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PREFACE.

IN revising this work for the second time, the original

purpose of making the volume compact, so as to be of con-

venient size for use in the field, has been adhered to. It is

designed to contain such formulae and tables as are mat-

ters of constant reference in the field, to the exclusion of

such as are rarely used. Subjects that, though important
in themselves, require large space for satisfactory treat-

ment, or are best learned, once for all, in the office or from

competent superiors in the field, are also excluded. The

size of the volume will therefore be found not materially
increased by the changes and additions now made.

Table I. has been enlarged. The first column contains

the degrees of curves for evary two minutes up to 10, for

every four minutes up to 20, and for every ten minutes

afterward. The deflection angles will thus be always
whole minutes. Ordinates for the quarter points, both for

100 feet chords and for 30 feet rails, are new features. The
column of chord deflections has been omitted, being

easily supplied by doubling the tangent deflections. All

the data required in laying out a curve are found on one

line. Some changes have been made in the other tables,

and, in connection with the short metric curve table, a

method is given of extending it by means of Tables I., II.,

III., and IV. The length of the arc of a curve is seldom

required, since a curve is sufficiently described by giving the

number and length of the chords and the deflection angle
iii
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IV PREFACE.

used. When the length of the arc is desired, it may be

found by the method given in 13, which is exact for

curves laid out with chords of any length.

Matters formerly in an Appendix have been transferred

to their proper places in the text. Some of them have

been more fully developed, especially those relating to

turnouts tangent to the main line.

Transition curves have been more fully treated, and by
methods entirely new. These curves have assumed great

importance in view of the high speed of modern trains.

The shock on entering and leaving a curve, and the dan-

ger of derailment, may be greatly reduced by a transition

curve, if carefully located and laid with rails that have
been accurately curved. Both these essentials are secured

by the methods here given. Certain portions of the dis-

cussion involve the calculus, but the actual laying out of

the curve merely requires the engineer to fix upon the

length of curve he deems best, after which all the data for

locating the curve, either by tangent offsets or by deflec-

tion angles, are found on a single line of a short table.

The method of applying a transition curve to an existing

track is equally simple. The deflection angle of the exist-

ing circular curve and its tangent point being known, and

the length of the proposed transition curve chosen, a single

line of a short table gives the data for locating the curve.

In this table the ratio of the two radii concerned is taken

as .9, but the general formulae are not confined to any par-

ticular ratio. It will be seen that these methods do not

require the central circular curve to be of some whole

degree. The deflection angle D of the central curve may
have any value we please a manifest advantage.

For curving the rails accurately the ordinates at the

centre and at the quarter points are required. These are

readily found, especially when the curve is made to begin
at a joint.

The chapter on the common parabola is retained, be-

cause, though this curve has met with but little acceptance
on railroads, it is well adapted to vertical curves, and also
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affords a simple means of laying out curves on common
roads and pleasure drives, and such as are used in land-

scape gardening.
In the first preface to this work (1854) it was said:

u
Among the processes believed to be original may be speci-

fied those in 41-48, on Compound Curves, in Chapter
II., 011 Parabolic Curves, in 106-109 (now 149-151) on
Vertical Curves, and in the article on Excavation and
Embankment. It is but just to add that a great part of

what is said on Reversed Curves, Turnouts, and Crossings,
and most of the Miscellaneous Problems, are the result of

original investigations." The claims here made have been

properly recognized by some authors, while others have

thought it sufficient to acknowledge the merits of the pro-

cesses involved by simply adopting them.

J. B. H.

MOKTECITO, CAL., January, 1896.
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EXPLANATION OF SIGNS.

THE sign + indicates that tfte quantities between which it is

placed are to be added together.

The sign indicates that the quantity before which it is placed

is to be subtracted.

The sign x indicates that the quantities between which it is

placed are to be multiplied together.

The sign +- or : indicates that the first of two quantities be-

tween which it is placed is to be divided by the second.

The sign = indicates that the quantities between which it is

placed are equal.

The sign oo indicates that the difference of the two quantities

between which it is placed is to be taken.

The sign . *. stands for the word " hence "
or "

therefore."

The ratio of one quantity to another may be regarded as the

quotient of the first divided by the second. Hence, the ratio of

a to b is expressed by a : b, and the ratio of c to d by c : d. A pro-

portion expresses the equality of two ratios. Hence, a proportion is

represented by placing the sign = between two ratios
; as, a : b = c : d.

In the text and in the tables the foot has been taken as the unit

of measure when no other unit is specified.



FIELD-BOOK.

CHAPTER I.

CIRCULAR CURVES.

ARTICLE I. SIMPLE CURVES.

1. THE railroad curves here considered are either Circular or

Parabolic. Circular curves are divided into Simple, Reversed, and

Compound Curves. We begin with Simple Curves.

2. Let the arc A D E F B (fig. 1) represent a railroad curve,

Fig. 1
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uniting the straight Ime,^ G,A 'and JB II. The length of such a

curve is measured by chords, each 1QO feet long.* Thus, if the

chords AD, RE, ;.E*F. and FB jvre each 100 feet in length, the

whole curve is said to be 400 feet long*. The straight lines Cr A and

BH are always tangent to the curve at its extremities, which are

called tangent points. If G A and B H are produced, until they
meet in C, A C and B C are called the tangents of the curve. If

A C is produced beyond G to K, the angle KGB, formed by one

tangent with the other produced, is called the angle of intersec-

tion, and shows the change of direction in passing from one tan-

gent to the other.

The following propositions relating to the circle are derived

from Geometry :

I. A tangent to a circle is perpendicular to the radius drawn

through the tangent point. Thus, A G is perpendicular to A 0,

and B C to B 0.

II. Two tangents drawn to a circle from any point are equal,

and if a chord be drawn between the two tangent points, the

angles between this chord and the tangents are equal. Thus

A C = B <7, and the angle B A C = A B C.

III. An acute angle between a tangent and a chord is equal

to half the central angle subtended by the same chord. Thus,

CA B = $AOB.
IV. An acute angle subtended by a chord, and having its vertex

in the circumference of a circle, is equal to half the central angle

subtended by the same chord. Thus, DAE = %DOE.
V. Equal chords subtend equal angles at the centre of a circle,

and also at the circumference, if the angles are inscribed in similar

segments. Thus, A D = D E, and D A E = E A F.

VI. The angle of intersection of two tangents' is equal to the

central angle subtended by the chord which unites the tangent

points. Thus, K G B = A B.

3. In order to unite two straight lines, as Cr A and B H, by a

curve, the angle of intersection is measured, and then a radius for

the curve may be assumed, and the tangents calculated, or the

* Some engineers prefer a chain 50 feet in length, and measure the length

of a curve by chords of 50 instead of 100 feet. The chord of 100 feet has

been adopted throughout this article
;
but the formulae deduced may be

very readily modified to suit chords of any length. See also 13.



SIMPLE CURVES.

tangents may be assumed of a certain length, and the radius cal-

culated.

4. Problem. Given the angle of intersection K C B = 1

(fig. 1) and the radius AO R^to find the tangent A C= T.

Fig. 1.

Solution. Draw C 0. Then in the right triangle A C we
AC

have (Tab. X. 3) = tan. A C, or, since A C = 1 1 ( 2, VI.)

T- = tan. i 7;

Example. Given /= 22 52', and R = 3000, to find T. Here

R = 3000

i /= 11 26'

^=606.72

3.477121

tan. 9.305869

2.7829UO
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5. Problem. Given the angle of intersection

(fig. 1) and the tangent A C = T, tofind the radius A = R.

Solution. In the right triangle A C we have (Tab. X. 6)

.-.R=T cot. i /.

Example. Given /= 31 16' and T= 950, to find R. Here

T-950 2.977724

i I=15 38' cot 0.553102

R = 3394.89 3.530826

6. The degree of a curve is determined by the angle subtended

at its centre by a chord of 100 feet. Thus, if A OD = 6 (fig. 1),

ADEFB is a 6 curve.

7. The deflection angle of a curve is the acute angle formed at

any point between a tangent and a chord of 100 feet. The deflec-

tion angle is, therefore( 2, III.), half the degree of the curve. Thus,

GAD or CBFis the deflection angle of the curve ADEFB,
and is half A D or half FOB.
Remark. The mode of designating curves by their degree, given

above, is objected t^ by some, because when curves are laid out by
chords shorter than 100 feet, as is usual on sharp curves, the degree
of the curve is slightly increased, though its designation remains

the same. If the arc of 100 feet is substituted for the chord of 100

feet in the definition, this difficulty vanishes
;
but so many greater

difficulties are introduced that the general adoption of this method

is not probable. Moreover, when American engineers use the met-

ric system, as possibly they are now doing on Mexican roads, both

these methods are inapplicable. We might designate a curve by the

length of its radius, for this fixes the curve, however laid out, and

any units of length may be used
;
but when the deflection angle D is

even, R is generally fractional, which makes it inconvenient for ex-

act definition. The length of the radius is also an indirect desig-

nation, when curves are laid out by deflection angles. If the curve

were designated by its deflection angle for a certain length of chord

any length of chord and any units of length might be used, and th'

curve be still definitely described. Thus we might say :
" Curve tx

the right, deflection angle for chords of 50 feet, 2 10'," or,
" Curve

to the left, deflection angle for chords of 20 metres, 1 35'."
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A. Method by Deflection Angles.

8. The usual method of laying out a curve on the ground is by
means of deflection angles.

9. Problem. Given the radius AO = R (fig. 1), to find the

deflection angle C BF= D.

Solution. Draw OL perpendicular to B F. Then the angle
BOL =^BOF=D^ and B L = $ BF= 50. But in the right

71 T

triangle B L we have (Tab. X. 1) sin. BOL= -
;B

' D-~~
R'

Example. Given R = 5729.65, to find D. Here

50 1.698970

R = 5729.65 3.758128

D = 30' sin. 7.940842

Hence a curve of this radius is a 1 curve, and its deflection

angle is 30'.

10. Problem. Given the deflection angle CBF= D (fig. 1),

to find the radius AO = R.

Solution. By the preceding section we have sin. D =
, whenceR

R sin. D = 50
;

By this formula the radii in Table I. are calculated.

Example. Given D 1, to find R. Here

50 1.698970

D=l sin. 8.241855

R = 2864.93 3.457115

11. Problem. Given the angle of intersection KCB 1

(fig. 1), and the tangent AC= T, to find the deflection angle

CAD = D.
50

Solution. From 9 we have sin. D
,
and from 5,H
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R =. Tcot. J /. Substituting this value of R in the first equa-

_ 5Q
.

50 tan. 1 1
. . sm. D = .

Example. Given J= 21 and T- 424.8, to find D. Here

50 1.698970

^ 1 = 10 30' tan. 9.267967

0.966937

T- 424.8 2.628185

D = 1 15' sin. 8.338752

12. Problem. Given the angle of intersection KGB 1

(fig. 1), and the deflection angle CAD=D, to find the tangent

AC= T.

Solution. From the preceding section we have sin. D =f

Hence, T sin. D = 50 tan. * J;

sin.D

Example. Given /= 28 and Z) = 1, to find T. Here

= 714.31.

13. Problem. Given the angle of intersection KCB = 1

(fig. 1), and the deflection angle CAD D, to find the length of
the curve.

Solution. By 2 the length of a curve is measured by chords

of 100 feet applied around the curve. Now the first chord A D
makes with the tangent A C an angle GA D = Z>, and each suc-

ceeding chord D E, E F, &c. subtends at A an additional angle

DAE,EAF, &c., each equal to D ; since each of these angles

( 2, IV.) is half of a central angle subtended by a chord o 100

feet. The angle CAB = \AOB = \I\$, therefore, made up of

as many times D, as there are chords around the curve. Then if

n represents the number of chords, we have n D = /;

If D is not contained an even number of times in J, the quo-
tient above will still give the length of the curve. Thus, in
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figure 2, suppose D is contained 4| times in /. This shows that

there will be four whole chords and f of a chord around the curve

from A to B. The angle GAB, the fraction of Z>, is called a

sub-deflection angle, and G B, the fraction of a chord, is called

a sub-chord*

The length of the curve thus found is not the actual length of

the arc, but the length required in locating a curve. If the actual

length of the arc is required, it may be found by means of Table VI.

Example. Given/ 16 52' and D = 1 20', to find the length of

the curve. Here n =^=r- =
-^-577,

=
-^ TT

= 6.325, that is, the curve
JLf 1 &0 oU

is 632.5 feet long.

To find the arc itself in this example, we take from Table VI.

the length to radius 1 of an arc of 16 52', since the central angle
of the whole curve is equal to 1

( 2, VI.), and multiply this length

by the radius of the curve.

Arc 10 = .1745329
" 6 = .1047198
"

50' =.0145444
"

2' = .0005818

" 16 52' = .2943789

The radius of the curve is found from Table I. to be 2148.79, and

this multiplied by .2943789 gives 632.558 feet for the length of

the arc.

14. Problem. Given the, deflection angle D, to lay out a

curve from a given tangent point.

Solution. Let A (fig. 2) be the given tangent point in the

tangent H C. Set the instrument at A, and lay off the given de-

flection angle D from A C. This will give the direction A D, and

100 feet being measured from A in this direction, the point D will

be determined. Lay off in succession the additional angles DAE,
EAF, &c., each equal to D, and make D E, E F, &c., each 100

feet, and the points E, F, &c., will be determined. The points

* This method of finding the length of a sub-chord is not mathematically
accurate ; for, by geometry, angles inscribed in a circle are proportional to

the arcs on which they stand ; whereas this method supposes them to be

proportional to the chords of these arcs. In railroad curves, the error

arising from this supposition is too small to be regarded.
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Z>, E, F, &c., thus determined, are points on the required curve

( 7, and 2, III., IV.), and are called stations.

If there is a sub-chord at the end, as O B, the sub-deflection

angle GAB must be the same part of D that G B is of a whole

Fig. 2.

chord ( 13). If there is a sub-chord at the beginning, the first

stake on the curve will be at the end of the sub-chord, and the

sub-deflection angle will be the same part of D that the sub-chord

is of a whole chord.

In laying out a curve there is an obvious advantage in having
the several deflection angles whole minutes. When the deflection

angle is assumed, whole minutes would naturally be chosen. But

when D is found from / and I7

by 11, it generally happens that

D does not come out even minutes. In such cases, unless it is

necessary that the curve should commence exactly at the assumed

tangent point, it is better to take D to the nearest minute, and

calculate T for / and this new value of D by 12. If, however,

there is a sub-chord at the beginning of the curve, the sub-deflec-

tion angle will generally contain seconds, although D contains

none. In this case, set the vernier back the amount of the sub-

deflection angle, so that, when this angle is turned off, the instru-

ment will read zero. All the subsequent angles will then be whole

minutes.
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15. It is often impossible to lay out the whole of a curve, with-

out removing the instrument from its first position, either on ac-

count of the great length of the curve, or because some obstruction

to the sight may be met with. In this case, after determining as

many stations as possible, and removing the instrument to the

last of these stations, we ought to be able to find the tangent to

the curve at this station ;
for then the curve could be continued

by deflections from the new tangent in precisely the same way as

it was begun from the first tangent.

16. Problem. After running a curve a certain number of

stations, to find a tangent to the curve at the last station.

Solution. Suppose that the curve (fig. 2) has been run three

stations to F, and that FL is the tangent required. Produce

A F to K, and we have the angle KF L = A F C. But ( 2, II.)

AFC-F AC. Therefore KFL = F A C. Now J'M GT
is the

sum of all the deflection angles laid off from the tangent at A,

that is, in this case, FA C = 3 Z>, and the tangent FL is, there-

fore, obtained by laying off from A ^produced an angle KFL
equal to the total deflection from the preceding tangent.

If the curve is afterwards continued beyond F, as, for instance,

to B, a tangent BN at B is obtained by laying off from FB pro-

duced an angle MBN = LBF=LFB, the total deflection

from the preceding tangent F L.

B. Method by Tangent and Chord Deflections.

17. Let A B CD (fig. 3) be a curve between the two tangents
E A and D L, having the chords A B, B C, and CD of the same

length. Produce the tangent E A, and from B draw B G per-

pendicular to A G. Produce also the chords A B and B C, and
make the produced parts B II and CK of the same length as the

chords. Draw CH and D K. B G is called the tangent deflec-

tion, and CH or DK the chord deflection.

18. Problem. Given the radius AO = R (fig. 3\ to find the

tangent deflection B G, and the chord deflection C H.
Solution. The triangle CBH is similar to BOG', for the

angle BOC = 180 - (0 B C + B C 0\ or, since BCO = ABO,
BOC= 180 - (0 B C + A B 0) = CB H, and, as both the tri-

angles are isosceles, the remaining angles are equal. The ho-
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mologous sides are, therefore, proportional, that is, B : B C =
B C : C ff, or, representing the chord by c and the chord deflection

by d, R : c = c : d
;

To find the tangent deflection, draw BM to the middle of C H,

bisecting the angle CB H, and making BMC a right angle.

Then the right triangles BMC and A G B are equal ;
for B C

Fig. 3.

AB, and the angle CB M = J OBH= % B C = i A B =
.1 # ( 2, III.). Therefore B G = CM = % C H = % d, that is,

the tangent deflection is half the chord deflection.

19. Problem. Given the deflection angle D of a curve, to

find the chord deflection d.
2

Solution. By the preceding section we have d = -=, and by
50

8 10, R = - =:. Substituting this value of R in the first equa-
sin. D

tion, we find

c2 sin. D
~m->

This formula gives the chord deflection for a chord c, of any length,

though D is the deflection angle for a chord of 100 feet ( 7). When
c = 100, the formula becomes d = 200 sin. Z>, or for the tangent de-
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flection \ d = 100 sin. D. By this formula the tangent deflections

in Table I. may be easily obtained from the table of natural sines.

The length of the curve may be found by first finding D ( 9 or

11), and then proceeding as in 13.

20. Problem. To draw a tangent to the curve at any station,

as B (fig. 3).

Solution. Bisect the chord deflection H C of the next station

in M. A line drawn through B and M will be the tangent re-

quired; for it has been proved ( 18) that the angle CBM is in

this case equal to i B (7, and BM is consequently ( 2, III.) a

tangent at B.

If B is at the end of the curve, the tangent at B may be found

without first laying off H C. Thus, if a chain equal to the chord,

is extended to H on A B produced, the point H marked, and the

chain then swung round, keeping the end at B fixed, until HM =
d, B M will be the direction of the required tangent.*

21. Problem. Given the chord deflection d, to lay out a

curve from a given tangent point.

Solution. Let A (fig. 3) be the given tangent point, and sup-

pose d has been calculated for a chord of 100 feet. Stretch a chain

of 100 feet from A to G on the tangent E A produced, and mark
the point G. Swing the chain round towards A B, keeping the end

at A fixed, until B G is equal to the tangent deflection i d, and B
will be the first station on the curve. Stretch the chain from B to

H on A B produced, and having marked this point, swing the

chain round, until H C is equal to the chord deflection d. C is the

second station on the curve. Continue to lay off the chord deflec-

tion from the preceding chord produced, until the curve is finished.

Should the curve begin or end with a sub-chord, denote, as be-

fore, the whole chord by c, the sub-chord by c', the tangent deflec-

tion for c by d, and that for c' by d 1

. Then (18) i d = =
aJ

C
and i d' = ^. Therefore d :

-J-
d' = c* : c'

2
,

&J&

(c'

\ 2

)

* The distance BM is not exactly equal to the chord, but the error aris-

ing from taking it equal is too small to be regarded in any curves but those

of very small radius. If necessary, the true length of BM may be calcu-

lated
;
for BM - V ITTT 2 - H Jkf 2 .
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If the curve begins with a sub-chord, produce the tangenfc a

distance c', and from its extremity lay off a distance * d' for a

point on the curve. But as we need a whole chord in order to

produce it for continuing the curve, measure back on the tangent
a distance c c' = c" and lay off the deflection proper to c", but

in an opposite direction to d'. This will give a point on the

curve supposed to be run back to the preceding whole station.

The line joining these two points on the curve will now be a whole

chord, and can be produced in the usual way. If the curve ends

in a sub-chord, as D F (fig. 3), find the tangent DL ( 20), and

lay off from it the proper tangent deflection LF for the sub-

chord, found as above.

Fig. 3.

Example. Given the intersection angle / between two tangents

equal to 16 30', and R 1250, to find T, d, and the length of the

curve in stations. Here

(4) T= R tan. * 7 = 1250 tan. 8M5' = 181.24;

( 9) sin. D = =^ = .04 = nat. sin. 2 17*' ;

;

'

- 495
'

-S6077 19 ry r-/
rf -bl).
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These results show, that the tangent point A (fig. 3) on the first

tangent is 181.24 feet from the point of intersection, that the

tangent deflection G B = i d = 4 feet, that the chord deflection

HC or KD = 8 feet, and that the curve is 360 feet long. The

three whole stations B, C, and D having been found, and the tan-

gent D L drawn, the tangent deflection for the sub-chord of 60

feet will be, as shown above, $d' = 4 (
j
= 4 x .6

2 = 4 x .36 =

1.44. L F = 1.44 feet being laid off from D L, the point F will,

if the work is correct, fall upon the second tangent point. A tan-

gent at F may be found ( 20) by producing D F to P, making
FP = D F = 60 feet, and laying off PN = 1.44 feet. FN will

be the direction of the required tangent, which should, of course,

coincide with the given tangent.

Curves may be laid out with accuracy by tangent and chord de-

flections, if an instrument is used in producing the lines. But if

an instrument is not at hand, and accuracy is not important, the

lines may be produced by the eye alone. On sharp curves, such

as sometimes occur on street railroads, where the chords may not

exceed 10 feet, a fine cord may be used for producing the lines.

The radius of a curve to unite two given straight lines may also

be found without an instrument by 87, or, having assumed a ra-

dius, the tangent points may be found by 88.

C. Method ly Offsets from Tangent.

22. By this method points on a curve such as C (fig. 3a) are de-

termined by measuring from the tangent point certain distances

along the tangent, such as A B, and offsets at right angles to the

tangent, such as B C.

23. Problem. Given D, the deflection angle of a curve for a

chord c, to find A B = a (fig. 3d) and B C = b for a point C on

the curve, distant from the tangent point a certain number of

stations, whole or fractional, denoted ~by the letter n.

Solution. The angle B A C = n D, and the central angle

A C = 2 n D. Draw CD parallel to the tangent. Then, in the

triangle CD 0, we have

a = CD = C sin. DOC-R sin. 2 n D.
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Substituting for R its value . ,

| c sin. 2 n D
sin. D

To find b, we have

b = C = AO-DO = R-R cos. 2 n D, or (Tab. X., 23)

b = R R (1-2 sin. 2
rc D} = 2R sin2 n D.

Substituting for R its value .
,

c sin.2
71 D

In computing these values for successive points, the logarithms

(

remain constant, which facilitates the work.: and ofOI ; f\ MIIJI^A v/j. ^. .

sm. D sin. D
The position of the stakes is best fixed by measuring the successive

chords, instead of depending on the right angle at B.

If the offsets from the original tangent become inconveniently

long, a new tangent is readily found. Thus a tangent T C at C
is determined by measuring from

Fig. 3a. A a distance A T= R tan. nD =
A T R i c tan. n D m , . ,

-
: ^=r . T C should, of course,
sm. D

prove equal to A T.

Since n may be a fraction or a

mixed number, as well as a whole

number, n c may represent any sub-

chord, such as would generally oc-

cur at the beginning of a curve.

The points on the curve determined

by the formulas for a and. b will

therefore be the regular stations

continued from the straight line.

In laying out a whole curve

AEB (fig. 3&) by this method a tangent D G at the middle point

of the curve is found by computing the equal distances A Z),

D E, E G, and G B by the formula AD-DE-EG-GB-
R tan. J /. As a check, the distance C E may be found from the

triangle C E D. For C E D E tan. /. Substituting for D E
its value R tan. i /, we have CE = R tan. | /tan. /.

The station of the tangent point A being known, and the length
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of the curve having been found ( 13), the stations of E and B are

readily found. Then, by the process just explained, find the off-

sets from the tangent A D to the regular stations on, say, one

Fig. 36.

quarter of the curve. By the same process, beginning at the

known station at E, find offsets to the regular stations on the

curve. In like manner, offsets from the tangents E G and B (r

will complete the curve, the regular stations being kept through-

out. Curves may be laid out with great accuracy by this method.

D. Ordinates.

24. The preceding methods of laying out curves determine

points 100 feet distant from each other. These points are usually

sufficient for grading a road ; but when the track is laid, it is de-

sirable to have intermediate points on the curve accurately deter-

"hined. For this purpose the chord of 100 feet is divided into a
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certain number of equal parts, and the perpendicular distances

from the points of division to the curve are calculated. These

distances are called ordinates.

25. Problem. Given the deflection angle D or the radius R
of a curve, to find the ordinates for any chord.

Solution. I. To find the middle ordinate. Let AEB (fig. 4)

be a portion of a curve, subtended by a chord A B, which may be

G

denoted by c. Draw the middle ordinate E Z>, and denote it by

m. Produce ED to the centre F, and join A F and A E. Then

(Tab. X. 3) =p^ = tan. E A D, or ED = A D tan. E A D. But,
A. JLJ

since the angle EA D is measured by half the arc B E, or by half

the equal arc A E, we have EAD = %AFE. Therefore ED =
ADtsin.lt A FE, or

When c = 100, A FE = D ( 7), and m = 50 tan. $ D, whence

m may be obtained from the table of natural tangents, by divid-

ing tan. \ D by 2, and removing the decimal point two places to

the right.

The value of m may be obtained in another form thus: In the
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triangle A D F we have D F= \/A F* - A D* -
Then m EF DF=R D F, or

m = R
II. To find any other ordinate, as R jV, at a distance DN = b

.from the centre of the chord. Produce RN until it meets the

diameter parallel to A B in G, and join R F. Then R G =
-

t>\ and RN=RG-NG=RG-
D F. Substituting the value of R G and that of D F found

above, we have

The other ordinates may also be found from the middle ordi-

nate by the following shorter, but not strictly exact method. It

is founded on the supposition, that, if the half-chord BD be

divided into any number of equal parts, the ordinates at these

points will divide the arc EB into the same number of equal

parts, and upon the further supposition, that the tangents of small

angles are proportional to the angles themselves. These suppo-
sitions give rise to no material error in finding the ordinates of

railroad curves for chords not exceeding 100 feet. Making, for

example, four divisions of the chord on each side of the centre,

and joining A R, A , and A T, we have the angle JRAN =
IE AD, since R B is considered equal to J E B. But EA D =
\AFE. Therefore, R A N = f A F E. In the same way we
should find SA = J A F E, and TAP=\A F E. We have

then for the ordinates,RN=A N tan. R A N= | c tan. f A FE,

I c tan. ^AFE. But, by the second supposition, tan. f A FE=
f tan. i A FE, tan. J A FE = | tan. $A FE, and tan. | AFE =
ta,u.$AFE. Substituting these values, and recollecting that

i c tan. | A FE m, we have

= x ictan. \

S =
-j

x i c tan. A FE =
-^

m,

7 7
jT-P = ^-5 x ^ c tan. ^ ^4. FE = 77; w.

lo lo

In general, if the number of divisions of the chord on each side

3
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of the centre is represented by n, we should find for the respect-

(n + 1) (n 1) m
ive ordinates, beginning nearest the centre,

-
-^

,

(n + 2) (n
-

2) m (n + 3)(n-3)m ^
M* tf

These values of the ordinates are precisely what we should ob-

tain if we regarded A E B as the arc of a parabola ;
for in this

v

case, as we shall see later, the offsets from a tangent at E to R, S,

and T would be ^ m, ^ m, and ^ m. Subtracting these dis-
lo lo lo

tances from m, we should get the results given above.

Example. Find the ordinates of an 8 curve to a chord of 100

feet. Here m = 50 tan. 2 = 1.746, RN = ~.m = 1.637, S =

|
w = 1.310, and TP = ^ m = 0.764.

26. An approximate value of m also may be obtained from the

formula m = R \/R* i c . This is done by adding to the

c4

quantity under the radical the very small fraction . ^ , making

c2

it a perfect square, the root of which will be R
^-~.

We have,

then, m - R - R - ~
;

27. From this value of m we see that the middle ordinates of

any two chords in the same curve are to each other nearly as the

squares of the chords. If, then, A E (fig. 4) be considered equal

to | A B, its middle ordinate CH= J E D. Intermediate points

on a curve may, therefore, be very readily obtained, and generally

with sufficient accuracy, in the following manner : Stretch a cord

from A to J5, and by means of the middle ordinate determine the

point E. Then stretch the cord from A to E, and lay off the

middle ordinate CH= % E D, thus determining the point C, and

so continue to lay off from the successive half-chords one-fourth

the preceding ordinate, until a sufficient number of points is ob-

tained.

E. Curving Rails.

28. The rails of a curve are usually curved before they are laid.

To do this properly, it is necessary to know the middle ordinate
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of the curve for a chord of the length of a rail, and the ordinates

at the quarter points.

29. Problem. Given the radius or deflection angle of a

curve, to find the middle ordinate for curving a rail of given

length.

Solution. Denote the length of the rail by Z, and we have ( 25)

the exact formula m = R \/jR* /
2

,
and ( 26) the approxi-

mate formula

This formula is always near enough for chords of the length of a

50
rail. If we substitute for R its value ( 10) R = ^ ^ ,

we have,

Example. In a 1 curve find the ordinate for a rail 30 feet in

length.

For a rail 30 feet in length Z
2 = 225, and, consequently, m =

fl.25 sin. D. This gives for a 1 curve, m = .02.

The corresponding ordinate for a curve of any other degree may
be found approximately by multiplying the ordinate for a 1 curve

by the number expressing the degree of the curve. The ordinates

from the chord at the quarter points are ( 25) each f m. In Table

I. are given the values of m and m for a rail of 30 feet. From
these ordinates the ordinates for a rail of any other length are ob-

tained by simply multiplying by the square of the ratio of its

length to 30. Thus for a rail of 27 feet this ratio is .9, the square
of which is .81, and the ordinates for, say, a 4 curve, are .079 x

.81 = .064 and .059 x .81 = .048.

ARTICLE II. REVERSED AND COMPOUND CURVES.

30. Two curves often succeed each other having a common tan-

gent at the point of junction. If the curves lie on opposite sides

of the common tangent, they form a reversed curve, and their

radii may be the same or different. If they lie on the same side

of the common tangent, they have different radii, and form a com-

pound curve. Thus ABC (fig. 5) is a reversed curve, and ABB
a compound curve.
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81. Problem. To lay out a reversed or a compound curve,

when the radii or deflection angles and the tangent points are

known.

Solution. Lay out the first portion of the curve from A to B
(fig. 5), by one of the usual methods. Find B F, the tangent to

A B at the point B ( 16 or 20). Then B F will be the tangent
also of the second portion B C of a reversed, or B D of a com-

pound curve, and from this tangent either of these portions may
be laid off in the usual manner.

A. Reversed Curves.

32. Theorem. The reversing point of a reversed curve be-

tween parallel tangents is in the line joining the tangent points.

Demonstration. Let A CB (fig. 6) be a reversed curve, uniting
the parallel tangents HA and B K, having its radii equal or un-

equal, and reversing at C. If now the chords A C and CB are

drawn, we have to prove that these chords are in the same straight

line. The radii E C and G F, being perpendicular to the common

tangent at C ( 2, I.), are in the same straight line, and the radii

A E and B F, being perpendicular to the parallel tangents HA
and B K, are parallel. Therefore, the angle A E C = CF B, and,

consequently, EGA, the half supplement of A E C\ is equal to

F C B, the half supplement of CFB; but these angles cannot

be equal, unless A C and CB are in the same straight line.
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33. Problem. Given the perpendicular distance between

two parallel tangents B D = b (fig. 6), and the distance between

the two tangent points A B = a, to determine the reversing point

C and the common radius EC=CF=R of a reversed curve

uniting the tangents H A and B K.

Solution. Let A CB be the required curve. Since the radii

are equal, and the angle A E C = BF (7, the triangles AEG
and B F C are equal, and AC=CB = $a. The reversing point

C is, therefore, the middle point of A B.

To find R, draw E G perpendicular to A C. Then the right

triangles AEG and BAD are similar, since ( 2, III.) the angle

BAD = \AEC = AEG. Therefore AE : AG = AB:BD,
or R\a a:b;

Corollary. If R and b are given, to find a, the equation R =
a*
j-j- gives a2 = 4 R b

;

4

HT . . a = 2\/R~b.

Examples. Given b = 12, and a = 200, to determine R. Here

_ 200* _ 10000 _
1 TH To OOO'j.

Given R = 675, and b = 12, to find a. Here a 2^/675 x 12 =

2^8100 = 2 x 90 = 180.

34. Problem. Given the perpendicular distance between two

parallel tangents B D = b (fig. 7), the distance between the two
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tangent points A B = a. and the first radius E C = R of a re-

versed curve uniting the tangents H A and B
,
to find the chords

A C = a' and CB = a", and the second radius OF R'.

Solution. Draw the perpendiculars EG and F L. Then the

right triangles A B D and EA G are similar, since the angle
BAD = \AEG-AEG. Therefore AB\BD^EA\ AG,
or a : b = R : % a'

;

2Rb

Since a' and a" are ( 32) parts of a, we have

ft^~ a" = a a'.

To find R' the similar triangles ABD and FB L give

AB-.BD = FB\ BL, or a: b = R' : | a";

a a"

Example. Given b = 8, a = 160, and R = 900, to find a', a",
n v QOO v ft- = 90, a" = 160 - 90 = 70, andand R. Here a' =

35. Corollary 1. If 6, a', and a" are given, to find a, .

and R', we have ( 34)

, ,, ^ aa'
,

a a"
a = a + a

-,
t = ^-r ;

H
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Example. Given 6 = 8, a' = 90, and a" = 70, to find

160 x 70

a, R,
1fiO v QO

Here a = 90 + 70 = 160, R =
" = 900, and .2x8

2x8
. = 700.

36. Corollary 2. If ^, -R', and 6 are given, to find a, a',

and a", we have ( 35), R + R' = a
o

ft

a< = -

o ^

^

jfV

Therefore a2 = 2 6 (JK + J2') ;

Jg^~ .-.=
Having found a, we have ( 34)

Example. Given /jJ = 900, R' = 700, and b = 8, to find

and a". Here a = \/2 x 8(900 + 700)'= V16 x 1600

2 x 900 x 8 2 x 700 x 8
a' = -- = 90,anda = -- - -70.

a, a',

160,

37. Problem. Given the angle AKB-=.K, which shows

the change of direction of two tangents HA and BK (fig. 8\ to

-N

B
Fig. 8.

unite these tangents by a reversed curve of given common radius

R, startina from a given tangent point A.

Solution. With the given radius run the curve to the point D,
where the tangent D jV becomes parallel to B K. The point D is

found thus. Since the angle N B K, which is double the angle
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HA D ( 2, II.), is to be made equal to A KB = K, lay off from

HA the angle HA D = \K. Measure in the direction thus found

the chord AD = 2R sin. | K. This will be shown ( 83) to be

the length of the chord for a deflection angle i K. Having found

the point D, measure the perpendicular distance DM b between

the parallel tangents.

The distance BD = 2DC=a may then be obtained from the

formula ( 33, Cor.)

The second tangent point B and the reversing point C are now

determined. The direction of D B or the angle B DN may also

be obtained
;
for sin. B D N = sin. D BM= -

,
or

sin.BDN=-.
a

38. Problem. Given the line A B a (fig. 9\ which joins

the fixed tangent points A and B, the angles ffAB = A and

A B L = B, and the first radius A E R, to find the second

radius B F = R' of a reversed curve to unite the tangents H' A
and B K.

Fig. 9.

First Solution. With the given radius run the curve to the

point D, where the tangent DN becomes parallel to B K. The

point D is found thus. Since the angle U G N, which is double
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HA D ( 2, II.), is equal to Av*B, lay off from HA the angle

HA D \(Acr> B], and measure in this direction the chord AD =
2 R sin. \(Av*B) ( 83).

Setting the instrument at /), run the curve to the reversing point

C in the line from D to B ( 32), and measure D C and C B.

Then the similar triangles DEC and BF C give D C : D E =
CB-.BF, or DC:R= CB:R'\

W .'.R'=^x R.

Second Solution. By this method the second radius may be

found by calculation alone. The figure being drawn as above, we

have, in the triangle A B D, A B = a, A D = 2 R sin. %(A B}^

and the included angle D A B = HA B H A D = A - %

(A B} = 4 (A + B}. Find in this triangle (Tab. X. 14 and

12) B D and the angle A B D. Find also the angle D B L = B
+ ABD.
Then the chord CB = 2 R' sin. 4 BFC = 2 R' sin. D B L,

and the chord DC = 2R sin. | DE C = 2 R sin. Z> B L ( 83).

But CB = BD-DC; whence 2 .#' sin. D B L = B D -
2 R sin.

When the point D falls on the other side of J., that is, when

the angle B is greater than A, the solution is the same, except

that the angle D A B is then 180 - i (A + 5), and the angle

DBL = B- ABD.

39. Problem. Given the length of the common tangent

D 6r = a, and the angles of intersection I and I' (fig. 10\ to deter-

mine the common radius CE = CF = R of a reversed curve to

unite the tangents HA and B L.

Solution. By 4 we have D C = R tan. } 7, and C G =
R tan. /', whence R (tan. 4 / + tan. J /') = D C + (7 tf = a, or

This formula may be adapted to calculation by logarithms ;
for we

have (Tab. X. 35) tan. 4 / + tan. 4 I = sm - ^
J +

^) Substi-
cos. 4 /cos. 4 /'

tilting this value, we get

_ a cos. 4 /cos. 4 /'

sin. 4 (/ + /')
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The tangent points A and B are obtained by measuring from

D a distance A D = R tan. /, and from G a distance B O =
R tan. | /'.

Example. Given a = 600, 1= 12, and /' = 8, to find R. Here

a = 600 2.778151

7=6 cos. 9.997614

iJT =4 cos. 9.998941

2.774706

i (/+/') = 10 sin. 9.239670

R = 3427.96 3.535036

40. Problem. Given the line A B = a (fig. JO), which joins
the fixed tangent points A and B, the angle D A B = A, and the

angle A B Gr = B, to find the common radius E C
' = C JP R of

a reversed curve to unite the tangents HA and B L.

Fig. 10.

Solution. Find first the auxiliary angle A KE = B K F,

w/iich may be denoted by K. For this purpose the triangle A EK
gives AE\EK = sin. K : sin. EA K. Therefore E JTsin. K =
A E sin. E A K= R cos. A, since E A K = 90 A. In like

manner, the triangle BF If gives FKsiu. K= HI1

sin.FBK=
R cos. B. Adding these equations, we have (EK + FK) sin. K=
R (cos. A + cos. B\ or, since EK+FK=2R, 2Rsin.K=
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R (cos. A + cos. B). Therefore, sin. K = i (cos. A + cos. B). For

calculation by logarithms, this becomes (Tab. X. 28)

jgf" sin. K= cos. | (A + B) cos. i (J. B}.

Having found K, we have the angle AEK=E = 180 K
EAK= 180 K (90 -4) = 90 + A K, and the angle

BFK=F= 180 -K-FBK= 180 - K- (90
- B} = 90 +

B K. Moreover, the triangle A EK gives A E : A K =
sin. K : sin. E, or 72 sin. E = A TTsin. 7T, and the triangle B FK
gives B F \BK sin. 7T : sin. F, or 72 sin. F = B K sin. 7T.

Adding these equations, we have R (sin. 7? + sin. F) = (A K +
B K) sin. K=a sin. 7T. Substituting for sin. E + sin. T^

7
its

value 2 sin. | (E + jP) cos. * (E - F) (Tab. X. 26), we have

2 72 sin. ^(E + F) cos. ^ (E F) a sin. 7T. Therefore 72 =

_ *
T_
s

-= ^-. Finally, substituting for E its
sin. i(E+ F) cos. 1 (E - F)
value 90 + A K, and for F its value 90 4- B K, we get

%(E + F) = 90 [K %(A + B)], and \ (E F} = | (A B)\
whence

__ i a sin. K~
cos. [JST- i (A + )] cos. $(A B)'

Example. Given a = 1500, A = 18, and B = 6, to find 72.

Here * (A + B) 12 cos. 9.990404

iU - 5) = 6 cos. 9.997614

7T= 76 36' 10'
'

sin. 9.988018

i a = 750 2^875061

2.863079
- (A + B} = 64 36' 10" cos. 9.632347

i (A - B) = 6 cos. 9.997614

9.629961

^ = 1710.48 3.233118

B. Compound Curves.

41. Theorem. If one branch of a compound curve be pro-

duced, until the tangent at its extremity is parallel to the tangent
at the extremity of the second branch, the common tangent point of
the two arcs is in the straight line produced, which passes through
the tangent points of these parallel tangents.
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Demonstration. Let ACB (fig. 11) be a compound curve,

uniting the tangents HA and B K. The radii CE and C F, be-

ing perpendicular to the common tangent at C ( 2, I.), are in the

Fig. 11.

same straight line. Continue the curve A G to D, where its tan-

gent D becomes parallel to B K, and consequently the radius

D E parallel to B F. Then if the chords CD and G B be drawn,

we have the angle CED=CFB\ whence E C D, the half-

supplement of CE D, is equal to F C B, the half-supplement of

C FB. But E C D cannot be equal to F C B, unless CD coin-

cides with CB. Therefore the line BD produced passes through

the common tangent point C.

42. Problem. Tofind a limit in one direction of each radius

of a compound curve.

Solution. Let A I and B I (fig. 11) be the tangents of the

curve. Through the intersection point /, draw IM bisecting the
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angle A 1 B. Draw A L and BM perpendicular respectively to

A /and B I, meeting IM in L and M. Then the radius of the

branch commencing on the shorter tangent A 1 must be less than

A *L, and the radius of the branch commencing on the longer tan-

gent B I must be greater than B M. For suppose the shorter

radius to be made equal to A L, and make IN'= A 7, and join

L N. Then the equal triangles AIL and NIL give A L =
L N; so that the curve, if continued, will pass through N, where

its tangent will coincide with IN. Then ( 41) the common tan-

gent point would be the intersection of the straight line through
B and N with the first curve

;
but in this case there can be no

intersection, and therefore no common tangent point. Suppose

next, that this radius is greater than A L, and continue the curve,

until its tangent becomes parallel to B I. In this case the ex-

tremity of the curve will fall outside the tangent B I in the line

A N produced, and a straight line through B and this extremity
will again fail to intersect the curve already drawn. As no com-

mon tangent point can be found when this radius is taken equal

to A L or greater than A L, no compound curve is possible. This

radius must, therefore, be less than A L. In a similar manner it

might be shown, that the radius of the other branch of the curve

must be greater than B M. If we suppose the tangents A I and

B I and the intersection angle I to be known, we have ( 5) A L
A Icot. -$ /, and BM= B I cot. | /. These values are, therefore,

the limits of the radii in one direction.

43. If nothing were given but the position of the tangents and

the tangent points, it is evident that an indefinite number of dif-

ferent compound curves might connect the tangent points; for

the shorter radius might be taken of any length less than the

limit found above, and a corresponding value for the greater could

be found. Some other condition must, therefore, be introduced,

as is done in the following problems.

44. Problem, Given the line A B = a (fig. 11), which joins

the fixed tangent points A and B, the angle B A 1= A, the angle

A B 1= B, and the first radius A E = R, to find the second ra-

dius B F = R' of a compound curve to unite the tangents HA
and B K.

Solution. Suppose the first curve to be run with the given
radius from A to Z), where its tangent D becomes parallel to
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B /, and the angle IA D = | (A + B). Then ( 41) the common

tangent point C is in the line BD produced, and the chord CB =
CD + B D. Now in the triangle A B D we have A B =^ a,

Fig. 11.

> = 2 R sin. $(A + B) ( 83), and the included angle D A B =
7 J. jB /A D = A (A + .5) = \(A B). Find in this tri-

angle (Tab. X. 14 and 12) the angle A B D and the side B D.

Find also the angle CBI=B ABD.
Then ( 83) the chord C B = 2R' sin. CB I, and the chord

C D 2 R sin. CDO = 2R sin. C B I. Substituting these values

otCB and CD in the equation found above, CB = CD + B D,
we have 2 R' sin. CBI=2Rsin. CB I +

BD
"2 sin.

When the angle B is greater than A, that is, when the greater
radius is given, the solution is the same, except that the angle

> A), and CB I is found by subtracting the sup-
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plement of ABD from B. We shall also find CB = CD
7? T)

B Z>, and consequentlyR ' = R .

& sin.

If more convenient, the point D may be determined in the field,

by laying off the angle IA D = % (A + B), and measuring the

distance A D = 2 R sin. (A + B). BD and CB I may, then be

measured, instead of being calculated as above.

Example. Given a = 950, A =. 8, B = 7, and ft = 3000, to

find R'. Here A D - 2 x 3000 sin. i (8 + 7) = 783.16, and

D A B = i (8 7) = 30'. Then to find A B D we have

A B - A D = 166.84 2.222300

i (A D B + A B D) = 89 45' tan. 2.360180

4.582480

A B + A D = 1733.16 3.238839

i (A D B - A B D)
- 87 24' 17" tan. 1.343641

. . A B D = 2 20' 43"

Next, to find B D,
AD = 783.16 2.893849

D A B = 30' sin. 7.940842

0.834691

A B D = 2 20' 43" sin. 8.611948

B D = 167.01 2.222743

B-ABD=CBI=4W 17" sin. 8.909292

2 (R
' - R) = 2058.03 3.313451

R' -.#=: 1029.01

R 1 = 3000 + 1029.01 = 4029.01

To find the central angle of each branch, we have CFB =
2 CBI= 9 18' 34", which is the central angle of the second

branch; and A EC = AED - CED = A + B - 2CBI =
5 41' 26", which is the central angle of the first branch.

45. Problem. Given (fig. 11) the tangents AI= T,BI =
T', the angle of intersection /, and the first radius A E = R,
to find the second radius B F = R' .

Solution. Suppose the first curve to be run with the given ra-

dius from A to D, where its tangent D becomes parallel to B I.

Through D draw D P parallel to A J, and we have /P = D =
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AO = Rtfm.iI (4). Then in the triangle DPB we have

DP= 10=. AI-AO= T- 12 tan.*/, BP=B1-1P=
T 1 - R tan. | /, and the included angle DPB=AIB= 180 -
/. Find in this triangle the angle CB I, and the side B D. The

remainder of the solution is the same as in g 44- The determina-

tion of the point D in the field is also the same, the angle IAD
being here = | /. When B is greater than A, that is, when the

greater radius is given, the solution is the same, except that DP=
/ T, and BP= R tan. j- / T'.

Example. Given T= 447.32, T' = 510.84, 7- 15, and R =
3000, to find ^'. Here ^ tan. | / = 3000 tan. 71 = 394.96, D P=
447.32 - 394.96 = 52.36, J5 P = 510.84 - 394.96 = 115.88, and
DPD = 180 - 15 = 165. Then (Tab. X. 14 and 12)

BP-DP- 63.52 1.802910

i (B D P + PB D) = 7 30' tan. 9.119429

0.922339

B P + D P = 168.24 2.225929

- PB D) = 2 50' 44" tan. 8.696410

.-.PBD= CB 7=4 39' 16"

Next, to find 5 Z>,

DP =52.36 1.71900C

DPB- 165 sin. 9.412996

1.13199C

= 4 39' 16" sin. 8.90926^

B D = 167.005 2.222730

The tangents in this example were calculated from the example

in 44. The values ofCBl and B D here found differ slightly

from those obtained before. In general, the triangle D B P is oi

better form for accurate calculation than the triangle A D B.

46. If no circumstance determines either of the radii, the con-

dition maybe introduced, that the common tangent shall be para>

lei to the line joining the tangent points.

Problem. Given the line AB a (fig. 10), which unites th^

fixed tangent points A and B, the angle IA B = A, and the angle

ABIB,to find the radii A E = R and B F = R' of a com-

pound curve, having the common tangent D G parallel to A B.
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Solution. Let A C and B C be the two branches of the required

curve, and draw the chords A C and B C. These chords bisect

Fig. 12.

the angles A and B ;
for the angle

and the angle GBC = ^DGI=^ABL Then in the triangle

A CB we have A C : A B = sin. ABC: sin. A CB. But A CB =
180 -(CAB+CBA) = 180 - i (A + B), and as the sine

of the supplement of an angle is the same as the sine of the

angle itself, sin. A CB = sin. | (A + B). Therefore A C : a =
a sin. $ B

sin. B : sin. | (A + ^), or A C

manner we should find B C

sin. (A +
'

In a similar

( 82) R =
C
-,

,
and R =

sin. -J A i

of A C and J? (7 just found.

.

sin.

t B C

. Now we have
+ 1?)

, or, substituting the values

-,R = $ a sin. | J.

sin. ^ B sin. -J (
J.
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Example. Given a = 950, A = 8, and B = 7, to find R and

R'. Here

i a = 475 2.676694

i^ = 3 30' sin. 8.785675

1.462369

i 4 = 4 sin. 8.843585

+ -B) = 7 30' sin. 9.115698

7.959283

^ = 3184.83 3.503086

Transposing these same logarithms according to the formula

for R we have

i a = 475 2.676694

M=4 sin. 8.843585

1.520279

1 5 = 3 30' sin. 8.785675

| (A + B) = 7 30' sin. 9.115698

7.901373

R = 4158.21 3.618906

47. Problem. Given the line AB a (fig. 12\ which unites

the fixed tangent points A and B, and the tangents AI=T and
B I= T', to find the tangents A D = x and B G = y of the two

branches of a compound curve, having its common tangent I) Q
parallel to A B.

Solution. Since D C = A D = x, and C & = B G = y, we have

D G = x + y. Then the similar triangles IDG and IA B give
ID : IA = D G : A B, or T x : T = x + y : a. Therefore

a T ax = Tx + Ty (1). Also A D : A I = B G : B 7, or

x\Ty\T. Therefore T y = T 1 x (2). Substituting in (1) the

value of Ty in (2), we have a T ax = Tx + T' x, or ax +
Tx + T' x = a T-,

aT
.

* .X = a+T +T"
T' x

and, since from (2), y ~-
,

-
y ~ a + T + T'

'
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The intersection pointsD and G and the common tangent point

C are now easily obtained on the ground, and the radii may be

found by the usual methods. Or, if the angles IA B = A and

A B I= B have been measured or calculated, we have ( 5) R =
x cot.

-J- A, and R' = y cot. B. Substituting the values of a; an 1

y found above, we have R =
a + ,

and R =
a+ T + T >

Example. Given a = 500, T = 250, and T = 290, to find x

and y. Here a + T + T' 500 4- 250 4- 290 - 1040 ; whence

x = 500 x 250 -*- 1040 = 120.19, and y = 500 x 290 -f- 1040 =
139.42.

48. Problem. Given the tangents A I= T< B I= T'
,
and

the angle of intersection I, to unite, the tangent points A and B

Fig. 13.

* The radii of an oval of given length and breadth, or of a three-centre

arch of given span and rise, may also be found from these formulae. In

these cases A + B = 90, and the values of R and R' may be reduced to R =
aT aT'

- and R' =
a + T'-T
tion, or they may be readily calculated.

These values admit of an easy construe-
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(fig. 13) by a compound curve, on condition that the two branches

shall have their angles of intersection IDG and IG D equal.

Solution. Since IDG = IGD = $I, we have ID - I G.

Represent the line ID = I G by x. Then if the perpendicular

IH be let fall from J, we have (Tab. X. 11) DH=ID cos. IDG =
x cos. i J, and D G = 2 x cos. i I. But D G = D C + C G =
AD+BG=T x + T' x = T + T' 2 x. Therefore

2xcos.$I= T + T' 2x, or 2x + 2xcos.il= T + T \
whence

or (T b x ^'

_
1 + cos.

"

cos. 2 */
'

The tangents AD = T x &ud B G = T' x are now readily

found. With these and the known angles of intersection, the radii

or deflection angles may be found ( 5 or 11). This method an-

swers very well, when the given tangents are nearly equal ; but in

general the preceding method is preferable.

Example. Given ^=480, T'=500, and J=18, to find x.

Here

J(5T+ r') = 245 2.389166

i/=430' 2 cos. 9.997318

x = 246.52 2.391848

Then A D = 480 - 246.52 = 233.48, and B G = 500 - 246.52 =
253.48. The angle of intersection for both branches of the curve

being 9, we find the radii A E = 233.48 cot. 4 30' = 2966.65, and

B F= 253.48 cot. 4 30' = 3220.77.

ARTICLE III. TURNOUTS AND CROSSINGS.

49. The turnouts here considered are of three kinds : Those in

which a pair of rails in the main track are switched, and the turn-

out curve is made tangent to the switched rails
;
those in which a

point switch, sometimes called a split switch, is employed, to one

side of which, when thrown, the turnout curve is made tangent ;

and those in which a pair of rails of the main track are switched

in such a way that they become part of the turnout curve, which

thus becomes tangent to the main track. The problems that im-

mediately follow ( 50 to 64) are applicable to the first two cases.

Problems relating to the third case will follow (g 65 to 76).
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First and Second Cases.

50. Let A B (fig. 14) represent either a switched rail, or the side

of a point switch when thrown. To this line the outer rail B F
of the turnout is tangent, and crosses the main track at F. The

angle G F M, denoted by F, is called the frog angle, and the an-

gle D A B, denoted by S, is called the switch angle. The gauge
of the track D (7, denoted by g, and the distance D B, called the

^hrow, denoted by d, are supposed to be given. The distance

A B = Us also given, whence we have sin. S = -75 = 7 If, for
A. Jj I

example, we had A B = I = 18, and d = .42, we should have

sin. S = ~ = .02333, or S = 1 20'.
lo

A. Turnout from Straight Main Track.

51. Problem. Given the radius R of the centre line of a

turnout (fig. 14), to find the frog angle G FM = F and the chord

Solution. Through the centre E draw EK parallel to the

main track. Draw BH and FK perpendicular to E K, and join

B F. Then, since EF is perpendicular to FM and FK is per-

pendicular to F G, the angle EFK= GFM=F-, and since

EB and BH are respectively perpendicular to A B and A D,
the angle EBH-DAB S. Now the triangle EFK gives
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rr
JT"

(Tab. X. 2) cos.EFK
^--^

. But E F, the radius of the outer

rail, is equal to R + \ g, and FK=CH = BH-BC-
BE cos. EBH BC =(R + \g} cos. S (g

-
d). Substituting

^ T̂ (R 4- -J- g} cos. $ (g d)
these values, we have co$.EFK= y/ -^ ^ z

,
or

R + ig

cos. .F = cos. S -

: .

-/t + kg

From this formula F may be found by the table of natural

cosines. To adapt it to calculation by logarithms, we may con-

sider g d to be equal to (g d) cos. S, which will lead to no

material error since g d is very small, and cos. S almost equal

to unity. The value of cos. F then becomes

To find BF, the right triangle B CF gives (Tab. X. 9) BF =*

T> rt

But B C-g-d and the angle BFC=BFE -
siu.BFC'
CFE = (90 \BEF) (90 -F) = F-$BEF. But

BEF = BLF EB L = F S. Therefore B F C = F
| (F S) = | (F 4- S). Substituting these values in the formula

for B F, we have

BF= . ?-* .

Example. Given g = 4.7, d .42, = 1 20', and R = 500, to

find F and .B.F. Here nat. cos. S = .999729, g - d = 4.28,

.# + ^ -
502.35, and 4.28 -- 502.35 = .008520. Therefore nat.

cos. F = .999729 - .008520 = .991209, which gives F = 7 36' 10".

Next, to find B F,

g-d = 4.28 0.631444

(F + S) = 4 28' 5" sin. 8.891555

B F = 54.94 1.739889

52. Problem. Given the frog angle GFM= F (fig. 14), to

find the radius R of the centre line of a turnout, and the chord

BF.
Solution. From the preceding solution we have cos. F =
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(g-d)
^ Therefore ( + } g) cos. F=(R +R + ig

t g) cos. S (ff d), or

For calculation by logarithms this becomes (Tab. X. 29)

^ E + ^ g =
sin.lt(F+S)sm.$(F-Sy

Having thus found R + \g, we find R by subtracting \g. BF
is found, as in the preceding problem, by the formula

Example. Given # = 4.7, d = .42, S = 1 20', and F = 7, to

find R. Here

I (g
-

d) = 2.14 0.330414

+ S) = 4 10' sin. 8.861283

_ #)
- 2 50' sin. 8.693998

7.555281

R + ! = 595.85 2.775133

.-.^ = 593.5

Frogs on some roads are designated by numbers denoting the

ratio of the length of the frog to its width, the width being a line

drawn across the widest part of the frog, and the length a per-

pendicular on this line from the point of the frog; so that if the

number of the frog be denoted by w, we shall have

cot. \ F = 2 n.

Then to find
-J-
F we find the angle whose cotangent is double

the number of the frog. Thus for frog number 7 we look for the

angle whose cotangent is 14, and we find $ F= 4 5' 8". The

frog angles in Tab. V. are so computed.

53. Problem. To find mechanically the proper position of
a given frog.

Solution. Denote the length of the switch rail by /, the length
of the frog by /, and its width by w. From B as a centre with a

radius BH=:2l, describe on the ground an arc tf -fiT/T (fig. 15),
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and from the inside of the rail at # measure @H=2d, and from
H measure HK such that HK\BH^w : /, or HK: 21 =

%w :/; that is, HK= ^.
Then a straight line through B and

the point K will strike the inside of the other rail at F, the place

for the point of the frog. For the angle HBKhas been made

equal to i F, and if BM be drawn parallel to the main track, the

angle MBH is seen to be equal to $S. Therefore, MBK=
BF C= i (F + ),

and this was shown ( 50) to be the true value

of BFC.
54. If the turnout is to reverse, and become parallel to the main

track, the problems on reversed curves already given will in gen-
eral be sufficient. Thus, if the tangent points of the required
curve are fixed, the common radius may be found by 40. If the

tangent point at the switch is fixed, and the common radius given,

the reversing point and the other tangent point may be found by
37, the change of direction of the two tangents being here equal

to S. But when the frog angle is given, or determined from a

given first radius, and the point of the frog is taken as the revers-

ing point, the radius of the second portion may be found by the

following method.

Problem, (riven the frog angle F and the distance HB =
b (fig. 16) between the main track and a turnout, to find the radius

R' of the second branch of the turnout, the reversing point being
taken opposite F, the point of the frog.

Solution. Let the arc FB be the inner rail of the second

branch, F& R '

\g its radius, and B the tangent point where

the turnout becomes parallel to the main track. Now since the

tangent FK is one side of the frog produced, the angle HFK
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F, and since the angle of intersection at K is also equal to F
t

BFK--=ltF( 2, II.) ;
whence B FH=^F. Then ( 82) FG =

Fig. 16.

$BF
sin.BFK

X.9),orJ^=^
have

. But BF=-
.

sin. Y JP

0111. Y^- sm.BFH
. Substituting this value of |B F, we

In measuring the distance HB = b,it is to be observed, that

the widths of both rails must be included.

Example. Given b 6.2 and F= 8, to find R '. Here

i 6 = 3.1 0.491362

i-F=4 sin. 8.843585

= 44.44 1.647777

=4 sin. 8.843585

> -% g = 637.08 2.804192

.-.#'=639.43
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B. Crossings on Straight Lines.

55. When a turnout enters a parallel main track by a second

switch, it becomes a crossing. As the switch angle is the same on

both tracks, a crossing on a straight line is a reversed curve be-

tween parallel tangents. Let HD and NK (fig. 17) be the centre

lines of two parallel tracks, and HA and .5 JTthe direction of the

switched rails. If now the tangent points A and B are fixed, the

distance A B = a may be measured, and also the perpendicular
distance BP= b between the tangents HP and B K. Then the

common radius of the crossing ACB may be found by 33
;
or

if the radius of one part of the crossing is fixed, the second radius

may be found by 34. But if both frog angles are given, we have

the two radii or the common radius of a crossing given, and it

will then be necessary to determine the distance A B between the

two tangent points.

56. Problem. Given the perpendicular distance GN= b

(fig. 17) between the centre lines of two parallel tracks, and the

radii E G= R and CF= R '

of a crossing, to find the chords A C
and B C.

Solution. Draw E G perpendicular to the main track, and
A L, CM, and B L '

parallel to it. Denote the angle A E C by E.

Then, since the angleAEL = Aff6r = S,wQ have CEL = E +

S, and in the right triangle GEM (Tab. X. 2), CEcos. CEM=
Rcos.(E + S) = EM=EL-LM. But EL = AEcos.A EL
= E cos. S, and L M : L' M= A C : B C. Now A C : B C =
EC: CF=R:R'. Therefore, LM : L' M= R : R\ or LM :

LM + L'M=R\R + R'
;
that is, LM : b -2d = R: R + R'

whence LM=
j_

~
/. . Substituting these values of EL and

LH in the equation for R cos. (E + S), we have R cos. (E + S) =

.

'
. cos. (E + S) = cos. S - -

j-t + M

Having thus found E + S, we have the angle E and also its

equal CFB. Then ( 83)
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We have also AB = AC + B C, since A C and B C are in the

same straight line ( 32), or A B = 2 (R + R ')
sin. J E.

Fig. 17.

When the two radii are equal, the same formulae apply by mak-
ing R' R. In this case, we have

cos. (E + S) = cos. S -
2 R

Example. Given d = .42, g
-

4.7, S = 1 20', b = 11, and the

angles of the two frogs each 7, to find AC=BC=%AB. The
common radius R, corresponding to F= 7, is found ( 52) to be
593.5. Then 2 R = 1187, b-2d= 10.16. and 10.16 -t- 1187 =
.00856. Therefore, nat. cos. (E 4- S) = .99973 - .00856 = .99117;
whence E + S = 7 37' 15". Subtracting S, we have E = 6 17' 15".

Next
212 = 1187 3.074451

i^^38'37^" sin. 8.739106

AC= 65.1 1.813557

C. Turnout from Curves.

57. Problem. #wm the radius R of the centre line of the

main track and the frog angle F, to determine the position of the

frog by means of the chord BF (figs. 18 and 19), and to find the

radius R of the centre line of the turnout.

Solution. I. When the turnout is from the inside of the curve
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(fig. 18). Let A G and CF be the rails of the main track, A B
the switch rail, and the arc B F the outer rail of the turnout,

Fig. 18.

crossing the inside rail of the main track at F. Then, since the

angle EFK has its sides perpendicular to the tangents of the

two curves at F, it is equal to the acute angle made by the cross-

ing rails, that \s>,EFKF. Also EB L = S. The first step is

to find the angle BKF denoted by K. To find this angle, we
have in the triangle BFK (Tab. X. 14) BK+KF -.BE-
EF = tan. i (BFE + FB E} : tan. (B FE - F B E). But
BE= R + \g - d, and EF = R - $ g. Therefore, B E +
KF-^R-d, and BE-EF= g-d. Moreover, BFE=
BFE + EFE=BFE + F,w&FBE=EBF-EBE=
B F E - S. Therefore, BFE-FBE=F+S. Lastly,

BFE + FBE 180 K. Substituting these values in the

preceding proportion, we have 2 R dig d = tan. (90

But tan. (90
- | K) = cot. Jf= -

9-<

g-d
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Next, to find the chord B F, we have, in the triangle B F G

(Tab. X. 12), f = S^n

air
F

- But B C = g - d, and
al II. Jj J> \j

B CF = 180 - F CK = 180 -
(90

- K) = 90 + i K, or

sin. 5 CF=cos.$K. Moreover, BFC= i(F + S) ;
toiBFK ~

Therefore, B FK FBK=2BFC. But, as shown above,

BFK-FBK=F+ S. Therefore, 2 B F C = F + ,
or

BFC = $(F + S). Substituting these values in the expressior

for B F, we have

(g-d) GoS.$K
'

Lastly, to find .#', we have ( %%) R + \g = EF= ..

sin

= BLF- EBL,an& BLF = LFK + LKF =
F + K. Therefore, BEF = F + K- S, and

II. When the turnout is from the outside of the curve, the pre-

ceding solution requires a few modifications. In the present

case, the angle E FK 1 = F (fig. 19) and EB L = S. To find

K, we have in the triangle BFK, KF+BK: KF-BK-
tan. 1 (F BK + B FK) : tan. \(FBK-BFK). But KF=
R + g, and BK R $ g + d. Therefore, KF + BK =
2R + d, and KF-BK=g-d. Moreover, .F JT = 180 -
FBL = 180- (EBF - EB L) = 180-^^^- S), and

BFK=\W - BFK' = 180 - (B FE + EF K') = ISO -
(EBF + F). Therefore, FBK - BFK = F + S. Lastly,

FBK+ BFK=18Q-K. Substituting these values in the

preceding proportion, we have 2 ft + d : g d = tan. (90

* JT) : tan. * (^ + S), or tan. (90
- * K) = P

* + fl ta

But tan. (90
-

JT) = cot. }K =
tan.

Next, to find B F, we have, in the triangle BF C, BF =
= 9~d, and BCF=^-^K, or
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sin. B C F = cos. K. Moreover, B F C = $ (F + S) ;
for

BFK= RFC - B F C, and FB K= KG F + B FC =
KFC+BFC. Therefore, FBK- BFK- 2 BF C. But,

as shown above, FBK-BFK-F+S. Therefore, 2BFC-
F + S, or ^ F C = | (^ + S). Substituting these values in the

expression for B F, we have, as before,

7? F - (ff
-

<Q cos- -I J5T*
Z '

Lastly, to find R
', we have ( 82)R 1 + $g = EF-

* Since $K is generally very small, an approximate value of BF may be

obtained by making cos. IK=1. This gives BF=
identical with the formula for BF in 51.

9-d
sin.* (-F + S)

,
which is
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nd BLF-LFK-LKF^
F- K. Therefore, B EF = F - K- S, and

$BF
KF-K-S)'

Example. Given g = 4.7, d = .42, S = 1 20', R = 4583.75, and
F= 7, to find the chord B F and the radius R' of a turnout from
the outside of the curve. Here

g-d = 4.28 0.631444 0.631444

2R + d = 9167.92 3.962271

l(F + S) = 4 10' tan. 8.862433 sin. 8.861283

2.824704 1.770161

"= 22' 1.8" tan. 7.806740 cos. 9.999991

^^=58.905 1.770152

2 0.301030

1 (F K- S) = 2 27' 58.2" sin. 8.633766

8.934796

E + ig = 684.47 2.835356

.-. R' = 682.12

58. Problem. To find mechanically the proper position of
a given frog.

Solution. The method here is similar to that already given,

when the turnout is from a straight line ( 53). Draw BM (figs.

18 and 19) parallel to F C, and we have FBM = BFC = i(F +
S), as just shown (- 57). This angle is to be laid off from B M\
but as F is the point to be found, the chord F C can be only esti-

mated at first, and BM taken parallel to it, from which the angle

% (F + S) may be laid off by the method of 53. In this case,

however, the first measure on the arc is d, and not 2 d
;
since we

have here to start from B Jf, and not from the rail. Having thus

determined the point F approximately, BM may be laid off more

accurately, and F found anew.

59. Problem. Given the position of a frog by means of the

chord B F (figs. 14, 18, and 19), to determine the frog angle F.

a d
Solution. The formula BF = - f-= ^-, which is exact

sm.i(F+ S)
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on straight lines ( 51), and near enough on ordinary curves ( 57.

note), gives

By this formula $(F + S) may be found, and consequently F.

60. Problem. Given the radius R of the centre line of the

main track, and the radius R '

of the centre line of a turnout, to

find the frog angle F, and the chord BF (figs. 18 and 19).

Solution. I. When the turnout is from the inside of the curve

(fig. 18). In the triangle B EK find the angle B EK and the

side E K. For this purpose we have B E = R' + \g, BK
R + %g _ d, and the included angle EB K'= S. Then in the

triangle EFKwe have E K, as just found, EF= R' + g, and

FK= R i g. The frog angle E FK = F may, therefore, be

found by formula 15, Tab. X., which gives

8 (s
-

a)

where s is the half sum of the three sides, a the side E K, and 6

and c the remaining sides.

Find also in the triangle EFK the angle FE K, and we have

the angle BEF=BEK FEK. Then in the triangle

BEF we have (83)

jjy B F=2(R' + i#)sin. % BEF*

II. When the turnout is from the outside of the curve (fig. 19).

In the triangle BEK find the angle B EK and the side E K.

For this purpose we have B E = R' + ig, BK = R i g + d,

and the included angle EBK= 180 S. Then in the triangle

EF K we have E K, as just found, EF = R ' + \g, and FK
R + \g. The angle E FKm&y, therefore, be found by formula

15, Tab. X., which gives tan. i EFK= \/~
~

. But
s (s a)

* The value of B F may be more easily found by the approximate formula

BF - 7-^ r-, and generally with sufficient accuracy. See note to
sin. i V-P + > )

57. This remark applies also to BF in the second part of this solution.
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the angle EF K' = F = 180 - E F K. Therefore J F - 90 -
\EFK, and cot. \F- tan. | EFK\

JE^P" . . W u. ^ ^
-|/

, ,

o ^o
~~

U)

where s is the half sum of the three sides, a the side E K, and I

and c the remaining sides.

^\'n^ also in the triangle EFK the angle FE K, and we have

the angle BEF=FEKBEK. Then in the triangle BEF
we have ( 83)

BF = 2(R'

Example. Given g = 4.7, d = .43, S= 1 20', R = 4583.75, and

jK' = 682.12, to find F and the chord BF of & turnout from the

outside of the curve. Here in the triangle B EK (fig. 19) we have

5
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W + ig = 684.47, B K= R-g + d = 4581.82, and the

angles B EK + B KE = S =1 2V'. Then
BK - B E = 3897.35 3.590769

i (B EK + B KE )
= 40' tan. 8.065806

1.656575

BK + B E = 5266.29 3.721505

%(BEK- BKE}* = 29.6029' tan. 7.935070

.-.BEK=\ 9.6029'

EK is now found by the formula
sm. B EK

log. E K= log. 4581.82 + log. sin. 178 40' log. sin. 1 9.6029' =
3.721491, whence EK= 5266.12.

Then to find F, we have in the triangle EF K, s = \ (5266.12 +
684.47 + 4586.10) = 5268.34, s - a = 2.22, s - b = 4583.87, and

8 - o = 682.24.

a - ft = 4583.87 3.661233

s - c = 682.24 2.833937

6.495170

s = 5268.34 3.721674

5 - a = 2.22 0.346353

4.068027

2)2.427143

i^=330' cot. 1.213571

. . F = r
To find FE K, we have s as before, but as a is here the side

FK opposite the angle sought, we have s a = 682.24, s b =
4583.87, and s c = 2.22. Then by means of the logarithms just

used, we find |FEK- 3 2' 45". Subtracting |BEK- 34' 48",

we have $BEF = 22T 57". Lastly, B F = 1368.94 sin. 2 27'

57" = 58.897. _
The formula BF= -

-^ ^-
( 57, note) would give BF =

58.906, and this value is even nearer the truth than that just found,

owing, however, to no error in the formulae, but to inaccuracies

incident to the calculation.

* This angle and the sine of 1 9.6029' below, are found by the method

given in connection with Table XV. If the ordinary interpolations had
been used, we should have found F=7 7', whereas it should be 7, since

this example is the converse of that in 57.
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61. If the turnout is to reverse, in order to join a track parallel

to the main track, as A CB (fig. 20), it will be necessary to deter-

mine the reversing points C and B. These points will be deter-

mined, if we find the angles A E C and B F C, and the chords

A G and C B.

62. Problem. Given the radius DK=R (fig. SO) of the

centre line of the main track, the common radius EC CF

H '

of the centre line of a turnout, and the distance B G = b be-

tween the centre lines of the parallel tracks, to find the central

angles AEG and B F C and the chords A C and B C.

Solution. In the triangle A EKfind the angle A EK and the

side E K. For this purpose we have AE=R',AK=R d,

and the included angle E A K S. Or, if the frog angle has

been previously calculated by 60, the values of A EK and EK
are already known.*

Find in the triangle EFK the angles EFK and FE K. For

this purpose we have E K, as just found, EF= 2 R', and FK=

* The triangle A EK does not correspond precisely with B E Kin 60, A
being on the centre line and B on the outer rail ;

but the difference is too

slight to affect the calculations.
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R + R' l. Then AEC=AEK FEK, and

EFK. Lastly (83),

B@P" AC=2Rsm.iAEC, CB = 2R'si

This solution, with a few obvious modifications, will apply,

when the turnout is from the outside of a curve.

D. Crossings on Curves.

63. When a turnout enters a parallel main track by a second

switch, it becomes a crossing. Then if the tangent points A and

B (fig. 21) are fixed, the distance A B must be measured, and also

Fig. 21.

the angles which A B makes with the tangents at A and B. The
common radius of the crossing may then be found by 40

;
or if

one radius of the crossing is given, the other may be found by
38. But if one tangent point A is fixed, and the common radius

of the crossing is given, it will be necessary to determine the re-

versing point C and the tangent point B. These points will be

determined, if we find the angles AEG and B F (7, and the

chords^. C and C B.
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64. Problem. Given the radius DK=R (fig. 21) of the

centre line of the main track, the common radius E C = CF =
R '

of the centre line of a crossing, and the distance D 6r = b be-

tween the centre lines of the parallel tracks, to find the central

angles AEG and B F C and the chords A C and C B.

Solution. In the triangle A EKfind the angle A EK and the

side E K. For this purpose we have AE = R',AK=R d,

and the included angle E A K S.

Find in the triangle B FK the angle B FK and the side FK.

For this purpose we have BF=R',BK=R b + d, and the

included angle FBK= 180 - S.

Find in the triangle EFK the angles FEK and EF K. For

this purpose we have EK and FK as just found, and EF = 2R'.

ThenAEC = AEK-FEK, and B F C =EFK - BF K.

Lastly ( 83),

Third Case.

Turnouts Tangent to Main Track.

65. In this case a pair of rails of the main track are switched

in such a way that they become parts of the turnout curve. Their

length in relation to R, the radius of the turnout, must be deter-

mined. Denote their length by I and the " throw "
by d. Then

on the centre line d is the tangent offset of a curve of radius R.

By 18 this offset or deflection is equal to the square of the chord

I
9

divided by twice the radius, or d = -=
;

.-.1= \/2~Rd.

By this formula column I in Tab. V. is calculated.

A switch-rail may be made to take the proper curve in the fol-

lowing manner : Suppose the length of the switch-rail, as calcu-

lated above, to be 20 feet. A rail 30 feet in length is, for 10 feet

back from the tangent point, spiked down, or otherwise securely

fastened on the main track, leaving 20 feet free for the switch-rail.

The free end being thrown in the usual way, a curve is formed,

which, however, is not a circular curve, but an elastic curve. The

inclination at the free end, in the case supposed, would be about
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three-fourths of that of the circular curve that meets it. If it be

desired to make the two inclinations equal, so that the two curves

shall be tangent to each other, the switch-rail should be only
three-fourths of the calculated length of I. The switch-rail may,

however, be made to take a circular form by suitable stops at-

tached to the sleepers. The full length, as calculated above, will

then, of course, remain free. The offsets from the tangent to the

stops will be to d as the squares of the distances from the tan-

gent point are to Z*.

A. Turnout from Straight Lines.

66. Problem. Given the radius E of the centre line of a

turnout, and the gauge B G == g (fig. 22\ to find the frog angle

GFM=F,and the chord B F.

Solution. The angle CE F, having its sides perpendicular to

GF and F M, is equal to GFM= F. In the triangle CEFwe
1 1

have cos. CEF=

Draw ED perpendicular to BF. Then, from the similar tri-

angles B F C and B E D, we have the angle BFC=BED=
| F. Therefore, B F sin. $F

67. Problem. Given the frog angle GFM=F (fig. 22),
and the gauge BC= g,to find the radius R of the centre line of a

turnout, and the chord B F.

Solution. From the preceding problem we have

v-Saa Z> 17 9^ ".^irrr
In the triangle B ED we have BE sin. BED = |B F, or

(R + $g)sm.$F
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To put R in another form, substitute for BF its value above,

and transfer %g to the second member. We then have R =
Iff

If now the frog angle F is expressed by means of the ratio n of

the length to the breadth of the frog, as explained in 52, we

have cot. J F = 2 n, and, substituting this value in the expression
for R, we have

By the formulae of this section the values of F, B F, and R in

Table V. are calculated.

68. A ready way of locating the turnout curve is to locate the

outer rail first by stretching a cord from B to F, and from it fix-

ing the curve by ordinates at the centre and at the quarter points.

The middle ordinate m may be taken in all cases = \g. For

-
,
and putting in the value of R + | g above,(26),ro =

and reducing, we have m = B Fsin. $ F = g. For g = 4.708,

m = 1.177. At the quarter points the ordinates will be f m =
0.883. The inner rail is then located by the gauge.

69. If the turnout is to reverse and become parallel to the main

track, the formulae of 53 apply here also.
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B. Crossings on Straight Lines.

70. When a turnout enters a parallel main track by a second

curve, it becomes a crossing, and the two curves form a reversed

curve between parallel tangents. The problems that arise here

have been solved already ( 33-36).

C. Turnout from Curves.

71. Problem. Given the radius R of the centre line of the

main track and the frog angle F, to determine the position of the

frog ~by means of the chord BF (figs. 23 and
), and to find the

radius R of the centre line of the turnout.

Solution. I. Turnout from the inside of the curve of the main
track. Let B G and CF (fig. 23) be the rails of the main track, and
the arc BF the outer rail of the turnout, crossing the inner rail of

Fig. 23.

the main track at F. Then, since the angle EFK has its sides

perpendicular to the tangents of the two curves at F, it is equal

to the acute angle made by the crossing rails; that is, EFK = F.
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The first step is to find the angle BKF denoted by K. To find

this angle, we have in the triangle BFK (Tab. X., 14) tan. k

mFK irnin (BK-KJ?)te*.i(BFK+FBK)
(tJ< K- S K) - - BK+KF
BK- KF=BK - CK = g, and BK + KF - 2 R. Also,

tan. %(BFK + FBK} = tan. i (180
- K} = tan. (90

- i K) =
cot.^K, and BFK-FBK=BFK-BFE = F. Substi-

tuting these values, we have tan. F =
^-^ 2 R tan K 1

or 2 R tan. | F tan. %K=g\

tan lK-tan. $ JL 75
-

T->
.

if, by the notation of 52, we put cot. J F = 2 n.

To find the chord B F, we have in the triangle B F C, B F

But B C = g, and sin. B CF = sin. FCK =

cos. i K. Moreover, B F C = i F. ~ForBFK=KFC +

BFC,KH&FBK=KCF-BFC = KFC-BFC. There-

fore, by subtraction, BFK-FBK=2BFC. But, as shown

above, BFK FBK=F. Therefore B F C i F. Sub-

stituting these values in the expression for B F, we have

-9 cos, j K*
~

Lastly, to find J2', we have in the triangle B E F, EFsm.
%BEF=%BF. But EF=R' + \g, and the exterior angle

II. Turnout from the outside of the curve of the main track.

Let J5 Gr and C jF
7

(fig. 24) be the rails of the main track, and the

arc BF the outer rail of the turnout, crossing the outer rail of the

main track at F. The frog angle F is now represented by the

angle EF K' . The first step is to find the angle BKF, denoted

* Since i Kis generally very small, an approximate value of BF may be

obtained by making cos. \K= 1, whence BF .

g
. CT , which ia identical

sin. 5- _r

with the formula for BF in 66. This remark applies also to B F in the

second part of this solution.
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by K. To find this angle, we have in the triangle B FK (Tab. X..

BFK}

14), t - BFK) =

EutKF-BJR:=g,<dudKF + BK-2R. Also, tan.

B F K) = tan. | (180
- K) = tan. (90

- i K) = cot. K and

Fig. 24.

FBK-BFK = (180 -FBE)- (180
-

5jPJ5T') =BFK'-
FBE = BFK' BFE = F. Substituting these values, we

have tan.}
tan. %K = g.

^ tan. J .

or 2 ^ tan.

. . tail,
-g-

_i =5
- -=r-

,

JLli J\,

if, by the notation of 52, we put cot. \ F = 2 n.

To find the chord B F, we have in the triangle BF C, BF
B C"sin B CF

. But BC g, and sin. #67^= sin. (90 \K}
sin. .

cos. J AT. Moreover, 5^^7=1^. For BFK= KFC- BFC,
and FBK= KCF + BFC^KFC + BFC. Therefore, ty
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subtraction, FBK'- B FK =2 B F C. But, as shown above,
FBK-BFK=F. Substituting these values, we have

F g cos, jK
~- '

Lastly, to find 72', we have in the triangle BE F, JZ Fsin. $

\BF. But EF=R' + |, and the angle BEF-
EFK E K. _P = _r JL,,

Example. Given g = 4.708, R - 1910.08, and F = 7 9' 10", to

find the chord BF and the radius R '

of a turnout from the inside

of the curve (fig. 23).

To find 4 Ki $g = 2.354 0.371806

i^=334'35" cot. 1.204115

To find BF:

R = 1910.08

g = 4.708

1.575921

3.281051

tan. 8.294870

0.672836

cos. 9.999915

0.672751

i^=334'35" sin. 8.795038

B F = 75.46

To find R 1

: = 37.73

R' + ig = 459.87

.-.^'=457.52

1.877713

1.576687

sin. 8.914051

2.662636

72. Problem. Given the radius R of the centre line of the

main track and the radius R' of the centre line of a turnout, to

find the frog angle F, and the chord B F (figs. 23 and 24).

Solution. I. Turnout from the inside of the curve of the main

track. In the triangle EFK (fig. 23) we have given the sides

EK=R-R',EF=R' + ltg, and FK=R-^g, to find

the angle EFK = F. By formula 15, Tab. X., tan. \F =

8(8 0)
,
where s is the half sum of the three sides, a the
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side E K opposite the angle sought, and b and c the remaining
sides. Therefore, s = \(EK + EF + FK} = R, s -a=s-

Fig. 23.

=R R' %g, and s c = s

= %g. Substituting these values, we have

tan. AF =
R x R'

By 71, JBF=^p^4j= where iJf is the angle DKF.
sin.

-g-
Jj

When F has been found, |7Tmay be found by the formula for

tan. ^K in 71 ; but, generally, -J-
K is so small that we may put

cos. iK= 1, and we have

. ^ ET, nearly.DOT

II. Turnout from the outside of the curve of the main track.

In the triangle EFK (fig. 24) we have given the sides EK=
R + R', E F= R' + \g, and FK=R + $g, to find the angle
EFK, the supplement of the angle E FK\ which now repre-

sents the frog angle F. By formula 15, Tab. X., tan. EFK
(s o) (s c^

^
wnere s is the half sum of the three sides, a the

s(s a)
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side EK opposite the angle sought, and b and c the remaining

sides. Therefore = %(EK + EF + FK) = R + R' +lg, s -

Fig. 24.

R'. Substituting these values, we have tan. \EFK=. <

R x R'
R'

tan'^V(JL OT
By where is the angle

When J?
7 has been found, | -ff' may be found by the formula for

tan. \K in 71 ; but, generally, -^^Tis so small that we may put
cos. \K 1, and we have

BF= .

g
.-,, nearly,

sin. iF
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73. If the turnout is to reverse in order to join a track parallel
to the main track, as A CB (fig. 25), it will be necessary to deter-

mine the reversing points C and B. These points will be deter-

mined, if we find the angles AEG and BF C, and the chords

A C and B C.

74. Problem. Given the radius AK= R (fig. 25) of the

centre line of the main track, the common radius E C =
C F = R' of the centre line of a turnout, and the distance

B G b between the centre lines of the parallel tracks, to find
the central angles AEG and B F C, and the chords A C and
BG.

Fig. 25.

Solution. In the triangle EFK find the angles EFK and

FE K. For this purpose we have the sides of the triangle given

namely, EK-R-R', EF-^R\ and FK=R + R' ~b.

Then, by formula 15, Tab. X., tan.i A = */(*-*>)(*-<*) where
s (s a)

s is the half sum of the three sides, a the side opposite the angle

sought, here denoted by A, and ~b and c the remaining sides,

Putting FJZKfor A, and FKfor a, we shall have an expression
for t&r\.%FEK= tan. | (180 AEG) = coi.^AEC, and put-

ting EFK for A and EK for a, we shall have an expression for
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tan.\EFK- tan. \BFC. Making the proper substitutions in

the formula for tan.^J., we shall have

Having found A E C and BF C, we have the chords

This solution, with a few obvious modifications, will apply when

the turnout is from the outside of the curve.

75. Problem. Given the position of a frog by means of the

vhord BF (figs. 22, 23, and 24), to find the frog angle F.

Solution. The formula BF = .

g
, CT ,

which is exact on
sin. F

straight lines ( 66). and near enough on ordinary curves ( 71,

note), gives

D. Crossings on Curves.

76. When a turnout enters a parallel main track by a second

switch, it becomes a crossing. Then, if the tangent points A and
B (fig. 25) are fixed, the distance A B must be measured, and also

the angles made by AB with the tangents at A and B. The
common radius of the crossing may then be found by 40, or if

one radius of the crossing is given, the other may be found by
38. But if one tangent point A is fixed, and the common radius

of the crossing is given, the reversing point C and the second

tangent point B may be found by the problem of 74.

E. Double Turnouts.

77. The cases that arise when two turnouts start from the same

point on the main track fall under problems already solved.
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Thus when the outer rails of two turnouts, as B CF and B' CF'

(fig. 26), turn opposite ways, B' C F' may be treated as a turnout

from the outside of the inner rail B ' D of B C F. Then if the

frog angle at C is given, the radius of B' OF' may be found by

Fig. 26.

57 or 71, or if the radius of B ' C F' is given, the frog angle at

C may be found by 60 or 72,

Or, the third frog may be placed with its point in the centre

line of the main track, and its angle may be taken as made up of

two angles, F\ and F<*, one on each side of said centre line, as in

figure 26. On a straight main track the two turnouts would in

general be symmetrical, and FI be equal to F^. On a curved

main track these partial angles may be equal or unequal. All

the relations between the radii and the frog angles concerned may
be determined by previous problems, substituting \g for g as the

distance of the line CH from either rail. Thus in the figure the

radius of B C and the partial frog angle FI depend on each other,

so also do the radius of B' C and the partial frog angle F*
When one of the chords, as B C, is fixed in length, the length of

the other, B' C, is also fixed, whether equal to B C on straight

lines or different on curves. The partial frog angle F^ being de-
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pendent on the length of B '

C, is found by 59 or 75, and from

it the radius of the curve B' C is calculated.

When either curve beyond (7, as C F, is not a continuation

of the curve B C, the relation between its radius and the frog

angle F is to be determined by considering Fl to be a switch

angle, and the curve CF to commence at the but-end of the frog

( 50 or 51), using %g instead of g for the gauge.
If both turnouts turn the same way, as in figure 27, the third

frog J^a is on a turnout A FI F* from the inside of the curve

AF, and its angle and position may be determined by 60

or 72.

Fig. 27.

78. Remarks. 1. If the two turnouts of figure 26 are symmetri-
cal and tangent to the straight main track, the chord B C is to

the chord BF as 1 to y2. For the offset from the tangent BF 1

to C is \g, and the offset to F is g, and these tangent offsets or

deflections are to each other ( 18) as the squares of the chords

B C and B F. Therefore B C* : BF 9 = %g : g = 1 : 2, or B C :

I:f2; whence (7 =^ = i +/2 BF= .7075 JP, nearly.

2. We have ( 66) sin. $^ = ^=, and sin. } Jft as& ss ^-g-^.Jj Jj Jj G Jj O

Denote the whole frog angle at (7 by F' = %Fi, and we have

sin.i^P' = X-^-TY- Also, since, as shown above, BF=BCv%
& -D L>

we have sin. $ F = -=^-j=
-

. Therefore, sin. i F' : sin. $ F =
-tf L> V

'

& ~

S-^TY : T.^ rt
= V2 : 2, or sin. F' = -^ sin. i J^= .707 sin. \ F,2BC BC y% 2

nearly.
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3. We have seen ( 66 and 71) that for a given frog angle the

length of the chord B F in the three turnouts represented in

figures 22, 23, and 24 is practically the same, since we may put in

the three cases BF = . ,
. To find the degree of each of the

sin. F
three turnout curves, we have only to find the central angle sub-

tended by a chord of 100 feet ( 6). Now, in the three cases in

question, we know that the central angles BE F, subtended by
the equal chords B F, are, respectively, F, F + K, and F K.

The central angles for 100 feet chords will be obtained from these

100 100
very nearly by multiplying by JTJ,. Denoting the fraction --r,

by m and the degrees of the three turnout curves by AI, A 2 ,
and A 3 ,

we have A! = m F, A 2 = m (F + K), A 3 = m (F - K). Now mK
is approximately the degree of the curve of the main track (figs.

23 and 24) since K is the central angle of this curve for a chord

approximately equal to B F. Therefore, denoting the degree of

the main track by A, we have, approximately, for the same frog

angle,
Aa = AI + A, A3 AI A.

Thus in the example of 71 (fig. 23), where n = 8, we have by
Tab. V. the degree of a turnout from a straight line AI = 9 31'.

The degree of the main track is here A = 3. Therefore A2 =
A! + A = 12 31', the degree of the turnout from the curve. The

radius found for this turnout was 457.52 and the degree corre-

sponding would be 12 32' 53".

It appears, then, that if, for a given frog, we take from Tab. V.

the degree AI of a turnout from a straight main track, we may
obtain approximately the degree A2 of a turnout from the inside

of a curved track by adding to AI the degree of the main track,

and the degree A3 of a turnout from the outside of a curved track

by subtracting from AI the degree of the main track.

ARTICLE IV. MISCELLANEOUS PROBLEMS.

79. Problem. Given A JB = a (fig. 28) and the perpendicular
B C = b, to find the radius of a curve that shall pass through G
and the tangent point A.

Solution. Let be the centre of the curve, and draw the radii

A and C and the line CD parallel to A B. Then in the right
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triangle COT) we have C 2 = CD'2 + 07)2
. But 0(7 = 72,

CD = a, and D = A - A D = R - b. Therefore, 72* =
+ &2

,
or 2 72 b = a2 + 62

;

*2

Example. Given a = 204 and & = 24, to find 72. Here R =

80. Corollary 1. If R and & are given to find AB = a,

that is, to determine the tangent point from which a curve of

Fig. 28.

given radius must start to pass through a given point, we have

( 79) 2 Mb = a* + &2
,
or a2 = 2 JS & - &2

;

Example. Given & = 24 and 72 = 879, to find a. Here a =

^24(1758-24) = V41616 = 204.

81. Corollary 2. If 72 and a are given, and b is required,

we have (79) 2R b = a* + &*, or &2 - 2 R b = - a*. Solving
this equation, we find for the value of b here required,

82. Problem. Given the distance A C = c (fig. 28) and

the angle B A C = A, to 'find the radius R or deflection angle
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D of a curve, that shall pass through C and the tangent

point A.

Solution. Draw E perpendicular to A C. Then the angle
AOE = iAOC = BAC=A(2, III.), and the right triangle

^ Ogives (Tab. X.9MO =

.. .

sin. A
50

To find D, we have ( 9) sin. D =
-^

. Substituting for 72 its

i c
value just found, we have sin. Z> = 50 -- -tP -r ;

Example. Given c = 285.4 and A 5, to find R and D.

Here R = = 1637.3 ;
and sin. D = 100 = =

sin. 5 285.4 2.854

sin. 1 45' or D = 1 45'.

83. Problem. Given the radius R or the deflection angle
D of a curve, and the angle B A C = A (fig. %8}, made by any
chord with the tangent at A, to find the length of the chord

AC = c.
1 x

Solution. If R is given, we have ( 82) R = -7
;

sin. A.

= 2R sin. A.

10 sin - -^T* r> /o onx :r>
If D is given, we have ( 82) sin. Z) =

_ 100 sin. A
sin. Z>

This formula is useful for finding the length of chords, when a

curve is laid out by points two, three, or more stations apart.

Thus, suppose that the curve A C is four stations long, and that

we wish to find the length of the chord A C. In this case the

angle A = 4 D and c = 10 sm
'^
D

. By this method Table II.
sm. D

is calculated.

Example. Given R = 2455.7, or D = 1 10', and A = 4 40', to
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find c. Here, by the first formula, c - 4911.4 sin. 4 40' = 399.59.

100 sin. 4 40'

By the second formula, c :

T^JTV

84. Problem. Given the angle of intersection KGB I

(fig. %9\ and the distance C D b from the intersection point to

the curve in the direction of the centre, to find the tangent AC =
T, and the radius A = R.

Fig. 29.

Solution. In the triangle A D C we have sin. CA D : sin.

AD C- CD\ AC. But CAD = ^AOD = lI (2, III. and

VI.), and as the sine of an angle is the same as the sine of its sup-

plement, sin.ADC sin.ADE = cos. D A E = cos. /. More-

over, CD b and A C = T. Substituting these values in the

preceding proportion, we have sin. \ / : cos. I = b : T, or T =
6

?
S'* J

; whence (Tab. X. 33)

T= b cot. i 7.

To find R, we have ( 5) R = Tcoi. i I. Substituting for T its

value just found, we have

R = b cot. i /cot. i I.
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Example. Given / = 30, b 130, to find 2* and R. Here

b = 130 2.113943

i 7 = 7 30' cot. 0.880571

T= 987.45 2.994514

i/=15 cot. 0.571948

R = 3685.21 3.566462

85. Problem. Given the angle of intersection KGB I
(fig. 29\ and the tangent A(JT, or the radius A = R, to find
CD=b.

Solution. If T is given, we have ( 84) T = I cot. /, or b =
T

cot.i/'

B^~ .-.&= Ttan.iZ

If .72 is given, we have ( 84) R = b cot. J 7 cot. /, or & =

. . b = R tan. i /tan. -J Z

Example. Given J= 27, T= 600 or j^ = 2499.18, to find b.

Here & = 600 tan. 6 45' = 71.01, or b = 2499.18 tan. 6 45' tan.

13 30' = 71.01.

The distance b from the intersection point to the curve in the

direction of the centre is usually called the external, and this term

is adopted in Table III.

86. Problem. Given the angle of intersection I of two tan-

gents A C and B C (fig. 30\ to find the tangent point A of a curve

that shall pass through a point E, given by CD = a, D E = b,

and the angle CDE = -J /.

Solution. Produce DE to the curve at G, and draw C to the

centre 0. Denote DF by c. Then in the right triangle CDF
we have (Tab. X. 11) D F = CD cos. CD F, or

jgjp" c a cos. $ /.

Denote the distance A D from D to the tangent point by x
t

Then, by Geometry, a2 = D E x D O. But D - D F + F Q =
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= 2 c b. Therefore, x9 = b (2 c

Having thus found A D, we have the tangent A C = A D +
D C = x + a. Hence, R or D may be found ( 5 or 11).

If the point E is given by EH and CH perpendicular to each

other, a and b may be found from these lines. For a = CH +

DH=CH+ EHcoi. \ /(Tab. X. 9), and b = D E =

Example. Given /= 20 16', a = 600, and b = 80, to find x

and R. Here c = 600 cos. 10 8' = 590.64, 2 c b = 1101.28, and

x = \/80 x 1101.28 = 296.82. Then T 600 + 296.82 = 896.82,

and R = 896.82 cot. 10 8' = 5017.82.

87. Problem. Given the tangent A C (fig. 31), and the

chord A B, uniting the tangent points A and B, to find the radius

AO = R.

Solution. Measure or calculate the perpendicular C D. Then
if CD be produced to the centre 0, the right triangles ADC and
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CA 0, having the angle at C common, are similar, and give CD \

AD = AC:AO,OT
_AD x A C

CD '

If it is inconvenient to measure the chord AB, a line E F^

parallel to it, may be obtained by laying off from C equal dis-

tances CE and C F. Then measuring EG and # (7, we have,

from the similar triangles E G C and CAO, CG : GE - AC :

GE xAC

Example. Given A C 246 and A D = 240, to find R. Here

CD = 54, and R = 24
*.

246 = 1093.33.
54

88. Problem. Given the radius AO = R (fig. 31\ to find

the tangent AC T of a curve to unite two straight lines given
on the ground.

Pig. 31.

Solution. Lay offfrom the intersection C of the given straight
lines any equal distances CE and C F. Draw the perpendicular
C G to the middle ofE F, and measure GE and C G. Then the
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right triangles E Or C and CA 0, having the angle at C common,
are similar, and give GE : C G = A : A C, or

CGxAOW GE
By this problem and the preceding one, the radius or tangent

points of a curve may be found without an instrument for measur-

ing angles.

Example. Given R = 1093, GE = 80, and C G - 18, to find

K Here T=**** = 246.

89. Problem. To find the angle of intersection I of two

straight lines, when the point of intersection is inaccessible, and to

determine the tangent points, when the length of the tangents is

given.

Solution. I. To find the angle of intersection /. Let A C and

C V (fig. 32) be the given lines. Sight from some point A on one

line to a point B on the other, and measure the angles CAB and
TB V. These angles make up the change of direction in passing
from one tangent to the other. But the angle of intersection

(g 2) shows the change of direction between two tangents, and it

must, therefore, be equal to the sum of C A B and TB V, that is,

I=CAB + TB V.

But if obstacles of any kind render it necessary to pass from

A C to B V by a broken line, as A D EF B, measure the angles

CAD, ND E, PEF, RFB, and SB V, observing to note those

angles as minus which are laid off contrary to the general direc-

tion of these angles. Thus the general direction of the angles in

this case is to the right ; but the angle PEF lies to the left of

D E produced, and is therefore to be marked minus. The angles
to be measured show the successive changes of direction in passing
from one tangent to the other. Thus CAD shows the change of

direction between the first tangent and A D, NDE shows the

change between AD produced and DE, PEF the change be-

tween DE produced and E F, RFB the change between EF
produced and F B, and, lastly, SB V the change between B F
produced and the second tangent. But the angle of intersection

( 2) shows the change of direction in passing from one tangent to
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another, and it must, therefore, be equal to the sum of the partial

changes measured, that is,

NDE-PEF+RFB + SBV.

II. To determine the tangent points. This will be done if we
find the distances A C and B C

;
for then any other distances from

C may be found. It is supposed that the distance A B, or the

distances A Z>, D E, E F, and FB have been measured.

If one line A B connects A and B,find A C and B C in the tri-

angle ABC. For this purpose we have one side A B and all the

If a broken line ADEFB connects A and B, let fall a per-

pendicular B G from B upon A C, produced if necessary, and

find A G and B G by the usual method of working a traverse.

Thus, if A C is taken as a meridian line, and D K, EL, and FM
are drawn parallel to A C, and D H, E K, and FL are drawn

parallel to B G, the difference of latitude A G is equal to the sum
of the partial differences of latitude AH,DK,EL, and FM,
and the departure B G is equal to the sum of the partial depart-

ures D H, EK, FL, and B M. To find these partial differences

of latitude and departures, we have the distances AD,DE,EF,
and FB, and the bearings may be obtained from the angles al-

ready measured. Thus the bearing of A D is CAD, the bearing
of DE is KDE = KDN + NDE = CAD + NDE, the bear-

ing of EFi$LEF=LEP PEF=KDE PEf, and
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the bearing of FB is M F B = MF R + R F B = L E F +

RFB; that is, the bearing of each line is equal to the algebraic

sum of the preceding bearing and its own change of direction.

The differences of latitude and the departures may now be ob-

tained from a traverse table, or more correctly by the formulas :

Diff . of lat. = dist. x cos. of bearing ; dep. = dist. x sin. of bearing.

Thus, A H= A D cos. CA D, and DH = A D sin. CAD.
Having found A G and B G, we have, in the right triangle

7? C1

EGG (Tab. X. 9), G C = B G cot, BCG,an&BC = -
^7775 .

sin. jj (j (j

But BCG = 180 - 7. Therefore, cot.BCG=- cot. /, and

sin. B C G = sin. I. Hence G C = - B G cot. /, and B C =

Then, since AC= AG + G C, we have~
T .

sin. /

When / is between 90 and 180, as in the figure, cot. / is nega-

tive, and B G cot. / is, therefore, positive. When / is less than

90, G will fall on the other side of C ;
but the same formula for

A C will still apply ;
for cot. / is now positive, and consequently,

B G cot. / is negative, as it should be, since, in this case, A C
would equal A G minus G C.

Example. Given A D = 1200, DE = 350, EF = 300, FB =
310, CAD = 2Q, ND # = 44, PEF= - 25

;
R FB = Z\\

and SB V= 30, to find the angle of intersection /, and the dis-

tances A C and B C.

Here J= 20 + 44 - 25 + 31 + 30 = 100
C

. To find A G
and B G, the work may be arranged as in the following table :

Angles to
the Right.
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column, in the manner already explained. A C is considered as

running north from A, and the bearings are, therefore, marked
N. E. The other columns require no explanation. We find

A a = 1620.23 and B G = 1205.10. Then GC=-BG cot. 1
= 1205.1 x cot. 100 = 212.49. This value is positive, because

it is the product of two negative factors, cot. 100 being the same

as cot. 80, a negative quantity. Then A C = A G + G C

1620.23 + 212.49 = 1832.72, and B C = = 1223.69. Hav-
sm. 100

ing thus found the distances of A and B from the point of inter-

section, we can easily fix the tangent points for tangents of any

given length.

90. Problem. To lay out a curve, when an obstruction of

any kind prevents the use of the ordinary methods.

Fig. 33,

Solution. First Method. Suppose the instrument to be placed
at A (fig. 33), and that a house, for instance, covers the station at

B, and also obstructs the view from A to the stations at D and E.

Lay off from A (7, the tangent at A, such a multiple of the deflec-

tion angle D, as will be sufficient to make the sight clear the ob-

struction. In the figure it is supposed that 4 D is the proper an-
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gle. The sight will then pass through F, the fourth station from

A, and this station will be determined by measuring from A the

length of the chord A F, found by 83 or by Table II. From the

station at F the .stations at D and E may afterwards be fixed, by

laying off the proper deflections from the tangent at F.

Second Method. This consists in running an auxiliary curve

parallel to the true curve, either inside or outside of it. For this

purpose lay off perpendicular to A C, the tangent at A, a line

A A of any convenient length, and from A a line A C' parallel

to A C. Then AC' is the tangent from which the auxiliary curve

A E' is to be laid off. The stations on this curve are made to

correspond to stations of 100 feet on the true curve, that is, a ra-

dius through B' passes through B, a radius through D' passes

through D, &c. The chord A B' is, therefore, parallel to AB,
and the angle C' A B' C A B

;
that is, the deflection angle of

the auxiliary curve is equal to that of the true curve. It remains

to find the length of the auxiliary chords A B', B' D', &c. Call

the distance A A' = b. Then the similar triangles ABO and

A' B '

give A : A' = A B : A' B ', or R : R - b = 100 : A'B '.

Therefore, A B' =
~

= ioo -~. If the auxiliary
1 jft

curve were on the outside of the true curve, we should find in the

same way A B ' = 100 + p . It is well to make b an aliquot

part of R-, for the auxiliary chord is then more easily found.
7~>

Thus, if n is any whole number, and we make b =
,
we have

71

A'B' =m ^ = 100 . If, for example, b = ^~, we
jK fl lUu

have n 100, and A B = 100 1 = 101 or 99. When the aux-

iliary curve has been run, the corresponding stations on the true

curve are found, by laying off in the proper direction the distances

B B', D D', &c., each equal to b.

91. Problem. Having run a curve A B (fig. 34\ to change
the tangent point from A to (7, in such a way that a curve of the

same radius may strike a given point D.

Solution. Measure the distance B D from the curve to D in a

direction parallel to the tangent C E. This direction may be

sometimes judged of by the eye, or found by the compass. A still

more accurate way is to make the angle DBE equal to the inter-
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section angle at E, or to twice B A E, the total deflection angle

from A to B ; or if A can be seen from B, the angle DBA may
be made equal to B A E.

Measure on the tangent (backward or forward, as the case may
be) a distance A C = B Z), and C will be the new tangent point re-

quired. For, if CHbv drawn equal and parallel to A F, we have

FH equal and parallel to A C, and therefore equal and parallel

to B D. HenceDH=F = AF=CH, and DH being equal

to Off, & curve of radius CH from the tangent point C must pass

through D.

92. Problem. Having run a curve A B (fig. 55) of radius

R or deflection angle D, terminating in a tangent B D, to find the

radius R '

or deflection angle D' of a curve A C, that shall termi-

nate in a given parallel tangent C E.

Solution. Since the radii B F and C G are perpendicular to

the parallel tangents CE and B D, they are parallel, and the an-

gle A G C- A FB. Therefore, A C G, the half-supplement of

A G C, is equal to A B F, the half-supplement of A F B. Hence
A B and B C are in the same straight line, and the new tangent

point C is the intersection of A B produced with C E.

Represent A B by c, and A C = c + B C by c'. Measure B (7,

or, if more convenient, measure D C and find B C by calculation.

DC
To calculate B C from D C, we have B C =

1 (Tab. X. 9)
sin. DB C v

and the angle DBG- ABKBAK, the total deflection from
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A to B. Then the triangles A FB and A G C give A B : A C
BF : CG, or c : c' = R : R'

',

To find D, we have ( 10) R ' = -rr, ,
and R = -= . Sub-

sin. D ' sm.D

stituting these values in the equation for R ',
we have - =

c' 50
Sm '

- x =~;
c sin. D

. . sin. D' = sin.D.
c

93. Problem. Given the length of two equal chords A C and
B C (fig. 36), and the perpendicular CD, to find the radius R of
the curve.

Solution. From 0, the centre of the curve, draw the perpen-
dicular E. Then the similar triangles BE and BCD give
BO:BE=BC: CD, or R : \ B C = B C : CD. Hence

BC*R =
2CD'

This problem serves to find the radius of a curve on a track

already laid. For if from any point C on the curve we measure

two equal chords A C and B C, and also the perpendicular CD
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from C upon the whole chord AB, we have the data of this

problem.

94. Problem. To draw a tangent F Gr (fig. 36) to a given
curve from a given point F.

Fig. 36.

Solution. On any straight line FA, which cuts the curve in

two points, measure FG and FA, the distances to the curve.

Then, by Geometry,

J^~ FG = ^FC x FA.
This length being measured from F, will give the point G.

When F G exceeds the length of the chain, the direction in which

to measure it, so that it will just touch the curve, may be found

by one or two trials.

95. Problem. Having found the radius A R of a curve

(fig. 31\ to substitute for it two radii A E = Ri and DF = R* ,

the longer of which A E or BE' is to be used for a certain dis-

tance only at each end of the curve.

Solution. Assum.e the longer radius of any length which may
he thought proper, and find (g 9) the corresponding deflection

angle DI . Suppose that each of the curves A D and B D '

is 100

feet long. Then drawing C 0, we have, in the triangle FOE,
OE :FE=sm. FE : sin. FOE. But the side OE = AE

R l
- R*, the angle .F i7 =
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180 - A C = 180 - i /, and the angle OFE = AOF-
= iI-2D l ,

since EF = 2 D l ( 7). Substituting

Fig. 37.

these values, and recollecting that sin. (180 -J- /) = sin. /, we

have Ei R : Hi R* sin. (| / 2 DI) : sin. - /. Hence

HP
sin. (| J- 2 A)

7? 2 is then easily found, and this will be the radius from D to Z>',

or until the central angle D FD ' I 4 Z>i.

The object of this problem is to furnish a method of flattening

the extremities of a sharp curve. It is not necessary that the first

curve should be just 100 feet long; in a long curve it may be

longer, and in a short curve shorter. The value of the angle at

E will of course change with the length of A Z>, and this angle
must take the place of 2Di in the formula. The longer the first

curve is made, the shorter the second radius will be. It must also

be borne in mind, in choosing the first radius, that the longer the

first radius is taken, the shorter will be the second radius.

7
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Example. Given R = 1146.28 and I 45, to find R*, if Rl is

assumed = 1910.08, and A D and B D '

each 100. Here, by Table

I.,A = 130'. Then

R^ - R = 763.8

i/=22 30'

|/-. 2 A = 19 30'

Ri-R* = 875.64
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n D -f- n' D '. Therefore, n'V+ n V= ri (n D + ri D
'), or

n'(nD + n'D')
n + ri

The same reasoning will apply to reversed curves, the only

change being that in this case V + V = nD n' D', and conse-

quently

ri(nD-riD')
uHy? ,

n + n

When in this last formula n' D' becomes greater than nD, V be-

comes minus, which signifies that the angle V is to be laid off

above B A instead of below.

This problem is particularly useful, when the tangent point of

a curve is so situated, that the instrument cannot be set over it.

The same method is applicable, when the curve A B' starts from
a straight line ; for then we may consider A B '

as the second

branch of a compound curve, of which the straight line is the

first branch, having its radius equal to infinity, and its deflection

angle D = 0. Making D = 0, the formula for V becomes

_
n + n'

'

When n and n' are each 1, the formula for V is in all cases ex-

act; for then the supposition that V : V= n : n' is strictly true,

since A B will equal A B', and V and V, being angles at the

base of an isosceles triangle, will also be equal. Making n and n'

equal to 1, we have

When the curve starts from a straight line, this formula becomes,

by making D = 0,

F=*Z>'.

We have seen that when n or n' is more than 1, the value of V
is only approximate. It is, however, so near the truth, that when
neither n nor n' exceeds 3, the error in curves up to 5 or 6 varies

from a fraction of a second to less than half a minute. The exact

value of V might of course be obtained by solving the triangle

A B B', in which the sides AB and AB' may be found from

Table II., and the included angle at A is known. The extent to

which these formulae may be safely used may be seen by the fol-

lowing table, which gives the approximate values of Ffor several
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different values of n, n\ D, and Z>', and also the error in each

case:

Compound Curves.
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be laid off to a point on the farther side, we have A S C =
= ACB. Therefore, without calculation, A B = A C.

Fig. 40.

Second Method. Lay off A C (fig. 40) perpendicular to A B.

Measure A C, and at C lay off CD perpendicular to the direction

CB, and meeting the line of A B in D. Measure A D. Then the

triangles A CD and A B G are similar, and give A D : A C =
A r*

AC'.AB. Therefore, AB = ^^.
If from (7, determined as before, the angle A C B' be laid off

equal to A C B, we have, without calculation, A B = A B'.

Third Method. Measure a line A D (fig. 41) in an oblique di-

rection from the bank, and fix its middle point C. From any

Fig. 41.

convenient point E in the line of A B, measure the distance E (7,

and produce EC until CF = E C. Then, since the triangles
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ACE and D CF are similar by construction, we see that DF is

parallel to E B. Find now a point 6r, that shall be at the same
time in the line of CB and of D I1

,
and measure O D. Then the

triangles ABC and D & C are equal, and O D is equal to the re-

quired distance A B.

As the object of drawing EF is to obtain a line parallel to A B,
this line may be dispensed with, if by any other means a line O F
be drawn through D parallel to A B. A point G being found on

this parallel in the line of C J5, we have, as before, GD = AB.

98. Problem, To change a tangent point so that the tan-

gent may pass through a given point.

Solution. If the given point is at a considerable distance but

visible, let C (fig. 42) be the distant point and D the required tan-

Fig. 42.

gent point. Estimate the probable position of Z>, and at A, a

station back of D but near to it, measure the angle B A C made

by A C with the tangent at A. Then, as the angle at C is sup-

posed to be very small, the chord A E will be nearly parallel to

D (7, and D may be taken to be midway between A and E. The

angle B A D, which fixes the position of Z), will therefore equal

i B A <?, very nearly. Or, by 83, compute AE=ZR sin. B A C,

and we shall have the chord A D = $ A E, very nearly. If the

distance A C is not very great, A C and E C may be measured.

Then ( 94) D C = \/A C x E C.

If the point C is given by A B a (fig. 43 or 44) measured on

a tangent at A, and B C = ~b at right angles to A B, draw CE
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parallel to A B to meet A, produced if necessary. Then, in the

first case (fig. 43), we have the required angle A OD A C

Fig. 44.

DOC.
R

Hence, the required angle is determined.

In the second case (fig. 44) we have the required angle AOD =

DOC AOC. But cos. DOC= = .

2
=

,
and

tan. A C = -=-^
-

. Hence, the required angle A D is
,, . T Jit (J /** -L /I

determined.

, .

99. Problem. To connect two curves by a common tangent.

Solution. When both curves turn the same way (fig. 45), run a

line A B cutting both curves in such a way as to make the middle

ordinates E G and FH as nearly equal as can conveniently be

Fig. 45.
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done. Measure A B a and the tangential angles CA B A
and D B A B. Let E' F' be the required common tangent,

and draw E and PF perpendicular to A B, and F' K parallel

to A B. Let A R and B P = R '. Then the required angle

CAE'^^AOE' ^A + %EOE' = ^A -f %E' F' K. Now
EG FH

tan. E' F' K= --=
, nearly

Hence CA E' is determined.

a It sin. A R '

sin. B
We have also the angle PB F 1

When the curves turn opposite ways (fig. 46), A H= a should

be run outside the second curve, making FH as nearly equal

Fig. 46.

to E G as can conveniently be done. FH must be measured.

Then the required angle CA E' = %A OE 1 = \A + $EOE' =
~& r< ~p TT

4- A + \E' F' K. Now tan. E ' F ' K =-=
, nearly =

a t> i Tjy TT G H
'^i : ; . Hence C A E' is determined.

a R sin. A
In both these cases E G has been supposed larger than .F 77.

If E G is smaller than F H, the point E' will fall on the other

side of E, and the angle CA E' = $ A % E'F'K. It is obvious

that, in both cases, it E G is exactly equal to FH, the angle
E'F'K vanishes, and CA E' = \ A.



PARABOLIC CURVES. 89

CHAPTER II.

PARABOLIC CURVES.

ARTICLE I. LOCATING PARABOLIC CURVES.

100. LET A EB (fig. 47) be a parabola, A C and B C its tan-

gents, and A B the chord uniting the tangent points. Bisect A B
in D, and join C D. Then, according to Analytical Geometry,

Fig. 47.

B

I. CD is a diameter of the parabola, and the curve bisects CD
in E.

II. If from any points T, T', T", &c., on a tangent AF, lines

be drawn to the curve parallel to tlie diameter, these lines T M,
T M', T" M", &c., called tangent deflections, will be to each

other as the squares of the distances A T, A T', A T", &c., from

the tangent point A.

III. A line ED (fig. 48), drawn from the middle of a chord

A B to the curve, and parallel to the diameter, may be called the

middle ordinate of that chord
;
and if the secondary chords A E

and B E be drawn, the middle ordinates of these chords, KG and

L H, are each equal to %E D. In like manner, if the chords A K,
KE, EL, and LB be drawn, their middle ordinates will be equal

IV. A tangent to the curve at the extremity of a middle ordi-
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nate is parallel to the chord of that ordinate. Thus MF (fig. 48),

tangent to the curve at E, is parallel to A B.

V. If any two tangents, as A C and B C (fig. 48), be bisected in

M and F, the line M F, joining the points of bisection, will be a

new tangent, its middle point E being the point of tangency.

101. Problem. Given the tangents A C and B (7, equal or

unequal (fig. 47). and the chord A B, to lay out a parabola by

tangent deflections.

Fig. 47.

A D B

Solution. Bisect A B in D, and measure CD and the angle
A CD; or calculate CD* and ACD from the original data.

Divide the tangent A C into any number n of equal parts, and

call the deflection TM for the first point a. Then ( 100, II.) the

deflection for the second point will be T' M' = 4 &, for the third

point T"M " = 9 a, and so on to the nth point or (7, where it will

be n2 a. But the deflection at this last point is CE = $ CD ( 100,

I.). Therefore, n*a=CE, and

CE
a = r-n2

Having thus found a, we have also the succeeding deflections 4 a,

9 a, 16 a, &c. Then laying oif at T7

,
T7

', &c., the angles A TM,
A T' M', &c., each equal to ACD, and measuring down the

proper deflections, just found, the points M, M', &c., of the curve

will be determined.

* Since CD is drawn to the middle of the base of the triangle A B (7, we
have, by Geometry, CD* = (AC* + B C*) - AD*.
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The direction in which to measure the deflections may be ob-

tained by dividing A D into the same number of equal parts as

A C and joining corresponding points. If more convenient the

chord A E may be drawn, and, being similarly divided, may take

the place of A D.

The curve may be finished by laying off on A C produced n

parts equal to those on A (7, and the proper deflections will be, as

before, a multiplied by the square of the number of parts from A.

But an easier way generally of finding points beyond E is to

divide the second tangent B C into equal parts, and proceed as in

the case of A C. If the number of parts on B C be made the

same as on A C, it is obvious that the deflections from both tan-

gents will be of the same length for corresponding points. The

angles to be laid off from B C must, of course, be equal to B CD.
The points or stations thus found, though corresponding to

equal distances on the tangents, are not themselves equidistant.

The length of the curve is obtained by actual measurement around

the stakes. See also 112.

102. Problem. Given the tangents A C and B C, equal or

unequal (fig. 4$}, and the chord A B, to lay out a parabola by
middle ordinates.

Fig. 48.

Solution. Bisect A B in D, draw C D, and its middle point E
will be a point on the curve ( 100, 1.). DE is the first middle

ordinate, and its length may be measured or calculated. To the

point E draw the chords A E and B E, lay off the second middle

ordinates GK and HL, each equal to D E ( 100, III.), and K
and L are points on the curve. Draw the chords A K, KE, EL,
and L B, and lay off third middle ordinates, each equal to one

fourth the second middle ordinates, and four additional points on
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the curve will be determined. Continue this process, until a suf-

ficient number of points is obtained.

103. Problem. To draw a tangent to a parabola at any
station.

Solution. I. If the curve has been laid out by tangent deflec-

tions ( 101), let M'" (fig. 47) be the station, at which the tangent
is to be drawn. From the preceding or succeeding station, la\

off, parallel to CD, a distance M" N or EL equal to a, the first

tangent deflection ( 101), and M'"N or M'" L will be the re-

quired tangent. The same thing may be done by laying off from

the second station a distance M' T' = 4 a, or at the third station

a distance & P = 9 a
;
for the required tangent will then pass

through T' or 6r. It will be seen, also, that the tangent at M'"

passes through a point on the tangent at A corresponding to half

the number of stations from A to M '"
;
that is, M'" is four sta-

tions from A, and the tangent passes through T', the second point
on the tangent A C. In like manner, M'" is six stations from B,
and the tangent passes through 6r, the third point on the tangent

BC.
II. If the curve has been laid out by middle ordinates ( 102),

the tangent deflection for one station is equal to the last middle

ordinate made use of in laying out the curve. For if the tangent

A C (fig. 48) were divided into four equal parts corresponding to

the number of stations from A to E, the method of tangent de-

flections would give the same points on the curve, as were ob-

tained by the method of 102. In this case the tangent deflec-

tion for one station would be a = -^ CE 6̂D E\ but the last

middle ordinate was made equal to GrK or ^ D E. Therefore,

a is equal to the last middle ordinate, and a tangent may be

drawn at any station by the first method of this section.

A tangent may also be drawn at the extremity of any middle

ordinate, by drawing a line through this extremity, parallel to the

chord of that ordinate ( 100, IV.).

104. In laying out a parabola by the method in 101, it may
sometimes be impossible or inconvenient to lay off all the points

from the original tangents. A new tangent may then be drawn

by 103 to any station already found, as at M'" (fig. 47), and the

tangent deflections a, 4 a, 9 a, &c., may be laid off from this tan-

gent, precisely as from the first tangent. These deflections must
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be parallel to C D, and the distances on the new tangent must be

equal to T'N or NM' ", which may be measured.

105. Problem. Given the tangents A C and B C, equal or

unequal (fig. 49), to lay out a parabola by bisecting tangents.

Solution. Bisect A C and B C in D and F, join D F, and find

E, the middle point of D F. E will be a point on the curve

(J5 100, V.). We have now two pairs of what may be called second

tangents, A D and D E, and EF and FB. Bisect A D in G and

7) E in H, join G H, and its middle point M will be a point on

Fig. 49.

the curve. Bisect EF and FB in K and L, join KL, and its

middle point N will be a point on the curve. We have now four

pairs of third tangents, A O and G M, ME and HE, E TTand
KN, and NL and L B. Bisect each pair in turn, join the points
of bisection, and the middle points of the joining lines will be four

new points, M', M", N". and N'. The same method may be con-

tinued, until a sufficient number of points is obtained.

106. Problem. Given the tangents A C and B C, equal or

unequal (fig. 50), and the chord A B, to lay out a parabola by
intersections.

Solution. Bisect A B in Z>, draw CD, and bisect it in E.

Divide the tangents A C and B C, the half-chords A D and D B,
and the line C E, into the same number of equal parts; five, for

example. Then the intersectionM of A a and F Gr will be a point
on the curve. For FM^Ca, and Ca ^CE. Therefore,
FM = -% C E, which is the proper deflection from the tangent at

F to the curve ( 101). In like manner, the intersection N of A b

and HKwsij be shown to be a point on the curve, and the same
is true of all the similar intersections indicated in the figure.
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If the line D E were also divided into five equal parts, the line

A a would be intersected inM on the curve by a line drawn from

B through a', the line A b would be intersected in N on the curve

Fig. 50.

by a line drawn from B through b', and in general any two lines,

drawn from A and B through two points on CD equally distant

from the extremities C and Z>, will intersect on the curve. To
show this for any point, as Jl, it is sufficient to show, that B a'

produced cuts F Gr on the curve
;
for it has already been proved,

that A a cuts F G on the curve. Now Da 1

: MG = B D : B Gr =
5 : 9, or M G = f D a'. But D a' = J- C E. Therefore, M G =

G:CD = Aa:AD = l:5. Therefore, F Q =
We have then FM=FG MG = $CE

F CE = -fa C E. As this is the proper deflection from the tan-

gent at F to the curve ( 101), the intersection of B a' with F G
is on the curve. This furnishes another method of laying out a

parabola by intersections.

107. The following example is given in illustration of several

of the preceding methods.

Example. Given A C = B C - 832 (fig. 51), and AB = 1536,

to lay out a parabola A E B. We here find CD 320. To be-

gin with the method by tangent deflections (g 101), divide the

C1 W 1 fif)

tangent A C into eight equal parts. Then a
-^r

= 2.5.

Lay off from the divisions on the tangent F 1 = 2.5, G 2 = 4 x

2.5 = 10, HZ = 9 x 2.5 = 22.5, and K = 16 x 2.5 = 40. Sup-
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pose now that it is inconvenient to continue this method beyond
K. In this case we may find a new tangent at JE, by bisecting

A C and B C ( 105), and drawing KL through the points of bi-

section. Divide the new tangent KE = -J-
A D = 384 into four

equal parts, and lay off from KE the same tangent deflections as

were laid off from A K, namely, M 5 = 22.5, N6 = 10, and 01

Fig. 51.

2.5. To lay off the second half of the curve by middle ordinates

( 102), measure EB = 784.49. Bisect EB in P, and lay off the

middle ordinate PR = D E = 40. Measure ER = 386.08, and

BR
s
= 402.31, and lay off the middle ordinates S T and V W, each

equal to %PR = 10. By measuring the chords E T, TR, RW,
and W B, and laying off an ordinate from each, equal to 2.5, four

additional points might be found.

ARTICLE II. RADIUS OF CURVATURE.

108. THE curvature of circular arcs is always the same for the

same arc, and in different arcs varies inversely as the radii of the

arcs. Thus, the curvature of an arc of 1,000 feet radius is double

that of an arc of 2,000 feet radius. The curvature of a parabola
is continually changing. In fig. 50, for example, it is least at the

tangent point A, the extremity of the longest tangent, and in-

creases by a fixed law, until it becomes greatest at a point, called

the vertex, where a tangent to the curve would be perpendicular
to the diameter. From this point to B it decreases again by the



96 PARABOLIC CURVES.

same law. We may, therefore, consider a parabola to be made up
of a succession of infinitely small circular arcs, the radii of which

continually increase in going from the vertex to the extremities.

The radius of the circular arc, corresponding to any part of a

parabola, is called the radius of curvature at that point.

If a parabola forms part of the line of a railroad, it will be ne-

cessary, in order that the rails may be properly curved ( 28), to

know how the radius of curvature may be found. It will, in gen-

eral, be necessary to find the radius of curvature at a few points

only. In short curves it may be found at the two tangent points
and at the middle station, and in longer curves at two or more
intermediate points besides. The rails curved according to the

radius at any point should be sufficient in number to reach, on

each side of that point, half-way to the next point.

109. Problem. To find the radius of curvature at certain

stations on a parabola.
Solution. Let A EB (fig. 52) be any parabola, and let it be re-

quired to find the radii of curvature at a certain number of sta-

tions from A to E. These stations must be selected at regular

Fig. 52.

intervals from those determined by any of the preceding methods.

Let n denote the number of parts into which A E is divided, and

divide CD into the same number of equal parts. Draw lines

from A to the points of division. Thus, if n = 4, as in the figure,

divide CD into four equal parts, and draw A F, A E, and A G.

LetAD = c, AF = c 1 ,AE=c*,A G = c3 ,&ndAC = T. De-

note, moreover, CD by d, and the area of the triangle A CB by
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A. Then the respective radii for the points E, 1, 2, 3, and A
will be

7?

3

7?
ClB

7?
C'

3

7? - Ca
*

7?
^ 3

^ =
z> ^Z' *

4' ^'-Z' ^4 -T-
The area J. may be found by form. 18, Tab. X.

;
c and T are

known ;
and Ci, ca ,

c3 may be found approximately by measure-

ment on a figure carefully constructed, or exactly by these gen-

eral formulae :

2 = c2 ,

c
t s +

T*-c* _ (n
-

3) d

n n*

c 2 _ c 2 +
r * ~ c2 _ (n

~ 5) ^
2

71 7l
2 '

2 - 2
T* -c* _ (n-T)d*

C* ~~ *
n 7i

2 '

&c., &c.

It will be seen, that each of these values is formed from the pre-

^2 C2 ^2
ceding, by adding the same quantity , and subtracting -^

multiplied in succession by n 1, n 3, n 5, &c. Making n =
4, we have

All the quantities, which enter into the expressions for the radii,

are now known, and the radii may, therefore, be determined. The
same method will apply to the other half of the parabola.
The manner of obtaining the preceding formulae is as follows :

The radius of curvature at any given point on a parabola is, by

the Differential Calculus, R = .

8 , in which p represents the

parameter of the parabola for rectangular coordinates, and E the

angle made with a diameter by a tangent to the curve at the given

point. First, let the middle station E (fig. 53) be the given point.

Then the angle E is the angle made with ED by a tangent at E,
or since A B is parallel to the tangent at E ( 100, IV.), sin. E =
sin. A D E = sin. B D E. Let p' be the parameter for the diam-
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eter ED. Then, by Analytical Geometry, p =p' sin.2 ^. There-

fore, at this point R = ' = ~

A 7)2 r <i

"- *-*' & mi T~>

^ _. = 3 . Therefore, RED id

~ =, . But p' =
2 sin. E

/.2 ,,% %
C/ .- =. =

;
sinceA

dsin.fi cdsm.fi A
c dsin.fi (Tab. X. 17).

Next, to find Ri ,
or the radius of curvature at H, the first sta-

tion from E. Through IT draw F G parallel to CD, and from F

Fig. 53.

draw the tangent F K. Join A K, cutting CD in L. Then from

what has just been proved for the radius of curvature at E, we

A z

have for the radius of curvature at H, RI . 77 .

A. JJ J\.

Now A O :

For, since AF
= n-l:n, ov

1

x AL.

x AC, the tangent deflection FH=
( 100, II.), and F G = 2 FH = Then.

-l, CL =

d. Hence L D = d-
_ 1 1

n I

d=- d, that is, ^ ^ ~
/

^ n n

Substituting this value in the expression for A Gr above, we I .

A Gr Moreover, since AF=- x A C, and
n n

cause similar triangles are to each other as the squares of their

homologous sides, we have the triangle A F G = x ACL.

But ACL: A CD= C L: CD = n- 1 : n, or A CL =
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x A CD. Therefore, A F G =
~

x A CD, and AFK=

2AFG = (n ~ 1)S x A C B = ^ ~
1)3

A. Substituting these
if1

6 /no

A G*
values of A G and A FK in the equation R l = AFK' an(* re"

ducing, we find R\ =
-j~

. By similar reasoning we should find

It remains to find the values of e,, ca ,
&c. Through A draw

AM perpendicular to CD, produced if necessary. Then, by Ge-

ometry, we have AD* = AL* + LD*-2LD x LM, and AC 9

A L* + C L* + 2 C L x L M. Finding from each of these

equations the value of 2LM, and putting these values equal to

AL* + LD*-AD* AW-AL*- C L*
each other, we have-

^r

-
-^-=.

-
.

But AL = d, LD=-d,AD =
c, AC = T, and CL =^^ d.

n n

Substituting these values in the last equation, and reducing, we

find

f = T^ (n-l)c* _ (n-l)d^
n n n?

By similar reasoning we should find

_2T* (n-2)c* 2(n-2)d*
C% -- +- --

a
-

5n n n 1

a ,n n*

&c., &c.

From these equations the values of Ci
2

,
c2

2
,
c3

2
, &c., given above,

are readily obtained. That given for Ci
2
is obtained from the first

of these equations by a simple reduction
;
that given for ca

2 is ob-

tained by subtracting the first of these equations from the second,
and reducing ; that given for c s

2
is obtained by subtracting the

second equation from the third, and reducing ;
and so on.

110. Example. Given (fig. 52) A C = T = 600, B C = T' =
520, and A D = c 550, to find R, R^ ,

J?2 ,
7?3 ,

and jK4 . the radii

of curvature at E, 1, 2, 3, and A.

To find CD = d, we have, by Geometry, d 9 = i(T* + T' 2
)
-

c2 which gives d* = 12700.
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To find the area of A C B = A, we have (Tab. X. 18) A =

a)(s b) (s c).
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have then - (T'
2 - c2) = (T

1 + e) (T
1 -

c)
= 107 * ~ 3Q =

n 4
- 8025. Hence

c 1
2 = 302500 - 8025 - 2381.25 = 292093.75.

c2
2 = 292093.75 - 8025 - 793.75 = 283275.

c3
2 = 283275 - 8025 + 793.75 = 276043.75.

c 3 S
To find ^j, we have R l = -|- ,

or log. ^1=7; log. d 2
log. 4,-A tit

d2 = 292093.75 5.465523

d3 8.198284

A 4.761872

7?! = 2731.6 3.436412

In the same way we should find R* = 2608.8, R3 = 2509.5, R4 =
2433.

It will be seen that the radii in this example decrease from one

tangent point to the other, which shows that both tangent points
lie on the same side of the vertex of the parabola ( 108). This

will be the case, whenever the angle BCD, adjacent to the shorter

tangent, exceeds 90, that is, whenever c2 exceeds T' 2 + d?. If

B CD = 90, the tangent point B falls on the vertex. It BCD
is less than 90, one tangent point falls on each side of the ver-

tex, and the curvature will, therefore, decrease towards both ex-

tremities.

111. If the tangents Tand T' are equal, the equations for d2
,

c2
2

, &c., will be more simple ;
for in this case d is perpendicular to

c. and T 2 c2 = c?
2

. Substituting this value, we get

= d 2 + -

&c., &c.

Example. Given, as in 107, T T' = 832, c = 768, and d =
320, to find the radii 7?, R^ ,

and R* at the points E, 4, and A (fig.
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51). Here A = c d = 245760, n = 2, and cj = c* +

Then R =^ = ^= ^ = 1843.2, ^ = ,
,
and .

cd d 320 cd

d 2 = 615424

c d = 245760

fit = 1964.5

cd = 245760

^2 = 2343.5

* = 615424.

5.789174

8.683761

5.390511

3.293250

2.920123

8.760369

5.390511

3.369858

Ri is the radius at the point R also, and J?a the radius at the

point B.

112. Length of parabolic arcs.

B

The length s of the parabolic arc A B (fig. 54) from the vertex

A to a point B whose rectangular coordinates are x and y is, by
the Calculus,

or, introducing the angle i which the tangent at B makes with
the axis of x,

x2

s = --
[tan. i sec. i + hyp. log. (tan. i + sec. *)] ;

or, by series,
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When y is small relatively to x, two terms of this series are often

sufficient. Whence
2y*

s = x -H Q nearly,
o x

The length s of the parabolic arc A B (fig. 55) from the origin

of oblique coordinates A to a point B whose oblique coordinates

are x and y, is given by the following formula, in which i is the

Fig. 55.

angle made by the tangent at B with a line perpendicular to the

axis of the parabola, and j is the angle made by y with a perpen-

dicular to the axis A X.

x* cos.2//, . . i i
tan. i + sec. i\

s = - =
( tan. i sec. i tan. j sec. j + hyp. log. : .

)

4 y \
to

tan.^ + sec.j/'

In many cases a near approximation is

2 y
2 cos.2

/
s = x + y sm.j +

3̂ x + ysiu.j"
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CHAPTER III.

TRANSITION CURVES.

113. THE object of a transition curve is to make the change

easy from a straight line to a circular curve. The proper super-

elevation of the outer rail of the circular curve is also arrived at

by a gradual rise from the straight line. To make this rise uni-

form, the radius of curvature of the transition curve must be in-

finite at its beginning on the straight line, must decrease in such

a way that, at any point of the curve, it shall be inversely as the

distance of that point from the beginning, and, finally, become

equal to the radius of the circular curve, where it joins that curve

tangentially. The cubic parabola fulfils all the essential requi-

sites of such a transition curve. The compound circular curve

( 132) forms another method of easing the change from a straight

line to a circular curve.

ARTICLE I. THE CUBIC PARABOLA.

114. Let GDC' (fig. 56) be the central circular curve of radius

C = R. LetABC and A'B' C' be the transition curves, con-

necting the circular curve with the tangents at A and A'. Let x

and y be the rectangular coordinates of A B C, with origin at A,
and let Xi and yi denote the coordinates of the point C. Let the

rise of the outer rail be taken as uniform for distances from A
along the axis of x, instead of along the curve, an immaterial

change, and let -. denote the rate of rise. Then the rise at any
i/

distance x from A will be -
. This rise may be expressed in an-

other way. For let p denote the radius of curvature of the curve

at the point whose abscissa is x, and we have the rise e by the for-

mula of 152, e
9 V

. Equating the two values,
o2.53 p

q v* i

'=&!*
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When the velocity v has been fixed, and also the rate of rise -7 ,

the quantity ~7 becomes a constant. At (7, the radius of curva-

ture p becomes R, and x becomes Xi ,
so that equation (1) becomes

and we have 7^7 = R %i . By substitution (1) becomes

Another expression for p is, by the Differential Calculus,



106 TRANSITION CURVES.

where d s is the differential of the length of the curve. In the

present case, the differential d x of the abscissa is so nearly equal
to d s, that we may put

dx* ^dtfP ~
dxd*y~~ d*y'

Equating the two values of p, and inverting, we have

d*y _ x

dz?~ Rx^
Integrating once, we have

f*y
dx

and, integrating again,

115. This is the equation of a cubic parabola that is, of a curve

in which the ordinates are proportional to the cubes of the ab-

scissas. The curves ABC and A' B '

C' are, therefore, to be

treated as cubic parabolas. Before doing this, however, two prob-
lems require consideration. For in order to connect two straight

lines or tangents, as A 1 and A' I, by a central circular curve, with

a transition curve at each end, we have either to find A I = T
y

when the radius C = R of the circular curve is given, or to find

R, when T is given. In both cases the intersection angle I is

supposed to be known, and the value of Xi = A E to be assumed.

116. Problem. Given the intersection angle 1=2 G 01
(fig. 56\ the abscissa x lt and the radius C = R of the central

curve, to find the tangent AI=T.
Solution. In the figure the circular curve is produced to <?,

where its tangent becomes parallel to A I. Draw G and pro-
duce it to H. Draw also C F, the common tangent at (7, and
CK parallel to A I. Denote the angle C G - CFE by A. To
find T we have

T=AH+ HI.
Now AH-A E- HE = xl -H E = xl -C K = x l -R

sin. A.

But, since the angle A is generally small, we may put sin. A =
tan. A, and we have

AH=Xi R tan. A.
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Now ft tan. A = x^ . For by the Differential Calculus we know

that -~ in equation (2) denotes the tangent of the angle made
a x

with the axis of # by a tangent to the curve at a point whose ab-

scissa is x. Now when the abscissa becomes Xi at the point C,

this angle becomes C FE A, and we have

tan - A = * = =
>
and R tan - A = ia;- :

.

*

. A H = Xi -J- Xi = #1 .*

Next to find ZT/, we have

#/=: OHtsiu.iI=(R + 0IT) tan.i/.

Gr His the perpendicular distance between the tangent A E and a

tangent to the circular curve at G. This is usually called the

shift, and may be denoted by s. To find CrH s we have 5 =
CE-GK=y l -GK. By equation (3)

fti
3

_x^_
yi '

6 R x, 6 72
'

and G Kis the middle ordinate of the circular curve for a chord

= xl . Therefore, ( 26), GK= ^4r 5
so that

O -ft

Substituting this value ofs=GH in the equation for H J, we
have

JJ/= CK + i yi) tan. i 7.

Finally, substituting the values found for A H and HI in the

equation for T, we have

T=%x l + (R + i

117. Problem. ^iVew the intersection angle I 2 Gr 1

(fig. 56\ the abscissa x^ and the tangent AI= T, to find the ra-

dius C = R of the circular curve.

* When thought necessary, A Hm&y be calculated accurately by the for-

mula AH z\
- Rsin. A.

t The formula GK=R(\ cos. A) gives the exact value of G K, but the

difference is generally unimportant.
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Solution. From the preceding section we have

Compute this value of R + 3/1, and from it subtract an assumed

probable value of 3/1 . This will give an approximate value of

x 2

R, and with this compute 3/1 by the formula i^/i 5-. If

the value so found agrees nearly enough with the assumed value

of 2/1 ,
the approximate value of R may be taken as the true

value. Otherwise, a new approximation is to be computed. Gen-

erally, however, the value of R thus found would be used only to

select a convenient deflection angle for the central curve. The

corresponding value of R may then be used to find, by section 116,

a new value of T. A change in the value of T would of course

change the position of the tangent point, but seldom materially.

118. Length of the abscissa Xi . Let us now consider the value

to be given to x\ . The rate of rise of the outer rail being
-

,
the

total rise at the end of the transition curve will be -^ . This total

rise is also expressed by e =
Q(f p ( 152). Equating these values,'

we have =
e, or Xi = i e. The length of Xi is, therefore, depend-

i

ent on i and e. The value of i may be taken as varying from 300

to 600, corresponding to grades of 17.6 feet to 8.8 feet per mile.

The value of e depends upon the velocity of trains and the radius

of the curve. For high speeds e may vary from e = .3 to e .5.

A value of e = .5 allows a speed of 67 miles per hour on a 2

curve, of 30 miles per hour on a 10 curve, and of 25 miles per
hour on a 14 curve ; so that this value of e would rarely be ex-

ceeded. With i = 300, Xi need not exceed 150 feet, and with i =
600, x l need not exceed 300 feet. These lengths might of course

in exceptional cases be increased.

119. Let the length of Xi be expressed in rail lengths of 30 feet

each, and let n denote the number of such rail lengths. We shall

then have

x l = 3Qn.

x 3

To express yi ,
we have from equation (3) yi = n-^

o a x\
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?00n = 1BO
. substituting for R its value, R =-^ ,

D be-
6 It t sin. u

ing the deflection angle of the circular curve for chords of 100

150 n2 sin. D
feet, we have y\ = r^- ,

or
ou

yl = 3 n2 sin. D.

Fig. 56.

To fix the position of the common tangent C F, we require the

distance F E. The triangle CFE gives FE=
i

( 116) tan. A = -- = 30 n 30 7i sin. D '

, and by

lUU

. ^ , ...= .3 n sm. D. Substitut-

ing this value and that of 7/1 ,
we have

3fi2 sin. D .,., ^FE = ^. =.

.3 n sm. D
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120. Method by Offsets. With R or /), T, x l ,
and y, known,

the curves can now be laid out. J., the point of beginning or

origin, is a fixed point, from which x l
= 30 n is measured to fix

the point E ; y l =3n'2 sin. D fixes the point C ; and FE = $ Xi =
10 n fixes the position of the common tangent C F. Intermediate

points on the transition curve are fixed by offsets or ordinates

from the tangent A E, thus : divide A E into n equal parts and
denote the successive offsets at the points of division by di , d* , d* ,

dn . Then dn = yi , and, as the ordinates are as the cubes of

7 Vi 3 n2 sin. D 3 sin. D m ,

the abscissas, di = a
= = . The successive

- , n9 nz n
offsets are then

#1=^!, da = 8 d, , dj = 27 di ,
dn = yi .

The circular curve CDC' is now run in the usual way from

the tangent CF produced, with D as the deflection angle for 100

feet chords. The central angle of this carve is COC' = I2&.
At C', E'C

1

should prove equal to y it The distance D I is equal
to the ordinary external D L, increased by L I= (r //sec. i I

\yi sec. /. The second transition curve A'B'C' is the same as

ABC reversed, and is laid out in the same way.
121. The annexed table gives the necessary data for curves from

60 to 300 feet in length. D is the deflection angle of the central

curve for 100 feet chords. For any other chord c it is only neces-

100
sary to multiply the values given for yi and di by . Thus if

c

D were the deflection angle for 50 feet chords, we should have

y^ 6 ft
2 sin. D and di = . In computing y-i and di use nat-

ural sines.

TABLE A.

n
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It will be seen that this method applies directly, whether the

central curve is of an even degree or not, since sin. D may be

taken from the table for any value of Z>.

122. Example, when R or D is given. Given / = 72 40', D =
3 20', and n = 8. Here x, = 240, y l = 192 sin. 3 20' = 192 x

.05814 = 11.16288. From Table I., R = 859.92, and yi = 2.79.

First find T.
R + iy1== 862.71 2.935865

i/=:36 20' tan. 9.866564

T- a?i = 634.496 2.802429

T- 754.496

Table A gives, for n = 8, d, = f sin. D = f x .05814 = .021802,

and d, , multiplied in succession by 8, 27, 64, 125, 216, and 343,

gives d* = .174, d3 = .589, d* = 1.395, d 5 = 2.725, d* = 4.709, and

d,
-

7.478.

To find A we have ( 119) tan. A = .3 n sin. D. For small an-

gles we may put A = .3 n D. In this example A = 2.4D 8, and

the central angle of the circular curve / 2 A = 56 40'. This

divided by 2 D gives 8.5, as the number of 100 feet chords from

C to C'.

*

123. Example, when T is given. Given I - 68 20', T = 764.3,

and n = 5. Here x l = 150, and T i x l
= 689.3.

689.3 2.838408

34 10' cot. 0.168291

# + iyi = 1015.5 3.006699

Comparing this approximate value of R with values given in

Table I., we see that D = 2 50' might be selected as a convenient

deflection angle. We have then R 1011.51, sin. D = sin. 2 50' =
.04943, y, = 75 x .04943 = 3.70725, and R + iy, = 1012.44, to find

the new T.

1012.44 3.005369

i/=34 10' tan. 9.831709

T- i x l = 687.19 2.837078

T= 762.19

"We next find di = .6 sin. D, and proceed as in the preceding

example.
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124. Method by Deflection Angles. The transition curve can

also be laid out by deflection angles. These angles (fig. 57) are

C

a'

Fig. 57.

aAE,lAE,cAE, etc. Denote them by ^ ,
82 ,

53 ,
8n . Now

cd'
the tangent of any one of these angles, as 83 ,

is tan. 83 = -r-r, =
y x*
-. If in equation (3), which is y = ^5 ,

we divide both sides
x o K x\

y x
by x we have - = r-^ . This shows that the tangents of the de-

X O Jit X\

flection angles are to each other as the squares of the abscissas.

Now if a tangent be drawn to the curve at any point, as c, the

tangent of the angle it makes withA E is by equation (2)
-~ =

x*
r-^ . This is exactly three times the tangent of the deflection
u 1 X\

angle just found for the same point. This relation being a gen-
eral one, we have at 6V

,
tan. CA E = tan. CFE or tan. 8n =

% tan. A. All these angles are ordinarily so small that the angles
themselves may be substituted for their tangents. It follows that

the deflection angles are to each other as the squares of the ab-

scissas, and that 8n = $ A. Taking A = .3 n Z>, as found above,

nD , _ 8n D m ,

we have 5n = A =
,
and 81 = -r = T-T . The successive an-

il) fr LOn

gles to be laid off from A E with the transit at A are therefore

81 = . 82 45i ,
53 = 9 5i ,

5n n2
81 . The annexed

10 n

table gives the necessary data for curves from 60 to 300 feet in

length. D is the deflection angle of the central curve for 100 feet

chords. For any other chord c multiply the values given by .
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Thus if D were the deflection amgle for 50 feet chords, we should

nD D
nave A = .to n D, on = , and $1 = -

.

5 5 n

TABLE B.

n
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X 2

bisected at H, and that the shift G H = s
*

,
or putting

50
Xi = 3Qn (8 119), and for 72' its value -

,
we have s =

sm. Z)

f n2
sin.7)', and y = E C = 4s = 3w2 sin.Z>'. To obtain D' we

O

Fig. 58.

have sin. D' : sin. D = R : R'. If we put R' m R,m being any
sin. D

assumed proper fraction, sin. D = .

Now J.' is a fixed point on the ground, and if we find the dis-

tance AH to the centre of Xi ,
the points A and E can be found

by simply measuring $%i = 15 n each way from //. To fix the

point P, A'L and PL must be found.

Consider PM and (7iVto be tangent offsets to the curve G CP
from the tangent G M, and we have, very closely, GM : GN

CN
A G : a P= '

:

'P- R - m R : m R = 1 - m : m .

q-^-. Also, CN=EC-EN=4s-s = 3s ,

1 m

-.PM=
PM
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-
. Substituting this value of 77-^. in the expression for

o (1 Til) C JM

/ m / m
G M, we have GM= & N A/ - - = 15 n A/

- -.V 3 (1
- w) r 3 (1

- m)

NowAII:GM=00':0'P=l-m:m. .'.AH=
15 n (1 m) / m 1 m

AJ ;. Squaring ,
and putting it

m r o (1 m) m .

under the radical, we have, after reduction,AH= 15 n A/ .V 3m

Next, A'L : AH'= P: 0' = 1:1 m. . .A'L = - - =

A/ -
. Squaring the denominator 1 m, and put-

1 m \ 3m
ting it under the radical, and reducing, we have A'L = I5n

. Lastly, PL = PM + ML = S
+ s =

3 m (1
- m) 1 - m

s

1 m'
In deciding upon a proper value for m, it is obvious that R '

should not differ much from R. If we make m = .9, the change
would not be too great. This value also simplifies the formulae

very much. Making m = .9, we have

!ndPL = -

iQs =M
O

For the central angle GrO'C = A' of the transition curve, we

have, as before ( 119), sin. A' = .3wsin. Z>', and for A = A'OP,
A'L 50n |/3 SOnsin.Df 3 n .wehave 8m.A = = ~^~ -^- =pm.Dv3 =

.3 n sin. D' t/3. The central angle of C P, the new circular curve,
is C O'P = A A'. In the expressions for sin. A' and sin. A sub-

stitute the angles themselves for their sines, and we have A' =
3n D' and A = .3 n D '

V 3 and A- A' = .3 nD' ( V 3 - 1) =
.22 nD', nearly.

127. Table C gives the values of these expressions, and also

those of yi and di for values of n from 2 to 10. As already shown,

sin. D' = Y sin. D, or, more simply, D' * D. D and D' are

deflection angles for 100 feet chords, but it is easy to modify the

expressions for other chords.



116 TRANSITION CURVES.

TABLE C.

n
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large, a method of calculating the excess may be desirable. Each

chord is the hypothenuse of a right-angled triangle, whose base is

30 feet, and perpendicular the difference between two successive

tangent offsets. These offsets are di ,
8 di ,

27 di ,
64 d l , etc., and the

successive differences or perpendiculars are di , 7 di ,
19 di , 37 dl ,

etc. Let p denote any one of these perpendiculars, and for the

corresponding chord c we have c = -\/30
2 + p12

. By developing
this radical, and retaining the first two terms only of the root, we

have c = 30 +
|- , nearly. Substituting for p its successive values,

the excess of the first chord will be ^r, of the second chord,

49 dS , ,. ,, . , 361 dS
._

,
of the third, ^7 , etc. For a curve of n chords we

oU oU ,
2

should have for e, the total excess, e = ^ (I
2 + 72 + 19* + 37* +

etc.), the parenthesis containing always n terras of the series. For

di substitute its value already found di = ( 120), D being

the deflection angle of the circular curve for 100 feet chords, and

we have, after reducing, e = >l0 s '* D
(I

2 + 72 + 192 + 372 +

etc.). If e is computed by this formula for D = 1, and different

values of n. the excess for any other deflec-

tion angle Di ,
and given n will be obtained,

very closely, by multiplying the value so

found for D = 1 and the given n by the

square of the number denoting Z), in de-

grees. The values of e for Z> = 1, and

values of n from 2 to 10 have been calcu-

lated, and the results placed in the annexed

table, where e 2 is the excess for n = 2, e9 the

excess for n = 3, etc.

130. Example. Given the deflection angle of the circular curve

= 3 = J, and n 6, to find the excess of the length of the

transition curve measured by its chords over x\ . Here we multi-

ply e 6 in the table by (|)
2 = 4

a
,
and we have the excess e = .01749

x \a = .21425. For n = 6, x l = 180, so that the length of the

curve by chords is 180.214.
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ARTICLE III. CURVING THE RAILS.

131. To secure the greatest ease of motion on a transition curve,

it is of importance that the rails be properly curved. To do this

we must have, as on a circular curve ( 28), the middle ordinate

and the ordinates at the quarter points. We there found that

the ordinates at the quarter points were each f m, m being the

middle ordinate. Here we shall find that the ordinate at the first

quarter point is slightly less than f m and the ordinate at the sec-

ond quarter point slightly greater than f m. This is what might
be expected from the gradual increase of the curvature.

Let A G B (fig. 59) be a rail length on any part of a transition

curve, and CD its projection on the axis of x. Let C be distant

from the origin r rail lengths, and D distant r + 1 rail lengths, r

being a whole or fractional number. Let d^ , as above, denote the

tangent offset at the end of the first rail length from the origin.

Then the offset A C = r3 d l ,
and the offset B D = (r + I)

3 d l . The
middle ordinate for curving the rail will be m = GF=EF
EG. Now EF=i(A C + B D) = (r

3 + r3 + 3r2 + 3r + 1)
=

(r
8 + f r2 + f r + $) ^ and E G (r + l)

3^= (r
3 + f r2

-+- f r + }) cZv

Subtracting and reducing, we have

m = f (2 r + 1) d l .

In a similar way the ordinates HI and KL at the quarter points
are found. They are

HI= (-!% r + { ) di = f m 4̂
- ^ ,

KL = (--s r _|_ |i) ^ | m + ^. ^ ^

If the curve does not begin at a joint, that part of a rail that

comes on the curve may be curved by finding the proper tangent
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offset for its length, and bending the end from the straight line a

distance equal to the offset. As the tangent offset for a whole

rail is di, the offset for a fraction will be di multiplied by the

cube of the fraction. Thus, if the fraction is .8 the offset would

be .512 di . Except in extreme cases, this offset is so small that

the rail remains practically straight.

If the curve begins at a joint the middle ordinates for the suc-

cessive rails will be obtained by making r successively 0, 1, 2, 3,

etc. Denoting these ordinates by Wi, ma ,
ms , etc., we have m-i =

f di , m-9 = di ,
ms = J

8
5
di , etc., or m l = f di ,

w 2 = 3 m l , m s =
5 wii, m 4 =7wi, etc. Taking three fourths of these ordinates,

and subtracting and adding -fcdi, we have the quarter point
ordinates.

ARTICLE IV. COMPOUND TRANSITION CURVE.

13.2. Transition curves of this kind consist of successive circu-

lar arcs, the deflection angles of which are such that if D is the

deflection angle of the first arc, that of the second is 2 />, that of

the third 3 Z>, and so on. The chords are all of the same length.

A curve of this kind A B CD (fig. 60) may be readily laid out by
offsets from the tangent A /, measuring at the same time the

successive chords. Let c represent the length of each chord, n

their number, and let D be the deflection for the first chord, 2D
that for the second chord, 3 D that for the third chord, and so on

to the deflection angle ot the last chord, which will be n D. Then

it is easily seen that the angles Ti AB,T*B C, Tz CD, etc., will

Fig. 60.

be successively D, 4 D, 9 D, 16 Z), etc., up to n8 D. Calling the re-

quired offsets from the tangent A 7, di, d2 ,
d3 , etc., and recollect-

ing that, since these angles are all small, we may put sin. 4 D =
4 sin. D, sin. 9 D 9 sin. Z), etc., we have di = c sin. D, d^ = di +
4 c sin. D d l + 4 di = 5 d l ,

ds = d* + 9 c sin. D = 5 dl + 9 di =
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14 dl ,
etc.. the successive offsets being formed by multiplying di

by the terms of the series 1, 5, 14, 30, 55, 91, etc., formed by the

successive additions of the squares of the natural numbers.

More accurate values of the offsets may be obtained thus. From
the table of natural sines, set down in a column sin. 7), sin. 4 Z>,

sin. 9 D, etc., up to sin. n* D. Then for d l , d% ,
d a , etc., multiply

successively by c the first number so set down, the sum of the first

two numbers, the sum of the first three numbers, and so on, until

for dn multiply by c the sum of the whole column.

The projections of the chords A TI, B T2 ,
C T3 , etc., may be

found thus. A 1\ - c cos. D,BT^-c cos. 4 Z), C T3 = ccos. 9D,
etc. From the table of natural cosines, set down in a column

cos. Z), cos. 4 D, cos. 9 D, etc., up to cos. n* D. Denote by p^ , p? ,

pa, etc., respectively, the first projection, the sum of the first two

projections, the sum of the first three projections. Then to obtain

Pi,p-i,p3, etc., multiply successively by c the first number in the

column, the sum of the first two numbers, the sum of the first

three numbers, and so on, until for pn multiply by c the sum of

the whole column.

133. We have now to find (fig. 61) A I = T, when R the radius

of the central curve is given, or to find R, when Tis given. In

both cases the intersection angle / is supposed to be known, and

the number n of chords in the transition curve to be assumed.

134. Problem. Given the intersection angle I and the ra-

dius C R or the deflection angle D' of C M, the main or cen-

tral curve (fig. 61), to find the deflection angle D for the first arc
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of the transition curve A C, the coordinates A E = a and E C =
b of the point C, and the tangent A I.

Solution. Let the number of chords in A C be denoted by n,

and the length of each chord by c. CM is half the central curve,

so that the angle H 1 = | /. Run CM back to 6r, where its

tangent becomes parallel to A /, and draw G H and C K. De-

note the deflection angle of the central curve for a chord equal to

c by D'. This deflection angle is either given directly, or found

from that given for a different chord. Then as D is the deflection

angle of the first chord on A C, the deflection angle for the last

chord will be n Z>, and for the first on C M, (n + 1) D = D '

Having D, we have also ( 132) di , d* ,
d9 ,

etc. From the pre-

ceding section, we have

a = A E = c (cos. D + cos. 4 D + cos. 9D + cos. n*D)
= n c, nearly.

& = E C = c (sin. D 4- sin. 4 D + sin. 9 D + sin. n*D)
= di (1 + 4 + 9 + ft

2
), nearly

To find T we have T= AH + HI. Now AH= A E - HE -
a R sin. COG. The angle C & is the sum of the.central an-

gles of the seyeral arcs of A C. The central angle of the first arc

is twice its deflection angle, or 2 Z>, that of the second arc is 2 x

2 Z), of the third 2x37), etc. Denote the sum of these angles by
o, and we have

a = 2 Z> (1 + 2 + 3 -f n) = n (n + 1) D.

Therefore AH = AE HE = a R sin. a.

Next, HI= H tan. HOI=(EC + OK) tan. \ 7, or HI-
(l) + R cos. o) tan. 1 1. Substituting these values of A H and

HI, we have

B^~ T= a R sin. a + (& + R cos. a) tan. | J.

An approximate formula for T, generally accurate enough in

practice, may be found thus. Consider HE to be equal in length
to the arc (r C and find the length of & C in chords of length c

by dividing half its central angle or 4- a by its deflection angle

D 1 = (n + 1) D. Hence HE = _ = nc and A j/=
(n 4- 1) 7)

Also, 7T/= J^tan. i/ =
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(R + G II) tan. - /. Omit G II as small relatively to R, and we
have P. I R tan. 4- Z Substituting these values of J. H and
# I in the formula T= A H + HI, we have

T= i 7i c + R tan. /, nearly.

135. Example. Given 1 = 42, the deflection angle of the cen-

tral curve = 2 for 100 feet chords, n = 5, and c = 30, to find the

deflection angle D of the first arc of the transition curve A C
(fig. 61), the coordinates a and b of the point C, and the tangent
A I = T.

Here the deflection angle of the central curve for 30 feet chords

' = 7^ x 2 = 36' and D =
n + 1 6

csin.Z) = 30 x .001745 =: .05235. Computing by the exact for-

mulae we find a = 149.956, b = 2.879, and T = 625.24. By the

approximate formulae, we find a = 150, b = 2.879, and T = 624.85.

136. Problem. Given the intersection angle 7, and the tan-

gent A 1= T, to find the radius C = R of the central curve

CM (fig. 61).

Solution. From the preceding section we have T=
R tan. % I, nearly.

t. | J, nearly.

This approximate value of R may now be substituted in the exact

formula for Tin the preceding section, and if the value of Tthus
found does not change the tangent point too much, this value of
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R may stand, and D', D, and the other requisite data be com-

puted.
The principal inaccuracy in the formula for R is due to drop-

ping GrH in the expression for H 7, above. If we retain O 77, we
should find

R- (r-inc)cot.i/- Q H.

To get a more accurate value of R, subtract G H, which may be

computed by the formula GU=E C K G = b R(l cos. a).

Generally, however, the approximate value of R would be used

only for finding a convenient deflection angle for the central

curve that is, one not involving seconds. A new value of R
would result, and a new value of T would have to be computed.

137. To run the central curve C M, we must be able to fix the

common tangent C F. This may be readily done if we find the

distance F E. Now in the triangle CFE the angle CFE has

its sides perpendicular to those of the angle C G, and is, there-

fore, = a = n (n + 1) D.

gy . . F'E = b cot. a = b cot. n(n + l) D.

The central angle of the central curve will be 2@OM2a =
I 2 n (n 4- 1) 7), and the number of chords will be found in the

usual way by dividing the central angle by twice the deflection

angle used in laying out the curve.

137. Remark. There are certain advantages in beginning a tran-

sition curve at a joint. The ends of each rail would then be defi-

nitely fixed by the offsets, and the rails could be more satisfactorily

curved. It would be easier to maintain the track in its proper

position, if the trackmen knew that the tangent point was at a

joint, and when the rails were renewed, the new rails would be more

likely to be properly curved, and placed in their true position.



124 LEVELLING.

CHAPTEE IV.

LEVELLING.

ARTICLE I. HEIGHTS AND SLOPE STAKES.

138. THE Level is an instrument consisting essentially of a tele-

scope, supported on a tripod of convenient height, and capable of

being so adjusted that its line of sight shall be horizontal, and

that the telescope itself may be turned in any direction on a ver-

tical axis. The instrument when so adjusted is said to be set.

The line of sight, being a line of indefinite length, maybe made

to describe a horizontal plane of indefinite extent, called the plane

of the level.

The levelling rod is used for measuring the vertical distance of

any point, on which it may be placed, below the plane ol the level.

This distance is called the sight on that point.

139. Problem. To find the difference of level of two points,

as A and B (fig. 62).

Solution. Set the level between the two points,* and take

sights on both points. Subtract the less of these sights from the

greater, and the difference will be the difference of level required.

For if FP represent the plane of the level, and A G be drawn

through A parallel to F P, A F will be the sight on A, and B P
the sight on B. Then the required difference of level B Q =
BP-PG= BP-AF.

If the distance between the points, or the nature of the ground,
makes it necessary to set the level more than once, set down all

the backward sights in one column and all the forward sights in

another. Add up these columns, and take the less of the two

sums from the greater, and the difference will be the difference of

level required. Thus, to find the difference of level between A
and D (fig. 62), the level is first set between A and B, and sights

* The level should be placed midway between the .two points, when prac-

ticable, in order to neutralize the effect of inaccuracy in the adjustment of

the instrument, and for the reason given in 148.
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Ed O

are taken on A and B
;
the level is then set between B and C, and

sights are taken on B and C
; lastly,

the level is set between C and Z), and

sights are taken on C and D. Then
the difference of level between A and

DisED = (BP+KC+ D) -
(AF + B I + NC). For J D =
H C - L C = IIM + M C - L C.

But HM= B G = B P- A F, MC
= KC-BI, and LC=NC-
D. Substituting these values, we

have ED = B P- AF + KC -
BI-NC + OD= (BP + KG +
OD)-(AF + BI + NC).

140. It is often convenient to refer

all heights to an imaginary level

plane called the datum plane. This

plane may be assumed at starting to

pass through, or at some fixed dis-

tance above or below, any permanent

object, called a bench-mark, or simply
a bench. It is most convenient, in

order to avoid minus heights, to as-

sume the datum plane at such a dis-

tance below the bench-mark, that it

will pass below all the points on the

line to be levelled. Thus if A B (fig.

63) were part of the line to be lev-

elled, and if A were the starting

point, we should assume the datum

plane CD at such a distance below

some permanent object near A, as

would make it pass below all the

points on the line. If, for instance,

we had reason to believe that no

point on this line was more than 15

or 20 feet below A, we might safely

assume CD to be 25 feet below the

bench near A, in which case all the distances from the line to the

datum plane would be positive. Lines before being levelled are



126 LEVELLING.

usually divided into regular stations, the height of each of which

above the datum plane is required.

141. Problem. To find the

heights above a datum plane of the

several stations on a given line.

Solution. Let A B (fig. 63) repre-

sent a portion of the line, divided

into regular stations, marked 0, 1, 2,

3, 4, 5, &c., and let CD represent the

datum plane, assumed to be 25 feet

below a bench-mark near A. Sup-

pose the level to be set first between

stations 2 and 3, and a sight upon
the bench-mark to be taken, and

found to be 3.125. Now as this sight

shows that the plane of the level EF
is 3.125 feet above the bench-mark,
and as the datum plane is 25 feet be-

low this mark, we shall find the

height of the plane of the level above

the datum plane by adding these

heights, which gives for the height

of E F, 25 + 3.125= 28.125 feet. This

height may for brevity's sake be

called the height of the instrument,

meaning by this the height of the

line of sight of the instrument.

If now a sight be taken on station

0, we shall obtain the height of this

station above the datum plane, by

subtracting this sight from the height

of the instrument ;
for the height of

this station is C and QG=EC
E 0. Thus if E = 3.413, C =
28.125 - 3.413 = 24.712. In like

manner, the heights of stations 1, 2,

3, 4, and 5 may be found, by taking

sights on them in succession, and

subtracting these sights from the
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height of the instrument. Suppose these sights to be respective-

ly 3.102, 3.827, 4.816, 6.952, and 9.016, and we have

height of station = 28.125 - 3.413 = 24.712,
" "

1 = 28.125 - 3.102 = 25.023,
" " 2 = 28.125-3.827 = 24.298,

" " " 3 = 28.125-4.816 = 23.309,
" " " 4 = 28.125-6.952 = 21.173,

" " 5 = 28.125 - 9.016 = 19.109.

Next, set the level between stations 7 and 8, and, as the height

of station 5 is known, take a sight upon this point. This sight,

being added to the height of station 5, will give the height of the

instrument in its new position ;
for GIC=@5 + 5K. Suppose

this sight to be #5 = 2.740, and we have GK= 19.109 + 2.740 =
21.849. A point like station 5, which is used to get the height of

the instrument after resetting, is called a turning point. The

height of the instrument being found, sights are taken on stations

6, 7, 8, 9, 10, and the heights of these stations found by subtracting

these sights from the height of the instrument. Suppose these

sights to be respectively 3.311, 4.027, 3.824, 2.516, and 0.314, and

we have

height of station 6 = 21.849 - 3.311 = 18.538,
" " 7 = 21.849-4.027 = 17.822,
" " 8 = 21.849 - 3.824 = 18.025,

" " " 9 = 21.849 - 2.516 = 19.333,
" " " 10 = 21.849-0.314 = 21.535.

The instrument is now again carried forward and reset, station

10 is used as a turning point to find the height of the instrument,
and everything proceeds as before.

At convenient distances along the line, permanent objects are

selected, and their heights obtained and preserved, to be used as

starting points in any further operations. These are also called

benches. Let us suppose, that a bench has been thus selected near

station 9, and that the sight upon it from the instrument, when
set between stations 7 and 8, is 2.635. Then the height of this

bench will be 21.849 2.635 = 19.214.

142. From what has been shown above, it appears that the first

thing to be done, after setting the level, is to take a sight upon
some point of known height, and that this sight is always to be

added to the known height, in order to get the height of the in-
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strument. This first sight may therefore be called a plus sight.

The next thing to be done is to take sights on those points whose

heights are required, and to subtract these sights from the height

of the instrument, in order to get the required heights. These

last sights may therefore be called minus sights.

143. The field notes are kept in the following form : The first

column in the table contains the stations, and also the benches

marked B., and the turning points marked t. p., except when co-

incident with a station. The second column contains the plus

sights ; the third column shows the height of the instrument ; the

fourth contains the minus sights ; and the fifth contains the

heights of the points in the first column. The height of the bench

Station.
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tracted from the new height of the instrument, give the heights

in the last column.

144. Problem. To set slope stakes for excavations and em-

bankments.

Solution. Let A BHK C (fig. 64) be a cross-section of a pro-

posed excavation, and let the centre cut AM = c, and the width

of the road-bed HK= b. The slope of the sides B H or CK is

usually given by the ratio of the base KN to the height EN.

Fig. 64.

Suppose, in the present case, that KN : EN 3 : 2, and we have

the slope = f . Then if the ground were level, as D A E, it is evi-

dent that the distance from the centre A to the slope stakes at D
and J would be A D = A E = MK + KN=%b + f c. But as

the ground rises from A to C through a height C O = g, the slope

stake must be set farther out a distance E G = f g ;
and as the

ground falls from A to B through a height BF = g, the slope

stake must be set farther in a distance D F = f g.

To find B and (7, set the level, if possible, in a convenient posi-

tion for sighting on the points A, B, and C. From the known
cut at the centre find the value ofAE=$b + %c. Estimate by
the eye the rise from the centre to where the slope stake is to be

set, and take this as the probable value of g. Tcr A E add f g, as

thus estimated, and measure from the centre a distance out, equal
to the sum. Obtain now by the level the rise from the centre to

this point, and if it agrees with the estimated rise, the distance out

is correct. But if the estimated rise prove too great or too small,

assume a new value for g, measure a corresponding distance out,

and test the accuracy of the estimate by the level, as before.

These trials must be continued, until the estimated rise agrees

sufficiently well with the rise found by the level at the correspond-

ing distance out. The distance out will then be^fc + fc + f*?.

10
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The same course is to be pursued, when the ground falls from the

centre, as at B ;
but as g here becomes minus, the distance out,

when the true value of g is found, will be A F = A D D F =.

iZ + c-f<7.
For embankment, the process of setting slope stakes is the same

as for excavation, except that a rise in the ground from the centre

on embankments corresponds to a fall on excavations, and vice

versa. This will be evident by inverting figure 64, which will then

represent an embankment. What was before a fall to B, becomes

now a rise, and what was before a rise to C, becomes now a fall.

When the section is partly in excavation and partly in embank-

ment, the method above applies directly only to the side which is

in excavation at the same time that the centre of the road-bed is in

excavation, or in embankment at the same time that the centre is

in embankment. On the opposite side, however, it is only neces-

sary to make c in the expressions above minus, because its effect

here is to diminish the distance out. The formula for this dis-

tance out will, therefore, become & f c + f </.

In these formulae the ratio of the base to the height of a slope,

as KN :E N, has been taken as f ,
the ordinary ratio in earth.

This ratio will, of course, differ in different materials, and may in

general be denoted by 5. By substituting s for f in the preceding
formulae they apply to all slopes.

The following process is often of advantage in setting slope stakes.

Figure 65 represents the operation at three successive stations :

Fig. 65.

Let C C C represent the datum plane,
" B C = height of instrument = H9
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Let CD height of road-bed h,
" A B sight on the ground at the supposed

place of side-stake = S,
" A D = the side cut (minus cuts are fills)

= c' ;

then in all three of the cases represented

orc'=H-h-S.
Having thus the side-cut or fill at the supposed place for a

slope stake, we have for the distance out (slope 1.5 to 1) d =
i& + fc'.

For the same setting of the instrument IT h is constant for

any one cross-section, and varies with h from one station to an-

other.

It is obvious that the cut or fill at any point between the side

stakes can be obtained in the same manner.

ARTICLE II. CORRECTION FOR THE EARTH'S CURVATURE AND
FOR REFRACTION.

145. LET A C (fig. 66) represent a portion of the earth's surface.

Then, if a level be set at J., the line of sight of the level will be

the tangent A D, while the true level will be A C. The difference

,D C between the line of sight and the true level is the correction

for the earth's curvature for the distance A D.

146. A correction in the opposite direction arises from refrac-

tion. Refraction is the change of direction which light undergoes
in passing from one medium into another of different density. As
the atmosphere increases in density the nearer it lies to the earth's

surface, light, passing from a point B to a lower point A, enters

continually air of greater and greater density, and its path is in

consequence a curve concave towards the earth. Near the earth's

surface this path may betaken as the arc of a circle whose radius

is seven times the radius of the earth.* Now a level at A, having
its line of sight in the direction A Z>, tangent to the curve A B, is

in the proper position to receive the light from an object at B
;
so

* Peirce's Spherical Astronomy, Chap. X., 125. It should be observed,

however, that the effect of refraction is very uncertain, varying with the

state of the atmosphere. Sometimes the path of a ray is even made convex

towards the earth, and sometimes the rays are refracted horizontally as

well as vertically.
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that this object appears to the observer to be at D. The effect of

refraction, therefore, is to make an object appear higher than its

true position. Then, since the correction for the earth's curvature

D C and the correction for refraction D B are in opposite direc-

tions, the correction for both will be B C D C D B. This

correction must be added to the height of any object as deter-

mined by the level.

147. Problem. Given the distance A D = D (fig. 66), the

radius of the earth A E R, and the radius of the arc of re-

fracted light = 7 R, to find the correction B C = d for the earth's

curvature and for refraction.

Fig. 66.

Solution. To find the correction for the earth's curvature D C,
we have, by Geometry, D C(D C + 2EC) = A Z> 2

,
or D C(D C +'

2 R) = Z) 2
. But as D C is always very small compared with the

diameter of the earth, it may be dropped from the parenthesis,

and we have D C x 2 R = D\ or D C = ~. The correction
& i

for refraction D B may be found by the method just used for

finding D (7, merely changing R into 7 R. Hence D B =

We have then d = BC = DC-

d =

Z> 2

2R'
D*
UR

UR'
,
or

1R
By this formula Tab. VIII. is calculated, taking R 20,911,790

ft., as given by Bowditch. The necessity for this correction may
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be avoided, whenever it is possible to set the level midway between

the points whose height is required. In this case, as the distance

on each side of the level is the same, the corrections will be equal,

and will destroy each other.

ARTICLE III. VERTICAL CURVES.

148. Vertical curves are used to round off the angles formed by
the meeting of two grades. Let A C and CB (fig. 67) be two

grades meeting at C. These grades are supposed to be given by
the rise per station in going in some particular direction. Thus,

starting from A, the grades of A C and CB may be denoted re-

spectively by g and g' ;
that is, g denotes what is added to the

height at every station on A (7, and g' denotes what is added to

the height at every station on CB ; but since CB is a descending

grade, the quantity added is a minus quantity, and g
1

will there-

fore be negative. The parabola furnishes a very simple method

of putting in a vertical curve.

149. Problem. Given the grade g of A C (fig. 7), the grade

g' of C B, and the number of stations n on each side of C to the

tangent points A and B, to unite these points by a parabolic verti-

cal curve.

Fig. 67.

Solution. Let A EB be the required parabola. Through B
and C draw the vertical lines FK and C H, and produce A C to

meet FK in F. Through A draw the horizontal line A K, and

join A B, cutting CH in D. Then, since the distance from C to

A and B is measured horizontally, we have A H HK, and con-

sequently A D D B. The vertical line CD is, therefore, a di-

ameter of the parabola (g 100, I.), and the distances of the curve

in a vertical direction from the stations on the tangent A F are
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to each other as the squares of the number of stations from A
( 100, II.). Thus, if a represent this distance at the first station

from A, the distance at the second station would be 4 a, at the

third station 9 a, and at B, which is 2 n stations from A, it would
-im T>

be 4n2
a; that is, FB 4n'2 a, or a = r~^ . To find a, it will

4 n

then be necessary to find FB first. Through C draw the hori-

zontal line C 6r, and we have, from the equal triangles CF O and

A C II, FO CH. But C II is the rise of the first grade g in the

n stations from A to (7; that is, C II = ng, or F O = ng. OB
is also the rise of the second grade g' in n stations, but since g' is

negative ( 148), we must put OB ng'. Therefore, FB =
F O + O B = ng ng'. Substituting this value of FB in the

n a n a'

equation for a, we have a y
g ,

or

* ***
The value of a being thus determined, all the distances of the

curve from the tangent A F, viz. a, 4 a, 9 a, 16 a, &c., are known.

Now if Tand T' be the first and second stations on the tangent,

and vertical lines TPand T'P' be drawn to the horizontal line

AK, the height TP of the first station above A will be g, the

height T'P' of the second station above A will be 2g, and in like

manner for succeeding stations we should find the heights 3g,4g,
&c. As we have already found TM=a, T'M' = 4a, &c., we

shall have for the heights of the curve above the level of A,MP =
TP TM=g a, M'P' T'P' T'M' = 2g 4a, and in

like manner for the succeeding heights Sg 9 a, 4g 16 a, &c.

Then to find the grades for the curve at the successive stations

from A, that is, the rise of each height over the preceding height,

we must subtract each height from the next following height,

thus : (g a) = g a, (2g 4 a) (g a) = g 3 a, (3g

The successive grades for the vertical curve are, therefore,

g a, g 3 a, g 5 a, g 7 a, &c.

In finding these grades, strict regard must be paid to the algebraic

signs. The results are then general ; though the figure represents

but one of the six cases that may arise from various combinations
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of ascending and descending grades. If proper figures were drawn

to represent the remaining cases, the above solution, with due at-

cention to the signs, would apply to them all, and lead to precisely

the same formulae.

150. Examples. Let the number of stations on each side of G

be 3, and let AC ascend .9 per station,,and CB descend .6 per

station. Here n = 3, g = .9, and g' = .6. Then, a 9
^- =

.9 (6) _
1^?

_
tl25

}
and the grades from A to B will be

4 x o \&

g a = .9 .125 = .775,

g
- 3 a = .9 - .375 = .525,

g- 5a= .9- .625 = .275,

g- 7a^.9- .875 = .025,

g - 9 a = .9 - 1.125 = -
.225,

g 11 a .9 1.375 = .475.

As a second example, let the first of two grades descend .8 per

station, and the second ascend .4 per station, and assume two sta-

tions on each side of C as the extent of the curve. Here g = .8,

g'
= .4, and n = 2. Then a =^ -^- jr-

.15, and

the four grades required will be

g-a = - .8 - (- .15) = - .8 + .15 = -
.65,

g _ 3 a = - .8 - (- .45) = - .8 + .45 = -
.35,

0_5 a= _.8- (- .75) = _ .8 + .75 = -
.05,

g - la = - .8 - (- 1.05) = - .8 + 1.05 = + .25.

It will be seen, that, after finding the first grade, the remaining

grades may be found by the continual subtraction of 2 a. Thus, in

the first example, each grade after the first is .25 less than the

preceding grade, and in the second example, a being here nega-

tive, each grade after the first is .3 greater than the preceding

grade.

151. The grades calculated for the whole stations, as in the fore-

going examples, are sufficient for all purposes except for laying
the track. The grade stakes being then usually only 20 feet apart,

it will be necessary to ascertain the proper grades on a vertical

curve for these sub-stations. To do this, nothing more is neces-

sary than to let g and g' represent the given grades for a sub-sta-

tion of 20 feet, and n the number of sub-stations on each side of
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the intersection, and to apply the preceding formulae. In the last

example, for instance, the first grade descends .8 per station, or .16

every 20 feet, the second grade ascends .4 per station, or .08 every
20 feet, and the number of sub-stations in 200 feet is 10. We have

then g = .16, g' .08, and n 10. Hence a = L--~ =
24' = .006. The first grade is, therefore, g a .16 -4-

.006 = .154, and as each subsequent grade increases .012 ( 150),

the whole may be written down without farther trouble, thus :

-
.154,

-
JL42,

-
.130,

-
.118,

-
.106,'

-
.094,

-
.082,

-
.070,

-
.058,

-
.046,

-
.034,

-
.022,

-
.010, + .002, + .014, + .026,

+ .038, + .050, + .062, + .074.

ARTICLE IV. ELEVATION OF THE OUTER RAIL ON CURVES.

152. Problem, Given the radius of a curve R, the gauge of
the track g, and the velocity of a car per second v, to determine the

proper elevation e of the outer rail of the curve.

Solution. A car of mass M moving on a curve of radius J?,

with a velocity per second = v, has, by Mechanics, a centrifugal

M v*
force = 77- . To counteract this force, the outer rail on a curveH
is raised above the level of the inner rail, so that the car may rest

on an inclined plane. This elevation must be such, that the ac-

tion of gravity in forcing the car down the inclined plane shall be

just equal to the centrifugal force, which impels it in the opposite
direction. Now the action of gravity on a body resting on an in-

clined plane is equal to 32.2M multiplied by the ratio of the height
to the length of the plane. But the height of the plane is the ele-

vation e, and its length the gauge of the track g. This action of

gravity, which is to counteract the centrifugal force, is, therefore,

32 2 Me
. Putting this equal to the centrifugal force, we have

32.2Me Mv*- = = . Hence
g R
eog- r- gv

-32^ZT
If we substitute for R its value ( 10) R j.

,
we have e =

~ -00062112 g v* sin. D. If the velocity is given in miles
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V x 5280
per hour, represent this velocity by V, and we have v -

b̂l) x bO

Substituting this value of v, we find e = .0013361 g F 2 sin. D.

When g = 4.7, this becomes e .00627966 F 2 sin. D. By this for-

mula Table VII. is calculated. In determining the proper eleva-

tion in any given case, the usual practice is to adopt the highest

customary speed of passenger trains as the value of V.

153. Still the outer rail of a curve, though elevated according
to the preceding formula, is generally found to be much more

worn than the inner rail. On this account some are led to distrust

the formula, and to give an increased elevation to the raiL So

far, however, as the centrifugal force is concerned, the formula is

undoubtedly correct, and the evil in question must arise from

other causes, causes which are not counteracted by an additional

elevation of the outer rail. The principal of these causes is prob-

ably improper
"
coning

"
of the wheels. Two wheels, immovable

on an axle, and of the same radius, must, if no slip is allowed,

pass over equal spaces in a given number of revolutions. Now as

the outer rail of a curve is longer than the inner rail, the outer

wheel of such a pair must on a curve fall behind the inner wheel.

The first effect of this is to bring the flange of the outer wheel

against the rail, and to keep it there. The second is a strain on

the axle consequent upon a slip of the wheels equal in amount to

the difference in length of the two rails of the curve. To remedy
this, coning of the wheels was introduced, by means of which the

radius of the outer wheel is in effect increased, the nearer its

flange approaches the rail, and this wheel is thus enabled to trav-

erse a greater distance than the inner wheel.

To find the amount of coning for a play of the wheels of one

inch, let r and r' represent the proper radii of the inner and outer

wheels respectively, when the flange of the outer wheel touches

the rail. Then r' r will be the coning for one inch in breadth

of the tire. To enable the wheels to keep pace with each other in

traversing a curve, their radii must be proportional to the lengths
of the two rails of the curve, or, which is the same thing, propor-
tional to the radii of these rails. If R be taken as the radius of

the inner rail, the radius of the outer rail will be R + g, and we
shall have r : r' R : R + g. Therefore, rR + rg = r' R, or
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As an example, let R = 600, r = 1.4, and g = 4.7. Then we
14x47

have r' r = ' = .011 ft. For a tire 3.5 in. wide, the con-
bUU

ing would be 3.5 x .011 = .0385 ft., or nearly half an inch.

Two distinct things, therefore, claim attention in regard to the

motion of cars on a curve. The first is the centrifugal force,

which is generated in all cases, when a body is constrained to

move in a curvilinear path, and which may be effectually counter-

acted for any given velocity by elevating the outer rail. The sec-

ond is the unequal length of the two rails of a curve, in conse-

quence of which two wheels fixed on an [axle cannot traverse a

curve properly, unless some provision is made for increasing the

diameter of the outer wheel. Coning of the wheels was devised

for this purpose ;
but as the coning, when at all considerable, was

found to produce an irregular sidewise motion of the train, the

tendency has been to diminish the coning. The standard wheel-

tread adopted by the Master Car Builders' Association has a con-

ing of but iV of an inch in 2| inches of the tread next to the

flange.

ARTICLE V. EASING GRADES ON CURVES.

154. When a curve occurs on a steep grade it is desirable to

ease the grade on the curve, so as to make the joint resistance of

the grade and curve equal to that of the grade alone on straight

lines. The resistance on a grade is proportional to the rise of the

grade per station and the resistance due to a curve can be repre-

sented as equivalent to that of a grade having a certain rise per
station. The rise per station of the eased grade will be simply
the original rise diminished by the rise that represents the curve

resistance. The resistance caused by curves varies greatly with

the state of the track and the kind of rolling stock, and is vari-

ously estimated as equivalent on a 1 curve to the resistance of a

grade of .025 to .06 of a foot per station. For a curve of any
other degree the resistance increases with the degree ;

so that a

6 curve, for example, has six times the resistance of a 1 curve.

As an example let a rise of .04 per station be taken as the resist-

ance on a 1 curve and suppose a 6 curve to occur on a grade of

1.6 per station. Then the reduced grade will be 1.6 .24 1.36

per station.
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ARTICLE VI. EXPANSION OF RAILS.

155. The rails of a track exposed to a summer sun may rise to a

temperature of 130 Fahrenheit. When, therefore, a track is laid

at a much lower temperature, as is usual, provision for the expan-
sion of the rails must be made by leaving a proper space between

successive rails. The expansion of a bar of iron or steel may be

taken as .000 007 of its length for every degree of rise in tempera-
ture. The space to be left between the rails will vary with the

length of the rails and with the number of degrees below 130

of the temperature when the track is laid. Suppose 30-feet rails

are laid at a temperature of 50. Then the number of degrees of

possible rise of temperature is 130 50 = 80, and the space to

be left between the rails is .000 007 x 80 x 30 = .0168 of a foot.

In general, let s be* the space to be left between the rails, n the

number of degrees that the temperature is below 130, and I the

length of the rails in feet, and we have

s = .000 007 n I.

A convenient rule for 30-feet rails may be obtained by putting
in the formula I = 30 and n = 5, whence, nearly enough, 8 = .001.

That is, the space to be left is one-thousandth of a foot for every
five degrees that the temperature is below 130.
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CHAPTER V.

EARTH-WORK.

ARTICLE I. PRISMOIDAL FORMULA.

156. EARTH-WORK includes the regular excavation and embank-

ment on the line of a road, borrow-pits, or such additional excava-

tions as are made necessary when the embankment exceeds the

regular excavation, and, in general, any- transfers of earth that

require calculation. We begin with the prismoidal formula, as

this formula is frequently used in calculating cubical contents

both of earth and masonry.
A prismoid is a solid having two parallel faces, and composed

of prisms, wedges, and pyramids, whose common altitude is the

perpendicular distance between the parallel faces.

157. Problem. Given the areas of the parallel faces B and

B '

,
the middle area M, and the altitude a of a prismoid, to find

its solidity S.

Solution. The middle area of a prismoid is the area of a sec-

tion midway between the parallel faces and parallel to them, and

the altitude is the perpendicular distance between the parallel

faces. If now b represents the base of any prism of altitude a, its

solidity is a b. Ifb represents the base of a regular wedge or half-

parallelopipedon of altitude a, its solidity is $ a b. If b represents

the base of a pyramid of altitude
,
its solidity is a b. The so-

lidity of these three bodies admits of a common expression, which

may be found thus : Let m represent the middle area of either of

these bodies, that is, the area of a section parallel to the base and

midway between the base and top. In the prism, m = b, in the

regular wedge, m = ^b 9
and in the pyramid, m = $b. Moreover,

the upper base of the prism = ,
and the upper base of the wedge

or pyramid = 0. Then the expressions a b, -J-
a b, and $ a b may be

thus transformed. Solidity of

prism = ab = x6b=(b + b + 4b} = (b+b + 4 m),
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wedge =

pyramid = i ab = |
x 26 =

| (0 + b + b)
=
| (0 + 6 + 4 m).

Hence, the solidity of either of these bodies is found by adding

together the area of the upper base, the area of the lower base,

and four times 'the middle area, and multiplying the sum by one

sixth of the altitude. Irregular wedges, or those not half-paral-

lelopipedons, may be measured by the same rule, since they are

the sum or difference of a regular wedge and a pyramid of com-

mon altitude, and as the rule applies to both these bodies, it ap-

plies to their sum or difference.

Now a prismoid, being made up of prisms, wedges, and pyra-

mids of common altitude with itself, will have for its solidity the

sum of the solidities of the combined solids. But the sum of the

areas of the upper and lower bases of the combined solids is equal

to B + B\ the sum of the areas of the parallel faces of the pris-

moid; and the sum of the middle areas of the combined solids is

equal to M, the middle area of the prismoid. Therefore

ARTICLE II. BORROW-PITS.

158. FOR the measurement of small excavations, such as borrow-

pits, &c., the usual method of preparing the ground is to divide

the surface into parallelograms
* or triangles, small enough to be

considered planes, laid off from a base line, that will remain un-

touched by the excavation. A convenient bench-mark is then se-

lected, and levels taken at all the angles of the subdivisions. After

the excavation is made, the same subdivisions are laid off from

the base line upon the bottom of the excavation, and levels re-

ferred to the same bench-mark are taken at all the angles.

This method divides the excavation into a series of vertical

prisms, generally truncated at top and bottom. The vertical edges
of these prisms are known, since they are the differences of the

* If the ground is divided into rectangles, as is generally done, and one
side be made 27 feet, or some multiple of 27 feet, the contents may be ob-

tained at once in cubic yards, by merely omitting the factor 27 in the calcu-

lation.
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levels at the top and bottom of the excavation. The horizontal

section of the prisms is also known, because the parallelograms
or triangles, into which the surface is divided, are always meas-

ured horizontally.

159. Problem. Given the edges )i, hi ,
and h* ,

to find the

solidity S of a vertical prism, whether truncated or not, whose

horizontal section is a triangle of given area A.

Fig. 68.

Solution. When the prism is not truncated, we have h = hi=.

hi . The ordinary rule for the solidity of a prism gives, therefore,

S= Ah = A x $(h + hi + h?). When the prism is truncated, let

ABCFGH (fig. 68) represent such a prism, truncated at the

top. Through the lowest point A of the upper face draw a hori-

zontal plane ADE cutting off a pyramid, of which the base is

the trapezoid BDE C, and the altitude a perpendicular let fall

from A on D E. Represent this perpendicular by^>, and we have

(Tab. X. 52) the solidity of the pyramid = lp x BDEC Ipx
DE x i(BD + CE) = $p xDEx%(BD + C E} = A x

(BD + CE\ since $p xDE = ADE=A. Eut^(BD + CE)
is the mean height of the vertical edges of the truncated portion,

the height at A being 0. Hence the formula already found for a

prism not truncated, will apply to the portion above the plane
A D E, as well as to that below. The same reasoning would ap-
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ply, if the lower end also were truncated. Hence, for the solidity

of the whole prism, whether truncated or not, we have

S=A *k(h + hi + hi).

160. Problem. Given the edges h, hi , h* ,
and hs ,

to find

the solidity S of a vertical prism ,
whether truncated or not, whose

horizontal section is a parallelogram of given area A.

Solution. Let BH (fig. 69) represent such a prism, whether

truncated or not, and let the plane BFHD divide it into two

Fig. 69,

triangular prisms AFH and CFH. The horizontal section of

each of these prisms will be A, and if h, hi, h*, and A$ repre-
sent the edges to which they are attached in the figure, we have

for their solidity ( 159) AFH=$Ax$(h + h l + h) 9
and

CFH=%A x $(hi + h? + h9). Therefore, the whole prism will

have for its solidity S = iAx^(h + 2h l + h y + 2AS). Let the

whole prism be again divided by the plane A E G C into two tri-

angular prismsBEG and DE G. Then we have for these prisms,

BEG^A x $(h + Ai + 7*2), and DEG = \A x $(h + h* +
A3), and for the whole prism, S = $A x ^(2h + h^ +2^2 + h3).

Adding the two expressions found for S, we have 2 S = $A
(h + hi + hi + h3),

or

S = A x J (h f hi + /la + hs).
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It will be seen by the figure, that i (h + /i, 2)
= KL = $(hi + // 3),

or Ji + h 2 = hi -+- 7*3. The expression for S might, therefore, be

reduced to S = A x | (h + /i2), or S = J. x |(/h + ^ 3 ). But as

the ground surfaces ABCD and EF GrH are seldom perfect

planes, it is considered better to use the mean of the four heights,

instead of the mean of two diagonally opposite.

161. Corollary. When all the prisms of an excavation have

the same horizontal section A, the calculation of any number of

them may be performed by one operation. Let figure 70 be a plan

a*

b+ fa

a.

Fig. 70.

of such an excavation, the heights at the angles being denoted by

a, i ,
a2 , b, bi , &c. Then the solidity of the whole will be equal

to I A multiplied by the sum of the heights of the several prisms

(160). Into this sum the corner heights a, a*, b, b 5 ,
c 6 , d, and

d4 will enter but once, each being found in but one prism ;
the

heights i ,
&4 , c, di, d^, and ds will enter twice, each being com-

mon to two prisms ;
the heights bi ,

b3 ,
and c4 will enter three

times, each being common to three prisms ;
and the heights & 2 , Ci ,

C2 ,
and c3 will enter four times, each being common to four prisms.

If, therefore, the sum of the first set of heights is represented by

Si ,
the sum of the second by s2 ,

of the third by sa ,
and of the

fourth by s4 ,
we shall have for the solidity of all the prisms

S = i A (i + 2 52 + 3 s 3 + 4 4).
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ARTICLE III. EXCAVATION AND EMBANKMENT.

162. As embankments have the same general shape as excava-

tions, it will be necessary to consider excavations only. The sim-

plest case is when the ground is considered level on each side of

the centre line. Figure 71 represents the mass of earth between

two stations in-an excavation of this kind. The trapezoid OBF II

is a section of the mass at the first station, and G l Si FI Hi a sec-

tion at the second station
;
A E is the centre height at the first

station, and AI EI the centre height at the second station ;

H Hi Fi F is the road-bed, G Gi BI B the surface of the ground,
and G Gi HI H and B BI FI F the planes forming the side slopes.

This solid is a prismoid, and might be calculated by the prismoid-
al formula ( 157). The following method gives the same result.

A. Centre Heights alone given.

163. Problem. Given the centre heights c and Ci ,
the width

of the road-bed &, the slope of the sides s, and the length of the

section Z, to find the solidity S of the excavation.

Solution. Let c be the centre height at A (fig. 71) and Ci the

height at AI . The slope s is the ratio of the base of the slope to

its perpendicular height ( 144). We have then the distance out

AB \~b + sc, and the distance out AI BI == | b + s Ci ( 144).

Divide the whole mass into two equal parts by a vertical plane
A AI EI E drawn through the centre line, and let us find first the

11
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solidity of the right-hand half. Through B draw the planes

JBEEi, BAiEi, and BEi$\, dividing the half-section into

three quadrangular pyramids, having for their common vertex

the point B, and for their bases the planes A A 1 E1 EJ
EE1 F1 F,

and AiBiFiEi. For the areas of these bases we have

Area of A A 1 E^ E = i E E^ x (A E + A l EJ = %l(c + d),
" E EI F^F EF x EEi = iH

" " A l JB, Fl Ei = iA l El x (Ei Fl + A : B^} = | (b c, + s d 2
),

and for the perpendiculars from the vertex B on these bases, pro-

duced when necessary,

Perpendicular on A AI EI E =

Then (Tab. X. 52) the solidities of the three pyramids are

sc) x ^?(c + c 1)
= i?(i&c +

S C2 + S C Ci

B-A 1 B 1 F1 E1 = $1 x i(6d + 5C!
2
)

= 1 (b d + s d
Their sum, or the solidity of the half-section, is

iS=-bl[$b(c + c,) + s(c
2 + d 2 + cci)].

Therefore the solidity of the whole section is

When the slope is 1| to I, s = f, and the factor f s = 1 may be

dropped.

164. Problem. To find the solidity S of any number n of
successive sections of equal length.

Solution. Let c, Ci ,
ca ,

c s , &c., denote the centre heights at the

successive stations. Then we have ( 163)

Solidity of first section Z [6 (c + d) + f 5 (c
2 + d 3 + c d)],

" " second section = % I [b (d + ca) + f s (d
2 + ca

2 + d e*)),
" third section = i I [

b (c, + c.) + f s (c2
2 + c3

2 + c2 c 3)],

&c. &c .

For the solidity of any number n of sections, we should have 1 1

multiplied by the sum of the quantities in n parentheses formed
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as those just given. The last centre height, according to the nota-

tion adopted, will be represented by cn ,
and the next to the last

by cn i. Collecting the terms multiplied by b into one line, the

squares multiplied by f s into a second line, and the remaining
terms into a third line, we have for the solidity of n sections

(c + 2 d + 2 ca + 2 c3 .....S =

When s = f ,
the factor f s = 1 may be dropped.

2 c n_i + cn)

2 C*! + c2
n)

Example. Given I = 100, b = 28, s = f,
and the stations and

centre heights as set down in the first and second columns of the

annexed table. The calculation is thus performed. Square the

heights, and set the squares in the third column. Form the suc-

cessive products c Ci, CxCa, &c., and place them in the fourth col-

umn. Add up the last three columns. To the sum of the second

column add the sum itself, minus the first and the last height,

and to the sum of the third column add the sum itself, minus the

first and the last square. Then 86 is the multiplier of b in the

first line of the formula, 592 is the second line, since f s is here 1,

and 274 is the third line. The product of 86 by b = 28 is 2408,
and the sum of 274, 592, and 2408 is 3274. This multiplied by
i I 50 gives for the solidity 163,700 cubic feet.

Station.
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B. Centre and Side Heights given.

165. When greater accuracy is required than can be attained by
the preceding method, the side heights and the distances out

( 144) are introduced. Let figure 72 represent the right-hand
side of an excavation between two stations. AAiBiB is the

ground surface
;
A E = c and AI EI = GI are the centre heights ;

B G = h and B l G^ h^ the side heights ; and d and d l ,
the dis-

tances out, or the horizontal distances of B and BI from the centre

line. The whole ground surface may sometimes be taken as a

plane, and sometimes the part on each side of the centre line may
be so taken

;

* but neither of these suppositions is sufficiently ac-

curate to serve as the basis of a general method. In most cases,

however, we may consider the surface on each side of the centre

line to be divided into two triangular planes by a diagonal passing

from one of the centre heights to one of the side heights. A ridge

or depression will, in general, determine which diagonal ought to

be taken as the dividing line, and this diagonal must be noted in

the field. Thus, in the figure a ridge is supposed to run from B
to A i ,

from which the ground slopes downward on each side to A
and BI . Instead of this, a depression might run from A to BI ,

and the ground rise each way to AI and B. If the ridge or de-

pression is very marked, and does not cross the centre or side lines

at the regular stations, intermediate stations must be introduced

to make the triangular planes conform better to the nature of the

ground. If the surface happens to be a plane, or nearly so, the

diagonal may be taken in either direction. It will be seen, there-

fore, that the following method is applicable to all ordinary

ground. When, however, the ground is very irregular, the method

of 171 is to be used.

166. Problem. Given the centre heights c and Ci ,
the side

heights on the right h and h\ ,
on the left h

1 and h'i ,
the distances

out on the right d and di ,
on the left d' and d\ ,

the width of the

* It is easy in any given case to ascertain whether a surface like A A l Bl B
is a plane ;

for if it is a plane, the descent from A to B will be to the de-

scent from A l to 1?,, as the distance out at the first station is to the distance

out at the second station ; that is, c - h : c t
h

l
= d : d l . If we had c = 9,

h = 6, Ci = 12. hi = 8, d = 24, and c?j
= 27, the formula would give 3:4 =

24 : 27, which shows that the surface is not a plane.
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road-bed b, the length of the section Z, and the direction of the

diagonals, to find the solidity S of the excavation.

Solution. Let figure 72 represent the right-hand side of the

excavation, and let us suppose first, that the diagonal runs, as

shown in the figure, from B to AI. Through B draw the planes

BEE^ BAiEt, and BE1 F1 , dividing the half-section into

three quadrangular pyramids, having for their common vertex

the point B, and for their bases the planes A AI EI E, E E\ FI Fy

and AiBiFiJZi. For the areas of these bases we have

AreaofAA 1 E1 E = %EEi x (AE + A^Ei) =iZ(c + Ci),

^F =EF x

and for the perpendiculars from the vertex B on these bases, pro-
duced when necessary,

Perpendicular on A A l El E = E 6r = d,

=h,

A . Fig. 72.

V"~" :
G

Then (Tab. X. 52) the solidities of the three pyramids are

Their sum, or the solidity of the half-section, is

(1)



150 EARTH-WORK.

Next, suppose that the diagonal runs from A to Bi . In this

case, through BI draw the planes B^EiE, BiAE, and B t EF
(not represented in the figure), dividing the half-section again

into three quadrangular pyramids, having for their common ver-

tex the point B\, and for their bases the planes A AI EI E,
E EI FL jP, and A BF E. For the areas of these bases we have

Area of AAiEiE=$EEi x (A E + A, E,} = $l(c +
E E\FiF = EF x EEl = iK

" " ABFE = %AE x d + \EF x h = $dc +

and for the perpendiculars from BI on these bases, produced when

necessary,

Perpendicular on A AI Et E EI G 1 = d1}

" EEl FiF = Bi Gi = hi,
" " ABFE = E Ei = I

Then (Tab. X. 52) the solidities of the three pyramids are

Bi A A! Ei E = di x il (c + d) = I (di c + d l d),

Bi EE^Fi F=%li l x i ~bl lllh^
Bi- ABFE =$1 x 1 (d c + 1 b h) = J Z (d c + i 5 ft).

Their sum, or the solidity of the half-section, is

+ di d + di c + b hi + i ~b h). (2)

We have thus found the solidity of the half-section for both di-

rections of the diagonal. Let us now compare the results (1) and

(2), and express them, if possible, by one formula. For this pur-

pose let (1) be put under the form

I [d c + di d + d d + | & (h + Ai + h)],

and (2) under the form

Z [d c + di Ci + di c + i b (h + ^i + 7^)].

The only difference in these two expressions is, that d ^ and the

last h in the first, become dl c and hi in the second. But in the

first case c\ and h are the heights at the extremities of the diago-

nal, and d is the distance out corresponding to h
;
and in the sec-

ond case c and hi are the heights at the extremities of the diago-

nal, and di is the distance out corresponding to hi. Denote the

centre height touched by the diagonal by C, the side height touched

by the diagonal by H, and the distance out corresponding to the
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aide height H by D. We may then express both d c and di c by
D (7, and both h and h^ by H\ so that the solidity of the half-

section on the right of the centre line, whichever way the diago-
nal runs, may be expressed by

DC + (3)

To obtain the contents of the portion on the left of the centre

line, we designate the quantities on the left by the same letters

used for corresponding quantities on the right, merely attaching
a to them to distinguish them. Thus the side heights are h'

and h\, and the distances out d' and d\ ,
while Z>, (7, and H be-

come D', C', and //'. The solidity of the half-section on the

left may therefore be taken directly from (3), which will become

D'C' (4)

Finally, by uniting (3) and (4), we obtain the following formula

for the solidity of the whole section between two stations :

S= d')e D C+D' C 1

Example. Given I 100, b = 18, and the remaining data, as

arranged in the first six columns of the following table. The first

column gives the stations; the fourth gives the centre heights,

namely, c = 13.6 and c\ 8
;
the two columns on the left of the

centre heights give the side heights and distances out on the left

of the centre line of the road, and the two columns on the right

of the centre heights give the side heights and distances out on

the right. The direction of the diagonals is marked by the

oblique lines drawn from h' = 8 to Ci = 8 and from c = 13.6 to

h, = 12.

Sta. d
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To apply the formula, the distances out at each station are

added together, and their sum placed in the seventh column
;

these sums, multiplied by the respective centre heights, are placed

in the eighth column ;
the product of d' = 21 (which is the distance

out corresponding to the side height touched by the left-hand diag-

onal) by d = 8 (which is the centre height touched by the same

diagonal) is placed in the ninth column, and the similar product
of d^ 27 by c = 13.6 is placed in the last column. The terms in

the formula multiplied by b are all the side heights, and in ad-

dition all the side heights touched by diagonals, or 8 4- 4 + 10 +
12 + 8 + 12 = 54. Then by substitution in the formula, we have

S = $ x 100 (612 + 336 + 168 + 367.2 + 9 x 54) = 32,820 cubic

feet,

By applying the rule given in the note to 165, we see that

the surface on the left of the centre line in the preceding ex-

ample is a plane ; since 13.6 8 : 8 4 = 21 : 15. The diagonal
on that side might, therefore, be taken either way, and the same

solidity would be obtained. This may be easily seen by revers-

ing the diagonal in this example, and calculating the solidity

anew. The only parts of the formula affected by the change
are D' C" and \IH '. In the one case the sum of these terms is

21 x 8 + 9 x 8, and in the other 15 x 13.6 + 9x4, both of which
are equal to 240.

167. Problem. To find the solidity S of any number n of
successive sections of equal length.

Solution. Let c, d ,
c2 ,

c3 , &c., be the centre heights at the suc-

cessive stations; h, 7^, Aa ,
h a ,&c. 9

the right-hand side heights; h',

h'i , h'z ,
h' a , &c., the left-hand side heights ;

d
t
dlt d9l dai &c., the

distances out on the right; and d', d' L ,
d' 9 ,

d' 3 ,&c., the distances

out on the left. Then the formula for the solidity of one section

(g 166) gives for the solidities of the successive sections

%l[(d + d') c + (d l + d\) d + D C + D' C' + i b (h + h, + H +
h f + h', + H')l

i I [(d, + d' 3) c* + (d, + d' 9) c, + DiC* + D\ C\
//a + h'i + h' 3 + /J' 2)],

and so on, for any number of sections. For the solidity of any
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number n of sections, we should have I multiplied by the sum of

n parentheses formed as those just given. Hence

DC + DC 1 + DiCi-\-D' l (

ib h + 2 hj. + 2 ^ + "i + //2 + &c.

Example. Given I = 100, b = 28, and the remaining data as

given in the first six columns of the following table :

Sta.
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2394. We have now for the first line of the formula 1389 + 1185,

for the second 605 + 639, and for the remainder 2394. By adding
100

these together, and multiplying the sum by I = ~~
,
we get the

contents of the six sections in feet.

168. When the section is partly in excavation and partly in

embankment, the preceding formulae are still applicable ;
but as

this application introduces minus quantities into the calculation,

the following method, similar in principle, is preferable.

169. Problem. Given the widths of an excavation at the

road-bed AF=w and AiFi=Wi (fig. 73), the side heights h

and hi ,
the length of the section Z, and the direction of the diago-

nal, to find the solidity S of the excavation, when the section is

partly in excavation and partly in embankment.

Solution. Suppose, first, that the surface is divided into two

triangles by the diagonal B A \ . Through B draw the plane

B AI Fi , dividing that part of the section which is in excavation

into two pyramids B AAi Fl F and B A l B^ F^ ,
the solidi-

ties of which are

B-

The whole solidity is, therefore,

S = i I (w h + w l 7h + Wi h).

Next, suppose the dividing diagonal to run from A to BI .

Through BI draw a plane BiAF (not represented in the figure),

dividing the excavation again into two pyramids, of which the

solidities are



CENTRE AND SIDE HEIGHTS GIVEN. 155

Bl A Ai F! F
Bi-ABF =

x i I (w +
x

+ wl hi),

The whole solidity is, therefore,

S = I (w h + Wi Jii +w hi).

The only difference in these two expressions is, that w\ h in the

first becomes whi in the second. But in the first case the diago-

nal touches Wi and A, and in the second case it touches w and ^i .

If, then, we designate the width touched by the diagonal by TF,

and the height touched by the diagonal by H, we may express

both wih and wh t by WH\ so that the solidity in either case

may be expressed by

S = %l (w h + Wi ^ + WH).

Corollary. When several sections of equal length succeed

one another, the whole may be calculated together. For this pur-

pose, the preceding formula gives for the solidities of the succes-

sive sections

1 (Wi ^ + W* hi + TTi Hi),

J I (wi h^ + w9 h-3 + Wi Hi),

and so on for any number of sections. Hence for the solidity of

any number n of sections we should have

Wi Hi + &c.)

Example. Given I = 100, and the remaining data as given in

the first three columns of the following table :

Station.
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of those widths and heights touched by diagonals, The sum of

the products in the fourth column is 247, the sum of all but the

first and the last is 209, and the sum of the products in the fifth

column is 186. These three sums are added together, multiplied

by 100, and divided by 6, according to the formula. This gives the

solidity of the four sections 10700 cubic feet.

170. When the excavation does not begin on a line at right an-

gles to the centre line, intermediate stations are taken where the

excavation begins on each side of the road-bed, and the section

may be calculated as a pyramid, having its vertex at the first of

these points, and for its base the cross-section at the second. The

preceding method gives the same result, since w and h in this

case become 0, and reduce the formula to S = ^lwihi. The
same remarks apply to the end of an excavation.

C. Ground very Irregular.

171. Problem. To find the solidity of a section, when the

ground is very irregular.

Solution. Let AHBFE - A l CDB l F^ El (fig. 74) represent
one side of a section, the surface of which is too irregular to be

divided into two planes. Suppose, for instance, that the ground

Fig. 74.
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changes at IT, C, and D, making it necessary to divide the surface

into five triangles running from station to station.* Let heights

be taken at H, C, and D, and let the distances out of these points
be measured. If now we suppose the earth to be excavated verti-

cally downward through the side line B BI to the plane of the

road-bed, we may form as many vertical triangular prisms as

there are triangles on the surface. This will be made evident by

drawing vertical planes through the sides A C, II C, HD, and

HBi . Then the solidity of the half-section will be equal to the

sum of these prisms, minus the triangular mass BF G B^Fi G\.

The horizontal section of the prisms may be found from the

distances out and the length of the section, and the vertical edges
or heights are all known. Hence the solidities of these prisms

may be calculated by 159.

To find the solidity of the portion BFG B 1 F1 G 1 ,
which is

to be deducted, represent the slope of the sides by s ( 144), the

heights at B and BI by h and hi ,
and the length of the section by

1. Then we have F G = sh, and FI Gi = s h\ . Moreover, the

area of BFG = $sh\ and that of B l F1 O l = ish^. Now as

the triangles BF G and Bl FI G^ are similar, the mass required is

the frustum of a pyramid, and the mean area is y\ sh* x - s h^ =
Then (Tab. X. 53) the solidity is BF G - BI Fl G i

=

Example. Given I 50, b = 18, s f ,
the heights at A, H, and

B respectively 4, 7, and 6, the distances A H 9 and HB = 9,

the heights at AI , (7, D, and BI respectively 6, 7, 9, and 8, and the

distances A i C = 4, CD = 5, and DB t
= 12. Then the horizon-

tal section of the first prism adjoining the centre line is 1 1 x A i (?,

since the distance A\ C is measured horizontally; and the mean
of the three heights is (4 + 6 + 7) = i x 17. The solidity of

this prism is therefore
-J-

1 x AI C x x 17 = \ I x 4 x 17, that is,

equal to I multiplied by the base of the triangle and by the sum
of the heights. In this way we should find for the solidity of the

five prisms

\l (4 x 17 + 9 x 18 + 5 x 23 + 12 x 24 + 9 x 21) = \ I x 822.

* It will often be necessary to introduce intermediate stations, in order to

make the subdivision into triangles more conveniently and accurately.
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For the frustum to be deducted, we have

i Z x f (6
2 + 82

4- 6 x 8) = $1 x 222.

Hence the solidity of the half-section is

I (822
-

222) = $ x 50 x 600 = 5000 cubic feet.

172. Let us now examine the usual method of calculating ex-

cavation, when the cross-section of the ground is not level. This

method consists, first, in finding the area of a cross-section at each

end of the mass; secondly, in finding the height of a section,

level at the top, equivalent in area to each of these end sections
;

thirdly, in finding from the average of these two heights the mid-

dle area of the mass ; and, lastly, in applying the prisraoidal for-

mula to find the contents. The heights of the equivalent sections

level at the top may be found approximately by Trautwine's Dia-

grams,* or exactly by the following method. Let A represent

the area of an irregular cross-section, b the width of the road-bed,

and s the slope of the sides. Let x be the required height of an

equivalent section level at the top. The bottom of the equivalent
section will be &, the top b + 2 s x, and the area will be the sum
of the top and bottom lines multiplied by half the height or

x (2 b + 2 s x} = s x* + bx. But this area is to be equal to A.

Therefore, sx* + bx = A, and from this equation the value of x

may be found in any given case.

According to this method, the contents of the section already
calculated in 166 will be found thus. Calculating the end areas,

we find the first end area to be 387 and the second to be 240.

Then as s is here f and b = 18, the equations for finding the

heights of the equivalent end sections will be f x* + 18 x = 387,

and f x* + 18 x 240. Solving these equations, we have for the

height at the first station x = 11.146, and at the second, x = 8.

The middle area will, therefore, have the height -(11.146 + 8) =
9.573, and from this height the middle area is found to be 309.78.

Then by the prismoidal formula ( 157) the solidity will be S =
fc
x 100 (387 + 240 + 4 x 309.78) = 31102 cubic feet.

But the true solidity of this section was found to be 32820 cubic

feet, a difference of 1718 feet. The error, of course, is not in the

prismoidal formula, but in assuming that, if the earth were levelled

* A New Method of Calculating the Cubic Contents of Excavations and
Embankments by the aid of Diagrams. By John C. Trautwine.
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at the ends to the height of the equivalent end sections, the inter-

vening earth might be so disposed as to form a plane between

these level ends, thus reducing the mass to a prismoid. This sup-

position, however, may sometimes be very far from correct, as has

just been shown. If the diagonal on the right-hand side in this

example were reversed, that is, if the dividing line were formed

by a depression, the true solidity found by 166 would be 29600

feet
;
whereas the method by equivalent sections would give the

same contents as before, or 1502 feet too much.

D. Correction in Excavation on Curves. *

173. In excavations on curves the vertical planes forming the

ends of a section are not parallel to each other, but converge
towards the centre of the curve. A section between two stations

100 feet apart on the centre line will, therefore, measure less than

100 feet on the side nearest to the centre of the curve, and more

than 100 feet on the side farthest from that centre. Now in

calculating the contents of an excavation, it is assumed that the

ends of a section are parallel, both being perpendicular to the

B, B

Fig. 75.

chord of the curve. Thus, let figure 75 represent the plan of

two sections of an excavation, EF G being the centre line, A L
and CM the extreme side lines, and the centre of the curve.
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Then the calculation of the first section would include all be-

tween the lines AI Ci and BiDi', while the true section lies

between A C and B D. In like manner, the calculation of the

second section would include all between HK and N P, while

the true section lies between B D and L M. It is evident, there-

fore, that at each station on the curve, as at F, the calculation

is too great by the wedge-shaped mass represented by KFDi,
and too small by the mass represented by B^ F H. These masses

balance each other, when the distances out on each side of the

centre line are equal, that is, when the cross-section may be

represented by A D FR E (fig. 76). But if the excavation is

on the side of a hill, so that the distances out differ very

Fig. 76.

much, and the cross-section is of the shape A D FB E, the

difference of the wedge-shaped masses may require considera-

tion.

174. Problem. Given the centre height c, the greatest side

height h, the least side height h, the greatest distance out d, the

least distance out d', and the width of the road-bed b, to find the

correction in excavation C, at any station on a curve of radius Tir

or deflection angle D.

Solution. The correction, from what has been said above, is a

triangular prism of which B FR (fig. 76) is a cross-section. The

height of this prism at B (fig. 75) is B l H, the height at R is R, S,

and the height at F is 0. BI H and RI S, being very short, are

here considered straight lines. Now we have the cross-section

h). To find the height B^ H, we have the

angle BFH= BFB l = D, and therefore B^ H 2 HFsin. D =
2 d sin. D. In like manner, 7^ S = KD l

= 2 KF sin. D =
2d' sin. D. Then since the height at F is 0, one third of the sum

of the heights of the prism will be f (d + d') sin. D, and the cor-

rection, or the solidity of the prism, will be ( 159)
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h)] x f (d + d') sin. D.

When R is given, and not D, substitute for sin. D its value ( 9)

sin. D -^ . The correction then becomes

.

This correction is to be added, when the highest ground is on

the convex side of the curve, and subtracted, when the highest

ground is on the concave side. At a tangent point, it is evident,

from figure 75, that the correction will be just half of that given

above.

Example. Given e = 28, h = 40, h'
-

16, d = 74, d = 3S,b =
28, and R = 1400, to find G. Here the area of the cross-section

OQ OQ
BFR = Y (74

-
38) + ~ (40

-
16) = 672, and one third of the

. 100 (74 + 38) 8
sum of the heights of the prism is ^ = -

. Hence C
_ o X 1.4UU o

672 x | = 1792 cubic feet.
o

175. When the section is partly in excavation and partly in em-

bankment, the cross-section of the excavation is a triangle lying

wholly on one side of the centre line, or partly on one side and

partly on the other. The surface of the ground, instead of ex-

tending from B to D (fig. 76), will extend from B to a point be-

tween G and E, or to a point between A and G. In the first case,

the correction will be a triangular prism lying between the lines

B! F and HF (fig. 75), but not extending below the point F.

In the second case, the excavation extends below F, and the cor-

rection, as in 173, is the difference between the masses above and

below F. This difference may be obtained in a very simple man-

ner, by regarding the mass on both sides of F as one triangular

prism the bases of which intersect on the line G F (fig. 76), in

which case the height of the prism, at the edge below F must be

considered to be minus, since the direction of this edge, referred

to either of the bases, is contrary to that of the two others. The

solidity of this prism will then be the difference required.

176. Problem. Given the width of the excavation at the

road-bed w, the width of the road-bed b, the distance out d, and

12
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the side height h, to find the correction in excavation (7, at any
station on a curve of radius R or deflection angle D, when the

section is partly in excavation and partly in embankment.

Solution. When the excavation lies wholly on one side of the

centre line, the correction is a triangular prism having for its

cross-section the cross-section of the excavation. Its area is,

therefore, i w h. The height of this prism at B (fig. 76) is ( 174)

Bi H 2 HF sin. D = 2 d sin. D. In a similar manner, the

height at E will be 2 Q E sin. D = b sin. D, and at the point in-

termediate between (? and E, the distance of which from the cen-

tre line is \ 1} w, the height will be 2(%b w) sin.D= (b 2w)
sin. D. Hence, the correction, or the solidity of the prism, will

be ( 159) C = i w h x i (2 d + ~b + I - 2 w) sin. D = | w h x

j (d + i _ w
}
sjn> 2).

When the excavation lies on both sides of the centre line, the

correction, from what has been said above, is a triangular prism

having also for its cross-section the cross-section of the excava-

tion. Its area will, therefore, be \ w h. The height of this prism
at B is also 2dsin.Z), and the height at E, bsin.D; but at the

point intermediate between A and G, the distance of which from

the centre line is w i b, the height will be 2(w $b) sin. D =
(2 w b) sin. D. As this height is to be considered minus, it must

be subtracted from the others, and the correction required will be

C\wJi x $(2d + b 2w + b) sm.D = $wh x f (eZ + b - w)
sin. D. Hence, in all cases, when the section is partly in excava-

tion and partly in embankment, we have the formula

C = i w h x f (d + b w) sin. D.

When R is given, and not Z>, substitute for sin. D its value ( 9)

50
sin. D = . The correction then becomes

.

o _n,

This correction is to be added, when the highest ground is on
the convex side of the curve, and subtracted when the highest

ground is on the concave side. At a tangent point the correction

will be just half of that given above.

Example. Given w = 17, b = 30, d = 51, h = 24, and R =
1600, to find C. Here the area of the cross-section



NOTE ON THE COMPUTATION OF EARTH-WORK. 163

12 204, and one third of the sum of the heights of the prism is

100(d + 6~w)_100(51 + 30-17)_4 _ 4 _
3# 3x1600 ~3'

X 3~
272 cubic feet.

177. The preceding corrections ( 174 and 176) suppose the

length of the sections to be 100 feet. If the sections are shorter,

the angle B FH(fi.g. 75) may be regarded as the same part of D
that F G is of 100 feet, and B^FB as the same part of D that

EF is of 100 feet. The true correction may then be taken as the

same part of C that the sum of the lengths of the two adjoining
sections is of 200 feet.

NOTE ON THE COMPUTATION OF EARTH-WORK.

178. The mode of computing earth-work on railroads by first

finding equivalent level-top sections has already been examined

in 172, and the assumption made in applying the prismoidal
formula is shown to lead to possibly serious errors. Another as-

sumption that forms the basis of many formula?, tables, and dia-

grams, is that the natural surface of the ground of such a section

as that calculated in 166 is a warped surface or hyperbolic parab-

oloid. The solidity is then computed by the prismoidal formula.

Computing the section just referred to on this assumption, we
find the solidity 31 210 feet. Now we have seen in 172 that,

with the diagonal running in one direction, the solidity is 32 820

feet, and, with the diagonal running in the other direction, the

solidity is 29 600 feet. The assumption of a warped surface gives,

therefore, an exact mean between these two results, being 1,610

feet too much or too little, according to the direction of the diag-

onal. Errors so great would not perhaps be common
;
but they

are at least possible.

The objection to these methods is that they involve general as-

sumptions as to the natural surface of the ground assumptions
that the engineer cannot readily test in the field for each section,

or allow for, if seen to be wrong. No method would seem to be

reasonably correct that does not require all the data used in the

computation to be obtained directly in the field. Now the division

of the ground into triangular planes, whether four as in 166, or

more as in 171, satisfies this condition. Since three points de-

termine a plane, it is comparatively easy to decide on the ground
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what heights should be adopted at the vertices, so that a triangu-

lar plane shall be a fair average of the ground. Suppose the

ground cross-sectioned in the usual way, and the actual cats

marked on the stakes and recorded. These cuts remain to guide
the contractor in his work

;
but the engineer is to examine each

triangle, and see whether these cuts require any correction in

order to obtain a fair average* of the surface. As he goes from

section to section, two of the heights or cuts would in general be

already fixed, and, standing at the third vertex, he readily deter-

mines whether the actual cut there should stand, or have one, two,

three, or more tenths added or subtracted. The correction, if

any, may be noted in small figures over the actual cut, and applied
when the heights are taken off for the computations.
Some additional labor is doubtless involved in thus obtaining

directly all the data required, and dispensing with all general as-

sumptions ;
but if justice to the contractor and to the company

require such additional labor, the engineer will not hesitate on

that account. The computations, as arranged in 167, will be

found, after a little practice, to admit of very rapid work. Of

course, only final estimates require so much care.

In preliminary estimates, where centre heights alone are taken,
the method of 164 will be found sufficiently accurate, and if the

computations are arranged as there shown, the work will be found

very expeditious. In many cases where only approximate results

are aimed at, especially in making the usual "
monthly estimates,"

the method of averaging end areas may be employed. This

method consists in finding the areas of the two cross-sections

which bound a section of an excavation, and multiplying the aver-

age of these areas by the length of the section to obtain the con-

tents of the section.



TABLE I.

RADII, ORDINATES, TANGENT DEFLECTIONS, AND
ORDINATES FOR CURVING RAILS.

This table applies directly only to curves laid out with 100 feet

chords. With shorter chords, it may still be made useful. When
50 feet chords are used with a deflection angle half that for 100

feet chords, the radius of the curve is so slightly shortened, that,

for the purpose of finding the new ordinates and tangent deflec-

tions from Table I., the curve is practically the same as when
laid out with 100 feet chords. The change in the radius is easily

found. Let D be the deflection angle for 100 feet chords, and
XA Kf\

we have ( 10 and Tab. X., 22) R =-^ =
.

,
r-= =^ sm.D 2 sin. | Z> cos. D

,
and for Ri ,

the radius for 50 feet chords, RI =
sin.

-I-
.D cos. \D'

05
.

= R cos. \D. In a 12 curve, where R = 478.34 and D

6, we have R l = Rcos.3 = 478.34 x .99863 = 477.68. Now in

the same curve the ordinates ( 27) and the tangent deflections

( 19) are to each other as the squares of the chords; that is, for

50 feet chords these quantities are one-fourth of those given in

Table I. for 100 feet chords. The ordinates for curving 30 feet

rails will, of course, be unchanged. In the present example the

, , , 2.620 , 1.965
ordinates would be .

= .655 and - = .491, the tangent de-

flection = 2.613, and the ordinates for curving 30 feet rails

.235 and .176.

With 25 feet chords and a deflection angle of 1-J- we should

have the radius R* = R cos. 3 cos. 1, and the ordinates and

tangent deflection one-sixteenth of those in Table I., while the

ordinates for curving 30 feet rails would still be unchanged.
This curve, strictly speaking, could no longer be called a 12

curve. The new degree, here about 12 1', might be found, or

the curve might be designated by the radius
;
but the most con-

venient and definite designation would be : Deflection angle 3

for 50 feet chords, or deflection angle 1 for 25 feet chords.



TABLE I. RADII, ORDINATES, TANGENT DEFLECTIONS,

De-

gree.



AND OBDINATES FOB CURVING BAILS.

De-

gree.



168 TABLE I. RADII, ORDINATES, TANGENT DEFLECTIONS,

De-
gree.



AND OBDINATES FOB CUBVING BAILS.

De-

gree.



170 TABLE I. BADII, ORDINATES, TANGENT DEFLECTIONS,

De-

gree.



AND ORDINATE8 FOB CURVING RAILS. 171

De-

gree.



172 TABLE I. RADII, ORDINATES, TANGENT DEFLECTIONS,

De-
gree.



AND ORDINATES FOR CURVING RAILS.

De-
gree.



174 TABLE II. LONG CHORDS.

TABLE II.

LONG CHORDS. 83.

Degree
of Curve.



TABLE II. LONG CHORDS.

LONG CHORDS. 83.

175

Degree
of Curve.



176 TABLE III. TANGENTS AND EXTERNALS

TABLE III.

TANGENTS AND EXTERNALS OF A ONE-DEGREE
CURVE.

FOR chords of 100 feet the radius of a one-degree curve is

5729.65 feet. To find its tangent for any intersection angle /,

we have ( 4) T R tan.|J, and to find the external ( 85) b =
Ttan. /. By these formulae this table is computed.

To find T and b for a curve of any other degree (chords 100

feet), divide the tabular values for the proper intersection angle

by the number of degrees, whole or fractional, designating the

curve. Thus, to find T and b for a 3 20' curve we divide the

proper tabular values by 3. This process supposes the radii of

curves to be inversely proportional to their degrees. , This is not

strictly true, as may be seen by referring to Table I. Thus the

radius of a 10 curve is greater than one-tenth the radius of a 1

curve. The values of T and b obtained as above will, therefore,

be too small, and the corrections to be applied will always be ad-

ditive. When thought to be necessary, these corrections may be

obtained from Table IV.
; but, in the ordinary use of such a table,

they may be disregarded.

When the intersection angle of a proposed curve is known, and

one of the three quantities R, T, and b is known or assumed, the

other two may be obtained from the table. Thus, if we have / =
48 45' and the external b = 129 feet, we find from the table for

this value of /, b 560.7. Then we have the degree of the pro-

posed curve = 1 x ^~= = 4
C
.346 = 4 20', nearly. Also for a 1

i/oy

curve the table gives T 2596.1
;
so that for the proposed curve

2596 1T = ' = 599.1. In a similar way, if the tangent of a pro-
^8"

posed curve is known or assumed, the degree of the curve and its

external can be found.



OF A ONE DEGREE CURVE. 177

I.



178 TABLE ITT. TANGENTS AND EXTERNALS.

I.



OF A ONE DEGREE CURVE. 179

I



180 TABLE III. TANGENTS AND EXTERNALS

I.



OF A ONE DEGREE CURVE. 181

I.



182 TABLE III. TANGENTS AND EXTERNALS

I.



TABLE IV. TABLE V. 183

TABLE IV.

CORRECTIONS FOR TABLE III.

FOR TANGENTS ADD



184 TABLE VI. TABLE VII.

TABLE VI.

LENGTH OF CIRCULAR ARCS IN PARTS OF RADIUS.

1



TABLE VIII. CORRECTION FOR THE EARTH'S CURVATURE. 185

TABLE VIII.

CORRECTION FOR THE EARTH'S CURVATURE AND
FOR REFRACTION. 145.

Z).



186 TABLE IX. RISE PER MILE OF VARIOUS GRADES.

TABLE IX.

EISE PER MILE OP VARIOUS GRADES,

Grade
per

station.



TABLE IX. RISE PER MILE OF VARIOUS GRADES. 187

Grade
per

Station.



188 TABLE X. TRIGONOMETRICAL AND

TABLE X.

TRIGONOMETRICAL AND MISCELLANEOUS
FORMULA.

LET A (fig. 77) be any acute angle, and let a perpendicular B C
be drawn from any point in one side to the other side. Then, if

Fig. 77.

the sides of the right triangle thus formed are denoted by letters,

as in the figure, we shall have these six formulae :

1. . i*

. sin. A = .

c

2. cos. A = -
.

c

3.
0'

4. cosec. A = .

a

c
5. sec. A = T .

6. cot. A = -
.

a

Solution of Right Angles (fig. 77).

7

8

9

10

11
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Solution of Oblique Triangles (fig. 78).

Fig. 78.

12

13

14

15

16

17

18



190 TABLE X. TRIGONOMETRICAL AND

General Trigonometrical JTormulce, (Continued).

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43



MISCELLANEOUS FORMULAE.

Miscellaneous Formulae.

191



192 TABLE X. TRIGONOMETRICAL AND

Miscellaneous Formulas, (Continued).

United States Standard Gallon = 231 cub. in. = 0.133681 cub. ft.

Bushel = 2150.42 " =1.244456 "

British Imperial Gallon =277.27384 " =0.160459 "

Length of Seconds Pendulum, at sea-level, at Equator, 39.0152 in.

" " " " " " "
N.York, 39.1017 "

"
London, 39,1393

"

Weight of a Cubic Foot of Pure Water, according to Rankine :

At 39.4 Fahrenheit, 62.425 Ibs.
;
at 62, 62.355 Ibs.

Figure of the Earth, Clarke, Ency. Brit. Art. Geodesy :

Equatorial radius = 20 926 202 feet,

Polar radius = 20 854 895 "

Degrees in arc equal to radius 57.29578

Minutes" " " " 3437.74677

Seconds " " " " " 206264.80625

To change common logarithms into hyperbolic multiply by
.434 294 48 ;

the logarithm of which is 9.637 7843.

x = tan. x -J-
tan.% + tan.6# | tan. 7

o; + &c.

Let a = length of a flat circular arc, c = its chord, R radius,

D = deflection angle for 100 ft. chords.

a3 c3

Then approximately a c = _ . p2
=

2
= a sin.

2J9= c sm.2
I>.
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TABLES XI. AND XII.

HEIGHTS BY ANEROID BAROMETER.

THESE tables facilitate the use of the formula given below for

obtaining the difference of height between two stations by means

of the aneroid barometer. The formula and tables are taken from

No. 12 of the Professional Papers of the Corps of Engineers, U. S. A.

The aneroid barometers used are supposed to be adjusted to agree

with a mercurial barometer at a temperature of 32 Fahrenheit,

at the level of the sea, in latitude 45. Frequent comparisons
with a mercurial barometer are highly desirable. Simultaneous

observations of the barometers and of the temperature of the air

are to be made at the two stations, or, if only one barometer is

used, the observations should differ in time as little as possible-

In both cases, repeated observations should be made when prac-
ticable.

Let Z the difference of height of the two stations in feet.
" h = the reading in inches of the barometer at the lower station.
" H= "

upper
"

t and t'= the temperatures (Fahr.) of the air at the two stations.

Then Z = (log. h - log. H) x 60384.3 x (l +
* + *' ~ 64

) .

\ 900 /

Table XI. contains the products of 60384.3 and the logarithms
of any number of inches from 17 to 31, except that, as the charac-

teristic of all these logarithms is one, this characteristic is omitted

throughout, because the difference of any two products is not af-

fected thereby. Table XII. contains the values of the fraction in

the last parenthesis of the formula for all values of t + t' from 30
to 189.

Example. Readings at lower station h = 29.63 in., t = 68
;
at

higher station, //= 27.21 in., t' = 61.

Table XI. gives for 29.63 28485.2
" " " "

27.21 26250.8

difference, 2234.4

Table XII. gives for 129 .0722

. Z = 2234.4 x 1.0722 = 2396 feet.

14
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TABLE XII

FOR ANEROID FORMULA.
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TABLE XIII.

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS,

AND RECIPROCALS OF NUMBERS.

FROM 1 TO 1054.



204 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

No.



CUBE BOOTS, AND RECIPKOCALS. 205

No.



206 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

Ho.



CUBE ROOTS, AND RECIPROCALS.

No.



208 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

No.



CUBE ROOTS, AND RECIPROCALS. 209

No.



210 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

No.



CUBE HOOTS, AND KECIPROCALS.

No.
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No.



CUBE HOOTS, AND KECIPROCALS. 213

Ho.



214 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

1

*



CUBE ROOTS, AND RECIPROCALS. 215

Wo.
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No.



CUBE ROOTS, AND RECIPROCALS. 217

No.
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No.



CUBE HOOTS, AND RECIPROCALS. 219

INo.



220 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS, &C.

No.



TABLE XIV.

LOGARITHMS OF NUMBERS.

FROM 1 TO 10,000.



222 TABLE XIV. LOGARITHMS OF NUMBERS.

No



TABLE XIV. LOGARITHMS OF NUMBERS.

No.



224, TABLE XiV. LOGARITHMS OF NUMUEI.'S.

No.



TABLE XIY. LOGARITHMS OF NtTMBERS. 225

Mo



226 TABLE XIV. LOGARITHMS OF NUMBERS.

No.



TABLE XIV. LOGARITHMS OF NUMBERS. 221

|No.



228 TABLE XIV. LOGARITHMS OP NUMBERS.

No.
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No.



TABLE XIV. LOGARITHMS OF NUMBERS. 231

Ho.
|
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No



TABLE XIV. LOGARITHMS OF NUMBERS. 233

Mo.



TABLE XIV. LOGARITHMS OF NUMBERS.

Mo.
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No.'



236 TABLE XIV. LOGARITHMS OF NUMBERS.

No.



TABLE XV.

LOGARITHMIC SINES, COSINES, TANGENTS,

AND COTANGENTS.



238 TABLE XV. LOGARITHMIC SINES,

NOTE.

THE table here given extends to minutes only. The usual

method of extending such a table to seconds, by proportional

parts of the difference between two consecutive logarithms, is ac-

curate enough for most purposes, especially if the angle is not

very small. When the angle is very small, and great accuracy is

required, the following method may be used for sines, tangents,

and cotangents.

I. Suppose it were required to find the logarithmic sine of 5' 24",

By the ordinary method, we should have

log. sin. 5' = 7.1626961

diff. for 24" = 31673

log. sin. 5' 24" = 7.194369

The more accurate method is founded on the proposition in Trigo-

nometry, that the sines or tangents of very small angles are pro-

portional to the angles themselves. In the present case, there-

fore, we have sin. 5' : sin. 5' 24" = 5' : 5' 24" = 300" : 324". Hence

324 sin 5'
sin. 5' 24" = '

,
or log. sin. 5' 24" = log. sin. 5' + log. 324oUU

log. 300. The difference for 24'' will, therefore, be the difference

between the logarithm of 324 and the logarithm of 300. The

operation will stand thus :

log. 324 = 2.510545

log. 300 = 2.477121

diff. for 24" = 33424

log. sin. 5' = 7.162696

log. sin. 5' 24" = 7.196120

Comparing this value with that given in tables that extend to

seconds, we find it exact even to the last figure.

TI. Given log. sin. A 7.004438 to find A. The sine next less

than this in the table is sin. 3' = 6.940847. Now we have sin. 3' :

sin. ^1 = 3:^. Therefore, A = ~
t

"i^~
,
or log. A = log. 3 +



COSINES, TANGENTS, AND COTANGENTS. 239

log. sin. A log. sin. 3
f

. Hence it appears, that, to find the loga-

rithm of A in minutes, we must add to the logarithm of 3 the

difference between log. sin. A and log. sin. 3'.

log. sin. A = 7.004438

log. sin. 3' = 6.940847

63591

log. 3 = 0.477121

A = 3.473 0.540712

or A = 3' 28.38". By the common method we should have found

4 = 3' 30.54".

The same method applies to tangents and cotangents, except
that in the case of cotangents the differences are to be subtracted.

*
#
* The radius of this table is unity, and the characteristics 9

r

8, 7, and 6 stand respectively for 1, 2, 3, and 4.
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DC 1T90
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8 177



COSINES, TANGENTS, AND COTANGENTS. 243
1760

M.
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4 IT&c
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BP 172P
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M.



248 TABLE XV. LOGARITHMIC SINES,



COSINES, TANGENTS, AND COTANGENTS.
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1601
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M.
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166*

M



COSINES, TANGENTS, AND COTANGENTS. 255
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M.
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169*

M.
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M.
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264
840

TABLE XV. LOGARITHMIC SINES,
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TABLE XIX.

METRIC CURVE TABLE.



TABLE XIX. METRIC CURVE TABLE.

Def . angle,
20m.
chords.



USE OF TABLES I., II, III, AND IV.

FOE METEIC CUEVES.

THE metric curve table here given corresponds to Table I., ex-

cept that the ordinates for curving rails are omitted. The deflec-

tion angles, denoted by Z>, are for chords of 20 metres. The radii

are, therefore, computed by the formula 72 = . . In Table I
sin. D

the radii are computed by the formula R = -^-
. The radii in

the metric table are, therefore, each one-fifth or .2 of the radii in

Table I. for the same deflection angle. Moreover, since the ordi-

nates given above and the tangent deflections vary only with the

radii, these ordinates and the tangent deflections may also be ob-

tained from Table I. by simply multiplying the corresponding
quantities by .2, keeping in mind that corresponding quantities
are those belonging to the same deflection angle. Table I., ex-

cept in regard to ordinates for rails, may, therefore, be used for

metric curves by simply multiplying corresponding quantities
by .2. The metre will, of course, be the unit of the resulting

quantities.

Example. Given in a metric curve D = 3 10', to find R and

the ordinates ra and m. In Table I., R = 905.13, m = 1.382, and

f m 1.037. Multiplying these values by .2, we have for the

metric curve R = 181.03, m .276, f m = .207, as in Table XIX.

Since the Long Chords of Table II. for the same deflection an-

gle vary directly with the radii, we may use this table for metric

curves by multiplying the values there found by .2. We thus ob-

tain in metres the length of corresponding long chords in metric

curves.

Example. Given in a metric curve D = 2 20', to find the long
chord for five stations. From Table II. we have for an ordinary
curve the long chord 496.689. Multiplying by .2, we have the

required long chord in the metric curve = 99.338 metres.

Tables III. and IV. may also be used for metric curves, as all the

quantities vary only with the radii. Therefore, using the same
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deflection angle, we convert these tables into metric tables by
multiplying corresponding quantities by .2, the ratio of the radii.

First find T and b from the tables, as for an ordinary curve, and

multiply the values so found by .2 to obtain T and b for the cor-

responding metric curve.

Example. Given in a metric curve 2 = 90 and D = 10, to

find T and b. From the tables we should have for an ordinary

curve T = + 1.45 = 287.935 and b = '

+ .603 =
119.268. These values multiplied by .2 give for the metric curve
T 57.587 metres and b = 23.854 metres.

It is obvious that if chords of 10 metres were used in laying
out a metric curve, the multiplier, as used above, would be .1, and
that if chords of 30 metres were used, the multiplier would be .3.

(46)

THE END.
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