

FINANCIAL MATHEMATICS

BY
CLARENCE H. RICHARDSON, Рh.D.
Professor of Mathematics, Bucknell University
and
ISAIAH LESLIE MILLER
Late Professor of Mathematics, South Dakota State College of Agriculture and Mechanic Arts

NEW YORK

D. VAN NOSTRAND COMPANY, Inc.

250 Fourth Avenue
1946

Copyright, 1946
By
D. VAN NOSTRAND COMPANY, Inc.

All Riyhts Reserved
This book, or any parts thereof, may not bc reproduced in any form without written permission from the authors and the publishers.

Based on Business Mathematics, I. L. Miller, copyright 1935; second edition copyright 1939 ; and Commercial Algelra and Muthematics of Finance, I. L. Miller and C. H. Richardson, copyright 1939 by D. Van Nostrand Company, Inc.

PREFACE

This text is designed for a three-hour, one-year course for students who desire a knowledge of the mathematics of modern business and finance. While the vocational aspects of the subject should be especially attractive to students of commerce and business administration, yet an understanding of the topics that are considered-interest, discount, annuities, bond valuation, depreciation, insurance-may well be desirable information for the educated layman.

To live intelligently in this complex age requires more than a superficial knowledge of the topics to which we have just alluded, and it is palpably absurd to contend that the knowledge of interest, discount, bonds, and insurance that one acquires in school arithmetic is sufficient to understand modern finance. Try as one may, one cannot escape questions of finance. The real issue is: shall we deal with them with understanding and effectiveness or with superficiality and ineffectiveness?

While this text presupposes a knowledge of elementary algebra, we have listed for the student's convenience, page x , a page of important formulas from Miller and Richardson, Algebra: Commercial-Statistical that should be adequate for the well-prepared student. Although we make frequent reference to this Algebra in this text on Financial Mathematics, the necessary formulas are found in this reference list.

In the writing of this text the general student and not the pure mathematician has been kept constantly in mind. The text includes those techniques and artifices that many years of experience in teaching the subject have proved to be pedagogically fruitful. Some general features may be enumerated here: (1) The illustrative examples are numerous and are worked out in detail, many of them having been solved by more than one method in order that the student may compare the respective methods of attack. (2) Line diagrams, valuable in the analysis and presentation of problem material, have been given emphasis. (3) Summaries of important formulas occur at strategic points. (4) The exercises and problems are numerous, and they are purposely selected to show the applications of the theory to the many fields of activity. These exercises and problems are abundant, and no class will hope to do more than half of them. (5) Sets
of review problems are found at the ends of the chapters and the end of the book.

A few special features have also been included: (1) Interest and discount have been treated with unusual care, the similarities and differences having been pointed out with detail. (2) The treatment of annuities is pedagogical and logical. This treatment has been made purposely flexible so that, if it is desired, the applications may be made to depend upon two general formulas. No new formulas are developed for the solution of problems involving annuities due and deferred annuities, and these special annuities are analyzed in terms of ordinary annuities. (3) The discussion of probability and its application to insurance is more extended than that found in many texts.

In this edition we are including Answers to the exercises and problems.
While we have exercised great care in the preparation of this book, it is too much to expect that it is entirely free from errors. For the notification of such errors, we shall be truly grateful.

C. H. Richardson.

Bucknell University, Lewisburg, Pennsylvania, 1946.

CONTENTS

Chapter I, SIMPLE INTEREST AND DISCOUNT PAGE
ART.
1

1. Interest 1
2. Simple Interest Relations 1
3. Ordinary and Exact Interest 3
4. Methods of Counting Time 4
5. The Six Per Cent Method of Computing Ordinary Interest 7
6. Present Value and True Discount. 9
7. Bank Discount 12
8. Summary and Extension 15
9. Comparison of Simple Interest and Simple Discount Rates 17
10. Rates of Interest Corresponding to Certain Discount Rates in the Terms of Settlement 20
11. Exchanging Debts 22
12. To Find the Date When the Various Sums (Debts) Due at Different Times May Be Paid in One Sum 25
13. To Find the Equated Date of an Account 28
Chapter II, COMPOUND INTEREST AND COMPOUND DISCOUNT
14. Compound Interest 35
15. Compound Interest Formula 36
16. Nominal and Effective Rates of Interest 38
17. Present Value at Compound Interest 42
18. Other Problems Solved by the Compound Interest Formulas 45
19. Equation of Value 48
20. Equated Time 50
21. Compound Discount at a Discount Rate 53
22. Summary of Interest and Discount 54
Chapter III, ANNUITIES CERTAIN
23. Definitions 57
24. Amount of an Annuity 58
25. Present Value of an Annuity 63
26. Relation between $\frac{1}{a_{\bar{n}}}$ and $\frac{1}{s_{\bar{n}}}$ 66
27. Summary. Formulas of an Ordinary Annuity of Annual Rent R Payable Annually for n Years 67
28. Other Derivations of $a_{\bar{n}}$ and $s_{\boldsymbol{n}}$ 67

Contents

29. Amount of an Annuity, Where the Annual Rent, R, is Payable in p Equal Installments 69
30. Present Value of an Annuity of Annual Rent, R, Payable in p Equal Install- ments 78
31. Summary of Ordinary Annuity Formulas 79
32. Annuities Due 83
33. Deferred Annuitics 89
34. Finding the Interest Rate of an Annuity 92
35. The Term of an Annuity 95
36. Finding the Periodic Payment 97
37. Perpetuities and Capitalized Cost 100
38. Increasing and Decreasing Annuities 105
Chapter IV, SINKING FUNDS AND AMORTIZATION
39. Sinking Funds 111
40. Amortization 111
41. Book Value 113
42. Amount in the Sinking Fund at Any Time 113
43. Amount Remaining Due After the k th Payment Ias Been Made. 114
44. The Amortization and Sinking Fund Methods Compared 116
45. Retirement of a Bonded Debt. 118
Chapter V, DEPRRCIATION
46. Definitions 122
47. Methods of Treating Depreciation 123
48. The Straight Line Method 123
49. Fixed-Percentage-on-Decreasing-Value Method 125
50. The Sinking Fund Method 128
51. The Unit Cost Method 130
52. Depreciation of Mining Property 134
53. Composite Life of a Plant 136
Chapter VI, Valuation of Bonds
54. Definitions 141
55. Purchase Price 141
56. Premium and Discount 144
57. Amortization of Premium and Accumulation of Discount 147
58. Bonds Purchased Between Dividend Dates 150
59. Annuity Bonds 152
60. Serial Bonds 153
61. Use of Bond Tables 154
62. Determining the Investment Rate When the Purchase Price of a Bond is Given 155
Chapter VII, Probability and its application in LIFE INSURANCE
ART. page
63. The History of Probabilities 161
64. Meaning of a priori Probability 162
65. Relative Frequency. Empirical Probability 164
66. Permutations. Number of Permutations of Things All Different 165
67. Combinations. Number of Combinations of Things All Different 167
68. Some Elementary Theorems in Probability 169
69. Mathematical Expectation 172
70. Repeated Trials 173
71. Meaning of Mortality Table 176
72. Probabilities of Life 178
Chapter VIII, LIfE ANNUITIES
73. Pure Endowments 182
74. Whole Life Annuity 185
75. Present Value (Cost) of a Life Annuity 185
76. Life Annuity Due 186
77. Deferred Life Annuity 186
78. Temporary Life Annuity 187
79. Forborne Temporary Life Annuity Due 189
80. Summary of Formulas of Life Annuities. Examples 190
81. Annuities Payable m Times a Year 193
Chapter IX, LIFE INSURANCE, NET PrEMIUMS (SINGLE AND ANNUAL)
82. Definitions 198
83. Whole Life Policy 199
84. Term Insurance 202
85. Endowment Insurance 204
86. Annual Premium Payable by m Equal Installments 205
87. Summary of Formulas of Life Insurance Premiums 207
88. Combined Insurance and Annuity Policies 208
Chaptar X, Valuation of policies. Reserves
89. Meaning of Reserves 212
90. Computing Reserves, Numerical Illustration 213
91. Fackler's Accumulation Formula 214
92. Prospective Method of Valuation 216
93. Retrospective Method of Valuation 218
Chapter Xi, GROSS premiums, otiler methods of VALUATION, POLICY OPTIONS AND PROVISIONS, SURPLUS AND DIVIDENDS
94. Gross Premiums 221
95. Surplus and Dividends 222

Contents

ART.96. Policy Options223
97. Surrender or Loan Value 223
98. Extended Insurance. 224
99. Paid-up Insurance 225
100. Preliminary Term Valuation 227
101. Modified Preliminary Term Valuation 231
102. Concluding Remarks 235
Review Problems 237
Tables T-I-1-T-XIII-77
Answers 245
Index 261

USEFUL FORMULAS

From Miller and Richardson, Algebra: Commercial-Statistical *

I. Logarithms

page

1. If $a^{x}=N, \log _{a} N=x$
2. $\log _{a} M N=\log _{a} M+\log _{a} N$ 47
3. $\log _{a} \frac{M}{N}=\log _{a} M-\log _{a} N$
4. $\log _{a} M^{N}=N \log _{a} M$
II. Arithmetical Progression
5. $l=a+(n-1) d \quad 84$
6. $S_{n}=\frac{n}{2}(a+l)$
7. $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
III. Geometrical Progression
8. $l=a r^{n-1}$

87
2. $S_{n}=\frac{a-a r^{n}}{1-r}$

Article 60 (8) 87
3. $S_{n}=\frac{a-r l}{1-r}=\frac{r l-a}{r-1}$

Article 60 (9) 87
4. $S_{\infty}=\frac{a}{1-r}$ when $r<|1|$

89
IV. Binomial Theorem

$$
\begin{align*}
(a+b)^{n}=a^{n} & +n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2} \\
& +\cdots+\frac{n(n-1)(n-2) \cdots(n-r+1)}{r!} a^{n-r} b^{r} \\
& +\cdots+b^{n} \tag{42}
\end{align*}
$$

V. Summation

$$
\begin{equation*}
\sum_{i=1}^{n} u_{i}=u_{1}+u_{2}+u_{3}+\cdots+u_{n} \tag{90}
\end{equation*}
$$

* Miller and Richardson, Algebra: Commercial-Statistical, D. Van Nostrand Co., Inc., New York, N. Y.

CHAPTER I

SIMPLE INTEREST AND DISCOUNT

1. Interest.-Interest is the sum received for the use of capital. Ordinarily, the interest and capital are expressed in terms of money. The capital is referred to as the principal. To determine the proper amount of interest to be received for the use of a certain principal, we must know the time that the principal has been in use and the rate of interest that is being charged. The rate of interest is the rate per unit of time that the lender receives from the borrower for the use of the money. The rate of interest may also be defined as the interest earned by one unit of principal in one unit of time. The unit of time is almost invariably one year, and the unit of principal one dollar. The sum of the principal and interest is defined as the amount.

When interest is paid only on the principal lent, it is called simple interest. In case the interest is periodically added to the principal, and the interest in the following period is each time computed on this principal thus formed by adding the interest of the previous period, then we speak of the interest as being compounded, and the sum by which the original principal is increased at the end of the time is called the compound interest. In this chapter only simple interest calculations will be considered.
2. Simple interest relations.-Simple interest on any principal is obtained by multiplying together the numbers which stand for the principal, the rate, and the time in years.

If we let $\quad P=$ the principal, $i=$ the rate of interest (in decimal form), $n=$ the time (in years), $I=$ the interest,
and $S=$ the amount,
it follows from the definitions of interest and amount that:
and

$$
\begin{align*}
& I=P n i, \tag{1}\\
& S=P+I . \tag{2}
\end{align*}
$$

From relations (1) and (2), we get

$$
\begin{align*}
& S=P+P n i=P(1+n i) \\
& P=\frac{S}{1+n i} \tag{3}
\end{align*}
$$

Relations (1) and (2) involve five letters (values). If we know any three of the values, the other two may be found by making use of these relations. Let us illustrate by examples.

Example 1. Find the interest on $\$ 700$ for 4 years at 5%. Find the amount.

Solution. Substituting in (1) the values, $P=700, n=4, i=0.05$, we obtain

$$
I=700 \cdot 4 \cdot 0.05=\$ 140.00, \text { interest. }
$$

And

$$
S=700+140=\$ 840.00, \text { amount }
$$

Example 2. A ccrtain principal in 5 years, at 5%, amounts to $\$ 625$. Find the principal.

Solution. $\quad S=625, n=5, i=0.05$.
Substituting in (3), we have

$$
P=\frac{625}{1+(5 \cdot 0.05)}=\frac{625}{1.25}=\$ 500, \text { principal. }
$$

Example 3. Find the rate if $\$ 500$ earns $\$ 45$ interest in 18 months.
Solution. Here, $P=500, I=45, n=11 / 2$.
From relation (1) we have,

$$
i=\frac{I}{P n}=\frac{45}{500 \cdot 3 / 2}=0.06=6 \%
$$

Example 4. In what time will $\$ 300$ carn $\$ 81$ interest at 6% ?
Solution. Here, $P=300, i=0.06, I=81$.
From relation (1) we have,

$$
n=\frac{I}{P i}=\frac{81}{300(0.06)}=41 / 2 \text { years. }
$$

Exercises

1. Making use of relations (1) and (2), express S in terms of I, n, and t.
2. Find the interest on $\$ 5,000$ for $21 / 2$ years at 5%. Find the amount.
3. Find the simple interest on $\$ 350$ for 7 months at $61 / 2 \%$.
4. In what time will $\$ 750$ earn $\$ 56.25$ interest, if the rate is 5% ?
b. At $41 / 2 \%$, what principal will amount to $\$ 925$ in $31 / 2$ years?
5. In what time will $\$ 2,500$ amount to $\$ 2,981.25$ at $31 / 2 \%$?
6. $\$ 2,400$ amounts to $\$ 2,526$ in 9 months. Find the rate.
7. What is the rate of interest when $\$ 2,500$ earns $\$ 87.50$ interest in 6 months?
8. What principal will earn $\$ 300$ interest in 16 months, at 5% ?
9. In what time will $\$ 305$ amount to $\$ 344.65$ at 4% intcrest?
10. What is the rate when $\$ 355$ amounts to $\$ 396.42$ in 2 years and 4 months?
11. What sum must be placed at interest at 4% to amount to $\$ 299.52$ in 4 years and 3 months?
12. A building that cost $\$ 7,500$, rents for $\$ 62.50$ a month. If insurance and repairs amount to 1% each year, what is the net rate of interest earned on the investment?
13. If the interest on a certain sum for 4 months at 5% is $\$ 7.54$, what is the sum?
14. What principal in 2 years and 5 months, will amount to $\$ 283.84$, at $41 / 2 \%$?
15. At age 60 a person wishes to retire and invests his entire estate in bonds that pay 4% interest. This gives him a monthly income of $\$ 87.50$. What is the size of his estate?
16. Ordinary and exact interest.-Most of the problems considered in simple interest involve intervals of time measured in days or parts of a year. The general practice is to calculate the interest for a fractional part of a year on the basis of 360 days in a year (12 months of 30 days each). When 360 days is used as the basis for our calculations, we have what is called ordinary simple interest. When the exact number of days between two dates is counted and 365 days to a year is used as the basis of our calculations, we have what is known as exact simple interest.

$$
\text { If we let } \quad \begin{align*}
d & =\text { the time in days, } \\
P & =\text { the principal, } \\
i & =\text { the rate, } \\
\text { and } & \\
I_{o} & =\text { ordinary interest, } \\
I_{e} & =\text { exact interest, it follows that: } \\
I_{o} & =\frac{P d i}{360^{\prime}} \\
\text { and } & \\
I_{e} & =\frac{P d i}{365} . \tag{5}
\end{align*}
$$

If we divide the members of (5) by the corresponding members of (4), we have

$$
\begin{align*}
& \frac{I_{e}}{I_{o}}=\frac{360}{365}=\frac{72}{73}, \\
& I_{e}=\frac{72}{73} I_{o}=I_{o}-\frac{1}{73} I_{o} . \tag{6}
\end{align*}
$$

We notice from (6) that the exact interest for any number of days is $72 / 3$ times the ordinary interest, or, in other words, exact interest is $I_{0} / 73$ less than ordinary interest. Hence, we may find the exact interest by first computing the ordinary interest and then diminishing it by $1 / 13$ of itself.

Example. What is the ordinary interest on $\$ 500$ at 5% for 90 days? What is the exact interest?

Solution. Substituting in (4), we get

$$
\begin{aligned}
I_{o} & =\frac{500 \cdot 90 \cdot 0.05}{360}=\$ 6.25 \\
6.25 \div 73 & =0.085+ \\
I_{0} & =6.25-0.09=\$ 6.16
\end{aligned}
$$

Thus the ordinary interest is $\$ 6.25$ and the exact interest is $\$ 6.16$.
The exact interest could have been computed by applying (5), but the method used above is usually shorter, as will be seen after the reading of Art. 5.
4. Methods of counting time.-In finding the time between two dates the exact number of days may be counted in each month, or the time may be first found in months and days and then reduced to days, using 30 days to a month.

Example 1. Find the time from March 5 to July 8.
Solution. By the first method the time is 125 days. By the second method we get 4 months and 3 days or 123 days.

Either of these methods of computing time may be used where ordinary interest is desired, but when exact interest is required the exact time must be employed. Use of the following table will greatly facilitate finding the exact number of days between two dates.

Table Showing the Number of Each Day of the Year Counting from January 1

$\begin{aligned} & \text { ज } \\ & \text { 品 } \\ & \text { 宫 } \end{aligned}$	号	$\begin{aligned} & \dot{\mathbf{O}} \\ & \text { B } \end{aligned}$	安	宏	$\sum_{i}^{\text {E }}$	$\stackrel{0}{\Xi}$	$\stackrel{y}{\Xi}$	花	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\otimes 1} \\ & 0 \end{aligned}$	نٌ	这	¢ّه	
1	1	32	60	91	121	152	182	213	244	274	305	335	1
2	2	33	61	92	122	153	183	214	245	275	306	336	2
3	3	34	62	93	123	154	184	215	246	276	307	337	3
4	4	35	63	94	124	155	185	216	247	277	308	338	4
5	5	36	64	95	125	156	186	217	248	278	309	339	5
6	6	37	65	96	126	157	187	218	249	279	310	340	6
7	7	38	66	97	127	158	188	219	250	280	311	341	7
8	8	39	67	98	128	159	189	220	251	281	312	342	8
9	9	40	68	99	129	160	190	221	252	282	313	343	9
10	10	41	69	100	130	161	191	222	253	283	314	344	10
11	11	42	70	101	131	162	192	223	254	284	315	345	11
12	12	43	71	102	132	163	193	224	255	285	316	346	12
13	13	44	72	103	133	164	194	225	256	286	317	347	13
14	14	45	73	104	134	165	195	226	257	287	318	348	14
15	15	46	74	105	135	166	196	227	258	288	319	349	15
16	16	47	75	106	136	167	197	228	259	289	320	350	16
17	17	48	76	107	137	168	198	229	260	290	321	351	17
18	18	49	77	108	138	169	199	230	261	291	322	352	18
19	19	50	78	109	139	170	200	231	262	292	323	353	19
20	20	51	79	110	140	171	201	232	263	293	324	354	20
21	21	52	80	111	141	172	202	233	264	294	325	355	21
22	22	53	81	112	142	173	203	234	265	295	326	356	22
23	23	54	82	113	143	174	204	235	266	296	327	357	23
24	24	55	83	114	144	175	205	236	267	297	328	358	24
25	25	56	84	115	145	176	206	237	268	298	329	359	25
26	26	57	85	116	146	177	207	238	269	299	330	360	26
27	27	58	86	117	147	178	208	239	270	300	331	361	27
28	28	59	87	118	148	179	209	240	271	301	332	362	28
29	29		88	119	149	180	210	241	272	302	333	363	29
30	30		89	120	150	181	211	242	273	303	334	364	30
31	31	．	90	．．．	151	．．．	212	243	．．．	304	．．．	365	31

Notw．－For leap years the number of the day is one greater than the tabular．number after February 28.

Example 2. Find the exact interest on $\$ 450$ from March 20 to August 10 at 7%.

Solution. The exact time is 143 days.
Substituting in (5), we have

$$
I_{e}=\frac{450 \cdot 143 \cdot 0.07}{365}=\$ 12.34
$$

Example 3. Find the ordinary interest in the above exercise.
Solution. Either 143 days (exact time) or 4 months and 20 days (140 days) may be used for the time when computing the ordinary interest. Using 143 days and substituting in (4), we have

$$
I_{o}=\frac{450 \cdot 143 \cdot 0.07}{360}=\$ 12.51
$$

Using 140 days and substituting in (4), we have

$$
I_{o}=\frac{450 \cdot 140 \cdot 0.07}{360}=\$ 12.25
$$

Either $\$ 12.51$ or $\$ 12.25$ is considered the correct ordinary simple interest on the above amount from March 20 to August 10. The computation of ordinary interest for the exact time is said to be done by the Bankers' Rule.

Exercises

1. Find the ordinary and exact interest on the following:
a. $\$ 300$ for 65 days at 6%.
b. $\$ 475.50$ for 49 days at 5%.
c. $\$ 58.40$ for 115 days at 7%.
d. $\$ 952.20$ for 38 days at $41 / 2 \%$.
2. Find the ordinary and exact interest on $\$ 2,400$ at 8% from January 12 to April 6. Find the ordinary interest first and then use (6) to determine the exact interest.
3. Find the exact interest on $\$ 350$ from April 10 to September 5 at 7%.
4. Find the ordinary interest on $\$ 850$ from March 8 to October 5 at 6%.
5. How long will it take $\$ 750$ to yield $\$ 6.78$ exact interest at 6% ?
6. How long will it take $\$ 350$ to yield $\$ 3.65$ ordinary interest at 5% ?
7. The exact interest on $\$ 450$ for 70 days is $\$ 7.77$. What is the rate?
8. If the exact interest on a given principal is $\$ 14.40$, find the ordinary interest for the same period of time by making use of (6).
9. The ordinary interest on a certain sum is $\$ 21.90$. Find the exact interest for the same period of time.
10. What is the difference between the ordinary and exact interest on $\$ 2,560$ at 6% from May 5 to November 3 ?
11. The difference between the ordinary and exact interest on a certain sum is $\$ 0.40$. Find the exact interest on this sum.
12. The six per cent method of computing ordinary interest.Ordinary simple interest may be easily computed by applying the methods of multiples and aliquot parts.

If we consider a year as composed of 12 months of 30 days each (360 days),

$$
\begin{aligned}
& \text { at } 6 \% \text {, the interest on } \$ 1 \text { for } 1 \text { year is } \$ 0.06 \text {, } \\
& \text { at } 6 \% \text {, the interest on } \$ 1 \text { for } 2 \text { mo. (} 60 \text { days) is } \$ 0.01 \text {, } \\
& \text { at } 6 \% \text {, the interest on } \$ 1 \text { for } 6 \text { days is } \$ 0.001 \text {. }
\end{aligned}
$$

That is, to find the interest on any sum of money at 6% for 6 days, point off three places in the principal sum; and for 60 days, point off two places in the principal sum.

By applying the above rule we may find the ordinary interest on any principal for any length of time at 6%. After the ordinary interest at 6% is found, it is easy to find it for any other rate. Also, by applying (6), Art. 3, the exact interest may be readily computed.

Example 1. What is the ordinary interest on $\$ 3,754$ for 80 days at 6% ?
Solution. $\$ 37.54=$ interest for 60 days
$\frac{12.51}{\$ 50.05}$ "، " 20 " 80 days $\quad 1 / 3.60$ days $)$

Example 2. What is the ordinary simple interest on $\$ 475.25$ for 115 days at 6% ?

Solution.

$\$ 4.753=$ interest for 60 days				
$2.376=$		' 30		(1/2.60 days)
$1.584=$		20		(1/3.60 days)
$0.396=$		5		(1/4.20 days)

$\$ 9.11=$ interest for 115 days.

Example 3. Compute the ordinary interest on $\$ 865$ for 98 days at 8%.
Solution. $\$ 8.65=$ interest for 60 days at 6%

$325=$	،		30)
$0.865=$	f	"	6				
$0.288=$		'،	2				Why

$\$ 14.128=$ interest for 98 days at 6%
$4.709=\quad$ " \quad " \quad " \quad " $2 \% ~(1 / 3 \cdot 6 \%)$
$\$ 18.84=$ interest for 98 days at 8%. (Why?)
Example 4. Find the simple interest on $\$ 580$ for 78 days at $41 / 2 \%$.
Solution. $\$ 5.80=$ interest for 60 days at 6%
$1.45=$ " " 15 " ، "،

$\$ 7.54=$ interest for 78 days at 6%
$1.885=\quad$ " \quad " $، ~ " ~ 11 / 2 \% ~(W h y ?) ~$
$\$ 5.66=$ interest for 78 days at $41 / 2 \%$. (Why?)
Example 5. Find the exact simple interest on $\$ 2,500$ for 95 days at 7%.
Solution. $\quad \$ 25.00=$ interest for 60 days at 6%

$\$ 39.58=$ interest for 95 days at 6%
$6.60=$ " " 95 " " 1%
$\$ 46.18$ = ordinary interest for 95 days at 7% (Why?)
$0.63=46.18 \div 73$
$\$ 45.55=$ exact interest for 95 days at 7%. (Why?)

Exercises

1. Find the interest at 6% on:
$\$ 900$ for 50 days, $\$ 365.50$ for 99 days, $\$ 750$ for 70 days, $\$ 870.20$ for 126 days
2. Solve 1 , if the rate is $7 \frac{1}{2} \%$.
3. Find the exact interest at 6% on:
\$650 from March 3 to July 17
$\$ 800$ from February 10, 1944, to May 5, 1944
$\$ 2,000$ from August 10 to December 5.
4. Solve 3 , if the rate is 8%.
5. A person borrowed $\$ 250$ from a bank on July 5 and signed a 7% note due November 20. On September 10 he paid the bank $\$ 100$. What was the balance (including interest) due on the note November 20? (Use exact time.)
6. Solve 5 , if 30 days is counted to each month.
7. Solve 5 , if exact interest is used.
8. What is the difference between the exact and ordinary interest on $\$ 1,250$ from March 10 to October 3 at 7\%?
9. Present value and true discount.-In Art. 2 we found the relation between the principal, P, and the amount, S, to be expressed by the equations:

$$
S=P(1+n i) \quad \text { and } \quad P=\frac{S}{1+n i}
$$

We may look upon P and S as equivalent values. That is, P, the value at the beginning of the period, is equivalent to S at the end of the period, and vice versa. The following line diagram emphasizes these ideas.

$$
P=\frac{S}{1+n i}
$$

$$
S=P(1+n i)
$$

The quantity S is frequently called the accumulated value of P, and P is called the present value of S. Thus, the present value of a sum S due in n years is the principal P that will amount to S in n years. The quantity P is also called the discounted value of S due in n years. The difference between S and $P, S-P$, is called the discount on S as well as the interest on P. To distinguish it from Bank Discount (Art. 7) this discount on S at an interest rate $i \%$ is called the true discount on S. We thus have the several terms for P and S :

\[

\]

$$
\begin{aligned}
S-P & =\text { Interest on } P \text { at interest rate } i \\
& =\text { Discount on } S \text { at interest rate } i
\end{aligned}
$$

Example 1. Find the present value of a debt of $\$ 250$ due in 6 months if the interest rate is 6%. Find the true discount.

Solution. Here, $S=250, n=1 / 2$, and $i=0.06$.
Substituting these values in formula (3), we get

$$
\begin{gathered}
P=\frac{250}{1+1 / 2(0.06)}=\frac{250}{1.03}=\$ 242.72, \text { present value. } \\
S-P=250-242.72=\$ 7.28, \text { true discount }
\end{gathered}
$$

Example 2. A non-interest bearing note for $\$ 3,500$, dated May 2 was due in 6 months. Assuming an interest rate of $7 \frac{1}{2} \%$ find the value of the note as of July 5 .

Solution.

May $2+6$ months $=$ November 2, due date.
From July 5 to November $2=120$ days.
The present value of the maturity value as of July 5 (or for 120 days) is required and $S=3,500, n=1 / 3$, and $i=0.075$.
Hence, $\quad P=\frac{3,500}{1+1 / 3(0.075)}=\frac{3,500}{1.025}=\$ 3,414.63$.
The following line diagram exhibits graphically the important relationships of the example.

Example 3. On May 2, A loaned B $\$ 3,500$ for 6 months with interest at 6% and received from B a negotiable note. On July 5, A sold the note to C to whom money was worth $7 \frac{1}{2} \%$. What did C pay A for the note?

Solution.

Interest on $\$ 3,500$ for 6 months at $6 \%=\$ 105.00$.
$\$ 3,500+\$ 105.00=\$ 3,605$, maturity value.
May $2+6$ months $=$ November 2, maturity date.
From July 5 to November $2=120$ days.
The present value of the maturity value as of July 5 (or for 120 days) is required and $S=3,605, n=1 / 3$ and $i=0.075$.

Hence,

$$
P=\frac{3,605}{1+1 / 3(0.075)}=\frac{3,605}{1.025}=\$ 3,517.07,
$$

the value of the note as of July 5.

The student will notice that in the solution of a problem of the above type we first find the maturity value of the note or debt and then find the present value of this maturity value as of the specified date.

Exercises

1. Accumulate (that is, find the accumulated value of) $\$ 2,000$ for 2 years at 5% simple interest.
2. Accumulate $\$ 300$ for 8 months at 6% simple interest.
3. At 6% simple interest find the present value of $\$ 6,000$ due at the end of 8 months. What is the discount?
4. Discount (that is, find the discounted value of) $\$ 2,000$ for 2 years at 5% simple interest.
5. Discount $\$ 300$ for 8 months at 6% simple interest.
6. Draw graphs of the following functions using n as the horizontal axis and S as the vertical axis:
(a) $S=100(1+0.06 n)=100+6 n$.
(b) $S=100(1+0.04 n)=100+4 n$.
7. Mr. Smith buys a bill of goods from a manufacturer who asks him to pay $\$ 1,000$ at the end of 60 days. If Mr. Smith wishes to pay immediately, what should the manufacturer be willing to accept if he is able to realize 6% on his investments?
8. Solve Exercise 7 under the assumption that the manufacturer can invest his money at 8%. Compare the results of Exercises 7 and 8 and note how the present value is affected by varying the interest rate.
9. I owe $\$ 1,500$ due at the end of two years and am offered the privilege of paying a smaller sum immediately. At which simple interest rate, 5% or 6%, would my creditor prefer to compute the present value of my obligation?
10.

$\$ 1,000.00$

Six months after date I promise to pay \mathbf{X}, or order, one thousand dollars together with interest from date at 7%.

Signed, Y.
(a) What is the maturity value of the note?
(b) If X sold the note to W , to whom money was worth 6%, four months after date, what did W pay X for the note?
(c) What rate of interest did X earn on the loan?
11. Solve Exercise 10 under the assumption that money was worth 8% to W .
7. Bank discount.-Bank discount is simple interest, calculated on the maturity value of a note from the date of discount to the maturity.date, and is paid in advance. If a bank lends an individual $\$ 100$ on a six months' note, and the rate of discount is 8%, the banker gives the individual $\$ 96$ now and collects $\$ 100$ when the note becomes due. If one wishes to discount a note at a bank, the bank deducts from the maturity value of the note the interest (bank discount) on the maturity value from the date of discount to the date of maturity. The amount that is left after deducting the bank discount is known as the proceeds. The time from the date of discount to the maturity date is commonly known as the term of discount. An additional charge is usually made by the bank when discounting paper drawn on some out-of-town bank. This charge is known as exchange. The bank discount plus the exchange charge gives the bank's total charge. The maturity value minus the total charge gives the proceeds (when an exchange charge is made).

The terms face of a note and maturity value of a note need to be explained. The maturity value may or may not be the same as the face value. If the note bears no interest they are the same, but if the note bears interest the maturity value equals the face value increased by the interest on the note for the term of the note.

The discount, maturity value, rate of discount, proceeds (when no exchange charge is made), and the term of discount are commonly represented by the letters D, S, d, P, and n, respectively. From the definitions of bank discount and proceeds we may write
and

$$
\begin{gather*}
D=S n d \tag{7}\\
P=S-D=S-S n d=S(1-n d) \tag{8}
\end{gather*}
$$

When applying formulas (7) and (8) we must express n in years and d in the decimal form.

The quantity P is frequently called the discounted value of S at the given rate of discount, and P is called the present value of $S . S$ is also called the accumulated value of P. The difference between S and $P, S-P$, is called both the discount on S and the interest on P. In each instance
the calculation is at the discount rate d. The relations are pictured by the line diagram.

$$
\begin{aligned}
& P=S(1-n d) \quad S=\frac{P}{1-n d} \\
& S-P=\text { Interest on } P \text { at discount rate } d \\
&=\text { Discount on } S \text { at discount rate } d
\end{aligned}
$$

Example 1. A six months' note, without interest, for \$375, dated May 6, was discounted August 1, at 6\%. Find the proceeds.

Solution.
May $6+6$ mo. $=$ Nov. 6, due date.
From August 1 to Nov, $6=97$ days, term of discount.
Discount on $\$ 375$ for 97 days $=\$ 6.07$, bank discount. $\$ 375-\$ 6.07=\$ 368.93$, proceeds.

Example 2. If the above note were a 5% interest-bearing note, what would be the proceeds?

Solution.
May $6+6$ mo. $=$ Nov. 6, due date.
From August 1 to Nov. $6=97$ days, term of discount.
Interest on $\$ 375$ for 6 mo . at $5 \%=\$ 9.38$.
$\$ 375.00+\$ 9.38=\$ 384.38$, maturity value.
Discount on $\$ 384.38$ for 97 days at $6 \%=\$ 6.21$, bank discount. $\$ 384.38-\$ 6.21=\$ 378.17$, proceeds.

Example 3. Solve Example 2, if $1 / 4 \%$ of the maturity value were charged for exchange.

Solution.

May $6+6$ mo. $=$ Nov. 6, due date.
From August 1 to Nov. $6=97$ days, term of discount.
Interest on $\$ 375$ for 6 mo . at $5 \%=\$ 9.38$.
$\$ 375.00+\$ 9.38=\$ 384.38$, maturity value.
Discount on $\$ 384.38$ for 97 days at $6 \%=\$ 6.21$, bank discount. $1 / 4 \%$ of $\$ 384.38=\$ 0.96$, exchange charge.
$\$ 6.21+\$ 0.96=\$ 7.17$, total charge made by the banker.
$\$ 384.38-\$ 7.17=\$ 377.21$, proceeds.

Example 4.

$\$ 500.00$
Lewisburg, Penna.
February 1, 1944.
Ninety days after date I promise to pay X, or order, five hundred dollars together with interest from date at 6%.

Signed, Y.
On March 10, X sold the note to banker B who discounted the note at 8%. What proceeds did X receive for the note?

Solution.

90 days after Feb. 1, 1944 is May 1, 1944, the due date.
From March 10 to May 1 is 52 days, the term of discount.
The interest on $\$ 500$ for 90 days at $6 \%=\$ 7.50$.
$\$ 500.00+\$ 7.50=\$ 507.50$, the maturity value.
The discount on $\$ 507.50$ for 52 days at $8 \%=\$ 5.86$, the bank discount.
$\$ 507.50-\$ 5.86=\$ 501.64$, the procceds.

In the solution of the above examples, certain fundamental facts have been used, which we now point out.

If the note is given for a certain number of months, the maturity (due) date is found by adding the number of months to the date of the note. This is illustrated in Example 1. Thus, if a note for six months, is dated May 6, it will be due on the corresponding (the 6th) day of the sixth month, or November 6. November 30, would have been the due date of this note, if it had been dated May 31. The correct date for three months after November 30, 1930 is Feb. 28, 1931 and the correct date for three months after November 30, 1931 is Feb. 29, 1932. What makes this difference?

If the term of the note is a fixed number of days, the due date is found by adding the number of days to the date of the note, using the exact number of days of the intervening months. Thus, 90 days after Feb. 1, 1932 is May 1, for the 28 days remaining in February +31 days in March +30 days in April +1 day in May = May 1. What is the correct date for 90 days after Feb. 1, 1931?

The term of discount is commonly found by counting the exact number of days between the date of discount and the due date. Thus, the term of discount in Example 1, is 97 days, being obtained as follows: 30 days remaining in August +30 days in September +31 days in October + 6 days in November $=97$ days. The date of discount is excluded but the due date is included.

When February is an intervening month, use 28 days if no year date is given, but if it occurs in a leap year use 29 days.

These four examples illustrate all the fundamental facts that are used in"discounting a note. They merit a careful study by the student.

Simple discount,* like simple interest, is seldom used in computations extending over a long period of time. In fact, the use of simple discount leads to absurd results in long-term transactions.

Illustration. At 6% discount, the present value of $\$ 1,000$ due at the end of 20 years is, using $P=S(1-n d)$,

$$
P=\$ 1,000[1-20(0.06)]=-\$ 200 .
$$

8. Summary and extension.-We have used two methods to accumulate P and to discount S. The first method was based upon the simple interest rate i and the second was based upon the simple discount rate d. The relationships that we have developed are the following:

$$
\begin{array}{rlrl}
\text { At simple interest. } & \text { At simple discount. } \\
I & =P n i & D & =S n d \\
S & =P+I & S & =P+D \\
S & =P(1+n i) & S & =\frac{P}{1-n d} \\
P & =\frac{S}{1+n i} & P & =S(1-n d)
\end{array}
$$

Banks and individuals frequently lend money at a discount rate instead of an interest rate. There are two reasons why the creditor may

[^0]prefer to lend at a discount rate. First, the arithmetic is simplified when the maturity value is known, and second, a larger rate of return is obtained.

Thus, if I request a loan of $\$ 100$ from a bank for six months at 6% discount, the banker actually gives me $\$ 97$, collecting the discount of $\$ 3$ in advance, and takes my non-interest-bearing note for $\$ 100$. Note the simplicity of the arithmetic: $P=100(1-0.06 / 2)=\$ 97$. Note also that the rate of return (the interest rate) is larger than 6%. For we have $P=\$ 97, n=1 / 2, S=\$ 100, i=(\quad)$. Using $S=P(1+n i)$, we obtaid

$$
100=97\left(1+\frac{i}{2}\right)
$$

from which

$$
i=0.0619=6.19 \%
$$

However, the banker should not be accused of unfair dealing if he quotes me the 6% discount rate or if he states that he charges 6% in advance. He should be criticised if he quotes an interest rate and then charges a discount rate. We shall return to the comparison of interest and discount rates in Art. 9.

Example 1. I desire $\$ 900$ as the proceeds of a 90 day loan from my banker B who charges 5% discount. What sum will I pay at the end of 90 days?

Solution. We have $P=\$ 900, n=1 / 4, d=0.05$. From $P=S(1-n d)$ we obtain

$$
900=S(1-0.05 / 4)
$$

Solving, we find

$$
S=\$ 911.392
$$

Exercises

Find the proceeds of the following notes and drafts:

Face	Time	Date of Paper	Rate of Interest	Date of Discount	Rate of Discount	Rate of Collection	
1.	$\$ 1,500$	3 mo.	January 1		Jan. 25	6%	$1 / 4 \%$
2.	380	90 days	March 10	5%	Apr. 20	6%	
3.	2,000	6 mo.	August 1	6%	Nov. 10	7%	$1 / 8 \%$
4.	575	4 mo.	May 10		Aug. 1	7%	$1 / 4 \%$
5.	1,350	90 days	Feb. 1, 1928	6%	Mar. 7	8%	$1 / 10 \%$
6.	1,260	60 days	March 5	7%	April 1	6%	
7.	2,500	2 mo.	April 10		May 1	6%	1110%

8. A $\$ 2,5006 \%$ interest-bearing note dated February 10, 1944 was due Sept. 1, 1944. It was discounted July 10 at $7 \frac{1}{2} \%$. What were the proceeds?
9. A person wishes to receive $\$ 250$ cash from a bank whose discount rate is 6%. He gives the bank a note due in 4 months. What should be the face value of the note?
10. Solve formula (8) for n and d.
11. The proceeds on a $\$ 400$ non-interest-bearing note discounted 78 days before maturity were $\$ 394.80$. What was the rate of discount?
12. A bank will loan a customer $\$ 1,000$ for 90 days, discounting the note at 6%. For what amount should the note be drawn?
13. How long before maturity was a $\$ 450$ note discounted, if the proceeds were \$444.14, the discount rate being 7% ?
14. A 90 -day 6% note of $\$ 5,000$, dated June 15 , payable at a Louisville bank, was discounted at a Chicago bank July 20, at $\mathbf{7 \%}$. If the exchange charge was $\$ 1.00$, find the proceeds.
15. A six months' note bearing 5% interest was dated March 7, 1935. It was discounted at 6% on July 15 , the bank charging $\$ 18.45$ discount. Find the face of the note.
16. A man received $\$ 882$ as the proceeds of a 90 -day non-interest-bearing note. The face of the note was $\$ 900$. What was the rate of discount.
17. A bank's discount rate is 7%. What should be the face of the note if the proceeds of a 6 months' loan are to be $\$ 2,000$?
18. A 4 months' note bearing $4 \frac{1}{2} \%$ interest, dated August 15, was discounted October 11, at 6%. The proceeds were $\$ 791.33$. Find the maturity value of the note. Find its face value.
19. A 90 -day 7% note for $\$ 1,200$, dated April 1, was discounted June 10 at 6%. Find the proceeds.
20. How long before maturity was a $\$ 5006$ months' 6% note discounted, if the proceeds were $\$ 504.70$, the discount rate being 8% ?
21. The proceeds on a six months' 5% note, when discounted 87 days before maturity at 6% were $\$ 1010.14$. Find the face of the note.
22. Find the present value of $\$ 1,000$ due at the end of 20 years if 5% discount rate is used.
23. Comparison of simple interest and simple discount rates.-In Art. 8 we gave brief mention to the relation of interest rate to discount rate. This relation is so important that we will consider the problem more thoroughly at this point. We shall approach the question through a series of examples.

Example 1. If $\$ 100$, due at the end of one year, is discounted at 6%, what is the corresponding rate of interest?

Solution. We have $S=\$ 100, n=1, d=0.06$. In order to find i, we will first find P. Using $P=S(1-n d)$, we have

$$
P=100(1-0.06)=\$ 94
$$

Since $S-P$ is the interest on P, we may find i by using $I=P n i$. We have $I=\$ 6, n=1, P=\$ 94$. Hence,

$$
i=\frac{6}{94}=0.06383=6.383 \%
$$

We might have employed the relation $S=P(1+n i)$ to obtain the same result.

Example 2. If $\$ 100$, due at the end of 6 months, is discounted at 6%, what is the corresponding interest rate?

Solution. We have $S=\$ 100, n=1 / 2, d=0.06$. From $P=S(1-n d)$, we have

$$
P=100(1-0.06 / 2)=\$ 97
$$

Since $S-P$ is the interest on P, we may find i by using $I=P n i$. We have $I=\$ 3, n=1 / 2, P=\$ 97$. Hence

$$
\begin{aligned}
97(i / 2) & =3, \\
i & =0.0619=6.19 \%
\end{aligned}
$$

Thus we notice that the interest rates corresponding to a given discount rate vary with the term; the longer the term, the larger the interest rate.

In general, we say that, for a given term, an interest rate i and a corresponding discount rate d are equivalent if the present values of S at i and d are equal. Thus, if P is the present value of S due in n years,
we have

$$
\begin{equation*}
P=\frac{S}{1+n i} \tag{3}
\end{equation*}
$$

and

$$
P=S(1-n d)
$$

from (8).
Hence,

$$
\frac{S}{1+n i}=S(1-n d) .
$$

Solving we obtain
and

$$
\begin{align*}
i & =\frac{d}{1-n d} \tag{9}\\
d & =\frac{i}{1+n i} \tag{10}
\end{align*}
$$

From (9) we observe that for a given d the values of i increase as n increases. From (10) we observe that for a given i the values of d decrease as n increases.

The student will also observe from (10) that $i /(1+n i)$ is the present value of i due in n years. That is, $i /(1+n i)$ in advance is equivalent to i at the end of the term. But $i /(1+n i)$ equals d. Hence d is equal to i paid in advance. Thus, we say discount is interest paid in advance.

Exercises

1. Solve Example 1 by using formula (3).
2. Solve Example 2 by using formula (3).
3. Employing equation (9) complete the table:

d	.08	.08	.08	.08
n	1	$1 / 2$	$1 / 4$	$1 / 8$
i				

4. Employing equation (10) complete the table:

i	.08	.08	.08	.08
n	1	$1 / 2$	$1 / 4$	$1 / 8$
d				

5. A obtains $\$ 780$ from Bank B. For this loan he gives his note for $\$ 800$ due in $\mathbf{6 0}$ days. At what rate does Bank B discount the note? What rate of interest does A pay?
6. A note for $\$ 800$, dated June 15 , due in 90 days and bearing interest at 6%, was sold on July 1 to a friend to whom money was worth 5%. What did the friend pay for the note?
7. If the note described in Exercise 6 were sold to Bank B on July 5 at a discount rate of 7%, what would Bank B pay for the note?
8. $\$ 500.00$

Pittsburgh, Penna. May 15, 1945.

Ninety days after date I promise to pay John Jones, or order, five hundred dollars together with interest at 6% from date.

Signed, Wm. Smith.
(a) Thirty days after date Jones sold the note to Bank B who discounted it at 7%. What did Jones receive for the note?
(b) Would it have been to Jones' advantage to have sold the note to friend C, to whom money was worth 7%, rather than to Bank B ?
9.
$\$ 1,000.00$
Chicago, Ill. May 15, 1945.

Six months after date I promise to pay Joe Brown, or order, one thousand dollars with interest from date at 5%.

Signed, Charles Paul.
(a) Two months after date Brown sold the note to Bank B who discounted it at 6%. What did Bank B pay for the note?
(b) Immediately after purchasing the note, Bank B sold the note to a Federal Reserve Bank at a re-discount rate of 4%. How much did Bank B gain on the transaction? [On transaction (b) use a 365-day year.]
10. Rates of interest corresponding to certain discount rates in the terms of settlement.-The subject of terms was discussed in Alg.: Com.Stat., p. 99.* An example will illustrate what is meant by the rates of interest corresponding to the rates of discounts of the terms of settlement.

Example 1. On an invoice of $\$ 1,000$, a merchant is offered the following terms: $5,3 / 30, n / 90$. What is the interest ratc corresponding to each of the rates of discount?

Solution.
I. If the buyer pays the account immediately, he receives a discount of $\$ 50$. That is, he settles the account for $\$ 950$ which means that he receives $\$ 50$ interest on $\$ 950$ for 90 days. We may determine the interest rate by substituting in $I=P n i$, thus obtaining:

$$
\begin{aligned}
i & =\frac{I}{P n}=\frac{50}{950(1 / 4)}=\frac{50}{237.50} \\
& =0.2105=21.05 \%
\end{aligned}
$$

II. If the buyer settles the account at the end of 30 days, he receives a discount of $\$ 30$. That is, the account is settled for $\$ 970$ which

[^1]means $\$ 30$ interest on $\$ 970$ for 60 days. We determine the interest rate as in I and find,
\[

$$
\begin{aligned}
i & =\frac{30}{970(1 / 6)}=\frac{180}{970} \\
& =0.1855=18.6 \%
\end{aligned}
$$
\]

The buyer may have his business so well organized that he knows about what his money is worth to him in the running of the business. He can then determine the best offer, in the terms of sale, to accept. An example will illustrate.

Example 2. Assuming that money is worth 20% to the merchant in his business, which is the best offer in Example 1?

Solution. To answer this question we must compare the present values of the separate offers. That is, which offer has the least present value assuming money worth 20% ?
I. 5% discount on $\$ 1,000$ means a discount of $\$ 50$. Hence the present value of this offer is $\$ 1,000-\$ 50=\$ 950$.
II. 3% discount on $\$ 1,000$ means a discount of $\$ 30$ at the end of 30 days. Hence, $\$ 970$ is required to settle the account at the end of 30 days. Now, the present value of $\$ 970$ is

$$
P=\frac{970}{1+1 / 12(0.20)}=\frac{970}{1.0167}=\$ 954.06 .
$$

III. Here the present value of $\$ 1,000$ for 90 days at 20% is required.

$$
\text { Hence, } \quad \begin{aligned}
P & =\frac{1,000}{1+1 / 4(0.20)}=\frac{1,000}{1.05} \\
& =\$ 952.38 .
\end{aligned}
$$

We notice that the 5% cash discount is the best offer (assuming money worth 20%) since it gives the least present value for the invoice.

Exercises

1. Determine the interest rates corresponding to bank discount rates of (a) $\mathbf{7 \%} 90$ days before maturity; (b) $71 / 2 \% 60$ days before maturity; (c) $6 \% 6$ months before maturity; (d) $8 \% 4$ months before maturity.
2. In discounting a 4 months' note a bank earns 9% interest. What rate of discount does it use?
3. What are the rates of discount corresponding to (a) 7% interest earned on a note discounted 90 days before maturity; (b) 8% interest carned on a note discounted 4 months before maturity; (c) 6% interest earned on a note discounted 6 months before maturity?
4. What rate of interest is earned on money used in discounting bills at a discount rate of 9% per annum?
5. What is the rate of discount at which a bank may as well employ its funds as to lend money at an interest rate of 8% ?
6. A merchant has the privilege of 90 days credit or 3% off for cash: What rate of interest does he earn on his money if he pays cash?
7. A merchant bought a bill of goods amounting to $\$ 2,500$ and received the following terms: $4,3 / 10, n / 90$. What is the interest rate corresponding to each of the rates of discount?
8. Assuming that money is worth 15% to the merchant in the conducting of his business, which is the best offer in Exercise 7? (See illustrative Example 2, Art. 10.)
9. On an invoice of $\$ 4,200$, a merchant is offered 60 days credit or a discount of 3% for cash. Not having the money to pay cash, he accepts the credit terms. What rate of interest does he pay on the net amount of the bill? How much would he have saved if he had borrowed the moncy at 7% and paid cash?
10. 7% interest was earned in discounting a note 90 days before maturity; 6% was earned in discounting a 4 months' note; and 5% was earned in discounting a 9 months' note. What were the corresponding discount rates?
11. Assuming money worth 20% in one's business, which one of following offers is the most advantageous to the buyer: 6, $5 / 30, n / 4$ mos.? (Assume an invoice of $\$ 100$.)
12. Solve Exercise 11, assuming money worth 18%.
13. A bank used a discount rate of 6% in discounting a 4 months' note. What rate of interest was earned on the transaction?
14. Assuming money worth 12%, which one of the following offers is the most advantageous to the buyer: $6,4 / 30, n / 4$ mos.?
15. Exchanging debts.-When two or more debts (obligations) are to be compared we must know when each debt is due and then compare their values at some specified time. The value of a debt at a specified time depends upon the rate of interest that is used. Let us suppose that a debt of $\$ 200$ is due in 2 months and one of $\$ 205$ is due in 8 months. Assuming money worth 6%, compare their values now. The value of the first debt at this time is

$$
\frac{200}{1+1 / 6(0.06)}=\frac{200}{1.01}=\$ 198.02 \quad[(3), \text { Art. 2] }
$$

and the value of the second debt at this time is

$$
\frac{205}{1+2 / 3(0.06)}=\frac{205}{1.04}=\$ 197.12
$$

Six months from now the first debt would be 4 months past due and should draw interest for that time. The second debt would not be due for 2 months and should be discounted for that time. Then their values 6 months from now would be
and

$$
\begin{aligned}
200[1+1 / 3(0.06)] & =200(1.02)=\$ 204.00 \\
\frac{205}{1+1 / 6(0.06)} & =\frac{205}{1.01}=\$ 202.97 .
\end{aligned}
$$

We notice that the first debt has a greater value on both dates of comparison. If 6% is used the value of the first debt will always be greater than that of the second.

If 4% were used their values on the above dates would be $\$ 198.67$, $\$ 199.67$ and $\$ 202.67$, $\$ 203.64$; respectively. That is, if 4% interest is assumed the second debt has a greater value at all times.

If 6% interest is assumed, the sum of the values of the above debts at the present is $\$ 395.14$. This is shown by the equation

$$
\frac{200}{1.01}+\frac{205}{1.04}=395.14
$$

We say that the sum of the values of $\$ 200$ due in 2 months and $\$ 205$ due in 8 months is equal to $\$ 395.14$ due now, if money is assumed to be worth 6%. Also, the sum of the values of $\$ 200$ due in 2 months and $\$ 205$ due in 8 months is equal to the sum of the values of $\$ 201.97$ due in 3 months and $\$ 201.97$ due in 6 months, if 6% interest is assumed. This may be shown by comparing the two sets of debts on some common date. Suppose we take 8 months from now as a common date. Then
and

$$
201.97(1.025)+201.97(1.01)=411.01
$$

Whenever the value of one set of obligations is equal to the value of another set of obligations on a common date, the one set may be exchanged for the other set, and the values of the two sets are said to be equivalent. The common date used for the date of comparison is usually known as the focal date, and the equality which exists, on the focal date, between the values
of the two sets of obligations is called an equation of value. An example will illustrate the meaning of focal date and equation of value.

Example 1. A person owes $\$ 600$ due in 4 months and $\$ 700$ due in 9 months. Find the equal payments necessary to equitably discharge the two debts, if made at the ends of 3 months and 6 months, respectively, assuming 6% simple interest.

Solution. We choose the end of 9 months for our focal date and set up the equation of value.*

Let $x=$ the number of dollars in each of the equal payments.
The time from the date of making the first payment x until the focal date is 6 months and the payment will accumulate to

$$
[1+1 / 2(0.06)] x=(1.03) x \text { on the focal date. }
$$

The second payment is made 3 months before the focal date and it will accumulate to

$$
[1+1 / 4(0.06)] x=(1.015) x \text { on the focal date. }
$$

The $\$ 600$ debt is due in 4 months, just 5 months before the focal date, and will accumulate to

$$
600[1+5 / 12(0.06)]=615.00 \text { on the focal date. }
$$

The $\$ 700$ debt is due on the focal date and will be worth $\$ 700$ on that date.

The equation of value becomes
$(1.03) x+(1.015) x=615+700$,

$$
(2.045) x=1,315
$$

$x=\$ 643.03$, the amount of each of the equal payments.
In setting up an equation of valuc, we assume that the equation is true for any focal date. That is, we assume that if the value of one set of debts is equal to the value of another set of debts on a given focal date, then the values are equal on any other focal date. If in the above prob-

[^2]lem we had taken 3 months from now for the focal date, we would have obtained $\$ 643.07$ for the amount of one of the equal payments. Using 5 months from now as focal date we obtain $\$ 643.02$ as one of the equal payments. We notice that a change in the focal date changes the values of the payments, but this change is very slight and for short periods of time we may neglect the small differences caused by different choices of focal dates and choose the one that is most convenient. (In Art. 19 it will be shown that the amount x is independent of the focal date when the computations are based upon compound interest.) The last date occurring seems to be the most convenient, for then no discount is involved.

Example 2. Solve Example 1, assuming that the original debts bear 7% interest to maturity. Choose 9 months from now as the focal date.

Solution. $\$ 600$ at 7% amounts to $\$ 614$ in 4 months and on the focal date its amount is

$$
614[1+5 / 12(0.06)]=614(1.025)=\$ 629.35
$$

$\$ 700$ at 7% amounts to $\$ 736.75$ in 9 months and on the focal date its amount is this maturity value ($\$ 736.75$).

The equation of value becomes

$$
\begin{aligned}
(1.03) x+(1.015) x & =629.35+736.75 \\
(2.045) x & =1,366.10 \\
x & =\$ 668.02, \text { the amount of one of the equal payments. }
\end{aligned}
$$

12. To find the date when the various sums (debts) due at different times may be paid in one sum.- A may owe B several sums (debts) due at different times and may desire to cancel all of them at one time by paying a single amount equal to the sum of the maturity values of the several debts. The problem, then, is to find a date when the single amount may be paid without loss to either A (debtor) or B (creditor). Evidently, this should be at a time when the total interest gained by the debtor on the sums past due would balance the total interest lost on the sums paid before they are due. The date to be found is known as the equated date.

The solutions of problems of this character may be effected by either
of two methods. We may base our procedure upon a simple interest rate i and choose the latest date mentioned in the problem as the focal date, or we may base our procedure upon a simple discount rate d and choose the earliest date mentioned in the problem as the focal date. If the former method is followed all sums will accumulate at i to the focal date whereas if the latter method is adopted all sums will be discounted at d to the focal date.

Example. A owes B the following debts: $\$ 200$ due in 60 days, $\$ 400$ due in 90 days, and $\$ 600$ due in 120 days. Find the time when these debts may be canceled by a single payment of their sum, $\$ 1,200$.

Solution. We have the debts and the payment as shown by the line diagram.

Let n days from now be the equated date.
We choose the focal date at the latest date, 120 days from now, and assume an interest rate i.

The first debt, $\$ 200$, will be at interest for 60 days and its value on the focal date is

$$
200\left(1+\frac{60}{360} i\right)
$$

The second debt, $\$ 400$, will be at interest for 30 days and its value on the focal date is

$$
400\left(1+\frac{30}{360} i\right)
$$

The third debt, $\$ 600$, due on the focal date, bears no interest and hence its value then is

$$
600\left(1+\frac{0}{360} i\right)
$$

The single payment, $\$ 1,200$, will be at interest $(120-n)$ days and thus its value on the focal date is

$$
1,200\left(1+\frac{120-n}{360} i\right)
$$

Expressing by an equation the fact that the value of the payment on the focal date is equal to the sum of the maturity values of the debts on that date, we have
$1,200\left(1+\frac{120-n}{360} i\right)$

$$
=200\left(1+\frac{60}{360} i\right)+400\left(1+\frac{30}{360} i\right)+600\left(1+\frac{0}{360} i\right)
$$

which reduces to

$$
1,200\left(\frac{120-n}{360} i\right)=200\left(\frac{60}{360} i\right)+400\left(\frac{30}{360} i\right)+600\left(\frac{0}{360} i\right)
$$

Note. The student should note that the last equation written above simply states that the interest on the payment equals the sum of the interest increments on the debts, all calculated from their due dates to the focal date.

Multiplying the last equation by 360 and dividing through by $100 i$, we get

$$
\begin{aligned}
12(120-n) & =2(60)+4(30) \\
1,440-12 n & =120+120 \\
-12 n & =-1,200 \\
n & =100 .
\end{aligned}
$$

Hence, the $\$ 1,200$ may be paid 100 days from now and the equities be the same as if the debts were paid as originally scheduled.

Note. The fact that the interest rate i divides out as a factor in solving the equation of value shows that the value of n is independent of i.

Exercise. Solve the preceding example by assuming a discount rate d and choosing (a) the earliest date, 60 days, as the focal date, and (b) the present or "now" as the focal date.

By following a line of reasoning similar to that used in solving the preceding example, we will solve the general problem.

Problem. Let $D_{1}, D_{2}, \cdots, D_{k}$ be k debts due in $n_{1}, n_{2}, \cdots, n_{k}$ years respectively, and let their maturity values be $S_{1}, S_{2}, \cdots, S_{k}$. We wish to find the equated time, that is, the time when the k debts may be settled by a single payment of $S_{1}+S_{2}+\cdots+S_{k}$.

Solution. We shall assume $n_{1}<n_{2}<n_{3}<\cdots<n_{k}$, and we shall take the latest date, n_{k}, to be the focal date. Also we let n years from now be the equated time. The diagram gives us the picture.

Assuming an interest rate i, the accumulated values of S_{1}, S_{2}, etc., at n_{k} are $S_{1}\left[1+\left(n_{k}-n_{1}\right) i\right], S_{2}\left[1+\left(n_{k}-n_{2}\right) i\right]$, etc., we then have the equation of value
$\left[S_{1}+S_{2}+\cdots+S_{k}\right]\left[1+\left(n_{k}-n\right) i\right]=$
$S_{1}\left[1+\left(n_{k}-n_{1}\right) i\right]+S_{2}\left[1+\left(n_{k}-n_{2}\right) i\right]+\cdots+S_{k}\left[1+\left(n_{k}-n_{k}\right) i\right]$.
Subtracting $S_{1}+S_{2}+\cdots+S_{k}$ from both sides of the equation we have

$$
\begin{aligned}
& \left(S_{1}+S_{2}+\cdots+S_{k}\right)\left(n_{k}-n\right) i= \\
& \quad S_{1}\left(n_{k}-n_{1}\right) i+S_{2}\left(n_{k}-n_{2}\right) i+\cdots+S_{k}\left(n_{k}-n_{k}\right) i .
\end{aligned}
$$

Note. This equation shows that the interest on the payment equals the sum of the interest increments on the maturity values, all calculated from their due dates to the focal date.

Solving for n we obtain

$$
\begin{equation*}
n=\frac{S_{1} n_{1}+S_{2} n_{2}+S_{3} n_{3}+\cdots+S_{k} n_{k}}{S_{1}+S_{2}+S_{3}+\cdots+S_{k}} \tag{12}
\end{equation*}
$$

If $D_{1}, D_{2}, \cdots, D_{k}$ are not interest-bearing debts, $D_{1}=S_{1}, D_{2}=S_{2}$, $\cdots, D_{k}=S_{k}$, and equation (12) becomes

$$
n=\frac{D_{1} n_{1}+D_{2} n_{2}+\cdots+D_{k} n_{k}}{D_{1}+D_{2}+\cdots+D_{k}}
$$

If the debts involve short periods of time it is usually more convenient to express n, n_{1}, n_{2}, etc., in terms of either months or days.

Exercise. Derive formula (12) by assuming a discount rate d and choosing "now" as the focal date.

Exercise. The equated time has an interesting "teeterboard" property in that it is the "center of balance" when the maturity values are suspended as weights with lever arms measured from n. That is, let the lever arms be $\bar{n}_{1}=n_{1}-n, \bar{n}_{2}=n_{2}-n$, etc., respectively. Then,

$$
S_{1} \bar{n}_{1}+S_{2} \bar{n}_{2}+S_{3} \bar{n}_{3}+\cdots+S_{k} \bar{n}_{k}=0
$$

13. To find the equated date of an account.-To find the equated date of an account means we must find the date when the balance of the account can be paid without loss to either the debtor or the creditor.

As in Art. 12, we assume that the sum of the values, as of the focal date, of all credits including the balance, is equal to the sum of the values on that date of all debits. Obviously, we may select the focal date in many ways. We may, for example, choose the earliest date mentioned in the problem as the focal date and discount all credits and debts to this
point. We shall illustrate this procedure in our discussion first by a specific example and then by the general problem.

Example. What is the equated date of the account?

\[

\]

Solution. The total of the debts is $\$ 2,500$ and the total of the credits is $\$ 1,300$. Our problem is to find the date when the balance, $\$ 1,200$, can be paid without loss to either the debtor or the creditor. The line diagram gives us the picture.

We let the earliest date, May 1, be the focal date. Let n days from May 1 be the equated date. We assume a discount rate d and set up the equation of value.

$$
\begin{aligned}
400\left(1-\frac{10}{360} d\right)+1,200(1 & \left.-\frac{n}{360} d\right)+900\left(1-\frac{30}{360} d\right) \\
& =1,500\left(1-\frac{0}{360} d\right)+1,000\left(1-\frac{49}{360} d\right)
\end{aligned}
$$

Subtracting 2,500 from both sides of the equation and multiplying by (-1), we get
$400\left(\frac{10}{360} d\right)+1,200\left(\frac{n}{360} d\right)+900\left(\frac{30}{360} d\right)$

$$
=1,500\left(\frac{0}{360} d\right)+1,000\left(\frac{49}{360} d\right) .
$$

Note. This equation shows that the sum of the discounted values of the credits, as of May 1, equals the sum of the discounted values of the debts as of the same date. Further, since the last equation written above is divisible by d, the value of n is independent of the discount rate.

Multiplying the last equation by 360 and dividing by $100 d$, we have

$$
\begin{aligned}
40+12 n+270 & =490 \\
12 n & =180 \\
n & =15 \text { days. }
\end{aligned}
$$

Thus the equated date is 15 days after May 1, or May 16.

Exercise. Solve the preceding example by assuming an interest rate i and choosing the latcst date, June 19, as the focal date.

By following a line of reasoning similar to that used in solving the preceding example, we will solve the general problem.

Problem. Let $D_{1}, D_{2}, D_{3}, \cdots, D_{k}$ be k debts due in $n_{1}, n_{2}, n_{3}, \cdots, n_{k}$ years from now respectively, and let their maturity values be S_{1}, S_{2}, S_{3}, \cdots, S_{k}. Also, let $C_{1}, C_{2}, C_{3}, \cdots, C_{m}$ be m credits entered $o_{1}, o_{2}, o_{3}, \cdots$, o_{m} years from now respectively. We wish to find the equated date of the account, that is, the date when the balance B,

$$
B=\left(S_{1}+S_{2}+S_{3}+\cdots+S_{k}\right)-\left(C_{1}+C_{2}+C_{3}+\cdots+C_{m}\right),
$$

can be paid without loss to either debtor or creditor.
Solution. We shall assume $n_{1}<n_{2}<n_{3}<\cdots<n_{k}$ and $o_{1}<o_{2}<$ $o_{3}<\cdots<o_{m}$. For the sake of variety we shall take "now" to be the focal date. We assume a discount rate d and let n equal the number of years from now to the equated date. The line diagram gives us the picture.

By equating the sum of the credits, including the balance, discounted to the present, O, and the sum of the debts as of the same date, we have the equation of value

$$
\begin{aligned}
& C_{1}\left(1-o_{1} d\right)+C_{2}\left(1-o_{2} d\right)+C_{3}\left(1-o_{3} d\right)+\cdots+C_{m}\left(1-o_{m} d\right)+B(1-n d) \\
& \quad=S_{1}\left(1-n_{1} d\right)+S_{2}\left(1-n_{2} d\right)+S_{3}\left(1-n_{3} d\right)+\cdots+S_{k}\left(1-n_{k} d\right) .
\end{aligned}
$$

Subtracting $C_{1}+C_{2}+C_{3}+\cdots+C_{m}+B$ from both sides of this equation, then multiplying by (-1), we get
$C_{1} 0_{1} d+C_{2} o_{2} d+C_{3} o_{3} d+\cdots+C_{m} o_{m} d+B n d$

$$
=S_{1} n_{1} d+S_{2} n_{2} d+S_{3} n_{3} d+\cdots+S_{k} n_{k} d
$$

Note. This last equation shows that the sum of the discounted values of the payments equals the sum of the discounted values of the debts, all discounted to the focal date, "now." Also, since every term of this equation contains the factor d, which may be divided out, the equated date is independent of d.

Dividing out d and solving for n, we get, replacing B by its value,

$$
\begin{equation*}
n=\frac{\left(S_{1} n_{1}+S_{2} n_{2}+S_{3} n_{3}+\cdots+S_{k} n_{k}\right)-\left(C_{1} o_{1}+C_{2} o_{2}+C_{3} o_{3}+\cdots+C_{m} o_{m}\right)}{\left(S_{1}+S_{2}+S_{3}+\cdots+S_{k}\right)-\left(C_{1}+C_{2}+C_{3}+\cdots+C_{m}\right)} . \tag{13}
\end{equation*}
$$

If the debts are not interest-bearing, $S_{1}=D_{1}, S_{2}=D_{2}$, etc., in which case (13) becomes

$$
n=\frac{\left(D_{1} n_{1}+D_{2} n_{2}+D_{3} n_{3}+\cdots+D_{k} n_{k}\right)-\left(C_{1} o_{1}+C_{2} o_{2}+C_{3} o_{3}+\cdots+C_{m} o_{m}\right)}{\left(D_{1}+D_{2}+D_{3}+\cdots+D_{k}\right)-\left(C_{1}+C_{2}+C_{3}+\cdots+C_{m}\right)}
$$

In practice we usually let the earliest date mentioned in the problem be "now," then $n_{1}=0$ and the first term in the numerator vanishes.

When accounts involve short periods of time, we usually express n, $n_{1}, n_{2}, n_{3}, \cdots, n_{k}, o_{1}, o_{2}, o_{3}, \cdots, o_{m}$, in months or days.

Note. An account becomes interest-bearing on the equated date and the debtor should pay interest on the balance of the account from the equated date until the balance is paid.

Exercise. Derive formula (13) by assuming an interest rate i and choosing the latest date, n_{k}, as the focal date.

Exercises

1. An obligation of $\$ 500$ is due in 3 months and another obligation of $\$ 520$ is due in 9 months. Assuming money worth 6% simple interest, compare the values of these obligations (a) now, (b) 6 months from now, (c) 12 months from now.
2. Solve Exercise 1, assuming money worth 9% simple interest.
3. A note for $\$ 600$ drawing 5% simple interest will be due in 5 months, and another note for $\$ 600$ drawing 6% interest will be due in 9 months. Assuming money worth $\mathbf{7 \%}$ simple interest, compare the values of these obligations 7 months from now.
4. Solve Exercise 3, assuming money worth 8% simple interest.
5. A owes $B \$ 500$ due in 3 months, $\$ 600$ due in 5 months, and $\$ 700$ due in 8 months. Find the equal payments to be made at the end of 6 months and 12 months, respectively, which will equitably discharge the three debts if money is worth 5%.
6. Assuming 6% simple interest, find the equal payments that could be made in 3 months, 6 months, and 9 months, respectively to equitably discharge obligations of $\$ 500$ due in 2 months and $\$ 800$ due in 5 months.
7. Solve Exercise 5, assuming that the three debts draw 6% simple interest.
8. A owes B the following debts: $\$ 700$ due in 5 months at 7% interest, $\$ 500$ due in 6 months at 7% interest, and $\$ 600$ due in 9 months at 5% interest. Assuming money worth 6%, find the single payment that is necessary to equitably discharge the above debts 8 months from now.
9. Find the time when the following items may be paid in a single sum of $\$ 3,000$: $\$ 1,500$ due May $1, \$ 500$ due June 12, $\$ 800$ due June 25, and $\$ 200$ due July 20.
10. Find the time when the following items may be paid in a single sum of $\$ 2,300$: $\$ 500$ due March 1, $\$ 300$ due April $10, \$ 800$ due April 25 , and $\$ 700$ due June 1.
11. Find the time when obligations of $\$ 350$ due in 2 months, $\$ 600$ due in 3 months, and $\$ 850$ due in 6 months may be settled by a single payment of $\$ 1,800$.
12. Find the time for settling in one payment of $\$ 1,600$ the following debts: $\$ 200$ due in 3 months, $\$ 400$ due in 5 months, $\$ 300$ due in 6 months, and $\$ 700$ due in 8 months.
13. Find the date when the following items may be paid in a single sum of $\$ 2,000$:

Sept. 1, Mdse., 30 days, \$400*
Sept. 27, Mdse., 60 days, $\$ 500$
Nov. 9, Mdse., 2 months, $\$ 1,100$

Check the correctness of the date by assuming 6% simple interest and showing that the interest on the past due items as of the equated date is the same as the interest from the equated date to the due dates of the items not yet due.

Find the time when the following accounts may be paid in single amounts:
14. 1941

January 2, Mdse., 30 da., $\$ 800$
January 17, Mdse., 1 mo., $\$ 500$
March 1, Mdse., 2 mo., $\$ 300$
March 30, Mdse., net $\$ 400$
15. 1941

July 1, Mdse., 60 da., $\$ 550$
July 10, Mdse., 1 mo., $\$ 450$
August 1, Mdse., 2 mo., $\$ 750$
Sept. 1, Mdse., net, $\$ 350$
Sept. 10, Mdse., 30 da., $\$ 400$

Find the time when the balance of the following accounts may be paid in single amounts:
16.

1941
April 1, Mdse., $\$ 700$
April 10, Mdse., $\$ 500$
July 1, Mdse., $\$ 800$
17. 1941

July 1, Mdsc., net, $\$ 575$
July 5, Mdse., 1 mo., $\$ 435$
Aug. 1, Mdse., 60 da., $\$ 990$
18.

1944
January 1, Balance, \$1,900
January 20, Mdse., 1 mo., \$1,450
March 10, Mdse., Net, $\$ 1,325$
19.

1944
May 1, Balance, $\$ 500$
May 10, Mdse., 2 mo., $\$ 1,000$
June 7, Mdse., 30 days, $\$ 2,000$
July 1, Mdse., $\$ 600$

1941
April 20, Cash, \$400
May 10, Cash, $\$ 300$
May 31, Cash, $\$ 300$
1941
July 10, Cash, $\$ 440$
Aug. 1., Cash, $\$ 720$

1944
Jan. 15, Cash, $\$ 1,560$
Jan. 30, Note, † 2 mo., $\$ 1,200$
Fcb. 1, Note, $\dagger 90$ da., with interest, $\$ 500$

1944
May 15, Cash, $\$ 700$
June 20, Cash, \$1,000
July 10, Cash, $\$ 400$

[^3]
Review Problems*

1. A man derives an income of $\$ 205$ a year from some money invested at 4% and some at 5%. If the amounts of the respective investments were interchanged, he would receive $\$ 200$. How much has he in each investment?
2. A man has one sum invested at 4% and another invested at $51 / 2 \%$. His total annual interest is $\$ 320$. If both sums had been invested at 6%, the annual interest would have been $\$ 390$. Find the sums invested at each rate.
3. A man made three loans totaling $\$ 15,000$, the first at 4%, the second at 5% and the third at 6%, receiving for the whole $\$ 770$ per year. The interest on the second part is $\$ 70$ less than on the sum of the first and third parts. How was the money divided?
4. A man has three sums invested at $4 \%, 6 \%$, and 7% respectively, the total interest received being $\$ 280$. If the three sums had been invested at $6 \%, 7 \%$ and 4% respectively, the total interest would have been $\$ 305$. How much was invested at each rate, if the sum invested at 4% was $\$ 500$ more than the sum invested at 7% ?
5. One half of a man's property is invested at 4%, one third at 5%, and the rest at 6%. How much property has he if his income is $\$ 560$?
6. One man can do a piece of work in 10 days, another in 12 days, and a third in 15 days. How many days will it require all of them to do it when working together?
7. A certain tank can be filled by a supply pipe in 6 hours. It can be filled by another pipe in 8 hours and a third pipe can empty it in 12 hours. If all three pipes are running at the same time, how soon will it be filled?
8. How much cream that contains 32% butter fat should be added to 500 pounds of milk that contains 3% butter fat to produce a milk with 4% butter fat?
9. A merchant desires to mix coffee selling at 24 cents a pound with 80 pounds selling at 30 cents a pound and 60 pounds selling at 33 cents a pound to produce a mixture which he can sell at 28 cents a pound. How many pounds of the 24 cent coffee must he use?
10. How large a 6% interest-bearing note should be given April 1 to cancel a debt of $\$ 1,200$ due July 1 ?
11. What is the difference between the true and bank discount on a debt of $\$ 1,000$ due in 4 months, the interest rate and the discount rate being $71 / 2 \%$?
12. A note for $\$ 2,500$, bearing 5% interest, dated June 1 was due November 10. What should be paid for this note August 18, (a) if 6% simple interest is to be realized? (b) if 6% discount is to be realized?
13. A note of $\$ 500$, bearing 6% interest, is dated March 1 . If it is due in 4 months, what would be its value May 1 at $41 / 2 \%$?
14. A merchant is offered a bill of goods invoiced at $\$ 748.25$ on 4 months' credit. As a settlement he gives his note with interest at $71 / 2 \%$ for a sum which, at maturity, will cancel the debt. Find the face of the note.
15. On March 5, a bill of merchandise valued at $\$ 3,000$ was bought on 6 months' credit. On May $8, \$ 1,500$ was paid on the account. On July 22 the present value of the balance of the debt was paid. Assuming money worth 6%, find the amount of the final payment.

* Many of these problems are review problems of algebra. For additional review problems in interest and discount, see end of this book.

16. A piece of property was offered for sale for $\$ 2,900$ cash or for $\$ 3,000$ due in 6 months without interest. If the cash offer was accepted, what rate of interest was realized?
17. The cash price of a certain article is $\$ 90$ and the price on 6 months' credit is $\$ 95$. How much better is the cash price for the purchaser, if money is worth 7% ?
18. The present value at 5% of a debt due in 72 days is $\$ 396.04$. What is the amount of the debt?
19. Find the true discount on a debt of $\$ 3,600$ when paid 6 months before maturity, assuming 5% simple interest.
20. A father wishes to provide an educational fund of $\$ 2,000$ for his daughter when she reaches the age of 18 . What sum should he invest at 4% simple interest on her thirteenth birthday in order that his wishes may be realized?
21. What cash payment on July 1 will cancel a debt of $\$ 2,400$ due December 8 , if moncy is worth 8% ?
22. A merchant buys a bill of goods from a jobber for $\$ 1,500$ on 4 months' credit. If the jobber can realize 6% simple interest on his money, what cash payment should he be willing to accept from the merchant?
23. A man borrows $\$ 10,000$. He agrees to pay $\$ 1,000$ at the end of each year for 10 years and 4% simple interest on all unpaid amounts. Find the total sum paid in discharging the debt.
24. Find the sum: $1+(1.06)+(1.06)^{2}+\cdots+(1.06)^{2}$.
25. Find the sum: $(1.03)^{-10}+(1.03)^{-9}+(1.03)^{-8}+\cdots+(1.03)^{-1}$.
26. Solve for $n:(1.05)^{n}=6.325$.
27. Solve for n : $(1.045)^{-n}=0.753$.
28. Find the rate of interest when, instead of paying $\$ 100$ cash for an article, the purchaser pays $\$ 10$ down and 10 monthly installments of $\$ 10$ each.
29. A man buys a bill of goods amounting to $\$ 50$. Instead of paying cash, he pays $\$ 5$ down and 5 monthly installments of $\$ 10$ each. Find the actual rate of interest paid.
30. On a cash bill for $\$ 150, \$ 15$ is paid down, followed by 10 monthly payments of $\$ 15$ cach. Find the rate of interest paid.
31. The cash price of an article is C. Instead of paying cash the purchaser makes a down payment D followed by montbly installments of R at the end of each month for n months. Show that the interest rate i is given by the formula

$$
\delta=\frac{24(n R+D-C)}{n(2 C-2 D-n R+R)}
$$

if all amounts are focalized at the time of the last payment.
32. (a) Using formula (12) show that R at the end of each month for n months is equivalent to $n R$ at $(n+1) / 2$ months.
(b) Using the data of Exercise 31 and the conclusion of (a), focalizing all amounts at ($n+1$)/2 months, show that

$$
i=\frac{24(n R+D-C)}{(n+1)(C-D)}
$$

(c) Note that ($n R+D-C$) is the total carrying charge and $(C-D)$ is the unpaid balance.

CHAPTER II

COMPOUND INTEREST AND COMPOUND DISCOUNT

14. Compound interest.-Simple interest is calculated on the original principal only, and is proportional to the time. Its chief value is its application to short-term loans and investments. Long-term financial operations are usually performed under the assumption that the interest, when due, is added to the principal and the interest for the next period of time is calculated on the principal thus increased, and this process is continued with each succeeding accumulation of interest. Interest when so computed is said to be compound. Interest may be compounded annually, semi-annually, quarterly, or at some other regular interval. That is, interest is converted into principal at these regular intervals. The time elapsing between successive periods, when the interest is converted into principal, is commonly defined as the conversion period. For example, if the interest is converted into principal semi-annually, the conversion period is six months. The rate of interest is nearly always expressed on an annual basis and if nothing is specified as to the conversion period, it is commonly assumed to be one year. The final amount at the end of the time, after all of the interest has been converted into principal, is defined as the compound amount. Consequently, the compound interest is equal to the compound amount minus the original principal.

Example. Find the compound amount and compound interest on $\$ 600$ for four years at 5%, the interest being converted annually.

Solution. The interest for the first (conversion period) year is $\$ 600(0.05)=\$ 30.00$. When this is converted into principal, the amount at the end of the first year becomes $\$ 630$. The interest for the second year is $\$ 630(0.05)=\$ 31.50$, and when this is converted the principal becomes $\$ 661.50$. Continuing this process until the end of the fourth year, we find the compound amount to be $\$ 729.30$; and the compound interest for the given time is $\$ 129.30$, the difference between $\$ 729.30$ and $\$ 600$.

The solution of the above example can be written in the following form:

$$
\begin{aligned}
\text { Interest for first year } & =\$ 600(0.05) \\
\text { Principal at end of first year } & =\$ 600+\$ 600(0.05) \\
& =\$ 600(1+0.05)=\$ 600(1.05) \\
\text { Interest for second year } & =\$ 600(1.05)(0.05) \\
\text { Principal at end of second year } & =\$ 600(1.05)+\$ 600(1.05)(0.05) \\
& =\$ 600(1.05)(1.05) \\
& =\$ 600(1.05)^{2} \\
\text { Interest for third year } & =\$ 600(1.05)^{2}(0.05) \\
\text { Principal at end of third year } & =\$ 600(1.05)^{2}+\$ 600(1.05)^{2}(0.05) \\
& =\$ 600(1.05)^{2}(1.05) \\
& =\$ 600(1.05)^{3} \\
\text { Interest for fourth year } & =\$ 600(1.05)^{3}(0.05) \\
\text { Principal at end of fourth year } & =\$ 600(1.05)^{3}+\$ 600(1.05)^{3}(0.05) \\
& =\$ 600(1.05)^{3}(1.05) \\
& =\$ 600(1.05)^{4} \\
& =\$ 600(1.21550625) \\
& =\$ 729.30 .
\end{aligned}
$$

15. Compound interest formula.-If we let P be the original principal, i the yearly rate of interest and S the amount to which P will accumulate in n years and reason as in the illustrated example of Art. 14, we will obtain the compound interest formula.

The interest for the first year will be $P i$ and the principal at the end of the first year will be

$$
P+P i=P(1+i)
$$

The interest for the second year will be $P i(1+i)$ and the principal at the end of the second year will be

$$
P(1+i)+P i(1+i)=P(1+i)^{2} .
$$

By similar reasoning we find that the amount at the end of the third year is

$$
P(1+i)^{2}+P i(1+i)^{2}=P(1+i)^{3}
$$

and in general the amount at the end of n years is $P(1+i)^{n}$. Thus we have the formula

$$
\begin{equation*}
S=P(1+i)^{n} \tag{1}
\end{equation*}
$$

This relation is easily visualized by the following line diagram:

Example 1. Find the compound amount and compound interest on $\$ 500$ for 8 ycars at 6%, the interest being converted annually.

Solution. Here, $P=\$ 500, i=0.06, n=8$.
Substituting in (1) we háve

$$
S=500(1.06)^{8}
$$

From Table III,

$$
(1.06)^{8}=1.59384807
$$

$$
S=500(1.59384807)=\$ 796.92
$$

The compound interest is

$$
\$ 796.92-\$ 500.00=\$ 296.92
$$

Example 2. Find the compound amount on $\$ 850$ for 12 years at $61 / 4 \%$, the interest being converted annually.

Solution. Here, $P=\$ 850, i=0.0625, n=12$,
and

$$
S=850(1.0625)^{12}
$$

We do not find the rate, $6 \frac{1}{4} \%$, in Table III, so we use logarithms to compute S.

$$
\begin{aligned}
\log 1.0625 & =0.02633 \\
12 \log 1.0625 & =0.31596 \\
\log 850 & =2.92942 \\
\log S & =\overline{3.24538} \\
S & =\$ 1,759.50 .
\end{aligned}
$$

Using a table of seven place logarithms we find $S=\$ 1,759.41$, which is correct to six significant digits. When we use a table of five place logarithms for computing, our results will be accurate to four and never more than five significant digits.

When P, n, and i are given, the amount S computed by (1) is frequently called the accumulated value of P at the end of n years. Hence, to accumulate P for n years at $i \%$ we find the amount S by using (1). The quantity ($1+i$) is called the accumulation factor.

Similarly, when S, n, and i are given, the principal P is called the discounted value of S due at the end of n years. Hence, to discount S for n years at $i \%$ we find the principal P by using (1). The principal P is also called the present value of S.

Exercises

1. Find the amount of $\$ 1,000$ invested 15 years at 4%.
2. Find the amount of $\$ 1,000$ invested 12 years at 6%.
3. Accumulate $\$ 500$ for 15 years at 6%.
4. Discount $\$ 800$ for 20 years at 3%.
5. Find the difference between the amount of $\$ 100$ at simple interest and at compound interest for 5 years at 5%.
6. At the birth of a son a father deposited $\$ 1,000$ with a trust company that paid 4%, the fund accumulating until the son's twenty-first birthday. What amount did the son receive?
7. In the following line diagram each section represents 1 year. The point O denotes any given time. Any point to the right of O denotes a later time and any point to the left of O denotes an earlier time. Consider $\$ 100$ at O. Based upon $i=4 \%$, what is its value at B ? at A ?

Solution. At B the value is that of $\$ 100$ accumulated for 5 years, or $100(1+.04)^{5}$. At A the value is that of $\$ 100$ discounted for 4 years or $100(1+.04)^{-4}$.

8. In the following line diagram, lased upon $i=5 \%$, find the values at A, B, C, and D of $\$ 100$ at O.

16. Nominal and effective rates of interest.-The effective rate of interest is the actual interest carned on a principal of $\$ 1$ in one year. When interest is converted into principal more than once a year, the actual interest earned (effective rate) is more than the quoted rate (nominal rate). Thus, if we have a nominal rate of 6% and the interest is converted semi-annually, the effective rate is by a method similar to that used in Art. 14,

$$
(1.03)^{2}-1=0.0609=6.09 \%
$$

Then, on a principal of $\$ 10,000$, a nominal rate of 6% convertible semi-annually gives in one year $\$ 609.00$ interest.

Similarly, if the rate is 6%, convertible quarterly, the effective rate is

$$
(1.015)^{4}-1=0.06136=6.136 \%
$$

If we let i stand for effective rate, j for nominal rate, and m for the number of conversions per year, then $\frac{j}{m}$ will be the interest on $\$ 1$ for one
conversion period. Hence, the amount of $\$ 1$ at the end of one year will be given by

$$
\begin{equation*}
\left(1+\frac{j}{m}\right)^{m} \tag{2}
\end{equation*}
$$

and the effective rate will be given by the equation

$$
\begin{equation*}
i=\left(1+\frac{j}{m}\right)^{m}-1 \tag{3}
\end{equation*}
$$

We may also write

$$
\begin{equation*}
(1+i)=\left(1+\frac{j}{m}\right)^{m} \tag{4}
\end{equation*}
$$

If $\left(1+\frac{j}{m}\right)^{m}$ be substituted for $(1+i)$ in (1), we obtain the equation

$$
\begin{equation*}
S=P\left(1+\frac{j}{m}\right)^{m n} \tag{5}
\end{equation*}
$$

This equation gives the amount of a principal P at the end of n years at rate j convertible m times per year. If $m=1$, (5) reduces to (1). Hence we say that (5) is the general compound interest formula and (1) is a special case of (5).

From (4), we may easily find j in terms of m and i. Extracting the mth root of each member and transposing, we find

$$
j=m\left[(1+i)^{1 / m}-1\right] .
$$

Sometimes the nominal rate j is written with a subscript to show the frequency of conversion in a year. Thus j_{m} means that the nominal rate is j with m conversion periods in a year. We also find it convenient at times to use the symbol " j_{m} at i " to mean "the nominal rate j which converted m times a year yields the effective rate i." Values of j for given values of m and i are found in Table IX.

Example 1. Find the effective rate corresponding to a nominal rate of 5% when the interest is converted quarterly.

Solution. Here, $j=0.05$ and $m=4$.
Substituting in (3), we have

$$
\begin{aligned}
i & =(1.0125)^{4}-1 \\
& =(1.05094534)-1=0.050945 \\
& =5.0945 \%
\end{aligned}
$$

Example 2. Find the amount of $\$ 750$ for 15 years at 5% converted quarterly.

Solution. Here $P=\$ 750, j=0.05, n=15$ and $m=4$. Substituting in (5) we have

$$
S=750(1.0125)^{60}
$$

From Table III, $(1.0125)^{60}=2.10718135$, and

$$
S=750(2.10718135)=\$ 1,580.39
$$

Example 3. Find the compound amount of $\$ 500$ for 120 years at 3%.
Solution. Here $P=\$ 500, i=0.03, n=120$. We find no value of $(1+i)^{n}$ in the table when $n=120$, but we may apply the index law, $a^{x} \cdot a^{y}=a^{x+y}$.

Hence, $(1.03)^{120}=(1.03)^{100} \cdot(1.03)^{20}$

$$
=(19.21863198)(1.80611123)
$$

$$
=34.710987
$$

and

$$
S=500(34.710987)=\$ 17,355.49
$$

This example illustrates a method by which the table can be used when the time extends beyond the table limit.

Example 4. To what sum does $\$ 5,000$ amount in 7 years and 9 months at 4% converted semi-annually.

Solution. The given time contains 15 whole conversion periods and 3 months. Now, the compound amount at the end of the 15 th period is

$$
S=5,000(1.02)^{15}=\$ 6,729.34
$$

The simple interest on $\$ 6,729.34$ for the remaining 3 months is

$$
6,729.34 \times 3 / 12 \times 0.04=\$ 67.29
$$

Hence, the amount at the end of 7 years and 9 months is

$$
\$ 6,729.34+\$ 67.29=\$ 6,796.63
$$

The solution of Example 4 illustrates a plan that is usually used for finding the compound amount when the time is not a whole number of conversion periods. We may state the plan as follows:
I. Find the compound amount for the whole number of conversion periods, using (5).
II. Find the simple interest on the resulting amount at the given rate for the remaining time.

III. Add the results of I and II.

Exercises

1. Find the amount of $\$ 800$ invested for 8 years at 5%, convertible annually.
2. Solve Example 1, when the interest is converted (a) semi-annually, (b) quarterly. Use formula (5).
3. Find the compound interest on $\$ 2,500$ at $61 / 2 \%$ for 8 years, if the interest is converted semi-annually.
4. A man pays $\$ 1,000$ for a 10 year bond that is to yield 5%, payable semi-annually. What will be the amount of the original investment at the end of 10 years if the dividends are immediately reinvested at 5%, payable semi-annually?
5. On January 1, 1928, $\$ 1,500$ was placed on time deposit at a certain bank. For 10 years the bank allowed 4% interest converted annually. During the next 4 years 3%, converted quarterly, was allowed, and on January 1,1942 the interest rate allowed on such deposits was reduced to $2 \frac{1}{2} \%$, converted semi-annually. What was the accumulated value of this original deposit as of January 1, 1945?
6. Find the effective rate equivalent to 6% nominal converted (a) semi-annually, (b) quarterly, (c) monthly.
7. A savings bank paid 5% compound interest on a certain deposit for 6 years and then 4% for the next 4 years. What single rate (equivalent rate) during the 10 years would have produced the same effect?

Solution.-Let i equal the equivalent rate.

$$
\text { Then } \begin{aligned}
(1+i)^{10} & =(1.05)^{6}(1.04)^{4} \\
\log 1.05 & =0.0211893 \\
\log 1.04 & =0.0170333 \\
6 \log 1.05 & =0.1271358 \\
4 \log 1.04 & =0.0681332 \\
\hline 10 \log (1+i) & =0.1952690 \\
\log (1+i) & =0.0195269 \\
(1+i) & =1.04599 \\
i & =0.04599=4.599 \%
\end{aligned}
$$

The value obtained for $(1+i)$ is correct to six significant digits. A seven place table of logarithms was used here. When we use a table of seven place logarithms, we can be sure that our results are accurate to six significant digits.
8. What is the effective rate for 20 years equivalent to 6%, converted annually for the first 8 years; 5% converted semi-annually for the next 7 years; and 4%, converted quarterly for the last 5 years?
9. An individual has a sum of money to invest. He may buy saving certificates, paying $51 / 2 \%$ convertible semi-annually, or deposit it in a building and loan association, which pays 5% convertible monthly. Assuming that the degree of safety of the two is the same, should he buy the certificates or deposit his money in the association?
10. Find the compound amount on $\$ 750$ for 8 years 9 months at 5% converted semi-annually.
11. Representing time along the horizontal axis and the computed values of S along the vertical axis, make graphs of $S=100(1+0.04 n)$ and $S=100(1.04)^{n}$. Take for n the values $1,5,9,13,17,21,25$ and use the same scale for both graphs.
12. Repeat Exercise 11, when the interest rate is 6%.
13. Accumulate $\$ 2,000$ for 12 years if the interest rate is 5% compounded monthly.
14. A house is offered for sale. The terms are $\$ 4,000$ cash, or $\$ 6,000$ at tne end of 10 years without interest. If money is worth 4%, interest converted semi-annually, which method of settlement is to the advantage of the purchaser?
15. Find the effective rate equivalent to 7% converted (a) monthly, (b) quarterly, (c) semi-annually.
16. Find the nominal rate, converted quarterly, that will yield an effective rate of (a) 4%; (b) 5%; (c) 6%.
17. Present value at compound interest.-In Art. 6 we defined the present value P of a sum S, due in n years, from the standpoint of simple interest. The definition of present value will be the same here, except that compound interest is used in the place of simple interest. From the definition of present value, it follows that the present value P of a sum S may be obtained by solving equation (1), Art. 15 for P. Solving this equation for P, we have

$$
\begin{equation*}
P=\frac{S}{(1+i)^{n}}=S(1+i)^{-n}=S v^{n}, \text { where } v=\frac{1}{1+i} \tag{6}
\end{equation*}
$$

The number v is called the discount factor.
If the rate of interest is j, converted m times a year, we have from (5) Art. 16

$$
\begin{equation*}
P=\frac{S}{\left(1+\frac{j}{m}\right)^{m n}}=S\left(1+\frac{j}{m}\right)^{-m n} \tag{7}
\end{equation*}
$$

Compound discount is commonly defined as the future value S minus the present value P. If D stands for compound discount on S, we have

$$
\begin{equation*}
D=S-P \tag{8}
\end{equation*}
$$

Compare the above formula with (8), Art. 7.

Since P is defined as the principal that will accumulate to S, at compound interest, in n years, the difference $S-P$ also stands for the compound interest on P. Therefore, we may say that the compound discount on the accumulated value is the same as the compound interest on the present value for the given time at the specified interest rate.

Example 1. Find the present value and compound discount of $\$ 4,000$ due in 10 years at 5% converted annually.

Solution. Here, $S=\$ 4,000, i=0.05$, and $n=10$. Substituting in (6), we have

$$
P=4,000(1.05)^{-10}
$$

From Table IV, (1.05) ${ }^{-10}=0.61391325$
and

$$
P=4,000(0.61391325)=\$ 2,455.65
$$

Also,

$$
D=4,000.00-2,455.65=\$ 1,544.35
$$

Example 2. Find the present value of $\$ 2,000$ due in 8 years at $43 / 4 \%$ converted semi-annually.

Solution. Here, $S=\$ 2,000, j=0.0475, m=2$, and $n=8$.
Substituting in (7), we have

$$
P=2,000(1.02375)^{-16}
$$

We do not find the rate, $23 / 8 \%$, in Table IV, so we use logarithms to compute S.

$$
\begin{aligned}
\log 1.02375 & =0.0101939 \\
16 \log 1.02375 & =0.1631024 \\
\log (1.02375)^{-16} & =9.8368976-10 \\
\log 2,000 & =3.30103 \\
\hline \log P & =3.13793 \\
P & =\$ 1,373.81 .
\end{aligned}
$$

Example 3. Find the present value of $\$ 5,000$ due in 7 years with interest at 6% converted semi-annually, assuming money worth 5%.

Solution. We first find the maturity value of the debt and then find the present value of this sum.

Hence,

$$
\begin{aligned}
S & =5,000(1.03)^{14} \\
& =5,000(1.51258972) \\
& =\$ 7,562.95
\end{aligned}
$$

and

$$
\begin{aligned}
P & =S(1.05)^{-7} \\
& =7,562.95(1.05)^{-7} \\
& =7,562.95(0.71068133) \\
& =\$ 5,374.86 .
\end{aligned}
$$

This example illustrates a method for finding the present value of an interest-bearing, debt.

Problems

1. What is the present value of a note of $\$ 200$ due in 6 years without interest, assuming money worth 6% ?
2. Find the present value of $\$ 3,000$ due in 5 years, if the nominal rate is 5%, convertible semi-annually.
3. What sum of money invested now will amount to $\$ 4,693.94$ in 25 years if the nominal rate is $53 / 4 \%$, convertible semi-annually?
4. A note of $\$ 3,750$ is due in $41 / 2$ years with interest at 6% payable scmi-annually. Find its value 3 years before it is due, if at that time money is worth 5%.
5. What is the present value of a $\$ 1,000$ note due in 5 years with interest at 8% payable semi-annually, when money is worth 6% ?
6. Compare the present values of non-interest-bearing debts of $\$ 400$ due in 3 years and $\$ 450$ due in 5 years, assuming money worth 6% converted scmi-annually. Compare the values of these debts 2 years from now, assuming that money is still worth 6% converted semi-annually.
7. An investment certificate matures in 3 years for $\$ 1,000$. Its present cash value is $\$ 860$. If one desires his money to earn 5% annually, should he purchase the certificate?
8. A debt of $\$ 4,500$ will be due in 10 years. What sum must one deposit now in a trust fund, paying $41 / 2 \%$ converted semi-annually, in order to pay the debt when it falls due?
9. What is the present value of $\$ 300$, due in 4 years and 3 months without interest, when money is worth 5% ?
10. A father wishes, at the birth of his son, to set aside a sum that will accumulate to $\$ 2,500$ by the time the son is 21 years old. How much must be set aside, if it accumulates at 3% converted semi-annually?
11. Draw graphs of $P=\frac{S}{(1+i)^{n}}$ and $P=\frac{S}{1+n i}$ for integral values of n from 0 to 10. For convenience, take $S=10$ and $i=0.05$. Take values of n along the horizontal axis and corresponding values of P along the vertical axis, using the same scale and set of axes for both graphs. Use Table IV for finding the values of $P=$ $\frac{S}{(1+i)^{n}}$.
12. If $\$ 2,500$ accumulates to $\$ 3,700.61$ in a certain time at a given rate, what is the present value of $\$ 2,500$ for the same time and rate?
13. Find the present value of a debt of $\$ 250$, due in 5 years 3 months and 15 days, if money is worth 5%.
14. An investment certificate matures in 7 years for $\$ 500$. If money is worth 4% for the first 3 years and $31 / 2 \%$ thereafter, what is the present value of the certificate?
15. A man desires to sell a house and receives two offers. One is for $\$ 2,500$ cash and $\$ 5,000$ in 5 years. The other is for $\$ 3,000$ cash and $\$ 4,000$ to be paid in 3 years. On a 5% basis, which is the better offer for the owner of the house and what is the difference between the two offers?
16. An insurance company allows $31 / 2 \%$ compound interest on all premiums paid one year or more in advance. A policy holder desires to pay in advance three annual premiums due in 1 year, 2 years, and 3 years respectively. How much must he pay the company now if each annual premium is $\$ 21.97$?
17. Making use of the binomial theorem (assuming n greater than 1) show that $(1+i)^{n}$ is greater than $(1+n i)$. Using Table III compare these values when $n=5$ and $i=0.06$.
18. Other problems solved by the compound interest formulas.Formulas (1) and (5) each contain four letters (assuming m in (5) to be fixed). Any one of these letters can be expressed in terms of the other three. In Art. 16 we solved problems in which S was the unknown and in Art. 17 we solved for P. We shall now solve some problems when the value of n or j is required.

Example 1. In how many years will $\$ 742.33$ amount to $\$ 1,000$ if invested at 6%, converted quarterly?

Solution. From (5), Art. 16, we have

$$
1,000=742.33(1.015)^{4 n}
$$

Taking logarithms of both members of the above equation, we get

$$
\log 1,000=\log (742.33)+4 n \log (1.015)
$$

Solving for n,

$$
\begin{aligned}
n & =\frac{\log (1,000)-\log (742.33)}{4 \log (1.015)}=\frac{3.00000-2.87060}{4(0.00647)} \\
& =\frac{0.12940}{0.02588}=5
\end{aligned}
$$

Hence, $\$ 742.33$ will amount to $\$ 1,000$ in 5 years, if the rate is 6% converted quarterly.

Example 2. How long will it take $\$ 1,000$ to amount to $\$ 1,500$ at 5% converted semi-annually?

Solution. Substituting in (5), Art. 16, we have

$$
1,500=1,000(1.025)^{2 n}
$$

The above equation reduces to

$$
(1.025)^{2 n}=1.5
$$

From the $21 / 2 \%$ column in Table III, we find that $(1.025)^{2 n}=1.48450562$ when $2 n=16$; and when $2 n=17,(1.025)^{2 n}=1.52161826$. The nearest time, then, is 16 semi-annual periods or 8 years. That is, $\$ 1,000$ amounts to $\$ 1,484.51$ in 8 years at 5% converted semi-annually. We now find the time required for $\$ 1,484.51$ to amount to $\$ 1,500$ at 5% simple interest. Here, $P=\$ 1,484.51, I=\$ 15.49$, and $i=0.05$. We solve for n as in illustrated Example 4, Art. 70.

$$
\begin{aligned}
& n=\frac{15.49}{(1,484.51)(0.05)}=\frac{15.49}{74.2255} \\
&=0.209 \text { year (approximately), or } 2 \text { months and } \\
& 15 \text { days. }
\end{aligned}
$$

Hence, we find that $\$ 1,000$ will amount to $\$ 1,500$ in 8 years 2 months and 15 days at 5% converted semi-annually.

Examples 1 and 2 illustrate methods for finding n, when S, P, and i are given.

Example 3. At what rate would $\$ 2,500$ amount to $\$ 5,000$ in 14 years if interest were converted semi-annually?

Solution. From (5), Art. 16, we have

$$
5,000=2,500\left(1+\frac{j}{2}\right)^{28}
$$

Taking logarithms of both members of the above equation, we get

$$
\begin{aligned}
\log 5,000 & =\log 2,500+28 \log \left(1+\frac{j}{2}\right), \\
\log \left(1+\frac{j}{2}\right) & =\frac{\log 5,000-\log 2,500}{28} \\
& =\frac{3.69897-3.39794}{28}=\frac{0.30103}{28} \\
& =0.01075 . \\
\left(1+\frac{j}{2}\right) & =1.025 \\
\frac{j}{2} & =0.025 \\
j & =0.05=5 \% .
\end{aligned}
$$

That is, the rate is 5% nominal, convertible semi-annually. From (4) Art. 16 we find the effective rate to be $i=5.0625 \%$.

Example 4. At what rate would $\$ 1,500$ amount to $\$ 2,500$ in 9 years, if the interest were converted annually?

Solution. From (1), Art. 15, we have

$$
2,500=1,500(1+i)^{9} .
$$

Dividing the above equation through by 1,500 , we get

$$
(1+i)^{9}=1.6667 \text { (to } 4 \text { decimal places). }
$$

In Table III we notice that when $i=0.055,(1+i)^{9}=1.6191$; when $i=0.06,(1+i)^{9}=1.6895$. Hence, i is a rate between $5 \frac{1}{2} \%$ and 6%.

By interpolation, we find

$$
\begin{aligned}
i & =0.055+(0.005)(47 \% / 64) \\
& =0.055+0.00338=0.05838 .
\end{aligned}
$$

Hence, the rate is 5.84% (approximately). The student should also solve this example by logarithms.

Examples 3 and 4 illustrate methods for finding the rate when S, P, and n are given.

Exercises

1. In what time will $\$ 840$ accumulate to $\$ 2,500$ at 5%, converted annually?
2. If $\$ 1,000$ is invested in securities and amounts to $\$ 2,500$ in 15 years, what is the average annual rate of increase?
3. At what rate must $\$ 10,000$ be invested to become $\$ 35,000$ in 25 years?
4. In how many years will $\$ 400$ amount to $\$ 873.15$ at 5% annually?
5. How long will it require any sum to double itself at effective rate i ?
6. How long will it require a principal to double itself at (a) 5%, (b) 6% ?
7. How long will it take $\$ 1,500$ to amount to $\$ 5,000$ at 6% converted quarterly?
8. At what rate will $\$ 2,000$ amount in 30 years to $\$ 10,184.50$ if the interest is converted semi-annually?
9. A will provides that $\$ 15,000$ be left to a boy to be held in trust until it amounts to $\$ 25,000$. When will the boy receive the fund if invested at 4% converted semi-annually?
10. A man invested $\$ 1,500$ in securities and re-invested the dividends from time to time and at the end of 10 years he found that his investments had accumulated to $\$ 2,700$. What was his average rate of interest?
11. Equation of value.-In Art. 11 the equation of value was defined and used in connection with simple interest. The equation of value used here will have the same meaning as in Art. 11. That is, it is the equation that expresses the equivalence of two sets of obligations on a common date (focal date). In Art. 11 we assumed, for convenience, that the equation of value is true for any focal date. However, this assumption is only approximately true, as was pointed out by a particular example. That is, when simple interest is used the equivalence of two sets of obligations actually depends upon the focal date selected. The equivalence of two sets of sums, however, is independent of the focal date when the sums are accumulated or discounted by compound interest. That is, if we have an equation of value for a certain focal date, we may obtain an equation of value for any other focal date by multiplying or dividing the first equation through by some power of $(1+i)$ or of $(1+j / m)$.

Example 1. A owes B the following debts: $\$ 300$ due in 3 years without interest and $\$ 700$ due in 8 years without interest. B agrees that A may settle the two obligations by making a single payment at the end of 5 years. If the two individuals agree upon 6% as a rate of interest, find the single payment.

Solution. Let x stand for the single payment, and choose 5 years from now as the focal date.

The $\$ 300$ debt is due 2 years before the focal date and amounts to $300(1.06)^{2}$ on the focal date.

The $\$ 700$ debt is due 3 years after the focal date and has a value of $700(1.06)^{-3}$ on the focal date.

The single payment x is to be made on the focal date and has a value of x on that date.

Then, for the equation of value, we have

$$
\begin{aligned}
x & =300(1.06)^{2}+700(1.06)^{-3} \\
& =300(1.12360000)+700(0.83961928) \\
& =337.08+587.73 \\
& =924.81 .
\end{aligned}
$$

Hence, the two debts may be discharged by a single payment of $\$ 924.81$ five years from now.

Had we assumed 8 years from now as focal date, our equation of value would have been

$$
x(1.06)^{3}=300(1.06)^{5}+700
$$

Dividing the above equation through by $(1.06)^{3}$, we get

$$
x=300(1.06)^{2}+700(1.06)^{-3}
$$

which is the equation of value obtained when 5 years from now is taken as the focal date. This is an illustration of the fact that an equation of value does not depend upon our choice of a focal date.

The student will observe that in the construction of the line diagram we place at the respective points the maturity values of the debts. Further, it should be observed that the payment and the debts are placed at different levels.

Example 2. Smith owes Jones $\$ 500$ due in 4 years with interest at 5% and $\$ 700$ due in 10 years with interest at $41 / 2 \%$. It is agreed that the two debts be settled by paying $\$ 600$ at the end of 3 years and the balance at the end of 8 years. Find the amount of the final payment, assuming an interest rate of $51 / 2 \%$.

Solution. Let x stand for the final payment and choose 8 years from now as the focal date.

The maturity value of the $\$ 500$ debt is $500(1.05)^{4}$ and its value on the focal date is $500(1.05)^{4}(1.055)^{4}$.

The maturity value of the $\$ 700$ debt is $700(1.045)^{10}$ and its value on the focal date is $700(1.045)^{10}(1.055)^{-2}$.

The value of the $\$ 600$ payment is $600(1.055)^{5}$ on the focal date.
The value of the final payment is x on the focal date.

Expressing the fact that the value of the payments equals the value of the debts (on the focal date), our equation of value becomes

$$
600(1.055)^{5}+x=500(1.05)^{4}(1.055)^{4}+700(1.045)^{10}(1.055)^{-2}
$$

Making use of Tables III and IV and performing the indicated multiplications, we have
and

$$
\begin{aligned}
784.176+x & =752.900+976.688 \\
x & =945.41
\end{aligned}
$$

Hence, the payment to be made 8 years from now is $\$ 945.41$.
20. Equated time.-In Art. 12 equated time was discussed and a formula (based upon simple interest) for finding this time was developed. Basing our discussion on compound interest, we shall now solve a particular example and then consider the general problem, thereby developing a formula.

Example 1. Find the time when debts of $\$ 1,000$ due in 3 ycars without interest and $\$ 2,000$ due in 5 years with interest at 5% may be settled by a single payment of $\$ 3,000$, assuming an interest rate of 6%.

Solution. Choose "now" as the focal date and let x stand for the time in years, measured from the focal date ("now"), until the single payment of $\$ 3,000$ should be made. Our equation of value becomes

$$
\begin{aligned}
& 3,000(1.06)^{-x}=1,000(1.06)^{-3}+2,000(1.05)^{5}(1.06)^{-5} \\
& 3,000(1.06)^{-x}=1,000(0.83962)+2,000(1.27628)(0.74726) \\
& 3,000(1.06)^{-x}=839.52+1,907.43=2,747.05
\end{aligned}
$$

$$
\begin{aligned}
(1.06)^{-x} & =\frac{2,747.05}{3,000.00} \\
(1.06)^{x} & =\frac{3,000}{2,747.05} \\
x \log 1.06 & =\log 3,000-\log 2,747.05 \\
x & =\frac{\log 3,000-\log 2,747.05}{\log 1.06} \\
& =\frac{3.47712-3.43886}{0.02531}=1.51
\end{aligned}
$$

Hence, the two debts may be settled by a single sum of $\$ 3,000$ in 1 year, 6 months from "now."

Problem. Given that A owes B debts of $D_{1}, D_{2}, D_{3}, \cdots$ having maturity values of $S_{1}, S_{2}, S_{3}, \cdots$ and due in $n_{1}, n_{2}, n_{3}, \cdots$ years respectively. Assuming an interest rate of $i \%$, find the time when the debts may be settled by making a single payment of $S=S_{1}+S_{2}+S_{3}+\cdots$.

Solution. Choose "now" as the focal date and let n stand for the time in years, measurcd from the focal date (now), until the single payment of S should be made.

Reasoning as in Example 1, the equation of value becomes

$$
\begin{align*}
\left(S_{1}+S_{2}+S_{3}\right. & +\cdots)(1+i)^{-n} \\
& =S_{1}(1+i)^{-n_{1}}+S_{2}(1+i)^{-n_{2}}+S_{3}(1+i)^{-n_{8}}+\cdots \tag{9}
\end{align*}
$$

Solving the above equation for $(1+i)^{-n}$, we get

$$
(1+i)^{-n}=\frac{S_{1}(1+i)^{-n_{1}}+S_{2}(1+i)^{-n_{2}}+S_{3}(1+i)^{-n_{2}}+\cdots}{S_{1}+S_{2}+S_{3}+\cdots}
$$

and

$$
(1+i)^{n}=\frac{S_{1}+S_{2}+S_{3}+\cdots}{S_{1}(1+i)^{-n_{1}}+S_{2}(1+i)^{-n_{2}}+S_{3}(1+i)^{-n_{3}}+\cdots}
$$

Taking logarithms of both sides of the above equation and solving for n, we have

$$
\begin{align*}
& n= \\
& \frac{\log \left(S_{1}+S_{2}+S_{3}+\cdots\right)-\log \left[S_{1}(1+i)^{-n_{1}}+S_{2}(1+i)^{-n_{2}}+S_{3}(1+i)^{-n_{2}}+\cdots\right]}{\log (1+i)} \tag{10}
\end{align*}
$$

Formula (10) gives the exact value for the equated time. However, it is obviously very involved and is rather tedious to apply. We naturally seek a satisfactory approximation formula. We shall now proceed to find one.

If $(1+i)^{-n}$ is expanded by the binomial theorem, we have

$$
(1+i)^{-n}=1-n i+\frac{n(n+1)}{2} i^{2}-\frac{n(n+1)(n+2)}{2 \cdot 3} i^{3}+\cdots .
$$

Neglecting all powers of i higher than the first gives $(1-n i)$ as an approximate value of $(1+i)^{-n}$.

Applying the binomial theorem to $(1+i)^{-n_{1}},(1+i)^{-n_{2}}, \cdots$ and dropping powers of i higher than the first, we obtain $\left(1-n_{1} i\right),\left(1-n_{2} i\right)$, \cdots as approximate values of $(1+i)^{-n_{1}},(1+i)^{-n_{2}}, \cdots$ respectively.

If in (9), $(1+i)^{-n}$ and $(1+i)^{-n_{1}},(1+i)^{-n_{2}}, \cdots$ are replaced by their approximate values, we get, on solving for n,

$$
\begin{equation*}
n=\frac{n_{1} S_{1}+n_{2} S_{2}+n_{3} S_{3}+\cdots}{S_{1}+S_{2}+S_{3}+\cdots} \tag{11}
\end{equation*}
$$

Now, if the original debts, $D_{1}, D_{2}, D_{3}, \cdots$ are non-interest-bearing, S_{1} S_{2}, S_{3}, \cdots, may be replaced by $D_{1}, D_{2}, D_{3}, \cdots$, respectively, and the above equation becomes

$$
n=\frac{n_{1} D_{1}+n_{2} D_{2}+n_{3} D_{3}+\cdots}{D_{1}+D_{2}+D_{3}+\cdots}
$$

We notice that (11) is essentially the same as (12), Art. 12. When the periods of time involved are short and the debts, $D_{1}, D_{2}, D_{3}, \cdots$ do not draw interest, (11^{\prime}) gives us a close approximation of the equated time. However, when the periods of time are short and the debts $D_{1}, D_{2}, D_{3}, \ldots$ draw interest (11) gives a good approximation to n.

Example 2. Find the equated time for paying in one sum debts of $\$ 300$ due in 3 years and $\$ 150$ due in 5 years.

Solution. Choosing "now" as focal date and substituting in (11), we have

$$
n=\frac{(300) 3+(150) 5}{300+150}=3.67 \text { years. }
$$

Assuming an interest rate of 6% and applying (10), we find

$$
\begin{aligned}
n & =\frac{\log 450-\log \left[300(1.06)^{-3}+150(1.06)^{-5}\right]}{\log 1.06} \\
& =\frac{2.65321-2.56118}{0.02531}=\frac{0.09203}{0.02531}=3.64 \text { years. }
\end{aligned}
$$

We notice that the results by the two methods differ by only 0.03 of a year or about 11 days.
21. Compound discount at a discount rate.-In Art. 17 we defined the compound discount on the sum S as $S-P$, the difference between S and its present value P. The present value P has been found at the effective rate $i \%$ and at the nominal rate (j, m) to be

$$
P=S(1+i)^{-n}=S(1+j / m)^{-m n}
$$

We may also find the present value P for a given discount rate. If the discount rate is d convertible annually, we have from (10) Art. 9 that $d=i /(1+i)$ and $1+i=1 /(1-d)$. Hence we have

$$
\begin{equation*}
P=S(1+i)^{-n}=S(1-d)^{n} \tag{12}
\end{equation*}
$$

as the present value of a sum S due in n years at the effective discount rate d. The compound discount on S is

$$
\begin{equation*}
D=S-p=S-S(1-d)^{n}=S\left[1-(1-d)^{n}\right] \tag{13}
\end{equation*}
$$

If the discount is converted m times a year at the nominal rate f, the corresponding effective rate is the discount on $\$ 1$ in 1 year. We shall find the relation between d and f.

Consider $\$ 1$ due at the end of 1 year (m conversion periods). Its value at the end of the first discount period is $1-f / m$. Its value at the end of the second discount period is $(1-f / m)^{2}$, and at the end of the m th discount period, that is at the beginning of the year, is $(1-f / m)^{m}$. But by Art. 7 its present value is $1-d$. Therefore, we have

$$
\begin{equation*}
1-d=(1-f / m)^{m} \tag{14}
\end{equation*}
$$

as the equation that expresses the relation between the nominal and
effective rates of discount. This is similar to (4) Art. 16, which shows the relation between the nominal and effective rates of interest.

Further, we have upon substituting in (12)

$$
\begin{equation*}
P=S(1-d)^{n}=S(1-f / m)^{m n} \tag{15}
\end{equation*}
$$

as the present value of a sum S due in n years discounted at a nominal rate of discount f convertible m times a year. Immediately we have the corresponding compound discount

$$
\begin{equation*}
D=S-P=S\left[1-(1-f / m)^{m n}\right] \tag{16}
\end{equation*}
$$

22. Summary of interest and discount.--Let P be the principal and

S be the accumulated value or amount of P at the end of n years. Then:
I. Simple interest and discount.
23. At simple interest rate i :

$$
P=\frac{S}{1+n i} \quad S=P(1+n i)
$$

2. At simple discount rate d :

$$
P=S(1-n d) \quad S=\frac{P}{1-n d}
$$

In each case
3. $S-P=$ simple interest on P for n years.
$=$ simple discount on S for n years.
Combining 1 and 2 we obtain
4.

$$
i=\frac{d}{1-n d} \quad d=\frac{i}{1+n i}
$$

II. Compound interest and discount.

1. At effective rate of interest i :

$$
P=S(1+i)^{-n} \quad S=P(1+i)^{n} .
$$

2. At nominal rate of interest (j, m):

$$
P=S(1+j / m)^{-m n} \quad S=P(1+j / m)^{m n} .
$$

3. At effective rate of discount d :

$$
P=S(1-d)^{n} \quad S=P(1-d)^{-n}
$$

4. At nominal rate of discount (f, m) :

$$
P=S(1-f / m)^{m n} \quad S=P(1-f / m)^{-m n}
$$

Combining 1 and 2 we obtain
5.

$$
1+i=(1+j / m)^{m}
$$

Combining 3 and 4 we obtain
6.

$$
1-d=(1-f / m)^{m}
$$

In each case
7. $S-P=$ compound interest on P for n years.
$=$ compound discount on S for n years.

Problems

1. A debt of $\$ 1,500$ is due without interest in 5 years. Assuming an interest rate of 5%, find the value of the debt (a) now, (b) in 3 years, (c) in 6 years.
2. Solve Problem 1, assuming that the debt draws 6% interest convertible semiannually.
3. A debt of $\$ 500$, drawing 6% interest will be due in 4 years. Another debt of $\$ 750$, without interest will be due in 7 years. Assuming money worth 5%, compare the debts (a) now, (b) 4 years from now, (c) 6 years from now.
4. Set up the equation of value for Example 2, Art. 19, assuming now as the focal date and show that the equation is equivalent to the one used in the solution of the example.
5. A person is offered $\$ 2,500$ cash and $\$ 1,500$ at the end of cach year for 2 years. He has a sccond offer of $\$ 3,100$ cash and $\$ 800$ at the end of each year for 3 years. Assuming that money is worth 6% to him, which offer should he accept?
6. A owes B debts of $\$ 1,000$ due at the end of each year for 3 years without interest. A desires to settle with B in full now and B agrees to accept settlement under the assumption that money is worth 5%. How much does A pay to B ?
7. (a) In Problem 6 find the value of the debts 3 years from now, assuming 5% interest. (b) Also, find the present value of this result, assuming money worth 5%. (c) How does the result of (b) compare with the answer to Problem 6? Explain your results.
8. Smith owes Jones $\$ 1,000$ due in 2 years without interest. Smith desires to discharge his obligation to Jones by making equal payments at the end of each year for 3 years. They agree on an interest rate of 6%. Find the amount of each payment.
9. A man owes $\$ 600$ due in 4 years and $\$ 1,000$ due in 5 years. He desires to settle these debts by paying $\$ 850$ at the end of 3 years and the balance at the end of 6 years. Assuming money worth 6%, find the amount of the payment to be made at the end of 6 years.
10. Solve Problem 9, assuming that the debts draw 5% interest.
11. A man owes $\$ 2,000$ due in 2 years and $\$ 3,000$ due in 5 years, both debts with interest at 5%. Find the time when the two obligations may be paid in a single sum of $\$ 5,000$, if money is worth 6%, converted semi-annually.
12. A owes $B \$ 200$ due now, $\$ 300$ due in 2 years without intcrest, and $\$ 500$ due in 3 years with 4% interest. What sum will discharge the three obligations at the end of $11 / 2$ years if money is worth 6%, converted semi-annually?
13. There are three debts of $\$ 500, \$ 1,000$, and $\$ 2,000$ due in 3 years, 5 years and 7 years respectively, without interest. Find the time when the three obligations could be paid in a single sum of $\$ 3,500$, money being worth 5%.
14. Solve Problem 13, making use of the approximate formula, (11').
15. Money being worth 6%, find the equated time for paying in one sum the following debts: $\$ 400$ due in 2 years, $\$ 600$ due in 3 years, $\$ 800$ due in 4 years and $\$ 1,000$ due in 5 years. Choose 2 years from now as focal date and set up an equation of value as in Example 1, Art. 12. Check the results by making use of the approximate formula.
16. Assuming money worth 5% show that $\$ 500$ now is equivalent to $\$ 670.05$ six years from now. Compare these two values on a 6% interest basis.
17. Show that:

$$
\begin{equation*}
\text { a. } \frac{j}{m}=\frac{\frac{f}{m}}{1-\frac{f}{m}}, \quad \text { b. } \frac{f}{m}=\frac{\frac{j}{m}}{1+\frac{j}{m}} \tag{17}
\end{equation*}
$$

18. Find the values of $(j, 2)$ and $(f, 2)$ that correspond to $i=0.06$. ${ }^{\text {. }}$
19. A money lender charges 3% a month paid in advance for loans. What is tho corresponding nominal rate of interest? What is the effective rate?
20. I purchase from the Jones Lumber Company building matcrial amounting to $\$ 1,000$. Their terms are "net 60 days, or 2% off for cash." What is the highest rate of interest I can afford to pay to borrow money so as to pay cash?
21. If a merchant's money invested in business yields him 2% a month, what discount rate can he afford to grant for the immediate payment of a bill on which he quotes "net 30 days"?
22. Find the nominal rate of interest convertible quarterly that is equivalent to ($j=.06, m=2$).

Hint. The two nominal rates are equivalent if they produce the same effective rate. Let i represent this common effective rate. Then $1+i=(1+.03)^{2}=(1+j / 4)^{4}$.
23. Find the nominal rate of interest convertible semi-annually that is equivalent to ($j=.06, m=4$).
24. If $\$ 2,350$ amounts to $\$ 3,500$ in $43 / 4$ years at the nominal rate $(j, 4)$, find j. Solve (a) by interpolation, and (b) by logarithms.
25. How long will it take a sum of money to double itself at (a) $i=.06$, (b) $(j=.06$, $n=2$), (c) ($j=.04, m=2$)?
26. A man bought a house for $\$ 4,000$ and sold it in 8 years for $\$ 7,000$. What interest rate did he earn on his investment?

CHAPTER III

ANNUITIES CERTAIN

23. Definitions.-An annuity is a sequence of equal payments made at equal intervals of time. Strictly speaking, the word "annuity" implies yearly payments, but it is now understood to apply to all equal periodic payments, whether made annually, semi-annually, quarterly, monthly, weekly, or otherwise. Typical examples of annuities are: monthly rent on property, monthly wage of an individual, premiums for life insurance, dividends on bonds, and sinking funds.

An annuity certain is one whose payments extend over a fixed number of years. A contingent annuity is one whose payments depend upon the happening of some event whose occurrence cannot be accurately foretold. The payments on a life insurance policy constitute a contingent annuity. In this chapter we shall be concerned entirely with annuities certain.

The time between successive payments is called the payment period. The time from the beginning of the first payment period to the end of the last payment period is called the term of the annuity.

Annuities certain may be classified into three groups: Ordinary annuities, annuities due, and deferred annuities. An ordinary annuity is one whose first payment is made at the end of the first payment period. If the first payment is made at the beginning of the first payment period, the annuity is called an annuity due. If the term of the annuity is not to begin until some time in the future, the annuity is called a deferred annuity.

The periodic payment into an annuity is frequently called the periodic rent. The sum of the payments of the annuity which occur in a year is called the annual rent.

Illustration. A sequence of payments of $\$ 100$ each, at the end of each quarter for 3 years, constitutes an annuity whose payment period is onefourth of a year. The term begins immediately (one quarter before the first payment) and ends at the close of three years. The periodic rent is $\$ 100$ and the annual rent is $4(\$ 100)$, or $\$ 400$. This annuity is pictured in the line diagram.

There are four general cases of ordinary annuities to which we shall give especial consideration. They are briefly described by the outline:
A. Annuity payable annually.
I. Interest at effective rate i.
II. Interest at nominal rate (j, m).
B. Annuity payable p times a year.
I. Interest at effective rate i.
II. Interest at nominal rate (j, m).

A. Annuity Payable Annually

24. Amount of an annuity.-The sum to which the total number of payments of the annuity accumulate at the end of the term is called the amount, or the accumulated value, of the annuity. We shall illustrate.

Example 1. $\$ 100$ is deposited in a savings bank at the end of each year for 4 years. If it accumulates at 5% converted annually, what is the total amount on deposit at the end of 4 years?

Solution. Consider the line diagram.

It is evident that the first payment will accumulate for 3 years. Hence its amount at the end of 4 years will be $\$ 100(1.05)^{3}$.

The second payment will accumulate for two years, and its amount will be $\$ 100(1.05)^{2}$, and so on.

Hence, the total amount at the end of 4 years will be given by
or

$$
\begin{equation*}
\$ 100(1.05)^{3}+\$ 100(1.05)^{2}+\$ 100(1.05)+\$ 100 \tag{1}
\end{equation*}
$$

$\$ 100+\$ 100(1.05)+\$ 100(1.05)^{2}+\$ 100(1.05)^{3}$.
We may compute the above products by means of the compound interest formula; their sum will be the amount on deposit at the end of 4 years. However, we notice that (1) is a geometric progression, having 100 for the first term, (1.05) for the ratio, and 4 for the number of terms.

Therefore,

$$
\begin{equation*}
\text { Amount }=\frac{100\left[(1.05)^{4}-1\right]}{.05} \tag{2}
\end{equation*}
$$

Evaluating (2) by means of Table III, we have

$$
\frac{100\left[(1.05)^{4}-1\right]}{.05}=\frac{100(1.2155062-1)}{.05}=431.01
$$

Hence, the amount of the above annuity is $\$ 431.01$.
The arithmetical solution of the above example may be tabulated as follows:

End of Year	Annual Deposit	Interest	Total Increase in Dcposit	Total on Deposit
1	$\$ 100.00$	$\ldots \ldots$.	$\$ 100.00$	$\$ 100.00$
2	100.00	$\$ 5.00$	105.00	205.00
3	100.00	10.25	110.25	315.25
4	100.00	15.76	115.76	431.01
Totals	$\$ 400.00$	$\$ 31.01$	$\$ 431.01$	

We shall now find the amount of an annuity of $\$ 1$ per annum for n years at an effective rate i. The symbol $s_{\bar{n} \mid t}$ is used to represent the amount of an annuity of 1 per annum payable annually for n years at the effective rate i. The first payment of 1 made at the end of the first year will be at interest for $n-1$ years and will accumulate to $(1+i)^{n-1}$.

The second payment of 1 will be at interest for $n-2$ years and will accumulate to $(1+i)^{n-2}$.

The third payment of 1 will be at interest for $n-3$ years and will accumulate to $(1+i)^{n-3}$, and so on.

The last payment will be a cash payment of 1 . We have then

$$
\begin{align*}
s_{\bar{n} \mid \mathbf{t}} & =(1+i)^{n-1}+(1+i)^{n-2}+(1+i)^{n-3}+\ldots+(1+i)+1 \\
& =1+(1+i)+(1+i)^{2}+\ldots+(1+i)^{n-2}+(1+i)^{n-1} . \tag{3}
\end{align*}
$$

This is a geometric progression of n terms, having 1 for first term and $(1+i)$ for ratio. Finding the sum (Alg.:Com.—Stat.,* Art. 60), we have \dagger

$$
\begin{equation*}
s_{n \mid l}=\frac{(1+i)^{n}-1}{i} \tag{4}
\end{equation*}
$$

If the annual rent is R and if S represents the amount, we have

$$
\begin{equation*}
S=R \cdot s_{n \mid t}=R \frac{(1+i)^{n}-1}{i} \tag{5}
\end{equation*}
$$

[^4]Example 2. Find the amount of an annuity of $\$ 200$ per annum for 10 years at 5% converted annually.

Solution. Here, $R=\$ 200, n=10$, and $i=0.05$. Substituting in (5), we get

$$
S=200 \cdot s_{\overline{10} \mid .05}=200 \frac{(1.05)^{10}-1}{0.05}
$$

In Table V we find the amount of an annuity of 1 per period for n periods at rate i per period.

When $n=10$ and $i=0.05$, we find
and

$$
\begin{aligned}
s_{\overline{10} \mid .05} & =\frac{(1.05)^{10}-1}{0.05}=12.57789254 \\
S & =200(12.57789254)=2515.58
\end{aligned}
$$

Hence, the amount of the annuity is $\$ 2515.58$.

Exercises

Find the amount of the following annuities:

1. $\$ 300$ per year for 10 years at 4% interest converted annually.
2. $\$ 500$ per year for 20 years at 5% converted annually.
3. $\$ 200$ per year for 6 years at 3% converted annually. Make a schedule showing the yearly increases and the amount of the annuity at the end of each year.
4. $\$ 150$ per year for 10 years at 6% converted annually.
5. In order to provide for the college education of his son, a father deposited $\$ 100$ at the end of each year for 18 ycars with a trust company that paid 4% effective. If the first deposit was made when the son was one year old, what was the accumulated value of all the deposits when the son was 18 years old?
6. A corporation sets aside $\$ 3,700$ annually in a depreciation fund which accumulates at 5%. What amount will be in the fund at the end of 15 years?
7. Write series (3) in the summation notation. (Alg.: Com.-Stat., Art. 63.)
8. If $\$ 1,000$ is deposited at the end of cach year for 10 years in a fund which is accumulated at 4% effective, what is the amount in the fund 4 years after the last deposit?
9. To create a fund of $\$ 5,000$ at the end of 10 years, what must a man deposit at the end of each year for the next 10 years if the deposits accumulate at 4% effective?
10. One man places $\$ 4,000$ at interest for 10 years; another deposits $\$ 500$ a year in the same bank for 10 years. Which has the greater sum at the end of the term if interest is at 4% effective?

Let us now find the amount of an annuity where the payments are made annually but the interest is converted more than once a year. We shall illustrate by an example.

Example 3. $\$ 100$ is deposited in a savings bank at the end of each year for 4 years. If it accumulates at 5% converted semi-annually, what is the total amount on deposit at the end of 4 years?

Solution. Consider the line diagram.

It is evident that the first deposit will accumulate for 3 years and at the end of 4 years, ((5), Art. 16), will amount to $\$ 100(1.025)^{6}$.

The second payment will amount to $\$ 100(1.025)^{4}$, and so on.
Hence, the total amount at the end of 4 years will be given by
or

$$
\$ 100(1.025)^{6}+\$ 100(1.025)^{4}+\$ 100(1.025)^{2}+\$ 100
$$

$$
\begin{equation*}
\$ 100+\$ 100(1.025)^{2}+\$ 100(1.025)^{4}+\$ 100(1.025)^{6} \tag{6}
\end{equation*}
$$

We notice that (6) is a geometrical progression, having 100 for the first term, $(1.025)^{2}$ for ratio, and 4 for the number of terms. Substituting in (8) Art. 60, Alg.: Com.-Stat., we have

$$
\begin{equation*}
S=\text { Amount }=\frac{100\left[(1.025)^{8}-1\right]}{(1.025)^{2}-1} \tag{7}
\end{equation*}
$$

It is evident that Table V cannot be used here, but we may use Table III.
Thus,

$$
\begin{aligned}
& S=\frac{100(1.21840290-1)}{1.05062500-1} \\
& S=\frac{100(0.2184029)}{0.050625}=431.41
\end{aligned}
$$

By writing (7) in the form

$$
S=100 \cdot \frac{(1.025)^{8}-1}{.025} \cdot \frac{.025}{(1.025)^{2}-1}
$$

we can identify the last two terms in the product as $s_{81.025}$ and $1 / s_{21.025}$. Then

$$
\begin{aligned}
S & =100 . \quad s_{\overline{8} 1.025} \cdot \frac{1}{s_{2 \mid .025}} \\
& =100(8.73611590) \cdot \frac{1}{2.025}=431.41
\end{aligned}
$$

as was obtained by the first method.
Hence, the amount of the annuity is $\$ 431.41$.

The arithmetical solution of the above example may be tabulated as follows:

End of Year	Annual Deposit	Intcrest	Total Increase in Deposit	Total on Deposit
$1 / 2$	$\$ 100.00$	$\ldots \ldots$.	$\$ 100.00$	$\$ 100.00$
1	$\ldots \ldots$.	$\$ 2.50$	2.50	102.50
$11 / 2$	100.00	2.56	102.56	205.06
2	$\ldots \ldots$.	5.13	5.13	210.19
$21 / 2$	100.00	5.25	105.25	315.44
3	$\ldots \ldots$.	7.89	7.89	323.33
$31 / 2$	100.00	8.08	108.08	431.41
4				

We notice that the amount in Example 3 is 40 cents more than the amount in Example 1. This is due to the fact that the interest is converted semi-annually in Example 3 and only annually in Example 1.

If the interest is converted m times per year, we may substitute, [(4) Art. 16], $\left(1+\frac{j}{m}\right)^{m}$ for $(1+i)$ and $\left(1+\frac{j}{m}\right)^{m}-1$ for i in (5) and obtain

$$
\begin{equation*}
S=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\left(1+\frac{j}{m}\right)^{m}-1} \tag{8}
\end{equation*}
$$

We can transform (8) into a form involving the annuity symbol s_{n} by writing it in the form

$$
\begin{align*}
S & =R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\frac{j}{m}} \cdot \frac{\frac{j}{m}}{\left(1+\frac{j}{m}\right)^{m}-1} \\
& =R \cdot s_{m n \mid j} \cdot \frac{1}{s_{\bar{m} \mid j}^{m}} \tag{8a}
\end{align*}
$$

Example 4. Find the amount of $\$ 200$ per annum for 10 years at 5% converted quarterly.

Solution. Here, $R=\$ 200, n=10, j=0.05$, and $m=4$. Substituting in (8a), we have

$$
\begin{aligned}
S & =200 . \quad s_{40.0125} \cdot \frac{1}{s_{\mathbb{4} .0125}} \\
& =200(51.48955708) \cdot \frac{1}{4.07562695} \\
& =2,526.71
\end{aligned}
$$

Hence the amount is $\$ 2,526.71$.
Why is the amount in Example 4 greater than the amount in Example 2?

Exercises

Find the amount of the following annuities:

1. $\$ 300$ per year for 8 years at 6% interest, converted semi-annually.
2. $\$ 250$ per year for 25 years at 5% converted quarterly.
3. $\$ 500$ per year for 5 years 4% converted semi-annually. Make a schedule showing the increases each six months and the amount of the annuity at the end of each six months.
4. $\$ 600$ per year for 30 years at $41 / 2 \%$ converted semi-annually.
5. $\$ 750$ per year for 15 years at 4.2% converted semi-annually. (Hint: Use logarithms to evaluate (1.021$)^{30}$.)
6. On the first birthday of his son a father deposits $\$ 100$ in a savings bank paying $31 / 2 \%$ interest, converted semi-annually. If he deposits a like amount on each birthday until the son is 21 years old, how much will be on deposit at that time?
7. A man deposits $\$ 1,000$ at the end of each year in a bank that pays 4% effective. Another man deposits $\$ 1,000$ at the end of each year in a bank that pays ($j=.035$, $m=2$). At the end of 10 years how much more does the first man have than the second?
8. A man deposited $\$ 1,000$ a year in a bank. At the end of 15 years he had $\$ 19,000.00$ to his credit. What effective rate of interest did he receive? Solve by interpolation.
9. Solve Exercise 1 with the interest converted quarterly.
10. ${ }^{\circ}$ Solve Exercise 1 with the interest converted monthly.
11. Set up the series for the amount of an annuity of R at the end of each year for n years with interest at the nominal rate (j, m). Sum this serics by (9) Art. 60, Alg.: Com.-Stat., and thus obtain (8), Art. 24.
12. Present value of an annuity.-The present value of an annuity is commonly defined as the sum of the present values of all the future payments. Suppose an individual is to receive R dollars each year as an ordinary annuity and the payments are to last for n years. The individual may
do any one of three things with this annuity: (a) He may spend the payments as they are received; (b) accumulate the payments until the end of the last rent period (n years); (c) or sell the future payments to a bank (or similar institution) at the beginning of the first rent period.

If the same rate of interest is used to accumulate the payments as is used by the bank (or similar institution) in finding the present value of the future payments, it is evident that the sum (present value) paid to the individual by the bank at the beginning of the first rent period is equivalent to the present value of the sum to which the future payments will accumulate by the end of the last rent period. Consequently, we may also define the present value of an annuity as that sum, which, placed at interest at a given rate at the beginning of the first rent period, will accumulate to the amount of the annuity by the end of the last rent period. Thus, it is the discounted value of S.

Example 1. It is provided by contract that a young man receive $\$ 500$ one year from now and a like sum each year thereafter until 5 such payments in all have been received. Not wishing to wait to receive these payments as they come due, the young man sells the contract to a bank. If the bank desires to invest its funds at 6% interest compounded annually, how much does the young man receive now for his contract?

Solution.

The first payment is made one year from now and has a present value of $\$ 500(1.06)^{-1}$.

The second payment is due two years from now and has a present value of $\$ 500(1.06)^{-2}$, and so on until the last payment which has a present value of $\$ 500(1.06)^{-5}$. Summing up, we have

Present value $=\$ 500(1.06)^{-1}+\$ 500(1.06)^{-2}+\ldots+\$ 500(1.06)^{-5}$.
We notice that (9) is a geometrical progression having $500(1.06)^{-1}$ for the first term, $(1.06)^{-1}$ for ratio, and 5 for the number of terms. Substituting in (8), Art. 60, Alg.: Com.-Stat. we find

$$
A=\text { Present value }=\frac{500(1.06)^{-1}\left[(1.06)^{-5}-1\right]}{(1.06)^{-1}-1}
$$

Multiplying the numerator and denominator of the above expression by (1.06),

$$
\begin{aligned}
A=\text { Present value } & =\frac{500\left[(1.06)^{-5}-1\right]}{1-(1.06)} \\
A & =500 \frac{1-(1.06)^{-5}}{0.06} \\
A & =500(4.21236379) \quad \text { [Table VI] } \\
A & =\$ 2,106.182 .
\end{aligned}
$$

If the young man had waited to receive the payments as they became due and immediately invested them at 6% converted annually, his investments at the end of 5 years would have amounted to

$$
S=500 \frac{(1.06)^{5}-1}{0.06}=\$ 2,818.546
$$

We notice that $\$ 2,818.546$ is the amount of $\$ 2,106.182$ for 5 years at 6\%. For

$$
\$ 2,106.182(1.06)^{5}=2,106.182(1.33822558)=\$ 2,818.546
$$

We shall now find the present value of an annuity of $\$ 1$ per annum for n years at the effective rate i. The symbol $a_{\bar{n},}$ or $a_{\bar{n}]}$ is used to represent the present value of this annuity. To find this value, we shall discount each payment to the beginning of the term.

The first payment of 1 made at the end of the first year when discounted to the present, by Art. 17, has the present value of $(1+i)^{-1}$. Similarly, the second payment when discounted to the present has a present value of $(1+i)^{-2}$. And so on for the other payments. We then have

$$
\begin{equation*}
a_{\overrightarrow{n i} i}=(1+i)^{-1}+(1+i)^{-2}+(1+i)^{-3}+\cdots+(1+i)^{-n} \tag{10}
\end{equation*}
$$

This is a geometric progression in which $a=(1+i)^{-1}, r=(1+i)^{-1}$, $l=(1+i)^{-n}$. Finding the sum (Alg.: Com.-Stat., Art. 60), we obtain

$$
\begin{equation*}
a_{\bar{n} \mid i}=\frac{1-(1+i)^{-n}}{i} \tag{11}
\end{equation*}
$$

The functions $a_{\vec{n} i}$ and $s_{\vec{n} i}$ are the two most important annuity functions. We frequently write them $a_{\vec{n}}$ and $s_{\bar{n}}$.

Formula (11) may be easily derived from (5) Art. 24. For $a_{\overrightarrow{n i}}$ is, by definition, the discounted value of $s_{\boldsymbol{n} \mid \cdot}$. That is,

$$
a_{\bar{n} i}=s_{\bar{n} \mid t} \cdot(1+i)^{-n}=\frac{(1+i)^{n}-1}{i} \cdot(1+i)^{-n}=\frac{1-(1+i)^{-n}}{i} .
$$

If the annual rent is R, payable at the end of each year for n years, and if A represents the present value,

$$
\begin{equation*}
A=R \cdot a_{\bar{n} \mid i}=R \frac{1-(1+i)^{-n}}{i} \tag{12}
\end{equation*}
$$

If the interest is at the nominal rate (j, m), using the relation (4) Art. 16,

$$
1+i=(1+j / m)^{m},
$$

we find

$$
\begin{equation*}
A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{\left(1+\frac{j}{m}\right)^{m}-1} \tag{13}
\end{equation*}
$$

which is easily reduced to

$$
\begin{equation*}
A=R \cdot a_{\overline{m n}] \frac{j}{m}} \cdot \frac{1}{s_{\bar{m} \left\lvert\, \frac{j}{m}\right.}} \tag{13a}
\end{equation*}
$$

26. Relation between $\frac{1}{a_{n}}$ and $\frac{1}{s_{\bar{n}}}$.

We have

$$
a_{n \bar{n}}(1+i)^{n}=s_{n]} \quad[\text { Art. 25] }
$$

and

$$
(1+i)^{n}=\frac{s_{\eta}}{a_{n}} .
$$

Substituting for $(1+i)^{n}$ in the equation

$$
\begin{aligned}
\frac{(1+i)^{n}-1}{i} & =s_{\bar{n}}, \text { we have } \\
\frac{s_{\bar{n} \mid}-a_{\bar{n} \mid}}{i a_{\bar{n} \mid}} & =s_{\bar{n}]} .
\end{aligned}
$$

Multiplying through by i and dividing through by $s_{\bar{n}}$, we find

$$
\begin{align*}
& \frac{1}{a_{n \mid}}-\frac{1}{s_{n}}=i \\
& \frac{1}{s_{n}}=\frac{1}{a_{\bar{n}]}}-i \tag{14}
\end{align*}
$$

Table VII gives values for $\frac{1}{a_{\hat{n}]}}$. According to (14), values for $\frac{1}{s_{\bar{n}]}}$ are obtained by subtracting the rate i from the table values of $\frac{1}{a_{n}}$. Thus, to find $1 / s_{\text {20.04 }}$, we look up Table VII and obtain $1 / a_{\text {20. }}$. $4=0.07358175$ Using relation (14), we find

$$
\frac{1}{s_{20 \mid .04}}=0.07358175-.04=0.03358175
$$

27. Summary. Formulas of an ordinary annuity of annual rent R payable annually for n years.
I. Interest at effective rate i.

$$
\begin{aligned}
& \text { 1. } S=R \frac{(1+i)^{n}-1}{i}=R . s_{\bar{n} \mid l} . \\
& \text { 2. } A=R \frac{1-(1+i)^{-n}}{i}=R . a_{\bar{n} \mid \imath} .
\end{aligned}
$$

II. Interest at nominal rate (j, m).

$$
\begin{aligned}
& \text { 1. } S=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\left(1+\frac{j}{m}\right)^{m}-1}=R \cdot s_{\overline{m n} \frac{j}{m}} \cdot \frac{1}{s_{\bar{m} \frac{j}{m}}^{m}} \\
& \text { 2. } A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{\left(1+\frac{j}{m}\right)^{m}-1}=\text { R. } a_{\overline{m n} \frac{j}{m}} \cdot \frac{1}{s_{\bar{m} \frac{j}{m}}^{m}}
\end{aligned}
$$

where

$$
\begin{gathered}
s_{\bar{n} \mid \mathbf{4}}=\frac{(1+i)^{n}-1}{i}, \quad a_{\bar{n} \mid}=\frac{1-(1+i)^{-n}}{i}, \\
s_{\bar{n} \mid \mathbf{4}}=(1+i)^{n} \cdot a_{\bar{n} \mid}, \quad a_{\bar{n} \mid \mathbf{4}}=(1+i)^{-n \cdot s_{\bar{n} \mid \mathfrak{i}}} \\
\frac{1}{a_{\bar{n} \mid}}-\frac{1}{s_{\bar{n} i}}=i .
\end{gathered}
$$

28. Other derivations of $a_{\bar{n} \mid}$ and $s_{\bar{n} \mid}$. -We have derived the formulas for $a_{\boldsymbol{n}}$ and $s_{\boldsymbol{n}}$ by setting up series and then finding their sums by the formula for summing a geometric progression. It is of great value to derive the
formulas by a method called "direct reasoning" by some authorities, or "verbal interpretation" by other authorities.

Consider $\$ 1$ at 0 . Its value at the end of n years is $(1+i)^{n}$.

Also, from another point of view, $\$ 1$ at 0 will produce an annuity of i at the end of each year for n years and leave the original principal intact at the end of n years. For, at the end of the first year the amount is $(1+i)$. Deposit the i into a separate account, and let the original principal $\$ 1$ again earn interest. It amounts to $(1+i)$ at the end of the second year. We again deposit the i in the second account, and let the principal $\$ 1$ again earn interest. We continue this for n years. We thus find that $\$ 1$ at 0 is equivalent to an annuity of i for n years plus the original principal $\$ 1$ at n. In other words,

$$
1 \text { at } 0=[\text { an annuity of } i \text { for } n \text { years }]+1 \text { at } n .
$$

Let us now focalize all sums at the end of n years. Then

$$
(1+i)^{n}=i s_{\bar{n}}+1,
$$

or, solving for $s_{\bar{n}}$,

$$
s_{n \bar{n}}=\frac{(1+i)^{n}-1}{i}
$$

If we focalize all sums at the present, 0 , we have
or,

$$
\begin{aligned}
1 & =i a_{n}+{ }_{2}^{\prime \prime}(1+i)^{-n}, \\
a_{\text {司 }} & =\frac{1-(1+i)^{-n}}{i} .
\end{aligned}
$$

Exercises

1. An individual is to receive an inheritance of $\$ 1,000$ at the end of each year for 15 years. If money is worth 5% effective, what is the present value of the inheritance?
2. Find the present value of an ordinary annuity of $\$ 1,000$ a year for 12 years at ($j=.05, m=2$).
3. How much money, if deposited with a trust company paying ($j=.04, m=2$), is sufficient to pay a person $\$ 2,000$ a year for 20 years, the first payment to be received 1 year from the date of deposit?
4. An article is listed for $\$ 2,000$ cash. A buyer wishes to purchase it in four equal annual installments, the first to be made 1 year from the date of purchase. If money is worth 6%, what is the amount of each installment?
5. A house was purchased for $\$ 12,000$, of which $\$ 3,000$ was cash. The balance was paid in 10 equal annual installments which began one year from the date of purchase. If money is worth ($j=.06, m=2$), find the amount of each installment.
6. A house is offered for sale on the following terms: $\$ 1,000$ down, and $\$ 500$ at the end of each year for 10 years. If money is worth 6%, what is a fair cash price?
7. Prove: $s_{\overline{1}}+s_{2]}+s_{3 \mid}+\cdots+s_{n \mid}=\frac{(1+i) s_{\bar{n}}-n}{i}$.
8. Prove: $\sum_{x=1}^{n} a_{\bar{x}}=\frac{n-a_{\bar{n}}}{i}$.
9. Prove: $\sum_{x=1}^{n} a_{2 x]}=\frac{1}{i}\left[n-\frac{a_{2 n}}{s_{27}}\right]$.
10. Evidently $\$ 1$ at 0 is equivalent to an annuity of $1 / a_{\bar{n}}$ at the end of each year for n years since the present value of the annuity is 1 . Use this fact with Art. 28 to prove that $\frac{1}{a_{\bar{n}]}}=\frac{1}{s_{\bar{n}]}}+i$.
11. Show that $a_{\overline{m+n}}=a_{\bar{m} \mid}+(1+i)^{-m} a_{\bar{n} \mid}=a_{\bar{n} \mid}+(1+i)^{-n} a_{\bar{m} \mid}$.
(a) by verbal interpretation. Draw line diagram.
(b) algebraically.
12. Find the value of $a_{\overline{120} .04}$ by using the relation in Exercise 11.
13. Show that $s_{\overline{m+n}}=(1+i)^{n} s_{\bar{m}}+s_{\bar{n} \mid}=(1+i)^{m_{s_{\bar{n}}}}+s_{\bar{m} \mid}$.
14. Find the value of $s_{1201.04}$ by using the relation in Exercise 13.
15. What do the formulas in Exerciscs 11 and 13 become if $m=1$?

B. Annuity Payable p Times a Year

29. Amount of an annuity, where the annual rent, R, is payable in p equal installments.-In Art. 15, we derived the value of the compound amount of $\$ 1$ for n years, $(1+i)^{n}$, for integral values of n. We shall assume this relation to hold for fractional as well as for integral values of n. Consider

Example 1. $\$ 50$ is deposited in a savings bank at the end of every six months for 4 years. If it accumulates at 5% interest, converted annually, what is the total amount on deposit at the end of 4 years?

Solution.

The first deposit of $\$ 50$ is made at the end of six months and accumulates for $31 / 2$ years. At the end of 4 years it will amount to $\$ 50(1.05)^{7 / 2}$.

The second deposit of $\$ 50$ is made at the end of the first year and will amount to $\$ 50(1.05)^{3}$ at the end of 4 years.

The third deposit of $\$ 50$ will amount to $\$ 50(1.05)^{5 / 2}$ at the end of 4 years, and so on.

Next to the last deposit will be at interest six months and will amount to $\$ 50(1.05)^{1 / 2}$ at the end of 4 years and the last deposit will be made at the end of 4 years and will draw no interest.

Hence, the total amount at the end of 4 years will be given by
or

$$
\begin{align*}
& \$ 50(1.05)^{7 / 2}+\$ 50(1.05)^{3}+\ldots+\$ 50(1.05)^{1 / 2}+\$ 50 \\
& \$ 50+\$ 50(1.05)^{3 / 2}+\$ 50(1.05)+\ldots+\$ 50(1.05)^{7 / 2} \tag{15}
\end{align*}
$$

We notice that (15) is a geometrical progression having 50 for first term, $(1.05)^{3 / 2}$ for ratio, and 8 for the number of terms.

Substituting in (8), Art. 60, Alg.: Com.-Stat., we have

$$
S=\text { Amount }=\frac{50\left[(1.05)^{4}-1\right]}{(1.05)^{1 / 2}-1}
$$

Using Table III and Table VIII, we have

$$
\begin{aligned}
S=\text { Amount } & =\frac{50(1.21550625-1)}{1.02469508-1} \\
S & =\frac{50(0.21550625)}{0.02469508}=436.34 .
\end{aligned}
$$

Hence, the amount of the above annuity is $\$ 436.34$.
Let us now find the amount of an annuity of $\$ 1$ per annum, payable in p equal installments of $1 / p$ at the end of every p th part of a year for n years at rate i, converted annually.

To assist him in following this discussion the student should draw a line diagram.

The amount of an annuity of $\$ 1$ per annum, payable in p equal installments at equal intervals during the year, will be denoted by the symbol, $s_{n}^{(p)}$. If the interest is converted annually, and i is the rate, $s_{n}^{(p)}$ can be expressed in terms of n, i, and p as follows: At the end of the first p th part of a year, $1 / p$ is paid. This sum will remain at interest for $(n-1 / p)$ years and will amount to $1 / p(1+i)^{n-1 / p}$.

The second installment of $1 / p$ will be paid at the end of the second p th part of a year and will be at interest for $(n-2 / p)$ years, amounting to
$1 / p(1+i)^{n-2 / p}$ at the end of n years, and so on until $n p$ installments are paid.

Next to the last installment will be at interest for one p th part of a year and will amount to $1 / p(1+i)^{1 / p}$.

The last installment will be paid at the end of n years and will draw no interest. Adding all of these installments, beginning with the last one, we have

$$
\begin{equation*}
s_{n}^{(p)}=\frac{1}{p}+\frac{1}{p}(1+i)^{1 / p}+\frac{1}{p}(1+i)^{2 / p}+\ldots+\frac{1}{p}(1+i)^{n-1 / p} \tag{16}
\end{equation*}
$$

We notice that (16) is a geometrical progression having $1 / p$ for first term, $(1+i)^{1 / p}$ for ratio, and $n p$ for the number of terms. Substituting in (8), Art. 60, Alg.: Com.-Stat., we have

$$
\begin{equation*}
s_{n}^{(p)}=\frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / p}-1\right]} \tag{17}
\end{equation*}
$$

If the annual rent is R, we have

$$
\begin{equation*}
S=R \frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / p}-1\right]} \tag{18}
\end{equation*}
$$

For convenience in evaluating, (18) may be written, (4') Art. 16,
or

$$
\begin{equation*}
S=R \frac{(1+i)^{n}-1}{i} \cdot \frac{i}{p\left[(1+i)^{1 / p}-1\right]} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
S=R\left(s_{\mathfrak{n}}\right)\left(\frac{i}{j_{p}}\right) \tag{19a}
\end{equation*}
$$

Table X gives values of $\frac{i}{j_{p}}$.
Example 2. Find the amount of an annuity of $\$ 1,200$ per year paid in quarterly installments of $\$ 300$ for 7 years if the interest rate is 5% converted annually.

Solution. Here, $R=\$ 1,200, n=7, p=4$, and $i=0.05$. Substituting in (19), we have

$$
S=1,200 \frac{(1.05)^{7}-1}{0.05} \cdot \frac{0.05}{4\left[(1.05)^{1 / 4}-1\right]}=1200 . s_{\overline{7}]}\left(\frac{.05}{j_{4}}\right)
$$

Using Table V and Table X, we have

$$
S=1,200(8.14200845)(1.01855942)=9,951.74
$$

Hence, the amount of the above annuity is $\$ 9,951.74$.

Example 3. Find the amount of an annuity of $\$ 200$ per year paid in semi-annual installments for 10 years, the interest rate being 4.3% converted annually.

Solution. Here, $R=\$ 200, n=10, p=2$, and $i=0.043$. The rate, 4.3%, is not given in our tables. We will evaluate by means of logarithms, using (18).

$$
\begin{aligned}
S & =200 \frac{(1.043)^{10}-1}{2\left[(1.043)^{1 / 2}-1\right]} \\
\log 1.043 & =0.0182843 \quad \text { (Table II.) } \\
10(\log 1.043) & =0.1828430 \\
(1.043)^{10} & =1.5235 \quad \text { (Table I.) } \\
1 / 2(\log 1.043) & =0.0091422 \\
(1.043)^{1 / 2} & =1.021274 \quad \text { (Table II.) } \\
\text { Hence, } S=\frac{200(1.5235-1)}{2(1.021274-1)} & =\frac{100(0.5235)}{0.021274}=2,460.75 .
\end{aligned}
$$

Consequently, the amount of the above annuity is $\$ 2,460.75$, and it is accurate to five significant digits. That is, the exact value is between $\$ 2,460.75$ and $\$ 2,460.65$.

Exercises

Find the amount of the following annuities:

1. $\$ 300$ per year paid in semi-annual installments for 10 years at 4% interest converted annually.
2. $\$ 500$ per year paid in quarterly installments for 20 years at 5% converted annually.
3. $\$ 50$ per month for 10 years at 4% interest converted annually.
4. $\$ 250$ at the end of every six months for 15 years at $41 / 2 \%$ converted annually. Evaluate by logarithms, using (18), and then check the result by using Tables V and X.
5. $\$ 100$ quarterly for 12 years at $31 / 4 \%$ converted annually.
6. A young man saves $\$ 50$ a month and deposits it each month in a savings bank for 25 years. If the bank pays $31 / 2 \%$ interest, converted annually, how much does he have on deposit at the end of the 25 years?
7. Solve Exercise 1, if it were paid in quarterly installments. Is the answer more or less than the answer of Exercise 1? Explain the difference.
8. Solve Exercise 2, if it were paid in semi-annual installments. Is the answer more or less than the answer of Exercise 2? Explain the difference.
9. $\$ 100$ is deposited in a savings bank at the end of every 3 months. If it accumulates at 3% converted annually, how much is on deposit at the end of 4 years? Solve fundamentally as a geometrical progression.

Let us now find the amount of an annuity paid in p equal installments each year where the interest is converted more than once a year. We will illustrate by an example.

Example 4. $\$ 25$ is deposited in a savings bank at the end of every three months for 4 years. If it accumulates at 5% interest, converted semi-annually, what is the total amount on deposit at the end of 4 years?

Solution. The first deposit of $\$ 25$ is made at the end of three months and is at interest for $33 / 4$ years. At the end of 4 years it will amount to $\$ 25(1.025)^{15 / 2}$. [(5), Art. 16.]
The second deposit of $\$ 25$ is made at the end of six months and is at interest for $31 / 2$ years. At the end of 4 years it will amount to

$$
\$ 25(1.025)^{7}
$$

The third deposit of $\$ 25$ is made at the end of nine months and is at interest for $31 / 4$ years. At the end of 4 years it will amount to

$$
\$ 25(1.025)^{13 / 2}, \text { and so on. }
$$

Next to the last deposit of $\$ 25$ will be at interest for $1 / 4$ year and will amount to

$$
\$ 25(1.025)^{1 / 2} .
$$

The last deposit of $\$ 25$ is made at the end of 4 years and draws no interest.
Hence, the total amount on deposit at the end of 4 years will be given by

$$
\begin{gather*}
\\
 \tag{20}\\
\text { or } \quad \$ 25(1.025)^{195}+\$ 25(1.025)^{7}+\cdots+\$ 25(1.025)^{1 / 2}+\$ 25 \\
\quad \$ 25+\$ 25(1.025)^{1 / 2}+\$ 25(1.025)+\ldots+\$ 25(1.025)^{15 / 2}
\end{gather*}
$$

We notice that (20) is a geometrical progression having 25 for first term, $(1.025)^{3 / 2}$ for ratio, and 16 for the number of terms. Substituting in (8), Art. 60, Alg.: Com.-Stat., we have

$$
\begin{align*}
S=\text { Amount } & =\frac{25\left\{\left[(1.025)^{3 / 2}\right]^{16}-1\right\}}{(1.025)^{3 / 2}-1} \\
S & =\frac{25\left[(1.025)^{8}-1\right]}{(1.025)^{3 / 2}-1} \tag{21}
\end{align*}
$$

Using Table III and Table VIII, we have

$$
\begin{aligned}
S=\text { Amount } & =\frac{25(1.21840290-1)}{1.01242284-1} \\
S & =\frac{25(0.21840290)}{0.01242284}=439.50 .
\end{aligned}
$$

Hence, the amount of the above annuity is $\$ 439.50$.
If the interest is converted m times per year, we may substitute $\left(1+\frac{j}{m}\right)^{m}$ for $(1+i)$ in (18) and obtain

$$
\begin{equation*}
S=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{22}
\end{equation*}
$$

Let us consider further equation (21). Here $p=4, m=2$, and hence p / m is an integer. We may write (21) in the form

$$
\begin{align*}
S & =\frac{100}{2} \cdot \frac{\left[(1.025)^{8}-1\right]}{.025} \cdot \frac{.025}{2\left[(1.025)^{1 / 2}-1\right]} \tag{21a}\\
& =50 . s_{\overline{8} \mid} \cdot \frac{.025}{j_{2}}
\end{align*}
$$

When $\frac{p}{m}$ is an integer, (22) becomes

$$
\begin{equation*}
S=\frac{R}{m} \cdot s_{\overline{m n} \frac{j}{m}} \cdot \frac{\frac{j}{m}}{j_{\frac{p}{m}} \text { at rate } \frac{j}{m}} \tag{22a}
\end{equation*}
$$

When p / m is an integer, (22) can easily be reduced to (22a) in which case we may apply Tables V and X. This transformation simplifies the arithmetical computation since S is expressed as a continued product.

Example 5. Find the amount of an annuity of $\$ 600$ per year paid in quarterly installments for 8 years, if the interest rate is 5% converted semi-annually.

Solution. Here, $R=\$ 600, n=8, p=4, m=2$, and $j=0.05$. Substituting in (22), we have

$$
\begin{aligned}
S & =600 \frac{(1.025)^{16}-1}{4\left[(1.025)^{3 / 4}-1\right]} \\
& =300 \frac{(1.025)^{16}-1}{2\left[(1.025)^{1 / 2}-1\right]} \\
& =300 \frac{(1.025)^{16}-1}{0.025} \cdot \frac{0.025}{2\left[(1.025)^{1 / 2}-1\right]}=300 \cdot s_{\overline{16} \mid} \cdot \frac{.025}{j_{2}}
\end{aligned}
$$

Using Table V and Table X, we find

$$
S=300(19.38022483)(1.00621142)=\$ 5,850.18
$$

Example 6. Solve Example 5, if the interest is converted quarterly.
Solution. Here, $R=\$ 600, n=8, m=p=4$, and $j=0.05$. Substituting directly in (22),

$$
\begin{aligned}
S & =150 \frac{(1.0125)^{32}-1}{0.0125}=150 s_{322.0125} \\
& =150(39.05044069) \quad(\text { Table V) } \\
& =\$ 5,857.57 .
\end{aligned}
$$

Example 7. Solve Example 5, if the payments are made semi-annually and the interest is converted quarterly.

Solution. Here, $R=\$ 600, n=8, p=2, m=4$, and $j=0.05$. Substituting in (22), we have

$$
\begin{align*}
S & =600 \frac{(1.0125)^{32}-1}{2\left[(1.0125)^{3 / 2}-1\right]} \\
& =300 \frac{(1.0125)^{32}-1}{(1.0125)^{2}-1} \\
& =\frac{300(1.48813051-1)}{1.02515625-1} \quad \text { (Table } \tag{TableIII}\\
& =\frac{300(0.48813051)}{0.02515625}=\$ 5,821.18 .
\end{align*}
$$

In this example, m / p is an integer. When this is true we can write S as a product. Thus,

$$
S=\frac{600}{2} \cdot \frac{(1.0125)^{32}-1}{.0125} \cdot \frac{.0125}{(1.0125)^{2}-1}=300 \cdot s \overline{32 \mid} \cdot \frac{1}{s_{\overline{2} \mid}}
$$

in which Tables V and VII may be applied. In terms of annuity symbols, it is of the form

$$
\begin{equation*}
S=\frac{R}{p} \cdot s_{\overline{m n} \left\lvert\, \frac{j}{m}\right.} \cdot \frac{1}{s_{\left.\frac{m}{p} \right\rvert\, \frac{j}{m}}} \tag{22b}
\end{equation*}
$$

When m / p is an integer, (22) can easily be reduced to (22b).
Formula (22) is our most general formula for finding the amount of an annuity. The other forms (5), (8), and (18) are special cases of (22). Thus,

If $m=p=1$, (22) reduces to

$$
\begin{equation*}
S=R \frac{(1+i)^{n}-1}{i} \tag{5}
\end{equation*}
$$

If $p=1$ and $m>1$,(22) reduces to

$$
\begin{equation*}
S=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\left(1+\frac{j}{m}\right)^{m}-1} \tag{8}
\end{equation*}
$$

If $m=1$ and $p>1$,(22) reduces to

$$
\begin{equation*}
S=R \frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / p}-1\right]} \tag{18}
\end{equation*}
$$

If $m=p$, (22) reduces to

$$
\begin{equation*}
S=\frac{R}{p} \frac{\left(1+\frac{j}{p}\right)^{n p}-1}{\frac{j}{p}} \tag{23}
\end{equation*}
$$

We observe that (23) is of the same form as (5), where n is replaced by $n p, i$ by j / p, and R by R / p.

In solving annuity problems the student should confine himself to the use of the fundamental formulas. Thus, if his problem requires that he find the amount of an annuity, he should use (5), (8), (18), or (22), and then effect the necessary transformation to reduce it to the annuity symbols that will entail the least amount of labor in obtaining the numerical result.

Exercises

1. A man deposits $\$ 150$ in a 4% savings bank at the end of every three months. If the interest is converted semi-annually, what amount will be to his credit at the end of 10 years?
2. Solve Exercise 1, with the interest converted (a) annually, (b) quarterly.
3. A man wishes to provide a fund for his retirement and begins at age 25 to deposit $\$ 125$ at the end of every three months with a trust company which allows 3% interest converted semi-annually. What will be the amount of the fund at age 60 ?
4. Solve Exercise 3, with the interest converted quarterly.
b. Fill out the following table for the amount of an annuity of $\$ 300$ per year for 12 years at 4% :

Annuity Payable	Interest Convertible		
	Annually	Semi-annually	Quarterly
Annually			
Semi-annually			
Quarterly			

6. Solve Exercise 5, with the rate of interest 5%.
7. Solve Exercise 5, with the rate of interest $41 / 2 \%$.
8. Find the amount of an annuity of $\$ 400$ a ycar for 7 years at 7% interest converted semi-annually. Solve fundamentally as a geometrical progression using the principle of compound interest.
9. Solve Exercise 8, with the interest converted annually.
10. Solve Exercise 8, with the annuity payable in quarterly installments and the interest converted semi-annually.
11. $\$ 250$ is deposited at the end of every six months for 10 years in a fund paying 4% converted semi-annually. Then, $\$ 150$ is deposited at the end of every three months for 10 years and the interest rate is reduced to 3% converted quarterly. Find the total amount on deposit at the end of 20 years.
12. A man has $\$ 2,500$ invested in Government bonds which will mature in 15 years. These bonds bear 3% interest, payable January 1 and July 1. When these interest payments are received they are immediately deposited in a savings bank which allows $31 / 2 \%$ interest converted semi-annually. To what amount will these interest payments accumulate by the end of 15 years?
13. A man begins at the age of thirty to save $\$ 15$ per month, and keeps all of his savings invested at an average rate of 4% effective. How much will he have as a retirement fund when he is sixty-five years old?
14. A man 25 years of age pays $\$ 41.85$ at the beginning of each year for 20 years for which he receives an insurance contract which will pay his estate $\$ 1,000$ in case of his death before 20 years and pay him $\$ 1,000$ cash, if living, at the end of 20 years. He also decides to deposit the same amount at the beginning of each year in a savings bank paying 3% interest. Compare the value of the two investments at the end of 20 years. On the basis of 3% interest what would you say his insurance protection cost for the 20 years?
15. A man deposits $\$ 150$ in a savings bank on his twenty-fifth birthday and a like amount every six months. If the bank pays 3% interest convertible semi-annually, how much does he have on deposit on his sixtieth birthday?
16. Solve Exercise 15, with the interest converted quarterly.
17. A man, age 25 , pays $\$ 24.03$ a year in advance on a $\$ 1,000,20$-payment life policy. If he should die at the end of 12 years, just before paying the 13 th premium, how much
would his estate be increased by having taken the insurance instead of having deposited the $\$ 24.03$ each year in a savings bank paying 4% effective?
18. Find the amount of an annuity of $\$ 200$ a year payable in semi-annual installments for 7 years at 4% converted annually. Solve fundamentally as a geometrical progression.
19. Solve Exercise 18, with the interest converted quarterly.
20. Assume that R / p dollars is invested at the end of $1 / p$ th of a year, at nominal rate j converted m times a year, and that a like amount is invested every p th part of a year until $n p$ such investments are made; sum up as a geometrical progression and thereby derive the formula (22).
21. Present value of an annuity of annual rent, R, payable in p equal installments.-In Art. 25 we considered the problem of finding the present value of an ordinary annuity with annual payments. We are now ready to consider the problem of finding the present value of an ordinary annuity of annual rent, R, with p payments a year.

We have found the amount S of such an annuity. When the interest is at the effective rate i, the amount S is given by (18); when the interest is at the nominal rate (j, m), the amount S is given by (22). If, as usual, A designates the present value of the annuity, evidently

$$
\begin{equation*}
A(1+i)^{n}=S=R \frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / p}-1\right]} \tag{24}
\end{equation*}
$$

if the interest is at the effective rate i, and

$$
\begin{equation*}
A\left(1+\frac{j}{m}\right)^{m n}=S=R \cdot \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{25}
\end{equation*}
$$

if the interest is at the nominal rate (j, m).
Solving (24) and (25) respectively for A, we obtain

$$
\begin{equation*}
A=R \frac{1-(1+i)^{-n}}{p\left[(1+i)^{1 / p}-1\right]^{\prime}} \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{27}
\end{equation*}
$$

We shall leave it as an exercise for the reader to show that (26) can be reduced to the form

$$
A=R \cdot a_{\vec{n} \cdot} \cdot \frac{i}{j_{p}}
$$

and that (27) can be reduced to the forms

$$
\begin{align*}
& A=\frac{R}{m} \cdot a_{\overline{m \pi} \frac{1}{m}} \cdot \frac{\frac{j}{m}}{\frac{j_{\frac{p}{m}}^{m}}{} \text { at rate } \frac{j}{m}, \frac{p}{m} \text { an integer, }} \tag{28a}\\
& A=\frac{R}{p} \cdot a_{\overline{m n} \frac{1}{m}} \cdot \frac{1}{s_{\bar{p}} \left\lvert\, \frac{j}{m}\right.}, \frac{m}{p} \text { an integer. } \tag{28b}
\end{align*}
$$

It is of great value to derive the fundamental formulas (26) and (27) by discounting each payment R / p to the present and finding the sum of the respective series. See p. 59. We shall set up the serics and leave the details of summation and simplification to the reader.

If the interest is at the effective rate i, the present value is

$$
A=\frac{R}{p}\left[(1+i)^{-1 / p}+(1+i)^{-2 / p}+\ldots+(1+i)^{-n}\right]
$$

which simplifies to the value given in (26).
If the interest is at the nominal rate (j, m), the present value is

$$
A=\frac{R}{p}\left[\left(1+\frac{j}{m}\right)^{-m / p}+\left(1+\frac{j}{m}\right)^{-2 m / p}+\ldots+\left(1+\frac{j}{m}\right)^{-m n}\right]
$$

which simplifies to the value given in (27).
Again we would advise the student, when solving annuity problems, to confine himself to the fundamental formulas. Thus, if his problem requires that he find the present value of an annuity, he should use (12), (13), (26), or (27), and then effect the necessary transformation to reduce it to the annuity symbols that will entail the least amount of labor in obtaining the numerical result.
31. Summary of ordinary annuity formulas.

$$
\begin{aligned}
& S=\text { The Amount of the Annuity } \\
& A=\text { The Present Value of the Annuity. }
\end{aligned}
$$

A. Annuity of annual rent R payable annually for n years.
I. At the effective rate i.

1. $S=R \frac{(1+i)^{n}-1}{i}=R \cdot s_{n}$
2. $A=R \frac{1-(1+i)^{-n}}{i}=R \cdot a_{n}$
II. At the nominal rate (j, m).
3. $S=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{\left(1+\frac{j}{m}\right)^{m}-1}$.
4. $A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{\left(1+\frac{j}{m}\right)^{m}-1}$.
B. Annuity of annual rent R payable p times a year for n years.
I. At the effective rate i.

$$
\begin{align*}
& \text { 1. } S=R \frac{(1+i)^{n}-1}{p\left[(1+i)^{1 / p}-1\right]} . \tag{18}\\
& \text { 2. } A=R \frac{1-(1+i)^{-n}}{p\left[(1+i)^{1 / p}-1\right]} . \tag{26}
\end{align*}
$$

II. At the nominal rate (j, m).

$$
\begin{align*}
& \text { 1. } S=R \frac{\left(1+\frac{j}{m}\right)^{m n}-1}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{22}\\
& \text { 2. } A=R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{27}
\end{align*}
$$

Example 1. Find the present value of an annuity of $\$ 600$ per year paid in quarterly installments for 8 years, if the interest rate is 5% converted semi-annually.

Solution. Here, $R=\$ 600, n=8, p=4, m=2$, and $j=0.05$. Substituting in (27), we have

$$
\begin{aligned}
A & =600 \frac{1-(1.025)^{-16}}{4\left[(1.025)^{3 / 4}-1\right]}=300 \frac{1-(1.025)^{-16}}{2\left[(1.025)^{1 / 2}-1\right]} \\
& =300 \frac{1-(1.025)^{-16}}{0.025} \cdot \frac{0.025}{2\left[(1.025)^{1 / 2}-1\right]} \\
& =300 \cdot a_{16} \cdot 025 \cdot \frac{.025}{j_{2} \text { at } .025} \\
& =300(13.05500266)(1.00621142) \quad \text { [Tables VI and X] } \\
& =\$ 3,940.83 .
\end{aligned}
$$

Example 2. Solve Example 1, with the interest converted quarterly.
Solution. Here, $R=\$ 600, n=8, m=p=4$, and $j=0.05$. Substituting in (27),

$$
\begin{aligned}
A & =150 \frac{1-(1.0125)^{-32}}{0.0125}=150 \cdot a \overline{a_{22}} \cdot 0125 \\
& =150(26.24127418) \quad[\text { Table VI] } \\
& =\$ 3,936.19
\end{aligned}
$$

Example 3. Solve Example 1, if the payments are made semi-annually and the interest is converted quarterly.

Solution. Here, $R=\$ 600, n=8, p=2, m=4$, and $j=0.05$. Substituting in (27), we have

$$
\begin{aligned}
A & =600 \frac{1-(1.0125)^{-32}}{2\left[(1.0125)^{1 / 2}-1\right]} \\
& =300 \frac{1-(1.0125)^{-32}}{(1.0125)^{2}-1} \\
& =\frac{300(1-0.67198407)}{1.02515625-1} \quad \text { [Tables III and IV] } \\
& =\frac{300(0.32801593)}{0.02515625}=\$ 3,911.74 .
\end{aligned}
$$

We may also solve this example by writing A in the form

$$
A=300 \frac{1-(1.0125)^{-32}}{.0125} \cdot \frac{.0125}{(1.0125)^{2}-1}
$$

and applying Tables VI and VII. We find

$$
\begin{aligned}
A & =300(26.24127418)(0.49689441) \\
& =\$ 3911.74
\end{aligned}
$$

Exercises

1. Find the present value of an annuity of $\$ 700$ per year running for 15 years at 5% converted annually.
2. Solve Exercise 1, assuming that the interest is converted semi-annually.
3. A piece of property is purchased by paying $\$ 1,000$ cash and $\$ 500$ at the end of each year for 10 years without interest. What would be the equivalent price if it were all paid in cash at the date of purchase, assuming money is worth $51 / 2 \%$?
4. In order that his daughter may receive an income of $\$ 800$ payable at the end of each year for 5 years, a man buys such an annuity from an investment company. If the investment company allows 4% interest, converted annually, what sum does the man pay the company?
5. Solve Exercise 4, if the daughter is to receive $\$ 400$ at the end of each six months.
6. The beneficiary of a policy of insurance is offered a cash payment of $\$ 10,000$ or an annuity of $\$ 750$ for 20 ycars, the first payment to be made one year hence. Allowing interest at $31 / 2 \%$ converted annually, which is the better option?
7. A building is leased for a term of 10 years at an annual rental of $\$ 1,200$ payable annually at the end of the year. Assuming an interest rate of 5.2% what cash payment would care for the lease for the entire term of 10 ycars?
8. Show that the results of Examples 5, 6, and 7 of Art. 29 are the compound amounts of the results of Examples 1, 2, and 3 respectively of Art. 31.
9. An individual made a contract with an insurance company to pay his family an annual income of $\$ 4,000$, payable in quarterly installments at the end of each quarter for 25 years. He paid for the contract in full at the time of purchase. Assuming money worth 4%, what did it cost?
10. Find the cost of the above annuity, with the interest converted quarterly.
11. Fill out the following table for the present value of an annuity of $\$ 100$ per year for 10 years, interest at 4%.

Annuity Payable		Interest Convertible			
Annually			Qemi-annually		
Semi-annually					
Quarterly					

12. Solve Exercise 11, with the rate 5%.
13. Derive formulas (22) and (27) from (18) and (26) respectively by using the relation $(1+i)=(1+j / m)^{m}$.
14. How much money, if deposited with a trust company paying ($j=.04, m=2$), would be sufficient to provide a man with an income of $\$ 100$ a month for 25 years?
15. A house is sold "like paying rent" for $\$ 50$ a month for 12 years. What is the cash equivalent if money is worth 6% ?
16. A coal mine is estimated to yield $\$ 10,000$ a year for the next 12 years. The mine is for sale. What is the present value of the total yield of the mine on a 5% basis?
17. State problems for which the following would give the answers:

$$
\begin{aligned}
& \text { (a) } S=600 . s_{48 \mid .015} \cdot \frac{1}{s_{6 \mid .015}} \\
& \text { (b) } A=200 . a_{25 \mid .025} \cdot \frac{.025}{j_{2} \text { at } .025}
\end{aligned}
$$

18. A widow is to receive from a life insurance policy $\$ 50$ a month for 20 years. If money is worth 3%, what is a fair cash settlement?
19. A building and loan association accumulates its deposits at ($j=.06, m=2$). If a man makes monthly deposits of $\$ 35$ each for 10 years, what sum should he have to his credit at the end of this time?
20. A man is offered a piece of property for $\$ 10,000$. He wishes to make a cash payment and semi-annual payments of $\$ 500$ for 10 years. What should be the cash payment if the seller discounts future payments at ($j=.06, m=2$)?
21. Annuities due.-In the previous sections of this chapter, we have been concerned with ordinary annuities,-that is, annuities in which the payments were made at the ends of the payment periods. An annuity due is one in which the payments are made at the beginnings of the payment periods.

The term of an annuity due extends from the beginning of the first payment period to the end of the last payment period. That is, it extends for one payment period after the last payment has been made. The amount of the annuity due is the value of the annuity at the end of the last payment period, that is, at the end of the term. The present value of an annuity due is the value of the annuity at the beginning of the term, or at the time of the initial payment. The present value includes the initial payment.

To solve problems involving annuities due it is neither necessary nor desirable that we invent a number of new formulas*. We can always analyze an annuity due problem in terms of ordinary annuities. It is important, however, that the student have a clear picture of the problem.

* The symbols, $s_{\bar{n}}$ and $a_{\bar{n}}$, in black roman type are frequently used to represent the amount and the present value of an annuity due of 1 per year for n years.

We submit the following line diagrams to assist the student in clearly understanding the similarities and the differences between ordinary annuities and annuities due.

$\mathbf{A}^{\prime} \quad \mathbf{S}^{\prime}$

Example 1. $\$ 50$ is deposited in a savings bank now and a like amount every six months until 8 such deposits in all have been made. How much is on deposit 4 years from now, if money accumulates at 5% converted annually?

Solution. Consider the line diagram.

First method. The amount of the annuity, S, just after the last deposit (at $31 / 2$ years) is that of an ordinary annuity with $R=100, n=4$, $p=2, i=.05$. Using BI1, Art. 31, we find this amount to be

$$
\begin{aligned}
S & =\frac{100\left[(1.05)^{4}-1\right]}{2\left[(1.05)^{3 / 2}-1\right]} \\
& =100 . s_{\boxed{\mid 1.05}} \cdot \frac{.05}{j_{2} \text { at } .05} \\
& =100(4.31012500)(1.01234754) \\
& =436.3344 .
\end{aligned}
$$

Now evidently S^{\prime} is the value of S accumulated for $1 / 2$ a year. Hence

$$
\begin{aligned}
S^{\prime} & =S(1.05)^{3 / 2}=436.3344(1.02469508) \\
& =\$ 447.11
\end{aligned}
$$

Second method. If a deposit of $\$ 50$ had been made at the end of 4 years, the amount would have been that of an ordinary annuity with $R=100$, $n=41 / 2, p=2, i=.05$. Again using BI1, Art. 31, we find this amount to be

$$
S^{\prime \prime}=50 \cdot \frac{(1.05)^{9 / 2}-1}{(1.05)^{3 / 2}-1}
$$

It is clear that the amount just before such a deposit was made, which is the amount S^{\prime} that we are seeking, is

$$
\begin{aligned}
S^{\prime} & =S^{\prime \prime}-50=50 \cdot \frac{(1.05)^{9 / 2}-1}{(1.05)^{1 / 2}-1}-50 \\
& =(1.05)^{1 / 2} \cdot \frac{50\left[(1.05)^{4}-1\right]}{(1.05)^{1 / 2}-1}=(1.05)^{1 / 2} \cdot 100 \cdot s_{4} \overline{4} \cdot \frac{.05}{j_{2}} \\
& =\$ 447.11 .
\end{aligned}
$$

Example 2. Find the amount of an annuity due of annual rent $\$ 400$ payable in quarterly installments for 8 years at 6% converted annually.

We shall leave it as an exercise for the student to show that the first method leads to the solution

$$
\begin{aligned}
& S^{\prime}=400(1.06)^{3 / 4} \frac{(1.06)^{8}-1}{4\left[(1.06)^{1 / 2}-1\right]} \\
&=400(1.06)^{1 / 4} \frac{(1.06)^{8}-1}{0.06} \cdot \frac{0.06}{4\left[(1.06)^{1 / 4}-1\right]} \\
&=400(1.01467385)(9.89746791)(1.02222688) \\
&=\$ 4,106.36 . \\
& {[\text { Tables VIII, } \mathrm{V}, \mathrm{X}] }
\end{aligned}
$$

Example 3. Solve Example 2 with the interest converted quarterly. We shall leave it as an exercise for the student to show that the second method leads to the solution

$$
\begin{aligned}
S^{\prime} & =100\left[\frac{(1.015)^{33}-1}{0.015}-1\right]=100\left[s_{33 \mid .015}-1\right] \\
& =100(42.29861233-1) \quad[\text { Table V] } \\
& =\$ 4,129.86
\end{aligned}
$$

Example 4. Solve Example 2 with the interest converted semi-annually. The application of the first method leads to the solution

$$
\begin{aligned}
S^{\prime} & =400(1.03)^{3 / 36} \frac{(1.03)^{16}-1}{4\left[(1.03)^{3 / 2}-1\right]} \\
& =200(1.03)^{1 / 2} \frac{(1.03)^{16}-1}{0.03} \cdot \frac{0.03}{2\left[(1.03)^{1 / 2}-1\right]} \\
& =200(1.01488916)(20.1568813)(1.00744458) \\
& =\$ 4,120.85 . \quad \text { [Tables VIII, V, X] }
\end{aligned}
$$

Exercises

1. Set up a series for the accumulated values of the payments in Example 1 above, find the sum of the resulting geometric progression, and thus find S^{\prime}.
2. Do the same for Example 3 above.
3. A man dcposits $\$ 150$ in a savings bank on his twenty-fifth birthday and a like amount every six months. If the bank pays 3% interest convertible semi-annually, how much does he have on deposit on his sixtieth birthday?
4. Solve Exercise 3, with the interest converted quarterly.
5. A man, age 25 , pays $\$ 24.03$ a year in advance on a $\$ 1,000,20$-pay life policy. If he should die at the end of 12 years, just before paying the 13 th premium, how much would his estate be increased by having taken the insurance instead of having deposited the $\$ 24.03$ each year in a savings bank paying 4% effective?
6. An insurance premium of $\$ 48$ is payable at the beginning of each year for 20 years. If the insurance company accumulates these payments at 5% converted semi-annually, find the amount of the payments at the end of the 20th year.
7. Find the amount of an annuity due of $\$ 200$ a year payable in semi-annual installments for 7 years at 4% converted annually. Solve fundamentally as a geometrical progression.
8. Solve Exercise 7, with the interest converted quarterly.

We have defined the present value of an annuity due to be the value of the annuity at the time of the initial payment. Consider the examples:

Example 1. An individual is to receive $\$ 50$ cash and a like sum every six months until 8 such payments in all have been made. What is the cash value of the payments, if money is worth 5% converted annually?

Solution. We shall solve this example by two methods.
First method. The payments constitute an ordinary annuity whose term begins 6 months before the present and ends at $31 / 2$ years. Its term
is therefore 4 years. We have for this annuity $R=\$ 100, n=4, p=2$, $i=.05$. Using BI2, Art. 31, we find

$$
A=100 \frac{1-(1.05)^{-4}}{2\left[(1.05)^{1 / 2}-1\right]}
$$

Evidently A^{\prime}, the required present value, is the value A accumulated $1 / 2$ year at 5%. Hence

$$
\begin{aligned}
A^{\prime} & =(1.05)^{1 / 2}(100)\left[\frac{1-(1.05)^{-4}}{0.05}\right]\left[\frac{0.05}{2\left[(1.05)^{1 / 2}-1\right]}\right] \\
& =100(1.02469508)(3.54595050)(1.01234754) \\
& =\$ 367.84 . \quad[\text { Tables VI, VIII, and X] }
\end{aligned}
$$

Second Method. If we disregard the first payment, the remaining 7 payments constitute an ordinary annuity whose term begins now. The value at 0 of this annuity is the present value of an ordinary annuity with $R=100, n=31 / 2, p=2, i=.05$. Using $B \mathrm{I} 2$, Art. 31, the value at 0 is

$$
A^{\prime \prime}=50 \cdot \frac{1-(1.05)^{-7 / 2}}{(1.05)^{3 / 2}-1}
$$

Hence

$$
\begin{aligned}
& A^{\prime}=A^{\prime \prime}+50=(1.05)^{3 / 2}(100)\left[\frac{1-(1.05)^{-4}}{0.05}\right]\left[\frac{0.05}{2\left[(1.05)^{1 / 2}-1\right]}\right] \\
&=100(1.02469508)(3.54595050)(1.01234754) \\
&=\$ 367.84 . \\
& \text { [Tables VI, VIII, and X] }
\end{aligned}
$$

Example 2. Find the present value of an annuity due of $\$ 600$ per year paid in quarterly installments for 8 years, if the interest rate is 5% converted semi-annually.

We shall leave it an exercise for the reader to show that the first method leads to the solution

$$
\begin{aligned}
& A^{\prime}=600(1.025)^{1 / 2} \frac{1-(1.025)^{-16}}{4\left[(1.025)^{1 / 2}-1\right]} \\
&=300(1.025)^{1 / 2} \frac{1-(1.025)^{-16}}{2\left[(1.025)^{1 / 2}-1\right]} \\
&=300(1.025)^{1 / 2} \frac{1-(1.025)^{-16}}{0.025} \cdot \frac{0.025}{2\left[(1.025)^{1 / 2}-1\right]} \\
&=300(1.01242284)(13.05500266)(1.00621142) \\
&=\$ 3,989.78 . \\
& \text { [Tables VI, VIII, and X] }
\end{aligned}
$$

Example 3. Solve Example 2 with the interest converted quarterly.
We leave it an exercise for the reader to show that the second method leads to the solution

$$
\begin{aligned}
A^{\prime} & =150\left[1+\frac{1-(1.0125)^{-31}}{0.0125}\right]=150\left[1+a_{31.0125}\right] \\
& =150(1+25.56929010) \quad[\text { Table VI }] \\
& =150(26.56929010)=\$ 3,985.39 .
\end{aligned}
$$

Example 4. Find the present value of an annuity due of $\$ 600$ per year paid in semi-annual installments for 8 ycars if the interest rate is 5% convertible quarterly.

An application of the first method leads to the solution

$$
\begin{aligned}
A^{\prime} & =300(1.0125)^{2} \cdot \frac{1-(1.0125)^{-32}}{(1.0125)^{2}-1} \\
& =300(1.0125)^{2} \cdot a \overline{32 \mid} \cdot \frac{1}{s_{21}} \text { at } .0125 \\
& =\$ 4,010.15 . \quad \text { [Tables III, VI and VII] } \\
& \text { Exercises }
\end{aligned}
$$

1. Set up a series for the present value of the payments in Example 1 above, find the sum of the resulting series, and thus find A^{\prime}.
2. Do the same for Example 3 above.
3. A man leases a building for 4 years at a rental of $\$ 100$ a month payable in advance. Find the equivalent cash payment, if money is worth 5%.
4. A man pays $\$ 500$ eash and $\$ 500$ annually thereafter until 10 payments have been made on a house. Assuming money worth 6% converted semi-annually, what is the equivalent cash price?
5. An insurance policy provides that at the death of the insured the beneficiary is to receive $\$ 1,200$ per year for 10 years, the first payment being made at once. Assuming that money is worth $31 / 2 \%$, what is the value of a policy that will provide such a settlement?
6. Allowing interest at 5%, converted quarterly, what is the present cash value of a rental of $\$ 2,000$ per year, payable quarterly in advance for a period of 15 years?
7. Solve Exercise 6, with the payments made semi-annually.
8. A man deposits $\$ 30$ at the beginning of each month in a bank which pays 3% interest converted semi-annually. He makes these deposits for 120 months. What amount does he have to his credit at the end of the time.
9. Prove that $\mathrm{a}_{\boldsymbol{n}}=1+a_{\bar{n}-1}$.
10. Prove that $s_{n}=\left(1+i s_{\boldsymbol{s}_{\boldsymbol{n}}}=s_{\bar{n}+1}-1\right.$.
11. Deferred annuities.-A deferred annuity is one whose payments are to begin at the end of an assigned number of years or periods. When we say that an annuity is deferred m payment periods, we mean that the annuity is "entered upon" at the end of m payment periods and that the first payment is made at the end of $(m+1)$ payment periods. The m periods constitute the period of deferment.

The amount of a deferred annuity is the value of the annuity immediately after the last payment. The present value of a deferred annuity is the value of the annuity at the beginning of the period of deferment.

The following line diagram emphasizes the characteristics of a deferred annuity that continues t payment periods after being deferred m payment periods.

To solve problems involving deferred annuities, it is neither necessary nor desirable that we invent a number of new formulas.* Problems involving deferred annuities can always be analyzed in terms of ordinary annuities. We shall illustrate the methods of solution by a few examples.

Example 1. A young man is to receive $\$ 500$ at the end of 6 years and a like sum each year thereafter until he has received 10 payments in all. Assuming money worth 4% converted annually what is the present value of his future income?

We shall solve this problem by two methods.
Solution. First method. Consider the line diagram.

The value of the annuity at the end of 5 years is evidently

$$
A=500 . \frac{1-(1.04)^{-10}}{0.04}=500 \cdot a_{\overline{10} \mid .04}
$$

*The symbols $m \mid s_{\boldsymbol{n} \mid}$ and $m\left|a_{\boldsymbol{n}}\right|$ are frequently used to represent the amount and the present value of an annuity of 1 per year for n years deferred m years.

The value at 0 , which is the value we are seeking, is A discounted 5 years at 4%. Hence,

$$
\begin{aligned}
A^{\prime} & =(1.04)^{-5} A \\
& =(1.04)^{-5}\left[500 \frac{1-(1.04)^{-10}}{0.04}\right]=(1.04)^{-5} \cdot 500 \cdot a_{10.04} \\
& =500(0.82192711)(8.11089578) \quad \text { [Tables IV and VI] } \\
& =\$ 3,333.28 .
\end{aligned}
$$

Solution. Second method.
Imagine $\$ 500$ paid at the end of each year for the first five years. These payments together with the 10 given payments constitute an ordinary annuity of $\$ 500$ a year for 15 years. Its value at 0 is $500 . a_{\text {i5.04 }}$. Now, if we subtract the value at 0 of the five imaginary payments, namely $500 a_{5.04}$, we have

$$
\begin{aligned}
A^{\prime} & =500 a_{15.04}-500 a_{5 . .04}=500\left[a_{i 51.04}-a_{55.04}\right] \\
& =500(11.11838743-4.45182233) \quad \text { [Table VI }] \\
& =\$ 3,333.28
\end{aligned}
$$

The second method is much simpler from the standpoint of computation. The student, however, should become skilled in the use of both methods.

Example 2. Find the present value of an annuity of $\$ 600$ per year paid in quarterly installments for 8 years but deferred 5 years, assuming money worth 5% converted semi-annually.

Solution. We leave it as an exercise for the reader to show that the first method leads to

$$
\begin{aligned}
& A^{\prime}=600(1.025)^{-10} \frac{1-(1.025)^{-16}}{4\left[(1.025)^{3 / 4}-1\right]} \\
&=300(1.025)^{-10} \frac{1-(1.025)^{-16}}{0.025} \cdot \frac{0.025}{2\left[(1.025)^{1 / 2}-1\right]} \\
&=300(0.78119840)(13.05500266)(1.00621142) \\
&=\$ 3,078.57 . \\
& \text { [Tables IV, VI and X] }
\end{aligned}
$$

Example 3. Solve Example 2 with the interest converted quarterly.
Solution. We shall leave it as an exercise for the reader to show that the second method leads to

$$
\begin{aligned}
A^{\prime} & =150\left[\frac{1-(1.0125)^{-52}}{0.0125}-\frac{1-(1.0125)^{-20}}{0.0125}\right] \\
& =150\left[a_{\overline{51} 1.0125}-a_{\overline{20} \mid .0125}\right] \\
& =150(38.06773431-17.59931613) \quad \text { [Table VI] } \\
& =150(20.46841818)=\$ 3,070.26 .
\end{aligned}
$$

Example 4. Find the present value of an annuity of $\$ 600$ a year paid in semi-annual installments for 8 years but deferred 5 years, assuming money is worth ($j=.05, m=4$).

Solution. We leave it as an exercise for the reader to show that the first method leads to

$$
\begin{aligned}
A^{\prime} & =600(1.0125)^{-20} \frac{1-(1.0125)^{-32}}{2\left[(1.0125)^{4 / 2}-1\right]} \\
& =300(1.0125)^{-20} \frac{1-(1.0125)^{-32}}{(1.0125)^{2}-1} \\
& =\frac{300(0.78000855)(1-0.67198407)}{1.02515625-1} \quad \text { [Tables III and IV] } \\
& =\frac{300(0.78000855)(0.32801593)}{0.02515625}=\$ 3,051.19
\end{aligned}
$$

Remark 1. It will be noted that we have given no examples that involve finding the amount of a deferred annuity. The amount of a deferred annuity is obviously the amount of an ordinary annuity to which we have already given much attention.

Remark 2. The second method for evaluating the present value of a deferred annuity is preferable when $m=p$.

Exercises

1. If money is worth ($j=.04, m=2$), find the present value of an annuity of $\$ 1,000$ a year, the first payment being due at the end of 8 years and the last at the end of 17 years.
2. Find the present value of an annuity of $\$ 1,000$ per year, payable in semi-annual installments, for 9 years but deferred 5 years assuming money worth 4% converted semi-annually. Solve by two methods.
3. Solve Exercise 2, with the interest converted annually.
4. Find the present value of an annuity of $\$ 800$ per annum paid in quarterly installments for 14 years, deferred 6 years, if money is worth 5% converted annually.
5. Solve Exercise 4, with the interest converted (a) semi-annually, (b) quarterly.
6. A will provides that a son, aged 15 years, is to receive $\$ 1,000$ when he reaches 25 and a like sum each year until he has received 15 payments in all. Assuming money worth 4% converted annually, what would be the inheritance tax of 5% on the son's share?
7. A geologist estimates that an oil well will produce a net annual income of $\$ 50,000$ for 10 years. Due to litigations the first income will not be available until the end of 4 years, but will come in at the end of each year thereafter until 10 full payments have been made. Assuming money worth $51 / 2 \%$, what is the present value of the well?
8. What sum should be set aside now to assure a person an income of $\$ 150$ at the end of each month for 20 years, if the income is deferred for 12 years, assuming money worth $41 / 2 \%$ converted semi-annually?
9. A man offers to sell his farm for $\$ 15,000$ cash or $\$ 7,500$ cash and $\$ 2,500$ annually for 4 years, the first annual payment to be made at the end of 5 years. Assuming money worth 6%, what is the cash difference between the two offers?
10. What sum of money should a man set aside at the birth of his son in order to provide $\$ 1,000$ a year for 4 years to take care of the son's education, if the first installment is to be paid in 18 years? Assume 4% interest.
11. Prove: $m \mid a_{\bar{n} \mid \boldsymbol{q}}=(1+i)^{-m} a_{\bar{n} \mid \boldsymbol{s}}$.
12. Prove: $m \mid a_{\bar{n} \mid \boldsymbol{1}}=a_{\overline{m+n \mid}}-a_{\bar{m} \mid \boldsymbol{1}}$.
13. Finding the interest rate of an annuity.-We may find the approximate interest rate of an annuity by the method of interpolation. This method will be sufficiently accurate for all practical purposes.

Example 1. At what rate, converted quarterly, will an annuity of $\$ 100$ per quarter amount to $\$ 5,100$ in 10 years?

Solution. Here, $R=\$ 400, m=p=4, n=10$, and $S=\$ 5,100$. Substituting in BII1, Art. 31, we have

$$
5,100=100 \frac{\left(1+\frac{j}{4}\right)^{40}-1}{\frac{j}{4}}=100 s_{40 \frac{1}{4}}
$$

Then $s_{400 \frac{j}{4}}=51.0000$. We now turn to Table V and follow $n=40$ until we come to a value just less than 51.0000 and one just greater than 51.0000 . We find the value 50.1668 corresponding to $11 / 8 \%$ and the
value 51.4896 corresponding to $11 / 4 \%$. Hence, the rate $j / 4$ lies between $11 / 8 \%$ and $11 / 4 \%$. Interpolating, we have

$$
.00125\left\{\begin{array}{l}
s_{\overline{40 \mid} .0125}=51.4896 \\
x\left\{_{s_{\overline{40 \mid} .01125}}^{s_{\overline{40} \left\lvert\, \frac{J}{4}\right.}}=50.1668\right.
\end{array}\right\} .8332 .00001 .3228
$$

$$
\frac{x}{.00125}=\frac{0.8332}{1.3228}, \quad x=0.00079
$$

$$
\frac{j}{4}=0.01125+0.00079=0.01204
$$

And

$$
j=0.04816=4.816 \% \text { (approximately })
$$

This result may be checked by logarithms. We have

$$
S=100 \frac{(1.01204)^{40}-1}{0.01204}
$$

$$
\begin{aligned}
\log 1.01204 & =0.0051977 \quad \text { (Table II) } \\
40 \log 1.01204 & =0.2079080 \\
(1.01204)^{40} & =1.6140 \quad \text { (Table I) }
\end{aligned}
$$

And

$$
\begin{aligned}
S & =100 \frac{(1.6140-1)}{0.01204} \\
& =\frac{61.40}{0.01204}=\$ 5,099.67
\end{aligned}
$$

This result is only 33 cents less than the $\$ 5,100$ and the rate 4.816% is accurate enough. If 7 place logarithms had been uscd to find the antilogarithm of 0.2079080 , our result would have been $\$ 5,099.80$ which differs from the $\$ 5,100.00$ by only 20 cents.

Example 2. The present value of an annuity of $\$ 400$ per annum for 20 years is $\$ 5,000$. Find the interest rate.

Solution. Here, $R=\$ 400, m=p=1, n=20$, and $A=\$ 5,000$. Substituting AI2, Art. 31, we have

$$
5,000=400 \frac{1-(1+i)^{-20}}{i}=400 a_{2 \overline{20}}
$$

Then $\quad a_{20 \mid}=12.5000$.
We now turn to Table VI and follow $n=20$, until we come to a value just greater than 12.5000 and one just less than 12.5000 . We find the value
13.0079 corresponding to $41 / 2 \%$ and 12.4622 corresponding to 5%. Hence, the rate i lies between $4 \frac{1}{2} \%$ and 5%.

Therefore,

$$
\begin{aligned}
i & =0.045+\frac{0.5079}{0.5457}(0.005) \\
& =0.045+0.00465 \\
& =0.04965=4.97 \% \text { (approximately). }
\end{aligned}
$$

Example 3. A house is priced at $\$ 2,500$ cash or for $\$ 50$ a month in advance of 60 months. What is the effective rate of interest charged in the installment plan?

Solution. We have here an annuity due of 60 periods. Let us assume for convenience that the nominal rate is j converted 12 times a year. Then, $m=p=12, R=\$ 600$, and $A^{\prime}=\$ 2,500$. Substituting in BII2, Art. 31, we find

$$
\begin{aligned}
2,500 & =50\left(1+\frac{1-\left(1+\frac{j}{12}\right)^{-59}}{\frac{j}{12}}\right) \\
& =50\left(1+a_{59}\right) .
\end{aligned}
$$

Then

$$
a_{591}=49.0000
$$

Turning to Table VI, we find that when

$$
\frac{j}{12}=\frac{7}{12} \%, \quad a_{\text {59 }}=49.7968 ;
$$

when

$$
\frac{j}{12}=\frac{3}{4} \%, \quad a_{591}=47.5347
$$

Therefore, $\quad \frac{j}{12}=0.00583+\frac{49.7968-49.0000}{49.7968-47.5347}(0.00167)$

$$
=0.00583+0.00059=0.00642
$$

And

$$
j=0.07704=7.704 \% . \quad \text { (Approximate nominal rate })
$$

Checking by logarithms as in Example 1, we find

$$
A^{\prime}=\$ 2,499.14
$$

which is 86 cents less than the $\$ 2,500.00$.

To find the effective rate, we have

Therefore,

$$
\begin{aligned}
(1+i)= & (1.00642)^{12} \quad(4) \text { Art. } 16 . \\
\log 1.00642 & =0.0027792 \\
12 \log 1.00642 & =0.0333504 \\
(1.00642)^{12} & =1.07982=(1+i) \\
i & =0.07982=7.982 \%
\end{aligned}
$$

Exercises

1. At what rate of interest will an annuity of $\$ 500$ a year amount to $\$ 25,000$ in 25 years?
2. A house is offered for salc for $\$ 6,000$ cash or $\$ 1,000$ at the end of each year for the next 8 years. If the installment plan is used, what rate of interest is charged?
3. The cash price of an automobile is $\$ 1,150$. A man is allowed $\$ 525$ on his old car as a down payment. To care for the balance he pays $\$ 57.20$ at the end of each month for 12 months. What rate of interest is charged? Use simple interest. [See p. 34.]
4. A man deposits $\$ 9,500$ with a trust company now with the guarantee that he (or his heirs) is to receive $\$ 1,000$ each year for 25 years, the first $\$ 1,000$ to be paid at the end of 10 years. What effective rate of interest is the man allowed on his money?
5. The term of an annuity.-We illustrate by examples the method of finding the term of an annuity.

Example 1. In how many years will an annuity of $\$ 400$ per year amount to $\$ 9,500$, if the interest rate is $31 / 2 \%$ converted annually?

Solution. Here, $R=\$ 400, S=\$ 9,500$, and $i=0.035$. Substituting in AI1, Art. 31, we have

$$
9,500=400 \frac{(1.035)^{n}-1}{0.035}=400 s_{s_{n}} .
$$

And

$$
s_{\bar{n} \mid}=9,500 \div 400=23.7500
$$

We now turn to Table V and follow down the $31 / 2 \%$ column. We notice that when

$$
\begin{array}{ll}
n=17, & s_{\bar{n} \mid}=22.7050 \\
n=18, & s_{\bar{n} \mid}=24.4997 .
\end{array}
$$

It is evident that 18 payments of $\$ 400$ will amount to more than $\$ 9,500$. In fact, it will amount to $\$ 9,799.88$, which is $\$ 299.88$ more than is needed. Hence, $\$ 400$ per year for 17 years and

$$
\$ 100.12,(\$ 400.00-\$ 299.88)
$$

at the end of 18 years will amount to exactly $\$ 9,500$.

Example 2. An individual buys a house for $\$ 5,000$ paying $\$ 1,000$ in cash. He agrees to pay the balance in installments of $\$ 500$ at the end of each year. How long will it take to pay the $\$ 4,000$ and interest at 6% converted annually?

Solution. Here, $A=\$ 4,000, R=\$ 500, m=p=1$, and $i=0.06$. Substituting in AI2, Art. 31, we have

$$
4,000=500 \frac{1-(1.06)^{-n}}{0.06}=500 a_{n} .
$$

And

$$
a_{\text {П }}=8.0000 .
$$

We now turn to Table VI and follow down the 6% column. We notice that when

$$
\begin{aligned}
& n=11, a_{\bar{n}]}=7.8869 \\
& n=12, a_{\bar{n}]}=8.3838
\end{aligned}
$$

Hence, the present value of 11 payments is less than $\$ 4,000$ and the present value of 12 payments is more than $\$ 4,000$. Then, it is evident that the debtor must make 11 full payments of $\$ 500$ each and a 12th payment, at the end of 12 years, which is less than $\$ 500$.

If no payments were made, the original principal of $\$ 4,000$ would accumulate in 11 years to

$$
4,000(1.06)^{11}=4,000(1.89829856)=\$ 7,593.19 .
$$

However, if payments of $\$ 500$ are made regularly for 11 years, they will accumulate to

$$
500 \frac{(1.06)^{11}-1}{0.06}=500(14.97164264)=\$ 7,485.82
$$

Hence, just after the 11th payment, the balance on the principal is $\$ 7,593.19-\$ 7,485.82=\$ 107.37$. That is, the debt could be cancelled by making an additional payment of $\$ 107.37$ along with the 11th regular payment. However, if the balance is not to be paid until the end of the 12th year, the payment would be $\$ 107.37$ plus interest on it for 1 year at 6%, or $\$ 107.37+\$ 6.44=\$ 113.81$. Then, 11 payments of $\$ 500$ and a partial payment of $\$ 113.81$ made at the end of 12 years will settle the debt.

Exercises

1. In how many years will an annuity of $\$ 750$ amount to $\$ 10,000$ if interest is at $61 / 2 \%$? Solve by interpolation.
2. Solve formula AI1, Art. 31, for n.

$$
n=\frac{\log (i S+R)-\log R}{\log (1+i)}
$$

3. Solve Exercise 1 by the formula given in Exercise 2.
4. A man borrows $\$ 3,000$ and desires to repay principal and interest in installments of $\$ 400$ at the end of each year. Find the number of full payments necessary and the size of the partial payment, if it is made 1 year after the last full payment is made, assurning an interest rate of 5%.
5. A man deposits $\$ 15,000$ in a trust fund with the agreement that he is to receive $\$ 2,000$ a year, beginning at the end of 10 years, until the fund is exhausted. If the trust company allows him 4% interest on his deposits, how many full payments of $\$ 2,000$ will be paid and what will be the fractional payment paid at the end of the next year?
6. Finding the periodic payment.-In the early sections of this chapter we solved the problems of finding the amount and the present value of an annuity under given conditions when the periodic payment was known. Our results were summarized in Art. 31.

We are now about to attack the inverse problem, that of finding the periodic payment under given conditions, when the amount or the present value of the annuity is known. The solution requires no new formulas. We must merely solve the equations of Art. 31 for R or R / p according as the annuity is payable annually or p times a year. Consider the following examples.

Example 1. A man buys a house for $\$ 6,000$ and pays $\$ 1,000$ in cash. The remainder with interest is to be paid in 40 equal quarterly payments, the first payment being due at the end of three months. Find the quarterly payment if the interest rate is 6% converted annually.

Solution. Here, $A=\$ 5,000, n=10, p=4, i=0.06$. Substituting in Art. 31, BI2, and solving for R, we have

$$
\begin{aligned}
R & =5,000 \frac{4\left[(1.06)^{1 / 4}-1\right]}{1-(1.06)^{-10}} \\
& =\frac{5,000(0.05869538)}{1-0.55839478} \quad \text { [Tables IV and IX] } \\
& =\$ 664.57, \text { annual payment. }
\end{aligned}
$$

Then,

$$
\frac{R}{4}=\$ 166.14, \text { quarterly payment. }
$$

Example 2. Solve Example 1, with the interest converted semiannually.

Solution. Using BII2, Art. 31, we have

$$
\begin{aligned}
R & =5,000 \frac{4\left[(1.03)^{1 / 2}-1\right]}{1-(1.03)^{-20}} \\
& =\frac{10,0002\left[(1.03)^{1 / 2}-1\right]}{1-(1.03)^{-20}} \\
R & =\frac{10,000(0.02977831)}{1-0.55367575} \quad \text { [Tables IV and IX] } \\
& =\frac{10,000(0.02977831)}{0.44632425}=\$ 667.19
\end{aligned}
$$

Then,

$$
\frac{R}{4}=\$ 166.80, \text { quarterly payment. }
$$

Example 3. Solve Example 1, with the interest converted quarterly.
Solution. Here, $m=p=4$, and BII2, Art. 31 gives us

$$
\begin{aligned}
\frac{R}{4} & =5,000 \frac{0.015}{1-(1.015)^{-40}}=5,000 \cdot \frac{1}{a_{400 \cdot 015}} \\
& =5,000(0.03342710) \quad \text { [Table VII] } \\
& =\$ 167.14, \text { quarterly payment. }
\end{aligned}
$$

Example 4. How much must be set aside semi-annually so as to have $\$ 10,000$ at the end of 10 years, interest being at the rate of 5% converted annually?

Solution. Here, $S=\$ 10,000, n=10, p=2, i=0.05$. Substituting in BI1, Art. 31, we have

$$
\begin{aligned}
R & =10,000 \frac{2\left[(1.05)^{1 / 2}-1\right]}{(1.05)^{10}-1} \\
& =\frac{10,000(0.04939015)}{1.62889463-1} \quad[\text { Tables III and IX] } \\
& =\$ 785.35, \text { annual payment. }
\end{aligned}
$$

Then,

$$
\frac{R}{2}=\$ 392.67, \text { semi-annual payment }
$$

Example 5. Solve Example 4, with the interest converted semiannually.

Solution. Here, $m=p=2$, the other conditions being the same as in Example 4. Substituting in BII1, Art. 31, we have

$$
\begin{aligned}
\frac{R}{2} & =10,000 \frac{0.025}{(1.025)^{20}-1}=10,000 \cdot \frac{1}{s_{200} \cdot 025} \\
& =10,000(0.06414713-0.025) \quad[\text { Table VII }] \\
& =10,000(0.03914713)=\$ 391.47
\end{aligned}
$$

Example 6. Solve Example 4, with the interest converted quarterly.
Solution. Here, $m=4$, the other conditions being the same as in Example 4. Substituting in BII1, Art. 31, we have

$$
\begin{aligned}
R & =10,000 \frac{2\left[(1.0125)^{4 / 2}-1\right.}{(1.0125)^{40}-1} \\
& =20,000 \frac{(1.0125)^{2}-1}{0.0125} \cdot \frac{0.0125}{(1.0125)^{40}-1} \\
& =20,000(2.01250000)(0.01942141) \quad \text { [Tables V and VII] } \\
& =\$ 781.71, \text { annual rent. }
\end{aligned}
$$

Then, $\quad \frac{R}{2}=\$ 390.86$, semi-annual payment.

Exercises

1. A man buys a farm for $\$ 10,000$. He pays $\$ 5,000$ cash and arranges to pay the balance with 5% interest converted semi-annually, by making equal payments at the end of each six months for 14 years. How much is the semi-annual payment?
2. How much must be set aside annually to accumulate to $\$ 5,000$ in 8 years, if money is worth $41 / 2 \%$ converted semi-annually?
3. Solve Exercise 2, with the interest converted (a) annually, (b) quarterly.
4. In order to finance a school building costing $\$ 100,000$ a city issues 20 -year bonds which pay 5% interest, payable semi-annually. How much must be deposited, at the end of each six months, in a sinking fund which accumulates at $41 / 2 \%$ converted semiannually, if the bonds are to be redcemed in full at the end of 20 years? What total semi-annual payment is necessary to pay the interest on the bonds and make the sinking fund payment?
5. Solve Exercise 4, with the interest on the sinking fund converted quarterly.
6. At the maturity of a $\$ 20,000$ endowment policy, the policyholder may take the full amount in cash or leave the full amount with the insurance company to be paid to him in 40 equal quarterly payments, the first payment to be made at the end of three months. If 4% interest, converted quarterly, is allowed on all money left with the company, how much is the quarterly payment?
7. A building is priced at $\$ 25,000$ cash. The owner agrees to accept $\$ 5,000$ cash and the balance, principal and interest, in equal annual payments for 15 years. If the interest rate is 7% effective, what is the annual payment?
8. Solve Exercise 7, with the interest converted quarterly.
9. Perpetuities and capitalized cost.-An annuity whose payments continue forever is defined as a perpetuity. It is evident that the amount of such an annuity increases indefinitely, but the present value is definite. The symbol A_{∞}, will denote the present value of a perpetuity of R dollars per annum, payable annually.

It is evident that the interest on A_{∞} for one year at nominal rate (j, m) must equal R.

Hence,

$$
A_{\infty}\left(1+\frac{j}{m}\right)^{m}-A_{\infty}=R
$$

and

$$
A_{\infty}=\frac{R}{\left(1+\frac{j}{m}\right)^{m}-1},
$$

or

$$
\begin{equation*}
A_{\infty}=\frac{R}{\frac{j}{m}} \cdot \frac{\bar{m}}{\left(1+\frac{j}{m}\right)^{m}-1}=\frac{R m}{j} \cdot \frac{1}{s_{m \left\lvert\, \frac{j}{m}\right.}^{j}} \tag{29}
\end{equation*}
$$

When $m=1, j=i$, and (29) reduces to

$$
\begin{equation*}
A_{\infty}=\frac{R}{i} \tag{29'}
\end{equation*}
$$

Example 1. Find the present value of a perpetuity of $\$ 500$ per annum, if money is worth 4% converted annually.

Solution. Here, $R=\$ 500, i=0.04$.

Then,

$$
A_{\infty}=\frac{500}{0.04}=\$ 12,500 . \quad\left[\text { Formula }\left(29^{\prime}\right)\right]
$$

Example 2. Solve Example 1, with the interest converted quarterly.

Solution. Here, $R=\$ 500, j=0.04$, and $m=4$. Substituting in (29), we have

$$
\begin{aligned}
A_{\infty}= & \frac{500}{0.01} \cdot \frac{0.01}{(1.01)^{4}-1}=50,000 \frac{0.01}{(1.01)^{4}-1}=50,000 \cdot \frac{1}{S_{4 \mid .01}} \\
& =50,000(0.24628109) \quad[\text { Table VII }] \\
& =\$ 12,314.05 .
\end{aligned}
$$

There are times when a perpetuity must provide for payments at intervals longer than a conversion period. The symbol $A_{\infty, r}$, will denote the present value of a perpetuity of C dollars payable every r years.

It is evident that the compound interest on $A_{\infty, r}$, for r years at rate j converted m times a year must equal C.

Hence,

$$
A_{\infty, r}\left(1+\frac{j}{m}\right)^{m r}-A_{\infty, r}=C
$$

and

$$
A_{\infty, r}=\frac{C}{\left(1+\frac{j}{m}\right)^{m r}-1}
$$

or

$$
\begin{equation*}
A_{\infty, r}=\frac{C}{\frac{j}{m}} \cdot \frac{\frac{j}{m}}{\left(1+\frac{j}{m}\right)^{m r}-1}=\frac{C m}{J} \cdot \frac{1}{s_{\overline{m r} \left\lvert\, \frac{j}{m}\right.}} . \tag{30}
\end{equation*}
$$

If $m=1, j=i$, and

$$
A_{\infty, r}=\frac{C}{i} \cdot \frac{1}{s_{\bar{\eta} \mid}}
$$

Example 3. What is the present value of a perpetuity of $\$ 2,000$ payable cvery 4 years, if moncy is worth 5% converted annually?

Solution. Here, $C=\$ 2,000, r=4, i=0.05$. Substituting in (30^{\prime}), we have

$$
\begin{aligned}
A_{\infty, 4} & =\frac{2,000}{0.05} \cdot \frac{0.05}{(1.05)^{4}-1}=40,000 \cdot \frac{1}{s_{\text {IT.05 }}} \\
& =40,000(0.23201183) \quad[\text { Table VII }] \\
& =\$ 9,280.47 .
\end{aligned}
$$

Example 4. Solve Example 3, with the interest converted semiannually.

Solution. Here, $C=\$ 2,000, j=0.05, m=2$, and $r=4$. We have

$$
\begin{aligned}
A_{\infty, 4} & =\frac{2,000}{0.025} \cdot \frac{0.025}{(1.025)^{8}-1} \quad[\text { Formula (30)] } \\
& =80,000 \frac{0.025}{(1.025)^{8}-1}=80,000 \cdot \frac{1}{s_{81.025}} \\
& =80,000(0.11446735)=\$ 9,158.39 . \quad \text { [Table VII] }]
\end{aligned}
$$

Example 5. A section of city pavement costs $\$ 50,000$. Its life is 25 years. Find the amount of money required to build it now and to replace it every 25 years, indefinitely, if money is worth 4% converted annually.

Solution. It is evident that the amount required to replace the pavement indefinitely is the present value of a perpetuity of $\$ 50,000$ payable every 25 years at 4%.

$$
\begin{aligned}
\therefore A_{\infty, 25} & =\frac{50,000}{0.04} \cdot \frac{0.04}{(1.04)^{25}-1} \quad\left[\text { Formula }\left(30^{\prime}\right)\right] \\
& =1,250,000(0.02401196) \quad[\text { Table } \mathrm{VII}] \\
& =\$ 30,014.95 .
\end{aligned}
$$

Hence, the amount required to build the pavement plus the amount to replace it indefinitely equals

$$
\$ 50,000+\$ 30,014.95=\$ 80,014.95
$$

This amount is called the capitalized cost. That is, the capitalized cost is the first cost plus the present value of a perpetuity required to renew the project indefinitely.

If we let K stand for the capitalized cost of an article whose first cost is C, and which must be renewed every r years at the cost C, we have

$$
\begin{align*}
K & =C+\frac{C}{\frac{j}{m}} \cdot \frac{\frac{j}{m}}{\left(1+\frac{j}{m}\right)^{m r}-1} \\
& =C+\frac{C}{\left(1+\frac{j}{m}\right)^{m r}-1}=C \frac{\left(1+\frac{j}{m}\right)^{m r}}{\left(1+\frac{j}{m}\right)^{m r}-1} \\
& =\frac{C}{\frac{j}{m}} \cdot \frac{C m}{1-\left(1+\frac{j}{m}\right)^{-m r}}=\frac{1}{j} \cdot \frac{1}{a_{m r \mid}^{\frac{j}{m}}} \cdot \tag{31}
\end{align*}
$$

If $m=1, j=i$,
then

$$
\begin{equation*}
K=\frac{C}{i} \cdot \frac{1}{a_{\bar{\eta} t}} \tag{31'}
\end{equation*}
$$

Example 6. An automobile costs $\$ 1,000$ and will last 7 years when it must be replaced at the same cost. Another automobile, which would serve the same purpose and would last 10 years, could be purchased. What could one afford to pay for the second automobile if it is to be as economical in the long run as the first, assuming money worth 5% ?
'Solution. When somebody says that a certain article is just as economical (cheap) in the long run as another article, he simply means that the two articles have the same capitalized cost.

The first automobile has a capitalized cost of

$$
\frac{1,000}{0.05} \cdot \frac{0.05}{1-(1.05)^{-7}} \cdot \quad\left[\text { Formula }\left(31^{\prime}\right)\right]
$$

If we let x stand for the cost of the second automobile, it will have a capitalized cost of

$$
\frac{x}{0.05} \cdot \frac{0.05}{1-(1.05)^{-10}} \cdot \quad\left[\text { Formula }\left(31^{\prime}\right)\right]
$$

Assuming that the two automobiles are equally ceonomical, we have
and

$$
\begin{aligned}
\frac{x}{0.05} & \cdot \frac{0.05}{1-(1.05)^{-10}}=\frac{1,000}{0.05} \cdot \frac{0.05}{1-(1.05)^{-7}} \\
x & =1,000 \frac{1-(1.05)^{-10}}{0.05} \cdot \frac{0.05}{1-(1.05)^{-7}} \\
& =1,000(7.72173493)(0.17281982) \quad \text { [Tables VI, VII] } \\
& =\$ 1,334.47 .
\end{aligned}
$$

That is, onc can afford to pay $\$ 1,334.47$ for the automobile that lasts 10 years, or $\$ 334.47$ more, for the additional 3 years of service.

We shall now find the additional cost w required to increase the life of a given article x years assuming money worth $i \%$.

Let $C=$ original cost of an article to last n years. Its capitalized cost is

$$
\frac{C}{i} \cdot \frac{i}{1-(1+i)^{-n}} .
$$

Let $C+w=$ cost of an article to last $n+x$ years. Its capitalized cost is

$$
\frac{C+w}{i} \cdot \frac{i}{1-(1+i)^{-(n+x)}}
$$

Equating capitalized costs, we have

$$
\frac{C+w}{i} \cdot \frac{i}{1-(1+i)^{-(n+x)}}=\frac{C}{i} \cdot \frac{i}{1-(1+i)^{-n}} .
$$

The student may solve the above equation for w and get

$$
\begin{align*}
w & =C \frac{i}{(1+i)^{x}-1} \cdot \frac{1-(1+i)^{-x}}{i} . \\
& =C \frac{a_{\bar{x} \mid \boldsymbol{4}}}{s_{\bar{n} \mid \boldsymbol{i}}} \tag{32}
\end{align*}
$$

If the interest rate is j converted m times per year, (32) may be written

$$
\begin{equation*}
w=C \frac{\frac{j}{m}}{\left(1+\frac{j}{m}\right)^{m n}-1} \cdot \frac{1-\left(1+\frac{j}{m}\right)^{-m x}}{\frac{j}{m}} \tag{32'}
\end{equation*}
$$

Example 7. A cross tie costs $\$ 1.00$ and will last 10 years. The life of the tic can be extended to 18 years by treating with creosote. If money is worth 5%, how much could one afford to spend for the treatment?

Solution. Here, $C=\$ 1.00, n=10, x=8$, and $i=0.05$. From (32) we have

$$
\begin{aligned}
w & =1.00 \cdot a_{\overline{\mathrm{S} \mid .05}} \cdot \frac{1}{s_{\overline{10 \mid} \mid .05}} \\
& =(0.07950458)(6.46321276) \quad \text { [Tables VI, VII] } \\
& =\$ 0.51
\end{aligned}
$$

That is, 51\& could profitably be spent to treat the tic, if the service life would be extended 8 years.

Exercises

1. What amount would a railroad company be justified in expending per tie to extend the life of cross ties costing $\$ 1.50$ each from 12 to 20 years, money being worth 4% ?
2. A hospital receives an annual income of $\$ 120,000$ as a perpetuity from a trust fund. What is the value of this perpetuity, money being worth 5% effective?
3. Solve Exercise 2, if the interest rate were 5% converted quarterly.
4. A railroad company has been paying a watchman $\$ 1,600$ a year to guard a crossing. The company decides to build an overhead crossing at a cost of $\$ 22,000$. If the overhead crossing must be rebuilt every 35 years at the same cost, how much does the company save by building it? Assume money worth 5%.
5. An office building is erected at a cost of $\$ 100,000$. It requires a watchman at an annual salary of $\$ 1,500$, and $\$ 4,000$ for repairs and renovation every 8 years. It must be rebuilt every 80 years at the original cost. How much money is required now to provide for its construction, maintenance, guarding and rebuilding, assuming money worth 3% ? (Hint: Every 80 years when the building is rebuilt, the $\$ 4,000$ allowed for repairs and renovation is not needed. This amount may be applied on the $\$ 100,000$ for rebuilding, thereby reducing it to $\$ 96,000$.)
6. A state highway commission has a certain road graded and ready for surfacing. It may be graveled at a cost of $\$ 2,000$ per mile, or paved at a cost of $\$ 10,000$ per mile. It will cost $\$ 200$ per year to maintain the gravel road and it will need regraveling every 8 years at the original cost. The maintenance cost of the pavement is negligible and it will need repaving only every 40 ycars at the original cost. If the cost for clearing the road bed of the old paving is $\$ 1,000$, which type of road is more economical, assuming that the state can borrow money at 4% ?
7. Increasing and decreasing annuities.-A sequence of periodic payments in which each payment exceeds by a fixed amount the preceding payment is called an increasing annuity. If each payment is less by a fixed amount than the preceding, the sequence is called a decreasing annuity.

Consider the following examples.
Example 1. Find the amount and the present value of a decreasing annuity with payments of $\$ 250, \$ 200, \$ 150, \$ 100, \$ 50$, at the ends of the next five years if money is worth 4%.

Solution. Here is the picture.

These payments are equivalent to the following five ordinary annuities, superimposed: (1) $\$ 50$ a year for 5 years; (2) $\$ 50$ a year for 4 years; (3) $\$ 50$ a year for 3 years; (4) $\$ 50$ a year for 2 years; (5) $\$ 50$ a year for 1 year. These annuities are exhibited in the following diagram.

To find the amount of a decreasing annuity, we first find its present value. The present value of the given decreasing annuity is

$$
\begin{aligned}
& A=50 a_{\text {1] }}+50 a_{27}+50 a_{3 \mid}+50 a_{\text {71 }}+50 a_{51}
\end{aligned}
$$

$$
\begin{aligned}
& =50\left[\frac{5-a_{5.04}}{.04}\right] \quad \text { Exercise 8, Art. } 28 \\
& =1250(5-4.45182233) \\
& =\$ 685.222 \text {. }
\end{aligned}
$$

The amount of this annuity is clearly

$$
\begin{aligned}
S & =A(1.04)^{5}=685.222(1.21665290) \\
& =\$ 833.68
\end{aligned}
$$

Example 2. Find the amount and the present value of an increasing annuity with payments of $\$ 50, \$ 100, \$ 150, \$ 200, \$ 250$ at the ends of the next five years if money is worth 4%.

Solution. Here is the picture.

These payments are equivalent to five ordinary annuities that we exhibit in the following diagram.

The amount of this increasing annuity is

$$
\begin{aligned}
& S=50 s_{\text {历7 }}+50 s_{\text {2] }}+50 s_{3}+50 s_{\text {पा }}+50 s_{5 ा} \\
& =50\left[s_{\text {ㄱ }}+s_{\text {27 }}+s_{31}+s_{\text {T] }}+s_{5]}\right] \\
& =50\left[\frac{(1.04) s_{51.04}-5}{.04}\right] \quad \text { Exercise 7, Art. } 28 \\
& =1250[(1.04)(5.41632256)-5] \\
& =\$ 791.22 \text {. }
\end{aligned}
$$

The present value of this increasing annuity is clearly

$$
\begin{aligned}
A & =S(1.04)^{-5}=791.22(0.82192711) \\
& =\$ 650.33 .
\end{aligned}
$$

Exercises

1. If money is worth 5%, find the amount and the present value of the increasing mnnuity pictured on the diagram.

2. If money is worth 5%, find the amount and the present value of the decreasing annuity pictured on the diagram.

Problems

1. Show that formulas (12), (13), and (26) are special cases of formula (27). Follow method on page 76.
2. In order to accumulate $\$ 20,000$ in 14 years, how much must be deposited in a savings bank at the end of each year, if the interest is converted annually at 4% ?
3. An automobile is bought for $\$ 400$ cash and $\$ 62$ a month for 15 months. What is the equivalent cash price if money is worth 7% converted monthly?
4. Find the rate of interest if an annuity of $\$ 700$ a year amounts in 15 years to $\$ 15,000$.
5. The proceeds of a $\$ 5,000$ insurance policy is to be paid in monthly installments of $\$ 50$ each. If money is worth 5% converted monthly, find the number of monthly payments. The first payment is made at the end of the first month.
6. A man buys a house for $\$ 8,000$, paying $\$ 2,000$ cash. He arranges for the balance, principal, and interest at 6%, to be paid in 60 monthly installments. Find the size of each installment if the interest is converted monthly.
7. A son is to receive $\$ 1,000$ a year for 12 years, the first payment being due 6 years hence. Find the present value of the son's share assuming 5% interest converted annually.
8. The beneficiary of an insurance policy is offered $\$ 15,000$ in cash or equal annual payments for 12 years, the first payment being due at once. Find the size of the annual payments if money is worth 4%.
9. A wooden bridge costs for construction $\$ 22,500$, and requires rebuilding every 20 years. How much additional money can be profitably expended for the erection of a concrete bridge instead, if money is worth 5% and the service life is extended to 40 years?
10. A building costs $\$ 40,000$ and has a life of 50 years. If it requires $\$ 2,000$ every 5 years for upkeep, what endowment should be provided at the time it is built to construct it, rebuild it every 50 years and provide for its upkeep? At the end of every 50 years the $\$ 2,000$ allowed for upkeep may be applied towards the reconstruction cost. Assume money worth 4%.
11. How much can a railroad company afford to pay to abolish a grade crossing which is guarded at a cost of $\$ 1,000$ per year, when money is worth 5% converted semiannually?
12. A certain machine costs $\$ 2,000$ and must be replaced every 12 years at the same cost. A certain device may be added to the machine which will double its output, but the machine must then be replaced every 10 years. Assuming money worth 4%, what is the value of the device?
13. $\$ 100$ is deposited in a savings bank at the end of every six months for 10 years. During the first 6 years 3%, converted semi-annually, was allowed but during the last 4 years the rate was reduced to $21 / 2 \%$, converted semi-annually. Find the amount on deposit at the end of 10 ycars.
14. Derive formula (32), Art. 37.
15. An income of $\$ 10,000$ at the end of each year is equivalent to what income at the cad of every 5 years, assuming money worth 5% converted semi-annually?
16. Solve Exercise 15, with the interest converted (a) annually, (b) quarterly.
17. A building has just been completed at a cost of $\$ 250,000$. It is estimated that $\$ 2,500$ will be needed at the end of every two years for repairs, and that every 15 years there must be renovation to the extent of $\$ 10,000$, and that the building will have a service life of 60 years with a salvage value of $\$ 20,000$. Find what equal annual amount should be set aside at 4% interest to cover repairs, renovations, and replacements. How should the $\$ 2,500$ repair fund and the $\$ 10,000$ renovation fund be used at the end of every 60 years?
18. A man borrowed $\$ 10,000$ with the understanding that it be repaid by 20 cqual annual installments including principal and interest at 6% annually. Just after the 10th equal annual payment had been made the creditor agreed to reduce the principal by $\$ 1,000$ and reduce the rate to $41 / 2 \%$. Find the annual payment for the first 10 years and the annual payment for the last 10 years.
19. A mortgage for $\$ 5,000$ was given with the understanding that it might be repaid, principal and interest, by 15 equal annual payments. Find the annual payment if the interest rate was 7% for the first 8 years and 5% for the last 7 years.
20. A person pays $\$ 12,500$ into a trust fund now with the guarantee that he or his heirs will receive equal annual payments for 30 years, the first payment to be made at the end of 7 years. If the trust fund draws 4% interest, find the equal annual payment.
21. A perpetuity of $\$ 25,000$ a year is divided between a man's daughter and a university. The daughter receives the entire income until she has received as her share one half the present value of the perpetuity. Find the number of full payments she receives and the size of the last payment, if money is worth 5% converted annually.
22. A man pays $\$ 6,000$ into a trust fund and receives $\$ 500$ at the end of each year for 20 years. What rate of interest converted annually did he earn on his money?
23. At his son's birth a father set aside a sum sufficient to pay the boy $\$ 1,000$ a
year for 7 years, the first $\$ 1,000$ to be paid on his 18 th birthday. What sum was set aside, if money was worth 4% converted semi-annually?
24. The amount of an annuity of $\$ 800$ per year is $\$ 20,000$ and the present value is $\$ 9,235$. Find the rate of interest.
25. A man buys a piano for $\$ 300$ and pays $\$ 50$ cash. The balance is to be paid for at $\$ 12.50$ at the end of each month for 24 months. What effective rate of interest does the purchaser pay? (Hint: Assume that the interest is converted monthly and find the nominal rate. Then find the effective rate.)
26. Is it economical to replace a machine which costs $\$ 500$ and lasts 8 years by one that costs $\$ 650$ and lasts 12 years? Assume that the annual running expense of each machine is the same and that money is worth 5%. Also assume that the two machines have the same output.
27. A person considers replacing a machine which costs $\$ 400$ and lasts 6 years by a machine which costs $\$ 750$ and answers the same purpose as the other machine. If the exchange is to be economical, how long should the new machine last? Assume that the annual running expense is the same for each machine and that money is worth 4%.
28. Derive formula (29^{\prime}) by setting up a series and finding its sum. From (29') derive (29).
29. Derive formula (30^{\prime}) by setting up a series and finding its sum. From (30^{\prime}) derive (30).
30. Derive formula (29') from (5) by showing that $\operatorname{limit}_{n \rightarrow \infty} R a_{\boldsymbol{n} \mid \boldsymbol{i}}=R / i$.
31. If money is worth ($j=.04, m=2$), find the present value of the decreasing annuity: $\$ 5,000, \$ 4,500, \cdots \$ 500$ payable semi-annually.
32. If money is worth ($j=.04, m=2$), find the present value of the increasing annuity: $\$ 500, \$ 1,000, \cdots \$ 5,000$ payable semi-annually.
33. State a problem for which the answer would be

$$
1000 \frac{(1.01)^{40}-1}{(1.01)^{4}-1}
$$

34. State a problem for which the answer would be

$$
500 \frac{1-(1.025)^{-30}}{(1.025)^{2}-1_{i}}
$$

35. State a problem for which the answer would be

$$
500 \frac{(1.02)^{24}-1}{(1.02)^{2}-1}(1.02)^{10}
$$

36. In an increasing annuity, R is paid at the end of the first year, $2 R$ at the end of the second year, and so on for n ycars. Show that

$$
\begin{aligned}
& S=\frac{R}{i}\left[s_{\bar{n}}(1+i)-n\right] \\
& A=\frac{R}{i}\left[(1+i) a_{\bar{n}]}-n(1+i)^{-n}\right]
\end{aligned}
$$

37. In a decreasing annuity $n R$ is paid at the end of the first year, $(n-1) R$ at the end of the second year, and so on for n years. Show that

$$
\begin{aligned}
& S=\frac{R}{i}\left[n(1+i)^{n}-s_{\bar{n}]}\right], \\
& A=\frac{R}{i}\left[n-a_{\bar{n}}\right] .
\end{aligned}
$$

Review Problems *

1. $\$ 1,000$

Harrisburg, Pennsylvania, July 12, 1945.

Four months after date I promise to pay Joe Brown, or order, one thousand dollars with interest from date at 5%.
(Signed) Join Jones.
(a) Three months after date Brown sold the note to Bank B who discounted the note at 6% discount rate. What did Brown receive for the note?
(b) Immediately after purchasing the above note, Bank B sold the note to a Federal Reserve Bank at a re-discount rate of 4%. How much did Bank B gain on the transaction?
2. Same note as in Problem 1. Would it have been to Brown's advantage to have sold the note to friend C , to whom money was worth 6%, rather than to Bank B?
3. I bought a bill of lumber from the Jones Lumber Company who quoted the terms "net 60 days or 2% off for cash." What nominal rate of interest, j_{6}, could I afford to pay to borrow money to take advantage of the discount? What effective rate?
4. A note for $\$ 1,000$ with interest at $(j=.06, m=2)$, and another for $\$ 800$ with interest at ($j=.05, m=2$), both due in 3 years, were purchased to net 7% effective. How much was paid for them?
5. A bank pays 4% interest on time deposits and loans money at 6% discount rate. What is the annual profit on time deposits amounting to $\$ 100,000$?
6. The Jones Lumber Company estimates that they can earn 3% a month on their moncy. If I buy a $\$ 1,000$ bill of lumber from them, what amount of discount can they afford to offer me to encourage immediate settlement in lieu of $\$ 1,000$ at the end of the month? What is the nominal rate of discount, f_{12}, that they can afford to offer?
7. A son is now 10 years old. The father wishes to provide now for the college and professional education of the son by depositing the proper amount with a trust company that pays ($j=.04, m=2$) on funds. It is estimated that the son will need $\$ 1,000$ a year for 7 years, the first payment to be made when the son is 18 ycars of age. Find the amount of the deposit.
8. A man owes a $\$ 6,000$ balance on a home. The balance is at $(j=.06, m=2)$. The man agrees to pay the balance with payments of $\$ 300$ at the end of each half year. After how many payments will the balance be paid in full? What is the amount of the final partial payment?
9. A man at the age of 50 invests $\$ 20,000$ in an annuity payable to him if living (to his estate if he is dead) in equal monthly installments over a period of 15 years, the first installment to be due at the end of the first month after he reaches 65 . On a $31 / 2 \%$ basis, what is the monthly installment that he receives?
10. A man bought a refrigerator for $\$ 250$ paying $\$ 50$ down and the balance in 12 monthly installments of $\$ 20$ each. What rate of interest does the purchaser pay? [Use simple interest.]

[^5]
CHAPTER IV

SINKING FUNDS AND AMORTIZATION

39. Sinking funds.-When an obligation becomes due at some future date, it is usually desirable to provide for its payment by accumulating a fund with periodic contributions, together with interest earnings. Such an accumulated fund is called a sinking fund.

Example. A debt of $\$ 6,000$ is due in 5 years. A sinking fund is to be accumulated at 5%. What sum must be deposited in the sinking fund at the end of each year to care for the principal when due?

Solution. Here, $S=\$ 6,000, n=5$, and $i=0.05$. Since $m=p=1$, we have from AI1, Art. 31,

$$
\begin{aligned}
R & =6,000 \frac{0.05}{(1.05)^{5}-1}=6,000 \cdot \frac{1}{s_{\overline{5} 1.05}} \\
& =6,000(0.18097480)[\text { Table VII }] \\
& =\$ 1,085.85 .
\end{aligned}
$$

The amount in the sinking fund at any particular time may be shown by a schedule known as an accumulation schedule. The following is the schedule for the above problem:

Years	Annual Deposit	Interest on Fund	Total Annual Increase	Value of Fund at End of Each Year
$\mathbf{1}$	$\$ 1,085.85$		$\$ 1,085.85$	$\$ 1,085.85$
2	$1,085.85$	$\$ 54.29$	$1,140.14$	$2,225.99$
3	$1,085.85$	111.30	$1,197.15$	$3,423.14$
4	$1,085.85$	171.16	$1,257.01$	$4,680.15$
5	$1,085.85$	234.01	$1,319.86$	$6,000.01$

40. Amortization.-Instead of leaving the entire principal of a debt standing for the term to be cancelled by a sinking fund, we may consider any payment over what is needed to pay interest on the principal to be
applied at once toward liquidation of the debt. As the debt is being paid off, a smaller amount goes towards the payment of interest, so that with a uniform payment per year, a greater amount goes towards the payment of principal. This method of extinguishing a debt is called the method of amortization of principal.

Example. Consider a debt of $\$ 2,000$ bearing 6% interest converted annually. It is desired to repay this in 8 equal annual installments, including interest. Find the annual installment.

Solution. Here, $A=\$ 2,000, n=8, i=0.06, m=p=1$. Substituting in AI2, Art. 31, we have

$$
\begin{aligned}
R & =2,000 \frac{0.06}{1-(1.06)^{-8}}=2,000 \cdot \frac{1}{a_{\overline{8} \mid .06}} \\
& =2,000(0.16103594)[\text { Table VII }] \\
& =\$ 322.07 .
\end{aligned}
$$

The interest for the first year will be $\$ 120$; hence $\$ 202.07$ of the first payment would be used for the reduction of principal, leaving $\$ 1,797.93$ due on principal at the beginning of the second year. The interest on this amount is $\$ 107.88$; hence, the principal is reduced by $\$ 214.19$, leaving $\$ 1,583.74$ due on principal at the beginning of the third year, and so on. This process may be continued by means of the following schedule known as an amortization schedule:

Year	Principal at Beginning of Year	Annual Payment	Interest at 6\%	Principal Repaid
1	$\$ 2,000.00$	$\$ 322.07$	$\$ 120.00$	$\$ 202.07$
2	$1,797.93$	322.07	107.88	214.19
3	$1,583.74$	322.07	95.02	227.05
4	$1,356.69$	322.07	81.40	240.67
5	$1,116.02$	322.07	66.96	255.11
6	860.91	322.07	51.65	270.42
7	590.49	322.07	35.43	286.64
8	303.85	322.07	18.23	303.84

Such a schedule gives us the amount remaining due on the principal at the beginning of any year during the amortization period. The principal
at the beginning of the last year should equal the last principal repaid, and the sum of the principals repaid should equal the original principal.

Exercises

1. Find the annual payment that will be necessary to amortize in 10 years a debt of $\$ 2,500$, bearing interest at 8% converted annually. Construct a schedule.
2. A mortgage of $\$ 5,000$ is due in 8 ycars. A man wishes to take care of this principal when due by depositing equal amounts at the end of each year in a sinking fund which pays 5% interest. Find the annual deposit and check by an accumulation schedule.
3. A man owes $\$ 10,000$ and agrees to pay it in 10 equal annual installments. Find the amount of cach installment, allowing 6% for interest. Check by an amortization schedule.
4. A farmer buys a farm for $\$ 10,000$. He has $\$ 6,000$ to pay down and secures a federal farm loan for the balance to be amortized in 30 years at 5%. Find the annual payment and build up a schedule for the first 10 years.
5. In order to construct a filtering plant a city votes bonds for $\$ 50,000$ which bear 6% interest, payable semi-annually. A city ordinance requires that a sinking fund be established to retire the bonds when they mature in 15 years. What semi-annual deposit must be made into the sinking fund, if it accumulates at 4%, converted semiannually? What is the total semi-annual expense for the city?
6. A mortgage for $\$ 1,000$ was given and it was agreed that it might be repaid, principal and interest, by 5 equal annual payments. Build up an amortization schedule if the interest rate is to be 5% for the first two years and 4% for the last three years.
7. Book value.-The book value of an indebtedness at any time may be defined as the difference between the original debt and the amount in the sinking fund at that time. Thus, in the example of Art. 39, we see that the book value of the debt at the end of the third year is $\$ 2,576.86$, ($\$ 6,000-\$ 3,423.14$). If the debt is being amortized, then the book value of the debt at the beginning of any year is the outstanding principal at that time. Thus, in the example of Art. 40, we observe that the book value of the debt at the beginning of the fourth year (at the end of the third year just after the third payment has been made) is $\$ 1,356.69$. The subject of book value will be discussed further in connection with depreciation and valuation of bonds.
8. Amount in the sinking fund at any time.-To find the amount in the sinking fund at the end of k payment periods, $k<n p$, we have only to find the accumulated value of an annuity of annual rent R for k payment periods by using the appropriate formula of Art. 31.

Example 1. Find the amount in the sinking fund of the Example of Art. 39, at the end of 4 years.

Solution. Here, $R=\$ 1,085.85, k=4, m=p=1$, and $i=0.05$. Hence, using AI1, Art. 31, the amount is given by

$$
\begin{aligned}
S_{\text {प }} & =1,085.85 \frac{(1.05)^{4}-1}{0.05}=1,085.85 \cdot s_{\overline{\text { II }} .05} \\
& =1,085.85(4.31012500)[\text { Table } \mathrm{V}] \\
& =\$ 4,680.15
\end{aligned}
$$

which checks with the amount given in the sinking fund schedule for the fourth year.

Example 2. A debt of $\$ 3,000$ is due in 12 years. A sinking fund is created by making equal annual payments. If the interest rate is 5% converted annually, find the annual payment and the amount in the sinking fund just after the eighth annual payment has been made.

Solution. Here, $S=\$ 3,000, n=12, i=0.05, k=8, p=m=1$.
and

$$
\begin{aligned}
R & =3,000 \frac{0.05}{(1.05)^{12}-1}=\$ 188.48 \\
S_{8} & =188.48 \frac{(1.05)^{8}-1}{0.05}=\$ 1,799.82
\end{aligned}
$$

Hence, the amount in the sinking fund at the end of 8 years is $\$ 1,799.82$.
43. Amount remaining due after the k th payment has been made.When loans are paid by the amortization process it is necessary at times to know the amount of indebtedness (book value) after a certain number of payments have been made. After k payments of R / p dollars have been made there remain ($n p-k$) payments and these remaining payments form an annuity whose present value is exactly the amount due on the debt after the k th payment has been made, and the debt could be cancelled by paying this present value.

Example 1. Find the amount of unpaid principal just after making the fifth payment in the Example of Art. 40.

Solution. Here, $R / p=\$ 322.07, n=8, i=0.06, m=p=1$, and $k=5$. We have three payments remaining. Hence

$$
\begin{array}{rll}
A_{\overline{3} \mid} & =322.07 \frac{1-(1.06)^{-3}}{0.06} & \quad[\text { Formula AI2, Art. 31] } \\
& =322.07(2.67301195) & {[\text { Table VI }]} \\
& =\$ 860.90
\end{array}
$$

This checks with the value given in the amortization schedule for the principal at the beginning of the 6th year (just after the fifth payment has been made).

Example 2. A debt of $\$ 2,500$ is to be amortized by 7 annual installments with interest at 6%. Find the amount unpaid on the principal just after making the fifth annual payment.

Solution. Here, $A=\$ 2,500, n=7, k=5, m=p=1$, and $i=0.06$. We have, using AI2, Art. 31,

And

$$
R=2,500 \frac{0.06}{1-(1.06)^{-7}}=\$ 447.84
$$

$$
\begin{aligned}
A_{\overline{2} \mid} & =447.84 \frac{1-(1.06)^{-2}}{0.06} \\
& =447.84(1.83339267)=\$ 321.06 .
\end{aligned}
$$

Hence, the amount unpaid on the principal at the end of the fifth year or just at the beginning of the sixth year is $\$ 821.06$.

Exercises

1. A man has been paying off a debt of $\$ 2,800$ principal and interest in 20 equal quarterly payments with interest at 5% converted quarterly. At the time of the 13th payment what amount is necessary to make the payment that will extinguish the entire debt?
2. In order to pay a mortgage of $\$ 5,000$ due in 7 years, a man pays into a sinking fund equal amounts at the end of each month. If the sinking fund pays 6% interest converted monthly, how much has he accumulated at the end of 5 years?
3. A man owes $\$ 4,000$, which is to be paid, principal and interest, in 10 equal annual payments, the first payment falling due at the end of the first year. If the interest rate is 6%, find the balance due on the debt just after the 6th payment is made.
4. A building and loan association sells a house for $\$ 7,500$, collecting $\$ 1,500$ cash. It is agreed that the balance with interest is to be paid by making equal payments at the end of each month for 10 years. If the interest rate is 7%, converted monthly, find the monthly payment. What equity does the purchaser have in the house just after making the 50 th payment? What is his equity after the 70th payment has been made?
5. A person owes a debt of $\$ 8,000$, bearing 5% interest, which must be paid by the end of 10 years but may be paid at the end of any year after the fourth. He pays into a sinking fund equal amounts at the end of each year, which will accumulate to $\$ 8,000$ at the end of 10 years. Just after making the 7 th ${ }^{\text {lpayment into the sinking fund, how }}$ much additional money would be required to pay the debt in full, if the sinking fund accumulates at 5%.
6. The amortization and sinking fund methods compared.-We shall make this comparison by discussing a problem.

Problem. Let us consider a debt of principal $A_{\bar{n} \bar{p}}$ which is due in n years and draws interest at rate r payable p times a year.

Discussion. This debt may be amortized by making $n p$ equal payments direct to the creditor, or it may be cared for by the sinking fund method.

If the amortization method is used the periodic payment will be

$$
\begin{equation*}
R / p=A_{\overline{n p \mid}} \frac{\frac{r}{p}}{1-\left(1+\frac{r}{p}\right)^{-n p}} \tag{1}
\end{equation*}
$$

Formula (1) gives us the total periodic expense, if the method of amortization is used.

It is easily seen that, since $\frac{1}{a_{\bar{n} \mid}}=i+\frac{1}{s_{n j}}$,

$$
\frac{\frac{r}{p}}{1-\left(1+\frac{r}{p}\right)^{-n p}}=\frac{r}{p}+\frac{\frac{r}{p}}{\left(1+\frac{r}{p}\right)^{n p}-1}
$$

and (1) may be written

$$
\begin{equation*}
R / p=A_{\bar{n} p}\left(\frac{r}{p}\right)+A_{\bar{n} \bar{p}} \frac{\frac{r}{p}}{\left(1+\frac{r}{p}\right)^{n p}-1} \tag{2}
\end{equation*}
$$

If the sinking fund method is used, the interest at rate r payable p times a year is paid direct to the creditor and a fund to care for the principal when it becomes due n years from now is created by depositing equal payments p times a year into a sinking fund which accumulates at rate j converted p times a year. If this method is used, the total expense per period will be the sum of the periodic interest and the periodic payment into the sinking fund and is given by

$$
\begin{equation*}
E=A_{\overline{n D}}\left(\frac{r}{p}\right)+A_{\overline{n \bar{p}}} \frac{\frac{j}{p}}{\left(1+\frac{j}{p}\right)^{n p}-1} \tag{3}
\end{equation*}
$$

Now, if the sinking fund rate is the same as the interest rate on the $\operatorname{debt}(j=r)$, then E of (3) is the same as R / p of (2). That is, when $j=r$, the periodic expense is the same by either plan, and the amortization method may be considered a special case of the sinking fund method where the creditor has charge of the sinking fund money and allows the same rate of interest on it that he charges on the debt.

If the sinking fund rate is less than the rate on the debt, that is, if $j<r$, then $\frac{1}{s_{\overline{n \bar{p}}} \text { at } j / p}>\frac{1}{s_{\overline{n j p}} \text { at } r / p}$ and E in (3) is greater than R / p in (2). That is, the sinking fund method is more expensive for the debtor than the amortization method.

If $j>r$, then $\frac{1}{s_{\overline{n j}} \text { at } j / p}<\frac{1}{s_{\overline{n j \mid}} \text { at } r / p}$ and E is less than R / p. That is, the sinking fund method is less expensive for the debtor than the amortization method.

Example 1. A debt of $\$ 10,000$, with interest at 6%, payable semiannually, is due in 10 years. Find the semi-annual expense if it is to be cared for by the amortization method.

Solution. Here, $A_{\bar{n} \bar{p}}=\$ 10,000, r=0.06, p=2$, and $n=10$. We have

$$
\begin{aligned}
R / 2 & =10,000 \frac{0.03}{1-(1.03)^{-20}} \quad[\text { Formula (1)] } \\
& =10,000(0.06721571) \quad[\text { Table VII }] \\
& =\$ 672.16
\end{aligned}
$$

Example 2. Find the semi-annual expense in Example 1, if a sinking fund is accumulated at ($j=.05, p=2$).

Solution. Here, $j=0.05$ and the other conditions are the same. We have

$$
\begin{aligned}
E & =10,000(0.03)+10,000 \frac{0.025}{(1.025)^{20}-1} \quad \text { [Formula (3)] } \\
& =300.00+10,000(0.03914713) \quad[\text { Table VII }] \\
& =300.00+391.47=\$ 691.47
\end{aligned}
$$

Example 3. Find the semi-annual expense in Example 1, if the sinking fund is accumulated at ($j=.06, p=2$).

Solution. Here, $j=0.06$ and the other conditions are the same. We have

$$
\begin{aligned}
E & =10,000(0.03)+10,000 \frac{0.03}{(1.03)^{20}-1} \\
& =300.00+10,000(0.03721571) \\
& =300.00+372.16=\$ 672.16 .
\end{aligned}
$$

Example 4. Find the semi-annual expense in Example 1, if the sinking fund is accumulated at ($j=.07, p=2$).

Solution. Here, $j=0.07$ and the other conditions are the same. We have

$$
\begin{aligned}
E & =10,000(0.03)+10,000 \frac{0.035}{(1.035)^{20}-1} \\
& =300.00+10,000(0.03536108) \\
& =300.00+353.61=\$ 653.61 .
\end{aligned}
$$

Compare the answers of Examples 1, 2, 3, and 4. Are the results consistent with the conclusions that we have already drawn?

Exercises

1. A man secures a $\$ 15,000$ loan with interest at $61 / 2 \%$, payable annually. He may take care of the loan (a) by paying the interest as it is due and paying the principal in full at the end of 10 years; or (b) by paying principal and interest in 10 equal annual installments. If a sinking fund can be accumulated at 5%, converted annually, which is the more economical method and by how much?
2. A debt of $\$ 8,000$ bears interest at 7%, payable semi-annually, and is due in 7 years. How much should be provided every six months to pay the interest and retire the debt when it is due, if deposits can be accumulated at 6%, converted semi-annually?
3. What would be the semi-annual expense in Lxercise 2, if the debt could be retired by paying principal and interest in 14 equal semi-annual installments?
4. A debt of $\$ 20,000$ which bears interest at 5%, payable semi-annually, is to be paid in full in 20 years. The debtor has the privilege of paying the principal and interest in 40 equal semi-annual payments, or paying the intcrest semi-annually and paying the principal in full at the end of 20 years. Compare the two methods if a sinking fund may be created by making semi-annual payments which accumulate at (a) 4%, converted semi-annually; (b) 5%, converted scmi-annually; (c) 6%, converted semi-annually.
5. Retirement of a bonded debt.-In the retirement of a debt which has been contracted by issuing bonds of given denominations, the periodic payments cannot be the same, because the payment on principal at the end of each period must be a multiple of the denomination (face value or
par value) of the bonds or their redemption value* (if not redeemed at par). By varying the number of bonds retired each time the payments can be made to differ from each other by an amount not greater than the redemption value of one bond. An example will make the method clear.

Example. Construct a schedule for the retirement, in 8 years, of a $\$ 30,000$ debt, consisting of bonds of $\$ 100$ face value, bearing interest at 6% payable annually, by making annual payments as nearly equal as possible.

Solution. If the annual payments were all equal, we would have

$$
R=30,000 \frac{0.06}{1-(1.06)^{-8}}=\$ 1,831.08
$$

The interest for the first year is $\$ 1,800$. Subtracting this amount from $\$ 4,831.08$ leaves $\$ 3,031.08$ available for the retirement of bonds. This will retire 30 bonds, for $\$ 3,000$ is the multiple of $\$ 100$ which is nearest to $\$ 3,031.08$. This makes a total payment (for interest and bonds retired) of $\$ 4,800$ for the first year. Subtracting the $\$ 3,000$ which has been paid on the principal from $\$ 30,000$ leaves $\$ 27,000$ as the principal at the beginning of the second year. The interest on this amount is $\$ 1,620$, which when subtracted from $\$ 4,831.08$ leaves $\$ 3,211.08$ to be used for retiring bonds the second year. This will retire 32 bonds, because $\$ 3,200$ is the multiple of $\$ 100$ which is nearest to $\$ 3,211.08$. Continuing this process, we obtain the following schedule:

Year	Unpaid Principal at Beginning of Year	Interest Duc at Lind of Year	Number of Bonds Retired	Value of Bonds Retired	Annual Payment
1	$\$ 30,000.00$	$\$ 1,800.00$	30	$\$ 3,000.00$	$\$ 4,800.00$
2	$27,000.00$	$1,620.00$	32	$3,200.00$	$4,820.00$
3	$23,800.00$	$1,428.00$	34	$3,400.00$	$4,828.00$
4	$20,400.00$	$1,224.00$	36	$3,600.00$	$4,824.00$
5	$16,800.00$	$1,008.00$	38	$3,800.00$	$4,808.00$
6	$13,000.00$	780.00	41	$4,100.00$	$4,880.00$
7	$8,900.00$	534.00	43	$4,300.00$	$4,834.00$
8	$4,600.00$	276.00	46	$4,600.00$	$4,876.00$
Totals	$\$ 144,500.00$	$\$ 8,670.00$	300	$\$ 30,000.00$	$\$ 38,670.00$

* See Art. 54 for definitions.

As a check on the work of the sohedule the interest on the total of the unpaid principals should equal the total of the interest due; and the sum of the totals in the third and fifth columns should equal the total in the sixth column.

We notice that the annual payment each year varies from the computed payment, $\$ 4,831.08$, by an amount less than $\$ 50$ (one-half the face of one bond).

Exercises

1. Solve the illustrative Example when the bonds have a $\$ 500$ face value.
2. A city borrows $\$ 100,000$ to erect a school building. The debt is in the form of bonds of face value $\$ 1,000$ bearing interest at 5% converted annually. The bonds are to be retired by 10 annual installments as nearly equal as possible. Set up a schedule showing the number of bonds retired each year.

Problems

1. Construct the amortization schedule for the repayment of a loan of $\$ 10,000$, principal and interest at 5% nominal, payable semi-annually, in ten semi-annual payments.
2. Construct an accumulation schedule for the accumulation of $\$ 10,000$ in 10 equal semi-annual installments at 6% interest, converted semi-annually.
3. A man deposits in a sinking fund equal quarterly payments sufficient to accumulate to $\$ 5,000$ in 5 years at 6% converted quarterly. What is the amount in the sinking fund just after the 9th quarterly payment has been made?
4. A debt of $\$ 8,000$ bearing 5% interest, converted quarterly, is arranged to be paid principal and interest in 30 equal quarterly payments. How much remains unpaid on the principal just after the 17th payment is made?
5. The cash price of a house is $\$ 7,000$. $\$ 2,000$ cash is paid and it is arranged to pay the balance by 70 equal monthly payments, including interest at 6%, converted monthly. Just after the 50 th payment is made, what is the balance due on the principal?
6. A mortgage for $\$ 7,500$, bearing 6% interest payable semi-annually, is due in 12 years. A fund to care for the principal when it becomes due is established by making semi-annual payments into a sinking fund. (a) Find the semi-annual expense of the mortgage if the sinking fund accumulates at 5% semi-annually. (b) Find the semiannual expense of the mortgage if it is amortized by equal semi-annual payments.
7. What is the book value of the debt in Problem 6 at the end of 7 years, (a) if the sinking fund method is used, (b) if the amortization method is used?
8. A man buys a house for $\$ 5,500$, paying $\$ 1,500$ cash. The balance with interest at 6% is to be cared for by paying $\$ 700$ at the end of each year as long as such a payment is necessary and then making a smaller payment at the end of the last year. Find the number of full payments and the amount of the final payment. What amount remains due just after making the 5th payment?
9. A city borrows $\$ 100,000$ at 5%. The debt is to be retired in 10 years by the accumulation of a sinking fund that is invested at 4% effective. What is the total annual expense to the city?
10. A county borrows $\$ 50,000$ to build a bridge. The debt is to be paid by amortization of the principal in 15 years at 5%. At the end of the tenth year what principal remains outstanding?
11. A fraternity chapter borrows $\$ 60,000$ at 6% to build a house. The debt is to be amortized in 25 years. What is the annual payment?
12. A fraternity chapter borrows $\$ 60,000$ at 6% to build a house. A sinking fund can be built up at 5%. What amount must be raised annually to pay this debt if the payments are to extend over 30 years?

Review Problems*

1. A well-known finance company requires payments of $\$ 7.27$ a month for 18 months for a loan of $\$ 100$. What rate of interest does the borrower pay?
2. The cash price of an automobile is $\$ 995$. An advertisement of a dealer stated, "If you want to buy on terms, pay a little more for the convenience, $\$ 329$ down and $\$ 63$ a month for 12 months." What rate of interest does one pay who purchases the car on the installment plan?
3. An automobile, cash price $\$ 1,300$, was purchased on the terms, $\$ 507$ down and $\$ 57.50$ a month for 18 months. What rate of interest was paid?
4. Solve $A=R a_{\bar{n} \mid i}(1+i)^{-m}$ (a) for m; (b) for n.
b. If C is the first cost and D is the renewal cost of an article whose life is r years, show that the capitalized cost, K, at the rate i is given by

$$
K=C+\frac{D}{i} \cdot \frac{1}{s_{\bar{\tau} i}}
$$

6. A machine costs $\$ 2,500$ new and must be replaced at the end of each 10 years. Find the capitalized cost if money is worth 5% and if the old machine has a salvage value of $\$ 500$.
7. A debt of $\$ 10,000$ with interest at $(j=.06, m=12)$ is to be amortized by payments of $\$ 100$ a month. After how many payments will the debt be paid in full? What is the final partial payment?
8. A $\$ 10,000$ bequest invested at 4% is to provide a scholarship of R at the end of each year for 25 years at which time the bequest is to be exhausted. Find R.
9. The Empire State Building was erected at a cost of $\$ 52,000,000$. If its estimated useful life is 100 years and its salvage value is to pay for its demolishing, what net annual income for 100 years would yield 5% on the investment?
10. If interest is at 5% for the first 10 years and 4% thereafter, what equal annual payments for 15 years will repay a $\$ 10,000$ loan?
11. Show (a) by verbal interpretation and (b) algebraically that

$$
A(1+i)^{r}=R s_{\bar{T} i}+R a_{\overline{n-r}} i
$$

when $r \leqq n$.

[^6]
CHAPTER V

DEPRECIATION

46. Definitions.-A building, a machine or any article of value into which capital has been invested will be referred to as an asset. These assets decrease in value due to use, action of the elements, lack of care, old age, and other causes. A part of this decrease in value may be taken care of by proper repairs, but repairs will not cause an asset to retain its original value. In fact, some assets will decrease in value whether they are used or not. This may be duc to new inventions or decreases in the market prices or a combination of these and other causes. For example, an automobile will decrease in value even though it does not leave the floor of the showroom. (Why?) That part of the decrease in value of an asset which can not be cared for by repairs is commonly known as depreciation.

Good business principles demand that capital invested in an asset or a business consisting of several assets, should not be impaired. Hence, from the revenues of the asset or the business there should be set aside, periodically, certain sums, such that the accumulation of these sums at any time plus the value of the asset at that time shall equal its original valuc. The fund into which these periodical sums are set aside is known as a depreciation reserve. This depreciation reserve is usually retained in the business but is carried as a separate item on the books of the business. The object of the accounting for depreciation and the setting aside of a depreciation reserve is to recover only the capital originally invested in the asset. The accountant is not concerned with the replacement of the asset, whether lower or higher than the original cost. His chief concern is that the original capital be not impaired, for this is a fund that must be considered as belonging to the holders of the stock in the business.

These assets may never be replaced at any price for the company may go out of business. Then this accumulated value would be used to retire the capital stock. If the assets are replaced at a lower cost, then only a part of this accumulated value may be considered as used for the replacement. If the assets have to be replaced at a higher cost, then the differ-
ence between this cost and the accumulated value reserve must be met by increasing the original capital. Regardless of the way that depreciation is considered by the accountant, the mathematical principles involved in the treatment of the subject remain the same.

Although an asset may become obsolete or useless for the purpose for which it was intended originally, it may be of value for some other purpose. This value is commonly known as the scrap value or trade in value of the asset and the time it was in use up to the date it was replaced or discarded is known as its useful life. The original value minus the scrap value is defined as the wearing value or the total depreciation of the assct. At any time during the life of an asset its book value may be defined as the original value (or value when it became a part of the business) minus the value of the depreciation reserve. The amount by which the depreciation reserve increases any year is known as the annual depreciation charge.
47. Methods of treating depreciation.-There are many methods of treating depreciation. We shall treat four of the most common methods:
(a) The straight line method.
(b) The sinking fund method.
(c) The fixed percentage on decreasing value method.
(d) The unit cost method.

Some of the other methods used are the compound interest method, the service output method, the maintenance method, and so on.
48. The straight line method.-By this method the total depreciation (wearing value) is distributed equally over the life of the asset and the amounts in the depreciation reserve do not earn interest. If we let C stand for the original value (cost) of the asset, S stand for its scrap value, n stand for its useful (probable) life, W stand for its wearing value, and D stand for the annual depreciation charge to be made, it follows from the above definition of the straight line method that

$$
\begin{equation*}
D=\frac{W}{n} \tag{1}
\end{equation*}
$$

where $W=C-S$.
Example. A certain asset costs $\$ 2,250$. It is assumed that with proper care it will have a scrap value of $\$ 170$ after a uscful life of 8 years. Using the straight line method, show by schedule and graph the value of the depreciation reserve and the book value of the asset at any time.

Solution. We have, $C=\$ 2,250, S=\$ 170, n=8$, and $W=\$ 2,080$.

Therefore,

$$
D=\frac{2,080}{8}=\$ 260
$$

The value of the depreciation reserve at the end of the first year will be $\$ 260$ and this will increase cach year by the constant amount, $D=\$ 260$, until at the end of 8 years it will contain $\$ 2,080$. The book value of the asset will decrease each year by the constant amount, $D=\$ 260$, until at the end of 8 years it will be $\$ 170$ (the scrap value).

The following schedule shows the book value of the asset and the amount in the depreciation reserve at any time.

> SCHEDULE OF BOOK VALUE AND DEPRECIATION
> STRAIGHT LINE METHOD

Age in Years	Book Value	Depreciation Charge	Total in Depreciation Reserve
0	$\$ 2,250.00$		
1	$1,990.00$	$\$ 260.00$	$\$ 260.00$
2	$1,730.00$	260.00	520.00
3	$1,470.00$	260.00	780.00
4	$1,210.00$	260.00	$1,040.00$
5	950.00	260.00	$1,300.00$
6	690.00	260.00	$1,560.00$
7	430.00	260.00	$1,820.00$
8	170.00	260.00	$2,080.00$

Observing the above schedule, we notice that the book value at the end of any year plus the total in the depreciation reserve at that time equals the original cost of the asset.

The changes in the book value and depreciation reserve may also be shown by graphs. [See Fig. 1.]

Observing the graphs for depreciation and book value, we notice that the ordinate for depreciation at any time plus the ordinate for book value at the same time equals the original value of the asset. We also observe that the graphs which represent the book value and depreciation reserve are straight lines. This suggests why this method is known as the straight line method.

Fig. 1.-Graphical Representation of Book Value and DepreciationStraight Line Method.
49. Fixed-percentage-on-decreasing-value method.-This method derives its name from the fact that the book value at the end of any year is obtained by decreasing the book value at the end of the preceding year by a fixed percentage. It is assumed that the book value is reduced from the original cost C to the scrap value S at the end of n years, and the amounts in the depreciation reserve do not carn interest.

Let C stand for the original cost of an asset and let x be the fixed percentage by which the book value is decreased each year.

During the first year the decrease in book value is $C x$ and consequently, the book value at the end of the first year is

$$
C_{1}=C-C x=C(1-x)
$$

The book value at the end of the second year is

$$
C_{2}=C_{1}(1-x)=C(1-x)(1-x)=C(1-x)^{2}
$$

The book value at the end of the third year is

$$
C_{3}=C_{2}(1-x)=C(1-x)^{2}(1-x)=C(1-x)^{3}
$$

Continuing our reasoning we find the book value at the end of n years to be

$$
C_{n}=C(1-x)^{n} .
$$

But the book value of the asset at the end of its useful life, n years, equals its scrap value S. Hence, we have*
or

$$
\begin{gather*}
C(1-x)^{n}=S \tag{2}\\
\log (1-x)=\frac{\log S-\log C}{n} \tag{3}
\end{gather*}
$$

Using (3), the fixed percentage may be computed for any particular case.
If we let C_{k} represent the book value of the asset at the end of k years, we observe that
and

$$
\begin{equation*}
\log C_{k}=\log C+k \log (1-x) \tag{4}
\end{equation*}
$$

We further observe that by using (3) and (5) and allowing k to assume all consecutive integers from 1 to n inclusive, we may compute, entirely by the use of logarithms, the successive book values of the asset. An example will illustrate the method.

Example. Find by the fixed percentage method the book values at the end of each year for a machine costing $\$ 800$, and having an estimated life of 8 years and a scrap value of $\$ 80$. Construct a schedule showing the book values and amount in the depreciation reserve at the end of each year.

Solution. Here, $C=\$ 800, S=\$ 80, n=8$.
Using (3), we get

$$
\log (1-x)=\frac{\log 80-\log 800}{8}=9.87500-10
$$

Then using (5), we have

$$
\begin{aligned}
\log C_{k} & =\log 800+k(9.87500-10) \\
& =2.90309+k(9.87500-10)
\end{aligned}
$$

[^7]Giving k all values from 1 to 8 , we get

$$
\begin{array}{ll}
\log C_{1}=2.77809, & C_{1}=\$ 599.91 . \\
\log C_{2}=2.65309, & C_{2}=449.87 \\
\log C_{3}=2.52809, & C_{3}=337.35 \\
\log C_{4}=2.40309, & C_{4}=252.98 \\
\log C_{5}=2.27809, & C_{5}=189.71 . \\
\log C_{6}=2.15309, & C_{6}=142.26 . \\
\log C_{7}=2.02809, & C_{7}=106.68 \\
\log C_{8}=1.90309, & C_{8}=80.00 .
\end{array}
$$

The student will observe that the actual value of x (fixed percentage) was not needed in the above computations. Should we desire the value of x, we find that $1-x$ is the antilogarithm of $9.87500-10$, or 0.7499 . Hence, $x=0.2501=25.01 \%$.

Since the book value at the end of the first year is $\$ 599.91$, the depreciation charge for that year is

$$
\$ 800.00-\$ 599.91=\$ 200.09
$$

The depreciation charge for the second year is

$$
\$ 599.91-\$ 449.87=\$ 150.04
$$

and the total in the depreciation reserve at the end of two years is

$$
\$ 200.09+\$ 150.04=\$ 350.13
$$

The following schedule shows the book values and the amount in the depreciation reserve at the end of each year.

> SCHEDULE OF BOOK VALUE AND DEPRECIATION FIXED PERCENTAGE METHOD

Age in Years	Annual Depreciation	Total in Depreciation Reserve	Book Value
0	$\ldots \ldots$.	$\ldots \ldots$	$\$ 800.00$
1	$\$ 200.09$	$\$ 200.09$	599.91
2	150.04	350.13	449.87
3	112.52	462.65	337.35
4	84.37	547.02	252.98
5	63.27	610.29	189.71
6	47.45	657.74	142.26
7	35.58	693.32	106.68
8	26.68	720.00	80.00

The changes in the book value and depreciation reserve may also be shown by graphs.

Fig. 2.-Graphical Representation of Book Value and DepreciationFixed Percentage Method.
50. The sinking fund method.- In the sinking fund method the total depreciation (wearing value) of the asset is provided for by accumulating a sinking fund at a given rate of compound interest. The annual payment into the sinking fund is the payment on an annuity which will have an amount equal to the total depreciation (wearing value) of the asset at the end of its useful life.

If C is the cost, S the scrap value, W the wearing value, and n the estimated useful life of the asset, we find, using AI1, Art. 31, the annual payment into the sinking fund to be

$$
\begin{equation*}
R=W \frac{i}{(1+i)^{n}-1}=\frac{W}{s_{n \mid i}}, \tag{6}
\end{equation*}
$$

where $W=C-S$.
By this method the depreciation charge for the first year is R and the amount in the depreciation reserve at the end of the first year is R. However, the depreciation charge increases each year and for any subsequent year it is R plus the interest on the amount in the depreciation reserve during that year.

Example. Assuming money worth $4 \frac{1}{2} \%$, apply the sinking fund method to the Example discussed in Art. 49.

Solution. Here, $C=\$ 800, S=80, n=8, i=0.045$, and $W=$ $C-S=\$ 720$.

Using (6), we get

$$
R=720 \frac{0.045}{(1.045)^{8}-1}=\$ 76.76
$$

The depreciation charge for the first ycar is $R=\$ 76.76$. Consequently, the amount in the depreciation reserve at the end of the first year is $\$ 76.76$ and the book value of the asset at that time is $\$ 800.00$ less $\$ 76.76$ or $\$ 723.24$. The depreciation charge for the second year is $R,(\$ 76.76)$, plus the interest on $\$ 76.76$ (the amount in the depreciation reserve during the second year) at $4 \frac{1}{2} \%$. Thus, the depreciation charge for the second year is $\$ 76.76+$ $\$ 3.45=\$ 80.21$. Then, the amount in the depreciation reserve at the end of two years is $\$ 76.76$ plus $\$ 80.21$ or $\$ 156.97$ and the book value of the asset at that time is $\$ 643.03$. Values for subsequent years are found in a similar manner.

The following schedule will show the values for each year.

SCHEDULE OF BOOK VALUE AND DEPRECIATION
SINKING FUND METHOD

Age in Years	Annual Payment	Interest on Fund	Annual Depreciation Charge	Amount in Depreciation Reserve	Book Value of Asset
0	$\ldots .$.	$\ldots \ldots$	$\ldots .$.	$\ldots \ldots$	$\$ 800.00$
1	$\$ 76.76$	$\$ 0.00$	$\$ 76.76$	$\$ 76.76$	723.24
2	76.76	3.45	80.21	156.97	643.03
3	76.76	7.06	83.82	240.79	559.21
4	76.76	10.84	87.60	328.39	471.61
5	76.76	14.78	91.54	419.93	380.07
6	76.76	18.90	95.66	515.59	284.41
7	76.76	23.20	99.96	615.55	184.45
8	76.76	27.70	104.46	720.01	79.99

The above information is shown by means of graphs in Fig. 3.

Fig. 3.-Graphical Representation of Book Value and DepreciationSinking Fund Method.
51. The unit cost method.-None of the three methods of depreciation already discussed takes into consideration the question of improvements in machinery. The unit cost method is based upon the principle that the value of the old machine should be decreased from year to year to such an extent that the net cost of a unit of output of the machine should be the same as the net cost of a unit of output of a new machine with which it could be replaced. The old machine should be so valued that its unit cost of production, after taking into account all charges for depreciation, repairs, interest, and operating expenses, is the same as that of a new machinc. Let us illustrate by an example.

Example 1. Consider the replacement of a machine which costs $\$ 300$ a year to operate, costs $\$ 100$ a ycar for repairs, turns out 25 units of work per year and has a probable life of 5 years. A new machine costs $\$ 2,500$, costs $\$ 100$ a year to operate, costs $\$ 100$ a year for repairs, turns out 40 units of work per year, and has a probable life of 9 years. Find the value of the old machine, assuming moncy worth 4%.

Solution. Let x be the value of the old machine. The cost of repairs and operation on the old machine is $\$ 400 . \quad 0.04 x$ is the interest on the investment, and

$$
x \frac{0.04}{(1.04)^{5}-1}
$$

is the annual payment required to accumulate the value of the old machine in 5 years.

$$
0.04 x+x \frac{0.04}{(1.04)^{5}-1}=0.22462711 x
$$

Hence, the unit cost of production for the old machine is

$$
\frac{400+0.22462711 x}{25}=16+0.0089851 x
$$

Reasoning the same as above, we find the yearly cost for operating the new machine to be

$$
400+100+2,500(0.04)+2,500 \frac{0.04}{(1.04)^{9}-1}=836.232475
$$

Hence, the unit cost of production for the new machine is

$$
\frac{836.232475}{40}=20.905812
$$

According to the principle of the unit cost method, we have
and

$$
\begin{aligned}
16+0.0089851 x & =20.905812, \\
x & =\frac{4.905812}{0.008985}=\$ 546.00 .
\end{aligned}
$$

Hence, assuming money worth 4%, the value of the old machine as compared with the value of the new is $\$ 546.00$.

We shall now derive a formula for determining the value of the old machine as compared with the new machine. Let
$C=$ the original cost of the new machine,
$N=$ the estimated lifetime of the new machine,
$O=$ the annual operating expense of the new machine not including repairs,
$R=$ the annual cost of repairs for the new machine,
$K=$ the annual rent of an annuity required to accumulate C in N years,
$U=$ the number of units of output per year.
Let the corresponding letters o, r, k, and u denote the corresponding quantities for the old machine. Let c be the value of the old machine at
the time of making the comparison, and n the remaining lifetime of the old machine. Let i be the rate of interest.

The unit cost for the new machine is

$$
\frac{O+R+K+C i}{U}
$$

and the unit cost of the old machine is

$$
\frac{o+r+k+c i}{u}
$$

According to the principle of the unit cost method, we have

$$
\begin{equation*}
\frac{O+R+K+C i}{U}=\frac{o+r+k+c i}{u} \tag{7}
\end{equation*}
$$

Since,

$$
\begin{align*}
& K=\frac{C}{s_{\bar{N} \mid}} \quad \text { and } \quad k=\frac{c}{s_{\bar{n}}} \\
& K+C i=C\left(i+\frac{1}{s_{N}}\right)=\frac{C}{a_{\bar{N}}} \tag{14}\\
& k+c i=c\left(i+\frac{1}{s_{\bar{n}}}\right)=\frac{c}{a_{n}}
\end{align*}
$$

and
Then (7) becomes

$$
\begin{equation*}
\frac{o+R+\frac{C}{a_{\bar{N}}}}{U}=\frac{o+r+\frac{c}{a_{n}}}{u} \tag{8}
\end{equation*}
$$

Solving (8) for c, we have

$$
\begin{equation*}
c=u a_{\bar{n}}\left[\frac{\left.o+R+\frac{C}{a_{\bar{N}}}-\frac{o+r}{u}\right] ~}{U}-\right. \tag{9}
\end{equation*}
$$

If the number of units of output of the old and new machines are the same, $U=u$, (9) reduces to

$$
\begin{equation*}
c=a_{n}\left[o+R+\frac{C}{a_{K}}-o-r\right] \tag{10}
\end{equation*}
$$

If $O=0$, along with $U=u$, (10) reduces to

$$
\begin{equation*}
c=a_{\bar{n}}\left(R+\frac{C}{a_{\bar{N} \mid}}-r\right) \tag{11}
\end{equation*}
$$

If $O+R=o+r$, then (10) becomes

$$
\begin{equation*}
c=\frac{C a_{\bar{n}}}{a_{\bar{N} \mid}} \tag{12}
\end{equation*}
$$

Example 2. A machine having a remaining service life of 6 years turns out 30 units of work per year. Its operation costs $\$ 300$ per year, and repairs cost $\$ 225$ per year. A new machine, that turns out 40 units of work, costs $\$ 1,000$. It has a probable life of 10 years and will cost $\$ 350$ a year for operation and $\$ 250$ a year for repairs. Assuming money worth 5%, find the value of the old machine.

Solution. Here, $C=\$ 1,000, N=10, O=\$ 350, R=\$ 250, U=40$, $n=6, o=\$ 300, r=\$ 225$, and $u=30$.

$$
\begin{aligned}
& \frac{1}{a_{\bar{N} \mid}}=\frac{1}{a_{\overline{10 \mid}}}=0.12950458, \\
& a_{\bar{n} \mid}=a_{\overline{6} \mid}=5.07569206 .
\end{aligned}
$$

Substituting in (9), we have

$$
\begin{aligned}
c & =30(5.07569206)\left[\frac{350+250+1,000(0.12950458)}{40}-\frac{300+225}{30}\right] \\
& =30(5.07569206)[18.23761-17.50000] \\
& =152.2708(0.7376)=\$ 112.31 .
\end{aligned}
$$

Exercises

1. A farmer pays $\$ 235$ for a binder. The best estimates show that it will have a life of 8 years and a scrap value of $\$ 15$. Find the annual depreciation charge by the straight line method and construct a schedule of depreciation.
2. A tractor costs $\$ 1,200$. It is estimated that with proper care it will have a life of 8 years with a scrap value of $\$ 50$ at the end of this time. Construct a depreciation schedule, using the sinking fund method and assuming 4% interest.
3. An automobile, costing $\$ 950$, has an estimated life of 5 years and a scrap value of $\$ 50$. Prepare a depreciation schedule using the fixed percentage method.
4. A machine costs $\$ 5,000$. The best estimates show that after 10 years of use its scrap value will be $\$ 1,000$. (a) Making use of the fixed percentage method, find the
book value of the machine at the ends of 7 and 8 years, respectively. (b) What is the depreciation charge for the 8th year?
5. Solve Exercisc 4, making use of the sinking fund method and assuming an interest rate of 5%.
6. Solve Example 2 of Art. 51, if the new machine could turn out 45 units of work per year. Interpret the results.
7. How many units of work must be turned out by the new machine of Example 2, Art. 51, so that the old machine would not have any value?
8. From formula (9) derive a formula for the number of units a new machine should turn out in order to make the old machine worthless.
9. A machine having a probable life of 18 years has been in use for 8 years and turns out 200 units of work each year. The cost for operating is $\$ 600$ per year and repairs are $\$ 400$ per year. A new machine costs $\$ 3,000$ and has a probable life of 20 years and will turn out 200 units of work per year. It would cost $\$ 500$ per year to operate this machine and repairs would cost $\$ 300$ per year. Neither machine is supposed to have any salvage value. What is the value of the old machine on a 6% interest basis?
10. What output for the new machine in Exercise 9 would render the value of the old machine zero?
11. An asset costs $\$ 1,000$. It is estimated that with proper care it can be used for 8 years at which time it will have a value of $\$ 50$. Using the sinking fund method and assuming 4% interest, find the wearing value that remains at the end of 5 years. [Hint: The wearing value that remains at the end of any year equals the total wearing value minus the amount in the depreciation reserve at that time. Observing the schedule for the Example of Art. 50, we see that the wearing value that remains after 5 years of use is $(\$ 720.00-\$ 419.93)=\$ 300.07]$.
12. Solve Exercise 11, making use of the fixed percentage method.
13. Solve Exercise 11, making use of the straight line method.
14. Depreciation of mining property.-Investment in mines, oil wells, and timber tracts should yield not only interest on the investment, but additional income to provide for the restoration of the original capital when the asset is exhausted. The mining engincer can estimate the net annual return on the mine and the number of years before the mineral will be exhausted. From this net annual return, interest on the capital invested must be taken and also an annual payment to a depreciation reserve which shall accumulate to the original cost of the mine, less the salvage value, by the time it is exhausted.

An important problem in connection with mining property is, having given the net annual yield and the number of years this yield will continue, to determine the price that should be paid for the mines so that this net annual yield will provide a sufficient rate of interest on the investment and an annual payment to the depreciation reserve.

Assume that R is the net annual return and that this yield will continue for n years. Also assume that the rate of yield on the invested capital is to be r and the depreciation reserve is to be accumulated at rate i.

If we let P stand for the purchase price of the property, then the annual return on the capital invested would be Pr. Hence, the amount left from the net annual return, for the annual contribution to the depreciation reserve, would be ($R-P r$), and this must accumulate to $P-S$ in n years at rate i, where S is the salvage value.

Therefore, we have

$$
P-S=(R-P r) \frac{(1+i)^{n}-1}{i}=(R-P r) s_{n] i}
$$

When $S=0$,

$$
\begin{equation*}
P=\frac{R}{r+\frac{i}{(1+i)^{n}-1}}=\frac{R}{r+\frac{1}{s_{n \mid i}}} . \tag{13}
\end{equation*}
$$

Example. A mining engineer estimates that a copper mine will yield a net annual income of $\$ 50,000$ for the next 20 years. What price should be paid for the mine, if the depreciation reserve is to accumulate at 5%, if 10% is to be realized on the capital invested, and if $S=0$?

Solution. We have, $R=\$ 50,000, n=20, r=10 \%$, and $i=5 \%$. Making use of (13), we get

$$
\begin{aligned}
P & =\frac{50,000}{0.10+\frac{0.05}{(1.05)^{20}-1}}=\frac{50,000}{0.10+\frac{1}{s_{20 \mid \cdot} \cdot 5}} \\
& =\frac{50,000.00}{0.10+(0.03024259)}=\frac{50,000.00}{0.13024259} \\
& =\$ 383,899, \text { purchase price. }
\end{aligned}
$$

This would give a return of $\$ 38,389.90$ on the invested capital and leave $\$ 50,000-\$ 38,389.90=\$ 11,610.10$ for the annual payment into the depreciation reserve. This annuity in 20 years at 5% will amount to $\$ 383,899$.

Exercises

1. An oil well which is yielding a net annual income of $\$ 30,000$ is for sale. The geologist estimates that this annual income will continue 10 years longer. What should be paid for the well, if the depreciation reserve is to accumulate at $41 / 2 \%$, and 8% is to be realized on the invested capital?
2. A gold mine is yielding a net annual income of $\$ 100,000$. Careful estimates show that the mine will continue to yield this net annual income for 25 years longer, at which time it will be exhausted. Find its value, if a return of 9% on the invested capital is desired and the depreciation reserve accumulates at 5%.
3. A 1,000 acre tract of timber land is for sale. It is estimated that the net annual income from the timber will be $\$ 125,000$ for the next 5 years, at which time the land will be worth $\$ 25$ per acre. How much per acre should be paid for the land, if the purchaser desires 10% on his investment and the depreciation reserve can be accumulated at 5% ?
4. $\$ 750,000$ is paid for a mine which will be exhausted at the end of 25 years. What net annual income is required from the mine, if 8% is to be realized on the investment after the annual payments have been made into the depreciation reserve which accumulates at 4% ?
5. Composite life of a plant.-We will consider that a manufacturing plant consists of several parts, each having a different probable life. By the composite life of a plant we mean a sort of average lifetime of the scveral parts, and we may define it more precisely as the time required for the total of the equal annual payments to the depreciation reserves of the several parts to accumulate to the total wearing value of the plant.

Let $W_{1}, W_{2}, W_{3}, \cdots, W_{r}$ be the wearing values of the several parts, with probable lives of $n_{1}, n_{2}, n_{3}, \cdots, n_{\mathrm{r}}$ respectively, and let $W=W_{1}+$ $W_{2}+W_{3}+\cdots+W_{r}$ be the wearing value of the entire plant. Also let $D_{1}, D_{2}, D_{3}, \cdots, D_{r}$ be the annual payments to the depreciation reserves for the several parts and let $D=D_{1}+D_{2}+D_{3}+\cdots+D_{r}$ be the depreciation for the whole plant.

Then by the straight line method, we have

$$
n=\frac{W}{D}=\frac{W_{1}+W_{2}+W_{3}+\cdots+W_{r}}{D_{1}+D_{2}+D_{3}+\cdots+D_{r}},
$$

or

$$
\begin{equation*}
n=\frac{W_{1}+W_{2}+W_{3}+\cdots+W_{r}}{\frac{W_{1}}{n_{1}}+\frac{W_{2}}{n_{2}}+\frac{W_{3}}{n_{3}}+\cdots+\frac{W_{r}}{n_{r}}} \tag{14}
\end{equation*}
$$

Example 1. A plant consists of parts A, B, and C, having the following values, scrap values, and probable lives, respectively:

A	$\$ 25,000$	$\$ 5,000$	20 years
B	20,000	2,000	18 years
C	8,000	1,000	14 years

Find its composite life.

Solution. Here, $W_{1}=\$ 20,000, W_{2}=\$ 18,000, W_{3}=\$ 7,000, n_{1}=20$, $n_{2}=18, n_{3}=14$. Using (14), we get

$$
\begin{aligned}
n & =\frac{20,000+18,000+7,000}{\frac{20,000}{20}+\frac{18,000}{18}+\frac{7,000}{14}} \\
& =\frac{45,000}{2,500}=18 .
\end{aligned}
$$

Hence, the composite life is 18 years.
If the sinking fund method is used, we have

$$
\left(D_{1}+D_{2}+\cdots+D_{r}\right) s_{\bar{n} \mid i}=\left(W_{1}+W_{2}+\cdots+W_{r}\right)
$$

or

$$
\begin{equation*}
D s_{\bar{n} \mid \mathbf{4}}=W \tag{14'}
\end{equation*}
$$

where $D_{1}=W_{1} \frac{1}{s_{\overline{n_{1}} 1}}$, and so on.
Solving (14') for n by the use of logarithms, we get

$$
\begin{equation*}
n=\frac{\log (W i+D)-\log D}{\log (1+i)} . \tag{15}
\end{equation*}
$$

The value for n obtained from (15) gives us the composite life. We may also express (14^{\prime}) in the form

$$
\begin{equation*}
s_{\bar{n} \mid i}=\frac{(1+i)^{n}-1}{i}=\frac{W}{D}, \tag{16}
\end{equation*}
$$

and read the approximate value for n from Table V .
Example 2. Solve Example 1, using the sinking fund method and 5% interest.

Solution. Here, $W_{1}=\$ 20,000, W_{2}=\$ 18,000, W_{3}=\$ 7,000, n_{1}=20$, $n_{2}=18, n_{3}=14, i=0.05$.

Whence,

$$
\begin{aligned}
D_{1} & =20,000 \frac{1}{s_{201.05}}=\$ 604.85, \\
D_{2} & =18,000 \frac{1}{s_{18.05}}=\$ 639.83, \\
D_{3} & =7,000 \frac{1}{s_{14.05}}=\$ 357.17, \\
D & =\$ 1,601.85 \text { and } W=\$ 45,000 .
\end{aligned}
$$

Using (16), we get

$$
s_{n .05}=\frac{(1.05)^{n}-1}{0.05}=\frac{45,000}{1,601.85}=28.0925 .
$$

From Table V, we notice that the nearest value of n is 18 . In fact, when $n=17$, the table value is 25.8404 , and when $n=18$, the table value is 28.1324 . Hence, n is a little less than 18 and we say the composite life is approximately 18 years.

Using (15), we have

$$
\begin{aligned}
n & =\frac{\log (3,851.85)-\log (1,601.85)}{\log (1.05)} \\
& =\frac{3.58567-3.20462}{0.02119}=\frac{0.38105}{0.02119} \\
& =17.98, \text { or approximately } 18 .
\end{aligned}
$$

Exercises

1. Allowing interest at 5%, find the composite life of the plant consisting of the following parts.

Parts	Original Cost	Scrap Value	Life
Building......	$\$ 150,000$	$\$ 40,000$	25 years
Machinery...	75,000	25,000	25 years
Patterns....	15,000	$\ldots \ldots$	10 years
Tools.......	25,000	5,000	12 years

2. Solve Exercise 1, using the straight line method.
3. Allowing interest at 4%, find the composite life of the plant consisting of the following parts.

Parts	Cost	Scrap Value	Life
A	$\$ 200,000$	$\$ 30,000$	50 years
B	150,000	20,000	40 years
C	50,000	10,000	35 years
D	30,000	5,000	20 years
E	25,000	5,000	25 years

4. Solve Exercise 3 by the straight line method.

Problems

1. A church with a probable life of 75 years has just been completed at a cost of $\$ 125,000$. It is free of debt. For its replacement at the end of its probable life the congregation plans to make annual payments from their current funds into a sinking fund that will earn 4% effective. What is the annual payment?
2. The value of a machine decreases at a constant annual rate from the cost of $\$ 1,200$ to the scrap value of $\$ 300$ in 6 years. Find the annual rate of decrease, and the value of the machine at the ends of one, two, and three years.
3. The United States gross imports of crude rubber increased from 252,922 long tons in 1920 to 563,812 long tons in 1929. Find the annual rate of increase during this period, assuming that the annual rate of increase was constant.
4. A dormitory is planned at a cost of $\$ 250,000$. Its probable life is estimated to be 50 years at the end of which time its scrap value will be zero. To reconstruct the building at the end of its probable life, a sinking fund, into which semi-annual payments will be made, is to be created, the fund earning interest at ($j=.04, m=2$). What is the semi-annual payment?
5. It is estimated that a quarry will yield $\$ 15,000$ per year for 8 years, at the end of which time it will be worthless. If a probable purchaser desires 8% on his investment and is able to accumulate a redemption fund at 4%, what should he pay for the quarry?
6. On a 3% basis find the annual charge for replacement of a plant, and its composite life, if the several parts are described by the table:

Part	Life in ycars	Cost	Scrap Value
A	40	$\$ 200,000$	$\$ 10,000$
B	25	50,000	3,000
C	15	20,000	1,000
D	10	10,000	1,000

7. A philanthropist wishes to donate a building to cost $\$ 200,000$ and to provide for its rebuilding every 50 years at the same cost. He also wishes to provide for its complete renovation every 10 years at a cost of $\$ 20,000$ and for annual repairs at a cost of $\$ 2,000$. What amount should he donate, if the sums can be invested at 4% ?
8. In starting a transfer business it is planned to purchase 10 cabs annually for 5 years at a cost of $\$ 1,000$ per cab. On a 4% basis, what is the present value of these purchases if the first allotment is purchased immediately?

It is estimated that 5 years is the service life of these cabs. It is also planned to replace the worn out cabs by making annual payments at the end of each year into a sinking fund that earns 4% effective, R at the end of the first year, $2 R$ at the end of the second year, $3 R$ at the end of the third year, $4 R$ at the end of the fourth year, $5 R$ at the end of the fifth and later years. What is the annual payment into the sinking fund at the end of the first year? at the end of the second year? at the end of the fifth year? What is the amount in the sinking fund just after the first allotment for replacements? (See Art. 38.)
9. In starting a transfer business it is planned to purchase 10 cabs immediately, 8 cabs at the beginning of the second year, 6 at the beginning of the third year, 4 at the beginning of the fourth year and 2 at the beginning of the fifth year. On a 4% basis, what is the present value of these purchases if each cab costs $\$ 1,000$? (See Art. 38.)
10. Find the present value of the output of an oil well on the assumption that it will produce a net return of $\$ 25,000$ the first year, diminishing each year by $\$ 5,000$ until it is exhausted at the end of the fifth year. Use intercst at 8% effective.
11. Show that the unit cost plan of appraisal of value gives the same result as the sinking fund method when the new and the old machines have the same output and the same annual expense charge for operation and upkeep.

Review Problems*

1. A quarry has sufficient stone to yield an income of $\$ 20,000$ a year for 5 years at the end of which time it will be exhausted. Find the value of the quarry if the investment is to yield 8% and the redemption fund is accumulated at 4%.
2. Telephone poles set in soil last 12 years, in concrete 20 years. If a telephone pole set in soil costs $\$ 6$, what can the company afford to pay to set the pole in concrete if money can be invested at 4% ?
3. In computing the annual return at rate i on the capitalized cost, K, of an article, show that the return would be equivalent to allowing interest on the original investment, C, and allowing for depreciation by (6) Art. 50. (See Problem 5, page 121.)
4. A city incurs a debt of $\$ 200,000$ in constructing a high-school building. Which would be better: to pay the debt, principal and interest at $61 / 2 \%$ in 20 annual installments, or to pay 6% interest each year on the debt and pay a fixed amount annually for 20 years into a sinking fund which accumulates at 4% ?
5. A county borrows $\$ 75,000$ to build a bridge. The debt is to be paid by the amortization of the principal in 15 years at 6%. At the end of the tenth year what part of the debt is unpaid?
6. A man pays $\$ 1,000$ a year for 4 years and $\$ 2,000$ a year for four years on a debt of $\$ 10,000$ bearing interest at 6%. What part of the debt is unpaid at the end of 8 years?
7. A machine costing $\$ 5,000$ has an estimated life of 10 years and a scrap value of \$500. Find the constant rate at which it depreciates. What is its value at the end of the second year?
8. If W_{r} is the wearing value of a machine at the end of r years by the sinking fund method, show that

$$
W_{r}=W \cdot \frac{\overline{a_{n-r}}}{a_{\bar{n} \mid}}
$$

[^8]
CHAPTER VI

VALUATION OF BONDS

54. Definitions.-A bond may be defined as a certificate of ownership in a portion of a debt due from a city, corporation, government, or an individual. It is a promise to pay a stipulated sum on a given date, and to pay interest or dividends at a specified dividend rate and at definite intervals. The interval between dividend payments is usually a year, a half year, or a quarter year. The amount named in the bond is called the face value or par value. When the sum due is repaid as specified in the bond, the bond is surrendered to the debtor and it is said to be redeemed. The price at which a bond is redeemed is called the redemption price. It may be redeemed at par, below par or above par. When the redemption price of a bond is the same as the face value, it is said to be redeemed at par; if it is more than its face value it is said to be redecmed at a premium; and if it is less than its face value it is said to be redeemed at a discount.
55. Purchase price.-Bonds are usually bought to yield the purchaser a certain rate of interest on his investment. This rate may be very different from the rate of interest specified in the bond. To avoid confusion, we shall designate the rate of interest specified in the bond as the dividend rate and the rate of interest received by the purchaser, on his investment, as the investment rate. When an individual buys a bond he expects to receive the periodic dividends as they fall due from the date of purchase to the redemption date and also receive the redemption price when due. It is clear then that the purchase price is really equal to the present value of the redemption price plus the present value of the annuity made from the periodic dividends, both figured at the investment rate.

Example 1. Find the purchase price of a $\$ 1,000,41 / 4 \%$ bond, dividends payable annually, to be redeemed at par in 18 years when the investment rate is to be 6% annually.

Solution. Here, the redemption price is $\$ 1,000$, the dividend is $\$ 42.50$ annually. Denoting the purchase price by P, we get

$$
\begin{aligned}
P & =1,000(1.06)^{-18}+42.50 \frac{1-(1.06)^{-18}}{0.06} \\
& =1,000(0.3503438)+42.50(10.8276035) \\
& =350.34+460.17=\$ 810.51
\end{aligned}
$$

Example 2. Find the purchase price of the above bond if it is to be redeemed at $\$ 950$.

Solution. $P=950(1.06)^{-18}+42.50 \frac{1-(1.06)^{-18}}{0.06}$

$$
=332.83+460.17=\$ 793.00
$$

If we let $\quad C=$ the redemption price, $(j, m)=$ nominal investment rate, $n=$ number of years before redemption, $R=$ the annual rent of the dividends, $p=$ the number of dividend payments each year,
and $\quad P=$ the purchase price,
we may write down the following general formula which will give the purchase price under all conditions.

$$
\begin{equation*}
P=C\left(1+\frac{j}{m}\right)^{-m n}+R \frac{1-\left(1+\frac{j}{m}\right)^{-m n}}{p\left[\left(1+\frac{j}{m}\right)^{m / p}-1\right]} \tag{1}
\end{equation*}
$$

Now, if $m=p$ (that is, if the interest is converted at the same time that the dividends are paid), the above formula reduces to

$$
\begin{equation*}
P=C\left(1+\frac{j}{p}\right)^{-n p}+\frac{R}{p} \frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{\frac{j}{p}} \tag{2}
\end{equation*}
$$

In most cases formula (2) will apply.

When P is greater than C, the bond is bought at a premium. The difference, $(P-C)$, is the premium. Similarly, when P is less than C, the bond is bought at a discount. The difference, $(C-P)$, is the discount. When P equals C the bond is bought at par. The bond in Example 1 was bought at a discount of ($\$ 1,000-\$ 810.51$), or $\$ 189.49$.

Example 3. Find the purchase price of a $\$ 500,6 \%$ bond, dividends payable semi-annually, to be redeemed at par in 20 years, when the investment rate is to be $51 / 2 \%$ converted semi-annually.

Solution. Here, $C=\$ 500, n=20, j=51 / 2 \%, R=\$ 30, m=p=2$. Using formula (2), we have

$$
\begin{aligned}
P & =500(1.0275)^{-40}+15 \frac{1-(1.0275)^{-40}}{0.0275} \\
& =500(0.33785222)+15(24.07810106) \\
& =168.926+361.172=\$ 530.10 \\
\text { Premium } & =\$ 530.10-\$ 500 \\
& =\$ 30.10
\end{aligned}
$$

Example 4. A $\$ 500,5 \%$ bond, dividends payable semi-annually, is to be redeemed in 15 years at 104 (at 104% of the face). What should its purchase price be, if the investment rate is to be 6% converted semiannually?

Solution. Since the bond is to be redeemed at 104, we have $C=\$ 520$. $n=15, j=6 \%, R=\$ 25, m=p=2$.

Making use of (2), we find

$$
\begin{aligned}
P & =520(1.03)^{-30}+12.50 \frac{1-(1.03)^{-30}}{0.03} \\
& =520(0.41198676)+12.50(19.60044135) \\
& =214.233+245.006=\$ 459.24 \\
\text { Discount } & =\$ 520-\$ 459.24=\$ 60.76
\end{aligned}
$$

If we let K equal the present value of the redemption price $=$ $C\left(1+\frac{j}{p}\right)^{-n p}$, and g equal the ratio of the annual rent of the dividends to the redemption price $=\frac{R}{C}$, formula (2) reduces to

$$
\begin{equation*}
P=K+\frac{g}{j}(C-K) \tag{3}
\end{equation*}
$$

The student will notice that (3) does not require an annuity table for its evaluation. It was first established by Makeham, an English actuary.

Caution. Formula (2) was derived under the assumption $m=p$. Formula (3) was derived from (2). Therefore, (3) may be used only when $m=p$.

Exercises

Find the purchase price of each of the following:

1. A $\$ 500,6 \%$ bond, dividends payable semi-annually, redeemable in 10 years at par, the investment rate to be 5% convertible semi-annually.
2. A $\$ 1,000,5 \%$ bond, dividends payable semi-annually, redeemable in 12 years at 105 , the investment rate to be 6% convertible semi-annually.
3. A $\$ 10,000,4 \%$ bond, dividends payable quarterly, redeemable in 20 years at 110 , the investment rate to be 5% convertible quarterly.
4. A $\$ 5,000,7 \%$ bond, dividends payable annually, redeemable in 18 years at par, the investment rate to be 6% convertible annually.
5. A $\$ 500,51 / 2 \%$ bond, dividends payable semi-annually, redeemable in 14 years at 102 , the investment rate to be 6% convertible semi-annually.
6. Establish formula (3).
7. Use formula (3) to solve Example 3.
8. A $\$ 2,000,5 \%$ bond, dividends payable semi-annually, will be redeemed at 105 at the end of 10 years. Find the purchase price to yield 7% converted semi-annually.
9. Solve Exercise 8, with the yield rate (investment rate) 7\% converted annually.
10. Should an investor, who wishes to make 6% (converted semi-annually) or more on his money, buy bonds at 88 which are to be redeemed in 10 years and bear 5% dividends payable semi-annually?
11. A $\$ 5,000,6 \%$ bond, dividends payable semi-annually, is to be redeemed in 16 years at 106. What should be paid for the bond if 5% (convertible annually) is to be realized on the investment?
12. Premium and discount.-If we subtract C from both members of formula (3) we will obtain the excess of purchase price over the redemption price. This result may be positive, negative, or zero. That is, the purchase price may be greater than the redemption price, less than the redemption price, or equal to the redemption price.

We have, if E is the excess,

$$
\begin{aligned}
E=P-C & =K+\frac{g}{j}(C-K)-C \\
& =\frac{g-j}{j}(C-K) \\
& =\frac{g-j}{j}\left[C-C\left(1+\frac{j}{p}\right)^{-n p}\right] \\
& =C \frac{g-j}{p} \cdot \frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{\frac{j}{p}}
\end{aligned}
$$

If we let k equal the excess of purchase price per unit of redemption price, it follows from the above equation that

$$
\begin{gather*}
k=\frac{g-j}{p} \cdot \frac{1-\left(1+\frac{j}{p}\right)^{-n p}}{\frac{j}{p}}, \tag{4}\\
E=P-C=C k, \text { and } P=C+C k . \tag{5}
\end{gather*}
$$

Example 1. A $\$ 1,000,6 \%$ semi-annual bond is to be redeemed in 10 years at $\$ 1,050$. Find the purchase price if the investment is to yield 5% scmi-annually.

Solution. Here, $C=\$ 1,050, n=10, j=0.05, m=p=2$, and $g=\frac{60}{1,050}=0.057143$. Substituting in (4), we have

$$
\begin{aligned}
k & =\frac{0.057143-0.05}{2} \cdot \frac{1-(1.025)^{-20}}{0.025} \\
& =(0.003571)(15.58916229) \\
& =0.055669 .
\end{aligned}
$$

And from (5), we get

$$
E=P-C=1,050(0.055669)=\$ 58.45
$$

Hence, the purchase price is $\$ 58.45$ more than the redemption price and

$$
P=\$ 1,050+\$ 58.45=\$ 1,108.45
$$

In actual practice bonds are usually redeemed at par. Then C becomes the face value and $g=\frac{R}{C}$ becomes the actual dividend rate. Also, the value, k, obtained from (4) is the excess of purchase price per unit of face value, and the value, $P-C$, obtained from (5) is the premium or discount at which the bond is purchased. In fact, k is the premium or discount per unit of face value. It is evident that k is a premium when

$$
g>j
$$

is a discount when

$$
g<j
$$

is at par when

$$
g=j
$$

Example 2. Solve Example 1, if the bond is to be redeemed at par.
Solution. Here, $C=\$ 1,000, n=10, m=p=2, j=0.05$, and $g=0.06$. We have

$$
\begin{aligned}
k & =\frac{0.06-0.05}{2} \cdot \frac{1-(1.025)^{-20}}{0.025} \text { [Formula (4)] } \\
& =(0.005)(15.58916229) \\
& =0.0779458
\end{aligned}
$$

And $\quad E=P-C=1,000(0.0779458)=\$ 77.95$

$$
=\text { the premium. }
$$

Hence,

$$
P=\$ 1,000+\$ 77.95=\$ 1,077.95
$$

Example 3. A $\$ 500,5 \%$ semi-annual bond is to be redeemed in 15 years at par. Find the purchase price if the investment is to yield $51 / 2 \%$ semi-annually.

Solution. Here, $C=\$ 500, n=15, \quad m=p=2, j=0.055$, and $g=0.05$. We have

$$
\begin{aligned}
k & =\frac{0.05-0.055}{2} \cdot \frac{1-(1.0275)^{-30}}{0.0275} \text { [Formula (4)] } \\
& =-(0.0025)(20.24930130)=-0.0506233
\end{aligned}
$$

And $\quad E=P-C=500(-0.0506233)=-\$ 25.31$
Hence, $\quad P=\$ 500-\$ 25.31=\$ 474.69$.
That is, the discount is $\$ 25.31$ and the purchase price is $\$ 474.69$.

Exercises

Use formulas (4) and (5) in the solution of the following:

1. Find the purchase price of a $\$ 1,000,5 \%$ bond, dividends payable annually, redeemable in 20 years at par, if the investment rate is to be $51 / 2 \%$ convertible annually.
2. Find the purchase price of a $\$ 5,000,41 / 2 \%$ bond, dividends payable semi-annually, redeemable in 15 years at 102, if the investment rate is to be 4% convertible semiannually.
3. What should be the purchase price of a $\$ 10,000,31 / 2 \%$ bond, dividends payable semi-annually, redeemable in 35 years at par, if 4% (convertible semi-annually) is to be realized on the investment?
4. Find the purchase price of a $\$ 500,41 / 2 \%$ bond, dividends payable quarterly, to be redeemed in 18 years at par, if the investment rate is to be 5% convertible quarterly.
5. What is the purchase price of a $\$ 10,000,6 \%$ bond, dividends payable"semiannually, redeemable in 30 years at 105, the investment rate to be $41 / 2 \%$ convertible semi-annually?
6. What should be the purchase price of a $\$ 1,000,5 \%$ bond, dividends payable annually, to be redeemed in 10 years at 110, if the investment rate is to be 6% convertible annually?
7. "Establish formula (4).
8. Use formulas (4) and (5) to solve Exercises 3 and 5, Art. 55.
9. Use formulas (4) and (5) to solve Exercise 10, Art. 55.
10. Amortization of premium and accumulation of discount.-When a bond is bought for more than the redemption value, provision should be made for restoring any excess of the original capital invested over the redemption price. The excess of interest on the bond over the interest required at the investment rate can and should be used for the gradual extinction of the excess book value* over the redemption price. The book value of a bond bought above redemption price thus diminishes at each interval until the redemption date, at which time its book value is equal to the redemption price. This amortization of the excess of purchase price over redemption price is called amortization of the premium.

When a bond is bought for less than the redemption price, we may think of it as having a periodically increasing book value, approaching the redemption price at maturity. The accumulation of the excess of redemption price over the purchase price is called accumulation of the discount. We shall illustrate by examples.

[^9]Example 1. A $\$ 1,000,6 \%$ bond, dividends payable annually, redeemable in 6 years is bought to yield 5% annually. Find the purchase price and construct a schedule showing the amortization of the premium.

Solution. Here, $C=\$ 1,000, n=6, j=0.05, m=p=1$, and $g=0.06$. Hence,

$$
k=0.0507569
$$

$$
\begin{aligned}
\text { Premium }=P-C & =\$ 50.76 \\
P & =\$ 1,050.76
\end{aligned}
$$

Now the book value of the bond at the date of purchase is $\$ 1,050.76$. At the end of the first year a $\$ 60$ dividend is paid on the bond. However, 5% on the book value for the first year is only $\$ 52.54$. This would leave a difference of $\$ 60-\$ 52.54=\$ 7.46$ for the amortization of premium for the first year. This would reduce the book value to $\$ 1,043.30$ for the second year. The interest on this amount at 5% is $\$ 52.17$. This leaves $\$ 60-\$ 52.17=\$ 7.83$ for the amortization of premium for the second year, and so on.

The following schedule shows the amount of amortization each year and the successive book values.

Schedule of Amortization-Scientific Method

At End of Period	Dividend on Bond	Interest Earned on Book Value	Amortization of Premium	Book Value
0	$\ldots \ldots$.	$\ldots \ldots$	$\ldots \ldots$.	$\$ 1,050.76$
1	$\$ 60.00$	$\$ 52.54$	$\$ 7.46$	$1,043.30$
2	60.00	52.17	7.83	$1,035.47$
3	60.00	51.77	8.23	$1,027.24$
4	60.00	51.36	8.64	$1,01.60$
5	60.00	50.93	9.07	$1,009.53$
6	60.00	50.48	9.52	$1,000.01$
Total			$\$ 50.75$	

The amortization of the premium may also be cared for by the straight line method. By this method the premium is divided by the number of periods and the book value is decreased each period by this quotient. Thus, in the present problem we would have $\$ 50.76 \div 6=\$ 8.46$. The following schedule illustrates the method.

Schedule of Amortization-Straight Line Method

At End of Period	Dividend on Bond	Amortization	Book Value
0	$\ldots \ldots$.	$\ldots \ldots$	$\$ 1,050.76$
1	$\$ 60.00$	$\$ 8.46$	$1,042.30$
2	60.00	8.46	$1,033.84$
3	60.00	8.46	$1,025.38$
4	60.00	8.46	$1,016.92$
5	60.00	8.46	$1,008.46$
6	60.00	8.46	$1,000.00$

Example 2. A $\$ 10,000,4 \%$ bond, dividends payable semi-annually, redeemable in 4 years, is bought to yield 5% semi-annually. Find the purchase price and construct a schedule showing accumulation of the discount.

Solution. Here, $C=\$ 10,000, n=4, j=0.05, m=p=2$, and $g=0.04$. Hence,

$$
k=-0.0358506
$$

$$
\text { Discount }=P-C=-\$ 358.51
$$

And

$$
P=\$ 9,641.49 .
$$

The following schedule shows the accumulation of discount for each period and the book valuc for each period.

Schedule of Accumulation-Scientific Method

At End of Period	Dividend on Bond	Interest Earned on Book Value	Accumulation of Discount	Book Value
0	$\ldots \ldots \ldots$	$\ldots \ldots$.	$\ldots \ldots \ldots$	$\$ 9,641.49$
1	$\$ 200.00$	$\$ 241.04$	$\$ 41.04$	$9,682.53$
2	200.00	242.06	42.06	$9,724.59$
3	200.00	243.11	43.11	$9,767.70$
4	200.00	244.19	44.19	$9,811.89$
5	200.00	245.28	45.28	$9,857.17$
6	200.00	246.43	46.43	$9,903.60$
7	200.00	247.59	47.59	$9,951.19$
8	200.00	248.78	48.78	$9,999.97$
Total			$\$ 358.48$	

Exercises

1. A $\$ 1,000,5 \%$ bond, dividends payable semi-annually, redcemable in 7 years at par, is bought to yicld 6% semi-annually. Construct an accumulation schedule.
2. A $\$ 1,000,5 \%$ bond, dividends payable annually, redeemable in 10 years, is bought to yield $41 / 2 \%$ annually. Construct an amortization schedule.
3. Construct a schedule for the amortization of the premium of the bond in Exercise 1, Art. 55.
4. Construct an accumulation schedule for the bond of Exercise 6, Art. 56.
5. A $\$ 500,5 \%$ bond, pays dividends semi-annually and will be redeemed at 105 on January 1, 1946. It is bought on July 1,1942 , to yield 6% converted semi-annually. Find the purchase price and form a schedule showing the accumulation of the discount.
6. A $\$ 5,000,6 \%$ bond, paying semi-annual dividends will be redeemed at 110 on September 15, 1947. Find the price on September 15, 1942, to yield 5% converted semi-annually, and form a schedule showing the amortization of the premium.
7. Bonds purchased between dividend dates.-We shall consider two cases.
(a) When the bond is bought at a certain quoted price and accrued interest with no apparent regard for yield.
(b) When the bond is bought on a strictly yield basis.

By accrued interest in case (a) is meant accrued simple interest on the face value at the rate named in the bond. In other words, we mean the accrued dividend. We shall illustrate by an example.

Example 1. A bond of $\$ 1,000$ dated July 1, 1940, bearing 6% interest payable semi-annually, was purchased March 1, 1941, at 98.5 and accrued interest. What was paid for the bond?

Solution. The dividend dates are July 1, and Jan. 1. The price quoted on this bond is evidently $\$ 985.00$. Hence, the price paid on March 1 is $\$ 985.00$ plus the interest on $\$ 1,000$ from Jan. 1 to March 1 at 6%, or

$$
\$ 985.00+\$ 10.00=\$ 995.00, \text { purchase price. }
$$

The student should observe that the purchase price is equal to the quoted price plus the dividend accrued from the last dividend date to the time of purchase.

When the bond is bought at a price to yield a given rate of interest on the investment, the purchase price is equal to the value (purchase price) of the bond at the last dividend date (the one just before the date of purchase) plus the interest, at the investment rate, on this value, from the last dividend date to the date of purchase. In practice, ordinary simple interest is used.

If P_{0} stands for the purchase price at the last dividend date and d is the number of days from the last dividend date to the date of purchase, the purchase price may be defined by the formula

$$
\begin{equation*}
P=P_{0}+\frac{P_{0} d j}{360} \tag{6}
\end{equation*}
$$

Example 2. A bond of $\$ 500$ issucd March 1, 1930, at 4% payable semi-annually and to be redeemed March 1, 1947, was purchased May 10, 1938, to realize 5% (converted semi-annually) on the investment. What should have been paid for the bond? Find the quoted price.

Solution. The time from March 1, 1938 (the last dividend date) to March 1, 1947 (the redemption date), is 9 years, and the purchase price as of the last dividend date is

$$
P_{0}=500(1.025)^{-18}+10 \frac{1-(1.025)^{-18}}{0.025}=\$ 464.12 .
$$

The time from March 1, 1938 (the last dividend date), to May 10, 1938 (the date of purchase), is 70 days.
Hence, $\quad \frac{P_{0} d j}{360}=\frac{(464.12)(70)(0.05)}{360}=\$ 4.51$
and $P=464.12+4.51=\$ 468.63$, the purchase price on May $10,1938$.
Now, the quoted price as of May 10, 1938, is the purchase price as of that date minus the dividend accrued from March 1, 1938, to May 10, 1938. The accrued dividend is the ordinary simple interest on $\$ 500$ for 70 days at 4%, or $\$ 3.89$.

Hence, the quoted price is

$$
\$ 468.63-\$ 3.89=\$ 464.74
$$

The student should observe the difference between purchase price and quoted price. Bonds are usually quoted on the market at a certain price plus accrued interest (at the dividend rate), guarantced to yield a certain rate of interest on the investment. In the case of the above bond the quoted price as of May 10, 1938, would have been $\$ 464.74$ (or 92.95% of face) and accrued interest to yield 5% semi-annually on the investment if held to the date of redemption.

Exercises

1. A $\$ 1,000,6 \%$ bond, dividends payable semi-annually, dated January 1, 1942, was purchased September 10, 1944, at 97.5 and accrued interest. What was paid for the bond?
2. The bond described in Exercise 1 is to mature January 1, 1949. What should have been paid for it September 10, 1944, if purchased to yield 7% semi-annually?
3. At what price should a $\$ 500,6 \%$ semi-annual bond, dated April 1, 1939, and maturing April 1,1946 , be bought July 10,1940 , to yield $5 \frac{1}{2} \%$, semi-annually, on the investment? Find the quoted price.
4. Should an investor, who wished to make 5% nominal, converted semi-annually, on his investment, have bought government bonds quoted at 89 on February 1, 1920? These bonds were redeemable November 15, 1942, and bore 41/4\% interest, payable semi-annually.
5. On July 20, 1935, a man bought 5% semi-annual bonds, due October 1, 1945, on a 6% semi-annual basis. The interest dates were April 1 and October 1. What price did he pay? Find the quoted price for that date.
6. A $\$ 1,000,6 \%$ bond, dividends payable March 15 and September 15, is redeemable March 15, 1950. It was bought January 1, 1944, to yield $51 / 2 \%$ converted semi-annually. Find the purchase price and the quoted price.
7. Find the quoted price for the bond of Exercise 6, as of July 5, 1947.
8. Annuity bonds.-An annuity bond is an interest-bearing bond, payable, principal and interest, in equal periodic payments or installments. It is evident that these equal periodic payments constitute an annuity whose present value is the face of the bond. The periodic payment can be found by using Art. 31. The purchase price at any date is the present value (figured at the investment rate) of the annuity composed of the periodic payments yet due. Let us illustrate by an example.

Example. At what price should a 4% annuity bond for $\$ 5,000$, payable in 8 equal annual payments, be purchased at the end of 3 years (just after the third payment has been made), if 5% (converted annually) is to be realized on the investment?

Solution. Using Art. 31, we find the periodic payment to be

$$
R=5,000 \frac{0.04}{1-(1.04)^{-8}}=\$ 742.64
$$

The purchase price at the end of 3 years is equal to the present value of an annuity of $\$ 742.64$ for 5 years at 5% converted annually.

$$
\text { Hence, } \quad P=742.64 \frac{1-(1.05)^{-5}}{0.05}=\$ 3,215.24 \text {. }
$$

60. Serial bonds.-When selling a set of bonds, a corporation may wish to redeem them in installments instead of redeeming all of the bonds on one date. When a bond issue is to be redeemed in several installments instead of all the bonds being redeemed on one date, the issue is known as a serial issue and the bonds of the issue are known as serial bonds. Evidently, the purchase price at any date is equal to the sum of the purchase prices of the installments yet to be redeemed.

Example. A city issues $\$ 40,000$ worth of 4% bonds, dividends payable semi-annually, to be redeemed by installments of $\$ 4,000$ in 2 years, $\$ 6,000$ in 4 years, $\$ 8,000$ in 6 years, $\$ 10,000$ in 8 years and $\$ 12,000$ in 10 years. An insurance company buys the entire issue on the date of issue so as to realize 5% (converted semi-annually) on the investment. What price was paid for the entire issue?

Solution. The purchase price of the entire issue is equal to the sum of the purchase prices of the five installments to be redeemed. Using (5), Art. 56, we have

$$
\begin{aligned}
4,000-4,000(0.005) \frac{1-(1.025)^{-4}}{0.025} & =\$ 3,924.76 \\
6,000-6,000(0.005) \frac{1-(1.025)^{-8}}{0.025} & =\$ 5,784.90 \\
8,000-8,000(0.005) \frac{1-(1.025)^{-12}}{0.025} & =\$ 7,589.69 \\
10,000-10,000(0.005) \frac{1-(1.025)^{-16}}{0.025} & =\$ 9,347.25 \\
12,000-12,000(0.005) \frac{1-(1.025)^{-20}}{0.025} & =\$ 11,064.65 \\
P_{-} & =\$ 37,711.25
\end{aligned}
$$

and
Hence, the purchase price of the issue is $\$ 37,711.25$.

Exercises

1. At what price should a 5% (payable semi-annually) annuity bond for $\$ 10,000$, payable in 26 equal semi-annual payments, be purchased at the end of 6 years, if $51 / 2 \%$ (converted semi-annually) is to be realized on the investment?
2. A $\$ 25,000$ serial issue of 6% bonds, with semi-annual dividends, is to be redeemed by payments of $\$ 5,000$ at the end of $3,4,5,6$, and 7 years respectively. Find the purchase price of the entire issue, if bought now to realize 5% (converted semi-annually) on the investment. [Use (4) and (5) Art. 56.]
3. What is the purchase price of a bond of $\$ 20,000$ payable $\$ 5,000$ in 4 years, $\$ 8,000$ in 6 years, $\$ 5,000$ in 7 years, and $\$ 2,000$ in 9 years, with dividends at 5% semi-annually, if the purchaser is to receive 6%, converted semi-annually, on his investment?
4. Find the purchase price of a 10 -year annuity bond for $\$ 25,000$, to be paid in semi-annual installments with interest at 6% converted semi-annually, if purchased at the end of 4 years to yield 5% converted semi-annually.
5. Find the purchase price on the date of issue of a $\$ 2,000$ bond bearing 4%, the principal and interest to be paid in 6 equal annual installments, if the purchaser is to realize 5% (convertible semi-annually) on his investment.
6. Use of bond tables.-Tables are available which give the purchase prices of bonds corresponding to given dividend rates, investment rates and times to maturity. These tables may be made as comprehensive as their purpose demands. The dividend rates may range from as low as 2 per cent to 8:or 9 per cent by intervals of $1 / 8$ per cent. The investment rates may have about the same range, but with smaller intervals. The times to maturity may range from $1 / 4,1 / 2$ or 1 year to 50 or 100 years by intervals of $1 / 4,1 / 2$ or 1 year depending on whether or not the dividends are payable quarterly, semi-annually or annually. These tables may be arranged in various forms. The following is a brief portion of a bond table:

Table Showing Purchase Prices of a 4% Bond for $\$ 1,000 \mathrm{with}$ Dividends Payable Semi-annually

Investment Rate Converted Semi-annually	Time to Maturity			
	5 Years	10 Years	15 Years	20 Years
2.00	$\$ 1,094.71$	$\$ 1,180.46$	$\$ 1,258.08$	$\$ 1,328.35$
2.50	$1,070.09$	$1,131.99$	$1,186.67$	$1,234.95$
3.00	$1,046.11$	$1,085.84$	$1,120.08$	$1,149.58$
3.50	$1,022.75$	$1,041.88$	$1,057.97$	$1,071.49$
4.00	$1,000.00$	$1,000.00$	$1,000.00$	$1,000.00$
4.50	977.83	960.09	945.89	934.52
5.00	956.24	920.05	895.35	874.49
5.50	935.20	885.71	848.14	819.41
6.00	915.70	851.23	804.00	768.85

Example. A $\$ 500,4 \%$ bond, dividends payable semi-annually, redeemable in 15 years at par, is bought to yield $5 \frac{1}{2} \%$ convertible semiannually. Find its purchase price.

Solution. Observing the above table, we find the purchase price of a $\$ 1,000$ bond corresponding to the given dividend rate, investment rate and time to maturity is $\$ 848.14$. But we are considering a $\$ 500$ bond. Consequently, its purchase price is $\$ 424.07$.

Exercises

1. Consider a $\$ 500$ bond due in 20 years, and bearing semi-annual dividend coupons at 4% per annum. Find by the use of the above table the purchase price if the investment rate is to be $41 / 2 \%$. Check the result by calculations independent of the table.
2. Solve Exercise 1, if the investment rate is to be (a) 3%; (b) $31 / 2 \%$; (c) 5%; (d) 6%.
3. Consider a $\$ 500,4 \%$ bond, dividends payable semi-annually, which matures in 10 years. Using the above table and the method of interpolation find the approximate purchase price when the investment rate is to be (a) $33 / 4 \%$ (b) $51 / 4 \%$. Check (a) by using formula (5), Art. 124 and logarithms.
4. Solve Exercise 3, if the investment rate is to be (a) $31 / 4 \%$; (b) $43 / 4 \%$.
5. Determining the investment rate when the purchase price of a bond is given.-At times the price of a bond is quoted on the market, guaranteed to yield a certain rate of interest on the investment, provided the bond is held until the date of maturity. At other times the price is quoted, but no investment rate is given. Before purchasing a bond at a certain price, the prospective buyer would naturally want to know (approximately at least) the rate of interest that would be realized by such an investment. Therefore, it is very important that we have a method of finding the investment rate when the purchase price is given. We shall discuss two methods: (a) when bond and annuity tables are available; (b) when no tables are available.
(a) When either bond or annuity tables are given the approximate investment rate may be found by the method of interpolation. We shall illustrate by examples.

Example 1. Find the rate of income realized on a 6% bond purchased for $\$ 105,10$ years before maturity.

Solution. Since the bond is bought at a premium the investment rate will be less than the dividend rate. Let us try 5%.

Then,

$$
\begin{aligned}
P & =100(1.05)^{-10}+6 \frac{1-(1.05)^{-10}}{0.05} \\
& =61.39+46.33=\$ 107.72 .
\end{aligned}
$$

Evidently the investment rate is greater than 5%. Let us now try $5 \frac{1}{2} \%$.

$$
\text { Then, } \quad \begin{aligned}
P & =100(1.055)^{-10}+6 \frac{1-(1.055)^{-10}}{0.055} \\
& =58.54+45.23=\$ 103.77
\end{aligned}
$$

We observe that the investment rate must lie between 5% and $5 \frac{1}{2} \%$. Arranging the results thus obtained, we have

Cost	Investment Rate
107.72	5%
105.00	$x \%$
103.77	$51 / 2 \%$

Interpolating, we have

$$
\begin{aligned}
\frac{107.72-105.00}{107.72-103.77} & =\frac{5-x}{5-51 / 2} \\
\frac{2.72}{3.95} & =\frac{x-5}{1 / 2} \\
3.95 x & =21.11 \\
x & =5.344 \%
\end{aligned}
$$

Example 2. Find the rate of income realized on a 4% semi-annual bond, purchased for $\$ 94.50$, 10 years before maturity.

Solution. Try $41 / 2 \%$. Then,

$$
\begin{aligned}
P & =100(1.0225)^{-20}+2 \frac{1-(1.0225)^{-20}}{0.0225} \\
& =\$ 96.01
\end{aligned}
$$

The rate is evidently greater than $4 \frac{1}{2} \%$. We shall now try 5%.

$$
\begin{aligned}
P & =100(1.025)^{-20}+2 \frac{1-(1.025)^{-20}}{0.025} \\
& =\$ 92.20
\end{aligned}
$$

We observe that the rate lies between $41 / 2 \%$ and 5%.

Cost	Investment Rate
96.01	$41 / 2 \%$
94.50	$x \%$
92.20	5%

Interpolating, we have

$$
\begin{aligned}
\frac{96.01-94.50}{96.01-92.20} & =\frac{41 / 2-x}{41 / 2-5} \\
\frac{1.51}{3.81} & =\frac{x-41 / 2}{1 / 2} \\
1.51 & =7.62 x-34.29 \\
7.62 x & =35.80 \\
x & =4.7 \%
\end{aligned}
$$

The student will observe that we find a rate that gives a purchase price a little larger than the given purchase price and then a rate which gives a purchase price a little smaller than the given purchase price. We then find the approximate rate by interpolation.

Example 3. A $\$ 1,000,4 \%$ bond, dividends payable semi-annually, was bought 20 years before maturity at $\$ 850.25$. Using the above bond table, Art. 61, find the approximate investment rate.

Solution.
When

$$
j=0.050, \quad P=\$ 874.49
$$

When $\quad j=0.055, \quad P=\$ 819.41$.

$$
\text { Then, } \quad \begin{aligned}
j & =0.0500+\frac{874.49-850.25}{874.49-819.41}(0.055-0.050) \\
& =0.0500+\frac{24.24}{55.08}(0.005) \\
& =0.0500+0.0022=0.0522=5.22 \% .
\end{aligned}
$$

Exercises

1. Find the rate of income realized on a 5% semi-annual bond maturing in $18 \frac{1}{2}$ years when bought at $\$ 103.35$.
2. A $\$ 1,000,5 \%$ bond with semi-annual dividends, is redeemable at par at the end of 12 years. If it is quoted at $\$ 1,075.60$, what is the investment rate?
3. Find the effective rate realized by investing in 5% bonds with semi-annual dividends, redeemable at par, which are quoted at $84.2,10$ years before redemption.
4. A state bond bearing 5% interest, payable semi-annually, and redeemable in 8 years at par, was sold at 95 . Find the yield rate.
5. On November 15, 1930, a certain United States Government bond sold at 90. If this bond is redeemable November 15,1952 , and bears 4% interest, payable semiannually, find the yield rate on November 15, 1930.
6. A 4% bond, dividends payable semi-annually, was bought 15 years before maturity at 92.5 . Using the bond table, find the approximate investment rate.
7. Using the bond table, find the approximate investment rate, when a 4% bond, dividends payable semi-annually, is bought 10 years before maturity at 106.3.
(b) When tables are not available the approximate investment rate may be found by solving formula (4), Art. 56 for j. This formula may be written

$$
\begin{equation*}
\frac{g-j}{k}=\frac{j}{1-\left(1+\frac{j}{p}\right)^{-n p}} \tag{7}
\end{equation*}
$$

Expanding $\left(1+\frac{j}{p}\right)^{-n p}$ by the binomial theorem and neglecting all terms that involve j^{3} and higher powers of j, we get
and

$$
\begin{aligned}
\left(1+\frac{j}{p}\right)^{-n p} & =1-n j+\frac{n p(n p+1)}{2} \cdot \frac{j^{2}}{p^{2}} \\
\frac{g-j}{k} & =\frac{j}{n j-\frac{n(n p+1)}{2 p} j^{2}}=\frac{1}{n-\frac{n(n p+1) j}{2 p}}
\end{aligned}
$$

Multiplying the above equation through by n and dividing out the right-hand member, we obtain

$$
\frac{n(g-j)}{k}=1+\frac{n p+1}{2 p} j \text { (approximately) }
$$

Solving for j, we have

$$
\begin{equation*}
j=\frac{2 p(n g-k)}{n p(k+2)+k} \tag{8}
\end{equation*}
$$

which will give the approximate investment rate.
Example 4. Let us now apply formula (8) to Example 1, of Art. 62.
Solution. Here, $k=0.05, n=10, p=1$, and $g=0.06$.

Then,

$$
j=\frac{2(0.60-0.05)}{10(2+0.05)+0.05}=0.05353
$$

and the approximate investment rate is 5.353%.
We notice that the result obtained by using formula (8) is approximately the same as that obtained by using annuity tables.

Ordinarily, (8) will give a result which is accurate enough. At least, it is accurate enough for the layman who might be interested in the purchasing of bonds. Naturally, bond houses and individuals dealing in bonds and quoting bond prices, to yield a certain rate of interest on the investment, would require a more accurate method. However, these people would have comprehensive bond and annuity tables available, by which the investment rate could be found to the required degree of accuracy.

Exercises

1. Apply formula (8) to Examples 2 and 3 of Art. 62.
2. Apply formula (8) to Exercises 1,3 , and 5 of Art. 62(a), page 158.
3. Apply formula (8) to Exercises 2, 4, and 6 of Art. $62(\mathrm{a}$), page 158.
4. A person bought a $\$ 1,000,5 \%$ bond, dividends payable semi-annually, 18 years before maturity for $\$ 975$. Find the investment rate by using annuity tables and then check the result by using formula (8).
5. A $\$ 500,31 / 4 \%$ Government bond, dividends payable June 15 and December 15, was bought June 15,1945 , for $\$ 530$. If this bond is to be redeemed December 15, 1956, find the investment rate as of June 15, 1945.

Problems

1. A $\$ 1,000,5 \%$ bond, dividends payable April 15 and October 15, maturing October 15,1946 , was bought April 15,1943 , to yield ($j=.06, m=2$). Construct a schedule showing the accumulation of the discount.
2. A $\$ 1,000,6 \%$ bond, dividends payable semi-annually, maturing in 4 years, was bought to yield ($j=.05, m=2$). Construct a schedule showing the amortization of the premium.
3. A $\$ 300,000$ issue of highway bonds bearing 4% interest, payable semi-annually, dated January 1, 1944, matures $\$ 100,000$ January 1, 1945, 1946 and 1947. What price should be paid for the issue to realize ($j=.03, m=2$)?
4. A $\$ 1,000$ bond paying 5% semi-annually, redeemable at $\$ 1,040$ in 10 years, has been purchased for $\$ 970$. Find the investment rate.
5. A 4%, J. and J.,* bond is redecmable at par on January 1, 1952. Find the yield if it is purchased July 1, 1939, at 89.32.
6. A $\$ 1,000,6 \%$, J. and J., bond is redeemable at par on July 1, 1950. Find the price to yield ($j=.05, m=2$) on August 16, 1940 .
7. Find the purchase price of a $\$ 100,5 \%$ bond, dividends payable semi-annually and redeemable at par in 10 years, to yield 6% effective.
8. Find the purchase price of a $\$ 100,4 \%$ bond, dividends payable semi-annually and redeemable in 20 years at 120 , to yield 5% effective.
[^10]
CHAPTER VII

PROBABILITY AND ITS APPLICATION IN LIFE INSURANCE

63. The history of probabilities.-Aristotle (384-322 B. C.), the Greek philosopher, is credited with the first attempt to define the measure of a probability of an event. Aristotle says an event is probable when the majority, or at least the majority of the most intellectual persons, deem it likely to happen.

But the first real mathematical treatment of probability originated as isolated problems coming from games of chance. Cardan (1501-1576) and Galileo, two Italian mathematicians, solved many problems relating to the game of dice. Aside from his regular occupation as a mathematician, Cardan was also a professional gambler. As such he had evidently noticed that there was always more or less cheating going on in the gambling houses. This led him to write a little treatise on gambling in which he discussed some mathematical questions involved in the games of dice then played in the Italian gambling houses. The aim of this little book was to fortify the gamester against such cheating practices. Galileo was not a gambler, but was often consulted by a certain Italian nobleman on problems relating to the game of dice. As a result of these consultations and his investigations he has left a short memoir. Pascal (1623-1662) and Fermat (1601-1665), two great French mathematicians, were also consulted by professional gamblers and this led them to make their contributions to the subject of chance.

The Dutch physicist, Huyghens (1629-1695), and the German mathematician, Leibnitz (1646-1716), also wrote on chance. However, the first extensive treatise on the subject of chance was written by Jacob Bernoulli (1654-1705). In this treatment of the subject which was published in 1713, the author shows many applications of the new science to practical problems.

The first English treatise on probabilities was written by Abraham de Moivre (1667-1754). This was a remarkable treatment and may yet be read with profit. This book was translated into German by the Austrian mathematician, E. Czuber.

It was left for La Place (1749-1827), that great French mathematician, to leave the one really famous treatise on the theory of chance, "Theorie Analytique des Probabilitiés." Since the time of La Place many books and articles on the theory have been written by mathematicians in all lands.

The subject of probability has become so widespread in its applications that the best minds of the world have undertaken its further development. Today, the physicist, the chemist, the biologist, the statistician, the actuary, depend upon the results of the theory of probability for the development of their respective fields.

Probably the earliest writer on the application of the theory of probability to social phenomena was John Graunt (1620-1674) who, in 1662, published his "Observations on the London Bills of Mortality." The astronomer, Edmund Halley, published his Mortality Tables in 1693. Adolphe Quetelet (1796-1874) devoted his life to the applications of probabilities to scientific research, particularly to the study of populations.

Following the work of these investigators, life insurance organizations began to function. With the organization of the Equitable Society of London in 1762 , life insurance was successfully placed on a scientific basis. The company employed the mathematician, Dr. Richard Price, to be the actuary to determine the premiums which should be charged. He drew up the Northampton Table of Mortality in 1783, and from this event insurance as a science may be said to date.
64. Meaning of a priori probability.-A box contains three white and four black balls. One ball is drawn at random and then replaced and this process is continued indefinitely. What proportion of the balls drawn will be black? Here there are seven balls to be drawn or we may say there are seven possibilities, and either of the seven balls is equally likely to be drawn or any one of the scven possibilities is equally likely to happen. Of the seven possibilities, any one of three would result in drawing a white ball and any one of four would result in drawing a black ball. We would say then that three possibilities of the seven are favorable to drawing a white ball and the other four possibilities are favorable to drawing a black ball. We put the above statement in another way by saying that in a single draw the probability of drawing a white ball is $3 / 7$ and the probability of drawing a black ball is 44 . This does not mean that out of only seven draws, exactly thrce would be white and four black. But it docs mean that, if a single ball were drawn at random and were replaced and this process continued indefinitely, $3 /$ of the balls drawn would be white and 44 would be black. Or the ratio of the number of white balls drawn to the number of black balls drawn would be as 3 to 4 .

Probability and Its Application in Life Insurance

Reasoning similarly to the above led La Place to formulate the following a priori definition of probability:

If h is the number of possible ways that an event will happen and f is the number of possible ways that it will fail and all of the possibilities are equally likely, the probability that the event will happen is $p=\frac{h}{h+f}$ and the probability that it will fail is $q=\frac{f}{h+f}$.

It is evident, then, that the sum of the probability that an event will happen and the probability that it will fail is 1 , the symbol for certainty.

In analyzing a number of possibilities we must be sure that each of them is equally likely to happen before we attempt to apply the above definition of probability.

Example: What is the probability that a man aged 25 and in good health will die before age 30? In this case we might reason thus: The event can happen in only one way and fail in only one way, and conscquently the probability that he will die before age 30 is $1 / 2$. But this reasoning is false for we are assuming that living five years and dying within five years are equally likely for a man now 25 years old. But this is not the actual experience. This example will be discussed in Art. 65 .

Exercises

1. A bag contains 7 white and 5 black balls, and a ball is drawn at random. What is the probability (a) that the ball is white? (b) that the ball is black?
2. A deck of 52 cards contains 4 aces. If a card is drawn at random, what is the probability that it will be an ace?
3. A coin is tossed. What is the probability that it will fall head up?
4. If the probability of winning a game is $3 / 5$, what is the probability of losing?
5. If the probability of a man living 10 years is 0.6 , what is the probability of his dying within 10 years?
6. If a cubical die is tossed, what is the probability that it will fall with 6 up ?
7. Two coins are tossed at random. What is the probability of obtaining (a) two heads? (b) one head and one tail?
8. Two cubical dice are tossed at random. Find the probability that the sum of the numbers is $2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; 12$.
9. A box contains 45 tickets numbered from 1 to 45 . If a ticket is drawn at random, what is the probability that the number on it is (a) odd? (b) even? (c) divisible by 5 ? (d) larger than 35 ?
10. A coin and a cubical die are tossed simultaneously. Find the probability that they will fall with the coin head up and with a face on the die numbered less than 5.
11. Three coins are tossed. What is the probability of exactly two heads?
12. Which is the more likely to happen, a throw of 4 with one die or a throw of 8 with two dice?
13. A and B each throw two dice. If A throws 8 , find the probability that B will throw a larger number.
14. Relative frequency. Empirical probability.-In the example and the exercises of Art. 64 the probabilities are derived in each case by an a priori determination of all the equally likely ways in which the event in question can happen. There are many classes of events in which the notion of probability is important although it is impossible to make an a priori determination of all the equally likely ways an event can happen or fail. In such cases we determine an approximate probability empirically by means of a large number of observations. Such determinations are necessary in the establishment of life insurance, pension systems, fire insurance, casualty insurance, and statistics.

If we have obscrved that an event has happened h times out of n possible ways, we call h / n the relative frequency of the event. When n is a large number, h / n may be considered a fair estimate of the probability derived from observation. Our confidence in the estimate increases as the number n of obscrved cases increases. If, as n increases indefinitely, the ratio h / n approaches a limiting value, this limiting value is the probability of the happening of the event. That is

$$
p=\underset{n \rightarrow \infty}{\operatorname{limit}} \frac{h}{n} .
$$

In statistical applications the limit of h / n cannot in general be determined, but satisfactory approximations to the limit may be found for many practical purposes.

We are now ready to solve the problem which was stated in Art. 64. The Amcrican Experience Table of Mortality shows that out of 89,032 men living at age 25 , the number living at age 30 will be 85,441 . Then the number dying before age 30 is $89,032-85,441$ or 3,591 . Hence the probability that a man aged 25 will die before age 30 is $\frac{3,591}{89,032}=.0403$. In this problem, n equals 89,032 and h equals 3,591 .

We have previously stated that the value h / n is only an estimate, but it is accurate enough (when n is a large number) for many practical purposes. Life insurance companies use the American Experience Table of Mortality as a basis to determine the proper premiums to charge their policy holders.

Exercises

1. Among 10,000 people aged 30,85 deaths occurred in a year. What was the relative frequency of deaths for this group?
2. Out of 10,000 children born in a city in a given year, 5,140 were boys and 4,860 were girls. What was the relative frequency of boy babies in the city that year?
3. A group of 10,000 college men was measured as to height. Of these, 1,800 were between 68 and 69 inches high. Estimate the relative frequency of height of college men between 68 and 69 inches.
4. Permutations. Number of permutations of things all different.Each of the different ways that a number of things may be arranged is known as a permutation of those things. For example the different arrangements of the letters $a b c$ are: $a b c, a c b, b a c, b c a, c a b, c b a$. Here there are 3 different ways of selecting the first letter and after it has been selected in one of these ways there remain 2 ways of selecting the second letter. Then the first two letters may be selceted in $3 \cdot 2$ or 6 ways. It is clear that we have no choice in the selection of the third letter and consequently the total number of permutations (or arrangements) of the three letters is 6. This example illustrates the following:

Fundamental Principle: If one thing may be done in p ways and after it has been done in one of these ways, another thing may be done in q ways, then the two things together may be done in the order named in pq ways.

It is evident that for each of the p ways of doing the first thing there are q ways of doing the second thing and the total number of ways of doing the two in succession is $p q$.

The above principle may be extended to three or more things.

Exercises

1. If 2 coins are tossed, in how many ways can they fall?
2. If 3 coins are tossed, in how many ways can they fall?
3. If 2 dice are thrown, in how many ways can they fall?
4. If 2 dice and 3 coins are tossed, in how many ways can they fall?
5. How many signals can be made by hoisting 3 flags if there are 9 different flags from which to choose?
6. In how many different ways can 3 positions be filled by selections from 15 different people?
7. How many four-digit numbers can be formed from the numbers $1,2,3,4,5,6$, 7, 8, 9 ?

Now suppose there are n things all different and we wish to find the number of permutations of these things taken r at a time, $n \geqq r$.

Since only r of the n things are to be used at a time, there are only r places to be filled. The first place may be filled by any one of the n things and the second place by any one of the $n-1$ remaining things. Then the first and second places together may be filled in $n(n-1)$ ways. The third place may be filled by any one of the $n-2$ remaining things. Hence the first three places may be filled in $n(n-1)(n-2)$ ways. Reasoning in a similar way we see that after $r-1$ places have been filled, there remain $n-(r-1)$ things from which to fill the r th place. Applying the fundamental principle stated above we have

$$
\begin{equation*}
{ }^{*} P_{r}=n(n-1)(n-2) \cdots(n-r+1) \tag{1}
\end{equation*}
$$

When $r=n$, (1) becomes,

$$
\begin{equation*}
{ }_{n} P_{n}=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1=\dagger n!. \tag{2}
\end{equation*}
$$

Exercises

1. A man has two suits of clothes, four shirts and three hats. In how many ways may he dress by changing suits, shirts and hats?
2. How many arrangements of the letters in the word "Mexico" can be made, using in each arrangement (a) 4 letters? (b) all the letters?
3. Four persons enter a street car in which there are 7 vacant seats. In how many ways may they be seated?
4. Three different positions in an office are to be filled and there are 15 applicants, each one being qualified to fill any one of the positions. In how many ways may the three positions be filled?
5. How many signals could be made from 5 different flags?
6. Find the number of permutations, P, of the letters $a a b b b$ taken 5 at a time. Hint: $P \cdot 2!\cdot 3!=5$!.
7. If P represents the number of distinct permutations of n things, taken all at a time, when, of the n things, there are n_{1} alike, n_{2} others alike, n_{3} others alike, etc., then:

$$
P=\frac{n!}{n_{1}!n_{2}!n_{3}!\ldots}
$$

8. How many distinct permutations can be made of the letters of the word attention taken all at a time?
9. How many distinct permutations of the letters of the word Mississippi can be formed taking the letters all at a time?

[^11]10. How many ways can ten balls be arranged in a line if 3 are white, 5 are red, and 2 are blue?
11. How many six-place numbers can be formed from the digits $1,2,3,4,5,6$, if 3 and 4 are always to occupy the middle two places?
12. In how many ways can 3 different algebras and 4 different geometries be arranged on a shelf so that the algebras are always together?
13. In how many ways can 10 boys stand in a row when:
(a) a given boy is at a given end?
(b) a given boy is at an end?
(c) two given boys are always together?
(d) two given boys are never together?
67. Combinations. Number of combinations of things all different.By a combination we mean a group of things without any regard for order of arrangement of the individuals within the group. For example abc, acb, $b a c, b c a, c a b, c b a$ are the same combination of the letters $a b c$, but each arrangement is a different permutation.

By the number of combinations of n things taken r at a time is meant the number of different groups that may be formed from n individuals when r individuals are placed in each group. For example $a b, a c$, and $b c$ are the different combinations of the letters $a b c$ when two letters are used at a time.

The symbol ${ }_{n} C_{r}$ is universally used to stand for the number of combinations of n things taken r at a time. We will now derive an expression for ${ }_{n} C_{r}$. For each one of the ${ }_{n} C_{r}$ combinations there are r ! different permutations. And for all of the ${ }_{n} C_{r}$ combinations there are ${ }_{n} C_{r} \cdot r$! permutations, which is the number of permutations of n things taken r at a time. Hence,

$$
{ }_{n} C_{r} \cdot r!={ }_{n} P_{r}
$$

and

$$
\begin{equation*}
{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!} . \tag{3}
\end{equation*}
$$

Since

$$
{ }_{n} P_{r}=n(n-1)(n-2) \cdots(n-r+1),
$$

we have

$$
\begin{align*}
{ }_{n} C_{r} & =\frac{n(n-1)(n-2) \cdots(n-r+1)}{r!} \tag{4}\\
& =\frac{n!}{r!(n-r)!}
\end{align*}
$$

Exercises

1. Find the number of combinations of 10 things taken 7 at a time:

Solution. Here, $n=10$ and $r=7$.
Then,

$$
{ }_{10} C_{7}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}=120
$$

2. How many committees of 5 can be selected from a group of 9 men?
3. Out of 8 Englishmen and 5 Americans how many committees of 3 Englishmen and 2 Americans can be chosen?
4. How many different sums can be made up from a cent, a nickel, a dime, a quarter, and a dollar?
5. An urn contains 5 white and 7 black balls. If 4 balls are drawn at random what is the probability that (a) all are black, (b) 2 are white and 2 are black?

Solution. (a) The total number of ways that 4 balls may be drawn from 12 balls is ${ }_{12} C_{4}$ or 495 ways. And the number of ways that 4 black balls may be drawn is ${ }_{7} C_{4}$ or 35 ways. Hence the probability of drawing 4 black balls is $35 / 495$ or $7 / 99$.
(b) Two white balls may be drawn in ${ }_{5} C_{2}$ or 10 ways. And for each one of these 10 ways of drawing two white balls, two black balls may be drawn in ${ }_{7} C_{2}$ or 21 ways. Then two white balls and two black balls may be drawn together in 10×21 or 210 ways (Fundamental Principle, Art. 66). Hence, the probability of drawing 2 white and 2 black balls is $210 / 495$ or $14 / 33$.
6. A bag contains 4 white, 6 black, and 7 red balls. If 4 balls are drawn at random, what is the probability that (a) all are black, (b) 2 black and 2 red, (c) 1 white, 1 black, and 2 red?
7. Prove that ${ }_{n} C_{r}={ }_{n} C_{n-r}$.
8. Prove that the expansion of the binomial $(a+b)^{n}$ may be written

$$
\begin{aligned}
(a+b)^{n} & =a^{n}+{ }_{n} C_{1} a^{n-1} b+{ }_{n} C_{2} a^{n-2} b^{2}+\cdots+{ }_{n} C_{r} a^{n-r} b^{r}+\cdots+b^{n} \\
& =\sum_{r=0}^{r=n}{ }_{n} C_{r} a^{n-r} b^{r}
\end{aligned}
$$

if we define ${ }_{n} C_{0}$ to be 1 .
9. How many straight lines are determined from 10 points, no 3 of which are in the same straight line?
10. How many different sums can be made from a cent, a nickel, a dime, a quarter, a half-dollar, and a dollar?
11. From 10 books, in how many ways can a selection of 6 be made: (a) when a specified book is always included? (b) when a specified book is always excluded?
12. Prove that ${ }_{n} C_{r}+{ }_{n} C_{r-1}={ }_{n+1} C_{r}$.
13. Out of 6 different consonants and 4 different vowels, how many linear arrangements of letters, each containing 4 consonants and 3 vowels, can be formed?
14. A lodge has 50 members of whom 6 are physicians. In how many ways can a committee of 10 be chosen so as to contain at least 3 physicians?

Probability and Its Application in Life Insurance

15. In the equation of Exercise 8, make $a=b=1$, and show that

$$
{ }_{n} C_{1}+{ }_{n} C_{2}+\cdots+{ }_{n} C_{n}=2^{n}-1 .
$$

16. Solve Exercise 4 above, using Exercise 15.
17. In how many ways can 7 men stand in line so that 2 particular men will not be together?
18. A committee of 7 is to be chosen from 8 Englishmen and 5 Americans. In how many ways can a committee be chosen if it is to contain: (a) just 4 Englishmen? (b) at least 4 Englishmen?
19. Prove: ${ }_{n+2} C_{r+1}={ }_{n} C_{r+1}+2{ }_{n} C_{r}+{ }_{n} C_{r-1}$.
20. If ${ }_{n} P_{r}=110$ and ${ }_{n} C_{r}=55$, find n and r.
21. If ${ }_{n} C_{4}={ }_{n} C_{2}$, find n.
22. If $n_{3}=10 / 21\left(_{n} C_{5}\right)$, find n.
23. If ${ }_{2 n} C_{n-1}=91 / 24\left({ }_{2 n-2} C_{n}\right)$, find n.
24. Prove: ${ }_{n} C_{1}+2 \cdot{ }_{n} C_{2}+3 \cdot{ }_{n} C_{3}+\cdots+n \cdot{ }_{n} C_{n}=n(2)^{n-1}$.
25. How many line-ups are possible in choosing a baseball nine of 5 seniors and 4 juniors from a squad of 8 seniors and 7 juniors, if any man can be used in any position?
26. Some elementary theorems in probability.-Sometimes it is convenient to consider an event as made up of simpler events. The given event is then said to be compound. Thus, the compound event may be made of simpler mutually exclusive events, simpler independent events, or simpler dependent events.
A. Mutually Exclusive Events. Two or more events are said to be mutually exclusive when the occurrence of any one of them excludes the occurrence of any other. Thus, in the toss of a coin the appearance of heads and the appearance of tails are mutually exclusive. Also, if a bag contains white and black balls and a ball is drawn, the drawing of a white ball and the drawing of a black ball are mutually exclusive events.

Theorem. Mutually exclusive events. If $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{r}$ are the separate probabilities of r mutually exclusive events, the probability that one of these events will happen on a particular occasion when all of them are in question is

$$
\begin{equation*}
P=p_{1}+p_{2}+p_{3}+\ldots+p_{r} \tag{5}
\end{equation*}
$$

the sum of the separate probabilities.
This theorem follows from the definition of mutually exclusive events.
For if $a_{1}, a_{2}, a_{3}, \cdots, a_{r}$, indicate the number of ways the separate events can happen, then the number of ways favorable to some event
is $a_{1}+a_{2}+a_{3}+\cdots+a_{r}$. If m represents the total number of possibilities, favorable and unfavorable, then

$$
\begin{aligned}
P & =\frac{a_{1}+a_{2}+a_{3}+\cdots+a_{r}}{m}=\frac{a_{1}}{m}+\frac{a_{2}}{m}+\frac{a_{3}}{m}+\cdots+\frac{a_{r}}{m} \\
& =p_{1}+p_{2}+p_{3}+\cdots+p_{r} .
\end{aligned}
$$

When two mutually exclusive events are in question, the probabilities are frequently called either or probabilities. Thus, if a die is thrown, the probability of either an ace or a deuce is $1 / 6+1 / 6$ or $1 / 3$.
B. Independent Events. Two or more events are dependent or independent according as the occurrence of any one of them does or does not affect the occurrence of the others. Thus, if A tosses a coin and B throws a die, the tossing of heads by A and the throwing of a deuce by B are independent events. However, if a bag contains a mixture of white and black balls and a ball is drawn and not returned to the bag, the probabilities in a second drawing will be dependent upon the first event.

Theorem. Independent events. If $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{r}$ are the separate probabilities of r independent events, the probability that all of these events will happen together at a given trial is the product of their separate probabilities.

Let $p_{1}=a_{1} / m_{1}, p_{2}=a_{2} / m_{2}, \ldots, p_{r}=a_{r} / m_{r}$ be the simple probabilities; where $a_{1}, a_{2}, \ldots, a_{r}$ are the ways favorable to the happening of the separate events; and $m_{1}, m_{2}, \ldots, m_{r}$ are the possible ways in which the separate events may happen or fail. By the Fundamental Principle, Art. 66, the number of ways favorable to the happening together of the r events is $a_{1} a_{2} \ldots a_{r}$. And by applying the same principle we get $m_{1} m_{2} \ldots m_{r}$ as the number of possible ways that the r events might happen or fail. Consequently,

$$
\begin{align*}
P & =\frac{a_{1} a_{2} \cdots a_{r}}{m_{1} m_{2} \cdots m_{r}} \\
& =p_{1} p_{2} \cdots p_{r} \tag{6}
\end{align*}
$$

and the theorem is proved.
Corollary. If $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{\boldsymbol{r}}$ are the separate probabilities of \boldsymbol{r} independent events, the probability that they will all fail on a given occasion is

$$
\begin{equation*}
\left(1-p_{1}\right)\left(1-p_{2}\right) \ldots\left(1-p_{r}\right), \tag{7}
\end{equation*}
$$

and the probability that the first \boldsymbol{k} events will succeed and the remainder fail is

$$
\begin{equation*}
p_{1} p_{2} \ldots p_{k}\left(1-p_{k+1}\right) \ldots\left(1-p_{r}\right) \tag{8}
\end{equation*}
$$

C. Dependent events. The following theorem for dependent events may be proved by a similar method to that used for independent events.

Theorem. Dependent events. Let p_{1} be the probability of a first event; let \boldsymbol{p}_{2} be the probability of a second event after the first has happened; let \boldsymbol{p}_{3} be the probability of a third event after the first two have happened; and so on. Then the probability that all of these events will occur in order is

$$
\begin{equation*}
P=p_{1} p_{2} \ldots p_{r} \tag{9}
\end{equation*}
$$

Exercises

1. The probability that A will live 20 years is 14 , the probability that B will live 20 years is $1 / 6$, and the probability that C will live 20 years is 15 . What is the probability that all three will be living in 20 years?

Solution. We have here three independent events, where

Hence,

$$
\begin{aligned}
& p_{1}=1 / 4, \quad p_{2}=1 / 6, \text { and } p_{3}=1 / 5 . \\
& P=(1 / 7)(1 / 6)(1 / 5)=1 / 210 .
\end{aligned}
$$

2. Find the probability of drawing 2 white balls in succession from a bag containing 4 white and 7 black balls, if the first ball drawn is not replaced before the second drawing is made.

Solution. We have here two dependent events. The probability that the first draw will be white is $\frac{4}{4+7}=\frac{4}{11}$; the probability that the second draw will be white is $\frac{3}{3+7}=\frac{3}{10}$.
Hence,

$$
\begin{aligned}
p_{1} & =4 / 11, \quad p_{2}=3 / 10, \\
P & =(4 / 11)(3 / 10)=6 / 55 .
\end{aligned}
$$

and
3. A and B, with others, are competitors in a race. The probability that A will win is $1 / 4$ and the probability that B will win is $1 / 3$. What is the probability that either A or B will win?

Solution. We have here two mutually exclusive events. Hence,

$$
P=1 / 3+1 / 4=7 / 12
$$

4. Four coins are tossed at once. What is the probability that all will be heads?
5. A bag contains 3 white balls, 4 black balls and 5 red balls. One ball is drawn and not replaced, then a second ball is drawn and not replaced and then a third ball is drawn. What is the probability (a) that a ball of each color will be drawn, (b) that 2 blacks and 1 red will be drawn, (c) that all will be red?
6. Suppose that in Exercise 5 the balls are replaced after each draw. Then answer (a), (b) and (c).
7. Three men ages 28,30 and 33 respectively form a partnership. What is the probability (a) that all three will be living at the end of 10 yeare, (b) that the first two
will be living, (c) that one only of the three will be living? Use the American Experience Table of Mortality, Table XI.
8. A man and wife are 29 and 25 years of age when they marry. What is the probability that they will both live to celebrate their golden wedding?
9. A, B, and C go bird-hunting. A has a record of 1 bird out of $2, \mathrm{~B}$ gets 2 out of 3 , and C gets 3 out of 4 . What is the probability that they will kill a bird at which all shoot simultaneously?
10. If the probability that A will die within a year is 210 and the probability that B will die within a year is $3 / 10$, what is the probability that (a) both A and B will die within a ycar? (b) both A and B will live a year? (c) one life will fail within a year? (d) at least one life will fail within a year?
11. The probability that A will solve a problem is $1 / 3$ and that B will solve it is $2 / 3$. What is the probability that if A and B try the problem will be solved?
12. From a group of 6 men and 5 women, a committee of 5 is chosen by lot. What is the probability that it will consist of (a) all women? (b) all men? (c) 3 men and 2 women?
13. A committee of 7 is chosen from a group of 8 Englishmen and 5 Americans. What is the probability that it will contain (a) exactly 4 Englishmen? (b) at least 4 Englishmen?
14. From a lottery of 30 tickets marked $1,2, \ldots, 30$, four tickets are drawn. What is the probability that the numbers 1 and 15 are among them?
15. From a pack of 52 cards, 3 cards are drawn at random. What is the probability that they are all clubs?
16. Mathematical expectation.--The expected number of occurrences of an event in n trials is defined to be $n p$ where p is the probability of occurrence of the event in a single trial.

Illustrations. If 100 coins are thrown or if one coin is thrown 100 times, theoretically, we " expect " 50 heads and 50 tails, for $n=100$ and $p=1 / 2$.

If a die is rolled 36 times we " expect " an ace to turn up 6 times, for $n=36$ and $p=1 / 6$.

If 0.008 is the probability of death within a year of a man aged 30 , the " expected" number of deaths within a year among 10,000 men of this age would be 80 , for $n=10,000$ and $p=0.008$.

If p is the probability of obtaining a sum of money, k, then $p k$ represents the mathematical expectation.

Illustration. Suppose that 1,000 men, all aged 30 , contribute to a fund with the understanding that each survivor will receive $\$ 1,000$ at age 60. The mortality tables show that approximately 678 will be alive. Hence, the expectation of each would be $\$ 678$. The fund must contain $\$ 678,000$ in order that each survivor receive $\$ 1,000$. Hence, neglecting interest, each of the 1,000 men will have to contribute $\$ 678$ to the fund.
70. Repeated trials.-When the probability that an event will happen in a single trial is known, it becomes a question of importance to determine the probability that the event will happen a specified number of times in a given number of trials.

To familiarize us with the method of proof of the general theorem of repeated trials, let us consider the

Example. What is the probability of throwing 2 aces in 4 throws of a die?

The conditions of the problem are met if in the first 2 throws we obtain aces and in the next 2 throws not-aces; or if in the first throw we get ace, the second throw not-ace, the third throw ace, and the fourth throw notace; and so on. We shall illustrate the possibilities symbolically as follows:
$A_{1} A_{2}--, A_{1}-A_{3}-, A_{1}--A_{4},-A_{2} A_{3}-,-A_{2}-A_{4},--A_{3} A_{4}$
Considering the first case, the probability of throwing an ace on any throw is $1 / 6$. The probability of not throwing an ace on any throw is 5%. Hence the probability of throwing an ace on the first and second throws and not throwing an ace on the two remaining throws is $(1 / 6)^{2}(5)^{2}$.

In the second case, the probability of events occurring as the symbol above indicates is $(1 / 6)(5 / 6)(1 / 6)(56)=(1 / 6)^{2}(5 / 6)^{2}$.

The remaining cases may be treated in a similar manner, and in each instance the result for any specified set is $(1 / 6)^{2}(5 / 6)^{2}$. Now it is evident that the 2 aces can be selected from the 4 possible aces in ${ }_{4} C_{2}=6$ ways. Since the 6 cases are mutually exclusive, the chance that one or the other of the specified cases occurs is $6(1 / 6)^{2}(5 / 6)^{2}=15 \% / 1296$.

Let us now consider the important
Theorem of Repeated Trials. If p is the probability of the success of an event in a single trial and q is the probability of its failure, $(p+q=1)$, then the probability P_{r} that the event will succeed exactly r times in n trials $i^{*} *$

$$
\begin{equation*}
P_{r}={ }_{n} C_{r} p^{r} q^{n-r} . \tag{10}
\end{equation*}
$$

For the probability that the event will succeed in each of r specified trials and will fail in the remaining $(n-r)$ trials is, by (6), $p^{r} q^{n-r}$. Further, it is possible for the r successes to occur out of n trials in ${ }_{n} C_{r}$ different ways. These ways being mutually exclusive, by (5) the probability in question is $P_{r}={ }_{n} C_{r} p^{r} q^{n-r}$.

* It will be noted that (10) is the $(n-r+1)$ th term of the expansion $(p+q)^{n}$ and the $(r+1)$ th term of the expansion $(q+p)^{n}$.

The various probabilities are indicated in the following table:

From the above table we have at once the following:
Corollary. The probability that an event will succeed at least r times in n trials is $\boldsymbol{P}_{r}+\boldsymbol{P}_{r+1}+\cdots+\boldsymbol{P}_{\boldsymbol{n}}$, that is:

$$
\begin{equation*}
\sum_{r}^{n} P_{r}=p^{n}+{ }_{n} C_{1} p^{n-1} q+{ }_{n} C_{2} p^{n-2} q^{2}+\ldots+{ }_{n} C_{r} p^{r} q^{n-r} \tag{11}
\end{equation*}
$$

It will be noted that (11) consists of the first $(n-r+1)$ terms of the expansion $(p+q)^{n}$.

Example 1. An urn contains 12 white and 24 black balls. What is the probability that, in 10 drawings with replacements, exactly 6 white balls are drawn?

Solution. We have:

$$
\begin{aligned}
& p=12 / 36=1 / 3, \quad q=24 / 36=2 / 3, \\
& n=10, \quad r=6, \quad n-r=4
\end{aligned}
$$

Hence,

$$
P_{6}={ }_{10} C_{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{4}=\frac{3360}{3^{10}} .
$$

Example 2. The American Experience Mortality Table states that for an individual aged 25 the probability of survival a year is $p=0.992$ and the probability of death within a year is $q=0.008$. Out of a group of 1,000 individuals aged 25 , how many are expected to survive a year? What are some conclusions that may be drawn from the terms of the binomial expansion $(.992+.008)^{1,000}$?

Solution. We have $n=1,000, p=0.992, q=0.008$. By Art. 69, we expect $n p=1,000(0.992)=992$ to survive the year, and $n q=1,000$ $(0.008)=8$ to die within a year.

The terms of the expansion

$$
\begin{aligned}
&(.992+.008)^{1,000}=(.992)^{1,000}+1,000(.992)^{999}(.008) \\
& \quad{ }_{1,000} \mathrm{C}_{2}(.992)^{998}(.008)^{2}+\ldots+(.008)^{1,000}
\end{aligned}
$$

give, by equation (10), the following probabilities:
$(.992)^{1,000}$ gives the probability that 1,000 will survive a year; $1,000(.992)^{999}(.008)^{1}$ gives the probability that 999 will live a year and 1 will die within a year, and so on.

Problems

1. If there are five routes from London to Cambridge, and three routes from Cambridge to Lincoln, how many ways are there of going from London to Lincoln going by the way of Cambridge?
2. Out of 20 boys and 25 girls, in how many ways can a couple be selected?
3. A committee of 5 is to be chosen from 15 Englishmen and 18 Americans. If the committee is to contain exactly 3 Americans and 2 Englishmen, in how many ways may it be chosen?
4. From 10 Democrats and 8 Republicans a committee of 3 is to be selected by lot. Find the probability that it will consist (a) of 2 Democrats and 1 Republican, (b) of 2 Republicans and 1 Democrat, (c) of 3 Democrats, (d) of 3 Republicans. What is the sum of the four answers?
5. Out of a party of 12 ladies and 15 gentlemen, in how many ways can 4 ladies and 4 gentlemen be selected for a dance?
6. In how many ways can 3 men choose hotels in a town where there are 6 hotels?
7. In how many ways can A, B, and C choose hotels in a town where there are 6 hotels, if (a) A and B refuse to stay at the same hotel, (b) they all stay at different hotels, (c) they all stay at the same hotel?
8. In how many ways can 7 books be arranged on a shelf, if 3 particular books are to be together?
9. How many signals can be made with 7 flags of different colors by arranging them on a mast (a) all together, (b) 4 at a time, (c) at least 1 at a time?
10. If the probability that A will die in 10 years is 0.2 , that B will die in 10 years is 0.3 , and that C will die in 10 years is 0.25 , what is the probability that at the end of

10 years (a) all will be dead, (b) all will be living, (c) only two will be living, (d) at least two will be living?
11. If two dice are thrown, what is the probability of obtaining an odd number for the sum?
12. In tossing 10 coins, what is the probability of obtaining at least 8 heads?
13. A man whose batting average is $3 / 10$ will bat 4 times in a game. What is the probability that he will get 4 hits? 3 hits? 2 hits? at least 2 hits?
14. A machinist works 300 days in a year. If the probability of his meeting with an accident on any particular day is $1 / 1000$, what is the probability that he will entirely escape an accident for a year?
15. If it is known that 2 out of every 1,000 dwelling houses worth $\$ 5,000$ burn annually, what is the risk assumed in insuring such a house for one year?
16. According to the American Experience Mortality Table out of 100,000 persons living at age 10 years, 91,914 are living at the age of 21 years. Each of 100 boys is now 10 years old. What is the probability that exactly 50 of them will live to be 21 ?
71. Meaning of mortality table.-If it were possible to trace a large number of persons, say 100,000 , living at age 10 until the death of each occurred, and a record kept of the number living at each age x and the number dying between the ages x and $x+1$, we would have a mortality table.

However, mortality tables are not constructed by observing a large number of individuals living at a certain age until the death of each, for it is evident that this method would not be practicable, but would be next to impossible, if not impossible. Mathematical methods have been devised for the construction of such tables, but the scope of this text does not permit the discussion of these methods.

Table XI is known as the American Experience Table of Mortality and is based upon the records of the Mutual Life Insurance Company of New York. It was first published in 1868 and is used for most life insurance written in the United States. It will be used in this book as a basis for all computations dealing with mortality statistics. It consists of five columns as follows: The first giving the ages running from 10 to 95 , the different ages being denoted by x; the second giving the number living at the beginning of each age x and is denoted by l_{x}; the third giving the number dying between ages x and $x+1$ and is denoted by d_{x}; the fourth giving the probability of dying in the year from age x to $x+1$ and is denoted by q_{x}; and the fifth giving the probability of living a year from age x to age $x+1$ and is denoted by p_{x}.

The American Experience Table, now 77 years old, is not expected to represent present-day experience. It is conservative in its estimates for insurance and thereby contributes a factor of safety to policies. Whatever added profit comes from its use is generally passed on to policy-
holders as dividends. It is now generally prescribed in the state laws as the standard for insurance evaluations.

While the American Experience Table furnishes a safe basis for insurance valuations, it is not at all suitable for the valuation of annuities. Annuities are paid to individuals during the years that they live, and computations based upon a table with mortality rates lower than the actual might easily cause a company to lose money. For the valuation of annuities, the American Experience Table is not legally prescribed so that the companies have been free to employ tables that more accurately represent the mortality they experience. The American Annuitants' Table is widely used for the valuation of annuities.

The American Experience Table and the American Annuitants' Table are " select" tables inasmuch as they show the mortality rates after the selection caused by medical examination. In 1915 the larger insurance companies of the United States cooperated in developing the American Men Mortality Table. It too is a " select " table.

Many mortality tables have bcen based upon the experience of the general population. Such a table includes many in poor health and others engaged in hazardous or unhealthy occupations. Since the rates of mortality in a table constructed from population records are higher than the rates of mortality of the select tables, such a table is unsuitable for life insurance valuations.

The United States Life Tables* shows the rates of mortality among the general population in certain parts of the United States. For purposes of comparison, these tables are very enlightening, though they are inapplicable for insurance and annuity evaluations.

The following table shows the rates of mortality per 1,000 for a few ages according to the mortality tables that we have mentioned.

Rates of Mortality per 1,000

Age	American Experience	American Men	U. S. Life Table, 1910	American Annuitants' Male	
30	8.43	4.46	6.51	Female	
35	8.95	4.78	8.04	6.99	4.52
40	9.79	5.84	9.39	7.51	5.27
45	11.16	7.94	11.52	9.78	6.39
50	13.78	11.58	14.37	13.15	10.56

[^12]
Exercises

1. What is the probability that a man aged 30 will live to be 65 ? What is the probability that the same man will die before reaching 65? What is the sum of the two probabilities?
2. Find the probability that a man aged 70 will live 10 years.
3. Suppose 100,000 lives age 10 were insured for one year by a company for $\$ 1,000$ each, what would be the cost to each individual, neglecting the intcrest?
4. What would be the cost of $\$ 1,000$ insurance for one year of an individual 30 years old, neglecting the interest, if based upon (a) the American Experience Table? (b) the American Men Table? (c) the United States Life Table?
5. Solve Exercise 4 for an individual aged 50 ?
6. Probabilities of life.-In Art. 71 we discussed the meaning of the mortality table and gave something concerning its history. We now derive some useful formulas based upon this table. We notice certain relations existing among the elements l_{x}, d_{x}, p_{x} and q_{x} of the table.

Since l_{x+1} denotes the number of people living at age $x+1$ and l_{x} denotes the number living at age x, the probability, p_{x}, that a person age x will live one year is given by

$$
\begin{equation*}
p_{x}=\frac{l_{x+1}}{l_{x}} . \tag{12}
\end{equation*}
$$

Since d_{x} stands for the number of people dying between the ages x and $x+1$, the probability, q_{x}, that a person age x will die within a year is given by

$$
\begin{equation*}
q_{x}=\frac{d_{x}}{l_{x}} . \tag{13}
\end{equation*}
$$

Since it is certain that a person age x will either live one year or die within the year, we have

$$
\begin{equation*}
p_{x}+q_{x}=1 \tag{14}
\end{equation*}
$$

From (12) and (13), we get

$$
p_{x}+q_{x}=\frac{l_{x+1}}{l_{x}}+\frac{d_{x}}{l_{x}}=\frac{l_{x+1}+d_{x}}{l_{x}} .
$$

Hence,

$$
\frac{l_{x+1}+d_{x}}{l_{x}}=1
$$

and

$$
\begin{equation*}
d_{x}=l_{x}-l_{x+1} . \tag{15}
\end{equation*}
$$

The number of deaths between the ages x and $x+n$ is given by

$$
\begin{equation*}
l_{x}-l_{x+n}=d_{x}+d_{x+1}+\cdots+d_{x+n-1} \tag{16}
\end{equation*}
$$

When $(x+n)$ exceeds the oldest age in the table,

$$
\begin{align*}
l_{x+n} & =0, \text { and }(16) \text { becomes } \\
l_{x} & =d_{x}+d_{x+1}+\cdots \text { to end of table. } \tag{17}
\end{align*}
$$

The probability that a person aged x will live n years is denoted by the symbol ${ }_{n} p_{x}$. Thus ${ }_{15} p_{10}$ means the probability that a person aged 10 will live 15 years and is $89,032 \div 100,000$ or 0.89032 .

In general,

$$
\begin{equation*}
{ }_{n} p_{x}=\frac{l_{x+n}}{l_{x}} \tag{18}
\end{equation*}
$$

The probability that a person aged x will die within n years is denoted by $\left.\right|_{n} q_{x}$. Since a person aged x will either live n years or die within that time, we have

$$
\begin{align*}
{ }_{n} p_{x}+\left.\right|_{n} q_{x} & =1, \text { or } \\
\left.\right|_{n} q_{x} & =1-{ }_{n} p_{x}, \tag{19}\\
& =1-\frac{l_{x+n}}{l_{x}} \\
{ }_{n} q_{x} & =\frac{\boldsymbol{l}_{x}-l_{x+n}}{l_{x}} \tag{20}
\end{align*}
$$

The probability that a person aged x will die in the year after he reaches age $x+n$ is denoted by ${ }_{n} \mid q_{x}$. This may be regarded as the compound event that consists of a person aged x living n years and one aged $x+n$ dying within that year. Thus we have

$$
\begin{align*}
n \mid q_{x} & ={ }_{n} p_{x} \cdot q_{x+n} \quad \text { (Art. 68) } \\
& =\frac{l_{x+n}}{l_{x}} \cdot \frac{d_{x+n}}{l_{x+n}}=\frac{d_{x+n}}{l_{x}} . \tag{21}
\end{align*}
$$

Since

$$
\begin{aligned}
& d_{x+n}=l_{x+n}-l_{x+n+1} \\
& \frac{d_{x+n}}{l_{x}}=\frac{l_{x+n}}{l_{x}}-\frac{l_{x+n+1}}{l_{x}}
\end{aligned}
$$

and

$$
\begin{equation*}
{ }_{n} \mid q_{x}={ }_{n} p_{x}-{ }_{n+1} p_{x} \tag{22}
\end{equation*}
$$

We observe from (22) that the probability that a person aged x will die in the year after reaching age $(x+n)$ is equal to the probability that a person aged x will live n years minus the probability that a person aged x will live $n+1$ years.

The probability that a person aged x will live n years, and one aged y will die within that period is

$$
\begin{equation*}
\left.{ }_{n} p_{x} \cdot\right|_{n} q_{y}={ }_{n} p_{x}\left(1-{ }_{n} p_{y}\right) .[(6), \text { Art. 68]. } \tag{23}
\end{equation*}
$$

Exercises

1. Verify from the table that $p_{15}=\frac{l_{16}}{l_{15}}$.
2. Verify that $q_{15}=\frac{d_{15}}{l_{15}}$. Does $p_{15}+q_{15}=1$?
3. Verify that $l_{15}-l_{18}=d_{15}+d_{16}+d_{17}$.
4. Verify that $l_{90}=d_{90}+d_{91}+\ldots$ to end of table.
5. What is the probability that a person aged 20 will live 30 years and die within the next year?
6. Find the probability that a person aged 30 will live to be 65 .
7. What is the probability that a person aged 25 will die within 10 years? What is the probability that he will die in the year after he reaches 35 ?

Problems

1. Find the probability that a man aged 40 will live to be $\mathbf{7 0}$.
2. What is the probability that three persons, each age 40, will all reach the age of 50 ? What is the probability that none will reach that age?
3. A boy 15 years old is to receive $\$ 20,000$ on attaining the age of 21 . Neglecting interest, what is the value of the boy's expectation?
4. Show that the probability that at least one of two lives aged x and y, respectively, will survive n years is given by the expression ${ }_{n} p_{x}+{ }_{n} p_{y}-{ }_{n} p_{x} \cdot{ }_{n} p_{y}$. Hint: We have here three mutually exclusive events.
5. A father is 40 years old and his son is 15 . What is the probability that both will live 10 years? What is the probability that at least one will live 10 years?
6. What is the probability that a person aged 40 will die in the year just after reaching 60 ?
7. If we assume that out of 10,000 automobiles of a certain class there are 70 thefts during the year, what would it cost an insurance company to insure 1,000 such cars against theft at $\$ 700$ each? What would be the premium on one such car? In this problem running expenses and interest on money are neglected.
8. Show that the probability that at least one of three lives x, y, z, respectively, will survive n years is given by the expression:

$$
{ }_{n} p_{x} \cdot{ }_{n} p_{y} \cdot{ }_{n} p_{z}-\left({ }_{n} p_{x} \cdot{ }_{n} p_{y}+{ }_{n} p_{y} \cdot{ }_{n} p_{z}+{ }_{n} p_{x} \cdot{ }_{n} p_{z}\right)+{ }_{n} p_{x}+{ }_{n} p_{y}+{ }_{n} p_{z}
$$

Probability and Its Application in Life Insurance

9. A man 35 years of age and his wife 33 years of age are to receive $\$ 10,000$ at the end of 10 years if both are then living to receive it. Neglecting interest, what is the value of their expectation?
10. Two persons, A and B, are 42 and 45 years of age respectively. Find the probability (a) that both will survive 10 years, (b) that both will die within 10 years, (c) that A will survive 10 years and B will die during the time, (d) that B will survive 10 years and A will not survive. What is the sum of the four answers?
11. A man 50 years old will receive $\$ 5,000$ at the end of 10 ycars if he is alive. At 4% interest, find the present value of his expectation.
12. What is the probability that a man aged 50 will live 20 years longer?
13. Given two persons of ages x and y, express the probability that:
(a) both will live n years,
(b) both will die within n years,
(c) exactly one will live n years,
(d) exactly one will die within n years.
14. To what events do the following probabilities refer?
(a) $1-{ }_{n} p_{x} \cdot{ }_{n} p_{y}$.
(b) $\left(1-{ }_{n} p_{x}\right)\left(1-{ }_{n} p_{y}\right)$.
(c) $1-\left.\left.\right|_{n} q_{x} \cdot\right|_{n} q_{y}$.
(d) ${ }_{n} p_{x} \cdot p_{x+n}$.
15. Each of 7 boys is now 10 years old. What is the probability that (a) all seven will live to be 21 years old? (b) at least five of them will live to be 21 ?
16. Given 1,000 persons aged x, write expressions in terms of p_{x} and q_{x} for the following probabilities:
(a) that exactly 10 will die within a year.
(b) that not more than 10 will die within a year.
17. Prove: ${ }_{m+n} p_{x}={ }_{m} p_{x} \cdot{ }_{n} p_{x+m}={ }_{n} p_{x} \cdot{ }_{m} p_{x+n}$.
18. Prove: ${ }_{5} p_{x}=p_{x} \cdot p_{x+1} \cdot p_{x+2} \cdot p_{x+3} \cdot p_{x+4}$.
19. Translate the symbolic statement of Problem 18 into words.
20. Prove: ${ }_{n} p_{x}=p_{x} \cdot p_{x+1} \cdot p_{x+2} \cdot \ldots p_{x+n-1}$.

CHAPTER VIII

LIFE ANNUITIES

73. Pure endowments.-A pure endowment is a sum of money payable to a person whose present age is x, at a specified future date, provided the person survives until that date. We now find the cost of a pure endowment of $\$ 1$ to be paid at the end of n years to a person whose present age is x. The symbol, ${ }_{n} E_{x}$, will represent the cost of such an endowment.

Suppose l_{x} individuals, all of age x, agree to contribute equally to a fund that will assure the payment of $\$ 1$ to each of the survivors at the end of n years. From the mortality table we see that out of the l_{x} individuals entering this agreement, l_{x+n} of them would be living at the end of n years. Consequently, the fund must contain l_{x+n} dollars at that time in order that each of the survivors receives $\$ 1$. The present value of this sum is

$$
v^{n} \cdot l_{x+n},
$$

where

$$
v=\frac{1}{1+i}=(1+i)^{-1} .
$$

The present value of the money contributed to the fund by the l_{x} individuals is

$$
{ }_{n} E_{x} \cdot l_{x}
$$

If we equate the present value of the money contributed to the fund and the present value of the money received from the fund by the survivors, we have

$$
l_{x} \cdot{ }_{n} E_{x}=v^{n} \cdot l_{x+n}
$$

and

$$
\begin{equation*}
{ }_{n} E_{x}=\frac{v^{n} l_{x+n}}{l_{x}} \tag{1}
\end{equation*}
$$

The preceding method of derivation is known as "the mutual fund " method. The formula may also be derived by using the notion of mathematical expectation.

It is clear that ${ }_{n} E_{x}$ will be the present value of the mathematical expectation, which is the present value of $\$ 1$ due in n years multiplied by the probability that a person aged x will live n years. Consequently

$$
{ }_{n} E_{x}=v^{n} \cdot{ }_{n} p_{x}=v^{n} \frac{l_{x+n}}{l_{x}},
$$

which is the same as (1).
It should be emphasized that ${ }_{n} E_{x}$, the present value of $\$ 1$ payable in n years to a person aged x if he lives to receive it, is dependent upon the rate of interest i and the probability that (x) will live n years.* Since these two fundamental factors v^{n} and ${ }_{n} p_{x}$ are generally each less than unity, ${ }_{n} E_{x}$ is generally less than unity. Further, considering both interest and survivorship, the quantity ${ }_{n} E_{x}$ may be looked upon as a discount factor being the discounted value of 1 due in n years to (x). Similarly, the quantity $1 / n E_{x}$ may be looked upon as an accumulation factor, being the accumulated value at the end of n years of 1 due now to (x). The line diagram shows the equivalent values.

It is obvious that the present value A, of R payable in n years to (x), is given by

$$
A=R \cdot{ }_{n} E_{x} .
$$

If the numerator and the denominator of (1) be multiplied by v^{x}, we get

$$
\frac{v^{x+n} l_{x+n}}{v^{x} l_{x}},
$$

and if we agree that the product $v^{x} l_{x}$ shall be denoted by the symbol D_{x}, (1) becomes

$$
\begin{equation*}
{ }_{n} E_{x}=\frac{D_{x+n}}{D_{x}} . \tag{2}
\end{equation*}
$$

D_{x} is one of four symbols, called commutation symbols, that are used to facilitate insurance computations (see Table XII). This table is based on the American Experience Table of Mortality and a $31 / 2 \%$ interest rate is used. There are other commutation tables based upon different tables of mortality and different rates of interest.

[^13]It will be observed as the theory develops that we rarely use the values given in the mortality table except to compute the values of the commutation symbols.

Unless otherwise specified, all computations in the numerical exercises will be based upon the American Experience Table of Mortality with $31 / 2$ per cent per annum as the interest rate.

Exercises

1. Find the present value (cost) of a pure endowment of $\$ 5,000$, due in 20 years and purchased at age 30 , interest at $31 / 2 \%$.

Solution. Here, $x=30, n=20$, and

$$
{ }_{20} E_{30}=\frac{D_{50}}{D_{30}}=\frac{12498.6}{30440.8}=0.410587 . \quad \text { [Formula (2) and Table XII] }
$$

Hence,

$$
\begin{aligned}
A=(5,000.00){ }_{20} E_{30} & =5,000(0.410587) \\
& =\$ 2,052.94 .
\end{aligned}
$$

2. Solve Exercise 1, with the rate of interest 3%.
3. An heir, aged 14 , is to receive $\$ 30,000$ when he becomes 21 . What is the present value of his expectation on a 4% basis?
4. Find the cost of a pure endowment of $\$ 2,000$, due in 10 years and purchased at age 35 , interest at $31 / 2 \%$.
5. What pure endowment due at the end of 20 years could a person aged 45 purchase for $\$ 5,000$? Assume $31 / 2 \%$ interest.
6. Solve Exercise 5, assuming 4% interest.
7. A boy aged 12 is to receive $\$ 10,000$ upon attaining age 21 . Find the present value of the inheritance on a 4% basis.
8. A man aged 30 has $\$ 10,000$ that he wishes to invest with an insurance company that operates on a $31 / 2 \%$ basis. He wishes the endowment to be payable to him when he attains the age of 50 years. What would be the amount of the investment at that time if he agrees to forfeit all rights in the event of death before he reaches age 50 ?
9. Two payments of $\$ 5,000$ each are to be received at the ends of 5 and 10 years respectively. Find the present value at $31 / 2 \%$
(a) if they are certain to be received;
(b) if they are to be received only if (25) is alive to receive them.
10. What pure endowment payable at age 65 could a man age 25 purchase with $\$ 1,000$ cash?
11. To what formula would the formula for ${ }_{n} E_{x}$ reduce if (x) were sure to survive n years? To what would it reduce if money were unproductive?
12. Show that
(a) ${ }_{m+n} E_{x}={ }_{m} E_{x} \cdot{ }_{n} E_{x+m}$;
(b) ${ }_{n} E_{x}={ }_{1} E_{x} \cdot 1 E_{x+1} \cdot 1 E_{x+2} \therefore{ }_{1} E_{x+n-1}$.
13. Whole life annuity.-A whole life annuity is a succession of equal periodic payments which continue during the entire life of the individual concerned. It is evident that the cost of such an annuity depends upon the probability of living as well as upon the rate of interest.

The terms payment interval, annual rent, term, ordinary, due, deferred, have similar meanings in life annuities that they have in annuities certain. Unless otherwise specified, the words life annuity will be taken to mean whole life annuity.
75. Present value (cost) of a life annuity.-We now propose to find the present value of an ordinary life annuity of $\$ 1$ per annum payable to an individual, now aged x. The symbol, a_{x}, is used to denote the cost of such an annuity. We see that the present value of this annuity is merely the sum of the present values of pure endowments, payable at the ends of one, two, three, and so on, years. Consequently,

$$
\begin{align*}
a_{x} & ={ }_{1} E_{x}+{ }_{2} E_{x}+{ }_{3} E_{x}+\ldots \text { to end of table } \\
& =\frac{D_{x+1}}{D_{x}}+\frac{D_{x+2}}{D_{x}}+\frac{D_{x+3}}{D_{x}}+\ldots \text { to end of table } \\
& =\frac{D_{x+1}+D_{x+2}+D_{x+3}+\ldots \text { to end of table }}{D_{x}} \\
a_{x} & =\frac{N_{x+1}}{D_{x}} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\mathbb{N}_{x}=D_{x}+D_{x+1}+D_{x+2}+\ldots \text { to end of table } \tag{4}
\end{equation*}
$$

[Sce Table XII]
The symbol \mathbb{N}_{x} (called " double bar \mathbb{N} ") as defined above is that generally adopted in America. In actuarial parlance, it is frequently called the American N. The English textbooks use the single bar N which is defined by the equation

$$
N_{x}=D_{x+1}+D_{x+2}+D_{x+3}+\ldots \text { to end of table. }
$$

In this book we shall use the "double bar" American N.

Exercises

1. What is the cost of a life annuity of $\$ 600$ per annum for a person aged $\mathbf{3 0}$, interest at $31 / 2 \%$?

Solution. From (3), Art. 75, we have

$$
a_{30}=\frac{N_{31}}{D_{30}}=\frac{566362.9}{30440.8}=18.60538 .
$$

[Table XII]
Hence, the annuity has a cost (present value) of

$$
600(18.60538)=\$ 11,163.23
$$

2. Find the present value of a life annuity to a person aged 60 , the annual payment to be $\$ 1,200$.
3. What annual life income could a person aged 50 purchase with $\$ 10,000$.
4. Derive the formula for a_{x} by the mutual fund method.
5. Show that $a_{x}=v p_{x}\left(1+a_{x+1}\right)$
(a) algebraically,
(b) by verbal interpretation or direct reasoning using the following line diagram:

6. A man aged 60 is promised a pension of $\$ 600$ at the end of each year as long as he lives. What is the present value of the pension?
7. The beneficiary, age 50 , of a life insurance policy may receive $\$ 25,000$ cash or an ordinary life annuity of annual rent R. If she chooses the annuity, find R.
8. Life annuity due.-When the first payment under an annuity is made immediately, we have what is called an annuity due. The present value of an annuity due of $\$ 1$ per annum to a person aged x is denoted by a_{x}. An annuity due differs from an ordinary annuity (Art. 75) only by an immediate payment. Consequently, we have*

$$
\begin{align*}
\mathbf{a}_{x} & =1+a_{x} \tag{5}\\
& =1+\frac{N_{x+1}}{D_{x}}=\frac{D_{x}+N_{x+1}}{D_{x}} \\
& =\frac{D_{x}+D_{x+1}+D_{x+2}+\ldots \text { to end of table }}{D_{x}} \\
\mathbf{a}_{x} & =\frac{N_{x}}{D_{x}} \tag{6}
\end{align*}
$$

77. Deferred life annuity.-When the first payment under an annuity is not made until some specified future date, and then only in case the individual, now aged x, is still living, we have what is called a deferred annuity. Since the first payment under an ordinary annuity is made at the end of one year, an annuity providing for first payment at the end

* Values of a_{x} and a_{x} may be found in Table XII.
of n years is said to be deferred $n-1$ years. Then in an annuity deferred n years the first payment would not be made until the end of $n+1$ years.

These payments are illustrated by the diagram

The present value of an annuity of $\$ 1$ per annum, deferred n years, payable to an individual now aged x, if he is then living is denoted by the symbol, ${ }_{n} \mid a_{x}$. It is evident that the present value of such an annuity is merely the sum of the present values of pure endowments payable at the end of $n+1, n+2, n+3$, and so on, years so long as the individual survives.

Consequently,

$$
\begin{align*}
{ }_{n} \mid a_{x} & ={ }_{n+1} E_{x}+{ }_{n+2} E_{x}+{ }_{n+3} E_{x}+\ldots \text { to end of table } \\
& =\frac{D_{x+n+1}}{D_{x}}+\frac{D_{x+n+2}}{D_{x}}+\ldots \\
{ }_{n} \mid a_{x} & =\frac{N_{x+n+1}}{D_{x}} . \tag{7}
\end{align*}
$$

Let ${ }_{n} \mid \mathrm{a}_{x}$ denote the present value of a deferred whole life annuity due, that is, a succession of $\$ 1$ payments to be made at the ends of n ycars, $n+1$ years, and so on as long as (x) survives. These payments are illustrated by the following line diagram:

The value at age $x+n$ of these payments is a_{x+n}, and the value at age x, the present value, is $\mathrm{a}_{x+n} \cdot{ }_{n} E_{x}$. Consequently

$$
\begin{equation*}
n \left\lvert\, \mathrm{a}_{\dot{x}}=\mathrm{a}_{x+n} \cdot n E_{x}=\frac{N_{x+n}}{D_{x+n}} \cdot \frac{D_{x+n}}{D_{x}}=\frac{N_{x+n}}{D_{\dot{x}}} .\right. \tag{8}
\end{equation*}
$$

78. Temporary life annuity.-When the payments under a life annuity stop after a certain time although the individual be still living, we have what is called a temporary annuity. Such an annuity of $\$ 1$ per annum which ceases after n years is denoted by the symbol, $a_{x n}$. It is clear that the present value of a temporary annuity is equal to the sum of present
values of pure endowments of $\$ 1$ payable at the ends of $1,2,3, \ldots, n$ years. Thus,

$$
\begin{align*}
a_{x \bar{n} \mid}= & { }_{1} E_{x}+{ }_{2} E_{x}+\ldots+{ }_{n} E_{x} \\
= & \frac{D_{x+1}+D_{x+2}+\ldots+D_{x+n}}{D_{x}} \\
= & \frac{D_{x+1}+D_{x+2}+\ldots \text { to end of table }}{D_{x}}- \\
& \frac{D_{x+n+1}+D_{x+n+2}+\ldots \text { to end of table }}{D_{x}} \\
a_{x \bar{n} \mid}= & \frac{N_{x+1}-N_{x+n+1}}{D_{x}} . \tag{9}
\end{align*}
$$

If the first of the n payments be made immediately and the last payment be made at the end of $n-1$ years, we then have a temporary annuity due. Letting $a_{x \bar{n}]}$ represent the present value of such an annuity we get

$$
\begin{align*}
\mathrm{a}_{x \bar{n} \mid} & =1+a_{x} \overline{n-1 \mid} \\
& =1+\frac{D_{x+1}+D_{x+2}+\ldots+D_{x+n-1}}{D_{x}} \\
& =\frac{D_{x}+D_{x+1}+D_{x+2}+\ldots+D_{x+n-1}}{D_{x}} \\
\mathbf{a}_{x \bar{n} \mid} & =\frac{N_{x}-N_{x+n}}{D_{x}} . \tag{10}
\end{align*}
$$

Exercises

1. An insurance company accepts from a man, aged $30, \$ 85.89$ per annum in advance for 10 years if living as payment for insurance. What would be the equivalent single premium based upon the American Experience Table of Mortality and $31 / 2 \%$ interest?
2. A will provides that a son is to receive a life annuity of $\$ 1,500$ a year, the first payment to be made when the son attains the age of 60 . What is the value of the son's share when he is 40 years old?
3. A man aged 50 pays $\$ 10,000$ for a life annuity whose first payment is to be made when he is 60 years old. What will be his annual income beginning at age 60 ?
4. A will provides that a son who is now 25 years old is to receive $\$ 1,200$ at the end of one year, and a like amount at the end of each year until 10 payments in all have been made. If each payment is contingent upon the son being alive, what is the value of his estate at age 25?
5. Make $n=0$ in formula (7) and show that it reduces to formula (3). What does this mean?
6. Show that $a_{x}=a_{x \bar{n} \mid}+{ }_{n} \mid a_{x}$
(a) algebraically,
(b) by direct reasoning with the aid of an appropriate line diagram.
7. Derive formulas (7) and (9) by the mutual fund method.
8. Derive formula (8) by finding the sum of appropriate pure endowments.
9. Draw line diagrams to illustrate the meaning of the following symbols:

$$
a_{50}, a_{25} \text { 20|, } a_{25} \overline{151}, 10 \mid a_{25} .
$$

10. Prove $\mathrm{a}_{x} \overline{m+n}=\mathrm{a}_{x} \bar{m}+{ }_{m} E_{x} \cdot \mathrm{a}_{x+m \bar{n}}$
(a) algebraically,
(b) by direct reasoning.

11 Prove the following identities:
(a) $\mathbf{a}_{x \bar{n}}=1+a_{x \overline{n-1}}$,
(b) $\mathrm{a}_{x}=\mathrm{a}_{x \bar{n} \mid}+n \mid \mathrm{a}_{x}$.
12. A beneficiary, age 50 , of a life insurance policy may receive $\$ 25,000$ cash or a temporary life annuity due for 15 years. If she chooses the annuity, find its amount.
79. Forborne temporary life annuity due.-An individual aged x may be entitled to a life annuity due of $\$ 1$ per annum, but forbears to draw it. Instead he requests that the unpaid installments be allowed to accumulate as pure endowments until he is aged $x+n$. Such an annuity is known as a forborne temporary life annuity due.

The problem here is to find the value of such an annuity, taken at age x, to the person at age $x+n$ if he is still alive. This value is equal to the n-year pure endowment that the present value of a temporary life annuity due of $\$ 1$ per annum will buy. The present value of a temporary life annuity due of $\$ 1$ per annum is

$$
\begin{equation*}
\frac{\mathbb{N}_{x}-N_{x+n}}{D_{x}} \tag{10}
\end{equation*}
$$

Since $\frac{D_{x+n}}{D_{x}}$ [(2) Art. 73] will buy an n-year pure endowment of $\$ 1, \$ 1$
will buy an n-year pure endowment of $\frac{D_{x}}{D_{x+n}}$, and consequently $\frac{\mathbb{N}_{x}-N_{x+n}}{D_{x}}$ will buy an n-year pure endowment of *

$$
\begin{equation*}
{ }_{n} u_{x}=\frac{\mathbb{N}_{x}-\mathbb{N}_{x+n}}{D_{x}} \cdot \frac{D_{x}}{D_{x+n}}=\frac{\mathbb{N}_{x}-N_{x+n}}{D_{x+n}} . \tag{11}
\end{equation*}
$$

* The symbol ${ }_{n} u_{x}$ is customarily used to stand for the amount at age $x+n$ of the forborne temporary life annuity due of $\$ 1$ per annum. It is one of the most useful functions for the actuary.

It follows that R per annum payable in advance for n years as a temporary life annuity will buy an n-year pure endowment of

$$
\begin{equation*}
S=R \cdot{ }_{n} u_{x}=R \frac{N_{x}-N_{x+n}}{D_{x+n}} \tag{12}
\end{equation*}
$$

Since $\frac{N_{x+n}}{D_{x+n}}$ is the cost of a life annuity due of $\$ 1$ per annum for an individual aged $x+n, \$ 1$ at age $x+n$ will buy a life annuity due of $\frac{D_{x+n}}{N_{x+n}}$ per annum, and $\frac{\mathbb{N}_{x}-N_{x+n}}{D_{x+n}}$ at age $x+n$ will buy a life annuity due of

$$
\frac{N_{x}-N_{x+n}}{D_{x+n}} \cdot \frac{D_{x+n}}{N_{x+n}}=\frac{N_{x}-N_{x+n}}{N_{x+n}}
$$

Hence, it follows that with $\$ 1$ per annum payable in advance by an individual now aged x, a life annuity due of $\frac{N_{x}-N_{x+n}}{N_{x+n}}$ per annum, beginning at age $x+n$, may be bought.

Then R dollars per annum payable in advance as a temporary life annuity by an individual now aged x, will buy a life annuity due of

$$
\begin{equation*}
R \frac{\mathbb{N}_{x}-\mathbb{N}_{x+n}}{\mathbb{N}_{x+n}} \tag{13}
\end{equation*}
$$

beginning at age $x+n$.
It may be shown that

$$
\begin{equation*}
K \frac{N_{x+n}}{N_{x}-N_{x+n}} \tag{14}
\end{equation*}
$$

per annum payable in advance for n years by an individual now aged x, will buy him a life annuity due of K dollars per annum beginning when he is aged $x+n$. Here, an individual aged x is buying a regular life annuity of K dollars per annum, deferred $n-1$ years, by paying $K \frac{N_{x+n}}{N_{x}-N_{x+n}}$ dollars annually in advance.
80. Summary of formulas of life annuities. Examples.

$$
\begin{aligned}
R & =\text { the annual payment } \\
(x) & =\text { the person of age } x
\end{aligned}
$$

Life Annuities

Pure Endowment: $\quad A=R\left({ }_{n} E_{x}\right)=R \frac{D_{x+n}}{D_{x}}$.
Whole life annuity: $\quad A=R\left(a_{x}\right)=R \frac{N_{x+1}}{D_{x}}$.
Whole life annuity due: $\quad A=R\left(\mathrm{a}_{x}\right)=R \frac{N_{x}}{D_{x}}$.
Deferred life annuity: $\quad A=R\left({ }_{n} \mid a_{x}\right)=R \frac{N_{x+n+1}}{D_{x}}$.
Deferred life annuity due: $A=R\left({ }_{n} \mid a_{x}\right)=R \frac{N_{x+n}}{D_{x}}$.
Temporary life annuity: $\quad A=R\left(a_{x \bar{n}}\right)=R \frac{\mathbb{N}_{x+1}-\mathbb{N}_{x+n+1}}{D_{x}}$.
Temporary life annuity due: $A=R\left(\mathrm{a}_{x} \bar{n}\right)=R \frac{N_{x}-N_{x+n}}{D_{x}}$.
Forborne temporary life
annuity due:

$$
S=R\left(u_{n}\right)=R \frac{N_{x}-N_{x+n}}{D_{x+n}}
$$

Example 1. A man aged 30 pays an insurance company $\$ 1,000$ annually, in advance, for 20 years for the purchase of a pure endowment. What will be the amount of the endowment if he lives to claim it?

Solution. The annual payments constitute a forborne temporary life annuity due in which $x=30, n=20, R=1,000$. Using (12), we find

$$
\begin{aligned}
S & =1,000 \frac{N_{30}-N_{50}}{D_{50}}=1,000 \frac{596,804-181,663}{12,498.6} \\
& =\$ 33,215.00 .
\end{aligned}
$$

Example 2. A man aged 30 pays an insurance company $\$ 100$ annually, in advance, for 35 years to purchase a life annuity, the first payment to be made when the annuitant reaches age 65. What is the annual rent of his annuity?

Solution. Consider the line diagram.

We shall choose age 65 as the focal time.
The value at age 65 of the payments is that of a forborne temporary life annuity due with $x=30, n=35, R=100$. Using (12) we find

$$
S=100 \frac{N_{30}-N_{65}}{D_{65}}
$$

The value of the benefit is that of a life annuity due on a life aged 65. Using (6^{\prime}), the value of the benefit is

$$
A=R \frac{N_{65}}{D_{65}}
$$

Therefore,

$$
R \cdot \frac{N_{65}}{D_{65}}=100 \frac{N_{30}-N_{65}}{D_{65}},
$$

and

$$
\begin{gathered}
R=100 \frac{N_{30}-N_{65}}{N_{65}}=100 \frac{596,804-48,616.4}{48,616.4} \\
R=\$ 1,127.58 .
\end{gathered}
$$

Exercises

1. In the settlement of an estate a man, aged 30 , is to receive $\$ 1,000$ and a like amount at the end of each year. However, he requests that this annuity be forborne until he reaches the age of 60 . What will be the amount of these forborne payments at that time on a $31 / 2 \%$ interest basis?
2. A young man, aged 25 , pays $\$ 300$ per annum in advance to accumulate as a pure endowment until age 60 . What will be the amount of his endowment at age 60 on a $31 / 2 \%$ basis? Suppose that at age 60 he does not take the amount of his endowment in cash, but instead purchases a life annuity due. What would be his annual income on a $31 / 2 \%$ basis?
3. An individual now aged 30 desires to make provisions for his retirement at age 60 . How much per annum, in advance, must he pay for the next 30 years to guarantee a life annuity due of $\$ 3,000$ per annum beginning at age 60 ?
4. A person whose present age is 25 desires to have a life income of $\$ 1,500$ beginning at age 60. How much must he invest annually in advance for the next 35 years to guarantee his desired income?
5. A man aged 50 pays an insurance company $\$ 20,000$ for a contract to pay him a life annuity with the first payment to be made at age 65 . Find the annual payment of the annuity.
6. A corporation has promised to pay an employee, now aged 50 , a pension of $\$ 1,000$ at the end of each year, starting with a payment on his 65th birthday. What is the present value of this expectancy?
7. A certain insurance policy on a life aged 30 calls for premiums of $\$ 100$ at the beginning of each year as long as he lives. Find the present value of the premiums.
8. A certain insurance policy on a life aged 30 calls for premiums of $\$ 100$ at the beginning of each year for 20 years. Find the present value of the premiums.
9. A man aged 30 wishes a life annuity of $\$ 1,000$ a year, the first payment to be made when he is 65 years old. To provide for this, he will pay R per year in advance for the next 20 years. Find R.
10. A man aged 55 is to receive a life annuity of $\$ 1,000$ a year, the first payment to be made immediately. He wishes to postpone the annuity so that the first payment will occur on his 65th birthday. What will be his annual income?
11. A certain life insurance policy matures when the policy-holder is aged 50 and gives him an option of $\$ 10,000$ in cash or a succession of equal payments for 10 years certain and as long thereafter as he may live. Should he die during the first ten years, the payments are to be continued to his heirs until a total of ten have been made. Find the annual payment under the optional plan.

Hint. The equation of value is $R\left(a_{\overline{10 \mid}}+{ }_{10} \mid a_{50}\right)=10,000$.
12. Show by direct reasoning that the annual premium for n years, beginning at age x, for an annuity of 1 per year, beginning at age $x+n$, is given by $a_{x+n} / n u_{x}$.
13. A boy of age 15 is left an estate of $\$ 50,000$ which is invested at 4% effective. He is to receive the income annually, if living, and at age 25 he is to receive the principal, if living. Find the present value of the inheritance.
14. How much must an individual now aged x invest at the beginning of each year for n years, if living, to secure an annuity of R dollars per annum payable for t years certain and as long thereafter as he may live?

Hint. Focalize at age $x+n$. Let y be the annual payment. The equation of value is

$$
y\left({ }_{n} u_{x}\right)=R\left(\mathbf{a}_{\bar{\imath} \mid}+{ }_{t} \mid \mathbf{a}_{x+n}\right)
$$

15. A person whose present age is 25 desires to have an income of $\$ 1,000$ a year for 10 years certain and as long thereafter as he may live, first payment at age 60 . How much must he invest annually in advance for the next 35 years to guarantee this income?
16. Annuities payable m times a year.-Optional provisions are usually made in annuity contracts so that the periodical payments may be made m times a year. The symbol $a_{x}{ }^{(m)}$ is used to denote the present value of a life annuity of $\$ 1 / m$ payable m times a year, and $\mathrm{a}_{x^{(m)}}$ is used to denote the present value of a life annuity due of $\$ 1 / m$ payable m times a year. Theoretically, it follows from Art. 73, that

$$
\begin{equation*}
a_{x}^{(m)}=\frac{1}{m}\left[\frac{1}{m} E_{x}+\frac{{ }_{2}}{m} E_{x}+\frac{3}{m} E_{x}+\cdots\right] . \tag{15}
\end{equation*}
$$

It is apparent that (15) would involve considerable computation and besides the mortality table does not take into consideration fractional
parts of years. However, we may derive an approximate formula for $a_{x}^{(m)}$ which is accurate enough for most purposes.

The deferred annuity due may be written

$$
0 \mid \mathrm{a}_{x}=\left(1+a_{x}\right)-0
$$

and

$$
1 \mid a_{x}=\left(1+a_{x}\right)-1
$$

By simple proportion,

$$
\frac{1}{m} \left\lvert\, a_{x}=\left(1+a_{x}\right)-\frac{1}{m}=a_{x}+\frac{m-1}{m}\right.
$$

and, in general,

$$
\frac{k}{m} \left\lvert\, a_{x}=\left(1+a_{x}\right)-\frac{k}{m}=a_{x}+\frac{m-k}{m} .\right.
$$

Assume that we have m such annuities, where the first payments are to be made at theends of $\frac{1}{m}, \frac{2}{m}, \frac{3}{m}, \cdots, \frac{m}{m}$ of a year, respectively. Together they will provide $\$ 1$ at the end of each $\frac{1}{m}$ th of a year. Hence,

$$
\begin{aligned}
m a_{x}^{(m)}=\left(a_{x}\right. & \left.+\frac{m-1}{m}\right)+\left(a_{x}+\frac{m-2}{m}\right)+\cdots+\left(a_{x}+\frac{m-k}{m}\right) \\
& +\cdots+\left(a_{x}+\frac{m-m}{m}\right)
\end{aligned}
$$

The right-hand side of the above equation is the sum of an arithmetical progression with a common difference of $-\frac{1}{m}$. Consequently

$$
m a_{x}^{(m)}=m a_{x}+\frac{m(m-1)}{2 m},
$$

and

$$
\begin{equation*}
a_{x}^{(m)}=a_{x}+\frac{(m-1)}{2 m}=\frac{N_{x+1}}{D_{x}}+\frac{(m-1)}{2 m} . \tag{16}
\end{equation*}
$$

If the first payment is made at once, we have

$$
\begin{align*}
& \mathrm{a}_{x}^{(m)}=\frac{1}{m}+a_{x}^{(m)}=\frac{1}{m}+a_{x}+\frac{m-1}{2 m} \\
& \mathrm{a}_{x}^{(m)}=a_{x}+\frac{m+1}{2 m} \tag{17}
\end{align*}
$$

The student should observe the difference between (16) and (17).
If we let ${ }_{n} \mid a_{x}^{(m)}$ stand for the present value of an annuity of $\$ 1$ deferred n years and payable in m installments a year, and reason as in Art. 73, we get

$$
\begin{align*}
{ }_{n} \mid a_{x}^{(m)}= & v^{n} \cdot{ }_{n} p_{x} \cdot a_{x+n}^{(m)}=v^{n} \frac{l_{x+n}}{l_{x}} \cdot a_{x+n}^{(m)} \\
& =\frac{D_{x+n}}{D_{x}} \cdot a_{x+n}^{(m)} \\
{ }_{n} \mid a_{x}^{(m)} & =\frac{D_{x+n}}{D_{x}}\left(a_{x+n}+\frac{m-1}{2 m}\right) . \tag{18}
\end{align*}
$$

Also, if we let $a_{x}^{(n)}$ stand for the present value of a temporary life annuity of $\$ 1$ payable in m installments a year and consider that a life annuity is made up of a temporary annuity and a deferred annuity, we get

$$
a_{x}^{(m)}=a_{x}^{(m)}+{ }_{n} \mid a_{x}^{(m)}
$$

and

$$
\begin{align*}
& a_{x \eta}^{(m)}=a_{x}^{(m)}-{ }_{n} \mid a_{x}^{(m)} \tag{19}\\
& a_{x \eta}^{(m)}=a_{x}+\frac{m-1}{2 m}-\frac{D_{x+n}}{D_{x}}\left(a_{x+n}+\frac{m-1}{2 m}\right) . \tag{20}
\end{align*}
$$

Exercises

1. What is the present value of a life annuity of $\$ 100$ payable at the end of every month to a person aged 30 ?

Solution. Here, $x=30$ and $m=12$. From (16), Art. 81, we have
and

$$
\begin{aligned}
a_{30}^{(12)} & =a_{30}+11 / 24 . \\
a_{30} & =\frac{N_{31}}{D_{30}}=\frac{566,363}{30,440.8}=18.6054 . \\
(1,200) a_{30}^{(12)} & =1,200(18.6054+0.4583)=\$ 22,876.44 .
\end{aligned}
$$

2. Solve Exercise 1, with the annuity payable quarterly.
3. Find the cost of a temporary life annuity of $\$ 600$ per annum, payable in 12 monthly installments for 20 years, first payment due one month hence. Assume age 30.
4. Solve Exercise 3, with the annuity paid at the rate of $\$ 300$ at the end of every six months.
5. Find the cost of a life annuity due of $\$ 1,000$ per annum, payable in quarterly installments, for a person aged 40.

Problems

1. Show that the present value of an annuity of $\$ 1$, payable for n years certain and so long thereafter as the individual, now aged x, survives (first payment due one year hence) is given by

$$
a_{n}|+n| a_{x}
$$

Also show that the present value of an annuity due of $\$ 1$, payable for n years certain and so long as an individual, now aged x, may live, is given by

$$
1+a_{\overline{n-1}}+{ }_{n-1} \mid a_{x}
$$

2. What is the value of an annuity of $\$ 1,000$ per annum payable at the end of each year for 10 years certain and so long thereafter as an individual, now aged 60 , survives?
3. According to the terms of a will a person aged 30 is to rcceive a life income of $\$ 6,000$ per annum, first payment at once. An inheritance tax of 4% on the present value of the income must be paid at once. Find the present value of the income and the amount of the tax.
4. What would be the present value of the income of Problem 3 if payments of $\$ 500$ a month were made at the beginning of each month?
5. What would be the value of the annuity in Problem 2, if the payments were made at the end of each year for 20 years certain and for life thereafter?
6. A man carrying a $\$ 20,000$ life insurance policy arranges it so that the proceeds at his death shall be payable to his wife in annual installments for 10 years certain, first payment upon due proof of death. What would be the annual installment, assuming $31 / 2 \%$ interest?
7. What would be the amount of the annual installments of Problem 6, if payable for 10 years certain and so long thereafter as the beneficiary shall survive, assuming that the beneficiary was 55 years of age at the death of the insured?
8. What would be the amount of the annual installments in the above problem, if payments were to be made throughout the life of the beneficiary?
9. What would be the amount of the annual installments in Problem 8, if payable for 10 years, each payment contingent upon the beneficiary being alive?
10. Assume that the proceeds in Problem 9 are to be paid monthly. What would be the monthly installment?
11. Show that

$$
\mathrm{a}_{x}^{(m)}=\mathrm{a}_{x}-\frac{m-1}{2 m}-\frac{D_{x+n}}{D_{x}}\left[\frac{N_{x+n}}{D_{x+n}}-\frac{m-1}{2 m}\right],
$$

where $a_{x}^{(m)}$ stands for the present value of a temporary annuity due of $\$ 1$ payable in m installments per annum.
12. A suit for damages due to the accidental death of a railroad employee 42 years old and earning $\$ 175$ a month was settled on the basis of three-fourths of the present value of the expected wages of $\$ 175$ a month during his after lifetime. What was the amount of the damages?
13. By the terms of a will, a son is bequeathed an estate of $\$ 100,000$ with the provision that he must pay his mother who is 60 years of age $\$ 200$ monthly as long as she lives? What is the value of the son's inheritance?
14. Prove: ${ }_{m+n} u_{x}={ }_{m} u_{x} \cdot \frac{1}{{ }_{n} E_{x+m}}+{ }_{n} u_{x+m}$.
15. Prove:
(a) $\mathrm{a}_{x+1}={ }_{1} u_{x}\left(\mathrm{a}_{x}-1\right)$,
(b) $\left.\mathrm{a}_{x}={ }_{(n} u_{x}+\mathrm{a}_{x+n}\right)_{n} E_{x}$,
(c) $a_{x \bar{n} \mid}^{\left(\frac{m}{n}\right.}=a_{x \bar{n} \mid}+\frac{m-1}{2 m}\left(1-{ }_{n} E_{x}\right)$,
(d) $\mathrm{a}_{x}^{\left(\frac{m}{n \mid}\right.}=\mathrm{a}_{x \bar{n} \mid}-\frac{m-1}{2 m}\left(1-{ }_{n} E_{x}\right)$.
16. A woman aged 30 offers $\$ 20,000$ to a benevolent organization if it will pay her 5% interest thereon at the beginning of each year for the remainder of her life. If the institution can purchase the desired annuity for her from an insurance company which operates on a $3 \frac{1}{2} \%$ basis, will it pay to accept the offer?
17. A man aged 65 is to receive a life annuity of $\$ 1,000$ a year, the first payment being due immediately. He desires to postpone the annuity so that the first annual payment will occur when he is aged 70. What will be the annual income from the new annuity?
18. A man aged 55 is entitled to a life annuity of $\$ 1,000$. He agrees to use it to purchase a 10 -year pure endowment. What is the amount of the pure endowment?
19. A young man aged 25 is to receive as an inheritance a life income of $\$ 100$ a month, first payment immediately. An inheritance tax of 5% on the present value is levied. Find the amount of the tax.
20. A man aged 60 is granted a pension of $\$ 1,000$ a year for 10 years, first payment at once, and $\$ 500$ a year thereafter for the rest of his life. If all payments are contingent on his survival, find their present value.
21. Show that the present value of a perpetuity of $\$ 1$ per year, the first payment to be made at the end of the year in which (x) dies, is $1 / \mathrm{i}-a_{x}$. See Art. 37.

CHAPTER IX

LIFE INSURANCE, NET PREMIUMS (SINGLE AND ANNUAL)

82. Definitions.-A thorough mathematical treatment of life insurance involves many very complex problems. However, there are a few principles that are fundamental and it is these with which we wish to deal in this chapter. Life insurance is fundamentally sound only when a large group of individuals is considered. Each person contributes to a general fund from which the losses sustained by individuals of the group are paid. The organization that takes care of this fund and settles the claims for all losses is known as an insurance company. The deposit made to this fund by the individuals is called a premium. Since the payment of this premium by the individual insures a certain sum or benefit at his death,* he is spoken of as the insured and the person to whom the benefit is paid at the death of the insured is called the beneficiary. The agreement made between the insured and the company is called a policy and the insured is sometimes spoken of as the policy-holder.

The fundamental problem of life insurance is the determination of the premium that is to be charged the policy-holder in return for the bencfits promised him by the policy. It is clear that the premium will depend upon the probability of dying and also upon the rate of interest on funds left with the company. That is, the premium requires a mortality table and an assumed rate of interest. The premium based upon these two items is called the net premium.

The American Experience Table of Mortality is the standard, in the United States, for the calculation of net premiums and for the valuation of policies. We shall in all our problems on life insurance assume this table and interest at $3 \frac{1}{2} \%$. In computing the net premiums, we shall also assume that the benefits under the policy are paid at the ends of the years in which they fall due.

The insurance company has many expenses, in connection with the securing of policy-holders, such as advertising, commissions, salaries, office

[^14]supplies, et cetera, and consequently, must make a charge in addition to the net premium. The net premium plus this additional charge is called the gross or office premium. In this chapter we shall discuss only net premiums and leave gross premiums for another chapter. The premium may be single, or it may be paid annually, and this annual premium may sometimes be paid in semi-annual, quarterly or even monthly installments. All premiums are paid in advance.
83. Whole life policy.-A whole life policy is one wherein the benefit is payable at death and at death only. The net single premium on a whole life policy is the present valuc of this benefit. The symbol A_{x} will stand for the net single premium of a benefit of $\$ 1$ on (x).

Let us assume that each of l_{x} persons all of age x, buys a whole life policy of $\$ 1$. During the first year there will be d_{x} deaths, and consequently, at the end ${ }^{*}$ of the first year the company will pay d_{x} dollars in benefits, and the present value of these bencfits will be $v d_{x}$. There will be d_{x+1} deaths during the second year and the present value of the death benefits paid will be $v^{2} d_{x+1}$, and so on. The sum of the present values of all future benefits will be given by the expression

$$
v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\cdots \text { to end of table. }
$$

Since l_{x} persons buy benefits of $\$ 1$ each, the present value of the total premiums paid to the company is $l_{x} \cdot A_{x}$.

Equating the present value of the total premiums paid and the present value of all future benefits, we have

$$
l_{x} \cdot A_{x}=v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\cdots \text { to end of table. }
$$

Solving the above equation for A_{x}, we get

$$
\begin{equation*}
A_{x}=\frac{v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\cdots \text { to end of table }}{i_{x}} \tag{1}
\end{equation*}
$$

If both the numerator and the denominator of (1) be multiplied by v^{x}, we get

$$
\begin{align*}
A_{x} & =\frac{v^{x+1} d_{x}+v^{x+2} d_{x+1}+\cdots \text { to end of table }}{v^{x} l_{x}} \\
& =\frac{C_{x}+C_{x+1}+C_{x+2}+\cdots \text { to end of table }}{D_{x}} \\
A_{x} & =\frac{M_{x}}{D_{x}} \tag{2}
\end{align*}
$$

* We assume that the death benefit is paid at the end of the year of death.
where

$$
C_{x}=v^{x+1} d_{x}, \quad C_{x+1}=v^{x+2} d_{x+1}, \text { and so on, }
$$

and

$$
M_{x}=C_{x}+C_{x+1}+C_{x+2}+\cdots \text { to end of table. }
$$

The expressions C_{x} and M_{x} are two new commutation symbols that are needed in this chapter. They are tabulated in Table XII.

If in (1) d_{x} be replaced by its equal $l_{x}-l_{x+1}$, and so on, we get

$$
\begin{align*}
A_{x} & =\frac{v\left(l_{x}-l_{x+1}\right)+v^{2}\left(l_{x+1}-l_{x+2}\right)+\cdots}{l_{x}} \\
& =\frac{\left(v l_{x}+v^{2} l_{x+1}+\cdots\right)}{l_{x}}-\frac{\left(v l_{x+1}+v^{2} l_{x+2}+\cdots\right)}{l_{x}} \\
& =v\left(1+\frac{v l_{x+1}+v^{2} l_{x+2}+\cdots}{l_{x}}\right)-\left(\frac{v l_{x+1}+v^{2} l_{x+2}+\cdots}{l_{x}}\right) \\
& =v\left(1+{ }_{1} E_{x}+{ }_{2} E_{x}+\cdots\right)-\left({ }_{1} E_{x}+{ }_{2} E_{x}+\cdots\right) \\
A_{x} & =v\left(1+a_{x}\right)-a_{x} . \quad \text { Art. } 75 . \tag{3}
\end{align*}
$$

If (x) agrees to pay for the insurance of $\$ 1$ on his life in one installment in advance, the amount he must pay is A_{x}. Most people do not desire, or cannot afford, to purchase their insurance by a single payment, but prefer to distribute the cost throughout life or for a limited period. For the convenience of the insured, the policies commonly issued provide for the payment of premiums in equal annual payments. The corresponding net premiums are called net level annual premiums.

A common plan is to pay a level premium throughout the life of the insured. When this is the case the policy is called an ordinary life insurance policy.

We will denote the net annual premium of an ordinary life policy of $\$ 1$ by the symbol P_{x}. The payment of P_{x}, at the beginning of each year, for life forms a life annuity due and the present value of this annuity must be equivalent to the net single premium. Thus we have,

$$
\begin{equation*}
P_{x} \cdot a_{x}=A_{x} \tag{4}
\end{equation*}
$$

Solving for P_{x}, we get

$$
\begin{equation*}
P_{x}=\frac{A_{x}}{a_{x}}=\frac{M_{x}}{N_{x}}, \tag{5}
\end{equation*}
$$

since

$$
A_{x}=\frac{M_{x}}{D_{x}}
$$

and

$$
\mathrm{a}_{x}=\frac{N_{x}}{D_{x}} \cdot \quad \text { [(6) Art. 76] }
$$

Another common plan-probably the plan that occurs most fre-quently-is to pay for the insurance by paying the level premium for a limited number of years. When this is the case, the policy is called a limited payment life policy. The standard forms of limited payment policies are usually for ten, fifteen, twenty, or thirty annual payments, but other forms may be written.

Let us consider the n-payment life policy.
It is evident that the n annual premiums on the limited payment life policy form a temporary life annuity due. It is also clear that the present value of this annuity is equivalent to the net single premium A_{x}. Hence, if the net annual premium for a benefit of $\$ 1$ be denoted by ${ }_{n} P_{x}$, we may write

$$
{ }_{n} P_{x} \cdot \mathrm{a}_{x \bar{n}}=A_{x} .
$$

Solving for ${ }_{n} P_{x}$ and substituting for a_{x} 司 and A_{x}, we have

$$
\begin{equation*}
{ }_{n} P_{x}=\frac{M_{x}}{N_{x}-N_{x+n}} \tag{6}
\end{equation*}
$$

Exercises

1. Use (1) Art. 83 to find the net single premium for a whole life policy to insure a person aged 91 for $\$ 2,000$.
2. Find the net single premium for a whole life policy of $\$ 10,000$ on a life aged 30 .
3. Find the annual premium for an ordinary life policy of $\$ 10,000$ on a life aged 30 .
4. Find the net annual premium on a 20 -payment life policy of $\$ 5,000$ for a person aged 30 .
5. Assuming that each of l_{x} persons, all of age x, buys an ordinary life policy of $\$ 1$, show from fundamental principles that

$$
P_{x}\left(l_{x}+v l_{x+1}+v^{2} l_{x+2}+\cdots\right)=\left(v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\cdots\right)
$$

and thereby derive (5) Art. 83.
6. Show that $M_{x}=v N_{x}-N_{x+1}$.
7. Compare annual premiums on ordinary life policies of $\$ 10,000$ for ages 20 and 21 with those for ages 50 and 51 . Note the annual change in cost for the two periods of life.
8. Find the net annual premium for a fifteen payment life policy of $\$ 10,000$ issued at age 50 .
9. Find the net annual premium for a ten payment life policy of $\$ 25,000$ issued at age 55.
10. Find the net annual premium on a twenty payment life policy of $\$ 5,000$ for your age at nearest birthday.*
11. Compare annual premiums on twenty payment life policies of $\$ 10,000$ for ages 25 and 26 with those for ages 50 and 51. Note the annual change in cost for the two periods of life.
12. Find the net annual premium for a twenty-five payment life policy of $\$ 10,000$, issued at age 35 .
13. Find the net annual premium for a thirty payment life policy of $\$ 10,000$, issued at age 35.
14. Using (10) Art. 9 with $n=1$, and (3) Art. 83, show that $A_{x}=1-d \mathrm{a}_{x}$.
15. Show that $P_{x}=\frac{1}{\mathrm{a}_{x}}-d$.
16. Give a verbal interpretation of the formula $A_{x}=v\left(1+a_{x}\right)-a_{x}=v a_{x}-a_{x}$.
17. Prove that $A_{x}=v-d a_{x}$.
18. Let ${ }_{r} \mid A_{x}$ denote the net single premium for an insurance of $\$ 1$ on (x) deferred r years (that is, the benefit is pand only if the insured dies after age $x+r$). Show that

$$
r \left\lvert\, A_{x}=\frac{M_{x+r}}{D_{x}} .\right.
$$

84. Term insurance.-Term insurance is temporary insurance as it provides for the payment of the benefit only in case death occurs within a certain period of n years. After n years the policy becomes void. The stated period may be any number of years, but usually term policies are for five years, ten ycars, fifteen years, and twenty years. The symbol $A_{x \eta}^{1}$ is usually used to denote the net single premium on a term policy of benefit $\$ 1$ for n years taken at age x.

If we assume that each of l_{x} persons, all of age x, buys a term policy of benefit $\$ 1$ for n years, the present value of the payments made by the company will be given by

$$
v d_{x}+v^{2} d_{x+1}+v^{3} d_{x+2}+\cdots+v^{n} d_{x+n-1}
$$

Since each of l_{x} persons buys a benefit of $\$ 1$, the present value of the premiums paid to the insurance company is $l_{x} \cdot A_{x}^{1}$.

Equating the present value of the premiums paid to the company and the present value of the benefits paid by the company, we have

$$
l_{x} \cdot A_{x \bar{n}}^{1}=v d_{x}+v^{2} d_{x+1}+\cdots+v^{n} d_{x+n-1}
$$

and

$$
\begin{equation*}
A_{x \bar{n}}^{1}=\frac{v d_{x}+v^{2} d_{x+1}+\cdots+v^{n} d_{x+n-1}}{l_{x}} . \tag{7}
\end{equation*}
$$

[^15]If both the numerator and the denominator of (7) be multiplied by v^{x}, we get

$$
\begin{aligned}
A_{x \bar{n}}^{1}= & \frac{v^{x+1} d_{x}+v^{x+2} d_{x+1}+\cdots \text { to end of table }}{v^{x} l_{x}} \\
& -\frac{v^{x+n+1} d_{x+n}+\cdots \text { to end of table }}{v^{x} l_{x}}
\end{aligned}
$$

And

$$
\begin{equation*}
A_{x}^{1} \bar{n}=\frac{M_{x}-M_{x+n}}{D_{x}} \tag{8}
\end{equation*}
$$

When the term insurance is for one year only the net premium is called the natural premium. It is given by making $n=1$ in (8). Thus,

$$
\begin{equation*}
A_{x 1 \mid}^{1}=\frac{M_{x}-M_{x+1}}{D_{x}}=\frac{C_{x}}{D_{x}} . \tag{9}
\end{equation*}
$$

The net annual premium for a term policy of $\$ 1$ for n years will be denoted by the symbol $P_{x \bar{n} 1}^{1}$. It is evident that the annual premiums for a term policy constitute a temporary annuity due. This annuity is equivalent to the net single premium. Thus,

$$
P_{x \bar{n} \cdot}^{1} \cdot \mathrm{a}_{x \bar{n}}=A_{x \bar{n} \cdot}^{1} .
$$

Solving for $P_{x \bar{\eta}}^{1}$ and substituting for $\mathrm{a}_{x_{\bar{n}}}$ and $A_{x \bar{n}}^{1}$, we get

$$
\begin{align*}
P_{x \bar{n}]}^{1}= & \frac{M_{x}-M_{x+n}}{N_{x}-N_{x+n}} \tag{10}\\
& {[(10) \text { Art. 78] and (8) above. }}
\end{align*}
$$

Exercises

1. Find the net single premium for a term insurance of $\$ 5,000$ for 15 years for a man aged 30.

Solution. Here, $n=15$ and $x=30$. Using (8) Art. 84, we have

$$
A_{30}^{1} \text { I5T }=\frac{M_{30}-M_{45}}{D_{30}}=\frac{10,259-7,192.81}{30,440.8}=\frac{3,066.19}{30,440.8}=0.10072
$$

and $5,000 A_{30}^{1}$ i51 $=5,000(0.10072)=\$ 503.60$.
2. Find the net single premium for a term insurance of $\$ 25,000$ for 10 years for a man aged 40.
3. What are the natural premiums for ages $20,25,30,35$ and 40 for an insurance of $\$ 1,000$.
4. Find the net annual premium for a 20 -year term policy of $\$ 10,000$ taken at age 35 .
5. Show that the net annual premium on a k-payment n-year term policy of benefit $\$ 1(k<n)$ taken at age x is given by the expression

$$
\begin{equation*}
{ }_{k} P_{x}^{1} \bar{n}=\frac{M_{x}-M_{x+n}}{N_{x}-N_{x+k}} \tag{11}
\end{equation*}
$$

6. What is the net annual premium on a 20 -payment 40 -year term policy of $\$ 1,000$ for a man aged 20 ?
7. A person aged 25 buys a $\$ 20,000$ term policy which will terminate at age 65 . Find the net annual premium.
8. Find the net annual premium on a 7 -year term policy of $\$ 5,000$ taken at age 27 .
9. Endowment insurance.-In an endowment policy the company agrees to pay a certain sum in event of the death of the insured within a specified period, known as the endowment period, and also agrees to pay this sum at the end of the endowment period, provided the insured be living to receive the sum. From the above definition it is evident that an endowment insurance of $\$ 1$ for n years may be considered as a term insurance of $\$ 1$ for n years plus an n-year pure endowment of $\$ 1$. (See Art. 73 and Art. 84.)

Thus, if we let the symbol $A_{x \bar{n}]}$ stand for the net single premium for an endowment of $\$ 1$ for n years, we have

$$
\begin{align*}
A_{x \bar{n}} & =A_{x \bar{n} 1}^{1}+{ }_{n} E_{x} \\
& =\frac{M_{x}-M_{x+n}}{D_{x}}+\frac{D_{x+n}}{D_{x}} \\
& =\frac{M_{x}-M_{x+n}+D_{x+n}}{D_{x}}, \tag{12}
\end{align*}
$$

since,

$$
\begin{equation*}
A_{x \bar{n}}^{1}=\frac{M_{x}-M_{x+n}}{D_{x}} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{n} E_{x}=\frac{D_{x+n}}{D_{x}} . \tag{2}
\end{equation*}
$$

We shall now find the net annual premium for an endowment of $\$ 1$ for n years, the premiums to be payable for k years. The symbol ${ }_{k} P_{x}{ }^{n}$ will stand for the annual premium of such an endowment. It is clear that

Life Insurance, Net Premiums (Single and Annual)

these premiums constitute a temporary annuity due that is equivalent to the net single premium. Hence,

$$
{ }_{k} P_{x \bar{n} \mid} \cdot \mathrm{a}_{x \overline{\mathrm{k}} \mid}=A_{x \bar{n} \bar{n}} .
$$

Solving for ${ }_{k} P_{x \bar{n} \mid}$ and substituting for $\mathrm{a}_{x \overline{\mathrm{E}}}$ and $A_{x \bar{n}}$, we get

$$
\begin{equation*}
{ }_{k} P_{x \bar{n}]}=\frac{M_{x}-M_{x+n}+D_{x+n}}{N_{x}-N_{x+k}} \tag{13}
\end{equation*}
$$

If the number of annual payments is equal to the number of years in the endowment period, then $k=n$, and (13) becomes

$$
\begin{equation*}
P_{x \bar{n} \mid}=\frac{M_{x}-M_{x+n}+D_{x+n}}{\mathbb{N}_{x}-\mathbb{N}_{x+n}} \tag{14}
\end{equation*}
$$

Exercises

1. Find the net annual premium on a $\$ 5,00020$-payment, 30 -year endowment policy taken at age 25 .

Solution. Here, $x=25, n=30$ and $k=20$. Using (13), we have

$$
\begin{aligned}
{ }_{20} P_{25} \overline{301} & =\frac{M_{25}-M_{55}+D_{55}}{N_{25}-N_{45}} \\
& =\frac{11,631.1-5,510.54+9,733.40}{770,113-253,745} \\
& =\frac{15,853.96}{516,368}=0.0307028
\end{aligned}
$$

and

$$
(5,000)_{20} P_{25} \overline{30}=5,000(0.0307028)=\$ 153.51 .
$$

2. Find the net annual premium for a $\$ 10,000$ twenty payment endowment policy maturing at age 65 , taken out at age 21.
3. Find the net annual premium on a $\$ 25,00015$-year endowment policy, taken at age 55.
4. A person aged 22 buys a $\$ 10,000$ policy which endows at age 60 . Find the net annual premium. The premiums are to be paid until age 60 .
b. Find the net single premium on a $\$ 10,00010$-year endowment policy, taken at age 50 .
5. Annual premium payable by m equal installments.-In Art. 82 we mentioned the fact that the annual premium may be paid in semiannual, quarterly or monthly installments.

We shall now find the total annual premium on an ordinary life insurance of $\$ 1$, when the premium is payable by m equal installments. The symbol $P_{x}^{(m)}$ will represent this total premium. It is evident that the premiums constitute an annuity due of $P_{x}^{(m)}$ per annum, payable in m equal installments of $P_{x}^{(m)} / m$ each, and the present value of this annuity must equal the net single premium for an insurance of $\$ 1$. Hence, we have

$$
P_{x}^{(m)} \cdot \mathrm{a}_{x}^{(m)}=A_{x} .
$$

Since,

$$
\mathrm{a}_{x}^{(m)}=a_{x}+\frac{m+1}{2 m} \quad \text { [(17) Art. 81] }
$$

we have

$$
\begin{equation*}
P_{x \rightarrow}^{(m)}=\frac{A_{x}}{a_{x}+\frac{m+1}{2 m}} \tag{15}
\end{equation*}
$$

Example. Find the quarterly premium on an ordinary life policy of $\$ 1,000$ taken at age 30 .

Solution. Here, $x=30$ and $m=4$. From (15), we have

$$
\begin{aligned}
P_{30}^{(4)} & =\frac{A_{30}}{a_{30}+5 / 8} \\
& =\frac{0.33702}{18.6054+0.6250} \text { [Table XII] } \\
& =\frac{0.33702}{19.2304}=0.01752,
\end{aligned}
$$

and

$$
1,000 \cdot P_{30}^{(4)}=1,000(0.01752)=\$ 17.52 .
$$

The quarterly premium is therefore $1 / 4(\$ 17.52)=\$ 4.38$.
Making $m=1,2$, and 4 in (15), we get

$$
P_{x}=\frac{A_{x}}{1+a_{x}}, P_{x}^{(2)}=\frac{A_{x}}{a_{x}+3 / 4}, \text { and } P_{x}^{(4)}=\frac{A_{x}}{a_{x}+5 / 8}
$$

respectively, which shows that twice the semi-annual premium is larger than the annual and four times the quarterly premium is larger than twice the semi-annual. This addition in premium takes account of two things
only: (1) the possibility that a part of the annual premium may be lost in the year of death; and (2) loss of interest on part of annual premium unpaid. On an annual basis the premium would be paid in full at the beginning of the year of death, while on a semi-annual or quarterly basis a part of the premium might remain unpaid at date of death, and the interest on that part of the premium that is not paid at the beginning of the year is lost annually.

However, in practice there is at least another element which is not provided for in this theoretical increase and that is the additional expense incurred in collecting premiums twice or four times a year instead of once. And then, too, it is the observation of most companies that the percentage of lapsed policies is greater when written on the semi-annual and quarterly basis than when written on the annual basis.

It is evident, then, that this theoretical increase is not sufficient to take care of the additional expenses incurred. To obtain the semi-annual premium many companies add 4% to the annual rate and then divide by 2 and to obtain the quarterly premium they add 6% to the annual rate and divide by 4 .

We might derive formulas for the annual premiums on other types of policies, but, as indicated above, these formulas are not really used in practice.

Exercises

1. Find the total annual premium on an ordinary life policy $\$ 1,000$ taken at age 50 , if the premiums are to be paid (a) semi-annually; (b) quarterly. Use formula (15) and then use the method that is used in practice by most companies and compare results.
2. Show that (15), Art. 86 can be written

$$
P_{x}^{(m)}=\frac{M_{x}}{N_{x}-D_{x}\left(\frac{m-1}{2 m}\right)}
$$

Make $m=1$ and compare with (5), Art. 83.
3. Find the annual premium on an ordinary life policy of $\$ 5,000$ taken at age 25 , if the premiums are to be paid (a) quarterly; (b) monthly.
87. Summary of formulas of life insurance premiums.-In this chapter we have discussed the "standard" policies and have derived the formulas for computing the net single and the net annual premiums under them. We summarize this information in the following table.
$x=$ the age of the insured; $F=$ the face of the policy.

Name of Policy	Policy Benefits	Premiums Paid	Single Premiums	Annual Premiums
Ordinary life...... .	Whole life insurance	For life	$F \cdot \frac{M_{x}}{D_{x}}$	$F^{\prime} \frac{M_{x}}{N_{x}}$
n-payment life	Whole life insurance	For \boldsymbol{n} years	$F \frac{M_{x}}{D_{x}}$	$F \frac{M_{x}}{\mathbb{N}_{x}-\mathbb{N}_{x+n}}$
n-year term.	n-year term insurance	For n years	$F \frac{M_{x}-M_{x+n}}{D_{x}}$	$F \frac{M_{x}-M_{x+n}}{N_{x}-N_{x+n}}$
$\left.\begin{array}{l} n \text {-year } \\ k \text {-payment } \end{array}\right\} \begin{aligned} & \text { endow- } \\ & \text { ment } \end{aligned}$	(a) n-year pure endowment (b) n-year term insurance	For k years, $k \leqq n$	$F \frac{M_{x}-M_{x+n}+D_{x+n}}{D_{x}}$	$F \frac{M_{x}-M_{x+n}+D_{x+n}}{\mathbb{N}_{x}-\mathbb{N}_{x+k}}$

88. Combined insurance and annuity policies.-The principles summarized in Art. 87 enable us to compute the premiums on the wellknown standard policies. Today, combined insurance and annuity policies are frequently written, and we shall now illustrate the methods of computing the premiums for them. We shall merely need to apply the equation of value:

$$
\begin{equation*}
\text { Present value of payments }=\text { Present value of benefits. } \tag{16}
\end{equation*}
$$

Example 1. An insurance-annuity contract taken out by a life aged 25 provides for the following benefits:
(a) 10-year term insurance for $\$ 5,000$,
(b) a pure endowment of $\$ 10,000$ at the end of 10 years.

It is desired to pay for these benefits in 10 equal annual premiums in advance. What is the annual premium?

Solution. Let P be the required annual premium.
Present value of benefit (a) is $5,000\left(A_{25}^{1} 10 \mid\right)=5,000 \frac{M_{25}-M_{35}}{D_{25}}$.
[(8) Art. 84]
Present value of benefit (b) is $10,000\left({ }_{10} E_{25}\right)=10,000 \frac{D_{35}}{D_{25}}$.
[(1') Art. 80]
Present value of the payments is $P\left(\mathrm{a}_{25} \overline{10}\right)=P \frac{\mathbb{N}_{25}-\mathbb{N}_{35}}{D_{25}}$.

Life Insurance, Net Premiums (Single and Annual)

Hence, using (16), we have

$$
\begin{aligned}
P \frac{N_{25}-N_{35}}{D_{25}} & =5,000 \frac{M_{25}-M_{35}}{D_{25}}+10,000 \frac{D_{35}}{D_{25}} \\
P & =\frac{5000\left(M_{25}-M_{35}\right)+10,000 D_{35}}{N_{25}-N_{35}} \\
P & =\$ 855.98 . \quad \text { Table XII. }
\end{aligned}
$$

Example 2. An insurance-annuity contract taken out by a life aged 40 provides for the following benefits:
(a) a $\$ 10,000$ pure endowment payable at age 65 ,
(b) a $\$ 10,00020$-payment life insurance,
(c) a life annuity of $\$ 2,000$ annually with the first payment at age 65 .

If the premiums are to be paid annually in advance for 20 years, find the annual premium P. Set up in commutation symbols.

Solution.
Present value of benefit (a) is $10,000\left({ }_{25} E_{40}\right)=10,000 \frac{D_{65}}{D_{40}}$.
[(1') Art. 80]
Present value of benefit (b) is $10,000\left(A_{40}\right)=10,000 \frac{M_{40}}{D_{40}}$.
[(2) Art. 83]
Present value of benefit (c) is $2,000\left(_{25} \mid a_{40}\right)=2,000 \frac{N_{65}}{D_{40}}$.
[(8') Art. 80]
Present value of the payments is $P\left(\mathrm{a}_{40} \overline{201}\right)=P \frac{\mathbb{N}_{40}-\mathbb{N}_{60}}{D_{40}}$.
[(10') Art. 80]
Hence, applying (16), we have

$$
\begin{aligned}
P \frac{N_{40}-N_{60}}{D_{40}} & =10,000 \frac{D_{65}}{D_{40}}+10,000 \frac{M_{40}}{D_{40}}+2,000 \frac{N_{65}}{D_{40}} \\
P & =\frac{10,000\left(D_{65}+M_{40}\right)+2,000 N_{65}}{N_{40}-N_{60}}
\end{aligned}
$$

Problems

1. Find the net annual premium for an endowment policy for $\$ 5,000$ to mature at age 85 and taken at age 40 .
2. For purposes of valuation, a policy for $\$ 15,000$ taken at age 35 provides that the insurance of the first year is term insurance, and that of subsequent years is a 14 payment life insurance on a life aged 36 , so that the insurance is paid up in 15 payments in all. What is the first year premium and that of any subsequent year?
3. An insurance contract provides for the payment of $\$ 1,000$ at the death of the insured, and $\$ 1,000$ at the end of each year thereafter until 10 installments certain are paid. What is the net annual premium on such a contract for a person aged 40, if the policy is to become paid up in 20 payments?
4. What would be the net annual premium in Problem 3, if it were written on the ordinary life basis?
5. Assume that each of l_{x} persons, all of age x, buys an n-payment life policy of $\$ 1$; equate the present value of all premiums paid and all benefits received; and derive (6), Art. 83.
6. Reasoning as in Problem 5, derive (10), Art. 84.
7. Reasoning as in Problem 5, derive (14), Art. 85.
8. Prove that:
(a) $A_{x}=\frac{P_{x}}{P_{x}+d}$,
(b) $P_{x}=\frac{d A_{x}}{1-A_{x}}$.
9. Prove that:
(a) $A_{\downarrow \overline{1}]}^{1}=v \cdot \frac{d_{x}}{l x}$,
(b) $A_{x \bar{n}]}^{1}=v a_{x \bar{n}}-a_{x \bar{n} \overline{1}}$.
10. Show that

$$
A_{x \bar{n} \mid}=v a_{x \bar{n} 1}-a_{x} \overline{n-1},
$$

and interpret this formula verbally.
11. A 20 -payment life insurance policy for $\$ 1,000$ issued to a life aged 30 , for purposes of valuation, is treated as a one-year term policy at age 30 plus a 19 -payment life policy at age 31. What is the net premium for the first year and the net level annual premium for the subsequent 19 payments?
12. For purposes of valuation, an ordinary life policy of $\$ 1,000$ issued to a life aged 30 is considered as a one-year term policy at age 30 and an ordinary life policy at age 31 . What is the first net annual premium and the subsequent annual net level premiums?
13. A person aged 45 takes out a policy which promises $\$ 10,000$ if death occurs before age 65. If the insured is living at age 65 , he is to receive $\$ 1,000$ annually as long as he lives, the first $\$ 1,000$ being paid when age 65 is reached. What is the net level annual premium if the policy is issued on a 20 -payment basis?
14. A life insurance policy issued on a life aged 30 provides for the following benefits: In the event of death of the insured during the first 30 years the policy pays $\$ 1,000$, with a $\$ 5,000$ cash payment if the insured survives to age 60 . If the policy is issued on a 20-payment net level basis, find the net premium.

Life Insurance, Net Premiums (Single and Annual)
Find the net periodic premium for each of the following policies.

Problem	Benefits of Policy	Age of Insured	Number of Annual Premiums
15.	(a) 10 -year term insurance for $\$ 10,000$, (b) a pure endowment of $\$ 20,000$ at end of 20 years.	45	10
(a) Whole life insurance of $\$ 10,000$, (b) a pure endowment at age 60 of $\$ 10,000$, (c) a life annuity of $\$ 1,000$ annually with first payment at age 65.	30	20	
17.	(a) $\$ 30,000$ to beneficiary if death of insured occurs between ages 30 and 40, (b) $\$ 25,000$ to bencficiary if death of insured occurs between ages 40 and 50, (c) $\$ 15,000$ to beneficiary if death of insured occurs between ages 50 and 60.	30	20

Hint. The benefits under the policy in Problem 17 are the same as those under a policy providing for $\$ 5,000$ 10-year term insurance, $\$ 10,00020$-year term insurance, $\$ 15,00030$-year term insurance, all issued to a life aged 30 .

CHAPTER X

VALUATION OF POLICIES. RESERVES

89. Meaning of reserves.-Except at very low ages, the probability of dying in any year increases with increasing age. Consequently, the cost of insurance provided by the given policy, as indicated by the natural premium, increases with increasing age. The net level annual premium for the policy is larger than the natural premium during the early years of the policy and is therefore more than sufficient to cover the insurance, but, in the later years of the policy the net level premium is smaller than the natural premium and is therefore insufficient to cover the cost of the insurance.

To illustrate the above remarks, let us consider a numerical example. A man aged 35 takes out a $\$ 1,000$ ordinary life policy. The net level annual premium under the American Experience $31 / 2 \%$ Table is $\$ 19.91$. The cost of insurance (natural premium) for the first policy year is $\$ 8.64$, leaving a difference $(\$ 19.91-\$ 8.64)=\$ 11.27$. During the second year of the policy the cost of insurance (natural premium on a life aged 36) is $\$ 8.78$, and thus the insured pays $(\$ 19.91-\$ 8.78)=\$ 11.13$ more than the expense due to mortality. This situation continues to age 57 when, and for later years, the net level premium $\$ 19.91$ is insufficient to meet the cost of insurance, for, at age 57 the natural premium is $\$ 20.61$. The following table compares the net level premium $\$ 19.91$ with the increasing cost of insurance for an ordinary life policy of $\$ 1,000$ on a life aged 35 .

Attained Age	Natural Premium	Excess N.L.P.-N.P.	Attained Age	Natural Premium	Excess N.L.P.-N.P.
35	$\$ 8.64$	$\$ 11.27$	65	$\$ 38.77$	$-\$ 18.86$
40	9.46	10.45	70	59.90	-39.99
45	10.79	9.12	75	91.18	-71.27
50	13.32	6.59	80	139.58	-119.67
55	17.94	1.97	85	227.59	-207.68
60	25.79	-5.88	90	439.17	-419.26

It is evident that if an insurance company is to operate upon a solvent basis, it must accumulate a fund during the early policy years to meet the increased cost in the later policy years. These excesses of the net level premium over the natural premiums that appear in the early policy years are improved at interest and held by the company to meet the increased cost during the later policy years. The accumulation of these excesses results in a fund that is called the reserve or the value of the policy.*
90. Computing reserves, Numerical illustration.-A glance at the American Experience Table of Mortality shows that of 100,000 persons alive at age 10 there remain 81,822 alive at age 35 .

Let us assume that each of 81,822 persons, all aged 35, buys an ordinary life policy of $\$ 1,000$. The total of the net annual premiums amounts to $\$ 1,629,076.02$. This amount accumulates to $\$ 1,686,093.68$ by the end of the first year. According to the table of mortality the death losses to be paid at the end of the first year amount to $\$ 732,000.00$, leaving $\$ 954,093.68$ in the reserve. This leaves a terminal reserve of $\$ 11.77$ to each of the 81,090 survivors. The premiums received at the beginning of the second year amount to $\$ 1,614,501.90$, which when added to $\$ 954,093.68$ makes a total of $\$ 2,568,595.58$, and so on. The following table is self explanatory.

Table Showing Terminal Regerves on an Ordinary Life Policy for $\$ 1,000$ on the Life of an Individual Aged 35 Years

Policy Year	Funds on Hand at Beginning of Year	Funds Accumulated at $31 / 2 \%$	Death Losses	Funds at End of Year	Amount to Credit of Each Survivor, Reserve
$\mathbf{1}$	$\$ 1,629,076.02$	$\$ 1,686,093.68$	$\$ 732,000$	$\$ 954,093.68$	$\$ 11.77$
2	$2,568,595.58$	$2,658,496.43$	737,000	$1,921,496.43$	23.91
3	$3,521,324.66$	$3,644,571.02$	742,000	$2,902,571.02$	36.46
4	$4,487,625.03$	$4,64,692.94$	749,000	$3,89,692.94$	49.40
$\mathbf{5}$	$5,465,835.36$	$5,657,139.60$	756,000	$4,901,139.60$	6.75
\cdots	$\cdots \cdots \cdots$	$\cdots \cdots \cdots$	$\cdots \cdots$	$\cdots \cdots \cdots$	$\cdots \cdots$

This illustrates what is known as the retrospective method of computing reserves because the reserve at the end of any policy year was determined exclusively from facts that belong to the past history of the policy.

[^16]
Exercises

1. The premium on a 5 -year endowment insurance for $\$ 1000$ taken out at age 25 is $\$ 183.56$. Complete the following table and show that at the end of 5 years the fund is just sufficient to pay each survivor $\$ 1000.00$.

Policy Year	Funds on Hand at Beginning of Year	Funds Accumulated at $31 / 2 \%$	Death Losses	Funds at End of Year	Amount to Credit of Each Survivor, Reserve
$\mathbf{1}$	$\$ 16,342,713.92$	$\$ 16,914,708.91$	$\$ 718,000$	$\$ 16,196,708.91$	$\$ 183.40$
$\mathbf{2}$	$32,407,626.75$	$33,541,893.69$	718,000	$32,823,893.69$	374.72
$\mathbf{3}$	$48,903,015.45$	$50,614,620.99$	718,000	$49,896,620.99$	574.33
$\mathbf{4}$			718,000		
$\mathbf{5}$			719,000		

2. The annual premium on a 10-payment life policy on a life aged 30 is $\$ 40.6078$. Prepare a table similar to that in Excrcise 1 and thus compute the reserve on the policy at the end of each policy year.
3. Fackler's accumulation formula.-We will now develop a formula which expresses the terminal reserve of any policy year in terms of the reserve of the previous year. We will designate by ${ }_{r} V_{x}$ the terminal reserve of the r th year on an insurance of $\$ 1$, and let P_{x} stand for the net annual premium. The reserve then at the beginning of the $(r+1)$ th year will be ${ }_{r} V_{x}+P_{x}$. This is called the initial reserve of the $(r+1)$ th year. The aggregate reserve at the beginning of the $(r+1)$ th year, for the l_{x+r} individuals insured, will be

$$
l_{x+r}\left(r V_{x}+P_{x}\right)
$$

This last amount will accumulate, by the end of the year, to

$$
l_{x+r}\left(V_{x}+P_{x}\right)(1+i)
$$

Out of this amount the company will have to pay d_{x+r} as death claims for the year, leaving

$$
l_{x+r}\left(V_{x}+P_{x}\right)(1+i)-d_{x+r}
$$

as the total reserve to the l_{x+r+1} surviving policy holders at the end of the $(r+1)$ th year.

The terminal reserve then for the $(r+1)$ th year is

$$
\begin{align*}
&(r+1) \\
& V_{x}=\frac{l_{x+r}\left(r V_{x}+P_{x}\right)(1+i)-d_{x+r}}{l_{x+r+1}} \tag{1}\\
&=\frac{(1+i) l_{x+r}}{l_{x+r+1}}\left(V_{x}+P_{x}\right)-\frac{d_{x+r}}{l_{x+r+1}} .
\end{align*}
$$

If we now define the valuation factors (see Table XIII)

$$
u_{x}=\frac{(1+i) l_{x}}{l_{x+1}} \quad \text { and } \quad k_{x}=\frac{d_{x}}{l_{x+1}},
$$

we have

$$
\begin{equation*}
{ }_{(r+1)} V_{x}=u_{x+r}\left(V_{x}+P_{x}\right)-k_{x+r} . \tag{2}
\end{equation*}
$$

This formula is known as Fackler's accumulation formula. It will evidently work for any policy, for the factors u_{x+r} and k_{x+r} in no way depend upon the form of the policy. This formula is used very extensively by actuaries in preparing complete tables of terminal reserves. The valuation functions u_{x} and k_{x} are based upon the American Experience Table of Mortality and $31 / 2 \%$ interest and are given in Table XIII.

To find the terminal reserve for the first policy year we make $r=0$, and (2) becomes

$$
\begin{equation*}
{ }_{1} V_{x}=u_{x} P_{x}-k_{x} \tag{3}
\end{equation*}
$$

for it is evident that ${ }_{0} V_{x}=0$.

Exercises

1. Show that $u_{x}=\frac{D_{x}}{D_{x+1}}$ and $k_{x}=\frac{C_{x}}{D_{x+1}}$ and verify the tabular values of u_{x} and k_{x} for the ages 20,25 , and 30 by making use of the C_{x} and D_{x} functions.
2. Making use of formulas (3) and (2) Art. 91, verify the reserves in the problem of Art. 90.

Solution. From (3) we have

Hence

$$
{ }_{1} V_{35}=u_{35} P_{35}-k_{35} \text {, and } P_{35}=0.01991 .
$$

$$
\begin{aligned}
{ }_{1} V_{35} & =1.044343(.01991)-0.009027 \\
& =0.011766 .
\end{aligned}
$$

Then,

$$
1,000{ }_{1} V_{35}=\$ 11.77 .
$$

Also,

$$
\begin{aligned}
{ }_{2} V_{35} & =u_{36}\left({ }_{1} V_{35}+P_{35}\right)-k_{36}, \quad[(2) \text { Art. } 91] \\
& =1.044493(0.011766+0.01991)-0.009172 \\
& =0.023913 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
1,000{ }_{2} V_{35} & =\$ 23.91 . \\
{ }_{3} V_{35} & =?
\end{aligned}
$$

3. Find the terminal reserve for each of the first five policy years on a ten payment life policy for $\$ 5,000$ taken at age 25 .
4. The terminal reserve at the end of the fifteenth policy year on a twenty-year endowment policy for $\$ 1,000$ taken at age 25 is $\$ 665.59$. Calculate the terminal reserves for the succeeding policy years until the policy matures.
5. The terminal reserve at the end of the tenth policy year on a fifteen payment life policy for $\$ 1,000$ taken at age 30 is $\$ 272.96$. Find the terminal reserve for the eleventh and twelfth years.
6. The terminal reserve at the end of the twenty-fifth policy year on an ordinary life policy for $\$ 1,000$ taken at age 29 is $\$ 333.81$. Find the terminal reserve for the twenty-sixth year.
7. Prospective method of valuation.-We now consider another method of valuation and derive a formula for determining the terminal reserve for any policy year independent of the reserve for the previous year. At the end of the r th policy year the sum of the terminal reserve and the present value of the future premiums to be paid must equal the net single premium for a new policy on the life of the insured, who is now aged $x+r$.

If we consider an ordinary life policy the present value of the future premiums to be paid would be $P_{x} a_{x+r}$ and the net single premium for a policy on the insured, now aged $x+r$, would be A_{x+r}. Again denoting the terminal reserve for the r th year by ${ }_{r} V_{x}$, we obtain the relation,

$$
{ }_{r} V_{x}+P_{x} \mathrm{a}_{x+r}=A_{x+r}, \quad \text { [(5) Art. 76] }
$$

and

$$
\begin{equation*}
{ }_{r} V_{x}=A_{x+r}-P_{x} a_{x+r} . \tag{4}
\end{equation*}
$$

We see from equation (4) that the rth year ierminal reserve is cqual to the net single premium for the attained age $x+r$ minus the present value of all future net annual premiums. This definition of reserve will evidently hold for all forms of policies.

The value of ${ }_{r} V_{x}$ may be expressed in terms of the commutation columns by remembering that

$$
\begin{aligned}
A_{x+r} & =\frac{M_{x+r}}{D_{x+r}}, \quad \text { [(2) Art. 83] } \\
P_{x} & =\frac{M_{x}}{N_{x}}, \quad \text { [(5) Art. 83] }
\end{aligned}
$$

and

$$
\mathrm{a}_{x+r}=\frac{N_{x+r}}{D_{x+r}} \quad \text { [(6) Art. 76] }
$$

Then

$$
{ }_{r} V_{x}=\frac{N_{x} M_{x+r}-M_{x} N_{x+r}}{N_{x} D_{x+r}}
$$

Replacing A_{x+r} by its equivalent $P_{x+r}\left(\mathrm{a}_{x+r}\right)$, equation (4) becomes

$$
{ }_{r} V_{x}=\left(\mathrm{a}_{x+r}\right) P_{x+r}-\left(\mathrm{a}_{x+r}\right) P_{x}
$$

or

$$
\begin{equation*}
{ }_{r} V_{x}=\left(P_{x+r}-P_{x}\right)\left(\mathrm{a}_{x+r}\right) \tag{5}
\end{equation*}
$$

P_{x+r} is the net annual premium for an individual now aged $x+r$, but since he took his insurance at age x instead of waiting until age $x+r$, his annual saving in premium is $\left(P_{x+r}-P_{x}\right)$ and the present value of these annual savings is $\left(P_{x+r}-P_{x}\right)\left(\mathrm{a}_{x+r}\right)$ which is the policy reserve at the end of the r th year. Hence we have a verbal interpretation of the formula (5).

We will now derive an expression for the terminal reserve for the r th year on an n-payment life insurance of $\$ 1$. The symbol, $r: n=$, will denote the r th year reserve for this policy. Immediately following equation (4), Art. 92, we defined reserve and said this definition would hold for all forms of policies. Here the net single premium for the attained age $x+r$ would be A_{x+r} and the present value of all future premiums would be given by

$$
{ }_{n} P_{x} \cdot a_{x+r} \overline{n-r}
$$

as they would constitute a temporary life annuity due, for $n-r$ years. Consequently, we may write

$$
\begin{equation*}
r: n V_{x}=A_{x+r}-{ }_{n} P_{x} \cdot a_{x+r} \overline{n-r} \tag{6}
\end{equation*}
$$

Denoting the r th year terminal reserve on a k-payment n-year endowment insurance of $\$ 1$ by $r: k V_{x \bar{n}}$ and following the same line of reasoning used in obtaining (6), we get,

$$
\begin{equation*}
r: k V_{x \bar{n} \mid}=A_{x+r \overline{n-r}}-{ }_{k} P_{x \bar{n}} \cdot a_{x+r} \overline{k-r} \tag{7}
\end{equation*}
$$

When r is equal to or greater than k formula (7) becomes

$$
\begin{equation*}
r: k V_{x \bar{n}}=A_{x+r} \overline{n-r \mid} . \tag{8}
\end{equation*}
$$

When the annual premiums are payable for the entire endowment period, $k=n$, and (7) reduces to

$$
\begin{equation*}
{ }_{r} V_{x \bar{n} \mid}=A_{x+r} \overline{n-r}-P_{x \bar{n}} \cdot a_{x+r} \overline{n-r} . \tag{9}
\end{equation*}
$$

Exercises

1. Find the 20th year reserve on an ordinary life policy for $\$ 5,000$ taken at age 30 .

Solution. Here, $r=20, x=30$. Then from (4) Art. 92, we have

But

$$
\begin{aligned}
{ }_{20} V_{30} & =A_{50}-P_{30}\left(a_{50}\right) \\
P_{30} & =\frac{M_{30}}{N_{30}}=\frac{10,259}{596,804}=0.01719 \\
{ }_{20} V_{30} & =0.50849-0.01719(14.5346) \\
& =0.25864
\end{aligned}
$$

Hence,
and

$$
5,000 \cdot{ }_{20} V_{30}=\$ 1,293.20
$$

2. Find the terminal reserve of the 15 th policy year on a 15 -payment life policy of $\$ 5,000$ taken at age 35 . Explain why this result equals the net single premium on a life policy taken at age 50 .
3. Find the 20th year terminal reserve on a $\$ 10,000$ policy which is to mature as an endowment at age 65, if the policy was taken at age 30 .
4. Find the 10 th year reserve on a $\$ 20,000,20$-year endowment policy taken at age 40.
5. Find the terminal reserve of the seventh policy year on a twenty payment life policy of $\$ 2,500$ taken at age 32 .
6. Find the terminal reserve of the ninth policy year on an ordinary life policy of $\$ 5,000$ taken at age 40 .
7. Verify the result for the third terminal reserve in Exercise 1, Art. 90.
8. Verify the result for the fifth terminal reserve of the illustrative problem in Art. 90.
9. Reduce formula (6) Art. 92 to commutation symbols.
10. Retrospective method of valuation.-In preceding sections we have alluded to the retrospective method of computing reserves. Fackler's accumulation formula, Art. 91, was developed from facts that pertain to the past history of the policy. It expresses the reserve of any policy year in terms of the reserve of the previous year, and is therefore very useful in preparing complete tables of terminal reserves. It cannot be used, however, for computing the reserve on a given policy for a specified policy year.

The problem of finding the reserve on a given policy for a specified policy
year was solved in Art. 92 by the prospective method. The thoughtful student will naturally enquire: "Can we develop formulas by the retrospective method for computing the reserves on given policies for specified policy years, and are the results consistent with those of Art. 92?"

We answer both questions in the affirmative.
From the retrospective point of view, the rth terminal reserve for a given policy issued at age x is the accumulated value at age $x+r$ of the past premiums less the accumulated value at age $x+r$ of the past insurance benefits. The past insurance benefits are those of an r-year term insurance on (x). That is,

$$
\binom{r \text { th Terminal }}{\text { reserve }}=\left(\begin{array}{c}
\text { Value at age } \\
x+r \\
\text { of past premiums }
\end{array}\right)-\left(\begin{array}{c}
\text { Value at age } \\
x+r \\
\text { of past benefits }
\end{array}\right)
$$

Consider an ordinary life policy of $\$ 1$ on (x).
$P_{x}=$ the net annual premium, and ${ }_{r} V_{x}=$ the r th terminal reserve.
$\binom{$ Value at age $x+r}{$ of past premiums }$=P_{x} \cdot{ }_{r} u_{x}=\frac{M_{x}}{N_{x}} \cdot \frac{N_{x}-N_{x+r}}{D_{x+r}}$.
[(5) Art. 83] [(12) Art. 79]
$\binom{$ Value at age $x+r}{$ of past benefits }$=\frac{A_{x \pi}^{1}}{{ }_{r} E_{x}}=\frac{M_{x}-M_{x+r}}{D_{x}} \cdot \frac{D_{x}}{D_{x+r}}=\frac{M_{x}-M_{x+r}}{D_{x+r}}$.
[(8) Art. 84] [(2) Art. 73]
Hence,

$$
\begin{aligned}
& { }_{r} V_{x}=\frac{M_{x}}{\mathbb{N}_{x}} \cdot \frac{N_{x}-N_{x+r}}{D_{x+r}}-\frac{M_{x}-M_{x+r}}{D_{x+r}} . \\
& { }_{r} V_{x}=\frac{\mathbb{N}_{x} M_{x+r}-M_{x} \mathbb{N}_{x+r}}{\mathbb{N}_{x} D_{x+r}}
\end{aligned}
$$

which is the same as (4^{\prime}) Art. 92.

Problems

1. How much does a person save by buying a $\$ 10,000$ ordinary life policy at age 25 instead of waiting until age 30 ? See formula (5), Art. 92.
2. Show that when $r=n$, the right-hand member of (6) Art. 92, reduces to A_{x+n} and explain the meaning of this result.
3. Derive formula (7), Art. 92.
4. To what does the right member of (9) reduce when $r=n$?
5. Express formula (6) in terms of the commutation symbols.
6. Express formula (9) in terms of the commutation symbols.
7. Making use of (3) and (5) Art. 83, show that

$$
\begin{equation*}
{ }_{r} V_{x}=\frac{a_{x}-a_{x+r}}{1+a_{x}}=1-\frac{1+a_{x+r}}{1+a_{x}}=1-\frac{\mathbf{a}_{x+r}}{\mathbf{a}_{x}} . \tag{10}
\end{equation*}
$$

8. Use formula (10) to find the twelfth year terminal reserve on a $\$ 2,000$ ordinary life policy taken at age 37 .
9. (a) Show that ${ }_{r: n} V_{x}=\left(n-r P_{x+r}-{ }_{n} P_{x}\right)\left(\mathrm{a}_{x+r} \overline{n-r \mid}\right)$ and interpret the result.
(b) Derive a similar expression for the n-year endowment policy.
10. Build up a table of terminal reserves for the first 10 years on a 20 -payment life policy of $\$ 1,000$ taken at age 30 . Use (3) and (2), Art. 91 and check every 5 years by using (6), Art. 92.
11. Build up a table of terminal reserves for the first 10 years on an ordinary life policy of $\$ 1,000$ taken at age 33 . Use (3) and (2) Art. 91 and check for the fifth and tenth years by using formula (10), Problem 7.
12. Build up a table of terminal reserves for the first 5 years on a 10 year endowment of $\$ 1,000$ taken at age 30 . Use Fackler's formula and check the fifth year by using formula (9) Art. 92.
13. Solve Exercise 10, with the policy taken at age 40.
14. Solve Exercise 11, with the policy taken at age 38.
15. Develop a formula similar to (9), Art. 92, but for term insurance for a term of n years. Find the fifth year terminal reserve on a ten year term policy of $\$ 1,000$ issued at age 30 .
16. Find the seventh year terminal reserve on a $\$ 1,000,15$ year term policy issued at age 40.

CHAPTER XI

GROSS PREMIUMS, OTHER METHODS OF VALUATION, POLICY OPTIONS AND PROVISIONS, SURPLUS AND DIVIDENDS

94. Gross Premiums.-In Chapter IX a net premium was defined and we found the net premiums for a number of the standard policies. We saw that this net premium was large enough to take care of the yearly death claims and to build up a reserve sufficient to care for all future claims, but was not adequate to pay the running expenses of the company and provide against unforeseen contingencies.* Hence to care for these extra expenses a charge in addition to the net premium must be made. This additional charge is sometimes spoken of as a loading, and the net premium plus this loading is called the gross premium.

In Chapter IX we enumerated some of the expenses of the insurance company. To these we may add taxes imposed by state legislatures, medical expenses for the examination of new risks, expenses for collecting premiums, and many other minor ones.

We shall now discuss some of the methods used in arriving at a sufficient gross premium. At first thought it might seem reasonable to add a fixed amount to the net premium on each $\$ 1,000$ insured regardless of age or kind of policy. This would give the same amount for expenses on an ordinary life policy for a young man, aged 25 say, as on a 20 -year endowment policy for the same amount and age. The percentage of loading on the ordinary life policy would be about three times as large as that on the endowment policy, while as a matter of fact the expenses of each policy would be about the same percentage of the respective premium, for commissions are usually paid as a percentage of the premium, and taxes are charged in a like manner. Hence, we see that a constant amount added to a premium does not make adequate provisions and it is seldom used now without modification.

Sometimes loadings are effected by adding a fixed percentage of the net premium. Let us assume for the time being that this is 30%. Then the loading at age 25 on an ordinary life policy would be $\$ 4.53$ and on a ten year endowment at age 65 it would be $\$ 32.75$. . It is evident that this method makes the loading very high for the older ages and thereby causes the premium to be unattractive to the applicant. As a matter of fact the

[^17]$\$ 32.75$ is more than is actually required to care for the expenses of the 10 -year endowment taken at age 65. This method has its objections as well as the first method described.

Often a constant amount plus a fixed percentage of the net premium is added. This is a combination of the two methods described above. The constant gives an adequate amount for administration expenses as this depends more on the volume of insurance in force than on the amount of premiums, and the percentage provides for those expenses that are a certain percentage of the net premium.

If we add a constant $\$ 4$ for each $\$ 1,000$ of insurance and 15% of the net premium we get a premium that is very satisfactory. For example the net premium on an ordinary life policy of $\$ 1,000$ at age 35 is $\$ 19.91$. Adding $\$ 4.00$ and 15%, we get $\$ 26.89$ as our office premium.

Another plan is a modification of the percentage method. If $331 / 3 \%$ be the percentage, $1 / 3$ of the net premium is added to obtain the office premium on ordinary life. On limited payment life and endowment policies $1 / 6$ of the net premium for the particular policy is added and then $1 / 6$ of the net premium on an ordinary life for the same age. To illustrate:
Ordinary life, nct rate, age 35 $\$ 19.91$
$1 / 3$ of net rate 6.64
Gross premium $\$ 26.55$
20-year endowment, net rate, age 35 $\$ 40.11$
$1 / 6$ of $\$ 40.11$ 6.68
$1 / 6$ of ordinary life rate. 3.32
Gross premium $\$ 50.01$

If we let P_{x}^{\prime} stand for the gross premium of an ordinary life policy of $\$ 1$, and let r denote the rate of the percentage charge, and c the constant charge per $\$ 1,000$ of insurance, we may express by the formula,

$$
\begin{equation*}
P_{x}^{\prime}=P_{x}(1+r)+\frac{c}{1,000}, \tag{1}
\end{equation*}
$$

the ideas mentioned above. If the loading is a constant charge, r will be zero but if it is considered a percentage charge only, c will be zero. Formula (1) may be modified to apply to the different forms of policies. Nearly every company has its individual method of calculating gross premiums but all companies get about the same results.
95. Surplus and dividends.-The gross premium is divided into three parts. The first part is an amount sufficient to pay the death claims for
the year, where the number of deaths is based upon the American Experience Table of Mortality. The second part goes to build up the reserve. The third part is set aside to meet the expenses of the company.

As all new policy holders are selected by medical examination it is reasonable to expect that, under normal conditions, the actual number of deaths will be much smaller than the expected. Hence, a portion of the first part of the premium is not used for the current death claims, and is placed in a separate fund known as the surplus.

The reserve is figured on a $31 / 2 \%$ interest basis, but the average interest earned by the funds of the company is usually considerably more than this. This additional interest is also added to the surplus.

After an insurance company has become well organized and its territory has been thoroughly developed its annual expenses are usually much loss than the expected. Hence a portion of the third part of the premium is saved and added to the surplus.

Since the surplus comes from savings on the premiums, a part of it is refunded to the policy holders at the end of each year. These refunds are called dividends, but they are not dividends in the same sense as the interest on a bond. Most of these dividends come from savings on premiums and only a small amount comes from a larger interest earning on the reserve and other invested funds.

A large portion of this surplus must be held by the company for it is as essential for an insurance company to have an adequate surplus as it is for a trust company, a bank, or any other corporation. The surplus represents the difference between the assets and the liabilitics, and a relatively large surplus is an indication of solvency.
96. Policy options.-In any standard life-insurance policy there is a nonforfeiture table giving the surrender or loan value, automatic extended insurance, and paid-up insurance at the end of each policy year beginning with the third.* In case the insured desires to quit paying any time after three annual payments have been made, he may surrender his policy and receive the cash value indicated in the table, or a paid-up policy for the amount indicated in the table. Or he may keep his policy and remain insured for the full face amount of the policy for the time stated in the table.
97. Surrender or loan value.-The surrender or loan value of a policy at the end of any policy year is the terminal reserve for that year less whatever charge (known as a surrender charge) the company makes for a surrender. This charge is a per cent of the terminal reserve and decreases

[^18]each year. After 10 or 15 years there is usually no charge made upon surrender. The surrender value at the end of the tenth year on an ordinary life $\$ 1,000$ policy, issued to a person age 25 , is $\$ 89.43$ less the surrender charge. Insurance laws allow companies to make a surrender charge. The companies, however, usually make a smaller charge than is allowed them by law.

We give a few reasons for this charge: First, the company is at an expense to secure a new policy holder in place of the one surrendered; Second, life insurance companies claim that the greatest number of lapses come from people who are in excellent health rather than from those in poor health. This would tend to increase the percentage of mortality and thereby decrease the surplus and dividends to policy holders. Third, if policy values were not subjected to a surrender charge, it is the belief that a large number of policy holders would either surrender their insurance or take the full loan value during hard times and thus cause financial loss to the company.*
98. Extended insurance.-Whenever the insured fails to pay his annual premium the company automatically extends his insurance for the full face of the policy unless he surrenders his policy and requests the surrender value or paid-up insurance. The length of time that the company can carry the insurance for the full amount, without further premiums, depends upon the surrender value of the policy at that time.

In order to find the time of extension we must solve the equation

$$
\begin{equation*}
\frac{M_{x+r}-M_{(x+r)+t}}{D_{x+r}}={ }_{r} V_{x} \quad \text { [(8) Art. 84] } \tag{2}
\end{equation*}
$$

for t. An example will show how this is done.
Example. The value at the end of the tenth year, of an ordinary life policy of $\$ 1,000$, taken at age 25 , is $\$ 89.43$. Find the time of the autornatic insurance.

Solution. Here, $x=25, r=10,{ }_{10} V_{25}=0.08943$, and

$$
\frac{M_{35}-M_{35+t}}{D_{35}}=0.08943
$$

or

$$
\begin{aligned}
M_{35+t} & =M_{35}-(0.08943) D_{35} \\
& =9,094.96-(0.08943)(24,544.7) \\
& =6,899.93 .
\end{aligned}
$$

* For a more complete discussion of surrender values see " Notes on Life Insurance" by Fackler.

This value of M_{35+t} lies between M_{46} and M_{47}. By interpolation we find that $35+t=46$ years 9 months, approximately, or $t=11$ years 9 months. Hence, the value $\$ 89.43$ is enough to buy a term policy of $\$ 1,000$ for 11 years and 9 months.
99. Paid-up insurance.-If at any time the insured surrenders his policy he may take a paid-up policy for the amount that his surrender value at that time will purchase for him at his attained age. For example, the value at the end of the tenth year, of an ordinary life policy of $\$ 1,000$ taken at age 25 is $\$ 89.43$. Find the paid-up insurance for that year. The insured is now age 35 and an insurance of $\$ 1$ will cost him

$$
A_{35}=0.37055
$$

Hence, he may buy for $\$ 89.43$ as much insurance as .37055 is contained in $\$ 89.43$, or approximately $\$ 241.00$.

The following is a non-forfeiture table for the first 10 years on an ordinary life policy for $\$ 1,000$ taken at age 25 :

Non-folfaliture Table- $\$ 1,000$, Ordinary Life, Age 25

At End of	Cash or Surrender Value	Automatic Extension		Paid-up Insurance
		Years	Months	
3rd Year	\$23.70	3	1	\$73.00
4th "	32.16	4	2	97.00
5th "	40.91	5	5	121.00
6th "	49.98	6	7	146.00
7th "	59.35	7	10	170.00
8th "	69.04	9	2	194.00
9th "	79.07	10	5	218.00
10th "	89.43	11	9	241.00

In the above table the values are all based upon the full level net premium terminal reserves. In a standard policy these values would all be some smaller due to the surrender charge. Usually, only even dollars are published in non-forfeiture tables. If the preliminary term method or modified preliminary term methods of valuation are used,* all the values will be made somewhat smaller for the first few policy years.

[^19]We shall now outline a method for determining the surrender values, automatic extended insurance, and paid-up insurance for an endowment policy. The surrender values will be determined just as terminal reserves are determined (the surrender value is the terminal reserve less the surrender charge). The time for automatic extension must at no time extend beyond the date of maturity. Hence, only such a part of the surrender value will be used as is necessary to extend the insurance to the maturity date. The balance of the surrender value for that year will go to buy a pure endowment which will mature at the end of the endowment period. Let us consider a $\$ 1,000$, 20 -year endowment for an individual aged 30.

The reserve (full level net premium method) for the fifth year is $\$ 177.83$. The cost of a 15 -year paid-up term policy of $\$ 1,000$ for the attained age, 35 , is $\$ 111.61$. This leaves $(177.83-111.61)=\$ 66.22$ with which to purchase a 15 -year pure endowment. A pure endowment of $\$ 1$ will cost

$$
{ }_{15} E_{35}=0.50922 . \quad \text { [(2) Art. 73] }
$$

Hence, $\$ 66.22$ will buy as much pure endowment as 0.50922 is contained in 66.22 , or $\$ 130.00$ (nearest dollar).

We now find the amount of the 15 -year paid-up endowment that $\$ 177.83$ will buy. The cost of a $\$ 1,15$-year paid-up endowment for age 35 is $\$ 0.62083$. Hence, $\$ 177.83$ will buy a paid-up endowment of

$$
\frac{177.83}{0.62083}=\$ 286.00 \text { (approximately) }
$$

The following is a non-forfeiture table for the first 10 years on a 20 -year endowment of $\$ 1,000$ taken at age 30 :

Non-forfeiture Table- $\$ 1,000$, 20 -Year Endowment, Age 30

At end of	Cash or Surrender Value	Automatic Extension		Pure Lndowment	Paid-up Endowment
3rd Year	$\$ 102.35$	14	4	$\ldots \ldots$	$\$ 175.00$
4th "	139.32	16	no	$\$ 47.00$	231.00
5th "	177.83	15	"	130.00	286.00
6th "	217.95	14	$"$	208.00	341.00
7th "	259.74	13	$"$	282.00	394.00
8th "	303.29	12	$"$	353.00	447.00
9th "	348.67	11	$"$	421.00	498.00
10th "	395.98	10	$"$	491.00	554.00

In the above table the values are all based upon the full level net premium terminal reserves. However, these values would all be somewhat smaller due to the surrender charge.

In the event the policy holder paid only five premiums and then lapsed his policy, he could accept any one of the following options at the end of five years: Receive $\$ 177.83$ (less surrender charge) in cash, receive a paidup 15 -year term policy for $\$ 1,000$ and $\$ 130$ in cash at age 50 , if living, or receive a paid-up endowment for $\$ 286.00$.

Exercises

1. Make a non-forfeiture table for the first 10 years of a $\$ 1,000$ ordinary life policy taken at age 40.
2. Make a non-forfeiture table for the first 10 years of a $\$ 1,000$ 20-payment life policy taken at age 40.
3. Make a non-forfeiture table for the first five years of a $\$ 1,00020$-year endowment policy taken at age 40.
4. Make a non-forfeiture table for the first 10 years of a $\$ 1,000$ policy taken at age 26 , which is to endow at age 60.
5. A man who has attained the age of 35 surrenders his policy and chooses to elect the option which grants him extended insurance to the amount of $\$ 5,000$ for eight years. Find his surrender value.
6. A man who has attained the age of 35 surrenders his policy and elects the option of paid-up insurance. If his surrender value is $\$ 5,000$, find the amount of insurance he should receive.
7. A man aged 25 took out a convertible $\$ 10,00010$-year term policy. At the end of 5 years he converted it into an ordinary life policy as of his attained age. How much ordinary life insurance did he obtain if all his reserve was used for that purpose?
8. A man aged 30 takes out an ordinary life policy for $\$ 10,000$. When he is 55 years of age, the company decides to go out of business. What sum is due him?
9. Preliminary term valuation.-In Chapter X we considered what is known as the full level premium method of valuation. By this method the difference between the net annual premium and the natural premium for the first year is placed into the reserve. It is clear that this leaves none of the net annual premium to care for the first year's expenses of the policy. The initial expenses of a policy are the greatest for they include an agent's commission, medical examiner's fee, taxes, etc. To illustrate the above remarks let us consider an ordinary life policy of $\$ 1,000$ taken at age 35 . The net annual premium on this policy is $\$ 19.91$ and the office premium is $\$ 26.55$, leaving only $\$ 6.64$ to go towards initial expenses. The balance of the first year's expenses must come from the surplus. But this seems
unfair to the old policy holders as their contributions in the way of premiums have built up this surplus. It is perhaps fair that they should bear a small portion of the expenses of securing new business, but they should not pay so much as is required under the full level premium method of valuation. It is also evident that under this method it would be almost impossible for a new company to build up an adequate surplus.

A method known as a preliminary term system has been devised to meet the objections mentioned above, and we will now describe it. Under this method all the first year premium is available for current mortality and expenses. The first year's insurance then is term insurance and the policy provides that it may be renewed at the end of the first year as a life or endowment policy at the same office premium. The net premium for the first year is the natural premium for the age when the policy was issued and the balance of the gross premium is considered as first year loading and is available for initial expenses. The net premium for the second and subsequent years is the net premium at an age one year older than when the policy was issued.

Let us again consider the ordinary life policy of $\$ 1,000$ taken at age 35 . Here the office premium is $\$ 26.55$ and since the natural premium for the first year is $\$ 8.65$ there would be a first year loading of $\$ 17.90$. The net annual premium for subsequent years would be $\$ 20.55$ * which would leave $\$ 6.00$ as a renewal loading. Had the policy been issued under the full level net premium system there would have been a uniform loading of $\$ 6.64$.

A 20 -payment life policy taken at age 35 would have a gross premium of $\$ 35.70$. The first year natural premium would be $\$ 8.65$, thus leaving a loading of $\$ 27.05$ for initial expenses, and the net premium for the subsequent nineteen years would be the net premium on a 19-payment life policy as of age 36 . This would be $\$ 28.89$, thus resulting in a renewal loading of $\$ 6.81$. Had this policy been issued under the full level net premium system there would have been a uniform loading of $\$ 8.31$.

The preliminary term method when applied to ordinary life policies and limited payment life and endowment policies with long premium paying periods is sound in principle and is recognized by the best authorities. However, the system has some objections when it is applied to limited payment life and endowment policies of short premium paying periods. These objections will be discussed in Art. 101 and a remedy will be devised.

It is evident that, since the whole of the first year's gross premium is available for current mortality and expenses, there can be no terminal reserve set up until the end of the second year. It is also clear that this

[^20]reserve from year to year will be a little smaller than the full level net premium reserve until the policy matures.

Example 1. For an ordinary life policy of $\$ 1,000$ taken at age 30 , find the terminal reserve for the first three policy years under the preliminary term system of valuation. Also find reserve for the twentieth year.

Solution. The insurance for the first year is term insurance and there is no first year reserve. To get the terminal reserve for the second year we make use of (3) Art. 91, letting $x=31$. Then

$$
\begin{aligned}
{ }_{1} V_{31} & =u_{31} P_{31}-k_{31} \\
& =1.043884(0.01768)-0.008583 \\
& =0.00987
\end{aligned}
$$

and $\quad 1,000{ }_{1} V_{31}=1,000(0.00987)=\$ 9.87$ (2nd year reserve).
Also,

$$
\begin{aligned}
{ }_{2} V_{31} & =u_{32}\left({ }_{1} V_{31}+P_{31}\right)-k_{32} \\
& =1.043986(0.00987+0.01768)-0.008682 \\
& =0.020179
\end{aligned}
$$

and $\quad 1,000{ }_{2} V_{31}=1,000(0.020179)=\$ 20.18$ (3rd year reserve) .
The reserve for the 20th year will be the 19th year reserve for age 31 . From (4), Art. 92, we get

$$
\begin{aligned}
{ }_{19} V_{31} & =A_{50}-P_{31} a_{50} \\
& =0.50849-0.01768(14.5346) \\
& =0.25151
\end{aligned}
$$

and

$$
\begin{aligned}
1,000{ }_{19} V_{31} & =1,000(0.25151) \\
& =\$ 251.51 \text { (20th year reserve) }
\end{aligned}
$$

According to the full level premium method, the reserve for the third year would have been $\$ 29.33$ and that for the twentieth year would have been $\$ 258.64$. The student will observe that the difference between the reserves, for any particular year, according to the two methods decreases as the age of the policy increases. In fact, the reserves for the fortieth year differ by only $\$ 3.64$.

Example 2. For a 20 -payment life policy of $\$ 1,000$ taken at age 30 , find the terminal reserve for the first three policy years under the preliminary term system. Also find the reserve for the twentieth year.

Solution. The insurance for the first year is term insurance and there is no first year reserve. To get the terminal reserve for the second year we make use of (3) Art. 91, letting $x=31$. Then

$$
\begin{aligned}
{ }_{1} V_{31} & =u_{31} \cdot{ }_{19} P_{31}-k_{31} \\
& =1.043884(0.02601)-0.008583 \\
& =0.018568, \\
\text { and } \quad{ }_{1,000}{ }_{1} V_{31} & =1,000(0.018568) \\
& =\$ 18.57(2 \text { nd year reserve }) . \\
{ }_{2} V_{31} & =u_{32}\left({ }_{1} V_{31}+{ }_{19} P_{31}\right)-k_{32} \\
& =1.043986(0.018568+0.02601)-0.008682 \\
& =0.037859, \\
\text { and } \quad{ }_{1,000}{ }_{2} V_{31} & =1,000(0.037859) \\
& =\$ 37.86 \text { (3rd year reserve) } .
\end{aligned}
$$

The reserve for the 20th year will be the 19th year reserve on a 19-payment life taken at age 31 . From (6), Art. 92, we get

$$
{ }_{19: 19} V_{31}=A_{50}=0.50849
$$

and $1,000{ }_{19: 19} V_{31}=1,000(0.50849)$

$$
=\$ 508.49 \text { (20th year reserve). }
$$

According to the full level premium method, the reserve for the third year would have been $\$ 53.94$ and that for the twentieth year would have been $\$ 508.49$. We observe that the difference in reserve by the two methods is $\$ 16.08$ at the end of the third year. However, at the end of 20 years there is no difference.
101. Modified preliminary term valuation.-In Art. 100 we mentioned the fact that the preliminary term method of valuation is objectionable when applied to limited payment life and endowment policies with short premium paying periods. This can best be illustrated by an example. Suppose we apply this method of valuation to a fifteen-payment endowment policy for $\$ 1,000$ taken at age 35 . The office premium is $\$ 67.92$ and since the natural premium for the first year is $\$ 8.65$ there would be a first year loading of $\$ 59.27$. This is entirely too much for first year expenses. It is evident then that the preliminary term system should be modified when applied to short premium paying periods.

We found that in the case of the ordinary life policy taken at age 35 there was, according to the preliminary term system, a first year loading of $\$ 17.90$ and this was adequate for initial expenses. Hence, if this amount is sufficient in the one case, it seems reasonable that the same amount, or but little more, should be adequate for limited payment and endowment policies of short premium paying periods. This then suggests a modification. The ordinary life premium at any age forms the basis of the amount which can be used for first year expenses for limited payment and endowment policies taken at the same age.

Another method of modification is that provided by the laws of Illinois, usually known as the "Illinois Standard." Under the Illinois plan, twenty payment life policies and all other policies having premiums smaller than that of the twenty payment life policy for that age are valued on the preliminary term plan without any modification.* Then the twenty payment life premium forms the basis of the amount which can be used for first year expenses on all policies whose premiums are greater than that of the twenty payment life.

The principles underlying the two methods of modification were recognized by the "Committee of Fifteen," composed of Insurance Commissioners and Governors, in 1906, and since that time the laws of many states have been amended so as to adopt the recommendations of this committee.

Some other states have other ways of modifying the preliminary term system, but the two modifications that we have here described will be sufficient for this discussion. We will now illustrate each of the above methods with an example.

Example 1. Find the terminal reserves for the first three years on a fifteen-year endowment policy of $\$ 1,000$, issued at age 25 , valued according

[^21]to the modified preliminary term system with the ordinary life as a basis of modification.

Solution. We shall base all our computations on an insurance of $\$ 1$ and then multiply by 1,000 . The net premium for the first year is the natural premium plus a certain excess, e. The subsequent net annual premiums are the net ordinary life premiums for age 26 , plus the same excess, e, required to mature the policy.

Neglecting e each year the value of the policy at the end of 15 years would be the full level net premium terminal reserve of the 14th policy year on an ordinary life policy of $\$ 1$ issued at age 26 , or ${ }_{14} V_{26}$. However, at the end of 15 years the policy must have a value of $\$ 1$. Hence, the excess payment of e each year must provide at maturity a pure endowment of

$$
\left(1-{ }_{14} V_{26}\right) .
$$

This excess, e, is the annual payment on a forborne temporary annuity due at age 25 (Art. 79), that will accumulate in 15 years to

$$
\left(1-{ }_{14} V_{26}\right) .
$$

Hence, $\quad e\left(\frac{N_{25}-N_{40}}{D_{40}}\right)=\left(1-{ }_{14} V_{26}\right)$,
and

$$
e=\left(1-{ }_{14} V_{26}\right) \frac{D_{40}}{N_{25}-N_{40}} .
$$

From (4), Art. 92, we get
since,

$$
\begin{aligned}
{ }_{14} V_{26} & =A_{40}-P_{26} \mathrm{a}_{40} \\
& =0.41003-0.01548(17.4461) \\
& =0.13997, \\
P_{26} & =0.01548 . \\
e & =(1-0.13997) \frac{19,727.4 \ldots}{770,113-344,167} \\
& =0.03983 .
\end{aligned}
$$

Then,

The terminal reserve for the first year is

$$
\begin{aligned}
{ }_{1} V_{25} & =u_{25}\left(e+A_{25}^{1} \overline{\text { I }}\right)-k_{25} \quad \text { [(2) Art. 91] } \\
& =u_{25} \cdot e=1.043415(0.03983) \\
& =0.04156,
\end{aligned}
$$

since,

$$
u_{25} \cdot A_{25 \mathrm{I}}^{1}=k_{25 .} .[(9) \text { Art. } 84 \text { and Exercise 1, Art. 91] }
$$

Then,

$$
\begin{aligned}
1,000{ }_{1} V_{25}= & 1,000(0.04156)=\$ 41.56 \text { (1st year reserve) } . \\
{ }_{2} V_{25}= & u_{26}\left({ }_{1} V_{25}+P_{26}+e\right)-k_{26} \\
= & 1.043415(0.04156+0.01548+0.03983) \\
& -0.008197=0.09288 .
\end{aligned}
$$

Then,

$$
\begin{aligned}
1,000{ }_{2} V_{25}= & 1,000(0.09288)=\$ 92.88(\text { nd year reserve }) . \\
{ }_{3} V_{25}= & u_{27}\left({ }_{2} V_{25}+P_{26}+e\right)-k_{27} \\
= & 1.043554(0.09288+0.01548+0.03983) \\
& \quad-0.008264=0.14638
\end{aligned}
$$

Then,

$$
1,000_{3} V_{25}=1,000(0.14638)=\$ 146.38(3 \text { rd ycar reserve }) .
$$

According to the full level premium method, the reserve for the first three years would be $\$ 48.87, \$ 99.81$, and $\$ 152.90$, respectively. We notice that the difference between the two methods for the first year is $\$ 7.31$ and for the third year the difference is $\$ 6.52$. There would be no difference for the fifteenth year.

Example 2. Find the terminal reserves for the first three years on a ten-year endowment policy of $\$ 1,000$, issued at age 25 , valued according to the Illinois standard.

Solution. The net premium for the first year is the natural premium, A_{25}^{1} 1, plus an excess e. The subsequent net annual premiums are the net premiums on a nineteen-payment life taken at age 26, plus the same excess e.

Neglecting e each year the value of the policy at the end of 10 years would be the full level net premium terminal reserve of the 9th policy year on a nineteen-payment life policy of $\$ 1$, issued at age 26 , or ${ }_{9: 19} V_{26}$. However, at the end of 10 years the policy must have a value of $\$ 1$.

Hence, the excess payment of e each year must provide at maturity a pure endowment of (1-9:19 V_{26}).
Therefore, $e\left(\frac{N_{25}-N_{35}}{D_{35}}\right)=\left(1-{ }_{9: 19} V_{26}\right)$
and

$$
e=\left(1-{ }_{9: 19} V_{26}\right) \frac{D_{35}}{N_{25}-N_{35}}
$$

From (6), Art. 92
since,
and

$$
\begin{aligned}
{ }_{9: 19} V_{26} & =A_{35}-{ }_{19} P_{26} \cdot a_{35} \text { 愐 } \\
& =0.17458,
\end{aligned}
$$

$A_{35}=0.37055$,

$$
{ }_{19} P_{26}=0.02368, \quad \text { [(6) Art. 83] }
$$

$$
a_{35} \overline{10]}=8.27575 . \quad[(10) \text { Art. } 76]
$$

Then,

Hence,

$$
\begin{aligned}
{ }_{1} V_{25} & =u_{25} \cdot e=1.043415(0.06468) \\
& =0.06749
\end{aligned}
$$

and

$$
1,000_{1} V_{25}=1,000(0.06749)=\$ 67.49 \text { (1st year reserve) } .
$$

$$
{ }_{2} V_{25}=u_{26}\left({ }_{1} V_{25}+{ }_{19} P_{26}+e\right)-k_{26}
$$

$$
=1.043484(0.06749+0.02368+0.06468)
$$

$-0.008197=0.15443$,
and

$$
\begin{aligned}
1,000{ }_{2} V_{25}= & 1,000(0.15443)=\$ 154.43(2 \text { nd year reserve }) . \\
{ }_{3} V_{25}= & u_{27}\left({ }_{2} V_{25}+{ }_{19} P_{26}+e\right)-k_{27} \\
= & 1.043554(0.15443+0.02368+0.06468) \\
& \quad-0.008264=0.24510 \\
1,000{ }_{3} V_{25}= & 1,000(0.24510)=\$ 245.10 \text { (3rd year reserve). }
\end{aligned}
$$

and
According to the full level premium method, the reserve for the first year would be $\$ 82.08$, for the second $\$ 167.66$, and for the third $\$ 256.92$. The difference between the two methods for the first year is $\$ 14.59$ and the difference for the third year is $\$ 11.82$.

Note.-" It should be noted that a modification of premiums and reserves is employed solely for the purpose of providing for large preliminary expenses in the first policy year, and does not in any way affect the yearly amount of gross premium actually paid to the
company by the policyholder. The modification is purely an internal transaction of the life insurance company, which releases a larger part of the gross premium for expenses in the first year and defers to a later date the setting up of a part of the reserve." *
102. Concluding remarks.-Before completing this elementary treatment of life insurance, we wish to emphasize the fact that we have attempted to give a mere introduction into a broad field. There are many topics that we have not touched. For the student who is interested in a further study of this important field, we suggest the following books:

Moir, Henry, Life Assurance Primer, The Spectator Company, New York City.
Menge, W. O., and Glover, J. W., An Introduction to the Mathematics of Life Insurance, The Macmillan Company, New York City.
Knight, Charles K., Advanced Life Insurance, John Wiley and Sons, New York City.
Spurgeon, E. F., Life Contingencies, The Macmillan Company, New York City.

Exercises

1. For a twenty payment life policy of $\$ 1,000$, taken at age 25 , find the terminal reserve for the 15 th policy year both under the level net premium system and under the preliminary term system of valuation.
2. Find the terminal reserve for the first three years on a 20 -year endowment policy of $\$ 1,000$, issued at age 40 , valued according to the modified preliminary term system with the ordinary life as a basis of modification.
3. Solve Exercise 2, using the Illinois Standard.
4. If the gross premium of a limited payment life policy of $\$ 1$ on (x) is found by increasing the net premium by a certain percentage r and adding to this a certain percentage s of the net ordinary life premium and further increasing this by a constant c, per $\$ 1,000$ insurance, show that the gross premium may be expressed by the formula

$$
\begin{equation*}
{ }_{n} P_{x}^{\prime}=P_{x} \cdot s+{ }_{n} P_{x}(1+r)+\frac{c}{1,000} \tag{3}
\end{equation*}
$$

5. Making use of formula (3) find the office premium on a fifteen payment life policy of $\$ 1,000$ for the ages $20,25,30$ and 35 , where $r=162 / 3 \%, s=162 / 3 \%$, and $c=50$ cents.
6. Making use of (1) find the office premiums on an ordinary life policy of $\$ 1,000$ for the ages $20,25,30$ and 35 , where $r=331 / 3 \%$ and $c=50$ cents.
[^22]
7. The formula

$$
\begin{equation*}
P_{x \bar{n} \mid}^{\prime}=P_{x} \cdot s+P_{x \bar{n} \mid}(1+r)+\frac{c}{1,000} \tag{4}
\end{equation*}
$$

gives the gross premium for an n-year endowment policy of $\$ 1$ on (x). Interpret the formula.
8. Making use of (4) find the office premium of a fifteen year endowment policy of $\$ 1,000$ for the ages $20,25,30$ and 35 , where $r=s=162 / 3 \%$ and $c=50$ cents.

Problems

1. By the terms of a will the income at 5% annually of a $\$ 20,000$ estate goes to a widow aged 50 during her lifetime. Find the value of her inheritance.
2. The will in Problem 1 requires that the residue of the estate shall go to a hospital when the widow dies. Find the value of this residue at the time the inheritance comes to the widow.
3. By the terms of a will the income at 5% annually of a $\$ 20,000$ estate goes to a son aged 25 for 10 years, or so long as he lives during the 10 years, after which the residue of the estate goes to a university. Find the present value of each legacy.
4. A widow aged 55 is to reccive a life income of $\$ 25,000$ a year from her husband's estate. The inheritance tax law requires that the bequest be valued on a $31 / 2 \%$ basis. The law grants the widow an exemption of $\$ 5,000$, and on the remainder of the cash value of her inheritance a tax of 3% must be paid of the first $\$ 50,000$ over the exemption value, and 5% on the next $\$ 50,000$, then 10% on the cash value in excess of $\$ 100,000$. Find the inheritance tax on this bequest.
5. Under the Illinois Standard, the terminal reserve at the end of 25 years of a $\$ 1,000$, 15 -payment life policy issued at age 35 is $\$ 626.92$. If the full amount of this reserve is allowed as cash surrender value, how much paid-up insurance will it purchase?
6. Under the full preliminary term valuation, the terminal reserve at the end of 25 years on a $\$ 1,000$ ordinary life policy issued at age 35 is $\$ 400.25$. If the full amount of this reserve is used to purchase extended insurance, how long is the extension?
7. Find the net first year and renewal premiums for an ordinary life policy of $\$ 1,00 \mathrm{C}$ issued at age 25 according to the full preliminary term method.
8. Same as Problem 7 but for a 20 -payment life policy.
9. Same as Problem 7 but for a 20 -payment 20 year endowment policy.

REVIEW PROBLEMS

Percentage

1. A building worth $\$ 15,000$ is insured for $\$ 12,000$. For what per cent of its value is it insured?
2. A merchant fails, having liabilities of $\$ 30,000$, and resources of $\$ 18,000$. What per cent of his debts can he pay? He owes Joe Brown $\$ 6,500$. How much will Brown receive?
3. A manufacturer sells to a wholesaler at a profit of 20%. The wholesaler sells to the retailer at a 25% profit. The retailer sells to the consumer at a profit of 60%. If the consumer pays $\$ 28.80$, what is the cost to the manufacturer? To the wholesaler? To the retailer?
4. Which is better for the purchaser, a series of discounts of $30 \%, 20 \%$, and 10%, or a single discount of 50% ? What would be the difference on a bill of $\$ 1,000$?
5. A coat listed at $\$ 100$ is bought subject to discounts of $20 \%, 10 \%$, and $81 / 3 \%$. (a) Find the net cost rate factor. (b) Find the net cost. (c) What single discount rate is equivalent to the given series of discounts? [Alg.: Com.—Stat., p. 98.]
6. A coat cost a dealer $\$ 66$. He marked the coat so that he could "drop" the marked price 20% and still sell it so as to make a profit of 10% on the cost. What was the selling price? The marked price?
7. I can buy a living room suite for $\$ 150$, less $331 / 3 \%$ and 20%. From another dealer I can get the same suite for $\$ 125$, less 25% and $121 / 2 \%$. The terms in each case are "net 30 days or 2% off for cash." What is the least amount of cash for which I can purchase the suite?
8. A bill of goods is purchased subject to discounts of r_{1} and r_{2}. Show that an equivalent single discount is their sum less their product.
9. Goods are bought subject to discounts of 25% and 20%. Find the marked price per dollar list if the goods are to be marked to realize a profit of $331 / 3 \%$.
10. At what price should goods costing $\$ 432$ be marked to make a profit of 25% of the cost after allowing a discount of 20% ?

Simple Interest and Discount

11. A note for $\$ 1,200$ bearing interest at 5% and due in 8 months is sold to an investor to whom money is worth 6%. What does the investor pay for the note?
12. I purchased $\$ 400$ worth of lumber from a dealer who will allow me credit for 60 days. If I desire to pay immediately, what should he be willing to accept if he estimates that he earns 6% on his money?
13. A real estate dealer received two offers for a piece of property. Jones offered $\$ 3,000$ cash and $\$ 5,000$ in 6 months; Smith offered $\$ 5,000$ cash and $\$ 3,000$ in 1 year. Which was the better offer on a 6% basis?
14. The cash price of a washing machine is $\$ 75$. It is bought for $\$ 10$ down and $\$ 10$ a month for 7 months. What rate of interest is paid?
15. I borrow $\$ 500$ for six months from a bank that charges 6% in advance. For what amount do I make the note?
16. I owe $\$ 500$ due in 3 months and $\$ 600$ due in 12 months. I desire to pay these debts by making equal payments at the ends of six and nine months. On a 6% basis, find the equal payments. Choose 12 months as a focal date.
17. I owe William Brown $\$ 500$ due in 3 months with interest at 8% and $\$ 800$ due in 12 months without interest. We agree that I may liquidate these debts with equal payments at the ends of six and nine months on a 6% basis. Find the equal payments by focalizing at 12 months.
18. When could I liquidate the debts in Problem 16 by a single payment of $\$ 1,100$, the equities remaining the same?
19. When could I liquidate the debts in Problem 17 by a single payment of $\$ 1,310$, the equities remaining the same? Solve by setting up an equation of value with focal date at 12 months.
20. $\$ 1,000$ Louisville, Kentucky February 12, 1945
Nine months after date I promise to pay Robert Brown, or order, one thousand dollars with interest at 7% from date.

Signed, George Sanders.
(a) Five months after date, Brown sold the note to Bank B which operates on a 6% discount basis. What did Brown receive for the note?
(b) Bank B held the note for 1 month and then sold it to a Federal Reserve Bank which operates on a 4% discount basis. What did Bank B gain on the transaction?

Compound Interest and Discount

21. A man buys a house for $\$ 6,000$, pays $\$ 2,000$ cash, and gives a mortgage note at 6% for the balance. If he pays $\$ 1,000$ at the end of two years and $\$ 1,000$ at the end of 4 years, what will be the balance due at the end of 5 years?
22. I owe $\$ 1,500$. I arrange to pay $\$ R$ at the end of 1 year, $\$ 2 R$ at the end of 2 years and $\$ 3 R$ at the end of 3 years. If money is worth 5% find R.
23. If ($j=.08, m=12$), find i.
24. If a finance company charges 1% a month on loans, what is their effective earning?
25. I owe two sums: $\$ 700$ due in 6 months without interest and $\$ 1,500$ due in 18 months with interest at $(j=.06, m=2)$. On a $(j=.05, m=2)$ basis what amount will liquidate these debts at the end of 1 year?
26. A lot is priced at $\$ 2,000$ cash. A buyer purchased it with equal payments now and at the end of one year. On a 6% basis, what was the amount of the payments?
27. What sum payable in 2 years will discharge two debts, $\$ 1,500$ due in 3 years with interest at 5%, and $\$ 2,000$ due in four years with interest at 6%, money being worth 4% ?
28. A merchant sells goods on the terms "net 90 days or 2% off for cash." Find the highest nominal rate of interest, j_{4}, at which a customer should borrow money in order to pay cash. Find the effective rate.
29. If $i=.06$, find d, j_{4}, and f_{4}.
30. If $d=.06$, find i, f_{4}, and j_{4}.
31. If $f_{4}=.06$, find i, d, and j_{4}.
32. If $j_{4}=.06$, find i, d, and f_{4}.
33. The Jones Lumber Co. estimates that money put into their business yields $11 / 2 \%$ a month. Find the highest discount rate, $\frac{f_{12}}{12}$, they can afford to offer to encourage payment of a bill due in one month.
34. State a problem for which the answer would be the value of x determined by the equation:

$$
7,860=x(1.03)^{-2}+x(1.03)^{-4}+x
$$

35. State a problem for which the answer would be the value of x determined by the equation:

$$
x(1.04)^{2}+x(1.04)+x=3,000(1.025)^{6}+2,000(1.04)^{-1}
$$

36. I can buy a piece of property for $\$ 9,800$ cash or for $\$ 6,000$ cash and payments of $\$ 2,000$ at the ends of 1 year and 2 years. Should I pay cash if I can invest money at 6% ?

Annuities

37. A purchaser of a farm agreed to pay $\$ 1,000$ at the end of each year for 10 years. (a) What is the equivalent cash price if money is worth 5% ? (b) At the end of 5 years, what must the purchaser pay if he desires to completely discharge his remaining liability on that date?
38. I owe $\$ 6,000$ due immediately. If money is worth ($j=.04, m=4$), what equal quarterly payments will discharge the debt if the first payment occurs at the end of 3 years and the last at the end of 10 years?
39. A man buys a home for which the cash price is $\$ 10,000$. He pays $\$ 1,200$ down and agrees to pay the balance with interest at ($j=.05, m=2$) by payments of $\$ 1,200$ at the end of each half-year as long as necessary with a final partial payment at the end of the last payment period. How many full payments are necessary? What is the final partial payment?
40. In Problem 39, find the principal outstanding just after the fifth payment of $\$ 1,200$.
41. Prove that $(1+i) s_{\bar{n} \mid i}+1=s_{\bar{n}+1 \mid i}$
(a) by verbal interpretation;
(b) algebraically.
42. A man buys a house of cash value $\$ 25,000$. He pays $\$ 5,000$ down and agrees to pay the balance with payments of $\$ 1,000$ at the beginning of each half-year for 14 years. Find the nominal rate j_{2} and the effective rate i that the purchaser pays.
43. An annuity of $\$ 100$ a year amounts to $\$ 3,492.58$ in 20 years. Find i.
44. A man purchased a property paying $\$ 3,000$ down and $\$ 500$ at the end of each half-year for 10 years. If money was worth $(j=.07, m=2)$, what was the equivalent cash price?
45. A debt of $\$ 10,000$ is being amortized, principal and interest, by payments of $\$ 1,000$ at the end of each half-year. If interest is at $(j=.04, m=2)$, what is the final payment?
46. The sum of $\$ 500$ was paid annually into a fund for five years, and then $\$ 800$ a year was paid. If the funds accumulated at 4%, when did the total amount to $\$ 12,000$? Obtain the final payment.
47. The sum of $\$ 100$ was deposited at the end of each month for 8 years in a bank that paid 4% effective. What was the value of the account two years after the last deposit if no withdrawals were made?
48. A man deposited $\$ 200$ at the end of every quarter in a savings bank that paid $31 / 2 \%$ effective. When did the account total $\$ 10,000$? What was the final partial payment?
49. A machine costs $\$ 2,000$ new and must be replaced at the end of 15 years at a cost of $\$ 1,900$. Find the capitalized cost if money can be invested at 4%.
50. Is it more profitable for a city to pay $\$ 2$ per square yard for paving that lasts five years than to pay $\$ 3$ per square yard for paving that lasts 8 years, money being worth 5% ?
51. A lawn mower costs $\$ 10$ and will last 3 years. How much can one afford to pay for a better grade of mower that will last 5 years, money worth 4% ?

Sinking Funds and Amortization

52. Find the annual payment necessary to amortize in 5 years a debt of $\$ 1,000$ which bears interest at 7%. Construct a schedule.
53. A corporation issues $\$ 1,000,000,6 \%$ bonds, dividends payable semi-annually. The dividends are paid as they fall due and the corporation makes semi-annual deposits into a sinking fund that will accumulate at $j_{2}=.04$ to their face value in 15 years. Find the sinking fund deposit. Find the total semi-annual expense to the corporation.
54. A debt of $\$ 100,000$ bearing interest at 5% effective will be retired by a sinking fund at the end of 10 years that earns 4% effective. Find the total annual expense. At what rate of interest could the debtor just as well have agreed to amortize the debt?
55. Which will be better, to repay a debt of $\$ 25,000$, principal and interest at 5%, in 10 equal annual payments, or to pay 6% interest on the debt each year and accumulate a sinking fund of $\$ 25,000$ in 10 years at 4% ?
56. A man purchases a house for $\$ 12,000$ paying one-half down. He arranges to pay $\$ 1,500$ per year principal and interest on the remaining amount until the debt is paid. How many payments of $\$ 1,500$ are made and what is the final payment at the end of the year of settlement if the debt bears interest at 6% ?
57. At the end of two years what was the purchaser's equity in the house in Problem 56?

Depreciation

58. A dynamo costing $\$ 5,000$ has an estimated life of 10 years and a scrap value of $\$ 200$. Find the constant rate of depreciation. What is the book value of the machine at the end of 5 years?
59. What is the annual payment into the depreciation fund of the machine in Problem 58 if the fund increases at 4% ? What is the book value of the machine at the end of 5 years?
60. A plant consists of three parts described by the table. Find the total annual depreciation charge on a 3% basis:

Part	Est. Life	Cost	Scrap Value
$\mathrm{A} \ldots \ldots \ldots \ldots \ldots$	40	$\$ 20,000$	$\$ 1,000$
$\mathrm{~B} \ldots \ldots \ldots \ldots \ldots$	20	8,000	200
$\mathrm{C} \ldots \ldots \ldots \ldots \ldots \ldots$	15	10,000	2,000

61. A Diesel engine costs $\$ 50,000$, lasts 20 years and has a salvage value of $\$ 5,000$.
(a) Find the amount that should be in the sinking fund at the end of 10 years at $41 / 2 \%$.
(b) What is the amount of depreciation during the eleventh year?
62. An old machine turns out annually 1,200 units at a cost of $\$ 3,000$ for operation and maintenance. It is estimated that at the end of 12 years it will have a salvage value of $\$ 500$. To replace the old machine by a new one would cost $\$ 15,000$, but 1,500 units could be turned out annually at an average annual cost of $\$ 3,500$ and this could be maintained for 25 years with a salvage value of $\$ 1,000$. On a 6% basis what is the value of the old machine?
63. W'hat number of units output annually of the new equipment in Problem 62 would reduce the value of the old machine to $\$ 4,000$, all other data remaining the same?
64. What number of units output of the new machine in Problem 62 would render the old machine worthless?

Valuation of Bonds

65. Find the cost of a $\$ 1,000,5 \% \mathrm{~J}$. and J . bond, redeemable at par in 10 years, if bought to yield ($j=.06, m=2$).
66. Find the cost of a $\$ 1,000$ bond, redecmable in 8 years at 106 , paying 6% convertible quarterly if bought to yield 8% effective.
67. Find the cost of the bond described in Problem 66 if bought to yield ($j=.08$, $m=4$).
68. A $\$ 10,000,4 \%$ J. and J. bond, redeemable at par January 1, 1940, was bought July 1,1936 , to yield ($j=.06, m=2$). Construct a schedule for the accumulation of the discount.
69. What was a fair price for the bond described in Problem 68 if bought on August 13, 1936 ?
70. A $\$ 10,000,7 \%$ J. and J. bond, was sold on June 1 at $1021 / 4$ and accrued interest. What was the selling price?
71. A $\$ 1,000,5 \% \mathrm{~J}$. and J. bond, redeemable at par in 10 years was purchased for $\$ 970$. Find the yield rate, j_{2}.

Miscellaneous

72. If $\$ 100$ invested at 5% simple interest accumulates to the same amount as $\$ 100$ invested at 4% simple discount, find the time the investment runs.
73. Show that it takes three times as long for a principal P to quadruple itself at $i \%$ as it does to double itself.
74. Jones considers two offers for a piece of property. A offers $\$ 3,000$ cash and $\$ 5,000$ in 6 months. B offers $\$ 5,000$ cash and $\$ 3,000$ in 1 year. On a 5% simple interest basis, which is the better offer? Find the difference in the present values of the two offers.
75. If D_{o} and D_{e} denote ordinary and exact simple discounts on an amount S for n years at $d \%$, show that $D_{e}=D_{o}-D_{o} / 73$. [Compare (6), page 4.]
76. How long will it take a principal P to double itself at the compound discount rate, $d \%$?
77. Prove: $\frac{1}{\mathrm{a}_{\bar{n} i}}=\frac{1}{\mathrm{~s}_{\bar{n} i}}+d$.
78. Prove: $\mathbf{a}_{\bar{n} i}=\frac{1-v^{n}}{d}$.
79. If R_{r} denotes the amount in the depreciation fund at the end of r years under the S.F. plan, prove that $R_{r}=R s_{\vec{j} i .}$.
80. If D_{r} denotes the depreciation charge during the r th year under the S.F. plan, prove that $D_{r}=R(1+i)^{r-1}$. [See Exercise 79 above.]
81. If $a_{\bar{n} i}=x$ and $s_{\bar{n} i}=y$, prove that $i=(y-x) / x y$.
82. A debt D bearing interest at $i \%$ is being amortized by equal annual payments R. Show that the indebtedness remaining unpaid at the end of r years is $D-(R-D i) s_{\bar{r} i}$.
83. Let $C=S$, and show that (2), page 142, can be reduced to form (12'), page 135. Explain how this can be true.
84. An alumnus, 50 years of age, proposes to give his college $\$ 50,000$ provided the college will pay him $\$ 2,500$ a year as long as he lives. If the college can borrow money at 4%, should it accept the proposition?
85. A note for $\$ 3,000$ with interest (compound) at 5%, due in 5 years, is discounted at the end of 2 years at discount rate of 4% compounded semi-annually. Find the proceeds and the discount.
86. A teacher provided for retirement by depositing $\$ 300$ a year with a trust company that granted him ($j=.04, m=2$) interest rate. At the end of 25 years he retired and withdrew $\$ 1,000$ a year. For how many years could he enjoy this annuity?
87. It is estimated that a copper mine will produce $\$ 30,000$ a year for 18 years. If the investor desires to earn 12% on the investment and can carn 4% on the sinking fund, what can he afford to pay for the mine?
88. A timber tract is priced at $\$ 1,000,000$. It is estimated the tract will yield a net annual income of $\$ 200,000$ for 10 years and that the cleared land will be worth $\$ 20,000$. The lumber company wishes to earn 10% on the investment and can earn 4% on redemption funds. Is the tract a good buy?
89. Find the constant per cent by which the value of a machine is decreased if its cost is $\$ 12,000$, its scrap value $\$ 2,000$, and its estimated life 15 years.
90. Expand $(1+j / m)^{m}$ by the binomial theorem, let m become infinite, and show that

$$
\lim _{m \rightarrow \infty}\left(1+\frac{j}{m}\right)^{m}=1+j+\frac{j^{2}}{2!}+\frac{j^{3}}{3!}+\cdots
$$

The series on the right is the infinite series expansion of e^{j}, where $e=2.71828+$ and is called the base of the natural or Napierian logarithms. The series converges for all values of j. Thus, as m becomes infinite, $(1+i)$ approaches e^{j}. (See page 139.)

When m becomes infinite, it is customary to replace j by δ. Thus, for continuous conversion we have

$$
\begin{gathered}
1+i=e^{\delta} \\
\delta=\log _{e}(1+i)=\frac{\log _{10}(1+i)}{\log _{10} e}=\frac{\log _{10}(1+i)}{.43429}
\end{gathered}
$$

The quantity δ is called the force of interest.
91. If $\delta=.06$, find i.
92. If $i=.06$, find δ.
93. Show that if the interest is converted continuously for n years, the accumulated value of S is

$$
S=P e^{n \delta}
$$

94. The population of Jacksonville increased continuously from 130,000 in 1930 to 173,000 in 1940. Find the continuous rate of increase. (Use results of Exercise 93 above.)
95. Proceed as in Exercise 90 and show that

$$
\lim _{m \rightarrow \infty}\left(1-\frac{f}{m}\right)^{m}=e^{-f}
$$

It is customary for continuous conversion of discount to replace f by δ^{\prime}. Then we have

$$
1-d=e^{-\delta^{\prime}}
$$

The quantity δ^{\prime} is called force of discount.
96. Show that if the discount is converted continuously for n years, the discounted value of S is

$$
P=S e^{-n \delta^{\prime}}
$$

97. Find the amount of $\$ 1,000$ for 10 years at 4% nominal, converted continuously.
98. A machine depreciated continuously from a value of $\$ 50,000$ to a salvage value of $\$ 10,000$ in 20 years. Find the continuous rate of depreciation.
99. Jones bought a truck for $\$ 2,000$. Its estimated life was 5 years and its salvage value was $\$ 500$. Jones estimated the truck earned $\$ 500$ a year net. What did he earn on his investment if deposits for replacement earned 3% ? (See page 135.)
100. A college invests $\$ 400,000$ in a dormitory. It is estimated that the college will derive $\$ 25,000$ net a year for 50 years at the end of which time the building will have a salvage value of $\$ 100,000$. What will the college earn on its investment if deposits for replacement earn 3% ? (See page 135.)

Table I.-Common Logarithms of Numbers
To Five Decimal Places

Table I.-Common Logarithms of Numbers
To Five Decimal Places

N	0	1	2	3	4	5	6	7	8	9	\boldsymbol{P}		
150	17609	638	667	696	725	754	782	811	840	869			
51	898	926	955	984	*013	*041	*070	*099	*127	*156			
52	18184	213	241	270	298	327	355	384	412	441			
53	469	498	526	554	583	611	639	667	696	724		29	28
54	752	780	808	837	865	893	921	949	977	*005	$\frac{1}{2}$	2.9	2.8 5.6
55	19033	061	089	117	145	173	201	229	257	285	3	8.7	8.4
56	312	340	368	386	424	451	479	507	535	562	4	11.6	
57	590	618	645	673	700	728	756	783	811	838	${ }_{6}^{6}$	14.5	18.0 18.8
58	866	893	921	948	976	*003	*030	*058	*085	*112	7	20.3 23.2	19.6 22.4
59	20140	167	194	222	249	276	303	330	358	385	9	26.1	25.2
160	412	439	466	493	520	548	575	602	629	656			
61	683	710	737	763	790	817	844	871	898	925			
62	685 21219	978	*005	*032	*059	*085	*112	*139	*165	*192			
63	21219	245	272	299	325	352	378	405	431	458		27	26
64	484	511	537	564	590	617	643	669	696	722	1	2.7 5.4	2.6 5.2
65	748	775	801	827	854	880	906	932	958	985	3	8.1	7.8
66	22011	037	063	089	115	141	167	194	220	246	\%	10.8 13.5	10.4 13.0
67	272	298	324	350	376	401	427	453	479	505	6	16.2	15.6
68	531	557	583	608	634	660	686	712	737	763	8	${ }_{21.8}^{18.9}$	18.2
69	789	814	840	866	891	917	943	968	994	*019	9	24.3	23.4
170	23045	070	096	121	147	172	198	223	249	274			
71	300	325	350	376	401	426	452	477	502	528			
72	553	578	603	629	654	679	704	729	754	779		I	
73	805	830	855	880	905	930	955	980	*005	*030			
74	24055	080	105	130	155	180	204	229	254	279			
75	304	329	353	378	403	428	452	477	502	527			
76	551	576	601	625	650	674	699	724	748	773		4	
77	797	822	846	871	895	920	944	969	993	*018			
78	25042	066	091	115	139	164	188	212	237	261			
79	285	310	334	358	382	408	431	455	479	503		9	
180	527	551	575	600	624	648	672	696	720	744			
81	768	792	816	840	864	888	912	935	959	983			
82	26007	031	055	079	102	126	150	174	198	221			
83	245	269	293	316	340	364	387	411	435	458		24	23
	482	505	529	553	576	600	623	647	670	694		2.4	2.3 4.6
85	717	741	764	788	811	834	858	881	905	928	3	7.2	6.9
86	951	975	998	*021	*045	*068	*091	*114	*138	*161	4 5	9.8 12.0	9.2
87	27184	207	231	254	277	300	323	346	370	393	6 7	14.4 18.8	13.8 16.1
88	416	439	462	485	508	531	554	577	600	623	8	18.8 19.2	18.4
89	646	669	692	715	738	761	784	807	830	852	9	21.6	20.7
190	875	898	921	944	967	989	*012	*035	*058	*081			
91	$28 \overline{103}$	126	149	171	194	217	240	262	285	307			
92	3	353	375	398	421	443	466	488	511	533			
93	556	578	601	623	646	668	691	713	735	758		$2 ?$	
94	780	803	825	847	870	892	914	937	959	981	1		2.1 4.2
95	29003	026	048	070	092	115	137	159	181	203	3		8.3
96	226	248	270	292	314	336	358	380	403	425	$\stackrel{4}{5}$	11.8	10.4
97	447	469	491	513	535	557	579	601	623	645	${ }^{6}$	13.2	12.6 14.7
98	667	688	710	732	754	776	798	820	842	863	8	17.6	18.8
99	885	907	929	951	973	994	*016	*038	*060	*081		19.8	18.9
200	30103	125	146	168	190	211	233	255	276	298			
N	-	1	2	3	4	5	6	7	8	0		\mathbf{P}	

Table I.-Common Logarithms of Numbers
To Five Decimal Places

N	0	1	2	3	4	5	6	7	8	9	$\mathbf{P P}$
200	30103	125	146	168	190	211	23.3	255	276	298	
01	320	341	363	384	406	428	449	471	492	514	
02	535	557	578	600	621	643	664	685	707	728	
03	750	771	792	814	835	856	878	899	920	942	$22 \quad 21$
04	963	984	*006	*027	*048	*069	*091	*112	*133		
05	31175	197	218	239	260	281	302	323	345	366	2 4.4 4.2 3 6.6 0.3
06	387	408	429	450	471	492	513	534	555	576	$\begin{array}{llll} \\ 4 & 8.8 & 8.4\end{array}$
07	597	618	639	660	681	702	723	744	765	785	5 11.0 6 13.2 10.5
08	806	827	848	869	890	911	931	952	973	99.4	7 15.4 14.7 8 17.6 168
09	32015	035	056	077	093	118	139	160	181	201	8 17.6 16.8 9 19.8 18.9
210	222	243	263	281	305	325	346	366	387	408	
11	428	449	469	490	510	531	552	572	593	613	
12	634	654	675	695	715	736	756	777	797	818	
13	838	858	879	869	919	940	960	980	*001	*021	20
14	33041	062	082	102	122	143	163	183	203	224	1 2.0 2 4.0
15	244	264	28.4	30.4	325	345	365	385	405	425	1 2 3
16	445	465	486	506	526	546	566	586	606	626	P 4 8.0 5 1.0
17	616	666	686	706	720	746	766	786	806	826	5 6 10.0 7 12.0
18	846	866	885	905	925	9.45	965	985	*005	*025	7 14.0 8 10.0
19	34044	064	084	104	124	143	163	183	203	223	9 18.0
220	242	262	282	301	321	341	361	380	400	420	
21	439	459	479°	498	518	537	557	577	596	616	
22	635	655	674	694	713	733	753	772	792	811	
23	830	850	869	889	908	928	947	967	986	*005	19
24	35025	044	064	083	102	122	141	160	180	199	1 2 1.9
25	218	238	257	276	295	315	33.4	353	372	392	1 3 5.8
26	411	430	449	468	488	507	526	545	564	583	4 7.7 4 76 5 9
27	603	622	641	660	679	608	717	736	755	774	5 11.4 7 1.4
28	793	813	832	851	870	889	908	927	946	965	7 13.3 8 15.2
29	984	*003	*021	*040	*059	*078	*097	*116	*135	*154	88 8 17.1
230	36173	192	211	229	248	267	286	305	324	342	
31	361	380	399	418	436	455	474	493	511	530	
32	5.49	568	586	605	624	642	661	680	698	717	
33	736	754	773	791	810	829	847	866	884	903	18
34	922	940	959	977	996	+014	*033	*051	*070	*088	
35	37107	125	144	162	181	199	218	236	254	273	1 1.8 3.6 5.4
36	291	310	328	346	365	383	401	420	438	457	4 3.8 5 7.2 5 9.0
37	475	493	511	530	548	566	58.5	603	621	639	6 10.8 7 108
38	658	676	694	712	731	749	767	785	803	822	7 12.6 8 14.4
39	840	858	876	894	912	931	949	967	985	*003	8 16.2
240	38021	039	057	075	093	112	130	148	166	184	
41	202	220	238	256	27.4	292	310	328	346	364	
42	382	399	417	435	453	471	489	507	525	543	
43	561	578	596	614	632	650	668	686	703	721	17
44	739	757	775	792	810	828	846	863	881	839	$\frac{1}{2}-\frac{1.7}{3.4}$
45	917	934	952	970	987	*005	*023	*041	*058	*076	3 51 4 6.8
46	39094	111	129	146	16.	182	193	217	235	252	4 6.8 5 8.5
47	270	287	305	322	340	358	375	393	410	428	6 10.2 7 119
48	4.45	463	480	498	515	5.33	550	568	585	602	8 13.6
49	620	637	655	672	690	707	724	742	759	777	9115.3
250	794	811	829	846	85,3	881	898	915	933	950	
N	0	1	2	3	4	5	6	7	8	9	$\mathbf{P} \mathbf{P}$

Table I.-Common Logarithms of Numbers To Five Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	$\boldsymbol{P} \mathbf{P}$	
250	39794	811	829	846	863	881	898	915	933	950		
51	967	985	*002	*019	*037	*054	*071	*088	*106	*123		
52	40140	157	175	192	209	226	243	261	278	295		
53	312	329	3.46	364	381	398	415	432	449	466		18
54	483	500	518	535	552	569	586	603	620	637	$\frac{1}{2}$	$\xrightarrow{1.8}$
55	654	671	688	705	722	739	756	773	790	807	3	3.6 5.4
56	824	811	853	875	892	909	926	043	960	976	4 5	7.2 9.0
57	993	*010	*027	*044	*001	*078	*005	*111	*128	*145	${ }_{7}^{6}$	10.8 12.6
58	41162	179	106	212	229	246	263	280	296	313	8	14.6
59	330	347	303	330	397	414	430	447	464	481	9	
260	497	514	531	547	504	5 S1	597	614	631	647		
61	604	681	697	714	731	$7 \cdot 17$	761	780	797	814		
62	830	817	863	880	896	913	. 929	916	963	979		
63	996	*012	*029	*0.15	*062	*078	*095	*111	*127	*144		17
64	42160	177	193	210	226	243	259	275	292	308	1	1.7 3.4
65	325	341	357	374	390	406	423	439	455	472	3	5.1
66	488	504	521.	537	553	570	586	602	619	635	$\stackrel{4}{5}$	6.8 8.5
67	651	667	684	700	716	732	749	765	781	797	6 7	10.2
68	813	830	846	862	878	894	911	927	+943	959	8	13.6
69	975	991	*008	*024	*040	*056	*072	*088	*104	*120	9	15.3
270	43136	152	169	185	201	217	233	249	265	281		
71	297	313	329	345	361	377	393	409	425	441		
72	457	473	489	505	521	537	553	569	584	600		
73	616	632	648	664	680	696	712	727	743	759		16
74	775	791	807	823	838	854	870	886	902	917	$\stackrel{1}{2}$	$\underline{1.6}$
75	983	949	965	981	996	*012	*028	*044	*059	*075	3	4.8
76	44091	107	122	138	154	170	185	201	217	232	4 5	8.4 8.0 8.0
77	248	264	279	295	311	326	342	358	373	389	${ }^{6}$	9.6 11.2
78	404	420	436	451	467	483	498	514	529	545	8	12.8
79	560	576	592	607	623	638	654	669	685	700	9	14.4
280	716	731	747	762	778	793	809	824	840	855		
81	871	886	902	917	932	948	963	979	994	*010		
82	45025	040	056	071	086	102	117	133	148	163		
83	179	194	209	225	240	255	271	286	301	317		15
84	332	347	362	378	393	408	423	439	454	469	$\frac{1}{2}$	1.5 3.0
85	484	500	515	530	545	561	576	591	606	621	3	4.5
86	637	652	667	682	697	712	728	743	758	773	4 5 5	6.0 7.5
87	788	803	818	83.4	849	864	879	894	909	924	6 7	9.0
88	939	954	969	934	*000	*015	*0.30	*045	*060	*075	8	12.0
89	46090	105	120	135	150	165	180	195	210	225		13.5
290	240	255	270	28.5	300	31.5	330	345	359	374		
91	389	404	419	434	449	464	479	494	509			
92	538	553	568	583	598	613	627	642	657	672		
93	687	702	716	731	746	761	776	790	805	820		14
94	835	850	864	879	894	909	923	938	953	967	1	1.4 2.8
95	982	997	*012	*026	*041	*056	*070	*085	*100	*114	3	4.2
96	47129	144	159	173	188	202	217	232	246	261	4 	5.6 7.0
97	276	290	305	319	334	349	363	378	392	407		
98	422	436	451	465	480	494	509	524	538	553	8	112
99	567	582	596	611	625	640	654	669	683	698		12.6
300	712	727	741	756	770	784	799	813	828	842		
N	0	1	2	8	4	5	6	7	8	9		

Table I.-Common Logarithms of Numbers
To Five Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	$\boldsymbol{P} \mathbf{P}$	
300	47712	727	741	756	770	784	799	813	828	842		
01	857	871	885	900	914	929	943	958	972	986		
02	48001	015	029	044	058	073	087	101	116	130		
03	144	159	173	187	202	216	230	244	259	273		
04	287	302	316	330	344	359	373	387	401	416		
05	430	444	458	473	487	501	515	530	544	558		16
06	572	586	601	615	629	643	657	671	686	700	1	1.5
07	714	728	742	756	770	785	799	813	827	841	3	4.5
08	855	869	883	+897	+911	926	940	. 954	968	982	5	6.5
09	996	*010	*024	*038	*052	*066	*080	*094	*108	*122	6	9.0
310	49136	150	164	178	192	206	220	234	248	262	7	10.5 12.0
11	276	290	304	318	332	346	360	374	388	402	9	
12	415	429	443	457	471	485	499	513	527	541		
13	554	568	582	596	610	624	638	651	665	679		
14	693	707	721	734	748	762	776	790	803	817		
15	831	845	859	872	886	900	914	927	941	955		
16	969	982	996	*010	*024	*037	*051	*065	*079	*092		
17	50106	120	133	147	161	174	188	202	215	229	1	14
18	243	256	270	284	297	311	325	338	352	365	2	2.8
19	379	393	406	420	433	447	461	474	488	501	3	4.2 5.8
320	515	529	542	556	569	583	596	610	623	637	5	7.0
21	651	664	678	691	705	718	732	745	759	772	7	8.8
22	786	799	813	826	840	853	868	880	893	907	8	11.2
23	920	934	947	961	974	987	*001	*014	*028	*041		
24	51055	068	081	095	108	121	135	148	162	175		
25	188	202	215	228	242	255	268	282	295	308		
26	322	335	348	362	375	388	402	415	428	441		
27	455	468	481	495	508	521	534	548	561	574		
28	587	601	614	627	640	654	667	680	693	706		13
29	720	733	746	759	772	786	799	812	825	838	1	1.3
330	851	865	878	891	904	917	930	943	957	970	2	2.6 3.9
31	983	996	*009	*022	*035	*048	*061	*075	*088	*101	5	5.2
32	52114	127	140	153	186	179	192	205	218	231	${ }_{6}^{5}$	6.8
33	244	257	270	284	297	310	323	336	349	362	7	9.1
34	375	388	401	414	427	440	453	466	479	492	9	11.7
35	504	517	530	543	556	569	582	595	608	621		
36	634	647	660	673	686	699	711	724	737	750		
37	763	776	789	802	815	827	840	853	866	879		
38	892	905	917	930	943	956	969	982	994	*007		
39	53020	033	046	058	071	084	097	110	122	135		
340	148	161	173	186	109	212	224	237	250	263		12
41	275	288	301	314	326	339	352	364	377	390	$\frac{1}{2}$	1.2
42	403	415	428	441	453	466	479	491	504	817	3	3.6
43	529	542	555	567	580	593	605	618	631	643	4	4.8 8.0
44	656	668	681	694	706	719	732	744	757	769	6 7	
45	782	794	807	820	832	845	857	870	-882	* 895		8.6
46	908	920	933	945	958	970	983	995	*008	*020		10.8
47	54033	045	058	070	083	095	108	120	133	145		
48	158	170	183	195	208	220	233	245	258	270		
49	283	295	307	320	332	345	357	370	382	394		
350	407	419	432	444	456	469	481	434	506	518		
\mathbf{N}	0	1	2	8	4	5	6	7	8	9		\mathbf{P}

Table I.-Common Logarithms of Numbers
To Five Decimal Places

N	0	1	2	3	4	5	6	7	8	9	$\mathbf{P} \mathbf{P}$	
350	54407	419	432	444	456	469	481	494	506	518		
51	$\overline{531}$	543	555	568	580	593	605	617	630	642		
52	654	667	679	691	704	716	728	741	753	765		
53	777	790	802	814	827	839	851	864	876	888		
54	900	913	925	937	949	962	974	986	998	*011		
55	55023	035	047	060	072	084	096	108	121	133		13
56	145	157	169	182	194	206	218	230	242	255	1	1.3
57	267	279	291	303	315	328	340	352	364	376	3	2.6 3.9
58	388	400	413	425	437	449	461	473	485	497	4	5.5 6.5
59	509	522	534	546	558	570	582	594	606	618	5	6.8
360	630	642	654	666	678	691	703	715	727	739	7	9.1 10.4
61	751	763	775	787	799	811	823	835	847	859	9	11.7
62	871	883	895	907	919	931	943	955	967	979		
63	991	*003	*015	*027	*038	*050	*062	*074	*086	*098		
64	56110	122	134	140	158	170	182	194	205	217		
65	229	241	2.53	265	277	289	301	312	324	336		
66	348	360	372	384	396	407	419	431	443	455		
67	467	478	490	502	514	526	538	549	561	573		12
68	585	597	608	620	632	64.4	6.56	667	679	691	${ }_{2}^{1}$	1.2 2.4
69	703	714	726	738	7.50	761	773	785	797	803	3	3.6
370	820	832	S44	855	867	879	891	902	914	926	5	6.8 7.0
71	937	0.19	961	972	984	996	*c08	*019	*031	*043	7	8.4
72	57054	066	078	089	101	113	124	136	148	159	8	9.6
73	171	183	194	206	217	229	241	252	264	276	9	10.8
74	287	299	310	322	334	345	357	368	380	392		
75	403	41.5	426	438	4.19	461	473	484	496	507		
76	519	530	512	553	565	576	588	600	611	623		
77	631	646	657	669	680	692	703	715	726	738		
78	749	761	772	78.4	795	807	818	8.30	841	852		11
79	864	875	887	898	910	921	933	944	955	967	1	11.1
380	978	990	${ }^{*} 001$	*013	*024	*035	*047	*058	*070	*081	2 3	2.2 3.3
81	58092	104	115	127	138	149	161	172	184	195	4	4.4
82	2806 306	218	229	2.40	252	263	274	286	297	309	5	5.5 6.6
83	320	331	343	354	365	377	388	399	410	422	7 8 8	6.6 7.7 8.8
84	433	444	456	467	478	490	501	512	524	535	9	9.9
85	546	557	569	580	591	602	614	625	636	647		
86	659	670	681	692	704	715	726	737	749	760		
87	771	782	794	805	816	827	838	850	861	872		
88	883	894	906	917	928	939	950	961	973	984		
89	995	*006	*017	*028	* 040	*051	*062	*073	*084	*095		
390	59106	118	129	140	151	162	173	184	195	207		10
91	218	229	240	251	262	273	234	295	306	318	$\frac{1}{2}$	1.0 2.0
92	329	340	351	362	373	384	395	406	417	428	3	3.0
93	439	450	461	472	483	494	506	517	528	539	4	4.0 5.0
94	550	561	572	583	594	605	616	627	638	649	7	
95	660	671	682	693	70.4	715	726	737	748	759	8	7.0 8.0
96	770	780	791	802	813	824	835	846	857	868		9.0
97	879	890	901	912	923	934	945	956	966	977		
98	988	999	*010	*021	*032	*043	*054	*065	*076	*086		
99	60097	108	119	130	141	152	103	173	184	195		
400	206	217	228	239	249	260	271	282	293	304		
N	0	1	2	3	4	5	6	7	8	9		\mathbf{P}

Table I.-Common Logaitithms of Numbers To Five Decimal Places

Table I.-Common Logarithms of Numbers

\mathbf{N}	0	1	2	3	4.	5	6	7	8	9	$\mathbf{P} \mathbf{P}$	
450	65321	331	341	350	360	369	379	389	398	408		
51	418	427	437	447	456	466	475	485	495	504		
52	514	523	533	543	552	562	571	581	591	600		
53	610	619	629	639	648	658	667	677	686	696		
54	706	715	725	734	744	753	763	772	782	792		
55	801	811	820	830	839	849	858	868	877	887		
58	896	906	916	925	935	944	954	963	973	982		
57	992	*001	*011	*020	*030	*039	*049	*058	*068	*077		
58	66087	096	106	115	124	134	143	153	162	172		10
59	181	191	200	210	219	229	238	247	257	266	$\overline{1}$	1.0
460	276	285	295	304	314	323	332	342	351	361	2	3.0
61	370	380	389	398	408	417	427	436	445	455	5	4.0 5.0
62	464	474	483	492	502	511	521	530	539	549	6	6.0
63	558	567	577	586	596	605	614	624	633	642	7	7.0 8.0
64	652	661	671	680	689	699	708	717	727	736	9	9.0
65	745	755	764	773	783	732	801	811	820	829		
66	839	848	857	867	876	885	894	904	913	922		
67	932	941	950	960	969	978	987	997	*006	*015		
68	67025	034	043	052	062	071	080	089	099	108		
69	117	127	136	145	154	164	173	182	191	201		
470	210	219	228	237	247	256	265	274	284	293		
71	302	311	321	330	339	348	357	367	376	385		
72	394	403	413	422	431	440	449	459	468	477		9
73	486	495	504	514	523	532	541	550	560	569	1	0.9
74	578	587	596	605	614	624	633	642	651	660	2	1.8 2.7
75	669	679	688	697	706	715	724	733	742	752	4	2.8
76	761	770	779	788	797	806	815	825	834	843	5	4.5
77	852	861	870	879	888	897	906	916	925	934	7	6.3
78	943	952	961	970	979	988	997	*006	*015	*024	8	7.2 8.1
79	68034	043	052	061	070	079	088	097	106	115		
480	124	133	142	151	160	169	178	187	196	205		
81	215	224	233	242	251	260	269	278	287	296		
82	305	314	323	332	341	350	359	368	377	386		
83	395	404	413	422	431	440	449	458	467	476		
84	485	494	502	511	520	529	538	547	556	565		
85	574	583	592	601	610	619	628	637	646	655.		
86	664	673	681	690	699	708	717	726	735	744		
87	753	762	771	780	789	797	806	815	824	833		8
88	842	851	860	869	878	886	895	904	913	922	1	0.8 1.6
89	931	940	949	958	966	975	984	993	*002	*011	3	$\underline{2.4}$
490	69020	028	037	046	055	064	073	082	090	099	4	4.2
91	108	117	126	135	144	152	161	170	179	188	7	5.8
92	197	205	214	223	232	241	249	258	267	276		6. 4
93	285	294	302	311	320	329	338	346	355	364	9	
94	373	381	330	399	408	417	425	434	443	452		
95	461	469	478	487	496	504	513	522	531	539		
96	548	557	566	574	583	592	601	609	618	627		
97	636	644	653	662	671	679	688	697	705	714		
98	723	732	740	749	758	767	775	784	793	801		
99	810	819	827	836	845	854	862	871	880	888		
500	897	906	914	923	932	940	349	958	966	975		
\mathbf{N}	0	1	2	3	4	5	6	7	8	9		P

Table I.-Common Logarithms of Numbers
To Five Decimal Places

N	0	1	2	3	4	5	6	7	8	9	\mathbf{P}	
500	69897	906	914	923	932	940	949	958	966	975		
01	984	992	*001	*010	*018	*027	*036	*044	*053	*062		
02	70070	079	088	096	105	114	122	131	140	148		
03	157	165	174	183	191	200	209	217	226	234		
. 04	243	252	260	269	278	286	295	303	312	321		
05	329	338	346	355	364	372	381	389	398	406		
06	415	424	432	441	449	458	467	475	484	492		
07	501	509	518	526	535	544	552	561	569	578		
08	586	595	603	612	621	629	638	646	655	663		9
09	672	680	689	697	706	714	723	731	740	749	1	0.9
510	757	766	774	783	791	800	808	817	825	834	2	1.8 2.7
11	842	851	859	868	876	885	893	902	910	919	4	4.65
12	927	935	944	952	961	969	978	986	995	*003	6	5.4
13	71012	020	029	037	046	054	063	071	079	088	8	6.3 7.2
14	096	105	113	122	130	139	147	155	164	172	9	8.1
15	181	189	198	206	214	223	231	240	248	257		
16	265	273	282	290	299	307	315	324	332	341		
17	349	357	366	374	383	391	399	408	416	425		
18	433	441	450	458	466	475	483	492	500	508		
19	517	525	533	542	550	559	567	575	584	592		
520	600	609	617	625	634	642	650	659	667	675		
21	684	692	700	709	717	725	734	742	750	759		
22	767	775	784	792	800	809	817	825	834	842		8
2	850	858	867	875	883	892	900	908	917	925	1	0.8
24	9933	941	950	958	966	975	983	991	999	*008	2	1.6 2.4
25	72016	024	032	041	049	057	066	074	082	090	4	3.2
26	099	107	115	123	132	140	148	156	165	173	5	4.0 4.8
27	181	189	198	206	214	222	230	239	247	255	7 8 8	5.6 6.4
28 29	263 346	272 354	280 362	288 370	296 378	304 387	313 395	321 403	329	337 419	8	6.4 7.2
29	346	354	362	370	378	387	395	403	411	419		
530	428	436	444	452	460	469	477	485	493	501		
31	509	518	526	534	542	550	558	567	575	583		
32	591	599	607	616	624	632	640	648	656	665		
33	673	681	689	697	705	713	722	730	738	746		
34	754	762	770	779	787	795	803	811	819	827		
35	835	843	852	860	868	876	884	892	900	908		
36	916.	925	933	941	949	957	965	973	981	989		
37	997	*006	*014	*022	*030	*038	*046	*054	*062	*070		
- 38	73078	086	094	102	111	119	127	135	143	151	$\underline{1}$	0.7 1.4
39	159	167	175	183	191	199	207	215	223	231	3	2.1
540	239	247	255	263	272	280	288	296	304	312	5	3.8
41	320	328	336	344	352	360	308	376	384	392	7	4.2 4.9
42	400	408	416	424	432	440	448	456	464	472	8	5.6
43	480	488	496	504	512	520	528	536	544	552	9	6.3
44	560	568	576	584	592	600	608	616	624	632		
45	640	648	656	664	672	679	687	695	703	711		
46	719	727	735	743	751	759	767	775	783	791		
47	799	807	815	823	830	838	846	854	862	870		
48	878	886	894	902	910	918	926	933	941	949		
49	957	965	973	981	989	997	*005	*013	*020	*028		
550	74036	044	052	060	068	076	084	092	099	107		
N	0	1	2	3	4	5	6	7	8	-		\boldsymbol{P}

Table I.-Common Logarithms of Numbers
To Five Decimal Places

Table I.-Common Logarithms of Numbers To Five Decimal Places

Table I.-Common Logarithms of Numbers
To Five Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	$\mathbf{P} \mathbf{P}$	
680	81291	298	305	311	318	325	331	338	345	351		
51	358	365	371	378	385	391	398	405	411	418		
52	425	431	438	445	451	458	465	471	478	485		
53	491	498	505	511	518	525	531	538	544	551		
54	558	564	571	578	584	591	598	604	611	617		
55	624	631	637	644	651	657	664	671	677	684		
56	690	697	704	710	717	723	730	737	743	750		
57	757	763	770	776	783	790	796	803	809	816		
58	823	829	836	842	849	856	862	869	875	882		
59	889	895	902	908	915	921	928	935	941	948		
660	954	961	968	974	981	987	994	*000	*007	*014		
61	82020	027	033	040	046	053	060	066	073	079		
62	086	092	099	105	112	119	125	132	138	145		
63	151	158	164	171	173	184	191.	197	204	210		7
64	217	223	230	236	243	249	256	263	269	276	1	0.7
65	282	289	295	302	308	315	321	328	334	341	3	2.1
66	347	354	360	367	373	380	387	393	400	406	4	2.8
67	413	419	426	432	439	445	452	458	465	471	7	4.2 4.9
68	478	484	491	497	504	510	517	523	530	536	8	5.6
69	543	549	556	562	569	575	582	588	595	601	9	6.3
670	607	614	620	627	633	640	646	653	659	666		
71	672	679	685	692	698	705	711	718	724	730		
72	737	743	750	756	763	769	775	782	789	795		
73	802	808	814	821	827	834	840	847	853	860		
74	868	872	879	885	892	898	905	911	918	924		
75	930	937	943	950	956	963	969	975	982	988		
76	995	*001	*008	*014	*020	*027	*033	*040	*046	*052		
77	83059	065	072	078	085	091	097	104	110	117		
78	- 123	129	136	142	149	155	151	168	174	181		
79	187	193	200	206	213	219	225	232	238	245		
680	251	257	264	270	276	283	289	296	302	308		
81	315	321	327	334	340	347	353	359	366	372		
82	378	385	391	398	404	410	417	423	429	436		B
83	442	448	455	461	467	474	480	487	493	499	1	0.6
84	506	512	518	525	531	537	544	550	556	563	3	1.8
85	569	575	582	588	594	601	607	613	620	626	4	2.4
86	632	639	645	651	658	664	670	677	683	689	5	3.0 3.6
87	696	702	708	715	721	727	734	740	746	753	7	4.2 4.8
88	759	765	771	778	784	790	797	803	809	816	9	5.4
89	822	828	835	841	847	853	860	866	872	879		
690	885	891	897	804	910	916	923	929	935	942		
91	948	954	960	967	973	979	985	902	998	*004		
92	84011	017	023	029	036	042	048	055	061	067		
93	073	080	086	092	098	105	111	117	123	130		
94	136	142	148	155	161	167	173	180	186	192		
95	198	205	211	217	223	230	236	242	248	255		
96	261	267	273	280	286	292	298	305	311	317		
97	323	330	336	342	348	354	361	367	373	379		
98	386	392	398	404	410	417	423	429	435	442		
99	448	454	460	466	473	479	485	491	497	504		
700	510	516	522	528	535	541	547	553	559	566		
\mathbf{N}	0	1	2	8	4	5	6	7	8	0		\mathbf{P}

Table I.-Common Logartthms of Numbers
To Five Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	$\mathbf{P} \mathbf{P}$	
700	84510	516	522	528	535	541	547	553	559	566		
01	572	578	584	590	597	603	609	615	621	628		
02	634	640	646	652	658	665	671	677	683	689		
03	696	702	708	714	720	726	733	739	745	751		
04	757	763	770	776	782	788	794	800	807	813		
05	819	825	831	837	844	850	856	862	868	874		
06	880	887	893	899	905	911	917	924	930	936		
07	942	948	954	960	967	973	979	985	991	997		
08	85003	009	016	022	028	034	040	046	052	058		7
09	055	071	077	083	089	095	101	107	114	120	1	0.7
710	126	132	138	144	150	156	163	169	175	181	2	1.4 2.1
11	187	193	199	205	211	217	224	230	236	242	4	2.8 3.5
12	248	254	260	266	272	278	285	291	297	303	${ }_{6}$	4.2
13	309	315	321	327	333	339	345	352	358	364	7	3.8 4.9 5.6
14	370	376	382	388	394	400	408.	412	418	425	9	6.3
15	431	437	443	449	455	461	467	473	479	485		
16	491	497	503	509	516	522	528	534	540	546		
17	552	558	564	570	576	582	588	594	600	606		
18	612	618	625	631	637	643	649	655	681	667		
19	673	679	685	691	697	703	709	715	721	727		
720	733	739	745	751	757	763	769	775	781	788		
21	794	800	806	812	818	824	830	836	842	848		
22	854	860	866	872	878	884	890	896	902	908		
23	914	920	826	932	938	944	950	956	962	968	1	${ }_{0}^{6.6}$
24	974	980	986	092	998	*004	*010	*016	*022	*028	2 3	1.2 1.8
25	86034	040	046	052	058	064	070	076	082	088	4	1.8 2.4
23	094	100	106	112	118	124	130	136	141	147	5 6	1.8 3.0 3.6
27	153	159	165	171	177	183	189	195	201	207	8	4.2 4.8
28	213	219	225	231	237	243	249 308	255	261	267	8	${ }^{4.8}$
29	273	279	285	291	297	303	308	314	320	326		
730	$\overline{332}$	338	344	350	356	362	368	374	380	386		
31	392	398	404	410	415	421	427	433	439	4.45		
32	451	457	463	469	475	481	487	493	499	504		
33	510	516	522	528	534	540	546	552	558	564		
34	570	576	581	587	593	599	605	611	617	623		
35	629	635	641	646	652	658	664	670	676	682		
36	688	694	700	705	711	717	723	729	735	741		
37	747	753	759	764	770	776	782	788	794	800		$\frac{5}{0.5}$
38	806	812	817	823	829	835	841	847	853	859	$\frac{1}{2}$	0.5 1.0
39	864	870	876	882	888	894	900	906	911	917	3	1.5
740	923	929	935	941	947	953	958	964	970	976		2.5
41	982	988	994	999	*005	*011	*017	*023	*029	*035		3.0 3.5
42	87040	046	052	058	064	070	075	081	087	093		4.0
43	099	105	111	116	122	128	134	140	146	151		
44	157	163	169	175	181	186	192	198	204	210		
45	216	221	227	233	239	245	251	256	262	268		
46	274	280	286	291	297	303	309	315	320	326		
47	332	338	344	349	355	361	367	373	379	384		
48	390	396	402	408	413	419	425	431	437	442		
49	448	454	460	468	471	477	483	489	495	500		
750	506	512	518	523	529	535	541	547	552	558		
N	0	1	2	3	4	5	6	7	8	9		\mathbf{P}

Table I.-Common Logarithms of Numbers
To Five Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	$\mathbf{P} \mathbf{P}$	
750	87506	512	518	523	529	535	541	547	552	558		
51	564	570	576	581	587	593	599	604	610	616		
52	622	628	633	639	645	651	656	662	668	574		
53	679	685	691	697	703	708	714	720	726	731		
54	737	743	749	754	760	766	772	777	783	789		
55	795	800	S0G	812	$\delta 18$	823	829	835	841	846		
56	852	858	864	869	875	881	887	892	898	904		
57	910	915	921	927	933	938	9.44	950	955	961		
58	967	973	978	984	990	996	*001	*007	*013	*018		
59	88024	030	036	0.41	0.47	053	058	064	070	076		
760	081	087	093	098	104	110	116	121	127	133		
61	138	144	150	156	161	167	173	178	184	190		
62	195	201	207	213	218	22.1	230	235	241	247		
63	252	258	264	270	275	281	287	292	298	304		6
64	309	315	321	326	332	338	343	349	355	360	\bigcirc	0.6 1.2
65	366	372	377	383	389	395	400	406	412	417	3	1.8
66	423	429	434	440	446	451	457	463	468	474	4	2.4
67	480	485	491	497	502	503	513	519	525	530	7	4.6
68	536	542	547	553	559	564	570	576	581	587	8	4.8
69	593	598	604	610	615	621	627	632	638	643	9	
770	649	655	660	666	672	677	683	689	694	700		
71	705	711	717	722	728	734	739	7.45	750	756		
72	762	767	773	779	784	790	795	801	807	812		
73	818	824	829	835	840	846	852	857	863	868		
74	874	880	885	591	897	902	903	913	919	925		
75	930	936	941	947	9.53	958	96.1	969	975	981		
76	986	992	997	*003	*009	*014	*020	*025	*031	*037		
77	89042	048	053	059	064	070	076	081	087	092		
78	098	104	109	115	120	126	131	137	143	148		
79	154	159	165	170	176	182	187	193	198	204		
780	209	215	221	226	232	237	243	2.45	254	260		
81	265	271	276	282	287	293	298	304	310	315		
82	321	326	332	3.37	343	3.18	354	360	365	371		5
83	376	382	387	393	398	404	409	415	421	426	1	0.5
84	432	437	443	448	454	459	465	470	476	481	2	1.0
85	487	492	498	504	509	515	520	526	531	537	4	2.0
86	542	548	553	559	564	570	575	581	586	592	${ }^{6}$	3.5
87	597	603	609	614	620	62.5	631	636	642	647	8	3.5 4.5
88	6.53	658	664	669	675	680	686	691	697	702		
89	708	713	719	724	730	735	741	746	752	757		
790	763	768	774	779	785	790	796	801	807	812		
91	818	823	829	834	840	845	851	856	862	867		
92	873	878	883	889	894	900	905	911	916	922		
93	927	933	938	944	949	955	960	966	971	977		
94	982	988	993	998	*004	*009	*015	*020	*026	*031		
95	90037	042	048	053	059	064	069	075	080	086		
96	091	097	102	108	113	119	124	129	135	140		
97	146	151	157	162	168	173	179	184	189	195		
98	200	206	211	217	222	227	233	238	244	249		
99	255	260	266	271	276	282	287	293	298	304		
800	309	314	320	325	331	336	342	347	352	358		
\mathbf{N}	0	1	2	3	4	5	6	7	8	9		\mathbf{P}

Table I.-Common Logarithms of Numbers To Five Decimal Places

Table I.-Common Logarithms of Numbers
To Five Decimal Places

N	0	1	2	3	4	5	6	7	8	9	$\mathbf{P} \mathbf{P}$	
850	92942	947	952	957	962	967	973	978	983	988		
51	993	998	4003	*008	*013	*018	*024	*029	*034	*039		
52	93044	049	054	059	064	069	075	080	085	090		
53	095	100	105	110	115	120	125	131	136	141		
54	146	151	156	161	166	171	176	181	186	192		
55	197	202	207	212	217	222	227	232	237	242		
56	247	252	258	263	268	273	278	283	288	293		
57	298	303	308	313	318	323	328	334	339	344		
58	349	354	359	364	369	374	379	384	389	394		6
59	399	404	409	414	420	425	430	435	440	445	1	0.6
860	450	455	460	465	470	475	480	485	490	495	3	1.8
61	500	505	510	515	520	526	531	536	541	546	4	2.4 3.0
62	551	556	561	566	571	576	581	586	591	596	6	3.6
63	601	606	611	616	621	626	631	636	641	646	7 8	4.2 4.8
64	651	656	661	666	671	676	682	687	692	697	9	5.4
65	702	707	712	717	722	727	732	737	742	747		
68	752	757	762	767	772	777	782	787	792	797		
67	802	807	812	817	822	827	832	837	842	847		
68	852	857	862	867	872	877	882	887	892	897		
69	902	907	912	917	922	927	932	937	942	947		
870	952	957	962	967	972	977	982	987	992	997		
71	94002	007	012	017	022	027	032	037	042	047		
72	052	057	062	067	072	077	082	086	091	096		
73	101	106	111	116	121	126	131	136	141	146	1	$\stackrel{0}{0.5}$
74	151	156	161	166	171	178	181	186	191	196	2	1.0
75	201	206	211	216	221	226	231	236	240	245	4	2.0
76	250	255	260	265	270	275	280	285	290	295	5	2.5 3.0
77	300	305	310	315	320	325	330	335	340	345	8	3.5
78	349	354	359	364	369	374	379	384	389	394	8	4.0 4.5
79	399	404	409	414	419	424	429	433	438	443		
880	448	453	458	463	468	473	478	483	488	498		
81	498	503	507	512	517	522	527	532	537	542		
82	547	552	557	562	567	571	576	581	586	591		
83	596	601	606	611	616	621	626	630	635	640		
84	645	650	655	660	665	670	675	680	685	689		
85	884	699	704	709	714	719	724	729	734	738		
86	743	748	753	758	763	768	773	778	783	787		
87	792	797	802	807	812	817	822	827	832	836		4
88	841	846	851	856	861	866	871	876	880	885	1	0.4
89	890	895	900	905	910	915	919	924	929	934	2	0.8
890	939	944	949	954	959	963	988	973	978	983	4	$\underline{1.6}$
91	988	993	998	*002	*007	*012	*017	*022	*027	*032	${ }^{8}$	2.4
92	95036	041	046	051	056	061	066	071	075	080	8	3.2
93	085	090	095	100	105	109	114	119	124	129	9	
94	134	139	143	148	153	158	163	168	173	177		
95	182	187	192	197	202	207	211	216	221	226		
96	231	236	240	245	250	255	260	265	270	274		
97	279	284	289	294	299	303	308	313	318	323		
98	328	332	337	342	347	352	357	361	366	371		
900	424	429		43		4		458	46			
N	0	1	2	3	4	5	6	7	8	9		\mathcal{P}

Table I.-Common Logarithms of Numbers To Five Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9	$\boldsymbol{P} \mathbf{P}$	
900	95424	429	434	439	444	448	453	458	463	468		
01	472	477	482	487	492	497	501	506	511	516		
02	521	525	530	53.5	540	545	550	554	559	564		
03	569	574	578	583	588	593	598	602	607	612		
04	617	622	626	631	636	641	646	650	655	660		
0.5	665	670	674	679	684	689	694	698	703	708		
06	713	718	722	727	732	737	742	746	751	756		
07	761	763	770	775	780	785	789	794	799	804		
08	809	813	818	823	828	832	837	842	847	852		
09	856	861	866	871	875	880	885	830	895	899		
910	904	909	914	918	923	928	933	938	942	947		
11	952	957	961	966	971	976	980	985	990	995		
12	999	*004	*009	*014	*019	*023	*028	*033	*038	*042		
13	96047	052	057	061	066	071	076	080	085	090		5
14	095	099	104	109	114	118	123	123	133	137	$\underline{1}$	0.5
15	142	147	152	156	161	166	171	175	180	185	3	1.5
16	190	194	199	204	209	213	218	223	227	232	5	2.0 2.5
17	237	242	246	251	256	261	265	270	275	280	6 7	3.0
18	284	289	294	298	303	308	313	317	322	327	8	4.0
19	332	336	341	346	350	355	360	365	369	374	9	4.5
920	379	384	388	393	398	402	407	412	417	421		
21	426	431	435	440	445	450	454	459	464	468		
22	473	478	483	487	492	497	501	506	511	515		
23	520	525	530	534	539	544	548	553	558	562		
24	567	572	577	581	586	591	595	600	605	609		
25	614	619	624	628	633	638	642	647	652	656		
26	661	666	670	675	680	685	689	694	699	703		
27	708	713	717	722	727	731	736	741	745	750		
28	755	759	764	769	774	778	783	788	792	797		
29	802	806	811	816	820	825	830	834	839	844		
930	848	453	858	862	867	872	876	881	886	800		
31	895	900	904	909	914	918	923	928	932	937		
32	942	946	951	956	960	965	970	974	979	981		4
33	988	993	997	*002	*007	*011	*016	*021	*025	*030	1	0.1
34	97035	039	044	049	05.3	058	063	067	072	077	3	12
35	081	086	090	095	100	104	109	114	118	123	4	1.6
36	128	132	137	142	146	151	155	160	165	169	5	2.0
37	174	179	183	188	192	197	202	206	211	216	8	3.8
38	220	225	230	234	239	243	248	2.53	257	262	9	3.6
39	267	271	276	280	285	290	294	299	304	308		
040	313	317	322	327	331	336	340	345	3.50	35.4		
41	359	364	368	373	377	382	387	391	396	400		
42	405	410	414	419	424	428	4:33	437	442	447		
43	451	456	460	465	470	474	479	483	488	493		
44	497	502	506	511	516	520	525	529	533	539		
45	543	548	552	5.57	562	566	571	575	580	585		
46	589	594	598	603	607	612	617	621	626	630		
47	635	640	644	649	653	658	663	667	672	676		
48	681	685	690	695	699	704	708	713	717	722		
49	727	731	736	740	745	743	754	75!)	763	768		
950	772	777	782	786	791	795	800	804	809	813		
N	0	1	2	3	4	5	6	7	8	9		$P \mathbf{R}$

Table I.-Common Logaritims of Numbers
To Five Decimal Places

N	0	1	2	3	4	5	6	7	8	9	\mathbf{P}	
950	97772	777	782	786	791	795	800	804	809	813		
51	818	823	827	832	836	841	8.15	850	855	859		
52	864	868	873	877	882	886	891	896	900	905		
53	909	914	918	923	928	932	937	941	946	950		
54	955	959	964	968	973	978	982	987	991	996		
55	98000	005	009	014	019	023	028	032	037	041		
56	046	050	055	059	064	068	073	078	082	087		
57	091	096	100	105	109	114	118	123	127	132		
58	137	141	146	150	155	159	164	168	173	177		
59	182	186	191	19.5	200	204	209	214	218	223		
860	227	232	236	241	245	250	254	259	263	268		
61	272	277	281	286	290	295	299	304	308	313		
62	318	322	327	331	336	340	345	349	354	358		
63	363	367	372	376	381	385	390	394	399	403		
64	408	412	417	421	426	430	435	439	444	448		
65	453	457	462	466	471	475	480	484	489	493		
66	498	502	507	511	516	520	525	529	53.1	538		
67	543	547	552	556	561	565	570	574	579	583		
68	588	592	597	601	605	610	614	619	623	628		
69	632	637	641	646	650	655	659	664	668	673		
970	677	682	686	691	695	700	704	709	713	717		
71	722	726	731	735	740	744	749	753	758	762		
72	767	771	776	780	784	789	793	798	802	807		
73	811	816	820	825	829	834	838	843	847	851		
74	856	860	865	869	874	878	883	887	892	896		
75	900	905	909	914	918	923	927	932	936	941		
76	945	949	954	958	963	967	972	976	981	985		
77	989	994	998	*003	*007	*012	*016	*021	*025	*029		
78	99034	038	013	047	052	056	061	065	069	074		
79	078	083	087	092	096	100	105	109	114	118		
880	123	127	131	136	140	145	149	154	158	162		
81	167	171	176	180	185	189	193	198	202	207		
82	211	216	220	224	229	233	238	242	247	251		
83	255	260	264	269	273	277	282	286	291	205		
84	300	304	308	313	317	322	326	330	335	339		
85	344	348	352	357	361	366	370	374	379	383		
86	388	392	396	401	405	410	414	419	423	427		
87	432	436	441	445	449	454	458	463	467	471		
88	476	480	484	489	493	498	502	506	511	515		
89	520	524	528	533	537	542	546	550	555	559		
990	$\overline{564}$	568	572	577	581	585	590	504	593	603		
91	607	612	616	621	625	629	634	638	642	647		
92	651	656	660	664	669	673	677	682	686	691		
93	695	699	704	708	712	717	721	726	730	734		
94	739	743	747	752	756	760	765	769	774	778		
95	782	787	791	795	800	804	808	813	817	822		
96	826	830	835	839	843	848	852	856	861	865		
97	870	874	878	883	887	891	896	900	904	909		
98	913	917	922	926	930	935	939	944	948	952		
99	957	961	965	970	974	978	983	987	991	996		
1000	00000	004	009	013	017	022	026	030	035	030		
\mathbf{N}	0	1	2	3	4	5	6	7	8	9		\mathbf{P}

Table II.-Common Logarithms of Numbers
From 1.00000 to 1.100000
To Seven Decimal Places

N	0	1	2	3	4	5	6	7	8	\%
1000	0000000	0434	0899	1:30.3	1737	2171	260.5	$30: 39$	3473	3907
1001	4341	4775	5208	56.42	6076	6.510	69.4	7377	7810	8244
1002	$86 ; 77$	9111	9544	9977	*0411	*0814	*1277	*1710	*2143	*2576
1003	0013009	3442	3875	4308	4741	5174	5607	$60: 39$	6472	6905
1004	7337	7770	8202	86.35	9067	9499	99.32	*0.364	*0796	*1228
1005	0021661	2093	2.52 .5	2957	33.35	38:1	42.53	4685	5116	5548
1006	5980	6411	6843	7275	7706	8135	8569	9001	9432	9863
1007	0030295	0726;	1157	1588	2019	24.51	2882	3313	3744	4174
1008	4605	50:36	5467	58198	632s	(1759)	7190	7620	80.51	8481
1009	8012	9342	9772	*0203	*(0)3:3	*108;3	*1193	*1924	*23.54	*2784
1010	$0 0 4 \longdiv { 3 2 1 4 }$	3644	4074	450.1	4!3:3	5,3133	5793	6223	6652	7082
1011	7512	79.41	8:371	8800	9229	06.59	*0088	*0.517	*0947	*1376
1012	005180.5	22:34	26463	3092	$33: 21$	33950	4:379	4808	$52: 37$	5666
1013	6094	6523	6952	7350	7809	8238	8666	9094	9523	9951
1014	0060380	0808	1236	166.4	$20: 2$	25.21	29.19	3.377	3805	4233
1015	4616	5088	5.516	5.944	f:372	6709	72:7	76.55	8082	8510
1016	8037	9365	9792	*0219	*0647	*1074	*1501	*1928	*2355	*2782
1017	0073210	36:37	406.4	4490	4917	53.44	5771	6198	6.624	7051
1018	7478	7904	8:3:31	87.57	9181	(9il0	*0037	*046.3	*0889	*1316
1019	0081742	2168	259.4	3020	3.146	3882	4203	472.1	5150	5576
1020	6002	6.127	6.85 .3	7279	7704	8130	85.56	8981	9407	9832
1021	$009 \overline{0257}$	06883	1108	15:33	1959	2:38.4	2809	32.34	3659	4084
1022	4509	4934	53.59	578. 1	620S	6i6:33	70.58	748:3	7907	8332
1023	8750	9181	9605	*0030	*) 454	*0878	*1303	*1727	*2151	*2575
1024	0103000	3424	3848	4272	4696	5120	5.544	5967	6391	6815
1025	7239	7662	8086	8.510	81933	93.57	9780	*0204	*0627	*1050
1026	0111474	1897	2320	2743	3166	3590	4013	4436	4859	5282
1027	5704	6127	6.550	6973	7396	7818	8241	8664	9086	9509
1028	9931	*0354	*0776	*1108	* 1621	*20.43	*2465	* 2×85	*3310	*3732
1029	0124154	4576	4993	5420	58.4	6264	6685	7107	7529	7951
1030	8372	8794	9215	9637	*(0).59	*0.480	*0901	*1323	*1744	*2165
1031	$0 1 3 \longdiv { 2 5 8 7 }$	3008	3429	38.50	4271	46.2	5113	5534	5955	6376
1032	6797	7218	7639	80.59	8.480	8901	9321	9742	*0162	*0583
1033	0141003	1424	1844	2264	2685	3105	3525	3945	4365	4785
1034	5205	5625	6045	6465	6885	7305	7725	8144	8564	8984
1035	9403	9823	*0243	*0662	*1082	* 1501	*1920	*2340	*2759	*3178
1036	0153598	4017	4436	4855	5274	5693	6112	6531	6950	7369
1037	7788	8206	8625	9044	9462	98.31	*0300	*0718	*1137	*1555
1038	0161974	2392	2810	3229	3647	4065	4483	4901	5319	5737
1039	6155	6573	6091	7409	78.27	8245	8663	9080	9498	9916
1040	$0 1 7 \longdiv { 0 3 3 3 }$	0751	1168	1.586	2003	2421	28.38	3256	3673	4090
1041	4507	4924	5342	5759	6176	6593	7010	7427	7844	8200
1042	8677	9094	9511	9927	*0344	*0761	*1177	*1594	*2010	*2427
1043	0182843	3259	367 C	4092	4508	4925	5341	5757	6173	6589
1044	7005	7421	7837	8253	8669	9084	9500	9916	*0332	*0747
1045	0191163	1578	1994	2410	2825	3240	3656	4071	4486	4952
1046	5317	5732	6147	6562	6977	7392	7807	8222	8637	9052
1047	9467	9882	*0296	*0711	*1126	* 15.40	*1955	*2369	*2784	*3198
1048	0203613	4027	4442	4856	5270	5684	6099	6513	6927	7341
1049	7755	8169	8583	8997	9411	9824	*0238	*0652	*1066	*1479
1050	0211893	2307	2720	3134	35.47	3061	4374	4787	5201	5614
\mathbf{N}	0	1	2	3	4	5	6	y	8	-

Table II.-Common Logarithms of Numbers
From 1.00000 to 1.100000
To Seven Decimal Places

\mathbf{N}	0	1	2	3	4	5	6	7	8	9
1050	0211893	2307	2720	3134	3547	3961	4374	4787	5201	5614
1051	6027	6440	6854	7267	7680	8093	8.506	8919	9332	9745
1052	0220157	0570	0983	1396	1808	2221	2634	3046	3459	3871
1053	4284	4696	5109	5521	5933	6345	6758	7170	7582	7994
1054	8408	8818	92.30	9642	*00.54	*0466	*0878	*1289	* 1701	*2113
1055	0232525	2936	3348	3759	4171	4582	4994	5405	5817	6228
1056	6639	7050	7462	7873	8284	8695	9106	9517	9928	*0333
1057	0240750	1161	1572	1982	2393	2804	3214	3025	4036	4446
1058	4857	5267	5678	6088	6498	6909	7319	7729	8139	85.49
1059	8960	9370	9780	*0190	*0600	*1010	*1419	*1829	*2239	*26;49
1060	025305	3468	3878	4288	4697	5107	5516	5920	6335	6744
1061	7154	7563	7972	$8: 382$	8791	9200	9609	*0018	*0.427	*0836
1062	0261245	16.54	2063	2472	2881	3289	3698	4107	4515	492.4
1063	5333	5741	6150	6558	6967	7375	7783	8192	8600	9008
1064	9410	9824	*0233	*0641	*1049	* 1457	*1865	*2273	*2680	*3088
1065	0273496	3904	4312	4719	5127	5.535	. 5942	6.350	6757	716.5
1066	7572	7979	8387	8794	9201	9609	*0016	*0423	*0830	* 1237
1067	0281644	2051	24.58	2865	3272	3679	4086	4492	4899	5306
1068	5713	6119	6526	6932	7333	+ 77.15	81.52	-85.58	8964	9371
1069	9777	*0183	*0590	*0996	*1402	*1808	*2214	*2620	*3026	*3432
1070	0293838	4244	4649	5055	5461	5867	6272	6678	7084	7489
1071	7895	8300	8706	9111	9516	9922	*0327	*0732	*1138	*1543
1072	0301948	2353	2758	3163	3568	3973	4378	4783	5188	5502
1073	5997	6402	6807	7211	7616	8020	8425	8830	9234	9638
1074	0310043	0447	0851	1256	1660	2064	2468	2872	3277	3681
1075	4085	4489	4893	52.96	5700	6104	6508	6912	7315	7719
1076	8123	8526	8930	9333	9737	*0140	*0544	*0947	*1350	*1754
1077	0322157	2560	2963	3.367	3770	4173	4576	4979	5382	5785
1078	($\begin{array}{r}6188 \\ 033\end{array}$	6530 0617	6993 1019	7396 1422	7799	8201 2226	8604 2629	9007 3031	9409 3433	9812 3835
1080	4238	4640	5042	544	5846	6243	6650	7052	7453	78.55
1081	82.57	86.59	9060	9462	986.4	*0265	*0667	*1068	* 1470	*1871
1082	0342273	2674	3075	3477	3878	4279	4680	5081	5482	5884
1083	6285	6686	7087	7487	7888	8289	8690	9091	9491	9892
1084	0350293	0693	1094	1495	1895	2296	2696	3096	3497	3897
1085	4297	4698	5098	5498	5898	6298	6698	+ 7098	7498	7898
1086	8298	8698	9098	9498	9898	*0297	*0697	* 1097	* 1496	*1896
1087	0362295	2695	3094	3494	3893	4293	4692	5091	5491	5890
1088	6289	6688	7087	7486	7885	8284	8683	9082	9481	9880
1089	0370279	0678	1076	1475	1874	2272	2671	3070	3468	3867
1090	4265	4663	5062	5460	5858	6257	6655	7053	7451	7849
1091	8248	8646	9044	9442	9839	*0237	*0635	*1033	*1431	*1829
1092	0382226	2624	3022	3419	3817	4214	4612	5009	5407	5804
1093	6202	6599	6996	7393	7791	8188	8585	8982	9379	9776
1094	0390173	0570	0967	1364	1761	2158	2554	2951	3348	3745
1095	4141	4538	4934	5331	5727	6124	6520	6917	7313	7709
1096	8106	8502	8898	9294	9690	*0086	*0482	*0878	*1274	*1670
1097	0402066	2462	2858	3254	3650	4045	4441	4837	5232	5628
1098	6023	6419	6814	7210	7605	8001	8396	8791	9187	9582
1099	9977	*0372	*0767	*1162	*1557	*1952	*2347	*2742	*3137	*3532
1100	0413927	4322	4716	5111	5506	5900	6295	6690	7084	7479
N	0	1	2	3	4	5	6	7	8	9

Tabla III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{4} \%$	1%
1	1.00416667	1.00500000	1.00583333	1.00750000	1.01000000
2	1.00835069	1.01002500	1.01170069	1.01505625	1.02010000
3	1.01255216	1.01507513	1.01760228	1.02266917	1.03030100
4	1.01677112	1.02015050	1.02353830	1.03033919	1.04060401
5	1.02100767	1.02525125	1.02950894	1.03806673	1.05101005
6	1.02526187	1.03037751	1.03551440	1.04585224	1.06152015
7	1.02953379	1.03552940	1.04155490	1.05369613	1.07213535
8	1.03382352	1.04070704	1.04763064	1.06159885	1.08285671
9	1.03813111	1.04591058	1.05374182	1.06956084	1.09368527
10	1.04245666	1.05114013	1.05988865	1.07758255	1.10462213
11	1.04680023	1.05639583	1.06607133	1.08566441	1.11566835
12	1.05116190	1.06167781	1.07229008	1.09380690	1.12682503
13	1.05554174	1.06698620	1.07854511	1.10201045	1.13809328
14	1.05993983	1.07232113	1.08483662	1.11027553	1.14947421
15	1.06435625	1.07768274	1.09116483	1.11860259	1.16096896
16	1.06879106	1.08307115	1.09752996	1.12699211	1.17257864
17	1.07324436	1.08848651	1.10393222	1.13544455	1.18430443
18	1.07771621	1.09392894	1.11037182	1.14396039	1.10614748
19	1.08220670	1.09939858	1.11684899	1.15254009	1.20810895
20	1.08671589	1.10489558	1.12336395	1.16118414	1.22019004
21	1.09124387	1.11042006	1.12991690	1.16989302	1.23239194
22	1.09579072	1.11597216	1.13650808	1.17866722	1.24471586
23	1.10035652	1.12155202	1.14313771	1.18750723	1.25716302
24	1.10494134	1.12715978	1.14980602	1.19641353	1.26973465
25	1.10954526	1.13279558	1.15651322	1.20538663	1.28243200
26	1.11416836	1.13845955	1.16325955	1.21442703	1.29525631
27	1.11881073	1.14 .415185	1.17004523	1.22353523	1.30820888
28	1.12347244	1.14987261	1.17687049	1.23271175	1.32129097
29	1.12815358	1.15562197	1.18373557	1.24195709	1.33450388
30	1.13285422	1.16140008	1.19064069	1.25127176	1.34784892
31	1.13757444	1.16720708	1.19758610	1.26065630	1.36132740
32	1.14231434	1.17304312	1.20457202	1.27011122	1.37494068
33	1.14707398	1.17890833	1.21159869	1.27963706	1.38869009
34	1.15185346	1.18480288	1.21866634	1.28923434	1.40257699
35	1.15665284	1.19072689	1.22577523	1.29890359	1.41660276
36	1.16147223	1.19668052	1.23292559	1.30864537	1.43076878
37	1.16631170	1.20266393	1.24011765	1.31846021	1.44507647
38	1.17117133	1.20867725	1.24735167	1.32834866	1.45952724
39	1.1760 .5121	1.21472063	1.25462789	1.3383 1128	1.47412251
40	1.18095142	1.22079424	1.26194655	1.34834861	1.48886373
41	1.18587206	1.22689821	1.26930791	1.35846123	1.50375237
42	1.19081319	1.23303270	1.27671220	1.36864969	1.51878989
43	1.19577491	1.23919786	1.28415969	1.37891456	1.53397779
44	1.20075731	1.24539385	1.29165062	1.3892 .5642	1.54931757
45	1.20576046	1.25162082	1.29918525	1.39967584	1.56481075
46	1.21078446	1.25787892	1.30676383	1.41017341	1.58045885
47	1.21582940	1.26416832	1.31438662	1.42074971	1.59626344
48	1.22089536	1.27048916	1.3220 5.388	1.43140533	1.61222608
49	1.22598242	1.27684161	1.32976586	1.44214087	1.62834834
50	1.23109008	1.28322581	1.33752283	1.45295693	1.64463182

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$\frac{\sigma}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1\%
51	1.23622002	1.28964194	1.34532504	1.46385411	1.66107814
52	1.24137114	1.29609015	1.35317277	1.47483301	1.67768892
53	1.24654352	1.30257060	1.36106628	1.48589426	1.69446581
54	1.25173745	1.30908346	1.36900583	1.49703847	1.71141047
55	1.25695302	1.31562887	1.37699170	1.50826626	1.72852457
56	1.26219033	1.32220702	1.38502415	1.51957825	1.74580982
57	1.26744946	1.32881805	1.39310346	1.53097509	1.76326792
58	1.27273050	1.33516214	1.40122990	1.54245740	1.78090060
59	1.27803354	1.34213946	1.40940374	1.55402583	1.79870960
60	1.28335868	1.34885015	1.41762526	1.56568103	1.81669670
61	1.28870601	1.35559440	1.42589474	1.57742363	1.83486367
62	1.29407561	$1.3623 \cdot 7238$	1.43421246	1.58925431	1.85321230
63	1.29946760	1.36918424	1.44257870	1.60117372	1.87174443
64	1.30488204	1.37603016	1.45099374	1.61318252	1.89046187
65	1.31031905	1.38291031	1.45945787	1.62528139	1.90936649
66	1.31577872	1.38982486	1.46797138	1.63747100	1.92846015
67	1.32126113	1.39677399	1.47653454	1.64975203	1.94774475
68	1.32676638	1.40375785	1.48514766	1.66212517	1.96722220
69	1.33229458	1.41077664	1.49381102	1.67459111	1.98689442
20	1.33784580	1.41783053	1.50252492	1.68715055	2.00676337
71	1.34342016	1.42491968	1.51128965	1.69980418	2.02683100
72	1.34901774	1.43204428	1.52010550	1.71255271	2.04709931
73	1.35463865	1.43920450	1.52897279	1.72539685	2.06757031
74	1.36028298	1.44640052	1.53789179	1.73833733	2.08824601
75	1.36595082	1.45363252	1.54686283	1.75137486	2.10912847
	1.37164229	1.46090069	1.55588620	1.76451017	2.13021975
77	1.37735746	1.46820519	1.56496220	1.77774400	2.15152195
78	1.38309645	1.47554622	1.57409115	1.79107708	2.17303717
79	1.38885935	1.48292395	1.58327334	1.80451015	2.19476754
80	1.39464627	1.49033857	1.59250910	1.81804398	2.21671522
81	1.40045729	1.49779026	1.60179874	1.83167931	2.23888237
82	1.40629253	1.50527921	1.61114257	1.84541691	2.26127119
83	1.41215209	1.51280561	1.620 .54090	1.85925753	2.28388390
84	1.41803605	1.52036964	1.62999405	1.87320196	2.30672274
85	1.42394454	1.52797148	1.63950235	1.88725098	2.32978997
86	1.42987764	1.53561134	1.64906612	1.90140536	2.35308787
87	1.43583546	1.54328940	1.65868567	1.91566590	2.37661875
88	1.44181811	1.55100585	1.6683 .6134	1.93003339	2.40038494
89	1.44782568	1.55876087	$1.6780{ }^{\prime} 9344$	1.94450865	2.42438879
80	1.45385829	1.56655468	1.68788232	1.95909246	2.44863267
91	1.45991603	1.57438745	1.69772830	1.97378565	2.47311900
92	1.46599902	1.58225939	1.70763172	1.98858905	2.49785019
93	1.47210735	1.59017069	1.71759290	2.00350346	2.52282869
94	1.47824113	1.59812154	1.72761219	2.01852974	2.54805698
95	1.48440047	1.60611215	1.73768993	2.03366871	2.57353755
96	1.49058547	1.61414271	1.74782646	2.04892123	2.59927293
97	1.49679624	1.62221342	1.75802211	2.06428814	2.62526565
98	1.50303289	1.63032449	1.76827724	2.07977030	2.65151831
99	1.50929553	1.63847611	1.77859219	2.09536858	2.67803349
100	1.51558426	1.64666849	1.78896731	2.11108384	2.70481383

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{4} \%$	1%
101	1.52189919	1.65490183	1.79940295	2.12691697	2.73186197
102	1.52824044	1.66317634	1.80989947	2.14286885	2.75918059
103	1.53460811	1.67149223	1.82045722	2.15894036	2.78677239
104	1.54100231	1.67984969	1.83107655	2.17513242	2.81464012
105	1.54742315	1.68824894	1.84175783	2.19144591	2.84278652
103	1.55387075	1.69669018	1.85250142	2.20788175	2.87121438
107	1.56034521	1.70517363	1.86330768	2.22444087	2.89992653
108	1.56684665	1.71369950	1.87417697	2.24112417	2.92892579
109	1.57337518	1.72226800	1.88510967	2.25793260	2.95821505
110	1.57993091	1.73087934	1.89610614	2.27486710	2.98779720
111	1.58651395	1.73953373	1.90716676	2.29192860	3.01767517
112	1.59312443	1.74823140	1.91829190	2.30911807	3.04785192
113	1.59976245	1.75697256	1.92948194	2.32643645	3.07833044
114	1.60642812	1.76575742	1.94073725	2.34388472	3.10911375
115	1.61312157	1.77458621	1.95205832	2.36146386	3.14020489
116	1.61984291	1.78345914	1.96344522	2.37917484	3.17160693
117	1.62659226	1.79237644	1.97439865	2.39701865	3.20332300
118	1.63336973	1.80133832	1.98641890	2.41499629	3.23535623
119	1.64017543	1.81034501	1.99800634	2.43310876	3.26770980
120	1.64700950	1.81939673	2.00966138	2.45135708	3.30038689
121	1.65387204	1.82849372	2.02138440	2.46974226	3.33339076
122	1.66076317	1.83763619	2.03317581	2.48826532	3.36672467
123	1.66768302	1.84682437	2.04503600	2.50692731	3.40039192
124	1.67463170	1.85605849	2.05696538	2.52572927	3.43439584
125	1.68160933	1.86533878	2.06896434	2.54467224	3.46873980
126	1.68861603	1.87466548	2.08103330	2.56375728	3.50342719
127	1.69565193	1.88403880	2.09317266	2.58298546	3.53846147
128	1.70271715	1.89345900	2.10538284	2.60235785	3.57384608
129	1.70981181	1.90292629	2.11766424	2.62187553	3.60958454
130	1.71693602	1.91244092	2.13001728	2.64153960	3.64568039
131	1.72408992	1.92200313	2.14244238	2.66135115	3.68213719
132	1.73127363	1.93161314	2.15493996	2.68131128	3.71895856
133	1.73848727	1.94127121	2.16751044	2.70142112	3.75614815
134	1.74573097	1.95097757	2.18015425	2.72168177	3.79370963
135	1.75300485	1.96073245	2.19287182	2.74209439	3.83164673
136	1.76030903	1.97053612	2.20566357	2.76266009	3.86996319
137	1.76764365	1.98038880	2.21852994	2.78338005	3.90866282
138	1.77500884	1.99029074	2.23147137	2.80425540	3.94774945
139	1.78240471	2.00024219	2.24448828	2.82528731	3.98722695
140	1.78983139	2.01024340	2.25758113	2.84647697	4.02709922
141	1.79728902	2.02029462	2.27075036	2.86782554	4.06737021
142	1.80477773	2.03039609	2.28399640	2.88933424	4.10804391
143	1.81229763	2.04054808	2.29731971	2.91100424	4.14912435
144	1.81984887	2.05075082	2.31072074	2.93283677	4.190615 .59
145	1.82743158	2.06100457	2.32419995	2.95483305	4.23252175
146			2.33775778	2.97699430	4.27484697
147	1.84269190	2.08166614	2.35139470	2.99932175	4.31759544
148	1.85036978	2.09207447	2.36511117	3.02181667	4.36077139
149	1.85807968	2.10253484	2.37890765	3.04448029	4.40437910
150	1.86582166	2.11304752	2.39278461	3.06731389	4.44842290

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$1 \frac{1}{8} \%$	$1 \frac{1}{4} \%$	$1 \frac{1}{2} \%$	$1 \frac{3}{4} \%$	2\%
1	1.01125000	1.01250000	1.01500000	1.01750000	1.02000000
2	1.02262656	1.02515625	1.03022500	1.03530625	1.04040000
3	1.03413111	1.03797070	1.04567838	1.05342411	1.06120800
4	1.04576509	1.05094534	1.06136355	1.07185903	1.08243216
5	1.05752994	1.06408215	1.07728400	1.09061656	1.10408080
6	1.06942716	1.07738318	1.09344326	1.10970235	1.12616242
7	1.08145821	1.09085047	1.10984491	1.12912215	1.14868567
8	1.09362462	1.10448610	1.12649259	1.14888178	1.17165938
9	1.10592789	1.11829218	1.14338998	1.16898721	1.19509257
10	1.11836958	1.13227083	1.16054083	1.18944449	1.21899442
11	1.13095124	1.14642422	1.17794894	1.21025977	1.24337431
12	1.14367444	1.16075452	1.19561817	1.23143931	1.26824179
13	1.15654078	1.17526395	1.21355244	1.25298950	1.29360663
14	1.16955186	1.18395475	1.23175573	1.27491682	1.31947876
15	1.18270932	1.20482918	1.25023207	1.29722786	1.34586834
16	1.19601480	1.21988955	1.26898555	1.31992935	1.37278571
17	1.20946997	1.23513817	1.28802033	1.34302811	1.40024142
18	1.22307650	1.25057739	1.30734064	1.36653111	1.42824625
18	1.23683611	1.26620961	1.32695075	1.39044540	1.45681117
20	1.25075052	1.28203723	1.34685501	1.41477820	1.48594740
21	1.26482146	1.29806270	1.36705783	1.43953681	1.51566634
22	1.27905071	1.31428848	1.38756370	1.46472871	1.54597967
23	1.29344003	1.33071709	1.40837715	1.49036146	1.57689926
24	1.30799123	1.34735105	1.42950281	1.51644279	1.60843725
25	1.32270613	1.36419294	1.45094535	1.54298054	1.64060599
26	1.33758657	1.38124535	1.47270953	1.56998269	1.67341811
27	1.35263442	1.39851092	1.49480018	1.59745739	1.70688648
28	1.36785156	1.41599230	1.51722218	1.62541290	1.74102421
29	1.38323989	1.43369221	1.53998051	1.65385762	1.77584469
30	1.39880134	1.45161336	1.56308022	1.68280013	1.81136158
31	1.41453785	1.46975853	1.58652642	1.71224913	1.84758882
32	1.43045140	1.48813051	1.61032432	1.74221349	1.88454059
33	1.44654398	1.50673214	1.63447918	1.77270223	1.92223140
34	1.46281760	1.52556629	1.65899637	1.80372452	1.96067603
35	1.47927430	1.54463587	1.68388132	1.83528970	1.99088955
36	1.49591613	1.56394382	1.70913954	1.86740727	2.03988734
37	1.51274519	1.58349312	1.73477683	1.90008689	2.08068509
38	1.52976357	1.60328678	1.76079828	1.93333841	2.12229879
39	1.54697341	1.62332787	1.78721025	1.96717184	2.16474477
40	1.56437687	1.64361946	1.81401841	2.00159734	2.20803966
41	1.58197611	1.66416471	1.84122868	2.03662530	2.25220046
42	1.59977334	1.68496677	1.86884712	2.07226624	2.29724447
43	1.61777079	1.70602885	1.89687982	2.10853090	2.34318936
44	1.63597071	1.72735421	1.92533302	2.14543019	2.39005314
45	1.65437538	1.74894614	1.95421301	2.18297522	243785421
46	1.67298710			2.22117728	
47	1.69180821	1.79294306	2.01327910	2.26004789	2.52634351
48	1.71084105	1.81535485	2.04347829	2.29959872	2.58707039
¢980	1.73008801	1.83804679	2.07413046	2.33984170	2.63881179
50	1.74955150	1.86102237	2.10524242	2.38078893	2.69158803

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$1 \frac{1}{8} \%$	1 1%	$1 \frac{1}{2} \%$	$1_{4}^{3} \%$	2%
51	1.76923395	1.88428515	2.13682106	2.42245274	2.74541979
62	1.78913784	1.90783872	2.16887337	2.46484566	2.80032819
53	1.80926564	1.93168670	2.20140647	2.50798046	2.85633475
54	1.82961988	1.95583279	2.23442757	2.55187012	2.91346144
65	1.85020310	1.98028070	2.26794398	2.59652785	2.97173067
56	1.87101788	2.00503420	2.30196314	2.64196708	3.03116529
57	1.89206684	2.03009713	2.33649259	2.68820151	3.09178859
58	1.91335259	2.05547335	2.37153998	2.73524503	3.15362436
69	1.93487780	2.08116676	2.40711308	2.78311182	3.21669685
69	1.95664518	2.10718135	2.44321978	2.83181628	3.28103079
61	1.97865744	2.13352111	2.47986807	2.88137306	3.34565140
62	2.00091733	2.16019013	2.51706609	2.93179709	3.41358443
63	2.02342765	2.18719250	2.55482208	2.98310354	3.48185612
64	2.04619121	2.21453241	2.59314442	3.03430785	3.55149324
65	2.60921087	2.24221407	2.63204158	3.08842574	3.62252311
66	2.09248949	2.27024174	2.67152221	3.14247319	3.69497357
67	2.11602999	2.29861976	2.71159504	3.19746647	3.76887304
68	2.13983533	2.32735251	2.7522 c896	3.25342213	3.84425050
69	2.16390848	2.35644442	2.79355300	3.31035702	3.92113551
70	2.18825245	2.38589997	2.83545629	3.36828827	3.99955822
71	2.21287029	2.41572372	2.87798814	3.42723331	4.07954939
72	2.23776508	2.44592027	2.92115796	3.48720990	4.16114038
73	2.26293994	2.47649427	2.96497533	3.54823807	4.24436318
74	2. 28339801	2.50745045	3.00944996	3.61033020	4.32925045
75	2.31414249	2.53879358	3.05459171	3.67351098	4.41583546
76	$2.34017659{ }^{\circ}$	2.57052850	3.10041059	3.73779742	4.50415216
77	2.36650358	2.60266011	3.14691674	3.80320888	4.59423521
78	2.39312675	2.63519336	3.19412050	3.86976503	4.68611991
79	2.42004942	2.66813327	3.24203230	3.93748592	$4.7798,4231$
80	2.44727498	2.70148494	3.29066279	4.00639192	4.8754×3916
	2.47480682	2.73525350	3.34002273	4.07650378	
82	2.50264840	2.76944417	3.39012307	4.14784260	5.07240690
83	2.53080319	2.80406222	3.44097492	4.22042984	5.17385504
84	2.55927473	2.83911300	3.49258954	4.29428737	5.27733214
85	2.58806657	2.87460191	3.54497838	4.36943740	5.38287878
86	2.61718232	2.91053444	3.59815306	4.44590255	5.49053636
87	2.64662562	2.94691612	3.65212535	4.52370584	5.60034708
88	2.67640016	2.98375257	3.70690723	4.60287070	5.71235402
83	2.70650966	3.02104948	3.7625 1084	4.68342093	5.82660110
90	2.73695789	3.05881260	3.81894851	4.76538080	5.94313313
91	2.76774367	3.09704775	3.87623273	4.84877496	6.06199579
92	2.79888584	3.13576085	3.93437622	4.93362853	6.18323570
93	2.83037331	3.17495786	3.99339187	5.01996703	6.30690042
94	2.86221501	3.21464483	4.05329275	5.10781645	6.43303843
95	2.80441492	3.25482789	4.11409214	5.19720324	6.56169920
96	2.92697709	3.29551324	4.17580352		
97	2.95990559	3.33670716	4.23844057	5.38069699	6.82679184
98	2.99320452	3.37841600	4.30201718	5.47485919	6.96332768
109	3.02687807	3.42064620	4.36654744	5.57066923	7.10259423
100	3.06093045	3.46340427	4.43204565	5.66815594	7.24464612

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3%	$3 \frac{1}{2} \%$
1	1.02250000	1.02500000	1.02750000	1.03000000	1.03500000
2	1.04550625	1.05062500	1.05575625	1.06090000	1.07122500
3	1.06903014	1.07689063	1.08478955	1.09272700	1.10871788
4	1.09308332	1.10381289	1.11462126	1.12550881	1.14752300
5	1.11767769	1.13140821	1.14527334	1.15927407	1.18768631
6	1.14282544	1.15969342	1.17676836	1.19405230	1.22925533
7	1.16853901	1.18868575	1.20912949	1.22987387	1.27227926
8	1.19483114	1.21840290	1.24238055	1.26677008	1.31680904
8	1.22171484	1.24886297	1.27654602	1.30477318	1.36289735
10	1.24920343	1.28008454	1.31165103	1.34391638	1.41059876
11	1.27731050	1.31208666	1.34772144	1.38423387	1.45996972
12	1.30604999	1.34488882	1.38478378	1.42576089	1.51106866
13	1.33543611	1.37851104	1.42286533	1.46853371	1.56395600
14	1.36548343	1.41297382	1.46199413	1.51258972	1.61869452
15	1.39620680	1.44829817	1.50219896	1.55796742	1.67534883
16	1.42762146	1.48450562	1.54350944	1.60470644	1.73398604
17	1.45974294	1.52161826	1.58595595	1.65284763	1.79467555
18	1.49258716	1.55965872	1.62956973	1.70243306	1.85748920
19	1.52617037	1.59865019	1.67438290	1.75350605	1.92250132
20	1.56050920	1.63861644	1.72042843	1.80611123	1.98978886
21	1.59562066	1.67958155	1.76774021	1.86029457	2.05943147
22	1.63152212	1.72157140	1.81635307	1.91610341	2.13151158
23	1.65823137	1.76 .161068	1.86630278	1.97358651	2.20611448
24	1.70576658	1.80872595	1.91762610	2.03279411	2.28332849
25	1.74414632	1.85394410	1.97036082	2.09377793	2.36324498
26	1.78338962	1.90029270	2.02454575	2.15659127	2.44595856
27	1.82351588	1.94780002	2.08022075	2.22128901	2.53156711
28	1.86454499	1.99649502	2.13742682	2.28792768	2.62017196
29	1.90649725	2.04640739	2.19620606	2.35656551	2.71187798
30	1.94939344	2.09756758	2.25660173	2.42726247	2.80679370
31	1.99325479	2.15000677	2.31865828	2.50008035	2.90503148
32	2.03810303	2.20375694	2.38242138	2.57508276	3.00670759
33	2.08396034	2.25885086	2.44793797	2.65233524	3.11194235
34	2.13084945	2.31532213	2.51525626	2.73190530	3.22086033
35	2.17879356	2.37320519	2.58442581	2.81386245	3.33359045
	2.22781642	2.43253 .532	2.65549752	2.898278 .33	3.45026611
37	2.27794229	2.49334870	2.72852370	2.98522668	3.57102543
38	2.32919599	2.55568242	2.80355810	3.07478348	3.69601132
39	2.38160290	2.61957448	2.88065595	3.16702698	3.82537171
40	2.43518897	2.68506384	2.95987399	3.26203779	3.95925972
41	2.48998072	2.75219043	3.04127052	3.35989893	4.09783381
42	2.54600528	2.82099520	3.12490546	3.46069589	4.24125799
43	2.60329040	2.89152008	3.21084036	3.56451677	4.38970202
44	2.66186444	2.96380808	3.29913847	3.67145227	4.54334160
45	2.72175639	3.03790328	3.38986478	3.78159584	4.70235855
46	2.78299590	3.11385086	3.48308606	3.89504372	4.86694110
47	2.84561331	3.19169713	3.57887093	4.01189503	5.03728404
48	2.90963961	3.27148956	3.67728988	4.13225188	5.21358898
48	2.97510650	3.35327680	3.77841535	4.25621944	5.39606459
50	3.04204640	3.43710872	3.88232177	4.38390602	5.58492686

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{1}{2} \%$
51	3.11049244	3.52303644	3.98908562	4.51542320	5.78039930
52	3.18047852	3.61111235	4.09878547	4.65088590	5.98271327
53	3.25203929	3.70139016	4.21150208	4.79041247	6.19210824
54	3.32521017	3.79392491	4.32731838	4.93412485	6.40883202
65	3.40002740	3.88877303	4.44631964	6.08214859	6.63314114
56	3.47652802	3.98599236	4.56859343	5.23461305	6.86530108
57	3.55474990	4.08564217	4.69422975	5.39165144	7.10558662
58	3.63473177	4.18778322	4.82332107	5.55340098	7.35428215
59	3.71651324	4.29247780	4.95596239	5.72000301	7.61168203
60	3.80013479	4.39978975	5.09225136	5.89160310	7.87809090
61	3.88563782	4.50978449	5.23228827	6.06835120	8.15382408
62	3.97306467	4.62252910	5.37617620	6.25040173	8.43920793
63	4.06245862	4.73809233	5.52402105	6.43791379	8.73458020
64	415386394	4.85654464	5.67593162	6.63105120	9.04029051
65	4.24732588	4.97795826	5.83201974	6.82998273	9.35670068
66	4.34289071	5.10240721	5.99240029	7.03488222	9.68418520
67	4.44060576	5.22996739	6.15719130	7.24592868	10.02313168
68	4.54051939	5.36071658	6.32651406	7.46330654	10.37394129
69	4.64268107	5.49473449	6.50049319	7.68720574	10.73702924
70	4.74714140	5.63210286	6.67925676	7.91782191	11.11282526
71	4.85395208	5.77290543	6.86293632	8.15535657	11.50177414
72	4.96316600	5.91722806	7.05166706	8.40001727	11.90433624
73	5.07483723	6.06515876	7.24558791	8.65201778	12.32098801
74	5.18902107	6.21678773	7.44484158	8.91157832	12.75222259
75	5.30577405	6.37220743	7.64957472	9.17892567	13.19855038
76	5.42515396	6.53151261	7.85993802	9.45429344	13.66049964
77	5.54721993	6.69480043	8.07608632	9.73792224	14.13861713
78	5.67203237	6.86217044	8.29817869	10.03005991	14.63346873
79	5.79965310	7.03372470	8.52637861	10.33096171	15.14564013
80	5.93014530	7.20956782	8.76085402	10.64089056	15.67573754
81	6.06357357	7.38980701	9.00177751	10.96011727	16.22438835
82	6.20000397	7.57455219	9.24932639	11.28892079	16.79224195
83	6.33950 .406	7.76391599	9.50368286	11.62758842	17.37997041
84	6.48214290	7.95801389	9.76503414	11.97641607	17.98826938
85	6.62799112	8.15696424	10.03357258	12.33570855	18.61785881
86	6.77712092	8.36088834	10.30949583	12.70577981	19.26948387
87	6.92960614	8.56991055	10.59300696	13.08695320	19.94391580
88	7.08552228	8.78415832	10.88431465	13.47956180	20.64195285
88	7.24494653	9.00376228	11.18363331	13.88394865	21.36442120
90	7.40795782	9.22885633	11.49118322	14.30046711	22.11217595
91	7.57463688	9.45957774	11.80719076	14.72948112	22.88610210
92	7.74506621	9.69606718	12.13188851	15.17136556	23.68711568
93	7.91933020	9.93846886	12.46551544	15.62650652	24.51616473
94	8.09751512	10.18693058	12.80831711	16.09530172	25.37423049
95	8.27970921	10.44160385	13.16054584	16.57816077	26.26232850
96	8.46600267	10.70264395	13.52246085	17.07550559	27.18151006
97	8.65648773	10.97021004	13.89432852	17.58777076	28.13286291
88	8.85125871	11.24446530	14.27642255	18.11540388	29.11751311
99	9.05041203	11.52557693	14.66902417	18.65886600	30.13662607
100	9.25404630	11.81371635	15.07242234	19.21863198	31.19140798

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	4\%	$4 \frac{1}{2} \%$	5%	$5 \frac{1}{2} \%$	6\%
1	1.04000000	1.04500000	1.05000000	1.05500000	1.06000000
2	1.08160000	1.09202500	1.10250000	1.11302500	1.12360000
3	1.12486400	1.14116613	1.15762500	1.17424138	1.19101600
4	1.16985856	1.19251860	1.21550625	1.23882465	1.26247696
5	1.21665290	1.24618194	1.27628156	1.30696001	1.33822558
6	1.26531902	1.30226012	1.34009564	1.37884281	1.41851911
7	1.31593178	1.36086183	1.40710042	1.45467916	1.50363026
8	1.36856905	1.42210061	1.47745544	1.53468651	1.59384807
9	1.42331181	1.48609514	1.55132822	1.61909427	1.68947896
10	1.48024428	1.55296942	1.62889463	1.70814446	1.79084770
11	1.53945406	1.62285305	1.71033936	1.80209240	1.89829856
12	1.60103222	1.6958814 .3	1.79585633	1.90120749	2.01219647
13	1.66507351	1.77219610	1.88564914	2.00577390	2.13292826
14	1.73167645	1.85194492	1.97993160	2.11609146	2.26090396
15	1.80094351	1.93528244	2.07892818	2.23247649	2.39655819
16	1.87298125	2.02237015	2.18287459	2.35526270	2.54035168
17	1.94790050	2.11337681	2.29201832	2.48480215	2.69277279
18	2.02581652	2.20847877	2.40661923	2.62146627	2.85433915
19	2.10684918	2.30786031	2.52695020	2.76564691	3.02559950
20	2.19112314	2.41171402	2.65329771	2.91775749	3.20713547
21	2.27876807	2.52024116	2.78596259	3.07823415	3.39956360
22	2.36991879	2.63365201	2.92526072	3.24753703	3.60353742
23	2.46471554	2.75216635	3.07152376	3.42615157	3.81974966
24	2.56330416	2.87601383	3.22509994	3.61458990	4.04893464
25	2.66583633	3.00543446	3.38635494	3.81339235	4.29187072
26	2.77246978	3.14067901	3.55567269	4.02312893	4.54938296
27	2.88336858	3.28200956	3.73345632	4.24440102	4.82234594
28	2.998703 .32	3.42969999	3.92012914	4.47784307	5.11168670
29	3.11865145	3.58403649	4.11613560	4.72412444	5.41838790
30	3.24339751	3.74531813	4.32194238	4.98395129	5.74349117
31	3.37313341	3.91385745	4.53803949	5.25806861	6.08810064
32	3.50805875	4.08998104	4.76494147	5.54726238	6.45338668
33	3.64838110	4.27403018	5.00318854	5.85236181	6.84058988
31	3.79431634	4.46636154	5.25334797	6.17424171	7.25102528
35	3.94608890	4.66734781	5.51601537	6.51382501	7.68608679
36	4.10393255	4.87737846	5.79181614	6.87208538	8.14725200
37	4.26808986	5.09686049	6.08140694	7.25005008	8.63608712
38	4.43881345	5.32621921	6.38547729	7.64880283	9.15425235
39	4.616 .36599	5.56589908	6.70475115	8.06948699	9.70350749
40	4.80102063	5.81636454	7.03998871	8.51330877	10.28571794
41	4.99306145	6.07810094	7.39198815	8.98154076	10.90286101
42	5.19278391	6.35161548	7.76158756	9.47552550	11.55703267
43	5.40049527	6.63743818	8.14966693	0.99667940	12.25045463
44	5.61651508	6.93612290	8.55715028	10.54649677	12.98548191
45	5.84117568	7.24824843	8.98500779	11.12655409	13.76461083
46					14.59048748
47	6.31781562	7.91526849	9.90597109	12.38413287	15.46591673
48	6.57052824	8.27145557	10.40126965	13.06526017	16.39387173
49	6.83334937	8.64367107	10.92133313	13.78384948	17.37750403
50	7.10668335	9.03263627	11.46739979	14.54196120	18.42015427

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

n	4%	$4 \frac{1}{2} \%$	6\%	$5 \frac{1}{2} \%$	6%
61	7.39095068	9.43910490	12.04076978	15.34176907	19.52536353
52	7.68658871	9.86386463	12.64280826	16.18556637	20.69688534
53	7.99405226	10.307738 .53	13.27494868	17.07577252	21.93869846
54	8.31381435	10.77158677	13.93869611	18.01494001	23.25502037
55	8.64636692	11.25630817	14.63563092	19.00576171	2465032159
56	8.99222160	11.7628 12.2021699	15.36741246	20.05107860	26.12934089
57	9.35191046	12.29216993	16.13578309	21.15388793	27.69710134
58	9.72598688	12.84531758	16.94257224	22.31735176	29.35892742
59	10.11502635	13.42335687	17.78970085	23.54480611	31.12046307
60	10.51962741	14.02740793	18.67918589	24.83977045	32.98769085
61	10.94041250	$14.6586,4129$	19.61314519	26.20595782	34.96695230
62	11.37802900	15.3182 '8014	20.59380245	27.64728550	37.06496944
63	11.83315016	16.00760275	21.623492 .57	29.16788620	39.28886761
64	12.30647617	16.72794487	22.70466720	30.77211994	41.64619967
65	12.79873522	17.48070239	23.83990056	32.46458654	44.14497165
66	13.31068463	18.26733400	25.03189559	34.25013880	46.79366994
67	13.84311201	19.08936403	26.28349037	36.13389643	49.60129014
68	14.39683649	19.918 .38 .541	27.59766488	38.12126074	52.57736755
69	14.97270995	20.84606276	28.97754813	40.21793008	55.73200960
70	15.57161835	21.78413558	30.42642554	42.42991623	59.07593018
71	16.19448308	22.76442168	31.94774681	44.76356163	62.62048599
72	16.84226241	23.78882046	33.54513415	$47.2255 \quad 5751$	66.37771515
73	17.51595290	24.85931759	35.22239086	49.82296318	70.36037806
74	18.21659102	25.97798688	36.98351040	52.56322615	74.58200074
75	18.94525466	27.14699629	38.83268592	55,4542 0359	79.05692079
75	19.70306485	28.36861112	40.77432022	58.50418479	83.80033603
77	20.49118744	29.64519862	42.81303623	61.72191495	88.82835620
78	21.31083494	30.979232 .56	44.95368804	65.11662027	94.15805757
79	22.16326834	32.37329802	47.20137244	68.69803439	99.80754102
80	23.04979907	33.83009643	49.56144107	72.47642628	105.79599348
81	23.97179103	35.35245077	52.03951312	76.46262973	112.14375309
82	24.93066267	36.94331106	54.64148878	80.66807436	118.87237828
83	25.92788918	38.60576006	57.37356322	85.10481845	126.00472097
84	26.96500475	40.34301926	60.24224138	89.78558347	133.56500423
85	28.04360494	42.15845513	63.25435344	94.72379056	141.57890449
86	29.16534914	44.05558561	66.41707112	99.93359904	150.07363375
87	30.33196310	46.03808696	69.73792467	105.42994698	159.07805708
88	31.54524163	48.10980087	73.22482091	111.22859407	168.62274050
89	32.80705129	50.27474191	76.88606195	117.34616674	178.74010493
90	34.11933334	52.53710530	80.73036505	123.80020591	189.46451123
91	35.48410668	54.90127503	84.76688330	130.60921724	200.83238190
92	36.90347094	57.37183241	89.00522747	137.79272419	212.88232482
83	38.37960978	59.95356487	93.45548884	145.37132402	225.65526431
94	39.91479417	62.65147529	98.12826328	153.36674684	239.19458017
85	41.51138594	65.47079168	103.03467645	161.80191791	253.54625498
96		68.41697730	108.18641027	170.70102340	268.75903028
97	44.89871503	71.49574128	113.59573078	180.08957969	284.88457209
98	46.69466363	74.71304964	119.27551732	189.99450657	301.97764642
99	48.56245018	78.07513687	125.23929319	200.44420443	320.09330520
100	50.50494818	81.58851803	131.50125785	211.46863567	339.30208351

Table III.-Compound Amount of 1

$$
(1+i)^{n}
$$

\boldsymbol{n}	$6_{2}^{1} \%$	7%	$7 \frac{1}{2} \%$	8%	$8 \frac{1}{2} \%$
1	1.06500000	1.07000000	1.07500000	1.08000000	1.08500000
2	1.13422500	1.14490000	115562500	1.16640000	1.17722500
3	1.20794963	1.22504300	1.24229688	1.25971200	1.27728913
4	1.28646635	1.31079601	1.33546914	1.36048896	1.38585870
5	- 3.37008666	1.40255173	1.43562933	1.46932808	1.50365669
6	1.459142 .30	1.50073035	1.54330153	1.58687432	1.63146751
7	1.55398655	1.60578148	1.65904914	1.71382427	1.77014225
8	1.65499567	1.71818618	1.78347783	1.85093021	1.92060434
8	1.76257039	1.83845921	1.91723866	199900463	2.08385571
10	1.87713747	1.96715136	2.06103156	215892500	2.26098344
11	1.99915140	2.10485195	2.21560893	2.33163900	2.45316703
12	2.12909624	2.25219159	2.38177960	2.51817012	2.66168623
13	2.26748750	2.40984500	2.56041307	2.71962373	2.88792956
14	2.41487418	2.57853415	2.75244405	2.93719362	3.13340357
15	2.57184101	2.75903154	2.95887735	3.17216911	3.39974288
16	2.73901067	2.95216375	3.18079315	3.42594264	3.68872102
17	2.91704637	3.15881521	3.41935264	3.70001805	4.00226231
18	3.10665438	3.37993228	3.67580409	3.99601950	4.34245461
19	3.30858691	3.61652754	3.95148940	4.31570106	4.71156 .325
20	3.52364506	3.86968446	4.24785110	4.66095714	5.11204612
21	3.75268199	4.14056237	4.56643993	5.03383372	5.54657005
22	3.99660632	4.43040174	4.90892293	5.43654041	6.01802850
23	4.25638573	4.74052986	5.27709215	5.87146365	6.52956092
24	4.53305081	5.07236695	5.67287406	6.34118074	7.08457360
25	4.82769911	5.42743264	6.09833961	6.84847520	7.68676236
26	5.14149955	5.80735292	6.55571508	7.39635321	8.34013716
27	5.47569702	6.21386763	7.04739371	7.98806147	9.04904881
28	5.83161733	6.64883836	7.57594824	8.62710639	9.81821796
23	6.21067245	7.11425705	8.14414436	9.31727490	10.65276649
30	6.61436616	7.61225504	8.75495519	10.06265689	11.55825164
31	7.04429996	8.14511290	9.41157683	10.86766944	12.54070303
32	7.50217946	8.71527080	10.11744509	11.73708300	13.60666279
33	7.98982113	9.32533975	10.87625347	12.67604364	14.76322913
34	8.50915950	9.97811354	11.69197248	13.69013361	16.01810360
35	9.06225487	10.67658148	12.56887042	14.78534429	17.37964241
36	9.65130143	11.42394219	13.51153570	15.9681718 .4	18.85691201
37	10.27863603	12.22361814	14.52490088	17.24562558	20.45974953
38	10.94674737	13.07927141	15.614268 .44	18.62527563	22.19882824
39	11.65828595	13.99482041	16.78533858	20.11529768	24.08572855
40	12.41607453	14.97445784	18.04423837	21.72452150	26.13301558
41	13.22311938	16.02266989	19.39755689	23.46248322	28.35432190
42	14.08262214	17.14425678	20.85237366	25.33948187	30.76443927
43	14.99799258	18.34435475	22.41630168	27.36664042	33.37941660
44	15.97286209	19.62845959	24.09752431	29.55597166	36.21666702
45	17.01109813	21.00245176	25.90483863	31.92044939	39.22508371
46	18.11681951	22.47262338	27.84770153	34.47408534	42.6351 .6583
47	19.29441278	24.04570702	29.93627915	37.23201217	46.2591 .5492
48	20.54854961	25.72890651	32.18150008	40.21057314	50.19118309
49	21.88420533	27.52992997	34.59511259	43.42741899	54.45743365
50	23.30667868	29.45702506	37.18974603	46.90161251	59.08631551

Table IV.-Present Value of 1
$v^{n}=(1+i)^{-n}$.

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1\%
1	0.99585062	0.99502488	0.99420050	0.99255583	0.90009901
2	0.99171846	0.99007480	0.98443463	0.98516708	0.98029605
3	0.9876 0.9835 0.8545	0.98514876 0.98024752	0.98270220 0.9770 0302	$\begin{array}{ll}0.9778 & 3333 \\ 0.9705 & 5417\end{array}$	0.97059015 0.96098034
5	0.97942457	0.97537067	0.97133688	0.96332920	0.95146569
6	0.97536057	0.97051808	0.96570361	0.95615802	0.94204524
7	0.97131343	0.96568963	0.96010301	0.94904022	0.93271805
8 8	0.9672 8308	0.90088520 0.9561 0468	0.95453489 0.9489 9907	0.9419 0.9349 6318	0.92348322 0.9143 982
10	0.95927249	0.95134794	0.94349534	0.92800315	0.90528695
11	0.95529211	0.94661489	0.93802354	0.92109494	0.89632372
12	0.95132824	0.94190534	0.93258347	0.91423815	0.88744923
13	0.94738082	0.93721924	0.92717495	0.90743241	0.87866260
14	0.94344978 0.9395	0.9325 0.9279 0888	0.92179780 0.91645183	0.9006 0.8939733	0.86996297 0.8613 9947
16	0.93563856	0.92330037	0.91113686	0.88731766	0.85282126
17	0.93175425	0.91870684	0.90585272	0.88071231	0.84437749
18	0.92788805	0.91413616	0.90059923	0.87415614	0.8360 0.82731 0.8292
19 20	0.92403789 0.92020371	0.90958822 0.9050 0290	$\begin{array}{ll}0.8953 & 7620 \\ 0.8901 & 8346\end{array}$	0.8676 0.8611 8988	0.8277 0.8195 4447
21	0.91638544	0.90056010	0.88502084	0.85477901	0.81143017
22	0.91258301	0.89607971	0.87988816	0.84841589	0.80339621
23	0.90879636	0.89162160	0.87478525	0.84210014	0.79544179
24	0.90502542	0.88718567	0.86971193	0.83583140	0.78756813
25	-.9012 7012	0.88277181	0.86466803	0.82960933	0.77976844
26	0.89753041	0.87837991	0.85965339	0.82343358	0.77204796
27	0.89380622	0.87400986	0.85466782	0.81730380	0.76440392
28	0.89009748	0.86966155	0.84971118	0.81121966	0.75683557
29	0.88640413	0.86533488	0.84478327 08388	0.80518080	0.74934215
30	0.88272610	0.86102973	0.83988395	0.70918690	0.74192292
31	0.87906334	0.85674600	0.83501304	0.79323762	0.73457715
32	$\begin{array}{lll}0.8754 & 1577 \\ 0.8717 & 8334\end{array}$	0.85248358 0.84828237	0.83017038	0.78733262	0.72730411
${ }_{34} 3$	0.87178334 0.86816599	0.84824237 0.8440 0226	0.8253 0.8205 6915	0.7814 0.77568188	0.7201 0.7129 034
35	0.86456364	0.83982314	0.81581026	0.76988008	0.70591420
36	0.86097624	0.83564492	0.81107897	0.76414896	0.69892495
37	0.85740372	0.8314 .8748	0.80637511	0.75846051	0.69200490
38	0.85384603	0.88735073	0.80169854	0.75281440	0.68515337
39		0.82323455	0.79704908	0.74721032	0.67836967
40	0.84677487	0.81913886	0.79242660	0.74164796	0.67165314
41	0.84326128	0.81506354	0.78783092	0.73612701	0.66500311
42	0.83976227	0.81100850	0.78326189	0.73064716 0.72580809	0.65841892
43	$\begin{array}{ll}0.8362 & 7778 \\ 0.8328 & 0775\end{array}$	0.80697363 0.80295884	0.77871936 0.7742 0.317	$\begin{array}{ll}0.7252 & 0809 \\ 0.7198 & 0952\end{array}$	0.6518 0.6454 1548
45	0.82935211	0.79896402	0.76971318	0.71445114	0.63905492
46	0.82591082	0.79498907	0.76524923	0.70913264	0.63272764
48	0.8224 83880	0.79103390	0.76081116	0.70385374	0.62646301
49	0.81907100 0.81567237	0.78709841 0.78318250	0.756319884 0.7520 1210	0.69861414 0.69341353	0.62026041 0.6141 1921
50	0.81228784	0.77928607	0.74765080	0.68825165	0.60803882

Tabli IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{9} \%$	1\%
51	0.80891735	0.77540902	0.74331480	0.68312819	0.60201864
52	0.80556084	0.77155127	0.73900394	0.67804286	0.59605806
53	0.80221827	0.76771270	0.73471809	0.67299540	0.59015649
54	0.79888956	0.76389324	0.73045709	0.66798551	0.58431336
55	0.79557467	0.76009277	0.72622080	0.66301291	0.57852808
56	0.79227353	0.75631122	0.72200908	0.65807733	0.57280008
57	0.78898608	0.75254847	0.71782179	065317849	0.56712879
58	0.78571228	0.74880445	0.71365878	0.64831612	0.56151365
59	0.78245207	0.74507906	0.70951991	0.64348995	0.55595411
60	0.77920538	0.74137220	0.70540505	0.63869970	0.55044982
61	0.77597216	0.73768378	0.70131405	0.63394511	0.54499962
63	0.77275236	0.73401371	0.69724678	0.62922592	0.53960358
63	0.76954591	0.73036190	0.69320310	0.62454185	0.53426097
64	0.76635278	0.72672826	0.68918286	0.61989268	0.52897126
65	0.76317289	0.72311269	0.68518594	0.61527807	0.52373392
66	0.76000620	0.71951512	0.68121221	0.61069784	0.51854844
67	0.75685265	0.71593544	0.67726151	0.60615170	0.51341429
68	0.75371218	0.71237357	0.67333373	0.60163940	0.50833099
69	0.75058474	0.70882943	0.66942873	0.59716070	0.50329801
70	0.74747028	0.70530291	0.66554638	0.59271533	0.49831486
71	0.74436874	0.70179394	0.66168654	0.58830306	0.49338105
72	0.74128008	0.69830243	0.65784909	0.58392363	0.48849609
73	0.73820423	0.69482829	0.65403389	0.57957681	0.48365949
74	0.73514114	0.69137143	0.65024082	0.57526234	0.47887078
75	0.73209076	0.68793177	0.64646975	0.57097999	0.47412949
76	0.72905304	0.68450923	0.64272054	0.56672952	0.46043514
77	0.72602792	0.68110371	0.63899308	0.56251069	0.46478726
78	0.72301536	0.67771513	0.63528724	0.55832326	0.46018541
79	0.72001529	0.67434342	0.63160289	0.55416701	0.45562912
80	0.71702768	0.67098847	0.62793991	0.55004170	0.45111794
81	0.71405246	0.66765022	0.62429817	0.54594710	0.44665142
82	0.71108959	0.66432858	0.62067755	0.54188297	0.44222913
83	0.70813901	0.66102346	0.61707793	0.53784911	0.43785063
84	0.70520067	0.65773479	0.61349919	0.53384527	0.43351547
85	0.70227453	0.65446248	0.60994120	0.52987123	0.42922324
86	0.69936052	0.65120644	0.60640384	0.52592678	0.42497350
87	0.69645861	0.64796661	0.60288700	0.52201169	0.42076585
88	0.69356874	0.64474290	0.59939056	0.51812575	0.41659985
89	0.69069086	0.64153522	0.59591439	0.51426873	0.41247510
90	0.68782493	0.63834350	0.59245838	0.51044043	0.40839119
91	0.68497088	0.63516766	0.58902242	0.50664063	0.40434771
92	0.68212868	0.63200763	0.58560638	0.50286911	0.40034427
93	0.67929827	0.62886331	0.58221015	0.49912567	0.39638046
94	0.67647960	0.62573464	0.57883363	0.49541009	0.3924 .5590
95	0.67367263	0.62262153	0.57547668	0.49172217	0.38857020
96	0.67087731	0.61952391	0.57213920	0.48806171	0.38472297
97	0.66809359	0.61644170	0.56882108	0.48442850	0.38091383
98	0.66532141	0.61337483	0.56552220	0.48082233	0.37714241
98 100	$\begin{array}{lll}0.6625 & 6074 \\ 0.6598 & 1153\end{array}$	0.61032321 0.60728678	0.5622 0.5589 8172	0.47724301 0.47369033	0.3734 0.3697 1121

Table IV.-Pregent Valtef of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1%
101	0.65707372	0.60426545	0.55573991	0.47016410	0.36605071
102	0.65434727	0.60125015	0.55251689	0.46666412	0.36242644
103	0.65163214	0.59826781	0.54931257	0.46319019	0.35883806
104	0.64892827	0.59529136	0.54612683	0.45974213	0.35528521
105	0.64623562	0.59232971	0.54295957	0.45631973	0.35178753
106	0.64355415	0.58938279	0.53981067	0.45292281	0.34828469
107	0.64088380	0.58645054	0.53668004	0.44955117	0.34483632
108	0.63822453	0.58353288	0.53356756	0.44620464	0.34142210
109	0.63557630	0.58062973	0.53047313	0.44288302	0.33804168
110	0.63293905	0.57774102	0.52739665	0.43958612	0.33469474
111	0.63031275	0.57486669	0.52433801	0.43631377	0.32138093
112	0.62769734	0.57200666	0.52129711	0.43306577	0.32809993
113	0.62509279	0.56916085	0.51827385	0.42984196	0.32485141
114	0.62249904	0.56632921	0.51526812	0.42664124	0.32163506
115	0.61991606	0.56351165	0.51227982	0.42346615	0.31845056
116	0.61734379	0.56070811	0.50930885	0.42031379	0.31529758
117	0.61478220	0.55791852	0.50635512	0.41718491	0.31217582
118	0.61223123	0.55514280	0.50341851	0.41407931	0.30008497
119	0.60969036	0.55238090	0.50049893	0.41099683	0.30602473
120	0.60716102	0.54963273	0.49759629	0.40793730	0.30299478
121	0.60464168	0.54689824	0.49471047	0.40490055	0.29999483
122	0.60213279	0.54417736	0.49184140	0.40188640	0.29702459
123	0.59963431	0.54147001	0.48898896	0.39889469	0.29408375
124	0.59714620	0.53877612	0.48615307	0.39592525	0.29117203
125	0.59466842	0.53609565	0.48333363	0.39297792	0.28828914
126	0.59220091	0.53342850	0.48053053	0.39005252	0.28543479
127	0.58974365	$0.5307 \quad 7463$	0.47774369	0.38714891	0.28260870
128	0.58729658	0.52813396	0.47497302	0.38426691	0.27981060
129	0.58485966	0.52550643	0.47221841	0.38140636	0.27704019
130	0.58243286	0.52289197	0.46947978	0.37856711	0.27429722
131	0.58001613	0.52029052	0.46675703	0.37574899	0.27158141
132	0.57760942	0.51770201	$0.46 \cdot 105007$	0.37295185	0.26889248
133	0.57521270	0.51512637	0.46135881	0.37017553	0.26623018
134	0.57282593	0.512 .56356	0.45868316	0.36741988	0.26359424
135	057044906	0.51001349	0.45602303	0.36468475	0.26098439
136	0.56808205	0.50747611	0.45337832	0.36196997	0.25840039
137	0.56572486	0.50495135	0.45074895	0.35927541	0.25584197
138	0.56337745	0.50243916	0.44813483	0.35660090	0.25330888
139	0.56103979	0.49993946	0.44553587	0.35394630	0.25080087
140	0.55871182	0.49745220	0.44295198	0.35131147	0.24831770
141	0.55639351	0.49497731	0.44038308	0.34869625	0.24585911
142	0.55108483	0.49251474	0.43782908	0.34610049	0.24342486
143	0.55178572	0.49006442	0.43528989	0.34352406	0.24101471
144	0.54949615	0.48762628	0.43276512	0.34096681	0.23862843
145	0.54721609	0.48520028	0.43025560	0.33842860	0.23626577
146	0.54494548	0.48278635	0.42776033	0.33590928	0.23392650
147	0.54268429	0.48038443	0.42527953	0.33340871	0.23161040
148	0.54043249	0.47799446	0.42281312	0.33092676	0.22931723
149	0.53819003	0.47561637	0.42036102	0.32846329	0.22704676
150	0.53595688	0.47325012	0.41792313	0.32601815	0.22479877

Table IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$1 \frac{1}{8} \%$	$1 \frac{1}{4} \%$	$1 \frac{1}{2} \%$	$1 \frac{3}{4} \%$	2\%
1	0.98887515	0.98765432	0.98522167	0.98280098	0.98039216
2	0.97787407	0.97546106	0.97066175	0.96589777	0.96116878
3	0.96699537	0.96341833	0.95631699	0.94928528	$0.9423 \quad 2233$
4	0.95623770	0.95152428	0.94218423	0.93295851	0.92384543
5	0.94559970	0.93977706	0.92826033	0.91691254	0.90573081
6	0.93508005	0.92817488	0.91454219	0.90114254	0.88797138
7	0.92467743	0.91671593	0.90102679	0.88564378	0.87056018
8	0.91439054	0.90539845	0.88771112	0.87041157	0.85349037
8	0.90421808	0.89422069	0.87459224	0.85544135	0.83675527
10	0.89415881	0.88318093	0.86166723	0.84072860	0.82034830
11	0.88421142	0.87227746	0.84893323	0.82626889	0.80426304
12	0.87437470	0.86150860	0.83638742	0.81205788	0.78849318
13	0.86464742	0.85087269	0.82402702	0.79809128	0.77303253
14	0.85502335	0.84036809	0.81184928	. 0.78436490	0.75787502
15	0.84551629	0.82999318	0.79985150	0.77087459	0.74301473
16	0.83611005	0.81974635	0.78803104	0.75761631	0.72844581
17	0.826808 .46	0.80962602	0.77638526	0.74458605	0.71416256
18	0.81761034	0.79963064	0.76491159	0.73177990	0.70015937
19	0.80851455	0.78975866	0.75360747	0.71919401	0.68643076
20	0.79951995	0.78000855	0.74247042	0.70682458	0.67297133
21	0.79062542	0.77037881	0.7314 .9795	0.69466789	0.65977582
22	0.78182983	0.76086796	0.72068763	0.68272028	0.64683904
28	0.77313210	0.75147453	0.71003708	0.67097817	0.63415592
24	0.76453112	0.74219707	0.69954392	0.65943800	0.62172149
25	0.75602583	0.73303414	0.68920583	0.64809632	0.60953087
26	0.74761516	0.72398434	0.67902052	0.63694970	0.59757928
27	0.73929806	0.71504626	0.66898574	0.62599479	0.58586204
28	0.73107348	0.70621853	0.65909925	0.61522829	0.57437455
29	0.72294040	0.69749978	0.64935887	0.60464697	0.56311231
30	0.71489780	0.68888867	0.63976243	0.59424764	0.55207089
31	0.70694467	0.68038387	0.63030781	0.58402716	0.54124597
32	0.69908002	0.67198407	0.62099292	0.57398247	0.53063330
33	0.69130287	0.66368797	0.61181568	0.56411053	0.52022873
34	0.68361223	0.65549429	0.60277407	0.55440839	0.51002817
35	0.67600715	0.64740177	0.59386608	0.54487311	0.50002761
36	0.66848667	0.63940916	0.58508974	0.53550183	0.49022315
37	0.66104986	0.63151522	0.57644309	0.52629172	0.48061093
38	0.65369578	0.62371873	0.56792423	0.51724002	0.47118719
39	0.64642352	0.61601850	0.55953126	0.50834400	0.46194822
40	0.63923216	0.60841334	0.55126232	0.49960098	0.45289042
41	0.63212080	0.60090206	0.54311559	0.49100834	0.44401021
42	0.62508855	0.59348352	0.53508985	0.48256348	0.43530413
43	0.61813454	0.58615656	0.52718153	0.47426386	0.42676875
44	0.61125789	0.57892006	0.51939067	0.46610699	0.41840074
4.5	0.60445774	0.57177290	0.51171494	0.45809040	0.41019680
46	0.59773324	0.56471397	0.50415265	0.45021170	0.40215373
47	0.59108355	0.55774219	0.49670212	0.44246850	0.39426836
48	0.58450784	0.55085649	0.48936170	0.43485848	0.38653761
49	0.57800528	0.54405579	0.48212975	0.42737934	0.37895844
50	0.57157506	0.53733905	0.47500468	0.42002883	0.37152788

Table IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$1 \frac{1}{8} \%$	1 $\frac{1}{4} \%$	$1 \frac{1}{2} \%$	13%	2\%
51	0.56521637	0.53070524	0.46798491	0.41280475	0.36424302
52	0.55892843	0.52415332	0.46106887	0.40570492	0.35710100
53	0.55271044	0.51768229	0.45425505	0.39872719	0.35009902
54	0.54656162	0.51129115	0.44754192	0.39186947	0.34323433
55	0.54048120	0.50497892	0.44092800	0.38512970	0.33650425
56	0.53446843	0.49874461	0.43441182	0.37850585	0.32990613
57	0.52852256	0.49258727	0.42799194	0.37199592	0.32343738
58	0.52264282	0.48650594	0.42166694	0.36559796	0.31709547
59	0.51682850	0.48049970	0.41543541	0.35931003	0.31087791
60	0.51107887	0.47456760	0.40929597	0.35313025	0.30478227
61	0.50539319	0.46870874	0.40324726	0.34705676	0.29880614
62	0.49977077	0.46292222	0.39728794	0.34108772	0.29294720
63	0.49421090	0.45720713	0.39141669	0.33522135	0.28720314
64	0.48871288	0.45156259	0.38563221	0.32945587	0.28157170
65	0.48327602	0.44598775	0.37993321	0.32378956	0.27605069
66	0.47789965	0.44048173	0.37431843	0.31822069	0.27063793
67	0.47258309	0.43504368	0.36878663	0.31274761	0.26533130
68	0.46732568	0.42967277	0.36333658	0.30736866	0.26012873
69	0.46212675	0.42436817	0.35796708	0.30208222	0.25502817
70	0.45698566	0.41912905	0.35267692	0.29688670	0.25002761
71	0.45190177	0.41395462	0.34746495	0.29178054	0.24512 .511
72	0.44687443	0.40884407	0.34233000	0.28676221	0.24031874
73	0.44190302	0.40379661	0.33727093	0.28183018	0.23560661
74	0.43698692	0.39881147	0.33228663	0.27698298	0.23098687
75	0.43212551	0.39388787	0.32737599	0.27221914	0.22645771
76	0.42731818	0.38902506	0.32253793	0.26753724	0.22201737
77	0.422564 .33	0.38422228	0.31777136	0.26293586	0.21766408
78	0.41786337	0.37947879	0.31307523	0.25841362	0.21339616
79	0.41321470	0.37479387	0.30844850	0.25396916	0.20921192
80	0.40861775	0.37016679	0.30389015	0.24960114	0.20510973
81	0.40407194	0.36559683	0.29939916	0.24530825	0.20108797
82	0.39957670	0.36108329	0.29497454	0.24108919	0.19714507
83	0.39513148	0.35662547	0.29061531	0.23694269	0.19327948
84	0.39073570	0.35222268	0.28632050	0.23286751	0.18948968
85	0.38638882	0.34787426	0.28208917	0.22886242	0.18577420
86	0.38209031	0.34357951	0.27792036	0.22492621	0.18213157
87	0.37783961	0.33933779	0.27381316	0.22105770	0.17856036
88	0.37363621	0.33514843	0.26976666	0.21725572	0.17505918
89	0.36947956	0.33101080	0.26577997	0.21351914	0.17162665
90	0.36536916	0.32692425	0.26185218	0.20984682	0.16826142
01	0.36130448	0.32288814	0.25798245	0.20623766	0.16496217
92	0.35728503	0.31890187	0.25416990	0.20269057	0.16172762
93	0.35331029	0.31496481	0.25041369	0.19920450	0.15855649
94	0.34937976	0.31107636	0.24671300	0.19577837	0.15544754
95	0.34549297	0.30723501	0.24306699	0.19241118	0.15239955
96	0.34164941	0.30344287	0.23947487	0.18910190	0.14941132
97	0.33784861	0.29969668	0.23593583	0.18584953	0.14648169
98	0.33408010	0.29599670	0.23244909	0.18265310	0.14360950
99	0.33037340	0.29234242	0.22901389	0.17951165	0.14079363
100	0.32669805	0.28873326	0.22562944	0.17642422	0.13803297

Table IV.--Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{2}{2} \%$	23\%	3\%	$3 \frac{1}{2} \%$
1	0.97799511	0.97560976	0.97323601	0.97087379	0.96618357
8	0.95647444	0.95181440	0.94718833	0.94258591	0.93351070
8	0.93542732	0.92858941	0.32183779	0.91514166	0.90194271
4	0.91484335	0.90595064	0.89716573	0.88848705	0.87144223
5	0.89471232	0.88385429	0.87315400	0.86260878	0.84197317
6	0.87502427	0.86229687	0.84978491	0.83748426	0.81350064
7	0.85576843	0.84126524	0.82704128	0.81309151	0.78599096
8	0.83693835	0.82074657	0.80490635	0.78940923	0.75941156
8	0.81852161	0.89072836	0.78336385	0.76641673	0.73373097
10	0.80051013	0.78119840	0.76239791	0.74409391	0.70891881
11	0.78239499	0.76214478	0.74199310	0.72242128	0.68494571
12	0.76566748	0.74355589	0.72213440	0.70137988	0.66178330
13	0.74881905	0.72542038	0.70280720	0.68095134	0.63940415
14	0.73234137	0.70772720	0.68399728	0.66111781	0.61778179
16	0.71622628	0.69046556	0.66569078	0.04186195	0.59689062
16	0.70046580	0.67362493	0.64787424	0.62316604	0.57670591
17	0.68505212	0.65719506	0.63053454	0.60501645	0.55720378
18	0.66997763	0.64116591	0.61365892	0.58739461	0.53836114
19	0.65523484	0.62552772	0.59723496	0.57028603	0.52015569
20	0.64081647	0.61027094	0.58125057	0.55367575	0.50256588
21	0.62671538	0.59538629	0.56569398	0.53754928	0.48557090
22	0.61292457	0.58086467	0.55055375	0.52189250	0.46915063
23	0.59943724	0.56669724	0.53581874	0.50609175	0.45328563
24	0.58624668	0.55287535	0.52147809	0.49193374	0.43795713
25	0.57334639	0.53939059	0.50752126	0.47760557	0.42314699
28	0.56072997	0.52623472	0.49393796	0.46369473	0.40883767
27	0.54839117	0.51339973	0.48071821	0.45018906	0.39501224
28	0.53632388	0.50087778	0.46785227	0.43707675	0.38165434
29	0.52452213	0.48866125	0.45533068	0.42434636	0.36874815
30	0.51298008	0.47674269	0.44314421	0.41198676	0.35627841
31	0.50169201	0.46511481	0.43128301	0.39998715	0.34423035
32	0.49065233	0.45377055	0.41974103	0.38833703	0.33258971
88	0.47985558	0.44270298	0.40850708	0.37702625	0.32134271
34	0.46929641	0.43190534	0.39757380	0.36604490	0.31047605
35	0.45896960	0.42137107	0.38693314	0.35538340	0.29997686
38	0.44887002	0.41109372	0.37657727	0.34503243	0.28983272
37	0.43899268	0.40106705	0.36648856	0.33498294	0.28003161
38	0.42933270	0.39128482	0.35668959	0.32522615	0.27056194
39	0.41988528	0.38174139	0.34714316	0.31575355	0.26141250
40	0.41064575	0.37243062	0.33785222	0.30655684	0.25257247
41	0.40160954	0.36334695	0.32880995	0.29762800	0.24403137
48	0.39277216	0.35448483	0.32000968	0.28895922	0.23577910
43	0.38412925	0.34583886	0.31144495	0.28054294	0.22780590
44	0.37567653	0.33740376	0.30310944	0.27237178	0.22010231
45	0.36740981	0.32917440	0.29499702	0.26443862	0.21265924
46	0.35932500	0.32114576	0.28710172		0.20546787
47	0.35141809	0.31331294	0.27941773	0.24925876	0.19851968
48	0.34368518	0.30567116	0.27193940	0.24199880	0.19180645
48	0.33612242	0.29821576	0.28466122	0.23495029	0.18532024
50	0.32872608	0.29094221	0.25757783	0.22810708	0.17905337

Table IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{1}{2} \%$
51	0.32149250	0.28384606	0.25068402	0.22146318	0.17299843
52	0.31441810	0.27692298	0.24397471	0.21501280	0.16714824
53	0.30749936	0.27016876	0.23744497	0.20875029	0.16149589
54	0.30073287	0.26357928	0.23109000	0.20267019	0.15603467
55	0.29411528	0.25715052	0.22490511	0.19676717	0.15075814
58	0.28764330	0.25087855	0.21888575	0.19103609	0.14566004
57	0.28131374	0.24475956	0.21302749	0.18547193	0.14073433
58	0.27512347	0.23878982	0.20732603	0.18006984	0.13597520
59	0.26906940	0.23296568	0.20177716	0.17482508	0.13137701
60	0.26314856	0.22728359	0.19637679	0.16973309	0.12693431
61	0.25735801	0.22174009	0.19112097	0.16478941	0.12264184
62	0.25169487	0.21633179	0.18600581	0.15998972	0.11849453
63	0.24615635	0.21105541	0.18102755	0.15532982	0.11448747
65	0.24073971	0.20590771	0.17618253	0.15080565	0.11061591
65	0.23544226	0.20088557	0.17146718	0.14641325	0.10687528
66	0.23026138	0.19598593	0.16687804	0.14214879	0.10326114
67	0.22519450	0.19120578	0.16241172	0.13800853	0.09976922
68	0.22023912	0.18654223	0.15806493	0.13398887	0.09639 .538
69	0.21539278	0.18199241	0.15383448	0.13008628	0.09313563
70	0.21065309	0.17755358	0.14971726	0.12629736	0.08998612
71	0.20601769	0.17322300	0.14571023	0.12261880	0.08694311
72	0.20148429	0.16899805	0.14181044	0.11904737	0.08400300
73	0.19705065	0.16487615	0.13801503	0.11557998	0.08116232
74	0.19271458	0.16085478	0.13432119	0.11221357	0.07841770
75	0.18847391	0.15693149	0.13072622	0.10894521	0.07576590
76	0.18432657	0.15310389	0.12722747	0.10577205	0.07320376
77	0.18027048	0.14936965	0.12382235	0.10269131	0.07072827
78	0.17630365	0.14572649	0.12050837	0.09970030	0.06833650
78	0.17242411	0.14217218	0.11728309	0.09679641	0.06602560
80	0.16862993	0.13870457	0.11414412	0.09397710	0.06379285
	0.16491925	0.13532153	0.11108917	0.09123990	0.06163561
82	0.16129022	0.13202101	0.10811598	0.08858243	0.05955131
83	0.15774105	0.12880098.	0.10522237	0.08600236	0.05753750
84	0.15426997	0.12565949	0.10240620	0.08349743	0.05559178
85	0.15087528	0.12259463	0.09966540	0.08106547	0.05371187
86	0.14755528	0.11960452	0.09699795	0.07870434	0.05189553
87	0.14430835	0.11668733	0.09440190	0.07641198	0.05014060
88	0.14113286	0.11384130	0.09187533	0.07418639	0.04844503
89	0.13802724	0.11106468	0.08941638	0.07202562	0.04680679
90	0.13498997	0.10835579	0.08702324	0.06992779	0.04522385
91	0.13201953	0.10571296	0.08469415	0.06789105	0.04369464
92	0.12911445	0.10313460	0.08242740	0.06591364	0.04221704
93	0.12627331	0.10061912	0.08022131	0.06399383	0.04078941
94	0.12349468	0.09816500	0.07807427	0.06212993	0.03941006
95	0.12077718	0.09577073	0.07598469	0.06032032	0.03807735
96		0.09343486	0.07395104	0.05856342	0.03678971
97	0.115512029	0.09115596	0.07197181	0.05685769	0.03554562
98	0.11297828	0.08893264	0.07004556	0.05520164	0.03434359
98	0.11049221	0.08676355	0.06817086	0.05359383	0.03318221
100	0.10806084	0.08464737	0.06634634	0.05203284	0.03206011

Table IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	4\%	$4 \frac{1}{2} \%$	5%	$5 \frac{1}{2} \%$	6%
1	0.96153846	0.95693780	0.95238095	0.94786730	0.94339623
2	0.92455621	0.91572995	0.90702948	0.89845242	0.88999644
3	0.88899636	0.87629660	0.86383760	0.85161366	0.83961928
$\frac{1}{8}$	0.85480419	0.83856134	0.82270247	0.80721674	0.79209366
6	0.82192711	0.80245105	0.78352617	0.76513435	0.74725817
6	0.79031453	0.76789574	0.74621540	0.72524583	0.70496054
7	0.75991781	0.73482846	0.71068133	0.68743681	0.66505711
8	0.73069021	0.70318513	0.67683936	0.65159887	0.62741237
\%	0.70258674	0.67290443	0.64460892	0.61762926	0.59189846
10	0.67556417	0.64392768	0.61391325	0.58543058	0.55839478
11	0.64958093	0.61619874	0.58467929	0.55491050	0.52678753
18	0.62459705	0.58966386	0.55683742	0.52598152	0.49696936
13	0.60057409	0.56427164	0.53032135	0.49856068	0.46883902
14	0.57747508	0.53997286	0.50506795	0.47256937	0.44230096
16	0.55526450	0.51672044	0.48101710	0.44793305	0.41726506
16	0.53390818	0.49446932	0.45811152	0.42458109	0.39364628
17	0.51337325	0.47317639	0.43629669	0.40244653	0.37136442
18	0.49362812	0.45280037	0.41552065	0.38146590	0.35034379
18	0.47464242	0.43330179	0.39573396	0.36157906	0.33051301
20	0.45638695	0.41464286	0.37688948	0.34272896	0.31180473
21	0.43883360	0.39678743	0.35894236	0.32486158	0.29415540
28	0.42195539	0.37970089	0.34184987	0.30792567	0.27750510
23	0.40572633	0.36335013	0.32557131	0.29187267	0.26179726
24	0.39012147	0.34770347	0.31006791	0.27665656	0.24697855
25	0.37511680	0.33273060	0.29530277	0.26223370	0.23299863
28	0.36068923	0.31840248	0.28124073	0.24856275	0.21981003
27	0.34681657	0.30469137	0.26784832	0.23560450	0.20736795
28	0.33347747	0.29157069	0.25509364	0.22332181	0.19563014
29	0.32065141	0.27901502	0.24294632	0.21167944	0.18455674
80	0.30831867	0.26700002	0.23137745	0.20064402	0.17411013
31	0.29646026	0.25550241	0.22035947	0.19018390	0.16425484
32	0.28505794	0.24449991	0.20986617	0.18026910	0.15495740
83	0.27409417	0.23397121	0.19987254	0.17087119	0.14618622
34	0.26355209	0.22389589	0.19035480	0.16196321	0.13791153
35	0.25341547	0.21425444	0.18129029	0.15351963	0.13010522
36	0.24366872	0.20502817	0.17265741	0.14551624	0.12274077
37	0.23429685	0.19619921	0.16443563	0.13793008	0.11579318
38	0.22528543	0.18775044	0.15660536	0.13073941	0.10923885
38	0.21662061	0.17966549	0.14914797	0.12392362	0.10305552
40	0.20828904	0.17192870	0.14204568	0.11746314	0.09722219
41	0.20027793	0.16452507	0.13528160	0.11133947	0.09171905
42	0.19257493	0.15744026	0.12883982	0.10553504	0.08652740
48	0.18516820	0.15066054	0.12270440	0.10003322	0.08162962
48	0.17804635	0.14417276	0.11686133 .	0.09481822	0.07700908
45	0.17119841	0.13796437	0.11129651	0.08987509	0.07265007
48	0.16461386			0.08518965	
47	0.15828256	0.12633810	0.10094921	0.08074849	0.06465831
48	0.15219476	0.12089771	0.09614211	0.07653885	0.06099840
48	0.14634112	0.11569158	0.09156391	0.07254867	0.05754566
80	0.14071262	0.11070965	0.08720373	0.06876652	0.05428836

Table IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

8	4%	4 $\frac{1}{2} \%$	\%\%	$5 \frac{1}{2} \%$	6\%
51	0.13530059	0.10594225	0.08305117	0.06518153	0.05121544
52	0.13009672	0.10138014	0.07909635	0.06178344	0.04831645
53	0.12509300	0.09701449	0.07532986	0.05856250	0.04558156
54	0.12028173	0.09283683	0.07174272	0.05550948	0.04300147
55	0.11565551	0.08883907	0.06832640	0.05261562	0.04056742
56	0.11120722	0.08501347	0.06507276	0.04987263	0.03827115
57	0.10693002	0.08135260	0.06197406	0.04727263	0.03610486
58	0.10281733	0.07784938	0.05902291	0.04480818	0.03406119
59	0.09886282	0.07449701	0.05621230	0.04247221	0.03213320
60	0.09506040	0.07128901	0.05353552	0.04025802	0.03031434
61	0.09140423	0.06821915	0.05098621	0.03815926	0.02859843
62	0.08788868	0.06528148	0.04855830	0.03616992	0.02697985
63	0.08450835	0.06247032	0.04624600	0.03428428	0.02545250
64	0.08125803	0.05978021	0.04404381	0.03249695	0.02401179
65	0.07813272	0.05720594	0.04194648	0.03080279	0.02265264
66	0.07512762	0.05474253	0.03994903	0.02919696	0.02137041
67	0.07223809	0.05238519	0.03804670	0.02767485	0.02016077
08	0.06945970	0.05012937	0.03623495	0.02623208	0.01901959
69	0.06678818	0.04797069	0.03450948	0.02486453	0.01794301
70	0.06421940	0.04590497	0.03286617	0.02356828	0.01692737
71	0.06174942	0.04392820	0.03130111	0.02233960	0.01596921
72	0.05937445	0.04203655	0.02981058	0.02117498	0.01506530
73	0.05709081	0.04022637	0.02839103	0.02007107	0.01421254
74	0.05489501	0.03849413	0.02703908	0.01902471	0.01340806
75	a 05278367	0.03683649	0.02575150	0.01803290	0.01264911
76	0.05075353	0.03525023	0.02452524	0.0170 9279	0.01193313
77	0.04880147	0.03373228	0.02335737	0.01620170	0.01125767
78	0.04692449	0.03227969	0.02224512	0.01535706	0.01062044
79	0.04511970	0.03088965	0.02118582	0.01455646	0.01001928
80	0.04338433	0.02955948	0.02017698	0.01379759	0.00945215
81	0.04171570	0.02828658	0.01921617	0.01307828	0.00891713
82	0.04011125	0.02706850	0.01830111	0.01239648	0.00841238
83	0.03856851	0.02590287	0.01742963	0.01175022	0.00793621
84	0.03708510	0.02478744	0.01659965	0.01113765	0.00748699
85	0.03565875	0.02372003	0.01580919	0.01055701	0.00706320
86	0.03428726	0.02269860	0.01505637	0.01000664	0.00666340
87	0.03296852	0.02172115	0.01433940	0.00948497	0.00628622
88	0.03170050	0.02078579	0.01365657	0.00899049	0.00593040
89	0.03048125	0.01989070	0.01300626	0.00852180	0.00559472
90	0.02930890	0.01903417	0.01238691	0.00807753	0.00527803
91	0.02818163	0.01821451	0.01179706	0.00765643	0.00497928
92	0.02709772	0.01743016	0.01123530	0.00725728	0.00469743
93	0.02605550	0.01667958	0.01070028	0.00687894	0.00443154
94	Q. 02505337	0.01596132	0.01019074	0.00652032	0.00418070
95	0.02408978	0.01527399	0.00970547	0.00618040	0.00394405
96	0.02316325	0.01461626	0.00924331	0.00585820	0.00372081
97	0.02227235	0.01398685	0.00880315	0.00555279	0.00351019
98	0.02141572	0.01338454	0.00838395	0.00526331	0.00331150
99	0.02059204	0.01280817	0.00798471	0.00498892	0.00312406
100	0.01980004	0.01225663	0.00760449	0.00472883	0.00294723

Table IV.-Present Value of 1

$$
v^{n}=(1+i)^{-n}
$$

\boldsymbol{n}	$6 \frac{1}{2} \%$	7%	$7 \frac{1}{2} \%$	8%	$8 \frac{1}{2} \%$
1	0.93896714	0.93457944	0.93023256	0.92592593	0.92165899
2	0.88165928	0.87343873	0.86533261	0.85733882	0.84945529
3	0.82784909	0.81629788	0.80496057	0.79383224	0.78290810
4	0.77732309	0.76289521	0.74880053	0.73502985	0.72157428
5	0.72988084	0.71298618	0.69655863	0.68058320	0.66504542
6	0.68533412	0.66634222	0.64796152	0.63016963	0.61294509
$\boldsymbol{\gamma}$	0.64350621	0.62274974	0.60275490	0.58349040	0.56492635
8	0.00423119	0.58200910	0.56070223	0.54026888	0.52066945
8	0.56735323	0.54393374	0.52158347	0.50024897	0.47987968
10	0.53272604	0.50834929	0.48519393	0.46319349	0.44228542
11	0.50021224	0.47509280	0.45134319	0.42888286	0.40763633
12	0.46968285	0.44401196	0.41985413	0.39711376	0.37570168
13	0.44101676	0.41496445	0.39056198	0.36769792	0.34626883
14	0.41410025	0.38781724	0.36331347	0.34046104	0.31914178
15	0.38882652	0.36244602	0.33796602	0.31524170	0.29413989
16	0.36509533	0.33873460	0.31438699	0.29189047	0.27109667
17	0.34281251	0.31657439	0.29245302	0.27026895	0.24985869
18	0.32188969	0.29586392	0.27204932	0.25024903	0.230284 .50
19	0.30224384	0.27650832	0.25306913	0.23171206	0.21224378
20	0.28379703	0.25841900	0.23541315	0.21454821	0.19561639
21	0.26647608	0.24151309	0.21898897	0.19865575	0.18029160
22	0.25021228	0.22571317	0.20371067	0.18394051	0.16616738
23	0.23494111	0.21094688	0.18949830	0.17031528	0.15314965
24	0.22060198	0.19714662	0.17627749	0.15769934	0.14115176
25	0.20713801	0.18424918	0.16397006	0.14601790	0.13009378
26	0.19449579	0.17219549	0.15253866	0.13520176	0.11990210
27	0.18262515	0.16093037	0.14189643	0.12518682	0.11050885
28	0.17147902	0.15040221	0.13199668	0.11591372	0.10185148
29	0.16101316	0.14056282	0.12278761	0.10732752	0.09387233
30	0.15118607	0.13136712	0.11422103	0.09937733	0.08651828
31	0.14195875	0.12277301	0.10625212	0.09201605	0.07974035
32	0.13329460	0.11474113	0.09883918	0.08520005	0.07349341
33	0.12515925	0.10723470	0.09194343	0.07888893	0.06773586
34	0.11752042	0.10021934	0.08552877	0.07304531	0.06242936
35	0.11034781	0.09366294	0.07956164	0.06763454	0.05753858
36	0.10361297	0.08753546	0.07401083	006262458	0.05303095
37	0.09728917	0.08180884	0.06884729	0.05798572	0.04887645
38	0.09135134	0.07645686	0.06404399	005369048	0.04504742
39	0.08577590	0.07145501	0.05957580	0.04971341	0.04151836
40	0.08054075	0.06678038	0.05541935	0.04603093	0.03826577
41	0.07562512				
42	0.07100950	0.05832857	0.04795617	0.03946411	0.03250506
43	0.06667559	0.05451268	0.04461039	0.03654084	0.02995858
44	0.06260619	0.05094643	0.04149804	0.03383411	0.02761160
45	0.05878515	0.04761349	0.03860283	0.03132788	0.02544848
46	0.05519733	0.04449859	0.03590961	0.02900730	0.02345482
47	0.05182848	0.04158747	0.03340428	0.02685861	0.02161734
48	0.04866524	0.03886679	0.03107375	0.02486908	0.01992382
49	0.04569506	0.03632410	0.02890582	0.02302693	0.01836297
50	0.04290616	0.03394776	0.02688913	0.02132123	0.01692439

Table V.-Amount of Annuity of 1 per Period

n	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1\%
1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
2	2.00416667	2.00500000	2.00583333	2.00750000	2.01000000
3	3.01251736	3.01502500	3.01753403	3.02255625	3.03010000
4	4.02506952	4.03010013	4.03513631	4.04522542	4.06040100
5	5.04184064	5.05025063	5.05867460	$5.0755 \quad 6.461$	5.10100501
6	6.06284831	6.07550188	6.08818354	6.11363135	6.15201506
7	7.08811018	7.10587939	7.12369794	7.15948358	7.21353521
8	8.11764397	8.14140879	8.16525284	8.21317971	8.28567056
9	9.15146749	9.18211583	9.21288349	9.27477856	9.36852727
10	10.18959860	10.228026 .41	10.26662531	10.34433940	10.46221254
11	11.23205526	11.27916654	11.32651396	11.42192194	11.56683467
12	12.27885549	12.33556237	12.39258529	12.50758636	12.68250301
13	13.33001739	13.39724018	13.464875 .37	13.60139325	13.80932804
14	14.38555913	$14.46+22639$	14.54 .342048	14.7034 0370	14.94742132
15	15.445 ± 9896	15.53654752	15.62825710	$15.8136 \quad 7923$	16.09689354
16	16.50385520	16.61423026	16.71942193	16.93228183	17.25786449
17	17.57864627	17.69730141	17.81695189	18.05027391	18.43044314
18	18.65189063	18.78578791	18.92038111	19.19471849	19.61474757
19	19.729606584	19.87971685	20.03125593	20.33867888	20.81089504
20	20.81181353	20.97911544	21.14510103	21.40121807	22.01900399
21	21.89852912	22.08401101	22.27146857	22.65240312	23.23919403
22	22.98977330	23.19443107	23.4013 S.777	23.822. 0611	24.47158598
23	21.0855 6402	24.31040322	24.5378	25.00096336	2.71630183
24	25.18 .592054	25.43195524	2.5 .68103157	26.18547059	2t.9734 8485
25	26.29086187	26.55911502	26.83083759	27.38.18 8.112	28.2.431 9950
26	27.40010713	27.691910 .59	27.98735081	28.59027075	29.52563150
27	28.51457549	28.83037015	29.15061035	29.80469778	30.82088781
23	29.63338622	29.97452200	30.320655 .58	31.02823301	32.12909669
29	30.75685567	31.12 .139461	31.49752607	32.26094 .76	33.45038766
30	31.88501224	32.28001658	32.68126164	33.50290184	34.78489153
31	33.01786646	33.44141666	33.87190233	34.75417361	36.13274045
32	34.15544090	34.60862375	35.06948843	36.01482991	37.49406785
33	35.29775524	35.781666813	36.274060 .45	37.28494113	38.86900853
34	36.44482922	36.96057520	37.48565913	38.56457819	40.25769862
35	37.59668268	38.14537807	38.70432548	39.85381253	41.66027560
36	38.75333552	39.33610 .496	39.93010071	41.15271612	43.07687836
37	39.91480775	40.532785 .19	41.16302830	42.46136149	44.50764714
38	41.08111945	41.7354 4.942	42.40314395	43.77982170	45.95272361
39	42.25229078	42.94412666	43.65049502	45.10817037	47.41225085
40	43.42834199	44.15884730	44.00512352	46.44648164	48.88637336
41	44.60929342	45.37964153	46.16707007	47.79483026	50.37523709
42	45.795165 .48	48.60653974	47.4.363 7798	49.15329148	51.87898946
43	46.98597866	47.83957244	45.71309018	50.52194117	53.39777936
44	48.18175358	49.07877030	49.99724988	51.90085573	54.9317 5715
45	49.38251088	50.32416415	51.28890050	53.29011215	56.48107472
47	51.79905581	52.83366390	53.89484959	56.09396140	59.62634432
48	53.01488521	54.09783222	55.20923621	57.52071111	61.22260777
49	54.235780 .56	55.36832138	56.5.312 9009	58.95211644	62.8348 3385
50	55.46176298	56.64516299	57.86105595	60.39425732	64.46318218

Table V.-Amount of Annuity of 1 per Period

$$
s_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{i}
$$

\boldsymbol{n}	$\frac{\mathbf{B}}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{4} \%$	1%
81	56.69285366	57.9283888	59.19857877	61.84721424	66.10781401
58	57.92907388	59.21803075	60.54390381.	63.31106835	67.76889215
5	59.17044503	60.51412090	61.89707659	64.78590136	69.44658107
54	60.41698855	61.81669150	63.25814287	66.27179562	71.14104683
55	61.66872800	63.12577496	64.6271 4870	67.76883409	72.85245735
56	62.92567902	64.44140384	66.00414040	69.27710035	74.58098192
${ }^{67}$	64.18578935	65.76361086	67.38916455	70.79667860	76.32679174
58	65.45531881	67.09242891	68.78226801	72.32765369	78.09005966
59	66.72804930	68.42789105	70.18349791	73.87011109	79.87096025
60	68.00608284	69.77003051	71.59290165	75.42413693	81.66966986
61	69.28944152	71.11888066	73.01052691	76.98981795	83.48636655
62	70.57814753	72.47447507	74.43642165	78.56724159	85.32123022
63	71.87222314	73.83684744	75.87063411	80.15649590	87.17444252
64	73.17169074	75.20603168	77.31321281	81.75766962	89.04618695
65	74.47657278	76.58206184	78.76420655	83.37085214	90.93664882
68	75.78689184	77.96497215	80.22366442	84.99613353	92.84601531
${ }_{68}^{67}$	77.1026 78.4239 168	79.3547 80.7515 0901	81.6916 83.1681 7034	88.6336 88.2833 1565	94.7744 967222 9621
69	79.75069806	8.15532855	84.65331800	${ }_{89} 8.94548174$	98.68944242
70	81.08299264	83.56610549	86.14712902	91.62007285	100.67633684
71	82.42083844	84.98393602	87.64965394	93.30722340	102.68310021
${ }^{72}$	83.76425860	86.40885570	89.16094359	95.00702758	104.70993121
${ }_{74}^{73}$	85.1132 86.4679 8634 1500	87.8408 89.2501 09988	90.6810 92.2100 21809 188	96.7195 98.4449 814	108.7570 108.8246 0083 10.5128
75	87.82819797	90.72650500	93.74791367	100.18331446	110.91284684
76	89.19414880	92.18013752	95.29477650	101.93468932	113.02197530
77	90.56579109	93.64103521	96.85066270	103.69919949	115.15219506
78	91.94314855	95.10924340	98.41562490	105.47694349	117.30371701
79	93.32624500	96.58478962	99.98971604	107.26802056	119.47675418
80	94.71510436	98.06771357	101.57298938	109.07253072	121.67152172
81	96.10975062	99.55805214	103.16549849	110.89057470	123.88823894
82	97.51020792	101.05584240	104.76729723	112.72225401	126.12711931
83	98.91650045	102.56112161	106.378 .43930	114.56767091	128.38839050
88	100.328655254 101.74668859	104.07392722 105.59429885	107.998988070 109.62897475	116.42692845 118.30013041	130.6722 132.9789 715
88	103.17063312	107.12226834	111.26847710	120.18738139	135.30878712
87	104.60051076	108.65787968	112.91754322	122.08878675	137.66187499
88	106.03634622	110.20116908	114.57622889	124.00445265	140.03849374
89	107.47816433	111.75217492	116.24459022	125.93448604	142.43887868
90	108.92599002	113.31093580	117.92268367	127.87899469	144.86326746
91	110.37984831	114.87749048	119.61056599	129.83808715	147.31190014
92	111.83976434	116.45187793	121.30829429	131.81187280	149.78501914
93	113.30576336	118.03413732	123.01592601	133.80046185	152.28286933
94	114.77787071	119.62430800	124.73351891	135.80396531	154.80569803
95	116.25611184	121.22242954	126.46113110	137.82249505	157.35375501
	117.74051230	122.82854169	128.19882103	139.85616377	159.92729256
97	119.23109777	124.44268440	129.94664749	141.90508499	162.52656548
98	120.7278 122.2309 2600	126.0648 127.6952 2231	131.7046 133.472960 1384	143.9693 146.0491 1343 18	165.1518 167.8033 945
100	123.74022243	129.33369842	135.25153903	148.14451201	170.48138294

Table V.-Amount of Annuty of 1 per Period

$$
s_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{i}
$$

n	$\frac{6}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{4} \%$	1\%
101	125.25580669	130.98036692	137.04050634	150.25559585	173.18619677
102	126.77770589	132.63526875	138.83990929	152.38251281	175.91805874
103	128.30594633	134.29844509	140.64980876	154.52538166	178.67723033
104	129.84055444	135.96993732	142.47026598	156.68432202	181.46401172
105	131.38155675	137.64978701	144.30134253	158.85945444	184.27885184
106	132.92897990	139.33803594	146.14310036	161.05090035	187.12143836
107	134.48285065	141.03472612	147.99560178	163.25878210	189.99265274
108	136.04319586	142.73989975	149.85890946	165.48322296	192.89257927
109	137.61004251	144.45359925	151.73308643	167.72434714	195.82150506
110	139.18341769	146.17586725	153.61819610	169.98227974	198.77972011
111	140.76334860	147.90674658	155.51430225	172.25714684	201.76751731
112	142.34986255	149.64628032	157.42146901	174.54907544	204.78519248
113	143.94298698	151.39451172	159.33976091	176.85819351	207.83304441
114	145.54274942	153.1514 8428	161.26924285	179.18462996	210.91137485
115	147.14917754	154.91724170	163.20998010	181.52851468	214.02048860
116	148.76229912	156.69182791	165.16203832	183.88997854	217.16069349
117	150.38214203	158.47528704	167.12548354	186.26915338	220.33230042
118	152.00873429	160.26766348	169.10038219	188.66617203	223.53562343
119	153.64210 .101	162.06900180	171.08680109	191.08116832	226.77097968
120	155.28227945	163.87934681	173.08480743	193.51427708	230.03868946
121	156.92928895	165.69874354	175.09446881	195.96563416	233.33907635
122	158.58316098	167.52723726	177.11585321	198.43537642	236.67246712
123	160.24392415	169.36487344	179.14902902	200.92384174	240.03919179
124	181.91160717	171.21169781	181.19406502	203.43056905	243.43958370
125	163.58623887	173.06775630	183.25103040	205.95629832	246.87397954
126	165.26784819	174.93309508	185.31999474	208.50097056	250.34271934
127	166.95646423	176.80776056	187.40102805	211.06472784	253.84614653
128	168.65211616	178.69179936	189.49420071	213.64771330	257.38460800
129	170.35483331	180.58525836	191.59958355	216.25007115	260.95845408
130	172.06464512	182.48818465	193.71724778	218.87194668	264.56803862
131	173.78158114	184.40062557	195.84726506	221.51348628	268.21371900
132	175.50567106	186.32262870	197.98970744	224.17483743	271.89585619
133	177.23694469	188.25424184	200.14464740	226.85614871	275.6148 1475
134	178.97543196	190.19551305	202.31215785	229.55756982	279.37096290
135	180.72116293	192.14649062	204.49231210	232.27925160	283.16167253
136	182.47416777	194.10722307	206.68518392	235.02134598	286.99631926
137	184.23447681	196.07775919	208.89084749	237.78400608	290.86628245
138	186.00212046	198.0581 4798	211.10937744	240.56738612	294.77494527
139	187.77712929	200.04843872	213.34084881	243.37164152	298.72269473
140	189.55953400	202.04868092	215.58533709	246.10692883	302.70992167
141	191.34936539	204.05892432	217.84291822	249.04340580	306.73702089
142	193.14665441	206.07921894	220.11366858	251.91123134	310.80439110
143	194.95143214	208.10961504	222.39766498	254.80056558	314.91243501
144	196.76372977	210.15016311	224.69498469	257.71156982	319.06155936
145	198.58357865	212.20031393	227.00570544	260.64440659	323.25217495
146	200.41101023	214.261918 .50	229.32990538	263.59923964	327.48469670
147	202.24605610	216.33322809	231.6675 6317	266.57623394	331.75954367
148	204.08874800	218.41489423	234.01905787	269.57555569	336.07713911
149	205.93911779	220.50696870	236.38416904	272.59737236	340.43791050
150	207.79719744	222.60950354	238.76307669	275.64185265	344.84228980

Table V.-Amount of Annutty of 1 per Period

$$
s_{n} \left\lvert\,=\frac{(1+i)^{n}-1}{i}\right.
$$

\boldsymbol{n}	1 $\frac{1}{8} \%$	1-1 \%	$1 \frac{1}{2} \%$	$1 \frac{8}{4} \%$	2%
1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
2	2.01125000	2.01250000	2.01500000	2.01750000	2.02000000
3	3.03387656	3.03765625	3.04522500	3.05280625	3.06040000
4	4.06800767	4.07562695	4.09090338	4.10623036	4.12160800
5	5.11377276	5.12657229	5.15226693	5.17808938	5.20404016
6	6.17130270	6.19065444	6.22955093	626870596	6.30812096
7	7.24072986	7.26803762	7.32299419	737840831	7.43428338
8	8.32218807	- 8.35888809	8.43283911	8.50753045	8.58296905
${ }^{9}$	9.41581269	9.46337420	9.55933169	9.65641224	9.75462843
10	10.52174058	10.58166637	10.70272167	10.82539945	10.94972100
11	11.64011016	11.71393720	11.86326249	12.01484394	12.16871542
12	12.77108140	12.86036142	13.04121143	13.22510371	13.41208973
13	13.91473584	14.02111594	14.23682960	14.45654303	14.68033152
14	15.07127662	15.19637988	15.45038205	15.70953253	15.97393815
15	16.24082848	16.38633463	16.68213778	16.98444935	17.29341692
16	17.42353780	17.59116382	17.93236984	18.28167721	18.63928525
17	18.61955260	18.81105336	19.20135539	19.60160656	20.01207096
18	19.82902257	20.04619153	20.48937572	20.94463468	21.41231238
19	21.05209907	21.29676893	21.79671636	22.31116578	22.84055863
20	22.28893519	22.56297854	23.12366710	23.70161119	24.29736980
21	23.53968571	23.84501577	24.47052211	25.11638938	25.78331719
22	24.80450717	2.5 .14307847	25.83757994	26.55592620	27.29898354
23	26.08355788	26.45736695	27.22514364	23.02065490	28.84496321
24	27.37699790	27.78308403	28.63352080	29.51101637	30.42186247
25	28.68498913	29.13543508	30.06302361	31.02745915	32.03029972
26	30.00760526	30.49962802	31.51396896	32.57043969	33.67090572
27	31.34528183	31.88087337	32.936678 .50	34.14042238	35.34432383
28	32.69791625	33.27938429	34.48147867	35.73787977	37.05121031
29	34.06576781	34.69537659	3.5 .99870085	37.36329267	38.79223451
30	35.44900769	36.12906850	37.53868137	39.01715029	40.56807921
31	36.34780903	37.55068216	39.10176159	40.69995042	42.37944079
32	38.26234688	39.05044069^{\prime}	40.68828801	42.41219955	44.22702961
33	39.69279829	40.53857120	42.29861233	44.15441305	46.11157020
34	41.13934227	42.04530334	43.93309152	45.92711527	48.03380160
35	42.60215987	43.57086963	45.59208789	47.73083979	49.99447763
36	44.08143417	45.11550550	47.27596921	49.56612949	51.99436719
37	45.57735030	46.67044932	48.9851	51.43353675	54.03425453
38	47.09009549	48.2926424 .3	50.71988538	53.3336 2365	56.11493962
39	48.61985906	49.88622921	52.4806 8,366	55.26696206	58.23723841
40	50.16683248	51.48955708	54.26789391	57.23413390	60.40198318
41	51.73120934	53.13317654	56.08131232	59.23573124	62.61002284
42	53.31318545	54.79734125	57.92314100	61.27235654	64.86222330
43	54.91295879	56.48230801	59.79198812	6.3 .34462278	67.15946777
44	56.53072957	58.18833687	61.68886794	$65.4531 \quad 5367$	69.50265712
45	58.16670028	59.91569108	63.61420096	67.59858386	71.89271027
46	59.82107566	61.66463721	65.56841398	69.78155908	74.33056447
47	61.49406276	63.43544518	67.55194018	72.00273637	76.81717576
48	63.18587097	65.228388824	69.56521929	74.26278425	79.35351927
49	64.89671201	67.04374310	71.60869758	76.56238298	81.84058966
50	66.62680002	68.88178989	73.68282804	78.90222468	84.57940145

Table V.-Amount of Annuity of 1 per Period

$$
s_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{i}
$$

\boldsymbol{n}	$1 \frac{1}{8} \%$	$1 \frac{1}{4} \%$	$1 \frac{1}{2} \%$	$1 \underset{4}{3} \%$	2\%
51	68.37635152	70.74281226	75.78807046	81.28301361	87.27098948
52	70.14558548	72.62709741	77.92489152	81.70546635	90.01640927
53	71.93472332	74.53493613	80.09376489	86.17031201	02.81673746
54	73.74398895	76.46662283	82.29517136	88.67829247	95.67307221
55	75.57360883	78.42245562	84.52959893	01.23016259	98.58653365
56	77.42381193	80.40273631	86.79754202	93.82669043	101.55826432
57	79.29482981	82.40777052	89.09950606	96.4686	104.5894 2961
58	81.18689665	84.43786765	91.43599865	99.15685902	107.68121820
59	83.10024923	86.49334099	93.80753863	101.89210405	110.83484257
60	85.03512704	88.57450776	96.21465171	104.67521588	114.05153942
61	86.99177222	90.68168910	98.65787149	107.50703215	117.33257021
62	88.97042966	92.81521022	101.13773956	110.38840522	120.67922161
63	00.97134699	94.97540034	103.65480565	113.32020231	124.09280604
64	91.99477464	97.16259285	106.20962774	116.30330585	127.57466216
65	05.04096586	99.37712526	108.80277215	119.33861370	131.12615541
66	97.11017672	101.61933933	111.43481374	122.42703944	134.74867852
67	99.20266621	103.88958107	114.10633594	125.56951263	138.44365209
68	101.31869621	106.18820083	116.81793098	128.76697910	142.21252513
69	103.45853154	108.515553 .34	119.57019995	132.02040124	146.05677563
20	105.6224 4002	110.87199776	122.36375295	135.33075826	149.97791114
71	107.81069247	113.25789773	125.19920924	138.69904653	153.97746937
72	110.02356276	115.67362145	128.07719738	142.12627984	158.05701875
73	112.26132784	118.11954172	130.99835 .334	145.61348974	162.21815913
74	114.52426778	120.59603599	133.96333067	149.16172581	166.46252231
75	116.81266579	123.10348644	136.97278063	152.77205601	170.79177276
76	119.12680828	125.64228002	140.02737234	156.44556699	175.20760821
77	121.46698487	128.21280852	143.12778292	160.18336441	179.71176038
78	123.83348845	130.81546803	146.27469967	163.98657329	184.30599558
79	126.22661520	133.45066199	149.46882016	167.85633832	188.99211549
80	128.64666462	136.11879526	152.71085247	171.79382424	193.77195780
81	131.09393960	138.82028020	156.00151525	175.80021617	198.64739696
82	133.56874642	141.55553370	159.34153798	179.87671995	203.62034490
83	136.07139481	144.32497787	162.73166105	184.02456255	208.69275180
84	138.60219801	147.12904010	166.17263597	188.24499239	213.86660683
85	141.16147273	149.96815310	169.66522551	192.53927976	219.14393897
86	143.74953930	152.84275501	173.21020389	196.90871716	224.52681775
87	146.36672162	155.75328945	176.80835695	201.35461971	230.01735411
88	149.01334724	158.70020557	180.46048230	205.87832555	235.61770119
89	151.68974739	161.68395814	184.16738954	210.48119625	241.33005521
90	154.39625705	164.70500762	187.92990038	215.16461718	247.15665632
91	157.13321494	167.76382021	191.74884889	219.92999798	253.09978944
92	159.90096361	170.85086796	195.62508162	224.77877295	259.16178523
93	162.69984945	173.99662881	199.55945784	229.71240148	265.34502094
94	165.53022276	177.17158667	203.55284971	234.73236850	271.65192135
85	168.39243776	180.38623151	207.60614246	239.84018495	278.08495978
98	171.28685269	183.64105940	211.72023459	245.03738819	284.64665898
97	174.21382978	186.93657264	215.89603811	250.32554248	291.33959216
98	177.17373537	190.27327980	220.13447868	255.70623947	298.16638400
89	180.16693989	193.65169580	224.43649586	261.18109866	305.12971168
100	183.19381796	197.07234200	228.80304330	266.75176789	312.23230591

Table V.-Amount of Annuity of 1 per Period

$$
s_{n} \left\lvert\,=\frac{(1+i)^{n}-1}{i}\right.
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{1}{2} \%$
1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
2	2.02250000	2.02500000	2.02750000	2.03000000	2.03500000
3	3.06800625	3.07562500	3.08325625	3.09090000	3.10622500
4	4.13703639	4.15251563	4.16804580	4.18362700	4.21494288
5	5.23011971	6.25632852	5.28266706	5.30913581	5.36246588
6	6.34779740	6.38773673	6.42794040	6.46840988	6.55015218
7	7.49062284	7.54743015	7.60470876	7.66246218	7.77940751
8	8.65916186	8.73611590	8.81383825	8.89233605	9.05168677
9	9.85399300	9.95451880	10.05621880	10.15910613	10.36849581
10	11.07570784	11.20338177	11.33276482	11.46387931	11.73139316
11	12.32491127	12.48346631	12.64441585	12.80779569	13.14199192
12	13.60222177	13.79555297	13.99213729	14.19202956	14.60196164
13	14.90827176	15.14044179	15.37692107	15.61779045	16.11303030
14	16.24370788	16.51895284	16.79978639	17.08632416	17.67698636
15	17.60919130	17.93192666	18.26178052	18.59891389	19.29568088
16	19.00539811	19.38022483	19.76397948	20.15688130	20.97102971
17	20.43301957	20.86473045	21.30748892	21.76158774	22.70501575
18	21.83276251	22.38634871	22.89344487	23.41443537	24.49969130
19	23.38534066	23.94600743	24.52301460	25.11686844	26.35718050
20	24.91152003	25.54465761	26.19739750	26.87037449	28.27968181
21	26.47202923	27.18327405	27.91782503	28.67648572	30.26947068
22	28.06764989	28.86285590	29.68556615	30.53678030	32.32890215
23	29.69917201	30.58442730	31.50191921	32.45288370	34.46041373
24	31.36740338	32.34903798	33.36822199	34.42647022	36.66652821
25	33.07316996	34.15776393	35.28584810	36.45926432	38.94985669
26	34.81731628	36.01170803	37.25620892	38.55304225	41.31310168
27	36.60070590	37.91200073	39.28075467	40.70963352	43.75906024
28	38.42422178	39.85980075	41.36097542	42.93092252	46.29062734
29	40.28876677	41.85629577	43.49840224	45.21885020	48.91079930
80	42.19526402	43.90270316	45.69460830	47.57541571	51.62267728
31	44.14465746	46.00027074	47.95121003	50.00267818	54.42947098
82	46.13791226	48.15027751	50.26986831	52.50275852	57.33450247
33	48.17601528	50.35403445	52.65228969	55.07784128	60.34121005
34	50.25997563	52.61288531	55.10022765	57.73017652	63.45315240
35	52.39082508	54.92820744	57.61548391	60.46208181	66.67401274
36	54.56961864	57.30141263	60.19990972	63.27594427	70.00760318
87	56.79743 .506	59.73394794	62.85540724	66.17422259	73.45786930
38	59.07537735	62.22729664	65.58393094	69.15944927	77.02889472
39	61.40457334	64.78297906	68.38748904	72.23423275	80.72490604
40	63.78617624	67.40255354	71.26814499	75.40125973	84.55027775
41	66.22136521	70.08761737	74.22801898	78.66329753	88.50953747
42	68.71134592	72.83980781	77.26928950	82.02319645	92.60737128
43	71.25735121	75.66080300	80.39419496	85.48389234	96.84862928
44	73.86064161	78.55232308	83.60503532	89.04840911	101.23833130
45	76.52250605	81.51013116	86.90417379	92.71986139	105,7816 7290
46	79,2442 6243	84.55403443	90.29403857	96.50145723	110.48403145
47	82.02725834	87.66788530	93.77712463	100.39650095	115.35097255
48	84.87287165	90.85958243	97.35599556	104.40839598	120.38825659
49	87.78251126	94.13107199	101.03328544	108.54064785	125.60184557
80	90.75761776	97.48434879	104.81170079	112.79686729	130.99791016

Table V.-Amount of Annutty of 1 per Period

$$
s_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{i}
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{1}{2} \%$
51	93.79966416	100.9214 5751	108.69402256	117.18077331	136.58283702
52	96.91015661	104.44449395	112.68310818	121.69619651	142.36323631
53	100.09063513	108.05560629	116.78189365	126.84708240	148.34594958
54	103.34267442	111.75699645	120.99339573	131.13749488	154.53805782
55	106.66788460	115.55092136	125.32071411	136.07161972	160.94688984
56	110.06791200	119.43969440	129.76703375	141.15376831	167.58003099
57	113.54444002	123.42568676	134.33562718	146.38838136	174.44533207
58	117.09918992	127.51132893	139.02985692	151.78003280	181.55091869
59	120.73392169	131.69911215	143.85317799	157.33343379	188.90520085
60	124.45043493	135.99158995	148.80914038	163.05343680	196.51688288
61	128.25056972	140.39137970	153.90139174	$168.9450 \overline{3991}$	204.39497378
62	132.13620754	144.90116419	159.13368002	175.01339110	212.54879786
63	136.10927221	140.52369330	164.50985622	181.26379284	220.98800579
64	140.17173083	154.26178563	170.03387726	187.70170662	229.72258599
65	144.32559477	159.11833027	175.70980889	194.33275782	238.76287650
66	148.57292066	164.0962 8853	181.54182863	201.16274055	248.11957718
67	152.91581137	169.1986 .9574	187.53422892	208.19762277	257.80376238
68	157.35641713	174.42866314	193.69142021	215.44355145	267.82689406
69	161.89693651	179.78937971	200.01793427	222.90685800	278.20083535
70	166.53961758	185.28411421	206.51842746	230.59406374	288.93786459
71	171.28675898	190.91621706	213.19768422	238.51188565	300.05068985
72	176.14071106	196.68912249	220.06062054	246.66724222	311.55246400
73	181.10387705	202.60635055	227.11228760	255.06725949	323.45680024
74	186.17871429	208.67150931	234.35787551	263.71927727	335.77778824
75	191.36773536	214.88829705	241.80271709	272.63085559	348.53001083
76	196.67350941	221.26050447	249.45229181	281.80978126	361.72856121
77	202.09866337	227.79201709	257.31222983	291.26407469	375.38906085
78	207.64588329	234.48681751	265.38831615	301.00199693	389.52767798
79	213.31791567	241.34898795	273.68649485	311.03205684	404.16114671
80	219.11756877	248.38271265	282.21287345	321.36301855	419.30678685
81	225.04771407	255.59228047	290.97372747	332.00390910	434.98252439
82	231.11128763	262.98208748	299.97550498	342.96402638	451.20691274
83	237.31129160	270.55663966	309.22483137	354.25294717	467.99915469
84	243.65079567	278.32055566	318.72851423	365.88053558	485.37912510
85	250.13293857	286.27856955	328.49354837	377.85695165	503.36739448
	256.76092969	294.43553379	338.52712095	390.19266020	521.95525329
87	283.53805060	302.79642213	348.83661678	402.89844001	541.25473715
88	270.46765674	311.36633268	359.42962374	415.98539321	561.19865295
89	277.55317902	320.15049100	370.31393839	429.46495500	581.84060581
90	284.79812555	329.15425328	381.49757170	443.34890365	603.20502701
91	292.20608337	338.38310961	392.98875432	457.64937076	625.31720295
92	299.78072025	347.84288735	404.79594568	472.37885189	648.20330506
93	307.52578645	357.53875453	416.92783418	487.55021744	671.89042073
94	315.44511665	367.47722339	429.39334962	$E 03.17672397$	696.40658546
95	323.54263177	377.66415398	442.20166674	519.27202569	721.730\% 1595
98	331.82234099	388.10575783	455.36221257	535.85018645	748.04314451
87	340.28834366	398.80840177	468.88467342	552.92569205	775.22465457
98	348.94483139	409.77861182	482.77900194	570.51346281	803.35751748
99	357.79609010	421.02307711	497.05542449	588.62886669	832.47503059
100	366.84650213	432.54865404	511.72444867	607.28773270	862.61165666

Table V.-Amount of Annuity of 1 per Period

$$
s_{\bar{n} \mid}=\frac{(1+i)^{n}-1}{i}
$$

\boldsymbol{n}	4\%	$4 \frac{1}{8} \%$	5\%	$5 \frac{1}{2} \%$	6\%
1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
8	2.0400 312160000	2.0450 31370 1500 1	2.05000000	2.0550 31680 1000 1	2.06000000
4	3.124646400 4.2464	3.27819113	3.15250000 4.3101 2500	3.1680 4.34226038 685	3.18360000 4.37461600
5	5.41632256	5.47070973	5.52563125	5.58109103	5.63709296
6	6.63297546	6.71689166	6.80191281	6.88805103	6.97531854
8	7.89829448	8.01915179	8.14200845	8.26689384	8.39383765
${ }_{9}^{8}$	9.2142 10.5827 9531	9.3800 10.8021 1423 12.	9.54910888 11.0265642	9.72157300 11.25625951	9.89746791
10	12.00610712	12.28820937	12.57789254	12.87535379	13.18079494
11	13.48835141	13.84117879	14.20678716	14.58349825	14.97164264
12	15.02580546	15.46503184	15.91712652 17.7129	16.385 .59065	16.86994120
13	16.62683768	17.15991327	17.71298285	$18.2867 \cdot 9814$	18.88213767
14	18.2919 20.02358764	$\begin{array}{ll}18.9321 & 0937 \\ 20.7840 & 5429\end{array}$	19.59863199 21.5785 1559	20.29257203 22.40866350	21.01506593 23.27596988
16	21.82453114	22.71933673	23.65749177	24.64113999	25.67252808
17	23.69751239	24.74170689	25.84036636	26.93640269	28.21287976
18	25.64541288	26.85508370	28.13238467	29.48120483	30.90565255
$\stackrel{19}{20}$	27.67122940 29.7780 885	29.0635 31.37142246 18	30.5390 33.0659 1810	32.10267110 34.86831801	33.75999170 36.78559120
21	31.96920172	33.78313680	35.71925181	37.78607550	39.93272668
22	34.24796979	36.30337795	38.50521440	40.86430965	43.30229028
23	36.61788858	38.93702996	41.43047512	44.11184669	46.99582769
24	39.08260412	41.68919631	44.50199887	47.53799825	50.81557735
25	41.64590829	44.56521015	47.72709882	51.15258816	54.86451200
26	44.31174462	47.57064460	51.11345376	54.96598051	59.15638272
${ }^{28}$	47.08421440	50.71132361	54.66912645	58.98910943	63.70576568
28	${ }_{5}^{49.9675} 8298$	${ }_{57}^{53.9933} 3317$	58.40258277	63.23351045	68.52811162
30	56.96498775 56	61.00706966	62.323881750	67.7113 72.4354 7797	73.6397 798818822 8622
31	59.32833526	64.75238779	70.76078988	77.41942926	84.80167739
32	62.70146867	68.66624524	75.29882937	82.67749787	90.88977803
${ }_{34}^{33}$	66.20952742	72.75622628	80.06377084	88.22476025	97.34316471
$\stackrel{38}{85}$	69.8579 73.6522 24861	77.03025646 81.49661800	85.06695938 90.3203 0735	94.07712207 100.25136378	104.1837 111.4347 7987
86	77.59831385	86.16396581	95.83632272	106.76518879	119.12086666
38	81.70224640	91.0413 .4427	101.62813886	113.63727417	127.26811868
38	85.9703 .3626	96.1382 0476	107.70954580	120.88732425	135.00420578
88 40	90.40914971 95.0255 1570	101.4644 107.0303 2306	114.09502309 120.7997424	$\begin{array}{lll}128.5361 & 2708 \\ 136.6056 & 1407\end{array}$	145.0584 58813
41	99.82653633	112.84668760	127.83976295	145.11892285	165.04768356
48	104.81959778	118.92478854	135.23175110	154.10046360	175.95054457
43	110.01238169	125.27640402	142.99333866	163.57598910	187.50757724
4	115.41287696 121,0293 9204	131.91384220 138.8499 1510	151.14300559 159.70015587	173.57266850 184.11916527	199.7580 212.7435 1378
46	126.87056772	146.09821353	168.68516366	195.24571936	226.50812462
47	132.94539043	153.67263314	178.11942185	206.98423392	241.09861210
$\stackrel{48}{48}$	139.26320604 145.83773429	161.5879 169.8593 5720		219.36836679 232.4368696	$\begin{array}{lll}256.5645 & 2882 \\ 272.9584 & 0055\end{array}$
50	152.6870 8366	178.50302828	209.3479 9572	246.21747645	290.33590458

Table V.-Amount of Annuity of 1 per Period

$$
s_{n}=\frac{(1+i)^{n}-1}{i}
$$

\boldsymbol{n}	4\%	$4 \frac{1}{2} \%$	6\%	$5 \frac{1}{2} \%$	6\%'
51	159.77376700	187.53566455	220.81539550	260.75943765	308.75605886
52	167.16471768 1748513	196.97476946	232.85616528	276.10120072	328.28142239
54	184.8453 18865	${ }_{217.1463}{ }^{2} 262$	${ }_{258}^{245739} \mathbf{2 2 2 2}$	292.2867 30936254591 4561	348.9783 370.9170 0620 062
55	191.15917299	227.91795938	272.71261833	327.37748562	394.17202657
56	199.80553991	239.17426756	287.34824924	346.38324733	418.82234816
57	208.79776151	250.93710960	302.71566171	366.43432593	444.95168905
58	218.14967197 22787565885	263.2292 2760745 9711	318.8514 3357940 1703		472.64879040
60	227.87565885 237.99068520	276.0745 289.4979 1898	335.7940 353887 17888 17803	409.9055 433.4503 7173	502.0077 533.1281888 8089
61	248.51031261	303.52536190	372.26290378	458.29014217	566.11587174
	259.45072511	318.18400319	391.87604897	484.49609999	601.08282405
63	270.82375412	333.50228333	412.46985141	512.14338549	638.14779349
64	282.66190428	349.50988608	434.09334398	541.31127170	677.43666110
65	294.96838045	366.23783096	456.79801118	572.08339164	719.08286076
66	307.76711567	383.71853335	480.63791174	604.54797818	763.22783241
68	321.077800 .30	401.985886735	505.66980733	638.79811698	810.02150236
68	334.92091231	421.07523138	531.95329770	674.93201311	859.62279250
69	349.31774880	441.02381679	559.55096258	713.05327415	912.20016005
70	364.29045876	461.86967955	588.52851071	753.27120423	967.93216965
71	379.86207711	483.65381513	618.95493625	795.70112046	1027.00809983
72	396.96656019	506.41823681	650.90268306	840.46468209	1089.62858582
73	412.89882260	530.20705747	684.44781721	887.60023960	1156.00630097
78	$\begin{array}{lll} 430.4147 & 7550 \\ 448.6313 & 6652 \end{array}$	555.0663 581.0443 6193	719.6702 756.6537 1848	937.51320278 990.0764 0893	1226.36667903 1300.04867977
76	467.57662118	608.19135822	795.48640440	1045.53063252	1380.00560055
77	487.27968603	636.55996934	836.26072462	1104.03481731	1463.80593659
78	507.77087347	666.20516790	879.07376085	1165.75673226	15.52 .63429278
889	529.08170841 551.2449	697.1844 729.5576 9854	924.0274 97122882134	1230.87335254	1646.79235035
				1299.57138693	1746.59989137
81	574.29477582	763.38779497	1020.79026240	1372.04781321	1852.39588485
82	598.26656685	798.74024575	1072.82972552	1448.51044294	1964.53963794
83	623.19722952	835.68355680	1127.47126430	1529.17851730	2083.41201622
84	649.12511870	874.28931686	1184.84482752	1614.28333575	2209.41673719
85	676.09012345	914.63233612	1245.08706889	1704.06891921	2342.98174142
86	704.13372839	956.79079125	1308.34142234	1798.79270977	2484.56064591
87	733.29907753	1000.84637685	1374.75849345	1898.72630881	2634.63428466
88	763.63104063	1046.88446381	1444.49641812	2004.15625579	2793.71234174
89	795.17628225	1094.99426468	1517.72123903	2115.38484986	2962.33508225
90	827.98333354	1145.26900659	1594.60730098	2232.73101660	3141.07518718
91	862.10266688	1197.80611189	1675.33766603	2356.53122252	3330.53969841
92	897.58677355	1252.70738692	1760.10454933	2487.14043976	3531.37208032
93	934.49024450	1310.07921933	1849.10977680	2624.93316394	3744.25440514
94	972.86985428	1370.03278420	1942.56526564	2770.30448796	3969.90966944
95	1012.78464815	1432.68425949	2040.69352892	2923.67123480	4209.10424961
96	1054.29003439	1498.15505117	2143.72820537	3085.47315271	4462.65050459
97	1097.4678 75777	1566.57202847	2251.91461564	3256.17417611	4731.40953486
99 99	1142.3665 1189.0612 1843	1638.0677 1712.7808 1939	2485.5103 4642	3436.2637 3626.2582 6237	5018.29410696 5318.2717 5337
100	1237.62370461	1790.85595627	2610.02515693	3826.70246680	$5638.3680 \quad 5857$

Table V.-Amount of Annuity of 1 per Period

$$
s_{\bar{n} \mid}=\frac{(1+i)^{n^{n}}-1}{i}
$$

$\boldsymbol{8}$	$6 \frac{2}{2} \%$	7%	$7 \frac{1}{2} \%$	8\%	$8 \frac{2}{2} \%$
1	1.00000000	1.00000000	1.00000000	1.00000000	1.00000000
2	2.06500000	2.07000000	2.07500000	2.08000000	2.08500000
8	3.19922500	3.21490000	3.23062500	3.24640000	3.26222500
4	4.40717463	4.43994300	4.47292188	4.50611200	4.53951413
5	5.69364098	5.75073901	5.80839102	5.86660096	5.92537283
6	7.06372764	7.15329074	7.2.440 2034	7.33592904	7.42902952
7	8.52286994	8.65402109	8.78732187	8.92280336	9.06049702
8	10.07685648	10.25980257	10.44637101	10.63662763	10.83063927
8	11.73185215	11.97798875	12.22084883	12.48755784	12.75124361
10	13.49442254	13.81644796	14.14708750	14.48656247	14.83509932
11	15.37156001	15.78359932	16.20811906	16.64548746	17.09608276
12	17.37071141	17.38845127	18.42372799	18.97712646	19.54924979
13	19.49980765	20.14064286	20.80550759	21.49529658	22.21093603
14	21.76729515	22.55048786	23.36592066	24.21492030	25.09886559
15	24.18216933	25.12902201	26.11836470	27.15211393	28.23226916
16	26.75401034	27.88805355	29.07724206	30.32428304	31.63201204
17.	29.49302101	30.84021730	32.25803521	33.75022569	35.32073306
18	32.41006738	33.99903251	35.67738785	37.45024374	39.32299538
19	35.51672176	37.37896479	39.35319194	41.44626324	43.66544998
20	38.82530867	40.99549232	43.30468134	45.76196430	48.37701323
21	42.34895373	44.86517678	47.55253244	50.42292144	53.48905936
28	46.10163573	49.00573916	52.11897237	55.45675516	59.03562940
23	50.09824205	53.43614030	57.02789530	60.89329557	65.05365790
24	54.35462778	58.17667076	62.30498744	66.76475922	71.58321882
25	58.88767859	63.24903772	67.97786150	73.10593995	78.66779242
26	63.71537769	68.67647036	74.07620112	79.95441515	86.35455478
27	68.85687725	.74.4838 2328	80.63191620	87.35076836	94.69469193
28	74.33257427	80.69769091	87.67930991	95.33882983	103.74374075
29	80.16419159	87.34652927	95.25525816	103.96593622	113.56195871
30	86.37486405	94.46078632	103.39940252	113.28321111	124.21472520
31	92.98923021	102.07304137	112,1543 5771	123.34586800	135.77297684
32	100.03353017	110.21815426	121.56593454	134.21353744	148.31367987
38	107.53570963	118.93342506	131.68337963	145.95062044	161.92034266
34	115.52553076	128.25876481	142.55963310	158.62667007	176.68357179
35	124.03469026	138.23687835	154.25160558	172.31680368	192.70167539
86	133.09694513	148.91345984	166.82047600	187.10214797	210.08131780
37	142.74824656	160.33740202	180.33201170	203.07031981	228.93822981
38	153.02688259	172.50102017	194.85691258	220.31594540	249.39797935
39	163.97362995	185.64029158	210.47118102	238.94122103	271.59680759
40	175.63191590	199.63511199	227.25651960	259.05651871	295.68253624
41	188.04799044	214.6095 6983	245.30075857	280.78104021	321.81555182
42	201.27110981	230.63223972	264.69831546	304.24352342	350.16987372
43	215.35373195	247.77649650	285.55068912	329.58300530	380.93431299
44	230.35172453	266.12085125	307.96699080	356:9496 4572	414.31372959
45	246.32458662	285.74931084	332.06451511	386.50561738	450.53039661
48					
47	281.45250426	329.22438598	385.81705528	452.00015211	532.46064615
48	300.74691704	353.27009300	415.75333442	490.13216428	578.71980107
49	321.29546605	378.90899951	447.93483451	530.34273742	628.91098416
50	343.17967198	406.52892947	482.52994709	573.77015642	683.36841782

Table VI.-Present Value of Annuity of 1 per Period

$$
a_{n} \left\lvert\,=\frac{1-(1+i)^{-n}}{i}\right.
$$

\boldsymbol{T}	$\frac{5}{22} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{6} \%$	1%
1	0.99585062	0.99502488	0.99420050	0.99255583	0.99009901
2	1.98756908	1.98509938	1.98263513	1.97772291	1.97039508
8	2.97517253	2.97024814	2.96533733	2.95555624	2.94098521
4	3.95867804	$8.9504^{2} 9566$	3.94234034	3.92611041	3.90196555
5	4.93810261	4.92586633	4.91367723	4.88943961	4.85343124
6	5.91346318	5.89638441	5.87938084	5.84559763	5.79547647
7	6.88477661	6.86207404	6.83948385	6.79463785	6.72819453
8	7.85205969	7.82295924	7.79401875	7.73661325	7.65167775
9	8.81532915	8.77906392	8.74301781	8.67157642	8.56601758
10	9.77460164	9.73041186	9.68651315	9.59957958	9.47130453
11	10.72989374	10.67702673	10.62453669	10.52067452	10.36762825
12	11.68122198	-11.6189 3207	11.55712016	11.43491267	11.25507747
13	12.62860280	12.55615131	12.48429511	12.34234508	12.13374007
14	13.57205257	13.48870777	13.40609291	13.24302242	13.00370304
15	14.51158762	14.41662465	14.32254473	14.13699495	13.86505252
16	15.44722418	15.33992502	15.23368160	15.02431261	14.71787378
17	16.37897843	16.25863186	16.13953432	15.90502492	15.56225127
18	17.30686648	17.17276802	17.04013354	16.77918107	16.39826858
18	18.23090438	18.08235624	17.93550974	17.64682984	17.22600850
20	19.15110809	18.98741915	18.82569320	18.50801969	18.04555297
21	20.06749352	19.88797925	19.71071404	19.36279870	18.85698313
28	20.98007653	20.78405896	20.59060220	20.21121459	19.66037934
23	21.88887289	21.67568055	21.46538745	21.05331473	20.45582113
24	22.79389831	22.56286622	22.33509938	21.88914614	21.24338728
25	23.69516843	23.44563803	23.19976741	22.71875547	22.02315570
26	24.59269884	24.32401794	24.05942079	23.54218905	22.79520366
27	25.48650506	25.19802780	24.91408862	24.35949286	23.55960759
28	26.37660254	26.06768936	25.76379979	25.17071251	24.31644310
29	27.26300668	26.92302423	26.60858307	25.97589331	25.06578530
30	28.14573278	27.79405397	27.44846702	26.77508021	25.80770822
81	29.02479612	28.65079997	28.28348006	27.56831783	26.54228537
32	29.90021189	29.50328355	29.11365044	28.35565045	27.26958947
33	30.77199524	30.35152592	29.93900625	29.13712203	27.98969255
34	31.64016122	31.19554818	30.75957540	29.91277621	28.70266589
85	32.50472486	32.03537132	31.57538566	30.68265629	29.40858009
86	33.36570109	32.87101624	32.38646463	31.44680525	30.10750504
37	34.22310481	33.70250372	33.19283974	32.20526576	30.79950994
38	35.07695084	34.52985445	33.99453828	32.95808016	31.48466330
39	35.92725394	35.35308900	34.79158736	33.70529048	32.16303298
40	36.77402881	36.17222786	35.58401396	34.44693844	32.83468611
41	37.61729009	36.98729141	36.37184487	35.18306545	33.49968922
42	38.45705236	37.79829991	37.15516676	35.91371260	34.15810814
43	39.29333013	38.60527354	37.93382612	36.63892070	34.81000806
14	40.12613788	39.40823238	38.70802929	37.35873022	35.45545352
45	40.95548999	40.20719640	39.47774248	38.07318136	36.09450844
46	41.78140081	41.00218547	40.24299170	38.78231401	36.72723608
47	42.60388461	41.79321937	41.00380287	39.48616774	37.35369909
48	43.42295562	42.58031778	41.76020170	40.18478189	37.97395949
49	44.23862799	43.36350028	42.51221380	40.87819542	38.58807871
50	45.05091582	44.14278635	43.25986460	41.56644707	39.19611753

Table Vi.-Pregent Valde of Annutty of 1 per Period

$$
\sigma_{n} \left\lvert\,=\frac{1-(1+i)^{-n}}{i}\right.
$$

n	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1\%
51	45.85983317	44.91819537	44.00317940	42.24957525	39.79813017
52	46.66539401	45.68974664	44.74218335	42.92761812	40.39419423
53	47.46761228	46.4.774 5934	45.47690144	43.60061351	40.98435072
54	48.26650184	47.22135258	46.20735853	44.26859902	41.56866408
55	49.06207651	47.98144535	46.93357933	44.93161193	42.14719216
56	49.85435003	48.73775657	47.65558841	45.58968926	42.71999224
57	50.64333612	49.49030505	48.37341020	46.24286776	43.28712102
58	51.42904840	50.23910950	49.08706898	46.89118388	43.84863468
59	52.21150046	50.98418855	49.79658889	47.53467382	44.40458879
60	52.99070584	51.72556075	50.50199394	48.17337352	44.95503841
61	53.76667800	52.46324453	51.20330800	48.80731863	45.50003803
62	54.53943035	53.19725824	51.90055478	49.43654455	46.03964161
63	55.30897627	53.92762014	52.59375787	50.06108640	46.57390258
64	56.07532905	54.65434839	53.28294073	50.68097906	47.10287385
65	56.83850194	55.37746109	53.96812668	51.29625713	47.62660777
66	57.59850814	56.09697621	54.64933888	51.90695497	48.14515621
67	58.35536078	56.81291165	55.32660040	52.51310667	48.65857050
68	59.10907296	57.52528522	55.99993413	53.11474607	49.16690149
69	59.85965770	58.23411465	56.66936287	53.71190677	49.67019949
70	60.60712798	58.93941756	57.33490925	54.30462210	50.16851435
71	61.35149672	59.64121151	57.99659579	54.89292516	50.66189539
72	62.09277680	60.33951394	58.65444488	55.47684880	51.15039148
73	62.83098103	61.03434222	59.30847877	56.05642561	51.63405097
74	63.56612216	61.72571366	59.95871959	56.63168795	52.11292175
75	64.29821292	62.41364543	60.60518934	57.20266794	52.58705124
76	65.02726596	63.09815466	61.24790988	57.76939746	53.05648637
77	65.75329388	63.77925836	61.88690297	58.33190815	53.52127364
78	66.47630924	64.456973 .50	62.52219021	58.89023141	53.98145905
79	67.196324 .53	65.13131691	63.15379310	59.4443 9842	54.43708817
80	67.91335221	65.80230538	63.78173301	59.99444012	54.88820611
81	68.62740467	66.46995561	64.40603118	60.54038722	55.33485753
82	69.33849426	67.13428419	65.02670874	61.08227019	55.77708666
83	70.04663326	67.79530765	65.64 .378667	61.62011930	56.21493729
84	70.75183393	68.45304244	66.25728585	62.15396456	56.61845276
85	71.45410846	69.10750491	66.86722705	62.68383579	57.07767600
86	72.15346898	69.75871135	67.47363089	63.20976257	57.50264951
87	72.84992759	70.40667796	68.07651789	63.73177427	57.92341535
88	73.54349633	71.05142086	68.67590845	64.24990002	58.34001520
89	74.23418720	71.69295608	69.27182283	64.76416875	58.75249030
90	74.92201212	72.33129958	69.86428121	65.27460918	59.16088148
91	75.60698300	72.96646725	70.45330363	65.78124981	59.56522919
92	76.28911168	73.59847487	71.03891001	66.28411892	59.9655 7346
83	76.96840995	74.22733818	71.62112017	66.78324458	60.36195392
94	77.64488955	74.85307282	72.19995379	67.27865467	60.75440982
95	78.31856218	75.47569434	72.77543047	67.77037685	61.14298002
96		76.09521825	73.34756967		61.52770299
97	79.65753308	76.71165895	73.91639075	68.74286705	61.90861682
98	80.32285450	77.32503478	74.48191294	69.22368938	62.28575923
109	80.98541524	77.93535799	75.04415539	69.70093239	62.65916755
100	81.64522677	78.54264477	75.60313712	70.17462272	63.02887877

Table VI.-Present Value of Anndity of 1 per Period

$$
a_{n}=\frac{1-(1+i)^{-n}}{i}
$$

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1\%
101	82.30230049	79.14691021	76.15887702	70.64478682	63.39492947
102	82.95664777	79.74816937	76.71139392	71.11145094	63.75735591
103	83.60827991	80.34643718	77.26070648	71.57464113	64.11619397
104	84.25720818	80.94172854	77.80683331	72.03438325	64.47147918
105	84.90344381	81.53405825	78.34979288	72.49070298	64.82324671
106	85.54699795	82.12344104	78.88960355	72.94362579	65.17153140
107	86.18788175	82.70989158	79.42628359	73.39317696	65.51636772
108	86.82610628	83.29342446	79.95985115	73.83938160	65.85778983
109	87.46168258	83.87405419	80.49032428	74.28226461	66.19583151
110	88.09462163	84.45179522	81.01772093	74.72185073	06.53052625
111	88.72493437	85.02666191	81.54205895	75.15816450	66.86190718
112	89.35263171	85.59866856	82.0633 5606	75.59123027	67.19000710
113	89.97772450	86.167829 .42	82.58162991	76.02107223	67.51485852
114	90.60022354	86.73415862	83.09689803	76.44771437	67.83649358
115	91.22013959	87.29767027	83.60917785	76.87118052	68.15494414
116	91.83748338	87.85837838	84.11843671	77.29149431	68.47024172
117	92.45226558	88.41629690	84.62484182	77.70867922	68.78241755
118	93.064496881	88.97143970	85.12826033	78.12275853	60.09150252
119	93.67418767	89.52382059	85.62875926	78.53375536	69.39752725
120	94.28134869	90.07345333	86.12635554	78.94169267	69.70052203
121	94.88599036	00.62035157	86.62106602	79.34659322	70.00051686
122	95.48812315	91.16452892	87.11290742	79.74847962	70.29754145
123	96.78775747	91.70599893	87.60189638	80.14737432	70.59162520
124	96.68490367	92.24477505	88.08804946	80.54329957	70.88279722
125	97.27957209	92.78087070	88.57138308	80.93627749	71.17108636
126	97.87177301	93.31429920	89.05191361	81.32633001	71.45652115
127	98.46151606	93.84507384	89.52965731	81.71347892	71.73912985
128	99.04881324	94.37320780	90.00463032	82.09774583	72.01894045
129	99.63367290	94.89871422	90.47084873	82.47915219	72.29598064
130	100.21610576	95.42160619	90.94632851	82.85771929	72.57027786
131	100.79612189	95.94189671	91.41308554	83.23346828	72.84185927
132	101.37373131	96.45959872	91.87713561	83.60642013	73.11075175
133	101.94894401	96.9747 2509	92.33849442	83.97659566	73.37698193
134	102.52176994	97.48728565	92.79717758	84.34401554	73.64057617
135	103.09221899	97.99730214	93.25320060	84.70870029	73.90156056
136	103.66030104	98.50477825	93.70657892	85.07067026	74.15996095
137	104.22602590	99.00972960	94.15732787	85.42994567	74.41580293
138	104.78940335	99.51216875	94.60546270	85.78654657	74.66911181
139	105.35044314	100.01210821	95.05099857	86.14049288	74.91991268
140	105.90915496	100.50956041	95.49395056	86.49180434	75.16823038
141	106.46554847	101.00453772	95.93433364	86.84050059	75.41408948
142	107.01963330	101.49705246	96.37216272	87.18660108	75.85751434
143	107.57141902	101.98711688	96.80745261	87.53012514	75.89852905
144	108.12091517	102.47474316	97.24021804	87.87109195	76.13715747
145	108.66813126	102.95994344	97.67047364	88.20952055	76.37342324
146	109.21307674	103.44272979	98.09823397	88.54542982	76.60734974
147	109.75576103	103.02311422	98.52351350	88.8788	76.83896014
148	110.29619353	104.40110868	98.94632663	89.20976530	77.06827737
149	110.83438356	104.87672505	99.36668765	89.53822858	77.29532413
150	111.37034044	105:3499 7518	99.78461078	89.86424673	77.52012290

Table VI.-Present Valde of Annutty of 1 per Period

$$
a_{\bar{n}} \left\lvert\,=\frac{1-(1+i)^{-n}}{i}\right.
$$

n	$1 \frac{1}{8} \%$	$1 \frac{1}{4} \%$. $1 \frac{1}{2} \%$	1-8\%	2\%
1	0.98887515	0.98765432	0.98522167	0.98280098	0.98039216
2	1.96674923	1.96311538	1.95588342	1.94869875	1.94156094
3	2.93374460	2.92653371	2.91220042	2.8979. 8403	2.88388327
,	3.88998230	3.87805798	3.85438465	3.83094254	3.80772870
5	$4.8355 \cdot 8200$	4.81783504	4.78264497	4.74785508	4.71345951
8	5.77066205	5.74600992	5.69718717	5.64899762	5.60143089
7	6.69533948	6.66272585	6.59821396	6.53464139	6.47199107
8	7.60973002	7.56812429	7.48592508	7.40505297	7.32548144
9	8.51394810	8.46234498	8.36051732	8.26049432	8.16223671
10	9.40810690	9.34552591	9.22218455	9.10122291	8.98258501
11	10.29231832	10.21780337	10.07111779	9.92749181	9.78684805
12	11.16669302	11.07931197	10.90750521	10.73954969	10.57534122
13	12.03134044	11.93018466	11.73153222	11.53764097	11.34837375
15	12.88636880	12.77055275	12.54338150	12.32200587	12.10624877
15	13.73188509	13.60054592	13.34323301	13.09288046	12.84926350
16	14.56799514	14.42029227	14.13126405	13.85049677	13.57770931
17	15.39480360	15.22991829	14.90764931	14.59508282	14.29187188
18	16.21241395	16.02944893	15.67256089	15.32686272	14.99203125
19	17.02092850	16.81930759	16.42616837	16.04605673	15.67846201
20	17.82044845	17.59931613	17.16863879	16.75288130	16.35143334
21	18.61107387	18.36969495	17.90013673	17:4475 4919	17.01120916
22	19.39290371	19.13056291	18.62082437	18.13026948	17.65804820
23	20.16603580	19.88203744	19.33086145	18.80124764	18.29220412
24	20.93056693	20.62423451	20.03040537	19.46068565	18.91392560
25	21.68659276	21.35726865	20.71961120	20.10878196	19.52345647
26	22.43420792	22.08125299	21.39863172	20.74573166	20.12103576
27	23.17350598	22.79629925	22.06761746	21.37172644	20.70689780
28	23.90457946	23.50251778	22.72671671	21.98695474	21.28127236
29	24.62751986	24.20001756	23.37607558	22.59160171	21.84438466
30	25.34241766	24.88890623	24.01583801	23.18584934	22.39645555
31	26.04'93 6233	25.56929010	24.64614582	23.76987650	22.93770152
32	26.74844236	26.24127418	25.26713874	24.34385897	23.46833482
33	27.43974522	26.90496215	25.87895442	24.90796951	23.98856355
34	28.12335745	27.56045644	26.48172849	25.46237789	24.4985. 9172
35	28.79936460	28.20785822	27.07559458	26.00725100	24.99861933
36	29.46785127	28.84726737	27.66068431	26.54275283	25.48884248
37	30.12890114	29.47878259	28.23712740	27.06904455	25.96945341
38	30.78259692	30.10250133	28.80505163	27.58628457	26.44064060
39	31.42902044	30.71851983	29.36458288	28.09462857	26.90258883
40	32.06825260	31.32693316	29.91584520	28.59422955	27.35547924
41	32.79037340	31.92783522	30.45896079		$\dot{27.7994} 8945$
42	33.32546195	32.52131874	30.99405004	29.56780135	28.23479358
43	33.94359649	33.10747530	31.52123157	30.04206522	28.66156233
44	34.55485438	33.68639536	32.04062223	30.50817221	29.07996307
45	35.15931212	34.25816825	32.55233718	30.96626261	29.49015987
46	35.75704536	34.82288222	33.05648983	31.41647431	29.89231360
47	36.34812891	35.38062442	33.55319195	31.85894281	30.28658196
48	36.93263674	35.93148091	34.04255365	32.29380129	30.67311957
49	37.51064202	36.47553670	34.52468339	32.72118063	31.05207801
50	38.08221708	37.01287574	34.99968807	33.14120946	31.42360589

Table VI.-Present Value of Annuity of 1 fer Period

$$
a_{\vec{n}]}=\frac{1-(1+i)^{-n}}{i}
$$

\boldsymbol{n}	118\%	1 $\frac{1}{4} \%$	1 $\frac{1}{2} \%$	$1 \frac{3}{4} \%$	2\%
51	38.64743345	37.54358099	35.46767298	33.55401421	31.78784892
52	39.20636188 397590 7232	38.06773431	35.92874185	33.95971913	32.14494992
${ }_{54}^{53}$	39.7590 40.30563232 3394	38.5854 39.0967 0776	36.38299690 36.8305 3882	34.3584 34.7503 1579	32.49504894 32.83828327 83
55	40.84611514	39.60168667	37.27146681	35.13544550	33.1747 8752
56	41.38058358	40.10043128	37.70587863	35.51395135	33.50469365
${ }^{57}$	41.90910613	40.59301855	38.13387058	35.88594727	33.82813103
${ }_{59}^{58}$	42.4317 42.9485 746	41.0795 412460 2419	38.5555 38.9709 7292	36.2515 4523	34.14522650
60	43.45965633	42.03459179	39.38026889	$36.9639{ }^{8552}$	34.76088688
61	43.96504952	42.50330054	39.78351614	37.31104228	35.05969282
${ }_{62}^{62}$	44.46482029	42.96222275	40.18080408	37.65213000	35.35264002
${ }_{64}^{63}$	44.95903119 45.4477 4407	43.42342988 43.8749 9247	40.57222077		35.63984316
65	45.93102009	44.32098022	${ }_{41.3377} 8618^{-}$	38.64059678	36.1974 6555
66	46.40891975	44.76146195	41.71210461	38.95881748	36.46810348
67	46.88150284	45.19650563	42.08089125	39.27156509	36.73343478
${ }_{69}^{68}$	47.3488 478109 2852 5527	45.62617840	42.44422783,	39.57893375	36.99356351
${ }_{70}$	48.2679 4094	${ }_{46.4696} \mathbf{4 5 6 2}$	43.1548	30.1779 0267	37.49861929
71	48.71984270	46.88363024	43.50233678	40.46988321	37.74374441
73	49.16671714	47.29247431	43.84466677	40.75644542	37.98406314
73	49.60862016	47.69627093	44.18193771	41.03827560	38.21966975
${ }_{75}$	50.0456 50.47773259	48.0950 48.4889 7027	44.51422434	41.31525857	38.45065662
76	50.90505077	45.87799533	45.16413820	41.85501495	38.89913170
77	51.32761510	49.26221761	45.48190962	42.11795081	39.11679578
78	51.74547847	49.64169640	45.79498485	42.37636443	39.33019194
88	52.15869317	50.01649027	46.10343335	.42.6303 3359	39.53940388
80	52.56731092	50.38665706	46.40732349	42.87993474	39.74451359
81	52.97138286	50.75225389	46.70672265	43.12524298	39.94560156
82 83	53.37095957 53.7660 9104	51.1133 51.4699	${ }_{4}^{47.0016} 9720$	${ }_{43}^{43.36033} 32178$	40.14274663
84	54.1568 2674	51.8221 8532	$\stackrel{4}{47.5786} \mathbf{3 3 0 1}$	${ }_{43.8361} 4237$	40.52551579
85	54.54321557	52.17005958	47.86072218	44.06500479	40.71128999
86	54.92530588	52.51363909	48.13864254	44.28993099	40.89342156
87	55.30314549	52.85297688	48.41245571	44.51098869	41.07198192
88	55.67678169	53.18812531	48.68222237	44.72824441	41.24704110
${ }_{80}^{89}$	56.04626126 56.41163041	53.5191 53.8460 6035	48.9480 49.2098 1545	44.9417 45.15161037	41.41866764 41.5869 1016
91	56.77293490	54.16894850	49.46783696	45.35784803	41.75189133
92	57.13021992	54.48785037	49.72200686	45.56053860	41.91361895
93	57.48353021	54.80281518	49.97242055	45.75974310	42.07217545
94	57.83290997	55.11389154	50.21913355	45.95552147	42.22762299
95	58.17840294	55.42112744	50.46220054	46.14793265	42.38002254
	58.52005235	55.72457031	50.70167541	46.33703455	42.52943386
97	58.85790096	56.02426698	50.93761124	46.52288408	42.67591555
98	59.19199106 59.52236446	56.32026368 56.6126 0610	51.17006034 51.3990 7422	46.705537188	42.8195 42.9603 1867
100	59.84906251	56.90133936	51.62470367	47.06147304	43.09835164

Table VI.-Pregent Value of Annoity of 1 per Period

$$
a_{n} \left\lvert\,=\frac{1-(1+i)^{-n}}{i}\right.
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$8 \frac{1}{2} \%$
1	0.97799511	0.97560976	0.97323601	0.97087379	0.96618357
2	1.93446955	1.92742415	1.92042434	1.91346970	1.89939428
3	2.86989687	2.85602356	2.84226213	2.82861135	2.80163698
4	3.78474021	3.76197421	3.73942787	3.71709840	3.67307921
5	4.67945253	4.64582850	4.61258186	4.57970719	4.51505238
6	5.55447680	5.50812536	5.46236678	5.41719144	5.32855302
7	6.41024626	6.34939060	6.28940806	6.23028296	6.11454398
8	7.24718461	7.17013717	7.09431441	7.01969219	6.87395554
${ }^{9}$	8.06570622	7.97086553	7.87767826	7.78610892	7.60768651
10	8.86621635	8.75206393	8.64007616	8.53020284	8.31660532
11	9.64911134	9.51420871	9.38206926	9.25262411	9.00155104
12	10.41477882	10.25776460	10.10420366	9.95400399	9.66333433
13	11.16359787	10.98318497	10.80701086	16.63495533	10.30273849
14	11.89593924	11.69091217	11.49100814	11.29607314	10.92052028
15	12.61216551	12.38137773	12.15669892	11.93793509	11.51741090
16	13.31263131	13.05500266	12.80457315	12.56110203	12.09411681
17	13.99768343	13.71219772	13.43510769	13.16611847	12.65132059
18	14.66766106	14.35336363	14.04876661	13.75351308	13.18968173
19	15.32289590	14.97889134	14.64600157	14.32379911	13.70983742
20	15.96371237	15.58916229	15.22725213	14.87747486	14.21240330
21	16.59042775	16.18454857	15.79294612	15.41502414	14.69797420
22	17.20335232	16.76541324	16.34349987	15.93691664	15.16712484
23	17.80278955	17.33211048	16.87931861	16.44360839	15.62041047
24	18.38003624	17.88498583	17.40079670	16.93554212	16.05836760
25	18.96238263	18.42437642	17.90831795	17.41314769	16.48151459
26	19.52311260	18.95061114	18.40225592	17.87684242	16.89035226
27	20.07150376	19.46401087	18.88297413	18.32703147	17.28536451
28	20.60782764	19.96488866	19.35082640	18.76410823	17.66701885
29	21.13234977	20.45354991	19.80615708	19.18845459	18.03576700
30	21.64532985	20.93029259	20.24930130	19.60044135	18.39204541
31	22.14702186	21.39540741	20.68058520	20.00042849	18.73627576
32	22.63767419	21.84917796	21.10032623	20.38876553	19.06886547
33	23.11752977	22.29188094	21.50883332	20.76579178	19.39020818
34	23.58682618	22.72378628	21.90640712	21.13183608	19.70068423
35	24.04579577	23.14515734	22.29334026	21.48722007	20.00066110
36	24.49466579	23.55625107	22.66991753	21.83225250	20.29049381
37	24.93365848	23.95731812	23.03641609	22.16723544	20.57052542
38	25.36299118	24.34860304	23.39310568	22.49246159	20.84108736
39	25.78287646	24.73034443	23.74024884	22.80821513	21.10249987
40	26.19352221	25.10277505	24.07810106	23.11477197	21.35507234
41	26.59513174	25.46612200	24.4069, 1101	23.41239997	21.59910371
42	26.98790390	$25.8206 \cdot 0683$	24.7269×2069	23.70135920	21.83488281
43	27.37203316	26.16644569	25.03836563	23.98190213	22.06268870
44	27.74770969	26.50384945	25.34147507	24.25427392	22.28279102
45	28.11511950	26.83302386	25.63647209	24.51871254	22.49545026
46	28.47444450	27.15416962	25.92357381	24.77544907	22.70091813
47	28.82586259	27.46748255	26.20299154	25.02470783	22.89943780
48	29.16954777	27.77315371	26.47493094	25.26670664	23.09124425
48	29.50567019	28.07136947	26.73959215	25.50165693	23.27656450
50	29.83439627	28.36231168	26.99716998	25.72976401	23.45561757

Table VI.-Present Value of Annuity of 1 per Period

$$
a_{\bar{n} \mid}=\frac{1-(1+i)^{-n}}{i}
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{2}{2} \%$
51	30.15588877	28.64615774	27.24785400	25.95122719	23.62861630
52	30.47030687	28.92308072	27.49182871	26.16623999	23.79576454
53	30.77780623	29.19324948	27.72927368	26.37499028	23.95726043
54	31.07853910	29.45682876	27.96036368	26.57766047	24.11329510
55	31.37265438	29.71397928	28.18526879	26.77442764	24.26405323
56	31.66029768	29.96485784	28.40415454	26.96546373	24.40971327
67	31.94161142	30.20961740	28.61718203	27.15093566	24.55044760
58	32.21673489	30.44840722	28.82450806	27.33100549	24.68642281
59	32.48580429	30.68137290	29.02628522	27.50583058	24.81779981
60	32.74895285	30.90865649	29.22266201	27.67556367	24.94473412
61	33.00631086	31.13039657	29.41378298	27.84035307	25.06737596
62	33.25800573	31.34672836	29.59978879	28.00034279	25.18587049
63	33.50416208	31.55778377	29.78081634	28.15567261	25.30035796
64	33.74490179	31.76369148	29.95699887	28.30647826	25.41097388
65	33.98034405	31.9645 7705	30.12846605	28.45289152	25.51784916
66	34.21060543	32.16056298	$30.29534409{ }^{\circ}$	28.59504031	25.62111030
67	34.43579993	32.35176876	30.45775581	28.73304884	25.7208 .7951
68	34.65603905	32.53831099.	30.61582074	28.86703771	25.81727489
69	34.87143183	32.720303 .10	30.76965522	28.99712399	25.91041052
70	35.08208192	32.89785698	30.91937247	29.12342135	26.00039664
71	35.28810261	33.07107998	31.06508270	29.24604015	26.08733975
72	35.48958691	33.24007803	31.20689314	29.36508752	26.17134275
73	35.9866 3756	33.40495417	31.34490816	29.48066750	26.25250508
74	35.87935214	33.56580895	31.47922936	29.59288106	26.33092278
75	36.06782605	33.72274044	31.60995558	29.70182628	26.40668868
76	36.25215262	33.87584433	31.73718 .304	29.80759833	26.47989244
77	36.43242310	34.02521398	31.86100540	29.91028964	26.55062072
78	36.60872675	34.17094047	31.98151377	30.00998994	26.61895721
79	36.78115085	34.31311265	3.2 .09879685	30.10678635	26.68498281
80	36.94978079	34.45181722	32.21294098	30.20076345	26.74877567
81	37.11470004	34.58713875	32.32403015	30.29200335	26.81041127
82	37.27599026	34.71915976	32.43214613	30.38058577	26.86996258
83	37.43373130	34.84796074	32.537368 .50	30.46658813	26.92750008
84	37.58800127	34.97362023	32.6397 7469	30.55008556	26.98309186
85	37.73887655	35.09621486	32.73944009	30.63115103	27.03680373
86	37.88643183	35.21581938	32.83643804	30.70985537	27.08869926
87	38.03074018	35.33250671	32.93083994	30.78626735	27.13883986
88	38.17187304	35.44634801	33.02271527	30.86045374	27.18728489
89	38.30990028	35.55741269	33.11213165	30.93247936	27.23409168
90	38.44489025	35.66576848	33.19915489	31.00240714	27.27931564
91	38.57690978	35.77148144	33.28384905	31.07029820	27.32301028
92	38.70602423	35.87461604	33.36627644	31.13621184	27.36522732
03	38.8322 9754	35.97523516	33.446. 9776	31.20020 .567	27.40601673
94	38.95579221	36.07340016	33.52457202	31.26233560	27.4454 2688
95	39.07656040	36.16917089	33.60055671	31.32265592	27.48350415
96	39.19468890	36.26260574	33.67450775	31.38121934	27.52029387
97	39.31020920	36.35376170	33.74647956	31.43807703	27.55583948
98	39.42318748	36.44269434	33.81652512	31.49327867	27.59018308
89	39.53367968	36.52945790	33.88469598	31.54687250	27.62336529
100	39.64174052	36.61410526	33.95104232	31.59890534	27.65542540

Table VI.-Present Value of Annuity of 1 per Period

$$
a_{n \mid}=\frac{1-(1+i)^{-n}}{i}
$$

7	4\%	$4 \frac{1}{2} \%$	5\%	$5 \frac{1}{2} \%$	6\%
1	0.96153846	0.95693780	0.95238095	0.94786730	0.94339623
3	1.88609467	1.87268775	1.85941043	1.84631971	1.83339267
3	2.77509103	2.74896435	2.72324803	2.69793338	2.67301195
4	3.62989522	3.58752570	3.54595050	3.50515012	3.46510561
5	4.45182233	4.38997674	4.32947667	4.27028448	4.21236379
6	5.24213686	5.15787248	5.07569206	4.90553031	4.91732433
7	6.00205467	5.89270094	5.78637340	5.68296712	5.58238144
8	6.73274487	6.59588607	6.46321276	6.33456599	6.20979381
${ }^{9}$	7.43533161	7.26879050	7.10782168	6.95219525	6.80169227
10	8.11089578	7.91271818	7.72173493	7.53762583	7.36008705
11	8.76047671	8.52891692	8.30641422	8.09253633	7.88687458
12	9.38507376	9.11858078	8.86325164	8.61851785	8.38384394
13	9.98564785	9.68285242	9.39357299	0.11707853	8.85268296
14	10.56312293	10.22282528	9.89864094	9.58964790	9.29498393
15	11.11838743	10.73954573	10.37965804	10.03758094	9.71224899
16	11.65229561	11.23401505	10.83776956	10.46216203	10.10589527
17	12.16566885	11.70719143	11.27406625	10.86460856	10.47725969
18	12.65929697	12.15999180	11.68958690	11.24607447	10.82760348
19	13.13393940	12.59329359	12.08532086	11.60765352	11.15811649
20	13.59032634	13.00793645	12.46221034	11.95038249	11.46992122
21	14.02915995	13.40472388	12.82115271	12.27524406	11.76407662
22	14.45111533	13.78442476	13.16300258	12.58316973	12.04158172
23	14.85684167	14.14777489	13.48857388	12.87504240	12.30337898
24	15.24696314	14.49547837	13.79864179	13.15169895	12.55035753
25	15.62207994	14.82820896	14.09394457	13.41393266	12.78335616
26	15.98276918	15.14661145	14.37518530	13.66249541	13.00316619
27	16.32958575	15.45130282	14.64303362	13.89809991	13.21053414
28	16.66306322	15.74287351	14.89812726	14.12142172	13.40616428
29	16.98371463	16.02188853	15.14107358	14.33310116	13.59072102
30	17.29203330	16.28888854	15.37245103	14.53374517	13.76483115
31	17.58849356	16.54439095	15.59281050	14.72392907	13.92908599
32	17.873551 .50	16.78889086	15.80267667	14.90419817	14.08404339
33	18.14764567	17.02286207	16.00254921	1507506936	14.23022961
34	18.41119776	17.24675796	16.19290401	15.23703257	14.36814114
35	18.66461323	17.46101240	16.37419429	15.39055220	14.49824636
36	18.90828195	17.66604058	16.54685171	15.53606843	14.62098713
37	19.14257880	17.86223979	16.71128734	15.67399851	14.73678031
38	19.36786423	18.04999023	16.86789271	15.80473793	14.84601916
39	19.58448484	18.22965572	17.01704067	15.92866154	14.94907468
40	19.79277388	18.40158442	17.15908635	16.04612469	15.04629687
41	19.99305181	18.56610949	17.29436796	16.15746416	15.13801592
42	20.18562674	18.72354975	17.42320758	16.26299920	15.22454332
43	20.37079494	18.87421029	17.54591198	16.36303242	15.30617294
44	20.54884129	19.01838305	17.66277331	16.45785063	15.38318202
45	20.72003970	19.15634742	17.77406982	16.54772572	15.45583209
46	20.88465356	19.28837074	17.88006650	16.63291537	15.52436990
47	21.04293612	19.41470884	17.98101571	16.71366386	15.58902821
48	21.19513088	19.53560654	18.07715782	16.79020271	15.65002661
48	21.34147200	19.65129813	18.16872173	16.86275139	15.70757227
80	21.48218462	19.76200778	18.25592546	16.93151790	15.76186064

Table VI.-Prebent Value of Annuity of 1 per Period

$$
a_{n} \left\lvert\,=\frac{1-(1+i)^{-n}}{i}\right.
$$

\boldsymbol{n}	4%	$4 \frac{1}{2} \%$	6\%	$5 \frac{1}{2} \%$	6%
51	21.61748521	19.86795003	18.33897663	16.99669943	15.81307607
52	21.74758193	19.96933017	18.41807298	17.05848287	15.86139252
63	21.87267493	20.06634466	18.49340284	1711704538	15.90697408
54	21.99295667	20.15918149	18.56514556	1717255486	15.94997554
55	22.10861218	20.24802057	18.63347196	1722517048	15.99054297
56	22.21891940	20.33303404	18.69854473	17.27504311	16.02881412
57	22.32674943	20.41438664	18.76051879	17.32231575	16.06491898
58	22.42956676	20.49223602	18.81954170	17.36712393	16.09898017
59	22.52842957	20.56673303	18.87575400	1740959614	16.13111337
60	22.62348997	20.63802204	18.92928952	1744985416	16.16142771
61	22.71489421	20.70624118	18.98027574	1748801343	16.19002614
62	22.80278289	20.77152266	19.02883404	17.52418334	16.21700579
63	22.88729124	20.83399298	19.07508003	17.55846762	16.24245829
64	22.96854927	20.89377319	19.11912384	17.59096457	16.26647009
65	23.04668199	20.95097913	1916107033	1762176737	16.28912272
66	23.12180961	21.00572165	19.20101936	17.65096433	16.31049314
67	23.19404770	21.05810684	19.23906606	17.67863917	16.33065390
68	23.26350740	2110823621	19.27530101	1770487125	16.34967349
69	23.33029558	21.15620690	19.30981048	1772973579	16.36761650
70	23.39451498	21.20211187	19.34267665	1775330406	16.38454387
71	23.45626440	21.24604007	19.37397776	1777564366	16.40051308
72	23.51563885	21.28807662	19.40378834	1779681864	16.41557838
73	23.57272966	21.32830298	19.43217937	17.81688970	16.42979093
74	23.62762468	21.36679711	19.45921845	17.83591441	16.44319899
75	23.68040834	21.40363360	19.48496995	1785394731	16.45584810
76	23.73116187	21.43888383	19.50949519	1787104010	16.46778123
77	23.77996333	21.47261611	19.53285257	17.88724180	16.47903889
78	23.82688782	21.50489579	19.55509768	17.90259887	16.48965933
79	23.87200752	21.535785 .45	19.57628351	17.91715532	16.49967862
80	23.91539185	21.56534493	19.59646048	1793095291	16.50913077
81	23.95710754	21.593631 .51	19.61567665	17.94403120	16.51804790
82	23.99721879	21.62070001	19.63397776	1795842768	16.52646028
83	24.03578730	21.64660288	19.65140739	1796817789	16.53439649
84	24.07287240	21.67139032	19.66800704	17.97931554	16.54188348
85	24.10853116	21.69511035	19.68381623	1798987255	16.54894668
86	24.14281842	21.71780895	19.69887260	17.99987919	16.55561008
87	24.17578694	21.73953009	19.71321200	18.00936416	16.56189630
88	24.20748745	21.76031588	19.72686857	18.01835466	16.56782670
89	24.2379 6870	21.78020658	19.73987483	18.02687645	16.57342141
90	24.26727759	21.79924075	19.75226174	18.03495398	16.57869944
	24.29545023	21.81745526	19.76405880	18.04261041	16.58367872
92	24.32255695	21.83488542	19.77529410	18.04986769	16.58837615
93	24.34861245	21.85156499	19.78599438	18.05674662	16.59280769
94	24.37366582	21.86752631	19.79618512	18.06326694	16.59698839
95	24.39775559	21.88280030	19.80589059	18.06944734	16.60093244
96	24.42091884	21.89741655	19.81513390	18.07530553	16.60465325
97	24.44319119	21.91140340	19.82393705	18.08085833	16.60818344
98	24.46460692	21.92478794	19.83232100	18.08612164	16.61147494
99	24.48519896	21.93759612	19.84030571	18.09111055	16.61459900
100	24.50499900	21.94985274	19.84791020	18.09583939	16.61754623

Table VI.-Present Valde of Annutty of 1 per Period

$$
a_{n} \left\lvert\,=\frac{1-(1+i)^{-n}}{i}\right.
$$

\boldsymbol{n}	$6 \frac{1}{2} \%$	7%	$7 \frac{1}{2} \%$	8\%	$8 \frac{1}{2} \%$
1	0.93896714	0.93457944	0.93023256	0.92592593	0.92165899
2	1.82062642	1.80801817	1.79556517	1.78326475	1.77111427
3	2.64847551	2.62431604	2.60052574	2.57709699	2.55402237
4	3.42579860	3.38721126	3.34932627	3.31212684	3.27559666
5	4.15567944	4.10019744	4.04588490	3.99271004	3.94064208
6	4.84101356	4.76653966	4.69384642	4.62287966	4.55358717
7	5.48451977	5.389289 .40	5.29660132	5.20637006	5.11851352
8	6.08875096	5.97129851	5.85730355	5.74663894	5.63918297
9	6.65610419	6.51523225	6.37888703	6.24688791	6.11906264
10	718883022	7.02358154	6.86408098	6.71008140	6.56134806
11	7.68904246	7.49867434	7.31542415	7.13896426	6.96898439
12	8.15872532	7.94268630	7.73527827	7.53607802	7.34468607
13	8.59974208	8.35765074	8.12584026	7.90377594	7.69095490
14	9.01384233	8.74546799	8.48915373	8.24423698	8.01009668
15	9.40266885	9.10791401	8.82711974	8.55947869	8.30423658
16	9.76776418	9.44664860	9.14150674	8.85136916	8.57533325
17	10.11057670	9.76322299	9.43395976	9.12163811	8.82519194
18	10.43246638	10.05908691	9.70600908	9.37188714	9.05547644
19	10.73471022	10.33559524	9.95907821	9.60359920	9.26772022
20	11.01850725	10.59401425	10.19440136	9.81814741	9.46333661
21	11.28498333	10.83552733	10.41348033	10.01680316	9.64362821
22	11.53519562	11.06124050	10.61719101	10.20074366	9.80979559
23	11.77013673	11.27218738	10.80668931	10.37105895	9.96294524
24	11.99073871	11.46933400	10.08296680	10.52875828	10.10409700
25	12.19787672	11.65358318	11.14694586	10.67477619	10.23419078
26	12.39237251	11.82577867	11.29348452	10.80997795	10.35409288
27	12.57499766	11.98670904	11.44138095	10.93516477	10.45460174
28	12.74647668	12.13711125	11.57337763	11.05107849	10.56645321
29	12.90748984	12.27767407	11.69616524	11.15840601	10.66032554
30	13.05867591	12.40904118	11.81038627	11.25778334	10.74684382
31	13.20063465	12.53181419	11.91663839	11.34979939	10.82658416
32	13.33392925	$12.6465 \quad 5532$	12.01547757	11.43499944	10.90007757
33	13.45908850	12.75379002	12.10742099	11.51388837	10.96781343
34	13.57660892	12.85400936	12.19294976	11.58693367	11.03024279
35	13.68695673	12.94767230	12.27251141	11.65456822	11.08778137
36	13.79056970	13.03520776	12.34652224	11.71719279	11.14081233
37	13.88785887	13.11701660	12.41536953	11.77517851	11.18968878
38	13.97921021	13.19347345	12.47941351	11.82886899	11.23473620
39	14.06498611	13.26492846	12.53898931	11.87858240	11.27625457
40	14.14552687	13.33170884	12.59440866	11.92461333	11.31452034
41	14.22115199	13.39412041	12.64596155	11.96723457	11.34978833
42	14.29216149	13.45244898	12.69391772	12.00669867	11.38229339
43	14.35883708	13.50696167	12.78852811	12.04323951	11.41225197
44	14.42144327	13.55790810	12.78002615	12.07707362	11.43986357
45	14.48022842	13.60552159	12.81862898	12.10840150	11.46531205
46	14.53542575	13.65002018	12.85453858	12.13740880	11.48876686
47	14.58725422	13.69160764	12.88794287	12.16426741	11.51038420
48	14.63591946	13.73047443	12.91901662	12.18913649	11.53030802
49	14.68161451	13.76679853	12.94792244	12.21216341	11.54867099
50	14.72452067	13.80074629	12.97481157	12.23348464	11.56559538

Table VII.-Periodical Payment of Annutity Whose Present Value is 1

$$
\frac{1}{a_{\bar{n} \mid}}=\frac{1}{s_{\bar{n} \mid}}+i
$$

\boldsymbol{R}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{4} \%$	1\%
1	1.00416667	1.00500000	1.00583333	1.00750000	1.01000000
2	0.50312717	0.50375312	0.50437924	0.50563200	0.50751244
3	0.33611496	0.33667221	0.33722976	0.33834579	0.34002211
4	0.25260958	0.25313279	0.25365644	0.25470501	0.25628109
5	0.20250693	0.20300997	0.20351357	0.20452242	0.20603980
6	0.16910564	0.16959546	0.17008594	0.17106891	0.17254837
7	0.14524800	0.14572854	0.14620986	0.14717488	0.14862828
8	0.12735512	0.12782886	0.12830351	0.12925552	0.13069029
${ }^{9}$	0.11343876	0.11390736	0.11437698	0.11531929	0.11674037
10	0.10230596	0.10277057	0.10323632	0.10417123	0.10558208
11	0.09319757	0.09365903	0.09412175	0.09505034	0.09645408
12	0.08560748	0.08606643	0.08652675	0.08745148	0.08884879
13	0.07918532	0.07964224	0.08010064	0.08102188	0.08241482
14	0.07368082	0.07413609	0.07459295	0.07551146	0.07690117
15	0.06891045	0.06936436	0.06981999	0.07073639	0.07212378
16	0.06473655	0.06518937	0.06504401	0.06655879	0.06794460
17	0.06105387	0.06150579	0.06195966	0.06287321	0.06425806
18	0.05778053	0.05823173	0.05868499	0.05959766	0.06098205
19	0.05485191	0.05530253	0.05575532	0.05666740	0.05805175
20	0.05221630	0.05266645	0.05311889	0.05403063	0,05541532
21	0.04983183	0.05028163	0.05073383	0.05164543	0.05303075
22	0.04766427	0.04811380	0.04856585	0.04947748	0.05086371
23	0.04568531	0.04613465	0.04658663	0.04749846	0.04888584
24	0.04387139	0.04432061	0.04477258	0.04568474	0.04707347
25	0.04220270	0.04265186	0.04310388	0.04401650	0.04540675
26	0.04066247	0.04111163	0.04156376	0.04247693	0.04386888
27	0.03923645	0.03968565	0.040137 .93	0.04105176	0.04244553
28	0.03791239	0.03836167	0.03881415	0.03972871	0.04112444
29	0.03667974	0.03712914	0.03758186	0.03849723	0.03989502
30	0.03552936	0.03597892	0.03643191	0.03734816	0.03874811
31	0.03445330	0.03490304	0.03535633	0.03627352	0.03767573
32	0.03344458	0.03389453	0.03434815	0.03526634	0.03667089
33	0.03249708	0.03294727	0.03340124	0.03432048	0.03572744
34	0.03160540	0.03205586	0.03251020	0.03343053	0.03483997
35	0.03076476	0.03121550	0.03167024	0.03259170	0.03400368
36	0.02997090	0.03042194	0.03087710	0.03179973	0.03321431
37	0.02922003	0.02967139	0.03012698	0.03105082	0.03246805
38	0.02850875	0.02896045	0.02941649	0.03034157	0.03176150
39	0.02783402	0.02828607	0.02874258	0.02966893	0.03109160
40	0.02719310	0.02764552	0.02810251	0.02903016	0.03045560
41	0.0263 .8352	0.02703631	0.02749379	0.02842276	0.02985102
42	0.0280 .0303	0.02645622	0.02691420	0.02784452	0.02927563
43	0.02544961	0.02590320	0.02636170	0.02729338	0.02872737
44	0.02492141	0.02537541	0.02583443	0.02676751	0.02820441
45	0.02441675	0.02487117	0.02533073	0.02626521	0.02770505
46	0.02393409	0.02438894	0.02484905	0.02578495	0.02722775
47	0.02347204	0.02392733	0.02438798	0.02532532	0.02677111
48	0.02302929	0.02348503	0.02394624	0.02488 .504	0.02633384
49	0.02260468	0.02306087	0.02352265	0.02446292	0.02591474
50	0.022197 .11	0.02265376.	0.02311611	0.02405787	0.02551273

Table VII.-Periodical Payment of Annuity Whosts Present Value is 1

$$
\frac{1}{a_{\bar{n}} \mid}=\frac{1}{s_{n} \mid}+i
$$

\boldsymbol{n}	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1%
51	0.02180557	0.02226269	0.02272563	0.02366888	0.02512680
52	0.02142916	0.02188675	0.02235027	0.02329503	0.02475603
53	0.02106700	0.02152507	0.02198919	0.02293546	0.02439956
54	0.02071830	0.02117686	0.02164157	0.02258938	0.02405658
55	0.02038234	0.02084139	0.02130671	0.02225605	0.02372037
56	0.02005843	0.02051797	0.02098390	0.02193478	0.02340823
57	0.01974593	0.02020598	0.02067251	0.02162496	0.02310156
58	0.01944426	0.01990481	0.02037196	0.02132597	0.02280573
59	0.01915287	0.01961392	0.02008170	0.02103727	0.02252020
60	0.01887123	0.01933280	0.01980120	0.02075836	0.02224445
61	0.01859888	0.01906096	0.01952999	0.02048873	0.02197800
62	0.01833536	0.01879796	0.01926762	0.02022795	0.02172041
63	0.01808025	0.01854337	0.01901366	0.01997560	0.02147125
64	0.01783315	0.01829681	0.01876773	0.01973127	0.02123013
65	0.01759371	0.01805789	0.01852946	0.01949460	0.02099667
66	0.01736156	0.01782627	0.01829848	0.01926524	0.02077052
67	0.01713639	0.01760163	0.01807449	0.01904286	0.02055136
68	0.01691788	0.01738366	0.01785716	0.01882716	0.02033888
69	0.01670574	0.01717206	0.01764622	0.01861785	0.02013280
70	0.01649971	0.01696657	0.01744138	0.01841464	0.01993282
71	0.01629952	0.01676693	0.01724239	0.01821728	0.01973870
72	0.01610493	0.01657289	0.01704001	0.01802554	0.01955019
73	0.01591572	0.01638422	0.01686100	0.01783917	0.01936706
74	0.01573165	0.01620070	0.01667814	0.01765796	0.01918910
75	0.01555253	0.01602214	0.01650024	0.01748170	0.01901609
76	0.01537816	0.01584832	0.01632709	0.01731020	0.01884784
77	0.01520836	0.01567908	0.01615851	0.01714328	0.01868416
78	0.01504295	0.01551423	0.01599432	0.01698074	0.01852488
79	0.01488177	0.01535360	0.01583436	0.01682244	0.01836984
80	0.01472464	0.01519704	0.01567847	0.01666821	0.01821885
81	0.01457144	0.01504439	0.01552650	0.01651790	0.01807180
82	0.01442200	0.01489552	0.01537830	0.01637136	0.01792851
83	0.01427620	0.01475028	0.01523373	0.01622847	0.01778886
84	0.01413391	0.01460855	0.01509268	0.01608908	0.01765273
85	0.01399500	0.01447021	0.01495501	0.01595308	0.01751998
	0.01385935	0.01433513	0.01482060	0.01582034	0.01733050
87	0.01372685	0.01420320	0.01468935	0.01569076	0.01726417
88	0.01359740	0.01407431	0.01456115	0.01556423	0.01714089
89	0.01347088	0.01394837	0.01443588	0.01544064	0.01702056
90	0.01334721	0.01382527	0.01431347	0.01531989	0.01690306
91	0.01322629	0.01370493	0.01419380	0.01520190	0.01678832
92	0.01310803	0.01358724	0.01407679	0.01508657	0.01667624
93	0.01299234	0.01347213	0.01396236	0.01497382	0.01656673
98	0.01287915	0.01335950	0.01385042	0.01486356	0.01645971
95	0.01276837	0.01324930	0.01374090	0.01475571	0.01635511
96	0.01265992	0.01314143	0.01363372	0.01465020	0.01625284
97	0.01255374	0.01303583	0.01352880	0.01454696	0.01615284
98	0.01244976	0.01293242	0.01342608	0.01444592	0.01605503
-	0.01234790	0.01283115	0.01332549	0.01434701	0.01595936
100	0.01224811	0.01273194	0.01322696	0.01425017	0.01586574

Table VII.-Periodical Payment of Annuty Whose Present Value is 1

$$
\frac{1}{a_{\bar{n} \mid}}=\frac{1}{s_{\bar{n}} \mid}+i
$$

$\boldsymbol{7}$	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1%
101	0.01215033	0.01263473	0.01313045	0.01415533	0.01577413
102	0.01205449	0.01253947	0.01303587	0.01406243	0.01568446
103	0.01196054	0.01244611	0.01294319	0.01397143	0.01559668
104	0.01186842	0.01235457	0.01285234	0.01388226	0.01551073
-105	0.01177809	0.01226481	0.01276238	0.01379487	0.01542656
106	0.01168948	0.0121 7679	0.01267594	0.01370922	0.01534412
107	0.01160256	0.01209045	0.01259029	0.01362524	0.01526336
108	0.01151727	0.01200575	0.01250828	0.01354291	0.01518423
109	0.01143358	0.01192264	0.01242385	0.01346217	0.01510669
110	0.01135143	0.01184107	0.01234298	0.01338296	0.01503069
111	0.01127079	0.01176102	0.01226361	0.01330527	0.01495620
112	0.01119161	0.01168242	0.01218571	0.01322905	0.01488317
113	0.01111386	0.01160526	0.01210923	0.01315425	0.01481156
114	0.01103750	0.01152948	0.01203414	0.01308084	0.01474133
115	0.01096249	0.01145506	0.01196041	0.01300878	0.01467245
116	0.01088880	0.01138195	0.01188799	0.01293803	0.01460488
117	0.01081639	0.01131013	0.01181686	0.01286857	0.01453860
118	0.01074524	0.01123956	0.01174698	0.01280037	0.01447358
119	0.01067530	0.01117021	0.01167832	0.01273338	0.01440973
120	0.01060655	0.01110205	0.01161085	0.01266758	0.01434708
121	0.01053896	0.01103505	0.01154454	0.01260294	0.01428561
122	0.01047251	0.01096918	0.01147938	0.01253942	0.01422525
123	0.01040715	0.01090441	0.01141528	0.01247702	0.01416599
124	0.01034288	0.01084072	0.01135228	0.01241568	0.01410780
$\mathbf{1 2 5}$	0.01027965	0.01077808	0.01129033	0.01235540	0.01405065
126	0.01021745	0.01071647	0.01122340	0.01229614	0.01399452
127	0.01015625	0.01065586	0.01116948	0.01223788	0.01393939
128	0.01009603	0.01059623	0.01111054	0.01218060	0.01388524
129	0.01003677	0.01053755	0.01105255	0.01212428	0.01383203
130	0.00997844	0.01047981	0.01099550	0.01206888	0.01377975
131	0.00992102	0.01042298	0.01093935	0.01201440	0.01372837
132	0.00986449	0.01036704	0.01088410	0.01196080	0.01367788
133	0.00980883	0.01031197	0.01082972	0.01190808	0.01362825
134	0.00975403	0.01025775	0.01077619	0.01185621	0.01357947
135	0.00970005	0.01020436	0.01072349	0.01180516	0.01353151
136	0.00964689	0.01015179	0.01067161	0.01175493	0.01348437
137	0.00959453	0.01010002	0.01062052	0.01170550	0.01343801
138	0.00954295	0.01004902	0.01057021	0.01165684	0.01338242
139	0.00949213	0.00999879	0.01052067	0.01160894	0.01334759
140	0.00944205	0.00994930	0.01047187	0.01156179	0.01330349
141		0.00990055	0.01042380		0.01326012
142	0.00934408	0.00985250	0.01037644	0.01146965	0.01321746
143	0.00929615	0.00980616	0.01032978	0.01142464	0.01317549
144	0.00924890	0.00975850	0.01028381	0.01138031	0.01313419
145	0.00920233	0.00971252	0.01023851	0.01133664	0.01309356
146	0.00915641	0.00966719	0.01019386	0.01129364	0.01305358
147	0.00911114	0.00962250	0.01014986	0.01125127	0.01301423
148	0.00906650	0.00957844	0.01010649	0.01120953	0.01297551
149	0.00902247	0.00953500	0.01006373	0.01116841	0.01293739
150	0.00897905	0.00949217	0.01002159	0.01112790	0.01289988

Table VII.-Periodical Payment of Annuity Whose Present Value is 1

$$
\frac{1}{a_{\bar{n} \mid}}=\frac{1}{s_{\bar{n} \mid}}+i
$$

\boldsymbol{n}	$1 \frac{1}{8} \%$	1 $\frac{1}{4} \%$	$1 \frac{1}{2} \%$	$1 \frac{3}{4} \%$	2\%
1	1.01125000	1.01250000	1.01500000	1.01750000	1.02000000
2	0.50845323	0.50939441	0.51127792	0.51316295	0.51504950
3	0.34086130	0.34170117	0.34338296	0.34506746	0.34675467
$\frac{4}{6}$	0.2570 0.2068 0034	0.25786102 0.20756211	0.25944478 0.20908932	0.26103237 0.21062142	0.2626 0.2121585
6	0.17329034	0.17403381	0.17552521	0.17702258	0.17852581
7	0.14935762	0.15008872	0.15155616	0.15303059	0.15451196
8	0.13141071	0.13213314	0.13358402	0.13504292	0.13650080
9	0.11745432	0.11817055	0.11960982	0.12105813	0.12251544
10	0.10629131	0.10700307	0.10343418	0.10987534	0.11132653
11	0.09715984	0.09786839	0.09929384	0.10073038	0.10217794
12	0.08955203	0.09025831	0.09167999	0.09311377	0.09455960
13	0.08311628	0.08382100	0.08524036	0.08667283	0.08811835
14	0.07760138	0.07830515	0.07972332	0.08115562	0.08260197
15	0.07282321	0.07352646	0.07494436	0.07637739	0.07782547
16	0.06864363	0.06934672	0.07076508	0.07219958	0.07365013
17	0.06495698	0.06566023	0.06707958	0.06851623	0.06996984
18	0.06168113	0.06238479	0.06380578	0.06524492	0.06670210
19	0.05875120	0.05945548	0.06087847	0.05232061	0.06378177
20	0.05611531	0.05682039	0.05824574	0.05969122	0.06115672
21	0.05373145	0.05443748	0.05586550	0.05731464	0.05878477
22	0.05156525	0.05227238	0.05370331	0.05515638	0.05663140
${ }_{24}$	0.04958833	0.05029666	0.05173075	0.05818796	0.05466810
$\stackrel{24}{25}$	0.04777701 0.0461	0.04848665 0.04682247	0.04992410 0.04826345	$\begin{array}{ll}0.05138565 \\ 0.0497 & 2952\end{array}$	0.0528 0.0512 0044
26	0.04457479	0.04528729	0.04673196	0.04820269	0.04969923 -
27	0.04315273	0.0438 -6677	0.04531527	0.04679079	0.04829309
28 29	0.04183299 0.04063498	0.0425 0.0413 0263 0.088	0.0440 0.0427 0.088	0.04548151 0.04426424	0.04698987 0.0457 0.036
${ }_{30}$	0.03945953	0.04017854	0.04163919	$0.0442 \quad 61245$	0.0446 0.0928
31	0.03838866	0.03910942	0.04057430	0.04207005	0.04359835
32	0.03738535	0.03810791	0.03957710	0.04107812	0.04261061
33	0.03644349	0.03716786	0.03364144	0.04014779	0.04168653
34	0.03555763	0.03628387	0.03776189	0.03927363	0.04081867
35	0.03472299	0.03545111	0.03693363	0.03845082	0.04000221
36	0.03393529	0.03466533	0.03615240	0.03767507	0.03923285
37	0.03319072	0.03392270	0.03541437	0.03694257	0.03850678
38	$\begin{array}{ll}0.0324 & 8589 \\ 0.0318 & 1773\end{array}$	0.03321983	0.03471613	0.036249390	0.03782057
${ }_{40}$	0.03181773 0.0311 8349	0.03255365 0.03192141	0.0340 0.0334 2710	0.035593999	0.03717114 0.0365 50575
	0.03118349	0.03192141	0.03342710	0.03497209	0.03655575
41	0.03058069 0.0300 709	0.03132063	0.03283106	0.03438170	0.03597188
483	$\begin{array}{ll}0.0300 \\ 0.0294 & 6094\end{array}$	0.0307 0.0302 0466	$\begin{array}{ll}0.0322 & 6426 \\ 0.0317 & 2465\end{array}$	0.03382057 0.0332666	0.03541729
4	0.02893949	0.0296 8557	0.0312 24038	0.033278810	0.03438794
45	0.02844197	0.02919012	0.03071976	0.03229321	0.03390962
46	0.02796652	0.02871675	0.03025125	0.03183043	0.03345342
4	0.0275 0.0270 1732	0.02826406	0.0238 0342	0.031388336	0.0330 1792
49	0.0266 5910	0.0278 0.074 0.2763	0.02937500 0.02896478	0.0309 0.03056124	0.0326 0.0322
50	0.02625898	0.02701763	0.02857168	0.03017391	0.03182321

Table VII.-Periodical Payment of Annuity Whose Present Value is 1

$$
\frac{1}{a_{n} \mid}=\frac{1}{s_{n}}+i
$$

n	1 1 \% $\%$	14\%	$1 \frac{1}{2} \%$	$1 \frac{3}{4} \%$	2\%
	0.02587494	0.02663571	0.02819469	0.02980269	0.03145856
52	0.02550606	0.02626897	0.02783287	0.02944665	0.03110909
5	0.02515149 0.0248 043	0.02591653 0.0255760	0.02748537 0.02715138 0.0288	0.0291 0492 0.0287 672	0.0307 0.0304 02928
55	0.02448213	0.02525145	0.02683018	0.02846129	0.03014337
58	0.02416592	0.02493739	0.02652106	0.02815795	0.02984656
67	0.02386116	0.02463478	0.02622341	0.02786606	0.02956120
58	0.02356726	0.02434303	0.02593661	0.02758503	0.02928667
59 69	$\begin{array}{lll}0.0232 & 8366 \\ 0.0230 & 0985\end{array}$	0.02406158 0.02378993	0.02566012 0.0253 0343	$\begin{array}{ll}0.0273 & 1430 \\ 0.0270 & 5336\end{array}$	$\begin{array}{ll}0.0290 & 2243 \\ 0.0287 & 6797\end{array}$
61	0.02274534	0.02352758	0.02513604	0.02680172	0.02852278
62	0.02248969	0.02327410	0.0248 8751	0.02655892	0.02828643
63	0.02224247	0.0230 2904	0.02464741	0.02632455	0.02805848
64	0.02200329	0.62279203	0.02441534	0.02609821	0.02783855
65	0.02177178	0.02256208	0.02419094	0.02587952	0:0276 2624
66	0.02154758	$0.022340 ¢ 5$	0.02397386	0.02566813	0.02742122
${ }^{67}$	0.02133037	0.02×12500	0.02376376	0.03546372	0.02722316
68	0.02111985	0.02191724	0.02356033	0.02526596	0.02703173
69 70	0.02091571 0.02071769	$\begin{array}{lll}0.0217 & 1527 \\ 0.0215 & 1941\end{array}$	0.0233 0.0231 235	0.0250 002488939	0.02684685 0.02686765
71	0.02052552	0.02132041	0.02298727	0.02470985	0.02649446
72	0.02033896	0.02114501	0.02280779	0.02453600	0.02632683
${ }^{3} 3$	0.02015779	0.02096600	0.02263368	0.02236750	0.02616454
7	$\begin{array}{ll}0.0199 & 8177 \\ 0.0198 & 1072\end{array}$	0.02079215	0.02246473	0.02420413	0.02600736
75	0.01981072	0.02082325	0.02230072	0.02404570	0.02585508
76	0.01964442	0.02045910	0.02214146	0.02389200	0.02570751
77	0.01948269	0.02029953	0.02198676	0.02374284	0.02556447
78	0.01932536	0.02014435	0.02183645	0.02359806	0.02542576
79 80	0.0191 0.0190 2323	0.01999341 0.01984652	$\begin{array}{ll}0.0216 & 9036 \\ 0.0215 & 4832\end{array}$	$\begin{array}{lll}0.0234 & 5748 \\ 0.0233 & 2093\end{array}$	$\begin{array}{ll}0.02529123 \\ 0.0251 & 6071\end{array}$
81	0.01887812	0.01970356	0.02141019	0.02318828	0.02503405
82	0.01873678	0.01956437	0.02127583	0.02305936	0.02491110
83	0.01859908	0.01942881	0.02114509	0.02293406	0.02479173
885	0.01846489 0.0183 0.09	0.01929675 0.0191 0.0808	0.0210 0.0208 9396	0.02281223 0.0226875	0.02467581 0.02456321
86	0.01820654	0.01904267	0.02077333	0.02257850	0.02445381
88	0.0180 0.0179 00815	0.0189 0.0188 041	0.02065584	0.02246636	0.02434750
88 89	0.01796081 0.01784240	0.01880119 0.01868490	$\begin{array}{lll}0.02054138 \\ 0.0204 & 2984\end{array}$	0.02235724 0.02225102	0.02424416 0.02414370
90	0.01772684	0.01857146	0.02032113	0.02214760	0.02404602
91	0.01761403	0.01846076	0.02021516	0.02204690	0.02395101
92	$\begin{array}{ll}0.0175 & 0387 \\ 0.0173 & 9629\end{array}$	0.01835271 0.0182 0724	0.02011182	0.0219 4882	0.02385859 0.02378888
93 94	0.01739829 0.01729119	0.01824724 0.01814425	0.020011104 0.0199	0.02185327	0.02376888 0.02368118
95	0.01718851	0.01804366	0.01981681	0.02166944	${ }_{0} 0.02359602$
96	0.01708816	0.01794540	0.01972321	0.02158101	0.02351313
97	0.01699907	0.01784941	0.01963186	0.02149480	0.02343242
98	0.01689418 0.0168 0041	0.01775560 0.01766391	0.01954268 0.01945560	0.0214101074 0.0213 886	0.0233 0.0232 7293
100	0.01670870	0.01757428	0.01937057	0.02124880	0.02320274

Table VII.-Periodical Payment of Annuity Whose

 Present Value is 1$$
\frac{1}{a_{n}}=\frac{1}{s_{n} \mid}+i
$$

\boldsymbol{R}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{1}{2} \%$
1	1.02250000	1.02500000	1.02750000	1.03000000	1.03500000
2	0.51693758	0.51882718	0.52071825	0.52281084	0.52640049
3	0.34844458	0.35013717	0.35183243	0.35353036	0.35693418
4	0.26421893	0.26581788	0.26742059	0.26902705	0.27225114
5	0.21370021	0.21524686	0.21679832	0.21835457	0.22148137
6	0.18003496	0.18154997	0.18307083	0.18459750	0.18766821
7	0.15600025	0.15749543	0.15899747	0.16050635	0.16354449
8	0.13798462	0.13946735	0.14095795	0.14245639	0.14547665
8	0.12398170	0.12545689	0.12694095	0.12843386	0.13144601
10	0.11278768	0.11425876	0.11573972	0.11723051	0.12024137
11	0.10363649	0.10510596	0.10658629	0.10807745	0.11109197
12	0.09601740	0.09748713	0.09896871	0.10046209	0.10348395
13	0.08957686	0.09104827	0.09253252	0.09402954	0.09706157
14	0.08406230	0.08553653	0.08702457	0.08852634	0.09157073
15	0.07928852	0.08076646	0.08225917	0.08376658	0.08682507
16	0.07511663	0.07659899	0.07809710	0.07961085	0.08268483
17	0.07144039	0.07292777	0.07443186	0.07595253	0.07904313
18	0.06817720	0.06967008	0.07118063	0.07270870	0.07581684
19	0.06526182	0.06676062	0.06827802	0.06981388	0.07294033
20	0.06264207	0.06414713	0.06567173	0.06721571	0.07036108
21	0.06027572	0.06178733	0.06331941	0.06487178	0.06803659
22	0.05812821	0.05964661	0.06118640	0.06274739	0.06593207
23	0.05617097	0.05769638	0.05924410	0.06081390	0.06401880
24	0.05438023	0.05591282	0.05746863	0.05904742	0.06227283
25	0.05273599	0.05427592	0.05583997	0.05742787	0.06067404
26	0.05122134	0.05276875	0.05434116	0.05593829	0.05920540
27	0.04982188	0.05137687	0.05295776	0.05456421	0.05785241
28	0.04852525	0.05008793	0.05167738	0.05329323	0.05660265
29	0.04732081	0.04889127	0.05048935	0.05211467	0.05544538
30	0.04619934	0.04777764	0.04938442	0.05101926	0.05437133
31	0.04515280	0.0467-3900	0.04835453	0.04999893	0.05337240
32	0.04417415	0.04576831	0.04739263	0.04904662	0.05244150
33	0.04325722	0.04485938	0.04649253	0.04815612	0.05157242
34	0.04239655	0.04400675	0.04564875	0.04732196	0.05075966
35	0.04158731	0.04320558	0.04485645	0.04653929	0.04999835
36	0.04082522	0.04245158	0.04411132	0.04580379	0.04928416
37	0.04010643	0.04174090	0.04340953	0.04511162	0.04861325
38	0.03942753	0.04107012	0.04274764	0.04445934.	0.04798214
39	0.03878543	0.04043615	0.04212256	0.04384385	0.04738775
40	0.03817738	0.03983623	0.04153151	0.04326238	0.04682728
41	0.03760087	0.03926786	0.04097200	0.04271241	0.04629822
42	0.03705364	0.03872876	0.04044175	0.04219167	0.04579828
48	0.03653364	0.03821688	0.03993871	0.04169811	0.04532539
44	0.03603901	0.03773037	0.03946100	0.04122985	0.04487768
45	0.03556805	0.03726752	0.03900693	0.04078518	0.04445343
48	0.03511921	0.03682676	0.03857493	0.04036254	0.04405108
47	0.03469107	0.03640669	0.03816358	0.03996051	0.04366919
48	0.03428233	0.03600599	0.03777158	0.03957777	0.04330646
48	0.03389179	0.03562348	0.03739773	0.03921314	0.04296167
50	0.03351836	0.03525806	0.03704092	0.03886550	0.04263371

Table VII.-Periodical Payment of Annuity Whose Present Value is 1

$$
\frac{1}{a_{\bar{n} \mid}}=\frac{1}{s_{\bar{n} \mid}}+i
$$

\boldsymbol{n}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3%	82\%
51	0.03316102	0.03490870	0.03670014	0.03853382	0.04232156
52	0.03281884	0.03457446	0.03637444	0.03821718	0.04202429
53	0.03249094	0.03425449	0.03606297	0.03791471	0.04174100
54	0.03217654	0.03394799	0.03576491	0.03762558	0.04147090
55	0.03187489	0.03365419	0.03547953	0.03734907	0.04121323
56	0.03158530	0.03337243	0.03520012	0.03708447	0.04096730
57	0.03130712	0.03310204	0.03494404	0.03683114	0.04073245
58	0.03103977	0.03284244	0.03469270	0.03658848	0.04050810
59	0.03078268	0.03259307	0.03445153	0.03635593	0.04029366
60	0.03053533	0.03235340	0.03422002	0.03613296	0.04008862
61	0.03029724	0.03212294	0.03399767	0.03591908	0.03989249
62	0.03006795	0.03190126	0.03378402	0.03571385	0.03970480
63	0.02984704	0.03168790	0.03357866	0.03551682	0.03952513
64	0.02963411	0.03148249	0.03338118	0.03532760	0.03935308
65	0.02942878	0.03128463	0.03319120	0.03514581	0.03918826
66	0.02923070	0.03109398	0.03300837	0.03497110	0.03903031
67	0.02303955	0.03091021	0.03283236	0.03480313	0.03887892
68	0.02885500	0.03073300	0.03266285	0.03464159	0.03873375
69	0.02867677	0.03056206	.0.0324 9955	0.03448618	0.03859453
70	0.02850458	0.030397 .12	0.03234218	0.03433663	0.03846095
71	0.02833816	0.03023790	0.03219048	0.03419266	0.03833277
72	0.02817788	0.03008417	0.03204420	0.03405404	0.03820973
73	0.02802 .169	0.02993568	0.03190311	0.03392053	0.03809160
.74	0.02787118	0.02979222	0.03176698	0.03379191	0.03797816
75	0.02772554	0.02965358	0.03163560	0.03366796	0.03786919
76	0.02758457	0.02951956	0.03150878	0.03354849	0.03776450
77	0.02744808	0.02938997	0.03138633	0.03343331	0.03766390
78	0.02731589	0.02926463	0.03126869	0.03332224	0.03756721
79	0.02718784	0.02914338	0.03115382	0.03321510	0.03747426
80	0.02706376	0.02902605	0.03104342	0.03311175	0.03738489
81	0.02694350	0.02891248	0.03033674	0.03301201	0.03729894
82	0.02682692	0.02880254	0.03083361	0.03291576	0.03721628
83	0.02671387	0.02869608	0.03073389	0.03282284	0.03713676
84	- 0.02660423	0.02859298	0.03063747	0.03273313	0.03706025
85	0.02649787	0.028493 .10	0.03054420	0.03264650	0.03698682
86	0.02639467	0.02839633	0.03045397	0.03256284	0.03691576
87	0.02629452	0.02830255	0.03036667	0.03248202	0.03684756
88	0.02619730	0.02821165	0.03028219	0.03240393	0.03678190
89	0.02610291	0.02812353	0.03020041	0.03232848	0.03671868
90	0.02601126	0.02803809	0.03012125	0.03225556	0.03665781
	0.02592224	0.02795523	0.03004460		
92	0.02583577	0.02787486	0.02997038	0.03211694	0.03654273
93	0.02575176	0.02779690	0.02989850	0.03205107	0.03648834
94	0.02567012	0.02772126	0.02982887	$0.03198737{ }^{\circ}$	0.03643594
95	0.02559078	0.02764786	0.02976141	0.03192577	0.03638546
96	0.02551366	0.02757662 .	0.02969605	0.03186619	0.03633682
97	0.02543868	0.02750747	0.02963272	0.03180856	0.03628995
98	0.02536578	0.02744034	0.02957134	0.03175281	0.03624478
99	0.02529489	0.02737517.	0.02951185	0.03169886	0.03620124
100	0.02522594	0.02731188	0.02945418	0.03164667	0.03615927

Table VII.-Periodical Payment of Annuity Whose Present Value is 1

$$
\frac{1}{a_{n}}=\frac{1}{s_{\bar{n}} \mid}+i
$$

n	4\%	$4 \frac{1}{2} \%$	5\%	$5 \frac{1}{2} \%$	6\%
1	1.04000000	1.04500000	1.05000000	1.05500000	1.06000000
3	1.533019608 0.3603 8854	0.5339 0.3637 7368	0.5378 0.3672 08888	0.54161800 0.37065407	0.5454 0.3741 0.889 0.81
4	0.37549005	0.27874365	0.28201183	0.28529449	0.28859149
5	0.22462711	0.22779164	0.23097480	0.23417644	0.23739640
6	0.19076190	0.19387839	0.19701747	0.20017895	0.20336263
8	0.16660961 0.14850783	0.16970147 0.1516	0.17281982 0.1547 181	0.17596442	0.17913502
8 9	0.148592783 0.13449299	0.1516 0.1375 447	0.15472181 0.14069008	0.15786401 0.14383946	0.16103594 0.1470 2224
10	0.12329094	0.12637882	0.12950458	0.13266777	0.13586796
11	0.11414904	0.11724818	0.12038889	0.12357085	0.12679294
12	0.10655217	0.10968619	0.11282541	0.11602923	0.11927703
13	0.10014373	0.1032 0.0978 0	$\begin{array}{lll}0.1064 & 5577 \\ 0.1010\end{array}$	0.10968426	0.11296011
14	0.09466897 0.08994110	$\begin{array}{ll}0.0978 & 2032 \\ 0.0931 & 1381\end{array}$	0.1010 0.09634229	0.10427912 0.09962560	0.10758491 0.10296276
16	0.08582000	0.08901537	0.09226991	0.09558254	0.09895214
17	0.08219852	0.08541758	0.08869914	0.09204197	0.09544480
18	0.07899333 0.07613862	0.08223690	0.08554622	0.08891992	0.09235654
19 20	0.07613862 0.07358175	0.0794 0.07687614	0.08274501 0.0802 1259	0.08615006 0.0836 933	$\begin{array}{ll}0.0896 & 2086 \\ 0.0871 & 8456\end{array}$
21	0.07128011	0.07460057	0.07799611	0.08146478	0.08500455
22	0.06919881	0.07254565	0.07597051	0.07947123	0.08304557
${ }_{24}^{23}$	0.06730906	0.07068249 0.0698703	0.07413682	0.07766965 0.07603580	0.08127848
$\stackrel{24}{25}$	$\begin{array}{ll}0.0655 & 8683 \\ 0.0640 & 1198\end{array}$	0.06898703 0.06743903	0.0724 0.0709 0246	0.07603580 0.07454935	0.0796 0.0782 0
26	0.06256738	0.06602137	0.06956432	0.07319307	0.07690435
27	0.08123854	0.06471946	0.06829186	0.07195228	0.07569717
28	0.06001298	0.06352081	0.06712253	${ }_{0}^{0.07081440}$	0.07459255
29 30	$\begin{array}{ll}0.0588 \\ 0.0578 & 7993\end{array}$	${ }_{0}^{0.0624} 1461$	0.06604531	0.06976857 0.0688 0539	0.07357961
30	0.05783010	0.06139154	0.06505144	0.06880539	0.07264891
31	0.05685535	0.06044345	0.06413212	0.06791665	0.07179222
32	0.05594859	0.05956320	0.06328042	0.06709519	0.07100234
-33	0.05510357	0.05874453	0.0624 0.0617 5545	0.06633469	0.07027293
$\stackrel{35}{35}$	$\begin{array}{ll}0.0543 & 1477 \\ 0.0535 & 7732\end{array}$	0.05798191 0.05727045	0.06175545 0.0610 0.71	0.0656 0.0649 1493	0.06959843 0.0689
36	0.05288688	0.05660578		0.06	
37	0.05223957	0.05598402	0.05983979	0.06436693	0.0683 9483
38	0.05163192	0.05540169	0.05928423	${ }_{0}^{0.0632} 7217$	0.06735812
39	0.05106083	0.05485567	0.05876462	0.06277991	0.06689377
40	0.05052349	0.05434315	0.05827816	0.06232034	0.06646154
41	0.05001738	0.05386158	0.05782229	0.06189090	0.06605886
$\stackrel{42}{43}$	0.04954020 0.04908989	0.0534 0.052988888 0.058	0.05739471 0.0569 933	0.0614 0.0627 0.0611 1337	$\begin{array}{lll}0.0656 & 8342 \\ 0.0653 & 3312\end{array}$
44	0.04866454	0.05258071	0.0569 0.0566165	0.0607 0.0607128	0.06500606
45	0.04826246	0.05220202	0.05626173	0.06043127	0.06470050
46	0.04788205	0.05184471	0.05592820	0.06012175	0.06441485
48	0.0475 0.04718189 8065	$\begin{array}{ll}0.0515 & 0734 \\ 0.0511 & 8858\end{array}$	$\begin{array}{ll}0.0556 & 1421 \\ 0.0553 & 1843\end{array}$	0.0598 0.0595 5854	0.06414768 0.0638 9766
48	0.04685712	0.05088722	0.05503965	${ }_{0}^{0.0593} 50230$	0.0638 0.6356
50	0.04655020	0.05060215	0.05477674	0.05906145	$0.0634{ }^{-1429}$

Table VII.-Periodical Payment of Annuity Whose Present Value is 1

$$
\frac{1}{a_{n} \mid}=\frac{1}{s_{n} \mid}+i
$$

\boldsymbol{n}	4%	$4 \frac{1}{2} \%$	5%	$6 \frac{1}{2} \%$	6\%
51	0.04625885	0.05033232	0.05452867	0.05883495 .	0.06323880
52	0.04598212	0.05007679	0.05429450	0.05862186	0.06304617
53	0.04571915	0.04983469	0.05407334	0.05842130	0.06286551
54	0.04546910	0.04960519	0.05386438	0.05823245	0.06269602
55	0.04523124	0.04938754	0.05366686	0.05805458	0.06253696
56	0.04500487	0.04918105	0.05348010	0.05788698	0.06238785
57	0.04478932	0.04828506	0.05330343	0.05772900	0.06224744
88	0.04458401	0.04879897	0.05313626	0.05758006	0.06211574
59	0.04438836	0.04862221	0.05297802	0.05743959	0.06199200
60	0.04420185	0.04845426	0.05282818	0.05730707	0.06187572
61	0.04402398	0.04829462	0.05268627	0.05718202	0.06176642
62	0.04385430	0.04814284	0.05255183	0.05706400	0.06166366
63	0.04369237	0.04799848	0.05242442	0.05695258	0.06156704
64	0.04353780	0.04786115	0.05230365	0.05684737	0.06147615
65	0.04339019	0.04773047	0.05218815	0.05674800	0.06139066
66	0.04324921	0.04760808	0.05208057	0.05665413	0.06131022
67	0.04311451	0.04748765	0.05197757	0.05656544	0.06123454
68	0.04298578	0.04737487	0.05187986	0.05648163	0.06116330
69	0.04286272	0.04726745	0.05178715	0.05640242	0.06109625
70	0.04274506	0.04716511	0.05169915	0.05632754	0.06103313
71	0.04263253	0.04706759	0.05161563	0.05625675	0.06097370
72	0.042 .52489	0.04897465	0.05153633	0.05618982	0.06091774
73	0.04242190	0.04688606	0.05146103	0.05612652	0.06086505
74	0.04232334	0.04680159	0.05138953	0.05606665	0.06081542
75	0.04222900	0.04672104	0.05132161	0.05601002	0.06076867
76	0.04213869	0.04664422	0.05125709	0.05595645	0.06072483
77	0.04205221	0.04657094	0.05119580	0.0559 .0577	0.06068315
78	0.04196839	0.04650104	0.05113756	0.05585781	0.06064407
79	0.04189007	0.04643434	0.05108222	0.05581243	0.06060724
80	0.04181408	0.04637069	0.05102962	0.05576948	0.06057254
81	0.04174127	0.04630995	0.05097963	0.05572884	0.06053984
82	0.04167150	0.04625197	0.05093211	0.05569036	0.06050903
83	0.04160463	0.04619663	. 0.05088694	0.05565395	0.06047908
84	0.04154054	0.04614379	0.05084399	0.05561947	0.06045261
85	0.04147909	0.04609334	0.05080316	0,0555 8683	0.06042681
86	0.04142018	0.04604516	0.05076433	0.05555593	0.06040249
87	0.04136370	0.04599915	0.05072740	0.05552667	0.06037956
88	0.04130953	0.04595522	0.05069228	0.05549898	0.06035795
89	0.04125758	0.04591325	0.05065888	0.05547273	0.06033757
90	0.04120775	0.04587316	0.05062711	0.05544788	0.06031836
91	0.04115895	0.04583486	0.05059689		0.06030025
92	0.04111410	0.04579827	0.05056815	0.05540207	0.06028318
93	0.04107010	0.04576331	0.05054080	0.05538096	0.06026708
94	0.04102789	0.04572391	0.05051478	0.05536097	0.08025190
95	0.04098738	0.04569799	0.05049003	0.05534204	0.06023758
86	0.04094850	0.04566749	0.05046648		0.00022408
97	0.04091119	0.04563834	0.05044407	0.05530711	0.06021135
88	0.04087538	0.04561048	0.05042274	0.05529101	0.06019935
89	0.04084100	0.04558385	0.05040245	0.05527577	0.06018803
100	0.04080800	0.04555839	0.05038314	0.05526132	0.06017736

Tabli VII.-Periodical Payment of Annuty Whosm Present Value is 1

$$
\frac{1}{a_{\bar{n} 1}}=\frac{1}{s_{\bar{n} \mid}}+i
$$

\boldsymbol{n}	$6 \frac{1}{2} \%$	7%	$7 \frac{1}{2} \%$	8%	$8 \frac{1}{2} \%$
1	1.06500000	1.07000000	1.07500000	1.08000000	1.08500000
2	0.54926150	0.55309179	0.55692771	0.56076923	0.56461631
3	0.37757570	0.38105166	0.38453763	0.38803351	0.39153925
4	0.29190274	0.29522812	0.29856751	0.30192080	0.30528789
5	0.24063454	0.24389069	0.24716472	0.25045645	0.25376575
6	0.20656831	0.20979580	0.21304489	0.21631539	0.2196 .0708
7	0.18233137	0.18555322	0.18880032	0.19207240	0.19536922
8	0.16423730	0.16746776	0.17072702	0.17401476	0.17733065
9	0.15023803	0.15348647	0.15676716	0.16007971	0.16342372
10	0.13910469	0.14237750	0.14568593	0.14902949	0.15240771
11	0.13005521	0.13335690	0.13669747	0.14007634	0.14349293
12	0.12256817	0.12590199	0.12927783	0.13269502	0.13615286
13	0.11628256	0.11965085	0.12306420	0.12652181	0.13002287
14	0.11094048	0.11434494	0.11779737	0.12129685	0.12484244
15	0.10635278	0.10979462	0.11328724	0.11682954	0.12042046
16	0.10237757	0.10585765	0.10939116	0.11297687	0.11661354
17	0.09890633	0.10242519	0.10600003	0.10962943	0.11331198
18	0.09585461	0.09941260	0.10302896	0.10670210	0.11043041
19	0.09315575	0.09675301	0.10041090	0.10412763	0.10790140
20	0.09075640	0.09439293	0.09809219	0.10185221	0.10567097
21	0.08861333	0.09228900	0.09602937	0.09983225	0.10369541
22	0.08669120	0.09040577	0.09418687	0.09803207	0.10193892
23	0.08496078	0.08871393	0.09253528	0.09642217	0.10037193
24	0.08339770	0.08718902	0.09105008	0.09497796	0.09896975
25	0.08198148	0.08581052	0.08971067	0.09367878	0.09771168
26	0.08069480	0.08456103	0.08849961	0.09250713	0.09658016
27	0.07952288	0.08342573	0.08740204	0.09144809	0.09556025
28	0.07845305	0.08239193	0.08640520	0.09048891	0.09463914
28	0.07747440	0.08144865	0.08549811	0.08961854	0.09380577
30	0.07657744	0.08058640	0.08467124	0.08882743	0.09305058
31	0.07575393	0.07979691	0.08391628	0.08810728	0.09236524
33	0.07499665	0.07907292	0.08322599	0.08745081	0.09174247
33	0.07429924	0.07840807	0.08259397	0.08685163	0.09117588
34	0.07365610	0.07779674	0.08201461	0.08630411	0.09065984
35	0.07306226	0.07723396	0.08148291	0.08580326	0.09018937
36	0.07251332	0.07671531	0.08099447	0.08534467	0.08976006
37	0.07200534	0.07623685	0.08054533	0.08492440	0.08936799
38	0.07153480	0.07579505	0.08013197	0.08453894	0.08900966
39	0.07109854	0.07538676	0.07975124	0.08418513	0.08868193
40	0.07069373	0.07500914	0.07940031	0.08386016	0.08838201
41	0.07031779	0.07465962	0.07907663	0.08356149	0.08810737
42	0.06996842	0.07433591	0.07877789	0.08328684	0.08785576
43	0.06964352	0.07403590	0.07850201	0.08303414	0.08762512
44	0.06934119	0.07375769	0.07824710	0.08280152	0.08741363
45	0.06905968	0.07349957	0.07801146	0.08258728	0.08721961
46	0.06879743	0.07325996	0.07779353	0.08238991	0.08704154
47	0.06855300	0.07303744	0.07759190	0.08220799	0.08687807
48	0.06832506	0.07283070	0.07740527	0.08204027	0.08672795
49	0.06811240	0.07263853	0.07723247	0.08188557	0.08659005
50	0.06791393	0.07245985	0.07707241	0.08174286	0.08646334

Table VIII.-Compound Amount of 1 for Fractional Periods

$$
(1+i)^{1 / p}
$$

p	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{22} \%$	${ }_{4}^{8} \%$	1\%
2	1.00208117	1.00249688	1.00291243	1.00374299	1.00498756
3	1.00138696	1.00166390	1.00194068	1.00249378 10018	1.0033 22288
${ }_{6}$	1.00069324	1.00083160	1.00096987	1.00124611	1.00165977
12	1.00034656	1.00041571	1.00048482	1.00062286	1.00082954
13	1.00031990	1.00038373	1.00044751	1.00057494	1.00076570
26	1.00015994	1.00019185	1.00022373	1.00028743	1.00038276
p	$1 \frac{1}{8} \%$	$1 \frac{1}{4} \%$	$1 \frac{1}{2} \%$	$1{ }_{4}^{3} \%$	2\%
2	1.00560927	1.00623059	1.00747208	1.00871205	1.00995050
3	1.00373602	1.00414943	1.00497521	1.00579963	1.00662271
6	1.0028 1.0018 6627	1.00311046 1.0020 257	1.00372909 1.00248452	1.00434658 1.00289562	1.00496293 1.0033 1889
12	1.00093270	1.00103575	1.0012 4149	1.0014 4677	1.00165158
13 26	1.0008 1.0004	1.000956604 1.00047790	1.0011 1.0005 2808	1.00133540 1.00066748	1.00152444
p	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3\%	$3 \frac{1}{2} \%$
${ }^{2}$	1.01118742	1.01242284	1.01365675	1.01488916	1.01734950
3	1.00744444	1.00826484	1.00908390	1.00990163	1.01153314
4	1.00557815	1.00619225	1.00680522	1.00741707	1.00863745
6	1.00371532	1.00412392	1.00453163	1.00493862	1.00575004
12	1.0018 5594	1.00205984	1.00226328	1.00246627	1.00287090
${ }_{5} 2$	1.00085616 1.00042799	1.00095017	1.00104396	1.00113752	1.00132401
52	1.00042799	$1.00047 ¢ 97$	1.00052184	1.00056860	1.00066179
p	4\%	$4 \frac{1}{2} \%$	6\%	$5 \frac{1}{2} \%$	6\%
${ }_{8}^{2}$	1.01980390	1.02225242	1.02469508	1.02713193	1.02956302
3 4	1.01315941 1.00985341	1.01478046 1.01106499	1.01639636 1.0122 7224	1.0180 1.0134 1518	1.0196 1.01468285 1
6	1.00655820	1.00736312	1.00816485	1.013468340	1.014678885
12	1.00327374	1.00367481	1.00407412	1.00447170	1.00486755
26 52	1.00150963 1.0007 1533	1.00169439 1.00084684	1.00187831	1.00206138	1.00224363
52	1.00075453	1.00084684	1.00093871	1.00103016	1.00112118
\boldsymbol{p}	$6 \frac{1}{2} \%$	7%	$7 \frac{1}{2} \%$	8\%	$8 \frac{1}{2} \%$
	1.03198837	1.03440804	1.03682207	1.03923048	1.04163333
4	1.02121347 1.01586828	$\begin{array}{ll}1.0228 & 0912 \\ 1.0170 & 5853\end{array}$	1.02439981 1.01824460	1.02598557 1.01942855	1.02756844
${ }_{8}$	1.01055107	1.01134026	1.01212638	1.0194 1.0129 0946	1.02060440 1.01368952
12	1.00526169	1.00565415	1.00604492	1.00643403	1.00682149
26 58	1.00242504 1.00121179	1.00260564 1	1.00278544	1.00296443	1.00314262
	1.0012179	1.00130197	1.00139175	1.00148112	1.00157008

Table IX.-Nominal Rate j which if Converted p Times per Year Gives Effective Rate i

$$
j_{p}=p\left[(1+i)^{1 / p}-1\right]
$$

p	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{3}{4} \%$	1 \%
2	. 00416234	. 00499377	. 00582485	. 00.748859	. 00997512
3	. 00416089	. 00499169	. 00582203	. 007748133	. 00996685
4	. 00416017	. 004990065	. 00582062	. 00747900	. 009996272
${ }_{12}^{6}$. 0004155945	. 0049898962	.00581921 .0058 1780	. 0007476687	. 0009958559
13	. 00415868	. 00498850	. 00581769	. 00747416	. 00995414
26	. 00415834	. 00498802	. 00581704	. 00747309	. 00995224
\boldsymbol{p}	$1{ }_{8}^{1} \%$	1 $\frac{1}{4} \%$	12 $\frac{1}{2}$	$1 \frac{3}{4} \%$	2%
	. 01121854	. 01246118	. 01494417	. 01742410	. 01990090
3	. 01120807	. 01244828	. 01492562	. 01739890	. 01986813
4	. 01120285	. 01244183	. 01491636	. 01738631	. 01985173
${ }^{6}$. 01119763	. 01243539	. 01490710	. 01737374	. 01983534
12	. 01119241	. 01242895	. 01489785	. 01736119	.0198 1898
18	. 011118960	. 01242549	. 014889288	. 01736443	. 01981017
\boldsymbol{p}	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3%	$3 \frac{1}{2} \%$
2	. 02237484	. 02484567	. 02731349	. 02977831	. 03469899
3	. 022333333	. 024779.451	. 02725170	. 02970490	.0345 99943
6	. 0222219192	. 024743498	. $0271{ }^{0} 9009$. 029668173	. 034540024
12	. 02227125	. 02471804	. 02715936	. 02959524	. 03445078
$\stackrel{26}{52}$.02226013 .0225537	.0247 .02469843	.02714283 .02713575	. 02957561	. 03442420
				. 02956721	. 0344128
p	4%	$4 \frac{1}{2} \%$	5%	$5 \frac{1}{2} \%$	6%
	. 03960781	. 04450483	. 04939015	. 05423386	. 05912603
3	. 03947821	. 04434138	. 04918907	. 05402139	. 058883847
4	. 03941363	. 04425996	. 04908894	. 05330070	. 05869538
${ }^{6}$. 03934918	. 04417874	. 04898908	. 05378038	. 05855277
12	. 03928488	. 04409771	. 048888989	. 053366039	. 058841061
52	. 03923551	. 044403552	. 04881308	. 05356834	. 05830157
p	6 $\frac{1}{2} \%$	7%	7 $\frac{1}{2} \%$	8%	8 $\frac{1}{2} \%$
	. 06397674	. 068881609	. 07364414	. 07846097	. 08326607
3	. 063364042	. 068842737	. 07319942	. 07795670	. 08269933
6	. 0633383844	. 0688234156	. 072978480	. 077745619	. 082418712
12	. 06314033	. 06784974	. 07253903	. 07720836	. 08185792
26 06	.06305113 .06301295	.067774676 .0677	. 07242134	.07707506 .07701802	. 081708184401

Table X.-The Value of the Conversion Factor

$$
\frac{i}{j_{p}}=\frac{i}{p\left[(1+i)^{1 / p}-1\right]}
$$

p	$\frac{5}{12} \%$	$\frac{1}{2} \%$	$\frac{7}{12} \%$	$\frac{8}{4} \%$	1 \%
2	1.00104058	1.00124844	1.00145621	1.00187150	1.00249378
3	1.00138761	1.0016 6482	1.00194193	1.00249585	1.00332596
${ }_{6}$	1.00156115 1.0017 3471	1.0018 1.00208131 1.05	1.00218485 1.00242781	1.00280812 1.00312046 1.0081	1.00374223
12	1.00190829	1.00228960	1.00267080	1.00343286	1.00457510
13	1.00192164	1.00230563	1.00268950	1.00345690	1.00460714
20	1.00200176	1.00242182	1.00280166	1.00360111	1.00479941
p	$1 \frac{1}{8} \%$	14\%	$1 \frac{1}{2} \%$	$1 \frac{3}{4} \%$	2%
2	1.00280463	1.00311529	1.00373604	1.00436176	1.00497525
3	1.00374068 1.0042 10892	1.00415516	1.00498346	1.00581084	1.00663733
${ }_{6}$	1.0042 1.0046 7730	1.00467537 1.00519575	1.0056 1.0062 3191	1.00653878 1.0072 6707	1.00746856 1.0083 1
12	1.00514583	1.00571632	1.00685652	1.00798571	$\begin{array}{ll}1.00891 & 31389\end{array}$
13	1.00518188	1.00575637	1.00690458	1.00805177	1.00919796
26	1.00539818	1.00599669	1.00719296	1.00838820	1.00958243
p	$2 \frac{1}{4} \%$	$2 \frac{1}{2} \%$	$2 \frac{3}{4} \%$	3%	3 $\frac{1}{2} \%$
2	1.00559371	1.00621142	1.00682837	1.00744458	1.00867475
3	1.0074 6292	1.00828761	1.00911141	1.009934381	1.01157748
${ }_{6}$	1.0083 1.0093 444	1.00932677 1.01036665	1.01025422 1.0113 1889	1.01118072 1.01242816	1.01303094 1.01448578
12	1.01027107	1.01140725	1.01254243	1.01367662	1.01594203
${ }^{26}$	1.01077565	1.01196786	1.01315908	1.01434929	1.01672674
52	1.01099195	1.01220819	1.01342343	1.01463757	1.01706316
p	4%	$4 \frac{1}{2} \%$	5%	$5 \frac{1}{2} \%$	6%
	1.00990195	1.01112621	1.01234754	1.01356596	1.01478151
3	1.01321713	1.01485328	1.01648597	1.01811522	1.01974104
${ }_{6}$	1.01487744 1.01653957	1.01672026	1.0185 1.0206 3570	1.02039495 1.02667810	1.02222888
12	1.01653957 1.0182	1.08046109	1.02271479	1.02496465	1.02721070
28	1.01910023	1.02146980	1.02383548	1.02619729	1.02855526
52	1.01948470	1.02196231	1.02431602	1.02672586	1.02913186
\boldsymbol{p}	$6 \frac{1}{2} \%$	7%	$7 \frac{1}{2} \%$	8 \%	$8 \frac{1}{2} \%$
	1.01599419	1.01720402	1.01841103	1.01961524	1.02081667
3	1.02136348	1.02298254	1.02459826	1.02621065	1.02781974
4	1.0240 1.0267523 172	1.025888002 1.02878298	1.02770129 1.03081059	1.02951904 1.0328 1546	1.0313 1.0348 1832
${ }_{12}^{6}$	1.0267 5172	1.028788988	1.03081089	1.0328 1.03615721 1	1.03485492
26	1.03090941	1.03325978	1.03560640	1.03794927	1.04028845
52	1.03153404	1.03393242	1.03632705	1.03871794	1.04110511

Table XI.-American Experience Table of Mortality

$\left\lvert\, \begin{aligned} & \text { Age } \\ & x \end{aligned}\right.$	Number living $\boldsymbol{l}_{\boldsymbol{x}}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { deaths } \\ d_{x} \end{gathered}$	Yearly probability of dying $\boldsymbol{q}_{\dot{x}}$	Yearly probability of living $\boldsymbol{p}_{\boldsymbol{x}}$	$\left\lvert\, \begin{gathered} \text { Age } \\ \boldsymbol{x} \end{gathered}\right.$	Number living. $\boldsymbol{l}_{\boldsymbol{x}}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ \text { of } \\ \text { deaths } \\ d_{x} \end{gathered}$	Yearly probability of dying $\boldsymbol{q}_{\boldsymbol{x}}$	Yearly probability of living $\boldsymbol{p}_{\boldsymbol{x}}$
10	100,000	749	0.007490	0.992510	53	66,797	1,091	0.016333	0.983667
11	99,251	746	0.007516	0.992484	54	65,706	1,143	0.017396	0.982604
12	98,505	743	0.007543	0.992457	55	64,563	1,199	0.018571	0.981429
13	97,762	740	0.007569	0.992431	56	63,364	1,260	0.019885	0.980115
14	97,022	737	0.007596	0.992404	57	62,104	1,325	0.021335	0.978665
15	96,285	735	0.007634	0.992366	58	60,779	1,394	0.022936	0.977064
16	95,550	732	0.007661	0.992339	59	59,385	1,468	0.024720	0.975280
17	94,818	729	0.007688	0.902312	60	57,917	1,516	0.026693	0.973307
18	94,089	727	0.007727	0.992273	61	56,371	1,628	0.028880	0.971120
19	93,362	725	0.007765	0.992235	62	54,743	1,713	0.031292	0.968708
20	92,637	723	0.007805	0.992195	63	53,030	1,800	0.033943	0.966057
21	91,914	722	0.007855	0.992145	64	51,230	1,889	0.036873	0.963127
22	91,192	721	0.007906	0.992094	65	49,341	1,980	0.040129	0.959871
23	90,471	720	0.007958	0.992042	66	47,361	2,070	0.043707	0.956233
24	89,751	719	0.008011	0.991089	67	45,291	2,158	0.047647	0.952353
25	89,032	718	0.008065	0.991935	68	43,133	2,243	0.052002	0.947998
26	88,314	718	0.008130	0.991870	69	40,890	2,321	0.056762	0.943238
27	87,596	718	0.008197	0.991803	70	38,569	2,391	0.061993	0.938007
28	86,878	718	0.008264	0.991736	71	36,178	2,448	0.067665	0.93233 .5
29	86,160	719	0.008345	0.991655	72	33,730	2,487	0.073733	0.926267
30	85,441	720	0.008427	0.991573	73	31,243	2,505	0.080178	0.919822
31	84,721	721	0.008610	0.991490	74	28,738	2,501	0.087028	0.912972
32	84,000	723	0.008607	0.991393	75	26,237	2,476	0.094371	0.905629
33	83,277	726	0.008718	0.991282	76	23,761	2,431	0.102311	0.897689
34	82,551	729	0.008831	0.991169	77	21,330	2,369	0.111064	0.888936
35	81.822	732	0.008946	0.901054	78	18,961	2,291	0.120827	0.879173
36	81,090	737	0.009089	0.990911	78	16,670	2,196	0.131734	0.868266
37	80,353	742	0.009234	0.990766	80	14,474	2,091	0.144466	0.855534
38	79,611	749	0.009408	0.990592	81	12,383	1,964	0.158605	0.841395
39	78,862	756	0.009586	0.990414	82	10,419	1,816	0.174297	0.825703
40	78,106	765	0.009794	0.990206	83	8,603	1,648	0.191561	0.808439
41	77,341	774	0.010008	0.989992	84	6,955	1,470	0.211359	0.788641
42	76,567	785	0.010252	0.989748	85	5,485	1,292	0.235552	0.764448
43	75,782	797	0.010517	0.989483	86	4,193	1,114	0.265681	0.734319
44	74,985	812	0.010829	0.989171	87	3,079	933	0.303020	0.696980
45	74,173	828	0.011163	0.988837	88	2,146	744	0.346692	0.653308
46	73,345	848	0.011562	0.988438	89	1,402	55.5	0.395863	0.604137
47	72,497	870	0.012000	0.988000	90	847	385	0.454545	0.545455
48	71,627	896	0.012509	0.987491	91	462	246	0.532468	0.467534
49	70,731	927	0.013106	0.986894	92	216	137	0.634259	0.365741
50	69,804	962	0.013781	0.986219	93	79	58	0.734177	0.265823
51	68,842	1,001	0.014541	0.985459	94	21	18	0.857143	0.142857
52	67,841	1,044	0.015389	0.984611	95	3	3	1.000000	0.000000

Table Xil.-Commutation Columns, Single Premiums, and Annutties Due. American Experience Table, $31 / 2$ Per Cent

$\begin{gathered} \text { Age } \\ \boldsymbol{x} \end{gathered}$	D_{x}	N_{x}	C_{x}	M_{x}	$\begin{gathered} a_{x}= \\ 1+a_{x} \end{gathered}$	A_{x}
10	70891.9	1575535	513.02	17612.9	22.2245	0.24845
11	67981.5	1504643	493.69	17099.9	22.1331	0.25154
12	65189.0	1436662	475.08	16606.2	22.0384	0.25474
18	62509.4	1371473	457.16	16131.1	21.9403	0.25806
14.	59938.4	1308963	439.91	15674.0	21.8385	0.28151
15	57471.6	1249025	423.88	15234.1	21.7329	0.26508
16	55104.2	1191553	407.87	14810.2	21.6236	0.26877
17	52832.9	1136449	392.47	14402.3	21.5102	0.27261
18	50853.9	1083616	378.15	14009.8	21.3926	0.27859
19	48562.8	1032962	364.36	13631.7	21.2707	0.28071
20	46556.2	984400	351.07 338	13267.3	21.1443	0.28497
21	44630.8	937843	338.73	12916.3	21.0134	0.28940
22	42782.8	893213	326.82	12577.5	20.8779	0.29399
23	41009.2	850430	315.33	12250.7	20.7375	0.29873
24.	39307.1	809421	304.24	11935.4	20.5922	0.30365
25	37673.6	770113	293.55	11631.1	20.4417	0.30873
26	38106.1	732440	283.62	11337.6	20.2858	0.31401
27	34601.5	696334	274.03	11054.0	20.1244	0.31947
28	33157.4	661732	264.76	10779.9	19.9573	0.32512
29	31771.3	628575	256.16	10515.2	19.7843	0.33097
30	30440.8	596804	247.85	10259.0	19.6054	0.33702
31	29163.5	566363	239.797	10011.2	19.4202	0.34328
32	27937.5	537199	232.331	9771.38	19.2286	0.34976
33	26760.5	509262	225.406	9539.04	19.0304	0.35646
34	25630.1	482501	218.683	9313.64	18.8256	0.36339
35	24544.7	456871	212.157	9094.96	18.6138	0.37055
36	23502.5	432326	206.383	8882.80	18.3949	0.37795
37	22501.4	408824	200.757	8676.42	18.1688	0.38560
38	21539.7	386323	195.798	8475.66	17.9354	0.39349
39	20615.5	364783	190.945	8279.86	17.6946	0.40163
40	19727.4	344167	188.684	8088.92	17.4461	0.41003
41	18873.6	324440	182.493	7902.23	17.1901	0.41869
42	18052.9	305566	178.828	7719.74	16.9262	0.42762
43	17263.6	287513	175.421	7540.91	16.6543	0.43681
4	16504.4	270250	172.680	7365.49	16.3744	0.44628
45	15773.6	253745	170.127	7192.81	16.0867	0.45600
46	15070.0	237972	168.345	7022.68	15.7911	0.46600
47	14392.1	222902	166.872	6854.34	15.4878	0.47628
48	13738.5	208510	166.047	6687.47	15.1770	0.48677
49	13107.9	194771	165.983	6521.42	14.8591	0.49752
50	12498.6	181663	166.424	6355.44	14.5346	0.50849
51	11909.6	169165	167.316	8189.01	14.2041	0.51967
52	11339.5	157252	168.601	6021.70	13.8679	0.53104

Table XII.-Commutation Columns, Single Premiums, and Annuities Due. American Experience Table, $31 / 2$ Per Cent

$\begin{gathered} \text { Age } \\ \boldsymbol{x} \end{gathered}$	D_{x}	N_{x}	C_{x}	M_{x}	$\begin{gathered} a_{x}= \\ 1+a_{x} \end{gathered}$	A_{x}
53 54	10787.4 10252.4	${ }_{1}^{1459168 .}$	170.234 172.317	5853.10 5682.86	13.5264 13.1801	0.54258 0.55430
55	9733.40	124876.	174.646	5510.54	12.8296	0.56615
56	9229.60	115142.	177.325	5335.90	12.4753	0.57813
57	8740.17	105912.8	180.168	5158.57	12.1179	0.59022
${ }^{58}$	8284.44	97172.6	183.139	4978.40	11.7579	0.60239
59	7801.82	88908.2	186.340	4795.27	11.3958	0.61463
60	7351.65	81108.4	189.604	460 S. 93	11.0324	0.62692
61	6913.45	73754.7	192.909	4419.32	10.6683	0.63924
62	6486.75	68841.3	196.117	4226.41	10.3043	0.65155
63	6071.27	${ }^{60354.5}$	199.109	4030.30	9.9410	0.66383
64	5668.85	54283.3	201.887	3831.19	9.5791	0.67607
65	5273.33	48616.4	204.457	3629.30	9.2193	0.68824
66	4890.55	43343.1	20.522	3424.84	8.8626	0.70030
67	4518.65	38452.5	208.022	3218.32	8.5097	0.71223
68	4157.82	33933.9	203.903	3010.30	8.1615	0.72401
69	3808.32	29776.1	208.858	2801.40	7.8187	0.73560
70	3470.67	25967.7	207.881	2592.54	7.4820	0.74698
71	3145.43	22497.1	205.839	2384.66	7.1523	0.75813
72	2833.42	19351.6	201.851	2179.02	6.8298	0.76904
73	2535.75	16518.2	198.436	1977.17	6.5141	0.77972
74	2253.57	13982.5	189.491	1780.73	6.2046	0.79018
75	1987.87	11728.9	181.253	1591.24	5.9002	0.80048
76	1739.39	9741.02	171.940	1409.99	5.6002	0.81062
77	1508.63	8001.63	161.889	1238.05	5.3039	0.82064
78	1295.73	${ }^{6493.00}$	151.2645	1076.158	5.0111	0.83054
79	1100.647	5197.27	140.0891	924.894	4.7220	0.84032
80	923.338	4098.62	128.8801	784.805	4.4388	0.84997
81	763.234	3173.29	116.9588	655.924	4.1577	0.85940
82	620.465	2410.05	104.4881	538.966	3.8843	0.86865
83	494.995	1789.59	91.6152	434.478	3.6154	0.87774
84	386.641	1294.59	78.9565	342.862	3.3483	0.88677
85	294.610	907.95	67.0490	263.908	3.0819	0.89578
86	217.598	613.34	55.8566	196.857	2.8187	0.90468
87	154.383	395.74	45.1992	141.000	2.5634	0.91332
88	103.963	${ }^{241.36}$	34.82426	95.8011	2.3216	0.92149
89	65.6231	137.398	25.09929	60.9768	2.0937	0.92920
90	38.3047	71.775	16.82244	35.8775	1.8738	0.93664
91	20.18692	33.4700	10.385393	19.05509	1.6580	0.94393
92 93	${ }_{3}^{9.11888}$	13.2831 4.16420				
93 94	${ }_{0.827611}$	$\begin{aligned} & 4.16420 \\ & 0.94184 \end{aligned}$	2.285484 0.885393	3.08155 0.79576	1.2923 1.1380	0.95630 0.96152
95	0.114232	0.114232	0.110369	0.110369	1.0000	0.96818

$31 / 2$ Per Cent

$$
u_{x}=\frac{D_{x}}{D_{x+1}} \quad k_{x}=\frac{C_{x}}{D_{x+1}}
$$

$\underset{\boldsymbol{x}}{\text { Age }}$	u_{x}	k_{x}	$\underset{x}{\text { Age }}$	u_{x}	k_{x}
10	1.042811	0.007546	53	1.052185	0.016604
11	1.042838	0.007573	64	1.053323	0.017704
12	1.042886	0.007600	55	1.054585	0.018922
13	1.042894	0.007627	56	1.055999	0.020289
14	1.042922	0.007654	67	1.057563	0.021800
15	1.042962	0.007692	58	1.059296	0.023474
16	1.042990	0.007720	69	1.061234	0.025347
17	1.043019	0.007748	60	1.063385	0.027425
18	1.043059	0.007787	61	1.085780	0.029739
19	1.043100	0.007826	62	1.068433	0.032303
20	1.043141	0.007866	63	1.071365	0.035136
21	1.043195	0.007917	64	1.074625	0.038285
22	1.043248	0.007969	65	1.078270	0.041807
23	1.043303	0.008022	66	1.082304	0.045704
24	1.043358	0.008076	67	1.086782	0.050031
25	1.043415	0.008130	68	1.091774	0.054855
26	1.043484	0.008197	69	1.097284	0.060178
27	1.043554	0.008284	70	1.103403	0.066090
28	1.043625	0.008333	71	1.110117	0.072576
29	1.043710	0.008415	72	1.117388	0.079602
30	1.043796	0.008498	73	1.125218	0.087167
31	1.043884	0.008583	74	1.133660	0.095323
32	1.043986	0.008682	75	1.142852	0.104204
33	1.044102	0.008795	76	1.152960	0.113971
34	1.044221	0.008910	77	1.164314	0.124941
35	1.044343	0.009027	78	1.177243	0.137433
36	1.044493	0.009172	79	1.192031	0.151720
37	1.044647	0.009320	80	1.209771	0.168861
38	1.044830	0.009498	81	1.230099	0.188502
39	1.045018	0.009679	82	1.253477	0.211089
40	1.045238	0.009891	83	1.280245	0.236952
41	1.045463	0.010109	84	1.312384	0.268004
42	1.045721	0.010359	85	1.353917	0.308133
43	1.046001	0.010629	86	1.409469	0.361806
44	1.046331	0.010947	87	1.484979	0.434762
45	1.046884	0.011289	88	1.584244	0.530671
46	1.047106	0.011697	89	1.713188	0.655254
47	1.047571	0.012146	90	1.897500	0.833333
48	1.048111	0.012688	91 92	2.213750	1.138889
49	1.048745	0.013280	92	2.829873	1.734177
50	1.049463	0.013974	93	3.893571	2.761905
81	1.050272	0.014755	94	7.245000	6.000000
62	1.051177	0.015629	96		

ANSWERS
 то
 EXERCISES AND PROBLEMS

Chapter I

Page 3
2. $\mathrm{I}=\$ 625.00 ; S=\$ 5,625.00$.
3. $\$ 13.27$.
11. 5%.
12. $\$ 256.00$.
13. 9%.
4. $11 / 2$ years.
14. $\$ 452.40$.
15. $\$ 256.00$.
16. $\$ 26,250.00$.

Pages 6-7

1. (a) $I_{o}=\$ 3.25 ; I_{e}=\$ 3.21$.
2. $\$ 9.93$.
3. $\$ 14.60$.
(b) $I_{o}=\$ 3.24 ; I_{e}=\$ 3.19$.
4. $\$ 29.89$.
5. $\$ 21.60$.
(c) $I_{o}=\$ 1.31 ; I_{e}=\$ 1.29$.
b. 55 days.
6. $\$ 1.06$.
(d) $I_{o}=\$ 4.52 ; I_{e}=\$ 4.46$.
7. 75 days.
8. $\$ 28.80$.
9. 9%.

Pages 8-9

1. (a) $\$ 7.50$.
(b) $\$ 6.04$.
(c) $\$ 8.75$.
(d) $\$ 18.27$.
2. $\$ 155.33$.
3. $\$ 155.20$.
4. $\mathbf{\$ 0 . 6 9}$.
5. (a) $\$ 9.38$.
(b) $\$ 7.54$.
(c) $\$ 10.94$.
(d) $\$ 22.84$.
6. $\$ 153.20$.
7. (a) $\$ 14.53$.
(b) $\$ 11.05$.
(c) $\$ 38.47$.
8. (a) $\$ 19.64$.
(b) $\$ 14.93$.
(c) $\$ 52.00$.

Pages 11-12

1. $\$ 2,200.00$.
2. $P=\$ 5,769.23$; Disc. $=\$ 230.77$.
3. $\$ 312.00$.
4. \$986.84.
5. 5%.

Pages 16-17-Continued

17. $\$ 2,072.54$.
18. $S=\$ 800.00$; Face $=\$ 788.18$.
19. $\$ 1,216.93$.
20. $1 / 4$ year.
21. $\$ 1,000.00$.
22. 0 .

Pages 19-20

1. $i=6.383 \%$.
2. $d=.0741 ; .0769 ; .0784 ; .0792$.
3. $i=6.185 \%$.
4. $d=15 \% ; i=15.4 \%$.
5. $i=.0869 ; .0833 ; .0816 ; .0808$.
6. $\$ 803.74$.
7. (a) $\$ 501.58$.
8. $\$ 800.95$.
(b) $\$ 501.65$.
9. (a) $\$ 1,004.50$.
(b) $\$ 6.83$.

Pages 21-22

1. (a) . 0712.
(b) 0759.
2. $i=12.4 \%$ or 3.1% per 90 days.
3. $162 / 3 \%$; 13.92%.
(c) .0619 .
(d) .0822 .
4. 8.74%.
5. (a) . 0688.
(b) .0779.
(c) .0583.
6. 9.89%.
7. 7.41%.
8. 4% cash discount is best.
9. $18.56 \% ; \$ 78.47$ at end of 60 days.
10. 6.88%; 5.88%; 4.82%.
11. $5 / 30$ is best.
12. $5 / 30$ is best.
13. 6.12%.
14. 6% cash discount is best.

Pages 31-32

1. (a) $\$ 492.61 ; \$ 497.61$.
(b) $507.50 ; 512.32$.
2. (a) $\$ 489.00 ; \$ 487.12$.
3. $\$ 619.65 ; \$ 619.77$.
(c) $522.50 ; 527.80$.
(b) $511.25 ; 508.56$.
4. $\$ 620.67$; $\$ 618.75$.
(c) 533.75; 531.70.
5. $\$ 912.66$, F.D. at $8 \mathrm{mo} . ; \$ 912.55$, F.D. at 12 mo .
6. $\$ 437.93$.
7. $\$ 938.08$, F.D. at 12 mo .
8. $\$ 1,873.22$, F.D. at 9 mo.; $\$ 1,873.31$, F.D. at 8 mo .
9. May 28.
10. $61 / 4$ months.
11. Sept. 12.
12. Jan. 15.
13. April 22.
14. Dec. 9.
15. May 11.
16. July 16.
17. 4 mo. 7 days.
18. March 2.
19. Oct. 3.

Pages 33-34

1. $\$ 2,000.00 ; \$ 2,500.00$.
2. $\$ 1,000.00 ; \$ 1,500.00 ; \$ 2,500.00$.
3. $\$ 2,500.00 ; \$ 4,000.00$.
4. $\$ 12,000.00$.
5. $\$ 3,000.00 ; \$ 7,000.00 ; \$ 5,000.00$.
6. 4 days.
7. 445 hours.
8. $\mathbf{1 7 . 8 5 7} \mathrm{lbs}$.
9. 115 lbs .

Pages 33-34-Continued

10. $\$ 1,182.27$ for 3 mos.; $\$ 1,182.07$ for exact days.
11. B.D. $=\$ 25.00$; T.D. $=\$ 24.39$.
12. (a) $\$ 2,520.96$.
(b) $\$ 2,520.46$.
13. $\$ 506.11$.
14. $\$ 730.00$.
15. $\$ 1,459.06$.
16. $\$ 1,470.59$.
17. $\$ 12,200.00$.
18. 13.18.
19. 6.89%.
20. $\$ 1.79$.
21. $\$ 400.00$.
22. $\$ 87.80$.
23. 8.5302.
24. $\$ 1,666.67$.
25. $\$ 2,317.60$.
26. $262 / 3 \%$ if all amts. are focalized at 10 mos.
27. 48% if all amts. are focalized at 5 mos .
28. $262 / 3 \%$ if all amts. are focalized at 10 mos.

Chapter II

Page 38

1. $\$ 1,800.94$.
2. $\$ 2,012.20$.
3. $\$ 1,198.28$.
4. $\$ 442.94$.
5. $\$ 2.63$.
6. $\$ 2,278.77$.

Pages 41-42

1. $\$ 1,181.96$.
2. $\$ 1,670.40$.
3. (a) $\$ 1,187.60$.
4. $\$ 1,638.62$.
5. (a) 6.09%.
(b) 6.136%.
(c) 6.168%.
6. $\$ 2,695.97$.

$$
\text { ©. } 2,090.97 .
$$

8. 5.18%.
9. 37.8 yrs.
10. 6.45.
11. (a) 7.23%.
12. $i_{1}=5.58 \% ; i_{2}=5.12 \%$.
(b) 7.19%.
13. $\$ 1,155.48$.
(c) 7.12%.
14. $\$ 3,639.70$.
15. (a) 3.94136%.
16. Better to pay cash.
(b) 4.90889%.
(c) 5.86954%.

Pages 44-45

1. $\$ 140.99$.
2. $\$ 2,343.60$.
3. $\$ 1,137.75$.
4. $\$ 4,226.67$.
5. $\$ 1,106.12$.
6. (a) $\$ 334.99$ and $\$ 334.84$.
7. $\$ 1,337.72$.
(b) $\$ 377.04$ and $\$ 376.87$.
8. $\$ 1,688.91$.
9. Yes.
10. $\$ 193.07$.
11. $\$ 2,883.67$.
12. $\$ 387.35$.
13. $\$ 243.76$.
14. $P_{1}=\$ 6,417.63 ; P_{2}=\$ 6,455.35$.
15. $\$ 61.55$.

Page 48

1. 22.35 years.
2. 16.
1. 6.3%.
2. 5.14%.
b. $\frac{.30103}{\log (1+i)}$.
3. (a) 14.2 .
4. $j_{2}=5.5 \%$.
(b) 11.9 .
5. 12.9 years.
6. 20.2 years.
7. 6.054%.

Pages 65-56

1. (a) $\$ 1,175.29$.
(b) $\$ 1,360.54$.
(c) $\$ 1,575.00$.
2. (a) $\$ 1,579.49$.
(b) $\$ 1,828.46$.
(c) $\$ 2,116.67$.
3. For the $\$ 500$ debt:
(a) $\$ 519.32$.
(b) $\$ 631.24$.
(c) $\$ 695.94$.

For the $\$ 750$ debt:
(a) $\$ 533.01$.
(b) $\$ 647.88$.
(c) $\$ 714.29$.
Б. $P_{1}=\$ 5,250.09 ; P_{2}=\$ 5,238.41$.
6. $\$ 2,723.25$.
7. (a) $\$ 3,152.50$.
(b) $\$ 2,723.25$.
8. $\$ 332.96$.
9. $\$ 721.80$.
10. $\$ 1,159.94$.
12. $\$ 1,024.51$.
11. 0.66 years.
13. 5.81 years.
18. $j_{2}=5.91 \% ; f_{2}=5.74 \%$.
19. 44.13%.
20. $j_{6}=12.24 \% ; i=12.89 \%$.
21. $f_{12}=23.53 \%$.
22. $j_{4}=5.955664 \%$.
23. 6.045%.
14. 5.86 years.
16. $\$ 709.26$.
15. $36 / 7$ years.
24. (a) 8.48%.
(b) 8.48%.
25. (a) 11.89 years.
(b) 11.72 years.
(c) 17.5 years.
26. 7.25%.

Chapter III

Page 60

1. $\$ 3,601.83$.
2. $\$ 16,532.98$.
3. $\$ 1,293.68$.
4. $\$ 1,977.12$.
5. $\$ 2,564.54$.
6. $\$ 79,840.69$.
7. $\sum_{x=1}^{n}(1+i)^{x-1}$.
8. $\$ 14,045.45$.
9. $S_{1}=\$ 5,920.98 ; S_{2}=\$ 6,003.05$.

Page 63

1. $\$ 2,978.85$.
2. $\$ 12,088.47$.
3. $\$ 2,710.33$.
4. $\$ 36,919.78$.
5. $\$ 15,303.59$.
6. $\$ 3,037.04$.
7. $S_{1}=\$ 12,006.11 ; S_{2}=\$ 11,748.01$.
8. $\$ 2,983.81$.
9. 3.2878%.
10. $\$ 2,987.18$.

Pages 68-69

1. $\$ 10,379.66$.
2. $\$ 27,084.63$.
b. $\$ 1,228.03$.
3. $\$ 8,832.09$.
4. $\$ 577.18$.
5. $\$ 4,680.04$.

Page 72

1. $\$ 3,637.50$.
2. $\$ 16,839.82$.
3. $\$ 7,334.80$.
4. $\$ 10,507.65$.
5. $\$ 5,825.65$.
6. $\$ 23,742.48$.
7. $\$ 3,655.42$.
8. $\$ 16,737.12$.
9. $\$ 1,692.16$.

Pages 76-78

1. $\$ 7,325.48$.
2. (a) $\$ 7,310.84$.
(b) $\$ 7,332.96$.
3. Annuity

Payable
Annually
Semi-ann.
Quarterly
6. Annuity Payable
Annually
Semi-ann.
Quarterly
7. Annuity Payable
Annually
Semi-ann.
Quarterly
8. $\$ 3,474.59$.
9. $\$ 3,461.61$.
10. $\$ 3,566.07$.

Interest Convertible
Annually
$\mathbf{\$ 4 , 5 0 7 . 7 4}$
$4,552.38$
$4,574.80$

Semi-ann.	Quarterly
$\$ 4,518.10$	$\$ 4,523.39$
$4,563.28$	$4,568.85$
$4,585.98$	$4,591.70$

Quarterly $\$ 4,518.10 \quad \$ 4,523.39$ 4,563.28
4,585.98
Interest Convertible Semi-ann.
\$4,792.45
Quarterly
$\$ 4,801.35$ 4,861.74 4,892.13

Interest Convertible Semi-ann.

Quarterly \$4,652.77
\$4,659.72
$\$ 4,639.51$
4,691.13
4,717.08
3. $\$ 30,705.23$.
4. $\$ 30,774.62$.

4,712.43 4,738.94
15. $\$ 18,779.88$ if payment at age 60 is included.
17. \$624.49.
16. $\$ 18,822.76$ if payment at age 60 is included.
18. $\$ 1,595.30$.
19. $\$ 1,598.46$.

Pages 82-83

1. $\$ 7,265.76$.
2. $\$ 4,768.81$.
Б. $\$ 3,596.72$.
3. $\$ 7,235.16$.
4. $\$ 3,561.46$.
5. $\$ 10,659.30$.
6. $\left\{\begin{array}{l}\$ 9,177.71 \text { by interpolation. } \\ \$ 9,176.77 \text { by logarithms. }\end{array}\right.$
7. $\$ 63,417.98$.
8. $\$ 63,028.88$.
9. Annuity

Payable
Annually
Semi-ann.
Quarterly
12. Annuity

Payable
Annually
Semi-ann.
Quarterly
14. $\$ 19,010.68$.
15. $\$ 5,167.18$.
Annually
$\$ 811.09$
819.12
823.16

Interest Convertible
Semi-ann. Quarterly
$\$ 809.48 \quad \$ 808.66$ $817.57 \quad 816.78$ $821.64 \quad 820.87$

Interest Convertible

Annually	Semi-ann.	Quarterly
$\$ 772.17$	$\$ 769.84$	$\$ 768.64$
$\mathbf{7 8 1 . 7 1}$	779.46	$\mathbf{7 7 8 . 3 1}$
$\mathbf{7 8 6 . 5 0}$	$\mathbf{7 8 4 . 3 0}$	$\mathbf{7 8 3 . 1 7}$

16. $\$ 88,632.52$.
17. $\$ 9,048.57$.
18. $\$ 5,712.91$.
19. $\$ 2,561.26$.

Page 86

1. $\$ 447.11$.
2. See 15, p. 77.
3. $\$ 624.49$.
4. $\$ 1,626.89$.
5. $\$ 4,129.86$.
6. See 16, p. 77.
7. $\$ 1,678.57$.
8. $\$ 1,630.59$.

Page 88

1. $\$ 367.84$.
2. $\$ 3,985.39$.
3. $\$ 4,369.52$.
4. $\$ 3,887.56$.
5. $\$ 10,329.22$.
6. $\$ 21,280.01$.
7. $\$ 21,412.19$.
8. $\$ 4,198.60$.

Pages 91-92

1. $\$ 6,134.82$.
2. $\$ 6,171.81$.
3. (a) $\$ 5,974.89$.
4. $\$ 6,149.34$.
5. $\$ 6,018.89$.
(b) $\$ 5,952.48$.
6. $A^{\prime}=\$ 7,811.63 ; \mathrm{Tax}=\$ 390.58$.
7. $\$ 320,957.26$
8. $\$ 13,949.28$.
9. $\$ 638.28$.
10. $\$ 1,863.49$.

Page 95

1. 5.33%.
2. 6.88%.
3. 19.7% with F.D. at 12 mo.
4. 4.76%.

Page 97

1. 9 full payments with a partial payment at end of 10 years.
2. 9 full payments; $\$ 255.53$ at end of 10 years.
3. 14 full payments; $\$ 402.39$ at end of 24 years.

Pages 99-100

1. $\$ 250.44$.
2. (a) $\$ 533.05$.
3. $\$ 1,567.74 ; \$ 4,067.74$.
4. $\$ 532.09$.
(b) $\$ 531.59$.
5. $\$ 1,563.39 ; \$ 4,063.39$.
6. $\$ 609.11$.
7. $\$ 2,195.89$.
8. $\$ 2,221.75$.

Pages 104-105

1. 0.67 .
2. $\$ 2,400,000$.
3. $\$ 2,355,465.79$.
4. $\$ 5,128.45$.
5. $\$ 174,951.78$.
6. $\$ 1,010.21$.

Pages 107-109
2. $\$ 1,093.38$.
6. $\$ 116$.
10. $\$ 55,454.05$.
15. $\$ 55,325.34$.
3. $\$ 1,288.00$.
7. $\$ 6,944.59$.
11. $\$ 19,753.09$.
4. 4.905%.
8. $\$ 1,536.81$.
12. $\$ 1,456.93$.
16. (a) $\$ 55,256.31$.
(b) $\$ 55,360.76$.
5. 130 .
9. $\$ 8,480.01$.
13. $\$ 2,276.27$.
17. $\$ 2,638.80$.
18. $\$ 871.85$; $\$ 684.58$.
22. 5.45%.
19. $\$ 535.39$.
23. $\$ 3,056.70$.
20. \$914.67.
24. 4.66%.
25. 19.75%.
26. Yes.
27. 14 years.
31. $\$ 25,435.38$.
32. $\$ 23,968.84$.

Page 110

1. (a) $\$ 1,011.59$.
(b) $\$ 1.69$.
2. Yes, by 2 cents.
3. $j_{6}=12.24 \% ; i=12.88 \%$.
4. $\$ 1,732.02$.
b. $\$ 2,382.98$.
5. $\$ 29.13 ; 34.95 \%$.
6. $\$ 4,542.09$.
7. $\$ 299.68$.
8. $\$ 238.63$.
9. 4446% using simple interest.

Chapter IV

Page 113

1. $\$ 372.57$.
2. $\$ 523.61$.
3. $\$ 1,358.68$.
4. $\$ 260.21$.
5. $\$ 1,232.50 ; \$ 2732.50$.
6. $\$ 228.49$.

Page 115

1. $\$ 1,219.14$.
2. $\$ 3,351.75$.
3. $\$ 1,883.18$.
4. $\$ 69.67 ; \$ 6,037.46 ; \$ 8,255.66$.
5. $\$ 2,821.36$.

Page 118

1. \$81 a year in favor of (b).
2. $\$ 748.21$.
3. $\$ 732.57$.
4. (a) $\$ 796.72$ and $\$ 831.12$.
(b) $\$ 796.72$ and $\$ 796.72$.
(c) $\$ 796.72$ and $\$ 765.25$.

Page 120

1. $\$ 1,142.59$.
2. (a) $\$ 456.85$.
3. $\$ 13,329.09$.
4. $\$ 872.31$.
(b) $\$ 442.86$.
5. $\$ 20,855.57$.
6. $\$ 2,067.01$.
7. $\$ 321.43 ; \$ 3,834.72$.
8. (a) $\$ 3,670.08$.
9. $\$ 4,693.60$.
(b) $\$ 3,777.69$.
10. $\$ 4,503.09$.
11. $\$ 1,610.70$.
12. 7; $\$ 147.15 ; \$ 1,406.93$.

Page 121

Problems

1. 53.8% by simple interest theory.
2. $\$ 5,680.18$.
3. 28.2% by simple interest theory.
4. 138; $\$ 97.58$.
5. 53% by simple interest theory.
6. $\$ 640.12$.
7. $\$ 2,619,923.28$.
8. (a) $m=\frac{\log R+\log a_{\bar{n} i}-\log A}{\log (1+i)}$
9. $\$ 956.50$.
(b) $n=\frac{\log R-\log \left[R-A i(1+i)^{m}\right]}{\log (1+i)}$

Chapter V

Page 133

1. $\$ 27.50$.
2. $\$ 124.81$.
3. 44.5%, rate of depreciation.
4. (a) $\$ 1,620.66$ and $\$ 1,379.73$.
(b) $\$ 240.93$.
5. $R=\$ 318.02$.
(a) $\$ 2,410.68$ and $\$ 1,963.19$.
(b) \$447.49.
6. $-\$ 196.25$.
7. $42-$ units.
8. $\$ 453.04$.
9. 213-.
10. $\$ 391.58$.
11. $\$ 103.76$.

Pages 135-136

1. $\$ 185,898.00$.
2. $\$ 901,286.91$.
3. $\$ 460.98$.
4. $\$ 78,008.97$.

Page 138

1. 20.2 years.
2. 20.4 years.
3. 38.6 years.
4. 39.11 years.

Pages 139-140

1. $\$ 278.63$.
2. 9.32%.
3. 20.63%; $\$ 952.44 ; \$ 755.95 ; \$ 600.00$.
4. $\$ 800.69$.
5. $\$ 79,563.85$.
6. $\$ 5,615.60 ; 30$ years.
7. $\$ 316,956.82$.
8. $\$ 46,298.95 ; R=\$ 1,846.27$; Amt. in S.F. $=\$ 19,216.09$.
9. $\$ 28,505.24$.
10. $\$ 62,955.62$.

Page 140

1. $\$ 75,578.04$.

2. \$8.69.
3. Amortization plan better by $\$ 565.07$ per year.
4. $\$ 40,250.97$.
5. $\$ 1,666.40$.
6. 20.57%; $\$ 3,154.56$.

Chapter VI

Page 144

1. $\$ 538.97$.
2. $\$ 5,541.38$.
3. $\$ 1,781.97$.
4. $\$ 939.92$.
5. $\$ 480.92$.
6. Yes; $P=\$ 92.56$.
7. $\$ 9,110.50$.
8. $\$ 1,766.01$.
9. $\$ 5,719.47$.

Page 147

1. $\$ 940.25$.
2. $\$ 9,062.53$.
b. $\$ 12,587.75$.
3. $\$ 5,335.16$.
4. $\$ 470.44$.
5. $\$ 982.24$.

Page 150

1. $P=\$ 943.52$.
2. $P=\$ 1,039.56$.
3. $P=\$ 538.97$.
4. $P=\$ 982.24$.
5. $P=\$ 504.75$.
6. $P=\$ 5,609.40$.

Page 152

1. $\$ 986.83$.
2. Yes; $P=\$ 90.75$.
3. $P_{0}=\$ 961.96$;
$P=\$ 975.24$.
4. $P_{0}=\$ 512.63$;
$P=\$ 520.46$;
Q.P. $=\$ 512.13$.
5. $P_{0}=\$ 92.29$;
6. $P_{0}=\$ 1,027.02$;
$P=\$ 1,043.96$;
$P=\$ 93.98$;
Q.P. $=\$ 1,025.96$.
Q.P. $=\$ 92.45$.
7. $P_{0}=\$ 1,013.65$;
$P=\$ 1,031.00$;
Q.P. $=\$ 1,012.33$.

Pages 153-154

1. $\$ 6,063.69$.
2. $\$ 26,084.46$.
3. $\$ 19,006.41$.
4. $\$ 17,237.05$.
5. $\$ 1,932.61$.

Page 155

1. $\$ 467.26$.
2. (a) $\$ 574.79$.
(b) $\$ 535.75$.
(c) $\$ 437.25$.
(d) $\$ 384.43$.
3. (a) $\$ 510.47$.
(b) $\$ 451.44$.
4. (a) $\$ 531.93$.
(b) $\$ 470.04$.

Page 158

1. 0.0473 .
2. 0.0739 .
Б. 0.0474 .
3. 0.0326 .
4. 0.04195 .
5. 0.0579 .
6. 0.0471 .

Page 160
Exercises

1. $0.0469 ; 0.0517$.
2. $0.0420 ; 0.0577 ; 0.0468$.
b. 0.0367 .
3. $0.0474 ; 0.0718 ; 0.0469$.
4. 0.0521 .

Page 160

Problems

1. $\$ 968.85$.
Б. 0.0517 .
2. $\$ 1,035.85$.
3. $\$ 305,753.73$.
4. $P_{0}=\$ 1,043.76$;
$P=\$ 1,050.43$.
5. $\left\{\begin{array}{l}\text { By interpolation } 0.0571 \text {. } \\ \text { By formula } 0.0568 .\end{array}\right.$
6. $\$ 93.18$.
7. $\$ 95.69$.

Chapter VII

Pages 163-164

1. (a) $7 / 12$; (b) $5 / 12$.
2. $1 / 2$.
3. 0.4.
4. $1 / 13$.
5. 2%.
6. $1 / 6$.
7. (a) $1 / 4$; (b) $1 / 2$.
8. (a) $23 / 45$.
9. $1 / 36 ; 1 / 18 ; 1 / 12 ; 1 / 9 ; 5 / 36 ; 1 / 6 ; 5 / 36 ; 1 / 9$;
(b) $22 / 45$. $1 / 12 ; 1 / 18 ; 1 / 36$.
(c) $1 / 5$.
(d) $2 / 9$.
10. $1 / 3$.
11. $3 / 8$.
12. Former.
13. $5 / 18$.

Page 165 (Top)

1. 0.0085 .
2. 0.514 .
3. 0.18 .

Page 165 (Bottom)

1. 4.
1. 8 .
2. 36.
1. 288.
1. 504.
1. 2,730 .

Pages 166-167

1. 24.
1. 2,730 .
2. (a) 360 .
Б. 325 .
3. 2,520 .
(b) 720 .
4. 10 .
5. 48.
1. 840 .
2. 30,240 .
3. 720.

Pages 168-169
9. 34,650 .
2. 126
3. 560 .
4. 31 .
6. (a) $3 / 476$.
(b) $9 / 68$.
(c) $126 / 595$.
9. 45 .
10. 63.
11. (a) 126.
(b) 84 .
13. 302,400 .
14. $878,948,939$.
21. 6.
22. 10.
23. 7.
16. 31.
17. 3,600 .
18. (a) 700 .
20. $n=11, r=2$.

Pages 171-172

4. $1 / 16$.
5. (a) $1 / 22$.
(b) $1 / 22$.
(c) $1 / 22$.
6. (a) $5 / 144$.
(b) $5 / 108$.
(c) $125 / 1728$.
7. (a) 0.7624 .
(b) 0.8378 .
(c) 0.0205 .
8. 0.0570 .
9. $23 / 24$.
(b) 1,408 .
10. $711,244,800$.
11. (a) 362,880 .
(b) 725,760 .
(c) 725,760 .
(d) $2,903,040$.

Pages 171-172-Continued

10. (a) 0.06 .
(b) 0.56 .
(c) 0.38 .
(d) 0.44 .
11. 7%.
12. (a) $1 / 462$.
(b) $1 / 77$.
(c) $10 \% 231$.
13. (a) $175 / 429$.
(b) $32 / 39$.
14. $2 / 145$.
15. $11 / 850$.

Pages 175-176

1. 15 .
2. 500 .
3. 85,680 .
4. (a) $45 / 102$.
(b) $35 / 102$.
(c) $15 / 102$.
(d) $7 / 102$.
5. 675,675 .
6. 216.
1. (a) 180.
(b) 120 .
(c) 6.

8. 720.

9. (a) 5,040 .
(b) 840 .
(c) 13,699 .
10. (a) 0.015 .
(b) 0.42 .
(c) 0.425 .
(d) 0.845 .
11. $1 / 2$.
12. $56 / 1024$.
13. $0.0081 ; 0.0756 ; 0.2646 ; 0.3483$.
14. 0.743 .
15. $\$ 10$.
16. ${ }_{100} C_{50}(.91914)^{50}(.08086)^{50}$.

Page 178

1. $0.5775 ; 0.4225 ; 1$.
2. 0.3753 .
3. $\$ 7.49$.
4. (a) $\$ 8.43$.
(b) $\$ 4.46$.
(c) $\$ 6.51$.
5. (a) $\$ 13.78$.
(b) $\$ 11.58$.
(c) $\$ 14.37$.

Page 180

Exercises
5. 0.0104 .
6. 0.5775 .
7. $0.08098 ; 0.00822$.

Page 180

Problems

1. 0.4938 .
2. 0.01979 .
3. (a) 0.77124 .
4. $0.7138 ; 0.001201$.
5. $\$ 4,900 ; \$ 4.90$.
(b) 0.01477 .
6. $\$ 19,092.07$.
7. $\$ 8,249.20$.
(c) 0.11479.
8. $0.8264 ; 0.9920$.
(d) 0.09920 .
9. $\$ 2,802.61$.
10. 0.55253 .
11. (a) ${ }_{n} p_{x} \cdot{ }_{n} p_{y}$.
(b) $\left(1-{ }_{n} p_{x}\right)\left(1-{ }_{n} p_{y}\right)$.
(c) ${ }_{n} p_{x}+{ }_{n} p_{y}-2_{n} p_{x} \cdot{ }_{n} p_{y}$.
(d) Same as (c).
12. (a) 0.5542 .
(b) 0.9856 .
13. (a) ${ }_{1000} C_{10} p_{x}{ }^{990} q_{x}{ }^{10}$.
(b) $\sum_{r=0}^{10}{ }_{1000} C_{r} p_{x}{ }^{1000-r} q_{x}$.

Chapter VIII

Page 184
2. $\$ 2,261.72$.
5. $\$ 14,956.01$.
8. $\$ 24,355.37$.
10. $\$ 7,144.18$.
3. $\$ 21,597.29$.
6. $\$ 16,469.28$.
9. (a) $\$ 7,754.46$.
4. $\$ 1,285.30$.
7. $\$ 6,555.76$.
(b) $\$ 7,297.62$.

Page 186

2. $\$ 12,038.88$.
3. $\$ 738.84$.
4. $\$ 6,019.44$.
5. $\$ 1,847.10$.

Page 188

1. $\$ 712.83$.
2. $\$ 6,167.04$.
3. $\$ 1,541.01$.
4. $\$ 9,559.39$.
5. $\$ 2,348.54$.

Page 192

1. $\$ 70,147.19$.
2. $\$ 28,116.41$; $\$ 2,548.53$.
3. $\$ 471.83$.
4. $\$ 176.57$.
5. $\$ 5,141.72$.
6. $\$ 3,889.75$.
7. $\$ 1,960.54$.
8. $\$ 1,363.77$.
9. $\$ 117.11$.
10. $\$ 2,568.60$.
11. $\$ 662.39$.
12. $\$ 48,752.88$.
13. $\$ 129.53$.

Page 195
2. $\$ 7,592.16$.
3. $\$ 7,991.04$.
4. $\$ 7,917.36$.
b. $\$ 17,071.10$.

Page 196

2. $\$ 11,376.75$.
3. $A=\$ 117,632.40 ; \mathrm{Tax}=\$ 4,705.30$.
4. $\$ 114,882.40$.
5. $\$ 14,644.05$.
6. $\$ 2,323.50$.
7. $\$ 1,470.32$.
8. $\$ 1,558.90$.
9. $\$ 2,552.70$.
10. $\$ 218.59$, first payment immediately
11. $\$ 25,805.64$.
12. $\$ 74,822.32$.
13. Yes.
14. $\$ 1,872.19$.
15. $\$ 21,834.77$.
16. $\$ 1,199.00$.
17. $\$ 9,266.29$.

Page 201

1. $\$ 1,887.86$.
2. $\$ 477.69$.
3. $\$ 3,370.15$.
4. $\$ 1,806.51$.
5. $\$ 171.90$.
6. $\$ 123.56$.
7. $\$ 134.78$; $\$ 137.72$; $\$ 349.85 ; \$ 365.86$.
8. $\$ 225.25 ; \$ 229.29 ; \$ 408.20 ; \$ 421.97$.
9. $\$ 242.04$.
10. $\$ 222.78$.

Page 203

2. $\$ 2,196.79$.
3. $\$ 7.54 ; \$ 7.79$; $\$ 8.14 ; \$ 8.64 ; \$ 9.46$.
4. $\$ 107.97$.
5. $\$ 13.52$.
6. $\$ 221.81$.
7. \$40.69.

Page 205

2. \$237.37.
3. $\$ 1,614.80$.
4. $\$ 188.65$.
5. $\$ 7,279.34$.

Page 207

1. (a) $\$ 35.60 ; \$ 36.38$.
(b) $\$ 35.91 ; \$ 37.08$.
2. (a) $\$ 76.93$.
(b) $\$ 77.25$.

Page 210

1. $\$ 118.27$.
2. \$8.14; \$26.02.
3. $\$ 948.94$.
4. $\$ 129.66$; $\$ 531.56$.
5. \$8.14; \$17.68.
6. $\$ 541.32$.
7. $\$ 286.48$.
8. $\$ 410.73$.
9. \$324.32.
10. $\$ 218.97$.
11. $\$ 102.15$.

Page 214

1. $\$ 183.40 ; \$ 374.72 ; \$ 574.33 ; \$ 782.62 ; \$ 1,000.00$.
2. $\$ 33.89$; $\$ 69.19$; $\$ 105.94$; $\$ 144.22$; $\$ 184.10 ; \$ 225.64 ; \$ 268.93$; $\$ 314.04$; $\$ 361.05$; $\$ 410.06$.

Page 216

3. $\$ 153.07$; $\$ 312.47$; $\$ 478.50 ; \$ 651.47$; $\$ 831.64$.
4. $\$ 726.72 ; \$ 790.57 ; \$ 857.29 ; \$ 927.04 ; \$ 1,000.00$.
5. $\$ 306.67$; $\$ 341.77$.
6. $\$ 351.53$.

Page 218
2. $\$ 2,542.46$.
3. $\$ 4,088.92$.
4. $\$ 7,933.18$.
5. $\$ 356.85$.
6. $\$ 741.45$.

Pages 219-220

1. $\$ 409.15$.
2. 3.
1. \$364.33.
2. $\$ 17.30 ; \$ 35.27 ; \$ 53.94 ; \$ 73.32 ; \$ 93.46 ; \$ 114.39 ; \$ 136.11 ; \$ 158.69 ; \$ 182.12 ; \$ 206.47$.
3. $\$ 10.76$; $\$ 21.89 ; \$ 33.39 ; \$ 45.27$; $\$ 57.54 ; \$ 70.19$; $\$ 83.25 ; \$ 96.70 ; \$ 110.57 ; \$ 124.85$.
4. $\$ 81.97$; $\$ 167.47 ; \$ 256.64 ; \$ 349.66$; $\$ 446.72$.
5. $\$ 22.25 ; \$ 45.30 ; \$ 69.17 ; \$ 93.88 ; \$ 119.46 ; \$ 145.93 ; \$ 173.31 ; \$ 201.62 ; \$ 230.88 ; \$ 261.10$.

Pages 219-220-Continued

14. $\$ 13.42 ; \$ 27.28 ; \$ 41.55 ; \$ 56.27 ; \$ 1.42 ; \$ 87.03 ; \$ 103.07 ; \$ 119.56 ; \$ 136.46 ; \$ 153.7$?
15. $\$ 1.55$.
16. $\$ 13.29$.

Page 227
1.

At end of	Reserve	Automatic Extension		Paid-up Insurance
		Years	Months	
1st year	\$ 14.67	1	6	\$ 35.00
2nd "	29.81	3	1	70.00
3rd "	45.39	4	7	104.00
4th "	61.43	6	0	138.00
5th "	77.92	7	4	171.00
6th "	94.86	8	6	204.00
7th "	112.25	9	7	236.00
8th "	130.07	10	5	267.00
9th "	148.29	11	2	298.00
10th "	166.88	11	9	328.00

2.

At end of	Reserve	Automatic Extension		Paid-up Insurance
		Years	Months	
1st year	\$ 22.25	2	4	\$ 54.00
2nd "	45.30	4	9	106.00
3rd "	69.17	7	1	158.00
4th "	93.88	9	3	210.00
5th "	119.46	11	2	262.00
6th "	145.93	12	10	313.00
7th "	173.31	14	4	364.00
8th "	201.62	15	7	414.00
9th "	230.88	16	8	464.00
10th "	261.10	17	7	513.00

Answers

Page 227-Continued

3.

At end of	Reserve	Automatic Extension		Pure Endowment	Paid-up Insurance
		Years	Months		
1st year	\$ 33.15	3	6	\$ 58.78
2nd "	67.59	7	2	116.63
3rd "	103.38	10	7		173.55
4th "	140.58	13	8	229.54
5 th "	179.23	16	3	\$33.08	284.54

5. $\$ 316.58$.
6. $\$ 13,493.46$.
7. $\$ 30.29$.
8. $\$ 3,456.10$.

Page 235

1. $\$ 306.79$, Net Level Reserve; $\$ 301.48$, F.P.T. Reserve.
2. $\$ 18.75 ; \$ 53.71 ; \$ 90.03$.
3. $\$ 10.90 ; \$ 46.14 ; \$ 82.75$.
4. $\$ 32.09 ; \$ 34.88 ; \$ 38.26 ; \$ 42.37$.
5. $\$ 18.47 ; \$ 20.64 ; \$ 23.42 ; \$ 27.04$.
6. $\$ 66.26$; $\$ 66.75$; $\$ 67.44 ; \$ 68.42$.

Page 236

1. $\$ 13,534.60$.
2. (a) $\$ 7,966.16$.
3. $\$ 23,074.00$.
4. $\$ 10,169.80$.
(b) $\$ 14,376.56$.
5. $\$ 1,000.00$.
6. 14 yrs. 7 mos.
7. $\$ 7.79$; $\$ 15.48$.
8. $\$ 7.79 ; \$ 23.68$.
9. $\$ 7.79 ; \$ 41.61$.

Review Problems

Pages 237-243

1. 80%.
2. Single discount; $\$ 4$.
3. $\$ 79.40$.
4. 60%; $\$ 3,900$.
5. 66%; $\$ 66 ; 34 \%$.
6. 0.80 .
7. $\$ 12 ; \$ 14.40 ; \$ 18$.
8. $\$ 72.60 ; \$ 90.75$.
9. $\$ 675$.
10. $\$ 1,192.31$.
11. $\$ 396.04$.
12. Jones' offer by $\$ 24.18$.
13. 24.49%.
14. $\$ 515.46$.
15. $\$ 548.90$.
16. $\$ 651.81$.
17. 71% months.
18. $\$ 3,101.89$.
19. 8.347%.
20. $\$ 2,316.61$.
21. $81 / 2$ months.
22. (a) $\$ 1,031.45$.
(b) $\$ 5.35$.
23. $\$ 4,004.13$.
24. $\$ 279.76$.
[24. 12.68%.
25. $\$ 1,029.12$.
26. 8.16%; 8.41%.
,

Pages 237-243-Continued

29. $d=5.66 \%, j_{4}=5.87 \%, f_{4}=5.78 \%$.
30. $i=6.38 \%, j_{4}=6.24 \%, f_{4}=6.14 \%$.
31. $i=6.23 \%, d=5.86 \%, j_{4}=6.09 \%$.
32. $i=6.14 \%, d=5.78 \%, f_{4}=5.91 \%$.
33. 1.4778%.
34. Yes, and save $\$ 133.21$.
35. (a) $\$ 7,721.73$.
(b) $\$ 7,052.25$.
36. $\$ 350.36$.
37. 8; $\$ 244.57$.
38. $\$ 3,648.80$.
39. $j_{2}=5.40 \% ; i=5.47 \%$.
40. $i=5.51$.
41. $\$ 10,106.20$.
42. $\$ 270.33$.
43. $n=14$; $\$ 479.20$.
44. $\$ 12,177.03$.
45. 41 full payments; $\$ 125.90$.
46. $\$ 3,997.64$.
47. Yes.
48. $\$ 16.04$.
49. $R=\$ 243.89$.
50. $\$ 24,649.90 ; \$ 54,649.90$.
51. $\$ 13,329.09 ; 5.6 \%$.
52. 1st method better by $\$ 344.66$ a year.
53. 4 full payments; $\$ 1,073.71$ at end of 5 years.
54. $\$ 8,348.40$.
55. 27.522%; $\$ 1,000$.
56. $R=\$ 399.80$.
B.V. $=\$ 2,834.56$.
57. \$925.61.
58. $\$ 927.66$.
59. $\$ 914.51$.
60. $P=\$ 9,376.97$.
61. $\$ 972.40$.
62. (a) $\$ 17,626.51$.
(b) $\$ 2,227.60$.
63. $\$ 6,319.55$.
64. 1,620 units.
65. 1,862 units.
66. $\$ 9,444.17$.
67. $\$ 10,518.61$ by Bankers' Rule.
68. $j_{2}=5.3914 \%$.

Miscellaneous

72. 5 years.
73. B's offer.
74. $\frac{\log 0.5}{\log (1-d)}$.
75. Yes. About 41 yrs. to exhaust principal.
76. $\$ 3,391.75$; $\$ 437.09$.
77. $18+$ years.
78. \$188,687.20.
79. Yes.
80. 11.26%.
81. 6184.
1. . 05827.
2. . 0285.
3. $\$ 1,491.83$.
4. . 0805.
5. . 094.
6. . 053.

INDEX

[Numbers Refer to Pages]

Account, equated date of, 28
Accrued dividend on a bond, 150
Accumulated value:
of an annuity, 58
of a principal, 9
Accumulation of discount, 149
Accumulation schedule, 111
American Experience Table, 164, 176, 183
Amortization:
compared with sinking fund, 116
of a premium on a bond, 147
of a principal (debt), 112
Amount:
at compound interest, 35,39
at simple interest, 1
in a sinking fund, 113
of an annuity, 57
Annual premium, 200
Annual rent, 56
Annuity bond, 152
Annuity certain:
amount of, 57
annual rent of, 56
deferred, 89
defined, 56
due, 83
interest on, 92
periodic payment of, 97
periodic rent of, 56
present value of, 63
term of, 56, 95
Annuity due:
certain, 83
life, 186
Bank discount, 12
Beneficiary, 198
Benefits of an insurance, 198
Bond:
accrued dividend on, 150
accumulation of discount on, 149
amortization of premium on, 147
defined, 141
dividend of, 141
face value of, 141
purchase price of, 141
quoted price of, 150
redemption price of, 141
tables, 154

Book value:
of a bond, 147
of a debt, 113
of a depreciating asset, 123
Capitalized cost, 100, 102
Combination, 167
Commutation symbols, 183
Composite life, 136
Compound amount, 35, 36, 39
Compound discount, 42, 53
Compound events, 169
Compound interest, 35
Contingent annuity, 57
Continuous conversion, 243
Conversion period, 35

Date:

equated 25,28
focal, 25
Decreasing annuity, 105
Deferred annuity:
certain, 89
life, 186
Dependent cvents, 171
Depreciation:
defined, 122
fixed percentage method, 125
of mining property, 134
reserve, 122
sinking fund method, 128
straight line method, 123
unit cost method, 130
Discount:
accumulation of, 149
bank, 12
compound, 42, 53
rate, 12
simple, 15
true, 9
Dividend rate, 141
Dividends, 141

Effective rate, 38, 53

Endowment:
insurance, 204
period, 204
pure, 182

Equated date, 25
of an account, 29
Equated time, 17, 50
Equation of value, 24, 48
Equivalent debts, 23
Events:
dependent, 170
independent, 170
mutually exclusive, 169
Exact simple interest, 3
Expectation, mathematical, 172
Extended insurance, 224
Face of note, 12
Face value of a bond, 141
Fackler's accumulation formula, 215
Factorial, 166
Forborne temporary life annuity due, 189
Force of discount, 243
Force of interest, 243
Full preliminary term, 227
Gross premiums, 199, 221
Illinois Standard, 231
Increasing annuity, 105
Independent events, 170
Insurance:
definitions, 198
endowment, 204
limited payment life, 201
ordinary life, 200
term, 202
whole life, 199
Interest:
compound, 35
effective rate of, 38
force of, 243
nominal rate of, 38
simple, 1
Investment rate, 141
Life annuity:
deferred, 186
due, 186
present value of, 185
temporary, 187
Life insurance, see Insurance
Loading, 121
Makeham's formula, 144
Mathematical expectation, 172
Maturity value, 9
Mining property, depreciation of, 134
Modified preliminary term, 231
Mortality table, 176
Natural premium, 203
Net annual premiums:
for an endowment policy, 205

Net annual premiums (Continued):
for a limited payment policy, 201
for an ordinary life policy, 200
for a term policy, 203
Net premiums, 198
Net single premiums:
for endowment insurance, 204
for whole life insurance, 199
for term insurance, 202
Nominal rate, 38
Non-forfeiture table, 223
Ordinary life policy, 200
Ordinary interest, 3
Paid-up insurance, 225
Par value of a bond, 141
Period, conversion, 38
Periodic rent, 57
Perpetuity, 100
Policy:
endowment, 204
holder of, 198
limited payment life, 201
options, 223
ordinary life, 200
surrender or loan value of, 223
term, 202
whole life, 199
Premium:
amortization of, 147
annual, 200, 203, 204
gross, 221
natural, 203
net, 198
net single, 199
on a bond, 144
Present value:
of an annuity certain, 63
of a debt, 9,42
of a life annuity, 185
Price, redemption, 141
Principal, 1
Probability:
a priori, 162
defined, 163
empirical, 164
history of, 161
Proceeds, 12
Prospective method of valuation, 216
Purchase price of bonds, 141
Pure endowment, 182

Rate:

dividend, 141
investment, 141
of depreciation, 125
of discount, 12,53
of interest, 1,38

Redemption price, 141
Rent, periodic, 57
Reserve:
meaning of, 212
terminal, 213
Retrospective method, 213
Scrap value, 123
Serial bonds, 153
Simple discount, 15
Simple interest, 1
Sinking fund:
accumulation schedule, 111
compared with amortization, 116
defined, 111
method of depreciation, 128
Straight line method of depreciation, 123
Surrender or loan value, 223
Temporary life annuity, 187
Terminal reserve, 213
Term insurance, 202
Time:
equated, 27
methods of counting, 4

True discount, 9
Unit Cost Method, 130
Valuation:
full level promium method, 227
full preliminary term plan, 227
Illinois Standard plan, 231
modified preliminary term plan, 231
of bonds, 141
prospective method, 216
retrospective method, 213
Value:
book, 113, 123, 147
equation of, 24, 48
face value, 12,141
maturity value, 9
present value, $9,42,63$
scrap, 123
wearing, 123
Wearing value, 123
Whole life insurance, 199

[^0]: * Bank discount is frequently referred to as simple discount.

[^1]: * Miller and Richardson, Algebra: Commercial-Statistical, D. Van Nostrand Co.

[^2]: * In the construction of the line diagram, (a) place at the respective points the maturity values, and (b) place the payments and the debts at different levels.

[^3]: * When terms of credit are given on the different items, we must first find the due date of each item.
 \dagger When a note is given without interest, the time is figured to the due date of the note, but when the note bears interest the time is figured to the date that the note is given.

[^4]: * When it is not desired to emphasize the interest rate, this symbol is frequently written $\boldsymbol{s i n}_{\boldsymbol{n}}$.
 \dagger See page \mathbf{x} of this text for a list of formulas from Alg.: Com.-Stat.

[^5]: * For additional review nrohlems. sce end of this book.

[^6]: * For additional review problems, see end of this book.

[^7]: * It will be observed from (2) that, when $S=0$, we have $x=1$ for any assigned value of n. That is, the book value is reduced to zero at the end of 1 year, no matter what is the estimated value of n. This means that the method is impractical when S is zero. Even if the ratio of S to C is small, the depreciation charge is likely to be unreasonably large during the first years of operation.

[^8]: * For additional review problems, see end of this book.

[^9]: * The book value of a bond on a dividend date is the price P at which the bond would sell at a given investment rate.

[^10]: * That is, the dividends are payable January 1 and July 1.

[^11]: * The symbol ${ }_{n} P_{r}$ is used to denote the number of permutations of n things taken r at a time.
 $\dagger n!$ is a symbol which stands for the product of all the integers from 1 up to anc including n, and is read "factorial n."

[^12]: * United States Life Tables, J. W. Glover, published by the Bureau of Census, Washington, D. C.

[^13]: *We shall frequently use the symbol (x) to mean "a person aged x " or "a life aged x."

[^14]: * Certain insurance agreements specify the payment of an indemnity to the individual himself in case he is disabled by either accident or sickness. This is known as accident and health insurance, but we shall not attempt to treat it in this book.

[^15]: * Your insurance age is that of your nearest birthday.

[^16]: * The reserve on any one policy at the end of any policy year is known as the terminal reserve for that year, or the policy value.

[^17]: * The influenza epidemic of 1918 is an example of this.

[^18]: * Some companies begin the non-forfeiture table at the end of the second year.

[^19]: * These methods are discussed in later sections.

[^20]: * That is, the premium on a $\$ 1,000$ ordinary life policy as of age 36 .

[^21]: * This is spoken of as the full preliminary term plan to distinguish it from any one of the modified plans.

[^22]: * Menge, W. O. and Glover, J. W., An Introduction to the Mathematics of Life Insurance, 1935, p. 108.

