H C$. Thus, if a chain equal to the chord is extended to H on $A B$ produced, the point H marked, and the chain then swung round, keeping the end at B fixed, until $H M=\frac{1}{2} d$, $B M$ wim he the direction of the required tangent.*
22. Problem: Given the chord deflection d, to lay vit a curve from a given tangent point.

Solution. Let A (fig. 3) be the given tangent point, and suppose d has been calculated for a chord of 100 feet. Streteh a cbain of 10 . feet from A to G on the tangent $E A$ produced, and mark the poins G. Swing the chain round towards $A B$, kecping the end at A fixed until $B G$ is equal to the tangent deflection $\frac{1}{2} d$, and B will be the fir:s station on the curve. Stretch the chain from B to H on $A B$ pro duced, and having marked this point, swing the chain round, until $H($ is equal to the chord deflection d. C is the sceond station on the curve Continue to lay off the chord deflection from the preceding chord pro duced, until the curve is finished.

Should a sub-chord $D F$ occur at the end of the curve, find the tan gent $D L$ at $D(\$ 21)$, lay off from it the proper tangent deflection $L F$ for the given sub-chord, making $D F$ of the given length, and F will be a point on the curve. The proper tangent deflection for the subchorả may be found thus. Represent the sub-chord by c^{\prime}, and the corresponding chord deflection by d^{\prime}, and we have (§18) $\frac{1}{2} d^{\prime}=\frac{c^{\prime 2}}{2 R}$; but since $\frac{1}{2} d=\frac{c^{2}}{2 R}$, we have $\frac{1}{2} d^{\prime}: \frac{1}{2} d=c^{\prime 2}: c^{2}$. Therefore $\frac{1}{2} d^{\prime}=\frac{1}{2} d\left(\frac{c^{\prime}}{c}\right)^{2}$.

Example. Given the intersection angle I between two tangents equal to $16^{\circ} 30^{\prime}$, and $R=1250$, to find T, d, and the length of the curve in stations. Here
(§4) $T=R \tan \cdot \frac{1}{2} I=1250 \tan .8^{\circ} 15^{\prime}=181.24$;
$(\$ 18) d=\frac{c^{2}}{R}=\frac{100^{2}}{1250}=8$,

[^2]\[

$$
\begin{align*}
& \sin . D=\frac{50}{R}=\frac{50}{1250}=.04=\text { nat. sin. } 2^{\circ} 1 i \frac{1}{2}^{\prime} ; \\
& n=\frac{t^{\prime}}{D}=\frac{8^{\prime} 15^{\prime}}{2017^{\prime-z^{\prime}}}=\frac{495^{\prime}}{137.5^{\prime}}=3.60 .
\end{align*}
$$
\]

These results show, that the tangent point A (fig. 3) on the first tath gent is 181.24 feet from the point of intersection, - that the tangent deflection $G B=\frac{1}{2} d=4$ feet, - that the chord deflection $H C$ or $\Lambda \amalg$ $=8$ fect, - and that the curve is 360 feet long. The three whole stations B, C; and D having been found, and the tangent $D L$ drawn, the tangent deflection for the sub-chord of 60 feet will be, as shown above, $\frac{1}{2} d^{\prime}=4\left(\frac{60}{100}\right)^{2}=4 \times .6^{2}=4 \times .36=144 . \quad L F=1.44$ fect being laid off from $D L$, the point F will, if the work is correct, fall upon the second tangent point. A tangent at F may be found ($\$ 21$) by producing $D F$ to P, making $F P=D F=60$ fect, and laying off $P N=1.44$ feet. $F^{\prime} N$ will be the direction of the required tangent, which should, of course, coincide witl the given tangent.
23. Curves may be laid out with accuracy by tangent anu cloord deflections, if an instrument is used in producing the lines. But if an instrument is not at hand, and accuracy is not important, the lines may be produced by the eye alone. The radius of a curve to unite two given straight lines may also be found without an instrument by $\S 78$, or, having assumed a radius, the tangent points may be found by $\$ 74$.

C. Ordinates.

24. The preceding methods of laying out curves determine points 100 feet distant from each other. These points are usually suffieient for grading a road; but when the track is laid, it is desirable to have intermediate points on the curve accurately determined. For this purpose the chord of 100 feet is divided into a certain number of equal parts, and the perpendicular distances from the points of division to the curre are calculated. These distances are called ordinates. If the chord is divided into eight equal parts, we shall have points on the curre at every 12.5 feet, and this will be often enough, if the rails, which are seldom shorter than 15 feet, have been properly curved (§ 28).
25. Probiem. Given the deflection angle D or the radius R of a sarve, to find the ordinates for any chord.

Solution. I. To find the middle ordinate. Let $A E B$ (fig. 4) he a portion of a curve, subtended by a chord $A B$; which may be de-
noted by c. Draw the middle ordinate $E D$, and denote it by m. Pro duce $E D$ to the centre F, and join $A F$ and $A E$. Then (Tab. X .3 3i

$\frac{E D}{A D}=\tan . E A D$, or $E D=A D \tan . E A D$. But, since the angle $E A D$ is measured by half the arc $B E$, or by half the equal $\operatorname{arc} A E$, we have $E A D=\frac{1}{2} A F E$. Therefore $E D=A D \tan \frac{1}{2} A F E$, or
[종

$$
m=\frac{1}{2} c \tan \cdot \frac{1}{2} A F E .
$$

When $c=100, A F E=D(\$ 7)$, and $m=50 \tan$. $\frac{2}{2} D$, whence m may be obtained from the table of natural tangents, by dividing tan $\frac{1}{2} D$ by 2 , and remoring the decimal point two places to the right.

The value of m may be obtained in another form thus. In the triangle $A D F$ we have $D F=\sqrt{A F^{2}-A D^{2}}==\sqrt{R^{2}-\frac{1}{4} c^{2}}$. Then $m=E F-D F=R-D F$, or

Tत्यु

$$
m=R-\sqrt{R^{2}-\frac{1}{4} c^{2}}
$$

II. To find any other ordinate, as $R N$, at a distance $D N=b$ from the centre of the chord. Produce $R N$ until it meets the diameter parailel to $A B$ in G, and join $R F$. Then $R G=\sqrt{R F^{2}-F^{2} G^{2}}=$ $\sqrt{R^{2}-b^{2}}$, and $R N=R G-N G=R(\dot{r}-D F$. Substituting the value of $R G$ and that of $D F^{\prime}$ found above, we have

$$
R N=\sqrt{R^{2}-b^{2}}-\sqrt{R^{2}-\frac{1}{4} c^{2}}
$$

By these fcrmulæ the ordinates in Table I are calculated.
The other ordinates may also be found from the middle ordinate by de following shorter, but not strictly exact method. It is founded on the supposition, that, if the half-chord $B D$ be divided into any number of equal parts, the ordinates at these points will divide the arc $E B$ into the same number of eqtial parts, and upon the further supposition, that the tangents of sinall angles are proportional to the angles themselves. These suppositions give rise to no material error in finding the ordinates of railroad curres for chords not exceeding 100 feet. Making, for example, four divisions of the chord on each side of the centre, and joining $A R, A S$, and $A T$, we have the angle $R A N=\frac{3}{4} E A D$, since $R B$ is considered equal to ${ }_{4}^{3} E B$. But $E A D=\frac{1}{2} A F E$. Therefore, $R A N=\frac{3}{8} A F E$. In the same way we should find $S A O$ $==\frac{1}{4} A F E$, and $T A P=\frac{1}{8} A F E$. We have then for the ordinates, $R N=A N \tan . R A N=\frac{5}{8} c \tan . \frac{3}{8} A F E, S O=A O \tan . S A O=$ $\frac{8}{4} c \tan . \frac{1}{4} A F E$, and $T P=A P \tan . T A P=\frac{7}{8} c \tan . \frac{1}{8} A F E$. But, by the second supposition, tan. $\frac{3}{8} A F E=\tan . \frac{1}{2} A F E$, $\tan . \frac{1}{4} A F E=\frac{1}{2} \tan . \frac{1}{2} A F E$, and $\tan . \frac{1}{8} A F E=\frac{1}{4} \tan . \frac{1}{2} A F E$. Substituting these values, and recollecting that $\frac{1}{2} c \tan . \frac{1}{2} A F E=m$, we have
$\left\{\begin{array}{l}R N=\frac{15}{16} \times \frac{1}{2} c \tan . \frac{1}{2} \text { A } F E=\frac{15}{16} m, \\ S O=\frac{3}{4} \times \frac{1}{2} c \tan . \frac{1}{2} A F E=\frac{3}{4} m, \\ T P=\frac{7}{16} \times \frac{1}{2} c \tan . \frac{1}{2} A F E=\frac{7}{16} m .\end{array}\right.$

In general, if the number of divisions of the chord on each side of the centre is represented by n, we should find for the respective ordinates, beginning nearest the centre, $\frac{(n+1)(n-1) m}{n^{2}}, \frac{(n+2)(n-2) m}{n^{2}}$, $\frac{(n+3)(n-3) m}{n^{2}}, \& c$.

Example Find the ordinates of an 8° curve to a chord of 100 feet. Here $m=50 \tan .2^{\circ}=1.746, R N=\frac{15}{16} m=1.637, S O=\frac{3}{4} m=1.310$, and $T P=\frac{7}{16} m=0.764$.
26. An approximate value of m also may be obtained from the formula $m=R-\sqrt{R^{2}-\frac{1}{4} c^{2}}$. This is done by adding to the quantity under the radical the very small fraction ${ }_{64} R^{c^{4}}$, making it a perfect
square, the root of which will be $R-\frac{c^{2}}{8 R}$. We have, then, $n=R$ $-\left(R-\frac{c^{2}}{8 \mathrm{R}}\right)$;

$$
\text { तार्寸 } \quad \therefore m=\frac{c^{2}}{8 l i} \text {. }
$$

27. From this value of m we see that the middle ordinates of any two chords in the same curve are to each other nearly as the squares of the chords. If, then, $A E$ (fig. 4) be considered equal to $\frac{1}{2} A B$. its middle ordinate $C H=\frac{1}{4} E D$. Intermediate points on a curve in:ly, therefore, be very readily obtained, and generally with sufficient accuracy, in the following manner. Stretch a cord from A to B, and by means of the middle ordinate determine the point \boldsymbol{E}. Then streteh the cord from A to E, and lay off the middle ordinate $C H=\frac{1}{4} E D$, thus determining the point C, and so continue to lay off from the shiressive half-chords one fourth the preceding ordinate, until a sufficie: number of points is obtained.

D. Curving Rails.

23. The rails of a curve are usually curved before they are laid. To do this properly, it is necessary to know the middle ordinate of the curve for a chord of the Iength of a rail.
24. Problem. Given the radius or deflection angle of a curve, to find the middle ordinate for curving a rail of given length.

Solution. Denote the length of the rail by l, and we have ($\$ 25$) the exact formula $m=R-\sqrt{R^{2}-\frac{1}{4} l^{2}}$, and ($\$ 26$) the approximate formula

$$
m=\frac{\frac{1}{4} l^{2}}{2 R}
$$

This formula is always near enough for chords of the length of a rail If we substitute for R its value ($\$ 10) R=\frac{50}{\sin D}$, we have,
(1)

$$
m=\frac{1}{4} l^{2} \times \frac{\sin . D}{100} .
$$

Example. In a 1° curve find the ordinate for a rail of 18 feet in length. Here R is found by Table I. to be 5729.65 , and the:efore,
by the first formula, $m=\frac{9^{2}}{11459.3}=.00707$. By the sceond formula, $m=.81 \sin .30^{\prime}=.00707$. The exact formula would give the same result even to the fifth decimal.

By keeping in mind, that the ordinate for a rail of 18 feet in a 1^{2} curve is .007 , the corresponding ordinate in a curve of any other degree may be found with sufficient accuracy, by multiplying this decimal by the number expressing the degree of the curve. Thus, for a curve of $5^{\circ} 36^{\prime}$ or 5.6°, the ordinate would be . $177 \times 5.6=.0 .9 \mathrm{ft} .=$ 468 in.
For a rail of 20 feet we have $\frac{1}{4} l^{2}=100$, and, consequently, $m=$ sin. D. This gives for a 1° curve, $m=.0087$. The corresponding ordinate in a curve of any other degree may be found with sufficient accuracy, by multiplying this decimal by the number expressing the degree of the curve.

By the above formula for m, the ordinates for curving rails in Table I. are calculated.

Article II. - Reversed and Compound Curves.

30. Two curves often succeed each other having a common tangens at the point of junction. If the curves lie on opposite sides of the common tangent, they form a reversed curve, and their radii may be the same or different. If they lie on the same side of the common tangent.

they have different radii, and form a compound curve. Thus A is c (fig. 5) is a reversed curve, and $A B D$ a combound curve.
31. Problenir. To lay ont a reversed or a conpound curve, athen the radii or deflection unyles and the tangent points are known.

Solution. Lay out the first portion of the curve from A to B (fig. 5), by one of the usual methods. Find $B F$, the tangent to $A B$ at the point B ($\$ 16$ or $\S 21$). Then $B F$ will be the tangent also of the second portion $B C$ of a reversed, or $B D$ of a compound curve, and from this tangent either of these portions may be laid off in the usual man ner

A. Reversed Curves.

32 Thecoremi. The reversing point of a reversed curve ketwees warullel tangents is in the line joining the tangent points.

Demonstration. Let $A C B$ (fig. 6) be a reversed curve, uniting the parallel tangents $H A$ and $B K$, having its radii equal or unequal, and reversing at C. If now the chords $A C$ and $C B$ are drawn, we have to prove that these chords are in the same straight line. The radii $E C$ and $C F$, being perpendicular to the common tangent at $C(\$ 2, \mathrm{I}$.$) :$ are in the same straight line, and the radii ΛE and $B F$, being perpendicular to the parallel tangents $H A$ and $B K$, are parallel. Therefore, the angle $A E C=C F B$, and, consequently, $E C A$, the half supplement of $A E C$, is equal to $F C B$, the half supplement of $C F B$; but these angles cannot be equal, unless $A C$ and $C B$ are in the same straight line.
33. Problem. Given the perpendicular distance between two parallel tangents $B D=b$ ($f i g 6$), and the distance between the two tangeni points $A B=a$, to determine the reversing point C and the common radure $E C=C F=R$ of a reversed curce uniting the tangents $H A$ and $B K$.

Solution. Let $A C B$ be the required curve. Since the radii are
equal, and the angle $A E C=B F C$, the triangles $A E C$ and $B F C$ are equal, and $A C=C B=\frac{1}{2} a$. The reversing point C is, therefore, the middle point of $A B$.

To find R, draw $E G$ perpendicular to $A C$. Then the right triangles $A E G$ and $B A D$ are similar, since ($\$ 2$, III.) the angle $B A D=\frac{1}{2} A E C=A E G$. Therefore $A E: A G=A B: B D$, or $R: \frac{1}{4} a=a: b$;
[[30

$$
\therefore R=\frac{a^{2}}{4 b} \text {. }
$$

Corollary. If R and b are given, to find a, the equation $R=\frac{a^{2}}{4 b}$ gives $a^{2}=4 R b$;

마웅

$$
\therefore a=2, \sqrt{R} \bar{b}
$$

Examples. Given $b=12$, and $a=200$, to determine R. Here $R=\frac{200^{2}}{4 \times 12}=\frac{10000}{12}=833 \frac{1}{3}$.

Given $R=675$, and $b=12$, to find a. Herc $a=2 \sqrt{675 \times 12}=$ $2 \sqrt{8100}=2 \times 90=180$.
34. Problem. Given the perpendicular distance between two par. allel tangents $B D=b$ (fig. 7), the distance betwien the two tangent points A $B=a$, and the first radius $E C=R$ of a reversed curve uniting the tangents $H A$ and $B K$, to find the chords $A C=a^{\prime}$ and $C B=a^{\prime \prime}$, and the second rallius $C F=R^{\prime}$.

Solution. Draw the perpendiculars $E G$ and $F L$. Then the right riangles $A B D$ and $E A G$ are similar, since the angle $B A D=$
$\frac{1}{1} A E C=A E G$. Therefore $A B: B D=E A: A G$, or $a: b \infty$ $R: \frac{1}{2} a^{\prime}$;

सास $\quad \therefore a^{\prime}=\frac{2 R b}{a}$.
Since a^{\prime} and $a^{\prime \prime}$ are ($\$ 32$) parts of a, we have 1580

$$
a^{\prime \prime}=a-a^{\prime}
$$

To find R^{\prime} the similar triangles $A B D$ and $F B L$ give $A B: B D$ $=F B: B L$, or $a: b=R^{\prime}: \frac{1}{2} a^{\prime \prime}$;

$$
\left[x_{3}{ }^{\circ} \quad \therefore R^{\prime}=\frac{a a^{\prime \prime}}{2 b}\right.
$$

Example. Given $b=8, a=160$, and $R=900$, to find $a^{\prime}, a^{\prime \prime}$, and R^{\prime}. Here $a^{\prime}=\frac{2 \times 900 \times 8}{160}=90, a^{\prime \prime}=160-90=70$, and $R^{\prime}=$ $\frac{160 \times 70}{2 \times 8}=700$.
35. Corollatry 1. If b, a^{\prime}, and $a^{\prime \prime}$ are given, to find u, l, and R. we have ($\$ 34$)

$$
\text { [ᄌ졍 } \quad a=a^{\prime}+a^{\prime \prime} ; \quad R=\frac{a a^{\prime}}{2 b} ; \quad R^{\prime}=\frac{a a^{\prime \prime}}{2 b}
$$

Example. Given $b=8, a^{\prime}=90$, and $a^{\prime \prime}=70$, to find a, l, and l Here $a=90+70=160, R=\frac{160 \times 90}{2 \times 8}=900$, and $R^{\prime}=\frac{160 \times 70}{2 \times 8}=$ 700.
36. Corollary 2. If R, R^{\prime}, and b are given, to find a, a^{\prime}, and $a^{\prime \prime}$, we have ($\$ 35$), $R+R^{\prime}=\frac{a a^{\prime}+a a^{\prime \prime}}{2 b}=\frac{a\left(a^{\prime}+a^{\prime \prime}\right)}{2 b}=\frac{a^{2}}{2 b}$. Therefore $k^{9}=2 b\left(R+R^{\prime}\right) ;$

$$
\therefore a=\sqrt{2 b\left(R+R^{\prime}\right)} .
$$

Having found a, we have ($\$ 34$)

$$
\text { TE } \quad a^{\prime}=\frac{2 R b}{a} ; \quad a^{\prime \prime}=\frac{2 R^{\prime} b}{a}
$$

Example. Given $R=900, R^{\prime}=700$ and $b=8$, to find a, a^{\prime}, anc $a^{\prime \prime}$. Here $a=\sqrt{2 \times 8(900+700)}=\sqrt{16 \times 1600}=: 160, a^{\prime}=$ $\frac{2 \times 900 \times 8}{160}=90$, and $a^{\prime \prime}=\frac{2 \times 700 \times 8}{160}=70$.
37. Problenn. Given the angle $A K B=K$, which shows the change of direction of two tangents $H A$ and $B K$ (fig. 8), to unit, thesi tangents by a reversel curve of given common radius R, starting from a giv. en tangent point A.

Solution. With the given rudius run the curve to the point D, where the fangent $D N$ becomes parallel to $B K$. The point D is found thus. Since the angle $N G K$, which is double the angle $H A D(\$ 2, \mathrm{II}$.$) , is to be$ made equal to $A K B=K$, lay off from $H A$ the angle $H A D=\frac{1}{2} K$ Measure in the direction thus found the chord $A D=2 R \sin . \frac{1}{2} K$ This will be shown ($\$ 69$) to be the length of the chord for a deflection angle $\frac{1}{2} K$. Having found the point D, measure the perpendicular distance $D M=b$ between the parallel tangents.

The distance $D B=2 D C=a$ may then be obtained from the formula (\$ 33, Cor.)

$$
\text { 撚 } \quad a=2 \sqrt{l i t}
$$

The second tangent point B and the reversing point C are now ucternined. The direction of $D B$ or the angle $B D N$ may also be ob. tained; for $\sin B D N=\sin . D B M=\frac{D M}{D B}$, or

2

$$
\sin . B D N=\frac{b}{a} .
$$

38. Problem. Given the line $A B=a$ (fig. 9) which joins the fixed tungent points A and B, the angles $H A B=A$ and $A B L=B$, and the first radius $A E=R$, to find the second radius $B F=R^{\prime}$ of as reversad curve to unite the tangents $H^{\prime} A$ and $B K$.

First Solution. With the given radius run the curve to the point D, ohere the tangent $D N$ becomes parallel to $B K$. The point D is found
thus. Since the angle $H G N$, which is double $H A D(\$ 2, \mathrm{II}$.$) , is$ equal to $A \subset s$, lay off from $H A$ the angle $H A D=\frac{1}{2}(A \backsim B)$, and measure in this direction the chord $A D=2 R \sin . \frac{1}{2}(\mathrm{~A} \propto B)(\$ 69)$

Setting the instrument at D, run the curve to the reversing point C in the line from D to $B(\S 32)$, and measure $D C$ and $C B$. Then the similar triangles $D E C$ and $B F C$ give $D C: D E=C B: B F$, or $D C: R$ $=C B: R^{\prime}$;
12

$$
\therefore R^{\prime}=\frac{C B}{D C} \times R .
$$

Second Solution. By this method the second radius may be founu by calculation alone. The figure being drawn as above, we have, in the triangle $A B D, A B=a, A D=2 R \sin \cdot \frac{1}{2}(A-B)$, and the included angle $D A B=H A B-H A D=A-\frac{1}{2}(A-B)=$ $\frac{1}{2}(A+B)$. Find in this triangue (Tab. X. 14 and 12) $B D$ and the angle $A B D$. Find also the ungle $D B L=B+A B D$.

Then the chord $C B=2 R^{\prime} \sin$. $\frac{1}{2} B F C=2 R^{\prime} \sin . D B l$, and the chord $D C=2 R \sin . \frac{1}{2} D E C=2 R \sin . D B L(\$ 69)$. But $C B=B D-D C$; whence $2 R^{\prime} \sin . D B L=B D-2 R \sin$ $D B L$,
स

$$
R^{\prime}=\frac{B D}{2 \sin . D B L}-R
$$

When the point D falls on the other side of A, that is, when the angle B is greater than A, the solution is the same, except that the angle $D A B$ is then $180^{\circ}-\frac{1}{2}(A+B)$, and the angle $D B L=B$ $A B D$.
39. Problena. Given the length of the common tangent $D G=a$, and the angles of intersection I and $I^{\prime}(f i g .10)$, to determine the common radus $C E=C F=R$ of a reversed curve to unite the tangents $H A$ ann $1: L$.

Solution. By $\S 4$ we have $D C=R \tan \cdot \frac{1}{2} I$, and $C G=R \tan \cdot \frac{1}{2} I^{\prime}$, whence $R\left(\tan . \frac{1}{2} I+\tan . \frac{1}{2} I^{\prime}\right)=D C+C G=a$, or
[1780

$$
R=\frac{a}{\tan \cdot \frac{1}{2} I+\tan \cdot \frac{1}{2} l^{\prime}}
$$

This formula may be adapted to calculation by logarithms; for we have (Tab. X. 35) tan. $\frac{1}{2} I+\tan \cdot \frac{1}{2} I=\frac{\sin \cdot \frac{1}{2}(I+I)}{\cos \cdot \frac{1}{2} I \cos . \frac{1}{2} \eta}$. Substituting this value, we get
[종

$$
R=\frac{a \cos \cdot \frac{1}{2} I \cos \cdot \frac{1}{2} I^{\prime}}{\sin \cdot \frac{1}{2}\left(I+I^{\prime}\right)}
$$

The tangent points A and B are obtained by measuring from D a distance $A D=R \tan \cdot \frac{1}{2} I$, and from G a distance $B G=R \tan . \frac{1}{2} I^{\prime}$.

Example. Given $a=600, l=12^{\circ}$, and $T=s^{\circ}$, to find R. Here

$$
\begin{array}{rlr}
a & =600 & 2.778151 \\
\frac{1}{2} I & =6^{\circ} & \operatorname{cos.9.997614} \\
\frac{1}{2} I^{\prime} & =4^{\circ} & \cos .9 .998941 \\
\frac{1}{2}(I+I) & =10^{\circ} & \sin .9 .239670 \\
R & =3427.96 & \frac{9.535036}{3.535036}
\end{array}
$$

40. Problens. Given the line $A B=a$ (fig. 10), which joins the fixed tangent points A and B, the angle $D A B=A$, and the anyle $A B G=B$, to find the common radius $E C=C F=R$ of a riversed surve to unite the tangents $H A$ and $B L$.

Solution. Find first the auxiliary angle $A K E=B K F$, which may be denoted by K. For this purpose the triangle $A E K$ gives $A E: E K$. $=\sin . K: \sin . E A K$. Therefore $E K \sin . K=A E \sin . E A K=$ R cos. A, since $E A K=90^{\circ}-A$. In like manner, the triangle $B F K$ gives $F K \sin K=B F \sin . F B K=R \cos . B$. Adding these equations, we have $(E K+F K) \sin . K=R(\cos . A+\cos B)$, or, since $E K+F K=2 R, 2 R \sin . K=R(\cos . A+\cos . B)$ Therefore, $\sin . K=\frac{1}{2}(\cos . A+\cos . B)$. For calculation by logarithms, this becomes (Tab. X. 28)
[证 $\sin K=\cos \cdot \frac{1}{2}(A+B) \cos \cdot \frac{1}{2}(A-B)$.
Having found K, we have the angle $A E K=E=180^{\circ}-K-$ $E A K=180^{\circ}-K-\left(90^{\circ}-A\right)=90^{\circ}+A-K$, and the angle $B F K=F=180^{\circ}-K-F B K=180^{\circ}-K-\left(90^{\circ}-B\right)=90^{\circ}$ $+B-K$. Moreover, the triangle $A E K$ gives $A \dot{\perp} K=$ $\sin . K: \sin . E$, or $R \sin . E=\Delta K \sin . K$, and the triangle $B F K$ gives $B F: B K=\sin . K: \sin . F$, or $R \sin . F=B K \sin . K$. Adding these equations, we have $R(\sin . E+\sin . F)=(A K+B K) \sin K^{-}=$ $a \sin . K$. Substituting for $\sin . E+\sin . F$ its value $2 \sin . \frac{1}{9}\left(E+F^{n}\right)$
cos. $\frac{1}{2}(E-F)\left(\right.$ Tab. X. 26), we have $2 l i \sin . \frac{1}{2}(E+F) \cos$. $\frac{1}{2}(E-F)=a \sin . K$. Therefore $R=\frac{\frac{1}{2} \sin . K}{\sin \cdot \frac{1}{2}(E+F) \cos \frac{1}{2}(E-F)} . \quad$ Finally, substituting for E its value $90^{\circ}+A-\kappa$, and for F its value $90^{\circ}+B-K$, we get $\frac{1}{2}(E+F)=90^{\circ}-\left[K-\frac{1}{2}(A+B)\right]$, and $\frac{1}{2}(E-F)=\frac{1}{2}(A-B)$; whence

霓

$$
R=\frac{\frac{1}{2} a \sin . K}{\cos \cdot\left[K-\frac{1}{2}(A+B)\right] \cos \frac{1}{2}(A-B)}
$$

Example. Given $a=1500, A=18^{\circ}$, and $B=6^{\circ}$, to find K. Here

$$
\begin{array}{rlrl}
\frac{1}{2}(A+B) & =12^{\circ} & & \cos 9.990+04 \\
\frac{1}{2}(A-B) & =6^{\circ} & \cos 9997614 \\
K & =76^{\circ} 36^{\prime} 10^{\prime \prime} & \sin \overline{9.988018} \\
\frac{1}{2} a & =750 & & \underline{2.875061} \\
\hline 2.863079
\end{array}
$$

$$
\begin{array}{rlr}
K-\frac{1}{2}(A+B) & =64^{\circ} 36^{\prime} 10 & \cos .9 .632347 \\
\frac{1}{2}(A-B) & =6^{\circ} & \cos .9 .997614
\end{array}
$$

9.629961

$$
R=1710.48
$$

3.233118

B. Compound Curves.

41. Theorem. If one branch of a compound curve be produced, witil the tangent at its extremity is parallel to the tangent at the extremity ff the second branch, the common tangent point of the two arcs is in the straight line produced, which passes through the tanyent points of these parallel tangents.

Demonstration. Let $A C B$ (fig. 11) be a compound curve, uniting the tangents $H A$ and $B K$. The radii $C E$ and $C F$, being perpendicular to the common tangent at $C(\$ 2, \mathrm{I}$), are in the same straight line. Continue the curre $A C$ to D, where its tangent $O D$ becomes parallel to $B K$, and consequently the radius $D E$ parallel to $B F$. Then if the chords $C D$ and $C B$ be drawn, we have the angle $C E D$ $=C F B$; whence $E C D$, the half-supplement of $C E D$, is equal to $F^{\prime} C B$, the half-supplement of $C F B$. But $E C D$ cannot be equal to $F C B$, unless ($C 1$) coincides with $C B$. Therefore the line $B D$ prolueed passes through the common tangent point C
42. Problem. To find a limit in one direction of each radius of a compound curve.

Solution. Let $A I$ and $B I$ (fig. 11) be the tangents of the curve. Through the intersection point I, draw $I M$ bisecting the angle $A I B$. Draw $A L$ and $B M$ perpendicular respectively to $A I$ and $B I$, meeting $I M$ in L and M. Then the radius of the branch commencing on the shorter tangent $A I$ must be less than $A L$, and the radius of the branch commencing on the longer tangent $B I$ must be greater than $B M$. For suppose the shorter radius to be made equal to $A L$, and make $I N=A I$, and join $L N$. Then the equal triangles $A I L$ and $N I L$ give $A L=L N$; so that the curve, if continued, will pass through N, where its tangent will coincide with $I N$. Then ($\$ 41$) the common tangent point would be the interscetion of the straight line through B and N with the first curve; but in this case there can be no intersection, and therefore no common tangent point. Suppose next, that this radius is greater than $A L$, and continue the curve, until its tangent becomes parallel to $B I$. In this case the extremity of the
curve will fall outside the tangent $B I$ in the line $A N$ produced, and a straight line through B and this extremity will again fail to intersect the curve already drawn. As no common tangent point can be found when this radius is taken equal to $A L$ or greater than $A L$, no compound curve is possible. This radius must, therefore, be less than $A L$. In a similar manner it might be shown, that the radius of the other branch of the curve must be greater than $B M$. If we suppose the tangents $A I$ and $B I$ and the intersection angle I to be known, we have ($\$ 5) A=A I$ cot. $\frac{1}{2} I$, and $B M=B I$ cot. $\frac{1}{2} 1$. These values are. therefore, the limits of the radii in one direction
43. If nothing were given but the position of the tangents and the tangent points, it is evident that an indefinite number of different compound curves might connect the tangent points; for the shorter radius might be taken of any léngth less than the limit found above, and a corresponding value for the greater could be found. Some other condition must, therefore, be introduced, as is done in the following problems.
44. Problemm. Given the line $A B=a$ (fig. 11), which joins the fixed tangent points A and B, the angle $B A I=A$, the angle $A B I=$ B, and the first rauius $A E=R$, to find the second radius $B F=R^{\prime}$ of a compound curve to unite the tangents $H A$ and $B K$.

Solution. Suppose the first curve to be run with the given radius from A to D, where its tangent $D O$ becomes parallel to $B I$, and the angle $I A D=\frac{1}{2}(A+B)$. Then ($\$ 41$) the common tangent point C is in the line $B D$ produced, and the chord $C B=C D+$ $B D$. Now in the triangle $A B D$ we have $A B=a, A D=2 R$ $\sin . \frac{1}{2}(A+B)(\S 69)$, and the included angle $D A B=1 A B-$ $I A D=A-\frac{1}{2}(A+B)=\frac{1}{2}(A-B)$. Find in this triangle (Tab. X. 14 and 12) the angle $A B D$ and the side $B D$. Find also the angle $C B I=B-A B D$.

Then (§69) the chord $C B=2 R^{\prime} \sin . C B I$, and the chord $C D=$ $2 R \sin . C D O=2 R \sin . C B I$. Substituting these values of $C B$ and $C D$ in the equation found above, $C B=C D+B D$, we have ${ }^{2} R^{\prime} \sin . C B I=2 R \sin . C B I+B D$;

2F $\quad \cdot R^{\prime}=R+\frac{B D}{2 \sin \cdot C B I}$
When the angle B is greater than A, that is, when the greater radius is given, the solution is the same, except that the angle $D A B=$
$\frac{1}{2}(B-A)$, and $C B I$ is found by Enbtracting the supplemient of $A B D$ from B. We shall also find $C B=C D-B D$, and consequensly $r^{\prime}=R-\frac{B D}{2 \sin . C B I}$.

If more convenient, the point D may be determined in the field, by laying off the angle $I A D=\frac{1}{2}(A+B)$, and measuring the distance $\therefore D=2 R \sin \cdot \frac{1}{2}(A+B) . B D$ and $C B I$ may then be measured, insteal of leing calculated as above.

Example. Given $a=950, A=8^{\circ}, B=7^{\circ}$, and $R=3000$, to n̂nd R^{\prime}. Here $A D=2 \times 3000 \sin$. $\frac{1}{2}\left(8^{\circ}+7^{\circ}\right)=783.16$, and $D A B=$ $\frac{1}{2}\left(8^{\circ}-7^{\circ}\right)=30^{\prime}$. Then to find $A B D$ we have

$$
\begin{array}{rlrl}
A B-A D & =166.84 & 2.222304 \\
\frac{1}{2}(A D B+A B D) & =89^{\circ} 45^{\prime} & \text { tan. } 2.360186 \\
A B+A D & =1733.16 & \frac{4.582480}{3.23883!} \\
\frac{1}{2}(A D B-A B D) & =87^{\circ} 24^{\prime} 17^{\prime \prime} & \text { tan. } \overline{1.343641} \\
\therefore A B D & =2^{\circ} 20^{\prime} 43^{\prime \prime} &
\end{array}
$$

Next, to find $B D$,

$$
\begin{array}{rlrl}
A D & =783.16^{\prime} & 2.893849 \\
D A B & =30^{\prime} & \sin .7 .94084 ? \\
\hline & & 0.834691 \\
A B D & =2^{\circ} 20^{\prime} 43^{\prime \prime} & \sin .8 .611948 \\
B D & =167.01 & & 2.222743 \\
B-A B D=C B I & =4^{\circ} 39^{\prime} 17^{\prime \prime} & \sin .8 .902292 \\
2\left(R^{\prime}-R\right) & =2058.03 & & 3.313451 \\
\therefore R^{\prime}-R & =1029.01 & & \\
\therefore R^{\prime}=3000+1029.01 & =4029.01 & &
\end{array}
$$

To find the central angle of each branch, we have $C F B=2 C B I$ $=9^{\circ} 18^{\prime} 34^{\prime \prime}$, which is the central angle of the second branch; and $A E C=A E D-C E D=A+B-2 C B I=5^{\circ} 41^{\prime} 26^{\prime \prime}$, which is the central angle of the first branch
45. Problem. Given (fig. 11) the tangents $A I=T, B I=T^{\prime}$, the angle of intersection $=I$, and the first radius $A E=R$, to find the sccond radius $B F=R^{\prime}$.

Solution. Suppose the first curve to be run with the given radius from A to 1 , where its tangent $D O$ becomes parallel to $R I$. Through
D draw $D P$ parallel to $A I$, and wa have $1 P=D O=A O=$ $R \tan$. $\frac{1}{2} I(\S 4)$. Then in the triangle $D P B$ we have $D P=I 0=$ $A I-A O=T-R \tan \cdot \frac{1}{2} I, B P=B I-I P=T^{\prime}-R \tan \cdot \frac{1}{2} I$, and the included angle $D P B=A I B=180^{\circ}-1$. Find in this triangle the angle $C B 1$, and the side $B D$. The remainder of the solution is the same as in $\$ 44$. The determination of the point D in the field is also the same, the angle $I A D$ being here $=\frac{1}{2} I$. When B is gleater than A, that is, when the greater radius is given, the solution is the same, except that $D P=R \tan \cdot \frac{1}{2} I-T$, and $B P=R \tan . \frac{1}{2} l$ $-T^{\prime}$.

Example. Given $T=447.32, T^{\prime}=510.84, I=15^{\circ}$, and $R=3000$, to find R^{\prime}. Here $R \tan$. $\frac{1}{2} I=3000 \tan .7 \frac{10}{2}=394.96, D P=447.32$ $-394.96=52.36, B P=510.84-394.96=115.88$, and $D P B=$ $180^{\circ}-15^{\circ}=165^{\circ}$. Then (Tab. X. 14 and 12)

$$
\begin{array}{rlrl}
B P-D P & =63.52 & 1.802910 \\
\frac{1}{2}(B D P+P B D) & =7^{\circ} 30^{\prime} & \tan .9 .119429 \\
B P+D P & =16824 & & 0.922339 \\
\frac{1}{2}(B D P-P B D) & =2^{\circ} 50^{\prime} 44^{\prime \prime} & \tan .8696410 \\
\therefore P B D=C B I & =4^{\circ} 39^{\prime} 16^{\prime \prime} &
\end{array}
$$

Next, to find $B D$,

$$
\begin{array}{rlr}
D P & =52.36 & \frac{1.719000}{} \\
D P B & =15^{\circ} & \sin .9 .412996 \\
P B D & =4^{\circ} 39^{\prime} 16^{\prime \prime} & \sin .13 .909266 \\
B D & =167.005 & \frac{2.222730}{2.1396}
\end{array}
$$

1 be tangents in this example were calculated from the example in 144. The values of $C B I$ and $B D$ here found differ slightly from those obtained before. In general, the triangle $D B P$ is of better form for accurate calculation than the triangle $A D B$.
46. If no circumstance determines either of the radii, the condition may be introduced, that the common tangent shall be parallel to the line joining the tangent points.

Problem. Given the line $A B=a$ (fig. 12), which unites the fixed tangent points A and B, the angle $1 A B=A$, and the angle $A B I=B$, to find the radic $A E=R$ arid $B F=R^{\prime}$ of a compound surve, having the common tangent D) parallel to $A B$

Solution. Let $A C$ and $B C$ be the two brawches of the requirsid curve, atd draw the chords ΛC and $B C$. These chords bisect the

angles A and B; for the angle $D A C=\frac{1}{2} I D G=\frac{1}{2} I A B$, and the angle $G B C=\frac{1}{2} D G I=\frac{1}{2} A B I$. Then in the triangle $A C B$ we bave $A C: A B=\sin$. $A B C: \sin$. $A C B$. But $A C B=180^{\circ}-$ $(C A B+C B A)=180^{\circ}-\frac{1}{9}(A+B)$, and as the sine of the supplement of an angle is the same as the sine of the angle itself, $\sin . A C B=\sin . \frac{1}{2}(A+B)$. Therefore $A C: a=\sin . \frac{1}{2} B: \sin$. $\frac{1}{2}(A+B)$, or $A C=\frac{a \sin \cdot \frac{1}{2} B}{\sin \cdot \frac{1}{2}(A+B)}$. In a similar manner we should find $B C=\frac{a \sin \cdot \frac{1}{2} A}{\sin \cdot \frac{1}{2}(A+B)}$. Now we have (§68) $R=\frac{\frac{1}{2} A C}{\sin \frac{1}{2} A}$, and $R^{\prime}=\frac{\frac{1}{2} B C}{\sin \cdot \frac{1}{2} B}$, or, substituting the values of $A C$ and $B C$ just found.
स2सी $R=\frac{\frac{1}{2} a \sin \cdot \frac{1}{2} B}{\sin \cdot \frac{1}{2} A \sin \cdot \frac{1}{2}(A+B)} ; R^{\prime}=\frac{\frac{1}{2} a \sin \cdot \frac{1}{2} A}{\sin \cdot \frac{1}{2} B \sin \cdot \frac{1}{2}(A+B)}$.
Example. Given $a=950, A=8^{\circ}$, and $B=7^{\circ}$, to find R and R^{\prime} Here

$$
\begin{array}{rlr}
\frac{1}{2} a & =475 & \\
\frac{1}{2} B & =3^{\circ} 30^{\prime} & \\
& & \begin{array}{l}
2.676194 \\
\frac{1}{2} A .785675 \\
\frac{1}{2} A
\end{array} \\
=4^{\circ} & \sin .8 .843585 & 1.462369 \\
\frac{1}{2}(A+B) & =7^{\circ} 30^{\prime} & \sin .9 .115698 \\
R & \underline{ } & \\
R & & \\
\hline
\end{array}
$$

iransposing these same logarithms according to the formula for R^{i} fe hare

$$
\begin{aligned}
\frac{1}{2} a & =475 \\
\frac{1}{2} A & =4^{\circ}
\end{aligned}
$$

£. 676694
$\sin .8 .843585$
1.520279

$$
\begin{array}{rr}
\frac{1}{2} B=3^{\circ} 30^{\prime} & \sin .3 .785675 \\
\frac{1}{2}(A+B)=7^{\circ} 30^{\prime} & \sin .9115698 \\
\hline
\end{array}
$$

7.901373

$$
R^{\prime}=4158.21
$$

3.618906
47. Probleasa. Given the line $A B=a$ (fig. 12), which unites the fixed tangent points A and B, and the tangents $A I=T$ and $B I=T^{\prime}$, io find the tangents $A D=x$ and $B G=y$ of the two brancles of a com. pound curve, having its common tangent D G parallel to $A B$.

Solution. Since $D C=A D=x$, and $C G=B G=y$, we have $\square G=x+y$. Then the similar triangles $I D G$ and $I A B$ give $I D: I A=D G: A B$, or $T-x \cdot T=x+y: a$. Therefore uT-ax=Tx+Ty(1). Alsr \quad ク $: A I=B G: B I$, or $x: T=y: T^{\prime}$. Thercfore $T y=T r\left({ }^{\circ}\right)$. Substituting in (1) the value of $T y$ in (2), we have $a T^{\prime}-a x=T r+T^{\prime \prime} x$, or $a x+T x+$ $T^{\prime} x=a T$;

중

$$
\therefore x=\frac{a T}{a+T+T^{\prime \prime}}
$$

and, since from (2), $y=\frac{T^{\prime} x}{T}$,
(x)

$$
y=\frac{a T}{a+T+T^{\prime}}
$$

The intersection points D and G and the common tangent point C are now easily obtained on the ground, and the radii may be found by the usual methods. Or, if the angles $I A B=A$ and $A B I=B$
have been measured or calculated, we have ($\$ 5$) $R=x \cot \cdot \frac{1}{2} A$, and $R^{\prime}=y$ cot. $\frac{1}{2} B$. Substituting the values of x and y found above, wo have $R=\frac{a T \cot \frac{1}{2} A}{a+T+T^{\prime}}$, and $R^{\prime}=\frac{a T^{\prime} \cot \frac{1}{2} B}{a+T^{\prime}+T^{\prime}} .^{*}$

Example. Given $a=500, T=250$, and $T^{\prime}=290$, to find x and y Here $a+T+T^{\prime}=500+250+290=1040$; whence $x=500 \times$ $250 \div 1040=120.19$, and $y=500 \times 290 \div 1040=139.42$.
43. Problema. Given the tangents $A I=T, B I=T^{\prime}$, and the angle of intersection 1 , to unite the tangent points A and B (fiy. 13) by a compound curve, on condition that the two branches shall have their angles of intersection $\perp D G$ and $I G D$ equal.

Sututum. Since $1 D G=1 G D=\frac{1}{2} 1$, we have $1 D=1 G$. Rep. resent the line $I \nu=I G$ by x. Then if the perpendicular $I H$ be let

[^3]fall from I, we have (Tab. X. 11) $D H=I D \operatorname{cos.} I D G=x \cos \frac{1}{2} I$, and $D G=2 x \cos \frac{1}{2} I$. But $D G=D C+C G=A D+B G=$ $T-x+T^{\prime}-x=T+T^{\prime}-2 x$. Therefore $2 x \cos . \frac{1}{2} I=$ $T+T^{\prime}-2 x$, or $2 x+2 x \cos \frac{1}{2} I=T^{\prime}+T^{\prime} ;$ whence $x=$ $\frac{1(T+T)}{1+\cos \cdot \frac{1}{2} I}$; or (Tab. X. 25)

L्यु刀 $\quad x=\frac{\frac{1}{4}\left(T+T^{\prime}\right)}{\cos ^{2} \frac{1}{4} I}$
The tangents $A D=T-x$ and $B G=T^{\prime}-x$ are now readily found. With these and the known angles of intersection, the radii ot deffection angles may be found ($\$ 5$ or $\$ 11$) This method answers very well, when the given tangents are nearly equal; but in general the preceding method is preferable.

Example. Given $T=480, T^{\prime}=500$, and $I=18^{\circ}$, to find x. Hers

$$
\begin{array}{rlr}
\frac{1}{4}\left(T+T^{\prime}\right) & =245 & 2.389166 \\
\frac{1}{4} I & =4^{\circ} 30^{\prime} & 2 \cos .9 .997318 \\
x & =246.52 & \underline{2.391848}
\end{array}
$$

Then $A D=480-246.52=233.48$, and $B G=500-246.52=$ 25.3.48. The angle of intersection for both branches of the curve being y°, we find the radii $A E=233.48 \cot 4^{\circ} 30^{\prime}=2956.65$, and $B F==$ 253.48 cot. $4^{\circ} 30^{\prime}=3220.77$.

Article III. - Turnouts and Crossings.

49. The usual mode of turning off from a main track is by switching a pair of rails in the main track, and putting in a turnout curve tangent to the switched rails, with a frog placed where the outer rail of the turnout crosses the rail of the main track. ΛB (fig. 14) represents one of the rails of the main track switched, $B F^{\prime}$ represents the outer rail of the turnout curve, tangent to $A B$, and F shows the posiien of the frog. The switch angle, denoted by S, is the angle $D A B$, rurned by the switched rail $A B$ with $A D$, its former position in the main track. The frog angle, denoted by F, is the angle $G F M$ made hy the crossing rails, the direction of the turnout rail at F being the tangent F, I at that point. In the problems of this article the gange of the track $D C$, denoted by g, and the distance $D B$, denoted by d are supposed to be known. The switch angle S is also supposed to be known, since its sine (Tab. X. 1) is equal to divided by the lengtı,
of the switched rail. If, for example, the rail is 18 feet in lengih and $d=.42$, we have $S=1^{\circ} 20^{\prime}$.

A. Turnout from Straight Lines.

50. Problenn. Given the radius R of the centre line of a turnota (fig. 14), to find the froy angle GF.M=F and the chord B F.

Solution. Through the sentre E draw $E K$ parallel to the ? i track. Sraw $B H$ and $\vec{F} K$ perpendicular to $E K$, and join \mathscr{E}. Then, since $E F$ is perpendicular so $F M$ and $F K$ is perpendicular to $F G$, the angle $E F K=G F M=F$; and since $E B$ and $B H$ are respectively perpendicular to $A B$ and $A D$, the angle $E B H=D A E$ $=S$. Now the triangle $E F E$ gives (Tab. X. 2) cos. $E F K=\frac{F K}{\square F}$ But $E F$, the radius of the outer rail, is equal to $R+\frac{1}{2} g$, and $\left.\xi^{\prime} \tilde{K}=C H=B H-E C=B E \cos . E B H-B C=, R+\frac{1}{2} g\right)$ ('os. $S-(g-d)$. Substituting these values, we have $\cos . E F K=$ $\frac{\left(R+\frac{1}{2} g\right) \cos S-(\xi-d)}{K+\frac{1}{2} g}$, or

$$
\text { 즁 } \quad \cos . F=\cos . S-\frac{g-d}{R+\frac{1}{2} g} .
$$

From this formula F may be found by the table of natural cosines To adapt it to calculation by logarithms, we may consider $g-d$ to be equal to $(g-d) \cos$. S, which will lead to no material error since
$g-d$ is very small, and $\cos . S$ almost equal to unity The value of cos. F then becomes

रस्ष $\quad \cos F=\frac{\left(R-\frac{1}{2} g+d\right) \cos . S}{R+\frac{1}{2} g}$.
To find $B F$, the right triangle $B C F$ gives (Tab. X. 9) $B F=$ $\frac{B C}{\sin \cdot B F C}$. But $B C=y-d$ and the angle $B F C=B F E$ $C F E=\left(90^{\circ}-\frac{1}{2} B E F\right)-\left(90^{\circ}-F\right)=F-\frac{1}{2} B E F$. But $B E F=B L F-E B L=F-S$. Therefore $B F C=F-$ $\frac{1}{2}(F-S)=\frac{1}{2}(F+S)$. Substituting these values in the formula ior $B F$, we have

通

$$
B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}
$$

By the abuve formula the columns headed F and $B F$ in Table V are calculated.

Example. Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}$, and $R=500$, to find F and $B F$. Here nat. cos. $S=.999729, g-d=4.28, R+\frac{1}{2} g$ $=502.35$, and $4.28 \div 50235=.008520$. Therefore nat. cos. $F=$ $999729-.008520=.991209$, which gives $F=7^{\circ} 36^{\prime} 10^{\prime \prime}$. Next, to find $B F$,

$$
\begin{array}{rlrl}
g-d & =4.2 \mathrm{~S} & 0.631444 \\
\frac{1}{2}(F+S) & =4^{\circ} 28^{\prime} 5^{\prime \prime} & \sin .8 .891555 \\
B F & =54.94 & & \underline{1.739889}
\end{array}
$$

51. Prolslean. Given the frog angle $G F M=F$ (fig. 14), to find the radius R of the centre line of a turnout, and the chord $B F$.
Sclution. From the preceding solution we have cos. $F=$ $\frac{\left.\alpha+\frac{1}{2} g\right) \cos . S-(g-d)}{R+\frac{1}{2} g}$. Therefore $\left(R+\frac{1}{2} g\right) \cos . F=\left(R+\frac{1}{2} g\right)$ rns. $S-(g-d)$, or
중

$$
R+\frac{1}{2} g=\frac{g-d}{\cos S-\cos . F}
$$

For calculation by logarithms this becomes (Tab. X. 29)
『सํㅠ) $\quad R+\frac{1}{2} g=\frac{\frac{1}{2}(g-d)}{\sin \cdot \frac{1}{2}(F+S) \sin \cdot \frac{1}{2}(F-S)}$.
Having thus found $R+\frac{1}{2} g$, we find R by subtracting $\frac{1}{2} g, B F$ is found, as in the preceding problem, by the formula

$$
R F=\frac{q-d}{\sin \cdot \frac{1}{2}\left(l^{\prime}+S^{\prime}\right)}
$$

Example. Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}$, and $F=7^{\circ}$, to ind R. Here

$$
\begin{array}{rlrl}
\frac{1}{2}(g-d) & =2.14 & & 0.330414 \\
\frac{1}{2}(F+S) & =4^{\prime} 10^{\prime} & \sin 8.861283 \\
\frac{1}{2}(F-S) & =2^{\circ} 50^{\prime} & \sin 8.693998 \\
& & \\
R+\frac{1}{2} g & =595.85 & & \\
R & & & \\
R & .555281 \\
R & .75133
\end{array}
$$

52. roblem. To find mechanically the proper position of a given frog.
Solution. Denote the length of the switch rail by l, the length of the frog by f, and its width by w. From B as a centre with a radius $B H=2 l$, describe on the ground an arc $G H K^{\prime}$ (fig. 15), and from the inside of the rail at G measure $G H=2 d$, and from H measure $H K$ such that $H K: B H=\frac{1}{2} w: f$, or $H K: 2 l=\frac{1}{2} w: f$; that is, $H K=\frac{w l}{f}$. Then a straight line through B and the point K will strike the inside of the other rail at F, the place for the point of the

riog. For the angle $H B K$ has been made equal to $\frac{1}{2} F$, and if $B M$ be drawn parallel to the main track, the angle $1 H B H$ is seen to be equal to $\frac{1}{2} S$. Therefore, $M B K=B F C=\frac{1}{2}(F+S)$, and this was shown (§50) to be the trine value of $B F^{\prime} C$.
53. If the turnout is to reverse, and become parallel to the main track, the problems on reversed curves already given will in general be sufficient. Thus, if the tangent points of the required curre are fixed, the common radius may be found by $\$ 40$ If the tangent point at the switch is fixed, and the common radius given. the reversing cint and the other tangent point may be found by \& $3 \overline{7}$, the change of direction of the two tangents being here equal to S. But when the
frog angle is given, or determined from a given first radius, and the point of the frog is taken as the reversing point, the radius of the second portion may be found by the following method.
54. Problem. Given the frog angle F and the distance $H B=b$ (fig. 16) between the main track and a turnout, to find the radius R^{\prime} of the second branch of the turnout, the reversing point being taken opposite F, the point of the frog.

Solution. Let the are $F B$ be the inner rail of the second branch, $F G=R^{\prime}-\frac{1}{2} g$ its radius, and B the tangent point where the turnout becomes parallel to the main track. Now since the tangent $F K$ is one side of the frog produced, the angle $H F K=F$, and since the angle of intersection at K is also equal to $F, B F K=\frac{1}{2} F(\$ 2, \mathrm{II}$.) ; whence $B F H=\frac{1}{2} F$. Then (§68) $F G=\frac{\frac{1}{2} B F}{\sin \cdot B F K}$, or $R^{\prime}-\frac{1}{2} g=$ $\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2} F}$. But $B F=\frac{H B}{\sin . B F H}(\mathrm{Tab} . \mathrm{X} .9)$, or $\frac{1}{2} B F=\frac{\frac{1}{2} b}{\sin \cdot \frac{1}{2} F}$. Sub stituting this value of $\frac{1}{2} B F$, we have

$$
\text { tक्ष } \quad R^{\prime}-\frac{1}{2} g=\frac{\frac{1}{2} b}{\sin ^{2} \frac{1}{2} F}
$$

In measuring the distance $H B=b$, it is to be observed, that the widths of hoth rails must be included.

Example. Given $b=62$ and $F=8^{\circ}$, to find R^{\prime}. Here

| $\frac{1}{2} b$ | $=3.1$ | 0.491362 |
| ---: | :--- | ---: | :--- |
| $\frac{1}{2} F$ | $=4^{2}$ | $\sin .8 .843585$ |
| $\frac{1}{2} B F^{\prime}$ | $=44.44$ | $\frac{1.64777 \%}{2}$ |
| $\frac{1}{2} F$ | $=4^{\prime}$ | $\sin .8 .843585$ |
| $R^{\prime}-\frac{1}{2} g$ | $=637.08$ | $\underline{2.804192}$ |
| $\cdot R^{\prime}$ | $=639.43$ | |

B. Crossings on Straight Lines.

55. When a turnout enters a parallel main track by a second switen it becomes a crossing. As the switeh angle is the same on both tracks a crossing on a straight line is a reversed curve between parallel tar: gents. Let $I I D$ and $N K$ (fig. 17) be the centre lines of two paralle tracks, and $H A$ and $B K$ the direction of the switehed rails. If now the tangent points A and B are fixed, the distance $A B=a$ may be measured, and also the perpendicular distance $B I^{\prime}=b$ between the tangents $H P$ and $B K$. Then the common rarius of the crossing $A C B$ may be found by $\oint 33$; or if the radius of one part of the crossing is fixed, the second radius may be found by $\$ 34$. But if both frog, angles are given, we have the two radii or the common radius of a crossing given, and it will then be necessary to determine the distance $A B$ between the two tangent points.
56. Problens. Given the perpendicnlar distance $G N=b$ (fig. 17) between the centre lines of two parallel tracks, und the radii $E C=R$ and $C F=R^{\prime}$ of a crossing, to find the chords $A C$ and $B C$.

Solution. Draw $E G$ perpendicular to the main track, and $A L$, $C M$, and $B L^{\prime}$ parallel to it. Denote the angle $A E C$ by E. Then, since the angle $A E L=A H G=S$, we have $C E L=E+S$, and in the right triangle $C^{\prime} E M$ (Tab. $X .2$), $C E$ cos. $C E M=$ $R \cos (E+S)=E M=E L-L M$. But $E L=A E \cos . A E L$ $=R \cos . S$, and $L M: L^{\prime} M=A C: B C$. Now $A C: B C=$ $E C: C F=R: R^{\prime}$. Therefore, $L M: L^{\prime} M=R: R^{\prime}$, or $L M: L M$ $+L^{\prime} M=R: R+R^{\prime}$; that is, $L M: h-2 d=R: R+R^{\prime}$, whence $L M=\frac{R(b-2 d)}{R+R^{\prime}} . \quad$ Substituting these values of $E L$ and $L M$ in the equation for $R \cos .(E+S)$, we have $R \cos .(E+S)=R \cos S-$ $\frac{R(b-2 d)}{R+R^{\prime}}$,
(1) $\quad \therefore \cos (E+S)=\cos S-\frac{b-2 d}{12+k^{\prime}}$.

Having thus found $E+S$, we have the angle E and also its equal OFB. Then (§ 69)
[妾 $\quad ~ A C=2 R \sin \cdot \frac{1}{2} E ; \quad B C=2 R^{\prime} \sin \cdot \frac{1}{2} E$.
We have also $A B=A C+B C$, since $A C$ and $B C$ are in the game straight line ($\S 32$), or $A B=2\left(R+R^{\prime}\right) \sin \frac{1}{2} E$.

When the two radii are equal, the same formulæ apply by making $R^{\prime}=R$. In this case, we have

Tर्ه $\quad \cos (E+S)=\cos S-\frac{b-2 d}{2 R}$;

- ⿻ㅏㅇ

$$
A C=B C=2 R \sin \cdot \frac{1}{2} E .
$$

Example. Given $d=.42, g=4.7, S=1^{\circ} 20^{\prime}, b=11$, and the an. gles of the two frogs each 7°, to find $A C=B C=\frac{1}{2} A B$. The common radius R, corresponding to $F=7^{\circ}$, is found ($\$ 51$) to be 593.5. Then $2 R=1187, b-2 d=10.16$, and $10.16 \div 1187=$.00856. Therefore, nat. cos. $(E+S)=.99973-.00856=.99117$; whence $E+S=7^{\circ} 37^{\prime} 15^{\prime \prime}$. Subtracting S, we have $E=6^{\circ} 17^{\prime} 15^{\prime \prime}$ Next

$$
\begin{array}{lrl}
2 R & =1187 & 3.074451 \\
\frac{1}{2} E=3^{\circ} 8^{\prime} 37 \frac{1}{2} \prime \prime & \sin .8 .739106 \\
A C=65.1 & \underline{!813557}
\end{array}
$$

C. Turnout fiom Curves.

57. Problenn. Given the radius R of the centre line of the mair track and the frog angle F, to determine the position of the frog by means of the chord $B F$ (figs. 18 and 19), and to find the radius R^{\prime} of the centre. line of the turnout.

Solution. I. When the turnout is from the inside of the curve (fig. 18). Let $A G$ and $C F$ be the rails of the main track, $A B$ the switch rail, and the arc $B F$ the outer rail of the turnout, crossing the inside rail of the main track at F. Then, since the angle $E F K$ has its sides perpendicular to the tangents of the two curves at F, it is equal to the acute angle made by the crossing rails, that is, $E F K=F$. Als, $E B L=S$. The first step is to find the angle $B K F$ denoted by K. To find this angle, we have in the triangle $B F K$ (Tab. X. 14), $B K+$ $K F: B K-K F=\tan \frac{1}{2}(B F K+F B K): \tan \cdot \frac{1}{2}(B F K-F B K)$. But $B K=R+\frac{1}{2} g-d$, and $K F=R-\frac{1}{2} g$. Therefore, $B K+$ $K F=2 R-d$, and $B K-K F=g-d$. Moreover, $B F K=$ $B F E+E F K=B F E+F$, and $F B K=E B F-E B K=$ $B F E-S$. Therefore, $B F K-F B K=F+S$. Lastly, $B F R$ $+F B K=180^{\circ}-K$. Substituting these values in the preceding - roportion. te have $2 R-d: g-d=\tan .\left(90^{\circ}-\frac{1}{2} K\right): \tan . \frac{1}{2}(F+S)$,
or tan. $\left(90^{\circ}-\frac{1}{2} K\right)=\frac{(2 R-d) \tan \cdot \frac{1}{2}(F+S)}{g-d}$. But tan. $\left(90^{\circ}-\frac{1}{2} K\right)$ $=\cot \cdot \frac{1}{2} K=\frac{1}{\tan \cdot \frac{1}{2} K}$;

एस $\quad \cdot \tan \frac{1}{2} K=\frac{g-d}{(2 R-d) \tan \cdot \frac{1}{2}(F+S)}$.
Next, to find the chord $B F$, we have, in the triangle $B F C$ (Tab. X. 12), $B F=\frac{B C \sin . B C F}{\sin . B F C}$. But $B C=g-d$, and $B C F=$ $180^{\circ}-F C K=180^{\circ}-\left(90^{\circ}-\frac{1}{2} K\right)=90^{\circ}+\frac{1}{2} K$, or $\sin . B C F$ $=\cos . \frac{1}{2} K$. Moreover, $B F C=\frac{1}{2}(F+S)$; for $B F K=K F C$ $+B F C$, and $F B K=K C F-B F C=K F C-B F C$. Therefore, $B F K-F B K=2 B F C$. But, as shown above, $B F K-$ $F B K=F+S$. Therefore, $2 B F C=F+S$, or $B F C=\frac{1}{2}(F+S)$. Substituting these values in the expression for $B F$, we have

ET

$$
B F^{\prime}=\frac{(g-d) \cos \cdot \frac{1}{2} K}{\sin \cdot \frac{1}{2}\left(F+S^{\prime}\right)}
$$

Lastly, to find R^{\prime}, we have (\$68) $R^{\prime}+\frac{1}{2} g=E F=\frac{\frac{1}{2} B F}{\sin \frac{1}{2} B E F}$ But $B E F=B L F-E B L$, and $B L F=L F K+L K F=$ $F+K$. Therefore, $B E F=F+K-S$, and

$$
\text { Wis } \quad R^{\prime}+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2}(F+K-S)}
$$

II. When the turnout is from the outside of the curve, the preceding solution requires a few modifications. In the present case, the angle $E F K^{\prime}=F$ (fig. 19) and $E B L=S$. To find K, we have in the triangle $B F K, K F+B K: K F-B K=\tan . \frac{1}{2}(F B K+$ $B F K): \tan \cdot \frac{1}{2}(F B K-B F K)$. But $K F=R+\frac{1}{2} g$, and $B K$ $=R-\frac{1}{2} g+d$. Therefore, $K F+B K=2 R+d$, and $K F-$ $B K=g-d . \quad$ Moreover, $F B K=180^{\circ}-F B L=180^{\circ}-$ $(E B F-E B L)=180^{\circ}-(E B F-S)$, and $B F K=180^{\circ}-$ $B F K^{\prime}=180^{\circ}-\left(B F E+E F K^{\prime}\right)=180^{\circ}-(E B F+F)$. 'Therefore, $F B K-B F K=F+S . \quad$ Lastly, $F B K+B F K=$ $180-K$. Substituting these values in the preceding proportion, we have $2 R+d: g-d=\tan .\left(90^{\circ}-\frac{1}{2} K\right): \tan . \frac{1}{2}(F+S)$, or $\tan .\left(90^{\circ}-\frac{1}{2} K\right)=\frac{(2 R+d) \tan \cdot \frac{1}{2}(F+S)}{g-d}$. But tan. $\left(90^{\circ}-\frac{1}{2} K\right)=$ eot. $\frac{1}{2} K=\begin{gathered}1 \\ \tan \frac{1}{2} K\end{gathered}$;

$$
E \cdot \tan \cdot \frac{1}{2} K=\frac{g-d}{(2 R+d) \tan \cdot \frac{1}{2}(F+S)}
$$

Next to find $B F$, we have, in the triangle $B \Gamma \lll$ $\frac{B C \sin . B C F}{\sin B F C}$. But $B C=g-d$, and $B C F=90^{\circ}$

$\sin . B C F=\cos \cdot \frac{1}{2} K$. Moreover, $B F C=\frac{1}{2}(F+S)$; for $B F R$ $=K F C-B F C$, and $F B K=K C F+B F C=K F C+B F C$. Therefore, $F B K-B F K=2 B F C$. But, as shown above, $F B K-$ $B F K=F+S$. Therefore, $2 B F C=F+S$, or $B F C=\frac{1}{2}(F+S)$. Substituting these values in the expression for $B F$, we have, as before.

$$
\text { [장 } \quad B F=\frac{(g-d) \cos \cdot \frac{1}{2} K^{*}}{\sin \cdot \frac{1}{2}(F+S)}
$$

Lastly, to find R^{\prime}, we have ($(68) R^{\prime}+\frac{1}{2} g=E F=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2} B E F}$

* Since $\frac{1}{2} K$ is generally very small, an approximate valuz of $B F$ may be obtained by making $\cos . \frac{1}{2} K=1$. This gives $B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}$, which is identical with the formula for $B F$ in $\S 50$. Table V. will, therefore, give a close approximason to the value of $B F$ on curves also, for any value of F contained in the table

Bat $B E F=B L F-E B L$, and $B L F=L F K-L K F=$ $F-K$. Therefore, $B E F=F-K-S$, and
[右

$$
R^{\prime}+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2}\left(F^{\prime}-K-S\right)}
$$

Example. Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}, R=4583.75$, and $F^{\prime}=7^{\circ}$, to find the chord $B r^{\prime}$ and the radins R^{\prime} of a turnout from the sutside of the curve. Here

$$
\begin{aligned}
& g-d=4.28 \\
& 0.631444 \\
& 0.631444 \\
& 2 R+d=9167.92 \quad 3.962271 \\
& \frac{1}{2}(F+S)=4^{\circ} 10^{\prime} \quad \text { tan. } 8.862433 \\
& 2.824704 \\
& \sin .8 .861283 \\
& 1.770161 \\
& \frac{1}{2} K=22^{\prime} 1.8^{\prime \prime} \\
& B F=58.905 \\
& \tan 7.806740 \cos 9.999991 \\
& 1.770152 \\
& 2 \\
& \nmid\left(F-K-S^{\prime}\right)=2^{\circ} 2^{\prime \prime} 58.2^{\prime \prime} \\
& R^{\prime}+\frac{1}{2} y=684.47 \\
& \therefore R^{\prime}=682.12 \\
& 8.934796 \\
& 2.83535 \text { f }
\end{aligned}
$$

58. Problem. To find mechanically the proper position of a given frog.

Solution. The method here is similar to that already given, when the turnout is from a straight line ($\$ 52$). Draw $B M$ (figs. 18 and 19) parallel to $F C$, and we have $F^{\prime} B M=B F C=\frac{1}{2}(F+S)$, as just shown ($\$ 57$). This angle is to be laid off from $B M$; but as F is the point to be found, the chord $F C$ can be only estimated at first, and $B M$ taken parallel to it, from which the angle $\frac{1}{2}(F+S)$ may be laid off by the method of $\$ 52$. In this case, however, the first measure on the arc is d, and not $\stackrel{2}{d}$, since we have here to start from $B \nu$, and not from the rail. Having thus determined the point F approximatcly, $B M$ may be laid off more accurately, and F found anew.
59. When frogs are east to be kept on hand, it is desirable to have them of such a pattern that they will fill at the beginning or end of a certain rail; that is, the chord $B F$ is known, and the angle F is required.

Problem. Given the position of a frog by means of the chorl BP (figs. 14, 18, and 19), to determine the frog angle F.
Solution. The formula $B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}$, which is exaet on straight lines ($\$ 50$), and near enjugh on ordinary curves ($\$ 57$, note), gives
[共

$$
\sin \cdot \frac{1}{2}(F+S)=\frac{g-d}{B F}
$$

By this formula $\frac{1}{2}(F+S)$ may be found, and consequently F.
60. Problem. Given the radius R of the centre line of the main track, and the radius R^{\prime} of the centre line of a turnout, to find the frog angle F, and the chord $B F$ (figs. 18 and 19).

Solution. I. When the turnout is from the inside of the curve (fig. 18). In the triangle $B E K$ find the angle $B E K$ and the side $E K$. For this purpose we have $B E=R^{\prime}+\frac{1}{2} g, B K=R+\frac{1}{2} g-d$, and the included angle $E B K=S$. Then in the triangle $E F K$ we have $E K$, as just found, $E F=R^{\prime}+\frac{1}{2} g$, and $F K=R-\frac{1}{2} g \quad$ The frog angle $E F K=F$ nay, therefore, be found by formula 15 , Tab. X., which gives

$$
\text { IT, tan. } \frac{1}{2} F=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \text {, }
$$

where s is the half sum of the three sides, a the side $E K$, and b and c the remaining sides.

Find also in the triangle $E F K$ the angle $F^{\prime} E K$, and we have the angle $B E F=B E K-F E K$. Then in the triangle $B E F$ we have ($\$ 69$)

$$
\quad B F=2\left(R^{\prime}+\frac{1}{2} g\right) \sin \cdot \frac{1}{2} B E F \cdot{ }^{*}
$$

II. When the turnout is from the outside of the curve (fig. 19). In the triangle $B E K$ find the angle $B E K$ and the side $E K$. For this purpose we have $B E=R^{\prime}+\frac{1}{2} g, B K=R-\frac{1}{2} g+d$, and the included angle $E B K=180^{\circ}-S$. Then in the triangle $E F K$ wf have $E K$, as just found, $E F=R^{\prime}+\frac{1}{2} g$, and $F K=R+\frac{1}{2} g$. The angle $E F K$ may, therefore, be found by formula 15, Tab. X., which gives tan. $\frac{1}{2} E F K=\sqrt{\frac{(s-b)(s}{s(s-a)}}$. But the angle $E F K^{\prime}=F$

[^4]$=180^{\circ}-E F K$. Therefore $\frac{1}{2} F=90^{\circ}-\frac{1}{2} E F K$, and $\cot \frac{1}{2} F^{\prime}=1$ $\tan . \frac{1}{2} E F K$;
[为 $\quad \therefore$ cot. $\frac{1}{2} F=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$,
where s is the half sum of the three sides, a the side $E K$, and b and c the remaining sides.

Find also in the triangle $E F K$ the angle $F E K$, and we have the angle $B E F=F E K-B E K$. Then in the triangle $B E F$ we have ($\$ 69$)

$$
B F=2\left(R^{\prime}+\frac{1}{2} g\right) \sin \cdot \frac{1}{2} B E F .
$$

Example. Given $g=4.7, d=42, S=1^{\circ} 20^{\prime}, R=4583.75$, and $R^{\prime}=682.12$, to find F and the chord $B F$ of a turnout from the outside of the curve. Here in the triangle $B E K$ (fig. 19) we have $B E=$ $R^{\prime}+\frac{1}{2} g=684.47, B K=R-\frac{1}{2} g+d=4581.82$, and the angles $B E K+B K E=S=1^{\circ} 20^{\prime}$. Then

$$
B K-B E=3897.35
$$

$$
3.590769
$$

$$
\begin{array}{rlrl}
\frac{1}{2}(B E K+B K E) & =40^{\prime} & \tan \frac{8.065806}{1.656575} \\
B K+B E & =5266.29 \\
\frac{1}{2}(B E K-B K E)^{*} & =29.6029^{\prime} \quad \tan \cdot \frac{3.721505}{7.935070} \\
\therefore B E K & =1^{\circ} 9.6029^{\prime}
\end{array}
$$

$E K$ is now found by the formula $E K=\frac{B K \sin E B K}{\sin B E K}$, or $\log E K$ $=\log .4581 .82+\log . \sin .178^{\circ} 40^{\prime}-\log . \sin .1^{\circ} 9.6029^{\prime}=3.721491$, whence $E K=5266.12$.

Then to find F, we have, in the triangle $E F K, s=\frac{1}{2}(5266.12+$ $684.47+4586.10)=5268.34, s-a=2.22, s-b=4583.87$, and $s-c=682.24$.

$$
\begin{array}{rlr}
s-b & =4583.87 & \\
s-c & =682.24 & \\
s & =5268.34 & 3.721674 \\
s-a & =2.22 & \underline{0.346353} \\
& & \\
\frac{2.833937}{6.495170} \\
\frac{1}{2} F & =3^{\circ} 30 \\
\therefore F & =7^{\circ} &
\end{array}
$$

* This angle and the sine of 1096029^{\prime} below, are found by the method given in connection with Table XIII. If the ordinary interpolations had been used, we should have found $F=7 \circ 7$, whereas it should be $7 \circ$, since this example is the onnterse of that in § 57 .

To find $F E K$, we have s as before, but as a is here the side $F K$ opposite the angle sought, we have $s-a=682.24, s-b=458.387$, and $s-c=2.22$. Then by means of the logarithms just used, we find $\frac{1}{2} F^{\prime} E K=3^{\circ} 2^{\prime} 45^{\prime \prime}$. Sultracting $\frac{1}{2} B E K=34^{\prime} 48^{\prime \prime}$, we have $\frac{1}{2} B E F=2^{\circ} 27^{\prime} 57^{\prime \prime}$. Lastly, $B F^{\prime}=1368.94 \sin$. $\varrho^{\circ} 27^{\prime} 57^{\prime \prime}=$ 58.897.

The formula $B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}(\$ 57$, note) would give $B F=$ 58.906, and this value is even nearer the truth than that just found, owing, however, to no crror in the formulæ, but to inaccuracies incident to the calculation.
61. If the turnout is to reverse, in order to join a track parallel to the main track, as $A C B$ (fig. 20), it will be necessary to determine the reversing points C and B. These points will be determined, if we find the angles $A E C$ and $B F C$, and the chords $A C$ and $C B$.

62 Problem. (iven the radius $D K=R(f i g 20)$ of the centre line of the main track the common radius $E C=C F=R^{\prime}$ of the centre line of a turnout, and the distance $B G=b$ between the centre lines of the parallel tracks, to find the central angles AEC and BFC and the chords $A C$ and $B C$.

Solution. In the triangle $A E K$ fird the angle $A E K$ and the side
$E K$ For this purpose we have $A E=R^{\prime}, A K=R-d$, and the included angle $E A K=S$. Or, if the frog angle has been previously calculated by $\S 60$, the values of $A E K$ and $E K$ are already known.*

Find in the triangle $E F K$ the angles $E F K$ and $F E K$ For this purpose we have $E K$, as just found, $E F^{\prime}=2 R^{\prime}$, and $F^{\prime} K=R+$ $R^{\prime}-b$. Then $A E C=A E K-F E K$, and $B F C=E F K$. Lastly, (\$ 69)

FR $A C=2 R \sin \frac{1}{2} A E C ; \quad C B=2 R^{\prime} \sin \cdot \frac{1}{2} B F^{\prime} C$.
This solution, with a few obvious modifieations, will apply, when the turnout is from the outside of a curve.

1). Crossings on Curves.

63. When a turnout enters a parallel main track ly a second switch, t becomes a crossing. Then if the tangent points A and B (fig. 21) are fixed, the distance $A B$ must be measured, and also the angles which $A B$ makes with the tangents at A and B. The common radius of the crossing may then be found by $\$ 40$; or if one radius of the crossing is given, the other may be found by $\$ 38$. But if one tangent point A is fixed, and the common radius of the crossing is given, it will be neeessary to determine the reversing point C and the tangent point B. These points will be determined, if we find the angles $A E C$ and $B F C$, and the chords $A C$ and $C B$.
64. Problem. Given the radius $D K=R$ (fig. 21) of the centre line of the main track, the common radius $E C=C F=R^{\prime}$ of the centre Sine of a crossing, and the distance $D G=b$ between the centre lines of the purallel tracks, to find the central angles AEC and B F C and the chords $A C$ and $C B$.

Solution. In the triangle $A E K$ find the angle $A E K$ and the side $E K$. For this purpose we have $A E=R^{\prime}, A K=R-d$, and the ineluded angle $E A K=S$.

Find in the triangle $B F K$ the angle $B F K$ and the side $F K$. For this purpose we have $B F=R^{\prime}, B K=R-b+d$, and the included angle $F B K=180^{\circ}-S$.

Find in the triangle EFK the angles $F E K$ and $E F K$. For this

[^5]purpose we have $E K$ and $F K$ as just found, and $E F^{\prime}=2 R \prime$. Then $A E C=A E K-F E K$, and $B F C=E F K-B F K$. Lastly (\$ 69,)
[1C $A C=2 R^{\prime} \sin . \frac{1}{2} A E C ; \quad C B=2 R^{\prime} \sin . \frac{1}{2} B F^{\prime} C$.

Article IV.-Miscellaneous Problems.
65. Problem. Given $A B=a$ (fig. 22) and the perpendicular I; $C=b$, to find the radius of a curve that shall pass through C and the tangent point A.

Solution. Let O be the centre of the curve, and draw the radii $A O$ and $C O$ and the line $C D$ parallel to $A B$. Then in the right triangle $C O D$ we have $O C^{2}=C D^{2}+O D^{2}$. But $O C=R, C D=a$, and $O D=A O-A D=R-b$. Therefore, $R^{2}=a^{2}+(R-b)^{2}=$ $a^{2}+R^{2}-2 R b+b^{2}$, or $2 R b=a^{2}+b^{2}$;
[50

$$
\therefore R=\frac{a^{2}}{2 b}+\frac{1}{2} b .
$$

Example. Given $a=204$ and $b=24$, to find R. Here $R=$ $\frac{204^{2}}{2 \times \frac{24}{24}}+\frac{24}{2}=867+12=879$.
66. Corollary 1. If R and b are given to find $\Delta B=a$, that is, to determine the tangent point from which a curve of given radius

mast start to pass through a given point, we have (\$65) $2 R b=$ $a^{2}+b^{2}$, or $a^{2}=2 R b-b^{2}$;

[28

$$
\therefore a=\sqrt{b(2 R-b)} .
$$

Example. Given $b=24$ and $R=879$, to find a. Here $a=$ $\sqrt{24(1758-24)}=\sqrt{41616}=204$.
67. Corollary 2. If R and a are given, and b is required, we have ($\$ 65$) $2 R b=a^{2}+b^{2}$, or $b^{2}-2 R b=-a^{2}$. Solving this equation, we find for the value of b here required,
[50

$$
b=R-\sqrt{R^{2}-a^{2}}
$$

68. Problem. Given the distance $A C=c(f i g .22)$ and the angle $B A C=A$, to find the radius R or deflection angle D of a curve, that thall pass through C and the tangent point A.

Solution. Draw $O E$ perpendicular to $A C$. Then the angle $A O E$ $=\frac{1}{2} A O C=B A C=A(\S 2$, III. $)$, and the right triangle $A O E$ gives (Tab. X. 9) $A O=\frac{A E}{\sin . A O E}$;

सत्र

$$
\therefore R=\frac{\frac{1}{2} c}{\sin . A} .
$$

To find D, we have ($\S 9) \sin . D=\frac{50}{R}$. Substituting for R its value :ust found, we have $\sin . D=50 \div \frac{{ }^{\frac{1}{2} c} c}{\sin . ~} A$;
$158 \sin . D=\frac{100 \sin . A}{c}$.
Example. Given $c=285.4$ and $A=5^{\circ}$, to find R and D. Here $R=\frac{142.7}{\sin .5^{5}}=1637.3$; and $\sin . D=\frac{100 \sin .50}{255.4}=\frac{\sin .53}{2854}=\sin .1^{\circ} 45^{\prime}$ or $D=1045^{\prime}$.
69. Problems. Given the radius R or the defiection angle D of a curve, and the angle $B A C=A$ (fig. 22), made by any chord with the langent at A, to find the length of the chord $A C=c$.

Solution. If R is given, we have ($\$ 68$) $R=\frac{\frac{1}{2} c}{\sin \cdot A}$;
圂 $\quad \therefore c=2 R \sin . A$.
If D is given, we have ($\$ 68$) $\sin . D=\frac{100 \sin . A}{c}$;
I要 $\quad c==\frac{100 \sin . A}{\sin D}$.
This formula is useful for finding the length of chords, when a curve is laid out by points two, three, or more stations apart. Thus, suppose that the curve $A C$ is four stations long, and that we wish to find the length of the chord $A C$. In this case the angle $A=4 D$ and $c=$ $\frac{100 \sin .4 D}{\sin . D}$. By this method Table II. is calculated.

Example. Given $R=2455.7$ or $D=1^{\circ} 10^{\prime}$, and $A=4^{\circ} 40^{\prime}$, to find c. Here, by the first formula, $c=4911.4 \sin .4^{\circ} 40^{\prime}=399.59$. By the second formula, $c=\frac{100 \sin .4^{\circ} 40^{\prime}}{\sin .1^{\circ} 10^{\prime}}=399.59$.
70. Probleas. Given the angle of intersection $K C B=I$ (fiy. 23), and the distance $C D=b$ from the intersection point to the curve in the direction of the centre, to find the tangent $A C=T$, and the radius $A O$ $=R$.

Solution. In the triangle $A D C$ we have $\sin . C A D: \sin . A D C=$ $C D: A C$. But $C A D=\frac{1}{2} A O D=\frac{1}{4} I$ ($\$ 2$, III. and VI.), and as the sine of an angle is the same as the sine of its supplement, $\sin . A D C=\sin A D E=\cos . D A E=\cos \frac{1}{4} I$. Moreover, $C D$ $=b$ and $A C=T$. Substituting these values in the preceding proportion, we have $\sin . \frac{1}{4} I: \cos \frac{1}{4} I=b: T$, or $T=\frac{b \cos . \frac{1}{4} \frac{2}{2}}{\sin \frac{1}{4} I}$; whence (Tab. X. 33)
[(7) $T=b$ cot. $\frac{1}{4} I$.
To find R, we have (§5) $R=T$ cot. $\frac{1}{2}$ I. Substit ting for T tie ralue just found, we have

$$
\text { [78 } \quad R=b \cot . \frac{1}{4} I \cot \cdot \frac{1}{2} l
$$

Dxample. Given $I=30^{\circ}, b=130$, to find T and R. Here

$$
\begin{array}{rlr}
b & =130 & 2.113943 \\
\frac{1}{4} I & =7^{\circ} 30^{\prime} & \text { cot. } 0.880571 \\
T & =987.45 & \\
\frac{1}{2} I & =15^{\circ} & \text { coı. } 0.594514 \\
R & =3685.21 & \underline{3.566462}
\end{array}
$$

71. Problem. Given the angle of intersection $K C B=I$ (fig. 23). and the tangent $A C=T$, or the radius $A O=R$, to find $C D=b$.

Solution. If T is given, we have ($\$ 70$) $T=b \cot . \frac{1}{4} I$, or $b=$ $\frac{T}{\operatorname{sot} \ddagger I}$;

1중 $\quad \therefore b=T \tan . \frac{1}{4} 1$.
If R is given, we have $(\xi 70) R=b \cot . \frac{1}{4} I \cot \frac{1}{2} I$, or $b \Rightarrow$ $\overline{\cot \frac{1}{\ddagger} I \cot \cdot \frac{1}{2} I}$;

T

$$
\therefore b \doteq R \tan \cdot \frac{1}{4} I \tan \cdot \frac{1}{2} I
$$

Example. Given $I=27^{\circ}, T=600$ or $R=249918$, to find ℓ Here $b=600 \tan .6^{\circ} 45^{\prime}=7101$, or $b=2499.18 \tan .6^{\circ} 45$ $\tan .13^{\circ} 30^{\prime}=71.01$.
72. Problem. Given the angle of intersection I of two tangent $A C$ and $B C($ fig. 24): to find the tangent point A of a curve, that shal pass through a point E, given by $C D=a, D E=b$, and the angle $C D E$ $=\frac{1}{2} I$.

Solution. Produce $D E$ to the curve at G, and draw $C O$ to the centre O. Denote $D F$ by c. Then in the right triangle $C D F$ we have (Tab. X. 11) $D F=C D \cos . C D F$, or
[[$\quad c=a \cos \cdot \frac{1}{2} I$.
Denote the distance $A D$ from D to the tangent point by x. Then, by Geometry, $x^{2}=D E \times D G$. But $D G=D F+F G=D F+$ $E F=2 D F-D E=2 c-b$. Therefore, $x^{2}=b(2 c-b)$, and
[120

$$
x=\sqrt{b(2 c-b)} .
$$

Having thus found $A D$, we have the tangent $A C=A D+D C$ $=x+a$. Hence, R or D may be found ($\$ 5$ or $§ 11$).

If the point E is given by $E H$ and $C H$ perpendicular to each other, a and b may be found from these lines. For $a=C H+D H=$ $C H+E H \cot \cdot \frac{1}{2} I$ (Tab. X. 9). and $b=D E=\frac{E H}{\sin \cdot \frac{1}{2} I}$.

Example. Given $I=20^{\circ} 16^{\prime}, a=600$, and $b=80$, to find x and c. Here $c=600 \cos .10^{\circ} 8^{\prime}=590.64,2 c-b=1101.28$, and $x=$ $\sqrt{80 \times 1101.28}=296.82$. Then $T=600+296.82=896.82$, and $R=896.82 \cot .10^{\circ} 8^{\prime}=5017.82$.
73. Problem. (iveen the tangent $A C$ (fig. 25), and the chora $\triangle B$, uniting the tangent points A and B, to find the radius $A O=R$.

Solution. Measure or calculate the perpendicular $C D$. Then if $C D$ be produced to the centre O, the right triangles $A D C$ and $C A O$, having the angle at C common, are similar, and give $C D: A D=$ $A C: A O$, or

$$
\text { सूश } \quad R=\frac{A D \times A C}{C D} .
$$

If it is inconvenient to measure the chord $A B$, a line $E F$, parallel to it, may be obtained by laying off from C equal distances $C E$ and $C F$. Then measuring $E G$ and $G C$, we have, from the similar triangles $E G C$ and $C A O, C G: G E=A C: A O$, or $R=\frac{G E \times A C}{C G}$.

Examp'e. Given $A C=246$ and $A D=240$, to find R. Here $C!D=54$, and $R=\stackrel{240 \times 246}{54}=1093.33$.
74. Problem. Given the radius $A O=R$ ($f_{1} \mathrm{y}_{2} 25$), to find ithe langent $A C=T$ of a curve to unite two straight lines given on the ground

Solution. Lay off from the intersection C' of the given straight lines any equal distances CL and CF. Draw the perpendicular CG to the middle of $E F$, and measure $G E$ ard $C G$. Then the right triangles $E G C$ and $C A O$, having the angle at C common, are similar, and give $G E: C G=A O: A C$, or

$$
\text { [ञis } \quad T=\frac{C G \times A O}{G E}
$$

By this problem and the preceding one, the radius or tangent points of a curve may be found without an instrument for measuring angles.

Example. Given $R=1093 \frac{1}{3}$: $G E=\mathrm{s} 0$, and $C G=18$, to find T. Here $T=\frac{18 \times 1093 \frac{1}{3}}{80}=246$.
75. Problem. To find the angle of intersection I of two straigh lines, when the point of intersection is inaccessible, and to determine the tungent points, when the length of the tangerts is given.

Solution. I. To find the angle of intersection 1 . Let $A C$ and $C V$ (fig. 26) be the given lines. Sight from some point A on one line to a point B on the other, and measure the angles $C A B$ and $T B V$. These angles make up the change of direction in passing from one tangent to the other. But the angle of intersection (\$2) shows the change of direction between two tangents, and it must, therefore, be equal to the sum of $C A B$ and $T B V$, that is,

图

$$
I=C A B+T B V
$$

But if obstacles of any kind render it necessary to pass from $A C$ to $B V$ by a broken line, as $A D E F B$, measure the angles $C A D, N D E$, PEF, RFB, and SBV, observing to note those angles as minus which are laid off contrary to the general direction of these angles. Thus the general direction of the angles in this case is to the right; but the angle $P E F$ lies to the left of $D E$ produced, and is therefore to be marked minus. The angles to be measured show the successive changes of direction in passing from one tangent to the other. Thus CAD shows the change of direction between the first tangent and $A D$, $N D E$ shows the change between $A D$ produced and $D E, P E F$ the change between $D E$ produced and $E F, R F B$ the change hetween $E F$ produced and $F^{\prime} B$, and, lastly, $S B V$ the change between $B F$ pro-
duced and the second tangent. But the angle of intersection (§ 2) shows the change of direction in passing from one tangent to another, and it must, therefore, be equal to the sum of the partial changes measured, that is,

$$
\text { 吾 } \quad I=C A D+N D E-P E F+R F B+S B V \text {. }
$$

Fig. 26.
II. To determine the tangent points. This will be done if we find the distances $A C$ and $B C$; for then any other distances from C may be found. It is supposed that the distance $A B$, or the distances $A D$, $D E, E F$, and $F B$ have been measured.

If one line $A B$ connects A and B, find $A C$ and $B C$ in the triangle $A B C$. For this purpose we have one side $A B$ and all the angles.

If a broken line A D E F B connects A and B, let full a perpendicular $B G$ from B upon $A C$, produced if necessary, and find $A G$ and $B G$ by the usual method of working a traverse. Thus, if $A C$ is taken as a meridian line, and $D K, E L$, and $F M$ are drawn parallel to $A C$, and $D H, E K$, and $F L$ are drawn parallel to $B G$, the difference of latitude $A G$ is equal to the sum of the partial differences of latitude $A I$: $D K, E L$, and $F M$, and the departure $B G$ is equal to the sum of the partial departures $D H, E K, F L$, and $B M$. To find these partial differences of latitude and departures, we have the distances $A D, D E$, $E F$, and $F B$, and the bearings may be obtained from the angles alrearly measured. Thus the bearing of ΛD is $C A D$, the bearing of $D E$ is $K D E=K D N+N D E=C A D+N D E$, the bearing of $E F$ is $L E F=L E P-P E F=K D E-P E F$, and the
bearing of $F B$ is $M F B=M F R+R F B=L E F+R F B$; that is, the bearing of each line is equal to the algebraic sum of the preced ing bearing and its own change of direction. The differences of latitude and the departures may now be obtained from a traverse table; or more correctly by the formulæ:

Diff. of lat. $=$ dist. \times cos. of bearing ; dep. $=$ dist. $\times \sin$. of bearing
Thus, $A H=A D \cos . C A D$, and $D H=A D \sin . C A D$.
Having found $A G$ and $B G$, we have, in the right triangle $B G C$, (Tab. X. 9) $G C=B G \cot . B C G$, and $B C=\frac{B G}{\sin . B C G}$. But $B C G=180^{\circ}-I$. Therefore, cot. $B C G=-\cot . I$, and $\sin . B C G$ $=\sin$. I. Hence $G C=-B G \cot . I$, and $B C=\frac{B G}{\sin . I}$. Then, since $A C=A G+G C$, we have

$$
\text { 竕 } \quad A C=A G-B G \cot I ; \quad B C=\frac{B G}{\sin . I}
$$

When I is between 90° and 180°, as in the figure, cot. I is negative, and $-B G$ cot. I is, therefore, positive. When I is less than $90^{\circ}, G$ will fall on the other side of I; but the same formula for $A C$ wil still apply ; for cot. I is now positive, and consequently, $-B G$ cot. I is negative, as it should be, since, in this case, $A C$ would equal $A G m$ nus $G C$.

Example. Given $A D=1200, D E=350, E F=300, \vec{E} B=$ $310, C A D=20^{\circ}, N D E=44^{\circ}, P E F=-25^{\circ}, R F B=31^{\circ}$ 。 and $S B V=30^{\circ}$, to find the angle of intersection I, and the distance: $A C$ and $B C$.

Here $I=20^{\circ}+44^{\circ}-25^{\circ}+31^{\circ}+30^{\circ}=100^{\circ}$. To find $A G$ and $B G$, the work may be arranged as in the following table :-

Angles to the Right.	Bearings.	Distances.	N.	E.
$\stackrel{\circ}{20}$	N. 20 E.	1200	1127.63	410.42
44	64	350	153.43	314.58
-25	39	300	233.14	188.80
31	70	310	106.03	291.30
			1620.23	1205.10

The first column contains the observed angles. The second contains the bearings, which are found from the angles of the first column, in
the manner already explained. $A C$ is considered as rumning north from A, and the bearings are, therefore, marked N. E. The other columns require no explanation. We find $A G=1620.23$, and $B G=$ 1205.10. Then $G C=-B G \cot . ~ I=-1205.1 \times \cot .100^{\circ}=$ 212.49. This value is positive, because it is the product of two negative factors, cot. 100° being the same as $-\cot .80^{\circ}$, a negative quantity. Then $A C=A G+G C=1620.23+212.49=1832.72$, and $B C=\frac{1205.1}{\sin \cdot 100^{\circ}}=1223.69$. Having thus found the distances of A and B from the point of intersection, we can easily fix the tangent points for tangents of any given length.
76. Prolblens. To lay out a curve, when an obstruction of any kind prevents the use of the ordinary methods.

Solution. First Methorl. Suppose the instrument to be placed at A (fig. 27), and that a house, for instance, covers the station at B, and also obstructs the view from A to the stations at D and E. Lay off from $A C$, the tangent at A, such a multiple of the deflection angle D, is will be sufficient to make the sight clear the obstruction. In the figure it is supposed that $4 D$ is the proper angle. The sight will then pass through F, the fourth station from A, and this station will be determined by measuring from A the length of the chord $A F$, found by
$\oint 69$ or by Table II. From the station at F the stations at D and E may afterwards be fixed, by laying off the proper deflections from the tangent at F.

Second Method. This consists in running an auxiliary curve paral lel to the true curre, either inside or outside of it. For this purpose lay off perpendicular to $A C$, the tangent at A, a line $A A^{\prime}$ of any con venient length, and from A^{\prime} a line $A^{\prime} C^{\prime}$ parallel to $A C$. Then $A^{\prime} C^{\text {, }}$ is the tangent from which the auxiliary curve $A^{\prime} E^{\prime}$ is to be laid off. The stations on this curve are made to correspond to stations of 100 feet on the true curve, that is, a radius through B^{\prime} passes through B, a radius through D^{\prime} passes through D, \&c. The chord $A^{\prime} B^{\prime}$ is, therefore, parallel to $A B$, and the angle $C^{\prime} A^{\prime} B^{\prime}=C^{\prime} A B$; that is, the dcflection angle of the auxiliary curve is equal to that of the true curve It remains to find the length of the auxiliary chords $A^{\prime} B^{\prime}, B^{\prime} D^{\prime}$, \&c Call the distance $A A^{\prime}=b$. Then the similar triangles $A B O$ and $A^{\prime} B^{\prime} O$ give $A O: A^{\prime \prime}$ j $=A B: A^{\prime} B^{\prime}$, or $R: R-b=100: A^{\prime} B^{\prime}$. Therefore, $A^{\prime} B^{\prime}=\frac{100(R-b)}{R}=100-\frac{100 b}{R}$. If the auxiliary curve were on the outside of the true curve, we should find in the same way $\therefore^{\prime} B^{\prime}=100+\frac{100 b}{R}$. It is well to make b an aliquot part of R; for the auxiliary chord is then more easily found. Thus, if n is any whole number, and we make $b=\frac{R}{n}$, we have $A^{\prime} B^{\prime}=100 \pm \frac{100 b}{h}$ $=100 \pm \frac{100}{n}$. If, for example, $b=\frac{R}{100}$, we have $n=100$, and $A^{\prime} B$
$=100 \pm 1=101$ or 99 . When the auxiliary curve has been run, the corresponding stations on the true curve are found, by laying off in the proper direction the distances $B B^{\prime}, D D^{\prime}, \&$ c., each equal to b.
77. Problens. Haviny run a curve $A B$ (fig. 28), to change the tangent point from A to C, in such a way that a curve of the same radius may strike a given point D.

Solution. Measure the distance $B D$ from the curce to D in a direction parallel to the tangent $C E$. This direction may be sometimes judge 1 of by the eye, or found by the compass. A still more accurate way is to make the angle $D B E$ equal to the intersection angle at E, or to twice $B A E$, the total deflection angle from A to B; or if A can be seen from B, the angle $D B A$ may be made equal to $B A E$.

Measure on the tangent (backward or forward, as the case may be) a dis tance $A C=B D$, and C will be the new tangent point required. For, if $C H$ be drawn equal and parallel to $A F$, we have $F H$ equal and par
wlel to $A C$, and therefore equal and parallel to $B D$. Hence $D H=$ $B F=A F=C H$, and $D H$ being equal to $C H$, a curve of radius $\checkmark H$ from the tangent point C must pass through D.

78 Problerss. Having run a curve $A B$ (fig. 29) of radius I or deflection angle D, terminating in a tangent $B D$, to find the radius l^{\prime} or deflection angle D^{\prime} of a curve $A C$, that shall terminate in a given paralled tangent $C E$.

Solution. Since the radii $B F$ and $C G$ are perpendicular to the parallel tangents $C E$ and $B D$, they are parallel, and the angle $A G C=$ $A F B$ Thercfore, $A C G$, the half-supplement of $A G C$, is equal to
$A B F$, the half-supplement of $A F B$. Hence $A B$ and $B C$ are in the same straight line, and the new tangent point C is the intersection of $A B$ produced with $C E$.

Represent $A B$ by c, and $A C=c+B C b y c^{\prime}$. Measure $B C$, or, if more converient, measure $D C$ and find $B C$ by calculation. To calculate $B C$ from $D C$, we have $B C=\frac{D C}{\sin \cdot D B C}(T a b . X .9)$, and the angle $D B C=A B K=B A K$, the total deflection from A to B. Then the triangles $A F B$ and $A G C$ give $A B: A C=B F: C G$, or $c: c^{\prime}$ $=R: R^{\prime}$;

ए

$$
\therefore R^{\prime}=\frac{c^{\prime}}{c} R
$$

To find D^{\prime}, we have $(\$ 10) R^{\prime}=\frac{50}{\sin . D^{\prime}}$, and $R=\frac{50}{\sin D}$. Sub. stituting these values in the equation for R^{\prime}, we have $\frac{50}{\sin . D^{\prime}}=$ $\frac{c^{\prime}}{c} \times \frac{50}{\sin . D} ;$

$$
\text { 중 } \quad \therefore \sin . D^{\prime}=\frac{c}{c^{\prime}} \sin . D .
$$

79. Problem. Given the length of two equal chords $A C$ and $B C$ (fig. 30), and the perpendicular CD, to find the radius R of the curve.

Solution. From O, the centre of the curve, draw the perpendicular $O^{\circ} E$. Then the similar triangles $O B E$ and $B C D$ give $B O: B E$ $=B C: C D$, or $R: \frac{1}{2} B C=P C: C D$. Hence

$$
R=\frac{B C^{2}}{2 C D}
$$

This problem serves to find the radius of a curve on a track already laid. For if from any point C on the curve we measure two equal shords $A C$ and $B C$, and also the perpendicular $C D$ from C upon the whole chord $A B$, we have the data of this problem.
80. Prohblens. To draw a tangent $F(f(f y .30)$ to a given curve from a given point F.

Solution. On any straight line $F A$, which cuts the curve in two points, measure $F C$ and $F A$, the distances to the curve. Then, by Geometry,
[170

$$
F G=\sqrt{F C \times F A}
$$

This length being measured from F, will give the point G. When $F G$ excceds the length of the chain, the direction in which to measure it, so that it will just touch the curve, may be found by one or two trials.
81. Problenn. Having found the radius $A O=R$ of a curve (fig. 31), to substitute for it two radii $A E=R_{1}$ and $D F=R_{2}$, the 'onger of which $A E$ or $B E$ ' is to be used for a certain distance only at arath end of the curre.

wolution. Assume the longer radins of amy length which may be thought
proper, and find (\$9) the corresponding deflection angle D_{1}. Suppose that each of the curves $A D$ and $B D^{\prime}$ is 100 feet long. Then drawing $C O$, we have, in the triangle $F O E, O E: F E=\sin$. OFE: $\sin . F O E$. But the side $O E=A E-A O=R_{1}-P, F E=D E-D F=$ $R_{1}-R_{2}$, the angle $F O E=180^{\circ}-A O C=180^{\circ}-\frac{1}{2} I$, and the angle $O F E=A O F-O E F=\frac{1}{2} l-2 D_{1}$, since $O E F=2 D_{1}$ (§7). Substituting these values, and recollecting that \sin. $\left(180^{\circ}-\frac{1}{2} I\right)$ $=\sin$. $\frac{1}{2} l$, we have $R_{1}-R: R_{1}-R_{2}=\sin .\left(\frac{1}{2} I-2 D_{1}\right): \sin$. $\frac{1}{2} I$ Hence
[स्ञ $\quad R_{1}-R_{2}=\frac{\left(R_{1}-R\right) \sin \cdot \frac{1}{2} I}{\sin \cdot\left(\frac{1}{2} I-2 D_{1}\right)}$.
R_{2} is then easily found, and this will be the radius from D to D^{\prime}, or until the central angle $D F D^{\prime}=I-4 D_{1}$.

The object of this problem is to furnish a method of flattening the extremities of a shatp curve. It is not necessary that the first curve should be just 100 feet long; in a long curve it may be longer, and in a short curve shorter. The value of the angle at E will of course change with the length of $A D$, and this angle must take the place of $2 D_{1}$ in the formula. The longer the first curve is made, the shorter the second radius will be. It must also be borne in mind, in choosing the first radius, that the longer the first radius is taken, the shorter will be the second radius.

Example. Given $R=1146.28$ and $I=45^{\circ}$, to find R_{2}, if R_{1} is as. sumed $=1910.08$, and $A D$ and $B D^{\prime}$ each 100. Here, by Table I., $D_{1}=1^{\circ} 30^{\prime}$. Then

$$
\begin{array}{rlr}
R_{1}-R & =763.8 & 2.882980 \\
\frac{1}{2} I & =22^{\circ} 30^{\prime} & \sin . \frac{9.582840}{2.465820} \\
\frac{1}{2} I-2 D_{1} & =19^{\circ} 30^{\prime} & \sin .9 .523495 \\
R_{1}-R_{2} & =875.64 & \\
\hline 2.9 \cdot 42325 \\
\therefore R_{2}=R_{1}-875.64 & =1034.44 &
\end{array}
$$

S2. Problen. To locate the second branch of a compound or re. versed curve from a station on the first branch.

Solution. Let $A B$ (fig 32) be the first branch of a compound curve, and D its deflection angle, and let it be required to locate the second branch $A B^{\prime}$, whose deflection angle is D^{\prime}, from some station B on $A B$.

Let n be the number of stutions from A to B, and n^{\prime} the number of stations from A to any station B^{\prime} on the second branch. Represent by V the angle $A B B^{\prime}$, which it is necessary to lay off from the chord $B A$ to strike B^{\prime}. Let the corresponding angle $A B^{\prime} B$ on the other curve be repre-

sented by V^{\prime}. Then we have $V+V^{\prime}=180^{\circ}-B A B^{\prime}$. But if $I^{\prime} T^{\prime}$ be the common tangent at A, we have $T A B+T^{\prime} A B^{\prime}=n D$ $+n^{\prime} D^{\prime}=180^{\circ}-B A B^{\prime}$. Therefore, $V+V^{\prime}=n D+n^{\prime} D^{\prime}$. Next in the triangle $A B B^{\prime}$ we have $\sin . V^{\prime}: \sin . V=A B: A B^{\prime}$. But $A B: A B^{\prime}=n: n^{\prime}$, neariy, and $\sin . V^{\prime}: \sin . V=V^{\prime}: V$, nearly. Therefore we have approximately $V^{\prime}: V=n: n^{\prime}$, or $V^{\prime}=\frac{n}{n^{\prime}} V$. Substituting this value of V^{\prime} in the equation for $V+V^{\prime}$, we have $V+\frac{n}{n^{\prime}} V=n D+n^{\prime} D^{\prime}$. Therefore, $n^{\prime} V+n V=n^{\prime}\left(n D+n^{\prime} D^{\prime}\right)$, or
[展

$$
V=\frac{n^{\prime}\left(n D+n^{\prime} D^{\prime}\right)}{n+n^{\prime}}
$$

The same reasoning will apply to reversed curves, the only change being that in this case $V+V^{\prime}=n D-n^{\prime} D^{\prime}$, and consequently

स5

$$
V=\frac{n^{\prime}\left(n D-n^{\prime} D^{\prime}\right)}{n+n^{\prime}}
$$

When in this formula $n^{\prime} D^{\prime}$ becomes greater than $n D, V$ becomes minus, which signifies that the angle V is to be laid off above $B A$ instead of below.

This problem is particularly useful, when the tangent point of a curve is so situated, that the instrument cannot be set over it. The same method is applicable, when the curve $A B^{\prime}$ starts from a straight line; for then we may consider $A B^{\prime}$ as the second branch of a compound curve, of which the straight line is the first branch, having its radius equal to infinity, and its deflection angle L) $=0$. Making $D=0$, the formula for V becomes

$$
V=\frac{n^{\prime 2} D^{\prime}}{n+n^{\prime}}
$$

When n and n^{\prime} are each 1 , the formula for V is in all cases exact, for then the supposition that $V^{\prime}: V=n: n^{\prime}$ is strictly true, since $A B$ will equal $A B^{\prime}$, and V and V^{\prime}, being angles at the base of an isosceles triangle, will also be equal. Making n and n^{\prime} equal to 1 , we have

$$
V=\frac{1}{2}\left(D+D^{\prime}\right)
$$

When the curve starts from a straight line, this formula becomes, by making $D=0$,

$$
V=\frac{1}{2} D^{\prime}
$$

We have seen that when n or n^{\prime} is more than 1 , the value of V is only approximate. It is, however, so near the truth, that when neither n nor n^{\prime} exceeds 3 , the error in curres up to 5° or 6° varies from a fraction of a second to less than half a minute. The exact value of V might of course be obtained by solving the triangle $A B B^{\prime}$, in which the sides $A B$ and $A B^{\prime}$ may be found from Table II., and the included angle at A is known. The extent to which these formulie may be safely used may be seen by the following table, which gives the approximate values of V for several different values of n, n^{\prime}, D. and D^{\prime}, and also the error in each case.

Compound Curves.						Reversed Curres.					
n.	D.	n^{\prime}.	D^{\prime}.	V.	Error.	n.	D.	n^{\prime}.	D^{\prime}.	V.	Error.
1	0	5		410	010	1	$\begin{aligned} & \circ \\ & 3 \end{aligned}$	4	-	$\div 12$	27.2
1	0	5	3	1230	25.3	2	3	4	3	$+0$	23.5
2	0	3	3	524	22.1	3	3	4	3	$1+2{ }^{6}$	8.3
3	0	3	3	- 430	29.7	3	$\frac{1}{2}$	3	3	345	24.0
1	1	5	3	1320	18.6	2	1		4	040	0.1
2	$\frac{1}{2}$	1	3	120	0.7	2	1	4	2	40	11.0
2	$\stackrel{2}{2}$	3.	3	748	15.0	1	6	2	6	40	23.5
2	2	4	3	1040	24.7	,	5	3	5	730	51.8
3	3	3	4	1030	54.0	2	3	5	3	(i) $25 \frac{5}{7}$	52.8

As the given quantities are here arranged, the approximate values of V are all too great; but if the columns n and n^{\prime} and the columns D and D^{\prime} were interchanged, and V calculated, the approximate values of V would be just as much too small, the column of errors remaining the same.
83. Problenn. To measure the distance across a river on a given utraight line.

Solution. First Method. Let $A B$ (fig. 33) be the required distance Measure a line $A C$ along the bank, and take the angles $B A C$ and $A C B$. Then in the triangle $A B C$ we have one side and two angles to find $A B$.

If $A C$ is of such a length that an angle $A C B=\frac{1}{2} D A C$ can be laid off to a point on the farther side, we have $A B C=\frac{1}{2} D A C=$ $A C B$. Therefore, without calculation, $A B=A C$.

Fig. 34.
Second Method. Lay off $A C$ (fig. 34) perpendicular to A 13. Measare $A C$, and at C lay off $C D$ perpendicular to the direction $C B$, and meeting the line of $A B$ in D. Measure $A D$. Then the triangles $A C D$ and $A B C$ are similar, and give $A D: A C=A C: A B$. Therefore, $A B=\frac{A C^{2}}{A D}$.
If from C, determined as before, the angle $A C B^{\prime}$ be laid off equal to $A C B$, we have, without calculation, $A B=A B^{\prime}$.

Third Method. Measure a line $A D$ (fig. 35) in an oblique direction from the bank, and fix its middle point C. From any convenient point E in the line of $A B$, measure the distance $E C$, and produce
$E C$ until $C F=E C$. Then, since the triangles $A C E$ and $D C F$ are similar by construction, we see that $D F$ is parallel to $E B$. Find

now a point G, that shall be at the same time in the line of $C B$ and of $D F$, and measure $G D$. Then the triangles $A B C$ and $D G C$ are equal, and $G D$ is equal to the required distance $A B$.

As the object of drawing $E F$ is to obtain a line parallel to $A B$, this line may be dispensed with, if by any other means a line $G F$ be drawn through D parallel to $A B$. A point G being found on this parallel in the line of $C B$, we have, as before, $G D=A B$.

CHAPTER II.

PARABOLIC CURVES.

Article I. - Locating Parabolic Curves.

84. Let $A E B$ (fig. 36) be a parabola, $A C$ and $B C$ its tangents, and $A B$ the chord uniting the tangent points. Bisect $A B$ in D, and oin $C D$. Then, according to Analytical Gcometry, -

I. $C D$ is a diameter of the parabola, and the curve oisects $C D$ in E.
II. If from any points $T, T^{\prime}, T^{\prime \prime}$, \&c., on a tangent $A F$, lines be riawn to the curve parallel to the diameter, these lines $T M, T^{\prime} M$, $2^{\prime \prime} M$ ", \&c., called tangent deflections, will be to each other as the ${ }^{\text {scquares }}$ of the distances $A T, A T^{\prime}, A T^{\prime \prime}$, \&c. from the tangent puint A.
III. A line $E D$ (fig. 37), drawn from the middle of a chord $A B$ to the curve, and parallel to the diameter, may be called the middle ordi nate of that chord; and if the secondary chords $A E$ and $B E$ be drawn, the middle ordinates of these chords, $K G$ and $L H$, are each equal to ${ }_{\frac{1}{4}}^{1} E D$. In like manner, if the chords $A K, K E, E L$, and $L B$ bc drawn, their middle ordinates will be equal to $\frac{1}{4} K G$ or $\frac{1}{4} L I$.
IV. A tangent to the curve at the extremity of a middle ordinate, is parallel to the chord of that ordinate. Thus $M F F$, tangent to the curve at E, is parallel to $A B$.
V. If any two tangents, as $A C$ and $B C$, be bisected in M and F the line $M F$, joining the points of bisection, will be a new tangent, ita middle point E being the point of tangency.
85. Problem. Given the tangents $A C$ and $B C$, equal or unequal. (fig. 36,) and the chord $A B$, to lay out a parabola by tangent deflections.

Solution. Bisect $A B$ in D, and measure $C D$ and the angle $A C D$; or calculate $C D^{*}$ and $A C D$ from the original data. Divide the tangent $A C$ into any number n of equal parts, and call the deflection $T M$ for the first point a. Then ($\$ 84$, II.) the deflection for the second point will be $T^{\prime} M^{\prime}=4 a$, for the third point $T^{\prime \prime} M^{\prime \prime}=9 a$, and so on to the nth point or C, where it will be $n^{2} a$. But the deflection at this last point is $C E=\frac{1}{2} C D\left(\$ 84, \mathrm{I}\right.$.). Therefore, $n^{2} a=C E$, and

$$
a=\frac{C E}{n^{2}} .
$$

Having thus found a, we have also the succeeding deflections $4 a, 9 a$. $16 a$, \&c. Then laying off at T, T^{\prime}, \&c. the angles $A T M, A T^{\prime} M^{\prime}$, $\& c$. each equal to $A C D$, and measuring down the proper deflections, just found, the points $M, M I^{\prime}, \& c$. of the curve will be determined.

The curve may be finished by laying off on $A C$ produced n parts equal to those on $A C$, and the proper deflections will be, as before, a multiplied by the square of the number of parts from A. But an

[^6]pasier way generally of finding points beyond E is to divide the second tangent $B C$ into equal parts, and proceed as in the case of $A C$. If the number of parts on $B C$ be made the same as on $A C$, it is obvious that the deflections from both tangents will be of the same length for corresponding points. The angles to be laid off from $B C$ must, of course, be equal to $B C D$.

The points or stations thus found, though corresponding to equal distances on the tangents, are not themselves equidistant. The length of the curve is obtained by actual measurement.
86. Prolblemp. Given the tangents $A C$ and $B C$, equal or unequal, (.fig. 37,) and the chord $A B$, to lay out a parabola by middle ordinates.

Solution. Bisect $A B$ in D, draw $C D$, and its middle point E will se a point on the curve ($\$ 84, \mathrm{I}$). $D E$ is the first middle ordinate, and its length may be measured or calculated. To the point E draw the chords $A E$ and $B E$, lay off the second middle ordinates $G K$ and $H L$, each equal to $\frac{1}{4} D E$ (§84, III), and K and L are points on the curve. Draw the chords $\Lambda K, K E, E L$, and $L B$, and lay off third middle ordinates, each equal to one fourth the second middle ordinates, and four additional points on the curve will be determined. Continue this process, until a sufficient number of points is obtained
87. Problens. To druw a tangent to a parabola at any station.

Solution. I. If the curve has been laid out by tangent deflections ($\$ 85$), let $M^{\prime \prime \prime}$ (fig. 36) be the station, at which the tangent is to be drawn. From the preceding or succeeding station, lay off, parallel to $C D$, a distance $M^{\prime \prime} N$ or $E L$ equal to a, the first tangent deflection ($\$ 85$) , and $M^{\prime \prime \prime} N$ or $M^{\prime \prime \prime} L$ will be the required tangent. The sanse thing may be done by laying off from the second station a distance $M^{\prime} T^{\prime}=4 a$, or at the third station a distance $(\underset{i}{ } P=9 a$; for the
required tangent will then pass throngh T^{\prime} or G. It will be seen, also, that the tangent at $M^{\prime \prime \prime}$ passes through a point on the tangent at A corresponding to half the number of stations from A to $I^{\prime \prime \prime}$; that is, $M^{\prime \prime \prime \prime}$ is four stations from A, and the tangent passes through T^{\prime}, the second point on the tangent $A C$. In like manner, $M^{\prime \prime \prime}$ is six stations from B, and the tangent passes through G, the third point on the tangent $B C$.
II. If the curve has been laid out by middle ordinates ($\$ 86$), the tangent deflection for one station is equal to the last middle ordinate made use of in laying out the curve. For if the tangent $A C$ (fig. 37) were divided into four equal parts corresponding to the number of stations from A to E, the method of tangent deflections would give the same points on the curve, as were obtained by the method of $\$ 86$. In this case, the tangent deflection for one station would be $a=\frac{1}{16} C E=$ $\frac{1}{16} D E$; but the last middle ordinate was made equal to $\frac{1}{4} G K^{\prime}$ or $\frac{1}{16} D E$. Therefore, a is equal to the last middle ordinate, and a tangent may be drawn at any station by the first method of this section.

A tangent may also be drawn at the extremity of any middle ordinate, by drawing a line through this extremity, parallel to the chord of that ordinate ($\$ 84$, IV.).
88. In laying out a parabola by the method in §85, it may sometimes be impossible or inconvenient to lay off all the points from the original tangents. A new tangent may then be drawn by $\S 87$ to any station already found, as at $M^{\prime \prime \prime}$ (fig. 36), and the tangent deflections $a, 4 a, 9 a, \& c$. may be laid off from this tangent, precisely as from the first tangent. These deflections must be parallel to $C D$, and the distances on the new tangent must be equal to $T^{\prime} N$ or $N M^{\prime \prime \prime}$, which may be measured.
89. Probleni. Given the tangents $A C$ and $B C$, equal or unequel, (fiy 38,) to lay out a parabola by bisecting tangents.

Solution. Bisect $A C$ and $B C$ in D and F, join $D F$, and find E, the middle point of $D F . \quad E$ will be a point on the curre ($\$ 84, \mathrm{~V}$.). We have now two pairs of what may be called second tangents, $A D$ and I) E, and $E F$ and $F B$. Bisect $A D$ in G and $D E$ in H, join $G H$, and its middle point M will be a point on the curve. Bisect $E F$ and $F B$ in K and L, join $K L$, and its middle point N will be a point on the curve. We have now four pairs of third tangents, $A G$ and $G M$, $M H$ and $H E, E K$ and $K N$, and $N L$ and $L B$. Bisect each pair in urn, join the points of bisection, and the middle points of the joining
ines will be four new points, $M^{\prime}, M I^{\prime \prime}, N^{\prime \prime}$, and N^{\prime}. The same method may be continued, until a sufficient number of points is obtained.

90. Problem. Given the tangents $A C$ and $B C$, equal or unequad fig. 39,) and the chord $A B$, to lay out a parabola by intersections.

Solution. Bisect $A B$ in D, draw $C D$, and bisect it in E. Divide the tangents $A C$ and $B C$, the half-chords $A D$ and $D B$, and the line $C E$, into the same number of equal parts; five, for example. Then the intersection M of $A a$ and $F G$ will be a point on the curve. For $F M=\frac{1}{5} C a$, and $C a=\frac{1}{5} C E$. Therefore, $F M=\frac{1}{25} C E$, which is the proper deflection from the tangent at F to the curve ($\$ 85$). In like manner, the intersection N of $A b$ and $I I K$ may be shown to be a point on the curve, and the same is true of all the similar intersections indicated in the figure.

If the line $D E$ were also divided into five equal parts, the line $A a$ would be intersected in M on the curve by a line drawn from B through a^{\prime}, the line Λb would be intersected in N on the curve by a line drawn
from B through b^{\prime}, and in general any two lines, drawn frum A and B through two points on $C D$ equally distant from the extremitics C and D, will intersect on the curve. 'To show this for any point, as $M /$, it is sufficient to show, that $B a^{\prime}$ produced cuts $F G$ on the curve ; for it has already been proved, that $A a$ cuts $F G$ on the curve. Now $D a^{\prime}: M G=B D: B G=5: 9$, or $M G=\frac{9}{5} D a^{\prime}$. But $D a^{\prime}=\frac{1}{5}\left({ }^{\prime} E\right.$. Therefore, $M G=\frac{9}{25} C E$. Again, $F G: C D=A G: A D=1: 5$. Therefore, $F G=\frac{1}{5} C C^{\prime} D=\frac{2}{5} C ' E$. We have then $F M=F G-$ $M G=\frac{2}{5} C E-\frac{9}{25} C E=\frac{1}{25} C E$. As this is the proper deflection from the tangent at F to the curve ($\$ 85$), the intersection of $B a^{\prime}$ with $F G$ is on the curre. This furnishes another method of laying out a parabola by intersections.
91. The following example is given in illustration of several of the preceding methods.

Example. Given $A C=B C=832$ (fig. 40), and $A B=1536$ to lay out a parabola $A E B$. We here find $C D=320$. To begin with the method by tangent deflections ($\$ 85$), divide the tangent $A C$ into eight equal parts. 'Then $a=\frac{C E}{n^{2}}=\frac{160}{6 t}=2.5$. Lay off from the divisions on the tangent $F 1=2.5, G 2=4 \times 25=10, H 3=$ $9 \times 25=22.5$, and $K 4=16 \times 2.5=40$. Suppose now that it is inconvenient to continue this method beyond k. In this case we may

find a new tangent at E, by bisecting $A C$ and $B C(\$ 89)$, and drawing $K L$ through the points of bisection. Divide the new tangent $K E=\frac{1}{2} A D=384$ into four equal parts, and lay off from $K E$ the
same tangent deflections as were laid off from $A K$, namely, $M 5=$ $22.5, N 6=10$, and $O 7=2.5$. To lay off the second half of the curve by middle ordinates ($\$ 86$), measure $E B=784.49$. Bisect $E B$ in P, and lay off the middle ordinate $P R=\frac{1}{4} D E=40$. Measure $E R=386.0$, and $B R=402.31$, and lay off the middle ordinates $S T$ and $V W$, each equal to $\frac{1}{4} P R=10$. By measuring the chords $E T, T R, R W$, and $W B$, and laying off an ordinate frow each, equal to 2.5. four additional points might be found.

Articie II. - Radius of Curvature.

92. The curvature of circular ares is always the same for the sanie are, and in different ares varies inversely as the radii of the ares. Thus, the curvature of an arc of 1,000 feet radius is double that of an arc of 2,000 feet radius. The curvature of a parabola is continually changing. In fig. 39 , for example, it is least at the tangent point A, the extremity of the longest tangent, and increases by a fixed law, until it becomes greatest at a point, called the vertex, where a tangent to the curve would be perpendicular to the diameter. From this poin: to B it decreases again by the same law. We may, therefore, consider a parabola to be made up of a succession of infinitely small circular ares, the radii of which continually increase in going from the vertex to the extremities. The radius of the circular are, corresponding to any part of a parabola, is called the radius of curvature at that point.

If a parabola forms part of the line of a railroad, it will be necessary, in order that the rails may be properly curved ($\$ 28$), to know how the radius of curvature may be found. It will, in general, be necessary to find the radius of curvature at a few points only. In short curves it may be found at the two tangent points and at the middle station, and in longer curves at two or more intermediate points besides. The rails curved according to the radius at any point should be sufficient in number to reach, on each side of that point, half-way to the next point.
93. Problem. To find the radius of curvature at certain stations on a parabola.
Solution. Let $A E B$ (fig. 41) be any parabola, and let it be required to find the radii of curvature at a certain number of stations
fron. A to E. These stations must be selected at regular interval from those determined by any of the preceding methods. Let n de note the number of parts into which $a E$ is divided, and diride $C L$ into the same number of equal parts. Draw lines from A to the points

of division. Thus, if $n=4$, as in the figure, divide $C D$ into four equal parts, and draw $A F, A E$, and $A G$. Let $A D=c, A F=c_{1}$ $A E=c_{2}, A G=c_{3}$, and $A C=T$. Denote, morcover, $C D$ by d and the area of the triangle $A C B$ by A. Then the respective radii for the points $E, 1,2,3$, and A will be

$$
R=\frac{c^{3}}{A}, \quad R_{1}=\frac{c_{1}{ }^{3}}{A}, \quad R_{2}=\frac{c_{2}{ }^{3}}{A}, \quad R_{3}=\frac{c_{3}{ }^{3}}{A}, \quad R_{4}=\frac{T^{3}}{A} .
$$

The area A may be řund by form. 18, Tab. X.; c and T are known; and c_{1}, c_{2}, c_{3} may be found approximately by measurement on a figure carefully constructed, or exactly by these general formulæ:-

$$
\begin{aligned}
& c_{1}{ }^{2}=c^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-1) d^{2}}{n^{2}}, \\
& c_{2}{ }^{2}=c_{1}{ }^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-3) d^{2}}{n^{2}}, \\
& c_{3}{ }^{2}=c_{2}{ }^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-5) d^{2}}{n^{2}}, \\
& c_{4}{ }^{2}=c_{3}{ }^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-7) d^{2}}{n^{2}} \\
& \& c .
\end{aligned}
$$

It will be seen, that each of these values is formed from the preceding, by adding the same quantity $\frac{T^{2}-c^{2}}{n}$, and subtracting $\frac{d^{2}}{n^{2}}$ multiplied in

$$
\begin{aligned}
& c_{1}{ }^{2}=c^{2}+\frac{1}{4}\left(T^{2}-c^{2}\right)-\frac{3}{16} d^{4}, \\
& c_{2}{ }^{2}=c_{1}{ }^{2}+\frac{1}{4}\left(T^{12}-c^{2}\right)-\frac{1}{16} d^{2}, \\
& c_{3}{ }^{2}=c_{2}{ }^{2}+\frac{1}{4}\left(T^{2}-c^{2}\right)+\frac{1}{16} d^{2} .
\end{aligned}
$$

All the quantities, which enter in ${ }^{+}$, the expressions for the radii, are now known, and the radii may, therefore, be determined. The same method will apply to the other half of the parabola.

The manner of obtaining the preceding formulæ is as follows. The radius of curvature at any given point on a parabola is, by the Differential Calculus, $R=\frac{p}{2 \sin .{ }^{3}}{ }^{2}$, in which p represents the parameter of the parabola for rectangular coördinates, and E the angle made with a diameter by a tangent to the curve at the given point. First, let the middle station E (fig. 42) be the given point. Then the angle E is the

angle made with $E D$ by a tangent at E, or since $A B$ is parallel to the tangent at $E(\S 84, \mathrm{IV}),. \sin . E=\sin . A D E=\sin . B D E$. Let p^{\prime} be the parameter for the diameter $E D$. Then, by Analytical Ge ometry, $f=p^{\prime} \sin ^{2} E$. Therefore, at this point $R=\frac{p}{2 \sin .^{3} E}=$ $\frac{p^{\prime} \sin .2 E}{3 \sin .^{3} E}=\frac{p^{\prime}}{2 \sin . E}$. But $p^{\prime}=\frac{A D^{2}}{E D}=\frac{c^{2}}{\frac{1}{2} d}$. Therefore, $R=\frac{c^{2}}{d \sin . E}$ $=\frac{c^{3}}{c d \sin . E}=\frac{c^{3}}{A} ;$ since $A=c d \sin . E$ (Tab. X. 17).

Next, to find R_{1}, or the radius of curvature at H, the first station from E. Through H draw $F G$ parallel to $C D$, and from F draw the tangent $F K$. Join $A K$, cutting $C D$ in L. Then from what has just been proved for the radius of curvature at E, we have for the radius of curvature at $I I, I_{1}=\begin{gathered}A G^{3} \\ A F K^{-}\end{gathered}$. Now $A G \cdot A L=A F: A C^{r}=$
$n-1: n$, or $A G=\frac{n-1}{n} \times A L$. But $A L=c_{1} \quad$ For, since $A F=a$ $\frac{n-1}{n} \times A C$, the tangent deflcction $F H=\frac{(n-1)^{2}}{n^{2}} \cdot \frac{d}{2}(\$ 84, \mathrm{II}$.), and $F G=2 F H=\frac{(n-1)^{2}}{n^{2}} d$. Then, since $C L: F G=A C: A F=$ $n: n-1, C L=\frac{n}{n-1} \times F G=\frac{n-1}{n} d$. Hence $L D=d-\frac{n-1}{n} d$ $=\frac{1}{n} d$, that is, $A L=c_{1}$. Substituting this value in the expression for $A G$ above, we have $A G=\frac{n-1}{n} c_{1}$. Moreover, since $A F=\frac{n-1}{n} \times A C$, and because similar triangles are to each other as the squares of their homologous sides, we have the triangle $A F G=$ $\frac{(n-1)^{2}}{n^{2}} \times A C L$. But $A C L: A C D=C L: C D=n-1: n$, or $A C L=\frac{n-1}{n} \times A C D$. Therefore, $A F G=\frac{(n-1)^{3}}{n^{3}} \times A C D$, and $A F K=2 A F G=\frac{(n-1)^{3}}{n^{2}} \times A C B=\frac{(n-1)^{3}}{n^{3}} A$. Substituting these values of $A G$ and $A F K$ in the equation $R_{1}={ }_{A F K}^{A} G^{3}$, and re. ducing, we find $R_{1}=\frac{c_{1}{ }^{3}}{A}$. By similar reasoning we should find $R_{2}=$ $\frac{c_{2}{ }^{3}}{A}, R_{3}=\frac{c_{3}{ }^{3}}{A}$, \&cc.

It remains to find the values of $c_{1}, c_{2}, \& c$. Through A draw $A M$ perpendicular to $C D$, produced if necessary. Then, by Geometry, we have $A D^{2}=A L^{2}+L D^{2}-2 L D \times L M$, and $A C^{2}=A L^{2}+$ $C L^{2}+2 C L \times L M$. Finding from each of these equations the value of $2 L M$, and putting these values equal to cach other, we have $\frac{A L^{2}+L D^{2}-A D^{2}}{L D}=\frac{A C^{2}-A L^{2}-C L^{2}}{C L}$. But $A L=c_{1}, L D=\frac{1}{n} d$, $A D=c, A C=T$, and $C L=\frac{n-1}{n} d$. Substituting these values in the last equation, and reducing, we find

$$
c_{1}^{2}=\frac{T^{2}}{n}+\frac{(n-1) c^{2}}{n}-\frac{(n-1) d^{2}}{n^{2}} .
$$

By similar reasoning we should find

$$
\begin{aligned}
& c_{2}^{2}=\frac{2 T^{2}}{n}+\frac{(n-2) c^{2}}{n}-\frac{2(n-2) d^{2}}{n^{2}}, \\
& c_{3}^{2}=\frac{3 T^{2}}{n}+\frac{(n-3) c^{2}}{n}-\frac{3(n-3) d^{2}}{n^{2}}, \\
& \& c .
\end{aligned} \quad \& c . \quad . \quad .
$$

From thesc equations the valucs of $c_{1}{ }^{2}, c_{2}{ }^{2}, c_{3}{ }^{2}$, \&e. given on page 72 are readily obtained. That given for $c_{1}{ }^{2}$ is obtained from the first of these equations by a simple reduction ; that given for $c_{2}{ }^{2}$ is obtained by subtracting the first of these equations from the second, and reclucing : that given for $c_{3}{ }^{2}$ is obtained by subtracting the second equation from the third, and reducing; and so on.
94. Example. Given (fig. 41) $A C=T=600, B C=T^{\prime}=52 C$, and $A D=c=550$, to find R, R_{1}, l_{2}, R_{3}, and R_{4}, the radii of curvature at $E, 1,2,3$, and A.

To find $C D=d$, we have, by Geometry, $d^{2}=\frac{1}{2}\left(T^{2}+T^{\prime 2}\right)-c^{2}$ which gives $d^{2}=12700$.

To find the area of $A C B=A$, we have (Tab. X. 18) $A=$ $\sqrt{s(s-a)(s-b)(s-c)}$.

s	$=1110$	3.045323
$\varepsilon-a$	$=590$	2.770852
$s-b$	$=510$	2.707570
$s-c$	$=10$	$\frac{1.000000}{9.523745}$
$\log A$	$\frac{4.761872}{4 .}$	

$\mathrm{Next} \frac{1}{n}\left(T^{2}-c^{2}\right)=\frac{1}{4}(T+c)(T-c)=\frac{1150 \times 50}{4}=14375$, and $\frac{n^{2}}{-\frac{1}{2}}=\frac{12700}{16}=793.75$. Then

$$
\begin{aligned}
& c^{2}=550^{2}=302500 \\
& c_{1}{ }^{2}=302500+14375-3 \times 793.75=314493.75 \\
& c_{2}{ }^{2}=314493.75+14375-793.75=32807.5 \\
& c_{3}{ }^{2}=328075+14375+793.75=343243.75
\end{aligned}
$$

To find R, we have $R=\frac{\mathbf{c}^{3}}{A}$, or $\log . R=3 \log . c-\log . A$.

$c=550$	$\underline{2.740363}$
c^{3}	8.221089
A	$\underline{4.761872}$
$R=2878.8$	3.459217

To find R_{1}, we have $R_{1}=\frac{e_{1}{ }^{3}}{A}$, or $\log . R_{1}=\frac{3}{2} \log c_{1}{ }^{2}-\log . A$.

$c_{1}{ }^{2}=314493.75$	$\frac{5.49761}{8.246418}$
$c_{1}{ }^{3}$	$\underline{4.76872}$
A	3.484546

In the same way we should find $R_{2}=3251.5, R_{3}=34 i 9.6, R_{4}=$ 3737.5.

To find the radii for the second part $E B$ of the parabola, the same formulæ apply, except that T^{\prime} takes the place of T. We have then $\frac{1}{n}\left(T^{\prime 2}-c^{2}\right)=\frac{1}{4}\left(T^{\prime}+c\right)\left(T^{\prime}-c\right)=\frac{1070 \times-30}{4}=-8025$ Hence

$$
\begin{aligned}
& c_{1}{ }^{2}=302500-5025-2381.25=292093.75 \\
& c_{2}{ }^{2}=292093.75-8025-793.75=283275 \\
& c_{3}{ }^{2}=283275-8025+793.75=276043.75
\end{aligned}
$$

To find R_{1}, we have $R_{1}=\frac{c_{1}{ }^{3}}{A}$, or $\log . R_{1}=\frac{3}{2} \log \cdot c_{1}{ }^{2}-\log . A$

$$
\begin{array}{ll}
c_{1}{ }^{2}=292093.75 & \underline{5.465523} \\
c_{1}{ }^{3} & 8.198284 \\
A & \underline{4.761872} \\
R_{1}=2731.6 & 3.436412
\end{array}
$$

In the same way we should find $R_{2}=2608.8, R_{3}=2509.5, R_{4}==$ 2433.

It will be seen, that the radii in this example decrease from one tangent point to the other, which shows that both tangent points lie on the same side of the vertex of the parabola ($\$ 92$). This will be the case, whenever the angle $B C D$, adjacent to the shorter tangent, exceeds 90°, that is, whenever c^{2} exceeds $T^{\prime 2}+d^{2}$. If $B C D=90^{\circ}$. the tangent point B falls on the vertex. If $B C D$ is less than 90°, one tangent point falls on eack side of the vertex, and the currature will, therefore, dccrease towards both extremities.
95. If the tangents T and T^{\prime} are equal, the equations for $c_{1}{ }^{2}, c_{2}{ }^{2}, \& c$. will be more simple; for in this case d is perpendicular to c, and $T^{\text {, }}$ $-c^{2}=d^{2}$. Substituting this value, we get

$$
\begin{aligned}
& c_{1}^{2}=c^{2}+\frac{d^{2}}{n^{2}}, \\
& c_{2}^{2}=c_{1}^{2}+\frac{3 d^{2}}{n^{2}}, \\
& c_{3}^{2}=c_{2}^{2}+\frac{5 d^{2}}{n^{2}}, \\
& \& c . \quad \& c .
\end{aligned}
$$

Example. Given, as in $\S 91, T=T^{\prime}=832, c=768$, and $d=$

320, to find the radii R, R_{1}, and R_{2} at the points $E, 4$, and Λ (fig. 40) Here $A=c d=245760, n=2$, and $c_{1}{ }^{2}=c^{2}+\frac{1}{4} d^{2}=615424$ Then $R=\frac{c^{3}}{c d}=\frac{c^{2}}{d}=\frac{7682}{320}=1843.2, R_{1}=\frac{c_{1}{ }^{3}}{c d}$, and $R_{2}=\frac{T^{3}}{c d}$.

$c_{1}{ }^{2}=615424$	$\underline{5.789174}$
$c_{1}{ }^{3}$	8.683761 $c d$$=245760$
$R_{1}=: 964.5$	$\underline{5.390511}$
$T^{\prime}=832$	$\underline{2.993250}$
T^{3}	$\underline{8.760369}$
$c d=245760$	$\underline{5.390511}$
$R_{2}=2343.5$	3.369858

\mathcal{F} is the radius at the point R also, and $R_{\mathbf{2}}$ the radius at the point B

CHAPTER III

LEVELLING.

Article I. - Meigits and Slope Stakes.

96. The Level is an instrument consisting essentially of a telescope, supported on a tripod of convenient height, and capable of being so adjusted, that its line of sight shall be horizontal, and that the telescope itself may be turned in any direction on a vertical axis. The instrument when so adjusted is said to be set.

The line of sight, being a line of indefinite length, may be made to describe a horizontal plane of indefinite extent, called the plane of the level.

The levelling rod is used for measuring the rertical distance of any point, on which it may be placed, below the plane of the level. This distance is called the sight on that point.
97. Problenn. To find the difference of level of two points, as A and B (fig. 43).

Solution. Sct the level between the two points,* and take sights on hoth points. Subtract the less of these sights from the greater, and the difference will be the difference of level required. For if $F P$ represent the plane of the level, and $A G$ be drawn through A parallel to $F P, A F$ will be the sight on A, and $B P$ the sight on B. Then the required difference of level $B G=B P-D G=B P-A F$.

If the distance between the points, or tue nature of the ground, makes it necessary to set the level more than once, set down all the backward sights in one column and all the forward sights in another. Add up these columns, and take the less of the two sums from. the greater, and the difference will he the difference of level required. Thus, to find the difference of level between A and D (fig. 43), the level is first set between A and B, and sights are taken on A and B; the level is then set between B and C, and sights are taken on B and

[^7]C; lastly; the level is set between C and D, and sights are taken on C ' and D. 'Then the difference of level between A and D is $E D=$ $(B P+K C+O D)-(A F+B I+$ $N C$). For $E D=H C-L C=$ $H M+M C-L C$. But $M M=B G$ $=B P-A F, M C=K C-B I$, and $L C=N C-O D$. Substituting these values, we have $E D=B P$ $A F+K C-B I-N C+O D=$ $(B P+K C+O D)-(A F+B l$ $\left.+\mathrm{N}^{\prime} C^{\prime}\right)$.
98. It is often convenient to refer all heights to an imaginary level plane called the datum plane. This plane may be assumed at starting to pass through, or at some fixed distance above or below, any permanent object, called a bench-mark, or simply a bench. It is most convenient, in order to avoid minus heights, to assume the datum plane at such a distance below the benchmark, that it will pass below all the points on the line to be levelled. Thus if $A L$ (tig. 44) were part of the line to be levelled, and if A were the starting point, we should assume the datum plane $C D$ at such a distance below some permanent object near A, as would make it pass below all the points on the line. If, for instance, we had reason to believe that no point on this line was more than 15 or 20 feet below A, we might safely assume $C D$ to be 25 feet below the bench near A, in which case all the distances from the line to the datum plane would be positive. Lines before being levelled are usually divided into regular stations, the height of each of which above the datam plane is required.
99. Problenn. To find the heights above a datum plane of the sev eral stations on a given line.

Solution. Let $A B$ (fig. 44) represent a portion of the line, divided into regu lar stations, marked $0,1,2,3,4,5$, \&c and let $C D$ represent the datum plane, assumed to be 25 feet below a benchmark near A. Suppose the level to be set first between stations 2 and 3 , and a sight upon the bench-mark to be taken, and found to be 3.125 . Now as this sight shows that the plane of the level $E F$ is 3.125 feet above the bench-mark and as the datum plane is 25 feet be low this mark, we shall find the height of the plane of the level above the datum plane by adding these heights, which gives for the height of EF $25+$ $3.125=28.125$ feet This height may for brevity's sake be called the hewjlit of the instrument, mcaning by this the height of the line of sight of the instru ment.

If now a sight be taken on station 0 , we shall obtain the height of this station above the datum plane, by subtracting this sight from the height of the instrument; for the height of this station is $0 C$ and $0 C=E C-E 0$. Thus if $E 0=3.413,0 C=28.125-$ $3.413=24.712$. In like manner, the heights of stations $1,2,3,4$, and 5 may be found, by taking sights on them in succession, and subtracting these sights from the height of the instrument. Suppose these sights to be respectively $3.102,3.827,4.816,6.952$, and 9.016 , and we have
height of station $0=28.125-3.413=24.712$,
" " $\quad 1=28.125-3.102=25.023$.

$$
\begin{aligned}
\text { height of station } & 2=28.125-3.827=24.298 \\
\text { " " } & \text { " }
\end{aligned} \quad 3=28.125-4.816=23.309,
$$

Next, set the level between stations 7 and 8 , and as the height of stanon 5 is known, take a sight upon thìs point. This sight, being added to the height of station 5, will give the height of the instrument in its new position ; for $G K=G 5+5 K$. Suppose this sight to be $G 5$ $=2.740$, and we have $G K=19.109+2.740=21.849$. A point like station 5 , which is used to get the beight of the instrument after resetting, is called a turning point. The height of the instrument being found, sights are taken on stations $6,7,8,9$, and 10 , and the heights of these stations found by subtracting these sights from the height of the instrument. Suppose these sights to be respectively $3.311,4.027$, $3.824,2.516$, and 0.314 , and we have

The instrument is now again carried forward and reset, station IC is used as a turning point to find the height of the instrument, and evary thing procceds as before.

At convenient distances along the line, permanent objects are se lected, and their heights obtained and prescrved, to be used as starting points in any further operations. These are also called benches. Let us suppose, that a bench has been thus selected near station 9 , and that the sight upon it from the instrument, when set between stations 7 and 8 , is 2.635 . Then the height of this bench will be $21.849-$ $2.635=19214$.
100. From what has been shown above, it appears that the first thing to be done, after setting the level, is to take a sight upon some point of known height, and that this sight is always to be added to the known height, in order to get the height of the instrument. This first sight may therefore be called a plus sight. The next thing to be done is to take sights on those points whose heights are required, and to subtract these sights from the height of the instrument, in order to get the required heights. These last sights may therefore be called minus sights
101. The field notes are kept in the following form. The first col unn in the table contains the stations, and also the benches marked B., and the turning points marked t. p., except when coincident with a station. The second column contains the plus sights; the third column shows the heiglt of the instrument; the fourth contains the minus sights ; and the fifth contains the heights of the points in the first column.

Station	+s.	II. I.	-s.	н.
B.	3.125			25.000
0		28.125	3.413	24.712
1			3.102	25.023
2			3827	24.298
3			4.816	23.309
4			6.952	21.173
5	2.740		9.016	19.109
6		21.849	3311	18.538
7			4.027	17.822
8			3.824	18.025
9			2.516	19.333
B.			2.635	19.214
10			0.314	21.535

The height of the bench is set down as assumed above, namely, 25 feet; the first plus sight is set opposite B., on which point it was taken, and, being added to the height in the same line, gives the height of the instrument, which is set opposite 0 ; the minus sights are set opposite the points on which they are taken, and, being subtracted from the height of the instrument, give the heights of these points, as set down in the fifth column. The minus sights are subtracted from the same height of the instrument, as far as the turning point at station 5 , inclusive. The plus sight on station 5 is set opposite this station, and a new height cbtained for the instrument by adding the plus sight to the height of the turning point. This new height of the instrument is set opposite station 6, where the minus sights to be subtracted from it commence. These sights are again set opposite the points on which they were taken, and, being subtracted from the new height of the in. strument, give the heights in the last column.
102. Problen. To set slope stakes for excurations and embank. ments.

Solution. Let $A B H K C$ (fig. 45) be a cross-section of a proposed excaration, and let the centre cut $A M=c$, and the width of the road-
bed $H K=b$. The slope of the sides $B H$ or $C K$ is usually given by the ratio of the base $K N$ to the height $E N$. Suppose, in the present case, that $K N: E N=3: 2$, and we have the slope $=\frac{3}{2}$. Then if the ground were level, as $D \Lambda E$, it is evident that the distance from

the centre A to the slope stakes at D and E would be $A D=A E=$ $M K+K N=\frac{1}{2} b+\frac{3}{2} c$. But as the ground rises from A to C through a height $C G=g$, the slope stake must be set farther out a distance $E G=\frac{3}{2} g$; and as the ground falls from A to B through a height $B F=g$, the slope stake must be set farther in a distance $D F$ $=\frac{3}{2} g$.

To find B and C, set the level, if possible, in a convenient position for sighting on the points A, B, and C. From the known cut at the contre find the value of $A E=\frac{1}{2} b+\frac{3}{2} c$. Estimate by the eye the rise from the centre to where the slope stake is to be set, and take this as the probable value of g. To $A E$ add $\frac{3}{2} g$, as thus estimated, and measure from the centre a distance out, equal to the sum. Obtain now by the level the rise from the centre to this point, and if it agrees with the estimated rise, the distance out is correct. But if the estimated rise prove too great or too small, assume a new value for g, measure a corresponding distance ont, and test the accuracy of the estimate by the level, as before. These trials must be continued, until the estimated rise agrees sufficiently well with the rise found by the level at the corresponding distance out. The distance out will then be $\frac{1}{2} b+\frac{3}{2} c+\frac{3}{2} g$. The same course is to be pursued, when the ground falls from the centre, as at B; but as y here becomes minus, the distance out, when the truc value of g is found, will be $A F=A D$ D $F=\frac{1}{2} b+\frac{3}{2} c-\frac{3}{2} g$.

For embankment, the process of setting slope stakes is the same as for excavation, except that a rise in the ground from the centre on embankments corresponds to a full on excavations, and vice versA. This will be evident by inverting figure 45 , which will then represent
an embankment. What was before a fall to B, becomes now a rise and what was before a rise to C, becomes now a fall.

When the section is partly in excavation and partly in embankments the method above applies directly only to the side which is in excara tion at the same time that the centre of the road-bed is in excavatior, or in embankment at the same time that the centre is in embankment. On the opposite side, however, it is only necessary to make c in the expressions above minus, because its effect here is to diminish the distance out. The formula for this distance out will, therefore, become $\frac{1}{2} b-\frac{3}{2} c+\frac{3}{2} g$.

Abticle II. - Correction for the Eartu's Curvature and for Refraction.
103. Let $\mathcal{A} C$ (fig. 46) represent a portion of the earth's surface. Then, if a level be set at A, the line of siglit of the level will be the tan. gent $A D$, while the true level will be $A C$. The difference $D C$ between the line of sight and the true level is the correction for the earth's curvature for the distance $A D$.
104. A correction in the opposite direction arises from refraction. Refraction is the change of direction which light undergoes in passing from one medium into another of different density. As the atmosphere increases in density the nearer it lies to the earth's surface, light, passing from a point B to a lower point A, enters continually air of greater and greater density, and its path is in consequence a curre roncave towards the earth. Near the earth's surface this path may be raken as the are of a circle whose radius is seven times the radius of the earth.* Now a level at A, having its line of sight in the direction $A D$, tangent to the curve $A B$, is in the proper position to receive the light from an object at B; so that this object appears to the observer to be at D. The effect of refraction, therefore, is to make an object appear higher than its true position. Then, since the correction for the earth's curvature $D C$ and the correction for refraction $D J$ are in opposite directions, the correction for both will be $B C=D C^{\prime}-D B$.

[^8]This correction must be added to the height of any object as determined by the level.
105. Problem. Given the distance $A D=D$ (fig. 46), the radıus of the earth $A E=R$, and the radius of the arc of refracted light $=7 R$, 's find the correction $B C=d$ for the carth's curvature and for refraction.

Solution. To find the correction for the earth's curvature $D C$, we have, by Geometry, $D C(D C+2 E C)=A D^{2}$, or $D C(D C+2 R)$ $=D^{2}$. But as $D C$ is always very small compared with the diameter of the earth, it may be dropped from the parenthesis, and we have $D C \times 2 R=D^{2}$, or $D C=\frac{D^{2}}{2 R}$. The correction for refraction $D B$ may be found by the method just used for finding $D C$, merely changing R into $7 R$. Hence $D B=\frac{D^{2}}{14 R}$. We have then $d=B C=$ $D C-D B=\frac{D^{2}}{2 R}-\frac{D^{2}}{14 R}$, or

$$
d=\frac{3 D^{2}}{7 R}
$$

By this formula Table III. is calculated, taking $R=20,911,790 \mathrm{ft}$., as given by Bowditch. The necessity for this correction may be avoided, whenever it is possible to set the level midway between the points whose height is required. In this case, as the distance on each side of the level is the same, the corrections will be equal, and will destroy each other.

Article III. - Vertical Curves.

106. Vertical curves are used to round off the angles formed b: the meeting of two grades. Let $A C$ and $C B$ (fig. 47) be two grades meeting at C : These grades are supposed to be given by the rise per station in groing in some particular direction. Thus, starting from A. the grades of $A C$ and $C B$ may be denoted respectively by g and g^{\prime}; that is, y denotes what is added to the height at every station on $A C$, and y^{\prime} denotes what is added to the height at every station on $C B$; but since $C B$ is a descending grade, the quantity added is a minus quantity, and g^{\prime} will therefore be negative. The parabola furnishes a very simple method of putting in a vertical curve.
107. Problem. Given the grade g of $A C(f i g .47)$, the grade g of $C B$, and the number of stations n on each side of C to the tangent points A and B, to unite these points ly a parabolic vertical curve.

Solution. Let $A E B$ be the required parabola. Through B and C draw the vertical lines $F K$ and $C H$, and produce $A C$ to meet $F K$ in F. Through 1 draw the horizontal line $A K$, and join $A B$, cutting $C H$ in D. Then, since the distance from C^{C} to A and B is measured horizontally, we have $A H=H K$, and consequently $A D=$ $D B$. The vertical line $C D$ is, therefore, a diameter of the parabola ($\$ 84, \mathrm{I}$), and the distances of the curve in a vertical direction from the stations on the tangent $A F$ are to each other as the squares of the number of stations from A ($\$ 84$, II.). Thus, if a represent this distance at the first station from A, the distance at the second station would be $4 a$, at the third station $9 a$, and at B, which is $2 n$ stations from A, it would be $4 n^{2} a$; that is, $F B=4 n^{2} a$, or $a=\frac{F B}{4 n^{2}}$. To fina a, it will then be necessary to find $F B$ first. Through C draw the horizontal line $C G$ and we have, from the equal triangles $C^{\prime} F^{\prime} G^{\prime}$ and

ACH,FG=CH. But $C H$ is the rise of the first grade g in the n stations from A to C; that is, $C H=n g$, or $F G=n g . \quad G B$ is also the rise of the second grade g^{\prime} in n stations, but since g^{\prime} is negative $(\$ 106)$, we must put $G B=-n g^{\prime}$. Therefore, $F B=F G+G B$ $=n g-n g^{\prime}$. Substituting this value of $F B$ in the equation for a we have $a=\frac{n g-n g^{\prime}}{4 n^{2}}$, or

$$
a=\frac{g-g^{\prime}}{4 n}
$$

The value of it being thus determined, all the distances of the curve from the tamgent $A F$, viz. $a, 4 a, 9 a, 16 a, \& c$., are known. Now if T and T^{\prime} be the first and second stations on the tangent. and vertical lines $T P$ and $T^{\prime} P^{\prime}$ be drawn to the horizontal line $A K$, the height $T P^{\prime}$ of the first station above A will be g, the height $T^{\prime} P^{\prime \prime}$ of the second station above A will be $2 g$, and in like manner for sus:ceeding stations we should find the heights $3 g, 4 g$, \&c As we hare already found $T M=a, T^{\prime} M^{\prime}=4 a$, \&e., we shall have for the heights of the curve above the level of $A, M P=T P-T M=$ $g-a, M^{\prime} P^{\prime}=T^{\prime} P^{\prime}-T^{\prime} M^{\prime}=2 g-4 a$, and in like manner for the succeeding heights $3 g-9 a, 4 g-16 a, \& c$. Then to find the grades for the curve at the successive stations from A, that is, the ris ε of each height over the preceding height, we must subtract each. height from the next following height, thus: $(g-a)-0=g-a$, $(2 g-4 a)-(g-a)=g-3 a,(3 g-9 a)-(2 g-4 a)=g-5 a$, $(4 g-16 a)-(3 g-9 a)=g-7 a, \& c c$. The successive grades for the vertical curve are, therefore,

$$
\text { 138 } g-a, g-3 a, g-5 a, g-7 a, \& \mathrm{c} .
$$

In finding these grades, strict regard must be paid to the algebraic signs. The results are then general ; though the figure represents but one of the six cases that may arise from various combinations of ascending and descending grades. If proper figures were drawn to represent the remaining eases, the above solution, with due attention to the signs, would apply to them all, and lead to precisely the sane formulæ.
108. Examples. Let the number of stations on each side of C^{r} be 3 , ard let $A C$ ascend .9 per station, and $C B$ descend .6 per station. Here
$n_{i}=3, g=.9$, and $g^{\prime}=-6$. Then, $a=\frac{g-g^{\prime}}{4 n}=\frac{.9-(-.6)}{4 \times 3}=\frac{1.5}{12}$ -. 125 , and the grades from A to B will be

$$
\begin{aligned}
& g-a=.9-.125=.75 \\
& g-3 a=.9-.375=.525 \\
& g-5 a=.9-.625=.275 \\
& g-7 a=.9-.875=.025 \\
& g-9 a=.9-1.125=-: 225 \\
& g-11 a=.9-1.375=-.475
\end{aligned}
$$

A. a sccond example, let the first of two grades descend 8 per 5 :a tion, and the second ascend . 4 per station, and assume two stations on each side of C as the extent of the curve. Here $g=-.8, g^{\prime}=.4$, and $n=2$. Then $a=\frac{-.8-.4}{4 \times 2}=\frac{-1.2}{8}=-.15$, and the four grades required will be

$$
\begin{aligned}
& g-a=-.8-(-.15)=-.8+.15=-.65 \\
& g-3 a=-.8-(-.45)=-.8+.45=-.35 \\
& g-5 a=-.8-(-.75)=-.8+.75=-.05 \\
& g-7 a=-.8-(-1.05)=-.8+1.05=+.25
\end{aligned}
$$

It will be seen, that, after finding the first grade, the remaining grades may be found by the continual subtraction of $2 a$. Thus, in the first example, each grade after the first is 25 less than the preceding grade, and in the second example, a being here negative, each grade after the first is .3 greater than the preceding gradc.
109. The grades calculated for the whole stations, as in the foregoing examples, are sufficient for all purposes except for laying the track. The grade stakes being then usually only 20 feet apart, it will be necessary to ascertain the proper grades on a vertical curve for these sub-stations. To do this, nothing more is necessary than to let 9 and g^{\prime} represent the given grades for a sub-station of 20 feet, and n the number of sub-stations on each side of the intersection, ard to apply the preceding formulæ. In the last example, for instance, the first grade descends .8 per station, or .16 every 20 feet, the second grade ascends .4 per station, or .08 every 20 feet, and the number of sub-stations in 200 feet is 10 . We have then $g=-.16, g^{\prime}=.08$, and $n=10$ Hence $a=\frac{-.16-.08}{4 \times 10}=\frac{-.24}{40}=-.00 \dot{e}$. The first grade is, there fore, $g-a=-.16+.006=-.154$, and as each subsequent grade increases .012 ($\$ 108$), the whole may be written down without farther trouble, thins: $-.154,-.142,-.130,-.118,-.106,-.094,-.082$, $-.070,-.058,-.046,-.034,-.022,-.010,+.002,+.014,+.096$ $+.038+.050,+062,+.074$.
110. Problem. Given the radius of a curve R, the gauge of the mack g, and the velocity of a car per second v, to determine the proper elevation e of the outer rail of the curve.

Solution. A car moving on a curve of radius R, with a velocity per second $=v$, has, by Mechanies, a centrifugal force $=\frac{r^{2}}{R}$. To counteract this force, the outer rail on a curve is raised above the level of the inner rail, so that the car may rest on an inclined plane. This elevation must be such, that the action of gravity in forcing the car down the inclined plane shall be just equal to the centrifugal force, which impels it in the opposite direction. Now the action of gravity on a body resting on an inclined plane is equal to 32.2 multiplied by the ratio of the leight to the length of the plane. But the height of the plane is the elevation e, and its length the gauge of the track g. This action of gravity, which is to counteract the centrifugal force, is, therefore, $=\frac{322 e}{g}$. Putting this equal to the centrifugal force, we have $\frac{82.2 e}{g}=\frac{v^{2}}{R}$. Hence

$$
\sqrt{\text { [1088 }} \quad e=\frac{g v^{2}}{32.2 R} .
$$

If we substitute for R its value ($§ 10) R=\frac{50}{\sin . D}$, we have $e=$ ${ }_{50 \times 32.2}^{g v^{2} \sin . D}=.00062112 g v^{2} \sin . D$. If the velocity is given in miles per hour, represent this velocity by M, and we have $v=\frac{M I \times 5280}{60 \times 60}$. Substituting this value of v, we find $e=.0013361 g M^{2} \sin . D$. When $g=4.7$, this becomes $e=.00627966 M^{2} \sin . D$. By this formula Table IV. is calculated. In determining the proper elevation in any given case, the usual practice is to adopt the highest customary speed of nassenger trains as the value of M.
111. Still the outer rail of a curve, though elevated according to the preceding formula, is gencrally found to be much more worn than the inner rail. On this account some are led to distrust the formula, and to give an increased elevation to the rail. So far, however, as the centrifugal force is concerned, the formula is undoubtedly correct, and the evil in question must arise from other causes, - causes which are not counteracted by an additional elevation of the outer rail. The principal of these causes is probably improper " coning" of the wheels. Two wheels, immovable on an axle, and of the same radius, must, ir
no slip is allowed, pass over equal spaces in a given number of revolutions. Now as the outer rail of a curve is longer than the inner rail, the outer wheel of such a pair must on a curve fall behind the inner wheel. The first effect of this is to bring the flange of the outer wheel against the rail, and to keep it there. The second is a strain on the axle consequent apon a slip of the wheels equal in amount to the dif ference in length of the two rails of the curve. To remedy this, coning of the whecls was introduced, by means of which the radius of the outer wheel is in effect increased, the nearer its flange approaches the rail, and this wheel is thus enabled to traverse a greater distance than the inner wheel.

To find the amount of coning for a play of the wheels of one inch, let r and r^{\prime} represent the proper radii of the inner and outer wheels respectively, when the flange of the outer wheel touches the rail. Then $r^{\prime}-r$ will be the coning for one inch in breadth of the tire. To enable the wheels to keep pace with each other in traversing a curve, their radii must be proportional to the lengths of the two rails of the curve, or, which is the same thing, proportional to the radii of these rails. If ' R be taken as the radius of the inner rail, the radius of the outer rail will be $R+g$, and we shall have $r: r^{\prime}=R: R+g$. Thercfore, $r R$ $+r g=r^{\prime} R$, or

$$
r^{\prime}-r=\frac{r g}{R}
$$

As an example, let $l i=600, r=1.4$, and $g=4.7$. Then we have $r^{\prime}-r=\frac{1.4 \times 4.7}{600}=011 \mathrm{ft}$. For a tire 3.5 in . wide, the coning would be $3.5 \times .011=.0385 \mathrm{ft}$., or ncarly half an inch. Wheels coned to this amount would accommodate themselves to any curves of not less than 600 feet radius. On a straight line the flanges of the two whecls would be equally distant from the rails, making both wheels of the same diameter. On a curve of say 2400 feet radius, the flange of the outer wheel would assume a position one fourth of an inch nearer to the rail than the flange of the inner wheel, which would increase the radius of the outer wheel just one fourth of the necessary increase on a curve of 600 feet. Should the flange of the outer wheel get too near the rail, the disproportionate increase of the radius of this wheel would make it get the start of the inner wheel, and cause the flange to recede from the rail again. If the shortest radius were taken as 900 feet, r and g remaining the same, we should have $r^{\prime}-r=\frac{1.4 \times 4.7}{900}$
$=.0073$, and for the coning of the whole tire $3.5 \times .0073=.0256 \mathrm{ft}$., or about three tenths of an inch. Wheels coned to this amount would accommodate themselves to any curve of not less than 900 feet radius. If the wheels are larger, the coning must be greater, or if the gauge of the track is wider, the coning must be greater. If the play of the wheels is greater, the coning may be diminished. Hence it might be advisable to increase the play of the wheels on short curves, by a slight increase of the gauge of the track.

Two distinct things, therefore, claim attention in regard to the moton of cars on a curve. The first is the centrifugal fore, which is generated in all cases, when a body is constrained to move in a curvilinear path, and which may be effectually counteracted for any given velocity by elevating the outer rail. The second is the unequal length of the two rails of a curve, in consequence of which two wheels fixed on an axle cannot traverse a curve properly, unless some provision is made for increasing the diameter of the outer wheel. Coning of the wheels seems to be the only thing yet devised for obtaining this increase of diameter. At present, however, there is little regularity either in the coning itself, or in the distance between the flanges of wheels for tracks of the same gauge. The tendency has been to diminish the coning," without substituting any thing in its place. If the wheels could be made to turn independently of each other, the whole difficulty would vanish; but if this is thought to be impracticable, the present method ought at least to be reduced to some system.

* Bush and Lobdell, extensive wheel-makers, say, in a note published in Appletons' Mechanic's Magazine for August, 1852, that wheels made by them for the New York and Erie road have a coning of but one sixteenth of an inch. This coning on 2 track of six feet gauge with the cher data as given above, would suit no curve af less than a mile radius.

CHAPTER IV.

EARTH-WORK.

Article I. - Prismoidal Formula.

112. Eartif-wori includes the regular excavation and em!ank ment on the line of a road, borrow-pits, or such additional excavations as are made necessary when the embankment exceeds the regular ex eavation, and, in general, any transfers of earth that require calculation. We begin with the prismoidal formula, as this formula is frequently used in calculating cubical contents both of earth and masonry.

A prismoid is a solid having two parallel faces, and composed of prisms, wedges, and pyramids, whose common altitude is the perpendicular distance between the parallel faces.
113. Problenn. Given the areas of the parallel faces B and B, the middle area M, and the altitude a of a prismoid, to find its solidity S.

Solution. The middle area of a prismoid is the area of a scetion midway between the parallel faces and parallel to them, and the altitude is the perpendicular distance between the parallel faces. If now b represents the base of any prism of altitude a, its solidity is $a b$. If b represents the base of a regular wedge or half-parallelopipedon of altitude a, its solidity is $\frac{1}{2} a b$. If b represents the base of a pyramid of altitude a, its solidity is $\frac{1}{3} a b$. The solidity of these three bodies ad mits of a common expression, which may be found thus. Let m represent the middle area of either of these bodies, that is, the area of a section parallel to the base and midway between the base and top. In the prism, $m=b$, in the regular wedge, $m=\frac{1}{2} b$, and in the pyramid, $m=\frac{1}{4} b$. Moreover, the upper base of the prism $=b$, and the upper base of the wedge or pyramid $=0$. Then the expressions $a b, \frac{1}{2} a b$, and $\frac{1}{3} a b$ may be thus transformed. Solidity of

$$
\begin{aligned}
& \text { prism }=a b=\frac{a}{6} \times 6 b=\frac{a}{6}(b+b+4 b)=\frac{a}{6}(b+b+4 m) \\
& \text { wedge }=\frac{1}{2} a b=\frac{a}{6} \times 3 b=\frac{a}{6}(0+b+2 b)=\frac{a}{6}(0+b+4 m) \\
& \text { pyramid }=\frac{1}{3} a b=\frac{a}{6} \times 2 b=\frac{a}{6}(0+b+b)=\frac{a}{6}\left(0+b+4 m_{i}\right.
\end{aligned}
$$

Hence, the solidity of either of these bodies is found by adding together the area of the upper base, the area of the lower base, and four times the middle area, and multiplying the sum by one sixth of the eltitude. Irregular wedges, or those not half-parallelopipedons, may be measured by the same rule, since they are the sum or difference of a regular wedge and a pyramid of common altitude, and as the rule applies to both these bodies, it applies to their sum or difference.

Now a prismoid, being made up of prisms, wedges, and pyramids of common altitude with itself, will have for its solidity the sum of the solidities of the combined solids. But the sum of the areas of the upper and lower bases of the combined solids is equal to $B+B^{\prime}$, the sum of the areas of the parallel faces of the prismoid; and the sum of the middle areas of the combined solids is equal to M, the middle area of the prismoid. Therefore

$$
S=\frac{a}{6}\left(B+B^{\prime}+4 M\right)
$$

Article II. - Borrow-Pits.

114. For the measurement of small excarations, such as borrowpits, \&c., the usual method of preparing the ground is to divide the surface into parallelograms* or triangles, small enongh to be considered planes, laid off from a base line, that will remain untonched by the excavation. A convenient bench-mark is then selected, and levels taken at all the angles of the subdivisions. After the excavation is made, the same subdivisions are laid off from the base line upon the oottom of the excavation, and levels referred to the same bench-mark are taken at all the angles.

This method divides the excavation into a series of vertical prisms, generally truncated at top and bottom. The vertical edges of these prisms are known, since they are the differences of the levels at the top and bottom of the excavation. The horizontal section of the prisms is also known, because the parallelograms or triangles, into which the surface is divided, are always measured horizontally.
115. Problenn. Given the edges h, h_{1}, and h_{2}, to find the solidity

[^9]S of a vertical prism, whether truncated or not, whose horizontal section is a triangle of given area A.

Solution. When the prism is not truncated, we have $h=h_{1}=h_{2}$. The ordinary rule for the solidity of a prism gives, therefore, $S=A h$ $:=A \times \frac{1}{3}\left(h+h_{1}+h_{2}\right)$. When the prism is truncated, let $A B C$. F G H (fig. 48) represent such a prism, truncated at the top. Through the lowest point A of the upper face draw a horizontal plane $A D E$ cutting off a pyramid, of which the base is the trapezoid $B D E C$, and the altitude a perpendicular let fall from A on $D E$. Represent this perpendicular by p, and we have (Tab. $\mathbf{X} .52$) the solidity of the pyra$\mathrm{mid}=\frac{1}{3} p \times B D E C=\frac{1}{3} p \times D E \times \frac{1}{2}\left(B D+C E^{2}\right)=\frac{1}{2} p \times$ $D E \times \frac{1}{3}(B D+C E)=A \times \frac{1}{3}(B D+C E)$, since $\frac{1}{2} p \times D E$ $=A D E=A$. But $\frac{1}{3}(B D+C E)$ is the mean height of the vertical cdgcs of the truncated portion, the height at A being 0 . Hence the formula already found for a prism not truncated, will apply to the portion above the plane $A D E$, as well as to that below. The same reasoning would apply, if the lower end also were truncated. Hence, for the solidity of the whole prism, whether truncated or not, we have

$$
\text { ITE } \quad S=A \times \frac{1}{3}\left(h+h_{1}+h_{2}\right) \text {. }
$$

116. Problemi. Given the edges h, h_{1}, h_{2}, and h_{3}, to find the solidity S of a vertical prism, whether truncated or not, whose horizontal section is a parallelogram of given area A.

Solution. Let $B H$ (fig. 49) represent such a prism, whether trun cated or not, and let the plane $B F H D$ divile it into two triangular

Fig. 49.

prisms AFH and CFH. The horizontal section of each of these prisms will be $\frac{1}{2} A$, and if h, h_{1}, h_{2}, and h_{3} represent the edges to which they are attached in the figure, we have for their solidity ($\$ 115$) $A F H=\frac{1}{2} A \times \frac{1}{3}\left(h+h_{1}+h_{3}\right)$, and $C F H=\frac{1}{2} A \times \frac{1}{3}\left(h_{1}+h_{2}+\right.$ h_{3}). Therefore, the whole prism will have for its solidity $S=\frac{1}{2} A \times$ $\frac{1}{3}\left(h+2 h_{1}+h_{2}+2 h_{3}\right)$. Let the whole prism be again divided b_{j} the plane $A E G C$ into two triangular prisms $B E G$ and $D E G$ Then we have for these prisms, $B E G=\frac{1}{2} A \times \frac{1}{3}\left(h+h_{1}+h_{2}\right)$, and $D E G=\frac{1}{2} A \times \frac{1}{3}\left(h+h_{2}+h_{3}\right)$, and for the whole prism, $S=$ $\frac{1}{2} A \times \frac{1}{3}\left(2 h+h_{1}+2 h_{2}+h_{3}\right)$. Adding the two expressions found for S, we have $2 S=\frac{1}{2} A\left(h+h_{1}+h_{2}+h_{3}\right)$, or
[

$$
S=A \times \frac{1}{4}\left(h+h_{1}+h_{2}+h_{3}\right) .
$$

It will be seen by the figure, that $\frac{1}{2}\left(h+h_{2}\right)=K L=\frac{1}{2}\left(h_{1}+h_{3}\right)$, or $h+h_{2}=h_{1}+h_{3}$. The expression for S might, therefore, be reduced to $S=A \times \frac{1}{2}\left(h+h_{2}\right)$, or $S=A \times \frac{1}{2}\left(h_{1}+h_{3}\right)$. But as the ground surfaces $A B C D$ and $E F G H$ are seldom perfect planes, it is considered better to use the mean of the four heights, instead of the mean of two diagonally opposite.
117. Corollary. When all the prisms of an excaration have the same horizontal section A, the calculation of any number of them
may be performed by one operation. Let figure 50 be a plan of such an excavation, the heights at the angles being denoted by a, a_{1}, a_{2}, ι

Fig. 50.
$b_{1}, \& c$. Then the solidity of the whole will be equal to $\frac{1}{4} \mathrm{~A}$ multi plied by the sum of the heights of the several prisms (\$116). Into this sum the corner heights $a, a_{2}, b, b_{5}, c_{5}, d$, and d_{4} will enter but once, each being found in but one prism; the heights $a_{1}, b_{4}, c, d_{1}, d_{2}$, and d_{3} will enter tuice, each being common to two prisms; the heights b_{1}, b_{3}, and c_{4} will enter three times, each being common to three prisms; and the heights b_{2}, c_{1}, c_{2}, and c_{3} will enter four times, each being common to four prisms. If, therefore, the sum of the first set of heights is represented by s_{1}, the sum of the second by s_{2}, of the third by s_{3}, and of the fourth by s_{4}, we shall have for the solidity of all the prisms

家

$$
S=\frac{1}{4} A\left(s_{1}+2 s_{2}+3 s_{3}+4 s_{4}\right) .
$$

Article III. - Excavation and Embankment.

118. As embankments have the same general shape as excavations, it will be necessary to consider excarations only. The simplest case is when the ground is considered level on each side of the centre line. Figure 51 represents the mass of earth between two stations in an excavation of this kind. The trapezoid $G B F H$ is a section of the mass at the first station, and $G_{1} B_{1} F_{1} H_{1}$ a section at the second station; $A E$ is the centre height at the first station, and $A_{1} E_{1}$ the centre height at the second station; $H H_{1} F_{1} F$ is the road-bed, $C_{r} G_{1} B_{1} B$ the
surface of the ground, and $G G_{1} H_{1} H$ and $B B_{1} F_{1} F$ the planes formmg the side slopes. This solid is a prismoid, and might be calculated by the prismoidal formula ($\$ 113$). The following metnod gives the same result.

A. Centre IIeights alone given.

119. Prolblem. Given the centre heights c and c_{1}, the width of the -oud-bed b, the slope of the sides s, and the length of the section l, to find the solidity S of the excavation.

iortion. Let c be the centre height at A ('ig. 51) and c_{1} the height at: A.. The slope s is the ratio of the base of the slope to its perpendicniar height ($\$ 102$). We have then the distance out $A B=\frac{1}{2} b+$ $s c$, and the distance out $A_{1} B_{1}=\frac{1}{2} b+s c_{1}(\S 102)$. Divide the whole mass into two equal parts by a vertical plane $A A_{1} E_{1} E$ drawn through the centre line, and let us find first the solidity of the righthand half. Through B draw the planes $B E E_{1}, B A_{1} E_{1}$, and $B E_{1} F_{1}^{\prime}$, dividing the half-section into three quadrangular pyramids, having for their common vertex the point B, and for their bases the planes $\Lambda A_{1} E_{1} E, E E_{1} F_{1} F$, and $A_{1} B_{1} F_{1} E_{1}$. For the areas of these bases we have

$$
\begin{aligned}
& \text { Area of } A A_{1} E_{1} E=\frac{1}{2} E E_{1} \times\left(A E+A_{1} E_{1}\right)=\frac{1}{2} l\left(c+c_{1}\right) \text {, } \\
& \text { " "E E } E_{1} F_{1} F=E F \times E E_{1}=\frac{1}{2} b l \text {, } \\
& \text { " " } A_{1} B_{1} F_{1} E_{1}=\frac{1}{2} A_{1} E_{1} \times\left(E_{1} F_{1}+A_{1} B_{1}\right)=\frac{1}{2}\left(b c_{1}+s c_{1}^{2}\right) \text {; }
\end{aligned}
$$

and ior the perpendiculars from the vertex B on these bases, produced when necessary,

Perpendicular on $A A_{1} E_{1} E=A B=\frac{1}{2} b+\circ c$,
" " $E E_{1} F_{1} F=A E=c$,
" " $A_{1} B_{1} F_{1} E_{1}=E E_{1}=l$.
Then ('Tad. X. 52) the soliditics of the three pyramids are

$$
\begin{array}{rlr}
B-A A_{1} E_{1} E=\frac{1}{3}\left(\frac{1}{2} b+s c\right) \times \frac{1}{2} l\left(c+c_{1}\right) & =\frac{1}{6} l\left(\frac{1}{2} b c+\frac{1}{2} b c_{1}+\right. \\
B-E E_{1} F_{1} F=\frac{1}{3} c \times \frac{1}{2} b l & =\frac{1}{6} l b c, \\
\left.B-A_{1} B_{1} F_{1} E_{1}=\frac{1}{3} l c_{1}\right) \\
& =\frac{1}{2}\left(b c_{1}+s c_{1}{ }^{2}\right) & \\
=\frac{1}{6} l\left(b c_{1}+s c_{1}{ }^{2}\right) .
\end{array}
$$

Their sun, or the solidity of the half-section, is

$$
\frac{1}{2} S=\frac{1}{6} l\left[\left.\frac{3}{2} b\left(c+c_{1}\right)+s\left(c^{3}+c_{1}^{2}+c c_{1}\right) \right\rvert\, .\right.
$$

Therefore the solidity of the whole section is

$$
S=\frac{1}{3} l\left[\frac{3}{2} b\left(c+c_{1}\right)+s\left(c^{2}+c_{1}^{2}+c c_{1}\right)\right],
$$

or

$$
\text { 장 } \quad S=\frac{1}{2} l\left[b\left(c+c_{1}\right)+\frac{2}{3} s\left(c^{2}+c_{1}{ }^{2}+c c_{1}\right)\right]
$$

When the slope is $1 \frac{1}{2}$ to $1, s=\frac{3}{2}$, and the factor $\frac{2}{3} s=1$ may be dropped.
120. Problent. To find the solidity S of any number n of succes. sive sections of equal length.

Solution. Let c, c_{1}, c_{2}, c_{3}, \&c. denote the centre heights at the suceessive stations. Then we have ($\$ 119$)
Solidity of first section $=\frac{1}{2} l\left[b\left(c+c_{1}\right)+\frac{2}{3} s\left(c^{2}+c_{1}{ }^{2}+c c_{1}\right)\right]$,
" " second section $=\frac{1}{2} l\left[b\left(c_{1}+c_{2}\right)+\frac{2}{3} s\left(c_{1}{ }^{2}+c_{2}{ }^{2}+c_{1} c_{2}\right)\right]$,
" \quad " third section $=\frac{1}{2} l\left[b\left(c_{2}+c_{3}\right)+\frac{2}{3} s\left(c_{2}{ }^{2}+c_{3}{ }^{2}+c_{2} c_{3}\right)\right]$, \&c. \&c.

For the solidity of any number n of sections, we should have $\frac{1}{2} l \mathrm{mul}$ tiplied by the sum of the quantities in n parentheses formed as those iust given. The last centre height, according to the notation adopted, will be represented by c_{n}, and the next to the last by c_{n-1}. Collecting the terms multiplied by b into one line, the squares multiplied by ${ }_{3}^{2} s$ into a second line, and the remaining terms into a third line, we have for the solidity of n sections

$$
S=\frac{1}{2} l \left\lvert\, \begin{array}{r}
b\left(c+2 c_{1}+2 c_{2}+2 c_{3} \ldots \ldots+2 c_{n-1}+c_{n}\right) \\
+\frac{2}{3} s\left(c^{2}+2 c_{1}^{2}+2 c_{2}^{2}+2 c_{3}^{2} \ldots+2 c_{n-1}^{2}+c_{n}^{2}\right) \\
+\frac{2}{3} s\left(c c_{1}+c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4} \ldots+c_{n-1} c_{n}\right) .
\end{array}\right.
$$

When $s=\frac{8}{2}$, the factor $\frac{2}{3} s=1$ may be dropped.

Example. Given $l=100, b=28, s=\frac{3}{2}$, and the stations and centre heights as set down in the first and scoond columns of the annexed table. The calculation is thus performed. Square the heights, and set the squares in the third column. Form the successive products $c c_{1}, c_{1} c_{2}, \& c$., and place them in the fourth column. Add up the last three columns. To the sum of the second column add the sum itself, minus the first and the last height, and to the sum of the third column ald the sum itself, minus the first and the last square. Then 86 is the multiplier of b in the first line of the formula, 592 is the second line, since $\frac{2}{3} s$ is here 1 , and 274 is the third line. The product of 86 by b $=28$ is 2408 , and the sum of 274,592 , and 2408 is 3274 . This mulriplied by $\frac{1}{2} l=50$ gives for the solidity 163,700 cubic feet.

Station.	c.	c^{2}.	$c c_{1}$.
0	2	4	
1	4	16	8
2	7	49	28
3	6	36	42
4	10	100	60
5	7	49	70
6	6	36	42
7	4	16	24
	46	306	274
	40	286	592
	86	592	2408
	28		$2 \longdiv { 3 2 7 4 }$
	2408		163700

B. Centre ana' Side Heights given.

121. When greater accuracy is required than can be attained by the preceding method, the side heights and the distances out (\$102) are introduced. Let figure 52 represent the right-hand side of an excava tion between two stations. $A A_{1} B_{1} B$ is the ground surface ; $A E=c$ and $A_{1} E_{1}=c_{1}$ are the centre heights ; $B G=h$ and $B_{1} G_{1}=h_{1}$, the side heights ; and d and d_{1}, the distances out, or the horizontal distances of B and B_{1} from the centre line. The whole ground surface may sometimes be taken as a plane, and sometimes the part on each side of the centre line may be so taken; * but neither of these suppo.

[^10]sitions is sufficiently aecurate to serve as the basis of a general method. In most cases, however, we may consider the surface on each side of the centre line to be divided into two triangular planes by a diagonal passing from one of the centre heights to one of the side heights. A ridge or depression will, in general, determine which diagonal ought to be taken as the dividing line, and this diagonal must be noted in the field. Thus, in the figure a ridge is supposed to run from B to A_{1}, from which the ground slopes downward on each side to A and B_{1}. Instead of this, a depression might run from A to B_{1}, and the ground rise each way to A_{1} and B. If the ridge or depression is very marked, and does not cross the centre or side lines at the regular stations, intermediate stations must be introduced to make the triangular planes conform better to the nature of the ground. If the surface happers to be a plane, or nearly so, the diagonal may be taken in either direction. It will be seen, therefore, that the following method is applicable to all ordinary ground. When, however, the ground is very irregular, the method of $\$ 127$ is to be used.
122. Prohlem. Given the centre heights c and c_{1}, the side heights on the right h and h_{1}, on the left h^{\prime} and h_{1}^{\prime}, the distances out on the right d and d_{1}, on the left d^{\prime} and $d^{\prime}{ }_{1}$, the width of the road-bed b, the length of the section l, and the direction of the diagonals, to find the solidity S of the excavation.

Solution. Let figure 52 represent the right-hand side of the excaration, and let us suppose first, that the diagonal runs, as shown in the figure, from B to A_{1}. Through B draw the planes $B E E_{1}, B A_{1} E_{1}$, and $B E_{1} F_{1}$, dividing the half-section into three quadrangular pyramids, having for their common vertex the point B, and for their bases the planes $A A_{1} E_{1} E, E E_{1} F_{1} F$, and $A_{1} B_{1} F_{1} E_{1}$. For the areas of these bases we have
Area of $A A_{1} E_{1} E=\frac{1}{2} E E_{1} \times\left(A E+A_{1} E_{1}\right)=\frac{1}{2} l\left(c+c_{1}\right)$,
$\begin{aligned} \text { " " } E E_{1} F_{1} F=E F \times E E_{1} & =\frac{1}{2} b l, \\ \text { " " } A_{1} B_{1} F_{1} E_{1}=\frac{1}{2} A_{1} E_{1} \times d_{1}+\frac{1}{2} E_{1} F_{1} \times l_{1} & =\frac{1}{2} d_{1} c_{1}+\frac{1}{4} b h_{1},\end{aligned}$
and for the perpendieulars from the vertex B on these bases, produced when necessary,
plane; for if it is a plane, the cescent from A to B will be to the descent from A_{1} to B_{1}, as the distance out at the first station is to the distance out at the second station, that is, $c-h: c_{1}-h_{1}=d: d_{1}$. If we had $c=9, h=6, c_{1}=12, \dot{r}_{1}=8$, $d=24$, and $d_{1}=27$, the formula would give $3: 4=24: 27$ which shows that the surface is not a plane.

Perpendicular on $A A_{1} E_{1} E=E G=d$,
"
"E E $E_{1} F_{1}{ }^{\prime}=B G=h$,
" " $A_{1} B_{1} F_{1} E_{1}=E E_{1}=l$.

Fig. 52.

Yhen (Tab. X. 52) the solidities of the three pyramids are

$$
\begin{array}{ll}
B-A A_{1} E_{1} E=\frac{1}{3} d \times \frac{1}{2} l\left(c+c_{1}\right) & =\frac{1}{6} l\left(d c+d c_{5}\right), \\
B-E E_{1} F_{1} F=\frac{1}{3} h \times \frac{1}{2} b l & =\frac{1}{6} l b h, \\
B-A_{1} B_{1} F_{1} E_{1}=\frac{1}{3} l \times \frac{1}{2}\left(d_{1} c_{1}+\frac{1}{2} b h_{1}\right) & =\frac{1}{6} l\left(d_{1} c_{1}+\frac{1}{2} b h_{1}\right) .
\end{array}
$$

Their sum, or the solidity of the half-section, is

$$
\begin{equation*}
{ }_{6}^{1} l\left(d c+d_{1} c_{1}+d c_{1}+b h+\frac{1}{2} b h_{1}\right) . \tag{1}
\end{equation*}
$$

Next, suppose that the diagonal runs from A to B_{1}. In this case, through B_{1} draw the planes $B_{1} E_{1} E, B_{1} A E$, and $B_{1} E F$ (not represented in the figure), dividing the half-section again into three quadrangular pyramids, having for their common vertex the point B_{1}, and for their bases the planes $A A_{1} E_{1} E, E E_{1} F_{1} F$, and $A B F E$ For the areas of these bases we have

Area of $A A_{1} E_{1} E=\frac{1}{2} E E_{1} \dot{\times}\left(A E+A_{1} E_{1}\right)=\frac{1}{2} l\left(c+c_{1}\right)$,

$$
\begin{aligned}
": E E_{1} F_{1} F=E F \times E E_{1} & =\frac{1}{2} b l, \\
" " A B F E=\frac{1}{2} A E \times d+\frac{1}{2} E F \times h & =\frac{1}{2} d c+\frac{1}{4} b h ;
\end{aligned}
$$

and for the perpendiculars from B_{1} on these bases, produced when necessary,

Perpendicular on $A A_{1} E_{1} E=E_{1}\left(G_{1}=d_{1}\right.$,

$$
\begin{aligned}
& " \quad \text { "E E } E_{1} F_{1}=B_{1} G_{1}=\dot{n}_{1}, \\
& " \quad ~
\end{aligned}
$$

Tk n (Tab. X. 52) the solidities of the three pyramids are

$$
\begin{aligned}
B_{1}-A A_{1} E_{1} E=\frac{1}{3} d_{1} \times \frac{1}{2} l\left(c+c_{1}\right) & =\frac{1}{6} l\left(d_{1} c+d_{1} c_{1}\right), \\
B_{1}-E E_{1} F_{1} F=\frac{1}{3} h_{1} \times \frac{1}{2} b l & =\frac{1}{6} l b h_{1}, \\
B_{1}-A B F E=\frac{1}{3} l \times \frac{1}{2}\left(d c+\frac{1}{2} b h\right) & =\frac{1}{6} l\left(d c+\frac{1}{2} b h\right) .
\end{aligned}
$$

Their sum, or the solidity of the half-section, is

$$
\begin{equation*}
\frac{1}{6} l\left(d c+d_{1} c_{1}+d_{1} c+\iota h_{1}+\frac{1}{2} b h\right) . \tag{2}
\end{equation*}
$$

We have thus found the solidity of the half-section for both direc tions of the diagonal. Let us now compare the results (1) and (2), and express them, if possible, by one formula. For this purpose let (1) be put under the form

$$
\frac{1}{6} l\left[d c+d_{1} c_{1}+d c_{1}+\frac{1}{2} l\left(h+h_{1}+h\right)\right],
$$

and (2) under the form

$$
\frac{1}{6} l\left[l c+d_{1} c_{1}+d_{1} c+\frac{1}{2} b\left(h+h_{1}+h_{1}\right)\right] .
$$

The only difference in these two expressions is, that $d c_{1}$ and the last h in the first, become $d_{1} c$ and h_{1} in the second. But in the first case, c_{1} and h are the heights at the extremitics of the diagonal, and d is the distance out corresponding to h; and in the second case, c and h_{1} are the heights at the extremities of the diagonal, and d_{1} is the distance out corresponding to h_{1}. Denote the centre height touched by the diagonal by C, the side height tonched by the diagonal by H, and the distance out cor. responding to the side height H by D. We may then express both $d c_{1}$ and $d_{1} c$ by $D C$, and both h and h_{1} by $I I$; so that the solidity of the half-section on the right of the centre line. whichever way the diagonal runs, may be expressed by

$$
\begin{equation*}
\frac{1}{6} l\left[d c+a_{1} c_{1}+D C+\frac{1}{2} b\left(h+h_{1}+H\right) \dot{j} .\right. \tag{3}
\end{equation*}
$$

To obtain the contents of the portion on the left of the centre line, we designate the quantities on the left by the same letters used for corresponding quantities on the right, merely attaching a ($'$) to them to distinguish them. Thus the side heights are h^{\prime} and h_{1}^{\prime}, and the distances ont d^{\prime} and $d^{\prime}{ }_{1}$, while D, C, and H become D^{\prime}, C^{\prime}, and H^{\prime}. The solidity of the half-section on the left may therefore be taken directly from (3), which will become

$$
\begin{equation*}
\frac{1}{6}!\left\{d^{\prime} c+d_{1}^{\prime} c_{1}+D^{\prime} C^{\prime}+\frac{1}{2} b^{\prime}\left(h^{\prime}+h_{1}^{\prime}+I I^{\prime}\right)\right] . \tag{4}
\end{equation*}
$$

Finally, by uniting (3) and (4), we obtain the following formula for the solidity of the whole section between two stations
$\sqrt{\text { me }}={ }_{6}^{1} l\left[\left(d+d^{\prime}\right) c+\left(d_{1}+d^{\prime}{ }_{1}\right) c_{1}+D C+D^{\prime} C^{\prime}+\frac{1}{2} b(h+\right.$ $\left.\left.h_{1}+H+h^{\prime}+l_{1}^{\prime}+H^{\prime}\right)\right]$.

Example. Given $l=100, b=18$, and the remaining data, as ar ranged in the first six columns of the following table. The first colunn gives the stations; the fourth gives the centre heights, namely, $c=13.6$ and $c_{\mathbf{1}}=8$; the two columns on the left of the centre heights give the side heiglits and distances out on the left of the centre line of the road, and the two columns on the right of the centre heights give the side heights and distances out on the right. The direction of the diagonals is marked by the oblique lines drawn from $h^{\prime}=8$ to $c_{1}=8$ and from $c=13.6$ to $h_{1}=12$.

	d^{1}.	h^{\prime}.	c.	h.		$d+d^{\prime}$.	$\left(d+d^{\prime}\right) c$.	$D^{\prime} C^{\prime}$	D C.
0		8	13.6	10	24	45	612		
1		4	8.0	12	27\|	42	336	168	367.2
		12		12			168		.
				20			367.2		
					$\times 9=$		485		
							6) 1969.20		
							32820.		

To apply the formula, the distances out at each station are added together, and their sum placed in the seventh column; these sums, multiplied by the respective centre heights, are placed in the eighth column ; the product of $d^{\prime}=21$ (which is the distance out corresponding to the side height touched by the left-hand diagonal) by $c_{1}=8$ (which is the centre height touched by the same diagonal) is placed in the ninth column, and the similar product of $d_{1}=27$ by $c=13.6$ is placed in the last column. The terms in the formula multiplied by $\frac{1}{2} b$ are all the side heights, and in addition all the side heights touched by diagonals, or $8+4+10+12+8+12=54$. Then by substitution in the formula, we have $S=\frac{1}{6} \times 100(612+336+168+$ $367.2+9 \times 54)=32,820$ cubic feet.*

By applying the rule given in the note to $\$ 121$, we see that the surface on the left of the centre line in the preceding example is a plane: since $13.6-8: 8-4=21: 15$. The diagonal on that side might, therefore, be taken either way, and the same solidity would be obtained. This may be easily seen by reversing the diagonal in this example, and calculating the solidity anew. The only parts of the formula affected by the change are $D^{\prime} C^{\prime}$ and $\frac{1}{2} b H^{\prime}$. In the one case the sum of these terms is $21 \times 8+9 \times 8$, and in the other 15×13.6 $+9 \times 4$, both of which are equal to 240 .

123 Problem. To find the solidity S of any number n of successive sections of equal length.

Solution. Let $c, c_{1}, c_{2}, c_{3}, \mathbb{E}$. be the centre heights at the successive stations $; h, h_{1}, h_{2}, h_{3}$, \&c. the right-hand side heights; $h^{\prime}, h_{1}^{\prime}, h_{2}^{\prime}$, $l^{\prime}{ }_{3}$, \&c. the left-hand side heights ; d, d_{1}, d_{2}, d_{3}, \&c. the distances ont on the right ; and $d^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}$, \&c. the distances out on the left. Then the formula for the solidity of one section ($\$ 122$) gires for the sclidities of the successive sections

$$
\begin{aligned}
& { }_{6}^{1} l\left[\left(d+d^{\prime}\right) c+\left(d_{1}+d^{\prime}{ }_{1}\right) c_{1}+D C+D^{\prime} C^{\prime}+\frac{1}{2} b\left(h+h_{1}+H+\right.\right. \\
& \left.\left.\quad h^{\prime}+h_{1}^{\prime}+H^{\prime}\right)\right], \\
& { }_{6}^{1} l\left[\left(d_{1}+d_{1}^{\prime}\right) c_{1}+\left(d_{2}+d^{\prime}\right) c_{2}+D_{1} C_{1}+D_{1}^{\prime} C^{\prime}{ }_{1}+\frac{1}{2} b\left(h_{1}+h_{2}+\right.\right. \\
& \left.\left.\quad H_{1}+h_{1}+h_{2}^{\prime}+H_{1}^{\prime}\right)\right], \\
& { }_{6}^{1} l\left[\left(d_{2}+d^{\prime}\right) c_{2}+\left(d_{3}+d^{\prime}\right) c_{3}+D_{2} C_{2}+D_{2}^{\prime} C^{\prime}{ }_{2}+\frac{1}{2} b\left(h_{2}+h_{3}+\right.\right. \\
& \left.\left.\quad H_{2}+l_{2}^{\prime}+h^{\prime}{ }_{3}+H^{\prime}{ }_{2}\right)\right],
\end{aligned}
$$

and so on, for any number of sections. For the solidity of any num. ber n of sections, we should have $\frac{1}{6} l$ multiplied by the sum of n parentheses formed as those just given. Hence

$$
\begin{aligned}
& \text { ITsi } S=\frac{1}{6} l\left(d+d^{\prime}\right) c+2\left(d_{1}+d_{1}\right) c_{1}+2\left(d_{2}+d_{2}^{\prime}\right) c_{2} \ldots+\left(d_{n}+d^{\prime}{ }_{n}\right) c_{n} \\
&+D C+D^{\prime} C^{\prime}+D_{1} C_{1}+D_{1}^{\prime} C^{\prime}+D_{2} C_{2}+D_{2}{ }_{2} C_{2}^{\prime}+\& c . \\
&+\frac{1}{2} b h_{1} h+2 h_{1}+2 h_{2} \ldots \ldots+h_{n}+H+H_{1}+H_{2}+\& c . \\
&+h^{\prime}+2 h_{1}^{\prime}+2 h_{2}^{\prime} \ldots+h_{2}^{\prime}+H^{\prime}+H^{\prime}{ }_{1}+H_{2}^{\prime}+\& c .
\end{aligned}
$$

[^11]Example. Given $l=100, b=28$, and the remaining data as given in the first six columns of the following table.

Sta.	$d^{\prime \prime}$.	h^{\prime}.	c.	h.	d.	$d+d^{\prime}$.	$\left(d+d^{\prime}\right)$ c.	$D^{\prime} C^{\prime}$.	D C.
0	17		2	2	17	34	68		
1	18.5	3	4	-	21.5	40	160	68	43
2	20	4	5	- 6	23	43	215	80	92
3	23	6	6	-	26	49	29.	115	130
4	21.5		6	7	24.5	46	276	129	147
5	20		6	4	20	40	240	120	147
6	15.5				18.5	34	136	93	80
		25		$\overline{35}$			$\overline{1389}$	605	$\overline{639}$
		22		30			1185		
		22		37			605		
		69		$\overline{102}$			639		
		102					2.594		
		171	4	2394			6) 6212		
							10353	cubic	cet.

The data in this table are arranged precisely as in the example for calculating one section ($\$ 122$), and the remaining columns are calculated as there shown. Then, to obtain the first line of the formula, add all the numbers in the column headed $\left(d+d^{\prime}\right) c$, making 1389, and afterwards all the numbers except the first and the last, making 1185. The next line of the formula is the sum of the columns $D^{\prime} C^{\prime}$ and $D C$, which give respectively 605 and 639 . To obtain the first line of the quantities multiplied by $\frac{1}{2} b$, add all the numbers in column h, making 35, next all the numbers except the first and the last, making 30 , and lastly all the numbers touched by diagonals (doubling any one touched by two diagonals), making 37. The second line of the quantities multiplied by $\frac{1}{2} b$ is obtained in the same way from the column marked ι^{\prime}. The sum of these numbers is 171 , and this multiplied by $\frac{1}{2} b=14$ gives 2394. We have now for the first line of the formula $1389+1185$, for the second $605+639$, and for the remainder 2394. By adding these together, and multiplying the sum by $\frac{1}{6} l=\frac{100}{6}$, we get the contents of the six sections in feet.
124. When the section is partly in excavation and partly in embankment, the preceding formulæ are still applicable ; but as this application introduces minus quantities into the calculation, the following method, similar in principle, is preferable.
125. Problenn. Given the widths of an excaration at the road-bed
$A F=w$ and $A_{1} F_{1}=w_{1}$ (fig.53): the side heights h and h_{1}, the length of the section l, and the direction of the diagonal, to find the solidity S of the excavation, when the section is partly in excavation and partly in em. bankment.

Solution. Suppose, first, that the surface is divided into two trian gles by the diagonal $B A_{1}$. Through B draw the plane $B A_{1} F_{1}$, dividing that part of the section which is in excavation into two pyramids $B-A A_{1} F_{1} F$ and $B-A_{1} B_{1} F_{1}^{\prime}$, the solidities of which are

$$
\begin{aligned}
B-A A_{1} F_{1} F=\frac{1}{3} h \times \frac{1}{2} l\left(w+w_{1}\right) & =\frac{1}{6} l\left(w h+w_{1} h\right), \\
B-A_{1} B_{1} F_{1}=\frac{1}{3} l \times \frac{1}{2} w_{1} h_{1} & =\frac{1}{6} l w_{1} h_{1} .
\end{aligned}
$$

The whole solidity is, therefore,

$$
S=\frac{1}{6} l\left(w h+w_{1} h_{1}+w_{1} h\right)
$$

Next, suppose the dividing diagonal to run from A to B_{1}. Through B_{1} draw a plane $B_{1} A F$ (not represented in the figure), dividing the excavation again into two pyramids, of which the solidities are

$$
\begin{aligned}
& B_{1}-A A_{1} F_{1} F=\frac{1}{3} h_{1} \times \frac{1}{2} l\left(w+w_{1}\right)=\frac{1}{6} l\left(w h_{1}+w_{1} h_{1}\right), \\
& B_{1}-A B F=\frac{1}{3} l \times \frac{1}{2} w h \quad=\frac{1}{6} l w h .
\end{aligned}
$$

The whole solidity is, therefore,

$$
S=\frac{1}{6} l\left(w h+w_{1} l_{1}+w h_{1}\right) .
$$

The only difference in these two expressions is, that $w_{1} h$ in the first becomes $w h_{1}$ in the second. But in the first case the diagonal touches w_{1} and h, and in the second case it touches w and h_{1}. If, then, we designate the width touched by the diagonal by W, and the height touched by the diagonal by H, we may express both $w_{1} h$ and $w h_{1}$ by $W H$; so that the solidity in either case may-be expressed by
[要 $\quad S=\frac{1}{6} l\left(w h+w_{1} h_{1}+W I\right)$.
Corollary. When several sections of equal length succeed one another, the whole may be calculated together. For this purpose, the preceding formula gives for the solidities of the successive sections

$$
\begin{aligned}
& \frac{1}{6} l\left(w h+w_{1} h_{1}+W H\right), \\
& \frac{1}{6} l\left(w_{1} h_{1}+w_{2} h_{2}+W_{1} I_{1}\right), \\
& \frac{1}{6} l\left(w_{2} h_{2}+w_{3} h_{3}+W_{2} H_{2}\right),
\end{aligned}
$$

and so on for any number of sections. Hence for the solidity of any number n of sections we should have
[若 $S=\frac{1}{6} l\left(w h+2 w_{1} h_{1}+2 w_{2} h_{2} \ldots .+w_{n} h_{n}+W H+W_{1} H_{1}+\right.$ $W_{2} H_{2}+\&$ c.)

Example. Given $l=100$, ard the remaining data as given in the Erst three columns of the following table.

The fourth column contains the products of the several widths by the corresponding heights, and the next column the products of those widths and heights touched by diagonals. The sum of the products in the fourth column is 247 , the sum of all but the first and the last is 209, and the sum of the products in the fifth column is 186 . These three sums are added together, multiplied by 100 , and divided by 6 , according to the formula. This gives the solidity of the four sections $=10700$ cubic feet.
126. When the excavation does not begin on a line at right angles to the centre line, intermediate stations are taken where the excavaticn begins on each side of the road-bed, and the section may be calcu-
lated as a pyramid, having its vertex at the first of these points, and for its base the cross-section at the second. The preceding method gives the same result, since w and h in this case become 0 , and reduce the formula to $S=\frac{1}{6} l w_{1} h_{1}$. The same remarks apply to the end of an excavation.

C. Ground very Irregular.

127. Problem. To find the solidity of a section, when the ground is very irregular.

Solution. Let $A I B F E-A_{1} C D B_{1} F_{1} E_{1}$ (fig. 54) represent one side of a section, the surface of which is too irregular to be divided into two planes. Suppose, for instance, that the ground changes at H, C, and D, making it necessary to divide the surface into five triangles running from station to station.* Let heights be taken at H, C, and D, and let the distances out of these points be measured. If now we suppose the earth to be excavated vertically downward through the side line $B B_{1}$ to the plane of the road-bed, we may form as many vertical triangular prisms as there are triangles on the surface. This will be made evident by drawing vertical planes through the sides

[^12]A $C, H C, H D$, and $H B_{1}$. Then the solidity of the lulf-section will be equal to the sum of these prisms, minus the triangular mass $B F G-$ $B_{1} F_{1} G_{1}$.
The horizontal section of the prisms may be found from the distances out and the length of the section, and the vertical edges or heights are all known. Hence the solidities of these prisms may be calculated by $\$ 115$.

To find the solidity of the portion $B F G-B_{1} F_{1} G_{1}$, which is to be deducted, represent the slope of the sides by $s(\$ 102)$, the heights at B and B_{1} ly h and h_{1}, and the length of the section by l. Then we have $F G=s h$, and $F_{1} G_{1}=s h_{1}$. Moreover, the area of $B F G$ $=-\frac{1}{2} s i^{2}$, and that of $B_{1} F_{1} G_{1}=\frac{1}{2} s h_{1}{ }^{2}$. Now as the triangles $B F G$ and $B_{1} F_{1} G_{1}$ are similar, the mass required is the frustum of a pyramid, and the mean area is $\sqrt{\frac{1}{2} s h^{2} \times \frac{1}{2} s h_{1}{ }^{2}}=\frac{1}{2} s h h_{1}$. Then (Tab. N^{53}) the solidity is $B F^{\prime} G-B_{1} F_{1} G_{1}=\frac{1}{h} / s\left(h^{2}+h_{1}{ }^{2}+h h_{1}\right)$.

Example. Given $l=50, b=18, s=\frac{3}{2}$, the heights at $A, I I$, and B respectively 4,7 , and 6 , the distances $A H=9$ and $I I B=9$, the heights at A_{1}, C, D, and B_{1} respectively $6,7,9$, and 8 , and the distances $A_{1} C=4, C D=5$, and $D B_{1}=12$ Then the horizontal section of the first prism adjoining the centre line is $\frac{1}{2} l \times A_{1} C$, since the distance $A_{1} C$ is measured horizontally ; and the mean of the three heights is $\frac{1}{3}(4+6+7)=\frac{1}{3} \times 17$. The solidity of this prism is therefore $\frac{1}{2} l \times A_{1} C \times \frac{1}{3} \times 17=\frac{1}{6} l \times 4 \times 17$, that is, equal to $\frac{1}{6} l$ multiplied by the base of the triangle and by the sum of the heights. In this way we should find for the solidity of the five prisms

$$
l l(4 \times 17+9 \times 18+5 \times 23+12 \times 24+9 \times 21)=\frac{1}{6} l \times 822
$$

For the frustum to be deducted, we have

$$
\frac{1}{6} l \times \frac{3}{2}\left(6^{2}+8^{2}+6 \times 8\right)=\frac{1}{6} l \times 222 .
$$

Hence the solidity of the half-section is

$$
\frac{1}{6} l(822-222)=\frac{1}{6} \times 50 \times 600=5000 \text { cubic fect. }
$$

128. Let us now examine the usual method of calculating excavati m , when the cross-section of the ground is not level. This method consists, first, in finding the area of a cross-section at each end of the mass; secondly, in finding the height of a section, level at the top, equivalent in area to each of these end sections; thirdly, in finding frem the average of these two heights the middle area of the mass;
and, lastly, in applying the prismoidal formula to find the contents The heights of the equivalent sections level at the top may be found approximately by Trautwine's Diagrams, ${ }^{*}$ or exactly by the following method. Let A represent the area of an irregular cross-section, b the width of the road-bed, and s the slope of the sides. Let x be the required height of an equivalent section level at the top. The botiom of the equivalent section will be b, the top $b+2 s x$, and the area will be the sum of the top and bottom lines multiplied by half the height o $\frac{1}{2} x(2 b+2 s x)=s x^{2}+b x$. But this area is to be equal to A Therefore, $s x^{2}+b x=A$, and from this equation the value of x may be found in any given case.

According to this method, the contents of the section already calculated in § 122 will be found thus. Calculating the end areas, we find the first end area to be 387 and the second to be 240 . Then as s is here $\frac{3}{2}$ and $b=18$, the equations for finding the heights of the equivalent end sections will be $\frac{3}{2} x^{2}+18 x=387$, and $\frac{3}{2} x^{2}+18 x=240$ Solving these equations, we have for the height at the first station $x=11.146$, and at the second, $x=8$. The middle area will, therefore, have the height $\frac{1}{2}(11.146+8)=9.573$, and from this height the niddle area is found to be 309.78 . Then by the prismoidal formula (§ 113) the solidity will be $S=\frac{1}{6} \times 100(387+240+4 \times 309.78)$ $=31102$ cubic feet.

But the true solidity of this section was found to be 32820 cubic fect, a difference of 1718 feet. The error, of course, is not in the prismoidal formula, hut in assuming that, if the earth were levelled at the ends to the height of the equivalent end sections, the intervening earth might be so disposed as to form a plane between these level ends, thus reducing the mass to a prismoid. This supposition, however, may sometimes be very far from correct, as has just been shown. If the diagonal on the right-hand side in this cxample were reversed, that is if the dividing line were formed by a depression, the true solidity found by $\S 122$ would be 29600 feet; whereas the method by equivalent sections would give the same contents as before, or 1502 feet too much.

D. Correction in Excavation on Curves

129. In excavations on curves the ends of a section are not parallel

[^13]to each other, but converge towards the centre of the curve. A section between two stations 100 feet apart on the centre line will, therefore, measure less than 100 feet on the side nearest to the centre of the curve, and more than 100 feet on the side farthest from that centre. Now in calculating the contents of an excavation, it is assumed that the ends of a section are parallel, both being perpendicular to the chord of the curve. Thus, let figure 55 represent the plan of two sections of

an excavation, $E F G$ being the centre line, $A L$ and $C M$ the extreme side lines, and O the centre of the curve. Then the calculation of the Girst section would include all between the lines $A_{1} C_{1}$ and $B_{1} D_{1}$; while the true section lies between $A C$ and $B D$. In like manner, the calculation of the second section would include all between $H K$ and $N P$, while the true section lies between $B D$ and $L M$. It is evident, therefore, that at each station on the curve, as at F, the calculation is too great by the wedge-shaped mass represented by $K F D_{1}$, and too

small by the mass represented by $B_{1} F H$ These masses balance
each other, when the distances out on each side of the centre line are equal, that is, when the cross-section may be represented by $A D F R E$ (fig. 56). But if the excaration is on the side of a hill, so that the distances out differ very much, and the cross-section is of the shape $A D F B E$, the difference of the wedge-shaped masses may require consideration.
130. Problem. Given the centre height c, the greatest side height h, the least side height h^{\prime}, the greatest distance out d, the least distance out d^{\prime}, and the width of the road-bed b, to find the correction in excavation C, at any station on a curve of radius R or deffection angle D.

Solution. The correction, from what has been said ahore, is a triangular prism of which $B F R$ (fig. 56) is a cross-section. The height of this prism at B (fig. 55) is $B_{1} H$, the height at R is $R_{1} S$, and the height at F is $0 . \quad B_{1} I I$ and $R_{1} S$, being very short, are here considered straight lines. Now we have the cross-secticn $B F R=F B E G-$ $F R E G=\left(\frac{1}{2} c d+\frac{1}{4} b h\right)-\left(\frac{1}{2} c d^{\prime}+\frac{1}{4} b h^{\prime}\right)=\frac{1}{2} c\left(d-l^{\prime}\right)+$ $\frac{1}{4} b\left(h-h^{\prime}\right)$. To find the height $B_{1} H$, we have the angle $B F I=$ $B F B_{1}=D$, and therefore $B_{1} H=2 H F \sin . D=2 d \sin$. D. In like manner, $l_{1} S=K D_{1}=2 K F \sin . D=2 d^{\prime} \sin . D$. Then since the height at F is 0 , one third of the sum of the heights of the prism will be $\frac{2}{3}\left(d+d^{\prime}\right) \sin . D$, and the correction, or the solidity of the prism, will be (\$115)

$$
\text { 장 } C=\left[\frac{1}{2} c\left(d-d^{\prime}\right)+\frac{1}{4} b\left(h-h^{\prime}\right)\right] \times \frac{2}{3}\left(d+d^{\prime}\right) \sin . D \text {. }
$$

When R is given, and not D, substitute for $\sin . D$ its value ((9) $\sin . D=\frac{50}{R}$. The correction then becomes

$$
\text { 종 } C=\left[\frac{1}{2} c\left(d-d^{\prime}\right)+\frac{1}{4} b\left(h-h^{\prime}\right)\right] \times \frac{100\left(d+d^{\prime}\right)}{3 l} \text {. }
$$

This correction is to be added, when the highest ground is on the convex side of the curve, and subtracted, when the highest ground is on the concare side. At a tangent point, it is evilent, from figure 55, that the correction will be just half of that given ahove.

Exisinple. Given $c=28, h=40, h^{\prime}=16, d=74, c^{\prime \prime}=38, b=28$, and $R=1400$, to find C. Here the area of the cross-section $B F R=$ $\frac{28}{2}(7-1-38)+\frac{28}{4}(40-16)=672$, and one third of the sum of the heights of the prism is $\frac{100(74+38)}{3 \times 1400}=\frac{8}{3}$. Hence $C=672 \times \frac{8}{3}=0$ 1792 cubic feet.
131. When the section is partly in excavation and partly in embankment, the cross-section of the excavation is a triangle lying Wholly on one side of the centre line, or partly on one side and partly on the other. The surface of the ground, instead of extending from B to D (fig. 56), will extend from B to a point between G and E, or to a point between A and G. In the first case, the correction will be a triangular prism lying between the lines $B_{1} F$ and $H F$ (fig. 55), but not extending below the point F. In the second case, the excavation extends below F, and the correction, as in $\$ 129$, is the difference between the masses ahove and below F. This difference may be obs. tained in a very simple manner, by regarding the mass on both sides of F as one triangular prism the bases of which intersect on the line $G F$ (fig. 56), in which case the height of the prism at the edge below F must be considered to be minus, since the direction of this edge, referred to either of the bases, is contrary to that of the two others. The solidity of this prism will then be the difference required.
132. Problem. Given the width of the excavation at the road-beel w, the width of the road-bed b, the distance out d, and the side height h, to find the correction in excavation C, at any station on a curve of radius R or deflection angle D, when the section is partly in excaration and partly in embankment.

Solution. When the excavation lies wholly on one side of the centre line, the correction is a triangular prism having for its cross-section the cross-section of the excavation. Its area is, therefore, $\frac{1}{2} w h$. The lieight of this prism at B (fig. 56) is $(\$ 130) B_{1} I I=2 I F \sin . D=$ $2 d \sin . D$. In a similar manner, the height at E will be $2\left(\frac{d}{i} E \sin . D\right.$ $=b \sin . D$, and at the point intermediate between G and E, the distance of which from the centre line is $\frac{1}{2} b-v$, the height will be $2\left(\frac{1}{2} b-w\right) \sin . D=(b-2 w) \sin . D$. Hence, the correction, or the solidity of the prism, will be (\$115) $C=\frac{1}{2} w h \times \frac{1}{3}(2 d+b+b-2 w) \sin$. D $=\frac{1}{2} w h \times \frac{2}{3}(d+b-w) \sin . D$.

When the excavation lies on both sides of the centre line, the correction, from what has been said above, is a triangular prism having also for its cross-section the cross-section of the excaration. Its area will, therefore, be $\frac{1}{2} w h$. The height of this prism at B is also $2 d \sin$. D, and the height at $E, b \sin . D$; but at the point intermediate between A and G, the distance of which from the centre line is $w-\frac{1}{2} b$, the height will be $2\left(w-\frac{1}{2} b\right) \sin . D=(2 w-b) \sin$. D. As this height is to be considered minus, it must be subtracted from the others, and the eorrection recuired will be $C=\frac{1}{2} w h \times \frac{1}{3}(2 d+b-2 w+b) \sin . D$
$=\frac{1}{2} w h \times \frac{2}{3}(d+b-w) \sin . D$. Hence, in all cases, when the section is partly in excavation and partly in embankment, we have the formula

$$
C=\frac{1}{2} w h \times \frac{2}{3}(d+b-w) \sin . D .
$$

When R is given, and not D, substitute for $\sin . D$ its value ((9) $\sin . D=\frac{50}{R}$. The correction then becomes

$$
\text { T20 } \quad C=\frac{1}{2} w h \times \frac{100(d+b-w)}{3 R} \text {. }
$$

This correction is to be added, when the highest ground is on the convex side of the curve, and subtracted when the highest ground is on the concare side. At a tangent point the correction will be just half of that given above.

Example. Given $v=17, b=30, d=51, h=24$, and $R=1600$, to find C. Here the area of the cross-section is $\frac{1}{2} w h=17 \times 12=$ 204, and one third of the sum of the heights of the prism is $\frac{10(d+b-v)}{3 R}$ $=\frac{1 i \hat{0}(51+30-1 i)}{3 \times 1600}=\frac{4}{3}$. Hence $C=204 \times \frac{4}{3}=272$ cubic feet.
133. The preceding corrections ($\$ 130$ and $\$ 132$) suppose the length of the sections to be 100 feet. If the sections are shorter, the angle $B F H$ (fig. 55) may be regarded as the same part of D that $F G$ is of 100 fect, and $B_{1} F B$ as the same part of D that $E F$ is of 100 feet. The true correction may then be taken as the same part of C that the sum of the lengths of the two adjoining sections is of 200 feet.

TABLE I.

RADII, ORDINATES, DEFLECTIONS,

AND

ORDINATES FOR CURVING RAILS.
liormula for Radii, $\$ 10$; for Ordinates, $\$ 25$; for Deflecticne, § 14 for Curving Rails, § 29.

116 TABLE 1. RADII, ORDINATES, DEFLECTIONS,

Degree.	Radii.	Ordinates.				Tangent Deflection.	Chord Deflection.	Ordinates for Rails.	
		$12 \frac{1}{2}$.	25.	371.	50.			18.	20.
\% 0	63754.94	. 008	. 014	. 017	. 018	. 073	. 145	. 001	.001
10.	34371.48	. 016	.027	. 034	. 036	.14.5	. 291	. 001	. 001
15	2291833	. 024	. 041	. 051	. 055	. 218	. 436	. 002	. 002
2.	17158.66	. 032	. 055	. 063	. 073	.291	. 582	. 002	. 003
25	13751.02	. 040	. 163	. 085	. 091	. 364	. 727	. 003	. 004
30	11459.19	. 015	. $0 \leq 2$. 102	. 109	. 436	. 873	. 004	004
3.5	9322.18	. 056	. 09.5	119	. 127	. 509	1.018	. 004	. 005
40	8594.41	. 064	. 109	. 136	. 145	. 582	1.164	. 005	. 006
45	7639.49	. 07.2	. 123	. 153	. 164	.6.54	1.309	. 005	. 007
50	6375.55	. 089	. 136	. 170	. 152	. 727	1.454	. 006	. 007
55	6250.51	. 037	. 150	. 187	. 200	. 800	1.600	. 006	. 008
10	5729.6.5	. 095	. 164	. 205	. 218	. 873	1.745	. 007	. 009
5	5238.92	103	. 177	. 222	. 236	. 945	1.891	. 008	. 009
10	4911.15	. 111	. 191	. 239	.255	1.018	2.035	. 008	. 010
15	4583.75	. 119	. 205	. 256	. 273	1.091	2.182	. 009	. 011
20	4297.28	. 127	. 218	. 273	. 291	1.164	2.327	. 009	. 012
25	$40 \cdot 4.51$. 135	. 232	. 290	. 309	1.236	2.472	. 010	. 012
30	3819.83	. 143	. 245	. 307	. 327	1.309	2.618	. 011	. 013
35	3618.80	. 151	. 259	. 324	. 345	1382	2.763	. 011	. 014
4 C	3437.87	. 159	. 273	. 311	. 364	1.454	2.909	. 012	. 015
45	3274.17	. 167	.256	. 355	. 332	1.527	3.054	. 012	. 015
50	3125.36	. 175	. 300	. 375	. 400	1.600	3.200	. 013	. 016
55	2939.48	. 183	. 314	. 392	. 418	1.673	3.345	. 014	017
20	2864.93	.19]	. 327	. 409	. 436	1.745	3.490	. 014	. 017
5	2750.35	. 199	. 341	. 426	. 455	1.818	3.636	. 015	. 018
10	2644.53	. 207	. 355	. 443	. 473	1.891	3.781	. 915	. 019
15	2546.64	. 215	. 363	. 460	. 491	1.963	3.927	. 016	. 020
$2)$	2155.70	. 223	. 3 ± 2	. 477	. 509	2.036	4.072	. 016	. 020
25	2371.04	. 231	. 395	. 494	. 527	2.109	4.218	. 017	. 021
30	2292.01	. 239	. 409	. 511	. 545	2.181	4.363	. 018	. 022
35	2215.09	. 247	. 423	. 528	. 564	2.254	4.508	. 018	. 023
40	2143.79	. 255	. 436	. 545	. 552	2.327	4.654	. 019	. 023
45	2033.65	. 263	. 450	. 562	. 600	2.400	4.799	. 019	. 024
5 C	2022.41	. 270	. 464	. 580	. 615	2.472	4.945	.020	. 025
5\%	196464	. 278	. 477	. 597	. 636	2.545	5.090	.02i	. 025
	1910.05	. 236	. 491	. 614	.6.55	2.618	5.235	. 021	. 026
5	1858.47	-294	. 505	. 631	.673	2.690	5.351	.022	. 027
10	1509.57	. 302	. 518	. $64-$. 691	2.763	5.526	. 022	. 023
15	176318	. 310	. 532	. 665	. 109	2. 836	5.672	. 023	. 023
20	1719.12	. 318	. 545	. 6×2	. 227	2.908	5.817	.024	. 023
25	167720	. 326	. 559	. 699	.745	2.951	5.962	. 024	. 030
30	1637.22	. 334	. 573	. 716	. 764	3.054	6.108	. 025	. 031
35	1599.21	. 342	. $5=6$. 733	. 782	3.127	6.253	. 025	.021
40	1562.53	. 350	. 600	. 750	. 810	3.199	6.398	.026	. 032
45	1525.16	.355	. 614	. 767	. 813	3.272	6.544	.027	.033
50	1494.95	. 366	. 627	.784	. 836	3.345	$6.6>9$.027	. 033
55	1463.15	. 374	. 611	. 801	. 855	3417	6.835	. 028	. 034
40	1432. 69	. 382	. 655	. 818	. 873	3.490	6.980	. 028	. 035
5	140346	. 390	. 665	. 835	. 891	3.563	7.125	. 029	. 036
10	1375.40	. 393	. 652	. 852	. 909	3.635	7.271	. 029	. 036
15	$134>45$. 416	. 695	. 869	. 927	3.705	7.416	. 030	. 037
20	1322.53	. 414	. 709	. 836	. 945	3.781	7.561	. 031	. 033
25	1297.58	. 422	. 723	. 903	. 964	3.853	7.707	. 031	. 039
30	1273.57	. 430	. 736	. 921	. 932	3.926	7.852	. 032	. 039
35	12.50 .42	. 438	. 750	. 933	1.000	3.999	7.997	. 032	. 040
40	1228.11	. 446	. 764	. 955	1.018	4.071	8.143	. 033	. 041
45	1206.57	. 454	.777	. 972	1.036	4.144	8.233	. 033	. 011
50	1185.78	. 462	. 891	. 989	1.055	4.217	8.433 8.579	. 034	. 042
55	1165.70	. 469	. 805	1.006	1.073	4.289	8.579 8.724		. 044
50	1146.23	. 477	. 818	1.023	1.091	4.362	8.724	. 035	. 041

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Degree.} \& \multirow[b]{2}{*}{Radii.} \& \multicolumn{4}{|c|}{Ordinates.} \& \multirow[t]{2}{*}{Tangent Deflection.} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Chord \\
Deflcction.
\end{tabular}} \& \multicolumn{2}{|l|}{Ordinates for Rails.} \\
\hline \& \& \(12 \frac{1}{2}\). \& 25. \& 371. \& 50. \& \& \& 18. \& 20. \\
\hline \begin{tabular}{ll}
\hline \& 1 \\
5
\end{tabular} \& 1127.50 \& . 485 \& . 832 \& 1.040 \& 1.109 \& 4.435 \& 8.869 \& . 036 \& . 044 \\
\hline 10 \& 1109.33 \& . 193 \& . 846 \& 1.157 \& 1.127 \& 4.507 \& 9.014 \& .037 \& . 045 \\
\hline 15 \& 1091.73 \& 501 \& . 859 \& 1.074 \& 1.146 \& 4.580 \& 9.160 \& . 037 \& . 47 \\
\hline 20 \& 1074.68 \& . 509 \& . 873 \& 1.091 \& 1.164 \& 4.653
4.725 \& 9.305
9.450 \& . 038 \& . 047 \\
\hline 25 \& 1058.16 \& \({ }^{.517} 525\) \& . 887 \& 1.108
1.125 \& 1.182
1200 \& 4.798 \& \({ }_{9.596}\) \& .039 \& . 048 \\
\hline 30 \& 1042.14
1026.60 \& . 525 \& . 9014 \& 1.125
1.142 \& 1200 \& 4.870 \& 9.741 \& . 039 \& . 049 \\
\hline 40 \& 1011.51 \& . 541 \& . 925 \& 1.159 \& 1.237 \& 4.943 \& \(9.8 \subset 6\) \& . 040 \& . 049 \\
\hline 45 \& 996.87 \& . 549 \& . 941 \& 1.176 \& 1.255 \& 5.016 \& 10.031 \& . 041 \& . 050 \\
\hline 50 \& 9*2.64 \& . 557 \& . 955 \& 1.193 \& 1.273 \& 5.088 \& 10.177 \& . 041 \& . 051 \\
\hline 55 \& 968.81 \& . 565 \& . 965 \& 1.210 \& 1.291 \& 5.161 \& 10.322 \& .092 \& \\
\hline 60 \& 95537 \& . 573 \& . 982 \& 1.228 \& 1.309 \& 5.234 \& 10.467 \& . 042 \& . 052 \\
\hline 5 \& 912.29 \& . 581 \& . 996 \& 1.245 \& 1.327 \& 5.306 \& 10.612
10.758 \& . 013 \& . 053 \\
\hline 10 \& 929.57 \& . 589 \& 1.009 \& 1.262 \& 1.346
1.364 \& 5.451 \& 10.758
10.903 \& . 044 \& . 055 \\
\hline 15 \& 917.19 \& . 597 \& 1.023 \& 1.279
1.296 \& 1.364 \& 5.524 \& 11.048 \& . 045 \& . 055 \\
\hline 20 \& 905.13 \& . 605 \& 1.050 \& 1.313 \& 1.400 \& 5.597 \& 11.193 \& . 045 \& . 056 \\
\hline 30 \& 881.95 \& . 621 \& 1.061 \& 1.330 \& 1.418 \& 5.669 \& 11.339 \& . 046 \& . 057 \\
\hline 35 \& 870.79 \& . 629 \& 1.078 \& 1.347 \& 1.437 \& 5.742 \& 11.484 \& . 047 \& . 057 \\
\hline 40 \& 859.92 \& . 637 \& 1.091 \& 1.364 \& 1.455 \& 5.814 \& 11.689 \& \& . 058 \\
\hline 45 \& 849.32 \& . 615 \& 1.105 \& 1.381 \& 1.473 \& 5.887 \& 11.774 \& d* \& . 059 \\
\hline 50 \& 833.97 \& . 653 \& 1.118 \& 1.398 \& 1.491 \& 5.960 \& 11.919 \& . 049 \& . 060 \\
\hline 55 \& 825.58 \& . 661 \& 1.132 \& 1.415 \& 1.510 \& \& 12.065 \& . 049 \& . 060 \\
\hline 70 \& 819.02 \& . 669 \& 1.146 \& 1.432 \& 1.528 \& 6.105 \& 12.210 \& . 049 \& \[
\begin{array}{r}
061 \\
.062
\end{array}
\] \\
\hline 5 \& 809.40 \& . 677 \& 1.159 \& 1.449 \& 1.546
1.564 \& 6.177
6.250 \& 12.355 \& . 051 \& . 0663 \\
\hline 10 \& 800.00 \& . 685 \& 1.173 \& 1.466
1.483 \& 1.564
1.582 \& 6.250 \& 12.500 \& . 051 \& .163 \\
\hline 15 \& 790.81
781.84 \& . 693 \& 1.187
1.200 \& 1.501 \& 1.600 \& 6.395 \& 12.790 \& . 052 \& . 064 \\
\hline 25 \& 773.07 \& . 709 \& I. 214 \& 1.517 \& 1.619 \& 6.468 \& 12.936 \& . 052 \& . 065 \\
\hline 30 \& 764.49 \& . 717 \& 1.223 \& 1.535 \& 1.637 \& 6.540 \& 13.0 \& . 053 \& . 065 \\
\hline 35 \& 756.10 \& . 725 \& 1.242 \& 1.552 \& 1.655 \& 6.613 \& 13.226 \& .054 \& . 067 \\
\hline 40 \& 747.89 \& . 733 \& 1.255 \& 1.569 \& 1.673 \& 6.685 \& 13.371 \& . 055 \& . 068 \\
\hline 45 \& 739.86 \& . 740 \& 1.269 \& 1.586 \& 1.691 \& 6.758 \& 13.516 \& . 055 \& . 063 \\
\hline 50 \& 732.01 \& . 748 \& 1.283 \& 1.603 \& 1.710
1.728 \& 6.903 \& 13.806 \& . 056 \& . 069 \\
\hline 55 \& 724.31 \& . 766 \& 1.296 \& 1.620 \& \& 6.976 \& 13.951 \& . 057 \& 070 \\
\hline 80

5 \& $$
\begin{aligned}
& 716.78 \\
& 709.40
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& .764 \\
& .772
\end{aligned}
$$
\] \& 1.310

1.324 \& 1.637 \& 1.746
1.764 \& 7.048 \& 14.096 \& . 0157 \& . 070

\hline 10 \& 702.18 \& . 780 \& 1.337 \& 1.671 \& 1.752 \& 7.121 \& 14.241 \& . 058 \& . 071

\hline 15 \& 695.09 \& . 788 \& 1.351 \& 1.658 \& 1.801 \& 7.193 \& 14.387 \& . 058 \& .072

\hline 20 \& 685.16 \& . 796 \& 1.36 .5 \& 1.705 \& 1.819 \& 7.266 \& 14.532 \& . 059 \& . 073

\hline 25 \& 681.35 \& . 804 \& 1.378 \& 1.722 \& 1.837 \& 7.338 \& 14.67% \& . 060 \& . 074

\hline 30 \& 671.69 \& . 812 \& 1.392 \& 1.739 \& 1.855 \& 7.411 \& 14.822 \& . 061 \& . 075

\hline 35 \& 663.15 \& . 820 \& 1.406 \& 1.757 \& 1.873 \& 7.483 \& 14.967
15.112 \& . 061 \& . 076

\hline 40 \& 661.74 \& . 828 \& 1.419 \& 1.774 \& 1.892
1.910 \& 7.515 \& 8 15.257 \& . 062 \& . 076

\hline 45
50 \& 655.45
619.27 \& . 836 \& 1.433 \& 1.791 \& 1.910
1.928 \& 7.701 \& 15.402 \& . 062 \& .1)7

\hline 50 \& 619.22 \& . 855 \& 1.460 \& 1.825 \& 1.945 \& 7.773 \& 15.547 \& 063 \& . 078

\hline 90 \& 637.27 \& . 860 \& 1.474 \& 1.842 \& 1.965 \& - 7.846 \& 15.692 \& . 064 \& . 078

\hline 5 \& 631.44 \& . 868 \& 1.488 \& 1.859 \& 1.983 \& 7918 \& 15.837 \& . 064 \& . 073

\hline 10 \& 62.571 \& . 876 \& 1.501 \& 1.876 \& 2.001 \& 17.991 \& 115.982 \& . 065 \& . 081

\hline 15 \& 620.09 \& . 884 \& 11.515 \& 1.893 \& 32.019 \& 8.063 \& 316.127 \& . 065 \& . 08 si

\hline 20 \& 614.56 \& . 882 \& 1.529 \& 1.910 \& 2.037 \& 8.136
8.208 \& $8{ }^{16.272}$ \& . 066 \& . 082

\hline 25 \& 609.14 \& . 900 \& - 1.542 \& 6 1.927 \& \& | 6 |
| :--- |
| 8.208 |
| 8.281 | \& $1{ }^{16.562}$ \& . 067 \& . 083

\hline 30
35 \& 603.80

598.57 \& . 908 \& \begin{tabular}{l|l}
8

1.556

1.570

 \&

6 \& 1.944

0 \& 1.961

 \&

1 \& 2.074

2.092

\hline 1
\end{tabular} \& 8.281

8.353 \& 316.707 \& . 068 \& . 08.1

\hline 40 \& 593.42 \& . 924 \& 41.583 \& 31.979 \& 2.110 \& 0 8.426 \& 616.852 \& . 068 \& .084

\hline 45 \& 588.36 \& . 932 \& 21.597 \& 71.996 \& 62.128 \& 8.498 \& 816.996 \& . 069 \& .085

\hline 50 \& 583.38 \& . 940 \& 1.611 \& 12.013 \& \& $7 \quad 8.571$ \& 1717.141 \& . 069 \& . 086

\hline 55 \& 578.49 \& . 948 \& 81.624 \& 42.030 \& 0 2.165 \& 58.643 \& $3 \quad 17.280$ \& .070 \& . 0.06

\hline $10 \quad 0$ \& - 573.69 \& | . 956 \& 61.638 \& 82.047 \& 72.183 \& 3 8.716 \& 617.431 \& . 071 \& . 087

\hline
\end{tabular}

Degree.	Radii.	Ordinates.				Tangent Detlection.	Chord Deflection.	Ordinates for Rails.	
		121.	25.	$37 \frac{1}{2}$.	50.			18.	20.
1010	564.31	.972	1.665	2.031	2.219	8.860	17.721	. 072	. 089
	5.5 .23	. 933	1.693	2.115	2.256	9.005	13.011	. 073	. 090
3)	546.44	1.004	1.720	2.149	2.292	9.150	18.300	. 074	. 092
4)	537.92	1.020	1.745	2.181	2.329	9.295	18.590	. 075	. 093
50	529.67	1.036	1.775	2.218	2.353	9.440	13.580	.076	. 094
110	521.67	$1.02 \cdot 2$	1.502	2.252	2.402	9.535	19.169	. 078	. 096
10^{\prime}	513.91	1.015	1.83)	2.256	2.433	9.729	19.459	. 079	. 097
2)	506.33	1.034	1.857	2.320	2.475	9.574	19.748	080	. 099
3)	499.06	1.100	1.854	2.354	2.511	10.019	23.033	. 051	. 100
4)	491.96	1.116	1.912	2.359	2.547	10.164	20.327	. 032	. 102
5)	435.05	1.132	1.938	2.423	2.534	10.303	20.616	. 084	. 103
120	473.31	1.148	1.967	2.457	2.620	10.453	27.906	. 035	. 105
10	471.31	1.164	1.994	2.491	2.657	10.597	21.19.5	. 086	. 106
20	465.46	1.180	2.021	2.52 .5	2.693	10.742	21.434	. 087	. 107
30	459.23	1.196	2.019	2.569	2.730	10.537	21.773	. 088	. 109
40	453.26	1.212	2.076	2.594	2.766	11.031	22.063	. 089	. 110
50	447.40	1.225	2.104	2.623	2.803	11.176	22.352	. 091	. 112
130	441.63	1.244	2.131	2.662	2.839	11.323	22.641	. 092	. 113
10	436.12	1.260	2.159	2.697	2.876	11.465	22.930	. 093	. 115
20	430.63	1.277	2.156	2.731	2.912	11.699	23.219	. 094	. 116
30	42.5. 40	1.293	2.213	2.765	2.949	11.754	23.537	. 095	. 118
40	420.23	1.309	2.241	2.\%99	2.95 .5	11.593	23.796	. 096	. 119
50	415.19	1.32.5	2.268	2.533	3.02:	12.043	24.035	. 093	. 120
140	410.23	1.341	2.296	2.563	3.058	12.187	24.374	. 099	. 122
10	40.5. 47	1.3.57	2.323	2.902	3.095	12.331	24.663	. 100	. 123
29	400.75	1.373	2.3.51	2.936	3.131	12.476	24.951	. 101	. 125
$3)$	396.23	$1.3 \leq 9$	2.378	2.970	3.165	12.620	25.210	. 102	. 125
40	391.72	1.40.	2.406	3.00 .5	3.204	12.261	25.523	. 103	. 123
50	357.34	1.421	2.433	3.039	3.241	12.903	25.817	. 105	. 129
!5 0	333.06	1.437	2.461	3.073	3.277	13.0.3	26.105	. 106	. 131
10	37.3 .83	1.453	2.425	3.107	3.314	13.197	26.394	. 107	. 132
$2)$	374.79	1.469	2.515	3.142	3.350	13.341	26.632	. 103	. 133
30	370.78	1.456	2.543	3.126	3.387	13.455	26.970	. 109	. 135
40	366.56	1.502	2.570	3.210	3.423	13.629	27.258	. 110	. 136
$5)$	363.02	1.515	2.593	3.245	3.469	13.773	27.547	. 112	. 133
160	3.59. 26	1.534	2.525	$3.2 \div 9$	3.496	13.917	27.535	. 113	139
10	3.5.5.59	1.5.5	2.653	3.313	3.5.33	14.061	23.123	. 114	. 141
29	351.93	1.566	$2.6 \leq 0$	3.317	3.569	14.205	23.411	. 115	. 142
30	343.45	1.532	2.703	3.332	3.696	14.349	23.693	. 116	.143
49	34.93	1.593	2.736	3.416	3.613	14.493	23.9こ6	. 117	.145
50	341.60	1.615	2.763	3.450	3.679	14.637	29.274	. 119	. 146
170	333.27	1.631	2.791	3.485	3.716	14.731	29.562	. 120	. 145
10	33.3. 01	1.61 \%	2.515	3.519	3.752	14.925	29.550	. 121	. 149
$2)$	331.82	1.663	2.516	3.5.53	3.789	15.069	30.137	. 122	. 151
$3)$	323.63	1.679	2.573	3.538	3.525	15.212	30425	. 123	.152
40	325.60	1.695	2.901	3.622	3862	15.3 .56	30.712	124	. 154
50	322.59	1.711	2.923	3.656	3.893	15.500	31.000	. 126	. 155
180	319.62	1.723	2.9.36	3.691	3.935	15.643	31.287	. 127	. 156
10	316.71	1.744	$2.9 \leq 3$	3.725	3.972	15.787	31.574	. 123	. 153
$2)$	313.56	1.760	3.011	3.759	4.033	15.931	31.861	. 129	. 159
30	311.06	1.776	3.039	3.794	4.045	16.074	32.149	. 130	. 161
40	303.30	1.792	3.066	3.323	4.031	16.213	32.436	. 131	. 162
53	305.60	1.309	3.094	3.862	4.113	16.361	32.723	. 133	. 164
19.9	302.94	1.325	3.121	3.597	4.155	16.505	33.010	. 134	. 165
10	300.33	1.811	3.149	3.931	4.191	16.643	33.296	. 135	. 166
20	297.77	1.857	3.177	3.965	4.223	16.792	33.533	. 136	. 163
30	295.25	1.873	3.204	4.000	4.265	16.935	33.870	. 137	. 169
40	292.77	1.890	3.232	4.034	4.301	17.073	34.157	. 133	. 171
50	290.33	1.956	3.259	4.069	4.333	17.222	31.443	. 140	. 172
$20 \quad 0$	237.91	1.922	3.237	4.103	4.374	17.365	34.730	. 141	. 174

TABLE II. LONG CHORDS.

TABLE II.

LONG CHORDS. § 69.

Degree of Curre.	2 Stations.	3 Stations.	4 Stations.	5 Stations.	6 Stations.
810	200.000	299.999	399.993	499.996	599.993
20	199.999	. 997	. 992	. 953	.970
30	. 993	. 992	. 931	. 962	. 933
40	. 997	. 956	. 966	. 932	. 832
50	. 995	. 979	. 947	. 594	. 815
10	199.992	299.970	399.924	499.843	599.733
10	. 990	. 959	. 896	. 793	. 637
20	. 956	. 916	. 865	. 729	. 526
30	. 953	. 933	. 829	. 657	. 401
40	. 979	. 915	. 789	. 577	. 260
50	. 974	. 993	. 744	. 438	. 105
20	199.970	299.573	399.695	499.391	595.934
10	. 964	. 537	. 643	.235	. 750
20	. 9.59	. 834	. 536	. 1719	. 530
30	.9.3	. 810	. 524	-019 498.918	$\begin{aligned} & .336 \\ & .106 \end{aligned}$
40	. 916	. 753	. 459	49.918	597.862
50	. 939				
30	199.931	299.726	399.315	495.630	$59 \% .604$
10	. 924	. 695	. 237	. 474	. 331
20	. 915	. 662	. 154	. 309	. 043
30	. 907	. 627	. 063	. 136	596.740
40	. 593	. 591	398.977	497.955	. 423
50	. 883	. 553	. 882	. 765	. 091
40	199.875	299.513	393.732	497.566	595.741
10	. 863	. 471	. 679	. 360	. 333
20	. 857	.423	. 4571	${ }_{496.921}$	594.617
30	. 816	. 333	. .343	496.921 .689	591.617
40	. 831	. 239	. 223	. 649	593.\%92
50	199.810	299.239	393.099	496.200	593.358
10	190.8197	. 157	397.970	495.944	592.909
20	. 783	. 134	. 837	. 678	446
30	.770	.079	. 700	405	591.963
40	. 756	. 023	. 559	. 123	. 476
50	. 741	298.964	. 413	494.532	590.970
60	199.726	298.904	397.264	494.534	590.449
10	. 710	. 843	. 110	. 227	559.913
20	. 695	. 7714	396.952 .790	493.912	533.3600
30 40	. 673	. 614	. 623	. 253	553.521
50	. 644	. 579	453	492.917	537.623
70	199.627	298.509	396.275	492.563	537.021
10	. 609	438	099	. 212	536.400
20	. 591	. 364	395.916	491.817	535.765
30	. 572	. 239	. 729	. 474	. 115
40	-553	. 212	. 533	. 093	554.451
50	. 533	. 134	. 342	490.704	533.773
80	. 513	295.054	395.142	490.306	533.051

TABLE IJI.

correction for the earth's Curvature and FOR REFRACTION. § 105.

D.	1.	D.	d.	D.	d.	D.	d.
303	.002	1800	. 066	3300	. 223	$1>00$. 472
400	. 013	1900	. $\mathrm{C74}$	3400	.237	49010	. 492
500	.005	2000	. 082	3510	.251	5010	. 512
600	. 0107	2100	. 090	3670	. 266	5100	. 533
700	. 010	2200	. 099	3700	. 251	5200	. 554
800	. 013	$23(0)$. 105	$3 \leq 00$.256	1 mile	. 571
900	. 017	2400	. 118	3900	. 312	26	2.285
1000	. 020	2500	. 123	4000	. 328	3 6	5.1 ± 2
1100	.025	2600	. 139	4100	. 345	4 "	9.142
3200	. 030	2700	. 149	4200	. 362	5 "	14.284
1.300	. 035	2310	. 161	4300	. 379	6 "	20.565
1400	. 040	2900	.172	4400	. 397	7 6	27.956
1500	. 046	3000	. 154	4503	. 415	8 "	36.566
1600	052	3109	. 197	4600	. 434	$9 \quad 6$	46.279
1700	. 059	3200	.210	4700	. 453	$10 \quad 6$	57.135

TABLE IV.

ELEVATION OF THE OUTER RAIL ON CURVES. § 110.

Degree.	$H=15$	$M=20$.	$M=25$.	$M=30$.	$M=40$.	$M=50$.
$\stackrel{1}{1}$. 012	. 022	034	. 049	.088	. 137
2	.025	. 044	. 065	. 099	. 175	. 274
3	. 037	. 066	. 103	. 148	. 263	411
4	. 049	. 038	. 137	. 197	. 351	. 548
5	. 062	. 110	. 171	. 247	. 435	. 685
6	. 074	. 131	. 205	. 296	. $5: 6$. 822
7	.056	. 153	. 240	. 345	. 613	. 955
8	. 099	. 175	. 274	. 394	. 701	1.095
9	. 111	. 197	. 308	. 443	. 788	1.232
10	. 123	. 219	. 312	. 493	. 876	1.368

TABLE V.

FROG ANGLES, CHORDS, AND ORDINATES FOR TURNOUTS.

This table is calculated for $g=4.7, d=.42$, and $S=1{ }^{\circ} 20^{\prime}$. For mula for frog angle F, and chord $B F, \S 50$; for m, the middle ordinate of $B F, \S 25$; for m^{\prime}, the middle ordinate for curving an 18 ft rail, § 29.

R.	F.	$B F$.	n.	m^{\prime}.	R.	F.	$B F$.	m.	m^{\prime}
1000	$\stackrel{\circ}{5} 2744$	72.22	. 651	. 041	600	${ }^{\circ} \mathrm{6} 51418$	59.17	. 727	. 068
975	53139	71.53	. 655	. 012	575	$\begin{array}{llll}7 & 6 & 26\end{array}$	58.16	. 733	. 070
950	53544	70.83	. 659	. 043	550	71540	57.12	. 739	. 074
925	53959	73.11	. 663	. 044	525	72533	56.05	. 745	. 077
960	54424	69.33	. 667	. 045	500	7 7610	54.94	. 752	. 031
875	5491	63.64	. 671	. 016	475	7 47 8	53.79	. 758	. 085
850	55350	67.88	. 676	. 018	450	8801	52.61	.765	. 090
825	55852	67.10	. 630	. 049	425	81330	$51.3 i$. 773	. 095
897	6489	66.30	. 695	. 051	400	82314	50.09	. 780	. 101
775	$6 \quad 941$	6.5. 49	. 690	.052	375	84426	48.75	. 788	. 103
750	61530	64.6.5	.695	. 054	350	$\begin{array}{llll}9 & 2 & 20\end{array}$	47.35	. 796	. 116
72.5	62137	6.3.80	.70)	.056	325	$\begin{array}{lllll}9 & 22 & 16\end{array}$	45.88	. 805	. 125
707	6234	62.92	. 705	. 053	300	94439	44.34	. 814	. 135
675	63152	62.02	. 710	. 060	275	$\begin{array}{llll}1010 & 1 \\ 10\end{array}$	42.72	. 824	. 147
650	6424	61.09	. 716	. 062	250	$\begin{array}{llll}10 & 39 & 6 \\ 10 & 12\end{array}$	41.00	. 834	. 162
625	64942	60.14	. 721	. 065	225	111255	39.16	. 845	. 180

TABLE VI.

LENGTH OF CIRCULAR ARCS IN PARTS OF RADIUS

0											
1	.01745	32925	19943	1	.00029	08882	08666	1	.00000	48181	36811
2	.03490	65850	39387	2	.00058	17764	17331	2	.00000	96962	73622
3	.0523 .5	98775	59330	3	.00087	26616	25997	3	.00001	45444	10433
4	.06931	31700	79773	4	.00116	35523	31663	4	.00001	93925	47244
5	.03726	64625	99716	5	.00145	44410	43329	5	.00002	42406	81055
6	$.10-171$	97551	19660	6	.00174	53292	51994	6	.00002	90389	20.567
7	.12217	30476	39603	7	.00203	62174	60660	7	.00003	39369	57678
8	.13962	63491	59516	8	.00232	71056	69326	8	.00003	87850	94489
9	.15707	96326	79190	9	.00261	79938	77991	9	.00004	36332	31300

TABLE VII.

EXPANSION BY HEAT.

Bodies.	32 to 212 .	10.	Authority.
Platina,	. 0003842	. 000004912	Hassler
Gold,	. 001466	. 000008141	
Silver,	. 001909	. 000010605	6
Mercury,	. 018018	. 0001001	"
Brass,	. 00189163	. 000010509	"6
Iron,	. 00125344	.000006964	6
Water,	. 0460636550	not uniform. $.000004 \leq 25$	Prof. Bartiott.
Marble,	. 00102024	. 0000005663	${ }_{63}{ }^{\text {Proret }}$
Sandstone,	. 00171576	. 000009532	S

TABLE VIlI.

PROPERTIES OF MATERIALS.

The authorities referred to by the capital letters in the table are:B Barlow, On the Strength of $\mid \mathrm{L}$. Lamé. Matcrials.
Be. Bevan.
Br. Lient. Brown.
C. Couch.
E. Franklin Institute, Report on Steam Boilers.
G. Gordon, Eng. Translation of Weisbach.
H. Hodgkinson, Reports to Brit. Association.
Ha. Hassler, Tables.
M. Musschenbroek, Int. to Nat Phil.
R. Rennie, Phil. Trans.

Ro. Rondelet, L'Art de Batir.
T. Telford.

Ta. Taylor, Statistics of Coal.
W. Weisbach, Mech. of Machisery and Engineering.
The numbers without letters are taken from Prof. Moseley's Engineering and Architecture

In finding the weights, a cubic foot of water has, for convenience, been taken at 62.5 lbs .

The numbers for compression taken from Hodgkinson were obtained by him from prisms high enough to allow the wedge of rupture to slide freely off. He shows that this is essential in experiments on sompression.

The modulus of rupture S is the breaking weight of a prism 1 in broad, 1 in . deep, and 1 in . between the supports, the weight being applied in the middle. To find the corresponding breaking weight W^{γ} of a rectangular beam of any other size, let $l=\mathrm{its}$ length, $b=\mathrm{its}$ breadth, and $d=$ its depth, all in inches. Then $W=\frac{2 b d^{2}}{3 l} \times S$.

The numbers in the last three columns express absolute strength, For safety, a certain proportion only of these numbers is taken. The divisors for wood may be from 6 to 10 , for metal from 3 to 6 , for stone 10 , and for ropes 3.

When double numbers are used in the column headed "Crushing Foree per Square Inch in lbs.," the first applies to specimens moderately dry, the second to specimens turned and kept dry in a warm place two months longer. In the case of American Birch, Elm, and Teak, the numbers apply to seasoned specimens.

Materials.	Specific Gravity.	Weight per Cubic Foot in lbs.	Tensile Strength per square Inch in lbs.	Crushing Force per Square Inch in lbs.	Modulus of Rup. ture S in lbs.
Metals.					
एँร¢ cast, . . .	8.399	524.94	17565 R.		
Ľppe. sast,	8.697	537.94	19072		
" rilled, " rise-dramn,	S. 264 F .	5554.00	$32326 \mathrm{~F} .$		
Gol 1 ,	19.2.5- На	1203.62			
Golf,	19.361 Ha	1210.06			
Canon No. 2, cold blast,	7.066 II	441.62	16633 II.	106375 II.	35.56 H
$66{ }^{6}$ hos ${ }^{6}$	7.046 II .	440.37	13505 II.	105540 II.	37513 H .
Devon No. ?, cold ${ }^{6}$	7.29.j II.	455.94			36258 II.
\cdots hot ${ }^{*}$	- 229 II.	451.1	2190 III.	14.5435 H.	43197 II.
Buffery Fo. 1, celc -	т.079 H.	442.44	17466 II .	93335 II.	37503 H.
\therefore " lios 6	6.99 H .	437.37	13434 II.	86397 H.	35316 H.
Iron, wrourhs, Enclish bar,	7.700	431.25			
Welsh "6,	7.100	151.2:	$61960 \mathrm{~T} .$	56000 ? G.	54000 G.
Swedish \%6			64960 T.		
-- : 6	7.473 F .	467.37	$5 \leq 151 \mathrm{~F}$.		
	7.740 F	$4>3.75$	$5 \leq 661 \mathrm{~F}$.		
Tennessce 66	7.305 F .	457.51	52099 F .		
Missouri u	7.722 F .	43262	47909 F .		
Iron wire,					
	$\pi . \sim 2 \sim \mathrm{~F}$.		80214 T.		
$\text { Phillipsb'g, Pa. " } \quad 23{ }_{6}$	$\ldots 2, \mathrm{~F}$.	452.94	$\begin{aligned} & 81 \mathrm{l}=6 \mathrm{~F} . \\ & 73>-8 \mathrm{~F} . \end{aligned}$		
6 ${ }^{\text {a }}$ "			89162 F .		
Leqd, cast,	11.4i5 M.	715.37	1824 R.		
Lead wire,	$1^{1} \because 17$	\% 07.31	2581 M .		
Mercury,	13.558 \$.	849.87			
Platina, !	1.3516 世,	1215.75			
Silver, .	$10.474 \mathrm{H}^{3}$	651.62	40902 M.		
Steel, sıfi, . . .	7.750	436.25	123000		
"\% razor-temperna,	7.810	480.10	150000		
Tin, cast, .	$\because 631$	45963	บ322 M.		
Zinc, fused,	70507.	$1 \mathrm{~S}^{0} \mathrm{~s}$			
" rolled,	$\therefore .510 \mathrm{~W}$	4% 23			
Wi arls.					
Ash, English, .	.760 B	47.53	$\because \times 9$.	$\left\{\begin{array}{l}8633 \mathrm{II} .\end{array}\right\}$	12156 B
Ask, Fngish, .				\{9363 II. $\}$	
Birch, English, .	.792 B.	42.50	$\because \because 9$	$\left\{\begin{array}{l}329711 . \\ 6102 \mathrm{II} .\end{array}\right\}$	10920 B.
" Americen, .	. 618 B.	$40.50{ }^{\text {l }}$		11663 H.	9624 B
Box, 960 B	60.00	$260 y 0^{2}$	9771 H.	
Cedar, Canadian,	909 C	$56.81{ }^{\text {i }}$	$11400 \mathrm{~B}=$	fi674 H.	
Chestnut.	.65\% Ro.	41.061	13300 Ro.		
Deal, Christiania micit',	.698 B.	43.62	12400		$9>64 \mathrm{~B}$.
" Memel ${ }^{6}$. 590 B	36.87			10356 B.
i Norway Spruce,	.310	21.25	17600		
" English. . .	. 470	29.37	7000		
Elm, seasoned, -	.553 B	34.5 n	13459 M .	10331 L	gn7s B .
Fir, New England,	.533 B.	34.56			6612 R .
" Riga, .	. 753 R .	47.06	12000 B.	$\left\{\begin{array}{l}57.4 \text { E } \\ 6586 \mathrm{H} .\end{array}\right.$	C¢心.
Lignum-vitæ,	1.220	76.25	11800 M.		
Jahogany, Spanish,	. 800	50.50	16500	$\left\{\begin{array}{l}\text { S198 } \\ \text { S193 } \\ \text { \% }\end{array}\right.$	

CABI, VIII. PROIERTIES OF MACERIALS.

Materials.	Specific Gravity.	Weight per Foot in lbs	Tensile Strength per Square Inch in lbs.	Crushing Force per Square Inch in lbs.	Modulus of Rupture S in lbs.
Woods.					
Oak, English, 934 B.	58.37	10000 B .	$\left\{\begin{array}{l}61805-11 \\ 100\end{array}\right.$	10032 B
" Canadian,	. 872 B.	51.50	10253	$\left\{\begin{array}{l}4231 \text { II. } \\ -9952 \mathrm{II} .\end{array}\right\}$	10596 B.
				\{6i90 H. $\}$	
Pine, pitch, 660 B .	41.25	7815 M.	$\{679011$.	9792 B
" red, .	. 637 B .	41.06		$\left\{\begin{array}{l}5395 \mathrm{H} . \\ 7518 \mathrm{II} .\end{array}\right\}$	8046 B.
" American, white,	. 455 Br .	23.44			7529 Br .
" "6 Southern,	. 572 Br .	54.50			13937 Br .
Poplar,	. 333 M .	23.91	7200 Be .	$\left\{\begin{array}{l}3107 \mathrm{II} . \\ 512411 .\end{array}\right.$	
Teak, .	. 745 B .	46.56	15000 B .	1210111.	14772 B.
Other Matcrials.					
Brick, red, .	2.16812.	135.50	230	803 R.	340 W.
" pale red.	2.055 R.	130.31			
Chalk,	2.754 1.869	171.00		501 R .	
Coal, Penn. anthracite,	1.327 Ta	82.94			
" ${ }^{\text {a }}$ / semi-bitum	1.700 Ta.	106.25			
" Md. "6	1.552 Ta	97.00			
" Penn. bituminous,	1.312 Ta.	82.00			
" Ohio "	1.270 Ta.	79.37			
" English "	1.259 Ta	78.69			
Earth,					
${ }_{\text {ch }}^{\text {loamy hard-stamped, fresh, }}$ dry,	2.060 1.930 W.	123,75			
garden, fresh, . . . ${ }_{\text {\% }}$ \%,	2.05 l W.	123.12			
dry, dror, ${ }^{\text {dre }}$, .	1.630 W .	101.87			
dry, poor, . . .	1.340 W .	S3.75			
Glass, plate,	2.453	153.31	9420		
Gravel, ${ }_{\text {Granite, }}$ Aberdeen, :	1.920	120.00			
Granite, Aberdcen, . . . Ivory,	2.625 R.	164.06	16626	10914 R.	
Ivory,	${ }_{2}^{1.400} \mathrm{~W}$.	150.00		1500 W.	700 W.
Limestone,	2.860 W.	178.75		6000 W.	1700 W
Marble, white Italian, black Galway,	$\begin{aligned} & 2.638 \mathrm{II} . \\ & 2.695 \mathrm{H} . \end{aligned}$	164.87 168.41		9583 G .	2661
Masunry, quarry stone, dry,	2.400 W.	150.00			
". sandstoue, "	2.050 W .	128.12			
" brick, dry, .	1.470 W.	91.87			
Ropes,	1.590 W.	99.37			
hemp, under 1 inch diam., " from 1 to 3 in. " over 3 inches			$\begin{aligned} & 9230 \mathrm{~W} . \\ & 7218 \mathrm{~W} . \\ & 5156 \mathrm{~W} . \end{aligned}$		
Sand, river,	1.856	117.87			
Sandstone, $\{$	1.900 W.	118.75 168.75		1400 W. 13000 W.	$\begin{aligned} & 600 \mathrm{~W} . \\ & 800 \mathrm{~W} . \end{aligned}$
" Dundee,	2.530 R .	158.12		6630 R.	
" Derby, red and friable,	2.316 k .	144.75		3142 R .	
Slate, Welsh,	2.388	180.50	12300 9600		

TABLE IX.

MAGNETIC VARIATION.

The following table has been made up from variots sources, principally, however, from the results of the United States Coast Survey, kindly furnished in manuseript by the Superintendent, Prof. A. D Bache. "These results," he remarks in an accompanying note, "are from preliminary computations, and may be somewhat changed by the final ones." Among the other sources may be mentioned the Smithsonian Contributions for 1852, Trans. Am. Phil. Soc. for 1846, Lond. Phil. Trans. for 1849, Silliman's Journal for 1838, 1840, 1846, and 1852, and the various American, British, and Russian Government Observations. The latitudes and longitudes here given are not always to be relied on as minutely corrcet. Many of them, for places in the Western States, were confessedly taken from maps and other uncertain sources. Those of the Coast Survey Stations, however, as well as those of American and foreign Government Observatories and Stations, are presumed to be accurate.

It will be seen that the variation of the magnetic needle in the United States is in some places west and in others east. The line of no variation begins in the northwest part of Lake Huron, and runs through the middle of Lake Erie, the southwest corner of Pennsylvania, the central parts of Virginia, and through North Carolina to the coast. All places on the east of this line have the variation of the needle west, - all places on the west of this line have the variation of the needle east ; and, as a general rule, the farther a place lies from this line, the greater is the variation. The position of the line of no variation given above is the position assigned to it by Professor Loomis for the year 1840. But this line has for many years been moving slowly westward, and this motion still continues. Hence places whose variation is west are every year farther and farther from this line, so that the variation west is constantly increasing. On the contrary, places whose variation is east are every year nearer and nearer to this line, so that the rariation east is constantly decreasing. The rate of this increase or decrease, as the case may be, is said to average abjut 2^{\prime} for the Southern States, 4^{\prime} for the Middle and Western States, and 6^{\prime} for the New England States.* The increase in Washington in 1840-2 was $3^{\prime} 44.2^{\prime \prime}$; in Toronto in $1841-2$ it was $4^{\prime} 462^{\prime \prime}$. The changes in
(Jambridge, Mass. may be seen from the following determinations of the variation, taken from the Memoirs of the American Academy for 1846.

Cambridge, 1708,			${ }_{0}^{\prime}$	Cambridge, 1788,		${ }_{6}^{\circ} 38$	
" 1	1757,			20	Salem,	1805,	557
" 1	1761,		14		1808,	520	
" 1	1763,	7	0	"	1810,	622	
" 1	1780,	7	2	Cambri	1810,	730	
" 1	1782,		46		1835,	851	
" 1	1783,		52		1840,	918	

But besides this change in the variation, which may be called secular, there is an annual and a diurnal change, and very frequently there are irregular changes of considerable amount. With respect to the annual change, the variation west in the Northern hemisphere is generally found to be somewhat greater, and the variation east somewhat less, in the summer than in the winter months. The amount of this change is different in different places, but it is ordinarily too small to be of any practical importance. The diurnal change is well determined. At Washington in 1840-2, the mean diurnal change in the variation was,* -
 At Toronto the means were, \dagger -

	1841.	1843.	1845.	1847.	1849.	1850.	1851.
Winter,	6.67	5.64	5.73	7.28	8. 25	8.01	7.01
Spring and Autumn,	9.46	9.36	9.15	10.08	12.25	10.90	10.82
Summer,	12.38	1170	13.36	13.84	11.80	13.74	12.61

The diurnal change in the variation is such that the north end of the needle in the Northern hemisphere attains its extreme westerly position about 2 o'clock, P. M., and its extreme easterly position about 8 o'clock, A. M. In places, therefore, whose variation is west, the maximum variation occurs about 2 P. M., while in places whose variation is east, the maximum variation occurs about $8 \mathrm{~A} . \mathrm{M}$. In Washington, according to the report of Lieutenant Gilliss, the maximum variation, taking the mean of two years' observations, occurs at $1^{\text {h. }} 33^{\mathrm{m}}$. P. M., the minimum at $8^{\text {h. }} 6^{\mathrm{m} .}$ A. M.

The determinations of the Coast Survey are distinguished by the letters C. S. attached to the name of the observer. In some instances the name of the nearest town has been added to the name of the Coast Survey station.

[^14]| Place. | Latitude. | Longitude. | Authority. | Date | Variation. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Maine.
 Agamenticus, Bethel, | $\begin{array}{lll}0 & 1 \\ 43.4 \\ 44 & 28.0\end{array}$ | 7051.0 | T. J. Lee, C. S. | Sept., 1817 June, 1845 | $\begin{array}{ccc} 0 & 1 \\ 10 & 10.0 & \mathrm{~W} \\ 11 & 50.0 \end{array}$ |
| | 4428.0 | 7051. | | June, 1545 | |
| land, | 4333.8 | 7016.2 | J. E. IIilgard, C S. | Aug., 1851 | 1141.1 " |
| | 4311.6 | \% 36.1 | J. E. IIilgard, C. S. | Aug., 18.51 | 119.0 " |
| Cape Suail, | 43 46.7 | 6950.4 | G. W. Dean, C. S. | Oct., 1851 | $12 \quad 5.5$ |
| Kennebunkport, | 4321.4 | 7027.8 | J. E. IIilgard, C. S. | Aug., 1851 | 1123.6 |
| Kittery Point, | 434.8 | 7043.3 | J. E. Ililgard, C.S. | Sept., 1850 | 1030.2 |
| Mlt. Pleasant, | $44 \quad 1.6$ | 7049.0 | G. W. Dean, C. S. | Aug.. 18.51 | 1432.0 |
| Portland, | 4341.0 4332.4 | 7020.5 | J. Locke, | June, I-4:5 | 1125.3 |
| Richmond Island, | 4332.4 | 7014.0 | J. E. ILilgard, C. S | Sept., 1850 | 1217. |
| New Hampshire. | | | | | |
| Fabyan's IIotel, | 4416.0 | 7129.0 | J. Locke, | June, 1845 | 1132.0 W. |
| Hanover, | 4342.0 | 7210.0 | Prof Young | $1>33$ | 915.0 " |
| Isle of Shoals, | 4259.2 | 7036.5 | T. J. Lee, C. | Ang, 1547 | $10 \quad 3.4{ }^{10}$ |
| Patuccawa, | 43 | 7111.5 | G. W. Dean, C. S. | Aug., 1849 | 1042.9 |
| Unkonoonuc, | 4259.0 | 7135.0 | J. S. Ruth, C. S. | Oct, 1848 | $9 \quad 5.6$ " |
| Vermont. | | | | | |
| Burlington | 4427.0 | 7310.0 | J. Locke, | June, 1845 | 922.0 W. |
| Massachusetts. | | | | | |
| Annis-squam, | 4239.4 | 7040.3 | G. W. Keely, C. | Aug., Is 49 | 1136.7 W |
| Baker's Island, | 4232.2 | 7046.8 | G. W. Keely, C. S. | Sept., 1si9 | 1217.0 |
| Blue 1ill, Milton, | 4212.7 | 71 | T. J. Lee, C. S. | Sept and
 Oct., $1 \leqslant 45$ | 913.3 " |
| Chappaquidick,Ed- | | | | | $10 \quad 8.0$ |
| | | | | | 847.7 " |
| Coddon's IIill, Mar- | | | | | 1149.8 " |
| blehead, | | 7 | | Sept and | |
| Copecut IIIll, | 41 | I | T. J. Lee, C. S. | Oet, 1514 | 912.1 |
| Dorchester, | 4219.0 | 71 4.0 | W. C. Bond, | Aug 1839 | |
| Fort Lee, Salem, | 42
 41
 41
 31.9
 12 | $\begin{array}{lll}70 & 52.1 \\ 70 & 15.0\end{array}$ | G. W. Keely, C. S. | Aug, ${ }^{\text {Aug., }} 1849$ 1 | $\begin{array}{rrr} 10 & 14.5 & " 6 \\ 9 & 22.0 & \end{array}$ |
| Ilyambis, | 44133.0 41 | $\begin{array}{ll}70 & 15.0 \\ 70 & 40.3\end{array}$ | T. J Lee, C. S | Aug., 1816 Aug., 1546 | 9 22.0
 8 49.3
 |
| Little Nahant, | 4226.2 | 7055.5 | G. W. Keely, c. | Aug., 1-49 | 940.9 " |
| Nantasket, | 4218.2 | 7054.0 | T J. Lee, C.'S. | Sept., 1517 | 933.5 " |
| Nantucket, | 4117.0 | \%0 6.0 | T J. Lee, $冖$ | July, 1816 | 914.0 |
| New Bedford,Shoottling | | | | | |
| Shoothying IIlll, Barnstable, | | | | Aug., 1546 | 940.1 " |
| Tarpaulin Cove, | 4123.1 | 7045.1 | T. J. Lee, C. S. | Aug., 1:46 | 910.1 " |
| Rhode Island. | | | | | |
| Beacon-pole 1ill, | 415 | 71 | T. J Lee, C. S. | $\left.\begin{array}{l}\text { Oct. and } \\ \text { Nov., } 1544\end{array}\right\}$ | 929.8 W. |
| MeSparran IIill, | 4129.7 | 71 27.1 | T. J. Lee, C. S. | July, 1544 | 853.3 |
| Point Judith, | 1121.9 | 7125.9 | R.H. Fauntleroy, C.S. | Sept, 1817 | 859.4 |
| Spencer Ifill, | 4140.7 | \%1 29.3 | T. J. Lee, C. S | $\left\{\begin{array}{l} \text { July and } \\ \text { Aug. } 1814 \end{array}\right\}$ | 911.9 " |
| Connecticut. | | | | | |
| Black Rock, Fairfield, | $41 \quad 8.6$ | 7312.6 | | | |
| Bridyeporc, | $4 \mathrm{i} \quad 10.0$ | 7311.0 | J. Renwick, C. S. | Sept., 1845 | ${ }_{7}^{6} 19.3 \text { " }$ |
| Fort Wooster, | 416.9 | 7253.2 | J. S. Ruth, C. S. | Aug., 1818 | 726.4 |
| London, | 4118. | $72 \quad 0.0$ | J. Renwick, C. S. | Aug., 1845 | 729.5 " |

Place.	Lati- tude.	Longitude.	Authority.	Date.	Variation
Silfo	$4{ }_{4} 116.0$	1.0	J. Renwick, C S.	Sept, 184,	${ }_{6}{ }_{6} 3^{\prime} .3 \mathrm{~W}$
New Llaven, Pavil- ion,	4118	ז255.	S. Ruth, C. S	Aug,	37.5
New Haven, Yale Collese,					617.3 "
Norwalk,	7.1	7324.2	J. Renv	Scpt., 1344	646.3 "
Oyster Point, New LIaven,	4117.0	250	J. S. Rutl, C. S.		632.3 "
\#zchem's Head,					
(Gnilford,	A1 17.0	7243.0	. Renwick, C. S-		${ }_{6}^{6}$
Sawpits, Sily brook,		${ }_{22} 289.01$	J. Renwwick, C.	Aug., 12.,	${ }_{6}^{6} 19.9$
Stimitord,	413.5	73320	J. Renwick, U. S	Sept., 1×14	${ }_{\sim}^{6} 40.4$
stoniugton,	1120.0	7151.0	J. Renwick. C. S.	Aug., 1845	7 3-2
New York.					
muy,	4239.0	7344.0	Regents' Report,	1836	617.0
ormingdale Asylim.		73 57.	Locke,	April, 1	5109 "
cole, staten Island,	1031.8	7413.0	J. Lock	April,	53
Drowsed Meadow, L. I.,	10	$73 \quad 3.5$	Ren	Sept	63.6
athuish,	4) 402	7357.7	J. Locke,	Aprril, 1.516	5 51.6
remport, L. 1	416.0	7221.0	J. Renwick, C. S	Aug.,	$\bigcirc 14.6$
Lergett, Lloyds Loy	(1) 459	73530	R.II. Fauntleroy, ©.S.	Oct., 1817	540.
oyd's L. I.,	4055.6	7324.8	Renwick, C. S	Sept., 1844	612.5 "
New Rochelle,				Sept.,	531
New York,	4142.7	7401	J. Renwick, C. S.	Sept., 18	625.3 "
Oyster Bay, L. I.,	4152.3	7310	J. lenwick, C.S.		${ }^{6} 53.6$ " ${ }^{\text {c/ }}$
bouse's Point, Sinds Lighthouse,	450.0	7321.0	Boundary surves,	Oct., 1 st5	$\begin{array}{lll} 11 & 2.11 \end{array}$
L. I.,	4051.9	7343.5	R.1I. Fauntleroy, C.S.	Oct., 1847	${ }_{\sim}^{6} 9.7$
mids Point, L	4052.0	7343.0	J. Renwick; C. S.	Sept., 1845	714.6
atchhill; Fire Isl-			.11. Fauntleros, C.S.		
West Point.	1125.0	73 560	Prof. Diaries,	Sept, 1835	632.0
New Tersey.					
C'ape May Light- house,	38			June, 1516	33.2 W.
	3945.2		J. Locke, C. S.		320.4
Chureh Lemding,	33499	7.) 30.3	J. Locke, U. S.	June, 1846	*5 4 45.5 "
g Island,	3910.4	,	J. Locke, C.S.	June, 1846	3 13 2 7
Hawkins, ${ }_{\text {l }}$ Mit.Rose, Princeton,	3925.5	7. 17.1	J. Locke, C. S.	June, 1846	255.7 "
Mit.Rose, Princeton,	4022.2	7442.9	J. E. liilgard, C. S.	Aug., 1852	${ }_{5}^{5} 31.8$ "
Newark,	40	747.11	J. Locke, ,	Alpril, 1546	${ }^{5} 32.7$ "
Pine Mountain, Pout \orris.	39 2.5 39 14.5 18	\%	J. Locke,	June, ${ }^{\text {J }}$ (1816 June, 1516	${ }_{3}^{2} 525.0<8$
Sandy limik,	40 23.0	73 59.	J. henwick, C. S	Aug., 1514	5540 "
Town Bank, Cape Mav,					
Tucker's Island,	30.	16.9	. J. Lee, C. S.		$\begin{array}{r} 3 \\ 423.8 \\ \hline \end{array}$
White IIill, Bordeatown,	408.3	74	J. Locke, C S.	Apr	+22.5 "
Pennsylvanza.					
Girard College,					
Philadelphi:,	39	759.9	J. Looke, C.	May, 1816	350.7 \%
	40 2	74585	J. Locke,	May, 181	$\begin{array}{ll}0 & 33.1 \\ 4 & 20.5 \\ 4\end{array}$

Place.	Latitude.	Longitude.	Authority. *	Date.	Variation.
Delaware.					
Bombay IIook Lighthonse,	$3{ }^{\circ} 21.8$	530.3	J. Locke, U. S	June, 1816	${ }_{3}^{\circ} 17.9 \mathrm{~W}$
Fort Delaware, Delaware River,	13935.3	75 33.8	J. Locke, C. S.	June, 1816	316.0 "
Lewes Landing,	13345.8	7511.5	J. Locke, C. S.	July, 1816	247.7 "
Pilot Town,	3347.1 39 42	$\begin{array}{ll}75 & 9.2 \\ 75 & 33.5\end{array}$	J. Locke, C. S.	July, 1846	2 42.2 2 47.8 2
, Sawrer, $\begin{aligned} & \text { Silmingt, } \\ & \text { S, }\end{aligned}$	39 39 34.9	75 33.5	J. Locke, C. S. S.	June, 1846	$\begin{array}{ll} 2 & 47.8 \\ 231.8 & 6 \\ \hline \end{array}$
Maryland.					
Annapolis	3356.0	7635.0	T. J. Lee, C. S.	Iune, 1545	214.0 W .
Bodkiu,		7625.2	T. J. Lee, C. S.	April, 1517	2.6 "
Finlay,	3324.4	if 31.2	J. Locke, C. S.	April, 1816	219.5 "
Fort McIIenry, Baltimore,	3915.7	\%6 34.5	T. J Lee,	April, 1847	213.0 "
Hill,	3353.9	\%6 52.5	G. W. Deau, C. S	Sept., 1550	$215.4 "$
Kent Island,	$\begin{array}{lll}39 & 1.8\end{array}$	7613.9	J. Ifeuston. C. S.	July, 1819	239.5 "
Marriott's,	33 52.4	7636.3	T J Lee, U. S.	June, 1519	$2 \quad 5.2$ "
North Point,	3911.7	7626.3	I J. Lee, C. S.	July, 1846	142.1 "6
Osborne ${ }^{\text {c }}$ Ruin,	3927.9	7616.6	T J. Lee, C. S.	June, 1515	232.4 "
Poole's Island,	3917.1	7615.5	T J. Lee, C. s.	June, 1517	223.5 "
Rosanne,	3917.5	7642.8	T. J. Lee. C. S.	June, 1515	212.06
Soper,	1395.1	- 656.7	G. W. Dean, C. S.	July, 1850	27.0
Islaud,	3853.5	7621.7	T. J. Lee, C. S.	June, 1345	226.2 "
SusquehannaLight-					
Grace,	3932.4		T J. Lee, C. S.	July, 1317	251.1 "
Taylor,	3589.5	7627.6	T J. Lee, C. S.	May, $1=17$	$213.4 "$
Webb,	395.4	7640.2	G W. Dean, C. S.	Nov., 15.50	27.96
District of Columbia.					
Causten, Georgetown,	3585		G. W. Vean, C. S.	June, 1851	211.3 W.
Washington,	3353.7	$\pi 7 \quad 2.8$	J. JI. Gilliss,	June, 1.542	126.0 "
Virginia.					
Charlottesville,	$33 \quad 2.0$	7331.0	Prof. Patterson,	1835	$0 \quad 0.0$
Roslyn, Petersburg,	3 3 14.4	77 23.5	G. W. Dean, C. S.	Aug., 1852	026.4 W.
Wheeling,	$40 \quad 8.0$	S0 47.0	J. Locke,	April, 1815	24.0 E.
North Carolina.					
Bodie's Islan	3547.5	7.5 31.6	C. O. Boutelle, C. S.	Dec., 1816	13.4 W.
Shellbank,	36	7544.1	C. O. Boutelle, C. S.	Mar., 1847	144.366
Stevenson's Point,	$36 \quad 6.3$	7611.0	C 0. Boutelle, C. S.	Feb., 1847	
South Carolina.					
Breach Inlet,	3246.3	7948.7	C. O. Boutelle, C. S.	April, 1819	216.5 E.
Charleston,	3241.0	7953.0	Capt. Barnett,	$\text { May, } 1841$	
Filst Base, Edisto,	3233.3	8010.0	G. Davilson, C. S.	April, 1850	
Georgia.					
Athens,	$34 \quad 0.0$	3320.0	Prof. McCay,	1537	431.0 E
Columbus,	3228.0	8510.0	Geol. Survey,	1839	5380.0
Milledgeville,	337.0	8320.0	Geol. Survey,	1833 April, 1852	$\begin{array}{ll}5 & 51.0 \\ 3 & 45.0\end{array}$
Savannah,	325.0		J. F. Itilgazd, フ. S.	April, 1852	345.0 *

Place.	Latitude.	Longitude.	Authority.	Date.	Variation.
Florida.					$0{ }^{1}-2$
Cape Florida,	2539.9	SO 9.4	J. E. IIilgard, C. S.	Feb., 1850	425.2 E
Cedar Keys,	297.5	83 2.3	J. E. Iilgard, C. S.	Mar., 1852	520.56
St. Marks Light,	$3(1) 4.5$	8412.5	J. E. Iilgard, C. S.	April, 1852	$5 \begin{array}{lll}5 & 29.2 \\ 5 & 29\end{array}$
Sand Kiey,	2127.2	8152.0	J. E. Iilgard, C. S.	Aug., 1849	$529.0{ }^{6}$
Alabama.					
Fort Morgan, Mobile Bay,	3013.8	SS 0.4	R.II. Fauntleroy, C.S.	May, 1817	$7 \quad 3.8$ E.
Tuscaloosa,	3312.0	8742.0	Prof. Barnard,	1839	728.0 '
Mississippi. East Paseagoula,	3020.7	8831.4	R.II. Fauntleroy,C.S.	June, 1847	712.4 E.
Texas.					
Dollar Point, Galveston,	2926.0	9153.0	R.II. Fauntleroy,C.S.	April, IS18	857.2 E .
Mouth of Sabine,	2943.9	$93 \quad 51.5$	J. D. Graham,	Feb., 1840	840.26
Ohio.					
Carrolton,	3935.0	849.0	J Looke,	Sept., I845	4 45.4 E.
Cincinnati,	396	S4 22.0	J. Locke,	April, 1845	$4{ }^{4} 4.0{ }^{6}$
Columbas,	3357.0	$83 \quad 3.0$	J. Locke,	July, 1845	229.3 "
IIudson,	$\begin{array}{lll}41 & 15.0\end{array}$	8126.0	E. Loomis,	1849	${ }^{0} 525.0$ "
Marietta,	$\begin{array}{ll}39 & 26.0 \\ 39 & 30.0\end{array}$	8129.0	J. Locke,	April, 184.9	$225.0{ }^{6}$
Oxford,	3380.0	8133.0	J. Locke,	Aug., 1845	450.06
St. Mary's,	4032.0	8119.0	J. Locke,	Sept., 1845	$3 \quad 4.0{ }^{6}$
Tennessee. Nashville,	3610.0	86 49.1	Prof. Ilamilton,	1835	$7 \quad 7.0$ E.
Michigan.					
Detroit,	4224.0	8258.0	Geol. Report,	1840	20.0 EL
Indiana.					
Richmond,	3949.0	8447.0	J Locke,	Sept., 1845	452.0 E
South Ilanover,	3345.0	$85 \quad 23.0$	Prof. Dunn,	1837	435.0
Illinois.					
Alton,	38 52.0	$90 \quad 12.0$	II. Loomis,	1810	745.0 E
Missourt.				1835	849.0 E.
St. Louis,	3336.0	8936.0	Col. Nicolis,	1835	849.0 EL
Wisconsin.					
Madison,	43	8941.0	U. S. Surveyors,	Nov., 1839	$\begin{array}{ll} 7 & 30.0 \mathrm{~F} . \\ 9 & 5.0 \end{array}$
Prairie du Chien,	431.0	918.0	U. S. Surveyors,	Oct., 1839	$9 \quad 5.0, "$
Iowa.					
Brown's Settlement	$42 \quad 2.0$	9118.0	J. Locke,	Sept., 1839	
Darenport,	$\begin{array}{lll}41 & 30.0\end{array}$	9034.0	U. S. Surveyors,	Sept., 1839	7 50.0 6
Farmer's Creek,	4213.0	9039.0	J. Locke,	Oct., 1839	$911.0{ }^{6}$
Wapsipinnicon River,	4144.0	9039.0	J. Locke,	Sept., 1839	825.0
California.					
Point Conception,	3126.9	12026.0	G. Davidson, C. S.	Sept., 1850	1349.5 E

Place.	Latitude.	Longitude.	Authority.	Date.	Variation.
Point Pinos, Monterey,	$3{ }^{3} 33^{3} .0$	12154.0	G. Davidson, C.S.	Feb., 1351	$1^{1+1} 5{ }^{-1} 5.0 \mathrm{E}$.
Presidio, san Francisco, San Diego,	$\begin{array}{ll} 37 & 47.8 \\ 32 & 42.0 \end{array}$	$\begin{array}{cc} 122 & 2 \pi .0 \\ 117 & 14.0 \end{array}$	G. Daridson, C.S. G. Daridson, C. S.	$\begin{aligned} & \text { Feb., } 1852 \\ & \text { May, } \end{aligned}$	$\begin{array}{lll} 15 & 26.9 \\ 12 & 29.0 & 6 \end{array}$
Oregon.					
Cape Disappointment, Ewing Itarbor,	$\begin{array}{ll} 46 & 16.6 \\ 42 & 44.4 \end{array}$	$\begin{array}{ll} 124 & 2.0 \\ 124 & 21.0 \end{array}$	C. Daridson, C. S. G. Daridson, C S.	$\begin{aligned} & \begin{array}{l} \text { July, } 18: 51 \\ \text { Nov., } \end{array} \mathbf{1 5 . 5 1} \end{aligned}$	$\begin{aligned} & 204.5 .0 \mathrm{E} \\ & 1529.2 \end{aligned}$
Waslington Territory.					
$\begin{aligned} & \text { Scarboro' Ilar- } \\ & \text { bor, } \end{aligned}$	4521.8	$12+37.2$	G. Davidson, C.S.	Aug., 1852	2130.2 E .
Britisa America.					
Montreal,	4537.0	7335.0	Capt. Lefroy,		858.0 W.
Quebec,	14649.0	7116.0	Capt. Lefroy,		1412.0 "
st. Johns, C. B. Stansteal,	45 19.0 450 50	7313.0 72 7	Capt. Lefroy,	Nov.,1542 1515 1	11 1123.0 "
Toronto,	4339.6	\%9 21.5	British Govern.,	Sept., 1514	127.2 \%
New Grexada Panama,	857.2	79 29.4	IV H. Eruory,	Mar., 1319	654.6 E.
Eistery HemiSPHERE.					
Greenwich,England,	5123.0	00.0	Prof. Airy,		2316.0 W.
Makerstoun, Scotland,					
Paris, France,	45 50.0	221.0 E .	Paris Observatory	Nov., 1551	2) 25.0 "
Munich, Bara- ria,	139.0	1137.0 "			16 +3.0
St. Petersburg, Russia,		3019.0 "	Russian Govern.,		621.1 "
Catherineuburg					
$\underset{\text { Sertclininsk, }}{\text { Sibi- }}$	5651.0	6034.0 "	Russian Govern.,		633.9 E
beria. Sil bel	5156.0	11631.0 "	Russian Govern.,		36.9 W .
st. Helena. Cape of	1556.7 S	540.5 \%.	British Gorern.,	Dec., 1845	36.6 "
IIope,	33 56.0:	1823.7 E.	British Govern,	July, 1816	298.0 "
Hobarton, Yan Diemen's Ld.,			British Govern.,	Dec., 1843	

TABLE X.

IRIGONOMETRICAL ANI) MSCELLANEOUS FOR.MUL天

Let A (fig. 5 i) be any acute angle, and let a perpendicular $B C$ be trawn from any point in one side to the other side. Then, if the siles

If the right triangle thus formed are denoted by letters, as in the fig urc, we shall hare these six formulæ: -

1. $\sin . A=\frac{a}{c}$.
2. $\operatorname{cosec} . A=\frac{c}{a}$.
3. $\cos A=\frac{b}{c}$.
4. sec. $A=\frac{c}{b}$.
5. $\tan . A=\frac{a}{b}$.
6. cot. $A=\frac{b}{a}$.

Solution of Right Triangles (fig. 57).

	Given	Sought.	Formulx.
7	a.c	$A, B, 8$	$\sin . A=\frac{a}{c}, \operatorname{cos.} B=\frac{a}{c}, \quad b=\sqrt{ }(c+a)(c-a)$
8	a, b	A, B, c	$\tan . A=\frac{a}{b}, \quad \operatorname{cot.} B=\frac{a}{b}, \quad c=\sqrt{a^{2}+}$
9	A, a	B, b, c	$B=90^{\circ}-A, \quad b=a \cot . A, \quad c=\frac{a}{\sin . A}$.
10	A, b	B. a, c	$B=90^{\circ}-A, \quad a=b \tan . A, \quad c=\frac{b}{\cos . A}$.
11	A, c	B, a, b	$B=90^{\circ}-A, \quad a=c \sin . A, \quad b=c \cos A$

Solution of Oblique Triangles (fig. 58).
Fig. 58.

	Given.	\| Sought.	Formule.
2	A, B, a		$b=\frac{a \sin B}{\sin A}$.
13	A, a, b	B	$\sin . B={ }^{b \sin . A}$
14	a, b, C	$A-B$	$\tan \cdot \frac{1}{2}(A-B)=\frac{(a-b) \text { can. } \frac{1}{2}(A+B)}{a+b}$
			$\text { If } s=\frac{1}{2}(a+b+c), \sin \cdot \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{b c}}$
15	a, b, c	A	$\left\{\begin{array}{l} \cos \cdot \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c},}, \tan \cdot \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\ \sin A=2 \sqrt{\prime \cdot(s-a)(s-b)(s-c)} \\ a^{2} \sin B \operatorname{sic} C \end{array}\right.$
16	A, B, C, a	area	area $=-2 \sin . A$
7	A, b, c	arca	area $=\frac{1}{2} b c \sin$. 1.
	, a, b, c	area	$s=\frac{1}{2}\left(a+b+r_{1}, \quad \mathrm{area}=\sqrt{s(s-a)(s-b)(8-e)}\right.$

General Trigonometriri Formulce.
$19 \sin .^{2} A+\cos .^{2} A=1$.
$20 \sin .(A \pm B)=\sin . A \cos B \pm \sin A \cos . A$.
$21 \cos (A \pm B)=\cos A \cos B \mp \sin . A$ win. B.
$22 \sin .2 A=2 \sin . A \cos . A$.
$23 \cos .2 A=\operatorname{cos.}^{2} A-\sin ^{2} A=1-2 \sin \quad 4=9 \cos ^{2} A-1$.
$24 \sin ^{2} A=\frac{1}{2}-\frac{1}{2} \cos 2 A$.
$25 \cos .^{2} A=\frac{1}{2}+\frac{1}{2} \cos 2 A$.
$26 \sin . A+\sin . B=2 \sin \cdot \frac{1}{2}(A+B) \cos \cdot \frac{1}{2}(B \quad B)$.
$27 \sin . A-\sin . B=2 \cos \cdot \frac{1}{2}(A+B) \sin \cdot \frac{1}{2}\left(\begin{array}{ll}A & B\end{array}\right)$.
$28 \cos . A+\cos B=2 \cos \cdot \frac{1}{2}(A+B) \cos \cdot \frac{1}{2}(A \cdot R)$.
$29 \cos . B-\cos . A=2 \sin . \frac{1}{2}(A+B) \sin . \frac{1}{2}(A-P)$
$30 \sin ^{2} A-\sin ^{2} B=\operatorname{cos.}{ }^{2} B-\operatorname{cos.}^{2} A=\sin .(A+B) \sin$.
$31 \operatorname{cos.}^{2} A-\sin .^{2} B=\cos .(A+B) \cos (A-B)$.

$$
\begin{aligned}
& \langle 32| \operatorname{ran} . A=\frac{\sin . A}{\cos A} \\
& 33 \cot A=\frac{\cos . A}{\sin . A} \\
& 34 \tan .(A \pm B)=\begin{array}{c}
\tan A \pm \tan B \\
1 \mp \tan A \tan B
\end{array} . \\
& 35 \tan . A \pm \tan . B=\frac{\sin (A \pm B)}{\cos A \cos . B} \text {. } \\
& 36 \cot A \pm \cot B= \pm \frac{\sin (A \pm B)}{\sin A \operatorname{in} . B} \text {. } \\
& 37 \frac{\sin A+\sin B}{\sin . A-\sin B}=\frac{\tan \frac{1}{2}(A+B)}{\tan \cdot \frac{1}{2}(A-B)} \text {. } \\
& 38 \frac{\sin A+\sin . B}{\cos A+\cos B}=\tan \cdot \frac{1}{2}(A+B) \\
& 39 \frac{\sin A+\sin B}{\cos B-\cos A}=\cot \frac{1}{2}(A-B) \text {. } \\
& \sin \frac{A-\sin . B}{\cos \frac{\cos B}{}=\tan \cdot \frac{1}{2}(A-B) . ~ . ~ . ~ . ~} \\
& 41 \frac{\sin \cdot A-\sin \cdot B}{\cos B-\cos A}=\cot \cdot \frac{1}{2}(A+I ;) \text {. } \\
& 42 \tan . \frac{1}{2} A=\frac{\sin A}{1+\cos A} \text {. } \\
& 43 \cot \frac{1}{2} A=\frac{\sin A}{1-\cos A} \text {. }
\end{aligned}
$$

Miscellaneous Formulæ.

	Sought.	Given.	Formule.
4	Ciof	Radius	πr^{2}
45	Ellipse	Semi-axes $=a$ and	
\|46	Parabola	Chord $=c$, height $=h$	${ }_{3}^{2} c h$.
47	Regrular Polygo	$\left\{\begin{array}{l} \text { Side }=a, \text { number of } \\ \text { sides }=n \end{array}\right\}$	$\frac{1}{4} a^{2} n$ cot. $\frac{180}{}$.
	Surfuce		
48	Sphere	Radius $=r$	$4 \pi 1$
149	Zone	Radius $=r$, height $=h$	$2 \pi r h$.
50	Spherical Polygon	$\left\{\begin{array}{l} \text { Radius of sphere }=r \\ \text { sum of angles }=S \\ \text { number of sides }=n \end{array}\right\}$	$\pi r^{2} \times \frac{S-(n-2) 180}{180^{0}}$
	Solidity		
51	Prism or Cylinder	Base $=b$, height $=h$	b h.
52	Pyramid or Cone	Base $=b$, height $=h$	$\frac{1}{3} b h$.
53	$\left.\begin{array}{l} \text { Frustum of Pyr- } \\ \text { amid or Cone } \end{array}\right\}$	$\left\{\begin{array}{l} \text { Bases }=b \text { and } b_{1}, \\ \text { height }=h \end{array}\right\}$	$\frac{1}{3} h\left(b+b_{1}+\sqrt{ } b b_{1}\right)$

[^15]| 54 | Sough.
 Solidity of Sphere | Given. Radius $=r$ | $\left\lvert\, \begin{aligned} & \text { Foruule. } \\ & \frac{4}{3} \cdot \tau r^{3} .\end{aligned}\right.$ |
| :---: | :---: | :---: | :---: |
| 55 | SphericalSegment | $\left\{\begin{array}{l} \text { Radii of bases }=r \\ \left\{\text { and } r_{1}, \text { height }=h\right. \end{array}\right\}$ | $\frac{1}{2} \pi h\left(r^{2}+r_{1}{ }^{2}+\frac{1}{3} h^{6}\right)$ |
| 56 | Prolate Spheroil | $\left\{\begin{array}{c} \text { Semi-transverse axis } \\ \text { of ellipse }=a \end{array}\right\}$ | ${ }^{\frac{4}{3}} \pi a b^{2}$. |
| 57 | Oblate Spheroid | $\left\{\begin{array}{c} \text { Semi conjugate axis } \\ \text { of ellipse }=b \end{array}\right\}$ | $\frac{4}{3}: x a^{2} b$. |
| 8 | Paraboloid | $\left\{\begin{array}{l} \text { Radius of hase }=r,\} \\ \text { height }=h \end{array}\right.$ | $\frac{1}{2} \pi r^{2} h$. |
| | $\tau=3.1+1$ | 5926535 89793 23846 | 243383280. |
| | Log. $\boldsymbol{t}=0.497$ | 14985269413385435 | 268288291 |

United States Standard Gallon $=231$ cub. in. $=0.133681$ culb. ft

$" * \quad$ " Bu:hel	$=2150.42 *$
British Imperial Gallon	$=277.27384 "$

$$
\begin{array}{rlr}
& \text { Aecording to IIassler. } & \text { As usually given. } \\
\text { French Metre, } & =3.2817+31 \mathrm{ft} . & =3.280899 \mathrm{ft} \\
" \quad \text { Litre }, & =61.07+1569 \mathrm{cub} . \text { in., } & =61.02705 \mathrm{cub} . \mathrm{in} .
\end{array}
$$

$$
\text { " Kilogram, }=2.204737 \mathrm{lb} \text {. avoir., }=2.204597 \mathrm{lb} \text {. avoir }
$$

Weight of Cubic Foot of Water,
Barom. 30 inches, Therm. Fahr. $39.83^{\circ},=62.379 \mathrm{lb}$. avoir.

$$
\text { " } \quad 6 \cdot 2^{\circ}, \quad=62.321 \text { " }
$$

Length of Seconds Pendulum at New York $=39.10120$ inches

" " " "	" London	$=39.13908$	"
" "	" Paris	$=39.12943$	

Equatorial Radius of Earth according to Bessel $=20,923,597.017$ feet Polar " " " \quad " $=20,853,654.177$ "

TABLE XI.

gQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS,

AND

RECIPROCALS OF NUMBERS

TROM 1 TO 1054.

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1	,	1	1.0000000	1.0000000	1.000000000
2	4	8	1.4142136	1.2.399210	. 500000000
3	9	27	1.7320 .518	1.41221!6	. 333333333
4	16	64	2.0000000	1.5874011	. 250900000
5	25	125	2.2360630	1.7099759	. 200000000
6	36	216	2.4194597	1.5171206	. 166666667
7	49	313	2.6457513	1.9129312	. 1425557143
8	64	512	2.8234271	2.0000000	. 125090000
9	81	729	3.0000000	2.0500537	. 111111111
10	100	1000	31622777	2.1544347	. 100000000
11	121	1331	3.3166243	2.2239301	. 090909)91
12	144	1723	3.4641016	$2.239+236$.033333333
13	169	2197	3.6055513	2.3513347	.076923077
14	196	$2 \pi 44$	3.7416574	2.4101422	.071425571
15	225	3375	3.8729533	2.4662121	. 066666667
16	256	4096	4.0000003	2.5193421	. 062500000
17	239	4913	4.12310 .56	2.5712316	.058323529
18	324	5532	$4.2+26107$	2.6207414	. 055555555
19	361	6859	4.3588989	2.6634016	.052631579
20	400	8000	4.4721360	2.7144177	. 050070000
21	441	9261	4.5325757	2.7589243	. 047619048
22	431	10643	4.6904158	2.5020393	. 015454515
23	529	12167	4.7958315	2.8435670	. 04347826
24	576	13324	4.8989795	2.5544991	. 041666667
25	62.5	15625	5.0300000	2.9240177	. 010000000
26	676	17576	5.0997195	2.9624960	. 035461538
27	729	19653	5.1961524	3.0000003	.0371137037
23	734	21952	5.2915026	3.0365839	.0357142>6
29	841	21389	5.3351648	3.0723163	.034182759
30	900	27000	$5.47 \tau 22.56$	3.1072325	. 0333333333
31	961	29791	5.5677644	3.1413506	. 0322255065
32	1024	32763	5.6568542	3.1745021	. 031250000
33	1039	35937	5.7445625	3.2075313	. 030303030
34	1156	39304	5.8309519	3.2396118	. 029111765
35	122.5	42575	5.9160793	3.2710663	.023571429
36	1296	466.56	6.0900000	3.3019272	. 027777778
37	1369	50653	6.0527625	3.3322221s	.027027027
33	144	54372	6.1644140	3.3619754	.026315789
39	1521	59319	6.2449980	3.3912114	. 025641026
40	1600	64000	6.3245553	3.4199519	. 025000000
41	1631	63921	6.4031242	3.4482172	. 024390244
42	1764	74033	6.4307407	3.47cn 266	. 0238509524
43	1519	79507	6.5574355	3.5033981	.023255514
44	1936	85181	6.6332496	3.5303483	.022727273
45	2025	91125	6.7032039	3.556 s 933	.022222222
46	2116	97336	6.7323300	3.583)479	.021739130
47	2209	103323	6.8556546	$3.603>261$. 021276600
43	2304	110592	6.9232032	3.6342411	.020833333
49	2101	117649	7.0000000	3.6593057	. 020403163
50	2500	125000	7.0710678	3.6540314	. 020000300
51	$26(1)$	132651	7.1414234	3.7034293	. 019607843
52	2704	140603	7.2111026	3.732.5111	. 019230769
53	2309	145377	7.2301099	3.7562353	. 018367925
51	2916	157464	7.3134692	3.7797631	. 018518519
55	3225	166375	7.4161955	3.8029525	. 018181818
56	3136	175616	7.4533143	$3.525 \leq 624$. 017857143
57	3249	185193	7.5198314	3.8485011	. $017543=60$
59	3364	195112	7.6157731	3.8703766	. 017241379
59	3181	205379	7.6311457	3.8929965	. 016919153
60	3600	216000	7.7459667	3.9143675	. 016666667
61	3721	226931	7.8102497	3.9364972	. 016393443
62	3314	233323	7.8740079	3.9578915	. 016129032

UUBE ROOTS, AND RECIPROCALS.
139

No.	Squares.	Cubes.	Square Roots.	Cube Roots	lieciprocals.
63	3969	250047	7.9372539 8.0000000	3.9790571 4.0000000°	$\begin{array}{r} .015873016 \\ .015625000 \end{array}$
64	$40: 6$	$\underset{2 \sim 1625}{26214}$	8.0000000 8.0622577	$\begin{aligned} & 4.00000000 \\ & 40207 \cdot 256 \end{aligned}$	$\begin{array}{r} .015625000 \\ .015384615 \end{array}$
65	4225	27.4625	8.0622577 8.1240384	4.0412411	. 015151515
66	4356	257196 300763	88.1853523	4.0615180	. 014925373
67	4489	300763 314432	8.2462113	4.0816551	. 014705882
69	4761	328509	8.3066239	4.1015661	. 014492754
70	4900	343000	8.3666003	4.1212353	014255714
71	5041	357911	8. 426149.9	4.1405178	.014184507
72	5184	373248	8.48 .52814	4.1601616	. 0135858
73	5329	389017	8.54110337	4.17983364	. 013698630
74	5126	4052875	8.6602540	4.2171633	. 01333333333
75	552.$]$	439976	8.7177979	4.2358236	. 013157895
76	5929	4.56533	8.7749644	4.2543210	. 012987013
78	6054	474552	8.8317609	4.2726586	. 012820513
79	6241	493039	8.8881944	4.2908404	. 012658228
30	6400	512000	8.9442719	4.3088695	. 012500000
81	6561	531411 551368	9.0000000	4.3267487	. 012345679
82 83	6724 6859	551368 571787	9.0503831	4.3620707	. 012048193
84	7056	592704	9.1651514	4.3795191	. 011904762
85	7225	614125	9.2195445	4.3968296	. 011764706
86	7396	636056	9.2736185	4.4140049	.011627907
87	7569	655503 651472	9.3273791	4.4310476	. 0111363653
89	7921	701969	9.4339011		
90	8100	729R00	$9.486 \leq 330$	4.4814047	.011111111 . 01 (19989011
91	8231	753571	9.5343920	4.5143574	. $010 \leq 69565$
92	8161	77565	9.5916630	4.5306549	. 010752688
93	8619	804357	9.6953597	$4.5168: 359$. 010638298
94	8836	830975	9.7467943	4.5624026	. 010526316
95	${ }_{9216} 9020$	881736	9.7979590	4.5788570	. 010416667
96	9409	912673	9.8488578	4.5947009	. 010309278
97 98	964	911192	9.89949 .19	4.6104363	. 010204182
98	8801	970299	9.9195744	4.6260650	. 010101010
100	10000	1000000	10.0000000	4.6415888	. 010000000
111	10201	1030301	$10.049>756$	4.6570095	. 0099900990
102	10104	1061205	10.099.5019	4.6723287	.009203922
103	10609	10927.27	10.1488916	4.6875482	. $00950807: 8$
104	10816	1124861	11.19811390 10.2169508	4.7176944	. 009523810
105	11025	1157625	10.2469508 10.2956301	4.73:6235	. 0094133962
106	11236	1191016 122.5043	10.29.56301	4.7474594	. 009345704
107	11469	1225043	10.3923048	4.7622032	. 009259259
103 109	11881	1295029	10.4403065	4.7765562	. 009174312
110	12100	1331000	10.4880085	4.7914199	.009090979
111	12321	1367631	10.5356538	4.8059505	. 0000009009
112	12544	1404923	10.5530052	4.8212845	.00-328571
113	12769	1442897	10.6301458	4.8345081	.00>771930
114	12996	1481544	10.6770783	4.8180016	.00s695652
115	13225	1520575	10.7238053	4.8769990	.00¢620690
116	13456	1560896	10.7703296	4.8909732	. 0005 s 47009
117	13689	1601613	10.8166538 10.6627805	4.9048631	. $00 \leqslant 474576$
118	13924	16130332	10.8627805 10.9087121	4.9186847	$.00 \$ 40336 \mathrm{I}$
119	14161	1635159	10.9087121	4.918684	
$12)$	14400	1723000	- 10.9544512	4.9324242	. 0008333333
121	14641	1771561	111.0000000	4.9160874	008156721
122	14934	1815848	11.0453610	4.95367598	.008130081
123	15129	1860567	711.0905365	4.97318988	. 003064516
124	15326	1906624	4 11.1355237	4.9866310	.003664516

No.	Squares.	Cubes	Square Roots.	Cube Roots.	Reciprocals.
125	15625	1953125	11.1503399	$5.0000 ก 00$.0กรา) 0009
126	15876	27)3376	11.2249722	50132979	.017936:3\%
127	16129	$21483 \div 3$	11.2634277	5026.5257	.0าสงว4016
123	16334	21971.52	11.3137035	5.0396542	.007812500
12.)	16611	2146539	11.3378167	5.0527743	.017751935
139	16370	2197090	11.4017533	5.0657970	.007632308
131	17161	2:215491	11.41 .55231	5.0787 .531	(1) 16.33 .538
132	174:4	2:29996	11.45912 .53	5.0916134	.017575758
133	17639	2352637	11.532 .5626	$5.10446 \div 7$. 02 T51-797
134	179.56	2116101	11.57 .55363	51172299	.0174626s7
13.5	1322.5	2167375	11.6159500	5.1299275	.0) $7+174$
136	15496	2.5151 .56	11.6619033	51425632	(11) 73.2941
137	13769	2.511353	11.7046999	5.1551367	.017299270
133	19044	2623072	11.7473444	5 1676193	.007246377
139	19321	268.5619	11.7893261	5.1501015	. 007194245
140	19600	2744070	11.3321596	5.1924941	.0071423:57
141	19831	23513921	11.874 .3121	5.2015279	. 007092199.
142	20161	23563243	11.916:375:3	52171031	.0070122.54
113	20449	29212017	11.9.5 2661	5.22933215	. 076993107
144	20736	29) 3934	12.0900000	5.2111523	.0п69.1444
14.5	21025	301362.	12.0415946	5.253 .5379	. $0166 \div 96.55 .2$
146	21316	3112136	12.0330460	5.26.56374	. 0 CS 519315
3.17	21609	3176.523	12.1213557	$5.27 \pi 6321$.01630272
113	21901	$3211 \tau 92$	12.165 .9251	5.239 .5725	.0n675675?
149	22201	3307919	12.2065.5̃	5.3014592	. 006711400
150	22.500	3375000	122174157	5.3132923	. 006666667
151	22301	3412951	122352057	5.32.50740	. 096622.517
152	23101	3.511803	12.3233230	53363033	.006575947
153	23409	3.51577	123693169	5.3131812	. 006535918
151	23716	3652261	12.1096736	5.3601054	.006493.506
1.55	21025	3723975	12.449>996	5.3716354	. 096451613
156	21336	3795416	12.4999960	5.3332126	. 006410255
15 T	21619	3369393	12.5293611	5.3346957	.006369427
1.58	24361	3914312	$12.5633(151$	5.4961202	.096329114
159	2.5231	4013679	12.6935202	5.4175015	.003289393
160	2.5600	4096900	12.6191106	5.42333 .52	.0962507n0
161	2.5921	4173231	$12.63357 \pi 5$	5.4401218	. 0016211130
16:	2624	42.51523	12.7279221	5.4513618	.006172-40
163	26.569	4337447	12.7671453	5.46255 .56	. 006134969
164	26396	4410914	12.3062155	5.4737037	.00609756!
16.5	27225	4492125	12.54523:6	5.4545066	. 006 16966:if
166	27556	4.774296	12.5510957	5.49.56647	. 00667211196
167	27339	465\% 763	12.9223450	$5.5065 \sim 34$.005933024
163	23221	4741632	12.9614314	5.5173151	. 0759.52351
169	23561	4526303	13.0000000	5.5233748	.005917160
170	23900	4913930	13.0334019	5.5396553	. 00.5332353
171	29211	5002211	13.0766963	5.5501991	.00.547953
17.2	29551	5033448	13.1143770	5.5612978	.00.5>13953
173	29929	5177717	13.1529164	5.5720 .546	. 095730317
174	30276	5263021	13.1909060	5.5327762	. 0005747126
175	30625	53.59:375	13.2237566	5.5931447	. 005714256
176	30976	5151776	13.2661992	5.6040787	.0056>1:15
177	31329	5594.5233	13.3011347	5.6146724	.005649715
173	$316 \% 1$	56397.52	13.3416641	5.6252263	.00561797.
179	32041	573.5339	13.3790332	5.6357408	.0055 6592
130	32400	5532000	131164079	5.6462162	.005555.556
131	32 T 61	5329741	13.1.5.36240	5.6566523	. 005521562
132	33121	6023563	13.4997376	5.6670 .311	00.5191505
183	33139	6123137	13.5277493	$5.677+114$.03E161431
134	33356	62.29504	13.5646600	5.6377340	.0) 24.44733
15.5	3122.	6331625	13.601470 .5	5.6930192	.09.50.34
186	31596	¢ 431355	13.6331817	5.7032675	.03.5376341

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1×7	34699	6539203	136747943	5.7184791	.005347591
188	35:314	6644672	13.7113092	$5.72>6543$. 005319149
159	35721	6751269	13.7477271	5.7387936	005291005
190	36100	6859000	13.7840188	5.7498971	. 005263158
191	$364-1$	6967871	13.8202750	5.7589652	. 005235602
192	$36 \leq 64$	7077888	13.8564065	5.7689952	.005208333
193	37219	7189057	13.8924440	5.7789966	.005181347
194	37636	7301384	13.9283883	5.7889604	. 005154639
195	38025	7414875	13.9642400	5.7988900	.005128205
196	$38+16$	7529536	14.0000000	58087857	. 0055102041
197	38809	7645373	14.0356688	5.8186479	. 005026142
198	39204	7762392	14.0712473	5.8284767	. 005050505
199	39601	7880599	14.1067360	5.8382725	005025126
200	40000	8000000	14.1421356	5. 8480355	005000000
201	40401	8120601	14.1774469	5.8577660	. 004975124
202	40804	8242403	14.2126704	5.8674643	. 004950495
203	41209	$836542 ?$	14.2475068	5.8771307	. 004926108
204	41616	8489664	14.2828569	5.8867653	. 004901961
205	42025	8615125	14.3178211	5.8963685	-8049
206	42436	8741816	14.3527001	59059406	. 004854269
207	42849	8.369743	14.3874916	5.9154817	.00483091s
208	43264	8995912	14.4222051	5.9249921	
209	43681	9129329	14.4568323	5.9314721	. 0
210	44100	9261000	14.4913767	5.9439220	.004761905
211	44521	9393931	14.5258390	5.9533418	. 004739326
212	44944	9523128	14.5602198	5.9627320	0047169-1
213	45369	$9666^{6} 997$	14.5945195	5.9720926	.004694-36
214	45796	9500344	14.6257388	5.9814240	.004672897
215	46225	9938375	14.6628783	5.9907264	. 004651163
216	46656	10077696	14.6969385	6.0000000	. 004629639
217	47089	10218313	14.7309199	6.0092450	. 004608295
218	47524	10360232	$14.76-15231$	6.0184617	56
219	47961	10503159	14.7986486	6.0276502	.004566210
220	48400	10648000	14.8323970	6.0368107	. 004545455
221	48841	10793561	$14.866(1687$	6.0459435	. 004524887
222	49284	10941048	14.8996644	60550489	. 004504505
223	49729	11089567	14.9331845	6.0641270	. 004484305
224	50176	11239424	14.9666295	6.0731779	.004164286
223	50625	11390625	15.0000000	6.0822020	. 004444444
226	51076	11543176	15.0332964	6.0911994	.004424779
227	51529	11697083	15.0665192	6.1001702	. 004405286
228	51984	11552352	15.0996689	6.1091147	.004385965
229	52141	12008989	15.1327460	6.1180332	.004366512
230	52900	12167000	15.1657509	6.1269257	. 004347826
231	53361	12325391	15.1986842	6.1357924	.004329004
232	53824	12.187163	15.2315462	6.1446337	.064310345
233	54289	12649337	15.2643375	6.1534495	.004291845
231	54756	12812904	15.2970585	6.1622401	. 004273504
235	55225	12977875	15.3297097	6.1710058	.00-1255319
236	55696	13144256	15.3622915	6.1797466	. 004237285
237	56169	13312053	15.3943043	6.1884628	.004219409
238	56614	13481272	15.4272486	6.1971544	.004201681
239	57121	13651919	15.4596248	6.2058218	. 004181100
240	57600	13324000	15.4919334	6.2144650	.004166667
241	58081	13997521	15.5241747	6.22301843	. 004149378
242	58564	$141724>8$	15.5563492	6.2316797	. 004132231
243	59049	14348907	15.5884573	6.2402515	.004115226
244	59536	14526784	15.6204994	6.2487998	
21.5	60025	14706125	15.6524758	6.2573248	.004065041
216	60516	14886936	15.6843871	6.2608260	$.00104 \leq 583$
247	61009	15069223	15.7162336 15.7480157	6.2743054 6.2527613	.004032258
248	61504	15252992	15.7480157	6.2527613	. 00703225

142 TABLE XI. SQUARES, CUBES, SQUARE RUUID,

No.	Squares.	Cubes.	Square Roots	Cube Roots.	Reciprocals.
249	62001	15433213	15.7797333	6.2911946	. 034016064
2.59	¢2500	15625000	15.8113583	6.2996053	. 004000000
251	53001	15513251	15.8429795	6.3079935	. 003934064
25	63.504	16303103	15.8745079	6.3163596	. 003965254
253	61909	16191277	15.9059737	6.3247035	.0039.52569
2.54	64516	16357064	15.9373775	6.3330256	.0039337003
25.5	65025	16.551375	15.9637194	6.34132 .57	.0039:1569
276	65536	16777216	16.0077000	6.3196042	. 0039196250
2.77	66049	16974.93	16.0312135	6.3578611	. 003391051
2.55	66564	17173512	16.0623754	6.3669963	.003975969
259	67031	17373979	16.0934769	6.3743111	.003:61004
260	67600	17576000	16.1245155	6.332 .5043	.003516154
261	63121	17779581	16.1554944	6.397676 .5	.003831418
262	63644	17931723	16.1564141	6.3955279	.03331E794
263.	69169	18191447	16.2172747	6.4069535	.003302231
264	69696	18399744	16.2430763	6.4150537	.003787879
265	70225	186096\%	16.2783206	$6.12315: 3$.003773535
266	70756	18321096	16.309 .5064	6.4312276	.003759393
267	71239	19731163	16.3401346	6.4392767	. 003745318
293	71824	$192153 \cdot 32$	16.370 т05.	6.4173057	. 003731343
269	72361	19163109	16.4012195	6.4553143	.003717472
270	72300	19633000	16.4316767	6.1633011	.003703704
271	73441	19902511	16.4620776	6.4712736	.003690037
27.2	73934	29123643	16.492422 .5	6.4792236	.003676471
273	74529	20346417	16.5227116	6.1571541	. 003663004
274	75076	20.570324	16.5529454	6. 49506.33	.003649635
275	75625	20796375	16.5831240	6.5029 .572	. 003636364
276	76176	21024576	16.6132477	6.5103300	.0036:23183
277	76729	212.53933	16.6 ± 33170	6.5156339	. 003610103
273	77234	214319.52	16.6733329	$6.526 .51>9$.003597122
279	77511	21717639	16.7033931	6.5343351	.003534229
230	78400	21952000	16.7332005	6.5421326	.003571429
281	78961	22158041	16.7630.316	6.5499116	.003353719
233	79524	22425763	16.7923555	6.5576722	.0035416099
233	80039	22665137	16.9226033	$6.565+114$.003533569
231	80656	22916304	16.552299 .5	6.5731335	.003521127
23.5	8122.5	23143125	16.83194 .30	6.5503413	.00350877\%
236	81796	233936.56	16.9115345	$6.58>5323$. 0931996503
237	82369	23639903	16.9410743	6.5962223	.003151321
233	82944	23-77872	16.9705627	6.6039515	. 0031772222
239	83521	24137569	17.0006300	6.6114390	003163203
290	81100	21339000	17.0293こ64	6.6191050	. 003443276
291	81631	24612171	17.0595221	6.62670 .54	. 003436426
292	8.5264	24597038	17.0350075	6.634237 .4	. 003424658
293	S5519	25153757	17.117212S	6.6113 .522	. 073412969
294	86436	2.5112134	17.1464232	6.6193993	. 003101361
29.5	87025	25672375	17.1755660	6.6569302	.0033 29831
296	87616	25931336	17.204670 .5	6.6644437	. 003378378
297	83209	26193073	17.2336379	6.6719103	.003367003
293	83304	26163592	17.2626765	6.6794210	.0033.55705
299	89401	26730399	17.2916165	$6.686 \leq 531$. 003344432
300	90090	27000000	17.3295051	6.6943295	. 0033333333
301	90601	27270901	17.3193 .316	6.7017593	. 003322259
302	91204	27513603	17.3781472	6.7091729	. 003311258
373	91809	27818127	17.4963952	6.7165700	. 003300330
304	92416	23094464	17.43559 .53	6.7239503	.003299474
305	93025	23372625	17.4642492	6.7313155	.003278639
306	93636	28652616	17.492355 .57	6.7336641	.003267974
307	94249	23934443	17.5214155	6.7459367	.003257329
303	94964	29218112	17.5499238	6.7533134	. 003216753
310	96103	29791000	17.6055169	6.7619995	.00322.5506

CUBE ROOTS, AND KECIPROCALS.
143

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
311	96721	30030231	17.6351921	6.7751690	. 003215434
312	97344	30371328	17.6635217	6.78242229	. 003205128
313	97969	30664297	17.6918060	6.7396613	. 003194388
314	98596	309.9144	17.7200451	6.7968544	. 0003181713
315	99225	31255575	17.74323938	${ }_{6}^{6.8040921}$.0033174603
316	99356	31554496	17.7763888	6.8112847	.003154574
317	100489	31855013 3215743	17.8044938	6.8256242	. 003144654
318	101124	32157132 32461759	17.8605711	6.8327714	. 003134796
319	101761				
320	102100	32768000	17.8855438	6.8399037	.003125000
321	103041	333076161	17.9164729	6.8470213	. 003115265
322	103654	33336248	17.9443584	6.8541240	.00310.5590
32.3	104329	336695267	17.9722008	6.8612120	.003095975 .003086420
324	104976	34012224	18.0000000	6.8652855 6.8753143	. 003076923
325	105625	$3432512 J$		6.8523588	. 003067485
326	106276	34615976 3496583	18.0554701	6.8894188	. 003058104
327	106929	3495783	18.1107703	$6.896+345$.003048750
329	103241	35611239	18.1353571	6.9031359	. 003039514
330	108900	35937000	18.1659021	6.9104232	. 003030303
331	109.361	36264691	18.1934054	6.9173964	. 003021148
33:	110224	36594368	18.2205672	6.9243556	. 003012048
333	110859	36926037	18.2452876	6.93130018	. 003003003
334	111556	37259704	18.2756669	6.9352321	.002994012
33.5	112225	37595375	18.3030052	6.9451496	002985615
336	112596	37933056	18.3303028	6.9520 .333	002967359
337	113569	38272753	18.3575598	6.95948198	.0029585=01
338	114244	3=614172	$18.35+7763$	$6.9726 \$ 26$. 002949853
339	114921	33958219	18.4119526	6.9726526	
310	115600	39304000	18.4390889	6.9795321	. 002941176
341	116231	39651821	18.4661853	6.3863681	
342	116964	40001688	18.4932420	6.9931916	.002923977
313	117649	40353607	18.5202592	7.0000000	. 002915452
344	118336	40707584	18.5472370	7.0067962	. 00289898551
345	119025	41063625	18.5741756	7.0135791	.002890173
346	119716	41421730 n	$1 \mathrm{S.6010752}$	7.0203490	.002s8184.4
347	120409	41781923	18.6279360	7.0271058	
348	121104	42144192	18.65475815117	7.0338597 7.0405806	$.002565330$
343	121801	42508549	18.6815417	7.0405006	
350	122:500	42375000	18.7082869	7.0472987	. 0023557143
351	123201	43243551	18.7349940	7.0540041	. 002849003
352	123904	43614208	18.7616630	7.0606967	. 0022409099
353	124609	43936977	18.7882942	7.0673767	.002s32561
351	125316	44361864	18.8148877	7.0740440	. 002×24859
855	126025	44733875	18.8414437	7.0806988	.002808989
356	126736	45118016	18.8679623	7.0873111	$.002801120$
357	127419	45499293 45852712	18.8944436 18.9203879	7.109397895	. 002793296
358 359	128164	45852712 46265279	18.9203879	7.1071937	.002785515
	129851				
360	129600	46656000	18.9736660	7.1137866	
361	130321	47045881	19.0000000	7.1203674 7.1269360	$\begin{aligned} & .002770083 \\ & .002762431 \end{aligned}$
362	131044	47437923	19.0262976	7.1269360 7.1334925	$.002754821$
363	131769	47832147	19.0523589	7.1400370	.002\% 47253
364	132496	48228544	19.0787810 19.1049732	7.1465695	. 002739726
366	133956	49027896	19.1311265	7.1530901	. 002732240
367	134659	49430863	19.1572441	7.1595988	. 002724796
368	135424	49836032	19.1833261	7.1660957	. 002717391
369	136161	50243409	19.2093727	7.1725809	.002r10027
370	136900	50653000	19.2353341	7.1790544	. 0027 T 2703
371	137641	51064811	19.2613603	7.1855162	. 002695418
372	138384	51478848	19.2873015	7.1919663	. 002688172

No.	Squares.	Cubes.	S uare Roots.	Cube Roots.	Reciprocals.
373	139129	5189.117	19.3132079	7.1931050	. 002657965
3 T	133576	52313624	19.3390796	$7.204>32$?	.002673797
3π	$1+1625$	52734375	19.3619167	7.2112479	.002666667
376	141376	$531573 \sim 6$	19.3907194	7.2176522	.0026.59.74
$3 \pi 7$	142123	$535-2633$	19.4164373	7.2240450	.0026.52-520
375	14231	54010152	19.4422221	7.2304263	. 002645.513
379	143641	54439939	19.4679223	7.2367972	.002633522
330	144100	54372000	19.493.3537	7.2431565	.002631.579
351	145161	55376:311	19.5192213	7.2495045	.0026216\%2
352	14.5921	55712463	19.5415203	7.2559415	.002617>01
353	146639	$561>1 \gg 7$	19.57033 .55	$7.26216 \pi 5$. 0026511966
351	1474.56	56623104	19.59591\%9	$7.2631-24$. 00264167
38.5	143225	57066625	19.6214169	7.2217-64	.002597403
336	14-993	575124.56	19.6163527	7.2510791	.002.590674
337	149769	57960603	19.6723156	${ }_{7}^{7} .2573617$.002.53979
333	150.54	53111072	19.6971156	7.29363330	.002577320
339	151321	53>63こ69	19.7230523	7.2995936	.00257 1694
399	152100	59319000	19.7451177	7.3051436	.002564103
391	152381	59776471	19.7737199	7.3123-23	.002557545
392	153661	60236233	19.7939399	7.3156114	. 002551020
393	154419	606934.57	19.82422\% 6	7.321823 .5	.002544529
394	1:5.5236	61162934	19.3494332	7.3310369	.002533071
395	156025	61623375	19.8746069	7.3372339	.002531646
336	156316	62099136	19.8997457	7.3134205	.002525253
397	157693	62570773	19.9243535	7.3195966	. 002515892
393	155104	63044792	19.9499373	7.3557624	.002512.563
399	159201	63521193	19.9749544	7.3619178	. 0025506266
400	160030	64000000	20.0000003	7.3630630	. 002500000
401	160301	64151201	20.0219344	7.3741979	. 002493766
402	161604	61961303	20.0499377	7.3803227	. 022457562
403	162109	$65450 \leq 27$	20.0743599	7.3364373	. 002 ± 131390
404	163216	6.9939264	20.0997512	7.3925118	. 002475343
405	16402.5	$6643) 125$	20.1246113	7.3956363	.002469136
406	161536	66923116	20.1494417	$7.404 i 206$.002463054
407	165649	67414143	20.1742410	7.4107950	. 0024.57002
403	166464	67917312	20.1993039	7.4163595	. 002450980
409	$16 \tau 231$	63417929	20.2237454	7.4229142	.002444938
410	163100	63921000	29.2154567	7.4239539	. 002439021
411	163921	69426531	20.2731319	7.4349933	. 092133090
412	169744	63931523	20.2977831	7.4410139	. 002127184
413	170569	70441997	20.3221014	7.4170312	. 002121303
414	171396	709.37944	20.3469399	7.4530399	. 002115159
415	17222.5	71473375	20.3715133	7.4590359	. 072409639
416	1730.56	71991296	20.3960751	7.4650223	. 092103316
417	173339	72.511713	20.4205779	7.4709991	.032395082
413	174724	73731632	20.4450183	$7.4 \sim 69664$. 002392344
419	175561	73.560059	20.469459 .5	7.4529242	.002356635
420	176400	74033000	20.4939015	7.4338724	.002330952
421	177241	$7161>161$	20.5132315	7.4943113	. 002375297
422	173351	75151415	$20.51263 \leq 6$	7.5007406	. 002369665
423	173929	$756>6967$	20.5669533	7.5066607	.00238-466
424	179776	7622.5024	20.5912603	7.5125715	. 002355191
42.5	139625	7676562.5	20.61 .5231	7.5151730	. 002352911
426	181476	77303776	20.6397674	7.5243652	. 002347418
427	182329	77354133	20.6639733	7.5302432	. 0023311920
423	183184	78402752	20.6351609	7.5361221	. 002336449
429	181041	75953539	20.7123152	7.5419567	. 002331002
430	134900	79.507000	20.7364414	7.5478423	. 002325581
431	185761	80062991	20.7605395	7.5536338	. 002320156
432	186624	87621563	20.7816097	7.5595263	. 002314815
433	157489	81132737	20.8036520	7.56 .53543	.002309469
434	133356	81746504	20.8326667	7.5711743	. 002304147

CUBE ROOTS, AND FECIPROCALS.

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
$\begin{aligned} & 497 \\ & 493 \end{aligned}$	$\begin{aligned} & 247009 \\ & 243001 \end{aligned}$	$\begin{aligned} & 122763173 \\ & 12350.5992 \end{aligned}$	$\begin{aligned} & 22.2934968 \\ & 22.3159136 \end{aligned}$	$\begin{aligned} & 7.9210991 \\ & 7.9261055 \end{aligned}$	$\begin{aligned} & .002012072 \\ & .002003032 \end{aligned}$
499	249001	121251499	22.3353079	7.9317104	.002001003
570	250000	125000000	22.3606793	7.9370053	.002000000
501	$2510) 1$	12.5751501	22.3539293	7.9422931	. 001996303
502	252004	126506038	22.4053565	7.9475739	. 001992032
503	253009	127263527	22.4276615	7.9523477	. 001938072
504	251016	123024064	22.4499443	7.9581144	. 001954127
505	25.5025	123787635	22.4722051	7.9633743	. 001930198
506	256036	1295.54216	22.4944438	7.9656271	(001976235
507	257049	130323343	22.5166605	7.9733731	. 001972357
503	253064	131096512	22.5353553	7.9791122	.001965504
509	259031	131572229	22.5610233	7.9313144	. 001964637
510	260100	132651070	22.5831796	7.939 .5697	. 001960784
511	261121	$133+32331$	22.60 .53091	7.9917883	. 001956917
512	262144	131217723	22.6274170	8.0900000	. 001953125
513	263169	13500569%	22.6495033	8.0052049	. 001949318
514	$26+196$	135796744	22.6715631	8.0104032	. 001945525
51.5	26.5225	136590375	22.6936114	8.0155946	. 001941748
516	266256	137335096	22.7156334	8.0207794	. 001937984
517	267239	133153413	22.7376310	8.02.59574	. 001934236
518	263324	138931832	22.7596134	8.0311287	. 001930.502
519	269361	1397953.59	22.7815715	8.036:935	.001926732
520	270400	140603090	22. 503.5035	$8.041-4515$. 001923077
521	271441	141420761	23.52 .5244	8.0166030	. 001919386
523	272434	142236643	22.8473193	8.0517479	. 001915709
523	273529	1439555667	22.8691933	8:0563562	. 001912046
524	274576	143377521	22.8910463	8.0620180	. 001903397
52.5	27.562.	144703125	22.9123755	8.0671432	. 001904752
526	276676	145.531576	22.9346399	8.0722620	. 001901141
527	277729	146363133	22.9564506	8.0773743	. 001897533
523	278734	147197952	22.9752506	8.0324300	.C01893939
529	279341	14303.5839	23.0000000	8.0875794	.001590359
530	239900	143577000	23.0217289	8.0926723	. 001886792
531	231961	149721291	23.0434372	8.0977539	.c01883239
532	233124	150565763	23.0651252	8. 1025390	. 001579699
533	234039	151419437	23.0867923	8.1079123	. 001576173
534	255156	152273304	23.1034400	8.1129303	. 001872659
535	236225	153130375	23.1300670	8.1180414	. 001869159
536	257296	153990656	23.1516735	8.1230962	. 001565672
537	$2 \bigcirc 5369$	1548.54153	23.1732605	8.1251447	. 001862197
533	239441	155720372	23.1915270	8.1331370	. 001858736
539	290521	15659 S 19	23.2163735	8.1332230	. 001855288
540	291600	157461000	23.2379091	8.1432529	. 001851852
541	292631	155340121	23.2594067	8.1482765	. 001848429
542	293764	159227093	23.2303935	S.1532939	. 001845018
543	294349	160103007	23.3023604	8.1583051	. 091841621
544	29.5936	160339154	23.3233076	8.1633102	. 001833235
545	297025	16187862.5	23.34523 .51	8.1633092	. 001834862
546	293116	162771336	23.3666129	8.1733020	. 001831502
547	293209	163667323	23.3580311	8.1732393	.001529154
543	300304	164566.992	23.4093998	8.183269 .5	. 001824818
549	301401	16.5469149	23.4307490	8.1832441	. 001521494
550	302500	166375000	23.4520733	8.1932127	. 001818182
551	303601	167234151	23.4733392	8.1931753	. 001814882
552	301704	163196603	23.4946302	8.2031319	. 001811594
553	305809	169112377	23.5159520	8.2030325	. 001303318
5.4	306916	170031464	23.5372216	8.2130271	. 001505054
55.5	303025	170953375	23.5554330	8.2179657	. 001501302
5.56	309136	171879616	23.5796522	8.2223985	. 001793561
557	310219	172305693	23.6005474	8.2278254	.071795332
558	311364	173741112	23.6220236	8.2327463	.001792115

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
559	312481	174676879	23.6431808	8.2376614	. 001785909
560	313600	175616000	23.6613191	8.2425706	. 001785714
561	314721	176555181	23.6854356	8.2474741	
562	315814	177504323	23.7065392	8.2523715	. 001779359
563	316969	175453517	23.72 26210	8.2572633	. 001776199
564	318096	179406144	23.7456342	8.2621492	. 001773050
$56 \pm$	319225	180362125	23.76972 6	8.2670294	. 001769912
566	320356	181321496	23.7917545	8.2719039	.001766784
567	321459	152231263	23.8117618	8.2767726	. 001763668
563	322621	183250432	23.8327506	8.2316355	. 001760563
569	323761	1812200J3	23.8537209	8.2564928	. 001757469
570	324900	185193000	23.8746728	8.2913444	. 001754386
571	326141	186169411	23.8956063	8.29619113	. 001751313
572	327184	187149248	23.9165215	8.3010304	. 001748252
573	32>329	185132517	23.9374184	8.3058651	. 001745201
574	329476	189119224	23.9582971	8.3106941	. 001742160
575	330625	190109375	23.9791576	8.3155175	
576	331776	191102976	24.0000000	$8.320314 \% 5$.001733102
577	332929	192101033	24.0416306	8.3299512	. 001730104
578	334034 335241	$\begin{aligned} & 193100552 \\ & 194104539 \end{aligned}$	24.0624183	8.3347553	. 001727116
579	335241				
580	336400	195112000	24.0831891	8.3395509	. 0001724138
581	337561	196122941	24.1039416	$8.3+43410$. 0001721170
532	338724	197137363	24.1246762	8.3191256 8.3539047	. 000171815266
553	339389	198155257	24.1453929	8.3556754	. 001712329
584	341056 $3+2225$	199176701	24.1666719 24.1867732	8.3631466	. 001709402
585	$3+33396$	201231056	24.2074369	8.3652095	.001:06155
556	314569	202 262003	24.2280829	8.3729668	. 001703578
533	315744	203297472	24.2457113	8.3777188	. 001700650
589	346921	204336169	24.2693222	8.3524653	.001697793
590	318100	205379000	24.2399156	8.3572065	. 001694915
591	319231	206425071	21.3104916	8.3919423	. 001692047
592	350164	207474683	24.3310501	8.3966729	. 001689189
593	351619	203527857	24.3515913	8.4013981	.0016؟6341
594	3.52336	2095こ4581	24.3721152	8.4061180	. 001683502
595	354025	210644875	24.3926218	8.4108326	.0016=0672
596	355216	211705736	24.4131112	8.4155419	. 001677852
597	356409	212776173	24.4335834	8.4202460 8.42494	. 001675042 . 001672241
593	357604	213517192	24.4540355	88.4296353	$\begin{aligned} & .001672241 \\ & .001669449 \end{aligned}$
599	358301	214921799	24.4744765	8.4296353	
600	360000	216000000	24.4915974	8.4343267	. 0016666667
601	361201	217031801	24.5153013	8.4390093	. 001663594
602	362404	218167208	24.5356883	8.4436577	. 001661130
603	363609	219256227	24.5560583	8.4483605	. 001658375
604	364316	$22031 \leq 564$	24.5764115	8.4530251	. 0016056529
605	366025	221445125	24.5967478	8.4576906 8.462347	. 001650165
606	367236	222545016	24.6170673		
607	365419	223615543	24.6373700	8.4670001 8.4716471	.001647446
608	369664	224755712	24.6576560 24.6779254	$\begin{aligned} & 8.4716471 \\ & 8.4762592 \end{aligned}$.001642036
609	370381	$225 \leq 66529$	24.6779254	8.4762592	
610	372100	226951000	24.6981781	8.4809261	. 001639344
611	373321	225099131	24.7184142	8.4855579	. 001636661 001633957
612	374514	229220923	24.7356338	8.4901518	. 001631321
613	375769	230346397	24.755 2 200234	8.4948	. $00162 \leq 664$
614	376996	231475544	$24.779023 \pm$	8.5010350	. 001626016
615	373225	232608375	24.8193473	8.5086417	. 001623377
616	379156	234885113	24.839444	8.5132435	. 001620746
617	330639 $35192 \frac{1}{4}$	236029032	24.8596058	8.5178403	. 001618123
618	351924 $3>3161$	236029032 237176659	24.8596058 24.8797106		. 001615509
619	333161 354400	237176659 238323000	24.8797106 24.8997992	8.5270189	
620	334400	235323000	21.8997992	8.5270189	. 001612303

148 TABLE X1. SQUARES, CUBES, SQUARE ROOTS,

No.	Squares.	Cubes.	Square Roots	Cube Roots.	Reciprocals.
621	355641	239453061	24.9198716	8.5316309	. 071610306
622	$3 \leq 6354$	240611513	24.93999278	8.5361750	.001607717
623	335129	$2+1514367$	24.9.599679	8.5407501	.001605135
$62 \pm$	3-9376	242970624	24.9799920	8.5453173	. 001602561
62.5	39162.5	211140625	25.0390000	8.5493797	. 00160010
626	$3915 i 6$	245314.376	2.5. 0199920	$8.55+4372$.00159744
627	393129	246491583	2.5.0399651	8.5559399	. 001594596
623	394334	217673152	25.0.5992>2	8.5635377	. 0015923.37
629	39.5641	2455.58189	25.0798724	8.5650307	. 001589525
630	396993	250017000	25.0998003	8.5726159	. 001557302
631	393161	2.712:39591	25.1197134	8.5771523	. $0015847-6$
633	399124	25213.5963	2.5.1396102	8.5516509	. 0015522 -
633	403639	2.33636137	25.1594913	$8.5>63047$. 001579779
$63 \pm$	4019.56	254540104	25.1793566	8.59172335	.0315772>7
63.5	40322.5	2.56041575	25.1992063	8.5952330	. 001574303
636	404495	2.572.794.56	2.5.2190414	8.5997476	. 001572327
637	405769	2.5474553	25.2335359	$8.60+2.525$. $001569>59$
633	407044	2.99694072	25.2556619	8.6057526	. 001567393
633	405321	26391 フ119	$2.5 .27>1493$	8.6132430	. $00156+91.5$
61)	409600	262144000	2.5.2932213	8.6177333	.001562.500
611	410331	2633i4721	25.3179778	8.6222243	. 0015600162
642	412161	269693239	25.3377189	8.6267063	. 001557632
643	413449	265547707	$25.35 \pi 4447$	8.6311830	. 001555210
614	414736	267059934	2.5.37515.51	8.6356 .551	. 001552795
64.5	416925	26533612.5	25.3963.502	8.6401226	. 0015513 -
616	417316	269.556136	2.5.416.3301	8.644 .55 .55	. $00154 i 9 \leq 3$
647	413609	270340023	2.5. 4361947	8.6190437	. 0015155995
613	419904	2 2097792	25.4553441	8.6534974	. 001543210
649	421201	273359149	25.4754754	8.6579165	. 001541 (-32
650	422503	27462.5000	25.49.50976	8.6623911	.00153 462
651	423>01	275994451	25.5147016	$8.666>310$. 0015356199
652	42.5104	277167303	25.5342907	8.671266.)	.0015:37.12
6.33	426109	$2754450 \pi 7$	2.5.5.3.35647	8.6756974	. 001531394
6.51	427516	279726264	25. 5734237	8.6301237	.011529152
6.35	42932.5	$2 \geqslant 1011375$	25.5929678	8.651 .7 .56	.001526719
6.56	439336	252300416	25.6124969	8.6339630	. 001524390
6.37	431649	233593393	25.632) 112	8.6933759	. 001522070
6.3	43296 t	234990312	25.6515107	8.6977543	. 071519757
659	431231	2ड6191179	25.6709953	8.7021882	. 001517451
660	435670	237496009	2.5. 6914652	8.7065377	. 001515152
651	436921	235304751	25. 5099203	8. 7109827	. 001512359
662	43524	$29) 117528$	25.7293607	8.7153734	.001510574
663	439.569	291431247	25.747961	8.7197596	. 001505296
664	449396	29275494z	2.5. 7631975	8.7241414	. 001506024
66.5	442225	2910i962;	25.7575939	8.723 .5157	. 001503759
666	443556	29.5103296	25. 5069753	8.7325915	. 001501502
657	414599	296740963	2.5.8263131	8.7372601	. 001499250
663	146224	295077632	25.8456360	8.7416246	. 001497006
669	417561	299115303	2.5.8650313	8.7459546	. 001494763
670	445939	300763000	2.5. 8543592	8.7503401	.001492:537
671	4.50241	302111711	25.91336577	8.7546913	. 001490313
67.2	451554	303164443	25.9229623	8.7590333	. 00148509.5
673	452929	304321217	25.9122435	8.7633309	. 001455581
674	451276	306152021	2.5.9615100	8.7677192	.001433650
675	455623	307546375	25.9307621	8.7720532	.0014814=1
676	456376	303915776	26.0000700	8.7763330	. 001479290
677	453329	310233733	26.0192237	$8.780703 t$. 001477103
673	459634	31166.3752	26.038.1331	8.7850296	. 001474926
679	461041	313016339	26.0576234	8.7893166	. 001472754
	162100	314432000	26.0765096	8.7936593	. 001470583
651	163761	315521241	26.0959767	8.7979679	.091-162129
632	465121	317214569	26.1151297	8. 50222721	. 001466276

CUBE ROOTS, AN゙D RECIPROCALS.

No.	Squares.	Cubes. s	Square Roots.	Cube Roots.	Reciprocals.
$\begin{aligned} & 6=3 \\ & 6-4 \\ & 6 \uparrow 5 \\ & 6 \leqslant 6 \\ & 657 \\ & 633 \\ & 6>9 \end{aligned}$		318611957 329013504 321119195 322228256 324242703 325660672 $3270 \leq 2769$	26.1342657 26.153337 26.1725047 26.1916017 26.210643 26.2297541 26.2455055	8. $8065 \pi 22$ 8.8105631 8.151593 8.8191474 8.8237307 8.2250099 8.8322550	.001464129 . $0014619 \div 3$.001459854 . $00145=604$ $.0 n 14534=3$. 001451379
699 691 692 693 694 69.5 696 697 699 693					. $0714492 \% 5$ $.001+7175$. 0101413001 .001400922 $.00143-19$.001436ir2 (0143+i20 001436615
700 701 702 703 701 705 706 707 703 709			26.4575131 26.4i61046 26.4952:26 $26.51+1+72$ 26.5518361 26.5716605 26.60-2694 26.6270533		.001425571 001426:3 .001422475 001420155 .001418440 001414427 001412429 001410437
$\begin{aligned} & \begin{array}{l} 10 \\ 711 \\ 712 \\ 713 \\ 714 \\ 715 \\ 715 \\ 717 \\ 775 \\ 719 \end{array} \end{aligned}$		357911000 3.59125431 362467097 363994344 365525575 367061696 $365601 \div 13$ 370146232 371694959			$.09140 \leq 451$.0014"G470 .001404494 .001402525 .001398601 . 00139664 s .001394700 .001390521
$\begin{aligned} & 720 \\ & 721 \\ & 72.2 \\ & 723 \\ & 724 \\ & 72.5 \\ & 726 \\ & 727 \\ & 723 \\ & 729 \end{aligned}$. 001358589 001355042 . 001383126 001381215 .001379310 . 001375516 .001373626 001371742
$\begin{aligned} & 699 \\ & 730 \\ & 731 \\ & 732 \\ & 733 \\ & 731 \\ & 735 \\ & 736 \\ & 737 \\ & 733 \\ & 739 \end{aligned}$.001269=63 .001366120 .001364256 . 01362399 .001360544 .001356852 $.001355(14$ -
$\begin{aligned} & 740 \\ & 711 \\ & 742 \\ & 743 \\ & 744 \end{aligned}$		405221000 406:69n21 $4115317=4$. 001351351 . 001349528 . 001377709 $001345: 95$ $0013440 \leq 6$ $001340 \leq 6$

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
745	555025	413493625	27.2916881	9.0653677	. 001342232
746	556516	415160936	27.3130006	9.0691220	. 001340453
747	553009	416832 2 23	27.3313007	9.0731726	.00133:638
743	559504	418.503992	27.3195887	9.0775197	.001336593
749	561031	420189749	27.3678644	9.0815631	. 001335113
750	562500	421375000	27.3561279	9.0856030	. 001333333
751	561001	423564751	27.4043792	9.0396392	. 001331558
752	56.5504	425259003	27.4226134	9.0936719	. 001329737
75.3	567009	426957777	27.4403455	9.0977010	.001323021
754	563516	423661064	27.4590604	9.1017265	. 001326260
75.5	570325	430363575	27.4772633	9.1057485	. 001324503
756	571536	432031216	27.4954542	9.1097669	. 0013222751
757	$573) 49$	433793093	27.51363330	9.1137818	. 001321094
758	574564	435519512	27.5317993	9.11 \% 931	.071319261
759	576031	437245479	27.5499546	9.1215010	.00131752.3
750	577600	433976000	27.5650975	9.1255053	. 001315759
761	579121	440711031	27.5562234	9.1295061	. 001314060
762	530644	412450723	27.643475	9.1338034	. 001312336
763	532169	414191947	27.6224546	9.1377971	. 001310616
764	583696	$44.59+3744$	27.6405499	9.141787.	. 001303901
76.5	585225	417697125	27.6.536334	9.1457742	. 001307190
766	536756	4491.5 .5096	27.6767050	9.1497576	. 001305433
767	533239	451217663	27.6947643	9.1537375	. 001303781
763	539324	452934332	27.7123129	9.1577139	. 001302083
769	591361	451756609	27.7373192	9.1616369	. 001300390
$7 \% 0$	592900	4.56533300	27.7483739	9.1656565	. 001295701
771	59441	453314011	27.7663363	9.1696225	. 001297017
772	59.5934	460039618	27.7543330	9.173.5852	.001295337
773	597529	461839917	27.3023775	9.1775415	.00129.6661
774	593)76	463631524	27.82035555	9.1815003	. 001291990
775	60762.3	465154375	27.8333218	9.18 .54527	.001290323
776	602176	467253576	27.5567766	9.1894018	. 001233660
777	693723	469 974433	27.8747197	9.1933474	. 001257001
778	605254	47091.19 .5	27.5926514	9.1972397	. 001235317
779	6.6511	472729139	27.9105715	9.2012256	. 001253697
780	$633!00$	474552000	27.9234301	9.2051611	. 001282051
731	609961	476379541	27.9163772	9.2090962	. 001235410
732	611521	475211763		9.21302 .50	. 001278772
733	613039	43004:637	27.9321372	9.2169505	. 001277139
784	614656	481590304	23.0070000	9.2203726	. 001275510
75.5	616225	433736625	23.0178515	9.2247914	. 001273535
756	617796	435557656	23.0356915	9.2237063	. 001272265
757	619369	437443103	23.0535203	9.2326189	. 001270648
783	6:20944	439373572	23.0713327	9.2365277	. 001269036
789	62.521	491169069	23.0391433	9.2404333	. 001267427
790	621100	493039000	23.1069336	9.2443355	. 001265523
791	625631	494913671	23.1247222	9.2482344	. $00126+223$
792	627261	496793038	23.1424946	9.2521300	. 001262626
793	623849	493677257	23.1602557	9.2560224	. 001261034
794	630136	500566154	23.1750056	9.2599114	. 0012.59446
79.5	632025	502459375	23.1957414	9.2637973	. 001257562
796	633616	5043533.36	23.2134720	9.2676793	. 001256231
797	635209	506261573	23.2311834	9.2715592	. 001254705
793	636304	508169592	23.2433933	9.2754352	. $00125313{ }^{2}$
799	633101	510032399	23.2665831	9.2793031	. 001251564
800	610000	512000000	23.2342712	9.2331777	. 001250000
801	611601	513922401	23.3019434	9.2570440	. 001243439
802	643204	51.5349603	23.3196045	9.2909072	. 001246383
803	644309	517781627	23.3372546	9.2947671	. 001245330
804	646416	519713164	25.3543933	9.2936239	. 001243781
805	613025	521660125	23.3725219	9.3024775	. 001242236
806	649636	52:3606616	23.3901391	9.3063273	. 001240695

CUBE ROOTS, AND RECIPROCALS.

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
807	651219	525.557913	23.40774.54	9.3101750 9.3140190	
873	6.52361	527514112	23.4253108	9.3140190	$\begin{aligned} & .001237624 \\ & .001236094 \end{aligned}$
809	654481	529175129	23.44292 .33		
810	6.56100	531411000	2 2. 4604939	9.3216975	. 001234563
811	657721	533411731	23.4780617	9.3205320	. 0012333046
812	659314	53.5337323	23.4956137	${ }_{9}^{9.33331916}$. 001235278
813	Gö0369	537367797	23.5131549	9.3370167	. 001223501
814	662.96	539353144	23.5306352	9.3370167	. 001228501
815	66122.5	541343375	23.542043	9.3408386	. 0012268994
816	6653.56	543338496	23.5657137	$9.3+46575$.00122 .490
817	667459	545335513	23.5832119	9.3154731	. 001223990
818	663124	547313432	23.6016993 $2 マ 6151760$	9.35260952	$\begin{aligned} & .001222491 \\ & .001221001 \end{aligned}$
815	670761	549353259	23 6151760	9.3.560952	
820	$67.240)$	$55136300 ¢$	23.6356421	9.3599016	. 001219512
821	674041	553337661	28.6530976	9.3637049	. 00121802π
8%	6π ¢534	555412243	23.6705424	9.3575051	. 001216515
823	677329	557441767	23.6379766	9.3713022	. 001215067
824	673976	559476224	23.7034002	9.3750963	. 01212392
835	630625	561515625	23.7223132	9.3785873	. 0901212121
826	632276	563.359976	23.7402157	9.3526752	.001210651
827	633929	56.5693233	23.7576077	9.3564600 9.3902419	.001209190 001207729
823	655.534	5676635.52 569722739	28.7749591 28.7923601	9.3902419	$\begin{aligned} & .001207729 \\ & .001206273 \end{aligned}$
829	637241	569722789			
830	635970	$5 \sim 1757000$	23.8097236	9.3977964	. 001204819
831	690.561	573556191	23.82707106	9.4015691	. 001203369
832	692221	575930363	23.8141102	9.4053357	. 001201923
833	693359	573019537	23.3617391	9.4091054	. 001200480
834	69.555	580093704	23.5790532	9.4123690	. 001199041
835	697225	552152375	23.8963666	9.1166297	. 00011976605
836	693596	531277056	23.9136646	9.4203573	. 001191743
837	700.569	$5 \leq 6376253$	23.9309523	9.4211420	. 001193317
833	702214	583450472	23.9482297	9.4278936 9.4316423	
839	703921	$590 \div 89719$	23.9631967	9.4316123	. 001191895
810	70.5600	592701000	23.9327535	9.4353550	. 001190476
811	707231	594323321	29.0000010	9.4391307	. 001189061
812	703964	596947638	29.0172363	9.4123704	. 001187643
813	710649	599077107	29.0344623	9.4466072	. 001186240
814	712336	601211534	29.0516781	9.4503110	. 001184834
81.5	714025	603351125	29.0633837	9.4510719	. 001183432
816	715716	695495736	29.0560791	9.4577999	. 001182033
817	717409	607645123	29.1032644	9.4615219	
813	719104	609300192	29.1204396	9.4652470	. 001179245
849	720301	611960049	29.1376046	9.4639661	. 001177856
	722300	614125070	29.154759 .5	9.4726324	. 001176471
8.51	721201	616295051	29.1719043	9.4763957	. 001175058
832	72.974	613470203	29.1890390	9.4501061	. 001173709
853	727699	620650477	29.2061637	9.4833136	. 001172333
854	729316	622935564	29.2232754	9.4875182	. 001170960
8.5 .5	731025	625026375	$29.240383)$	9.4912200	. 001169591
856	732736	627222016	$29.2 .5747 \% 7$	9.4949188	. 001163224
8.57	73449	629122793	29.2745623	9.1986147	. 001166561
853	736164	$63162>712$	29.2916370	9.5023078	. 00116.5501
859	737531	633339779	29.3037018	9.5059930	. 001164144
860	739600	636056000	29.3257566	9.5096354	. 001162791
861	741321	633277331	29.3125015	9.5133699	. 001161440
862	743044	610503923	29.3595365	9.5170515	. 001160093
863	744769	64273.5647	29.3765616	9.5207303	. 001158749
864	746196	614972544	29.3935769	9.5244063	. 001157407
865	74322.5	617214625	29.4103823	9.5230794	. 001156069
866	749956	619161896	29.4278779	9.5317497	. 001154734
867	751639	651714363	29.4445637	9.5351172	. 001153103
863	753424	653972032	29.4618397	9.5390818	. 001152074

No．	Squares．	Cubes	Square Roots．	Cube Roots．	Reciprocals．
S6：	75．5161	656234909	29．4758059	$9.542713 \sim$	． 001151548
870	756900	65950133000	29．495～624	9.5461027	.001149425
$8 \% 1$	7．－ 641	6607－6311	29.5127091	$9.55005 \leqslant 9$	． $00114=116$
ST2	7603 21	$66301.51-13$	29.5296461	9.5537123	． $0011467-9$
873	7621 2）	$66533-617$	29.5465731	9.5573630	．00114．5175
Sil	7¢3－76	667627624	29.5634910	9.5610103	． 001141165
S75	76.562 .5	6699215%	29.5 ± 0.3959	$9.56 \frac{1}{16559}$	． 001142257
876	76.376	672221376	29.5972972	$9.56=2 y=2$	．00il 11553
STT	769129	674526133	29.61410 .55	9.5719375	． 0 （） 1141250
S75	$7705 \leq 1$	$676=36152$	29.6310643	9.5555545	fif113－452
879	772641	679151439	23.6419342	9.579205	． 001137656
880	714400	$6814 \% 2000$	29.6647939	$9.5=2-397$	． $07113 \div 36$
881	776161	$6 \leq 379 \%-41$	$29.6=16442$	$9.5=616>2$	．On 113．5nit
832	777921	6：612－963	$29.6954=15$	9.590415 .39	． 001133 － 7
8S3	779689	$655+653=7$	29.7153159	9.593 .169	． $0011322=13$
8， 4	7314．56	690）02104	29.7321375	9.5973373	001131222
53.5	7－322．5	6931.51125	29.7459196	9.60099 .45	． 001129944
886	751996	69.506456	29.7657521	9.6045656	． $61112=663$
$8 \geq 2$	756769	697－64113	$29 . \therefore 25-1.2$	$9.601-1>12$	． 001127356
S＞S	75.544	700227072	29.7993259	9.6117911	．04112E126
859	790321	702595369	$29 .>161030$	9.615397	． 0×1124559
890	792100	\％049690n0	29.5325673	9.615×17	（0）1123596
S91	$793=81$	707347971	29．$=496231$	9．6\％26030	（－H1122334
892	79.5661	7097：32．${ }^{\text {\％}}$	29． 26636390	$9.6282+116$	．011121026
893	797419	712121957	29．5531056	9.6247475	． $001119-21$
$8 \geqslant 4$	799236	714．16954	29． 9953328	$9.6: 3 \times 17$	（01111－565
89.5	S 11 （i2．	716917：375	29.9163506	$9.6365-12$	． 0111117315
896	SO2－16	719：3£3136	29.93325 .591	9.6405690	． $1011160 \% 1$
89%	8016019	727342\％	29.8499 .583	9.6111 .42	． $0011114-27$
ऽ93	806404	$72+15079$	29.9665151	9.6171367	．0011135＝6
899	S05201	－265\％2699	$29.933332=\pi$	9.6513166	． 001112347
900	810）00	\％29000ッハ1）	30.0000000	9．65－-933	． 0011111111
9 O1	$811>01$	731432701	30.1166620	$9.65-46=1$	．001109s88
902	S13604	733－5） 9 （15	$30.11 .33314=$ $3.01499 .5=4$	9．6620403 9.66 .6156	$\begin{aligned} & .00110-647 \\ & .00110 \% 420 \end{aligned}$
9113	815404	7．3631432\％	3．）．14993－4 30． 1166.9923	9.66 .63156 9.6691 .62	． 001106195
$9: 4$	817216	$73=16326 \pm$	30.1832179	$9.6 \pi 2$ 2403	． 001104972
90.6	－$-20-36$	T $436 \pi \%+16$	30，099－339	9.6763017	． 001103753
$90 \sim$	S2－2649	T 46142643	30.1161407	9.679564	.001102 .536
903	$824+64$	$74=613312$	$311.133 \cap 3=3$	$9.6=34166$	． 001101322
$9(19$	$826: 201$	$7510 \leq 429$	30.1496269	$9.6=69701$	． 0011010110
910	S2＞109	753．751000	$30.1662 \square 163$	9.6905211	．0n109：901 C01097695
911	S29921	$7.560 .5>031$	30．152776． 30	9.6941694 9.6976151	．0n［096491
412	531744	$55050-23$	34．199．33：7	9.591150	．0nI095290
913	§33．369	T6104 497	3）．2324329	$9 . \% 046959$	． 001091092
914	－35396	763－30194	$30.24=9669$	9.70 2369	．001092396
916	\＄39056	76＝5：5296	31.2654919	9.7117323	．colr 91703
917	840：59	77109521：3	30.2320079	9.7123051	． 101190513
918	812724	77362 （632	31.2955145	9.71853 .54	． 010109325
919	S14：61	776151.559	39.31 .50123	9.7223631	． 091088139
920	816400	778635007	30.3315015	$9.72 .5 \times 3$	． $0010 \leq 6957$
921	848241	7S1229961	39.3459319	9.7294109	．001085776
922	850051	2037T1443	30.3644529	9.7329309	． 0010 －5999
923	S51929	\％$=6330467$	30.3509151	$9.73614=4$	． 00108323
924	853716	Ts3859024	$30.39736 \div 3$	9.7399634	．091082251
925	85562.5	7914.5312 .5	30.4135127	9.7434753	． 001 （810．31
926	857476	$794022 \% 6$	30.4302481	9.7468557	． 001019914
927	8.59329	796597983	30.4466747	9.7504930	．001075 ${ }^{0} 49$
923	861154	799175752	30.4630924	9.7539979	．0n10770゙2
929	S63041	801765059	30.4795013	9.7515002	．001076426
930	864900	S04357000	30.4959014	9.7610001	． 001072269

No.	Squares.	Cubes.	Sjuare Roots.	Cube Roots.	Reciprocals.
931	866761	806954491	30.5122926	9.7644974	.00107-1114
932	865624	809.557563	30.5236750	9.7679922	. 001072961
933	870159	812166237	30.5150457	9.771484 .5	. 001071811
934	872356	814730501	30.5614136	9.7549743	. 0010706166
935	874225	817407375	30.5777697	9.7751616	. 001069519
933	876196	820125356	30.5911171	$9.7 \times 2 j 166$. 001063376
9337	877959	8226 26953	30.6104557	9.7551235	.001067236
933	879344	8252933672	30.626\% 557	9.7539057	. 001066096
939	851721	827936119	30.6431069	9.7923561	. 001064963
910	853670	83).5>4000	30.6594194	9.79.55611	.001063330
941	835181	833237621	30.6757233	9.79933336	. 001062639
942	$8 \div 7361$	83.5965>8	31.6920185	9.8123036	.001051571
913	839219	833561507	3). 71153051	9.5062711	. 001066045
944	\$91136	$8112323=1$	31.724530	9.8097362	. 0010593822
945	893125	$81390 \geqslant 625$	3:1.7405.523	9.8131989	.00105>201
946	891916	816590.536	30.7571130	9.8166591	
917	896899	819278123	30.7733651	9.8201169	$.00105: 5966$
943	893704	851976392	30.7536336 30.5055136	9.8235723 9.8270252	.001053841
919	910601	854670349	$3 . .5055136$		
9.50	922509	857375030	3). 3237710	9.8301757	
9.1	93401	869035351	30.8332379	9.83392333 9.8373695	.011051525
9.52	90634	862501403	31.8544972	9. 9.3405127	.001019318
9.3	905239	865523177	30.8706931	9. 814142536	. 001048318
9.3	910116	863250664	37.8858904	9.8142 .856	. 001017120
953	91202.5	870933575 573722316	${ }^{30.9039743}$	9.5511230	. 071046025
${ }_{9}^{9.56}$	913936 915819	876467493	30.93.54166	9. 8545617	. 001044932
958	917 764	879217912	30.9515751	9.8579929	. 001043541
959	919631	831974079	30.9677251	9.8614218	. 001012753
960	921600	851736000	30.9335663	9.8648483	. 001011667
961	923521	857503631	31.0000000	9. 5632721	. $0010495>3$
962	92544	890277123	31.0161243	9.8716911	. 001039501
963	927369	873056347	31.0322413	9.8751135	. 001035422
964	929296	89.5341344	31.0453491	9.378 .3305	. 001037314
96.5	93122.5	893632125	31.0644191	9.8519451	. 0001036269
966	933156	90142 S696	31.0835405	9.5353574	. 001035197
937	93.5039	901231063	31.0366236	9.8587673	. $00103+126$
963	937024	907039232	31.1126934	9.8921749	. 00101033153
969	935961	9095.53209	31.1237643	9.8955801	. 001031992
970	910303	912673000	31.1413230	9.8939830	. 001030923
971	942311	915493611	31.1603729	9.9023335	. 0010282866
972	341781	$91833) 048$	31.176914 .5	$9.9057 \mathrm{SI7}$.001023307
973	916729	921167317	31.1929179	9.9091776	.001027749
974	$3156 \sim 76$	924010424	31.2139731	9.9125712	. 001026694
975	9.50625	926359375	31.2249900	9.9159624	. 001025641
97ϵ	952576	929714176	31.2109937	9.9193513	. 001024590
977	954529	932574833	31.2569992	9.9227379	. 001023.511
978	956184	$935+413.52$	31.2729915	9.9261222	. 001022495
979	9.58141	93 ¢313\%39	31.2539757	9.9295012	. 001021450
980	960400	911192003	31.3049 .517	9.9323339	. 001020403
931	962361	941076141	31.3209195	9.9362613	. 031019363
932	964324	911966163	31.3365792	9.9396363	. 0010188330
93.3	966239	9+9: 662137	31.3523303	9.9430092	. 001017294
934	9632.56	952763904	31.3677743	9.9463797	. 001016260
935	97022.5	9.5567 I62.5	31.3317097	9.9197179	. 001015223
$9<6$	972196	958.585236	31.4006369	9.9531133	.071014199
957	974169	961504303	31.416 .561	9.9561775	. 001013171
938	976144	961430272	31.4324673	9.9598359	. 001012146
939	978121	967361669	31.41:3704	9.9631981	. 001011122
990	950100	970299000	31.4642654	9.9665519	. 001010101
991	932051	973212271	31.4301525	9,9699095	. 0010109082
992	934064	976191438	31.4960315	9.9732619	. 001003065

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
993	956049	979146657	31.5119025	9.9766120	. 001007049
994	953036	982107784	31.5277655	9.9799599	. 001006036
99.5	990025	$955074>75$	31.5436206	9.9833055	. 001005025
996	992016	988047936	31.5591677	9.9566483	. 001004016
997	951109	991026973	31.5753068	9.9899900	. 001003009
993	996004	994011992	31.5911380	9.9933289	. 001002004
999	993001	997002999	31.606 .613	9.9966656	.001001001
1000	1000003	1000000000	31.6227766	10.0000000	. 001000000
1001	1002001	1003003001	31.635540	10.0033322	. 0009990010
1002	1004004	1006012095	31.6543836	10.0066622	. 000998040
1003	10.6 .09	1009027027	31.6701752	10.0099-99	. 00019971090
1004	1005016	1012013054	31.6-59:90	10.0133155	. 0009960159
1005	1010025	101505.5125	31.7017349	$10.01663=9$. 0009950249
1006	1012036	1018103216	31.7175030	10.0195.601	.Or109910358
1007	1014049	11211473i3	31.7332633	10.0232791	$.00099304 \leq 7$
1003	1016064	1024192512	31.7490157	10.026595	. 00099920635
1009	101~031	1027243i29	31.764 .603	10.0299104	$.0005910 \leq 03$
1010	1020100	1039301091	$31 . \pi s ก 4972$	10.0332228	. 0009900990
1011	1022121	10333643331	31.7562262	10.0365330	. $0 \cup 669591197$
1012	1124141	$10: 36433723$	31.8119474	$10.039>415$. $0009>81423$
1013	1026169	1039.09197	$31.82766 \cap 9$	$10.04: 31469$.0009571663
[014	102>196	10.42590744	31.3433666	10.0464506	.0009=61933
1015	103023.5	104567×375	31.590646	10.0497521	. 00009352217
1016	10322:56	104-772196	31.5747519	10.0530514	.0009842520
1017	1031259	1051571913	$31.59043 \pi 4$	10.0563485	(1009332-42
1018	1036324	1054977-32	31.9161123	10.0596435	.0009823183
1019	1035361	$10580 \leq 9 \leq 59$	$31.9217 \% 94$	10.0629364	.0009813543
1020	1710405	F061205000	31933 -1398	10.0662271	.0009 03922
1021	204\% 411	1061332261	31.953 9966	10.0695156	.0009794319
1022	1044454	1167462643	31.9637347	$10.072=020$.0009754736
1423	1046529	1070.599167	31.9813712	10.0760:63	.0009755171
1024	1045576	1073741824	32.0000000	$10.07936=4$.0009765625
1025	105062.5	1076890625	32.0156212	$10.0 \leq 264=4$.000975609s
1026	1052636	1030045.576	$32.03+2315$	10.0559262	. $00097465=9$
1027	10.54729	10532116683	$32.046>10$ í	$10.0 \leq 92019$. 000973709 S
1023	1056784	1056373932	$32.062+391$	10.0921755	.0009727626
1029	10.5541	1089547339	32.0550298	10.0957469	.00097181\%3
11030	1060900	109272\%000	32.0936131	10.0990163	.00\%9705735
1031	1063961	1095912791	32.1091357	10.1022535	. 00 ¢19699321
1032	106.5024	1099104763	$32.124 \pi 568$	10.105.5457	.00096こ9922
1033	10670>9	110230293 i	32.1403173	10.1088117	. 0009650512
$10: 3 \pm$	$10631: 56$	110.5507304	32.1553704	10.1120726	. 00096 an 1180
1035	1071225	1105717×75	32.1714159	10.1153314	. 0009661836
1036	1073296	$11119346: 6$	32.1869539	10.1185852	. 0005652510
1037	1075369	1115157653	$32.2021=44$	10.1218423	.0009643202
1033	1075444	1118386372	32.2180074	10.1250953	. 0009633911
1039	1079.521	1121622319	32.2335229	10.1233457	. 0009621639
1040	$10 \div 1610$	1124564000	32.2490310	10.1315941	.0n096153=5
1141	$10336=1$	1123111921	32.2645316	10.1315403	. 0009606145
142	10ッ5764	1131366038	32.2500218	$10.1380=15$.0009596929
14.3	1037849	1131626507	32.2955105	10.1413266	.0009.587738
1044	1059936	1137893154	32.3109838	10.1445667	. 000957854
1045	109272.5	114116612.5	32.3264598	10.1478047	. 0009569378
1046	1094116	111414.3336	32.3119233	10.1510406	.0009560229
1017	1096209	11477301523	32.3573794	$10.1542 \pi 44$. 0009551093
1045	$109>304$	1151022592	32.3729251	10.1575062	.0009541985
1049	1100401	1154320619	32.3832695	10.1607359	. 0009532588
$1: 50$	1102500	1157625000	32.4037035	10.1639636	.0009523s10
1051	1104601	11609356.51	32.419139 I	10.167 I 893	. 0009514748
10.52	1106704	11642.52608	32.4315495	10.1704129	. 0009505703
1053	1103309	1167575877	32.4499615	10.1736344	. 00009496676
$10: 4$	1110916	1170905164	22. 4653662	10.1762 .539	.0009457666

TABLE XII.

\&OGARITHMS OF NUMBERS

FROM 1 TO $\mathbf{1 0 , 0 0 0}$

No.	$\mathbf{0}$	$\mathbf{1}$	I	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
Diff.											

$100 \overline{000100} 000434 \overline{000 \leq 6 s} \overline{001301} \overline{001734} \overline{002166} \overline{002595} \overline{003(129} \overline{003461} \overline{003891} \overline{432}$ $\begin{array}{llllllllllll}1 & 4321 & 4751 & 5181 & 5609 & 603- & 6466 & 6894 & 7321 & 7748 & 8174 & 425\end{array}$ $\begin{array}{llllllllllllll}2 & 8600 & 9026 & 9451 & 9576,010300 & 010724 & 011147 & 011570 & 011993012415 & 424\end{array}$

 | 4 | 7033 | 7451 | 7868 | $82-4$ | $\varepsilon 700$ | 9116 | 9532 | 9947 | 021361 | 020775 | 416 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $5(121189021603022016022423022511023252(1236640240 \pi 5.5456$

 $7 \quad 9334 \quad 97890301950311600031004031405031812032216032619033021404$
 $\begin{array}{lllllllllll}9 & 7426 & 7825 & 8223 & 8620 & 901 \hat{\imath} & 9414 & 9811 \text { (14020 } & 040602 & 040998 & 39 \%\end{array}$
$110041393041757042182042576042969043362043755044148044540044932 \quad 393$ $1 \begin{array}{llllllllll} & 5323 & 5714 & 61(15 & 6195 & 6555 & 7275 & 7664 & 8053 & 8442 \\ 8830 & 390\end{array}$
 $\begin{array}{lllllllllll}3 & 053078 & 053163 & 053-16 & 4230 & 4613 & 4956 & 5378 & 5760 & 6142 & 6.524 \\ 383\end{array}$ 4. $6905 \quad 72 \leq 6$
 $\begin{array}{llllllllllll}6 & 445> & 4>32 & 520 \mathrm{G} & 5550 & 5953 & 6326 & 6699 & 7171 & 744.3 & 7815 & 373\end{array}$

 $\begin{array}{llllllllll}1032755 & 0 \leq 3144 & 053503 & 3561 & 4219 & 4576 & 4931 & 5291 & 5647 & 60114 \\ 3572\end{array}$

 | 4,093422 | 3772 | 4122 | 4171 | 4820 | 5169 | 5518 | $5 \div 66$ | 6215 | 6562 | 319 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllll}5 & 6910 & 7257 & 7604 & 7951 & 2295 & 8644 & 8990 & 9335 & 9651 & 100026 & 346\end{array}$

 $\begin{array}{llllllllllll}7 & 3304 & 4146 & 44>7 & 4523 & 5169 & 5510 & 55.51 & 6191 & 6531 & 6571 & 311\end{array}$ | $8 \mid$ | 7210 | 7549 | 7833 | 8227 | 8565 | 8903 | 9241 | 9579 | 9916 | 110253 | 33 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 $\begin{array}{llllllllllll}3 & 3552 & 4178 & 4.5(4 & 4>30 & 51.55 & 54>1 & 5546 & 6131 & 6156 & 6781 & 325\end{array}$
 $\begin{array}{llllllllllll}6 & 3.539 & 325 & 4150 & 4105 & 1114 & 5133 & 5451 & 5769 & 6056 & 6413 & 318\end{array}$

	146123	1	1	1470.58	$14736 \hat{}$	14	147985	4	148603	1	309
	19219	9527	9	51142	150449	150	151	151370	15	151982	307
	52235	1525941	152910	3205	3.510	3×15	4120	4424	4725	51132	305
3	5336	5641	$5: 433$	6216	6549	655\%	7154	7157	7759	8161	303
4	8:362	8664	896.5	9266	9597	9×6	160168	160469	160769	161068	301
	161363	I61667	161967	162266	162.564	I62563	3161	3460	3758	4055	299
6	43.53	46.5	4947	5244	5511	5×35	6134	6130	6726	7022	297
7	7317	7613	79115	8213	8197	8792	$90 \leq 6$	$9: 30$	9674	9968	295
8	170262	17055.51	170545	171141	171434	171726	172019	122311	172603	1725	293
9	3156	3478	3769	4060	4351	4611	4932	52	5512		
150	176091	176351	1,6670	$1769: 9$	177248	177536	17325	178113	178401	178689	28
1	8977	9261	9.5.5	9839	180126	180113	180699	180986	181272	181550	28
2	181544	182129	182115	$182 \sim 0$	2985	$32 \pi 0$	3555	3339	4123	4407	285
3	4691	4975	52.59	5512	55^{525}	6108	6391	6674	6956	7239	283
5	7521	7803	8084	8366	86.47		9209	9490	9771	190051	281 279
	190332	190612	190292	191171	191451	191730	192110	192259	192567	2546	279
6	3127	31013	3631	3959	4237	4514	4792	5069	5346	5623	${ }_{276}^{278}$
	5900	6176	6.53	6729	7005	7231	. 7556	7832	8107	8382	276
	8657	89.32	92	94	9755	200029	200313	200577	200850	201124	274
No.	0	1	2	3	4	5	6	7	8	9	Diff.

TABLE Xll. LOGARITHMS OF NUMBERS.

$\left\lvert\, \frac{\sqrt{22}}{22}\right.$	342423	$\overline{342620}$	$\widetilde{3+28}$	343014							
1	4	4589	3785	4981	5178	－ 5374	343606 5570		62	6157	
2	6353	6549	6744	6939	71	7330	7525	77	7915	8110	195
3	830	8500	94	8889	9083	9278	9472	9666	9860	350054	94
	55024	350442	350636	350829	351023	351216	351410	351603	351796	1989	193
5	2183	2375	2568	2761	2954	3147	3339	3532	3724	916	193
6	4103	4301	4493	4685	4876	5068	5260	5452	5643	34	192
7	6026	6217	6463	6599	6790	6981	7172	7363	755	744	191
8	793	8125	8316	1	696	8886	9076		9456	964	190
9	983	360025	360215	360404	360593	360783	360972	3611	361350	36153	S9
	1	，	2105	022	362482	362671	362859		363236		
	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301	8
	5488	56		6049	62	6423	6610	6 796	－	169	187
3	735	7542		915	8101	8287	8473	¢659	8845	9030	86
	921	9401	\％	9772	9958	370143	370328	370513	370698	37088	5
	371063	371253	371437	371622	371806	1991	2175	2360	2544	272	4
6	2912	3096	3230	3464	3647	3831	4015	4198	4382	4565	184
7	4748	493	511	529	5481	5664	5816	6029	6212	39	83
8	65	6759	6942	7124	7306		7670		803	8216	82
9	8398				4				9849	380030	1
	380	350	350		350934	15	531		381656		1
	201	21	237	2557	2737	2917	30	3277			80
	38	39	417	4353	4533	4712	4891	$50 \hat{0}$	52	5428	79
	56	57	5964	6142	6321	6499	66フ̃	6	7031	7212	178
	73	756 934	7746	7923	8101	82	－8456	ع634	88	8989	178
	390935	391112	391288	391464	391641			69	2345		76
7	2697	2873	3048	3224	3400	3575	3751	3926	41	4277	176
	445	46	480	497ヶ	515	53	5501	5676	585	6025	175
9								7419			
250	3979	3981	3982				398981	399154	399		173
	967	9817	400020	400192	400365	400538	400711	4008	401056	40122	
	401401	401573	1745	1917	2089	2261	2433	2605	2777	2949	172
3	312		3164	3635	38	397	4149		449	4663	71
	43	5005	5176	5346	55		5858	602	619	37	171
		671				31			90		170
		8410	8579			10	4109				
8	411620			124	2293	2461	2629	2796	296	2	168
9	330	31		3503		4137	4305		4639		
260	414	415	4153		4156	415	415	4161	4163	416474	
						7472		7804	－070	8135	166
	83	8467		819	8964	9129	9295	9460	9625	979	165
3	9956	420121	420286	420451	420616	420781	420945	421110	421275	421439	6
	421604	1768	1933	2097	2261	2426	2590	2754	2918	308	164
5	3246	3410	$35 \% 74$	3737	3901	4065	422	4392	455	4718	164
6	438	5045	20	5371	5534	569	58	602	618	634 ！	163
7	6511									973	162
8	8	8297	8	8	818	－	910	92	942	959	162
9	9752	991	4300	4302	43039			430		431203	
270	431364	4315	43168		432007	432167	4323	432488	432649	，	
	2969	3130	3290	2150	－ 3610			4090	4249	¢09	60
2	456	472	48	5018	52		5026	㖪	58	00	59
3	6163	63	仡	析			\％	7275	73	509	5
4			¢	226	83－	8542	5109	8859	9017	917	15
	9333	9491	9648	9806	9964	440122	440279	440437	440594	$410 \hat{5} 2$	15
6	440909	441066	441224	441381	441533	169	1852	2009	2166	232	157
	24	2637	27	29	3106		3419	3576		3859	157
	4045	42	43	45	466	4825		5137	529	5419	56
								6692	684		155
0.	0	1		3	4			7	8		Di

TABLE XII. LOGARITHMS OF NUMBERS.

	0	1	12	3	4	5	6	7	8	9	Di¢.
$\overline{510}$	$\overline{531479}$	$\overline{531607}$	$\overline{531734}$	531662	$\overline{531990}$	$\overline{532117}$	$\overline{532245}$	$\overline{532372}$	53250.	$\overline{532627}$	128
1	2754	2382	3009	3136	3264	3391	3518	3645	3772	3599	127
2	4026	4153	4280	4407	4531	466 I	4787	4914	5041	5167	127
3	5294	5421	5517	5674	5500	5927	6053	6180	6306	6432	126
4	6558	6685	6811	6937	7063	7189	7315	7441	7567	7693	126
5	7519	7945	8071	8197	8322	84.8	8574	E699	8825	8951	126
c	9076	9202	9327	9452	9578	9703	9829	9954	540079	540204	125
75	5403295	510455	540500	「40705	$540 \leq 30$	540955	541080	541205	1330	1454	125
	1579	1704	1829	1953	2078	2203	2327	2452	25.6	2701	125
9	28.25	2950	3074	3199	3323	3147	3571	3696	3820	3944	124
350	544065	544192	544316	544440	544564	544685	544812	544936	545060	545183	124
1	5307	5431	5555	5678	5802	5925	6049	6172	6296	6419	124
2	6543	6666	$67>9$	6913	7036	7159	7252	7405	7529	7652	123
3	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	123
4	9003	9126	9249	9371	9494	9616	9739	9561	9984	$5501(16$	123
5	5502285	550351	550473	550595	550717	550840	550962	551081	551206	1328	122
6	1450	1572	1694	$1>16$	1938	2060	2181	2303	2425	2547	
7	2665	2790	2911	3033	3155	3276	3398	3519	3640	3762	121
O	3393	4904	4126	4247	436 s	4459	4610	4731	4852	4973	121
9	5094	5215	5336	5457	5578	5699	5820	5940	6061	6182	[2]
360	556303	556123	556544	556664	556755	556905	557026	557146	557267	557357	120
1	7507	7627	7745	7868	7988	8108	8228	8349	8469	85¢9	120
2	8709	-829	8948	9068	9188	9308	9428	9548	S66\%	9787	120
3	9907	560026	560146	560265	560385	560504	560624	560743	$560<63$	560982	119
4	561101	1221	1340	1459	1578	1698	1817	1936	2055	2174	119
5	2293	2412	2531	2650	2769	6887	3006	3125	3244	3362	119
6	3481	3600	3715	3537	3955	4074	4192	4311	4429	4548	119
7	4666	4784	4903	5021	5139	5257	5336	5494	5612	5730	118
8	5318	5966	6054	6202	6320	6437	6555	6673	6791	6909	118
9	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	118
370	563202	568319	568436	565554	568671	563788	568905	569023	569140	569257	117
1	9374	9191	$960=$	9725	9042	9959	570076	570193	570309	570426	117
1	570543	5\%0660	570776	570593	571010	571126	1243	1359	1476	1592	117
3	1709	182.5	1942	$20 \overline{5}$	2174	2291	2407	2523	2639	2755	116
	$2 \triangle 72$	29:8	3104	3220	3336	3452	3568	3684	3800	3915	116
5	4031	4147	4263	4379	4191	4610	4726	4841	4957	5072	116
	5188	5303	5419	5534	5650	5765	5880	5996	6111	6226	115
7	6311	64.57	6572	$66>7$	6802	6917	7032	7147	7262	7377	115
δ	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	115
-	8639	8754	8868	8983	9097	9212	9326	9441	9555	5669	114
330	579784	579898	580012	5S0126	580241	580355	580469	580583	580697	580811	114
1	58092.5	581039	1153	1267	1381	1495	16018	1722	, 1836	6 1950	114
2	2063	21.77	2291	2404	2.18	2631	2745	2558	2972	3085	114
3	3199	3312	3126	3539	- 3652	3765	3879	3952	4105	- 4218	113
4	4331	4141	4557	4670	- 4783	4896	50.09	5122	- 5235	53348	113
5	5461	$5: 574$	5686	5799	5912	6024	6137	6250	6362	6475	113
6	6587	6700	6812	6925	7037	7149	7262	7374	$74 \leq 6$	7599	112
7	7711	7823	7935	8047	S160	8272	8384	8456	8608	8720	112
8	8832	8944	-9056	9167	- 9279	-9391	9503	9615	9726	- 9838	112
9	9950	590061	590173	590284	500396	590507	590619	590730	$590 \leq 42$	250953	112
390	591065	591176	591237	591399	591510	591621	591732	591843	591955	592066	111
1	2177	2258	2399	2510	2621	2732	2843	2954	+ 3064	43175	111
2	3236	3397	3508	3618	8 3729	3810	3950	$4(61$	4171	1 4282	111
3	4393	4503	4614	4724	48834	4945	5055	5165	5276	$653-6$	110
4	5496	5606	5717	5827	75937	6047	6157	6267	6377	- 6487	110
5	6597	6707	6817	-6927	7 7037	7146	7256	7366	(7476	6556	110
6	-7695	7805	7914	48024	48134	8243	8353	8462	28572	28681	110
7	8791	8900	- 90099	9119 600210	- 9227	+ $\begin{array}{r}9337 \\ 600423\end{array}$	9416 600.37	9556 600646	9665 600755	5 $\begin{array}{r}9774 \\ \text { C0JE }\end{array}$	109 1119
	9383 600973	9992 601082	$2 \begin{array}{r}600101 \\ \hline\end{array}$	16002 12	140	8 60042	600.537 1625	600646 1734	$\begin{array}{r}6007 \\ 1 \quad 18 \\ \hline\end{array}$	¢0J 19	1119 109
No.	. 0	1	2	3	4	5	6	17	8	9	Difr

TABLE XII. LOGARITHMS OF NUMBERS.

No	0	1	2	3	4	5	6	7	8	9	Diff.
$\overline{460}$	-662753	662552	662917	$\overline{663041}$	663135	$\overline{663230}$	$\overline{663324}$	$\overline{663418}$	$\overline{663512}$	$\overline{663607}$	9
1	3701	3795	3589	3983	4078	4172	4266	4360	4454	4548	94
2	4642	4736	4530	4924	5018	5112	5206	5299	5393	5487	94
3	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424	94
	6513	6612	6705	6799	6392	6956	7079	7173	7266	7360	94
5	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293	93
$\stackrel{6}{\sim}$	8336	8479	8572	8665	8759	8352	8945	9038	9131	9224	93
\%	${ }_{6} 9317$	9410 670339	9503 670431	9596 670524	9659	9782 670710	9375 670302	${ }_{\text {- }} 99685$	670060 0988	670153 1050	93
9	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	93
470	672098	672190	6722	672375	672167	672560	672652	672744	672	9	2
1	3021	3113	3205	3297	3390	अ-s2	35 T 4	3666	3758	3850	92
2	3912	4034	4126	4218	4310	4402	4494	4586	4677	4769	22
,	4561	4953	5045	5137	5228	5320	5112	5503	5595	5687	92
4	5778	5370	556:2	6053	6145	6236	6325	6419	6511	6602	.92
5	6691	6785	6:76	6968	7059	7151	7242	7333	7424	7516	91
6	7607	7693	7789	7581	7972	8063	8154	8245	8336	8127	91
7	S518	8609	8700	8791	8532	8973	9064	9155	9246	$933 i$	91
	9129	9519	9610	9700	9791	9532	9973	639063	630154	650245	91
9	654336	B30126	630517	$65060 \sim$	680693	630789	680879	0970	1060	1151	
450	651241	681332	681422	681513	6S1603	651693	681781	681874	681964	682055	
	214.5	2235	2326	2416	2506	2596	2656	2777	$2: 67$	2957	
	3017	3137	$322 i$	3317	3403	3197	35	3677	376π	3557	
3	3947	4037	4127	4217	4307	4396	4456	4576	4666	4756	
4	481.3	4935	5025	5114	5201	5294	5383	5473	5563	56.52	
5	5742	5831	5921	6110	6100	6159	6279	6365	6455	6547	
	6636	6726	6315	6904	6994	7083	7172	7261	7351	7410	
	7529	7618	7707	7796	7856	7975	8064	8153	8242	8331	
8	8120	S509	8598	8657	8776	8865	8953	9042	9131	9220	
9	9309	9393	9156	9575	9664	9753	9841	9930		690107	

49069019669023569037369046263055069063969072860051669090569099389

1	1031	1170	1258	1347	1435	1524	1612	1700	1789	1877
2	196.5	2053	2142	2230	2318	24116	2491	2553	26 T 1	2759
3	2347	2935	3023	3111	3199	3237	3375	$3: 163$	3551	3635
4	3727	3515	3903	3991	$40 \pi 5$	4165	425í	$43+2$	4430	4517
5	4605	4693	4751	4563	4956	5044	5131	5219	5307	5394
6	$5+52$	5569	5657	5714	$5 \leq 32$	5919	6007	6094	6182	6269
7	6356	6444	6531	6613	6706	6793	6580	6963	7055	T142
8	7229	7317	7404	7491	7578	7665	7752	7839	7926	8014
				8362		85				

500	693970 9535	699057 $992+$	699144	699231	699317	699404	699491	699578	699664	${ }^{699751}$	87
1	$\left[\begin{array}{r} 9833 \\ 700704 \end{array}\right.$	$\begin{gathered} 9924 \\ 700790 \end{gathered}$	ז00011	$\begin{array}{r} 200093 \\ 0963 \end{array}$	ro01si	$7002 \pi 1$	$\begin{array}{r} 700358 \\ 1222 \end{array}$	$\begin{array}{r} 700444 \\ 1309 \end{array}$	700531	700617	6
3	156s	1651^{\prime}	1741	1827	1913	1999	2086	1172	22.5	2314	86
4	2431	2.517	2603	2639	2175	2361	2947	3033	3119	3205	86
5	3291	337 亿	3463	3549	3635	3721	$3>07$	3593	3979	4065	66
6	4151	4236	4322	4403	4494	4579	4665	4751	4537	4922	$\varepsilon 6$
7	5005	5031	5179	5265	5350	5436	55.22	5607	5693	5178	£6
8,	5364	5949	6735	6120	6206	6291	6376	6162	6547	6632	85
9	6718	6503	6353	6974	7059	714	7229	7315	7400	7485	85
510	7075i0	707655	707740	707826	707911	707996	708081	708166	703251	708336	85
1	8121	8506	8591	8676	ST61	8846	8931	9015	9100	9155	85
2	9270	9355	9440	9524	9609	9691	9779	9363	9948	710033	85
3	710117	710202	710257	710371	710456	710540	710625	710710	710794	0379	85
4	0963	1043	1132	1217	1301	1355	1470	1554	1639	1723	84
5	1807	1392	1976	2050	2144	2229	2313	2397	2481	2566	84
6	2650	2734	2318	2902	2956	3070	3154	3238	3323	3107	81
7	3191	3575	3659	3742	3326	3910	3994	4078	4162	4246	84
8	4330	4414	4497	4581	4665	4749	4333	4916	5000	5031	84
	5167	5251	5335	5418	5502	5536	5669	5753	5836	59	84
No	0	1	2	3	4	5	6	7	8	9	Diff.

$\frac{\text { No. }}{580}$	$\frac{0}{763+23}$	$\frac{1}{663.503}$	$\left\|\frac{2}{763575}\right\|$	$\frac{3}{763653}$	763i27	$\frac{5}{763502}$	$\frac{6}{763577}$	$\frac{7}{763952}$	$\frac{8}{76402}$	$\frac{9}{764101}$	$\frac{\text { Diff. }}{75}$
1	4176	4251	4326	4400	4475	4550	4624	4699	4774	4=48	75
2	4923	4995	5072	5147	5221	5296	5370	5445	5520	5594	75
3	5669	5713	5818	5892	5566	6041	6115	6190	6:64	6335	74
4	6413	6157	6562	6636	6710	6785	$6 \leq 59$	6933	7007	7052	it
5	71.56	7230	7304	7379	7453	7527	7601	7675	7749	T<23	74
6	TS9	7972	S046	8120	8194	8268	8342	ع416	8490	864	74
7	8635	8712	$83 \leq 6$	8.560	8934	9008	9082	9156	9230	9303	If
,	9377	9451	9525	9599	9673	9746	9820	9894	9968	$7 \pi 5142$	
97	770115	7\%0189	770263	770336	$7 \% 0410$	770451	770557	$7 \pi 0631$	770705	6,7e	4
5907	7703527	770926	770999	771073	771146	771220	771293	711367	\%11440	511514	741
1	1587	1661	1734	180	1881	1955	202	2112	2175	224	+
2	2322	2395	2165	2542	2815	2688	2762	2835	2905	2951	3
3	3055	3125	3201	3274	3345	3421	3494	3567	3640	3713	3
4	3786	3 560	3933	4006	4079	4152	4225	429 s	4371	4444	3
5	4517	4590	4663	4736	4509	4582	4955	5025	5100	5173	3
6	5246	5319	5392	5165	5538	5610	5883	5756	5829	5512	3
7	5974	6047	6120	6193	6265	6333	641 i	$64 \leq 3$	6556	66:9	3
8	6701	6774	6816	6919	6992	7064	7137	7209	7252	7351	S
9	$742 \sim$	7499	7572	7644	7717	7789	7862	7934	8066	8079	2
500	78151	773221	775296	778368	778411	778513	778585	TTE658	778730	778502	2
1	8374	8947	9019	9091	9163	9236	930 S	$93 \leq 0$	9452	9521	72
2	9596	9669	9741	9813	9885	9957	780029	780101	7801	S0245	2
3	780317	7803s9	780461	750533	780605	750677	0749	0821	0893	0965	72
4	$103 i$	1109	- 1181	1253	1324	1396	1468	1540	1612	1684	2
5	1755	1527	1899	1971	2042	2114	2186	2255	2329	2401	72
6	2473	2.544	2616	2635	2759	2831	2902	2974	3046	3117	72
7	3159	3260	3332	3403	3175	3516	3615	3689	3761	3832	71
8	3904	3975	4046	4118	41×9	4261	4332	4403	4475	4546	71
9	4617	4639	4760	4×31	4902	4974	5045	5116	5157	5259	71
610	75.3330	T 85401	735472	755543	785615	78568	785757	T85828	785899	785970	71
,	6041	6112	-6153	6254	6325	6396	6167	6535	6609	-6680	71
2	6751	6>22	6393	6964	7035	7106	7175	7248	7319	7390	71
3	7169	7531	- 7602	7673	7544	7815	7885	7956	8027	8098	71
	S16:	8239	8310	83s1	8151	5522	¢593	8663	8734	8804	71
5	8-75	89.16	- 9016	- 9087	9157	9225	9299	9369	9410	9510	71
6	$95>1$	9651	9722	9792	9563	9933	790004	790174	790144	790215	70
-	7902-5	790356	790426	790495	790567	$79063 i$	0707	0778	0848	0918	70
	0988	1059	(1129	1199	1269	1340	1410	1450	1550	1620	70
9	1691	1761	1 1831	1901	1971	2041	2111	2181	2252	2322	70
620	792392	т92162	792532	792602	792672	$792 \pi 12$	792812	92-82	792952	293022	10
1	- 3092	- 316\%	, 3231	- $3301{ }^{\text {¹}}$	- 33i1	3441	3511	35.51	3651	1 3721	70
2	3790	3>60) 3930) 4000	4070	4139	4209	4279	4349	4418	T0
3	4438	45.5	- 4627	- 469%	- 4767	4836	4906	4976	5045	5115	70
4	5155	5254	15324	15393	5463	5532	5602	5672	5741	5811	70
	5850) 5949	96019	6085	6158	6227	6297	6366	6436	6505	69
6	6:3T4	46644	16713	3 67-2	6 652	6921	6990	7060	7129	7198	69
7	7268	7337	7 7406	6 T475	7545	7614	7683	7752	7821	SSCi	69
8	7960) 8029	809s	- 8167	- 8236	8305	8374	8413	8513	8582	69
9	8651	15720	08789	9858	- 8927	8996	9065	9131	9203	3 9272	- 69
630	799341	799409	799178	799547	799616	799655	799754	799823	799892	2799561	69
1	Stu029	9800095	800167	- 300236	800305	800373	800442	800511	800580	30064	69
2	0717	0786	$6 \quad 0854$	1 0923	30992	1061	1129	1198	1266	61325	¢9
3	31404	1472	$2 \quad 1541$	1609	1678	1747	1815	1884	1952	2 26.21	69
4	42059	2155	S 2226	62295	- 2363	2432	2500	2568	2637	2705	56
5	5 27\%4	42342	22910	102979	- 3047	3116	3184	3252	3321	1 33¢9	C8
6	6 3457	73525	53594	13662	3730	3798	3867	3935	4003	3071	$1{ }^{68}$
	\% 4139	- 4205	S 4276	$6 \quad 4344$	44112	4150	4548	4616	4635	54753	68
8	84821	14859	94957	75025	5093	5161	5229	5297	5365	5 5433	63
	5501	5569	9637	75705	- 5773	5841	5908	5976	6044	$4 \quad 6112$	- 65
No.	0	1	2	3	4	5	6	7	8	9	Diff.

TABLE XII. LOGARITHMS OF NUMBERS.

No．	0	1	2	3	4	5	6	\square	5	9	Diff．
760	S40\％	S5160	इ－520	5－5＊21	5.5	5540	－ 45470	535332	इ50594	51：636	62
1	$571=$	5i： 01	$5 \div 12$	5 SO 4	5.66	6u2 $=$	60.40	6151	6213	$6 .: 5$	62
2	633：	635%	f 461	6233	6555	6646		67%	6×32	6－91	62
3	6555	\％017	70.5	T141	込	724	－326	－355	7449	－511	t2
4	－5：	－534	7656	7755	7514	－ 31	－． 843	5004	5.66	Siz	62
5	5135	3251	3312	5371	S 435	4.45	$5-59$	－nto	$56 \leq 2$	5.4 .3	¢2
6	53.5	S5i56	5925	3959	90.31	9112	9174	9235	9297	c85s	61
7	Q 419	Q $:=1$	9542	966	S．665	$9: 2$	9%	C．49	9911	GGT2	E）
E	531033	S5Mcs	550158	35121%	3502	53.34	SEuh0I	5etuct	$5352 \frac{1}{2}$		61
9	0616	0.05	6.69	（is30	（69）	（195\％	1014	10.5	1136	1.05	81
71	55125	35132	551351	351122	551503	231 $\div 64$	162	2515－6	551－\％	81～n9	E1
1	1：－0	1931	1992	295	2114	$21: 5$	22－26	2－a？	ぞこ，	2415	6.1
5	$2 \frac{1}{2}$	$25 \div 1$	2512	2680	$2: 24$	25	$2-46$	± 0	$\therefore \mathrm{AC}$		61
3	3 y	3156	3211	32%	3333	339，	345	$3-16$	$\therefore \%$	\cdots	61
4	$354=$	3：－9	35	SE＝1	3411	40.2	$4 \cap 53$	41：3		$4-4.5$	E1
E	$\div 3$ \％	1357	412	－ $4=5$	4.546	\＄610	4 ¢．	4－31	40：	1－：	61
6	：-13	$4{ }^{-1}$	E 31	50.5	51－6	2216	5\％：	233：	ミi．	－	61
	55	555	E64	59.1	5.61	らこど	－－	$\stackrel{-9}{ }=3$	Gres	664	61
	61－4	6.25	$62 \pm$	636	6366	642？	$61=$	6is	66：	eres	．
	$6: 27$	678	6500	6 ± 10	697.	T．31	T． 1	75\％	7212	－2：	6t
	－352	5－7393			1	55：634	3．－691	5e1．0．5	ごズア15		60
1	－953］	7990	Si50	S110	81.6	－236	－2．7	835	3117	1．．	60
－	≤-34	$\therefore 27$	565%	$5: 15$	5－7	5×5	Sicos	S－$=$	9015	－	60
	2133	9115	920：	9315	157	C4\％	91．	C85：	¢61t	¢ 6	60
4	5.39	9.08	935	\cdots	S9	60035	EC	6 10	5－21）		60
$\overline{5}$	333	30359	56.455	（171）		（1237	（155）	1751	（817	（S）	60
¢	$013{ }^{-1}$	1956	1095	1115	11，5	1236	125^{-}	1.55	1415	14.5	6
－	1531	1594	163%	1514	1712	133	15．5	1ヶら2	5112	20\％	60
－	\＄131	2191	22^{-1}	2xic	237	213	$21=3$	－－\％9	c，${ }_{2}$	EEG：	60
＝	：25	$E=$ ？	$23{ }^{-1}$	2506	2566	305	305	3144	3204	3263	C0
－37	563523	5630－2	553912	$363-11$	63561	$6:$	1	6：-35	56－09	5635－5	59
1	21\％	307	± 185	410	415	4．14	紬1	4333	4392	1432	－9
－	± 11	4570	4630	± 085	4Tf＝	加	f3e\％	49.5	$45 \geq 5$	－ 4.5	59
3	8.01	－153	528	5－2？	－311	510	545	－519	25%	－5．37	59
\pm	3	－2．）	$5 \leq 14$	557	－	STP	6.1	6 IH	616.	$622=$	59
5	C2－	6346	$6=$	6.165	65.1	6－5	554	671	676	$6 \leq 19$	E9
C	B．	Qust	63.6	$7{ }^{7}$	714	－153	－23－	8201	73al	F\＃\％	by
7	1.	$\cdots 23$	75	7644	\％	\cdots	－52l	7－2b			59
\vdots	54．9	51.5	317：	52333	5×92	53－	E419	$546=$	5－2\％	－$=6$	4
	20 ± 5	こ？73	5－62	$5 \geq 21$	ここ？	So3＝	5s9	90.6	9114	$\div 1.3$	59
－11	30：232	S69\％	Ser 319	50540\％	CS	－9955	2595－4	568612	Sogorl	58． 360	5
1	$9=$	957	99.35	9894	\％	570111	3.5170	こづ20゙	5－02－	$\rightarrow 7945$	$\div 9$
	5.74 .1	Sกบ252	3.0521	こ． 5 －	埌碞	1．356	（1．05	$0 \leq .3$	C5iz	0.30	55
E		14.	111．65	1：64	1220	$12: 1$	1339	$138=$	1456	1515	55
4	170	1531	1 fay	174	126	1 285	1923	$1 \mathrm{C}=1$	$2(1)$	20．$=$	5
	255	22015	22：	2331	2359	2415	25.5	2 264	2622	2651	S
	23	27	2355	2915	297	3034	30 －	3146	？204	226	
	3321	35%	345%	345	35.53	3611	3669	3727	$5: 50$	？ 14	Es
\bigcirc	3，	395	ftis	± 0.6	11.4	4152	425	43 i	4366	4124	
ζ	＋122	454）	450	4636	4.14	1712	4×30	¢こご	4515	563	5
\％	5－56el	575119	8.51%	5.5235	5．5293	3－2．5351	57.5409	5－266	575524	5ッ：	55
		5685	5.56	5513	55.1	55.20	Ey？	604.3	6102	6160	－
	6215	62：5	6333	6391	6 ± 45	6507	6.564	Cever	ESEC	6：3\％	55
	6－5：	65－3	6910	6.65	－ 123	T $\mathrm{C}=3$	7111	7159	72.56	734	55
	7.31	i429	$7 \div 3$	7341	：6it	7659	7 F	7714	7532	$7=-9$	ES
	TH2	－ 5004	E）	\＄119	517	5234	－292	5349	340	－464	57
	－22	$55: 9$	－535	EEGY	5752	$5 \mathrm{SH5}$	S56b	6524	E951		53
7	Sod	9153	9211	Q26＝	9325	¢3－3	944	9497	9555	¢612	57
	9507	5.225	$97-1$	9）＋1	9393	95：6	5san 13	35	551127	15.5	57
	330212	331293	531355	559413	380451	8505\％	058．5	cost2	C699	¢9：6	$5 \hat{7}$
So	0	1	2	3	4	5	6	7	5	9	Diff．

TABLE XIl. LOGABITHNS OF N゙ヒMBERS.

No．	0	1	2	3	4	5	6	\％	8	9	Diff．
821	3514	13ミ67	$\overline{913920}$	$\overline{913973}$	14026	9140ヶ9	914132	91418	914237	$\overline{91+290}$	53
1	4343	4596	4149	4502	4555	4605	4660	4713	4766	4＞19	53
2	$43 i 2$	492：	4975	5030	5053	5136	5189	$2 \cdot 24$	5294	537	53
3	5100	515%	5505	5550	5611	5664	5716	－3）69	5822	5075	53
\pm	5927	59－3）	6033	$60 \leq 5$	6138	6191	6243	6256	634	64101	53
5	6454	6.07	6559	6612	6664	6 617	672	6.22	6575	32 i	£3
6	693	T033	7055	713－	7190	T243	7295	7345	7400	7453	53
7	75	7553	7611	7663	7716	7768	7－2！	583	7923	79%	52
5	8130	8053	S13．	8158	8240	S293	－345	539i	8450	8502	52
	8.55	8607	86．59	8712	8.64	$8=16$	S 69	S921	S973		

ร31 9190～ニ 9191301919183919235919257919340919392919444919496919549 196019653 9706 975 9510 9：62 9914 996 920019 920071

S40 9242：9 924331 924353 924434 924486 924535 9245こ9 924641924693924744

	4	4545	4899	4						
		364	5415	5167	5518	5570	$55 ? 1$	5673		
	5823	5879	5931	5952	6034	6085	6137	6180	6240	
	6312	6394	6445	6497		66	6551	6702	675	
						11	71			
		T			75	762	$76 i$			
		7935				8140	8191			
		8417	\＆f	5	860	8652	8703	S7	8805	
	890	8959	9010	906	9112	9163	9215	9266	931	

 1 9930 $99319300329300 \leqslant 39301349301559302369302579303359303 \circ 9$ $\begin{array}{llllllllll}2930440 & 930491 & 0542 & 0592 & 0643 & 0694 & 0745 & 0796 & 0847 & 0598\end{array}$

3	0949	1000	1051	1102	1153	1204	1254	1305	12.5	1407
4	1453	1509	1560	1610	1661	1712	1763	1514	1565	1915
5	1966	2017	20¢	2118	2169	2220	2271	2322	23.2	2423
6	2474	2524	2575	2626	2677	2727	2778	$2 \leq 29$	2579	2930
7	29：1	3031	3052	3133	3153	3234	3255	3335	3356	3437
8	3157	3．7．35	3559	3639	3690	374	3791	$3 \$ 41$	$3 \approx 92$	3943
9	3993	494	4094	4145	4195	4246	4296	4347	4397	4448

 $\begin{array}{lllllllllll}3 & 0645 & 0697 & 0749 & 0801 & 0853 & 0916 & 0950 & 1010 & 1062 & 1114\end{array}$ $\begin{array}{lllllllllll}4 & 1166 & 121= & 127 & 1322 & 1374 & 1426 & 147= & 1530 & 1522 & 1634\end{array}$ $\begin{array}{llllllllllll}5 & 16=6 & 173= & 1790 & 1542 & 1594 & 1946 & 199= & 2150 & 2102 & 2154 & 52\end{array}$ | 6 | 2216 | 2259 | 2310 | 2362 | 2414 | 2466 | $251=$ | $25 \pi 1$ | 2622 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllll}2: 25 & 2717 & 2529 & 25-1 & 2933 & 2935 & 303 i & 31155 & 3140 & 3192 \\ 3244 & 3296 & 334 & 3399 & 3 i 51 & 3503 & 3555 & 36 \pi & 865 & 3710\end{array}$

No.	0	1	2	3	4	5	6	7			9 D	Diff.
530	944153 4976	44532 50	941.51 51	446:31 5121	$\frac{81689}{91 \%}$ 51%	-41729	941779 5272	944323 5321	9448		941927 5119	49 49
1	- 4976	$551-$	556 \%	5616	5665	5715	5764	5513	556	6?	5912	49
3	5961	6%	6059	f10s	6157	6207	6256	630.3		351	6103	49
4	1-452	$66^{6} 91$	6551	660	¢649	6695	6747	${ }^{6796}$			6こ94	49
5	5.6943	6992	7011	7090	7140	7159	7235	72si			73	
6	6 7434	7453	7532	$75 \geq 1$	7639	7679	7723	7777			750	
7	7 7 924	7973	8022	8050	8119	8165						49
8	$8-113$	- $\square^{2} 2$	8511	8.560	8619	8657	8716 9195	8755		292	9311	49
9	98902	89.51	8999	9048	9097	9146	9195	924			9311	4
909	949390	1! 43	9494339	9495369	919535	949634	919683	949731			949329	49
	1 93\%	9926	9975 9	$95002+9$	9500739	950121	950170	950219	95326		950316	49
29	295036593	950414	950462	0511	0560	0675	${ }^{6} 657$	0706		4	0803	49
3	3051	1900	0949	099π	1046	1095	11.1	1192		24.	1239	49
	4 13:33	13-6	143.3	1453	1532	1531	1629	167%			1775	
	$5 \quad 1523$	1572	1920	1969	2017	2066	+111!	2163			2744	
	6 2303	2356	215	24.53	2502	2550	2.999	2617		180	322	43
	$7 \quad 2792$	2341	2359	$293=$	29×6	3034 3518	3566	31315		663	3711	48
	93		3556	390.5	3953	4001	4049	40		146	4194	48
09	09512439	954291	951	9513	951439	951484	951532	95	951		954677	45
	472.5	4773	4×21	4569	4918	4966	5014	506		110	5153	
	5297	52.5	5303	5351	5399	5447	5493	554		592	5640	
	56	5736	5781	5832	5330	5923	59	602			6120	
	6153	$¢ 216$	6265	6313	6361	6109	6457	650				
	$5 \quad 6649$	6697	6745	6793	631	6533	6936	695				
	- 7120	7176	7224	7212	7320	736	7 H 6	\%				
	$7 \quad 7607$	7655	7703	7751	7799	${ }^{7} 817$		¢ 812		165	8516	43
	9	8134 8612		88		832	8350	85		16	899	45
				959155	959232	959230	95				959471	45
	$1{ }^{1} 9515$	9566	$96!4$	9661	9709	975\%	930	4 9>5		90	9947	45
	299959	9600 ± 2	960090	96013 2	960155	960233	9602こ0	96032	96	376	96042	45
	3960471	0515	0566	0613	0661	0:09	075	030		$0 \leq 01$	059	45
	$4 \quad 0916$	0994	1011	$10 \leq 9$	1136	1131	123	127		1326	137	4
	51421	1469	1516	1563	1611	1653	170	6175				4
	$6{ }_{6} 13995$	1943	1990	2033	$20-5$	2132	21	0 222		$22 / 0$	2322	47
	2369	2417	2464	2511	2559	26	626.5	27				
	S 2313	2390	2937	2935	3032	3079	912	31				
	$9 \quad 3316$	3363	3410) 3157	3541	1355%	2 359	36		369	37	
	20963733	9635		963929	963:77	7 964021	196407	96111		163	961212	
	1 1261	430i	¢ 43.54	1401	444=	- 449.5	5454	5		4637	4651	47
	$2 \quad 4731$	4775	+ 525	54022	24919	94966	6501	5		5105	5155	i
	$3 \quad 5212$	5249	$9 \quad 5296$	G 5343	5397	5437	7515	53		557	562	7
	4 5672	5719	$9 \quad 5766$	6513	3 5:60	5917	7 59\%	60		604		
	56142	$61 \leqslant 9$	6236	$6 \quad 6233$	$3 \quad 6329$	$9 \quad 6376$	6642	64		6.51		
	66511	66.5	6.0 .5	5 6752	26799	9 6515	- 639			69		
	$7 \quad 718$	71	7173	317220	- 2673	$7{ }^{7} 7314$	$4 \quad 736$	$\begin{aligned} & 740 \\ & 75 \end{aligned}$		7922		7
				$\begin{array}{ll} \\ 9 & 8156\end{array}$		3 824				8390		-
	930 965183	3958.530	30965576	6963623	3 965670	0965716	696576	639635		3355		37
	$1{ }^{1} \quad 89.50$	839	559043	39090	$0 \quad 9136$	9153	3 92	29.92	\% $\%$	93:23		9 4i
	$\stackrel{2}{2} 916$	916:	$63 \quad 9.509$	9 9.5.56	6 96п2	129649	19 9695	$9.50{ }^{-1}$	42	97		\%
	95×2 970317	${ }_{7}{ }^{97083}$	93 97040	5 970 04	6 9\%03\%	33.370579	${ }_{9} 9706$	26	672	0719	9 (1) 6.5	. 46
	${ }_{5}^{4} 0812$	2005	$55090 t$	± 0951	51	31.44	4108	9011	137	1183	31223	96
	$6 \quad 1270$	- 132	221369	1415	5146	11508	OS 155	5 16		1647	71693	46
	$7 \quad 1740$	175	$6 \quad 1532$	32.1879	9192	251971	Il 20	182	164	2110	12157	746
	2243	$3 \quad 224$	19 2295	52342	$12 \quad 233$	33243	34		327	2573	326	946
	9. 2666		12.	2301	14	$51-2397$	$97 \quad 29$		939	3035	35 30<2	6
	No. 0	1	2	3				7		8	9	Diff.

	0		2	3		5	6	7	8	9	Diff．
94	$\overline{973123}$	973174	$\overline{973220}$	$\overline{973266}$	$\overline{973313}$		73	$5 \overline{973451}$	473497	973543	16
	3590	3636	$36 \leq 2$	3728	3771	3－20	3こ66	3913	3959	4 ra	16
	4051	4097	4143	4189	4235	4281	4327	4374	4420	4466	46
	4512	4553	4604	4650	4696	4712	4758	4834	4880	4926	46
	4972	5018	5064	5110	5156	5212	5248	5294	5310	53＞ö	15
	5432	5478	5521	5570	5616	5662	5207	5753	5799	58451	15
6	$5 \leq 91$	5937	5983	6029	6075	6121	6167	6212	625	6304	
7	6350	6396	6142	6458	6.533	6579	6625	¢671	$1{ }^{1} 17$	67 CS	145
	6， 13	6551	6900	6946	6992	7037	7083	7129	－ 7175	$7 \times 2 \mathrm{C}$	46
9	7266	7312	7358	7403	7449	7495	7541	7586	7632	262	45
5	917\％24	977769	977815	977×61	977906	977952	977998	978013	978089		46
1	8181	8226	5272	8317	8363	8409	8454	8500	） 8546	ع591	46
2	8637	$86 \leq 3$	8728	8774	8819	8：65	8911	8956	9002	904 ？	15
3	9093	9138	9184	9230	9275	9321	9266	9412	$9-157$	95 Cl	6
	954	9594	9639	9685	9730	9776	9221	9：67	9912	995	46
	80003	950049	980091	$98(140$	980155	980231	980276	9：0322	980367	$9 \leq 0412$	15
${ }_{6}$	045	0503	0549	0594	0640	06－5	0730	0726	021	0sc：	45
\％	0912	0957	1013	1048	1093	1139	1181	1229	1275	1320	45
8	1366	1411	1456	1501	1547	1592	1637	1683	172	17%	
9	1519	1864	1909	1954	2000	2045	2090	2135	2181	2	45
950	952271	982316	952362	92407	98452	9－2．19～	52543	982：	982633		4.
1	2723	2769	2514	$23: 59$	2904	2949	2994	3 H 40	1 3055	31	45
2	3175	3220	3265	3310	33．6	3401	3446	3491	3536	$35>1$	45
3	3626	3671	3716	3762	$3>07$	$3 \triangle 52$	3897	3942	395	4022	15
4	$40 \hat{7}$	4122	4167	4212	4257	4302	4317	4392	443	44.0	45
5	4527	4572	4617	4662	$4 \sim 0 \sim 7$	4752	479\％	4842	48	4932	45
Ö	4.577	5022	5067	5112	5157	5202	5217	5292	533	5352	15
	5426	5471	5516	5561	5606	5651	5696	5741	5786	5\％，410	43
8	5375 6324	5920 6369	5965 6413	6010 6458	6055 6503	6100 6515	6144	6189 6637	623	6279	45
770	936772	956517	S	986	9E6931	986986	987040	987055	98 r		45
，	7219	7264	7309	7353	739	7443	715	7532	7577	7622	45
2	7666	7711	7756	7800	7815	7890	7931	7979	8024		45
3	8113	8157	8202	8247	8291	8336	8381	8425	8470	851	45
4	8559	8604	8648	8693	¢737	8782	88%	$8>71$	891	8960	45
5	9005	9049	9094	9133	9183	$922 \hat{z}$	92 i 2	9316	9361	94	45
6	9550	9494	9539	9583	S623	9672	9717	9761	980	9 Sol	44
7	9895	9939	9983	990023	990072	990417	990161	950206	990250	990294	44
	990333	990333	990423	0472	0516	0561	0605	0650	0694	0735	11
9	0783	0827	0871	0916		1004	1049	1093	1137		44
930	991226	991270	991315	991359	991403	991448	991492	991536	991580	991625	4
1	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	44
2	2111	2156	2200	2244		2333	2377	2421		2509	44
3	2554	2598	2642	2656	2730	2774	2819	2＝63	290		11
4	2995	3039	3083	3127	3172	3216	3260	3304	3348	2\％	14
5	3436	3480	3524	3568	3613	3657	3701	3745	378	\％	44
6	3577	3921	3965	4009	4053	4097	4141	4185	4229	4	14
7	4317	4361	4405	4449	4493	4537	4581	4625	4669		14
9	4751	5240	4815	53	4933	${ }^{4971}$	5021	5065	51	5152	44
9	51	52	5234	53	5372	5416	5460	5504	5547	55.91	44
99：1	93．6635	995679	995723	995767	995811	995854	995398	995912	5959E6	996030	44
，	6074	6117	6161	6205	6249	6293	6337	6350	6424	616 S ！	44
2	6.512	6555	6599	6643	6657	6731	6774	6818	68b	6S，	4
3	6949	6993	7037	7030	7124	7168	7212	72.55	7299	343	44
4	7336	7430	7474	7517	7561	7605	7648	7692	7736	7779	44
5	7523	7867	7910	7954	7998	8041	8085	8129	8172	82：${ }^{\text {a }}$	＋1
6	8259	8303	8347	8390	8134	8477	8521	8564	8608	260\％	44
7	8695	8739	8782	8826	8869	8913	8956	9000	9043	9087	44
8	9131	9174	9218	9261	9305	9315	9392	9435	9479	$95 \sim 2$	
	95	9609	9652	969	97	9783	9826	9870	9913	9¢゙った	43
No．	0	1	2	3	4	5	6	7	8	9	Diff

TABLE X 111.

LokarituMIC sInes, COSINES, TANGEN'Ts.

AND

SOTANGENTS.

NOTE.

The table here given extends to minutes only. The usual methicd of extending such a table to seconds, by proportional parts of the difference between two consceutive logarithms, is accurate enough for most purposes, especially if the angle is not wery small. When the angle is rery small, and great accuracy is requircd, the following method may be used for sines, tangents, and cotangents.
I. Suppose it were required to find the logarithmic sine of $5^{\prime} 24^{\prime \prime}$ By the ordinary meth ~ 1 we ohould have

log. $\sin .5^{\prime}$	$=7.162696$
diff. for $24^{\prime \prime}$	$=\underline{31673}$
$\log \cdot \sin .5^{\prime} 24^{\prime \prime}$	$=\overline{7.194369}$

'Itic more accurate method is founded on the proposition in Trigo nometry, that the sines or tangents of very small angles are propor tional to the angles themsclves. In the present ease, therefore, we have $\sin .5^{\prime}: \sin .5^{\prime} 24^{\prime}=5^{\prime}: 5^{\prime} 24^{\prime}=300^{\prime \prime}: 324^{\prime \prime}$. Hence $\sin .5^{\prime} 24^{\prime}$ $=\frac{324 \sin .5^{\prime}}{300}$, or $\log \cdot \sin .5^{\prime} 24^{\prime \prime}=\log \cdot \sin .5^{\prime}+\log .324-\log .3 \sin 3$. The difference for $24^{\prime \prime}$ will therefore, be the difference between the logarithm of 324 and the logarithm of 300 . The operation will stand thus: -

$\log .324$	$=2.510545$
$\log .300$	$=247.721$
diff. for 24	$=r 33424$
$\log . \sin .5^{\prime}$	$=7.162696$
$\log . \sin .5^{\prime} 24^{\prime \prime}$	$=7.196120$

Comparing this value with that given in tables that extend to seconds we find it exact even to the last figure
II. Given \log. $\sin . A=7.004438$ to find A. The sine next less than this in the table is $\sin .3=6.940847$. Now we have $\sin .3^{\prime}: \sin . A$ $=3: A$. Therefore, $A=\frac{3 \sin . A}{\sin .3^{\prime}}$, or $\log . A=\log .3+\log . \sin . A$ $-\log$. $\sin .3^{\prime}$. Hence it appears, that, to find the logarithm of $A \mathrm{~m}$
minutes, we must add to the logarithm of 3 the difference octween log. $\sin . A$ and $\log . \sin .3^{\prime}$.

$$
\begin{aligned}
& \log \cdot \sin . A=\frac{7.004438}{\log \cdot \sin .3^{\prime}}=\frac{6.940847}{63591} \\
& \log .3 \\
& A=3.473
\end{aligned}=\frac{0.477121}{0.540712} .
$$

or $A=3^{\prime} 28.38^{\prime \prime}$. By the common method we should have found $A=3^{\prime} 30.54^{\prime \prime}$.

The same method applies to tangents and cotangents, except that in the case of cotangents the differences are to be subtracted.
** The radius of this table is unity, and the characteristics $9,8,7$, and 6 stand respectively for $-1,-2,-3$, and -4 .

M.	Sine.	D. 1	Cosine.	D. 1^{1}.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	Inf. neg.		0.000000	. 00	Inf. neg.		Infinite.	60
1	6.463726	5017.17	. 000000	. 00	6.463726	5017.17	3.536274	59
2	. 764756	2931.85	. 0000000	. 00	. 764756	2934.85	. 235241	58
3	. 910347	2082.31	.000000	. 00	. 940847	2082.31	. 059153	57
4	7.065756	1615.17	. 000000	. 00	7.065756	1615.17	2.934214	56
5	. 182696	1319.69	. 000000	. 00	. 162696	1319.69	. 837304	55
6	. 241577	1115.78	9.399999	. 00	. 211878	1115.78	. 758122	54
7	. 308324	1156.53	999999	. 00	. 305825	966.54	. 691175	53
8	$.366>16$	852.51	999999	. 01	.366817	852.55	. 633183	52
9	. 417968	762.62	. 999999	. 01	. 417970	762.63	.582030	51
10	7.163726	83	9.999995	. 01	7.463727	659.83	2.536273	50
11	. 505118	629.81	. 999998	. 01	. 565120	629.81	. 491850	49
12	. 512906	5\%9.3\%	.999997	.01	. 512909	579.37	. 457091	48
13	. 577663	536.41	.999997	. 01	. 577672	536.42	. 422323	47
14	. 609353	499.39	. 999996	. 01	. 609857	536.42 499.39	. 390143	46
15	.639316	467.14	.999996	. 01	. 639820	467.15	. 360180	45
16	. 667815	438.81	. 999995	. 01	. 667819	4435.52	.332151	44
17	. 694173	413.72	.999995	. 01	. 691179	413.73	.305821	43
18	.718997	391.35	. 999991	. 01	.719003	391.36	. 280997	42
19	. 742478	371.27	. 999993	. 01	. 742484	371.36 371.28	. 257516	41
20	$7.764 \% 54$	353.15	9.999993	. 01	7.761761	353.16	2.235239	40
21	. 735943	3336.72	. 999992	. 01	. 785951	3335.73	. 214049	39
22	. 806146	321.75 32.	. 999991	. 01	. 80615.	321.76	. 193845	33
23	. 825451	3303.05	. 999990	. 01	. 525460	303.07	. 174540	37
21	. 813934	295.47	.999959	. 02	. 843944	295.49	. 156056	36
25	. 861662	233.88	. 999939	. 02	. 561674	233.90	. 138326	35
26	. 575695	273.17	. 999993	. 02	. 578703	273.18	. 121292	31
27	.895055	$26: 3.23$. 999935	. 02	. 895099	263.25	. $10 \frac{1}{1901}$	33
23	. 910879	253.99	. 999986	.02	. 910594	254.01	. 089106	32
29	. 926119	$\begin{aligned} & 253.99 \\ & 245.33 \end{aligned}$. 999985	. 02	. 926134	$\begin{aligned} & 254.01 \\ & 245.40 \end{aligned}$. 073866	31
30	$7.940 \leq 12$		9.999933	. 02	7.940858	237.35	2.059142	30
31	.955032	237.33 2290	.9999<2	. 02	. 955100	229.82	. 044900	29
32	. 963570	229.80 222.73	. 999931	. 02	. 963589	229.82	. 031111	28
33	.9>2333	222.73 216.08	.999930	. 02	. 982253	216.10	.017747	27
31	.995193	209.81	. 999979	. 02	. 995219	209.83	.004781	26
35	S.1007757	203.90	. 999977	. 02	8.007809	203.92	1.992191	25
36	. 220021	193.31	. 999976	. 02	. 020044	198.33	. 979956	24
37	. 031919	193.02	.999975	. 02	. 031945	193.05	. 968055	23
35	. 013501	188.01	.999973	. 02	. 043527	188.03	. 956473	22
39	. 054731	$\begin{aligned} & 188.01 \\ & 153.25 \end{aligned}$. 999972	. 02	. 054809	183.27	. 945191	21
40	8.063776		9.999971	02	8.0658C6	75	1.934194	20
41	.076500		. 999969	. 03	.07653?	174.44	. 923169	19
42	.0צ6365	17.42 170.31	. 999963	. 03	.0S6997	177.44	.913n03	18
43	.097153	170.31 166.39	. 999966	. 03	. 097217	166.42	.902783	17
44	. 107167	166.39	. 999964	. 03	. 107203	162.63	. 892797	16
45	. 116926	159.08	. 999963	. 03	. 116963	159.11	. 883037	15
-16	. 126471	155.66	. 999961	. 03	. 126510	155.69	. 873490	14
47	. 135810	152.33	. 999959	. 03	.135851	152.41	. 861149	13
43	. 144953	152.38	. 999958	. 03	. 144996	149.27	. 855004	12
49	. 153907	146.22	. 999956	. 03	. 153952	146.25	. 846048	11
50	8.162681		9.999954	. 03	8.162727		1.837273	10
51	. 171230	143.33	. 999952	. 03	. 171328	140.57	. 823672	9
52	.179713	140.04	.999950	. 03	. 1797 ¢3	137.90	. 820237	8
53	. 187985	135.29	. 999948	. 03	. 188036	135.32	.811964	6
54	. 196102	132.80	. 999946	. 03	. 196156	132.84	. 803844	6
55	. 204070	130.41	. 999944	. 03	. 204125	130.44	. 7958517	4
56	. 211895	128.10	.999942	. 03	. 211953	123.14	. 788037	4
57	.219581	125.10	. 999940	. 04	.219641	125.91	. 780359	3
53	. 227134	125.87	. 9999933	. 04	. 227195	123.76	. 772805	2
59	. 231557	121.64	. 9999936	. 04	.234621 .241921	121.68	.765379 .758079	0
60	. 241855	121.61	. 999931		. 241921			0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine	D. $1^{\prime \prime}$.	Cosine.	D $\mathbf{1}^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
1)	8.24185.	119.63	9.993931	04	8.211921	119.67	1.758079 750893	60
1	. 213033	117.69	. 9999322	. 01	249102	117.72	.757893 $.743>35$	53
2	.256194	115.80	.999929	. 04	. 23616.5	115.84	. $743>35$	57
3	. 263042	113.93	.999927	. 04	. 263115	114.02	. 730041	56
\pm	. 269331	112.21	.99992.	. 04	. 2699936	112.25	. 723309	55
5	. 276614	110.50	. 999922	. 04	. 233323	110.54	. 716677	54
6	. 233213	103.83	.999920	. 04	. 239856	108.87	. 710144	5.3
\%	. 239773	107.22	.999918	. 04	. 296292	107.26	. 703703	52
8	. 296297	105.66	. 999915	. 04	. 302634	105.70	. 697366	51
9	. 302.546	104.13	3	. 04		104.18		50
: 1	8.373794	102.66	9.999910	. 04	8.308884	102.70	1.691116 .6819 .54	49
11	. 3149.51	101.22	.939907	. 04	. 315046	101.26	. 678878	43
12	. 321027	99.82	. 9999805	. 04	. 327114	99.87	. 672386	47
13	. 327016	93.4\%	. 9999902	. 05	. 3327115	93.51	666975	46
14	. 332924	97.14	. 9993899	. 05	. 333556	97.19	.661144	45
15	. 335753	95.86	. 9998937	. 05	. 314610	95.90	. 655390	41
- b^{2}	. 314504	91.60	. 9939394	. 05	. 350239	94.65	. 649711	43
17	.350181	93.33	. 9993981	. 05	. 3555895	93.43	. 644105	42
13	.350753	92.19	. 9993535	. 05	. 361430	92.24	. 638570	4 I
9	.361315	91.03		. 05		91.08	.633105	40
20	8.366777	89.90	9.999332	. 05	8.366895 .372292	89.95	1.6387703	39
?1	. 372171	83.50	. 993579	. 05	. 3777622	88.85	.622378	33
¢	.377499	87.72	. $9993>76$. 05	. 332839	87.77	. 617111	37
23	. 332762	86.67	. 939373	. 05	. 335092	86.72	. 611903	36
21	. 357962	85.64	. 9939570	. 05	. 393234	85.70	. 606766	35
20	. 393101	81.64	. $939>67$. 05	. 398315	84.69	. 601655	34
26	. 39.5173	83.66	. 939564	. 05	. 403338	83.71	. 596662	33
27	. 403199	82.71	. 9993861	. 05	. 408304	82.76	. 591696	32
23	. 403161	81.77	$.993>55$.999851	. 05	. 413213	81.82	. $5 \bigcirc 6787$	31
29	. 413068	80.86	. 999851	. 05	. 413213	80.91		
30	8.417919	79.96	9.999551	. 06	8.418063	80.02	1.581932	29
31	. 422717	79.09	.993313	. 06	. 422569	79.14	. 577131	25
32	. 427462	73.23	. 999811	. 06	. 432315	73.29	. 567635	27
33	. 432156	77.40	. 939381	. 06	. 432315	77.45	. 563039	26
34	.436300	76.58	. 9998338	. 06	. 4341560	76.63	. 555140	25
35	. 441394	75.77	. 9993334	. 06	.441560 .446110	75.83	. 553590	24
36	. 445941	74.99	.9993:31	. 06	. 4450613	75.05	. 519337	23
37	. 450440	74.22	.939827	. 06	. 450613	74.23	. 514930	22
38	.454393	73.47	.999824	. 06	. 459481	73.53	. 540519	21
39	.459301	72.73	. 999320	. 06	. 459481	72.79	. 540519	21
40	8.463665	72.00	9.999316	. 06	8.463349	72.06	1.536151	20
41	. 467935	71.29	.999813	. 06	. 468172	71.35	. 531823	19
42	. 472263	70.60	. 999809	. 06	. 472454	70.66	.527546	17
43	. 476193	69.91	.999305	. 06	.476693 $480-92$	69.93	. 523319108	16
11	.480693	69.21	.999301	. 06	$.450-92$.455050	63.31	. 519108	15
45	. 481545	63.59	.999797 .999791	. 06	.455050 .439170	63.65	. 5149330	14
16_{1}	. 483963	67.94	.999791 .999790	. 07	. 493250	63.01	. 506750	13
17 48	. 493040	67.31	.999790 .999786	. 07	. 497293	67.33	. 502707	12
43	. 497078	66.69	.999786 .999782	. 07	. 501293	66.76	. 498702	11
148	. 501030	66.03	. 999782	. 07	. 50123	66.15		
5n	S. 505045	65.43	9.999778	. 07	8.505267	65.55	1.494733 490300	9
51 50 50	. 503974	61.89	.9997\%4	. 07	. 509200	64.96	. 490300	8
52	. 512367	61.32	. 9999769	. 07	. 513093	64.39	. 483972	7
53	. 516726	63.75	.999765	. 07	. 516961	63.82	.483039 .479210	7
51	. 520551	63.19	. 9939761	. 07	. 520799	63.26	. 4792114	6 5
55 56	. 524313	62.65	. 939757	. 07	. 52438319	62.72	. 471651	4
56 57	. 523102	62.11	.939753 .999743	. 07	. 532080	62.18	. 467920	3
57 58	. 531823	61.53	.999745 .933741	. 07	. 5325779	61.65	. 464221	2
58 59	.535523	61.06	.933741 $.99974 ?$.07	.535779 .539147	61.13	. 460553	1
59 60	.539186 .542319	60,55	.99974. .999735	. 07	.539147 .513034	60.62	. 456916	0
11.	1 Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	M

COSINES, TANGENTS, AND COTAIVGENTS.

179
176°

M	Sine.	D $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	\$.718800		9.999104	11	8.719396	40.17	1.230604	60
1	.7212)4	40.06	. 999398	. 11	. 721806	39.95	.278194	59
2	.723595	39.62	. 999331	. 11	. 724204	39.74	. 275796	58
3	. 725972	39.41	. 999334	. 11	726588	39.52	273112	57
4	. 723337	39.41	. 999378	. 11	. 723959	39.31		56
5	. 730688	39.19 38	. 999371	. 11	.731317	39.10	.26563 3	53
6	. 733027	33.77	. 999364	. 11	. 733663	33.89	266337	54
7	.735354	33.57	. 939357	. 11	. 735996	33.63	. 261004	5.
8	. 737667	33.36	. 9993350	. 12	. 733317	33.48	261633	51
9	. 739969	$\begin{aligned} & 35.36 \\ & 33.16 \end{aligned}$. 999343	. 12	. 740626	38.27	259374	51
10	8.742259	37.96	9.999336	12	8.742922	38.07	1.257073	50
11	. 744536	37.96	. 999329	. 12	. 745207	37.88	. 254793	49
12	. 716302	37.76	. 999322	. 12	. 747479	37.68	. 252521	48
13	. 749055		. 999315	. 12	. 749740	37.49	250260	47
14	. 751297	37.37	. 999308	12	. 751939	37.29	248011	46
15	. 753523		. 999301	. 12	. 751227	37.10	. 245773	45
16	. 755747	36.93	. 999294	. 12	. 756453	36.92	. 243547	44
17	.75795.5		. 999237	. 12	. 758663	36.73	2	43
18	. 7611.51	36.42	. 993279	. 12	.760372	36.55	. 239123	42
19	.762337	36.42 36.24	. 999272	.12	. 763065	36.36	236935	41
20	8.761511		9.999265	. 12	8.763216	36.18	1.234754	40
21	. 766675	36.06	. 999257		. 767417		.232583	39
22	. 763323	35.88	. 999250	12	. 769578	35.83	. 230422	35
23	. 770970		. 999242	.12	.771727	35.65	. 228273	37
21	.773101	35.53	. 999235	12	. 773866	35.48	.226131	36
25	. 775223		. 999227		. 775995	35.31	. 221005	35
26	. 777333	33.18	. 999220	13	. 778114	35.14	. 221886	34
27	. 779431	01	. 999212	. 13	. 780222	35.14 31.97	. 219778	33
23	. 781524	31.81	.999205	. 13	. 782320	34.80	. 217650	32
29	. 783605	31.67 $3+.51$. 999197	. 13	. 784408	34.64	. 215592	31
30	8.785675		9.999189		8.786156	34.47	1.213514	30
31	. 787736	34.31	. 999181		. 788554		. 211446	29
32	. 789787		. 999174		. 790613		. 209337	29
33	. 791823	34.02	. 999166	1	. 792662		. 207333	27
31	. 793359	33.86	. 999158	. 13	. 794701		. 205299	26
35	. 795831	33.70	. 999150	. 13	. 796731		. 203269	25
36	. 797894	33.54	. 999142	. 13	. 793752		. 301248	24
37	. 799397	33.39	. 999134	1	. 800763		. 199237	23
39	. 801392	33.23	. 999126		. 802765		. 197235	22
39	. 803576	33.03	. 999118	.13 .13	. 804758	33.27	.19.92t2	21
40	8.80 .5852		9.999110		8.906742		1.193253	20
41	. 807819	32.7	. 993102	. 11	. 803717	32.92	. 191233	19
42	. 809777	32.63	. 999094	. 11	. 810633	32.77	. 189317	18
43	. 811726	32.49	. 993036	I	. 812611	2	. 1873.79	17
44	. 813667	32.34	. 999077	14	. 81459	32.48	. 185411	16
45	. 815.599	32.20	. 939069	. 14	. 816.929	32.33	. 183471	15
46	. 817522	32.05	. 999361	14	. 815161	32.19	. 181539	14
47	. 819436	31.91	. 999053	11	. 220334		. 179616	13
43	. 821313	31.77	. 999044	. 14	. 822293	31.91 31.77	. 177702	12
49	. 823210	31.63	. 999036	. 14	. 821275	31.63	. 175795	11
50	8.825130		9.939027		8.826103		1.173397	10
51	. 827011	31.36	. 999019	14	. 827992	31.50 31.36	. 17203	9
52	. 828981	31.22	. 999010	.14	. 829374	31.36 31.23	. 170126	8
53	. 830749	31.05	. 999902	. 14	. 831748	31.23 31.09	. 163252	7
54	. 832607	30.93 39.82	. 993993	. 14	. 833613	31.09	. 166337	6
55	. 831456	39.82 39.69	. 993934	. 14	. 835471	30.83	. 164529	5
56	. 836297	39.69 3056	. 993976	. 15	. 837321	30.83 30.70	. 162679	
57	. 839130	30.56 30.43	. 993967	. 15	.839163	30.57	.160837	3
58	. 839956	$3) .43$ $3) .30$. 993935	. 15	. 840993	30.575	. 159002	2
59	. 841774	3.37 3.17	. 9939.30	. 15	. 812325	30.32	.157175	1
60	. 843585	3 J .17	.99マ941	15	. 844644	30.32	. 155356	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine	D. $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D $1^{\prime \prime}$.	Cotang.	M.
0	8.843585	30.05	9.995:941		8. 544644		1.155356	60
1	. 815387	30.05 29.92	. 998932	. 15	. 816455	30.29	. 153545	59
2	. 847183	29.92 29.80	. 998923	15	. 845260	2) 95	. 151740	58
3	. 848971	29.80 29.68	. 998914	. 15	. 850057	23.95 29.83	. 149943	57
4	. 850751	29.65	. 998905	. 15	. 851846	29.83 29.70	.148154	56
5	. 8522525	29.50 29.43	. 998896	.15	. 853528	29.10 29.58	.146372	55
6	. 854291	29.43 29.31	. 998587	. 15	. 855403	29.58 29.46	. 144597	54
7	. 856049	29.31 29.19	. 993378	. 15	.85̃171	29.46 29.35	. 142529	53
8	. 857501	29.08	. 998569	. 15	. 858932	29.23	. 141068	52
9	. 859516	$\begin{aligned} & 29.08 \\ & 28.96 \end{aligned}$. 993860	. 15	. 860686	29.23	. 139314	51
10	8.861233	23.84	9.993851	15	8. 62433		1.137567	50
il	. 863014	23.81 23.73	. 998841	. 15	. 664173	23.88	. 13552π	49
12	. 864733	23.7 23.61	. 998532	. 15	. 865906	25.88 28.77	.134094	43
13	. 866455	25.50	. 998823	. 16	. 867632	23.66	. 132368	47
14	. 868165	25.39	. 998813	. 16	. 869351	23.50	. 130649	46
15	. 869363	23.23	. 993504	. 16	. 871064	25.43	. 125936	45
16	. 871565	23.17	. 993795	. 16	. 872770	23.32	. 127230	44
17	. 873255	23.06	. 993785	. 16	. 874169	2.22	.125531	43
18	. 874935	27.95	. 993776	. 16	. 876162	23.11	. 123835	42
19	.876615	$\begin{aligned} & 27.90 \\ & 27.84 \end{aligned}$. 993766	. 16	. 877819	25.00	. 122151	41
20	8.878235	27	9.998757		8.879529		1.120471	40
21	. 879949	27.63	. 993747	16	. 851202	27.79	. 118798	39
22	. 831607	27.63	. 998738	. 16	. 832569	27.68	. 117131	33
23	. 883253	27.42	. 998 ィ23	. 16	. 834530	27.58	. 115470	37
24.	. 884903	27.42	.993718	. 16	. 886185	27.47	. 113815	36
25	. 856512	27.31 27.21	. 998703	16	.857833	27.47	. 112167	35
26	. 838174	27.21	.99:699	16	. 889476	27.37	. 110524	34
27	. 889801	27.00	.99ะ689	16	. 891112	27.27	. 108888	33
23	891421	27.00 26.90	. $99 \bigcirc 6 \sim 79$. 16	. 892742	27.07	. 107258	32
29	. 893035	26.90 26.80	. 995669	. 17	. 894366	26.97	. 105634	31
30	8.894643		9.995659	17	8.895984		1.104016	30
31	. 896246	26.70 26.60	. 998649	. 17	. 897596	26.87	. 102404	29
32	. 8978.12	26.60 26.51	. 995639	.17	. 599203	26.67	. 100797	23
33	. 899432	26.51	. 995629	. 17	. 900303	26.67	. 099197	27
34	. 901017	26.41	. 995619	.17	. 902393	26.58 26.48	.097602	26
35	. 902596	26.31	. 99 =609	. 17	. 903957	26.45	. 096013	25
36	. 904169	26.22	. 9955.59	.17	. 9055570		. 091430	24
37	. 905736	26.12	. 999589	. 17	. 907147	26.29	.092853	23
33	. 907297	26.03	. 99.8578	. 17	. 908719		.091231	22
39	. 903853	25.93	. 993563	. 17	. 910235	26.101	.089715	21
40	8.910404		9.995553		8.911816		$1.08>154$	20
41	. 911919	25.	. 9935048	17	. 913401	25.92 2.83	.056599	19
42	. 913453	25.66	. 9955337	. 17	.914951	25. 2.74	. 055049	18
43	. 915022	25.56	. 993527	.17	. 916495	2.5. 74	.083505	17
41	. 916550	25.47	. 993516	.17	. 913034	25.65	. 051966	16
45	. 918073	25.38	. 993506	. 18	. 919563	25.56	.050432	15
46	. 919 791	25.29	. 933495	. 18	. 921096	25.47 25.38	.078904	14
17	. 921103	25.21	. 993485	. 1	. 922619	25.38	. 077381	13
48	.922610		. 998474	. 18	. 924136	25.21	. 075864	12
49	. 924112	25.03	. 998464	. 18	. 925649	25.21 25.12	. 074351	11
50	8.925609		9.993453		8.927156	5.04	1.072344	10
51	. 927100	21.77	. 993442	18	.923658	25.04	.071342	9
52	.923537	24.76	. 993431	18	. 930155	24.87	. 069845	8
53	. 930063	24.69 24.60	. 993421	18	. 931647		. 068353	7
54	. 931544	24.60 24.52	. 998410	. 18	. 933134	24.70	.066>66	6
55	. 933015	24.52 24.43	. 995399	. 18	. 934616		. 065384	5
56	. 931431	24.43	. 998338	. 18	. 936093	24.53	. 063307	4
57	. 935942	24.35 24.27	. 998377	. 18	.937565	24.45	. 062435	3
53	. 937393	24.19	. 998366	. 18	. 939032	24.37	. 0609688	2
59	. 933850	24.11	. 993355	. 18	. 940494	24.29	. 059506	1
60	. 940296	24.11	. 993344	15	. 941952		. 058048	0
M.	Cosine.	D. 1^{\prime}.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{\prime}.	Cotang.	M.
0	8.940296		9.993344	. 18	8.941952	24.21	1.058018	$6 \mathrm{C}$
1	. 911733	24.03	. 998333	. 19	. 913104	24.13	. 0565596	
2	. 913174		. 993322	. 19	. 914352	24.05	.055148	58
3	. 914606	23.79	. 9983311	. 19	. 91616295	23.97	.053705	56
4	. 916034	23.71	. 99333300	.19	. 9177731	23.90	.050832	55
5	. 947456	23.63	. 99382393	. 19	. 9195959	23.82	. 049403	54
6	. 948874	23.55	. 99982776	. 19	.952021	23.74	.047979	53
7	. 950287	23.48	.9995266	19	. 9533441	23.67	. 046559	52
8 9	.951696 .953100	23.40	.993243	. 19	. 954856	23.59	. 045144	51
10	8.951499	23.32	9.995		8.956		1.043733	50
11	. 95.5591	23.25	. 993220	19	. 957674		. 042326	49
12	.957231	23.10	. 993209	. 19	.939075	23.29	. 040925	48
13	.938670	23.02	. 9933197	. 19	. 960473	23.22		47
14	.960052	22.95	. 9931818	.19	. 96	23.14		4.6
15	. 961429	22.88	. 9988174	. 19	. 983255	23.07	. 036745	45
16	. 962301	22.81	. 9938163	.19	6019	23.00	.035361	43
17	. 961170	22.73	98151	. 20	.966019	22.93	.033981	43
18	963:31	22.66	. 9993139	. 20	. 967391	22.86		41
19	963393	22.59	. 998123	. 20	. 963766	22.79	.031234	41
20	8.963249	22.52	9.998116	. 20	8.97013	22.72	1.029867	40
21	. 969600	22.45	. 993104	. 20	. 971496	22.65		39
22	. 970947	22.33	. 9935092	. 20	. 9723	22.58	.027145	38
23	. 972239	22.31	. 993030	. 20	. 97	22.51	. 025791	37
24	. 973623	22.24	. 99	. 20	. 975560	22.44	. 024440	35
25	.974962	22.17	. 9935056	. 20	. 976906	22.37	.023094	35
26	.976293	22.10	.998044	. 20	.97825	22.30	. 020414	33
27	. 9776	22.03	. 9995032	. 20	.979992	22.24	. 019079	32
25		21.97	. 9993008	. 20	. 932251	22.17	. 017749	31
		21.90		. 20		22.10	1.016423	
出	8.931573	21.83	9.997996	. 20	$\begin{array}{r}8.983577 \\ \hline 931899\end{array}$	22.04	. 015101	29
31	. 9332333	21.77	. 9997981	. 20	.936217	21.97	. 013783	28
33	. 935491	21.70	. 9979.59	. 20	. 987532	21.91	. 012468	27
34	. 936789	21.64	. 997947	. 21	. 939842		. 011155	26
35	. 938033	21.57	. 997935	.21	. 990149	21.71	009851	25
36	. 9593374	21.44	. 997922	. 21	. 991451	21.65	. 0085549	24
37	. 990660		. 997910	. 21	.992750	21.59	.007250	23
33	. 991943	21.31	. 9978978	. 21	. 9991045	21.52	. 0059595	22
39	. 993222	21.31	. 997835	. 21	. 9953337	21.46	. 004663	21
40	8.994497		9.997872		8.996621		1.003376	20
41	. 9955763	21.12	. 9978860	21	.997903	21.34	.002092	19
42	. 997036	21.06	. 9978847	21	. 999188	21.27	. 0.000812	18
43	. 993299	21.00	. 997835	21	9.000165 001738	21.21	0.9995355 .993262	17
44	. 999560	20.91	. 9978782	. 21	. 001733	21.15	. 9996993	16
45	9.000316	20.83	. 99787899	. 21	. 0313007	21.09	. 99969728	14
46	. 002069	20.82	. 99977978	. 21	. 0005534	21.03	. 994466	13
47	. 003318	20.76	. 9997771	. 21	.006792	20.97	. 993208	12
4	. 00156	20.70	. 997771	. 21	. 000672	20.91		
49	. 005305	20.64		.21		20.85	. 991953	11
50	9.007044		9.997745		9.009293		0.990702	10
51	. 003278	20.53	. 997732	. 22	. 010546	20.74	. 939454	9
52	. 009510	20.52 20.46	. 997719	. 22	. 011790	20.63	. 938210	8
53	. 010737	20.46 20.40	. 997706	. 22	. 013031	20.62	. 986969	7
54	. 011962	20.35	.997693	. 22	. 014268	20.56	. 9855732	6
55	. 013182	20.29	. 9977630	. 22	. 015502	20.51	. 98849268	5
56	. 014400	20.23	. 9977667	. 22	. 016732	20.45	. 9833268	4
57	. 015613	20.17	. 9976561	. 22	. 017959	20.39	. 9880817	2
53	. 016324	20.12	. 9997641	. 22	. 01918183	20.34		1
59	. 018031	20.06	$\begin{aligned} & .997623 \\ & .997614 \end{aligned}$. 22	$\begin{aligned} & .020403 \\ & .021620 \end{aligned}$	20.28	. 97978389	0
60	. 019235		. 997614		. 021620			
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.019235		9.997614	22	9.021		0.978380	60
1	. 020435	19.95	. 997601	22	. 022834	20.23 20.17	. 977166	59
2	. 021632	19.95	.997588	22	. 021044	20.12	. 975956	58
3	.022325		. 997574	22	. 025251	${ }_{20.06}^{20.12}$. 974749	57
4	. 024016	19.78	.997561	22	. 026455	20.01	. 973545	56
5	. 025203	19.73	. 997547	22	.027655	19.95	. 972315	55
6	. 026385	19.67	. 997531	23	. 028852	19.90	. 971145	54
7	. 027567	19.62	. 997520	23	. 030046	19.85	. 69995	53
8	. 023744	19.57	. 997507	23	. 031237	19.79	. 963763	52
9	. 02	19.51	. 997493	23	. 032425	19.74	. 967575	51
10	$9.0310=9$	19.46	9.997450		$\bigcirc .033609$		0.966391	50
11	. 032257	19.41	. 997466	23	. 034791	19.64	. 965209	49
12	. 033421	19.36	.997452	. 23	$\therefore 355869$	19.58	.964031	45
13	. 031582	19.30	. 997439	23	. 037141	19.53	. 962555	47
14	. 035741	19.25	. 997425	23	. $03-316$	19.48	. 961654	46
15	.036896	19.20	. 997411	. 23	. 039485	19.43	. 960515	45
16	. 033048	19.15	. 997397	. 23	. 040651	19.38	. 959349	14
17	. 039197	19.10	. 997333	. 23	. 041813	19.33	. 955187	43
18	. 040312	19.05	. 997369	. 23	. 042973	19.28	. 9577027	42
19	. 041485	19.00	. 997355	. 23	. 044130	19.23	. 955870	41
20	9.042625	18.95	9.997	. 23	9.0452	19.18	0.954716	40
21	.013762	18.95	. 997327	. 23	. 046434	19.18	. 953566	39
22	. 044895	18.85	. 997313	. 24	.047582	19.08	. 952418	38
23	. 046026	18.85	. 997299	. 24	. 045727	19.03	. 951273	37
24	. 047154	18.75	. 99728	. 24	. $049 \bigcirc 69$	18.98	. 950131	36
25	. 048279	18.70	. 997	. 21	. 0511005	18.93	. 918992	35
26	. 049400	18.65	.997257	. 24	. 052144	15.89	. 947 ¢56	31
$\stackrel{27}{27}$. 050519	18.60	. 997242	. 24	. 053277	18.84	. 9467523	3.3
23	. 051635	18.55	. 997228	. 24	.054407	18.79	. 945593	32
29	. 052749	18.50	214	. 24	.055535	18.74	. 944465	31
30	9.053359		9.997199		э.056659		0.943341	\therefore
31	. 054966	1	. 997155	. 24	. 057781	18.65	. 912219	29
32	.056071	18.36	. 997170	. 24	.058900	18.60	. 941100	28
33	. 057172	18.31	. 997156	. 24	. 160016	18.56	.939984	27
34	.053271	18.27	. 997141	. 24	. 061130	18.51	. 933570	26
35	. 059367	18.22	. 997127	. 24	. 062240	18.46	. 937766	2.5
36	. 060160	18.17	. 997112	. 24	. 063318	18.42	. 9336652	$2 \cdot$
37	. 061551		. 997098	. 24	. 064453	18.37	. 9355547	29
33	.062639	13.08	. 997083	. 25	. 0655556	18.33	. 934141	22
39	. 063724		. 997063	. 25	. 066655	18.28	. 933345	21
40	$9.064-1$		9.997053		9.067752		0.9322	20
41	. 1165385	17.99	. 997039		. 068846	18.219	. 931154	19
42	. 066962	17.90	. 997024	. 25	. 069933	18.15	. 930162	18
43	. 06×1136	17.98	. 997009	. 25	.071027	18.10	. 928973	17
4	. 063107	17.81	. 996994	. 25	. 072113	18.06	. 927887	16
45	. 070176	17.77	. 996979	. 25	.073197	18.02	.926803	15
46	.(171242	17.72	. 996964	. 25	.07427S	17.97	. 925722	14
47	.172376	17.68	. 936949	. 25	. 075356	17.93	. 924644	13
48	. 073366		. 996934		. 076732	17.89	. 923.65	12
49	.074424	17.59	. 996919	. 25	. 077505		. 922495	11
50	9.075430		9.996904		9.078576		0.921424	10
51	.00\%6533	17.51	. 996889	. 25	. 079614	17.76	. 9220356	9
52	.0775>3	17.46	.996974	. 25	. 080710	17.72	. 919290	8
53	. 078631	17.42	. 996858	. 25	. 081773	17.67	. 918227	7
54	. 079676	17.38	. 996343	. 26	.082-33	17.63	. 917167	6
55	. 030719	17.34	. 9965823	. 26	.053-91	17.59	. 91615109	5
56	. 031759	17.29	. 9969512	. 26	.084947	17.55	. 91514050	4
57	. 082797	17.25	. .9967982	. 26	.0ヶ\% 050	17.51	. 91212950	3
58	. 08383	17.21	. 9996766	26	. 088898	17.47	. 911902	1
59	. 0858894	17.17	. 996751	. 26	. 089144	17.43	. 91055	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1.	Cotang	D. $1^{\prime \prime}$.	Tang.	M

COSINES, TANGENTS, AND COTANGENTS.

181

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 1^{11}.	Tang.	D. $1^{\prime \prime}$	Cotang.	M.
0	9.085394		9.996751	. 26	9.039144	17.39	0.910956	$\begin{aligned} & 60 \\ & 59 \end{aligned}$
${ }_{2}^{1}$. 0363922	17.09	${ }^{.996735}$. 26	.090182	${ }_{17.31}^{17.35}$. 903772	53
${ }_{3}^{2}$.087977	17.05 17.00 1	. 9996704	. 26	${ }^{0} 0922266$	${ }_{17.27}^{17.31}$. 907734	${ }_{56}^{57}$
4	. 039990	16,96	. 9996633	. 26	${ }^{.093302}$	17.23	. 9005664	55
5	. 091003	${ }_{16.92}^{16,96}$. 9996673	. 26	. 09933367	17.19	. 994633	54
${ }^{6}$. 093203037	16.88		. 26	.096395	${ }_{17}^{17.15}$.903605	53
8	.093037 .094047	16.84 16.80 1	${ }^{.9966611}$. 26	. 097422	${ }_{17.07}^{17.11}$.902573	52
8	$\begin{aligned} & .094047 \\ & .095056 \end{aligned}$	16.80 16.76	. 996610	. 26	. 093446	${ }_{17,03}^{17.07}$. 901554	51
10	9.096962		9.996594	27	9.099463	16.99	0.900532	50
11	.097065	${ }_{16.69}^{16.73}$.996378	${ }_{27}$. 1001587	16.95	.8934	48
12	.0930666	16.65	.996 .562 .996 .46	${ }_{27}^{27}$. 101504	16.91	. 897451	47
14	. 1090966	16.61	. 99969330	${ }_{27}^{27}$. 103532	16.83 16.84 168	. 896463	46
15	. 101056	16.57 16.53	. 996314	. 27	. 104542	16.80 16.80	. 895453	45
16	. 102348	16.53 16.49	. 996198	. 27	. 105550	16.76	. 8993414	43
17	. 1030337	16.46	. 9996182	. 27	. 107559	16.72	. 892441	42
18	. 104025	16.42	. 9996165	${ }_{27}^{27}$. 103560	16.69	. 891440	41
19	. 105010	16.38	.996449	. 27		16.65	0.8	
20	9.105992	16.34	9.996433	. 27	9.110	16.61	. 88944	39
${ }_{22}^{21}$. 1067973	16.30	${ }^{.9996477}$	$\stackrel{27}{27}$. 111551	16.58 16.54 16.5	. 8837419	${ }_{37}^{33}$
23	. 10.5927	16.27 16.23	. 996334	. 27	. 112543	${ }_{16.50}^{16.54}$. 8887457	37
24	. 109901	16.19	. 9969363	27	.113533	16.47	. 835479	${ }_{35}^{36}$
25	. 110373	16.16	${ }^{.} 99963335$. 27	. 1155507	16.43	. 883493	34
${ }_{27}^{26}$. 1118382	16.12	. 9963318	. 28	. 1116491	16.39 16.36	. 883509	33
23	.113774	${ }_{16.05}^{16.08}$. 996332		. 117472	${ }_{16.32}$. 8882523	32
29	. 114737	16.00 16.01	. 996235	. 23	118	16.29		31
30	9.115693		9.9962	. 23	9.119129	16.25	0.880571	30
31	. 116656	15.94	.996252	. 23	${ }^{1120404}$	16.22	${ }^{.8789623}$	23
	. 117613	15.90	. 9996235	. 23	. 12122378	16.18	. 877652	
33	. 1185367	15.87		. 23	${ }_{.} .233317$	16.15	. 876633	26
34	.119519	15.83	. $9996202{ }^{\text {a }}$	23	. 124234	16.11	. 875716	25
35	.120169	15.80	. 9966163	. 23	. 125249	16.08	. 874751	24
36 37	${ }^{.121417}$	15.76		.23	.126211	16.01	. 873789	23
33	. .12333826	15.73	. 9.996151		. 127172	16.01 15.93	. 8782328	22
39	. 124243	15.69 15.66	. 996117	. 23	. 123130	15	. 871870	21
40	9.125187		9.996100		9.129037		0.870913	
41	. 126125	15.62 15.59	. 996033		. 1330041	15.87	.869959 .869006	19
42	. 12727993	15.56	.996066 .996049	. 23	. 131914	15.84	. 863056	17
43	. 127993	15.52	. 99960493	29	. 132393	15.81	. 867107	16
44	. 123925	15.49	${ }^{.996032}$	29		15.77	. 866161	15
45	.129354	15.45	${ }^{.996015}$	29	. 134784	15.74	. 865216	14
	. 130781	15.42		. 29	. 135726	${ }_{15.68}^{15.71}$. 864274	13
43	. 1326380	15.39	. 9995963	. 29	. 136667	15.68 15.64	. 8633333	12
49	. 133551	15.35 15.32	. 995946	. 29	. 137605	15.61	. 862395	11
50	9.134470		9.995928		9.133512		0.8661453	
51	. 135337	15.26	. 9999911	. 29	. 1394776	15.55	. 88.869597	8
52	. 133303	15.22	${ }^{.} 99953971$. 29	.140409	15.51	${ }_{.858660}$	7
53	. 137216	15.19		. 29	. 142269	15.48	. 857731	6
5	.1339037	15.16	. 99593811	. 29	. 143196	15.42	. 856301	5
56	. 139944	15.13	.995823	.29	. 144121	15.42	.855879	4
57	. 1140350	${ }_{15.06}^{15.09}$. 9995306	. 29	. 145044	${ }_{15.36}$	${ }^{.854956}$	$\stackrel{3}{3}$
53	. 141754	15.06	. 9995738	29	. 1459966	15.32	. 8553115	$\stackrel{1}{2}$
59 60	$\begin{aligned} & 1142655 \\ & .143555 \end{aligned}$. 00	$.995771$	30	$\begin{array}{r} .144785 \\ .14803 \\ \hline \end{array}$	15.29	.852197	9
M.	Совіпе.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $\mathbf{1}^{\prime}$.	Tang.	M.

M.	Sine	D. $1^{\prime \prime}$.	Cosine.	D. 1^{1}	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.143555		9.995753		9.147803		0.852197	60
?	. 144453	14.97 14.93	. 9957335	. 30	$\begin{aligned} & 9.148715 \\ & .148715 \end{aligned}$	15.26 15.23	. 851282	59
2	. 145349	14.90	. 9955717	. 30	. 149632	15.23 15.20	. 850368	58
3	. 146243	14.97	. 995699	. 30	. 150544	15.20	. 849456	57
4	. 147136	14.84	995681	. 30	. 151454	15.17	. 845546	56
5	. 148026	14.51	. 995664	. 30	. 152363		. 847637	55
6	. 148915	14.78	. 995546	. 30	. 153269	15.08	. 846731	54
7	. 149502	14.75	. 9955623	. 30	. 154174	15.05	. 845826	53
8	. 150656	14.72	. 99.5610	. 30	. 155077	15.02	. 844923	52
9	. 151569	14.69	. 995591	. 30	. 155978	14.99	. 844022	51
10	9.152451	14.66	9.995573	. 30	9.156877	14.96	0.813123	50
11	.1.53330	14.63	. 9955555	. 30	. 1577	14.93	. 8422225	49
13	. 155083	14.60	. 995519	. 30	. 159565	14.90	. 841329	47
14	. 155957	14.57	. 995501	. 30	. 160457	14.87	. 839543	46
15	. $156 \geqslant 30$	14.51	. 995452	. 31	. 161347	14.84	. 838653	45
16	. 157100	14.515	. 995464	. 31	. 162236	14.81	. 837764	44
17	. 158569	14.45	. 995446	. 31	. 163123	14.78	. 836877	43
18	. 159435	14.42	. 995427	. 31	. 161008		. 835992	42
19	. 160301	14.39	. 995409	. 31	. 164592		. 835108	41
20	9.16116		9.995390		9.1657		0.834226	40
21	. 162025	14.33	. 995372	. 31	. 1666654	14.64	. 833346	39
22	. 162355	14.30	. 995353	. 31	. 167532	14.61	S32463	38
23	. 163743	14.27	. 9953334	. 31	. 168409	14.58	. 831591	37
24	. 164600	14.24	. 995316	. 31	.169234	14.56	. 830716	36
2.5	.16.5154	14.22	. 995297	. 31	. 17015	14.53	. 829843	35
26	. 166307	14.19	. 99	. 31	. 1710	14.50	.828971	$3 \pm$
27	. 167159	14.16	.995260	. 31	. 171899	14.47	. 828101	33
23	163003	14.13	. 995241	. 31	. 172767		. 827233	32
29	. 165356	14.10	. 995222	. 31	. 173634	14.42	. 226366	31
30	9.169702		9.995203		9.174		0.825501	30
31	. 170547	14.05	. 995184	. 32	. 175362	14.36	. 824638	29
32	. 171389	14.02	. 99.5165	. 32	. 176224	14.33	. 823776	23
33	. 1722230	13.99	. 995146	. 32	. 177034	14.31	. 822916	27
34	. 173070	13.96	. 995127	. 32	. 1777942	14.28	. 822058	26
35	. 173903	13.94	. 995108	. 32	. 178799	14.25	. 821201	25
36	.174744	13.91	. 99.5089	. 32	. 17950508	14.23	. 820345	24
37	. 175575	13.88	.995070	. 32	. 180508	14.20	. 819492	23
33 39	.176411 .177242	13.85	.995051 .995032	. 32	. 18132211	14.17	. 81818640	22
39	. 17	13.83	. 995032	. 32	. 182211	14.15	. 817789	21
40	9.173072		9.995013		9.183059		0.816941	20
41	.17-970	13.77	. 994993	. 32	. 183907	14.09	. 816093	19
42	. 179726	13.75	. 994974	. 32	. 181752	14.07	. 815243	18
43	. 150551	13.72	. 994955	. 32	. 1855597	14.04	. 814403	17
44	. 181374	13.69	. 994935	. 32	. 186439	14.02	. 813561	16
45	. 152196	13.67	. 994916	. 32	. 187280	13.92	. 812720	15
16	. $1>3016$	13.64	. 994896	. 33	. 188120	13.97	. 811 R80	14
47	. 153834	13.61	. 994577	. 33	. 188958	13.94	. 811042	13
48	. 134651	13.59	. 994857	. 33	. 189791	13.91	. 810206	12
49	. 135466	13.56	. 994833	. 33	. 190629	13.91	. 809371	11
50	9.156230	13.54	9.994818		9.191462		0.808533	0
51	. 187092	13.51	. 9941793	. 33	. 1922291	13.84	807706	9
52	. 137903	13.48	. 994779	. 33	. 193124	13.81	. 806876	8
53	. 185712	13.46	. 9947759	. 33	. 193953	13.79	. 806047	\%
54	. 159519	13.43	. 994739	. 33	. 191780	13.76	. 805220	6
55	. 190325	13.41	. 994720	. 33	. 195606	13.74	. 804394	5
56	. 1911130	13.33	994700	. 33	. 196430	13.71	. 803570	4
57	. 191933	13.36	. 9991630	. 33	. 197253	13.69	. 802747	3
58	. 192734	13.33	. 9944640	. 33	-195074	13.66	. 801926	2
59 60	. 1943331	13.31	$\begin{aligned} & .994640 \\ & .991620 \end{aligned}$. 33	$\begin{array}{r} 195894 \\ 199713 \end{array}$	13.64	. 8000287	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cutang.	D. $1^{\prime \prime}$.	Tang.	M.

COSINES, TANGENTS, AND COTANGENTS.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.239670		9.993351		9.246319		0.753681	60
1	. 240336	11.93 11.91	. 993329	. 37	$.217057$	12.30 12.28	. 752943	59
2 3 4	. 2411101	11.89	. 9933307	. 37	.247794 245530	12.26 12.26	.752206	58
3 4	. 241814	11.87	. 9993234	. 37	. 2485380	12.24	. 751470	57
5	.243237	11.85	. 993240	. 37	. 249998	12.22	. 75000	55
6	. 243947	11.83	. 993217	. 37	. 250730	12.20	. 749270	54
7	. 244656	11	. 993195	. 38	. 251461	12.18	. 748539	53
8	. 245363	11.79	. 993172	. 38	. 252191	2.17	. 747809	52
9	. 246069	11.77	. 993149	. 38	. 252920		. 747080	51
10	9.216775		9.993127		9.253648		0.746352	50
11	. 247478	11.73	. 993104	. 38	$.254374$	12.11	. 745626	49
12	. 245181	11.71	. 993081	. 38	. 255100	12.09	. 744900	48
13	. 243883	11.69	. 993059	. 38	. 255824	12.07	. 744176	47
14	. 219583	11.67	. 993036	. 38	. 256547	12.05	. 743453	46
15	. 250232	11.65	. 993013	. 38	. 257269	1	. 742731	45
16	.220950		. 992990	. 38	. 257990	12.01	. 742010	44
17	. 251677	11.69	. 992967	. 38	. 258710	11.98	. 741290	43
18	. 252373	11.58	. 9929244	. 38	. 259429	11.96	. 740571	42
19	. 253067	11.58	. 992921	. 38	. 260146	11.94	. 739854	41
20	9.253761	11.54	9.9928		9.260863		0.739137	40
21	. 254453	11.52	.992>75	. 38	. 261578	11.92 11.90	. 735422	39
22	.255144	11.50	. 992852	. 39	. 262292	11.98	. 737708	38
23	. 255834	11.50	.992829	. 39	. 263005	11.89	. 736995	37
24	. 256523	11.46	. 992506	39	. 263717		. 736283	36
25	. 257211	11.44	. 992783	. 39	. 264423	11.85	. 735572	35
26	. 257893		. 992759	39	. 265138		. 734862	34
27	. 258583	11.42	. 992736	39	. 265347	11.79	. 734153	33
28	.2.99263	11.49	. 992713	39	. 266555		. 733445	32
29	. 259951		. 992690	39	. 267261		.732739	31
30	9.260633		9.992666		9.26796		0.732033	30
31	. 261314		. 992643	39	. 268671		731329	29
32	. 261994	11.33	. 992619	39	. 269375	11.72	. 730625	28
33	. 262673	11.31	. 992596	39	. 270077	11.70	. 729923	27
34	. 263351	11.30	. 992572	. 39	. 270779		. 729221	26
35	. 264027		. 992549	. 39	. 271479	11.65	. 728521	25
36	. 264703	11.24	. 992525	. 39	. 272178	11.65	. 727822	24
37	. 2653377	11.22	. 992501	. 39	. 272376	11.62	. 727124	23
33	.266751	11.22	. 992478	. 40	. 273573	11.60	. 726427	22
39	. 266723	11.20	. 992454	. 40	. 274269	11.60	. 725731	21
40	9.267395		9.992430		9.274964		0.725036	20
41	. 263065	11.17	. 992406		. 275658	. 5	. 724312	19
42	. 263734		. 992332	. 40	. 276351	11.55	. 723649	18
43	. 269402	11.13 11.12	. 992359	. 40	. 277043	11.53	.7229.37	17
$4!$. 270069		. 992335		. 277734		. 722266	16
45	. 270735	11.10	. 992311	. 40	. 278124	11.50	. 721576	15
46	. 271400	11.08	. 992257	. 40	. 279113	11.46	.720887	14
47	. 272064	11.06	. 992263	. 40	. 279301	11.45	. 720199	13
48	. 272726	11.03	. 992239	. 40	. 230438	11.43	. 719512	12
49	. 27		. 99	. 40	. 231174	11.41	. 718826	11
50	9.274049		9.992190		9.281858		0.718142	10
51	. 274708	10.99	. 992166	. 40	. 252542	11.40	. 717458	9
52	. 275367	10.93	. 992142	. 40	. 283225	11.38	. 716775	8
53	. 276025	10.96	. 992118		. 283907	11.36	716093	7
54	. 276681	10.94 10.92	. 992093	. 41	. 234588	11.35	. 715412	6
55	. 277337	10.91	. 992069	. 41	. 235268	11.31	. 714732	5
56	. 277991	10.89	. 992044	. 41	. 235947	11.30	. 714053	
57	. 278615	10.87	. 992020	. 41	. 2256624	11.23	. 713376	3
58	. 279297	10.86	. 991996	. 41	. 237301		. 712699	2
59	. 279948	10.84	. 9991971	. 41	$\begin{aligned} & .257977 \\ & .258652 \end{aligned}$	11.25	. 712023	1
60	. 2		. 99				. 711348	0
M.	Cosino.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. ${ }^{1 \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	'rang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.230599		9.991947	. 41	9.2マ-652		0.711343	60
1	. 231248	10.82	.991922	. 41	. 239326	11.23 11.22	. 710674	59
2	. 231897	10.81	. 991897	. 41	. 239999	11.22	.810001	58
3	. 232544	10.79	. 991873	. 41	. 290671	11.20 11.18	. 709329	57
4	.2>3190	10.77	. 991843	41	. 291312	11.18	. 708658	56
5	.2833:36	10.76	. 991823	. 41	. 292013	11.17	. 707987	55
6	. 281480	10.74	. 991799	1	. 29265%	11.15	. 707318	54
7	.235124	10.72	. 991774	41	. 293350	11.14	. 706650	53
8	. 235766	10.71	. 991749	. 41	.291:117	11.12	. 705333	52
9	. 236108	10.69 $1!1$.991724	. 41	. 294684	$\begin{aligned} & 11.11 \\ & 11.09 \end{aligned}$. 705316	51
10	9.237048	10.66	9.991699	42	9.295349		0.701651	50
11	. 237638	10.66	. 991674	. 42	. 296113	11.07	. 703987	49
12	. 2383326	10.51	. 99164.9	. 42	. 296677	11.116	. 703323	48
13	. 233964	10.63 10.61	. 991624	. 42	. 297339	11.04	. 702661	47
14	. 239600	10.61 10.59	.991599	.42 .42	. 298001	11.03	. 701999	46
15	. 290236	10.59 10.53	. 991574	. 42	. 293662	11.01	. 701333	45
16	. 290370	10.56	. 991549	. 42	. 299322	11.00	. 700673	41
17	. 291504	10.55	. 991524	. 42	. 299930	10.98	. 700020	43
13	. 292137	10.55	. 991493	. 42	. 300633	10.97	. 699362	42
19	.292763	10.53	. 991473	.42	.301295		.693705	41
20	9.293399		9.991443	42	9.301951		0.693049	40
21	. 291029		. 991422	12	. 302607	10.32	. 697393	39
22	. 291658	10.47	. 991397	. 42	. 303261	10.90	. 696739	38
23	.295236	10.47	. 991372	. 42	. 303914	10.89	.6960<6	37
21	. 295913	10.45	. 991346	. 42	. 304567	10.87	. 695433	36
25	.236.539	10.43	. 931321	. 42	. 305218	10.56	. 691782	35
26	. 297164	10.42	. 991295	. 43	. 305869	10.84	. 694131	34
27	. 297783	10.40	. 991270	43	. 306519	10.53	. 693481	33
23	. 233412	10.39	. 991214	. 43	. 307163	10.81	. 692332	32
29	. 299031	10	. 991218	43	. 307816	$10.8!$. 692181	31
30	9.29955 .5		9.991193		$9.30 \leq 463$		0.691537	30
31	. 300276	10.31	. 991167	. 43	. 309109	10.77	. 690891	29
32	.300395	10.331	. 991141	. 43	. 309754	10.76	. 690246	28
33	. 301514	10.31 10.30	. 991115	. 43	. 310399	10.74	. 639601	27
34	. 302132	10.30	. 991090	. 43	. 311042	10.73	. 638953	26
35	. 302743	10.28 10.26	. 991064	. 43	. 311635	10.71	. 633315	25
36	. 303364	10.25	. 991033	. 43	. 312327	10.70	. 637673	24
37	. 303979	10.25	. 991012	. 43	. 312963	10.63	.63703.2	23
33	. 304593	10.23 10.22	. 930936	. 43	. 313603	10.67	. 686392	22
39	. 305207	10.22 10.20	. 990960	. 43	. 314247	10.65	. 635753	21
40	9.375319		9.990931		9.314885		0.655115	20
41	.306139	10.19	.930903	. 44	. 315523	10.62	. 684477	19
42	. 307041	10.17	. 990332	. 44	. 316159	10.61	. 633341	18
43	. 307650	10.16	. 990355	. 44	. 31679.5	10.60	. 683205	17
14	. 303259	10.14	. 990829	. 44	. 317430	10.58	. 682570	16
45	. 373567	10.13	. 990303	. 44	. 318064	10.57	. 681936	1.5
46	. 309474	10.12	. 990777	. 44	. 315697	10.55	. 631.303	14
47	. 310030	10.10 16.09	. 990750	. 44	. 319330	10.54	. 630670	13
43	.310635	10.09	. 990724	. 44	. 319961	10.53	. 630039	12
49	. 311239	10.07 10.06	. 990697	. 44	. 320592	10.51	. 679403	11
50	9.311893		9.990671		9.321222		0.673778	10
51	. 312495		. 990645	. 44	. 321851	10.48	. 67×149	9
52	. 313097	10.03 10.01	. 999618	. 44	. 322479	10.47	. 677521	8
53	.313693	10.01	. 990.591	. 44	. 323106	10.46	. 676394	7
51	. 314297	10.09 9.93	. 990565	. 41	. 323733	10.44	. 676267	6
55	. 314997	9.93 9.97	.990533	. 44	. 324358	10.43	. 675642	5
56	.315495	9.97 9.96	. 990511	. 44	. 324933	10.41 10.40	. 675017	4
57	. 316092	9.96	. 930485	.45	. 325607	10.40	. 674393	3
53	. 316639	9.91 9.93	. 990458	.45	. 325231	10.39 10.37	. 673769	2
50)	. 317231	9.93 9.91	. 990431	. 45	. 326353	10.37	. 673147	1
60	. 317879	9.91	. 990404	. 45	. 327475	10.36	. 672525	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	I.

M.	Sine	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.317879	9.90	9.990404	45	9.327475		0.672525	60
1	.318473	9.90	. 990378	. 45	. 328095	10.35	. 671905	59
2	. 319066	9.58	.990351	. 45	. 328715	10.32	.671285	58
3	. 31965	9.86	. 990324	. 45	. 329334	10.31	.670666	57
4	. 320249	9.86 9.84	. 990297	. 45	. 329953	10.29	. 670047	56
5	. 320810	9.83	. 990270	. 45	. 330570	10.28	. 669430	55
6	. 321430	9.81	.990243	. 45	. 331187	10.27	. 665513	54
7	. 322019	9.0	.990215	. 45	. 331803	10.25	. 665197	53
8	. 322607	9.79	.990183	. 45	. 332413	10.24	.667582	52
9	. 323194	9.77	. 990161	. 45	. 333033	10.23	.66696	51
10	9.323\% $=0$	9.76	9.990131	45	9.333646	10.21	0.666354	50
11	. 324366	9.75	.990107	45	. 334259	10.21	. 665741	49
12	. 324950	9.15	.990079	. 46	. 334871	10.19	. 665129	48
13	. 3255331	9.73 9.72	. 990052	. 46	. 335432	10.17	. 664518	47
14	. 326117	9.70	. 990025	. 46	. 336093	10.16	. 663907	46
15	. 326700	9.69	. 989997	. 46	. 336702	10.15	. 663298	45
16	. 327281	9.65	. 989970	. 46	. 337311	10.14	.662689	44
17	. 327862	9.66	. 989942	. 46	. 337919	10.12	.662081	43
18	. $32>142$	9.65	.989915	. 46	.338527	10.11	. 661473	42
19	. 329021	9.65	. 989887	. 46	. 339133	10.10	.660567	41
20	9.329599	9.62	9.989 60	46	9.339739	10.08	0.660261	40
21	. 330176	9.61	. 989832	. 46	. 310344	10.07	. 659656	39
22	. 330753	9.60	.989504	. 46	.340948	10.06	. 659052	38
23	. 331329	9.58	.959777	. 46	. 311552	10.05	. 658148	37
24	. 331903	9.57	.989\%49	6	. 312155	10.03	. 657845	36
25	. 332478	9.56	.959721	. 46	. 312757	10.02	. 657243	35
26	. 333051	9.54	. 989693	. 46	313358	10.01	. 656642	34
27	. 333624	9.53	. 989665	. 46	343958	10.00	. 656042	33
28	. 334195	9.52	. 999637	7	. 344558	9.98	. 655442	32
29	. 331767	9.50	. 959610	. 47	. 345157	9.97	.651813	31
30	9.355337		9.959582		9.345755	9.96	0.654245	30
31	. 335906	9.48	. 939553	47	. 346353		. 653647	29
32	. 336475	9.45 9.46	. 939525	. 47	. 346949	9.93	. 653051	28
33	. 337043	9.46	. 989497	. 47	. 347545	9.92	.652455	27
34	. 33 т 610	9.75	. 939469	. 41	. $31>141$	9.91	. 651859	26
35	. 338176	9.	. $9 \leq 9441$. 47	. 315735	9.90	. 651265	25
36	. 33542	9.	. 989413	. 47	. 319329		.650671	24
37	. 339307	9.41 9.40	. 989385	. 47	. 349922	9.87	. 650078	23
33	. 339371	9.39	. 989356	. 47	. 350514	9.86	. 649406	22
39	. 340431	9.39 9.37	.959323	. 4	.351106	9.85	. 648894	21
40	9.340996		9.989300		9.351697		0.648303	20
41	. 311558	9.36	.989271	. 47	. 352287	9.81	. 647713	19
42	. 342119	9.35	. 989243	. 47	. 352576	9.81	. 647124	18
43	. 312679	9.31	. 939214	. 47	. 353465	9.81	. 616535	17
44	. 343239	9.32	. 939186	. 48	. 351053	9.89	. 645947	16
45	. 313797	9.31	. 939157	. 48	. 354640	9.79	. 645360	15
46	. 344355	9.30	. 959123	. 48	. 355227	9.78	. 644773	14
47	. 344912	9.29	. 989100	. 48	. 355813	9.76	. 644187	13
48	. 345469	9.26	. 989071	. 48	. 356398	9.75 9.74	. 643602	12
49	. 316024	9.25	. 989042	. 48	. 356982	9.74	. 643015	11
50	9.316579		9.989014		9.357566		0.642434	10
51	. 317134	9.24	.938955	. 48	. 358149	9.72 9.70	. 641851	9
52	. 347637	9.22	. 988956	. 48	. 355731	9.70 9.69	. 641269	8
53	. 345240	9.21	. 988927	. 48	. 359313	9.68	. 640687	7
54	. 348792	9.29	. 938898	. 48	. 359893	9.67	. 640107	6
55	. 319343	9.17	. 938869	. 48	. $3604 \pi 4$	9.66	. 639526	5
56	. 349893	9.16	. 988840	. 48	. 361053	9.65	. 638947	4
57	. 350443	9.15	. 988811	. 48	. 361632	9.63	. 638368	3
58	. 350992	9.15	. 988782	. 48	. 362210	9.63	. 637790	2
59	.351540	9.14 9.13	. 988753	. 49	. 362787	9.61	. 637213	1
60	. 352038	9.13	. 788724	. 49	. 363364	9.61	. 636636	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang	M.
0	9.333675		9.936994		9.396771		0.6032229	60
	. 334182	8.43	. 936873	. 53	$.397309$	8.96 8.96	. 602691	59
2	. 331687	8.42	.986341	. 53	. 397846	8.95	. 602154	58
3	. 335192	8.41	.936>09	. 53	. 393383	8.94	. 601617	57
4	. 335697	8.49	. 936778	. 53	.398919	8.93	. 601081	56
5	. 336201	8.39	. 936746	. 53	.399455	8.92	.600545	55
6	. 336704	8.39	. 936714	. 53	399990	8.91	. 600010	54
7	. 337207	8.37	. 9866633	. 53	. 409524	8.90	. 599476	53
8	. 337709	8.36	.9866.91	. 53	. 401058	8.89	. 593942	52
9	. 338210	8.35	. 986619		. 401591	8.88	. 593109	51
10	9.383711	8.34	9.956	53	9.402	8.87	0.597876	50
11	. 339211	8.33	. 986555	. 53	. 402655	8.86	. 5973	49
12	. 339711	8.32	. 936523	. 53	. 403187	8.85	. 596313	48
13	. 390210	8.31	. 936491	. 53	. 403718	8.81	. 596232	47
14	. 390703	8.30	. 936459	. 53	. 404249	8.83	. 595751	46
15	. 391206	8.29	. 986127	. 54	. 404778	8.82	. 595222	45
16	.391703	8.29	. 936395	. 54	. 405303	8.81	. 594692	44
17	.392199	8.27	.9マ6363	. 54	. 405836	8.80	. 594164	43
18	. 392695	8. 26	. 936331	. 54	. 406364	8.79	. 593636	42
19	. 393191	8.25	.956299	. 54	. 406392	8.78	. 593103	41
20	9.393635		9.956266		9.407419		0.592531	40
21	. 394179		. 936234	. 54	. 407945	8.76	. 592055	39
22	. 394673	88.22	. 986202	. 54	. 408471	88.75	. 591529	38
23	. 395166	8.21	. 936169	. 54	. 408996	8.75	. 591004	37
24	. 395653	8.21	. 936137	54	. 409521	8.74	. 590479	36
25	. 396150	8.19	. 936104	. 54	. 410045	.	. 589955	35
26	. 396641	8	. 986072	54	. 410569		. 589431	34
27	. 397132	8.17	. 986039	54	.411092		. 588908	33
23	. 397621		.956007	. 54	. 411615	8.70	. 583335	32
29	. 393111	8.16	55974		. 412137	8.69	. 587863	31
30	9.393600		9.935942		9.4126.58		0.587312	30
31	. 399053		. 985919		. 413179		. 586821	29
32	. 399575	8.13	. 935876	5.	. 413699		. 586301	28
33	. 490062	8.11	. 985813	5.5	. 414219	, 65	. 585781	27
34	. 400549	8.	. 935811	55	. 414733		. 535262	26
35	.40103.		. 935778	55	. 415257	8.64	. 584743	25
36	. 401520	8.	. 935745	. 55	. 4157	8.63	4225	21
37	. 402	8.07	.935712	. 55	. 41	8.62	53707	23
	.402489	8.06	1	. 55	9	8.61	583190	22
39	. 402972	8.05	16	. 55	26	8.60	582674	21
40	9.403455	8.04	9.935613		9.417842		0.582158	20
41	.403933	8.03	.935.j30		. 418358	8.58	. 581642	19
42	. 404420	8.03 8.02	. 9355517	. 55	. 418873	8.57	. 581127	18
43	. 404901	88.01	. 9355514	. 5	.419387	8.56	. 580613	17
44	. 405382	8.00	. 935430	. 55	.419901	8.56	. 580099	16
45	. 405362	7.99	. 935447	. 55	. 420415	8.55	.579535	15
46	. 406341	7.93	. 935414	. 56	. 420927	8.54	. 579073	14
47	. 416320	7.97	. 935331	. 56	421440	8.53	. 578560	13
48	. 407299	7.97	. 93.5317	. 56	421952	8.52	. 578048	12
49	.407777		. 985314	. 56	. 422463	8.51	. 577537	11
50	9.403254		9.985230		9.422974		0.577026	10
51	. 403731	\% 94	. 935247		. 423434	8.49	.576516	9
52	. 409207	7.93	. 985513		. 423993	8.49	.576007	8
53	. 409632	7.92	. 935130	56	. 424503	8.48	. 5754949	7
$5 \pm$. 410157	7.91	. 935146	. 56	. 425011	8.47	. 5749889	6
55	. 410632	7.90	. 9855113	. 56	. 4255019	8.46	. 574481	5
56	. 411106	7.89	. 9855045	. 56	. 426534	8.45	. 5739766	4
57	. 4115059	7.88	. 935011	. 56	. 427041	8.44	. 572959	3
59	. 412524	7.87	. 934978	56	. 427547	8.43	. 572453	1
60	. 412996	7.86	. 984944	56	. 423052	8.43	. 571948	0
M.	Cosine.	D. $1^{\prime \prime}$	Sine.	D. 1^{11}.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

cosines,			TANGENTS, A		ND COTANGENTS		$\begin{array}{r} 189 \\ 1649^{\circ} \end{array}$	
M.	Sine	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{1 \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.412996		9.984944	. 56	9.428052	8.42	0.571948	60 59
1	9.412396	7.85 7.84	. 984910	. 57	. 4235558	8.41	. 571442	58
2	. 413938	7.84 7.84	. 984876	. 57	. 4299062	8.40	. 570434	57
3	. 414408	7.88	. 984812	. 57	. 42950070	8.39	. 569930	56
4	. 414878	7.88	. 984808	. 57	. 4330070	8.38	. 569427	55
5	. 415347	7.81	. 98484744	. 57	. 4331075	8.38	. 568925	54
6	. 415815	7.80	. 9847470	. 57	. 4315157	8.37	. 568423	53
7	. 416283	7.79	. 9847606	. 57	. 432079	8.36	. 567921	52
8	${ }_{4}^{4167517}$	7.78	. 98464638	. 57	. 432580	8.35 8.34	. 567420	51
9	. 417217	7.77	. 984638	. 57		8.34	0.566920	50
10	9.417684	7.76	9.984603 .984569	. 57	9.433080 .433580	8.33	. 566420	49
11	.418150	7.75	. 98454569	. 57	. 4334080	8.33	. 565920	48
12	.418615	7.75	. 98454500	. 57	. 434579	2	. 565121	47
13	. 419079	7.74	. 98984466	. 57	. 435078	8.31 8.30	. 564922	46
14	. 419544	7.73	. 98844432	. 57	. 4355576	29	. 564424	45
15	.420007 .420470	7.72	. 98443432	. 57	. 436073	8.29 8.28	. 563927	44
16	.420470 .420933	7.71	. 9843843	. 58	. 436570	8.28 8.28	. 5633430	43
17	. 421395	7.70	. 984323	. 58	. 437067	8.27	. $562 \% 33$	42
19	. 421857	7.69 7.68	. 984294	. 58	. 437563	8.25	. 562437	41
20	9.422318		9.984259	. 58	9.438059	8.25	0.561941	40
21	. 422778	${ }_{7.67}$. 934224	. 58	438554	8.24	. 561446	
22	. 423238	7.66	. 984190	. 58	. 4339048	8.24	. 560457	37
23	. 423697	7.65	. 984155	. 58	. 4439533	8.23	. 559964	36
24	. 424156	7.64	. 9884120	. 58	. 440529	8.22	. 559471	35
25	. 424615	7.63	. 9884050	. 58	. 4441022	8.21	. 558978	34
26	. 425073	7.62	. 984015	. 58	. 441514	8.20 8.20	. 558486	33
27	. 42525983	7.61	. 9883981	. 58	. 442006	8.20	. 557994	32
28	. 4256443	7.61	. 983916	. 58	. 442497		. 557503	31
29	. 426443	7.60		. 58			0.557012	30
30	$\begin{array}{r}9.426899 \\ \hline 427354 \\ \hline\end{array}$	7.59	9.983911 .983875	. 58	9.442988 .443479	8.17	. 556521	29
31	. 427354	7.58	. 983875	. 58	. 44343968	8.16	. 556032	28
32	. 427809	7.57	. 98338805	. 59	. 4444458	8.16 8.15	. 5555542	27
33 31 3	. 42828617	7.56	. 98838770	. 59	. 444947	8.15 8.14	. 555053	26
31 35 3	. 4288177	7.55	. 9833735	. 59	. 445435	8.14 8.13	. 554565	25
35 36	. 4298623	7.55	. 983700	. 59	. 445923	8.13 8.13	. 554077	24
36 37	. 430075	7.53	. 983664	.59 .59	. 446411	8.12	. 553589	23
38	. 430527	7.52 7.52	. 983629	. 59	. 446898	8.11	. 553102	22
59	. 430978	7.51	. 983594	. 59	. 447384	8.10	. 552616	21
40	9.431429	7.50	9.983558	59	9.447870	8.09	0.552130	20
41	. 431879	7.49	. 9833523	. 59	. 44483541	8.09	. 551159	18
42	. 432329	7.49	. 99334878	. 59	. 4449326	8.08	. 550674	17
43	. 432778	7.48	.983452	. 59	. 4499810	8.07	. 550190	16
44	. 433226	7.47	. 98383116	. 59	. 450294	8.06	. 549706	15
45	.433675 $43+122$	7.46	. 98333815	. 59	. 450777	8.06	. 549223	14
46	. 434122	7.45	. 988331509	. 59	. 451260	8.05 8.04	. 548740	13
47	.434569 .435016	7.44	. .98338273	. 60	. 451743	8.04 8.03	. 548257	12
43	. 43550162	7.44	. .9832383	. 60	. 452225	8.03 8.03	. 547775	11
49	. 435462	7.43	. 9832335	. 60	-9.452706	8.03	0.547294	10
50	9.435908	7.42	9.983202 .933166	. 60	9.452706 .453187	8.02	. 546813	9
51	. 436353	7.41	.933166 .933130	- . 60	. 4533668	8.01	. 546332	8
52	. 4367938	7.40	. 933130	4 . 60	. 45354148	8.00	. 545852	7
53	.437242 .437656	7.40	. 98383091	8 - . 60	. 45464628	8.00	. 5453872	6
54	.437686 .438129	7.39	. .9933022	2 - 60	. 4555107	7.99	. 544893	5
55 56	.438129 .433572	7.33 7.37	. .9832986	6 6	. 455586	7.98 7.97	. 544414	4
57	. 439014	7.37 7.36	. 93292950	- 60	. 456064	7.97 7.97	.543936	3
58	. 439456	7.36 736	. 9822914	4 - . 60	.456542	7.96	. 54342981	$\stackrel{2}{1}$
50 60	¢	7.35	. 9322878	8 \% . 60	.457019 .457496	7.95	. 542504	0
60	. 410338							
M.	. Cosine.	D. $1^{\prime \prime}$. Sine.	D. $1^{\prime \prime}$	'1. Cotang.	D. $1^{\prime \prime}$.	Tan	

M.	Sine.	D $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.440333	7.34	9.932842		9.457376		0.542504	60
	. 440778	7.33	$.932305$. 60	$.457973$	7.91	. 512027	59
2	. 441218	7.32	.932769	. 61	.4.5449	7.93	. 541551	58
3	. 441653	7.31	. 9 ± 2733	. 61	.4.59925	7.92	. 541075	57
4	. 4142096	7.31	.932696	. 61	.4.59400	7.91	. 540600	56
5	. 4442.535	7.30	.972669	. 61	. 4595875	7.91	. 540125	5.5
6	. 442973	7.29	. 932631	. 61	. 469339	7.90	.539651	54
7	. 4434310	7.23	982551	. 61	. 461297	7.89	. 5391777	5
8	. 444234	7.27	. 9892514	. 61	. 461770	7.83	. 5338230	52
10	9.444720		9.932477		9.4622		0.537758	50
11	. 445155	7.26	. 932141	. 61	. 46271	7.87	. 5372	49
12	. 445590	7.2 .9	. 932404	. 61	.4631: 6	7.6	. 536814	$4{ }^{\text {4, }}$
13	. 446025	7.24	. 932367	. 61	. 4636.58	7.85	.536:312	$4 i$
14	. 446459	7.24	. 932331	. 61	. 464128	7.8.	.535\%72	46
15	. 446393	7.23	.932294	. 61	. 464599	7.	.535401	45
16	. 44π in26	7.21	.932257	. 61	.465n69	7.83	. 531931	44
17	. 4177559	7.20	. 932220	. 62	. 4657539	7.83	. 531461	43
15	. 443191	7.20	. 932183	. 62	. 466003	7.1	. 5333992	42
19	. 445623	7.19	. 932146	. 62	. 466177	7.81	.533523	41
29	9.449754	7.15	9.922109		9.466945		0.533055	40
21	. 449435	7.17	. 932072	. 62	. 467413	7.79	. 532557	39
22	. 149915	7.17	. 932035	. 62	.4678-0	7.78	. 532120	33
23	450345	7.16	. 931993	. 62	. 463317	7.73	.5316:53	37
21	. 450775	7.15	. 981961	. 62	. 46×514	7.77	. 531156	36
25	. 451204	7.14	. $9>1924$.62	.469230	7.76	.530720	35
26	. 4.51632	7.13	. 9×1526	. 62	. 469746	7.76	. 530254	31
27	. 4.52060	7.13	. 931349	. 62	. 470211	7.75	.529789	33
23	. 452453		. 931312	. 62	. 470676	7.74	. 529324	32
29	. 4.52915	7.11	. 981774	. 62	. 471141	7.74	.523359	31
37	9.453342		9.93173	. 62	9.47160		0.523395	30
$3!$. 153763	7.10	. 931700		. 472069	7.72	. 527931	29
32	. 451191	7.109	. $93166{ }^{2}$. 63	. 472532	7.71	. 527463	23
33	. 454619	7.09	. 98162.5	. 63	.472995	7.71	. 527005	27
31	. 455044	7.07	. 931587	. 63	. 473457	7.70	. 526543	26
3.5	. 455469	7.07	. 931549	. 63	. 473919	7.69	. 526031	2.5
30	. 4.55893	7.06	. 931512	. 63	. 474381	7.69	. 525619	24
37	. 456316		. 931474	. 63	. 474342	7.63	. 52.5159	23
33	. 456739	7.04	. 931436	. 63	. 475303	7.67	. 524697	22
39	. 157162	7.01	. 931399	. 6	. 475763	7.67	. 524237	21
40	9.4.57551		9.931361		9.476223		0.523777	20
41	. 455006		. 981323	. 63	. 476633		. 523317	19
42	. 153127	7.01	. 931235	. 63	. 477142	7.65	. 522353	18
43	. 458343	7.01	. 981247	. 63	. 477601	7.65	. 522399	17
44	. 459263	7.00	. 931209	. 63	. 478059	7.64	. 521941	16
4.5	.459633	6.09	. 931171	. 63	. 478517	7.63 7.63	.521483	15
46	. 460103		. 931133		. 478975	7.63	. 521025	14
47	. 460527		.931095	. 61	. 479132	7.62	.520.563	13
48	. 160946		. 931057		. 479389		. 520111	12
49	. 461364	6.97 6.96	. 931019	. 64	. 430345	7.61 7.60	. 519655	11
50	9.461782		9.930931		9.450801		0.519199	10
51	. 462199		. 939942		. 481257		. 518743	9
52	. 462616	6.95 6.94	. 930904	. 64	. 481712	7.59	. 518233	$\stackrel{\text { S }}{ }$
53	. 463032	6.94 6.93	. 950366	. 64	. 482167	7.55	. 517833	7
54	. 463443		. 930327	. 64	. 482621	7.57	. 517379	6
55	. 463364		. 930789		. 483075		. 516925	5
56	. 461279	6.92 6.91	. 930750	. 61	. 483529	7.56	. 516471	4
57	. 461694	6.91	. 930712		. 483932	7.55	. 516013	3
53	. 46.5103	6.90 6.90	. 930673		. 48443.5	7.55	.515565	2
59	. 465522	6.90 6.99	. 930635	. 64	. 481837		. 515113	1
60	. 465935	6.95	. 930596	. 6	. 485339		661	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$	Cotang	D. 1^{1}	Tang	M.

107

M.	Sine.	D. 1' ${ }^{\prime \prime}$	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.439932	6.48	9.978206	63	9.511776		0.488224	60
1	. 490371	ن. 47	. 978165	. 69	. 512206	7.16	. 437794	59
2	. 490759	U.47 6.46	.978124	. 69	. 512635	7.16	. 437363	53
3	. 491147	6.46	. 973033	. 69	. 513064	7.14	. $4=6936$	57
4	. 491535	6.46 6.45	. 978042	. 69	513493	7.14	. 486507	56
5	. 491922	6.45	. 973001	. 69	. 513921	7.14	. 456079	55
6	. 492303	6.44	. 977959	. 69	. 514349	7.13	. 455651	54
7	. 492695	6.44	. 977918	. 69	. 514777	7.13	. 435223	53
8	. 493031	6.43	. 977877	. 69	. 515204	7.12	. 484796	52
9	. 493466	6.43 6.42	. 977835	. 69	. 515631	7.12 7.11	. 434369	51
10	9.493351	6.41	9.977794	69	9.516057		0.483913	50
11	. 494236	6.41	. 977752	. 69	. 516484	7.10	. 483516	49
12	. 491621	6.40	. 977711	. 69	. 516910	7.10	. 433090	49
13	. 495005	6.39	. 977669	. 69	. 517335	7.09	. 432665	47
14	. 495333	6.39	.977623	. 69	. 517761	7.09	.4>2239	46
15	. 4957772	6.33	. 977556	. 69	. 518186	7.08	. 431814	45
16	. 496154	6.33	. 977544	70	. $51 \leqslant 610$	7.08	. 431390	44
17	. 496537	6.37	. 977503	70	. 519034	7.07	. 430966	43
18	.496919	6.36	.977461	. 70	. 519458	7.07	. 430542	42
19	. 497301	6.36	. 977419	. 70	. 519382	7.06	. 450118	41
20	9.497632	6.35	9.977377	70	9.520305		0.479695	40
21	. 493064	6.34	. 977335	70	. 520723	7.05	. 479272	39
22	. 495444	6.34	. 977293	. 70	. 521151	7.01	. 478819	39
23	. 493325	6.33	. 977251	70	. 521573	7.04	. 478427	37
24	. 499274	6.33	. 977209	. 70	. 521995	7.03	. 478005	36
25	. 499534	6.32	. 977167	70	. 522417	7.03	. 477553	35
25	. 499963	6.31	. 977125	. 70	. 522333	7.02	. 477162	34
27	. 500342	6.31	. 977083	. 70	. 523259	7.02	. 476741	33
29	. 500721	6.30	. 977041	. 70	. 523650	7.01	. 476320	32
29	. 501099	6.30	976999	. 70	. 524100	7.01	. 475900	31
30	9.501476	6.29	9.976957		9.524520		0.475480	30
31	. 501854	6.29 6.25	. 976914	70	. 524940	6.99	. 475060	29
32	. 502231	6.23	. 976372	. 71	. 525359	6.99	. 474611	23
33	. 502607	6.27	.976839	. 71	. $52: 5778$	6.95	. 474222	27
$3!$. 502934	6.27	.976737	.71	. 526197	6.98	. 473303	26
35	. 503360	6.26	. 976745	. 71	. 526615	6.97	. 473385	25
36	. 503733	6.25	.976702	71	. 527033	6.97	. 472967	24
37	. 504110	6.23	. 976660	71	. 527451	6.96	. 472549	23
38	. 504185	6.25	.976617	. 71	. 527863	6.96	. 472132	22
39	. 504567	6.24	.976574	71	. 523285	6.95	. 471715	21
40	9.505234	6.23	9.976532	71	9.525702		0.471298	20
41	. 505603	6.23	. 976139	. 71	. 529119	6.91	. 470851	19
42	. 505951	6.22	. 976146	.71	. 529535	6.94	. 470465	18
43	. 506354	6.22	. 976104	. 71	. 529951	6.93	. 470049	17
44	. 506727	6.21	. 976361	. 71	. 530366	6.93 6.92	. 469634	16
45	. 507099	6.20	.976318	. 72	. 530781	6.92	.469219	15
46	. 507471	6.19	. 976275	. 72	. 531196	6.91	. 465504	14
47	. 507543	6.19 6.19	.976232	. 72	. 531611	6.91	. 463389	13
43	. 5113214	6.13	.976189	. 72	. 532025	6.90 6.90	. 467975	12
49	. 505555	6.13	. 976146	. 72	. 532439	6.99	. 467561	11
50	9.5039:36		9.976103		9.532353		$0.46 \sim 147$	10
51	. 309326	6.17	. 976060	. 72	. 533266	6.89	. 466731	9
52	. 509696	6.16 6.16	. 976017	.72	. 533679	6.85	. 466321	8
53	. 510065	6.16	. 975974	. 72	. 534092	6.85	. 465908	7
54	.510434	6.15	. 975930	. 72	. 531504	6.87	. $46: 5496$	6
55	.510803	6.15	. 975337	. 72	. 534916	6.86	. 465034	5
56	.511172	6.14	. 975341	. 72	. 53.5323	6.86	. 461672	4
57	.511540	6.11 6.13	. 975800	. 72	. 535739	6.85	. 464261	3
53	.511907	6.13	. 975757	. 72	. 536150	6.85	. 46.3850	2
59	. 512275	6.12	. 975714	. 72	. 536561	6.85	. 463439	1
60	. 512642	6.12	. 975670	. 72	. 536972	6.84	. 453025	0
M.	Casine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.512642	6.11	9.975670	. 73	9.536972	6.84	$\begin{array}{r}0.4631223 \\ 462618 \\ \hline\end{array}$	60 59
1	. 513009	6.11	. 97575627	. 73	537792	6.33	. 4622203	55
2	. 513375	6.10	. 975553	. 73	. 5338202	6.53	. 461798	57
3	. 513741	6.09	. 9755339	. 73	. 5338611	6.82	. 461339	56
4	. 514107	6.09	. 975496	.73	. 539020	6.82	4619980	55
5	. $51-1472$	6.03	. 975452	. 73	. 539429	6.81	. 460571	54
6	. 5141437	6.03	. 97575365	.73 .73	. 539837	6.81 6.80	. 460163	53
8	. .515566	6.07	. .975321	. 73	. 540245	6.80 6.80	. 4597595	52
9	. 515930	6.07 6.06	. 975277	. 73	. 540653	6.79		
10	9.516294	6.05	9.975233	. 73	9.541061	6.79	0.458939 .458532	50 49
11	. 516657	6.05	. 975189	.73	. 5414675	6.78	. 458125	48
12	. 517020	6.04	. 975145	. 73	. 542231	6.78	. 457719	47
13	. 517332	6.04	. 97510105	. 73	. 542638	6.77	. 457312	46
14	. 5177715	6.03	. 97505013	. 73	. 543094	6.77 6.76	. 456906	45
15 16	.518107 .518168	6.03	. 9757969	. 74	. 543499	6.76 6.76	. 456501	44
17	. 51818389	6.02	. 974925	. 74	. 543905	6.76 6.75	. 456095	43
18	. 519190	6.02 6.01	. 974880	. 74	. 544310	6.75	. 4555693	42
19	. 519551	6.00 6.00	. 974836	. 74	. 544715	6.74		41
20	9.519911	6.00	9.974792	. 74	9.545119	6.74	0.454881 .454476	40 39
21	. 520271	5.99	. 974748	.74	. 54545923	6.73	. 454072	39 39
22	.520631	5.99	. 974763	. 74	. 546331	6.73	. 453669	37
23	. $5: 20990$	5.98	. 9746599	. 74	. 546735	6.72	. 453265	36
24	. 521319	5.98	. 974614	. 74	. 547138	6.72	. 452362	35
25	. 521707	5.97	. 97454525	. 74	. 547540	6.71	. 452160	34
26	. 522066	5.97	. 9744481	.74	. 547943	6.71	. 452057	33
28	. 5222781	5.96	. 974436	.74	. 548315	6.70 6.70	. 451655	32
29	. 523138		. 974391	.75	. 548747	6.69	. 451253	31
30	9.523495		9.974347	. 75	9.549149	6.69	0.450351	30 29
31	. 523352	5.94	. 974302	.75	. 5499590	6.68	. 45045	29 29
32	. 524203	5.93	.974257 .974212	. 75	. 5493551	6.68	. 44964	27
33	. 524564	5.93	.974212 .974167	. 75	. 5550752	6.67	. 449248	26
34	. 524920	5.92	.974167 .974122	. 75	. 555153	${ }_{6}^{6.67}$. 448847	25
35	. 525275	5.92	.974122 .974077	. 75	. 551552	6.67 666	. 443448	21
36 37	.525630 .525934	5.91	.974077	. 75	. 551952	6.66 666	. 445018	23
	.525934 .526339	5.90 5.90	.974032 .973937	. 75	. 552351	6.66 6.65	. 447649	22
38	. 526693	5.90 5.89	. 973912	. 75	.552750	6.65	. 447250	21
40	9.527046		9.973397	.75	9.553149	6.64	0.446851	20
41	. 527400	5.85	. 9733852	. 75	. 5535348	6.64	. 4446452	19
42	. 527753	5.88	. 9733507	. 75	. 553491314	6.63	. 445656	18 17
3	. 523105	5.87	. 97373716	. 75	. 555431441	6.63	. 4452559	16
44	. 523458	5.87	. 97373716	. 76	. 555574139	6.62	. 444361	15
45	. 523810	5.86	. 97373625	. 76	. 555536	6.62	. 444164	14
46	. 52929513	5.86	. 9735830	. 76	. 555933	6.61	. 444067	13
47	. 52929513	5.85	. 97373535	.76	. 556329	6.61	. 443671	12
48	. 5293364	5.85	. .973183	.76	. 5556725	6.60 6.60	. 443275	11
49	. 530215	5.84	.973-189	. 76		6.60	0.442379	
50	9.530 .565	5.83	9.973144	. 76	9.557121 $.557517$	6.59	0.412483	9
51	. 530915	5.83	.973393 .973352	. 76	. .557913	6.59	. 442037	8
52	. 531265	5.82	.973352 .973307	. 76	. .558303	6.59	.441692	7
53	. 531614	5.82	. 97333261	. 76	. 5558703	6.58	. 441297	6
54	. 531963	5.81	.973261 .973215	. 76	. 559097	6.58	. 440903	5
55 56	. .5323661	5.81	. 9732169	: 76	. 559191	6.57	. 440509	4
56 57	. 5332661	5.80	. 973121	.76	. 559385	6.57 6.56	. 440115	3
57	. .533330097	5.30 5 5	. 973078	. 76	. 560279	6.56 6.56	. 439721	2
59	. 533704		. 973732	. 77	. 567673	6.55	. 4393327	1
60	. 5310.52	5.79	. 972936	. 77	. 561066		433934	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$. Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.534052	5.78	9.972986	. 77	9.561066		0.438934	60
1	. 534399	5.78	$.972910$.77	$.561459$	6.54	. 438541	59
3	. 535092	5.77	.972894 .972548	. 77	561851 .562244	6.54	.438149 .43756	58 57
4	. 535138	5.77	. 972802	. 77	. 562636	6.54	. 437364	56
5	. 535783		. 972755	. 77	. 563023	6.53	. 436972	55
6	. 536129		. 972709	77	. 563419	6.53	.436.581	54
7	. 536474		. 972663	77	. 563811	2	. 436189	53
8	. 536318	5.74	. 972617	. 77	. 564202	6.51	. 435798	52
9	. 537163	5.74	. 972570	. 77	. 564593	6.51	. 435107	51
10	9.537507	5.73	9.972524	. 77	9.5649	6.50	0.435017	50
11	. 537851	5.73	. 972478	.77	. 565373	6.50	. 434627	49
12	. 533194	5.72	. 972431	. 78	. 565763	6.50	. $43+237$	48
13	. 533538	5.71	. 972335	78	. 566153	6.49	. 433847	47
14	. 533380	5.71	. 972338	. 78	. 566542	6.49	. 433453	46
15	. 539223	5.70	. 972291	. 78	. 566932	6.48	.433068	45
16	. 539565	5.70	. 972245	78	. 567320	6.48	. 432680	44
17	. 539907	5.69	. 972198	. 78	. 567709		. 432291	43
18	. 540249	5.69	. 972151	. 78	. 568098	6.47	. 431902	42
19	. 510590	5.69	. 972105	. 78	. 563186		. 431514	41
20	9.540931		9.972053	. 78	9.563573		0.431127	40
21	. 541272	5.67	. 972011	. 78	. 569261	6.46	. 430739	39
22	. 541613	5.67	. 971964	.78	. 569648	6.46	. 430352	38
23	. 541953	5.66	. 971917	. 78	. 570035	6.45	. 429965	37
24	. 512293	5.66	. 971870	. 78	. 570422	6.44	. 429578	36
25	. 542632	5.65	. 971823	78	. 570309	6.44	. 429191	35
26	. 542971	5.65	. 971776	. 78	. 571195	6.43	.428805	34
27	. 543310	5.64	. 971729	. 79	. 571581	6.43	. 428419	33
23	. 543649	5.64	. 971682	. 79	. 571967	6.43	. 423033	32
29	. 543987		. 971635		.572352		. 427643	31
30	9.544325		9.971588		9.572733		0.427262	30
31	. 544663	5.62	. 971540	. 79	. 573123	6.41	. 426577	29
32	. 545000	5.62	. 971493	. 79	. 573507	6.41	. 426493	28
33	545333	5.61	. 971416	. 79	. 573892	6.40	. 426108	27
34	. 545674	5.61	. 971398	. 79	. 574276	6.40	. 425721	26
35	. 546011	5.60	. 971351	.79	. 574660	6.40	. 425340	25
36	. 546347	5.60	. 971303	. 79	. 575044	6.39	. 424956	24
37	. 546633	5.59	. 971256	. 79	. 575427	${ }^{6} 6.39$. 424573	23
38	. 547019	5.59	. 971203	. 79	. 575810	6,38	. 424190	22
39	. 547354	5.58	. 971161	. 79	576193	6.38	. 423307	21
40	9.547639		9.971113		9.576576		0.423424	20
41	. 548024	5.57	. 971066	80	. 576959	6.37	. 423041	19
42	. 548359		. 971018	80	. 577341		. 422659	18
43	. 543693	5.56	. 970970	. 80	. 577723	6.36	. 422277	17
44	. 549027		. 970922		. 578104	6.36	. 421896	16
45	. 549360	5.55	. 970874	. 80	. 578486	6.35	. 421514	15
46	. 549693	5.55	. 970827	. 80	. 578867	6.35	-. 421133	14
47	. 550026	5.55	. 970779	80	. 579243	6.31	. 420752	13
48	. 550359		. 970731		. 579629		.420371	12
49	. 550692	5.54	. 970683	. 8	. 550009	6.34	. 419991	11
50	9.551024		9.970635		9.580339		0.419611	10
51	. 551356	5.53	. 970586	. 80	. 550769	6.33	.419231	9
52	. 551687	5.52	. 970538	. 80	. 581149	6.32	. 418851	8
53	. 552018	5.52	. 970490	. 80	. 581523	6.32	. 418172	7
54	. 552349	5.51	. 970442	. 80	. 581907	6.32	. 418093	6
55	. 552630	5.51	. 970394	. 81	. 5822366	6.31	. 417714	5
56	. 553010	5.50	. 970345	. 81	. 532665	6.31	. 417335	4
57	. 553341	5.50	. 970297	. 81	. 583041	6.30	. 416956	3
58	. 553670	5.49	. 970249	. 81	. 5833122	6.30	. 416578	2
59	. 554000	5.49	. 970200	81		6.30	. 416200	1
60	. 554329		. 970152		. 534177		. 415823	0
M.	Cosine.	D. $1^{1 /}$	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	'Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.554329		9.970152	. 81	9.581177	6.29	0.415583	60
I	. 554658		. 970103	. 81	. 584555	6.29	. 415445	59
2	. 554987	5.48	. 970055	. 81	. 581932	6.23	415068	58
3	. 555315		. 970006	. 81	. 585309	6.28		57
4	. 555643	5.47	. 969957	81	. 585686	6.28	. 414314	56
5	. 555971	6	. 969909	. 81	. 586062	6.27	. 413938	55
6	. 556299	6	. 969860	. 81	. 586439	6.27	.413561	5.1
7	. 556626	5	. 969811	. 81	. 556815	6.26	. 413185	53
8	. 556953	5.44	. 969762	. 81	. 587190	6.26		52 51
9	.557280	5.44	. 969714	. 81	. 587566	6.26	. 412434	51
10	9.557606	5.44	9.969665	. 82	9.587941	6.25	0.412059	50
11	. 557932	5.44	. 969616	. 82	. 588316	6.25	. 411681	49
12	. 555258	5.43	. 969567	. 82	. 5888991	6.24	. 411309	48 47
13	. 555583	5.48 5.42	. 969.518	. 82	. 5×9066	6.24	. 410560	46
14	. 5.58309	5.42	. 969469	. 82	. 589814	6.24	. 410186	45
15	. 559233	5.41	. 969420	. 82	. 589814	6.23	. 409812	44
16	. 559553	5.41	. 969370	. 82	. 5900562	6.23	. 409438	43
17	. 559883	5.40	. 969321	. 82	. 590935	6.22	. 409065	42
18	. 560207	5.40	.969272 .969223	. 82	. 5909308	6.22	. 408692	41
19	. 560531	5.39	. 969223	. 82	.591308	6.22	0.408319	41
20	9.560855	5.39	Y.969173	. 82	9.591681	6.21	0.408319 .407946	49
21	. 561178	5.38	. 969124	. 82	. 592054	6.21	. 407574	38
22	. 561501	5.38	. 969075	. 82	. 592799	6.20	. 407201	37
23	. 561824	5.37	. 969025	. 82	. 592799	6.20	. 406829	36
24	. 562146	5.37	. 968976	. 83	. 593542	6.20	. 406458	35
25	. 562463	5.37	. 9688577	. 83	. 593914	6.19	. 406086	34
26	. 562790	5.36	. 9688827	. 83	. 594285	6.19	. 405715	33
27	. 563112	5.36	. 9688777	. 83	. 594656	6.18	. 405344	32
28	. 563133	5.35	. 9688728	. 83	. .595027	6.18	. 404973	31
29	. 563755	5.35	.965728	. 83	. 595027	6.18		
30	9.564075	5.34	9.968678	. 83	9.595398	6.17	0.404502 404232	30 29
31	. 564396	5.34 5.34	. 968623	. 83	. 595768	6.17	. 403852	28
32	.564716	5.34 5.33	. 968578	. 83	.596138 .596508	6.16	. $403-62$	27
33	.565036	5.33	.968523 .968479	. 83	. 5966878	6.16	. 403122	26
34	.565356	5.32	. 968179	. 83	. 597247	6.16	. 402753	25
35	. 565676	5.32	. 9688379	. 83	. 597616	6.15	. 402381	24
36	. 565995	5.32	. 963329	. 83	. 597985	6.15	. 402015	23
37	. 566314	5.31	. 968278	. 83	. 598354	6.15	. 401646	22
33	. 566632	5.31	.968228	. 84	. 598722	6.14	. 401278	21
39	56695	5.30	. 96328	. 84		6.14	0.400909	20
40	9.567269	5.30	9.968179	84		6.13	. 400541	19
41	.567587	5.29	. 968128	. 81	. 599459	6.13	. 400173	18
42	.567904	5.29	.963078 .963027	. 84	. 699827	6.13	. 399806	17
43	. 568222	5.23	. 963027	. 84	.600194 .600562	6.12	. 399438	16
44	.563539	5.28	. 967977	. 84	.600562 .600929	6.12	. 399071	15
45	. 568856	5.23	.967927 .967876	. 84	.600929 .601296	6.12	. 398704	14
46	. 569172	5.27	. 96787826	. 81	.601296 .601663	6.11	. 398337	13
47	. 569488	5.27	.967826 .967775	. 84	.601663 .602029	6.11	. 397971	12
48	. 569804	5.26	.967775 .967725	. 84	. 602029	6.10	. 397605	11
49	. 570120	5.26	. 967725	. 81	. 602395	6.10		
50	9.570435		9.967674		9.602761	6.10	0.397239 .396873	10
51	. 570751	5.25	. 967624	. 84	. 603127	6.09	. 396873	9
52	. 571066	5.24	. 967573	. 85	. 603493	6.09	. 3965142	7
53	. 571380	5.24	. 967522	. 85	. 603858	6.09	. 395777	
54	. 571695	5.24	. 967471	. 85	. 604223	6.08	. 395412	5
55	. 572009	5.23	. 967421	. 85	. 604585	6.08	. 395047	5
56	. 572323	5.23	. 967370	. 85	. 601953	6.07	. 394683	3
57	572636	5.22	. 967319	. 85	. 605682	6.07	. 394318	2
53	572950	5.22	. 967268	. 85	. 606056	6.07	. 393954	2
59 60	.573263 .573575	5.21	. 9672176	. 85	. 606410	6.06	. 393590	O
M.	Cosin	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$	Cotang.	D. 1'1.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.573575		9.967166		9.606 ± 10		0.393:90	60
1	. 573333	5.21	. 967115	. 85	. 606773	6.06 6.06	. 393227	59
2	. 574200	5.2 C	. 967064	. 85	. 697137	6.05	. 392363	53
3	. 574512	5.20	. 967013	. 85	. 607500	6.05	. 392500	57
4	. $574 \leq 24$	5.19	. 966961	. 85	. 617363	6.05	. 392137	56
5	. 575136	5.19 5.19	. 966910	. 85	. 603225	6.04	. 391775	55
6	. 575447	5.19 5.18	. 966359	. 86	. 603535		. 391412	54
7	. 575753	18	. 966303	. 86	. 608950	6.03	. 391050	53
8	. 576069	5.17	. 966756	. 6	. 609312	6.03	. $3906 \leq 3$	52
9	. 576379	5.17 5.17	. 966705	. 86	. 609674	6.03 6.03	. 390326	51
10	9.5i6639		9.966		9.610036		0.339964	50
11	. 576999	5.17	. 966602		. 610397	6.02	. 389603	49
12	. 577309	5.16	. 966.550	. 86	. 610759		. 389241	43
13	. 5 T761	5.16	. 966199	. 86	. 611120	6.02	. 383550	47
14	. 577927	5.15	. 966447	. 6	. 611430	6.01	. 338520	46
15	.57-236	5.15	. 966395		. 611841	6.01	. 335159	45
16	. 578.545	5.14	. 966344	S6	. 612271	6.00	. 337799	44
17	. 575353	5.14	.966292	. 6	. 612561	6.00	. 357439	43
13	. 579162	5.13	. 966240	. 86	. 612921	6.00	. 387079	42
19	. 579170	5.13	. 966183	. 86	. 613231	6.09 5.99	. 336719	41
20	9.579717		9.966		9.613641		0.336359	40
21	. 550035	5.12	. 966035		. 614000	5.99 5.93	. 356000	39
$2: 2$. 530392	5.11	. 966033		. 614359		. 355641	33
23	. 530699	5.11	. 965981	. 87	. 614718	5.95	. 355232	37
24	. 58100.5	5.11	.96:5929	87	. 615077	5.97	. 331923	36
25	. 551312	5.11	. 96.5376	87	. 615435	5.97	. 381565	35
26	. 531613	5.10	.96.53.24	87	. 615793	${ }_{5}^{5.97}$. 334207	34
27	.551924		. 965772	87	. 616151		. 333349	33
23	.532229	5.09	. 965720	. 87	. 616509	5.96	. $3>3491$	32
29	.582535		. 965663		. 616567		. 333133	31
30	9.532340		9.965615		9.617224		0.332776	30
31	. 553145	,05	. 96.5563		. 617582	5.95	. 332418	29
32	. 533449	5.07	. 965511	.87	. 617939	5.95	. 382061	23
33	. 583754	5.07	. 96.5453	. 87	. 618295	5.9 .3	. 331705	27
34	. 5810.58	5.07	. 96.5106	. 88	. 618652	5.91	. 331348	26
35	. 531361	5.06	. 96.53 .53	. 83	. 619038	1	. 330992	25
36	. 531665		-.965301	. 83	. 619364	5.93	. 330636	24
37	. 534963	05	. 965243	. 83	. 619720	5.93	. 330280	23
33	.535272		. 965195	. 89	.620076	5.93	. 379924	22
39	.535574		. 965143		. 623432	5.92	. 379563	21
40	9.535577		9.965090		9.620737		0.379213	20
41	. 536179		.965037		. 621142	1-920	. 378553	19
42	-. 536452	5.03	. 964934	.83	.621497	5.91	. 378503	18
43	.556753	5.03	. 964931	.83	.621852	5.91	. 378143	17
44	. 537035		. 964579	. 83	.622207		. 377793	16
45	. 537356	㖪 02	. 964526		. 622561	5.90	. 377439	15
46	. 537633	22	. 964773	.83	.622915	5.90	. 377085	14
47	. 537939	5.01	. 964720	. 83	. 623269	5.90	. 376731	13
43	. 583239	5.01	. 964666	. 89	.623623		. 376377	12
49	.553590	5.01	. 96 ± 613	. 89	. 623976		.376024	11
51	9.535390		9.964560		9.624330		0.375670	10
51	. 539190	5.00	. 964507		. 624633		. 375317	9
52	. 539439	4.99	. 964454	. 89	. 625036		. 374964	8
53	. 539789		. 964400	. 89	.625333	5.83	. 374612	7
54	. 590033	4.99	. 964347	-99	.62.5741	5.88	. 374259	6
5.5	.597337	4.93	. 964294	. 89	. 626093	5.87	. 373907	5
55	. 591636	4.97	. 964240	. 89	. 626445	5.87	. 37355	4
57	. 590934		. 964187	89	. 626797		. 373203	3
53	. 591232	97	. 964133	. 89	. 627149	5.86	. 372351	2
59	. 591530	4.97	. 961030	. 89	. 627501	5.86	. 372499	1
60	.591373	4.96	. 961026	. 0	. 627352	5.86	. 372	0
M.	Casine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	M.

66°

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{\prime}.	Cotang.	M.
0	9.609313		9.960730		9.645583		0.351417	60
2	. 6095957	4.73 4.72	$.960674$. 94	$.645923$	5.66	.3.1077	59
3	. 610164	4.72	. 960618	. 91	. 649263	5.66	. 350737	58 57
4	. 610147	4.72	. 9660505	. 94	. 619602	5.66	. 350398	57 56
5	. 610729	4.71	. 960443	. 94	. 6502381	5.65	. 319 ¢ 19	55
6	. 611012	4.71	. 960392	. 94	.650620	5.65	. 349380	54
7	. 611294	4.71	. 960335	. 91	.650959	5.65	. 319041	53
8	. 611576	4.70	. 9637279	. 91	. 651297	5.61	. 345703	52
9	. 611353	4.69	. 960222	. 91	. 631636	5.61	. 345364	51
10	9.612140	4.69	9.96)165		9.6519\%4		0.345026	50
11	. 612121	4.69	. 960109	.9.3	. 6.52312	5.64	. 317633	49
12	. 612702	4.69	. 961052	. 95	.632650	5.63	. 347350	45
13	. 612333	4.65	.9599995	95	. 652933	${ }_{5}^{5.63}$. 347012	47
14	. 613264		. 9.59933	.95	. 653326	5.62	. 346674	46
15	. 613.55	4.65	. 9.59382	.95	.6533663	5.62	. 3163337	45
16	. 613325	4.67 4.67	. 959325	9.95	. 654000	5.62	. 316000	44
17	. 61410.5	4.67	.939763	95	.634337	5.62	. 345663	43
13	. 614335	4.65	.959711	. 95	.6546~4	5.61	. 345326	12
19	. 614665	4.66	. 959634	.95	. 655011	. 61	. 344989	41
$2)$	9.614314		9 959.596		9.655315		0.344652	40
21	. 615223	4.65	. 959539	.95	. $6556 \leq 4$. 344316	39
22	. 615.502	4.65	. 959432	. 95	.656020	5.61	. 343930	33
23	. 615781	4.64	. 939425	9.9	. 656356	5.60	. 343644	37
21	. 616050	4.61	. 9.59363	96	. 656692	5.60 5	. 313319	36
25	.616333	4.64	. 959310	. 96	. 637023	5.60	. 342972	35
26	. 616616	4.63	. 959253	. 96	. 657364	5.59	.31:636	34
27	. 616391	4.63	. 959195	.96	. 657699	5.59	. 342391	33
23	.617172	4.63	.9.99133	. 96	. 653034	5.58	. 311966	32
29	. 617450	4.62	. 959030	. 96	. 658369	5.58	. 311631	31
30	9.617727		9.959023		9.65s\%04		0.3-11296	30
31	. 613004	4.61	. 953965	. 96	. 659039	5.55	. 310961	29
32	. 613231	4.61	.9.53903	. 96	. 659373	5.57	. 340627	23
33	.615.5.53		.9.3ア350	. 96	.659703	5.57	. 310292	27
34	. 615334	4.60	.953792	. 96	. 660042	5.57	. 339953	26
3.5	. 619110	4.60	.953734	. 96	. 660376	5.56	. 339624	25
36	. 619356	4.60	.95367\%	. 96	. 660710	5.56	. 339290	24
37	.619662		.9.5>619		. 661043		. 333957	23
33	. 619933	4.59 4.59	. 955561	. 97	. 661377	5.56	. 333623	22
39	. 620213		.953503		. 661710		. 333290	21
40	9.620133		9.953445		9.662043		0.337957	20
41	. 620763	1.53	. 953337	. 97	. 6623 ²76	5.55	. 337624	19
42	. 621035	4.55	. 9583329	. 97	. 662709	5.54	. 337291	18
43	. 621313	4.57	. 9538271	. 97	.663042		.3369.58	1π
44	. 621537	4.57	.9598213	. 97	. 663375	5.54	. 336625	16
45	.621861	4.57	. 958154	. 97	. 663707	5.54	. 336293	15
46	.622135	4.56	. 958096	. 97	. 664039	5.53	. 335961	14
47	. 622109	4.56	. 958033	. 97	. 664371	5.53	. 335629	13
43	. 622635		. 957979		. 664703		. 335297	12
49	.6229.56	4.56 4.55	. 957921	. 97	.665035	5.53	.33496	11
50	9.623229		9.957863		9.665366		0.334634	10
51	. 623502	4.51	. 957804	. 97	. 665698	5.52	. 334392	9
52	. 623774	4.54	. 957746		. 666029	5.52	. 3333971	8
53	. 624047	4.54	. 957687	. 93	.666360		. 333640	7
51	. 624319	4.53	. 957628	. 93	. 666691	5.51	.333309	6
55	.624591	4.53	. 957570	. 93	. 667021	5.51	. 332979	5
56	. 624863	4.53	. 957511	. 93	. 667352	5.51	. 332648	4
57	.625135	4.53	. 957452	. 93	. 667632	5.50	. 332318	3
53	. 625406	4.52	. 957393	. 93	. 663013		. 331987	2
59	.625677	4.52	. 957335	. 93	. 663313	5.50	. 331657	1
60	. 625943	4.52	. 957276	. 93	. 663673	5.50	. 331327	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D 1'.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.625948	4.51	9.957276	. 98	9.665673	5.50	$\begin{array}{r}0.331327 \\ 330998 \\ \hline\end{array}$	60 59
1	. 626219	4.51	.957217	. 98	. 6690002	5.49	.330998 .330668	58
2	. 626490	4.51	. 957158	. 98	. 6693832	5.49	. 3301339	57
3	. 626760	4.50	. 957099	. 98	. 6699991	5.49	. 330009	56
4	. 627030	4.50	. 957040	. 99	. 6799920	5.49	. 32.690	55
5	. 627300	4.50	. 95698921	. 99	. 670649	5.48	. 329351	54
6	. 627570	4.49	. 956921	. 99	. 670977	5.48	. 329023	53
7	. 627810	4.49	. 956862	. 99	. 671306	5.48	. 328634	52
8	. $62>109$	4.49	. 956503	. 99	. 671635	5.47 5.47	. 328365	51
9	. 623378	4.48	. 95674	. 99	9.671963	5.47	0.328037	50
10	9.628647	4.48	9.956684	. 99	9.671963 .672291	5.47	. 327709	49
11	. 623916	4.48	. 9566525	. 99	. 672619	5.47	. 327381	48
1%	. 629185	4.47	.956566 .956506	. 99	. 672947	5.46	. 327053	47
13	. 629453	4.47	. 9565447	. 99	. 673274	5.46	. 326726	46
14	. 629721	4.47	. 9563887	. 99	. 673602	5.46	. 326398	45
15	. 629989	4.46	. 9563827	. 99	. 673929	5.46	. 326071	44
16	. 630257	4.46	. 956268	. 99	. 674257	5.45	. 325743	43
17	.630524	4.46	. 9556208	. 99	. 674584	5.45	. 325416	42
18	. 630792	4.45	. 956148	1.00	. 674911	5.45	. 325089	41
19	. 631059	4.45	. 956148	1.00		5.45	0.324763	40
20	9.631326	4.45	9.956089	1.00	9.675237 .675564	5.44	. 324436	39
21	. 631593	4.44	.956029 .955959	1.00	. 675890	5.44	. 324110	38
22	. 631859	4.44	.955959 .955909	1.00	. 676217	5.44	. 323783	37
23	. 632125	4.44	. 9559589	1.00	. 676543	5.44	. 323457	36
24	. 632392	4.43	.955849 .955789	1.00	. 676543	5.43	. 323131	35
25	. 632653	4.43	. 9555729	1.00	. 677194	5.43	. 322806	34
26	. 632923	4.43	. 9555729	1.00	. 677520	5.43	. 322480	33
27	. 633189	4.42	. 9555669	1.00	. 677846	5.42	. 322154	32
28	. 633454	4.42	.955609 .955548	1.00	. 678171	5.42	321829	31
20	. 633719	4.42	. 955548	1.00	. 9.678496	5.42	0.321504	30
30	9.633954	4.41	9.955488	1.00	9.678496	5.42	0.321504 .321179	29
31	. 634249	4.41	. 9554288	1.01	. 678821	5.41	. 320854	28
32	. 634514	4.41	. 955368	1.01	. 679471	5.41	. 320529	27
33	. 634778	4.40	. 9555247	1.01	. 679795	5.41	. 320205	26
34	. 635042	4.40	. 955247	1.01	. 680120	5.41	. 319880	25
35	. 635306	4.40	. 9555126	1.01	. 680444	5.40	. 319556	24
36	. 635570	4.39	. 955126	1.01	. 680768	5.40	. 319232	23
37 38	. 6358334	4.39	. 9555005	1.01	. 681092	5.40 5.40	. 318909	22
38	.636097 .636360	4.39	. 9554944	1.01	. 681416	5.40 5.39	. 318584	21
39	. 636360	4.33	. 954944	1.01	. 9.681740	5.39		20
40	9.636623	4.38	9.954883	1.01	9.681740 .682063	5.39	0.318260 .317937	19
41	. 636336	4.38	. 954823	1.01	. 682063	5.39	. 317613	18
42	. 637148	4.37	.954762 .954701	1.01	. 682710	5.39	. 317290	17
43	. 637411	4.37	.954701 .954640	1.01	. 683833	5.38	. 316967	16
44	.637673 .637935	4.37	.954640 .954579	1.02	. 683356	5.38	. 316644	15
45	. 637935	4.36	.954579 .954518	1.02	. 683679	5.38	. 316321	14
46	. 638197	4.36	.954518 .954457	1.02	. 684001	5.38 5.37	. 315999	13
47	. 638458	4.36	. 9544578	1.02	. 684324	5.37	. 315676	12
48	. 638720	4.35	.954396 .954335	1.02	. 6844646	5.37	. 315354	11
49	.635981	4.35	. 954335	1.02	. 68.684646	5.37	0.315032	10
50	9.639242	4.35	9.954274	1.02	9.684968 .685290	5.37	0.315032 .314710	10
51	.639503	4.34	.954213 .954152	1.02	. 685290	5.36	. 314388	8
52 53	.639764 $610 r 124$	4.34	.954152 .954090	1.02	. 6855934	5.36	. 314066	7
53 54	. 610924	4.34	. 954090	1.02	. 686255	5.36	. 313745	6
54	. 640284	4.33	. 9543968	1.02	. 686577	5.36	. 313423	5
56	. 640804	4.33 433	. 953906	1.02	. 686898	5.35 5.35	.313102	4
57	. 641064	433 4.32	. 953845	1.02	. 687219	5.35 5.35	. 312781	3
58	. 641324	4.32 4.32	. 953783	1.03 1.03	687540	5.35	. 312460	2
59	. 641583	4.32 4.32	$\begin{array}{r}.953722 \\ .953660 \\ \hline\end{array}$	1.03 1.03	$\begin{array}{r}687861 \\ .638182 \\ \hline\end{array}$	5.35	.312139 .311818	1
60	. 641842	4.32	. 953660		. 658182		. 311818	
M.	Cosine.	D. 1'1'	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 11.	Tang.	M.

M.	Sine.	D. 1'.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	2.641512		9.953660		9.683182		0.311813	60
1	. 612101	4.32	. 953.599	1.03	. 635502	5.34	. 311498	59
2	. 612360	4.31	.953537	1.03	. 633523	5.34	. 311177	58
3	. 642618	4.31	. 953175	1.03	. 639143	5.34	. 310557	57
4	. 612377	4.30	. 953113	1.03	. 639463	5.33	. 310537	56
5	. 613135	4.30	.93.33.52	1.03	. 639783	5.33	. 310217	55
6	$\begin{array}{r}6+3393 \\ \hline 63650\end{array}$	4.30	.9.33290	1.03	. 6901113	5.33	. $309>97$	54
8	. $6+3993$	429	. 9.3 .3225	103	.690423 $.69: 742$	5.33	. 309.577	5.3
9	. 614165	4.29	. 95.3104	1.03	. 631062	5.32	. 309338	52 51
10	9.641123		9.9.53	. 03	9.691381		$0.30 \leq 619$	50
11	. 614550	4.28	. 932929	1.04	. 631700		. 30 ¢300	49
12	. 644.856	4.23	.952918	1.01	. 692019		. 307981	48
13	. 645193	4.27	.952355	1.04	.692333	5.31	. 307662	47
14	. 615150	4.27	.952793	1.04	.692653	5.31	. 3173344	46
15	. 615706	4.27	.9.22731	1.04	.692975	5.31	. 30702.5	45
16	. 615962	4.26	.952669	1.04	. 6933293	$5.31)$. 306707	44
17	. 616218	4.26	.9.52606	1.04	, 3612	5.30	. 3063338	43
18	. 616474	4.26	.9.2.34	1.04	. 693930	5.30	. 306070	42
19	. 616729	4.26	.9524s1	1.04	.69124s	5.30	. 305752	41
29	9.646934	4.25	9.952419	1.04	9. 691566		0.305434	40
21	. 647210	4.25	. 952356	1.04	. $694>33$	5.29 5.29	. 305117	39
22	. 617194	4.25	.952294	1.04	. 695231	5.29 5.29	. 301799	35
23	. 647749	4.24	. 9522231	1.01	.695518	5.29	. 304432	37
21	. 618004	4.21	. 952168	1.05	.635836	5.29	. 301164	36
2.5	. 645253	4.24	.9521(16	1.05	. 696153	5.23	. 303317	3.5
26	. 618.512	4.23	. 952043	1.05	. 696170	5.29	303.530	34
27	. 645166	4.23	. 9519850	1.05	. 6967787	5.23	. 3103213	33
23	. 619020	4.23	9.951917	1.05	. 6977123	5.23	. $312 \leq 97$	32
29	. $6+9274$	4.22	+	1.0	.69742	5.27	. 302550	31
. 30	9.649527		9.951791	1.05	9.697736		0.302264	30
31	.649781	4.22	.951723	1.05	.633053	5.27	. 301947	29
32	.6.50734	4.22	95166.	1.05	.6933699	5.27	. 311631	23
33	(6.5) 2×7	4.21	.9.1602	1.05	.698655	5.26	.301315	27
31	.650.3:39	4.21	.9.71.39	1.05	. 6999001	5.26	. 300999	26
35	.650792	4.21	. 951476	1.05	. 699316	5.26	. 3016354	25
36	.6.51044	4.20	.9.51412	1.05	. 699632	5.26	. 300363	24
37	.651297	4.20	. 951319	1.06	. 699947	26	. 370053	23
33	6.3154	4.20	.951286	1.06	. 700263	5.2 .5	. 299737	22
39	6.51300	4.19	. 9.51222	1.06	. 700578	5.25	. 299122	21
40	9.6520.52		9.951159		9.709393		0.299107	20
41	.6.52304	4.19	.9.51096	1.06	. 701203	5.25	. 298792	19
42	.6.2555	4.18	. 951032	1.06	. 701523	5.24	. 293477	18
43	. 652306	4.18	.950963	1.06	. 701837	5.24	. 293163	17
44	.6.33057	4.18	. 950905	1.06	. 702152	5.24	. 297818	16
4.5	. 633303	4.18	.9.50541	1.06	. 702466	5.24	. 297534	15
46	.653553	4.17	. 950778	1.06	. 702781	5.21	.297219	14
17	.6.53503	4.17	. 950714	1.06	. 703095	5.24	. 296905	13
43	. 6340.59		.950650	1.06	. $703+19$.296591	12
49	. 654303	4.16	.950586	1.06	. 703722	5.23	. 296278	11
50	9.6.54553		9.950522		9.704036		0.295964	10
51	. 6.54503	4.16	. 950153	1.07	. 704350	5.22	.295650	9
52	.6.550.58	4.15	. 9503394	1.07	. 701663		.295337	8
53	.655.307	4.15	.950330	1.07	. 704976	5.22	.295024	7
54	.6555J6	4.15	.950266	1.07	.705290	5.22	. 294710	6
55	.6:55305	4.15	.950202	1.07	. 705603	5.22	294397	5
56	.656054	4.14	. 950133	1.07	. 705916		. 2910384	4
57	. 656302	4.14	.950074	1.07	. 706223	5.21	. 293772	3
58	.6.56551	4.14	. 950010	1.07	. 706541		. 293459	2
59	.656799	4.13	. 94991935	1.07	. 706354	5.21	. 293146	1
60	.6.57047		. 949381	1.07	. 7071	5.21	4	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.657047		9.949381	1.07	9.707166	5.20	0.292331	60
1	. 657295		. 919816	1.07	70\%478	5.20	.29.2522	59
2	. 657542	3	.919752	1.07	.707790	5.20	. 292210	58
3	. 657790	2	. 949633		.708102	5.20	. 291899	57
4	. 6.53037	12	.949623		. 703414	0	. 291536	56
5	. 635234	4.12	.949353		.703726		. 291274	55
6	.65353I	4.12	. 919191		.709037	5.19	. 290963	54
7	. 658778	4.11	. 919429		.709349	. 19	. 290651	53
8	659025	4.11	. 949361	1.08	.709660	. 19	. 290340	52
9	.659271	4.11	. 919300	. 08	.709971	5.19 5.18	. 290029	51
10	S 659.j17		9.949235		9.710232		0.289718	50
II	ง 6.59763	4.10	. 949170	1.08	. 710593		. 259107	49
12	6.99163 660009	4.10	.949105	1.03	.710904	5.	. 299096	48
13	.66025.5	4.10	949040	1.03	.711215	5.18	. 238785	47
14	1	4.09	. 943975	1.08	.711525	5.18	. 288475	46
15	0746	4.09	. 919910	1.05	.711836	5.17	.238164	45
	660991	4.09	. 918815	1.08	. 712146	5.17	. 2378.54	44
17	661236	4.03	. 918780	1.09	.712156	5.17	. 237514	43
13	.661-1>1	1.08	948715	1.09	.712766	5.17	. 237234	42
19	661726	4.03	. 913650	1.09	.713076	5.17	.256924	41
		4.03		1.09				
20	9.661970		9.915531	1.09	9.713336	5.16	0.256614	40
21	6i22I4	4.07 4.07	.948519	1.09	.713696	5.16	. 236301	39
2.2	. 632159	4.07 4.07	. 943454	1.09	.714005	5.16	. 23.3995	33
23	.66:2703	4.07 4.06	. 913338	1.09	. 714314	5.15	. 235886	37
21	. 662916	4.06	. 913323	1.09	.714524	5.15	. 235376	36
25	.663190	4.06	. 913257	1.09	.714933	5.15	. 235067	35
26	.663133	4.06	. 918192	1.09	.715242	5.15	. 284758	34
27	. 663677	4.05	. 948126	1.09	.715551	5.15	.231419	33
29	. 663920	4.05	. 943060	1.09	.715560	5.10	. 281110	32
29	. 664163	4.0 .5	. 947995	1.09	.716163	5.14	. 283832	31
30	9.664106		9.94792		9.716177		0.283523	30
31	. 664643	4.04	. .947863	10	.716785		. 293215	29
32	. 661391	4.04	94	1.10	.717093	5.14	.232907	23
33	.665133	4.04	. 947731	1.10	.717401	5.14	. 232599	27
31	.6653?	1.03	. 917665	1.10	. 717709	5.13	.292291	26
3.5	.6633.5	4.03	947600	1.10	.718017	5.13	. 251983	2.5
3.3	.66.5617	4.03	917533	1.10	.718325	5.13	. 231675	24
36	. 663859	4.03	917533	1.10	. 718323	5.13	. 291367	2.
37	. 666100	4.02	.947 .167	1.10	. 718633	5.13	.231367	23
39	. 666312	4.02 4.02	.917401	1.10	.718940	5.12	.291069	22
39	.666533	4.02 4.02	.947335	1.10	.719218	5.12 5.12	.230752	21
10	9.666524		9.917269		9.719555	5.12	0.280445	20
11	. 667065	1	. 917203	1.10	. 719362	5.12	. 230133	19
12	. 667305	4.	. 917136	1.1	.720169	5.	. 279831	19
13	. 667546	4.01	. $9170 \% 0$	1.1	.720176	5.11	. 279.324	17
11	. 667786	4.01	. 917001	1.11	.720783	5.1	. 279217	16
15	. 663027	4.00	. 916937	1.11	.721089	5.11	. 278911	15
16	. 663267	4.00	. 946371	1.11	.721396	5.11	.27-604	14
17	. 663506	4.00	. 916301	1.11	.721702	5.11	. 278293	13
13	. 663746	3.99	. 916733	1.11	.722009	5.10	. 277991	12
43	. 663936	3.99	.916671	1.11	.722315	5.10	.277635	11
50		3.99			9.722621		0.277379	10
00	9.669225	3.99	$9.91560 \pm$	1.11	9.722621	5.10	. 277073	9
51	. $66946 \pm$	3.93	.946533	1.11	.729927	5.10	. 277676	9
52	. 669703	3.93 3.93	.946171	1.11	. 723232	5.09	. 276768	8
53	. 669912	3.93 3.98	. 916404	1.111	. 723533	5.09	.276162	7
54	.670181	3.98 3.93	. 946337	1.11 1.12	. 723344	5.03 5.09	. 276156	6
55	. 670419	3.93 3.97	. 916270	1.12 1.12	.724149	5.09 5.09	. 275551	5
56	. 670653	3.97 3.97	. 946203	1.12	.724454	5.09 5.09	. 275546	4
57	. 670396	3.97 3.97	. 346136	1.12	.724760	5.09	. 275240	3
5 5	. 671134	3.97	. 916069	1.12	.725065	5.08	. 274935	2
5 C	. 671372	3.96	. 916102	1.12	.725370	5.08	. 274630	1
6C	. 671603	3.96	. 94.9935	112	.725674		. 274326	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 1'1.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.671609	3.96	9.945935	1.12	9.725674	5.08	0.274326	60
1	. 671847	3.96 3.96	. 945363	1.12 1.12	. 725979	5.08	. 274021	59
2	. 672034	3.96 3.95	. 945800	1.12 1.12	.726284	5.07	. 273716	58
3	. 672321	3.95	.945733	1.12 1.12	. 726588	5.07	. 273412	57
4	. 672558	3.95 3.95	. 945666	1.12 1.12	. 726892	5.07	. 273108	56
5	. 672795	3.95 391	. 945598	1.12 1.12	. 227197	5.07	. 272803	55
6	. 673032	3.91 3.94	. 945531	1.12 1.12	. 727501	5.07	. 272499	54
7	. 673263	3.94 3.94	. 945464	1.12 1.13	. 727805	5.07	. 272195	53
8	. 673505	3.94 3.94	. 915396	1.13	. 723109	5.06	. 271591	52
9	. 673741	3.91 3.93	. 945323	1.13 1.13	. 723412	5.06 5.06	. 271588	51
10	9.673977	3.93	9.945261	1.13	9.723716	5.06	0.271284	50
11	. 674213	3.93 3.93	. 915193	1.13	. 729020	5.06	. 270930	49
12	. 674448	3.93 3.93	.945125	1.13 1.13	. 729323	5.06 5.05	. 270677	48
13	. 671634	3.93 3.92	. 945058	1.13	. 729626	5.05	. 270374	47
14	. 674919	3.92 3.92	. 944990	1.13 1.13	. 729929	5.05	. 270071	46
15	. 675155	3.92 3.92	. 914922	1.13 1.13	. 730233	5.05	. 269767	45
16	. 675390	3.92 3.91	.911554	1.13 1.13	. 73953.5	5.05	. 269465	44
17	.675624	3.91	. 944786	1.13 1.13	. 730533	5.05	.269162	43
13	. 675359	3.91 3.91	. 944718	1.13 1.13	. 731141	5.05 5.04	. 268859	42
19	. 676094	3.91 3.91	. 944650	1.13 1.13	. 731444	5.04	. 268556	41
20	9.676328		9.914582		9.731746		0.263254	40
21	. 676562		. 944514	1.14	. 732045	5.04	. 267952	39
22	. 676796	3.90	. 944446	1.14	. 732351	5.04	. 267649	39
23	. 677030	3.90	. 911377	1.14	. 732653	5.04	. 267347	37
24	. 677264	3.90	. 944309	1.14	. 732955	5.03	. 267045	36
25	. 677493	3.89	. 944241	1.14	. 733257	5.03 5.03	. 266743	35
26	. 677731	3.89	. 941172	1.14	. 733558	5.03 5.03	. 266412	34
27	. 677964	3.89	. 944104	1.14	.733560	5.03	. 266140	33
28	. 678197	3.88	. 944036	1.14	. 731162	5.03 5.02	. 265833	32
29	. 678130	3.88	. 943967	1.14	. 731463	5.02 5.02	. 265537	31
30	9.675663		9.913599		9.731764		0.265236	30
31	. 678395	3.88	. 913333	1.14	. 735066	5.02	. 264931	29
32	. 679128	3.87	. 943761	1.14	. 735367	5.02	. 261633	28
33	. 679360	3.87	. 943693	1.15	. 735663	5.02	. 264332	27
34	. 679592	3.87	. 943621	1.15	. 73.5969	5.01 5.01	. 264031	26
35	. 679324	3.87	. 943555	1.15	. 736269	5.01	. 263731	25
36	. 630056	3.86	. $9431 \leq 6$	1.15	. 736570	5.01	. 263130	24
37	. 630233	3.86	. 943417	1.15	. 736370	5.01	. 263130	23
33	. 630519	3.86	. 943318	1.15	.737171	5.01	. 262829	2.2
39	. 630750	3.86 3.85	. 943279	1.15 1.15	.737471	5.01	. 262529	21
40	9.630932		9.943210		9.737771		0.262229	20
41	. 631213	3.85	. 943141	1.15	. 733071	5.00	. 261929	19
42	. 631443	3.85	. 943072	1.15	. 733371	5.00 5.00	. 261629	18
43	. 631674	3.81	. 913003	1.15	. 735671	5.00	. 261329	17
44	. 631905	3.81	. 912934	1.15	. 735971	4.09	. 261029	16
45	. 632135	3.81	. 942364	1.16	. 739271	4.99	. 260729	15
46	.632.365	3.81	. 94279.5	1.16	. 739570	4.99	. 260430	14
47	. 632595	3.83	. 942726	1.16	. 739870	4.99 4.99	. 260130	13
48	. 632325	3.83 3.83	. 942656	1.16 1.16	. 740169	4.99 4.99	. 259331	12
49	. 683055	3.83 3.83	. 912587	1.16	. 740463	4.98	. 259532	11
50	9.633234		9.942517		9.740767		0.259233	10
51	. 633514	3.82	. 942443	1.16 1.16	. 711066	4.98 4.98	. 255934	9
52	.633743	3.82	. 942378	1.16	. 741365	4.93	. 255635	8
53	. 633972	3.82 3.82	. 912303	1.16	. 741664	4.98	. 258336	7
54	. 631201	3.81 3.81	. 912239	1.16	. 741962	4.98	. 255033	6
55	. 634430	3.81 3.81	. 942169	1.16	. 742261	4.98 4.97	. 257739	5
56	. 631658	3.81	. 942099	1.16	. 742559	4.97	. 257441	4
57	. 634837	3.81	.942029	1.16 1.17	. 742858	4.97 4.97	. 257142	3
58	. 685115	3.80	. 911959	1.17	. 743156	4.97	. 256314	2
59	. 635313	3.80 3.80	. 941889	1.17	. 743454	4.97	. 256546	1
60	. 635571	3.80	. 911819	1.17	. 743752	4.97	. 256245	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 1 '.	Cotang.	D. 1'.	Tang.	M.

COSINES, TANGENTS, AND COTANGENTS.
203

M	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.635571		9.941819	1.17	9.743752	4.96	0.256243	60 59
1	. 6355799	3.80 3.79	. 911749	1.17	. 7444050	4.96	. 25595950	58
2	. 636027	3.79 3.79	. 941679	1.17	. 7444645	4.96	. 255355	57
3	. 636254	3.79 3.79	. 911609	1.17	. 7444645	4.96	. 255057	56
4	. 636132	3.79	. 941539	1.17	. 7445240	4.96	. 254760	55
5	. 656709	3.78 3.78	.941469	1.17		4.96	. 254462	54
6	. 6569336	3.78	. 9113938	1.17	. 745	4.95	. 254165	53
7	. 637163	3.78	. 941258	1.17	. 746132	4.95	. 253868	52
8	.657339 .687616	3.78	. 9411187	1.17	.746429	4.95 4.95	.253571	51
9		3.77			¢. \uparrow		0.253274	50
10	9.6378	3.77	9.94111	1.18	¢. 747023	4.95	. 252977	49
11	. 638069	3.77	.911046 .940975	1.18	. 747319	4.95	. 252681	48
12	. 638295	3.77	. 91940975	1.18	. 747616	4.94	. 252334	47
13	. 6335	3.76	. 94090334	1.18	. 747913	4.94	. 252087	46
I 4	. 638747	3.76	. 9410763	1.18	. 748209	4.94	. 251791	45
15	. 635972	3.76	. 94407693	1.18	.748505	4.94	. 251495	44
16	. 68989193	3.76	.940693	1.1	.748801	4.94 4.93	. 251199	43
18	. 639619	3.75 3.75	. 940551	1.18	. 7499097	4.93	. 25060903	42
19	. 639373	3.75	. 940480	1.18	. 7	4.93		
20	9.690093	3.75	9.94040	1.18	9.749689	4.93	250015	39
21	. 690323	3.74	. 940333	1.18	. 7490281	4.93	. 249719	33
22	. 630518	3.74	. 940267	1.19	. 75050281	4.93	. 249424	37
23	. 693772	3.74	.940196	1.19	. 750872	4.92	. 249123	36
24	. 6909996	4	. 940125	1.19	. 751167	4.92	. 248833	35
25	.691220	3.73	. 9340059	1.19	. 751462	4.92	. 248533	34
26	. 691444	3.73	. 93399811	1.19	. 751757	4.92	. 248243	33
27	. 691663	3.73	. 93993940	1.19	. 752052	4.92	. 247948	32
23	.691892	3.73	. 9393768	1.19	. 752347		. 247653	31
29		3.72		1.19			0.247358	30
30	9.692339	3.72	$\begin{array}{r}9.939697 \\ \hline 939625\end{array}$	1.19	9.752642 .752937		. 247063	29
31	. 692.562	3.72	. 93939554	1.19	. 753231	4.91	. 246769	23
32	. 692785	3.72	. 93995953	1.19	. 753526	4.91	. 216474	27
33	. 693008	3.71	. 93994110	1.19	. 753820	4.91	. 246180	26
34	.6933231	3.71	. 93993339	1.19	. 754115	4.91	. 245885	25
35	. 693153	3.71	. 9392967	1.20	. 754409	4.90	. 245591	24
36	. 69336	3.71	. 939195	1.20	. 754703	4.90	. 245297	23
37	. 69934120	3.70	. 939123	1.20	. 754997		. 245003	22
37 39	. 6941342	3.70	. 939052	1.20 1.20	. 755291	4.90	09	21
40	9.694564		9.933980	120	9.755		0.244415	20
41	. 694786		. 933903	1.20	. 755978	4.89	. 244122	
42	. 695007	3.69	. 933836	1.20	. 756172	4.89	3	18
43	. 695229	3.69	. 933763	1.20	.756165	4.89	-24353.	17
44	. 695150	3.69 3.69	. 933591	120	. 7567059	4.89	. 242948	16
45	. 695671	3.63	. 933619	1.20	. 757052	4.89	. 242655	4
46	. 6959592	3.63	. 9333517	1.20	. 757633	4.88	. 212362	13
47	. 696113	3.63	. 9333475	1.21	. 757931	4.88	. 242069	12
48	. 6963334	3.68 3.68	. 933102	1.21	. 758224	4.88	. 241776	11
49	. 636554	3.67	. 93	21	. 758224	4.88		0
50	9.696775		9.93325	1.21	9.758517	4.88	. 241190	9
51	. 696995	3.67	. 933185	1.21	. 758810	4.88	. 240893	
52	. 697215	3.67 3.67	. 933113	1.21	. 7759392	4.87	. 240605	
53	. 697435	3.66	. 9333040	1.21	. 75939657	4.87	. 240313	6
54	.697654	3.66	. 9379697	1.21	. 7599979	4.87	. 240021	5
55	. 697874	3.66	. 93787895	1.21	. 760272	4.87	. 239728	
56	. 693091	3.66	. 9378782	1.21	. 760564	4.87	. 239436	
57	. 698313	3.65	. 93777	1.21	. 7605056	4.87	. 239144	2
59	. 6985332	3.65	. 937676	1.21	. 761148	4.86	. 238852	
60	.693751 .693970	3.65	. 937604	1.22	. 761439	4.86	. 238561	0
	Cosine	D. 1	Sine.	D. 1	Cotang.	D. 1^{1}	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.698970	3.65	9.937531		9.761439	4.86	0.238561	60
2	. 6999189	3.65 3.64	$.937458$	1.22	. 761731	4.86	. 238269	59
2	. 699107	3.64	. 9373885	1.22	.762023	4.86 4.86	. 237977	58
3	.699626	3.64	. 937312	1.22	.762314	4.86	. 237680	57
4	. 699844	3.64	. 937238	1.22	. 762606	4.8	. 237394	56
5	. 700062	3.63	. 937165	1.22	. 762597	4.85	. 237103	55
6	. 700230	${ }_{3.63}$. 937092	1.22	. 763188	4.85	. 236812	54
7	. 700493	3.63 3.63	. 937019	1.22	. 763479	4.85	. 236521	53
8	. 700716	3.63 3.63	. 936946	1.22	. 763770	4.85	. 236230	52
9	. 700933	3.62	. 936872	1.22	. 764061	4.85	. 235939	51
10	9.701151	3.62	9.936799	1.22	9.764352		0.235648	50
11	. 701368	3.62	. 936725	1.23	. 764643	4.85	. 235357	49
12	.701585	3.62 3.62	. 936652	1.23	. 764933	4.84	. 235067	48
13	. 701802	3.61	. 936578	1.23	. 765224	4.84	. 234776	47
14	. 702019	3.61	. 9365505	1.23	. 765514	4.84	. 234456	46
15	. 7022.36	3.61	. 936431	1.23	. 765805	4.84	. 234195	45
16	. 702152	3.61	. 9363537	1.23	. 766095	4.84	. 233905	44
17	. 702669	3.60	. 936284	1.23	.766355	4.83	. 233615	43
18	. 702885	3.60	. 936210	1.23	. 766675	4.83	. 233325	42
19	. 703101	3.60	. 936136	1.23	. 766865	4.83	. 233035	41
20	9.703317	3.60	9.936062	1.23	9.767255		0.232745	40
21	. 7103533	3.59	.935988	1.23	. 767545	4.83	. 232455	39
22	. 703749	3.59	.935914	1.23	. 767834	4.83	. 232166	38
23	. 703564	3.59	.935840	1.23	. 768124	4.82	. 231876	37
24	. 704179	3.59	. 935766	1.24	. 768414	4.52	. $2315 \leq 6$	36
2.5	. 704395	3.59	. 9335692	1.24	. 768703	4.82	. 231297	35
26	. 701610	3.58	. 935018	1.24	. 765992	4.82	. 231008	34
27	. 704525	3.58 3.58	. 9355543	1.24	. 769281	4.82	. 230719	33
28	. 705040	3.58	.935469	1.24	. 7695971	4.82	. 230429	32
29	. 705254	3.58 3.58	. 935395	1.24	. 769860	4.82	. 230140	31
30	9.705469	3.57	9.935320		9.770148		0.229852	30
31	. 705683	3.57	. 435246	1.24	. 770437		. 229563	29
32	. 705898	3.57	.935171	1.24	. 770726	4.81	. 229274	28
33	. 706112	3.57	.935097	1.24	. 771015	4.81	. 228985	27
34	. 706326	3.56	.935022	1.24	. 771303	4.81	. 22 E697	26
3.5	. 706539	3.56	. 931913	1.24	. 771592	4.81	. 22.408	25
36	. 706753	3.56	. 931573	1.25	. 771880	4.80	.225120	24
37	. 706967	3.56	. 934793		. 722163		. 227832	23
38	. 707180	3.56 3.55	. 931723	1.25	. 772157	4.80	. 227543	22
39	. 707393	3.55 3.55	. 934619	1.25	. 772745	4.80 4.80	. 227255	21
40	9.707606		9.934574	1.25	9.773033		0.226967	20
41	. 707819	3.55	. 934499		. 773321	4.80	226679	19
42	. 708032	3.54	. 934424	1.25	. 773608	4.80	226392	18
4.3	. 708245	3.54	. 934349	1.25	. 773896	4.79	226104	17
4	. 703453	3.54	. 934274	1.25	. 774184	4.79	.225816	16
45	.703670	3.54	. 934199	1.25	. 774471	4.79	.22.5529	15
46	. 708882	3.54	. 934123	1.25	. 7774759	4.79 4.79	. 225241	14
47	. 709094	3.53	. 934048	1.25	. 775046	4.79	. 224954	13
43	. 709306	3.53 3.53	. 933973	1.26	. 775333	4	. 224667	12
49	. 709518	${ }_{3}^{3.53}$. 933898	1.26	. 775621	4.78	. 224379	11
50	9.709730		9.933822		9.775908		0.224092	10
51	. 709941	3.53	.933747	1.26	. 776195	4.78	.223505	9
52	. 710153	3.52 3.52	.933671	1.26 1.26	. 776182	4.78 4.78	. 223518	8
53	. 710364	3.52 3.52	. 933596	1.26	.iT 7 ¢768	4.78	. 223232	7
54	. 710575	3.52 3.52	933520	1.26 1.26	. 777055	4.78	. 222945	6
55	. 710786	3.51	933445	1.26	. 777342	4.78	222658	5
56	. 710997	3.51	933369	1.26	. 777628	4.78	. 2223372	4
57	. 711208	3.51	933293	1.26	. 777915	4.77	. 222185	
53	. 711419		933217	1.26	. 778201		.221799	2
59	. 711629	3.51	. 933141	1.26 1.26	. 778488	4.77	. 221512	1
60	. 711839	3.51	. 933066	1.26	. 778774	4.77	. 221226	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosice.	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{11}{ }^{\text {a }}$	Cotang	M.
0	9.711839		9.933066	1.27	9.778774	4.77	0.221226	60
1	. 712650	3.50 3.50	. 9322997	1.27	. 779060	4.77	. 220940	59
2	. 712260	3.50	. 932914	1.27	. 7779316	4.77	.2211654 .220368	57
3	. 712469	3.50 3.50	.932333	1.27	. 7779632	4.76	. 2220086	57
4	. 712679	3.49	. 932762	1.27	. 779918	4.76	. 21219797	55
5	. 712359	3.49	.902655	1.27	. 78020.39	4.76	. 219511	54
6	. 713098	3.49	. 9325333	1.27	. 780775	4.76	. 219225	53
8	.713308 .713517	3.49	. 93252457	1.27	. 781060	4.76 4.76	. 218940	52
8	. 713726	3.48	. 932350	1.27	. 781346	4.76 4.76	. 218654	51
10	9.713935	3.48	9.93:304	1.27	9.781631	4.75	0.218369	50
11	. 714144	3.48	. 9322228	1.27	. 781916	4.75	218034	49
12	. 714352	3.43	. 932151	1.28	. 782201	4.75	. 217799	48
13	. 714561	3.47	. 932075	1.28	.782186	4.75	. 217514	47
14	. 714769	3.47	. 931998	1.28	.782771	4.75	. 2169214	46
15	. 714978	3.47	. 931921	1.23	. 783051	4.75		45
16	. 715186	3.47	. 931845	1.23	.783311	4.75	. 216374	44
17	. 715391	3.46	931691	1.23	.783626	4.74	. 216090	43
18	. 715602	3.46	. 931691	1.28	. 7834195	4.74	. 215305	41
19	. 715809	3.46	. 931614	1.28	. 784190	4.74		
20	9.716017	3.46	9.931537	1.28	9781479	4.74	0.215521	40
21	. 716224	3.46	. 931460	1.23	784761	4.74	215236	39
22	. $716+32$	3.45	. 931333	1.28	785018	4.74	. 214938	35
23	. 716639	3.45	. 931306	1.28	. 7855332	4.74	. 214685	37
24	. 716346	3.45	. 931229	1.29	.785616	4.73	. 214351	36
25	. 717053	3.45	. 9	1.29	785900	4.73	. 217100	35
25	. 717259	3.44	075	1.29	. 78618168	4.73	. 213516	34
27	. 717466	3.44	. 930993	1.29	. 786168	4.73	. 213248	33 32
23	. 717673	3.44	. 9330921	1.29	. 7887036	4.73	. 21212964	31
29	. 717879	3.44	. 930813	1.29	. 787	4.73		
30	9.718035	3.43	9.930766	1.29	9.787319		0.212681	30
31	. 718291	3.43	. 930638	1.29	. 787603	4.72	. 212397	29
32	. 718497	3.43	. 930611	1.29	. 787886	4.72	. 212114	23
33	. 718703	3.43	. 9305053	1.29	. 7888170	4.72	. 211830	27
34	. 718909	3.43	. 930156	1.29	. 7888453	4.72	. 2111264	26
35	. 719114	3.42	. 930378	1.29	. 7889019	4.72	. 2110981	24
36	. 719320	3.42	. 930300	1.30	. 78993019	4.72	. 210698	23
37	. 719525	3.42	. 9332233	1.30	. 7899535	4.72	. 210415	22
38	. 719730	342	. 9330145	1.30	. 7893568	4.71	. 210132	21
39	. 719935	3.41	. 930067	1.30	. 7	4.71		
40	9.720140	3.41	9.929989		9.790151		0.209849 209566	
41	. 720315	3.41 3.41	. 92999311	1.30 1.30	.790434 .790716	4.71	. 2095868	19 18
42	. 720549	3.41	. 9293333	1.30	.790716 .790999	4.71	. 20928001	18
43	. 720754	3.41	. 92929655	1.30	.790999	4.71	. 209719	16
44	.720953	3.40	. 92929577	1.30	.791251	4.71	. 208137	15
45	.721162	3.40	. 92929592	1.30	. 7915616	4.70	. 208154	14
46 47	.721366 .721570	3.40	. 929295214	1.30	. 792128	4.70	. 207872	13
478	. 72121774	3.40	.929442	1.31	. 792410	4.70	.207590	12
49	. 721978	3.39 3.39	. 929256	1.31	. 792692	4.70 4.70	. 207308	11
50	9.722181		9.929207		9.792974		0.207026	10
51	. 722335	3.39 3.39	. 929129	1.31	. 793256	4.70	. 206744	9
52	. 7222588	3.39 3.39	. 9239050	1.31	. 7935338	4.70	. 206162	8
53	. 722791	3.33	. 923972	1.31	. 79381919	4.69	. 2061818	7
54	. 722994	3.38	. 923893	1.31	. 794101	4.69	. 2053899	6
55	.723197	3.35	. 923815	1.31	. 79431684	4.69	. 205617	4
56	. 723100	3.33	. 9233736	1.31	. 79794946	4.69	. 205336	4 3
57	. 723603	3.37	. 923235578	1.31	.794946 .795227	4.69	. 20505773	
59	. 723305	3.37	. 923354978	1.31	.795227	4.69	. 204498	1
9	.721007 .724210	3.37	$\begin{array}{r} .923499 \\ .923420 \end{array}$	1.32	. 7955739	4.69	. 204211	0
M.	. Cosine.	D. $1^{\prime \prime}$.	Sine	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M

$5 \times$

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.724210	3.37	9.928420	1.32	9.795789		0.204211	60
1	. 724412	3.37	$.923342$	1.32	. 796070	4.68	. 203930	59
2	. 7241614	3.36	. 928263	1.32	. 7963531	4.68	. 203649	58
3	. 724316	3.36	.925183	1.32	. 7966632	4.68	. 203368	57
4	.725017	3.36	. 923104	1.32	. 796913	4.68	. 203087	56
	. 725219	3.36		1.32	. 797194	4.68	. 202806	55
6	.725420	3.36	. 9279496	1.32	. 7974744	4.68	. 202526	54
8	. 725622	3.35	.927567	1.32	. 7977505	4.68	. 202245	53
*9	. 726024	3.35	. 927708	1.32	.798316	4.67	. 201684	${ }_{51}^{52}$
10	9.726225		9.927629		9.798		0.2014	
11	. 72642	3.35	. 927549	1.32	. 798877	4.67	. 20112	49
12	. 726626	3.31	. 927470	1.33	. 799157	, 67	. 200843	48
13	. 726327	3.31	. 927390	1.33	. 7999337	67	. 200563	47
14	. 727027	3.34	. 927310	1.33 1.33	. 799717	4.67	. 200283	46
15	. 727223	3.34	. 927231	${ }^{1.33}$. 799997	4.66	. 200003	45
16	. 727428	3.33	. 927151	1.33	. 800277	4.66	. 199723	44
17	. 727628	3.33	. 927071	1.33	. 800557	4.66	. 199443	43
18	. 727823	${ }_{3} .33$. 926991	1.33	. 800836	4.66	. 199164	42
19	. 728027	3.33 3.33	. 926911	1.33 1.33	. 801116	4.66	. 198884	41
20	9.728227	3.33	9.926	1.33	9.8013		0.19	40
21	. 728427	3.32	. 926751	1.33	. 801675	4.66	. 196325	39
22	.728626	3.32	. 926671	1.33	. 801955	4.66	. 198045	38
23	. 72882	3.32	. 9265591	1.34	. 802234	4.65	. 197766	37
24	. 7290	3.32	. 926511	1.34	. 802513	4.65	. 197487	36
25		3.31	. 926431	1.34	. 802792	4.65	. 197208	35
26	. 729122	3.31		1.34	. 803072	4.65	. 196923	34
27	. 729621	3.31	270	1.34	. 803351	4.65	. 196649	33
28	. 729820	3.31	. 926190	1.34	. 803630	4.65	. 196370	32
29	. 730018	3.31	. 926110	1.34	. 803909	4.65	. 196091	31
30	9.730217	3.	9.92	1.34	9.8041		0.195813	30
31	. 730415	3.30	. 925919	1.34	. 804466	4.65 4	. 195534	29
32	. 730613	3.30 3.30	. 925868	1.34	. 804745	4.64	. 195255	28
33	. 730811	3.30	.92	1.34	. 80502	4.64	. 194977	27
34	. 731009	3.30	. 925707	1.35	. 805302	4.64	. 194698	26
35	. 731206	3.29	. 925626	1.35	. 805580	4.64	. 194420	25
36	. 731404	3.29	. 925545	1.35	. 805859	4.64	. 194141	24
37	. 731602	3.29	. 925465	1.35	. 806137	4.64	. 193858	23
38	. 731799	3.29	. 925384	1.35	. 806415	4.64	. 1935385	22
39	6	3.28	. 925303	1.35	. 806693	4.64	. 193307	21
40	9.732193		9.925222		9.8069		0.193029	20
41	. 732390	3.28	. 925141	1.35	. 807249	4.63	. 192751	19
42	. 732587	3.28	. 925060	1.35	. 807527	4.63	. 192473	18
43	. 732784	3.28 3.28	. 924979	1.35	. 807805	4.63	. 192195	17
44	.732980	3.27	. 924897	1.35	. 808083	4.63	. 1919177	16
45	. 733177	3.27	. 924816	1.35	. 808361	4.63	. 191639	15
46	. 733356	3.27	. 924735	1.36	. 805638	4.63	. 191368	14
47	.	3.27	. 9246542	1.36	. 808916	4.62	. 1910807	13
48	. 73	3.27	. 9224491	1.36		4.62		12
49	. 733961	3.26	. 924491	1.36	. 80	4.62	. 190529	11
50	9.734157	3.26	9.924409	1.36	9.80974		0.190252	10
51	. 734353	3.26 3.26	. 924328	1.36	. 810025	4.62 4.62	. 189975	9
52	. 734549	3.26 3.26	. 924246	1.36	. 810302	4.62	. 189698	8
53	. 734744	3.26 3.26	. 924164	1.36	. 8105850	4.62	. 189420	7
54	. 734939	3.25	. 924083	1.36	. 810857	4.62	. 189143	6
55	. 735135	3.25	. 924001	1.36	. 811134	4.61	. 188866	5
56	. 735330	3.25	. 923919	1.36	. 811410	4.61	. 188590	4
57	.735525	3.25	. 9238387	1.37	. 811687	4.61	. 188313	3
58	. 735719	3.25	. 9223755	1.37	. 811964	4.61	. 188036	2
59	$\begin{array}{r} .735914 \\ .736109 \end{array}$	3.25 3.24	$\begin{aligned} & .923673 \\ & .923591 \end{aligned}$	1.37	$\begin{aligned} & .812241 \\ & .812517 \end{aligned}$. 61	$\begin{aligned} & .187759 \\ & .187483 \end{aligned}$	1 0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$	Cotang	D. $1^{\prime \prime}$	Tang	M.

COSINES, TANGENTS, AND COTANGENTS.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1\%.	Cotang.	M.
0	9.736109	3.24	9.923591	1.37	9.51251.	¢.51	0.187483	60
1	. 736303	3.24 3.24	. 923509	1.37	. 812794	4.61	. 187206	59
2	. 736493	3.24 3.24	. 923427	1.37	.813070	4.61	.186930	58
3	. 736692	3.24 3.23	. 923345	1.37	. 813347	4.61	. 186653	57
4	. 736986	3.23	. 923263	1.37	. 813623	4.60	. 186377	56
5	. 737080	3.23 3.23	. 923181	1.37	. 813599	4.60	. 186101	55
6	. 737274	3.23 3.23	. 923093	1.37	. 814176	4.60	. $185=24$	54
7	. 737467	3.23 3.23	. 9233016	1.37	. 814452	4.60	. 185548	53
8	. 737661	3.23 3.22	. 922933	1.37	. 814723	4.60	. 185272	52
9	. 737855	3.22 3.22	. 922851	1.38	. 815004	4.60	. 184996	51
10	9.733048	3.22	9.922768	1.33	9.815280	4.60	0.181720	50
11	. 733241	3.22 3.22	. 922686	1.35	. 81555.	4.60	. 181415	49
12	. 733434	3.22	. 922603	1.35	. $815-31$	4.59	. 181169	48
13	. 738627	3.22 3.21	. 922520	1.38	.816107	4.59	. 183893	47
14	. 733820	3.21	. 922433	1.33	. 816382	4.59	183312	46
15	. 739013	3.21 3.21	. 922355	1.33	. 816653	4.59	.183342	45
16	. 739206	3.21	. 922272	1.33	. 816933	4.59	. 183067	44
17	. 739398	3.21 3.21	. 922189	1.38	.817209	4.59	. 182791	43
18	. 739590	3.20	. 922106	1.33	. 817484	4.59	. 182516	42
19	. 739783	3.20 3.20	. 922023	1.33	. 817759	4.59	. 182241	41
20	9.739975		9.921940	1.39	9.818035	4.59	0.181965	40
21	. 740167	3.20 3.20	. 921857	1.39	. 818310	4.58	. 181690	39
22	. 740359	3.20 3.20	. 921774	1.39 1.39	. 818585	4.58	. 181415	33
23	. 740550	3.20 3.19	. 921691	1.39	. 818860	4.58	.181140	37
24	. 740742	3.19 3.19	. 921607	1.39	. 819135	4.53	.180865	36
25	. 740934	3.19 3.19	. 321524	1.39	. 819410	4.58	. 180590	35
26	.74112.5	3.19 3.19	. 921441	1.39	. 819684	4.58	. 180316	34
27	. 741316	3.19 3.19	.921357	1.39	. 819959	4.53	. 180011	33
23	. 741508	3.19 3.18	. 921274	1.39	. 820234	4.58	. 179766	32
29	. 741699	3.18 3.18	. 921190	1.39	. 820508	4.58	. 179492	31
30	9.741889		9.921107	1.39	9.820783	4.57	0.179\%17	30
31	.742080	3.18 3.18	. 921023	1.39 1.39	. 821057	4.57	. 178943	29
32	. 742271	3.18 3.18	. 920939	1.39 1.40	. 821332	4.57	. 178668	23
33	. 712462	3.17 3.17	. 920856	1.40	. 821606	4.57	. 178394	27
34	. 742652	3.17 3.17	. 920772	1.40	. 821830	4.57	. 178120	26
35	. 742342	3.17 3.17	. 920688	1.40	. 822154	4.57	. 177846	25
36	. 743033	3.17 3.17	. 920604	1.40	. 822129	4.57	.177571	24
37	. 743233	3.17 3.17	. 920520	1.40	. 822703	4.57	. 177297	23
33	. 743413	3.17 3.16	. 920436	1.40	. 8222977	4.57	. 177023	22
39	. 743602	3.16 3.16	. 920352	1.40 1.40	. 823251	4.56	.176749	21
40	9.743792		9.920268		9.823524		0.176476	20
41	. 743932	3.16	. 920184	1.40 1.40	. 823798	4.56 4.56	. 176202	19
42	. 744171	3.16 3.16	.920099	1.40	. 824072	4.56	. 175928	18
43	. 744361	3.16 3.15	.920015	1.40	. 824345	4.56	. 175655	17
44	. 744550	3.15	.919931	1.41	. 824619	4.56	.175381	16
45	. 744739	3.15 3.15	. 919346	1.41	. 824893	4.56	.175107	15
46	. 744923	3.15	. 919762	1.41	. 825166	4.56	. 174834	14
47	. 745117	3.15 3.15	. 919677	1.41	. 825439	4.56 4.56	.174561	13
48	. 745306	3.15	.919593	1.41	. 825713	4.56	. 174287	12
49	. 745594	3.14 3.14	. 919508	1.41	. 825986	4.55	. 174014	11
50	9.745633		9.919424		9.826259	455	0.173741	10
51	. 745871	3.14	. 919339	141	. 826532	4.55	. 173463	9
52	. 746060	3.14 3.14	. 919254	1.41	. 826805	4.55 4.55	. 173195	8
53	. 746248	3.14 3.13	. 919169	1.41	. 827078	4.55	. 172922	7
54	.746436	3.13 3.13	. 919085	1.41	. 827351	4.55	. 172649	6
55	. 746624	3.13 3.13	.919000	1.42	. 827624	4.55	.172376	5
56	.746312	3.13 3.13	. 918915	1.42	. 827897	4.55 4.55	. 172103	4
57	. 746999	3.13 3.13	. 918830	1.42	.828170	4.54	. 171830	3
58	. 747187	3.13 3.12	. 918745	1.42	. 828142	4.54	. 171558	2
59	. 747374	3.12 3.12	. 918659	1.42	. 828715	4.54 4.54	.171285	1
60	. 747562	3.12	. 918574	1.42	. 828987	4.54	. 171013	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. ${ }^{\prime \prime}$ ".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.747562		9.918.374		9.823937	4.54	0.171013	60
1	. 747749	3.12 3.12	. $91-489$	1.42 1.42	. 829260	4.54	. 170740	59
$\stackrel{2}{2}$. 747936	3.12 3.12	. 918404	1.42 1.42	.829532	4.51	. 170463	53
3	. 748123	3.12 3.11	. 918318	1.42 1.42	. 829305	4.54	. 170195	57
4	. 748310	3.11	. 918233	1.42 1.42	. 830077	4.54	. 169923	56
5	. 743497	3.11	. 918147	1.42 1.43	. 830319	4.54	. 163651	55
6	. 743633	3.11	. 918062	1.43	.8306\%1	4.51	. 169379	54
7	. 743370	3.11	. 917976	1.43 1.43	. 830393	4.53	. 169107	53
8	.749056	3.10	. 917891	1.43	. 831165	4.53	. 163335	52
9	. 749243	3.10	. 917805	1.43 1.43	. 831437	4.53	. 163563	51
10	9.749127	3.10	9.917719	1.43	9.831709	4.53	0.163291	50
11	. 749615	3.10 3.10	. 917634	1.43 1.43	. 831981	4.53	.168019	49
12	. 749301	3.10 3.10	. 917548	1.43 1.43	.832253	4.53 4.53	. 167747	48
13	. 749937	3.10 3.10	. 917462	1.43 1.43	. 832525	4.53	. 167475	47
14	. 750172	3.10 3.09	. 917376	1.43 1.43	. 832796	4.53	. 167204	46
15	. 750353	3.09 3.09	. 917290	1.43	. 833063	4.53	. 166932	45
16	. 750513	3.09 3.09	. 917204	1.43	. 833339	4.53	. 166661	44
17	. 750729	3.09 3.09	. 917118	1.43	. 833611	4.52	. 166389	43
18	. 750914	3.09 3.09	. 917032	1.44 1.44	. 833352	4.52	. 166115	42
19	. 751099	3.09	. 916946	1.44	. 834154	4.52 4.52	. 165846	41
20	9.751234		9.916359		9.831425		0.165575	40
21	. 751469	3.08	. 916773	1.47	. 831696	4.52	.165304	39
22	. 751654	3.03	. 916637	1.44	. 834967	4.02	. 16.5033	38
23	. 751839	3.03 3.03	. 916603	1.41	. 835233	4.52	. 161762	37
24	. 752023	3.08	. 916514	1.44	. 835509	4.52	. 161491	36
25	. 752203	3.07	. 916427	1.44	. 835780	4.52	. 164220	35
26	. 752392	3.07	. 916311	1.44	. 836051	4.52	. 163949	34
27	. 752576	3.07	. 916254	1.44	. 836322	4.51	. 163678	33
23	. 752760	3.07 3.07	. 916167	1.44	. 836593	4.51	. 163407	32
29	. 752944	3.07 3.06	. 916081	1.45	. 836564	4.51	.163136	31
30	9.753123		9.915994		9.837134		0.162866	30
31	.753312	3.	. 915907	1.45	. 837405	4.51	. 162595	29
32	. 753495	3.06	. 915320	1.45	. 837675	4.51	. 162325	28
33	. 753679	3.06 3.06	. 915733	$1.45{ }^{\circ}$. 837916	4.51	. 162054	27
31	. 753362	3.05	. 91.5646	1.45	. 833216	4.51	. 161784	26
35	. 754046	3.05 3.05	. 915559	1.45	. 833487	4.51	.161513	25
36	.75122 7	3.05	. 915472	1.45	. 838757	4.51	. 161243	24
37	. 751412	3.05	. 915335	1.45	. 839027	4.50	.160973	23
33	. 754595	3.05	. 915297	1.45	. 839297	4.50	. 160703	22
39	. 754778	3.05 3.05	. 915210	1.45 1.46	. 839563	4.50	.160432	21
40	9.754960		9.915123		9.839838		0.160162	20
41	. 755143		. 915035	1.46 1.46	. 840103	4.50	. 159392	19
42	. 755326	3.04 3.04	. 914948	1.46	. 840378	4.50 4.50	. 159622	18
43	. 755503	3.04 3.04	. 914560	1.46	. 840643	4.50 4.50	. 159352	17
44	. 755690	3.04 3.04	.914773	1.46 1.46	. 810917	4.50	.159083	16
45	. 755872	3.07 3.03	. 914635	1.46 1.46	. 811187	4.59	.158313	15
46	. 756054	3.03 3.03	. 914598	1.46	. 841457	4.49 4.49	.158543	14
47	. 756236	3.03 3.03	. 914510	1.46	. 811727	4.49 4.49	.158273	13
43	. 756118	3.03 3.03	. 914422	1.46	. 841996	4.49 4.49	. 158004	12
49	. 756600	3.03 3.03	. 914334	1.46 1.46	. 812266	4.49 4.49	.157734	11
50	9.756782		9.914246		9.842535		0.157465	10
51	. 756963	3.02	. 914153	1.47	. 842805	4.49 4.49	. 157195	9
52	. 757144	3.02 3.02	. 914070	1.47	. 843074	4.49 4.49	. 156926	8
53	. 757326	3.02	. 913982	1.47	. 843343	4.49 4.49	. 156657	7
54	. 757507	3.02 3.02	. 913894	1.47	. 843612	4.49 4.49	. 156338	6
55	. 757638	3.02 3.02	.913866	1.47	. 813332	4.49 4.49	.156119	5
56	. 757869	3.02 3.01	.913718	1.47	. 844151	4.49 4.48	. 155319	4
57	. 753050	3.01	913630	1.47	. 844420	4.48 4.48	. 155580	3
53	.758230	3.01	. 913541	1.47	. 814639	4.48 4.48	. 15.5311	2
59	. 753111	3.01	. 913453	1.47	. 844958	4.48	. 15 s บ\%	1
60	.758591	1	. 913365	1.47	. 845227	4.45	.1547\%3	.
M.	Cosine.	D. $1^{\prime \prime}$.	Slne.	D. $1^{\prime \prime}$.	Cotang.	.1'.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.758591	3.01	9.913365	1.47	9.845227	4.48	$\begin{array}{r}0.154773 \\ .154504 \\ \hline\end{array}$	60 59
1	. 758772	3.01 3.00	.913276 .913187	1.48	845764	4.48	. 154236	58
2	. 7589952	3.00	.913187 .913099	1.48	. 846033	4.48	. 153967	57
3	.759132	3.00	. 91313010	1.48	. 816302	4.48	153698	56
4	.739312	3.00	. 91312922	1.48	. 846570	4.48	153430	55
5	. 759492	3.00	. 9129283	1.48	. 8468539	4.48	. 153161	54
6	. 75.9672	2.99	. 912744	1.48	. 847108	47	. 152892	53
8	. 759852	2.99 29	. 912655	1.48	. 847376	4.47 4.47	. 152624	52
9	. 760211	2.99 2.99	. 912566	1.48	. 847644	4.47	. 152356	51
10	9.760390	2.99	9.912477	1.48	9.847913	4.47	$\begin{array}{r}0.152087 \\ \hline 151819\end{array}$	50 49
11	. 760569	2.99	. 91212358	1.48	. 84×18184	4.47	. 151551	48
12	. 760748	2.98	.912299 .912210	1.49	. 84848717	4.47	. 151283	47
13	. 760927	2.98	. 91212121	1.49	. 8489886	4.47	. 151014	46
14	. 761106	2.98	. 912121	1.49	. 849254	4.47	. 150746	45
15	. 761285	2.93	. 91211942	1.49	. 849522	4.47	. 150478	44
16	. 761461	2.98	. 9111853	1.49	. 849790	4.47 4.46	. 150210	43
17	. 7616182	2.97	. 9111763	1.49	. 8500.57	4.46 4.46	. 149943	42
18	. 761821	2.97	. 91.11674	1.49 1.49	. 350325	4.46 4.46	149675	41
19	. 761999	2.97		1.49		4.46	0.149407	40
20	9.762177	2.97	9.911584	1.49	9.850593 $.850861$	4.46	. 149139	39
21	.7623.56	2.97	. 9111493	1.49	. 851129	4.46 446	. 148871	38
22	.762534	2.97	. 9111405	1.49	. 851396	4.46	. 148604	37
23	. 762712	2.96	. 91112156	1.50	. 851664	46	. 148336	36
24	. 7628889	2.96	. 911136	1.50 1.50	. 851931	4.46 4.46	. 148069	35
26	. 763245	2.96	. 911046	1.50	. 852199	4.46	. 1478001	34
27	. 763422	2.96	. 910956	1.50	. 852466	4.46	. 147267	32
28	. 763600	2.95	. 910866	1.50	. 8553001	4.46	. 146999	31
29	. 763777	2.95	. 910776	1.50	. 853001	4.45		
30	9.763954	2.95	9.910686	1.50	9.8532685	4.45	0.146732 .146465	29
31	. 764131	2.95	.910596	1.50	. 8533502	4.45	. 146198	28
32	. 7643085	2.95	. 91050415	1.50	. 8554669	4.45	. 145931	27
33	.764485	2.95	. 91040325	1.51	. 854336	4.45	. 145664	26
34	. 76464682	2.94	. 910235	1.51	. 854603	4.45	. 145397	25
35 36	. 7764838	2.94	. 910144	1.51	. 854870	4.45	. 145130	24
36 37	. 765015	2.94	. 910054	1.51	. 855137	4.45	. 144863	23
37 38	. 765367	2.94	. 909963	1.51	. 855404	4.45	. 144596	22
38	. 765544	2.94 2.93	. $9098{ }^{\text {c }} 73$	1.51	. 855671	4.44	. 144329	21
40	9.765720	2.93	9.909782	1.51	9.855938	4.44	0.144062	20
41	. 765896	2.93	. 909691	1.51	. 8556204	4.44	. 1433529	18
42	. 766072	2.93	. 90965010	1.51	. 8556737	4.44	. 143263	17
43	. 766247	2.93	${ }^{.909510}$	1.51	. 8557004	4.44	. 142996	16
44	. 766423	2.93	.909419	1.52	. 857270	4.44	. 142730	15
45	. 7665983	2.92	. 90909238	1.52	. 8557537	4.44	. 142463	14
46	. 7667774	2.92	. 90909146	1.52	. 8577803	4.44	. 142197	13
47	. 766949	2.92	. 90909055	1.52	. 858069	4.44	. 141931	12
43	. 767124	2.92	. 909055	1.52	. 8588336	4.44	. 141664	11
49	. 767300	2.92		1.52		4.44	0.141398	10
50	9.767475		9.908873 .908781	1.52	9.858602 .858868	4.44	.141132	-
51	.767649 .767824	2.91	. 9085781	1.52	. 8559134	4.43	. $140 \subset 66$	8
52	.767824 .767999	2.91	. 90808590	1.52	. 8599400	4.43 4.43	. 140600	${ }_{7}^{7}$
53	.767999 .765173	2.91	. 9093597	1.52	. 859666	4.43 4.43	.140334	6
55	. 763348	2.91	. 908416	1.52	. 859932	4.43 4.43	. 140068	5
56	. 768522	2.91 2.90	. 903324	1.53	. 860198	4.43	. 139892	4
57	. 765697	2.90 2.90	. 903233	1.53	. 8604	4.43	. 139270	2
53	. 763371	2.90	. 9003141	1.53	. 86073095	4.43	. 139005	1
59 60	.769045 .769219	2.90	. .903049	1.53	. 8661261	4.43	. 138739	0
M.	Cosine.	I. $1^{\prime \prime}$.	Sine.	D. 1^{11}	Cotang.	D. $1^{\prime \prime}$ 。	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.769219		9.907958		9.861261		0.138739	60
1	.769393	2.90 2.90	. 907866	1.53	.861527	4.43	. 138473	59
2 3 3	. 7695966	2.89	. 907774	1.53	.861792 .862058	4.43	. 133208	58 57
3	. 76976940	2.89	. 9076382	1.53	. 8620588	4.42	. 137942	57 56
4	.769913 .770037	2.89	. 907590	1.53	.862323	4.42	. 137677	56
6	. 770260	2.89	. 907406	1.53	. 8622354	4.42	. 137146	54
7	. 770433	2.89	. 907314	1.54	. 863119	4.42	. 136881	53
8	. 770506		. 907222	1.54	. 863335	4.42	. 136615	52
9	. 770779	2.88	. 907129	1.54	. 863650		. 136350	51
10	9.770952		9.90703		9.8639		0.136085	50
11	. 771125	2.88	. 906945	. 54	. 864180		.135820	49
12	. 771293	2.88 2.88	. 906352	1.54	. 864445	2	. 135555	48
13	. 771470	2.87	. 906760	1.54	. 864710	4.42	. 135290	47
14	. 771813	2.87	. 906667	1.54	. 864975	4.42	. 135025	46
15	. 771815	2.87	. 906575	1.54	. 865240	4.42	. 134760	45
16	. 771987	2.87	. 906482	1.55	.865505	1	. 134495	44
17	. 772159	2.87	. 906383	1.55	. 865770	4.41	. 134230	43
18	. 772331	2.87	6296	1.55	. 866035	4.41	. 1333965	42
19	. 772503	2.86	.906204	1.55	. 866300	4.41	. 133700	41
20	9.772675	2.56	9.906111	1.55	9.866		0.133436	40
21	. 772347	2.86	. 906018	1.55	. 866329	4.41	. 133171	39
22	. 773018	2.86	. 905925	1.55	. 867094	4.41	. 132906	38
23	. 773190	2.86	. 905832	1.55	. 867358	11	. 132642	37
24	. 773361	2.85	. 905739	1.55	. 867623	4.41	. 132377	36
25	. 773533	2.85	. 9056	1.55	. 86738	4.41	. 132113	35
26	. 773701	2.85	95552	1.55	. 865152	4.41	. 131848	34
27	.7\%35\%5	2.85	. 905459	1.56	. 863416	4.41	. 131584	33
23	. 774016	2.85	. 905366	1.56	. 863630	4.40	. 131320	32
29	. 774217	2.85	. 905272	1.56	. 863915	4.40	. 131055	31
30	9.774338	2.84	9.9051	1.56	9.869209	4.40	0.130791	30
31	. 774555	2.84	-905035	1.56	. 869473	4.40	. 130527	29
32	. 774729	2.84	. 904992	1.56	. 869737	4.40	. 130233	23
33	. 774899	2.84	. 904398	1.56	. 870001	4.40	. 129999	27
34	. 775070	2.84	. 904304	1.56	. 870265	4.40	. 129735	26
35	775240	2.84	. 904711	1.56	. 870529	4.40	.129471	25
36	. 775110	2.83	. 904617	1.56	. 870793	4.40	. 129207	21
37	. 775530	2.83	. 904523	1.57	. 871057	4.40	. 123943	23
33	. 775750	2.83	. 904429	1.57	. 871321	4.40	. 123679	22
39	. 775920	2.83	. 904335	1.57	. 871585	4.40	. 123415	21
40	9.776090		9.904241		9.871819		0.128151	20
41	. 776259		. 904147	1.57	. 872112		. 127888	19
42	. 776129	2.82	. 904053	1.57	. 872376	4.39	. 127624	18
43	. 776593	2.82	. 903959	1.57	. 872640	4.39	. 127360	17
44	. 776763	2.82	. 903364	1.57	. 872903	4.39	. 127097	16
45	. 7776937	2.52	. 9033770	1.57	. 873167	4.39	. 126333	15
46	. 777106	2.82	. 903676	1.57	. 873130	4.39	. 126570	14
47	. 777275	2.82	. 903581	1.57	. 873694	4.39	. 126306	13
48	. 777414		. 903487		. 873957		. 126043	12
49	.777613		. 903392		. 874220		. 125780	11
50	9.777781		9.903298		9.874434		0.125516	10
51	. 7779.50	2.81	. 903203	1.58	. 874747	4.39	. 125253	9
52	. 778119	2.81	. 903103	1.58	. 875010	4.39	. 124990	8
53	. 778237	2.81	. 903014	1.58	. 875273	4.39	. 124727	7
54	. 773455	2.80	. 902919	1.58	. 8755337	4.33	. 124163	6
55 56	. 778624	2.80	. 902324	1.58	. 8753500	4.33	. 124200	5 4
56	. 778792	2.80	. 902729	1.58	. 876063	4.38	. 123937	4
57	. 778960	2.80	. 902634	1.58	. 876326	4.38	. 123674	3
53	. 779123	2.80	. 902539	1.59	. 876.589	4.38	. 123411	2
59	. 779295	2.79	. 902444		. 876352	4.38	. 123148	1
60	. 779163	2.79	. 902349	1.59	. 877114	4.38		0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. ${ }^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.779463	79	9.902349	1.59	9.877114	4.35	0.122386	60
1	. 779631	9	. 902253	1.59	. 877377	4.35	. 122623	59
2	. 779798		. 90215 S	1.59	. 877640	4.35	. 122360	58
3	. 779966	79	. 902063	1.59	. 877903	4.33	122097	57
4	. 780133	. 79	. 901967	1.59	. 575165	4.35	21572	56
5	. 780330	2.75	. 901872	1.59	. 870428	4.38	. 121309	51
6	. 780467	2.78	.901776	1.59	$.87 \pm 691$ 878953	4.38	. 121147	53
7	. 780634	2.75	. 901651	1.59	. 879216	4.35	.120784	52
8	. 780501	2.78	.901585 .901490	1.59	. 879478	4.37	. 120522	51
9	. 780368	2.78	. 901490	1.60	. 879470	4.37	0.120259	51
10	9.781134	2.75	9.901394	1.60	9.579741 .850003	4.37	-. 119997	49
11	. 781301	2.77	.901298 .901202	1.60	. 8801265	4.37	. 119735	48
12	. 781468	2.77	.901202 .901106	1.60	. 8.80265	4.37	. 119472	47
13	. 781634	2.77	. 901106	1.60	. 880790	4.37	. 119210	46
14	.781800	2.77	. 901010	1.60	. 881052	4.37	. 115948	45
15	. 781966	2.77	. 900914	1.60	.851314	4.37	. 11568	44
16	. 782132	2.77	.900815 .900722	1.60	. 881577	4.37	. 118423	43
17	. 782298	2.76	. 900722	1.60	. 881539	4.37	.118161	42
18	. 782464	2.76	.900626 .900529	1.60	. 882101	4.37	. 117899	41
19	. 782630	2.76	. 900529	1.61		4.37	0.117637	46
20	9.782796	2.76	9.900433	1.61	9.852363	4.37	. 117375	39
21	. 782961	2.76	. 900337	1.61	. 8828283	4.37	. 117113	38
22	. 783127	2.76	. 900210	1.61	. 8823148	4.36	.116852	37
23	. 783292	2.75	. 900144	1.61	. 883410	4.36	. 116590	36
24	. 783458	2.75	. 900047	1.61	. 853672	4.36	. 116323	35
25	. 783623	2.75	. 899985	1.61	. 883931	4.36	. 116066	34
26	. 783788	2.75	. 8999757	1.61	. 884196	4.36	. 115814	33
27	. 783953	2.75	. 8999756	1.61	. 884157	4.36	. 115543	32
28	.781118	2.75	. 898956	1.61	. 884719	4.36	. 115281	31
29	. 781252	2.74	64	1.62	. 807719	4.36	0.115020	30
30	9.781447	2.74	9.899167	1.62	9.884930	4.36	0.115020 .114758	29
31	. 784612	2.74 2.74	. 899370	1.62	.855242 .855504	4.36	. 114496	28
32	. 781776	2.74	. 899273	1.62	.855004	4.36	. 114235	27
33	. 784941	2.74	. 899176	1.62	. 8868026	4.36	. 113974	25
34	. 785105	2.74	. 899078	1.62	.886026	4.36	.113712	25
35	. 785269	2.73	. 8939851	1.62	. 886549	4.36	.1134.)	24
36	.785433	2.73	.898884	1.62	.886811	4.36	. 113159	23
37	. 785597	2.73	. 89898689	1.62	.887072	4.35	. 112923	22
35	. 785761	2.73	.898689 .898592	1.62	. 887333	4.35	.112667	21
39	.785925	2.73	. 895592	1.62		4.35		20
40	9.786059		9.898494	1.63	9.887594	4.35	0.112716 .1121 .15	19
41	. 786252	2.73 2.73	. 8983997	1.63	.887855 .883116	4.35	. 111154	15
42	. 786416	2.72	. 898299	1.63	. 8888376	4.35	. 111622	17
43	. 786579	2.72	. 898202	1.63	.8885639	4.35	.111361	16
44	.786742.	2.72	. 898104	1.63	. 8858900	4.35	.1111010	15
45	. 786906	2.72	. 8989005	1.63	. 8589161	4.35	. 1110×39	14
46	.737069	2.72	. 897908	1.63	. 889161	4.35	. 1110.59	13
47	. 787232	2.72	. 897810	1.63	. 8894682	4.35	. 110318	12
43	. 787395	2.71	. 897712	1.63	. 8889943	4.35	. 1111150	II
49	. 787557	2.71	7614	1.63	. 809943	4.35		10
50	9.787720		9.897516	1.61	9.890204	4.35)	0.109796 .109 .935	10 9
51	. 787883	2.71	. 897418	1.64	. 890465	4.35	. 109275	S
52	. 788045	2.71	. 897320	1.61	. 890725	4.34	. 1113014	7
53	. 733203	2.71	.897222 .897123	1.64	. 8999	4.31	. 1 (15753	6
54	. 783370	2.70	. 897123	1.64	.891247	4.311	. I 18193	5
55	. 783532	2.70	. 897025	1.64	. 8915076	4.34	. 1115232	1
56	. 785694	2.70	. 896926	1.61	. 891763	4.34	. 117872	3
57	. 783856	2.70	. 896323	1.64	. 8922239	4.34	. 10 ¢ิ11	2
53	. 789018	2.70	.836729	1.64	. 892549	4.34	.107451	
	Cosine.		Sine.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.789342	2.69	9.896532	1.65	9.892810	4.34	0.107190	60
1	. 789504	2.69 2.69	. 896433	1.65	. 893070	4.34 4.34	. 106930	59
2	.789665	2.69 2.69	. 896335	1.65	.893331	4.34 4.34	.106669	58
3	. 789827	2.69 2.69	. 896236	1.65	. 893591	4.34 4.34	. 106409	57
4	. 789988	2.69 2.69	. 896137	1.65	. 893851	4.34	. 106149	56
5	. 790149	2.69	. 8966038	1.65	. 894111	4.34	. 105889	55
6	. 790310	2.63	. 895939	1.65	.894372	4.31	. 105628	54
7	.790471	2.68	. 89.5840	1.65	. 894632	4.34 4.34	. 105365	53
8	. 790632	2.68	. 8955741	1.65	. 894892	4.33	. 105108	52
9	. 790793	2.68	. 895541	1.65	. 895152	4.33 4.33	. 104848	51
10	9.790954	2.68	9.895542	1.66	9.895412	4.33	0.104588	50
11	. 791115	2.68	. 895443	1.66	. 895672	4.33 4.33	. 104328	49
12	.791275	2.67	. 895313	1.66	. 895932	4.33 4.33	.104068	48
13	.791436	2.67	. 895244	1.66	. 896192	4.33	.103808	47
14	. 791596	2.67	.895145	1.66	.896452	4.33 4.33	. 103548	46
15	.791757	2.67	.895045	1.66	.896712	4.33 4.33	. 103288	45
16	.791917	2.67	. 894945	1.66	. 896971	4.33	. 103029	44
17	. 792077	2.67	. 894846	1.66	. 897231	4.33	.102769	43
18	.792237	2.67	. 894746	1.66	. 897491	4.33	. 102509	42
19	. 792397	2.66	. 594616	1.66	. 897751	4.33 4.33	. 102249	41
20	9.792557	2.66	9.894546	1.67	9.898010	4.33	0.101990	40
21	. 792716	2.66	. 894146	1.67	. 898270	4.33	.101730	39
22	. 792876	2.66	. 894346	1.67	. 898530	4.33	. 101470	38
23	. 793035	2.66	.894246	1.67	. 838789	4.33	.101211	37
24	. 793195	2.66	. 894146	1.67	. 899049	4.33	.100951	36
25	. 793354	2.65	. 894046	1.67	. 899308	4.32	. 100692	35
26	. 793514	2.65	. 893916	1.67	. 899368	4.32	. 100432	34
27	. 793673	2.65	. 893846	1.67	. 899827	4.32	.100173	33
28	. 793832	2.65	.893745	1.67	.900087	4.32	. 099913	32
29	. 793991	2.65	. 893645	1.67	. 900346	4.32 4.32	. 099654	31
30	9.794150		9.893544	1.68	9.900605	4.32	0.099395	30
31	. 791308	2.64	. 893444	1.68	. 900864	4.32	.099136	29
32	. 794467	2.64	. 893313	1.68	. 901124	4.32 4.32	. 098876	28
33	. 794626	2.64	. 893243	1.68	.901383	4.32	. 098617	27
34	. 794784	2.64 2.64	. 893142	1.68	.901642	4.32	. 098358	26
35	. 794942	2.64	. 893041	1.63	.901901	4.32	. 098099	25
36	.795101	2.64	. 892940	1.63	. 902160	4.32	. 097840	24
37	. 795259	2.64 2.64	. 892839	1.68	.902420	4.32	. 097580	23
38	. 795417	2.63	. 892739	1.63	. 902679	4.32	. 097321	22
39	. 795575	2.63 2.63	. 892638	1.65	. 902938	4.32	. 097062	21
40	9.795733	2.63	9.892536		9.303197	4.32	0.096803	20
41	.795891	2.63 2.63	. 892435	1.69	. 903456	4.32 4.32	. 096544	19
42	. 796049	2.63 2.63	. 892334	1.69	. 903714	4.32 4.31	. 096286	i3
43	.796206	2.63 2.63	. 892233	1.69	. 903973	4.31	. 095627	17
44	. 796364	2.63 2.62	. 892132	1.69	. 904232	4.31	. 095768	16
45	. 796521	2.62 2.62	. 892030	1.69	.904491	4.31	. 095509	15
46	. 796679	2.62 2.62	. 891929	1.69	.904750	4.31	. 095250	14
47	.796836	2.62 2.62	. 891827	1.69	. 905008	4.31	. 094992	13
43	.796993	2.62	. 891726	1.69	. 905267	4.31	. 094733	12
49	. 797150	2.61	. 891624	1.69	. 905526	4.31	. 094474	11
50	9.797307		9.891523		9.905785		0.094215	10
51	. 797464	2.61	. 891421	1.70	. 906043	4.31	. 093957	9
52	. 797621	2.61	. 891319	1.70 1.70	.906302	4.31	. 093698	8
53	. 797777	2.61	.891217	1.70 1.70	. 906560	4.31	. 093440	7
54	. 797934	2.61	.891115	1.70 1.70	. 906819	4.31	. 093181	6
55	.795091	2.61	. 891013	1.70	. 907077		. 092923	5
56	. 798247	2.61	. 890911	1.70 1.70	. 907336	4.31	. 092664	4
57	.798403	2.61	. 890809	1.70	. 907594	4.31	. 092406	3
58	.798560	2.60 2.60	. 890707	1.70 1.70	. 907853	4.31	. 092147	2
59	. 798716	2.60 2.60	. 890605	1.70	. 908111	4.31	. 091889	1
60	. 798872	2.60	. 890503	1.70	. 908269	4.31	. 091631	0
M.	Cosine.	D.	Sing.	D. 1	Cotang.	D. 1'.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.793372	2.60	9.890503	1.71	9.908369 .903623	4.30	0.091631	60 59
1	. 799025	2.60	. 890400	1.71	. 903623	4.30	.091372	59
2	. 799154	2.63	. 8990298	1.71	. 9090144	4.30	. 090955	57
3	.7993339	2.59	. 890195	1.71	. 9094402	4.30	. 090598	56
4	. 799995	2.59	.890093	1.71	. 909660	4.30	. 090340	55
5	. 7999801	2.59	. 88998938	1.71	. 909918	4.30	. 090082	54
7	. 7999962	2.59	. 889785	1.71	. 910177	4	. 089823	53
8	. 800117	2.59	. 889652	1.71 1.71	. 910435	4.30 4.30	. 039565	52
9	. 800272	2.59 2.59	. 889579	1.71	. 910693	4.30	. 089307	51
10	9.800427	2.58	9.889477	1.72	9.910951	4.30	0.089049	50
11	. 800582	2.58	. 839374	1.72	. 911209	4.30	. 088791	49
12	. 800737	2.58	. 8898271	1.72	. 9111467	4.30	. 0885833	48
13	. 800392	2.58	168	1.72	. 9111725	4.30	. 038018	46
14	. 801047	2.58	. 8898964	1.72	.911982	4.30	. 087760	45
15	. 801201	2.58	. 8889861	1.72	. 91212493	4.3	. 037502	44
16	. 801356	2.57	. 8838855	1.72	. 912756	4.30	. 087244	43
17	. 801511	2.57	. 88888651	1.72	. 913014	4.30	.086956	42
18	. 801665	2.57	. 88885443	1.72	. 913271	4.30	. 086729	41
19	. 801819	2.57	.85854	1.72		4.30	0.086471	
20	9.801973	2.57	9.883444	1.73	9.913529 913787	4.29	0.0868213	39
21	. 802123	2.57	. 88838411	1.73	. 91314044	4.29	. 035956	38
22	. 802282	2.57	. 8388134	1.73	. 9141402	4.29	. 035698	37
23	. 802436	2.56	. .888030	1.73	. 914560	4.29	. 035440	36
25	.802389	2.56	. 887926	1.73	. 914317	4.29	. 035183	35
26	. 802397	2.56	. 887822	1.73	. 915075	4.29 4.29	.084925	34
27	. 803050	2.56	. 887718	1.73 1.73	. 915332	4.29	. 081	33
23	. 803204	2.56	. 897614	1.73	. 9155980	4.29	. 0814153	32
29	. 803357	2.55	. 887510	1.74	. 915847	4.29		31
30	9.803511	2.55	9.837406	1.74	9.916104	4.29	0.033596	30
31	. 803664	2.55	. 887302	1.74	. 9161662	4.29		
32	. 803317	2.55	. 887198	1.74	. 91616877	4.29	.083381	27
33	. 803970	2.55	. 88869898	1.74	. 91617134	4.29	. 082566	26
31	. 804123	2.55	. 88869895	1.74	. 917391	4.29	.052609	25
35	. 804276	2.55	. 8886780	1.74	. 917648	4.29	. 0532352	24
36	. 804423	2.54	. 8886676	1.74	. 917906	4.29	. 082094	23
37	. 804581731	2.54	. 886571	1.74	. 918163	4.29	. 081837	22
39 39	. 8048386	2.54	. 886166	1.74	. 918120	4.29 4.29	. 081580	21
40	9.805039	2.54	9.886362	1.7	9.918677		0.081323	20
41	. 805191	2.54	9.886257	1.75	. 918934	4.23 4.23	. 081066	19
42	. 805343	2.54	. 886152	1.75 1.75	. 919191	4.28	. 080309	18
43	. 805495	2.53	. 836047	1.75	. 919448	4.28	.080552	17
44	. 805647	2.53	. 835942	1.75	. 91919705	4.23	.030295	16
45	. 805799	2.53	. 8355337	1.75	. 919962	4.23	.050038	15
46	. 805951	2.53	. 835732	1.75	. 9220219	4.23	. 07979524	14
47	. 806103	2.53	. 885627	1.75	. 920476	4.28	. 0797924	13
48	. 806254	2.53	. 835522	1.75	. 9220733	4.28	.079267 .079010	12
49	. 806406	2.52	. 885416	1.76	. 920990	4.23	. 079010	11
50	9.806557		9.885311		9.921247		0.073753	10
51	. 806709	2.52	.885205	1.76	. 9221503	4.23	. 0784978	9
52	. 806350	2.52	. 8855100	1.76	. 92221760	4.28	. 077983	7
53	. 807011	2.52	. 88849989	1.76	. 92222274	4.23	. 077726	6
54	. 807163	2.52	. 8848889	1.76	. 92222530	4.28	. 077470	5
55 55	. 807314	2.52	. 888167877	1.76	. 9222787	4.23	. 077213	4
55 57	. 807465	2.51	. 8834572	1.76	. 9232044	4.23	. 076956	3
57	. .807766	2.51	. 8834466	1.76	. 9233300	4.23	. 076700	2
59	. 807917	2.51	. 8884360	1.77	. 9235557	4.28	. 076443	1
60	. 803067	2.5	. 888254	1.7	. 923314	4.25	076186	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.808067	2.51	9.834254	1.77	9.923814	4.28	0.076186	60
1	. 808218	2.51	. 884148	1.77	. 924070	4.28 4.28	. $17 / 5930$	59
2	. 803363	2.51	. 884042	1.77	. 924327	4.27	. 075673	58
3	. 808519	2.50	. 883936	1.77	. 924553	4.27	. 075417	57
4	. 808669	2.50	. 883329	1.77	. 924840	4.27 4.27	. 075160	56
5	. 808519	2.50	. 883723	1.77	. 925096	4.27	. 074904	55
6	. 805969	2.50	. 8833617	1.77	. 925352	4.27 4.27	. 074643	54
7	. 809119		. 883510	1.77	.925609	4.27 4.27	.074391	53
8	. 809269	2.50	. 883404	1.78	. 925565	4.27 4.27	. 074135	52
9	. 809419	2.50	. 883297	1.75	. 926122	4.27	. 073878	51
10	9. 509569	2.49	9.883191	1.78	9.926378	4.27	0.073622	50
11	. 809718	2.49 2.49	. 883084	1.78 1.78	. 926634	4.21	.073366	49
12	. 809563	2.49 2.49	. 882977	1.78	. 926890	4.27	. 073110	48
13	.810017	2.49	. 882371	1.78	. 927147	4.27	. 072853	47
14	. 810167	2.49	. 832764	1.78	. 927403	4.27 4.27	. 072597	46
15	.810316	2.49	. 832657	1.78	.927659	4.27	.072341	45
16	.810465	2.49	. 832550	1.78	.927915	4.27 4.27	. 072085	44
17	. 810614	2.43	. 882443	1.79	.928171	4.27	. 071329	43
18	. 810763	2.48	. 852336	1.79	.925127	4.27	. 071573	42
19	.810912	2.45 2.45	. 832229	1.79	.923654	$\begin{aligned} & 4.27 \\ & 4.27 \end{aligned}$. 071316	41
20	9.811061		9.882121	179	9.925910		0.071060	40
21	. 811210	2.48	. 882014	1.79	. 929196	4.27	. 070504	39
22	. 811358	2.43	. 881907	1.79 1.79	. 929452	4.27	. 070518	33
23	. 811507	2.43 2.47	. 881799	1.19	.929703	4.27	. 070292	37
24	. 811655	2.47	. 831692	1.79 1.79	. 929964	4.27	. 070036	36
25	. 811804	2.47	. 881581	1.79 1.79	. 9.30220	4.27	. 069750	35
26	. 811952	2.47	. 881477	1.79 1.79	. 930475	4.27	. 069525	34
27	. 812100	2.47	. 831369	1.80	.930731	4.26	. 069269	33
23	. 812248	2.47 2.47	. 881261	1.80 1.80	. 930987	4.26	. 069013	32
29	. 812396	2.47 2.47	. 881153	1.80	. 931243	4.26	. 063757	31
30	9.812 .514		9.881046		9.931499		0.063501	30
31	312692	2.46 2.46	. 880933	1.80 1.80	. 931755	4.26 4.26	. 065245	29
32	. 312510	2.46 2.46	. 880830	1.80 1.80	. 932010	4.26	. 067990	23
33	. 812933	2.46	. 850722	1.80	. 932266	4.26	.067734	27
34	. 813135	2.46	. 850613	1.80	. 932522	4.26	.067478	26
35	. 813233	2.46	. 850505	1.80	. 932778	4.26	. 067222	25
36	. 813439	2.46	. 850397	1.80	. 933033	4.26	. 066967	24
37	. 813578	2.46	. 830239	1.81	. 933289	4.26	. 066711	23
33	. 813725	2.45	. 830180	1.81	. 933545	4.26	. 066455	22
39	. 813872	2.45 2.45	. 880072	1.8	. 933300	4.26	. 066200	21
40	9.814019		9.879963	18	9.931056		0.065944	20
41	. 814166	2.45	. 879855	1.81	. 334311	4.26	. 065689	19
42	. 814313	2.45	. 879746	1.81	. 931567	4.26	. 065433	18
43	. 814460	2.45	. 879637	1.81	. 931822	4.26	. 065173	17
44	. 814607	2.45	. 879529	1.81	. 935078	4.26	. 064922	16
45	. 814753	2.41	. 879420	1.51	. 935333	4.26	. 064667	15
46	. 814900	2.44	. 879311	1.81	. 935589	4.26	. 064411	14
47	. 815046	2.41	. 879202	1.82	. 935814	4.26 4.26	. 064156	13
43	. 815193	2.41	. 879093	1.82	. 936100	4.26	. 063900	12
49	. 815339	2.44	. 878984	1.82 1.82	. 936355	4.26	. 063615	11
50	9.815185		9.878375		9.936611		0.063389	10
51	. 815632	2.41 2.43	. 878766	1.82	. 936566	4.26 4.26	. 063134	9
52	. 815778	2.43 2.43	. 878656	1.82	. 937121	4.26	.062s79	8
53	. 515924	2.43 2.43	. 878547	1.82 1.82	. 937377	4.26	. 062623	7
54	. 816069	2.43 2.43	. 878138	1.82 1.82	. 937632	4.25	. 062368	6
55	. 816215	2.43 2.43	. 873323	1.82	. 937857	4.25 4.25	. 062113	5
56	. 816361	2.43 2.43	. 878219	1.83	. 933142	4.25	.061858	4
57	. 816507	2.43 2.43	. 878109	1.83	. 938393	4.25	. 061602	3
58	. 816652	2.43 2.42	. 877999	1.83 1.83	. $93 \leq 653$	4.25	. 061347	2
59	. 816799	2.42 2.42	. 877590	1.83 1.83	. 933803	4.25 4.25	. 061092	1
60	.S16943	2.42	. 877780	1.83	. 939163	4.25	. 060837	0
M.	Cosine	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. 1\%.	Cotang.	M.
0	9.816943	2.42	9.877780	1.83	9.939163	4.25	0.060837	60
1	. 817088	2.42	. $87 \% 670$	1.83	.939418	4.25	. 060582	59
- 2	. 817233		. 877560	1.83	. 939673	4.25	. 060327	58
3	. 817379	2.42	. 877450	1.83	. 939928	4.25	. 060072	57
4	. 817524	2.42	. 877340	1.84	. 940183	4.25	. 059817	56
5	. 817668	2.41	. 877230	1.84	.940439	4.25	. 059561	55
6	. 817813	2.41	. 877120	1.84	. 940694	4.25	. 059306	54
7	. 817953	2.41	. 877010	1.84	. 940949	4.25	. 059051	53
8	. 818103	2.41	. 876399	1.84	. 941204	4.25	. 058796	52
9	. 818247	2.41	. 876789	1.84	. 911459	4.25	. 058541	51
10	9.818392	2.41	9.876678	1.84	9.941713	4.25	0.058287	50
11	.818536	2.41	. 876568	1.84	. 941968	4.25	. 058832	49
12	. 818681	2.40	. 876457	1.84	.942223	4.25	. 057777	48
13	. 818825	2.40	. 876347	1.84	. 942478	4.25	. 057522	47
14	. 818969	2.40 2.40	. 876236	1.85	. 942733	4.25	. 057267	46
15	. 819113	2.40	. 876125	1.85	. 942988	4.25	.057012	45
16	. 819257	0	. 876014	1.85	. 943243	4.25	. 056757	44
17	. 819401		. 875904	1.85	. 943498	4.25	. 056502	43
18	. 819545		. 875793	. 85	. 943752	4.25	. 056248	42
19	. 819639	39	. 875682	1.85	. 944007	4.25	. 055993	41
20	9.819832	39	9.875571	1.85	9.944262		0.055733	40
21	. 819976		. 875459	1.85	. 944517	4.25	. 055483	39
22	. 820120		. 875343	1.85	. 944771	4.24	. 055229	38
23	. 820263	2.39 2.39	. 875237	1.86	. 945026	4.24	.054974	37
24	. 820406	2.39	. 875126	1.86	. 945281	4.21	. 054719	36
25	. 820550	2.39	. 875014	1.86	. 945535	4.21	. 054465	35
26	. 820693		. 874903	1.86	. 945790	4.21.	. 054210	34
27	. 820836	2.33 2.39	. 874791		. 946045		. 053955	33
28	. 820979		. 874680		. 946299	4.24	. 053701	32
29	. 821122	2.35 2.38	. 874568	1.86	. 946554	4.24	. 053446	31
30	9.821265	2.38	9.874456		9.946808		0.053192	30
31	.821407		. 874344		. 947063	4.24	. 052937	29
32	. 821550	2.35	. 874232	1.86	. 947318		. 052682	28
33	. 821693		. 874121		. 947572		. 052128	27
34	. 821835	2.37	. 874009	1.8	. 947827		. 052173	26
35	. 821977		. 873896		. 948081		. 051919	25
36	. 822120	2.37	. 873734	1.8	. 918335		. 051665	24
37	. 822262	2.37	. 873672	1.87	. 948590	4.24	. 051410	23
38	. 822404	2.37	. 873560	1.87	. 918844	t	. 051156	22
39	. 822546	2.37	. 873448	1.87	. 949099	4.24	.050901	21
40	9.822688		9.873335		9.949353		0.050647	20
41	. 822330	2.36	. 873223	1.87	. 949608		. 050392	19
42	. 822972	2.36	. 873110	1.88	. 949862	4.24	. 050138	18
43	. 823114	2.	. 872998	1.8	. 950116	4.24	. 049884	17
44	. 823255	2.	. 872385	1.8	. 950371	4.24	. 049629	16
45	. 823397	2.3	. 872772	1.8	. 950625	4.24	. 049375	15
46	. 823539	2.	. 872659	1.8	. 950879	4.24	. 049121	14
47	. 823680	2.	. 872547	1.8	. 951133	4.24	. 048867	13
49	. 823321	2.36 2.35	. 572434	1.8	. 951388		. 048612	12
49	. 823963	2.35 2.35	. 872321		. 951642		. 048358	11*
50	9.824104	235	9.872208		9.951896		0.048104	10
51	. 82424.5	2.35	. 872095	1.89	. 952150	4.24	. 047850	9
52	. 824336	2.35	. 871981	1.89	. 952405	4.24	. 047595	8
53	. 824527	2.35	. 871868	1.89	. 952659	4.24 4.24	. 047341	7
54	. 824663	2.33	. 871755	1.89	. 952913	4.24	. 047087	6
55	. 824803	2.35	. 871641	1.89	. 953167	4.24	. 046833	5
56	. 824943	2.31	. 871523	1.89	. 953421	4.24	.016579	4
57	. 825090	2.34	. 871414	1.89	. 953675	4.21	. 046325	3
58	. 825230	2.34	. 871301	1.89	. 953929	4.23 4.23	.046071	2
59	. 825371	2.34	. 871187	1.89 1.90	. 954183	4.23 4.23	. 045817	1
60	. 825511	2.31	. 871073	1.90	. 954437	4.23	. 045563	0
M	Cosine.	D. 1	Sine.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1'.	Cotang.	M.
0	9.82.5.511	2.31	9.871073	1.90	9.954437	4.23	0.045563	60
1	. 825651	2.31	. 870960	1.90	.951691	4.23 4.23	. 045309	59
2	. 8257591	2.33	. 870346	1.90	. 954946	4.23	. 045054	58°
3	.825931	2.33 2.33	. 870732	1.90	. 955200	4.23	. 044800	57
4	. 826071	2.33 2.33	. 870618	1.90	. 9.55454	4.23	. 044516	56
5	. 826211	2.33 2.33	. 870504	1.90	.9.55703	4.23	. 044292	55
6	. 826331	2.33	. 870390	1.90	. 9555961	4.23 4.23	. 044039	54
7	. 826191	2.33	. 870276		.956215	4.23	. 043785	53
8	. 826631	2.33	. 870161	1.91	. 956169	4.23	. 043531	52
9	. 826770	2.33	. 870047	1.91	. 956723	4.23	. 043277	51
10	9.826910	2.32	9.869933	191	9.956977	4.23	0.043023	50
11	. 827049	2.32	. 869318	1.91	.9.57231	4.23 4.23	. 042769	49
12	. 827189	2.32	. 869704	1.91	. 957435	4.23	. 042515	43
13	. 827323	2.32	. 869539	1.91	. 957739	4.23	.012261	4π
14	. 827467	2.32	. 869174	1.91	. 957993	4.23	. 012007	46
15	. 827606	2.32	. 869360	1.91	.953217	4.23	. 041753	45
16	. 827745	2.32	. 869245	1.91	.959509	4.23	. 041500	44
17	. 827334	2.31	. 869130	1.92	. 953754	4.23	. 041216	43
18	. 823023	2.31	. 869015	1.92	. 959003	4.23	. 040992	42
19	. 823162	2.31	. 863900	1.92	. 959262	4.23 4.23	. 040738	41
20	9.823301	. 31	9.863785	1.92	9.959516	3	0.010484	40
2 I	. 823439	2.31	. 863670	1.92	. 959769	4.23	. 040231	39
22	. 823578	2.31	. 868555	1.32 1.92	. 960023	4.23 4.23	. 039977	33
23	. 823716	2.31	. 863410	1.92	. 960277	4.23	.039723	37
24	. 823855	2.31	. 863324	1.92	. 960530	4.23	. 039470	36
25	. 823993	2.30	. 863209	1.92	. 960784	4.23	. 039216	35
26	. 829131	2.30	. 863093	1.92	. 961033	4.23	. 038962	34
27	. 829269	2.30	. 867978	1.93	. 961292	4.23	. 038703	33
23	. 829107	2.30	. 867862	1.93	. 961545	4.23	. 03345%	32
29	. 829545	2.30	. 867717	1.83	. 961799	4.23	. 038201	31
39	9.829633		9.867631	93	9.962052	423	0.037943	30
31	. 829321	2.30	. 867515	1.93	. 962306	4.23	. 037694	29
32	. 829959	2.30	. 867399	1.93	. 962560	4.23	. 037140	23
33	. 830097	2.29 2.29	. 867233	1.93	. 962313	4.23	.037187	27
34	. 830234	2.29 2.29	. 867167	1.93	. 963067	4.23	.036933	26
35	830372	2.29 2.29	. 867051	1.93 1.94	. 963320	4.23	. 036630	25
36	. 830509	2.29	. 866935	1.94	. 963574	4.23	. 036126	24
37	. 830616	2.29 2.29	. 866319	1.91	. 963323	4.23	. 036172	23
33	. 839784	2.29 2.29	. 866703	1.94	. 964081	4.23 4.23	. 035919	22
39	. 830921	2.29 2.29	. 866556	1.91 1.94	. 964335	4.23 4.23	.035665	21
40	9.8310 .73		9.866470		9.961388		0.03.5412	20
41	. 83119.5	2.23 2.23	. 866353	1.94	. 964312	4.22	.035158	19
42	. 831332	2.23 2.23	. 866237	1.94 1.94	. 96509.5	4.22	. 034905	18
43	. 831469	2.23 2.23	. 866120	1.91 1.91	. 965349	4.22 4.22	.03165I	17
$4 \pm$. 831676	2.23	. 866004	$19 \pm$. 965602	4.22	. 031393	16
45	. 831712	2.23 2.23	. 865337	1.95	. 965355	4.22	. 031145	15
46	. 831879	2.23	. 865770	1.95	. 966109	4.22	. 033391	14
47	. 832015	2.27 2.27	. 865653	1.95	. 966362	4.22	. 033638	13
49	. 832152	2.27	. 865536	1.95	.9666ı6	4.22	.033334	12
49	.832233	2.27	. 865119	1.95	. 966363	$\begin{aligned} & 4.22 \\ & 4.22 \end{aligned}$.033131	11
50	9.832425		9.865302	1.95	9.967123		0.032977	10
51	.83256I	2.27	. 865185	1.95	. 967376	4.22	. 032624	9
52	. 8332697	2.27	. 865063	1.95	. 967629	4.22	. 032371	8
53	. 832333	2.27	. 864950	1.96	. 967883	4.22	. 032117	7
51	. 832969	2.27	. 864333	1.96 1.96	. 963136	4.22	. 031864	6
55	.833105	2.26	. 864716	1.96	. 963339	4.22	.031611	5
56	. 833211	2.26 2.26	. 864593	1.96	. 963643	4.22 4.22	. 031357	4
57	. 833377	2.26	. 861431	1.96	. 963896	4.22	. 031104	3
53	. 833512	2.26	. 861363	1.96	. 969149	4.22 4.22	. 030351	2
59	. 8333613	2.26 2.26	. 864245	1.96 1.96	. 969403	4.22 4.22	. 030597	1
60	. 833783	2.26	. 864127	1.96	. 969656	4.22	. 030344	0
M.	Cosine.	D. 1.	Sine.	D. $1^{\prime \prime}$.	Cotang.	1. 1^{\prime}.	Tang.	M.

M.	Sine.	D. ${ }^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.833783		9.864127	1.96	9.969656	4.22	0.030344	60
1	. 8331919	2.26 2.26	. 864010	1.97	$\begin{array}{r}.969909 \\ \hline 970162\end{array}$	4.22	. 0301091	
2	. 834054	2.25	. 8633392	1.97	. 970162	4.22	. 02998388	58
3	. 834189	2.25	.863774 863656	1.97	. 970416	4.22	. 02929381	57
4	. 834325	2.25	. 86836536	1.97	. 9706699	4.22	. 0229078	55
f	. 831460	2.25	. 8683533	1.97	. 97097175	4.22	. 028825	54
${ }_{7}$. 8344595	2.25	. 8683301	1.97	. 971429	4.22	. 028571	53
8	. 8347830	2.25	. 86633183	1.97	. 971682	4.22	. 028318	52
8	$\begin{aligned} & .834365 \\ & .834999 \end{aligned}$	2.25	. .863064	1.97 1.97	. 971935	4.22	. 028065	51
	9.835134	2.25		1.97	9.972188		0.027812	50
11	9.83526	2.24	. 862827	1.98	. 972441		. 027559	49
12	. 835403	2.24	. 862709	1.98 1.98	. 972695	4.22	. 027305	48
13	. 835.5 .33	2.21 2.24	. 862590	1.98	. 972948	4.22	. 027052	47
14	. $8356 \div 2$	2.24	. 862471	1.98	. 973201	4.22	. 026799	46
15	. 8335507	2.24	. 662353	1.98	. 973754	4.22	. 026546	45
16	. 83	2.24	. 8622334	1.98	. 97373960	4.22	. 0262933	44
17	. 836075	2.23	. 8661996	1.98	. 9739613	4.22	. 0225787	42
18	.836209	2.23	. .86191877	1.98	. 974466	4.22	. 025534	41
19	. 836313	2.23	. 661877	1.99	. 974466	4.22		
20	9.836477	2.23	9.861758	1.99	9.974~20	4.22	0.025250	40 39
21	. 8366611	2.23	. 861638	1.99	. 97497326	4.22	. 022402774	39 38
22	. 8336745	2.23	.861519 .861400	1.99	. 975226	4.22	. 024521	38 37
23	. 836378	2.23	. 8661230	1.99	. 97575732	4.22	. 024263	36
24	. 837012	2.23	. 8661161	1.99	. 975985	4.22	. 024015	35
25	. 837146	2.22	. 8661041	1.99	. 976238	4.22	.023762	34
26 27	. 8377279	2.22	. 860922	1.99	. 976491	4.22	. 023509	33
27 28	. 8337546	2.22	. 860802	2.00	.976744	4.22	. 023256	32
28	. 8337679	2.22	. 860632	2.00	. 976997	4.22 4.22	. 023003	31
30	9.837812	2.22	9.860562		9.977250		0.022750	30
31	. 837945	2.22	. 860442	2.00 2.00	. 977503	4.22	. 022497	29
32	. 838078	2.22	. 860322	2.00	. 977756	4.22	. 022244°	28
33	. 833211	2.22 2.21	. 860202	2.00	. 978009	4.22	. 021991	27
34	. 833344	2.21	. 860082	2.00	. 978262	4.22	.021733	26
35	. 833477	2.21	. 8559962	2.00	. 978515	4.22	. 0214235	25
36	. 833610	2.21	${ }^{85989721}$	2.01	. 9787981	4.22	.021232	
37	. 838742	2.21	.859721	2.01	. 97979274	4.22	. 020726	22
38	. 838875		. 85.896980	2.01	. 979527	4.22	. 020473	
39	. 839007	2.21	. 8599180	2.01	. 979527	4.22		21
40	9.839140		9.859360		9.979780		0.020220	20
41	. 839272	2.20	. 8592339	2.01	. 930033	4.22	. 019967	19
42	. 839404	2.20	. 859119	2.01	. 930236	4.22	. 019714	18
43	. 839536	2.20	. 8589993	2.01	. 980538	4.22	. 01919262	17
44	. 839663	2.20	. 855877	2.02	.950791	4.22	. 019209	16
45	. 839800	2.20	. 858756	2.02	. 981047	4.21	. 018956	15
46	. 839932	2.20	. 855635	2.02	. 981297	4.21	. 018703	14
47	. 840064	2.20	. 8585314	2.02	. 9815150	4.21	. 01818197	12
48	. 810196	2.19	. 853393	2.02	. 931803	4.21	.018197	12
49	. 810323	2.19	. 85	2.02	. 932056	4.21	. 017944	11
50	9.840459		9.858151		9.982309	4.21	0.017691	10
51	. 810591	2.19	. 8588029	2.02	. 932582	4.21	.017438 .017186	9 8
52	. 810722	2.19	. 8579793	2.02	.982514	4.21	. 01718933	8
53	.8108 .54 .840985	2.19	. 8557665	2.03	. 983320	4.21	. 016680	
54 55	. 8840985	2.19	. 8557543	2.03	. 933573	4.21	. 016127	5
56	. 841247	2.19	. 857422	2.03	. 983326	4.21	. 016174	
57	. 841378	2.18	. 857300	2.03	. 954079	4.21	. 015921	3
58	. 841509	2.18	. 857178	2.03	. 934332	4.21	. 015663	2
59	. 841640	2.18	. 857056	2.03	984534		. 015416	1
60	. 811771	2.18	. 856934	2.03	. 934837		015163	0
M.	Cosin¢.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.811771	2.18	$9.8 .56934$	2.03	9.984337		0.015163	60
2	. 811902	2.18	$.856312$	2.04	$.985090$	4.21	. 114910	59
2	. 812033	218	. 856690	2.04	. 935343	4.21	. 0114657	58
3	. 81812163	2.18	. 8565653	2.04	. 9355986	4.21	. 014404	57
4	. 812294	2.17	. 856446	2.04	. 935313	4.21	. 014152	56
5	. 812424	2.17	. 856323	2.04	. 936101	4.21	. 013899	55
${ }_{7}^{6}$. 812655	2.17	. 856201	2.04	. 936351	4.21	. 013646	54
8	. 8428515	2.17	. 8555078	2.04	. 99366367	4.21	. 0133393	53
9	. 812916	2.17	. 855533	2.04	. 937112	4.21	. 012388	51
10	9.843076		9.85		9.987		0.012635	50
11	. 813206		. 8555		. 9376		. 012352	49
12	. 8133336	2.16	. 855465	2.05	. 987871	1	. 012129	48
13	. 813166	2.16	. 855312	2.05	. 988123	4.21	. 011877	47
14	. 813593	2.16	. 855.219	2.05	. 933376	4.21	. 011624	46
15	. 813725	2.16	. 855096	2.05	. 938629	4.2	. 011371	45
16	. 843355	${ }_{2.16}$. 854973	2.05	. 933882	4.21	. 011118	44
17	. 813934	2.16	. 854850	2.05	. 939134	4.21	. 010866	43
18	. 844114	2.16	. 854727	2.06	. 939337	4.21	. 010613	42
19	. 844243	2.16	. 854603	2.06	. 939610	4.21	. 010360	41
20	9.814372	2.15	9.854130	2.06	9.939893	4.21	0.010107	40
21	. 814502	2.15	. 854356	2.06	. 990145	4.21	. 009355	39
22	. 841631	2.15	. 854233	2.06	. 990393	4.21	. 009602	33
23	. 844760	2.15	. 851109	2.06	. 990351	4.21	. 009349	37
24	. 844389	2.15	. 853936	2.06	. 9999	4.21	. 009097	36
25	. 845018	2.15	. 8533562	2.06	. 991156	4.21	. 005844	35
26	. 815147	2.15	. 85.3733	2.06	. 991409	4.21	. 003591	34
27	. 815276	2.15	. 853614	2.07	. 991662	4.21	.0033.33	33
23	. 8151	2.14	. 8531936	2.07	. 991914		. 003036	32
29	. 815533	2.14	3366	2.07	992167	4.21	. 007833	31
30	9.815662		9.853		9.992		0.007530	30
31	. 815790	2.14	. 8.53118	2.07	. 992672	4.21	. 007323	29
32	. 845919	2.14	. 852994	${ }_{2} .07$.992925	4.21	. 007075	23
33	. 816047	2.14	. 852369	2.07	. 993173	4.21	. 006322	27
34	. 816175		. 852745		. 993431	4.21	. 006569	26
35	. 816304	2.14	. 852620	2.07	. 993683		. 006317	25
36	. 816432	2.13	. 852496	2.03	. 993936	4.21	. 006064	24
37	.816.55]	2.13	.852371	2.08	. 991139		. 005811	23
33	. 8166×8	2.13	. 85.52217	2.08 2.08	. 994441	4.21	. 005559	22
39	. 816316	2.13 2.13	. 852122	2.03	. 991694	4.21	. 005306	21
40	9.816914		9.851997		9.994917		0.005053	20
41	. 817071	2.13	. 851372	2.03 2.08	. 395199	4.21	. 001501	19
42	. 817199	2.13	. 851747	2.08	. 995452	4.21	. 004543	18
43	. 817327	2.13	. 851622	2.0	. 995705	4.21	. 004295	17
44	. 817454		. 851497		. 99.5957		. 004043	16
45	. 817532	${ }_{2}^{2.12}$. 851372	2.09 2.09	. 996210	4.21	.003790	15
46	. 817709	${ }_{2}^{2.12}$. 851246	2.09	. 996463	4.21	.003537	14
47	. 8173336	2.12	. 551121	2.09	. 996715	4.21	. 003235	13
43	. 817964	2.12	. 850996		. 996963		. 003032	12
49	. 843091	2.12	. 850370		. 997221	4	. 002779	11
50	9.818218		9.8507		9.997473		0.002527	10
51	. 818315	2.12	. 850619	2.10	. 997726		.002274	9
52	. 843472	2.12	. 850493	2.10	. 997979	4.21	. 002021	8
53	. 848599	2.11	. 850363	2.10	. 993231	4.21	. 001769	7
54	. 815726	2.11	. 850242	2.10	. 993484	4.21	. 001516	6
55	. 815352	2.11	. 850116	2.10	. 995737		. 001263	5
56	. 815979	2.11	. 819990	2.10	. 993939	4.21	. 001011	4
57	. 819106	2.11	. 819364	2.10	. 999242	4.21	. 000758	3
58	. 849232	2.11	. 819733	2.10	. 999195	4.21	. 000505	2
59	.819359	2.11	. 849611	2.11	. 999747	4.21	. 000253	1
60	. 819135		. 849485	2.11	0.000000		. 000000	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE XIV.

NATURAL SINES AND COSINEB

M.	0°		10		20		$3{ }^{\circ}$		40		
	Sine.	Cosin.	Sine. Cosin.		Sine. Cosin.		Sine. Cosin.		Sine. Cosin.		M.
0	0000		. 01745	999	. 03490	. 99939				$\overline{.99756}$	60
1	. 00029	One.	. 01774	. 99934	. 03519	. 99933	. 05263	. 99561	. 07005	99754	59
2	000.58	One.	. 01303	. 99954	. 03543	. 99937	. 05292	. 99860	. 07034	. 99752	58
3	.01) 97	One.	. 01532	. 99993	.03577	. 99936	05321	. 99855	. 07063	. 99750	57
4	. 00116	One.	. 01562	. 99933	. 03606	. 99935	05350	. 99357	. 07092	. 99748	56
5	. 0014.5	One.	. 01891	. 99938	. 03635	. 99934	05379	. 99855	.07121	. 99746	55
6	. 03175	One	. 019.20	. 99932	. 03661	. 99933	05103	. 99854	. 07150	99744	54
7	. 01204	One.	. 01919	. 99931	. 03693	. 99932	. 05437	. 99852	. 07179	95742	58
8	.00233	One.	. 01978	. 99930	. 03723	. 99931	. 05466	. 99351	. 07208	. 99740	52
9	. 00262	One	. 02097	. 93950	. 03752	. 99930	. 05495	. 99849	. 07237	. 99738	51
10	. 00291	One.	. 02136	. 99979	.03781	. 99929	. 05524	. 99847	. 07266	. 99736	50
11	. 11329	. 99999	. $02.16{ }^{5}$	99979	. 03510	. 99927	. 05553	. $99 \leq 16$. 07295	. 99734	49
12	.0)349	. 99999	. (12094	. 99978	03839	. 99926	.05532	. 99314	. 07324	. 99731	48
13	.00.378	. 99999	.02123	. 99977	. 03568	. 99925	. 05611	. 99342	. 07353	. 99729	47
14	. 00497	. 99999	. 02152	. 99977	. 03397	. 99924	. 05610	. 99841	. 07332	. 99727	46
15	. 09436	. 93993	.02181	.99976	. 03926	. 99923	. 05669	. $99>39$. 07411	99725	45
16	.0016;	. 99399		. 99976	. 03955	99922	. 05698	. $99>38$. 07440	. 99723	44
17	.00495	. 99999	.02211	99975	.039>4	. 99921	. 05727	. 99536	. 07469	. 99721	43
13	.0)521	. 99393	.02こ63	.99974	. 04013	. 99919	. 0.5756	. 99834	. 07493	. 99719	42
19	.005.53	. 93393	. 02293	. 999974	. 04042	. 99918	.0.5755	. 99333	. 07527	. 99716	41
20	. 00.532	. 99933	.02327	. 99973	. 04071	. 99917	. 0.5814	. 99831	. 07556	. 99714	40
2	. 00611	. 99993	.023.56	. 99372	. 04100	. 99916	. 05.514	. 99329	. 07555	. 99712	39
22	.00647	. 99993	. 02335	. 99972	. 04129	. 99915	. 05573	. 99827	. 07614	. 99710	33
2	. 03669	. 93993	. 02111	.99971	. 04159	. 99913	. 05902	. 99326	. 07613	. 99708	37
21	.0,6698	99993	. 02443	. 93970	. 04188	99912	. 05931	. 99324	. 07672	. 99705	36
2.	. 00727	. 99997	. 02472	. 99959	. 01217	. 99911	. 05960	. 99322	. 07701	. 99703	35
26	. 07 ว:56	. 99937	. 02501	. 99969	. 04246	. 99910	. 05959	. 99321	. 07739	. 99701	31
27	. 00785	. 99997	.02.330	99963	. 04275	. 93909	. 06018	. 99319	. 07759	. 99699	33
23	. 00514	99997	.02560	. 99967	. 04804	. 99907	. 06047	. 99317	. 07783	. 99696	32
23	. 00314	. 99996	.02.589	. 99966	. 04333	. 99906	. 06076	. 99515	. 07817	. 99694	Et
30	00373	99996	. 02618	99966	. 04362	. 99905	. 06105	. 99313			30
31	60302	9999	. 0		. 04391	. 9990			75		29
32	. 00931	. 99996	. 026176	. 99964	. 04120	. 99902	. 06163	. 99310	. 07904	. 996	28
33	. 00960	. 99995	. 0270.5	. 99963	. 04449	. 99901	. 06192	. 99578	. 07933	. 99635	27
31	. 00979	. 93995	.02734	. 99963	. 04478	. 99900	. 16221	. 99806	. 07962	. 99683	26
3.5	. 01018	99995	.02763	. 93962	. 04507	. 99398	. 06350	. 93×04	. 07991	. 99630	25
36	. 01047	99995	.02792	. 93961	. 04536	. 99397	.06279	. 99 -03	. 05020	. 99678	24
37	. 01076	99991	.02321	. 99960	. 04.565	. 99396	.06393	.99-01	. 08049	. 99676	23
35	. 01105	. 93994	. 02350	. 99959	. 04594	. 99394	. 06337	. 99799	.08078	. 99673	22
39	. 01134	. 99991	. 02379	.999.59	. 04623	. 99393	.06.366	. 99797	. 03107	. 99671	21
40	. 01164	. 99993	. 02903	.999.53	. 04653	. 99392	. 06395	. 9979.5	. 08136	. 99663	20
41	. 01193	. 93993	. 02933	. 99957	.01652	. 99590	. 06424	. 99793	. 03165	. 99666	19
42	. 01222	. 99993	.0296	. 999.56	. 01711	. 99359	. 061.53	. 99792	. 08194	99661	18
43	.01231	93992	. 02996	. 99955	. 01749	. 99388	. 06152	. 99790	.03223	. 99661	17
44	. 01230	. 99992	. 03025	.99954	.04769	. 99336	.08511	. 99739	. 08252	. 99659	16
45	33	. 99991		. 99953	. 04798	. 9	. 06.340	. 99786	. 08231	99657	15
46	. 01333	. 99991	. 03033	. 99952	. 04527	. 99883	. 06569	.99784	. 08310	. 99654	14
47	. 01367	. 99391	. 03112	. 99952	04856	. 993832	. 06.593	. 99752	. 03339	. 99652	13
43	. 01396	. 99390	. 03141	. 99951	. 04585	. 99331	. 16627	. 99780	. 03363	. 99649	12
49	. 0142.5	. 99930	. 03170	. 99950	. 04914	. 99379	. 066.56	.997\%	. 05397	. 99647	11
$5)$. 014.34	. 99939	. 03199	. 99949	. 04943	. 99778	. 06635	. 99776	. 05426	. 99644	10
51	. 01483	. 99989	.03223	. 99943	. 04972	. 99876	. $06 \% 14$. 99774	. 08155	. 99642	9
52	. 01513	. 99989	.03257	. 99947	. 05001	. 99975	. 16.43	. 99772	. 03184	. 99639	8
53	.01542	. 999393	03236	. 99946	. 05039	. 99373	. 06773	. 99770	. 08513	99637	7
54	. 01571	. 999338	. 03316	. 99945	. 05059	. 99872	. $06 \bigcirc 02$. 99763	. 03512	. 99635	
5.5	. 01600	.99937	03345	. 99944	. 05033	. 99370	. $06>31$. 99766	. 08571	. 99632	5
56	. 01629	. 99937	.03374	. 99943	. 0.5117	. 99569	. 16850	. 99764	. 08670	. 99630	
57	. 01635	. 99936	. 03403	. 99942	. 05146	.99こ67	. 06339	. 99762	.08629	. 99627	3
53	. 01657	. 99936	. 03432	. 99941	. 05175	. 99866	. 06913	. 99760	. 08658	. 99625	,
59	. 01716	. 99935	. 03461	. 99940	. 05205	. 99564	. 0694%	. 99758	. 08637	. 99622	1
60							06976		,		0
M.	Cosin	sine.	Cosin	Sine.	Cosin	Sine.	Cosin	ne	Os	Sine.	.
										\bigcirc	

M.	50		$6{ }^{3}$		180		8		9°		M.
	Sine.	Cosin.	Sine.	Cosin.	Sine.	Cosin.	Sine.	\sin.		Cosin. ${ }^{9 \times 7}$	
-1	. 05716.	. 99619	. 10453	. 99452	.12187		7	99:127	. 1.5643	69	0
1	. $0>74.3$.	. 936617	. 10483	. 99119	. 12216	. 99251	13916		156i2		5
2	. 08774	. 99614	. 10511	. 93416	. 12245	.9924	13975	.99019	15701	.93i60	
3	.033 03	. 99612	. 10 -49	. 994413	. 12274	. 99244	. 14104	5	15730	55	57
4.	. 0.3531	. 99679	. 10569	. 93440	. 12302	. 99241	$0: 33$. 993111	1575	94751	6
5.	. 05861	. 99607	. 10597	. 99437	. 12331	. 99237	. 14061	. 99006	. 15	-746	55
6.	. 033 -3	. 99634	. 10626	. 99434	. 12360	. 99233	. $11119{ }^{\prime}$. 99002	. 15816	.93741	4
7.	. 08912	. 99602	. 10655	. 99131	. 12389	. 99230	. 14119	93993	. 15315	98737	3
8	. 03917	. 93.599	. 10631	. 99123	. 12418	99	1.	.9 9991	15873	3	1
9	. 03976	. 99596	. 10713	. $9.1+121$. 12447	. 99222	. 14172	. 9	. 15972	$9872=$	
10	. 09705	. 99.591	. 10712	. 99421	. 12176	. 99219	14234				49
11	.0.3131	. 99591	. 10771	. 99118	. 12501	. 99215	. 14234	($9 \bigcirc 958$. 159.98		9
12.	. 09063	.99.583	. 10302	. 99415	12533	99211 99203	14263 14292	$.9>97 \%$.95973	1601\%		7
13.	. 09992	.99.536	. 10323	.99412	12.562 .12 .591	99203 .99204	.14292 .14320	.9997 .3 $.9>969$. 16046	.95704	6
$\begin{aligned} & 14 \\ & 15 \end{aligned}$.09121	. 99583	. 103.58	. 99409	12.1291	99204	11.320	. 9×965	16074	. ${ }^{\text {as }}$	5
16					19	99197		. 93961	.16193	.9569.)	4
17	.032)3	93575	. 10345	. 99339	. 12678	. 99193	. 144107	.9-95.7	16132	.9>691	3
15.	. 09237	99572	. 10373	. 99396	. 12705	. $991<9$.14436	. 93953	. 16160	.9-6>6	2
	. 09266	93570	. 11002	. 95393	. 12735	99156	14461	93913	16189	98651 08676	1
19.	. 022295	. 93557	. 11031	. 99390	. 12764	991 92	14493	989			39
21.	. 199321	. 99564	.1106)	.993-6	. 12793	. 99178	11.522	95910	16246		39
$\begin{aligned} & 22 \\ & 23 \end{aligned}$. 093.53	. 99562	. 11039	. 99333	.1252?	. 99175	. 14551	98931		98662	37
	. 09332	-995.99	. 11118	. 99330	. 12351	. 99171	. 114590	98931 92927	. 16304	$\begin{aligned} & .96662 \\ & .98657 \end{aligned}$	36
$\begin{aligned} & 23 \\ & 24 \end{aligned}$. 09411	. 995.56	. 11147	. 99377	. 12850	. 99167	1.1637	. 9 -98923	. 16361	98652	
25	. 09410	.995.33	. 11176	. 99374	. 12902	. 99163	1.14637	. 98923	. 16390	98652	34
26	.09169	.99.551	. 11205	. 99370	. 12937	.99160	14666	. 98914	. 16419		33
	. 09433	99543	. 11234	. 99367	. 12966	. 99156	. 114695	. 98910	. 16417	8	32
23.	. 09527	.9954:3	. 11263	. 99364	12995	. 99152	. 14723	. 98910	. 16476	33	31
29	. 03556	99, 42	. 11291	. 99360	. 13021	. 9914	. 14752	$9>906$. 16505	29	30
30		99.510	. 11330	. 99357							
$\begin{aligned} & 31 \\ & 32 \end{aligned} .$. 09814	.993.37	. 11319	. 99354		. 99141	. 14,10	.98897	. 16533	. 986819	23
	.09642	. $395 \% 34$. 11378	. 99351	. 13110	.99137	. 14333	. 98583	. 165591	. 98614	27
33	. 09671	. 99531	. 11407	. 99317	. 13139	. 99133	. 14567	.98889	. 16591	956	6
34	. 09700	.99523	. 11436	.99314	. 13163	.99129	. 14596	. 98581	. 16648	956	5
	. 199729	. 99526	. 11465	. 99311	. 13197	. 99125	. 14925	.953s0	.16615	9	4
36	. 09755	. 99.523	. 11494	.99337	. 13226	. 99122		. 95876	. 16787	9	3
37	. 09787	.99.32	11523	. 99334	. 132.54	. 99118	. 14932	. 98881	.16706	.955939	2
	. 09316	. 99517	. 11552	.99331	. 13233	. 99114	. 15011	9.8867	.16734	. 98558	1
39	. 09315	. 99514	. 11580	. 99327	. 13312	. 99110	. 15040	93563	. 16763	. 98580	0
40	. 09374	. 99511	. 11609	. 99324	. 13311	. 99106	. 15069	98358	. 16792	.98575	9
	. 09903	99.503	. 11638	. 99320	. 13370	. 99102	. 15097	.93354	.16820	98.75	8
42	. 09932	. 99.506	. 11667	. 99317	. 13399	. 99093	15126	. 988849	.16319 .16378	.985765	7
$\begin{aligned} & 43 \\ & 44 \end{aligned}$. 09961	. 99.503	. 11696	.99314	.13427 .13456	. 99991	15155 .15184	. 98845	. 16378	.98565	6
	. 09990	. 99503	. 11725	. 99310	. 13456	. 99091	1518	$.9>811$.98836	. 16935	. 98556	5
45	. 10043	99491	83		.	. 99083	15211	95332	. 16964	. 98.551	4
45	. 10077	. 99491	. 11812	. 99300	. 13543	. 99079	. 15270	. 93527	. 16992	. 93546	3
43	. 10106	. 99453	. 11810	. 99297	. 13572	. 99075	. 15299	. 98323	. 17021	. 35541	12
49	. 10135	. 99155	. 11863	. 99293	. 13600	. 99071	. 15327	. 98818	. 1705	. 93536	11
	. 10164	. 93432	. 11898	. 99293	. 13629	.99767	. 15356	. 98814	. 1707	.935.3I	10
51	. 10192	. 99179	. 11927	. 99236	. 13658	. 99063	. 15385	. 93809	. $1: 107$. 97526	9
52	. $10 \div 21$. 99176	. 11956	. 99233	. 13637	. 99059	. 15414	. 93305	. 17136	.92\%	7
	. 10250	. 99173	. 11985	. 99279	. 13716	. 99055	. 15442	.98300	. 1716	. 98516	6
51	.10279	. 99470	. 12714	.99276	. 13744	. 99051	. 15471	. 93796	. 17193	.98511	6
55	. 10378	. 99167	. 12013	. 93272	. 13773	- 99047	15500	. 98791	. 17222	\|.98506	4
56	. 103337	. 39464	. 12071	. 99269	. 13302	. 99013	. 15529	. 93787	.17250 .17279	. 98501	4
	. 10366	. 99161	. 12100	. 99265	13331	- 999039	.155.5	. 98782	. 177308	. 98491	3
53	. 10395	. 9945	.12129 12158	. 99268	.13360 .13359	\| 999035	1558 1561	. 98778	.17308 .17336	. 98491	2
59	.10424 .104 .53	- 99155	. 12158	.992.	. 13389	- .99331	1561	. 98773	. 177336	. 93156	
M.	Cosin.	Sine.	Cosin	Sine	Cosi	Sine	Cosin	Sine.	Cos	Sine	
				$3{ }^{3}$				10		\bigcirc	

	10^{3}		110		12°		$13{ }^{3}$		$14{ }^{\circ}$		
		Cosin.	Sine.	Cosin.		.					M.
	. 17363	. 95481	. 19031				.22495			. 97030	50
,	. 17393	. 98476	. 19199	. 98157	. 20820	. 97809	22:523	. 97430	. 24220	. 97023	59
	. 17422	. 9347 I	. 19133	. 93152	. 20348	. 97803	. 22552	. 97421	. 21249	. 97015	58
3	. 17451	. 93166	. 19167	. 93146	. 20377	. 97797	. 22580	. 97417	. 21277	. 97003	57
4	. 17479	. 93461	. 19195	. 93140	. 20905	.97791	. 22603	.9741I	. 24305	.97001	56
5	. 17503	. 93455	. 19224	. 93135	. 20933	. 97784	. 22637	. 97404	. 24333	. 96994	55
6	.17537	. 93450	. 19252	. 93129	. 20962	. 97778	.22665	. 97393	. 24362	. 96357	51
	. 17563	. 93445	. 19231	. 98124	. 20990	. 97772	. 22693	. 97391	. 24390	. 96980	53
8	. 17594	. 93410	. 19339	. 93115	. 21019	. 97766	. 22722	. 97334	. 24418	. 96973	52
9	. 17623	93135	. 19338	. 93112	. 21047	.97760	22750	.97378	. 21416	. 96966	51
10	. 17651	. 93430	. 19366	. 93107	. 21076	. 97754	. 23778	. 97371	. 21474	. 96959	50
11	. 17639	. 93425	. 19395	. 95101	. 21104	. 97748	22307	. 97365	. 21503	. 96952	49
12	. 17703	. 93420	. 19123	. 93096	21132	. 97742	. 22535	. 97358	. 24531	. 96945	48
13	. 17737	. 93114	. 19452	. 93090	21161	. 97735	. 22363	. 97351	. 24559	.96937	47
14	. 17766	. 93109	. 19181	. 93054	. 21189	. 97729	.22992	97345	. 214587	. 96930	46
15	. 17794	. 9344	. 19509	. $930 \% 9$	21218	.97723	. 22920	.97:338	. 24615	96923	45
16	. 17823	. 983399		. 93073	. 21246	. 97717	. 22948	. 97331	. 21644	. 96916	44
17	. 17852	. 93394	.19.566	. 93067	. 21275	.97\%11	. 222977	. 97325	. 21672	. 96909	43
18	. 17330	. 93339	. 19595	. 93 ? 61	. 21303	. 97705	. 23005	. 97318	.24700	. 96902	42
19	. 17999	. 93353	. 19523	. 93056	. 21331	.97693	. 23033	. 97311	. 21725	. 96394	41
20	. 17937	. 98378	. 19552	. 93050	. 21360	. 97692	. 23062	. 97304	. 24756	. 968	40
21	. 17966	. 93373	. 19630	. 93041	. 21338	. 97656	. 23030	. 97293	. 21781	. 96880	39
22	. 17995	. 93368	. 19709	. 93039	. 21417	. 97630	. 23118	. 97291		9687	33
23	. 15023	. 93362	. 19737	. 93033	. 21445	. 97673	. 23146	.972-4	. 24841	. 96866	37
21	. 130.52	. 98357	. 19766	. 93027	. 21474	. 97667	. 23175	. 97278	. 24869	. 96858	36
25	. 18081	. 93352	. 19791	. 93021	. 21502	. 97661	. 23293	. 97271	. 21897	. 96551	35
26	. 18109	. 93317	. 19323	. 98016	. 21530	. 97655	.23231	. 97264	. 24925	. 96844	34
27	. 15133	. 93341	. 19551	. 98010	. 21559	. 9764.3	. 23260	. 97257	.24951	. 96837	33
23	. 18166	. 93336	. 19330	. 95004	. 21537	. 97642	. 23283	. 97251	. 24932	. 96329	32
29	. 18195	. 93331	. 19903	. 97998	. 21616	. 97636	. 23316	. 97244	. 25010	. 96322	31
30	. 13221	. 93325	. 19937	. 97992	. 21641	. 97630	. 23315	. 9723 \%	. 25033	5	30
31	. 13252	.98320	. 19965		. 21672	. 97623	. 23373	0	. 25066	. 96507	29
32	. 15231	. 93315	. 19994	. 97931	. 21701	. 97617	. 23401	. 97223	. 25094	. 96300	28
33	. 13309	. 93310	. 20022	. 979%	. 21729	. 97611	23129	. 97217	. 25122	. 96793	27
31	. 18333	. 93304	. 20051	. 97963	. 21758	. 97601	. 23458	. 97210	.25151	. 96786	26
3.5	. 13367	. 93299	. 20079	. 97963	. 217.56	. 97593	. 231	. 97203	. 25179	. 96778	25
36	. 13395	. 93291	. 27105	. 97953	. 21814	. 97592	.23514	. 97196	.25207	. 96771	24
37	. 15124	. 93233	. 27136	. 97952	. 21843	. 97535	.23.542	. 97189	. 25235	. 96764	23
33	. 15152	. 93233	. 20165	. 97946	. 21871	. 97579	.23371	. 97182	. 25263	. 96756	22
39	. 18181	98277	. 20193	. 97940	. 21899	. 97573	. 23599	. 97176	. 25291	. 96749	21
40	. 15509	. 93272	. 20222	. 97934	. 21923	. 97566	. 23627	. 97169	.25320	. 96712	20
4 I	. 19538	. 95267	. 20250	. 97923	. 21956	. 97560	. 23656	. 97162	. 2531.	. 96731	19
42	. 18567	. 98261	. 20279	. 97922	. 21985	. 97553	. 23384	.971:5	. 25376	. 96727	18
43	. 18595	. 93256	. 20307	. 97916	. 22013	. 97517	. 23712	. 97143	. 25404	. 96719	17
44	. 18624	.93250	. 20336	. 97910	. 22041	. 97541	.23740	. 97141	. 25432	. 96712	6
45		. 93215	. 20361	. 97905	. 22070	. 97531	. 23769	. 97134	. 25160		5
46	. 18631	. 9210	. 20353	. 97899	. 22035	. 97523	.23797	. 97127	. 25458	. 96697	14
47	. 15710	. 93231	. 20421	. 97893	. 22126	. 97521	. 23325	. 97120	. 25516	. 96690	13
48	. 18733	. 98229	. 20450	. 97357	. 22155	. 97515	. 23353	.97113	. 25545	. 96632	12
49	. 18767	. 93223	. 20478	. 97881	. 22183	. 97505	23332	.97106	. 25573	. 96675	11
50	. 18795	. 93218	. 20507	. 97875	. 22212	. 97502	. 23910	. 97100	. 2.5601	96667	10
51	. 18824	. 95212	. 20535	. 97869	. 22240	. 97496	. 23935	. 97093	. 25629	. 96660	9
52	. 18852	. 93207	. 20563	. 97863	. 22263	. 97499	. 23966	. 97036	. 25657	. 96653	8
53	. 18831	. 93201	. 20592	. 97857	. 22297	. 97433	. 23995	. 97079	. 25685	. 96645	7
54	. 18910	. 98196	. 27620	. 97851	. 22325	. 97476	. 24023	. 97072	. 25713	. 96633	6
55	. 18933	. 93190	. 20619	. 97345	. 22353	. 97470	. 21051	.97065	. 25711	. 96630	5
56	. 18967	. 93185	. 20677	. 97339	. 22332	. 97463	. 24079	. 97058	. 25769	. 96623	4
57	. 18995	. 93179	. 20706	. 97833	. 22410	. 97457	. 21103	. 97051	. 25798	. 96615	3
58	. 19024	. 93174		. 97827	. 22438	. 97450	. 21136	. 97044	. 25826	. 96603	2
59	. 19052	. 93163	. 20763	. 97821	. 22467	. 97444	. 21164	. 97037	. 25854	. 96600	1
	. 19081		. 20791		. 22495	. 97437	. 24192	. 97030			0
M.	Co	Sine.	C		Cosin	Sine	S	Sine.	Cosin	Sine.	I.

M.	15		$16{ }^{3}$		17		18°		19°		
	Sine.	Cosin	Sine.	Cosin.	ne.		Sine.				
$\overline{0}$,								. 32555		-
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	501		27592	. 961	29265	956	. 30929	9509	. 32.554	2	59
	. 25933	.96\%7		. 96110	29293	95613	. 30957	95058	. 32612	91533	
$\begin{aligned} & 2 \\ & 3 \end{aligned}$. 25966	. 96.57	. 27643	. 96102	29321	. 95605	. 30985	9.50	.32639	94523	
$\begin{aligned} & 3 \\ & 4 \end{aligned}$. 25994	96.56	. 27676	. 96094	29343	. 955	. 31012 .	. 95	. 32667	. 34514	
$\begin{aligned} & 4 \\ & 5 \end{aligned}$. 26022	. 9655	. 27704	. $960>6$	29376	95	31040	95	32694	94	55
	. 26050	. 9654	. 2773	. 96	29404	. 95	. 31063	95			
$\begin{array}{l\|l} 7 \\ 7 \end{array} .$. 26079	. 96.5		. 98	294	955	310				
8	. 2611	.9633	.27787	9606	2946	9556	. 31123	. 950	. 32777	. 94476	52
$\begin{gathered} 8 \\ 9 \end{gathered}$. 26135	.963	273	96051	29187	. 9555	. 31151	. 950	. 32804.	. 94166	1
$\begin{gathered} 9 \\ 10 \end{gathered}$. 26163	. 96517	27843	. 96046	29.515	955		95	. 32332	. 91457	50
11	. 26191	. 95.309	27871	. 96037	29543	95	. 31206	95	59	. 94447	49
	. 26213	.96.J		. 96		95	.31233	94	. 32387		
$\begin{aligned} & 12 \\ & 13 \end{aligned}$											77
			27935	. 96013	296	95	. 312	94979	12		46
$\begin{aligned} & 14 \\ & 15 \end{aligned}$. 26				. 295		. 31316				
								.	7		44
16.	. 263	. 96		. 95	. 297	95435	. 31372		4	91	
$\begin{aligned} & 18 \\ & 19 \\ & 19 \end{aligned}$. 26337	. 96	230	95	. 297	95	. 3139				
	. 26415	964		95	. 297	95	. 31				
$\begin{aligned} & 19 \\ & 20 \end{aligned}$. 26443	. 96440	. 23123	. 959	. 2979	95	. 3	. 9	. 33106	. 913	
21	. 26171	. 9643	. 23150	. 959	. 298	95	. 31	.	4	. 94351	
$\begin{aligned} & 21 \\ & 22 \end{aligned}$. 26.500	. 9642	2317	. 9.59	. 29349	95	. 31510	9	33161	. 943	
231	.265	. 96		. 95	. 29376	95	. 31		189		
	. 26			95	. 29904	954	. 3156				
	$26: 54$	964		9.59	2993	. 954	. 31593				
26	25612	. 9639	23290	9.991	. 2996		. 31620	. 943	. 33271		
27	. 2664	. 963	23318	9.590	299		. 31648	9		. 94293	
2329	. 266	. 96379	2331				. 3	948	. 33326		
	. 266	. 96			. 30	. 95350	. 3	91			
$\begin{aligned} & 29 \\ & 30 \end{aligned}$											
31	. 267	. 96			. 300	. 95					29
	. 2678	. 9634	.23	. 958	. 30126			.	. 33		
3.3	26303	. 96310	23		. 3015			91	. 33	. 91235	27
34	. 26836	.96332		. 955	. 301	953	. 31841	9	. 33	. 94225	26
	26364	. 96324		. 958	. 30	953	. 3156	. 94786	. 335		
36.	26392	. 96316		. 958	. 302	.953	. 31				
$\begin{aligned} & 37 \\ & 33 \\ & 33 \\ & \hline \end{aligned} .$. 2692)	9630	. 2	. 953	. 3026	. 953	. 31923		. 335		3
	. 26991	9630	. 236	. 953	. 30292	. 953	. 3107		. 336	94	22
39	. 26976	962	. 236	.9580	. 30320	. 952		. 91749	. 336	. 94176	
	. 27004		. 23	95799	. 303	952	. 32006	. 917	. 33		
41	27032	. 96277		.9579	303				. 336		
	27060	. 96269		957		952			. 337		
42	. 27033	. 9626	. 2376	. 957	. 304		. 3	. 947	. 337		
44	. 271	. 96	. 23	.9576	. 30	-	.	. 94702	. 337	9412	
45				. 5 -		-2	. 32171		. 338		14
$\begin{aligned} & 46 \\ & 47 \end{aligned}$	2720	96230	23375	957.1	. 305	9.522	. 32199	946	. 338		813
48	2722	. 96222	. 23903	.9.57	. 30570	. 9521	. 32227	916	. 33874	. 940	12
	27	.9621	. 25931	.9.57	. 3059	. 952		946	. 3390	9	11
$\begin{aligned} & 49 \\ & 50 \\ & 5 \end{aligned}$	272	96206	2	9.7.7	-	.95195	. 22232	946	. 33929	910	10
52	27312	. 9619	2390	9.970	-	. 9518		. 946	. 339	. 9405	
	27340	. 96190	29015	693	-	. 9517	. 32337	. 916	. 339 こ	. 91049	
53	2736	. 96182	. 29042	. 956	. 30703	. 9516	. 32364	. 946	. 3404	. 94039	
54	2739	. 9617	. 29070	9:56	. 39736	. 951	. 32392	. 916	. 340	. 9402	
	$27+21$. 96166	. 29	.9567	. $30 \sim 63$. 951	. 32419	945	.	-	
55	2752	96150	. 29126	-			3217	945	3409	. 91009	
57	27480	96150	. 29154	9.565	. 30319	. 9513	. 32474	. 945	. 311	93999	
58	. 2750	. 96142	. 29182	9.51	. 31716	. 9512	. 32502	. 945	. 34147		
	. 27536	961	29209	$9: 56$	0374	. 951	. 32529	94	. 34175	9397	
							. 32557		. 31202	. 93969	
M.	Cosin		Cosin.				n. 71 Sine.		osin. Sine.		
		4	73		78					0^{3}	

	20^{3}		210		22°		23°		240		
M．		Cosin	Sine．	Cosin．							M．
0	31272	． 93963	35537	$\overline{.933 .55}$	． 3 T 461	．92ily	． 39073		． 40674	． 91355	60
1	31229	． 93959	． $35 \leq 64$	． 93345	． 37488	． 92707	． 39100	． 92039	． 40707	． 91343	59
2	． 31235	． 93949	．35－91	．93337	． 37515	． 92697	． 39127	． 92023	． 40727	． 91331	53
3	．34234	．9393）	．3591	． $9332 i$	． 37542	．926－5	． 39153	． 92016	． 40753	． 91319	5π
4	31311	． 933929	． 35915	．93316	． 3 T569	．92675	． 39150	．92005	． $407 \leq 0$	． 91307	：6
5	． 31339	． 93919	． 3.5973	．933 ${ }^{\text {a }}$	． 37595	． 92561	． 39207	． 91994	． $40 \leq 06$	． 9129.	5
6	． 34366	． 93909	． 36000	．9329．3	． 31622	． 92633	． 39231	． 919 22	$40-33$	． 91233	54
7	3＋393	． $93 \leq 93$	． 36727	．932－5	． 37649	． 92642	－ 9261	． 91971	． $40 \leq 63$	． 91272	53
8	31421	． $93 \leq 59$	． 360.54	． 93274	． 37676	． 92631	． 34237	． 919.59	． 40856	． 91260	52
9	．3444 3	．93579	． 36931	． 93264	． 37703	． 92521	． 39314	． 91915	． 40913	． 91215	51
10	． 3417.5	． 93367	． $3610=$	． 932.53	． 37731	． 92509	． 39341	． 91936	． 40939	． 91236	$51)$
11	34503	． 93359	． 36135	． 93243	． 37757	．92：59，	． 3936π	． 91925	． 40966	． 91221	49
12	．31533．1	． $93 \leq 19$	． 36162	． 93322	． 37781	． 92.537	． 39391	． 91914	． 40992	． 91212	Is
13	． 31.50	．93－39	． 35190	． 93222	． $37 \cdot 311$	． 92576	． 39421	91902	． 41019	91201	17
14	$3-15>4$	． $43 \geqslant 29$	． 35217	． 93311	．3－3，	．92．565	． $3941=$	． 91891	． 41045	911\％	46
15	31612	．93319	． 36214	．93201	．3「こ65	．92554	． $394 \pi t$	． $91 \leq 79$	． 41072	． 91176	45
16	． 31639	．93－03	362 T	． 93190	．37－92	． 92543	39501	．91863	． 41093	． 91161	41
17	.31636	．937－9	36258	931＞1	． 37919	．92．532	． 39.52	． $91-56$	． 41125	． 91152	43
12	． 31601	． $933 \sim 4$	． 36325	．9316J	3744	． 92721	． 39555	9154.5	． 41151	． 91140	42
19	． 342121	． 93779	． 36352	． 93159	．37973	． 92.510	． 39.81	． $91>33$	． 41178	． 91125	41
21	． $3171=$	．93764	． 36379	． 93145	． $3 \sim 999$	． 92499	． 39605	． $91>22$	． 41204	． 91116	40
\because	$\therefore 31775$	． 93759	26176	． 93131	.33026	． $924>3$	． 39635	． $91 \leq 10$	41231	． 91101	39
2.2	$\therefore 34>1: 3$	．93715	．36431	． 93127	． 33053	． $92+75$	． 39661	91799	41257	． 91092	35
2	． 34.3	．9373－	． 33 ± 51	． 93116	． $3 \gg 1$	． 92166	． 39685	917＞7	．41234	． 91050	37
21	． 34357	．93725	． 351	．931 6	． 35107	． 924.55	． 33715	． 91775	． 41310	． $9106=$	36
2	$\therefore 31831$	．9371 93	． 36315	． 93095	． $3-131$	． 92411	． 39711	． 91764	． 41337	． 91056	3.5
25	． 31512	． $3370 \leq$	． 36.512	．930＝4	． 33161	． 92432	． 39765	． 51752	． 41363	． 91044	34
27	$\because 193$.	． 9363	． 36535	． 93397	． 3×152	． 92121	． 39795	． 91741	． 41390	． 91032	33
2	3435	．936マ3	． 36.36	．93063	． 3215	． 92110	． $39-22$	． 91729	． 41416	．9102）	32
2.	． 313%	． 93677	． $363 \leq 3$	．93052	． 33211	． 923399	． $39=15$	． 91715	． 41443	． 91005	31
3：	． 35721	．9366i	．3665＇）	． 93012		． 923 －	． 33575	． 91706	． 41463	． 90996	30
31	－351－	93657	．3667	． 93031	． $3=29$.	． 92377	． 39902	． 91694	． 41496	909＝4	29
3		． $9364 \sim$	． 3 37 4	． 93020	． $3-322$	． 92366	． 39923	． 91683	．4522	90972	2
3	．351！	．9：637	． $33 \sim 31$	．93：！ 11	． 3×349	． 92353	． 39955	． 91671	． 41543	． 90960	27
3	$\therefore 5131$	． 93526	． $3675=$	． 92493	． 3 23：6	． 92313	． 39982	.91660	． 41575	． 90915	26
3	3i1\％	． $9: 3616$	． 3 iz	929	$.3=403$	． 923332	． 40003	$.9164>$	． 41602	． 90936	25
3	－3il $=1$	．93676	． 3 ¢ 51 ？	9	． $3 \leq 150$	． 9232 I	． 49035	． 91636	． $4162=$	． 97924	24
3.	－35211	．93．996	． $35-3$.	．92967	． $351: 6$	．92310	． 40062	． 91625	．416．35	． 909911	23
3	． 3.529	． 39555	． $36=67$	933：56	． $3=4 \leq 3$	． 92299	． 40.105	.91613	． 41631	． 90399	22
39	． 3.266	． 93575	． $36=91$	． 92924	． 3 د517	． 92327	． 47115	． 916011	． 41702	． 97385	21
40	． 35293	．9356．3	． 36921	．92935	． 33537	．92276	． 40141	． 91590	． 41731	． 90575	20
41	． 33327	． 9355	． $3591=$	． 92021	． 33554	． 92265	． 40165	． 91538	． 41760	． 90863	19
42	． 35347	． 93511	． 36975	． 9291 ：	． 35591	． 92.255	． 40195	． 91566	． 41737	． $911 \leq 51$	15
43	． 3.3375	．93531	． 37002	．92972	． $3=617$	． 92213	． 40221	． 91555	． 11813	． 90938	17
44	． 35402	． 933524	． 37029	． $92-92$	． $3>614$	． 922331	． 10215	． 91543	． 41840	． 90526	16
4.5	． 35429	． 93514	． 37056	．92381	． 35671	． 92220	． 40275	． 91531	． 41566	． 90814	5
46	． 35456	．93503	． 37033	．92～10	． 3 －695	．922）9	． 47301	． 91519	． 41892	． 90302	14
47	．3：3＞4	． 93193	． 37110	． 92359	． 38725	． 92193	． 40323	． 915158	． 41919	． 90790	13
45	．35．511	． $934=3$	． 37137	． $92>19$	． 33752	．921 66	． 403.55	． 91496	． 41945	． 90775	12
49	．35．33	． 93172	． 37164	． 92×39	． 33775	． 92175	4）351	.9144	． 41972	． 90766	11
5）	． 35565	． 93462	． 37191	．92＝27	． 33305	． 92164	． 40403	． 91472	． 41995	． 90753	10
51	． 35.592	．93452	． 37218	． 92316	． 33332	． 92152	． 40434	． 91461	． 42021	． 90741	9
52	． 35619	． 93111	． 37215	． 9230.5	． 33859	． 92141	． 40461	． 91449	． 42051	． 90729	8
53	． 35617	． 93431	． 37272	． 92794	． 33386	.92130	． 40485	.91437	． 42077	． 90717	7
51	． 3.5674	． 93420	． 37239	． 92754	． 33912	． 92119	． 10514	． 91425	． 42104	． 90704	6
55	． 35701	． 93410	． 37326	． 92773	． 33939	． 92107	． 40511	． 91414	． 42130	． 90692	5
56	． 35723	． 93100	． 37353	． 92762	． 33966	． 92096	． 405 E 7	． 91402	． 42156	． 90630	4
57	． 35755	． 93339	． 37380	． 92751	． 33993	． 92035	． 40594	． 91390	． 42183	．9766s	3
53	． 33732	． 93379	． 37407	． 92740	． 39027	． 92073	． 40621	． 91375	． 42209	． 90655	2
59	．35810	． 93363	． 37434	． 92729	． 39046	.92062	． 40647	.91366	． 42235	． 00643	1
60	． 35337		$.37461$	． 92713		． 92050	40674	． 91355	． 42262	． 90631	0
3.	Cosin．	Sine．	Cosin	Sine．	Cosin	Sine．	Cosin	Sine．	Cosin	Sine．	M．

M.	25^{3}		26°		270		28		29 ?		M.
	Sine.	Cosin.		Cosin.		Cosin.		Cosin.	Sine.	in.	
0	42262	. 90631	. 43337	89579	. 4.7399						60
1	. 42238	. 99618	. 43363	. 89367	. 45425	. 89087	. 46373	. 83231	43506	8744	59
2	. 42315	. 90306	. 43389	. 89354	. 45451	. 89074	. 46999	. 88267	. 48532	.87434	58
3	42311	. 90.994	. 43916	. 89341	. 45477	. 89061	. 47024	. 88254	. 48557	. 87420	57
4	42367	. 90582	. 43912	. 89323	. 45503	. 89048	. 47050	. 832111	48583	. 87406	56
5	42391	. 90569	. 43969	. 89316	. 45529	. 89035	. 47076	. 88226	45608	. 87391	55
6	. 42120	. 90537	. 43991	. 83303	. 455554	. 89021	. 47101	. 83213	. 48634	. 87377	51
7	42146	. 90545	. 44020	. 89790	. 45550	. 89008	. 47127	. 88199	. 48659	. 87363	53
8	. 421733	. 90532	. 44046	. 89777	. 45606	. 88995	. 47153	. 88185	. 48634	. 87349	52
9	42199	. 90520	. 41072	. 89764	. 45632	. 88981	. 47178	. 88172	. 48710	. 87335	51
10	. 42525	. 90507	. 44098	. 89752	. 45658	. 88963	. 47201	. 83153	. 48735	. 87321	50
11	. 12555	. 90495	. 44124	. 89739	. 45684	. 88955	. 47229	. 88144	. 48761	. 87306	49
12	. 42.578	. 90453	. 44151	. 89726	. 45710	. 88912	. 47255	. 88130	. 48786	. 87292	48
13	. 42604	. 90470	. 41177	. 89713	. 45736	. 88923	. 47231	. 88117	. 48811	. 87278	47
14	. 42631	. 90453	. 41203	. 89700	. 45762	. 88915	. 47306	. 83103	. 48837	. 8726	46
15	. 42657	. 90446	. 44229	. 89687	. 45787	. 88902	. 47332	. 88089	. 48862	. 87250	45
16	. 42683	. 90433	. 41255	. 89674	. 45313	. 88889	. 47358	. 88075	. 48888.	. 87235	44
17	. 42709	. 94421	. 41231	. 89662	. 45839	. 88875	. 47383	. 881162	. 48913	. 8722	43
18	. 42736	. 90405	. 41307	. 83649	. 45665	. 88862	. 47409	. 88018	.45933	. 87207	42
19	. 42762	.9:396	. 41333	. 89636	. 45891	. 88548	. 47434	. 85031	. 49964	. 87193	4I
20	. 42753	. 90333	. 44339	. 89623	. 45917	. 88835	.47460	. 88020	. 45989	. 87178	40
21	. $42>15$. 90371	. 41335	89610	. 4592	. 88822	. 47456	. 88006	. 49014	. 8716	39
22	. 42311	. 90358	. 44411	. 89597	. 45963	. 83808	. 47511	. 87993	. 49040	. 87150	39
23	. 42367	90346	. 44137	. 89531	. 45994	. 83795	. 47537	. 87979	. 49065	. 87136	37
24	. 42331	. 90334	. 41464	. 89571	. 46021	. 88782	. 47562	. 87965	. 49090	. 87121	36
25	. 42920	. 9032 I	. 44490	.89.5.5	. 46046	88768	. 47538	.8795I	. 49116	. 87107	35
26	. 42916	. 90309	. 41516	. 89545	. 46072	. 887.55	. 47614	. 87937	. 49141	. 87093	31
27	. 42972	. 90295	. 41512	.89.532	. 46097	. 88741	. 47639	. 87923	. 49166	. 87079	33
23	. 42999	. 90234	. 44563	. 89519	. 46123	. 88725	. 47665	. 87903	. 49192	. 87061	32
29	. 43025	. 90271	. 41594	. 89506	. 46149	. 88715	. 47690	. 87896	. 49217	. 87050	31
30	. 43051	. 902.59	. 41620	. 89493	. 46175		. 47716	. 87882	. 49212	. 87036	30
31	. 43077	. 90216	. 44646	. 89430	. 46201	. 88688	. 47741	. 87868	. 49263	. 87021	29
32	. 43104	. 90233	. 44672	. 89167	. 46226	. 88674	. 47767	. 87854	. 49293	. 87007	28
33	. 43130	. 00221	. 41693	. 89154	. 46252	. 88661	. 47793	. 87840	. 49318	. 86993	27
31	43156	. 90208	. 41724	. 89141	. 46278	. 88647	. 47818	. 87826	. 49314	. 86978	26
35	. 43182	. 90196	. 44750	. 89123	. 46301	. 83634	. 47814	. 87812	. 49369	. 86961	25
36	. 43209	. 90183	. 44776	. 89115	. 46330	. 88620	. 47869	. 87798	. 49391	. 86949	24
37	. 43235	. 90171	. 418802	. 89102	. 46355	. 88607	. 47395	. 87784	. 49119	. 86935	23
33	. 43261	. 90153	. 44323	. 89339	. 46331	. 88593	. 47920	. 87770	. 49445	. 86921	22
39	. 43237	. 90116	. 44854	. 89376	. 46107	. 88530	. 47916	. 87756	. 49470	. 86906	21
40	. 43313	. 90133	. 418850	. 89363	. 46433	. 88566	. 47971	. $87 \pi 43$	49495	. 86892	20
41	. 43310	.90120	. 44906	.89350	. 46453	. 88553	. 47997	. 87729	. 49521	. 86878	19
42	. 43366	.90108	. 44932	. 89337	. 46151	. 88539	. 45022	. 87715	. 49546	. 86563	18
43	. 433392	. 90095	. 41953	. 89321	. 46510	. 88526	. 43018	. 87701	. 49571	. 86349	17
44	. 43118	.90082	. 44934	. 89311	. 46536	. 88512	. 48073	. 87687	. 49596	. 86334	16
45	. 43145	. 90070	. 45010	. 89298	. 46.561	. 88199	. 48099	. 87673	. 49622	. 86820	15
46	. 43171	. 90057	. 45036	. 89235	. 46587	. 83185	. 48121	. 87659	. 49617	. 86305	14
47	. 43197	. 90045	. 45052	. 89272	. 46613	. 88172	. 48150	. 87645	. 49672	. 86791	13
48	. 43523	. 90032	. 45088	. 89259	. 46639	. 88158	. 48175	. 87631	. 49697	. 86777	12
49	. 43519	.90019	. 45114	. 89245	. 46664	. 88445	. 48201	. 87617	. 49723	. 86762	11
50	. 43375	. 90007	. 45140	. 89232	. 46690	. 88131	48226	. 87603	. 49 \% 48	. 86748	10
51	. 43602	. 89994	. 45166	. 89219	. 46716	. 88417	. 48252	. 87589	. 49773	. 86733	9
52	. 43623	. 899931	. 45192	. 89206	. 46742	. 88404	. 48277	. 87575	. 49793	. 86719	8
53	. 43654	. 89963	. 45218	. 89193	. 46767	. 88390	. 48303	. 87561	. 49824	. 86704	7
54	. 43630	. 89995	.45213	. 89180	. 46793	. 88377	. 48328	. 87546	. 49849	. 86690	6
55	. 43706	. 89943	. 45269	. 89167	. 46819	. 88363	. 48354	. 87532	. 49874	. 86675	5
56 57	. 43733	. 89930	. 45295	. 89153	. 46844	. 88349	. 43379	. 87518	.49899	. 86661	4
57	. 43759	. 899918	. 45321	. 89140	. 46370	. 88336	. 48105	. 87504	. 49924	. 86616	3
58	. 43785	. 89905	. 45347	. 89127	. 46896	. 8832	. 4813	. 87490	. 49950	. 86632	2
				. 89114	. 46921	. 88308	. 48456	. 87476	. 49975	. 86617	1
								. 87462	. 50000	. 86603	0
M.	Cosin	Sine.	Cosin.	Sine.	Cosin	Sine.	osin	Slne.	Cosin	$\operatorname{Sin} 0$.	M.
					62		61		60		

	30°		310		32^{3}		33°		340		M.
	Sine.	Cosi	Size.	Co	Sine		Sine.				
	50000	866	515	. 85							60
	50	86	51529	. 85	. 53017				13		59
	5) 150	.863	. 51554	. 85687	. 53041				. 55963		58
3	50076	. 86559	. 51579		. 53066		. 54537	. 83519	. 53992	. 82	57
	50101	. 86544	. 51604	. 85657	. 53091	1743	. 54561	. 83304	. 56016	S	56
	5012	. 8653	. 51623	- 5612	. 53115	. 5172			. 56040		55
	50151	. 86515	. 51653	. 55627	. 53140	. $\triangle 1712$. 54610		. 56064	82	54
	. 50176	. 8650	. 51678	. 85612	. 5314	21697	. 54635	. 8	560:	8	
	5020	. 86486	. 51	. 5559	. 53189	. 8163	59	. 8	. 56112		52
	50227	. 86471	. 51728		53214	166	-3	. 83	36	. 82	
10	. 5025	. 86157	. 51753			. 86.0	.		. 56160		50
11	50277	. 86442	. 51778	. 855				. 83692	. 56154		49
12	54302	. 86127	. 51803	. 855	. 53283	. 846		. 83676	03	. 8	
	. 50327	. 86	. 51523	. 8552	. 53312	. 516	. 54731	.			
14	50352			. 555	. 53337				. 56256		
15	. 50377					81	. 54329			. 26259	
16	. 5040	. 86	. 5	. 8.		-19\%	. 54354				
	. $50+2$. 863	. 51927	. 854	$53+11$	- 5	. 54	. 835			43
	. 50453	. 86	. 519.5	. 3.5	2-135	4i	-	-3.5-1			2
19	. 59175	. 863	. 51977		53161	8151		8	56		11
	. 50503	. $8: 3$. 831		849	. 54951		. 56401	. 8257	40
	. 5052		52	8.5401	09	$811-$. 53	. 56425		39
	51	. 862	52	S53	. 53.331	+1t	99	. 8	. 56449		
	50	. 862	. 5297	. 85		1	55021	.83:	. 5617.		
	. 5	. 86	. 52101	.8.53		-4	5504	-	. 56497	. 8251	
	. 50			. 8.3	.5\%67	S1		-	.56.321	-	
	.516:3		. 521.51	. 8532	. 53632	\$1					
27	. 5067	8620	. 52175	. 85310			55				
	. 507	. 85192		. $8 \div 294$. 843		. S 3			
	. 50729			. 8527				. 3	. 56617		
30											
	. 50				5	4.	.55212	. 8			
	. 50	. 86119		S52	53	. 8429	,	. 833			
	595	. 86101		. 8.52	53	842		. 83			6
	. 5037	. 860				. 812					
	. 5090										1
	. 5192							. 5322			
	503:				53926	. 812					
39	50979			55							
	5100			. 851	53975	811					
	51029	. 860		. 855	. 54000		.55460				8
	. 51054	. 85		. 85	124	. 8		S3		822	18
	.51079 .51104	. 8		.85066	73	$.8+135$ 81120		. 83			
	51104				73	. 81120		. 83			
47	. 51179	.859	. 5267	. 8	146	. 8407		. 8311	5704	.	
43	. 51204	. 853	. 5269	. 81	. 5117	840.5	,	. 830	.5707	S 211	
45	. 51229			. 8497	. 54195	. 8104	.55654	. 8308	. 5709	,	
5	. 51254	. 85366		. 84959	. 51220	. 81025	. 5	. 83066	. 57119		10
	. 51279	. 85351		. 84943	51244	. 81009	. 55702	. 8305	. $5 \uparrow 143$		
	. 51304	. 85835	. 52791	. 8492	. 54269	. 8399	. 55726	. 8303	. 5716π		
53	. 51329	. 35321	. 52319	. 84913	. 51293	. 839	. 55750	. 83017	. 57191	s	
54	. 5135	. 85306	. 52314	. 818	. 54317	. 8396	53770	. 830		. 8201	
55	. 51379	. 85792	. 52369	. 84	32	. 83916	99	. 82935		.	
	. 51404	. 85777	. 52393		54366	. 8393	. 55823	. 82969	. 57262	. 8193	
	. 51429	. 85762	. 52918	. 84851	. 51391	. 8391	847	. 82953	. 57236	. 819	
	. 51454	. 85747	. 52943	84836	. 54415	. 833	. 55871	. 829	. 57310		
	. 51479	. 857	. 52967	8432	. 54440	. 233	95	. 829	. 57334	. 8193	
M.							Cosin.		Cosin.	Sine.	M.

M.	40^{3}		410		420		43°		440		
	Sine.	Cosin.	Sine.	Cosin.	Sine.	Cosin.	Sine.	Cosin.	Sine	Cosin.	M.
	64279	76604	. 65606	75471	. 66	7	. 63200	55	69166	$\overline{.71934}$	60
1	. 61301	. 76586	. 65628	. 75152	. 66935	. 74295	. 63221	. 73116	. 69457	. 71914	59
	. 61323	. 76567	. 65650	. 75433	. 66956	. 74276	. 63242	. 73096	. 69508	. 71894	53
3	. 61316	. 76518	. 65672	. 75414	. 66978	. 74256	. 63264	. 73076	. 69529	. 71873	57
4	61363	. 76530	. 65694	. 75395	. 66999	. 74237	. 63235	. 73356	. 69549	. 71853	56
5	. 61390	. 76.511	. 65716	. 75375	. 67021	. 74217	. 63306	. 73036	. 69570	. 71833	55
6	. 64412	. 76492	. 65733	. 75356	. 67013	. 74193	. 63327	. 73016	. 69591	. 71813	54
7	. 64135	. 76473	.65759	. 75337	. 67064	. 74173	. 63319	. 72996	. 69612	. 71792	53
8	64457	. 76455	. 65781	. 75318	. 67036	74159	. 63370	. 72976	. 69633	71772	52
.	. 64179	76436	. 65303	.75299	. 67107	. 74139	. 63391	. 72957	. 696.54	71752	51
10	. 64501	. 76117	.65325	. 75230	. 67129	. 74123	. 63412	. 72937	. 69675	71732	50
11	. 64521	76393	. 65517	. 75261	. 67151	74100	. 63134	. 72917	69696	71711	49
12	. 61516	. 76330	. 65869	. 75241	. 67172	74030	. 63455	. 72397	. 69717	71691	48
13	. 61563	. 76361	. 65591	. 75222	. 67194	. 74061	. 63476	. 72377	. 69737	71671	47
14	. 64590	. 76342	. 65913	. 75203	. 67215	74041	. 63497	. 72357	. 69753	71650	46
15	. 61612	76323	. 65935	75184	. 67237	74022	. 68518	. 72537	.69779	71630	45
16	. 61635	76304	. 65956	. 75165	67253	74002	. 63539	. 72317	. 69300	71610	44
17	. 61637	.76236	. 65973	. 75146	. 67230	73933	. 68561	. 72797	. 69321	71590	43
15	. 61679	.76267	. 66000	. 75126	. 67301	73963	. 63582	. 72777	. 69342	71569	42
	. 64701	76243	. 66022	. 75107	. 67323	73944	. 65603	. 72757	. 69362	71519	41
20	. 64723	76229	. 66044	. 75038	. 67314	73924	. 65624	. 72737	. 69383	71529	40
21	. 61746	. 76210	. 66066	. 75069	. 67366	73904	. 65645	. 72717	. 69904	. 71503	39
22	. 61763	. 76192	. 66083	. 75050	. 67387	73355	. 68666	. 72697	. 69925	71438	33
23	. 61790	. 76173	.66109	. 75030	. 67409	73365	.6ミ638	. 72677	. 69946	71468	3
24	. 61812	. 76154	. 66131	. 75011	. 67430	. 73346	. 65709	. 72657	. 63966	. 71447	6
	. 64334	.76135	. 66153	. 74992	. 67452	. 73326	. 63730	. 72637	. 69987	. 71427	5
	. 61356	. 76116	. 66175	. 74973	. 67473	. 73306	. 63751	. 72617	. 70008	71407	34
27	. 61378	. 76097	.66197	. 74953	.67495	. 73757	. 63772	. 72597	. 70029	71336	
23	. 64901	. 76078	. 66218	. 74934	. 67516	73767	.63793	. 22.577	. 70049	71366	2
29	. 61923	. 76059	. 66210	. 74915	. 67533	. 73747	. 63514	. 72557	. 70070	71345	31
30		. 76	. 66262	7	. 67559	737	. 63				
	. 64967	. 76022	.66234	. 74876	. 67530	73705	. 68557	. 72517	70112	71305	29
32	. 64939	. 76003	. 66306	. 71357	. 67602	. 73638	. 63878	. 72497	. 70132	71234	28
33	. 65011	. 75954	. 66327	. 71533	.67623	. 73669	. 63399	. 72477	70153	71261	27
34	. 65033	. 75965	. 66319	. 7481 S	. 67645	73619	. 68920	. 72457	. 70174	71243	26
35	. 65055	. 75916	. 66371	. 74799	. 67666	. 73629	. 68911	. 72437	70195	71223	5
36	. 65077	. 75927	. 66393	. 71780	. 67638	. 73610	. 63962	. 72417	70215	. 71203	
37	. 65100	. 75903	. 66414	. 74760	. 67709	. 73590	. 63933	. 72397	. 70236	. 71182	23
33	. 65122	. 75389	. 66436	. 74741	. 67730	. 73570	. 69004	. 72377	. 70257	. 71162	22
39	. 65144	. 75570	. 66453	. 74722	. 67752	. 73551	. 69025	. 72357	. 70277	. 71141	21
40	.65166	. 75351	. 66180	. 74703	. 67773	. 73531	. 69016	. 72337	. 70298	. 71121	20
	.65183	. 75332	. 66501	. 74633	. 67795	. 73511	. 68067	. 72317	. 70319	71100	19
42	. 6.5210	. 75513	. 66523	. 74664	. 67816	. 73191	. 69038	. 72297	. 70339	71030	
43	.65232	75794	. 66545	. 74644	. 67837	. 73172	. 69109	. 72277	70360	71059	17
44	. 65254	. 75775	. 66566	. 74625	. 67359	. 73152	.69130	. 72257	. 70331	. 71039	16
45	. 65276	. 75756	. 66533	. 74606	67850	73432	69151	. 72236	. 70401	. 71019	15
46	. 65293	. 75733	. 66610	. 74556	. 67901	. 73413	. 69172	. 72216	. 70122	70998	14
47	.63320	. 75719	. 66632	. 74567	. 67923	. 73393	. 69193	. 72196	. 70443	70978	13
43	. 65312	. 75700	.66653	. 74548	.67944	. 73373	. 69214	. 72176	. 70463	. 70957	12
49	. 63364	. 75680	. 66675	. 74523	. 67965	. 73353	. 69235	. 72156	. 70434	. 70937	11
50	. 63336	. 75661	66697	. 74509	. 67937	. 73333	. 69256	. 72136	. 70505	. 70916	10
51	.65403	. 75642	. 66718	. 74439	. 63008	. 73314	. 69277	. 72116	. 70525	70396	9
	.65430	. 75623	. 66740	. 74470	. 63029	. 73294	. 69293	. 72095	. 70546	7087	8
	. 65452	. 75604	. 66762	. 74451	. 63051	. 73274	. 69319	. 72075	. 70567	. 70355	7
54	. 65474	. 75585	. 66783	. 74431	. 63072	. 73254	. 69340	. 72055	. 70557	. 70334	6
55	. 65496	. 75566	. 66305	. 74412	. 63093	. 73234	. 69361	. 72035	. 70608	. 70313	
	. 65518	. 75547	. 66527	. 74392	. 63115	. 73215	. 69332	. 72015	. 70623	. 70793	4
	. 65540	. 75523	. 66343	. 74373	. 68136	. 73195	. 69103	. 71995	. 70649	70772	3
58.	. 65562	. 75509	. 66570	. 74353	. 63157	. 73175	. 69424	. 71974	. 70670	. 70752	,
59	. 65534	. 75490	. 66391	. 74334	. 68179	. 73155	. 69145	. 71954	. 70690	. 70731	
	. 65606	. 75471	. 66913	. 74314	. 63200	. 73135	69166	71934	. 70711	70	0
M.	Cosin.	Sine.	Cosin.	ne.	Cosin.	Sine.	Cosin	Sine.	Cosin	Sine.	M.
			4	3			46	${ }^{3}$	45	3	

TABLE XV.

NATURAL TANGENTS AND COTANGENTS

M．	40		50		6°		180		M．
	Tang	Cotang	Tang．	Catang．	Tang．	Cotang．	Tang．	Cotang．	
0	． 06993	$14.3 \cup 0 \%$	． 08749	11.4301	． 10.510	9.51435	$\widehat{.12275}$	8.14435	60
1	． 070722	14.2411	． 08778	11.3919	． 10540	9.4 ¢isl	． 123308	8.12451	59
2	．07051	14.1821	． 08807	11.3540	．10こ69	9.46141	． 12333	8.10536	58
3	．07080	14.1235	． 08537	11.3163	． 10.599	9.43515	． 12336	8.08600	57
4	． 07110	14.0655	． 08×66	11.2759	．106\％ 5	9． 11544	． 12347	8.06674	56
5	． 07139	14.0079	． 08895	11.2417	． 11637	$9.3 \leq 307$	12426	8.04756	55
6	． 07169	13.9507	． 05925	11.245	． $166 \geq 7$	9.35224	． 12456	$8.02{ }^{\text {c }}$	54
7	． 07197	13.8910	． $0-954$	11.1631	． 10716	9.33155	．121＞5	8.00948	53
8	． 07227	13.8375	． 05953	11.1316	． 10746	9.30599	．12515	7.99058	52
9	． 07256	13.7321	． 09013	11.0954	． 10755	9.281158	．12．54	7.97176	51
10	．0723．5	13.7267	． 09042	11.0544	．105015	9.25530	．12．j34	7.95312	50
11	．07314	13.6719	． 099171	11.0237	． $10=34$	9.23016	． 12603	7.93432	49
12	． 07314	$13.617 \frac{4}{2}$	． 09101	$10.95>2$	．10－63	9.21516	． 12633	7.91582	48
13	． 07373	13.5631	． 091310	10.9529	． $10-93$	$9.1=025$	． 12662	7.59734	47
14	07402	13.5093	． 09159	10.9178	． 11922	9.15554	． 12692	7.8705	46
15	．147431	13.4566	．091－9	10.8529	10952	9.13093	． 12722	7．86（64	45
16	． 07461	13.4039	． 03218	10.8483	． 10931	9.10616	．12751	7.81242	44
17	．07－190	13.3515	． 09247	10.8139	． 11011	9.05211	． 12781	7.52428	43
18	． 07519	13.2996	． 09277	10.7797	． 11040	9.05759	． 12810	7．8（1622	42
19	． 07543	13.2480	． 09316	10.7457	． 11070	9.03379	． 12540	7.75825	41
21	． 01578	13.1969	． 09335	10.7119	． 11099	$9.009 \leq 3$	． $12=69$	7.77035	40
21	． 0.6407	13.1461	． 09365	10.6783	． 11125	8.95598	． 12599	7.752 .4	39
22	．076：3	13.09 .58	． 09394	10.6450	． 11158	8.96227	． 12929	7.73180	35
23	． 07665	13.0455	． 09423	10.6118	． 11187	S．93567	． 12958	7.71715	37
21	． 07695	12.9962	． 013453	10.5759	． 11217	8.91520	． 12958	7.69957	36
25	． 078724	12.9169	． 09432	10.5162	． 11246	8.89185	13017	7.68208	35
26	． 07753	12.8981	．09511	10.5136	.11276	8．56ミ62	． 13047	7.66466	34
27	． 07782	12． 8496	． 09541	10.4313	． 11305	8.84551	． 13076	7.64732	33
23	． 07812	12.8014	－ 09570	10.4491	． 11335	8.82252	． 13106	7.63005	32
29	．07841	12.7536	． 09600	10.4172	． 11364	8.79964	． 13136	7.61287	31
30	．07870	12.7062	． 09629	10.3354	． 11394	8.77659	． 13165	7.59575	30
31	． 07 S93	12.6591	． 09658	10.3538	11423	8.75425	．13195	7．57－゙2	29
32	． 07929	12.6124	． 09688	10.3221	． 11452	8.73172	． 13224	7.56176	28
33	． 07958	12.5660	． 09717	10.2913	． 11432	8.70931	． 13254	7.54487	27
31	． 07987	12.5199	． 09746	10.2602	.11511	8.65701	． 13284	7．52846	26
35	． 08017	12.4742	． 09776	10.2294	． 11541	8.66452	． 13313	7.51132	25
36	． 03046	12.4288	． 098505	10.1958	.11570	8.61275	． 13343	7.49465	24
37	． 03075	12.3533	． 09334	10.1633	． 11600	8.62078	． 13372	7.47806	23
38	． 03104	12.3390	． $09 \leq 64$	10.1351	． 11629	8.59893	． 13402	7.46154	22
39	． 05134	12.2946	． 09893	10.1080	． 11659	8.57718	． 13432	7.44509	21
40	． 05163	12.2 .505	． 09923	10.0780	． 11683	8.55555	． 13461	7.42871	20
41	． 08192	12.2067	． 09952	10.0483	． 11718	8.53102	． 13491	7.41240	19
42	． 08221	12.1632	． 099381	10.0187	． 11747	8.51259	．13：21	7.39616	18
43	．052．51	12.1201	． 10011	9.93931	． 11777	8.49128	． 13550	7.37999	17
44	． 05250	12.0772	． 10040	9.96007	11806	8.47007	． 13580	\％． 36389	16
45	． 08309	12.0316	． 10069	9.93101	． 11836	8.44896	13609	7．34786	15
46	． 08339	11.9923	． 10099	9.90211	． 11865	8.42795	13639	7.33190	14
47	． 05363	11.9504	． 10123	9.87338	． 11895	8.40705	． 13669	7.31600	13
48	． 053397	11.9037	． 10155	9.814182	． 11924	$8.3=625$	． 13693	7.30018	12
49	． 08127	11.8673	． 10187	9.81641	． 11954	8.36555	． 13728	7.25442	11
50	.03456 05155	11.8262	． 10216	9.78817	． 11983	8.34496	13758	7.26873	10
51	．05155	11.7853	． 10246	9.76009	． 12013	8.32446	． 13787	7.25310	9
52	．005 .0854	11.7448 11.7045	． 10275	9.73217	． 12042	8.30106	.13817	7.23754	S
5	． 08573	11.7045 11.6645	10305 .10334	9.70441 9.67680	.12072	8.25376	． 13816	7．22204	7
55	．08602	11.6248	． 10363	9．64935	． 12101	8.26355 8.24345	.13576 .13916	7.20661 7.19125	5
56	． 08632	11.5853	． 10393	9.62205	． 12160	8．22314	． 13906	7.19125 7.17594	5
57	08561	11.5461	． 10422	9.59490	． 12190	8.20352	． 13965	7.160171	3
58	0 0690	11.5072	． 10452	9.56791	． 12219	8.15370	13395	7.14553	2
59	． 03720	11.4635	． 10481	9.54106	． 12249	8.16398	． 14024	7.13042	1
611	． 05749	$11+301$	． 10510	9.51436	． 12278	8.14435	． 14054	7.11537	0
11.	otang．	Tang．	Cotang．	Tang．	Cotang．	Tang．	Cotang．	Tang．	$\overline{\mathrm{M}}$ ．
8.50			840		83°		82°		

M.	$8{ }^{\circ}$		9^{3}		10°		110		
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang	Tang.	Cotang.	
	0 . 14054	7.11537	. 15833	6.31375	. 17633	5.67128	19438	5.14455	60
	1.14034	7.10038	15868	6.30189	. 17663	5.66165	. 19468	5.13658	9
	2.14113	7.08546	. 15898	6.29007	. 17693	5.65205	. 19498	5.12862	8
	$3{ }^{3} .14143$	7.07059	. 15928	6.27829	. 17723	5.64248	. 19529	5.12069	7
	$\begin{array}{ll}4 & .14173\end{array}$	7.05579	. 15958	6.26655	. 17753	5.63295	. 19559	5.11279	56
	5 . 1420	7.04105	. 15938	6.25486	.17783	5.62344	. 19589	5.10490	55
	$\begin{array}{ll}6 & .14232\end{array}$	7.02637	. 16017	6.24321	. 17813	5.61397	. 19619	5.09704	54
	7.14262	6.91174	. 16047	6.23160	. 17843	5.60452	. 19649	5.08921	53
8	8 . 14291	6.99718	. 16077	6.22003	. 17873	5.59511	.15630	5.08139	52
	9 . 14321	6.98263	. 16107	6.20851	. 17903	5.58573	. 19710	5.07360	51
10	- 14351	6.96323	. 16137	6.19703	. 17933	5.57738	. 19740	5.06584	50
11	1.14351	6.95335	. 16167	6.18559	. 17963	5.56706	. 19770	5.05809	49
12	$2{ }^{2} 14410$	6.93952	. 16196	6.17419	. 17993	5.55777	. 19301	5.05037	48
13	3 . 14440	6.92525	. 16226	6.16283	. 18023	5.54851	. 19831	5.04267	47
14	4.14470	6.91104	. 16256	6.15151	. 18053	5.53927	. 19861	5.03499	46
15	5.14499	6.89683	. 16256	6.14023	. 18083	5.53007	. 19891	5.02734	45
16	6.14529	6.88278	. 16316	6.12399	. 18113	5.52090	. 19921	5.01971	44
17	14559	6.86374	. 16346	6.11779	. 18143	5.51176	19952	5.01210	43
18	. 14.588	6.85475	. 16376	6.10664	. 18173	5.50264	19932	5.00451	42
19	. 14618	6.84032	. 16405	6.09552	. 18203	5.49356	. 20012	4.99695	41
20) 14648	6.82694	. 16435	6.08144	. 18233	5.48451	. 20042	4.98940	40
21	. 14678	6.81312	. 16465	6.17340	. 18263	5.47548	. 20073	4.98188	39
22	. 14707	6.79936	. 16495	6.06240	. 18293	5.46648	. 20103	4.97438	38
23	. 14737	6.78564	. 16525	6.05143	. 18323	5.45751	. 20133	4.96690	37
24	14767	6.77199	. 16555	6.04051	. 18353	5.44357	. 20164	4.95915	36
25	. 14796	6.75533	. 16555	6.02962	. 18384	5.43966	. 20194	4.95201	35
26	. 14326	6.74483	. 16615	6.01378	. 18114	5.43077	. 20224	4.94460	34
27	. 14556	6.73133	. 16645	6.00797	. 18444	5.42192	. 20254	4.93721	33
29	. 14886	6.71789	. 16674	5.99720	. 18474	5.41309	. 2028	4.92984	32
29	. 14915	6.70450	. 16704	5.98616	. 18504	5.40429	. 20315	4.92249	,
30	. 14945	6.69116	. 16734	5.97576	. 18534	5.39552	. 20345	4.91516	30
31	. 14975	6.67787	. 16764	5.96510	. 18564	5.35677	. 20376	4.90785	29
32	. 15005	6.66463	. 16794	5.95448	. 18594	5.37805	. 20406	4.90056	28
33	. 15034	6.65144	. 16324	5.94390	. 18624	5.36936	. 20436	4.89330	7
34	. 15061	6.63831	. 16854	5.93335	. 1865	5.36070	. 20466	4.88605	26
3.5	. 15094	6.62523	. 16984	5.92283	. 18634	5.35206	. 20497	4.87882	2
36	. 15124	6.61219	15914	5.91236	. 18714	5.34345	. 20527	4.87162	24
37	. 15153	6.59921	. 16944	5.90191	. 18745	5.33487	. 20557	4.86444	23
33	. 15183	6.58627	. 16974	5.89151	. 18775	5.32631	. 20588	4.85727	22
39	. 15213	6.57339	. 17004	5.88114	. 1880	5.31778	. 20618	4.85013	21
40	. 15243	6.56055	. 17033	5.87030	. 18835	5.30928	. 20648	4.84300	0
41	. 15272	6.54777	17063	5.86051	. 18865	5.30080	. 20679	4.83590	19
42	. 15332	6.53503	. 17093	5.85024	. 18895	5.29235	. 20709	4.82382	18
43	. 15333	6.52234	. 17123	5.84001	. 18925	5.28393	. 20739	4.82175	17
44	. 15362	6.50970	. 17153	5,82982	. 1895	5.27553	. 20770	4.81471	16
45	. 15391	6.49710	. 17183	5.81966	. 18986	5.26715	. 20300	4.80769	15
46	15421	6.48456	. 17213	5.80953	19016	5.25880	. 20830	4.80068	14
47	15451	6.47206	. 17243	5.79944	. 19046	5.25048	. 20861	4.79370	13
48	. 15481	6.45961	. 17273	5.78938	. 19076	5.24218	. 20891	4.78673	12
49	. 15511	6.44720	. 17303	5.77936	. 19106	5.23391	. 20921	4.77978	10
50	. 15540	6.43484	. 17333	5.76937	. 19136	5.22566	. 20952	4.77286	0
51	. 15570	6.42253	. 17363	5.75941	. 19166	5.21744	. 20982	4.76595	
52	. 15600	6.41026	. 17393	5.74949	. 19197	5.20925	. 21013	4.75906	
53	. 15630	6.39804	. 17423	5.73960	. 19227	5.20107	. 21043	4.75219	7
54	. 15660	6.38587	. 17453	5.72974	. 19257	5.19293	. 21073	4.74534	6
55	. 15689	6.37374	. 17483	5.71992	. 19287	5.18480	. 21104	4.73351	5
56	. 15719	6.36165	. 17513	5.71013	. 19317	5.17671	. 21134	4.73170	4
57	. 15749	6.34961	. 17543	5.70037	. 19347	5.16363	. 21164	4.72490	3
58	. 15779	6.33761	. 17573	5.69064	. 19378	5.16058	. 21195	4.71813	2
59	. 15809	6.32566	. 17603	5.68094	. 19408	5.15256	. 21225	4.71137	
60	15838	6.31375	3	5.67128	19138	55	21256	4.70463	0
M	Cotang.	Tang.	Cotang.	Tang	Cotang.	Tang.	Cotang.	Tang	M.
	81°		80°		79°		780		

TABLE XV. NATURAL TANGENTS AND COTANGENTS. 233

M.	120		13°		140		150		M.
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	21256	4.70463	. 23087	4.33148	. 24933	4.01078	. 26795	3.73205	60
1	. 21286	4.69791	. 23117	4.32573	. 21964	4.00582	. 26826	3.72771	59
2	. 21316	4.69121	. 23148	4.32001	. 24995	4.00086	. 26857	3.72338	58
3	. 21347	4.68452	. 23179	4.31430	. 25026	3.99592	. 26888	3.71907	57
4	. 21377	4.67786	. 23209	4.30560	. 25056	3.99099	. 26920	3.71476	56
5	. 21408	4.67121	. 23240	4.30291	. 25087	3.93607	. 26951	3.71046	55
6	. 21438	4.66458	. 23271	4.29724	. 25118	3.98117	. 26982	3.70616	54
7	. 21469	4.65797	. 23301	4.29159	. 25149	3.97627	. 27013	3.70188	53
8	. 21499	4.65138	. 23332	4.28595	. 25180	3.97139	. 27044	3.69761	52
9	. 21529	4.64480	. 23363	4.28032	. 25211	3.96651	. 27076	3.69335	51
10	. 21560	4.63825	. 23393	4.27471	. 25212	3.96165	. 27107	3.68909	50
11	. 21590	4.63171	. 23424	4.26911	. 25273	3.95680	. 27138	3.68485	49
12	. 21621	4.62518	. 23155	4.26352	. 25304	3.95196	. 27169	3.68061	43
13	. 21651	4.61868	. 23485	4.25795	. 25335	3.94713	. 27201	3.67638	47
14	. 21682	4.61219	. 23516	4.25239	. 25366	3.94232	. 27232	3.67217	46
15	. 21712	4.60572	. 23547	4.24685	. 25397	3.93751	. 27263	3.66796	45
16	. 21743	4.59927	. 23578	4.24132	. 25428	3.93271	. 27294	3.66376	44
17	. 21773	4.592×3	. 23608	4.23580	. 25459	3.92793	. 27326	3.65957	43
18	. 21804	4.58641	. 23639	4.23030	. 25490	3.92316	. 27357	3.65538	42
19	. 21534	4.55001	. 23670	4.22481	. 25521	3.91839	. 27388	3.65121	41
20	. 21864	4.57363	. 23700	4.21933	. 25552	3.91364	. 27419	3.64705	40
21	. 21895	4.56726	. 23731	4.21387	. 25583	3.90890	. 27451	3.64289	39
22	. 21925	4.56091	. 23762	4.20842	. 25614	3.90417	. 27482	3.63874	38
23	. 21956	4.55458	. 23793	4.20298	. 25645	3.89945	. 27513	3.63461	37
24	. 21986	4.54826	. 23823	4.19756	. 25676	3.89474	. 27545	3.63048	36
25	. 22017	4.54196	. 23354	4.19215	. 25707	3.89004	. 27576	3.62636	35
26	. 22047	4.53503	. 23885	4.18675	. 25738	3.88536	. 27607	3.62224	31
27	.22078	4.52941	. 23916	4.18137	. 25769	3.88063	. 27638	3.61814	33
23	. 22103	4.52316	. 23946	4.17600	. 25500	3.87601	. 27670	3.61405	32
29	. 22139	4.51693	. 23977	4.17064	. 25831	3.87136	. 27701	3.60996	31
30	. 22169	4.51071	. 24008	4.16530	. 25862	3.86671	. 27732	3.60588	30
31	. 22200	4.50451	. 21039	4.15997	. 25893	3.86208	. 27764	3.60181	29
32	. 22231	4.49832	. 21069	4.15465	. 25924	3.85745	. 27795	3.59775	28
33	. 22261	4.49215	. 21100	4.14934	. 25955	3.85284	. 27826	3.59370	27
34	22292	4.48600	. 21131	4.14405	. 25956	3.84824	. 27858	3.58966	26
$3: 5$	22322	4.47986	. 24162	4.13877	. 26017	3.84364	. 27889	3.58562	25
36	22353	4.47374	. 24193	4.13350	. 26048	3.83906	. 27921	3.58160	24
37	22333	4.46764	. 24223	4.12325	. 26079	3.83449	. 27952	3.57758	23
39	22414	4.46155	. 24254	4.12301	. 26110	3.82992	. 27983	3.57357	22
39	22444	4.4554 S	. 24285	4.11778	. 26141	3.82537	. 28015	3.56957	21
40	. 22475	4.44942	. 24316	4.11256	. 26172	3.82083	. 28046	3.5655%	20
41	. 22505	4.44333	. 24347	4.10736	. 26203	3.81630	. 28077	3.56159	19
42	. 22536	4.43735	. 24377	4.10216	. 26235	3.8117%	. 28109	$3.55 \hat{61}$	18
43	. 22.567	4.43134	. 24408	4.09699	. 26266	3.50726	. 28140	3.55364	17
44	. 22597	4.42534	. 24439	4.09182	. 26297	3.80276	. 28172	3.54568	16
45	. 22628	4.41936	. 24170	4.08666	. 26328	3.79827	. 23203	3.54573	15
46	. 22655	4.41340	. 24501	4.08152	. 26359	3.79378	. 23234	3.54179	14
47	. 22639	4.40745	. 24532	4.07639	. 26390	3.78931	. 28266	3.53785	13
48	. 22719	4.40152	. 24562	4.07127	. 26121	3.78485	. 23297	3.53393	12
49	. 22750	4.39560	. 24593	4.06616	. 26452	3.78040	. 23329	3.53001	11
50	. 22781	4.35969	. 24624	4.06107	. 26483	3.77595	. 28360	3.526019	10
51	. 22811	4.33381	. 24655	4.05599	. 26515	3.77152	. 28391	3.52219	9
52	. 22342	4.37793	. 24656	4.05092	. 26546	3.76709	. 28123	3.51829	8
53	. 22872	4.37207	. 24717	4.04586	. 26577	3.76268	. 28454	3.51441	7
54	. 22903	4.36623	. 24747	4.04081	. 26603	3.75828	. 28486	3.51053	6
55	. 22934	4.36040	. 217778	4.03578	. 26639	3.75388	. 28517	3.50666	5
56	. 22364	4.35459	. 24309	4.03076	. 26670	3.74950	. 28549	3.50279	4
57	. 22995	4.34979	. 24840	4.02574	. 26701	3.74512	. 28580	3.49894	3
53	. 23026	4.34300	. 24871	4.02074	. 26733	3.71075	. 28612	3.49509	2
59	. 23056	4.33723	. 24902	4.01576	. 26764	3.73640	. 28643	3.49125	1
60	. 23087	4.33148	. 24933	4.01078	. 26795	3.73205	. 28675	$3.48 \sim 41$	0
M.	Cot	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	$\overline{\mathrm{M}}$.
		7°		60					

	16°		170		18°		19°		M.
M.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	. 25675	3.45741	. 30.573	3.27035	. 32492	3.07763	. 34433	2.90421	60
1	. 28706	3.453 .59	. 30605	3.26745	. 32524	3.07464	34465	2.90147	59
2	. 23738	3.47977	. 30637	3.26406	. 32555	3.07160	. 34498	2.89873	58
,	. 28769	3.47596	. 30669	3.26067	. 32588	3.06557	. 34530	2.89600	57
4	. 23800	3.17216	. 30700	3.25729	. 32621	3.06554	. 34563	2.89327	56
5	. $2>332$	3.46837	. 30732	3.25392	. 32653	3.06252	. 34596	2.89055	55
6	. 25564	3.46458	. 30764	3.25055	. 32685	3.05950	. 34628	2.83753	54
\%	. 23595	3.46050	. 30796	$3.24 \pi 19$. 32717	3.05649	. 34661	2.88511	53
8	. 23927	3.45703	. 30325	3.24353	. 32749	3.05319	. 34693	2.85240	52
9	29958	3.45327	. 30360	3.24049	. 32752	3.05049	. 34726	2.87970	51
10	23990	3.44951	. 30891	3.23714	. 32514	3.04749	. 34758	2.87500	50
11	290121	3.44576	. 30923	3.23351	. 32546	3.04450	. 34791	2.57430	49
12	. 29053	3.44202	. 30955	3.23043	. 32578	3.04152	.31824	2.87161	48
13	.290>4	3.43529	. 31957	3.22715	. 32911	3.03554	. 34856	2.86992	7
14	. 29116	3.43456	. 31019	$3.223>4$. 32913	3.03556	. 34859	2.86624	46
15	29147	3.43084	. 31051	3.22053	. 32975	3.03260	. 31922	$2.863=6$	45
16	23179	3.42713	. 31083	3.21722	. 33007	3.02963	. 34954	2. 86059	4
17	. 29210	3.12343	. 31115	3.21392	. 33040	3.02667	. 31987	2.85822	43
18	. 29242	3.4197.3	. 31147	3.21063	. 33112	3.02372	. 35020	2.85555	42
19	.29274	3.41604	. 31175	3.20734	. 33104	3.02077	. 350.52	2.85289	41
20	. 29305	3.41236	. 31210	3.20406	. 33136	3.01783	. 35055	2.85023	40
21	. 29337	3.40-69	. 31242	3.20079	. 33169	3.01489	. 35118	2.84758	39
22	. 29363	3.40502	. 31274	3.19752	. 33201	3.01196	. 35150	2.84494	38
23	. 29400	3.40136	. 31306	3.19126	. 33233	3.00903	. 35183	2.81229	7
24	. 29432	3.39751	. 31339	3.19100	. 33266	3.00611	. 35216	2.83965	6
	. 29463	3.39406	. 31370	3.18775	. 33293	3.00319	. 35243	2.83702	
26	. 29495	3.39042	. 31402	3.18451	. 33330	3.00028	. 35251	2.83439	34
27.	. 29526	3.35679	. 31434	318127	. 33363	2.99738	. 35314	2.83176	33
23	.2955	3.35317	. 31466	3.17504	. 33395	2.99447	. 35346	2.82914	32
29	. 29590	3.37955	. 31493	3.17481	. 33427	2.99158	. 35379	2.82653	
30	29621	3.37591	. 31530	3.17159	. 33460	2.98563	. 35412	2.82391	30
31	29653	3.37234	. 31562	3.16338	. 33492	2.95580	. 35445	2.82130	29
32	. 29635	3.36875	. 31594	3.16517	. 33524	2.95292	. 35177	2.81870	
33	. 29716	3.36516	. 31626	3.16197	. 33557	2.95004	. 35510	2.81610	27
34	. 29748	3.36158	. 31658	3.15877	. 33559	2.97717	. 35543	2.81350	26
3.5	. 29750	3.35800	. 31690	3.15553	. 33621	2.97430	. 35576	2.81091	25
36	29511	3.35443	. 31722	3.15240	. 33654	2.97144	. 35605	2.80833	4
37	. 29543	3.35087	. 31754	3.14922	. 33656	2.96358	. 35641	2.80574	23
38	. 29875	3.34732	. 31786	3.14605	. 33718	2.96573	. 35674	2.80316	22
39	. 29906	3.34377	. 31818	3.14238	. 33751	2.96238	. 35707	2.80059	21
40	. 29933	3.34023	. 31850	3.13972	. 33783	2.96004	. 35740	2.79502	20
41	29970	3.33670	. 31882	3.13656	. 33516	2.95\% 21	. 35772	2.79545	19
42	. 30001	3.33317	. 31914	3.13341	. 33518	2.95437	. 35505	2.79259	18
43	. 30033	3.32965	. 31946	3.13027	. 33581	2.95155	. 35838	2.79033	17
44	. 30065	3.32614	. 31978	3.12713	. 33913	2.94572	. 35871	2.75778	6
45	. 30097	3	. 3	3.12400	,	2.94591	. 35904	2.	15
46	. 30128	3.31914	. 32	3.12057	. 33978	2.94309	. 35937	2.78269	4
47	. 30160	3.31565	. 32074	3.11775	. 34010	2.94028	. 35969	2.78014	13
48	. 30192	3.31216	. 32106	3.11464	. 31043	2.93748	. 36002	2.77761	12
49	. 30224	3.30363	. 32139	3.11153	. 31075	2.93468	. 36035	2.77507	11
50	. 30255	3.30521	. 32171	3.10342	. 31108	2.93189	. 36063	2.77254	0
51	. 30237	3.30174	. 32203	3.10532	. 34140	2.92910	. 36101	2.77002	
52	. 30319	3.29529	. 32235	3.10223	. 34173	2.92632	. 36134	2.76750	
53	. 30351	3.29453	. 32267	3.09914	. 31205	2.92354	. 36167	2.76498	
54	. 30332	3.29139	. 32299	3.09606	. 34238	2.92076	. 36199	2.76247	6
55	. 30414	3.28795	. 32331	3.09295	. 34270	2.91799	. 36232	2.75996	
56	. 30446	3.23452	. 32363	3.08991	. 34303	291523	. 36265	2.75746	
57	. 30478	3.25109	. 32396	3.0.6685	. 34335	2.91246	. 36298	2.75496	3
58	. 30509	3.27767	. 32428	3.08379	. 34363	2.90971	. 36331	2.75246	2
59	. 30541	3.27426	. 32460	3.05073	. 34400	2.90696	. 36364	2.74997	
60	. 3057.3	3.27085	. 32492	7768	34433	2.90421	36397	2.74748	0
M	Cotang	tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.

TABI.E XV. NATURAL 'โANGENTS AND COTANGENTS.

M.	20°		210		$2: 3$		23°		M. 60
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	. 36397	2.7474	. 33338	2.60509	. 40403	2.47509	. 42147	2.35585	
1	. 36130	2.74499	. 33420	2.60283	. 40436	2.47302	. 421×2	2.35395	59
2	. 36463	2.74251	. $3 \leq 453$	2.60057	. 40470	2.47095	. 42.516	2.35205	58
3	. 36496	2.74004	. 38457	$2.59>31$. $405(14$	$2.46>5$. 425.51	2.35015	57
4	. 36529	2.73756	. 38520	2.59606	. 40538	2.4665	. 42.385	2.31825	56
5	. 36502	2.73509	. 33553	2.593 S 1	. 40572	2.46476	. 42619	2.34636	55
6	. 36595	2.73263	. 33587	2.59156	. 40616	2.46270	. 4265.5	2.31447	54
7	. 36625	2.73017	. 35620	2.5393%	. 40610	2.46065	. 42638	2.31258	53
8	. 36661	2.727 T I	. 35654	2.58708	. 40674	2.45860	. $4272{ }^{2}$	2.34069	52
9	. 36694	2.72 .726	. 33657	2.53184	. 40707	2.45655	. 42757	2.33881	51
10	. 36727	2.72251	. $3 \sim 721$	2.58261	. 40741	2.45451	.42791	233693	51
11	. 36769	2.72036	. 35754	2.55035	. 40775	2.45246	. 42326	233505	4.7
12	. 36793	2.71792	. 38787	2.57815	. 40309	2.45043	. $42-60$	2.33317	1
13	. 36526	2.71545	. 33221	2.57593	. 40843	$2.44>39$. 42×9.4	2.33130	4π
14	. 36559	2.71305	. $33>54$	2.57371	. 401377	2.44636	. 4292	2.32943	16
15	. 36892	2.71062	. 33588	2.57150	. 40911	2.44433	. 42963	2.32756	45
16	. 36925	2.70819	. 33921	2.56923	. 40945	2.41230	. 42998	2.32570	44
17	. 36955	2.70577	. 33955	2.56707	. 40979	2.44027	. 430132	2.32383	43
18	. 36991	2.70335	. 33983	2.56437	. 41013	2.43325	. 43067	2.32197	41
19	. 37024	2.70994	. 39022	2.56266	. 41047	2623	. 43101	2	41
20	. 37057	2.69553	. 390.55	2.56046	. 41081	2.43422	. 43136	2.31826	40
21	. 37090	2.69612	. 39039	2.55827	. 41115	2.4322	. 43170		3
22	. 37123	2.69371	. 39122	2.55608	. 41149	2.43019	. 43205	2.31456	38 37
23	. 37157	2.69131	. 39156	2.55359	. 41183	2.42819	. 43239	2.31271	37 36
24	. 37190	2.65392	. 39190	2.55170	. 41217	2.42618	. 43274	2.31086	36
25	. 37223	2.65653	. 35223	2.54952	. 41251	2.42418	. 433		31
26	. 37256	2.63414	. 39257	2.51734	. 41285	2.42218	. 43343	2.30718 2.30534	31 33
27	. $3 \sim 259$	2.65175	. 39290	2.54516	. 41319	2.42019	. 43378	2.30534 2.30351	31 32
28	. 37322	2.67937	. 39324	2.51299	. 41353	2.41819	. 43112	2.30351	32 31
29	. 37355	2.67700	. 39357	2.54082	. 41337	2.41620	. 43147	2.30167 2.29981	31 30
30	. 37383	2.67462	. 39391	2.53365	. 41421	2.41421	. 4	2.29981	30
31	. 37422	2.67225	. 39425	2.53648	. 41455	2.41223	. 43516	2.29801	29
32	. 37455	2.66959	. 39455	2.53432	. 41490	2.41025	. 43550	2.29619	28
33	. 37438	2.66752	. 39492	2.53217	. 41524	2.40527	. 43585	2.29437 2.29254	27
34	. 37521	2.66516	. 39526	2.53001	. 41553	2.40629	. 43620	2.29254 2.29073	26
35	. 37554	2.66231	. 39559	2.52786	. 41592	2.40432	.43654 43659	2.29073 2.28891	25
36	. 37583	2.66046	.39593	2.52571	. 41626	2.40235 2.40035	.43659 .43724	2.28891 2.28710	23
37	. 37621	2.65811 2.65576	. 39626	2.52357 2.52142	. 41660	2.40033 2.39341	. 437575	2.28710 2.28523	22
39	. 37687	2.65342	. 39694	2.51929	. 41728	2.39645	. 43793	2.28348	21
40	. 37720	2.65109	. 39727	2.51715	. 41763	2.39449	. 43328	2.28167	20
41	. 37754	2.64575	. 39761	2.51502	. 41797	2.39253	. 43862	2.27987	19
42	. 37787	2.64642	. 39795	2.51239	. 41831	2.39058	.43897	2.27806	18
43	. 37820	2.64410	. 39329	2.51076	. 41865	2.35×63	. 43932	2.27626	17
44	. 37853	2.64177	. 39562	2.50564	.41899	2.38665	.43966	2.27447	16
45	. 37837	2.63945	. 39896	2.50652	. 41933	2.38473	.44001	2.27267	15
46	. 37920	2.63714	. 39930	2.50440	41963	2.38279	. 44036	2.27085	14
47	37953	2.63183	. 39963	2.50229	. 42002	2.330151	. 44071	2.26909	13
18	. 37936	2.63252	. 39997	250018	. 42036	2.37891	.44105	2.26730	12
49	. 35020	2.63721	. 40031	2.49507	. 42070	2.37697	. 44110	2.265502	11
50	. $38(1.53$	2.62791	.40065	2.49597	42105	2.37501	. 44175	2.26374	10 9
51	.33096	2.62 .561	. 40093	2.49386	. 42139	2.37311	41210 41244	2.26156 2.26018	9
52	33120	2.62332	. 40132	2.4917\%	. 42173	2.37118	. 41244	2.26018 2.25810	8
53	. $3 \leq 15: 3$	2.62103	. 49166	2.4×967	. 42207	2.36925	. 41279	2.25840 2.25663	7
54	. $321-6$	2.61574	. 40200	2.48758	. 42212	2.36733	. 44314	2.25663 2.25486	6 5
5.5	. $3-237$	2.61646	. 40234	2.43549	. 42276	2.36541	. 44349	2.25436 2.25309	5 4 4
56	. 3225.3	2.61418	. 40267	2.45340	. 42310	2.36349	. 44334	2.25309 2.25132	4
\%	. $3=2=6$	2.61190	. 40301	2.48132	. 42345	2.36158	.44188 .4453	2.24956	3 2
58	. 3.320	260963	. 40335	2.47921	. 42379		. 44488		1
69	333.33 $.3 \geq 386$	2.60736 2.60509	.40369 .40403	$2.47 \% 16$ 2.47509	. 42413	2.35776 2.35585	. 44488	2.24780 2.24604	1
M.	$\frac{\text { Cotang. }}{}$	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	.
		69°	68^{3}		67		66°		

$\mathbf{M} .$	24°		25°		26°		27°		M．
	Tan	Cotang．	Tang．	Cotang．	Tang．	Cotang．	Tang．	Cotang．	
$\overline{0}$	． 44523	2.24604	． 46631	2.14451	． 48773	2.05030	． 50953	1.96261	60
1	． 44555	$2.24+2$	． 46666	2.14230	． 48509	$2.04 \leq 79$	． 50959	1.96120	59
2	． 44593	2.24252	． 46702	2.14125	－4＞545	2.04723	． 51026	1.95979	58
3	． 46627	2.24077	． 66737	2.13963	．4Sジ 1	2.04577	． 51063	1.95838	57
	． 44662	2．23902	． 46772	$2.13 \div 11$	4891\％	2.04426	． 51099	1.95698	E6
5	． 44697	2.23727	．46＞08	2.13639	$4 \leq 9.53$	2.04276	． 51136	1.935557	55
6	． 41732	2．23553	．46：43	2.13421	48959	2.04125	． 51173	1.95117	54
7	． 417667	2．233i	46579	2.13316	$49 \cap 26$	2.03975	51209	1.95277	53
8	． 44502	2．23204	． 46914	2.13154	49062	2.13825	． 51246	1.95137	52
9	． 44537	2.233130	． 46950	2.12993	49095	2.03675	． 51283	1．91997	51
10	． 4452	2.22357	． 46955	2.12832	． 49134	2.13526	． 51319	1.94555	50
11	． 41497	2.22653	． 47021	2.12671	49170	2． 133376	51356	1.94718	40
12	． 44942	2.22 .10	． 47056	2.12511	． 49206	2.0322%	． 51393	1．94：779	48
13	． 49797	2．22337	47092	2.12350	． 49242	2.03075	． 51430	1.94440	47
14	4．5012	2．22164	． 77123	2.12190	． 49278	2.122929	． 51467	1.94301	46
15	． 45047	2.21992	． 47163	2.12030	． 49315	2.12750	． 51503	1.94162	45
16	． 45052	$2.21 \leqslant 19$	． $4 \sim 199$	2.11571	49	2.026	． 51.540	23	44
17	． 45117	2.21647	． 47234	$2.11 \pi 11$	． 49335	2.02453	． 51577	1.93885	43
15	． 15152	22145	47270	2.11552	． 49423	2．（2：335	． 31614	1．937＇6	42
19	．451．7	2.21304	1730．5	2.11392	． 49459	$2.0218 \frac{}{}$	．51651	1.93601	41
20	． 45222	2.21132	47311	2．11：33	4949．5	2.02039	． 51658	1.93470	（1）
21	． 452.57	2.20961	473%	2.11075	－19532	2.01591	． 51724	1.93332	39
22	． 45292	2.21791	－ 4712	2.10916	49．763	2.01743	． 51761	1.9319 .5	35
23	． 45327	2.20619	． 47448	2.10755	49604	2.01596	． 51788	1.93057	37
24	．45362	2.20449	． 47483	2.10600	49640	2.01449	． 5183.5	$1.925 ; 60$	36
25	．45397	2.22278	． 17519	2.10442	49677	2.01302	． 51872	1.92782	35
26	． 4.5432	2.20103	． 17555	2.10234	． 49713	2.01155	51979	192645	34
27	45167	2.19938	． 17590	2.10126	． 49749	2.010 n	． 51946	i． 9250 n	
23	455012	2.19769	． 47626	2.09969	49 T 56	$2.00 \div 62$	51983	1.92371	
29	45.38	2.19599	． 4 T662	2.09511	$49 \leq 22$	2.00715	． 52020	1.92235	31
30	45573	2.19130	7695	2.09654	49558	2.00569	． 22157	1.92098	30
31	4．5	2.1	． 47733	2.	． 4939.1	$2.00+23$	5205 1	1.91962	29
	． 4.5643	2.19092	． 47769	2.09311	． 49931	2.00277	52131	1.91526	28
	． 4.5673	2.15923	47805	2.09154	． 4996 \％	2.00131	5\％163	1.91690	
34	．45\％13	2.15755	． 47810	$2.0902=$	． 5004	1．999こ6	52205	1.91554	26
35	． 45745	2.15587	． 47876	2.05872	． 50040	1.99341	52212	1.91418	25
38	． 45734	2.18419	． 47912	2.05716	． 50076	1.99695	52279	1.91282	24
37	． $4.5 \leq 19$	2.152 .51	． 47943	2.03560	． 50113	1.99550	52316	1.91147	23
	． 455.54	2.13034	． 47984	2.05405	． 50149	1.99106	．52353	1.91012	22
	． 45859	2.17916	． 45019	2.05250	． 5018.5	1.99261	． 52390	1.90576	21
40	． 45924	2.17749	． 43055	$2.0 \leq 091$	． 50222	1.99116	． 52127	1.90741	20
41	． 45960	2.17532	． 48091	2.07939	． 5025	1.98972	． 52161	1.90607	19
42	． 45995	2.17416	． 43127	2.07785	． 50295	1.98523	． 52.51	$1.904 \hat{2} 2$	18
4	． 46030	2.17249	． 45163	2.07630	． 50331	1.98684	． 52533	1.90337	17
44	46065	2.17033	． 45198	2.07176	． 50368	1.98510	． 525	1.90203	16
45	46101	2.16917	．	2.07321	． 5036	．	． 52613	1.90069	15
46	． 46136	2.16751	270	2.07167	4．11	1．93253	． 22650	1.89935	
47	． 46171	2．16．58．5	． 45306	2.07014	50477	1.98110	． 22687	1．89301	13
43	．46206	2．16420	． 48342	206560	． 05514	1.97966	． 52721	1． 59667	12
49	． 46242	2．162．55	． 433 \％	2.06706	． 51550	1.97523	． 52761	1.59533	11
50	． 4627π	2． 16090	． 45414	2.06553	． 50537	1．97681	． 52793	1.89100	10
51	． 46312	2.1592 .5	． 48450	2.06400	50623	1.97538	． 52836	1.89266	9
52	． 46313	2． 15.60	． 48456	2.06247	．5066）	197395	52573	1.89133	
53	． 46333	2.15 .596	． 48521	2.06094	50696	1.97253	． 52910	1．8900	7
54	． 46418	2．15432	． 45557	2.05912	． 50 ¢ 33	1.97111	． 52947	1.85867	6
55	． 46454	2． 15269	．4S593	2.05797	．50769	1.96969	． 52985	1.88734	5
56	． 46189	2.15104	． 45629	2.05637	． 50806	1.96527	． 53022	1． 88602	4
57	．46．52．	2.14940	． 45665	2.05485	． 50513	1.96655	53059	1.88169	3
59		2.14777	． 48701	2.05333	． 50379	1.96544	． 53096	1.88337	2
60	． 46631	2.14614 2.14451	． 48737	2.05182	． 50916	1.96402	． 53134	$\begin{aligned} & 1.88205 \\ & 1.88073 \end{aligned}$	1
M．		Tang．	Cotang．	Tang．	Cotang．	Tang．	Cotang．	Tang．	H．

M	28°		29°		30^{3}		31°		M,
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	.53171	1.88073	.55431	1.80405	. 577335	1.73205	. 60086	1.6642 ¢	60
1	. 53203	1.87941	. 55469	1.80231	. 57774	1.73089	. 60126	1.66318	59
2	. 53246	1.87809	. 55507	1.80158	. 57813	1.72973	. 60165	1.66209	58
3	. 53283	1.87677	. 55545	1.80034	. 57851	1.72357	. 60205	1.66099	57
4	. 53320	1.87546	. 55583	1.79911	. 57890	1.72741	. 60245	1.65990	56
5	. 53358	1.87415	. 55621	1.79788	. 57929	1.72625	. 60284	1.65881	55
6	. 53395	1.87233	. 55659	1.79665	. 57968	1.72509	. 60324	1.65772	54
7	. 53432	1.87152	. 55697	1.79542	. 58007	1.72393	. 60364	1.65653	53
8	. 53470	1.87021	. 55736	1.79419	. 53046	1.72278	. 60403	1.65554	52
9	. 53507	1.86391	. 55774	1.79296	. 55035	1.72163	. 60443	1.65445	51
10	. 53545	1.86760	. 55812	1.79174	. 58124	1.72047	. 60433	1.65337	50
11	. 53582	1.86630	. 55850	1.79051	. 58162	1.71932	60522	1.65228	49
12	. 53620	1.86199	. 55838	1.78929	. 58201	1.71817	. 60562	1.65120	48
13	. 53657	1.86:39	. 55926	1.78807	. 58210	1.71702	. 60602	1.65011	47
14	. 53694	1.86239	. 55964	1.78635	. 58279	1.71588	. 60642	1.61903	46
15	. 53732	1.86109	. 56003	1.78563	. 58318	1.71473	.60681	1.64795	45
16	. 53769	1.85979	. 56041	1.78441	. $583: 57$	1.71358	. 69721	1.64687	41
17	. 53807	1.85850	. 56079	1.78319	. 53396	1.71244	. 60761	1.61579	43
18	. 53814	1.85720	. 56117	1.75198	. 58435	1.71129	. 60801	1.64471	42
19	. 53332	1.85591	. 561.56	1.78077	. 58474	1.71015	. 60841	1.61363	41
20	. 53920	1.85462	. 56194	1.77955	. 58513	1.70901	. 60881	1.64256	40
21	. 53957	1.85333	. 56232	1.77834	. 58552	1.70787	.60921	1.64148	39
22	. 53995	1.85204	. 56270	1.77713	. 58591	1.70673	. 60960	1.64041	38
23	. 54032	1.85075	. 56309	1.77592	. 58631	1.70560	61000	1.63931	37
24	. 54070	1.84946	. 56347	1.77471	. $5>670$	1.70446	. 61040	1.63826	36
25	. 54107	1.81318	. 56335	1.77351	. 58709	1.70332	. 61080	1.63719	35
26	. 51145	1.81883	. 55124	1.77230	. 58748	1.70219	.61120	1.63612	34
27	. 54183	1. 84561	. 56162	1.77110	. 58787	1.70106	. 61160	1.63505	33
23	. 51220	1.84433	. 56501	1.76990	. 58826	1.69992	.61200	1.63398	32
29	. 51258	1.84305	. 56539	$1.76 \leq 69$. 58865	1.69879	.61240	1.63292	31
30	. 51296	1.84177	. 56577	1.76749	. 58905	1.69766	. 61280	1.63185	30
31	. 54333	1.81049	. 56616	1.76629	. 58944	1.69653	. 61320	1.63079	29
32	. 54371	1.83922	. 56654	1.76510	. 58983	1.69541	. 61360	1.62972	28
33	. 54109	1.83794	. 56693	1.76390	. 59022	1.69423	.61400	1.62566	27
34	. 51446	1.83667	. 56731	1.76271	. 59061	1.69316	. 61440	1.62760	26
35	. 54184	1.83540	. 56769	1.76151	. 59101	1.69203	. 61480	1.62654	25
36	. 54522	1.83413	. 56308	1.76032	. 59140	1.69091	. 61520	1.62548	24
37	. 54.560	1.83256	. 56346	1.75913	. 59179	1.65979	. 61561	1.62442	23
38	. 54597	1.83159	. 56885	1.75794	. 59218	1.68866	.61601	1.62336	22
39	. 54635	1.83033	. 56923	1.75675	. 592.58	1.68754	. 61641	1.62230	21
40	. 54673	1.82906	. 56962	1.75556	. 59297	1.68643	. 61681	1.62125	20
41	. 54711	1.82750	. 57000	1.75437	. 59336	1.68531	. 61721	1.62019	19
42	. 54748	1.82654	. 57039	1.75319	. 59376	1.65419	. 61761	1.61914	18
43	. 54786	1.82523	. 57078	1.75200	. 59415	1.68308	.61801	1.61808	17
44	. 51324	1.82402	. 57116	1.75082	. 59154	1.68196	. 61842	1.61703	16
45	. 54862	1.82276	. 57155	1.74964	. 59494	1.65085	. 61882	1.61598	15
46	. 54900	1.82150	. 57193	1.74846	. 59533	1.67974	. 61922	1.61493	14
47	. 54933	1.82025	. 57232	1.74728	. 59573	1.67863	.61962	1.61388	13
48	. 54375	1.81889	. 57271	1.74610	. 59612	1.67752	. 62003	1.61283	12
49	. 55013	1.81774	. 57309	1.74192	. 59651	1.67641	. 62043	1.61179	11
50	. 55051	1.81649	. 57343	1.71375	. 59691	1.67530	. 62083	1.61074	10
51	. 550.39	1.81524	. $573 \leq 6$	1.74257	. 59730	1.67419	. 62121	1.60970	9
52	. 55127	1.81399	. 57425	1.74140	. 59770	1.67309	62164	1.60865	8
53	. 55165	1.81274	. 57464	1.74022	. 59809	1.67198	. 62204	1.60761	7
54	. 55203	1.81150	. 57503	1.73905	. 59349	1.67088	. 62245	1.60657	6
55	. 55241	1.81025	. 57541	1.73788	. 59888	1.66978	. 62285	1.60553	5
56	. 55279	1.80901	. 57530	1.73671	. 59928	1.66867	. 62325	1.60449	4
57	. 55317	1.80777	. 57619	1.73555	. 59967	1.66757	. 62366	1.60315	3
58	. $5: 3355$	1.80653	. 57657	1.73135	. 60007	1.66647	. 62406	1.60241	2
59	. 553393	1.80529	. 57696	1.73321	. 60046	1.66538	. 62416	1.60137	1
60	.55431	1.80405	57735	1.73205	. 60086	1.66123	. 62487	1.60033	0
$\overline{\mathbf{M}}$.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.
	61°		60°		59		58^{3}		

	32°		$33{ }^{3}$		340		35°		M.
M	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	. 62457	1.60033	. 64341	$1.539<6$.67451	1.45256	. 70021	1.42015	60
1	. 62527	1.59930	. 64982	1.53885	. 61493	1.43163	. 20064	1.42726	59
2	. 62563	1.59526	. 65024	1.53791	. 67536	$1.480 \sim 0$. 70107	1.42638	58
3	. 62608	1.59723	. 65065	1.53693	. 67575	1.47977	. 70151	1.42550	57
4	.62 649	1.59620	. 65106	1.53595	.6i620	1.47585	. 20194	1.42462	56
5	. 62689	1.59517	. 65148	1.53497	.67663	1.47792	. 71238	1.42374	55
	.62720	1.59414	. 65189	1.53100	.67705	1.47699	. 70281	1.42236	54
7	.62770	1.59311	. 65231	1.53302	. 67748	1.47607	. 70325	1.42198	53
8	.62311	1.59208	. 65272	1.53205	.67790-	1.47514	. 70368	1.42110	52
9	.62352	1.59105	. 65314	1.53107	. 67532	1.47422	. 70412	1.42022	51
10	. 62392	1.59002	. 65355	1.53010	. 67875	1.47330	71455	1.4193 .1	50
11	62933	1.58900	. 65397	1.52913	. 67917	1.47238	70459	1.41847	49
12	. 62973	1.53797	. 65438	$1.52>16$. 67960	1.47146	\% 01042	1.41759	18
13	. 63014	1.58695	. 65450	1.52719	. 65002	1.40053	:70556	$1.416 \uparrow 2$	47
14	. 63055	1.53593	. 65521	1.52622	. 63045	1.46932	. 70629	1.415:4	46
15	. 63095	1.58490	. 65563	1.52525	. 65088	1.463.0	. 76673	1.41497	45
16	. 63136	1.583	. 6560	1.52429	. 68130	1.46778	. 70717	1.41409	4
17	. 63177	1.53236	. 65646	1.52332	. 68173	1.466=6	. 70 CO	1.41322	43
18	. 63217	1.58151	.6.563	1.52235	. $6 \$ 215$	1.46595	. 70804	1.41235	42
19	. 63258	1.58033	. 6.5729	1.52139	.63258	1.46503	70843	1.41145	41
21	. 63299	1.57981	. 65751	1.52043	. 68301	$1.46+11$. 70891	1.41C61	40
21	. 633340	1.57579	. 65813	1.51946	. 65343	1.45320	70935	1.40974	39
22	. 63330	1.57778	. 65 504	1.51850	.63386	1.46229	.79979	1.43857	38
23	. 63121	1.57676	. 65896	1.51754	. 68429	1.46137	. 71023	1.41500	37
24	. 63462	1.57575	. 65933	1.51658	.68471	1.46046	. 71066	1.40714	36
25	63503	1.57474	.65980	1.51562	. 65514	1.45955	. 71110	$1.4 \cap 627$	35
26	63544	1.57372	. 66021	1.51466	. 68557	1.45864	. 71154	1.40540	34
27	63534	1. 57271	. 66063	1.51370	. 65600	1.45773	. 71198	1.40454	33
23	. 63625	1.57170	. 66105	1.51275	. 65642	1.45632	. 71242	1.40367	32
29	. 63666	1.57069	. 66147	1.51179	. 68685	1.45592	. 71255	1.40281	31
30	. 63	,	. 66	1.5	. 68	1.45	. 71329	1.40195	30
31				1.50989	6	1.45410	. 71	1.40109	29
32	. 63759	1.56767	. 6622	1.50893	. 63814	1.45320	. 71417	1.49022	28
33	. 63330	1.56667	. 66314	1.50797	63857	1.45229	. 71161	1.39935	27
34	.63371	1.56566	.66336	1.50702	. 68900	1.45139	. 71505	1.39350	26
35	.63912	1.56466	. 66393	1.50607	. 68942	1.45049	. 71549	1.39764	-
36	.63953	1.56366	. 66140	1.50512	.68985	1.44958	. 71593	1.39679	24
37	. 63994	$1.562 \in J$. 66452	1.50417	. 69028	1.44563	. 71637	1.39593	23
33	. 64035	1.56165	.66524	1.50322	. 69071	1.44778	. 71631	1.39507	22
39	. $610 \sim 6$	1.5606.5	. 66.566	1.50223	. 69114	1.44638	71725	1.39421	21
40	. 61117	1.55966	. 66605	1.50133	. 69157	1.44598	71769	1.39336	20
41	. 61158	1.55566	.66650	1.50038	. 69200	1.44508	71813	1.39250	19
42	. 61199	1.55766	.666\%2	1.49944	. 69243	1.44418	. 71857	1.39165	18
43	. 64240	1.55666	. 66734	1.49549	. 69236	1.41329	.71901	1.39079	17
44	. 61251	1.55567	. 66776	1.49755	. 69329	1.44239	. 71946	1.35994	16
45	. 64322	1.55467	. 66	1.	. 69372	1.44149	-	1.35909	15
46	. 64363	1.55363	. 66869	1.49566	. 69416	1.44060	. 720	1.35824	14
47	. 64104	1.55269	. 66902	$1.494 \pi 2$. 69459	1.43970	. 72073	1.35738	13
43	. 61416	1.55170	66944	1.49378	69502	1.43581	. 72122	$1.3 \leq 653$	12
49	. 61487	1.55071	. 66986	1.49234	. 69545	1.43792	. 22167	$1.3 ¢ 563$	11
50	. 61523	1.54972	. 67023	1.49190	69588	1.43703	. 72211	1.35134	10
51	. 64.569	1.54573	. 67071	1.43097	. 69631	1.43614	. 72255	1.35399	9
52	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	. 72299	1.38314	
53	. 64652	1.54675	. 67155	1.45909	. 69718	1.43436	. 72344	1.352\% 9	
54	. 61693	1.54576	. 67197	1.43816	. 69761	1.43347	. 72338	1.35145	6
55	64734	1.54478	. 67239	1.48722	. 69304	1.43258	. 72432	1.35060	5
56	. 64775	1.54379	. 67232	1.48629	. 69547	1.43169	. 72477	1.37976	4
57	. 61517	1.54281	. 67324	1.48536	. 69591	1.43080	. 72521	1.37 ¢91	
58	. 64358	1.54183	. 67366	1.48442	. 69934	1.42992	. 72.565	1.37507	2
59	. 64899	1.51085	. 67409	1.48319	. 69977	1.42903	. 72610	1.37722	1
60	1	986	-1	56	. 7 C021	$1.42 \mathrm{S15}$	-1	1.37638	0
M	Cotang.	Tang	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.

M.	40°		41°		42°		430		M.
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	. 83910	1.19175	. 86929	1.15037	. 90040	1.11061	.93252	1.07237	60
1	. 83960	1.19105	. 86980	1.14969	. 90093	1.10996	. 93306	1.07174	59
2	. 81009	1.19035	. 87031	1.14902	. 90146	1.10931	. 93360	1.07112	58
3	. 81059	1.18964	. 87082	1.14834	. 90199	1.10867	. 93415	1.07049	57
4	. 81103	1.18394	. 87133	1.14767	. 90251	1.10502	. 93169	1.06937	56
5	. 81153	1.18824	. 87184	1.14699	. 90304	1.10737	. 93524	1.06925	55
6	. 81203	1.18754	. 87236	1.14632	.90357	1.10672	. 93578	1.06362	54
7	. 81258	1.18634	. 87237	I.14565	. 90410	1.10607	. 93633	1.06500	53
8	. 81307	1.18614	. 87333	1.14493	. 90453	1. 10543	. 93638	1.06733	52
.	. 84357	1.13544	. 87389	1.14430	. 90516	1. 10478	. 93742	1.06676	5
10	. 84407	1.18474	. 87441	1.14363	. 90 ว̌69	1.10414	. 93797	1.06613	50
11	. 84457	1.18404	. 87492	1.14296	. 90621	1.10349	. 93352	1.06551	49
12	. 81507	1.18331	. 87543	1.14229	.90674	1.10235	. 93906	1.06489	18
13	. 845556	1.18264	. 87595	1.14162	. 90727	1.10220	. 93961	1.06427	47
14	. 81606	I. 18194	. 87646	1.14095	. 90781	1.10156	. 91016	1.06	16
15	. 84656	1.18125	. 87693	1.14023	. 90331	1.10091	.9107I	1.06303	45
16	. 81706	1.18055	. 87749	1.13961	. 90357	1.10027	. 91125	1.06241	4
17	. 81756	1.17936	. 87801	1.13594	. 90940	1.09963	. 91180	1.06179	43
18	. 81806	1.17916	. 87852	1.13323	. 90993	1.09899	. 94235	1.06117	42
19	. 84556	1.17346	. 87904	1.13761	. 91046	I. 09834	. 91290	1.06056	41
20	. 81906	1. 17777	. 87955	1.13694	. 91099	1.09770	. 94345	1.05994	40
21	. 81956	1.17703	. 88007	1.13627	. 91153	I. 09706	. 94400	1.05932	39
22	. 85006	1.17633	. 88059	1.13561	. 91206	1.09612	. 94455	1.05s70	38
23	. 85057	1.17569	. 88110	1.13194	. 91259	1.09578	. 91510	1.05309	37
24	. 85107	1.17500	. 83162	1.13128	. 91313	1.09514	. 94565	1.05747	36
25	. 85157	1.17430	. 83214	1.13361	. 91366	1.09150	. 91620	I. 05685	35
26	. 85207	1.17351	. 88265	1.13295	. 91419	1.09336	. 94676	1.05624	34
27	.85257	1.17292	. 88317	1.13223	. 91473	1.09322	. 91731	1.05562	33
23	. 85303	I. 17223	. 88369	1.13162	. 91526	1.09258	. 94786	1.05501	32
29	. 8.53 .53	1.17154	. 83421	1.13096	. 91580	1.09195	. 9484	1.05439	31
30	. 85403	1.17085	. 88473	1.13029	. 91633	1.09131	. 948	1.05378	30
31	. 85158	1.17016	. 88524	1.12963	. 91637	1.09067	. 91979	1.05317	29
32	. 85.509	1.16947	. 88576	1.12397	. 91740	1.09003	. 95007	1.05255	28
33	.85.5.59	1.16378	. 88623	1.12331	. 91794	1.08910	. 95062	I. 05194	27
34	. 8.5609	I. 16309	. 83650	1.12765	. 91847	1.03576	. 95113	1.05133	26
35	. 85660	1.16741	. 88732	1. 12699	. 91901	1.03813	. 95173	1.05072	25
36	. 85710	1.16672	. 88784	1.12633	. 91955	1.08749	. 95229	1.05010	21
37	. 85761	1.16603	. 83836	1.12567	. 92008	1.03636	. 95234	1.04949	23
33	. 85511	1.16535	. 83888	1.12501	. 92062	1.08622	. 95310	1.04338	22
39	. 85562	I. 16466	. 88910	1.12435	. 92116	1.03559	. 95395	1.01827	21
40	. 85912	1.16393	. 88992	1.12369	. 92170	1.03496	. 95451	1.04766	20
41	. 85963	1.16329	. 89045	1.12303	. 92.224	1.03432	. 95506	1.04705	19
42	. 86014	1.16261	. 89097	1.12233	. 922277	1.03369	. 95562	1.04644	18
43	. 86064	1.16192	. 89149	1.12172	. 92331	1.03306	. 95618	I. 04583	17
44	. 86115	1.16124	. 89201	1.12106	. 9233	1.03213	. 9567	1.04522	16
45	. 8616	.	. 89253	1.12041	.	1.03179	.	1.04461	15
46	. 86216	1.1		1.11975	. 92493	1.03116	95785	1.04401	14
47	. 86267	1.15919	. 89358	1.11909	. 92547	1.03053	. 95841	1.04340	13
48	. 86318	1.15351	. 89410	1.11844	. 92601	1.07990	. 95397	1.04279	12
49	. 86363	1.15783	. 89463	1.11778	. 92655	1.07927	95952	1.04218	11
50	. 86419	1.15715	. 89515	1.11713	. 92709	1.07864	. 96003	1.04153	10
51	. 86470	1.15647	. 89567	I. 11648	. 92763	1.07801	. 96064	1.04097	9
52	. 86521	I. 15579	. 89620	1.11532	. 92517	1. 07733	. 96120	1.04036	
53	. 86572	1.15511	. 89672	1.11517	. 92372	1.07676	.96176	1.03976	7
54	. 86623	1.15443	. 89725	1.11452	. 92926	1.07613	. 96232	1.03915	6
55	. 86674	1.15375	. 89777	I. 113337	. 92930	1.07550	. 96233	1.03355	5
56	. 86725	1.15303	. 89830	1.11321	. 93034	1.07487	. 96344	1.03794	4
57	. 86776	1.15240	. 89353	1.11256	. 93038	1.07425	. 96400	1.03734	3
58	. 36327	1.15172	. 89935	1.11191	. 93143	1.07362	. 96457	1.03674	2
59	. 66378	1.15104	. 89933	1.11126	. 93197	1.07299	. 965513	1.03613	1
60	. 86929	1.15037	. 90040	1.11061	. 93252	1.07237	96569	. 03553	0
M.	Cotang	Tang	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.
						O		5	

table XV. NATURAL TANGENTS AND COTANGENTS. 241

M.	440		M.	M.	44°		M.	M.	44°		M.
	Tang.	Cotang.			Tang.	Cotang.			Tang.	Cotang.	
0	. 96569	1.03553	60	20	. 97700	1.02355	$\overline{40}$	40	. 98843	1.01170	20
1	. 96625	1.03493	59	21	. 97756	1.02295	39	41	. 98901	1.01112	19
2	. 96631	1.03133	53	22	. 97813	1.02236	38	42	. 98958	1.01053	18
3	. 96733	1.03372	57	23	. 97870	1.02176	37	43	. 99016	$1.0099 \frac{1}{4}$	17
4	. 96794	1.03312	56	24	. 97927	1.02117	36	44	. 99073	1.00935	16
5	. 96350	1.03252	55	23	. 979894	1.02057	35	45	. 999131	1.00576 1.00818	14
6	. 96907	1.03192	54	26	. 98041	1.01998	33	47	. 999247	1.00759	13
7 8	.96963 .97020	1.03132 1.03072	53	27	. 93098	1.01939	33 32	48	. 9932404	1.00701	12
9	. 97076	1.03012	51	29	. 98213	1.01820	31	49	. 99362	1.00642	11
10	. 97133	1.02952	50	30	. 98270	1.01761	30	50	. 99420	1.00583	10
11	. 97189	1.02392	49	31	. 93327	1.01702	29	51	. 99478	1.00525	9
12	. 97246	1.02332	45	32	. 98334	1.01642	23	52	. 995356	1.00467	8
13	. 97302	1.02772	47	33	. 98141	1.01583	27	53	. 99594	1.00408	7
14	. 97359	1.02713	46	31	. 98499	1.01524	26	54	. 99652	1.00350	6
15	. $97+15$	1.026:3	45	35	. 93556	1.01465	25	55	. 99710	1.00291	5
16	.974:2	1.02593	44	36	. 98613	1.01406	24	56	. 997768	1.00233	3
17	. 97529	1.02533	43	37	. 938671	1.01347	23	57	. 999826	1.00175	3 2
13	. 97586	$1.021 \pi 4$	42	33	. 937728	1.01288	22			1.00116 1.00058	2 1
19	. 97643	1.02414	41	39 40	.98786 .9884	1.01229 1.01170	21		. 999942	1.00000 1.0000	0
$\frac{20}{M}$	$\frac{.97700}{\text { Cotang. }}$	$\frac{1.02355}{\text { Tang. }}$			$\frac{.98843}{\text { Cotang. }}$	$\frac{1.01170}{\text { Tang. }}$	$\frac{20}{\text { M. }}$		$\frac{1.0000}{\text { Cotang. }}$	Tang.	M.
M.	$\frac{\text { cotang. }}{4}$	$5^{\text {T }}$			$\frac{\text { Cotang. }}{4}$	50			4	5°	

TABLE XVI.

RISE PER MILE OF VARIOUS GRADES.

Grade per Atation.	Rise per Mile.	Grade per Station.	Rise per Mile.	Grade per Station.	Rise per Mile.	Grade per Station.	Rise per Mile.
. 01	. 523	. 41	21.618	. 81	42.763	1.21	63.883
. 02	1.056	. 42	22.176	. 82	43.296	1.22	61.416
. 03	1.531	. 43	22.704	. 83	43.821	1.23	61.914
. 04	2.112	. 44	23.232	. 81	44.352	1.24	65.472
. 0.5	2.610	. 4.5	23.700	. 85	44.8 $=0$	1.25	66.000
. 06	3.163	. 46	24.238	. 86	45.403	1.26	66.523
. 07	3.696	. 47	24.816	. 87	45.936	1.27	67.056
. 03	4.224	. 43	25.314	. 83	46.464	1.23	67.584
. 09	4.752	. 49	2.5 .872	. 89	46.992	1.29	63.112
.10	5.230	. 50	26.400	. 90	47.520	1.30	63.640
. 11	5.80 S	. 51	26.923	. 91	49.043	1.31	69.163
. 12	6.336	. 52	27.456	. 92	43.576	1.32	69.696
. 13	6.864	. 53	27.951	. 93	49.104	1.33	70.224
. 11	7.392	. 51	23.512	. 91	49.632	1.31	70.752
. 15	7.920	. 55	29.040	. 95	50.160	1.35	71.230
. 16	8.449	. 56	29.563	. 96	50.683	1.36	71.808
. 17	8.976	. 57	30.096	. 97	51.216	1.37	72.336
. 18	9.504	. 53	30.624	. 93	51.744	1.33	72.864
.19	10.032	. 59	31.152	. 99	52.272	1.39	73.392
. 20	10.560	. 60	31.680	1.00	52.S00	1.40	73.920
. 21	11.088	. 61	32.203	1.01	53.323	1.41	74.448
. 22	11.616	. 62	32.736	1.02	53.856	1.42	74.976
. 23	12.141	. 63	33.264	1.03	51.331	1.43	75.501
. 24	12.672	. 64	33.792	1.04	51.912	1.44	76.032
. 25	13.200	. 65	31.320	1.05	55.410	1.45	76.560
. 26	13.728	. 66	34.843	1.06	55.963	1.46	77.038
. 27	14.256	. 67	35.376	1.07	56.496	1.47	77.616
. 23	14.781	. 63	35.904	1.08	57.024	1.43	78.144
. 29	15.312	. 69	36.432	1.09	57.552	1.49	78.672
. 30	15.840	. 70	36.960	1.10	58.080	1.50	79.200
. 31	16.368	. 71	37.483	1.11	53.608	1.51	79.728
. 32	16.896	. 72	33.016	1.12	59.136	1.52	80.256
. 33	17.424	. 73	33.544	1.13	59.664	1.53	80.781
. 34	17.952	. 74	39.072	1.14	60.192	1.54	81.312
. 35	18.430	. 75	39.600	1.15	60.720	1.55	81.810
. 36	19.008	. 76	40.128	1.16	61.218	1.56	82.363
. 37	19.536	. 77	40.656	1.17	61.776	1.57	82.896
. 33	20.064	. 78	41.184	1.18	62.304	1.58	83.424
. 39	20.592	. 79	41.712	1.19	62.832	1.59	83.952
. 40	21.120	. 80	42.240	1.20	63.360	1.60	84.490

TABLE XVI. RISE PER MILE OF VARIOUS GRADES.
243

Grade per Station.	Rise per Mile.	Grade per Station.	Rise per Mile.	Grade per Station.	Rise per Mile.	Grade per Station.	Rise per Dile.
1.61	85.003	1.81	95.568	2.10	110.880	4.10	216.480
1.62	85.536	1.82	96.096	2.20	116.160	4.20	221.760
1.63	86.064	1.83	96.621	2.30	121.440	4.30	227.040
1.64	86.592	1.81	97.152	2.40	126.720	4.40	232.320
1.65	\$7.120	1.85	97.630	2.50	132.000	4.50	237.600
1.66	87.613	1.86	98.208	2.60	137.230	4.60	242.880
1.67	83.176	1.87	93.736	2.70	142.560	4.70	243.160
1.63	83.704	1.88	99.264	2.80	147.810	4.80	253.440
1.69	89.232	1.89	99.792	2.90	153.120	4.90	253.720
1.70	89.760	1.90	100.320	3.00	158.400	5.00	261.000
1.71	90.238	1.91	100.818	3.10	163.680	5.10	269.280
1.72	90.816	1.92	101.376	3.20	163.960	5.20	274.560
1.73	91.341	1.93	101.904	3.30	174.240	5.30	279.840
1.74	91.872	1.94	102.432	3.40	179.520	5.40	255.120
1.75	92.400	1.95	102.960	3.50	181.500	5.50	290.400
1.76	92.923	1.96	103.483	3.60	190.080	5.60	295.680
1.77	93.456	1.97	104.016	3.70	195.360	5.70	300.960
1.73	93.931	1.93	104.544	3.80	200.640	5.80	306.240
1.79	94.512	1.99	105.072	3.90	205.920	5.90	311.520
1.80	95.040	2.00	105.600	4.00	211.200	6.00	316.800

$$
\begin{aligned}
& \begin{array}{r}
7.822 .8 \\
2988 \\
\hline 72758
\end{array} \\
& \begin{array}{c}
3.34 \\
\frac{57}{2338} \\
1778 \\
293136
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 725622 \\
& 7 \frac{142}{25-764} \\
& 2742.96
\end{aligned}
$$

UNIVERSITY OF ILLINOIS-URBANA
 30112084205183

[^0]: * Some engineers prefer a chain 50 feet in length, and measure the length of : zurve by chords of 50 instead of 100 feet. The chord of 100 feet has been adopten throughout this article; but the formulæ deduced may be very readily modified ic: suit chords of any length. See also $\S 13$.

[^1]: - This method of finding the length of a sub-chord is not mathematically accurate; for, by geometry, angles inscribed in a circle are proportional to the arcs on which they stand; whereas this method supposes them to be proportional to the chords of these arcs. In railroad curres, the error arising from this supposition 14 too small to be regarded.

[^2]: * The distance $B M$ is not exactly equal to the chord, but the error arising from taking it equal is too small to be regarded in any curves but those of very small ralius. If necessary, the true length of $B M I$ may be calculated; for $B M=$ $\sqrt{\mathrm{BH}_{2}-H \mathrm{M}_{2}}$

[^3]: * The radii of an oval of given length and breadth, or of a three-centre arch of givev epan and rise, may aiso be found from these formulæ In these cases $A+B=90$, and the values of R and R^{\prime} may be reduced to $R=\frac{a T}{a+T^{\prime}-T}$ and $R^{\prime}=$ $a T^{\prime}$ $\frac{a+T-T^{\prime}}{a+T h e s e ~ v a l u e s ~ a d m i t ~ o f ~ a n ~ e a s y ~ c o n s t r u c t i o n, ~ o r ~ t h e y ~ m a y ~ b e ~ r e a d i l y ~}$ calculated

[^4]: * The value of B F may be more easily found by the approximate formula $B F=$ $\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}$, and generally with sufficient accuracy. See note to $\S 57$. This re mark applies also to $B F$ in the second part of this solution.

[^5]: - The triangle $A E K$ does not correspond precisely with $B E K$ in $\S 60, A$ being on the centre line and B on the outer rail; but the difference is too slight to affect the calculations.

[^6]: * Since $C D$ is drawn to the middle of the base of the triangle $A B C$, we have, by feometry, $C D^{2}=\frac{1}{2}\left(A C^{2}+B C^{2}\right)-A D^{2}$.

[^7]: * The level should be placed midway between the two points, when practicable, In order to neutralize the effect of inaccuracy in the adjustment of the instrument, and for the reason given in $\$ \mathbf{1 0 5}$.

[^8]: * Peirce's Spherical Astronomy, Chap. X., § 125. It should be olserved, horever, that the effect of refraction is very uncertain, varying with the state of the atmosphere. Sometimes the path of a ray is even made convex towards the earth and sometianes the rays are refracted horizontally as well as vertically.

[^9]: * If the ground is divided into rectangles, as is generally done, and one side be aade 27 feet, or some multiple of 27 feet, the contents may be obtaired at once io rubic yards, by merely omitting the factor 27 in the calculation.

[^10]: - It is easy in any given case to ascertain whether a surface like $A A_{1} B_{1} B$ is a

[^11]: tem of Uscful Formulæ, \&c ," page 18\%. It will be seen, that his calculation makee the solidity 32,460 cubic feet, which is 350 cubic feet less than the result above. This difference is owing to the omission, by Mr. Borden's method, of a pyramid inclosed by the four pyramids, into which the upper portion of the right-hand hall section is by that method dirided.

[^12]: * It will often be necessary to introduce intermediate stations, in order to make the subdivision into triangles more conveniently and accurately.

[^13]: * A New Method of Calculating the Cubic Contents of Excarations and Embanl ments by the aid of Diagrams. By John C. Trautwine

[^14]: * Lieut. Gilliss's Report, Senate Document 172, 1845
 - London Philosophical Transactions. 1852

[^15]: * The area of a circular segment on railroad curves, where the chord is very long in proportion to the height, may be found with great accuracy by the above formula

