
thomas tennents
SURVEYING \& NAVIGATION
warehouse,
sign of wooden sailor,

San Francisco

LIBRARY
of the
University of California. GIFT OF
Iso Hornet Day Saline
Received Juquet 180%. Accession No. $66937 . \quad$ Class No.-

$$
\begin{aligned}
& \begin{array}{c}
2 \\
0 \\
0 \\
0
\end{array}
\end{aligned}
$$

FIELD PRACTICE

OF

LAYING OUT CIRCULAR CURVES

FOR

RAILROADS.

By JOHN C. TRAUTWINE, civil engineer.

Entered according to Act of Congress, in the year 1851, by JOHN C. TRAUTWINE,
in the Clerk's Office of the District Court of the United States for the Eastern District of Pennsylvania.

STEREOTYPED BY L. JOHNSON AND CO. PHILADELPHIA.

669^{3-8}

PREFACE.

I have been induced to prepare this little volume almost entirely with reference to the wants of the many young men who desire to qualify themselves for field service in an Engineer Corps. On that account, I have endeavored, by the use of the plainest language, to render the subject intelligible to them,-dispensing with that mathematical brevity which would have better accorded with the requirements of those who have already attained to some degree of proficiency in elementary field operations. Still, I trust that it will not prove unacceptable even to the latter.

The Table of Natural Sines and Tangents to single minutes, in a form sufficiently portable for field use, will supply a want which I have myself frequently experienced, not only in the operation of laying out curves, but on many other occasions.

One object in preparing it, was to furnish the profession with a Table that should be not only portable, but absolutely reliable. Those whose occupations compel them to resort to the Tables in common use, must have frequently experienced, like myself, the extreme embarrassment which attends the inaccuracies to which they are all subject. So long as a Table is known to contain a single error, the position of which is not ascertained, its employment is attended with doubt in every instance in which we are obliged to refer to it. On this account, I have not only prepared these Tables with the most scrupulous care, while in common type, but in order to render their accuracy a matter of certainty, I had them stereotyped, and afterwards revised three times with the utmost caution. I therefore feel no hesitation in saying that they may be depended upon absolutely. The same remark applies to the other Tables contained in the volume.

As Hassler's and Hutton's Tables of Natural Sines and Tangents are those most in use among the profession, it will be desirable to
those persons who possess them, to be able to correct the following errors, which I detected in comparing them.

In Hutton's Tables, Fifth Edition, 1811.

Sine of $6^{\circ} 8^{\prime}$, for $\cdot 1063425$, read $\cdot 1068425$. Page 328, at top, for 25 Deg., read 40 Deg. Tangent of $44^{\circ} 60^{\prime}$, for $\cdot 1000000$, read $1 \cdot 000000$.
Tangent of $41^{\circ} 60^{\prime}$, for ${ }^{\circ} 8994040$, read $\cdot 9004040$.
In Dr. Gregory's Corrected Edition (the 8th) of Hutton's Tables, 1838 Sine of $49^{\circ} 14^{\prime}$, for ${ }^{\cdot 7576751}$, read $\cdot 7573751$.

In Hassler's Tables, 1830.

e of $78^{\circ} 24^{\prime}$, read $\cdot 97$		
- $20^{\circ} \mathrm{CO}$		$\cdot 3583679$.
		$\cdot 915$
Sine of $56^{\circ} 39^{\prime}$,		83
55°		
ne of 53°		
$48^{\circ} 1$		
ine of 45°		

The foregoing I believe to be all the errors in the Natural Sines and Tangents to whole minutes, in the respective tables. The discrepancies of 1 in the 7th decimal, I have not considered as errors, as they are occasioned by a neglect of the value of the 8th decimal. For calculating curves, it is not necessary to use more than 4 lecimals.
It is scarcely necessary to remark that, beyond 44°, the Sines,「angents, \&c. are read upwards, from the bottom of the page, using the corresponding column of minutes. To find the sine of an angle aceeding 90°, subtract the angle from 180°, and take out the sine of the remainder-because the sine of an angle, and that of what t wants of 180°, are the same.
In this edition the Tables of Radii and Ordinates have been xtended.

John C. Trattwine.

ERRATA.-None.

field practice

or

LAYING 0UT CIRCULAR CURVES

FOR

RAILROADS.

ARTICLE .

PRINCIPLES OF LAYING OUT CURVES.

METHOD 1.

To lay out a Curve by means of Tangential Angles.
IF from any point B , fig. 1 , in a straight line A D , we lay off any number of equal angles, as $\mathrm{D} \operatorname{B} s, s \mathrm{~B} t, t \mathrm{~B} u$, $u \overline{\mathrm{~B}} v, \& c$. , and at the same time make the chords $\mathrm{B} s, s t, t u$, $u v$, \&c. equal to each other, then the points $\mathrm{B}, s, t, u, v, \& \mathrm{c}$. will be situated in the circumference of a circle, which is tangential to the line AD at the point B.

The first of these angles, $\mathrm{DB} s$, is called the tangential angle, as being that by which
 the curve is connected with the tangent A D; but inasmuch as the others are all equal to it, they also are called tangential angles.

If any obstacle, as h, should prevent our seeing from B farther than to v, the curve may be continued by ${ }_{5}$ removing
the instrument to u, the point preceding v; thence sighting first on v, continue to lay off additional tangential angles $v u w, w u x, \& c$., as before. Or else, moving the instrument to v itself instead of to u, sight back to u, and lay off first the exterior angle $p v w$, equal to double the tangential angle, and afterward continue the tangential angles $w v x$, $x v g$, \&c., as before, to the end of the curve.

Finally, in order to pass from the end of the curve at g, on to a tangent $g z$, place the instrument at g, and sighting back to x, lay off the tangential angle $x g o$; then $o g$ continued toward z will be the required tangent. (See Art. IV.)

For the tangential angles corresponding to different radii, and chords of 100 feet, see page 25.

ARTICLE II.

METHOD 2.

To lay out a Curve by means of Deflection Angles.
Fig. 2. First, having, as in method 1, laid off a tangen-
 tial angle D B s, and measured the chord $\mathrm{B} s$, remove the instrument to the end s of the chord, and make the exterior angle $m s t$ equal to twice the tangential angle, and measure the chord $s t$; and so on at the other points $t, u, v, \& c .$, making each of the exterior angles $n t u$, o $u v$, \&c. equal to twice the tangential angle, and all the chords equal ; then will the points B, $s, t, u, v, \& c$. be in the circumference of a circle which is tangential to the line A D at the point B , as by the first method.

But if, at any of these points, as v, we wish to pass off to a tangent $v \mathrm{~L}$, employ at that point the tangential angle $z v \mathrm{~L}$, equal to half the deflection angle $z v w$. (See Art. IV.)

These exterior angles, included between any chord and the extension of the preceding chord, are called deflection

7

angles, or angles of deflection, or angles of curvature. In any given circle, the angle of deflection is always precisely double the tangential angle, supposing the chords to be equal. At page 25, we give tables of the angles corresponding to circles of different radii, embracing the limits of railroad practice; and calculated for chords 100 feet in length, that being the usual length for a measuring chain on public works.
N. B. The deflection angle of any curve is equal to the angle $t c u$, or $t c s, \& c$. at the centre of the circle, subtended by one of the equal chords $t u$ or $t s$. This angle at the centre, so subtended, is called the central angle. The tangential angle, being always half the deflection angle, is, of course, always half the central angle.

ARTICLE III.

METHOD 3.

To lay out a Curve by Eye.

The deflection angles, fig. 3, est,ftu,guv,hvw, \&c., being double, the tangential angle $\mathrm{D} \mathrm{B} s$, the $\operatorname{arcs} e d t$, $f i r, g m v, h n w$, \&c., are double the arc $\mathrm{D} c s$, since the arcs of circles are proportionate to the angles which they subtend; but the chords $e t, f u, g v, h w, \& c$. are not double the chord $\mathrm{D} s$, since the chords of arcs are not proportionate to the arcs, or to the angles which they subtend.

The chords e $t, f u, g v$, $h v$, \&c., which subtend the
 deflection angles, are called deflection distances; and the chord $\mathrm{D} s$, which subtends the tangential angle, is called the tangential distance.

But although, in any given circle, the deflection distance is not truly twice the tangential distance, yet the difference
is so triffing in large railroad curves, with chords of but 100 feet, that it may generally be neglected in curves of more than 300 feet radius.

In our tables the precise length of both will be found for different radii, and for chords of 100 feet.

Having these respective distances, we may frequently trace a curve on the ground by the eye only, with very tolerable accuracy, sufficient for guiding the excavations and embankments, especially on nearly level ground. Suppose, for instance, it be required to lay out in this manner a curve of 5730 feet radius.

First, find by the table, page 25, or by Art. XVI, the deflection distance et or $f u$, \&c., corresponding to a radius of 5730 feet for a chord of 100 feet, riz. $1 \cdot 745$ feet; and also the tangential distance $d s .873$ of a foot.

Then from the starting point B, and in line with $A B$, measure B D equal 100 feet; and put a pin at D. Also from B , measure the chord $\mathrm{B} s$, equal 100 feet; at the same time measuring with a graduated rod, from the pin D , the tangential distance $\mathrm{D} s$, equal to $\cdot 873$ of a foot; and place a stake at s. The pin at D may then be remored.

Next, make se equal 100 feet, placing a pin at e, precisely in line with $s \mathrm{P}$; also from s measure $s t$ equal 100 feet; at the same time measuring with the rod from the pin e, the deflection distance $e t$, equal to $1 \cdot 745$ feet. Place a stake at t, and remove the pin at e. In this manner proceed to find other points as far as the end of the curve at v.

In order to pass from the curve, as at v, to a tangent $v \mathrm{~L}$, proceed as before, only using the tangential distance $h n$, instead of the deflection distance $h w$. (See Art. IV.)

This method is abundantly accurate for laying out curres on a canal, or common road; and will occasionally answer very well, when carefully performed, for railroad curves, in the absence of an instrument. Thin straight rods, ironpointed, and a plumb line should be used for ranging the points in the latter case.

The transit instrument is the best for tracing curves, and running lines generally. I prefer the graduations to run from the same zero, right and left, to 180° each way. There should be two verniers, graduated to minutes; by their means half, or even quarter minutes may generally be estimated with considerable certainty. The telescope revolving in a vertical plane, greatly expedites the laying off of exte-
rior angles, after having first sighted backward to the point behind.

The verniers are sometimes graduated to hundredths of a degree ; and this division is, in certain cases, the best; but for general purposes, the division into minutes is to be preferred, as all the printed tables of sines, tangents, \&c., are calculated for that division.

ARTICLE IV.

On Sub-Chords.

We have hitherto spoken of curves as if they were composed of equal chords, each of 100 feet in length. It frequently happens, however, that at the end of a curve, as at e, fig. 4, we are obliged to use a shorter, or sub-chord $d e$, in order to unite properly with the tangent e f.

In that case, and when using Method 1., Art. I., of laying off curves by means of tangential angles, we must, in order to fix the point e, lay off a sub-tangential an= gle $d \mathrm{~A} e$, as much smaller than the entire tangential angle B A c, or c A $d, \& c$. ., as the sub-chord $d e$ is smaller than an entire 100 feet chord, $a c, c d, \& c$. Thus if the
 sub-chord be one-half, or one-fourth, \&c. of the entire chord, the sub-tangential angle must be one-half, or onefourth, \&c. of the entire tangential angle.

This method is not mathematically exact, for the reason stated in Art. III. (viz. that the chords subtending different angles are not proportional to those angles;) yet, for curves of 300 or more feet radius, and with chords not exceeding 100 feet in length, the error is not observable in practice.

In like manner, when we pass off from a sub-chord, as at e, to a second tangent, e f, we must place the instrument at e, and lay off the same sub-tangential angle $d e g$; or which is better, take sight from e to c, and lay off the angle ce g, equal to the sum of a tangential and the sub-tangential angle.

10

But when using Method 2, Art. II. of deflection angles, or Method 3, Art.III. of deflection distances, we may calculate the sub-deflection angle, a s e, fig. 5, and sub-deflection distance a e, formed between a sub-chords e, and the extension s a , of an entire chord g , with sufficient accuracy for curves of 300 or more feet radius, and chords of not more than 100 feet, thus:

Rute.-Say, as an entire chord of 100 feet is to the subchord $s e$, so is the deflection angle of the curve, to a certain angle. Add these two angles together and divide their sum by 2 , for the sub-deflection angle $a s e$, of the sub-chord. Example.-The curve,
 fig. 5, has a radius of $319 \cdot 6$ feet, and an angle of deflection, $f g s$, of 18° for chords of 100 feet. The sub-chord $s e$ is 25 feet in length ; what is the sub-deflection angle a se; and also the sub-deflection distance a e, for the subchord $s e$?

Chord. Sub-Chord.
Here, as 100 is to 25 ,
Def. An. of Certain
100 ft chord. Angle.
S_{0} is $\quad 18^{\circ}$ to $4^{\circ} 30^{\prime}$.
The sum of these two angles, 18° and $4^{\circ} 30^{\prime}=22^{\circ} 30^{\prime}$, the half of which is $11^{\circ} 15^{\prime}$, the required sub-deflection angle $a s e$.

Again, to find the sub-deflection distance $a e$, of the subchord $s e$; take from the table of sines, the natural sine of one-half the sub-deflection angle a se, just found. Multiply this natural sine by 2 , and multiply that product by the length of the sub-chord.

Example.-The sub-deflection angle is $11^{\circ} 15^{\prime}$; one-half of it is $5^{\circ} 37 \frac{1^{\prime}}{\prime}$, the tabular natural sine of which is $\cdot 0979$, which multiplied by 2 , gives $\cdot 1958$; and this multiplied by the sub-chord, 25 feet, gives 4.895 feet, the required subdeflection distance $a e$.

Finally, to find the sub-tangential distance $s n$, by means of which to pass from e to the tangent $e m$, say, as 10000
is to the square of the sub-chord in feet; so is the tangential distance for a 100 feet chord, to $s n$. In this instance, we have as 10000 is to 625 , so is $15 \cdot 69$ feet to $\cdot 980$ feet, or $s n$.

ARTICLE V.

Ordinates for Entire Chords.

It would be both tedious, and liable to inaccuracy, to attempt to fix all the necessary points in railroad curves by the foregoing means, which are employed only for entire chords, or for such sub-chords as may be required at the ends of curves.

The best method is to stretch a piece of twine $a b$, fig. 6, 100 feet long, between two adjacent chord-stakes, and measure off as nearly as may be at right angles to it, with a
 graduated rod, the previously calculated ordinates, $c d, e f, g h$, \&c., placing pegs at $d, f, h, \& c . *$ Our table of ordinates, page 28, is calculated for distances apart $b c, c e, e g$, \&c., of 5 feet; and for all curves likely to occur in practice. The 5 feet distances on the twine should be marked by knots or otherwise; and those at the center, and half way between it and the ends, be further distinguished by tying on pieces of tape.

The 5 feet distances are only used (after the excavations and embankments are finished) for placing pegs to guide the laying of the rails, and then only for very sudden curves; for those of large radii, distances of 10 feet are quite sufficient, or even 25 feet for very easy curves. For guiding the curves of the cuttings and fillings, it is not necessary to place the stakes nearer than 50 feet apart; unless for those of less than about 1000 feet radius, when they may be placed 25 feet apart. Ordinates for radii intermediate of those in the table, may either be calculated by the rules given further on; or they may be taken proportionally intermediate of the tabular ones, with sufficient accuracy for practice.

Ordinates for Sub-Chords.

These may readily be calculated approximately enough

[^0]for railroad practice, for curves of over 300 feet radius, and for chords not exceeding 100 feet, thus: In a circle of given radius, not less than about 300 feet, the ordinates of an entire 100 feet chord may be assumed to be to those of a sub-chord, as the square of the chord is to the square of the sub-chord.

In all our tables the chord is supposed to be 100 feet, the square of which is 10000 ; the rule therefore becomes, as 10000 feet : to square of sub-chord in feet : : Ord, of Chord : Ord. of Sub-chord approximately.

Example. - In a curve of 5730 feet radius, the middle ordinate of a 100 feet chord is 218 of a foot; what will be the length of the middle ordinate of a sub-chord of 50 feet? Here,

Sq. of 100 ft : : Sq. of 50 ft : :

$$
10000: 2500 \quad: \quad \cdot 218 \mathrm{ft} . \quad: \quad .0545 \mathrm{ft} .
$$

And so of any other ordinate, always supposing the chord and sub-chord to be divided into the same number of parts,

ARTICLE VI.

Having given the angle a b d, fig. 7, it is required to find the point a or d , at which to commence a curve of given radius.

Rule.-Subtract half the angle $a b d$ from 90°; the remainder will be the angle $b c a$, or $b c c d$. From the table of tangents take the natural tangent of $b c a$, and multiply it by the given radius; the product will be $b a$, or $b d$.

Example.-Let the angle $a b d$ be 120°, how far from b must we begin, at a or d, to lay out a curve a $n d$, of 2865 feet radius?

Here, half of the angle $a b d=60^{\circ}$, which taken from 90° leaves the angle $b c a=30^{\circ}$. The natural tangent of $30^{\circ}=\cdot 5773$, which multiplied by the radius of 2865 feet, gives $1653 \cdot 96$ feet for $b a$ or $b d$. (See Art. XII.)

ARTICLE VII.

Having given the angle a b d, fig. 7, and the distance from
b to a or d , at one of which we wish to commence a curve, it is required to find what radius a cor c d, the curve must have, in order to unite with b a and b d tangentially at a and d.
Rute.-Subtract the angle $a b c$, which is half the angle $a b d$, from 90°; the remainder will be the angle $b c a$, or b $c d$. Then as nat. sine of $b c a,{ }^{*}$ is to nat. sine of $a b c, \dagger$ so is $a b$ to $a c$, the radius required.

Example.-Let the angle $a b d$ be 120°, and the distance $b a$ or $b d 1654$ feet; what will be the radius $a c$ or $c d$ of a circle that shall touch a and d tangentially.

Here the angle $a b c=$ half the angle $a b d$, is 60°, which taken from 90°, leaves the angle $b c a$, or $b c d=$ 30°. Then as the nat. sine of b c $a\left(30^{\circ}\right)=5000$ is to nat. sine of $a b c,\left(60^{\circ}\right)=8660$, so is $b a(1654$ feet $)$ to $a c$, (2865 feet,) the radius required.

ARTICLE VIII.

Having given the radius a 0, fig. 7, of a curve, and the angle a b d, it is required to find the number of chords of 100 feet that will constitute the curve.
Rule.-Subtract the angle $a b d$ from 180°, and divide the remainder by the angle of curvature, or deflection of the curve. The quotient will be the required number of chords.

Example. -Let the angle $a b d$ be 120°, and the radius ac, 2865 feet.

Here the angle a $b d, 120^{\circ}$, subtracted from 180°, leaves a remainder of 60°; which, divided by 2°, the angle of deflection for a curve of 2865 feet, gives a quotient of 30 ; which is the required number of chords of 100 feet.
N. B.-Had the quotient contained a fraction of a chord, it would have indicated that we should have had to employ a sub-chord at the end of the curve; for instance, had the number of chords been $30 \frac{1}{2}$, a sub-chord of 50 feet (very approximately) would have been necessary.

[^1]
14

ARTICLE IX.

How to proceed when the end of a curve does not correctly join the tangent.
We sometimes find, in running out a curve for the number of chords determined by the Rule in the preceding Article, that instead of uniting as it should with the previously determined tangent $d m$, fig. 8 , at o, it ends tangentially to a line parallel to said tangent, either within it, as at c; or beyond it, as at b. Being first certain that no error has occurred in tracing out the curve, ascertain with the compass the bearing of the tangent $a d$, and, removing the compass to the end of the curve at c or b, (as the case may be,) run the line $b o$ or $c o$, in the same course as $a d$, until it strikes the tangent $d \circ \mathrm{~m}$; which may be ascertained by ranging two stakes placed on the tangent.

Then measure b, or $c o$, (as the case may be,) and if the curve fall within the tangent $o m$, as at c, measure forwards from t towards d, the distance t a, equal to $c o$; or if the curve fall beyond the tangent, as at b, measure backwards from s, the distance s a equal to $b o$. Then the curve retraced from α, will terminate tangentially in $d m$ at o.
N. B.-The direction of $c o$ or $b o$ may be ascertained without a compass, and better, thus: Multiply the tangential angle of the curve by twice the number of chords run, less one; subtract the product from 180°, and sighting back one chord to n or r, lay off the angle $n c b$, or $r b v$, equal to the remainder. For example, if the tangential angle be 10°, and from t to c be 4 chords, then 7 times 10° taken

15

from 180° leaves the angle $n c b$, or $r b v=110^{\circ}$. When the product exceeds 180°, it must be subtracted from 360°, for the angle $n c b$, or $r b v$,*

This case occurs whenever an error has been made in measuring the distance from d to a. If $d a$ be made too short, the curve $s b$ is the result; and if too long, the curve $t c$.

If the error is small, it may be divided equally among the chords by measure, without retracing the curve with an instrument. This method may be employed with perfect security so long as the error does not exceed 1 foot to every chord of $\mathbf{1 0 0}$ feet; and it will never be so great if moderate care be taken.

Thus, if the curve be 20 chords long, and the error 20 feet, the last stake may be moved 20 feet, the next 19 , the next 18 , \&c., as nearly at right angles to the curve as can be judged by the eye.

The same ordinates that would have been used had the curve been correct, will answer for the one so adjusted, without perceptible difference. For ather cases, see Art. X.

ARTICLE X.

Again, it may happen that the error is not caused by a mismeasurement of the distance $a e$, figs. 9 and 10, as in the last case; but by mistake in obtaining the angle a e f.

Fig. 9.

Fig. 10.

If a e f, fig. 9 , be measured in excess, as a e g, then the

[^2]
16

curve $a b c$, calculated for the incorrect angle $a e g$, will be found to fall beyond the true tangent $e f$, as at c; and the tangents $e g$ and $e f$ not being parallel, the curve cannot be adjusted by either of the methods given in the preceding Article, unless the error be within about 1 foot to each 100 feet length of the curve ; in which case, (supposing no other error to exist,) either of those methods may be employed, with sufficient accuracy for practice.

Also, if $a e f$, fig. 10, be measured too small, as a e g, then the curve $a b c$, calculated for the incorrect angle $a e g$, will be found to fall within the true tangent $e f$, as at c; when so, the remarks contained in the preceding sentence are equally applicable here. If the error be within 1 foot to 100 feet length of curve, it may be equally divided among the chords. But if greater, we must either remeasure the angle a ef correctly, and go over the whole work again, or resort to some other mode of obviating the difficulty. The angle a ef may be difficult of access; or the curve may be so long that to retrace it would be a work of much labor. We may then adopt the method of compound curves, (see Art. XIII.,) by which much trouble will be avoided, and a considerable portion of the first part of the curve be allowed to remain as it is.

Thus, whether the curve $a b c$ fall beyond the true tangent $e f$, as in fig. 9 , or inside of it, as in fig. 10 , place the instrument at b, figs. 9 and 10, (the point at which the change of radius is to take place,, and sighting back one chord to n, lay off the tangential angle $n b m$ of the curve $a b c$, and observe where the tangent $m b$ continued, strikes ef, as at o. Measure both $b o$, and the angle b of. Half the angle b of taken from 90°, gives the angle $b h o$; then say,

As the $\left\{\begin{array}{c}\text { Nat. Sine of angle } b \cdot h, o \text { op- } \\ \text { posite the given side, } b o b\end{array}\right\}$ is to $\left\{\begin{array}{c}\text { Nat. Sine of angle } b . o h \\ \text { opposite the required } \\ \text { side } b h,\end{array}\right.$
So is The given side $b o$, ta The required side, or new radius $b h$.
Ascertain from the table, or by calculation, the angle of deflection, and the tangential angle corresponding to this new radius $b h$; and the new curve commencing at b will terminate tangentially to $e f$ at i, as far from o as o is from b.

For the mode of uniting two curves of different radii, so as to form a compound curve, see Article XIII.

It will be observed, that when the first curve, $a b c$, fig. 10 , falls inside the tangent $e f$, the new curve must be of greater radius; and when beyond fig. 9, of a less one.

ARTICLE XI.

Having given the angles a b c and b c d, fig. 11, and the distance b c , it is required to find the greatest radius, g i , or hi, that can be employed in a reverse curve, (see Article XIV) foinm, for uniting a b to c d.
Rule.-Half the angle a $b c$ taken from 90°, leaves the angle $b g i$; and half the angle $b c d$ taken from 90°, leaves the angle $i h c$.

From the table of tangents take the natural tangent ($b i$) of the angle $b g i$;
 and that ($i c$) of the angle $i h c$; and add them together.

Then as the sum of these two nat. tangents is to the nat. tang. of $b g i$, so is $b c$ to $b i$; and $b i$ taken from $b c$, gives $i c$.

Again, in the triangle $b g i$, as the nat. sine of the angle $b g i$, opposite the given side $b i$, just found, is to the nat. sine of the angle $g b i$, opposite the required side $g i$, so is $b i$, the given side, to $g i$, the required side or radius.

Example.-Let the angle $a b c$ be $71^{\circ} 40^{\prime}$, the angle $b c d$ $129^{\circ} 15^{\prime}$, and the distance b c 950 feet. What is the length of radius $h i$ or $g i$, of the easiest reverse curve that can be traced for uniting $a b$ to $c d$?

Here, half the angle $a b c\left(35^{\circ} 50^{\prime}\right)$ taken from 90°, leaves the angle $b g i 54^{\circ} 10^{\prime}$; and half the angle bo d ($64^{\circ} 37 \frac{1}{2}^{\prime}$) taken from 90°, leaves the angle $i h c=25^{\circ} 22 \frac{1^{\prime}}{}{ }^{\prime}$.

From the table of tangents, we have nat. tang. of $b g i$ $\left(54^{\circ} 10^{\prime}\right)=1 \cdot 3848$; and nat. tang. of $i h c\left(25^{\circ} 22 \frac{1^{\prime}}{}{ }^{\prime}\right)=$ -4743 ; their sum being 1.8591 .

Then as

and $b i, 707 \cdot 63$ feet, taken from $b c, 950$ feet, leaves $i c$ $242 \cdot 37$ feet.

Again, as the

ARTICLE XII.

To obtain the angle d b e , formed by two tangents, d b , and b e, when the point b is inaccessible. Figs. 12, 13, 14, and 15.

This is of frequent occurrence.
Case 1. When the included figure, fig. 12, has but three sides.

Rule.-Subtract the angle ade from 180° for the angle $b d e$; and subtract the angle $d e c$ from 180°, for the angle $d e b$. Add together $b d e$ and $d e b$, and subtract their sum from 180°, for the angle $d b e$.

Fig. 12. Fig. 13. Fig. 14. Fig. 15.

Case 2. When the included figure, $d b e f$, figs. 13 and 14, has four sides.

Rule.-Subtract the sum of the three internal angles of the figure marked by dotted segments of circle, from 360°, for the angle $d b e$.

Case 3. When the included figure, 15 , has more than four sides.

Rule.-Add together all the internal angles, marked by dotted segments of circles; and subtract their sum from twice as many right angles as the figure has sides, less four, for the angle $d b . e$.

Example.-Let the angles denoted by the dotted segments at the different letters be as follows: That at d, 70°; at $o, 220^{\circ}$; at $i, 150^{\circ}$; at $s, 110^{\circ}$; at $c, 160^{\circ}$; at e, 100°. The sum of these is 810°. The figure has 7 sides; and twice 7 , less $4=10$; and 10 right angles $=900^{\circ}$; from which the sum of the designated internal angles $\left(810^{\circ}\right)$ being subtracted, leaves 90°, for the angle $d b e$.
N. B. -When the angle $d b e$ has to be deduced from a figure of many sides, as fig. 15, the errors spoken of in Articles IX. and X. are apt to occur, unless the several sides and the angles $o, i, s, \& c$., be measured with much care. For tracing curves with any accuracy and satisfaction, the instrument should be divided at least into minutes; as before remarked, the transit instrument is the best for the purpose. With moderate care in the preparatory measurement of the sides and angles, errors will seldom occur that may not be adjusted with all the accuracy required in practice, by the very simple method of dividing them equally among the chords, as explained in Articles IX. and X.

ARTICLE XIII.

To pass from one curve, a m b, fig. 16, to another, b n c , of different radius, but running in the same direction, constituting a COMPOUND curve.

Rule.-Placing the instrument at b, sight back to the other end of the 100 feet chord at a; and lay off the tangential angle $a b d$, of the curve $a m b$; then from the common tangent $d b e$, lay off the tangential angle $e b c$, of the curve $b n c$, making at the same
 time the chord $b c$ equal to 100 feet.
N. B.-If running the curve by eye, use the tangential distances instead of the angles.

ARTICLE XIV.

To pass from one curve, m n t , fig. 17, to another, ti o , of either the same, or of a different radius, but running in an opposite direction; constituting a Reverse curve.
Rule.-Placing the instrument at t, sight back to the other end of the 100 feet chord
 at m, and lay off the tangential angle $m t r$, of the curve $m n t$; then from the common tangent $r t s$, lay off the tangential angle sto, of the curve $t i o$; making at the same time the chord $t 0$,
equal to 100 feet.
N. B.-If running the curve by eye, use the tangential distances instead of the angles.

ARTICLEXV.

RADII.
To find the radius corresponding to any given angle of deflection, and to equal chords of any given length.

Rule 1.-Subtract the angle of deflection from 180°, then say, as nat. sine of angle of deflection, is to nat. sine of half the remainder, so is the given chord to the radius required.

Example.-Let the angle of deflection be 2°, and the chord 100 feet, required the radius.

Here 2° subtracted from 180°, leaves 178°, the half of which is 89°, and as

Rule 2.-The radius for 100 feet chords may be found approximately, by dividing 5730 by the deflection angle.

21

This rule is very close for radii of not less than 500 feet. For 500 feet it gives eight-tenths of a foot too little, but is more approximate for larger radii.

Example. -What is the radius to a deflection angle of 2°, the chords being 100 feet long?

Here, 5730 divided by 2, gives 2865 feet, the radius required.

ARTICLE XVI.

tangential and deflection angles.

To find either the Tangential or Deflection Angle correspanding to any given radius, and to equal chords of any given length.

Rule 1.-Divide half the chord by the radius; the quotient will be the natural sine of the tangential angle. Therefore, the angle corresponding to this sine, in the table of natural sines, will be the tangential angle required; and the tangential angle multiplied by 2 will give the deflection angle.

Example.-Let the radius be 2865 feet, and the chord 100 feet; what will be the tangential and deflection angles?

Here, half the chord, (50 feet,) divided by the radius, (2865 feet,) gives 01745 ; and the tangential angle in the table corresponding to the natural sine $\cdot 01745$ is 1°, twice which is 2°, the deflection angle required.

Rule 2.-The deflection angle for 100 feet chords may be found approximately by dividing 5730 by the radius. This is very close for curves of over 500 feet radius. For 500 feet it gives about one minute too little.

Example.-What is the deflection angle for a radius of 2865 feet, the chords being 100 each?

Here, 5730 divided by the radius 2865, gives 2°, the deflection angle required.

22

ARTICLE XVII.

DEFLECTION DISTANCES.

To find the Deflection Distance (exactly) for any given radius, when the chords are 100 feet long.
Rule.-Divide the constant number 10000 by the radius in feet; the quotient will be the deflection angle required.*

Example.-What is the deflection distance to a radius of 5730 feet, the chords being 100 feet long?

Here, 10000 divided by 5730 radius, gives 1.745 feet, the deflection distance required.

To find the Deflection Distance for any given radius, and for equal chords of any given length.
Rule.-Divide half the given chord by radius, the quotient will be the natural sine of one-half the deflection angle; and double this natural sine, multiplied by the chord, will give the deflection distance required. By this rule our table was prepared.

Example.-As before, what is the deflection distance to a radius of 5730 feet, the chords being 100 feet long?

Here, half the chord, (50 feet,) divided by radius, (5730 feet,) gives $\cdot 008727$, which is the natural sine of half the deflection angle. Now -008727, multiplied by 2, gives $\cdot 017454$, which, multiplied by the chord, (100 feet, gives 1.745 feet, the required deflection distance, the same as in the preceding example.

ARTICLE XVIII.

TANGENTIAL DISTANCES.

To find the Tangential Distance corresponding to any given radius, and to equal chords of any given length.
Rule.-First find the tangential angle by Article XVI., and take from the table of natural sines, that correspond-

[^3]
23

ing to one-half of the tangential angle. Then multiply double this sine by the given chord, for the tangential distance. By this rule our table was prepared.

Example.-Let the radius be 2865 feet, and the chords 100 feet each; what will be the tangential distance?

Here we find, by Article XVI., the tangential angle 1° for a radius of 2865 feet.

The natural sine corresponding to 30 minutes, or onehalf of this tangential angle, is, by the table of sines, $\cdot 008727$; the double of which is $\cdot 017454$, which, multiplied by the chord, or 100 feet, gives 1.745 feet for the tangential distance required.

ARTICLE XIX.

ORDINATES.

To find the Middle Ordinate to any given radius, and to any given chord.
Rule 1.-From the square of the radius subtract the square of half the chord; and take the square root of the remainder from the radius, for the middle ordinate.

Example.-What is the length of the middle ordinate $d e$, fig. 18, the radius $c a$ being 819 feet, and the chord ab 100 feet?

Here, the square of $c a(819)$ is 670761 , and the square of $a e(50)$ is 2500 ; which, being subtracted from the former, leaves 668261; the square root of which is $e c$, $817 \cdot 472$; which, taken from the radius 819 , leaves 1.528 feet, the required middle ordinate, $d e$.

Rule 2.-Subtract the tabular cosine of the tangential angle from 1, and multiply the remainder by the radius.

Example.-Same as foregoing, namely, radius 819 feet, angle of deflection 7°, to chords of 100 feet. What will be the length of the middle ordinate?

Here, tabular cosine of $3 \frac{1}{2}^{\circ}$ (the tangential angle) is 998135; which, subtracted from 1, leaves 001865 ; which, multiplied by 819 , the radius, gives 1.527 , the middle ordinate required.

ARTICLE XX.

Having given the Middle Ordinate de, fig. 18, it is required to find any other one, as in.

Rule 1.-Subtract the middle ordinate $d e$, from the radius $d c$, the remainder will be ec: then from the square of the radius $c i$, subtract the square of the distance $o i$, which the required ordinate $i n$ is from the middle ordinate $d e$, and extract the square root of the remainder. This square root will be oc. From this square root oc, subtract $e c$; the remainder will be $o e$, which is equal to $i n$, the required ordinate.

Example.-The middle ordinate $d e$, of a 100 feet chord $b a$, to a radius of 819 , being 1.528 feet, it is required to find the length of the ordinate $i n, 20$ feet from the middle one.

Here, the middle ordinate $d e, 1 \cdot 528$, subtracted from the radius 819 , leaves $e c, 817 \cdot 472$. The square of the radius is 670761 ; and the square of 20 (the distance of the required ordinate from the middle one) is 400 ; which taken from 670761 , leaves 670361 ; the square root of which is $818 \cdot 756$, or $o c$; from which take $e c$, or $817 \cdot 472$, and the remainder, $1 \cdot 284$, will be $o e$, which is equal to $i n$, the required ordinate.

Rule 2.-Multiply the ordinates of a 1^{6} curve by the deflection angle of the curve whose ordinates are required, (chords being 100 feet.) This is a sufficiently close approximation for curves of not less than 500 feet radius; and for placing ordinates for guiding the excavations and embankments, it is close enough for the smallest curves in our table.

25

table of RadiI, \&e.-Chord 100 Feet.
The Tangential Angle is always one-half of the Angle of Deflection.

Angle of Deflection	Radius in feet.	Deflection distance in feet.	Tangential distance in feet.	Angle of Deflection.	Radius in feet.	Deflection distance in feet.	Tangentia distance in feet.
$\bigcirc 1$	343800	-029	-014	$\bigcirc{ }^{\circ} \mathrm{C}$	7814	$1 \cdot 279$	-639
2	171900	. 058	-029	45	7640	1-308	-654
3	114600	-087	- 043	46	7474	$1 \cdot 337$	-668
4	85950	-116	-058	47	7315	1-366	-683
5	68760	-145	-072	48	7162	$1 \cdot 395$	$\cdot 697$
6	57300	-174	-087	49	7016	$1 \cdot 424$	$\cdot 712$
7	49116	-203	-101	50	6876	$1 \cdot 453$. 726
8	42975	-232	-116	51	6741	$1 \cdot 482$	$\cdot 741$
9	38200	-262	-131	52	6611	$1 \cdot 511$	$\cdot 755$
10	34380	-291	-145	58	6487	$1 \cdot 540$	$\cdot 770$
11	31256	-320	-160	54	6367	$1 \cdot 569$	$\cdot 784$
12	28650	-349	$\cdot 174$	55	6251	$1 \cdot 598$	-799
13	26446	-378	-189	56	6139	$1 \cdot 627$	-813
14	24558	-407	-203	57	6032	$1 \cdot 656$	-828
15	22920	-436	-218	58	5928	$1 \cdot 685$	-842
16	21487	-465	$\cdot 232$	59	5827	1.715	. 857
17	20224	-494	-247	1	5730	1.745	. 872
18	19100	-523	-261	2	5545	1.802	. 901
19	18094	-552	$\cdot 276$	4	5372	1.860	$\cdot 930$
20	17190	-581	$\cdot 290$	6	5209	1.918	-959
21	16372	-610	-305	8	5056	1.976	. 988
22	15628	-639	-319	10	4912	2036	1.018
23	14948	-668	-334	12	4775	$2 \cdot 094$	1.047
24	14325	-697	-348	14	4646	$2 \cdot 152$	1.076
25	13752	$\cdot 727$	-363	16	4524	$2 \cdot 210$	$1 \cdot 105$
26	13223	:756	$\cdot 378$	18	4408	$2 \cdot 268$	$1 \cdot 134$
27	12733	-785	-392	20	4298	$2 \cdot 326$	1-163
28	12279	-814	-407	22	4193	$2 \cdot 384$	1-192
29	11856	-843	-421	24	4093	$2 \cdot 443$	$1 \cdot 221$
30	11460	-872	-436	26	3998	$2 \cdot 501$	$1 \cdot 250$
31	11090	-900	-450	28	3907	$2 \cdot 559$	$1 \cdot 279$
32	10744	. 930	-465	30	3820	$2 \cdot 617$	1.308
33	10419	$\cdot 959$	-479	32	3737	$2 \cdot 676$	1-338
34	10112	. 988	-494	34	3657	2.734	$1 \cdot 367$
35	9823	1.017	-508	36	3581	$2 \cdot 793$	$1 \cdot 396$
36	9550	1.046	-523	38	3508	$2 \cdot 851$	$1 \cdot 425$
37	9292	1.075	$\cdot 537$	40	3438	2.908	$1 \cdot 454$
38	9047	$1 \cdot 104$	-552	42	3370	$2 \cdot 967$	$1 \cdot 483$
39	8815	$1 \cdot 133$	-566	44	3306	$3 \cdot 025$	$1 \cdot 512$
40	8595	$1 \cdot 162$	-581	46	3243	3.083	$1 \cdot 541$
41	8385	$1 \cdot 191$	-595	48	8183	$3 \cdot 141$	$1 \cdot 570$
42	8186	1.221	-610	50	3126	$3 \cdot 199$	$1 \cdot 599$
43	7995	$1 \cdot 250$	-625	52	3069	$3 \cdot 258$	$1 \cdot 629$

TABLE OF RADII, \&c.-Chord 100 Feet.

 Continued.The Tangential Angle is always one-half of the Angle of Deflection.

Angle of Deflection.	Radius in feet.	Deflection distance in feet.	$\begin{gathered} \text { Tangential } \\ \text { distance } \\ \text { in feet. } \end{gathered}$	Angle of Deflection	Radins in feet.	Deflection distance in feet.	$\begin{gathered} \text { Tangential } \\ \text { distancee } \\ \text { in feet. } \end{gathered}$
- ${ }^{\prime}$				-			
154	3016	$3 \cdot 316$	$1 \cdot 658$	320	1719	$5 \cdot 817$	2.908
56	2964	$3 \cdot 374$	$1 \cdot 687$	22	1702	$5 \cdot 875$	2.937
- 58	2914	$3 \cdot 432$	1.716	24	1685	$5 \cdot 933$	2.966
\because	286.5	$3 \cdot 490$	1.745	26	1669	$5 \cdot 992$	$\stackrel{.}{2} .996$
2	2818	3-548	$1 \cdot 774$	28	1653	6-0.50	$3 \cdot 025$
4	2752	$3 \cdot 606$	1.803	30	1637	$6 \cdot 108$	3.0.54
6	2729	$3 \cdot 665$	1.832	32	1621	$6 \cdot 166$	$3 \cdot 083$
8	2686	3.723	1.881	34	1606	$6 \cdot 2 \cdot 4$	$3 \cdot 112$
10	2644	$3 \cdot 781$	1.890	36	1591	6-282	3-141
12	2604	$3 \cdot 839$	1.919	38	1577	6.840	$3 \cdot 170$
14	2566	$3 \cdot 897$	1.948	40	1563	$6 \cdot 398$	$3 \cdot 199$
16	25.28	$3 \cdot 956$	$1 \cdot 978$	42	1549	$6 \cdot 4.56$	$3 \cdot 2 \cdot 8$
18	2491	$4 \cdot 014$	2.007	44	1534	$6 \cdot 515$	3-2.57
20	2456	$4 \cdot 072$	2.036	46	1521	$6 \cdot 574$	$3 \cdot 287$
22	2421	$4 \cdot 130$	2.065	48	1508	6.632	$3 \cdot 316$
24	2387	$4 \cdot 188$	2.094	50	1495	$6 \cdot 690$	$3 \cdot 34.5$
26	2355	$4 \cdot 246$	$2 \cdot 123$	52	1482	$6 \cdot 748$	$3 \cdot 374$
28	2323	$4 \cdot 305$	$2 \cdot 152$	54	1469	$6 \cdot 806$	$3 \cdot 403$
30	2292	$4 \cdot 363$	2-182	56	1457	$6 \cdot 864$	$3 \cdot 432$
32	2262	$4 \cdot 421$	$2 \cdot 210$	58	1445	$6 \cdot 922$	$3 \cdot 461$
34	2232	$4 \cdot 479$	$2 \cdot 239$	4	1433	$6 \cdot 980$	$3 \cdot 490$
36	2204	$4 \cdot 538$	$2 \cdot 269$	5	1403	$7 \cdot 125$	$3 \cdot 562$
38	2176	$4 \cdot 596$	$2 \cdot 298$	10	1375	$7 \cdot 270$	$3 \cdot 635$
40	2149	$4 \cdot 653$	$2 \cdot 326$	15	1348	$7 \cdot 416$	$3 \cdot 708$
42	2122	$4 \cdot 712$	$2 \cdot 356$	20	1322	$7 \cdot 563$	$3 \cdot 781$
44	2096	$4 \cdot 770$	$2 \cdot 385$	25	1298	$7 \cdot 708$	$3 \cdot 8.54$
46	2071	$4 \cdot 828$	$2 \cdot 414$	30	1274	7.853	$3 \cdot 9 \cdot 27$
48	2046	$4 \cdot 886$	$2 \cdot 443$	35	1251	7.998	3.999
50	2023	$4 \cdot 944$	$2 \cdot 472$	40	1228	8-143	$4 \cdot 071$
52	1999	$5 \cdot 002$	$2 \cdot 501$	45	1207	8.289	$4 \cdot 145$
54	1976	$5 \cdot 060$	$2 \cdot 530$	50	1185	$8 \cdot 432$	$4 \cdot 216$
56	1953	$5 \cdot 118$	2.559	- 55	1166	$8 \cdot 577$	$4 \cdot 288$
- 58	1932	$5 \cdot 176$	$2 \cdot 588$	5	1146	$8 \cdot 722$	$4 \cdot 361$
¢	1910	$5 \cdot 235$	$2 \cdot 618$	5	1127	8.869	$4 \cdot 434$
2	1889	$5 \cdot 293$	$2 \cdot 646$	10	1109	$9 \cdot 014$	$4 \cdot 507$
4	1868	$5 \cdot 351$	2.675	15	1092	$9 \cdot 159$	$4 \cdot 579$
6	1848	5.409	$2 \cdot 704$	20	1074	$9 \cdot 304$	$4 \cdot 652$
8	1828	$5 \cdot 468$	$2 \cdot 734$	25	1058	$9 \cdot 449$	$4 \cdot 724$
10	1810	$5 \cdot 526$	$2 \cdot 763$	30	1042	$9 \cdot 595$	$4 \cdot 798$
12	1790	$5 \cdot 584$	2.792	35	1026	$9 \cdot 740$	$4 \cdot 870$
14	1772	$5 \cdot 642$	2.821	40	1011	$9 \cdot 885$	$4 \cdot 942$
16	1754	$5 \cdot 700$	$\stackrel{2}{2} \cdot 85$	45	996.8	10.03	$5 \cdot 015$
18	1736	5•758	2.879	50	$982 \cdot 7$	$10 \cdot 18$	$5 \cdot 090$

27

TABLE OF RADII, \&c.-Chord 100 Feet.

Continued.
The Tangential Angle is always one-half of the Angle of Deflection.

Angle of Detlection.	Radins in feet.	Deflection distance in feet.	Tangential distance in feet.	Angle of Detlection.	Radius in feet.	Deflection distance in feet.	Tangential distance in feet.
$\begin{array}{ll}\circ & \prime \\ 5 & 55\end{array}$	969.0	$10 \cdot 32$	$5 \cdot 160$	$\stackrel{\circ}{12} 80$	$459 \cdot 3$	21.79	$10 \cdot 90$
6	$955 \cdot 4$	$10 \cdot 47$	$5 \cdot 235$	45	$450 \cdot 3$	2.2.21	$11 \cdot 12$
5	$947 \cdot 5$	$10 \cdot 62$	$5 \cdot 310$	13	$441 \cdot 7$	$22 \cdot 64$	$11 \cdot 34$
10	$989 \cdot 7$	$10 \cdot 76$	$5 \cdot 380$	15	$433 \cdot 4$	$23 \cdot 07$	$11 \cdot 56$
15	$917 \cdot 0$	$10 \cdot 90$	$5 \cdot 450$	30	$425 \cdot 5$	$23 \cdot 51$	$11 \cdot 77$
20	$905 \cdot 0$	11.04	$5 \cdot 520$	45	$417 \cdot 7$	$23 \cdot 94$	11.99
25	$893 \cdot 5$	$11 \cdot 20$	$5 \cdot 600$	14	$410 \cdot 3$	$24 \cdot 37$	$12 \cdot 21$
30	882.0	$11 \cdot 34$	$5 \cdot 670$	15	$403 \cdot 1$	$24 \cdot 81$	$12 \cdot 43$
35	$870 \cdot 7$	11.48	$5 \cdot 740$	30	$396 \cdot 2$	$25 \cdot 24$	$12 \cdot 65$
40	859.5	11.63	$5 \cdot 815$	45	$389 \cdot 6$	$25 \cdot 67$	12.86
45	$849 \cdot 3$	11.78	$5 \cdot 890$	15	$383 \cdot 1$	$26 \cdot 11$	$13 \cdot 08$
50	$838 \cdot 9$	11.92	$5 \cdot 960$	15	$376 \cdot 9$	$26 \cdot 52$	$13 \cdot 30$
55	828.9	$12 \cdot 06$	$6 \cdot 030$	30	$370 \cdot 8$	$26 \cdot 94$	$13 \cdot 52$
7	$819 \cdot 0$	$12 \cdot 21$	$6 \cdot 105$	45	$365 \cdot 0$	$27 \cdot 37$	13.73
5	$813 \cdot 3$	$12 \cdot 36$	$6 \cdot 180$	16	$359 \cdot 3$	$27 \cdot 83$	$13 \cdot 95$
10	$807 \cdot 4$	$12 \cdot 50$	$6 \cdot 250$	30	$348 \cdot 4$	$28 \cdot 70$	$14 \cdot 38$
15	$790 \cdot 8$	$12 \cdot 64$	6.320	17	$338 \cdot 3$	$29 \cdot 56$	14.82
20	$781 \cdot 9$	$12 \cdot 79$	$6 \cdot 395$	30	$328 \cdot 7$	$30 \cdot 43$	$15 \cdot 25$
25	$773 \cdot 2$	12.94	$6 \cdot 470$	18	$319 \cdot 6$	$31 \cdot 29$	$15 \cdot 69$
30	$764 \cdot 5$	$13 \cdot 08$	$6 \cdot 540$	30	311.0	$32 \cdot 15$	$16 \cdot 12$
35	$756 \cdot 1$	$13 \cdot 22$	$6 \cdot 610$	19	$302 \cdot 9$	$33 \cdot 01$	$16 \cdot 56$
40	$748 \cdot 0$	$13 \cdot 37$	6.685	30	$295 \cdot 3$	$33 \cdot 87$	16.99
45	$739 \cdot 9$	$13 \cdot 51$	$6 \cdot 755$	20	$287 \cdot 9$	$34 \cdot 73$	$17 \cdot 43$
50	$732 \cdot 0$	$13 \cdot 66$	$6 \cdot 830$	21	$274 \cdot 4$	$36 \cdot 44$	$18 \cdot 30$
55	$724 \cdot 3$	$13 \cdot 80$	$6 \cdot 900$	22	$262 \cdot 0$	$38 \cdot 15$	$19 \cdot 17$
8	$716 \cdot 8$	$13 \cdot 95$	$6 \cdot 975$	23	$250 \cdot 8$	$39 \cdot 87$	20.02
15	$695 \cdot 1$	$14 \cdot 38$	$7 \cdot 190$	24	240.5	$41 \cdot 58$	20.91
30	$674 \cdot 6$	$14 \cdot 81$	$7 \cdot 405$	25	231.0	$43 \cdot 28$	$21 \cdot 77$
- 45	655.5	$15 \cdot 25$	$7 \cdot 6 \cdot 5$	26	$222 \cdot 3$	$44 \cdot 98$	$22 \cdot 64$
9	$637 \cdot 3$	$15 \cdot 68$	$7 \cdot 840$	27	$214 \cdot 2$	$46 \cdot 68$	23.51
15	$620 \cdot 2$	$16 \cdot 12$	$8 \cdot 060$	28	$206 \cdot 7$	$48 \cdot 38$	$24 \cdot 37$
30	$603 \cdot 8$	16.55	$8 \cdot 275$	29	199.7	$50 \cdot 07$	$25 \cdot 24$
- 45	588.4	16.99	$8 \cdot 495$	30	$193 \cdot 2$	51.76	$26 \cdot 11$
10	$573 \cdot 7$	$17 \cdot 43$	$8 \cdot 715$	31	$187 \cdot 1$	53.45	$26 \cdot 97$
15	$559 \cdot 7$	$17 \cdot 87$	8.935	32	$181 \cdot 4$	$55 \cdot 13$	27.83
30	$546 \cdot 4$	$18 \cdot 30$	$9 \cdot 150$	33	176.0	$56 \cdot 80$	$28 \cdot 70$
$\bigcirc 45$	$533 \cdot 8$	18.73	$9 \cdot 365$	34	171.0	$58 \cdot 47$	$29 \cdot 56$
11	$521 \cdot 7$	$19 \cdot 17$	$9 \cdot 585$	35	166.3	$60 \cdot 14$	$30 \cdot 42$
15	$510 \cdot 1$	$19 \cdot 61$	$9 \cdot 805$	36	161.8	$61 \cdot 80$	$31 \cdot 29$
30	$499 \cdot 1$	$20 \cdot 05$	10.03	37	$157 \cdot 6$	$63 \cdot 46$	$32 \cdot 15$
ㅇ. 45	488.5	$20 \cdot 50$	$10 \cdot 25$	38	$153 \cdot 6$	$65 \cdot 11$	33.01
12	$478 \cdot 3$	20.94	$10 \cdot 47$	39	149.8	66.76	$33 \cdot 87$
15	$468 \cdot 7$	$21 \cdot 36$	$10 \cdot 69$	40	$146 \cdot 2$	$68 \cdot 40$	$34 \cdot 73$

TABLE OF ORDINATES.

Ordinates five feet apart.-Chord one hundred feet.

Distances of the Ordinates from the end of the 100 feet Chord.										
$\begin{aligned} & \text { Angle of } \\ & \text { Detl'n. } \end{aligned}$	Middle, 50 feet.	45 feet.	40 feet.	33 feet.	30 feet.	25 feet.	20 feet.	15 feet.	10 feet.	5 fee
2	-007	. 007	-007	-006	-006	. 005	$\cdot 003$	-003	$\cdot 002$. 001
4	-014	-014	-014	$\cdot 013$	-012	- 010	-008	.008	$\cdot 005$. 003
6	-021	-021	-021	-020	-019	-016	-013	-011	-008	. 004
8	-029	-029	-028	-026	-024	-022	. 018	- 015	-010	-005
10	-036	-036	-035	-033	-031	-027	-023	. 019	-013	$\cdot 007$
12	-043	. 043	-041	-038	-037	$\cdot 033$	-028	- 022	-015	-008
14	-050	. 050	-048	-044	-043	-038	-032	. 026	-017	. 010
16	-058	-058	. 056	-052	-049	-044	-037	-030	-020	- 011
18	-065	-065	. 063	-059	-055	-050	-042	-033	. 023	- 013
20	- 073	. 072	- 070	-066	-061	-055	-047	-037	-026	$\cdot 014$
22	-080	. 079	. 076	-071	-067	-060	-051	-041	. 029	. 015
24	-087	-086	-083	-077	$\cdot 074$	-066	-056	. 045	. 031	. 017
26	-094	-093	$\cdot 090$	-084	-080	-071	-060	. 048	. 034	. 018
28	-102	-101	-098	-092	-086	$\cdot 077$	-065	-052	-036	-019
30	-109	-108	- 105	-099	-092	-082	- 070	. 055	-039	-020
32	$\cdot 116$	-115	-112	-106	-098	-088	-075	-058	-042	. 022
34	$\cdot 123$	-122	-118	$\cdot 111$	-104	-094	-079	-062	- 044	$\cdot 023$
36	-131	$\cdot 130$	-126	$\cdot 119$	$\cdot 110$	-099	-084	-066	$\cdot 047$. 024
38	-138	-137	-133	-126	$\cdot 116$	-105	-089	-070	-049	. 025
40	-145	-144	-140	-133	$\cdot 123$	$\cdot 110$	-093	-074	-052	-027
42	-152	-150	-146	-138	-128	$\cdot 115$	-098	-077	-055	. 028
44	-160	-158	-153	-145	-135	-121	-103	-081	-057	$\cdot 030$
46	-167	$\cdot 165$	-160	$\cdot 152$	-141	-126	-107	. 085	-060	-032
48	-174	$\cdot 172$	-167	-158	- 147	-132	-112	-088	. 062	-033
50	-182	-180	$\cdot 175$	- 166	-153	-138	-117	-092	-065	. 034
52	-189	-187	-181	$\cdot 171$	-159	-143	-122	. 095	-068	. 035
54	-196	-194	-188	-178	-165	-148	-126	-099	. 070	-036
56	- 204	- 202	$\cdot 195$	$\cdot 185$	$\cdot 171$	-154	-131	-103	-073	-038
58	-211	-209	- 202	-192	-177	-159	-136	-107	.075	. 039
1	$\cdot 218$	- 216	-209	-198	$\cdot 183$	-164	-140	$\cdot 111$	-078	-041
2	-225	-223	- 215	- 204	-189	-169	-145	-114	. 081	-042
4	$\cdot 233$	- 231	- 223	$\cdot 211$	-196	-175	$\cdot 150$	-118	-083	-043
6	$\cdot 240$	- 238	-230	-217	-202	-180	-155	-121	. 086	- 045
	- 247	- 245	- 237	-224	-208	-186	-159	-125	-088	$\cdot 046$
10	- 254	- 252	- 244	-231	-214	-191	-163	$\cdot 130$	- 091	- 048
12	- 262	$\cdot 260$	- 252	-237	$\cdot 220$	-196	- 168	-133	-094	-049
14	- 269	$\cdot 267$	- 258	$\cdot 244$	- 226	- 202	$\cdot 173$	$\cdot 136$	-096	-050
16	- 276	$\cdot 274$	- 265	$\cdot 251$	$\cdot 232$	-207	-177	$\cdot 140$	-099	-052
18	$\cdot 284$	- 282	- 273	$\cdot 257$	$\cdot 238$. 213	-182	$\cdot 144$	-101	-053
20	$\cdot 291$	-288	-279	$\cdot 264$	$\cdot 244$	$\cdot 218$	$\cdot 187$	$\cdot 148$	$\cdot 104$	-055

TABLE OF ORDINATES-Continued.

Ordinates five feet apart.-Chord one hundred feet.

Distances of the Ordinates from the end of the 100 feet Chord.										
Angle of Defl'n.	Middle, 50 feet.	45 feet.	40 feet.	35 feet.	30 feet.	25 feet.	20 feet.	15 feet.	10 feet.	5 feet.
$\begin{aligned} & \circ \\ & 1 \\ & 22 \end{aligned}$	$\cdot 298$	$\cdot 295$	$\cdot 285$	$\cdot 270$	$\cdot 250$	$\cdot 224$	-192	$\cdot 151$	$\cdot 107$. 056
24	-306	-303	$\cdot 293$	$\cdot 277$	$\cdot 256$	$\cdot 229$	-197	-155	-109	. 057
26	-313	- 310	-300	$\cdot 284$	-263	-235	$\cdot 201$	-159	$\cdot 112$	-059
28	-320	- 317	-307	$\cdot 291$	$\cdot 269$	$\cdot 240$	-206	-163	-114	- 060
30	-327	-324	-314	$\cdot 297$	$\cdot 275$	$\cdot 246$	$\cdot 210$	$\cdot 167$	-117	. 062
32	$\cdot 334$	$\cdot 331$	-321	-304	$\cdot 281$	$\cdot 251$	$\cdot 215$	$\cdot 171$	-120	. 063
34	$\cdot 341$	-338	-328	-310	$\cdot 287$	$\cdot 257$	-219	-174	-122	. 065
36	-349	- 345	- 335	-317	-293	$\cdot 262$	-224	-178	$\cdot 125$	-066
38	$\cdot 356$	-353	-342	-323	$\cdot 299$	$\cdot 268$	$\cdot 228$	-182	-127	- 068
40	-364	-360	-349	$\cdot 330$	-305	$\cdot 273$	$\cdot 233$	-185	-130	-069
42	$\cdot 371$	-367	-356	- 337	$\cdot 312$	$\cdot 278$	$\cdot 238$	-189	-133	-070
44	$\cdot 378$	-374	-363	-343	-318	$\cdot 284$	$\cdot 242$	-192	-135	$\cdot 072$
46	$\cdot 385$	-382	-370	-350	-324	$\cdot 289$	$\cdot 247$	-196	-138	. 073
48	$\cdot 393$	-389	$\cdot 377$	-356	- 330	-295	$\cdot 251$	-200	$\cdot 141$	-075
50	$\cdot 400$	- 396	-384	-364	-336	$\cdot 300$	-256	-204	-144	. 076
52	-407	-403	-391	-370	$\cdot 342$	-305	$\cdot 261$	- 208	$\cdot 147$. 077
54	$\cdot 414$	$\cdot 410$	-398	. 376	$\cdot 348$	$\cdot 311$	-265	- 211	$\cdot 149$.079
56	-422	-418	$\cdot 405$	-383	$\cdot 354$	-316	$\cdot 270$	$\cdot 215$	-152	-080
58	-429	. 425	. 412	-389	-360	-322	$\cdot 275$	- 219	-154	. 082
2	-436	-432	-419	-397	-366	-327	. 280	-222	$\cdot 157$	-083
2	-443	$\cdot 439$	$\cdot 426$	-402	-373	$\cdot 332$	-284	-226	$\cdot 160$	- 084
4	-451	-446	$\cdot 433$	-409	$\cdot 379$	$\cdot 338$	-289	$\cdot 230$	-162	. 086
6	-458	- 454	$\cdot 440$	-416	$\cdot 385$	$\cdot 343$	$\cdot 293$	-234	-165	. 087
8	-465	$\cdot 461$	$\cdot 447$	- 425	-391	-349	- 298	-237	-167	-088
10	. 473	-468	-454	- 430	-397	- 355	-303	-241	-170	. 089
12	-480	$\cdot 475$	-461	-437	-403	- 360	-308	$\cdot 245$	- 173	- 090
14	-487	-482	-468	-443	-409	-366	-312	-248	$\cdot 175$	-092
16	-495	-490	-475	-450	- 415	$\cdot 371$	-317	- 252	- 178	- 093
18	- 502	-497	$\cdot 482$	-456	-421	$\cdot 377$	$\cdot 321$	-256	- 180	. 095
20	-509	. 504	$\cdot 489$	-463	-428	-382	- 326	-260	- 183	-096
22	-516	$\cdot 511$	-496	$\cdot 470$	-434	- 387	-330	-264	-186	- 097
24	$\cdot 523$. 518	. 503	$\cdot 476$	- 440	$\cdot 393$	-334	- 267	-188	- 099
26	-531	-526	- 510	-483	-446	- 398	$\cdot 338$	- 271	-191	$\cdot 100$
28	-538	-533	- 517	-489	-452	-404	-346	$\cdot 275$	-194	-102
30	- 545	-540	-524	$\cdot 496$	-458	-409	$\cdot 350$	$\cdot 278$	-196	-103
32	$\cdot 552$	-547	-531	-503	-465	-415	-355	- 282	-199	-104
34	-560	$\cdot 554$	-538	-509	$\cdot 471$	$\cdot 420$	- 359	- 285	- 201	$\cdot 106$
36	- 567	- 562	. 545	- 516	-477	-425	-364	-289	-204	$\cdot 107$
38	. 574	. 569	- 552	- 522	-483	$\cdot 431$	-368	-293	-206	- 109
40	$\cdot 582$	$\cdot 576$	-559	-529	-489	$\cdot 436$	$\cdot 373$	- 297	-209	$\cdot 110$

TABLE OF ORDINATES-Continued.

Ordinates five feet apart.-Chord one hundred feet.

Distances of the Ordinates from the end of the 100 feet Chord.										
$\left\|\begin{array}{c} \text { Angle of } \\ \text { Defl'n. } \end{array}\right\|$	Middle, 50 feet.	45 feet.	40 feet.	35 feet.	30 feet.	25 feet.	20 feet.	15 feot.	10 feet.	5 feet.
242	-589	-583	-566	-536	-495	$\cdot 441$	$\cdot 378$	-301	$\cdot 212$	$\cdot 111$
44	-596	-590	$\cdot 573$	-542	-501	$\cdot 447$	-382	-304	- 214	$\cdot 113$
46	$\cdot 603$	-598	-580	-549	-507	- 452	-387	-308	. 217	$\cdot 114$
48	$\cdot 611$	-605	-587	. 555	. 513	$\cdot 458$	-391	-312	$\cdot 219$	-116
50	$\cdot 618$	-612	-594	-562	-519	- 464	-396	-315	-222	$\cdot 117$
52	$\cdot 625$	-619	-601	-569	-526	$\cdot 469$	-401	- 319	-225	$\cdot 118$
54	-632	-626	$\cdot 608$	-575	-532	-474	-405	-322	. 227	-119
56	$\cdot 640$	-634	. 615	- 582	- 538	-480	. 410	-326	- 230	-121
- 58	$\cdot 647$	-641	-622	-588	. 544	. 485	. 414	- 330	-232	$\cdot 123$
\bigcirc	$\cdot 654$	-648	-629	-595	-550	. 491	-419	- 334	. 235	-124
2	$\cdot 661$	$\cdot 655$	-636	-602	-556	. 496	-424	-338	-238	$\cdot 125$
4	-669	-662	-643	-608	-562	. 502	-428	-341	-240	$\cdot 127$
6	-676	$\cdot 670$	$\cdot 650$	$\cdot 615$	-568	. 507	-433	-345	$\cdot 243$	-128
8	-683	-677	$\cdot 657$	$\cdot 621$	-574	. 512	-438	-349	-246	-130
10	-691	-684	. 664	-629	. 581	. 518	-443	-353	-249	$\cdot 131$
12	-698	. 691	$\cdot 671$	$\cdot 635$. 587	. 523	-448	- 357	. 251	$\cdot 132$
14	. 706	-698	. 678	-642	. 593	. 529	. 452	-360	$\cdot 254$	-134
16	. 713	.705	$\cdot 685$	$\cdot 649$	-599	. 534	-457	- 364	- 257	$\cdot 135$
18	$\cdot 720$. 713	$\cdot 692$	-655	. 605	. 540	-462	- 368	$\cdot 259$	$\cdot 137$
20	. 727	$\cdot 720$	$\cdot 699$	-662	. 611	-545	-466	- 371	- 262	- 138
22	$\cdot 734$. 727	$\cdot 706$	-668	-617	-550	-471.	- 375	$\cdot 264$	$\cdot 139$
24	. 742	. 734	. 713	$\cdot 675$. 623	-556	-475	- 378	-267	$\cdot 141$
26	. 749	$\cdot 742$	$\cdot 720$	$\cdot 682$. 629	-561	-480	- 382	$\cdot 270$	$\cdot 142$
28	.756	-749	$\cdot 727$	$\cdot 688$. 635	-567	-485	-386	$\cdot 272$	$\cdot 144$
30	. 764	$\cdot 756$	$\cdot 734$	- 695	-642	. 573	-489	-390	$\cdot 275$	-145
32	$\cdot 771$	-763	. 741	. 702	. 648	. 578	-494	-394	$\cdot 278$	$\cdot 146$
34	$\cdot 779$	$\cdot 770$	$\cdot 748$. 708	-654	-584	-498	-397	- 280	$\cdot 148$
36	. 786	$\cdot 777$.755	.715	. 660	. 589	. 503	-401	$\cdot 283$	-149
38	. 793	$\cdot 785$	-762	. 721	-666	. 594	- 508	-405	. 285	$\cdot 151$
40	-800	. 792	$\cdot 769$. 728	. 673	-600	. 512	-408	-288	-152
42	-807	$\cdot 799$. 776	. 734	-679	. 605	- 517	-412	- 291	$\cdot 153$
44	-814	. 806	$\cdot 783$. 741	.685	. 611	- 521	-415	-293	$\cdot 155$
46	-822	-814	$\cdot 790$. 748	-691	-616	- 526	-419	- 296	-156
48	-829	. 821	$\cdot 797$. 754	-697	-621	-531	-423	-298	$\cdot 158$
50	. 836	-828	-804	$\cdot 761$. 703	-627	-536	-427	- 301	$\cdot 159$
52	-843	. 835	- 811	. 768	-709	-632	$\cdot 541$	-431	- 304	$\cdot 160$
54	-850	-842	. 818	. 774	$\cdot 715$. 638	-545	-434	-306	-162
56	. 858	-850	. 825	. 781	. 721	-643	-550	$\cdot 438$	-309	-163
- 58	-865	-857	-832	. 787	.728	-648	-555	$\cdot 442$	- 311	-165
4	-873	-864	-839	$\cdot 794$. 734	-655	-559	$\cdot 445$	-314	$\cdot 166$

31

TABLE OF ORDINATES-Continued.

Ordinates five feet apart.-Chord one hundred feet.

Distances of the Ordinates from the end of the 100 feet Chord.										
Angle of	Middle, 50 feet.'	45 feet.	40 feet.	33 feet.	30 feet.	25 feet.	20 feet.	15 feet.	10 feet.	5 feet.
$4{ }^{\circ} \mathrm{5}$	- 891	-882	- 856	-810	749	-668	-571	-454	. 320	-169
10	-909	. 900	. 874	. 827	$\cdot 764$	-682	-582	-464	-327	-173
15	. 927	. 918	-891	-844	. 780	-695	-594	$\cdot 473$	-334	$\cdot 176$
20	-945	-936	-909	-860	$\cdot 795$	$\cdot 709$	-606	-482	-340	-179
25	-963	-954	-926	-877	. 810	. 723	-617	-491	-347	-183
30	-981	-972	-944	-893	-825	$\cdot 736$	-629	-501	-354	-186
35	-999	-990	-961	-909	-840	$\cdot 750$	$\cdot 640$. 510	-360	-189
40	$1 \cdot 017$	1.008	. 979	-926	-855	-764	-652	-519	-367	-193
45	1.036	1.026	. 996	-943	-871	$\cdot 777$	-664	. 529	-373	-196
50	1.054	1.044	1.014	-959	-886	. 791	-676	.538	-380	-199
55	1.072	1.062	1.031	-976	-901	-804	-687	. 547	-386	-203
5	1.091	1.080	1.048	-993	-917	-818	-699	-557	-393	207
5	1-109	1.098	1.065	1.009	-932	-831	711	-566	-400	210
10	1-127	1-116	1.083	$1 \cdot 026$	-947	. 845	. 722	-576	-406	214
15	$1 \cdot 146$	1-134	$1 \cdot 100$	1.042	-963	-859	. 734	. 585	-413	$\cdot 217$
20	1-164	1-152	$1 \cdot 118$	1.058	-978	-872	$\cdot 746$. 594	-419	$\cdot 220$
25	1-182	1-170	1-135	1.075	-993	-886	$\cdot 757$. 603	-426	$\cdot 224$
30	$1 \cdot 200$	1-188	1-153	1.092	1.009	-900	$\cdot 769$	-613	-432	228
35	$1 \cdot 218$	1.206	1-170	1-108	1.024	-913	$\cdot 781$	-622	-438	. 231
40	1.236	$1 \cdot 224$	1-188	$1 \cdot 124$	1.039	-927	-792	. 631	-445	$\cdot 235$
45	$1 \cdot 255$	$1 \cdot 242$	1.205	$1 \cdot 141$	1.055	. 941	-804	-640	-4:2	-238
50	1.273	1.260	$1 \cdot 223$	$1 \cdot 157$	1.070	-954	-816	. 649	-458	$\cdot 241$
$\bigcirc 55$	1.291	1.278	1.240	$1 \cdot 174$	1.085	-967	-827	-658	-465	$\cdot 245$
${ }_{6}$	$1 \cdot 309$	1.296	$1 \cdot 258$	$1 \cdot 191$	1-100	. 982	-839	$\cdot 668$	- 472	$\cdot 248$
	$1 \cdot 327$	$1 \cdot 314$	1.275	$1 \cdot 207$	1-115	. 995	-851	$\cdot 677$	-478	$\cdot 251$
10	$1 \cdot 345$	$1 \cdot 332$	1-293	$1 \cdot 224$	1-130	1.009	-862	-686	-485	. 255
15	1.364	$1 \cdot 350$	$1 \cdot 310$	$1 \cdot 240$	1-146	1.023	-874	- 696	-492	. 259
20	1.382	$1 \cdot 368$	$1 \cdot 328$	$1 \cdot 256$	$1 \cdot 161$	1.036	-886	. 705	-498	262
25	$1 \cdot 400$	$1 \cdot 386$	$1 \cdot 345$	$1 \cdot 273$	1.176	1.050	-897	- 714	-505	266
30	$1 \cdot 419$	$1 \cdot 404$	$1 \cdot 362$	1.290	1-192	1.064	-909	724	- 511	$\cdot 269$
35	$1 \cdot 437$	$1 \cdot 422$	$1 \cdot 379$	$1 \cdot 306$	$1 \cdot 207$	1.077	- 921	. 733	-517	. 272
40	$1 \cdot 455$	$1 \cdot 440$	1.397	$1 \cdot 323$	1.222	1.091	-932	$\cdot 742$	- 524	$\cdot 276$
451	1.473	$1 \cdot 458$	$1 \cdot 415$	$1 \cdot 339$	$1 \cdot 238$	$1 \cdot 105$. 944	. 752	-531	$\cdot 280$
50	1.491	$1 \cdot 476$	$1 \cdot 432$	1.355	$1 \cdot 253$	$1 \cdot 118$	-956	. 761	-537	283
55	1.509	1.494	$1 \cdot 450$	$1 \cdot 372$	1.268	$1 \cdot 132$	-967	. 770	- 544	-287
7 1	1.528	1.512	$1 \cdot 467$	$1 \cdot 389$	1 -284	$1 \cdot 146$. 979	-779	- 551	-290
10	1.546	1.530	$1 \cdot 484$	$1 \cdot 405$	1-299	$1 \cdot 159$	-991	788	- 557	-293
10	1.564	1.548	1.502	1.422	$1 \cdot 314$	$1 \cdot 173$	1.002	-798	-5t	-297
15 20	1.582	1.566	1.520	1.438	1-330	1-187	1.014	-807	-5i9	$\cdot 301$
20	$1 \cdot 600$	1.584	1.537	$1 \cdot 454$	1-345	1-200	1.026	. 816	-576	$\cdot 304$

32

TABLE OF ORDINATES-Continued.

Ordinates five feet apart.-Chord one hundred feet.

Distances of the Ordinates from the end of the 100 feet Chord.										
Angle of	Midde,	45 feet.	40 feet.	35 feet.	30 feet.	25 feet.	20 feet.	15 feet.	10 feet.	5 feet.
\% 72	$1 \cdot 618$	1.602	$1 \cdot 555$	$1 \cdot 471$	$1 \cdot 360$	1.214	1.037	-825	-583	-308
30	1.637	$1 \cdot 620$	$1 \cdot 572$	$1 \cdot 488$	$1 \cdot 375$	$1 \cdot 228$	1.048	-835	. 590	$\cdot 311$
35	$1 \cdot 655$	$1 \cdot 638$	1.589	1.504	$1 \cdot 390$	$1 \cdot 241$	1.060	-844	. 596	$\cdot 314$
40	1.673	1.656	$1 \cdot 607$	1.521	$1 \cdot 405$	$1 \cdot 255$	1.071	-854	-603	-318
45	$1 \cdot 692$	$1 \cdot 674$	$1 \cdot 624$	$1 \cdot 537$	$1 \cdot 421$	$1 \cdot 269$	1.083	-863	-610	321
50	1.710	1.692	$1 \cdot 641$	1.553	$1 \cdot 436$	1.282	1.095	-872	$\cdot 616$	-324
55	1.728	1.710	$1 \cdot 659$	1.570	$1-451$	1-296	$1 \cdot 106$	-881	-623	-328
8	1.746	1.728	1.677	1.587	$1 \cdot 467$	1-310	$1 \cdot 118$	-891	-629	- 332
15	1.801	1.782	$1 \cdot 729$	1.637	1.513	$1 \cdot 351$	$1 \cdot 153$	-918	$\cdot 649$	$\cdot 342$
30	1.855	$1 \cdot 836$	$1 \cdot 782$	1.687	1.559	1-392	$1 \cdot 188$	-946	-669	- 35.3
45	1.910 1.965	1.890 1.944	1.834	1.787	1.605	1.433	$1 \cdot 223$. 974	-689	- 363
9	1.965	1.944	1.886	1.787	$1 \cdot 651$	$1 \cdot 474$	$1 \cdot 258$	1.002	. 708	- 373
15	2.019	1.998	1.939	1.837	1.696	1.515	1.293	1.030	. 728	- 384
30	$2 \cdot 074$	2.052	1.991	1.887	1.742	1-556	1.328	1.057	. 748	-394
$\bigcirc^{\circ} 45$	$2 \cdot 128$	2.106	$2 \cdot 044$	1.937	1.788	1-597	1.363	1.085	. 767	-405
10	2.183	2-161	2.096	1.987	$1 \cdot 834$	$1 \cdot 637$	$1 \cdot 398$	$1 \cdot 114$. 787	-415
15	$2 \cdot 238$	$2 \cdot 215$	2.148	$2 \cdot 037$	1.880	$1 \cdot 678$	$1 \cdot 433$	1-142	. 807	-425
30	$2 \cdot 292$	$2 \cdot 269$	$2 \cdot 201$	2.087	1.926	1.719	1.468	1-170	-827	-436
45	$2 \cdot 347$	$2 \cdot 323$	$2 \cdot 254$	2-136	1.972	1.761	1.503	1-198	. 846	$\cdot 446$
15	$2 \cdot 401$	$2 \cdot 377$	2.306	2-186	2.018	1.802	1-538	$1 \cdot 226$	-866	$\cdot 457$
15 30	$2 \cdot 456$	$2 \cdot 432$	2-359	$2 \cdot 236$	2.064	1.843	1.574	1-254	. 886	$\cdot 467$
30	2.511	$2 \cdot 486$	$2 \cdot 411$	$2 \cdot 286$	$2 \cdot 110$	1.884	$1 \cdot 609$	1.282	-906	$\cdot 478$
45	$2 \cdot 566$	$2 \cdot 540$	2-464	$2 \cdot 336$	$2 \cdot 156$	1.926	1.644	$1 \cdot 310$	-926	-488
12	$2 \cdot 620$	2.594	2.516	$2 \cdot 386$	$2 \cdot 203$	1.967	1.680	$1 \cdot 339$	-946	$\cdot 499$
	$2 \cdot 675$	$2 \cdot 649$	$2 \cdot 569$	$2 \cdot 436$	$2 \cdot 249$	2.008	1.715	$1 \cdot 367$	-966	-509
30	2.730	$2 \cdot 703$	$2 \cdot 621$	${ }_{2} 2 \cdot 485$	$2 \cdot 295$ 2.341	2.049 2.091	1.750 1.785	1.395 1.423	. 985	-520
${ }_{13}{ }^{45}$	2.785 2.839	$2 \cdot 757$ 2.811	$2 \cdot 674$ 2.726	${ }_{2} 2.585$	$2 \cdot 341$ 2.387	2.091 $2 \cdot 132$	1.785 1.820	1 1-423	. 005	-530
15	2.894	$2 \cdot 865$	$2 \cdot 779$	2. 635	$2 \cdot 433$	2.173	1.855	$1 \cdot 479$	- 045	. 551
30	2.949	$2 \cdot 920$	$2 \cdot 832$	$2 \cdot 685$	$2 \cdot 479$	$2 \cdot 214$	1.891	1.507	1.065	-562
	3.000	$2 \cdot 974$	2.884	2.735	2. 525	2.256	1.926	1.535	1.085	-572
14	$3 \cdot 0.58$	3.028	2.937	2.785	$2 \cdot 571$	2.297	1.961	1.564	$1 \cdot 105$. 583
15	$3 \cdot 113$	3.082	2.989	$2 \cdot 834$	$2 \cdot 618$	$2 \cdot 338$	1.996	1.592	$1 \cdot 124$	-593
30	$3 \cdot 168$	3.136	3.042	$2 \cdot 884$	$2 \cdot 664$	$2 \cdot 379$	2.031	$1 \cdot 620$	$1 \cdot 144$	-604
1545	$3 \cdot 222$	3-191	3.094	$2 \cdot 934$	${ }^{2} \cdot 710$	${ }^{2} \cdot 421$	${ }_{2}^{2 \cdot 067}$	$1 \cdot 648$	1-164	. 614
15	$3 \cdot 277$ 3.332	$3 \cdot 245$ 3.299	$3 \cdot 147$ $3 \cdot 200$	${ }_{3}^{2.034}$	$\stackrel{2}{2 \cdot 802}$	$2 \cdot 503$	$2 \cdot 137$	1.704	$1 \cdot 204$. 635
30	3.387	$3 \cdot 354$	$3 \cdot 252$	3.084	$2 \cdot 848$	$2 \cdot 544$	$2 \cdot 172$	1.732	$1 \cdot 224$	-646
	$3 \cdot 442$	3-408	$3 \cdot 305$	$3 \cdot 134$	$2 \cdot 895$	$2 \cdot 586$	$2 \cdot 208$	1.760	$1 \cdot 244$	$\cdot 656$
16	$3 \cdot 496$	$3 \cdot 462$	3•358	3-184	2.941	$2 \cdot 627$	$2 \cdot 243$	1.789	$1 \cdot 264$	$\cdot 667$

33

TABLE OF ORDLNATES-Continued.

Ordinates five feet apart.-Chord one hundred feet.

Distances of the Ordinates from the end of the 100 feet Chord.										
Angle of Deff'n.	Middle, 50 feet.	45 feet.	40 feet.	35 feet.	30 feet.	25 feet.	20 feet.	15 feet.	10 feet.	5 feet.
1630	$3 \cdot 606$	$3 \cdot 571$	$3 \cdot 463$	3-284	3.033	$2 \cdot 710$	$2 \cdot 314$	$1 \cdot 845$	$1 \cdot 304$	$\cdot 688$
17	$3 \cdot 716$	$3 \cdot 680$	$3 \cdot 569$	3-384	$3 \cdot 125$	$2 \cdot 792$	$2 \cdot 384$	1.902	$1 \cdot 344$	$\cdot 709$
30	$3 \cdot 826$	$3 \cdot 788$	$3 \cdot 674$	$3 \cdot 484$	3-218	$2 \cdot 875$	$2 \cdot 455$	1.958	$1 \cdot 384$	${ }^{7} 730$
18	3.935	$3 \cdot 897$	$3 \cdot 779$	$3 \cdot 584$	$3 \cdot 310$	$2 \cdot 958$	$2 \cdot 525$	$2 \cdot 014$	$1 \cdot 424$	$\cdot 751$
	$4 \cdot 045$	$4 \cdot 006$	$3 \cdot 885$	$3 \cdot 684$	$3 \cdot 403$	$3 \cdot 040$	$2 \cdot 596$	$2 \cdot 071$	$1 \cdot 464$	$\cdot 772$
19	$4 \cdot 155$	$4 \cdot 115$	$3 \cdot 990$	$3 \cdot 784$	$3 \cdot 495$	3-123	$2 \cdot 666$	$2 \cdot 127$	$1 \cdot 504$.793
30	4-265	$4 \cdot 223$	$4 \cdot 096$	$3 \cdot 884$	$3 \cdot 588$	$3 \cdot 205$	$2 \cdot 737$	$2 \cdot 184$	1.544	-814
20	$4 \cdot 375$	$4 \cdot 332$	$4 \cdot 201$	$3 \cdot 984$	$3 \cdot 680$	3-288	$2 \cdot 808$	$2 \cdot 240$	1.583	-836
21	4-595	$4 \cdot 549$	$4 \cdot 412$	$4 \cdot 184$	$3 \cdot 864$	$3 \cdot 454$	$2 \cdot 950$	$2 \cdot 353$	$1 \cdot 663$	-879
22	$4 \cdot 815$	4-768	$4 \cdot 624$	4-386	$4 \cdot 050$	$3 \cdot 620$	$3 \cdot 093$	$2 \cdot 467$	1.744	-922
23	$5 \cdot 035$	$4 \cdot 986$	$4 \cdot 836$	$4 \cdot 587$	$4 \cdot 237$	$3 \cdot 786$	3-236	$2 \cdot 581$	$1 \cdot 824$	-965
24	$5 \cdot 255$	5-204	$5 \cdot 048$	$4 \cdot 789$	$4 \cdot 423$	$3 \cdot 952$	$3 \cdot 379$	$2 \cdot 695$	$1 \cdot 905$	1.008
25	$5 \cdot 476$	5-422	$5 \cdot 260$	$4 \cdot 989$	$4 \cdot 609$	$4 \cdot 119$	$3 \cdot 522$	$2 \cdot 809$	$1 \cdot 986$	1.051
26	$5 \cdot 697$	5•642	5.473	$5 \cdot 192$	$4 \cdot 798$	$4 \cdot 286$	$3 \cdot 665$	$2 \cdot 924$	$2 \cdot 068$	1.094
27	$5 \cdot 918$	$5 \cdot 860$	$5 \cdot 685$	$5 \cdot 393$	$4 \cdot 984$	$4 \cdot 454$	$3 \cdot 808$	$3 \cdot 039$	$2 \cdot 150$	$1 \cdot 137$
28	6•139	$6 \cdot 079$	5.898	$5 \cdot 595$	$5 \cdot 171$	$4 \cdot 622$	$3 \cdot 952$	3-154	$2 \cdot 232$	$1 \cdot 181$
29	$6 \cdot 361$	6.298	$6 \cdot 110$	5•796	5•357	$4 \cdot 790$	$4 \cdot 095$	$3 \cdot 269$	$2 \cdot 314$	1-224
30	$6 \cdot 582$	$6 \cdot 517$	6.323	$5 \cdot 999$	5-544	$4 \cdot 958$	$4 \cdot 239$	$3 \cdot 385$	$2 \cdot 396$	$1 \cdot 268$
31	$6 \cdot 804$	$6 \cdot 737$	$6 \cdot 537$	$6 \cdot 202$	$5 \cdot 733$	$5 \cdot 127$	4-384	3-502	$2 \cdot 481$	$1 \cdot 312$
32	$7 \cdot 027$	$6 \cdot 957$	$6 \cdot 751$	$6 \cdot 406$	$5 \cdot 922$	$5 \cdot 297$	$4 \cdot 530$	$3 \cdot 619$	$2 \cdot 565$	$1 \cdot 356$
33	$7 \cdot 249$	7-178	$6 \cdot 965$	$6 \cdot 609$	$6 \cdot 111$	$5 \cdot 467$	$4 \cdot 676$	$3 \cdot 737$	$2 \cdot 649$	$1 \cdot 401$
34	$7 \cdot 472$	$7 \cdot 398$	7-179	$6 \cdot 813$	$6 \cdot 300$	$5 \cdot 637$	$4 \cdot 822$	$3 \cdot 854$	2.733	$1 \cdot 445$
35	$7 \cdot 694$	$7 \cdot 619$	$7 \cdot 393$	$7 \cdot 017$	$6 \cdot 489$	$5 \cdot 807$	$4 \cdot 968$	$3 \cdot 972$	$2 \cdot 817$	$1 \cdot 490$
36	$7 \cdot 918$	$7 \cdot 841$	$7 \cdot 609$	$7 \cdot 222$	6.679	$5 \cdot 978$	$5 \cdot 115$	$4 \cdot 090$	$2 \cdot 901$	1.535
37	$8 \cdot 143$	$8 \cdot 063$	$7 \cdot 825$	$7 \cdot 427$	6.870	$6 \cdot 149$	$5 \cdot 262$	$4 \cdot 209$	$2 \cdot 985$	$1 \cdot 581$
38	$8 \cdot 367$	$8 \cdot 286$	$8 \cdot 041$	$7 \cdot 633$	$7 \cdot 060$	$6 \cdot 320$	$5 \cdot 410$	$4 \cdot 327$	$3 \cdot 069$	$1 \cdot 626$
39	$8 \cdot 592$	8-508	$8 \cdot 257$	$7 \cdot 838$	7-251	$6 \cdot 491$	$5 \cdot 557$	$4 \cdot 446$	$3 \cdot 153$	$1 \cdot 672$
40	$8 \cdot 816$	$8 \cdot 731$	$8 \cdot 474$	$8 \cdot 044$	$7 \cdot 442$	$6 \cdot 663$	$5 \cdot 705$	$4 \cdot 565$	$3 \cdot 238$	1.718

34

ARTICLE XXI.

ON LONG CHORDS.

It is sometimes convenient, in preliminary locations, to lay off curves by chords longer than 100 feet. For instance, in fig. 19, instead of running from a by chords $a b$, $b c, c d, \& c$. of but 100 feet, points $d, f, g, \& c$. may be obtained with less trouble by using three times the tangential or deflection angles of the table, (as the case may be,) and employing chords ad, $d f, f g$, \&c. nearly three times as

long as the chords $a b, b c, \& c$. ; or if $a d, d f, f g$ be either 2 or 4 stations apart, then 2 or 4 times the tangential and deflection angles would be used ; and chords nearly 2 or 4 times 100 feet in length.

The following table contains the precise length of chord required to subtend respectively $1,2,3$, or 4 stations. It is seldom desirable to exceed the latter limit.

TABLE OF LONG CHORDS.

Radius in feet.	Angle of Deflection.	Length of Chord in feet required to subtend			
		1 Station.	2 Stations.	3 Stations.	4 Stations.
$5730 \cdot 0$	1°	100	$200 \cdot 0$	$300 \cdot 0$	4000
$4584 \cdot 0$	$\frac{1}{4}$	100	$200 \cdot 0$	$300 \cdot 0$	$399 \cdot 9$
$3820 \cdot 0$	$\frac{1}{2}$	100	$200 \cdot 0$	$300 \cdot 0$	399.9
$3274 \cdot 0$	$\frac{3}{4}$	100	$200 \cdot 0$	$300 \cdot 0$	$399 \cdot 8$
$2865 \cdot 0$	2°	100	$200 \cdot 0$	$299 \cdot 9$	$399 \cdot 7$
$2547 \cdot 0$	$\frac{1}{4}$	100	$200 \cdot 0$	$299 \cdot 9$	$399 \cdot 6$
$2292 \cdot 0$	$\frac{1}{2}$	100	$200 \cdot 0$	$299 \cdot 8$	$399 \cdot 5$
$2084 \cdot 0$	$\frac{3}{4}$	100	$200 \cdot 0$	$299 \cdot 8$	$399 \cdot 4$
$1910 \cdot 0$	3°	100	$200 \cdot 0$	$299 \cdot 7$	$399 \cdot 3$
$1763 \cdot 0$	$\frac{1}{4}$	100	$200 \cdot 0$	$299 \cdot 7$	$399 \cdot 2$
$1637 \cdot 0$	$\frac{1}{2}$	100	$200 \cdot 0$	$299 \cdot 6$	$399 \cdot 1$
$1528 \cdot 0$	$\frac{3}{4}$	100	$200 \cdot 0$	$299 \cdot 6$	$399 \cdot 0$
$1433 \cdot 0$	4°	100	$199 \cdot 9$	$299 \cdot 6$	398.9
$1348 \cdot 0$	$\frac{1}{4}$	100	$199 \cdot 9$	$299 \cdot 5$	$398 \cdot 7$
$1274 \cdot 0$		100	$199 \cdot 9$	$299 \cdot 4$	$398 \cdot 5$
$1207 \cdot 0$	$\frac{3}{4}$	100	$199 \cdot 9$	$299 \cdot 3$	$398 \cdot 3$
$1146 \cdot 0$	5°	100	$199 \cdot 9$	$299 \cdot 2$	398.0
$1092 \cdot 0$	$\frac{1}{4}$	100	$199 \cdot 8$	$299 \cdot 1$	$397 \cdot 8$
$1042 \cdot 0$	$\frac{1}{2}$	100	$199 \cdot 8$	$299 \cdot 0$	$397 \cdot 6$
$996 \cdot 8$	$\frac{3}{4}$	100	$199 \cdot 7$	298.9	$397 \cdot 5$
$955 \cdot 4$	6°	100	$199 \cdot 7$	$298 \cdot 8$	$397 \cdot 3$
$917 \cdot 0$	$\frac{1}{4}$	100	$199 \cdot 7$	298.7	$397 \cdot 0$
$882 \cdot 0$	$\frac{1}{2}$	100	$199 \cdot 7$	$298 \cdot 6$	$396 \cdot 7$
$849 \cdot 3$	$\frac{3}{4}$	100	$199 \cdot 6$	298.5	$396 \cdot 5$
$819 \cdot 0$	$7{ }^{\circ}$	100	$199 \cdot 6$	$298 \cdot 4$	$396 \cdot 2$
$790 \cdot 8$	$\frac{1}{4}$	100	$199 \cdot 6$	$298 \cdot 3$	$396 \cdot 0$
$764 \cdot 5$	$\frac{1}{2}$	100	$199 \cdot 6$	$298 \cdot 2$	$395 \cdot 7$
$739 \cdot 9$	$\frac{3}{4}$	100	$199 \cdot 6$	$298 \cdot 1$	$395 \cdot 4$
$716 \cdot 8$	8°	100	$199 \cdot 6$	298.0	$395 \cdot 1$
$695 \cdot 1$		100	$199 \cdot 5$	$297 \cdot 9$	$394 \cdot 8$
$674 \cdot 6$	$\frac{1}{2}$	100	$199 \cdot 5$	297.8	$394 \cdot 5$
$655 \cdot 5$	$\frac{3}{4}$	100	$199 \cdot 4$	$297 \cdot 7$	$394 \cdot 3$
$637 \cdot 3$	9°	100	$199 \cdot 4$	$297 \cdot 5$	$394 \cdot 1$
$620 \cdot 2$		100	$199 \cdot 4$	$297 \cdot 4$	$393 \cdot 7$
$603 \cdot 8$	1	100	$199 \cdot 3$	297.3	$393 \cdot 2$
$588 \cdot 4$	$\frac{3}{4}$	100	$199 \cdot 2$	297.2	$392 \cdot 8$
$573 \cdot 7$	10°	100	$199 \cdot 2$	$297 \cdot 0$	$392 \cdot 4$

For radii less than 573.7 feet, it is never required to use longer chords than 100 feet.

When this method of laying out curves by long chords is used, the instrument should be moved to each successive point after it is determined, in order to fix the next one, instead of attempting to obtain more than one point from one position of the instrument; because when the chords are longer than one chain, they cannot be measured in the right direction by eye, but must be guided by the instrument.

It must be especially borne in mind that, in any given curve, only the tangential and deflection angles increase in the same proportion as the number of 100 feet stations subtended by the long chord. Therefore, these long chords cannot be used for laying out curves by eye, as their tangential and deflection distances are not known.

When it is required to use long chords for turning a curve by eye, they must be composed of a number of whole chains, being made say 200,300 , or $400, \& c$. feet in length. The tangential and deflection distances of curves of more than 500 feet radius may then be assumed, in practice, to increase as the squares of the number of chains in the length of the long chord. For instance, to lay off a 5° curve by chords of 200,300 , or 400 feet in length, the tangential and deflection distances of the table must be multiplied by 4,9 , or 16 , as the case may be. In this case the tangential and deflection angles are unknown.

This is not mathematically correct, bat will answer in practice for the curves on a canal or common road, where great nicety is not needed.

The only proper instrument for running lines of survey is the transit, furnished with a compass and with a revolving telescope. The deflections being measured in angles, serve as a check to the numerous sources of error to which the compass is liable, arising from local attraction, electrical action in the glass cover, diurnal variation, \&c. \&c. Besides, when the compass alone is used, it is necessary to test every course or bearing from each end of each station; and this involves loss of time.

The following is a good form of field-book for the transit and compass combined.

$$
\text { Station. } \mid \text { Distance. }\left|\begin{array}{c}
\text { Total } \\
\text { Distance. }
\end{array}\right| \text { Course. } \left\lvert\, \begin{gathered}
\text { Deflection } \\
\text { in Degrees. } \\
\text { Left.| Right. }
\end{gathered} \begin{gathered}
\text { The right hand page is } \\
\text { left Mlank for Remarks, } \\
\text { and Sketches of Topogra- } \\
\text { phy. }
\end{gathered}\right.
$$

In every locating party there should be one person whose duty is to obtain, and record the transverse slopes of the ground at each station. His observations will usually extend to from fifty feet, to one hundred yards on each side of the centre stakes, depending on a variety of circumstances of locality which cannot be alluded to here. In preliminary locations these slopes need not be taken with very great nicety, as they will be used chiefly for ascertaining, approximately, the amount of excavation and embankment, by the rapid process described in my little volume on that subject, and which dispenses with nearly all the labor of the usual calculations.

After the final location is made, the slopes should be taken again, with great care, to the nearest quarter of a degree; but need not extend beyond the width actually occupied by the road. Their use in this second operation will be for determining the cubic contents with more precision than before, for final estimates; and also for obtaining the positions of the side-stakes.

Should the duty of recording these slopes devolve upon the compassman, (which it should not,) it will be necessary to add another column to his field-book, after that con= taining the deflections. In this column he will insert the slopes, thus, (Fig. 20.) the dot representing the center stake. The degrees of slope are written above the lines, and the distance in feet to which they extend, belotw.

The slopes are taken by laying a long rod on the ground, at right angles to the line of survey, as nearly as may be judged by eye, and measuring the angles by means of a small slope instrument placed upon the rod. These are made by most of our instrument-makers.

ARTICLE XXII.

TO ADJUST A TRANSIT INSTRUMENT.

Having placed the transit firmly at a, fig. 21, and levelled it, clamp all fast, and direct the cross-hairs, by means of the tangent screw, to some convenient object, b. Then, revolving the telescope vertically, but without moving it in the least horizontally, let the cross-hairs fix upon a second

38

object in the opposite direction, as c; or, if there be no such object, place one, as for instance a chain-pin, at any convenient distance.

Fig. 21

Then unclamp the lower clamp, and revolve horizontally the entire upper part of the instrument above the parallel plates. Clamp it again, and fix the cross-hairs upon b; then again revolve the telescope vertically. If the sight now strikes c, as before, it is in adjustment; but if not, place another object, d, where it does strike; and with the adjusting pin alter the vertical cross-hair so as to strike halfway between d and c. The instrument will then be in adjustment.

Two or more trials will generally be needed before the adjustment is perfect.

With care, and on a firm floor, the operation may be performed in a long room, or by placing the instrument in a doorway communicating with two rooms of moderate size. Fine pins, or needles should then be used as the objects to be sighted at. It is better, however, to adjust out of doors, with more distant objects. It is also a good precaution to hang up a long plumb-line, or select some vertical object, and see whether the vertical hair coincides with it, as the telescope is raised or lowered. If from any accident, or carelessness in its construction, it does not, the defect must be remedied by an instrument-maker.

Cosine.	7
-9999289	19
- 9999254	18
$\cdot 9999218$	17
-9999181	16
- 9999143	15
- 9999105	14
- 9999065	12
- 9999025	12
- 9998984	11
-9998942	1 C
- 9998900	9
- 9998856	8
-9798812	7
-9998766	f,
- 9998720	5
-999867E	4
- 9998625	3
-9998577	2
-9998527	1
. 9998477	0
Sine.	1

	Deg.					Deg.										
	Sine.	'Tang.	Cotang.	Cosine.		Sine.	'Tang.	Cotang.				Sine.	'Tang.	Cotang.	ne.	
0	-0174524	-017455	$57 \cdot 28996$	- 9998477	60,21	-0235598	-023566	42.43346	-9997224	39	41	. 0293755	- 029388	$34 \cdot 02730$	- 9995684	
1	-0177432	-017746	$56 \cdot 35059$	- 9998426	59,22	-0238506	-023857	41.91579	-9997156		42	-0296662	-029679	$33 \cdot 69350$	-9995599	8
2	-0180341	-018037	$55 \cdot 44151$	-9998374	58,23	-0241414	-024148	4I-41058	$\cdot 9997086$	37	43	-0299570	-029970	$33 \cdot 36619$	- 9995512	17
	-0183249	$\cdot 018328$	54.56130\|	-9998321	5724	-0244322	-024439	40.91741	- 9997015	36	44	-0302478	-030261	$33 \cdot 04517$	- 9995424	1.6
4	-0186158	-018619	53-70858	-9998267	5625	-0247230	-024730	$40 \cdot 43583$	- 9996943	35	45	-0305385	- 030552	$32 \cdot 73026$	- 9995336	5
5	-0189066	-018910	$52 \cdot 88211$	- 9998213	5526	-0250138	-025021	$39 \cdot 96546$	-9996871	34	46	-0308293	$\cdot 030843$	$32 \cdot 42129$	-9995247	14
6	-0191974	$\cdot 019201$	$52 \cdot 08067$	$\cdot 9998157$	5427	-0253046	-025312	$39 \cdot 50589$	-9996798	33	47	-0311200	-031135	$32 \cdot 11809$	-9995157	13
7	-0194883	$\cdot 019492$	$51 \cdot 30315$	$\cdot 9998101$	5328	-0255954	.025603	3905677	- 9996724	32	18	-0314108	-031426	$31 \cdot 82051$	- 9995066	2
8	-0197791	. 019783	$50 \cdot 54850$	- 9998044	52.29	-0258862	-025894	$38 \cdot 61773$	- 9996649	31	49	-0317015	-031717	$31 \cdot 52839$	-9994974	1
9	. 0200699	-020074	$49 \cdot 81572$	$\cdot 9997986$	5130	-0261769	-026185	$38 \cdot 18845$	- 9996573	30	50	-0319922	-032008	$31 \cdot 24157$	- 9994881	10
10	-0203608	-020365	49-10388	-9997927	5031	-0264677	-026477	37-76861	-9996497	29	51	-0322830	. 082299	$30 \cdot 95992$	- 9994788	9
11	-0206516	$\cdot 020656$	48.41208	-9997867	4932	-0267585	-026768	$37 \cdot 35789$	- 9996419	28	52	-0325737	-032591	$30 \cdot 68330$	- 9994693	8
12	-0209424	-020947	47-73950	-9997807	4833	-0270493	-027059	36.95600	- 9996341	27	53	-0328644	-032882	$30 \cdot 41158$	-9994598	7
13	-0212332	-021238	47-08534	-9997745	4734	-0273401	-027350	$36 \cdot 56265$	-9996262	26	54	-0331552	-033173	$30 \cdot 14461$	-9994502	6
14	-0215241	-021529	46.44886	- 9997683	4635	-0276309	$\cdot 027641$	$36 \cdot 17759$	- 9996182	25	55	-0334459	-033464	29-88229	- 9994405	5
15	-0218149	-021820	45-82935	-9997620	4536	-0279216	-027932	$35 \cdot 80055$	-9996101	24	56	-0337366	-033755	$29 \cdot 62449$	- 9994308	4
16	-0221057	-022111	45-22614	-9997556	4437	-0282124	-028223	35-43128	- 9996020	23	57	-0340274	-034047	$29 \cdot 37110$	-9994209	3
17	$\cdot 0223965$	-022402	$44 \cdot 63859$	-9997492	4338	-0285032	$\cdot 028514$	35-06954\|	-9995937\|	22	58	-0343181	-034338	$29 \cdot 12200$	-9994110	2
18	-0226873	$\cdot 022693$	44.06611	-9997426	4239	-0287940	-028805	$34 \cdot 71511$	- 9995854	21	59	-0346088	-034629\|	28.87708	-9994009	-
19	-0229781	$\cdot 022984$	$43 \cdot 50812$	- 9997360	4140	.0290847	.029097	$34 \cdot 36777$.9995770	20	60	- 0348995	.034920	$28 \cdot 63625$. 9993908	0
20	-0232690	-023275	$42 \cdot 96407$	-9997292	40											
,	Cusine.	Cotan.	Tang.	Sine.	11	Cosine.	Cotan.	'Tang.	Sinc.	'	\prime	Cosine.	Cotan.	'Tang.	Sine.	$1 \prime$

						'											
0	-0348995	-03	28	-9993908	60		-410037	-041038			39			$\cdot 046867$	21.33685	. 9989035	
	.0351902	-035212	$28 \cdot 39939$	- 9993806		22	. 0412944	.041329	$24 \cdot 19571$	- 9991470	38	42	-0471065	-047158	$21 \cdot 20494$	$\cdot 9988899$	
2	- 0	-035503	28-16642	-9993704	58	23	.0415850	.041621	$24 \cdot 02632$	- 9991350		43	. 0473970	-047450		-9988761	
3	-0357716	.035794		-9993600		24	.0418757	.041912	$23 \cdot 85927$	- 9991228	36	44	-0476876	-047741	20.94596	-9988623	
4	- 0360623	- 03	27-71174	-9993495	56	25	-0421663	-042203	$23 \cdot 69453$	-9991106	35	45	-0479781	-048033	$20 \cdot 81882$	- 9988484	
5	-0363530	-0363	27-48985	-9993390	5	-	-0424569	$\cdot 042495$	$23 \cdot 53205$	-9990983	34	46	-0482687	-048325	222	4	
6	-0366437	-036668	27-27148	- 9993284	5	7	-0427475	-042786	$23 \cdot 37177$	- 9990859	33	47	-0485592	-048616	1	3	
7	-0369344	-03695	27-05655	-9993177	5	8	-0430382	-043078	23-21366	. 9990734	32	48	-048849S	$\cdot 048908$		$\cdot 9988061$	
8	-0372251	$\cdot 037250$	26.84498	- 9993069	52		-0433288	. 043369			31	49	-0491403	$\cdot 049199$	0	9	
9	-0375158	-037542	$26 \cdot 63669$	-9992960		30	.0436194	-043660	22.90376	-9990482	0	50	- 0494308	-049491	0555	5	
10	-0378065	-037833	26.43160	-9992851	50	1.	.0439100	-043952	$22 \cdot 75189$	-9990355	29	1	-0497214	2	9	$\cdot 9987631$	
	$\cdot \cdot 038097$	-038124	26.22963	-9992740	49	32	-0442006	-044243	$22 \cdot 60201$. 9990227	8	52	-0500119			6	
12	. 0383878	-038416	2	-999262	48	-	.0444912	-044535	22.45409	-999009	27	53	-0503024	66	9	-9987340	
	-0386785	-038707	25-83482	-9992517	47	34	.0447818	-044826	$22 \cdot 30809$	-9989968		54	-0505929			-9987194	
	.0389692	-038998	$25 \cdot 64183$	-9992404	4	-	-0450724	-045118	$22 \cdot 16398$	-9989837	25	55	- 0508835	$\cdot 050949$	9	$\cdot 9987046$	
	-0392598	-039290	$25 \cdot 45170$	-9992290	45	36	-0453630	-045409	$22 \cdot 02171$	- 9989706	4	56	-0511740	41		-9986898	
16	-0395505	-039581	$25 \cdot 26436$	-9992176	4	-	-0456536	-045701	$21 \cdot 88125$	- 9989573	23	57	$\cdot 0514645$	-051532	3	8	
1	-0398411	-039872	$25 \cdot 0797$	-9992060	43	38	-0459442	-045992	256	-998944			-0517550	,			
	-0401318	$\cdot 040164$	$24 \cdot 39782$	-99919		-	-0462347	$\cdot 046284$	53	-9989306	21	59	$\cdot 0520455$	$\cdot 052116$	$19 \cdot 18793$	$\cdot 9986447$	
19	-0404224	$\cdot 040455$	$24 \cdot 71851$	-9991827		40	-0465253	$\cdot 046575$	$21 \cdot 47040$	-9989171	20	60	$\cdot 0523360$	$\cdot 052407$	$19 \cdot 08113$	$\cdot 9986295$	
0	$\cdot 0407131$	$\cdot 040746$	$24 \cdot 54175$	-9991709	40												
,	Cosine	Cotan	Tang.	Sine.	'	,	osine	Cota	Tang.	Sine.			osin	Cotan	Tang.	Sine.	

	．3u！S																
												07	\％8				
0		99			30	0%					07	It	）9\％8866．	08996．LI	96290．	ठも 8 ¢ 0	6 I
I	Ef8	6909	モ®		6 c	Iz	．	8z9L9．GI	06		8	z					
\％	9709 6	\＆\％I\％	Zも8690	I690．	8 C	zz	0066L66．	888才L．GI	86も890．	1 12889	88	\＆	c898866．	I	L98		I
ε	¢も\％9ん6	Lส\％8	$6 \ddagger 069$	$6988890 \cdot$	2 S	¢z	†8008		907	，	8	万t	L9LE866．	－ 1	clo		
T	9も79 6	\＆8¢ち¢	L¢ 489	L969890．	9c	tz	L9708	$68 \cdot \mathrm{GI}$	D6z90	6Lz9	8	cit	2	I	78ム990．	69990	
	9799 6	L6909．	9978	夈	9	6	0	1	6\％9\％90．	9\％9		97	I80†866．	\％cI0ん．ムI	\％6も	67990．	
9	Ė	z9899	\＆LI 8	10890.	ES	97	IE908	0.91	08Ez90．	660\％z90．		LT	¢もても866．	もちE6L．LI	008		
4	$0 \pm$				C	2%	I 18		$880 \% 90$	I6I90．	88	87	80も7866．	$988^{\circ} \mathrm{LI}$	806	GI\％8990．	
8	L\＆\％	L896	889 L90．	6もをカく9	\％c	8%	I6608	\％ 961 －9I	9もんL9	\％6\％9190．	z8	67	0LGt	086． L	919	LIEgGgo	
6	88もんL6	L9698	96\％L90．	9もすIL9	IC	67	0んII866．	LI\％L．91	も¢もI9	6888190	I8	0 c	I		cz8cco	90才をç0	OI
0 I	L 79 LLL66．	Iもも 6 －	ォ00L90．	■も¢899	0c	08	8も8186	98678．9I	\％9119	I9	08	IS	I68t8	1	E\＆0gs0．	S	6
II	Iz8	84686．	6TL9990	L7999	67	İ			0ム809	\％8¢ 2090	$6 z$	z9	090				－
71	c108L6	\％ 490	6I7990．	68L69	87	78	L0LI8		84909	8L9も090．							
81	2078L66．	もสz\％I－	LZ1990．	98	2 t	E8	LL8I86	68	$98 \% 090$	L1090．	LZ	，	L98986		89179	8L0才C0．	9
I	6688L	も¢681．g	988990．	－869990．	97	İ	¢90786	LI899．9	669	－	98	9	も¢¢9866	－	兂		G
9 I	689	90L9\％．9	\＆も 990	180も990．	cid	98	9z\％ 86		\％02690．	6969	cz	9	0899866．	c99．8I	tL989	67890	
I	6んL8L66	c\＆cze．	IG\％990． 6	6zIIC90．	－${ }^{\text {d }}$	98	$868 \% 86$	L6IE8．9	017690．	ъ90869	tz	4	¢889866	294．81	z8\％89	068，	\＆
21	8968L6	LZ768． GI	696790 ${ }^{\text {9 }}$	9\％z8790．	8䅅	28	0ん9\％866．	\％0916．91	6It690．	091069	εz	8	68866	L 28.81	16639		\％
8	9916L66．	1889才．cI	299790．	\＆G8¢ち90	228	88	でんZ866．	96866．91	LZ8890．	99\％L890	zz	6 C	8̇I9866	z¢9L6．8I	6697	－9\％9zs0．	I
6 I	ETE6L66	86889．9	GLEも90．	0\％も\％も90．	It	68	\％ $16 \% 866$.	7L880－LI	989890．	E987890．		09	¢6\％9866	EII80．6	L07\％c0	98	0
	－2u！so	－ Subion	－8ue	－วu！s		1	－autson	－8ue7on	－Sur．	＇วu！s			－әu！son	：84elo	$.808^{\text {¢ }}$	－${ }^{\text {utis }}$	

	Sin	.											g.	g.		
0	-0697565	-069926			6021			13.14612		39	41					9
1	-0700467	-070219	$14 \cdot 24113$	$\cdot 9975437$	5922	$\cdot 0761390$	- 076360	$13 \cdot 09575$	-9970972	38	42	-0819385	-082215	12-16323	-9966374	18
2	0703368	-070511	$14 \cdot 18209$	-9975233	5823	-0764290	- 076653	13.04576	$\cdot 9970750$	37	43 .	- 0822284	-082507	12	9966135	7
3	-0706270	-070803	$14 \cdot 12353$	-9975028	57\|24	$\cdot 0767190$	-076945	12.99616	-9970528	36	44	-0825183	-082800	12	965895	16
4	. 0709171	-071096	$14 \cdot 06545$	-9974822	5625	$\cdot 0770091$	-077238	$12 \cdot 94692$	-9970304	35	45	-0828082	-083093	12.03462	$\cdot 9965655$	15
5	. 0712073	-071388	$14 \cdot 00785$	-9974615	5526	$\cdot 0772991$	-077531	$12 \cdot 89805$	-997008	34	46	0830981	- 083386	11.99234	- 9965414	14
6	- 0714974	-071680	$13 \cdot 95071$	- 9974408	54.27	$\cdot 0775891$	- 077823	12-84955	-9969854	33	47.	-0833880	-083679	037	-9965172	12
	0717876	. 071973	$13 \cdot 89404$	-9974199	5328	.0778791	. 078116	$12 \cdot 80141$	- 9969628		48	-0836778	. 083972	11	$\cdot 9964929$	12
	$\cdot 0720777$	- 072265	$13 \cdot 83782$	-9973990	5229	. 0781691	-078409	$12 \cdot 75363$	-9969401	31	49	-0839677	-084265	672	$\cdot 9964685$	1
9	- 0723678	-072558	$13 \cdot 782$	9973780	5130	-0784591	- 078701	$12 \cdot 70626$	-9969173	30	50	-0842576	-084558	11.82616	-9964440	0
10	-0726580	-072850	$13 \cdot 72673$	$\cdot 9973569$	5031	$\cdot 0787491$	-078994	12-65912	-9968945	2	51	-0845474	- 084851	3	-9964195	9
	- 0729481	- 073143	$13 \cdot 671$	9973357	4932	-0790391	-079287	12.61239	-9968715	2	52	-0848373	-085144		-9963948	8
	-0732382	-073435	$13 \cdot 617$	9973145		-0793290	1.079579	12.56599	- 9968485	27	53	-0851271	-085437	$11 \cdot 70450$	- 9963701	7
	-0735283	-073727	$13 \cdot 56339$. 9972931		-0796190	-079872	12-う1994	9968254	2	54	. 0854169	-085730	449	-9963453	6
14	. 073818	-074020	$13 \cdot 50979$	$\cdot 9972717$		-0799090	. 080165	$12 \cdot 47422$	-9968022	2	55	-0857067	-086023	11.62176	-99632	5
	- 0741085	-074312	13-45662	$\cdot 9972502$		-0801989	- 080458	$12 \cdot 42883$	-9967789		56	-0859966	-086316	11-58529	-996295	4
16	- 0743986	- 074605	$13 \cdot 4038$	9972286	4437	-0804889	- 080750	$12 \cdot 38376$	- 9967555	2	57	-0862864	-086609	-	-996270	3
17	-074688	-074897	$13 \cdot 3515$	-9972069		-0807788	-081043	12-33902	- 9967321	2	58	-0865762	-086902		- 9962452	2
1	- 0749787	-075190	$13 \cdot 2995$	9971851	4239	-0810687	-081336	12×9460	- 9967085	2	59	-0868660	-087195		-9962200	1
19	-0752688	-075482	$13 \cdot 24803$	$\cdot 9971633$	4140	.0813587	-081629	$12 \cdot 25050$	$\cdot 9966849$	20	60.	-0871557	-087488	11:43005	$\cdot 9961947$	0
20	$\cdot 0755589$. 075775	$13 \cdot 19688$	$\cdot 9971413$	40											
	Cos	Co	Tang.	Sine.	1	Cosine.	Cotan.	Tan	Sine.	'	,	0	Cotan,	Tang	Sine	,

1	\| Sine.	Tang.	Cotang.	Cosine.			Sine.	Tang.	Cotang.	Cosine.		'	Sine.	Tang.	Cotang.	Cosine.	
0	$0 \cdot 0871557$	-087488	$11 \cdot 43005$	-9961947	602	21	-0932395	-093647	$10 \cdot 67834$	-9956437	39	41	-0990303	-099519	10.04828	-9950844	9
	$1 \cdot 0874455$	-087781	$11 \cdot 39188$	$\cdot 9961693$	592		-0935291	-093940	$10 \cdot 64499$	-9956165	38	42	-0993197	-099813	10.01871	$\cdot 9950556$	8
	$2 \cdot 0877353$	-088074	11-35397	-9961438	582		-0938187	-094234	$10 \cdot 61184$	$\cdot 9955892$	37	43	-0996092	-100107	$9 \cdot 989305$	$\cdot 9950266$	7
	3 -0880251	-088368	$11 \cdot 31630$	-9961183	572	24.	-0941083	-094527	10.57889	-9955620	36	44	-0998986	-100400	9-960072	-9949976	6
4	$4 \cdot 0883148$	- 088661	11-27888	-9960926	56		-0943979	-094821	$10 \cdot 54615$	-9955345	35	45	-1001881	-100694	9.931008	-9949685	5
	$5 \cdot 0886046$	-088954	$11 \cdot 24171$	-9960669	552	26	-0946875	-095114	10.51360	-9955070	34	46	-1004775	-100988	9.902112	-9949393	14
	$6 \cdot 0888943$	-089247	$11 \cdot 20478$	-9960411	54.2		-0949771	-095408	$10 \cdot 48126$	-9954794	33	47	$\cdot 1007669$	-101282	$9 \cdot 873382$	-9949101	13
	$7 \cdot 0891840$	- 089540	11-16808	-9960152	532	28.	-0952666	-095701	$10 \cdot 44911$	$\cdot 9954517$	32	48	-1010563	-101576	9•844816	$\cdot 9948807$	2
	8.0894738	089834	$11 \cdot 13163$	-9959892	52	29.	-0955562	-095995	$10 \cdot 41715$	-9954240	31	49	-1013457	-101870	9•816414	$\cdot 9948513$	11
9	9-0897635	-090127	11.09541	-9959631	513	30.	-0958458	-096289	$10 \cdot 38539$	$\cdot 9953962$	30	50	-1016351	-102164	9•788173	$\cdot 9948217$	10
10	-0900532	-090420	11.05943	-9959370	503		-0961353	-096582	$10 \cdot 35382$	-9953683	29	51	-1019245	-102458	9•760092	-9947921	9
11	$1 \cdot 0903429$	-090713	$11 \cdot 02367$	$\cdot 9959107$	493		-0964248	-096876	$10 \cdot 32244$	-9953403	28	52	-1022138	-102752	9•732171	. 9947625	8
12	- 0906326	-091007	$10 \cdot 98815$	-9958844	483	33.	-0967144	-097169	$10 \cdot 29125$	$\cdot 9953122$	27	53.	-1025032	-103046	9•704407	-9947327	7
13	3-0909223	. 091300	$10 \cdot 95285$	-9958580			-0970039	-097463	$10 \cdot 26024$	$\cdot 9952840$	26	54	-1027925	-103339	$9 \cdot 676800$	-9947028	6
14	$4 \cdot 0912119$	-091593	10.917\%7	-9958315	46	35.	-0972934	-097757	$10 \cdot 22942$	$\cdot 9952557$	25	55	-1030819	-103634	$9 \cdot 649347$	$\cdot 9946729$	5
15	$5 \cdot 0915016$	-091887	10.88292	-9958049	453		-0975829	-098050	$10 \cdot 19878$	-9952274	24	56	-1033712	-103928	9•622048	$\cdot 9946428$	4
16	6.0917913	-092180	$10 \cdot 84828$. 9957783	44.3	37.	-0978724	-098344	$10 \cdot 16833$	$\cdot 9951990$	23	57	-1036605	-104222	9-594902	$\cdot 9946127$	3
17	7-0920809	-092473	$10 \cdot 81387$. 9957515	43		-0981619	-098638	10•13805	$\cdot 9951705$	22	58	-1039499	-104516	9-567906	-9945825	2
18	-0923706	-092767	10.77967	$\cdot 9957247$	423		-0984514	-098932	$10 \cdot 10795$	$\cdot 9951419$	21		-1042392	-104810	$9 \cdot 541061$	$\cdot 9945523$	1
19	-0926602	-093060	$10 \cdot 74568$	$\cdot 9956978$	414		-0987408	-099225	$10 \cdot 07803$	$\cdot 9951132$	20	60	-1045285	-105104	$9 \cdot 514364$	-9945219	0
20	-0929499	-093354	10.71191	-9956708	40												
	Cosine.	Cotan.	Tang.	Sine.	1	1	Co	Cot	'Tang.	Sine.	,	,	Cosine.	Cotan.	Tang.	Sine.	,

1	Sine.	'I'ang.	Cotang.	Cusine.		'	Sine.	Tang.	Cotang.	Cosine.			Sine.	Tang.	Cotang.	Cosine.	
0	-1045285	-105104	9•514364	$\cdot 9945219$	602	21.	-1106017	-111284	$8 \cdot 985984$	-9938648	39	11	$\cdot 1163818$	-117178	$8 \cdot 534017$	-9932045	19
1	- 1048178	-105398	9-487814	-9944914	59	22	$\cdot 1108908$	-111578	8.962266	-9938326	38	12	-1166707	- 117473	$8 \cdot 512594$	-9931706	18
2	-1051070	-105692	$9 \cdot 461411$	$\cdot 9944609$	58	23.	$\cdot 1111799$	-111873	8.938672	-9938003	37	13	- 1169596	- 117767	$8 \cdot 491277$	-9931367	7
,	-1053963	- 105986	$9 \cdot 43515 s$	-9944303	572	24	$\cdot 1114689$	-112168	$8 \cdot 915200$	-9937679	36	14	-1172485	-118062	$8 \cdot 470065$	-9931026	6
4	-1056856	-106280	$9 \cdot 409038$	-9943996	56	25	-1117580	- 112462	8.891850	-9937355	35	15	-1175374	- 118357	$8 \cdot 448957$	$\cdot 9930685$	5
5	-1059748	-106575	$9 \cdot 383066$	$\cdot 9943688$	55	26	-1120471	-112757	8.868620	-9937029	34	16	-1178263	-118652	8-427953	-9930342	4
d	-1062641	-106869	$9 \cdot 357235$	$\cdot 9943379$	542	27.	$\cdot 1123361$	-113051	$8 \cdot 845510$	-99367́03	33	47	-1181151	-118947	$8 \cdot 407051$	-9929999	3
7	-1065533	-107163	$9 \cdot 33$ I545	$\cdot 9943070$	53	28.	-1126252	-113346	8.822518	-9936375	32	18	- 1184040	-119242	8-38625	9929655	2
8	-1068425	-107457	$9 \cdot 305993$	-9942760	522	29	-1129142	-113641	8•799644	-9936047	31	49	- 1186928	-119537	8-365553	. 9929310	1
9	-1071318	-107751	9-280580	-9942448	513	30	- 1132032	- 113935	$8 \cdot 776887$	-9935719	30	50	-1189816	119832	8-344955	$\cdot 9928965$	10
10	-1074210	- 108046	$9 \cdot 255303$	$\cdot 9942136$	503	31	-1134922	- 114230	8.75424.6	$\cdot 9935389$	29	51	-1192704	-120127	8-324457	-9928618	${ }^{9}$
11	-1077102	-108340	9-230162	-9941823	493	$32 \cdot$	-1137812	- 114525	$8 \cdot 731719$	-9935053	28	52	-1195593	-120423	8-304058	-9928271	8
12	-1079994	-108634	$9 \cdot 205156$	-9941510	483	$33 \cdot$	-1140702	$\cdot 114819$	$8 \cdot 709307$	-9934727	27	53	-1198481	-120718	8-283757	-9927922	7
13	-1082885	-108929	9-180283	$\cdot 9941195$	473	34 -	-1143592	-115114	$8 \cdot 687008$	$\cdot 9934395$	26	54	-1201368	-121013	8-263554	-9927573	6
14	-1085777	-109223	$9 \cdot 155543$	$\cdot 9940880$	463	35.	-1146482	-115409	$8 \cdot 664822$	-9934062	25	55	-1204256	121308	$8 \cdot 243448$	-99:7224	5
15	-1088669	-109517	$9 \cdot 130934$	$\cdot 9940563$	453	36	-1149372	-115703	$8 \cdot 642747$	$\cdot 9933728$	24	56	-1207144	- 121603	8-223488	$\cdot 9926873$	4
16	-1091560	-109812	9-106456	-9940246	443	37.	$\cdot 1152261$	-115998	8.620783	$\cdot 9933393$	23	57	- 210031	121898	-203523	-9926521	3
17	-1094452	-110106	9-082107\|	$\cdot 9939928$	43	38	$\cdot 1155151$	-116293	8-598929	$\cdot 9933057$	22	58	- 1212919	- 122194	$8 \cdot 183704$	-9926169	2
18	-1097343	-110401	9•057886	-9939610	42	$39 \cdot$	-1158040	-116588	$8 \cdot 577183$	$\cdot 9932721$	21	59	-1215806	- 122489	$8 \cdot 163978$	-9925816	11
19	-1100234	-110695	9•033793	-9939290	414	40	$\cdot 1160929$	$\cdot 116883$	8:555546	$\cdot 9932381$	20	60	-1218693	122784	$8 \cdot 144346$	$\cdot 9925462$	0
20	-1103126	-110989	9•009826	$\cdot 9938969$	40												
	Cosine.	Cotan.	'Tang.	Sine.	,	,	Cosine.	Cotan.	Tang.	Sine.	,	,	Cosine.	Cotan.	Tang.	Sine.	'

7 Deg.

'	Sine.	Tang.	Cotang.	Cosine.		1	Sine.	Tang.	Cotang.	ne.		'	Sine.	Tang.	Cotang.	Cosine.	
0	-1391731	- 140540	7-115369	-9902681	60	21	-1452197	- 146775	6.813122	-9893994	39	41	- 1509733	-152723	6.547767	. 9885378	
	-1394612	- 140837	7-100382	$\cdot 9902275$	59	22	-1455075	- 147072	$6 \cdot 799356$	-9893572	38	42	-1512608	-153021	$6 \cdot 535029$	-9884939	18
2.	-1397492	- 141134	7-085457	-9901869	58	23.	-1457953	-147369	6.785644	-9893148	37	74	-1515484	$\cdot 153319$	$6 \cdot 522339$	- 9884498	7
3	-1400372	-141430	7-070593	-9901462	57	24	-1460830	-147667	6•791986	-9892723	36	44	-1518359	-153617	6.509698	$\cdot 9884057$	6
4	-1403252	-141727	$7 \cdot 055790$	$\cdot 9901055$	56	25	-1463708	-147964	6•758382	-9892298	35	45	-1521234	-153914	$6 \cdot 497104$	$\cdot 9883615$	5
5	- 1406132	-142024	7-041048	$\cdot 9900646$	55	26	-1466585	-148261	$6 \cdot 744831$	-9891872	34	46	-1524109	-154212	$6 \cdot 484558$	-9883172	14
6	-1409012	- 142321	7-026366	$\cdot 9900237$	54	27.	-1469463	- 148559	$6 \cdot 731334$	-9891445	33	47	-1526984	-154510	$6 \cdot 472059$	-9882728	3
	-1411892	-142617	7-011744	-9899826	53	28	-1472340	- 148856	$6 \cdot 717889$	-9891017	32	48	-1529858	-154808	$6 \cdot 459607$	-9882284	2
8	-1414772	-142914	6.997180	-9899415	52	29	-1475217	-149153	$6 \cdot 704496$	-9890588	31	149	-1532733	-155106	$6 \cdot 447201$	- 9881838	1
9	-1417651	-143211	6.982678	$\cdot 9899003$	51	30	- 1478094	- 149451	$6 \cdot 691156$	-9890159	30	50	-1535607	- 155404	6.434842	-9881392	10
10	- 1420531	- 143508	6.968233	-9898590	50	31	-1480971	- 149748	$6 \cdot 677867$	-9889728	29	51	-1538482	-155701	$6 \cdot 422530$	-9880945	
11	- 1423410	- 143805	$6 \cdot 953847$. 9898177	49		- 1483848	- 150045	6.664630	-9889297	28	52	- 1541356	-155999	$6 \cdot 410263$	-9880497	8
12	-1426289	- 144102	6.939513	-9897762	48	33	-1486724	- 150343	6.651444	-9888865	27	53	-1544230	-156297	6.398042	-9880048	7
13	-1429168	-144399	6.925248	-9897347	47	34	-1489601	- 150640	6.638310	-9888432		54	-1547104	- 156595	$6 \cdot 385866$	-9879599	6
14	-1432047	- 144696	6.911035	$\cdot 9896931$	46	35	-1492477	- 150938	$6 \cdot 625225$	$\cdot 9887998$	25	55	-1549978	-156893	$6 \cdot 373735$	-9879148	5
15	- 1434926	- 144993	6.896879	$\cdot 9896514$	45	36	-1495353	-151235	6.612191	-9887564	24	45	-1552851	-157191	$6 \cdot 361650$	-9878697	4
16	-1437805	- 145290	6.882780	$\cdot 9896096$	44	37.	$\cdot 1498230$	$\cdot 151533$	6.599208	-9887128	23	57	- 1555725	-157490	$6 \cdot 349609$	-9878245	3
17.	-1440684	-145587	$6 \cdot 868737$	$\cdot 9895677$	43	$38 \cdot$	$\cdot 1501106$	- 151830	6.586273	-9886692	22	58	-1558598	-157788	6.337612	-9877792	2
18	-1443562	-145884	$6 \cdot 854750$	-9895258	42	$39 \cdot$	-1503981	-152128	6.573389	$\cdot 9886255$		159	- 1561472	-158086	$6 \cdot 325660$	- 9877338	1
19	- 1446440	- 146181	$6 \cdot 840819$	-9894838	41	40	$\cdot 1506857$	-152426	$6 \cdot 560553$	$\cdot 9885817$	20	60	$\cdot 1564345$	-158384	$6 \cdot 313751$. 9876883	0
20	-1449319	- 146478	$6 \cdot 826943$	-9894416	40												
,	Cosine.	Cotan.	Tang.	Sine.	,	,	Cosine.	Cot	Tang.	Sine.	,	,	Cosine.	Cotan.	Tang.	Sine.	,

	ne.	Tang.	ang.				Sine.	ng.	ang.			'	Sine.	'Tang.	Cotang.	Cosine.	
	$0 \cdot 1564345$	-158384	$6 \cdot 313751$	-9876883	60	21	-1624650	- 164652	$6 \cdot 073397$	-9867143	39	41	- 1682026	-170633	$5 \cdot 860505$	-9857524	19
	$1 \cdot 1567218$	- 158682	$6 \cdot 301886$. 9876428	59	$22 \cdot$	-1627520	-164951	$6 \cdot 062396$	-9866670	38	42	-1684894	-170933	$5 \cdot 850241$	-9857035	8
	$2 \cdot 1570091$	-158980	$6 \cdot 290065$	-9875972	58	$23 \cdot$	-1630390	-165250	$6 \cdot 051434$	-9866196	37	43	-1687761	-171232	$5 \cdot 840011$	-9856544	7
	$3 \cdot 1572963$	-159279	6.278286	-9875514	57	24.	-1633260	- 165518	$6 \cdot 040510$	-9865722	36	44	-1690628	$\cdot 171532$	$5 \cdot 829817$. 9856053	16
	$4 \cdot 1575836$	-159577	6.263551	-9875057	56	25	-1636129	-165847	6.029624	-9865246	35	45	-1693495	-171831	$5 \cdot 819657$	$\cdot 9855561$	15
	$5 \cdot 1578708$	-159875	6.254858	$\cdot 9874598$	55	26.	-1638999	- 166146	$6 \cdot 018777$	-9864770	34	16	-1696362	-172130	5-809531	-985506S	14
	$6 \cdot 1581581$	-160174	$6 \cdot 243208$	-9874138	54		-1641868	- 166445	$6 \cdot 007967$	-9864293	33	47.	-1699228	-172430	$5 \cdot 799440$	-9854574	13
	$7 \cdot 1584453$	-160472	6.231600	-9873678	53	28	-1614738	-166744	$5 \cdot 997195$	-9863815	32	48	-1702095	-172730	$5 \cdot 789382$	-9854079	12
	$8 \cdot 1587325$	-160770	$6 \cdot 220034$	-9873216	52	29	-1647607	-167043	5.986461	9863336	31	49 -	-1704961	$\cdot 173029$	$5 \cdot 779359$	$\cdot 9853583$	11
	$9 \cdot 1590197$	- 161069	$6 \cdot 208510$	$\cdot 9872754$	51	30.	-1650476	-167342	5.975764	-9862856	30	50.	-1707828	-1733ะ9	5•769368	$\cdot 9853087$	10
10	- 1593069	-161367	$6 \cdot 197027$	-9872291	50	31	-1653345	-167641	5-965104	$\cdot 9862375$	29	51.	-1710694	-173628	5•759412	-9852590	9
	$1 \cdot 1595940$	- 161666	6•185586	-9871827	49	32	-1656214	-167940	$5 \cdot 954481$	$\cdot 9861894$	128	52	-1713560	-173928	5•749488	-9852092	8
	$2 \cdot 1598812$	-161964	6.174186	$\cdot 9871363$	48	33	-1659082	-168239	5•943895	-9861412	27		-1716425	-174228	5•739598	$\cdot 9851593$	7
	$3 \cdot 1601683$	-162263	6-162827	$\cdot 9870897$	47	34.	-1661951	- 168539	5.933345	-9860929	26	54.	-1719291	-174527	$5 \cdot 729741$. 9851093	6
	$4 \cdot 1604555$	-162561	$6 \cdot 151508$	-9870431	16	35	-1664819	-168838	5.922832	-9860445	25	35.	-1722156	-174827	5•719917	-9850593	5
15	$5 \cdot 1607426$	-162860	6.110230	-9869964	15	36	-1667687	-169137	$5 \cdot 912355$	-9859960	24	56.	-1725022	175127	$5 \cdot 710125$	-9850091	4
16	$6 \cdot 1610297$	-163159	6.128992	- 9869496	44	37.	-1670556	-169436	$5 \cdot 901913$	-9859475	22	37	-1727887	-175427	5•700366	$\cdot 9849589$	3
	$7 \cdot 1613167$	-163457	6.117794	-9869027	43	38	-1673423	-169735	5-891508	-9858988	22	58.	-1730752	$\cdot 175727$	$5 \cdot 690639$	-9849086	2
18	$8{ }^{8} 1616038$	- 163756	3•106636	-9868557	42	$39 \cdot$	-1676291	- 170035	$5 \cdot 881138$	$\cdot 9858501$	21	59.	-1733617 ${ }^{1}$	$\cdot 176027 \mid$	5•680944	-9848582	1
19	$9 \cdot 1618909$	164055	-095517	-9868087	41	10.	-1679159	-170334	$5 \cdot 870804$	-9858013	20	30.	-1736482	176327	$5 \cdot 671281$	-9848078	0
20	0-1621779	-164353	$5 \cdot 084438$	$\cdot 9867615$	40												
	Cosine.	Cot	Tang.	Sine.	,	1	C	C	Tang.	Sine.		'	Cosine.	Cotan	Tang.	Sine.	,

	S		Cotang.			/	Sine.	Tang.	Cotang.				Sine.	Tang.	otang.	osine.		
0	-1736482	$\cdot 176327$	-671281	-9848078	60	21	-1796607	-182632		-9837286	39	41	- 1853808	-188650	$5 \cdot 300801$	-9826668		
1	-1739346	-176626	5-661650	-9847572	59	22	-1799469	-182933	$5 \cdot 466481$	-9836763	38	42	- 1856666	-188952	$5 \cdot 292350$	-9826128	18	
2	-1742211	-176926	$5 \cdot 652051$. 9847066	58	23	-1802330	-183233	$5 \cdot 457512$	-9836239	37	43	-1859524	-189253	$5 \cdot 283925$	-9825587		
3	-1745075	-177226	$5 \cdot 642483$	-9846558	57	24	$\cdot 1805191$	-183534	[5.448571)	\|-9835715		36	44	- 1862382	-189554	$5 \cdot 275525$	-9825046	16
	-1747939	-177527	$5 \cdot 632947$	-9846050	56	25	-1808052	- 183835	$5 \cdot 439659$	-9835 189	\|35	45	-1865240	- 189855	$5 \cdot 267151$	-9824504	15	
5	-1750803	-177827	5.623442	-9845542	55	26	$\cdot 1810913$	-184135	$5 \cdot 430775$	-9834663	34	46	-1868098	-190157	5-258803	-9323961	14	
6	-1753667	-178127	$5 \cdot 613968$	-9845032	5	27	-1813774	-184436	$5 \cdot 421918$	- 9834136	33	47	-1870956	- 190458	$5 \cdot 250480$	-9823417	13	
7		-178427	$5 \cdot 604524$	-9844521	53	28	-1816635	-184737	$5 \cdot 413090$	- 9833608	32	48	-1873813	- 190760	$5 \cdot 242183$	-9822873	12	
8	-1759395	-178727	$5 \cdot 595112$	- 9844010	52	29	-1819495	- 185038	$5 \cdot 404290$. 9833079	31	49	-1876670	-191061	$5 \cdot 233911$	-9822327	11	
	-1762258	-179027	$5 \cdot 535730$	-9843498	51	30	$\cdot 1822355$	$\cdot 185339$	$5 \cdot 395517$	-9832549	30	50	-1879528	-191363	5-225664	-9821781	0	
10	-1765121	-179327	$5 \cdot 576378$	-9842985	50	31	$\cdot 1825215$	- 185639	$5 \cdot 386771$	-9832019	29	51	-1882385	-191664	$5 \cdot 217442$	-9821234	9	
	-1767984	-1796 38	$5 \cdot 567057$	-9342471	49	32	$\cdot 1828075$	- 185940	$5 \cdot 378053$	- 9831487	28	52	-1885241	-191966	$5 \cdot 209245$. 9820686	8	
	-1770847	-179928	5. 557766	-9841956	48	33	-1830935	-186241	$5 \cdot 369363$	-9830955	27	53	-1888098	-192268	$5 \cdot 201073$	-9820137	7	
	-1773710	-180228	$5 \cdot 548505$	-9841441	47	34	-1833795	-186542	5-360699	-9830422	26	54	-1890954	$\cdot 192569$	$5 \cdot 192926$. 9819587	6	
	-1776573	-180529	$5 \cdot 539274$. 9840924	46	35	-1836654	-186843	$5 \cdot 352062$	-9829888	25	55	. 1893811	-192871	$5 \cdot 184803$	-9819037	5	
15	-1779435	-180829	$5 \cdot 530072$	$\cdot 9840407$	45	36	-1839514	-187144	$5 \cdot 343452$	-9829353	24	56	-1896667	-193173	$5 \cdot 176705$	-9818485	4	
16	-1782298	-181129	$5 \cdot 520900$	-9839889	44	37	-1842373	-187446	$5 \cdot 334869$	-9828818	23	57	-1899523	-193474	$5 \cdot 168631$	-9817933	3	
1	- 1785160	-181430	5.511757	-9839370	43	38	-1845232	-187747	$5 \cdot 326313$. 9828282	22	58	-1902379	-193776	$5 \cdot 160581$	-9817380	2	
18	-1788022	-181730\|	$5 \cdot 502644$	-9838350\|	42	39	$\cdot 1848091$	188048	$5 \cdot 317783$	-9827744	21	59	-1905234	194078	$5 \cdot 152555$	-9816826	1	
1	$\cdot 1790884$	-182031	$5 \cdot 493560$	- 9838330	41	40	$\cdot 1850949$	-188349	5-309279	-9827206	20	60	$\cdot 1908090$	- 194380	$5 \cdot 144554$.9816272	0	
20	-1793746	-182331	$5 \cdot 484505$	-9837808	40													
,	Cosine.	Cotang.	Tang.	Sine.	1	1	Cosine.	Cotang.	Tang.	Sine.		11	Cosine.	Cotang.	Tang.	Sine.	1	

1	Sine.	'I'ang.	.		1		Sine.					\checkmark				1 e
		-194380	$5 \cdot 144554$	$\cdot 9816272$	60		- 1968018	-200727	4.981881	-9804433	39	1	-2025024	$\cdot 206786$	$4 \cdot 835901$	-9792818
	5	$\cdot 194682$	$5 \cdot 136576$. 9815716	59	22	-1970870	-201030	$4 \cdot 974381$	-9803860	38	42	-2027873	-207090	$4 \cdot 828817$	-9792228 18
2	-1	-194984	$5 \cdot 128622$. 9815160	58	23	-1973722	$\cdot 201332$	$4 \cdot 966903$	- 9803286	,	43	$\cdot 2030721$	-207393	$1 \cdot 821753$	- 9791638
3	-1916656	- 195286	$5 \cdot 120692$	- 9814603	57		-1976573	-201635	$4 \cdot 959447$	-9802712	36	44	-2033569	$\cdot 207696$	4.814709	-9791047 16
4	-1919510	\| 195588	$5 \cdot 112785$. 9814045	56	25	-1979425	-201938	$4 \cdot 952012$	-9802136	35	45	-2036418	-208000	$4 \cdot 807685$. 979045515
	-1922365	- 195890	$5 \cdot 104902$.9813486	55	26	-1982276	$\cdot 202240$	$4 \cdot 944599$	-9801560	34	16	-2039265	-208303	$4 \cdot 800680$	$\cdot 978986214$
6	-1925220	$\cdot 196192$	$5 \cdot 097042$	-9812927	54	2	-1985127	-2	$4 \cdot 937206$	- 9800983	33	47	$\cdot 2042113$		5	-9789268 13
7	- 1928074	- 196494	$5 \cdot 089206$. 9812366	53		-1987978	-202846	$4 \cdot 929835$. 9800405	32	48	-20	- 208910		$.978867412$
8	-1930928	-196796	$5 \cdot 081392$. 9811805	52	29	-1990829	.203149	$4 \cdot 922485$	-9799827		49	-2047808	-209214	$4 \cdot 779783$	-9788079 11
9	-1933782	-197098		-9811243	51	30	-1993679	-203452	$4 \cdot 915157$	-9799247	30	50	-2050655	-209518	4-772856	-9787433-10
1	- 1936636	-197400	$5 \cdot 065835$	-9810680	50		- 1996530	.203755	$4 \cdot 907849$	-9798667	9	51	-2053502	$\cdot 209821$	$4 \cdot 765949$	- 9786886
			$5 \cdot 058090$.9810116	49	3	- 1999380	$\cdot 204058$	$4 \cdot 900562$. 9798086	28	52	-2056349	. 210125	$4 \cdot 759060$	$\cdot 9 \because 86288$ 8
1	-1		$5 \cdot 050369$		49				$4 \cdot 893295$	- 9797504	27	53	-2059195	$\cdot 210429$	$4 \cdot 752190$.9785689 ${ }^{\prime} 7$
	-1945197	- 198307	$5 \cdot 042670$. 9808986	47	3	-2005080		886049				. 2062042	-21073	340	-9785090 6
1	- 1948050	- 198610	$5 \cdot 034993$. 9808420	46	35	-2007930	-204967	$4 \cdot 878824$	-9796.337		55	-2064888	-211036	$4 \cdot 738508$.9784490
1	- 1950903	-198912	$5 \cdot 027339$	-9807853	45	36	.2010779	.205270	$4 \cdot 871620$. 9795752	$\stackrel{9}{2}$	56	-2067734	. 211340	$4 \cdot 731695$	- 9783889
16	-1953756	-199214	$5 \cdot 019707$	- 9807285	44	37	-2013629	-205573	$4 \cdot 864435$.9795167	2	57	-2070580	.211644	$4 \cdot 724901$	832873
1	- 1956609	$\cdot 199517$.205876		. 9794581	2	58	. 2073426	.211948	18125	2684
1	-19594	$\|\cdot 199819\|$	5.0	-9806147	4		$\cdot 201932$	-206180	$4 \cdot 850128$	- 9793994			-2076272	-2122	1368	82080
19	-1962314	-200122	$4 \cdot 996945$	-9805576	4	40	$\cdot 2022176$. 206483	$4 \cdot 843004$. 9793406	20	60	-207911	.212556	$4 \cdot 704630$.97814760
20	-1965166	$\cdot 200424$	$4 \cdot 989402$	$\cdot .9805005$	40											
1	Cosine.	Cotang.	T'ang.	Sine.	/	1	Cosine.	Cotang.	'rang.	Sine.	,	1	Cosine.	Cot ing.	'Tang.	Sine.

	Sine.	Tang.	Cotang.	Cosine.			g.						ng.	ng.		
0	-2079117	- 212556	4.704630	-9781476	6021		-218949		-9768593	9	41		-225054			
1	-2081962	-212860	4-697910	- 9780871	5922	-2141671	-219254	$4 \cdot 560911$	- 9767970	38	42	-2198462	-225359	$4 \cdot 437350$	-9755345	18
2	-208480	-213164	$4 \cdot 691208$	-9780265	58.23	-2144512	219559	4.554577	-9767347	37	43	-2201300	-225665	$4 \cdot 431339$	-9754706	
	-2087652	-213468	$4 \cdot 684524$	-9779658	5724	-2147353	$\cdot \sim 19864$	$4 \cdot 548260$	$\cdot 9766723$	36	44	$\cdot 2204137$	-225971	$4 \cdot 425343$	-9754065	16
4	-2090497	-213773	4.677859	-9779050	5625	-2150194	$\cdot 220169$	4.541960	$\cdot 9765098$	35	45	-2206974	-226276	$4 \cdot 419364$	-9753423	
,	-2093341	-214077	$4 \cdot 671212$	$\cdot 9778441$	55.26	$\cdot 2153035$	-220474	4-535677	$\cdot 9765472$	34	46	$\cdot 2209811$	-226582	$4 \cdot 413399$	-9752781	
6	-2096186	-214381	$4 \cdot 664583$	-9777832	54. 27	$\cdot 2155876$	-220779	$4 \cdot 529410$	$\cdot 9764845$	33	47	-2212648	-226888	$4 \cdot 407450$	-9752138	
7	-2099030	- 214685	4-657972	-9777222		$\cdot 2158716$	-221084	$4 \cdot 523160$	$\cdot 9764217$	32	48	$\cdot 2215485$	$\cdot 227194$	$4 \cdot 401516$	-9751494	
	-2101874	-214990	$4 \cdot 651378$	-9776611	52. 29	-2161556	-221389	$4 \cdot 516926$	$\cdot 9763589$	31	49	-2218321	- 227500	95597	- 9750849	
9	-2104718	-215294	1.644803	-9775999	5130	$\cdot 2164396$	-221694	$4 \cdot 510708$	$\cdot 9762960$	30	50	-2221158	-227806	89694	$\cdot 9750203$	10
10	-2107561	-215598	- 638245	$\cdot 9775386$	5031	$\cdot 2167236$	-221999	4.504507	$\cdot 9762330$	29	51	-2223994	- 228112	$4 \cdot 383805$	-9749556	
11.	-2110405	-215903	$4 \cdot 631705$	-9771773		-2170076	-222305	$4 \cdot 498322$	$\cdot 9761699$	28	52	-2226830	- 228418	4-377931	- 9748909	
12	-2113248	- 216207	$4 \cdot 625183$	$\cdot 9774159$	4833	$\cdot 2172915$	-222610	$4 \cdot 4921.53$	$\cdot 9761067$	27	53	-2229666	-2287,24	$4 \cdot 372073$	-9748261	
13	-2116091	-216512	$4 \cdot 618678$	-9773544	4734	-2175754	-222915	$4 \cdot 486000$	$\cdot 9760435$	26	54	-2232501	-229030	$4 \cdot 366229$	-9747612	
14	-2118934	- 216816	$4 \cdot 612190$	-9772928		-2178593	-223221	$4 \cdot 479863$	$\cdot 9759802$	25	55	-2235337	-229336	$4 \cdot 360400$	- 9746962	
15	-2121777	- 217121	$4 \cdot 605720$	- 9772311		-2181432	-223526	$4 \cdot 473742$	-9759168	24	56	- 2238172	${ }^{-229642}$	$4 \cdot 354586$	$\cdot 9746311$	
16	-2124619	- 217425	4-599268	-9771693	4437	-2184271	-223831	$4 \cdot 467637$	$\cdot 9758533$	23	57	-2241007	229949	34878	-9745660	
17	-2127462	-217730	4-592832	-9771075	43.38	-2187110	-224137	$4 \cdot 461548$	-9757897	22	58	-2243842	-230255	$4 \cdot 343001$	- 9745008	
18	2130304	-218035	4-586414	-9770456 ${ }^{4}$	4239	-2189948	-224442	$4 \cdot 455475$	$\cdot 9757260$			$\cdot 2246676$	-230561	$4 \cdot 337231$	-9744355	
19	-2133146	- 218340	$4 \cdot 580012$	-9769836	4140	-2192786	-224748	4.449418	$\cdot 9756623$	20	60	-2249511	-230868	$4 \cdot 331475$	\|9743701	
20	-2135988	-218644	$4 \cdot 573628$	$\cdot 9769215$	40											
,	C	C	ang.	ine.		Cosin		,	Sine.		,	osine	Cotang.	'ang	Sine	

	Sine.	Tang.	g.	e.		Sine.	g.	ng.	Cosine			Sine.	ng.	g.		
0	-2249511	-230868	$4 \cdot 331475$	$\cdot 9743701$	$60 \mid 21$	-2308989	-237311	$4 \cdot 213869$		39	41	-23655.55	-243465	4-107356	. 9716180	19
1	-2252345	-231174	4-325734	-9743046	5922	$\cdot 2311819$	-237618	4-208419	-9729105	38	42	-2368381	-243773	4-102164	. 9715491	18
2	-2255179	-231481	4-320007	$\cdot 9742390$	5823	-2314649	-237926	4-202983	- 9728432	37	43	-2371207	-244081	4.096985	. 9714802	7
	-2258013	-231787	$4 \cdot 314295$	-9741734	5724	-2317479	-238233	$4 \cdot 197560$	-9727759	36	44	-2374033	-244390	$4 \cdot 091817$	- 9714112	16
,	-2260846	-232094	$4 \cdot 308597$	-9741077	5625	-2320309	-238541	$4 \cdot 192151$	- 9727084	35	45	-2376859	- 244698	$4 \cdot 086662$	$\cdot 9713421$	15
5	-2263680	-232400	$4 \cdot 302913$	-9740419	5526	-2323138	-238848	$4 \cdot 186754$	-9726409	34	46	$\cdot 2379684$	-245006	$4 \cdot 081519$. 9712729	14
6	-2266513	- 232707	$4 \cdot 297244$	-9739760	5427	-2325967	-239156	$4 \cdot 181371$	-9725733	33	47	-2382510	- 245315	$4 \cdot 076389$	- 9712036	13
7	-2269346	$\cdot 233014$	$4 \cdot 291588$	$\cdot 9739100$	5328	$\cdot 2328796$	-239463	$4 \cdot 176001$	-9725056	32	48	-2385335	-245623	$4 \cdot 071270$. 9711343	2
8	-2272179	-233320	$4 \cdot 285947$	-9738439	5229	- 2331625	-239771	4-170644	-9724378	31	49	-2388159	- 245932	$4 \cdot 066164$. 9710649	11
9	2275012	-233627	$4 \cdot 280319$	-9737778	5130	-2334454	- 240078	4-165299	-9723699	30	50	-2390984	-246240	4-061070	-9709953	10
	-2277844	-233934	$4 \cdot 274706$	$\cdot 9737116$	5031	- 2337282	- 240386	$4 \cdot 159968$	- 9723020	29	51	-2393808	- 246549	$4 \cdot 055987$	- 9709258	9
11	-2280677	-234241	$4 \cdot 269107$	-9736453	4932	-2340110	- 240694	4 L 154650	-9722339	28	52	-2396633	- 24.6857	4-050917	-9708561	8
12	-2283509 ${ }^{\prime}$	$\cdot 234547$	$4 \cdot 263521$	-9735789	4833	-2342938	- 241001	4-149344	-9721658	27		-2399457	- 247166	$4 \cdot 045859$. 9707863	7
13	-2286341	-234854	$4 \cdot 257950$. 9735124	4734	-2345766	- 241309	$4 \cdot 144051$	- 9720976	26	54.	-2402280	-247475	$4 \cdot 040812$	- 9707165	6
14	-2289172	-235161	4-252392	$\cdot 9734458$	4635	-2348594	-241617	$4 \cdot 138771$	-9720294	25	55	-2405104	-247783	4-035777	- 9706466	
	-2292004	-235468	$4 \cdot 246848$	-9733792	4536	$\cdot 2351421$	- 241925	4133504	$\cdot 9719610$	24	56	-2407927	-248092	$4 \cdot 030755$	- 9705766	
16	-2294835	$\cdot 235775$	4-241317	$\cdot 9733125$	4437	-2354248	- 242233	4-128249	$\cdot 9718926$	23	57	$\cdot 2410751$	-248401	4-025744	$\cdot 9705065$	3
17	-2297666\|	-236082	$4 \cdot 235800$	-9732457	4338	-2357075	- 242541	4,123007	-9718240	22	58	-2413574	-248710\|	$4 \cdot 020744$. 9704363	2
18	-2300497	-236390	$4 \cdot 230297$	-9731789	4239	$\cdot 2359902$	-242849	4-117778	-9717554	21		-2416396	-249019	$4 \cdot 015757$	-9703660	1
	-2303328	-236697	$4 \cdot 224808$. 9731119		-2362729	-243157	$4 \cdot 112561$	$\cdot 9716867$	20	60	-2419219	-249328	$4 \cdot 010780$	$\cdot 9702957$	
20	-2306159	-237004	4-219331	$\cdot 9730449$	40											
	Cosi	C	Tang.	Sine.	, 1	osin	Cotang.	Tang	Sine.		,	osin	Cotang.	Tang.	Sine.	,

53

	Sine.	Tang.	g.												
0					60										
	2422041	963	$4 \cdot 0058$	9702253	5922	2481263	-256136	$3 \cdot 904171$	-9687277		2537579	262345	3.811773	. 967	
	- 2424863	-2499	4-00086	9701548	5823	2484081	- 2564	$3 \cdot 899451$	-968655	3743	254039	2626	-807		
3	3-2427685	-25025	3.99592	9700842	5724	2486899	-256756	$3 \cdot 894742$	- 968583	3644	2543206	262967	-8027		
	-2430507	-250564	$3 \cdot 990992$	9700135	56.25	2489716	257066	$3 \cdot 890044$	-968510	3545	2546019	263278	$3 \cdot 7982$	9670	
	5-2433329	-250873	3.986073	-9699428	5526	2492533	257376	$3 \cdot 885357$	-968438	3446	2548832	263589	3.79	96	
	6. 2436150	-25118	$3 \cdot 98116$	-9698720	5427	2495350	25768	$3 \cdot 880680$	-96836	3347	2551645	263900	3	$\cdot 966897$	
	-2438971	25149	$3 \cdot 97627$	-9698011	5328	2498167	25	.87601	96		2554458	$\cdot 264211$	3	. 9668	
	2441792	25180	$3 \cdot 9713$	9697301	52.29	250098	-2583	713	82		25572	-264522	3.7803	. 9667490	
	244461	-25211	3.9665	6965	5130	250380	25	627	96814	3050	25600	264	3.7759	9666746	
10	244743	-25242	$3 \cdot 96165$	-9695879	5031	250661	2589	$3 \cdot 8620$	-968074	2951	2562834	2651	7715	966	
	-2450254	-25272	$3 \cdot 956801$	- 9695167	4932	2509432	-25923	3-957453	-96800	d	2565705	2654	670	66	
12	-2453074	-253038	$3 \cdot 951961$	-969445	4833	2512248	25954	3-852839	$\cdot 9679$		2568517	5			
13	2455894	-25334	$3 \cdot 947133$	-9693740	4734	2515063	-25985	3.84823	. 67	.	2571328	266079	3	63761	
14	2458713	- 25365	3.942315	-9693025	4635	2517879	260169	3.8436	促	25	2574139	2663	$3 \cdot 7538$	663012	
15	246153	25	500	. 9692309	4536	(1)	-260480	$3 \cdot 83905$	96770	2	2576950	2667	-	9662263	
16	246435	25427	-9327	9615	44	2235	260	$3 \cdot 8344 \mathrm{~S}$. 96763	,	2579760	6701	3.7451	9661513	
17	2467171	254587	3.92792	969087		2526323	26110	923	-967562	,	2582570	267325	$3 \cdot 7407$	66076	
19	2469990	254896	3.92315	9690157	4239	2529137	261412	537	-	2159	2585381	267637			
19	2472809	- 255206	$3 \cdot 918393$	9689438	4140	2531952	26172	-208	96741	2060	2588190	267949	72	965	
20	2475627	- 255516	$3 \cdot 91364$	9688719	40										
					, 1				Sine.	1			Tang.	Sine.	

，	－วu！s	L	D	$\cdots{ }^{\text {－2uson }}$			UTS		－8ub7on	－ $\mathrm{u}_{\text {¢ }}$		1	U		0	0	
												$0 \pm$		9ち0んす9－8	\％．		\％
0	L19\％196．	硡	9ちL98\％．		09	07	0678796．		6¢も08\％．	80才00ん\％．	07	It	908ъも96．	IIZIC9．8	1888LZ．	98G1ヵ9\％．	6I
1	8Lも\＆I96．	LもてI6才．E	08も98\％	LLGEGL\％	6 C	Iz	¢L\％6\％96．	899699．E	97108\％．	\％09L69\％．	68	\％\downarrow	てん99796．	788G99－8	6998LZ．	9\％	8I
\％	6Iをも196．	L80967•	GII98	I8 409 L\％	8 c	z\％	0900896．	6998Lg•	z886 27.	L08769\％．	8 \＆	87	Iも\＆9796．	999699－8	9\％8i\％	9\％6989\％．	2 I
ε	6109196.	98686	10898\％．	『86んちんで	29	\＆z	\＆¥80896	6LGLLG．8	8196Lz．	000\％69\％．	28	\％	8012096．	L9L899－E	8も6 27.	81 1889\％．	9I
\pm	8189196．	16LZ09	98798	L8197L\％	9 S	7\％	9\％91896．	L69189．8	G0\％6L\％．	86I689\％	98	97	8น8に796．	L96L99－8	189\％Lz	\％180892	9I
G	9199196．	c99909	\％LI98\％	068\％चL\％		ct	80も 2896	ஏ\％9989．E	I688 4 \％	968989\％．	98	97	8898796．	991\％L9－8	818\％Lz	90¢LZ9\％	
9	\＆IもんI96．	Lzc019．E	L9878\％．	\％6968LG．	9	97	6818896．	699689．8	8L98ム\％	769889\％．	8	LT	\％076796．	7883 49.8	900\％LZ．	669	EI
4	01\％819	L0才すIS．E	8ち9も8\％．	Ə6 $498 L \%$－	E9	L\％	6968896．	70L869．8	7978ム\％．	\％6L089\％．	ε	87	9910996．	19089．8	691 2% ．	．	
8	c006196	76\％8IS．8	87\％ 88.	L6688L\％．	z9	87	8才ムも896．	ฤG 4 669．E	I96ムんz．	686LL9\％．	8	67	L\％60996．	L78789－8	I88IL\％	980619\％．	I
6	0086196	06I \％\％\cdot－	Ø1688\％．	861 IELて．	IC	68	L\％99896．	万I8I09．8	L89んんて．	L8ICL9\％．	\＆	09	6891996．	760689－8	6901 Lz．	LLG919\％．	I
0	7690396．	8609z9．8	66988\％．	00も8\％Lz． 0	0 O	0	c0e9896．	888909．8		788\％L9\％．	8	C	6ъも\％996．	978869－8	L9L0L\％	697\＆19\％．	6
	2881696	900089．\＆	98888\％．	1099zLz．	67	I8	I80L896．	096609．\＆	I 10んんで，	I89699\％．	68	c	60\％8¢96．	019 6.69 .8	もठも0ん\％．	799019\％．	8
－	08โ ${ }^{\text {\％}}$ 96．	966889．8	IL678\％．	608\％zLz．	87	z8 8	898LE96．	970才I9．8	8699ん\％．	LLL999\％．	88	c	896899	810ん－8	\％810L\％	EG8L09\％．	
81	てL6をそ96．	\％98LEG•E	L99\％8\％．	8000\％Lz．	$\angle 18$	88	E898896．	I万I8I9．\＆	9889 27.	EL6899\％．	42	9	96ムす996．	牙 190 L－ 8	07869\％．	C70909	
I	\％9 2 8796	88んIちら．E	878\％8\％．	50\％LIL	97	ヵ¢	L0Ђ6896．	ฤъ	I L09 27.	0LII99\％．	9\％	9	も8も¢996．	G970IL．8	80969\％．	28\％\％09\％	9
91	z99も\％96．	z8L9̇9．8	6z078\％．	ஏ0圢んて．	9 g	98	1810ъ96．	9989\％9．8	8GLGL\％．	998899\％．	\％	99	0ъ\％9996．	992もした。	96169\％．	867669	－
91	zt89\％96．	7896Ђら．\＆	GILI8\％．	G09I ILz．	－ 19	98	も60も96．	LLも089－8	c切く\％．	199999\％．	\％	9	9669996．	906IL－E	78889\％．	619969	8
21	0819796．	ठも9899．8	I0才I8\％	G0880L\％	8t	28	9\％んIち96•	909ちE9－E	EEICL\％	LGLZg9\％．	8%	C	L9LL996．	7888\％L－E	\％ 4897.	018869\％	\％
8 I	LI69\％96．	¢19 999.8	L8018\％．	ד0090ム\％．	\％ 18	88	乚6も\％も96．	ธ̄L889－E	078もんで	\％c6679\％	\％z	9	G098996．	81 LLZL．E	19z89\％	000I69	
6 I	万0LLE 76.	069199．	8んL08\％	万0ヶ80L\％．	IV	68	$8978 \ddagger 96$	1687\％9．8	L09もLて．	LもL2も9\％．	I\％		89\％6996．	090\％8－ 8	676 29	061889%	0
				U！ 5			0	－8u870	－848L	－ 3 U！${ }^{\text {S }}$			－әu！son	－8urzon	－®urg	－әu！	

							-2815042						-2870819		9		
			$3 \cdot 483589$	- 9611815	59	2		$\cdot 293683$		$\cdot 95947$	38	42					
	$\cdot 2761965$.287375	$3 \cdot 479772$	- 9611012			- 28	- 2939		- 9593961		,	- 28		-329654	. 9577389	17
				- 9610208			-2823415	-294316	$3 \cdot 397708$	- 9593140	36	44	-2879177				16
								$\cdot 2$	$3 \cdot 394063$	- 9592318	35	4	-2881963	5		4	
	-2770352	-288320	$3 \cdot 4683$	- 9608598			-2828995	-294948		$\cdot 9591496$		46	-2884748	301283	$3 \cdot 319137$. 9574875	
									$3 \cdot 386793$			47	-2887533			5	
		-288950		- 9606984				-295580	$3 \cdot 383169$. 9589848	32	48	-2890318	$\cdot 301917$	$3 \cdot 312159$		
	-2778736			-9606177			-2837364	.295897	$3 \cdot 379553$. 9589023		49	-2893103			- ${ }^{\text {a }}$	
	-2	-289580	$3 \cdot 453267$	- 9605368		30	-2840153		$3 \cdot 375943$. 9588197	30	0	-2895887	-302552	9	$\cdot .9571512$	10
		-289896		- 9604558			-2842942	-296529	$3 \cdot 372340$				-2898671	0	$3 \cdot 301743$	-9570669	
	-2787118	-290211	$3 \cdot 445763$	- 9603748				-296846	$3 \cdot 368745$	-9586543	28		-2901455	7	$3 \cdot 298285$	569825	
			$3 \cdot 442022$	-	48					- 9585715			-2904239		3	$\cdot .9568981$	
	-2		$3 \cdot 438289$	- 9602125			-2851308	-29747	$3 \cdot 361575$	- 9584886	26	54	-2907022				
	-2795497	$\cdot 291157$	$3 \cdot 434563$	$\cdot 9601312$			-2854096	-297796	$3 \cdot 358000$	-9584056	25	55	-2909805	04141	$3 \cdot 287948$	0	
		-291473	$3 \cdot 430844$	-9600499				-298112	3-354433	$\cdot .9583226$			-2912588	04458	$3 \cdot 284516$	-	
		.291789	$3 \cdot 427153$	- 9599684			-2859671	-298429	$3 \cdot 350872$	-9582394			-2915371	4776	$3 \cdot 281090$		
	-280387	$\cdot 292104$	$3 \cdot 423429$	-9598869	43		-2862458		47319	-9581562			$\cdot 2918153$				
	$\cdot 2806667$	-292420	$\|3 \cdot 419733\|$			39		-2990					5	12		-9563898	
	-2809459	-292736	$3 \cdot 416044$	$\cdot 9597236$		40	-2968032	-299380	$3 \cdot 340232$	-9579895	20	60	$\cdot 2923717$	$\cdot 305730$	$3 \cdot 270852$	$\cdot .9563048$	
	-2812251	$\cdot 293052$	$3 \cdot 412362$	$\cdot 9596418$	4												
				Sine.	\%	1	Cosine.	ng	1					an	18	e.	/

	Sine.	Tang.	Cotang.		${ }^{\prime}$	Sine.	Tang.	Cotang.	Cosine.			Si	Tang.	Cotang.	Cosine.	
0	-2923717	- 305730	$3 \cdot 270852$	-9563048	60.21	2982079	312422	$3 \cdot 200789$	$\cdot 9545009$	39	11.	$\cdot 3037559$	-318820	$3 \cdot 136563$		
1	-2926499	-306048	3-267452	-9562197	$53 / 22$	2984856	-312742	$3 \cdot 197521$	$\cdot 9544141$	38	$12 \cdot$	$\cdot 3040331$	319140	3•133414	-9526615	
2	-2929280	-306367	3-264059	$\cdot 9561345$	5823	-2987632	$\cdot 313061$	$3 \cdot 194259$	-9543273	37	43	$\cdot 3043102$	319461	$3 \cdot 130270$	- 9525730	
3	-293206	-306685	$3 \cdot 260672$	-9560492	5724	-2990408	$\cdot 313381$	$3 \cdot 191003$	$\cdot 9542403$	36	44.	-3015872	-319781	$3 \cdot 127131$	-9524844	
	-2934842	-307003	$3 \cdot 257292$	$\cdot 9559639$	5625	-2993184	$\cdot 313700$	$3 \cdot 18775$	$\cdot 9541533$	35	45	-3048643	-320102	$3 \cdot 123999$	-9523958	
	-2937623	-307321	3-253918	$\cdot 9558785$	55.26	-2995959	-314020	$3 \cdot 184510$	$\cdot 9540662$	34	46	-3051413	-320423	3-120872	-9523071	
6	-2940403	- 307640	3-250550	-9557930	54.27	-2998734	- 314339	3-181272	$\cdot 9539790$	33	47 -	-3054183	- 320744	$3 \cdot 117750$	$\cdot 9522183$	
	-2943183	-307958	$3 \cdot 247189$	$\cdot 9557074$	53,28	- 3001509	- 314659	$3 \cdot 178040$	$\cdot 9538917$	32	48	-3056953	-321064	$3 \cdot 114635$	$\cdot 9521294$	
	-2945963	-308277	$3 \cdot 243834$	$\cdot 9556218$	5229	-3004284	-314979	$3 \cdot 174814$	9538044	31	49	-3059723	- 321385	3-111525	-9520404	
-	-2948743	-308595	$3 \cdot 240486$	$\cdot 9555361$	5130	- 3007058	-315298	$3 \cdot 171594$	$\cdot 9537170$	30	50	$\cdot 3062492$	-321706	$3 \cdot 108421$. 95	
10	-2951522	-308914	$3 \cdot 237143$	$\cdot 9554502$	5031	- 3009832	-315618	3168380	$\cdot 9536294$	29	51	-3065261	-322027	$3 \cdot 105322$	$\cdot 9518623$	
11	-2954302	-309233	$3 \cdot 233807$	-9553643	49,32	- 3012606	- 315938	$3 \cdot 165172$	- 9535418	28	52	-3068030	- 322348	3-102229	$\cdot 95177$	
	-2957081	-309551	$3 \cdot 230478$	$\cdot 9552784$		- 3015380	-316258	$3 \cdot 161970$	$\cdot 9534542$	27	53	-3070798	-322670	$3 \cdot 099141$	$\cdot 95168$	
	2959859	-309870	$3 \cdot 227154$	-9551923		- 3018153	- 31657	3-158774	$\cdot 9533664$	26	54	-3073566	-322991	$3 \cdot 096059$	-95159	
	-2962638	-310189	$3 \cdot 223837$	-9551062	46,35	-3020926	-316898	$3 \cdot 155584$	-9532786	25	55	-3076334	- 323312	$3 \cdot 092983$	-951t,050	
15	-2965416	- 310508	$3 \cdot 220526$	-9550199	$45 / 36$	-3023699	-317218	$3 \cdot 152399$	-9531907	24	56	-3079102	- 323633	$3 \cdot 089912$	-951415	
16	-2968194	-310827	$3 \cdot 217221$	-9549336	443	-3026471	-317538	3-149220	$\cdot 9531027$	23	57	-3081869	-323955	-	-9513258	
17	-2970971	-311146	$3 \cdot 213922$	-9548473		3029244	-317859	$3 \cdot 146047$	-9530146	22	58	-3034636	-324276		-9512361	
18	\|-2973749	-311465	$3 \cdot 210630$	-9547608	4239	-3032016	-318179	3-142880\|	-9529264		59	-3087403	-324598	$3 \cdot 080732$	$\cdot 9511464$	
19	-2976526	-311784	$3 \cdot 207344$	$\cdot 9546743$		$\cdot 3034788$	-318499	$3 \cdot 139719$	$\cdot 9528382$	20	60	-3090170	-324919	$3 \cdot 077683$	$\cdot 9510565$	
20	-2979303	-312103	$3 \cdot 204063$	-9545876	40											
,	Cosine	Cot	ng	Sine.		Cosine.	Cotang	Tang.	Sine.			Cosin	Cotan	Tang.	Sine.	

		'lang.	.													e.	
. 0	-3255682	-344327	$2 \cdot 904210$	$\cdot 9455186$		21	$\cdot 3313379$	$\cdot 351175$	$2 \cdot 847583$	$\cdot 9435122$	39		-3368214	-357723	$2 \cdot 795453$	-9415686	
1	-3258432	-344653	$2 \cdot 901468$	-9454238	59	22	$\cdot 3316123$	$\cdot 351501$	2-844935	-9434157	38		-3370953	-358051	$2 \cdot 792891$. 941470518	
2	-3261182	-34497	$2 \cdot 89873$	-9453290	58	23	$\cdot 3318867$	-351828	$2 \cdot 842292$	-9433192	37		-3373691	-358380		$.9413724$	
3	$\cdot 3263932$	-345304	$2 \cdot 895998$	-9452341			.3321611	-352155	$2 \cdot 839653$	-9432227	36	44	-3376429	'358708		\|-9412743	16
4	-3266681	-345629	$2 \cdot 893270$	-9451391		25	-3324355	-352482	$2 \cdot 837019$	-9431260	35	45	.3379167	-359036	$2 \cdot 785230$	-9411760\|15	
5	-3269430	-345955	$2 \cdot 890546$	- 9450441		26	-3327098	-352809	2-834389	- 9430293	34	46	-3381905	-359365	$2 \cdot 782685$	-9410777	
6	-3272179	-346281	$2 \cdot 887827$	$\cdot 9449489$		27	-3329841	-353136	$2 \cdot 831763$	-9429324	33	47	$\cdot 3384642$	-359693		.940979313	
7	-3274928	-346606	$2 \cdot 885113$	- 9448537		28	-3332584	-353464	$2 \cdot 829142$. 9428355				$\cdot 360022$		$\cdot 9408808$	
8	-3277676	-346932	$2 \cdot 882403$	-9447584		29	-3335326	-353791	$2 \cdot 826525$	-9427386	3		. 3390116	-360350	$2 \cdot 775073$	-9107822	
9	-3280424	-347258	$2 \cdot 879697$	- 9446630		30	-3338069	-35411S	$2 \cdot 823912$. 9426415	30	50	-3392852	-360679	$2 \cdot 772544$	-9406835 10	
10	-3283172	$\cdot 347584$	24876997	- 9445675	50	31	-3340810	-354446	2-821304	$\cdot 9425444$	29		-3395589	-361008	$2 \cdot 770019$. 9405848	
11	-3285919	-347910	2-874300	-9444720	49	32	-3343552	-354773	$2 \cdot 818700$	-9424471	28	52	-3398325	-361337	$2 \cdot 767499$	$\cdot 9404860$ 8	
	-3288666	-348236	$2 \cdot 871608$. 9443764		33	-3346293	- 35510	2.816100	$\cdot 9423498$	27	53	-3401060			- 9403871	
13	-3291413	-348563	$2 \cdot 868921$	-9442807			-3349034	-355428	$2 \cdot 813504$	-9422525	26		$\cdot 3403796$	-361994	$2 \cdot 762469$.9402881 .6	
	-3294160	-348889	$2 \cdot 866238$	- 9441849		35	-3351775	-355756	$2 \cdot 810913$	-9421550	2	55	-3406531	-362324		.9401591 5	
15	-3296906	-349215	$2 \cdot 863560$	- 9440890		36	.3354516	-356084	$2 \cdot 808326$	-9420575	24	56	-3409265	-362653	6	$\cdot .94008994$	
16	-3299653	-349542	$2 \cdot 860886$. 9439931	44	37	-3357256	-356411	$2 \cdot 805743$	-9419598	23	57	-3412000	-362982	2,	-9399907 3	
17	-3302398	-349868	$2 \cdot 858216$	$\cdot 9438971$	43	38	-3359996	$\cdot 356739$	$2 \cdot 803164$. 9418621	22	58	-3414734	$\cdot 363311$		-9398914. 2	
18	-3305144	-350195	$2 \cdot 855551$. 9438010			$\cdot 3362735$	-357067	$2 \cdot 800590$. 9417644		59	-3417468	-363640	$2 \cdot 749966$	-9397921 1	
19	-3307889	-350521	$2 \cdot 852891$	-9437048	41	10	-3365475	-357395	$2 \cdot 798019$. 9416665	O	60	-3420201	-363970	$2 \cdot 747477$	-9396926 0	
20	$\cdot 3310634$	-350848	$2 \cdot 850234$	$\cdot 9436085$													
,	Cosine.	Cotang	'rang.	Sine.		1	Cosine.	Cotang.	Tang.	Sine.	7	1	Cosine.	Cotang.	'Tang.	Sine. 11	
				Deg.						Deg							

	Sine.	Tang.	Cotang.	Cosine.		Sine.	Tang.	tang.	Cosine.			Sine.	Tang.	Cotang.	Cosine.	
	-3420201	-363970	2.74	-939		-3477540	$\cdot 370903$	$2 \cdot 6$	-9375858			3532027	. 377536		-9355468	9
	$1 \cdot 3422935$	-364299	2-744992	-9395931	5922	-3480267	$\cdot 371234$	2.693714	-9374846	384		3534748	-377868	2.646423	$\cdot 9354440$	8
	\|-3425668	-364629	$2 \cdot 74251$	-9394935		-3482994	-371565	$2 \cdot 691314$	-9373833	3743	$13 \cdot 3$	3537469	$\cdot 378201$	2•644096	-9353412	7
	3-3428400	-364958	2.740035	-9393938		4-3485720	-371896	2.688919	-9372820	364	$44 \cdot 3$	3540190	-378533	$2 \cdot 641774$	-9352382	6
	4-3431133	$\cdot 365288$	2.737562	-9392940	5625	5-3488447	-372227	$2 \cdot 686526$	-9371806	[35 4		3542910	-378866	2•639454	-9351352	15
	$5 \cdot 3433865$	-365618	$2 \cdot 735093$	-9391942		-3491173	-372559	$2 \cdot 684138$	-9370790	344		3545630	-379198	$2 \cdot 637139$	-9350321	
	$6 \cdot 3436597$	-365948	2-732628	-9390943		7.3493898	-372890	$2 \cdot 681753$	-9369774	334		3548350	-379531	$2 \cdot 6348$	-9349289	
	$7 \cdot 3439329$	-366277	2.730167	-9389943		-3496624	-373221	$2 \cdot 679372$	-9368758	324		3551070	. 379864	$2 \cdot 6325$. 93482	
	$8 \cdot 3442060$	-366607	$2 \cdot 72771$	9388942		- 3499349	$\cdot 373553$	$2 \cdot 676995$	-9367740	314		3553789	-380197	2	-9347223	11
	$9 \cdot 3444791$	-366937	2.72525	9387940		0-3502074	-37388	$2 \cdot 674621$	-9366722	305		3556508	. 380530	2•6279	-9346189	10
10	- 3447521	-367268	$2 \cdot 72230$	-938693		-350479	$\cdot 374216$	2.672251	-9365703			3559226	$\cdot 380863$	$2 \cdot 625614$	$\cdot 9345154$	
11	$1 \cdot 3450252$	-367598	20362	-9385934		-3507523	. 374547	$2 \cdot 669885$	-9364683			3561944	$\cdot 381196$	2•623319	-9344119	
12	2-3452982	-367923	$\cdot 717920$	$\cdot 9384930$		3.3510246	$\cdot 374879$	$2 \cdot 667522$	-9363662	275		3564662	-381529	2.62102	-9343082	
13	$3 \cdot 3455712$	- 368258	$2 \cdot 715482$	$\cdot 9383925$	4734	4-3512970	$\cdot 375211$	$2 \cdot 665163$	${ }^{9} 9362641$	265		3567380	-381862	$2 \cdot 618741$	-9342045	
	4. 3458441	-368589	$2 \cdot 713048$	-9382920	46	3515693	$\cdot 375543$	$2 \cdot 662808$	-9361618			3570097	-382196	$2 \cdot 616457$	-934100	5
15	5-3461171	-368919	1061	. 9381913	45	3518416	-375875	$2 \cdot 660456$	-9360595			3572814	-382529	$2 \cdot 614176$	-9339968	4
16	6-3463900	-369250	2•708192	${ }^{9380906}$	4433	7.3521139	-376207	2.658108	-9359571			3575531	-382863	2•61189	-9338928	2
17	17.3466628	-369580	$2 \cdot 70576$	9379898	4338	8-3523862	$\cdot 376539$	$2 \cdot 655764$	$\cdot 9355754$	22158		3578248	. 383196	2-609625 ${ }^{2 \cdot 607355}$	-9337888	1
19	$9 \cdot 3472085$	-370242	2.700936	-9377880	4140	-3529306	-377203	2;651086	$\cdot 9356495$	2060		3583679	$\cdot 383864$	$2 \cdot 605089$	-9335804	0
20	0-3474812	$\cdot 370572$	$2 \cdot 698525$	-9376869	40											
	Cosine	C	T	Sine.	, 1	sine	g.	ng	Sine.	1,		Cosine.	Cotang.	Tang.	Sine.	

	Sine.	Tang.	Cotang.	e.			Sine.	Tang.	Cotang.	Cosine			Sine.	Tang.	Cotang.	Cosine.	
0	-3583679	-383864	2-605089	- 9335804	60	21	-3640641	-390889	2.558268	- 9313739	39	41	-3694765	-397611	$2 \cdot 515018$. 9292401	19
1	-3586395	-384197	$2 \cdot 602825$	-9334761	59	22	$\cdot 3643351$	-391224	2-556075	$\cdot 9312679$	38	42	-3697468	-397948	$2 \cdot 512889$	$\cdot 9291326$	18
2	-3589110	-384531	$2 \cdot 600565$	9333718	58	23	-3646059	-391560	$2 \cdot 553885$. 9311619	37	43	-3700170	-398285	$2 \cdot 510762$	- 9290250	17
3	-3591825	- 384865	2-598309	-9332673	57	24	-3648768	-391895	2-551699	-9310558	36	44	-3702872	-398622	$2 \cdot 508639$	$\cdot 9289173$	16
4	-3594540	-385199	2-596056	$\cdot 9331623$	56	25	-3651476	-392231	2.549516	-9309496	35	45	$\cdot 3705574$	-398959	$2 \cdot 506519$	- 9288096	15
5	$\cdot 3597254$	- 335533	2.593806	$\cdot 9330582$	55	26	-3654184	-392567	$2 \cdot 547335$	$\cdot 9308434$	34	46	-3708276	-399296	2 -504402	-9287017	14
6	- 3599968	- 385867	2-591560	-9329535	54	27	-3656891	-392902	$2 \cdot 545159$	-9307370	33	47	-3710977	-399634	2-502289	$\cdot 9285938$	13
	-3602682	-386202	2.589317	$\cdot 9328488$	532	28.	$\cdot 3659599$	-393238	2.542985	$\cdot 9306306$	32	48	-3713678	-399971	$2 \cdot 500178$	$\cdot 9284858$	2
8	- 3605395	-386536	$2 \cdot 587078$	-9327439	52	29	-3662306	-393574	$2 \cdot 540815$	-9305241	31	49	-3716379	-400308	$2 \cdot 498070$. 9283778	1
9	- 3608108	-386870	$2 \cdot 584842$	-9326390	513	30	-3665012	- 393910	$2 \cdot 538647$	-9304176	30	50	$\cdot 3719079$	-400646	$2 \cdot 495966$	-9282696	10
10	-3610821	-387205	2-582609	$\cdot 9325340$	50	31	-3667719	- 394246	$2 \cdot 536483$	$\cdot 9303109$	29	51	-3721780	-400984	$2 \cdot 493864$. 9281614	9
11	-3613534	- 387539	$2 \cdot 580380$	-9324290	49	32	-3670425	-394532	$2 \cdot 534323$	-9302042	28	52	-3724479	-401321	$2 \cdot 491766$. 9280531	8
12	- 3616246	- 387874	$2 \cdot 578153$	$\cdot 9323238$	48	33	-3673130	-394918	2.532165	-9300974	27		$\cdot 3727179$	-401659	$2 \cdot 489670$	-9279447	7
13	- 3618958	-388209	2-575931	$\cdot 9322186$	47	34	-3675836	- 395255	$2 \cdot 530011$	- 9299905	26	54	-3729878	-401997	$2 \cdot 487578$	-9278363	6
14	- 3621669	- 388543	2-573711	$\cdot 9321133$	46	35	-3678541	-395591	2.527859	- 9298835	25	55	-3732577	-402335	$2 \cdot 485488$	-9277277	5
15	-3624380	-388878	2.571495	-9320079	45	36	-3681246	- 395928	2.525711	-9297765	24	56	-3735275	-402673	$2 \cdot 483402$	-9276191	
16	- 3627091	-389213	$2 \cdot 569283$	-9319024	44	37.	- 3683930	-396264	$2 \cdot 523566$	-9296694	23	57	-3737973	- 403011	$2 \cdot 481319$	-9275104	3
17	-3629802	-389548	$2 \cdot 567073$	-9317969	43	38.	-3686654	-396601	$2 \cdot 521424$	$\cdot 9295622$	22	58	-3740671	-403349	$2 \cdot 479238$	-9274016	2
18	-3632512	-389883	2-564867	- 9316912	42	39	-3689358	-396937	2.519286	$\cdot 9294549$	21	59	$\cdot 3743369$	-403687	$2 \cdot 477161$	-9272928	1
19	- 3635222	-390218	2-562664	$\cdot 9315855$	414	40	-3692061	-397274	2.517150	.9293475	20	60	-3746066	- 404026	$2 \cdot 475086$. 9271839	0
20	-3637932	-390554	$2 \cdot 560464$	$\cdot 9314797$	40												
,	Cosine.	Cotang.	Tang.	Sine.	,	1.	Cosine.	Cotang.	Tang.	Sine.	,	,	Cosine.	Cotang.	Tang.	Sine.	,

Deg.

,	Sine.	g.	Cotang.	Cosine. ${ }^{\prime}$			Sine.	g.	g.				Sine.	g.	g.	e.	
0	-3907311	-424474	$2 \cdot 355852$	- 9205049	6021		3963468	-431703	$2 \cdot 316407$. 9181009	39	11	-4016814	-438622	2•279865	-9157795	19
1	-3909989	-424818	$2 \cdot 353948$	-9203912	5922		-3966139	-432048	$2 \cdot 314557$	-9179855	38	42	-4019478	- 438969	$2 \cdot 278063$	-9156626	18
2	-3912666	-425161	$2 \cdot 352046$	-9202774 5	58		-3968809	-432393	$2 \cdot 312709$	$\cdot 9178701$	37	43	-4022141	- 439316	$2 \cdot 276264$	9155456	7
3	-3915343	-425505	$2 \cdot 350148$	-9201635 5	5724	$4 \cdot$	-3971479	-432738	$2 \cdot 310863$	$\cdot 9177546$	36	44	-4024804	-439663	2-274467	- 9154286	6
4	-3918019	-425848	$2 \cdot 348251$	-9200496 5	5625	5	-3974148	-433084	$2 \cdot 309020$	$\cdot 9176391$	35	45	$\cdot 4027467$	-440010	$2 \cdot 272672$	$\cdot 9153115$	5
5	3920695	-426192	$2 \cdot 346358$	$\cdot 9199356$	5526	6	-3976818	-433429	$2 \cdot 307180$	-9175234	34	46	$\cdot 4030129$	- 440357	$2 \cdot 270880$	$\cdot 9151943$	4
6	-3923371	-426536	$2 \cdot 344467$	$\cdot 9198215$	54	$7 \cdot$	-3979486	-433775	$2 \cdot 305342$	- 9174077	33	47	-4032791	-440705	$2 \cdot 269090$	-9150770	3
7	-3926047	-426880	$2 \cdot 342578$	-9197073 5	5328		-3982155	- 434120	$2 \cdot 303506$	$\cdot 9172919$	32	48	-4035453	-441052	$2 \cdot 267303$	$\cdot 9149597$	2
	-3928722	-427223	$2 \cdot 340692$	-9195931 5	5229		-3984823	-434466	2-301673	-9171760	31	49	-4038 ${ }^{14} 14$	-441400	$2 \cdot 265518$	$\cdot 9148422$	1
	-3931397	-427568	$2 \cdot 338809$	-9194788	5130		-3987491	- 434812	$2 \cdot 299842$	-9170601	30	50	-4040775	-441747	$2 \cdot 26373$	9147247	0
10	-3934071	-427912	$2 \cdot 336928$	-9193644	5031	1	-3990158	- 435158	$2 \cdot 298014$	-9169440	29	51	-4043436	-442095	2-261955	9146072	9
1	-3936745	-428256	$2 \cdot 335050$	-9192499	4932	2	-3992825	-435504	$2 \cdot 296188$	$\cdot 9168279$	28	52	-4046096	-442443	$2 \cdot 260177$	$\cdot 9144895$	8
12	-3939419	- 428600	$2 \cdot 333174$	$\cdot 9191353$	483		-3995492	- 435850	$2 \cdot 294365$	- 9167118	27	53	$\cdot 4048756$. 442791	$2 \cdot 258401$	-9143718	7
13	-3942093	-428944	$2 \cdot 331301$	-9190207	4734	4 -	. 3998158	-436196	$2 \cdot 292544$	$\cdot 9165955$	26	54	-4051416	$\cdot 413139$	$2 \cdot 256628$	$\cdot 9142540$	6
14	-3944766	-429289	$2 \cdot 329431$	-9189060	46		-4000825	-436542	$2 \cdot 290725$	$\cdot 9164791$	25	55	-4054075	- 443487	$2 \cdot 254857$	$\cdot 9141361$	5
15	-3947439	- 429633	$2 \cdot 327563$	-9187912	4536		- 4003490	- 436889	2-288909	$\cdot 9163627$	24	56	-4056734	-443835	$2 \cdot 253088$	-914018	4
16	-3950111	-429978	2-325697	-9186763	44		- 4006156	-437235	$2 \cdot 287095$	- 9162462	23	57	-4059393	- 444183	$2 \cdot 251322$	-9139001	3
17	- 3952783	-430323	2-323834	-9185614	43		-4008821	- 437582	2-285284	-9161297	22		-4062051	-444531	2-249558	-9137819	2
18	- 3955455	$\cdot 430668$	2-321974	-9184464 ${ }^{4}$	4235		-4011486	-437928	2-283475	$\cdot 9160130$			-4064709	$\cdot 444880$	$2 \cdot 247796$	-9136637	1
19	-395812i	-431012	$2 \cdot 320116$	-9183313	4140		-4014150	-4382\% 5	$2 \cdot 281669$	$\cdot 9158963$		60	-4067366	-445228	$2 \cdot 246036$	$\cdot 9135455$	0
20	-3960798	-431357	$2 \cdot 318260$	-9182161	40												
	C		Tang.	Sine.	',		Cosine.	Cotan	ng	ne.			Cosin	Cotang	T'ang.	Sine.	,

	Sine.	'Tang.	Cotang.				Sine.	g.	Cotang.	Cosine.			in	'Tang.	ng.			
0	- 4067366	. 445228	$2 \cdot 246036$	- 9135455	6021		-4123096	- 452568	$2 \cdot 209611$		39	41	. 4176028	-459596	2-175822	- 9086297	19	
1	-4070024	-445577	$2 \cdot 244279$	- 9134271	5922	2	-4125745	-452918	$2 \cdot 207901$	-9109238	38		.4178671	-459948	$2 \cdot 174155$	-9085082	18	
	-4072681	- 445926	$2 \cdot 242524$	\|9133087	5	58	3	-4128395	-453269	$2 \cdot 206193$	-9108038			. 4181313	$\cdot 460301$	2-172491	- 9083866	7
	. 4075337	- 446274	$2 \cdot 240772$	-9131902	5724	4	-4131044	-453620	$2 \cdot 204487$	-9106837	36		- 4183956	-460653	2-170828	-9082649	16	
4	-4077993	- 446623	$2 \cdot 239021$	-9130716	5625	5	$\cdot 4133693$	$\cdot 453970$	2-202784	-9105635	35		- 4186597	-461006	2-169167	-9081432	15	
5	-4080649	- 446972	$2 \cdot 237273$	-9129529	5526	6	-4136342	-454321	$2 \cdot 201083$	-9104432	34		- 4189239	-461359	2•167509	-9080214	414	
	- 4083305	. 447321	$2 \cdot 235528$	$\cdot 9128342$	5427	7	-4138990	-454672	2-199384	-9103228	33		-4191880	-461711	2-165852	$\cdot 9078995$	13	
	- 4085960	. 447670	$2 \cdot 233784$	-9127154	5328	8.	-4141638	-455023	2-197687	-9102024	32		.4194521	$\cdot 462064$	2-164198	- 9077775		
8	4088615	. 448020	$2 \cdot 232043$	-9125965	5229	$9 \cdot$	-4144285	-455375	2-195992	-9100819	31		. 4197161	-462417	2-162546	$\cdot 9076554$	411	
9	4091269	-448369	2-230304	-9124775			-4146932	-455726	2-194299	-9099613	30		$\cdot 4199801$	-462771	2•160895	-9075333	10	
10	- 4093923	. 448718	$2 \cdot 228567$	-9123584	5031	1	-4149579	$\cdot 456077$	2-192609	-9093406	29		. 4202441	-463124	2-159247	-9074111	19	
11	- 4096577	- 449068	2-226833	$\cdot 9122393$			-4152226	$\cdot 456429$	2-190921	-9097199	8		-4205080	-463477	2•157601	-9072888	8	
12	-4099230	. 449417	2-225100	-9121201	4833	3	-4154872	- 456780	2-189234	-9095990	27		-4207719	$\cdot 463831$	2-155957	-907166	7	
13	- 4101883	449767	$2 \cdot 223370$	-9120008	4734		-4157517	-457132	$2 \cdot 187551$	-0094781	26		-4210358	-464184	$2 \cdot 154315$	-9070 14	6	
14	$\cdot 4104536$	-450117	$2 \cdot 221643$	-9118815	4635		-4160163	-457483	2-185869	- 9093572			-4212966	-464538	2•152675	-9069215	5	
15	-4107189	-450467	$2 \cdot 219917$	-9117620	4536	6	4162808	-457835	2-184189	$\cdot 9092361$	24		-4215634	-464891	$2 \cdot 151037$	-906798	4	
16.	$\cdot 4109841$	-450817	2-218194	$\cdot 9116425$			-4165453	-458187	$2 \cdot 182511$	-9091150			-4218272	-465245	2-149402	-9066762	3	
171.	4112492	-4.51167	$2 \cdot 216473$	$\cdot 9115229$	4338		-4168097	$\cdot 458539$	$2 \cdot 180836$	- 9089938	22		-4220909	-465599	2-147768	- 9065535	2	
18.	411.5144	-451517	2-214754	$\cdot 9114033$	4239		-4170741	-458891	2-179163	$\cdot 9088725$			$\cdot 4223546$	-465953	2-146136	-9064307	1	
19.	4117795	-451867	$2 \cdot 213037$	-9112835	4140	0	. 4173385	-459243	2-177492	$\cdot 9087511$	2	60	-4226183	-466307	$2 \cdot 144506$	-90630	0	
20.	4120445	-452217	$2 \cdot 211323$	$\cdot 9111637$	40													
,	Cosine.	Cotang.	'Tan	Sine.	11	1	Cosine.	Cotang.	Tang.	Sine.			Cosin	Cotang	Tang.	Sine.	,	

	e.	Tang.	Cotang.	Cosine. ${ }^{\prime}$		S	g.	Cotang.				Sine.	ng.	Cotang.		
0	-4383711	$\cdot 487732$	$2 \cdot 050303$	-8987940	6021	-4438534	-495317	$2 \cdot 018908$	-8960994	39	11	-4490591	-502583	$1 \cdot 989720$	-8935021	9
0	-4386326	-488092	$2 \cdot 048791$	-8986665	5922	-4441140	-495679	$2 \cdot 017433$	-8959703	38	12	- 4493190	- 502947	1.988278	-8933714	8
2	$\cdot 4388940$	-488453	$2 \cdot 047280$	-8985389 5	58.23	-4443746	-496041	$2 \cdot 015959$	-89584 11	37	13	- 4495789	- 503312	986838	- 8932406	7
3	-4391553	-488813	$2 \cdot 045770$	-8984112 ${ }^{\text {- }}$	5724	$\cdot 4446352$	-496404	$2 \cdot 014486$	-8957118	36	14	-4498387	-503676	$1 \cdot 985400$	-8931098	6
4	$\cdot 4394166$	-489173	$2 \cdot 044263$	-8982834 5	5625	-4448957	-496766	$2 \cdot 013016$	-8955824	35	15	-4500984	- 504041	$1 \cdot 983963$	89	15
5	-4396779	-489534	2-042757	-8981555	55.26	-4451562	-497129	$2 \cdot 011547$	-8954529	34	16	-4503582	- 504406	1.982528	-8928480	14
6	-4399392	-489894	$2 \cdot 041254$	-8980276	5427	-4454167	-497492	$2 \cdot 010080$	-8953234	33	17	-4506179	-504771	1.981095	8927169	13
7	-4402004	-490255	$2 \cdot 039751$	-8978996	5328	$\cdot 4456771$	- 497855	$2 \cdot 008615$	- 8951938	32	18	$\cdot 4508775$	- 505136	1.979663	-8925858	12
8	$\cdot 4404615$	-490616	$2 \cdot 038251$	-8977715	5229	-4459375	. 498218	$2 \cdot 007151$	-8950641	1	49	-4511372	-505501	$1 \cdot 978233$	-89\%4546	11
9	-4407227	-490977	$2 \cdot 036753$	-8976433	5130	-4461978	-498581	$2 \cdot 005689$	-8949344	30	50	-4513967	-505866	1.976805	-8923234	10
10	-4409838	$\cdot 491338$	$2 \cdot 035256$	-8975151	5031	-4464581	-498944	2.004229	-8948045	29	51	-4516563	-506232	$1 \cdot 975378$	-8921920	9
11	- 4412448	-491699	$2 \cdot 033761$	-8973868	4932	-4467184	-499308	$2 \cdot 002771$	-8946746		52	-4519158	-506597	73953	8920606	8
12	-4415059	-492061	$2 \cdot 032268$	-8972584	4833	-4469786	-599671	2-001314	-8945446	27	53	-4521753	-506963	$1 \cdot 972529$	-8919291	7
13	-4417668	-492422	$2 \cdot 030776$	-8971299	4734	- 4472388	-500035	$1 \cdot 999859$	-8944146	26	54	-4524347	507329	1107	8917975	6
14	-4420278	-492783	$2 \cdot 029287$	-8970014	4635	-4474990	- 500398	$1 \cdot 998405$	-8942844			4526941	07694	$1 \cdot 969687$	89166	5
15	-4422887	-493145	$2 \cdot 027799$	-8968727	45.36	-4477591	-500762	$1 \cdot 996953$	-8941542	24	56	-4529535	-508060	968268	-8915342	
16	-4425496	- 493507	$2 \cdot 026313$	-8967440	4437	$\cdot 4480192$	-501126	$1 \cdot 995503$	- 8940240	3	57	-4532128	-508426	5	- 891270	3
17	-4428104	-493868	$2 \cdot 024828$	- 8966153	4338	-4482792	- 501490	$1 \cdot 994055$	8938936	22	58	$\cdot 4534721$	-508792	64022	-8912705	2 1
18	-4430712	-494230	$2 \cdot 023346$	-8964864	4239	-4485392	-501854	$1 \cdot 992608$	8937632	,		4537313	- 509159	64022		
19	-4433319	$\cdot 494592$	$2 \cdot 021865$	-8963575	4140	-4487992	-502218	$1 \cdot 991163$	8936326	20		4539905	509525	$1 \cdot 962610$		
20	-4435927	-494954	$2 \cdot 020386$	- 8962285												
,	Cosine.	Cotang.	Tang.	Sine.	11	C	Cotang	Tang.	Sine.			Cosine.	Cotang.	Tang.	Sine.	1
				Deg					D						Deg.	

'	Sine.	Tang.	Cotang.	ne.			ine.	'T'ang.	Cotang.	Cosine			Sine.	Tang.	Cotang.	Cosine.	
0	. 4539905	509525	$1 \cdot 962610$	-8910065	602	21	-4594248	517244	1.933323	-8352166	39	41	- 4645845	- 524640	1.906066	-8855288	19
1	-4542497	. 509891	$1 \cdot 961200$	8908744	59	22	-4596832	517612	1.931945	-8880830	38	12	-4648420	-525011	1.904719	- 8853936	18
2	-4545088	. 510258	$1 \cdot 959791$	-8907423	58	23	-4599415	. 517981	$1 \cdot 930569$	-8879492	37	13	- 4650996	- 525382	1.903373	-8852584	17
3	-4547679	. 510625	1.958383	-8906100	572	24	-4601998	. 518350	1.929195	-8878154	36	14	-4653571	-525754	1.902029	-8851230	16
4	- 4550269	. 510991	$1 \cdot 956978$	- 8904777	56	25.	-4604580.	. 518719	1.927822	-8876815	35	15	- 4656145	-526125	$1 \cdot 900687$	-8849876	15
	-4552859	. 511358	$1 \cdot 955573$	-8903453	55	26	-4607162	$\cdot 519089$	$1 \cdot 926451$	-8875475	34	16	-4658719	- 526496	1.899346	-8848522	14
6	\|-4555449	. 511725	1-954171	-8902128	54	27.	-4609744	$\cdot 519458$	1.925081	- 8874134	33	17	-4661293	-526868	$1-898006$	-8847166	6
	-4558038	. 512093	$1 \cdot 952770$	-8900803	53	28.	-4612325	. 519827	$1 \cdot 923713$	-8872793	32	18	- 4663866	-527240	$1-896668$	-8845810	12
8	-4560627	. 512460	1.951371	-8899476	52	29	-4614906	-520197	$1 \cdot 922347$	-8871451	31	49	-4666439	. 527612	$1-895332$	- 8844453	
9	-4563216	- 512827	$1 \cdot 949973$	-8898149	513	30	-4617486	-520567	$1 \cdot 920982$	-8870108	30	50	-4669012	- 527983	1.893997	-8843095	10
10	-4565804	. 513195	1.948577	-8896822	50	31	-4620066	- 520936	$1 \cdot 919618$	-8868765	29	51	-4671584	- 528356	$1 \cdot 892663$	-8841736	6
11	-4568392	- 513562	$1 \cdot 947182$	- 8895493	493	32	-4622646	. 521306	$1 \cdot 918256$	-8867420	28	52	-4674156	-528728	1.891331	-8840377	8
12	-4570979	- 513930	1.945789	-8894164	48	33	-4625225	-521676	1.916896	-8866075	27		-4676727	-529100	$1 \cdot 890000$	-8839017	7
13	. 4573566	. 514298	$1 \cdot 944398$	-8892834	473	34	4627804	-522046	$1 \cdot 915537$	- 8864730	26	54	-4679298	- 529472	1.888671	-8837656	6
14	-4576153	- 514665	1.943008	-8891503	46	35	-4630382	-522417	$1 \cdot 914179$	-8863383	25	55	-4681869	- 529845	$1-887343$	-8836295	5
15	-4578739	. 515033	$1 \cdot 941620$	-8890171	45	36	-4632960	. 522787	$1 \cdot 912823$	-8862036	24	56	-4684439	-530217	$1 \cdot 886017$	-8834933	4
16	-4581325	-515401	$1 \cdot 940233$	-8888839	443	37	- 4635538	$\cdot 523157$	$1 \cdot 911469$	-8860688	23	57	-4687009	- 530590	$1 \cdot 88469$	8833569	
17	-4583910	. 515770	1.938848	-8887506	43	$38 \cdot$	-4638115	\|-523528	$1 \cdot 910116$	-8859339	22	58	-4689578	-530963	$1-883369$	-8832206	\|
18	-4586496	-516138	1-937464\|	-8886172	42	$39 \cdot$	-4640692	-523899	$1 \cdot 908764$	8857989	21		-4692147	-531336	$1 \cdot 882047$	\|-8830841	
19	-4589080	- 516506	1-936082	-8884838	414	40	-4643269	-524269	$1 \cdot 907414$	-8856639	20	60	$\cdot 4694716$	-531709	1-880726	-8829476	0
20	-4591665	-516875	1.934702	-8883503	40												
	Cosine.	Cotang	Tang.	Sine.	1	1	Cosine,	Cotang.	Tang.	Sine,	'	,	Cosine.	Cotang.	Tang.	Sine.	1

	Sine.	Tang.	Cotang.			e.	ng.	Cotang.	e.			Sin	Tang.	Cotang.		
0	-4694716	-531709	1.880726	-8829476 6	6021	-4748564	-539570	1.853325	-8800633	39	41	-4799683	-547106			19
1	-4697284	-532082	$1 \cdot 879407$	-8828110 5	5922	, 4751124	-539946	$1 \cdot 852035$	-8799251	38	42	-4802235	. 547484	$1 \cdot 826537$	-8771462	8
2	-4699852	-532455	1.878089	-8826743 5	5823	-4753683	-540322	$1 \cdot 850747$	1.8797869	37	43	$\cdot 4804786$	- 547862	$1 \cdot 825276$	-8770064	17
3	- 4702419	$\cdot 532829$	1.876773	-8825376 5	5724	4.4756242	- 540698	$1 \cdot 849461$	-8796486	36	44	$\cdot 4807337$	- 548240	$1 \cdot 824017$	-8768666	6
	- 4704986	-533202	$1-875458$	-8824007 5	5625	-4758801	- 541074	$1 \cdot 848176$	-8795102	35	45	-4809888	- 548618	1.822759	-8767268	5
5	-4707553	533576	$1-874145$	-8822638 5	55.26	-4761359	. 541450	$1 \cdot 846892$	-8793717	34	46	-4812438	-548997	$1 \cdot 821502$	-8765868	4
6	-4710119	-533950	$1 \cdot 872833$	-8821269 5	5427	- 4763917	- 541826	$1 \cdot 845609$	- 8792332	33	47.	-4814987	- 549375	$1 \cdot 820247$	- 8764468	3
T	$\cdot 4712685$	-534324	1.871523	-8819898 5	5328	-4766474	- 542202	$1 \cdot 844328$. 8790946	32	48	-4817537	- 54975	1.81899	-8763067	2
	$\cdot 4715250$	-534698	1.870214	-8818527 5	5229	- 4769031	- 542579	$1 \cdot 843049$. 8789559	31	49	-4820086	-550133	1.81774	8761665	1
9	- 4717815	-535072	1.868906	-8817155 5	5130	- 4771588	- 542955	1.841770	. 8788171	30	50	-4822634	. 550512	1.816489	-8760263	0
10	-4720380	-535446	1-867600	-8815782 5	5031	-4774144	- 543332	1-840494	-8786783	29	51	-4825182	-550891	$1 \cdot 815239$	-8758859	9
11	-4722944	-535820	$1 \cdot 866295$	-8814409 4	4932	- 4776700	. 543709	$1 \cdot 839218$	-8785394	28	52	-4827730	. 551270	1.813990	-8757455	8
12	-4725508	-536195	1-864992	- 88130354	4833	- 4779255	- 544086	$1-837944$	-8784001	27	53	$\cdot 4830277$. 551650	1.812743	-8756051	7
13	-4728071	-536569	$1 \cdot 863690$. 8811660	4734	- 4781810	- 544463	$1 \cdot 836671$	-8782613	26	54.	-4832824	-552029	$1 \cdot 811496$	-8754645	6
14	- 4730634	-536944	1-862389	-8810284 4	4635	-4784364	. 544840	1.835399	-8781222	25	55	-4835370	- 552409	1.810252	-8753239	5
15	-4733197	-537319	1.861090	-8808907 4	4536	-4786919	- 545217	$1 \cdot 834129$	-8779830	24	56	-4837916	-552789	1.809008	-8751832	4
16	-4735759	- 537694	1.859792	- 88075304	4437	-4789472	- 545595	1.832861	-8778437	23	57	-4840462	553168	$1 \cdot 807766$	-8750425	3
17	-4738321	-538069	1.858496	-8806152\|4	4338	$\cdot 4792026$. 545972	1.831593	- 8777043	22	$58 \cdot$	$\cdot 4843007$	-553548]	$1 \cdot 806525$	- 8749016	2
18	$\cdot 4740882$	-538444	$1 \cdot 857201$	-8804774 ${ }^{4}$	4239	\| 4794579	- 546350	$1 \cdot 830327$	- 8775649			$\cdot 4845552$	-553928	$1 \cdot 805286$	-8747607	
19	$\cdot 4743443$	-538819	$1 \cdot 855908$	- 8803394	4140	-4797131	- 546728	1-829062	. 8774254	20	60	-4848096	$\cdot 534309$	$1 \cdot 804047$	$\cdot 8746197$	0
2	- 4746004	-539195	$1 \cdot 854615$	-8802014 4	40											
1	Cosine.	Cotang.	Tang.	Sine.	11	Cosine.	Cotang.	Tang.	Sine.		\prime	Cosine.	Cotan	Tang.	Sine.	,

NATURAl. SINES AND TANGENTS TO A RADIUS 1.

$$
29 \text { Deg. }
$$

\prime	Sine.	Tang.	Cotang.			'	Sine.	${ }^{\prime}$ Tang.	Cotang.					ang.	otang.	osine.	
0	-4848096	$\cdot 554309$	$1 \cdot 804047$	-8746197	60	21	-4901433	-562321	$1 \cdot 778340$	-8716419	39	41	-4952060	-570004	$1 \cdot 754372$	-8687756	9
1	-4850640	, 554689	$1 \cdot 802810$	-8744786	59	22	-4903968	$\cdot 562704$	$1 \cdot 777130$	-8714993	38	42	$\cdot 4954587$	-570389	$1 \cdot 753186$	-8686315	18
2	. 4853184	,555069	$1 \cdot 801575$	-8743375	58	23	-4906503	-563087	$1 \cdot 775921$	-871356	37	43	-4957113	$\cdot 570775$	$1 \cdot 752002$	-8684874	7
3	-4855727	-555450	$1 \cdot 800340$	-8741963	57	24	-4909038	-563471	$1 \cdot 774714$	-8712138	36	44	-4959639	$\cdot 571161$	$1 \cdot 750819$	-8683431	16
4	-4858270	-555831	1-799107	,8740550	56	25	-4911572	-563854	$1 \cdot 773507$	-8710710	35	45	-4962165	-571547	$1 \cdot 749637$	-8681988	5
5	-4860812	-556211	$1 \cdot 797875$.8739137	55	26	-4914105	- 564237	$1 \cdot 772302$	-8709281	34	46	-4964690	-571933	$1 \cdot 748456$	- 8680544	4
6	-4863354	-556592	$1 \cdot 796645$.8737722	54	27	$\cdot 4916638$. 564621	$1 \cdot 771098$	-8707851	33	47	-4967215	-572319	$1 \cdot 747276$	-8679100	3
7	-4865895	-556973	1-795416	-8736307	53	28	. 4919171	$\cdot 565005$	$1 \cdot 769895$	-8706420	32	48	-4969740	-572705	$1 \cdot 746098$	-8677655	2
8	-4868436	. 557355	1-794188	-8734891	52	29	$\cdot 4921704$.565388	1-768694	-8704989	31	49	$\cdot 4972264$. 573091	$1 \cdot 744921$	-8676209	11
9	-4870977	-557736	$1 \cdot 792961$	-8733475	51	30	-4924236	$\cdot 565772$	$1 \cdot 767494$	-8703557	30	50	-4974787	$\cdot 573478$	$1 \cdot 743745$	-8674762	0
10	-4873517	-558117	$1 \cdot 791736$	-8732058	50	31	-4926767	$\cdot 566156$	$1 \cdot 766295$	-8702124	9	51	-4977310	$\cdot 573864$	$1 \cdot 742570$	-8673314	9
11	-4876057	$\cdot 558499$	1-790512	-8730640	49	32	-4929298	-566541	$1 \cdot 765097$	-8700691	28	52	-4979833	.574251	$1 \cdot 741396$	-8671866	8
12	-4878597	-558881	$1 \cdot 789289$	-8729221	48	33	-4931829	- 566925	$1 \cdot 763900$	-8699256	7	53	-4982355	. 574638	$1 \cdot 740$	-8670417	7
1	-4881136	-559262	$1 \cdot 788067$	-8727801	47	34	$\cdot 4934359$	-567309	$1 \cdot 762705$	-8697821	26	54	-4984877	$\cdot 575025$	$1 \cdot 739053$	-8668967	6
	-4883674	- 559644	$1 \cdot 788847$	-8726381	46	35	-4936889	-567694	$1 \cdot 761511$	-8696386	25	55	-4987399	-575412	$1 \cdot 737883$	-8667517	5
15	.4886212	-560026	$1 \cdot 785628$	-8724960	45	36	$\cdot 4939419$	$\cdot 568079$	$1 \cdot 760318$	- 8694949	24	56	-4989920	-575799	$1 \cdot 736714$	- 8666066	4
16	-4888750	-560409	$1 \cdot 784410$	-8723538	44	37	-4941948	$\cdot 568463$	$1 \cdot 759126$	-8693512	23	57	-4992441	-576187	$1 \cdot 735546$	-8664614	3
1	-4891288	-560791	$1 \cdot 783194$	-8722116	43	38	-4944476	$\cdot 568848$	$1 \cdot 757936$	-8692074	22	58	-4994961	. 576574	$1 \cdot 734380$	-8663161	2
18	-4893825	\|. 561173	$1 \cdot 781979$	-8720693	42	39	-4947005	$\cdot 569233$	$\|1 \cdot 756747\|$	-8690636		59	-4997481	-576962	$1 \cdot 733214$	-8661708	1
1	-4896361	- 561556	1•780765	-8719269	4	40	-4949532	$\cdot 569619$	$1 \cdot 755559$	-8689196	20	60	-5000000	-577350	$1 \cdot 732050$	$\cdot 8660254$	0
20	-4898897	-561939	1-779552	.8717844	40												
	Cosine	Cotang	Tang.	Sine.	1		Cosine.	Cotang.	Tang.	Sine.	,	1	Cosine.	Cotang.	Tang.	Sine.	1

'	Sine.	Tang.	otang.	Cosine.			Sine.	Tang.	Cotang.	Cosine.			Sine.	Tang.	Cotang.	Cosine.	
	-5299193	-624869	$1 \cdot 600334$	-8480481	60	21	-5350898	-633395	1.578791	-8447952	39	41	-5399955	-641577	$1 \cdot 558657$	-8416679	9
	-5301659	-625273	$1 \cdot 599299$	-8478939	59	22	- 5353355	-633803	1.577776	-8446395	38	12	-5402403	-641988	1.557660	-8415108	18
2	- 5304125	-625678	$1 \cdot 598264$	-8477397	58	23	- 5355812	-634211	$1 \cdot 576761$	-8444838	37	43	-5404851	-642399	$1 \cdot 556663$	-8413536	7
3	-5306591	-626083	$1 \cdot 597231$	-8475853		24	-5358268	-634619	$1 \cdot 575747$	-8443279	36	44	-5407298	. 642810	1.555668	- 8411963	6
4	-5309057	-626488	$1 \cdot 596198$	-8474309	56	25.	-5360724	-635027	$1 \cdot 574735$	-8441720	35	45	-5409745	-643221	$1 \cdot 554674$	-8410390	5
5	-5311521	-626893	$1 \cdot 595167$	-8472765		26	-5363179	-635435	$1 \cdot 573723$	-8440161	34	46	-5412191	-643632	1.553680	-8408816	14
6	-5313986	-627298	$1 \cdot 594136$	-8471219		27.	-5365634	-635844	$1 \cdot 572712$	-8438600	33	47	-5414637	-644044	$1 \cdot 552688$	-8407241	3
7	-5316450	. 627704	$1 \cdot 593107$	-8469673		28.	-5368089	-636252	$1 \cdot 571702$	-8437039	32	48	5417082	-64445b	$1 \cdot 551696$	- 8405666	2
8	8-5318913	-628109	$1 \cdot 592078$	-8468126	52	29	-5370543	-636661	$1 \cdot 570693$	-8435477	31	49	.5419527	-644867	1.550705	-8404090	1
9	-5321376	-628515	$1 \cdot 591050$	-8466579	51	30	-5372996	-637070	$1 \cdot 569685$	-8433914	30	50	-5421971	-645279	1.549715	-8402513	10
10	-5323839	-628921	$1 \cdot 590023$	-8465030	50	31	-5375449	-637479	$1 \cdot 568678$	-8432351	29	51	-5424415	-645691	$1 \cdot 548726$	-8400936	9
11	-5326301	-629327	$1 \cdot 588997$	8463481	49	$32 \cdot$	-5377902	-637888	$1 \cdot 567672$	-8430787	28	52	-5426859	- 646104	1.547738	-8399357	8
12	-5328763	$\cdot 629733$	$1 \cdot 587973$	-8461932	48	33.	- 5380354	-638297	$1 \cdot 566666$	-8429222	27	53	-5429302	-646516	$1 \cdot 546751$	-8397778	7
13	-5331224	-630139	1-586949	-8460381	47	34	-5382806	-638707	$1 \cdot 565662$	-8427657	26	54	-5431744	-646929	$1 \cdot 545764$	-8396199	6
14	-5333685	-630546	$1 \cdot 585926$	- 8458830	46	35	-5385257	- 639116	$1 \cdot 564659$	-8426091	25	55	-5434187	-647341	1-544779	-8394618	5
15	-5336145	-630953	$1 \cdot 584904$	-8457278		36	-5387708	-639526	$1 \cdot 563656$	-8424524	24	56	-5436628	-647754	1.543794	-8393037	4
16	-5338605	-631359	$1 \cdot 583883$	$\cdot 8455726$	44		-5390158	-639936	1.562654	-8422956	23	57	-5439069	-648167	1.5428	- 8391455	3
17	-5341065	-631766	$1 \cdot 582862$	-8454172	43	38	-5392608	-640346	$1 \cdot 561654$	-8421388	22	58	-5441510	- 648580	1.541828	. 8389873	
18	\cdot - 5343523	-632173	$1 \cdot 581843$	-8452618	42	39	-5395058	-640756	$1 \cdot 560654$	-8419819	21	159	-5443951	-648994	$1 \cdot 540846$	-838829	1
19	-5345982	-632581	$1 \cdot 580825$	-8451064	41	40	-5397507	-641167	1.559655	-8418249	20	60	-5446390	$\cdot 649407$	$1 \cdot 539865$	-8386	0
20	-5348440	. 632988	$1 \cdot 579807$	-8449508	40												
I	Cosine.	Cotang.	Tang.	Sine.	1	,	Cosine.	Cotang.	Tang.	Sine.	1		Cosine.	Cotang	Tang.	Sine.	

	Sine.	Tang.	Cotang.	e.	' ${ }^{\prime}$	Sine.	ng.	Cotang.				Sine.	Tang.	Cotang.		
0	-5446390	-649407	I-539865	-8386706	6021	- 5497520	- 658127	1.519463	- 8353279	39	41	- 5546024	- 666496	$1 \cdot 500382$. 8321155	
1	- 5448830	-649821	$1 \cdot 538884$	-8385121	5922	-5499950	-658544	$1 \cdot 518501$	-8351680	38	42	- 5548444	-666917	$1 \cdot 499436$	-8319541	8
2	-5451269	-650235	$1 \cdot 537905$	-8383536	5823	-5502379	-658961	1.517540	-8350080	37	43	- 5550864	-667337	$1-498492$	-8317927	7
3	-5453707	-650649	1-536927	-8381950	5724	-5504807	-659378	1.516579	-8348479	36	14	-5553283	-667758	$1 \cdot 497548$	-8316312	16
4	- 5456145	-651063	1-535949	-8380363	5625	- 5507236	-659796	$1 \cdot 515620$	- 3346877	35	45	- 5555702	-668178	$1 \cdot 496605$	-8314696	15
5	-5458583	-651477	1-534972	-8378775	5526	-5509663	-660213	1.514661	-8345275	34	16.	- 5558121	-668599	$1 \cdot 495663$	-8313080	4
6	-5461020	-651891	1.533996	-8377187	5427	-5512091	-660631	$1 \cdot 513703$	-8343672	33	47	5560539	-669020	$1 \cdot 494722$	-8311463	13
7	-5463456	-652306	I-533021	-8375598	5323	-5514518	-661049	$1 \cdot 512746$	-83 12068	324	48	- 5562956	-669441	1493782	-8309845	12
	-5465892	-652721	$1 \cdot 532047$	-8374009	5229	-5516944	-661467	$1 \cdot 511790$	-8340463	31	49	- 5565373	669863	$1-492842$	-8308226	11
	-5468328	-653136	$1 \cdot 531074$	-8372418	5130	-5519370	-661885	1.510835	-8338858	30	50	-5567790	- 670284	$1 \cdot 491903$	-8306607	10
10	-5470763	-653551	$1 \cdot 530102$	-8370827	5031	-5521795	-662304	$1 \cdot 509880$	-8337252	29	51	-5570206	670706	$1 \cdot 490965$	-8304987	9
	-5473198	-653966	1.529130	-8369236	4932	- 5524220	-662722	$1 \cdot 508927$	-8335646		52	-5572621	-671128	$1 \cdot 490028$	-8303366	8
	- 5475632	-654381	1.528160	-8367643	4833	- 5526645	-663141	$1 \cdot 507974$	-8334038	27	53	- 5575036	- 671550	$1 \cdot 489092$	-830174	7
13	- 5478066	-654797	1-527190	-8366050	4734	-5529069	-663560	1-507022	-8332430	26	54	-5577451	-671972	-488157	-8300123	6
	-5480499	-655212	$1 \cdot 526221$	-8364456	4635	-5531492	- 663979	$1 \cdot 506071$	-8330822	25	55	- 5579865	-672394	$1 \cdot 487222$	-8298500	5
15	-5482932	-655628	1.525253	-8362862	4536	-5533915	-664398	$1 \cdot 505121$	-8329212	24	56	-5582279	-672816	$1 \cdot 486288$	-8296877	4
16	\|-5485365	-656044	$1 \cdot 524286$	-8361266	4437	$\cdot 5536338$	-664817	1-504171	-832760	23	57	-5584692	-673239	$1 \cdot 485355$	-8295252	3
17	-5487797	-656460	1.523320	-8359670	4338	-5538760	-665237	1.503222	-83こ5991	22	58	. 5587105	-673662	$1 \cdot 484423$	-8293628	2
	-5490228	- 656877	1.522354	-8358074	4239	-5541182	-665657	1.502275	-8324380	21	59	-5589517	-674085	$1 \cdot 483491$	-8292002	1
19	-5492659	-657293	1.521389	-8356476	4140	5543603	-666076	$1 \cdot 501328$	-8322768	20	60	$\cdot 5591929$	-674508	$1 \cdot 482561$	-8290376	0
20	- 5495090	. 657710	1.520426	- 8354878	10											
1	Cosine.	Cotang	Tang.	Sine.	1,	osil	tang	Tang.	Sine.			osi	otan	'an	Sine.	,

1	Sine.	'ang.	g.			7	.										
0	.5591929	-674508	$1 \cdot 482561$	-8290376			- 5642467	-683433	$1 \cdot 463200$	8256062			-5690403	-692002	$1 \cdot 445081$	8223096	
1	-5594340	. 674931	$1 \cdot 481631$	- 8288749	59	22	- 5644869	- 683860	1-462287	- 8254120	38	42	- 5692795	-692432	$1 \cdot 444183$	-8221440	18
2	-5	6753	1	\|-8287121	58	23	-5647270	-684287	$1 \cdot 461374$. 8252778	37	43	. 5695187	-692863	$1 \cdot 443286$	-8219784	17
3	\|.5599162	-675779	$1 \cdot 479773$	8285493	57	2	- 5649670	-684714	$1 \cdot 460463$	-8251135	36	44	- 5697577	-693293	$1 \cdot 442389$	-8218127	16
4	$\cdot 5601572$	-676202	$1 \cdot 478846$	8283864	56	25	- 5652070	-685141	$1 \cdot 459552$	-8249491	35	45	- 5699968	-693724	$1 \cdot 441494$	-8216469	5
5	$\cdot 5603981$	-676626	1.477919	-8282234	55	26	- 5654469	- 685569	$1 \cdot 458642$	-8247847	34	46	-5702357	-694155	$1 \cdot 4405$	1	14
6	- 5606390	-677050	$1 \cdot 476993$	-8280603	54	27	$\cdot 5656868$	- 685996	$1 \cdot 457732$	-8246202	33	47	.5704747	-694586	$1 \cdot 439704$	-8213152	13
7	- 5608798	-677475	$1 \cdot 476068$	-8278972	53	28	$\cdot 5659267$	- 686424	$1 \cdot 456824$	8244556	32	48	. 5707136	5018	38811	2	2
8	- 5	-677899	$1 \cdot 4751$	-8277340	52	29	- 5661665	-686852	$1 \cdot 4559$	8242909		49	-5709524	95449	1.437918	-8209832	1
9		-678324	$1 \cdot 47422$	-8275708	51	30	- 5664062	-687281	$1 \cdot 455009$	-8241262	30	50	$\cdot 5711912$	-695881	$1 \cdot 437026$	-8208170	10
10	-	-678749	$1 \cdot 473298$	-8274074	50	3	- 5666459	-687709	$1 \cdot 454102$	-8239614	29	51	$\cdot 5714299$	-696313	$1 \cdot 436135$. 8206509	9
	-5618428	-679174	$1 \cdot 472376$	-8272440	49	32	- 5668856	-688137	1.453197	- 8237965		52	- 5716686	-696745	$1 \cdot 435245$	-8204846	8
	-56208	$\cdot 679599$	$1 \cdot 471455$		43	3		. 688566	$1 \cdot 452292$	- 8236316	27	53	-5719073	-697177	$1 \cdot 434355$	-8203183	7
13	-56232	$\cdot 680024$	$1 \cdot 470535$. 8269170	4	3	-5673648	-688995	1.451388	- 8234666		54	21459	-697609	$1 \cdot 433466$. 8201519	6
14	$\cdot 5$	-680450	$1 \cdot 469615$	-8267534	46	3	-5676043	-689424	$1 \cdot 450485$	-8233015			5723844	. 698042	$1 \cdot 432578$	-8199854	5
15	-5628049	- 680875	$1 \cdot 468696$	-8265897	45	3	- 5678437	- 689853	1-449582	-8231364	24	56	- 5726229	-698474	$1 \cdot 431690$	8198189	4
16	- 5630453	-681301	$1 \cdot 467778$	-8264260	4	37	-5680832	- 690283	$1 \cdot 448680$	-8229712		57	-5728614	-698907	1.430803	-8196523	3
17	-5632857	-681727	$1 \cdot 466861$	-8262622	43	38	-5683225	-690712	[.447779	- 8228059	2	58	- 5730998	-699340	1.429917	-8194856	2
	635260	$\cdot 682153$	$1 \cdot 465945$	-8260983	42	3	$\cdot 5685619$	-691142	$1 \cdot 446879$	-8226405		59	5733381	-699774	1.429032	. 8193189	
19	- 5637663	- 682580	$1 \cdot 465029$	- 8259343		40	$\cdot 5688011$	$\cdot 691572$	$1 \cdot 445980$	-8224751			'735764	$\cdot 700207$	1.428148	8191520	
20	-5640066	- 683006	$1 \cdot 464114$	-8257703	40												
1	-osine.	tang	Tang.	Sine.	$1 \prime$	t	Cosine.	Cotang.	Tang.	Sine.		/	Cosine.	Cotang.	Tang.	Sine.	1

0				-8191520 6	60		-5785696	$\cdot 709350$		8156330	9	41	5833050	1	1392501		19
1	-5738147	-700641	1	-8189852 5	592	$22 \cdot 5$	-5788069	-709787	871	- 8154647	38	42	-5835412	$\cdot 718572$	1-391647	-8120835	18
2	-5740529	-701074	$1 \cdot 426381$	-8188182 5	5823	$23 \cdot 5$	-5790440	710225	08003	- 8152963	37	43	$\cdot 5837774$	$\cdot 719014$	$1 \cdot 390793$	-8119137	17
$3 \cdot$	-574291	. 701508	25498	-8186512 5	572	$24 \cdot 5$	-5792812	$\cdot 710663$	$1 \cdot 407136$	-8151278	36	44	-5840136	$\cdot 719455$	$1 \cdot 389940$	-8117439	16
	5745292	- 701943	$1 \cdot 424617$	-8184841 5	5625	55	. 5795183	$\cdot 711100$	$1 \cdot 406270$	-8149593	35	45	-5842497	-719897	$1 \cdot 38908$	8115740	15
5.	5747672	-702377	$1 \cdot 423736$	-8183169 5	552	$26 \cdot 5$	-5797553	711539	$1 \cdot 405404$	-8147906	34	46	-5844857	$\cdot 720338$	- 388235	-8114040	14
6	$\cdot 5750053$	- 702811	$1 \cdot 422856$	-8181497 5	54		-5799923	$\cdot 711977$	$1 \cdot 404539$	-8146220	33	47	-5847217	-72078	$1 \cdot 387$	- 8112339	13
	5752432	-703246	$1 \cdot 421976$	-8179824	532	$28 \cdot 5$	-5802292	$\cdot 712415$	$1 \cdot 403674$	-8144532	32	48	-5849577	-721	$1 \cdot 336534$	8	12
8	-5754811	. 703681	$1 \cdot 421097$	-81781515	522	$29 \cdot 5$	-5804661	$\cdot 712854$	$1 \cdot 402811$	-8142844	31	49	-5851936	$\cdot 721$	385684	-8108936	11
9	-5757190	-704116	$1 \cdot 420220$	-8176476	513		-5807030	$\cdot 713293$	1948	-8141155		50	-5854294	$\cdot 722107$	$1 \cdot 384835$	8107234	10
0	- 5759568	$\cdot 704551$	$1 \cdot 419342$	-8174801	503	$31 \cdot 5$	-5809397	$\cdot 713732$	$1 \cdot 401086$	-8139466	29	51	-5856652	$\cdot 722550$	$1 \cdot 383986$	810553	9
	-5761946	$\cdot 704986$	$1 \cdot 418466$	-8173125	493		-5811765	$\cdot 714171$	$1 \cdot 400224$	-8137775		52	-5859010	-722993	$1 \cdot 383139$	810382	8
		$\cdot 705422$	$1 \cdot 417590$	-8171449	483	33	-5814132	$\cdot 714610$	1-399363	-8136084	27		5861367	-723436	1	1	7
	-5766700	-705858	$1 \cdot 416715$	-8169772	47		-5816498	$\cdot 715050$	$1 \cdot 398503$	$\cdot 8134393$	26	54	- 5863724	-723879	$1 \cdot 381445$	-8100	6
	- 5769076	-706294	$1 \cdot 415840$	-8168094	46		-581886	$\cdot 715489$	97644	-8132701		55	-5866080	-724322	380600	-8098710	5
	-5771452	- 706730	$1 \cdot 414967$	-8166416	45			-715929	$1 \cdot 39678$	-8131		56	- 5868435	$\cdot 724766$	379755	-809700	4
	-5773827	-707166	$1 \cdot 414094$	-8164736	443		-5823595	-716369	$1 \cdot 395927$	-8129314		57	-5870790	-725210	378910	-8095296	- 3
17	-5776202	-707602	$1 \cdot 413222$	-8163056	43	38	-5825959	. 716810	395069	-8127620	22	58	-5873145	25654	378067	-8093588	12
18	-5778576	-708039	$1 \cdot 412350$	-8161376	42		-5828323	-717250	$1 \cdot 394213$	-8125925			. 5875499	-26098		-8091879	1
19	-57809	'	$1 \cdot 411479$	81596	41		-5830687	$\cdot 717691$	L-39335*',	-8124229	20	60	-5877853	$\cdot 726542$	$1 \cdot 376381$	-80901	0
20	-5783323	$\cdot 708913$	$1 \cdot 410609$	8158013	40												
					1												

	Sine.	Tang.	Cotang.	osine.		'	Sine.	Tang.	Cotang.	Cosine.		'	Sine.	Tang.	Cotang.	Cosine.	
0	-5877853	$\cdot 726542$	$1 \cdot 376381$	-8090170	60	21	-5927163	$\cdot 735917$	$1 \cdot 358848$	- 8054113	39	41	- 5973919	-744924	$1 \cdot 342417$	-8019495	19
1	-5880206	-726987	$1 \cdot 375540$	-8088460	59	22	- 5929505	-736366	$1 \cdot 358020$	- 8052389	38	42	-5976251	-745377	$1 \cdot 341602$	- 8017756	18
2	5882558	$\cdot 727431$	$1 \cdot 374699$	-8086749	58	23	- 5931847	-736814	$1 \cdot 357193$	- 8050664	37	43	-5978583	$\cdot 745829$	1-340788	-8016018	17
3	-5884910	-727876	$1-373859$	-8085037	57	24	-5934189	- 737263	$1 \cdot 356367$	- 8048938	36	44	-5980915	-746282	$1 \cdot 339975$	-8014278	16
	-5887262	-728321	$1-373019$	-8683325	56	25	-5936530	.737712	$1 \cdot 355541$	-8047211	35	45	5983246	$\cdot 746735$	1-339162	-8012538	15
5	5889613	$\cdot 728767$	$1 \cdot 372180$	-8081612	55	26	-5938871	$\cdot 738162$	$1 \cdot 354716$	-8045484	34	46	-5985577 ${ }^{-}$	$\cdot 747188$	$1 \cdot 338350$	-8010797	14
6	5891964	$\cdot 729212$	$1 \cdot 371342$	-8079899	54	27	-5941211	. 738611	$1 \cdot 353891$	- 8043756	33	47	-5987906	$\cdot 747642$	$1 \cdot 337538$	-8009056	13
7	5894314	-729658	$1 \cdot 370504$	-8078185	53	28	. 5943550	.739061	$1 \cdot 353068$	-8042028	32	48	-5990236	$\cdot 748095$	$1 \cdot 336727$	- 3007314	2
8	5896663	-730104	1-369667	-8076470	52	29	- 5945889	$\cdot 739511$	$1 \cdot 352244$	-8040299	31	49	-5992565	-748549	$1 \cdot 335917$	- 8005571	1
	. 5899012	-730550	1-368831	-8074754	51	30	. 5948228	$\cdot 739961$	$1 \cdot 351422$	-8038569	30	50	-5994893	$\cdot 749003$	1-335107	-8003827	10
10	- 5901361	-730996	$1 \cdot 367995$	-8073038	50	31	- 5950566	$\cdot 740411$	$1 \cdot 350600$	-8036838	29	51	-5997221	-749457	$1 \cdot 334298$	-8002083	9
	- 5903709	-731442	$1 \cdot 367161$	-8071321	49	32	-5952904	$\cdot 740861$	$1 \cdot 349779$	-8035107	28	52	-5999549	$\cdot 749911$	$1 \cdot 333490$	-8000338	8
12	5906057	-731889	$1 \cdot 366326$	-8069603	48	33	-5955241	-741312	$1 \cdot 348958$	- 8033375	27	53	-6001876	. 750366	$1-332682$	$\cdot 7998593$	7
	5908404	-732336	$1 \cdot 365493$	-8067885	47	34	.5957577	$\cdot 741763$	1-348139	-8031642	26	54	-6004202 ${ }^{-}$	$\cdot 750821$	$1 \cdot 331875$	$\cdot 7996847$	6
14	- 5910750	-732783	$1 \cdot 364660$	-8066166	46	35	-5959913	$\cdot 742214$	$1 \cdot 347319$	-8029909	25	55	-6006528	$\cdot 751276$	$1 \cdot 331068$	995100	5
15	-5913096	-733230	$1 \cdot 363827$	- 8064446	45	36	-5962249	. 742665	$1 \cdot 346501$	-8028175	4	56	-6008854 ${ }^{\cdot}$	$\cdot 751731$	1	$\cdot 7993352$	4
16	-5915442	-733677	$1 \cdot 362996$	-8062726	44	37	-5964584	. 743117	1.345683	-8026440	23	57	-6011179	$\cdot 752186$	$1 \cdot 3294$	$\cdot 7991604$	3
17	-5917787	-734125	$1 \cdot 362165$	-8061005	43	38	- 5966918	$\cdot 743568$	1.344865	- 8024705	22	58	-6013503	-752642	$1 \cdot 328652$	7989855	2
18	-5920132	-734573	$1 \cdot 361335$	- 8059283	42	39	-5969252	-744020	1.344049	-8022969		59	-6015827	$\cdot 753098$	$1 \cdot 327848$	-7988105	1
19	- 5922476	$\cdot 735021$	$1 \cdot 360505$	- 8057560	41	40	. 5971586	$\cdot 744472$	1.343233	-8021232	20	60	$\cdot 6018150$	$\cdot 753554$	$1 \cdot 327044$	$\cdot 7986355$	0
20	- 5924819	-735469	$1 \cdot 359676$	-8055837	40												
,	Cosine.	Cotang.	Tang.	Sine.			Cosine.	Cotang.	Tang.	Sine.			Cosin	Cotang.	Tang.	Sine.	

7	Sine.	'Tang.	Cotang.	Cosine.			Sine.	'rang.	Cotang.	Cosine.	\prime		Sine.	'Tang.	Cotang.	ne.	
					60		-6066824	63175	$1 \cdot 310314$	7949444	39	41	-6112969	$\cdot 772423$	$1 \cdot 294627$	$\cdot 7914014$	
0	-6018150	$\cdot 753554$	1-327044	-7986355	60 59	22	-60698136	-763636	$1 \cdot 309523$	-7947678	38	12	-6115270	$\cdot 772387$	$1 \cdot 293948$	$\cdot 7912235$	18
1	-6020473	$\cdot 754010$	$1 \cdot 326242$	$\cdot 7984604$	59	22	-6039136	- 763636				43	$\cdot 6117572$	$\cdot 773352$	$1 \cdot 293071$	$\cdot 7910456$	17
2	-6022795	$\cdot 754466$	$1 \cdot 325439$	-7982853	58	23	-6071447				6		-6119873	$\cdot 773817$	1-292294	-7908676	16
3	. 6025117	$\cdot 754923$	$1 \cdot 324638$	-7981100	57	24	-6073758	-764557		$\|\cdot 7942379\|$	\|35	45	-6122173	-774282	$1 \cdot 291517$	$\cdot 7906896$	15
4	-6027439	$\cdot 755379$	$1 \cdot 323837$	$\cdot 7979347$	56	25	6076069	$\cdot 765018$	$1 \cdot 307157$ $1 \cdot 306369$	-7942379	35 34	46	$.6124473$	$\cdot 774748$	1-290742	$\cdot 7905115$	14
5	-6029760	$\cdot 755336$	$1 \cdot 323036$	-7977594	55	26	$\cdot 6078379$	-765480	$1 \cdot 306369$ $1 \cdot 305582$	-7940611	34	46 47	-6126772	$\cdot 775213$	$1 \cdot 289966$	$\cdot 7903333$	3
6	-6032080	-756294	$1 \cdot 322237$	-7975839	54	27	$\cdot 6080689$	-765941	$1 \cdot 305582$ $1 \cdot 304796$	- $\cdot 79387074$	3	48	- 6129071	-775679	$1 \cdot 289192$	$\cdot 7901550$	12
7	-6034400	$\cdot 756751$	$1 \cdot 321437$	$\cdot 7974084$	53	28	6082998	$\cdot 766403$	$1 \cdot 304796$	-7937074	32	48	-6131369	-776145	$1 \cdot 288418$	-7899767	11
8	-6036719	-757209	$1 \cdot 320639$	-7972329	52	29.	-6085306	-766864			30	50	-6133666	-776611	$1 \cdot 287644$	-7897983	10
9	-6039038	-757666	$1 \cdot 319841$	$\cdot 7970572$	51	30	-6087614	-767327	$1 \cdot 303225$	-7933533	30 29	50	-6135964	-777078	$1 \cdot 286871$	$\cdot 7896198$	9
10	-6041356	-758124	$1 \cdot 319044$	-7968815	50	31	-6089922	-767789		$\cdot \cdot 7929990$	28	52	-6138260	-777544	$1 \cdot 286099$	$\cdot 7894413$	8
11	-6043674	-758582	$1 \cdot 318247$	-'7967058	49	$32 \cdot$	$\cdot 6092229$	-768251	$1 \cdot 301656$	- 7928218	27	5	-6140556	. 778011	$1 \cdot 285327$	$\cdot 7892627$	7
12	-6045991	$\cdot 759041$	$1 \cdot 317451$	-7965299	48	$33 \cdot$	-6094535	-768714			26	54	-6142852	$\cdot 778478$	$1 \cdot 234556$	$\cdot 7890841$	6
1.3	- 6048308	-759499	$1 \cdot 316655$	-7963540	47	34	-6096841	-769177	$1 \cdot 300090$	$\cdot 7924671$	25	5	. 6145147	- 778946	$1 \cdot 283786$	$\cdot 7889054$	5
14	-6050624	$\cdot 759958$	$1 \cdot 315861$	-7961780	46	35	-6099147	-769640	1-299308	1	25	53	-6147442	$\cdot 779413$	$1 \cdot 283016$	-7887266	4
15	-6052940	-760417	1.315066	-7960020	45	36	-6101452	-770103			23	57	-6149736	$\cdot 779881$	$1 \cdot 282246$	$\cdot 7885477$	3
16	-6055255	-760876	$1 \cdot 314273$	- 7958259	44	37	-6103756	$\cdot 770567$	$1 \cdot 297745$	1	22	57	-6152029	-780349	$1 \cdot 281477$	$\cdot 7883688$	2
17	-6057570	$\cdot 761336$	1.313480	$\cdot 7956497$	43	38	-6106060	$\cdot 771030$	1-296185		21			817	$1 \cdot 280709$	$\cdot 7881898$	1
18	-6059884	-761795	1.312687	$\cdot 7954735$	42	39	-6108363	$\cdot 771494$	$1 \cdot 29$		0	0	-6156615	. 781285	$1 \cdot 279941$	$\cdot 7880108$	0
19	-6062198	$\cdot 762255$	1.311895	.7952972	41	40	$\cdot 6110666$	$\cdot 771958$					-156615				
20	-6064511	$\cdot 762715$	1.311104	$\cdot 7951208$	40												
,	Cosine.	Cotang.	Tang.	Sine.	1	\prime	Cosine.	Cotang.	Tang.	Sine.		,	Cosine.	Jotang.	Pang.	e.	

,	Sine.	Tang.	Cotang.	C			Sine.	ng.	Cotang.	.			.	ang.	Cotang.	e.		
0	- 6156615	$\cdot 781285$	$1 \cdot 279941$	-7880108	602	21	-6204636	-791170	$1 \cdot 263950$	$\cdot 7842352$	39	41	-6250156	-800673	$1 \cdot 248948$	-7806123	19	
1	-6158907	- 781754	$1 \cdot 279174$	$\cdot 7878316$	59	$22 \cdot$	-6206917	$\cdot 791643$	$1 \cdot 263195$	$\cdot 7840547$	38	42	-6252427	-801151	$1 \cdot 248204$	$\cdot 7804304$	8	
2	-6161198	-782222	$1 \cdot 278407$	-7876524	58	23	-6209198	$\cdot 792116$	$1 \cdot 262440$	$\cdot 7838741$	37	43	-6254696	-801628	$1 \cdot 247460$	-7802485	7	
3	-6163489	$\cdot 782691$	$1 \cdot 277641$	-7874732	57	24	-6211478	-792590	$1 \cdot 261686$	-7836935	36	44	-6256966	-802106	$1 \cdot 246716$	-7800665	6	
4	-6165780	-783161	1-276876	$\cdot 7872939$	56	25	$\cdot 6213757$	-793064	$1 \cdot 260932$	$\cdot 7835127$	35	45	-6259235	-802584	45974	-7798845	15	
5	-6168069	. 783630	1-276111	$\cdot 7871145$	55	26	-6216036	-793537	$1 \cdot 260179$	-7833320	34	46	-6261503	-803063	$1 \cdot 245232$	-7797024	14	
6	-6170359	. 784100	$1 \cdot 275347$	-7869350	54	27.	-6218314	-794012	$1 \cdot 259426$	-7831511	33	47	-6263771	-803541	$1 \cdot 244490$	-7795202	13	
7	-6172648	-784570	1-274583	-7867555	53	28	-6220592	-794486	$1 \cdot 258674$	-7829702	32	48	-6266038	-804020	$1 \cdot 243749$	$\cdot 7793380$	12	
8	-6174936	$\cdot 785040$	$1 \cdot 273820$	$\cdot 7865759$	52	29.	-6222870	-794961	$1 \cdot 257923$	-7827892	31	49	- 6268305	-804499	$1 \cdot 243008$	$\cdot 7791557$	11	
9	-6177224	$\cdot 785510$	1-273057	$\cdot 7863963$	513	30	-6225146	-795435	$1 \cdot 257172$	-7826082	30	50	-6270571	-804979	42268	-7789733	0	
10	. 6179511	-785980	$1 \cdot 272295$	-7862165	50	31	-6227423	-795911	$1 \cdot 256421$	$\cdot 7824270$	29	51	-6272837	805458	$1 \cdot 241529$	-7787909	9	
11	-6181798	$\cdot 786451$	$1 \cdot 271534$	$\cdot 7860367$	49		-6229698	-796386	$1 \cdot 255672$	-7822159	28	52	-6275102	- 805938	$1 \cdot 240790$	-7786084	8	
12	-6184084	$\cdot 786922$	1-270773	$\cdot 7858569$	48	33	-6231974	$\cdot 796861$	$1 \cdot 254922$	-7820646	27	53	-6277366	-806418	240051	-7784258	7	
13	-6186370	-787393	$1 \cdot 270013$	$\cdot 7856770$	473	34	-6234248	$\cdot 797337$	$1 \cdot 254174$	$\cdot 7818833$	26	54	-6279631	-806898	$1 \cdot 239313$	-7782431	6	
14	-6188655	-787864	$1 \cdot 269253$	$\cdot 7854970$	46	35	-6236522	. 797813	$1 \cdot 253426$	-7817019	25	55	-6281894	-807378	$1 \cdot 238$	-7780604	3	
15	-6190939	-788336	$1 \cdot 268494$	-7853169	45	36	.6238796	-798289	$1 \cdot 252678$	$\cdot 7815205$	24	56	-6284157	-807859	$1 \cdot 237839$	-7778777		
16	-6193224	-788808	$1 \cdot 267735$	-7851368	44		-6241069	. 798765	$1 \cdot 251931$	-7813390	23	57	-6286420	-808340	1-237103	-7776949	3	
17	-6195507	-789280	1-266977	-7849566	43	38.	-6243342	-799242	$1 \cdot 251184$	-7811574	22	58	-6288682	-808821	$1 \cdot 25636$	-7775120	2	
18	-6197790	$\cdot 789752$	$1 \cdot 266219$	$\cdot 7847764$	42	39	-6245614	-799719	$1 \cdot 250438$	-7809757	721	59	-6290943	\|-809302		$1 \cdot 2356$	-773290	
19	-6200073	-790224	$1 \cdot 265462$	$\cdot 7845961$	414	40	-6247885	-800196	$1 \cdot 249693$	-7807940	20	60	-6293204	-809784	$1 \cdot 234897$	-7771460		
20	-6202355	$\cdot 790697$	$1 \cdot 264706$	$\cdot 7844157$	40													
,	Cosine.	Cotang	Tang.	Sine.			Cosine.	C	ang.	Sin			osin	Cota	Tang.	Sine.		

78

	Sine.	Tang.	Cotang.	Cosine.			Sine.	Tang.	Cotang.	sine.			Sine.	Tang.	Cotang.	Cosine.	
0	-6293204	- 809784	1.234897	$\cdot 7771460$	60	21	-6340559	-81.9948	$1 \cdot 219588$	$\cdot 7732872$	39	41	-6385440	-829724	1-205219	$\cdot 7695853$	19
1	-6295464	-810265	$1 \cdot 234162$	$\cdot 7769629$	59	22	-6342808	-820435	$1 \cdot 218865$	7731027	38	42	-6387678	- 830216	$1 \cdot 204505$	-7693996	18
2	-6297724	-810747	$1 \cdot 233429$	-7767797	58	23.	$\cdot 6345057$	-820922	$1 \cdot 218142$	- 7729182	37	43	-6389916	830707	$1 \cdot 203793$	$\cdot 7692137$	17
3	-6299983	. 811230	$1 \cdot 232696$	-7765965	57	24	-6347305	-821409	$1 \cdot 217419$	$\cdot 7727336$	36	44	-6392153	. 831199	$1 \cdot 203081$	$\cdot 7690278$	16
4	-6302242	-811712	$1 \cdot 231963$	$\cdot 7764132$	56	25	-6349553	-821896	$1 \cdot 216698$	$\cdot 7725489$	35	45	.6394390	-831691	$1 \cdot 202369$	$\cdot 7688418$	5
5	-6304500	-812195	$1 \cdot 231231$	$\cdot 7762298$	55	26	. 6351800	-822384	$1 \cdot 215976$	$\cdot 7723642$	34	46	-6396626	-832183	$1 \cdot 201658$	$\cdot 7686558$	4
6	-6306758	-812678	$1 \cdot 230499$	-7760464	54	27.	-6354046	-822871	$1 \cdot 215256$	$\cdot 7721794$	33	47.	-6398862	-83~675	$1 \cdot 200947$	$\cdot 7684697$	3
7	-6309015	-813161	1-229768	-7758629	53	28	-6356292	-823359	$1 \cdot 214535$	$\cdot 7719945$	32	48	-6401097	-833168	$1 \cdot 200237$	$\cdot 7682835$	2
8	-6311272	-813644	$1 \cdot 229038$	$\cdot 7756794$	52	29.	-6358537	-823847	$1 \cdot 213816$	$\cdot 7718096$	31	49.	-6403332	-833661	$1 \cdot 199527$	$\cdot 7680973$	1
9	-6313528	-814128	$1 \cdot 228308$	-7754957	51	30	-6360782	-824336	$1 \cdot 213097$	-7716246	30	50	-6405566	- 834154	1-198818	$\cdot 7679110$	0
10	-6315784	-814611	$1 \cdot 227578$	$\cdot 7753121$	50	31	-6363026	-824825	$1 \cdot 212378$	$\cdot 7714395$	29	51	-6407799	- 834648	$1 \cdot 198109$	$\cdot 7677246$	9
11	-6318039	-815095	$1 \cdot 226849$	$\cdot 7751283$	49	$32 \cdot$	-6365270	-825314	$1 \cdot 211660$	$\cdot 7712544$	28	52	-6410032	-835141	$1 \cdot 197401$	$\cdot 7675382$	8
12	-6320293	$\cdot 815580$	$1 \cdot 226121$	$\cdot 7749445$	48	$33 \cdot$	-6367513	-825803	1-210942	$\cdot 7710692$	27	53	-6412264	-835635	$1 \cdot 196693$	$\cdot 7673517$	7
13	-6322547	- 816064	$1 \cdot 225393$	$\cdot 7747606$	47	34.	-6369756	-826292	$1 \cdot 210225$	$\cdot 7708840$	26	54.	-6414496	-836129	$1 \cdot 195986$	$\cdot 7671652$	6
14	-6324800	-816549	1-224665	-7745767	46	35	-6371998	-826782	$1 \cdot 209508$	$\cdot 7706986$	25	55	-6416728	-836624	$1 \cdot 195279$	$\cdot 7669785$	5
15	-6327053	-817034	$1 \cdot 223938$	$\cdot 7743926$	45	36	-6374240	-827271	1-208792	$\cdot 7705132$	24	56	-6418958	-837118	$1 \cdot 194573$	$\cdot 7667918$	4
16	-6329306	-817519	$1 \cdot 223212$	$\cdot 7742086$	44	37.	-6376481	-827762	$1 \cdot 208076$	$\cdot 7703278$	23	57	-6421189	- 837613	1-193867	$\cdot 7666051$	3
17	-6331557	- 818004	$1 \cdot 222486$	$\cdot 7740244$	43	38	-6378721	-828252	$1 \cdot 207361$	$\cdot 7701423$	22	58	-6423418	-838108	1-193162	-7664183	2
18	-6333809	- 818490	$1 \cdot 221761$. 7738402	42	39.	$\cdot 6380961$	-828742	$1 \cdot 206646$	$\cdot 7699567$	21	59	-6425647	-838604\|	$\|1 \cdot 192457\|$	$\cdot 7662314$	
19	-6336059	-818976	$1 \cdot 221036$	$\cdot 7736559$	41	10	-6383201	$\cdot 829233$	$1 \cdot 205932$	$\cdot 7697710$	20	60	. 6427876	. 839099	1-191753	$\cdot 7660444$	0
20	-6338310	-819462	$1 \cdot 220312$	$\cdot 7734716$	40												
,	Cosine.	Cotang	Tang.	Sine.	,	,	Cosine.	Cotang.	Tang.	Sine.			Cosine.	Cotang.	Tang.	Sine.	,

	Sine.	Tang.	otang.	Cosine.			Sine.	g.	Cotang.				Sine.	Tang.	Cotang.	Cosine.	1
0	-6427876	- 839099	$1 \cdot 191753$	$\cdot 7660444$			-6474551	- 849563	$1 \cdot 177075$	$\cdot 7621036$	39		-6518778	-859629			
-	-6430104	-839595	$1 \cdot 191049$	-7658574		22	-6476767	. 850064	$1 \cdot 176382$	$\cdot 7619152$	38	42	-6520984	-860135	1-162607	$\cdot 7581343$	8
2	-6432332	\|.840091	1.190346	$\cdot 7656704$		23	-6478984	- 850565	$1 \cdot 175688$	$\cdot 7617268$	37	43	6523189	. 860641	$1 \cdot 161923$	$\cdot 7579446$	17
3	-6434559	$\cdot 840587$	$1 \cdot 189643$	$\cdot 7654832$		24	-6481199	. 851066	1-174996\|	\|'7615383	36	44	-6525394	$\cdot 861148$	$1 \cdot 161240$	-7577548	16
	-6436785	. 841084	$1 \cdot 188941$	- 7652960	56	25	-6483414	. 851568	$1 \cdot 174303$	$\cdot 7613497$	35	45	-6527598	- 861655	$1 \cdot 160557$	-7575650	5
	-6439011	. 841581	$1 \cdot 188239$	$\cdot 7651087$	55	26	-6485628	- 852070	$1 \cdot 173612$	$\cdot 7611611$	34	46	-6529801	-862162	$1 \cdot 159874$	$\cdot 7573751$	14
6	-6441236	-842078	$1 \cdot 187538$	$\cdot 7649214$		27	-6487842	. 852572	$1 \cdot 172920$	$\cdot 7609724$	33	47	-6532004	862669	$1 \cdot 159192$	7571851	13
7	-64434	-842575	$1 \cdot 186337$	$\cdot 7647340$			-6490056	. 853075	1-172229	-7607837	32	48	-6534206	. 863176	$1 \cdot 158511$	1	2
	$\cdot 6445685$. 843073	$1 \cdot 186136$	$\cdot 7645465$	52	29	-6492268	$\cdot 853577$	$1 \cdot 171539$	$\cdots 605949$	31	49	- 6536408	-863684	$1 \cdot 157830$	-7568050	11
9	-6447909	- 843570	$1 \cdot 185437$	$\cdot 7643590$	51	30	-6494480	- 854080	$1 \cdot 170849$	-7604060	30	50	- 6538609	-864192	$1 \cdot 157149$	8	10
10	-6450132	$\cdot 844068$	$1 \cdot 184737$	$\cdot 7641714$	50		-6496692	- 854533	$1 \cdot 170160$	-7602170	29	51	- 6540810	-864700	$1 \cdot 156469$	564246	9
11	$\cdot 6452355$	- 844567	$1 \cdot 184038$	$\cdot 7639838$		32	-6498903	-855087	$1 \cdot 169471$	- 7600280	28	52	- 6543010	-865209	$1 \cdot 155789$	2343	8
12	-6454577	- 845065	$1 \cdot 183340$	- 7637960	48	33	$\cdot 6501114$	-855591	$1 \cdot 168782$	-7598389	27	53	$\cdot 6545209$. 865718	$1 \cdot 155110$	9	7
$1:$	-6456798	-845564	$1 \cdot 182642$	$\cdot 7636082$	47		-6503324	. 856095	$1 \cdot 168094$	$\cdot \cdot 7596498$	26	54	-6547408	. 866227	$1 \cdot 154431$	558535	6
14	-6459019	. 846063	$1 \cdot 18194$	$\cdot 7634204$	46		-6505533	-856599	$1 \cdot 167407$	$\cdot \cdot 7594606$	25	55	-6549607	- 866736	$1 \cdot 153753$	556630	5
15	-6461240	-846562	$\|1 \cdot 181247\|$	- 7632325	45	36	-6507742	- 857103	$1 \cdot 166720$	$\cdot 7592713$	2	56	-6551804	-867246	$1 \cdot 153075$	4	5 4
16	-6463460	-847062	$1 \cdot 180551$	- 7630445	44		-6509951	-857608	$1 \cdot 166033$	$\cdot 7590820$	23	57	-6554002	-867755	$1 \cdot 152397$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	4 3
17	-6465679	$\cdot 847561$	$1 \cdot 179855$	$\cdot 7628564$	43	38	-6512158	-858113	$1 \cdot 165347$	$\cdot 7598926$	22	58	-6556198	- 868265	$1 \cdot 151721$	7550911	3 2
18	-6467898	. 848061	$1 \cdot 179159$	$\cdot 7626683$	42		$\cdot 6514366$	- 858618	$\|1 \cdot 164661\|$	\| 7587031	21	59	-6558395	-868776	$1 \cdot 151044$	549004	1
19	-6470116	-848561	$1 \cdot 178464$	$\cdot 7624802$		40	-6516572	-859124	$1 \cdot 163976$	$\cdot 7585136$	20		. 6560590	-869286	$1 \cdot 150368$	7547096	0
20	$\cdot 6472334$. 849062	$1 \cdot 177769$	$\cdot 76229$,	-86928	1.15036	7547096	0
1	Cosine.	Cotang.	Tang.	Sine.			Cosine.	Cotang.	Tang.	Sine.	11	1	Cosine.	Cotang.	Tang.	Sine.	1

	－วu！s	＇sued，															
												0才 0				98\＆7099．	
0		19			09	07		06	モ66688．	696んも99．	0t	İ	I\％L019L．	09L8I•T	L806L8．	\％0zz	I
1	も688	\％98III．I	LL8668	Ø千I6899．	6 S	I\％	781をんある。	6も\＆zzI－T	80V688．	98L9ъ99．	68	ても	It9\％IcL． 9	9 L $688 \mathrm{I} \cdot \mathrm{I}$	I\％98L8．	210009	
z	0も\＆	\％I6III－1	I98668	I869899．	89	z\％	ムITですく．	8009\％T•I	\％88888．	\％198ち99．	88	\＆	199も星ん．	$688 \mathrm{I} \cdot \mathrm{I}$	9008L8．	88	I
ε	98zL\＆	899\％II－I	9\％8868．	8187899．	4	\＆z	6ち09んちん．	L999zI•I	198888．	L\＆もしぇ99．	28	研	0879192．	968I－I	167んL8．	¢ъ99699	
t	6\％\％68も	tizeI	667868.	9997899．	99	も\％	186ム硅し．	L\％89\％I－I	178 488.	\％966899．	98	97	8688I¢L．	\％0もI•I	9269\％8．	9も8699	
9	8LItもす。	9988 I I－I	8Lん 68.	0670899 ．	c	9\％	\％166んもん．	28698I•I	I\％\＆288．	L80LE99．	98	97	9180\％ç	60才I•I	6979	Lz	
9	ctiett	8IGもITI	8もちん68	9z\＆8L99．	$\square \mathrm{C}$	97	ても8187L．	Lஏ9LZI•I	108988.	0167899．	İ	Lt	E\＆zz\％sL．	69IもI•I	L才69 28.	E806899	
2	8909訪く。	0Licti	8\％L968．	0919L99．	¢	28	\％んLE8ちム．	80888I－I	z8\％988．	ъ\＆LZ		87	6もIもて¢ス．	6\％zil－I	EEもGL8．	9689	
8	6669	\＆z89II－I	661968．	も668 299 －	研	83	I0L9872．	0L68zI•I	89 4888.	L¢90899．	z8	67	9909\％92．	196\％万I•I	0z67L8．	90ん7899	
6	士も68ちもん．	9んも9II－I	TL9968．	8781 299 ．	19	$6 z$	6\％9L872．	\％896\％I•I	もちを988．	6 L88799	18	09	086Lzck．	と89871－I	90もち 28.	91ç899	OI
－	18809もL．	0\＆LLTI•I	09I968．	1996999	0 C	08	L9968もL．	I	9\％2も88．	00\％9z99	08	IS	7686\％92．	08もちI•I	£68\＆28．	80	6
	Iz8z9ちL．	78LムIT－I	97976	86もL999．	$6 \pm$	I\＆	ち8も 672.	L9608I•I	90z788．	\％\％0เъ99．	68	\％	808IE9ム． 9	9 66 もす－I	0888 28.	18	8
	09LもGもん．	68781	80176	gz8c999	87	z8	IIも 66 \％．	089 IEI•I	889888.	\％ャ81\％99．	82	\＆	I\％LEEGL． 8	8も99もI－I	898\％ 28.	6çs9	
E	66999も2．	7606II•T	649868	99IE999．	$2{ }^{1}$	\＆8	L8896竐•	88\％z\＆I－I	02IE88．	6996199．	$1 z$	\％	च89989L．	8897I•I	g98\％ 28.	－	9
V1	98989ちん．	6ちノ6II•I	990868．	2860999	9b	ஏ	\％9\％L6士L．	Lも6\％8I－I	\＆99888．	\％8ちム 99.	9\％	g 9	9も¢ 4 ESL．	6697I	8781 28	（1）	g
GI	TLG09もん．	¢0才0zI－I	च¢9\％68．	LI88999．	9\％	ce	L81667L．	\％198EI•I	981\％88．	008¢I99－	98	99	L976892．	992交	IEETL8	－	\％
9	0I9697ん．	190IZI•I	I 0 0668．	9799999．	Vt	98	IIIT09L．	LLZもEI•I	819188．	6IIEI99．	T\％	49	898IもGL．		0880 28.	－ 22	\％
41	9ももも9もく．	8LLIZI－I	68才I68．	CLDtc99．	\＆	28	も80809L．	67678I•I	I0It88．	9860199．	\＆z	S	8L\％EもGL．	LI06才I．	8080L8．	0867999	－
BI	\％88997L．	9L8\％zI•I	296068.	ธ08\％999．	\％ 1	88	L96709L．	80998I－I	989088．	も¢ 28099	zz	69	L8I9792．		L6L698．	c8L\％999	I
6 I	ム188972．	8808zI－1	9もも068．	I\＆10999．	It	68	6L89092．	DLZ98I－I	890088.	0L99099．	18	9	960んも92．	8980¢ I－T	$98 \% 698$.	06¢0999－	0
	－${ }^{\text {aulson }}$	－848700		－วu！			－oulson		${ }^{\text {－}}$［ub L	－อu！${ }^{\text {S }}$			－${ }^{\text {autson }}$	8 ¢870		－2u！s	

	Sine.	Tang.	Cotang.	Cosine.			Sine.	Tang.	Cotang.	Cosine.	,			Tang.	Cotang.	Cosine.	
	$0 \cdot 6691306$	$\cdot 900404$	1-110612	-7431448	60	21	-6736577	-911526	$1 \cdot 097060$	$\cdot 7390435$	39	41	$\cdot 6779459$	$\cdot 922235$		$\cdot 7351118$	9
	$1 \cdot 6693468$	-900930	$1 \cdot 109963$. 7429502	59	22	-6738727	-912059	$1 \cdot 096420$	$\cdot 7388475$	38	42	-6781597	-922773	1.083689	$\cdot 7349146$	8
	$2 \cdot 6695628$. 901458	$1 \cdot 109314$	$\cdot 7427554$	58	23.	-6740876	- 912592	1.095779	$\cdot 7386515$	37	43	-6783734	923312	$1 \cdot 083$		7
3	$3 \cdot 6697789$	- 901985	L-108665	$\cdot 7425606$	57	24	-6743024	-913125	-095139	7384	36	4	785871	51			5
	$4 \cdot 6699948$	-902513	$1 \cdot 108017$	$\cdot 7423658$	56	25	-6745172	$\cdot 913659$	$1 \cdot 094500$	-7382592	35	45	6788007			-7341250	4
	$5 \cdot 6702108$	-903041	$1 \cdot 107369$	$\cdot 7421708$	55	26	-6747319	- 914192	$1 \cdot 093861$	'7380629	34	46			0532	$\cdot 7339275$	3
	$6 \cdot 6704266$	- 903569	1-106721	$\cdot 7419758$	54	27	-6749466	-914727	1-09322		33	48	-6794413	. 926010	- 079901	$\cdot 7337299$	2
	$7 \cdot 6706424$	904097	$1 \cdot 106075$	$\cdot 7417808$	53	28	-6751612	-915261		- $\cdot 7374738$	31	49	-6796547	. 926550	1.079271	$\cdot 7335322$	1
	$8 \cdot 6708582$	- 904626	$1 \cdot 105428$	$\cdot 7415857$	52	29	-6753757	-915796 916331	$1 \cdot 091946$	- 7372773	30	50	-6798681	. 927091	$1 \cdot 078642$	$\cdot 7333345$	0
	$9 \cdot 6710739$	- 905155	1-104782	$\cdot 7413905$	51	30	6755902	-916331	$1 \cdot 091308$	- 7370808	29	51	-6800813	-927632	$1 \cdot 078013$	$\cdot 7331367$	9
,	$0 \cdot 6712895$	-905685	$1 \cdot 104136$	$\cdot 7411953$	5	31	-6758046	-916866	1-090671	-7368842	29	52	-6802946	. 928173	$1 \cdot 077384$	$\cdot 7329388$	8
	-6715051	$\cdot 906214$	$1 \cdot 103491$	$\cdot 7410000$	49	32	-6760190	-917402	1-090034	-7366875	27	53	-6805078	. 9288715	$1 \cdot 076756$	$\cdot 7327409$	7
12	-6717206	-906744	$1 \cdot 102$	$\cdot 7408046$	48	34	-6762333	-918474	$1 \cdot 088762$	-7364908	26	54	-6807209	$\cdot 929257$	$1 \cdot 076128$	$\cdot 7325429$	6
13	-671936	-907274	1		4	34	-6766618	. 919010	1.088126	- 7362940	25	55	-6809339	-929799	$1 \cdot 075500$	$\cdot 7323449$	5
	6721515	-908336			$\begin{aligned} & 46 \\ & 45 \end{aligned}$	$36 \cdot$	-6768760	. 919547	$1 \cdot 087491$	-7360971	24	56	-6811469	-930342	1-074873	$\cdot 7321467$	4
	-6725821	-908867	$1 \cdot 100270$	$\cdot 7400225$	44	37	-6770901	-920084	$1 \cdot 086857$	-7359002	23	57	-6813599	-930884	$1 \cdot 0742$	-7319486	3
	17-6727973	-909398	$1 \cdot 09962 \mathrm{~S}$	$\cdot 7398268$	43	38	-6773041	-920621	$1 \cdot 086222$	'7357032	22	-	-6815728	-931428			
18	8-6730125	-909930	$1 \cdot 098985$	$\cdot 7396311$	42	39	-6775181	.921159	$1 \cdot 08558$	735506		9	-6817856	$\cdot 931971$		$\cdot 7313537$	
19	$9 \cdot 6732276$	-910461	$1 \cdot 098343$	7394353	41	40	-6777320	. 921696	$1 \cdot 084955$	$\cdot 7353090$	20	60	-681				
20	$0 \cdot 6734427$	-910994	$1 \cdot 097702$	$\cdot 7392394$	40												
,	Cosine.	Cotang	ang.	Sine.	$1 \prime$,	Cosine.	Cotang.	Tang.	Sine.	,	,	Cosine.	Cotang.	Tang.	Sin	1

43 Deg.

\prime	Sine.	Tang.	Cotang.	Cosine.	'		Sine.	Tang,	Cotang.				e.	ang.	Cotang.	e.	
0	-6819984	$\cdot 932515$	$1 \cdot 072368$	$\cdot 7313537$	602	21	-6864532	-944001	$1 \cdot 059320$	-7271740	391	41	-6906721	- 955064	$1 \cdot 047049$	$\cdot 7231681$	
1	-6822111	-933059	$1 \cdot 071743$	$\cdot 7311553$	59	22.	-6866647	. 944551	$1 \cdot 058703$	$\cdot 7269743$	38	42	-6908824	-955620	$1 \cdot 046440$	$\cdot 7229671$	
2	-6824237	-933603	$1 \cdot 071118$	$\cdot \mathrm{r} 7309568$	58	23	-6868761	. 945102	$1 \cdot 058086$	$\cdot 7267745$		43	-6910927	-95617'7	$1 \cdot 045831$	${ }^{\prime} 722^{\prime} 661$	1
3	-6826363	. 934147	$1 \cdot 070494$	$\cdot 7307583$	57	24	-6870875	. 945653	$1 \cdot 057470$	-7265'747	36	44	-6913029	-956734	$1 \cdot 045222$	$\cdot 7225651$	6
4	- 6828489	-934692	$1 \cdot 069870$	-7305597	56	25	-6872988	-946204	$1 \cdot 056854$	-7263748	35	45	-6915131	. 957291	$1 \cdot 044613$	'7223640	15
5	-6830613	. 935238	$1 \cdot 069246$	-7303610	55	26	-6875101	. 946755	$1 \cdot 056238$	$\cdot 7261748$	34	46	-6917232	-957849	$1 \cdot 044005$	8	4
6	-6832738	$\cdot 935783$	$1 \cdot 068623$	$\cdot 7301623$	54	27	-6877213	.94'7307	$1 \cdot 055623$	$\cdot 7259748$	33	47	-6919332	. 958407	7	'7219615	,
7	-6834861	-936329	$1 \cdot 068000$	-7299635	53	28	-6879325	. 947859	$1 \cdot 055008$	$\cdot 7257747$	32	48	$\cdot 6921432$	$\cdot 958965$	0	$\cdot 7217602$	2
8	-6836984	-936875	$1 \cdot 067377$	-7297646	52	29	. 6881435	. 948411	$1 \cdot 054394$	$\cdot 7255746$	31	19	-6923531	-959524	-042183	9	11
9	-6839107	-937421	$1 \cdot 066755$	-7295657	51	30	- 6883546	. 948964	1.053780	-7253744	30	50	-6925630	. 960082	$1 \cdot 041576$	4	10
10	- 6841229	. 937968	$1 \cdot 066134$	-7293668	50	31	-6885655	. 949517	$1 \cdot 053166$	$\cdot 7251741$	29	51	-6927728	-960642	$1 \cdot 040970$	$\cdot 7211559$	9
11	-6843350	-938515	$1 \cdot 065512$	-7291677	49	32	-6887765	. 950070	- $\cdot 052553$	-7249738	28	52	-6929825	$\cdot 961201$	$1 \cdot 040364$,	8
12	-6845471	-939062	1-064891	$\cdot 7289686$	48	33	-6889873	-950624	$1 \cdot 051940$	- 7247734	275	53	$\cdot 6931922$	-961761	-039758	$\cdot 7207528$	7
13	-6847591	-939610	$1 \cdot 064271$	-7287695	47	34	-6891981	951178	1.051327	- 7245729	26	54	-6934018	-962321		7	6
14	-6849711	- 940157	$1 \cdot 063651$	$\cdot 7285703$	46	35	- 6894089	.951732	$1 \cdot 050715$	-7243724	25	55	6936114	-962881	$1 \cdot 038548$.7203494	5
	-6851830	$\cdot 940706$	$1 \cdot 063031$	$\cdot 7283710$	45	36	-6896195	-952287	$1 \cdot 050103$	$\cdot 7241719$	24	56	-6938209	-963442	1-037944	- 7	3
1	-6853948	$\cdot 941254$	$1 \cdot 06241]$	-7281716	44	37	-6898302	. 952842	$1 \cdot 049492$	- 7239712	23	57	- G940304	$\cdot 964003$	037340	7199457	3
	-6856066	-941803	$1 \cdot 061792$	-7279722	43	38.	-6900407	. 953397	$1 \cdot 048880$	$\cdot 7237705$	22	58	-644491	-964565	-036133	$\cdot 7$	
18	-6858184	-942352	$1 \cdot 061174$	-7277728	42	391	-6902512	.953952	$1 \cdot 048270$	$\cdot 7235698$	21		944491	-965126	036133		
19	-6860300	$\cdot 942901$	$1 \cdot 060556$	$\cdot 7275732$	41	40	$\cdot 6904617$	$\cdot 954508$	$1 \cdot 047659$	$\cdot 7233690$	20		6946584	$\cdot 965688$	35530	$\cdot 7193398$	
20	-6862416	\|.943451	$1 \cdot 059938$	$\cdot 7273736$	4												
'	Cosine.	Cotang.	Tang.	Sine.	'	11	os	otang.	'rang.	Sine.	'		Cosine.	Cotang	Tang.	Sine.	,

$\delta 3$

	Sine.	'Tang.	Cotang.	e.			Sine.	'Tang.	Cotang.	Cosine.			Sine.	Tang.	Cotang.	e.	
	-6946584	-965688	$1 \cdot 035530$	- 7193398	602	21	-6990396	-977564	$1 \cdot 022950$	$\cdot 7150830$	39	41	-7031879	- 989006	$1 \cdot 011115$	-7110041	9
	-6948676	$\cdot 966251$	$1 \cdot 034927$	-7191377	59	22	-6992476	-978133	$1 \cdot 022355$	$\cdot \cdot 7148796$	38	42	$\cdot 7033947$	- 989582	1.010527	-7107995	18
2	-6950767	-966813	$1 \cdot 034325$	$\cdot 7189355$	58	23	-6994555	.978702	$1 \cdot 021760$	$\cdot 7146762$	37	43	$\cdot 7036014$	- 990158	1-009939	-7105948	17
3	6952858	-967376	$1 \cdot 033723$	$\cdot 7187333$	572	24	-6996633	-979272	$1 \cdot 021166$	$\cdot \cdot 7144727$	36	44	$\because 038081$	-990734	1-009352	$\cdot 7103901$	16
4	-6954949	-967939	$1 \cdot 033122$	$\cdot 7185310$	56	25	-6998711	. 979842	1.020572	$\cdot 7142691$	35	45	$\cdot 7040147$. 991311	$1 \cdot 008764$	-7101854	15
5	-6957039	- 968503	$1 \cdot 032520$	- 7183287	55	26	-7000789	-980412	$1 \cdot 019978$	$\cdot 7140655$	34	46	$\cdot 7042213$	-991888	1-008178	-7099806	14
	-6959128	. 969067	$1 \cdot 031919$	- 7181263	54.2	27	-7002866	-980983	$1 \cdot 019385$	$\cdot 7138618$	33	47.	-7044278	-992465	$1 \cdot 007591$	-7097757	13
7	6961217	. 969631	$1 \cdot 031319$	-7179238	532	28	-7004942	- 981554	$1 \cdot 018792$	$\cdot 7136581$	32	48	-7046342	-993042	$1 \cdot 007005$	$\cdot 7095707$	12
	-6963305	. 970196	$1 \cdot 030719$	$\cdot 7177213$	522	29	-7007018	$\cdot 982125$	1-018199	$\cdot 7134543$	31	49	-7048406	$\cdot 993620$	1-006420	. 7093657	1
	-6965392	-970761	$1 \cdot 030119$	- 7175187	513	30	$\cdot 7009093$	-982697	$1 \cdot 017607$	$\cdot 7132504$	305	50	-7050469	. 994199	$1 \cdot 005834$	-7091607	10
10	-6967479	. 971326	$1 \cdot 029520$	-7173161	503	31	$\cdot 7011167$	-983269	1.017015	$\cdot 7130465$	295	51.	-7052532	-994777	$1 \cdot 005249$	-7089556	9
11	-6969565	-971891	$1 \cdot 028921$	-7171134	493	32	$\cdot 7013241$	-983841	$1 \cdot 016423$	$\cdot 7128426$	28	52	-7054594	-995356	$1 \cdot 004665$	-7087504	8
12	-6971651	-972457	$1 \cdot 028322$	-7169106	483	33.	$\cdot 7015314$	-984414	$1 \cdot 015832$	$\cdot 7126385$	275	53	-7056655	-995935	$1 \cdot 004080$	$\cdot 7085451$	7
13	-6973736	$\cdot 973023$	$1 \cdot 027724$	- 7167078	473	34	$\cdot 7017387$. 984987	$1 \cdot 015241$	$\cdot 7124344$	26	54	-7058716	. 996515	$1 \cdot 003496$	-7083398	6
14	-6975821	- 973590	$1 \cdot 027126$	- 7165049	46	35	$\cdot 7019459$	-985560	$1 \cdot 014651$	$\cdot 7122303$	25	55	-7060776	-997095	$1 \cdot 002913$	-7081345	5
15	-6977905	-974156	$1 \cdot 026528$	-7163019	45	36	$\cdot 7021531$	-986133	$1 \cdot 014061$	$\cdot 7120260$	24	56	-7062835	-997675	$1 \cdot 002329$	-7079291	4
16	-6979988	-974724	$1 \cdot 025931$	- 7160989	443	37.	$\cdot 7023601$. 986707	$1 \cdot 013471$	$\cdot 7118218$	23	57.	-7064894	-998256	1-001746	-7077236	3
17	-6982071	-975291	$1 \cdot 025334$	$\cdot 7158959$	433	38	-7025672	. 987282	1-012881	$\cdot 7116174$	22	58.	-7066953	-998837	$1 \cdot 001164$	-7075180	2
18	-6984153	-975859	$1 \cdot 024738$	$\cdot 7156927$	423	39	$\cdot 7027741$. 987856	$1 \cdot 012292$	$\cdot 7114130$	21	59	-7069011	-999418	$1 \cdot 000581$.7073124	1
19	-6986234	-976427	$1 \cdot 024141$	-7154895	414	40	$\cdot 7029811$. 988431	1.011703	$\cdot 7112086$	20	60	-7071068	$1 \cdot 00000$	$1 \cdot 000000$	-7071068	0
20	-6988315	. 976995	$1 \cdot 023546$	-7152863	40												
,	Cosine.	Cotang.	Tang.	Sine.	1	,	Cosine.	Cotang.	Tang.	Sine.		,	Cosine.	Cotang.	Tang.	Sine.	,

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS

 WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO $\$ 1.00$ ON THE SEVENTH DAY OVERDUE.

$$
\text { YB } 10873
$$

[^0]: * On the tops of these stakes, small tacks are driven to define the precise point in the curve.

[^1]: * The angle opposite the given side, a b.
 \dagger The angle opposite the required side, $a c$.

[^2]: * In both eases the angle is measured outwardly from the curve; but when the curve falls beyond the tangent, as at b, then $b v$ must be continued inwardly as $b o$.

[^3]: * Because the deflection distance to a radius of 10000 feet, with chords of 100 feet, is 1 foot; and the deflection distances for other radii increase inversely as the radii.

