TF 205

 UC-NRLF

В 3138498

FIELD-BOOK FOR

RAILROAD ENGINEERS

CIRCULAR AND PARABOLIC CURVES, TURNOUTS, VERTICAL CURVES, LEVELLING, COMPUTING EARTH-WORK, TRANSITION CURVES ON NEW LINES AND APPLIED TO EXISTING LINES, TOGETHER WITH TABLES OF RADII, ORDINATES, LONG CHORDS, LOGARITHMS, LOGARITHMIC and natural sines, Tangents, ETC., AND A METRIC CURVE TABLE

BY

JOHN B. HENCK, A. M.
late professor of civil engineering in the massachusetts INSTITUTE OF TECHNOLOGY

SECOND REVISED EDITITSN:

NEW YORK AND LONDON
D. APPLETON AND COMPANY

1912

Copyright, 1854, 1881, 1896,

By D. APPLETON AND COMPANY

Copyright, 1909, by John B. Henck, Alice C. Henck, and Edward W. Henck

Printed in the United States of America

PREFACE.

In revising this work for the second time, the original purpose of making the volume compact, so as to be of convenient size for use in the field, has been adhered to. It is designed to contain such formulæ and tables as are matters of constant reference in the field, to the exclusion of such as are rarely used. Subjects that, though important in themselves, require large space for satisfactory treatment, or are best learned, once for all, in the office or from competent superiors in the field, are also excluded. The size of the volume will therefore be found not materially increased by the changes and additions now made.

Table I. has been eniarged. The first column contains the degrees of curves for evary two minutes up to 10°, for every four minutes up to 20°, and for every ten minutes afterward. The deflection angles will thus be always whole minutes. Ordinates for the quarter points, both for 100 feet chords and for 30 feet rails, are new features. The column of chord deflections has been omitted, being easily supplied by doubling the tangent deflections. All the data required in laying out a curve are found on one line. Some changes have been made in the other tables, and, in connection with the short metric curve table, a method is given of extending it by means of Tables I., II., III., and IV. The length of the arc of a curve is seldom required, since a curve is sufficiently described by giving the number and length of the chords and the deflection angle
used. When the length of the are is desired, it may be found by the method given in § 13 , which is exact for curves laid out with chords of any length.

Matters formerly in an Appendix have been transferred to their proper places in the text. Some of them have been more fully developed, especially those relating to turnouts tangent to the main line.

Transition curves have been more fully treated, and by methods entirely new. These curves have assumed great importance in view of the high speed of modern trains. The shock on entering and leaving a curve, and the danger of derailment, may be greatly reduced by a transition curve, if carefully located and laid with rails that have been accurately curved. Both these essentials are secured by the methods here given. Certain portions of the discussion involve the calculus, but the actual laying out of the curve merely requires the engineer to fix upon the length of curve he deems best, after which all the data for locating the curve, either by tangent offsets or by deflection angles, are found on a single line of a short table. The method of applying a transition curve to an existing track is equally simple. The deflection angle of the existing circular curve and its tangent point being known, and the length of the proposed transition curve chosen, a single line of a short table gives the data for locating the curve. In this table the ratio of the two radii concerned is taken as .9 , but the general formulæ are not confined to any particular ratio. It will be seen that these methods do not require the central circular curve to be of some whole degree. The deflection angle D of the central curve may have any value we please-a manifest advantage.

For curving the rails accurately the ordinates at the centre and at the quarter points are required. These are readily found, especially when the curve is made to begin at a joint.

The chapter on the common parabola is retained, because, though this curve has met with but little acceptance on railroads, it is well adapted to vertical curves, and also
affords a simple means of laying out curves on common roads and pleasure drives, and such as are used in landscape gardening.

In the first preface to this work (1854) it was said: "Among the processes believed to be original may be specified those in $\$ \S 41-48$, on Compound Curves, in Chapter II., on Parabolic Curves, in §§ 106-109 (now 149-151) on Vertical Curves, and in the article on Excavation and Embankment. It is but just to add that a great part of what is said on Reversed Curves, Turnouts, and Crossings, and most of the Miscellaneous Problems, are the result of original investigations." The claims here made have been properly recognized by some authors, while others have thought it sufficient to acknowledge the merits of the processes involved by simply adopting them.
J. B. H.

Montecito, Cal., January, 1896.

TABLE OF CONTENTS.

CHAPTER 1.

ciroular curves.

Article I.-Simple Curves.

sect. PAGE
2. Definitions. Propositions relating to the circle 1
4. Angle of intersection and radius given, to find the tangent 3
5. Angle of intersection and tangent given, to find the radius 3
6. Degree of a curve 4
7. Deflection angle of a curve 4
A. Method by Deflection Angles.
9. Radius given, to find the deflection angle 5
10. Deflection angle given, to find the radius 5
11. Angle of intersection and tangent given, to find the deflection angle 5
12. Angle of intersection and deflection angle given, to find the tangent 6
13. Angle of intersection and deflection angle given, to find the length of the curve 6
14. Deflection angle given, to lay out a curve 7
16. To find a tangent at any station 9
B. Method by Tangent and Chord Deflections.
17. Definitions 9
18. Radius given, to find the tangent deflection and chord reflection 9
19. Deflection angle given, to find the chord deflection 10
20. To find a tangent at any station 11
21. Chord deflection given, to lay out a curve 11
C. Method by Offsets from Tangent.
sect. PAGE
23. Deflection angle given, to find points on the curve by offsets from the tangent. 13
D. Ordinates.
24. Definition. 15
25. Deflection angle or radius given, to find ordinates 16
26. Approximate value for middle ordinate 18
27. Method of finding intermediate points on a curve approximately 18
E. Curving Rails.
29. Deflection angle or radius given, to find the ordinate for curv- ing rails 19
Article II.-Reversed and Compound Curves.
30. Definitions 19
31. Radii or deflection angles given, to lay out a reversed or com- pound curve. 20
A. Reversed Curves.
32. Reversing point when the tangents are parallel 20
33. To find the common radius when the tangents are parallel 21
34. One radius given, to find the other when the tangents are par- allel 21
35. Chords given, to find the radii when the tangents are parallel 22
36. Radii given, to find the chords when the tangents are parallel 23
37. Common radius given, to run the curve when the tangents are not parallel. 23
38. One radius given, to find the other when the tangents are not parallel 24
39. To find the common radius when the tangents are not parallel. 25
40. Second method of finding the common radius when the tan- gents are not parallel 26
B. Compound Curves.
41. Common tangent point of the two arcs 27
42. To find a limit in one direction of each radius 28
44. One radius given, to find the other 29
45. Second method of finding one radius when the other is given 31
46. To find the two radii 32
47. To find the tangents of the two branches 34
48. Second method of finding the tangents of the two branches 35

Article III.-Turnouts and Crossings.

sect. PAGE
49. Three cases of turnouts 36
First and Second Cases.
50. Definitions 37
A. Turnout from Straight Main Track.
51. Radius given, to find the frog angle and the position of the frog 37
52. Frog angle given, to find the radius and the position of the frog 38
53. To find mechanically the proper position of a given frog 39
54. To find the second radius of a turnout reversing opposite the frog 40
B. Crossings on Straight Lines.
55. References to proper problems 42
56. Radii given, to find the distance between switches 42
C. Turnout from Curves.
57. Frog angle given, to find the radius of the turnout and the posi- tion of the frog 43
58. To find mechanically the proper position of a given frog 47
59. Position of a frog given, to find the frog angle 47
60. Radius of turnout given, to find the frog angle and the position of the frog 48
62. Turnout to reverse and become parallel to the main track 51
D. Crossings on Curves.
63. References to proper problems 52
64. Common radius given, to find the central angles and chords 53
Third Case.
Turnouts Tangent to Main Track.
65. Proper length of switch-rail 53
A. Turnout from Straight Lines.
66. Radius given, to find the frog angle and the position of the frog 54
67. Frog angle given, to find the radius and the position of the frog 54
68, Locating a turnout curve 55
B. Crossings on Straight Lines.
SECT.
70. References to proper problems 50
C. Turnout from Curves.
71. Frog angle given, to find the radius of the turnout and the po- sition of the frog. 56
72. Radius of the turnout given, to find the frog angle and the po- sition of the frog. 59
74. Turnout to reverse and become parallel to the main track. 62
75. Position of a frog given, to find the frog angle 63
D. Crossings on Curves.
76. References to proper problems 63
E. Double Turnouts.
77. Those turning opposite ways and those turning the same way 63
78. Finding certain chords, fiog angles, and degrees of turnouts 65
Article IV.-Miscellaneous Problems.
79. To find the radius of a curve to pass through a given point 66
80. To find the tangent point of a curve to pass through a given point 67
81. To find the distance to the curve from any point on the tangent 67
82. Second method for passing a curve through a given point. 67
83. To find the proper chord for any angle of deflection 68
84. To find the radius when the distance from the intersection point to the curve is given 69
85. To find the external, that is, the distance from the intersection point to the curve when the radius is given 70
86. To find the tangent point of a curve that shall pass through a given point. 70
87. To find the radius of a curve without measuring angles 71
88. To find the tangent points of a curve without measuring angles 72
89. To find the angle of intersection and the tangent points when the point of intersection is inaccessible 73
90. To lay out a curve when obstructions occur 76
91. To change the tangent point of a curve, so that it may pass through a given point 77
92. To change the radius of a curve, so that it may terminate in a tangent parallel to its present tangent 78
93. To find the radius of a curve on a track already laid 79
SECT PAGE
94. To draw a tangent to a given curve from a given point 80
95. To flatten the extremities of a sharp curve 80
96. To locate a curve without setting the instrument at the tangent point 82
97. To measure the distance across a river 84
98. To change a tangent point so that the tangent may pass through a given point 86
99. To connect two curves by a common tangent 87
CHAPTER II.
PARABOLIC CURVES.
Article I.-Locating Parabolic Curves.
100. Propositions relating to the parabola 89
101. To lay out a parabola by tangent deflections 90
102. To lay out a parabola by middle ordinates 91
103. To draw a tangent to a parabola 92
105. To lay out a parabola by bisecting tangents. 93
106. To lay out a parabola by intersections 93
107. Example illustrating preceding methods 94
Artiole II.-Radius of Curvature.
108. Definition 95
109. To find the radius of curvature at certain stations 96
110. Example in finding radius of curvature 99
111. Simplification when the tangents are equal. 101
112. Length of parabolic ares 102
CHAPTER III.
TRANSITION OURVES.
113. Object of transition curves 104
Artiole I.-The Cubic Parabola.
114. The equation of the cubic parabola 104
115. Two preliminary problems to be considered 106
116. Angle of intersection and radius of central curve given, to find the tangent 106
117. Angle of intersection and tangent given, to find the radius of the central curve 107
SECT. PAGE
118. Length of the abscissa x_{1} of the transition curve 108
119. Formulæ when the abscissa x_{1} is expressed in rail lengths of 30 feet 108
120. Laying out the transition curve by offsets 110
121. Table A.-Data for the method by offsets 110
122. Example when R or D is given 111
123. Example when T is given 111
124. Laying out the transition eurve by deflection angles 112
124. Table B.-Data for the method by deflection angles 113
125. Example of the method by deflection angles 113
Article II.-The Cubic Parabola applied to an Existing Circular Track.
126. Necessary formulæ deduced 113
127. Table C.-Data for applying the cubic parabola to an existing track 115
128. Example of cubic parabola applied to an existing track 116
129. Length of transition curve in terms of its chords 116
Article III.-Curving the Rails.
131. Ordinates for curving the rails of a transition curve 118
Article IV.-Compound Transition Curve.
132. Coordinates of stations on a compound transition curve 119
133. 'Two preliminary problems to be considered 120
134. Angle of intersection and radius of central curve given, to find the tangent. 120
135. Example when angle of intersection and radius of central curve are given 122
136. Angle of intersection and tangent given, to find the radius of the central curve 122
137. Advantage of beginning a transition curve at a joint 123
CHAPTER IV.
LEVELLING.
Article I.-Heights and Slope Stakes.
138. Definitions 124
139. To find the difference of level of two points 124
sect. PAGE
140. Datum plane 125 125
141. To find the heights of the stations on a line 126
142. Sights denominated plus and minus 127
143. Form of field notes 128
144. To set slope stakes 129
Article II.-Correction for the Earth's Curvature and forRefraction.
145. Earth's curvature 131
146. Reỉraction 131
147. To find the correction for curvature and refraction 132
Article III.-Vertical Curves.
148. Manner of designating grades 133
149. To find the grades for a vertical curve at whole stations 133 133
151. To find the grades for a vertical curve at sub-stations 135
Article IV.-Elevation of the Outer Rail on Curves.
152. To find the proper elevation of the outer rail 136
153. Coning of the wheels 137
Article V.-Easing Grades on Curves.
154. Resistance on curves and grades compared 138
Article VI.-Expansion of Rails.
155. Formula for the proper distance between rails 139
CHAPTER V.
EARTH-WORK.
Article I.-Prismoidal Formula.
156. Definition of a prismoid 140
157. To find the solidity of a prismoid 140
Article II.-Borrow-Pits.
158. Manner of dividing the ground 141
159. To find the solidity of a vertical prism whose horizontal section is a triangle 142
TABLE OF CONTENTS.
SECT.PAGE
160. To find the solidity of a vertical prism whose horizontal section is a parallelogram 143
161. To find the solidity of a number of adjacent prisms having the same horizontal section 144
Article III.-Excavation and Embankment.
A. Centre Heights alone given.
163. To find the solidity of one section 145
164. To find the solidity of any number of successive sections 146
B. Centre and Side Heights given.
165. Mode of dividing the ground 148
166. To find the solidity of one section 148
167. To find the solidity of any number of successive sections 152
169. To find the solidity when the section is partly in excavation and partly in embankment 154
170. Beginning and end of an excavation 156
C. Ground very Irregular.
171. To find the solidity when the ground is very irregular 156
172. Usual modes of calculating excavation examined 158
D. Correction in Excavation on Curves.
173. Nature of the correction 159
174. To find the correction in excavation on curves 160
176. To find the correction when the section is partly in excavation and partly in embankment 161
178. Note on the computation of earthwork 163
TABLES.
I. Radii, Ordinates, Tangent Deflections, and Ordinates for Curving Rails 165
II. Long Chords 174
III. Tangents and Externals of a One-degree Curve 176
IV. Corrections for Table III. 183
V. Turnouts Tangent to a Straight Main Track. 183
VI. Length of Circular Ares in Parts of Radius 184
No. PAGE
VII. Elevation of the Outer Rail on Curves 184
VIII. Correction for the Earth's Curvature and for Refraction 185
IX. Rise per Mile of Various Grades 186
X. Trigonometrical and Miscellaneous Formula. 188
XI. Heights by Aneroid Barometer 194
XII. Heights by Aneroid Barometer 201
XIII. Squares, Cubes, Square Roots, Cube Roots, and Reciprocals 203
XIV. Logarithms of Numbers 221
XV. Logarithmic Sines, Cosines, Tangents, and Cotangents 237
XVI. Natural Sines and Cosines 285
XVII. Natural Tangents and Cotangents 295
XVIII. Comparison of French and English Weights and Measures. 308
XIX. Metric Curve Table. 309

EXPLANATION OF SIGNS.

The sign + indicates that the quantities between which it is placed are to be added together.

The sign - indicates that the quantity before which it is placed is to be subtracted.

The sign \times indicates that the quantities between which it is placed are to be multiplied together.

The sign \div or : indicates that the first of two quantities between which it is placed is to be divided by the second.

The sign $=$ indicates that the quantities between which it is placed are equal.

The sign os indicates that the difference of the two quantities between which it is placed is to be taken.

The sign.\therefore stands for the word "hence" or "therefore."
The ratio of one quantity to another may be regarded as the quotient of the first divided by the second. Hence, the ratio of a to b is expressed by $a: b$, and the ratio of c to d by $c: d$. A proportion expresses the equality of two ratios. Hence, a proportion is represented by placing the sign $=$ between two ratios; as, $a: b=c: d$.

In the text and in the tables the foot has been taken as the unit of measure when no other unit is specified.

FIELD-BOOK.

CHAPTER I.

CIRCULAR CURVES.

Article I.-Simple Curves.

1. The railroad curves here considered are either Circular or Parabolic. Circular curves are divided into Simple, Reversed, and Compound Curres. We begin with Simple Curves.
2. Let the arc $A D E F B$ (fig. 1) represent a railroad curve,

uniting the straight lines $G_{0} A$ and $B H$. The length of such a curve is measured by shords, each 100 feet long.* Thus, if the chords $A \perp D, D \mathcal{D}, \mathbb{E}_{0} F$, and $F B$ are each 100 feet in length, the whole curve is said to be 400 feet long. The straight lines $C A$ and $B H$ are always tangent to the curve at its extremities, which are called tangent points. If $G A$ and $B H$ are produced, until they meet in $C, A C$ and $B C$ are called the tangents of the curve. If $A C$ is produced beyond C to K, the angle $K C B$, formed by one tangent with the other produced, is called the angle of intersection, and shows the change of direction in passing from one tangent to the other.

The following propositions relating to the circle are derived from Geometry :
I. A tangent to a circle is perpendicular to the radius drawn through the tangent point. Thus, $A C$ is perpendicular to $A O$, and $B C$ to $B O$.
II. Two tangents drawn to a circle from any point are equal, and if a chord be drawn between the two tangent points, the angles between this chord and the tangents are equal. Thus $A C=B C$, and the angle $B A C=A B C$.
III. An acute angle between a tangent and a chord is equal to half the central angle subtended by the same chord. Thus, $C A B=\frac{1}{2} A O B$.
IV. An acute angle subtended by a chord, and having its vertex in the circumference of a circle, is equal to half the central angle subtended by the same chord. Thus, $D A E=\frac{1}{2} D O E$.
V. Equal chords subtend equal angles at the centre of a circle, and also at the circumference, if the angles are inscribed in similar segments. Thus, $A O D=D O E$, and $D A E=E A F$.
VI. The angle of intersection of two tangents is equal to the central angle subtended by the chord which unites the tangent points. Thus, $K C B=A O B$.
3. In order to unite two straight lines, as $G A$ and $B H$, by a curve, the angle of intersection is measured, and then a radius for the curve may be assumed, and the tangents calculated, or the

[^0]tangents may be assumed of a certain length, and the radius calculated.
4. Problem. Given the angle of intersection $K C B=1$ (fig.1) and the radius $A O=R$, to find the tangent $A C=T$.

Solution. Draw CO. Then in the right triangle $A O C$ we have (Tab. X. 3) $\frac{A C}{A O}=\tan . A O C$, or, since $A O C=\frac{1}{2} I(\S 2, \mathrm{VI}$.) $\frac{T}{R}=\tan . \frac{1}{2} I ;$
居
$\therefore T=R \tan . \frac{1}{2} 1$.

Example. Given $I=22^{\circ} 52^{\prime}$, and $R=3000$, to find T. Here

$$
\begin{array}{rlr}
R & =3000 & 3.477121 \\
\frac{1}{2} I & =11^{\circ} 26^{\prime} & \tan .9 .305869 \\
T & =606.72 & \underline{2.782990}
\end{array}
$$

5. Problem. Given the angle of intersection $K C B=1$ (fig. 1) and the tangent $A C=T$, to find the radius $A O=R$.

Solution. In the right triangle $A O C$ we have (Tab. X. 6)
$\frac{A O}{A C}=\cot . A O C$, or $\frac{R}{T}=\cot \cdot \frac{1}{2} I ;$

$$
\therefore R=T \cot \cdot \frac{1}{2} I .
$$

Example. Given $I=31^{\circ} 16^{\prime}$ and $T=950$, to find R. Here

$$
\begin{array}{rlr}
T & =950 & 2.977724 \\
\frac{1}{2} I & =15^{\circ} 38^{\prime} & \text { cot. } \underline{0.553102} \\
R & =3394.89 & \underline{3.530826}
\end{array}
$$

6. The degree of a curve is determined by the angle subtended at its centre by a chord of 100 feet. Thus, if $A O D=6^{\circ}$ (fig. 1), $A D E F B$ is a 6° curve.
7. The deflection angle of a curve is the acute angle formed at any point between a tangent and a chord of 100 feet. The deflection angle is, therefore ($\$ 2$, III.), half the degree of the curve. Thus, $C A D$ or $C B F$ is the deflection angle of the curve $A D E F B$, and is half $A O D$ or half $F O B$.

Remark. The mode of designating curves by their degree, given above, is objected tu by some, because when curves are laid out by chords shorter than 100 feet, as is usual on sharp curves, the degree of the curve is slightly increased, though its designation remains the same. If the arc of 100 feet is substituted for the chord of 100 feet in the definition, this difficulty vanishes; but so many greater difficulties are introduced that the general adoption of this method is not probable. Moreover, when American engineers use the metric system, as possibly they are now doing on Mexican roads, both these methods are inapplicable. We might designate a curve by the length of its radius, for this fixes the curve, however laid out, and any units of length may be used; but when the deflection angle D is even, R is generally fractional, which makes it inconvenient for exact definition. The length of the radius is also an indirect designation, when curves are laid out by deflection angles. If the curve were designated by its deflection angle for a certain length of chord. any length of chord and any units of length might be used, and thr curve be still definitely described. Thus we might say: "Curve ta the right, deflection angle for chords of 50 feet, $2^{\circ} 10^{\prime}$, " or, "Curve to the left, deflection angle for chords of 20 metres, $1^{\circ} 35^{\prime}$."

A. Method by Deflection Angles.

8. The usual method of laying out a curve on the ground is by means of deflection angles.
9. Problem. Given the radius $A O=R$ (fig. 1), to find the deflection angle $C B F=D$.
Solution. Draw $O L$ perpendicular to $B F$. Then the angle $B O L=\frac{1}{2} B O F=D$, and $B L=\frac{1}{2} B F=50$. But in the right triangle $O B L$ we have (Tab. X. 1) $\sin . B O L=\frac{B L}{B O}$;

要

$$
\therefore \sin . D=\frac{50}{R} \text {. }
$$

Example. Given $R=5729.65$, to find D. Here

$\quad 50$	1.698970
$R=5729.65$	$\frac{3.758128}{}$
$D=30^{\prime}$	$\sin .7 .940842$

Hence a curve of this radius is a 1° curve, and its deflection angle is 30°.
10. Problem. Given the deflection angle $C B F=D$ (fig. 1), to find the radius $A O=R$.
Solution. By the preceding section we have $\sin . D=\frac{50}{R}$, whence $R \sin . D=50$;
CI $\quad \therefore R=\frac{50}{\sin , D}$.
By this formula the radii in Table I. are calculated.
Example. Given $D=1^{\circ}$, to find R. Here

\[

\]

11. Problem. Given the angle of intersection $K C B=1$ (fig. 1), and the tangent $A C=T$, to find the deflection angle $\sigma A D=D$.
Solution. From § 9 we have $\sin . D=\frac{50}{R}$, and from $\S 5$,
$R=T$ cot. $\frac{1}{2} I$. Substituting this value of R in the first equation, we get $\sin . D=\frac{50}{T \cot \cdot \frac{1}{2} 1}$;
0

$$
\therefore \sin . D=\frac{50 \tan . \frac{1}{2} I}{T}
$$

Example. Given $I=21^{\circ}$ and $T=424.8$, to find D. Here

50	1.698970
$\frac{1}{2} l=10^{\prime} 30^{\prime}$	$\tan . \frac{9.267967}{0.966937}$
$T=424.8$	$\frac{2.628185}{2}$
$D=1^{\circ} 15^{\prime}$	\sin.
8.338752	

12. Problem. Given the angle of intersection $K C B=1$ (fig. 1), and the deflection angle $C A D=D$, to find the tangent $A C=T$.

Solution. From the preceding section we have $\sin . D=$ $\frac{50 \tan . \frac{1}{2} I}{T}$. Hence, $T \sin . D=50 \tan . \frac{1}{2} I$;

委

$$
\therefore T=\frac{50 \tan \cdot \frac{1}{2} I}{\sin . D}
$$

Example. Given $I=28^{\circ}$ and $D=1^{\circ}$, to find T. Here

$$
T=\frac{50 \tan .14^{\circ}}{\sin 1^{\circ}}=714.31
$$

13. Problem. Given the angle of intersection $K C B=I$ (fig. 1), and the deflection angle $C A D=D$, to find the length of the curve.

Solution. By $\S 2$ the length of a curve is measured by chords of 100 feet applied around the curve. Now the first chord $A D$ makes with the tangent $A C$ an angle $C A D=D$, and each succeeding chord $D E, E F$, \&c. subtends at A an additional angle $D A E, E A F$, \&c., each equal to D; since each of these angles ($\$ 2$, IV.) is half of a central angle subtended by a chord of 100 feet. The angle $C^{\gamma} A B=\frac{1}{2} A O B=\frac{1}{2} I$ is, therefore, made up of as many times D, as there are chords around the curve. Then if n represents the number of chords, we have $n D=\frac{1}{2} I$;

婹

$$
\therefore n=\frac{\frac{1}{2} I}{D}
$$

If D is not contained an even number of times in $\frac{1}{2} I$, the quotient above will still give the length of the curve. Thus, in
figure 2, suppose D is contained $4 \frac{5}{8}$ times in $\frac{1}{2} I$. This shows that there will be four whole chords and $\frac{5}{8}$ of a chord around the curve from A to B. The angle $G A B$, the fraction of D, is called a sub-deflection angle, and $G B$, the fraction of a chord, is called a sub-chord.*

The length of the curve thus found is not the actual length of the are, but the length required in locating a curve. If the actual length of the are is required, it may be found by means of Table VI.

Example. Given $I=16^{\circ} 52^{\prime}$ and $D=1^{\circ} 20^{\prime}$, to find the length of the curve. Here $n=\frac{\frac{1}{I} I}{D}=\frac{8^{\circ} 26^{\prime}}{1^{\circ} 20^{\prime}}=\frac{506^{\prime}}{80^{\prime}}=6.325$, that is, the curve is 632.5 feet long.

To find the arc itself in this example, we take from Table VI. the length to radius 1 of an arc of $16^{\circ} 52^{\prime}$, since the central angle of the whole curve is equal to $l(\$ 2, \mathrm{VI}$.), and multiply this length by the radius of the curve.

| Arc 10° | $=.1745329$ |
| ---: | :--- | ---: |
| $" \quad 6^{\circ}$ | $=.1047198$ |
| $" \quad 50^{\prime}$ | $=.0145444$ |
| $" \quad 2^{\prime}$ | $=.0005818$ |
| $" \quad 16^{\circ} 52^{\prime}$ | $=.2943789$ |

The radius of the curve is found from Table I. to be 2148.79, and this multiplied by .2943789 gives 632.558 feet for the length of the are.
14. Problem. Given the deflection angle D, to lay out a curve from a given tangent point.

Solution. Let A (fig. 2) be the given tangent point in the tangent $H C$. Set the instrument at A, and lay off the given deflection angle D from $A C$. This will give the direction $A D$, and 100 feet being measured from A in this direction, the point D will be determined. Lay off in succession the additional angles $D A E$, E A $F, \&$. ., each equal to D, and make $D E, E F$, \&c., each 100 feet, and the points $E, F, \& c$., will be determined. The points

[^1]$D, E, F, \& c .$, thus determined, are points on the required curve ($\$ 7$, and $\S 2$, III., IV.), and are called stations.

If there is a sub-chord at the end, as $G B$, the sub-deflection angle $G A B$ must be the same part of D that $G B$ is of a whole

chord ((13). If there is a sub-chord at the beginning, the first stake on the curre will be at the end of the sub-chord, and the sub-deflection angle will be the same part of D that the sub-chord is of a whole chord.

In laying out a curve there is an obvious advantage in having the several deflection angles whole minutes. When the deflection angle is assumed, whole minutes would naturally be chosen. But when D is found from I and T by $\S 11$, it generally happens that D does not come out even minutes. In such cases, unless it is necessary that the curve should commence exactly at the assumed tangent point, it is better to take D to the nearest minute, and calculate T for I and this new value of D by $\S 12$. If, however, there is a sub-chord at the beginning of the curve, the sub-deflection angle will generally contain seconds, although D contains none. In this case, set the vernier back the amount of the subdeflection angle, so that, when this angle is turned off, the instrument will read zero. All the subsequent angles will then be whole minutes.
15. It is often impossible to lay out the whole of a curve, without removing the instrument from its first position, either on account of the great length of the curve, or because some obstruction to the sight may be met with. In this case, after determining as many stations as possible, and removing the instrument to the last of these stations, we ought to be able to find the tangent to the curve at this station; for then the curve could be continued by deflections from the new tangent in precisely the same way as it was begun from the first tangent.
16. Problem. After running a curve a certain number of stations, to find a tangent to the curve at the last station.

Solution. Suppose that the curve (fig. 2) has been run three stations to F, and that $F L$ is the tangent required. Produce $A F^{\prime}$ to K, and we have the angle $K F L=A F^{\prime} C$. But $(\S 2$, II. $)$ $A F^{C}=F A C$. Therefore $K F^{\prime} L=F^{\prime} C$. Now $F^{\prime} C^{\prime}$ is the sum of all the deflection angles laid off from the tangent at A, that is, in this case, $F^{\prime} C=3 D$, and the tangent $F L$ is, therefore, obtained by laying off from $A F$ produced an angle $K F L$ equal to the total deflection from the preceding tangent.

If the curve is afterwards continued beyond F, as, for instance, to B, a tangent $B N$ at B is obtained by laying off from $F^{\prime} B$ produced an angle $M B N=L B F=L F B$, the total deflection from the preceding tangent $F L$.

B. Method by Tangent and Chord Deflections.

17. Let $A B C D$ (fig. 3) be a curve between the two tangents $E^{\prime} A$ and $D L$, having the chords $A B, B C$, and $C D$ of the same length. Produce the tangent $E A$, and from B draw $B G$ perpendicular to $A G$. Produce also the chords $A B$ and $B C$, and make the produced parts $B H$ and $C K$ of the same length as the chords. Draw $C H$ and $D K . \quad B G$ is called the tangent deflection, and $C H$ or $D K$ the chord deflection.
18. Problem. Given the radius $A O=R(f i g .3)$, to find the tangent deflection $B G$, and the chord deflection $C H$.

Solution. The triangle $C B H$ is similar to $B O C$; for the angle $B O C=180^{\circ}-(O B C+B C O)$, or, since $B C O=A B O$, $B O C=180^{\circ}-(O B C+A B O)=C B H$, and, as both the triangles are isosceles, the remaining angles are equal. The ho-
mologous sides are, therefore, proportional, that is, $B O: B C=$ $B C: C H$, or, representing the chord by c and the chord deflection by $d, R: c=c: d$;

四

$$
\therefore d=\frac{c^{2}}{R} .
$$

To find the tangent deflection, draw $B M$ to the middle of $C H$, bisecting the angle $C B H$, and making $B M C$ a right angle. Then the right triangles $B M C$ and $A G B$ are equal ; for $B C=$

$A B$, and the angle $C B M=\frac{1}{2} C B H=\frac{1}{2} B O C=\frac{1}{2} A O B=$ $B A G\left(\S 2\right.$, III.). Therefore $B G=C M=\frac{1}{2} C H=\frac{1}{2} d$, that is, the tangent deflection is half the chord deflection.
19. Problem. Given the deflection angle D of a curve, to find the chord deflection d.
Solution. By the preceding section we have $d=\frac{c^{2}}{R}$, and by $\$ 10, R=\frac{50}{\sin . D}$. Substituting this value of R in the first equation, we find
爱

$$
d=\frac{c^{2} \sin D}{50}
$$

This formula gives the chord deflection for a chord c of any length, though D is the deflection angle for a chord of 100 feet ((\% 7). When $c=100$, the formula becomes $d=200 \sin . D$, or for the tangent de-
flection $\frac{1}{2} d=100 \sin . D$. By this formula the tangent deflections in Table I. may be easily obtained from the table of natural sines.

The ength of the curve may be found by first finding D (89 or $\S 11$), and then proceeding as in $\S 13$.
20. Problem. To draw a tangent to the curve at any station, as B (fig. 3).

Solution. Bisect the chord deflection $H C$ of the next station in M. A line drawn through B and M will be the tangent required; for it has been proved $(\S 18)$ that the angle $C B M$ is in this case equal to $\frac{1}{2} B O C$, and $B M$ is consequently ($(2$, III.) a tangent at B.

If B is at the end of the curve, the tangent at B may be found without first laying off $H C$. Thus, if a chain equal to the chord is extended to H on $A B$ produced, the point H marked, and the chain then swung round, keeping the end at B fixed, until $H M=$ $\frac{1}{2} d, B M$ will be the direction of the required tangent.*
21. Problem. Given the chord deflection d, to lay out a curve from a given tangent point.

Solution. Let A (fig. 3) be the given tangent point, and suppose d has been calculated for a chord of 100 feet. Stretch a chain of 100 feet from A to G on the tangent $E A$ produced, and mark the point G. Swing the chain round towards $A B$, keeping the end at A fixed, until $B G$ is equal to the tangent deflection $\frac{1}{2} d$, and B will be the first station on the curve. Stretch the chain from B to H on $A B$ produced, and having marked this point, swing the chain rourd, until $H C$ is equal to the chord deflection d. C is the second station on the curve. Continue to lay off the chord deflection from the preceding chord produced, until the curve is finished.

Should the curve begin or end with a sub-chord, denote, as before, the whole chord by c, the sub-chord by c^{\prime}, the tangent deflection for c by $\frac{1}{2} d$, and that for c^{\prime} by $\frac{1}{2} d^{\prime}$. Then (§ 18) $\frac{1}{2} d=\frac{c^{2}}{2 R}$ and $\frac{1}{2} d^{\prime}=\frac{c^{\prime 2}}{2 R} . \quad$ Therefore $\frac{1}{2} d: \frac{1}{2} d^{\prime}=c^{2}: c^{\prime 2}$,
or,

$$
\frac{1}{2} d^{\prime}=\frac{1}{2} d\left(\frac{c^{\prime}}{c}\right)^{2}
$$

[^2]If the curve begins with a sub-chord, produce the tangent a distance c^{\prime}, and from its extremity lay off a distance $\frac{1}{2} d^{\prime}$ for a point on the curve. But as we need a whole chord in order to produce it for continuing the curve, measure back on the tangent a distance $c-c^{\prime}=c^{\prime \prime}$ and lay off the deflection proper to $c^{\prime \prime}$, but in an opposite direction to $\frac{1}{2} d^{\prime}$. This will give a point on the curve supposed to be run back to the preceding whole station. The line joining these two points on the curve will now be a whole chord, and can be produced in the usual way. If the curve ends in a sub-chord, as $D F$ (fig. 3), find the tangent $D L(\$ 20)$, and lay off from it the proper tangent deflection $L F$ for the subchord, found as above.

Example. Given the intersection angle I between two tangents equal to $16^{\circ} 30^{\prime}$, and $R=1250$, to find T, d, and the length of the curve in stations. Here
(§4) $T=R \tan . \frac{1}{2} I=1250 \tan .8^{\circ}, 15^{\prime}=181.24$;
(§ 18) $d=\frac{c^{2}}{R}=\frac{100^{2}}{1250}=8$;
(§9) $\sin . D=\frac{50}{R}=\frac{50}{1250}=.04=$ nat. $\sin .2^{\circ} 17 \frac{1}{2}^{\prime}$;
(§ 13) $n=\frac{\frac{1}{2} I}{D}=\frac{8^{\circ} 15^{\prime}}{2^{\circ} 177_{2}^{\prime \frac{1}{2}}}=\frac{495^{\prime}}{137.5^{\prime}}=3.60$.

These results show, that the tangent point A (fig. 3) on the first tangent is 181.24 feet from the point of intersection,-that the tangent deflection $G B=\frac{1}{2} d=4$ feet,-that the chord deflection $H C$ or $K D=8$ feet,-and that the curve is 360 feet long. The three whole stations B, C, and D having been found, and the tangent $D L$ drawn, the tangent deflection for the sub-chord of 60 feet will be, as shown above, $\frac{1}{2} d^{\prime}=4\left(\frac{60}{100}\right)^{2}=4 \times .6^{2}=4 \times .36=$ 1.44. $L F=1.44$ feet being laid off from $D L$, the point F will, if the work is correct, fall upon the second tangent point. A tangent at F may be found ($\$ 20$) by producing $D F$ to P, making $F P=D F=60$ feet, and laying off $P N=1.44$ feet. $F N$ will be the direction of the required tangent, which should, of course, coincide with the given tangent.
Curves may be laid out with accuracy by tangent and chord deflections, if an instrument is used in producing the lines. But if an instrument is not at hand, and accuracy is not important, the lines may be produced by the eye alone. On sharp curves, such as sometimes occur on street railroads, where the chords may not exceed 10 feet, a fine cord may be used for producing the lines. The radius of a curve to unite two given straight lines may also be found without an instrument by $\$ 87$, or, having assumed a radius, the tangent points may be found by $\$ 88$.

C. Method by Offsets from Tangent.

22. By this method points on a curve such as C (fig. $3 a$) are determined by measuring from the tangent point certain distances along the tangent, such as $A B$, and offscts at right angles to the tangent, such as $B C$.
23. Problem. Given D, the deflection angle of a curve for a chord c, to find $A B=a$ (fig. $3 a$) and $B C=b$ for a point C on the curve, distant from the tangent point a certain number of stations, whole or fractional, denoted by the letter n.

Solution. The angle $B A C=n D$, and the central angle $A O C=2 n D$. Draw $C D$ parallel to the tangent. Then, in the triangle $C D O$, we have

$$
a=C D=C O \sin . D O C=R \sin .2 n D .
$$

Substituting for R its value $\frac{\frac{1}{2} c}{\sin . D}$,

彩

$$
a=\frac{\frac{1}{2} c \sin .2 n D}{\sin . D}
$$

To find b, we have

$$
\begin{aligned}
& b=B C=A O-D O=R-R \cos 2 n D, \text { or (Tab. X., } 23) \\
& b=R-R\left(1-2 \sin ^{2} n D\right)=2 R \sin ^{2} n D .
\end{aligned}
$$

Substituting for R its value $\frac{\frac{1}{2} c}{\sin . D}$,

$$
b=\frac{c \sin ^{2} n D}{\sin . D}
$$

In computing these values for successive points, the logarithms of $\frac{\frac{1}{2} c}{\sin . D}$ and of $\frac{c}{\sin . D}$ remain constant, which facilitates the work. The position of the stakes is best fixed by measuring the successive chords, instead of depending on the right angle at B.

If the offsets from the original tangent become inconveniently long, a new tangent is readily found. Thus a tangent $T C$ at C is determined by measuring from
 A a distance $A T^{\prime}=R \tan . n D=$ $\frac{\frac{1}{2} c \tan . n D}{\sin . D} . T C$ should, of course, prove equal to $A T$.
Since n may be a fraction or a mixed number, as well as a whole number, $n c$ may represent any subchord, such as would generally occur at the beginning of a curve. The points on the curve determined by the formulæ for a and b will therefore be the regular stations continued from the straight line.

In laying out a whole curve $A E B$ (fig. $3 b$) by this method a tangent $D G$ at the middle point of the curve is found by computing the equal distances $A D$, $D E, E G$, and $G B$ by the formula $A D=D E=E G=G B=$ $R \tan$. $\frac{1}{4} I$. As a check, the distance $C E$ may be found from the triangle $C E 1$). For $C E=D E \tan$. $\frac{1}{2} I$. Substituting for $D E$ its value $R \tan . \frac{\downarrow}{} I$, we have $C E=R \tan . \frac{1}{2} I \tan . \frac{1}{4} I$.

The station of the tangent point A being known, and the length
of the curve having been found ((13), the stations of E and B are readily found. Then, by the process just explained, find the offsets from the tangent $A D$ to the regular stations on, say, one

quarter of the curve. By the same process, beginning at the known station at E^{\prime}, find offsets to the regular stations on the curve. In like manner, offsets from the tangents $E G$ and $B G$ will complete the curve, the regular stations being kept throughout. Curves may be laid out with great accuracy by this method.

D. Ordinates.

24. The preceding methods of laying out curves determine points 100 feet distant from each other. These points are usually sufficient for grading a road; but when the track is laid, it is desirable to have intermediate points on the curve accurately deternined. For this purpose the chord of 100 feet is divided into a
certain number of equal parts, and the perpendicular distances from the points of division to the curve are calculated. These distances are called ordinates.
25. Problem. Given the deflection angle D or the radius R of a curve, to find the ordinates for any chord.
Solution. I. To find the middle ordinate. Let $A E B$ (fig. 4) be a portion of a curve, subtended by a chord $A B$, which may be

denoted by c. Draw the middle ordinate $E D$, and denote it by m. Produce $E D$ to the centre F, and join $A F^{F}$ and $A E$. Then (Tab. X. 3) $\frac{E D}{A D}=\tan . E A D$, or $E D=A D \tan . E A D$. But, since the angle $E A D$ is measured by half the arc $B E$, or by half the equal are $A E$, we have $E A D=\frac{1}{2} A F E$. Therefore $E D=$ $A D$ tan. $\frac{1}{2} A F E$, or
0

$$
m=\frac{1}{2} c \tan . \frac{1}{2} A F E .
$$

When $c=100, A F E=D$ (§7), and $m=50 \tan . \frac{1}{2} D$, whence m may be obtained from the table of natural tangents, by dividing tan. $\frac{1}{2} D$ by 2 , and removing the decimal point two places to the right.

The value of m may be obtained in another form thus: In the
triangle $A D F$ we have $D F=\sqrt{A F^{2}-A D^{2}}=\sqrt{R^{2}-\frac{1}{4} c^{2}}$ ． Then $m=E F-D F=R-D F$ ，or
Q

$$
m=R-\sqrt{R^{2}-\frac{1}{4} c^{2}} .
$$

II．To find any other ordinate，as $R N$ ，at a distance $D N=b$ from the centre of the chord．Produce $R N$ until it meets the diameter parallel to $A B$ in G ，and join $R F$ ．Then $R G=$ $\sqrt{R F^{2}-F G^{2}}=\sqrt{R^{2}-b^{2}}$ ，and $R N=R G-N G=R G-$ $D F$ ．Substituting the value of $R G$ and that of $D F$ found above，we have

膤

$$
R N=\sqrt{R^{2}-b^{2}}-\sqrt{R^{2}-\frac{1}{4} c^{2}} .
$$

The other ordinates may also be found from the middle ordi－ nate by the following shorter，but not strictly exact method．It is founded on the supposition，that，if the half－chord $B D$ be divided into any number of equal parts，the ordinates at these points will divide the are $E B$ into the same number of equal parts，and upon the further supposition，that the tangents of small angles are proportional to the angles themselves．These suppo－ sitions give rise to no material error in finding the ordinates of railroad curves for chords not exceeding 100 feet．Making，for example，four divisions of the chord on each side of the centre， and joining $A R, A S$ ，and $A T$ ，we have the angle $R A N=$是 $E A D$ ，since $R B$ is considered equal to $\frac{3}{4} E B$ ．But $E A D=$ $\frac{1}{2} A F E$ ．Therefore，$R A N=\frac{3}{8} A F E$ ．In the same way we should find $S A O=\frac{1}{4} A F E$ ，and $T A P=\frac{1}{8} A F E$ ．We have then for the ordinates，$R N=A N \tan . R A N=\frac{5}{8} c \tan . \frac{3}{8} A F E$ ， $S O=A O \tan . S A O=\frac{3}{4} c \tan . \frac{1}{4} A F E$ ，and $T P=A P \tan . T A P=$ $\frac{7}{8} c \tan . \frac{1}{8} A F E$ ．But，by the second supposition，tan．导 $A F E=$ $\frac{9}{4} \tan$ ．$\frac{1}{2} A F E$ ， \tan ．$\frac{1}{4} A F^{\prime} E=\frac{1}{2} \tan$ ．$\frac{1}{2} A F^{\prime} E$ ，and \tan ．$\frac{1}{8} A F^{\prime} E=$ $\frac{1}{6} \tan \cdot \frac{1}{2} A F E$ ．Substituting these values，and recollecting that $\frac{1}{2} c \tan \cdot \frac{1}{2} A F E=m$ ，we have

$$
\left\{\begin{array}{l}
R N=\frac{15}{16} \times \frac{1}{2} c \tan . \frac{1}{2} A F E=\frac{15}{16} m, \\
S O=\frac{3}{4} \times \frac{1}{2} c \tan . \frac{1}{2} A F E=\frac{3}{4} m, \\
T P=\frac{7}{16} \times \frac{1}{2} c \tan . \frac{1}{2} A F E=\frac{7}{16} m .
\end{array}\right.
$$

In general，if the number of divisions of the chord on each side
of the centre is represented by n, we should find for the respective ordinates, beginning nearest the centre, $\frac{(n+1)(n-1) m}{n^{2}}$, $\frac{(n+2)(n-2) m}{n^{2}}, \frac{(n+3)(n-3) m}{n^{2}}$, etc.

These values of the ordinates are precisely what we should obtain if we regarded $A E B$ as the arc of a parabola; for in this case, as we shall see later, the offsets from a tangent at E to R, S, and T would be $\frac{1}{16} m, \frac{4}{16} m$, and $\frac{9}{16} m$. Subtracting these distances from m, we should get the results given above.

Example. Find the ordinates of an 8° curve to a chord of 100 feet. Here $m=50 \tan .2^{\circ}=1.746, R N=\frac{15}{16} m=1.637$, S $O=$ $\frac{3}{4} m=1.310$, and $T P=\frac{7}{16} m=0.764$.
26. An approximate value of m also may be obtained from the formula $m=R-\sqrt{R^{2}-\frac{1}{4} c^{2}}$. This is done by adding to the quantity under the radical the vcry small fraction $\frac{c^{4}}{64 R^{2}}$, making it a perfect square, the root of which will be $R-\frac{c^{2}}{8 R}$. We have, then, $m=R-\left(R-\frac{c^{2}}{8 R}\right)$;
唩

$$
\therefore m=\frac{c^{2}}{8 R}
$$

27. From this value of m we see that the middle ordinates of any two chords in the same curve are to each other nearly as the squares of the chords. If, then, $A E$ (fig. 4) be considered equal to $\frac{1}{2} A B$, its middle ordinate $C H=\frac{1}{4} E D$. Intermediate points on a curve may, therefore, be very readily obtained, and generally with sufficient accuracy, in the following manner: Stretch a cord from A to B, and by means of the middle ordinate determine the point E. Then stretch the cord from A to E, and lay off the middle ordinate $C H=\frac{1}{4} E D$, thus determining the point C, and so continue to lay off from the successive half-chords one-fourth the preceding ordinate, until a sufficient number of points is obtained.

> E. Curving Rails.
28. The rails of a curve are usually curved before they are laid. To do this properly, it is necessary to know the middle ordinate
of the curve for a chord of the length of a rail, and the ordinates at the quarter points.
29. Problem. Given the radius or deflection angle of a curve, to find the middle ordinate for curving a rail of given length.
Solution. Denote the length of the rail by l, and we have ($\$_{8}^{25}$) the exact formula $m=R-\sqrt{R^{2}-\frac{1}{l^{2}}}$, and ($(\$ 26)$ the approximate formula

$$
m=\frac{\frac{1}{2}}{2 R}
$$

This formula is always near enough for chords of the length of a rail. If we substitute for R its value (§10) $R=\frac{50}{\sin . D}$, we have,

$$
m=\frac{1}{4} l^{2} \times \frac{\sin . D}{100} .
$$

Example. In a 1° curve find the ordinate for a rail 30 feet in length.

For a rail 30 feet in length $\frac{1}{1} l^{2}=225$, and, consequently, $m=$ $0.25 \sin . D$. This gives for a 1° curve, $m=.02$.
The corresponding ordinate for a curve of any other degree may be found approximately by multiplying the ordinate for a 1° curve by the number expressing the degree of the curve. The ordinates from the chord at the quarter points are ((25) each $\frac{8}{4} m$. In Table I. are given the values of m and $\frac{8}{4} m$ for a rail of 30 feet. From these ordinates the ordinates for a rail of any other length are obtained by simply multiplying by the square of the ratio of its length to 30 . Thus for a rail of 27 feet this ratio is .9 , the square of which is .81 , and the ordinates for, say, a 4° curve, are $.079 \times$ $.81=.064$ and $.059 \times .81=.048$.

Article II.-Reversed and Compound Curves.

30. Two curves often succeed each other having a common tangent at the point of junction. If the curves lie on opposite sides of the common tangent, they form a reversed curve, and their radii may be the same or different. If they lie on the same side of the common tangent, they have different radii, and form a compound curve. Thus $A B C$ (fig. 5) is a reversed curve, and $A B D$ a compound curve.
31. Problem. To lay out a reversed or a compound curve, when the radii or deflection angles and the tangent points are knoun.

Solution. Lay out the first portion of the curve from A to B (fig. 5), by one of the usual methods. Find $B F$, the tangent to

$A B$ at the point $B(\S 16$ or $\S 20)$. Then $B F$ will be the tangent also of the second portion $B C$ of a reversed, or $B D$ of a compound curve, and from this tangent either of these portions may be laid off in the usual manner.

A. Reversed Curves.

32. Theorem. The reversing point of a reversed curve between parallel tangents is in the line joining the tangent points.

Demonstration. Let $A C B$ (fig. 6) be a reversed curve, uniting the parallel tangents $H A$ and $B K$, having its radii equal or unequal, and reversing at C. If now the chords $A C$ and $C B$ are drawn, we have to prove that these chords are in the same straight line. The radii $E C$ and $C F$, being perpendicular to the common tangent at $C(\S 2, \mathrm{I}$.), are in the same straight line, and the radii $A E$ and $B F$, being perpendicular to the parallel tangents $H A$ and $B K$, are parallel. Therefore, the angle $A E C=C F B$, and, consequently, $E C A$, the half supplement of $A E C$, is equal to $F^{\prime} C B$, the half supplement of $C F^{\prime} B$; but these angles cannot be equal, unless $A C$ and $C B$ are in the same straight line.

33．Problem．Given the perpendicular distance between two parallel tangents $B D=b(f i g .6)$ ，and the distance between the two tangent points $A B=a$ ，to determine the reversing point C and the common radius $E C=C F=R$ of a reversed curve uniting the tangents $H A$ and $B K$ ．

Solution．Let $A C B$ be the required curve．Since the radii are equal，and the angle $A E C=B F C$ ，the triangles $A E C$ and $B F^{r} C$ are equal，and $A C^{\gamma}=C B=\frac{1}{2} a$ ．The reversing point C is，therefore，the middle point of $A B$ ．

To find R ，draw $E G$ perpendicular to $A C$ ．Then the right triangles $A E G$ and $B A D$ are similar，since（ $(\$ 2$, III．）the angle $B A D=\frac{1}{2} A E C=A E G$ ．Therefore $A E: A G=A B: B D$ ， or $R: \ddagger a=a: b$ ；

目淀 $\quad \therefore R=\frac{a^{2}}{4 b}$ ．
Corollary．If R and b are given，to find a ，the equation $R=$ $\frac{a^{2}}{4 b}$ gives $a^{2}=4 R b$ ；

喓

$$
\therefore a=2 \sqrt{R b}
$$

Examples．Given $b=12$ ，and $a=200$ ，to determine R ．Here $R=\frac{200^{2}}{4 \times 12}=\frac{10000}{12}=833 \frac{1}{8}$ ．

Given $R=675$ ，and $b=12$ ，to find a ．Here $a=2 \sqrt{675 \times 12}=$ $2 \sqrt{8100}=2 \times 90=180$.

34．Problem．Given the perpendicular distance between two parallel tangents $B D=b$（fig．7），the distance between the two
tangent points $A B=a$ ，and the first radius $E C=R$ of a re－ versed curve uniting the tangents $H A$ and $B K$ ，to find the chords $A C=a^{\prime}$ and $C B=a^{\prime \prime}$ ，and the second radius $C F=R^{\prime}$ ．

Solution．Draw the perpendiculars $E G$ and $F L$ ．Then the right triangles $A B D$ and $E A G$ are similar，since the angle $B A D=\frac{1}{2} A E C=A E G$ ．Therefore $A B: B D=E A: A G$ ， or $a: b=R: \frac{1}{2} a^{\prime}$ ；

桴 $\quad \therefore a^{\prime}=\frac{2 R b}{a}$ ．
Since a^{\prime} and $a^{\prime \prime}$ are（ $\S 32$ ）parts of α ，we have
栘 $a^{\prime \prime}=a-a^{\prime}$ ．
To find R^{\prime} the similar triangles $A B D$ and $F^{\prime} B L$ give $A B: B D=F B: B L$ ，or $a: b=R^{\prime}: \frac{1}{2} a^{\prime \prime}$ ；

敩

$$
\therefore R^{\prime}=\frac{a a^{\prime \prime}}{2 b}
$$

Example．Given $b=8, a=160$ ，and $R=900$ ，to find $a^{\prime}, a^{\prime \prime}$ ， and R^{\prime} ．Here $a^{\prime}=\frac{2 \times 900 \times 8}{160}=90, a^{\prime \prime}=160-90=70$ ，and $R^{\prime}=\frac{160 \times 70}{2 \times 8}=700$ ．

35．Corollary 1．If b, a^{\prime} ，and $a^{\prime \prime}$ are given，to find a, R ， and R^{\prime} ，we have（§34）

$$
a=a^{\prime}+a^{\prime \prime} ; \quad R=\frac{a a^{\prime}}{2 b} ; \quad R^{\prime}=\frac{a a^{\prime \prime}}{2 b}
$$

Example. Given $b=8, a^{\prime}=90$, and $a^{\prime \prime}=70$, to find a, R, and R^{\prime}. Here $a=90+70=160, R=\frac{160 \times 90}{2 \times 8}=900$, and $R^{\prime}=$ $\frac{160 \times 70}{2 \times 8}=700$.
36. Corollary 2. If R, R^{\prime}, and b are given, to find a, a^{\prime}, and $a^{\prime \prime}$, we have (§ 35), $R+R^{\prime}=\frac{a a^{\prime}+a a^{\prime \prime}}{2 b}=\frac{a\left(a^{\prime}+a^{\prime \prime}\right)}{2 b}=\frac{a^{2}}{2 b}$. Therefore $a^{2}=2 b\left(R+R^{\prime}\right)$;
[要

$$
\therefore a=\sqrt{2 b\left(R+R^{\prime}\right)} .
$$

Having found a, we have (§ 34)

$$
a^{\prime}=\frac{2 R b}{a} ; \quad a^{\prime \prime}=\frac{2 R^{\prime} b}{a} .
$$

Example. Given $R=900, R^{\prime}=700$, and $b=8$, to find a, a^{\prime}, and $a^{\prime \prime}$. Here $a=\sqrt{2 \times 8(900+700)}=\sqrt{16 \times 1600}=160$, $a^{\prime}=\frac{2 \times 900 \times 8}{160}=90$, and $a^{\prime \prime}=\frac{2 \times 700 \times 8}{160}=70$.
37. Problem. Given the angle $A K B=K$, which shows the change of direction of two tangents $H A$ and $B K(f i g .8)$, to

unite these tangents by a reversed curve of given common radius R, startiny from a given tangent point A.

Solution. With the given radius run the curve to the point D, where the tangent $D N$ becomes parallel to $B K$. The point D is, found thus. Since the angle $N G K$, which is double the angle
$H A D(\S 2$, II.), is to be made equal to $A K B=K$, lay off from $H A$ the angle $H A D=\frac{1}{2} K$. Measure in the direction thus found the chord $A D=2 R \sin$. $\frac{1}{2} K$. This will be shown ((83) to be the length of the chord for a deflection angle $\frac{1}{2} K$. Having found the point D, measure the perpendicular distance $D M=b$ between the parallel tangents.

The distance $B D=2 D C=a$ may then be obtained from the formula (§33, Cor.)

$$
\text { as } \quad a=2 \sqrt{R b} \text {. }
$$

The second tangent point B and the reversing point C are now determined. The direction of $D B$ or the angle $B D$ may also be obtained; for $\sin . B D N=\sin . D B M=\frac{D M}{D B}$, or

$$
\sin B D N=\frac{b}{a}
$$

38. Problem. Given the line $A B=a$ (fig. 9), which joins the fixed tangent points A and B, the angles $H A B=A$ and $A B L=B$, and the first radius $A E=R$, to find the second radius $B F=R^{\prime}$ of a reversed curve to unite the tangents $H^{\prime} A$ and $B K$.

First Solution. With the given radius run the curve to the point D, where the tangent $D N$ becomes parallel to $B K$. The point D is found thus. Since the angle $H G N$, which is double
$H A D(\S 2$, II.) , is equal to $A \subset s B$, lay off from $H A$ the angle HAD=$\frac{1}{2}(A \propto B)$, and measure in this direction the chord $A D=$ $2 R \sin$. $\frac{1}{2}(A \propto B)(\S 83)$.
Setting the instrument at D, run the curve to the reversing point C in the line from D to $B(\$ 32)$, and measure $D C$ and $C B$. Then the similar triangles $D E C$ and $B F C$ give $D C: D E=$ $C B: B F$, or $D C: R=C B: R^{\prime}$;

$$
\therefore R^{\prime}=\frac{C B}{D C} \times R .
$$

Second Solution. By this method the second radius may be found by calculation alone. The figure being drawn as above, we have, in the triangle $A B D, A B=a, A D=2 R \sin . \frac{1}{2}(A-B)$, and the included angle $D A B=H A B-H A D=A-\frac{1}{2}$ $(A-B)=\frac{1}{2}(A+B)$. Find in this triangle (Tab. X. 14 and 12) $B D$ and the angle $A B D$. Find also the angle $D B L=B$ $+A B D$.
Then the chord $C B=2 R^{\prime} \sin . \frac{1}{2} B F^{\prime} C=2 R^{\prime} \sin . D B L$, and the chord $D C=2 R \sin . \frac{1}{2} D E C=2 R \sin . D B L(\S 83)$. But $C B=B D-D C$; whence $2 R^{\prime} \sin . D B L=B D-$ $2 R \sin . D B L$,
US $\quad \therefore R^{\prime}=\frac{B D}{2 \sin . D B L}-R$.
When the point D falls on the other side of A, that is, when the angle B is greater than A, the solution is the same, except that the angle $D A B$ is then $180^{\circ}-\frac{1}{2}(A+B)$, and the angle $D B L=B-A B D$.
39. Problem. Given the length of the common tangent $D G=a$, and the angles of intersection I and $I^{\prime}(f i g .10)$, to determine the common radius $C E=C F=R$ of a reversed curve to unite the tangents $H A$ and $B L$.

Solution. By $\S 4$ we have $D C=R \tan . \frac{1}{2} I$, and $C G=$ $R \tan$. $\frac{1}{2} I^{\prime}$, whence $R\left(\tan . \frac{1}{2} I+\tan . \frac{1}{2} I^{\prime}\right)=D C^{\prime}+C G=a$, or

$$
R=\frac{a}{\tan \cdot \frac{1}{2} I+\tan \cdot \frac{1}{2} I^{\prime}}
$$

This formula may be adapted to calculation by logarithms; for we have (Tab. X. 35) tan. $\frac{1}{2} I+\tan . \frac{1}{2} I^{\prime}=\frac{\sin . \frac{1}{2}\left(I+I^{\prime}\right)}{\cos . \frac{1}{2} I \cos \cdot \frac{1}{2} I^{\prime}}$. Substituting this value, we get

$$
R=\frac{a \cos \cdot \frac{1}{2} I \cos \cdot \frac{1}{2} I^{\prime}}{\sin \cdot \frac{1}{3}\left(I+I^{\prime}\right)}
$$

The tangent points A and B are obtained by measuring from D a distance $A D=R \tan . \frac{1}{2} I$, and from G a distance $B G=$ $R \tan$. $\frac{1}{2} I^{\prime}$.

Example. Given $a=600, I=12^{\circ}$, and $I^{\prime}=8^{\circ}$, to find R. Here

$$
\begin{aligned}
a & =600 \\
\frac{1}{2} I & =6^{\circ} \\
\frac{1}{2} I^{\prime} & =4^{\circ}
\end{aligned}
$$

$\cos .9 .997614$
cos. 9.998941
2.774706
$\begin{array}{rlr}\frac{1}{2}\left(I+I^{\prime}\right) & =10^{\circ} \quad \sin .9 .239670 \\ R & =3427.96 & \overline{3.535036}\end{array}$
40. Problem. Given the line $A B=a$ (fig. 10), which joins the fixed tangent points A and B, the angle $D A B=A$, and the angle $A B G=B$, to find the common radius $E C=C F=R$ of a reversed curve to unite the tangents $H A$ and $B L$.

Solution. Find first the auxiliary angle $A K E=B K F$, wiich may be denoted by K. For this purpose the triangle $A E K$ gives $A E: E K=\sin . K: \sin . E A K$. Therefore $E K \sin . K=$ $A E \sin . E A K=R \cos . A$, since $E A K=90^{\circ}-A$. In like manner, the triangle $B F K$ gives $F K \sin . K=B F \sin . F B K=$ $R \cos . B$. Adding these equations, we have $(E K+F K) \sin . K=$ $R(\cos . A+\cos . B)$, or, since $E K+F K=2 R, 2 R \sin . K=$
$R(\cos . A+\cos . B)$. Therefore, $\sin . K=\frac{1}{2}(\cos . A+\cos . B)$. For calculation by logarithms, this becomes (Tab. X. 28)

Having found K, we have the angle $A E K=E=180^{\circ}-K-$ $E A K=180^{\circ}-K-\left(90^{\circ}-A\right)=90^{\circ}+A-K$, and the angle $B F K=F=180^{\circ}-K-F B K=180^{\circ}-K-\left(90^{\circ}-B\right)=90^{\circ}+$ $B-K$. Moreover, the triangle $A E K$ gives $A E: A K=$ $\sin . K: \sin . E$, or $R \sin . E=A K \sin . K$, and the triangle $B F^{F}$ gives $\quad B F: B K=\sin . K: \sin . F$, or $\quad R \sin . F=B K \sin . K$. Adding these equations, we have $R\left(\sin . E+\sin . F^{\prime}\right)=(A K+$ $B K) \sin . K=a \sin . K$. Substituting for $\sin . E+\sin . F^{\prime}$ its value $2 \sin . \frac{1}{2}(E+F) \cos \cdot \frac{1}{2}\left(E-F^{\prime}\right)$ (Tab. X. 26), we have $2 R \sin . \frac{1}{2}\left(E+F^{\prime}\right) \cos \cdot \frac{1}{\frac{1}{2}}(E-F)=a \sin . K$. Therefore $R=$ $\frac{1}{2} a \sin . K$
$\overline{\sin . \frac{1}{2}\left(E+F^{\prime}\right) \cos . \frac{1}{2}\left(E-F^{\prime}\right)}$. Finally, substituting for E its value $90^{\circ}+A-K$, and for F its value $90^{\circ}+B-K$, we get $\frac{1}{2}\left(E+F^{\prime}\right)=90^{\circ}-\left[K-\frac{1}{2}(A+B)\right]$, and $\frac{1}{2}(E-F)=\frac{1}{2}(A-B)$; whence

四

$$
R=\frac{\frac{1}{2} a \sin . K}{\cos .\left[K-\frac{1}{2}(A+B)\right] \cos \cdot \frac{1}{2}(A-B)} .
$$

Example. Given $a=1500, A=18^{\circ}$, and $B=6^{\circ}$, to find R. Here

$$
\begin{aligned}
\frac{1}{2}(A+B) & =12^{\circ} \\
\frac{1}{2}(A-B) & =6^{\circ} \\
K & =76^{\circ} 36^{\prime} 10^{\prime \prime} \\
\frac{1}{2} a & =750
\end{aligned}
$$

2.863079

$$
\begin{array}{rlr}
K-\frac{1}{2}(A+B) & =64^{\circ} 36^{\prime} 10^{\prime \prime} & \cos .9 .632347 \\
\frac{1}{2}(A-B) & =6^{\circ} & \cos .9 .997614 \\
R & =1710.48 & \frac{9.629961}{3.233118}
\end{array}
$$

B. Compound Curves.

41. Theorem. If one branch of a compound curve be produced, until the tangent at its extremity is parallel to the tangent at the extremity of the second branch, the common tangent point of the two arcs is in the straight line produced, which passes through the tangent points of these parallel tangents.

Demonstration. Let $A C B$ (fig. 11) be a compound curve, uniting the tangents $H A$ and $B K$. The radii $C E$ and $C F$, being perpendicular to the common tangent at $C(\S 2, \mathrm{I}$.), are in the

same straight line. Continue the curve $A C$ to D, where its tangent $O D$ becomes parallel to $B K$, and consequently the radius $D E$ parallel to $B F$. Then if the chords $C D$ and $C B$ be drawn, we have the angle $C E D=C F B$; whence $E C D$, the halfsupplement of $C E D$, is equal to $F C B$, the half-supplement of $C F B$. But $E C D$ cannot be equal to $F C B$, unless $C D$ coincides with $C B$. Therefore the line $B D$ produced passes through the common tangent point C.
42. Problem. To find a limit in one direction of each radius of a compound curve.
Solution. Let $A I$ and $B I$ (fig. 11) be the tangents of the curve. Through the intersection point I, draw $I M$ bisecting the
angle $A I B$. Draw $A L$ and $B M$ perpendicular respectively to $A I$ and $B I$, meeting $I M$ in L and M. Then the radius of the branch commencing on the shorter tangent $A I$ must be less than $A^{\circ} L$, and the radius of the branch commencing on the longer tangent $B I$ must be greater than $B M$. For suppose the shorter radius to be made equal to $A L$, and make $I N=A I$, and join $L N$. Then the equal triangles $A I L$ and $N I L$ give $A L=$ $L N$; so that the curve, if continued, will pass through N, where its tangent will coincide with $I N$. Then ($\S 41$) the common tangent point would be the intersection of the straight line through B and N with the first curve; but in this case there can be no intersection, and therefore no common tangent point. Suppose next, that this radius is greater than $A L$, and continue the curve, until its tangent becomes parallel to $B I$. In this case the extremity of the curve will fall outside the tangent $B I$ in the line $A N$ produced, and a straight line through B and this extremity will again fail to intersect the curve already drawn. As no common tangent point can be found when this radius is taken equal to $A L$ or greater than $A L$, no compound curve is possible. This radius must, therefore, be less than $A L$. In a similar manner it might be shown, that the radius of the other branch of the curve must be greater than $B . M$. If we suppose the tangents $A I$ and $B I$ and the intersection angle I to be known, we have (§ 5) $A L=$ $A I$ cot. $\frac{1}{2} I$, and $B M=B I$ cot. $\frac{1}{2} I$. These values are, therefore, the limits of the radii in one direction.
43. If nothing were given but the position of the tangents and the tangent points, it is evident that an indefinite number of different compound curves might connect the tangent points; for the shorter radius might be taken of any length less than the limit found above, and a corresponding value for the greater could be found. Some other condition must, therefore, be introduced, as is done in the following problems.
44. Problem. Given the line $A B=a$ (fig. 11), which joins the fixed tangent points A and B, the angle $B A I=A$, the angle $A B I=B$, and the first radius $A E=R$, to find the second radius $B F=R^{\prime}$ of a compound curve to unite the tangents $H A$ and $B K$.

Solution. Suppose the first curve to be run with the given radius from A to D, where its tangent $D O$ becomes parallel to
$B I$, and the angle $I A D=\frac{1}{2}(A+B)$. Then ((41) the common tangent point C is in the line $B D$ produced, and the chord $C B=$ $C D+B D$. Now in the triangle $A B D$ we have $A B=a$,

$A D=2 R \sin . \frac{1}{2}(A+B)(\S 83)$, and the included angle $D A B=$ $I A B-I A D=A-\frac{1}{2}(A+B)=\frac{1}{2}(A-B)$. Find in this triangle (Tab. X. 14 and 12) the angle $A B D$ and the side $B D$. Find also the angle $C B I=B-A B D$.
Then ($\left(83\right.$) the chord $C B=2 R^{\prime} \sin . C B I$, and the chord $C D=2 R \sin . C D O=2 R \sin . C B I$. Substituting these values of $C B$ and $C D$ in the equation found above, $C B=C D+B D$, we have $2 R^{\prime} \sin . C B I=2 R \sin . C B I+B D$;
[13

$$
\therefore R^{\prime}=R+\frac{B D}{2 \sin . C B I} .
$$

When the angle B is greater than A, that is, when the greater radius is given, the solution is the same, except that the angle $D A B=\frac{1}{2}(B-A)$, and $C B I$ is found by subtracting the sup-
plement of $A B D$ from B. We shall also find $C B=C D-$ $B D$, and consequently $R^{\prime}=R-\frac{B D}{2 \sin . C B I}$.
If more convenient, the point D may be determined in the field, by laying off the angle $I A D=\frac{1}{2}(A+B)$, and measuring the distance $A D=2 R \sin . \frac{1}{2}(A+B) . \quad B D$ and $C B I$ may-then be measured, instead of being calculated as above.

Example. Given $a=950, A=8^{\circ}, B=7^{\circ}$, and $R=3000$, to find R^{\prime}. Here $A D=2 \times 3000 \sin \cdot \frac{1}{2}\left(8^{\circ}+7^{\circ}\right)=783.16$, and $D A B=\frac{1}{2}\left(8^{\circ}-7^{\circ}\right)=30^{\prime}$. Then to find $A B D$ we have

$$
\begin{array}{rlr}
A B-A D & =166.84 & \begin{aligned}
& 2.222300 \\
& \frac{1}{2}(A D B+A B D)=89^{\circ} 45^{\prime}
\end{aligned} \\
& \tan . \frac{2.360180}{4.582480} \\
A B+A D & =1733.16 & \frac{3.238839}{} \\
\frac{1}{2}(A D B-A B D) & =87^{\circ} 24^{\prime} 17^{\prime \prime} & \tan .1 .343641
\end{array}
$$

Next, to find $B D$,

$A D$	$=783.16$	2.893849
$D A B$	$=30^{\prime}$	$\sin .7 .940842$
$A B D$	$=2^{\circ} 20^{\prime} 43^{\prime \prime}$	$\sin .8 .8 .611948$
$B D$	$=167.01$	$\overline{0.222743}$
$B-A B D=C B I$	$=4^{\circ} 39^{\prime} 17^{\prime \prime}$	$\sin .8 .909292$
$2\left(R^{\prime}-R\right)$	$=2058.03$	$\overline{3.313451}$
$R^{\prime}-R$	$=1029.01$	
$R^{\prime}=3000+1029.01$	$=4029.01$	

To find the central angle of each branch, we have $C F B=$ $2 C B I=9^{\circ} 18^{\prime} 34^{\prime \prime}$, which is the central angle of the second branch; and $A E C=A E D-C E D=A+B-2 C B I=$ $5^{\circ} 41^{\prime} 26^{\prime \prime}$, which is the central angle of the first branch.
45. Problem. Given (fig. 11) the tangents $A I=T, B I=$ $T^{\prime \prime}$, the angle of intersection $=I$, and the first radius $A E=R$, to find the second radius $B F=R^{\prime}$.

Solution. Suppose the first curve to be run with the given radius from A to D, where its tangent $D O$ becomes parallel to $B I$. Through D draw D Parallel to $A I$, and we have $I P=D O=$
$A O=R \tan . \frac{1}{2} I$ (§4). Then in the triangle $D P B$ we have $D P=I O=A I-A O=T-R \tan . \frac{1}{2} I, B P=B I-I P=$ $T^{\prime \prime}-R \tan$. $\frac{1}{2} I$, and the included angle $D P B=A I B=180^{\circ}-$ I. Find in this triangle the angle CBI, and the side $B D$. The remainder of the solution is the same as in \$44. The determination of the point D in the field is also the same, the angle I A D being here $=\frac{1}{2} I$. When B is greater than A, that is, when the greater radius is given, the solution is the same, except that $D P=$ $R \tan . \frac{1}{2} I-T$, and $B P=R \tan . \frac{1}{2} I-T^{\prime \prime}$.

Example. Given $T=447.32, T^{\prime}=510.84, T=15^{\circ}$, and $R=$ 3000 , to find R^{\prime}. Here $R \tan$. $\frac{1}{2} I=3000 \tan .7 \frac{7}{2}^{\circ}=394.96, D P=$ $447.32-394.96=52.36, B P=510.84-394.96=115.88$, and D PD $=180^{\circ}-15^{\circ}=165^{\circ}$. Then (Tab. X. 14 and 12)

$B P-D P=63.52$	1.802910
$\frac{1}{1}(B D P+P B D)=7^{\circ} 30^{\prime}$	\tan. 9.119429
	$\overline{0.922339}$
$B P+D P=168.24$	2.225929
$\begin{aligned} & \frac{1}{2}(B D P-P B D)=2^{\circ} 50^{\prime} 44^{\prime \prime} \\ & \therefore P B D=C B I=4^{\circ} 39^{\prime} 16^{\prime \prime} \end{aligned}$	tan. 8.696410

Next, to find $B D$,

$D P$	$=52.36$	1.719006
$D P B$	$=165^{\circ}$	$\sin .9 .412996$
	$\underline{1.13199 \ell}$	
$P B D$	$=4^{\circ} 39^{\prime} 16^{\prime \prime}$	$\sin .8 .90926$
$B D$	$=167.005$	$\underline{2.222730}$

The tangents in this example were calculated from the example in § 44. The values of $C B I$ and $B D$ here found differ slightly from those obtained before. In general, the triangle $D B P$ is ot better form for accurate calculation than the triangle $A D B$.
46. If no circumstance determines either of the radii, the condition may be introduced, that the common tangent shall be para. lel to the line joining the tangent points.

Problem. Given the line $A B=a$ (fig. 12), which unites th. fixed tangent points A and B, the angle I A $B=A$, and the angle $A B I=B$, to find the radii $A E=R$ and $B F=R^{\prime}$ of a compound curve, having the common tangent $D G$ parallel to $A B$.

Solution. Let $A C$ and $B C$ be the two branches of the required curve, and draw the chords $A C$ and $B C$. These chords bisect

the angles A and B; for the angle $D A C=\frac{1}{2} I D G=\frac{1}{2} I A B$, and the angle $G B C=\frac{1}{2} D G I=\frac{1}{2} A B I$. Then in the triangle $A C B$ we have $A C^{r}: A B=\sin . A B C: \sin . A C B$. But $A C B=$ $180^{\circ}-(C A B+C B A)=180^{\circ}-\frac{1}{2}(A+B)$, and as the sine of the supplement of an angle is the same as the sine of the angle itself, $\sin . A C B=\sin \cdot \frac{1}{2}(A+B)$. Therefore $A C: a=$ $\sin . \frac{1}{2} B: \sin . \frac{1}{2}(A+B)$, or $A C=\frac{a \sin \cdot \frac{1}{2} B}{\sin . \frac{1}{2}(A+B)}$. In a similar manner we should find $B C=\frac{a \sin \cdot \frac{1}{2} A}{\sin . \frac{1}{2}(A+B)}$. Now we have (S8) $R=\frac{\frac{1}{2} A C}{\sin \cdot \frac{1}{2} A}$, and $R^{\prime}=\frac{\frac{1}{2} B C}{\sin \cdot \frac{1}{2} B}$, or, substituting the values of $A C$ and $B C$ just found.

$$
R=\frac{\frac{1}{2} a \sin \cdot \frac{1}{2} B}{\sin \cdot \frac{1}{2} A \sin \cdot \frac{1}{2}(A+B)}, R^{\prime}=\frac{\frac{1}{2} a \sin \cdot \frac{1}{2} A}{\sin \cdot \frac{1}{2} B \sin \cdot \frac{1}{2}(A+B)}
$$

Example. Given $a=950, A=8^{\circ}$, and $B=7^{\circ}$, to find R and R^{\prime}. Here

$\begin{aligned} \frac{1}{2} a & =475 \\ \frac{1}{2} B & =3^{\circ} 30^{\prime} \end{aligned}$		$\begin{array}{r} 2.676694 \\ \sin .8 .785675 \end{array}$
		1.462369
$\frac{1}{2} A=4^{\circ}$	$\sin .8 .843585$	
$\frac{1}{2}(A+B)=7^{\circ} 30^{\prime}$	$\sin .9 .115698$	
		7.959283
$R=3184.83$		3.503086

Transposing these same logarithms according to the formula for R^{\prime} we have

$\frac{1}{2} a$	$=475$	$\sin .8 .843585$
$\frac{1}{2} A$	$=4^{\circ}$	$\frac{2.676694}{1.520279}$
$\frac{1}{2} B$	$=3^{\circ} 30^{\prime}$	$\sin .8 .785675$
$\frac{1}{2}(A+B)$	$=7^{\circ} 30^{\prime}$	$\sin .9 .115698$
R^{\prime}	$=4158.21$	

47. Problem. Given the line $A B=a$ (fig.12), which unites the fixed tangent points A and B, and the tangents $A I=T$ ' and $B I=T^{\prime}$, to find the tangents $A D=x$ and $B G=y$ of the two branches of a compound curve, having its common tangent $D G$ parallel to $A B$.

Solution. Since $D C^{r}=A D=x$, and $C G=B G=y$, we have $D G=x+y$. Then the similar triangles $I D G$ and $I A B$ give $I D: I A=D G: A B$, or $T-x: T=x+y: a$. Therefore $a T-a x=T x+T y(1)$. Also $A D: A I=B G: B I$, or $x: T=y: T^{\prime \prime}$. Therefore $T y=T^{\prime} x(2)$. Substituting in (1) the value of $T y$ in (2), we have $a T-a x=T x+T^{\prime} x$, or $a x+$ $T x+T^{\prime \prime} x=a T$;

$$
\therefore x=\frac{a T}{a+T+T^{\prime \prime}}
$$

and, since from (2), $y=\frac{T^{\prime} x}{T}$,

$$
y=\frac{a T^{\prime \prime}}{a+T+T^{\prime \prime}}
$$

The intersection points D and G and the common tangent point C are now easily obtained on the ground, and the radii may be found by the usual methods. Or, if the angles $I A B=A$ and $A B I=B$ have been measured or calculated, we have (§\% 5) $R=$ $x \cot$. $\frac{1}{2} A$, and $R^{\prime}=y \cot$. $\frac{1}{2} B$. Substituting the values of x an 1 y found above, we have $R=\frac{a T \cot . \frac{1}{2} A}{a+T+T^{\prime}}$, and $R^{\prime}=\frac{a T^{\prime} \cot . \frac{1}{2} B}{a+T+T^{\prime}}$.*

Example. Given $a=500, T=250$, and $T^{\prime \prime}=290$, to find x and y. Here $a+T+T^{\prime}=500+250+290=1040$; whence $x=500 \times 250 \div 1040=120.19$, and $y=500 \times 290 \div 1040=$ 139.42 .
48. Problem. Given the tangents $A I=T, B I=T^{\prime \prime}$, and the angle of intersection I, to unite the tangent points A and B

[^3](fig. 13) by a compound curve, on condition that the two branches shall have their angles of intersection ID G and IG D equal.

Solution. Since $I D G=I G D=\frac{1}{2} I$, we have $I D=I G$. Represent the line $I D=I G$ by x. Then if the perpendicular $I H$ be let fall from I, we have (Tab. X. 11) $D H=I D \cos . I D G=$ $x \cos$. $\frac{1}{2} I$, and $D G=2 x \cos$. $\frac{1}{2} I$. But $D G=D C+C G=$ $A D+B G=T-x+T^{\prime}-x=T+T^{\prime \prime}-2 x$. Therefore $2 x \cos$. $\frac{1}{2} I=T+T^{\prime \prime}-2 x$, or $2 x+2 x \cos$. $\frac{1}{2} I=T+T^{\prime}$; whence $x=\frac{\frac{1}{2}\left(T+T^{\prime}\right)}{1+\cos . \frac{1}{2} I}$, or (Tab. X. 25)

$$
x=\frac{\frac{1}{4}\left(T+T^{\prime}\right)}{\cos .^{2} \frac{1}{4} I} .
$$

The tangents $A D=T-x$ and $B G=T^{\prime \prime}-x$ are now readily found. With these and the known angles of intersection, the radii or deflection angles may be found ($\S 5$ or $\S 11$). This method answers very well, when the given tangents are nearly equal; but in general the preceding method is preferable.

Example. Given $T=480, T^{\prime}=500$, and $I=18^{\circ}$, to find x. Here

$$
\begin{array}{rlrl}
\frac{1}{4}\left(T+T^{\prime}\right) & =245 & 2.389166 \\
\frac{1}{4} I & =4^{\circ} 30^{\prime} & 2 \cos .9 .997318 \\
x & =246.52 & \underline{2.391848}
\end{array}
$$

Then $A D=480-246.52=233.48$, and $B G=500-246.52=$ 253.48. The angle of intersection for both branches of the curve being 9°, we find the radii $A E=233.48 \mathrm{cot} .4^{\circ} 30^{\prime}=2966.65$, and B $F^{\prime}=253.48$ cot. $4^{\circ} 30^{\prime}=3220.77$.

Article III.-Turnouts and Crossings.

49. The turnouts here considered are of three kinds: Those in which a pair of rails in the main track are switched, and the turnout curve is made tangent to the switched rails; those in which a point switch, sometimes called a split switch, is employed, to one side of which, when thrown, the turnout curve is made tangent; and those in which a pair of rails of the main track are switched in such a way that they become part of the turnout curve, which thus becomes tangent to the main track. The problems that immediately follow ($\$ 50$ to $\$ 64$) are applicable to the first two cases. Problems relating to the third case will follow (865 to $8 \% 76$).

First and Second Cases.

50. Let $A B$ (fig. 14) represent either a switched rail, or the side of a point switch when thrown. To this line the outer rail $B F$ of the turnout is tangent, and crosses the main track at F. The angle $G F M$, denoted by F, is called the frog angle, and the angle $D A B$, denoted by S, is called the switch angle. The gauge of the track $D C$, denoted by g, and the distance $D B$, called the ${ }^{+}$hrow, denoted by d, are supposed to be given. The distance $A B=l$ is also given, whence we have $\sin . S=\frac{D B}{A B}=\frac{d}{l}$. If, for example, we had $A B=l=18$, and $d=.42$, we should have $\sin . S=\frac{.42}{18}=.02333$, or $S=1^{\circ} 20^{\prime}$.
A. Turnout from Straight Main Track.
51. Problem. Given the radius R of the centre line of a turnout (fig. 14), to find the frog angle $G F M=F$ and the chord $B F$.

Solution. Through the centre E draw $E K$ parallel to the main track. Draw $B H$ and $F K$ perpendicular to $E K$, and join $B F$. Then, since $E F$ is perpendicular to $F M$ and $F K$ is perpendicular to $F G$, the angle $E F K=G F M=F$; and since $E B$ and $B H$ are respectively perpendicular to $A B$ and $A D$, the angle $E B H=D A B=S$. Now the triangle $E F K$ gives
(Tab. X. 2) cos. $E F K=\frac{F K}{E F}$. But $E F$, the radius of the outer rail, is equal to $R+\frac{1}{2} g$, and $F K=C H=B H-B C=$ $B E \cos . E B H-B C=\left(R+\frac{1}{2} g\right) \cos . S-(g-d)$. Substituting these values, we have cos. $E F K=\frac{\left(R+\frac{1}{2} g\right) \cos . S-(g-d)}{R+\frac{1}{2} g}$, or

要 $\cos . F=\cos S-\frac{g-d}{R+\frac{1}{2} g}$.
From this formula F may be found by the table of natural cosines. To adapt it to calculation by logarithms, we may consider $g-d$ to be equal to $(g-d) \cos . S$, which will lead to no material error since $g-d$ is very small, and $\cos . S$ almost equal to unity. The value of cos. F then becomes

$$
\text { 雨 } \quad \cos . F=\frac{\left(R-\frac{1}{2} g+d\right) \cos . S}{R+\frac{1}{2} g}
$$

To find $B F$, the right triangle $B C F$ gives (Tab. X. 9) $B F=$ $B C$ $\overline{\sin B F C}$. $C F E=\left(90^{\circ}-\frac{1}{2} B E F^{\prime}\right)-\left(90^{\circ}-F^{\prime}\right)=F-\frac{1}{2} B E F$. But $B E F=B L F-E B L=F-S$. Therefore $B F C=F-$ $\frac{1}{2}(F-S)=\frac{1}{2}\left(F^{F}+S\right)$. Substituting these values in the formula for $B F$, we have

$$
B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}
$$

Example. Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}$, and $R=500$, to find F and $B F$. Here nat. $\cos . S=.999729, g-d=4.28$, $R+\frac{1}{2} g=502.35$, and $4.28 \div 502.35=.008520$. Therefore nat. $\cos . F=.999729-.008520=.991209$, which gives $F=7^{\circ} 36^{\prime} 10^{\prime \prime}$. Next, to find $B F$,

$$
\begin{array}{rlr}
g-d & =4.28 & 0.631444 \\
\frac{1}{2}_{2}(F+S) & =4^{\circ} 28^{\prime} 5^{\prime \prime} & \sin .8 .891555 \\
B F & =54.94 & \overline{1.739889}
\end{array}
$$

52. Problem. Given the frog angle $G M=F$ (fig. 14), to find the radius R of the centre line of a turnout, and the chord $B F$.

Solution. From the preceding solution we have $\cos . F=$
$\frac{\left(R+\frac{1}{2} g\right) \cos . S-(g-d)}{R+\frac{1}{2} g}$ ．Therefore $\left(R+\frac{1}{2} g\right) \cos . F=(R+$ $\left.\frac{1}{2} g\right) \cos . S-(g-d)$ ，or

$$
\text { R迹 } \quad R+\frac{1}{2} g=\frac{g-d}{\cos S-\cos . F}
$$

For calculation by logarithms this becomes（Tab．X．29）
不要

$$
R+\frac{1}{2} g=\frac{\frac{1}{2}(g-d)}{\sin \cdot \frac{1}{2}\left(F^{\prime}+S\right) \sin \cdot \frac{1}{2}(F-S)}
$$

Having thus found $R+\frac{1}{2} g$ ，we find R by subtracting $\frac{1}{2} g$ ．$B F$ is found，as in the preceding problem，by the formula

楼

$$
B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}
$$

Example．Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}$ ，and $F^{\prime}=7^{\circ}$ ，to find R ．Here

$$
\begin{array}{rlrl}
\frac{1}{2}(g-d) & =2.14 & & 0.330414 \\
\frac{1}{2}(F+S) & =4^{\circ} 10^{\prime} & \sin .8 .861283 \\
\frac{1}{2}(F-S) & =2^{\circ} 50^{\prime} & \sin .8 .693998 & \\
& & \underline{2.555281} \\
R+\frac{1}{2} g & =595.85 & & 2.775133
\end{array}
$$

Frogs on some roads are designated by numbers denoting the ratio of the length of the frog to its width，the width being a line drawn across the widest part of the frog，and the length a per－ pendicular on this line from the point of the frog；so that if the number of the frog be denoted by n ，we shall have

$$
\cot \cdot \frac{1}{2} F=2 n
$$

Then to find $\frac{1}{2} F$ we find the angle whose cotangent is double the number of the frog．Thus for frog number 7 we look for the angle whose cotangent is 14 ，and we find $\frac{1}{2} F^{\prime}=4^{\circ} 5^{\prime} 8^{\prime \prime}$ ．The frog angles in Tab．V．are so computed．

53．Problem．To find mechanically the proper position of a given frog．

Solution．Denote the length of the switch rail by l ，the length of the frog by f ，and its width by w ．From B as a centre with a radius $B H=2 l$ ，describe on the ground an are $G H K$（fig．15），
and from the inside of the rail at G measure $G H=2 d$, and from H measure $H K$ such that $H K: B H=\frac{1}{2} w: f$, or $H K: 2 l=$ $\frac{1}{2} w: f ;$ that is, $H K=\frac{w l}{f}$. Then a straight line through B and

the point K will strike the inside of the other rail at F, the place for the point of the frog. For the angle $H B K$ has been made equal to $\frac{1}{2} F$, and if $B M$ be drawn parallel to the main track, the angle $M B H$ is seen to be equal to $\frac{1}{2} S$. Therefore, $M B K=$ $B F C=\frac{1}{2}(F+S)$, and this was shown (§50) to be the true value of $B F C$.
54. If the turnout is to reverse, and become parallel to the main track, the problems on reversed curves already given will in general be sufficient. Thus, if the tangent points of the required curve are fixed, the common radius may be found by $\S 40$. If the tangent point at the switch is fixed, and the common radius given, the reversing point and the other tangent point may be found by $\S 37$, the change of direction of the two tangents being here equal to S. But when the frog angle is given, or determined from a given first radius, and the point of the frog is taken as the reversing point, the radius of the second portion may be found by the following method.

Problem. Given the frog angle F and the distance $H B=$ b (fig. 16) between the main track and a turnout, to find the radius R^{\prime} of the second branch of the turnout, the reversing point being taken opposite F, the point of the frog.

Solution. Let the are $F B$ be the inner rail of the second branch, $F G=R^{\prime}-\frac{1}{2} g$ its radius, and B the tangent point where the turnout becomes parallel to the main track. Now since the tangent $F K$ is one side of the frog produced, the angle $H F K=$
F, and since the angle of intersection at K is also equal to F, $B F K=\frac{1}{2} F\left(\S 2, \mathrm{II}\right.$.); whence $B F H=\frac{1}{2} F$. Then (§82) $F G=$

Fig. 16.

$\frac{\frac{1}{2} B F}{\sin \cdot B F K}$, or $R^{\prime}-\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2} F}$. But $B F^{\prime}=\frac{H B}{\sin . B F H}$ (Tab. X. 9), or $\frac{1}{2} B F=\frac{\frac{1}{2} b}{\sin \cdot \frac{1}{2} F}$. Substituting this value of $\frac{1}{2} B F$, we
have

$$
R^{\prime}-\frac{1}{2} g=\frac{\frac{1}{2} b}{\sin \cdot{ }^{2} \frac{1}{2} F} .
$$

In measuring the distance $H B=b$, it is to be observed, that the widths of both rails must be included.

Example. Given $b=6.2$ and $F=8^{\circ}$, to find R^{\prime}. Here

$$
\begin{array}{rlr}
\frac{1}{\frac{1}{2} b} & =3.1 & 0.491362 \\
\frac{1}{2} F & =4^{\circ} & \sin .8 .843585 \\
\frac{1}{2} B F & =44.44 & \underline{1.647777} \\
\frac{1}{2} F & =4^{\circ} & \sin .8 .843585 \\
R^{\prime}-\frac{1}{2} g & =637.08 & \underline{2.804192} \\
\cdot R^{\prime} & =639.43 &
\end{array}
$$

B. Crossings on Straight Lines.

55. When a turnout enters a parallel main track by a second switch, it becomes a crossing. As the switch angle is the same on both tracks, a crossing on a straight line is a reversed curve between parallel tangents. Let $H D$ and $N K$ (fig. 17) be the centre lines of two parallel tracks, and $H A$ and $B K$ the direction of the switched rails. If now the tangent points A and B are fixed, the distance $A B=a$ may be measured, and also the perpendicular distance $B P=b$ between the tangents $H P$ and $B K$. Then the common radius of the crossing $A C B$ may be found by $\S 33$; or if the radius of one part of the crossing is fixed, the second radius may be found by $\S 34$. But if both frog angles are given, we have the two radii or the common radius of a crossing given, and it will then be necessary to determine the distance $A B$ between the two tangent points.
56. Problem. Given the perpendicular distance $G N=b$ (fig. 17) between the centre lines of two parallel tracks, and the radii $E C=R$ and $C F=R^{\prime}$ of a crossing, to find the chords $A C$ and $B C$.
Solution. Draw $E G$ perpendicular to the main track, and $A L, C M$, and $B L^{\prime}$ parallel to it. Denote the angle $A E C$ by E. Then, since the angle $A E L=A H G=S$, we have $C E L=E+$ S, and in the right triangle $C E M$ (Tab. X. 2), $C E \cos . C E M=$ $R \cos .(E+S)=E M=E L-L M$. But $E L=A E \cos . A E L$ $=R \cos . S$, and $L M: L^{\prime} M=A C: B C$. Now $A C: B C=$ $E C: C F=R: R^{\prime}$. Therefore, $L M: L^{\prime} M=R: R^{\prime}$, or $L M:$ $L M+L^{\prime} M=R: R+R^{\prime}$; that is, $L M: b-2 d=R: R+R^{\prime}$ whence $L M=\frac{R(b-2 d)}{R+R^{\prime}}$. Substituting these values of $E L$ and $L M$ in the equation for $R \cos$. $(E+S)$, we have $R \cos .(E+S)=$ $R \cos S-\frac{R(b-2 d)}{R+R^{\prime}}$,
$\quad \therefore \cos (E+S)=\cos S-\frac{b-2 d}{R+R^{\prime}}$.
Having thus found $E+S$, we have the angle E and also its equal $C F B$. Then (§83)

We have also $A B=A C+B C$, since $A C$ and $B C$ are in the same straight line (§32), or $A B=2\left(R+R^{\prime}\right) \sin$. $\frac{1}{2} E$.

When the two radii are equal, the same formulæ apply by making $R^{\prime}=R$. In this case, we have

$$
\begin{gathered}
\cos .(E+S)=\cos . S-\frac{b-2 d}{2 R} \\
A C=B C=2 R \sin . \frac{1}{2} E .
\end{gathered}
$$

Example. Given $d=.42, g=4.7, S=1^{\circ} 20^{\prime}, b=11$, and the angles of the two frogs each 7°, to find $A C=B C=\frac{1}{2} A B$. The common radius R, corresponding to $F=7^{\circ}$, is found ($\oint 52$) to be 593.5. Then $2 R=1187, b-2 d=10.16$, and $10.16 \div 1187=$.00856 . Therefore, nat. cos. $(E+S)=.99973-.00856=.99117$; whence $E+S=7^{\circ} 37^{\prime} 15^{\prime \prime}$. Subtracting S, we have $E=6^{\circ} 17^{\prime} 15^{\prime \prime}$. Next

$$
\begin{array}{lr}
2 R=1187 & 3.074451 \\
\frac{1}{2} E=3^{\circ} 8^{\prime} 37 \frac{1}{2}^{\prime \prime} & \sin .8 .739106 \\
A C=65.1 & \underline{1.813557}
\end{array}
$$

C. Turnout from Curves.

57. Problem. Given the radius R of the centre line of the main track and the frog angle F, to determine the position of the frog by means of the chord BF (figs. 18 and 19), and to find the radius R^{\prime} of the centre line of the turnout.

Solution. I. When the turnout is from the inside of the curve
(fig. 18). Let $A G$ and $C F$ be the rails of the main track, $A B$ the switch rail, and the arc $B F$ the outer rail of the turnout,

crossing the inside rail of the main track at F. Then, since the angle $E F K$ has its sides perpendicular to the tangents of the two curves at F, it is equal to the acute angle made by the crossing rails, that is, $E F K=F$. Also $E B L=S$. The first step is to find the angle $B K F$ denoted by K. To find this angle, we have in the triangle $B F K$ (Tab. X. 14) $B K+K F: B K-$ $K F=\tan . \frac{1}{2}(B F K+F B K): \tan \cdot \frac{1}{2}(B F K-F B K)$. But $B K=R+\frac{1}{2} g-d$, and $K F=R-\frac{1}{2} g$. Therefore, $B K+$ $K F=2 R-d$, and $B K-K F=g-d$. Moreover, $B F K=$ $B F E+E F K=B F E+F$, and $F B K=E B F-E B K=$ $B F E-S$. Therefore, B $F K-F B K=F+S$. Lastly, $B F K+F B K=180^{\circ}-K$. Substituting these values in the preceding proportion, we have $2 R-d: g-d=\tan .\left(90^{\circ}-\right.$ $\left.\frac{1}{2} K\right): \tan . \frac{1}{2}(F+S)$, or tan. $\left(90^{\circ}-\frac{1}{2} K\right)=\frac{(2 R-d) \tan \cdot \frac{1}{2}(F+S)}{g-d}$. But tan. $\left(90^{\circ}-\frac{1}{2} K\right)=\cot . \frac{1}{2} K=\frac{1}{\tan . \frac{1}{2} K}$;

$$
\therefore \tan \cdot \frac{1}{2} K=\frac{g-d}{(2 R-d) \tan \cdot \frac{1}{2}(F+S)}
$$

Next, to find the chord $B F$, we have, in the triangle $B F C$ (Tab. X. 12), $B F=\frac{B C \sin . B C F}{\sin . B F C}$. But $B C=g-d$, and BCF $=180^{\circ}-F C K=180^{\circ}-\left(90^{\circ}-\frac{1}{2} K\right)=90^{\circ}+\frac{1}{2} K$, or $\sin . B C F=\cos . \frac{1}{2} K$. Moreover, $B F C=\frac{1}{2}(F+S)$; for $B F K=$ $K F C+B F C$, and $F B K=K C F-B F C=K F C-B F C$. Therefore, $B F K-F B K=2 B F C$. But, as shown above, $B F^{\prime} K-F B K=F+S$. Therefore, $2 B F C=F+S$, or $B F C=\frac{1}{2}(F+S)$. Substituting these values in the expressior for $B F$, we have

目

$$
B F=\frac{(g-d) \cos . \frac{1}{2} K}{\sin \cdot \frac{1}{2}(F+S)} .
$$

Lastly, to find R^{\prime}, we have (§82) $R^{\prime}+\frac{1}{2} g=E F=\frac{\frac{1}{2} B F}{\sin . \frac{1}{2} B E F}$. But $B E F=B L F-E B L$, and $B L F=L F K+L K F=$ $F+K$. Therefore, $B E F=F+K-S$, and

$$
\text { 有 } \quad R^{\prime}+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2}(F+K-S)^{\prime}} \text {. }
$$

II. When the turnout is from the outside of the curve, the preceding solution requires a few modifications. In the present case, the angle $E F^{\prime} K^{\prime}=F^{\prime}$ (fig. 19) and $E B L=S$. To find K, we have in the triangle $B F K, K F+B K: K F^{\prime}-B K=$ $\tan . \frac{1}{2}\left(F^{F} B K+B F K\right): \tan \cdot \frac{1}{2}\left(F B K-B F^{\prime} K\right)$. But $K F=$ $R+\frac{1}{2} g$, and $B K=R-\frac{1}{2} g+d$. Therefore, $K F+B K=$ $2 R+d$, and $K F-B K=g-d$. Moreover, $F B K=180^{\circ}-$ $F B L=180^{\circ}-\left(E B F^{\prime}-E B L\right)=180^{\circ}-(E B F-S)$, and $B F^{\prime} K=180^{\circ}-B F K^{\prime}=180^{\circ}-\left(B F E+E F K^{\prime}\right)=180^{\circ}-$ $(E B F+F)$. Therefore, $F B K-B F K=F+S$. Lastly, $F B K+B F K=180^{\circ}-K$. Substituting these values in the preceding proportion, we have $2 R+d: g-d=\tan .\left(90^{\circ}-\right.$ $\left.\frac{1}{2} K\right): \tan \cdot \frac{1}{2}(F+S)$, or $\tan .\left(90^{\circ}-\frac{1}{2} K\right)=\frac{(2 R+d) \tan \cdot \frac{1}{3}(F+S)}{g-d}$. But $\tan .\left(90^{\circ}-\frac{1}{2} K\right)=\cot . \frac{1}{2} K=\frac{1}{\tan \cdot \frac{1}{2} K}$;
$\therefore \tan \cdot \frac{1}{2} K=\frac{g-d}{(2 R+d) \tan \cdot \frac{1}{2}(F+S)}$.
Next, to find $B F$, we have, in the triangle $B F C, B F=$ $\frac{B C \sin . B C F}{\sin , B F^{F} C}$. But $B C=g-d$, and $B C F=90^{\circ}-\frac{1}{3} K$, or
$\sin . B C F=\cos . \frac{1}{2} K$. Moreover, $B F C=\frac{1}{2}(F+S)$; for $B F K=K F^{\prime} C-B F C$, and $F B K=K C F+B F^{\prime} C=$ $K F^{\prime} C+B F C$. Therefore, $F B K-B F K=2 B F^{\prime} C$. But,

as shown above, $F B K-B F K=F+S$. Therefore, $2 B F C=$ $F+S$, or $B F C=\frac{1}{2}(F+S)$. Substituting these values in the expression for $B F$, we have, as before,

震

$$
B F=\frac{(g-d) \cos \cdot \frac{1}{2} K^{*}}{\sin \cdot \frac{1}{2}(F+S)}
$$

Lastly, to find R^{\prime}, we have (§82) $R^{\prime}+\frac{1}{2} g=E F=\frac{\frac{1}{2} B F^{\prime}}{\sin \cdot \frac{1}{2} B E F^{*}}$.

* Since $\frac{1}{2} K$ is generally very small, an approximate value of $B F$ may be obtained by making $\cos \frac{1}{2} K=1$. This gives $B F=\frac{g-d}{\sin . \frac{1}{4}(F+S)}$, which is identical with the formula for $B F$ in $\S 51$.

But $B E F=B L F-E B L$, and $B L F=L F K-L K F=$ $F-K$. Therefore, $B E F=F-K-S$, and

$$
R^{\prime}+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2}(F-K-S)}
$$

Example. Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}, R=4583.75$, and $F=7^{\circ}$, to find the chord $B F$ and the radius R^{\prime} of a turnout from the outside of the curve. Here

58. Problem. To find mechanically the proper position of a given frog.

Solution. The method here is similar to that already given, when the turnout is from a straight line (§53). Draw $B M$ (figs. 18 and 19) parallel to $F C$, and we have $F B M=B F^{\prime} C=\frac{1}{2}(F+$ S), as just shown ((87). This angle is to be laid off from $B M$; but as F is the point to be found, the chord $F C$ can be only estimated at first, and $B M$ taken parallel to it, from which the angle $\frac{1}{2}(F+S)$ may be laid off by the method of $\S 53$. In this case, however, the first measure on the arc is d, and not $2 d$; since we hare here to start from $B M$, and not from the rail. Having thus determined the point F approximately, $B M$ may be laid off more accurately, and F found anew.
59. Problem. Given the position of a frog by means of the chord B (figs. 14, 18, and 19), to determine the frog angle F.

Solution. The formula $B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}$, which is exact
on straight lines (§51), and near enough on ordinary curves (§5\%. note), gives

$$
\sin \cdot \frac{1}{2}(F+S)=\frac{g-d}{B F}
$$

By this formula $\frac{1}{2}(F+S)$ may be found, and consequently F.
60. Problem. Given the radius R of the centre line of the main track, and the radius R^{\prime} of the centre line of a turnout, to find the frog angle F, and the chord $B F^{\prime}$ (figs. 18 and 19).

Solution. I. When the turnout is from the inside of the curve (fig. 18). In the triangle $B E K$ find the angle $B E K$ and theside $E K$. For this purpose we have $B E=R^{\prime}+\frac{1}{2} g, B K=$ $R+\frac{1}{2} g-d$, and the included angle $E B K=S$. Then in the triangle $E F K$ we have $E K$, as just found, $E F=R^{\prime}+\frac{1}{2} g$, and $F K=R-\frac{1}{2} g$. The frog angle $E F K=F$ may, therefore, be found by formula 15, Tab. X., which gives

$$
\tan . \frac{1}{2} F=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}
$$

where s is the half sum of the three sides, a the side $E K$, and b and c the remaining sides.

Find also in the triangle $E F K$ the angle $F E K$, and we have the angle $B E F=B E K-F E K$. Then in the triangle $B E F$ we have (§83)

$$
\text { 雨 } \quad B F^{\prime}=2\left(R^{\prime}+\frac{1}{2} g\right) \sin \cdot \frac{1}{2} B E F^{\prime} *
$$

II. When the turnout is from the outside of the curve (fig. 19). In the triangle $B E K$ find the angle $B E K$ and the side $E K$. For this purpose we have $B E=R^{\prime}+\frac{1}{2} g, B K=R-\frac{1}{2} g+d$, and the included angle $E B K=180^{\circ}-S$. Then in the triangle $E F K$ we have $E K$, as just found, $E F=R^{\prime}+\frac{1}{2} g$, and $F K=$ $R+\frac{1}{2} g$. The angle $E F K$ may, therefore, be found by formula 15, Tab. X., which gives tan. $\frac{1}{2} E F K=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$. But

* The value of $B F^{\prime}$ may be more easily found by the approximate formula $B F^{\prime}=\frac{g-d}{\sin \cdot \frac{1}{3}(F+S)}$, and generally with sufficient accuracy. See note to §57. This remark applies also to $B F$ in the second part of this solution.
the angle $E F K^{\prime}=F=180^{\circ}-E F K$. Therefore $\frac{1}{2} F^{\prime}=90^{\circ}-$ $\frac{1}{2} E F K$, and $\cot . \frac{1}{2} F=\tan . \frac{1}{2} E F K$;

㴗 $\quad \therefore \cot \frac{1}{3} F=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$,
where s is the half sum of the three sides, a the side $E K$, and b and c the remaining sides.

Find also in the triangle $E F K$ the angle $F E K$, and we have the angle $B E F=F E K-B E K$. Then in the triangle $B E F$ we have (§ 83)

$$
\text { 雼 } \quad B F=2\left(R^{\prime}+\frac{1}{2} g\right) \sin . \frac{1}{2} B E F \text {. }
$$

Example. Given $g=4.7, d=.42, S=1^{\circ} 20^{\prime}, R=4583.75$, and

$R^{\prime}=682.12$, to find F and the chord $B F$ of a turnout from the outside of the curve. Here in the triangle $B E K$ (fig. 19) we have
$B E=\mathrm{R}^{\prime}+\frac{1}{2} g=684.47, B K=R-\frac{1}{2} g+d=4581.82$, and the angles $B E K+B K E=S=1^{\circ} 20^{\prime}$. Then

$$
B K-B E=3897.35
$$

3.590769
$\frac{1}{\frac{1}{2}}(B E K+B K E)=40^{\prime} \quad \tan .8 .065806$
1.656575

$$
B K+B E=5266.29
$$

$$
\frac{1}{2}(B E K-B K E)^{*}=29.6029^{\prime} \quad \tan . \overline{7.935070}
$$

$$
\therefore B E K=1^{\circ} 9.6029^{\prime}
$$

$E K$ is now found by the formula $E K=\frac{B K \sin \cdot E B K}{\sin . B E K}$, or $\log . E K=\log .4581 .82+\log . \sin .178^{\circ} 40^{\prime}-\log . \sin .1^{\circ} 9.6029^{\prime}=$ 3.721491, whence $E K=5266.12$.

Then to find F, we have in the triangle $E F K, s=\frac{1}{2}(5266.12+$ $684.47+4586.10)=5268.34, s-a=2.22, s-b=4583.87$, and $s-c=682.24$.

To find $F^{F} E K$, we have s as before, but as a is here the side $F^{\prime} K$ opposite the angle sought, we have $s-a=682.24, s-b=$ 4583.87, and $s-c=2.22$. Then by means of the logarithms just used, we find $\frac{1}{2} F E K=3^{\circ} 2^{\prime} 45^{\prime \prime}$. Subtracting $\frac{1}{2} B E K=34^{\prime} 48^{\prime \prime}$, we have $\frac{1}{2} B E F^{\prime}=2^{\circ} 27^{\prime} 57^{\prime \prime}$. Lastly, $B F=1368.94 \sin .2^{\circ} 27^{\prime}$ $57^{\prime \prime}=58.897$.

The formula $B F=\frac{g-d}{\sin \cdot \frac{1}{2}(F+S)}\left(\S 57\right.$, note) would give $B F^{\prime}=$ 58.906 , and this value is even nearer the truth than that just found, owing, however, to no error in the formulæ, but to inaccuracies incident to the calculation.

[^4]61. If the turnout is to reverse, in order to join a track parallel to the main track, as $A C B$ (fig. 20), it will be necessary to determine the reversing points C and B. These points will be determined, if we find the angles $A E C$ and $B F C$, and the chords $A C$ and $C B$.
62. Problem. Given the radius $D K=R$ (fig. 20) of the centre line of the main track, the common radius $E C=C F=$

R^{\prime} of the centre line of a turnout, and the distance $B G=b$ belween the centre lines of the parallel tracks, to find the central angles $A E C$ and B F C and the chords $A C$ and $B C$.

Solution. In the triangle $A E K$ find the angle $A E K$ and the side $E K$. For this purpose we have $A E=R^{\prime}, A K=R-d$, and the included angle $E A K=S$. Or, if the frog angle has been previously calculated by $\S 60$, the values of $A E K$ and $E K$ are already known.*

Find in the triangle $E F K$ the angles $E F K$ and $F E K$. For this purpose we have $E K$, as just found, $E F=2 R^{\prime}$, and $F^{\prime} K=$

[^5]$R+R^{\prime}-b$. Then $A E C=A E K-F E K$, and $B F C=$ $E F F^{\prime}$. Lastly (§ 83),
【桨 $A C=2 R \sin . \frac{1}{2} A E C, C B=2 R^{\prime} \sin . \frac{1}{2} B F C$.
This solution, with a few obvious modifications, will apply, when the turnout is from the outside of a curve.
D. Crossings on Curves.
63. When a turnout enters a parallel main track by a second switch, it becomes a crossing. Then if the tangent points A and B (fig. 21) are fixed, the distance $A B$ must be measured, and also

the angles which $A B$ makes with the tangents at A and B. The common radius of the crossing may then be found by $\S 40$; or if one radius of the crossing is given, the other may be found by §38. But if one tangent point A is fixed, and the common radius of the crossing is given, it will be necessary to determine the reversing point C and the tangent point B. These points will be determined, if we find the angles $A E C$ and $B F C$, and the chords $A C$ and $C B$.

64．Problem．Given the radius $D K=R$（fig．21）of the centre line of the main track，the common radius $E C=C F=$ R^{\prime} of the centre line of a crossing，and the distance $D G=b$ be－ tween the centre lines of the parallel tracks，to find the central angles $A E C$ and $B F C$ and the chords $A C$ and $C B$ ．
Solution．In the triangle $A E K$ find the angle $A E K$ and the side $E K$ ．For this purpose we have $\boldsymbol{A} E=R^{\prime}, A K=R-d$ ， and the included angle $E A K=S$ ．

Find in the triangle $B F K$ the angle $B F K$ and the side $F K$ ． For this purpose we have $B F=R^{\prime}, B K=R-b+d$ ，and the included angle $F B K=180^{\circ}-S$ ．
Find in the triangle $E F K$ the angles $F E K$ and $E F K$ ．For this purpose we have $E K$ and $F K$ as just found，and $E F=2 R^{\prime}$ ． Then $A E C=A E K-F E K$ ，and $B F^{\prime} C=E F K-B F K$ ． Lastly（§ 83），

$$
\text { C(⿱⿱一⿻口⿰丨丨女口内 } A C=2 R^{\prime} \sin \cdot \frac{1}{2} A E C ; \quad C B=2 R^{\prime} \sin \cdot \frac{1}{2} B F^{\prime} C \text {. }
$$

Third Case．

Turnouts Tangent to Main Track．
65．In this case a pair of rails of the main track are switched in such a way that they become parts of the turnout curve．Their length in relation to R ，the radius of the turnout，must be deter－ mined．Denote their length by l and the＂throw＂by d ．Then on the centre line d is the tangent offset of a curve of radius R ． By $\S 18$ this offset or deflection is equal to the square of the chord divided by twice the radius，or $d=\frac{l^{2}}{2 R}$ ；

$$
\therefore l=\sqrt{2 R d} .
$$

By this formula column l in Tab．V．is calculated．
A switch－rail may be made to take the proper curve in the fol－ lowing manner：Suppose the length of the switch－rail，as calcu－ lated above，to be 20 feet．A rail 30 feet in length is，for 10 feet back from the tangent point，spiked down，or otherwise securely fastened on the main track，leaving 20 feet free for the switch－rail． The free end being thrown in the usual way，a curve is formed， which，however，is not a circular curve，but an elastic curve．The inclination at the free end，in the case supposed，would be about
three-fourths of that of the circular curve that meets it. If it be desired to make the two inclinations equal, so that the two curves shall be tangent to each other, the switch-rail should be only three-fourths of the calculated length of l. The switch-rail may, however, be made to take a circular form by suitable stops attached to the sleepers. The full length, as calculated above, will then, of course, remain free. The offsets from the tangent to the stops will be to d as the squares of the distances from the tangent point are to l^{2}.

A. Turnout from Straight Lines.

66. Problem. Given the radius R of the centre line of a turnout, and the gauge $B C=g$ (fig. 22), to find the frog angle $G F M=F$, and the chord $B F$.

Solution. The angle $C E F$, having its sides perpendicular to $G F$ and $F M$, is equal to $G F M=F$. In the triangle $C E F$ we have $\cos . C E F=\frac{C E}{E F}$, or

त व

$$
\cos . F=\frac{R-\frac{1}{2} g}{R+\frac{1}{2} g}
$$

Draw $E D$ perpendicular to $B F$. Then, from the similar triangles $B F C$ and $B E D$, we have the angle $B F C=B E D=$ $\frac{1}{2} F$. Therefore, $B F \sin . \frac{1}{2} F=B C=g$;

0

$$
\therefore B F=\frac{g}{\sin \cdot \frac{1}{2} F}
$$

67. Problem. Given the frog angle $G F M=F$ (fig. 22), and the gauge $B C=g$, to find the radius R of the centre line of a turnout, and the chord $B F$.

Solution. From the preceding problem we have
(T)

$$
B F=\frac{g}{\sin \cdot \frac{1}{2} F^{\prime}}
$$

In the triangle $B E D$ we have $B E \sin . B E D=\frac{1}{2} B F$, or $\left(R+\frac{1}{2} g\right) \sin . \frac{1}{2} F=\frac{1}{2} B F ;$

$$
\therefore \text { 雨 } \quad \therefore R+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin . \frac{1}{2} F} \text {. }
$$

To put R in another form, substitute for $B F$ its value above, and transfer $\frac{1}{8} g$ to the second member. We then have $R=$ $\frac{\frac{1}{2} g}{\sin .^{2} \frac{1}{2} F}-\frac{1}{2} g=\frac{\frac{1}{2} g\left(1-\sin ^{2} \frac{1}{2} F^{\prime}\right)}{\sin .^{2} \frac{1}{2} F}=\frac{\frac{1}{2} g \cos ^{2} \frac{1}{2} F}{\sin .^{2} \frac{1}{2} F}=\frac{1}{2} g \cot ^{2} \frac{1}{2} F$. If now the frog angle F is expressed by means of the ratio n of the length to the breadth of the frog, as explained in $\$ 52$, we

have $\cot . \frac{1}{2} F=2 n$, and, substituting this value in the expression for R, we have

$$
\text { 雨 } \quad R=2 g n^{2} \text {. }
$$

By the formulæ of this section the values of $F, B F$, and R in Table V. are calculated.
68. A ready way of locating the turnout curve is to locate the outer rail first by stretching a cord from B to F, and from it fixing the curve by ordinates at the centre and at the quarter points. The middle ordinate m may be taken in all cases $=\frac{1}{4} g$. For (§26), $m=\frac{B F^{2}}{8\left(R+\frac{1}{2} g\right)}$, and putting in the value of $R+\frac{1}{2} g$ above, and reducing, we have $m=\frac{1}{4} B F \sin . \frac{1}{2} F=\frac{1}{4} g$. For $g=4.708$, $m=1.17 \%$. At the quarter points the ordinates will be $\frac{8}{4} m=$ 0.883 . The inner rail is then located by the gauge.
69. If the turnout is to reverse and become parallel to the main track, the formulæ of $\$ 53$ apply here also.

B. Crossings on Straight Lines.

70. When a turnout enters a parallel main track by a second curve, it becomes a crossing, and the two curves form a reversed curve between parallel tangents. The problems that arise here have been solved already ((§§ 33-36).

C. Turnout from Curves.

71. Problem. Given the radius R of the centre line of the main track and the frog angle F, to determine the position of the frog by means of the chord BF (figs. 23 and 24), and to find the radius R^{\prime} of the centre line of the turnout.
Solution. I. Turnout from the inside of the curve of the main track. Let $B G$ and $C F$ (fig. 23) be the rails of the main track, and the are $B F$ the outer rail of the turnout, crossing the inner rail of

the main track at F. Then, since the angle $E F K$ has its sides perpendicular to the tangents of the two curves at F, it is equal to the acute angle made by the crossing rails; that is, $E F K=F$.

The first step is to find the angle $B K F$ denoted by K. To find this angle, we have in the triangle $B F^{\prime} K$ (Tab. X., 14) tan. $\frac{1}{2}$ $(B F K-F B K)=\frac{(B K-K F) \tan \cdot \frac{1}{2}(B F K+F B K)}{B K+K F}$. But $B K-K F=B K-C K=g$, and $B K+K F=2 R$. Also, $\tan \cdot \frac{1}{2}\left(B F^{\prime} K+F B K\right)=\tan \cdot \frac{1}{2}\left(180^{\circ}-K\right)=\tan .\left(90^{\circ}-\frac{1}{2} K\right)=$ $\cot . \frac{1}{2} K$, and $B F K-F B K=B F K-B F E=F$. Substituting these values, we have $\tan \cdot \frac{1}{2} F=\frac{g \text { cot. } \frac{1}{2} K}{2 R}=\frac{g}{2 R \tan \cdot \frac{1}{2} K}$, or $2 R \tan$. $\frac{1}{2} F \tan$. $\frac{1}{2} K=g$;

数

$$
\therefore \tan . \frac{1}{2} K=\frac{\frac{1}{2} g \cot \cdot \frac{1}{2} F}{R}=\frac{g n}{R},
$$

if, by the notation of $\S 52$, we put cot. $\frac{1}{2} F=2 n$.
To find the chord $B F$, we have in the triangle $B F C, B F=$ $B C \sin . B C F$.
$\sin . B F^{C}$.
But $B C=g$, and $\sin . B C F=\sin . F C K=$ $\cos \frac{1}{\frac{1}{2}} K$. Moreover, B F $C=\frac{1}{2} F$. For $B F K=K F C+$ $B F C$, and $F B K=K C F-B F^{\prime} C=K F C-B F C$. Therefore, by subtraction, $B F K-F B K=2 B F C$. But, as shown above, $B F K-F B K=F$. Therefore $B F C=\frac{1}{2} F$. Substituting these values in the expression for $B F$, we have

$$
B F=\frac{g \cos \frac{1}{\frac{1}{2}} K^{*}}{\sin \cdot \frac{1}{2} F^{\prime}}
$$

Lastly, to find R^{\prime}, we have in the triangle $B E F, E F \sin$. $\frac{1}{2} B E F=\frac{1}{2} B F$. But $E F=R^{\prime}+\frac{1}{2} g$, and the exterior angle $B E F=F+K$;

娄

$$
\therefore R^{\prime}+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2}(F+K)}
$$

II. Turnout from the outside of the curve of the main track. Let $B G$ and $C F$ (fig. 24) be the rails of the main track, and the are $B F$ the outer rail of the turnout, crossing the outer rail of the main track at F. The frog angle F is now represented by the angle $E F K^{\prime}$. The first step is to find the angle $B K F$, denoted

[^6]by K. To find this angle, we have in the triangle $B F K$ (Tab. X., 14), $\tan \cdot \frac{1}{2}(F B K-B F K)=\frac{(K F-B K) \tan \cdot \frac{1}{2}\left(F^{\prime} B K+B F K\right)}{K F+B K}$. But $K F-B K=g$, and $K F+B K=2 R$. Also, $\tan \cdot \frac{1}{2}(F B K+$ $B F K)=\tan . \frac{1}{2}\left(180^{\circ}-K\right)=\tan .\left(90^{\circ}-\frac{1}{2} K\right)=\cot . \frac{1}{2} K$ and

$F^{\prime} B K-B F K=\left(180^{\circ}-F B E\right)-\left(180^{\circ}-B F K^{\prime}\right)=B F K^{\prime}-$ $F B E=B F K^{\prime}-B F E=F$. Substituting these values, we have $\tan \cdot \frac{1}{2} F=\frac{g \text { cot. } \frac{1}{2} K}{2 R}=\frac{g}{2 R \tan . \frac{1}{2} K}$, or $2 R \tan . \frac{1}{2} F$ $\tan . \frac{1}{2} K=g$.

溇 $\quad \therefore \tan \cdot \frac{1}{2} K=\frac{\frac{1}{2} g \cot . \frac{1}{2} F}{R}=\frac{g n}{R}$,
if, by the notation of $\S 52$, we put cot. $\frac{1}{2} F=2 n$.
To find the chord $B F$, we have in the triangle $B F C, B F=$ $\frac{B C \sin \cdot B C F}{\sin B F C}$. But $B C=g$, and $\sin . B C F=\sin .\left(90^{\circ}-\frac{1}{2} K\right)=$ $\cos \frac{1}{2} K$. Moreover, $B F C=\frac{1}{2} F$. For $B F K=K F C-B F C$, and $F^{\prime} B K=K C F+B F C=K F^{\prime} C+B F^{\prime} C$. Therefore, by
subtraction, $F B K-B F K=2 B F C$. But, as shown above, $F^{\prime} B K-B F^{\prime} K=F$. Substituting these values, we have

$$
B F=\frac{g \cos \cdot \frac{1}{2} K}{\sin \cdot \frac{1}{2} F^{\prime}} .
$$

Lastly, to find R^{\prime}, we have in the triangle $B E F, E F \sin$. $\frac{1}{2}$ $B E F=\frac{1}{2} B F$. But $E F=R^{\prime}+\frac{1}{2} g$, and the angle $B E F=$ $E F R^{\prime}-E K H^{\prime}=F-K$.

楼

$$
\therefore R^{\prime}+\frac{1}{2} g=\frac{\frac{1}{2} B F}{\sin \cdot \frac{1}{2}(F-K)} .
$$

Example. Given $g=4.708, R=1910.08$, and $F=7^{\circ} 9^{\prime} 10^{\prime \prime}$, to find the chord $B F$ and the radius R^{\prime} of a turnout from the inside of the curve (fig. 23).

To find $\frac{1}{2} K$:

To find $B F$:

To find R^{\prime} :

$$
\begin{array}{rlr}
\frac{1}{2} g & =2.354 & 0.371806 \\
\frac{1}{2} F & =3^{\circ} 34^{\prime} 35^{\prime \prime} & \text { cot. } \begin{aligned}
& 1.204115 \\
& 1.575921 \\
& R=1910.08
\end{aligned} \\
\frac{3.281051}{2} K & =1^{\circ} 7^{\prime} 47^{\prime \prime} & \tan .8 .294870 \\
g & =4.708 & 0.672836 \\
\frac{1}{2} K & =1^{\circ} 7^{\prime} 47^{\prime \prime} & \operatorname{cos.} \frac{9.999915}{0.672751} \\
& =3^{\circ} 34^{\prime} 35^{\prime \prime} & \sin .8 .795038 \\
B F & =75.46 & \frac{1.877713}{2} F
\end{array}
$$

$$
\frac{1}{2} B F=37.73 \quad 1.576687
$$

$$
\frac{1}{2}(F+K)=4^{\circ} 42^{\prime} 22^{\prime \prime} \quad \sin .8 .914051
$$

$$
R^{\prime}+\frac{1}{2} g=459.87 \quad \overline{2.662636}
$$

$$
\therefore R^{\prime}=457.52
$$

72. Problem. Given the radius R of the centre line of the main track and the radius R^{\prime} of the centre line of a turnout, to find the frog angle F, and the chord B F (figs. 23 and 24).

Solution. I. Turnout from the inside of the curve of the main track. In the triangle $E F^{\prime} K$ (fig. 23) we have given the sides $E K=R-R^{\prime}, E F=R^{\prime}+\frac{1}{2} g$, and $F K=R-\frac{1}{2} g$, to find the angle $E F K=F$. By formula 15, Tab. X., tan. $\frac{1}{2} F=$ $\sqrt{ } \sqrt{\frac{(s-b)(s-c)}{8(s-a)}}$, where s is the half sum of the three sides, a the
side $E K$ opposite the angle sought, and b and c the remaining sides. Therefore, $s=\frac{1}{2}(E K+E F+F K)=R, s-a=s-$

$E K=R^{\prime}, s-b=s-E F=R-R^{\prime}-\frac{1}{2} g$, and $s-c=s-$ $F^{\prime} K=\frac{1}{2} g$. Substituting these values, we have
(1)

$$
\tan . \frac{1}{2} F=\sqrt{\frac{\left(R-R^{\prime}-\frac{1}{2} g\right) \frac{1}{2} g}{R \times R^{\prime}}} .
$$

By $\S 71, B F=\frac{\frac{1}{2} g \cos \cdot \frac{1}{2} K}{\sin . \frac{1}{2} F}$ where $\frac{1}{2} K$ is the angle $D K F$. When F has been found, $\frac{1}{2} K$ may be found by the formula for $\tan . \frac{1}{2} K$ in $\S 71$; but, generally, $\frac{1}{2} K$ is so small that we may put $\cos . \frac{1}{2} K=1$, and we have
(1)

$$
B F=\frac{g}{\sin \cdot \frac{1}{2} F}, \text { nearly }
$$

II. Turnout from the outside of the curve of the main track. In the triangle $E F K$ (fig. 24) we have given the sides $E K=$ $R+R^{\prime}, E F^{\prime}=R^{\prime}+\frac{1}{2} g$, and $F^{\prime} K=R+\frac{1}{2} g$, to find the angle $E F K$, the supplement of the angle $E F K^{\prime}$, which now represents the frog angle F. By formula 15, Tab. X., tan. $\frac{1}{2}$ e $F^{\prime} K=$ $\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$, where s is the half sum of the three sides, a the
side $E K$ opposite the angle sought, and b and c the remaining sides. Therefore $s=\frac{1}{2}\left(E K+E F+F^{\prime} K\right)=R+R^{\prime}+\frac{1}{1} g, s-$

$a=s-E K=\frac{1}{2} g, s-b=s-E F=R$, and $s-c=s-F K=$ R^{\prime}. Substituting these values, we have tan. $\frac{1}{2} E F K=\cot$. $\frac{1}{3} F=$
$\sqrt{\frac{R \times R^{\prime}}{\left(R+R^{\prime}+\frac{1}{2} g\right) \frac{1}{2} g}}$,
喓 $\quad \therefore \tan \cdot \frac{1}{3} F=\sqrt{\frac{\left(R+R^{\prime}+\frac{1}{2} g\right) \frac{1}{2} g}{R \times R^{\prime}}}$.
By $\S 71, B F=\frac{g \cos \cdot \frac{1}{\frac{1}{2}} K}{\sin . \frac{1}{2} F}$, where $\frac{1}{\frac{1}{2} K}$ is the angle $D K F$. When F has been found, $\frac{1}{2} K$ may be found by the formula for \tan. $\frac{1}{2} K$ in $\S 71$; but, generally, $\frac{1}{\frac{1}{2}} K$ is so small that we may put \cos. $\frac{1}{2} K=1$, and we have

$$
B F=\frac{g}{\sin \cdot \frac{1}{2} F}, \text { nearly }
$$

73. If the turnout is to reverse in order to join a track parallel to the main track, as $A C B$ (fig. 25), it will be necessary to determine the reversing points C and B. These points will be determined, if we find the angles $A E C$ and $B F C$, and the chords $A C$ and $B C$.
74. Problem. Given the radius $A K=R$ (fig. 25) of the centre line of the main track, the common radius $E C=$ $C F^{\prime}=R^{\prime}$ of the centre line of a turnout, and the distance $B G=b$ between the centre lines of the parallel tracks, to find the central angles $A E C$ and $B F C$, and the chords $A C$ and $B C$.

Fig. 25.

Solution. In the triangle $E F K$ find the angles $E F K$ and $F E K$. For this purpose we have the sides of the triangle given -namely, $E K=R-R^{\prime}, E F=2 R^{\prime}$, and $F K=R+R^{\prime}-b$. Then, by formula 15, Tab. X., $\tan . \frac{1}{2} A=\sqrt{\frac{(s-b)(s-a)}{s(s-a)}}$, where s is the half sum of the three sides, a the side opposite the angle sought, here denoted by A, and b and c the remaining sides, Putting $F E K$ for A, and $F K$ for a, we shall have an expression for $\tan . \frac{1}{2} F E K=\tan \cdot \frac{1}{2}\left(180^{\circ}-A E C\right)=\cot . \frac{1}{2} A E C$, and putting $E F K$ for A and $E K$ for a, we shall have an expression for
$\tan . \frac{1}{2} E F K=\tan . \frac{1}{2} B F C$. Making the proper substitutions in the formula for $\tan . \frac{1}{2} A$, we shall have

展

雨

$$
\begin{aligned}
& \tan . \frac{1}{2} A E C=\sqrt{\frac{\left(R+R^{\prime}-\frac{1}{2} b\right) \frac{1}{2} b}{\left(R-R^{\prime}-\frac{1}{2} b\right)\left(2 R^{\prime}-\frac{1}{2} b\right)}} \\
& \tan \cdot \frac{1}{2} B F^{\prime} C=\sqrt{\frac{\left(R-R^{\prime}-\frac{1}{2} b\right) \frac{1}{2} b}{\left(R+R^{\prime}-\frac{1}{2} b\right)\left(2 R^{\prime}-\frac{1}{2} b\right)}}
\end{aligned}
$$

Having found $A E C$ and $B F C$, we have the chords

$$
\begin{aligned}
& A C=2 R^{\prime} \sin . \frac{1}{2} A E C \\
& B C=2 R^{\prime} \sin . \frac{1}{2} B F^{\prime} C
\end{aligned}
$$

This solution, with a few obvious modifications, will apply when the turnout is from the outside of the curve.
75. Problem. Given the position of a frog by means of the *hord $B F^{\prime}$ (figs. 22, 23, and 24), to find the frog angle F.

Solution. The formula $B F=\frac{g}{\sin \cdot \frac{1}{2} F}$, which is exact on straight lines (§66), and near enough on ordinary curves (§ 71, note), gives

$$
\sin \cdot \frac{1}{2} F=\frac{g}{B F^{\prime}}
$$

D. Crossings on Curves.

76. When a turnout enters a parallel main track by a second switch, it becomes a crossing. Then, if the tangent points A and B (fig. 25) are fixed, the distance $A B$ must be measured, and also the angles made by $A B$ with the tangents at A and B. The common radius of the crossing may then be found by $\S 40$, or if one radius of the crossing is given, the other may be found by $\$ 38$. But if one tangent point A is fixed, and the common radius of the crossing is given, the reversing point C and the second tangent point B may be found by the problem of $\S 74$.

> E. Double Turnouts.
77. The cases that arise when two turnouts start from the same point on the main track fall under problems already solved.

Thus when the outer rails of two turnouts, as $B C F$ and $B^{\prime} C F^{\prime}$ (fig. 26), turn opposite ways, $B^{\prime} C F^{\prime}$ may be treated as a turnout from the outside of the inner rail $B^{\prime} D$ of $B C F^{\prime}$. Then if the frog angle at C is given, the radius of $B^{\prime} C F^{\prime}$ may be found by

Fig. 26.
$\S 57$ or $\S 71$, or if the radius of $B^{\prime} C F^{\prime}$ is given, the frog angle at C may be found by $\$ 60$ or $\S 72$.

Or, the third frog may be placed with its point in the centre line of the main track, and its angle may be taken as made up of two angles, F_{1} and F_{2}, one on each side of said centre line, as in figure 26. On a straight main track the two turnouts would in general be symmetrical, and F_{1} be equal to F_{2}. On a curved main track these partial angles may be equal or unequal. All the relations between the radii and the frog angles concerned may be determined by previous problems, substituting $\frac{1}{2} g$ for g as the distance of the line $C H$ from either rail. Thus in the figure the radius of $B C$ and the partial frog angle F_{1} depend on each other, so also do the radius of $B^{\prime} C$ and the partial frog angle F_{2}. When one of the chords, as $B C$, is fixed in length, the length of the other, $B^{t} C$, is also fixed, whether equal to $B C$ on straight lines or different on curves. The partial frog angle F_{2}, being de-
pendent on the length of $B^{\prime} C$, is found by $\S 59$ or $\S 75$, and from it the radius of the curve $B^{\prime} C$ is calculated.

When either curve beyond C, as $C F$, is not a continuation of the curve $B C$, the relation between its radius and the frog angle F is to be determined by considering F_{1} to be a switch angle, and the curve $C F$ to commence at the but-end of the frog ($\S 50$ or $\S 51$), using $\frac{1}{2} g$ instead of g for the gauge.

If both turnouts turn the same way, as in figure 27 , the third frog F_{2} is on a turnout $A F_{1} F_{2}$ from the inside of the curve $A F$, and its angle and position may be determined by § 60 or $\$ 72$.

Fig. 27.

78. Remarks. 1. If the two turnouts of figure 26 are symmetrical and tangent to the straight main track, the chord $B C$ is to the chord $B F^{\prime}$ as 1 to \boldsymbol{N}_{2}. For the offset from the tangent $B F^{\prime}$ to C is $\frac{1}{2} g$, and the offset to F is g, and these tangent offsets or deflections are to each other ($\$ 18$) as the squares of the chords $B C$ and $B F$. Therefore $B C^{2}: B F^{2}=\frac{1}{2} g: g=1: 2$, or $B C$: $B F=1: \vee 2$; whence $B C=\frac{B F}{V^{2}}=\frac{1}{2} \sqrt{2} B F=.707 B F$, nearly.
2. We have (§66) $\sin . \frac{1}{2} F^{\prime}=\frac{g}{B F}$, and $\sin . \frac{1}{2} F_{1}=\frac{\frac{1}{2} g}{B C}=\frac{g}{2 B C}$. Denote the whole frog angle at C by $F^{\prime}=2 F_{1}$, and we have $\sin . \frac{1}{4} F^{\prime}=\frac{g}{2 B C}$. Also, since, as shown above, $B F=B C \vee 2$, we have $\sin . \frac{1}{2} F^{\prime}=\frac{g}{B C \sqrt{2}}$. Therefore, $\sin \cdot \frac{1}{4} F^{\prime}: \sin . \frac{1}{2} F=$ $\frac{g}{2 B C}: \frac{g}{B C \nu^{2}}=1^{2}: 2$, or $\sin . \frac{1}{4} F^{\prime}=\frac{v^{2}}{2} \sin . \frac{1}{2} F=.707 \sin . \frac{1}{2} F$, nearly.
3. We have seen (8 length of the chord $B F$ in the three turnouts represented in nigures 22,23 , and 24 is practically the same, since we may put in the three cases $B F=\frac{g}{\sin \cdot \frac{1}{2} F}$. To find the degree of each of the three turnout curves, we have only to find the central angle subtended by a chord of 100 feet ($\S 6$). Now, in the three cases in question, we know that the central angles $B E F$, subtended by the equal chords $B F$, are, respectively, $F, F+K$, and $F-K$. The central angles for 100 feet chords will be obtained from these very nearly by multiplying by $\frac{100}{B_{i} F}$. Denoting the fraction $\frac{100}{B F}$ by m and the degrees of the three turnout curves by Δ_{1}, Δ_{2}, and Δ_{3}, we have $\Delta_{1}=m F, \Delta_{2}=m(F+K), \Delta_{3}=m(F-K)$. Now $m K$ is approximately the degree of the curve of the main track (figs. 23 and 24) since K is the central angle of this curve for a chord approximately equal to $B F$. Therefore, denoting the degree of the main track by Δ, we have, approximately, for the same frog angle,

$$
\Delta_{1}=m F, \quad \Delta_{2}=\Delta_{1}+\Delta, \quad \Delta_{3}=\Delta_{1}-\Delta .
$$

Thus in the example of $\$ 71$ (fig. 23), where $n=8$, we have by Tab. V. the degree of a turnout from a straight line $\Delta_{1}=9^{\circ} 31^{\prime}$. The degree of the main track is here $\Delta=3^{\circ}$. Therefore $\Delta_{2}=$ $\Delta_{1}+\Delta=12^{\circ} 31^{\prime}$, the degree of the turnout from the curve. The radius found for this turnout was 457.52 and the degree corresponding would be $12^{\circ} 32^{\prime} 53^{\prime \prime}$.

It appears, then, that if, for a given frog, we take from Tab. V. the degree Δ_{1} of a turnout from a straight main track, we may obtain approximately the degree Δ_{2} of a turnout from the inside of a curved track by adding to Δ_{1} the degree of the main track, and the degree Δ_{3} of a turnout from the outside of a curved track by subtracting from Δ_{1} the degree of the main track.

Article IV.-Miscellaneous Problems.
79. Problem. Given $A B=a($ fig.28) and the perpendicular $B C=b$, to find the radius of a curve that shall pass through 0 and the tangent point A.

Solution. Let O be the centre of the curve, and draw the radii $A O$ and $C O$ and the line $C D$ parallel to $A B$. Then in the right
triangle $C O D$ we have $O C^{2}=C D^{2}+O D^{2}$. But $O C=R$, $C D=a$, and $O D=A O-A D=R-b$. Therefore, $R^{\psi}=$ $a^{2}+(R-b)^{2}=a^{2}+R^{2}-2 R b+b^{2}$, or $2 R b=a^{2}+b^{2}$;

$$
\therefore R=\frac{a^{2}}{2 b}+\frac{1}{2} b .
$$

Example. Given $a=204$ and $b=24$, to find R. Here $R=$ $\frac{204^{2}}{2 \times 24}+\frac{24}{2}=867+12=879$.
80. Corollary 1. If R and b are given to find $A B=a$, that is, to determine the tangent point from which a curve of

given radius must start to pass through a given point, we have (§ 79) $2 R b=a^{2}+b^{2}$, or $a^{2}=2 R b-b^{2}$;
(종

$$
\therefore a=\sqrt{b(2 R-b)} .
$$

Example. Given $b=24$ and $R=879$, to find a. Here $a=$ $\sqrt{24(1758-24)}=\sqrt{41616}=204$.
81. Corollary 2. If R and a are given, and b is required, we have (\$ 79) $2 R b=a^{2}+b^{2}$, or $b^{2}-2 R b=-a^{2}$. Solving this equation, we find for the value of b here required,

$$
b=R-\sqrt{R^{2}-a^{2}} .
$$

82. Problem. Given the distance $A C=c(f i g .28)$ and the angle $B A C=A$, to find the radius R or deflection angle
D of a curve, that shall pass through C and the tangent point A.
Solution. Draw $O E$ perpendicular to $A C$. Then the angle $A O E=\frac{1}{2} A O C=B A C=A(\S 2, \mathrm{III}$.$) , and the right triangle$ $A O E$ gives (Tab. X. 9) $A O=\frac{A E}{\sin . A O E}$;

$$
\therefore R=\frac{\frac{1}{2} c}{\sin . A} .
$$

To find D, we have ($(9) \sin . D=\frac{50}{R}$. Substituting for R its value just found, we have $\sin . D=50 \div \frac{\frac{1}{2} c}{\sin . A}$;

4

$$
\therefore \sin . D=\frac{100 \sin . A}{c} \text {. }
$$

Example. Given $c=285.4$ and $A=5^{\circ}$, to find R and D. Here $R=\frac{142.7}{\sin .5^{\circ}}=1637.3$; and $\sin . D=100 \frac{\sin .5^{\circ}}{285.4}=\frac{\sin .5^{\circ}}{2.854}=$ $\sin .1^{\circ} 45^{\prime}$ or $D=1^{\circ} 45^{\prime}$.
83. Problem. Given the radius R or the deflection angle D of a curve, and the angle BAC=A (fig. 28), made by any chord with the tangent at A, to find the length of the chord $A C=c$.
Solution. If R is given, we have (§ 82) $R=\frac{\frac{1}{2} c}{\sin . A}$;
(1)

$$
\therefore c=2 R \sin . A \text {. }
$$

If D is given, we have $(\S 82) \sin . D=\frac{100 \sin . A}{c}$;
要

$$
\therefore c=\frac{100 \sin . A}{\sin . D} \text {. }
$$

This formula is useful for finding the length of chords, when a curve is laid out by points two, three, or more stations apart. Thus, suppose that the curve $A C$ is four stations long, and that we wish to find the length of the chord $A C$. In this case the angle $A=4 D$ and $c=\frac{100 \sin .4 D}{\sin . D}$. By this method Table II. is calculated.

Example. Given $R=2455.7$, or $D=1^{\circ} 10^{\prime}$, and $A=4^{\circ} 40^{\prime}$, to
find c. Here, by the first formula, $c=4911.4 \sin .4^{\circ} 40^{\prime}=399.59$. By the second formula, $c=\frac{100 \sin .4^{\circ} 40^{\prime}}{\sin .1^{\circ} 10^{\prime}}=399.59$.
84. Problem. Given the angle of intersection $K C B=I$ (fig. 29), and the distance $C D=b$ from the intersection point to the curve in the direction of the centre, to find the tangent $A C=$ T, and the radius $A O=R$.

Solution. In the triangle $A D C$ we have $\sin . C A D: \sin$. $A D C=C D: A C$. But $C A D=\frac{1}{2} A O D=\frac{1}{4} I(\S 2$, III. and VI.), and as the sine of an angle is the same as the sine of its supplement, $\sin . A D C=\sin . A D E=\cos . D A E=\cos . \frac{1}{4} I$. Moreover, $C D=b$ and $A C=T$. Substituting these values in the preceding proportion, we have $\sin . \frac{1}{4} I: \cos \frac{1}{4} I=b: T$, or $T=$ $\frac{b \cos \cdot \frac{1}{4} I}{\sin . \frac{1}{4} I}$; whence (Tab. X. 33)

$$
\text { 标 } \quad T=b \cot . \frac{1}{4} I .
$$

To find R, we have (§5) $R=T^{\prime} \cot$. $\frac{1}{2} I$. Substituting for T its value just found, we have

I2

$$
R=b \cot \cdot \frac{1}{4} I \cot \cdot \frac{1}{2} I
$$

Example. Given $I=30^{\circ}, b=130$, to find T and R. Here

b	$=130$	2.113943
$\frac{1}{4} I$	$=7^{\circ} 30^{\prime}$	cot.0.880571 T $=987.45$ $\underline{2.994514}$ $\frac{1}{2} I$ $=15^{\circ}$ cot. 0.571948 R $=3685.21$ $\underline{3.566462}$

85. Problem. Given the angle of intersection $K C B=I$ (fig. 29), and the tangent $A C=T$, or the radius $A O=R$, to find $C D=b$.
Solution. If T is given, we have (§ 84) $T=b \cot . \frac{1}{4} I$, or $b=$ $\frac{T}{\cot . \frac{1}{4} I}$;

圄

$$
\therefore b=T \tan . \frac{1}{4} 1 \text {. }
$$

If R is given, we have ($\left(84\right.$) $R=b \cot$. $\frac{1}{4} I \cot$. $\frac{1}{2} I$, or $b=$ $\frac{R}{\cot . \frac{1}{4} I \cot \cdot \frac{1}{2} I}$;

$$
\therefore b=R \tan . \frac{1}{4} I \tan . \frac{1}{2} I \text {. }
$$

Example. Given $I=27^{\circ}, T=600$ or $R=2499.18$, to find b. Here $b=600 \tan .6^{\circ} 45^{\prime}=71.01$, or $b=2499.18 \mathrm{tan} .6^{\circ} 45^{\prime} \mathrm{tan}$. $13^{\circ} 30^{\prime}=71.01$.
The distance b from the intersection point to the curve in the direction of the centre is usually called the external, and this term is adopted in Table III.
86. Problem. Given the angle of intersection I of two tangents $A C$ and $B C($ fig. 30), to find the tangent point A of a curve that shall pass through a point E, given by $C D=a, D E=b$, and the angle $C D E=\frac{1}{2} I$.
Solution. Produce $D E$ to the curve at G, and draw $C O$ to the centre O. Denote $D F$ by c. Then in the right triangle $C D F^{\prime}$ we have (Tab. X. 11) $D F=C D \cos . C D F$, or

$$
c=a \cos . \frac{1}{2} I
$$

Denote the distance $A D$ from D to the tangent point by x. Then, by Geometry, $x^{2}=D E \times D G$. But $D G=D F+F G=$
$D F+E F=2 D F-D E=2 c-b$. Therefore, $x^{2}=b(2 c-$ b), and
(T)

$$
x=\sqrt{b(2 c-b)} .
$$

Having thus found $A D$, we have the tangent $A C=A D+$ $D C=x+a$. Hence, R or D may be found ($\S 5$ or $\S 11$).

If the point E is given by $E H$ and $C H$ perpendicular to each other, a and b may be found from these lines. For $a=C H+$ $D H=C H+E H \cot . \frac{1}{2} I$ (Tab. X. 9), and $b=D E=\frac{E H}{\sin . \frac{1}{2} I}$.

Example. Given $I=20^{\circ} 16^{\prime}, a=600$, and $b=80$, to find x and R. Here $c=600 \cos .10^{\circ} 8^{\prime}=590.64,2 c-b=1101.28$, and $x=\sqrt{80 \times 1101.28}=296.82$. Then $T=600+296.82=896.82$, and $R=896.82 \cot .10^{\circ} 8^{\prime}=5017.82$.
87. Problem. Given the tangent $A C$ (fig. 31), and the chord $A B$, uniting the tangent points A and B, to find the radius $A O=R$.
Solution. Measure or calculate the perpendicular CD. Then if $C D$ be produced to the centre O, the right triangles $A D C$ and
$C A O$, having the angle at C common, are similar, and give $C D$: $A D=A C: A O$, or
溇 $\quad R=\frac{A D \times A C}{C D}$.
If it is inconvenient to measure the chord $A B$, a line $E F$, parallel to it, may be obtained by laying off from C equal distances $C E$ and $C F$. Then measuring $E G$ and $G C$, we have, from the similar triangles $E G C$ and $C A O, C G: G E=A C$: $A O$, or $R=\frac{G E \times A C}{C G}$.

Example. Given $A C=246$ and $A D=240$, to find R. Here $C D=54$, and $R=\frac{240 \times 246}{54}=1093.33$.
88. Problem. Given the radius $A O=R$ (fig. 31), to find the tangent $A C=T$ of a curve to unite two straight lines given on the ground.

Solution. Lay off from the intersection C of the given straight lines any equal distances $C E$ and $C F$. Draw the perpendicular $C G$ to the middle of $E F$, and measure $G E$ and $C G$. Then the
right triangles $E G C$ and $C A O$, having the angle at C common, are similar, and give $G E: C G=A O: A C$, or

䁏

$$
T=\frac{C G \times A O}{G E} .
$$

By this problem and the preceding one, the radius or tangent points of a curve may be found without an instrument for measuring angles.

Example. Given $R=1093_{3}, G E=80$, and $C G=18$, to find T. Here $T=\frac{18 \times 1093 \frac{1}{8}}{80}=246$.
89. Problem. To find the angle of intersection I of two straight lines, when the point of intersection is inaccessible, and to determine the tangent points, when the length of the tangents is given.

Solution. I. To find the angle of intersection I. Let $A C$ and $C V$ (fig. 32) be the given lines. Sight from some point A on one line to a point B on the other, and measure the angles $C A B$ and $T B V$. These angles make up the change of direction in passing from one tangent to the other. But the angle of intersection $(\$ 2)$ shows the change of direction between two tangents, and it must, therefore, be equal to the sum of $C A B$ and $T^{\prime} B V$, that is,

$$
I=C A B+T B V .
$$

But if obstacles of any kind render it necessary to pass from $A C$ to $B V$ by a broken line, as $A D E F B$, measure the angles $C A D, N D E, P E F, R F B$, and $S B V$, observing to note those angles as minus which are laid off contrary to the general direction of these angles. Thus the general direction of the angles in this case is to the right; but the angle $P E F$ lies to the left of $D E$ produced, and is therefore to be marked minus. The angles to be measured show the successive changes of direction in passing from one tangent to the other. Thus $C A D$ shows the change of direction between the first tangent and $A D, N D E$ shows the change between $A D$ produced and $D E, P E F$ the change between $D E$ produced and $E F, R F B$ the change between $E F$ produced and $F B$, and, lastly, $S B V$ the change between $B F$ produced and the second tangent. But the angle of intersection (§2) shows the change of direction in passing from one tangent to
another, and it must, therefore, be equal to the sum of the partial changes measured, that is,

$$
\quad I=C A D+N D E-P E F+R F B+S B V \text {. }
$$

II. To determine the tangent points. This will be done if we find the distances $A C$ and $B C$; for then any other distances from C may be found. It is supposed that the distance $A B$, or the distances $A D, D E, E F$, and $F^{\prime} B$ have been measured.

If one line $A B$ connects A and B, find $A C$ and $B C$ in the triangle $A B C$. For this purpose we have one side $A B$ and all the angles.

If a broken line A D E FB connects A and B, let fall a perpendicular $B G$ from B upon $A C$, produced if necessary, and find $A G$ and $B G$ by the usual method of working a traverse. Thus, if $A C$ is taken as a meridian line, and $D K, E L$, and $F M$ are drawn parallel to $A C$, and $D H, E K$, and $F L$ are drawn parallel to $B G$, the difference of latitude $A G$ is equal to the sum of the partial differences of latitude $A H, D K, E L$, and $F M$, and the departure $B G$ is equal to the sum of the partial departures $D H, E K, F L$, and $B M$. To find these partial differences of latitude and departures, we have the distances $A D, D E, E F$, and $F B$, and the bearings may be obtained from the angles already measured. Thus the bearing of $A D$ is $C A D$, the bearing of $D E$ is $K D E=K D N+N D E=C A D+N D E$, the bearing of $E F$ is $L E F=L E P-P E F=K D E-P E F$, and
the bearing of $F B$ is $M F B=M F R+R F B=L E F+$ R $F^{\prime} B$; that is, the bearing of each ine is equal to the algebraic sum of the preceding bearing and its own change of direction. The differences of latitude and the departures may now be obtained from a traverse table, or more correctly by the formulæ:
Diff. of lat. $=$ dist. \times cos. of bearing $;$ dep. $=$ dist. $\times \sin$. of bearing. Thus, $A H=A D \cos . C A D$, and $D H=A D \sin . C A D$.
Having found $A G$ and $B G$, we have, in the right triangle $B G C$ (Tab. X. 9), $G C=B G \cot . B C G$, and $B C=\frac{B G}{\sin . B C G}$. But $B C G=180^{\circ}-I$. Therefore, cot. $B C G=-\cot . I$, and $\sin . B C G=\sin$. I. Hence $G C=-B G \cot$. I, and $B C=$ $\frac{B G}{\sin . I}$. Then, since $A C=A G+G C$, we have

$$
A C=A G-B G \cot . I ; \quad B C=\frac{B G}{\sin . I} .
$$

When I is between 90° and 180°, as in the figure, cot. I is negative, and $-B G$ cot. I is, therefore, positive. When I is less than $90^{\circ}, G$ will fall on the other side of C; but the same formula for $A C$ will still apply; for cot. I is now positive, and consequently, $-B G$ cot. I is negative, as it should be, since, in this case, $A C$ would equal $A G$ minus $G C$.

Example. Given $A D=1200, D E=350, E F=300, F B=$ $310, C A D=20^{\circ}, N D E=44^{\circ}, P E F=-25^{\circ}$, R $F B=31^{\circ}$, and $S B V=30^{\circ}$, to find the angle of intersection I, and the distances $A C$ and $B C$.
Here $I=20^{\circ}+44^{\circ}-25^{\circ}+31^{\circ}+30^{\circ}=100^{\circ}$. To find $A G$ and $B G$, the work may be arranged as in the following table :-

Angles to the Right.	Bearings.	Distances.	N.	E.
	N. 20 E.	1200	1127.63	410.42
44	64	350	153.43	314.58
-25	39	300	233.14	188.80
31	70	310	106.03	291.30
			1620.23	1205.10

The first column contains the observed angles. The second contains the bearings, which are found from the angles of the first
column, in the manner already explained. $A C$ is considered as running north from A, and the bearings are, therefore, marked N. E. The other columns require no explanation. We find $A G=1620.23$ and $B G=1205.10$. Then $G C=-B G \cot . I$ $=-1205.1 \times \cot .100^{\circ}=212.49$. This value is positive, because it is the product of two negative factors, $\cot .100^{\circ}$ being the same as - cot. 80°, a negative quantity. Then $A C=A G+G C=$ $1620.23+212.49=1832.72$, and $B C=\frac{1205.1}{\sin .100^{\circ}}=1223.69$. Having thus found the distances of A and B from the point of intersection, we can easily fix the tangent points for tangents of any given length.
90. Problem. To lay out a curve, when an obstruction of any kind prevents the use of the ordinary methods.

Solution. First Method. Suppose the instrument to be placed at A (fig. 33), and that a house, for instance, covers the station at B, and also obstructs the view from A to the stations at D and E. Lay off from $A C$, the tangent at A, such a multiple of the deflection angle D, as will be sufficient to make the sight clear the obstruction. In the figure it is supposed that $4 D$ is the proper an-
gle. The sight will then pass through F, the fourth station from A, and this station will be determined by measuring from A the length of the chord $A F$, found by $\$ 83$ or by Table II. From the station at F the stations at D and E may afterwards be fixed, by laying off the proper deflections from the tangent at F.

Second Method. This consists in running an auxiliary curve parallel to the true curve, either inside or outside of it. For this purpose lay off perpendicular to $A C$, the tangent at A, a line $A A^{\prime}$ of any convenient length, and from A^{\prime} a line $A^{\prime} C^{\prime}$ parallel to $A C$. Then $A^{\prime} C^{\prime}$ is the tangent from which the auxiliary curve $A^{\prime} E^{\prime}$ is to be laid off. The stations on this curve are made to correspond to stations of 100 feet on the true curve, that is, a radius through B^{\prime} passes through B, a radius through D^{\prime} passes through D, \&c. The chord $A^{\prime} B^{\prime}$ is, therefore, parallel to $A B$, and the angle $C^{\prime} A^{\prime} B^{\prime}=C A B$; that is, the deflection angle of the auxiliary curve is equal to that of the true curve. It remains to find the length of the auxiliary chords $A^{\prime} B^{\prime}, B^{\prime} D^{\prime}$, \&c. Call the distance $A A^{\prime}=b$. Then the similar triangles $A B O$ and $A^{\prime} B^{\prime} O$ give $A O: A^{\prime} O=A B: A^{\prime} B^{\prime}$, or $R: R-b=100: A^{\prime} B^{\prime}$. Therefore, $A^{\prime} B^{\prime}=\frac{100(R-b)}{R}=100-\frac{100 b}{R}$. If the auxiliary curve were on the outside of the true curve, we should find in the same way $A^{\prime} B^{\prime}=100+\frac{100 b}{R}$. It is well to make b an aliquot part of R; for the auxiliary chord is then more easily found. Thus, if n is any whole number, and we make $b=\frac{R}{n}$, we have $A^{\prime} B^{\prime}=100 \pm \frac{100 b}{R}=100 \pm \frac{100}{n}$. If, for example, $b=\frac{R}{100}$, we have $n=100$, and $A^{\prime} B=100 \pm 1=101$ or 99 . When the auxiliary curve has been run, the corresponding stations on the true curve are found, by laying off in the proper direction the distances $B B^{\prime}, D D^{\prime}$, \&c., each equal to b.
91. Problem. Having run a curve $A B$ (fig. 34), to change the tangent point from A to C, in such a way that a curve of the same radius may strike a given point D.

Solution. Measure the distance $B D$ from the curve to D in a direction parallel to the tangent $C E$. This direction may be sometimes judged of by the eye, or found by the compass. A still more accurate way is to make the angle $D B E$ equal to the inter-
section angle at E, or to twice $B A E$, the total deflection angle from A to B; or if A can be seen from B, the angle $D B A$ may be made equal to $B A E$.

Measure on the tangent (backward or forward, as the case may be) a distance $A C=B D$, and C will be the new tangent point required. For, if $C H$ be drawn equal and parallel to $A F$, we have $F H$ equal and parallel to $A C$, and therefore equal and parallel to $B D$. Hence $D H=B F=A F=C H$, and $D H$ being equal to $C H$, a curve of radius $C H$ from the tangent point C must pass through D.

92. Problem. Having run a curve $A B$ (fig. 35) of radius R or deflection angle D, terminating in a tangent $B D$, to find the radius R^{\prime} or deflection angle D^{\prime} of a curve $A C$, that shall terminate in a given parallel tangent $C E$.

Solution. Since the radii $B F$ and $C G$ are perpendicular to the parallel tangents $C E$ and $B D$, they are parallel, and the angle $A G C=A F B$. Therefore, $A C G$, the half-supplement of $A G C$, is equal to $A B F$, the half-supplement of $A F B$. Hence $A B$ and $B C$ are in the same straight line, and the new tangent point C is the intersection of $A B$ produced with $C E$.

Represent $A B$ by c, and $A C=c+B C$ by c^{\prime}. Measure $B C$, or, if more convenient, measure $D C$ and find $B C$ by calculation. To calculate $B C$ from $D C$, we have $B C=\frac{D C}{\sin . D B C}($ Tab. X. 9) and the angle $D B C=A B K=B A K$, the total deflection from
A to B. Then the triangles $A F B$ and $A G C$ give $A B: A C=$ $B F^{\prime}: C G$, or $c: c^{\prime}=R: R^{\prime}$;

新

$$
\therefore R^{\prime}=\frac{c^{\prime}}{c} R .
$$

Fig. 35.
To find D^{\prime}, we have $(\S 10) R^{\prime}=\frac{50}{\sin . D^{\prime}}$, and $R=\frac{50}{\sin . D}$. Substituting these values in the equation for R^{\prime}, we have $\frac{50}{\sin . D^{\prime}}=$ $\frac{c^{\prime}}{c} \times \frac{50}{\sin . D}$;

$$
\therefore \sin . D^{\prime}=\frac{c}{c^{\prime}} \sin . D .
$$

93. Problem. Given the length of two equal chords $A C$ and $B C$ (fig. 36), and the perpendicular CD, to find the radius R of the curve.

Solution. From O, the centre of the curve, draw the perpendicular $O E$. Then the similar triangles $O B E$ and $B C D$ give $B O: B E=B C: C D$, or $R: \frac{1}{2} B C=B C: C D$. Hence

0

$$
R=\frac{B C^{2}}{2 C D} .
$$

This problem serves to find the radius of a curve on a track already laid. For if from any point C on the curve we measure two equal chords $A C$ and $B C$, and also the perpendicular $C D$
from C upon the whole chord $A B$, we have the data of this problem.
94. Problem. To draw a tangent $F G$ (fig. 36) to a given curve from a given point F.

Solution. On any straight line $F A$, which cuts the curve in two points, measure $F C$ and $F A$, the distances to the curve. Then, by Geometry,

$$
F G=\sqrt{F C \times F A}
$$

This length being measured from F, will give the point G. When $F G$ exceeds the length of the chain, the direction in which to measure it, so that it will just touch the curve, may be found by one or two trials.
95. Problem. Having found the radius $A O=R$ of a curve (fig. 37), to substitute for it two radii $A E=R_{1}$ and $D F=R_{2}$, the longer of which $A E$ or $B E^{\prime}$ is to be used for a certain distance only at each end of the curve.

Solution. Assume the longer radius of any length which may be thought proper, and find (§9) the corresponding deflection angle D_{1}. Suppose that each of the curves $A D$ and $B D^{\prime}$ is 100 feet long. Then drawing $C O$, we have, in the triangle $F O E$, $O E: F E=\sin . O F E: \sin . F O E$. But the side $O E=A E-$ $A O=R_{1}-R, F E=D E-D F=R_{1}-R_{2}$, the angle $F O E=$
$180^{\circ}-A O C=180^{\circ}-\frac{1}{2} I$, and the angle $O F E=A O F-$ $O E F=\frac{1}{2} I-2 D_{1}$, since $O E F=2 D_{1}$ (§7). Substituting

these values, and recollecting that $\sin .\left(180^{\circ}-\frac{1}{2} I\right)=\sin$. $\frac{1}{2} I$, we have $R_{1}-R: R_{1}-R_{2}=\sin$. $\left(\frac{1}{2} I-2 D_{1}\right): \sin$. $\frac{1}{2} I$. Hence

$$
R_{1}-R_{2}=\frac{\left(R_{1}-R\right) \sin \cdot \frac{1}{2} I}{\sin .\left(\frac{1}{2} I-2 D_{1}\right)} .
$$

R_{2} is then easily found, and this will be the radius from D to D^{\prime}, or until the central angle $D F^{\prime} D^{\prime}=I-4 D_{1}$.

The object of this problem is to furnish a method of flattening the extremities of a sharp curve. It is not necessary that the first curve should be just 100 feet long; in a long curve it may be longer, and in a short curve shorter. The value of the angle at E will of course change with the length of $A D$, and this angle must take the place of $2 D_{1}$ in the formula. The longer the first curve is made, the shorter the second radius will be. It must also be borne in mind, in choosing the first radius, that the longer the first radius is taken, the shorter will be the second radius.

Example. Given $R=1146.28$ and $I=45^{\circ}$, to find R_{2}, if R_{1} is assumed $=1910.08$, and $A D$ and $B D^{\prime}$ each 100. Here, by Table I., $D_{1}=1^{\circ} 30^{\prime}$. Then

$R_{1}-R$	$=763.8$	2.882980 $\frac{1}{2} I$ $=22^{\circ} 30^{\prime}$
	$\sin .9 .582840$	
$\frac{1}{2} I-2 D_{1}$	$=19^{\circ} 30^{\prime}$	$\sin .9 .565824905$
$R_{1}-R_{2}$	$=875.64$	$\underline{2.942325}$
$\therefore R_{2}=R_{1}-875.64$	$=1034.44$	

96. Problem. To locate the second branch of a compound or reversed curve from a station on the first branch.

Solution. Let $A B$ (fig. 38) be the first branch of a compound curve, and D its deflection angle, and let it be required to locate the second branch $A B^{\prime}$, whose deflection angle is D^{\prime}, from some station B on $A B$.
Let n be the number of stations from A to B, and n^{\prime} the number of stations from A to any station B^{\prime} on the second branch. Rep-

resent by V the angle $A B B^{\prime}$, which it is necessary to lay off from the chord $B A$ to strike B^{\prime}. Let the corresponding angle $A B^{\prime} B$ on the other curve be represented by V^{\prime}. Then we have $V+$ $V^{\prime}=180^{\circ}-B A B^{\prime}$. But if $T T^{\prime}$ be the common tangent at A, we have $T A B+T^{\prime} A B^{\prime}=n D+n^{\prime} D^{\prime}=180^{\circ}-B A B^{\prime}$. Therefore, $V+V^{\prime}=n D+n^{\prime} D^{\prime}$. Next in the triangle $A B B^{\prime}$ we have $\sin . V^{\prime}: \sin . V=A B: A B^{\prime}$. But $A B: A B^{\prime}=n: n^{\prime}$, nearly, and $\sin . V^{\prime}: \sin . V=V^{\prime}: V$, nearly. Therefore we have approximately $V^{\prime}: V=n: n^{\prime}$, or $V^{\prime}=\frac{n}{n^{\prime}} V$. Substituting this value of V^{\prime} in the equation for $V+V^{\prime}$, we have $V+\frac{n}{n^{\prime}} V=$
$n D+n^{\prime} D^{\prime}$. Therefore, $n^{\prime} V+n V=n^{\prime}\left(n D+n^{\prime} D^{\prime}\right)$, or

$$
V=\frac{n^{\prime}\left(n D+n^{\prime} D^{\prime}\right)}{n+n^{\prime}} .
$$

The same reasoning will apply to reversed curves, the only change being that in this case $V+V^{\prime}=n D-n^{\prime} D^{\prime}$, and consequently

$$
V=\frac{n^{\prime}\left(n D-n^{\prime} D^{\prime}\right)}{n+n^{\prime}}
$$

When in this last formula $n^{\prime} D^{\prime}$ becomes greater than $n D, V$ becomes minus, which signifies that the angle V is to be laid off above $B A$ instead of below.

This problem is particularly useful, when the tangent point of a curve is so situated, that the instrument cannot be set over it. The same method is applicable, when the curve $A B^{\prime}$ starts from a straight line; for then we may consider $A B^{\prime}$ as the second branch of a compound curve, of which the straight line is the first branch, having its radius equal to infinity, and its deflection angle $D=0$. Making $D=0$, the formula for V becomes

$$
V=\frac{n^{\prime 2} D^{\prime}}{n+n^{\prime}}
$$

When n and n^{\prime} are each 1, the formula for V is in all cases exact; for then the supposition that $V^{\prime}: V=n: n^{\prime}$ is strictly true, since $A B$ will equal $A B^{\prime}$, and V and V^{\prime}, being angles at the base of an isosceles triangle, will also be equal. Making n and n^{\prime} equal to 1 , we have

$$
V=\frac{1}{2}\left(D+D^{\prime}\right)
$$

When the curve starts from a straight line, this formula becomes, by making $D=0$,

$$
V=\frac{1}{2} D^{\prime}
$$

We have seen that when n or n^{\prime} is more than 1 , the value of V is only approximate. It is, however, so near the truth, that when neither n nor n^{\prime} exceeds 3 , the error in curves up to 5° or 6° varies from a fraction of a second to less than half a minute. The exact value of V might of course be obtained by solving the triangle $A B B^{\prime}$, in which the sides $A B$ and $A B^{\prime}$ may be found from Table II., and the included angle at A is known. The extent to which these formulæ may be safely used may be seen by the following table, which gives the approximate values of V for several
different values of n, n^{\prime}, D, and D^{\prime}, and also the error in each case :

Compound Curves.						Reversed Curves.					
n.	D.	n^{\prime}.	D^{\prime}.	V.	Error.	n.	D.	n^{\prime}.	D^{\prime}.	V.	Error.
	-		-	\bigcirc	"		\bigcirc		-	\bigcirc	"
1	0	5	1	410	0.9	1	3	4	3	712	27.2
1	0	5	3	1230	25.3	2	3	4	3	40	23.5
2	0	3	3	524	22.1	3	3	4	3	1426	8.3
3	0	3	3	430	29.7	3	$\frac{1}{2}$	3	3	345	24.0
1	1	5	3	1320	18.6	2	1	1	4	040	0.1
2	$\frac{1}{2}$	1	3	120	0.7	2	1	4	2	40	11.0
2	$\stackrel{2}{2}$	3	3	748	15.0	1	6	2	6	40	23.5
2	2	4	3	1040	24.7	1	5	3	5	730	51.8
3	3	3	4	1030	54.0	2	3	5	3	$625 \frac{5}{7}$	52.8

As the given quantities are here arranged, the approximate values of V are all too great; but if the columns n and n^{\prime} and the columns D and D^{\prime} were interchanged, and V calculated, the approximate values of V would be just as much too small, the column of errors remaining the same.
97. Problem. To measure the distance across a river on a given straight line.

Solution. First Method. Let $A B$ (fig. 39) [be the required distance. Measure a line $A C$ along the bank, and take the angles $B A C$ and $A C B$. Then in the triangle $A B C$ we have one side and two angles to find $A B$.

If $A C$ is of such a length that an angle $A C B=\frac{1}{2} D A C$ can
be laid off to a point on the farther side, we have $A B C=$ $\frac{1}{2} D A C=A C B$. Therefore, without calculation, $A B=A C$.

Second Method. Lay off $A C$ (fig. 40) perpendicular to $A B$. Measure $A C$, and at C lay off $C D$ perpendicular to the direction $C B$, and meeting the line of $A B$ in D. Measure $A D$. Then the triangles $A C D$ and $A B C$ are similar, and give $A D: A C=$ $A C: A B$. Therefore, $A B=\frac{A C^{2}}{A D}$.

If from C, determined as before, the angle $A C B^{\prime}$ be laid off equal to $A C B$, we have, without calculation, $A B=A B^{\prime}$.

Third Method. Measure a line $A D$ (fig. 41) in an oblique direction from the bank, and fix its middle point C. From any

convenient point E in the line of $A B$, measure the distance $E C$, and produce $E C$ until $C F=E C$. Then, since the triangles
$A C E$ and $D C F$ are similar by construction, we see that $D F$ is parallel to $E B$. Find now a point G, that shall be at the same time in the line of $C B$ and of $D F$, and measure $G D$. Then the triangles $A B C$ and $D G C$ are equal, and $G D$ is equal to the required distance $A B$.

As the object of drawing $E F$ is to obtain a line parallel to $A B$, this line may be dispensed with, if by any other means a line $G F$ be drawn through D parallel to $A B$. A point G being found on this parallel in the line of $C B$, we have, as before, $G D=A B$.
98. Problem. To change a tangent point so that the tangent may pass through a given point.

Solution. If the given point is at a considerable distance but visible, let C (fig. 42) be the distant point and D the required tan-

gent point. Estimate the probable position of D, and at A, a station back of D but near to it, measure the angle $B A C$ made by $A C$ with the tangent at A. Then, as the angle at C is supposed to be very small, the chord $A E$ will be nearly parallel to $D C$, and D may be taken to be midway between A and E. The angle $B A D$, which fixes the position of D, will therefore equal $\frac{1}{2} B A C$, very nearly. Or, by $\S 83$, compute $A E=2 R \sin . B A C$, and we shall have the chord $A D=\frac{1}{2} A E$, very nearly. If the distance $A C$ is not very great, $A C$ and $E C$ may be measured. Then (§ 94) $D C=\sqrt{A C \times E C}$.

If the point C is given by $A B=a$ (fig. 43 or 44) measured on a tangent at A, and $B C=b$ at right angles to $A B$, draw $C E$
parallel to $A B$ to meet $O A$, produced if necessary. Then, in the first case (fig. 43), we have the required angle $A O D=A O C-$

DOC. But tan. $A O C=\frac{E C}{E O}=\frac{a}{R-b}$ and cos. $D O C=\frac{O D}{O C}=$ $\frac{R}{\sqrt{a^{2}+(R-b)^{2}}}$. Hence, the required angle is determined.
In the second case (fig. 44) we have the required angle $A O D=$ $D O C-A O C$. But cos. DOC $=\frac{O D}{O C}=\frac{R}{\sqrt{a^{2}+(R+b)^{2}}}$, and $\tan . A O C=\frac{E C}{E O}=\frac{a}{R+b}$. Hence, the required angle $A O D$ is determined.
99. Problem. To connect two curves by a common tangent.

Solution. When both curves turn the same way (fig. 45), run a line $A B$ cutting both curves in such a way as to make the middle ordinates $E G$ and $F H$ as nearly equal as can conveniently be

done. Measure $A B=a$ and the tangential angles $C A B=A$ and $D B A=B$. Let $E^{\prime} F^{\prime}$ be the required common tangent, and draw $O E$ and $P F$ perpendicular to $A B$, and $F^{\prime} K$ parallel to $A B$. Let $A O=R$ and $B P=R^{\prime}$. Then the required angle $C A E^{\prime}=\frac{1}{2} A O E^{\prime}=\frac{1}{2} A+\frac{1}{2} E O E^{\prime}=\frac{1}{2} A+\frac{1}{2} E^{\prime} F^{\prime} K$. Now $\tan . E^{\prime} F^{\prime} K=\frac{E G-F H}{G H}$, nearly $=\frac{2 R \sin ^{2}{ }^{2} \frac{1}{2} A-2 R^{\prime} \sin .{ }^{2} \frac{1}{2} B}{a-R \sin . A-R^{\prime} \sin . B}$. Hence $C A E^{\prime}$ is determined. We have also the angle $P B F^{\prime}=$ $\frac{1}{2} B-\frac{1}{2} E^{\prime} F^{\prime} K$.

When the curves turn opposite ways (fig. 46), $A H=a$ should be run outside the second curve, making $F H$ as nearly equal

to $E G$ as can conveniently be done. $F H$ must be measured. Then the required angle $C^{\prime} A E^{\prime}=\frac{1}{2} A O E^{\prime}=\frac{1}{2} A+\frac{1}{2} E O E^{\prime}=$ $\frac{1}{2} A+\frac{1}{2} E^{\prime} F^{\prime} K$. Now tan. $E^{\prime} F^{\prime} K=\frac{E G-F H}{G H}$, nearly $=$ $\frac{2 R \sin .{ }^{2} \frac{1}{2} A-F H}{a-R \sin . A}$.

Hence $C A E^{\prime}$ is determined.
In both these cases $E G$ has been supposed larger than $F H$. If $E G$ is smaller than $F H$, the point E^{\prime} will fall on the other side of E, and the angle $C A E^{\prime}=\frac{1}{2} A-\frac{1}{2} E^{\prime} F^{\prime} K$. It is obvious that, in both cases, if $E G$ is exactly equal to $F H$, the angle $E^{\prime} F^{\prime} K$ vanishes, and $C A E^{\prime}=\frac{1}{2} A$.

CHAPTER II.

PARABOLIC CURVES.

Article I.-Locating Parabolic Curves.
100. Let $A E B$ (fig. 47) be a parabola, $A C$ and $B C$ its tangents, and $A B$ the chord uniting the tangent points. Bisect $A B$ in D, and join $C D$. Then, according to Analytical Geometry,-

I. $C D$ is a diameter of the parabola, and the curve bisects $C D$ in E.
II. If from any points $T, T^{\prime}, T^{\prime \prime}, \&$ c., on a tangent $A F$, lines be drawn to the curve parallel to the diameter, these lines TM, $T^{\prime} M^{\prime}, T^{\prime \prime} M^{\prime \prime}$, \&c., called tangent deflections, will be to each other as the squares of the distances $A T, A T^{\prime}, A T^{\prime \prime}$, \&c., from the tangent point A.
III. A line $E D$ (fig. 48), drawn from the middle of a chord $A B$ to the curve, and parallel to the diameter, may be called the middle ordinate of that chord; and if the secondary chords $A E$ and $B E$ be drawn, the middle ordinates of these chords, $K G$ and $L H$, are each equal to $\frac{1}{4} E D$. In like manner, if the chords $A K$, $K E, E L$, and $L B$ be drawn, their middle ordinates will be equal to $\frac{1}{4} K G$ or $\frac{1}{4} L H$.
IV. A tangent to the curve at the extremity of a middle ordi-
nate is parallel to the chord of that ordinate. Thus $M F$ (fig. 48), tangent to the curve at E, is parallel to $A B$.
V. If any two tangents, as $A C$ and $B C$ (fig. 48), be bisected in M and F, the line $M F$, joining the points of bisection, will be a new tangent, its middle point E being the point of tangency.
101. Problem. Given the tangents $A C$ and $B C$, equal or unequal (fig. 47), and the chord $A B$, to lay out a parabola by tangent deflections.

Solution. Bisect $A B$ in D, and measure $C D$ and the angle $A C D$; or calculate $C D^{*}$ and $A C D$ from the original data. Divide the tangent $A C$ into any number n of equal parts, and call the deflection $T M$ for the first point a. Then ($\S 100$, II.) the deflection for the second point will be $T^{\prime} M^{\prime}=4 a$, for the third point $T^{\prime \prime} M^{\prime \prime}=9 a$, and so on to the nth point or C, where it will be $n^{2} a$. But the deflection at this last point is $C E=\frac{1}{2} C D(\S 100$, I.). Therefore, $n^{2} a=C E$, and

$$
a=\frac{C E}{n^{2}}
$$

Having thus found a, we have also the succeeding deflections $4 a$, $9 a, 16 a$, \&c. Then laying off at T, T^{\prime}, \&c., the angles $A T M$, $A T^{\prime} M^{\prime}$, \&c., each equal to $A C D$, and measuring down the proper deflections, just found, the points $M, M^{\prime}, \& c$. , of the curve will be determined.

[^7]The direction in which to measure the deflections may be obtained by dividing $A D$ into the same number of equal parts as $A C$ and joining corresponding points. If more convenient the chord $A E$ may be drawn, and, being similarly divided, may take the place of $A D$.

The curve may be finished by laying off on $A C$ produced n parts equal to those on $A C$, and the proper deflections will be, as before, a multiplied by the square of the number of parts from A. But an easier way generally of finding points beyond E is to divide the second tangent $B C$ into equal parts, and proceed as in the case of $A C$. If the number of parts on $B C$ be made the same as on $A C$, it is obvious that the deflections from both tangents will be of the same length for corresponding points. The angles to be laid off from $B C$ must, of course, be equal to $B C D$.
The points or stations thus found, though corresponding to equal distances on the tangents, are not themselves equidistant. The length of the curve is obtained by actual measurement around the stakes. See also § 112.
102. Problem. Given the tangents $A C$ and $B C$, equal or unequal (fig. 48), and the chord A B, to lay out a parabola by middle ordinates.

Solution. Bisect $A B$ in D, draw $C D$, and its middle point E will be a point on the curve $(\$ 100, \mathrm{I}.) . D E$ is the first middle ordinate, and its length may be measured or calculated. To the point E draw the chords $A E$ and $B E$, lay off the second middle ordinates $G K$ and $H L$, each equal to $\frac{1}{4} D E(\S 100$, III.), and K and L are points on the curve. Draw the chords $A K, K E, E L$, and $L B$, and lay off third middle ordinates, each equal to one fourth the second middle ordinates, and four additional points on
the curve will be determined. Continue this process, until a sufficient number of points is obtained.
103. Problem. To draw a tangent to a parabola at any station.

Solution. I. If the curve has been laid out by tangent deflections ($\$ 101$), let $M^{\prime \prime \prime}$ (fig. 47) be the station, at which the tangent is to be drawn. From the preceding or succeeding station, la off, parallel to $C D$, a distance $M^{\prime \prime} N$ or $E L$ equal to a, the firsi tangent deflection ($\S 101$), and $M^{\prime \prime \prime} N$ or $M^{\prime \prime \prime} L$ will be the required tangent. The same thing may be done by laying off from the second station a distance $M^{\prime} T^{\prime}=4 a$, or at the third station a distance $G P=9 a$; for the required tangent will then pass through T^{\prime} or G. It will be seen, also, that the tangent at $M^{\prime \prime \prime}$ passes through a point on the tangent at A corresponding to half the number of stations from A to $M^{\prime \prime \prime}$; that is, $M^{\prime \prime \prime}$ is four stations from A, and the tangent passes through T^{\prime}, the second point on the tangent $A C$. In like manner, $M^{\prime \prime \prime}$ is six stations from B, and the tangent passes through G, the third point on the tangent $B C$.
II. If the curve has been laid out by middle ordinates (§ 102), the tangent deflection for one station is equal to the last middle ordinate made use of in laying out the curve. For if the tangent $A C$ (fig. 48) were divided into four equal parts corresponding to the number of stations from A to E, the method of tangent deflections would give the same points on the curve, as were obtained by the method of $\S 102$. In this case the tangent deflection for one station would be $a=\frac{1}{16} C E=\frac{1}{16} D E$; but the last middle ordinate was made equal to $\frac{1}{4} G K$ or $\frac{1}{16} D E$. Therefore, a is equal to the last middle ordinate, and a tangent may be drawn at any station by the first method of this section.
A tangent may also be drawn at the extremity of any middle ordinate, by drawing a line through this extremity, parallel to the chord of that ordinate ($\S 100$, IV.).
104. In laying out a parabola by the method in $\S 101$, it may sometimes be impossible or inconvenient to lay off all the points from the original tangents. A new tangent may then be drawn by $\S 103$ to any station already found, as at $M^{\prime \prime \prime}$ (fig. 47), and the tangent deflections $a, 4 a, 9 a$, \&c., may be laid off from this tangent, precisely as from the first tangent. These deflections must
be parallel to $C D$, and the distances on the new tangent must be equal to $T^{\prime} N$ or $N M^{\prime \prime \prime}$, which may be measured.
105. Problem. Given the tangents $A C$ and $B C$, equal or unequal (fig. 49), to lay out a parabola by bisecting tangents.

Solution. Bisect $A C$ and $B C$ in D and F, join $D F$, and find E, the middle point of $D F$. E will be a point on the curve ($(100, \mathrm{~V}$). We have now two pairs of what may be called second tangents, $A D$ and $D E$, and $E F$ and $F B$. Bisect $A D$ in G and $D E$ in H, join $G H$, and its middle point M will be a point on

the curre. Bisect $E F$ and $F B$ in K and L, join $K L$, and its middle point N will be a point on the curve. We have now four pairs of third tangents, $A G$ and $G M, M H$ and $H E, E K$ and $K N$, and $N L$ and $L B$. Bisect each pair in turn, join the points of bisection, and the middle points of the joining lines will be four new points, $M^{\prime}, M^{\prime \prime}, N^{\prime \prime}$, and N^{\prime}. The same method may be continued, until a sufficient number of points is obtained.
106. Problem. Given the tangents $A C$ and $B C$, equal or unequal (fig. 50), and the chord A B, to lay out a parabola by intersections.

Solution. Bisect $A B$ in D, draw $C D$, and bisect it in E. Divide the tangents $A C$ and $B C$, the half-chords $A D$ and $D B$, and the line $C E$, into the same number of equal parts; five, for example. Then the intersection M of $A a$ and $F G$ will be a point on the curve. For $F M=\frac{1}{5} C a$, and $C a=\frac{1}{6} C E$. Therefore, $F M=\frac{1}{25} C E$, which is the proper deflection from the tangent at F to the curve (§ 101). In like manner, the intersection N of $A b$ and $H K$ may be shown to be a point on the curve, and the same is true of all the similar intersections indicated in the figure.

If the line $D E$ were also divided into five equal parts, the line $A a$ would be intersected in M on the curve by a line drawn from B through a^{\prime}, the line $A b$ would be intersected in N on the curve

by a line drawn from B through b^{\prime}, and in general any two lines, drawn from A and B throngh two points on $C D$ equally distant from the extremities C and D, will intersect on the curve. To show this for any point, as M, it is sufficient to show, that $B a^{\prime}$ produced cuts $F G$ on the curve; for it has already been proved, that $A a$ cuts $F G$ on the curve. Now $D a^{\prime}: M G=B D: B G=$ $5: 9$, or $M G=\frac{9}{8} D a^{\prime}$. But $D a^{\prime}=\frac{1}{6} C E$. Therefore, $M G=$ ${ }_{25}{ }^{\circ}$. $C E$. Again, $F G: C D=A G: A D=1: 5$. Therefore, $F G=$ $\frac{1}{5} C D=\frac{2}{5} C E$. We have then $F M=F G-M G=\frac{2}{5} C E-$ ${ }_{2}^{25} C E=\frac{1}{25} C E$. As this is the proper deflection from the tangent at F^{\prime} to the curve ($\S 101$), the intersection of $B a^{\prime}$ with $F^{\prime} G$ is on the curve. This furnishes another method of laying out a parabola by intersections.
107. The following example is given in illustration of several of the preceding methods.
Example. Given $A C=B C=832$ (fig. 51), and $A B=1536$, to lay out a parabola $A E B$. We here find $C D=320$. To begin with the method by tangent deflections ($\$ 101$), divide the tangent $A C$ into eight equal parts. Then $a=\frac{C E}{n^{2}}=\frac{160}{64}=2.5$. Lay off from the divisions on the tangent $F 1=2.5, G 2=4 \times$ $2.5=10, H 3=9 \times 2.5=22.5$, and $K 4=16 \times 2.5=40$. Sup-
pose now that it is inconvenient to continue this method beyond K. In this case we may find a new tangent at E, by bisecting $A C$ and $B C$ (§ 105), and drawing $K L$ through the points of bisection. Divide the new tangent $K E=\frac{1}{2} A D=384$ into four equal parts, and lay off from $K E$ the same tangent deflections as were laid off from $A K$, namely, $M 5=22.5, N 6=10$, and $O 7=$

2.5. To lay off the second half of the curve by middle ordinates ($\S 102$), measure $E B=784.49$. Bisect $E B$ in P, and lay off the middle ordinate $P R=\frac{1}{d} D E=40$. Measure $E R=386.08$, and $B R_{\bullet}=402.31$, and lay off the middle ordinates $S T$ and $V W$, each equal to $\frac{1}{4} P R=10$. By measuring the chords $E T, T R, R W$, and $W B$, and laying off an ordinate from each, equal to 2.5 , four additional points might be found.

Article II.-Radius of Curvature.

108. The curvature of circular arcs is always the same for the same arc, and in different arcs varies inversely as the radii of the arcs. Thus, the curvature of an arc of 1,000 feet radius is double that of an arc of 2,000 feet radius. The curvature of a parabola is continually changing. In fig. 50, for example, it is least at the tangent point A, the extremity of the longest tangent, and increases by a fixed law, until it becomes greatest at a point, called the vertex, where a tangent to the curve would be perpendicular to the diameter. From this point to B it decreases again by the
same law. We may, therefore, consider a parabola to be made up of a succession of infinitely small circular ares, the radii of which continually increase in going from the vertex to the extremities. The radius of the circular are, corresponding to any part of a parabola, is called the radius of curvature at that point.

If a parabola forms part of the line of a railroad, it will be necessary, in order that the rails may be properly curved (§28), to know how the radius of curvature may be found. It will, in general, be necessary to find the radius of curvature at a few points only. In short curves it may be found at the two tangent points and at the middle station, and in longer curves at two or more intermediate points besides. The rails curved according to the radius at any point should be sufficient in number to reach, on each side of that point, half-way to the next point.
109. Problem. To find the radius of curvature at certain stations on a parabola.

Solution. Let $A E B$ (fig. 52) be any parabola, and let it be required to find the radii of curvature at a certain number of stations from A to E. These stations must be selected at regular

intervals from those determined by any of the preceding methods. Let n denote the number of parts into which $A E$ is divided, and divide $C D$ into the same number of equal parts. Draw lines from A to the points of division. Thus, if $n=4$, as in the figure, divide $C D$ into four equal parts, and draw $A F, A E$, and $A G$. Let $A D=c, A F=c_{1}, A E=c_{2}, A G=c_{3}$, and $A C=T$. Denote, moreover, $C D$ by d, and the area of the triangle $A C B$ by
A. Then the respective radii for the points $E, 1,2,3$, and A will be

$$
R=\frac{c^{3}}{A}, \quad R_{1}=\frac{c_{1}{ }^{3}}{A}, \quad R_{2}=\frac{c_{2}{ }^{3}}{A}, \quad R_{3}=\frac{c_{3}{ }^{3}}{A}, \quad R_{4}=\frac{T^{3}}{A} .
$$

The area A may be found by form. 18, Tab. X.; c and T are known; and c_{1}, c_{2}, c_{3} may be found approximately by measurement on a figure carefully constructed, or exactly by these general formulæ:-

$$
\begin{aligned}
& c_{1}^{2}=c^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-1) d^{2}}{n^{2}} \\
& c_{2}^{2}=c_{1}{ }^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-3) d^{2}}{n^{2}} \\
& c_{3}{ }^{2}=c_{2}{ }^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-5) d^{2}}{n^{2}} \\
& c_{4}^{2}=c_{3}{ }^{2}+\frac{T^{2}-c^{2}}{n}-\frac{(n-7) d^{2}}{n^{2}} \\
& \& c .
\end{aligned}
$$

It will be seen, that each of these values is formed from the preceding, by adding the same quantity $\frac{T^{2}-c^{2}}{n}$, and subtracting $\frac{d^{2}}{n^{2}}$ multiplied in succession by $n-1, n-3, n-5$, \&c. Making $n=$ 4, we have

$$
\begin{aligned}
& c_{1}{ }^{2}=c^{2}+\frac{1}{4}\left(T^{2}-c^{2}\right)-\frac{3}{16} d^{2} \\
& c_{2}{ }^{2}=c_{1}{ }^{2}+\frac{1}{4}\left(T^{2}-c^{2}\right)-\frac{1}{16} d^{2} \\
& c_{s}{ }^{2}=c_{2}{ }^{2}+\frac{1}{4}\left(T^{2}-c^{2}\right)+\frac{1}{16} d^{2} .
\end{aligned}
$$

All the quantities, which enter into the expressions for the radii, are now known, and the radii may, therefore, be determined. The same method will apply to the other half of the parabola.

The manner of obtaining the preceding formulæ is as follows: The radius of curvature at any given point on a parabola is, by the Differential Calculus, $R=\frac{p}{2 \sin .^{3} E}$, in which p represents the parameter of the parabola for rectangular coördinates, and E the angle made with a diameter by a tangent to the curve at the given point. First, let the middle station E (fig. 53) be the given point. Then the angle E is the angle made with $E D$ by a tangent at E, or since $A B$ is parallel to the tangent at $E(\$ 100$, IV. $), \sin . E=$ $\sin . A D E=\sin . B D E$. Let p^{\prime} be the parameter for the diam-
eter $E D$. Then, by Analytical Geometry, $p=p^{\prime} \sin .^{2} E$. Therefore, at this point $R=\frac{p}{2 \sin .^{8} E}=\frac{p^{\prime} \sin .^{2} E}{2 \sin .^{3} E}=\frac{p^{\prime}}{2 \sin . E}$. But $p^{\prime}=$ $\frac{A D^{2}}{E D}=\frac{c^{2}}{\frac{1}{2} d}$. Therefore, $R=\frac{c^{2}}{d \sin . E}=\frac{c^{8}}{c d \sin . E}=\frac{c^{3}}{A}$; since $A=$ $c d \sin . E$ (Tab, X. 17).
Next, to find R_{1}, or the radius of curvature at H, the first station from E. Through H draw $F G$ parallel to $C D$, and from F

draw the tangent $F K$. Join $A K$, cutting $C D$ in L. Then from what has just been proved for the radius of curvature at E, we have for the radius of curvature at $H, R_{1}=\frac{A G^{3}}{A F K}$. Now $A G$: $A L=A F: A C=n-1: n$, or $A G=\frac{n-1}{n} \times A L$. But $A L=$ c_{1}. For, since $A F=\frac{n-1}{n} \times A C$, the tangent deflection $F H=$ $\frac{(n-1)^{2}}{n^{2}} \cdot \frac{d}{2}\left(\S 100\right.$, II.), and $F G=2 F H=\frac{(n-1)^{2}}{n^{2}} d$. Then, since $C L: F G=A C: A F=n: n-1, C L=\frac{n}{n-1} \times F G$ $\frac{n-1}{n} d$. Hence $L D=d-\frac{n-1}{n} d=\frac{1}{n} d$, that is, $A L=$, Substituting this value in the expression for $A G$ above, we 1. $A G=\frac{n-1}{n} c_{1}$. Moreover, since $A F=\frac{n-1}{n} \times A C$, and be cause similar triangles are to each other as the squares of their homolugous sides, we have the triangle $A F G=\frac{(n-1)^{2}}{n^{2}} \times \Lambda C L$. But $A C L: A C D=C L: C D=n-1: n$, or $A C L=\frac{n-1}{n}$
$\times A C D$. Therefore, $A F G=\frac{(n-1)^{3}}{n^{3}} \times A C D$, and $A F K=$ $2 A F G=\frac{(n-1)^{3}}{n^{3}} \times A C B=\frac{(n-1)^{3}}{n^{3}} A$. Substituting these values of $A G$ and $A F K$ in the equation $R_{1}=\frac{A G^{3}}{A F K}$, and reducing, we find $R_{1}=\frac{c_{1}{ }^{3}}{A}$. By similar reasoning we should find $R_{2}=\frac{c_{2}{ }^{3}}{A}, R_{3}=\frac{c_{3}{ }^{3}}{A}, \& \mathrm{c}$.

It remains to find the values of $c_{1}, c_{2}, \& c$. Through A draw $A M$ perpendicular to $C D$, produced if necessary. Then, by Geometry, we have $A D^{2}=A L^{2}+L D^{2}-2 L D \times L M$, and $A C^{2}$ $=A L^{2}+C L^{2}+2 C L \times L M$. Finding from each of these equations the value of $2 L M$, and putting these values equal to each other, we have $\frac{A L^{2}+L D^{2}-A D^{2}}{L D}=\frac{A C^{2}-A L^{2}-C L_{2}}{C L}$. But $A L=c_{1}, L D=\frac{1}{n} d, A D=c, A C=T$, and $C L=\frac{n-1}{n} d$. Substituting these values in the last equation, and reducing, we find

$$
c_{1}^{2}=\frac{T^{2}}{n}+\frac{(n-1) c^{2}}{n}-\frac{(n-1) d^{2}}{n^{2}}
$$

By similar reasoning we should find

$$
\begin{aligned}
& c_{2}^{2}=\frac{2 T^{2}}{n}+\frac{(n-2) c^{2}}{n}-\frac{2(n-2) d^{2}}{n^{2}} \\
& c_{3}^{2}=\frac{3 T^{2}}{n}+\frac{(n-3) c^{2}}{n}-\frac{3(n-3) d^{2}}{n^{2}} \\
& \& c
\end{aligned}
$$

From these equations the values of $c_{1}{ }^{2}, c_{2}{ }^{2}, c_{3}{ }^{2}, \& c$., given above, are readily obtained. That given for $c_{1}{ }^{2}$ is obtained from the first of these equations by a simple reduction; that given for $c_{2}{ }^{2}$ is obtained by subtracting the first of these equations from the second, and reducing; that given for $c_{s}{ }^{2}$ is obtained by subtracting the second equation from the third, and reducing; and so on.
110. Example. Given (fig. 52) $A C=T=600, B C=T^{\prime}=$ 520 , and $A D=c=550$, to find R, R_{1}, R_{2}, R_{3}, and R_{4}, the radii of curvature at $E, 1,2,3$, and A.
To find $C D=d$, we have, by Geometry, $d^{2}=\frac{1}{2}\left(T^{2}+T^{\prime 2}\right)-$ c^{2} which gives $d^{2}=12700$.

To find the area of $A C B=A$, we have (Tab. X. 18) $A=$ $\sqrt{s(s-a)(s-b)(s-c)}$.

s	$=1110$	3.045323
$s-a$	$=590$	2.770852
$s-b$	$=510$	2.707570
$s-c$	$=10$	$\frac{1.000000}{9.523745}$
$\log A$	$\frac{2)}{4.761872}$	

Next $\frac{1}{n}\left(T^{2}-c^{y}\right)=\frac{1}{2}(T+c)(T-c)=\frac{1150 \times 50}{4}=14375$, and $\frac{d^{2}}{n^{2}}=\frac{12700}{16}=793.75$. Then

$$
\begin{aligned}
& c^{2}=550^{2}=302500 \\
& c_{1}{ }^{2}=302500+14375-3 \times 793.75=314493.75 \\
& c_{2}{ }^{2}=314493.75+14375-793.75=328075 \\
& c_{3}{ }^{2}=328075+14375+793.75=343243.75
\end{aligned}
$$

To find R, we have $R=\frac{c^{3}}{A}$, or log. $R=3 \log . c-\log . A$,

$c=550$	$\underline{2.740363}$
c^{3}	8.221089
A	$\underline{4.761872}$
$R=2878.8$	3.459217

To find R_{1}, we have $R_{1}=\frac{c_{1}{ }^{3}}{A}$, or $\log . R_{1}=\frac{3}{2} \log . c_{1}{ }^{2}-\log . A$,

$c_{1}{ }^{2}=314493.75$	$\frac{5.497612}{8.246418}$
$c_{1}{ }^{3}$	$\underline{4.761872}$
A	3.484546

In the same way we should find $R_{2}=3251.5, R_{3}=3479.6, R_{4}=$ 3737.5 .

To find the radii for the second part $E B$ of the parabola, the same formulæ apply, except that $T^{\prime \prime}$ takes the place of T. We
have then $\frac{1}{n}\left(T^{\prime 2}-c^{2}\right)=\frac{1}{4}\left(T^{\prime}+c\right)\left(T^{\prime}-c\right)=\frac{1070 \times-30}{4}=$ - 8025. Hence

$$
\begin{aligned}
& c_{1}{ }^{2}=302500-8025-2381.25=292093.75 \\
& c_{2}{ }^{2}=292093.75-8025-793.75=283275 \\
& c_{3}{ }^{2}=283275-8025+793.75=276043.75
\end{aligned}
$$

To find R_{1}, we have $R_{1}=\frac{c_{1}{ }^{3}}{A}$, or $\log . R_{1}=\frac{3}{2} \log \cdot c_{1}{ }^{2}-\log . A$,

$c_{1}{ }^{2}=292093.75$	
$c_{1}{ }^{3}$	8.465523
A	$\frac{4.761872}{3.198284}$
$R_{1}=2731.6$	3.436412

In the same way we should find $R_{2}=2608.8, R_{3}=2509.5, R_{4}=$ 2433.

It will be seen that the radii in this example decrease from one tangent point to the other, which shows that both tangent points lie on the same side of the vertex of the parabola (§ 108). This will be the case, whenever the angle $B C D$, adjacent to the shorter tangent, exceeds 90°, that is, whenever c^{2} exceeds $T^{\prime 2}+d^{2}$. If $B C D=90^{\circ}$, the tangent point B falls on the vertex. If $B C D$ is less than 90°, one tangent point falls on each side of the vertex, and the curvature will, therefore, decrease towards both extremities.
111. If the tangents T and T^{\prime} are equal, the equations for $c_{1}{ }^{2}$, $c_{2}{ }^{2}$, \&c., will be more simple; for in this case d is perpendicular to c, and $T^{2}-c^{2}=d^{2}$. Substituting this value, we get

$$
\begin{aligned}
& c_{1}^{2}=c^{2}+\frac{d^{2}}{n^{2}} \\
& c_{2}{ }^{2}=c_{1}{ }^{2}+\frac{3 d^{2}}{n^{2}} \\
& c_{3}^{2}=c_{2}{ }^{2}+\frac{5 d^{2}}{n^{2}} \\
& \& c ., \quad \& c .
\end{aligned}
$$

Example. Given, as in $\S 107, T=T^{\prime}=832, c=768$, and $d=$ 320 , to find the radii R, R_{1}, and R_{2} at the points $E, 4$, and A (fig.
51). Here $A=c d=245760, n=2$, and $c_{1}{ }^{2}=c^{2}+\frac{1}{4} d^{2}=615424$. Then $R=\frac{c^{3}}{c d}=\frac{c^{2}}{d}=\frac{768^{2}}{320}=1843.2, R_{1}=\frac{c_{1}{ }^{3}}{c d}$, and $R_{2}=\frac{T^{3}}{c d}$,

$c_{1}{ }^{2}$	$=615424$	$\overline{5.789174}$
$c_{1}{ }^{3}$	8.683761	
$c d$	$=245760$	$\underline{5.390511}$
R_{1}	$=1964.5$	$\underline{3.293250}$
T	$=832$	$\underline{8.920123}$
T^{3}		$\underline{5.360369}$
$c d$	$=245760$	
R_{2}	$=2343.5$	

R_{1} is the radius at the point R also, and R_{2} the radius at the point B.
112. Length of parabolic arcs.

Fig. 54.

The length s of the parabolic arc $A B$ (fig. 54) from the vertex A to a point B whose rectangular coördinates are x and y is, by the Calculus,

$$
s=\sqrt{ }\left(y^{2}+\frac{x^{2}}{4}\right)+\frac{x^{2}}{4 y} \text { hyp. log. } \frac{2 y+2 v\left(y^{2}+\frac{x^{2}}{4}\right)}{x}
$$

or, introducing the angle i which the tangent at B makes with the axis of x,

$$
s=\frac{x^{2}}{4 y}[\tan . i \text { sec. } i+\text { hyp. log. }(\tan . i+\sec . i)]
$$

or, by series,

$$
s=x\left(1+\frac{2}{3} \cdot \frac{y^{2}}{x^{2}}-\frac{2}{5} \cdot \frac{y^{4}}{x^{4}}+\frac{4}{7} \cdot \frac{y^{6}}{x^{6}}-\& c .\right)
$$

When y is small relatively to x, two terms of this series are often sufficient. Whence

$$
s=x+\frac{2}{3} \frac{y^{2}}{x} \text { nearly }
$$

The length s of the parabolic arc $A B$ (fig. 55) from the origin of oblique coördinates A to a point B whose oblique coördinates are x and y, is given by the following formula, in which i is the

Fig. 55.
angle made by the tangent at B with a line perpendicular to the axis of the parabola, and j is the angle made by y with a perpendicular to the axis $A X$.
$s=\frac{x^{2} \cos ^{2} j}{4 y}\left(\tan . i \sec . i-\tan . j \sec . j+\right.$ hyp. log. $\left.\frac{\tan . i+\sec . i}{\tan . j+\sec . j}\right)$.
In many cases a near approximation is

$$
s=x+y \sin . j+\frac{2}{3} \cdot \frac{y^{2} \cos \cdot{ }^{2} j}{x+y \sin \cdot j}
$$

CHAPTER III.

TRANSITION CURVES.

113. The object of a transition curve is to make the change easy from a straight line to a circular curve. The proper superelevation of the outer rail of the circular curve is also arrived at by a gradual rise from the straight line. To make this rise uniform, the radius of curvature of the transition curve must be infinite at its beginning on the straight line, must decrease in such a way that, at any point of the curve, it shall be inversely as the distance of that point from the beginning, and, finally, become equal to the radius of the circular curve, where it joins that curve tangentially. The cubic parabola fulfils all the essential requisites of such a transition curve. The compound circular curve ($\$ 132$) forms another method of easing the change from a straight line to a circular curve.

Article I.-The Cubic Parabola.

114. Let $C D C^{\prime}$ (fig. 56) be the central circular curve of radius $O C=R$. Let $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ be the transition curves, connecting the circular curve with the tangents at A and A^{\prime}. Let x and y be the rectangular coördinates of $A B C$, with origin at A, and let x_{1} and y_{1} denote the coördinates of the point C. Let the rise of the outer rail be taken as uniform for distances from A along the axis of x, instead of along the curve, an immaterial change, and let $\frac{1}{i}$ denote the rate of rise. Then the rise at any distance x from A will be $\frac{x}{i}$. This rise may be expressed in another way. For let ρ denote the radius of curvature of the curve at the point whose abscissa is x, and we have the rise e by the formula of $\S 152, e=\frac{g v^{2}}{32.2 \rho}$. Equating the two values,

$$
\begin{align*}
& \frac{x}{i}=\frac{g v^{2}}{32.2 \rho} ; \\
& \rho=\frac{g v^{2} i}{32.2 x} . \tag{1}
\end{align*}
$$

or,

When the velocity v has been fixed, and also the rate of rise $\frac{1}{i}$, the quantity $\frac{g v^{2} i}{32.2}$ becomes a constant. At C, the radius of curva-

Fig. 56.
ture ρ becomes R, and x becomes x_{1}, so that equation (1) becomes

$$
R=\frac{g v^{2} i}{32.2 x_{1}}
$$

and we have $\frac{g v^{2} i}{32.2}=R x_{1}$. By substitution (1) becomes

$$
\rho=\frac{R x_{1}}{x}
$$

Another expression for ρ is, by the Differential Calculus,

$$
\rho=\frac{d s^{3}}{d x d^{2} y}
$$

where $d s$ is the differential of the length of the curve. In the present case, the differential $d x$ of the abscissa is so nearly equal to $d s$, that we may put

$$
\rho=\frac{d x^{3}}{d x d^{2} y}=\frac{d x^{2}}{d^{2} y}
$$

Equating the two values of ρ, and inverting, we have

$$
\frac{d^{2} y}{d x^{2}}=\frac{x}{R x_{1}}
$$

Integrating once, we have

$$
\begin{equation*}
\frac{d y}{d x}=\frac{x^{2}}{2 R x_{1}} \tag{2}
\end{equation*}
$$

and, integrating again,

$$
\begin{equation*}
y=\frac{x^{3}}{6 R x_{1}} \tag{3}
\end{equation*}
$$

115. This is the equation of a cubic parabola-that is, of a curve in which the ordinates are proportional to the cubes of the abscissas. The curves $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are, therefore, to be treated as cubic parabolas. Before doing this, however, two problems require consideration. For in order to connect two straight lines or tangents, as $A I$ and $A^{\prime} I$, by a central circular curve, with a transition curve at each end, we have either to find $A I=T$, when the radius $O C=R$ of the circular curve is given, or to find R, when T is given. In both cases the intersection angle I is supposed to be known, and the value of $x_{1}=A E$ to be assumed.
116. Problem. Given the intersection angle $I=2 G 01$ (fig. 56), the abscissa x_{1}, and the radius $O C=R$ of the central curve, to find the tangent $A I=T$.

Solution. In the figure the circular curve is produced to G, where its tangent becomes parallel to $A I$. Draw $O G$ and produce it to H. Draw also $C F$, the common tangent at C, and $C K$ parallel to $A I$. Denote the angle $C O G=C F E$ by Δ. To find T we have

$$
T=A H+H I
$$

Now $A H=A E-H E=x_{1}-H E=x_{1}-C K=x_{1}-R$ $\sin . \Delta$.

But, since the angle Δ is generally small, we may put $\sin . \Delta=$ $\tan . \Delta$, and we have

$$
A H=x_{1}-R \tan . \Delta
$$

Now $R \tan . \Delta=\frac{1}{2} x_{1}$. For by the Differential Calculus we know that $\frac{d y}{d x}$ in equation (2) denotes the tangent of the angle made with the axis of x by a tangent to the curve at a point whose abscissa is x. Now when the abscissa becomes x_{1} at the point C, this angle becomes $C F E=\Delta$, and we have

$$
\begin{gathered}
\tan . \Delta=\frac{d y}{d x}=\frac{x_{1}{ }^{2}}{2 R x_{1}}=\frac{x_{1}}{2 R} \text {, and } R \tan . \Delta=\frac{1}{2} x_{1} ; \\
\therefore A H=x_{1}-\frac{1}{2} x_{1}=\frac{1}{2} x_{1} . *
\end{gathered}
$$

Next to find $H I$, we have

$$
H I=O H \tan \cdot \frac{1}{2} I=(R+G H) \tan . \frac{1}{2} I .
$$

$G H$ is the perpendicular distance between the tangent $A E$ and a tangent to the circular curve at G. This is usually called the shift, and may be denoted by s. To find $G H=s$ we have $s=$ $C E-G K=y_{1}-G K$. By equation (3)

$$
y_{1}=\frac{x_{1}{ }^{3}}{6 R x_{1}}=\frac{x_{1}{ }^{2}}{6 R},
$$

and $G K$ is the middle ordinate of the circular curve for a chord $2 C K=x_{1}$. Therefore, (§ 26), $G K=\frac{x_{1}{ }^{2} \dagger}{8 R}$; so that

$$
s=\frac{x_{1}{ }^{2}}{6 R}-\frac{x_{1}{ }^{2}}{8 R}=\frac{x_{1}{ }^{2}}{24 R}=\frac{1}{4} y_{1} .
$$

Substituting this value of $s=G H$ in the equation for $H I$, we have

$$
H I=\left(R+\frac{1}{4} y_{1}\right) \tan \cdot \frac{1}{2} I .
$$

Finally, substituting the values found for $A H$ and $H I$ in the equation for T, we have

$$
T=\frac{1}{2} x_{1}+\left(R+\frac{1}{4} y_{1}\right) \tan . \frac{1}{2} I .
$$

117. Problem. Given the intersection angle $I=2 G O I$ (fig. 56), the abscissa x_{1}, and the tangent $A I=T$, to jind the $r a$ dius $O C=R$ of the circular curve.
[^8]Solution. From the preceding section we have

$$
\begin{gathered}
\left(R+\frac{1}{4} y_{1}\right) \tan . \frac{1}{2} I=T-\frac{1}{2} x_{1} \\
\therefore R+\frac{1}{4} y_{1}=\left(T-\frac{1}{2} x_{1}\right) \cot . \frac{1}{2} I .
\end{gathered}
$$

Compute this value of $R+\frac{1}{4} y_{1}$, and from it subtract an assumed probable value of $\frac{1}{4} y_{1}$. This will give an approximate value of R, and with this compute $\frac{1}{4} y_{1}$ by the formula $\frac{1}{4} y_{1}=\frac{x_{1}{ }^{2}}{24 R}$. If the value so found agrees nearly enough with the assumed value of $\frac{1}{4} y_{1}$, the approximate value of R may be taken as the true value. Otherwise, a new approximation is to be computed. Generally, however, the value of R thus found would be used only to select a convenient deflection angle for the central curve. The corresponding value of R may then be used to find, by section 116, a new value of T. A change in the value of T would of course change the position of the tangent point, but seldom materially.
118. Length of the abscissa x_{1}. Let us now consider the value to be given to x_{1}. The rate of rise of the outer rail being $\frac{1}{i}$, the total rise at the end of the transition curve will be $\frac{x_{1}}{i}$. This total rise is also expressed by $e=\frac{g v^{2}}{32.2 R}(\S 152)$. Equating these values, we have $\frac{x_{1}}{i}=e$, or $x_{1}=i e$. The length of x_{1} is, therefore, dependent on i and e. The value of i may be taken as varying from 300 to 600 , corresponding to grades of 17.6 feet to 8.8 feet per mile. The value of e depends upon the velocity of trains and the radius of the curve. For high speeds e may vary from $e=.3$ to $e=.5$. A value of $e=.5$ allows a speed of 67 miles per hour on a 2° curve, of 30 miles per hour on a 10° curve, and of 25 miles per hour on a 14° curve; so that this value of e would rarely be exceeded. With $i=300, x_{1}$ need not exceed 150 feet, and with $i=$ $600, x_{1}$ need not exceed 300 feet. These lengths might of course in exceptional cases be increased.
119. Let the length of x_{1} be expressed in rail lengths of 30 feet each, and let n denote the number of such rail lengths. We shall then have

$$
x_{1}=30 n .
$$

To express y_{1}, we have from equation (3) $y_{1}=\frac{x_{1}{ }^{3}}{6 R x_{1}}=\frac{x_{1}{ }^{2}}{6 R}=$
$\frac{900 n^{2}}{6 R}=\frac{150 n^{2}}{R}$. Substituting for R its value, $R=\frac{50}{\sin . D}, D$ being the deflection angle of the circular curve for chords of 100 feet, we have $y_{1}=\frac{150 n^{2} \sin . D}{50}$, or

$$
y_{1}=3 n^{\imath} \sin . D .
$$

Fig. 56.
To fix the position of the common tangent $C F$, we require the distance $F E$. The triangle $C F E$ gives $F E=\frac{y_{1}}{\tan . \Delta}$, and by (§ 116) $\tan . \Delta=\frac{x_{1}}{2 R}=\frac{30 n}{2 R}=\frac{30 n \sin . D}{100}=.3 n \sin . D$. Substituting this value and that of y_{1}, we have

$$
F E=\frac{3 n^{2} \sin . D}{3 n \sin . D}=10 n=\frac{1}{8} x_{1} .
$$

120. Method by Offsets. With R or D, T, x_{1}, and y_{2} known, the curves can now be laid out. A, the point of beginning or origin, is a fixed point, from which $x_{1}=30 n$ is measured to fix the point $E ; y_{1}=3 n^{2} \sin$. D fixes the point C; and $F E=\frac{1}{3} x_{1}=$ $10 n$ fixes the position of the common tangent $C F$. Intermediate points on the transition curve are fixed by offsets or ordinates from the tangent $A E$, thus: divide $A E$ into n equal parts and denote the successive offsets at the points of division by d_{1}, d_{2}, d_{3}, $\cdots d_{n}$. Then $d_{n}=y_{1}$, and, as the ordinates are as the cubes of the abscissas, $d_{1}=\frac{y_{1}}{n^{3}}=\frac{3 n^{2} \sin . D}{n^{3}}=\frac{3 \sin . D}{n}$. The successive offsets are then

$$
d_{1}=\frac{y_{1}}{n^{3}}, \quad d_{2}=8 d_{1}, \quad d_{3}=27 d_{1}, \cdots \cdots d_{n}=y_{1}
$$

The circular curve $C D C^{\prime}$ is now run in the usual way from the tangent $C F$ produced, with D as the deflection angle for 100 feet chords. The central angle of this curve is $C O C^{\prime}=I-2 \Delta$. At $C^{\prime}, E^{\prime} C^{\prime}$ should prove equal to y_{1}. The distance $D I$ is equal to the ordinary external $D L$, increased by $L I=C H$ sec. $\frac{1}{2} I=$ $\frac{1}{4} y_{1}$ sec. $\frac{1}{2} I$. The second transition curve $A^{\prime} B^{\prime} C^{\prime}$ is the same as $A B C$ reversed, and is laid out in the same way.
121. The annexed table gives the necessary data for curves from 60 to 300 feet in length. D is the deflection angle of the central curve for 100 feet chords. For any other chord c it is only necessary to multiply the values given for y_{1} and d_{1} by $\frac{100}{c}$. Thus if D were the deflection angle for 50 feet chords, we should have $y_{1}=6 n^{2} \sin . D$ and $d_{1}=\frac{6 \sin . D}{n}$. In computing y_{1} and d_{1} use natural sines.

TABLE A.

n	$x_{1}=30 n$	$y_{1}=3 n^{2} \sin . D$	$d_{1}=\frac{3 \sin . D}{n}$
2	60	$\frac{12 \sin . D}{}$	$1.5 \sin . D$
3	90	$27 \sin . D$	$1 . \sin . D$
4	120	$48 \sin . D$	$.75 \sin . D$
5	150	$75 \sin . D$	$.6 \sin . D$
6	180	$108 \sin . D$	$.5 \sin . D$
7	210	$147 \sin . D$	$\frac{3}{4} \sin . D$
8	240	$192 \sin . D$	$\frac{8}{8} \sin . D$
9	270	$243 \sin . D$	$\frac{1}{3} \sin . D$
10	300	$300 \sin . D$	$.3 \sin . D$

It will be seen that this method applies directly, whether the central curve is of an even degree or not, since $\sin . D$ may be taken from the table for any value of D.
122. Example, when R or D is given. Given $I=72^{\circ} 40^{\prime}, D=$ $3^{\circ} 20^{\prime}$, and $n=8$. Here $x_{1}=240, y_{1}=192 \sin .3^{\circ} 20^{\prime}=192 \times$ $.05814=11.16288$. From Table I., $R=859.92$, and $\frac{1}{4} y_{1}=2.79$. First find T.

$$
\begin{array}{rlr}
R+\frac{1}{4} y_{1} & =862.71 & 2.935865 \\
\frac{1}{2} I & =36^{\circ} 20^{\prime} & \tan .9 .866564 \\
T-\frac{1}{2} x_{1} & =634.496 & \underline{2.802429} \\
T & =754.496 &
\end{array}
$$

Table A gives, for $n=8, d_{1}=\frac{8}{8} \sin . D=\frac{8}{8} \times .05814=.021802$, and d_{1}, multiplied in succession by $8,27,64,125,216$, and 343 , gives $d_{2}=.174, d_{3}=.589, d_{4}=1.395, d_{5}=2.725, d_{0}=4.709$, and $d_{7}=7.478$.

To find Δ we have $(\S 119) \tan . \Delta=.3 n \sin . D$. For small angles we may put $\Delta=.3 n D$. In this example $\Delta=2.4 D=8^{\circ}$, and the central angle of the circular curve $I-2 \Delta=56^{\circ} 40^{\prime}$. This divided by $2 D$ gives 8.5 , as the number of 100 feet chords from C to C^{\prime}.
123. Example, when T is given. Given $I=68^{\circ} 20^{\prime}, T=r 64.3$, and $n=5$. Here $x_{1}=150$, and $T-\frac{1}{2} x_{1}=689.3$.

689.3	2.838408	
	$34^{\circ} 10^{\prime}$	cot.
$R+\frac{1}{4} y_{1}=$	1015.5	
3.006699		

Comparing this approximate value of R with values given in Table I., we see that $D=2^{\circ} 50^{\prime}$ might be selected as a convenient deflection angle. We have then $R=1011.51, \sin . D=\sin .2^{\circ} 50^{\prime}=$ $.04943, y_{1}=75 \times .04943=3.70725$, and $R+\frac{1}{4} y_{1}=1012.44$, to find the new T.

$$
\begin{array}{rrr}
1012.44 & 3.005369 \\
\frac{1}{2} I=34^{\circ} 10^{\prime} & \tan .9 .831709 \\
T-\frac{1}{2} x_{1} & =687.19 & \overline{2.837078} \\
T & =762.19 &
\end{array}
$$

We next find $d_{1}=.6 \sin . D$, and proceed as in the preceding example.
124. Method by Deflection Angles. The transition curve can also be laid out by deflection angles. These angles (fig. 57) are

Fig. 57.
$a A E, b A E, c A E$, eto. Denote them by $\delta_{1}, \delta_{2}, \delta_{3}, \cdots \cdots \delta_{n}$. Now the tangent of any one of these angles, as δ_{3}, is tan. $\delta_{3}=\frac{c d^{\prime}}{A d^{\prime}}=$ $\frac{y}{x}$. If in equation (3), which is $y=\frac{x^{3}}{6 R x_{1}}$, we divide both sides by x we have $\frac{y}{x}=\frac{x^{2}}{6 R x_{1}}$. This shows that the tangents of the deflection angles are to each other as the squares of the abscissas. Now if a tangent be drawn to the curve at any point, as c, the tangent of the angle it makes with $A E$ is by equation (2) $\frac{d y}{d x}=$ $\frac{x^{2}}{2 R x_{1}}$. This is exactly three times the tangent of the deflection angle just found for the same point. This relation being a general one, we have at $C, \tan . C A E=\frac{1}{8} \tan . C F E$ or $\tan . \delta_{n}=$ $\frac{1}{8} \tan . \Delta$. All these angles are ordinarily so small that the angles themselves may be substituted for their tangents. It follows that the deflection angles are to each other as the squares of the abscissas, and that $\delta_{n}=\frac{1}{8} \Delta$. Taking $\Delta=.3 n D$, as found above, we have $\delta_{n}=\frac{1}{8} \Delta=\frac{n D}{10}$, and $\delta_{1}=\frac{\delta_{n}}{n^{2}}=\frac{D}{10 n}$. The successive angles to be laid off from $A E$ with the transit at A are therefore $\delta_{1}=\frac{D}{10 n}, \delta_{2}=4 \delta_{1}, \delta_{3}=9 \delta_{1}, \cdots \cdots \delta_{n}=n^{2} \delta_{1}$. The annexed table gives the necessary data for curves from 60 to 300 feet in length. D is the deflection angle of the central curve for 100 feet chords. For any other chord c multiply the values given by $\frac{100}{c}$.

Thus if D were the deflection angle for 50 feet chords, we should have $\Delta=.6 n D, \delta_{n}=\frac{n D}{5}$, and $\delta_{1}=\frac{D}{5 n}$.

TABLE B.

n	$\Delta=.3 n D$	$\delta n=\frac{n D}{10}$	$\delta_{1}=\frac{D}{10 n}$
2	$.6 D$	$.2 D$	$\frac{1}{20} D$
3	$.9 D$	$.3 D$	$\frac{1}{30} D$
4	$1.2 D$	$.4 D$	$\frac{1}{40} D$
5	$1.5 D$	$.5 D$	$\frac{50}{50} D$
6	$1.8 D$	$.6 D$	$\frac{1}{60} D$
7	$2.1 D$	$.7 D$	$\frac{1}{10} D$
8	$2.4 D$	$.8 D$	$\frac{1}{80} D$
9	$2.7 D$	$.9 D$	$\frac{1}{90} D$
10	$3.0 D$	$1.0 D$	$\frac{10}{10} D$

125. Example. Taking the data of the example in § 122 , we have $n=8, D=3^{\circ} 20^{\prime}=200^{\prime}$. Table B, for $n=8$, gives $\Delta=2.4$ $D=8^{\circ}, \delta_{n}=.8 D=2^{\circ} 40^{\prime}$, and $\delta_{1}=\frac{1}{8 \sigma} D=2^{\prime} .5$. Multiplying by the successive squares, $4,9,16$, etc., we have $\delta_{1}=2^{\prime} .5, \delta_{2}=10^{\prime}$, $\delta_{3}=22^{\prime} .5, \delta_{4}=40^{\prime}, \delta_{5}=1^{\circ} 2^{\prime} .5, \delta_{6}=1^{\circ} 30^{\prime}, \delta_{7}=2^{\circ} 2^{\prime} .5$.

To lay out the circular curve, set the transit at C, reverse from A, and from the line $A C$ thus produced turn off an angle, to the left or right as the case may require, equal to $2 \delta_{n}$. The line of sight will now be tangent to the circular curve.

Article II.-The Cubic Parabola applied to an Existing Circular Track.

126. Let $A^{\prime} P Q$ (fig. 58) be the existing track of radius $O A^{\prime}=$ $O P=R$, and tangent at A^{\prime} to $A^{\prime} L$. From a point P on this curve a circular curve $G C P$ of radius $O^{\prime} P=R^{\prime}$, less than R, is drawn, and having the same central angle as $A^{\prime} P Q$. It has, therefore, its tangent $G M$ parallel to $A^{\prime} L . \quad A B C$ is a cubic parabola, running from a point A on the tangent of the original curve to a point C on the new circular curve. Produce $O^{\prime} G$ to H, and draw the chords $A^{\prime} P$ and $G P$. These chords are on the same straight line, because the angle $P G M$ is half the central angle at O^{\prime} and the angle $P A^{\prime} L$ is half the equal central angle at O ($(\underset{5}{2}$, III.). Now from the properties of the cubic parabola, already explained (§116), we know that $A E=x_{1}$ may be taken as
bisected at H, and that the shift $G H=s=\frac{x_{1}{ }^{2}}{24 R^{\prime}}$, or puttrng $x_{1}=30 n(\S 119)$, and for R^{\prime} its value $\frac{50}{\sin . D^{\prime}}$, we have $s=$ $\frac{8}{8} n^{2} \sin$. D^{\prime}, and $y=E C=4 s=3 n^{2} \sin$. D^{\prime}. To obtain D^{\prime} we

Fig. 58.

have $\sin . D^{\prime}: \sin . D=R: R^{\prime}$. If we put $R^{\prime}=m R, m$ being any assumed proper fraction, $\sin . D^{\prime}=\frac{\sin . D}{m}$.
Now A^{\prime} is a fixed point on the ground, and if we find the distance $A^{\prime} H$ to the centre of x_{1}, the points A and E can be found by simply measuring $\frac{1}{2} x_{1}=15 n$ each way from H. To fix the point $P, A^{\prime} L$ and $P L$ must be found.
Consider $P M$ and $C N$ to be tangent offsets to the curve $G C P$ from the tangent $G M$, and we have, very closely, $G M: G N=$ $\checkmark P M: \vee C N$, or $G M=G N \sqrt{\frac{P M}{C N}}$. Now $G H$ or $s: P M=$ $A G: G P=O O^{\prime}: O^{\prime} P=R-m R: m R=1-m: m . \therefore P M=$ $\frac{m s}{1-m}$. Also, $C N=E C-E N=4 s-s=3 s \cdot \frac{P M}{C N}=$
$\frac{m}{3(1-m)}$. Substituting this value of $\frac{P M}{C N}$ in the expression for $G M$, we have $G M=G N \sqrt{\frac{m}{3(1-m)}}=15 n \sqrt{\frac{m}{3(1-m)}}$. Now $A^{\prime} H: G M=O O^{\prime}: O^{\prime} P=1-m: m . \therefore A^{\prime} H=\frac{G M(1-m)}{m}$ $=\frac{15 n(1-m)}{m} \sqrt{\frac{m}{3(1-m)}}$. Squaring $\frac{1-m}{m}$, and putting it under the radical, we have, after reduction, $A^{\prime} H=15 n \sqrt{\frac{1-m}{3 m}}$. Next, $A^{\prime} L: A^{\prime} H=O P: O O^{\prime}=1: 1-m . \therefore A^{\prime} L=\frac{A^{\prime} H}{1-m}=$ $\frac{15 n}{1-m} \sqrt{\frac{1-m}{3 m}}$. Squaring the denominator $1-m$, and putting it under the radical, and reducing, we have $A^{\prime} L=15 n$ $\sqrt{\frac{1}{3 m(1-m)}} \cdot$ Lastly, $P L=P M+M L=\frac{m s}{1-m}+s=$ $\frac{s}{1-m}$.
In deciding upon a proper value for m, it is obvious that R^{\prime} should not differ much from R. If we make $m=.9$, the change would not be too great. This value also simplifies the formule very much. Making $m=.9$, we have
$\square A^{\prime} H=\frac{5 n \vee 3}{3}, A^{\prime} L=\frac{50 n v 3}{3}$, and $P L=10 s=2.5 y_{1}$.
For the central angle $G O^{\prime} C=\Delta^{\prime}$ of the transition curve, we have, as before $(\S 119), \sin . \Delta^{\prime}=.3 n \sin . D^{\prime}$, and for $\Delta=A^{\prime} O P$, we have $\sin . \Delta=\frac{A^{\prime} L}{R}=\frac{50 n \vee 3}{3 R}=\frac{50 n \sin . D \vee 3}{150}=\frac{n}{3} \sin . D \vee 3=$ $.3 n \mathrm{sin} . D^{\prime} \vee 3$. The central angle of $C P$, the new circular curve, is $C O^{\prime} P=\Delta-\Delta^{\prime}$. In the expressions for $\sin . \Delta^{\prime}$ and $\sin . \Delta$ substitute the angles themselves for their sines, and we have $\Delta^{\prime}=$ $.3 n D^{\prime}$ and $\Delta=.3 n D^{\prime} \vee 3$ and $\Delta-\Delta^{\prime}=.3 n D^{\prime}(\vee 3-1)=$ $.22 n D^{\prime}$, nearly.
127. Table C gives the values of these expressions, and also those of y_{1} and d_{1} for values of n from 2 to 10 . As already shown, $\sin . D^{\prime}=\frac{10}{9} \sin . D$, or, more simply, $D^{\prime}=\frac{10}{9} D . \quad D$ and D^{\prime} are deflection angles for 100 feet chords, but it is easy to modify the expressions for other chords.

TABLE C .

n	x_{1}	$A^{\prime} H$	$A^{\prime} L$	y_{1}	d_{1}	$P L$	Δ^{\prime}	$\Delta-\Delta^{\prime}$
2	60	5.77	57.74	$12 \sin . D^{\prime}$	$\frac{3}{2} \sin . D^{\prime}$	$2.5 y_{3}$. $6 D^{\prime}$. $44 D^{\prime}$
3	90	8.66	86.60	$27 \sin . D^{\prime}$	$\sin . D^{\prime}$	$2.5 y_{1}$. $9 D^{\prime}$. $66 D^{\prime}$
4	120	11.55	115.47	$48 \sin . D^{\prime}$	$\frac{3}{4} \sin . D^{\prime}$	$2.5 y_{1}$	$1.2 D^{\prime}$. $88 \mathrm{D}^{\prime}$
5	150	14.43	144.34	$75 \sin . D^{\prime}$	$\frac{3}{8} \sin . D^{\prime}$	$2.5 y_{1}$	$1.5 D^{\prime}$	$1.10 \mathrm{D}^{\prime}$
6	180	17.32	173.21	$108 \sin . D^{\prime}$	$\frac{1}{2} \sin . D^{\prime}$	$2.5 y_{1}$	$1.8 D^{\prime}$	$1.32 D^{\prime}$
7	210	20.21	202.07	$147 \mathrm{sin} . D^{\prime}$	$\frac{3}{7} \sin . D^{\prime}$	$2.5 y_{1}$	$2.1 D^{\prime}$	$1.54 D^{\prime}$
8	240	23.09	230.94	$192 \sin . D^{\prime}$	$\frac{3}{8} \sin . D^{\prime}$	$2.5 y_{1}$	$2.4 D^{\prime}$	$1.76 D^{\prime}$
9	$2 \% 0$	25.98	259.80	$243 \mathrm{sin} . D^{\prime}$	$\frac{1}{3} \sin . D^{\prime}$	$2.5 y_{1}$	$2.7 D^{\prime}$	$1.98 D^{\prime}$
10	300	28.87	288.68	$300 \mathrm{sin} . D^{\prime}$	$\frac{3}{10} \sin . D^{\prime}$	$2.5 y_{1}$	$3.0 D^{\prime}$	$2.20 D^{\prime}$

128. Example. Given the deflection angle $D=3^{\circ}$ of an existing circular track $A^{\prime} P Q$ (fig. 58). We have for the deflection angle of the curve $G C P, D^{\prime}=\frac{10}{9} D=3^{\circ} 20^{\prime}$. Take $x_{1}=150$ feet, and we have from Table C, for $n=5, A^{\prime} H=14.43, A^{\prime} L=144.34$, $y_{1}=75 \sin .3^{\circ} 20^{\prime}=75 \times .05814=4.36, d_{1}=.6 \times .05814=.03488$, and $P L=10.90$. From the known tangent point A^{\prime} of the existing track $A^{\prime} P Q$, we measure 14.43 feet to H, and from $H 75$ feet each way to A and E. Then the point P is fixed by $A^{\prime} L=144.34$ and $P L=10.90$. The transition curve is then put in by offsets from the tangent $A E$. These offsets are $d_{1}=.03488, d_{2}=8 d_{1}=.279$, $d_{3}=27 d_{1}=.942, d_{4}=64 d_{1}=2.232, d_{5}=y_{1}=4.36$. The central angle of the short circular curve $C P$ is $\Delta-\Delta^{\prime}=1.1 D^{\prime}=3^{\circ} 40^{\prime}$. As the central angle of this curve for a chord of 100 feet is $2 D^{\prime}$, the chord $C P$ will be the same part of 100 feet that $1.1 D^{\prime}$ is of $2 D^{\prime}$ or 55 feet, and if the work is correct, this will be the distance on the ground. A further check would be to find the tangent at C, and compute the proper offset to P. In regard to this check, it should be observed that the value $P L=2.5 y_{1}$ is not exact, as it depends upon the assumption that $C N: P M=G N^{2}: G M^{2}$, which is not strictly true. $P L$ may be computed accurately by the formula $P L=R-O K=R-\sqrt{R^{2}-A^{\prime} L^{2}}$. The radical under the form $\sqrt{\left(R+A^{\prime} L\right)\left(R-A^{\prime} L\right)}$ is easily computed by logarithms. In the present case we should find $P L=10.966$.
129. Length of Curve in Terms of its Chords.-The length of a transition curve, as measured by the sum of the chords used in laying it out, is slightly in excess of the abscissa x_{1}. This excess is generally so small that it may be neglected. When, however, the curve is long, and the deflection angle of the circular curve
large, a method of calculating the excess may be desirable. Each chord is the hypothenuse of a right-angled triangle, whose base is 30 feet, and perpendicular the difference between two successive tangent offsets. These offsets are $d_{1}, 8 d_{1}, 27 d_{1}, 64 d_{1}$, etc., and the successive differences or perpendiculars are $d_{1}, 7 d_{1}, 19 d_{1}, 37 d_{1}$, etc. Let p denote any one of these perpendiculars, and for the corresponding chord c we have $c=\sqrt{30^{2}+p^{2}}$. By developing this radical, and retaining the first two terms only of the root, we have $c=30+\frac{p^{2}}{60}$, nearly. Substituting for p its successive values, the excess of the first chord will be $\frac{d_{1}{ }^{2}}{60}$, of the second chord, $\frac{49 d_{1}{ }^{2}}{60}$, of the third, $\frac{361 d_{1}{ }^{2}}{60}$, etc. For a curve of n chords we should have for e, the total excess, $e=\frac{d_{1} 1^{2}}{60}\left(1^{2}+\tau^{2}+19^{2}+37^{2}+\right.$ etc.), the parenthesis containing always n terms of the series. For d_{1} substitute its value already found $d_{1}=\frac{3 \sin . D}{n}(\$ 120), D$ being the deflection angle of the circular curve for 100 feet chords, and we have, after reducing, $e=\frac{.15 \sin .^{2} D}{n^{2}}\left(1^{2}+7^{2}+19^{2}+37^{2}+\right.$ etc.). If e is computed by this formula for $D=1^{\circ}$, and different values of n, the excess for any other deflec-

e_{2}	.00057
e_{3}	.00209
e_{4}	00508
e_{5}	01005
e_{8}	.01749
e_{7}	.02789
e_{8}	.04174
e_{9}	.05954
e_{10}	08178

130. Example. Given the deflection angle of the circular curve $=3 \frac{1}{2}^{\circ}=\frac{7}{2}^{\circ}$, and $n=6$, to find the excess of the length of the transition curve measured by its chords over x_{1}. Here we multiply e_{0} in the table by $\left(\frac{7}{2}\right)^{2}=\frac{49}{4}$, and we have the excess $e=.01749$ $\times \frac{49}{4}=.21425$. For $n=6, x_{1}=180$, so that the length of the curve by chords is 180.214 .

Article III.-Curving the Rails.

131. To secure the greatest ease of motion on a transition curve, it is of importance that the rails be properly curved. To do this we must have, as on a circular curve ($\S 28$), the middle ordinate and the ordinates at the quarter points. We there found that the ordinates at the quarter points were each $\frac{8}{4} m, m$ being the middle ordinate. Here we shall find that the ordinate at the first quarter point is slightly less than $\frac{8}{4} \mathrm{~m}$ and the ordinate at the second quarter point slightly greater than $\frac{8}{4} \mathrm{~m}$. This is what might be expected from the gradual increase of the curvature.

Let $A G B$ (fig. 59) be a rail length on any part of a transition curve, and $C D$ its projection on the axis of x. Let C be distant

Fig. 59.
from the origin r rail lengths, and D distant $r+1$ rail lengths, r being a whole or fractional number. Let d_{1}, as above, denote the tangent offset at the end of the first rail length from the origin. Then the offset $A C=r^{3} d_{1}$, and the offset $B D=(r+1)^{3} d_{1}$. The middle ordinate for curving the rail will be $m=G F=E F$ $E G$. Now $E F=\frac{1}{2}(A C+B D)=\left(r^{3}+r^{3}+3 r^{2}+3 r+1\right) \frac{d_{2}}{2}=$ $\left(r^{3}+\frac{3}{2} r^{2}+\frac{3}{2} r+\frac{1}{2}\right) d_{1}$ and $E G=\left(r+\frac{1}{2}\right)^{3} d_{1}=\left(r^{3}+\frac{3}{2} r^{2}+\frac{8}{4} r+\frac{1}{4}\right) d_{1}$. Subtracting and reducing, we have

$$
m=\frac{8}{8}(2 r+1) d_{1}
$$

In a similar way the ordinates $H I$ and $K L$ at the quarter points are found. They are

$$
\begin{aligned}
& H I=\left(\frac{9}{16} r+\frac{15}{6}\right) d_{1}=\frac{8}{4} m-\frac{3}{64} d_{1}, \\
& K L=\left(\frac{9}{16} r+\frac{21}{64}\right) d_{1}=\frac{8}{4} m+\frac{3}{64} d_{1},
\end{aligned}
$$

If the curve does not begin at a joint, that part of a rail that comes on the curve may be curved by finding the proper tangent
offset for its length, and bending the end from the straight line a distance equal to the offset. As the tangent offset for a whole rail is d_{1}, the offset for a fraction will be d_{1} multiplied by the cube of the fraction. Thus, if the fraction is .8 the offset would be $.512 d_{1}$. Except in extreme cases, this offset is so small that the rail remains practically straight.

If the curve begins at a joint the middle ordinates for the successive rails will be obtained by making r successively $0,1,2,3$, etc. Denoting these ordinates by m_{1}, m_{2}, m_{3}, etc., we have $m_{1}=$ $\frac{8}{8} d_{1}, m_{2}=\frac{9}{8} d_{1}, m_{3}={ }_{8}^{15} d_{1}$, etc., or $m_{1}=\frac{8}{8} d_{1}, m_{2}=3 m_{1}, m_{3}=$ $5 m_{1}, m_{4}=7 m_{1}$, etc. Taking three fourths of these ordinates, and subtracting and adding $\frac{3}{64} d_{1}$, we have the quarter point ordinates.

Article IV.-Compound Transition Curve.

132. Transition curves of this kind consist of successive circular ares, the deflection angles of which are such that if D is the deflection angle of the first are, that of the second is $2 D$, that of the third $3 D$, and so on. The chords are all of the same length. A curve of this kind $A B C D$ (fig. 60) may be readily laid out by offsets from the tangent $A I$, measuring at the same time the successive chords. Let c represent the length of each chord, n their number, and let D be the deflection for the first chord, $2 D$ that for the second chord, $3 D$ that for the third chord, and so on to the deflection angle of the last chord, which will be $n D$. Then it is easily seen that the angles $T_{1} A B, T_{2} B C, T_{3} C D$, etc., will

Fig. 60.
be successively $D, 4 D, 9 D, 16 D$, etc., up to $n^{2} D$. Calling the required offsets from the tangent $A I, d_{1}, d_{2}, d_{3}$, etc., and recollecting that, since these angles are all small, we may put $\sin .4 D=$ $4 \sin . D, \sin .9 D=9 \sin . D$, etc., we have $d_{1}=c \sin . D, d_{2}=d_{1}+$ $4 c \sin . D=d_{1}+4 d_{1}=5 d_{1}, d_{3}=d_{2}+9 c \sin . D=5 d_{1}+9 d_{1}=$
$14 d_{1}$, etc., the successive offsets being formed by multiplying d_{1} by the terms of the series $1,5,14,30,55,91$, etc., formed by the successive additions of the squares of the natural numbers.

More accurate values of the offsets may be obtained thus. From the table of natural sines, set down in a column $\sin . D, \sin .4 D$, $\sin .9 D$, etc., up to $\sin . n^{2} D$. Then for d_{1}, d_{2}, d_{3}, etc., multiply successively by c the first number so set down, the sum of the first two numbers, the sum of the first three numbers, and so on, until for d_{n} multiply by c the sum of the whole column.

The projections of the chords $A T_{1}, B T_{2}, C T_{3}$, etc., may be found thus. $A T_{1}=c \cos . D, B T_{2}=c \cos .4 D, C T_{3}=c \cos .9 D$, etc. From the table of natural cosines, set down in a column $\cos . D, \cos .4 D, \cos .9 D$, etc., up to $\cos n^{2} D$. Denote by p_{1}, p_{2}, p_{3}, etc., respectively, the first projection, the sum of the first two projections, the sum of the first three projections. Then to obtain p_{1}, p_{2}, p_{3}, etc., multiply successively by c the first number in the column, the sum of the first two numbers, the sum of the first three numbers, and so on, until for p_{n} multiply by c the sum of the whole column.
133. We have now to find (fig. 61) $A I=T$, when R the radius of the central curve is given, or to find R, when T is given. In

both cases the intersection angle I is supposed to be known, and the number n of chords in the transition curve to be assumed.
134. Problem. Given the intersection angle I and the radius $O C=R$ or the deflection angle D^{\prime} of $C M$, the main or central curve (fig. 61), to find the deflection angle D for the first arc
of the transition curve $A C$, the coördinates $A E=a$ and $E C=$ b of the point C, and the tangent $A I$.

Solution. Let the number of chords in $A C$ be denoted by n, and the length of each chord by $c . C M$ is half the central curve, so that the angle $H O I=\frac{1}{2} I$. Run $C M$ back to G, where its tangent becomes parallel to $A I$, and draw $O G H$ and $C K$. Denote the deflection angle of the central curve for a chord equal to c by D^{\prime}. This deflection angle is either given directly, or found from that given for a different chord. Then as D is the deflection angle of the first chord on $A C$, the deflection angle for the last chord will be $n D$, and for the first on $C M,(n+1) D=D^{\prime}$

$$
\therefore D=\frac{D^{\prime}}{n+1}
$$

Having D, we have also (§132) d_{1}, d_{2}, d_{3}, etc. From the preceding section, we have

$$
\begin{gathered}
a=A E=c\left(\cos D+\cos 4 D+\cos .9 D+\cdots \cos n^{2} D\right) \\
=n c, \text { nearly. }
\end{gathered}
$$

㳔 $b=E C=c\left(\sin . D+\sin .4 D+\sin .9 D+\cdots \sin . n^{2} D\right)$ $=d_{1}\left(1+4+9+\cdots \cdot n^{2}\right)$, nearly
To find T we have $T=A H+H I$. Now $A H=A E-H E=$ $a-R \sin . C O G$. The angle $C O G$ is the sum of the.central angles of the seyeral ares of $A C$. The central angle of the first arc is twice its deflection angle, or $2 D$, that of the second arc is $2 \times$ $2 D$, of the third $2 \times 3 D$, etc. Denote the sum of these angles by a, and we have

$$
\alpha=2 D(1+2+3+\cdots n)=n(n+1) D .
$$

Therefore $A H=A E-H E=a-R \sin . \alpha$.
Next, $H I=O H \tan . H O I=(E C+O K) \tan$. $\frac{1}{2} I$, or $H I=$ $(b+R \cos . a) \tan \cdot \frac{1}{2} I$. Substituting these values of $A H$ and $H I$, we have

Q $\quad T=a-R \sin . \alpha+(b+R \cos . \alpha) \tan$. $\frac{1}{2} I$.
An approximate formula for T, generally accurate enough in practice, may be found thus. Consider $H E$ to be equal in length to the arc $G C$ and find the length of $G C$ in chords of length c by dividing half its central angle or $\frac{1}{2} \alpha$ by its deflection angle $D^{\prime}=(n+1) D$. Hence $H E=\frac{\frac{1}{2} c n(n+1) D}{(n+1) D}=\frac{1}{2} n c$, and $A H=$ $A E-H E=n c-\frac{1}{2} n c=\frac{1}{2} n c . \quad$ Also, $H I=O H \tan . \frac{1}{2} I=$
$(R+G H) \tan$. $\frac{1}{2} I$. Omit $G H$ as small relatively to R, and we have $H I=R \tan . \frac{1}{2} I$. Substituting these values of $A H$ and $H I$ in the formula $T=A H+H I$, we have

$$
T=\frac{1}{2} n c+R \tan . \frac{1}{2} I, \text { nearly. }
$$

135. Example. Given $1=42^{\circ}$, the deflection angle of the central curve $=2^{\circ}$ for 100 feet chords, $n=5$, and $c=30$, to find the deflection angle D of the first are of the transition curve $A C$ (fig. 61), the coördinates a and b of the point C, and the tangent $A I=T$.
Here the deflection angle of the central curve for 30 feet chords is $D^{\prime}=\frac{30}{100} \times 2^{\circ}=36^{\prime}$ and $D=\frac{D^{\prime}}{n+1}=\frac{36^{\prime}}{6}=6^{\prime}$, and $d_{1}=$ $c \sin . D=30 \times .001745=.05235$. Computing by the exact formulæ we find $a=149.956, b=2.879$, and $T=625.24$. By the approximate formulæ, we find $a=150, b=2.879$, and $T=624.85$.
136. Problem. Given the intersection angle I, and the tangent $A I=T$, to find the radius $O C=R$ of the central curve $C M(f i g .61)$.

Solution. From the preceding section we have $T=\frac{1}{2} n c+$ $R \tan$. $\frac{1}{2} I$, nearly.

$$
\therefore R=\left(T-\frac{1}{2} n c\right) \cot \cdot \frac{1}{2} I, \text { nearly. }
$$

This approximate value of R may now be substituted in the exact formula for T in the preceding section, and if the value of T thus found does not change the tangent point too much, this value of
R may stand, and D^{\prime}, D, and the other requisite data be computed.
The principal inaccuracy in the formula for R is due to dropping $G H$ in the expression for $H I$, above. If we retain $G H$, we should find

$$
R=\left(T-\frac{1}{2} n c\right) \cot . \frac{1}{2} I-G H .
$$

To get a more accurate value of R, subtract $G H$, which may be computed by the formula $G H=E C-K G=b-R(1-\cos . \alpha)$.
Generally, however, the approximate value of R would be used only for finding a convenient deflection angle for the central curve-that is, one not involving seconds. A new value of R would result, and a new value of T would have to be computed.
137. To run the central curve $C M$, we must be able to fix the common tangent CFF. This may be readily done if we find the distance $F E$. Now in the triangle $C F E$ the angle $\dot{C} F E$ has its sides perpendicular to those of the angle $C O G$, and is, therefore, $=\alpha=n(n+1) D$.

$$
\quad \therefore F E=b \text { cot. } \alpha=b \cot . n(n+1) D \text {. }
$$

The central angle of the central curve will be $2 G O M-2 \alpha=$ $I-2 n(n+1) D$, and the number of chords will be found in the usual way by dividing the central angle by twice the deflection angle used in laying out the curve.
137. Remark. There are certain advantages in beginning a transition curve at a joint. The ends of each rail would then be definttely fixed by the offsets, and the rails could be more satisfactorily curved. It would be easier to maintain the track in its proper position, if the trackmen knew that the tangent point was at a joint, and when the rails were renewed, the new rails would be more likely to be properly curved, and placed in their true position.

CHAPTER IV.

LEVELLING.

Article I.-Heights and Slope Stakes.

138. The Level is an instrument consisting essentially of a telescope, supported on a tripod of convenient height, and capable of being so adjusted that its line of sight shall be horizontal, and that the telescope itself may be turned in any direction on a vertical axis. The instrument when so adjusted is said to be set.
The line of sight, being a line of indefinite length, may be made to describe a horizontal plane of indefinite extent, called the plane of the level.
The levelling rod is used for measuring the vertical distance of any point, on which it may be placed, below the plane oi the level. This distance is called the sight on that point.
139. Problem. To find the difference of level of two points, as A and B (fig. 62).

Solution. Set the level between the two points,* and take sights on both points. Subtract the less of these sights from the greater, and the difference will be the difference of level required. For if $F P$ represent the plane of the level, and $A G$ be drawn through A parallel to $F P, A F^{\prime}$ will be the sight on A, and $B P$ the sight on B. Then the required difference of level $B G=$ $B P-P G=B P-A F$.
If the distance between the points, or the nature of the ground, makes it necessary to set the level more than once, set down all the backward sights in one column and all the forward sights in another. Add up these columns, and take the less of the two sums from the greater, and the difference will be the difference of level required. Thus, to find the difference of level between A and D (fig. 62), the level is first set between A and B, and sights

[^9]are taken on A and B; the level is then set between B and C, and sights are taken on B and C; lastly, the level is set between C^{\prime} and D, and sights are taken on C and D. Then the difference of level between A and D is $E D=(B P+K C+O D)-$ $\left(A F+B I+N C^{\prime}\right)$. For $E D=$ $H C-L C=H M+M C-L C$. But $H M=B G=B P-A F, M C$ $=K C-B I$, and $L C=N C-$ $O D$. Substituting these values, we have $E D=B P-A F+K C-$ $B I-N C+O D=(B P+K C+$ $O D)-(A F+B I+N C)$.
140. It is often convenient to refer all heights to an imaginary level plane called the datum plane. This plane may be assumed at starting to pass through, or at some fixed distance above or below, any permanent object, called a bench-mark, or simply a bench. It is most convenient, in order to avoid minus heights, to assume the datum plane at such a distance below the bench-mark, that it will pass below all the points on the line to be levelled. Thus if $A B$ (fig. 63) were part of the line to be levelled, and if A were the starting point, we should assume the datum plane $C D$ at such a distance below some permanent object near A, as would make it pass below all the points on the line. If, for instance, we had reason to believe that no point on this line was more than 15 or 20 feet below A, we might safely
 assume $C D$ to be 25 feet below the bench near A, in which case all the distances from the line to the datum plane would be positive. Lines before being levelled are
usually divided into regular stations, the height of each of which above the datum plane is required.

141. Problem. To find the heights above a datum plane of the several stations on a given line.

Solution. Let $A B$ (fig. 63) represent a portion of the line, divided into regular stations, marked $0,1,2$, $3,4,5, \& c$. , and let $C D$ represent the datum plane, assumed to be 25 feet below a bench-mark near A. Suppose the level to be set first between stations 2 and 3 , and a sight upon the bench-mark to be taken, and found to be 3.125. Now as this sight shows that the plane of the level $E F$ is 3.125 feet above the bench-mark, and as the datum plane is 25 feet below this mark, we shall find the height of the plane of the level above the datum plane by adding these heights, which gives for the height of $E F, 25+3.125=28.125$ feet. This height may for brevity's sake be called the height of the instrument, meaning by this the height of the line of sight of the instrument.

If now a sight be taken on station 0 , we shall obtain the height of this station above the datum plane, by subtracting this sight from the height of the instrument; for the height of this station is $0 C$ and $0 C=E C$ $E 0$. Thus if $E 0=3.413,0 C=$ $28.125-3.413=24.712 . \quad$ In like manner, the heights of stations 1,2 , 3,4 , and 5 may be found, by taking sights on them in succession, and subtracting these sights from the
height of the instrument. Suppose these sights to be respectively $3.102,3.827,4.816,6.952$, and 9.016 , and we have

Next, set the level between stations 7 and 8 , and, as the height of station 5 is known, take a sight upon this point. This sight, being added to the height of station 5, will give the height of the instrument in its new position; for $G K=G 5+5 K$. Suppose this sight to be $G 5=2.740$, and we have $G K=19.109+2.740=$ 21.849. A point like station 5 , which is used to get the height of the instrument after resetting, is called a turning point. The height of the instrument being found, sights are taken on stations $6,7,8,9,10$, and the heights of these stations found by subtracting these sights from the height of the instrument. Suppose these sights to be respectively $3.311,4.027,3.824,2.516$, and 0.314 , and we have

The instrument is now again carried forward and reset, station 10 is used as a turning point to find the height of the instrument, and everything proceeds as before.
At convenient distances along the line, permanent objects are selected, and their heights obtained and preserved, to be used as starting points in any further operations. These are also called benches. Let us suppose, that a bench has been thus selected near station 9 , and that the sight upon it from the instrument, when set between stations 7 and 8 , is 2.635 . Then the height of this bench will be $21.849-2.635=19.214$.
142. From what has been shown above, it appears that the first thing to be done, after setting the level, is to take a sight upon some point of known height, and that this sight is always to be added to the known height, in order to get the height of the in-
strument. This first sight may therefore be called a plus sight. The next thing to be done is to take sights on those points whose heights are required, and to subtract these sights from the height of the instrument, in order to get the required heights. These last sights may therefore be called minus sights.
143. The field notes are kept in the following form: The first column in the table contains the stations, and also the benches marked B., and the turning points marked t. p., except when coincident with a station. The second column contains the plus sights; the third column shows the height of the instrument; the fourth contains the minus sights; and the fifth contains the heights of the points in the first column. The height of the bench

Station.	+ S.	H. I.	-S.	H.
B.	3.125			25.000
0		28.125	3.413	24.712
1			3.102	25.023
2			3.827	24.298
3			4.816	23.309
4			6.952	21.173
5	2.740		9.016	19.109
6		21.849	3.311	18.538
7			4.027	17.822
8			3.824	18.025
9			2.516	19.333
B.			2.635	19.214
10			0.314	21.535

is set down as assumed above, namely, 25 feet; the first plus sight is set opposite B., on which point it was taken, and, being added to the height in the same line, gives the height of the instrument, which is set opposite 0 ; the minus sights are set opposite the points on which they are taken, and, being subtracted from the height of the instrument, give the heights of these points, as set down in the fifth column. The minus sights are subtracted from the same height of the instrument, as far as the turning point at station 5, inclusive. The plus sight on station 5 is set opposite this station, and a new height obtained for the instrument by adding the plus sight to the height of the turning point. This new height of the instrument is set opposite station 6 , where the minus sights to be subtracted from it commence. These sights are again set opposite the points on which they were taken, and, being sub-
tracted from the new height of the instrument, give the heights in the last column.
144. Problem. To set slope stakes for excavations and embankments.

Solution. Let $A B H K C$ (fig. 64) be a cross-section of a proposed excavation, and let the centre cut $A M=c$, and the width of the road-bed $H K=b$. The slope of the sides $B H$ or $C K$ is usually given by the ratio of the base $K N$ to the height $E N$.

Suppose, in the present case, that $K N: E N=3: 2$, and we have the slope $=\frac{3}{2}$. Then if the ground were level, as $D A E$, it is evident that the distance from the centre A to the slope stakes at D and E would be $A D=A E=M K+K N=\frac{1}{2} b+\frac{3}{2} c$. But as the ground rises from A to C through a height $C G=g$, the slope stake must be set farther out a distance $E G=\frac{3}{2} g$; and as the ground falls from A to B through a height $B F=g$, the slope stake must be set farther in a distance $D F=\frac{3}{2} g$.

To find B and C, set the level, if possible, in a convenient position for sighting on the points A, B, and C. From the known cut at the centre find the value of $A E=\frac{1}{2} b+\frac{3}{2} c$. Estimate by the eye the rise from the centre to where the slope stake is to be set, and take this as the probable value of g. To $A E$ add $\frac{3}{2} g$, as thus estimated, and measure from the centre a distance out, equal to the sum. Obtain now by the level the rise from the centre to this point, and if it agrees with the estimated rise, the distance out is correct. But if the estimated rise prove too great or too small, assume a new value for g, measure a corresponding distance out, and test the accuracy of the estimate by the level, as before. These trials must be continued, until the estimated rise agrees sufficiently well with the rise found by the level at the corresponding distance out. The distance out will then be $\frac{1}{2} b+\frac{3}{2} c+\frac{3}{2} g$.

The same course is to be pursued, when the ground falls from the centre, as at B; but as g here becomes minus, the distance out, when the true value of g is found, will be $A F=A D-D F=$ $\frac{1}{2} b+\frac{3}{2} c-\frac{3}{8} g$.

For embankment, the process of setting slope stakes is the same as for excavation, except that a rise in the ground from the centre on embankments corresponds to a fall on excavations, and vice versâ. This will be evident by inverting figure 64 , which will then represent an embankment. What was before a fall to B, becomes now a rise, and what was before a rise to C, becomes now a fall.
When the section is partly in excavation and partly in embankment, the method above applies directly only to the side which is in excavation at the same time that the centre of the road-bed is in excavation, or in embankment at the same time that the centre is in embankment. On the opposite side, however, it is only necessary to make c in the expressions above minus, because its effect here is to diminish the distance out. The formula for this distance out will, therefore, become $\frac{1}{2} b-\frac{3}{2} c+\frac{3}{2} g$.

In these formulæ the ratio of the base to the height of a slope, as $K N: E N$, has been taken as $\frac{3}{2}$, the ordinary ratio in earth. This ratio will, of course, differ in different materials, and may in general be denoted by s. By substituting s for $\frac{3}{2}$ in the preceding formulx they apply to all slopes.

The following process is often of advantage in setting slope stakes. Figure 65 represents the operation at three successive stations:

Let $C C C$ represent the datum plane, " $B C=$ height of instrument $=H$,

Let $C D=$ height of road-bed $=h$,
" $A B=$ sight on the ground at the supposed place of side-stake $=S$,
" $A D=$ the side cut (minus cuts are fills) $=c^{\prime}$;
then in all three of the cases represented

$$
\begin{aligned}
& A D=B C \sim C D-A B, \\
& \text { or } c^{\prime}=H-h-S .
\end{aligned}
$$

Having thus the side-cut or fill at the supposed place for a slope stake, we have for the distance out (slope 1.5 to 1) $d=$ $\frac{1}{2} b+\frac{3}{2} c^{\prime}$.

For the same setting of the instrument $H-h$ is constant for any one cross-section, and varies with h from one station to another.
It is obvious that the cut or fill at any point between the side stakes can be obtained in the same manner.

Article II.-Correction for the Earth's Curvature and for Refraction.
145. Let $A C$ (fig. 66) represent a portion of the earth's surface. Then, if a level be set at A, the line of sight of the level will be the tangent $A D$, while the true level will be $A C$. The difference $D C$ between the line of sight and the true level is the correction for the earth's curvature for the distance $A D$.
146. A correction in the opposite direction arises from refraction. Refraction is the change of direction which light undergoes in passing from one medium into another of different density. As the atmosphere increases in density the nearer it lies to the earth's surface, light, passing from a point B to a lower point A, enters continually air of greater and greater density, and its path is in consequence a curve concave towards the earth. Near the earth's surface this path may betaken as the arc of a circle whose radius is seven times the radius of the earth.* Now a level at A, having its line of sight in the direction $A D$, tangent to the curve $A B$, is in the proper position to receive the light from an object at B; so

[^10]that this object appears to the observer to be at D. The effect of refraction, therefore, is to make an object appear higher than its true position. Then, since the correction for the earth's curvature $D C$ and the correction for refraction $D B$ are in opposite directions, the correction for both will be $B C=D C-D B$. This correction must be added to the height of any object as determined by the level.
147. Problem. Given the distance $A D=D$ (fig. 66), the radius of the earth $A E=R$, and the radius of the arc of refracted light $=7 R$, to find the correction $B C=d$ for the earth's curvature and for refraction.

Solution. To find the correction for the earth's curvature $D C$, we have, by Geometry, $D C(D C+2 E C)=A D^{2}$, or $D C(D C+$ $2 R)=D^{2}$. But as $D C$ is always very small compared with the diameter of the earth, it may be dropped from the parenthesis, and we have $D C \times 2 R=D^{2}$, or $D C=\frac{D^{2}}{2 R}$. The correction for refraction $D B$ may be found by the method just used for finding $D C$, merely changing R into $7 R$. Hence $D B=\frac{D^{2}}{14 R}$. We have then $d=B C=D C-D B=\frac{D^{2}}{2 R}-\frac{D^{2}}{14 R}$, or

$$
d=\frac{3 D^{2}}{7 R}
$$

By this formula Tab. VIII. is calculated, taking $R=20,911,790$ ft., as given by Bowditch. The necessity for this correction may
be avoided, whenever it is possible to set the level midway between the points whose height is required. In this case, as the distance on each side of the level is the same, the corrections will be equal, and will destroy each other.

Article III.-Vertical Curves.

148. Vertical curves are used to round off the angles formed by the meeting of two grades. Let $A C$ and $C B$ (fig. 67) be two grades meeting at C. These grades are supposed to be given by the rise per station in going in some particular direction. Thus, starting from A, the grades of $A C$ and $C B$ may be denoted respectively by g and g^{\prime}; that is, g denotes what is added to the height at every station on $A C$, and g^{\prime} denotes what is added to the height at every station on $C B$; but since $C B$ is a descending grade, the quantity added is a minus quantity, and g^{\prime} will therefore be negative. The parabola furnishes a very simple method of putting in a vertical curve.
149. Problem. Given the grade g of $A C$ (fig. 67), the grade g^{\prime} of $C B$, and the number of stations n on each side of C to the tangent points A and B, to unite these points by a parabolic vertical curve.

Solution. Let $A E B$ be the required parabola. Through B and C draw the vertical lines $F K$ and $C H$, and produce $A C$ to meet $F K$ in F. Through A draw the horizontal line $A K$, and join $A B$, cutting $C H$ in D. Then, since the distance from C to A and B is measured horizontally, we have $A H=H K$, and consequently $A D=D B$. The rertical line $C D$ is, therefore, a diameter of the parabola ($\S 100, \mathrm{I}$), and the distances of the curve in a vertical direction from the stations on the tangent $A F$ are
to each other as the squares of the number of stations from A (§ 100, II.). Thus, if a represent this distance at the first station from A, the distance at the second station would be $4 a$, at the third station $9 a$, and at B, which is $2 n$ stations from A, it would be $4 n^{2} a$; that is, $F B=4 n^{2} a$, or $a=\frac{F B}{4 n^{2}}$. To find a, it will then be necessary to find $F B$ first. Through C draw the horizontal line $C^{\prime} G$, and we have, from the equal triangles $C F^{\prime} G$ and $A C H, F^{\prime} G=C H$. But $C H$ is the rise of the first grade g in the n stations from A to C; that is, $C H=n g$, or $F G=n g . \quad G B$ is also the rise of the second grade g^{\prime} in n stations, but since g^{\prime} is negative (§ 148), we must put $G B=-n g^{\prime}$. Therefore, $F B=$ $F G+G B=n g-n g^{\prime}$. Substituting this value of $F^{\prime} B$ in the equation for a, we have $a=\frac{n g-n g^{\prime}}{4 n^{2}}$, or

迹

$$
a=\frac{g-g^{\prime}}{4 n}
$$

The value of a being thus determined, all the distances of the curve from the tangent $A F$, viz. $a, 4 a, 9 a, 16 a$, \&c., are known. Now if T and T^{\prime} be the first and second stations on the tangent, and vertical lines $T^{\prime} P$ and $T^{\prime \prime} P^{\prime}$ be drawn to the horizontal line $A K$, the height $T P$ of the first station above A will be g, the height $T^{\prime} P^{\prime}$ of the second station above A will be $2 g$, and in like manner for succeeding stations we should find the heights $3 g, 4 g$, \&c. As we have already found $T M=a, T^{\prime} M^{\prime}=4 a$, \&c., we shall have for the heights of the curve above the level of $A, M P=$ $T P-T M=g-a, M^{\prime} P^{\prime}=T^{\prime} P^{\prime}-T^{\prime} M^{\prime}=2 g-4 a$, and in like manner for the succeeding heights $3 g-9 a, 4 g-16 a$, \&c. Then to find the grades for the curve at the successive stations from A, that is, the rise of each height over the preceding height, we must subtract each height from the next following height, thus: $(g-a)-0=g-a,(2 g-4 a)-(g-a)=g-3 a,(3 g-$ $9 a)-(2 g-4 a)=g-5 a,(4 g-16 a)-(3 g-9 a)=g-7 a, \& c$. The successive grades for the vertical curve are, therefore,

$$
\text { 楚 } \quad g-a, g-3 a, g-5 a, g-7 a, \& c .
$$

In finding these grades, strict regard must be paid to the algebraic signs. The results are then general; though the figure represents but one of the six cases that may arise from various combinations
of ascending and descending grades. If proper figures were drawn to represent the remaining cases, the above solution, with due atcention to the signs, would apply to them all, and lead to precisely the same formulæ.
150. Examples. Let the number of stations on each side of C be 3 , and let $A C$ ascend .9 per station, and $C B$ descend .6 per station. Here $n=3, g=.9$, and $g^{\prime}=-.6$. Then, $a=\frac{g-g^{\prime}}{4 n}=$ $\frac{.9-(-.6)}{4 \times 3}=\frac{1.5}{12}=.125$, and the grades from A to B will be

$$
\begin{aligned}
& g-a=.9-.125=.775, \\
& g-3 a=.9-.375=.525, \\
& g-5 a=.9-.625=.275, \\
& g-7 a=.9-.875=.025, \\
& g-9 a=.9-1.125=-.225, \\
& g-11 a=.9-1.375=-.475 .
\end{aligned}
$$

As a second example, let the first of two grades descend .8 per station, and the second ascend .4 per station, and assume two stations on each side of C as the extent of the curve. Here $g=-.8$, $g^{\prime}=.4$, and $n=2$. Then $a=\frac{-.8-.4}{4 \times 2}=\frac{-1.2}{8}=-.15$, and the four grades required will be

$$
\begin{aligned}
& g-a=-.8-(-.15)=-.8+.15=-.65,(-.5)=-.8+.45=-.35, \\
& g-3 a=-.8-(-.75)=-.8+.75=-.05, \\
& g-5 a=-.8-(-.50=-.8-(-1.05)=-.8+1.05=+.25 .
\end{aligned}
$$

It will be seen, that, after finding the first grade, the remaining grades may be found by the continual subtraction of $2 a$. Thus, in the first example, each grade after the first is .25 less than the preceding grade, and in the second example, a being here negative, each grade after the first is .3 greater than the preceding grade.
151. The grades calculated for the whole stations, as in the foregoing examples, are sufficient for all purposes except for laying the track. The grade stakes being then usually only 20 feet apart, it will be necessary to ascertain the proper grades on a vertical curve for these sub-stations. To do this, nothing more is necessary than to let g and g^{\prime} represent the given grades for a sub-station of 20 feet, and n the number of sub-stations on each side of
the intersection, and to apply the preceding formulæ. In the last example, for instance, the first grade descends .8 per station, or .16 every 20 feet, the second grade ascends .4 per station, or .08 every 20 feet, and the number of sub-stations in 200 feet is 10 . We have then $g=-.16, g^{\prime}=.08$, and $n=10$. Hence $a=\frac{-.16-.08}{4 \times 10}=$ $\frac{-.24}{40}=-.006$. The first grade is, therefore, $g-a=-.16+$ $.006=-.154$, and as each subsequent grade increases .012 (\$ 150), the whole may be written down without farther trouble, thus:-$-.154,-.142,-.130,-.118,-.106,-.094,-.082,-.070$, $-.058,-.046,-.034,-.022,-.010,+.002,+.014,+.026$, $+.038,+.050,+.062,+.074$.

Article IV.-Elevation of the Outer Rail on Curves.

152. Problem. Given the radius of a curve R, the gauge of the track g, and the velocity of a car per second v, to determine the proper elevation e of the outer rail of the curve.

Solution. A car of mass M moving on a curve of radius R, with a velocity per second $=v$, has, by Mechanics, a centrifugal force $=\frac{M v^{2}}{R}$. To counteract this force, the outer rail on a curve is raised above the level of the inner rail, so that the car may rest on an inclined plane. This elevation must be such, that the action of gravity in forcing the car down the inclined plane shall be just equal to the centrifugal force, which impels it in the opposite direction. Now the action of gravity on a body resting on an inclined plane is equal to 32.2 M multiplied by the ratio of the height to the length of the plane. But the height of the plane is the elevation e, and its length the gauge of the track g. This action of gravity, which is to counteract the centrifugal force, is, therefore, $=\frac{32.2 M e}{g}$. Putting this equal to the centrifugal force, we have $\frac{32.2 M e}{g}=\frac{M v^{2}}{R}$. Hence

$$
e=\frac{g v^{2}}{32.2 R} .
$$

If we substitute for R its value (§10) $R=\frac{50}{\sin . D}$, we have $e=$ $\frac{g v^{2} \sin . D}{50 \times 32.2}=.00062112 g v^{2} \sin$. D. If the velocity is given in miles
per hour, represent this velocity by V, and we have $v=\frac{V \times 5280}{60 \times 60}$. Substituting this value of v, we find $e=.0013361 g V^{2} \sin$. D. When $g=4.7$, this becomes $e=.00627966 V^{2} \sin . D$. By this formula Table VII. is calculated. In determining the proper elevation in any given case, the usual practice is to adopt the highest customary speed of passenger trains as the value of V.
153. Still the outer rail of a curve, though elevated according to the preceding formula, is generally found to be much more worn than the inner rail. On this account some are led to distrust the formula, and to give an increased elevation to the rail. So far, however, as the centrifugal force is concerned, the formula is undoubtedly correct, and the evil in question must arise from other causes,--causes which are not counteracted by an additional elevation of the outer rail. The principal of these canses is probably improper "coning" of the wheels. Two wheels, immovable on an axle, and of the same radius, must, if no slip is allowed, pass over equal spaces in a given number of revolutions. Now as the outer rail of a curve is longer than the inner rail, the outer wheel of such a pair must on a curve fall behind the inner wheel. The first effect of this is to bring the flange of the outer wheel against the rail, and to keep it there. The second is a strain on the axle consequent upon a slip of the wheels equal in amount to the difference in length of the two rails of the curve. To remedy this, coning of the wheels was introduced, by means of which the radius of the outer wheel is in effect increased, the nearer its flange approaches the rail, and this wheel is thus enabled to traverse a greater distance than the inner wheel.
To find the amount of coning for a play of the wheels of one inch, let r and r^{\prime} represent the proper radii of the inner and outer wheels respectively, when the flange of the outer wheel touches the rail. Then $r^{\prime}-r$ will be the coning for one inch in breadth of the tire. To enable the wheels to keep pace with each other in traversing a curve, their radii must be proportional to the lengths of the two rails of the curve, or, which is the same thing, proportional to the radii of these rails. If R be taken as the radius of the inner rail, the radius of the outer rail will be $R+g$, and we shall have $r: r^{\prime}=R: R+g$. Therefore, $r R+r g=r^{\prime} R$, or

$$
r^{\prime}-r=\frac{r g}{R}
$$

As an example, let $R=600, r=1.4$, and $g=4.7$. Then we have $r^{\prime}-r=\frac{1.4 \times 4.7}{600}=.011 \mathrm{ft}$. For a tire 3.5 in . wide, the coning would be $3.5 \times .011=.0385 \mathrm{ft}$, or nearly half an inch.
Two distinct things, therefore, claim attention in regard to the motion of cars on a curve. The first is the centrifugal force, which is generated in all cases, when a body is constrained to move in a curvilinear path, and which may be effectually counteracted for any given velocity by elevating the outer rail. The second is the unequal length of the two rails of a curve, in consequence of which two wheels fixed on an_axle cannot traverse a curve properly, unless some provision is made for increasing the diameter of the outer wheel. Coning of the wheels was devised for this purpose ; but as the coning, when at all considerable, was found to produce an irregular sidewise motion of the train, the tendency has been to diminish the coning. The standard wheeltread adopted by the Master Car Builders' Association has a coning of but $\frac{1}{16}$ of an inch in $2 \frac{3}{8}$ inches of the tread next to the flange.

Article V.-Easing Grades on Curves.

154. When a curve occurs on a steep grade it is desirable to ease the grade on the curve, so as to make the joint resistance of the grade and curve equal to that of the grade alone on straight lines. The resistance on a grade is proportional to the rise of the grade per station and the resistance due to a curve can be represented as equivalent to that of a grade having a certain rise per station. The rise per station of the eased grade will be simply the original rise diminished by the rise that represents the curve resistance. The resistance caused by curves varies greatly with the state of the track and the kind of rolling stock, and is variously estimated as equivalent on a 1° curve to the resistance of a grade of .025 to .06 of a foot per station. For a curve of any other degree the resistance increases with the degree; so that a 6° curve, for example, has six times the resistance of a 1° curve. As an example let a rise of .04 per station be taken as the resistance on a 1° curve and suppose a 6° curve to occur on a grade of 1.6 per station. Then the reduced grade will be $1.6-.24=1.36$ per station.

Article VI.-Expansion of Rails.

155. The rails of a track exposed to a summer sun may rise to a temperature of 130° Fahrenheit. When, therefore, a track is laid at a much lower temperature, as is usual, provision for the expansion of the rails must be made by leaving a proper space between successive rails. The expansion of a bar of iron or steel may be taken as .000007 of its length for every degree of rise in temperature. The space to be left between the rails will vary with the length of the rails and with the number of degrees below 130° of the temperature when the track is laid. Suppose 30 -feet rails are laid at a temperature of 50°. Then the number of degrees of possibla rise of temperature is $130^{\circ}-50^{\circ}=80^{\circ}$, and the space to be left between the rails is $.000007 \times 80 \times 30=.0168$ of a foot. In general, let s be the space to be left between the rails, n the number of degrees that the temperature is below 130°, and l the length of the rails in feet, and we have

$$
s=.000007 n l
$$

A convenient rule for 30 -feet rails may be obtained by putting in the formula $l=30$ and $n=5$, whence, nearly enough, $s=.001$. That is, the space to be left is one-thousandth of a foot for every five degrees that the temperature is below 130°.

CHAPTER V.

EARTH-WORK.

Article I.-Prismoidal Formula.

156. Earth-work includes the regular excavation and embankment on the line of a road, borrow-pits, or such additional excavations as are made necessary when the embankment exceeds the regular excavation, and, in general, any- transfers of earth that require calculation. We begin with the prismoidal formula, as this formula is frequently used in calculating cubical contents both of earth and masonry.

A prismoid is a solid having two parallel faces, and composed of prisms, wedges, and pyramids, whose common altitude is the perpendicular distance between the parallel faces.
157. Problem. Given the areas of the parallel faces B and B^{\prime}, the middle area M, and the altitude a of a prismoid, to find its solidity S.

Solution. The middle area of a prismoid is the area of a section midway between the parallel faces and parallel to them, and the altitude is the perpendicular distance between the parallel faces. If now b represents the base of any prism of altitude a, its solidity is $a b$. If b represents the base of a regular wedge or halfparallelopipedon of altitude a, its solidity is $\frac{1}{2} a b$. If b represents the base of a pyramid of altitude a, its solidity is $\frac{1}{8} a b$. The solidity of these three bodies admits of a common expression, which may be found thus: Let m represent the middle area of either of these bodies, that is, the area of a section parallel to the base and midway between the base and top. In the prism, $m=b$, in the regular wedge, $m=\frac{1}{2} b$, and in the pyramid, $m=\frac{1}{4} b$. Moreover, the upper base of the prism $=b$, and the upper base of the wedge or pyramid $=0$. Then the expressions $a b, \frac{1}{2} a b$, and $\frac{1}{8} a b$ may be thus transformed. Solidity of
prism $=a b=\frac{a}{6} \times 6 b=\frac{a}{6}(b+b+4 b)=\frac{a}{6}(b+b+4 m)$,
wedge $=\frac{1}{2} a b=\frac{a}{6} \times 3 b=\frac{a}{6}(0+b+2 b)=\frac{a}{6}(0+b+4 m)$,
pyramid $=\frac{1}{3} a b=\frac{a}{6} \times 2 b=\frac{a}{6}(0+b+b)=\frac{a}{6}(0+b+4 m)$.
Hence, the solidity of either of these bodies is found by adding. together the area of the upper base, the area of the lower base, and four times the middle area, and multiplying the sum by one sixth of the altitude. Irregular wedges, or those not half-parallelopipedons, may be measured by the same rule, since they are the sum or difference of a regular wedge and a pyramid of common altitude, and as the rule applies to both these bodies, it applies to their sum or difference.
Now a prismoid, being made up of prisms, wedges, and pyramids of common altitude with itself, will have for its solidity the sum of the solidities of the combined solids. But the sum of the areas of the upper and lower bases of the combined solids is equal to $B+B^{\prime}$, the sum of the areas of the parallel faces of the prismoid; and the sum of the middle areas of the combined solids is equal to M, the middle area of the prismoid. Therefore

$$
S=\frac{a}{6}\left(B+B^{\prime}+4 M\right) .
$$

Article II.-Borrow-Pits.

158. For the measurement of small excavations, such as borrowpits, \&c., the usual method of preparing the ground is to divide the surface into parallelograms* or triangles, small enough to be considered planes, laid off from a base line, that will remain untouched by the excavation. A convenient bench-mark is then selected, and levels taken at all the angles of the subdivisions. After the excavation is made, the same subdivisions are laid off from the base line upon the bottom of the excavation, and levels referred to the same bench-mark are taken at all the angles.

This method divides the excaration into a series of vertical prisms, generally truncated at top and bottom. The vertical edges of these prisms are known, since they are the differences of the

[^11]levels at the top and bottom of the excavation. The horizontal section of the prisms is also known, because the parallelograms or triangles, into which the surface is divided, are always measured horizontally.
159. Problem. Given the edges h, h_{1}, and h_{2}, to find the solidity S of a vertical prism, whether truncated or not, whose horizontal section is a triangle of given area A.

Solution. When the prism is not truncated, we have $h=h_{1}=$ h_{2}. The ordinary rule for the solidity of a prism gives, therefore, $S=A h=A \times \frac{1}{8}\left(h+h_{1}+h_{2}\right)$. When the prism is truncated, let $A B C F G H$ (fig. 68) represent such a prism, truncated at the top. Through the lowest point A of the upper face draw a horizontal plane $A D E$ cutting off a pyramid, of which the base is the trapezoid $B D E C$, and the altitude a perpendicular let fall from A on $D E$. Represent this perpendicular by p, and we have (Tab. X. 52) the solidity of the pyramid $=\frac{1}{8} p \times B D E C=\frac{1}{8} p \times$ $D E \times \frac{1}{2}(B D+C E)=\frac{1}{2} p \times D E \times \frac{1}{\frac{1}{2}}(B D+C E)=A \times \frac{1}{8}$ $(B D+C E)$, since $\frac{1}{2} p \times D E=A D E=A$. But $\frac{1}{\frac{1}{2}}(B D+C E)$ is the mean height of the vertical edges of the truncated portion, the height at A being 0 . Hence the formula already found for a prism not truncated, will apply to the portion above the plane $A D E$, as well as to that below. The same reasoning would ap-
ply, if the lower end also were truncated. Hence, for the solidity of the whole prism, whether truncated or not, we have
S $\quad S=A \times \frac{1}{8}\left(h+h_{1}+h_{2}\right)$.
160. Problem. Given the edges h, h_{1}, h_{2}, and h_{3}, to find the solidity S of a vertical prism, whether truncated or not, whose horizontal section is a parallelogram of given area A.

Solution. Let $B H$ (fig. 69) represent such a prism, whether truncated or not, and let the plane $B F H D$ divide it into two

triangular prisms $A F H$ and $C F H$. The horizontal section of each of these prisms will be $\frac{1}{2} A$, and if h, h_{1}, h_{2}, and h_{3} represent the edges to which they are attached in the figure, we have for their solidity ($\S 159) A F H=\frac{1}{2} A \times \frac{1}{8}\left(h+h_{1}+h_{3}\right)$, and $C F H=\frac{1}{2} A \times \frac{1}{8}\left(h_{1}+h_{2}+h_{3}\right)$. Therefore, the whole prism will have for its solidity $S=\frac{1}{2} A \times \frac{1}{8}\left(h+2 h_{1}+h_{2}+2 h_{3}\right)$. Let the whole prism be again divided by the plane $A E G C$ into two triangular prisms $B E G$ and $D E G$. Then we have for these prisms, $B E G=\frac{1}{2} A \times \frac{1}{8}\left(h+h_{1}+h_{2}\right)$, and $D E G=\frac{1}{2} A \times \frac{1}{3}\left(h+h_{2}+\right.$ h_{3}), and for the whole prism, $S=\frac{1}{2} A \times \frac{1}{8}\left(2 h+h_{1}+2 h_{2}+h_{3}\right)$. Adding the two expressions found for S, we have $2 S=\frac{1}{2} A$ $\left(h+h_{1}+h_{2}+h_{3}\right)$, or

『要

$$
S=A \times \frac{1}{4}\left(h+h_{1}+h_{2}+h_{\mathrm{s}}\right) .
$$

It will be seen by the figure, that $\frac{1}{2}\left(h+h_{2}\right)=K L=\frac{1}{2}\left(h_{1}+h_{3}\right)$, or $h+h_{2}=h_{1}+h_{3}$. The expression for S might, therefore, be reduced to $S=A \times \frac{1}{2}\left(h+h_{2}\right)$, or $S=A \times \frac{1}{2}\left(h_{1}+h_{3}\right)$. But as the ground surfaces $A B C D$ and $E F G H$ are seldom perfect planes, it is considered better to use the mean of the four heights, instead of the mean of two diagonally opposite.
161. Corollary. When all the prisms of an excavation have the same horizontal section A, the calculation of any number of them may be performed by one operation. Let figure 70 be a plan

Fig. 70.
of such an excavation, the heights at the angles being denoted by $a, a_{1}, a_{2}, b, b_{1}, \& c$. Then the solidity of the whole will be equal to $\frac{1}{4} A$ multiplied by the sum of the heights of the several prisms (§160). Into this sum the corner heights $a, a_{2}, b, b_{5}, c_{5}, d$, and d_{4} will enter but once, each being found in but one prism; the heights $a_{1}, b_{4}, c, d_{1}, d_{2}$, and d_{3} will enter twice, each being common to two prisms; the heights b_{1}, b_{3}, and c_{4} will enter three times, each being common to three prisms; and the heights b_{2}, c_{1}, c_{2}, and c_{3} will enter four times, each being common to four prisms. If, therefore, the sum of the first set of heights is represented by s_{1}, the sum of the second by s_{2}, of the third by s_{3}, and of the fourth by s_{4}, we shall have for the solidity of all the prisms
(

$$
S=\frac{1}{4} A\left(s_{1}+2 s_{2}+3 s_{3}+4 s_{4}\right)
$$

Article III.-Excavation and Embankment.

162. As embankments have the same general shape as excavations, it will be necessary to consider excavations only. The simplest case is when the ground is considered level on each side of the centre line. Figure 71 represents the mass of earth between two stations in an excavation of this kind. The trapezoid $G B F H$ is a section of the mass at the first station, and $G_{1} B_{1} F_{1} H_{1}$ a section at the second station ; $A E$ is the centre height at the first station, and $A_{1} E_{1}$ the centre height at the second station ; $H H_{1} F_{1} F$ is the road-bed, $G G_{1} B_{1} B$ the surface of the ground, and $G G_{1} H_{1} I$ and $B B_{1} F_{1} F$ the planes forming the side slopes. This solid is a prismoid, and might be calculated by the prismoidal formula (§ 157). The following method gives the same result.

A. Centre Heights alone given.

163. Problem. Given the centre heights c and c_{1}, the width of the road-bed b, the slope of the sides s, and the length of the section l, to find the solidity S of the excavation.

Solution. Let c be the centre height at A (fig. 71) and c_{1} the height at A_{1}. The slope s is the ratio of the base of the slope to

its perpendicular height (§144). We have then the distance out $A B=\frac{1}{2} b+s c$, and the distance out $A_{1} B_{1}=\frac{1}{2} b+s c_{1}$ (\$144). Divide the whole mass into two equal parts by a vertical plane $A A_{1} E_{1} E$ drawn through the centre line, and let us find first the
solidity of the right-hand half. Through B draw the planes $B E E_{1}, B A_{1} E_{1}$, and $B E_{1} F_{1}$, dividing the half-section into three quadrangular pyramids, having for their common vertex the point B, and for their bases the planes $A A_{1} E_{1} E, E E_{1} F_{1} F^{\prime}$, and $A_{1} B_{1} F_{1} E_{1}$. For the areas of these bases we have

Area of $A A_{1} E_{1} E=\frac{1}{2} E E_{1} \times\left(A E+A_{1} E_{1}\right)=\frac{1}{2} l\left(c+c_{1}\right)$,
$\begin{aligned} " \quad \text { " } E E_{1} F_{1} F=E F \times E E_{1} & =\frac{1}{2} b l, \\ " \quad " A_{1} B_{1} F_{1} E_{1}=\frac{1}{2} A_{1} E_{1} \times\left(E_{1} F_{1}+A_{1} B_{1}\right) & =\frac{1}{2}\left(b c_{1}+s c_{1}{ }^{2}\right),\end{aligned}$ and for the perpendiculars from the vertex B on these bases, produced when necessary,

$$
\begin{array}{cl}
\text { Perpendicular on } A A_{1} E_{1} E=A B=\frac{1}{2} b+s c, \\
" & \text { " } E E_{1} F_{1} F^{\prime}=A E=c \\
\text { " } & \text { " } A_{1} B_{1} F_{1} E_{1}=E E_{1}=l .
\end{array}
$$

Then (Tab. X. 52) the solidities of the three pyramids are

$$
\begin{aligned}
& B-A A_{1} E_{1} E=\frac{1}{3}\left(\frac{1}{2} b+s c\right) \times \frac{1}{2} l\left(c+c_{1}\right)=\frac{1}{6} l\left(\frac{1}{2} b c+\frac{1}{2} b c_{1}+\right. \\
& B-E E_{1} F_{1} F^{\prime}=\frac{1}{8} c \times \frac{1}{2} b l=\frac{1}{6} l b c, \\
&\left.B-c^{2}+s c c_{1}\right), \\
& B-A_{1} F_{1} E_{1}=\frac{1}{3} l \times \frac{1}{2}\left(b c_{1}+s c_{1}{ }^{2}\right)=\frac{1}{6} l\left(b c_{1}+s c_{1}{ }^{2}\right) .
\end{aligned}
$$

Their sum, or the solidity of the half-section, is

$$
\frac{1}{2} S=\frac{1}{6} l\left[\frac{3}{2} b\left(c+c_{1}\right)+s\left(c^{2}+c_{1}{ }^{2}+c c_{1}\right)\right]
$$

Therefore the solidity of the whole section is

$$
S=\frac{1}{8} l\left[\frac{3}{2} b\left(c+c_{1}\right)+s\left(c^{2}+c_{1}^{2}+c c_{1}\right)\right]
$$

or

$$
S=\frac{1}{2} l\left[b\left(c+c_{1}\right)+\frac{2}{3} s\left(c^{2}+c_{1}{ }^{2}+c c_{1}\right)\right] .
$$

When the slope is $1 \frac{1}{2}$ to $1, s=\frac{3}{2}$, and the factor $\frac{2}{3} s=1$ may be dropped.
164. Problem. To find the solidity S of any number n of successive sections of equal length.

Solution. Let c, c_{1}, c_{2}, c_{3}, \&c., denote the centre heights at the successive stations. Then we have (§ 163)
Solidity of first section $=\frac{1}{2} l\left[b\left(c+c_{1}\right)+\frac{2}{3} s\left(c^{2}+c_{1}{ }^{2}+c c_{1}\right)\right]$,
" " second section $=\frac{1}{2} l\left[b\left(c_{1}+c_{2}\right)+\frac{2}{3} s\left(c_{1}{ }^{2}+c_{2}{ }^{2}+c_{1} c_{2}\right)\right]$,
" " third section $=\frac{1}{2} l\left[b\left(c_{2}+c_{3}\right)+\frac{2}{3} s\left(c_{2}{ }^{2}+c_{3}{ }^{2}+c_{2} c_{3}\right)\right]$, \&c. \&c.
For the solidity of any number n of sections, we should have $\frac{1}{2} l$ multiplied by the sum of the quantities in n parentheses formed
as those just given. The last centre height, according to the notation adopted, will be represented by c_{n}, and the next to the last by c_{n-1}. Collecting the terms multiplied by b into one line, the squares multiplied by $\frac{2}{3} s$ into a second line, and the remaining terms into a third line, we have for the solidity of n sections

$$
\text { 绖 } S=\frac{1}{2} l \left\lvert\, \begin{aligned}
& b\left(c+2 c_{1}+2 c_{2}+2 c_{3} \ldots \ldots+2 c_{n-1}+c_{n}\right) \\
&+ \frac{2}{3} s\left(c^{2}+2 c_{1}+2 c_{2}+2 c_{2}+2 c_{3} \ldots .+2 c_{n-1}+c_{n}^{2}\right) \\
&+\frac{2}{3} s\left(c c_{1}+c_{1} c_{2}+c_{2} c_{3}+c_{3} c_{4} \ldots . .+c_{n-1} c_{n}\right) .
\end{aligned}\right.
$$

When $s=\frac{3}{2}$, the factor $\frac{2}{3} s=1$ may be dropped.
Example. Given $l=100, b=28, s=\frac{3}{2}$, and the stations and centre heights as set down in the first and second columns of the annexed table. The calculation is thus performed. Square the heights, and set the squares in the third column. Form the successive products $c c_{1}, c_{1} c_{2}, \& c$., and place them in the fourth column. Add up the last three columns. To the sum of the second column add the sum itself, minus the first and the last height, and to the sum of the third column add the sum itself, minus the first and the last square. Then 86 is the multiplier of b in the first line of the formula, 592 is the second line, since $\frac{2}{3} s$ is here 1 , and 274 is the third line. The product of 86 by $b=28$ is 2408 , and the sum of 274,592 , and 2408 is 3274 . This multiplied by $\frac{1}{2} l=50$ gives for the solidity 163,700 cubic feet.

Station.	c.	c^{2}.	$c c_{1}$.
0	2	4	
1	4	16	8
2	7	49	28
3	6	36	42
4	10	100	60
5	7	49	70
6	6	36	42
7	4	16	24
	46	306	274
	40	286	592
	86	592	2408
	28		2) $\widehat{3274}$
	2408		16370

B. Centre and Side Heights given.

165. When greater accuracy is required than can be attained by the preceding method, the side heights and the distances out (§ 144) are introduced. Let figure 72 represent the right-hand side of an excavation between two stations. $A A_{1} B_{1} B$ is the ground surface; $A E=c$ and $A_{1} E_{1}=c_{1}$ are the centre heights; $B G=h$ and $B_{1} G_{1}=h_{1}$, the side heights; and d and d_{1}, the distances out, or the horizontal distances of B and B_{1} from the centre line. The whole ground surface may sometimes be taken as a plane, and sometimes the part on each side of the centre line may be so taken;* but neither of these suppositions is sufficiently accurate to serve as the basis of a general method. In most cases, however, we may consider the surface on each side of the centre line to be divided into two triangular planes by a diagonal passing from one of the centre heights to one of the side heights. A ridge or depression will, in general, determine which diagonal ought to be taken as the dividing line, and this diagonal must be noted in the field. Thus, in the figure a ridge is supposed to run from B to A_{1}, from which the ground slopes downward on each side to A and B_{1}. Instead of this, a depression might run from A to B_{1}, and the ground rise each way to A_{1} and B. If the ridge or depression is very marked, and does not cross the centre or side lines at the regular stations, intermediate stations must be introduced to make the triangular planes conform better to the nature of the ground. If the surface happens to be a plane, or nearly so, the diagonal may be taken in either direction. It will be seen, therefore, that the following method is applicable to all ordinary ground. When, however, the ground is very irregular, the method of $\S 171$ is to be used.
166. Problem. Given the centre heights c and c_{1}, the side heights on the right h and h_{1}, on the left h^{\prime} and h_{1}^{\prime}, the distances out on the right d and d_{1}, on the left d^{\prime} and $d_{1}{ }_{1}$, the width of the

[^12]road-bed b, the length of the section l, and the direction of the diagonals, to find the solidity S of the excavation.
Solution. Let figure 72 represent the right-hand side of the excavation, and let us suppose first, that the diagonal runs, as shown in the figure, from B to A_{1}. Through B draw the planes $B E E_{1}, B A_{1} E_{1}$, and $B E_{1} F_{1}$, dividing the half-section into three quadrangular pyramids, having for their common vertex the point B, and for their bases the planes $A A_{1} E_{1} E, E E_{1} F_{1} F_{0}$ and $A_{1} B_{1} F_{1} E_{1}$. For the areas of these bases we have Area of $A A_{1} E_{1} E=\frac{1}{2} E E_{1} \times\left(A E+A_{1} E_{1}\right)=\frac{1}{2} l\left(c+c_{1}\right)$,
" " $E E_{1} F_{1} F=E F \times E E_{1}=\frac{1}{2} b l$,
" " $A_{1} B_{1} F_{1} E_{1}=\frac{1}{2} A_{1} E_{1} \times d_{1}+\frac{1}{2} E_{1} F_{1} \times h_{1}=\frac{1}{2} d_{1} c_{1}+\frac{1}{4} b h_{1}$, and for the perpendiculars from the vertex B on these bases, produced when necessary,

Perpendicular on $A A_{1} E_{1} E=E G=d$,
" " $E E_{1} F_{1} F=B G=h$,
" " $A_{1} B_{1} F_{1} E_{1}=E E_{1}=l$.

Then (Tab. X. 52) the solidities of the three pyramids are

$$
\begin{array}{ll}
B-A A_{1} E_{1} E=\frac{1}{3} d \times \frac{1}{2} l\left(c+c_{1}\right) & =\frac{1}{6} l\left(d c+d c_{1}\right), \\
B-E E_{1} F_{1} F=\frac{1}{3} h \times \frac{1}{2} b l & =\frac{1}{6} l b h, \\
B-A_{1} B_{1} F_{1} E_{1}=\frac{1}{3} l \times \frac{1}{2}\left(d_{1} c_{1}+\frac{1}{2} b h_{1}\right) & =\frac{1}{6} l\left(d_{1} c_{1}+\frac{1}{2} b h_{1}\right) .
\end{array}
$$

Their sum, or the solidity of the half-section, is

$$
\begin{equation*}
\frac{1}{6} l\left(d c+d_{1} c_{1}+d c_{1}+b h+\frac{1}{2} b h_{1}\right) \tag{1}
\end{equation*}
$$

Next, suppose that the diagonal runs from A to B_{1}. In this case, through B_{1} draw the planes $B_{1} E_{1} E, B_{1} A E$, and $B_{1} E F$ (not represented in the figure), dividing the half-section again into three quadrangular pyramids, having for their common vertex the point B_{1}, and for their bases the planes $A A_{1} E_{1} E$, $E E_{1} F_{1}^{\prime} F$, and $A B F E$. For the areas of these bases we have
Area of $A A_{1} E_{1} E=\frac{1}{2} E E_{1} \times\left(A E+A_{1} E_{1}\right)=\frac{1}{2} l\left(c+c_{1}\right)$,
" \quad. $E E_{1} F_{1} F=E F \times E E_{1} \quad=\frac{1}{2} b l$,
" " $A B F E=\frac{1}{2} A E \times d+\frac{1}{2} E F \times h=\frac{1}{2} d c+\frac{1}{4} b h$;
and for the perpendiculars from B_{1} on these bases, produced when necessary,

$$
\begin{array}{cc}
\text { Perpendicular on } A A_{1} E_{1} E=E_{1} G_{1}=d_{1}, \\
" & " E E_{1} F_{1} F=B_{1} G_{1}=h_{1}, \\
" \quad ~ " A B F E=E E_{1}=l .
\end{array}
$$

Then (Tab. X. 52) the solidities of the three pyramids are

$$
\begin{array}{ll}
B_{1}-A A_{1} E_{1} E=\frac{1}{8} d_{1} \times \frac{1}{2} l\left(c+c_{1}\right) & =\frac{1}{6} l\left(d_{1} c+d_{1} c_{1}\right), \\
B_{1}-E E_{1} F_{1} F=\frac{1}{8} h_{1} \times \frac{1}{2} b l & =\frac{1}{6} l b h_{1}, \\
B_{1}-A B F E=\frac{1}{3} l \times \frac{1}{2}\left(d c+\frac{1}{2} b h\right) & =\frac{1}{6} l\left(d c+\frac{1}{2} b h\right) .
\end{array}
$$

Their sum, or the solidity of the half-section, is

$$
\begin{equation*}
\frac{1}{6} l\left(d c+d_{1} c_{1}+d_{1} c+b h_{1}+\frac{1}{2} b h\right) . \tag{2}
\end{equation*}
$$

We have thus found the solidity of the half-section for both directions of the diagonal. Let us now compare the results (1) and (2), and express them, if possible, by one formula. For this purpose let (1) be put under the form

$$
\frac{1}{6} l\left[d c+d_{1} c_{1}+d c_{1}+\frac{1}{2} b\left(h+h_{1}+h\right)\right],
$$

and (2) under the form

$$
\frac{1}{6} l\left[d c+d_{1} c_{1}+d_{1} c+\frac{1}{2} b\left(h+h_{1}+h_{1}\right)\right] .
$$

The only difference in these two expressions is, that $d c_{1}$ and the last h in the first, become $d_{1} c$ and h_{1} in the second. But in the first case c_{1} and h are the heights at the extremities of the diagonal, and d is the distance out corresponding to h; and in the second case c and h_{1} are the heights at the extremities of the diagonal, and d_{1} is the distance out corresponding to h_{1}. Denote the centre height touched by the diagonal by C, the side height touched by the diagonal by H, and the distance out corresponding to the
side height H by D. We may then express both $d c_{1}$ and $d_{1} c$ by $D C$, and both h and h_{1} by H; so that the solidity of the halfsection on the right of the centre line, whichever way the diagonal runs, may be expressed by

$$
\begin{equation*}
\frac{1}{6} l\left[d c+d_{1} c_{1}+D C+\frac{1}{2} b\left(h+h_{1}+H\right)\right] . \tag{3}
\end{equation*}
$$

To obtain the contents of the portion on the left of the centre line, we designate the quantities on the left by the same letters used for corresponding quantities on the right, merely attaching a (') to them to distinguish them. Thus the side heights are h^{\prime} and h_{1}^{\prime}, and the distances out d^{\prime} and d_{1}^{\prime}, while D, C, and H become D^{\prime}, C^{\prime}, and H^{\prime}. The solidity of the half-section on the left may therefore be taken directly from (3), which will become

$$
\begin{equation*}
\frac{1}{6} l\left[d^{\prime} c+d_{1}^{\prime} c_{1}+D^{\prime} C^{\prime}+\frac{1}{2} b\left(h^{\prime}+h_{1}^{\prime}+H^{\prime}\right)\right] \tag{4}
\end{equation*}
$$

Finally, by uniting (3) and (4), we obtain the following formula for the solidity of the whole section between two stations:

$$
\begin{gathered}
S=\frac{1}{6} l\left[\left(d+d^{\prime}\right) c+\left(d_{1}+d_{1}^{\prime}\right) c_{1}+D C+D^{\prime} C^{\prime}+\frac{1}{2} b(h+\right. \\
\left.\left.h_{1}+H+h^{\prime}+h_{1}^{\prime}+H^{\prime}\right)\right] .
\end{gathered}
$$

Example. Given $l=100, b=18$, and the remaining data, as arranged in the first six columns of the following table. The first column gives the stations; the fourth gives the centre heights, namely, $c=13.6$ and $c_{1}=8$; the two columns on the left of the centre heights give the side heights and distances out on the left of the centre line of the road, and the two columns on the right of the centre heights give the side heights and distances out on the right. The direction of the diagonals is marked by the oblique lines drawn from $h^{\prime}=8$ to $c_{1}=8$ and from $c=13.6$ to $h_{1}=12$.

			c.	h.		$d+d^{\prime}$.	$\left(d+d^{\prime}\right) c$.	$D^{\prime} C^{\prime}$	DC.
0 1	21 15		13.6 8.0	10 12		45 42	612 336	168	367.2
		12		12			168		
				20			367.2		
					$\times 9$		486		
							6)1969.20		
							32820.		

To apply the formula, the distances out at each station are added together, and their sum placed in the seventh column; these sums, multiplied by the respective centre heights, are placed in the eighth column; the product of $d^{\prime}=21$ (which is the distance out corresponding to the side height touched by the left-hand diagonal) by $c_{1}=8$ (which is the centre height touched by the same diagonal) is placed in the ninth column, and the similar product of $d_{1}=27$ by $c=13.6$ is placed in the last column. The terms in the formula multiplied by $\frac{1}{2} b$ are all the side heights, and in addition all the side heights touched by diagonals, or $8+4+10+$ $12+8+12=54$. Then by substitution in the formula, we have $S=\frac{1}{6} \times 100(612+336+168+367.2+9 \times 54)=32,820$ cubic feet.
By applying the rule given in the note to § 165 , we see that the surface on the left of the centre line in the preceding example is a plane; since $13.6-8: 8-4=21: 15$. The diagonal on that side might, therefore, be taken either way, and the same solidity would be obtained. This may be easily seen by reversing the diagonal in this example, and calculating the solidity anew. The only parts of the formula affected by the change are $D^{\prime} C^{\prime}$ and $\frac{1}{2} b H^{\prime}$. In the one case the sum of these terms is $21 \times 8+9 \times 8$, and in the other $15 \times 13.6+9 \times 4$, both of which are equal to 240 .
167. Problem. To find the solidity S of any number n of successive sections of equal length.

Solution. Let $c, c_{1}, c_{2}, c_{3}, \&$.., be the centre heights at the successive stations; h, h_{1}, h_{2}, h_{3}, \&c., the right-hand side heights; h^{\prime}, $h_{1}^{\prime}, h_{2}^{\prime}, h_{3}^{\prime}$, \&cc., the left-hand side heights; d, d_{1}, d_{2}, d_{3}, \&c., the distances out on the right; and $d^{\prime}, d^{\prime}{ }_{1}, d^{\prime}{ }_{2}, d^{\prime}{ }_{s}$, \&c., the distances out on the left. Then the formula for the solidity of one section (\$166) gives for the solidities of the successive sections

$$
\begin{aligned}
& \frac{1}{6} l\left[\left(d+d^{\prime}\right) c+\left(d_{1}+d^{\prime}{ }_{1}\right) c_{1}+D C+D^{\prime} C^{\prime}+\frac{1}{2} b\left(h+h_{1}+H+\right.\right. \\
& \left.\left.\quad h^{\prime}+h_{1}^{\prime}+H^{\prime}\right)\right], \\
& \frac{1}{6} l\left[\left(d_{1}+d_{1}^{\prime}\right) c_{1}+\left(d_{2}+d_{2}^{\prime}\right) c_{2}+D_{1} C_{1}+D_{1}^{\prime} C^{\prime}{ }_{1}+\frac{1}{2} b\left(h_{1}+h_{2}+\right.\right. \\
& \left.\left.\quad H_{1}+h_{1}^{\prime}+h_{2}^{\prime}+H_{1}^{\prime}\right)\right], \\
& \frac{1}{6} l\left[\left(d_{2}+d_{2}^{\prime}\right) c_{2}+\left(d_{3}+d_{3}^{\prime}\right) c_{3}+D_{2} C_{2}+D_{2}^{\prime} C_{2}^{\prime}+\frac{1}{2} b\left(h_{2}+h_{3}+\right.\right. \\
& \left.\left.\quad H_{2}+h_{2}^{\prime}+h_{3}^{\prime}+H^{\prime}\right)\right],
\end{aligned}
$$

and so on, for any number of sections. For the solidity of any
number n of sections, we should have $\frac{1}{6} l$ multiplied by the sum of n parentheses formed as those just given. Hence

$$
\begin{aligned}
& S=\frac{1}{6} l\left(d+d^{\prime}\right) c+2\left(d_{1}+d_{1}^{\prime}\right) c_{1}+2\left(d_{2}+d_{2}^{\prime}\right) c_{2} \ldots+\left(d_{n}+d^{\prime}{ }_{n}\right) c_{n} \\
& +D C^{\prime}+D^{\prime} C^{\prime}+D_{1} C_{1}+D_{1} C^{\prime}{ }_{1}+D_{2} C_{2}+D_{2}^{\prime} C^{\prime}{ }_{2}+\& c . \\
& +\frac{1}{2} b \left\lvert\, \begin{array}{l}
h+2 h_{1}+2 h_{2} \ldots .+h_{n}+H+H_{1}+H_{2}+\& c . \\
+h^{\prime}+2 h_{1}^{\prime}+2 h_{2} \ldots+h_{n}^{\prime}+H^{\prime}+H_{1}^{\prime}+H^{\prime}+\& c .
\end{array}\right.
\end{aligned}
$$

Example. Given $l=100, b=28$, and the remaining data as given in the first six columns of the following table:

Sta.	d^{\prime}.	h^{\prime}.	c.	h.	d.	$d+d^{\prime}$.	$\left(d+d^{\prime}\right) c$.	$D^{\prime} C^{\prime}$.	D C.
0	17	2	2	2	17	34	68		
1	18.5	3	4	- 5	21.5	40	160	68	43
2	20	$4-$		\bigcirc	23	43	215	80	92
3	23			8	26	49	294	115	130
4	21.5	5		>7	24.5	46	276	129	147
5	20			4	20	40	240	120	147
6	15.5				18.5	34	136	93	80
		25		35			1389	605	$\overline{639}$
		22		30			1185		
		22		37			605		
		69		102			639		
		102					2394		
		$171 \times$	$14=$	2394			6) $\lcm{6212}$		

The data in this table are arranged precisely as in the example for calculating one section (§166), and the remaining columns are calculated as there shown. Then, to obtain the first line of the formula, add all the numbers in the column headed $\left(d+d^{\prime}\right) c$, making 1389, and afterwards all the numbers except the first and the last, making 1185. The next line of the formula is the sum of the columns $D^{\prime} C^{\prime}$ and $D C$, which give respectively 605 and 639. To obtain the first line of the quantities multiplied by $\frac{1}{2} b$, add all the numbers in column h, making 35 , next all the numbers except the first and the last, making 30 , and lastly all the numbers touched by diagonals (doubling any one touched by two diagonals), making 37. The second line of the quantities multiplied by $\frac{1}{2} b$ is obtained in the same way from the column marked h^{\prime}. The sum of these numbers is 171 , and this multiplied by $\frac{1}{2} b=14$ gives
2394. We have now for the first line of the formula $1389+1185$, for the second $605+639$, and for the remainder 2394. By adding these together, and multiplying the sum by $\frac{1}{6} l=\frac{100}{6}$, we get the
contents of the six sections in feet.
168. When the section is partly in excavation and partly in embankment, the preceding formulæ are still applicable; but as this application introduces minus quantities into the calculation, the following method, similar in principle, is preferable.
169. Problem. Given the widths of an excavation at the road-bed $A F=w$ and $A_{1} F_{1}=w_{1}$ (fig. 73), the side heights h and h_{1}, the length of the section l, and the direction of the diagonal, to find the solidity S of the excavation, when the section is partly in excavation and partly in embankment.

Solution. Suppose, first, that the surface is divided into two triangles by the diagonal $B A_{1}$. Through B draw the plane $B A_{1} F_{1}$, dividing that part of the section which is in excavation into two pyramids $B-A A_{1} F_{1} F$ and $B-A_{1} B_{1} F_{1}$, the solidities of which are

$$
\begin{aligned}
B-A A_{1} F_{1} F=\frac{1}{8} h \times \frac{1}{2} l\left(w+w_{1}\right) & =\frac{1}{6} l\left(w h+w_{1} h\right), \\
B-A_{1} B_{1} F_{1}=\frac{1}{8} l \times \frac{1}{2} w_{1} h_{1} & =\frac{1}{6} l w_{1} h_{1} .
\end{aligned}
$$

The whole solidity is, therefore,

$$
S=\frac{1}{6} l\left(w h+w_{1} h_{1}+w_{1} h\right) .
$$

Next, suppose the dividing diagonal to run from A to B_{1}. Through B_{1} draw a plane $B_{1} A F$ (not represented in the figure), dividing the excavation again into two pyramids, of which the solidities are

$$
\begin{aligned}
B_{1}-A A_{1} F_{1} F^{\prime}=\frac{1}{8} h_{1} \times \frac{1}{2} l\left(w+w_{1}\right) & =\frac{1}{6} l\left(w h_{1}+w_{1} h_{1}\right), \\
B_{1}-A B F & =\frac{1}{8} l \times \frac{1}{2} w h
\end{aligned}
$$

The whole solidity is, therefore,

$$
S=\frac{1}{6} l\left(w h+w_{1} h_{1}+w h_{1}\right) .
$$

The only difference in these two expressions is, that $w_{1} h$ in the first becomes $w h_{1}$ in the second. But in the first case the diagonal touches w_{1} and h, and in the second case it touches w and h_{1}. If, then, we designate the width touched by the diagonal by W, and the height touched by the diagonal by H, we may express both $w_{1} h$ and $w h_{1}$ by $W H$; so that the solidity in either case may be expressed by
要

$$
S=\frac{1}{6} l\left(w h+w_{1} h_{1}+W H\right) .
$$

Corollary. When several sections of equal length succeed one another, the whole may be calculated together. For this purpose, the preceding formula gives for the solidities of the successive sections

$$
\begin{aligned}
& \frac{1}{6} l\left(w h+w_{1} h_{1}+W H\right), \\
& \frac{1}{6} l\left(w_{1} h_{1}+w_{2} h_{2}+W_{1} H_{1}\right), \\
& \frac{1}{6} l\left(w_{2} h_{2}+u_{3} h_{3}+W_{2} H_{2}\right),
\end{aligned}
$$

and so on for any number of sections. Hence for the solidity of any number n of sections we should have

$$
\begin{gathered}
S=\frac{1}{6} l\left(w h+2 w_{1} h_{1}+2 w_{2} h_{2} \ldots+w_{n} h_{n}+W H+W_{1} H_{2}+\right. \\
\left.W_{2} H_{2}+\& c .\right)
\end{gathered}
$$

Example. Given $l=100$, and the remaining data as given in the first three columns of the following table:

The fourth column contains the products of the several widths by the corresponding heights, and the next column the products
of those widths and heights touched by diagonals, The sum of the products in the fourth column is 247 , the sum of all but the first and the last is 209 , and the sum of the products in the fifth column is 186 . These three sums are added together, multiplied by 100 , and divided by 6 , according to the formula. This gives the solidity of the four sections $=10700$ cubic feet.
170. When the excavation does not begin on a line at right angles to the centre line, intermediate stations are taken where the excavation begins on each side of the road-bed, and the section may be calculated as a pyramid, having its vertex at the first of these points, and for its base the cross-section at the second. The preceding method gives the same result, since w and h in this case become 0 , and reduce the formula to $S=\frac{1}{6} l w_{1} h_{1}$. The same remarks apply to the end of an excavation.

C. Ground very Irregular.

171. Problem. To find the solidity of a section, when the ground is very irregular.

Solution. Let $A H B F E-A_{1} C D B_{1} F_{1} E_{1}$ (fig. 74) represent one side of a section, the surface of which is too irregular to be divided into two planes. Suppose, for instance, that the ground

changes at H, C, and D, making it necessary to divide the surface into five triangles running from station to station.* Let heights be taken at H, C, and D, and let the distances out of these points be measured. If now we suppose the earth to be excarated vertically downward through the side line $B B_{1}$ to the plane of the road-bed, we may form as many vertical triangular prisms as there are triangles on the surface. This will be made evident by drawing vertical planes through the sides $A C, H C, H D$, and $H B_{1}$. Then the solidity of the half-section will be equal to the sum of these prisms, minus the triangular mass $B F G-B_{1} F_{1} G_{1}$.

The horizontal section of the prisms may be found from the distances out and the length of the section, and the vertical edges or heights are all known. Hence the solidities of these prisms may be calculated by $\S 159$.

To find the solidity of the portion $B F G-B_{1} F_{1} G_{1}$, which is to be deducted, represent the slope of the sides by s (§144), the heights at B and B_{1} by h and h_{1}, and the length of the section by l. Then we have $F^{\prime} G=s h$, and $F_{1} G_{1}=s h_{1}$. Moreover, the area of $B F^{\prime} G=\frac{1}{2} s h^{2}$, and that of $B_{1} F_{1} G_{1}=\frac{1}{2} s h_{1}{ }^{2}$. Now as the triangles $B F G$ and $B_{1} F_{1} G_{1}$ are similar, the mass required is the frustum of a pyramid, and the mean area is $\sqrt{\frac{1}{2} s h^{2} \times \frac{1}{2} s h_{1}{ }^{2}}=$ $\frac{1}{2} s h h_{1}$. Then (Tab. X. 53) the solidity is $B F G-B_{1} F_{1} G_{1}=$ $\frac{1}{6} l s\left(h^{2}+h_{1}{ }^{2}+h h_{1}\right)$.

Example. Given $l=50, b=18, s=\frac{3}{2}$, the heights at A, H, and B respectively 4,7 , and 6 , the distances $A H=9$ and $H B=9$, the heights at A_{1}, C, D, and B_{1} respectively $6,7,9$, and 8 , and the distances $A_{1} C=4, C D=5$, and $D B_{1}=12$. Then the horizontal section of the first prism adjoining the centre line is $\frac{1}{2} l \times A_{1} C$, since the distance $A_{1} C$ is measured horizontally; and the mean of the three heights is $\frac{1}{3}(4+6+7)=\frac{1}{3} \times 17$. The solidity of this prism is therefore $\frac{1}{2} l \times A_{1} C \times \frac{1}{8} \times 17=\frac{1}{6} l \times 4 \times 17$, that is, equal to $\frac{1}{6} l$ multiplied by the base of the triangle and by the sum of the heights. In this way we should find for the solidity of the five prisms

$$
\frac{1}{6} l(4 \times 17+9 \times 18+5 \times 23+12 \times 24+9 \times 21)=\frac{1}{6} l \times 822
$$

[^13]For the frustum to be deducted, we have

$$
\frac{1}{6} l \times \frac{3}{2}\left(6^{2}+8^{2}+6 \times 8\right)=\frac{1}{6} l \times 222 .
$$

Hence the solidity of the half-section is

$$
\frac{1}{6} l(822-222)=\frac{1}{6} \times 50 \times 600=5000 \text { cubic feet. }
$$

172. Let us now examine the usual method of calculating excavation, when the cross-section of the ground is not level. This method consists, first, in finding the area of a cross-section at each end of the mass; secondly, in finding the height of a section, level at the top, equivalent in area to each of these end sections; thirdly, in finding from the average of these two heights the middle area of the mass: and, lastly, in applying the prismoidal formula to find the contents. The heights of the equivalent sections level at the top may be found approximately by Trautwine's Diagrams,* or exactly by the following method. Let A represent the area of an irregular cross-section, b the width of the road-bed, and s the slope of the sides. Let x be the required height of an equivalent section level at the top. The bottom of the equivalent section will be b, the top $b+2 s x$, and the area will be the sum of the top and bottom lines multiplied by half the height or $\frac{1}{2} x(2 b+2 s x)=s x^{2}+b x$. But this area is to be equal to A. Therefore, $s x^{2}+b x=A$, and from this equation the value of x may be found in any given case.
According to this method, the contents of the section already calculated in $\S 166$ will be found thus. Calculating the end areas, we find the first end area to be 387 and the second to be 240 . Then as s is here $\frac{3}{2}$ and $b=18$, the equations for finding the heights of the equivalent end sections will be $\frac{3}{2} x^{2}+18 x=387$, and $\frac{3}{2} x^{2}+18 x=240$. Solving these equations, we have for the height at the first station $x=11.146$, and at the second, $x=8$. The middle area will, therefore, have the height $\frac{1}{2}(11.146+8)=$ 9.573, and from this height the middle area is found to be 309.78 . Then by the prismoidal formula $\binom{8}{87}$ the solidity will be $S=$ $\frac{1}{6} \times 100(387+240+4 \times 309.78)=31102$ cubic feet.
But the true solidity of this section was found to be 32820 cubic feet, a difference of 1718 feet. The error, of course, is not in the prismoidal formula, but in assuming that, if the earth were levelled

[^14]at the ends to the height of the equivalent end sections, the intervening earth might be so disposed as to form a plane between these level ends, thus reducing the mass to a prismoid. This supposition, however, may sometimes be very far from correct, as has just been shown. If the diagonal on the right-hand side in this example were reversed, that is, if the dividing line were formed by a depression, the true solidity found by $\S 166$ would be 29600 feet; whereas the method by equivalent sections would give the same contents as before, or 1502 feet too much.
D. Correction in Excavation on Curves.
173. In excavations on curves the vertical planes forming the ends of a section are not parallel to each other, but converge towards the centre of the curve. A section between two stations 100 feet apart on the centre line will, therefore, measure less than 100 feet on the side nearest to the centre of the curve, and more than 100 feet on the side farthest from that centre. Now in calculating the contents of an excavation, it is assumed that the ends of a section are parallel, both being perpendicular to the

chord of the curve. Thus, let figure 75 represent the plan of two sections of an excavation, $E F G$ being the centre line, $A L$ and $C M$ the extreme side lines, and O the centre of the curve.

Then the calculation of the first section would include all between the lines $A_{1} C_{1}$ and $B_{1} D_{1}$; while the true section lies between $A C$ and $B D$. In like manner, the calculation of the second section would include all between $H K$ and $N P$, while the true section lies between $B D$ and $L M$. It is evident, therefore, that at each station on the curve, as at F, the calculation is too great by the wedge-shaped mass represented by $K F D_{1}$, and too small by the mass represented by $B_{1} F^{\prime} H$. These masses balance each other, when the distances out on each side of the centre line are equal, that is, when the cross-section may be represented by $A D F R E$ (fig. 76). But if the excavation is on the side of a hill, so that the distances out differ very

much, and the cross-section is of the shape $A D F B E$, the difference of the wedge-shaped masses may require consideration.
174. Problem. Given the centre height c, the greatest side height h, the least side height h, the greatest distance out d, the least distance out d^{\prime}, and the width of the road-bed b, to find the correction in excavation C, at any station on a curve of radius I or deflection angle D.

Solution. The correction, from what has been said above, is a triangular prism of which $B F R$ (fig. 76) is a cross-section. The height of this prism at B (fig. 75) is $B_{1} H$, the height at R is $R_{1} S$, and the height at F is $0 . \quad B_{1} H$ and $R_{1} S$, being very short, are here considered straight lines. Now we have the cross-section $B F R=F B E G-F R E G=\left(\frac{1}{2} c d+\frac{1}{4} b h\right)-\left(\frac{1}{2} c d^{\prime}+\frac{1}{4} b h^{\prime}\right)=$ $\frac{1}{2} c\left(d-d^{\prime}\right)+\frac{1}{4} b\left(h-h^{\prime}\right)$. To find the height $B_{1} H$, we have the angle $B F H=B F B_{1}=D$, and therefore $B_{1} H=2 H F \sin . D=$ $2 d \sin . D$. In like manner, $R_{1} S=K D_{1}=2 K F \sin . D=$ $2 d^{\prime} \sin . D$. Then since the height at F is 0 , one third of the sum of the heights of the prism will be $\frac{2}{3}\left(d+d^{\prime}\right) \sin . D$, and the correction, or the solidity of the prism, will be (§ 159)
$C=\left[\frac{1}{2} c\left(d-d^{\prime}\right)+\frac{1}{4} b\left(h-h^{\prime}\right)\right] \times \frac{2}{3}\left(d+d^{\prime}\right) \sin . D$.
When R is given, and not D, substitute for \sin. D its value ($(\$ 9)$ $\sin . D=\frac{50}{R}$. The correction then becomes
[需 $C=\left[\frac{1}{2} c\left(d-d^{\prime}\right)+\frac{1}{4} b\left(h-h^{\prime}\right)\right] \times \frac{100\left(d+d^{\prime}\right)}{3 R}$.
This correction is to be added, when the highest ground is on the convex side of the curve, and subtracted, when the highest ground is on the concave side. At a tangent point, it is evident, from figure 75, that the correction will be just half of that given above.

Example. Given $c=28, h=40, h^{\prime}=16, d=74, d^{\prime}=38, b=$ 28 , and $R=1400$, to find C. Here the area of the cross-section $B F^{\prime} R=\frac{28}{2}(74-38)+\frac{28}{4}(40-16)=672$, and one third of the sum of the heights of the prism is $\frac{100(74+38)}{3 \times 1400}=\frac{8}{3}$. Hence $C=$ $672 \times \frac{8}{3}=1792$ cubic feet.
175. When the section is partly in excavation and partly in embankment, the cross-section of the excavation is a triangle lying wholly on one side of the centre line, or partly on one side and partly on the other. The surface of the ground, instead of extending from B to D (fig. 76), will extend from B to a point between G and E, or to a point between A and G. In the first case, the correction will be a triangular prism lying between the lines $B_{1} F$ and $H F$ (fig. 75), but not extending below the point F. In the second case, the excavation extends below F, and the correction, as in $\$ 173$, is the difference between the masses above and below F. This difference may be obtained in a very simple manner, by regarding the mass on both sides of F as one triangular prism the bases of which intersect on the line $G F$ (fig. 76), in which case the height of the prism, at the edge below F must be considered to be minus, since the direction of this edge, referred to either of the bases, is contrary to that of the two others. The solidity of this prism will then be the difference required.
176. Problem. Given the width of the excavation at the road-bed w, the width of the road-bed b, the distance out d, and
the side height h, to find the correction in excavation C, at any station on a curve of radius R or deflection angle D, when the section is partly in excavation and partly in embankment.

Solution. When the excavation lies wholly on one side of the centre line, the correction is a triangular prism having for its cross-section the cross-section of the excavation. Its area is, therefore, $\frac{1}{2} w h$. The height of this prism at B (fig. 76) is ($(174$) $B_{1} H=2 H F^{\prime} \sin . D=2 d \sin . D$. In a similar manner, the height at E will be $2 G E \sin . D=b \sin . D$, and at the point intermediate between G and E, the distance of which from the centre line is $\frac{1}{2} b-w$, the height will be $2\left(\frac{1}{2} b-w\right) \sin . D=(b-2 w)$ $\sin . D$. Hence, the correction, or the solidity of the prism, will be $(\S 159) C=\frac{1}{2} w h \times \frac{1}{8}(2 d+b+b-2 w) \sin . D=\frac{1}{2} w h \times$ $\frac{2}{3}(d+b-w) \sin . D$.

When the excavation lies on both sides of the centre line, the correction, from what has been said above, is a triangular prism having also for its cross-section the cross-section of the excavation. Its area will, therefore, be $\frac{1}{2} w h$. The height of this prism at B is also $2 d \sin . D$, and the height at $E, b \sin . D$; but at the point intermediate between A and G, the distance of which from the centre line is $w-\frac{1}{2} b$, the height will be $2\left(w-\frac{1}{2} b\right) \sin . D=$ $(2 w-b) \sin . D$. As this height is to be considered minus, it must be subtracted from the others, and the correction required will be. $C=\frac{1}{2} w h \times \frac{1}{8}(2 d+b-2 w+b) \sin . D=\frac{1}{2} w h \times \frac{2}{3}(d+b-w)$ $\sin . D$. Hence, in all cases, when the section is partly in excavation and partly in embankment, we have the formula

$$
\quad C=\frac{1}{2} w h \times \frac{2}{3}(d+b-w) \sin . D \text {. }
$$

When R is given, and not D, substitute for $\sin . D$ its value ((9) $\sin . D=\frac{50}{R}$. The correction then becomes

$$
\text { 雨要 } \quad C=\frac{1}{2} w h \times \frac{100(d+b-w)}{3 R}
$$

This correction is to be added, when the highest ground is on the convex side of the curve, and subtracted when the highest ground is on the concave side. At a tangent point the correction will be just half of that given above.

Example. Given $w=17, b=30, d=51, h=24$, and $R=$ 1600, to find C. Here the area of the cross-section is $\frac{1}{2} w h=17 \times$
$12=204$, and one third of the sum of the heights of the prism is $\frac{100(d+b-w)}{3 R}=\frac{100(51+30-17)}{3 \times 1600}=\frac{4}{3}$. Hence $C=204 \times \frac{4}{3}=$
272 cubic feet.
177. The preceding corrections ($\S 174$ and $\S 176$) suppose the length of the sections to be 100 feet. If the sections are shorter, the angle $B F H$ (fig. 75) may be re̊garded as the same part of D that $F G$ is of 100 feet, and $B_{1} F B$ as the same part of D that $E F$ is of 100 feet. The true correction may then be taken as the same part of C that the sum of the lengths of the two adjoining sections is of 200 feet.

Note on the Computation of Earth-work.

178. The mode of computing earth-work on railroads by first inding equivalent level-top sections has already been examined in $\S 172$, and the assumption made in applying the prismoidal formula is shown to lead to possibly serions errors. Another assumption that forms the basis of many formulæ, tables, and diagrams, is that the natural surface of the ground of such a section as that calculated in $\S 166$ is a warped surface or hyperbolic paraboloid. The solidity is then computed by the prismoidal formula. Computing the section just referred to on this assumption, we find the solidity 31210 feet. Now we have seen in $\S 172$ that, with the diagonal running in one direction, the solidity is 32820 feet, and, with the diagonal running in the other direction, the solidity is 29600 feet. The assumption of a warped surface gives, therefore, an exact mean between these two results, being 1,610 feet too much or too little, according to the direction of the diagonal. Errors so great would not perhaps be common; but they are at least possible.

The objection to these methods is that they involve general assumptions as to the natural surface of the ground-assumptions that the engineer cannot readily test in the field for each section, or allow for, if seen to be wrong. No method would seem to be reasonably correct that does not require all the data used in the computation to be obtained directly in the field. Now the division of the ground into triangular planes, whether four as in $\S 166$, or more as in § 171, satisfies this condition. Since three points determine a plane, it is comparatively easy to decide on the ground
what heights should be adopted at the vertices, so that a triangular plane shall be a fair average of the ground. Suppose the ground cross-sectioned in the usual way, and the actual cuts marked on the stakes and recorded. These cuts remain to guide the contractor in his work; but the engineer is to examine each triangle, and see whether these cuts require any correction in order to obtain a fair average of the surface. As he goes from section to section, two of the heights or cuts would in general be already fixed, and, standing at the third vertex, he readily determines whether the actual cut there should stand, or have one, two, three, or more tenths added or subtracted. The correction, if any, may be noted in small figures over the actual cut, and applied when the heights are taken off for the computations.

Some additional labor is doubtless involved in thus obtaining directly all the data required, and dispensing with all general assumptions; but if justice to the contractor and to the company require such additional labor, the engineer will not hesitate on that account. The computations, as arranged in $\S 167$, will be found, after a little practice, to admit of very rapid work. Of course, only final estimates require so much care.

In preliminary estimates, where centre heights alone are taken, the method of $\S 164$ will be found sufficiently accurate, and if the computations are arranged as there shown, the work will be found very expeditious. In many cases where only approximate results are aimed at, especially in making the usual " monthly estimates," the method of averaging end areas may be employed. This method consists in finding the areas of the two cross-sections which bound a section of an excavation, and multiplying the average of these areas by the length of the section to obtain the contents of the section.

TABLE I.

RADII, ORDINATES, TANGENT DEFLECTIONS, AND ordinates For curving rails.

This table applies directly only to curves laid out with 100 feet chords. With shorter chords, it may still be made useful. When 50 feet chords are used with a deflection angle half that for 100 feet chords, the radius of the curve is so slightly shortened, that, for the purpose of finding the new ordinates and tangent deflections from Table I., the curve is practically the same as when laid out with 100 feet chords. The change in the radius is easily found. Let D be the deflection angle for 100 feet chords, and we have $\left(\S 10\right.$ and Tab. X., 22) $R=\frac{50}{\sin . D}=\frac{50}{2 \sin \cdot \frac{1}{2} D \cos . \frac{1}{2} D}=$ $\frac{25}{\sin \cdot \frac{1}{2} D \cos \cdot \frac{1}{2} D}$, and for R_{1}, the radius for 50 feet chords, $R_{1}=$ $\frac{25}{\sin . \frac{1}{2} D}=R \cos . \frac{1}{2} D$. In a 12° curve, where $R=478.34$ and $D=$ 6°, we have $R_{1}=R \cos .3^{\circ}=478.34 \times .99863=477.68$. Now in the same curve the ordinates ($\$ 27$) and the tangent deflections (19) are to each other as the squares of the chords; that is, for 50 feet chords these quantities are one-fourth of those given in Table I. for 100 feet chords. The ordinates for curving 30 feet rails will, of course, be unchanged. In the present example the ordinates would be $\frac{2.620}{4}=.655$ and $\frac{1.965}{4}=.491$, the tangent deflection $\frac{10.453}{4}=2.613$, and the ordinates for curving 30 feet rails .235 and .176.
With 25 feet chords and a deflection angle of $1 \frac{1}{2}^{\circ}$ we should have the radius $R_{2}=R \cos .3^{\circ} \cos .1 \frac{1}{2}^{\circ}$, and the ordinates and tangent deflection one-sixteenth of those in Table I., while the ordinates for curving 30 feet rails would still be unchanged.
This curve, strictly speaking, could no longer be called a 12° curve. The new degree, here about $12^{\circ} 1^{\prime}$, might be found, or the curve might be designated by the radius; but the most convenient and definite designation would be: Deflection angle 3° for 50 feet chords, or deflection angle $1_{\frac{1}{2}}{ }^{\circ}$ for 25 feet chords.

166 TABLE I. RADII, ORDINATES, TANGENT DEFLECTIONS,

Degree.	Radius, § 10.	Ordinates, § 25.		Tangent Deflection, § 19.	Curving $30-\mathrm{ft}$. rails, § 29 .		Degree.
		m.	${ }^{3} m$.		m.	$\pm m$.	
0	Infinite.	. 000	. 000	. 000	. 000	. 000	\bigcirc
-1	171887.35	. 007	. 005	. 029	. 001	. 000	- 2
4	85943.6\%	. 015	. 011	. 058	. 001	. 001	4
6	57295.79	.022	. 016	. 087	. 002	. 001	6
8	42971.84	. 029	. 022	. 116	. 003	. 002	8
10	343\%7.48	. 036	. 027	. 145	. 003	. 002	10
12	28647.91	. 044	. 033	. 175	. 004	. 003	12
14	24555.35	. 051	. 038	. 204	. 005	. 003	14
16	21485.94	. 058	. 044	. 233	. 005	. 004	16
18	19098.62	. 065	. 049	. 262	. 006	. 004	18
20	17188.76	. 073	. 055	. 291	. 007	. 005	20
22	15626.15	. 080	. 060	. 320	. 007	. 005	22
24	14323.97	. 087	. 065	. 349	. 008	. 006	24
26	1322. 13	. 095	. 071	. 378	. 009	. 006	26
28	12277.70	. 102	. 046	. 407	. 009	. 007	28
30	11459.19	. 109	. 082	. 436	. 010	. 007	30
32	10743.00	. 116	. 087	. 465	. 010	. 008	32
34	10111.06	. 124	. 093	. 495	. 011	. 008	34
36	9549.34	. 131	. 098	. 524	. 012	. 009	36
38	9046.75	. 138	. 104	. 553	. 012	. 009	38
40	8594.41	. 145	. 109	. 582	. 013	. 010	40
42	8185.16	. 153	. 115	. 611	. 014	. 010	42
44	7813.11	. 160	. 120	. 640	. 014	. 011	44
46	7473.42	. 167	. 125	. 669	. 015	. 011	46
48	7162.03	. 175	. 131	. 698	. 016	. 012	48
50	$68 \% 5.55$. 182	. 136	. $\% 27$. 016	. 012	50
52	6611.12	. 189	. 142	. 756	. 017	. 013	52
54	6366.26	. 196	. 147	. 785	. 018	. 013	54
56	6138.90	. 204	. 153	. 814	. 018	. 014	56
58	5927.22	. 211	. 158	. 844	. 019	. 014	58
10	5729.65	. 218	. 164	. 873	. 020	. 015	10
2	5544.83	.225	. 169	. 902	. 020	. 015	2
4	5371.56	. 233	. 175	. 931	. 021	. 016	4
6	5208.79	. 240	. 180	. 960	. 022	. 016	6
8	5055.59	. 247	,185	. 989	. 022	. 017	8
10	4911.15	. 255	. 191	1.018	. 023	. 017	10
12	4774.74	. 262	. 196	1.047	. 024	. 018	12
14	4645.69	. 269	. 202	1.076	. 024	. 018	14
16	4523.44	. 276	. 207	1.105	. 025	. 019	16
18	4407.46	. 284	. 213	1.134	. 026	. 019	18
20	4297.28	. 291	. 218	1.164	. 026	. 020	20
22	4192.47	. 298	.224	1.193	. 027	. 020	22
24	4092.66	. 305	. 229	1.222	. 027	. 021	24
26	3997.48	. 313	. 235	1.251	. 028	. 021	26
28	3906.64	. 320	. 240	1.280	. 029	. 022	28
30	3819.83	. 327	. 245	1.309	. 029	. 022	30
32	3736.79	. 335	. 251	1.338	. 030	. 023	32
34	3657.29	. 342	. 256	1.367	. 031	. 023	34
36	3581.10	. 349	. 262	1.396	. 031	. 024	36
38	3508.02	. 356	. 267	1.425	. 032	. 024	38
40	3437.87	. 364	. $2 \sim 3$	1.454	. 033	. 025	40
42	3370.46	. 371	. 278	1.483	. 033	. 025	42
44	3305.65	. 378	. 284	1.513	. 034	. 026	44
46	3243.29	. 385	. 289	1.542	. 035	. 026	46
48	3183.23	. 393	. 295	1.571	. 035	. 026	48
50	3125.36	. 400	. 300	1.600	. 036	. 027	50
52	3069.55	. 407	. 305	1.629	. 037	. 027	52
54	3015.71	. 415	. 311	1.658	. 037	. 028	54
56	2963.72	. 422	. 316	1.687	. 038	. 028	56
58	2913.49	. 429	. 322	1.716	. 039	. 029	58

$\begin{aligned} & \text { De- } \\ & \text { gree. } \end{aligned}$	Radius, § 10.	Ordinates, \& 25.		Tangent Deflection, § 19.	Curving $30-\mathrm{ft}$. rails, § 29.		$\begin{aligned} & \text { De- } \\ & \text { gree. } \end{aligned}$
		m.	4.		m.	${ }^{3} m$.	
-1 2	2864.93	436	. 327	1.745	. 039	. 029	
	2817.97	. 444	. 333	1.774	. 040	. 030	$\begin{array}{r}20 \\ 20 \\ \hline\end{array}$
4	2772.53	. 451	. 338	1.803	. 041	. 030	4
6	2728.52	. 458	. 344	1.832	. 041	. 031	6
8	2685.90	. 465	. 349	1.862	. 042	. 031	8
10	2644.58	. 473	. 355	1.891	. 043	. 032	10
12	2604.51	. 480	. 360	1.920	. 043	. 032	12
14	2565.65	. 487	. 365	1.949	. 044	. 033	14
16	2527.92	. 495	. 371	1.978	. 045	. 033	16
18	2491.29	. 502	. 376	2.007	. 045	. 034	18
20	2455.70	. 509	. 382	2.036	. 046	. 034	20
22	2421.12	. 516	. 387	2.065	. 046	. 035	22
24	2387.50	. 524	. 393	2.094	. 047	. 035	24
26	2354.80	. 531	. 398	2.123	. 048	. 036	26
28	2322.98	. 538	. 404	2.152	. 048	. 036	28
30	2292.01	. 545	. 409	2.181	. 049	. 037	30
32	2261.86	. 553	. 415	2.211	. 050	. 037	32
34	2232. 49	. 560	. 420	2.210	. 050	. 038	34
36	2203.87	. 567	. 425	2.269	. 051	. 038	36
38	$21 \% 5.98$. 575	. 431	2.298	. 052	. 039	38
40	214879	.58\%	. 436	2.327	. 052	. 039	40
42	2122.26	. 589	. 442	2.356	. 053	. 040	42
44	2096.39	. 596	. 447	2.385	. 054	. 040	44
46	2071.13	. 604	. 453	2.414	. 054	. 041	46
48	2046.48	. 611	. 458	2.443	. 055	. 041	48
50	2022.41	. 618	. 464	2.472	. 056	. 042	50
52	1998.90	. 625	. 469	2.501	. 056	. 042	52
54	1975.93	. 633	. 475	2.530	. 057	. 043	54
56	1953.48	. 640	. 480	2.560	. 058	.043	56
58	1931.53	. 647	.485	2.589	. 058	. 044	58
30	1910.08	. 655	. 491	2.618	. 059	. 044	30
2	1889.09	. 662	. 496	2.647	. 060	. 045	2
4	1868.56	. 669	. 502	2.676	. 060	. 045	4
6	1848.48	. 676	. 507	2.705	. 061	. 046	6
8	1828.82	. 684	. 513	2.734	. 062	. 046	8
10	1809.57	. 691	. 518	2.763	. 062	. 047	10
12	1790.73	. 698	. 524	2.792	. 063	. 047	12
14	1772.27	. 705	. 529	2.821	. 063	. 048	14
16	1754.19	. 713	. 535	2.850	. 064	. 048	16
18	1736.48	. 720	. 540	2.879	. 065	. 049	18
20	1719.12	.727	. 545	2.908	. 065	. 049	20
22	1702.10	. 735	. 551	2.938	. 066	. 050	22
24	1685.42	. 742	. 556	2.967	. 067	. 050	24
26	1669.06	. 749	.562.	2.996	. 067	. 051	26
28	1653.01	. 756	. 567	3.025	. 068	. 051	28
30	1637.28	. 764	. 573	3.054	. 069	. 052	30
32	1621.84	. 771	.578	3.083	. 069	. 052	32
34	1606.68	. 778	. 584	3.112	. 060	. 053	34
36	1591.81	.785	. 589	3.141	. 071	. 053	36
38	1577.21	. 793	. 595	3.170	. 071	. 053	38
40	1562.88	. 800	. 600	3.199	. 072	. 054	40
42	1548.80	. 807	. 605	3.228	. 073	. 054	42
44	1534.98	. 815	. 611	3.257	. 073	. 055	44
46	1521.40	.82\%	. 616	3.286	. 074	.055	46
48	1508.06	. 829	. 622	3.316	. 075	. 056	48
50	1494.95	. 833	. 627	3.345	. 0.75	. 056	50
52	1488.07	. 844	. 633	3.374	. 0767	. 057	52
54	1469.41	.851	. 638	3.403	. 077	. 057	54
56	1456.96	. 858	. 644	3.432	. 077	. 058	56
58	1444.72	. 865	. 649	3.461	. 078	. 058	58

168 TABLE I. RADII, ORDINATES, TANGENT DEFLECTIONS,

$\begin{aligned} & \text { De- } \\ & \text { gree. } \end{aligned}$	Radius, § 10.	Ordinates, § 25.		Tangent Deflecti n, § 19.	Curving 30-ft. rails, § 29.		Degree.
		m.	${ }^{3} \mathrm{~m}$ m.		m.	5 m.	
40	1432.69	. 873	. 655	3.490	. 079	. 059	40
	1420.85	. 880	. 660	3.519	. 079	. 059	2
4	1409.21	. 887	. 665	3.548	. 080	. 060	4
6	1397.76	. 895	. 671	3.577	. 080	. 060	6
8	1386.49	. 902	. $6 \pi 6$	3.606	. 081	. 061	8
10	1375.40	. 909	. 682	3.635	. 082	. 061	10
12	1364.49	. 916	. 687	3.664	. 082	. 062	12
14	1353.75	. 924	. 693	3.693	. 083	. 062	14
16	1343.18	. 931	. 698	3.723	. 084	. 063	16
18	1332. 77	. 938	. 704	3.752	. 084	. 063	18
20	1322.53	. 946	. 709	3.781	. 085	. 064	20
22	1312.43	. 953	. 715	3.810	. 086	. 064	22
24	1302.50	. 960	. 720	3.839	. 086	. 065	24
26	1292.71	. 967	. 725	3.868	. 087	. 065	26
28	1283.07	. 975	. 731	3.897	. 088	. 066	28
30	1273.57	. 982	. 736	3.926	. 088	. 066	30
32	1264.21	. 989	. 742	3.955	. 089	. 067	32
34	1254.98	. 996	. 747	3.984	. 090	. 067	34
36	1245.89	1.004	. 753	4.013	. 090	. 068	36
38	1236.94	1.011	. 758	4.042	. 091	. 068	. 38
40	1228.11	1.018	. 764	4.071	. 092	. 069	40
42	1219.40	1.026	. 769	4.100	. 092	. 069	42
44	1210.82	1.033	. 775	4.129	. 093	. 070	44
46	1202.36	1.040	. 780	4.159	. 094	. 070	46
48	1194.01	1.047	. 786	4.188	. 094	. 071	48
50	1185.78	1.055	. 791	4.217	. 095	. 071	50
52	1177.66	1.062	. 796	4.246	. 096	. 072	52
54	1169.66	1.069	. 802	4.275	. 096	. 072	54
56	1161.76	1.076	. 807	4.304	. 097	. 073	56
58	1153.97	1.084	. 813	4.333	. 097	. 073	58
50	1146.28	1.091	. 818	4.362	. 098	. 074	
	1138.69	1.098	. 824	4.391	. 099	. 074	
4	1131.21	1.106	. 829	4.420	. 099	. 075	4
6	1123.82	1.113	. 835	4.449	. 100	. 075	6
8	1116.52	1.120	. 840	4.478	. 101	. 076	8
10	1109.33	1.127	. 846	4.507	. 101	. 076	10
12	1102.22	1.135	. 851	4.536	. 102	. 077	12
14	1095.20	1.142	. 856	4.565	. 103	. 077	14
16	1088.28	1.149	.862	4.594	. 103	. 078	16
18	1081.44	1.156	. 867	4.623	. 104	. 078	18
20	1074.68	1.164	. 873	4.653	. 105	. 079	20
22	1068.01	1.171	. 878	4.682	. 105	. 079	22
24	1061.43	1.178	. 884	4.711	. 106	. 079	24
26	1054.92	1.186	. 889	4.740	. 107	. 080	26
28	1048.49	1.193	. 895	4.769	. 107	. 080	28
30	1042.14	1.200	. 900	4.798	. 108	. 081	30
32	1035.87	1.207	. 906	4.827	. 109	. 081	32
34	1029.67	1.215	. 911	4.856	. 109	. 082	34
36	1023.55	1.222	. 916	4.885	. 110	. 082	36
38	1017.49	1.229	. 922	4.914	. 111	. 083	38
40	1011.51	1.237	.927	4.943	. 111	. 083	40
44	100.60 99.76	1.251	. 938	4.972 5.001	. 113	. 084	42
46	993.99	1.258	. 944	5.030	. 113	. 085	46
48	988.28	1.266	. 949	5.059	. 114	. 085	48
50	982.64	1.273	. 955	5.088	. 114	. 086	50
52	977.06	1.280	. 980	5.117	. 115	. 086	52
54	971.54	1.287	. 966	5.146	. 116	. 087	54
56	966.09	1.295	. 971	5.175	. 1116	. 087	56
58	960.70	1.302	. 977	5.205	. 117	. 088	58

Degree.	Radius, § 10.	Ordinates, § 25.		Tangent Deflection, § 19.	Curving $30-\mathrm{ft}$. rails, § 29.		Degree.
		m.	$\frac{3}{4} m$.		m.	\pm.	
- 1							
60	955.37	1.309	. 988	5.234	. 118	. 088	60
	950.09	1.317	. 987	5.263	. 118	. 089	2
4	944.88	1.324	. 993	5.292	. 119	. 089	4
6	939.72	1.331	. 998	5.321	. 120	. 090	6
8	934.62	1.338	1.004	5.350	. 120	. 090	8
10	929.57	1.346	1.009	5.379	. 121	. 091	10
12	924.58	1.353	1.015	5.408	. 122	. 091	12
14	919.64	1.360	1.020	5.437	. 122	. 092	14
16	914.75	1.368	1.026	5.466	.123	. 092	16
18	909.92	1.375	1.031	5.495	. 124	. 093	18
20	905.13	1.382	1.037	5.524	. 124	. 093	20
22	900.40	1.389	1.042	5.553	. 125	. 094	22
24	895.71	1.397	1.047	5.582	. 126	. 094	24
26	891.08	1.404	1.053	5.611	. 126	. 095	26
28	886.49	1.411	1.058	5.640	. 127	. 095	28
30	881.95	1.418	1.064	5.669	. 128	. 096	30
32	877.45	1.426	1.069	5.698	. 128	. 096	32
34	873.00	1.433	1.075	5.727	. 129	. 097	34
36	868.60	1.440	1.080	5.756	. 130	. 097	36
38	864.24	1.448	1.086	5.785	. 130	. 098	38
40	859.92	1.455	1.091	5.814	. 131	. 098	40
42	855.65	1.462	1.097	5.844	. 131	. 099	42
44	851.42	1.469	1.102	5.873	. 132	. 099	44
46	847.23	1.477	1.108	5.902	. 133	. 100	46
48	843.08	1.484	1.113	5.931	. 133	. 100	48
50	838.97	1.491	1.118	5.960	. 134	. 101	50
52	834.90	1.499	1.124	5.989	. 135	. 101	52
54	830.88	1.506	1.129	6.018	. 135	. 102	54
56	826.89	1.513	1.135	6.047	. 136	. 102	56
58	822.93	1.520	1.140	6.076	. 137	. 103	58
70	819.02	1.528	1.146	6.105	. 137	. 103	
2	815.14	1.535	1.151	6.134	. 138	. 104	2
4	811.30	1.542	1.157	6.163	. 139	. 104	4
6	807.50	1.549	1.162	6.192	. 139	. 104	6
8	803.73	1.557	1.168	6.221	. 140	. 105	8
10	800.00	1.564	1.173	6.250	. 141	. 105	10
12	796.30	1:571	1.178	6.279	. 141	. 106	12
14	792.63	1.579	1.184	6.308	. 142	. 106	14
16	789.00	1.586	1.189	6.337	. 143	. 107	16
18	785.40	1.593	1.195	6.366	. 143	. 107	18
20	781.84	1.600	1.200	6.395	. 144	. 108	20
22	778.31	1.608	1.206	6.424	. 145	. 108	22
$\stackrel{24}{ }$	774.81	1.615	1.211	6.453	. 145	. 109	24
26	771.34	1.622	1.217	6.482	. 146	. 109	26
	767.90	1.630	1.222	6.511	. 147	. 110	28
30	764.49	1.637	1.228	6.540	. 147	. 110	30
32	761.11	1.644	1.233	6.569	. 148	. 111	32
34	757.76	1.651	1.239	6.598	. 148	. 111	34
36	754.44	1.659	1.244	6.627	. 149	. 112	36
38	751.16	1.666	1.249	6.656	. 150	. 112	38
40	747.89	1.673	1.255	6.685	. 150	. 113	40
42	744.66	1.681	1.260	6.714	. 151	. 113	42
44	741.46	1.688	1.266	6.743	. 152	. 114	44
46	738.28	1.695	1.271	6.773	. 152	. 114	46
50	732.01	1.702	1.277	6.802	. 153	. 115	48
52	728.91	1.717	1.282	6.831	. 154	. 1115	50
54	725.84	1.724	1.293	6.889	. 155	. 116	54
56	722.79	1.731	1.299	6.918	. 156	. 117	56
58	719.77	1.739	1.304	6.947	. 156	. 117	58

$\begin{aligned} & \text { De- } \\ & \text { gree. } \end{aligned}$	Radius, § 10.	Ordinates, § 25.		Tangent Deflection, § 19.	Curving 30-ft. rails, § 29 .		Degree.
		m.	${ }^{4} m$.		m.	${ }_{4} m$.	
$\bigcirc 1$							
80	716.78	1.746	1.310	6.976	. 157	. 118	80
	713.81	1.753	1.315	7.005	. 158	. 118	2
4	710.87	1.761	1.320	7.034	. 158	. 119	4
6	707.94	1.768	1.326	7.063	. 159	. 119	6
8	705.05	1.775	1.331	7.093	. 160	. 120	8
10	702.18	1.782	1.337	7.121	. 160	. 120	10
12	699.33	1.790	1.342	7.150	. 161	. 121	12
14	696.50	1.797	1.348	7.179	. 162	. 121	14
16	693.70	1.804	1.353	7.208	. 162	. 122	16
18	690.91	1.812	1.359	7.237	. 163	.122	18
20	688.16	1.819	1.364	7.266	. 163	. 123	20
22	685.42	1.826	1.370	7.295	. 164	. 123	22
24	682.70	1.833	1.375	7.324	. 165	. 124	24
26	680.01	1.841	1.381	7.353	. 165	. 124	26
28	67 \%. 34	1.848	1.386	7.382	. 166	. 125	28
30	674.69	1.855	1.391	7.411	. 167	.125	30
32	672.06	1.863	1.397	7.440	. 167	.126	32
34	669.45	1.870	1.402	7.469	. 168	. 126	34
36	666.86	1.877	1.408	7.493	. 169	. 127	36
38	664.29	1.884	1.413	7.527	. 169	. 127	38
40	661.74	1.892	1.419	7.556	. 170	. 128	40
42	659.21	1.899	1.424	7.585	. 171	. 128	42
44	656.69	1.906	1.430	7.614	. 171	. 128	44
46	654.20	1.914	1.435	7.643	.172	.129	46
48	651.73	1.921	1.441	7.672	. 173	.129	48
50	649.27	1.928	1.446	7.701	. 173	. 130	50
52	64684	1.935	1.452	7.730	. 174	. 130	52
54	644.42	1.943	1.457	7.759	. 175	. 131	54
56	642.02	1.950	1.462	7.788	. 175	.131	56
58	639.64	1.957	1.468	7.817	. 176	. 132	58
90	637.27	1.965	1.473	7.846	. 177	.132	$9 \quad 0$
	634.93	1.972	1.479	\%.875	. 177	. 133	2
4	632.60	1.979	1.484	7.904	. 178	. 133	4
6	630.29	1.986	1.490	7.933	. 178	. 134	6
8	627.99	1.994	1.495	7.962	. 179	. 134	8
10	625.71	2.001	1.501	7.991	. 180	. 135	10
12	623.45	2.008	1.506	8.020	. 180	. 135	12
14	621.20	2.015	1.512	8.049	. 181	. 136	14
16	618.97	2.023	1.517	8.078	. 182	. 136	16
18	616.76	2.030	1.523	8.107	. 182	. 137	18
20	614.56	2.037	1.528	8.136	. 183	. 137	20
22	612.38	2.045	1.533	8.165	. 184	. 138	22
24	610.21	2.052	1.539	8.194	. 184	. 138	24
26	608.06	2.059	1.544	8.223	. 185	. 139	26
28	605.93	2.066	1.550	8.252	. 186	. 139	28
30	603.80	2.074	1.555	8.281	. 186	. 140	30
32	601.70	2.081	1.561	8.310	. 187	. 140	32
34	599.61	2.088	1.566	8.339	. 188	. 141	34
36	597.53	2096	1.572	8.368	. 188	. 141	36
38	595.47	2.103	1.577	8.397	. 189	. 142	38
40	593.42	2.110	1.583	8.426	. 190	. 142	40
42	591.38	2.117	1.588	8.455	. 190	. 143	42
44	589.36	2.125	1.594	8.484	. 191	. 143	44
46	587.36	2.132	1.599	8.513	. 192	. 144	46
48	585.36	2.139	1.604	8.542	. 192	. 144	48
50	583.38	2.147	1.610	8.571	. 193	. 145	50
52	581.42	2.154	1.615	8.600	. 193	. 14.5	52
54	579.47	2.161	1.621	8.629	. 194	. 146	54
56	577.53	2.168	1.626	8.658	. 195	. 146	56
58	575.60	2.176	1.632	8.687	. 195	. 147	58

AND ORDINATES FOR CURVING RAILS.

Degree.	Radius, § 10.	Ordinates, § 25.		Tangent Deflection, § 19.	Curving $30-\mathrm{ft}$. rails, § 29.		Degree.
		m.	${ }^{8} \mathrm{~m}$ m.		m.	${ }_{4} m$.	
10 0	573.69	2.183	1.637	8.716	. 196	. 147	10
	569.90	2.198	1.648	8.774	. 197	. 148	1
8	566.16	2.212	1.659	8.831	. 199	. 149	8
12	562.47	2.227	$1.6{ }^{1.60}$	8.859	. 200	. 150	12
16	558.88	2.241	1.681	8.947	. 201	. 151	16
20	555.23	2.256	1.692	9.005	. 203	. 152	20
24	551.68	2.270	1.703	9.063	. 204	. 153	24
28	548.17	2.285	1.714	9.121	. 205	. 154	28
32	544.71	2.300	1.725	9.179	. 207	. 155	32
36	541.30	2.314	1.736	9.237	. 208	. 156	36
40	537.92	2.329	1.747	9.295	. 209	. 157	40
44	534.59	2.343	1.758	9.353	.210	. 158	44
48	531.30	2.358	1.768	9.411	. 212	. 159	48
52	528.05 524.84	2.373 2.387	1.779	9.469 9.527	. 213	. 160	52
56	524.84	2.387	1.790	9.527	. 214	. 161	56
110	521.67	2.402	1.801	9.585	. 216	. 162	
	518.54	2.416	1.812	9.642	. 217	. 163	4
8	515.44	2.431	1.823	9.700	. 218	. 164	8
12	512.38	2.445	1.834	9.758	.220	. 165	12
16	509.36	2.460	1.845	9.816	. 221	. 166	16
20	506.38	2.475	1.856	9.874	. 222	. 167	20
24	503.42	2.489	1.867	9.932	. 223	. 168	24
28	500.51	2.504	1.878	9.990	. 225	. 169	28
32	497.62	2.518	1.889	10.048	. 226	. 170	32
36	494.77	2.533	1.900	10.106	. 227	. 171	36
40	491.96	2.547	1.911	10.164	. 229	. 172	40
44	489.17	2.562	1.922	10.221	. 230	. 172	44
48	486.42	2.577	1.932	10.279	. 231	. 173	48
52	483.69	2.591	1.943	10.337	. 233	. 174	52
56	481.00	2.606	1.954	10.395	. 234	. 175	56
120	478.34	2.620	1.965	10.453	. 235	. 176	
	475.71	2.635	1.976	10.511	. 236	. 177	4
8	473.10	2.650	1.987	10.569	. 238	. 178	8
12	470.53	2.664	1.998	10.626	. 239	. 179	12
16	467.98	2.679	2.009	10.684	. 240	. 180	16
20	465.46	2.693	2.020	10.742	. 242	. 181	20
24	462.97	2.708	2.031	10.800	. 243	. 182	24
28	460.50	2.722	2.042	10.858	. 244	. 183	28
32	458.06	2.737	2.053	10.916	. 246	. 184	32
36	455.65	2.752	2.064	10.973	. 247	. 185	36
40	453.26	2.766	2.075	11.031	. 248	. 186	40
44	450.89	2.781	2.086	11.089	. 250	. 187	44
48	448.56	2.795	2.097	11.147	. 251	. 188	48
52	446.24	2.810	2.108	11.205	. 25.2	. 189	52
56	443.95	2.825	2.118	11.263	. 253	. 190	56
$13 \quad 0$	441.68	2.839	2.129	11.320	. 255	. 191	
	439.44	2.854	2.140	11.378	. 256	. 192	
8	437.22	2.868	2.151	11.436	. 257	. 193	8
12	435.02	2.883	2.162	11.494	. 259	. 194	12
16	432.84	2.898	2.173	11.552	. 260	. 195	16
20	430.69	2.912	2.184	11.609	. 261	. 196	20
24	428.56	2.927	2.195	11.667	. 263	. 197	24
28	426.44	2.941	2.206	11.725	. 264	. 198	28
32	424.35	2.956	2.217	11.783	. 265	. 199	32
36	422.28	2.971	2.228	11.840	. 266	. 200	36
40	420.23	2.985	2.239	11.898	. 268	. 201	40
44	418.20	3.000	2.250	11.956	. 269	. 202	44
48	416.19	3.014	2.261	12.014	. 270	. 203	48
52	414.20	3.029	2.272	12.071	. 272	. 204	52
56	412.23	3.044	2.283	12.129	. 273	. 205	56

172 table i. radif, ordinates, tangent deflections,

Degree.	Radius, § 10.	Ordinates, § 25.		Tangent Deflection, § 19.	Curving $30-\mathrm{ft}$. rails, § 29.		Degree.
		m.	${ }^{\frac{3}{4} m \text {. }}$		m.	${ }_{4} \mathrm{~m}$.	
	410.28	3.058	2.294	12.187	. 274	. 206	${ }^{\circ} 140$
140	408.34	3.073	2.305	12.245	. 276	. 207	$\begin{array}{r}14 \\ \hline\end{array}$
	406.42	3.087	2.316	12.302	. 277	. 208	8
	404.53	3.102	2.326	12.360	. 278	. 209	12
	402.65	3.117	2.337	12.418	. 279	. 210	16
	400.78	3.131	2.348	12.476	. 281	. 211	20
	398.94	3.146	2.359	12.533	. 282	. 211	24
	397.11	3.160	2.370	12.591	. 283	. 212	28
	395.30	3.175	2.381	12.649	. 285	. 213	32
	393.50	3.190	2.392	12.706	. 286	. 214	36
	391.72	3.204	2.403	12.764	. 287	. 215	40
	389.96	3.219	2.414	12.822	. 288	. 216	44
	388.21	3.233	2.425	12.880	. 290	. 217	48
	386.48	3.248	2.436	12.937	. 291	. 218	52
	384.77	3.263	2.447	12.995	. 292	. 219	56
15	383.06	3.277	2.458	13.053	. 294	. 220	150
	381.38	3.292	2.469	13.110	. 295	. 221	4
	379.71	3.306	2.480	13.168	. 296	. 222	8
	378.05	3.321	2.491	13.226	. 298	. 223	12
	376.41	3.336	2.502	13.283	. 299	. 224	16
	374.79	3.350	2.513	13.341	. 300	. 225	20
	373.17	3.365	2.524	13.399	. 301	. 226	24
	371.57	3.379	2.535	13.456	. 303	. 227	28
	369.99	3.394	2.546	13.514	. 304	. 228	32
	368.42	3.409	2.556	13.572	. 305	. 229	36
	366.86	3.423	2.567	13.629	. 307	. 230	40
	365.31	3.438	2.578	13.687	. 308	. 231	44
	363.78	3.452	2.589	13.744	. 309	. 232	48
	362.26	3.467	2.600	13.802	. 311	. 233	52
	360.76	3.482	2.611	13.860	. 312	. 234	56
$\begin{array}{rr}16 & 0 \\ 4 \\ 8 \\ 12 \\ 16 \\ 20 \\ 24 \\ 28 \\ 32 \\ 36 \\ 40 \\ 44 \\ 48 \\ 52 \\ 56\end{array}$	359.26	3.496	2.622	13.917	. 313	. 235	
	357.78	3.511	2.633	13.975	. 314	. 236	4
	356.32	3.526	2.644	14.033	. 316	. 237	8
	354.86	3.540	2.655	14.090	. 317	. 238	12
	353.41	3.555	2.666	14.148	. 318	. 239	16
	351.98	3.569	2.677	14.205	. 320	. 240	20
	350.06	3.584	2.688	14.263	. 321	. 241	24
	349.15	3.599	2.699	14.320	. 322	. 242	28
	347.75	3.613	2.710	14.378	. 324	. 243	32
	346.37	3.628	2.721	14.436	. 325	. 244	36
	344.99	3.643	2.732	14.493	. 326	. 245	40
	343.62	3.657	2.743	14.551	.327	. 246	44
	342.27	3.672	2.754	14.608	. 329	. 247	48
	340.93	3.686	2.765	14.666	. 330	. 247	52
	339.60	3.701	2.776	14.723	. 331	. 248	56
170	338.27	3.716	2.787	14.781	. 333	. 249	
	336.96	3.730	2.798	14.838	. 334	. 250	- 4
8	335.66	3.745	2.809	14.896	. 335	. 251	8
12	334.37	3.760	2.820	14.954	. 336	. 252	12
16	333.09	3.774	2.831	15.011	. 338	. 253	16
20	331.82	3.789	2.842	15.069	. 339	. 254	20
$\stackrel{24}{ }$	330.55	3.803	2.853	15.126	. 340	. 255	24
28	329.30	3.818	2.864	15.184	. 342	. 256	28
32	328.06	3.833	2.875	15.241	. 343	. 257	32
36	326.83	3.847	2.885	15.299	. 344	. 258	36
40	325.60	3.862	2.896	15.356	. 346	. 259	40
44	324.39	3.877	2.907	15.414	. 347	. 260	44
48	323.18	3.891	2.918	15.471	. 348	. 261	48
52	321.99	3.906	2.929	15.529	. 349	. 262	52
56	320.80	3.920	2.940	15.586	. 351	. 263	56

Degree.	Radius, § 10.	Ordinates, § 25.		Tangent Deflection, § 19.	Curving $30-\mathrm{ft}$. rails, \& 29.		Degree.
		m.	${ }^{3} m$.		m.	$\frac{3}{4} m$.	
18							
$\begin{array}{rr}18 & 0 \\ 4 \\ 8 \\ 12 \\ 16 \\ 20 \\ 24 \\ 28\end{array}$	319.62	3.935	2.951	15.643	. 352	. 264	
	318.45	3.950	2.962	15.701	. 353	. 265	4
	317.29	3.964	2.973	15.758	. 355	. 266	8
	316.14	3.979	2.984	15.816	. 356	. 267	12
	315.00	3.994	2.995	15.873	. 357	. 268	16
	313.86	4.008	3.006	15.931	. 358	. 269	20
	312.73	4.023	3.017	15.988	. 360	. 280	24
	311.61	4.038	3.028	16.046	. 361	. 271	28
32	310.50	4.052	3.039	16.103	. 362	. 272	32
36	309.40	4.067	3.050	16.160	. 364	. 273	36
40	308.30	4.081	3.061	16.218	. 365	. 274	40
44	307.22	4.096	3.072	16.275	. 366	. 275	44
48	306.14	4.111	3.083	16.333	. 367	. 276	48
52	305.06	4.125	3.094	16.390	. 369	. 277	52
56	304.00	4.140	3.105	16.447	. 340	. 278	56
19081216202283836404485956	302.94	4.155	3.116	16.505	. 371	.279	190
	301.89	4.169	3.127	16.562	. 373	. 279	4
	300.85	4.184	3.138	16.620	. 374	. 280	8
	299.82	4.199	3.149	16.677	. 375	. 281	12
	298.79.	4.213	3.160	16.734	. 377	. 282	16
	297.77	4.228	3.171	16.792	. 378	. 283	20
	296.75	4.243	3.182	16.849	. 379	. 284	24
	295.75	4.257	3.193	16.906	. 380	. 285	28
	294.75	4.272	3.204	16.964	. 382	. 286	32
	293.76	4.287	3.215	17.021	. 383	. 287	36
	292.77	4.301	3.226	17.078	. 384	. 288	40
	291.79	4.316	3.237	17.136	. 386	. 289	44
	290.82	4.330	3.248	17.193	. 387	. 290	48
	289.85	4.345	3.259	17.250	. 388	. 291	52
	288.89	4.360	3.270	17.308	. 389	. 292	56
$\begin{array}{rr}20 & 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50\end{array}$	287.94	4.374	3.281	17.365	. 391	. 293	$20 \quad 0$
	285.58	4.411	3.308	17.508	. 394	. 295	10
	288.27	4.448	3.336	17.651	. 397	. 298	20
	280.99	4.484	3.363	17.794	. 400	. 300	30
	278.75	4.521	3.391	17.937	. 404	. 303	40
	276.54	4.558	3.418	18.081	. 407	. 305	50
2100	274.37	4.594	3.446	18.224	. 410	. 308	$21 \quad 0$
	272.23	4.631	3.473	18.367	. 413	. 310	10
	270.13	4.668	3.501	18.509	. 416	. 312	20
	268.06	4.704	3.528	18.652	. 420	. 315	30
	266.02	4.741	3.556	18.795	. 423	. 317	40
	264.02	4.778	3.583	18.938	. 426	. 320	50
220	262.04	4.814	3.611	19.081	. 429	. 322	220
	260.10	4.851	3.638	19.224	. 433	. 324	10
	258.18	4.888	3.666	19.366	. 436	. 327	20
	256.29 254.43	4.925	3.693	19.509	. 439	. 329	30 40
1	22.60	4.998	3.621 3.749	19.794 19.794	. 4445	. 334	50
230	250.79	5.035	3.776	19.937	. 449	. 336	230
	249.01	5.071	3.804	20.079	. 452	. 339	10
	247.26	5.108	3.831	20.222	. 455	. 341	20
	245.53	5.145	3.859	20.364	. 458	. 344	30
	243.82	5.182	3.886	20.507	. 461	. 346	40
	242.14	5.218	3.914	20.648	. 465	. 348	50
$\begin{array}{r}24 \quad 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ \hline\end{array}$	240.49	5.255	3.941	20.791	. 468	. 351	240
	238.85	5.292	3.969	20.933	. 471	. 353	10
	237.24	5.329	3.997	21.076	. 474	. 356	20
	235.65	5.366	4.024	21.218	. 477	. 358	30
	234.08	5.402	4.052	21.360	. 481	. 360	40
	232.54	5.439	4.079	21.502	. 484	. 363	50

TABLE II.

LONG CHORDS. §83.

Degree of Curve	2 Stations.	3 Stations.	4 Stations.	5 Stations.	6 Stations.
$\begin{array}{ll} \circ & \prime \\ 0 & 10 \end{array}$	200.000	299.999	399.998	499.996	599.993
20	199.999	299.997	399.992	499.983	599.970
30	199.998	299.992	399.981	499.962	599.933
40	199.997	299.986	399.966	499.932	599.882
50	199.995	299.979	399.947	499.894	599.815
10	199.992	299.970	399.924	499.848	599.733
10	199.990	299.959	399.896	499.793	599.637
20	199.986	299.946	399.865	499.729	599.526
30	199.983	299.93%	399.829	499.657	599.401
40	199.979	299.915	399.789	499.577	599.260
50	199.974	299.898	399.744	499.488	599.105
20	199.9\%0	299.878	399.695	499.391	598.934
10	199.964	299.857	399.643	499.285	598.750
20	199.959	299.834	399.586	499.171	598.550
30	199.952	299.810	399.524	499.049	598.336
40	199.946	299.783	399.459	498.918	598.106
50	199.939	299.756	399.389	498.778	597.862
30	199.931	299.726	399.315	498.630	597. 604
10	199.924	299.695	399.237	498.474	597.331
20	- 199.915	299.662	399.154	498.309	597.043
30	199.907	299.627	399.068	498.136	596.740
40	199.898	299.591	398.977	497.955	596.423
50	199.888	299.553	398.882	497.765	596.091
40	199.878	299.513	398.782	497.566	595.744
10	199.868	299.471	398.679	497.360	595.383
20	199.857	299.428	398.571	497.145	595.007
30	199.846	299.383	398.459	496.921	594.617
40	199.834	299.337	398.343	496.689	594.212
50	199.822	299.289	398.223	496.449	593.792
50	199.810	299.239	398.099	496.200	593.358
10	199.797	299.187	397.970	495.944	592.909
20 30	199.783 199.770	299.134	${ }_{397}^{397.837}$	495.678	592.446
30 40	199.770	299.079	397.700	495.405	591.968
50	199.756	298.964	397.559 397.413	495.123	591.476
60	199.726	298.904	397.264		590.449
10	199.710	298.813	397.110	494.227	589.913
20	199.695	298.779	396.952	493.912	589.364
30	199.678	298.714	396.790	493.588	588.800
40	199.662	298.648	396.623	493.257	588.221
50	199.644	298.579	396.453	492.917	587.628
70	199.627	298.509	396.278	492.568	587.021
10	199.609	298.438	396.099	492.212	586.400
20	199.591	298.364	395.916	491.847	585.765
30	199.572	298.289	395.729	491.474	585.115
40	199.553	298.212	395.538	491.093	584.451
50	199.533	298.134	395.342	490.704	583.773

LONG CHORDS. § 83.

Degree of Curve.	2 Stations.	3 Stations.	4 Stations.	5 Stations.	6 Stations.
8.	199.513	298.054	395.142	490.306	583.081
10	199.492	297.972	394.939	489.900	582.375
20	199.471	297.888	394.731	489.486	581.654
30	199.450	297.803	394.518	489.064	580.920
40	199.428	297.716	394.302	488.634	580.172
50	199.406	297.628	394.082	488.196	579.409
90	199.383	297.538	393.857	487.749	578.633
10	199.360	297.446	393.629	487.294	577.843
20	199.337	297.352	393.396	486.832	577.039
30	199.313	297.257	393.159	486.361	576.222
40	199.289	297.160	392.918	485.882	575.390
50	199.264	297.062	392.673	485.395	574.545
100	199.239	296.962	392.424	484.900	573.686
10	199.213	296.860	392.171	484.397	572.813
20	199.187	296.756	391.914	483.886	571.926
30	199.161	296.651	391.652	483.367	571.027
40	199.134	296.544	391.38 \%	482.840	570.113
50	199.107	296.436	391.117	482.305	569.186
110	199.079	296.325	390.843	481.762	568.245
10	199.051	296.214	390.565	481.211	567.291
20	199.023	296.100	390.284	480.653	566.324
30	198.994	295.985	389.998	480.086	565.343
40	198.964	295.868	389.708	479.511	564.349
50	198.935	295.750	389.414	478.929	563.341
120	198.904	295.630	389.116	478.339	562.321
10	198.874	295.508	388.814	477.740	561.287
20	198.843	295.384	388.508	477.135	560.240
30	198.811	295.259	388.197	476.521	559.180
40 50	198.779 198.747	295.132 295.004	387.883 387.565	475.899 475.270	558.107 557.020
130	198.714	294.874	387.243	474.633	555.921

TABLE III.

TANGENTS AND EXTERNALS OF A ONE-DEGREE CURVE.

For chords of 100 feet the radius of a one-degree curve is 5729.65 feet. To find its tangent for any intersection angle I, we have (§4) $T=R \tan \cdot \frac{1}{2} I$, and to find the external $(\S 85) b=$ $T \tan . \frac{1}{4} I$. By these formulæ this table is computed.

To find T and b for a curve of any other degree (chords 100 feet), divide the tabular values for the proper intersection angle by the number of degrees, whole or fractional, designating the curve. Thus, to find T and b for a $3^{\circ} 20^{\prime}$ curve we divide the proper tabular values by $3 \frac{1}{3}$. This process supposes the radii of curves to be inversely proportional to their degrees. . This is not strictly true, as may be seen by referring to Table I. Thus the radius of a 10° curve is greater than one-tenth the radius of a 1° curve. The values of T and b obtained as above will, therefore, be too small, and the corrections to be applied will always be $a d$ ditive. When thought to be necessary, these corrections may be obtained from Table IV.; but, in the ordinary use of such a table, they may be disregarded.

When the intersection angle of a proposed curve is known, and one of the three quantities R, T, and b is known or assumed, the other two may be obtained from the table. Thus, if we have $I=$ $48^{\circ} 45^{\prime}$ and the external $b=129$ feet, we find from the table for this value of $I, b=560.7$. Then we have the degree of the proposed curve $=1^{\circ} \times \frac{560.7}{129}=4^{\circ} .346=4^{\circ} 20^{\prime}$, nearly. Also for a 1° curve the table gives $T=2596.1$; so that for the proposed curve $T=\frac{2596.1}{4 \frac{1}{8}}=599.1$. In a similar way, if the tangent of a proposed curve is known or assumed, the degree of the curve and its external can be found.

I.	T.	b.	1.	T.	b.	I.	T.	b.
$1{ }^{\text {- }}$	50.0	. 22	$6{ }^{\circ}$	300.3	7.86	11°	551.7	26.50
5^{\prime}	54.2	. 26	5^{\prime}	304.5	8.08	5^{\prime}	555.9	26.90
10	58.3	. 30	10	308.6	8.31	10	560.1	27.31
15	62.5	. 34	15	312.8	8.53 8.76	15	564.3	27.72
20	66.7	. 39	20	317.0	8.76	20	568.5	28.14
25	70.8	. 44	25	321.2	8.99	25	572.7	28.55
30	75.0	. 49	30	325.4	9.23	30	576.9	28.97
35	79.2	. 55	35	329.5	9.47	35	581.2	29.40
40	83.3	. 61	40	333.7	9.71	40	585.4	29.82
45	87.5	. 67	45	337.9	9.95	45	589.6	30.25
50	91.7	. 73	50	342.1	10.20	50	593.8	30.69
55	95.8	. 80	55	346.3	10.45	55	598.0	31.12
2	100.0	. 87	7	350.4	10.71	12	602.2	31.56
5	104.2	. 95	5	354.6	10.96	5	606.4	32.00
10	108.3	1.02	10	358.8	11.22	10	610.6	32.45
15	112.5	1.10	15	363.0	11.49	15	614.9	32.90
20	116.7	1.19	20	367.2	11.75	20	619.1	33.35
25	120.9	1.27	25	371.4	12.02	25	623.3	33.80
30	125.0	1.36	30	375.5	12.29	30	627.5	34.26
35	129.2	1.46	35	379.7	12.57	35	631.7	34.72
40	133.4	1.55	40	383.9	12.85	40	635.9	35.19
45	137.5	1.65	45	388.1	13.13	45	640.2	35.65
50	141.7	1.75	50	392.3	13.41	50	644.4	36.12
55	145.9	1.86	55	396.5	13.70	55	648.6	36.59
3	150.0	1.96	8	400.7	13.99	13	652.8	37.07
5	154.2	2.07	5	404.8	14.28	5	657.0	37.55
10	158.4	2.19	10	409.0	14.58	10	661.3	38.03
15	162.5	2.31	15	413.2	14.88	15	665.5	38.52
20	166.7	2.42	20	417.4	15.18	20	669.7	39.01
25	170.9	2.55	25	421.6	15.49	25	673.9	39.50
30	175.1	2.67	30	425.8	15.80	30	678.1	39.99
35	179.2	2.80	35	430.0	16.11	35	682.4	40.49
40	183.4	2.93	40	434.2	16.43	40	686.6	40.99
45	187.6	3.07	45	438.4	16.74	45	690.8	41.50
50	191.7	3.21	50	442.5	17.07	50	695.1	42.00
55	195.9	3.35	55	446.7	17.39	55	699.3	42.51
4			9		17.72	14	703.5	43.03
	204.3	3.64	5	455.1	18.05	145	707.7	43.55
10	208.4	3.79	10	459.3	18.38	10	712.0	44.07
15	212.6	3.94	15	463.5	18.72	15	716.2	44.59
20	216.8	4.10	20	467.7	19.06	20	720.4	45.12
25	220.9	4.26	25	471.9	19.40	25	724.7	45.65
30	225.1	4.42	30	476.1	19.75	30	728.9	46.18
35	229.3	4.59	35	480.3	20.10	35	733.1	46.71
40	233.5	4.75	40	484.5	20.45	40	737.4	47.25
45	237.6	4.93	45	488.7	20.80	45	741.6	47.80
50	241.8	5.10	50	492.9	21.16	50	745.8	48.34
55	246.0	5.28	55	497.1	21.52	55	750.1	48.89
5	250.2	5.46	10	501.3	21.89	15	754.3	49.44
5	254.3	5.64	5	505.5	22.25	5	758.6	50.00
10	258.5	5.85	10	509.7	22.62	10	762.8	50.55
15	262.7	6.02	15	513.9	23.00	15	767.0	51.12
20	266.9	6.21	20	518.1	23.37	20	771.3	51.68
25	271.0	6.41	25	522.3	23.75	25	775.5	52.25
30	275.2	6.61	30	526.5	24.14	30	779.8	52.82
35	279.4	6.81	35	530.7	24.52	85	784.0	53.39
40	283.6	7.01	40	534.9	24.91	40	788.3	53.97
45 50	287.7	7.22	45	539.1	25.30 25.70	45	792.5	54.55
55	296.1	7.43	55	547.5	26.10	50 55	796.8 801.0	55.13 55.72

I.	T.	b.	I.	T.	b.	I.	T.	b.
16°	805.2	56.31	21°	1061.9	97.58	26°	1322.8	150.7
5^{\prime}	809.5	56.90		1066.2	98.36	5 '	1327.2	151.7
10	813.7	57.50	10	1070.6	99.15	10	1331.6	152.7
15	818.0	58.10	15	1074.9	99.95	15	1336.0	153.7
20	822.3	58.70	20	1079.2	100.7	20	1340.4	154.7
25	826.5	59.31	25	1083.5	101.5	25	1344.8	155.7
30	830.8	59.91	30	1087.8	102.3	30	1349.2	156.7
35	835.0	60.53	35	1092.1	103.2	35	1353.6	157.7
40	839.3	61.14	40	1096.4	104.0	40	1358.0	158.7
45	843.5	61.76	45	1100.8	104.8	45	1362.4	159.7
50	847.8	62.38	50	1105.1	105:6	50	1366.8	160.8
55	852.0	63.01	55	1109.4	106.4	55	1371.2	161.8
17	856.3	63.63	22	1113.7	107.2	27	1375.6	162.8
	860.6	64.27		1118.1	108.1	5	1380.0	163.8
10	864.8	64.90	10	1122.4	108.9	10	1384.4	164.9
15	869.1	65.54	15	1126.7	109.7	15	1388.8	165.9
20	873.3	66.18	20	1131.0	110.6	20	1393.2	167.0
25	877.6	66.82	25	1135.4	111.4	25	1397.6	168.0
30	881.9	67.47	30	1139.7	112.3	30	1402.0	169.0
35	886.1	68.12	35	1144.0	113.1	35	1406.5	170.1
40	890.4	68.77	40	1148.4	113.9	40	1410.9	171.2
45	894.7	69.43	45	1152.7	114.8	45	1415.3	172.2
50	898.9	70.09	50	1157.0	115.7	50	1419.7	173.3
55	903.2	70.75	55	1161.4	116.5	55	1424.1	174.3
18	907.5	71.42	23	1165.7	117.4	28	1428.6	175.4
5	911.8	72.09	5	1170.1	118.2	5	1433.0	176.5
10	916.0	72.76	10	1174.4	119.1	10	1437.4	177.6
15	920.3	73.44	15	1178.7	120.0	15	1441.8	178.6
20	924.6	74.12	20	1183.1	120.9	20	1446.3	179.7
25	928.9	74.80	25	1187.4	121.7	25	1450.7	180.8
30	933.1	75.49	30	1191.8	122.6	30	1455.1	181.9
35	937.4	76.18	35	1196.1	123.5	35	1459.6	183.0
40	941.7	76.87	40	1200.5	124.4	40	1464.0	184.1
45	946.0	77.57	45	1204.8	125.3	45	1468.5	185.2
50	950.2	78.26	50	1209.2	126.2	50	1472.9	186.3
55	954.5	78.97	55	1213.5	127.1	55	1477.3	187.4
19	958.8	79.67	24	1217.9	128.0	29	1481.8	188.5
5	963.1	80.38	5	1222.2	128.9	5	1486.2	189.6
10	967.4	81.09	10	1226.6	129.8	10	1490.7	190.7
15	971.7	81.81	15	1230.9	130.7	15	1495.1	191.9
20	976.0	82.53	20	1235.3	131.7	20	1499.6	193.0
25	980.2	83.25	25	1239.7	132.6	25	1504.0	194.1
30	984.5	83.97	30	1244.0	133.5	30	1508.5	195.2
35	988.8	84.70	35	1248.4	134.4	35	1512.9	196.4
40	993.1	85.43	40	1252.8	135.4	40	1517.4	197.5
45	997.4	86.17	45	1257.1	136.3	45	1521.9	198.7
50	1001.7	86.90	50	1261.5	137.2	50	1526.3	199.8
55	1006.0	87.64	55	1265.9	138.2	55	1530.8	201.0
20	1010.3	88.39	25	1270.2	139.1	30	1535.3	202.1
	1014.6	89.14	5	1274.6	140.1	5	1539.7	203.3
10	1018.9	89.89	10	1279.0	141.0	10	1544.2	204.4
15	1023.2	90.64	15	1283.4	142.0	15	1548.7	205.6
20	1027.5	91.40	20	1287.7	142.9	20	1553.1	206.8
25	1031.8	92.16	25	1292.1	143.9	25	1557.6	207.9
30	1036.1	92.92	30	1296.5	144.9	30	1562.1	209.1
35	1040.4	93.69	35	1300.9	145.8	35	1566.6	210.3
40	1044.7	94.46	40	1305.3	146.8	40	1571.0	211.5
45	1049.0	95.24	45	1309.6	147.8	45	1575.5	212.7
50	1053.3	96.01	50	1314.0	148.7	50	1580.0	213.9
55	1057.6	96.79	55	1318.4	149.7	55	1584.5	215.1

I	T	b.	I.	T.	b.	I.	T.	b.
31°	1589.0	216.2	36°	1861.7	294.9	41°	2142.2	387.4
	1593.5	217.5		1866.3	296.3	$5{ }^{\text {' }}$	2147.0	389.0
10	1598.0	218.7	10	1870.9	297.7	10	2151.7	390.7
15	1602.4	219.9	15	1875.5	299.1	15	2156.5	392.4
20	1606.9	221.1	20	1880.1	300.6	20	2161.2	394.1
25	1611.4	222.3	25	1884.7	302.0	25	2166.0	395.7
30	1615.9	223.5	30	1889.4	303.5	30	2170.8	397.4
35	1620.4	224.7	35	1894.0	304.9	35	2175.6	399.1
40	1624.9	226.0	40	1898.6	306.4	40	2180.3	400.8
45	1629.4	227.2	45	1903.2	307.8	45	2185.1	402.5
50	1633.9 1638.4	228.4 229.7	50	19	309.3 310.8	50 55	2189.9	404.2 405.9
32	1643.0	230.9	37	1917.1	312.2	42	2199.4	407.6
	1647.5	232.1		1921.7	313.7	5	2204.2	409.4
10	1652.0	233.4	10	1926.4	315.2	10	2209.0	411.1
15	1656.5	234.6	15	1931.0	316.6	15	2213.8	412.8
20	1661.0	235.9	20	1935.7	318.1	20	${ }_{2218.6}$	414.5
25	1665.5	237.2	25	1940.3	319.6	25	${ }_{222383}$	4163
30	1670.0	238.4	30	1945.0	321.1	30	${ }_{2228.1}$	418.0
35	1674.6	239.7	35	1949.6	32.6	35	${ }_{2237}^{223} \mathbf{2}$	419.7
40	1679.1	241.0	40	1954.3	324.1	40	2237.7	421.5
	1683.6	242.2	45	1958.9	${ }^{325.6}$	45	${ }_{2}^{2424.5}$	423.2
50 50	1688.1 169.7	$\stackrel{244.5}{24.5}$	55	1963.6 1968.2	327.1 328.6	5	2247.3 222.2	${ }_{426.7}^{425}$
33	1697.2	246.1	38	1972.9	330.1	43	2257.0	
	1701.7	247.4		1977.5	331.7		2261.8	430.3
10	1706.3	248.7	10	1982.2	333.2	10	2266.6	432.0
15	1710.8	250.0	15	1986.9	${ }^{331.7}$	15	${ }_{2271.4}^{2271}$	433.8
20	1715.3	251.3	20	1991.5	${ }^{336.2}$	20	2276.2	${ }^{435.6}$
25	1719.9	252.6	25	1996.2	${ }^{337}{ }^{3} 8$	25	2281.1	437.4
30	1724.4	253.9	30	2000.9	339.3	30	2285.9	439.2
35	1729.0	255.2	35	2005.6	340.9	35	2290.7	441.0
40	1733.5	256.5	40	2010.2	342.4	40	2295.6	44.7
45	1738.1	257.8	45	2014.9	344.0	45	${ }^{2300} .4$	444.5
50	1742.6	${ }_{260.5}^{259.1}$	50 50	2019.6	${ }_{3475}^{345}$	50 55	${ }_{2310.1}^{2305.2}$	446.4 448.2
55	1747.2	260.5	55	2024.3	347.1	55	2310.1	448.2
34	1751.7	${ }^{261.8}$	39	2029.0	348.6	44	2314.9	450.0
${ }_{10}^{5}$	1756.3 1760.8	${ }_{264.5}^{263.1}$	${ }_{10}^{5}$	2033.7 2038.4	350.2 351.8	${ }_{5}^{5}$	2319.8 2324.6	451.8 453.6
15	1765.4	265.8	15	2043.1	${ }_{353.4}^{351}$	15	${ }_{2329.5}^{234.6}$	${ }_{455.4}$
20	1770.0	267.2	20	2017.8	354.9	20	$233+3$	457.3
25	1774.5	${ }_{26}^{268.5}$	25	2052.5	356.5	25	${ }_{2339.2}^{2393}$	
30 35	${ }_{1783.7}^{1789}$	269.9 271.2	${ }_{35}^{30}$	${ }_{2061.9}^{207 \%}$	${ }_{359.7}^{358.1}$	30 35	2344.1 2348.9	460.9 462.8
40	1788.2	${ }_{272.6}^{2712}$	40	${ }_{2066.6}^{2061.9}$	${ }_{361.3}^{359.7}$	40	${ }_{2353.8}^{2348.9}$	${ }_{464.6}^{462.8}$
45	1792.8	273.9	45	2071.3	${ }_{362.9}$	45	2358.7	466.5
50	1797.4	275.3	50	2076.0	364.5	50	2363.5	468.4
55	1802.0	276.7	55	2080.7	366.1	55	2368.4	470.2
35	1806.6	278.1	40	2085.4	367.7	45	2373.3	472.1
	1811.1	279.4		2090.1	369.3	5	2378.2	473.9
10	1815.7	280.8	10	2094.9	371.0	10	2383.1	${ }^{475.8}$
15	1820.3	282.2	15	2099.6	372.6	15	2388.0	477.7
20	1824.9	283.6	20	2104.3	374.2	20	2392.8	479.6
25	1889.5	285.0	25	2109.0	${ }_{375}^{375}$	25	${ }^{2397.7}$	481.5
30	1834.1	286.4	30	2113.8	377.5	30	${ }^{2029.6}$	483.4
5	1838.7	287.8	35	2118.5	379.1	35	2407.5	${ }_{485}^{48}{ }^{3}$
40	1813.3	289.2	40	2123.3	380.8	40	2412.4	
45	1847.9	290.6	45	2128.0	382.4	45 50	${ }_{2429.3}^{2417.4}$	489.1 491.0
5	1857.1	293.4	55	${ }_{2137.5}^{2132.7}$	385.7	55	${ }_{2}^{2427.2}$	${ }_{492.9}$

1.	T.	b.	1.	T.	b.	I.	T.	b.
46°	2432.1	494.8	51°	2732.9	618.4	56°	3046.5	759.6
	2437.0	496.7		2738.0	620.6	5^{\prime}	3051.9	762.1
10	2441.9	498.7	10	2743.1	622.8	10	3057.2	764.6
15	2446.9	500.6	15	2748.8	625.0	15	3062.6	767.1
20	2451.8	502.5	20	2753.4	627.2	20	3067.9	769.7
25	2456.7	504.5	25	2758.5	629.5	25	3073.3	772.2
30	2461.7	506.4	30	2763.7	631.7	30	3078.7	774.7
35	2466.6	508.4	35	2768.8	633.9	35	3084.0	777.3
40	2471.5	510.3	40	2773.9	636.2	40	3089.4	779.8
45	2476.5	512.3	45	2779.1	638.4	45	3094.8	782.4
50	2481.4	514.3	50	2784.2	640.7	50	3100.2	784.9
55	2486.4	516.2	55	2789.4	642.9	55	3105.6	787.5
47	2491.3	518.2	52	2794.5	645.2	57	3110.9	790.1
5	2496.3	520.2	5	2799.7	647.4	5	3116.3	792.7
10	2501.2	522.2	10	2804.9	649.7	10	3121.7	795.2
15	2506.2	524.1	15	2810.0	652.0	15	3127.2	797.8
20	2511.2	526.1	20	2815.2	654.3	20	3132.6	800.4
25	2516.1	528.1	25	2820.4	656.5	25	3138.0	803.0
30	2521.1	530.1	30	2825.6	658.8	30	3143.4	805.6
35	2526.1	532.1	35	2830.7	661.1	35	3148.8	808.2
40	2531.1	534.1	40	2835.9	663.4	40	3154.2	810.9
45	2536.0	536.2	45	2841.1	665.7	45	3159.7	813.5
50	2541.0	538.2	50	2846.3	668.0	50	3165.1	816.1
55	2546.0	540.2	55	2851.5	670.3	55	3170.6	818.7
48	2551.0	542.2	¢3	2856.7	672.7	58	3176.0	821.4
	2556.0	544.3	5	2861.9	675.0		3181.4	824.0
10	2561.0	546.3	10	2867.1	677.8	10	3186.9	826.7
15	2566.0	548.3	15	2872.3	679.6	15	3192.4	829.3
20	2571.0	550.4	20	2877.5	682.0	20	3197.8	832.0
25	2576.0	552.4	25	2882.8	684.3	25	3203.3	834.6
30	2581.0	554.5	30	2888.0	686.7	30	3208.8	837.3
35	2586.0	556.6	35	2893.2	689.0	35	3214.2	840.0
40	2591.1	558.6	40	2898.4	691.4	40	3219.7	842.7
45	2596.1	560.7	45	2903.7	693.8	45	3225. 2	845.4
50	2601.1	562.8	50	2908.9	696.1	50	3230.7	848.1
55	2606.1	564.9	55	2914.2	698.5	55	3236.2	850.8
49	2611.2	566.9	54	2919.4	700.9	59	3241.7	853.5
5	2616.2	569.0	5	2924.7	703.3	5	3247.2	856.2
10	2621.2	571.1	10	2929.9	705.7	10	3252.7	858.9
15	2626.3	573.2	15	2935.2	708.1	15	3258.2	861.6
20	2631.3	575.3	20	2940.4	710.5	20	3263.7	864.3
25	2636.3	577.4	25	2945.7	712.9	25	3269.2	867.1
30	2641.4	579.5	30	2951.0	715.3	30	3274.8	869.8
35	2646.5	581.7	35	2956.2	717.7	35	3280.3	872.6
40	2651.5	583.8	40	2961.5	720.1	40	3285.8	875.3
45	2656.6	585.9	45	2966.8	722.5	45	3291.4	878.1
50	2661.6	588.0	50	2972.1	725.0	50	3296.9	880.8
55	2666.7	590.2	55	2977.4	727.4	55	3302.5	883.6
50	2671.8	592.3	55	2982.7	72.9 .9	60	3308.0	886.4
5	2676.9	594.5	5	2988.0	732.3	5	3313.6	889.2
10	2681.9	596.6	10	29933	734.8	10	3319.1	891.9
15	2687.0	598.8	15	2998.6	737.2	15	3324.7	894.7
20	2692.1	600.9	20	3008.9	739.7	20	3330.3	897.5
25	2697.2	603.1	25	3009.2	742.1	25	3335.8	900.3
30	2702.3	605.3	30	3014.5	744.6	30	3341.4	903.2
35	2707.4	607.4	35	3019.8	747.1	35	3347.0	906.0
40	2712.5	609.6	40	3025.2	749.6	40	3352. 6	908.8
45	2717.6	611.8	45	3030.5	752.1	45	3358.2	911.6
50	2722.7	614.0	50	3035.8	754.6	50	3363.8	914.5
55	2727.8	616.2	55	3041.2	757.1	55	3369.4	917.3

1.	T.	b.	I.	T.	b.	1.	T.	b.
61°	3375.0	920.1	66^{*}	3720.9	1102.2	71°	4086.9	1308.2
	3380.6	923.0	5	3726.8	1105.4	5^{\prime}	4093.2	1311.9
10	3386.3	925.8	10	3732.7	1108.6	10	4099.5	1315.6
15	3391.9	928.7	15	3738.7	1111.9	15	4105.8	1319.2
20	3397.5	931.6	20	3744.6	1115.1	20	4112.1	1322.9
25	3403.1	934.5	25	3750.6	1118.4	25	4118.4	1326.6
30	3408.8	937.3	30	3756.5	1121.7	30	4124.8	1330.3
35	3414.4	940.2	35	3762.5	1124.9	35	4131.1	1334.0
40	3420.1	943.1	40	3768.5	1128.2	40	4137.4	1337.7
45	3425.7	946.0	45	3774.4	1131.5	45	4143.8	1341.4
50	3431.4	948.9	50	3780.4	1134.8	50	4150.1	1345.1
55	3437.1	951.8	55	3786.4	1138.1	55	4156.5	1348.8
62	3442.7	954.8	67	3792.4	1141.4	72	4162.8	1352.6
5	3448.4	957.7	5	3798.4	1144.7		4169.2	1356.3
10	3454.1	960.6	10	38044	1148.0	10	4175.6	1360.1
15	3459.8	963.5	15	3810.4	1151.3	15	4182.0	1363.8
20	3465.4	966.5	20	3816.4	1154.7	20	4188.4	1367.6
25	3471.1	969.4	25	3822.4	1158.0	25	4194.8	1371.4
30	3476.8	972.4	30	3828.4	1161.3	30	4201.2	1375.2
35	3482.5	975.3	35	3834.5	1164.7	35	4207.6	1379.0
40	3488.2	978.3	40	3840.5	1168.1	40	4214.0	1382.8
45	3494.0	981.3	45	3846.5	1171.4	45	4220.4	1386.6
50	3499.7	984.3	50	3852.6	1174.8	50	4226.8	1390.4
55	3505.4	987.3	55	3858.6	1178.2	55	4233.3	1394.2
63	3511.1	990.2	68	3864.7	1181.6	73	4239.7	1398.0
5	3516.9	993.2	5	3870.8	1185.0	5	4246.2	1401.9
10	3522.6	996.2	10	3876.8	1188.4	10	4252.6	1405.7
15	3528.4	999.3	15	3882.9	1191.8	15	4259.1	1409.6
20	3534.1	1002.3	20	3889.0	1195.2	20	4265.6	1413.5
25	3539.9	1005.3	25	3895.1	1198.6	25	4272.0	1417.3
30	3545.6	1008.3	30	3901.2	1202.0	30	4278.5	1421.2
35	3551.4	1011.4	35	3907.3	1205.5	35	4285.0	1425.1
40	3557. 2	1014.4	40	3913.4	1208.9	40	4291.5	1429.0
45	3562.9	1017.4	45	3919.5	1212.4	45	4298.0	1432.9
50	3568.7	1020.5	50	3925.6	1215.8	50	4304.5	1436.8
55	3574.5	1023.6	55	3931.7	1219.3	55	4311.1	1440.7
64	3580.3	1026.6	69	3937.9	1222.7	74	4317.6	1444.6
5	3586.1	1029.7	5	3944.0	1226.2	5	4324.1	1448.6
10	3591.9	1032.8	10	3950.2	1229.7	10	4330.7	1452.5
15	3597.7	1035.9	15	3956.3	1233.2	15	4337.2	1456.5
20	3603.5	10390	20	¿962.5	1236.7	20	4343.8	1460.4
25	3609.3	1042.1	25	3968.6	1240.2	25	4350.4	1464.4
30	3615.1	1045.2	30	3974.8	1243.7	30	4356.9	1468.4
35	3621.0	1048.3	35	3981.0	1247.2	35	4363.5	1472.4
40	3626.8	1051.4	40	3987.2	1250.8	40	4370.1	1476.4
45	3632.6	1054.5	45	3993.3	1254.3	45	4376.7	1480.4
50	3638.5	1057.7	50	3999.5	1257.9	50	4383.3	1484.4
55	3644.3	1060.8	55	4005.7	1261.4	55	4889.9	1488.4
65			70		1265.0			
	3656.1	1067.1		4018.2	1268.5		4403.1	1496.5
10	3661.9	1070.2	10	4024.4	12721	10	4409.8	1500.5
15	3667.8	1073.4	15	4030.6	1275.7	15	4416.4	1504.5
20	3673.7	1076.6	20	4036.8	1279.3	20	4423.1	1508.6
25	3679.5	1079.7	25	4043.1	1282.9	25	4429.7	1512.7
30	3685.4	1082.9	30	4049.3	1286.5	30	4436.4	1516.7
35	3691.3	1086.1	35	4055.6	1290.1	35	4443.0	1520.8
40	3697.2	1089.3	40	4061.8	1293.6	40	4449.7	1524.9
45	3703.1	1092.5	45	4068.1	1297.3	45	4456.4	1529.0
50 55	3709.0	1095.7	50	4074.4	1300.9	50 55	4463.1 4469.8	1533.1 1537.3
55	37150	1099.0	55	4080.6	1304.6	55	4469.8	1537.3

I.	T.	b.	I.	T.	b.	1.	T.	3.
76°	4476.5	1541.4	81°	4893.6	1805.3	86°	5343.0	2104.7
	4483.2	1545.5	5^{\prime}	4900.8	1810.0	5 '	5350.8	2110.0
10	$4+89.9$	1549.7	10	4908.0	1814.7	10	5358.6	2115.3
15	4496.7	1553.8	15	49152	1819.4	15	5366.4	2120.6
20	4503.4	15580	20	4922.5	1824.1	20	5374.2	2126.0
25	4510.1	1562.1	25	4929.7	1828.9	25	5382.1	2131.4
30	4516.9	1566.3	30	4937.0	1833.6	30	5389.9	2136.7
35	4523.7	1570.5	35	4944.2	1838.3	35	5397.8	2142.1
40	4530.4	1574.7	40	4951.5	1843.1	40	5405.6	2147.5
45	4537.2.	1578.9	45	4958.8	1847.9	45	5413.5	2152.9
50	4544.0	1583.1	50	4966.1	1852.6	50	5421.4	2158.4
55	4550.8	1587.3	55	4973.4	1857.4	55	5429.3	2163.8
77	4557.6	1591.6	82	4980.7	1862.2	87	5437.2	2169.2
5	4564.4	1595.8	5	4988.0	1867.0	5	5445.2	2174.7
10	4511.2	1600.1	10	4995.4	1871.8	10	5453.1	2180.2
15	4578.0	1604.3	15	$5 \mathrm{CO2.7}$	1876.7	15	5461.0	2185.6
20	4584.8	1608.6	20	5010.0	1881.5	20	5469.0	2191.1
25	4591.7	1612.9	25	5017.4	1886.3	25	5477.0	2196.6
30	4598.5	1617.1	80	5024.8	1891.2	30	5484.9	2202.2
35	4605.4	1621.4	35	5032.1	1896.1	35	5492.9	2207.7
40	4612.2	1625.7	40	5039.5	1900.9	40	5500.9	2213.2
45	4619.1	1630.0	45	5046.9	1905.8	45	5509.0	2218.8
50	4626.0	1634.4	50	5054.3	1910.7	50	5517.0	2224.3
55	4632.9	1638.7	55	5061.7	1915.6	55	5525.0	2229.9
78	4639.8	1643.0	83	5069.2	1920.5	88	5533.1	2235.5
5	4646.7	1647.4	8	5076.6	1925.5	5	5541.1	22411
10	4653.6	1651.7	10	5084.0	1930.4	10	5549.2	2246.7
15	46605	1656.1	15	5091.5	19:35.3	15	5557.3	2252.3
20	4667.4	1660.5	20	5099.0	1940.3	20	5565.4	2258.0
25	46744	1664.9	25	5106.4	1945.3	25	5573.5	2263.6
30	4681.3	1669.2	30	5113.9	1950.3	30	5581.6	2269.3
35	4688.3	1673.6	35	5121.4	1955.2	35	5589.7	2275.0
40	4695.2	1678.1	40	5128.9	1960.2	40	5597.8	2280.6
45	4702.2	1682.5	45	5136.4	1965.3	45	5606.0	2286.3
50	4709.2	1686.9	50	5143.9	1970.3	50	5614.2	22.92 .0
55	4716.2	1691.3	55	5151.5	1975.3	55	5622.3	2297.8
79	47232	1695.8	84	5159.0	1980.4	89	5630.5	2303.5
5	4730.2	1700.2	5	5166.6	1985.4	5	5638.7	2309.3
10	4737.2	1704.7	10	5174.1	1990.5	10	5646.9	2315.0
15	4744.2	1709.2	15	5181.7	1995.5	15	5655.1	2320.8
20	4751.2	1713.7	20	5189.3	2000.6	20	5663.4	2326.6
25	4758.3	1718.2	25	5196.8	2005.7	25	5671.6	2332.4
30	4765.3	1722.7	30	5204.4	2010.8	30	5679.9	2338.2
35	4772.4	1727.2	35	5212.1	2016.0	35	5688.1	2344.0
40	4779.4	1731.7	40	5219.7	2021.1	40	5696.4	2349.8
45	4786.5	1736.2	45	5227.3	2026.2	45	5704.7	2355.7
50	4793.6	1740.8	50	5234.9	2031.4	50	5713.0	2361.5
55	4800.7	1745.3	55	5242.6	2036.5	55	5721.3	2367.4
80	4807.7	1749.9	85	5250.3	2041.7	90	5729.7	2373.3
5	4814.9	1754.4	8	5257.9	2046.9	5	5738.0	2379.2
10	4822.0	1759.0	10	5265.6	2052.1	10	5746.3	2385.1
15	4829.1	1763.6	15	5273.3	2057.3	15	5754.7	2391.0
20	4836.2	1768.2	20	5281.0	2062.5	20	5763.1	2397.0
25	4843.4	1772.8	25	5288.7	2067.7	25	5771.5	2402.9
30	4850.5	1777.4	30	5296.4	2073.0	30	5779.9	2408.9
35	4857.7	1782.1	35	5304.2	2078.2	35	5788.3	2414.9
40	4864.8	1786.7	40	5311.9	2083.5	40	5796.7	2420.9
45	4872.0	1791.3	45	5319.7	2088.8	45	5805.1	2426.9
55	4879.2	1796.0	50	5327.4	2094.1	50	5813.6	2432.9
55	4886.4	1800	55	5335.2	2099.4	55	5822.1	2438.9

TABLE IV.

CORRECTIONS FOR TABLE III.

TABLE V.

TURNOUTS TANGENT TO STRAIGHT MAIN TRACK.

Gauge, $g=4.708$; throw of switch-rail, $d=.417$. Ordinates so $B F$ for all valnes of n, at the centre 1.17%, at quarter points). 883 (§ 68).

$\begin{gathered} \text { Frog No., } \\ \$ 52 . \end{gathered}$	$\begin{gathered} \text { Frog } \\ \text { Angle } F, \\ \S 52 . \end{gathered}$	Switchrail l, § 65.	Chord $B F$, § 66.	Radius, $\$ 67$.	Degree.	Curving 30 ft . rail, §29.	
						m.	${ }^{4} \mathrm{~m}$.
	14				$\bigcirc 1$		
4	14	11.21	37.96	150.66	3846	. 747	. 560
$4 \frac{1}{2}$	$12 \quad 41$	12.61	42.63	190.67	3024	. 590	. 443
5	1125	14.01	47.31	235.40	2432	. 478	. 358
$5 \frac{1}{2}$	$10 \quad 23$	15.41	52.00	284.83	2013	. 395	. 296
6		16.81	56.69	338.98	1658	. 332	. 249
64	848	18.22	61.38	397.83	1426	. 283	. 212
7	810	19.62	66.08	461.38	1227	. 244	. 183
$7 \frac{1}{8}$	738	21.02	\% 70.78	529.65	1050	. 212	. 159
8	79	22.42	75.47	602.62	931	. 187	. 140
$8{ }_{9}$	644	23.82	80.18	680.31	826	. 165	. 1124
9	622	2.5. 22	84.87	762.70	731	. 148	. 111
$9{ }^{9}$	$6{ }^{6}$	26.62	89.58	849.79	645	. 132	. 099
10	543	28.02	94.28	941.60	65	. 119	. 090
$1{ }^{101}$	$\begin{array}{ll}5 & 27 \\ 5 & 12\end{array}$	$\stackrel{29.42}{ }$	98.98	10.38 .11	531	. 108	. 081
11 ${ }^{\frac{1}{2}}$	459	${ }^{3} 2.23$	108.39	1245.27	436	. 090	. .068
12	446	33.63	113.09	1355.90	414	. 083	. 062

TABLE VI.

LENGTH OF CIRCULAR ARCS IN PARTS OF RADIUS.

0				1							
1	.01745	32925	19943	1	.00029	08882	08666	1	.00000	48481	36811
2	.03990	65850	39887	2	.00058	17764	17331	2	.00000	96962	73622
3	.52335	98775	59830	3	.00087	26646	25997	3	.00001	45444	10433
4	.06981	31700	79773	4	.00116	35528	34663	4	.00001	93925	47244
5	.08726	64625	99716	5	.00145	44410	43329	5	.00002	42406	84055
6	.0471	97551	19660	6	.00174	53292	51994	6	.00002	90888	20867
7	.12217	30476	39603	7	.00203	62174	60660	7	.00003	39369	57678
8	.13962	63401	59546	8	.00232	71056	69326	8	.00003	87850	94489
9	$.15 \sim 07$	96326	79490	9	.00261	79938	77991	9	.00004	36332	31300

TABLE VII.

ELEVATION OF THE OUTER RAIL ON CURVES. § 152.

Degree.	$V_{15}=$	$\begin{aligned} & V= \\ & 20 . \end{aligned}$	$\begin{aligned} & V= \\ & 25 . \end{aligned}$	$V=$	$\begin{aligned} & V= \\ & 35 . \end{aligned}$	$\begin{aligned} & V= \\ & 40 . \end{aligned}$	$V=$	$V=$	$\begin{aligned} & V= \\ & 60 . \end{aligned}$	$\begin{aligned} & V= \\ & 70 . \end{aligned}$	$\begin{aligned} & V= \\ & 80 . \end{aligned}$
1	. 012	.022	. 034	. 049	. 067	. 088	. 111	. 137	. 197	. 269	. 351
2	. 025	. 044	. 068	. 099	. 134	. 175	. 222	. 274	. 395	. 537	. 701
3	. 037	. 066	. 103	. 148	. 201	. 263	. 333	. 411	. 592	. 805	1.052
4	. 049	. 088	. 137	. 197	. 268	. 351	. 444	. 548	. 789	1.064	
5	. 062	. 110	. 171	. 247	. 336	. 438	. 555	. 685	. 986		
6	. 074	. 131	. 205	. 296	. 403	. 526	. 666	. 822			
7	. 086	. 153	. 240	. 345	. 470	. 613	. 776	. 958			
8	. 099	. 175	. 274	. 394	. 537	. 701	. 887	1.095			
9	. 111	. 197	. 308	. 443	. 604	. 788	. 998				
10	. 123	. 219	. 342	. 493	. 670	. 876					
12	. 160	. 263	. 410	. 591	. 804	1.050					
14	. 172	. 306	. 478	. 689	. 938						
16	. 197	. 350	. 546	. 787	1.071						

TABLE VIII.

CORRECTION FOR THE EARTH'S CURVATURE AND FOR REFRACTION. § 145.

D.	d.	D.	d.	D.	d.	D.	d.
300	. 002	1800	. 066	3300	. 223	4800	. 472
400	. 003	1900	. 074	3400	. 237	4900	. 492
500	. 005	2000	. 082	3500	. 251	5000	. 512
600	. 007	2100	. 090	3600	. 266	5100	. 533
700	. 010	2200	. 099	3700	. 281	5200	. 554
800	. 013	2300	. 108	3800	. 296	1 mile	. 571
900	. 017	2400	. 118	3900	. 312		2.285
1100	. 025	2600	. 128	4100	${ }^{.328}$	4	5.142
1200	. 030	2700	. 149	4200	. 362		9.142
1300	. 035	2800	. 161	4300	. 379	6 "	20.568
1400	. 040	2900	. 172	4400	. 397	7 "	27.996
1500	. 046	3000	. 184	4500	. 415	$8{ }^{\prime}$	36.566
1600	. 052	3100	. 197	4600	. 434	9 "	46.279
1700	. 059	3200	. 210	4700	. 453	10 "	57.135

TABLE IX.

RISE PER MILE OF VARIOUS GRADES.

Grade per Station.	Rise per	$\left\lvert\, \begin{gathered} \text { Grade } \\ \text { prat } \\ \text { Station. } \end{gathered}\right.$	Rise per Mile.	$\left\lvert\, \begin{gathered} \text { Grade } \\ \text { per } \\ \text { Station. } \end{gathered}\right.$	Rise per Mile.	$\begin{gathered} \text { Grade } \\ \text { per } \\ \text { Station. } \end{gathered}$	Rise per Mile
. 01	. 528	41	21.648	. 81	42.768	1.21	63.858
. 02	1.056	. 42	22.176	. 82	43.296	1.22	64.416
. 03	1.584	. 43	22.704	. 83	43.824	1.23	64.944
. 04	2.112	. 44	23.232	. 84	44.352	1.24	65.472
. 05	2.640	. 45	${ }^{23.760}$. 85	44.880	1.25	66.000
. 06	3.168	. 46	24.288	. 86	45.408	1.26	66.528
. 07	3.696	. 47	24.816	. 87	45.936	1.27	${ }_{67.056}^{67}$
. 08	4.224 4.752	. 48	25.344 25.872	. 88	46.464 46.992	1.28	67.584
. 10	5.280	. 50	${ }_{26.400}$. 90	${ }_{47.520}^{46.992}$	1.29 1.30	68.640
. 11	5.808	. 51	26.928	. 91	48.048	1.31	69.168
. 12	6.336	. 52	27.456	. 92	48.576	1.32	69.696
. 13	6.864	. 53	27.984	. 93	49.104	1.33	70.224
. 14	7.392	. 54	28.512	. 94	49.632	1.34	${ }^{20.752}$
. 15	7.920	. 55	29.040	. 95	50.160	1.35	71.280
. 16	8.448	. 56	29.568	. 96	50.688	1.36	71.808
. 17	8.976	. 57	30.096	. 97	51.216	1.37	72.336
. 18	9.504	. 58	30.624	. 98	51.744	1.38	72.864
. 19	10.032	. 59	31.152	. 99	52.272	1.39	${ }_{73.392}$
. 20	10.660	. 60	31.680	1.00	52.800	1.40	73.920
. 21	11.088	61	32.208	1.01	53.328	1.41	74.448
. 22	11.616	. 62	33.736	1.02	53.856	1.42	${ }^{74.976}$
. 23	12.144	. 63	33.264	1.03	54.384	1.43	75.504
. 24	12.672	. 64	33.792	1.04	54.912	1.44	${ }^{76.032}$
. 25	13.200	. 65	34.320	1.05	55.440	1.45	76.560
. 26	13.728	. 66	34.848	1.06	55.968	1.46	77.088
. 27	14.256	. 68	35.376	1.07	56.496	1.47	${ }_{78}^{77.616}$
. 28	14.784	. 68	35.904	1.08	57.024	1.48	78.144
. 29	${ }_{1}^{15.312}$.69	36.432	1.09	57.552	1.49	${ }_{78}^{78.672}$
. 30	15.840	. 70	36.960	1.10	58.080	1.50	79.200
. 31	16.368	.71	37.488	1.11	58.608	1.51	79.728
. 33	16.896 17.424	.72	${ }_{38}^{38.016}$	${ }_{1.13}^{1.12}$	59.136 59.664	1.52 1.53	80.256 80.784
. 34	17.952	. 74	${ }_{39.072}^{38.54}$	1.14	${ }_{60.192}$	1.54	81.312
. 35	18.480	. 75	39.600	1.15	60.720	1.55	81.840
. 36	19.008	. 76	40.128	1.16	61.248	1.56	82.368
. 38	19.536	. 77	40.656	1.17	61.776	1.58	82.896 83.424
. 38	${ }_{20}^{20.064}$.78 .79	${ }_{41.712}^{41.184}$	1.18 1.19	62.304 62.832	1.58 1.59	83.424 83.952
. 40	21.120	. 80	42.240	1.20	63.360	1.60	84.480

TABLE IX. RISE PER MIIE OF VARIOUS GRADES. 187

Grade per Station.	Riseper Mile.	Grade per Station.	Rise per Mile.	Grade per Station.	Rise per Mile.	Grade per ptation.	Rise per Mile.
1.61	85.008	1.81	95.568	2.10	110.880	4.10	216.480
1.62	85.536	1.82	96.096	2.20	116.160	4.20	2221.760
1.63	86.064	1.83	96.624	2.30	121.440	4.30	227.040
1.64	86.592	1.84	97.152	2.40	126.720	4.40	232.320
1.65	87.120	1.85	97.680	2.50	132.000	4.50	237.600
1.66	87.648	1.86	98.208	2.60	137.280	4.60	242.880
1.67	88.176	1.87	98.736	2.70	142.560	4.70	248.160
1.68	88.704	1.88	99.264	2.80	147.840	4.80	253.440
1.69	89.232	1.89	99.792	2.90	153.120	4.90	258.720
1.70	89.760	1.90	100.320	3.00	158.400	5.00	264.000
1.71	90.288	1.91	100.848	3.10	163.680	5.10	269.280
1.72	90.816	1.92	101.376	3.20	168.960	5.20	274.560
1.73	91.344	1.93	101.904	3.30	174.240	5.30	279.840
1.74	91.872	1.94	102.432	3.40	179.520	5.40	285.120
1.75	92.400	1.95	102.960	3.50	184.800	5.50	290.400
1.76	92.928	1.96	103.488	3.60	190.080	5.60	295.680
1.77	93.456	1.97	104.016	3.70	195.360	5.70	300.900
1.78	93.984	1.98	104.544	3.80	200.640	5.80	306.240
1.79	94.512	1.99	105.072	3.90	205.920	5.90	311.520
1.80	95.040	2.00	105.600	4.00	211.200	6.00	316.800

TABLE X.

TRIGONOMETRICAL AND MISCELLANEOUS FORMULÆ.

Let A (fig. 77) be any acute angle, and let a perpendicular $B C$ be drawn from any point in one side to the other side. Then, if

the sides of the right triangle thus formed are denoted by letters, as in the figure, we shall have these six formulæ:

1. $\sin . A=\frac{a}{c}$.
2. $\operatorname{cosec} A=\frac{c}{a}$.
3. $\cos A=\frac{b}{c}$.
4. sec. $A=\frac{c}{b}$.
5. $\tan . A=\frac{a}{b}$.
6. \cot. $A=\frac{b}{a}$.

Solution of Right Angles (fig. 77).

	Given.	Sought.	Formulæ.	
7	a, c	A, B, b	$\sin . A=\frac{a}{c}, \cos . B=\frac{a}{c}, b=\sqrt{(c+a)(c-a)}$	
8	a, b	A, B, c	$\tan . A=\frac{a}{b}$,	$\cot . B=\frac{a}{b}, \quad c=\sqrt{a^{2}+b^{2} .}$
9	A, a	B, b, c	$B=90^{\circ}-A$,	$b=a \cot . A, \quad c=\frac{a}{\sin . A}$.
10	A, b	B, a, c	$B=90^{\circ}-A$,	$a=b \tan . A$,
11	$A, c=\frac{b}{\cos . A}$.			
B, a, b	$B=90^{\circ}-A$,	$a=c \sin . A, \quad b=c \cos . A$.		

Solution of Oblique Triangles (fig. 78).

	Given.	Sought.	Formulæ.
12	A, B, a	b	$b=\frac{a \sin . B}{\sin . A}$
13	A, a, b	B	$\sin . B=\frac{b \sin . A}{a}$
	a, b, C	$A-B$	$\tan \cdot \frac{1}{2}(A-B)=\frac{(a-b) \tan \cdot \frac{1}{2}(A+B)}{a+b}$
			$\text { If } s=\frac{1}{2}(a+b+c), \sin \cdot \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{b c}} .$
	a, b, c	A	$\left\{\begin{array}{l} \cos \cdot \frac{1}{2} A=\sqrt{\frac{s(s-a)}{b c}}, \tan \cdot \frac{1}{2} A=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}} \\ \sin . A=\frac{2 \sqrt{s(s-a)(s-b)(s-c)}}{b c} \end{array}\right.$
16	A, B, C, a	area	$\text { area }=\frac{a^{2} \sin . B \sin . C}{2 \sin . A}$
17	A, b, c	area	area $=\frac{1}{2} b c \sin . A$.
18	a, b, c	area	$s=\frac{1}{2}(a+b+c)$, area $=\sqrt{s(s-a)(s-b)(s-c)}$.

General Trigonometrical Formula.

$$
\begin{aligned}
& 19 \left\lvert\, \begin{array}{l}
\sin .{ }^{2} A+\cos .^{2} A=1 \\
20 \\
\sin .(A \pm B)=\sin . A \cos . B \pm \sin . B \cos . A \\
21 \\
\cos .(A \pm B)=\cos . A \cos . B \mp \sin . A \sin . B \\
22 \sin .2 A=2 \sin . A \cos . A \\
23 \\
24 \\
\cos .^{2} A=\cos .^{2} A-\sin . \\
\sin ^{2} A=1-\frac{1}{2}-\frac{1}{2} \cos .2 A
\end{array}\right.
\end{aligned}
$$

General Trigonometrical Formula (Continued).
$25 \cos ^{2} A=\frac{1}{2}+\frac{1}{2} \cos .2 A$.
$26 \sin . A+\sin . B=2 \sin . \frac{1}{2}(A+B) \cos . \frac{1}{2}(A-B)$.
$27 \sin . A-\sin . B=2 \cos . \frac{1}{2}(A+B) \sin . \frac{1}{2}(A-B)$.
$28 \cos . A+\cos . B=2 \cos \cdot \frac{1}{2}(A+B) \cos \cdot \frac{1}{2}(A-B)$.
$29 \cos . B-\cos . A=2 \sin . \frac{1}{2}(A+B) \sin . \frac{1}{2}(A-B)$.
$30 \sin .^{2} A-\sin .^{2} B=\cos .^{2} B-\cos ^{2} A=\sin .(A+B) \sin .(A-B)$.
$31 \operatorname{cos.}^{2} A-\sin .^{2} B=\cos .(A+B) \cos .(A-B)$.
$32 \tan . A=\frac{\sin . A}{\cos A}$.
$33 \cot . A=\frac{\cos . A}{\sin . A}$.
$34 \tan .(A \pm B)=\frac{\tan . A \pm \tan . B}{1 \mp \tan . A \tan . B}$.
$35 \tan . A \pm \tan . B=\frac{\sin .(A \pm B)}{\cos . A \cos . B}$.
$36 \cot . A \pm \cot B= \pm \frac{\sin .(A \pm B)}{\sin . A \sin . B}$.
$37 \frac{\sin . A+\sin . B}{\sin . A-\sin . B}=\frac{\tan . \frac{1}{2}(A+B)}{\tan \cdot \frac{1}{2}(A-B)}$.
$38 \frac{\sin . A+\sin . B}{\cos . A+\cos B}=\tan . \frac{1}{2}(A+B)$.
$\frac{\sin . A+\sin . B}{\cos . B-\cos . A}=\cot . \frac{1}{2}(A-B)$
$40 \frac{\sin . A-\sin . B}{\cos \cdot A+\cos B}=\tan . \frac{1}{2}(A-B)$.
$41 \frac{\sin . A-\sin . B}{\cos . B-\cos . A}=\cot \cdot \frac{1}{2}(A+B)$.
$42 \tan . \frac{1}{2} A=\frac{\sin . A}{1+\cos . A}$.
$43 \cot . \frac{1}{2} A=\frac{\sin . A}{1-\cos . A}$.

Miscellaneous Formule.

	Sought.	Given.	Formulæ.
	Area of	Radius	
	Circle		
45	Ellipse	Semi-axes $=a$ and b	$\pi{ }^{\text {a }}$ ab.
46	Parabola	Chord $=c$, height $=h$	${ }^{2} \mathrm{c}$ ch.
47	Regular Polygon	$\left\{\begin{array}{l} \text { Side }=a, \text { number of } \\ \text { sides }=n \end{array}\right\}$	$\frac{1}{t} a^{2} n \cot \frac{180^{\circ}}{n}$
	Surface of		
48	Sphere	Radius $=r$	
49	Zone	Radius $=r$, height $=h$	
50	$\left.\begin{array}{l} \text { Spherical Poly- } \\ \text { gon } \end{array}\right\}$	$\left\{\begin{array}{l} \text { Radius of sphere }=r \\ \text { sum of angles }=S \\ \text { number of sides }=n \end{array}\right\}$	$\pi r^{2} \times \frac{S-(n-2) 180^{\circ}}{180^{\circ}}$
51	$\begin{aligned} & \text { Prism or Cylin- } \\ & \text { der } \end{aligned}$	Base $=b$, height $=h$	b h.
52	Pyramid or Cone	Base $=b$, height $=h$	$\frac{1}{3} b$ h.
53	Frustum of Pyramid or Cone	$\left\{\begin{array}{l} \text { Bases }=b \text { and } b_{1}, \\ \text { height }=h \end{array}\right\}$	$\left(b+b_{1}+\sqrt{\left.\overline{b b_{1}}\right)}\right.$.
54	Sphere	Radius $=r$	$\frac{4}{3} \pi r^{-3}$.
55	$\begin{gathered} \text { Spherical Seg-) } \\ \text { ment } \end{gathered}$	$\left\{\begin{array}{l} \text { Radii of bases }=r \\ \text { and } r_{1}, \text { height }=h \end{array}\right\}$	$\pi h\left(r^{2}+r_{1}{ }^{2}+\frac{1}{8} h^{2}\right) .$
56	Prolate Spheroid	$\left\{\begin{array}{l} \text { Semi-transverse axis } \\ \text { of ellipse }=a \end{array}\right\}$	$\frac{4}{3} \pi a b^{2}$.
57	Oblate Spheroid	$\left\{\begin{array}{c} \text { Semi-conjugate axis } \\ \text { of ellipse }=b \end{array}\right\}$	$\frac{4}{3} \pi a^{2} b$
58	Paraboloid	$\left\{\begin{array}{l} \text { Radius of base }=r, \\ \text { height }=h \end{array}\right\}$	$\frac{1}{2} \pi r^{2}$

$$
\begin{array}{rl}
\pi & =3.14159 \\
\text { Log. } \boldsymbol{x} & =0.49753589793 \\
98726 & 94133 \\
85435 & 26433 \\
12682 & 882820 .
\end{array}
$$

[^15]
Miscellaneous Formulae (Continued).

United States Standard Gallon $=231$ cub. in. $=0.133681$ cub. ft .
" " " Bushel $=2150.42$ " $=1.244456$ "

British Imperial Gallon $=277.27384 "=0.160459$ "
Length of Seconds Pendulum, at sea-level, at Equator, 39.0152 in.
" " " " " " " " "

Weight of a Cubic Foot of Pure Water, according to Rankine: At 39.4° Fahrenheit, 62.425 lbs . ; at $62^{\circ}, 62.355 \mathrm{lbs}$.

Figure of the Earth, Clarke, Ency. Brit. Art. Geodesy : Equatorial radius $=20926202$ feet, Polar radius $=20854895$ "

Degrees in arc equal to radius	57.29578		
Minutes "	"	"	"
Seconds "	"	"	3437.74677
Se			

To change common logarithms into hyperbolic multiply by .43429448 ; the logarithm of which is 9.6377843.

$$
\begin{aligned}
& \text { Sin. } x=x-\frac{x^{3}}{2.3}+\frac{x^{5}}{2.3 .4 .5}-\frac{x^{7}}{2.3 .4 .5 .6 .7}+\& c . \\
& \text { Cos. } x
\end{aligned}=1-\frac{x^{2}}{2}+\frac{x^{4}}{2.3 .4}-\frac{x^{6}}{2.3 .4 .5 .6}+\& c . ~\left\{\begin{aligned}
x & =\sin . x+\frac{\sin ^{.} x}{2.3}+\frac{3 \sin . .^{5} x}{2.4 .5}+\frac{3.5 \sin .{ }^{7} x}{2.4 .6 \cdot 7}+\& c . \\
x & =\tan . x-\frac{1}{8} \tan .^{3} x+\frac{1}{5} \tan .{ }^{5} x-\frac{1}{4} \tan .7 x+\& c .
\end{aligned}\right.
$$

Let $a=$ length of a flat circular arc, $c=$ its chord, $R=$ radius, $D=$ deflection angle for 100 ft . chords.
Then approximately $a-c=\frac{a^{3}}{24 R^{2}}=\frac{c^{3}}{24 R^{2}}=\frac{1}{6} a \sin .^{2} D=\frac{1}{6} c \sin .^{2} D$.

TABLES XI. AND XII.

HEIGHTS BY ANEROID BAROMETER.

These tables facilitate the use of the formula given below for obtaining the difference of height between two stations by means of the aneroid barometer. The formula and tables are taken from No. 12 of the Professional Papers of the Corps of Engineers, U. S. A. The aneroid barometers used are supposed to be adjusted to agree with a mercurial barometer at a temperature of 32° Fahrenheit, at the level of the sea, in latitude 45°. Frequent comparisons with a mercurial barometer are highly desirable. Simultaneous observations of the barometers and of the temperature of the air are to be made at the two stations, or, if only one barometer is used, the observations should differ in time as little as possible. In both cases, repeated observations should be made when practicable.
Let $Z=$ the difference of height of the two stations in feet.
" $h=$ the reading in inches of the barometer at the lower station.
" $H=$ " " ". " " " " upper "
" t and t the temperatures (Fahr.) of the air at the two stations. Then $Z=(\log . h-\log . H) \times 60384.3 \times\left(1+\frac{t+t^{\prime}-64^{\circ}}{900}\right)$

Table XI. contains the products of 60384.3 and the logarithms of any number of inches from 17 to 31 , except that, as the characteristic of all these logarithms is one, this characteristic is omitted throughout, because the difference of any two products is not affected thereby. Table XII. contains the values of the fraction in the last parenthesis of the formula for all values of $t+t^{\prime}$ from 30° to 189°.

Example. Readings at lower station $h=29.63$ in., $t=68^{\circ}$; at higher station, $H=27.21 \mathrm{in}$., $t^{\prime}=61^{\circ}$.

$$
\therefore Z=2234.4 \times 1.0722=2396 \text { feet. }
$$

		Mour Marou Muoon ouro

TABLE XI．－（Continued）．
$60384.3 \times \log . \mathrm{H}$ or h.

$\stackrel{8}{8}$			2000000016 जoino in で	$\infty 0000.09$ iㅐ영융 はには！
$\stackrel{\infty}{\circ}$			$\forall \infty \infty+\infty$ がamp 	$100000 \times$ \％itioizo にはGは
$\begin{gathered} \text { 5. } \\ \hline 0 \end{gathered}$			サーomが 	
$\begin{aligned} & \circ \\ & 0 \end{aligned}$			$\infty \infty \infty$ onooms 	
$\begin{aligned} & 0 \\ & 0 . \end{aligned}$			owo ばぶぶ心	シinํํㅇํㅇㅇㅇ
$\begin{gathered} \text { H. } \\ \mathbf{O} \end{gathered}$			arnoo 	0000% ばロลば心
$\begin{gathered} \text { Øo } \\ 0 . \end{gathered}$	かッパポ － 0° 		$-\infty+\infty$ $\infty \infty \infty$ 	
$\stackrel{\text { ®. }}{\circ}$				
$\stackrel{\rightharpoonup}{0}$				
$\stackrel{8}{8}$				
әqэu！ norbg	凡			

T A BLE XII

FOR ANEROID FORMULA.

$t+t^{\prime}$	$\frac{t+t^{\prime}-64}{900}$	$+t^{\prime}$	$\frac{t+t^{\prime}-64}{900}$		$\frac{t+t^{\prime}-64}{900}$	$t+t^{\prime}$	$\frac{t+t^{\prime}-64}{900}$
30°	-0.0378	70°	+0.0067	110^{\prime}	+0.0511	150°	+0.0956
31	. 0367	71	. 0078	111	. 0522	151	. 0.0967
32	. 0356	72	. 0089	112	. 0533	152	. 0978
33	. 0314	73	. 0100	113	. 0544	153	. 0989
34	. 0333	74	. 0111	114	. 0556	154	. 1000
35	.0322	75	. 0122	115	. 0567	155	. 1011
36	. 0311	76	. 0133	116	. 0578	156	. 1022
37	. 0300	77	. 0144	117	. 0589	157	. 1033
38	. 0289	78	. 0156	118	. 0600	158	. 1044
39	. 0278	79	. 0167	119	-0611	159	. 1056
40	. 0267	80	. 0178	120	. 0622	160	. 1067
41	. 0256	81	. 0189	121	. 0633	161	. 1078
42	. 0244	82	. 0200	122	. 0614	162	. 1089
43	. 0233	83	. 0211	123	0656	163	. 1100
44	. 0222	84	. 0222	124	. 0667	164	. 1111
45	. 0211	85	. 0233	125	. 0678	165	. 1122
46	. 0200	86	0244	126	. 0689	166	. 1133
47	. 0189	87	. 0256	127	. 0700	167	. 1144
48	. 0178	88	. 0267	128	. 0711	168	. 1156
49	. 0167	89	.0278	129	. 0722	169	. 1167
50	. 0156	90	. 0289	139	. 0733	170	. 1178
51	. 0144	91	. 0300	131	. 0744	171	. 1189
52	. 0133	92	. 0311	132	. 0756	17.	. 1200
53	. 0122	93	. 0322	133	. 0767	173	. 1211
51	. 0111	94	. 0333	134	. 0778	174	. 1222
55	. 0100	95	. 0344	135	. 0789	175	. 1233
56	. 0089	96	. 0356	136	. 0800	176	. 1244
57	. 0078	97	. 0367	137	. 0811	177	. 1256
58	. 0067	98	. 0378	138	. 0822	178	. 1267
59	. 0056	99	. 0389	139	. 0833	179	. 1278
60	. 0044	100	. 0400	140	. 0844	180	. 1289
61	. 0033	101	. 0411	141	. 0856	181	.1300
62	. 0022	102	. 0422	142	. 0867	182	. 1311
63	-0.0911	103	. 0433	143	. 0878	183	.1392
64	. 0000	104	. 0444	144	. 0889	184	. 1333
65	+0.0011	105	. 0456	145	. 0900	185	. 1344
66	. 0022	106	. 0467	146	. 0911	-186	. 1356
67	. 0033	107	. 0478	147	. 0922	187	. 1367
68	. 0044	108	. 0489	148	+. 0933	188	+.1378
69	+0.0056	109	+0.0500	149	+ 0.0944	189	+0.1389

TABLE XIII.

SQUARES, CUBES, SQUARE ROOTS, CUBE ROOTS, AND RECIPROCALS OF NUMBERS.

FROM 1 то 1054.

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
1	1	1	1.0000000	1.0000000	1.000000000
2	4	8	1.4142136	1.2599210	. 500000000
3	9	27	1.7320508	1.4422496	. 3333333333
4	16	64	2.0000000	1.5874011	. 250000000
5	25	125	2.2360680	1.7099759	. 200000000
6	36	216	2.4494897	1.8171206	.166666667
7	49	343	2.6457513	1.9129312	. 142857143
8	64	512	2.8284271	2.0000000	.125000000
9	81	729	3.0000000	2.0800837	. 111111111
10	100	1000	3.1622777	2.1544347	. 100000000
11	121	1331	3.3166248	2.2239801	. 090909091
12	144	1728	3.4641016	2.2894286	. 083333333
13	169	2197	3.6055513	2.3513347	.076923077
14	196	2744	3.7416574	2.4101422	.0714285 1
15	225	3375	3.8729833	2.4662121	.066666667
16	256	4096	4.0000000	2.5198421	. 062500000
17	289	4913	4.1231056	2.5712816	.0588233529
18	324	5832	4.2426407	2.6207414	. 0555555556
19	361	6859	4.3588989	2.6684016	. 052631579
20	400	8000	4.4721360	2.7144177	. 050000000
21	441	9261	4.582575 \%	2.7589243	. 047619048
22	484	10648	4.6904158	2.8020393	. 045454545
23	529	12167	4.7958315	2.8438670	.043478261
24	576	13824	4.8989795	2.8844991	. 041666667
25	625	15625	5.0000000	2.9240177	. 040000000
26	676	17576	5.0990195	2.9624960	. 038461538
27	729	19683	5.1961524	3.0000000	.03703\%037
28	784	21952	5.2915026	3.0365889	. 035714286
29	841	24389	5.3851618	3.0723168	.034482759
30	900	27000	5.4772256	3.1072325	. 033333333
31	961	29791	5.5677644	3.1413806	. 032258065
32	1024	32768	5.6568542	3.1748021	. 031250000
33	1089	35937	5.7445626	3.2075343	. 030303030
34	1156	39304	5.8309519	3.2396118	. 029411765
35	1225	42875	$5.9160 \% 98$	3.2710663	.028571429
36	1296	46656	6.0000000	3.3019272	.027\%7778
37	1369	50653	6.0827625	3.3322218	.027027027
38	1444	54872	6.1644140	3.3619754	. 026315789
39	1521	59319	6.2449980	3.3912114	. 025641026
40	1600	64000	6.3245553	3.4199519	. 025000000
41	1681	68921	6.4031242	3.4482172	. 024390244
42	1764	74088	6.4807407	3.4760266	. 023809524
43	1849	\%9507	6.5574385	3.5033981	.023255814
44	1936	85184	6.6332496	3.5303483	.022\%27273
45	2025	91125	6.7082039	3.5568933	.022222222
46	2116	97336	6.7823300	3.5830479	. 021739130
47	2209	103823	6.8556546	3.6088261	. 021276600
48	2304	110592	6.9282032	3.6342411	. 020833333
49	2101	117649	7.0000000	3.6593057	. 020408163
50	2500	125000	7.0710678	3.6840314	. 020000000
51	2601	132651	7.1414284	3.7084298	.019607843
52	2704	140608	7.2111026	3.7325111	. 019830769
53	2809	148877	7.2801099	3.7562858	.018867925
54	2916	157464	7.3484692	3.7797631	. 018518519
55	3025	166375	7.4161985	3.8029525	. 018181818
56	3136	175616	7.4833148	3.8258624	. 017857143
57	3219	185193	7.5498344	3.8485011	. 017543860
58	3364	195112	7.6157731	3.8708766	.017241379
59	3481	205379	7.6811457	3.8929965	. 016949153
60	3600	216000	7.7459667	3.9148676	. 016666667
61	3721	226981	7.8102497	3.9364972	. 016393443
63	3814	238328	$7.8 \% 40079$	3.9578915	.016129032

No.	Squares.	Cubes.	Square Roots.	Cube Roots	Reoiprocals.
63	3969	250047	7.9372539	3.9790571	. 015873016
64	4096	262144	8.0000000	4.0000000	. 015625000
65	4225	274625	8.0622577	4.0207256	. 015384615
66	4356	287496	8.1240384	4.0412401	. 015151515
67	4489	300763	8.1853528	4.0615480	. 014925373
68	4624	314432	8.2462113	4.0816551	. 014705882
69	4761	328509	8.3066239	4.1015661	. 014492754
70	4900	343000	8.3666003	4.1212853	014285714
71	5041	357911	8.4261493	4.1408178	. 014084507
72	5184	373248	8.4852814	4.1601676	. 013888889
73	5329	389017	8.5440037	4.1793390	. 013698630
74	5476	405224	8.6023253	4.1983364	. 013513514
75	5625	421875	8.6602540	4.2171633	. 013333333
76	5776	438976	8.7177979	4.2358236	. 013157895
77	5929	456533	8.7749644	4.2543210	.012987013
78	6084	474552	8.8317609	4.2726586	.012820513
79	6241	493039	8.8881944	4.2908404	. 012658228
80	6400	512000	8.9442719	4.3088695	. 012500000
81	6561	531441	9.0000000	4.3267487	. 012345679
82	6724	551368	9.0553851	4.3444815	. 012195122
83	6889	571787	9.1104336	4.3620707	. 012048193
84	7056	592704	9.1651514	4.3795191	. 011904762
85	7225	614125	9.2195445	4.3968296	. 011764706
86	7396	636056	9.2736185	4.4140049	. 011627907
87	7569	658503	9.3273791	4.4310476	. 011494253
88	7744	681472	9.3808315	4.4479602	. 011363636
89	7921	704969	9.4339811	4.4647451	. 011235955
90	8100	729000	9.4868330	4.4814047	. 0111111111
91	8281	753571	9.5393920	4.4979414	.010989011
92	8464	778688	9.5916630	4.5143574	. 010869565
93	8649	804357	9.6436508	4.5306549	. 010752688
94	8836	830584	9.6953597	4.5468359	. 010638298
95	9025	857375	9.7467943	4.5629026	. 010526316
96	9216	884736	9.7979590	4.5788570	. 010416667
97	9409	912673	9.8488578	4.5947009	.010309278
98	9604	941192	9.8994949	4.6260650	. 010101010
99	9801	970299	9.9498744	626060	. 010101010
100	10000	1000000	10.0000000	4.6415888	.010000000
101	10201	1030301	10.0498756	4.6570095	009900990
102	10404	1061208	10.0995049	4.6723287	. 009803922
103	10609	1092727	10.1488916	4.6875482	. 009708738
104	10816	1124864	10.1980390	4.7026694	. 009615385
105	11025	1157625	10.2469508	4.7176940	. 009523810
106	11236	1191016	10.2956301	4.7326235	. 009433962
107	11449	1225043	10.3440804	4.7474594	. 009345794
108	11664	1259712	10.3923048	4.7622032	. 009259259
109	11881	1295029	10.4403065	4.7768562	009174312
110	12100	1331000	10.4880885	4.7914199	.009090909
111	12321	1367631	10.5356538	4.8058955	. 009009009
112	12544	1404928	10.5830052	4.8202845	. 008822571
113	12769	1442897	10.6301458	4.8345881	. 008849558
114	12996	1481544	10.6770783	4.8488076	. 008771930
115	13225	1520875	10.7238053	4.8629442	.008695652
116	13456	1560896	10.7703296	4.8769990	. 008620690
117	13689	1601613	10.8166538	4.8909732	.008547009
118	13924	1643032	10.8627805	4.9048681	. 008474576
119	14161	1685159	10.9087121	4.9186847	. 008403361
120	14400	1728000	10.9544512	4.9324242	. 008333333
121	14641	1771561	11.0000000	4.9460874	. 008264463
122	14884	1815848	11.0453610	4.9596757	.008196721
123	15129	1860567	11.0905365	4.9731898	. 008130081
124	15376	1906624	11.1355287	4.9866310	. 008064516

206 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

No.	Equares.	Oubes.	Square Roots.	Oube Roots.	Reofprooals.
125	15625	1953125	11.1803399	5.0000000	. 008000000
126	15876	2000376	11.2249722	5.0132979	. 007936508
127	16129	2048383	11.2694277	5.0265257	. 007874016
128	16384	2097152	11.3137085	5.0396842	. 007812500
129	16641	2146689	11.3578167	5.0527743	. 007751938
130	16900	2197000	11.4017543	5.0657970	. 007692308
131	17161	2248091	11.4455231	5.0787531	. 007633588
132	17424	2299968	11.4891253	5.0916434	. 007575758
133	17689	2352637	11.5325626	5.1044687	. 007518797
134	17956	2406104	11.5758369	5.1172299	. 007462687
135	18225	2460375	11.6189500	5.1299278	007407407
136	18496	2515456	11.6619038	5.1425632	. 007352941
137	18769	2571353	11.7046999	5.1551367	.00729927n
138	19044	2628072	11.7473401	5.1676493	007246377
139	19321	2685619	11.7898261	5.1801015	. 007194245
140	19600	2744000	11.8321596	5.1924941	. 007142857
141	19881	2803221	11.8743421	5.2048279	007092199
142	20164	2863288	11.9163753	5.2171034	. 007042254
143	20449	2924207	11.9582607	5.2293215	. 006993007
144	20736	2985984	12.0000000	5.2414828	. 006944441
145	21025	3048625	12.0415946	5.2535879	. 006896552
146	21316	3112136	12.0830460	5.2656374	. 006849315
147	21609	3176523	12.1243557	5.2776321	. 006802721
148	21904	3241792	12.1655251	5.2895725	. 006756757
149	22201	3307949	12.2065558	5.3014592	. 006711409
150	22500	3375000	12.2474487	5.3132928	. 006666607
151	22301	3442951	12.2882057	5.3250740	. 006622517
152	23104	3511808	12.3288280	5.3368033	. 006578947
153	23409	3581577	12.3693169	6.3484812	. 006535948
154	23716	3652264	12.4096736	5.3601084	. 006493506
155	24025	3723875	12.4498996	5.3716854	. 006451613
156	24336	3796416	12.4899960	5.3832126	. 006410256
157	24649	3869893	12.5299641	5.3946907	. 006369427
158	24964	3944312	12.5698051	5.4061202	. 006329114
159	25281	4019679	12.6095202	5.4175015	. 006289308
160	25600	4096000	12.6491106	5.4288352	. 006250000
161	25921	4173281	12.6885775	5.4401218	. 006211180
162	26244	4251528	12.7279221	5.4513618	. 006172840
163	26569	4330747	12.7671453	5.4625556	. 006134969
164	26896	4410944	12.8062485	5.4737037	. 006097561
165	27225	4492125	12.8452326	5.4848066	. 006060606
166	27556	4574296	12.8840987	5.4958647	. 006024096
$16{ }^{\circ}$	27889	4657463	12.9228480	5.5068784	. 005988024
168	28224	4741632	12.9614814	5.5178484	. 005952381
169	28561	4826809	13.0000000	5.5287748	. 005917160
170	28900	4913000	13.0384048	5.5396583	. 005882353
171	29241	5000211	13.0766968	5.5504991	. 005847953
172	29584	5088448	13.1148770	5.5612978	. 005813953
173	29929	5177717	13.1529464	5.5720546	. 005780347
174	30276	5268024	13.1909060	5.5827702	. 005747128
175	30625	5359375	13.2287566	5.5934447	. 005714286
176	30976	5451776	13.2664992	5.6040787	. 005681818
177	31329	5545233	13.3041347	5.6146724	. 005649718
178	31684	5639752	13.3416641	5.6252263	. 005617978
179	32041	5735339	13.3790882	5.6357408	. 005586592
180	32400	5832000	134164079	5.6462162	. 005555556
181	32761	5929741	13.4536240	5.6566528	. 0055524862
182	$331 \% 4$	6029568	13.4907376	56670511	005494505
183	33489	6128487	13.5277493	5.6774114	005464481
184	33856	6229504	13.5646600.	5.6877340	. 005434783
185	34225	6331625	13.6014705	5.6930192	. 005405405
186	34596	6434856	13.6381817	5.7082675	. 005376344

Na.	Squaros.	Cubes	Square Roots.	Cube Roots.	Reolproosis.
187	34969 35344	6539203 6644672	13.6747943	5.7184791 5.7286513	. 005347594
188	35344 35721	$\begin{aligned} & 6644672 \\ & 6751269 \end{aligned}$	13.7113092 13.7477271	$\begin{aligned} & 5.7286543 \\ & 5.7387936 \end{aligned}$.005319149
190	36100	6859000	13.7840488	5.7488971	. 005263158
191	36481	6967871	13.8202750	5.7589652	. 005235602
192	36864	7077888	13.8564065	5.7689982	. 005208333
193	37249	7189057	13.8924440	5.7789966	. 005181347
194	37636	7301384	13.9283883	5.7889604	. 005154639
195	38025	7414875	13.9642400	5.7988900	. 005128205
196	38416	7529536	14.0000000	5.8087857	. 005102041
197	38809	7645373	14.0356688	5.8186479	. 005076142
198	39204	7762392	14.0712473	5.8284767	. 005050505
199	39601	7880599	14.1067360	5.8382725	005025126
200	40000	8000000	14.1421356	5.8480355	. 005000000
201	40401	8120601	14.1774469	5.8577660	. 004975124
202	40804	8242408	14.2126704	5.8674643	. 004950495
203	41209	8365427	14.2478068	5.8771307	. 004926108
204	41616	8489664	14.2828569	5.8867653	. 004901561
205	42025	8615125	14.3178211	5.8963685	. 004878049
206	42436	8741816	14.3527001	5.9059406	. 004854369
207	42849	8869743	14.3874946	5.9154817	004830918
208	43264	8998912	14.4222051	5.9249921	004807692
209	43681	9129329	14.4568323	5.9344721	004784689
210	44100	9261000	14.4913767	5.9439220	. 004761905
211	44521	9393931	14.5258390	5.9533418	. 004739336
212	44944	9528128	14.5602198	5.9627320	. 004716981
213	45369	9663597	14.6945195	5.9720926	. 004694836
214	45796	9800344	14.6287388	5.9814240	. 004672897
215	46225	9938375	14.6628783	5.9907264	. 004651163
216	46656	10077696	14.6969385	6.0000000	. 004629630
217	47089	10218313	14.7309199	6.0092450	. 004608295
218	47524	10360232	14.7648231	6.0184617	. 004587156
219	47961	10503459	14.7986486	6.0276502	. 004566210
220	48400	10648000	14.8323970	6.0368107	. 004545455
221	48841	10793861	14.8660687	6.0459435	. 004524887
222	49284	10941048	14.8996644	6.0550489	. 004604505
223	49729	11089567	14.9331845	6.0641270	. 004484305
224	50176	11239424	14.9666295	6.0731779	. 004464286
225	50625	11390625	15.0000000	6.0822020	. 004444444
226	51076	11543176	15.0332964	6.0911994	. 004424779
227	51529	11697083	15.0665192	6.1001702	004405286
228	51984	11852352	15.0996689	6.1091147	. 004385965
225	52441	12008989	15.1327460	6.1180332	. 004366812
230	52900	12167000	15.1657509	6.1269257	. 004347826
231	53361	12326391	15.1986842	6.1357924	. 004329004
232	53824	12487168	15.2315462	6.1446337	. 004310345
233	54289	12649337	15.2643375	6.1534495	. 004291845
234	64756	12812904	15.2970585	6.1622401	. 004273504
235	55225	12977875	15.3297097	6.1710058	. 004255319
236	65696	13144256	15.3622915	6.1797466	. 004237288
237	56169	13312053	15.3948043	6.1884628	. 004219409
238	56644	13481272	15.4272486	6.1971544	. 004201681
239	57121	13651919	15.4596248	6.2058218	. 004184100
240	57600	13824000	15.4919334	6.2144650	004166667
241	58081	13997521	15.5241747	6.2230843	. 004149378
242	58564	14172488	15.5563492	6.2316797	004132231
243	59049	14348907	15.5884573	6.2402515	004115226
244	59536	14526784	15.6204994	6.2487998	004098361
245	60025	14706125	15.6524758	6.2573248	004081633
246	60516	14886936	15.6843871	6.2658266	004065041
247	61009	15069223	15.7162336	6.2743054	. 004048583
248	61504	15252992	15.7480157	6.2827613	. 004032258

208 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

STO.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciproouls.
249	62001	15438249	15.7797338	6.2911946	. 004016064
250	62500	15625000	15.8113883	6.2996053	. 004000000
251	63001	15813251	15.8429795	6.3079935	. 0039894064
252	63504	16003008	15.8745079	6.3163596	. 0039688254
253	64009	16194277	15.9059737	6.3247035	003952569
254	64516	16387064	15.9373775	6.3330256	. 0039337008
255	65025	16581375	15.9687194	6.3413257	. 003921569
256	65536	16777216	16.0000000	6.3496042	. 003906250
257	66049	16974593	16.0312195	6.3578611	. 003891051
258	66564	17173512	16.0623784	6.3660968	. 003875969
259	67081	17373979	16.0934769	6.3743111	. 003861004
260	67600	17576000	16.1245155	6.3825043	.003846154
261	68121	17779581	16.1554944	6.3906765	. 003831418
262	68644	17984728	16.1864141	6.3988279	003816794
263	69169	18191447	16.2172747	6.4069585	. 003302281
264	69696	18399744	16.2480768	6.4150687	. 003787879
265	70225	18609625	16.2788206	6.4231583	. 003773585
266	70756	18821096	16.3095064	6.4312276	. 003759398
267	71289	19034163	16.3401346	6.4392767	. 003745318
268	71824	19248832	16.3707055	6.4473057	. 003731343
269	72361	19465109	16.4012195	6.4553148	. 003717472
270	72900	19683000	16.4316767	6.4633041	. 003703704
271	73441	19902511	16.4620776	6.4712736	. 003690037
272	73984	20123648	16.4924225	6.4792236	.003676471
273	74529	20346417	16.5227116	6.4871541	. 003663004
274	75076	20570824	16.5529454	6.4950653	. 003649635
275	75625	20796875	16.5831240	6.5029572	. 003636364
276	76176	21024576	16.6132477	6.5108300	. 003623188
277	76729	21253933	16.6433170	6.5186839	. 003610108
278	77284	21484952	16.6733320	6.5265189	. 003597122
279	77841	21717639	16.7032931	6.5343351	. 003584229
280	78400	21952000	16.7332005	6.5421326	003571429
281	78961	22188041	16.7630546	6.5499116	. 0035558719
282	79524	22425768	16.7928556	6.5576722	. 003546099
283	80089	22665187	16.8226038	6.5654144	. 0035333569
284	80656	22906304	16.8522995	6.5731385	. 0035521127
285	81225	23149125	16.8819430	6.5808443	. 003508772
286	81796	23393656	16.9115345	6.5885323	. 003496503
287	82369	23639903	16.9410743	$6.596 \% 023$	003484321
288	82944	23887872	16.9705627	6.6038545	. 003472222
289	83521	24137569	17.9000000	6.6114890	. 003460208
290	84100	24389000	17.0293864	6.6191060	. 003448276
291	84681	24642171	17.0587221	6.6267054	. 003436426
292	85264	24897038	17.0880075	6.6342874	. 003424658
293	85849	25153757	17.1172428	6.6418522	. 003412969
294	86436	25412184	17.1464282	6.6493998	003401361
295	87025	25672375	17.1755640	6.6569302	. 0033388831
296	87616	25931336	17.2046505	6.6644437	. 003378378
297	88209	26198073	17.2338879	6.671941 P	.003367003
298	88804	26463592	17.2626765	6.6794210	. 003355705
299	89401	26730899	17.2916165	6.6868831	. 003344482
300	90000	27000000	17.3205081	6.6943295	. 003333333
301	90601	27270901	17.3493516	6.7017593	. 003322259
302	91204	27543608	17.3781472	6,7091729	. 003311258
303	91809	27818127	17.4068952	6.7165700	. 003300330
304	92416	28094464	17.4355958	6.7239508	. 003289474
305	93025	28372625	17.4642492	6.7313155	. 003278689
306	93636	28652616	17.4928557	6.7386641	. 0032267974
307	94249	28934443	17.5214155	6.7459967	. 003257329
308	94864	29218112	17.5499238	6.7533134	. 003246753
309	95481	29503629	17.57 33958	6.7606143	. 0032336246
310	96100	29791000	17.6068169	6.7678995	. 003225806

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
311	96721	30080231	17.6351921	6.7751690	. 003215434
312	97344	30371328	17.6635217	6.7824229	. 003205128
313	97969	30664297	17.6918060	6.7396613	. 003194888
314	98596	30959144	17.7200451	6.7968844	. 003184713
315	99225	31255875	17.7482393	6.8040921	. 003174603
316	99856	31554496	17.7763888	6.8112847	.003164557
317	100489	31855013	17.8044938	6.8184620	. 003154574
318	101124	32157432	17.8325545	6.8256242	. 003144654
319	101761	32461759	17.86057!1	6.8327714	. 003134796
320	102400	32768000	17.8885438	6.8399037	. 003125000
321	103041	33076161	17.9164729	6.8470213	. 003115265
322	103684	33386248	17.9443584	6.8541240	. 003105590
323	104329	33698267	17.9722008	6.8612120	. 003095975
324	104976	34012224	18.0000000	6.8682855	. 003086420
325	105625	34328125	18.0277564	6.8753443	. 003076923
326	106276	34645976	18.0554701	6.8823888	. 003067485
327	106929	34965783	18.0831413	6.8894188	. 003058104
328	107584	35287552	18.1107703	6.8964345	. 003048780
329	108241	35611289	18.1383571	6.9034359	. 003039514
330	108900	35937000	18.1659021	6.9104232	. 003030303
331	109561	36264691	18.1934054	6.9173964	. 003021148
332	110224	36594368	18.2208672	6.9243556	. 003012048
333	110889	36926037	18.2482876	6.9313008	. 003003003
334	111556	37259704	18.2756669	6.9382321	. 002994012
335	112225	37595375	18.3030052	6.9451496	. 002985075
336	112896	37933056	18.3303028	6.9520533	. 002976190
337	113569	38272753	18.3575598	6.9589434	. 002967359
338	114244	38614472	18.3847763	6.9658198	. 002958580
339	114921	38958219	18.4119526	6.9726826	. 002949853
340	115600	39304000	18.4390889	6.9795321	. 002941176
341	116281	39651821	18.4661853	6.9863681	. 002932551
342	116964	40001688	18.4932420	6.9931906	. 002923977
343	117649	40353607	18.5202592	7.0000000	. 002915452
344	118336	40707584	18.5472370	7.0067962	. 002906977
345	119025	41063625	18.5741756	7.0135791	. 002898551
346	119716	41421736	18.6010752	7.0203490	. 002890173
347	120409	41781923	18.6279360	7.0271058	. 002881844
348	121104	42144192	18.6547581	7.0338497	. 0028873563
349	121801	42508549	18.6815417	7.0405806	. 002865330
350	122500	42875000	18.7082869	7.0472987	. 002857143
351	123201	43243551	18.7349940	7.0540041	. 002849003
352	123904	43614208	18.7616630	7.0606967	. 002840909
353	124609	43986977	18.7882942	7.0673767	. 002832861
354	125316	44361864	18.8148877	7.0740440	. 002824859
355	126025	44738875	18.8414437	7.0806988	. 002816901
356	126736	45118016	18.8679623	7.0873411	. 002808989
357	127449	45499293	18.8944436	7.0939709	. 002801120
358	128164	45882712	18.9208879	7.1005885	. 002793296
359	128881	46268279	18.9472953	7.1071937	. 002785515
360	129600	46656000			.002777778
361	130321	47045881	19.0000000	7.1203674	. 002770083
362	131044	47437928	19.0262976	7.1269360	. 002762431
363	131769	47832147	19.0525589	7.1334925	. 002754821
364	132496	48228544	19.0787840	7.1400370	. 002747253
365	133225	48627125	19.1049732	7.1465695	. 002739726
366	133956	49027896	19.1311265	7.1530901	. 002732240
367	134689	49430863	19.1572441	7.1595988	. 002724796
368	135424	49836032	19.1833261	7.1660957	. 002717391
369	136161	50243409	19.2093727	7.1725809	.002710027
370	136900	50653000	19.2353841	7.1790544	. 002742703
371	137641	51064811	19.2613603	7.1855162	. 0022695418
372	138384	51478848	19.2873015	7.1919663	. 002688172

TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

No.	Squares.	Oubes.	Square Roots.	Oube Roots.	Reciprocals.
373	139129	51895117	19.3132079	7.1984050	. 002680985
374	139876	52313624	19.3390796	7.2048322	. 002673797
375	140625	52734375	19.3649167	7.2112479	. 002666667
376	141376	53157376	19.3907194	7.2176522	. 002659574
377	142129	53582633	19.4164878	7.2240450	. 002652520
378	142884	54010152	19.4422221	7.2304268	. 002645503
379	143641	54439939	19.4679223	7.2367972	. 002638522
380	144400	54872000	19.4935887	7.2431565	. 002631579
381	145161	55306341	19.5192213	7.2495045	. 002624672
382	145924	55742968	19.5448203	7.2558415	. 002617801 -
383	146689	56181887	19.5703858	7.2621675	. 002610968
384	147456	56623104	19.5959179	7.2694824	. 002604167
385	148225	57066625	19.6214169	7.2747864	. 002597403
386	148996	57512456	19.6468827	7.2810794	. 002590674
387	149769	57960603	19.6723156	7.2873617	. 002583979
388	150544	58411072	19.6977156	7.2936330	.002577320
389	151321	58863869	19.7230829	7.2998936	. 002570694
390	152100	59319000	19.7484177	7.3061436	. 002564103
391	152881	59776471	19.7737199	7.3123828	. 002557545
392	153664	60236288	19.7989899	7.3186114	. 002551020
393	154449	60698457	19.8242276	7.3248295	. 002544529
394	155236	61162934	19.8494332	7.3310369	. 002538071
395	156025	61629875	19.8746069	7.3372339	. 002531646
396	156816	62099136	19.8997487	7.3434205	. 002525253
397	157609	62570773	19.9248588	7.3495966	. 002518892
398	158404	63044792	19.9499373	7.3557624	. 002512563
399	159201	63521199	19.9749844	7.3619178	. 002506266
400	160000	64000000	20.0000000	7.3680630	. 002500000
401	160801	64481201	20.0249844	7.3741979	. 002493766
402	161604	64964808	20.0499377	7.3803227	. 002487562
403	162409	65450827	20.0748599	7.3864373	. 002481390
404	163216	65939264	20.0997512	7.3925418	. 002475248
405	164025	66430125	20.1246118	7.3936363	. 002469138
406	164836	66923416	20.1494417	7.4047206	. 002463054
407	165649	67419143	20.1742410	7.4107950	. 002457002
408	166464	67917312	20.1990099	7.4168595	. 002450980
409	167281	68417929	20.2237484	7.4229142	. 002444988
410	168100	68921000	20.2484567	7.4289589	. 002439024
411	168921	69426531	20.2731349	7.4349938	. 002433090
412	169744	69934528	20.2977831	7.4410189	. 002427184
413	170569	70444997	20.3224014	7.4470342	. 002421308
414	171396	70957944	20.3469899	7.4530399	. 002415459
415	172225	71473375	20.3715488	7.4590359	. 002409639
416	173056	71991296	20.3960781	7.4650223	. 002403848
417	173889	72511713	20.4205779	7.4709991	. 002398082
418	174724	73034632	20.4450483	7.4769664	002392344
419	175561	73560059	20.4694895	7.4829242	. 002386635
420	176400	74088000	20.4939015	7.4888724	. 002380952
421	177241	74618461	20.5182845	7.4948113	. 002375297
422	178084	75151448	20.5426386	7.5007406	. 002369668
423	178929	75686967	20.5669638	7.5066607	. 002364066
424	179776	76225024	20.5912603	7.5125715	. 002358491
425	180625	76765625	20.6155281	7.5184730	. 002352941
426	181476	77308776	20.6397674	7.5243652	. 002347418
427	182329	77854483	20.6639783	7.5302482	. 002341920
428	183184	78402752	20.6881609	7.5361221	. 002336449
429	184041	78953589	20.7123152	7.5419867	.002331002
430	184900	79507000	20.7364414	7.5478423	. 002325581
431	185761	80062991	20.7605395	7.5536888	. 002320186
432	186624	80621568	20.7846097	7.5595263	. 002314815
433	187489	81182737	20.8086520	7.5653548	. 002309469
434	188356	81746504	20.8326667	7.5711743	. 002304147

No.	Squares.	Cubes	Square Roots.	Cube Roots.	Reciprocals.
435 436	189225 190096	82312875 82881856	$\begin{aligned} & 20.8566536 \\ & 20.8806130 \end{aligned}$	7.5769849 7.5827865	$.002298851$
437	190969	828453153	20.98045450	7.5885793	.002288330
438	191844	84027672	20.9284495	7.5943633	. 002283105
439	192721	84604519	20.9523268	7.6001385	. 002277904
440	193600	85184000	20.9761770	7.6059049	. 002272727
441	194481	85766121	21.0000000	7.6116626	. 002267574
442	195364	86350888	21.0237960	7.6174116	. 002262443
443	196249	86938307	21.0475652	7.6231519	.002257336
444	197136	87528384	21.0713075	7.6288837	. 002252252
445	198025	88121125	21.0950231	7.6346067	. 002247191
446	198916	88716536	21.1187121	7.6403213	. 002242152
447	199809	89314623	21.1423745	7.6460272	. 002237136
448	200704	89915392	21.1660105	7.6517247	. 002232143
449	201601	90518849	21.1896201	7.6574138	. 002227171
450	202500	91125000	21.2132034	7.6630943	. 002222222
451	203401	91733851	21.2367606	7.6687665	. 002217295
452	204304	92345408	21.2602916	7.6744303	. 002212389
458	205209	92959677	21.2837967	7.6800857	. 002207506
454	206116	93576664	21.3072758	7.6857328	. 002202643
455	207025	94196375	21.3307290	7.6913717	. 002197802
456	207936	94818816	21.3541565	7.6970023	. 002192982
457	208849	95443993	21.3775583	7.7026246	. 002188184
458	209764	96071912	21.4009346	7.7082388	. 002183406
459	210681	96702579	21.4242853	7.7138448	. 002178649
460	211600	97336000	21.4476106	7.7194426	. 002173913
461	212521	97972181	21.4709106	7.7250325	. 002169197
462	213444	98611128	21.4941853	7.7306141	. 002164502
463	214369	99252847	21.5174348	7.7361877	. 002159827
464	215296	99897344	21.5406592	7.7417532	. 002155172
465	216225	100544625	21.5638587	7.7473109	. 002150538
466	217156	101194696	21.5870331	7.7528606	. 002145923
467	218089	101847563	21.6101828	7.7584023	. 002141328
468	219024	102503232	21.6333077	7.7639361	. 002136752
469	219961	103161709	21.6564078	7.7694620	. 002132196
470	220900	103823000	21.6794834		. 002127660
471	221841	104487111	21.7025344	7.7804904	. 002123142
472	222784	105154048	21.7255610	7.7859928	. 002118644
473	223729	105823817	21.7485632	7.7914875	002114165
474	224676	106496424	21.7715411	7.7969745	002109705
475	225625	107171875	21.7944947	7.8024538	. 002105263
476	226576	107850176	21.8174242	7.8079254	. 002100840
477	227529	108531333	21.8403297	7.8133892	. 002096436
478	228484	109215352	21.8632111	7.8188456	. 002092050
479	229441	109902239	21.8860686	7.8242942	. 002087683
480	230400	110592000	21.9089023	7.8297353	. 002083333
481	231361	111284641	21.9317122	7.8351688	. 002079002
482	232324	111980168	21.9544984	7.8405949	. 002074689
483	233289	112678587	21.9772610	7.8460134	. 002070393
484	234256	113379904	22.0000000	7.8514244	. 002066116
485	235225	114084125	22.0227155	7.8568281	. 002061856
486	236196	114791256	22.0454077	7.8622242	. 002057613
487	237169	115501303	22.0680765	7.8676130	. 002053388
488	238144	116214272	22.0907220	7.8729944	. 002049180
489	239121	116930169	22.1133444	7.8783684	. 002044990
490	240100	117649000	22.1359436	7.8837352	. 002040816
491	241081	118370771	22.1585198	7.8890946	. 0020366660
492	242064	119095480	22.1810730	7.8944468	. 002032520
493	243049	119823157	22.2036033	7.8997917	. 002028398
494	244036	120553784	22.2261108	7.9051294	. 002024291
495	245025	121287375	22.2485955	7.9104599	. 002020202
496	246016	122023936	22.2710575	7.9157832	. 002016124

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
497	247009	122763473	22.2934968	7.9210994	.002012072
498	248004	123505992	22.3159136	7.9264085	. 002008032
499	249001	124251499	22.3383079	7.9317104	. 002004008
500	250000	[25000000	22.3606798	7.9370053	. 002000000
501	251001	125751501	22.3830293	7.9422931	. 001996008
502	252104	126506008	22.4053565	7.9475739	. 001992032
503	253009	127263527	22.4276615	7.9528477	. 001988072
504	254016	128024064	22.4499443	7.9581144	. 001984127
505	255025	128787625	22.4722051	7.9633743	. 001980198
506	256036	129554216	22.4944438	7.9686271	. 001976285
507	257049	130323843	22.5166605	7.9738731	. 001972387
608	258064	131096512	22.5388553	7.9791122	. 001968504
509	259081	131872229	22.5610283	7.9843444	. 001964637
510	260100	132651000	22.5831796	7.9895697	. 001960784
511	261121	133432331	22.6053091	7.9947883	. 001956947
612	262144	134217728	22.6274170	8.0000000	. 001953125
513	263169	135005697	22.6495033	8.0052049	. 001949318
514	264196	135796744	22.6715681	8.0104032	. 001945525
515	265225	136590875	22.6936114	8.0155946	. 001941748
516	266256	137388096	22.7156334	8.0207794	. 001937984
517	267289	138188413	22.7376340	8.0259574	. 001934236
518	268324	138991832	$22.7596134{ }^{\text {a }}$	8.0311287	. 001930502
519	269361	139798359	22.7815715	8.0362935	. 001926782
520	270400	140608000	22.8035085	8.0414515	. 001923077
521	271441	141420761	22.8254244	8.0466030	. 001919386
522	272484	142236648	22.8473193	8.0517479	. 001915709
523	273529	143055667	22.8691933	8.0568862	. 001912046
524	274576	143877824	22.8910463	8.0620180	. 001908397
525	275625	144703125	22.9128785	8.0671432	. 001904762
526	276676	145531576	22.9346899	8.0722620	. 001901141
527	277729	146363183	22.9564806	8.0773743	. 001897533
628	278784	147197952	22.9782506	8.0824800	. 001893939
529	279841	148035889	23.0000000	8.0875794	. 001850359
530	280900	148877000	23.0217289	8.0926723	. 001886792
531	281961	149721291	23.0434372	8.0977589	. 001883239
532	283024	150568768	23.0651252	8.1028390	. 001879699
533	284089	151419437	23.0867928	8.1079128	. 001876173
534	285156	152273304	23.1084400	8.1129803	. 001872659
535	286225	153130375	23.1300670	8.1180414	. 001869159
536	287296	153990656	23.1516738	8.1230962	. 001865672
537	288369	154854153	23.1732605	8.1281447	. 001862197
538	289444	155720872	23.1948270	8.1331870	. 001858736
539	290521	156590819	23.2163735	8.1382230	. 001855288
540	291600	157464000	23.2379001	8.1432529	. 001851852
541	292681	158340421	23.2594067	8.1482765	. 001848429
542	293764	159220088	23.2808935	8.1532939	. 001845018
543	294849	160103007	23.3023604	8.1583051	. 001841621
544	295936	160939184	23.3238076	8.1633102	. 001838235
545	297025	161878625	23.3452351	8.1683092	. 001834862
546	298116	162771336	23.3666429	8.1733020	. 001831502
547	299209	163667323	23.3880311	8.1782888	. 001828154
548	300304	. 164566592	23.4093998	8.1832695	. 001824818
549	301401	-165469149	23.4307490	8.1882441	. 001821494
550	302500	166375000	23.4520788	8.1932127	. 001818182
551	303601	167284151	23.4733892	8.1981753	. 001814882
552	304704	168196608	23.4946802	8.2031319	. 001811594
553	305809	169112377	23.5159520	8.2080825	. 001808318
554	306916	170031464	23.5372046	8.2130271	. 001805054
555	308025	170953875	23.5584380	8.2179657	001801802
556	309136	171879616	23.5796522	8.2228985	. 001798561
557	310249	172303693	23.6008474	8.2278254	. 001795332
558	311364	173741112	23.6220236	8.2327463	. 001792115

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Reciprocals.
669	312481	:74676879	23.6431808	8.2376614	. 001788909
560	313600	175616000	${ }_{23}^{23.6643191}$	8.2425706	. 001785714
561	314721	176758481	23.6854386	8.2474740	. 001782531
562	315844	177504332	${ }^{23.7065392}$	8.2523715	. 001779359
. 663	316969	178453547	23.7276210	8.2572633	. 001776199
564	318096	179406144	23.7486842	8.2621492	. 001773050
565	319225	180362125	23.7697286	8.2670294	. 001769912
566	320356	181321496	23.7907545	8.2719039	. 001766784
567	321489	182284263	${ }_{23}^{23.8117618}$	8.2767726	. 0017763668
568	322624	183250432	23.8327506	8.2816355	. 001760563
569	323761	184220009	23.8537209	8.2864928	. 001757469
570	324900	185193000	23.8746728	8.2913444	. 001754386
571	326041	186169411	23.8956063	8.2961903	. 001751313
572	327184	187149248	23.9165215	8.3011304	. 001748252
573	328329	188132517	23.9374184	8.3058651	. 001745201
574	329476	189119224	${ }_{2}^{23.95829771}$	8.3106941	. 001772160
575	330625	190109375	23.9791576	8.3155175	. 001739130
576	331776	191102976	24.0000000	8.3203353	. 001736111
577	332929	192109033	24.0208243	8.3251475	. 001733102
578	334084	193100552	24.0416306	8.3299542	. 001730104
579	335241	194104539	24.0624188	8.3347553	. 001727116
580	336400	195112000	24.0831891	8.3395509	. 001724138
581	${ }^{337561}$	196122941	24.1039416	8.3443410	. 001721170
582	${ }_{3} 38724$	197137368	24.1246762	8.3491256	. 001778213
583	339889	198155287	24.1453929	8.3539047	. 001715266
685	341056	199176704	24.1660919	8.3586784	. 001712329
585	342225	200201625	24.1867732	8.3634466	. 001709402
586	343396	201230056	24.2074369	8.3682095	. 001706185
587	344569	202262003	24.2280829	8.3729668	. 001703578
588	345744	203297472	24.2487113	8.3777188	. 001700680
589	346921	204336469	24.2693222	8.3824653	. 001697793
590	348100	205379000	24.2899156	8.3872065	. 001694915
591	349281	206425071	24.3104916	8.3919423	. 0016992047
592	350464	207474688	24.3310501	8.3966729	. 001689189
693	351649	208527857	24.3515913	8.4013981	. 001686341
594	352836	209584584	24.3721152	8.4061180	. 001683502
595	354025	210644875	24.3926218	8.4108326	. 001680672
596	355216	211708736	24.4131112	8.4155419	. 0016778582
597	356409	212776173	24.4335834	8.4202460	. 001675042
59	357604	213847192	24.4540385	8.4249448	. 001672241
599	358801	214921799	24.4744765	8.4296383	. 001669449
600	360000	216000000	24.4948974	8.4343267	. 001666667
0	361201	217081801	24.5153013	8.4390098	. 001663894
602	362404	218167208	24.53568883	8.4436377	. 0016661130
603	363609	219256227	24.5560583	8.4483605	. 001658375
604	364816	220348864	24.5764115	8.4530281	. 0016556629
605	366025	221445125	24.5967478	8.4576396	. 0016528993
606	367236	222545016	24.6170673	8.4623479	. 001650165
607	368449	223648543	24.6373700	8.4670001	. 0016474736
608	369664	224755712	24.6576560	8.4716471	. 001644737
609	370881	225866529	24.6779254	8.4762892	. 001642036
610	372100	226981000	24.6981781	8.4809261	. 001639344
611	373321	228099131	24.7184142	8.4855579	. 0016366861
612	374544	229220928	24.7386338	8.4901848	. 0016339887
613	375769	230346397	24.7588328	8.4948065	. 001631321
614	376999	231475544	24.7790234	8.4594233	. 0016288664
615	378225	232608375	24.7991935	8.5040350	. 00161626016
616 617	379456 380639	${ }_{231855113}^{23374896}$	24.8193473	${ }_{8}^{8.5086417}$. 001623377
618	381924	236029032	24.8596058	8.5178413	001618123
619	383161	237176659	24.8797106	8.5224321	001615509
620	334400	238328000	24.8997992	8.5270189	. 001612303

S\%O.	Squares.	Cubes.	Square Roots.	Cube Roots.	Beciprocals.
621	385641	239483061	24.9198716	8.5316009	. 001610308
622	386884	240641848	24.9399278	8.5361780	. 001607717
623	388129	241804367	24.9599679	8.5407501	. 001605136
624	389376	242970624	24.9799920	8.5453173	. 001602504
625	390625	244140625	25.0000000	8.5498797	. 001600000
626	391876	245314376	25.0199920	8.5544372	. 001597444
627	393129	246491883	25.0399681	8.5589899	. 001594896
628	394384	247673152	25.0599282	8.5635377	. 001592357
629	395641	248858189	25.0798724	8.5680807	. 001589825
630	396900	250047000	25.0998008	8.5726189	. 001587302
631	398161	251239591	25.1197134	8.5771523	. 001584788
632	399424	252435963	25.1396102	8.5816809	. 001582278
633	400689	253636137	25.1594913	8.5862047	. 001579779
634	401956	254840104	25.1793566	8.5907238	. 001577287
635	403225	256047875	25.1992063	8.5952380	. 001574803
636	404496	257259456	25.2190404	8.5997476	. 001572327
637	405769	258474853	25.2388589	86042525	. 001569859
638	407044	259694072	25.2586619	8.6037526	. 001567398
639	408321	260917119	25.2784493	8.6132480	. 001564945
640	409600	262144000	25.2932213	8.6177388	. 001562500
641	410881	263374721	25.3179778	8.6222248	. 001560062
642	412164	264609288	25.3377189	8.6267063	. 001557632
643	413449	265847707	25.3574447	8.6311830	. 001555210
644	414736	267039984	25.3771551	8.6356551	. 001552795
645	416025	268336125	25.3968502	8.6401226	. 001550388
646	417316	269586136	25.4165301	8.6445855	. 001547988
647	418609	270840023	25.4361947	8.6490437	. 001545595
643	419904	272097792	25.4558441	8.6534974	. 001543210
649	421201	273359449	25.4754784	8.6579465	. 001540832
650	422500	274625000	25.4950976	8.6623911	. 001538462
651	423801	275894451	25.5147016	8.6668310	. 001536098
658	425104	277167808	25.5342907	8.6712665	. 001533742
653	426409	278445077	25.5538647	8.6756974	. 001531394
654	427716	279726264	25.5734237	8.6801237	. 001529052
655	429025	281011375	25.5929678	8.6845456	. 001526718
656	430336	282300416	25.6124969	8.6889630	. 001524390
657	431649	283593393	25.6320112	8.6933759	. 001522070
658	432964	284890312	25.6515107	8.6977843	. 001519757
659	434281	286191179	25.6709953	8.7021882	. 001517451
660	435600	287496000	25.6904652	8.7065877	. 001515152
661	436921	288804781	25.7099203	8.7109827	. 001512859
662	438244	290117528	25.7293607	8.7153734	. 001510574
663	439569	291434247	25.7487864	8.7197596	. 001508298
664	440896	29275494	25.7681975	8.7241414	. 001506024
665	442225	294079625	25.7875939	8.7285187	. 001503759
666	443556	295408296	25.8069758	8.7328918	. 001501502
667	444889	296740963	25.8263431	8.7372604	. 001499250
668	446224	298077632	25.8456960	8.7416246	. 001497006
669	447561	299418309	25.8650343	8.7459846	. 001494768
670	448900	300763000	25.8843582	8.7503401	. 001492537
671	450241	302111711	25.9036677	8.7546913	. 001490313
672	451584	303464448	25.9229628	8.7590383	. 001488095
673	452929	304821217	25.9422435	8.7633809	. 001485084
674	454276	306182024	25.9615100	8.7677192	. 001483680
675	455625	307546875	25.9807621	8.7720532	. 001481481
676	456976	308915776	26.0000000	8.7763830	.001479290
677	458329	310288733	26.0192237	8.7807084	. 001477105
678	459684	311665752	26.0384331	8.7850296	. 001474926
679	461041	313046839	26.0576284	8.7893466	. 001472754
680	462400	314432000	26.0768096	8.7936593	
681	463761	315821241	26.0959767	8.7979679	. 001468429
682	465124	317214568	26.1151297	8.8022721	. 001466276

No.	Squares.	Cuber.	Square Roots.	Cube Roots.	Rociprocals.
683	466489	318611987	26.1342687	8.8065722	. 001464129
684	467856	320013504	26.1533937	8.8108681	. 001461988
685	469225	321419125	26.1725047	8.8151598	. 001459854
686	470596	322828856	26.1916017	8.8194474	. 001457726
687	471969	324242703	26.2106848	8.8237307	. 001455604
688	473344	325660672	26.2297541	8.8280099	. 001453488
689	474721	327082769	26.2488095	8.8322850	. 001451379
690	476100	328509000	26.2678511	8.8365559	. 001449275
691	477481	329939371	26.2868789	8.8408227	. 001447178
692	478864	331373888	26.3058929	8.8457854	. 001445087
693	480249	332812557	26.3248932	8.8493440	. 001443001
694	481636	334255384	26.3438797	8.8535985	. 001440922
695	483025	335702375	26.3628527	8.8578489	. 001438849
696	484416	337153536	26.3818119	8.8620952	. 001436782
697	485809	338608873	26.4007576	8.8663375	. 001434720
698	487204	340068392	26.4196896	8.8705757	. 001432665
699	488601	341532099	26.4386081	8.8748099	. 001430615
700	490000	343000000	26.4575131	8.8790400	. 001428571
701	491401	344472101	26.4764046	8.8832661	. 001426534
702	492804	345948408	26.4952826	8.8874882	. 001424501
703	494209	347428927	26.5141472	8.8917063	. 001422475
704	495616	348913664	26.5329983	8.8959204	. 001420455
705	497025	350402625	26.5518361	8.9001304	. 001418440
706	498436	351895816	26.5706605	8.9043366	. 001416431
707	499849	353393243	26.5894716	8.9085387	. 001414427
708	501264	354894912	26.6082694	8.9127369	. 001412429
709	502681	356400829	26.6270539	8.9169311	. 001410437
710	504100	357911000	26.6458252	8.9211214	. 001408451
711	505521	359425431	26.6645833	8.9253078	. 001406470
712	506944	360944128	26.6833281	8.9294902	. 001404494
713	508369	362467097	26.7020598	8.9336687	. 001402525
714	509796	363994344	26.7207784	8.9378433	. 001400560
715	511225	365525875	26.7394839	8.9420140	. 001398601
716	512656	367061696	26.7581763	8.9461809	. 001396648
717	514089	368601813	26.7768557	8.9503438	. 001294700
718	515524	370146232	26.7955220	8.9545029	001392758
718	516961	371694959	26.8141754	8.9586581	001390821
720	518400	373248000	26.8328157	8.9628095	. 001388889
721	519841	374805361	26.8514432	8.9669570	. 001386963
722	521284	376367048	26.8700577	8.9711007	. 001385042
723	522729	377933067	26.8886593	8.9752406	. 001383126
724	524176	379503424	26.9072481	8.9793766	. 001381215
725	525625	381078125	26.9258240	8.9835089	
728	527076	382657176	26.9443872	8.9876373	.001377410
727	528529	384240583	26.9629375	8.9917620 8.9958829	.001375516
728	529984	385828352	26.9814751 27.000000	8.9958829 9.0000000	.001371742
729	531441	387420489	27.0000000	9.0000000	
730	632900.	389017000	27.0185122	9.0041134	. 001369863
731	534361	390617891	27.0370117	9.0082229	.001367989
732	535824	392223168	27.0554985	9.0123288	. 0013661256
733	537289	393832837	27.0739727	9,0164309 9.0205293	. 001362398
734	638756	395446904	27.0924344	9.0205293 9.0246239	. 001360544
735	540225 541696	3970653\%5	27.1108834 27.1293199	9.0287149	. 001358696
736 737	543169	400315553	27.1477439	9.0328021	. 001356852
738	544644	401947272	27.1661554	9.0368857	. 001355014
739	546121	403583419	27.1845544	9.0409655	. 001353180
740	547600	405224000	27.2029410	9.0450417	. 001351351
741	549081	406869021	27.2213152	9.0491142	. 001349528
742	550564	408518488	27.2396769	9.0531831	001347709
743	552049	410172407	27.2580263	9.0572482	001345895
744	553536	411830784	27.2763634	9.0613098	. 001344086

No.	Squares.	Cubes.	Square Roots.	Oube Roots.	Rooiprooals.
745	555025	413493625	27.2946881	9.0653677	. 001342282
746	556516	415160936	27.3130006	9.0694220	. 001340483
747	553009	416832723	27.3313007	9.0734726	. 001338688
748	559504	418508992	27.3495887	9.0775197	. 001336898
749	561001	420189749	27.3678644	9.0815631	. 001335113
750	562500	421875000	27.3861279	9.0856030	. 001333333
751	564001	423564751	27.4043792	9.0896392	. 001331558
752	565504	425259008	27.4226184	9.0936719	. 001329787
753	567009	426957777	27.4408455	9.0977010	. 001328021
754	568516	428661064	27.4590604	9.1017265	. 001326260
755	570025	430368875	27.4772633	9.1057485	. 001324503
756	571536	432081216	27.4954542	9.1097669	. 001322751
757	573049	433798093	27.5136330	9.1137818	. 001321004
758	574564	435519512	27.5317998	9.1177931	. 001319261
759	576081	437245479	27.5499546	9.1218010	. 001317523
760	577600	438976000	27.5680975	9.1258053	. 001315789
761	579121	440711081	27.5862284	9.1298061	. 001314060
762	580644	442450728	27.6043475	9.1338034	. 001312336
763	582169	444194947	27.6224546	9.1377971	. 001310616
764	583696	445943744	27.6405499	9.1417874	. 001308901
765	585225	447697125	27.6586334	9.1457742	. 001307190
766	586756	449455096	27.6767050	9.1497576	. 001305483
767	588289	451217663	27.6947648	9.1537375	. 001303781
768	589824	452984832	27.7128129	9.1577139	. 001302083
769	591361	454756609	27.7308492	9.1616869	. 001300390
770	592900	456533000	27.7488739	9.1656565	. 001298701
771	594441	458314011	27.7668868	9.1696225	. 001297017
772	595984	460099648	27.7848880	9.1735852	. 001295337
773	597529	461889917	27.8028775	9.1775445	. 001293661
774	599076	463684824	27.8208555	9.1815003	. 001291990
775	600625	465484375	27.8388218	9.1854527	. 001290323
776	602176	467288576	27.8567766	9.1894018	. 001288660
777	603729	469097433	27.8747197	9.1933474	. 001287001
778	605234	470910952	27.8926514	9.1972897	. 001285347
779	606841	472729139	27.9105715	9.2012286	. 001283697
780	608400	474552000	27.9284801	9.2051641	. 001282051
781	609961	476379541	27.9463772	9.2090962	. 001280410
782	611524	478211768	27.9642629	9.2130250	. 001278772
783	613089	480048687	27.9821372	9.2169505	. 001277139
784	614656	481890304	28.0000000	9.2208726	. 001275510
785	616225	483736625	28.0178515	9.2247914	. 001273885
786	617796	485587656	28.0356915	9.2287068	. 001272265
787	619369	487443403	28.0535203	9.2326189	. 001270648
788	620944	489303872	28.0713377	9.2365277	. 001269036
789	622521	491169069	28.0891438	9.2404333	. 001267427
790	624100	493039000	28.1069386	9.2443355	. 001265823
791	625681	494913671	28.1247222	9.2482344	. 001264223
792	627264	496793088	28.1424946	9.2521300	. 001262626
793	628849	498677257	28.1602557	9.2560224	. 001261034
794	630436	500566184	28.1780056	9.2599114	. 001259446
795	632025	502459875	28.1957444	9. 2637973	. 001257862
796	633616	504358336	28.2134720	9.2676798	. 001256281
797	635209	506261573	28.2311884	9.2715592	. 001254705
798	636804	508169592	28.2488938	9.2754352	. 001253133
799	633401	510082397	28.2665881	9.2793081	. 001251564
800	640000	512000000	28.2342712	9.2831777	. 001250000
801	641601	513922401	28.3019434	9.2870440	. 001248439
802	643204	515849608	28.3196045	9.2909072	. 001246883
803	644809	517781627	28.3372546	9.2947671	. 001245330
804	646416	519718464	29.3548938	9.2986239	. 001243781
805	648025	521660125	23.3725219	9.3024775	. 001242236
806	649636	523606616	28.3901391	9.3063278	. 001240695

No.	Squares.	Cuber.	Square Roots.	Cabe Roots.	Reclprocals.
807 808	651249 652864	525557943 527514112	28.4077454 28.4253408	9.3101750 9.3140190	$.001239157$
809	654481	529475129	28.4429253	9.3178599	. 001236094
810	656100	531441000	28.4604989	9.3216975	. 001234568
811	657721	533411731	28.4780617	9.3255320	. 001233046
812	659344	535387328	28.4956137	9.3293634	. 001231527
813	660969	537367797	28.5131549	9.3331916	. 001230012
814	662596	539353144	28.5306852	9.3370167	. 001228501
815	664225	541343375	28.5482048	9.3408388	. 001226994
816	665856	543338496	28.5657137	9.3446575	. 001225490
817	667489	545338513	28.5832119	9.3484731	. 001223990
818	669124	547343432	28.6006993	9.3522857	. 001222494
819	670761	549353259	28.6181760	9.3560952	. 001221001
820	672400	551368000	28.6356421	9.3599016	. 001219512
821	674041	553387661	28.6530976	9.3637049	. 001218027
822	675684	555412248	23.6705424	9.3675051	. 001216545
823	677329	557441767	23.6879766	9.3713022	. 001215067
824	678976	559476224	28.7054002	9.3750963	. 001213592
825	680625	561515625	28.7228132	9.3788873	. 001212121
826	682276	563559976	23.7402157	9.3826752	. 001210654
827	683929	565609283	25.7576077	9.3864600	. 001209190
823	685584	567663552	28.7749891	9.3902419	. 001207729
829	687241	569722789	28.7923601	9.3940206	. 001206273
830	688900	571787000	28.8097206	9.3977964	. 001204819
821	690561	573856191	23.8270706	9.4015691	. 001203369
832	692224	575930358	28.8444102	9.4053387	. 001201923
833	693889	578009537	28.8617394	9.4091054	. 001200480
834	695556	580093704	28.8790582	9.4128690	. 001199041
835	697225	582182375	28.8963666	9.4166297	. 001197605
836	698896	584277056	28.9136646	9.4203873	. 001196172
837	700569	586376253	28.9309523	9.4241420	. 001194743
838	702244	588480472	28.9482297	9.4278936	. 001193317
839	703921	590589719	28.9654967	9.4316423	. 001191895
840	705600	592704000	28.9827535	9.4353880	. 001190476
841	707281	594823321	29.0000000	9.4391307	.001189061
842	708964	596947688	29.0172363	9.4428704	. 001187648
843	710649	599077107	29.0344623	9.4466072	. 001186240
844	712336	601211584	29.0516781	9.4503410	. 001184834
845	714025	603351125	29.0688837	9.4540719	. 001183432
846	715716	605495736	29.0860791	9.4577999	. 001182033
847	717409	607645423	29.1032644	9.4615249	. 001180638
848	719104	609800192	29.1204396	9.4652470	. 001179245
849	720801	611960049	29.1376046	9.4689661	. 001177856
850	722500	614125000	29.1547595	9.4726824	. 001176471
851	724201	616295051	29.1719043	9.4763957	. 001175088
852	725904	618470208	29.1890390	9.4801061	. 001173709
853	727609	. 620650477	29.2061637	9.4838136	. 001172333
854	729316	622335364	29.2232784	9.4875182	. 001170960
855	731025	625026375	29.2403830	9.4912200	. 001169591
856	732736	627222016	29.2574777	9.4949188	. 001168224
857	734449	629122793	29.2745623	9.4986147	. 001166861
858	736164	631623712	29.2916370	9.5023078	001165501
859	737881	633839779	29.3087018	9.5059980	. 001164144
860	739600	636056000	29.3257566	9.5096854	. 001162791
861	741321	633277331	29.3428015	9.5133699	. 001161440
862	743044	640503923	29.3598365	9.5170515	. 001160093
863	744769	642735647	29.3763616	9.5207303	. 001158749
864	746496	644972544	29.3938769	9.5244063	. 001157407
865	748225	647214625	29.4103823	9.5280794	001156069
866	749956	649161896	29.4278779	9.5317497	. 001154734
867	751639	651714363	29.4448637	9.5354172	. 001153403
868	753424	653972032	29.4618397	9.5390818	. 001152074

218 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS,

No.	Squarcs.	Cuber.	Square Roots.	Cube Roots.	Redprocals
889	755161	656234909	29.4788059	9.5427437	. 001150748
870	756900	658503000 660776311	29.4957624	$\begin{aligned} & 9.5464027 \\ & 9.5500589 \end{aligned}$	$\begin{aligned} & .001149425 \\ & .001148106 \end{aligned}$
871 872	758641	660776311 663054848	29.5127091	9.5500589 9.5537123	. 0001148788
873	762129	665338617	29.5465734	9.5573630	. 001145475
874	763876	667627624	29.5634910	9.5610108	. 001144165
875	765625	669921875	29.5803989	9.5646559	. 001142857
876	767376	672221376	29.5972972	9.5682982	. 001141553
877	769129	674526133	29.6141858	9.5719377	. 001140251
878	770884	676836152	29.6310648	9.5755745	. 001138952
879	772641	679151439	29.6479342	9.5792085	. 001137656
880	774400	681472000	29.6647939	9.5828397	
881	776161	683797841	29.6816442	9.5864682	.001135074
882	777924	686128968	29.6984848	9.5900939	. 001133787
883	779689	688465387	29.7153159	9.5937169	. 001132503
884	781456	690807104	29.7321375	9.5973373	. 001131222
885	783225	693154125	29.7489496	9.6009548	. 001129944
886	784996	695506456	29.7657521	9.6045696	. 001128668
887	786769	697864103	29.7825452	9.6081817	. 0001127396
888	788544	700227072	29.7993289	9.6117911 9.6153977	$\begin{aligned} & .001126126 \\ & .001124859 \end{aligned}$
889	790321	702595369	29.8161030		
890	792100	704969000	29.8328678	9.6190017	. 001123596
891	793881	707347971	29.8496231	${ }_{9}^{9.62262016}$	$.001122334$
892	795664	709732288	29.8663690 29.8831056	9.6297975	. 001119821
93	797449 799236	712121957	29.8998328	9.6333907	. 001118568
895	801025	716917375	29.9165506	9.6369812	. 001117318
896	802816	719323136	29.9332591	9.6405690	. 001116071
897	804609	721734273	29.9499583	9.6441542	. 001114827
898	806404	724150792	29.9666481	9.6477367	. 001113586
899	808201	726572699	29.9833287	9.6513166	. 001112347
800	810000	729000000	30.0000000	9.6548938	. 001111111
901	811801	731432701	30.0166620	9.6584684	. 00011109878
902	813604	733870808	30.0333148	9.6620403	. 001108647
903	815409	736314327	30.0499584 30.0665928	9.6656096 9.6691762	. 0001106195
904	817216	738763264	30.0665928 30.0832179	9.6727403	. 001104972
906	820836	743677416	30.0998339	9.6763017	. 001103753
907	822649	746142643	30.1164407	9.6798604	. 001102536
908	824464	748613312	30.1330383	9.6834166	. 001101322
909	826281	751089429	30.1496269	9.6869701	. 001100110
910	828100	753571000	30.1662063	9.6905211	. 001098901
911	829921	756058031	30.1827765	9.6940694	. 0010907695
912	831744	758550528	30.1993377	9.6976151	. 0010966491
913	833569	761048497	30.2158899	9.7011583	. 001095290
914	835396	763551944	30.2324329	9.7046989	. 0010944092
915 916	8837225	766060875	30.2489669	${ }_{9}^{9.7117723}$. 001091703
916 917	839056 840889	768575296 771095213	30.2654919	$9.71530 E 1$. 001090513
918	842724	773620632	30.2985148	9.7188354	. 001089325
919	844561	776151559	30.3150128	9.7223631	. 001088139
920	846400	778688000	30.3315018	9.7258883	. 001086957
921	848241	781229961	30.3479818	9.7294109	. 001085776
922	850084	783777448	30.3644529	9.7329309	. 001084599
923	851929	786330467	30.3809151	9.7364484	. 001083424
924	853776	788889024	30.3973683	9.7399634	. 001082251
925	855625	791453125	30.4138127	9.7434758	. 001081081
926	857476	794022776	30.4302481	9.7469857	. 0010797914
927	859329	796597983	30.4466747	9.7504930	. 00101077586
928	861184	799178752	30.4630924.	9.7539979	.001076426
929	863041	801765089	30.4795013	9.7575002	. 00010757269
$93 \cap$	864900	804357000	30.4959014	9.7610001	. 001075269

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	Ruciprocals.
931 932	866761 868624	806954491 809557568	30.5122926 30.5286750	9.7644974	. 001074114
938	868624	809557568	30.5286750	9.7679922	001072961
933	870489	812166237	30.5450487	9.7714845	001071811
934	872356	814780504	30.5614136	9.7749743	. 001070664
935	874225	817400375	30.5777697	9.7781616	. 001069519
936	876096	820025856	30.5941171	9.7814466	. 001068376
937	877969	822656953	30.6104557	9.7854238	. 001067236
938	879844	825293672	30.6267857	9.7889037	. 001066098
939	881721	827936019	30.6431069	9.7923861	. 001064963
940	883600	830584000	30.6594191	9.7958611	. 001063830
941	885481	833237621	30.6757233	9.7993336	. 001062699
942	887364	835896888	30.6920185	9.8028036	. 001061571
943	889249	838561807	30.7083051	9.8062711	. 001060445
944	891136	841232384	30.7245830	9.8097362	. 001059322
915	893025	843903625	30.7408523	9.8131989	. 001058201
946	894916	846590536	30.7571130	9.8166591	. 001057082
947	896309	849278123	30.7733651	98201169	. 001055966
948	898704	851971392	30.7896086	9.8235723	. 001054852
949	900601	854670349	30.8058436	9.8270252	. 001053741
950	902500	857375000	30.8220700	9.8304757	. 001052632
951	904401	860085351	30.8382879	9.8339238	. 001051525
952	906304	862801408	30.8544972	9.8373695	. 001050420
953	908209	865523177	30.8706981	9.8408127	. 001049318
954	910116	868250664	30.8868904	9.8442536	. 001018218
955	912025	870983875	30.9030743	9.8476920	. 001047120
956	913936	873722816	30.9192497	9.8511280	. 001046025
957	915849	876467493	30.9354166	9.8545617	. 001044932
958	917764	879217912	30.9515751	9.8579929	. 001043841
959	919681	881974079	30.9677251	9.8614218	. 001042753
960	921600	884736000	30.9838668	9.8648483	. 001041667
961	923521	887503681	31.0000000	9.8682724	. 001040583
962	925444	890277128	31.0161248	9.8716941	. 001039501
963	927369	893056347	310322413	9.8751135	. 001038422
964	929296	895841344	31.0483494	9.8785305	. 001037344
965	931225	898632125	31.0644491	9.8819451	. 001036269
966	933156	901428696	31.0805405	9.8853574	. 001035197
967	935089	904231063	31.0966236	9.8887673	. 001034126
968	937024	907039232	31.1126984	9.8921749	. 001033058
969	938961	909853209	31.1287648	9.8955801	. 001031992
970	940900	912673000	31.1448230	9.8989830	. 001030928
971	942841	915498611	31.1608729	9.9023835	. 001029968
972	944784	918330048	31.1769145	9.9057817	. 001028807
973	946729	921167317	31.1929479	9.9091776	. 001027749
974	948676	924010424	31.2089731	9.9125712	. 001026694
975	950625	926859375	31.2249900	9.9159624	. 001025641
976	952576	929714176	31.2409987	9.9193513	. 001024590
977	954529	932574833	31.2569992	9.9227379	. 001023541
978	956484	935441352	31.2729915	9.9261222	. 001022495
979	958441	938313739	31.2889757	9.9295042	. 001021450
980	960400	941192000	31.3049517	9.9328839	. 001020408
981	962361	944076141	31.3209195	9.9362613	. 001019368
982	964324	946966168	31.3368792	9.9396363	. 001018330
983	966239	949462087	31.3528308	9.9430092	. 001017294
934	968256	952763904	31.3687743	9.9463797	. 001016260
985	970225	955671625	31.3847097	9.9497479	. 001015228
986	972196	958585256	31.4006369	9.9531138	. 001014199
987	974169	961504803	31.4165561	9.9564775	. 001013171
938	976144	864430272	31.4324673	9.9598389	. 001012146
989	978121	967361669	31.4483704	9.9631981	. 001011122
990	980100	970299000	31.4642654	9.9665549	. 001010101
991	982081	973242271	31.4801525	9.9699095	. 001009082
992	934064	976191488	31.4960315	9.9732619	. 001008065

220 TABLE XIII. SQUARES, CUBES, SQUARE ROOTS, \&C.

No.	Squares.	Cubes.	Square Roots.	Cube Roots.	'Reciprocals.
993	986049	979146657	315119025	9.9766120	. 001007049
994	988036	982107784	31.5277655	9.9799599	. 001006036
995	990025	985074875	31.5436206	9.9833055	.001005025
996	992016	988047936	31.5594677	9.9866488	. 001004016
997	994009	991026973	31.5753068	9.98999900	.001003009
998	996004	994011992	31.5911380	9.9933289	$.001002004$ 001001001
999	998001	997002999	31.606 .613		
1000	1000000	1000000000	31.6227766	10.0000000	.001000000
1001	1002001	1003003001	31.6385840	10.0033322	
1002	1004004	1006012003	31.6543836	10.0066622 10.0099899	.0009980040 .0009970090
1003	1006009	1009027027	31.6701752	10.0099899 10.0133155	. 00009970090
1004	1008016	1012048064	31.6859590 31.7017349	10.0166389	. 00009950249
1005	1010025	1015075125 1018108216	31.7017349 31.7175030	10.0199601	. 0009940358
1006	1012036	1018108216	31.7175030 31.733263	10.0232791	. 0009930487
1007 1008	1014049	1021147343 1024192512	31.7332633 31.7490157	10.0265958	. 0009920635
1009	1018081	1027243729	31.7647603	10.0299104	. 0009910803
1010	1020100	1030301000	31.7804972	10.0332228	. 0009900990
1011	1022121	1033364331	31.7962262	10.0365330	0009891197
1012	1024144	1036433728	31.8119474	10.0398410	423
1013	1026169	1039509197	31.8276609	10.0431469	71668
1014	1028196	1042590744	31.8433666	10.0464506	09861933
1015	1030225	1045678375	31.8590646	497521	. 00099852217
1016	1032256	1048772096	31.8747549	10.0530514	. 00099832842
1017	1034289	1051871913	31.890	10.0563485	. 0000988238483
1018	1036324	1054977832	31.9061123	10.0596435 10.0629364	. 0009813543
1019	1038361	1058089859	7794		
1020	104040 n	1061208000	31.9374388	10.0662271	. 0009803922
1021	1042441	1064332261	31.9530906	10.0695156	. 0000979484736
1022	1044484	1067462648	31.9687347	10.0728020 10.0760863	. 000097775171
1023	1046529	1070599167	31.9843712	10.0760863	. 00009765625
1024	1048576	1073741824	32.0000000	10.0793684 10.0826484	. 00099756098
1025	1050625	1076890625	32.0156212 32.0312348	10.0859262	. 0009746589
1026	1052676	1080045576	32.0312348 32.0468407	10.0892019	. 0009737098
1027	1054729	1083206683	32.0624391	10.0924755	. 0009727626
1028	1056784	1086373952	32.0624391 32.0780298	10.0924755 10.0957469	. 0009718173
1029	1058841	$10 ¢ 9547389$	32.0780298	10.0957469	
1030	1060900	1092727000	32.0936131	10.0990163	$.0009708738$
1031	1062961	1095912791	32.1091887 32.1247568	10.1022835 10.1055487	. 0000966893922
1032	1065024	1099104768	32.1247568 32.1403173	10.1055487 10.1088117	. 00096680542
1033	1067089	1102302937 1105507304	32.1403173 32.1558704	10.1088117 10.1120726	. 0009671180
1034	1069156	1105507304 1108717875	32.1558704 32.1714159	10.1153314	. 0009661836
1035	1071225	110871784656	32.1769539	10.1185882	. 0009652510
1036	1073296	1111934656	32.1869539	10.1218428	. 0009643202
1037	1075369	1115157653 1118386872	32.2024844 32.2180074	10.1250953	. 0009633911
1038 1039	1077444	1118386872 1121622319	32.2335229	10.1283457	. 0009624639
				10.1315941	. 0009615385
$\begin{aligned} & 1040 \\ & 1041 \end{aligned}$	$\begin{aligned} & 1081600 \\ & 1083681 \end{aligned}$	112486411921	32.24945316	10.1348403	. 0009606148
1042	1085764	1131366088	32.2800248	10.1380845	. 0009596929
1043	1087849	1134626507	32.2955105	10.1413266	. 0009587728
1044	1089936	1137893184	32.3109888	10.1445667	. 0009578544
1045	1092025	1141166125	32.3264598	10.1478047	0009569378
1046	1094116	1144445336	32.3419233	10.1510406	0009560229
1047	1096209	1147730823	32.3573794	10.1542744	. 00095551098
1048	1098304	1151022592	32.3728281	$1015{ }^{2} 5062$	0009541985
1049	1100401	1154320649	32.3882695	10.1607359	. 00619532888
1050	1102500	1157625000	32.4037035	10.1639636	. 0009523810
1051	1104601	1160935651	32.4191301	10.1671893	0009514748
1052	1106704	1164252608	32.4345495	10.1704129	0009505703
1053	1108809	1167575877	32.4499615	10.1736344	0009496676
1054	1110916	1170905464	32.4653662	10.1768539	0009487666

TABLE XIV.

LOGARITHMS OF NUMBERS.

FROM 1 то $10,000$.

											18.
1	2041	204391	204663	204934	$\overline{205204}$	205475	205746	$\underline{206016}$	206286	206556	271
1	6828	7096	7365	7634	7904	8173	8441	8710	8979	9247	269
2	9515	9783	210051	210319	210586	210853	211121	211388	211654	211921	267
8	212188	212454	2720	2986	3252	3518	3783	4049	4314	4579	266
4	4844	5109	5373	5638	5902	6166	6430	6694	6957	7221	264
5	7484	7747	8010	8273	8536	8798	9060	9323	9585	9846	262
6	220108	220370	220631	220892	221153	221414	221675	221936	222196	222456	261
7	2716	2976	3236	3496	3755	4015	4274	4533	4792	5051	259
8	5309	5568	5826	6084	6342	6600	6858	7115	7372	7630	258
9	7887	8144	8400	8657	8913	9170	9426	9682	9938	230193	256
170	230449	230704	230960	231215	231470	231724	231979	232234	232488		255
1	2996	3250	3504	3757	4011	4264	4517	4770	5023	5276	253
$?$	552	5781	6033	285	6537	6789	7041	7292	7544	7795	252
3	8046	8297	8548	8799	9049	9299	9550	9800	240050	240300	250
	240549	240799	241048	241297	241546	241795	242044	242293	2541	2790	249
5	3038	3286	3534	3782	4030	4277	4525	4772	5019		248
	5513	5759	6006	6252	6499	6745	6991	7237	7482	772	246
7	7973	8219	8464	8709		9198	9443	9687	9932	250176	245
82	250420	250664	250908	251151	251395	251638	251881	252125	252368		243
	2853	3096	3388	3580	3822	4064	4306	4548	4790	5031	242
,	255273	255514	255755	255996	256237	256477	256718	256958	257198	257439	241
	37	7918	8158	8398	8637	8877	9116		9594	9833	239
	260071	260310	260548	260787	261025	261263	261501	261739	261976	262214	238
	2451	-2688	2925	3162	3399	3636	3873	4109	4346	4582	237
	481	5054	5290	5525	5761	6996	6232	6467	6702	6937	235
	717	406		7875	8110	8344	8578	8812	9016	9279	234
6	-71813	9746	9980	270213	270446	270679	270912	27,1144	271377	271609	233
	271842	272074	272306	2538	2770	3001	3233	3464	3696	3927	232
	$\begin{aligned} & 4138 \\ & 6462 \end{aligned}$	4389	4620	4850	5081	5311	5542	5772	6002	6232	230
	64	6692	6921	7151	7380	7609	7838	8067	8296	8525	229
190	278754	278982	279211	279439			280123	280351	280578		228
	281033	281261	281488	281715	281942	282169	2396	2622	2849	3075	227
	3301	3527	3753	3979	4205	4431	4656	4882	6107	5332	228
	5557	5782	6007	6232	6456	6681	6905	7130	7354	7578	225
	7802	8026	8249	8473	8696	8920	9143	9366	9589	9812	223
52	290035	290257	290480	290702	290925	291147	291369	291591	291813	292034	222
	225	2478	2699	2920	3141	3363	3584	3804	4025	4246	221
	4466	4687	4907	5127	5347	5567	5787	6007	6226	6446	220
8	6665	6884	7104	7323	7542	7761	7979	8198	8416	8635	219
9	8853	9071	9289	9507	9725	9943	300161	300378	300595	300813	218
20	30103	301247	301464	301681	301898	302114	302331	302547	302764	302980	217
1	3196	3412	3628	3844	4059	4275	4491	4706	4921	5136	216
2	5351	5566	5781	5996	6211	6425	6639	6854	7068	7282	215
	7496	7710	7924	8137	8351	8564	8778	8991	9204	9417	213
4	9630	9843	310056	310268	310481	310693	310906	311118	311330	311542	212
	311754	311966	2177	2389	2600	2812	3023	- 3234	- 3445	3656	211
	3867	4078	4289	4499	4710	4920	5130	5340	6551	5760	210
	597	6180	6390	6599	6809	7018	7227	7436	7646	7854	209
	32014	8272 320354	8481 320562	8689 320769	8898 32997	9106	9314	9522 391598	9730	9938	208
	32014	320354	320562	320769	320977	321184	321391	321598	321805	322012	207
210	322219	322426	322633	322839	323046	323252	323458	323665	323871	324077	206
	4282	4488	4694	4899	5105	5310	5516	5721	5926	6131	205
	6336	6541	6745	6950	7155	7359	7563	7767	7972	8176	204
	8380	8583	8787	8991	9194	9398	9601	9805	330008	330211	203
	330414	330617	330819	331022	331225	331427	331630	331832	2034	2236	202
	2438	2640	2842	3044	3216	3447	3649	3850	4051	$425 ?$	202
	4454	4655	4856	5057	5257	5458	5658	5859	6059	6260	201
	6460 8456	6660	6860 8855	7060	7260	7459	7659	7858	8058	8257	200
	8456 340444	r 810642	8855 340841	9054 311039	9253 341237	9451	9650	9349	340047 2028	340246	199
No.	0	1	2	3	4	5	6	7	8	9	D48.

$\left\|\frac{\pi 0}{20}\right\|$	$\frac{0}{342423}$	$\frac{1}{342620}$	$\frac{2}{342817}$	$\frac{3}{343014}$	$\frac{4}{343212}$	$\frac{5}{343409}$	343606	$\overline{343802}$	$\frac{8}{343999}$	$\frac{9}{344196}$	-1919
2	4392	4589	4785	4981	5178	5374	5570	5766	5962	6157	196
2	6353	6549	6744	6939	7135	7330	7525	7720	7915	8110	195
3	8305	8500	8694	8889	9083	9278	9472	9666	9860	350054	194
	350248	350442	350636	350829	351023	351216	351410	351603	351796	1989	193
5	2183	2375	2568	2761	2954	3147	3339	3532	3724	3916	193
6	4108	4301	4493	4685	4876	5068	5260	5452	5643	5834	192
7	6026	6217	6468	6599	6790	6981	7172	7363	7554	7744	191
8	7935	8125	8316	$850 ¢$	8696	8886	9076	9266	9456	9646	190
9	9835	360025	360215	360404	360593	360783	360972	361161	361350	361539	189
230	36172	361917	36210	362294	362482	362671	362859	363048	353236	363424	8
1	3612	3800	3988	4176	4363	4551	4739	4926	5113	5301	188
2	548	5675	5862	6049	6236	6423	6610	6796	6983	7169	187
3	7356	7542	7729	7915	8101	8287	8473	8659	8845	9030	186
4	9216	9401	9587	9772	9958	370143	370328	370513	370698	370883	185
5	371068	371253	371437	371622	371806	1991	2175	2360	2544	2728	184
6	2912	3096	3280	3464	3647	3831	4015	4198	4382	4565	184
7	4748	4932	5115	5298	5481	5664	5846	6029	6212	6394	183
8	6577	6759	6942	7124	7306	7488	7670	7852	8034	8216	182
9	8398	8580	8761	8943	9124	9306	9487	9668	4	380030	181
240	380211	380392	380573	380754	380934	381115	381296	381476	381656	381837	181
	2017	2197	2377	2557	2737	2917	3097	3277	3456	3636	180
2	3815	3995	4174	4353	4533	4712	4891	5070	5249	542	179
3	5606	5785	5964	6142	6321	6499	6677	6856	7034	7212	2178
	7390	7568	7746	7923	8101	8279	8456	8634	8811	8989	- 178
	9166	9343	9520	9698	9875	390051	390228	390405	390582	390759	177
	390935	391112	391288	391464	391641	1817	1993	2169	2345	2521	176
7	2697	2873	3048	3224	3400	3575	3751	3926	4101	14277	176
8	4452	4627	4802	4977	5152	5326	5501	5676	5850	6025	175
9	6199	6374	6548	6722	6896	7171	7245	7419	7592	7766	174
250	397940	398114	398287	398461	398634	398808	398981	399154	399328	399501	173
	9674	9847	400020	400192	400365	400538	400711	400883	401056	401228	173
	401401	401573	1745	1917	- 2089	2261	2433	2605	2777	2949	172
3	3121	3292	3464	3635	3807	3978	4149	4320	4492	4663	171
	4831	5005	5176	5346	5517	5688	5858	6029	6199	6370	171
5	6540	6710	6881	7051	- 7221	7391	7561	7731	7901	8070	170
6	8240	8410	8579	8749	8918	9087	9257	9426	9595	9764	169
7	9933	410102	410271	410440	410609	410777	410946	411114	411283	411451	169
	411620	1788	1956	2124	2293	2461	2629	2796	2964	3132	168
9	33	34		330	3970	1	4305	4472	4639		167
0	414973	415140	415307	415474	415641	415808	415974	416141	416308	416474	167
	6641	6807	6973	7139	7306	7472	7638	7804	7970	8135	166
	8301	8467	8633	-8798	8964	9129	9295	9460	9625	9791	165
3	9956	420121	420286	420451	420616	420781	420945	421110	421275	421439	165
	421604	1768	1933	2097	2261	2426	2590	2754	2918	$30 \leq 2$	2164
	3246	3410	$35 \% 4$	3737	3901	4065	4228	4392	4555	4718	164
6	4882	5045	5278	5371	5534	5697	5860	6023	6186	6349	163
7	6511	6674	6830	6999	7161	7324	7486	7648	7811	7973	162
	8135	8297	8459	-86\%1	18783	8944	- 9106	9268	9429	9591	162
9	9752	9914	430075	430236	430398	430559	430720	430881	431042	431203	161
2	431364	431525	431685	431846	432007	432167	432328	432488	432649	432809	161
	2969	3130	3290	3450	- 3610	$37 \% 0$	3930	4090	4249	4409	160
	4569	4729	4888	5018	- 5201	5367	5526	5685	5844	6004	4159
3	6163	6322	6481	6640	- 6799	6957	7116	7275	7433	7592	159
	7751	7909	8067	8226	68334	8542	$8 \pi 01$	8859	9. 9017	9175	5158
	9333	9491	9648	9806	69964	440122	440279	440437	440594	440752	2158
	440909	441066	441224	441381	1441538	1695	- 1852	2009	2166	2323	157
	2480	2637	2793	2950	- 3106	3263	3419	3576	3732	3889	157
	4045	4201	4357	4513	3669	4825	- 4981	5137	6293	5449	156
	5604	5760	5915	6071	622	6382	- 65	6692	6848	700	5
10.	(0)	1	2	3	4	5	6	7	8	9	Diff.

$\frac{80}{290}$	447158	447313									5
280	447158 8706	447313 8861	（147468	447623 9170	$\frac{4}{447778}$	$\frac{447933}{}$		448242	448397	448552	155
	450249	450403	450557	450711	450865	451018	45117	451326			154
3	1786	1940	2093	2247	2400	2553	2706	2859	3012	165	
	3318	3471	3624	3777	3930	4082	4235	4387	4540	692	
	4845	997	50	5302	5454	5606	5758	6910	6062	6214	2
	6366		70	6821	6973	712	7276	7428	7579	7731	152
	7882	3	8184	8336	8487	863	8789	994	9091	9242	151
8	9392	9543	9694	9845	9995	460146	460296	460447	460597	460748	151
9	460898	461048	461198	461348	4614	1649	1799	19	2098	224	150
		46	46	46284	462997	3	463296	463445	463594	463744	
	3893	4042	91	4340	4490	4639	4788	4936	5085		149
		5532		58	5977	6126	6274	6423	6571	6719	149
	6868	7016	7164	7312	7460	760	7756	7904	8052	820	148
	8347	8495	470116	8790	8938	9085		93	9527	967	148
	9822	9969	470116	470263	470410	470557	470704	4708	47099	4711	147
	471292	471438	1585	1732	1878	2025	2171	2318	2464	2610	46
	2756	2903	3049	3195	3341	3487	3633	3779	392	4071	6
	4216	4362	4508	4653	4799	4944	5090	5235	5381	5526	46
9				6107	6252	6397	6542	6687	6832	6976	145
0	47	477		477	47		47	47	478278		145
	80007	801	8029	8999	9143						
3	1443	158	172	1872							
	28	301	315	330		587		杜			
	430			472		01	15	5295	43	579	42
	5721		600	614			8572	71	685	99	142
	7138		7421							8410	141
	8551	8692	8833	8974	9114				9677		1
9		490099	490239	490380					491081	49	140
10	491	49150	491		491922		492201	492341	492	492621	
	27	290	304	3179	3319	345	3597	3737	3876	4015	139
	41	4294		457	4711	485	4989	5128	5267	5406	139
	554			5960	099		637	651		7791	139
	6930	7068	7206	7344				897	803		138
	831	8448	586	8724			9137		941		138
	96	9824	9962	500099	500236	500374	500511	50064	50078	50092	137
	501059	501196	501383	1470	1607	1744	1880	2017	215	229	137
8	2427	2564	270	2837	2973	3109	3246	3382	3518	365	136
		3927		4199				4743	4878		
20	50515	505286		5055			50	506099	50		6
	650	6640	6776	6911	704			7451			135
	785	7991	8126	8260	8395		8664	8799		90	，
	22	9337	9471	9606	9740	9874	510009	510143	510277	51041	134
	510545	510679	510813	510947	511081	511215	1349	1482	1616	175	134
5	1883	201	215	228	2418	255		2818	2951		133
	3218	，	析	3617			016	149	迷	4415	133
	4548	4631	4813	4946	5075				5609		133
	587	6006	6139	6271	640			析	硅	7064	2
9	71	7328						8119			122
	C 85	5186	51877	518909	519040	519171	519303	519434	51956	519697	131
	9828	9959	520090	520221	520353	520484	520615	520745	520876	521007	131
	521138	521269	1400	1530	1661	1792	19	2053		231	131
	2444	2575	2705	2835	966		322			3616	130
	374	3876	4006	4136	4266	㖪	526		O8	991	130
	504	5174	5304	5434	5563	693	5822	5951	608	6210	129
	633	646	598	6727	6856	698	7114	7243	7372	7501	129
	7630	59	7888	8016	8145	8274	8402	8531	866	87	129
	8917	9045	17	9302	9430	9559	96	9815	994	530072	128
	53020	53032	530	53058	530712	53084	53096	53109	53122	1351	128
Na	0	1	2	3		E	6	7	8	9	DIf．

$\frac{\mathrm{No}}{340}$	$\left\|\frac{0}{531479}\right\|$	531607	$\frac{2}{531734}$	$\frac{3}{531862}$	$\frac{4}{531990}$	532117	$\frac{6}{532245}$	$\|\overline{532372}\| \overline{6}$	$\frac{0}{532500}$	$\frac{9}{532627}$	D1ff:
340	531479	531607 2882	531734 3009	531862 3136	531990 3264	532117 3391	532245 3518	532372	532500	532627 3899	128
2	4026	4153	4280	4407	4534	4661	4787	4914	5041	5167	127
3	5294	5421	5547	5674	5800	5927	6053	6180	6306	6432	126
4	6558	6685	6811	6937	7063	7189	7315	7441	7567	7693	126
5	7819	7945	8071	8197	8322	8448	8574	8699	8825.	8951	126
6	9076	9202	9327	9452	9578	9703	9829	9954	540079	540204	125
7	540329	540455	540580	¢40705	540830	540955	541080	541205	1330	1454	125
3	1579	1704	1829	1953	2078	2203	2327	2452	2576	2701	125
9	2825	2950	3074	3199	3323	3447	3571	3696	3820	3944	124
33)	544068	544192	544316	544440	544564	544688	544812	544936	545060	545183	24
1	5307	5431	5555	5678	5802	5925	6049	6172	6296	6419	124
2	6543	6666	6789	6913	7036	7159	7282	7405	7529	7652	123
3	7775	7898	8021	8144	8267	8389	8512	8635	8758	8881	123
4	9003	9126	9249	9371	9494	9616	9739	9861	9984	550106	123
	550228	5503515	550473	550595	550717	550840	550962	551084	551206	1328	122
6	1450	1572	1694	1816	1938	2060	2181	2303	2425	2547	122
7	2663	2790	2911	3033	3155	3276	3398	3519	3640	3762	121
8	3883	4004	4126	4247	4368	4489	4610	4731	4852	4973	121
9	5094	5215	5336	5457	5578	5699	5820	5940	6061	6182	121
360	556303	556423	556544	556664	556785	556905	657026	557146	557267	557387	20
	7507	7627	7748	7868	7988	8108	8228	8349	8469	8589	120
2	8709	8829	8948	9068	9188	9308	9428	9548	9667.	9787	120
	8907	560026	560146	560265	560385	560504	560624	560743	560863	560982	119
	561101	1221	1340	1459	1578	1698	1817	1936	2055	2174	119
5	2293	2412	2531	2650	2769	2887	3006	3125	3244	3362	119
6	3481	3600	3718	3837	3955	4074	4192	4311	4429	4548	119
7	4666	4784	4903	5021	5139	5257	5376	5494	5612	5730	118
8	6848	5966	6084	6202	6320	6437	6555	6673	6791	6909	118
9	7026	7144	7262	7379	7497	7614	7732	7849	7967	8084	118
370	568202	568319	568436	568554	568671	568788	568905	569023	569140	569257	17
1	9374	9491	9608	9725	9842	9959	570076	570193	570309	570426	117
2	570543	570660	570776	570893	571010	571126	1243	1359	1476	1592	117
3	1709	1825	1942	2058	2174	2291	2407	2523	2639	2755	116
4	2872	2988	3104	3220	3336	3452	3568	3684	3200	3915	116
	4031	4147	4263	4379	4494	4610	4726	4841	4957	5072	116
6	5188	5303	5419	5534	5650	5765	5880	5996	6111	6226	115
	6341	6457	6572	6687	6802	6917	7032	7147	7262	7377	115
	7492	7607	7722	7836	7951	8066	8181	8295	8410	8525	115
9	8639	8754	8868	8983	9097	9212	9326	9441	9555	9669	14
380	579784	579898	580012	580126	580241	580355	580469	580583	580697	580811	4
	580925	581039	1153	1267	1381	1495	1608	722	1836	1950	114
2	2063	2177	242	2404	2518	2631	2745	35	2972	3085	114
3	3199	3312	3426	3539	3652	3765	3879	3992	4105	4218	13
	4331	4444	4557	4670	4783	4896	5009	5122	5\%35	5348	13
5	5461	5574	5686	5799	5912	6024	6137	6250	6362	6475	13
6	6587	6700	6812	6925	7037	7149	7262	7374	7486	7599	. 12
	7711	7823	7935	8047	8160	8272	8384	8496	8608	8720	112
8	8832	8944	9056	9167	9279	9391	9503	9615	9726	983	112
9	9950	590061	590173	590284	590396	590507	590619	690730	590842	590953	2
90	591065	591176	591287	591399	501510	591621	591732	591843	591955	592066	111
	2177	2288	2399	2510	2621	2732	2843	2954	3064	3175	111
	3286	3397	3508	3618	3729	3840	3950	4061	4171	4282	111
3	4393	4503	4614	4724	4834	4945	5055	5165	5276	5386	110
4	5496	5606	6717	5827	6937	6047	6157	6267	6377	6487	110
	6597	6707	6817	6927	7037	7146	7256	7366	7476	7586	110
6	7695	7805	7914	8024	8134	8243	8353	8462	8572	8681	110
7	8791	8900	9009	9119	9228	9337	9446	9556	9665	9774	109
	9883	9992	600101	600210	600319	600428	600537	600646	600755	600864	109
	600973	601082	1191	1299	1408	1517	1625	1734	1843	1951	109
No.	-	1	2	3	4	5	6	7	8	9	Diff.

$\left.\frac{\mathrm{NO}}{400} \right\rvert\, \overline{6}$	602060	602169	$\frac{8}{602277}$	$\underline{602386}$	602494	602603	$\frac{6}{602711}$	$\overline{602819}$	\| 802928	$\frac{9}{603036}$	$\frac{\text { Dif }}{108}$
400	3144	3253	3361	3169	-3577	-3686	3794	6902	4010	4118	108
2	4226	4334	4442	4550	4658	4766	4874	4932	5089	5197	108
3	5305	5413	5521	5628	5736	5844	5951	6059	6166	6274	108
4	6381	6489	6596	6704	6811	6919	7026	7133	7241	7348	107
5	7455	7562	7669	7777	7884	7991	8098	8205	8312	8419	107
6	8526	8633	8740	8847	8954	9061	9167	9274	9381	9488	107
7	9594	9701	9808	99146	610021	610128	610234	610341	610447	610554	107
	610660	6107676	610873	610979	1086	1192	1298	1405	1511	1617	106
9	1723	1829	1936	242	2148	2254	2360	2466	2572	2678	106
410	612784	612890	612996	613102	613207	613313	613419	613525	613630	613736	106
1	3842	3947	4053	4159	4264	4370	4475	4581	4686	4792	106
2	4897	5003	5108	5213	5319	5424	5529	5634	5740	5845	105
3	5950	6055	6160	6265	6370	6476	6581	6686	6790	6895	105
4	7000	7105	7210	7315	7420	7525	7629	7734	7839	7943	105
5	8048	8153	8257	8362	8466	8571	8676	8780	8884	8989	105
6	9093	9198	9302	3406	9511	9615	9719	9824	9928	620032	104
76	620136	620240	620344	620448	620552	620656	620760	620864	620968	1072	104
8	1176	1280	1384	1488	1592	1695	1799	1903	2007	2110	104
9	2214	2318	2421	2525	2628	2732	2835	2939	3042	3146	104
420	623249	6233536	623456	623559	623663	623766	623869	623973	624076	624179	103
,	4282	4385	4488	4591	4695	4798	4901	5004	5107	5210	103
2	5312	5415	5518	5621	5724	5827	5929	6032	6135	6238	103
3	6340	6443	6546	6648	6751	6853	6956	7058	7161	7263	103
4	7366	7468	7571	7673	7775	7878	7980	8082	8185	8287	102
5	8339	8491	8593	8695	8797	8900	9002	9104	9206	9308	102
6	9410	9512	9613	9715	9817	9919	630021	630123	630224	630326	102
	630428	630530	630631	630733	630835	630936	1038	1139	1241	1342	102
8	1444	1545	1647	1748	1849	1951	2052	2153	2255	2356	101
9	2457	2559	2660	2761	2862	2963	3064	3165	3266	3367	101
430	633468	633569	633670	633771	633872	633973	634074	634175	634276	634376	101
	4477	4578	4679	4779	4880	4981	5081	5182	5283	5383	101
2	5484	5584	5685	5785	5886	5986	6087	6187	6287	6388	100
3	6488	6588	6688	6789	6889	6989	7089	7189	7290	7390	100
4	7490	7590	7690	7790	7890	7990	8090	8190	8290	8389	100
	8489	8599	8689	8789	8888	8988	9088	9188	9287	9387	100
	9436	9586	9686	9785	9885	9984	640084	640183	640283	640382	99
	640481	640581	640680	640779	640879	640978	1077	1177	1276	1375	99
8	1474	1573	1672	1771	1871	1970	2069	2163	2267	2366	99
						29			325	335	99
440	643453	643551	643650	643749	643847	643946	644044	644143	644242	644340	98
,	4439	4537	4636	4734	4832	4931	5029	5127	5226	5324	98
2	5422	5521	5619	5717	5815	5913	6011	6110	6208	6306	98
3	6404	6502	6600	6698	6796	6894	6992	7089	7187	7285	98
4	7333	7481	7579	7676	7774	7872	7969	8067	8165	8262	98
5	8360	8458	8555	8653	8750	8848	8945	9043	9140	9237	97
6	9335	9432	9530	9627	9724	9821	9919	650016	650113	650210	97
	650308	650405	650502	650599	650696	650793	650890	0987	1084	1181	97
8	1278	1375	1472	1569	1666	1762	1859	1956	2053	2150	97
-	2246	2343	2440	2536	2633	2730	2826	2923	3019	3116	97
450	653213	653309	653405	653502	653598	653695	653791	653888	653984	654080	96
	4177	4273	4369	4465	4562	4658	4754	4850	4946	5042	96
2	5138	5235	5331	5427	5523	5619	5715	5810	5906	6002	96
3	6098	6194	6290	6336	6482	6577	6673	6769	6864	6960	96
	7056	7152	7247	7343	7438	7534	7629	7725	7820	7916	96
	8011	8107	8202	8298	8393	8488	8584	8679	8774	8870	95
6	8965	9060	9155	9250	9346	9441	9536	9631	9726	9821	95
7	9916	660011	660106	660201	660296	660391	660486	660581	660676	660771	95
	660865	0960	1055	1150	12451	-1339	1434	1529	i623	1718	95
	1813	1907	2002	2096	2191	2236	2380	2475	2569	2663	95
Na	0	1	2	3	2	5	6	7	8	9	Dit

	0								\| 81		17ffr
$\overline{460}$	662758	$\overline{662852}$	$\overline{662947}$	663041	663135	$\overline{663230}$	663324	663418	$\overline{663512}$	$\overline{663607}$	94
,	3701	3795	3889	3983	4078	4172	4266	4360	4454	4548	94
2	4642	4736	4830	4924	5018	5112	5206	5299	5393	5487	94
3	5581	5675	5769	5862	5956	6050	6143	6237	6331	6424	94
1	6518	6612	6705	6799	6892	6986	7079	7173	7266	7360	1
5	7453	7546	7640	7733	7826	7920	8013	8106	8199	8293	93
6	8386	8479	8572	8665	S759	8852	8945	9038	9131	9224	93
7	931\%	9410	9503	9596	9689	9782	9875	9967	670060	670153	93
	670246	670339	670431	670524	670617	670710	670802	670895	0988	1080	33
9	1173	1265	1358	1451	1543	1636	1728	1821	1913	2005	93
470	672098	672190	672283	672375	672467	672560	672652	672744	672836	672929	92
	3021	3113	3205	3297	3390	3482	3574	3666	3758	3850	92
2	3942	4034	4126	4218	4310	4402	4494	4586	4677	4769	92
3	4861	4953	5045	5137	5228	5320	5412	5503	5595	5687	92
4	5778	5870	5962	6053	6145	6236	6328	6419	6511	6602	92
5	6694	6785	6876	6968	7059	7151	7242	7333	7424	7516	91
6	7607	7698	7789	7881	7972	8063	8154	8245	8336	8427	91
7	8518	8609	8700	8791	8882	8973	9064	9155	9246	9337	91
8	9428	9519	9610	9700	9791	9882	9973	680063	680154	680245	91
96	680336	680426	680517	680607	680698	680789	680879	0970	1060	1151	91
480	681241	681332	681422	681513	681603	681693	681784	681874	681964	682055	90
	2145	2235	2326	2416	2506	2596	2686	2777	2867	2957	90
2	3047	3137	3227	3317	3407	3497	3587	3677	3767	3857	90
3	3947	4037	4127	4217	4307	4396	4486	4576	4666	4756	90
4	4845	4935	5025	5114	5204	5294	5383	5473	5563	5652	90
5	5742	5831	5921	6010	6100	6189	6279	6368	6458	6547	89
6	6636	6726	6815	6904	6994	7083	7172	7261	7351	7440	89
-	7529	7618	7707	7796	7886	7975	8064	8153	8242	8331	89
8	8420	8509	8598	8887	8776	8865	8953	9042	9131	9220	89
	9309	9398	9486	9575	9664	9753	9841	9930	690019	690107	89
490	690196	690285	690373	690462	690550	690639	690728	690816	690905	690993	89
	1081	1170	1258	1347	1435	1524	1612	1700	1789	1877	88
2	1965	2053	2142	2230	2318	2406	2494	2583	2671	2759	88
3	2847	2935	3023	3111	3199	3287	3375	3463	3551	3639	88
	3727	3815	3903	3991	4078	4166	4254	4342	4430	4517	88
5	4605	4693	4781	4868	4956	5044	5131	5219	5307	5394	88
${ }^{6}$	5482	5569	5657	5744	5832	5919	6007	6094	6182	6269	87
	635	6444	6531	6618	6706	6793	6880	6968	7055	7142	87
9	8101	8188	8275	8362	8449	8535	8622	8709	8796	8883	87 87
500	698970	699057	699144	699231	699317	699404	699491	699578	699664	699751	87
1.	9838	9924	700011	700098	700184	700271	700358	700444	700531	700617	87
2	700704	700790	0877	0963	1050	1138	1222	1309	1395	1482	86
3	1568	1654	${ }^{2} 741$	1827	1913	1999	2086	2172	2258	2344	86
4	2431	2517	2603	2689	2775	2861	2947	3033	3119	3205	86
5	3291	3377	3463	3549	3635	3721	3807	3893	3979	4065	86
6	4151	4236	4322	4408	4494	4579	4665	4751	4837	4922	86
7	5008	5094	5179	5265	5350	5436	5522	5607	5693	5778	86
8	5864	5949	6035	6120	6206	6291	6376	6462	6547	6632	85
9	6718	6803	6888	6974	7059	7144	7229	7315	7400	7485	85
510	707570	707655	707740	707826	707911	707996	708081	708166	708251	708336	85
1	8421	8506	8591	8676	8761	8846	8931	9015	9100	9185	85
2	9270	9355	9440	9524	9609	9694	9779	9863	9948	710033	85
	710117	710202	710287	710371	710456	710540	710625	710710	710794	0879	85
	0963	1048	1132	1217	1301	1385	1470	1554	1639	1723	84
5	1807	1892	1976	2060	2144	2229	2313	2397	2481	2566	84
6	2650	2734	2818	2902	2986	3070	3154	3238	3323	3407	84
7	3491	3575	3659	3742	3826	3910	3994	4078	4162	4246	84
8	4330	4414	4497	4581	4665	4749	4833	4916	5000	508	84
		525	5335	5418	5502	5586	5669	5753	5836	5920	84
W0	0	1	3	13	14	B	6	7	8	9	Difr.

$\left\|\frac{\text { No. }}{580}\right\|$	$\frac{0}{763428}$	763503	763578	763653	$\overline{763727}$	$\overline{763802}$	$\overline{763877}$	$\overline{763952}$	64027	98101	$\frac{\text { Dlfit }}{75}$
	4178	4251	4336	4400	4475	4550	4624	76399	4774	4848	75
2	4923	4998	5072	5147	5221	5296	5370	5445	5520	559	75
3	5669	5743	318	5892	5966	041	6115	190	264	338	74
4	5413	487	52	6636	6710	785	6859	6933	7007	08	7
5	7156	230	04	7379	7453	7527	7601	7675	7749	82	
6	7898	972	46	8120	8194	8268	8342	8416	8490	56	4
7	8638	8712	86	8860	8934	9608	9082	9156	9230	9303	
8	9377	9451	9525	9599	9673	9746	9820	9894	9968	770042	74
97	770115	770189	770263	770336	770410	770484	770557	770631	770705	0778	74
690	770852	770926	770999	771073	771146	771220	771293	771367	771440	77151	4
	1587	1661	1734	1808	1881	1955	2028	2102	2175	224	73
2	232	395	246	2542	2615	688	2762	2835	2908	298	
3	3055	3128	3201	3274	3348	3421	3494	3567	3640	3713	73
	3786	3860	3933	4006	4079	4152	4225	4298	4371	444	73
5	4517	4590	4663	4736	4809	4882	4955	5028	5100	517	73
6	5246	5319	392	5465	5538	5610	568	5756	5829	5902	73
	5974	6047	6120	6193	6265	338	6411	6483	556	66	73
8	6701	6774	. 6846	6919	6992	064	7137	7209	282	35	73
9	7427		7572	44	7717	7789					72
00	778151	778224	77829	778368	778441	778513	778585	778658	778730	778	2
1	8874	8947	9 C 19	9091	9163	9236	9308	9380	9452	952	72
2	95	96	9741	9813	98	995	780029	780101	780173	78024	2
	780317	780389 \|7	780461	780533	780605	780677	0749	0821	0893	09	7%
4	1037	1109	1181	1253	1324	1396	1468	1540	1612	68	72
5	175	1827	1899	1971	2042	2114	2186	2258	2329	2401	2
6	2473	2544	2616	2688	2759	2831	2902	2974	3046	117	2
7	3189	3260	3332	3403	3475	3546	3618	3689	3761	383	71
8	3904	3975	4046	4118	4189	4261	4332	4403	4475	4546	71
9	461	4689	476	4831	4902	4974	5045	5116	5187	525	71
110	785	785401	785472	7855	7856	7856	5757	85	5899		
	6041	6112	6183	6254	6325	639	6467	6538	6609		71
	675	6822	6893	696	7035	7106	7177	724	7319	39	
3	746	7531	7602	7673	7744	7815	7885	795	8027	09	71
	816	8239	8310	8381	8451	8522	8593	8663	8734	880	71
	8875	894	9016	9087	9157		9299	9369	9440	951	71
		9651	9722	9792	9863	9933	790004	790074	790144	79021	70
	790285	790356	790426	790496	790567	790637	0707	0778	0848	18	70
	0988	1059	1129	1199	1269	1340	1410	1480	15	1620	70
9		176			19			21	2		
320	792392	792462	792532	792602	792672	792742	792812	792882	792952	793022	
	309	316	323	3301	3371	3441	3511	3581	3651	3721	70
	379	3	39	4000	4070	413	4209	427	4349	441	70
3	448	455	4627	4697	4767	4836	4906	4976	504	5115	70
	5185	5254	5324	5393	5463	5532	5602	5672	574	5	
	5880	5949	6019	6088	6158	6227	6297	6366	6436	505	
	6574	6644	6713	6782	6852	6921	6990	7060	7129	719	69
7	726	7337	7406	7475	7545	7614	7683	7752	7821	7890	69
	796	8	8098	8167	8236	8305	8374	8443	8513	8582	69
9					8927		9065	9134	92	9272	69
630	799341	799409	799178	799547	799616	7996	799754	799823	799892	79996	69
	800029	800098	800167	800236	800305	800373	800442	800511	800580	800648	69
	0717	0786	0854	0923	0992	1061	1129	1198	1266	1335	69
	1404	1472	1541	1609	1678	1747	1815	188	1952	2021	69
	2089	2158	2226	2295	236	2432	2500	256	2637	2705	68
	2774	2842	2910	2979	304	3116	18	325	332	3389	68
	3457	3525	3594	3662	3730	3798	3867	393	400	4071	68
	4139	4208	4276	4344	4412	4480	4548	4616	468	4753	68
	4821	4889	4957	5025	5093	5161	5229	5297	5365	5433	68
	550				- 5773		59	597	604	6112	68
No	10	1	2	3	4	5	6	7	8	9	

No. 1	0	1	3								
640	806180	806218	$\overline{806316}$	806334	$\overline{806451}$	$\overline{806519}$	806587	806655	806723	$\overline{806790}$	68
1	6858	69.6	6994	7061	7129	7197	7264	7332	7400	7467	68
2	7535	7603	7670	7738	7806	7873	7941	8008	8076	8143	68
3	8211	8279	8346	8414	8481	8549	8610	8684	8751	8818	67
4	8886	8953	9021	9088.	9156	9223	9290	9358	9425	9492	67
5	9560	9827	9694	9762	9829	9896	9964	810031	810098	810165	67
68	8102338	810300	8103678	810434	810501	8105698	810636	0703	0770	0837	67
7	0904	0971	1039	1106	1173	1240	1307	1374	1441	1508	67
8	1575	1642	1709	1776	1843	1910	1977	2044	2111	2178	67
9	2245	2312	2379	2445	2512	2579	2646	2713	2780	2847	67
6508	812913	812980	813047	813114	813181	813247	813314	813381	813448	813514	67
	3581	3648	3714	3781	3848	3914	3981	4048	4114	4181	67
2	4248	4314	4381	4447	4514	4581	4647	4714	4780	4847	67
3	4913	4980	5046	5113	5179	5246	5312	5378	5445	5511	66
4	5578	5644	5711	5777	5843	5910	5976	6042	6109	6175	66
5	6241	6308	6374	6440	6506	6573	6639	6705	6771	6838	66
6	6904	6970	7036	7102	7169	7235	7301	7367	7433	7499	66
7	7565	7631	7698	7764	7830	7896	7962	8028	8094	8160	66
8	8226	8292	8358	8424	8490	8556	8622	8688	8754	8820	66
9	8885	8951	9017	9083	9149	9215	9281	9346	9412	9478	66
660	819544	819610	819676	819741	819807	819873	819939	820004	820070	820136	6
18	820201	8202678	820333	820399	820464	820530	820595	0661	0727	0792	66
,	0858	0924	0989	1055	1120	1186	1251	1317	1382	1448	66
3	1514	1579	1645	1710	1775	1841	1906	1972	2037	2103	65
4	2168	2233	2299	2364	2430	2495	2560	2626	2691	2756	65
5	2822	2887	2952	3018	3483	3148	3213	3279	3344	3409	65
6	3474	3539	3605	3670	3735	3800	3865	3930	3996	4061	65
7	4126	4191	4256	4321	4386	4451	4516	4581	4646	4711	65
8	4776	4841	4906	4971	5036	5101	5166	5231	5296	5361	65
9	5426	5491	5556	5621	5686	5751	5815	5880	5945	6010	65
670	826075	826140	826204	826269	826334	826399	826464	S26528	826593	826658	65
1	6723	6787	6852	6917	6981	7046	7111	7175	7240	7305	65
,	7369	7434	7499	7563	7628	7692	7757	7821	7886	7951	65
3	8015	8080	8144	8209	8273	8338	8402	8467	8531	8595	64
4	8660	8724	8789	8853	8918	8982	9046	9111	9175	923	
5	9304	9368	9432	9497	9561	9625	9690	9754	9818	988	64
6	9947	830011	830075	830139	830204	830268	830332	830396	830460	830525	4
	830589	0653	0717	0781	0845	0909	0973	1037	1102	1166	仡
8	1230	1294	1358	1422	1486	1550	1614	1678	1742	1806	,
9	1870	1934	1998	2062	2126	2189	2253	2317	2381	2445	
680	832509	832573	832637	832700	832764	832328	832892	832956	833020	833083	A
1	3147	3211	3275	3338	3402	3466	3530	3593	3657	3721	4
2	3784	3848	3912	3975	4039	4103	4166	4230	4294	4357	4
3	4421	4484	4548	4611	4675	4739	4802	4866	4929	4993	64
4	5056	5120	5183	5247	5310	5373	5437	5500	5564	5627	63
5	5691	5754	5817	5881	5944	6007	6071	${ }_{6}^{6134}$	6197	6261	63
6	6324	6387	6451	6514	6577	6641	6704	6767	6830	6894	63
7	6957	7020	7083	7146	7210	7273	7336	7399	7462	7525	63
8	7588 8219	7652 8282	7715 8345	7778 8408	7841 8471	7904	7967 8597	8030 8660	8093 8723	8156	63 63
	8219	8282		840			8697	86	872		6
680	838849	838912	838975	839038	839101	839164	839227	839289	839352	839415	63
,	9478	9541	9604	9667	9729	9792	9855	9918	9981	840043	63
,	840106	840169	840232	840294	840357	840420	840482	840545	840608	0671	63
3	0733	0796	0859	0921	10984	1046	1109	1172	1234	1297	63
4	1359	1422	1485	1547	1610	1672	1735	1797	1860	1922	63
5	1985	2047	2110	2172	2235	2297	2360	2422	2484	2547	62
6	2609	2672	2734	2796	- 2859	2921	2983	3046	3108	3170	62
	3233	3295	3357	3420	3482	3544	3606	3609	3731	3793	62
8	3355	3918	3980	4042	4104	4166	4229	4291	4353	4415	62
		4539				47	485		497	5036	62
NO.	10	1	2	3	4	5	6	\%	8	9	Difi.

	0										Diff.
$\overline{700}$	845098	$\overline{845160}$	845222	845284	845346	845408	845470	845532	845594	845656	2
1	5718	5780	5842	5904	5966	602	6090	6151	6213	6275	2
2	6337	6399	6461	6523	658	6646	6708	6770	6832	-6894	62
,	6955	7017	7079	7141	7202	7264	7326	7388	7449	7511	2
4	7573	7634	7696	7758	7819	7881	7943	8004	8066	8128	2
5	8189	8251	8312	8374	8435	8497	8559	8620	8682	8743	2
6	8805	8866	8928	8989	9051	9112	9174	9235	9297	3358	1
	9419	9481	9542	9604	9665	9726	9788	9849	9911	9972	61
8	850033	850095	850156	850217	850279	850340	850401	850462	850524	850585	61
9	0646	0707	0769	0830	0891	0952	1014	1075	1136	1197	1
710	85125	851320	851381	851442	851503	851564	851625	851686	851747	相	61
,	1870	1931	1992	2053	2114	2175	2236	2297	2358	2419	61
2	2480	2541	2602	2663	2724	2785	2846	2907	2968	$30 ¢ 9$	61
	3090	3150	3211	3272	3333	3394	3455	3516	3577	3637	1
4	3698	3759	3820	3881	3941	4002	4063	4124	4185	4245	61
5	4306	4367	4428	4488	4549	4610	4670	4731	4792	85	1
	4913	4974	5034	5095	5156	5216	5277	5337	98	5459	61
7	5519	5580	5640	701	761	5822	5882	5943	003		1
	6124	6185	6245	6306	366	6427	6487	6548	6608	66	60
9	6729	6789	6850	6910	6970	7031	7091	7152	7212	272	60
720	857332	857393	857453	857513	857574	857634	857694	857755		57875	0
	7935	7995	8056	8116	8176	8236	8297	8357	8417	8477	60
	8537	8597	8657	8718	8778	838	8898	8958	8	9078	60
	9138	9198	9258		9379	9439	9499	9559	9619	9679	60
$4]_{0}$	9739	9799	9859	9918	9978	860038	860098	860158	860218	860278	60
	860338	860398	860458	860518	860578	0637	0697	0757	0817	0877	60
	0937	0996	1056	1116	1176	1236	1295	1355	415	1475	60
7	1534	1594	1654	1714	1773	1833	1893	1952	2012	2072	6
	2131	2191	2251	2310	2370	2430	2489	2549	2608	266	0
9	2728	2787	2847	2906	2966	3025	3085	3144	3204	3263	60
730	863323	863382	863442	863501	863561	863620	863680	863739	863799		9
1	3917	3977	4036	4096	4155	4214	4274	4333	4392		59
	4511	4570	4630	4689	4748	4808	4867	4926	4985	5045	69
	5104	5163	5222	5282	5341	5400	5459	5519	5578	5637	59
4	5696	5755	5814	5874	5333	5992	6051	6110	6169	6228	59
	6287	6346	6405	6465	6524	6583	6642	6701	6760	6819	59
6	6878	6937	6996	055	7114	7173	7232	7291	350	4409	59
7	7467	7526	7585	644	703	762	7821	7880	7939	998	69
8	8056	8115	8174	8233	8292	8350	8409	8468	8527	8586	59
9	8644	8703	8762	8821	8879	8938	8997	9056	9114	9173	59
740	869232	869290	869349	869408	869466	869525		869642)
	9818	9877	9935	9994	870053	870111	870170	870228	870287	870345	59
	870404	870462	870521	870579	0638	0696	0755	0813	0872	0930	58
3	0989	1047	1106	1164	1223	1281	1339	1398	1456	1515	58
4	157	1631	1690	1748	1806	1865	1923	1981	2040	2098	58
5	2156	2216	2273	2331	2389	2448	2506	2564	2622	2681	58
6	2739	2797	2855	2913	2972	3030	3083	3146	3204	3262	58
7	3321	3379	3437	3495	3553	3611	3669	3727	3785	3844	58
	3902	3960	4018	4076	4134	4192	4250	4308	4366	4424	58
9	4482	4540	4598	4656	4714	4772	4830	4888	4945	5003	58
750	875061	875119	875177	875235	875293	875351	875409	875466	875524	875582	8
1	5640	5698	5756	5813	5871	5929	5987	6045	6102	6160	58
	6218	6276	6333	6391	6449	6507	6564	6622	6680	6737	58
	6795	6853	6910	6968	7026	7083	7141	7199	7256	7314	58
	7371	7429	7487	7544	7602	7659	7717	7774	7832	7889	58
	794	8004	8062	8119	8177	8234	8292	8349	8407	8464	57
	8522	8579	8637	-	8752	8809	8866	8924	8981	9039	57
					9325	3956	9440	89497	9555	9612	57
9	880242	880299	880356	880413	880471	880528	0585	880070 0642	880127 0699	880185 0756	57 57
No.	0	1	3	3	4	5	6	7	8	9	Difi.

	－										Dif．
760	880814	880871	880928	809	881042	881099	881156	8812	381271	8132	57
	1385	1442	1499	1556	1613	1670	1727	1784	1841	1898	57
	19	2012	2069	2126	2183	2240	2297	2354	2411	2468	57
	2525	81	207	26	2752	2809	2866	2923	2980	3037	57
	3093	3150	3207	3264	321	3377	3434	3491	3548	3605	57
	3661	3718	3775	3832	3888	3945	4002	4059	4115	4172	57
	4229	4285	4342	4399	4455	4512	4569	4625	682	4739	57
7	4795	4852	4909	4965	5022	5078	5135	5192	248	5305	57
8	5361	5418	5474	5531	5587	5644	5700	5757	5813	870	
9	5926	5983	6039	6096	6152	6209	6265	6321	6378	43	56
770	6	886547	86604					886885	2	886	6
1	7054	7111	7167	7223	7280	336	7392	449	505	7561	6
2	7617	674	7730	7786	7842	898	7955	011	06	8123	6
3	8179	8236	8292	8348	8404	8460	8516	8573	8629	868	8
4	874	8797	8853	8909	396	9021	9077	9134	919	24	56
5		9358	414	9470	9526	9582	9638	969	9750	80	6
6	9362	991	9974	890030	8900	890141	890197	890253	890309	8903	
	390421	890477	390533	05	0645	0700	0756	0812	0868	09	66
8	0980	1035	109	1705	17	259	1314	1370	1426	148	
9	1537	1593				1816	1872	1928	198	20	66
80	892095	892	892206		892317	92373	8924	8924	0		6
1	2651	2707	2762	2	2873	2929	2985	3040	3096	3151	6
2	320	3262	3318	3373	3429	3484	3540	3595	365	3706	6
3	376	817	3873	3928		03	409	415	20	426	55
	4316	371	过	482	533	仡	464	4704	475	81	
5	4870	4925	4980	03		146	520	5	31	5367	
6	5423	5478	553	558	44	5699	575	5809	8	592	5
7	597	030	08	614	6195	251	630	6361	41	47	5
8	6526	658	6636		6747	802	685	6912	696	02	
9	7077						7407		751	57	5
0					897847						
	8176	231	8286	8341	8396	8451	8506	8561	615		
2	872	780	8835	3890	8944	8999	905	09	9164		5
3	927	9328	038	9437	9492	9547	9602	9656	9711		
	982	9	993	998	900039	900094	900149	900203	900258	0003	
	900367	900422	900476	900531	0586	0640	0695	0749	0804	085	
6	0913	0968	1022	1077	131	18			134		
7	145	1513	1567	162	676				189		
8	2003	2057	2112	2166	222	2818	2329	2384			
9						28					
300	80309	9031	903199	903253	903307	903361	903416	903470	9035		
	363	1	374	3795	3819	3904	3958	4012	4066	412	
2	471	4	428		4391		449	455	460	46	
3	51	析	482		4932		504	0			
4	5256	5310			1		5				
5	5796	5850	590		012		61	17			
7		638		6497	551	6604	6658	12			
8	741	7465	519	7573	626	143	7196	25	30		
9	7949						8270	析	378	促	
810	903485	908539	908592		5293	908753	908807	908860	0891		
	9021	901	1	9	9235	9289	9342	9396	944	50	
2	9556	9610	9663	9716	9770	9823	9877	9930	998	91003	53
	910091	910144	910197	910251	910304	910358	910411	910464	910518	057	53
4	062	0678	073	0784	0838	0891	0944	0998	1051	110	53
5	115	1211	126	131	37	142	147	153	158	163	53
6	1	1743	1797	1850	1903				211	216	53
7	222	5	135	2381							53
8	2753	2806	2859	2913	，	19	062		3178	，	5
	3234	3337		34	34						53
0.	0					5		\％	8	9	

											Lin.
$\overline{820}$	$\overline{913814}$	$\overline{913867}$	$\overline{913920}$	913973	$\overline{914026}$	914079	914132	914184	914237	914290	53
1	4343	4396	4449	4502	4555	4608	4660	4713	4766	4819	53
2	4872	4925	4977	5030	5083	5136	5189	5241	5294	5347	53
3	5400	5453	5505	5558	5611	5664	5716	5769	5822	5875	53
4	5927	6980	6033	6085	6138	6191	6243	6296	6349	6401	53
5	6454	6507	6559	6612	6664	6717	6770	6822	6875	6927	53
6	6980	7033	7085	7138	7190	7243	7295	7348	7400	7453	53
7	7506	7558	7611	663	7716	7768	7820	7873	7925	978	52
8	8030	8083	8135	8188	8240	8293	8345	8397	8450	8502	52
9	8555	8607	8659	8712	8764	8816	8869	8921	8973	9026	52
	919078	919130	919183	919235	919287	919340	919392	9444	919496	919549	2
	9601	9653	9706	9758	9810	9862	9914	9967	920019	920071	52
2	920123	920176	920228	920280	920332	920384	920436	920489	0541	0593	52
3	0645	0697	0749	0801	0853	0906	0958	1010	1062	1114	52
	1166	1218	1270	1322	1374	1426	1478	1530	1582	1634	52
	1686	1738	1790	1842	1894	1946	1998	2050	2102	2154	52
6	2206	2258	2310	2362	2414	2468	2518	2570	2622	2674	2
	2725	2777	2829	2881	2933	2985	3037	3089	3140	3192	52
8	3244	3296	3348	3399	3451	3503	3555	3607	3658	3710	2
9	3762	3814	3865	3917	3969	4021	4072	4124	4176	4228	2
1	924279	924331	924383	924434	924486	924538	924589	924641	924693	924744	52
	4796	4848	4899	4951	5003	5054	5106	5157	5209	5261	52
	5312	5364	5415	5467	5518	5570	5621	5673	5725	5776	52
	582	5879	5931	5982	6034	6085	6137	6188	6240	6291	51
	6342	6394	6445	6497	6548	6600	6651	6702	6754	6805	51
5	6857	6908	6959	7011	7062	7114	7165	7216	7268	19	51
6	7370	7422	7473	7524	576	7627	7678	7730	7781	32	51
	7883	7935	7986	8037	8088	8140	8191	8242	8293	8345	51
8	8396	8447	8498	8549	8601	8652	8703	8754	8805	8857	51
9	8908	8959	9010	9061	9112	9163	9215	9266	9317	68	51
			929521	929572		929674			929827	929879	51
	9930	9981	930032	930083	930134	930185	930236	930287	930338	930389	51
	930440	930491	0542	0592	0643	0694	0745	0796	0847	0898	51
3	0949	1000	1051	1102	1153	1204	1254	1305	1356	1407	51
4	1458	1509	1560	1610	1661	1712	1763	1814	1865	1915	51
	1966	2017	2088	2118	2169	2220	2271	2322	2372	2423	51
	2474	2524	2576	2626	2677	2727	2778	2829	2879	2930	51
7	2981	3031	3082	3133	3183	3234	3285	3335	3386	3437	51
	3487	3538	3589	3639	3690	3740	3791	3841	3892	3943	51
	3993	4044	4094	4145	4195	4246	4296	4347	4397	4448	51
860	934498	934549	934599	934650	934700	934751	034801	934852	934902	934953	5
,	5003	505	5104	5154	5205	5255	5306	5356	5406	5457	50
2	5507	5558	5608	5658	5709	5759	5809	5860	5910	5960	0
3	6011	6061	6111	6162	6212	6262	6313	6363	6413	6463	50
4	6514	6564	6614	6665	6715	6765	6815	6865	6916	6966	0
5	7016	7066	7117	7167	7217	267	7317	7367	7418	7468	5
6	7518	7568	7618	7668	7718	7769	7819	7869	7919	7969	50
7	8019	8069	8119	8169	8219	8269	8320	8370	8420	8470	
	8520	8570	8620	8670	8720	8770	8820	8870	8920	8970	50
	9020	9070	9120	9170	9220	9270	9320	9369	9419	9469	50
870	939519	939569	939619	939669	939719	939769	939819	939869	939918	939968	5
	940018	940068	940118	940168	940218	940267	940317	940367	940417	940467	50
2	0516	0566	0616	0666	0716	0765	0815	- 0865	0915	- 0964	50
	1014	1064	1114	1163	1213	1263	1313	1362	1412	1462	50
	1511	1561	1611	1660	1710	1760	1809	1859	1909	1958	50
	2008	2058	2107	2157	2207	2256	2306	2355	2405	2455	50
	2504	2554	2603	2653	2702	2752	2801	2851	2901	2950	50
	3000	3 utg	3099	3148	3198	321%	3297	3346	3396	3445	49
	3495	3544	3598	3643	3692	3742	3791	3841	3890	3939	49
	3989	4038	4083	4137	4186	4236	4285	-4335	4384	4433	49
No.	0	1	2	3	4	5	6	7	8	9	D15

No.	0	1	2	3	4	5	6	7	8	9	Diff.
$\overline{940}$	$\overline{973128}$	$\overline{973174}$	$\overline{973220}$	$\overline{973266}$	$\overline{973313}$	$\overline{973359}$	$\overline{973405}$	$\overline{973451}$	973497	$\overline{973543}$	46
1	3590	3636	3682	3728	3774	3820	3866	3913	3959	4005	46
2	4051	4097	4143	4189	4235	4281	4327	4374	4420	4466	46
3	4512	4558	4604	4650	4696	4742	$4 \sim 88$	4834	4880	4926	46
4	4972	5018	5064	5110	5156	5202	5248	5294	5340	5386	46
5	5432	5478	5524	5570	5616	5662	5707	5753	5799	5845	46
6	5891	5937	5983	6029	6075	6121	6167	6212	6258	6304	46
7	6350	6396	6442	6488	6533	6579	6625	$66 \% 1$	6717	6763	46
8	6808	6854	6900	6946	6992	7037	7083	7129	7175	7220	46
9	7266	7312	7358	7403	7449	7495	7541	7586	7632	7678	46
950	$977 \% 24$	977769	977815	977861	977906	977952	977998	978043	978089	9:8135	46
1	8181	8226	8272	8317	8363	8409	8454	8500	8546	8591	46
2	8637	8683	8728	8774	8819	8865	8911	8956	9002	9047	46
3	9093	9138	9184	9230	9275	9321	9366	9412	9457	9503	46
4	9548	9594	9639	9685	9730	$9{ }^{7} 76$	9821	9867	9912	9958	46
5	980003	980049	980094	980140	980185	980231	9802\%6	980322	980367	980412	45
6	0458	0503	0549	0594	0640	0685	0730	0776	0821	0867	45
7	0912	0957	1003	1048	1093	1139	1184	1229	1275	1320	45
8	1366	1411	1456	1501	1547	1592	1637	1683	1728	1773	45
,	1819	1864	1909	1954	2000	2045	2090	2135	2181	2226	45
960	982271	982316	982362	982407	982452	982497	982543	982588	982633	982678	45
	2723	$2 \sim 69$	2814	2859	2904	2949	2994	3040	3085	3130	45
2	3175	3220	3265	3310	3356	3401	3446	3491	3536	3581	45
3	3626	3671	3716	3762	3807	3852	3897	3942	398%	4032	45
4	4077	4122	4167	4212	4257	4302	4347	4392	4437	4482	45
5	4527	4572	4617	4662	4707	4752	4797	4842	4887	4932	45
6	4977	5022	5067	5112	5157	5202	5247	5232	5337	5382	45
	5426	5471	5516	5561	5606	5651	5696	5741	5786	5830	45
8	5875	5920	5965	6010	6055	6100	6144	6189	6234	$62 \% 9$	45
9	6324	6369	6413	6458	6503	6548	6593	6637	6682	6727	45
970	986ı72	986817	986861	986906	986951	986996	$98 \% 040$	98\% 085	987130	987175	45
,	7219	7264	7309	7353	7398	7443	7488	7532	$75{ }^{7 \times 1}$	7622	45
2	7666	7711	7756	7800	7845	7890	7934	7979	8024	8068	45
	8113	8157	8202	8247	8291	8336	8381	8435	84%	8514	45
4	8559	8604	8648	8693	8737	8782	8826	8871	8916	8960	45
	9005	9049	9094	9138	9183	9227	9272	9316	9364	9405	45
	9450	9494	9539	9583	9628	$96 \% 2$	9717	9761	9806	9850	44
7	9895	9939	9983	990028	990072	990117	990161	990206	990250	990294	44
8	990339	990383	990428	0472	0516	0561	0605	0650	0694	0738	44
9	0783	082\%	0871	0916	0960	1004	1049	1093	1137	1182	44
980	991226	991270	991315	991359	991403	991448	991492	991536	991580	991625	44
	1669	1713	1758	1802	1846	1890	1935	1979	2023	2067	44
2	2111	2156	2200	2244	2288	2333	2377	2421	2465	2509	44
3	2554	2598	2642	2686	2730	2774	2819	2863	2907	2951	44
	2995	3039	3083	$312{ }^{\prime \prime}$	3172	3216	3260	3304	3348	3392	44
5	3436	3480	3524	3568	3613	3657	$3{ }^{\prime \prime} 01$	3745	3789	3833	44
	387\%	3921	3965	4009	4053	4097	4141	4185	4229	$42 \% 3$	44
	4317	4361	4405	4449	4493	4537	4581	4625	4669	4713	44
	4757	4801	4845	4889	4933	4977	5021	5065	5108	5152	44
9	5196	5240	5284	5328	5372	5416	5460	5504	5547	5591	44
990	995635	995679	995723	995767	995811	995854	995898	995942	995986	996030	44
	6074	6117	6161	6205	6249	6293	6337	6380	6424	6468	44
	6512	6555	6599	6643	6687	6731	6774	6818	6862	6906	44
	6949	6993	7037	7080	7124	7168	7212	7255	7299	7343	44
	7386	7430	7474	7517	7561	7605	7648	7692	7736	$77 \% 9$	44
	7823	7867	7910	7954	7998	8041	8085	8129	8172	8216	44
6	8259	8303	8347	8390	84.34	8477	8521	8564	8608	8652	44
	8695	8739	8782	8826	8869	8913	8956	9000	9043	9087	44
8	9131	9174	9218	9261	9305	9348	9392	9435	9479	9522	44
9	9565	9609	9652	9696	9739	9783	9826	$98 \% 0$	9913	9957	43
No.	0	1	2	3	4	5	6	7	8	9	Diff.

TABLE XV.

LOGARITHMIC SINES, COSINES, TANGENTS, AND COTANGENTS.

NOTE.

The table here given extends to minutes only. The usual method of extending such a table to seconds, by proportional parts of the difference between two consecutive logarithms, is accurate enough for most purposes, especially if the angle is not very small. When the angle is very small, and great accuracy is required, the following method may be used for sines, tangents, and cotangents.
I. Suppose it were required to find the logarithmic sine of $5^{\prime} 24^{\prime \prime}$, By the ordinary method, we should have
log. $\sin .5^{\prime}=7.162696$

diff. for $24^{\prime \prime}=$| 31673 |
| ---: |
| log. $\sin .5^{\prime} 24^{\prime \prime}=7.194369$ |

The more accurate method is founded on the proposition in Trigo nometry, that the sines or tangents of very small angles are proportional to the angles themselves. In the present case, therefore, we have $\sin .5^{\prime}: \sin .5^{\prime} 24^{\prime \prime}=5^{\prime}: 5^{\prime} 24^{\prime \prime}=300^{\prime \prime}: 324^{\prime \prime}$. Henco $\sin .5^{\prime} 24^{\prime \prime}=\frac{324 \sin .5^{\prime}}{300}$, or $\log . \sin .5^{\prime} 24^{\prime \prime}=\log . \sin .5^{\prime}+\log .324-$ \log. 300. The difference for $24^{\prime \prime}$ will, therefore, be the difference between the logarithm of 324 and the logarithm of 300 . The operation will stand thus:-

$\log .324$	$=2.510545$
$\log .300$	$=2.477121$
diff. for $24^{\prime \prime}$	$=r 33424$
$\log . \sin .5^{\prime}$	$=7.162696$
$\log . \sin .5^{\prime} 24^{\prime \prime}$	$=\overline{7.196120}$

Comparing this value with that given in tables that extend to seconds, we find it exact even to the last figure.
II. Given $\log \cdot \sin . ~ A=7.004438$ to find A. The sine next less than this in the table is $\sin .3^{\prime}=6.940847$. Now we have $\sin .3^{\prime}$: $\sin . A=3: A$. Therefore, $A=\frac{3 \sin . A}{\sin .3^{\prime}}$, or $\log . A=\log .3+$
$\log \cdot \sin . A-\log \cdot \sin .3^{\prime}$. Hence it appears, that, to find the logarithm of A in minutes, we must add to the logarithm of 3 the difference between log. $\sin . A$ and $\log . \sin .3^{\prime}$.

log. sin. $A=r .004438$
$\log \cdot \sin .3^{\prime}=\frac{6.940847}{63591}$
$\log .3$
$A=3.473$

or $A=3^{r} 28.38^{\prime \prime}$. By the common method we should have found $A=3^{\prime} 30.54^{\prime \prime}$.

The same method applies to tangents and cotangents, except that in the case of cotangents the differences are to be subtracted.
** The radius of this table is unity, and the characteristics 9 , 8,7 , and 6 stand respectively for $-1,-2,-3$, and -4 .

M.	Sine.	D. 1.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{4}.	Cotang.	M.
0	Inf. neg.		0.000000	. 00	Inf. neg.		Infinite.	60 59
1	6.463726	5017.17	. 0000000	. 00	6.463726	5017.17	3.536274	
2	. 7640456	2934.85	. 0000000	. 00	${ }^{.7647564}$	2934.85	. 2359153	58 57
3 4 4	.940847 7.065786	2082.31	. 00000000	. 00	7.065786	2082.31	2.934214	57
4	7.065786 .162696	1615.17	. 0000000	. 00	7.065786 .162696	1615.17	2.93423 .837304	66 55
6	. 2411878	1319.69	9.999999	. 00	. 2418788	1319.69	. 758122	54
7	. 308824	1115.78 966.53	999999	. 00	. 308825	1115.78	. 691175	53
8	. 366816	966.53 852.54	999999	. 01	. 366817	966.54 852.55	. 633183	52
9	. 417968	${ }_{762.62}$. 999999	. 01	. 417970	${ }_{762.63}$. 582030	51
10	7.463726	689.88	9.999998	. 01	7.463727	689.88	2.536273	50
11	. 505118	689.88	. 9999998	. 01	. 505120	629.81	.494880	49
12	. 542906	579.37	999997	. 01	. 5472909	579.37	457091	48
13	. 577668	536.41	. 999997	.01	. 5777672	536.42	. 422323	47
14	. 609853	539.48 498	. 9999996	. 01	. 6309857	499.39	. 390143	46
15	. 639816	467.14	. 99999996	. 01	. 6397820	467.15	. 360180	45
16	. 667845	438.81	999995	. 01	. 6978489	438.82	. 332151	44
17	. 694173	413.72	. 9999995	. 01	. 6194179	413.73	. 2805829	
18	. 7189977	391.35	. 9999994	. 01	. 7190003	391.36	. 2809975	42
19	. 742478	371.27	999993	. 01	. 742484	371.28	. 257516	41
20	7.764754	353.15	9.999993	. 01	7.764761	353.16	2.235239	40
21	. 785943	336.72	. 999992	. 01	. 785951	336.73	. 214049	39
22	. 806146	336.72 321.75	. 999991	. 01	. 806155	321.76	. 193845	38
23	. 825451	321.75 308.05	. 9999990	. 01	. 825460	321.07	. 174540	37
24	. 843934	398.47 295	. 9999889	02	. 843944	295.49	. 156056	36
25	. 861662	283.88	. 9999889	. 02	1674	283.90	. 138326	35
26	. 878695	273.17	. 9999988	. 02	. 8787050	273.18	. 121292	34
27	. 895085	263.23	. 9999987	02	. 8950099	263.25	. 0891906	33 32
28	. 910879	253.99	9986	. 02	. 9268134	254.01	. 08913866	32 31
29	. 926119	245.38	5	. 02	. 926134	245.40	. 073866	31
30	7.940842	237.33	9.999983	. 02	7.940858	237.35	2.059142	30
31	. 955082	229.80	. 999988	. 02	. 955100	229.82	. 044900	
32	. 968870	222.73	. 999981	. 02	. 9688889	222.75	. 031111	28
33	. 982233	216.08	. 9999980	. 02	. 9828253	216.10	. 017747	27
34	. 995198	209.81	. 9999979	. 02	.995219 8.007809	209.83	001781	26
35	8.007787	203.90	. 9999977	. 02	8.007809 .020044	203.92	1.992191	24
36	. 020021	198.31	. 9999976	. 02	. 03004945	198.33	. 968055	23
37	. 031919	193.02	. 9999975	. 02	. 043527	193.05	. 956473	22
38	. 043501	188.01	. 9999972	. 02	. 05484809	188.03	. 945191	21
39	. 05	183.25	. 999972	. 02		183.27		
40	8.065776		9.999971	. 02	8.065806	178.75	1.934194	19
41	. 076500	174.42	. 9999969	. 03	. 0765531	174.44	. 9234649	18
42	. 086965	170.31	. 99999688	. 03	. 08699727	170.34	. 902783	17
43	. 097183	166.39	. 9999966	. 03	. 107203	166.42	. 8922797	16
44	. 107167	162.65	. 99999964	. 03	. 1116963	162.68	. 883037	15
45	. 1126471	159.08	. 9999963	. 03	. 1126510	159.11	. 873490	14
46 47	. 1358810	155.66	. 99999961	. 03	. 135851	155.69	. 864149	13
48 48	. 1354953	152.38	. 99999958	. 03	. 144996	152.41	. 855004	12
48	. 1539907	149.24	. 9999956	. 03	. 153952	149.27 146.25	. 846048	11
50		146.22	.999956 9.999954	. 03		146.25	1.837273	0
51	8.162681 .171280	143.33	9.999954 .99952	. 03	8.162738	143.36	. 828672	9
52	. 179713	140.54	.999952	. 03	. 179763	140.57 13790	. 820237	8
53	. 187985	137.86 135.29	. 999948	. 03	. 188036	137.90	811964	7
54	. 196102	135.29 13280	. 999946	. 03	. 196156	135.32 132.84	. 803844	6
55	. 204070	132.80 130.41	. 999944	. 03	. 204126	13	795874	5
56	. 211895	130.41 128.10	. 999942	03	. 211953	130.44	. 788047	4
57	. 219581	125.87	. 999940	. 04	. 219641	125.91	780359	3
58	. 227134	123.72	. 999938	. 04	. 227195	123.76	. 772805	2
59	. 234557		. 999936	. 04	234621	121.68	. 765379	1
60	. 241855	121.64	. 999934	. 04	. 241921	121.68	. 758079	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{1 \prime}$.	Tang.	M.

M.	Sine	D. $1^{1 /}$.	Corine.	D $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotaing.	M.
0	8.241855		9.999934		8.241921		1.758079	60
1	.243033	119.63 117.69	. 999932	. 04	. 249102	119.67 117.72	. 750898	59
2	. 256094		. 999929	. 04	. 256165	117.72	743835	58
3	. 263042	115.80 113.98	. 999927	. 04	. 263115	115.84 114.02	736885	57
4	. 269881	113.98 112.21	. 999925	. 04	. 269956	114.02 112.25	730044	56
5	. 276614	112.21 110.50	. 999922	. 04	. 276691	112.25	723309	55
6	. 283243	110.50 108.83	. 999920	. 04	. 283323	110.54	716677	54
7	. 289773	108.83 107.22	. 999918	. 04	. 289856	108.87 107.26	710144	53
8	. 296207	105.66	. 999915	. 04	. 293292	107.26	703708	52
9	. 302546	105.66 104.13	. 999913	. 04	. 302634	$\begin{aligned} & 105.70 \\ & 10418 \end{aligned}$. 697366	51
10	8.308794	102.66	9.993910	04	8.308884		1.691116	50
11	. 314954	102.66	. 999907	. 04	. 315046	102.70	. 684954	49
12	. 321027	101.22	. 999905	. 04	. 321122	101.26 99.87	. 678878	48
13	. 327016	99.82 98.47	. 999902	. 04	. 327114	99.87	672886	47
14	. 332924	98.47 97.14	. 999899	. 05	. 333025	98.51	666975	46
15	. 338753	97.14 95.86	.999897	. 05	. 338856	97.19	. 661144	45
16	344504	95.86 94.60	. 999894	. 05	. 344610	95.90	. 655390	44
17	.350181	94.60 93.38	. 999891	. 05	. 350289	94.65 93.43	. 649711	43
18	. 355783	93.38 92.19	. 999888	. 05	. 355895	93.43 92.24	. 644105	42
19	.361315	91.03	. 999885	.05	. 361430	$\begin{aligned} & 92.24 \\ & 91.08 \end{aligned}$. 638570	41
20	8.366777		9.999882		8.366895		1.633105	40
21	. 372171	89.90 88.80	. 999879	. 05	. 372292	89.95	. 627708	39
24	. 377499	88.80 87.72	. 999876	. 05	. 377622	88.85	. 622378	38
23	. 382762	86.67	. 999873	. 05	. 382889	87.77 86.72	. 617111	37
24	. 387952	85.67	. 999870	. 05	. 388092	86.72 85.70	.611908	36
25	.393101	85.64 84.64	. 999867	. 05	. 393234	85.70	. 606765	35
28	. 398179	84.64	. 999864	. 05	. 398315	84.69	. 601685	34
27	. 403199	83.66	. 999881	. 05	. 403338	83.71	. 596662	33
28	408161	82.71 81.77	. 999858	. 05	. 408304	82.76 81.82	. 591696	32
29	.413068		. 999854	. 05	.413213	81.82 80.91	. 586787	31
30	8.417919		9:999851	. 06	8.418068		1.581932	30
31	. 422717	79.96 79.09	. 999848	. 06	. 422869	80.02 79.14	. 577131	29
32	. 427462	79.09 78.23	. 999844	. 06	. 427618	79.14 78.29	. 572382	28
33	. 432156	78.23 77.40	. 999841	. 06	. 432315	77.29	. 567685	27
34	. 436800	77.40 76.58	. 999838	. 06	. 436962	77.45	. 563038	26
35	. 441394	76.58 75.77	. 999834	. 06	. 441560	76.63 75.83	558440	25
33	. 445941	74.99	. 999831	. 06	.446110	75.83 75.05	. 553890	24
37	. 450440	74.99	. 999827	. 06	.450613	75.05 74.28	. 549387	23
38	.454893	74.22 73.47	. 999824	. 06	. 455070	74.28 73.53	. 544930	22
39	. 459301	73.47 72.73	. 999820	. 06	. 459481	73.53 72.79	. 540519	21
40	8.463665		9.999816		8.463849		1.536151	20
41	. 467985	72.00	. 999813	. 06	. 468172	72.06	. 531828	19
42	. 472263	71.29	. 999809	. 06	. 472454	71.35	. 527546	18
43	. 476498	70.60	. 999805	. 06	. 476693	70.66	. 523307	17
44	. 480693	69.91 69.24	. 999801	. 06	. 480892	69.98 69.31	. 519108	16
45	. 484848	68.59	.999797	. 06	. 485050	68.65	. 514950	15
46	488963	68.59	. 999794	. 07	. 489170	68.65 68.01	. 510830	14
47	. 493040	67.34	. 999790	. 07	. 493250		. 506750	13
48	. 497078	67.31	. 999786	. 07	. 497293	67.38	. 502707	12
19	. 501080	66.69 66.08	. 999782	07	. 501298	66.76 66.15	. 498702	11
50	3. 505045		9.999778		8.505267		1.494733	10
51	. 508974	65.48 64.89	. 999774	. 07	. 509200	65.55 64.96	. 490800	9
52	. 512867	64.89 64.32	. 999769	. 07	. 513098	64.96 64.39	. 486902	8
53	.516726	64.32	. 999765	. 07	. 516961	64.39 63.82	. 483039	7
54	. 520551	63.75 63.19	. 999761	. 07	. 520790	63.82 63.25	. 479210	6
55	. 524343	63.19 62.65	. 999757	. 07	. 524586	63.25 62.72	. 475414	5
56	. 528102	62.65	. 999753	. 07	. 528349	62.72 62.18	. 471651	4
57	. 531828	62.11	. 999748	. 07	. 532080	62.18	.467920	3
58	. 535523	61.08	. 999744	. 07	. 535779	61.65	. 464221	2
59	. 539186	60.55	. 999740	. 07	. 539447	61.13 60.62	. 460553	1
60	. 542819	60.55	. 999735	07	. 543084	60.62	.456916	0
M.	Cosing.	D. 11 .	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.542819		9.999735		8.543084		1.456916	60
1	. 546422	60.04 59.55	999731	. 07	. 546691	60.12 59.62	. 453309	59
2	. 5499995	59.55 59.06	. 9999726	. 08	. 5502688	59.62 59.14	449732	58
3	. 553539	58.58	999722	. 08	. 553817	58.66	446183	57
4	. 557054	58.58 58.11	999717	. 08	. 5573336	58.19	442664	56
5	. 560540	57.65	. 999713	. 08	. 560828	58.19 57.73	439172	55
6	. 563999	57.19	. 9997708	. 08	. 564291	57.27	. 435709	54
7	. 567431	56.74	. 9999704	. 08	. 5677727	56.82	432273	53
8	570836	56.30	999699	. 08	. 571137	56.38	. 428863	52
9	. 574214	55.87	. 999694	. 08	. 574520	55.95	.425480	51
10	8.577566		9.999689		8.577877	65.52	1.422123	50
11	. 580892	55.44	.999685	. 08	. 581208	65.52 55.10	. 418792	49
12	. 584193	54.60	999680	. 08	. 584514	54.68	415486	48
13	. 587469	54.19	. 9999675	. 08	. 587795	54.27	. 412205	47
14	. 5903721	53.79	. 9999670	. 08	. 591051	53.87	. 408949	46
15	. 59397988	53.39	. 99996650	. 08	. 5942883	53.47	. 405717	45
16	. 697152	53.00	. 9999655	. 08	. 697492	53.08	. 402508	44
18	. 603489	52.61	. 999650	. 08	. 603839	52.70	. 3993161	43 12
19	. 606623	52.23	999645	. 08	. 606978	52.32	. 393022	41
20	8.609734		9.999640		8.610094		1.389906	40
21	. 612823	51.49 51.12	999635	. 09	. 613189	51.58	. 386811	39
22	.615891	550.77	999629	. 09	. 616262	51.21	. 383738	38
23	618937	50.77 50.41	999624	. 09	. 619313	50.50	380687	37
24	. 621962	50.41	999619	. 09	. 622343	50.15	377657	36
25	. 624965	50.06 49.72	999814	. 09	. 625352	49.81	374648	35
26	. 627948	49.38	999608	. 09	628340	49.47	. 371660	34
27	. 630911	49.04	999603	. 09	631308	49.13	. 368692	33
28	. 633854	48.71	999597	. 09	634256	48.80	. 365744	32
29	. 636776	48.39	999592	. 09	637184	48.48	. 362816	31
30	8.639680		9.999586		8.640093		1.359907	30
31	. 642563	48.06 47.75	999581	. 09	. 642988	48.16 47.84	. 357018	29
32	645428	47.43	999575	. 09	. 645853	47.83	. 354147	28
33	. 648274	47.43 47.12	999570	. 09	. 648704	47.22	. 351296	27
34	. 651102	46.82	999564	. 09	651537	46.91	. 348463	28
35	. 653911	46.82 46.52	999558	. 10	. 654352	46.61	. 345648	25
36	.656702	46.22	999553	. 10	. 657149	46.61	. 342851	24
37	. 659475	45.93	999547	. 10	. 659928	46.02	. 340072	23
38	. 6622330	45.63	999541	. 10	. 6626859	45.73	. 337311	22
39	. 664968	45.35	999535	. 10	. 665433	45.45	. 334567	21
40	8.667689		9.999529	10	8.668160		1.331840	20
41	. 670393	44.79	999524	. 10	. 670870	44.88	. 329130	19
42	. 673080	44.51	. 999518	. 10	. 673563	44.88	. 326437	18
43	.675751 .678405	44.24	. 999512	. 10	. 676239	44.34	$\cdot 323761$	17
44	.678405 .681043	43.97	. 9999506	. 10	. 678900	44.07	. 321100	16
45	.681043 .683655	43.70	. 9999500	. 10	. 681544	43.80	. 318456	15
47	.683665 .686272	43.44	. 9999487	10	. 6886784	43.54	. 315828	14
48	. 688863	43.18	. 999481	. 10	. 689381	43.28	. 310619	12
49	. 691438	42.92	. 999475	. 10	. 691963	43.03	. 308037	11
50	8.693998		9.999469		8.694529		1.305471	10
51	. 696543		. 999463	10	. 697081		. 302919	9
52	. 699073	42.17 41.93	. 9999456	. 11	. 699617	42.28 42.03	. 300383	8
53	. 701589	41.93 41.68	. 999450	. 11	. 702139	42.03 41.79	. 297861	7
54	. 704090	41.68	. 999443	.11	. 704646	41.89 41.55	. 295354	6
55	. 706577	41.21	. 999437	. 11	. 707140	41.55 41.32	. 292560	5
56	. 709049	40.97	. 999431	. 11	. 709618	41.08	. 290382	4
57	. 711507	40.74	. 9999424	. 11	. 712083	40.85	. 287917	3
58 59	. 7113952	40.51	999418	11	. 714534	40.62	. 285466	2
59 60	$\begin{array}{r}716383 \\ .718800 \\ \hline\end{array}$	40.29	99411	.11	. 710972	40.40	. 283028	1
M.	Cosino.	D. $1^{\prime \prime}$.	Sine	n. $1^{\prime \prime}$.	Cotang.	D. 1".	Targ.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	8.718800		9.999404	11	8.719396		1.280604	60
1	.721204 .723595	40.06 3.84	. 99993938	11	$.721806$	40.17 39.95	. 278194	59
3	. 7235972	39.62	. 9999391	11	. 724204	39.74	.275796 .27312	58 57
3	. 7239372	39.41	. 99993848	. 11	.726588 .728959	39.52	. 273412	57 56
4	. 73233378	39.19	. 99993781	. 11	. 7281317	39.31	271041 .268683	56 55
6	. 733027	38.98	. 9999364	. 11	. 733663	39.10	. 266337	54
7	. 735354	38.77	. 999357	11	. 735996		264004	53
8	. 737667		. 999350	12	. 738317	38.68 33.48	. 261683	52
9	. 739969		999343	. 12	. 740626	38.48 38.27	. 259374	51
10	8.742259	. 96	2.999336		8.742922		1.257078	50
11	. 744536	76	. 9993329	. 12	. 745207	37.88	254793	49
12	. 746802	37.76 37.56	. 9999322	.12	. 747479	37.68	. 252521	48
13	. 749055	37.37	. 9993315	. 12	. 749740	37.49	. 250260	47
14	. 751297	37.17	. 999308	. 12	. 751989	37.29	248011	46
15	. 753528	36.98	.999301	. 12	. 754227	37.10	. 245773	45
16	. 755747	36.98 36.80	. 999294	. 12	. 756453	36.92	243547	44
17	. 757955	36.61	. 9999287	. 12	. 7586668	36.73 36.73	. 241332	43
18	. 760151	36.41 36.42	. 9999279	.12	. 760872	36.55	. 239128	42
19	. 762337	36.42 36.24	999272	. 12	. 763065	36.36	236935	41
20	8.764511	36.06	9.999265	. 12	8.765246	36.18	1.234754	40
21	. 766675	36.06 35.88	. 999257	.12	. 767417	36.18	. 232583	39
22	. 768828	35.88 35.79	. 999250	. 12	. 769578	35.83	230422	38
23	. 770970	35.79 35.53	. 999242	. 12	. 771727	35.65	228273	37
24	. 773101	35.53 35.35	. 999235	13	773866	35.65 35.48	. 226134	36
25	. 775223	35.35 35.18	. 999227	. 13	775995	35.31	. 224005	35
26	. 777333	35.18	999220	. 13	778114	35.14	. 221886	34
27	. 779434	34.84	999212	. 13	780222	34.97	. 219778	33
28	. 781524	31.67	999205	.13	. 782320	34.80	. 217680	32
29	. 783605	34.51	999197	. 13	. 784408	34.80	215592	31
30	8.785675	34.34	9.999189		8.786486		1.213514	30
31	. 787736	34.34 34.18	. 999181		788554	34.47 34.31	. 211446	29
32	. 789787	34.18 34.02	999174	. 13	790613	34.31 34.15	. 209387	28
33	. 791828	34.02 33.86	999166	. 13	792662	34.15 33.99	207338	27
34	. 793859	33.86 33.70	. 999158	13	794701	33.99 33	205299	26
35	. 795881	33.54	. 999150	13	796731	33.83	. 203269	25
36	. 797894		. 999142	13	798752	33.62	. 201248	24
37	. 799897	33.39 33.23	. 999134	13	. 800763	33.58 33.37	. 199237	23
38	. 801892	33.23 33.08	. 999126	. 13	. 802765	33.37 33.22	. 197235	22
39	. 803876	33.08 32.93	. 999118	. 13	. 804758	33.22 33.07	. 195242	21
40	8.805852		9.999110		8.806742		1.193258	20
41	. 807819	32.78 32.63	. 999102	. 14	. 808717	32.92 32.77	. 191283	19
42	. 809777	32.63 32.49	. 999094	14	. 810683	32.77 32.62	. 189317	18
43	. 811726	32.49 32.34	. 999086	14	. 812641	32.62 32.48	. 187359	17
44	. 813667	32.20	. 999077		. 814589	32.48	. 185411	16
45	. 815599		. 999069		. 816529		. 183471	15
46	. 817522	32.05 31.91	. 999061	14	. 818461	32.19	. 181539	14
47	. 819436	31.91 31.77	. 999053	14	. 820384	32.05	. 179616	13
48	. 821343	31.77 31.63	. 999044	14	. 822298	31.91 31.77	. 177702	12
49	. 823240	31.63 31.49	. 999036	14	. 824205	31.77	. 175795	11
50	$8.82513 C$		9.999027		8.826103		1.173897	10
51	. 827011	31.36 31.22	. 999019	14	. 827992	3150	. 172008	9
52	. 828884	31.22 31.08	. 999010	14	. 829874	11.36 3123	. 170126	8
53	. 830749		. 999002	14	831748	31.23	. 168252	7
54	. 832607	31.95 30	. 998993		. 833613		. 166387	6
55	. 834456	30.82 30.69	. 9999884	14	. 835471		. 164529	5
56	. 836297	-30.69	. 998976	14	. 837321	30.83	. 162679	4
57	. 838130	36.56	. 998967	15	. 839163	30.70	. 160837	3
58	. 839956	$3 \% .43$ 30.30	. 993958	15	. 840998	30.57	159002	2
59	. 841774	30.30 30.17	. 998950	15	. 842525	30.45	. 157175	1
60	. 843585	30.17	. 998941	15	. 844644	30.32	. 155356	0
M.	Cosino.	D. $1^{\prime \prime}$	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{1 \prime}$.	Tang.	.

\mathbf{M}	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D 11 .	Cotang.	M.
0	8.843585	30.05	9.998941	15	8.844644	30.20	1.155356	60
1	. 845387	30.05 29.92	. 998932	15	. 846455	30.20 30.07	. 153545	59
2	. 847183	29.92 29.80	. 998923	15	. 848260	30.07 29.95	. 151740	58
3	. 848971	29.80	.998914	15	. 850057	29.95 29.83	.149943	57
4	. 850751	29.68 29.55	. 998905	15	. 851846	29.83 29.70	. 148154	56
5	. 852525	29.53	. 998896	15	. 853628	29.70	. 146372	55
6	. 854291	29.431	. 998888	15	. 855403	29.58	. 144597	54
7	. 856049	29.31 29.19	. 998878	15	. 857171	29.46 29.35	. 142829	53
8	. 857801	29.08	. 998869	15	. 858932	29.35	. 141068	62
9	. 859546	29.08	. 998860	15	860686	$\begin{aligned} & 29.23 \\ & 29.11 \end{aligned}$. 139314	51
10	8.861283	28.84	9.998851	15	8.862433	29.00	1.137567	50
11	. 863014	28.84	. 998881	5	. 864173	29.00 28.88	. 135827	49
12	. 864738	28.61	. 998832	15	. 865906	28.88 28.77	134094	48
13	. 866455	28.61	. 998823	.15	. 867632	28.77 28.66	. 132368	47
14	. 868165	28.50	. 998813	16	. 869351	28.65	. 130649	46
15	. 869868	28.39 28.28	. 998804	16	. 871064	28.65 28.43	. 128936	45
16	. 871565	28.28 28.17	. 998795	16	. 872770	28.43 28.32	127230	44
17	. 873255	28.17	. 998785	16	. 874469	28.22	. 125531	43
18	. 874938	27.06	. 998776	16	. 876162	28.22	. 123838	42
19	. 876615	27.84	. 998766	16	. 877849	28.11 28.00	. 122151	41
20	8.878285		9.998757	16	8.879529	27.89	1.120471	40
21	. 879949	27.73 27.63	. 998747	6	. 881202	27.89 27.79	. 118798	39
22	. 881607	27.63	. 998738	16	. 882869	27.79 27.68	. 117131	38
23	. 883258	27.42	. 998728	16	. 884530	27.58	. 115470	37
24	. 884903	27.42	. 998718	16	. 886185	27.68 27.47	. 113815	36
25	. 886542	27.21	. 998708	. 16	. 887833	27.47	. 112167	35
26	. 888174	27.21	. 998699	. 16	. 889476	27.37 27.27	. 110524	34
27	. 889801	27.00	. 998689	. 16	. 891112	27.17	. 108888	33
28	891421	27.00	. 998679	. 16	. 892742	27.17	. 107258	32
29	. 893035	$\begin{aligned} & 26.90 \\ & 26.80 \end{aligned}$. 998669	16	. 894366	26.97	. 105634	31
30	8.894643		9.998659		8.895984	26.87	1.104016	30
31	. 896246		. 998649	17	. 897596	26.87 26.77	. 102404	29
32	. 897842	26.60 26.51	. 998639	17	. 899203	26.77 26.67	. 100797	28
33	. 899432	26.51	. 998629	. 17	. 900803	26.67 26.58	. 099197	27
34	.901017	26.41	. 9988619	. 17	. 902398	26.48	. 097602	26
35	. 902596	26.31 26.22	. 998609	. 17	. 903987	26.48 26.39	. 096013	25
36	. 904169	26.22	. 998599	. 17	. 905570	26.29	. 094430	24
37	. 905736	26.12 26.03	. 998589	. 17	. 907147	26.29 26.20	. 092853	23
38	. 907297	26.03 25.93	. 998578	. 17	. 908719	26.10	. 091281	22
39	. 908853	25.93 25.84	. 998568	. 17	. 910285	26.101	. 089715	21
40	8.910404		9.998558		8.911846		1.088154	20
41	. 911949	25.75 25.66	. 998548	17	. 913401	25.92 25.83	. 086599	19
42	. 913488	25.66 25.56	. 998537	. 17	.914951	25.83	. 085049	18
43	. 915022	25.56 25.47	. 998527	. 17	. 916495	25.74 25.65	. 083505	17
44	.916550	25.47 25.38	. 998516	. 17	. 918034	25.65	. 081966	$!6$
45	. 918073	25.38 25.29	. 998506	. 18	. 919568	25.56 25.47	. 080432	15
46	. 919591	25.29 25.21	. 998495	. 18	. 921096	25.47 25.38	. 078904	14
47	. 921103	25.21 25.12	. 998485	. 18	. 922619	25.38 25.29	. 077381	13
48	.922610	25.12 25.03	. 998474	. 18	. 924136	25.29	. 075864	12
49	. 924112	24.94	. 998464	. 18	. 925649	25.12	. 074351	11
50	8.925609		9.998453		8.927156		1.072344	10
51	. 927100	24.86	. 998442	. 18	. 928658	25.04	. 071342	9
52	.928587	24.77 24.69	. 998431	18	. 930155	24.95	. 069845	8
53	. 930068	24.69 24.60	. 998421	18	. 931647	24.87 24.78	. 068353	7
54	. 931544	24.60 24.52	998410	. 18	. 933134	24.70	. 066866	6
55	. 933015	24.43	998399	. 18	. 934616	24.62	. 065384	5
56	. 934481	24.43 24.35	998388	. 18	. 936093	24.53	. 063907	4
57	. 935942	24.27	. 998377	. 18	. 937565	24.45	. 062435	3
58	. 937398	24.19	. 998366	. 18	. 939032	24.45 24.37	. 460968	2
59	. 938850	24.11	. 998355	. 18	. 940494	24.29 24.2	. 159595	1
60	. 940296	24.11	. 998314	. 18	. 941952	24.29	. 058048	0
M.	Cosine.	D. 1^{1}.	Slue.	D. $1^{\prime \prime}$.	Cotang	D. 11.	Tang.	M

M	Sine.	D. $1^{1 \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1^{\prime}.	Cotang.	M.
0	8.940296		9.998344		8.941952		1.058048	60
1	. 9417338	23.95	$.998333$. 19	$.943404$	24.13	.056596	59 58
2 3 3	. 9431744	23.87 23.87	. 9998332	19	. 9448852	24.05	.055148 .053705	58 57
4		23.79	. 9998311	19		23.97	. 0532266	57
5	. 947456	23.71	. 9988289	19		23.90	. 050832	55
	. 948874	23.63	. 998277	19	. 950597	23.82	. 049403	54
7	. 950287		. 998266	19	. 952021	4	. 047979	53
6	. 951696		. 998255	19	953441		. 046559	52
9	. 953100		. 998243	19	. 954856		. 045144	51
10	8.954499		9.998232		8.956267		1.043733	50
11	. 955894		. 998220	19	. 957674		. 042326	49
12	. 957284	23.10	. 998209	19	. 959075	23.36	. 040925	48
13	. 958670	23.02	. 9988197	. 19	. 960473	23.22	. 039527	47
14	. 960052	22.95	. 998186	. 19	. 961866	23.14	. 038134	46
15	. 961429	22.88	. 9988174	. 19	. 963255	23.07	. 036745	45
16	. 962801	22.81	. 998163	. 19	. 964639	23.00	. 035361	44
17	. 964170	${ }_{22.73}$. 998151	. 20	. 966019	22.93	. 033981	43
18	. 965534	22.66	. 998139	. 20	. 967394	22.86	. 032606	42
19	. 966893	22.66	. 998128	. 20	. 968766	22.86	. 031234	41
20	8.968249	52	9.998116	20	8.970133	22.72	1.029867	40
21	. 969600	2	. 998104	20	. 971496	5	. 028504	39
22	. 970947	2	. 998092	20	. 972855	22.65	. 027145	38
23	. 972289	22.	. 998080	. 20	. 974209	22.51	. 025791	37
24	. 973628		. 998068	20	. 975560		. 024440	36
25	. 974962		. 998056	20	. 976906		. 023094	35
26	. 976293	22.17 22.10	. 998044	20	. 978248	22.37	. 021752	34
27	. 977619	${ }_{22.03}^{22.10}$. 998032	20	. 979586	22.24	. 020414	33
28	. 978941	$\begin{aligned} & 22.03 \\ & 21.97 \end{aligned}$. 998020	.20	. 980921	$\begin{aligned} & 22.24 \\ & 22.17 \end{aligned}$. 019079	32
	. 980259	$\begin{aligned} & 21.97 \\ & 21.90 \end{aligned}$	88008	. 20	. 982251	22.17	. 017749	31
30	8.981573		9.997996		8.9835		1.016423	30
31	. 982883	21.83	. 997984	. 20	. 984899	22.04	. 015101	29
32	. 984189	21.70	. 997972	. 20	. 986217	21.97	. 013783	28
33	. 985491	21.64	. 997959	. 20	. 987532	21.91	. 012468	27
34	. 986789	21.57	. 997947	21	. 988842	21.81 21	. 011158	26
35	. 988083	21.57	. 997935	21	. 990149		. 009851	25
36	. 989374	21.44	. 997922	21	. 991451	21.71	. 008549	24
37	. 990660	21.48	. 997910	21	. 992750	21.65	. 007250	3
38	. 991943	21.31	. 9997897	. 21	. 994045		. 005955	22
39	. 993222	21.35	. 997885	. 21	. 995337	21.52 21.46	. 004663	21
40	8.994497		9.9978		8.996624		1.003376	20
41	. 995768	21.12	. 997860		. 997908	21.40 21.34	. 002092	19
42	. 997036	21.06	. 997847	. 21	. 999188	21.34 21.27	. 000812	18
43	. 998299	21.00	. 997835	. 21	9.000465	21.27 21.21	0.999535	17
44	. 999560	20.94	. 997822	21	. 001738	21.21 21.15	. 998262	16
45	9.000816	20.88	. 997809	21	. 003007	21.15	. 996993	15
46	. 002069		. 9977797		. 004272		. 995728	14
47	. 003318	20.82	. 997784	21	. 005534	21.03 20.97	. 994466	1
48	. 004563	20.76 20.70	. 997771	. 21	. 006792	20.97	. 993208	12
49	. 005805	20.64	. 997758	.21	080	20.91 20.85	. 991953	11
50	9.007044		9.997745		9.009298		0.990702	10
51	. 008278		. 997732	22	. 010546		. 989454	
52	. 009510	20.52	. 997719	. 22	. 011790	20.74 20.68	. 988210	
53	. 010737	20.46 20.40	. 997706	. 22	. 013031	20.62	. 986969	
54	. 011982	20.35	. 997693	. 22	. 014268	20.56	. 985732	
55	. 013182	20.29	. 997680	. 22	. 015502	20.51	. 984498	
56	. 014400	20.23	. 997667	. 22	. 016732	20.45	. 983268	
57	. 015613	20.17	. 997654	. 22	. 017959	20.45 20.39	. 982041	
58	. 016824	20.12	. 997641	. 22	. 019183	20.34	. 980817	
59	. 018031	20.06	. 997623	. 22	. 020403	20.28	. 979597	
60	. 019235		. 997614		. 021620		. 9783380	0
M.	Cosine		Bine		tay		,	

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.019235		9.997614		9.021620		0.978380	60
,	. 020435	19.95	. 9977601	22	$.022834$	20.23 20.17	.977166	59
2	. 021632	19.95 19.89	. 997588	22	. 024044.	20.12 20.12	. 9759556	58
3	. 022825	19.89	. 997574	22	. 0252551	20.06	974749	57
4	. 024016	19.78	. 997561	22	. 026455	20.01	. 973545	56
5	. 025203	19.73	. 997547	22	. 027655	19.95	. 972345	55
6	. 026386	19.67	. 997534	23	. 0288852	19.90	. 971148	54
7	. 02758674	19.62	. 9977520	23	. 030046	19.85	. 9699954	53
8 9	. 02289744	19.57	. 997507507	23	. 03123725	19.79	968763	52
	. 029918	19.51	. 997493	23	. 032425	19.74	967575	51
10	9.031089	19.46	9.997480	23	9.033609		0.966391	50
11	032257	19.41	. 997466	23	. 034791	19.69	. 965209	49
12	033421	19.41	. 997452	23	(35969	19.68	. 964031	48
13	. 034582	19.30	. 997439	23	. 337144	19.53	. 962856	47
14	. 035741	19.25	. 997425	23	. 038316	19.48	. 961684	46
15	036896	19.20	. 9974111	23	. 039485	19.43	. 960515	45
16	. 038048		${ }^{.997397}$. 23	. 040651	19.38	. 959349	44
17	. 039197	19.15	. 9973838	. 23	. 041818	19.33	. 958187	43
18	. 040342	19.105	. 997369	. 23	. 042973	19.28	. 957027	42
19	. 041485	19.00	. 997355	. 23	. 044130	19.23	. 955870	41
20	9.042625	18.95	9.997341		9.045284	19.18	0.954716	40
21	. 043762	18.95	. 997327	. 23	. 046434	19.13	. 953566	39
22	. 044895	18.85	. 997313	. 24	. 047582	19.08	. 952418	38
23	. 046026	18.85	. 997299	. 24	. 048727	19.03	. 951273	37
24	. 047154	18.75	. 997285	. 24	. 049869	18.98	. 950131	36
25	. 048279	18.70	.997271	. 24	051008	18.93	. 948992	35
26	. 049400	18.65	. 9972572	. 24	. 052144	18.89	947856	34
27	. 050519	18.60	. 997242	. 24	. 053277	18.84	946723	33
28	. 051635	18.55	. 9977228	. 24	. 0544407	18.79	. 945593	32
29	. 052749	18.50	. 997214	. 24	. 055535	18.74	944465	31
80	9.053859		9.997199		9.056659		0.943341	30
31	. 054966	18.46	. 997185		. 057781	18.65	.942219	29
32	. 056071	18.36	. 997170	. 24	. 058900	18.65 18.60	. 941100	28
33	. 057172	18.36	. 997156	. 24	. 060016	18.60 18.56	. 939984	27
34	. 058271	18.27	. 997141	. 24	. 061130	18.51	. 938870	26
35	. 059367	18.22	. 997127	. 24	. 062240	18.46	. 9337760	25
36	. 060460	18.17	. 9977112	. 24	. 0633348	18.42	. 936652	24
37	. 061551	18.13	. 9970988	. 24	. 0644535	18.37	. 935547	23
38	. 062639	18.08	. 9970808	. 25	. 0655556	18.33	. 934444	22
39	. 063724	18.04	. 997068	. 25	. 066655	18.28	. 933345	21
40	9.064806		9.997053		9.067752		0.932248	20
41	. 065885	17.95	. 997039	. 25	. 068846	18.19	. 931154	19
42	. 066962	17.98	. 997024	. 25	. 0699938	18.15	930062	18
43	. 063036	17.86	. 997009	. 25	. 071027	18.10	928973	17
44	. 069107	17.81	. 996994	. 25	. 072113	18.06	.927887	16
45	. 070176	17.77	. 9969779	. 25	. 073197	18.02	. 926803	15
46	. 071242	17.72	. 996964	. 25	. 074278	17.97	. 925722	14
47	. 072306	17.68	. 996949	. 25	. 075356	17.93	. 924644	13
48	. 073366		. 996934	. 25	. 076432		923568	12
49	. 074424	17.59	. 996919	. 25	. 077505	17.84	922495	11
50	3.075480		9.996904		9.078576		0.921424	10
51	. 076533	17.51	. 996889	. 25	. 079644	17.76	. 920356	9
52	. 077583	17.46	. 9968874	. 25	. 080710	17.72	. 919290	8
53	. 078631	17.48	. 996858	. 25	. 081773	17.67	. 918227	7
54	. 079676	17.38	996843	. 25	.082833	17.63	. 917167	6
55	. 080719	17.34	. 9968828	. 26	. 083891	17.59	. 916109	5
56	. 081759	17.29	. 996812	. 26	. 084947	17.55	. 915053	4
57	. 0827897	17.25	. 9996797	. 26	. 086000	17.51	. 914000	3
58 59	. 0838832	17.21	. 9996782	. 26	. 0888090	17.47	. 912350	2
59 60	$\begin{aligned} & .084864 \\ & .085894 \end{aligned}$	17.17	$\begin{aligned} & .996766 \\ & .996751 \end{aligned}$. 26	$\begin{aligned} & .088098 \\ & .089144 \end{aligned}$	17.43	.911902 .910856	1
M.	Cosine.	D. ${ }^{\prime \prime}$.	Sine	D. 1	Cotang.	D. $1^{\prime \prime}$.	Tang.	1

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.085894	17.13	9.996751	. 26	9.089144		0.910856	60
i	. 086922	17.09	.996735	. 26	$.090187$	17.39	. 909813	59
2	. 087947	17.05	996720	. 26	. 091228	17.31	. 908772	58
3	. 088970	17.00	996704	. 26	. 092266	17.27	. 907734	57
4	. 089999	16.96	996638	. 26	. 093302	17.23	. 906698	56
5	. 091008	16.92	996673	. 26	. 094336	17.19	. 905664	55
${ }^{6}$. 09202034	16.88	996657	. 26	. 0953367	17.15	. 904633	51
7	. 0933037	16.84	996641	. 26	. 0963395	17.11	903605	53
9	. 09950478	16.80	${ }_{996610}$. 26	.097422	17.07	902578	52
		16.76	610	.26		17.03		51
10	9.096062	16.73	9.9	. 27	9.0994	16.99	0.900532	50
11	. 097065	16.69	996578	. 27	. 100487	16.95	. 899513	49
12	. 093066	16.65	. 996562	. 27	$\cdot 101504$	16.91	. 893496	48
13	. 099065	16.61	996546	. 27	. 102519	16.88	. 897481	47
14	. 100062	16.57	996530	.27	. 103532	16.84	. 896468	46
15	. 101056	16.53	996514	. 27	. 104542	16.80	. 895458	45
16	. 102048	16.49	996498	. 27	. 105550	16.76	. 894450	44
17	. 103037	16.46	996482	. 27	. 1065556	16.72	. 893444	43
18	. 104025	16.42	.996465	. 27	. 107559	16.69	. 8924441	42
19	. 105010	16.38	. 996449	. 27	. 108560	16.65	. 891440	41
20	9.105992	16.34	9.996433	. 27	9.109559	16.61	0.890441	40
21	. 106973	16.30	. 996417	. 27	. 110556	16.58	. 889444	39
22	. 107951	16.27	. 996400	. 27	. 111551	16.54	. 888449	38
23	. 108927	16.23 .	. 996334	. 27	. 112543	16.50	. 887457	37
24	. 109901	16.19	. 996368	. 27	113533	16.47	. 886467	36
25	. 110873	16.16	. 996351	. 27	. 114521	16.43	. 885479	35
26	. 111842	. 16.12	996335	. 28	. 115507	16.39	. 884493	34
27	. 112309	-16.08	. 996318	. 28	. 116491	16.36	. 883509	33
28	. 113774	16.05	. 996302	. 28	. 117472	16.32	882523	32
29	. 114737	16.01	. 996285	. 28	. 118452	16.29	. 881548	31
30	9.115698		9.996269		9.119429		0.880571	30
31	. 116656	15.98	. 996252	. 28	. 120404	16.25	. 879596	29
32	117613	15.90	. 996235	. 28	.121377	16.18	. 8788623	28
33	. 118567	15.87	. 996219	. 28	122348	16.15	. 8 \%7652	27
34	. 119519	15.83	. 996202	. 28	. 123317	16.11	. 876683	26
35	. 120469	15.80	. 996185	. 28	. 124284	16.08	. 875716	25
36	. 121417	15.76	. 996168	. 28	. 125249	16.04	. 874751	24
37	. 122362	15.73	. 996151	28	. 126211	16.01	. 873789	23
38	.123306	15.69	. 996134	. 28	.127172	15.98	. 872828	22
39	. 124248	15.69	09117	. 28	. 128130	15.98	. 871870	21
40	9.125187		9.996100		9.129087		0.870913	20
41	. 126125	15.62	. 996083	. 28	. 130041	15.91	. 8699959	19
42	. 127060	15.59	. 996066	. 28	. 130994	15.87	. 869006	18
43	. 127993	15.52	. 996049	. 29	. 131944	15.81	. 8689056	17
44	. 128925	15.49	. 996032	. 29	. 1328933	15.77	. 867107	16
45	. 129854	15.45	. 9996015	. 29	. 1338839	15.74	. 866161	15
46	. 130781	15.42	. 99595988	. 29	. 134784	15.71	. 8665216	14
47		15.39	. 9959596	. 29	. 135726	15.68	. 8683333	13
49	. 133551	15.35	. 9959596	. 29	. 137605	15.64	.8633395	12
50	9.134470		9.995928		9.138542		0.861458	10
51	. 135337	15.29	. 995911	. 29	. 139476		. 860524	9
52	. 136303	15.26	. 995891	. 29	. 140409	15.55	. 859591	8
53	. 137216	15.19	995876	29	. 141340	15.48	. 858660	7
64	133123	15.16	. 995859	29	. 142269	15.45	. 857731	6
55	. 139037	15.13	. 995841	. 29	. 143196	15.42	. 856804	5
56	139944	15.09	. 995823	29	. 144121	15.39	. 855879	4
	140850	15.06	. 9958806	29	. 145044	15.36	. 854956	3
68	141754	15.03	995788	29	145966	15.32	. 854034	2
59	142655	15.00	. 995771	30	. 146885	15.29	. 853115	1
60	. 143555		. 995753	. 3	. 147803		. 852197	0
M.	Costue.	D. $1^{\prime \prime}$.	Slue.	D 1^{11}	Cotang.	D. $1^{\prime \prime}$.	Tang.	M

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline M. \& Sine \& D. 111 \& Cosine. \& D. 1^{\prime} \& Tang. \& D. $1^{\prime \prime}$ 。 \& Cotang \& M.

\hline 0 \& 9143555 \& \& 9.995753 \& \& $$
9.147803
$$ \& \& 0.8521 \& 60

\hline 1 \& . 144453 \& 14.97
14.93 \& . 995735 \& 30
30 \& $$
.148718
$$ \& 15.26 \& - 8512 \& 59

\hline 2 \& .145349 \& 14.93 \& . 995717 \& . 30 \& . 149632 \& 15.23 \& . 8503 \& 58

\hline 3 \& .146243 \& 14.90
14.87 \& . 995699 \& .30
.30 \& . 150544 \& 15.20
15.17 \& . 8494 \& 57

\hline 4 \& .147136 \& 14.87 \& 995681 \& 30
30 \& . 151454 \& 15.17 \& . 8485 \& 56

\hline 5 \& . 148026 \& 14.84 \& . 995664 \& 30
.30 \& 152363 \& 15.14 \& . 847637 \& 55

\hline ${ }_{7}$ \& . 148915 \& 14.81 \& . 995646 \& . 30 \& . 153269 \& 15.11 \& . 84673 \& 54

\hline 7 \& . 149802 \& 14.75 \& . 995628 \& . 30 \& 154174 \& 15.08
15.05 \& . 845826 \& 53

\hline 8 \& . 150686 \& 14.72 \& .995610 \& . 30 \& 155077 \& 15.05
15.02 \& . 844923 \& 52

\hline 9 \& . 151569 \& 14.69 \& . 995591 \& . 30 \& . 155978 \& 14.99 \& . 8440 \& 51

\hline 10 \& 9.152451 \& 14.66 \& 9.995573 \& \& 9.156877 \& \& 0.8431 \& 50

\hline 11 \& . 153330 \& 14.66
14.63 \& . 995555 \& 30
30 \& . 157775 \& 14.96 \& . 8422 \& 49

\hline 12 \& 154208 \& 14.63
14.60 \& . 9955537 \& .30
.30 \& . 158671 \& 14.93
14.90 \& . 8413 \& 48

\hline 13 \& .155083 \& 14.60 \& . 995519 \& . 30 \& . 159565 \& 14.90 \& . 8404 \& 47

\hline 14 \& . 155957 \& 14.57
14.54 \& . 995501 \& .30
.30 \& . 160457 \& 14.87
14.84 \& . 8395 \& 46

\hline 15 \& . 156830 \& 14.54 \& . 995482 \& 31
31 \& . 161347 \& 14.84
14.81 \& . 838653 \& 45

\hline 16 \& . 157700 \& 14.48 \& . 995464 \& . 31 \& . 162236 \& 14.81
14.78 \& . 8377 \& 44

\hline 18 \& . 159435 \& 14.45 \& . 995446 \& . 31 \& . 163123 \& 14.75 \& . 8368 \& 43

\hline 19 \& . 160301 \& 14.42 \& \& 31 \& . 164008 \& 14.73 \& 83599 \& 42

\hline \& \& 14.39 \& \& . 31 \& \& 14.70 \& . 83510 \& 41

\hline 21 \& 9.161164
.162025 \& 14.36 \& 9.995390 \& 31 \& 9.165774 \& \& 0.834226 \& 40

\hline 21 \& . 162025 \& 14.33 \& . 995372 \& . 31 \& . 166654 \& 14.67 \& . 833346 \& 39

\hline 23 \& . 162885 \& 14.30 \& . 995353 \& 31 \& 167532 \& 14.64 \& 83246 \& 38

\hline 23
24 \& . 163743 \& 14.27 \& . 995334 \& . 31 \& 168409 \& 14.61 \& . 831591 \& 37

\hline 24 \& . 164600 \& 14.24 \& . 995316 \& . 31 \& . 169284 \& 14.58 \& . 830716 \& 36

\hline 25 \& . 165454 \& 14.22 \& . 995297 \& . 31 \& 170157 \& 14.56 \& . 8298 \& 35

\hline 28
27 \& . 166307 \& 14.19 \& . 995278 \& . 31 \& . 171029 \& 14.53 \& . 828971 \& 34

\hline 27 \& . 167159 \& 14.16 \& . 995260 \& . 31 \& . 171899 \& 14.50 \& . 828101 \& 33

\hline 28 \& 168008 \& 14.13 \& . 995241 \& . 31 \& . 172767 \& 14.47 \& . 827233 \& 32

\hline 29 \& . 168856 \& 14.10 \& . 995222 \& . 31 \& . 173634 \& $$
14.44
$$ \& . 826366 \& 31

\hline 30 \& 9.169702 \& 14.07 \& 9.995203 \& \& 9.174499 \& \& 0.825501 \& 30

\hline 31 \& . 170547 \& 14.07 \& . 995184 \& . 31 \& . 175362 \& 14.39 \& . 824638 \& 29

\hline 32 \& . 171389 \& 14.05
14.02 \& . 995165 \& . 32 \& . 176224 \& 14.36 \& . 823776 \& 28

\hline 33 \& . 172230 \& 14.02
13.99 \& . 995146 \& . 32 \& . 177084 \& 14.33 \& . 822916 \& 27

\hline 34 \& . 173070 \& 13.99
13.96 \& . 995127 \& .32
.32 \& . 177942 \& 14.31 \& . 822058 \& 26

\hline 35 \& .173908 \& 13.96
13.94 \& . 995108 \& 32 \& . 178799 \& 14.28 \& . 821201 \& 25

\hline 36 \& .174744 \& 13.94 \& . 995089 \& . 32 \& . 179655 \& 14.25 \& . 820345 \& 24

\hline 37 \& . 175578 \& 13.91
13.88 \& . 995070 \& . 32 \& . 180508 \& 14.23 \& . 819492 \& 23

\hline 38 \& 176411 \& 13.88
13.85 \& . 995051 \& .32 \& . 181360 \& 14.20 \& . 818640 \& 22

\hline 39 \& . 177242 \& 13.85
13.83 \& . 995032 \& . 32 \& . 182211 \& 14.17 \& . 817789 \& 21

\hline 40 \& 9.178072 \& \& 9.995013 \& \& 9.183059 \& \& 0.816941 \& 20

\hline 41 \& . 178900 \& 13.80
13.77 \& . 994993 \& 32 \& . 183907 \& 14.12 \& . 816093 \& 19

\hline 42 \& . 179726 \& 13.77
13.75 \& . 994974 \& . 32 \& 184752 \& 14.09 \& . 815248 \& 18

\hline 43 \& . 180551 \& 13.75
13.72 \& . 994955 \& . 32 \& . 185597 \& 14.07 \& . 814403 \& 17

\hline 44 \& .181374 \& 13.72
13.69 \& . 994935 \& . 32 \& . 186439 \& 14.04 \& . 813561 \& 16

\hline 15 \& . 182196 \& 13.69
13.67 \& . 994916 \& . 32 \& . 187280 \& 14.02 \& . 812720 \& 15

\hline 46 \& .183016 \& 13.67
13.64 \& . 994896 \& . 32 \& . 188120 \& 13.99 \& 811880 \& 14

\hline 47 \& . 183834 \& 13.64 \& . 994877 \& . 33 \& . 188958 \& 13.97 \& . 811042 \& 13

\hline 48 \& .184651 \& 13.61
13.59 \& . 994857 \& . 33 \& . 189794 \& 13.94 \& . 810206 \& 12

\hline 45 \& . 185466 \& $$
\begin{aligned}
& 13.59 \\
& 13.56
\end{aligned}
$$ \& . 594838 \& . 33 \& . 190629 \& 13.91 \& . 809371 \& 11

\hline 50 \& 9.186280 \& \& 9.994818 \& \& 9.191462 \& \& 0.808538 \& 10

\hline 51 \& . 187092 \& 13.54
13.51 \& . 994798 \& . 33 \& . 192294 \& 13.86 \& . 807706 \& 9

\hline 52 \& . 187903 \& 13.51 \& . 994779 \& . 33 \& . 193124 \& 13.84 \& . 806876 \& 8

\hline 53 \& . 188712 \& 13.48
13.46 \& . 994759 \& . 33 \& . 193953 \& 13.81
13.79 \& . 806047 \& 7

\hline 54 \& .189519 \& 13.46
13.43 \& . 994739 \& . 33 \& . 194780 \& 13.79 \& . 805220 \& 6

\hline 55 \& . 190325 \& 13.43
13.41 \& . 994720 \& 33 \& . 195606 \& 13.76 \& . 804394 \& 5

\hline 56 \& . 191130 \& 13.41 \& 994700 \& .33

33 \& . 196430 \& 13.74 \& . 803570 \& 4

\hline 57 \& .191933 \& 13.38 \& . 994680 \& . 33 \& . 197253 \& 13.71 \& . 802747 \& 3

\hline 58 \& . 192734 \& 13.36 \& . 994660 \& . 33 \& . 198074 \& 13.69 \& . 801926 \& 2

\hline 59 \& . 193534 \& 13.33
13.31 \& . 994640 \& . 33 \& . 198894 \& 13.66 \& . 801106 \& 1

\hline 60 \& . 194332 \& \& . 994620 \& . 33 \& 199713 \& 13.64 \& . 800287 \& 0

\hline M. \& Cosinc. \& D. 17. \& Sline. \& D. $1^{\prime \prime}$. \& Cotang. \& D. 1^{11}. \& Thug. \& M.

\hline
\end{tabular}

M.	Sine	D. 1^{14}.	Cosine.	D. 1^{11}.	Taug.	D. $1^{\prime \prime}$.	Cotang.	m.
0	9.191332		9.994620		9.199713		0.80	
1	. 195129	13.26	994600	33	200529	$\begin{array}{r}13.62 \\ 13.59 \\ \hline 1\end{array}$. 79947	59
2 3 3	. 1959295	${ }_{13} 13.23$	${ }_{994560} 993580$	34	201315	13.57	. 7988685	58 58
3	. 197511	13.21	. 9945450	34	202971	13.54	779781	56 56
5	. 198302	13.18	994519	34	203782	13.52	796218	56
6	. 199091	13.16	994499	34	204592	13.49	795403	54
7	199379		994479	34	205400		791600	53
8	. 20066	13.188	994	34	20		793793	52
9	201451		9944	34	207013		792987	51
10	ง. 202234	13.04	- 994418	34	9.2078	13.38	0.792	50
11	203017	13.01	394398	34	. 203619	${ }_{13.35}$	791381	49
12	203797	12.99	.994377		209420		790580	48
13	204577	12.99	994357	34	2102	13.33 13.31	789780	47
14	20535	12.94	994336	34	211018	${ }_{13.28}$	788982	46
15	206131		994316	34	211815		788185	45
16	206906	12.89	9912		126		787389	44
17	20767	12.87	994274	34	213405	${ }_{13.21}$	7865	43
18	203452		4254		214193		785802	42
19	209222	12.82	994233	${ }_{35}$			785011	41
20	9.209992	12.80	9.99421	35	. 21		0.784	40
21	210760		994191				783432	
22	211526	12.78	994171		21735		782644	38
	.212291	12.73	99415	35	218142	13.08	7818	37
24	213055		991129		218926		781074	36
	. 213818	12.78	994108		2197		780290	35
	214579	12.66	994	35	2204	13.01	.77950	34
	215		994066	35	22127		78728	33
28	216097	12.62	994045		222052	12.97	777948	32
29	21	12.59	99402	${ }_{35}$	222		777170	31
30	9.217609		9.994003		9.2236		0.776393	
	218363		. 993932		224		775	29
	. 219116	12.53	993960	${ }_{35}$	225156	12.88	7748	28
33	219368	12.50	993939	. 35	225929	12.86	. 774071	27
34	220618		99391				773300	26
	2213	12.46	938	36	2274	12.82	. 772	25
	222115	12.44	. 99387	36	223239	12.79	. 771761	24
37	. 222361		. 993354		229007	12.79	770993	23
38	. 223806		. 993832		2297	12.	770227	28
39	.22434	${ }_{12}^{12.37}$.993	36	230	12.75	769461	21
40	9.225092		9.9937		9.2313		768	20
41	. 225833	${ }_{12}^{12.35}$	${ }^{9937768}$		1023	12.71	679	19
42	226573	12.31	993746		232826		767174	18
43	. 227311	12.29	.993725		233586	12.65	766414	17
44			9937		2343	12.	7656	6
	22878	12.24	99368	36	235103	12.60	7648	15
46	229518		. 993660		235359		764141	14
47	230252	12.20	9936	${ }_{36}$	2366		33	3
48	. 230934		99361	36	23736		626	12
49	. 231715	12.	993594	36	233120	${ }_{1252}$	761880	11
50	9.232444		9.9935		2389		0.761128	10
	233172	12.12						
	233899	12.10	99352		240371		759629	8
53	234625	12.07	9935	,	2411		758882	7
	235349	12.0	993	37	2418	12	758135	6
	236073	12.03					757390	5
56	. 23679	${ }_{12.01}$. 993440		2433	12.33	756646	4
				37		12.33	755903	3
	.2382:5	1.97	993396		2448		755161	2
59	. 233953	!1.95	. 993374		. 245579		754421	1
60	239679	1.95	993351	37	216319	12.32	. 753681	0
M.	Cosine.	D.	Sld	D. 1^{11}.	Cotang.	D. $1^{\prime \prime}$	Tang	

M.	Slue.	D. $1^{\text {H. }}$	Cosine.	D. 1'.	Tang.	D. $1^{\prime \prime}$.	Cotang	M
0	9.239670		9.993351	37	9.246319	12.30	0.753681	60 59
1	. 240386	11.93 11.91	.993329 93307	. 37	. 2478057	12.28	.752943 .752206	$\begin{aligned} & 59 \\ & 58 \end{aligned}$
8	. 241101	11.89	. 99933284	. 37	. 2448530	12.26	. 751470	57
4	. 242526	11.87	. 993262	. 37	. 249264		. 750736	56
5	. 243237	85	993240	37 37	. 249998		. 750002	65
6	. 243947	11.83 11.81	. 993217	. 38	. 250730		. 749270	54
7	. 244656	11.81	. 993195	. 38	. 251461	12.18	. 748539	63
8	. 245363	11.77	. 993172	. 38	. 252191	12.15	. 747809	52
8	. 246069	11.75	. 993149	38	. 252920	12.13	. 747080	51
10	9.216775		9.993127	38	9.253	12.11	0.746352	50
11	. 247478	11.71	. 993104	. 38	. 25437	12.09	. 7445626	49
12	. 248181	11.69	${ }^{993} 9081$. 38	. 255100	12.07	. 7444900	48
13	. 2488883	11.67	. 993059	38	. 2555824	12.05	.744176 74345	47
14	. 249583	11.65	.993036	. 38	. 2565477	12.03	. 74342731	46
15	$\checkmark 250282$	11.63	. 993013	. 38	. 257269	12.01	10	44
16	. 250980	11.61	. 99929960	. 38	. 25787990	12.00	742010 741290	44
17	. 2516777	11.59	. 9992944	. 38	. 2589429	11.98	740571	42
18	. 25253067	11.58	. 9929291	. 38	. 2690146	11.96	. 739854	41
19		11.56	. 992921	. 38	. 260146	11.94		
20	9.253761	11.54	9.992898	38	9.260863	11.92	0.73913\%	40
21	. 254463	11.52	. 9928875	. 38	. 261578	11.90	. 738422	
22	. 255144	11.50	. 9928852	. 39	262292	11.89	. 7377008	38
23	. 255834	11.48	. 9928889	39	. 263005	11.87	. 736998	37
24	. 256523	11.46	. 992806	. 39	. 263717	11.85	.736572	36 35
25	. 257211	11.44	. 992783	39	. 2644138	11.83	. 734862	35 34
26	. 257898	11.42	.992759	39	. 2655847	11.81	. 734153	33
27	. 258583	11.41	.992713	39	. 266555	11.79	. 733445	32
28	. 259268	11.39	. 992690	39	. 267261	11.78	. 732739	31
		11.37		39		11.76	3	30
30	9.260633 261314	11.35	9.992666 992643	39	9.267 .268	11.74	.731329	29
32	. 261994	11.33	. 992619	39	. 269375	11.72	730625	28
33	. 262673	11.31	. 992596	39 39	270077		. 729923	27
34	. 263351	11.30	. 992572	. 39.	. 270779		. 729221	26
35	. 264027	11.28	. 992549	. 39	. 271479	11.67	728521	25
36	. 264703	11.26 11.24	. 992525	. 39	. 272178	11.65	727822	24
37	. 265377	11.24	. 992501	. 39	. 272876	11.64	.727124	23
38	. 266051	11.20	. 992478	. 40	. 273573		. 726427	22
39	. 266723	11.20 11.19	908	. 40	. 274269	11.68	725731	21
40	9.267395		9.992430		9.274		0.725036	20
41	. 268065	11.17	. 992406	40	. 275658	11.57	724342	19
42	. 268734	11.15	. 992382	40	. 276351	11.53	723649	18
43	. 269402	11.13	. 992359	40	. 277043	11.51	.722957	17
44	. 270069	11.12	. 992335	40	. 277734	11.50	. 722266	16
45	. 270735	11.10	. 992311	40	. 278424	11.48	. 721576	15
46	. 271400	11.08	. 992288	40	. 279113	11.46	.720887	14
47	. 272064	11.05	. 992263	40	279801	11.45	720199	13
48	. 272726	11.05	. 992239	. 40	. 230488	11.43	.719512	12
49	. 273388	111.01	. 992214	. 40	. 281174	11.41	. 718826	11
50	9.274049		9.992190		9.281858		0.718142	0
51	. 274708	10.99 10.98	. 992166	. 40	. 282542	11.38	. 717458	9
52	. 275367	10.98 10.96	. 992142	. 40	. 283225	11.36	.716775	8
53	.276025	10.96 10.94	. 992118	. 41	. 283907	11.35	716093	7
54	. 276681	10.94 10.92	. 992093	. 41	284588	11.33	. 715412	6
55	. 277337	10.91	. 992069	. 41	285268	11.31	. 714732	5
56	. 277991	10.89	. 992044	41	285947	11.30	714053	4
57	. 278645	10.89 10.87	. 992020	41	236624	11.28	. 713376	3
58	. 279297	10.86	. 991996	41	287301	11.26	.712699 712023	
59	. 279948	10.86 10.84	$\begin{aligned} & .991971 \\ & .991947 \end{aligned}$	41	$\begin{aligned} & .237977 \\ & .238652 \end{aligned}$	11.25	.712023 .711348	1 0
	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine	D. 11.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.280599		9.991947		9.288652		0.711348	60
,	. 281248	10.82	$.991922$	41	$.289326$	11.23	710674	59
2	. 2818974	10.81 10.79	. 9918978	41	289999	11.20	710001	58 57
3	. 2828544	10.79 10.77	${ }^{991873}$	41	290671	11.20 11.18	709329	57 56
4 5 5	. 283190	10.76	.991848 .991823	41	. 291312	11.18 11.17	708658	56 55
5	. 28383886	10.74	.991823 .991799	41	292013	11.15	707987	55
6	. 284480	10.72	991799 .991774	41		11.14	707318 70665	54 53
8	. 285766	10.71	991749	41	293350	11.12	185	53
9	. 286408	69	. 991724	41	. 294684	11.11	705316	51
10	9.287048		9.991699		9.29:349		0.704651	50
11	. 287688	10.66	. 991674	42	296113	11.07	. 703987	49
12	. 288326		. 991619	42	296677		. 703323	48
13	. 288964		. 991624	42	297339		. 702661	47
14	. 289600		. 991599	42	298001		. 701999	46
15	. 290236	10.58	. 991574	42	298662		. 701338	45
16	. 290370	10.56	. 991549	42	299322		700678	44
17	. 291504	10.56	. 991524	42	299980	10.98	700020	43
18	. 292137	10.53	. 991498	42	300638	10.95	. 699362	42
19	. 292768	10.51	. 991473	42	. 301295	10.95 10.93	. 698705	41
20	9.293399	10.50	9.991443	42	9.301951	10.92	0.698049	40
21	. 294029	10.48	. 991422	42	. 302607	10.92 10.90	697393	39
22	. 294658	10.48	. 991397	42	303261	10.98	696739	38
23	. 295286	10.47 10.45	. 991372	4	303914	10.89 10.87	696086	37
24	. 295913	10.45 10.43	. 991346	42	304567	10.87	695433	36
25	296539		. 991321	4	305218	10.86	. 694782	35
26	297164		. 991295	43	305869		. 694131	34
27	. 297788		. 991270	43	. 306519		. 693481	33
28	298412		. 991244	43	307168		692832	32
29	299034	10.37 10.36	. 991218	43	307816	10.80 10	. 692184	31
30	G. 299655		9.991193	43	9.308463		0.691537	30
31	300276	10.34	. 991167	43	. 309109	10.77	. 690891	29
32	300895	10.33	. 991141	43	. 309754	10.76	. 690246	28
33	. 301514	10.30	. 991115	. 43	. 310399	10.74	. 689601	27
34	. 302132	10.38	. 991090	43	311042	71	. 688958	26
35	. 302748	10.28	. 991064	43	. 311685		. 688315	25
36	. 303364	10.26	. 991038	43	. 312327		. 687673	24
37	. 303979	10.25	. 991012	43	. 312968	10.68	. 687032	23
38	. 304593	10.23 10.22	. 990986	43	. 313608	10.65	. 686392	22
39	. 305207	10.22 10.20	. 990960	. 43	. 314247	10.65 10.64	. 685753	21
40	9.305819		9.9909		9.3148		0.685115	20
41	. 306430	10.19	. 990908		. 315523	10.62	. 684477	19
42	. 307041	10.17	. 990882	. 44	. 316159	10.60	683841	18
43	. 307650	10.16	. 990355	. 44	. 316795	10.60	. 683205	17
44	. 308259	. 13	. 990829	44	. 317430		. 682570	16
45	. 308867	10.13	. 990803	. 44	. 318064		. 681936	15
46	. 309471	10.12	. 990777	44	. 318697	. 54	. 681303	14
47	. 310080	10.10	. 990750	. 44	. 319330	10.54	. 680670	13
48	. 310685	10.09	. 990724	. 44	. 319961	10.53	. 680039	12
49	. 311289		. 990697		. 320592	10.51	. 679408	11
50	9.311893		9.990671		9.321222		0.678778	10
51	. 312495	10.04	. 990645	. 44	. 321851	10.48	. 678149	9
52	. 313097	10.03	. 990618	. 44	. 322479	10.47	677521	8
53	. 313698		. 990591	44	. 323106	10.46	676894	7
54	. 314297	10	. 990565		. 323733		676267	6
55	. 314897		. 990538		. 324358		675642	5
56	. 315495	9.97	. 990511	44	. 324983	10.41	675017	4
57	. 316092	9.96	. 990485	45	. 325607	10.40	674393	3
58	. 316689	9.94	. 990458	45	326231	10.39	673769	2
59	. 317284	9.93	. 990431	45	326853	10.37	673147	1
60	. 317879	9.91	. 990404	. 45	. 327475	10.36	. 672525	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sline.	D. $1^{1 \mu}$.	Cotang.	D. $1^{\prime \prime}$	Taug.	M.

M.	Sine	D. ${ }^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.317879		9.990404		9.327475	10.35	0.672525	60
1	.318473 .319066	9.90 9.88	. 9990378	. 45	$.328095$	10.35 10.33	671905	59
2 3 3	. 319066	9.88 9.87	. 9990351	. 45	. 3288715	10.32	.671285 .670666	58 57
3	. 31.9658	9.88 9.86	. 9990324	. 45	. 3293334	10.31	.670666 .670047	57 56
4	. 320249	9.84	. 990297	. 45	. 3299573	10.29	. 670047	56
6	. 320840	9.83	. 990270	. 45	.330570	10.28	. 6698830	55
6	. 321430	9.81	. 9990243	. 45	. 3311803	10.27	. 66888197	54
8	.322019 .322607	9.80	. 9990215	. 45	. 331803	10.25	. 6687582	5
9	. 323194	9.79	. 9990161	. 45	. 333033	10.24	. 6666967	51
10	9.323780		9.990134		9.333646		0.666354	50
11	. 324366	9.75	. 990107	. 45	. 334259	10.21 10.20	. 665741	49
12	. 324950	9.73	. 9900079	. 46	. 334871	10.19	. 665129	48
13	. 325534	9.72	. 990052	. 46	. 335482	10.17	. 664518	47
14	. 326117	9.70	990025	. 46	. 336093	10.16	. 663907	46
15	. 326700	9.69	. 989997	. 46	. 336702	10.15	. 663298	45
16	. 327281	9.68	. 989970	. 46	. 337311	10.14	. 662689	44
17	. 327862	9.68	. 989942	. 46	. 337919	10.12	. 662081	43
18	. 328442	9.66 9.65	. 989915	. 46	. 338527	10.11	. 661473	42
19	. 329021	9.64	. 989887	. 46	. 339133	10.10	. 660867	41
20	9.329599		9.989860	. 46	9.339739		0.660261	40
21	. 330176	9.61	. 989832	. 46	. 340344	10.08 10.07	. 659656	39
22	. 330753	9.60	. 989804	. 46	. 340948	10.06	. 659052	38
23	. 331329	9.58	. 9897777	. 46	. 341552	10.05	. 658448	37
24	. 331903	9.57	. 989749	. 46	. 342155	10.03	. 657845	36
25	. 332478	9.56	.989721	. 46	. 342757	10.02	. 657243	35
26	. 333051	9.54	. 989693	. 46	. 343358	10.01	. 656642	34
27	. 333624	9.53	. 989665	. 47	. 343958	10.00	. 656042	33
28	. 334195	9.52	. 989637	. 47	. 344558	9.98	. 655442	32
29	. 334767	9.50	. 989610	. 47	. 345157	9.97	. 654843	31
30	9.335337		9.989582		9.345755		0.654245	30
31	. 335906	9.48	. 989553	. 47	. 346353	9.96	. 653647	29
32	. 336475	9.48	. 989525	. 47	. 346949	9.95 9.93	. 653051	28
33	. 337 (1)43	9.46 9.45	. 989497	. 47	. 347545	9.92	. 652455	27
34	. 337610	9.44	. 989469	. 47	. 348141	9.91	. 651859	26
35	. 338176	9.43	. 989441	. 47	. 348735	9.90	. 651265	25
36	. 338742	9.41	.989413	. 47	. 349329	9.88	. 650671	24
37	. 339307	9.40	. 9893385	. 47	. 349922	9.87	. 650078	23
38	339871	9.39	. 9893356		. 350514		. 6494886	22
39	. 340434	9.37	. 989328	. 47	. 351106	9.86 9.85	. 648894	21
40	9.340996		9.989300		9.351697		0.648303	20
41	. 341558	9.36 9.35	. 989271	. 47	. 352287	9.84	. 647713	19
42	. 342119	9.35 9.34	. 989243	. 47	. 352876	9.81	. 647124	18
43	. 342679	9.34	. 989214	. 48	. 353465	9.80	. 646535	17
44	. 343239	9.31	. 989186	. 48	. 354053	9.79	. 645947	16
45	. 343797	9.30	. 9898157	. 48	. 354640	9.78	. 645360	15
46	. 344355	9.29	. 989128	. 48	. 355227	9.76	. 644773	14
47	. 344912	9.27	. 989100	. 48	. 355813	9.75	. 644187	13
48	. 345469	9.26	. 9889071	. 48	. 3563988	9.74	.643602	12
49	. 346024	9.25	. 989042	. 48	. 356982	9.73	. 643018	11
50	9.346579		9.989014		9.357566		0.642434	10
51	. 347134	9.24 9.22	. 988985	. 48	. 358149	9.70	. 641851	9
52	. 347687	9.22 9.21	. 988956	. 48	. 358731	9.69	. 641269	8
53	. 348240	9.20	. 988927	. 48	. 359313	9.69	. 640687	7
54	. 348792	9.19	. 988898	. 48	. 359893	9.67	. 640107	6
55	. 349343	9.17	. 9888869	. 48	. 360474	9.66	.639526	5
50	. 349893	9.16	. 988840	. 48	. 361053	9.66	. 638947	4
57	. 350443	9.16 9.15	. 988811	. 48	. 361632	9.65 9.63	. 638368	3
58	$.350992$	9.15 9.14	$\begin{aligned} & .988782 \\ & .98753 \end{aligned}$. 48	. 362210	9.63 9.62	. 637790	2
59	$\begin{aligned} & .351540 \\ & .352088 \end{aligned}$	9.14 9.13	$\begin{aligned} & 988753 \\ & .988724 \end{aligned}$. 49	362787	9.62 9.61	. 637213	1
6C	. 35208				. 3633		. 636636	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. 17.	Cotang.	D. $1^{1 \prime}$.	Tang.	M

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{1 /}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.352038	9.11	9.988724	49	9.363364	9.60	0.636636	60
1	. 352635	9.10	. 988895	. 49	. 363940	9.60 9.59	. 636060	59
2	. 353181	9.09	. 988666	. 49	. 364515	9.69 9.58	. 635485	58
3	. 353796	9.08	. 988636	. 49	. 365090	9.58 9.57	. 634910	57
4	. 354271	9.07	. 988607	. 49	. 365664	5	. 634336	56
5	.354815	9.05	. 938578	. 49	. 366237	9.55	. 633763	65
6	. 355358	9.04	. 988548	. 49	.366810	9.53	. 633190	54
7	. 355901	9.03	. 988519	. 49	. 367382	9.52	. 632618	53
8	. 356443	9.02	. 988489	. 49	. 367953	9.52 9.51	. 632047	52
9	. 356984	9.01	. 988460	. 49	. 363524	9.50 9.50	. 631476	51
10	9.357524	8.99	9.988430	. 49	9.3690		0.630906	50
11	. 358064	8.98	. 988401	. 49	. 369663	9.48	.630337	49
12	. 358603	8.97	. 988371	. 49	370232	9.48	. 629768	48
13	. 359141	8.96	. 988342	. 50	. 370799	9.47 9.45	.629201	47
14	. 359678	8.95	. 988312	. 50	. 371367	,	. 628633	46
15	. 360215	8.94	. 988282	. 50	. 371933	9.44	. 628067	45
16	. 360752	8.92	. 988252	. 50	. 372499	9.42	. 627501	44
17	. 361287	8.91	. 988223	. 50	. 373064	9.42 9.41	. 626936	43
18	. 361822	88.90	. 988193	. 50	. 373629	9.41 9.40	. 626371	42
19	. 362356	8.89	. 988163	. 50	. 374193	9.49	. 625807	41
20	9.362889	8.88	9.988133	. 50	9.3747		0.625244	40
21	. 363422	8.88	. 988103	. 50	. 375319	9.38	. 624681	39
22	. 363954	8.86	. 988073	. 50	. 375881	${ }_{9} 9.38$. 624119	38
23	. 364485	8.88	. 988043	. 50	. 376442	9.36 9.35	. 623558	37
24	. 365016	8.83	. 988013	. 50	. 377003	9.33	. 622997	36
25	. 365	8.82	097983	. 50	. 37756	9.33	. 622437	35
26	. 366075	8.81	987953	. 50	. 37812	9.31	621878	34
27	. 366604	8.80	. 937922	. 50	. 378681	9.30	. 621319	33
28	. 367131	8.79	. 987892	. 50	. 379239	9.39	.620761	32
29	. 367659	88.78	987862	. 51	. 379797	9.28	. 620203	31
30	9.368185		9.98\%83		9.3803		0.619646	30
31	. 368711	8.75	. 987801	51	. 380910	9.27	. 61909	29
32	369236	8.74	987771	. 51	. 381466	9.26	. 618534	28
33	369761	88.73	987740	. 51	. 382020	9.25	. 617980	27
34	. 370285	8.72	. 987710	51	. 382575	9.24	. 617425	26
35	. 370808	8.71	. 987679	. 51	. 383129	9.22	. 616871	25
36	. 371330	8.70	. 987649	51	. 383682	9.21	. 616318	24
37	. 371852	8.69	987618	. 51	. 384234	9.20	. 615766	23
33	. 372373	8.68	. 987588	. 51	. 384786	9.219	. 615214	22
39	. 372894	8.68	. 987557	. 5	. 385337	9.19	. 614663	21
40	9.373414		9.987526		9.3858		0.6141	20
41	. 373933	88.65	. 987496	. 51	. 386438	9.17	. 613562	19
42	. 374452	8.64	. 987465	. 51	. 386987	9.15	. 613013	18
43	. 374970	8.62	. 987434	. 51	. 387538	9.16	. 612464	17
44	. 375487	8.61	. 987403	. 51	. 388084	9.12	. 611916	16
45	. 376003	8.60	. 987372		. 388631	9.11	. 611369	15
46	. 376519	8.59	. 987341	52	. 389178	9.10	. 610822	14
47	. 377035		. 987310		. 389724		. 610276	13
48	. 377549	8.58	. 988279	. 52	. 390270	9.09	. 609730	12
43	. 378063	8.56	. 987248	. 52	. 390815	9.07	. 609	11
50	9.378577		9.987217		9.3913		0.608640	10
51	. 379089	8.55	. 987186		. 391903	9.06	. 608097	9
52	. 379601	88.58	987155	. 52	. 392447	9.05	. 607553	8
53	. 330113	8.51	. 987124	. 52	. 392989	9.03	. 607011	7
54	. 380624	8.50	. 987092	. 52	. 393531	9.03	. 606469	6
55	. 331134	8.49	. 987061	. 52	. 394073		. 605927	5
56	. 381643	8.48	. 987030	. 52	. 394614		. 605386	4
57	. 332152	8.47	. 986998	52	. 395154	8.99	. 604846	3
58	. 382661	8.46	. 986967	52	. 395694	8.98	. 604306	4
69	. 383168	8.45 8.45	. 986936	52	. 396233	8.97	. 603767	1
60	. 333675	8.45	88904	52	. 396771	8.97	. 6032	0
M.	Coslne.	D. 11 .	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	M.

M	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang	M.
6	9.383675		9.986904	. 53	9.396771	8.96	0.603229	50 59
1	.384182 .384687	8.44 8.43	$.986873$. 53	$.397309$	8.96	$.602691$	59
2 3 3	. 384687	8.43 8.42	.986841 .986809	. 53	.397846 .398383	8.95	.602154 .601617	58 57
3 4	.385192 .385697	8.41	.986809 .986778	. 53	. 3983883	8.94	601617 .601081	57 56
4	. 38862901	8.40 8.40	. 9867678	. 53	. 3989819	8.93	. 601081	56 55
5 6	. 3886704	8.39	. 9886714	. 53	. 399990	8.92	. 600010	54
7	. 387207	8.38	. 986683	53	. 400524	8.91	. 599476	53
8	. 387709	8.37	. 986651	. 53	. 401058	88.89	. 598942	52
9	. 388210	8.36 8.35	. 986619	53	. 401591	8.89 8.88	. 598409	51
10	9.388711		9.986587		9.402124		0.597876	50
11	. 389211	8.34	. 986555	. 53	. 402656	8.86	. 597344	49
12	. 389711	8.33	986523	. 53	. 403187	8.85	. 396813	48
13	. 390210	8.31	. 986491	. 53	. 403718	8.84	. 596282	47
14	. 390708	8.30	. 986459	. 53	. 404249	8.83	. 595751	46
15	. 391206	8.29	986427	. 54	. 404778	8.82	. 595222	45
16	. 391703	8.29 8.28	986395	. 54	. 405308	8.81	. 594692	44
17	. 392199	8.28 8.27	936363	. 54	.405836	8.80	. 594164	43
18	. 392695	8.27 8.26	. 986331	. 54	. 406364	8.79	. 593636	42
19	. 393191	8.26	. 986299	. 54	. 406892	8.78	. 593108	41
20	9.393685		9.986266		9.407419		0.592581	40
21	. 394179	8.23	. 936234	. 54	. 407945	8.76	. 592055	39
22	. 394673	8.23 8.22	. 986202	. 54	. 408471	8.75	. 591529	38
23	. 395166	8.21	. 986169	. 54	. 408996	8.75	. 591004	37
24	. 395658	8	. 986137	. 54	. 409521	8.74	. 590479	36
25	. 396150	8.19	. 986104	. 54	. 410045	8.73	. 589955	35
26	. 396641	8.18	. 986072	. 54	. 410569	8.72	. 5898931	34
27	. 397132	8.17	. 986039	. 54	. 411092	8.71	. 5888908	33
28	. 397621	8.16	. 98850074	. 54	. 4112137	8.70	. 5887863	32 31
29	. 398111	8.15	. 985974	. 54	. 412137	8.69	. 587863	
30	9.398600		9.985942		9.412658		0.587342	30
31	. 399088		. 985909	. 54	. 413179	8.67	. 588821	29
32	. 399575	8.13 8.12	. 985876	. 55	. 413699	8.66	. 586301	28
33	. 400062	88.11	. 985843	. 55	. 414219	8.65	. 585781	27
34	. 400549	8.11 8.10	. 985811	. 55	. 414738	8.65	. 585262	26
35	. 401035	8.09	. 985778	. 55	. 415257	8.64	. 584743	25
36	. 401520	8.08	. 985745	. 55	. 415775	8.63	. 584225	24
37	. 402005	8.07	. 985712	. 55	.416293	8.62	. 5833707	23 22
38	. 402489	8.06	. 9856679	. 55	.416810	8.61	. 5883190	22 21
39	. 402972	8.05	. 985646	. 55	. 417326	8.60	. 582674	21
40	9.403455		9.985613		9.417842		0.582158	20
41	. 403938	8.04 8.03	. 9855880	. 55	. 418358	8.59 8.58	. 581642	19
42	. 404420	8.03 8.02	. 985547	. 55	. 418873	8.58	. 581127	18
43	. 404901	8.02 8.01	. 985514	. 55	. 419387	8.56	580613	17
44	. 405382	8.01 8.00	. 985480	. 55	.419901	8.56	. 580099	16
45	. 405862	7.99	. 985447	. 55	420415	8.55	. 579585	15
46	. 406341	7.98	. 985414	. 56	. 420927	8.54	$\bigcirc .579073$	14
47	.406820	7.97	. 985381	. 56	421440	8.53	. 578856048	13
48	407299	7.96	. 985347	. 56	421952	8.53 8.52	. 578048	12
49	. 407777	7.96	. 985314	. 56	. 422463	8.51	577537	11
50	9.408254		9.985280		9.422974		0.577026	10
51	. 408731	7.95 .94	. 985247	. 56	. 423484	8.49	576516	9
52	. 409207		. 9858213	. 56	. 423993	8.49	576007	8
53	. 409682	7.93	. 985180	. 56	. 424503	8.48	575497	7
54	. 410157	7.91	. 985146	. 56	. 425011	8.47	574989	6
55	. 410632	7.90	. 985113	. 56	. 425519	8.46	. 5744881	5
56	. 411106	7.89	. 985079	. 56	. 426027	8.45	. 573973	4
57	. 4111579	7.88	. 985045	. 56	. 426534	8.44	. 573466	3
68	. 412052	7.88	. 985011	. 56	. 427041	8.43	. 572959	2
59	. 412524	7.86	. 984978	. 56	. 427547	8.43	. 572453	1
60	. 412996	7.86	. 984944	. 56	. 423052		. 571948	0
M.	Cosine.	D. $1^{\prime \prime}$	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. 1^{17}.	Tang	M.

M.	Sine.	D. 1".	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.412996	7.85	9.984944	56	9.428052	8.42	0.571948	60
1	. 41346π	7.84	984910	57	. 428558	8.41	571442	59
2	.413938	7.84	984876	57	. 429062	8.41 8.40	570938	58
3	.414408	7.84	. 984842	57	. 429566	8.40	570434	57
4	. 414878	7.83 7.82	. 984808	57 57	430070	8.39 8.38	569930	56
5	. 415347	7.81	. 984774	57	430573	8.38	569427	55
6	.415815	7.81	984740	. 57	431075	8.38 8.37	568925	54
7	.416283	7.79	984706	57	431577	8.37 8.36	. 568423	53
8	. 416751	7.78	984672	57 .57	. 432079	8.36	567921	52
9	. 417217	7.77	. 984638	. 57	. 432580	8.35 8.34	. 567420	51
10	9.417684	7.76	9.984603	57	9.433080	8.33	0.566920	50
11	.418150	7.75	984569	57	433580	8.33 8.33	566420	49
12	. 418615	7.75	984535	. 57	434080	8.33 8.32	. 565920	48
13	419079	7.74	984500	. 57	434579	8.31	. 565421	47
14	419544	7.74 7.73	984466	. 57	435078	8.31 8.30	. 564922	46
15	420007	7.73 7.72	984432	57	435576	8.30 8.29	. 564424	45
16	420470	7.71	. 984397	58	436073	8.28	563927	44
17	420933	7.70	.984363	. 68	436570	8.28 8.28	. 563430	43
18	421395	7.69	984328	. 58	437067	8.28 8.27	. 5622333	42
19	421857	7.68	984294	. 68	437563	8.27	. 562437	41
20	9.422318	67	9.984259	. 58	9.435059	8.25	0.561941	40
21	422778	7.67	. 984224	58	. 438554	8.25	. 561446	39
22	423238	7.67	984190	68	. 439048	8.24 8.24	. 560952	38
23	423697	7.66	984155	58	439543	8.24 8.23	560457	37
24	424156	7.65	. 984120	. 68	440036	8.23	559964	36
25	424615	7.64	984085	. 68	440529	8.22	. 559471	35
26	425073	7.63	984050	58	441022	8.21 8.20	. 558978	34
27	425530	7.62	. 984015	58	441514	8.20	. 558486	33
28	425987	7.61	983981	08	442006	8.20	. 557994	32
29	426443	7.60	. 983946	58	442497	8.19 8.18	. 557503	31
30	9.426899	7.59	9.983911	80	9.442988	8.17	0.557012	30
31	427354	7.58	. 983875	58	443479	8.17	556521	29
32	427809	7.58	983840	58	443968	8.16	556032	28
33	428263	7.67	983805	69	444458	8.16	555542	27
34	428717	7.56	983770	59	444947	8.15	555053	26
35	. 429170	7.55	983735	59	445435	8.14	554565	25
36	429623	7.55	983700	59	445923	8.13	. 554077	24
37	430075	7.53	983664	59	446411	8.13	. 553589	23
38	430527	7.52	983629	59	446898	8.12	. 553102	22
39	430978	7.52	983594	59	447384	8.11	. 552616	21
40	9.431429		9.983558		9.447870		0.552130	20
41	. 431879	7.49	983523		448356	8.09 8.09	551644	19
42	. 432329	7.49 7.49	983487	59	448841	8.09 8.08	551159	18
43	. 432778	7.49 7.48	983452	59 59	449326	8.08	550674	17
14	. 433226	7.48 7.47	983416	59 59	449810	8.07 8.06	550190	16
45	.433675	7.47	983381	59	450294	8.06	549706	15
16	434122	7.46	983345	59 59	450777	8.06	549223	14
47	434569	7.45	983309	59	451260	8.05	548740	13
48	435016	7.44	983273	60	451743	8.01	548257	12
49	435162	7.44	983238	60	452225	8.03 8.03	547775	11
50	9.435908		9.983202	60	9.452706		0.547294	10
51	. 436352	7.42	. 983166	60	. 453187	8.02	. 546813	9
52	436798	7.41 7.40	983130	60	453668	8.01	546332	8
53	437242	7.40 7.40	983094	. 60	454148	8.00	. 545852	7
54	437686	7.40 7.39	983058	. 60	454628	8.00	545372	6
55	438129	7.39	983022	. 60	455107	7.99	544893	5
56	438572	7.38 7	982986	60	455586	7.98	. 544414	4
57	439014	7.37 7.36	982950	60	456064	7.97 7.97	. 543936	3
58	439456	7.36	982914	60	456542	7.97	543458	2
59	. 439897	736 7	982878	60	457019	7.96	542981	1
60	. 440338	7.35	982342	60	457496	7.95	542504	0
M.	Cosine.	D. 1^{H}.	Slue.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sline.	D $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.440338	7.34	9.982842	. 60	9.457496	7.94	0.542504	60
1	. 440778	7.33	. 9828285	. 60	. 457973	7.94	. 5420127	59
2	. 441218	7.32	. 982769	. 61	. 458449	7.93	. 541551	58
3	. 441658	7.31	. 932733	. 61	. 4589925	7.92	. 5411075	57 56
4	. 442096	7.31	. 9326966	61	. 45949875	7.91	. 540600	56
${ }_{6}$. 4425355	7.30	. 982660	. 61	. 460349	7.91	. 539651	54
6	. 442973	7.29	. 98282587	61	. 460823	7.90	. 539177	53
7	.443410	7.28	. 9825851	. 61	. 461297	7.89	. 538703	52
8	. 4444281	7.27	. 982514	. 61	. 461770	7.83 788	. 533230	51
9	. 444281	7.27	.982514	. 61	. 461770	7.88		
10	9.444720	7.26	9.982477	. 61	9.462242	7.87	0.537758	50
11	. 445155	7.25	. 982441	. 61	. 463715	7.86	. 5372885	49
12	. 445590	7.24	. 982404	. 61	. 463186	7.86	. 536814	48
13	. 446025	7.24	.982367	. 61	. 46364128	7.85	. 536342	47
14	. 446459	7.23	. 9882331	. 61	. 464128	7.84	. 5358101	46
15	. 446893	7.22	. 98822929	. 61	. 4645069	7.83	. 534931	44
16	. 4447326	7.21	. 9882257	. 61	. 465539	7.83	. 534461	43
17	. 44787591	7.20	.982220 .982183	. 62	. 4665008	7.82	. 533992	42
19	. 448623	7.20	. 982146	. 62	. 466477	7.81	. 533523	41
20	9.449054		9.932109		9.466945		0.533055	40
21	. 449485	7.18 7.17	. 982072	. 62	.467413	7.79	. 532587	39
22	.149915	7.17	. 932035	. 62	. 467880	7.78	532120	38
23	450345	7.17	. 981993	. 62	. 468347	7.78	. 531653	37
24	. 450775	7.16	. 981961	. 62	. 468814	7.77	. 531186	36
25	. 451204	7.14	. 931924	. 62	. 469280	7.76	. 530720	35
26	. 451632	7.13	. 981836	. 62	.469746	7.76	. 530254	34
27	. 452060	7.13	. 981819	. 62	. 470211	7.75	. 529789	33
28	. 452488		. 931812	. 62	. 470676		. 529324	32
29	. 452915	7.12	. 981774	. 62	. 471141	7.74	. 528859	31
30	9.453342		9.981737		9.471605		0.528395	30
31	. 453768	7.10	. 981700	. 62	. 472069	7.72	. 527931	29
32	. 454194	7.10	. 981662	. 63	. 472532	7.71	. 527468	28
33	. 454619	7.09	. 981625	. 63	. 472995	7.71	. 527005	27
34	. 455044	7.08	. 981587	. 63	. 473457	7.70	. 526543	26
35	. 455469	7.07	. 981549	. 63	. 473919	7.69	. 526081	25
36	. 455893	7.07	. 981512	. 63	. 474381	7.69	. 525619	24
37	. 456316	7.05	. 981474	. 63	. 474842	7.68	. 525158	23
38	. 456739	7.04	. 981436	. 63	. 4775303	7.67	. 5246937	22
39	. 457162	7.04	. 981399	. 63	. 475763	7.67	. 524237	21
40	9.457584		9.981361		9.476223		0.523777	26
41	. 458006	7.03	. 981323	. 63	. 476683	7.66	. 523317	19
42	. 458427	7.02 7.01	. 981235	. 63	. 477142	7.65	. 5228588	18
43	. 458848	7.01	. 981247	. 63	. 477601	7.65	. 522399	1\%
44	. 459268	7.01	. 981209	. 63	. 478059	7.64	. 521941	16
45	. 459688	6.09	. 981171	. 63	. 4785517	7.63	. 521483	15
46	. 460108	6.99 6.98	. 981133	. 63	. 478975	7.63	. 521025	14
47	. 460527	6.	. 981095	. 64	. 479432	7.61	. 520568	13
48	. 460946		. 981057	. 64	. 479889		. 520111	12
49	. 461364	6.	. 981019	. 64	. 480345	7.60	. 519655	11
50	9.461782		9.980981		9.480801		0.519199	0
51	. 462199	6.95	. 980942	64	. 481257	7.59	. 518743	9
52	. 462616		. 980904		. 481712		. 518288	8
53	. 463032	6.94 6.93	. 980866	. 64	. 482167	7.57	. 517833	7
54	. 463448	6.93 6.93	. 980827	.64	. 482621	7.57	. 517379	6
55	. 463364	6.93 6.92	. 980789	. 64	. 4831175	7.56	. 516925	5
56	. 464279	6.92 6.91	. 980750	. 64	. 483529	7.55	. 516471	4
57	. 464694	6.91 6.90	. 980712	. 64	. 483982	7.55	. 516018	3
58	. 465108	6.90 6.90	. 930673	. 64	. 484435	7.54	. 515565	2
59	. 465522	6.89	.930635	. 64	.484887	7.53	. 515113	0
60	. 465935	6.8	. 980596		4853:39		514661	0
M.	Coslue.	D. $1^{\prime \prime}$.	Sinn	D. I'	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

\mathbf{M}.	Sine.	D. $1^{1 \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. 1'.	Cotang.	M.
0	9.465935	6.88	9.930596	. 64	9.485339	7.53	0.514661	60
2	. 466348	6.88	$.930558$. 64	$.485791$	7.52	$.514209$	59
2	. 466761	6.87	.980519		.486242	7.51	. 513758	58
3	. 467173	6.86	. 980480	. 65	. 4866693	7.51	. 513307	57
4	. 467585	6.86	980442	. 65	. 487143	7.51	. 512857	56
5	. 467996	6.85	. 980403	. 65	. 487593	7.50	.512407	55
6	. 468407	6.84	930364	. 65	. 488043	0,	. 511957	54
	. 468817	6.83	980325	. 65	. 488492	48	. 511508	53
8	. 469227	6.83	980286	. 65	. 488941	7.48	. 511059	52
9	. 469637	6.83	. 980247	. 65	. 489390	7.48	. 510610	51
10	9.470046	6.81	9.980208	. 65	9.489838		0.510162	50
11	. 470455	6.81	980169	. 65	. 490236	7.46	. 509714	49
12	. 4770863	6.80	980130	. 65	. 490733	7.45	. 509267	48
13	. 471271	6.80	. 980091	. 65	. 491180	7.45 7.44	. 508820	47
14	. 471679	6.79 6.78	. 980052	. 65	. 491627	7.44 7	. 508373	46
15	. 472086	6.78 6.78	. 980012	. 65	. 492073	7.44	. 507927	45
16	. 472492	6.78 6.77	979973	. 65	. 492519	7.43	. 507481	44
17	. 472898	6.77	979934	. 65	. 492965	3	. 507035	43
18	. 473304	${ }_{6}^{6.76}$	979895	. 66	. 493410	42	. 506590	42
19	473710	6.76 6.75	. 979855	. 66	. 493854		. 506146	41
20	9.474115		9.979816		9.494299		0.505701	40
21	. 474519		. 979776	. 66	. 494743		. 505257	39
22	. 474923		. 979737		. 495186		. 504814	38
23	. 475327	6.73	. 979697	. 66	. 495630	39	. 504370	37
24	. 475730	6.72	. 979658	. 66	. 496073	7.38	. 503927	36
25	. 476133	6.72	. 979618	. 66	. 496515	7.38	. 503485	35
26	. 476536	6.71	. 979579	. 66	. 496957	7.37	. 503043	34
27	. 476938	6.70	. 979539	. 66	497399	7.36	. 502601	33
28	. 477340	6.69 6.69	. 979499	. 66	. 497841	6	. 502159	32
29	. 477741		. 979459		. 498282		. 501718	31
30	9.478142		9.979420		9.498722		0.501278	310
31	. 478542		. 979380		.499163		. 500837	29
32	. 478942	6.6	. 979340	67	. 499603	7.33	. 500397	28
33	. 479342	6.66 6.65	. 979300	67	. 500042	7.33	. 499958	27
34	. 479741	6.65	. 979260	. 67	. 500481	7.32	. 499519	26
35	. 480140	6.65	. 979220	. 67	. 500920	7.31	. 499080	25
36	. 480539	6.64	. 979180	. 67	. 501359	7.31	. 498641	24
37	. 480937	6.63	. 979140	. 67	. 501797	7.30 730	. 498203	23
38	. 481334	6.63	. 979100	. 67	. 502235	7.30	. 497765	22
39	. 481731		. 979059		502672		. 497328	21
40	9.482128		9.979019		-.503109		0.496891	20
41	. 482525	6.61	. 978979		503546		. 496454	19
42	. 482921	6.60 6.59	. 978939		503932	7.27	. 496018	18
43	. 483316		978898		. 504418		. 495582	17
44	. 483712	58	. 978858	. 67	. 504854	7.25	. 495146	16
45	.484197	${ }^{6.58}$. 978817	. 67	. 505289	7.25	. 494711	15
46	. 484501	6.57 6.57	. 978787	. 67	. 505724	7.25	. 494276	14
47	.484895	6.56	. 978737	. 68	. 506159	7.24	. 493841	13
48	. 485289	6.56 6.55	. 978696	. 68	. 506593	7.24 7.23	. 493407	12
49	. 485682	6.55	. 978655	. 68	. 507027	7.23 7.23	. 492973	11
50	9.486075		9.978615		9.507460		0.492540	10
51	. 486467	6.54	. 978574	. 68	. 507893	7.22	. 492107	9
52	. 486860	6.53	. 978533	. 68	. 503326	7.21	. 491674	8
53	. 487251	6.53	. 978493		. 508759	7.21	. 491241	7
54	. 487643	6.52	. 978452		. 509191		. 490809	6
55	. 488034	6.52	. 978411	68	. 509622	7.20	. 490378	5
56	. 488424	6.51	. 978370	. 68	. 510054	7.19	. 489946	4
57	. 488814	6.50	978329	. 68	. 510485	7.18	. 489515	3
58	. 489204	6.50	. 978238	68	510916	7.17	. 489084	2
59	. 489593	6.49	. 978217	68	511346	7.17	. 488654	1
60	. 489982	6.48	. 978206	. 68	. 511776	7.17	. 458	0
M.	Coslne.	D. $1^{\prime \prime}$.	Sive.	D. ${ }^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$.	Taug.	M.

M.	Slne.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.489982	6.48	9.978206	. 68	9.511776	7.16	0.488224	60 59
2	. 4903781	6.47		. 69	. 5122006	7.16		69 58
3	. 491147	6.46	. 97818083	. 69	. 513064	7.15	486936	57
4	. 491535		. 978042	69	513493	7.14	186507	56
5	. 491922		. 978001	69	. 513921	7.14	486079	55
6	. 492308	6.44	. 977959	. 69	. 514349		. 485651	54
7	. 492695	6.43	. 977918	. 69	. 514777	7.13 7.12	485223	53
8	. 493081	6.43	. 9777877	. 69	. 515204	7.12	. 484796	52
9	. 493466	6.42	. 977835	. 69	. 515631	7.11	. 484369	51
10	9.493851	6.41	9.9777		9.51605		0.483943	50
11	.494236	6.41	. 977752	. 69	. 516484	7.10 7.10	. 483516	49
12	. 494621	6.40	. 977711	. 69	.516910	7.109	. 483090	48
13	. 495005	6.49	. 9777669	. 69	517335	7.09	. 482665	47
14	. 495388	6.39	. 977628	. 69	. 517761	7.08	. 482239	46
15	. 495772	6.38	. 9777586	. 69	. 518186	7.08	. 481814	45
16	. 496154	6.38	. 97754	. 70	.518610	7.07	. 481390	44
17	. 4965337	6.37	. 97750	.70	. 5190	7.07	480966 480542	43
18	. 496319	6.36	. 977461	.70	. 5194	7.06	480542	42
		6.36		. 70		7.05		
21	9.4976	6.35	9.977	. 70	${ }^{9.52030}$	7.05	$\begin{array}{r}0.479695 \\ \hline 479272\end{array}$	40
22	. 498444	6.34	. 977293	. 70	521151	7.04	. 478849	38
23	. 498825	6.34	. 977251	. 70	. 521573	7.04	. 478427	37
24	. 499204	6.33	. 977209	. 70	. 521995	7.03	. 478005	36
25	. 499584	6.33	. 977167	. 70	. 522417	7.03	. 477588	35
26	. 499963	6.31	. 977125	. 70	. 522838	7.02	. 477162	34
27	. 500342	6.31	. 977083	. 70	. 523259	7.01	. 476741	33
28	. 500721	6.30	. 977041	. 70	. 523680	7.01	. 476320	32
29	. 501099	6.30	976999	. 70	. 524100		475900	31
30	9.501476		9.9769		9.524520		0.475480	30
31	. 501854	6.28	. 976914	. 71	. 524940	6.99	. 475080	29
32	. 502231	6.28	. 976872	. 71	. 525359	6.98	. 474641	28
33	. 502607	6.27	. 976830	. 71	. 525778	6.98	. 474222	27
34	. 5029884	6.27	. 976787	. 71	528197	6.97	. 473803	26
35 36	. 503360	6.26	. 97676745	. 71	. 5268615	6.97	473385	25
36	. 503735	6.25	. 97676702	. 71	. 527033	6.96	472967	24
37	. 504	6.25	. 9766617	. 71	. 527451	6.96	. 472132	23
38		6.24	.976617 .976574	. 71	. 528285	6.55	. 4721715	21
40	9.505234		9.9765		9.5287		0.471298	20
41	. 505608	6.23	-. 976489	. 71	-. 529119	6.94	. 470881	19
42	. 505981	6.22	. 976446	. 71	. 529535	6.94	470465	18
43	. 506354	6.22 6.21	. 976404	.71	. 529951	6.93	. 470049	17
44	. 506727	6.21	. 976361	71	. 530366	6.93	. 469634	16
45	. 507099	6.20	. 976318	. 72	. 530781	6.91	. 469219	15
46	. 507471	6.19	. 976275	. 72	. 531196	6.91	. 468804	14
47	. 507843	6.19	. 976232	72	. 531611		. 468389	13
48	. 508214	6.18	. 976189	. 72	. 532025		467975	12
49	. 50	6.18	. 976146	. 72	. 532439	9	. 467561	11
50	9.508956		9.976103		9.532853		0.467147	10
51	. 509326	6.16	. 976060	72	. 533266	6.88	. 466734	9
52	. 50 'J696	6.16	. 976017	. 72	. 533679	6.88	. 466321	8
53	. 510065	6.15	. 975974	. 72	. 534092	6.87	465908	7
54	. 510434	6.15	. 975930	. 72	. 534504	6.87	.465496	6
55	. 510803	6.14	. 9758887	. 72	. 534916	6.86	. 465084	5
56	. 511178	6.14	. 9758844	.72	. 5353288	6.86	. 464672	4
57 58	. 511154	6.13	. 975800	. 72	. 53573750	6.85	464261 463850	3
58 59	. 512275	6.12	. 97575714	. 72	. 536561	6.85	. 463439	1
60	. 512642	6.12	. 975670	. 72	. 536972	6.8	. 463028	0
1.	Cociue	D. $1^{\prime \prime}$.	Sine	11	Cotang	1	Tan	M

M	Sline.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.512642		9.975670		9.536972		0.463028	60
1	. 513009	6.11	$.975627$. 73	. 537388	6.84 6.83	. 462618	59
3	. 513375	6.11 6.10	. 975583	. 73	. 537792	6.83 6.83	. 462208	58
3	. 513741	6.09	. 9775589	. 73	. 538202	6.83 6.82	. 461798	57
4	. 514107	6.09	. 975496	. 73	. 538611	6.82	. 461389	56
5	. 514472	6.08	. 975452	. 73	. 539020	6.81	. 460980	55
6	. 514837	6.08	. 975408	.73	. 539429	6.81	. 460571	54
8	. 515202	6.07	. 975365	.73	. 539837	6.80	. 460163	53
8	515566	6.07	. 975321	. 73	. 540245	6.80	. 459755	52
9	. 615930	6.06	. 975277	. 73	. 540653	6.79	. 459347	51
10	9.516294	6.05	9.975233	. 73	9.541061		0.458939	50
11	. 516657	6.05 6.05	. 975189	. 73	. 541468	6.79 6.78	. 458532	49
12	. 517020	6.04	. 975145	. 73	. 541875	6.78 6.78	. 458125	48
13	. 517382	6.04 6.04	. 975101	. 73	. 542281	6.77	. 457719	47
14	. 517745	6.04 6.03	. 975057	. 73	. 542688	6.77	. 457312	46
15	. 518107	6.03	. 975013	. 74	. 543094	6.76	. 456906	45
16	. 518468	6.02	. 9749699	. 74	. 5434999	6.76	. 456501	44
17	.518829 .519190	6.02	. 9749825	. 74	. 5434310	6.75	.456095 455690	43
18	. 5191950	6.01	. 97488836	. 74	. 5444715	6.75	. 4555698	42
		6.00	. 974836	. 74	. 644715	6.74	. 455285	41
20	9.519911	6.00	9.974792	. 74	9.545119	6.74	0.454881	40
21	. 5202781	5.99	. 97474788	. 74	.545524	6.73	. 454476	39
23	. 5220990	5.99	. 974703	. 74	. 5459331	6.73	. 454072	38
24	. 521349	5.98	. 974614	. 74	. 546735	6.72	. 453669	37
25	. 521707	5.98	. 974570	. 74	. 547138	6.72	. 452862	36
26	. 522066	5.97 5.97	. 974525	. 74	. 547540	6.71	. 452460	34
27	. 522424	5.97 5.96	. 974481	. 74	. 547943	6.71	. 452057	33
28	. 522781	5.95	. 974436	. 74	. 548345	6.70	. 451655	32
29	. 523138	5.95	. 974391	. 74	. 648747		. 451253	31
30	9.523495		9.974347		9.549149		0.450851	30
31	. 523852		. 974302	. 75	. 549550	6.69 6.68	. 450450	29
32	. 524208	5.93	. 974257	. 75	. 549951	6.68	. 450049	28
33	. 524564	5.93	. 974212	. 75	. 650352	6.68 6.67	. 449648	27
34	. 524920	5.92	. 974167	. 75	. 550752	6.67	. 449248	26
35	. 5252563	5.92	.974122	. 75	. 551153	6.67	. 448847	25
36 37	. 52568384	5.91	. 974077	. 75	. 5551552	6.66	. 448448	24
38 38	. 52523834	5.90	${ }^{.974032}$. 75	. 551952	6.66	. 448048	23
39	. 526693	5.90	. 973987	. 75	. 552351	6.65	. 4447649	22
40	9.527046		9.97389			6.65	0.446851	
41	. 527400	5.89	. 973852	. 75	9.553548	6.64	446452	19
42	. 527753	5.88	. 973807	. 75	. 553946	6.64	. 446054	18
43	. 528105	5.88 5.87	. 973761	. 75	. 554344	6.63	. 445656	17
44	. 528458	5.87	. 973716	. 76	. 554741	6.63	. 445259	16
45	. 528810	5.86	. 973671	. 76	. 555139	6.62	. 444861	15
46	. 529161	5.86	. 973625	. 76	. 5555536	6.62	. 444464	14
48	. 5299864	5.85	. 9735885	. 76	. 5559333	6.61	. 444067	13
49	. 530215	5.85	. 9735489	. 76	. 55563725	6.60	. 443671	12
50	9.530565		9.973444	. 76	9.557121	6.60	0.442879	
51	. 530915	5.83 5.83	. 973398	. 76	${ }^{.557517}$	6.59	. 442483	0
52	. 531265	5.83 5.82	. 973352	. 76	. 557913	6.59 6.59	. 442087	8
53	. 531614	5.82	. 973307	. 76	. 558308	6.59	. 441692	7
54	. 531963	5.81	. 973261	. 76	. 558703	6.58	. 441297	6
55	. 532312	5.81	. 973215	. 76	. 559097	6.58	. 440903	5
56	. 532661	5.80	. 973169	. 76	. 559491	6.57	. 440509	4
57	. 533009	5.80	. 973124	. 76	. 559885	${ }_{6.56}^{6.57}$.440115	3
58	. 5333357	5.79	. 973078	. 77	. 560279	6.56 6.56	. 439721	2
69	. 533704	5.79 5.79	. 973032		. 560673	6.56 6.55	. 439327	1
60	. 534052	5.75	. 972986	. 77	. 561066		. 438934	0
M.	Oaslue.	D. 11".	Slue.	D. $1^{\prime \prime}$.	Cotang.	D. ${ }^{\prime \prime}$.	Tang.	M

M.	Slne.	D. $1^{\prime \prime}$.	Coalde.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.534052		9.972986		9.561066		0.438934	60
1	. 534399	5.78	. .972940	. 77	$.561459$	6.54	$.438541$	$\begin{aligned} & 69 \\ & 59 \end{aligned}$
2	. 5347445	5.78 5.77	. 972894	.77	. 561851	6.54	.438149 .437756	58 57
3	. 535092	5.87 5.77	. 972848	. 77	. 5622244	6.54 6.54	. 437756	57 56
4	. 5354388	5.76	. 9772802	.77	. 562636	6.53	. 43736972	56
5	.535783 .536129	5.76	.972755 .972709	. 77	. 56302819	6.53	. 4365881	54
6 7	. 5366474	5.75	. 9727263	.77	. 563811	6.52	. 436189	63
8	. 536818	5.75 5.74	. 972617	. 77	. 564202	6.52	. 435798	52
9	. 537163	5.74 5.74	. 972570	. 77	. 564593	6.51	. 435407	51
10	9.537507		9.972524		9.564983		0.435017	50
11	. 537851	5.73 5.73	. 972478	. 77	. 565373	6.50	. 434627	49
12	. 538194	5.72 5.72	. 972431	. 78	. 565763	6.50	. 4334237	48
13	. 538538	5.71	. 972385	. 78	. 566153	6.49	. 4333847	47
14	. 533880	5.71	. 972338	. 78	. 566542	6.49	. 4333458	46
15	. 539223	5.70	. 972291	. 78	. 5669332	6.48	. 4330688	45
16	. 539565	5.70	. 972245	. 78	. 5677320	6.48	. 432680	44
17	. 539907	5.69	. 972198	. 78	. 56787099	6.47	. 432291	43
18	. 540249	5.69	.972151 .972105	. 78	.568098 .568486	6.47	. 431902	42
19	. 540590	5.68	. 972105		. 568486	6.46	. 431514	41
20	9.540931	5.68	9.972058	. 78	9.568873	6.46	0.431127	40
21	. 541272	5.67	. 972011	. 78	. 569261	6.46	. 430739	39
22	. 541613	5.67	. 971964	. 78	. 569648	8.45	. 430352	38
23	. 541953	5.67	. 971917	. 78	. 570035	6.45	. 429965	37
24	. 542293	5.66 5.66	. 971870	. 78	. 570422	8.44	. 429578	36
25	. 542632	5.66 5.65	. 971823	. 78	. 570809	6.44	. 429191	35
26	. 542971	5.65	. 971776	. 78	. 571195	6.43	. 428805	34
27	. 543310	5.64	. 971729	. 79	. 571581	6.43	. 428419	33
28	. 543649	5.64	. 971682	. 79	. 571967	6.43	. 428033	32
29	. 543987	5.63	. 971635	. 79	. 572352	6.42	. 427648	31
30	9.544325		9.971588		9.572738		0.427262	30
31	. 544663	5.63 5.62	. 971540	. 79	. 573123	6.41	. 426877	29
32	. 545000	5.62	. 971493	. 79	. 573507	6.41	. 426493	28
33	. 645338	5.61	. 971446	.79	. 573892	6.40	. 426108	27
34	. 545674	5.61	. 971398	. 79	. 574276	6.40	. 425724	26
35	. 646011	5.61 5.60	. 971351	. 79	. 574660	6.40	. 425340	25
36	546347	5.60 5.60	. 971303	. 79	. 575044	6.49	. 424956	24
37	. 546683	5.69	. 971256	. 79	. 575427	6.39	. 424573	23
38	. 547019	5.69 5.69	. 971208	. 79	. 5758810	6.38	. 424190	22
39	. 647354	5.69	. 971161	. 79	. 576193	6.38	. 423807	21
40	9.547689		9.971113		9.576576		0.423424	21
41	. 548024	5.57	. 971066	. 80	. 576959	6.37	. 423041	19
42	. 548359	5.57	. 971018	. 80	. 5777341	6.37	. 422659	18
43	. 548693	5.56	. 970970	. 80	. 577723	6.38	. 4222277	17
44	. 549027	5.56	${ }^{.970922}$. 80	.578104 .578486	6.30	. 421896	16
45	. 549360	5.55	. 970874	. 80	. 5784886	6.35	. 421514	14
46	. 549693	5.55	. 970827	. 80	. 5788678	6.35	. 421133	14
47	. 550026	5.55	. 97070731	. 80	. 579248	6.34	. 420371	12
48	. 550359	5.54	. 970731	. 80	. 5880009	6.34	. 419991	
49	. 550692	5.54	. 970683	. 80	. 580009	6.34	. 419991	11
50	9.551024		9.970635		9.580389		0.419611	10
51	. 551356	5.53	. 970586	. 80	. 580769	6.33	. 419231	9
52	. 551687	5.52	. 970538	. 80	. 581149	6.32	. 418851	7
53	. 552018	5.52	. 970490	. 80	. 581528	6.32	. 418472	7
54	. 552349	5.51	. 970442	. 80	. 581907	6.32	. 418093	
55	. 552680	5.51	. 970394	. 81	. 5822286	6.31	. 4177174	5
56	. 553010	5.50	. 970345	. 81	. 58283045	6.31	. 416953	4
57	. 5533341	5.50	. 9702979	. 81	. 5833422	6.30	. 4169578	2
68	. 553670 . 554000	5.49	. 970249	. 81	. 58338800	6.30	. 41651680	2
69 60	. 6544329	5.49	.970200	. 81	. 5848177	6.30	. 415823	0
M.	Oosine.	D. $1^{\prime \prime}$.	Sino.	D. 1'.	Ootaug.	D. ${ }^{\prime \prime}$.	Tang.	M.

M.	Slne.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.554329	5.48	9.970152	. 81	9.584177		0.415823	60
,	. 554658	5.48 5.48	. 970103	. 81	.584555	6.29 6.29	. 415445	59
2	. 554987	5.47	. 970055	. 81	. 5849332	6.29 6.28	. 415068	68
3	. 555315	5.47 6.47	. 970006	. 81	. 585309	6.28	. 414691	57
5	. 5555643	5.46	. 9699957	81	. 585686	6.28	. 414314	56
5	. 555971	5.46	. 9699909	. 81	. 586062	6.27	. 413938	55
6	. 556299	5.45	. 9698980	. 81	. 5866439	6.27	.413561	54
7	. 556626	5.45	. 96989711	. 81	. 5887190	6.26	. 413185	53
8	$\begin{aligned} & .556953 \\ & .557280 \end{aligned}$	5.44	. 96969714	. 81	. 58871906	6.26	. 41281243	52 51
10	9557606	5.44	9.969665	. 81	9.5	6.26	0.412059	50
11.	. 557932	5.44	. 969616	. 82	. 588316	6.25	. 411684	49
12	. 658258	3	. 969567	. 82	588691	6.25 6.24	. 411309	48
13	. 558583	5.42	. 969518	82	589066	6.24 6.24	. 410934	47
14	. 558909	5.42	. 969469	82	589440	6.24 6.24	. 410560	46
15	. 559234	5.41	. 969420	. 82	589814	6.23	. 410186	45
16	. 559558	5.41	. 969370	. 82	590188	6.23 6.23	. 409812	44
17	. 559883	5.40	. 969321	. 82	. 590562	6.23 6.22	. 409438	43
18	. 560207	5.40	. 969272	. 82	. 590935	6.22 6.22	. 409065	42
19	. 560531	5.49	. 969223	. 82	. 591308	6.22 6.22	. 408692	41
20	9.560855		9.969173		9.591681		0.408319	40
21	. 561178	5.38	. 969124	. 82	. 592054	6.21	. 407946	39
22	. 561501	5.38	. 969075		. 592426	6.21	. 407574	38
23	. 561824	5.38 5.37	. 969025	. 82	. 592799	6.20 6.20	. 407201	37
24	. 562146	5.37	. 968976	. 83	. 593171	6.20	. 406829	36
25	. 562468	5.37	968926	. 83	. 593542	6.19	. 406458	35
26	. 562790	5.36	. 968877	. 83	. 593914	6.19 6.19	. 406086	34
27	. 563112	5.36	. 968827	. 83	. 594285	6.19	. 405715	33
28	. 563433	5.35	. 968777	. 83	. 594656	6.18	. 405344	32
29	. 563755	5.35 5.35	. 968728	. 83	. 695027	6.18 6.18	. 404973	31
30	9.564075		9.963678		9.595398		0.404602	30
31	. 564396	5.34	. 968628	83	. 595768	6.17	. 404232	29
32	. 564716	5.33	. 968578	.83	. 596138	6.17	. 403862	28
33	. 565036	5.33	. 968528		. 596508	6.16	. 403492	27
34	. 565356	5.33 5.32	. 968479	. 83	. 596878	6.16	. 403122	26
35	. 565676	5.32	. 968429	. 83	. 597247	6.16	. 402753	25
36	. 565995	5.32	. 968379	. 83	. 597616	6.15	. 402384	24
37	. 566314	6.31	. 968329	. 83	. 597985	6.15	. 402015	23
38	.566632	6.31 5.31	. 968278	. 84	. 598354	6.15	. 401646	22
39	. 566951	. 31	. 968228		598722		. 401278	21
40	9.567269		9.968178		9.599091		0.400909	20
41	. 567587	5.29	. 968128		. 599459		. 400541	19
42	. 567904	5.29	. 968078	. 84	. 599827	6.13	. 400173	18
43	. 568222	5.28	968027	. 84	. 600194	6.13 6.12	. 399806	17
44	. 568539	6.28	. 967977		.60056\%		. 399438	16
45	. 568856	6.28 5.28	. 967927	. 84	. 600929	6.12 6.12	. 399071	15
46	. 569172	5.28 5.27	. 967876	. 84	. 601296	6.11	. 398704	14
47	. 569488	5.27 5.27	. 967826	. 84	. 601663	6.11	. 398337	13
48	. 569804	5.26	. 967775	. 84	. 602029	6.10	. 397971	12
49	. 570120	5.26 5.26	. 967725	. 84	. 602395	6.10 6.10	. 397605	11
50	9.570435		9.967674		9.602761		0.397239	10
51	. 570751	5.25 5.25	. 967624		. 603127	6.10 6.09	. 396873	9
52	. 571066	5.25 5.24	. 967573	. 84	. 603493	6.09 6.09	. 396507	8
53	. 571380	5.24 5.24	. 967522	. 85	. 603858	6.09 6.09	. 396142	7
54	. 571695	5.24	. 967471	. 85	. 604223	6.08	. 395777	6
55	. 572009	5.23	. 967421	. 85	. 604588	6.08	. 395412	5
56	. 572323	5.23 5.23	. 967370	. 85	. 604953	6.07	. 395047	4
57	. 572636	5.23 5.22	. 967319	. 85	. 605317	6.07	. 394683	3
58	572950	5.22	. 967268	. 85	. 6056882	6.07		2
59	. 673263	5.22 5.21	. 967217	. 85	. 606046	6.06	. 393954	1
60	. 573575	6.21	. 967166	85	. 606410	6.06	. 393590	0
M.	Ховіно.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. 1^{11}.	Oosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.573575		9.967166		9.606410		0.393590	60
1	. 573888	5.21	. 967115	. 85	. 606773	6.06	. 393227	59
2	. 574200	5.26	. 967064	. 85	. 607137	6.06 6.05	. 392863	58
3	. 574512	5.20	. 967013	. 85	. 607500	6.05	. 392500	57
4	. 574824	5.20 5.19	. 966961	. 85	. 607863	6.05	. 392137	56
5	. 575136	5.19 5.19	. 966910	. 85	. 608225	6.04	. 391775	55
6	. 575447	5.18	. 966859	. 86	. 608588	6.04	. 391412	54
7	. 575758	5.18	. 9668808	. 86	. 608950	6.03	. 391050	53
8	. 576069	5.17	. 966756	. 86	. 609312	6.03	. 390688	52
9	. 576379	6.17 5.17	. 966705	. 86	. 609674	6.03	. 390326	51
10	9.576689		9.966653	. 86	9.610036	6.02	0.389964	50
11	. 576999	5.17	. 966602	. 86	. 610397	6.02	. 389603	49
12	. 577309	5.16 5.16	. 966550	. 86	. 610759	6.02 6.02	. 389241	48
13	. 577618	5.16	. 966499	. 86	. 611120	6.02	. 388880	47
14	. 577927	5.15 5.15	. 966447	. 86	. 611480	6.01	. 388520	46
15	. 578236	5.15 5.14	. 966395	. 86	. 611841	6.01	.388159	45
16	. 578545	5.14	. 966344	. 86	.612201	6.00	. 387799	44
17	. 578853	5.14	. 966292	. 86	. 612561	6.00	. 387439	43
18	. 579162	5.13	. 966240	. 86	. 612921	6.00	.387079	42
19	. 579470	5.13 5.13	. 966188	. 86	. 613281	5.99	. 386719	41
20	9.579777	5.12	9.966136	. 87	9.613641	5.9	0.386359	40
21	. 580085	5.12	. 966085	. 87	. 614000	5.99	. 386000	39
22	. 580392	5.11	. 966033	. 87	. 614359	5.98 5.98	.385641	38
23	. 580699	5.11	. 965981	. 87	. 614718	5.98 5.98	. 385282	37
24	. 581005	5.11	. 965929	. 87	. 615077	5.98 5.97	. 384923	36
25	. 581312	5.10	. 965876	. 87	. 615435	5.97	. 384565	35
26	. 581618	5.10	. 965824	. 87	. 615793	5.97	. 384207	34
27	. 581924	5.09	. 965772	. 87	. 616151	5.96	. 383849	33
28	. 582229	5.09	. 965720	. 87	. 616509	5.96	. 383491	32
29	. 582535	5.09	. 965668	. 87	. 616867	5.96	. 383133	31
30	9.532840		9.965615		9.617224		0.382776	30
31	. 583145	5.08	. 965563	. 87	. 617582	5.95	. 382418	29
32	. 5838449	5.07	. 9655511	. 87	. 617939	5.95	. 382061	28
33	. 583754	5.07	. 9655458	. 87	. 618295	5.94	. 381705	27
34	. 584058	5.06	. 9655406	. 88	.618652	5.94	. 381348	26
35	. 5843665	5.06	. 9655353	. 88	. 619008	5.94	. 380999	25
36 37	. 58464968	5.06	. 9655348	. 88	. 619364	5.93	. 380638	${ }_{2}^{24}$
38 38	. 5885278	5.05	. 9655195	. 88	. 6192720	5.93	. 3789224	23
39	. 585574	5.05	. 965143	. 88	. 620432	5.93	. 379568	21
40	9.585877		9.965090		9.620787		0.379213	20
41	. 586179		. 965037	88	. 621142	5.92	378858	19
42	. 586482	5.03	. 964984	. 88	. 621497	5.92 5.91	378503	18
43	. 586783	5.03	. 964931	. 88	. 621852	5.91	378148	17
44	. 587085	5.02	. 964879	. 88	. 622207	5.91	. 377793	16
45	. 587386	5.02	. 964826	88	. 622561	5.91	. 377439	15
46	. 587688	5.01	. 964773	. 88	. 622915	5.90	377085	14
47	. 587989	5.01	. 964720	88	. 623269	5.90 5.90	. 376731	13
48	. 588289	5.01 5.01	. 964666		623623	5.90 5.89	376377	12
49	. 588590	. 01	. 964613	. 89	.6\%3976	5.89 5.89	. 376024	11
50	9.588890		9.964560		9.624330		0.375670	10
51	. 589190	5.00 4.99	. 964507		. 624683	5.89 5.88	. 375317	9
52	. 589489	4.99 4.99	. 964454	. 89	. 625036	5.88	. 374964	8
53	. 589789	4.99	. 964400	. 89	. 625388	5.88	. 374612	7
54	. 5900888	4.98	. 964347	. 89	. 625741	5.87	. 374259	6
55	. 5903887	4.98	. 964294	. 89	. 626093	5.87	. 373957	5
56	. 590686	4.97	. 964240	. 89	. 6264475	5.87	. 373555	4
67	. 5909884	4.97	. 964187	. 89	. 6227149	5.86	. 373203	3
58 59	. 591288	4.97	.964133 $.964,980$. 89	. 627149	5.86	. 37282495	2
60	. 591878	4.96	$\begin{aligned} & .964980 \\ & .964026 \end{aligned}$. 89	$.627501$	5.86	. 372148	0
M.	Corine.	D. $1^{\prime \prime}$.	Sline.	D. $1^{\prime \prime}$.	Cotaug.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.591878	4.96	9.9640\%	. 89	9.627852	5.85	0.372148	60
1	. 592176	4.95	. 963972	. 89	$.628203$	5.85	. 371797	59
2	. 5924773	4.95	. 963919	. 90	. 628554	5.85	. 371446	58
8	. 592770	4.95	. 9638865	. 90	. 628905	5.84	. 371095	57
4	. 593067	4.94	. 9633811	.90	. 629255	5.84	. 370745	56
5	. 5933363	4.94	. 9633757	.90	. 629606	5.84	. 370394	55
6	. 69336595	4.93	. 963704	. 90	. 6299396	5.83	. 370044	54
7	$\begin{aligned} & .593955 \\ & .594251 \end{aligned}$	4.93	. 9633595	. 90	. 63030656	5.83	. 3696944	53
8	$.594251$	4.93	. 9635542	. 90	.630656 .631005	5.83	369344 368995	52
9	. 694547	4.92	. 963542	. 90	. 631005	5.82		51
10	9.594842	4.92	9.963488	. 90	9.631355		0.368645	50
11	. 595137	4.91	. 963434	. 90	. 631704	5.82	. 368296	49
12	. 595432	4.91	. 963379	. 90	. 632053	5.81	. 367947	48
13	. 595727	4.91	. 963325	. 90	. 632402	5.81	. 367598	47
14	. 596021	4.90	. 963271	. 90	. 632750	5.81	. 367250	46
15	. 596315	4.90	. 963217	. 90	. 6333099	5.80	. 3669501	45
16	. 596609	4.89	. 963163	. 91	. 6333447	5.80 5.80	. 366553	44
17	.596903 .597196	4.89	. 9633108	. 91	. 6333795	5.80	366205 36585	43
18	. 5977196	4.89	. 9633054	. 91	.634143 .634490	5.79	365857 .36510	42
19	. 597490	4.88	. 962999	. 91	. 634490	5.79	. 365510	11
20	9.597783	4.88	9.962945	. 91	9.634838	6.79	0.365162	40
21	. 598075	4.88	. 962890	. 91	. 635185	5.78	.364815	39
22	. 598368	4.87	. 962836	. 91	. 635532	5.78	. 364468	38
23	. 598866 C	4.87	. 962781	. 91	. 635879	5.78	. 364121	37
24	. 598952	4.86	. 962727	. 91	. 636226	5.78	363774	36
25	. 699244	4.86	. 962672	. 91	. 636572	5.77	. 363428	35
20	. 599536	4.86 4.86	. 962617	. 91	. 636919	5.77	. 363081	34
27	. 599827	4.85	. 962562	. 91	. 637265	5.77	. 362735	33
28	. 600118	4.85	. 9662508	. 91	. 637611	5.77 5.76	. 362389	32
29	. 600409	4.84	. 962453	. 92	. 637956	5.76	. 362044	31
30	9.600700	4.84	9.962398		9.638302		0.381698	30
31	. 600990	4.84	. 962343	. 92	. 638647	5.76 5.75	. 361353	29
32	. 601280	4.84 4.83	. 962288	. 92	. 638992	5.75	. 361008	28
33	. 601570	4.83	. 962233	. 92	. 639337	5.75	. 360663	27
34	. 601860	4.83	. 962178	. 92	. 639682	5.74	. 360318	26
35	. 602150	4.82	. 962123	. 92	. 640027	5.74	. 359973	25
36	. 602439	4.82	. 962067	. 92	. 640371	5.74	. 359629	24
37	. 602728	4.81	. 962012	. 92	. 640716	5.73	. 359284	23
38	.603017 603305	4.81	. 961957	. 92	. 641060	5.73	. 358940	22
39	. 603305	4.81	. 961902	. 92	. 641404	5.73	. 358596	21
40	9.603594	4.80	9.961846		9.641747		0.358253	20
41	. 6038882	4.80 4.80	. 961791	. 92	. 642091	5.73 5.72	. 357909	19
42	. 604170	4.79	. 961735	. 92	. 642434	5.72	. 357566	18
43	. 604457	4.79	. 961680	. 93	.642777	5.72	. 357223	17
44	. 604745	4.79	. 961624	. 93	${ }^{.643120}$	5.71	. 3568880	16
45	. 605032	4.78	. 961569	. 93	${ }^{.643463}$	5.71	. 356537	15
46	. 605319	4.78	. 961513	. 93	.643806	5.71	. 356194	14
47	. 605606	4.78	. 961458	. 93	. 6441488	5.70	. 355852	13
48	. 605892	4.77	. 961402	. 93	. 644490	5.70	. 3555510	12
49	. 606179	4.77	. 961346	. 93	. 644832	5.70	. 355168	11
50	9.606455		9.961290		9.645174		0.354826	10
51	. 606751	4.76	. 961235		. 645516		. 354484	9
52	. 607036	4.76	. 961179	. 93	. 645857	5.69	. 354143	8
53	. 607322	4.76 4.75	961123	.93	. 646199	0.69 5.69	. 353801	7
54	. 607607	4.75	. 961067	. 93	. 646540	5.68	. 353460	6
55	. 607892	4.74	. 961011	. 93	646881	5.68	. 353119	5
56	. 608177	4.74	. 960955	. 93	647222	5.68	. 352778	4
57	. 603461	4.74	. 960399	. 94	. 647562	5.67	. 352438	3
58	. 608745	473	. 960843	. 94	. 647903	5.67	.352097	2
59	. 609029	4.73	.960786 .960730	. 94	. 648243	5.67	. 3514175	1
6	. 609313		. 96				351	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $\mathbf{1}^{\prime}$.	Cotang.	M.
0	9.609313	4.73	9.960730		9.648583		0.351417	60
1	. 609597	4.72	. 960674	. 94	. 648923	5.67 5.66	. 351077	59
2	. 609888	4.72	. 960618	. 94	. 649263	5.66	. 350737	58
3	. 610164	4.72	. 960561	. 94	. 649602	5.66	. 350398	57
5	. 610447	4.71	. 960505	. 94	. 649942	5.65	. 350058	56
5	. 610729	4.71	. 960448	. 94	. 650281	5.65	. 349719	55
7	. 611294	4.71	. 96030335	. 94	. 65509520	5.65	. 3193880	54
8	. 611576	4.70	. 960279	. 94	. 651297	5.64	. 348703	53
9	. 611858	4.70	. 960222	94	. 651636	5.64	. 348364	51
10	9.612140		9.960165		9.651974		0.348026	50
11	. 612421	4.69	. 960109	. 95	. 652312	5.64	. 347688	49
12	. 612702	4.69 4.68	. 960052	. 95	. 652650	5.63	. 347350	48
13	. 612983	4.68 4.68	. 9599995	. 95	. 652988	5.63	. 347012	47
14	. 613264	4.68	. 959938	. 95	. 653326	5.63	. 346674	46
15	613545	4.67	. 959882	. 95	. 653663	5.62	. 346337	45
16	. 613825	4.67	. 959825	. 95	. 654000	5.62	. 346000	44
17	. 614105	4.67	. 959768	. 95	. 654337	2	. 345663	43
18	. 614385	4.66	. 959711	. 95	. 654674	5.62 5.61	. 345326	42
19	. 614665	4.66	959654	. 95	. 655011	5.61	. 344989	41
20	9.614944		9959596		9.655348		0.344652	40
21	. 615223	4.65	. 959539	. 95	. 655684	5.61	. 344316	39
22	. 615502	4.65	. 959482	. 95	. 656020	5.60	. 343980	38
23	. 615781	4.64	. 959425	. 95	. 656356	5.60	. 343644	37
24	. 616060	4.64 4.64	. 959368	. 96	. 656692	5.60	. 313308	36
25	. 616338	4.64	. 959310	. 96	. 657028	5.60	. 342972	35
26	. 616616	4.64	. 959253	. 96	. 657364	5.59	. 342636	34
27	. 616894	4.63	. 959195		. 657699	5.59	. 342301	33
28	. 617172	4.63 4.63	. 959138	. 96	. 658034	5.58	. 341966	32
29	. 617450	4.63	. 959080	. 96	. 658369	5.58	341631	31
30	9.617727		9.959023		9.658704		0.341296	30
31	. 618004	4.61	. 958965	96	. 659039	5.58	. 340961	29
32	. 618281	4.61	. 958908	. 96	659373	5.57	. 340627	28
33	. 618558	4.61	. 958850	. 96	659708	5.57	. 340292	27
34	. 618834	4.60	. 958792	. 96	660042	5.57	. 339958	26
35	. 619110	4.60	958734	. 96	660376	5.56	. 339624	25
36	. 619386	4.60	. 9588677	. 96	660710	5.56	. 3392990	24
37	. 619662	4.59	.958619	. 97	661043	5.56	. 3388957	23
38	. 619938	4.59	. 9585851	. 97	661377	5.56	. 3388238	22
39	. 620213	4.59	.9585 3	. 97	661710	5.55	. 338290	21
40	9.620488		9.958445		9.662043		0.337957	20
41	. 620763	4.58	.95838'/	97	. 662376	5.55	. 337624	19
42	. 621038	4.58	. 958329	. 97	. 662709	5.54	. 337291	18
43	. 621313	4.57	. 958271	. 97	. 663042	5.54	. 336958	17
44	. 621587	4.57	. 958213	. 97	. 663375	5.54	. 336625	16
45	. 621861	4.57	958154	. 97	663707	5.54	336293	15
46	. 622135	4.56	958096	. 97	664039	5.53	335961	14
47	. 622409	4.56	. 9580388	. 97	.664371	5.53	335629	13
48	. 622632	4.56	. 9577979	.97	. 664703	5.53	. 3352997	12
49	. 622956	4.55	. 957921	. 97	665035	5.53	. 334965	11
50	9.623229		9.957863		9.665366		0.334634	10
51	. 623502	4.54	. 957804	. 98	. 665698	5.52	. 334302	9
52	623774	4.54	. 9577746	. 98	. 666029	5.52	.333971	8
53	. 621047	4.54	. 957687	. 98	666360	5.51	. 333640	7
54	. 624319	4.53	. 957628	. 98	666691	5.51	333309	5
55	. 624591	4.53	.957570	. 98	667021	5.51	332979	5
56	. 624863	4.53	. 9577511	. 98	. 6677352	5.51	. 332648	4
57	6251	4.52	957452	. 98	. 6667682	5.50	. 332318	3
58	. 62	4.52	957393 957335	. 98	.668013 .668313	5.50	.331987 .331657	2
59 60	$\begin{array}{r}625677 \\ .625948 \\ \hline\end{array}$	4.52	$\begin{aligned} & .957335 \\ & .957276 \end{aligned}$	98	$\begin{aligned} & .668313 \\ & .668673 \end{aligned}$	5.50	.331657 .331327	0
M .	Cosine.	D. $1^{\prime \prime}$.	Sivo.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M	Bline.	D. 1".	Cosine.	D $1^{\prime \prime}$.	Taug.	D. 1".	Cotanz.	M.
0	9.625948		9.957276		9.668673		0.331327	60
1	. 626219	4.51	$.957217$. 98	. $666900{ }^{6}$	5.50 5.49	. 330998	59
2	. 626490	4.51	. 957158	. 98	. 6699332	6.49 5.49	. 330668	58 57
3	. 626760	4.50	. 957099	. 98	.669661	5.49 5.49	.330339 .330099	57 56
4	. 627030	4.50	. 957040	. 99	. 669991	5.49 5.49	.330009 .329680	56 55
5	.627300 .627570	4.50	. 9569881	. 99	. 670320	5.48	. 3296850	65
6	.627570 .627840	4.49	. 9569861	. 99	. 670649	5.48	. 3293951	54
7	. 6288109	4.49 4.49	. 956803	. 99	. 671306	5.48	. 328694	52
9	. 628378	4.49	. 956744	99 99	. 671635	5.47	. 328365	51
1 C	9.628647	4.48	9.956684	. 99	9.671963		0.328037	50
11	. 623916	4.48 4.48	. 956625	. 99	. 672291	5.47 5.47	. 327709	49
12	. 629185	4.48 4.47	. 956566	. 99	. 672619	5.46	. 327381	48
13	. 629453	4.47 4.47	. 956506	. 99	. 672947	5.46	. 327053	47
14	. 629721	4.47	. 956447	. 99	. 673274	5.46 5.46	. 326726	46
15	. 629989	4.46	. 956387	99	. 673602	5.46	. 326398	45
16	. 630257	4.46	. 956327	. 99	. 673929	5.46	. 326071	44
17	. 630524	4.46	956268	. 99	. 674257	6.45	. 325743	43
18	. 630792	4.45	. 956208	1.00	. 674584	5.45	. 325416	42
19	. 631059	4.45	. 956148	1.00	. 674911	5.45	. 325089	41
20	9.631326	4.45	9.956089	1.00	9.675237		0.324763	40
31	. 631593	4.45	. 956029	1.00	. 675564	5.44 5.44	. 324436	39
22	. 631859	4.44	. 9559969	1.00	. 675890	5.44 5.44	. 324110	38
23	. 632125	4.44 4.44	. 955909	1.00	. 676217	5.44 6.44	. 323783	37
24	. 632392	4.43	. 9558849	1.00	. 676543	6.44 5.43	. 323457	36
25	. 632658	4.43	. 955789	1.00	. 676869	5.43	. 323131	35
26	. 632923	4.43	. 955729	1.00	. 677194	5.43	. 322806	34
27	. 633189	4.42	. 955669	1.00	. 677520	5.42	. 322480	33
28	. 633454	4.42	. 9555609	1.00	. 677846	5.42 5.42	. 322154	32
29	. 633719	4.42	. 965548	1.00	. 678171	5.42	321829	31
30	9.633984	4.41	9.955488	1.00	9.678496		0.321504	30
31	. 634249	4.41	. 955428	1.00	. 678821	5.42	. 321179	29
32	. 634514	4.41	. 955368	1.01	. 679146	5.41	. 320854	28
33	. 634778	4.40	. 9553307	1.01	. 679471	5.41	. 320529	27
34	. 635042	4.40	. 955247	1.01	. 679795	5.41	. 320205	26
35	. 635306	4.40	. 955186	1.01	. 680120	0.41 5.40	. 319880	25
36	. 635570	4.40	. 955126	1.01	. 680444	5.40	. 319556	24
37	. 635834	4.39	. 955065	1.01	. 680768	5.40 5.40	. 319232	23
38	. 636097	4.39	. 955005	1.01	. 681092	5.40	. 318909	22
39	. 636360	4.39 4.38	. 954944	1.01	. 681416	5.49	. 318584	21
40	9.638623		9.954883		9.681740		0.318260	20
41	. 636836	4.38 4.38	. 954823	1.01	. 682063	5.39	. 317937	19
42	. 637148	4.37	. 954762	1.01	. 682387	5.39	. 317613	18
43	. 637411	4.37	. 954701	1.01	. 682710	5.38	. 317290	17
44	. 637673	4.37	. 954640	1.02	. 683033	5.38	. 316967	16
45	. 637935	4.36	. 954579	1.02	. 683356	5.38	. 316644	15
46	. 638197	4.36 4.36	. 954518	1.02	. 683679	5.38 5.38	. 316321	14
47	. 638458	4.36 4.36	. 954457	1.02	. 684001	5.38	315999	13
48	. 638720	4.36 4.35	. 954396	1.02	. 684324		. 315676	12
49	. 638981	4.35	. 954335	1.02	. 684646	5.37	. 315354	11
50	9.639242		9.954274		9.684968		0.315032	10
51	. 639503	4.34	. 954213	1.02	. 685290	5.36	. 314710	9
52	. 639764	4.34	. 954152	1.02	. 685612	5.36	. 314388	8
53	. 640924	4.34	. 954090	1.02	. 685934	5.36	. 314066	7
54	. 640284	4.33	. 954029	1.02	. 686255	5.36	. 313745	6
65	. 640544	4.33	. 953968	1.02	. 686577	5.35	. 313423	5
56	. 640804	4.33	. 953906	1.02	. 686898	5.35	. 313102	4
57	. 641064		. 953845	1.03	. 687219	5.35	. 312781	8
58	. 641324	4.32 4.32	. 953783	1.03	687540	5.35	. 312460	2
59	:641583	4.32 4.32	. 953722	1.03	687861		. 312139	1
60	. 641842	4.32	.SE3660	1.03	. 688184	5.35	. 31181	0
M	Cosine	D $1^{\prime \prime}$	give	D. $1^{\prime \prime}$.	Cotang.	D. 11 .	Teng.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{1 \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.64184%		9.953660	1.03	9.688182		0.311818	60
1	${ }^{.642101}$	4.31	$.953599$	1.03 1.03	$.688502$	5.34	$.311499$	59
2	.642360 .642618	4.31	. 953353775	1.03 1.03	.688823 .689143	5.34	.311177 .310857	58 57
3	.642618 .642877	4.31	. 953475	1.03	.689143 .689463	5.34	310857 .310537	57 56
4	. 64288178	4.30	. 953413	1.03	.689463 .689783	5.33	.310537 .310217	56 55
5	. 643393	4.30	. 9533290	1.03	. 690103	5.33	. 3109897	54
7	. 643650	4.30 4.29	. 953228	1.03 103	. 690423	5.33	. 309577	53
8	. 643908	4.29 4.29	. 953166	1.03 1.03	. 690742	5.33 5.32	309258	52
9	. 644165	4.29 4.29	. 953104	1.03	. 691062	5.32 5.32	. 308938	51
10	9.644423	4.28	9.953042	1.03	9.691381		0.308619	50
11	. 644680	4.28 4.28	. 9529880	1.04	. 691700	5.32	. 308300	49
12	. 6449336	4.28	. 952918	1.04	. 692019	5.31	. 307981	48
13	. 645193	4.27	. 9528855	1.04	.692338	5.31	. 307662	47
14	. 645450	4.27	. 952793	1.04	${ }^{.692656}$	5.31	.37734	4.6
15	. 645706	4.27	. 952731	1.04	. 692975	5.31	. 307025	45
16	. 645962	4.26	. 9526699	1.04	. 6932938	5.30	. 3067078	44
17	. 646218	4.26	. 952606	1.04	. 6933612	5.30	$\begin{array}{r}.306388 \\ \\ \\ \\ \\ \\ \hline\end{array}$	43
18	. 646474	4.26	. 95252481	1.04	. 6994248	5.30	. 3060750	42
19	. 646729	4.26	. 952481	1.04	. 694248	5.30	. 305752	41
20	9.646984	4.25	9.952419	1.04	9.694566	5.29	0.305434	
21	. 6477440	4.25	. 95232356	1.04	. 6948883	5.29 5.29	$.305117$	39
22	. 647494	4.25	. 9522924	1.04	. 69952018	5.29	.304799 .304482	38 37
23	. 647749	4.24	. 952231	1.04	. 69958538	5.29	. 304482	37 36
24	. 648800	4.24	. 952168	1.05	. 6996153	5.29	. 304164	36 35
25	. 64848512	4.24	. 952043	1.05	. 695470	5.28	303530	34
27	. 6488766	4.23	. 951980	1.05	. 696787	5.2	. 303213	33
28	. 649020	4.23 4.23	. 951917	1.05 .05	. 697103	5.28 5.28	. 302897	32
29	. 649274	4.23 4.22	. 951854		. 697420		. 302580	31
30	9.649527	4.22	9.951791	1.05	9.697736		0.302264	30
31	. 649781	4.22 4.22	. 951728	1.05	. 698053	5.27	. 301947	29
32	. 650034	4.22	. 951665	1.05	. 698369	5.27 5.27	. 301631	28
33	. 650287	4.21	. 951602	1.05	. 698685	5.26	. 301315	27
34	. 650539	4.21	. 951539	1.05	. 6999001	5.26 5.26	. 300999	25
35	. 650792	4.21	. 951476	1.05	. 6993316	5.26 5.28	. 300684	25
36	. 651044	4.20	. 951412	1.05	. 6999632	5.26	. 300368	24
37	. 651297	4.20	. 951349	1.06	. 6999947	5.26	. 3000053	23
38	. 651549	4.20	. 951286	1.06	.700263 .700578	5.25	. 2999737	22
39	. 6	4.19	. 951222	1.06	. 700578	5.25	299422	21
40	9.652052		9.951159		9.700893		0.299107	20
41	. 652304	4.19 4.19	. 951096	1.06	. 701208	5.25 5.25	. 298792	19
42	. 652555	4.19 4.18	. 951032	1.06	. 701523	5.25 5.24	. 298477	18
43	. 6528306	4.18	. 950968	1.06	. 701837	5.24 5.24	. 298163	17
44	. 653057	4.18	. 950905	1.06	. 702152	5.24	. 297848	16
45	. 653308	4.18 4.18	. 950841	1.06	. 702466	5.24	. 297531	15
46	. 653558	4.17	. 950778	1.06	. 702781	5.24	297219	14
47	:653808	4.17	. 950714	1.06	. 703095	5.23	296905	13
49	65	4.16	6	1.06	.703722	5.23	296278	11
50	9.654558	4.16	9.950522	1.07	9.704036		0.295964	10
51	. 6548008	4.16	. 950458	1.07	. 704350	5.23 5.22	. 2956530	9
52	. 6555058	4.15	. 95039394	1.07	.704663 704976	5.22	. 2953837	7
53 54	. 65553507	4.15	. 95033026	1.07	. 70497976	5.22	. 295024	7
54 55	. 65558505	4.15	. 9502026	1.07	. 705603	5.22	. 294397	5
55	. 6556054	4.15	. 950138	1.07	. 705916	5.22	. 294084	
57	. 656302	4.14	. 950074	1.07	. 706228	5.21	. 293772	3
58	. 656551	4.14	. 950010	1.07	. 706541	5.21	. 293459	2
59	. 656799	4.14 4.13	. 949945		. 706854		. 293146	1
60	. 657047	4.13	. 949881	1.07	.707166	5.21	. 292834	0
M.	Costine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Dotang.	D. 111.	Tang	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.657047		9.949881		9.707166		0.292834	60
,	. 657295	4.13	$.919816$	1.07	.707478	5.20 5.20	292522	59
2	. 657542	4.12	. 949752	1.07	707790	5.20 5.20	292210	58
3	. 657790	4.12	. 9496888	1.08	. 708102	5.20	. 291898	57
4	. 658037	4.12	. 949623	1.08	. 708414	5.20	291586	56
5	. 6582854	4.12	. 94949598	1.08	. 708726	5.19	291274	55
6	. 65585778	4.11	. 94949429	1.08	. 70903379	5.19	. 290963	54
E	659025	4.11	. 949364	1.08	. 709660	5.19	. 2906541	53
9	. 659271	4.11 4.10	. 949300	1.08 1.08	709971	5.19	. 2990029	52
10	9.659517		9.949235		9.710282		0.289718	50
11	. 659763	4.10	. 949170	1.08	. 710593	5.18	. 289407	49
12	. 660009	4.10 4.10	. 949105	1.08 1.08	. 710904	5.18	. 289096	48
13	. 660255	4.09	. 949040	1.08	. 711215	5.18 5.18	. 238785	47
14	. 680501	4.09	. 948975	1.08	711525	5.18 5.17	. 288475	46
15	. 660746	4.09 4.09	.948910	1.08	. 711836	5.17 5.17	. 288164	45
16	. 660991	4.08	. 948845	1.08 1.09	. 712146	5.17 5.17	. 287854	44
17	. 661236	4.08	. 948780	1.09 1.09	.712456	5.17	. 287544	43
18	. 661481	4.08 4.08	. 948715	1.09 1.09	. 712766	5.17 6.17	. 287234	42
19	. 661726	4.08	. 948650	1.09	. 713076	6.17 6.16	. 286924	41
20	9.661970	4.07	9.948584	1.09	9.713386	5.16	0.286614	40
21	. 662214	4.07	. 948519	1.09	. 713696	5.16	. 286304	39
22	. 662459	4.07	. 948454	1.09	. 714005	5.16 5.18	. 285995	38
23	. 662703	4.06	. 948388	1.09	. 714314	5.16	. 285686	37
24	. 662946	4.06	. 918383	1.09	. 714624	5.15	. 285376	36
25	. 663190	4.06	. 948257	1.09	. 714933	5.15	. 285067	35
26	. 663433	4.05	. 948192	1.09 1.09	.715242	5.15 5.15	. 284758	34
27	. 6633677	4.05	. 948128	1.09	. 715551	5.15 5.15	. 284449	33
28	. 6633920	4.05	. 943060	1.09	. 715860	5.14	. 284140	32
29	. 664163	4.05	. 947995	1.10	. 716168	5.14	. 283832	31
30	9.664406	4.04	9.947929	1.10	9.716477	5.14	0.283523	30
81	. 664648	4.04	. 947863	1.10	. 716785	5.14	. 283215	29
32	.664891 .635133	4.04	. 9477797	1.10	.717093	5.14	. 282907	28
33	. 63513375	4.03	.947731 .947665	1.10	717401 717709	5.13	. 2825999	27
34	.665375 .665617	4.03	.947665 .947600	1.10	.717709 718017	5.13	. 2822291	28
36	. 665859	4.03	. 9477600	1.10	. 71818325	5.13	. 281988	25
37	. 6666100	4.03	. 947467	1.10	.718633	5.13	. 281367	24 23
38	. 666342	4.02 4.02	. 947401	1.10 1.10	. 718940	5.13	. 281060	28
39	. 666583	4.02 4.02	. 947335	1.10 1.10	. 719248	5.12 5.12	. 280752	21
40	9.666824		9.947269		9.719555		0.280445	20
41	. 667065	4.01	. 947203	1.10	. 719862	5.12 5.12	. 280138	19
42	. 667305	4.01	. 947136	1.11	. 720169	5.12	. 279831	18
43	. 667546	4.01	. 947070	1.11	720476	5.11	. 279524	17
4	. 667786	4.00	. 947004	1.11	. 720783	5.11	. 279217	16
45	. 668027	4.00	. 946937	1.11	. 721089	6.11	. 278911	15
46 47	. 6688267	4.00	. 946871	1.11	.721396	5.11	. 278604	14
48	. 6688746	3.99	. 946804	1.11	. 721702	5.10	. 278298	13
49	. 668986	3.99	946738	1.11	. 722009	5.10	. 277991	12
50	9.669225		9.946604	1.1	9.722621	5.10	0.277379	
51	. 669464	3.99	. 946538	1.11	. 722927	5.10	. 277073	0
52	669703	3.98 3.98	. 946471	1.11	. 723232	5.10	276768	8
53	. 669942	3.98 3.98	. 946404	1.11	. 723538	5.09	. 276462	7
54	. 670181	3.98	. 946337	1.12	. 723844	5	. 276156	6
55	. 670419	3.97	. 946270	1.12	. 724149	5.0	. 275851	6
56 57	. 670658	3.97	. 946203	1.12	. 724454	5.09	. 275546	4
58	. 6711134	3.97	. 946136	1.12	. 724760	5.08	. 275240	3
59	${ }_{671372}$	3.96	.946069 .946002	1.12	. 725065	5.08	. 274935	2
60	. 671609	3.96	. 945935	112	. 725674	5.08	.274630 .274326	1
M	Costne.	D. $1^{\text {n }}$	Sine.	D $1^{\prime \prime}$.	Cotang.	D. 1'.	Tang.	Y.

M.	Sino.	D. $1^{1 \prime}$.	Cosine.	D. ${ }^{1 \prime}$.	Tang.	D. $1^{\prime \prime}$	Cotamg.	M.
0	9.671609		9.945935	1.12	9.725674	5.08	0.274326	60
1	. 671847	3.96	. 945868	1.12 1.12	. 725979	5.08	. 274021	59
2	. 672084	3.96 3.95	. 945800	1.12 1.12	. 726284	5.08 5.07	273716	58
3	. 672321	3.95 3.95	. 945733	1.12	. 726588	5.07	273412	57
4	. 672558		. 945666	1.12	. 726892	5.07	. 273108	56
5	. 672795	3.95	. 945598	1.12	. 727197	6.07	. 272803	55
6	. 673032	. 94	. 945531	1.12	. 727501	5.07	. 272499	54
7	. 673268	3.94 3.94	. 945464	1.13	. 727805	5.06	. 272195	53
8	. 673505	3.94 3.94	. 945396	1.13	.728109	5.06	. 271891	52
9	. 673741	3.93	. 945328	1.13	. 728412	5.06	. 271588	51
10	9.673977	3.93	9.945261	1.13	9.728716	5.06	0.271284	50
11	. 674213	3.93 3.93	. 945193	1.13	. 729020	5.06	. 270980	49
12	. 674448	3.93 3.93	. 945125	1.13	729323	5.05	. 270677	48
13	. 674684	3.93 3.92	. 945058	1.13	729626	5.05	. 270374	47
14	. 674919	3.92 3.92	944990	1.13	729929	5.05	270071	46
15	. 675155	3.92 3.92	. 944922	1.13	730233	5.05	. 269767	45
16	. 675390	3.92 3.91	. 944854	1.13	730535	5.05	. 269465	44
17	. 675624	3.91	944786	1.13	730838	5.05	. 269162	43
18	. 675859	3.91 3.91	.944718	1.13	731141	6.04	. 268859	42
19	. 676094	3.91	. 944650	1.13	731444	6.04	88556	41
20	9.676328		9.944582	1.14	9.731746	5.04	0.268254	40
21	. 676562	3.90 3.90	. 944514	1.14	. 732048	5.04	. 267952	39
22	. 676796	3.90 3.90	. 944446	1.14	. 732351	5.04	- . 267649	38
23	. 677030	3.90 3.90	. 944377	1.14	. 732653	5.03	. 267347	37
24	. 677264	3.98 8.89	. 944309	1.14	. 732955	5.03	. 267045	36
25	. 677498	3.89 3.89	.944241	1.14	. 733257	5.03	. 266743	35
26	. 677731	3.89 3.89	. 944172	1.14	. 733558	5.03	. 266442	34
27	. 677964	3.89 3.88	. 944104	1.14	. 733860	5.03	. 266140	33
28	. 678197	3.88 3.88	. 944036	1.14	. 734162	5.02	. 265838	32
29	. 678430	3.88 3.88	943967	1.14	. 734463	5.02	. 265537	31
30	9.678663		9.943899	1.14	9.734764	5.02	0.265238	30
31	. 678895	3.88 3.87	. 943830	1.14	. 735066	5.02	. 264934	29
32	. 679128	3.87 3.87	. 943761	1.15	. 735367	5.02	. 264633	28
33	. 679360	3.87 3.87	. 943693	1.15	735668	5.01	. 264332	27
34	. 679592	3.87 3.87	943624	1.15	. 735969	5.01	. 264031	26
35	. 679824	3.87 3.86	. 943555	1.15	. 736269	5.01	. 263731	25
36	. 680056	3.86 3.86	. 943486	1.15 1.15	. 736570	5.01	. 263430	24
37	. 680288	3.86 3.86	. 943417	1.15	. 736870	5.01	. 263130	23
38	. 680519	3.86 3.86	. 943348	1.15	. 737171	5.01	. 262829	22
39	. 680750	3.86 3.85	. 943279	1.15	. 737471	5.00	. 262529	21
40	9.680982		9.943210		9.737771	5.00	0.262229	20
41	. 681213	3.85 3.85	.943141	1.15	. 738071	5.00	. 261929	19
42	. 681443	3.85 3.84	. 943072	1.15 1.15	. 738371	5.00 5.00	. 261629	18
43	. 681674	3.84 3.84	. 943003	1.16	738671	5.00	.261329	17
44	. 681905	3.84 3.84	. 942934	1.15 1.15	. 738971	6.00 4.99	.261029	16
45	682135	3.84 3.84	. 942864	1.16	. 739271	4.99 4.99	. 260729	15
46	. 682365	3.84 3.83	. 942795	1.16	. 739570	4.99	. 260430	14
47	. 682595	3.83 3.83	. 942726	1.16	. 739870	4.99	. 260130	13
18	. 682825	3.83 3.83	. 942656	1.16	. 740169	4.99	. 259831	12
49	. 683055	3.83 3.83	. 942587	1.16	.740468	4.99 4.98	.259534	11
60	9.683284		9.942517		9.740767	4.98	0.259233	$1:$
51	. 683514	3.82	. 942448	1.16	. 741066	4.98 4.98	. 258934	3
52	. 633743	3.82 3.82	. 942378	1.16	. 741365	4.98	. 258635	8
53	.683972	3.82 3.82	. 942308	1.16	. 741664	4.98 4.98	.258336	7
64	.684201	3.82 3.81	. 942239	1.16	. 741962	4.98 4.98	.258838	6
55	. 684430	3.81 3.81	. 942169	1.16	.742261	4.97	.257739	5
56	. 684658	3.81	. 942099	1.16	.742559	4.97	. 257441	4
57	. 684887	3.81 3.80	. 942029	1.16	742858 743156	4.97	. 257142	3
58	. 685115	3.80 3.80	.941959	1.17	743156	4.97	. 256844	2
59	. 685343	3.80 3.80	.941889 .941819	1.17	.743454 .743752	4.97	.256546 .256248	1
M.	Oneino.	D 1'1.	Slue.	D. $1^{\prime \prime}$.	Cotang.	D. 1".	Tang.	M.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline M \& Sine. \& D. $1^{\prime \prime}$. \& Cosino. \& 11. \& Tang. \& 1". \& Cotang. \& M.

\hline 0 \& 9.685571 \& \& 9.941819 \& \& 9.743752 \& \& 0.256248 \& 60

\hline 1 \& ${ }^{6} 685799$ \& 3.80
3.79 \& 941749 \& 1.17 \& . 7444430 \& 4.96 \& ${ }^{.} 2555950$ \& ${ }_{58}^{59}$

\hline ${ }^{8}$ \& . 6886027 \& ${ }_{3}^{3.79}$ \& . 9416769 \& 1.17 \& ${ }_{7} 7443488$ \& 4.96 \& . 25556555 \&

\hline 4 \& . 68864258 \& 3.79 \& . 94161539 \& 1.17 \& . 7444943 \& 4.96 \& . 2555057 \& ${ }_{66}$

\hline 5 \& ${ }_{686709}$ \& 3.79 \& . 941469 \& 1.17 \& . 7454493 \& 4.96 \& . 254760 \& ${ }_{65} 6$

\hline 6 \& . 686936 \& 3.78 \& . 941398 \& 1.17 \& . 745538 \& 4.96 \& \& 54

\hline 7 \& 687163 \& 3.78
3.78

3 \& . 941328 \& 1.17 \& . 745835 \& 4.95 \& . 254165 \& 63

\hline 8 \& . 6873 \& 3.78
3.78 \& . 941258 \& 1.17 \& ${ }^{.746}$ \& 4.95 \& 253868 \& 52

\hline 9 \& . 687616 \& \& . 941187 \& 1.17 \& . 746429 \& 4.95 \& 253571 \&

\hline 16 \& 9.687843 \& 3.77 \& 9.94 \& 1.18 \& 9.746728 \& 4.95 \& 0.253274 \& 50

\hline 11 \& . \& 3.77 \& . 9410 \& 1.18 \& . 747 \& 4.95 \& \&

\hline 14 \& . 68888747 \& 3.76 \& ${ }^{9} 940834$ \& 1.18 \& . 747913 \& 4.94 \& . 2522087 \& ${ }_{46}^{47}$

\hline 15 \& . 6888972 \& 3.76 \& . 94076 \& 1.18 \& . 74820 \& 4.94 \& 251791 \& 45

\hline 16 \& . 689198 \& 3.76 \& 94069 \& 1.18 \& . 74850 \& ${ }_{4}^{4.94}$ \& 251495 \& 44

\hline 17 \& . 689423 \& ${ }_{3.75}$ \& . 9406 \& 1.18 \& \& 4.93 \& 251199 \& 43

\hline 18 \& . 699648 \& \& . 940551 \& \& .749097 \& 4.93 \& \& 42

\hline 19 \& . 689873 \& 3.75
3.75 \& . 940480 \& 1.18 \& . 749393 \& 4.93 \& . 25061 \& 41

\hline 20 \& 9.690098 \& \& 9.940409 \& 1.18 \& 9.7496 \& 4.93 \& 0.250311 \& 40

\hline 21 \& . 690323 \& \& . 940338 \& \& . 749985 \& \& \&

\hline \& . 690548 \& | 3.74 |
| :--- |
| 3.74 | \& . 94026 \& 1.19 \& . 750281 \& \& 249719 \& 38

\hline \& . 690772 \& 3.74 \& . 940196 \& 1.19 \& . 750576 \& 4.92 \& 24 \& 37

\hline 24 \& . 69099 \& 3.74 \& . 940125 \& 1.19 \& . 750872 \& 4.92 \& .249 \& ${ }^{36}$

\hline \& . 69122 \& 3.73 \& . 940005 \& 1.19 \& .75116 \& 4.92 \& . 2485838 \& ${ }^{36}$

\hline 28 \& . 691444 \& 3.73 \& . 93998 \& 1.19 \& .751462 \& 4.92 \& 248538 \& ${ }_{83}$

\hline 27 \& . 69166 \& 3.73 \& . 9399 \& . 18 \& . 752175 \& 4.92 \& . 248243 \& ${ }^{33}$

\hline \& . 691892 \& \& . 939840 \& 1.19 \& . 752 \& 4.92 \& \& 32

\hline 29 \& . 692115 \& 3.72 \& . 9397 \& . 19 \& 752 \& 4.91 \& 247 \&

\hline 30 \& 9.692339 \& 3.72 \& 8.9396 \& 1.19 \& 9.752 \& 4.91 \& 0.247 \& ${ }^{20}$

\hline 31 \& . 69225 \& \& ${ }_{9395}^{93967}$ \& 1.19 \& \& 4.91 \& . 2446769 \&

\hline 32 \& . 692785 \& 3.72 \& ${ }_{93948} .9395$ \& 1.19 \& .753231 \& 4.91 \& ${ }^{246474}$ \&

\hline \& . 69 \& 3.71 \& ${ }^{9} 939410$ \& 1.19 \& .753320 \& 4.91 \& 246 \& 26

\hline \& \& 3. \& ${ }_{939339}$ \& \& \& \& 245885 \& 25

\hline 35 \& . 69345 \& 3.7 \& .939339 \& 1.20 \& .754115 \& \& \&

\hline 36 \& \& 3.71 \& ${ }_{939195}^{\text {.93267 }}$ \& . 20 \& .754409 \& . 9 \& 245591 \& 23

\hline \& \& 3.70 \& ${ }^{.939195}$ \& 1.20 \& \& 4.90 \& 245003 \& 22

\hline ${ }^{38}$ \& . 694120 \& 3.70 \& .939123 \& 1.20 \& .754997 \& 4.9 \& . 2447709 \& 21

\hline 39 \& 342 \& 3.70 \& \& 1.20 \& \& 4.90 \& . 244709 \& 21

\hline 40 \& 9.6945 \& 3.2 \& 9.9389 \& 1.20 \& 9.755 \& \& 0.244415 \& 20

\hline 41 \& . 694786 \& \& . 933890 \& 1.20 \& \& 4.89 \& 243828 \& 19

\hline \& \& 3.69 \& .933836 \& 1.20 \& .756172 \& 4.89 \& 243 \&

\hline 43 \& . 6952 \& 3.69 \& .9387 \& 1.20 \& . 756 \& 4.89 \& 43 \& 17

\hline 44 \& . 695450 \& 3.69 \& . 933691 \& 1.20 \& . 7567 \& \& 23 \& 15

\hline 45 \& \& ${ }_{3.69}$ \& .93862 \& 1.20 \& .757 \& 4.89 \& 24948 \&

\hline 46 \& . 695892 \& 3.68 \& . 9335 \& 1.20 \& . 757 \& 4.8 \& 242655 \& 14

\hline 47 \& . 696113 \& 3.68 \& . 933475 \& 1.21 \& . 7576 \& 4.8 \& 243069 \&

\hline 48 \& ${ }_{6} 69633$ \& 3.68 \& .933402
93833 \& 1.21 \& .75 \& 4.88 \& 242009 \& 11

\hline 49 \& 69655 \& 3.67 \& . 938330 \& 1.21 \& . 75 \& 4.88 \& \&

\hline \& 9.6967 \& \& 9.9382 \& 1.21 \& 9.758 \& . 8 \& 0.24 \&

\hline \& \& 3.67 \& ${ }_{9381} 93$ \& 1.21 \& ${ }_{759}^{758}$ \& 4.88 \& 24 \& 8

\hline \& .69721 \& 3.67 \& \& 1.21 \& \& 4.8 \& . 240605 \& 7

\hline 53 \& . 69 \& 3.66 \& ${ }_{937}^{938}$ \& 1.21 \& ${ }^{.} 75939395$ \& \& 240313 \&

\hline \& \& 3.66 \& ${ }_{9378}$ \& 1.21 \& \& 4.87 \& 2403 \& 5

\hline \& . 69 \& 3.66 \& \& 1.2 \& ${ }_{760272}$ \& 4.87 \& 239728 \& 4

\hline 56 \& . 6 \& 3.6 \& \& \& 760272 \& \& 239436 \& 3

\hline \& . 69 \& 3.65 \& 937 \& 1.21 \& . 760 \& \& . 239436 \& 3

\hline \& \& 3.65 \& \& 1.21 \& \& 4.86 \& 2 \& 2

\hline 59 \& 69875 \& 3.65 \& \& 1.22 \& $$
\begin{aligned}
& .761148 \\
& .761439
\end{aligned}
$$ \& 4.88 \& \[

.2388561
\] \& 0

\hline $\underline{0}$ \& . 698970 \& \& \& \& \& \& \&

\hline M. \& In \& D. $1^{\prime \prime}$ \& Sine. \& D. 1 \& Cotang. \& D. 1 \& Thug \& M.

\hline
\end{tabular}

M.	Sinve.	D. 1'.	Comine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M
0	9.698970	3.65	9.937531	1.22	9.761439	4.86	0.238561	60 69
$\frac{1}{2}$. 699189	3.65 3.64	.937458 .937385	1.22	$\begin{aligned} & .761731 \\ & .762023 \end{aligned}$	4.86 4.86	$\begin{aligned} & .238269 \\ & .237977 \end{aligned}$	69 58
2 3 3	. 69999626	3.64	.937385 .937312	1.22	.762023 .762314	4.86	. 237686	68 57
4	. 699844	3.64 3.64	. 937238	1.22 1.22	. 762606	4.86 486	. 237394	56
5	. 700062	3.64 3.63	. 937165	1.22	. 762897		. 237103	55
6	. 700280	3.63 8.63	. 937092	1.22	. 763188	4.85 4.85	. 236812	54
7	. 700498	8.63 3.63	. 937019	1.22	. 763479	4.85 4.85	. 236521	63
8	. 700716	3.63 3.63	. 936948	1.22	. 763770	4.85	. 236230	52
9	. 700933	3.62	. 936872	1.22	. 764061	4.85	. 235939	51
10	9.7c1151	3.62	0.936799	1.22	9.764352	4.85	0.235648	50
11	. 701368	3.62 3.62	. 9336725	1.23	. 764643	4.85 4.84	. 235357	49
12	. 701585	3.62 3.62	. 9366582	1.23	. 764933	4.84	. 235067	48
13	. 701802	3.61	. 936578	1.23	. 765224	4.84	. 234776	47
14	. 702019	3.61	. 936505	1.23	. 7655514	4.84	. 234486	46
15	. 7022336	3.61	. 936431	1.23	. 7658805	4.84 4	. 234195	45
16	. 702452	3.61	. 936357	1.23	. 766095	4.84	. 233905	44
17	. 702669	3.61 3.60	. 936284	1.23	. 7663385	4.84	. 233315	43
18	. 702885	3.60 3.60	. 936210	1.23	.766675 .766955	4.83	. 233325	42
19	. 703101	3.60	6	1.23	. 766965	4.83	. 233035	41
20	9.703317	3.60	9.936062	1.23	9.767255		0.232745	40
21	.713533	3.59	. 9359888	1.23	. 767545	4.83	. 232455	39
22	. 703749	3.59	. 935914	1.23	. 7878384	4.83	. 232166	38
23	. 703964	3.59	. 9358480	1.23	. 768124	4.82	. 231876	37
24	. 704179	3.59	. 9355766	1.24	.788414	4.82	. 231586	36 35
25	. 704395	3.69	. 9355692	1.24	.788703	4.82	. 2312908	36 34
26	. 704610	3.58	. 9355618	1.24	.7689281	4.82	. 231008	34
27	. 704825	3.58	. 9355469	1.24	. 7698981	4.82	. 230429	33 32
28	. 705040	3.58	. 9354595	1.24	. 7698680	4.82	. 230140	31
29	. 705254	3.58	. 935395	1.24	. 65800	4.82	. 230140	
30	9.705469	3.57	9.935320		9.770148		0.229858	30
31	. 705683	3.57	. 935246	1.24	. 770437	4.81	. 2229563	29
32	. 705898	3.67 3.67	. 935171	1.24	. 770726	4.81	. 2292784	28
33	. 706112	3.67	. 935097	1.24	.771015	4.81	. 2228985	${ }_{28}^{27}$
34	. 706326	3.56	. 935022	1.24	. 771303	4.81	. 22284987	26
35	. 708539	3.66	. 934948	1.24	.771592	4.81	. 2228408	25
36	. 706753	3.56	. 93484738	1.25	. 7718880	4.80	. 2227830	24
37	. 70696780	3.56	. 934798	1.25	.772168 .772457	4.80	. 227543	22
38 39	. 7071893	3.65	. 934649	1.25	. 772745	4.80	. 2227255	21
40	9.707606		9.934574		9.773033		0.226967	20
41	. 707819	3.55	. 934499	1.25	. 773321		226679	19
42	. 708032	3.64	. 934424	1.25	. 773608	4.80 4.80	. 226392	18
43	. 708245	3.54	. 934349	1.25	. 773896	4.89	. 226104	17
44	. 708458	3.64	. 934274	1.25	. 774184	4.79	. 225816	16
45	. 708670	3.64	. 934199	1.25	. 7774471	4.79	. 225529	15
46	. 708882	3.54	. 934123	1.25	. 7747759	4.79	. 2225241	14
47	. 709094	3.53	. 934048	1.25	. 775046	4.79	. 224954	13
48	. 709306	3.53 3.53	. 9333973	1.25 1.26	. 775333	4.79 4.79	. 224667	12
49	. 709518	3.63	. 933898	1.26	. 775621	4.78	. 224373	11
50	9.709730		9.933822		9.775908		1) 2240992	10
51	. 709941	3.63 3.52	. 9333747	1.26	. 7776195	4.78	. 2223805	9
52	. 710153	3.62	.933671	1.26	. 7764882	4.78	. 2233518	8
53	. 710364	3.52	. 9333596	1.26	. 7777768	4.78	. 22323232	7
54	. 710575	3.52	933520	1.26	. 7777055	4.78	. 2222945	5
55	. 710786	3.51	9333446	1.26	. 77773428	4.78	. 22226588	5
56	. 7110997	3.51	933369 933293	1.26	.777628	4.77	. 22223085	3
57 58	. 7111208	3.51	${ }_{933217}$	1.26	. 7779201	4.77	. 2221799	3 2
59	. 711629	3.51	. 933141	1.26	. 778488	4.77 4.77	. 221512	1
60	. 711839	3.51	. 933066	1.26	. 278774	4.77	. 221226	0
M.	Oosine.	D. 1^{K}.	SiLe.	D. $1^{\prime \prime}$	Cotang.	D. $1^{\prime \prime}$	Tang.	M.

$\underline{1}$	Sing.	D. 1"	Cosine.	D. ${ }^{\prime \prime}$.	Tring.	D. 1'.	Cotang	M
0	9.711839		9.933066		9.778774		0.221226	60
1	. 712650	3.50 3.50	932990	1.27	. 779060	4.77	$\begin{array}{r} .220940 \\ .2200 \end{array}$	59
8	.712260	3.60 3.50	. 932914	1.27	. 779346	4.77 4.77	. 220654	58
3	. 712469	3.60 3.50	. 932838	1.27	. 779632	4.77	. 220368	67
4	.712679	3.60 3.49	.932762	1.27	. 779918	4.76	. 220082	56
5	.712889	3.49 3.49	. 932685	1.27	. 780203	4.76 4.76	. 219797	55
6	. 713098	3.49	. 932609	1.27	. 780489	4.76	. 219511	54
7	.713308	3.49 3.49	. 932533	1.27	. 780775	4.76 4.76	. 219225	53
8	.713517	3.49 3.48	. 932457	1.27	.781060	4.76 4.76	. 218940	52
9	. 713726	3.48	. 932380	1.27	. 781346	4.76	. 218654	51
10	9.713935	3.48	9.932304	1.27	9.781631		0.218369	60
11	. 714144	3.48 3.48	. 932228	1.27	. 781916	4.75 4.75	218084	49
12	. 714352	3.48 3.48	. 932151	1.27 1.28	. 782201	4.75	. 217799	48
13	.714561	3.48 3.47	. 932075	1.28 1.28	. 782486	4.75 4.75	. 217514	47
14	.714769	3.47 3.47	. 931998	1.28 1.28	. 782771	4.75	. 217229	46
15	. 714978	3.47 3.47	. 931921	1.28	. 783056	4.75	. 216944	45
16	.715186	3.47 3.47	. 931845	1.28 1.28	. 783341	4.75	. 216659	44
17	.715394	3.48 3.46	. 931768	1.28	. 783626	4.75 4.74	. 216374	43
18	. 715602	3.46 3.46	. 931691	1.28	.783910	4.74 4.74	. 216090	42
19	. 715809	3.46 3.46	. 931614	$\begin{aligned} & 1.28 \\ & 1.28 \end{aligned}$. 784195	4.74	. 215805	41
20	9.716017		9.931537		9784479		0.215521	0
21	. 716224	3.46 3.46	. 931460	1.28 1.28	784764	4.74	. 215236	39
22	. 716432	3.46 8.45	. 931383	1.28 1.28	785048	4.74	. 214952	38
23	. 716639	8.45 3.45	.981306	1.28	. 785332	4.74	. 214668	37
24	. 716846	3.45 3.45	. 931229	1.28	. 785816	4.74	. 214384	36
25	.717053	3.45 3.45	. 931152	1.29	785900	4.73	. 214100	35
28	.717259	3.45 3.44	. 931075	1.29 1.29	. 786184	4.73	213816	34
87	. 717466	3.44 3.44	. 930998	1.29	. 786468	4.73	. 213532	33
28	. 717673	3.44	. 930921	1.29	. 786752	4.73	. 213248	32
89	. 717879	3.44 3.44	.930843	1.29 1.29	. 787036	4.73	. 212964	31
80	9.718085	3.43	9.930766		9.787319		0.212681	30
81	. 718291	3.43 3.43	. 930688	1.29	. 787603	4.73	. 212397	29
32	.718497	3.43 3.43	. 930611	1.29	. 787888	4.72	. 212114	28
33	.718703	3.43 3.43	. 930533	1.29	. 788170	4.72	. 2111830	27
34	. 718909	3.43 3.43	. 930456	1.29	. 788453	4.72	. 211547	28
35	.719114	3.43 3.42	. 930378	1.29	. 788736	4.72	211264	25
38	.719320	3.42 3.42	. 930300	1.29 1.30	. 789019	4.72	. 210981	24
37	. 719525	3.42 3.42	. 930223	1.30 1.30	. 789302	4.72	. 210698	23
88	.719730	3.42 3.42	. 930145	1.30 1.30	. 789585	4.72	. 210415	22
39	. 719935	3.42 3.41	. 930067	1.30	. 789868	4.71	. 210132	21
40	9.720140		9.929989		9.790151	4.71	0.209849	20
41	. 720345	3.41	$.929911$	1.30	9.790151 .790434	4.71	. 209566	19
42	. 720549	3.41	. 929833	1.30	. 790716	4.71	. 209284	18
43	.720754	3.41	. 929755	1.30 1.30	. 790999	4.71	. 209001	17
44	. 720958	3.41 3.40	. 929677	1.30	. 791281	4.71	. 208719	16
45	. 721162	3.40 3.40	. 929599	1.30	. 791563	4.71	. 208437	15
46	. 721366	3.40 3.40	. 929521	1.30	. 791846	4.70	. 208154	14
47	. 721570	3.40 3.40	. 929442	1.30	. 792128	4.70	. 208154	13
48	.721774	3.40 3.39	. 929364	1.31	. 792410	4.70	. 207590	18
49	. 721978	3.	. 929286	1.31	. 792692	4.70	. 207308	11
$5 C$	9.722181		9.929207		9.792974		. 207026	0
51	. 722385	3.39 3.39	. 929129	1.31	. 793256	4.70	. 206744	9
52	. 722588	3.39 3.39	. 929050	1.31	.793256 .793538	4.70	$\begin{aligned} & .206744 \\ & .206462 \end{aligned}$	8
53	. 722791	3.39 3.38	. 928972	1.31	. 793819	4.70	$.206181$	7
54	. 722994	3.38 3.38	. 928893	1.31	. 794101	4.69	. 2061889	6
55	.723197	3.38 3.38	. 928815	1.31	794383	4.69	. 205617	5
56	. 723400	3.38 3.38	. 928736	1.31	794664	4.69	. 205336	4
57	. 723603	3.38 3.37	. 928657	1.31	${ }_{7} 94946$	4.69	. 205054	8
58	.723805	3.37 3.37	. 928578	1.31	795227	4.69	. 204773	8
59	. 724007	3.37 3.27	. 928499	1.31	$.795508$	4.69	. 204492	1
60	. 724210	3.27	. 928420	1.32	$.795508$	499	. 204211	0
2	Ouetua	D. ${ }^{\prime \prime}$.	Elue.	I.	Ootang.	0.10 .	Tang	

M.	Sine.	D. $1^{\prime \prime}$.	Cosino.	D. $1^{\prime \prime}$.	Tang.	D. 111.	Cotang.	M.
0	9.724210	3.37	9.928420	1.32	9.795789	4.68	0.204211	60
1	. 724412	3.37	. 9283342	1.32	. 796070	4.68	. 203930	59
2	. 724614	3.36	. 928263	1.32	. 7963561	4.68	. 203649	58
8	. 724816	3.36	. 928183	1.32	. 796632	4.68	. 203368	57
4	. 72525017	3.36	.928.04	1.32	.796913	4.68	.203087	56
5	. 725219	3.36	. 9288025	1.32	. 797194	4.68	.202806	55
7	.725420	3.36	. 92787867	1.32	.797474	4.68	. 2022245	54
8	. 7258823	3.35	. 92278787	1.32	.797855 .798036	4.68	. 201964	${ }_{52}^{53}$
8	. 726024	3.35 3.35	. 927708	1.32 1.32	. 798316	4.67	201684	51
10	9.726225	3.35	9.927629	1.32	9.798596		0.201404	50
11	. 726426	3.34	. 927549	1.33	. 798877	4.67	. 201123	49
12	. 726628	3.34	. 927470	1.33	. 799157	4.67	. 200843	48
13	. 726827	3.34	. 927390	1.33	. 799437	4.67	. 200563	47
14	. 727027	3.34	. 927310	1.33	. 7999717	4.67	. 200283	46
15	. 727228	3.34 3.34	. 927231	1.33	. 7999997	4.68 4.66	. 200003	45
16	. 727428	3.34 3.33	. 927151	1.33	. 800277	4.66 4.66	. 199723	44
17	. 727628	3.33 3.33	. 927071	1.33	. 800555	4.66	. 199443	43
18	. 727828	3.33 3.33	. 9269991	1.33	. 800836	4.66	. 199164	42
19	. 728027	3.33	. 926911	1.33	. 801116	4.66	. 198884	41
20	9.728227	3.33	8.926831	1.33	9.801396		0.198604	40
21	.728427	3.3 3.32	. 9268751	1.33	801675	4.66	. 198325	39
82	. 728626	3.32 3.32	. 926671	1.33	. 801955	4.66	. 198045	38
83	728825	3.32	. 926591	1.34	. 8022234	4.65	. 197766	37
24	. 729024	3.32	. 926511	1.34	802513	4.65	. 197487	36
25	. 729223	3.31	. 926431	1.34	. 802792	4.65	. 197208	35
28	. 729422	3.31	. 926351	1.34	.803072	4.65	. 196928	34
97	. 729621	3.31	. 926270	1.34	. 8033531	4.65	.196649	33
98	. 729820	3.31	. 926190	1.34 1.34	. 803630	4.65	.196370	32
29	. 730018	3.31	.926110	1.34	. 803909	4.65	. 196091	31
80	9.730217		9.926029	1.34	9.804187		0.195813	30
81	. 730415	3.30 3.30	. 925949	1.34	804466	4.65 4.64	. 195534	29
32	. 730613	3.30 3.30	925868	1.34 1.34	804745	4.64 4.64	. 195255	28
33	. 730811	3.30	. 925788	1.34 1.34	805023	4.64 4.64	. 194977	27
84	. 731009	3.30	. 925707	1.35	805302	4.64	. 194698	26
35	. 731206	3.29	. 925626	1.35	. 8055880	4.64	. 194420	25
86	. 731404	3.29	. 925545	1.35	. 805859	4.64	. 194141	24
37	.731602	3.29	. 9225465	1.35	. 806137	4.64	. 1938868	23
88	.731799 .731998	3.29	. 92525384	1.35	. 806415	4.64	.193585	22
89	. 731996	3.28	. 925303	1.35	. 806693	4.63	. 193307	21
40	0.732193	3.28	9.925222	1.35	9.806971	4.63	0.193029	20
41	. 732390	3.28	. 925141	1.35	. 807249	4.63	. 192751	19
42	. 7325887	3.28 3	. 925060	1.35	807527	4.63	. 192473	18
43	. 732784	3.28 3.28	. 924979	1.35	807805	4.63	. 192195	17
44	. 732988	3.28 3.27	. 924897	1.35	. 8080838	4.63	. 191917	16
45	. 733177	3.27	. 924816	1.35	. 808361	4.63	. 191639	15
16	. 733373	3.27	. 924735	1.36	. 8086338	4.63	.191368	14
47	. 7333569	3.27	. 924654	1.38	. 808919	4.02	. 191044	13
48	. 733765	3.27	. 924572	1.38	. 8099193	4.62	. 190807	12
48	. 733961	3.26	. 9	1.36	. 809471	4.62	. 190529	11
50	9.734157	3.26	9.924409		9.809748	4.02	0.190252	10
51	. 734353	3.26	. 924328	1.36	. 810025	4.62	. 189975	9
52	. 734549	3.26	. 924246	1.36	. 810302	4.62	. 1896988	8
53	.734744	3.26	. 924164	1.36	. 8105880	4.62	. 189420	7
${ }_{5}^{54}$.734939 .735135	3.25	. 924083	1.36	. 810811134	4.62	.189143	6
${ }_{56}$. 7353350	3.25	. 92423919	1.36	. 8111410	4.61	. 1888590	4
66 57	. 735525	3.25	. 9233837	1.36	. 8111687	4.61	. 188313	8
68	. 735719	3.25	. 923755	1.37	. 811964	4.61	. 188036	2
68	. 735914		. 923673	1.37	. 812241		187759	1
60	. 736109	3.24	. 923591	1.37	. 812517	4.61	187483	0
M.	Cosine.	D. $1^{\prime \prime}$.	Slino.	D. $1^{\prime \prime}$.	Cotang	D. $1^{\prime \prime}$	Tang	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.736109		9.923591		9.812517		0.187483	60
1	. 736303	3.24 3.24	$.923509$	1.37	$.812794$	4.61	. 187206	59 58 58
2	.736498	3.24	${ }^{.923427}$	1.37 1.37	.813070 813347	4.61	. 186930	58
3	.736692	3.24 3.23	.923345 923263	1.37	.813347 813623	4.61	.186653	57 56 58
4	. 7368886	3.23	.923263 .923181	1.37	. 813138299	4.60	.186377	56
5	$\begin{array}{r}.73 \% 080 \\ .73 \% 2 \% 4 \\ \hline 184\end{array}$	3.23	.923181 923098	1.37	.813899	4.60	.186101	55
7	.737244 .737467	3.23	. 9233098	1.37	. 81414452	4.60	. 1858548	54
7	. 737661	3.23	. 922933	1.37	. 814728	4.60	. 1850278	53
9	. 737855	3.22	. 9228851	1.37	. 815004	4.60	. 184996	51
10	9.738048		9.922768		9.815280		0.184\% 20	50
11	.738241	3.22 3.22	. 922686	1.38	. 815555	4.60 4.60	. 184445	49
12	. 738434	3.22	. 922603	1.88	. 815831	4.69	. 181169	48
13	. 738697	3.22	. 9225520	1.38	. 816107	4.59	.183893	47.
14	. 738820	3.21	. 922438	1.38	. 816388	4.59	. 183618	46
15	. 739013	3.21	. 9223355	1.38	. 816658	4.59	. 183342	45
16	. 7392006	3.21	. 922278	1.38	.816033	4.59	. 183067	44
17	. 7393938	3.21	. 9222189	1.38	. 817209	4.59	. 182791	43
18	.739590	3.20	. 922106	1.38	. 817484	4.59	. 182516	42
19	. 739783	3.20	.922023	1.38	. 817759	4.59	. 182341	41
20	9.739975	3.20	9.921940	1.39	9.818035	4.59	0.181965	40
21	. 740167	3.20	. 921857	1.39	. 818310	4.58	. 181690	39
22	. 740359	3.20	. 921774	1.89	. 8185855	4.58	. 181415	38
23	. 740550	3.19	. 921691	1.89	. 818860	4.58	. 181140	37
24	. 740742	3.19	. 921607	1.39	. 819135	4.58	. 180865	36
25	. 740934	3.19	. 921524	1.39	. 819410	4.58	. 180590	35
${ }_{27}^{26}$. 741125	3.19	. 921441	1.39	. 8196884	4.58	. 180316	34
${ }_{28}^{27}$. 741316	3.19	. 921357	1.39	. 819959	4.58	. 180041	33
28	. 741508	3.18	.921274	1.39	. 8202323	4.58	. 179766	32
29	. 741699	3.18	. 921190	1.39	. 820508	4.58	. 179492	31
30	9.741889	18	9.921107	1.39	9.820783		0.179217	30
31	. 742080	3.18 3.18	.921023	1.39	. 821057	4.57	. 178943	29
32	.742:\%1	3.18	. 920939	1.40	.821332	4.57	. 178668	28
33	. 742462	3.18 3.17	. 920856	1.40	. 821606	4.57	. 178394	27
34	. 742652	3.17	.920772	1.40	. 821880	4.57	. 178120	26
35	. 742842	3.17	. 920688	1.40	. 822154	4.57	. 177816	25
36	. 743033	3.17	. 920604	1.40	.822429	4.54	. 177571	24
37	. 743223	3.17	.920520	1.40	.822703	4.57	. 177297	23
38	. 743413	3.16	. 920436	1.40	. 822977	4.57	. 177023	22
39	. 743602	${ }_{3.16}$.920352	1.40	. 8233251	4.56	. 176749	21
40	9.743792		9.92026		9.823524		0.176476	20
41	. 743982	3.16 3.16	. 920184	1.40	. 823798	4.56	. 176202	19
42	. 744171	3.16	. 920099	1.40	. 824072	4.56	. 175928	18
43	. 744361	3.16	. 920015	1.41	. 824345	4.56	. 175655	17
44	. 744550	3.15	. 919931	1.41	. 824619	4.56	. 175381	16
45	. 744739	3.15	. 919846	1.41	. 824893	4.56	. 175107	15
46	.744928	3.15	. 919762	1.41	. 825166	4.56	. 174834	14
47	.745117	3.15	. 919677	1.41	. 825439	4.56	. 174561	13
48	. 745306	3.14	. 919593	1.41	. 825713	4.55	. 174287	12
49	. 745494	3.14	. 919508	1.41	.825986	4.5	. 174014	11
50	9.745683		9.919424		9.826259		0.173711	10
51	. 745871	3.14	. 919339	1.41	. 826533	4.	. 173468	9
52	. 746060	3.14 3.14	. 919254	1.41	. 826805	4.	. 173195	8
53	. 746248	3.14	. 919169	1.41	.82\%078	4.55	. 172922	7
54	. 746436	3.13	. 919085	1.41	.8273.51	4.5	. 172649	6
55	. 746624	3.13	. 919000	1.42	. 827624	4.55	. 172376	5
56	. 746812	3.13	. 918915	1.42	. 827897	4.55	. 172103	4
57	. 746999	3.13 3.13	. 918830	1.42	. 828170	4.54	. 171830	
58	. 747187	3.13	. 918745	1.42	. 828442	4.54	. 171558	2
59	. 747374	3.12 3.12	. 918659	1.42	. 828715	4.54	. 171285	1
60	. 747562	3.12	. $9185 \% 4$	1.4	. 828987	4.54	171013	0
M.	Cosine.	D. $1^{\prime \prime}$.	Sine.	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

M.	Stue	D. ${ }^{\prime \prime}$.	Cos	D. $1^{\prime \prime}$.	Tang.	D. 1^{11}.	Cotang.	M.
0	9.747762	3.12	9.9185	1.42	9.8	4.54		60 59
1	. 7477749	3.12 3.12	. 91818489	1.42	829260 829532	4.54	- 1770468	58
2	. 77479393	3.12	${ }_{9}^{918404}$	1.42	- 828993305	4.54	. 170195	57
3	.748123	3.11	. 919182338	42	.830077	4.54	. 169923	66
4	. 778310	3.11	.918233 .918147	43	${ }_{830349} 880077$	4.54	. 169651	55
5	.748497	3.11	. 91818062	143	.830349	4.54	. 169379	54
6	. 7486883	3.11	${ }_{9} 918062$	1.43	83	4.53	. 169107	53
7	.748870	3.11	${ }^{.917976}$. 43				52
8		3.1		43	83165		. 168563	
9	.74	3.10	. 917805	1.43				51
10	9.749429	3.10	9.91771	1.43	9.83	4.53	0.168891	50
11	. 749615	.10	91763	1.43	.8319	4.53	168	
12	.749801	3.10	917548	1.43	.832:	4.53	. 16	47
13	. 749987		. 917462	1.43	8832529	4.53	${ }^{167204}$	46
14	. 750		91737	1.43	. 8332796	4.5	${ }_{165932}$	
15	. 750	3.09	91772	1.43	883	4.53		44
16	. 750543	3.09	917204	1.43		4.52	${ }^{166389}$	43
17	. 750729		91711	. 44	. 833361	4.52	166389	42
18	. 75091	3.09	917038	1.44	. 834154	4.52	. 165	41
19	. 751099	3.08	. 916946	1.44	. 834154	4.52		
20	9.751234		9.916		9.8344	4.52	165	49
	.7514	3.08	.9167	1.44	.834696	4.52	. 165	${ }_{38}$
22	. 751654	3.08	. 916687	1.44	.834967	4.52	${ }_{1} 64762$	${ }_{37}$
23	. 751839	3.08	. 916600	1.44	.83523	4.5	. 647762	
2	.752023	3.07	${ }_{916427} 91651$	1.4	.83575	4.52	164	35
25			916427	. 44	. 8335850	4.52		34
26	. 752392		. 916341	. 44	.8360		.163949	${ }_{33}$
	. 7525	3.07 3.07	916254	. 44	63	4.51		${ }_{32}$
	752	3.07	916167	1.45	836593 836864	4.51	${ }^{1633136}$	${ }_{31}^{32}$
29	. 752	3.06	. 916081	1.45	. 836864	4.51		
30	9.7531		9.9159		9.8371		162	
31	. 7533			1.45		${ }_{4}^{4.51}$	162325	28
32	. 753495	3.06	. 915820		. 83767675	4.51	${ }^{162325}$	
	753	3.06 3.06	915733	1.45	. 837979	4.51	16	${ }^{27}$
	. 75	3.05	. 91566	1.45	833216	4.51	. 161513	25
35	. 754046	3.05	. 91555	1.45	88	4.51	. 161243	24
	. 754229	.	915472	1.45	.83875			${ }_{23} 2$
	. 75	3.05	915385	1.45	83929	4.50	. 160703	22
38	. 754595	3.05	. 915297	1.45	.83,	4.50	. 160432	
39	. 754778	3.05	915210		. 839568	4.50	. 160432	
40	9.75496	3.04	9.9151	1.46	9.8398	4.50	0.1601	20
41	.755143	3.04	915035	1.46		4.50	. 159622	
	. 755326	3.04	914948	1.46	8403	4.50	. 1593932	17
43	. 75550	3.04	9148	1.46	${ }_{840917}$	4.50	159083	16
44	. 755690	3.04	. 9144783			4.50	. 158813	15
45	.7558		9194685		${ }_{8411457}$	4.49	. 158543	14
46	. 756	3.03		1.4		4.49	158273	13
47	.75623	3.03	9145410	1.46		4.49	158004	,
48	. 756418	3.03	914422 91434		${ }_{8}^{842266}$.157734	
49	. 756600	3.03	914334	. 46	. 842266		.157734	11
50	9.75678	. 02	9.914246		9.842	4.49	0.157	
51	. 75696	3.02	. 91415	1.47		4.49		8
52	.75712	3.02	914070 913982	1.47	. 8433343	4.49	. 1566567	8
		3.02	${ }_{913894}$	1.47	. 843612	4.49	156388	6
	. 75768	${ }^{3.02}$	${ }_{9} 93806$	1.47	. 843882		156118	5
	. 75786		. 913718		844		155849	4
	. 758050	3.01	91363	1.47	. 8444	4.48	30	3
58	. 758230		. 913541			4.48	. 155311	${ }_{8}^{2}$
	. 758411	3.01	$\begin{array}{r}913453 \\ 913365 \\ \hline\end{array}$	1.47		4.48		1
60	. 758591		913365					
M	Cosine	D. 1	Sline		Cotan		Tan	$\underline{.}$

M.	Sine.	D. 1 "	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	
0	9.758591		9.913365		9.845227		0.154773	
2	.758772	3.01 3.00	$.913276$	1.47	. 845494	4.48 4.48	$.154504$	
2	. 758952	3.00 3.00	. 9131878	1.48	. 845764	4.48	. 154236	
4	.759132	3.00	.913099 .913010	1.48	. 846033	4.48	153967	
5	. 759492	3.00	. 91312922	1.48	. 8463650	4.48	153698	
8	. 769672	3.00	. 91212833	1.48	. 84646839	4.48	153430	
7	. 759852	2.99	. 9127274	1.48	846839 .847108	4.48	. 1531681	
8	. 760031	2.99 299	. 912655	1.48	. 8477376	4.47	. 1528282	
9	. 760211	99	. 912566		. 847644	4.47	. 152356	
10	9.760390	2.99	9.912477		9.847913		0.152087	50
11	. 760569	2.99	. 912388	1.48	. 848181	4.47 4.47	. 151819	
12	. 7600748	2.98	. 91212299	1.49	. 848449	4.47 4.47	. 151551	
13	.760927 .761106	2.98	. 912210	1.49	848717	4.47 4.47	. 151283	
15	. 761285	2.98	.912121 .912031	1.49	848986 849254	4.47	. 151014	
16	. 761464	2.98	. 911942	1.49	. 849522	4.47	150746	
17	. 761642	2.98 2.97	. 911853	1.49	849790	4.47	150210	
18	. 761821	2.97 2.97	. 911763	1.49 1.49	. 850057	4.46	. 149943	
19	. 761999	2.97	. 911674	1.49 1.49	. 850325	4.46	. 149675	
20	9.762177	2.97	9.911584		9.850593		0.149407	
21	. 762356	2.97	. 911495	1.49 1.49	. 850861	1.46 4.46	. 149139	
22	.762534	2.97	. 911405	1.49	851129	4.46 4.46	148871	38
83	. 762712	2.96	911315	1.49	. 851396	4.46	148604	37
24	. 7628889	2.96	911226	1.50	. 851664	4.46	148336	36
25	. 763067	2.96	911136	1.50	851931	4.4	148069	35
27	. 763245	2.96	911046	1.50	852199	4.	147801	34
27	. 763422	6	910956	1.50	. 852466	4.46	147534	33
28189	. 763600	2.95	. 910866	1.50	852733	4.46	147267	32
29	. 763777	2.95	910776	1.50	. 853001		146999	31
30	9.763954	2.95	9.910686		9.853268		0.146732	30
31	. 764131	2.95	910596	1.50	. 853535	4.45	. 146465	29
32	764308	2.95	910506	1.50	. 8538802	4.45	. 146198	28
83	764485	2.95	910415	1.51	. 854069	4.45 4.45	145931	27
84	764662	2.94	910325	1.51	. 854336	4.45	. 145664	26
35 36	.764838 .765015	2.94	910235 910144	1.51	. 854603	4.45	.145397	25
37	. 765191	2.94	910054	1.51	. 85548137	4.45	144863	24
38	. 765367	2.94	909963	1.51	. 855404	4.45	144596	22
39	. 765544		909873	1.51	. 855671	4.45	144329	21
40	9.765720		9.909782				0.144062	20
41	. 765899	2.93 2.93	. 909691	1.51	. 856204	4.44 4.44	. 143796	19
42	. 766072	2.93 2.93	.909601	1.51	. 856471	4.44 4.44	. 143529	18
13	. 7662477	2.93 2.93	. 909510	1.51	. 856737	4.44 4.44	. 143263	17
45	. 76	2.93	909419 909328	1.52	. 857004	4.44	. 142996	16
46	. 766774	2.92	. 909237	1.58	. 85727270	4.44	. 142730	15
47	. 766949	2.92	. 909146	1.52	. 857803	4.44	. 142197	3
48	. 767124	2.92	. 909055	1.52	. 858069	4.44	. 141931	12
49	. 767300		. 908964	1.52	. 858336	4.44	. 141664	11
50	0.767475		9.908873		9.858602		0.141398	10
51	. 76767649	2.91	. 908781	1.52	. 8588888		. 141132	9
52	. 767824	2.91 2.91	. 908690	1.52	. 859134	4.43	. 140866	8
53	. 76767999	2.91	. 908599	1.52	. 859400	4.43	. 140600	7
54 55	. 768173	2.91	. 908507	1.52	. 859666	4.43	. 140334	-
56	. 768522	2.91	. 908416	1.53	. 8659932	4.43	. 140068	5
57	. 768697	2.90	. 908233	1.53	. 860464	4.43	139536	4
58	. 768871	2.90	. 908141	1.53	. 860730	4.43	.139270	2
69	. 769045		. 908049	1.53	. 860995	4.43	. 139005	1
60	. 769219	90	. 907958	1.63	. 861261	4.43	. 138739	0
M.	Obsine.	D. 1".	Blne.	D. $1^{\prime \prime}$.	Cotang.	$1^{\prime \prime}$.	Tang.	M.

M.	Stine.	D. $1^{\prime \prime}$.	Oosino.	D. ${ }^{\prime \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M
0	9.769219	2.90	9.907958	1.53	9.861261	4.43	0.138739	60
1	. 769393	2.90 2.90	. 907866	1.53	. 861527	4.43	138473	59
2	. 769566	2.89	. 907774	1.53	. 861792	4.43	138208	58
3	. 769740	2.89	. 907682	1.53	. 862058	4.42	137942	7
4	. 769913	2.89	. 907590	1.53	. 862323	4.42	137677	56
5	.770087	2.89	. 907498	1.53	. 862589	4.42		54
6	. 770260	2.89	. 907406	1.54	. 86285119	4.42	136881	59
7	. 770433	2.88	. 907314	1.54	.863119	4.42	. 136615	59
8	. 770606	2.88	. 907222	1.54	.863385 .863650	4.42	. 136350	51
9	. 770779	2.88	907129	1.54	. 863650	4.42		
10	9.770952	2.88	9.907037	1.54	9.863915	4.42	0.13	49
11	. 771125	2.88	. 906945	1.54	. 864180	4.42		49
12	. 771298	2.88	. 906852	1.54	. 864445	4.42	135290	47
13	. 771470	2.87	. 906760	1.54	. 8647975	4.42	. 135025	47
14	. 771643	2.87	. 906667	1.54	. 8649245	4.42	. 134760	45
15	. 771815	2.87	. 906575	1.54	. 865505	4.41	. 134495	44
16	. 771987	2.87	. 906482	1.55	. 8655770	4.41	. 134230	43
17	. 772159	2.87	. 906389	1.55	. 866035	4.41	. 133965	42
18	. 772331	2.87	. 906296	1.55	. 866300	4.41	.133700	41
19	. 772503	2.86		1.55	. 860300	4.41		40
20	9.772675	2.86	9.906111	1.55	9.866564	4.41	. 133171	
21	. 772847	2.86 2.86	. 906018	1.55	.866829 .867094	4.41		38
22	. 773018	2.86	. 905925	1.55	.867094	4.41	. 132942	37
23	. 773190	2.86	. 905832	1.55	. 8677623	4.41	. 132377	36
24	. 773361	2.85	. 905739	1.55	. 867887	4.41	. 132113	35
25	. 773533	2.85	. 905645	1.55	. 8688152	4.41	. 131848	34
26	. 773704	2.85	. 905552	1.55	. 8688416	4.41	. 131584	33
27	. 773875	2.85	.905459 .905366	1.56	. 8688680	4.41	. 131320	32
28	. 774046	2.85	.905366 .905272	1.56	. 86888845	4.40	. 131055	31
29	. 774217	2.85	. 905272	1.56	. 868915	4.40		
80	9.774388	2.84	9.905179	1.56	9.869209	4.40	0.130791	30
31	. 774558	2.84	. 905085	1.56	. 869473	4.40	. 130527	29
82	. 774729	2.84	. 904992	1.56	. 869737	4.40	. 130263	27
83	. 774899	2.84	. 904898	1.56	. 870001	4.40	. 129999	27
84	. 775070	2.84	. 904804	1.56	. 870265	4.40	. 129735	25
35	775240	2.84	. 904711	1.56	. 87070793	4.40	. 129207	24
38	. 775410	2.83	.904617 904523	1.56	. 87871057	4.40	. 128943	24
37	. 775580	2.83	. 904523	1.57	. 8711321	4.40	. 128679	22
38	. 775750	2.83	.904429 .904335	1.57	. 871585	4.40	.128415	21
39	. 775920	2.83	35	1.57	. 871685	4.40	. 128415	
40	9.776090		9.904241	1.57	9.871849	4.40	0.128151	20
41	. 776259	2.83 2.83	. 904147	1.57	. 872112	4.40 4.39	. 127888	18
48	. 776429	2.82	. 904053	1.57	. 872376	4.39	. 127624	18
43	. 776598	2.82	. 903959	1.57	. 872640	4.39	. 127360	17
44	. 776768	2.82	. 903864	1.57	.872903	4.39	. 127097	16
45	. 776937	2.82	.903770	1.57	.873167 .873430	4.39	. 126833	15
46	. 777106	2.82	. 903676	1.57	. 873430	4.39	. 1265306	14
47	. 777275	2.82	. 903581	1.57	. 873694	4.39	. 126300	13
48	. 777444	2.81	. 903487	1.58	. 873957	4.39	. 126043	12
49	.777613	2.81	. 903392	1.58	. 874220	4.39	. 125780	11
50	9.777781		9.903298	1.58	9.874484	4.39	0.125516	10
51	. 777950	2.81	. 903203	1.58	. 874747	4.39	. 125253	9
52	. 778119	2.81	.903108	1.58	.875010	4.39		8
53	. 778287	2.81	. 903014	1.58	. 875273	4.39	. 124727	6
54	. 778455	2.80	.902919	1.58	. 875537	4.38	. 124163	5
55	. 778624	2.80	. 902824	1.58	. 878063	4.38	. 123937	4
56	.778792	2.80	. 902729	1.58	. 876326	4.38	. 123674	8
53	.778960	2.80	. 902539	1.58	. 876589	4.38	. 123411	2
59	. 779295	2.80	. 902444	1.59	. 876852	4.38 4.38	. 123148	1
60	. 779463	2.79	. 902349	1.59	. 877114	4.38	. 122886	0
M.	Oosine.	D. 1	Sixe.	D. 1	Obtaug.	D. 1	Tang.	M.

M.	Stine.	D. 1^{11}.	Cosine.	D. $1^{\prime \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.779463		9.902349		9.877114		0.122886	60
1	. 779631	2.79 2.79	$.902253$	1.59	. 8777377	4.38 4.38	$.122623$	59
2	. 77979798	2.79	. 902158	1.69 1.69	. 877640	4.38 4.38	. 122360	58 57 58
3	. 7799966	2.79	. 9020633	1.59 1.59	. 8779193	4.38 4.38	. 122097	57
4	.780133 .780300	2.79	. 9019678	1.59	. 8788165	4.38	. 121835	56
6	.780300 .780457	2.78	. 901872	1.59	.878428 .878691	4.38	. 121572	65
6	. 780480634	2.78	. 901776	1.59	. 8786951	4.38	. 121309	64
7	. 7800801	2.78	. 901681	1.59	. 878953	4.38	. 121047	63
8	. 78080968	2.78	. 901585	1.59	. 879216	4.37	. 120784	52
9	. 780968	2.78	. 901490	1.60	. 879478	4.37	. 120522	$5!$
10	9.781134	2.78	9.901394	1.60	9.879741	4.37	0.120259	50
11	. 781301	2.77	. 901298	1.60	. 880003	4.37 4.37	. 119997	49
12	. 781468	2.77	. 901202	1.60	. 880265	4.37	. 119735	48
13	. 781634	2.77	. 901106	1.60	. 880528	4.37	. 119472	47
14	. 781800	2.77	. 901010	1.60	. 880790	4.37	. 119210	46
15	. 781966	2.77	. 900914	1.60	. 881052	4.37	. 118948	45
16	. 782132	2.77	. 900818	1.60	881314	4.37	. 118686	44
17	. 782298	2.76	. 900722	1.60	. 881577	4.37	. 118423	43
18	. 782464	2.76	. 900626	1.60	. 881839	4.37	. 118161	42
19	. 782630	2.76	. 900529	1.60	. 882101	4.37	. 117899	41
20	9.782796	2.76	9.900433	1.61	9.882363		0.117637	40
21	. 782961	2.76	. 900337	1.61	. 882625	4.37	. 117375	39
22	. 783127	2.76	. 900240	1.61	. 882887	4.37 4.36	. 117113	38
23	. 783292	2.75	. 900144	1.61	. 883148	4.36 4.36	. 116852	37
24	. 783458	2.75	. 900047	1.61	. 883410	4.36	. 116590	36
25	. 783623	2.75	. 899951	1.61	. 883672	4.36	. 116328	35
26	. 783788	2.75	. 899854	1.61	. 883934	4.36	. 116066	34
27	. 783953	2.75	. 899757	1.61	. 884196	4.36	. 115804	33
28	. 784118	2.75	. 8999660	1.61	. 884457		. 115543	32
29	. 784282	2.74	. 899	1.62	. 884719	4.36	. 115281	31
30	9.784447		9.899467		9.884980		0.115020	30
31	. 784612	2.74	. 899370	1.62	. 885242	4.36 4.36	. 114758	29
32	. 784776	2.74	. 899273	1.62	. 885504	4.36 4.36	. 114496	28
33	. 784941	2.74	. 899176	1.62	. 885765	4.36	. 114235	27
34	. 785105	2.74	. 899078	1.62	. 886026	4.36	. 113974	20
35	. 785269	2.73	. 898981	1.62	. 886288	4.36 4.36	. 113712	25
36	. 785433	2.73	. 898884	1.62	. 886549	4.36	. 113451	24
37	. 785597	2.73	. 898787	1.62	. 886811	4.36 4.35	. 113189	23
38	. 785761	2.73	. 898689	1.62	. 887072	4.35	. 112928	22
39	. 785925	2.73	. 898592	1.62	. 887333	4.35	. 112667	21
40	9.786089		9.898494		9.887594		0.112406	20
41	. 786252	2.73 2.73	. 898397	1.63 1.63	. 887855	4.35	. 112145	19
42	. 786416	2.72	. 898299	1.63 1.63	. 888116	4.35 4.35	. 111884	18
43	. 786579	2.72	. 898202	1.63 1.63	. 888378	4.35 4.35	. 111622	17
44	. 786742	2.72 2.72	. 898104	1.63	. 888639	4.35	. 111361	16
45	. 786906	2.72	. 898006	1.63	. 888900	4.35	. 111100	15
45	. 787069	2.72	. 897908	1.63	. 889161	4.35	. 110839	14
47	. 787232	2.72	. 897810		. 889421		. 110579	13
48	.787395	2.71	. 897712	1.63 1.63	. 889682	4.35 4.35	. 110318	12
49	. 787557	2.71	. 897614	1.63 1.63	. 889943	4.35 4.35	. 110057	11
50	9.787720		9.897516		9.890204		0.109796	10
51	. 787883	2.71	. 897418	1.64	. 890465		. 109535	-
52	. 788045	2.71	. 897320	1.64	. 890725	4.35	. 109275	8
53	. 788208	2.71	. 897222	1.64	. 890986	4.34 4.34	. 109014	
54	. 788370	2.70	. 897123	1.64	891247	4.34 4.34	. 108753	6
55	. 788532	2.70	. 897025	1.64	. 891507	4.34 4.34	. 108493	5
56	. 788694	2.70	. 896926	1.64	891768	4.34	. 108232	4
57	. 788856	2.70	. 896828	1.64	. 892028	4.34	. 107972	
58	789018		. 8966729	1.64	. 892289	4.34 4.34	. 107711	2
59	. 789180	2.70 2.70	. 896631	1.64	. 892549	4.34 4.34	. 107451	1
60	. 789342	2.70	. 896532	1.64	. 892810	4.3	. 107190	0
M.	Cosino.	D. ${ }^{14}$.	Sine.	D. $1^{\prime \prime}$.	Cotang	D. ${ }^{11}$.	Tang.	M.

H.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. 111.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.789342	2.69	9.896532		9.892810		0.107190	60
1	. 7889504	2.69 2.69	$.896433$	1.65 1.65	. 8983070	4.34 4.34	. 106930	59
3	.789665 .789827	2.69	.896335 .896236	1.65	. 8933331	4.34	. 106669	58
4	. 789988	2.69	.896236	1.65		4.34	106409	57
	. 790149	2.69	. 8960638	1.65		4.34	9	56
8	. 790310	2.69	. 895939	1.65	. 8944372	4.34	105889	55
7	. 790471	2.68 2.68	. 895840	1.65	. 894632	4.34	. 105368	54
8	. 790632	2.68	. 895741	1.65 1.65	. 894892	4.34	. 105108	53
8	. 790793	2.68	. 895641	1.65 1.65	. 895152	4.33	. 104848	52
10	9.790954	2.68	9.895542	1.66	9.895412		0.104588	
11	791115	2.68	. 895443	1.66 1.66	. 895672	4.33	. 104328	0
12	. 791275	2.67	. 895343	1.66	. 895932	4.33 4.33	. 104068	49
13	. 791436	2.67	. 8952444	1.66	. 896192	4.33 4.33	. 103808	47
14	. 791596	2.67	. 895145	1.66	. 896452	4.33 4.33	. 103548	46
15	. 791757	2.67	. 895045	1.66	. 896712	4.33 4.33	. 103288	45
16 17	. 79191917	2.67	. 89494945	1.66	. 896971	4.33	. 103029	44
18	. 792237	2.67	.894846	1.66	. 897231	4.33	. 102769	43
19	. 792397	2.67	. 8944646	1.66	.897491	4.33	. 102509	42
20	9.792557		9.8945	1.66		4.33	102249	41
81	. 792716	2.66	. 894446	1.67	898	4.33	0.101990	40
22	. 792876	2.66	. 894346	1.67	. 898530	4.33	. 101470	39
23	. 793035	2.66	. 894246	1.67	. 8988789	4.33	. 101211	38
24	. 793195	66	. 894146	1.67	. 899049	4.33	. 100951	37
25	. 793354	2.66	. 894046	67	. 899308	4.33	. 100692	36
28	. 793514	2.65 2.65	. 893946	1.67	. 899568	4.32	. 100432	84
87	. 793673	2.65 2.65	. 893846	1.67	. 899827	4.32	. 100173	33
28	. 793832	2.65 2.65	. 893745	1.67	. 900087	4.32	. 099913	32
29	. 793991	2.65	. 893645	1.67	. 900346	4	. 099654	31
30	9.794150	2.65	9.893544		9.900605		0.099395	30
81	. 7943308	2.64	. 893444	1.68	. 900864	4.32	. 099136	29
88	.794467	2.64	. 893343	1.68	. 901124	4.32 4.32	. 098876	28
33	. 79494784	2.64	. 8933243	1.68	. 901383	4.32 4.32	. 098617	27
35	. 79494942	2.64	. 893142	1.68	. 901642	4.32	. 098358	26
36	. 795101	2.64	.893041	1.68	. 901901	4.32	. 098099	25
37	. 795259	2.64	. 892839	1.68	. 902420	4.32	. 0977840	${ }_{23}^{24}$
38	. 795417	2.64	. 892739	1.68	. 902679	4.32	. 097321	23 22
39	. 7955	2.63 2.63	. 892638	1.68 1.68	. 902938	4.32 4.32	. 097062	21
40	9.795733		9.892536		9.903197		0.096803	20
41	. 795891	2.63 2.63	. 8924335	1.69 1.69	. 903456	4.32	. 096544	19
42 43	.796049 .796206	2.63 2.63	.892334	1.69	. 903714	4.31	. 096286	18
4	. 796206	2.63	. 8922333	1.69	903973	4.31	. 096027	17
45	. 796521	2.62	. 8922030	1.69	. 904232	4.31	. 0955	16
46	. 796679	2.62	. 891929	1.69	. 904750	4.31	.095509 .095250	15
47	. 796836	2.62	. 891827	1.69	. 905008	4.31	.094992	14
48	. 796993	2.62 2.62	. 891726	1.69	. 905267	4.31	. 094733	12
49	. 797150	2.62 2.61	.	1.69	. 905526	4.31	. 094474	1.
50	9.797307		9.891523		9.905785		0.094215	10
51	. 797464	2.61	. 891421	1.70 1.70	. 906043	4.31	. 093957	9
52	.797621 .797777	2.61 2.61	. 891319	1.70 1.70	. 906302	4.31	. 093698	
53 54	.797777	2.61	. 891217	1.70 1.70	. 906560	4.31	. 0982440	7
55	. 798091	2.61	. 891115	1.70	. 906819	4.31	. 093181	6
56	. 798247	2.61	. 890911	1.70	.907336	4.31	. 092923	5
57	. 798403	2.61	. 890809	1.70	. 907594	4.31	. 0922406	4
58	. 798560	60	. 890707	1.70	. 907853	4.31	.092147	2
59	. 798716	2.60	. 890605	1.70 1.70	. 908111	4.31	. 091889	2
60	.798872		. 89050	1.70	908369	4.31	. 091631	0
M.	Cosine.	D. 1	Sino.	D. $1^{\prime \prime}$.	Cotang,	D. $1^{\prime \prime}$.	Tang.	M.

M.	Sine.	D. $1^{\prime \prime}$.	Cosine.	D. $1^{1 \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.798872 799028	2.60	9.890503	1.71	9.908369	4.30	0.091631	60
1	.799028 .799184	2.60	. 89804020	1.71	.908628 .908886	4.30	. 09131372	59 58
3	.799184 .799339	2.60	. 8990298	1.71	. 908886	4.30	. 0970856	58
4	. 799495	2.59 2.59	. 890093	1.71	. 909402	4.30	. 090598	56
5	. 799651	2.59	. 889990	1.71	. 909660	4.30	. 090340	55
6	. 799806	2.59 2.59	. 889888	1.71	. 909918	4.30 4.30	. 090082	54
7	. 799962	2.59	. 889785	1.71	. 910177	4.30	. 089823	53
8	. 800117	2.59	. 8898682	1.71	. 910435	4.30	. 089565	52
9	. 800272	2.59	. 889579	1.71	. 910693	4.30	. 089307	51
10	9.800427	2.58	9.889477		9.910951	4.30	0.089049	50
11	. 800582	2.58	. 8893374	1.72	. 911209	4.30 4.30	. 088791	49
12	. 800737	2.58	. 889271	1.72	. 911467	4.30	. 088533	48
13	. 800892	2.58	. 889168	1.72	. 911725	4.30	. 088275	47
14	. 801047	2.58	. 889064	1.72	. 911988	4.30	. 088018	46
15	. 301201	2.58	. 888961	1.72	. 912240	4.30	. 087760	45
16	. 801356	2.58	. 888858	1.72	. 912498	4.30	. 087502	44
17	. 801511	2.57	. 888755	1.72	. 912756	4.30	. 087244	43
18	. 801665	2.57	. 8888651	1.72	. 913014	4.30	. 086986	42
19	. 801819	2.57	. 888548	1.72	. 913271	4.30	. 086729	41
20	9.801973	2.57	9.888444	1.73	9.913529		0.086471	40
21	. 802128	2.57	. 888341	1.73	. 913787	4.29	. 086213	39
22	. 802282	2.57	.888237	1.73	. 914044	4.29	. 085956	38
23	. 802436	2.56	. 8888134	1.73	. 914302	4.29	. 085698	37
24	. 802589	2.56	. 8888030	1.73	. 914580	4.29	. 085440	36
25	. 802743	2.56	. 8887926	1.73	. 9148817	4.29	. 085183	35
28	. 802897	2.56	. 8878782	1.73	. 915075	4.29	. 084925	34
27	. 80303050	2.56	. 8877718	1.73	. 9153532	4.29	. 0846848	33
889	.803204	2.56	. 8887514	1.73	. 91515847	4.29	. 0844153	81
29		2.55	. 887510	1.74	. 915847	4.29		81
30	9.803511		9.887406		9.916104		0.083898	30
31	. 803664	2.55	. 887302	1.74	. 916362	4.29	. 083638	29
32	. 803817	2.55	. 887198	1.74	. 916619	4.29	. 083381	28
33	. 803979	2.55	. 887093	1.74	. 916877	4.29	. 083123	27
34	. 804123	2.55	. 8869889	1.74	. 9171734	4.29	. 082866	28
35	. 804276	2.55	. 8868888	1.74	. 917391	4.29	. 082609	25
36 87	. 8044281	2.54	. 8886780	1.74	. 9177648	4.29	. 0823592	24
37 38	. 804581	2.54	. 88866771	1.74	. 9178906	4.29	. 08281834	23 22
38 39	. 80404886	2.54	. 88865766	1.74	.918163 .918420	4.29	. 0818388	21
40	9.805039	2.54	9.886362	1.75	9.918677	4.2	0.081323	20
41	. 805191	2.54	9.886362	1.75	9.918934	4.28	0.081066	19
48	. 805343	54	. 886152	1.75	. 919191	4.28	. 080809	18
43	. 805495	2.54	. 886047	1.75	. 919448	4.28	. 080552	17
44	. 805647	2.53	. 885942	1.75	. 919705	4.28	. 030295	16
45	. 805799	2.53	. 885837	1.75	. 919962	4.28	. 080038	15
48	. 805951	2.53	. 885732	1.75	. 920219	4.28	. 079781	14
47	. 806103	2.53	. 885627	1.75	. 920476	4.28	. 079524	13
48	. 806254	2.53	. 885522		. 920733		. 079267	12
49	. 806406	2.53 2.52	. 885416	1.75	. 920990	2.28	. 079010	11
50	9.806557	2.52	9.885311		9.921247		0.078753	10
51	. 806709	2.52	. 885205	1.76	. 921503	4.28	. 078497	9
52	. 806860	2.52	. 885100	1.76 1.76	.921760	4.28 4.28	. 078240	8
53	. 807011	2.52	. 884994	1.76	. 922017	4.28	. 077983	7
54	. 807163	2.52	. 884889	1.76	. 922274	4.28	. 077726	5
55 56	. 807314	2.52	. 884783	1.76	. 9225330	4.28	. 077470	
56 57	. 807465	2.51	. 884677	1.76	. 9223787	4.28	. 077213	4
58	. 807766	2.51	. 88844672	1.76	. 92333044	4.28	. 07676950	3
59	. 807917	2.51	. 884360	1.77	. 9233557	4.28	. 076443	2
60	808067	2.51	. 884254	1.77	. 923814	4.28	. 076186	0
M.	Cosine	D. $1^{\prime \prime}$.	Slno.	D. $1^{\prime \prime}$	Cotang	D. 1".	Tang	M.

189

M.	Sine.	D. ${ }^{\prime \prime}$.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. 1	Cotang.	M
0	9.808067		9.884254		9.923814		0.076186	
,	. 808218	2.51	. 884148	1.77	. 924070	4.28	. 075930	59
2	. 808368	2.51	. 884042	1.77	. 924327	4.28	. 075673	58
3	. 808519	2.50	. 883936	1.77	. 924583	7	. 075417	57
4	. 808669	2.50	. 8838329	1.77	. 924840	27	. 075160	56
5	. 808819	2.50	. 883723	1.77	. 925096	4.27	. 074904	55
7	808969	2.50	. 883617	1.77	. 925352	4.27	. 074648	54
8	. 809119	2.50	. 8833510	1.77	. 925609	4.27	. 074391	53
9	.809269	2.50	. 8833404	1.78	. 9258655	4.27	. 074135	52
	. 809419	2.50		1.78	122	4.27	.073878	51
10	9.809569	2.49	9.8831	1.78	9.926378		0.073622	50
11	. 8097718	2.49	. 883084	1.78	. 926634	4.27	073366	49
12	. 809868	2.49	. 882977	1.78	. 926890	4.27	. 073110	48
13	. 810017	2.49	. 882871	1.78	. 927147	4.27	. 072853	47
14	. 810167	2.49	. 882764	1.78	. 927403	4.27	. 072597	4
15	. 810316	2.49	. 8826257	1.78	. 927659	4.27	. 072341	4
16	. 810465	2.48	. 8825550	1.78	. 927915	27	. 072085	44
17	. 810614	2.48	. 882443	1.78	. 928171	27	. 071829	43
18	. 810763	2.48	. 8823336	1.79 1.79	. 923427	27	. 071573	42
19	. 810912	2.48	. 8822229	1.79	. 923684		. 071316	41
20	9.811061	2.48	9.882121		9.928940		0.071060	40
21	. 811210	2.48 2.48	. 882014	1.79 1.79	. 929196		. 070804	39
22	. 8111358	2.48	. 881207	1.79 1.79	. 929452	4.27 4.27	. 070548	38
23	. 8111507	2.47	. 881799	1.79	. 929708	4.27 4.27	. 070292	37
24	. 811655	2.47	. 881692	1.79	. 9299964	4.27 4.27	. 070036	3
25	. 8111804	2.47	. 881584	1.79	. 930220	4.27	. 069780	35
26	. 811952	2.47	. 8814777	1.79	. 930475	4.26	. 0695825	34
28	.812248	2.47	. 8881369	1.80	.930731	4.26	. 069269	33
29	. 812396	2.47	. 881153	1.80	. 931243	4.26	. 069013	32
30	9.812544		9.88104		9.9314			
31	. 812692	2.46	. 880938	1.80	. 931755	4.26	. 068245	29
32	. 812840	2.46 2.46	. 880830	1.80	. 932010	4.26	. 0677990	28
33	. 812988	2.46	. 880722	1.80 1.80	. 932266	4.26	. 067734	27
34	. 813135	2.46	. 880613	1.80 1.80	. 932522	4.26	. 067478	26
35	. 813283	6	. 880505	1.80 1.80	. 932778	4.26	. 067222	25
36	. 813430	2.46	. 880397	1.80 1.81	. 933033	4.26	. 066967	24
37	. 813578	2.45	. 880289	1.81	. 933289	4.26	066711	23
39		2.45	. 880	1.81	. 93354	4.26	. 066455	22
	. 813872	2.45	. 880072	1.81	. 933800	4.26	066200	21
40	9.814019		9.879963		9.934056		0.065944	20
41	. 814166	2.45	. 879855	1.81	. 934311	4.26	. 065689	19
42	. 814313	2.45	. 879746	1.81	. 934567		. 065433	18
43	. 814460	2.45	. 879637	1.81	. 934822	4.26 4.26	. 065178	17
44	. 814607	2.45 2.44	. 879529	1.81	. 935078	4.26 4.26	. 064922	16
45	. 814753	2.44	. 879420	1.81	. 9353333	4.26 4.26	. 064667	15
46	. 814900	2.44	. 879311	1.82	. 9355889	4.26	. 064411	14
48		2.44	. 8792022	1.82	. 9335844	4.26	. 064156	13
49	. 815339	2.44	. 878984	1.82	. 936355	4.26	. 0633645	12
50	9.815485		9.87887			4.26	0.063389	10
51	. 815632	2.44	. 878766	1.82	. 9336866	4.26	. 063134	10
52	. 815778	2.43	. 878656	1.82	. 937121	4.26	. 062379	8
53	. 815924	2.43 2.43	. 878547	1.82 1.82	. 937377	4.26 4.25	. 062623	7
54	. 816069	2.43 2.43	. 878438	1.82 1.82	. 9337632	4.25	. 062368	6
55	. 816215	2.43	. 878328	1.82 1.83	. 937887	4.25	. 062113	6
56	. 81630	2.43	. 878219	1.83 1.83	. 938142	4.25	. 061858	4
57		2.43	. 878109	1.83	. 938398	4.25	. 061602	3
59	. 8166508	2.42	.877999	1.83	. 938653	4.25	. 061347	2
60	. 816943	2.42	$.877890$	1.83	$\begin{aligned} & .938908 \\ & .939163 \end{aligned}$	4.25	. 061092	1 0
M.	Oosine	D. $1^{\prime \prime}$.	Sine	D. $1^{\prime \prime}$.	Cotang.	D. $1^{\prime \prime}$	Tang	

M.	Slve.	D. 11.	Cosi	D 111.	Tang.	D. 1 .	Cotang.	M.
0	0.816943		9.877780		9.939163		0.060837	60
2	. 817088	2.42 2.42	$.877670$	1.83	$.939418$	4.25 4.25	. 060582	59
2	.817233 817379	2.42 2.42	. 877560	1.83 1.83	. 939673	4.25 4.25	. 060327	58
3	. 817379	2.42	. 8777450	1.83	939928	4.25	. 060072	57
4	. 817524	2.42	.877340 877230	1.83 1.84	940183	4.25	. 0595817	56 55
5	. 8176688	2.41	. 8777230	1.84	940439 940694	4.25	. 05959561	65
7	. 817958	2.41	. 8777010	1.84	940694	4.25	. 0595905	54
8	. 818103	2.41	. 876899	1.84	. 941204	4.25	. 0558796	63 52
9	. 818247	2.41	. 876789		. 941459		. 058541	51
10	9.818392		9.8766		9.941713		0.058287	50
11	. 818536	2.41	. 876568	1.84	. 941968	5	. 058032	49
12	. 818681	2.40	. 8764575	1.84	. 942223	25	. 057777	48
13	. 818825	2.40	. 876347	1.84	. 942478	4.25	. 057522	47
14	. 818969	2.40	. 876236	1.85	. 942733	4.25	. 057267	46
15	.819113	2.40	. 876125	1.85	. 942988	4.25	. 057012	45
16	. 819257	2.40	. 876014	1.85	. 943243	4.25	. 056757	44
17	. 819401	2.40	.875904 .875793	1.85 1.85	. 943498	4.25	. 056502	43
18 19	.819545 .819689	2.40	. 875682	1.85	. 9434007	4.25	. 0565248	42
20	9819832		9.8755		9.9442		0.055738	0
21	. 819976		. 875459		. 944517		. 055483	39
22	. 820120	2.39	. 875348	1.85	. 944771	4.25	. 055229	38
23	. 820263	2.39	. 875237	1.85	. 945026	4.24	. 054974	37
24	. 820406	2.39	. 875126	1.86 1.86	. 945281	4.24	. 054719	36
25	. 820550	2.39	. 875014	1.86	. 945535	24	. 054465	35
26	. 820693	2.38	. 874903	1.86	. 945790		. 054210	34
27	. 820836	2.38	. 874791	1.86	. 946045	24	. 053955	33
28	. 820979	2.38	. 874680	1.86	. 946299		. 053701	32
29	. 821122	2.38	874568	. 86	. 946554		053446	31
30	9.821265		9.874		9.94680		0.053192	30
31	. 821407		. 87434		. 947063		. 052937	29
32	. 821550	2.38 2.38	. 874232	1.86	. 947318	4.24	. 052682	28
33	. 821693	2.38 2.37	. 874121	1.87	. 947572	4.24	. 052428	27
34	. 821835	2.37	. 874009	1.87	. 947827	4.24	052173	26
35	. 821977	2.37	. 873896	1.87	. 948081		. 051919	25
36	. 822120	2.37	. 873784	. 8	. 948335		. 051665	24
37	. 822262	2.37	. 873672	1.87	. 948590	4.24 4.24	. 051410	23
38	. 822404		. 873560		. 948844	4.24	. 051156	22
39	. 822546	2.37	. 873448	1.87 1.87	. 949099	4.24 4.24	. 050901	21
40	9.822688		9.8733		9.9493		0.0506	20
41	. 822830	$\begin{aligned} & 2.37 \\ & 2.36 \end{aligned}$. 873223	1.87	. 949608	4.24	. 050392	19
42	. 822972	2.36	. 873110	1.88 1.88	. 949862	4.24 4.24	. 050138	18
43	. 823114	${ }_{2}^{2.36}$. 872998	1.88 1.88	. 950116	4.24	. 049884	17
44	. 823255	36	. 872885	1.88 1.88	. 950371	4.24	. 049629	16
45	. 823397		. 872772	1.88	. 950625		. 049375	15
46	. 823539	2.36	. 872659		. 950879		. 049121	14
47	. 823680		. 872547		. 951133		. 048867	13
48	. 823821	2.36 2.35	. 872434	1.88 1.88	. 951388	4.24	. 048612	12
49	. 823963	2.35	. 872321	1.88 1.88	. 951642	4.24	. 048358	11
50	9.824104		9.87220		9.9518		0.048104	10
51	. 824245	2.35	. 872095	1.89	. 952150	4.24	. 047850	
52	. 824386		. 871981	1.89	. 952405	4.24	. 047595	8
53	. 824527		. 871868	1.89	. 952659	4.24	. 047341	7
54	. 824668		. 871755	1.8	. 952913		. 047087	
	824808	2.34	. 871641		. 953167		046833	5
56	. 824949	2.34	. 871528	1.89	953421	4.24	. 046579	4
57	. 825090	2.34	. 871414	1.89	953675	4.24 4.23	. 046325	,
58	. 8252330	2.34	. 871301	1.89	953929	4.23	. 046071	2
59	. 825371	2.34	$\begin{array}{r}.871187 \\ .871073 \\ \hline\end{array}$	1.99 1.90	954183	4.23	.045817	1
60	. 825511		. 871073		. 954437		3	0
M.	Costue.	D. $1^{\prime \prime}$	Sine.	1 '	Cotang	$1^{\prime \prime}$	Tang	.

M.	Sine.	D. $1^{\prime \prime}$.	Corine.	D. ${ }^{11}$.	Tang.	$1{ }^{\prime \prime}$.	Cotang.	M.
0	9.825511		9.871073		9.954437	4.23	0.045563	60
1	. 825651	2.34	. 870960	1.90	. 954691	4.23 4.23	. 045309	59
2	. 825791	33	. 870846	1.90	. 954946	4.23	. 045054	58 57
3	. 825931	2.33	. 870732	1.90	. 955200	4.23 4.23	. 044800	57 56
4	. 826071	2.33	. 870618	1.90	. 955454	4.23	. 0444546	56
5	. 826211	2.33	. 870504	1.90	. 955708	4.23	. 0444292	55 54
6	. 826351	2.33	. 870390	1.90	. 9556215	4.23	. 043785	53
7	. 826491	2.33	. 8702761	1.90	. 9566469	4.23	. 043531	52
8	. 826631	2.33	. 8780161	1.91	.956469 .956723	4.23	.043277	51
9	. 826770	2.33	. 87	1.91	. 956723	4.23	. 043277	51
11.	9.826910	2.32	9.869933	1.91	9.9569	4.23	0.043023	50
11	. 827049	2.32	. 8698818	1.91	. 957231	4.23	. 042769	49 48
12	. 827189	2.32	. 86979704	1.91	. 9577485	4.23	. 042422615	48
13	. 827328	2.32	. 86959874	1.91	.957739 .957993	4.23	. 04242261	47
14	. 827467	2.32	. 8694774	1.91	. 9578983	4.23	.042007	46
15	. 827606	2.32	. 8699360	1.91	. 95885047	4.23	. 041500	45
16	. 827745	2.32	. 8699245	1.91	. 9588754	4.23	. 041246	43
17	. 827888	2.31	. 86890130	1.92	. 9589008	4.23	. 040992	42
18	. 828023	2.31	. 869015	1.92	. 9590	4.23	. 040738	41
19	. 828162	2.31		1.92		4.23		
20	9.828301	2.31	9.868	1.92	9.955	4.23	0.040484	40
21	. 828439	2.31	. 8686870	1.92	. 95978769	4.23	.040231	39
22	. 8288578	2.31	355	1.92	. 960023	4.23	.039977	37
23	. 8288716	2.31	. 86888424	1.92	. 960277	4.23	. 0394970	36
24	. 828885	2.31	. 8688324	1.92	. 96050784	4.23	. 039216	35
25	. 828993	2.30	. 86882093	1.92	. 9607838	4.23	. 038962	34
26	. 829131	2.30	.868093	1.93	. 961292	4.23	. 038708	33
27	. 829269	2.30	. 8667862	1.93	. 961292	4.23	. 038455	32
28	. 829407	2.30	. 86787747	1.93	. 961545	4.23	. 038201	31
29	. 82	2.30	. 867747	1.83		4.23		
30	9.829683		9.867	1.93	9.962	4.23	0.037948	
31	. 8298821	2.30	. 8677515	1.93	. 962306	4.23	. 0376944	
32	. 829959	2.29	. 8677399	1.93	. 9625813	4.23	. 0374187	27
33	. 830097	2.29	. 8677283	1.93	. 9638313	4.23	. 036933	20
34	. 830234	2.29	. 867167	1.93	. 9633320	4.23	. 036680	25
35	830372	2.29	${ }^{.867051}$	1.94	. 96335374	4.23	. 036426	24
36	. 830509	2.29	. 86668819	1.94	. 9633828	4.23	. 036172	23
37	. 833078	2.29	. 8666703	1.94	. 964081	4.23	. 035919	22
38	. 8330784	2.29	66586	194	. 964335	4.23	. 035665	21
39	21	2.2	. 866586	,		4.23		21
40	9.831058		9.866	1.94	9.964	4.22	0.03	20
41	. 831195	2.28	. 8663353	1.94	. 964848	4.22	. 03495158	9
42	. 831332	2.28	. 8666237	1.94	. 9665095	4.22	. 034651	8
43	. 831469	2.28	.866120	1.94	. 9655602	4.22	. 034398	6
44	. 831606	2.28	. 8665887	1.95	. 9655855	4.22	. 034145	15
45	. 83318742	2.28	. 86557770	1.95	. 9665109	4.22	. 033891	14
47	. 832015	2.23	. 865653	1.95	. 966362		. 033638	13
48	. 832152	2.27	. 865536	1.9	. 966616		. 033384	12
49	. 832288	2.27	. 865419		. 966869		. 033131	11
50	9.83242		9.865302		9.967123		0.032877	0
51	. 832561	2.27 2.27	. 865185	1.95	. 967376	4.22	. 032624	9
52	. 832697	2.27	. 865068	1.95	. 967629	4.22	.032371	
53	. 832833	2.27	. 864950	1.96	. 9667883	4.22	. 032117	
5	. 832969	2.27	. 864833	1.96	. 963136	4.22	. 031864	
	833105	2.26	. 864716	1.96	. 9683889	4.22	. 031611	
	.833241	2.26	. 86454898	1.96	. 9686843	4.22	. 031357	
57	. 833377	2.26	. 864481	1.96	. 9688896	4.22	. 030851	
58	. 833512	2.26	. 8643633	1.96	. 9699449	4.22	. 030597	
59	. 833378783	2.26	$\begin{aligned} & .864245 \\ & .864127 \end{aligned}$	1.96	$\begin{aligned} & .969403 \\ & .969656 \end{aligned}$	4.22	030344	0
60	. 83							
M.	Oosine.	D. 1	Sine	D. 1	Cotan	D.	Tang	M

M.	Sine.	D. 1II.	Cosine.	D. ${ }^{\prime \prime}$.	Tang.	D. ${ }^{\prime \prime}$.	Cotang.	M.
0	9.833783		9.864127		9.969656		0.030344	
1	. 833919	2.26 2.26	. 864010	1.96	.969909	4.22	0.030349 .030091	59
2	. 834054	2.25	. 863892	1.97	. 970162	4.22	. 029838	58
3	. 834189	2.25	. 863774	1.97	. 970416	4.22	. 029584	57
4	.834325	2.25 2.25	. 863656	1.97	. 970669	4.22	. 029331	56
5	. 834460	2.25	. 863538	1.97	. 970922	4.22	. 029078	55
6	. 834595	2.25 2.25	. 863419	1.97	. 971175	4.22	. 028825	54
7	. 834730	2.25	. 863301	1.97	. 971429	4.22	. 028571	53
8	. 834865	2.25 2.25	. 863183	1.97	.971682	4.22 4.22	. 028318	52
9	. 834999	2.25	. 863064	1.97	. 971935	$\begin{aligned} & 4.22 \\ & 102 \end{aligned}$. 028065	51
10	9.835134	2.24	9.862946		9.972188		0.027812	50
11	. 835269	2.24 2.24	. 862827	1.98	. 972441	4.22	. 027559	49
12	. 835403	2.24	. 862709	1.98 1.98	. 972695	4.22 4.22	. 027305	48
13	. 835538	2.24 2.24	. 862590	1.98	. 972948	4.22 4.22	. 027052	47
14	. 835672	2.24	. 862471	1.98	. 973201	4.22	. 026799	46
15	. 835807	2.24 2.24	. 862353	1.98	. 973454	4.22	. 026546	45
16	. 835941	2.24 2.24	. 862234	1.98	. 973707	4.22	. 026293	44
17	. 836075	2.24 2.23	. 862115	1.98	. 973960	4.22	. 026040	43
18	. 836209	2.23 2.23	. 861996	1.98	. 974213	4.22	. 025787	42
19	. 836343	2.23 2.23	. 861877	1.98 1.99	. 974466	$\begin{aligned} & 4.22 \\ & 4.22 \end{aligned}$	$.025534$	4
20	9.836477		9.861758		9.974720		0.025280	40
21	. 836611	2.23 2.23	. 861638	1.99	. 974973	4.22	. 025027	39
22	. 836745	2.23 2.23	. 861519	1.99	. 975226	4.22	. 024774	38
23	. 836878	2.23 2.23	. 861400	1.99 1.99	. 975479	4.22 4.29	.024521	37
24	. 837012	2.23 2.23	.861280	1.99	. 975732	4.22	. 024268	38
25	. 837146	2.23 2.22	. 861161	1.99	. 975985	4.22	. 024015	35
28	. 837279	2.22 2.22	. 861041	1.99	. 976238	4.22	. 023762	34
27	. 837412	2.22 2.22	. 860922	1.99	. 976491	4.22	. 023509	33
28	. 837546	2.22 2.22	. 860802	2.00	. 976744	4.22	. 023256	32
29	. 837679	2.22 2.22	. 860682	2.00	. 976997	4.22	. 023003	31
30	9.837812		9.860562		9.977250		0.022750	30
31	. 837945	2.22 2.22	. 860442	2.00	. 977503	4.22	.022497	29
32	. 838078	2.22 2.22	. 860322	2.00	. 977756	4.22	. 0222244	28
33	. 838211	2.22 2.21	. 860202	2.00 2.00	. 978009	4.22 4.29	.021991	27
34	. 838344	2.21	. 860082	2.00	. 978262	4.22	. 021738	26
35	. 838477	2.21 2.21	859962	2.00 2.00	. 978515	4.22 4.22	. 021485	25
36	. 838810	2.21	. 859842	2.00	. 978768	4.22	. 021232	24
37	. 838742	2.21	. 859721	2.01	. 979021	4.22 4.22	. 020979	23
38	. 838875	2.21	. 859601	2.01	. 979274	4.22	. 020726	22
39	. 839007	2.21	. 859480	2.01	. 979527	4.22	. 020473	21
40	9.839140		9.859360		9.979780		0.020220	20
41	. 839272	2.21 2.20	$.859239$	2.01	. 980033	4.22	. 019967	19
42	. 839404	2.20 2.20	. 859119	2.01	. 980286	4.22	. 019714	18
43	. 839536	2.20 2.20	. 858998	2.01	. 980538	4.22	. 019462	17
44	. 839668	2.20 2.20	. 858877	2.01	. 980791	4.22	. 019209	16
45	. 839800	2.20 2.20	. 858756	2.02 2.02	. 981044	4.22	. 018956	15
46	. 839932	2.20 2.20	. 858835	2.02	. 981297	4.21	. 018703	14
47	. 840064	2.20 2.20	. 858514	2.02	. 981550	4.21	. 018450	13
48	. 840196	2.20 2.19	. 858393	2.02	. 981803	4.21	. 018197	12
49	. 84.328	2.19 2.19	. 858272	2.02	. 982056	4.21	. 017944	11
50	9.840459		9.858151		9.982309		0.017691	10
51	. 840591	2.19	. 858029	2.02	. 982562	4.21	. 017438	9
52	. 840722	2.19	. 857908	2.02	. .982814	4.21	. 017186	8
63	. 840854	2.19	. 857786	2.02	. 983067	4.21	. 016933	7
54	. 840985	2.19 2.19	. 857665	2.03	. 983320	4.21	. 016680	6
55	. 841116	2.19 2.19	. 857543	2.03	. 933573	4.21	. 016427	5
56	. 841247	2.19 2.18	. 857422	2.03	. 983826	4.21	. 016174	4
57	. 841378	2.18	. 857300	2.03	. 984079	4.21	. 01592 !	3
58	. 841509	2.18	. 857178	2.03	. 984332	4.21	. 015668	2
59	. 841640	2.18 2.18	. 857056	2.03	. 984584	4.21	. 015416	1
60	. 841771	2.18	. 856934	2.03	. 984837	4.21	. 015163	0
M.	Cosine.	D. 11 .	Sine.	D. 1'1.	Cotang.	1".	Tang.	M.

M.	Bline.	D. $1^{\prime \prime}$.	Cosine	D. ${ }^{1 \prime}$.	Tang.	D. $1^{\prime \prime}$.	Cotang.	M.
0	9.841771		9.856934		9.984837	4.21	0.015163	60
1	. 841902	2.18 2.18	. 856812	2.03	. 985090	4.21	. 014910	59
2	. 842033	2.18 2.18	. 8556690	2.04	. 985343	4.21	. 014657	58
8	. 842163	2.18	. 8565688	2.04	. 985596	4.21	. 014404	57
4	. 842294	2.17	. 855446	2.04	. 985848	4.21	. 014152	56
5	. 842424	2.17	. 856323	2.04	. 986101	4.21	. 013899	55
6	. 842555	2.17	. 856201	2.04	. 9863564	4.21	. 013646	54
7	. 842685	2.17	. 8556078	2.04	. 98868607	4.21	. 013393	5
9	. 8442815	2.17	. 85558836	2.04	. 9888860	4.21	. 012888	61
10	9.843076	2.17	9.855		9.987365		0.012635	50
11	. 843206	2.17	. 8555		. 987618		. 012382	19
12	. 843336		. 855465	2.05	. 987871	21	. 012129	48
13	. 843466	2.16	. 855342	2.05	. 988123	21	. 011877	47
14	. 843595		. 855219	2.05	. 988376	4.21	. 011624	46
15	. 843725	2.16 2.16	. 855096	2.05	. 988629	4.21	. 011371	45
16	. 843855	2.16	. 854973	2.05	. 988882	4.21	. 011118	44
17	. 843984	2.16	. 85485	2.05	. 989134	4.21	. 010866	43
18	. 844114	2.16	8547	2.08	93840	4.21	. 010613	42
19	. 844243	2.16	. 854603	2.06		4.21	. 010360	41
20	9.844372		9.8544	2.06	9.9898		0.010107	40
21	. 844502	2.15	. 854356	2.06	. 990145		. 009855	89
22	. 844631	2.15	. 854233	2.06	. 990398	4.21	. 009602	38
23	. 844760	2.15	. 854109	2.06	. 990651	4.21	. 009349	87
24	. 844889	2.15	. 853986	2.06	. 990903	4.21	. 009097	0
25	. 845018	2.15	. 853882	2.06	. 991156	4.21	. 008844	35
28	. 845147	2.15	. 853738	2.06	. 991409	4.21	. 008591	34
27	. 845276	2.15	. 853614	2.07	991662	4.21	. 008338	33
28	. 845405	2.14	. 8553490	2.07	. 991914	4.21	. 008086	82
29	. 8		. 853366	2.07	. 99	4.21	. 007833	31
30	9.845662		9.8532		9.992	4.21	0.007580	80
31	. 845790	2.14	. 853118	2.07	. 9926	21	. 007328	29
82	. 845919	2.14	. 852994	2.07	. 99292	4.21	. 007075	28
33	. 846047	2.14	. 852869	2.07	. 993178	4.21	. 006822	27
34	. 846175	2.14	. 852745	2.07	. 993431		. 006569	26
35	. 846304	2.14	. 852620	2.07	. 993683	4.21	. 006317	25
38	. 846432	2.13	. 852496	2.08	. 9939386	4.21	. 006064	24
37	. 846560	2.13	. 852371	2.08	. 994189	4.21	. 005811	23
38	. 846688	2.13	. 852247	2.08	. 9994441	4.21	. 0055559	22
39	8816	2.13	. 8	2.08	. 994694	4.21	. 005306	21
40	9.846944		9.85199	2.08	9.99494	4.21	0.005053	20
41	. 847071	2.13	. 851872	2.08	. 995199	4.21	. 004801	19
42	. 847199	2.13	. 851747	2.08	. 9995452	4.21	. 004548	18
43	. 847327	2.13	. 851622	2.08	. 995705	4.21	. 004295	17
44	. 847454	2.13 2.12	. 851497	2.09 2.09	. 995957	4.21	. 004043	16
45	. 847582	2.12	. 851372	2.09	. 996210	4.21	. 003790	15
46	. 847709	2.12	. 851246	2.09	. 9996463	4.21	. 0035337	14
47	. 847836		. 851121		. 9996715	4.21	. 003285	13
48	. 847964	2.12 2.12	. 850996	2.09	. 9969688	4.21	. 003032	12
49	. 848091	2.12 2.12	. 850870	2.09 2.09	. 997221	4.21	. 002779	11
50	9.848218		9.850745		9.997473		0.002527	10
51	. 848345	2.12	. 850619	2.09	. 997726	4.21	. 002274	9
52	. 848472	2.12	. 850493	2.10	. 997979	4.21	. 002021	8
53	. 848599	2.11	. 850368	2.10	.998231	4.21	. 001769	7
54	. 848726	2.11	. 850242	2.10	. 998484	4.21	. 001516	6
55	. 848852	2.11	. 850116	2.10	. 9988737	4.21	. 001253	6
56	. 848979	2.11	. 8499990	2.10	. 9988989	4.21	. 0001011	8
57	. 849106	2.11	. 8499864	2.10	. 9999492	4.21	. 000758	8
58	. 849232	2.11	. 84949611	2.10	. 9999747	4.21	. 0000253	1
59 60	. 84949485	2.11	$\begin{aligned} & .8496111 \\ & .849485 \end{aligned}$	11	0.000000	4.2	. 000000	0
M.	Oosino.	D. $1^{\prime \prime}$.	Sine.	D. 1^{4}	Cotang.	D. $1^{\prime \prime}$.	Tang.	M.

TABLE XVI.

NATURAL SINES AND COSINES.

M.	0°		10		20		$3{ }^{\circ}$		40		M.
	Sine.	Cosin.	Sine.	Cosin.	Sine.	Cosin.		Cosin.		Cosin.	
	. 00000	One.	. 01745	. 99985	. 03490	. 999339	. 05234	. 99863	. 06976	. 99756	60
	.00029	One.	. 01774	. 99984	. 03519	. 99938	. 05263	. 99861	. 07005	. 99754	59
2	. 00058	One.	. 01803	. 99984	. 03548	. 99937	. 05292	. 99860	. 07034	. 99752	58
3	. 00087	One.	. 01832	. 99983	. 03577	. 99933	05321	. 99858	. 07063	. 99750	57
	. 00116	One.	. 01862	. 99983	. 03606	. 99935	05350	. 99857	. 07092	. 99748	56
	. 00145	One	. 01891	. 99982	. 03635	. 99934	05379	. 99855	. 07121	. 99746	56
6	. 00175	One	. 01920	. 99938	. 08664	. 99933	. 05408	. 99854	. 07150	. 99744	54
7	. 00204	One.	. 01949	. 99981	. 03693	. 99932	. 05437	. 99852	. 07179	. 95742	53
8	. 00233	One.	. 01978	. 99998	. 03723	. 99931	. 05466	99851	. 07208	. 99740	52
,	. 00262	One.	. 02007	. 999980	. 03752	. 999930	. 05495	. 998849	. 077237	. 99738	51
10	. 00291	One	. 02036	. 99979	. 03781	. 99929	. 05524	. 99847	. 07266	. 99736	50
11	.00320	99999	. 02065	. 99979	. 03810	. 99927	. 05553	. 99846	. 07295	. 99734	49
12	. 00349	. 99999	. 02094	. 99978	. 03839	. 99992	. 05582	. 99844	. 07324	99731	48
13	. 00378	. 99999	. 02123	. 99977	. 03868	. 99925	. 05611	. 99842	. 07353	99729	47
14	. 00407	. 99999	. 02152	. 99977	. 03897	. 99924	. 05640	. 99841	. 07382	.99727	46
15	. 00436	. 99999	. 02181	. 99976	. 03926	. 99923	. 05669	. 99839	. 07411	. 99725	45
16	. 00465	. 99999	. 02211	. 99976	. 03955	. 99922	. 05698	. 99838	. 07440	99723	44
17	. 00495	. 99999	.0224 ${ }^{1}$	39975	. 03984	. 99921	. 05727	. 99836	. 07469	. 99721	43
18	. 00524	. 99999	. 02265	. 99974	. 04013	. 99919	. 05756	. 99834	. 07498	99719	42
19	. 00553	. 99998	. 02298	. 99974	. 04042	. 99918	. 05785	. 99833	. 07527	99716	41
20	. 00532	. 99998	. 02327	. 99973	. 04071	. 99917	. 05814	. 99831	. 07556	99714	40
21	. 00611	. 99998	. 02356	. 99972	. 04100	. 99916	. 05844	. 99829	. 07585	99712	39
22	. 00640	. 99998	. 02385	. 99972	. 04129	. 99915	. 05873	. 99827	. 07614	99710	38
23	00669	. 99998	. 02414	. 99971	. 04159	. 99913	. 05902	. 99826	. 07643	99708	37
24	. 00698	99998	. 02443	. 99970	. 04188	. 99912	. 05931	. 99824	. 07672	99705	36
25	. 00727	. 99997	. 02472	. 99969	. 04217	. 99911	. 05960	. 99822	. 07701	99703	35
26	. 00756	. 99997	. 02501	. 999969	. 04246	. 99910	. 05989	. 99821	. 07730	. 99701	34
27	. 00785	. 99999	. 02530	. 99968	. 04275	. 99909	. 06018	. 99819	. 07759	. 99699	33
28	. 00814	. 99937	. 02560	99967	. 04304	99907	. 06047	. 99817	. 07788	. 99696	32
29	. 00844	. 99496	. 02589	99966	. 04333	. 99906	. 06076	. 99815	. 07817	. 99694	31
30	. 00873	. 90996	. 026	99966	. 04362	. 99905	. 06105	. 99813	. 07846	93692	30
31	. 01902	. 99996	. 02647	. 99965	. 04391	. 99904	. 06134	. 99812	. 07875	.99688	29
32	. 00931	. 99996	. 02676	. 99964	. 04420	. 99902	. 06163	. 99810	. 07904	. 99687	28
33	. 00960	. 999995	. 02705	. 99963	. 04449	. 99901	. 06192	. 99808	. 07933	. 99685	27
34	. 00989	. 99995	. 02734	. 99963	. 04478	. 99900	. 06221	. 99806	. 07962	. 99683	26
35	. 01018	. 999995	. 02763	. 99962	. 04507	. 99898	. 06250	. 99804	. 07991	. 99680	25
36	. 01047	. 99995	. 02792	. 99961	. 04536	. 99897	. 06279	. 99803	. 08020	. 99678	24
37	. 01076	. 99994	. 02821	. 99960	. 04565	. 99896	. 06308	. 99801	. 08049	. 99676	23
38	. 01105	. 99994	. 02350	. 99959	. 04594	. 99894	. 06337	.99799	. 08078	99673	22
39	. 01134	. 99994	. 02879	. 999959	. 04623	. 99893	. 06366	. 99797	. 08107	. 99671	21
40	. 01164	. 99993	. 02908	. 999958	. 04653	. 99892	06395	. 99797	. 08136	. 99668	20
41	. 01193	. 99993	. 02938	. 99957	. 04682	. 99890	. 06424	. 99793	. 08165	99666	19
42	. 01222	. 99993	. 02967	. 99956	. 04711	. 99889	06453	. 99792	. 08194	99664	18
43	. 01251	. 99992	. 02996	. 99955	. 04749	. 99888	. 06482	. 99790	. 08223	. 99661	17
44	. 01280	. 99992	. 03025	. 99954	. 04769	. 99886	06511	. 99788	. 08252	99659	16
45	. 01309	. 99991	,	9905	. 04798	. 99885	,	-	,	99657	5
46	. 01338	. 99991	03083	. 99952	. 04827	. 99883	. 06569	. 99784	. 08310	. 99654	14
47	. 01367	. 999991	. 03112	99952	. 04856	. 99882	. 06598	. 99782	. 08339	. 99652	13
48	. 01396	. 99990	. 03141	99951	. 04885	. 99881	. 06627	. 99780	. 03368	. 99649	12
49	. 01425	. 99990	. 03170	99950	. 04914	. 99879	. 06656	. 99778	. 08397	. 99647	11
50	. 01454	. 99989	. 03199	. 99949	. 04943	. 99878	. 06685	. 99776	. 08426	. 99644	10
51	. 01483	. 99989	. 03223	99948	. 04972	. 99876	. 06714	. 99774	08155	. 99642	,
52	. 01513	. 99989	. 03257	. 99947	. 05001	. 99875	. 06743	. 99772	. 08484	. 99639	8
53	. 01542	. 99988	03236	99916	. 05030	. 99873	. 06773	. 99770	. 08513	99637	7
54	. 01571	. 99938	. 03316	. 99945	. 05059	. 99872	. 06802	. 99768	. 08542	99635	6
55	. 01600	. 999887	03345	. 99944	. 05088	. 99870	. 06831	. 99766	. 08571	. 996332	5
56	. 01629	. 99937	. 03374	. 99943	. 05117	. 99869	. 06860	. 99764	. 08600	. 99630	4
57	. 01678	99986	03403	. 99942	. 05146	. 99367	. 06889	. 99762	. 08629	. 99627	3
58	. 01687	. 99938	03432	. 99941	. 05175	. 99886	. 06918	. 99760	. 08658	. 99625	2
59	.01716	. 93935	. 03161	99940	. 05205	. 99864	. 06947	. 99758	. 08887	. 99622	1
60	. 01745	. 99985	. 03490	99939	. 05234	. 99863	. 06976	56	$.087$	19	0
M.	Cosin.	Sino	Cosin.	Sine.	Cosin	Sine.	Cosin	Sine.	Cosi	In	M.

	50		6°				80				
M.	Sine.	Cosin.	Sine.	Cosin.		Cosin.	Sine.	osin.	Sine.	Cosin.	
0	08716	. 99619	. 10453	. 99452	. 12187	99255	. 13917	99027	15643	98769	60
	. 08745	. 99617	. 10482	. 99449	12216	. 99251	. 13946	99023	15672	98764	59
	. 08774	. 99614	. 10511	. 99446	12245	99248	. 13975	. 99019	15701	. 987	58
3	. 08803	. 99612	. 10540	. 99443	12274	992	14004	99015	. 15730	. 987	57
4	. 088	. 99609	. 10569	. 99440	12302	99240	. 14033	99011	. 15758	. 98751	6
	. 08860	. 99607	. 10597	. 99437	. 12331	. 99237	. 14061	99006	15787	. 98746	55
6	. 08889	. 99604	10626	. 94434	. 12360	. 99233	. 14090	. 99002	15816	9874	54
7	. 08918	. 99602	. 10655	. 99431	. 12389	. 99230	. 14119	98998	. 15845	98737	53
	. 08947	. 99599	. 10684	99428	. 12418	99226	. 14148	98994	. 15873	98732	52
9	. 0897	. 99596	. 10713	. 93424	. 12447	9922	. 14177	98990	. 15902	987	
10	. 090	. 99594	. 10742	. 99421	124	99219	. 14205	98986	. 15931	. 9872	
11	. 09034	. 99591	. 10771	. 99418	12504	99215	. 14234	98982	. 15959	. 9871	9
12	090	. 99588	. 10800	. 99415	. 12533	99211	14263	98978	. 15988	. 9871	
13	. 09092	. 99586	. 10829	. 99412	. 12562	99208	14292	98973	. 16017	9870	7
14	. 09121	. 99583	. 10858	99409	. 12591	. 99204	. 14320	98969	. 16046	. 9870	46
15		. 9958	. 103	. 9940	12620	. 99200	. 14349	98965	6074		45
16	. 09179	. 995	. 109	. 99402	. 12649	. 99197	. 14378	98961	. 16103	,	44
17	. 092	. 995575	. 10945	. 99399	. 12678	. 99193		98957	. 16132	. 98	43
18	. 09237	99572	10973	. 99396	. 12706	. 9918	. 14436	98953	. 16160	986	42
19	. 09266	99570	. 11002	. 99393	12735	99186	14464	98948	. 16189	. 986	41
20	. 09295	. 99567	. 11031	. 99390	12764	. 99182	. 14493	98944	. 16218	.9867	0
21	. 09324	. 9956	. 11060	. 99336	. 12793	. 99178	. 14522	989	. 16246	98	39
22	. 09353	. 9956	. 11089	. 9938	. 12822	. 9917	14551	9893	. 16275	. 98	38
23	. 09382	. 995	. 11118	. 99330	. 12851	. 9917	. 14580	98931	. 16304	. 9866	7
24	. 09411	. 99555	. 11147	. 99377	. 12880	99167	. 14608	98927	. 16333		36
25	. 09440	99553	. 11176	. 99374	. 12908	99163	14637	98923	16361		
26	. 09469	. 99551	. 11205	. 99370	12937	. 99160	14666	98919	. 16390		4
27	. 09498	. 99548	. 11234	. 99367	. 12966	99156	. 14695	. 98914	. 16419	. 98	
28	. 095	. 99545	. 11263	. 9936	12995	9915	. 14723	. 98910	. 16447	. 98	
29	. 0955	. 99542	. 11291	. 9936	13024	. 99	. 14752	98906	. 16476	. 986	1
30				-							
31	. 09614	. 99537	. 11349	. 9935	. 13081	99	14810	. 98897	. 16533	. 986	29
32	. 09642	. 99534	. 11378	. 99351	. 13110	99137	14838	. 98893	. 16562	. 9861	28
33	. 09671	. 99531	. 11407	. 99347	. 13139	. 99133	. 14867	98889	. 16591	98614	27
34	. 097700	. 99528	. 11436	. 99344	. 13168	. 99129	. 14896	. 988	16620	986	25
35	. 097	. 99526	. 11465	. 99341	. 13197	. 99125	. 14925	988	. 16648	986	5
36	. 0975	. 99523	. 11494	. 99337	. 13226	. 99122	. 14954	98876	. 16677	986	2
37	. 09787	. 99520		. 99334	. 13254	. 99118	14982	. 98871	. 16706		2
38	. 09816	. 99517	. 11552	99331	. 13283	. 99114	15011	. 98867	1673	98	22
39	. 09345	. 99514	. 11580	. 99327	. 13312	. 99110	. 15040	. 98863	. 16763	985	21
40	. 098774	. 99511	. 11609	. 99324	. 13341	. 99106	. 15069	. 9885	. 16792	985	20
41	. 09903	. 99508	. 11638	. 99320	. 13370	. 99102	. 15097	. 98854	. 16820	9857	19
42	. 09932	. 99506	. 11667	. 99317	. 13399	. 99098	. 15126	. 98849	16849	9857	18
43	. 09961	. 99503	. 11696	. 99314	13427	. 99094	. 15155	. 98845	16878	985	17
44	. 09999	. 99500	. 11725	. 99310	13456	. 999091	15184		16906	9856	16
45	. 100	. 99497	. 11754	. 99307	. 13485	. 99087	15212	98836	. 16935	9855	15
46	. 10048	. 99494	. 11783	. 99303	. 1351	. 99083	. 15241	. 988	. 16964		14
47	. 10077	. 99491	. 11812	. 9930	. 13543	. 9907	. 15270	. 9882	. 16992	985	,
48	. 10106	. 99488	. 11840	. 99297	. 13572	. 9907	. 15299	. 9882	. 17021	,	
49	. 10135	. 99435	. 11869	. 99293	. 13600	. 9907	. 15327	. 988	. 17050	-	11
50	. 10164	. 99482	. 11898	. 99290	. 13629	. 99067	. 15356	98814	17078	98531	10
51	. 10192	. 99479	. 11927	. 99286	. 13658	. 99063	. 15385	. 98809	.1\%107	98526	
52	. 10221	. 99476	. 11956	. 99283	. 13687	. 99059	. 15414	. 98805	. 17136	. 9852	8
53	. 10250	. 99473	. 11985	. 99279	. 13716	. 9905	. 15442	. 988	. 17164	985	
54	. 10279	. 99470	. 12014	. 99276	. 13744	. 99051	. 15471	. 98796	. 17193	9851	
55	. 10308	. 99467	. 12043	. 99272	. 13773	. 99047	15500	. 9879	. 17222	9850	
56	. 10337	. 99464	. 12071	. 99269	. 13802	. 99043	15529	. 98787	17250	98501	
57	. 10366	. 99461	. 12100	. 99265	. 13831	. 99039	15557	. 98782	. 17279	. 98496	
58	. 10395	. 99458	. 12129	. 99262	. 13860	. 99035	. 15586	. 98778	. 17308	. 9849	
59	. 10424	. 9945	. 12158	. 9925	. 13889	. 9903	. 15615	. 98773	17336	9848	
60	. 10453	. 99152	. 12187	. 99255	17	99027		98769	17365		0
M.	Cosln.	Sline	Cosin.	Sine.	Sin.	Sine.	in	Slne.	osin	8ine.	

	150		16°		170		18°		19°		
	8ino.	Cosin.	Sine.	Cosin.	Sine.	Cosin.	Sline.	Cosin.		Cusin.	\%.
	25882	96593	. 27564	. 96126	. 29237	95630	30902	95106	. 32557	94552	60
	. 25910	. 96585	27592	96118	29265	95622	30929	95097	. 32584	94542	59
	2.25938	. 96578	. 27620	. 96110	29293	95613	. 30957	95088	. 32612	94533	58
	3.25966	. 96570	. 27648	96102	29321	95605	. 30985	95079	. 32639	94523	57
	4 .25994 5 26022	. 965562	. 27676	. 96094	. 29348	95596	. 31012	95070	32667	94514	56
	5 .26022 6 .26050	. 96555	.27704	. 96036	. 29376	. 955888	. 31040	${ }^{95061}$. 32634	94504	55
	7.26079	. 96540	. 27759	. 96070	. 29432	95571	. 31095	95043	. 3272749		54
	8.26107	. 96532	. 27787	. 96062	29460	95562	. 31123	. 95033	. 32777	94476	52
	9.26135	. 96524	. 27815	. 96054	. 29487	. 95554	. 31151	. 95024	. 32804	94466	51
10	0. 26163	. 96517	27843	. 96046	29515	. 95545	. 31178	95015	. 32832	94457	50
1	1.26191	. 96509	. 27871	. 96037	29543	. 95536	. 31206	. 95006	. 32859	9444	49
2	2.26219	. 96502	. 27899	. 96029	29571	95528	. 31233	94997	. 32887	944	48
3	3.26247	. 96494	. 27927	. 96021	. 29599	95519	. 31261	94988	. 32914		47
4	4.26275	. 96486	27955	. 96013	29626	95511	. 31289	94979	. 32942	9441	46
5	5 . 26303	. 96479	27983	. 96005	29654	95502	. 31316		. 32969	94409	45
16	6.26331	. 96471	28011	. 95997	29682	95493	31344	94961	. 32997	94399	44
7	7.26359	. 96463	28039	. 95989	29710	95485	31372	94952	. 33024	94390	43
18	8. 26337	. 96456	23067	. 95981	29737	95476	31399	9494	. 33051	943	42
9	9.26415	. 96448	28095	. 95972	29765	95467	31427	94933	. 33079	9437	41
0	. 26443	. 96440	28123	. 95964	29793	95459	. 31454	94924	. 33106	94361	40
21	1.26471	. 96433	. 23150	. 95956	29821	. 95450	. 31482	94915	. 33134	94351	39
22	26500	. 96425	. 28178	. 95948	29849	. 95441	. 31510	94906	. 33161	94342	38
23	. 26523	. 96417	28206	. 95940	29876	. 95433	. 31537	94897	. 33189	94332	37
24	. 26555	. 96410	28234	95931	29904	95424	. 31565	. 9488	. 33216	94322	36
25	. 26584	. 96402	28262	. 95923	29932	95415	. 31593	94878	. 33244	94313	35
28	8.26612	. 96394	28290	. 95915	29960	95407	. 31620	94869	. 33271	94303	34
27	7.26640	. 96336	28318	. 95907	29987	. 95398	. 31648	94860	. 33298	94293	33
28	26668	. 96379	28346	. 95898	30015	95389	. 31675	94851	. 33326	94284	32
29	. 26696	. 46371	28374	. 95890	. 30043	95380	31703	94842	. 33353	94274	31
30	. 267	. 96363	28402	. 95882	. 30071	. 95372	173	94832	3338	94264	30
31	1.26752	. 96355	28429	. 9588	. 30098	95363	. 31758	94823	. 33408	94254	29
32	. 26780	. 96347	. 28457	. 95865	. 30126	95354	. 31786	94814	. 33436	94245	28
33	. 26808	. 96340	. 28485	. 95857	. 30154	95345	. 31813	94805	. 33463	94235	27
34	26836	. 96332	28513	. 95849	. 30182	95337	. 31841	94795	. 33490	94225	26
35	. 26884	. 96324	28541	. 95841	. 30209	95328	. 31868	94786	. 33518	94215	25
36	26892	. 96316	28569	. 95832	. 30237	95319	31896	94777	. 33545	94206	24
37	26320	. 96308	. 23597	. 95824	. 30265	. 95310	. 31923	94768	. 33573	94196	23
38	26948	. 96301	. 28625	. 95816	. 30292	. 95301	. 31951	94758	. 33600	94186	22
39	26976	. 96293	. 28652	. 95807	. 30320	. 95293	. 31979	. 94749	. 33627	94176	21
40	27	. 96285	. 23630	. 95799	. 30348	. 95234	. 32006	. 94740	. 33655	94167	20
42	2706	. 96277	. 28708	. 95791	. 30376	. 95275	. 32034	. 94730	. 33682	94157	19
43	. 27088	. 96261	. 28764	. 957774	. 304031	. 952625	${ }^{3} 32061$	${ }_{97712} 94$	${ }_{33710}$	94147	18
44	27116	. 96253	. 28792	. 95766	. 30459	. 95248	32116	94702	. 33737	${ }_{94127} 9$	7
45	27144	. 96246	. 28820	. 95757	. 304	. 95	. 32144	94693	. 33792	94118	15
46	. 27172	. 96238	. 28847	. 95749	. 30514	. 95231	. 32171	94684	. 33819	94108	4
47	27200	. 96230	. 28875	. 95740	. 30542	. 95222	. 32199	91674	. 33846	94098	13
48	27228	. 96222	23903	95732	30570	. 95213	. 32227	94665	. 33874	94088	12
49	. 27256	. 96214	28931	.957\%	30597	. 95204	32254	94656	33901	94078	11
50	27234	. 96206	. 28959	. 95715	30625	. 95195	32282	91646	33929	94068	10
51	27312	. 96198	. 28987	. 95707	30653	. 95186	. 32309	94637	33956	94058	
52	27340	.96:90	29015	. 95699	. 30630	. 95177	. 32337	94627	. 33983	94049	8
63	27368	. 96182	29042	. 95690	. 30708	. 95168	. 32364	94618	. 34011	94039	7
54		. 96174	29070	. 95681	30736	. 95159	. 32392	94609	34038	94029	6
5	27452	. 96166	29093	. 95673	. $30 \sim 63$. 95150	. 32419	. 94599	34065	94019	5
57	27480			. 9566	. 30791	. 95142	. 22447	. 94590	. 34093	94009	
58	27508	. 96142	29182	. 95647	. 30846	. 955124	. 322502	. 94581	. 34120	939999	3
59	27536	. 96134	29209	95639	. 30874	. 95115	. 32529	. 94561	. 34175	. 93979	1
60	27564	126	29237	. 95630	. 30902	. 95106	. 32557	. 94552	. 34202	. 3 S	0
M.	Covin	no.	Cosin.	Sine.	Cosin.	Sine.	Cosin	Sine.	Cosin	Sino.	
							71	10			

	20°		210		23°		23°		840		
$\underline{4}$	Sine.	Cosin	Sine.	Co	Sine.	Co	Sine.	Cosin.	Sine.	Co	m.
	34202	. 93969	. 35837	. 93358	. 37461	. 92718	. 39073	92050	40674	91355	60
	34229	. 9395	. 35864	. 93348		. 92707	. 39100	92039	40700	91	59
	342	. 93949	. 35891	.933					40727		
3	34234	. 93939	. 35918	. 93327	37542	85	39153	92016	. 40773	91319	${ }^{57}$
	34311	. 93929	. 35915	. 93316	. 37569	92675	391	. 92005	. 40780	91307	56
		. 93919	. 359					. 91994		912	55
	34366	. 93909	. 36000	. 93	. 376	. 926	. 39234	. 919			
	34393	. 93899	. 36027		37649	922	. 39280	. 91971	. 40860	912	
	34421	. 938	. 36054	. 93274	37	926	. 3928	. 91959			
	3448	. 9337	. 36081	. 9326	${ }^{37773}$. 3931				
10	34475		. 3610	. 93253	37730	92609	. 39341	. 9193	40939	912	
	34503	. 938	. 36135	. 93	. 37757				40966	91224	48
12	. 345	${ }^{933}$. 36	. 932	. 37	925	. 394	9190	40910		48
	34584	. 93	. 36217	. 93	. 37838	. 225	. 3	91891	41045	91	
15	34612	. 93819	. 36244	. 93201	378	92554	39474	91879	41072	911	45
16	34	. 93	. 36271	. 931	. 37892	. 92	39501	. 91868	. 41	. 91164	4
	. 31466	.9379			. 37919			91856	${ }^{4} 41125$		43
18	34694	. 93789	. 36	. 933169	${ }^{.37946}$	${ }_{92510}^{9251}$		918	${ }_{4}^{41151}$	${ }_{91}^{911}$	42
	. 34	. 937	. 36	. 931	. 37999	92499		91	41204	91	
	. 34775	. 93759	. 364	. 9313				918	41231	. 91104	39
	348	. 937	. 36434	. 93127		92477		917	41257 41234		38
	34	. 9372	. 36			924		917	${ }_{41310}^{41234}$		
	34884	. 9371	. 36515	. 930	. 35134	9244	. 397		4133		
	34912	. 937			. 38161	924		9175	. 413	910	34
	. 34939	. 936	. 3656	. 93074		9242	. 397	917	. 413		
			. 36		38215	92410			. 414		,
	34993	. 936	. 36	. 9305	. 38241	92399	398	9171	. 414	910	11
30	. 35021	. 936	. 36650	930	38268	923	395	917	d	. 90996	30
31	. 35048	. 93657	. 36677	93031	33	. 92377	. 399	916	41496		29
	35	. 936	. 3670	3020			399				
3	35		. 367	. 93010	. 33	923	${ }_{39}^{39}$	${ }_{916} 9$	4154		27
	. 85157					92	. 400	. 916	416		
	35184			929		9232	400	916	416		24
	35		. 36			923		916	416	909	23
						922		. 916	416		
			. 36399	92945		023	40115	9160	41707	908	1
				929		${ }^{222}$. 401	9159	417	908	
	35	. 9335				${ }_{922}^{922}$. 915	417		8
	35375	. 93534	. 37002	929	. 36	922	4022	915	4181		
	3540	. 9352	. 3702	9289	析	9223	. 4024	915	418	908	
45	3542	. 93514		. 9288	3867	9222	. 4027	915	418	90814	5
46	6 . 35456	. 93503	. 37083	. 923	3369	9220	4030	915	41892	908	4
	. 35	. 934	. 371	928		921	. 40	915	41	. 9079	
		. 93	. 371	928							1
	. 355	${ }_{.9346}$	- 37191	${ }_{92287}^{9283}$		${ }_{921}^{921}$	404				1
	35	. 93452	. 37218	. 92816	388	92152	4043	9146	4202	9074	9
		. 93	. 37245	928		921		9144	4205	907	
	35647	. 93431	. 37272	9279		921		9143	42077		
	35674	. 93420		927	339	9211	4051	9142	42104	906	
	. 357	. 93410		927	339	921	405	944	421	. 906	
	${ }^{5} \mathbf{7} .357$. 93	.33	927							
									4223	90643	
60	. 35837	.933	. 37461	92718		000	40674	9135	42262	90631	0
M.	Cosin.	Sine	Cosin	Sine	Cosin	Slne	Cosin.	Ine	Cosin.	Sine.	M.

TABLE XVI. NATURAL, SINES AND COSINES.

	25°		26		870		28°		290		
	I. Sine.	Cos	Sine.	Co	Sine.	Cos	Sine.	Cosin.	Si	Cosin.	M.
	. 42262	. 90	. 43837	89379	. 45399	89101	. 46947				60
	. 42288	. 90618	. 43363	. 89367	. 45425	. 89087	46973		49506	87	59
	. 42315	90506	43889	. 89354	. 45451	. 89074	. 46999	. 88267	48532		58
	. 42341	90594	43916	89341	. 45477	. 89061	. 47024	. 88254	48557		57
	. 42367	. 90582	. 43942	89328	. 45503	. 89048	. 47050	88240	. 48583		6
	. 42394	90	. 43968	. 89816	. 45529	. 8903	. 47076	. 88226	48608	87391	55
	6 6. 42420	90	. 43994	89803	45554	. 89	. 47101	. 88213	48634	97377	54
	7.42446	90	. 44020	89790	45580	. 8900	. 47127	. 88199	. 48659	8736	53
	. 42473	. 90	. 44046	89777	. 45606	889	. 47153		. 48684	873	52
	. 42499	. 90	. 44072	89764	. 45632		. 47178		. 48710	87	51
,	. 42552	9049	. 4412	.8973	. 45684	. 8895	. 472	. 88158		87321	50
12	2.42578	. 904	. 44151	. 89726	. 45710	. 889	. 472	. 88	. 48786		
	3.42604	. 90470	. 44177	. 89713	. 45736	. 889	. 4728	. 88117	. 48811	8727	47
	4.4263	90458	. 44203	89700	. 45762	88915	. 4730	. 88103	. 48837	8726	46
15	5.42657	90446	. 44229	. 89687	. 45787	889	. 47332				45
	6.42683	. 90433	. 44255	89674	. 45813	. 88	. 47358	. 880	83		44
17	7.42709	. 90421	. 44281	. 89662	. 45839	. 888	. 47383	. 88062	. 48913	87221	43
18	8.42736	. 90408	. 44307	. 89649	. 45865	. 888	. 47409	. 88048		87207	42
19	9. 42762	. 903	. 44333	. 896	. 45891	. 88	47434	. 88034	48964	87193	
	20. 42788	. 90383	. 4435	. 8962	. 45917	. 888	. 47460	. 88020	. 48989	87178	40
21	1.42815	. 90371	. 44385	89610	. 45942	. 888	47486	. 8800	. 49014	8716	39
22	22.42841	90358	. 44411	89597	. 45968	. 8880	. 47511	. 87	. 49040	87150	38
23	23.42867	90346	. 44437	89534	45994	88795	. 47537	. 87	. 490	871	37
24	4.42894	. 90334	. 44464	. 89571	. 46020	. 88782	4756	. 87965	. 4909	. 87	6
25	. 42920	. 90321	. 44490	. 89558	. 46046	. 8876	. 47588	. 87951	49116		35
	42946	. 90309	. 44516	. 8954	. 46072	. 8875	. 47614	. 87937	. 49141	. 87093	34
27	7.42972	. 9029	. 41542	. 895	. 46097	. 8874	47639	. 87923	49166	. 87079	
28	8. 42999	. 90284		. 89519	. 46123	. 887	. 47665	. 87909	. 49192	. 87064	2
29	9 433025	. 90271	994	. 8950	. 46149	. 88715	47690	. 87896	. 49217		
30	. 43	90259	. 44620	. 89493							
31	1.43077	. 90246	44646	. 894	46201	. 8868					29
32	. 43104	90233	44672	. 89467	46226	. 88674	47767	. 87854	4929	. 87007	28
	4313	. 90221	4469	89454	. 46252	. 8866	4779	8784	49318	8699	27
	431	. 90208	. 44724	. 8944	. 46278	. 886	. 4781	. 87826	49344	. 8697	26
	5.43	. 90196	44750	. 8942	. 46304	. 886	4784	. 87812	. 49369	. 86964	5
	67.43209	. 90183	. 44776	. 89115	. 46330	. 88620		. 87798	. 49394	. 86949	24
	7.43235	. 90171	44802	. 89402	. 46355	. 88607	. 47	. 87784	. 49419	. 86935	23
	. 432261	. 90158	44828	89389	46381	. 88593	. 47	. 87770	. 49445	. 8692	22
40	. 43	. 901	44854	. 89376	. 46407	. 88580	47946	87756	49470	869	2
41	1.43340	. 90	. 4		464				4952		20
42	2.43366	. 90	. 44932	. 8933	4648	885	. 48022	. 87715	. 49546	. 86863	18
43	3.43392	. 90095	. 44958	. 89324	. 46510	. 8852	. 4804	. 87701	. 4957	. 86849	7
44	4.43418	. 90082	. 44984	. 89311	. 46536	. 88512	. 48073	. 87687	. 49596	. 86834	16
45	5.43445	. 900	45010	. 89298	46561	. 8819		. 87673	. 4962		15
46	6.43471	. 90057	. 45036	. 89285	. 46587	. 88485	. 48124	. 87659	49647		
47	7.43497	. 900	. 45062	. 89272	. 46613	. 88472	. 48150	. 87645	49672	86791	3
48	. 43523	. 90032	. 45088	. 89259	46639	. 88458	. 48175	. 87631	49697	. 86777	2
49	9.43549	. 90019	. 45114	. 89245	46664	. 88445	. 48201	. 87617	49723	. 86762	1
50	0.43575	. 90007	. 45140	. 89232	. 46690	. 88431	4822	. 87603	. 4974	. 86748	1
51	1.43602	. 89994	. 45166	. 89219	46716	. 88417	. 48252	. 87589	. 49773	. 86733	9
52	2. 43628	89931	. 45192	. 89206	46742	. 88404	. 48277	. 87575	. 4979	. 867	
53	. 43654	. 89968	. 45218	. 89193	48767	. 88390	. 48303	. 87561	. 49824	86	
54	4. 43680	. 89956	. 45243	. 89180	. 46793	. 88377	. 48328	. 87546	. 49849	. 86690	
55	. 43706	. 899	. 45269	. 89167	. 46819	. 88363	48354	. 87532	. 49874	86675	
56	. 43733	. 89930	. 45295	. 89153	. 46844	. 88349	. 48379	. 87518	. 49899	. 86661	
57	7. 43759	. 89918	. 45321	. 89140	. 46870	. 8833	. 48405	. 87504	. 49924	. 86646	
	. 43785	. 89905	. 45347	. 89127	. 46896	. 88322	. 48430	. 87490	. 4995	. 866	
	. 43811	. 89892	. 45373	. 89114	. 46921	. 88	. 48456	. 87476	4997	866	
60	. 43						. 48481		. 50000	\%	0
								Lne	S	me.	I
					62		$61{ }^{\circ}$		60		

	30°		31°		88°		33°		840		
	Sine.	Cosin	Sine.	Cosin	Sine.	Cosi	Sine.	Cos	Sine.	Oosin.	M.
	. 50000	. 86603	515	. 85717	. 52992	. 84805	. 54464				00
	. 50025	. 86588	51529	. 85702	. 53017	. 84789	. 54488	. 83851	. 55943	. 82887	59
	. 50050	. 86573	. 51554	. 85687	. 53041	. 84774	. 54513	. 83835	. 55968	. 82871	58
3	\|. 50076	. 86559	. 51579	. 85672	. 53066	. 84759	. 54537	. 83819	55992	. 82855	57
	. 50101	. 86544	. 51604	. 85657	. 53091	. 84743	. 54561	. 83804	. 56016	. 82839	56
5	. 50126	. 86530	. 51628	. 85642	. 53115	. 84728	. 54586	. 83788	56040	82822	55
6	. 50151	. 86515	. 51668	. 85627	. 53140	. 84712	. 54610	. 83772	56064	. 82806	54
	. 50176	. 86501	. 51678	. 86012	. 53164	. 84697	. 54635	. 83756	56088	. 827	53
	. 50201	. 86486	. 51708	. 85597	. 53189	. 84681	. 54659	. 83740	. 56112	. 82773	52
	. 50227	. 86471	. 51788	. 85582	53214	. 84666	. 54683	. 83724	. 56136	. 82757	51
10	. 50252	. 86457	. 51753	. 855567	53238	. 84650	. 547718	. 833692	. 56160	. 82741	49
11	. 50277	. 86442	. 51778	. 86551	${ }^{532}$. 846365	${ }^{.} 54732$. 83692	. 56184	.82724 .82708 8	49
12	. 50302	. 86427	. 51803	. 85533	. 5328812	.84619 .81604	. 547781	.83676	. 56208	. 8272698	7
13	. 50327	. 86413	. 51828	.85521	. 53312	.81604	. 54781	. 836660	. 56232	.82692	47
15	. 50377	. 86384	. 51877	. 85491	. 53361	. 84573	. 64829	. 83629	. 56280	. 82659	
16	. 50403	. 86369	. 51902	. 85476	. 53386	. 84557	. 54854	. 83613	. 56305	82643	4
17	. 50428	. 86354	. 51927	. 85461	. 53411	. 84542	. 51878	. 83597	. 56329	82626	3
18	. 50453	. 86340	. 51952	. 85446	. 53435	. 84526	. 54902	. 83581	. 56353	82610	42
19	. 50478	. 86325	. 51977	. 8.5431	. 53460	. 84511	. 54927	. 83565	. 56377	82593	41
20	. 50503	. 86310	52002	. 85416	. 53454	. 84495	. 54951	. 83549	. 56401	82577	
21	. 50528	. 86295	52026	. 85401	. 53509	. 84480	. 54975	. 83533	. 56425	8256	38
22	. 50553	. 86281	52051	. 85385	. 63534	. 84164	. 64999	. 83517	. 56449	82544	38
23	. 50578	. 86266	. 52076	. 85370	. 53558	. 84418	. 55024	. 83501	. 56473	. 8252	37
24	. 50603	. 86251	. 52101	. 85355	. 53583	. 84433	. 55048	. 83485	. 56497	82511	5
25	. 50628	. 86237	. 52126	. 85340	53607	. 844177	. 55072	. 83469	. 565545		35
7	. 50684	. 86222	${ }^{5} 52175$. 853310	. 536505	. 84386	. 55121	. 83437	. 56569	. 82462	33
28	. 50704	. 86192	52200	. 85294	. 53681	. 84370	. 55145	. 83421	. 56593	82	32
29	. 50729	. 86178	52225	. 85279	. 53705	. 84355	. 55169	. 83405	. 56617	8242	31
30	50	. 861	. 52250	. 85284	. 63730	. 84339	. 551	83389	. 56641	82413	1
31	. 50779	.861	. 62275	. 85249	. 53754	. 84324	55218	. 83373	. 56665	82396	29
32	. 50804	. 86133	. 52299	. 85231	. 53779	. 84308	55242	. 83356	. 56689	82380	28
33	. 50829	. 86119	. 52324	. 85218	53804	. 84292	. 55266	. 83340	. 56713	8236	37
34	. 50854	. 86101	. 52349	. 85203	. 53828	. 84277	. 55291	. 83324	. 56736	82347	26
35	. 50879	. 86089	. 52374	. 85188	. 53853	. 84261	. 55315	. 83308	. 56760	82330	25
36	. 50904	. 86074	. 52399	. 85173	. 53877	. 84245	55339	. 83292	. 56784	82314	2
37	. 50929	. 86059	. 52423	. 85157	.53902	. 84230	5536	. 83276	56808	82297	23
38	. 50954	. 86045	. 52448	. 85142	53926	. 84214	. 55388	83260	56832	82281	2
39	. 50979	. 86030	. 52473	. 85127	53951	. 84198	. 55412	. 83244	. 56856	82264	21 20
40	. 51004	. 86015	. 52498	. 85112	. 53975	. 84182	55436	. 83228	. 56880	8224	
41	. 51029	. 36000	. 52522	. 85096	. 54000	. 81167	. 55460	83212	. 56904	${ }_{82214}^{8221}$	8
42	. 51054	. 85985	. 52547	. 85081	. 54024	. 84151	. 55484	. 83195	. 56928	8221	
	. 51079	. 85970	. 52572	. 85066	. 54049	. 84135	. 55509	. 83179	. 56952	82198	17
45	. 51104	. 8595	. 52597	. 8505	. 54073	. 84120	. 55533	. 83163	56976	. 8218	
5	. 51	. 85941	. 52	. 85035				. 83147	57000	82165	
	. 51154	. 85926	. 52646	. 85020	. 54122	84088	. 55581	83131	. 57024	82148	
47	. 51179	. 85911	. 52671	. 85005	. 54146	. 84072	. 55605	. 83115	. 67047	82132	13
48	. 51204	. 85896	. 52696	. 84989	. 54171	. 84057	. 55630	. 83098	. 67071	82116	
49	. 51229	. 85881	. 52720	. 84974	. 54195	. 84041	. 55554	. 83082	. 57095	82098	
50	. 51254	. 85866	. 52745	. 84959	. 54220	. 84025	. 65678	. 83066	57119	82082	
51	. 51279	. 8585	. 52770	. 84943	. 54244	. 84009	. 55702	. 83050	. 57143	82065	
52	. 51304	. 85836	. 52794	. 84928	. 54269	. 83994	. 55726	. 83034	. 57167	. 82048	
53	. 51329	. 85821	52819	. 84913	. 54293	. 83978	. 55750	. 83017	. 57191	82032	
54	. 51354	. 85806	52844	. 84897	54317	. 83962	. 55775	83001	57215	. 82015	
55	. 51379	. 85792	52869	. 84882	54342	. 83946	. 55799	. 82985	. 57238	81999	
56	. 51404	. 85777	. 52393	. 84866	. 54366	. 83930	. 65823	82969	57262	8188	
57	. 51429	. 85762	52918	84851	. 54391	. 83915	. 55847	82953	. 57286	81965	
58	. 51454	. 85747	52913	. 84836	. 54415	. 83899	. 55871	. 82936	. 57310	81949	
59	. 51479	. 85732	52967	. 84820	. 54440	. 83883	. 55895	82920	57334	81932	
		. 85	92	. 84805	54464	7		4			
M.	Oo	8ino.	Cosin	Sico	Cosin.	in	Cosin	8 in		Sme.	
		9°		8		${ }^{\circ}$		0°	S		

	830		360		37°		38°		300		
	Sine.	Cosin.	Slue	Cosin		Cosin.	Sine.	Co	8ine.	C	M.
0	573	. 81915	. 58779	. 80902	. 60182	. 79864	. 61566	. 78801	. 62932	. 77	60
	. 5738	. 81899	. 58802	. 80885	. 60205	. 79846	. 61589	. 78783	. 62955	. 776	59
	. 57405	. 81882	. 58826	. 80867	. 60228	. 79829	. 61612	. 7876	. 62977	. 77	58
3	. 57429	. 81865	. 58849	. 80850	. 60251	. 79811	. 61635	. 7874	. 63000	. 776	57
	. 57453	. 81848	. 58873	. 80833	. 60274	. 79793	. 61658	. 78729	. 63022	. 776	56
5	. 57477	. 81832	. 58896	. 80816	. 60298	. 79778	. 61681	. 78711	. 63045	. 776	55
6	. 57501	. 81815	. 58920	. 80799	. 60321	. 79758	. 61704	. 786	. 63068	.778	54
7	. 57524	. 81798	. 58943	. 80782	. 60344	. 79741	. 61726	. 78676	. 63090	. 77	53
	. 57548	. 81782	58967	. 90765	. 60367	. 79723	. 61749	. 78	. 63113	. 77	52
9	.57572	. 81765	. 58990	. 80748	. 60390	. 79706	. 61772	. 78640	. 63135	775	51
10	. 57596	. 81748	. 59014	. 80730	. 60414	. 79688	. 61795	. 7862	. 63158	. 77	50
11	. 57619	. 81731	. 59037	. 80713	. 60437	. 79671	. 61818	. 78604	. 63180	. 775	49
12	. 57643	81714	. 59061	. 80696	. 60460	79653	. 61841	. 785	. 63203	. 77	48
13	. 57667	. 81698	. 59084	. 80679	. 60483	. 79635	. 61864	. 785	. 63225	. 77	4
	. 57691	. 81681	. 59108	. 80662	. 60506	. 79618	. 61887	. 7855	. 63248	. 7	48
14	. 57715	. 81664	. 59131	. 80644	. 60529	. 79600	. 61909	. 78532	. 63271	. 7	45
16	. 5738		. 59154	. 80627	. 60553	. 79583	. 61932	. 78514	. 63293		1
17	. 57762		. 59178	. 80610	. 60576	. 79565	. 61955	. 78496	. 63316	7	43
18	. 67786	. 81614	. 59201	. 80593	. 60599	. 79547	. 61978	. 78478	. 63338	. 773	42
19	. 57810	. 81597	. 59225	. 80576	. 60622	. 79530	. 62001	. 78460	. 6336	. 773	41
20	. 57833	. 81580	. 59248	. 80558	. 60645	. 79512	. 62024	. 78442	. 63383	773	40
	. 67857	. 81563	. 59272	. 80541	. 60668	. 79494	. 62046	. 78424	. 63406	. 773	39
21	. 57881	. 81546	. 59295	. 80524	. 60691	79477	. 62069	. 78405	. 63428	. 773	38
23	. 57904	. 81530	. 59318	. 80507	. 60714	. 79459	. 62092	. 78387	. 63451	. 7729	37
24	. 67928	. 81513	. 59342	. 80489	. 60738	. 79441	. 62115	. 78369	63473	. 7727	38
25	. 57952	. 81496	. 59365	. 80472	. 60761	. 79424	. 62138	. 78351	. 63496	. 7725	30
26	. 57976	. 81479	. 59389	. 80455	. 60784	. 79406	. 62160	. 78333	. 63518	. 7722	34
27	. 57999	. 81462	. 59412	. 80438	. 60807	. 79388	. 62183	. 78315	. 63540	. 7721	33
28	. 58023	81445	. 59436	. 80420	. 60830	. 79371	. 62206	. 78297	. 63563	. 771	32
29.	. 68047	. 81428	. 59459	. 80403	. 60853	. 79353	. 62229	. 78279	. 63585	. 7718	31
			. 59482	. 80386	. 6	. 79335	1	. 78261	3608	. 7	30
30	. 58094	. 81395	. 59506	. 80368	. 60899	. 79318	. 62274	. 78243	. 63630		29
31 32.	. 58118	. 81378	. 59529	. 80351	. 60922	. 79300	. 62297	. 78225	. 63653	. 7712	28
33	. 58141	. 81361	. 59552	. 80334	. 60945	. 79282	. 62320	78206	. 63675	. 7710	27
34	. 58165	. 81344	. 59576	. 80316	. 60968	. 79264	. 62342	. 78188	. 63698	. 7708	26
	. 58189	. 81327	. 59599	. 80299	. 60991	. 79247	. 62365	. 78170	. 63720	. 7707	25
35	. 58212	. 81310	. 59622	. 80282	. 61015	. 79229	. 62388	. 78152	. 63742	. 7705	24
3738	. 58236	. 81293	. 59646	. 80264	. 61038	. 79211	. 62411	78134	. 63765	. 77033	23
	. 58260	. 81276	. 59669	. 80247	. 61061	. 79193	. 62433	78116	. 63787	. 7701	22
38.	. 58283	. 81259	. 59693	. 80230	. 61084	. 79176	. 62456	. 78098	. 63810	. 76	21
40	. 58307	. 81242	. 59716	. 80212	. 61107	. 79158	. 62479	. 78079	. 63832	. 7697	20
	. 58330	. 81225	. 59739	. 80195	. 61130	. 79140	. 62502	. 78061	. 63854	. 7695	19
41 42	. 58354	. 81208	. 69763	. 80178	. 61153	. 79122	. 62524	. 78043	. 6387	.	18
43	. 58378	. 81191	. 59786	. 80160	. 61176	. 79105	. 62547	. 78025	. 63899	. 769	17
	. 58401	. 81174	. 59809	. 80143	. 61199	. 79087	. 62570	. 78007	. 63922	. 76903	16
$\begin{aligned} & 44 \\ & 45 \end{aligned}$. 61222	. 79069	. 62592	8	944	76884	15
46	. 68449	. 81140	. 59856	. 80108	. 61245	. 79051	. 62615	. 77970	. 63966		4
47	. 58472	. 81123	. 59879	. 80091	. 61268	. 79033	. 62638	. 77952	. 63989	. 76847	13
48.	. 58496	. 81106	. 59902	. 80073	. 61291	. 79016	. 62660	. 77934	. 64011	. 76828	12
	. 58519	. 81089	. 59926	. 80056	. 61314	. 78998	62683	. 77916	. 64033	. 76810	11
499.	. 58543	. 81072	. 59949	. 80938	. 61337	. 78980	. 62706	. 77897	. 64056	. 76791	10
51	. 58567	. 81055	. 59972	. 80021	. 61360	. 78962	. 62728	. 77879	. 64078	. 76772	
52.	. 58590	. 81038	. 59995	. 80003	. 61383	. 78944	. 62751	. 77861	. 64100	. 76754	8
	. 58614	. 81021	. 60019	. 79956	. 61406	. 78926	. 62774	. 77843	. 64123	. 76735	7
53.	. 58637	. 81004	. 60042	. 79968	. 61429	. 78908	. 62796	. 77824	. 64145	. 76717	5
55.	. 58661	. 80987	. 60065	. 79951	. 61451	. 78891	. 62819	. 77806	. 64167	. 76698	5
56	. 58684	. 80970	. 60089	. 79934	. 61474	. 78873	. 62842	. 77788	. 64190	. 76679	4
57.	. 58708	. 80953	. 60112	. 79916	. 61497	. 78855	. 62864	. 77769	.64212	. 76661	3
58.	. 58731	. 80936	. 60135	. 79899	. 61520	. 78837	. 62887	. 77751	. 64234	. 76642	2
5960	. 58755	. 80919	. 60158	. 79881	. 61543	. 78819	. 62909	. 77733	64256	. 76623	
	. 58779	. 8	182	. 79864			. 62932	715	64279	4	0
M.	Cosin.	Sine.	in	Sine	Costu	Sine.	Cosin	Sine.	ost	Slue.	

	40°		410		48°		43°		440		M.
	Sinc.	Cosin		Co	Sine.	Co	Sine.	Cosin.	Sine.	Cosin.	
	64279	. 766	. 65			74	68200		. 69466		60
2	. 6430	. 76586	. 65628	. 75452	. 66935		.63221	. 73116	. 69487	7	
	. 64323	. 76567	. 65650	. 75433	. 66956	74	. 68242	73096	. 69508	. 71894	
	. 64346	. 76548	. 65672	75414	. 66978	74256	. 63264	73076	. 69529	71	57
3	643	. 76530	. 65694	75395	. 66999	. 74237	. 68285	. 73056	. 69549	71	
5	64	. 7651	. 65716	75	. 67021	. 74217	. 68306	73036	. 69570		
	. 64412	. 76492	. 657	.753	. 67043						
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	6443	. 76473	. 65759	. 75337	. 67064		68349	. 72996	. 69612	. 7179	
$\begin{aligned} & 7 \\ & 8 \\ & \hline \end{aligned}$	64457	. 76455	. 65781	. 75318	. 67086	. 74159	. 68370	. 72976	696	717	
	. 64479	. 76436	. 65803	. 75299	. 67107	741	. 68	72	. 69654	71	
10	. 64501	. 76417	. 65825	. 75280	. 67129	. 741	. 68412	72937	. 69675	. 717	5
11	. 64524	. 76398	. 65847	75261	. 67151	74100		72917	. 69696	71	
	. 64	. 76380	. 658	. 752	. 67172	. 740			. 69717		
13		. 76361	. 6589	. 75222	. 67194	. 74061					
	64590	. 76342	. 65913	. 75203	. 67215	. 74041			. 69		
15	. 64612	. 76323	. 65935	. 75184		. 74022					
15	646	. 7630	. 659	. 75				72	. 6		
17	6465	. 7628	. 659	. 751	. 67280	739	68	72797	. 69821	,	
18	. 64679	. 7626	. 66	. 75	. 6	. 7396		72777			2
	. 64701	. 76248	. 6	75107	-	739		72757	. 69	715	
$\begin{array}{\|} 19 \\ 20 \end{array}$. 6472	. 76229	. 66044	75088	67344	73924	. 686	72737			
21	64746	. 76210	. 66066	75069	67366	. 7390	686	72717	. 69	71	
	6476	. 76192	. 66088	. 75050	67387	. 73	. 68	72697	. 6	7	
22	. 6479	. 76173	.66109	75030	. 67	73	. 6	726	. 69946	. 714	
23	. 64	. 76154	. 66131	. 7501	. 67430	73	6870	72	. 69966	71	
24	. 648	. 76	. 6615	. 7499	452	. 738	68730	72637		71	
28	648	. 76116	661	7	. 67473	738	6875	7261	7000		
27	. 648	. 76097	. 66197	7493		. 7378	68772	72597	7002		
	. 6490	. 76078	. 66218	74934	675	. 73767		72577	7004		
$\left\|\begin{array}{l} 28 \\ 89 \\ 98 \end{array}\right\|$	64923	. 76059	. 66240	. 74915		. 73747		72557	. 70070		
30	. 64945	76041	. 66262		. 67559	. 73728					
	. 6	. 76	. 66	. 7		. 73	. 68857	72	. 70112		23
$\begin{aligned} & 31 \\ & 32 \end{aligned}$. 6	. 76003	. 66	. 748	. 6760	. 7368	688	72497	70	712	
328 34	. 65011	. 75984	. 6632	7483	76	. 73669	688	72477	701		27
	. 65033	. 75965	634	74818	676	73649	68920	7245	7017		
$\left.\begin{array}{\|} 34 \\ 35 \end{array} \right\rvert\,$. 65055	. 75946	. 66371	. 74799	676	73629	. 689	. 7243	7015	71223	
36373	65077	. 75927	. 66393	. 7478		736		72417	. 702	7120	
	. 65100	. 75908	. 6641	. 74760	. 6709	. 73590	. 68	72397	. 702	7118	
37 38	. 65122	. 75889		. 7		. 73570	690	7237	02	7116	22
38 39	. 65144	. 75870	. 66	74722	67752	73551	690	7235	02	7114	2
40	. 65166	. 75851	,	74703	7773	73531	90	72337	.7029		
	. 65188	. 75832		746	67795	73511	69067	72317	70319		19
42	65210	75813	. 66523	. 74664	. 67816	. 73491	. 6908	. 72297	. 70339		
	65232	. 75794	6654	. 746	37	7347	. 69109	.7227	,	71	
$\left\lvert\, \begin{aligned} & 43 \\ & 44 \end{aligned}\right.$. 65	75	. 66	. 74625	. 67859	. 73452	. 69130	72	38	. 71039	16
45	. 65276	75756		. 74606				72236			
	6529	. 7573				73	69172	. 72216	. 7042	70	
$\begin{aligned} & 46 \\ & 47 \end{aligned}$. 65320	. 75719		7456	. 67923	7339	69193	. 72196	. 7044	709	
48	65342	. 75700	. 66653	74548	67944	. 73373	. 69214	. 72176	. 704	709	2
	. 65364	. 75680	. 66675	74528	. 67965	. 7335	. 692	7215	704	70	
49	. 6538	. 75681	. 66697	. 74509	67987	. 7333	. 6925	721	705	709	
51	. 65408	. 75642	. 66718	. 74489	68008	. 73314	6927	7211	. 7052	7089	
52	. 65430	. 75623	. 66740	. 74470	68029	. 73294	69238	72095	7054	7087	
	. 65452	. 75604	. 66762	74451	68051	. 73274	69319	72075	7056	708	
	. 65474	. 75585		74431	68072	73254	69340	72055	70587	708	
$\begin{aligned} & 54 \\ & 55 \end{aligned}$. 65496	. 75566	. 66805	. 74412	68093	. 73234	. 69361	. 72035	7060	708	
	65518	. 75547	. 66827	. 74392	68115	. 73215	. 69382	. 72015	7062	7079	
56	. 65540	. 75528	. 66848	. 7437	. 68136	. 731	. 69403	. 71995	7064	7077	
$\begin{aligned} & 57 \\ & 58 \end{aligned}$. 65562	. 75509	. 668870	7	. 68157	. 73175	. 69424	7197	. 70670	. 70752	
59	. 655884				. 688179	. 73155					
60	$\overline{\text { Cosin. Sine. }}$		Cosin.		Cosin.		Cosin. Sine.		Cosin. Sine.		M.
M.											

TABLE XVII.

NATURAL TANGENTS AND COTANGENTS.

M.	00		$1{ }^{\circ}$		20		3°		M.
	lang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
	. 00000	Infinito.	. 01746	57.2900	. 03492	28.6363	. 05241	19.0811	60
	. 00029	3437.75	. 01775	56.3506	. 03521	28.3994	. 05270	18.9755	59
2	. 00058	1718.87	. 01804	55.4415	. 03550	28.1664	. 05299	18.8711	58
3	. 00087	1145.92	. 01833	54.5613	. 03579	27.9372	. 05328	18.7678	57
	. 00116	859.436	. 01862	53.7086	. 03609	27.7117	. 05357	18.6656	56
	. 00145	687.549	. 01891	52.8821	03638	27.4899	05387	18.5645	55
	. 00175	572.957	. 01920	52.0807	03667	27.2715	05416	18.4645	54
7	. 00204	491.106	. 01949	51.3032	. 03696	27.0566	05445	18.3655	53
8	. 00233	429.718	. 01978	50.5485	. 03725	26.8450	05474	18.2677	52
9	. 00262	381.971	. 02007	49.8157	. 03754	26.6367	. 05503	'8.1708	51
10	. 00291	343.774	. 02036	49.1039	. 03783	26.4316	. 05533	8.0750	50
11	. 00320	312.521	. 02066	48.4121	. 03812	26.2296	05562	17.9802	49
12	. 00349	286.478	. 02095	47.7395	. 03842	26.0307	05591	17.8863	48
13	. 00378	264.441	. 02124	47.0853	. 03871	25.8348	05620	17.7934	47
14	. 00407	245.552	. 02153	46.4489	. 03900	25.6418	05649	17.7015	48
15	. 00436	229.182	. 02182	45.8294	. 03929	25.4517	. 05678	17.6106	45
16	. 00465	214.858	. 02211	45.2261	. 03958	25.2644	. 05708	17.5205	44
17	. 00495	202.219	. 02240	44.6386	. 03987	25.0798	. 05737	17.4314	43
18	. 00524	190.984	. 02269	44.0661	. 04016	24.8978	. 05766	17.3432	42
19	. 00553	180.932	. 02298	43.5081	. 04046	24.7185	05795	17.2558	41
20	. 00582	171.885	. 02328	42.9641	. 04075	24.5418	. 05824	17.1693	40
21	. 20611	163.700	. 02357	42.4335	. 04104	24.3675	. 05854	17.0837	39
22	. 00640	156.259	02386	41.9158	. 04133	24.1957	. 05883	16.9990	38
23	. 00669	149.465	. 02415	41.4106	. 04162	24.0263	. 05912	16.9150	37
24	. 00698	143.237	. 02444	40.9174	. 04191	23.8593	. 05941	16.8319	36
25	. 00727	137.507	. 02473	40.4358	04220	23.6945	. 05970	16.7496	35
28	. 00756	132.219	. 02502	39.9655	. 04250	23.5321	. 05999	16.6681	34
27	. 00785	127.321	. 02531	39.5059	. 04279	23.3718	. 06029	16.5874	33
28	. 00815	122.774	. 02560	39.0568	. 04308	23.2137	. 06058	16.5075	32
29	. 00884	118.540	. 02589	38.6177	. 04337	23.0577	. 06087	16.4283	31
30	. 00873	114	. 02619	38.1885	. 04366	22.9038	. 06116	16.3499	80
31	. 00902	110.892	. 02648	37.7686	. 04395	22.7519	. 06145	16.2722	29
32	. 00931	107.426	. 02677	37.3579	. 04424	22.6020	06175	16.1952	28
33.	. 00960	104.171	. 02706	36.9560	. 04454	22.4541	. 06204	16.1190	27
34	. 00989	101.107	. 02735	36.5627	. 04483	22.3081	. 06233	16.0435	26
35	. 01018	98.2179	. 02764	36.1776	. 04512	22.1640	. 06262	15.9687	25
36	. 01047	95.4895	. 02793	35.8006	. 04541	22.0217	. 06291	15.8945	24
37	. 01076	92.9085	. 02822	35.4313	. 04570	21.8813	. 06321	15.8211	23
38	. 01105	90.4633	. 02851	35.0695	. 04599	21.7426	. 06350	15.7483	22
39	. 01135	88.1436	. 02881	34.7151	. 04628	21.6056	. 06379	15.6762	21
40	. 01164	85.9398	. 02910	34.3678	. 04658	21.4704	. 06408	-15.6048	20
41	. 01193	83.8435	. 02939	34.0273	. 04687	21.3369	. 06437	15.5340	19
42	. 01222	81.8470	. 02968	33.6935	. 04716	21.2049	. 06467	15.4638	18
43	. 01251	79.9434	. 02997	33.3662	. 04745	21.0747	. 06496	15.3943	1
44	. 01280	78.1263	. 03026	33.0452	047\%4	20.9460	. 06525	15.3254	16
45	. 01309	76.3900	. 03055	32	. 04863	20.8188	. 06554	152571	15
46	. 01338	74.7292	. 03084	32.4213	. 04833	20.6932	06584	15.1893	14
47	. 01367	73.1390	. 03114	32.1181	. 04862	20.5691	. 06613	15.1222	13
48	01396	71.6151	. 03143	31.8205	. 04891	20.4465	. 06642	15.6557	12
49	. 01425	70.1533	. 03172	31.5284	. 04920	20.3253	. 06671	14.9898	11
50	. 01455	68.7501	. 03201	31.2416	. 04949	20.2056	06700	14.9244	0
51	. 01484	67.4019	. 03230	30.9599	. 04978	20.0872	. 06730	14.8596	
52	01513	66.1055	. 03259	30.6833	. 05007	19.9702	06759	14.7954	
53	. 01542	64.8580	. 03288	30.4116	. 05037	19.8546	. 06788	14.7317	7
54	. 01571	63.6567	. 03317	30.1446	05066	19.7403	. 06817	14.6685	6
55 56	. 01600	62.4992	. 03346	29.8823	05095	19.6273	. 06847	14.6059	5
56	. 01629	61.3829	. 03376	29.6245	. 05124	19.5156	. 06876	14.5438	4
57	01658	60.3058	03405	29.3711	. 05153	19.4051	. 06305	14.4823	3
58	. 01687	59.2659	. 03434	29.1220	. 05182	19.2959	. 06934	14.4212	2
59	. 01716	58.2612	. 03463	28.8771	. 05212	19.1879	. 06963	14.3607	1
60	1746	57.2900	. 03492		05241	19.0811	. 06993	14.3007	0
M.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang	Tang.	M.
			88°		87°		86°		

M.	40		50		0°		70		M.
	Tang	Cotang	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotanc.	
0	. 06993	14.3007	. 08749	11.4301	10510	9.51436	12278	8.14436	60
1	. 07022	14.2411	. 08778	11.3919	10540	9.48781	12308	8.12481	59
2	. 07051	14.1821	. 08807	11.3540	10569	9.46141	12338	8. 10536	58
,	. 07080	14.1235	. 08837	11.3163	10599	9.43515	12367	8.08600	57
4	. 07110	14.0655	. 08866	11.2789	10628	9.40904	12397	8.06674	56
5	. 07139	14.0079	. 08895	11.2417	10657	9.38307	12426	8.04756	65
6	. 07168	13.9507	. 08925	11.2048	10687	9.35724	12456	8.02848	54
7	. 07197	13.8940	. 08954	11.1681	10716	9.33155	12485	8.00948	53
8	. 07227	13.8378	. 08983	11.1316	10746	9.30599	12515	7.99058	52
9	. 07256	13.7821	. 09013	11.0954	10775	9.28058	12544	7.97176	51
10	. 07285	13.7267	. 09042	11.0594	10805	9.25530	12574	7.95302	50
11	. 07314	13.6719	. 09071	11.0237	10834	9.23016	12603	7.9343\%	49
12	. 07344	13.6174	. 09101	10.9882	10863	9.20516	12633	7.91582	48
13	. 07373	13.5634	. 09130	10.9529	10593	9.18028	12662	7.89734	47
14	. 07402	13.5098	. 09159	10.9178	10922	9.15554	12692	7.87895	46
15	. 07431	13.4566	. 09189	10.8829	10952	9.13093	12722	7.86064	45
16	. 07461	13.40	. 092	10.84	09	9.106	12751	7.84242	44
17	07490	13.3515	. 09247	10.8139	11011	9.08211	12781	7.82428	43
18	07519	13.2996	. 09277	10.7797	11040	9.05789	12810	7.80622	42
19	07548	13.2480	. 09306	10.7457	11070	9.03379	12840	7.78825	41
20	. 07578	13.1969	. 09335	10.7119	11099	9.00983	12869	7.77035	40
21	07607	13.1461	. 09365	10.6783	11128	8.98598	12899	7.75254	39
22	. 07636	13.0958	09394	10.6450	11158	8.96227	12929	7.73480	38
23	. 07665	13.0458	09423	10.6118	11187	8.93867	12958	7.71715	37
24	. 07695	12.9962	. 09453	10.5789	11217	8.91520	12988	7.69957	36
25	. 07724	12.9469	. 09482	10.5462	11246	8.89185	13017	7.68208	35
28	. 07753	12.8981	. 09511	10.5136	11276	8.86862	. 13047	7.66466	34
27	. 07782	12.8496	09541	10.4813	11305	8.84551	13076	7.64732	33
28	. 07812	12.8014	09570	10.4491	11335	8.82252	. 1310	7.63005	32
29	. 07841	12.7536	. 09600	10.4172	1136	8.79964	1313	7.61287	31
30	. 07870	12.7052	. 09629	10.3	1139	8.7768	1316	7.59575	30
31	. 07899	12.6591	. 0965	10.3538	11423	8.75425	13195	7.67872	29
32	. 07929	12.6124	09688	10.3224	11452	8.73172	13224	756176	28
33	. 07958	12.5660	. 09717	10.2913	11482	8.70931	13254	7.54487	27
34	. 07987	12.5199	. 09746	10.2602	11511	8.68701	1328	7.52806	28
35	. 08017	12.4742	. 09776	10.2294	11541	8.66482	13313	7.61132	25
36	. 08045	12.428	. 0980	10.1988	11570	8.64275	13343	7.49465	24
37	. 08075	12.3838	09834	10.1683	11600	8.62078	13372	7.47806	23
38	03104	12.3390	. 09864	10.1381	11629	8.59893	13402	7.46154	22
39	. 08134	12.2946	. 09893	10.1080	11659	8.57718	13432	7.44509	21
40	. 08163	12.2505	. 09923	10.0780	11688	8.55555	13461	7.42871	20
41	. 08192	12.2067	09952	10.0483	11718	8.53402	13491	7.41240	19
42	. 08221	12.1632	09981	10.0187	11747	8.51259	13521	7.39616	18
43	. 08251	12.1201	10011	9.98931	11777	8.49128	13550	7.37999	17
44	. 08230	12.0772	10040	9.96007	11806	8.47007	13580	7.36389	16
45	08	12.	10069	9.93101	1183	8.44896	13609	7.34786	15
46	. 08339	11.9923	10099	9.902	118	8.4	13639	7.33190	14
47	. 08368	11.9504	10128	9.87338	11895	8.40705	13669	7.31600	13
48	. 08397	11.9087	10158	9.84482	11924	8.38625	13698	7.30018	12
49	08427	11.8673	10187	9.81641	11954	8.36555	13728	7.28442	11
50	08456	11.8262	10216	9.78817	11983	8.34496	13758	7.26873	10
51	08485	11.7853	. 10246	9.76009	12013	8.32446	13787	7.25310	9
52	08514	11.7448	. 10275	9.73217	12042	8.3040	13817	7.23754	8
53	08544	11.7045	. 10305	9.70441	12072	8.28376	13846	7.22204	7
54	08573	11.6645	. 10334	9.67680	12101	8.26355	13876	7.20661	6
5 5:	08602	11.6248	. 10363	9.64935	12131	8.24345	13916	7.19125	5
56	08632	11.5853	10393	9.62205	12160	8.22344	13935	7.17594	4
57	08661	11.5461	. 10422	9.59490	12190	8.20352	13965	7.16071	3
58	08690	11.5072	. 10452	9.56791	12219	8.18370	13995	${ }^{7} .14553$	2
59	08720	11.4685	10481	9.54106	12249	8.16398	14024	7.13042	1
M.	08749	4301	10510	436	12278	8.14435	. 14054	7.11537	0
	Cotang.	Tal	Cotang.	Tan	Cortang.	Tan	Cotang.	Tang.	I.
	85°		840		83°				

M.	8°		9°		10°		$11{ }^{\circ}$		M.
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	14054	7.11537	. 15838	6.31375	. 17633	5.67128	. 19438	5.14455	60
1	. 14084	7.10038	15868	6.30189	. 17663	5.66165	. 19468	5.13658	59
$\begin{aligned} & 1 \\ & 2 \end{aligned}$. 14113	7.08546	. 15898	6.29007	. 17693	5.65205	. 19498	5.12862	58
$\begin{aligned} & 2 \\ & 3 \end{aligned}$. 14143	7.07059	. 15928	6.27829	. 17723	5.64248	. 19529	5.12069	57
4	.14173	7.05579	. 15958	6.26655	. 177753	5.63295	. 19559	5.11279	56
5	. 14202	7.04105	. 15988	6.25486	. 17783	5.62344 5.61397	. 19589	5.109704	54
6	. 14232	7.02637	. 16017	6.24321	. 17813	5.61397	. 19649	5.08921	53
7	. 14282	7.01174 6.99718	. 16047	6.23160 6.22003	. 178883	5.59511	. 19680	5.08139	52
8	. 14321	6.98268	. 16107	6.20851	. 17903	5.58573	. 19710	5.07360	51
9	. 14351	6.96823	. 16137	6.19703	. 17933	5.57638	. 19740	5.06584	60
$10!$. 14381	6.95385	16167	6.18559	. 17963	5.56706	. 19770	5.05809	9
11	. 14410	6.98952	. 16196	6.17419	. 17993	5.55777	19801	5.05037	8
13	. 14440	6.92525	. 16226	6.16283	. 18023	5.5485	. 19	5.04267	47
14	. 14470	6.91104	. 16256	6.15151	. 18053	5.	. 19861		46
15	. 14499	6.89688	. 16286	6.14023	. 18	5.530	. 19891	5.02734	5
16	. 14529	6.88278	. 16316	6.12899	. 18113	5.52090	. 19921	5.01971	4
	. 14559	6.86874	16346	6.11779	. 18143	5.51176	. 19952	5.01210	43
18	. 14588	6.85475	16376	6.10664	. 18173	5.50264	. 19982	5.00451	42
19	. 14618	6.84082	. 16405	6.09552	. 18203	5.4935	. 20012	4.99695	41
20	. 14648	6.82694	. 16435	6.08444	. 18233	5.4	. 20042	4.98940	40
	. 14678	6.81312	. 16495	${ }^{6} .07340$. 18263	5.	. 20013	4	39
21	. 14707	6.79936	16495	6.06240	. 18293	5.46648	. 20103	4.96690	37
$\begin{aligned} & 22 \\ & 23 \\ & 23 \end{aligned}$. 147378	6.78564 6.77199	. 165555	6.04051	. 18353	5.44857	. 20164	4.95945	36
25	. 14796	6.75838	. 16585	6.02962	. 18384	5.43966	. 20194	4.95201	35
28	. 14828	6.74483	. 16615	6.01878	. 18414	5.43077	. 2022	4.94460	34
	. 14856	6.73133	. 16645	6.00797	. 18444	5.42192	. 202	4.93721	33
$\left\|\begin{array}{l} 27 \\ 28 \end{array}\right\|$. 14888	6.71789	. 16674	5.99720	. 18474	5.4	. 202	4.92984	31
$\begin{aligned} & 28 \\ & 29 \end{aligned}$. 14915	6.70450	. 16704	5.98646	. 18504	5.404	. 20345	4.91516	30
30	. 14945	6.69116	. 16734	5.97576	. 18534	0.39552		4.90785	
31	. 14975	6.67787	. 16764	5.96510	. 18564	5.38677 5.37805	. 203708	4.90056	28
32	. 15005	6.66463	. 16794	5.95448	. 18594	5.37805 5.36936	. 20436	4.89330	27
	. 15034	6.65144	. 16824	5.94390 5.93335	. 186854	5.36070	. 20466	4.88605	26
$\left\|\begin{array}{l} 33 \\ 34 \end{array}\right\|$. 15084	${ }_{6.63831}$. 16854	5.93335 5.92283	. 186884	5.35206	. 20497	4.87882	25
35	. 15094	6.62523 6.61219	. 168914	5.91236	. 18714	5.34345	. 20527	4.87162	24
36	. 15153	6.59921	. 16944	5.90191	. 18745	5.33487	. 20557	4.86444	23
38	. 15183	6.58627	. 16974	5.89151	. 18775	5.32631	. 20588	4.85727	22
39	. 15213	6.57339	. 17004	5.88114	. 18805	5.31778	. 20618	4.85013	21
40	. 15243	6.56055	. 17033	5.87080	. 18835	5.30928	20648	4.84300	19
	. 15272	6.54777	. 17063	5.86051	. 18865	5.300	20679	4.83590	18
41	. 15302	6.53503	. 17093	5.85024	. 18895	5.29	. 20739	4.82882	17
43 44	. 15332	6.52234	. 17123	5.84001	. 18995	5.28393	. 20770	4.81471	16
45	. 153362	6.50970 6.49710	. 1717183	5.82982	. 18955	5.26715	. 20800	4.80769	15
	. 15421	6.48456				5.25880	. 20830	4.80068	14
46	. 15421	6.48456 6.47206	. 17213	5.79944	. 19046	5.25048	. 20861	4.79370	13
48	. 15481	6.459261	. 17273	5.78938	. 19076	5.24218	. 20891	4.78673	12
49	. 15511	6.44720	. 17303	5.77936	. 19106	5.23391	. 20921	4.77978	11
50	. 15540	6.43484	. 17333	5.76937	. 19136	5. 225666	. 20952	4.77286 4.76595	10
51	. 15570	6.42253	17363	5.75941	. 19166	5.21744 5.20925	. 210982	4.765906	8
	.15600 .15630	6.41026 6.39804	. 17393	5.74949 5.73960	. 191927	5.20925	. 21043	4.75219	7
53	. 15630	6.39804 6.38587	. 17423	5.73960 5.72974	. 192257	5.19293	. 21073	4.74534	6
55	. 15689	6.37374	. 17483	5.71992	. 19287	5.18480	. 211104	4.73851	5
56	. 15719	6.36165	. 17513	5.71013	. 19317	5.17671	. 211134	4.73170	4
	. 15749	6.34961	. 17543	5.70037	. 193478	5.16863 5.16058	. 211164	4.72490	2
57 58	. 15779	6.33761	. 17573	5.69064	. 193408	5.16058 5.15256	. 21225	4.71137	1
$\begin{aligned} & 59 \\ & 60 \end{aligned}$. 15809	6.32566 6.31375	. 177603	$\begin{aligned} & 5.68094 \\ & \mathbf{5 . 6 7 1 2 8} \end{aligned}$. 194388	5.15256 5.14455	. 21256	4.70463	0
$\overline{\mathrm{M}}$.	$\frac{.15838}{\text { Cotang. }}$	$\frac{6.31375}{\text { Tang. }}$	$\frac{.17633}{\text { Cotang. }}$	Tang.	Cotang.	Tang.	OUtang.	Tang.	M.
		810		00		790		80	

1.	180°		13°		180		150		M.
	Tang.	Cotang.	Tung.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	21256	4.71463	. 23087	4.33148	. 24933	4.01078	. 26795	3.73205	60
1	. 21286	4.69791	. 23117	4.32573	. 24964	4.00582	. 26826	3.72771	59
2	. 21316	4.69121	. 23148	4.32001	. 24995	4.00086	. 26857	3.72338	58
3	. 21347	4.68452	. 23179	4.31430	. 25026	3.99592	. 26888	3.71907	57
4	. 21377	4.67786	. 23209	4.30860	. 25056	3.99099	26920	3.71476	56
5	. 21408	4.67121	. 23240	4.30291	. 25087	3.98607	26951	3.71046	55
6	. 21438	4.66458	23271	4.29724	. 25118	3.98117	26982	3.70616	54
7	. 21469	4.65797	23301	4.29159	25149	3.97627	27013	3.7018	53
8	. 21499	4.65138	. 23332	4.28595	. 25180	3.97139	27044	3.69761	52
9	. 21529	4.64480	. 23363	4.28032	25211	3.96651	. 27076	3.69335	51
10	21560	463825	. 23393	4.27471	. 25242	3.96165	27107	3.68909	50
11	21590	463171	. 23424	4.26911	. 25273	3.95680	27138	3.68485	49
12	21621	4.62518	23455	4.26352	25304	3.95196	27169	3.68061	48
13	21651	4.61868	23485	4.25795	. 25335	3.94713	27201	3.67638	47
14	21682	4.61219	23516	4.25239	. 25366	3.94232	27232	3.67217	46
15	21712	4.60572	23547	4.24685	. 25397	3.93751	27263	3.66796	45
16	21743	4.59927	. 23578	4.24132	. 25428	3.93271	27294	3.66376	44
17	21773	4.59283	. 23608	4.23580	. 25459	3.92793	27326	3.65957	43
18	. 21804	4.58641	. 23639	4.23030	. 25490	3.92316	27357	3.65538	42
19	. 21834	4.58001	. 23670	4.22481	. 25521	3.91839	27388	3.65121	41
20	. 21864	4.57363	. 23700	4.21933	. 25552	3.91364	. 27419	3.64705	40
21	21895	4.56726	. 23731	4.21387	. 25583	3.90890	27451	3.64289	39
22	21925	4.56091	. 23762	4.20842	25614	3.90417	. 27482	3.63874	38
23	. 21956	4.55458	. 23793	4.20298	. 25645	3.89945	27513	3.63461	37
24	. 21986	4.54826	. 23823	4.19756	. 25676	3.89474	27545	3.63048	36
25	. 22017	4.54196	. 23854	4.19215	. 25707	3.89004	. 27576	3.62636	35
26	. 22047	4.53568	. 23885	4.18675	. 25738	3.88536	. 27607	3.62224	34
27	. 22078	4.52941	. 23916	4.18137	25769	3.88068	. 27638	3.61814	33
28	22108	4.52316	. 23946	4.17600	. 25800	3.87601	. 27670	3.61405	32
29	. 22139	4.51693	. 23977	4.17064	25831	3.87136	. 27701	3.60996	31
30	. 22169	4.51071	. 24008	4.16530	25862	3.86671	. 27732	3.60588	30
31	22200	4.50451	. 24039	4.15997	25893	3.86208	. 27764	3.60181	29
32	22231	4.49832	. 24069	4.15465	. 25924	3.85745	. 27796	3.59775	28
33	22261	4.49215	. 24100	4.14934	. 25955	3.85284	. 27826	3.59370	27
34	22292	4.48600	. 24131	4.14405	. 25986	3.84824	. 27858	3.58966	26
35	22322	4.47986	. 24162	4.13877	. 26017	3.84364	. 27889	3.58562	25
36	22353	4.47374	. 24193	4.13350	. 26048	3.83906	. 27921	3.58160	24
37	22383	4.46764	. 24223	4.12825	. 26079	3.83449	. 27952	3.57758	23
38	22414	4.46155	. 24254	4.12301	. 26110	3.82992	. 27983	3.57357	22
39	22444	4.45548	. 24285	4.11778	. 26141	3.82537	. 28015	3.56957	21
40	. 22475	4.44942	. 24316	4.11256	. 26172	3.82083	. 28046	3.56557	20
41	. 22505	4.44338	. 24347	4.10736	. 26203	3.81630	. 28077	3.56159	19
42	. 22536	4.43735	. 24377	4.10216	. 26235	3.81177	. 28109	3.55761	18
43	. 22567	4.43134	. 24408	4.09699	. 26266	3.80726	. 28140	3.55364	17
44	. 22597	4.42534	. 24439	4.09182	. 26297	3.80276	. 28172	3.54968	16
45	. 22628	4.41936	. 24470	4.08666	. 26328	3.79827	. 28203	3.54573	15
46	. 22658	4.41340	. 24501	4.08152	. 26359	3.79378	. 28234	3.54179	14
47	. 22689	4.40745	. 24532	4.07639	26390	3.78931	. 28266	3.53785	13
48	. 22719	4.40152	. 24562	4.07127	26421	3.78485	. 28297	3.53393	12
49	. 22750	4.39560	. 24593	4.06616	26452	3.78040	. 28329	3.53001	11
50	. 22781	4.38969	. 24624	4.06107	. 26483	3.77595	. 28360	3.52609	10
51	. 22811	4.38381	. 24655	4.05599	. 26515	3.77152	. 28391	3.52219	9
52	. 22842	4.37793	. 21686	4.05092	. 26546	3.76709	. 28423	3.51829	8
53	. 22872	4.37207	. 24717	404586	. 26577	3.76268	. 28454	3.51441	7
54	. 22903	4.36623	. 24747	4.04081	26608	3.75828	. 28486	3.51053	6
55	.22934	4.36040	. 24778	4.03578	26639	3.75388	. 28517	3.50666	5
56	22964	4.35459	. 24809	4.03076	26670	3.74950	. 28549	3.50279	4
57	22995	4.34879	. 24840	4.02574	26701	3.74512	. 28580	3.49894	3
58	23026	4.34300	24871	4.02074	. 26733	3.74075	. 28612	3.49509	8
59	. 23056	4.33723	. 24902	4.01576	. 26764	3.78640	. 28643	3.49125	1
60	23087	4.33148	. 24933	4.01078	. 26795	3.73205	. 28675	3.48741	0
M.	Cotaug.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	M.
	780		760		750		740		

	16°		17°		18°		19°		
M.	Taug.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	
0	28675	3.48741	. 30573	3.27085	. 32492	3.07768	. 34433	2.90421	60
	28706	3.48359	. 30605	3.26745	32524	3.07464	. 31	2.90147	59
2	. 28738	3.47977	30637	3.26406	32.556	3.07160	.34498	2.89873	58
3	. 28769	3.47596	. 30669	3.26067	. 32588	3.06857	.34530	2.89600	57
4	. 28800	3.47216	. 30700	3.25729	32621	3.96554	.34563	2.89327	56
5	28832	3.46837	. 30732	3.25392	32653	3.06252	3459	2.89055	55
	28864	3.46458	. 30764	3.25055	32685	3.05950	3462	2.88783	54
7	. 28895	3.46080	. 30796	3.24719	32717	3.05649	3466	2.88511	53
8	. 28927	3.45703	. 30828	3.24383	. 32749	3.05349	.34693	2.88240	52
9	. 28958	2.45327	. 30860	3.24049	. 32782	3.05049	.34726	2.87970	51
10	28990	3.44951	. 30891	3.23714	. 32814	3.04749	.34758	2.87700	50
11	. 29021	3.44576	. 30923	3.23381	32846	3.04450	. 34791	2.87430	49
12	. 29053	3.44202	. 30955	3.23048	32878	3.04152	34824	2.87161	48
13	. 29084	3.43829	. 30987	3.22715	32911	3.03854	3485	2.86892	47
14	29116	3.43456	. 31019	3.22384	. 32943	3.03556	. 34889	2.86624	46
15	. 29147	3.43084	. 31051	3.22053	. 32975	3.03260	. 34922	2.86356	45
16	29179	3.427	. 31083	3.21722	. 33007	3.02963	. 34954	2.86089	44
17	29210	3.42343	. 31115	3.21392	. 33040	3.02667	. 34987	2.85822	43
18	29242	3.41973	31147	3.21063	. 33072	3.82372	. 35020	2.85555	42
19	. 29274	3.41604	. 31178	3.20734	. 33104	3.02077	. 35052	2.85289	41
20	. 29305	3.41236	. 31210	3.20460	. 33136	3.01783	35	2.85023	40
21	. 29337	3.40869	. 31242	3.20079	. 33169	3.01489	. 35118	2.84758	39
22	29368	3.40502	. 31274	3.19752	. 33201	3.01196	. 35150	2.84494	38
23	. 29400	3.40136	.31306	3.19426	.33233	3.00903	. 35183	2.81229	\%
24	. 29432	3.39771	. 31338	3.19100	. 33266	3.00611	. 35216	2.83965	36
25	. 29463	3.39406	. 31370	3.18775	. 33298	3.00319	. 35248	2.83702	35
26	. 29495	3.39042	. 31402	3.18451	. 33330	3.00028	35281	2.83439	34
27	. 29526	3.38679	. 31434	318127	. 33363	2.99738	. 35314	2.83176	33
28	. 29558	3.38317	. 31466	3.17804	. 3339	2.99447	. 35346	2.82914	32
29	. 29590	3.3795	. 31498	3.17481	. 33427	2.99158	. 35379	2.82653	31
30	. 29621	3.37	. 31530	3.17159	. 33460	2.98868	. 35412	2.82391	30
31	. 29653	3.37234	. 31562	3.16838	. 33492	2.98580	. 3	2.82130	29
32	. 29685	3.36875	. 31594	3.16517	. 33524	2.98292	. 35477	2.81870	29
33	. 29716	3.36516	. 31626	3.16197	. 33557	2.98004	. 35510	2.81610	27
34	. 29748	3.36158	. 31658	3.15877	. 33589	2.97717	. 3554	2.81350	28
35	. 29780	3.35800	. 31690	3.15558	. 33621	2.97430	. 35576	2.81091	25
36	. 29811	3.35443	. 31722	3.15240	. 33654	2.97144	. 35608	2.80833	24
37	. 29843	3.35087	. 31754	3.14922	. 33686	2.96858	. 35641	2.80574	23
38	. 29875	3.34732	. 31786	3.14605	. 33718	2.96573	. 35674	2.80316	22
39	. 29906	3.34377	. 31818	3.14288	. 33751	2.96288	. 35707	2.80059	21
40	. 29938	3.34023	. 31850	3.13972	. 33783	2.96004	. 35740	2.79802	20
41	. 29970	3.33670	31882	3.13656	. 33816	2.95721	. 35772	2.79545	19
42	. 30001	3.33317	. 31914	3.13341	. 33848	2.95437	. 35805	2.79289	18
43	. 30033	3.32965	. 31946	3.13027	. 33881	2.95155	. 35838	2.79033	17
44	. 30065	3.32614	. 31978	3.12713	. 33913	2.94872	. 35871	2.78778	16
45	. 30097	3.32264	. 32010	3.1	. 3	2.	. 35904	2.78523	15
46	. 30128	3.31914	. 32042	3.12087	. 33978	2.94309	. 35937	2.78269	14
47	. 30160	3.31565	. 32074	3.11775	34010	2.94028	. 35969	2.78014	13
	. 30192	3.31216	32106	3.11464	. 34043	2.93748	. 36002	2.77761	12
49	. 30224	3.30868	. 32139	3.11153	. 34075	2.93468	. 36035	2.77507	11
50	. 30255	3.30521	. 32171	3.10842	. 34108	2.93189	. 36068	2.77254	0
51	. 30287	3.30174	. 32203	3.10532	. 34140	2.92910	.36101	2.77002	8
52	. 30319	3.29829	. 32235	3.10223	- 34173	2.92632	. 36134	2.76750	8
	. 30351	3.29483	. 32267	3.09914	. 34205	2.92354	. 36167	2. 76498	7
	. 30382	3.29139	. 32299	3.09606	. 34238	2.92076	. 36199	2.76247	8
55	. 30414	3.28795	. 32331	3.09293	. 34270	2.91799	. 36232	2.75996	5
56	. 30446	3.28452	. 32363	3.08991	. 34303	2.91523	. 36265	2.75746	4
57	. 30478	3.28109	. 32396	3.08685	. 34335	2.91246	. 36298	2.75496	3
	. 30509	3.27767	. 32428	3.08379	. 34368	2.90971	. 36331	2.75246	2
59	. 30541	3.27426	. 32460	3.08073	. 34400	2.906	. 36364	2.74997 2.74748	
	. 30573	3.27085	. 32492	3.07768	34433	2.90421	. 3		M
M.	Cotang	Tang	Cotang.	Tang	Cotang.	Tang	Cotang.	Thang.	M.
				80					

TABLE XVII. NATURAL TANGENTS AND COTANGENTS. 301

M.	20°		210		280		23°		
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cot	Tang.	Cotang.	M
0	. 36397	2.74748	. 38386	2.60509	. 40403	2.47509	. 42447	2.35585	60
1	. 36430	2.74499	33420	2.60283	. 40436	2.47302	. 42482	2.35395	59
2	. 36463	2.74251	. 38453	2.60057	. 40470	2.47095	. 42516	2.35205	58
3	. 36496	2.74004	. 38487	2.59831	. 40504	2.46838	42551	2.35015	57
4	. 36529	2.73756	. 38520	2.59606	. 40538	2.46682	. 42585	2.34825	
5	. 36562	2.73509	. 38553	2.5938	. 40572	2.46476	. 42619	2.34636	55
6	. 36595	2.73263	. 38587	2.5915	. 40606	2.46270	. 42654	2.34447	54
7	. 36623	2.73017	. 38620	2.58932	. 40640	2.460	42688	2.34258	53
8	. 36661	2.72771	. 38654	2.58708	. 40674	2.4586	. 42722	2.3406	
9	. 36694	2.72526	. 38687	2.58484	. 40707	2.45655	. 42757	2.338	51
10	. 36727	2.72281	. 38721	2.58261	. 40741	2.45451	. 42791	2336	50
11	. 36760	2.72036	. 38754	2.58038	. 40775	2.45246	. 42826	2.33505	49
12	. 36793	2.71792	. 38787	2.57815	. 40809	2.45043	. 42360	2.33317	48
13	. 36826	2.71548	. 38821	2.575	. 40843	2.4483	. 42894	2.33130	47
14	. 36859	2.71305	. 38854	2.57371	. 40877	2.4463	42929	2.32943	46
15	. 36892	2.71062	. 33888	2.57150	. 40911	2.4443	42963	2.32756	45
16	. 3692	2.70819	. 38921	2.56928	. 40945	2.44230	42998	2.32	44
17	. 36958	2.70577	. 38955	2.56707	. 40979	2.44027	. 43032	2.32383	43
18	. 36951	2.70335	. 39988	2.56487	. 41013	2.43825	. 43067	2.32197	42
19	. 37024	2.70094	. 39022	2.56266	. 41047	2.43623	. 43101	2.32012	41
20	. 37057	2.69853	39055	2.56046	. 41081	2.43422	43136	2.31826	40
21	. 37090	2.69612	39089	2.55827	41115	2.43220	43170	2.31641	39
22	. 37123	2.69371	. 39122	2.55608	41149	2.43019	43205	2.31456	9
23	. 37157	2.69131	. 39156	2.55389	41183	2.42819	43239	2.31271	37
24	. 37190	2.68892	. 39190	2.55170	41217	2.42618	43274	2.31086	6
25	. 37223	2.68653	. 39223	2.54952	. 41251	2.42418	43308	2.30902	35
28	. 37256	2.68414	. 39257	2.54734	. 41285	2.42218	43343	2.30718	34
27	. 37289	2.68175	. 39290	2.54516	. 41319	2.42019	43378	2.30534	33
28	. 37322	$2.6793{ }^{*}$. 39324	2.54299	. 41353	2.41819	. 43412	2.30351	32
29	. 37355	2.67700	39357	2.64082	. 41387	2.41620	. 4344	2.30167	3
30	. 3	2.67462	9391	2.53865	41421	2.41421	. 434	2.29984	30
31	. 37	2.67225	39425	2.53648	. 41455	2.41223	. 43516	2.29801	29
32	. 37455	2.66989	39458	2.53432	. 41490	2.41025	. 43550	2.29619	28
33	. 37488	2.66752	34992	2.53217	. 41524	2.40827	43585	2.29437	27
34	. 37521	2.66516	. 39526	2.53001	. 11558	2.40629	43620	2.29254	28
35	37554	2.66281	39559	2.52786	41592	2.40432	43654	2.29073	25
36	. 37588	2.66046	39593	2.52571	41626	2.40235	43689	2.28891	
37	. 37621	2.65811	. 39626	2.52357	. 41660	2.40038	43724	2.28710	3
38	. 37654	2.65576	.39660	2.52142	41694	2.39841	43758	2.28528	22
39	. 37687	2.65342	. 39694	2.51929	. 41728	2.39645	43793	2.28348	21
40	. 37720	2.65109	. 39727	2.51715	41763	2.39449	43828	2.28167	20
41	. 37754	2.64875	. 39761	2.51502	41797	2.39253	43862	2.27987	19
42		2.64642	39795	2.51289	41831	2.39058	43897	2.27806	18
14	.37820 37853	2.64410	39829	2.51076	41865	2.33863	43932	2.27626	17
45	37887	2.64177	39862 39896	2.50864	41899	2.38668	43966	2.27447	
16	37920			2.50440			退		
17	37953	2.63483	39963	2.50229	42002	2.38	44071	2.26909	3
48	37986	2.63252	39997	2.50018	. 42036	2.37891	44105	2.26730	2
49	. 38020	2.63021	40031	2.49807	42070	2.37697	44140	2.26552	1
50	.38053	2.62791	40065	2.49597	42105	2.33504	44175	2.26374	0
51	. 38086	2.62561	40098	2.49386	42139	2.37311	44210	2.26196	9
52	38120	2.62332	40132	2.49177	42173	2.37118	44244	2.26018	8
53	33153	2.62103	40166	2.48967	42207	2.36925	. 44279	2.25840	7
54		2.61874	40200	2.48758	42242	2.36733	44314	2.25663	6
55	33220	2.61646	40234	2.48549	42276	2.36541	44349	2.25486	5
56	33253	2.61418	40267	2.48340	42310	2.36349	44384	2.25309	4
57	. 38236	261190	40301	2.48132	42345	2.36158	44418	2.25132	3
58	. 38320	2.60963	40335	2.47924	42379	2.35367	44453	2.24956	2
59	. 38353	2.60736	40369	2.47\%16	12113	2.35776	44488	2.24780	1
60	386	2.60509	40103	2.47509	417	2.3558	44523	. 21	0
M	g.	Tan	Cotang.	Tang	Cotang.	Tang.	Cotang.	Tang.	M.
				8°					

M.	240		25°		26°		27°		\underline{M}
	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Taug.	Cotang.	
-	. 44523	2.24604	. 46631	2.14451	. 48773	2.05030	. 50953	1.96261	60
	. 44558	2.24428	. 46666	2.14288	. 48809	2.04879	. 50989	1.96120	59
2	. 44593	2.24252	467112	2.14125	. 48845	2.04728	51026	1.95979	58
3	. 44627	2.24077	. 467737	2.13963	. 48881	2.04577	. 51063	1.95838	57
4	. 44662	2.23902	. 46772	2.13801	. 48917	2.04426	. 51099	1.95698	56
5	. 44697	2.23727	46808	2.13639	. 48953	2.04276	51136	1.95557	55
6	. 44732	2.23553	. 46343	2.13477	48989	2.04125	.51173 51209	1.95417	54
7	. 44767	2.23378	. 46879	2.13316	.49026 .49062	2.03975 2.03825	51209 .61246	1.95277	53 52
8	. 448882	2.23204	. 46914	2.12993	. 490068	2.03675	. 51283	1.94997	52 51 50
10	. 44872	2.22857	46985	2.12832	49134	2.03526	51319	1.94858	50
11	44907	2.22683	47021	2.12671	. 49170	2.03376	51356	1.94718	49
12	. 44942	2.22510	. 47056	2.12511	. 49206	2.03227	. 51393	1.94579	48
13	. 44977	2.22337	. 47092	2.12350	. 49242	2.03078	. 514380	1.94440	47
14	. 45012	2.22164 2.21992	. 47128	2.12190 2.12030	. 49278	2.02929 2.02780	. 5151503	1.94301	45
16	. 45082	2.21819	. 47199	2.11871	49351	2.02631	. 51540	1.94023	44
17	45117	2.21647	. 47234	2.11711	49387	2.02483	. 51577	1.93885	43
18	45152	2.21475	. 47270	2.11552	49423	2.02335	. 51614	1.93746	42
19	. 45187	2.21304	. 47305	2.11392	49459	2.02187	. 51651	1.93608	41
20	. 45222	2.21132	. 47341	2.11233	. 49495	2.02039	. 51688	1.93470	40
21	. 45257	2.20961	47377	2.11075	. 49532	2.01891	. 51724	1.93332 1.93195	39 38
22	. 45292	2.20790	. 47412	2.10916 2.10758	. 49568	2.01743 2.01596	. 517789	1.93195 1.93057	38 38
24	. 45362	2.20449	. 47483	2.10600	. 49640	2.01449	. 51835	1.92320	36
25	45397	2.20278	. 47519	2.10442	. 49677	2.01302	. 51872	1.92782	35
28	45432	2.20108	. 47555	2.10284	49713	2.01155	. 51909	1.92645	34
27	45467	2.19938	. 47590	2.10126	. 49749	2.01008	. 51946	1.92508	33 32 3
28	45502	2.19769	. 47626	2.09969	. 49786	2.00862	. 51983	1.923235	32 31
29 30	. 455538	2.19599 2.19430	. 47662	2.09654	. 498828	2.00569	. 52057	1.92098	30
31	. 45608	2.19261	. 47733	2.09498	. 49894	2.00423	. 52094	1.91962	29
32	. 45643	2.19092	. 47769	2.09341	. 49931	2.00277	. 52131	1.91826	28
33	. 45678	2.18923	. 47805	2.09184	. 49967	2.00131	. 52168	1.91690	${ }^{27}$
34	. 45713	2.18755	. 47840	2.09028	50004	1.99986	. 522205	1.91554 1.91418	26
35	. 45748	2.18587	. 47876	2.08872	. 50040	1.99841	. 5224279	1.91418	24
36	.45784 45819	2.18419	. 477912	2.08716	. 50076	1.99695 1.99550	.52279 .52316	1.91282	24
37	. 45819	2.18251	. 4794984	2.08560	. 50113	1.995506	. 523353	1.91012	23 22 21
39	. 45889	2.17916	. 48019	2.08250	. 50185	1.99261	. 52390	1.90876	21
40	. 45924	2.17749	. 48055	2.08094	. 50222	1.99116	. 52427	1.90741	20
41	. 45960	2.17582	. 48091	2.07939	. 50258	1.98972	. 52464	1.90607	19
42	. 45995	2.17416	. 48127	2.07785	. 50295	1.98828	. 5225018	1.90472	18
43	. 46030	2.17249	. 48163	2.07630	. 50331	1.98684	. 5225385	1.90337	17
44	. 46065	2.17083 2.16917	. 481928	2.07476 2.07321	. 503688	1.98540 1.98396	. 522613	1.90069	15
46	46136	2.16751	. 48270	2.07167	. 50441	1.98253	. 52650	1.89935	14
47	. 46171	2.16585	. 48306	2.07014	. 50477	1.98110	. 52687	1.89801	13
48	. 46206	2.16420	48342	2.06860	. 50514	1.97966	. 52727	1.89667	12
49	. 46242	216255	. 48378	2.06706	50550	1.97823	. 527761	1.89533	11
50	. 46277	2. 16090	. 48414	2.06553	50587	1.97681	. 527278	1.89400	10
51	. 46312	2.15925	. 48450	2.06400	50623	1.97538	. 52838	1.89266	9 8
52	. 46348	2.15760	. 48486	2.06247	50660 50696		. 52873	1.89133	8
53	. 46383	2.15596	. 485521	2.06094	50696	1.97253 1.97111	. 529947	1.88867	7
55	. 46418	2.15432 2.15268	. 485557	2.05942	. 50733	1.97111	. 529895	1.88734	5
56	46489	2.15104	. 48629	2.05637	. 50806	1.96827	. 53022	1.88602	4
57	46525	2.14940	. 48665	2.05485	50843	1.96685	53059	1.88469	3
58	. 46560	2.14777	. 48701	2.05333	50879	1.96544	. 53096	1.88337	2
59	. 46595	2.14614	. 48737	2.05182	50916	1.96402	. 53134	1.88205	1
60	. 46631	2.14451	. 48773	2.05030	50953	1.96261	. 53171	. 88073	0
\bar{M}	Cotang.	Tang.	Cotang.	Tang.	Cutang.	Tang.	Cotang.	Tung.	m.
		0		\bigcirc		3°		0	

	28°		29°		30°		310		M.
	M Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang:	Cotang	
	0 怱 53171	1.88073	. 55431	1.80405	. 577735	1.73205	60086	1.66429	60
	1.53208	1.87941	. 55469	1.80281	. 57774	1.73089	60126	1.66318	59
	2.53246	1.87809	. 55507	1.80158	. 57813	1.72973	69165	1.66209	58
	3.53283	1.87677	55545	1.80034	. 57851	1.72857	60205	1.66099	57
	. 53320	1.87546	55583	1.79911	. 57890	1.72741	60245	1.65990	56
	. 53358	1.87415	. 55621	1.79788	. 57929	1.72625	60284	1.65881	55
	${ }^{.} 53395$	1.87283	. 55659	1.79665	. 57968	1.72509	60324	1.65772	54
	. 53432	1.87152	55697	1.79542	. 58007	1.72393	60364	1.65663	53
	${ }^{.53470}$	1.87021	55736 55774	1.79419	. 58046	1.72278	60403	1.65554	52
	9 .53507 0 53545	1.86891	. 557774	1.79296	58085	1.72163	60443	1.65445	51
1	0 .53545 1 .53582	1.86760	. 55812	1.79174	. 58124	1.72047	60483	1.65337	50
	$1{ }^{1}$. 53320	1.86630	. 558580	1.79051	58162	1.71932	60522	1.65228	49
13	 3 53657	1.86499 1.8639	. 558888	1.78929	58201	1.71817	60562	1.65120	48
4	4.53694	1.86239	55926	1.78807	58240	1.71702	60602	1.65011	47
5	5 . 53732	1.86109	. 56003	1.786863	58279	588	. 60642		46
6	6 . 53769	1.85979	56041	1.78441	. 58357	1.71358			
17	7 . 53807	1.85850	. 56079	1.78319	58396	1.71244		1.64579	
18	8.53844	1.85720	56117	1.78198	58435	1.71129	60801	1.64471	42
19	9.53882	1.85591	56156	1.78077	58474	1.71015	60841	1.64363	41
20	1 ${ }^{5} 53920$	1.85462	. 56194	1.77955	58513	1.70901	60881	1.64256	40
21	1.53957	1.85333	. 56232	1.77834	. 58552	1.70787	. 60921	1.64148	39
22	2.53995	1.85204	. 56270	1.77713	. 58591	1.70673	. 60960	1.64041	38
23	3.64032	1.85075	. 56309	1.77592	58631	1.70560	. 61000	1.63934	37
24	4.54070	1.84946	. 56347	1.77471	. 58670	1.70446	61040	1.63826	36
25	. 64107	1.84818	. 56385	1.77351	. 58709	1.70332	.61080	1.63719	35
6	. 54145	1.84689	. 56424	1.77230	. 58748	1.70219	. 611120	1.63612	34
27	. 54183	1.84561	. 56462	1.77110	. 58787	1.70106	. 61160	1.63505	33
28 29	. 54220	1.84433	56501	1.76990	58826	1.69992	61200	1.63398	32
29 30	. 54258	1.84305	56539	1.76869	58865	1.69879	. 61240	1.63292	31
30	. 54296	1.84177	. 56577	1.76749	. 58905	1.69766	. 61280	1.63185	30
31	. 54333	1.84049	. 56616	1.76629	. 58944	1.69653	. 61320	1.63079	29
32	. 54371	1.83922	. 56654	1.76510	. 58983	1.69541	. 61360	1.62972	28
33	. 54409	1.83794	. 56693	1.76390	. 59042	1.69428	. 61400	1.62866	27
34	54446	1.83667	. 56731	1.76271	. 59061	1.69316	. 61440	1.62760	28
35	54484	1.83540	. 56769	1.76151	. 59101	1.69203	. 61480	1.62654	25
36	. 54522	1.83413	. 56808	1.76032	. 69140	1.69091	. 61520	1.62548	24
37	. 54560	1.83286	. 56346	1.75913	. 59179	1.68979	61561	1.62442	23
38	. 54597	1.83159	. 56885	1.75794	. 59218	1.68866	61601	1.62336	22
39	${ }^{54635}$	1.83033	. 56923	1.75675	. 59258	1.68754	61641	1.62230	21
40	. 546771	1.82906	. 56962	1.75556	. 59297	1.68643	. 61681	1.62125	20
41	. 5477118	1.82780	. 577000	1.75437	59336	1.68531	. 61721	1.62019	19
42	. 54748	1.82654	. 57039	1.75319	. 59376	1.68419	. 61761	1.61914	18
43	. 54786	1.82528	. 57078	1.75200	59415	1.68308	. 61801	1.61808	17
44	. 54884	1.82402	. 57116	1.75082	59154	1.68196	. 61842	1.61703	16
45	. 5	1.82276	. 57155	1.74964	59494	1.68085	. 61882	1.61598	15
46	. 54900	1.82150	. 57193	1.74846	. 59533	1.67974	61922	61493	4
4	54938	1.82025	.57232	1.74728	. 59573	1.67863	. 61962	1.61388	13
48	. 54975	1.81899	. 57271	1.74610	. 59612	1.67752	62003	1.61283	12
18	. 55013	1.81774	. 57309	1.74492	. 59651	1.67641	62043	1.61179	11
5 5	. 55051	1.81649	. 57348	1.74375	. 59691	1.67530	62083	1.61074	10
51	. 55089	1.81524	. 57386	1.74257	59730	1.67419	62124	1.60970	9
52	. 55127	1.81399	. 57425	1.74140	59770	1.67309	62164	1.60865	8
53	. 55165	181274	57464	1.74022	. 59809	1.67198	62204	1.60761	7
54	. 55203	1.81150	. 57503	1.73905	59849	1.67088	62245	1.60657	6
55	55241	1.81025	. 57541	1.73788	. 59888	1.66978	62285	1.60553	5
57	55279	1.80901	57580	1.73671	. 59928	1.66867	62325	1.60449	4
57 58	55317	1.80777	57619	1.73555	59967	1.66757	62366	1.60345	3
58 59	55355	1.80653	57657	173438	60007	1.66647	62406	1.60241	2
59 60	. 55393	1.80529	. 57696	173321	60046	1.66538	62446	1.60137	1
60	55431	1.80405	. 57735	1.73205	60086	1.66428	62487	1.60033	0
M.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	Cotang.	Tang.	$\overline{\mathrm{M}}$.
	610		60°		59°		58°		

M	880		33°		340		35°		M.
	Tang.	Cotaug.	Tang.	Cotang.	Tang.	Cotang.	Taug.	Cotang.	
	. 62487	1.60033	. 64941	1.53986	. 67451	1.48256	. 70021	1.42815	60
1	. 62527	1.59930	64982	1.53888	. 67493	1.48163	. 70064	1.42726	59
	. 62568	1.59826	65024	1.53791	. 67536	1.18070	. 70107	. 42638	58
3	. 62608	1.59723	65065	1.53693	. 67578	1.47977	. 70151	1.42550	57
	. 62649	1.59620	65106	1.5359	. 67620	1.47885	. 70194		56
4	. 62689	1.59517	65148	1.53497	. 67663	1.47792			55
5	. 62730	1.59414	. 65189	1.53400	. 67705	1.47699	. 70281	1.42286	54
$\begin{aligned} & 6 \\ & 7 \end{aligned}$. 62770	1.59311	. 65231	1.53302	. 67748	1.47607	70325	1.42198	53
$\begin{aligned} & 7 \\ & 8 \end{aligned}$. 62811	1.59208	65272	1.53205	. 677790	1.47514	. 703	1.42110	52
8 9	. 62852	1.59105	65314	1.53107	. 6783	1.474	. 70412	1.42022	51
9 10	. 62892	1.59002	.6535	1.530	.678	1.4733	70	1.41934 1.41847	50
11	. 62933	1.58900	C5438	1.52913	. 67917	1.47238 147146	70499	. 4	4
	. 62973	1.58797	. 654388	1.52816	. 679600	$\begin{aligned} & 1.47146 \\ & 1.47053 \end{aligned}$. 70586	1.41769	
12	. 63014	1.58695	. 65482	1.52719 1.52622	$\text { . } 688002 .$	1.47053 1.46962	. 70629	1.41584	
14	. 633055	1.58593	. 655563	$\begin{aligned} & 1.52622 \\ & 1.52525 \end{aligned}$	$\begin{aligned} & .68045 \\ & .68088 \end{aligned}$	1.46962	. 70678	$\begin{aligned} & 1.41584 \\ & 1.41497 \end{aligned}$	46 45
15	. 63095	1.58490	65563	1.52525	. 68088		. 70673		44
16	. 63136	1.58338	.65604 65646	1.52429 1.52332	.68130 .68173	1.46778 1.46686	$\begin{aligned} & .70717 \\ & .70760 \end{aligned}$	$\begin{aligned} & 1.41409 \\ & 1.41322 \end{aligned}$	44 43
17	. 631777	1.58286 1.58184	. 656468	1.52332 1.52235	. 688173	1.46658	. 70804	1.41322 1.41235	43 48
$\begin{aligned} & 18 \\ & 19 \end{aligned}$. 63258	1.58083	. 65729	1.52139	. 68258	1.46503	. 7084	1.411	41
20	. 63299	1.57981	. 65771	1.52043	. 68301	1.46411	. 70891	1.41061	40
21	. 63340	1.57879	. 65813	1.51946	. 68343	1.46320	70935	1.40974	39
22	. 63380	1.57778	. 65854	1.51850	. 68386	1.46229	70979	1.40887	38
23	. 63421	1.57676	. 65896	1.51754	. 6842	1.46137	7102	1.40800	
	. 63462	1.57575	. 6593	1.51658	. 68471	1.46046	. 71066	1.40714	
24 25 28	. 6350	1.57474	. 65989	1.51562	. 6851	1.459	71154	1.40540	
$\begin{aligned} & 25 \\ & 28 \end{aligned}$. 6354	1.57372	. 66021	1.51466 1.51370	${ }^{.68557}$	1.458773	. 71198		
$\begin{aligned} & 28 \\ & 27 \end{aligned}$. 63584	1.57271	. 66063	1.51370 1.51275	. 688600	1.45773	. 71242	1.40454	33
28	. 63625	1.57170	. 66105	1.51275 1.51179	. 688682	1.45682 1.4592	. 712428	1.40367 1.40281	1
29	. 63668	1.57069	. 661478		. 68888	1.45592	. 71285	$\begin{aligned} & 1.40281 \\ & 1.40195 \end{aligned}$	31
	. 63	1.5	. 66			1.45501	. 71329		
30	. 63		. 6	1.5098	. 68771	1.45410	. 71373		
31 38	. 63789	1.56767	. 66272	1.50893	. 68814	1.45320	. 71417	$\begin{aligned} & 1.40028 \\ & 120928 \end{aligned}$	28 27
33	. 63830	1.56667	. 66314	1.50797	. 68857	1.45229	. 71461	1.39936 1.39850	27
34	. 63871	1.56566	. 663356	1.50702	. 688900	1.45139	.71505 .71549	1.39850	26 25
$\left\|\begin{array}{l} 35 \\ 36 \end{array}\right\|$. 63912	1.56466	. 66398	1.50607	. 68942	1.45049	.71549	1.39764 1.39679	24
$\begin{aligned} & 30 \\ & 37 \end{aligned}$. 633953	1.56366 1.56265	. 666440	1.50512 1.50417	. 68908	1.44958	. 716393	1.39679 1.39593	24
38	. 64035	1.56165	. 66524	1.50322	. 69071	1.44778	. 71681	1.39507	22
39	. 64076	1.56065	. 66566	1.50228	. 69114	1.44688	71725	1.39421	21
40	. 64117	1.55966	. 66608	150133	. 69157	1.44598	71769	1.39336	20
41	. 64158	1.55866	. 66650	1.50038	. 69200	1.44508	71813	1.39250	19
42	. 64199	1.55766	. 66692	1.49944	. 69243	1.44418	. 71857	1.39165 1 1	17
	. 64240	1.55666	. 666734	149849	. 69286	1.44329	71901		17
44	. 644281	1.55567	. 66776	149755	. 693238	1.44239	. 7171946	1.38994 1.38909	15
4647	. 64363	1.55368	. 668860	1.49566	.69416 .69459	1.44060 1.43970	. 72034		
	. 64404	1.55269	. 66902	1.49472	. 69459	1.43970	72078	1.38738	13
48	. 64446	1.55170	. 66944	1.49378	. 69502	1.43881	${ }_{72167} 7$	1.386568	11
49	. 64487	1.55071	. 66986	1.49284	. 695958	1.43792 1.43703	. 72211	1.38484	10
$\left\|\begin{array}{l} 50 \\ 51 \end{array}\right\|$. 6454588	1.54972	67028	1.49190 1.49097	. 699588	1.43703 1.43614	72255	1.38399	
52	. 64610	1.54774	. 67113	1.49003	. 69675	1.43525	72299	1.38314	
53	. 64652	1.54675	. 67155	1.48909	. 69718	1.43436	. 72344	1.38229	7
	. 64693	1.54576	67197	1.48816	. 69761	1.43347	.72388	1.38145 1.38060	
54	. 64734	1.54478	. 67239	1.48722	${ }^{.69804}$	1.43258	${ }_{72477} 72432$	1.38060	
56	. 64777	1.54379	67282	1.48629	. 698891	1.43169	.72521	1.37891	
57	. 648178	1.54281	${ }^{6} 67324$	1.48536 1.48442	${ }^{698984}$	1.43080 1.42992	. 7252565	1.37807	
$\begin{aligned} & 58 \\ & 69 \\ & \hline 0 \end{aligned}$	${ }^{6} 6$	1.5418 1.5408	7366	1.48442 1.48349	. 699937	1.42903	. 72610	1.37722	
60		1.6		1.48256	. 63017	1.42815	. 2205	. 37638	0
$\overline{\mathbf{M}}$.	Otang.	Tang	Cotang.	Tang	Cotang.	Tan	Cotang.	Tang.	M.
	570		56°		58°		540		

TABLE XVII. NATURAL TANGENTS AND COTANGENTS, 305

	30°		37°		380		39°		
	M. Tang.	Cotang.	Tang.	Cotang.	Taug.	Cotang.	Tang.	Cotang.	
	. 72654	1.37638	. 75355	1.32704	. 78129	1.27994	. 80978	1.234	
	1.72699	1.37554	. 75401	1.32624	. 78175	1.27917	. 81027	1.234	
	2 . 72743	1.37470	. 75447	1.32544	. 78222	1.27841	. 81075	1.23	
	3.72788	1.37386	. 75492	1.32464	. 78269	1.27764	. 81123	1.23270	
	4.72832	1.37302	. 75538	1.32384	. 78316	1.276	. 81171	1.23196	
	5	1.37218	. 75584	1.32304	. 78363	1.27611	. 81220	1.23123	
$\begin{aligned} & 6 \\ & 6 \end{aligned}$	6.7292	1.37134	. 75629	1.32224	. 78410	1.27535	. 81268	1.23050	
	7 .72968 8 .73010	1.37050 1.36967	${ }^{.} 75675$	1.32144	. 784575	1.27458	. 81316	1.22977	
	. 73055	1.369688	. 7578767		. 78504	1.27382	. 81364	1.22904	
10	10.73100	1.36800	. 75812	1.31904		1.27306 1.27230	. 814146	1.22831	
110	1.73144	1.36716	. 75858	1.31825	. 78645	1.27153	. 81510	1.22685	
$\left\lvert\, \begin{aligned} & 11 \\ & 12 \end{aligned}\right.$	12.72189	1.36633	. 75904	1.31745	. 78692	1.27077	. 81558	1.22612	
$\begin{array}{\|l} 12 \\ 13 \end{array}$	3.73234	1.36549	. 75950	1.31666	. 78739	1.27001	. 81606	1.22539	
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	4.73278	1.36466	. 75996	1.31586	. 78786	1.26925	. 81655	1.22467	
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	5 . 73323	1.36383	. 76042	1.31507		1.26849	. 81703	1.22394	
	. 7336	1.36300	. 76088	1.31427	. 78881	1.26774	. 81752	1.22321	
	7.73413	1.3621%	. 76134	1.31348	. 78928	1.26698	. 81800	1.22249	
17	8.73457	1.36134	. 76180	1.31269	. 78975	1.26622	. 81849	1.22176	
$\begin{array}{\|l\|} 18 \\ 19 \end{array}$	9.73502	1.36051	. 76226	1.31190	. 79022	1.26546	. 81898	1.22104	
19	. 73547	1.35968	. 76272	1.31110	. 79070	1.26471	. 81946	1.22031	
82	2.73637			1.31031	. 79117	1.26395	. 81995	1.21959	
23	3.73681	1.35719	. 76410	1.30873	. 79212	1.26244			
24	4.73726	1.35637	. 76456	1.30795	. 79259	1.26169	. 82141	1.21742	
	5 . 73771	1.35554	. 76502	1.30716	. 7930	1.26093	. 82190	1.21670	
25	8.73816	1.35472	. 76548	1.30637	. 79354	1.26018	. 82238	1.21598	
2788	7.73861	1.35389	. 76594	1.30558	. 79401	1.25943	. 82287	1.21528	
	8.73906	1.35307	. 76640	1.30480	. 79449	1.25867	. 82338	1.21454	
$\begin{aligned} & 98 \\ & 29 \\ & 80 \end{aligned}$. 73951	1.35224	. 76686	1.30401	. 79496	1.25792	. 82385	1.21382	
	0 . 7	1.35142	. 76	1.30323	. 79544	I	. 82434	1.21310	
$\begin{aligned} & 31 \\ & 32 \end{aligned}$	174	1.35060	. 76779	1.3	. 79	1.2	. 82483	1.21238	29
	. 74086	1.34978	. 76825	1.30166	. 796	1.255	. 82531	1.21166	28
33	. 74131	1.34896	. 76871	1.30087	. 79686	1.25492	. 82580	1.21094	2
34 35	5 74178	1.34814	. 76918	1.30009	. 79734	1.25417	. 82629	1.21023	
35	- 742281	1.34732	. 76964	1.29931	. 79781	1.25343	. 82678	1.20951	
	74287	1.34650	. 77010	1.29853	. 79829	1.25288	. 82727	1.20879	
28	74312 74357	1.34568	. 77057	1.29775	. 79877	1.25193	. 82776	1.20808	
$\begin{aligned} & 38 \\ & 89 \end{aligned}$		1.34487	. 77103	1.29696	. 79924	1.25118	. 82825	1.20736	2
40		1.34405	. 77149	1.29618	. 79972	1.25044	. 82874	1.20665	21
41	. 74492	1.34242	. 77196	1.29541	. 80020	1.24969		1.20593	20
41	. 74538	1.34160		1.29463	80067				19
43	. 74583	1.34079		1.29307					8
43	. 74628	1.33998	. 77382	1.29229	80211	1.24746			
44	. 74	1.33916	. 77428	1.29152	. 8025				
	747	1.33835							
	74764	1.33754	. 77521	1.298997	. 8035	1.24523 1.24449	.832	1.20166	1
	. 74810	1.33673	. 77568	1.28919	. 80402	1.24375	83317	1.20004	13
48	. 74885	1.33592	. 77615	1.28842	. 80450	1.24301	. 83366	1.19953	1
$\begin{aligned} & 49 \\ & 60 \end{aligned}$. 74990	1.33511	. 77661	1.28764	. 80498	1.24227	. 83415	1.19882	0
51	74946	1.33430	. 77708	1.28687	. 80546	1.24153	. 83465	1.19811	0
5	74991	1.33349	. 77754	1.28610	. 80594	1.24079	. 83514	1.19740	8
	. 75037	1.33268	. 77801	1.28533	. 80642	1.24005	. 83564	1.19669	7
	. 75082	1.33187	. 77848	1.28456	. 80690	1.23931	. 83613	1.19599	6
	. 75128	1.33107	. 77895	1.28379	. 80738	1.23858	. 83662	1.19528	5
	. 75173	1.33026	. 77941	1.28302	. 80786	1.23784	. 83712	1.19457	4
	. 75219	1.329	. 77	1.28225	. 80834	1.23710	. 83761	1.19387	8
	. 75310	1.32885			. 80882	1.23637	. 83811	1.19316	2
60	. 75355	1.32704	. 78129	. 27994			83860	1.19246	
I.	Ootang.	Tan	Cotang.	Tang.	ang.	Tang	Cotang.	Ian	
	53°				510		50°		

306 TABLE XVII. NATURAL TANGENTS AND COTANGENTS.

	40°		410		43°		43°		M.
M.	Tang. ${ }^{\text {C }}$	Cotang. M							
	. 83910	1.19175	. 86929	1.15037	. 90040	1.11061	. 932252	1.07237	60
0	. 83960	1.19105	. 86990	1.14969	. 90093	1.10996	. 933306	1.07174	59
2	. 840091	1.19035	. 87031	1.14902	. 90146	1.10931	. 93360	1.07112	8
3	.840591	1.18964	. 87082	1.14834	. 90199	1.10867	. 93415	1.07049	57
4	. 841081	1.18894	. 87133	1.14767	. 90251		. 93	1.06987	56
5	.841581	1.18824	. 87184	1.14699	. 90304		. 935	1.06925	
6	. 84248	1.18754	. 87236	1.14632		1.1	. 933538	1.06800	54
7	. 84258	1.18684	. 87283			1.10543	. 93688	1.06738	52
8	${ }^{.84307}$	1.18614	. 873388	1.144438	. 90516	1.10478	. 93742	1.06676	51
9	. 84407	1.18474	. 87441	114363	. 90569	1. 10414	93797	1.06613	50
11	. 84457	1.18404	. 87492	1.14296	. 90621	1.10349	. 93858	1.06551	49
	. 84507	1.18334	. 87543	1.14229	. 90674	1.102	93906	1.06427	4
12	. 84556	1.18264	. 87595	1	. 9072	1.10256	. 94016	1.06365	46
13	.84606 84656	1.18194 1.18125	. 878646	1.14028	. 90834	1.10091	. 94071	1.06303	45
15	.84656 84706	1.181255	. 87749	1.13961	. 90887	1.10027	. 94125	1.06241	44
16	. 847756	1.17986	. 87801	1.13894	. 90940	1.09963	. 94180	1.06179	43
18	. 84806	1.17916	. 87852	1.13828	. 90993	1.09899	. 94235	1.06117	42
19	. 84856	1.17846	. 87904	1.13761	. 91046	1.09834	. 94290	5	1
20	. 84906	1.17777	. 87955	1.13694	. 91099	1.09770	. 94345	1.05994	0
21	. 84956	1.17708	. 88007	1.13627	. 91153	1.0970	. 94400	1.05932	39
22	. 85006	1.17638	. 88059	1.13561	. 9121206	1.096	.94455	1.05870	
	. 85057	1.17569	. 88110	1.13494	. 91259	1.09578	. 94510	1.05809	
$\begin{aligned} & 23 \\ & 24 \end{aligned}$. 85107	1.17500	. 88162	1.1342	913	. 099514	${ }^{9} 94620$	1.05685	
$\begin{aligned} & 24 \\ & 25 \end{aligned}$. 85157	1.17430 1.17361	. 88214	1.1	${ }^{91419}$	1.09386	. 94676	1.05624	34
27	.85257	1.17292	. 88317	1.13228	. 91473	1.09322	. 94731	1.0556	33
$\left\|\begin{array}{l} 28 \\ 29 \end{array}\right\|$	85308	1.17223	. 88369	1.13162	. 91526	1.09258	. 94786	1.05501	32
	. 85358	1.17154	. 88421	1.13096	. 91580	1.09195	. 94841	1.05439	31
30	. 85408	1.17085	. 88473	1.130	91	1.09131		.	
31	. 85458	1.17016	. 88524	1.12963	. 91687	1.09067	94952	. 0	29
	. 85509	1.16947	. 88576	1.12897	. 91740	1.09003	. 950		88
33	. 85559	1.16878	. 88628	1.12831	. 91794	1.08940	. 95062	. 05	27
	. 85609	1.16809	. 88680	1.12765	. 91847	1.08876	95118	1.05133	25
34 35 3	. 85660	1.16741	. 88732	1.12699	. 91901	1.08813	95173	1.05010	
36	. 85710	1.16672	. 88784	1.12633	. 91955	1.08749	95284	1.04949	23
$\left\|\begin{array}{l} 37 \\ 38 \end{array}\right\|$. 85761	1.16603 1.16535	. 888888	1.12501	. 92062	1.08622	. 95340	1.04888	22
39	. 85862	1.16466	. 88940	1.12435	. 92116	1.05559	95395	1.04827	21
40 41	85912	1.16398	. 88992	1.12369	. 92170	1.08496	95	1.0476	
	. 85963	1.16329	. 89045	1.12303	. 92224	1.08432	95506	1.047	
43	. 86014	1.16261	. 89097	1.12238	. 922277		${ }^{95618}$	1.04583	18
	. 86064	1.16192	. 89149		923	1.08306	. 95673	1.04522	16
44	. 86115	1.16124	889253		. 924389	1.08179	. 95729	1.04461	15
45	. 86166	1.1	. 892538			1.08116	95785	1.04401	14
$\left.\begin{array}{\|l\|} 46 \\ 47 \end{array} \right\rvert\,$	6 .86216 86267	1.15987 1.15919	. 889306	1.11975 1.11909	. 922547	1.08053	. 95841	1.04340	13
48	年 ${ }^{\text {. }} 8$	1.15851	. 89410	1.11844	. 92601	1.07990	95897	1.04279	12
	. 86368	1.15783	. 89463	1.11778	. 92655	1.07927	95952	1.04218	11
50	0 . 86419	1.15715	. 89515	1.11713	. 927709	1.07864	. 96008	1.04158	0
$\begin{aligned} & 51 \\ & 52 \end{aligned}$	1.86470	1.15647	. 89567	1.11648	. 92763	1.07801	. 96	7	9 8
	2.86521	1.15579	. 89620	1.11582	. 92817	1.07738	. 96120	1.0403676	8
53	3.86572	1.15511	. 89672	1.11517	. 928872	6	. 96623	1.03976	
54 55 5	4 . 86623	1.15443	. 897725	1.11452	. 9229298	1.07650	. 9628288	1.03855	
	5	1.15375	. 897737	1.1	. 92980	1.07487	. 96344	1.03794	4
56	7 7.86776	1.15240	. 889883	1.11256	. 93088	1.07425	. 96400	1.03734	3
	88.86827	1.15172	. 89935	1.11191	. 93143	1.07362	. 96457	1.03674	2
	59.86878	1.15104	. 89988	1.11126	. 93197	1.07299	. 965513	. 03613	
	0	9	10	1.11061	93252	1.0		1.03553	
	Cotang.	Tang.	Cotang.	. Tang.	Cotang.	Tang.	Cotang.	,	-
		49°		48°		47°		6°	

TABLE XVII. NATURAL TANGENTS AND COTANGENTS. 30%

M.	44°		M.	M.	44°		M.	M.	44°		M.
	Tang.	Cotang.			Tang.	Cotang.			Tang.	Cotang.	
0	. 96569	1.03553	60	20	.97700	1.02355	40	40	. 98843	1.01170	20
1	. 96625	1.03493	59	21	. 97756	1.02295	39	41	. 98901	1.01112	19
2	. 96681	1.03433	58	22	. 97813	1.02236	38	42	. 98958	1.01053	18
3	. 96738	1.03372	$5{ }^{5}$	23	. 97870	1.02176	37	43	. 99016	1.00994	17
4	. 96794	1.03312	56	21	. 97927	1.02117	36	44	. 99073	1.00935	16
5	. 96850	1.03252	55	25	. 97984	1.02057	35	45	. 99131	$1.008 \% 6$	15
6	. 96907	1.03192	54	26	.98041	1.01998	34	46	. 99189	1.00818	14
7	. 96963	1.0313	53	27	. 98098	1.01939	33	47	. 99247	1.00759	13
8	. 97020	1.03072	52	28	. 98155	1.01879	32	48	. 99304	1.00701	12
9	. 97076	1.03012	51	29	. 98213		31	49	. 99362	1.00642	11
10	. 97133	1.0295	50	30	. 98270	1.01761	30	50	. 99420	1.00583	10
11	. 97189	1.02892	49	31	. 98327	1.01702	29	51	. 99478	1.00525	9
12	. 97246	1.02832	48	32	. 98384	1.01642	28	52	. 99536	1.00467	8
13	. 97302	1.027\%2	47	33	. 98441	1.01583	27	53	. 99594	1.00408	
14	. 97359	1.02713	46	34	. 98499	1.01524	26	54	. 99652	1.00350	
15	.97416	1.02653	45	35	. 98556	1.01465	25	55	. 99710	1.00291	5
16	. 97472	1.02593	44	36	. 98613	1:0140	24	56	. 99768	1.00233	4
17	. 97579	1.02533	43	37	. 98671	1.01347	23	57	. 99882	1.00175	3
18	. 97586	1.024\%4	42	38	.98\%28	1.01288	22	58	. 99884	1.00116	2
19	. 97643	1.02414	41	39	. 98786	1.01229	21	59	.99942	1.00058	1
20	. 97700	.02355	40	40	. 98843	1.01170	20		1.00000	1.00000	0
M.	Cotang. Tang.		$\overline{\mathrm{M}}$.	$\overline{\mathrm{M}}$.	Cotang.		$\overline{\mathrm{M}}$.	M.	Cotang. Tang:		$\overline{\mathrm{M}}$.
					45						

COMPARATIVE TABLE	OF FRE	BLE	X V II	I.	GHTS AND MEASURES.
	No.	Log.	Log.	No.	
Grains in a gramme,	15.43235	1.188432	8.811568	. 064799	Gramme in a grain.
Pounds avoirdupois in a kilogramme,	2.20462	0.343334	9.656666	.483593	Kilogramme in a pound avoirdupois.
Ton in a tonne,	. 984206	9.993086	0.006914	1.01605	Tonnes in a ton.
Feet in a mètre,	3.2808693	0.515989	9.484011	. 30479721	Mètre in a foot.
Inch in a millimètre,	. 03937043	8.595170	1.404830	25.39977	Millimètres in an inch.
Mile in a kilomètre,	. 621537	9.793355	0.206645	1.60933	Kilomètres in a mile.
Square feet in a square mètre,	10.7641	1.031978	8.968022	. 0929013	Square mètre in a square foot.
Square inch in a square millimètre,	. 00155003	7.190240	2.809660	645.148	Square millimètres in a square inch.
Cubic feet in a cubic mètre,	35.3156	1.547967	8.452033	. 0283161	Cubic mètre in a cubic foot.
Foot-pounds in a kilogrammètre,	7.23308	0.859323	9.140677	. 138254	Kilogrammètre in a foot-pound.
Pounds-to-the-foot in a kilogramme- to-the-mètre,	. 671963	9.827345	0.172655	1.48818	$\left\{\begin{array}{l}\text { Kilogrammes-to-the-mètre in a pound- } \\ \text { to-the-foot. }\end{array}\right.$
Pounds-to-the-square-foot in a kilo-gramme-to-the-square-mètre,	. 204813	9.311358	0.688644	4.88252	$\left\{\begin{array}{l}\text { Kilogrammes-to-the-square-mètre in } \\ \text { a pound-to-the-square-foot. }\end{array}\right.$
Pounds-to-the-square-inch in a kilo-gramme-to-the-square-millimètre,	1422.31	3.152994	6.847006	.000703083	$\left\{\begin{array}{l} \text { Kilogramme-to-the-square-millimètre } \\ \text { in a pound-to-the-square-inch. } \end{array}\right.$
$\left.\begin{array}{l}\text { Pounds-to-the-cubic-foot in a kilo- } \\ \text { gramme-to-the-cubic-mètre, }\end{array}\right\}$. 062426	8.795367	1.204633	16.019	\{ Kilogrammes-to-the-cubic-mètre in a pound-to-the-cubic-foot.

TABLE XIX.

METRIC CURVE TABLE.

Def. angle, 20 m . chords.	Radius in metres.	Ordinates.		Tangent deflection.	Def. angle, 20 m . chords.
		m.	妾 m.		
- 1					- 1
010	3437.75	. 015	. 011	. 058	010
20 30	1718.88 1145.93	. 024	. 0232	.116 .175	20 30
40	859.46	. 058	. 044	. 233	40
50	687.57	. 073	. 055	. 291	50
10	572.99	. 087	. 065	. 349	10
10	491.14	.102	. 076	. 407	10
20	429.76	. 116	. 087	. 465	20
30	382.02	. 131	. 098	. 524	30
40	343.82	. 145	. 109	. 582	40
50	312.58	. 160	. 120	. 640	50
20	286.54	. 175	. 131	. 698	20
10	264.51	. 189	. 142	. 756	10
20	245.62	. 204	. 153	. 814	20
30	229.26	. 218	. 164	. 872	30
40	214.94	. 233	. 175	. 931	40
50	202.30	. 247	. 186	. 989	50
30	191.07	. 262	. 196	1.047	30
10	181.03	. 276	. 207	1.105	10
20	171.98	. 291	. 218	1.163	20
30	163.80	. 306	. 229	1.221	30
40	156.37	. 320	. 240	1.279	40
50	149.58	. 335	. 251	1.237	50
40	143.36	. 349	. 262	1.395	40
10	137.63	. 364	. 273	1.453	10
20	132.35	. 378	. 284	1.511	20
30	127.45	. 393	. 295	1.569	30
40	122.91	. 407	. 306	1.627	40
50	118.68	. 422	. 617	1.685	50
50	114.74	.437	. 328	1.743	50
20	107.58	. 466	. 349	1.859	20
40	101.28	. 495	. 371	1.975	40
60	95.67	. 524			
20	90.65	. 553	. 415	2.206	20
40	86.14	. 582	. 437	2.322	40
	82.06	. 612	. 459	2.437	70
20	78.34	. 641	. 481	2.553	20
40	74.96	. 670	. 503	2.668	40
80	71.85	. 699	. 525	2.783	80
20	69.00	. 729	. 547	2.899	20
40	66.36	. 758	. 569	3.014	40
90	63.92	. 787	. 591	3.129	90
20	61.66	. 816	. 613	3.244	20
40	59.55	. 846	. 635	3.358	40
100	57.59	. 875	. 657	3.473	100

USE OF TABLES I., II., III., AND IV. FOR METRIC CURVES.

The metric curve table here given corresponds to Table I., except that the ordinates for curving rails are omitted. The deflection angles, denoted by D, are for chords of 20 metres. The radii are, therefore, computed by the formula $R=\frac{10}{\sin . D}$. In Table I. the radii are computed by the formula $R=\frac{50}{\sin \cdot D}$. The radii in the metric table are, therefore, each one-fifth or .2 of the radii in Table I. for the same deflection angle. Moreover, since the ordinates given above and the tangent deflections vary only with the radii, these ordinates and the tangent deflections may also be obtained from Table I. by simply multiplying the corresponding quantities by .2 , keeping in mind that corresponding quantities are those belonging to the same deflection angle. Table I., except in regard to ordinates for rails, may, therefore, be used for metric curves by simply multiplying corresponding quantities by .2 . The metre will, of course, be the unit of the resulting quantities.

Example. Given in a metric curve $D=3^{\circ} 10^{\prime}$, to find R and the ordinates m and $\frac{8}{4} m$. In Table I., $R=905.13, m=1.382$, and $\frac{8}{4} m=1.037$. Multiplying these values by .2 , we have for the metric curve $R=181.03, m=.276$, $\frac{8}{4} m=.207$, as in Table XIX.

Since the Long Chords of Table II. for the same deflection angle vary directly with the radii, we may use this table for metric curves by multiplying the values there found by .2. We thus obtain in metres the length of corresponding long chords in metric curves.

Example. Given in a metric curve $D=2^{\circ} 20^{\prime}$, to find the long chord for five stations. From Table II. we have for an ordinary curve the long chord $=496.689$. Multiplying by .2 , we have the required long chord in the metric curve $=99.338$ metres.

Tables III. and IV. may also be used for metric curves, as all the quantities vary only with the radii. Therefore, using the same
deflection angle, we convert these tables into metric tables by multiplying corresponding quantities by .2 , the ratio of the radii. First find T and b from the tables, as for an ordinary curve, and multiply the values so found by .2 to obtain T and b for the corresponding metric curve.

Example. Given in a metric curve $1=90^{\circ}$ and $D=10^{\circ}$, to find T and b. From the tables we should have for an ordinary curve $T=\frac{5729.7}{20}+1.45=287.935$ and $b=\frac{2373.3}{20}+.603=$ 119.268. These values multiplied by .2 give for the metric curve $T=57.587$ metres and $b=23.854$ metres.

It is obvious that if chords of 10 metres were used in laying out a metric curve, the multiplier, as used above, would be .1 , and that if chords of 30 metres were used, the multiplier would be .3.

$$
3 x+2 x^{2}
$$

ALL BOOKS MAY BE RECALLED AFTER 7 1-month loans may be renewed by calling 6 6 -month loans may be recharged by bringing books to Renewals and recharges may be made 4 days prio DUE AS STAMPED BELOW

INTERLIERANY LOAN

UNIV. OF GALIF

FORM NO. DD 6, $40 \mathrm{~m} 10^{\prime} 77$ UNIVERSITY OF CALIFO BERKEIEY CA

YA 06852

fisk x^{2}

$$
\begin{gathered}
\text { TH } 205 \\
1+5
\end{gathered}
$$

$$
1+5
$$

$$
1912
$$

UNIVERSITY OF CALIFORNIA LIBRARY

[^0]: * Some engineers prefer a chain 50 feet in length, and measure the length of a curve by chords of 50 instead of 100 feet. The chord of 100 feet has been adopted throughout this article; but the formulæ deduced may be very readily modified to suit chords of any length. See also § 13 .

[^1]: * This method of finding the length of a sub-chord is not mathematically accurate ; for, by geometry, angles inscribed in a circle are proportional to the arcs on which they stand; whereas this method supposes them to be proportional to the chords of these arcs. In railroad curves, the error arising from this supposition is too small to be regarded.

[^2]: * The distance $B M$ is not exactly equal to the chord, but the error arising from taking it equal is too small to be regarded in any curves but those of very small radius. If necessary, the true length of $B M$ may be calculated ; for $B M=\sqrt{\left.E_{n}^{\prime}\right]^{2}-H M^{2}}$.

[^3]: * The radii of an oval of given length and breadth, or of a three-centre arch of given span and rise, may also be found from these formulæ. In these cases $A+B=90^{\circ}$, and the values of R and R^{\prime} may be reduced to $R=$ $\frac{a T}{a+T^{\prime}-T}$ and $R^{\prime}=\frac{a T^{\prime}}{a+T-T^{\prime}}$. These values admit of an easy construction, or they may be readily calculated.

[^4]: *This angle and the sine of $1^{\circ} 9.6029^{\prime}$ below, are found by the method given in connection with Table XV. If the ordinary interpolations had been used, we should have found $F=7^{\circ} 7^{\prime}$, whereas it should be 7°, since this example is the converse of that in $\$ 57$.

[^5]: * The triangle $A E K$ does not correspond precisely with $B E K$ in $\S 60, A$ being on the centre line and B on the outer rail ; but the difference is too slight to affect the calculations.

[^6]: * Since $\frac{1}{3} K$ is generally very small, an approximate value of $B F$ may be obtained by making cos. $\frac{\gamma}{3}=1$, whence $B F=\frac{g}{\sin . \frac{1}{7} F}$, which is identical with the formula for $B F$ in $\$ 66$. This remark applies also to $B F$ in the second part of this solution.

[^7]: * Since $C D$ is drawn to the middle of the base of the triangle $A B C$, we have, by Geometry, $C D^{2}=\frac{1}{2}\left(A C^{2}+B C^{2}\right)-A D^{2}$.

[^8]: * When thought necessary, $A H$ may be calculated accurately by the formula $A H=x_{1}-R \sin . \Delta$.
 + The formula $G K=R(1-\cos . \Delta)$ gives the exact value of $G K$, but the difference is generally unimportant.

[^9]: * The level should be placed midway between the two points, when practicable, in order to neutralize the effect of inaccuracy in the adjustment of the instrument, and for the reason given in § 148.

[^10]: * Peirce's Spherical Astronomy, Chap. X., § 125. It should be observed, however, that the effect of refraction is very uncertain, varying with the state of the atmosphere. Sometimes the path of a ray is even made convex towards the earth, and sometimes the rays are refracted horizontally as well as vertically.

[^11]: * If the ground is divided into rectangles, as is generally done, and one side be made 27 feet, or some multiple of 27 feet, the contents may be obtained at once in cubic yards, by merely omitting the factor 27 in the calculation.

[^12]: * It is easy in any given case to ascertain whether a surface like $A A_{1} B_{1} B$ is a plane ; for if it is a plane, the descent from A to B will be to the descent from A_{1} to B_{1}, as the distance out at the first station is to the distance out at the second station; that is, $c-h: c_{1}-h_{1}=d: d_{1}$. If we had $c=9$, $h=6, c_{1}=12, h_{1}=8, d=24$, and $d_{1}=27$, the formula would give $3: 4=$ $24: 27$, which shows that the surface is not a plane.

[^13]: * It will often be necessary to introduce intermediate stations, in order to make the subdivision into triangles more conveniently and accurately.

[^14]: * A New Method of Calculating the Cubic Contents of Excavations and Embankments by the aid of Diagrams. By John C. Trautwine.

[^15]: * The area of a circular segment on railroad curves, where the chord is very long in proportion to the height, may be found with great accuracy by the above formula.

