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PREFACE

rilHIS book may be used by students who have completed a

^ course in arithmetic but who have not previously studied

algebra. The statements of all principles and the explana-

tions of all examples have been made as simple and direct as

possible. Emphasis has been placed upon the reason for each

step taken, whether it be in the proof of a principle or in the

explanation of an exercise. Such proofs of principles as may

be omitted by the student when taking the subject for the first

time have been plainly marked.

The examples are all new and have not been copied from

other text-books. There are 4,465 exercises for written solu-

tion, 3,301 for mental solution, and 423 explanatory examples,

— a total of 8,189 examples.

These examples have been so constructed and graded as to

contain a great variety of number-combinations. Thus the

student is constantly drilled in arithmetic.

The writer first used mental exercises in the class-room

in 1895, and has constantly employed them since that time

with the exception of the years 1897-99, which were spent in

graduate study at Clark University. The first ten or fifteen

minutes of each recitation period are commonly devoted by

his pupils to the mental solution of a large number of simple

drill problems. In this way all of the pupils have an oppor-

tunity to recite several times during every recitation period.
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After they gain confidence and a certain amount of skill in

solving the mental exercises, it is found that the more difficult

problems which are given for written solution are undertaken

with readiness.

By the use of the mental exercises the teacher is able to

gain a better knowledge of the progress of the pupil than by

giving many written examinations, and there is the advantage

that mistakes on the part of the pupil can be corrected imme-

diately. Written examinations show the teacher the way the

pupil has thought, but mental exercises show the pupil the

way to think in the future.

The applied problems are concerned with subjects of modern

interest. In particular, problems have been introduced illus-

trating the applications of certain familiar laws of physics,

such as those relating to the lever, falling bodies, expansion

of gases, etc. The traditional problems which involve un-

natural and absurd situations have been excluded.

The graphs were drawn by the writer, and will be found to

be accurate. The explanations of the examples have been

given in such a way that all reference to graphs may be omit-

ted if the time devoted to the subject is found to be insufficient

for their consideration.

A system of numerical checks is used throughout the book,

and the pupil is constantly encouraged to test results obtained

rather than to depend upon the authority of the teacher or of

a printed list of answers.

In the development of the subject the distinction between

natural forms of number and " artificial " or invented forms

of number has been constantly kept in view, and by means of

the Principle of No Exception the necessity has been shown
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for the invention of negative number and other forms of

"artificial" number.

Simple proofs and illustrations of the principles of equiva-

lence of equations have been given, and the distinction be-

tween identical and conditional equalities has been carefully

pointed out.

Attention has been given to detail in the classification and

arrangement of the subject-matter for the purpose of making

it easily available for reference and of simplifying the presen-

tation of the subject.

ALBERT HARRY WHEELER.

Worcester, Mass.

April, 1907.

Publishers* Note. — The Brief Edition of this book, which takes

the pupil as far as Quadratics, contains 6,327 examples.





TABLE OF CONTENTS

CHAPTER I

First Ideas
Pac«

Letters may be usefl to represent numbers 1

Symbols of number and of operation carried over from arithmetic to algebra 1

Definitions of certain words which constitute part of the language of als^ebra 4
Algebraic functions 5

Distinction between Conditional Equations and Identical Equations ... 7

Numerical Substitutions 7

Axioms 9

The Principle of Substitution 9

NUMERICAL EXPRESSIONS

CHAPTER II

An Extension of the Idea of Number

The Principle of No Exception 12

I'ositive and Nejjfative Quantities 13

Invention of Negative Numbers 18

CHAPTER III

Fundamental Laws of Algebra

Laws of Commutation and Association for the Addition and Subtraction of

Positive and Negative Numbers 23

Steps on a Line 24

Law of Signs 28

CHAPTER IV

Addition and Subtraction of Positive and Negative Numbers

Symbols of Grouping 29

I. Addition 32

II. Subtraction 37

Correspondence between the Addition and Subtraction of Positive and Nega-
tive Numbers 39



X TABLE OF CONTENTS

CHAPTER V

Multiplication and Division of Positive and Negative Numbers

I. MULTIPLICATION Page

Definitions 45

An extended definition of multiplication 46

Law of Signs for Multiplication 49

Coninuitative Law for Multiplication 50

Associative Law for Multiplication 52

Distributive Law for Multiplication 52

Zero as a Factor 53

Principles Relating to Powers 55

II. DIVISION

Definitions .... * 57

Zero cannot be used as a divisor 58

Law of Signs for Division • 59

An extended definition of division 60

Commutative Law for Division 61

Associative Law for Division 62

Principles Governing the Removal and Insertion of Parentheses 62

Distributive Law for Division 65

lilTERAL EXPRESSIONS
OPERATIONS WITH INTEGRAL ALGEBRAIC EXPRESSIONS

CHAPTER VI

Addition and Subtraction
Definitions 69

Addition of Monomials 73

(a) Addition of Dissimilar Terms 73

(b) Addition of Similar Terms 74

Subtraction of Monomials 77

Reduction of a Polynomial to Simplest Form 80

The Check of Arbitrary Values 81

Addition of Polynomials 81

Detached Coefficients 82

Subtraction of Polynomials 84

CHAPTER VII

Multiplication

Principles Relating to Powers 88

Product of Powers of the Same Base 88

Powers of Products of Different Bases 89

Product of Two or More Monomials 9'



TABLE OF CONTENTS xi

Pagr
Multiplication of a Polynomial by a Monomial 94
Multiplication of One Polynomial by Another 96
Detached Coefficients 98

Homogeneity as a Check upon Accuracy 99

liemoval of Parentheses 101

Standard Identities . ." 102

Square of a Binomial Sum 102

Square of a Binomial Difference 103

Multiplication of the Sum of Two Numbers by their Difference . . 104

Square of a Polynomial 105

Product of Two Binomials of the Forms J" + a and a: + 6 107

Product of Two Binomials of the Forms aa: + 6 and ca: + rf .... 108

Powers of a Binomial Ill

CHAPTER VIII

Division

Law of Exponents 112

One Power Divided by another Power of the Same Base ....... 113

Division of One Monomial by Another 114

Division of a Polynomial by a Monomial 116

Division of One Polynomial by Another 118

Development of the Process 119

The Division Transformation 124

Detached Coefficients in DivisioD 127

Numerical Checks in Division 127

Remainder Theorem 129

Synthetic Division 130

Factor Theorem 132

Applications of the Remainder Theorem 135

Law of Polynomial Quotients 135

CHAPTER IX

Graphical Representation of the Variation
OF Functions of a Single Variable

Variation of a Function 137

Specification of Points in a Plane 138

Locating Points by Coordinates 139

Typical Graphs 143

Inverse Use of Graphs 147

CHAPTER X
General Principles Governing the Transformation

OF Algebraic Equations
Identical Equations 149

Conditional Equations 152

Equivalent Equations 155



xii TABLE OF CONTENTS
Page

General Principles Governing Transformations of Conditional Equations . 156

I. Identical Substitution 156

II. Addition and Subtraction 156

Applications

:

(i.) Transposition of Terms 157

(ii.) Suppression of Identical Terms 157

(iii.) Reversal of the Sign of every Term 158

(iv.) Reduction to the Standard Form -.1 = 158

m. Multiplication 161

Principle Relating to Extra Roots 162

IV. Division . 163

Principle Relating to Loss of Roots *
. . 163

Applications

:

(i.) Freeing the members of an equation of fractional

coefficients 164

(ii.) Transformation so that a particular term shall have a

specified coefficient 165

The Process of Derivation is not always Reversible 165

CHAPTER XI

Equations of the First Degree Containing One Unknown
Solution of a Linear Equation 168

Suggestions concerning the solution of linear equations 171

Algebraic Expression 175

Simple Problems Involving One Unknown Quantity 177

Problems in Science 183

CHAPTER XII

Factors of Rational Integral Expressions

The Problem of Factoring 185

Definitions 185

Expressions in which all of the terms contain a common monomial factor . 186

Expressions in which groups of terms have a common factor 188

Type I. Trinomial Squares 190

Type IL The Difference of Two Squares 196

Expressions of the form x* ± hx^y^ -\- y^ 200

Type III. Trinomials of the type x^ + sx -{-

p

201

Trinomials of the form a:2"* + sx*-f/3 204

Trinomials of the form x^ -f sxy + py^ 205

Tvpe IV. Trinomials of the type ax'^ -\- hx + c 206

First Method 206

Second or Trial Method 207

Type V. Binomial Sums and Differences 212

Polvnomials of at least the third degree with reference to some letter, x . 214

Suggestions Relating to Methods 216

Application of the Principles of Factoring to the Solution of Equations . 223

Principle of Equivalence 224



TABLE OF CONTENTS Xlll

CHAPTER XIII

Highest Common Factor
Page

Definitions 228

Highest Common Factor by Factoring 229

Monomial Expressions 229

Polynomial Expressions 231

Highest Common Factor of Polynomials 233

Principles Governing the Process 233

Development of the Process 235

Highest Common Factor of Three or More Expressions 243

CHAPTER XIV

Lowest Common Multiple

Definitions 245

Lowest Common Multiple by Inspection 255

Lowest Common Multiple by means of Highest Common Factor .... 247

Lowest Common Multiple of Three or More Expressions 248

Mental Review Exercise 249

CHAPTER XV
Rational Fhactions

Extension of the Idea of Number by the Principle of No Exception . . . 251

Definitions
' 252

Principles Relating to the Signs of a Fraction 254

Reduction to Lowest Terms 257

Reduction of Improper Fractions to Integral or Mixed Expressions . . . 261

Reduction of Fractions to Equivalent Fractions having a Common Denom-

inator 262

Addition and Subtraction of Fractions 265

Reduction of Integral or Mixed Expressions to Fractional Forms .... 269

Principles Fundamental to the Processes of Multiplication and Division In-

volving Fractions 270

Multiplication of an Integer by a Fractional Multiplier 272

Multiplication of One Fraction by Another 272

Power of a Fraction 275

Division of a Whole Number by a Fraction 277

Division of One Fraction by Another 278

Direct Process 278

Indirect Process. (For the operation of division by a fraction may
be substituted that of multiplication by the reciprocal of the

divisor) 279

Division of One Fraction by Another 280

Complex Fractions , 283

Continued Fractions 286



xiv TABLE OF CONTENTS
Paob

Indeterminate Forms 290

Interpretation of the Indeterminate Forms q' q' oo ' ° • • 292

Factors of Fractional Expressions 295

Mental Review Exercise 296

CHAPTER XVI

Fractional and Literal Equations

fractional equations

Principle of Equivalence 298

General Directions for Solving Fractional Equations 302

LITERAL EQUATIONS

Integral Literal Equations 306

Literal Equations as Formulas 308

Numerical Checks for the Solutions of Literal Equations 310

Fractional Literal Equations 312

Problems Solved by Fractional Equations 316

General Problems 318

The Interpretation of Solutions of Problems 321

Problems in Physics 323

Review Exercise 326

CHAPTER XVII

Simultaneous Linear Equations

general principles of equivalence

Definitions 327

Graph of a Linear Equation containing Two Unknowns 328

Classification of Pairs of Kquations 329

Independent Equations 330

Consistent Equations 330

Inconsistent Equations 331

Equivalent Equations 332

Equivalent Systems of Equations 333

solutions of SYSTEMS OF SIMULTANEOUS EQUATIONS
Elimination 334

General Principles 334

I. Elimination by Substitution 335

Systems of Linear Equations containing Two Unknowns .... 836

Elimination by Comparison 339

II. Elimination by Addition or Subtraction 341

General Solution of a System of Two Consistent, Independent, Linear Equa-

tions containing Two Unknown Numbers 34G

Systems of Linear Equations containing Three or More Unknowns , . . 347

Graphical Record of the Process of Solution 348

Systems of Fractional K(iuations Solved Like Equations of the First Degree 355

Problems Involving Simultaneous Equations 359



TABLE OF CONTENTS XY

CHAPTER XVIII

Evolution
Page

Definitions 366

Rational or Cominensurablfe Numbers and Irrational or Incommensurable

Numbers 367

General Principles Governing Root Extraction 368

The Principal Root of a Number 369

Roots of Monomials 371

Principles Governing Operations with Radical Symbols 371

Root of a Power 371

Root of a Product 371

Root of a Root 372

Power of a Root 373

Root of a Quotient 374

Square Roots of Polynomials 375

Cul»e Roots of Polynomials 378

Square Roots of Arithmetic Numbers 381

Cube Roots of Arithmetic Numbers 387

CHAPTER XIX

Theory of Exponents

Extension of the Meaning of Exponent 391

Fundamental Index Laws 391

Interpretation of Zero and Unity as Exponents 392

A Negative Integer as an Exponent 393

A Positive Fraction as an Exponent 396

A Negative Fraction as an Exponent 398

Products of Powers and Quotients of Powers 402

Powers of Powers 404

1 'owers of Products and Powers of Quotients 406

CHAPTER XX
Irrational Numbers and the Arithmetic Theory of Surds

I. IRRATIONAL NUMBERS

Commensurable and Incommensurable Numbers 411

Representation of Irrational Numbers by their Approximate Values . . . 412

II. ARITHMETIC THEORY OF SURDS

Definitions 415

Reduction of Surds to Simplest Form , 416

I. The Radicand an Integer 417

II. The Radicand a Fraction .....419
HI. Reduction of a Surd to an Equivalent Surd of Lower Order . . 422



XVI TABLE OF CONTENTS
Pagb

Addition and Subtraction of Surds 423

Reduction to Equivalent Forms 425

Change of Order 427

Multiplication of Surds 428

Multiplication of Polynomials Involving Surds 430

Involution of Surds 432

Division of Surds 432

Rationalization 434

Factors Involving Surds 439

Evolution of Surds 441

Properties of Quadratic Surds 442

Square Root of a Binomial Quadratic Surd 444

CHAPTER XXI

Imaginary and Complex Numbers

I. IMAGINARY NUMBERS
The " Principle of No Exception," applied, leads to the Invention of Im-

aginary Numbers 446

Multiplication by t 447

Powers of I 447

Division by j 448

Addition and Subtraction of Imaginary Numbers 450

Multiplication of Imaginary Numbers 451

Division of Imaginary Numbers 453

The Operation of " Realizing" the Denominator of a Fraction 453

Graphical Representation of Imaginary Nujnbers 456

IT. COMPLEX NUMBERS
Addition and Subtraction of Complex Numbers 459

Multiplication of Complex Numbers 459

Division of Complex Numbers 459

Complex Factors of Rational Integral Expressions 462

Square Root of Complex Numbers 462

Graphical Representation of Complex Numbers 464

The Number System of Algebra Complete 466

Mental Review Exercise 467

CHAPTER XXII

Equations of the Second Degree Containing One Unknown

Definitions 469

Standard Quadratic Equation ax^ -\- hx -\- c = 469

Graphs of Quadratic Equations 470

I. Incomplete Quadratic Equations 472

First Method. Solution by Factoring 473

Second Method. Solution by Extracting the Square Roots .... 474



TABLE OF CONTENTS xvu
Page

II. Complete Quadratic Equations 477

Solution by Factoring 477

Solution by Completing the Square 478

Completion of the Square with respect to a given Binomial . 479

Hindu Method 485

General Solution 487

Rational Fractional Equations containing One Unknown 491

Principle Relating to Extra Roots 491

Solution of Formulas for Specified Letters 502

Solution of Problems 503

Problems in Physics 509

CHAPTER XXIII

Thkory of Quadratic Equations Containing One Unknown

Nature of the Roots 514

The Discriminant 514

Relations Between the Roots and Coefficients 517

[
Formation of an Equation having Specified Roots 519

One Root Known 522

Mental Review Exercise 523

CHAPTER XXIV

Irrational Equations and Special Equations
Containing a Single Unknown

IRRATIONAL EQUATIONS

Principle Relating to Extra Roots 527
P

. Equations of the form x^ = a 535

^ SPECIAL EQUATIONS
Equations which are Quadratic with Reference to some Particular Power

of the Unknown 538

liquations which are Quadratic with Reference to some Expression Contain-

ing the Unknown 541

Binomial Equations 545

Reciprocal Equations 545

Problems in Physics 547

Review Exercise 548

CHAPTER XXV
Systems of Simultaneous Equations
Involving Quadratic Equations

systems of two equations containing two unknowns
I The Eliminant 551

Number of Solutions 552



xviii TABLE OF CONTENTS
Page

I. Elimination by Substitution 553

Graphical Interpretation 554

II. Reduction of Systems of E(iuations by Factoring 558

Graphical Interpretation 560

III. Systems of Two Honiogeneous Equations of the Second Degree with

Reference to Two Unknowns 562

Solution by Factoring 562

Solution by Expressing the Value of One Unknown as a Multiple of

the Other 566

IV. Reduction of Systems of Equations by Division 570

V. Systems of Symmetric Equations 572

Solutions by Special Devices 577

System of Three or More Equations Containing Three or More
Unknowns 584

Problems 590

CHAPTER XXVI

Ratio, Proportion, and Variation

I. RATIO

Definitions 594

Approximate Value of an Incommensurable Ratio 596

II. PROPORTION
General Principles 599

Problems in Physics 605

III. variation
One Independent Variable 609

Fundamental Principle 610

Two or More Independent Variables 611

General Principles 612

Problems in Physics 614

Mental Review Exercise 615

CHAPTER XXVII

The Progressions

The Sequence 619

I. arithmetic progression

Arithmetic Progression 620

Arithmetic Means 622

Series 623

Sum of the Terms of an Arithmetic Progression 624

Problems in Physics 627



TABLE OF CONTENTS XIX

II. HARMONIC PROGRESSION Pagk

Harmonic Progression 627

Harmonic Means 628

III. GEOMETRIC PROGRESSION

Geometric Progression 630

Geometric Means 632

Sum of the 'J'erms of a Geometric Progression 634

Sum of tlie Terms of an Infinite Decreasing Geometric Progression . . . 636

Generating Fraction of a Repeating Decimal Fraction 638

Evaluation of a Repeating Decimal Fraction 639

Review Exercise 641

CHAPTER XXVIII

The Binomial Theorem

The Binomial Theorem for Positive Integral Exponents 643

Multiplication and Division Rule for Calculating the Coefficients Suc-

cessively 643

Proof of the Binomial Theorem for Positive Integral Exponents by Mathe-

matical Induction 647

The Binomial Theorem for Negative or Fractional Exponents 649

Selection of a Particular Term in the Expansion of the Power of a Binomial 651

The Factorial Notation 651

Binomial Coefficients 656

Aj)plication of the Binomial Theorem to the Extraction of Roots of Arith-

metic Numbers 656

Mental Review Exercise 657

Review Exercise 658

INDEX 661





FIRST COURSE IN ALGEBRA

CHAPTER I

FIRST IDEAS

1. The student of mathematics who undertakes the study of

algebra will find at the outset that the new science is but arith-

metic in a different form and under another name.

2. In algebra numbers are represented by letters, and while defi-

nite values are not assigned to the different letters employed, they

are used with the idea that each letter represents some numerical

value, and that different letters commonly represent different

values.

3. Letters which stand for numbers whose values remain fixed

and unchanged, either throughout the discussion of a particular

problem or for all time, are called constants, and those whose

values may be supposed to change during the discussion of a prob-

lem are called variables.

Letters which represent numbers whose values are known are

called knowns, and those whose values may for the moment be

unknown are commonly called unknowns.
It is customary in elementary algebra to represent constants by

the first few letters of the alphabet, «, ft, c, and the unknown values,

and also variables, by the last few letters, ^, ?/, z.

In many applications of algebra to formulas of physics and other

sciences, or even in certain algebraic expressions, any letter or group

of letters may be chosen as representing variables or unknowns ; in

which case the remaining letters, if there be any, may be regarded

as constants, or knowns.

4. The symbols used to denote the operations of addition,

subtraction, multiplication, division, and root extraction in arith-

metic are used in the same sense in algebra.
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5. The symbol for addition, +, is read " plus," and for subtraction,

—, is read "minus." These symbols indicate that the numbers be-

fore which they are placed are to be added to or subtracted from the

numbers which immediately precede them.

Thus, the order of operations is from left to right.

For example, a -\- b, read "a plus ^>," means that some number

represented by ^ is to be added to some number represented by a.

Again, x — y^ read ".r minus v^," means that, if x and ?/ represent

numbers, the number represented by y is to be subtracted from that

represented by x,

6. Multiplication may be indicated in several ways; by the

symbol X ; by a dot written higher than a decimal point placed

between the multiplicand and multiplier; or, when no possible am-

biguity can arise, by simply writing the multiplicand and multiplier

consecutively.

Thus, if a and h are taken to represent any two numbers, their

product may be written as a X b, a • b, or simply as a b.

In each case the product is read either "a multiplied by 6," or

"rtr times ^."

The sign for multiplication is usually omitted between two letters,

or between a number and a letter.

Thus, a b means a X b; Amn means 4: X m X n.

The sign for multiplication cannot be omitted between numerals

in arithmetic because of the positional system of notation employed.

Thus, 72 must be regarded as standing for seventy-two wherever

it is found, and not as 7 X 2, or 14.

To avoid confusion with the decimal point, the dot, when used as

a symbol for multiplication, should be written somewhat higher.

Thus, 7 • 2 may be taken as indicating the product of 7 and 2,

while 7.2 will be interpreted as a decimal, 7 plus 2 tenths.

7. The s3mabol for division is -f- . Thus, a — b, read " a divided

by b" means that some number represented by a is to be divided

by another number represented by b. The number a is regarded

as the dividend and the number b as the divisor, as in arithmetic.

As alternative notations for division we have the fractional

notation, j , the ratio notation, a : b, and the soliclus notar

tion, a/b.
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8. In an unbroken chain of additions and subtractions, or in an

unbroken chain of multiplications and divisions, the operations are

to be carried out successively from left to right.

Thus, from the chain of additions 3 + 4 + 5 + 6 we obtain 18,

by performing the operations successively.

Again, performing the operations of the chain 25 — 8 — 6 — 3

successively from left to right, we obtain as a result 8.

The result obtained by performing successively the multiplications

of the chain 2 X -4 X 8 is 64.

The number resulting from performing the divisions of the chain

8-7-4-7-2, successively from left to right, is 1.

9. However, in a chain of operations containing additions, sub-

tractions, multiplications and divisions together, the mult'qdicatmis

and dkisions must he performed first in the order as indicated, and

then the operations of addition and subtraction in their order.

Thus, to find the number represented by the chain of operations

5 + 12 X 2 -r- 3 — 6 -f- 3 + 1, we may proceed as follows :

Multiplying 12 by 2, and dividing the product 24 by 3, we obtain

8 ; also, dividing 6 by 3, we have as a quotient 2.

Hence the above chain of operations reduces to the chain

5 + 8 — 2+1.
Performing these last additions and subtractions successively from

left to right, we obtain 12 as a result.

Exercise I. 1.

Find the values of the following

:

1. 5 + 2X3. 11. 1 + 2X3 + 4X5.
2. 10 - 4 X 2. 12. 5 + 4X3-^2-l.
3. 12 + 10-^2. 13. 125 -^ 25 — 25 -h 5 + 2.

4. 15 — 10-^5. 14. 5X5 — 4X4-3X3.
5. 7 + 6 + 5X4. 15. 7 X 8 -^ 14 + 3 X 2 -^ 3.

6. 7 + 6X5 + 4. 16. 8 -^ 2 X 4 — 4 -^ 2 X 6 + 12.

7. 7X6 + 5X4. 17. 6x3-^2-6X2-^3 + 7.

8. 8X5 — 6X3. 18. 6-^2X4-4^2X6 + 6X4-f-2.

9. 20-T-4 + 28^7. 19. 2X3X4 + 3X4X2+4X2X3.
0. 8-^2x3-^4+l. 20. 2X4X8-8-f-4-T-2 + 4-f-2X8.

21. 20 -f- 4 X 5 - 20 -^ 5 X 4 - 20 -^ 4 -r- 5.
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10. Anything which can be multiplied or divided, — that is,

which can be increased, separated into parts, or measured, is called

quantity.

E. g. A line is a quantity because it can be doubled, tripled, halved,

etc., and its length can be expressed numerically in terms of another line

of definite length, such as a foot or a yard, taken as a unit of measure.

Weight is a quantity, since it can be measured in pounds, ounces,

grams, etc.

Time is a species of quantity whose measure can be expressed in terms

of seconds, minutes, hours, etc.

Color is not a quantity, for we cannot say that one color is twice as great,

or one-half as great as another.

The operations of the mind, such as thought, choice, etc., are not quan-

tities, for they are incapable of measurement,— that is, of direct numerical

comparison.

11. Any letter or number upon which an operation is to be per-

formed is called an operand.

12. Any combination of numbers, letters, and symbols of opera-

tion which may be taken, according to the Principles of Algebra, to

represent a number, is called an algebraic expression.

13. Parentheses ( ) may be used to denote that an algebraic

expression enclosed by them is to be treated as a whole throughout

a calculation.

Thus, 3 X (4 -f 5) means 3 X 9, or 27 ; also (4 + 1) (7 -f 2)

means 5 X 9, or 45. (See Chapter III, § 3, also Chapter IV, § 1.)

14. When two numbers are multiplied together the result is

called the product, and each number is called a factor of the

product.

Thus, 12 is the product of 4 and 3.

15. By a continued product is meant a product composed of

three or more factors.

Thus, the continued product of 2, 3 and 4 is 24.

16. An exponent is a small number placed at the right of and

a little above any number or factor to indicate the number of times

that number or factor appears as a factor of a given product.

Thus, 3^ read " 3 to the second power " or " 3 square," means

3X3; 2*, read " 2 to the fourth power," means 2X2X2X2;



FIRST IDEAS 5

a%^, read ''a to the second power, times h to the third power," or

"a square, times b cube," means aXaXbxbxb.
When no exponent is written, the exponent 1 is understood.

Thus, a: means a:^.

17. We shall, at the beginning of the subject, use the terms sum,

difference, remainder, product, quotient, etc., with the same meanings

in algebra as in arithmetic.

18. A whole number, or an integer, is one or a sum of

ones.

Thus, the whole number, or integer, 5 is the sum of five I's.

19. The numerical value of an algebraic expression for speci-

fied values of the letters appearing in it, is defined for the present

as the number obtained by substituting for the letters given nu-

merical values, and performing the indicated operations.

Thus, if X and y represent 2 and 3 respectively, the numeri-

cal value of ^?/ is 6 ; of o^ + ?/ is 5 ; oi x^ + if is 13 ; and that of

5;r — 2 ?/ is 4.

It is to be understood that such values only are to be given to

the letters as will allow the operations to be performed. The neces-

sary restrictions on the values of the letters will be explained as they

appear in later chapters.

20. An expression is said to be a function of some specified

letter appearing in it if a change in the value of the letter produces

in general a change in the value of the expression.

An expression which is a function of x may be indicated by writ-

mgfix), read "function a:*."

The expression "function x " suggests to us, depends for its valiie

ujxm the value of x.

E. g. The distance passed over by a person in a given time depends upon

the rate at which the person travels, and may be spoken of as being a " func-

tion " of the rate.

The time required to build a house depends, among other things, upon

the number of workmen employed, and may be said to be a " function " of

the number of workmen.

The length of a bar of metal depends upon its temperature, and we
may regard the length of a particular bar as being a "function" of the

ti-mperature.
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21. Although different Dumbers in arithmetic are represented by

different definite number symbols, each number may be represented

in an unlimited number of ways by combinations of other numbers.

Thus, the number 24 may be represented by 12 X 2, 6X4,
8 X 3, 20 + 4, 100 -r- 5 + 4, etc.

22. Fixing our attention upon the results of indicated operations,

as in the illustration above, we commonly speak of such expressions

as 12 X 2, 6X4, 20 + 4, etc., as numbers, meaning thereby the

numbers resulting when we perform these operations.

We say that the number 12 X 2 is equal to the number 20 + 4,

since each represents 24 X 1.

23. As a symbol of relation we have in algebra, as in arithmetic,

the sign of equality =, which may be read "equals," "is equal to,"

" is replaceable by," etc.

Thus, 8 + 2 = 10.

24. The statement in symbols that two expressions represent the

same number is called an equatiou.

E.g. 5 + 1 = 4 + 2.

The part at the left of the equality sign is" called the first mem-
ber, and the part at the right the second member, of the equation.

E. g. In 5 + 1 = 4 + 2, 5 + 1 is the first member, and 4 + 2 is the second

member of the equatiou.

25. TTie sign = should never be used except to connect numbers or

expressions which are equal, that is, which standfor the same number.

It should never be used in place ofany form of the verb " to 6e."

E. g. We should write, " Ans. is 8," never " Ans. = 8."

26. Two algebraic expressions are equivalent when they repre-

sent the same numerical value, no matter what particular values

may be assigned to the letters appearing in them.

E. g. 3 ic + ic is equivalent to 4a;; 5^ — 2?/ is equivalent to 3 y.

27. An equality whose members are equivalent expressions is

called an identity.

In general any values may be assigned at will to the letters ap-

pearing in an identity. Such restrictions as may be necessary in

certain cases will be explained in a later chapter.
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28. An equality which is true for particular values only of certain

of the letters appearing in it is called a conditional equation.

E. g. The equation a; + I = 5 is a conditional equation, for the first

member is equivalent to the second only on condition that x be given the

particular value 4.

We shall use the word equation to mean conditional equation,

that is, an equality which is not an identity.

29. In order to distinguish identical from conditional equations

we shall use the triple sign of equality, = (read "is the same as,"

"is identical with," "stands for,") for identical equations, and the

double sign of equality = for conditional equations.

To conform to the usage in arithmetic we shall commonly use the

double sign of equality = histead of the triple sign = when writing

identities in which arithmetic numbers only appear.

Other reasons for this use of the sign will be given in a later

chapter.

Thus, instead of 6 + 2 = 8, we shall write 6 + 2 = 8.

30. The signs > and <, read "is greater than," and "is less

than," respectively, are used as symbols of inequality.

E. g. We may denote that 10 is greater than 8 by writing 10 > 8 ; that

7 is less than 9 by writing 7 < 9.

It should be noted that the larger end of each symbol is directed

toward the greater quantity.

31. The signs of equality or of inequality, when crossed by lines,

are understood as meaning "not equal to," "not greater than," and

"not less than."

E. g. 2 ^f: 3 means that 2 is not equal to 3; 6 j/* 9 means that 6 is not

greater than 9 ; 8 ^ 7 means that 8 is not less than 7.

Exercise I. 2

Find the values represented by the following expressions when
the given numerical values are substituted for the letters :

If a = 4, ^ = 2, c = 5, and d = \^ find the value of

1. a-{- b. 4. b — d. 7. 5 cd.

2. a -{ c. 5. 6 a. 8. abc.

3. c-d, 6. Sbc. 9. a%.
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10. 2al^. 12. a^-^-ab. 14. 2cd-\-ahc.

11. 3aW. 13. (a + %. 15. {a + h){c ^- d).

If a = 2, 6 = 5, c = 1, 6? = 3, find the numerical values repre-

sented by the following expressions:

16. ab 4- he + cc? + da, 20. (a+ c)(6+</)+ («+ c?)(6+c).

17. ac — hd + ab — cd. 21. (a+ />)(^—c)+(6+ c)(c— </).

18. abc + bed -h cda + a^. 22. (a—b){c—d) + (b—c)(d—a).

19. (a4-6)(6+c)+ (6+c)(c+rf). 23. (a+ 6)c+(6+c)6?+(c+c^)a.

If rt = 6, ^ = 3, .r = 7, and y = 1, find the values represented by

the following expressions

:

24. a^ + 61 28. (^^ + />=)^' + (^-^ + f)b.

25. a^ - b\ 29. a*^ + ^//> -f 61

26. a'* + 6 + ^'2 ^ ^. 30. a% + ah'^ - x — y.

27. (rt + by + « + 6. 31. a^r'^ — 6/ — a- + y.

Verify the following algebraic identities for particular values of

the letters appearing in them, by assigning values to the letters :

Ex. 32. {a + \){a + 2) = ^^ + 3a + 2.

If the members are identical they must represent equal numbers for all

values which may be assigned to a.

Accordingly, letting a = 4, we obtain, substituting 4 for a,

(4 + 1)(4 + 2) = 42 + 3x4 + 2

5x6= 16 + 12 + 2

30 = 30.

Accordingly the identity is true for a = 4. By substitution it will be

found to be true for all other values which may be assigned to a.

33. (3^+5)(y+3)=y(^+ 8) + 15. 35. (2/+ 5)^=/+ 5 (2 7/ + 5).

34. {x-\- ^y = x{x+ 6) + 9. 36. w(?w+ 4) + 4 = ?wH4(»z+l).

Ex. 37. {a + by = a'' ^-2ab + h\

Assigning to a and h the values 8 and 2, we obtain by substitution,

(8 + 2)2 = 82 + 2 X 8 X 2 + 22

100 = 64 + 32 + 4

100 B 100.

Ex. 38. {x + d){x + 6) = ^' + (a + b)x \- ah.

Substituting 4, 3, and 2 for a;, a, and 6 respectively, we obtain
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(4 + 3)(4 + 2) = 42 + (3 + 2)4 + 3 X 2

7x6= 16 + 20 + 6

42 = 42.

S9. (^ \- yY ^ 4t: xy = {x — yY.

40. {a' + ^>'0(^' + /) - {ax + hyY = (ay - hx)\

41. {aP' + /)(«' + ^2) = {ax - hyY + {bx + aj/)^.

42. (.^ 4- y)* — ^* — / = 3 ^j/(.r + ?/).

43. a' + (a^ + «6 + 6^)^ = (a^ + ^2) [^^ + (« + ^)'].

44. Or + 3/)* = 2 {x' + 3^^)(^ + ^)^ - {x^ - fY.
45. {a"" + //)(c=^ + ^•^) = {ac + /^af)^ + (ad - bcY.

46. a* + ^' = (« + h){a^ - ab + ^^2).

47. (« - ^)' + 3 ab{a - b) = {a + bY - 3 ab{a + b) - 2 b\

48. {x + yY - {'^ - y)\x + 2/) = 4 xy{x + ?/).

49. {a + 2)2 - 4 (a + 1)2 + 6^2 - 4 (« - 1)^ + {a - 2)^ = 0.

50. {x-\- yY = x» -\-'dx'y -\-^xy''-[-y\

32. An axiom is the statement of a truth which may be inferred

directly from our experience, or from the nature of the things

considered.

To be regarded as an axiom, a truth must be such that it is in-

capable of proof further than its mere statement.

As axioms common to mathematics, we may state the following,

which were called by an early writer on mathematics Common
Truths about Things

:

1. Any number is equal to itself.

E. g. 4 = 4.

2. The Principle of Substitution. The numerical value of

a mathematical expression is not altered when for any number or

expression in it we substitute an equal number oi' expression.

That is, the "form " of an expression may be changed without

altering its value.

E. g. The value of 4 + 3 + ^-^ remains unaltered if for ^ we substitute

its equal value 2; or again, if we substitute 7 for the sum of 4 and 3 and

write 7 + 2.

3. Numbers equal to the same number are equal.

E. g. If 2 a; = a and 10 = a, then 2 «; = 10.
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4. If equal numbers be added to equal numbers the resulting num-

bers will be equal,

E. g. If a; = y, then a; + 3 = y + 3.

5. If equal numbers be subtractedfrom equal numbers the resulting

numbers ivillbe equal.

E. g. If X + 3 = 10, then x = 10 - 3, or 7.

6. If equal numbers be multiplied by equal numbers the resulting

numbers will be equal.

E. g. If ^x = 5, then two times \x equals two times 5, that is, x = 10.

7. If equal numbers be divide by equal numbers {except zero) the

resulting numbers will be equal.

E. g. If 3x = 12, then 3 x divided by 3 equals 12 divided by 3, that is,

x = 4.

8. Like roots of equal numbers are equal.

E. g. If x2 = 52, then x = 5.

There are two square roots, three cube roots, four fourth roots, etc., of

any number, so that when applying this axiom it is necessary to distinguish

carefully between these roots. (See Chapter XVIII, Principal Values of

Roots.)

33. Substituting the word " identical " for the word " equal " in

each of the statements above, we have corresponding axiomatic prin-

ciples governing identical expressions.

34. If .4 = B we may immediately write B = A, since this is

only another way of saying the same thing.

Identities such as those above, which are formed by interchanging

the members, are said to be one the converse of the other.

Ex. 1. Find the value which must be assigned to a in order that the

conditional equation 2 a + 3 = 15 may be true.

Subtracting 3 from each member we obtain

2a + 3 -3= 15 -3
Hence 2 a = 12.

Dividing both members of the last equation by 2, we obtain finally a = 6.

This value is found to satisfy the original conditional equation.
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Exercise I. 3

Find, by appl3ring the axioms, the values which must be assigned

to the letters in order that the following conditional equations may
be true.

In each case the axiom applied should be stated, and the result

obtained should be verified, by substituting for the letter in the

given equation the value found.

1. 6 + 4 = 10. 11. l^d+ 1 = 17

2. c - 2 = 7. 12. hh-5 = 2.

3. d—S = L 13. I^J-1=6.
4. 2m = 10. 14. ^z = 8.

5. 6 w = 42. 15. fa = 12.

6. i^ = 8. 16. i /^ + 1 = 22.

7. hl/=l'o. 17. |c + 3 = 13.

8. 4a+ 1 = 13. 18. 1^-2 = 4.

9. 5 ^ + 2 = 22. 19. fa + 6 = 14.

0. 6c- 7 = 11. 20. f ^ - 1 = 5.
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CHAPTER II

AN EXTENSION OF THE IDEA OF NUMBER

1. In arithmetic we have found it possible to subtract one num-
ber from another only when the number subtracted was not greater

than the number from which it was taken.

Such combinations of numbers as 6 — 9, 10 — 11, etc., are from the point

of view of arithmetic wholly destitute of meaning, since there exists no

number, that is, no result of counting, which when added to 9 gives 6, or

when added to 11 gives the sum 10.

Since such combinations of numbers occur frequently in mathematical

work, it l)ecomes necessary for us to give them a meaning if we are to allow

them to remain in our calculations. To do this we find it necessary to

extend our notion of number. The combination of numbers 6 — 9, as

written, suggests to us a diflFei-ence, and it will be convenient for us to reckon

with it as with every other "real" or "actual" difference, such as 9 — 6, or

8 — 3, etc., that is, a diflFerence in which the subtrahend is less than the

minuend.

Principle of No Exception

2. Mathematicians are accustomed to apply the names of familiar

combinations of numbers and symbols which have recognized mean-

ings to all similar combinations, even when these do not appear at

first to admit of meaning, or even to make sense. This principle,

that the old laivs of reckoning and the old meanings must he carried

over to include all .special cases of a given general type, even those

which may appear at first to he exceptions, will appear under many
different forms throughout the whole science of mathematics, and

wiU be referred to as the Principle of No Exception.

Instead of being an unwarranted stretching of language, as it may appear

at first, the Principle of No Exception insists rather on a stretching or

broadening of ideas to fit the language used, in order to avoid contradictions

which might otherwise arise.
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In Arithmetic the primary idea of a fraction is a " part of unity " or a

" broken number."

Thus, f , ^, \^, are fractions in this sense.

In the course of arithmetic work, combinations appear such as |^, f, ^,
etc., which look like fractions, and behave like fractions, but which are not

in the original sense " broken numbers. " They are not properly fractions,

and are accordingly called " improper fractions.
"

The Principle of No Exception is then applied, and such combinations as

h f' t' 6' ^^^'t ^^^ ^^^» without exception, spoken of as fractions, without

specifying whether they are proper or improper fractions, so-called.

3. It will now be shown that the application of this idea of No
Exception leads us to an extension of our previous notions concern-

ing number, and to the invention of a new kind of number^ a kind of

number which does not appear, as did the primary numbers, as a

result of counting, but which nevertheless may be used in our cal-

culations in such a way as always to give sense.
«

Positive and Negative Quantities

4. Certain words, such as

forward— backward, profit— loss,

upward— downward, earning— spending,

north — south, increasing— diminishing,

rising— falling, positive— negative,

suggest to us a condition of two things such that each tends to

destroy the effect produced by the other. One tends to increase

whatever the other tends to decrease. The terms are merely relative

and imply that, from some point of view, one thing tends to oppose

another.

E. g. If travelling east takes us away from some particular place, then

from the same point of view, travelling west will take us toward that same

place.

In trade, the effect produced by profits offsets the effect produced by

5. Without multiplying illustrations we will remark simply that

the terms positive and negative are used in mathematics in such a

way as to imply that there is some opposition such that if, in a

calculation, the things denoted as positive should be added, then
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those called negative should be subtracted. This may be due either

to the nature of the things considered, or to the point of view from

which we regard them.

6. The opposition between two sets of things is often such that it

is of no consequence which is considered as positive. The selection

being once made, so long as the things of one set in a calculation

are considered as positive quantities, those of the other set must in

opposition remain as negative quantities.

7. By the absolute value of a quantity expressed in terms of

some unit of the same kind, is meant the number of times the unit

is contained in the given quantity. This is without regard to the

quality of either the quantity or the unit, that is, as to whether

both are positive or both negative.

8. If two quantities are such that, when combined or considered

as parts of one whole, any given amount of one destroys the effect

produced by an amount of the other equal in absolute value to that

of the first, these two quantities are called opposites.

In mathematical calculations one of two opposite quantities is

called positive and the remaining one negative.

9. If, in any calculation, we choose to regard some quantity as

being positive, . then all other quantities which tend to increase it

must be considered as positive also, and all those which tend to

diminish it must be taken as negative.

It is merely a matter of choice which one of two opposite quantities is

regarded as positive. On one occasion we may regard motion in one direc-

tion, say toward the right, as being positive, and on another we may equally

as well choose to regard motion toward the left as being positive. In either

case motion in a direction directly opposite to that chosen as positive would

be considered as negative motion.

Also, if we choose to call the capital invested in a business positive, then

all profits will be positive, since they may be added to and used to increase

the capital ; all losses and expenses will be negative, for they tend to

diminish the capital, since they must be subtracted from it.

10. It is not essential to positive quantities that they be numeri-

cally greater than those which are negative. Thus, losses in busi-

ness, regarded as negative quantities, might greatly exceed gains,

which would then be positive quantities.
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11. From the nature of things, we may treat positive and nega-

tive quantities according to the following Principles :

Principle I. If a positive and a negative quantity of the same

kind are equal in absolute value^ either will destroy the effect of the

other when both are taken together oi" combined by addition.

E. g. Items of income and expense may be regarded as being opposite

quantities, and we may call one positive and the other negative ; for any

item of expense reduces by just an equal amount the effective income.

Principle II. Positive quantities alone may be added in any

order ; also negative quantities alone may be added in any order.

E. g. Since negative quantities are those which are considered as tending

to diminish the effect of certain others called positive quantities, the com-

bined eflfect of several negative quantities will be a negative quantity which

is equal to their sura.

There is no contradiction in speaking of adding negative quanti-

ties, for the idea suggested by the terms positive and negative is one

of nature or quality^ not number or amount.

If incomes be regarded as positive, expenses must be treated as negative

quantities, and we may add all of our expenses and then subtract the sum
total from our income to determine our financial condition.

A single negative quantity may "oppose" a positive quantity to produce

a decreased "value" indicated by subtraction, while taken with another

negative quantity there will be produced an "increased negative effect"

which would have to be indicated by addition.

Thus, as before, the total expense results from adding several expenses.

Principle III. The resultant effect of several combined positive

and negative quantities is equal to the numerical difference between

the total positive and total negative effects^ and has the quality or

nature of the greater total.

E.g. The result of combining expenses of $5 and $10 with items of

income of $3, $2, $3, |6, $4, $2, and $1, may be obtained by finding the

difference between the total expense, $15, and the total income, $21. This

difference would be a balance of |6 in favor of the income. This balance

may be taken as a positive quantity.

Principle IV. The removal or subtraction of a positive quantity

has the same effect on an expression in which it occurs as the addition

ofa negative quantity equal in ahsolate value to the positive quantity.
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E. g. Consider the items of income $3, $2, and $4 as positive quantities.

The effect produced on the total income of neglecting or subtracting one of

these items, say the amount of $4, may also be produced by adding or in-

curring an expense of $4, since each results in diminishing the effective

income by ^4.

The " not " taking of one thing, say an item of income, amounts in effect

to taking an item of opposite character or quality, that is, an " equal " item

of expense.

Principle V. The removal or subtraction of a negative quantity

has the same effect on an eo'pression in which it occms as the intro-

duction oJ\ or addition oJ\ a positive quantity equal in absolute value

to the negative quantity.

E.g. In order to restore a given amount of money to its original value

after incurring an expense of ^4, it is necessary to bring about an increase

of ^4.

If, instead of spending and then earning equal amounts, we neglect to

spend, that is, if we ttike away or subtract an item of expense, our original

capital remains unaltered.

Ex. 1. Chissify the changes in temperature from 64° F., to 110° F. and

to 32° F., respectively.

Since we have an increase in temperature in changing from 64° F. to

110° F. and a decrease in changing from 64° F. to 32° F., we may regard

one of these changes as being positive and the other negative.

Thus, if the increase be taken positive the decrease must be regarded

n^ative.

Exercise II. 1

Classification of Quantities as Being Either Positive
or Negative

Classify the following changes in temperature as being both posi-

tive, both negative, or one positive and the other negative :

1. From 60° F., to 100° F. and to 50° F. respectively.

2. From 68° F., to 90° F. and to 212° F. respectively.

3. From 76° F., to 0° F. and to 32° F. respectively.

4. From 102° F., to 40° F. and to 80° F. respectively.

5. From 0° F., to 17° F. below zero and to 5° F. below zero respectively.

6. From 11° F. below zero, to 21° F. below zero and to 15° F. below

zero respectively.
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7. From 50° F. above zero, to 10° F. below zero and to 10° F. above

zero respectively.

8. From 6° F. above zero, to 20° F. below zero and to 5° F. below zero

respectively.

9. From 10° F. below zero, to 18° F. below zero and to 9° F. below zero

respectively.

10. From 16° F. below zero, to 14° F. below zero and to 3° F. below

zero respectively.

Which of the following cities may be selected as points of refer-

ence in order that the distances to the remaining two may be

classified as being both positive or both negative?

Ex. 11. Boston, Atlanta, Baltimore.

Boston and Baltimore are both north of Atlanta. Accordingly, the dis-

tances of these cities from Atlanta are both measured in the same direction.

Accordingly, both may be taken as positive or both negative.

Also, since Baltimore and Atlanta are both south of Boston, the distances

from Boston to Baltimore and Atlanta may be taken as both positive or both

negative.

12. New York, Philadelphia, Washington, D. C.

13. New Orleans, San Francisco, Montreal.

14. Boston, London, Madrid.

Which of the following cities may be selected as points of reference

in order that the distances to the remaining two may be classified

as being one positive and the other negative 1

15. London, Paris, Rome.

16. St. Petersburg, Calcutta, Pekin.

17. Boston, Buffalo, Chicago.

Regarding a man's income as representing a positive quantity,

classify the following items as positive or negative quantities wher-

ever possible :

18. (a) Money loaned to a friend.

(b) Interest paid on a mortgage.

(c) Interest on money deposited in the bank.

{d) Money drawn out of one bank and deposited in another.

(e) Money paid for house rent.

Regarding money on hand as representing a positive value, classify

the following items, wherever possible, as positive or negative quan-

tities with reference to the depositor :

2
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19. (a) Money deposited in the bank.

(6) Interest received on money deposited in the bank.

(c) Interest paid on a mortgage held by the bank.

(d) Money withdrawn from the bank.

20. Classily the items above with reference to the bank.

With reference to the equator, classify the latitudes of the fol-

lowing places as being positive or negative

:

21. Mmiich, Vienna, Buenos Ayres, Quito, Glasgow, St. Louis, Mel-

bourne, Zanzibar.

Since, starting at the equator, it would be necessary to travel north to

reach Munich, Vienna, Glasgow, and St. Louis, and to travel in the opposite

direction, that is, south, to reach Buenos Ayres, Quito, Melbourne, and Zanzi-

bar, the distances from the equator to the places first named may he con-

sidered as being all positive or all negative. Accordingly, the distances

from the equator to the places last named would be regarded as being either

all negative or all positive, respectively.

22. Tokio, Jerusalem, Sidney, Stockholm, Honolulu, Rio Janeiro, Cape

Town, Tunis.

With reference to the meridian passing through Greenwich, classify

the longitudes of the following places as being positive or negative

quantities:

23. Shanghai, Minneapolis, Berlin, Naples, Dublin, Ottawa, Havana.

Which of the following dates must be selected for reference in

order that the changes in time to the remaining dates may be clas-

sified as one positive and the other negative ?

24. (a) 1492, 1620, 1776.

(6) 1812, 1861, 1863.

(c) 44 B.C., 64 A.D., 753 B.C.

(d) 1815, 1066, 1349.

(e) 490 B.C., 480 B.C., 146 A.D.

The Invention of Negative Numbers

12. Imagine a series of equal steps or distances to be laid off along

a straight line, unlimited in length, taken for convenience in a ver-

tical position, as in Fig. 1. Then, beginning with the lower end of

the line and counting upward we will number the points of division,

using the primary numerals 1, 2, 3, 4, 5, etc.
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If we regard motion upward, or counting upward along the " car-

rier " line, as being in a positive direction, then motion downward,

or counting downward, must be regarded as being negative.

13. Fixing our attention on any particular number we may

find a larger number by counting upward, and, except in the

case of 1, a smaller number by counting downward. Any

number will be relatively positive with regard to another if

it be situated above it in position, and relatively negative

to it, if it be necessary to count downward from the other to

find it.

E. g. Relatively to 8, 10 is positive, while all smaller numbers,

as 5, 4, 3, etc., are negative, since we should have to count down-

ward from 8 to reach 5, 4, 3, etc.

14. Observe that it is possible for us to count upward for any

number of spaces^ starting anywhere in the series 1, 2, 3, 4, etc., but

it is not possible to count downward for any number of spaces. This

is because we must always stop when we reach the lowest point of

the line, since there are no numbers below it to count.

Furthermore, we cannot count downward at all if we start at the

lowest point, 1, for we have reached the end of our line, and at the

same time the " lower " end of our series of integral primary numbers.

15. There is nothing unreasonable in imagining our line to be

now extended downward, carrying our series of steps downward

indefinitely.

In order to distinguish these newly added downward steps from

those above our starting point, which we will take as 0, we may
designate them by saying one below zero^ two below zero^ three below

zero, etc.

16. Since starting from 0, it is necessary to count in opposite

directions along our "carrier" line to reach numbers having the

same number name (as, for example, "four above" zero and "four

below"), we may distinguish the two sets of numbers by calling

them, relatively to 0, one set positive and the other negative.

17. We will call the numbers " above " zero positive one, positive

two, positive three, etc. (written "^1, "^2, '^'S, etc.), and those " below
"

zero negative OTie, negative two, negative three, etc. (written ~1, ~2, ~3,

etc.).
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In this and the next three chapters we shall indicate the " quality
"

of a number as being positive or negative by writing before it a small

" quality " sign "^ or ~ When so used these signs are read j^ositive

and negative respectively, and are called signs of quality. They

will, by their size and position, be easily distinguished from the larger

signs of operation for addition or subtraction, + and —, which are

read plus and minus respectively.

18. We have applied the Principle of No Ex-

I ception to our notion of counting, and have

"stretched out," or "extended" our number

series to allow of the idea of counting "back-

ward " or " downward " beyond zero.

The important point to be understood is that

the positive numbers """l, "^2, +3, "^4, etc., repre-

sented on Fig. 2 beside the "black circles" or

dots, should be regarded as having arisen as the

result of the actual counting of objects.

On the other hand, the negative numbers,

~1, ~2, ~3, ~4, etc., represented on the figure

beside the small rings, or "white circles," were

invented simply to serve our convenience, in or-

der that we might represent, or imagine, count-

ing " downward " or " backward " below zero.

These negative numbers may be regarded as

being "artificial" numbers, and as being simply

the invention of mathematicians to serve as con-

venient means for simplifying work and inter-

preting results.
I

I 19. Letters were first used to represent negative

j'jg 2. numbers by Descartes in the first half of the seven-

teenth century. In a book published in 1545 by an

earlier writer, Cardan, they were called " numeri ficti," or imaginary num-

bers, in contradistinction to " numeri veri," or real numbers.

At the present time the term " imaginary " number is applied to still

another form of "invented" number. (See Chapter XXI.)

20.' By the absolute value of a number or letter is meant its

value without regard to its quality as being positive or negative.

(See also § 7.)
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The absolute value of a number or letter is indicated by writing

it between two upright bars,
| |

.

E.g. \a\ means the absolute value of some number a.

We may write l+a| = |~«|- This is read : "The absolute value of posi-

tive a is the same as the absolute value of negative a."

By the arithmetic value of a number is meant its absolute value.

E. g. The arithmetic value of ""4 is 4.

21. Just as in arithmetic we regard any whole number as being

a repetition of the primary unit 1 a certain number of times (for

example 5 = 1 + 1 + 1 + 1 + 1), so in algebra we regard positive

and negative numbers as being repetitions of the quality units

+1 and "1.

Of these quality units, "''1 is taken as the primary unit.

A positive number is the sum of two or more positive units, and

a negative number is the sum of two or more negative units.

Positive numbers and negative numbers taken together are called

algebraic numbers.

E.g. "5 denotes five times +1, or five positive units. Hence we may
write +5 = + +1 + +1+ +1+ +1 + +1-

-5 denotes five times -1, or five negative units. Hence we may write

-5 = + -l+-I+-i+-l+-l.

22. The sign of continuation , read and so on, is used

to indicate that the expression as written may be extended.

Thus, the expression 1 + 2 + 3 + , may be extended, if

desired, as for example,

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 +

The sign of continuation may also be used to indicate that certain

parts of an expression have been omitted for convenience.

Thus, in the expression 2 + 4 + 6 + +96 + 98 + 100,

the sum of the numbers from 8 to 94 inclusive has been omitted.

23. The symbol oo which is read " infiinity, " is used to represent a

number which is greater than any assignable number, however great.

We may symbolize the whole series of algebraic number by
~^

,
-3, -2, -1, ±0, +1, +2, +3,

,
+00, the order of
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ascending magnitude being from the left to the right. The double

sign *, read " positive or negative, " is placed before the zero to in-

dicate its exceptional property, namely, that "•() = ~0, We may re-

gard zero as belonging to both the positive and negative parts of the

series. It is all that these parts have in common.
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CHAPTER III

FUNDAMENTAL LAWS OF ALGEBRA FOR THE ADDITION AND
SUBTRACTION OF POSITIVE AND NEGATIVE NUMBERS

1. Since in order to obtain correct results we must work with

numbers according to certain rules, it is common to speak of them

as obeying laws. What we mean, in reality, is that, unless we obey

certain rules or laws in performing our calculations, we cannot depend

upon the accuracy of our results.

2. It follows from the definitions of the number symbols of arith-

metic that since 2 = 1 + 1, and 3 = 1 + 1 + 1, that + 3 + 2 =
^- 2 + 3 ; and in the same way we may show that + 3 + 4 + 7 =
+ 4 + 3 + 7 = + 7 + ^^+4, etc., and in general if a, 6, c, etc., repre-

sent any whole numbers in arithmetic, a + b + c = a + c + b =
b + c + a = etc.

Hence in a chain of additions the result is independent of the order

in which the additions are performed.

This is called the Law of Commutation for addition in arith-

metic, and it remains for us to show that it can be applied to

expressions which contain both positive and negative numbers, that

is, algebraic numbers.

3. As symbols of grouping we have the parentheses ( ), brackets

[ ], braces { }, and vinculum which is sometimes written

vertically |.

These symbols indicate in each case that the expression included

is to be operated with as a whole. (See also Chapter IV.)

E. g. (3 + 5) means that the sum of 3 and 5 is to be used as a whole in

un operation, that is, as 8, so that an expression such as 2 x (3 + 5) is to be

understood as meaning two times 8, or 16 ; while the expression 2x3+5
means two times 3, or 6, increased hy 5, — that is, 11, not 16.

Again, (4 + 2)(8 — 1) means 4 + 2, that is, 6, multiplied by 8 — I, or *7,

that is, 6 X 7, or 42 ; while 4 + 2x8 — 1 means 4 increased hy 2 tim£s 8,

or 16, and this sum diminished hy 1. Hence the result is 19.
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4. It is a matter of experience with us in arithmetic that in a

chain of additions tJw sum total is not affected by combining two or

more parts of the sum.

This i§ called the Law of Association for addition.

E. g. 3 + 5 + 6 is equal to (3 + 5) + 6, that is, 14 is equal to 8 + 6.

Again, the original expression is equal to 3 + (5 -|- 6), that is, 14 is also

equal to 3+ 11.

If rtr, b, c, etc., represent any whole numbers in arithmetic, we
may state the Law of Association in symbols, by writing

a + 6 + c = (a + &) + c = « + (6 + c).

5. The foundations of all mathematical knowledge must be laid

in definitions.

A definition is an explanation of what is meant by any word or

phrase, and must be given in terms of things other than those con-

sidered. It is essential to a complete definition that it distinguish

perfectly the thing defined from everything else.

In mathematics the principal terms may be so defined as to leave

not the slightest question respecting their meaning.

6. There are comparatively few mathematical truths or theorems
which are self-evident. The majority require to be proved by a

chain or course of reasoning. The course of reasoning by which the

truth of a statement is established is called a demonstration or

proof.

As symbols of deduction we have in algebra, as in arithmetic,

. *. meaning ther^ore, and *.
' meaning siiice or because.

Steps on a Line

7. We shall speak of different distances measured on the " carrier
"

line which " carries " our collection of extended number, ""3, ~2, ~1,

^0, "^1, "*"2, "^3, etc., as steps. We shall say that a step is 2>ositive

if in taking it we step "up," that is, in the direction of the increas-

ing primary numbers, 1, 2, 3, 4, etc. We shall call it negative \i we

step "down," that is, in the direction +6, +5, +4, +3, +2, +1, or "1,

-2, "3, -4, -5, etc. (See Fig. 1.)

8. We shajl understand that two steps taken anywhere on the
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line are equal, when their lengths on the line are equal, and when

they are taken in the same direction or sense.

E. g. The step from +5 to +8 is equal to the one from +8 to +11 ; or

from +12 to +15 ; or from +20 to +23 ; etc. It is also equal to the step

from ~7 to -4; from —8 to ~5; and these are all to be considered as positive

steps.

As negative steps, each having a length of four units, we may select the

one from +10 " down" to +6; from +4 to +0; from +2 to "2; from "0 to

-4 ; from ~5 to ~9 ; etc.
,

9. If we move along the " carrier " line, taking successively two

steps, either both in the same direction, or the first in one direction,

then turning around, take the other in the opposite direction, we

speak of the process as effecting the composition of the two steps.

10. Tivo separate steps mai/, by composition, be combined into a

single step.

E. g. Two separate steps of 3 and 5 units respective!}'-, may by composi-

tion be combined into a single step of 8 units in length, and the fact that

both are positive or both negative will not affect the result.

11. The single step which may be t^ken in place of two or more

others taken successively, is called the resultant step. The re-

sultant step may be defined as the single step which may be taken

to produce the same final change of position as that produced by

taking several others successively.

If we travel along the line taking different steps successively,

observe that the resultant step is measured from the beginning to

the end of the journey. It is sometimes shorter, but never longer than

the entire path passed over.

E. g. If the steps +7, ~5, and +1 were taken successively, starting from

any point of the line, as say +3, we should arrive first at +10 on the line;

then returning by tlie step ~5, stop at +5, and tlie end of our journey would

be one unit " higher," or at +6. Since the distance from the starting point,

+3, to the stopping point, +6, is three units, taken in an " upward " or pos-

itive direction, we say that the resultant of the steps +7, ~"5, +1, is the

single step +3.

Similarly, the resultant of +6, ~4, "5, taken successively, would be a

single negative step of three units, or in symbols, the step ~3.
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12. The following Principles will be seen to apply to steps tali'en

along a line.

Principle I. Tlie resultant of two steps of the same kind^ that

is, of two steps taken in the same directionyis a single step of the same

kind. Its length is equal to the sum of the lengths of the single steps

composing it.

E. g. The resultant of the separate steps +4, +3, +5, is the single step +12.

Principle II. The resultant of two steps taken successively in

opposite directions is a single step whose length is the difference he-

tiveen the lengths of the separate steps composing it. This is a posi-

tive or a negative step, according as the greater o?ie entering into it

is positive or fiegative.

E. g. The resultant of the two steps +12 and "5 is a step of 12 minus 5,

that is, 7 units in length, and since the greater of the two steps entering into

it, +12, is positive, we must have as a resultant +7.

Principle III. The resultant of two or more steps does not depend

upon the order iti which the steps are taken.

E. g. The resultant of steps +12, "8, +3 and -2, taken in any order, is

the single step +5.

Principle IV. The resultant of any number of steps is a single

step whose length is the difference between the sum of the lengths of the

positive steps and the sum of the lengths of the negative steps. This

resultant is positive or negative according as the sum total of the pos-

itive steps or of the negative steps is the greater.

E. g. The resultant of the separate steps +10, +5, ~3, ~6, +1 may be

found by taking the resultant of the total positive step +(10 + 5 + 1) or

+16, and the total negative step -(3 + 6) or -9. The difference between

16 and 9 is 7, and since the greater of the two resultant steps, +16 and ~9,

is positive, the resultant step is positive, and we have as a resultant +7.

The resultant of the successive steps +11, "8, ~6, +2, "4, is found by

taking the resultant of the total positive step +13, and the total negative

step ~18, which is ~5.

13. The taking of steps along the number series suggests the

operations of arithmetic addition and subtraction.

Taking steps "upward," that is, in the direction of increasing
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primary numbers, 5, 6, 7, 8, etc., suggests arithmetic addition.

Taking steps "downward," that is, in the direction of decreasing

primary numbers, 8, 7, 6, 5, etc., suggests arithmetic subtraction.

14. We will now find an interpretation for combinations

of si^ns of operation and signs of quality such as +("^«),

-(""«), +("«) and -(-«).

In order to do this, we will now interpret our signs of operation

to mean : plus +, take, that is, to include with other steps, and

minus —, take away, that is, remove from an expression or neglect

in connection with other steps.

These ideas correspond to arithmetic addition, or "taking one

number with another," and arithmetic subtraction, which is "tak-

ing one number away from another," or neglecting it from a sum.

15. The effect on a mm total of taking away a positive step is the

same as that of performing a negative step of equal numerical value

or length.

E. g. From the step "^5 take away the step +3. ^^>^

We have +5 - +3 = +(5 - 3) = +2.

Also, from another point of view,

+5 + -3 = +2.

We obtain the same result as before, using this time

a negative step in an additive sense, instead of using, as

in the first place, a positive step in a subtractive sense.

(See Fig. 2.)
^^J^

*5

M
+ 3

'0

16. A negative step produces a decrease of value among positive

numbers.

Hence, taking away a decrease amounts to making an increase.

Therefore, -(~a) = +{-^a).

Hence, from the illustration above we may draw the following

conclusions :

(i.) + (+«) = + (+«)

;

(iii.) - (-a) = + (+o)
;

(ii.) - (+«) = + (-a) ; (iv.) + (-«) = + (-a).

It will be seen that in the identities above, the symbol of opera-

tion + occurs in every case on the right of the identity sign ; that
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is, we have transformed our additions and subtractions on the left

into additions on the right.

Furthermore, wherever the symbol of subtraction on the left, as

in (ii.) and (iii.), has been changed into that of addition on the

right, the sign of quality has also been reversed.

17. We may now state the Law of Sig^us for Addition and
Subtraction.

Principle: Additions may he substituted for subtractions, pro-

vided that the signs of quality of the numbers subtracted be reversed.

Ex. 1. From the step +8 subtract the step +3.

Indicating the subtraction by writing +8 — +3, we may transform the

expression so that instead of a subtraction we shall have an indicated addi-

tion. By changing the symbol of operation before 3 from — to +, and at

the same time reversing the sign of (quality and writing -3, we have

+8- +3 = +8 + -3 = +5.

Ex. 2. From the step +10 subtract the step -4.

Indicating the subtraction as before, we have

+10 - -4.

Substituting an addition for the subtraction, and reversing at the same

time the sign of quality, we have

+10 - -4 = +10 + +4 = +14.

Ex. 3. From the step —8 subtract the step +2. As before we may write

-8 _ +2 = -8 + -2 = -10.

Ex. 4. From the step 9 subtract the step "6.

We have -9 - "6 = "9 + +6 = "3.

18. If instead of the word " step " we substitute the word "num-
ber," or the more general word "quantity," we may regard the prin-

ciples of this chapter as being principles governing operations with

positive and negative numbers or quantities.

19. Whenever reference is made to signs in algebra it is to be

understood, unless the contrary is stated, that the + or — signs

are meant. Thus, when we speak of the sign of a quantity we shall

mean the + or — sign which is prefixed to it or its numerical coeffi-

cient, not the X or -f- signs which may be associated with it.

When we are directed to change the signs of an expression we

shall understand that we are to change the + or — signs before

every term into — or +, respectively.
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CHAPTER IV

ADDITION AND SUBTRACTION OF POSITIVE AND
NEGATIVE NUMBERS

Symbols of Grouping.

1. In order to denote that an algebraic expression is to be treated

as a whole, in a calculation, it is enclosed within parentheses or

other symbols of grouping. (See Chapter III, § 3.)

E. g. (2 + 5 + 7) is to be regarded not as three different numbers, 2, 5,

and 7, but as the number obtained by adding 5 and 7 to 2, which is 14.

Also, (5 + 2) X (3 + 8) means 7 multiplied by 11, that is, 77; while

5 + 2x3 + 8 means 5 increased by 6, increased by 8, that is, 19.

2. Symbols of grouping may be of different kinds ; thus,

parentheses ( ), braces {}, brackets
[ ], etc. The effect in

each case is the same, namely, to call our attention to the fact that

whatever is enclosed in them is to be treated or regarded as a whole.

Occasionally it is convenient to use instead of parentheses a line

called a vinculum, drawn over an expression.

Thus, 7 + 5 — 2 is equivalent to 7 + (5 — 2). This notation will be

used commonly in connection with fractions and radical or root signs.

2 2
E. g. means 2 divided by (3 + 4), that is, -.

\/\\ + 5 means the square root of (11 + 5), that is, the square root of

16, which is 4.

3. Expressions containing groups of terms enclosed in parentheses

may be treated as follows :

Ex. 1. Consider the expression 25 —(15 + 3).

This expression means that the sum of 15 and 3, which is 18, is to be

taken from 25 to produce the remainder 7.

To subtract 18 from 25 in a single operation amounts to performing the

two separate operations of first subtracting 15 from 25, and then decreasing

the remainder by 3. The final result is 7,
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Hence ?5 - (15 + 3) = 25 - 15 - 3 ^ 7.

Accordingly - (15 + 3) = - 15 - 3.

Ex. 2. Consider the expression 12 — (9 - 2).

This expression means that 2 is to be first subtracted from 9 to produce

7, which is then to be taken from 12, leaving 5 as a final result, that is :

12 - (9 - 2) = 5.

If we had first subtracted 9 we would have diminished 12 by a number

too great by 2.

Hence it would have been necessary to increase this result by 2.

Consequently, we would have obtained the same final result as before

by performing the following operations

:

12-9 + 2 = 5.

Hence it appears that to subtract (9 — 2), or 7, in one operation, amounts

to first subtracting 9 and than adding 2 in two separate operations, that is:

- (9 - 2) = - 9 + 2.

4. The examples above are illustrations of the General Principle

that ire may remove parentheses preceded hy the sign of subtraction

—
,
provided we at the same time change the signs of operation of the

numbers removed
^
from + to — or from — to +.

5. In order to prove a theorem true for any algebraic expression,

it is only necessary to prove it for an expression containing letters

upon whose values no restrictions are placed.

6. We will now proceed to establish the general principles govern-

ing the removal or insertion of parentheses preceded by the signs of

operation + or — in chains of additions and subtractions for arith-

metic numbers. We will then extend these principles to include

positive and negative numbers, that is, algebraic numbers.

Representing any arithmetic values by letters a, b, c, at first regarding

a'>- b > c, we will deduce the laws for the insertion and removal of paren-

theses in a chain of additions and subtractions.

a-\- (-\-b — c) means that we are to first diminish b by c, and then to

add the result to a. The parentheses about the binomial (+ 6 — c) indicate

that we are to treat the expression included as a whole, and the + sign before

the parentheses indicates that we are to use the result of the operation

+ h — c to increase a.

Hence, a+(-\-b — c)=a + b — c.

Consider now, a — (+ b — c).
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The inclusion of + 6 — c in parentheses means that we are first to sub-

tract c from h and then to take the result from a.

If we were first to take h from a, that is, to find the difference a —h, we

would take away too much from a by the quantity c. Hence, we must

increase the remainder by a value equal to c ; that is, we must add c to the

result.

Therefore, a — (-{- h — c) = a — b -{- c.

7. Principle I.

(i.) Parentheses preceded by a \- sign may he removed ivithout

altering the signs of opei^ation of the separate numbers remaved.

(ii.) Parentheses preceded by a — sign may be removed, pi'oviding

the signs of operation preceding all of the numbers removed be changed

from + to —, m\f7'om — to +.

8. Since the proof of any identity establishes the truth of its

converse, we may state

Principle II.

(i.) A chain of additions and subtractions may be enclosed within

parentheses preceded by the sign of operation fm' addition + without

making any alteration in the signs of operation of the numbers

enclosed. (Associative Law for addition. See Chapter III. § 4.)

(ii.) A chain of additions and subtractions may be enclosed within

parentheses preceded by the sign ofoperation for subtraction — provid-

ing the signs of operation of all of the numbers introduced be changed

from -\- to —, or from — to -\-.

9. Since the reasoning above does not depend at all upon the

lengths of the chains of additions and subtractions removed or

inserted, the principles hold for any chains of additions and sub-

tractions.

E. g. Inclusion Tritliin Parentheses

Preceded by Sigrn + Preceded by Si^n —

a— h-\-c—d—e=a— })-\-{c— d— e) a—h-\-c—d—e=a— h-\-c—{(l+e)

or =(rt—i+f)— cZ— e. or =a—{h—c+d-\-e)

or =a—(h—c-{-d)—e.

10. When numbers are included within several sets of parentheses,

one set within another, the student will find it convenient in certain
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cases to begin by removing the innermost parentheses first. In

other cases it will be better to work with the outer parentheses first.

11. Any change in the form of an expression tending to lessen

the number of indicated operations is called a reduction.

Ex. 3. Reduce 7 - { 4 + [ 2 - (8 - 5) ] }.

Method I Method II

Removing inner parentheses fii-st. Removing outer parentheses first.

7-{-H{2-(8-5)]l=7-{4+[2-8+5]l 7-{4+[2-(8-5)]}=7-4-[2-(8-5)]
=7-{ 4+2-8+5} =7_4_2+(8-5)
=7-4-2+8-5 =7_4_2+8-5
=4. = 4.

Exercise IV. 1

Find the numerical values of the following expressions:

1. 5+(4-2)+3-(6-3). 5. 5 -(2 + 6-3) + 7-8-4.

2. 10-(9-8)-(7-6). 6. 6- {2 + (10-6+1)}.

3. (6-4) + 4-4-(6-4). 7. 11 - [8 - (10 - 9 - 6)].

4. 12-(2-4-2)+(2+4+2). 8. 12 - {9 - [4 + (2 - 6)] + 2}

9. 3 + [4 - (5 - 6 - 5) + 4] - 3.

10. [15 + (9 - 6 - 3)] - [15 - (9 + 6 - 3)].

11. 20 - {(20 - 5) - [20 - 10 + (20 - 15)]}.

12. 18 -[15 -9 -4 -(11-2)-!].

13. 11 - [6 + 8 — 5 — (12 - 7) - 8 - 5].

14. [21 - (7 - 8 - 5)] - [21 + (7 - 5 + 8)].

15. 24- {9-(10-6)-[24-17 + 5-(6-4)]}.

I. Addition

12. Since positive and negative numbers enter into algebra, we

must so extend our idea of addition as to be able to admit of uniting

positive and negative numbers in one " sum."

13. As in arithmetic, numbers which enter into a sum are called

summands.
14. Subtraction is the operation by which, when the sum of two
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expressions is known and one of them is given, the other may be

found.

Subtraction may be regarded as the operation which is the inverse

,

of addition, or the process which " undoes " addition.

15. The known sum is called the minuend, the given expression

to be subtracted the subtrahend, and the expression or number to

be found is called the difference or remainder.

The terms minuend and subtrahend are used in algebra in the

same sense as in arithmetic. In arithmetic addition always pro-

duces an increase, subtraction a decrease.

16. In algebra, addition, sum, and difference have each a more

extended meaning. On account of the introduction of the idea of

positive and negative numbers, an " addition " may produce either

an increase or a decrease in numerical value ; a " subtraction " may
produce either a decrease or an increase in numerical value.

17. Addition suggests taking a step forward ; subtraction suggests

taking a step backward. (See Chapter III. §§ 7, 13.)

E. g. In 5 + 3 = 8, the second term, + 3, may be regarded as the step

" forward " from 5 to 8, while in 5 — 3 = 2, — 3 may be regarded as the

step " backward " from 5 to 2.

18. In the addition of algebraic numbers the two following con-

ditions may arise :

(a.) The numbers to be added may both have the same quality,

that is be

Both Positive or Both Negative.

Ex. 1. To +4 add +6.

Here both sunmiands are positive numbers. Consequently 4 positive

units, when united by addition with 6 positive units, will produce a total

of (4 + 6) positive units, or 10 positive units, which may be expressed as

follows:

+4 + +6 = +(4 + 6) = +10.

Ex. 2. To -5 add "7.

Here both numbers are negative. By addition, 5 negative units taken
with 7 negative units produce a combined result of (5 + 7) negative units

;

that is, in symbols :

-5 4- -7 = -(5 + 7) = -12.

3
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19. By referring to our scale of extended number it may be seen that to

take a step of 4 positive units, and then immediately

I another step of 6 positive units, amounts to taking

in all a single step of 10 positive units. (See Ex. 1.)

But to take successively negative steps of 5 and 7

units respectively amounts to taking a single step of

12 negative units. (See Fig. 1 ; also Ex. 2, above.)

20. We may show that the principles applied

above may be extended to all positive and nega-

tive numbers, by representing by a and h any

arithmetic numbers whatsoever, or in symbols

as below :

(i.) +a + +^ = +(^ + /v).

(ii.) -« + -/> = -(« + ^).

Proof of (i.):

+« + +& = +(a + 6).

The positive units represented by +6 taken together

with the positive units represented by +a form a

combination or group of positive units represented by

+(^1 + 6).

(ii.) may be proved by similar reasoning.

21. We may now state the following

Principle : The sum of two algebraic nvm-

bers of like sign is an algebraic number of the

same sign. It may be found by adding arith-

metically the absolute values of the two numbers

entering into it.

(b.) The numbers to be added may be of

opposite quality, say

One Positive and the Other Negative.

22. Abstract numhers are those which stand alone. They

may be thought of as "unnamed numbers," that is, as number

names, such as 4, 5, 10, etc., taken by themselves without reference

to any particular objects.
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23. Concrete numbers are those formed by applying the num-

ber names to particular things.

Concrete numbers are " named numbers," as 5 oranges, 4 days, etc.

Positive and negative numbers are " named numbers " and behave like

concrete numbers.

As things unlike in kind cannot be "added" or "united" to represent

any number of things of either kind alone, so positive and negative num-

bers, as such, are to be looked upon as being entirely separate and distinct,

but with this conditional difference always, that each "offsets" or "de-

stroys " the effect produced by the other upon any particular number or

quantity.

24. Hence, positive and negative numbers equal in absolute

value, combined by addition, may be neglected in a series of addi-

tions and subtractions since together they produce no change in the

total result. If either occurred alone, it would produce a change,

but both together act in such a way as to " oppose " each other.

E. g. Since +10 + "10 = 0, + +15 + +10 + "10 = +15.

Also, since - +8 - "8 = 0, -f +12 - +8 - "8 = +12.

and in general + +a + ~a = 0, also — +a — ~a = 0.

Ex. 3. To +9 add "2.

If instead of saying " added to," we use " taken together with," in the

addition of algebraic numbers of opposite quality, the student will find that

the idea suggested does not involve the difficulty which is frequently en-

countered because of the idea of an increase which is commonly associated

with the word "addition."

When combined together into one whole, the two negative units reduce

the number of positive units from 9 to 7.

Hence the result of the combination is 7 positive units, and we may write

+9 + -2 = +(9 - 2) = +7.

Ex. 4. To -7 add +4.

The effect of 4 positive units in combination with 7 negative units is to

reduce the number of effective negative units by 4. Hence the result of

the "addition" or combination is 3 negative units. We may write

-7 + +4 = -(7 - 4) = -3.

25. It will be noticed that in the examples above the number which is

greater in absolute value is the one which determines the quality of the

result.
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26. It may be observed tbat the reason why the operation which appears

to be subtraction comes under the head of addition is the fact that we are

operating with numbers of opposite quality, that is, with positive and nega-

tive numbers. The " apparent " subtraction is not strictly addition itself,

but belongs rather to the subsequent reduction.

27. The Commutative L.aw for Addition, that is, the value

of a sum does not depend upon the order of adding its parts^ may be

shown to hold for both positive and negative numbers.

In sjrmbok +a 4- "*"& = + ^ft + "^a

Also +a + "ft = + -6 + ^a.

E. g. +6 + +.3 = +3 + +6. +7 + -5 = -5 + +7.

-7 + -4 = -4 + -7. -2 + +8 = +8 + "2.

28. From the consideration of the preceding examples we may
state the following General Principles :

Principle I.

(i.) The sum of two or more positive numbers is a positive number

whose absolute value is found by taking the sums of the arithmetic

values of the positive numbers entering into it.

In symbols ""« + "^6 = "^(a + h).

E. g. +5 + +8 = +(5 + 8) = +13.

(ii.) The sum of two or more negative numbers is a negative num-

ber whose absolute value isfound by taking the sum of the arithmetic

values of the negative numbers entering into it.

In symbols -« + -& = -{a + &).

E. g. -7 + -3 = -(7 + 3) = -10.

29. Principle II. The algebraic sum of several positive and
negative numbers is found by taking the arithmetic difference be-

tween the absolute value of the sum total of the positive numbers and
the absolute valus of the sum total of the negative numbers^ and it

agrees in quality with the greater sum total.

In symbols "^a + ~6 = +(« — 6), for a>b.
Or = ~(h — «), for a <b.
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Ex. 5. +5 + +2 + -6 + -1 + -3 + +8 = +(5 + 2 + 8) + -(6 + 1 + 3)

= +(15) +-(10)
= +5.

Ex. 6. +3 + -6 + -12 + +4 + -3 = +(3 + 4) + -(6 +12 + 3)

B+(7)+-(21)
= -14.

30. By giving concrete meanings to the positive and negative numbera

appearing above, for example, letting the positive numbers stand for items

of income and the negative numbers for items of expense, it will appear

that, taken together, the balance will be $5 in favor of the income in

the first example, while in the second example there remains a total unpaid

debt of $14.

Exercise IV. 2

Simplify the following expressions:

1. +2 + +5. 12. +5 + -13. 23. -18 + +16.

2. +4 + +3. 13. -6 + +14. 24. +19 + +19.

3. +6 + +8. 14. +7 + -17. 25. +16 4--10 + -4.

4. +9 + +6. 15. +12 + -12. 26. +11 + +18 + -19.

5. -5 + -7. 16. +13 + -14. 27. +1 + -3 + +20.

6. -8 + ~10. 17. +15 + +16. 28. +7 + -13 + +6.

7. +7 + -4. 18. -17 + "8. 29. +12 + -5 + -7.

8. +10 + -2. 19. -14 + -20. 30. +13 + -14 + +15.

9. +11 + "9. 20. -4 + -19. 31. +3 +-6 + +10.

10. +3 + -11. 21. -16 + -3. 32. +9 + -17 + -20.

11. +1 + -6. 22.

II

-19 + +1.

. Subtraction

31. (i.) Subtraction of Positive Numbers.
To add two numbers in arithmetic is to take a "positive" step

;

that is, a step " upward " along the number series in the direction

of the increasing values 1, 2, 3, etc.

Hence, to subtract a positive number results in a change of posi*
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tion along the number series in a " downward " direction ; that is,

in the direction of the decreasing values 8, 7, 6, 5, etc.

A decrease of positive values occurs also whenever we take a negative

step, which is one taken in the direction 4, 3, 2, 1. (See Chapter III,

§13.)

32. "Taking away," or subtracting, a positive step amounts to

the operation of adding a negative step.

E. g. Using our scale of extended number, we may understand subtract-

ing or " taking away " +6 as mcianing counting " backward " or " downward "

in the direction +10, +9, +8, +7, etc., for a distance of 6 units, beginning

with some point such as 0, until we finally reach -6. By adding a nega-

tive step of 6 units we shall arrive at the same point. Hence, we may
regard the subtraction of 6 positive units as amounting to the addition of

6 negative units, and write

-+6 = +-6,

and in general, —+a = +~a.

A movement " downward " along the number series in the direc-

tion •'lO, "^9, "•'8, "^7, etc., which takes place among the positive

numbers alone, that is, wholly " above " zero, corresponds to an

arithmetic subtraction.

33. (ii.) Addition of Negative Numbers,
A step "downward," which takes place "below" zero, that is,

among the negative numbers alone, amounts to an addition of neg-

ative values.

A negative step is taken in a " downward " direction, that is, in

the direction of the diminishing values +4, +3, '''2, "^1.

Hence, removing or subtracting a " downward " step amounts to a

change in position in an " upward " or positive direction ; that is,

the subtraction of a negative amounts to the addition of a positive

step or number.

That is, —-a = -f+«.

E. g. --4 = ++4.
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34. Correspondence between the Addition and Subtraction

OF Positive and Negative Numbers

1

*^
(i) Addition

of Posi-

tives.

Step

1

o '1

(ii) Subtrac-

tion of

Positives.

Step

^0
(1

'^ >*'

-0 ^

-1

-2

-3

(iv) Subtrac-

tion of

Negatives.

Step

-1

-2

-3

(iii) Addition

of Neg-

atives.

Step

Fio. 2.

Reversing a "downward " step

changes it into an "upward"

step. Hence, subtractinj? a

negative aiuoiiuts to add-

iiij? a positive; that is :

—-(i = + +rt. (See Fig. 2.)

Also, reversing an " upward"

step changes it into a "down-
ward " step. Hence, subtract-

iuj? a positive ainoiints to

addinjiT a iiegrative, or

:

-+a = +-a. (See Fig. 2.)

35. Hence, for positive and negative numbers we have the

following

Principle : Every operation ofsubtraction ofpositive or ofnegative

numbers may be replaced by an equivalent addition ; that is, by the

addition of a number equal in absolute value, but of reversed quality.

Hence, to subtract one number from another, reverse the sign of

quality of the subtrahend from + to — or from — to -f , and then

proceed as in addition.

In symbols :" +a - +6 E +a + ~h,

36, The principles for the removal and insertion of parentheses

'i^ply also to positive and negative numbers.
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It follows that the Laws of Commutation and Association for

successive additions hold also for successive subtractions, or for a

chain containing both additions and subtractions.

Ex. 1. From +7 subtract +2.

We may express the operation by writing +7 — "^2.

Replacing the operation of subtraction by that of addition, reversing at

the same time the sign of quality before the 2, we have +7 — +2 = +7 + -2.

When combined with 7 positive units, 2 negative units reduce the number

of positive units by 2, producing as a result of the combination or " addi-

tion," 5 positive units.

Hence, the expression above reduces to +(7 — 2) = +5.

We may obtain the same result by another method as follows:

Since 7 positive units amount to 5 positive units increased by 2 positive

units, we may write

+7 _ +2 = +5 + +2 - +2.

Since adding and subtracting the same number to or from +5 produces no

change in the final result, that is, since 4- +2 + -2 = 0, we may write

+5 + +2 _ +2 as +5.

Ex. 2. From +3 subtract +8.

We may express the subtraction by writing +3 — +8. Replacing the

operation of subtraction by that of addition, reversing at the same time the

sign of quality of the subtrahend, we have +3 — +8 = +3 + ~8.

Since in combination the 3 positive units reduce the number of negative

units from 8 to 5, we may write +3 + "8 as -(8 — 3) = ~5.

We may also employ the following method

:

Since subtracting 8 positive units in one operation amounts to subtract-

ing successively 3 positive units and 5 positive units in two separate opera-

tions, we may write both as

+3 _ +8 = +3 - +3 - +5.

Observing that +3 — +3 = 0,

we have as a result +3 — +8 = — +5 = + -5.

Ex. 3. From +6 subtract -4.

We may indicate the operation by writing +6 — "4. Since taking away

a negative amounts to adding a positive, we may replace the indicated sub-

traction by an equivalent addition, and write

+6 - -4 = +6 + +4 = +(6 + 4) = +10.
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Ex. 4. From +5 subtract -9.

Observe that, since the subtraction of a negative amounts to the addition

of a positive, we may from the indicated subtraction +5 — "9, obtain

+5 - -9 = +5 + +9 = +(5 + 9) = +14.

Ex. 5. From -12 subtract -3.

Writing first as an indicated subtraction, and then transforming into an

equivalent addition, we have —12 — —3 = ~12 + +3.

Since in combination with the 12 negative units the 3 positive units

diminish the number to 9 negative units, we may write

-12 + +3 as -(12 - 3) = "9.

From another point of view, 12 negative units may be obtained by

combining 9 negative units with 3 negative units.

Hence -12 — "3 = "9 + -3 — -3; and since successively adding and

subtracting 3 negative units produce no final change in the value of the

original 9 negative units, the second member of the identity reduces to "9.

Ex. 6. From -4 subtract -11.

Replacing the indicated subtraction by an equivalent addition, we have

-4_-ll =-4 + +11.

In combination with the 11 positive units the 4 negative units produce a

decrease in number to 7 positive units. Hence, —4 + +11 may be written as

+(11 _4) = +7.

From another point of view, the subtraction of 11 negative units in one

operation amounts to the two separate operations of subtracting 4 and 7

negative units successively. Hence, we may write —4 — -1 1 = -4 — —4 — —7.

Since the subtraction of 4 negative units from 4 negative units produces

zero, we have as a remainder tlie expression— —7, which may be transformed

into the equivalent expression + +7.

Hence -4 — -1 1 = + +7, as above.

Ex. 7. From "1 subtract +14.

The subtraction of 14 positive units may be looked upon as amounting to

the addition of 14 negative units.

Hence -1 - +14 = -1 + "14.

In combination by addition, 14 negative units and 1 negative unit

amount to 15 negative units.

Hence -1 + -14 may be expressed as -(1 + 14) = -15.

Ex. 8. From -16 subtract +10.

Observe that the subtraction of 10 positive units is equivalent to the

addition of 10 negative units. We may write -16 — +10 = "16 + "10.

We have an expression for 16 negative units increased by 10 negative
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units, resulting in 26 negative units. Hence, ~16 + "10 may be written as

-(16+ 10) =-26.

37. luequality. To agree with the ordinary arithmetic notions

of ineiiuality, mathematicians have agreed to call one algebraic num-

ber, r/, greater or less than another, b, according as the reduced

value of a — ^ is positive or negative.

From the definition it appears that any positive number (repre-

sented by ^d) must be considered greater than any negative number

(represented by ~b) since

. -^a--b = -^a + -^b= +(« + b)

which is a positive number.

From the same point of view is to be regarded as being greater

than any negative number, ~/>, since

- -6 = -f +^ = +6

which is a positive number.

Hence, corresponding to the expression "greater than 0," there

follows directly, by application of the Principle of No Exception,

also the idea "less than 0."

38. Again, from our previous definition, one negative number,

~c, is to be regarded as being greater than another negative number,

~dj according as the reduced value of

~c — ~^ = "c + '^d

is positive or negative.

The reduced value of ~c + ^d will be negative if c be numerically

greater than ^, and positive if d be numerically greater than c.

Ex. 9. Compare "3 and -4.

—3 — -4 = -3 + +4 B "^1, a positive number.

Hence —3 is greater than —4.

Ex. 10. Compare —5 and "l.

Front the definition we have

—5 — -1 B —5 + +1 = —4, a negative number.

Therefore —5 is less than ~1.

39. Using the symbol qo, "infinity," to represent any number

which is numerically greater than any assignable number, it follows
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from the reasoning above that the series of extended number may
bo regarded as being arranged in order of increasing magnitude,

from left to right, as follows:

-^,
,
-3, -2, -1, ±0, +1, +2, +3, ,+co.

Observe that may be regarded as belonging to both the positive

and negative parts of the series; it is all that they have in common.

(See Chapter 11. § 23.)

Exercise IV. 3

Perform the following indicated subtractions :

1. From +6 subtract +4. 16.

2. From +8 subtract +1. 17.

3. From +10 subtract +7. 18.

4. From +12 subtract +5. 19.

5. From "9 subtract +3. 20.

6. From "4 subtract +2. 21.

7. From "7 subtract +8. 22.

8. From -11 subtract "12. 23.

9. From "5 subtract "11. 24.

10. From "2 subtract +14. 25.

11. From "3 subtract +19. 26.

12. From -14 subtract +9. 27.

13. From "17 subtract +15. 28.

14. From +13 subtract "20. 29.

15. From -18 subtract +16. 30.

From -1 subtract +17.-

From -15 subtract +18.

From +19 subtract -19.

From -16 subtract +16.

From -15 subtract +14.

From -9 subtract +11.

From -12 subtract +13.

From +20 subtract -17.

From +18 subtract +20.

From "6 subtract +20.

From -7 subtract +18.

From -8 subtract +14.

From -9 subtract +13.

From +10 subtract -12.

From -11 subtract +11.

Perform the following indicated additions and subtractions :

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

+2 + +3 - +4.

+1 - +5 - +15.

+5 - +9 + +16.

+5 + -9 - -16.

+5 + +9 - +16.

+3 — +7 - +9.

+11 -+15 — -2.

+17 — -3 + -19.

+10 + -19 --17.

+20 - -13 + +6.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

+5 - -5 + -8.

+13 --13 --19.
+1 —+10 - +19.

+14 — -8 + +8.

+16 + -18- +9.

+2 - -4 + +6 - -8.

+20 — -18 + -9 + +6.

+35 — -15 + -25.

+40 — -20 — +30.

+75 + -50 - +25.-
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Find the values of the following expressions when the given

values are substituted for the letters appearing in them.

If a = +l,b = -5, c = -S,d = +4.

51. a + b + c + d. 56. a - [b - (c + d)].

52. (a + b)-(c + d). 57. ^[(a + b) - c] - d.

53. a-(b + c) + d. 58. (+6 -a) - (+6 - b).

54. a + (b-c)- d. 59. (c - +3) - (d - -4).

55. a-[b+ (c- d)]. 60. (b - +5) - (c - -3).
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CHAPTER V

MULTIPLICATION AND DIVISION OF ALGEBRAIC NUMBERS

I. Multiplication

1. The multiplication of abstract numbers is first defined in

arithmetic as the taking of one number as many times as there

are units in another.

E. g. To multiply 4 by 3, we take as many 4's as there are units in 3.

We have 4x3 = 4 + 4 + 4= 12.

2. In algebra, as in arithmetic, we call the number multiplied

the multiplicand, the number which multiplies it the multiplier,

and the result of the operation the product.

Whenever the first of two numbers such as 2 x 3 is regarded as the

multiplier, it is customary to read the product as " 2 times 3/' while if 3 is

regarded as the multiplier and 2 as the multiplicand, we may say "2 multi-

plied by 3."

3. Our first idea of multiplication is that it is an abbreviated

addition.

From this point of view the multiplier must, in the original sense

of the word, be the result of counting ; that is, it must be a positive

whole number.

The multiplicand may be any number previously defined, that is,

it may be abstract or concrete, positive or negative, or even zero,

but tlie multiplier must be an abstract number.
In a product consisting of two abstract numbers, the one at the

right is usually regarded as the multiplier. However, since we

speak commonly of 2 books, 3 apples, etc., mentioning the multiplier

first, mathematicians find it convenient to arrange a given product

containing numbers and letters so that the numerical parts shall

occur in the first place.
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Repeating a quantity does not alter its nature ; hence it follows

that a product must be of the same nature as the multi-

plicand. Hence the product will be an abstract or a concrete

number, according as the multiplicand is an abstract or a concrete

number.

Our first conception of a product can have no meaning when
fractional, negative, or zero multipliers are considered, for from the

original definition we can multiply by positive whole numbers only.

Therefore we apply the Principle of No Exception, and declare that

since negative numbers have the forms of dififerences, multiplica-

tions with them may be performed exactly as with real or actual

differences.

4. To allow of carrj-ing out the operation of multiplication when

the multiplier is a fraction or a negative number, it becomes neces-

sary to give an extended definition of multiplication

:

To multiply one number by a second number is to d^} to the first

number that which must be done to the positive unit ^\ to obtain the

This does not contradict our first definition as given in arithmetic,

but includes it in the more general statement.

E.g. 3 = -1-1 + 1-1-1.

Hence, doing the same thing to 4 that was done to 4-1 to obtain 3, we

may write as the product of 4 and 3

4x3 = + 4 + 4 + 4=12. (See§l.)

5. This general definition may be regarded as including,' the multiplica-

tion of fmctions. Thus, if we wish to multiply | by f, we must do to |
that which was done to unity to obtain ^; that is, we must divide | into

seven equal parts and take three of these equal parts as summands. Each

2
of the equal parts of | will be r-71^, and by taking three of these parts as

0*7
summands we shall have

2 2 2-36
®(?) 7"^5-7'5-7 5-7 35

6. Just as, in arithmetic, numbers result from repetitions of unity,

so positive and negative numbers may be regarded as resulting from

repetitions of^^^ unit o/positive numbers '^1, and the unit of negative

numbers ~1. ^
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We may take as quality units the numbers +1 and ~1.

7. In the multiplication of positive and negative numbers we may

have
I. Tlie Multiplier Positive.

Ex. 1. Multiply +5 by +3.

By the extended definition of multiplication the product may be obtained

by operating upon the multiplicand +5 in exactly the same way that we must

operate upon the unit of positive numbers +1 to obtain the multiplier +3.

From the detinition of a positive number, +3 = +1x3.
That is, we obtain the multiplier +3 by multi[)lying the unit of positive

numbers +1 by 3, retaining its quality as a positive number.

Hence to multii)ly +5 by +3 we retain the quality of the multiplicand +5

and multiply its absolute value by 3.

That is, +5 X +3 = +(5 x 3) = +15.

Ex. 2. Multiply —2 by +4.

Rt?asoning as before, the jjroduct may be obtained by multiplying the

absolute value of the multiplicand by 4, retaining its ([uality as a negative

number.

Hence, "2 x +4 = -(2 x 4) = "8.

8. In the multiplication of positive and negative numbers we

may have

II. The Multiplier Negative.

Ex. 3. Multiply +6 by "3.

By the extended detinition of multiplication, the product may be obtained

by performing upon the multiplicand +6 exactly those operations which

must be performed ujjou the unit of positive numbers +1 to produce the

multi[)lier —3.

From the definition of a negative nund)er we have

~3 = 4- ~1 + ~1 + ~1, ill terms of negative units,

or ~3 = — +1 — +1 — +1, in terms of positive units.

That is, -3 may be obtained from the unit of positive numbers by revers-

"J the quality of the positive unit and multiplying its absolute value by 3.

It follows that, to obtain the desired product of +6 and -3, we may reverse

the quality of the positive unit and multiply its absolute value by 3.

Hence, +6 x "3 = "(6 x 3) = "18.

ICx. 4. Multiply "7 by -5.

Reasoning as above, we may reverse the sign of quality of the multipli-

cand -7 and multiply its absolute value by 5.

Hence -7 x "5 = +(7 x 5) = +35.
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9. It should be observed that, in each of the examples above, the

sign of quality of the product is positive or negative according as

the signs of quality of the multiplicand and multiplier are like or

unlike.

10. "We will now show that this Law of Signs holds for all positive

and negative numbers.

Representing by a and h any two arithmetic numbers, that is, integral

values,

(i.) +a X +ft = +{ah), (iii.) -a x +6 = -(nb),

(ii.) -ax-h = ^{ah)y (iv.) +a x "6 = -(a6).

Proofs of (i.) and (iii.) :

To obtain +6 from the unit of positive numbers +1, we retain the quality

of the unit and multiply its absolute value by 6 ; it follows from the extended

definition of multiplication that to multiply any number by +6 we retain

the quality of the number and multiply its absolute value by h.

Hence, (i.) +a x +h = +(a6).

(iii.) -a x "•'6 = ~(ab).

Proofs of (ii.) and (iv.) :

To obtain -h from the unit of positive numbers +1 we may change the

sign^ of quality of the unit and multiply the result by b ; accordingly, to

multiply any number by "6, we may reverse the quality of the number and

multiply the result by b.

Hence (ii.) -a x ~b = +(a&).

(iv.) +a X ~b = -(ab).

The Law of Signs for the multiplication of two numbers or quan-

tities may be stated as follows :

TTie ])7vduct of two numbers having like quality signs is positive,

and the product of two numbers having unlike quality signs is

negative.

11. By examining identities (i.) to (iv.), § 10 above, it may be

seen that the signs of quality of both multiplicand and multiplier

may be reversed without altering the sign of quality and numerical

value of the product.

E. g. Reversing the signs of multiplicand and multiplier in (i.), we obtain

the multiplicand and multiplier in (ii.), but the quality of the product

remains unaltered.
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Reversing the signs of quality of multiplicand and multiplier in either

(iii.) or (iv.) has the effect of an interchange of signs, giving as a result

the left member of either (iv.) or (iii.), the quality and numerical value of

the product remaining unaltered by the change.

12. Hence we have the Commutative Law for Signs of

Quality in Multiplication, that is,

~a X ^b H ^a X ~b = -(ah).

It follows that, in establishing the Commutative Law for the

multiplication of positive and negative numbers, we may establish

it for the last form ~{ab) only, using the absolute values of a and b.

Exercise V. 1

Simplify the following :

1. +3 X +2. 10. +12 X -8. 19. -10 X -19.

2. +5 X +4. 11. -11 X -10. 20. +18 X -10.

3. +7 X +3. 12. -14 X "6. 21. +15 X +1.

4 +2 X +9. 13. -4 X -15. 22. -1 X -14.

5. -^9 X +5. 14. "2 X -17. 23. +19 X -4.

6. +4 X -7. 15. -15 X -3. 24. +9 X +12.

7. +6 X -11. 16. -16 X -5. 25. -7 X +9.

8. +8 X -12. 17. +6 X -20. 26. -6 X -8.

9. +10 X -13. 18. -3 X +18. 27. -20 X -15.

28. (+2 X +5) + (-5 X +6). 34. ("8 X "7) - (-7 X +8).

29. (+11 X -11) + (+13 X -2). 35. (+3 X "4) - (-5 X +6).

30. (+5 X -16) ~ (+4 X +3). 36. (+7 X +10) - (+8 X +11).

31. (+1 X -1) - (-20 X +20). 37. (+10 X -14) + (+15 X "15).

32. (-1 X +3) - (+12 X +12). 38. (+13 X +20) - (+20 X "14).

33. (+16 X -16) -(-16 X +16). 39. (+10 X -18) + (+18 X +13).

lia = +2, 6 = -3, x = ~b, y — +4, find the values of the follow-

ing expressions :

40. ah + (cy. 45. ah + y.

41. ax + by. 46. x — ah.

42. ay — hx. 47. y — hx.

43. ah + a. 48. ah + hx + xy,

44. hx + X. 49. ax •\- ah \- by.

L
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Find the value of (a + b) X c, when

50. a = +2, 6 = +6, c = +3. 52. a = H,b = -5,c = "7.

51. a = -3, 6 = +1, c = +4.

Find the value of (a — b) X c when

53. a = -1, 6 = +4, c = "8. 55. a = +10, b = "10, c = +10.

54. a = +6, ^ = +9, c = "1.

Find the value of (a + b) X (c -\- d) when

56. a = -1, 6 = "2, c = +3, </ = +4.

57. a = +5, ^^ = -2, c = +12, c? = "9.

Find the value of (a — b) X (c — d) when

58. a = +S,b = +5, c = "2, d = "4.

59. a = +2, 6 = +7, c = "3, c? = +11.

13. "Whenever both the multiplicand and multiplier are abstract

numbers, two fundamental laws hold also in multiplication. These

are the Law of Commutation, affecting arrangement, and the Law of

Association, affecting grouping. These laws are similar to the laws

in addition having the same names. Thus :

(i.) a times b = b times a. Law of Commutation.

(ii.) a times (b times c) = (a times b) times c. Law of Association.

14. The Commutative Law for Multiplication

In a product of two abstract numbers, either number may be taken

as the multiplier without affecting the value of the result.

Thus, in s)rmbols, a xh^hx a.

E. g. 5x3 = 3x5.

We may show that the law holds for the product of two particular num-

bers, say 5 and 3, by representing the number 5 by five points in a horizontal

row, and constructing three rows, as follows

:

Counting the entire set of dots, we may regard it as consisting of three

groups of 5 dots each, written 5 x 3, or again as five groups of 3 dots each,

written 3x5. Hence, we may assert that 5x3 = 3x5.
If, instead of reasoning with particular numbers, we arrange h horizontal
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rows of a dots each, we shall arrive by similar reasoning at the result, that

for all positive integral values of a and b

a X b = b y a.

This is called the Law of Commutation for Multiplication.

It may be shown that the principle applies whenever there are

three or more factors.

15. Continued Product.

The product of three or more numbers, a, h, c, and d^ written

a X b X c X dy ox abcd^ is defined to be the number obtained by-

multiplying a by 6, this result by c, and finally the last result by d.

If we represent any three arithmetic whole numbers by «, &, and c, we
mav indicate the continued product of three positive numbers by writing

(+a)(+6)(+c).

(The following proof may be omitted when the chapter is read foj the first time.)

By the definition of a continued product we are to understand

(+a)(+6)(+c) as meaning that we are to first multiply +a by +6, and this

product by +c.

(+a)(+6)(+6') = [(+a)(+i)](+c). By definition of multiplication.

But (+«)(+&) = +(a6).

Hence (+a)(+/>)(+c) = [+(a6)](+c).

Regarding +(«6) as a single number, and multiplying by +c,

= +(ak).

By assuming some, all, or none of the three factors of the product to be

positive numbers, we may extend the principle to include such combinations

of positive and negative numbers as the following

:

(+a)(+6)(+c) = +(a&)(+c) = +{ahc).

{-a){+b){+c) =-{ab){+c) =-{abc),
{-a)(-b){+c) = nfib){+c) = ^((ibc).

{-€i)(-b){-c) = +{ab){-c} = -{abc),

and so on for more factors.

16. The essential thing to be observed in the identities above is

that a continued product is positive if it contains no negative factors

or if it contains an even number of negative factors, and it is nega-

tive if it contains an odd number of negative factors.

E.g. 1. (+3) (+2) (+4) (+5) =+120.^2. (-4)(-6)(+l)(+7) =+168.

3. (-l)(-3)(-8)(-10)=+240.

4. (-2)(+3)(+5)(+0) =-180.

5. (-5) (-2) (-4) (+9) B-360.
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17. The Associative Law for Multiplication

The value of a product remains unaltered ij\ in the process of

multiplying several numbers^ two successive factors are associated or

grouped together toform a single product.

E. g. 2 X 3 X 4 X 5 = 2 X 3 X (4 X 5) = (2 X 3) X 20 = 6 X 20 = 120.

(The following proof may be omitted when the chapter is read for the first time.)

For any three arithmetic whole numbers, a, 6, c,

ahc = a(bc).

We have ahc = {ah)c. By definition of a product.

Considering the product (ab) as one number, by the Commutative Law
for two factors we have

:

= c(ab)f

= (ca)b, by definition of a product.

= b(ca), by Commutative Law.

= (bc)af by definition of a product.

= a(bc), by Commutative Law.

Or, ahc = {ah)c = a(bc).

18. By repeated applications of the Commutative and Associative

Laws for multiplication, it may be shown that both laws hold for

three or more factors. That is :

abc = acb = hac = hca = cab = cba.

Also, abed = a (bed) = a (be) d = b (acd) = etc.,

and so on for any number of factors.

19. From the above, it appears that we may arrange the factors of

a product in any order, and group them together in any convenient

way, ivithout altering the value of the result.

20. Both the multiplicand and multiplier receive the name of

factor, since they may be interchanged without altering the value

of the product.

E. g. a and h are factors of the product a X 6.

Similarly, each number of a continued product, ahcdef , is

called a factor of that product.

E. g. 5, a, 6, and c are all factors of the continued product 5 abc.

21. The Distributive Law for Multiplication

Up to this point we have considered products in which both mul-

tiplicand and multiplier consisted of single numbers. In case eithei
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or both are sums or differences, we are led to consider the third

Fundamental Law of Algebra, namely, the Distributive Law.

In particular, we will show that the product of 3 multiplied by the sum
of 4 and 5 is the same as the product of 3 multiplied by 4, increased by the

product of 3 multiplied by 5.

Let a series of dots be arranged as below, forming a set of three rows,

each containing 9 dots.

The dots may be counted in either of two ways : first, as a single group

consisting of three rows containing 9 dots each, that is, 27 dots in all

;

second, as consisting of one group of three rows containing 4 dots each,

and a second group consisting of three rows containing 5 dots each,— the

two groups being separated as shown.

Hence we may write

3(4 + 5) = (3 X 4) + (3 X 5) = 27.

22. The process may be applied to any three whole numbers, a,

b, c, and we may assert as a general principle that

The product of an algebraic sum multiplied by a single number may
be obtained by multiplying each term of the sum by the given number^

andfinding the algebraic sum of the results obtained.

Or a{h + c) = ab + ac.

This is called the Distributive Law for Multiplication, and it may
be shown to hold when the multiplier consists of any number of

terms, which may be positive or negative, integral or fractional.

23. Zero as a Factor.

It follows directly from the Fundamental Laws that a product is

zei'o if one of its factors is zero.

That is a • o = o, (Multiplier 0).

O • a = O. (Multiplicand 0).

(The following proof may be omitted when the chapter is read for the first time.)

We may write n -- n = 0, as defining zero.

Accordingly, a • = a(n-n) (Multiplier 0).

= an — an By Distributive Law for Mul-

tiplication.

= 0. By definition of 0.
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Also, ' a = (n — n)a (Multiplicand 0.)

= na — na
= 0.

24. Since the proof of an identity establishes at the same time

the truth of its converse, it follows that, ifa product is zero, at least

one of itsfactors must be zero,

that is, if a • b = 0,

then either a is 0, or h is 0, or both a and h are 0.

25. The product obtained by using the same factor repeatedly

is called a power of that factor.

E. g. 3 X 3 is called the second power of 3, or 3 raised to the second

power, since 3 occurs twice as a factor.

Also 2x2x2x2 is called the fourth power of 2 ; etc.

26. The number of times a factor appears in a product may be

indicated by writing a small number called the exponent or the

index of the power at the right of and immediately above the

factor.

E. g. We may write 5^ instead of 5 x 5 ;
4^ instead of 4 x 4 x 4 ; etc.

27. The number which is used repeatedly as a factor to obtain a

power is called the base of the power.

28. The definition of an exponent as given is that it indicates the

number of times a factor appears in a product. This definition

requires that the exponent should be a positive whole number.

In a later chapter this notion of an exponent will be somewhat

extended.

29. In arithmetic a number is defined as being even or odd
according as it is or is not divisible by 2.

E. g. 2, 4, 6, 10, 16, etc., are even numbers.

3, 6, 7, 11, 17, etc., are odd numbers.

30. A power is defined as being even or odd according as its

exponent is even or odd.

E- g- (+4)2, (+6)^, (-3)«, (-7)8, etc., are even powers,

while (+2)3, (+3)5, (-1)7, (-2)9, etc., are odd powers.
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31. An odd power of a negative base conta,ins an odd number of

negative factors, and accordingly, by the rule of signs for continued

products, it is of negative quality.

E. g. The power (~2)^ is of negative quality.

For, r2)3=(-2)(-2)(-2) = -8.

32. Whenever we speak of a positive integral power we have ref-

erence to the exponent rather than to the value of the base, which

may itself be fractional or negative.

E. g. Tlie following are positive integral powers of fractional bases and

of negative bases

:

©••
(I)".

«•• (-9'

33. In operating with powers we are governed by the following

Principles :

(i.) All powers ofpositive bases are positive.

(ii.) Even powers of negative bases are positive.

(iii.) Odd poivers of negative bases are negative.

34. Since a product is zero if one or more of its factors is zero, it

follows that any positive integral power of zero is zero ; that is,

O" = O.

35. In order to indicate clearly and exactly what number is to be

considered as the base, it is often necessary to enclose the number

within parentheses, as in the following illustrations :

(i.) Tlie base a negrative number.

(-8r=(-8)(-3) = -^(3x:-0 = -'9.

Observe that ~a^ is not the same as (CaY.

~a^ is read " negative a square
;

" (~a)^ is read " the square of

negative a."

We have ~a^ = ~{a X a) = "a^,

while (-ay = (-a)(-a) =-^a^

Whenever the symbol before the number or base is regarded as

one of operation, as for example, —3^ we may write

- 3» = - (3 X 3 X 3) = -27.

(ii.) Tbe base not a single number, but either a product
or a quotient.
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Ex. 1. (2 X 5)2 = (2 X 5)(2 X 5) = (10)(10) = 100.

The example above should be distinguished from the following:

Ex. 2. 2 X 52 = 2(5 X 5) = 2(25) = 50.

\4/ ~ 4 ^ 4 ~ 16
*

Ex. 3.

If the numerator alone or the denominator alone is to be raised to

power, we may write
32 _ 9

4
4*

3 _ 3
42-' 16

Similarly,

(iii.) The base a sum or a difference.

Ex. 4. (3 + 5)2 = (3 + 5)(3 + 5) = (8)(8) = 64.

This should be distinguished from the following:

3 + 52 = 3 + (5 X 5) = 3 + 25 rr 28,

also from 3^ + 5^ = (3 x 3) + (5 x 5) = 9 + 25 = 34.

Ex. 5. (5 - 3)2 = (2)2 = 4.

This should be distinguished from the following:

52 - 32 = 25 - 9 = 16.

(iv.) The base a power.

Ex. 6. (30* = (32)(32)(32) = (3 X 3)(3 x 3)(3 x 3) = 9 x 9 x 9 = 729.

The use of exponents above should be distinguished from .32
, which may

be taken to mean either (32)* (read "the cube of the second power of 3")

or 3^2*^ (read " 3 raised to the power two cubed ").

That is, 32* = (32)* = (32) (32) (32) = 9 • 9 • 9 = 729,

Or 32* = 3^28) ^ 32x2x2 = 38 = 6561.

Exercise V. 2

Find the values of the following indicated powers :

Arithmetic Numbers

1. 2\ 5. 2^ 9. 1\ 13. 5*.

2. 2*. 6. 3*. 10. 6*. 14. 12*.

3. 3^. 7. 4*. 11. 2«. 15. 9*.

4. 51 8. 8^. 12. 3^ 16. 10*.
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Positive and Negative Numbers

17. (+2)«. 22. (-3)1 27. {nf. 32. (+4)*.

18. (+4)2. 23. (-6)2. 28. (-2)^ 33. (-15)2.

19. (+5)^ 24. (-11)2. 29. (-3)*. 34. ("20)^

20. (+8)2. 25. (-9)«. 30. (-4)». 35. (+20)'.

21. (+10)^ 26. (-12)2. 31. (-3)^ 36. (-13)2.

Using the letters «, ^, c, ^, y, 2;, etc., to represent positive whole

numbers, find expressions for the following:

37. (+2^0'- 40. (-2.r)«. 43. (+5aft)2. 46. (+2«)2

38. (+3^)2. 41. (-3^)2. 44. (-4.r^)^ 47. (+32)2.

39. (+4c)^ 42. (-4;^)^ 45. ("3 6c)*. 48. (-22)1

Find the values of the following expressions :

49. +2« + +32. 52. +62 - +32. 55. +2^ - -2l

50. +32 4- +42. 53. -5« + -^3^ 56. +12 + +2^ + +32 + +42.

51. +52 - +42. 54. -102 ^ +92 57 +12 + +32^ +52^ +72^

58. +22 ---32 ++42 --52. 59. (+42 -+52)2 -(-62 --72)2.

II. Division

36. The terms dividend, divisor, quotient, remainder are

used relatively in the same way in algebra as in arithmetic.

Division as an operation is the inverse of multiplication.

To divide one number (dividend) by another (divisor), is to find

another number (quotient), which when multiplied by the divisor

produces the first (dividend).

E. g. To divide 12 by 4 is to find the quotient 3. Multiplying the

quotient 3 by the divisor 4 produces the original dividend 12.

37. By the mutual relation of multiplication and division the

quotient has the fundamental property that, when multiplied by

the divisor, the product is the dividend.

That is, Quotient x JDivisoi' = Dividend,

If we represent dividend, divisor, and quotient by D, d and Q respectively,

we may indicate the quotient by writing -r , and our definition of division

as a process may be symbolized by

^xd = n.d
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38. Division, like subtraction, cannot always be performed, but

it may always be indicated. It is only in exceptional cases that

there can be obtained an integral quotient with no remainder. In

this case the dividend is said to be exactly divisible by the

divisor.

39. The fractional notation for a quotient, namely, y* and the

solidus notation «/6, are commonly used for division. Primarily,

either means that we are to take the ^th part of unity a times as a

summand. Hence, h times a of the h\h parts of unity is equivalent

to a times unity ; or in symbols,

V X ft = o.
o

Also, by the definition of division we have

(a -f- ft) X 6 = a.

Hence y has the same meaning as a -i- ^ when a and h are whole

numbers.

40. When division can be performed at all, it can lead to but a

single result; hence it is called a determinate process.

Dimsion by is not an admissible operation. >

41. Since multiplication and division are mutually inverse opera-

tions, it follows that if any number be successively multiplied by,

and then divided by the same number, or be first divided by and

then multiplied by the same number, the resulting value will be

the same as though no operation had been performed. Or, stated

in S3rmbols, (a -f- &) x & ^ a,

and (a X 6) -^ ft = a,

42. It follows, fi-om the definition of division, that if the product

of two factors be divided by either of the factors^ the resulting qvx)tient

will be the other factor.

Or, (a X 6) -f- a = 6,

and {a X h) -^ b = a.

Since in the product (a x h) the factors a and h of the dividend are sep-

arated by the miiltiplication sign, it is merely a matter of inspection to

obtain the second member of each identity.
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43. The Law of Quality Signs for division may be obtained

directly from the set of identities in § 10 by applying the definition

of division.

(i.) +(ab) ^ +b = +a, (iii.) -(ab) -^ +b = -a,

(ii.) +{nb) ~-b= a, (iv.) -{ab) ^ -b = +a.

It should be observed that the quotient is positive whenever the signs of

quality of the dividend and divisor are like, as in (i.) and (iv.), and the

quotient is negative whenever the signs of quality of the dividend and

divisor are unlike, as in (ii.) and (iii.)*

44. It follows that the quotient obtained by dividing any number

by "^1 is equal to the number itself It follows, also, that the quo-

tient obtained by dividing any number by ~1 is a number equal in

absolute value to the dividend but opposite in quality.

E.g. +5 -f +1 = +5, -7^-+1^-7,
+6 -f -1 = -6, -8-i- -1 = +8-

45. The quotient obtained by dividing 1 by any number is called

the reciprocal of the number.

E. g. The reciprocal of 5 is ^.

46. Since the product of any number multiplied by its reciprocal

is by definition "^1, it follows that any number and its reciprocal

have the same quality.

E. g. The numbers ~3 and ^^ are reciprocals, and both are negative

numbers.

47. Dividing hy any number^ except 0, produces the same result

as multiplying by the reciprocal of that number.

Representing any number by A, and any other number different from

by dy we maj'' represent the product of A and the reciprocal of d by writing

Ax{\^d).
If this expression be multiplied by rf, the result is A.

Hence, A x (1 -f rf) is equal to the quotient A -^ d^ that is,

E. g. The quotient 12 -^ 3 is equal to the product 12 x -•
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48. As an extended defiuition of division, to correspond to

that of multiplication, we have the following :

To dimds one number by another is to do to the first that which

must be done to the second to obtain the positive unit "^1.

49. In the division of positive and negative numbers, we may
have

I. The Divisor Positive

Ex. 1. Divide +24 by +6.

By tlie extended definition of division, the quotient resulting from the

division of +24 by +6 may be obtained by performing upon the dividend

+24 such operations as must be performed upon the divisor +6 to obtain the

unit of positive numbers +1.

Since +6 = +1 x 6, it appears that we may obtain the unit of positive

numbers from +6 by dividing the absolute value of +6 by 6.

Hence the quotient of +24 -^ +6, is a positive number obtained by divid-

ing the absolute value of +24 by 6 ; that is :

+24 -^ +6 = +(24 -f 6) = +4.

Ex. 2. Divide -30 by +10.

Reasoning as before, the quotient will be the negative number obtained

by dividing the absolute value of the dividend "30 by 10.

That is, 30 -^ +10 = -(30 ^ 10) = -3.

II. The Divisor Negative

Ex. 3. Divide +32 by -16.

By the extended definition of division, we may obtain the quotient

resulting from the division of +32 by "16 by treating the dividend +32 in

the same way as we treat the divisor ~16 to obtain the unit of positive

numbers +1.

By first reversing the quality of "16 we may, from the positive number

thus obtained, +16, obtain the unit of positive numbers +1, by dividing the

absolute value of the result by 16.

Hence we may obtain the desired quotient by first reversing the quality

of the dividend +32, and dividing the absolute value of the result thus

obtained by 16.

That is,' +32 -^ -16 = "(32 ^ 16) = "2.

Ex. 4. Divide "40 by "8.

In order to obtain the unit of positive numbers +1 from the divisor "8,

we may first reverse the quality of the divisor, obtaining a positive number

+8, and then divide the absolute value of the number thus obtained by 8.

Hence we may perform the same steps with respect to the dividend "40.

That is, -40 -f "8 = +(40 -f 8) = +5.
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Exercise V. S;

Simplify the following:

1. +6 --+2. 11. -15 -f- -3. 21. -42-^+14.

2. +9-^+3. 12. -l2-^+4. 22. +50 -T- -1.

3. +10-^+5. 13. -6-f-+6. 23. +56 -f- -7.

4. +12^+6. 14. +17-^-17. 24. -57 -^ -19.

5. +14 -h +2. 15. -19-r--19. 25. +63-^-9.

6. +16^-4. 16. +13-^-13. 26. -64-^-16.

7. +18-^-9. 17. +27 -^ -9. 27. +65-7- -13.

8. +20 -f- -5. 18. -33 — +3 28. "68 -i- +17.

9. -8^+4. 19. -38-f--19. 29. +70H--14.

10. -4-H+2. 20. +40-^+10. 30. -75 -f- +5.

31. (+36 X -2) -T- -8. 35. (+56 -f- -8) X -7.

32. (+15 X -4) -r- -12. 36. (+32 -^ -16) X -5.

33. (-24 X -3) 4- +9. 37. (-24 -^ -2) -T- "2.

34. (+16 X +4) 4- -8. 38. (+48 -r- -12) ^ -4.

Find the value oi a -^ (b + c) when

39. a = -27, 6 = +5, c = +4. 40. a = -39, b = +15, c = '2.

Find the value oi (a + b) -^ (c + (T) when

41. a = +l,b=+2,c= +4:,d=-L 42. a==+ll,^>=-2, c = +6, ^=+3.

50. Commutative Law for Division. Since multiplications

may be performed in any order, it follows that, in a series of succes-

sive divisions also, the operations may be performed in any order

;

that is,

51. In any chain of operations containing both multiplications

and divisions, the quantities may be rearranged in any order, provid-

ing the sign of operation, X or -f-, attached to any particular operand,

moves with it when it changes from one position to another.

(The following proof may be omitted when the chapter is read for the first time.)

Representing arithmetic whole numbers by a, 6, and c, consider axb-^c.
By the principle of § 41 it follows that, if any number a be divided by

any number c, except zero, and this result be then multiplied by c, the result

will be the same as if no operation had been performed upon a. That is :

a -^ c X c = a.
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Substituting this expression for a in the given expression, we nia}' write

ff X 6 -^ c = (a -r c X f) X i -^ ('.

Applying the Commutative Law for multiplication to tlie two factors

c and bj we have :

{a -7- c X c) x6-7-c = a-rCX&xc-^c.

In this chain we may neglect x c ^ c as producing no change in the final

result. Therefore axb-^c = a-^cxb.
It foUowsi that^ in an unbroken chain of multiplications and divisions, the

operations may be performed in any ^order.

E.g. 2-^7 x 14 = 2 X 14^7 = 28-r7 = 4.

52. It follows, from the Law of Commutation for multiplications

and divisions occurring together, that a pmdact of two w more

factors may he dicided hi/ a number by dividing one of the factors

of the jwoduct by tlmt number.

(The followiug proof may be omitted when the cliapter is read for the first time.

)

Representing any positive integral numbers by «, 6, and c, c not being 0,

we have the followinjj :

(a6) -fc = ax6-rC,
= rt -^ c X 6|

= (rt -r c) X 6;

{alj) -=-c = ax6-rC, Notation

= b -^ c X a^ Commutative Law
= (6 -^ c) X «, Notation

= rt X (?> -r c), Commutative Law

From the reasoning above it follows that

(ofc) ^ ^ = f
either (« ^ c) X 6

I or a X (& -f c).

Associative Laiir for Division

Principles Governing the Removal and Insertion of

Parentheses

63. Parentheses preceded by tlie sign of multiplication X.

(The following proof may be omitted when the chapter is read for the first time.)

Representing arithmetic values of whole numbers by a, b, and c, as in

similar cjises, c not being 0, consider the expression a x (b -^ c) in which

parentheses are preceded by a multiplication sign.

Since successive multiplications and divisions by c produce no change of

value in the result, we may write

ax (b -^ c) = a x (b ^ c) x c -r c.

By the definition of division (b -^ c) x c = b.

Hence ax (b -^ c) xc-^c = axb-^c.
Therefore a x (b -^ c) = a x b -^ c.
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An unbroken chain of multiplications and divisions may he re-

moved from parentheses preceded by the sign of multiplication with-

out altering the signs of multiplication and division preceding the

different numbers removed. (Compare with Prin. I. (i.) Chap. IV.

§'7.)

In case either the sign of multiplication or the sign of division is

required before the first number enclosed within parentheses,

and neither sign is written, the sign of multiplication is to be

understood.

54. Since the proof of any identity establishes also the truth of

its converse, we may state that an unbroken chain of multiplications

and divisions may be enclosed ivithin parentheses, preceded by the

symbol of multiplication, without altering the signs of multiplication

and division attached to the numbers included. (Compare with

Prin. II. (i.) Chap. IV. § 8.)

55. Parentheses Preceded by the Sign of Division -f-.

(The following proof may be omitted when the chapter is read for the first time.

)

Consider the expression a -f (6 -f c) in which parentheses are preceded

l)y the sign of division.

It may be seen that the chain of successive operations represented

by X 6 -f c X c -f b, if applied to any number, will not affect its value.

Hence, we may write

a-r. (6-rc) = «-^(^-^c)x&-^cxc-^6
= « -f (6 -f c) X (6 -^ c) X c -^ &.

Wc may neglect the successive operations represented l)y -f- (h -f c)

X (h -^ c), as producing no alteration in the value of a.

Hence, « -f (6 -f c) x (h -^ c) x c -^ h = a x c -^ b.

Applying the Commutative Law for multiplications and divisions, we
may write finally

a -^ (b -^ c) = a -^ h X c.

An unbroken chain of multiplications and divisions may be re-

moved from parentheses preceded by the sign of division, providing

the signs of multiplication and division preceding the different num-
bers removed be changed from X to -^, or from -^ to X. (Compare
with Prin. I. (ii.) Chap. IV. § 7.)

56. Since the proof of any identity establishes also the truth of
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its converse, it follows that an uvibrohen chain of multiplications

and divisions may be enclosed within parentheses preceded by the

symbol of operation for division, provided the symbols of operation

for multiplication afid division, attached to all numbers enclosed, be

reversed, from X to -^ or from -7- to X. (Compare with Prin. II. (ii.)

Chap. IV. § 8.)

E. g. Parentheses preceded by x

+6 X (-2 -r -3) = +6 X -2 ^ -3

= -12 -^ -3

= +4.

Parentheses preceded by ~-

+32 -f (-8 -^ -2) = +32 -^ -8 X -2

= -4 X -2

= +8.

Observe that +32 -^ ("8 -^ "2) is not equal to +32 -^ "8 -f "2. For, we

have +32 -f "8 4- ~2 = "4 -f "2 = +2.

57. From the Associative Law for multiplications and divisions

we have the following Law of Signs

:

(i.) X (X a) = X a, (iii.) -^ (X a) = -i- a,

(ii.) -^ (-f- a) = X a, (iv.) X(-^a) = -^a,

It appears that /or two like signs either of multiplication or of

division, occurring successively as in (i.) and (ii.), we may substitute

th£ direct sign X ; andfor two unlike signs occurring successively, as

in (iii.) and (iv.), we may substitute the indirect sign -i-. (Compare

with § 10.)

Exercise V. 4

Simplify the following arithmetic expressions :

1. 4 X (3 -r- 2). 7. 12 -H (e -h 3 X 2).

2. 1 -^ (1 ^ 6). 8. 15 X (3 -h 5 X 4).

3. 1-T-(2X11). 9. 14^(7 -^ 5 -^ 3).

4. 5 ^ (4 -^ 5). 10. 5 -^ [4 -f- 5 X (3 -^ 5)].

5. 27 -T- (9 -T- 2). 11. 7 -r- [8 X 3 -^ (12 -f- 7)].

6. 21 ^ (7 -^ 4). 12. 16 X [9 -^ 8 X (1 -^ 3)].

Simplify the following algebraic expressions :

13. +10 X (+3 -^ +2). 17. +1 -H (+6 -T- -1).

14. +28 X (-4 -^ -7). 18. -16 -^ (+8 -f- +4).

15. +9 X (+8 4- -3). 19. -27 -^ (-8 -^ +3).

16. +3 -T- (+4 -^ +5). 20. -1 -^ (-1 -f- -2).
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Distributive Law for Division.

58. Ill division the dividend may be distributed, the signs of the

partial quotients following the same law of signs as the partial

products in multiplication. Hence, the following

Principle: The quotient resulting from the division of any alge-

braic sum by a single algebraic number may be obtained by dividing

each term of the dividend by the divisor. The signs prefixed to the

partial quotients thus obtained are -{• or — according as the terms

from which they are obtained by division have like or unlike quality

signs.

{The following proof may be omitted when the chapter is read for the first time.)

As in similar cases let a, />, <?, and d represent any positive integral values,

with the restriction tliat d shall not be 0. Consider {a — h -\- c) -^ d.

By the definition of division, we may write

-{- a — d X d = -\- a,

— h-^dx d = — bf

+ c-^dxd = + c.

Substituting these values for a, b and c, in the expression a — b + c,we

may write

(a — b -\- c) -^ d = [a -^ d X d — b -^d X d + c -^ d X d]-^ d.

Observe that the expression in square brackets may be obtained by

multiplying the following expression by d:

a-^d — b-^d + c-^d.

Hence^ (a — b + c) ~ d = [(a -i-d — h^d-\-c-!^ d)] x d -^ d

= a -^ d — b -^ d + c -^ d.

.

E. g. [+12 X -26 - +8 X +13 + -11 X "39] -f +13

= [+12 X -2 - +8 X +1 + -11 X -3]

= -24 + -8 + +33

= +1.

59. Although the dividend may be distributed, the divisor

cannot be.

E. g. It should be observed that :
=

= H v

'

'=' c-^-dc + dc + d

but —f-j ^ —^— + —^ .

c + d/ c d

60. Division of one expression by another may be indicated by

writing the dividend as the numerator and the divisor as the

denominator of a fraction. When either the dividend or the

6
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divisor consists of more than one term, the horizontal dividing line

of the fraction, which separates numerator from denominator, serves

both as a sign of division and of grouping.

E.g. ^=^a + b)^(c-d).

61. In a chain of operations involving additions, subtractions,

multiplications and divisions, unless the contrary is specified, the

multiplications and divisions must be performed first, and then the

indicated additions and subtractions.

However, by the use of parentheses we may indicate that addi-

tions and subtractions are to be performed before multiplications

and divisions.

Ex. 1. +2 X +3 + -4 X -5 + -8 -^ +2 = +6 + +20 + "4 = +22.

Ex. 2. +2 X (+3 + -4)(-5 + "8 ^ +2) = +2 x (-l)(-5 + -4)

= -2 (-9) = +18.

62. From our definition of as resulting from the subtraction of

any number from an equal number, it follows that the quotient ob-

tained, by dividing zero by any number different from zero is zero.

For, letting a and x represent any numbers which are different

from zero, we have 0~-x = {a — a)-^x = a~-a' — a-^£c = 0.

63. It follows, conversely, that if a quotient be ths dividend must

be 0, since from the nature of the case the divisor cannot be 0.

That is, b being any number other than 0,

. if a -h ^ = 0, then a must equal 0.

Exercise V. 5

Simplify the following expressions :

1. +20 -^ -5 + -30 -h +6 - -40 ^ -8.

2. -24 X -2 - +3 -^ -1 + -9 X +5.

3. +12 ^ -3 X +4 - -15 X -5 -f- +3 + +1.

4. -36 X -2 -^ +12 — +1 -^- +1 X -2 — "S.

5. +6 X +5 + -7 X -2 + +3 X -4 -+- -1 X +9.

6. -8 -^ +2 — +15 X -1 - -14 -^- "7 + "6 X +2.

7. (+2 + +6) (-3 + -4) + +50.

8. (-7 - +5)(-l + -10 ^ +2).

9. +3-^(-10--ll)(+8--5-T--l).
10. (-2 X +4 - -4 -^ +2) -^ (+6 -r- -3 - -1 -^ +1) X -7.



POSITIVE AND NEGATIVE NUMBERS 67

64* Tlie Fundamental Laws of ordinary Algebra, as discussed in the

preceding pages, have been proved for special cases only, and not in their

most general forms.

By the Principle of No Exception they will now be assumed to be

extended to include all numbers which are positive or negative, integral or

fractional, and will be laid down as being fundamental to the science of

Algebra.

Our problem will now be to so define and interpret our symbols and the

results of operations with them, that they shall be consistent with the Com-

mutative, Associative, and Distributive Laws, which are three fundamental

laws of Algebra.

65.* By means of the Law of Commutation we have obtained the

principles governing the insertion and removal of parentheses, and by the

aid of these principles we have developed the Law of Distribution.

By applying these principles repeatedly it may be shown that the Dis-

tributive Law for Multiplication holds when both multiplicand and mul-

tiplier consist of more than one number or term ; that is, with the restriction

that a > 6 and c > dy we may show that

(a — b)(c — d) =ac — be — ad-\- bd.

By letting a and c each equal zero, we obtain from the above,

(-bX-d)= + bd,

from which \ve obtain the following Law of Quality Signs :

(+-hX+-d) = ++bd.

The remaining forms for the Law of Signs for different combinations of

signs of operation and of quality (see § 10) may be shown to hold true by a

similar course of reasoning.

We thus obtain the Law of Quality Signs as a direct result of the Law
of Distribution for Multiplication, and accordingly the Law of Signs may
be included among the fundamental laws of operation.

66. We shall, in the following chapters, employ a single set of

signs, + and —, to denote both the operations of addition and

subtraction, and the qualities of the numbers to which they are

attached, as being positive or negative.

The symbol of operation + preceding a number or letter which

stands first in a chain of additions and subtractions will usually be

omitted, whether it denotes the operation of addition or the quality

of the number as being positive ; but the sign —, whether indicating

* Thifl section may be omitted when the chapter is read for the first time.
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the operation of subtraction or the negative quality of the number to

which it is attached, can never be omitted.

In expressions such as the following

(+3) - (-4) + (-5) - (-G)

each sign within parentheses is to be interpreted as indicating

quality, and each sign outside of the parentheses as indicating an

operation.
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CHAPTER VI

ADDITION AND SUBTRACTION OF INTEGRAL ALGEBRAIC
EXPRESSIONS

Definitions

1. An algebraic expression may for the present be defined to be

any collection or combination of letters or of letters and numbers, con-

nected by the signs of operation +, — , X and -r-, which may be used

according to the principles and definitions of algebra to represent a

number. (Compare with Chap. I. §12.)

2. The parts of an algebraic expression which are separated by

the signs plus and minus are called the terms.

3. Whenever any term is regarded as being separated into two

factors, either factor may be called the co-factor or the coeflacient

of the other.

E. g. In the term 5 abed, 5 is the coefficient of ahcd, 5 a of bed, ac of 5 bd,

etc.

Thus in Axyz, 4 is the coefficient of xyz; ^x that of yz ; and 4xy that

of z.

When one of the factors of a product is a numeral symbol, it is

called the numerical coefficient of the product of the other

factors.

Unless the contrary is specified, when we speak of the coefficient

of a term we mean the numerical coefficient taken together with the

sign + or — preceding it. When no numerical coefficient is written,

unity is understood.

4. A power of a number is a product obtained by using that

number two or more times as a factor.

Thus the second power of 2 is 2 x 2 or 4 ; the third power is 2 x 2 x 2

or 8 ; the fifth power is 2 x 2 x 2 x 2 x 2 or 32.

5. For the present we shall define an exponent as an integral

number written at the right of and a little above a number or
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expression to show how many times the number or expression is to bo

taken as a factor.

Thus a\ read "a square" or "a to the second power, " means a > a\a^,

read "a cube" or "a to the third power," means a-a-a^ afi means

a.a-a.a.a.a-y etc.

a;** may be interpreted as meaning a number x taken as a factor n times,

and not until definite values are assigned to x and n will the expression be

regarded as having a definite numei'ical value. (See also Chap. XIX
§§1-4.)

The same notation may be applied to expressions in which two or

more numbers or letters appear.

E. g. («&)* means {ah){ah'){(ih){ah) -,

(x + yY means \x + y){x + y){x + y){x + y) ;

(5 - zY means (5 - 2!)(5 - z){b - z).

When no exponent is written, the exponent 1 is understood.

Thus, 2 is called the first power of 2 ; 5 the first power of 5 ; a the first

power of a ; the exponent 1 being understood in each case.

6. The expression " no exponent " must not be confused with

the " exponent zero. " We shall show later that any number with

the exponent zero may be regarded as standing for unity or 1.

7. One power is higher or lower than another according as its

exponent is greater than or less than that of the other.

E. g. The fourth power of a number is " higher " than the second power
;

the sixth is higher than the fifth ; etc.

8. A power is even or odd according as its exponent is even or

odd.

9. Any letter or number which is raised to a power, is called a

base.

10. Each literal factor of a term is called a dimensioR of the

term.

It is customary to write the literal factors ofa term in alphabetical

order, unless for some particular reason a different arrangement is

required.

11. The number obtained by adding the exponents of the literal

factors of a term is called the decree of the term as a whole.

I
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E. g. y^, x^ij, abc, are of the third degree ;

abcde^ x^ x^y, m^n'^, are of the fifth degree ; etc.

12. Similar or like terms are terms which contain the same

letters, affected by the same exponents. These terms may, however,

differ in their numerical coefficients.

Thus, 5 xy and — 10 xy are like terms ; so also are 7 a%h and 9 a%h.

13. An algebraic expression is called a monomial, binomial,

or trinomial, according as it consists of one, two, or three terms.

Algebraic expressions of two or more terms are commonly spoken of

as polynomials or as multinomials*

14. A monomial is integral if the letters which it contains

enter by multiplication only, and none enter by division, that is,

if none appear in the denominator of any fraction.

E. g. abCf mn\ 2 xy^ 15 xy^z^^ are all monomials.

aH-&, 2a: — 3 1/, -T-+1 are binomials.

a; + y + s, aa;2 + ?>a: + c, 2 m + 3 a; - 11, are trinomials,

a* + a* + a'* + « 4- 1 is a polynomial.

All of these expressions, with the exception of the monomials, are poly-

nomials or multinomials.

15. A polynomial is said to be integral with respect to a

specified letter when this letter does not appear in the denominator

of any fraction ; that is, when it does not enter any term through the

process of division. In the opposite case it is said to be fractional.

, a2 _ 52 (^ _ ly a'^ + -2ah + h'^ .

E. g. The expression x^ 4 r— x^ — -——-tto x + is

integral with respect to «, but fractional with respect to a and h.

In order that a polynomial be integral with respect to a given

letter it is necessary that all of the terms which appear in it be inte-

gral with respect to that letter.

E. g. a:* + 5 a;2 — x -f 1 is an integral polynomial of the third degree with

reference to x, since the highest power of x which appears is the third.

We may regard ao" + fex^ + ex + (i as a polynomial of the third degree

with reference to x alone, or of the fourth degree if no particular letter is

specified. This is because the term ax* is of the third degree with reference

to X alone, but of the fourth degree with reference to a and x taken together.
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16. An expression in which all of the terms are of the same degree,

reckoned with reference to all of the letters, is hoino^eneous.

E. g. X* + x^y + x^y^ + xy^ + y^ and abc + 5 a' + bh are homogeneous,

and of the fourth and third degrees respectively.

17. One of the equal factors of a number is called a root of the

number. According as there are two, three, or four equal factors,

etc., each is called a square root, cube root, fourth root, etc.

Thus, 2 is one of the square roots of 4 ; 3 of 9 ; 7 of 49 ; etc. 2 is a cube

root of 8 ; 3 of 27 ; 5 of 125 ; etc.

18. A root of a number is indicated commonly by means of a

root or radical sign ^/~,

A small number, called the index of the root, placed thus,

/^~, >y/"~, '^~, etc., is used to indicate the order of the root, that

is, whether it be a second, third, or fourth root, etc. If no index be

expressed, the index 2 is understood.

Thus, ^^27 is 3, 'C^ is 2, {/32 is 2, and ^/'W = ^IQ is 4.

19. An expression is rational with respect to specified letters

when it does not contain indicated roots of these letters. In the

contrary case, it is said to be irrational.

According to this definition, a rational expression may contain

indicated roots of the numerical parts.

c o 2 m + n V5 ahc + 3 a + V'4 6 . .

E. g. 2 xhjz, — , — >
-—^ , are rational with respect

o ft 9 xy 2i

to the letters, for no letter appears under a radical sign. On the other

. 2 a \/a^ + y^
hand, v a;^ — y^ and are irrational with respect to the

Va — b
letters.

20. A polynomial is rational, irrational, integral, or frac-

tional according as its terms are rational, irrational, integral, or

fractional.

21. A polynomial is said to be arranged with reference to a

specified letter when the exponent of that letter in successive terms

increases or decreases in numerical value.
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E. g The expression 4 + 2 a; + 6 x^ -f 5 a;^ + a;* is arranged according to

increasing powers of a;; in the following form it is arranged according to

decreasing powers of x ; a,-^ + 5 x^ + 6 a;^ + 2 a: + 4.

The polynomial a^ + 5 a% + 10 a%^ + 10 aW + 5 ah* + h^ is arranged

according to descending powers, 5, 4, 3, 2, 1, of a, and according to the

ascending powers, 1, 2, 3, 4, 5, of b.

Addition of Monomials

22. The algebraic sum of two numbers or quantities may always

be indicated by writing them one after the other, separated by the

sign of addition, each term being preceded by the sign of quality of

its numerical coefficient.

This collecting of several numbers or quantities into one algebraic

expression is what in algebra is called addition. The resulting

expression is called the sum.
23. It is commonly understood that, after the parts of a sum are

written consecutively as parts of one algebraic expression, like or

similar terms are to be united.

This "reduction " is not addition, but amounts simply to changing

the form of an expression so that it shall have as few terms as

possible.

(a) Addition of Dissimilar Terms.

24. If several quantities or terms to be added are unlike, they

cannot he united to form any particular amount or number of either.

TJw sum may be indicated by writing the terms one after the other

with the proper signs.

E. g. The sum of a and h may be indicated by writing a + 6, but not

until particular values are given to a and h can we find a single 7iumber

representing their sum.

If a represents 2 and 6 represents 5, then ct + 6 represents 7.

If a represents + 3 and h represents — 3, then a + 6 represents 0.

Ex. 1. Express the sum of 3x and — 2i/.

Since these terms are unlike, we cannot combine them into a single term,

but we may express the sum by writing the terms separated by a positive

sign, considering the second term as a negative number ; that is

3x+(-27/) = 3a;-2i/.
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(b) Addition of Similar Terms.

25. Like m- similar terms may be united by addition into a single

term.

Ex. 2. Find the sura of 5 a&, 3 ah, and ah.

Since we have no knowledge of the value represented by the product of

the letters a and 6, we may add the terms with respect to the product ah, as

a concrete number.

Indicating the sum by writing 5 a& + 3 a5 + ah, we find that we have

(5 + 3 + 1) a6, that is, 9 ah.

Hence we may write 5 aft + 3 a6 + a& = 9 a6.

Ex. 3. Find the sum of 4 mji*, — 2 mii^, and — 5 mn^.

Observe that the terms are simihir with respect to the literal parts, mn^.

Hence we may indicate the sum by writing as a coefficient to this common
literal part the algebraic sum of the numerical coefficients considered as

positive and negative numbers ; that is, we may write

4 mn^ — 2 mn^ — 5 mn^ = (4 — 2 — 5) min^ = — 3 mn^.

26. The addition of terms in algebra is performed according to

the following Principles

:

(i.) The sum of two monomials may be indicated by writing them

with their signs of quality one after the other, separated by the sign +.

(ii.) To add like terms, find the algebraic sum of their coefficients

considered as positive or negative numbers, and prefix this as a

coefficient to their common parts.

Mental Exercise VI. 1

Perform the following indicated additions:

1. a 2. -b 3. 2c 4. 5d
a -b 3c d

5. -^9 6. 6A 7. hx 8. — Ix
- 9 4A -2x \\x

9. -Sx 10. — 12y 11. dz 12. nw
^x -133/ -Idz — 20w

.3. Sab 14. 6 6c 15. — Zad 16. Uxy
2ab 9 6c — Wad — 9xy

.7. 4:C^X 18. ^by^ 19. -llcW 20. -26^y
h^x 8V 21 c^" 31^/
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21. ax

2 ax

Sax

22. 5bi/

2by

23. 6c^

2^
5c^

24. 1 dw
— 5dw
3dw

25. A:£CW

— 2xw
— xw

26.

30.

34.

11/
-3if
3/

— 13 ^>a-^

— Ibxij

— dbxij

2S ab\
— ab'c

— 5 ab^c

27.

31.

35.

12 z^w

4:Z^W

— 4:Z^W

28.

32.

36.

-2{)w^
10 w""

- 5w''

29. — Sabc
— 5 abc

— 7 abc

22a^bc

a^bc

-Sa%c

Ucm^

18 cm^

-lldk^
- 13 dh^

2ddh^

33. Slxj/z'

— llxyz^

— xyz^

-43a;y
-27a;y

xY
37. la%

5a'b

Sa'b

^a%

38. dbc

-10 be

12 be

— Ubc

39. - 5x^y

dx'y

- 13x^y

ISx^y

40. Ixyz
— 8xyz
— dxyz

10 xyz

41. 32 ab

lab

Uab
2ab

42. 13a;y

15 X1J

llxij

l^xy

43. 18 xhjz^

12 xhjz^

UxSyz""

Ux^yz^

44. UxYz^
UxYz^
22 xY^^
25a;y5«

45. 13 abx

— 15 abx

21 abx

12 abx

46. -23b\H
37 b\H

- ^b\H
- b\H

47. — 25 a^mw
— 35 a^mw
— 45 a^mw

95 a^mw

48. 8 7wwaj^

11 mno?

llmnx^
— 33 mnx^

49. \a 50. b

3a lb
51. f c 52. Id

Id
53. ^h 54. %k

55. ^m 56. ^ n 57. .2 a 58.

n .3a

.04 6

.05 6

59. 5.67

-2.31
X 60. 2.0011/

X —.102?/

61.

62.

63.

64.

0.7 c + 0.02 c.

SAd-\- 0.05 ->?

1.1 g + .11^.

10.1a;- 1.01a;.

65.

66.

67.

68.

.682^ + 0.25 y.

1.001 z + 9.099

100.1 w— 1.001

11.01a— 10 11

w.

a.
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Add the following, with reference to the similar parts.

In case two unlike terms contain the same letter or factor, we may
perfoi-m the addition loith reference to this letter as a summand, re-

garding the remaining factors as coefficients.

Ex. 69. Find the sum of xz and i/z.

Regarding x and y as coefficients of z, the sum may he expressed by

writing the sum of x and y as a. coefficient of z, as follows

:

xz-^yz = (x -\- y)z, or in vertical arrangement, xz

(x + y)z.

70. ax 71. CIJ 72. mz 73. Sw
bx dy 2z yw

74. ad 75. 6A 76 ex 77. 3^
d bh -dx -hk

78. 2ab 79. aH 80. x^w 81. X

36 bH — y'^w ^
82. be 83. ab 84. xy 85. &cd

b_ be yz_ hbd

86. 2 ax 87. 5 xy 88. -dab 89. 12 abc

Sbx -2 xz — 4ac — 5 abd

Compressions which contain a common binomial or a commcm poly-

nomialfactor may be added with reference to this common factor.

We may regard thefactm^s which are not common as being coeffi-

cients with reference to the common factors and, finding their sum as

positive and negative numbers, prefix this as a coefficient to the com-

mon facto?'.

Ex. 90. Find the sum of a(x -\- y) and b(x + y).

Regarding a and h as coefficients of the common factors of the two given

terms, we may write their sum as a coefficient to the common part.

<x + y)-\- h(x + y) = (a + ft) (rr + y).

Ex. 91. Ymdthesumof3{x^— y^),4:a(x^-y^),a,nd-2b(x^-y^.

Adding the coefficients 3, 4 a, and — 2 6 with respect to the common
factor x^ — y^, we have

3(a;2 - 2/2) + 4 a(x^ - y^) - 2 b(x^ - t/^) = (3 + 4 a - 2 6) (x^ - 7/2).
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92. «:(c - d) 94. x{y - z) 96. 2 ab{g - k) 98. a(ir^ - y^
y{c - d) -iy-z) 3 cdjg - ;^) K^^-^/")

93. a{b + c) 95. 2 a(w + w) 97. a\x + 3/) 99. — (c^ + 1)

(6 + c) bjm + n) - h\x + y) 2d{c^ + 1)

Subtraction of Monomials

27. The algebraic difference of two numbers or quantities may
always be indicated by writing the subtrahend after the minuend,

separating the two by the sign of operation for subtraction —, each

being preceded by its proper quality sign.

From the principles affecting operations with positive and nega-

tive numbers it appears that instead of a subtraction of a number

we may substitute the addition of a number equal to it in absolute

valvs but of opposite qu^ility.

That is, to subtract a given number or term we change its sign of

quality and then proceed as in addition.

As in the case of addition, this collecting of several numbers or

quantities into one algebraic expression is what in algebra is called

subtraction. The resulting expression is called the difference.

Ex. 1 . From 5 x subtract 2 x.

Indicating the process by the horizontal arrangement, we have

5 a: - 2 X = (5 - 2)a: = 3 x.

bx
When employing the vertical arrangement^ 2x, instead of actually altering

the sign of quality of the subtrahend 2 x, we should make the chan<]je men-

tally when performing the operation, and write the result immediately

underneath as in arithmetic.

Ex. 2. From — Sy subtract 7 y.

Using the horizontal arrangement, we have

-^y-(-h7y)=-Sy-7y=(-3-7)y = -lOy.
-3y

Using the vertical arrangement, we have + 7 y

28. Caution. The student should be careful, when employing

the vertical arrangement for subtraction, not to actually change the

sign of the subtrahend on paper. Such a change of sign is con-

fusing when the work is reviewed.

i
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29. It is customary, whenever possible, to so arrange an expres-

sion as to have the first term preceded by a positive rather than a

negative sign.

E. g. We should consider — 6 + a to be arranged in better order if

written + a — 6.

Mental Exercise. VI. 2

Perform the following indicated subtractions :

1. 6a 13. -15z 25. 2Aa^b 37. 45 a^bc^

4a z — Ua% 54 a'bc^

2. 96 14. — \lw 26. -Slcd^ 38. - 56 xSfz
66 \lw -Ucd' 67 xYz

3. lie 15. - 18A 27. 42 m^'n^ 39. —101 a^xy

3c

-\2d 16.

— 18A

2a» 28.

-31wV
40.

— Iha^xy

4. -58^y 123 m^niv

- 4d a« 46 .ry 95 mhiw

5. - \0e 17. 5 6« 29. 16«6c 41. 158 S1/W

— le 7 6« - ISabc 85 syw

6. - 137W 18. 4<f» 30. — 25 cdij 42. —IdSgnq
5m -\\d^ llcdij 89gnq

7. Un 19. — 19.r' 31. 5Gbgm 43. —150 chw
- 8w

— 16 5^ 20.

— 23 x^

32.

— 1 7 bgm

44.

dlchw

8. 21?/* -239 6F
-12^ - 19.?y* 2^a''bc 167 6F

9. 5r 21. 6«6 33. e2ab^G 45. 2a
7r 27 a6 —47 aPc ia

10. 85 22. 31 ac 34. -llabc^ 46. 5b
105

23.

— 26 «c

35.

-38 abc"

76 a^h 47.

hb

11. - 29 6^ \c
-8^ ^\hd — 67 a'^b'^c i^

12. -4y 24. S3 mw 36. - 39 ahh^ 48. f^"
6./ — 27 miv WSab'^c^ \d
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49. ^k 53. .hx 57. l.Ga 61. .36^

\h ,2x .la 3.64 ^r

50. ^k 54. '-iy 58. 2.28 6 62. .345^

-\k .^y .02 6 -.655^2?

51. fM 55. Mz 59. .33 c 63. - .583 7/

1 w .04. z .03 c - 5.417 y

52.-^71 56. .Ww 60. 2.51^ 64. 1.001 z

^n .03 w; .25^ -.011 2;

In case two unlike terms contain the same letter or factor, we

may perform the subtraction with reference to this letter or factor,

regarding the remaining factors as coefficients.

Ex. 65. From ax subtract hx.

Since a and h are the coefficients of a:, we may express the difference by

writing the algebraic difference (a — h) as a coefficient of the common letter

a:, or {n — h) x.

Perform the following subtractions with reference to
similar parts:

\

66. ac 71. hw 76. -- bnq 81. -7^/
be

dy 72.

— nw

bm' 77.

— hnq /
67. baxyz 82. ab

xy hm^ 2 bxyz be

68. aw 73. - 9f 78. 2ab 83. xy

mw — my^ b xz

69. - ct 74. axy 79. -Scd 84. xY
-dt bxy -d -fz'

70, -ay 75. rn^xw 80. hx'^y 85. xyz

xy — n^xw -y yzw

The difference between two compound expressions which con-

tain the same polynomial factor may be found with reference to

this polynomial factor.
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Ex. 86. From a (x + y) subtract —h {x + y\

Regarding a and — 6 as coefficients of the binomial factor {x + 1/) we
may find the difference by prefixing the algebraic'difference of a and — 6,

as positive and negative numbers, as a coefficient to the common factor (x+ y)

as follows

:

a (x + y)

-^(a^ + y)

(a -f 6) (X + y)

87. 5 (a -f ^>) 93. h{m — x) 99. xij(z — w)

2(a + b) --c{m — x) z{z — w)

88. 8 (c — a) 94. a{c + 1) 100. ab{a — be)

—3 (c — g) —b(c + 1) c(a — be)

89. —6 (tw — n) 95. a(6 + 1) 101. x(xy — z)

d (m — n) (b 4- 1) yzjxy — z)

90. - 18 + ^) 96. m{n — 1) 102. ax(bx - cij)

-lS(g + k) -(n - 1) - byjbx - cy)

91. x{a + &)

y(« + b)

92. c(7w — w)

d{m — w)

30. A polynomial is said to be reduced when its like or similar

terms have all been combined, as fiir as possible ; that is, when it

contains no similar terms.

Ex. 1. Reduce 3a: + 2?/ + 52 — 2a:-3?/ + 7!2 + 4?/to simplest form.

We have Zx + ^y + bz -^x -^y + 1 z + 4y = x \-'^y -\-l2z.

Exercise VI. 3

Reduce each of the following polynomials to simplest form:

1. 2a — 46 + 6c — a + 56 — 2c.

2. bx-\-ly — 2z — 4:X — ^y + z.

3. lla — 2d-\-?,b-\-^d-b + a.

4. 12 a — 6 + ^+3c + 2'6 — 2c — a + 3 6.

94. a{c + 1)

-b{e + 1)

95.

96.

a(b + 1)

m(n - 1)

-(7^-1)

97. (^-1)
x(x - 1)

98. 2(c + g)

3b(c+g)
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5. 13.r— 13?/+ 140— U2V — 2Z + 2 i/ — 2w + 4:Z.

6. 6a: + i/-'l0z — Si/ — 2ic+ dz-\- 4:X— 5i/ + 8z,

7. Sa + 5b — c+2 — 2a — 4:b+ec+7 — a.

8. 5k — 4:7n — 8n + ^ — Sk + 4:m + 8n — d — 2k.

9. 4.a^-2ab+ 10 c^ + S ab -\-
a''

-{- 2b''-3c^-ab + Qb"".

10. 9 ^^ - ^y + 3 - 5^' + 8/ + ^^ + 5 - 4^2 - 8f.

31. The Check of Arbitrary Values. Since, unless the con-

trary is expressly stated, the result of any operation with letters is

obtained without restricting the values of the letters, we may as-

sume that they have such values as we choose to assign to them.

This simple check of arbitrary values will be found in most cases

to be sufficient to indicate errors in a calculation if there be any.

Whenever numerical checks are used, it should be understood

that the substitutions are to be made in the example as originally

given, and also in the final result. All intermediate steps leading

from the first indicated operations to the final result should be

neglected. If the original indicated operations, when performed

with numerical values, produce the same result as is found by sub-

stituting numerical values in the final result— that is, if oar
work " balances "— we have a check (except in certain very

special cases) upon the accuracy of all of the intermediate steps

which have been neglected in the checking process.

If, in checking examples, the value 1 be assigned to any particu-

lar letter, errors among exponents may not be detected, since all

integral powers of unity are 1.

32. A clieck upon an operation is another operation which is

such as to verify the result first obtained.

E. g. Such a check is the employment of addition, to verify an example

in subtraction, or the multiplication of a divisor by the quotient to obtain

the dividend in an example in division.

Addition of Polynomials

33. To add a polynomial, it is sufficient to add its terms succes-

sively.

When adding two polynomials it will be found convenient ./?r5^ to

(irrange tJie terms according to the jjowers of some letter of reference^

G
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and then to write the polynomials^ one under the other^ in such a way
that similar terms shall be in the same vei'tical column.

Then add the columns separately and connect their sums by the

resulting signs.

Ex. 1. Add 3a:y« — 3 x'^y + a;« — y^, x^ + 2 ?/« + 2 x'^y, and — a;^?/ + 4 xy^

Arrange the polynomials according to descending powers of x, and write

them so that similar terms shall appear in vertical columns, as below.

Adding the first column, we have 2 a:* ; adding the second column, —2x^y
;

adding the third column, 7a;^^; in the fourth column the sum is 0.

Hence the resulting sum is 2 x* — 2 x'^y + 7 xy"^.

Check. Let X = 2, y = 3.

x8-3x2y + 3xy2- y^ -1

a:« + 2x'^ +2^8 §6

- x'^y-if^xy^- y8

1̂18

2x»-2x2y + 7xya 118
~~0

We may check the result by substituting the values 2 and 3 for x and m
respectively in the given expressions, obtaining the values — 1, 86 and 33,

as shown above.

The algebraic sum of these values, 118, should " balance " with the result

obtixined by substituting the same values, x = 2 and 2/ = 3, in the result of

the algebraic addition, 2x'* — 2x^y + 1 xy^. This value is found to be 118,

and according to this test the work is correct.

34.* Detached Coefficients. In performing an example in

addition, when writing several similar terms in a column, it is not

strictly necessary to write the literal factors every time, provided

that it is understood that they are the same as those of the term at

the head of the column.

E. g. Instead of +5 a%\ write + 5

- 3 a%'ic - 3

+ 2 amc + 2

a%^c

Aa%^c 4 a%^c

* This section may be omitted when the chapter is read for the first time.
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Ex. 2. Add the following, using Detached Coefficients :

dx^+^xy + bxj/^—y'^, 3xy — 2xy'^ + x^—2y% iind2x^+2x"— xy + 3xy'^.

Check. Let x = 2, y = 4.

+ 2

x'^ + 2

+ 3

- 1

xy + 5

-2
+ 3

Xy2_
-2

4 a:8 + 5 x"^ -\- 4 xy + Q xy^- 3 y"^

+124
-160

+120

84

84

Exercise VI. 4

Perform the following indicated additions; the answers to the

first twenty-eight examples may be obtained mentally :

V

1. 3a + 26

a + 56

7. ^m—Wn
4:m + 14 w

13. - lOA— 15y
— 3 ^ + 4 7/

2. 6a- 96

8a--36

3. 76- He
46- 19c

4. Qd+ g
6cg— 12gr

5. 5a + 26
3a 4- 6

6.

19.

6 c — 3</ 12

4c-2c?

8a + 66 — 4c

-3a-56+ 7c

20. 2a+ 56- 7c

3 a— 116 + 14 c

21. 46- 12c — 24d
66+ 12c— 7 c?

8. Ux+ 21y
32^-23y

9.

10.

7a + 6

2a + 6

96 — 3c

96 + 8C

11. 6x-ly
— 5x + ly

12. 3a-Qb
3 a - 6 6

14. — Urn — 20q
— llm — llq

15. 15 a6 — cd

-23a6 + 2^cd

16. a— 14 be

— 26 a + 33 6c

17. 2 a + 3 6 — 4 c

a — 5 6 + 7 c

18. X — Sy + 5z
— 2x-\-4y — &z

22. 9x — Sy+3z
3x — Sy+ 9z

23. 10a - 76 + 12c

3a— 76 - 10c

24. 3^-4?/+ 5z
6x + 4i/ — Sz
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25. 4a«+ 9^*2- 16 27. 13a' - 17 ^^'^ + c"

ba^+^b^- 1 41«'^-21/>'-33c^

26.10a— m-\-lbw 28. 11 ar' + 13;r3/ + 21/
- a+ 19m-28 2g

'

11 ^r'^ - 31 a-y - 12/

Find the sums of the following groups of expressions :

29. a + 26+c;3a + 6 + c;a + ^ + 4c.

30. 2x -\-
y -\-^z) x-\- 4:y-\- z; bx-\-Qty-\-Sz.

31. 56 — c + 2c?; 36 — 2c+ 4c?; 6 — 3C + 6?.

32. ^X'-^y — 2z)lx—\0y — ^z]4tx—by — %z.

33. 7a — 2 6 + 6a;;5a + 86 — 4;r;a — 96 — 3;r.

34. 56 + 9c?-4m;; 86 — 7c?— 3?^; 66 — 2c?-2^.

35. g — ^h-\-^k\lg — h — 2k\'6g-^bh — (Sk.

36. 7» — 3w + 7y; 5w — 8w + 2y; 97W — 4w + 6y.

37. 2a — 56 — 3c; —9a — 6 — 4c; 8a + 66 + 7c.

38. 6;r + 3y — 22;; — 4;r— 7i/ — 82;; — ^+ 5^^+ 92?.

39. 3a — 2 6 + 4C— 10;36 — 2c + 8;— 2a — c+1.
40. 2/ - c' + 10 ;

5=* — w' — 9
; / + w;^

41. 47W« + ;r^- 7; — 67W» + 4a?; 7w« — ^ — 3;r+ 7.

42. c«-4cV-2cc?2 + 2c?«; 3c^c?+ 2c(^; c'(/-^«.

43. 9/^ - 6m' - 7 joV» - (/^ - 8 joV + 6 J0(7' + 77>V.

44. 4 a6 — 2 ac + 10 a6c ; — 6 a6 — 9 a6c + 2 6c ; 3 a6 + 4 ac —
a6c — 3 6c.

45. 7;r« + 8;r— 11; — 4;r'+12; —ha^—^x — 2; — x"" +
hsi^-x^-%

Subtraction of Polynomials

35. To subtract a polynomial we may subtract successively the terms

of which it is composed. Hence we may reverse the sign of quality of

each of its terms and then proceed as in addition.

Ex. 1. Subtract Ax^ + Qxy -ly^ from Qx^ + xy -2 y^.

We may indicate the operation by writing

6x2 + a;y - 3/ - (4 a:2 + 9a;y - 7 2/2).

Removing the terms from the parentheses preceded by the minus sign,

and reversing the signs of quality of the terms removed, we have

6x2 + a:y-32/2_ (42-2 _|.9a.^_7y2) =.Qx^-\-xy -Zy'^ - 4:x'^ -9xy + 1 y"^

Combining like terras, = 2 x2 — 8 x^ + 4 5/2.
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Whenever, as in the example above, the operation of subtraction

is indicated by enclosing the subtrahend in parentheses preceded by

a minus sign, we may remove the parentheses and actually change

the signs of the numbers removed.

If, however, the subtrahend is simply written underneath the

minuend and we are directed to subtract one expression from the

other, it is better not to change the signs on paper, but to make

the change mentally while performing the calculation. (Compare

with § 28.)

The following arrangement is usuaUy more convenient

:

Check. Let a: = 4, y = 3.

6a;2 4- a:y-3y2 92

4x2 + 9x^-7 3/2 110

^18
2x2-8x3/ + 4^2 _18

~0~

Exercise VI. 5

Perform the following indicated subtractions, reversing the signs

mentally ; the answers to the first sixteen examples may be obtained

mentally :

1. 2a + b 7. -2m —

^

13. — ax + by

a-b — 37W —

4

2 ax — 2 by

2. 3a + 46 8. 2 + a 14. 3a + 6 + c

2a-56 3 — 2a 2a + 2b-c

3. 4.r- ly 9. — l()x — y 15. — 4:X-5y+Qz
bx— 6y — llx + y 5x + Gy+lz

4. 76+ c 10. — ac— h 16. 8a- 76 + 6C

76 — 2c 2ac + 2b -6a+ 76 — 8c

5. 6r — 5 11. 4:X — by
— Sx — Gy

6. 2a+ a:

— ^a — 2x
12. xy — zw
— xy + zw
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17. From 6 a — 10 ^ — 7 subtract 4 a — 5 6 — 2.

18. From 5a + Sb — d subtract 2 a + 3 6 — 4.

19. Subtract a^+2ab + 0^ from 2 «" - 2 <76 + 2 b\

20. From Sar^ + 4:xy + 8 subtract 4^^ — "Ixy — 3.

21. Subtract x" -^^xy^-xf from 4 ^r^ + 10 xy + 13 j/^.

22. Subtract x^ -\- a^y -\- xf + y* from x^ + ?/^

23. From a» + 3 a"^ + 3 al)" + ^* subtract «» + V.

24. Subtract w* — 3 m^n + 3 tw/^^ — n^ from w^ — 7j*.

25. From a* + rt^ + a subtract — 2 «* — 3 f<^ + a.

26. From ah \- he ->r ca subtract — ah -^ he — ca.

27. Subtract 2 a*^ — ah — 5h^ from 3 ^^ + ^^ — 4 ^^.

28. Subtract 6^^ - 1 xy — 8/ from Ix'-^xy—lf.
29. Subtract 5xY- 10 ;r/ + 16^ from 5^y + 10^/ + 1 6 ?/.

30. Subtract a'' + 3 a^^ + 3 ah^ + 6» from a« - 3 a^'h + 3 aU^ - h\

31. From x^ { b x^y -{ & ^y + 3 ;r/ + / subtract

5^V+ 6^/ + 3;r/.

32. Subtract c* - c^^ + c?« from 3 c» - c'c? + 4 cc?^ + 5 c?«.

33. From 5 ^^ + 6 ^"^^ + 3 ^'^ + 7 A^ subtract 3 ^^ + 6 /A' - 5 h\

34. Subtract 4 a* + 7 a''^ + 6 a^'b'' + 6* from

4a*+ lOa'6- 15 a'^^^^- 9 6*.

35. From 12 a» + 190^^ + 17a&^ + 21 6* subtract

5a«+ lla'^h-ah''- 20h\

36. From 13 d^ — 23 fi?V + 11 c^r^ + 14 r^ subtract

13d^-24(^V+ 10c?V+ 14r^.

Wben we are required to subtract tbe sum of several polynomials

from the sum of several others, we may treat the problem as one of

addition by actually changing the signs of all those expressions

which are to be subtracted and then proceeding with the resulting

expressions as an example in addition.

37. From the sum of« + 26 + 3c and 3 <2 — & + 4 c, subtract

2a — h — 6c.

38. From thesumof 5^ — ?/ + 42;and 4^ — 2?/ — 3^;, subtract

3^ + ^y — bz.

39. Subtract 3a + 2h + 26 — 3(1 from the sum of

a — b + c — d and 2a — b + 2c — d.
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40. Subtract 7a — 3b — c — d from the sum of

Qa — lj + 4:C + d and Sa + 4:b — 2c + d.

41. From the sum of a^ + ab + b^ and 3a^ — 2ab — 4rb% subtract

2a^ — Sab — Sb\

42. Subtract ab + Sbc — 4:cd from the sum of Qab — 4:bc + cd

and — 4:ab + 2bc — Scd.

43. From the sum of ab + be, be — cd and da — cd, subtract

ab + be — cd + da.

44. From the sum of 3 aft + bcy — ^bc -\- cd and 2da — 2 cd^

subtract 2ab — 2bc -^ cd -\- da.
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CHAPTER VII

MULTIPLICATION OF INTEGRAL ALGEBRAIC EXPRESSIONS

(For Definitions, See Chapter V)

Principles Relating to Powers

1. We have already defined a" to mean the product of n factors

each equal to a. Accordingly, we have as a

-n factora-

(i.) Defiuition Formula: a" = aX«XaX Xa,

n being understood to be a positive whole number, and a being

different from zero. (See Chapter VI. § 5).

E.g. 26 = 2x2x2x2x2; 6^ = ay. ay. a.

Product of Powers of the Same Base

As a direct consequence of the definition formula above, we have

for equal bases the following

(ii.) Distribution Formula a"* X cC = a"'+".

If a be any number other than zero, we may indicate the product

obtained by multiplying «"* by «" by writing

/ m factors > n factors n

dT" y. d!"^ {aaa a){aaa a) = «"*+".

The principle expressed by the distribution formula may be stated

as follows :

Law of Indices. The product obtained by multiplying a power

of a given base by another power of the same base is a power of the

same base, the exponent of which is found by adding the exponents of

the factors.

E. g. h^xb^ = 65.

In order to find the power of a power of a base we may employ

the
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-n factors-

(iii.) Association Formula (a^'Y = «"* X «"* X «"' X X a"

/— n terms ,

TTiat is, the power of a power of a base is a power of the base, the

exponent of which is found by multiph/ing the exponent of the given

pov)er of the base by the exponent of the required power,

E. g. (c3)2 = c«.

Powers of Products of Different Bases

(iv.) Distribution Formula (ahy = oTir.

From the definition of a power, we have
f TO factors —

\

{abY = (ab) X (ab) X (ab) X X (ab),

f TO factors s / -«i factors-

= aXaXaX X aXbxb Xb X X b,

= drv^.

The w'* power of a product of severalfaxitors may be written as the

product of the n*^ powers of these factors, and conversely.

Ex. I. (2 ay = 2hi^ Ex. 3. (- c)8 = (- lyc^

= 8 a'. = -c».

Ex. 2. (5 64)2 = 52(j4)2 Ex. 4. (-bx)^= (- 5yx^

= 25 68. = 25 xK

It may be shown that the laws above hold for more than two

exponents or for more than two factors. That is,

Corresponding to (ii.), above, we have

a"* X a" X aP X X a"" = a'"+"+''+ +«'.

Corresponding to (iii.)

(((aryyy = a^^"*"^

Corresponding to (iv.)

(abed »)'" = a"* X 6"* X c"* X ci"* X Xaf.

Mental Exercise VII. 1

Express each of the following products of different powers of the

same base as a single power of the given base :



90 FIRST COURSE IN ALGEBRA

1. 2* X 2^ 12. /^« X k\ 23. w^ X ??« X w^

2. 4' X 4. 13. >t^ X k\ 24. ;^'" X ^"^ X .^^^'».

3. 3*^ X 3. 14. w' X w^^ 25. a^'" X ««'".

4. 5* X 5. 15. w« X w». 26. b"' X b^\

5. 2« X 2\ 16. ;r« X .r'. 27. c^'" X (f.

6. a^ X a*. 17. a^ X a« X a*. 28. c?"-=^ X ^.

7. ^» X b\ 18. b"^ X b^ X b\ 29. A"+^ X A"-^

8. c* X c\ 19. c* X c* X c'. 30. af'^'^^ X af-'-K

d. d^X (P. 20. (P X(f' X d*. 31. ^ X ^ X ^.

10. e^ X e\ 21. ^« X ^-^ X k. 32. /" X 7/8" X 7/^^

11. 5^' X 5r». 22. w^ X w^ X m^^. 33. ;5^'- X s'' X z^'.

Express each of the following powers of
]
powers as a single power

of the given base :

34. (2y. 44. (g«)*. 54. (^y\
35. (sy. 45. (gy. 55. (ay.
36. (5^. 46. (^*)^ 56. (6»)^.

37. (6'*)^. 47. (A^)«. 57. (c")».

38. (10^». 48. (ky. 58. (dy.

39. (7^'. 49. (m'^)^ 59. (A'")'".

40. (a^. 50. (ny. 60. (F)».

41. (by. 51. (;.«)«. 61. (w'^^)^

42. (c^y. 52. (/)'. 62. (w«'')«>'.

43. (d^y. 53. (f^y\ 63. (x^y.

Express the following powers of products as products of powers :

64. (Say. 76. — (5^«^0*- 88. -(la^ifzy.
65. (4. by. 77. -(-Sacy. 89. -(-4^*)*.

66. (Qcy. 78. (a'^^)'. 90. (aby.

67. - (2 d)\ 79. (bey. 91. (/.c)'^.

68. (3 my. 80. (c^^)^ 92. (a'^by.

69. (- 7 ^)^. 81. (w"w)«. 93. (c^^^)*-.

70. (- 4:i/y. 82. (a^yy. 94. - (xyy.

71. (-2 4'. 83. (a^/^c)^ 95. («"^^)'".

72. -(2aby. 84. - (a%cy. 96. (afyy.

73. (3 6c)^ 85. («^'^c«)^ 97. - (a^^^'')'^.

74. (2xyy. 86. (a'b'cy. 98. (a'^'lfy.

75. (-3?/^)^ 87. (-2ciVV)l 99. (^^«0 ,
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Express the following products of powers as powers of products :

100. 2» X 3^ 105. h^ X c\ 110. 2bxYz\
101. 5' X 2^. 106. w* X n\ 111. 32 a^b^a^.

102. 3' X 7^. 107. a^ X b^ X c\ 112. 64 aV;?^

103. e X 3^. 108. ^ X / X ;:'. 113. (- ayb\

104. a"" X b\ 109. Sa^b^. 114. [- x)Y^.

2. Product of Two or More Monomials. The product

obtained by multiplying one monomial by another is the monomial

obtained by multiplying together all the factors of the two in any

order.

Hence, to multiply one monomial hy another, determine first

the sign of tJie quality of the product. TJien^ for a numerical coeffi-

cient^ write the product of the numeral factors of the monomials^

followed by the ^product of the different letters^ each letter havingfor an

exponent the sum of the exponents of this letter in the two monomials*

Proceed similarlyfor produ^cts of three or more monomials.

Ex. 1. Multiply 3a;V by 2a:i/*z.

Both terms are understood to be positive since no signs are written before

them. We have as a numerical coefficient the product of 3 and 2 ; x occurs

to the 2 + 1 or 3rd power
; y to the 3 + 4 or 7th power; z to the 1st power.

Hence, 3 xhf x 2 zyh = 6 xYz.

Ex. 2. Find the product of 5 ab^c and — 2 abc^.

Since the terms are of opposite quality, the product is a negative number.

Hence, (5 ab^c) x (- 2 abc^^) = - 10 a%h^

Ex. 3. Find the continued product of 3 a%, 2 be and — 5 ac.

Since two of the given numerical coefficients are positive numbers and

one is a negative number, we may write for a numerical coefficient the pro-

duct of 3, 2, and 5, or 30, prefixing the — sign to indicate its quality. The

literal factor a occurs 2 + 1 or 3 times ; &, 1 + 1 or 2 times ; c, 1 + 1 or

2 times.

Hence. (3 a%) (2 be)(- 5 ac) = - 30 a%^c^.

The student should check the examples above numerically.
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Mental Exercise VII. 2

Perform the following indicated multiplications :

1. a 14. -he 27. 8c^ 40. na^b

2^

3 15.

— a

28. 9d^ 41.

11 ab^

2. ah -Ix^yz
b cd Sd' Uyz^

3. — c 16. ay 29. 10/ 42. l^a'bc

4 hx -4/ -5ahc^

4. d 17. mw 30. 11 A^ 43. IS xYz
— 5 nx -Ih' Qxyh^

5. 2n 18. a^h 31. 13 i^ 44. 12«^6V
3 c' 3P 11 a'h'^c

6. 4ar 19. ^f 32. 1 ah 45. a'^h''

6 4a ah

7. -ly 20. i^'y 33. 14 6c 46. af^f

5

21.

-n^

34.

5 be

4 ah 47.

xy

8. 2a^ a^f
-6 a 11 he -xy

9. - llw 22. 3h' 35. -6x1/ 48. -a'^'x'

-8

c 23. 36.

8xz

49.

- (^1

10. 12 mn a'%''

d^

-h 24.

-c«

37.

12 mx

15 a^h 50.

x'^'h^

11. -Id^ 32 a^y'^'^z^'"'

ah 25.

- <P

3^^ 38.

— 4 he

11 he' 51.

-?>xyz

12. 14^2m+l^„-l

— c

— xz 26.

2h

39;

9hd

52.

-ha^h"-

13. a^-ijf^n+i

y 6w - 6 m7i^ a^+i^V-i
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53. ah X hex ca. 60. xhjz^ X xifz^ X y^^w^.

54. xyXcczX xw. 61. {^a%)(2ac%iohh).

55. a^h X h^c X c^a. 62. — (dm^x)(Sm^x)(2mnx).

56. ahc XahXa. 63. (3 ««6«) (4 ^V) (- 5 cV).

57. a=^^>' X ^V X cU^ 64. (7^2;:«)(- 3^/)(5/;^2).

58. - a^x X hhj X cVy\ 65. - {<oa^hc)(:2a'c^){^h^&).

59. a^bc X ab\ X abc\ 66. (-8xyz)(- Sxy'')(4:a^z').

67. (- 2 a«^c)(- 4 «ra)(- 3 bc^d^).

68. (-5^V)(2^-'^)(-63/-JW^.
69. (- 7 a%^j^)(2 a'hyX- 6 b^a^y^

70. (- 9 a%h'){- 5 a%H'){- 2 6V^).

3. Two terms are said to be of the same type when they may
be derived, one from the other, by interchanging the letters of one

or more pairs of letters.

E. g. The terms xhjz, y^xz and z^xy are all of one type. The second

expression may be obtained from the first by interchanging the letters x and

y, and the third may be obtained from the first by interchanging z and x.

Two expressions are said to have the same form or to be of the

same type, with reference to certain specified letters, if to every

term in either there corresponds one and only one term of the same

type in the other.

E. g. The expressions a' + 2 a& + 6^ iind m^ + 2 mn + n^ are of the same

type.

4. When any one term of a particular type is given, the literal

parts of all others of the same type for a given set of letters may be

written at once.

E. g. For three letters, x, y, and z, the terms of the type x^ are x*, y^, and

2^. The terms of the type xy are xy^ yz, and zx. The terms of the type xh/

are xh/, xh, y^x, y\ z^x, and z'hf.

5. It is customary when writing integral expressions to arrange

consecutively those terms which are of the same type, and to group

those of the same degree. When so arranged an expression is said

to be in standard form.

E. g. The following expression is in standard form :

x« + ?/» + 2^ + x^y + xh + y^x + yh + z^x + z^y + xyz.
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6. A variable term of a polynomial is a term in which one or

more letters appear. This name is appropriate because the numerical

value of a term changes or varies as different numerical values are

given to the letter or letters appearing in it.

If a term appearing in a polynomial does not contain any letter,

but instead consists of a numeral, it is called a constant term,

because its value remains unaltered when numerical values are

assigned to the letters appearing in the remaining terms.

7. A polynomial in which the terms are arranged according to

the powers of some letter is said to be complete when no powers of

this letter are missing, from the highest one contained down to and

including the constant term.

E. g. The polynomials a:« + a:^ + x -|- 1 and 3 ax* + 2 ftx* - cx^ -\- dx - 2

are both complete.

A polynomial is said to be incomplete with reference to the

powers of a specified letter if, when its terms are arranged according

to the powers of this letter, one or more powers are missing.

E. g. In x* — 1 the powers missing are x^ and x ; in x* + x^ + 1 the

powers missing are x* and x ; in x* + x'* + x the constant term is missing.

Multiplication of a Polynomial by a Monomial

8. As a direct application of the Distributive Law for Multi-

plication in its first form, we have

x(a 4- 6 — c) = xa + x& — xc. (1)

Since the value of a product remains unchanged when we alter the

order of the factors (Commutative Law), we have

(a + h — c)x = ax + bx — ex. (2)

From the expression above, it appears that a polynomial Tnay he

multiplied by a monomial by multiplying each term of the polynomial

by the monomial (observing the law of signs), and taking the

algebraic sum of the partial products thus obtained.

Ex. 1. Multiply 3 x« + X - 2 by 3 a6.

We may obtain the product by multiplying the successive terms 3x2, ^^

and - 2 by 3 a6 and finding the algebraic sum of the partial products thus

obtained.

(3 x« + X - 2) X 3 a6 = 9 afix^ + 3 a&x - 6 ah.
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Instead of employing the horizontal arrangement of the work, as above,

we may use the vertical arrangement corresponding to the one commonly
used in arithmetic, as shown below :

Check. Let a = 1, & = 2, a; = 3.

Multiplicand ..... Sx^ + z - 2 28

Multiplier Sab 6

168

Product 9abx^+3abx-6ab .... 168

9. It should be observed that, since in algebra we do not use the

positional system of notation employed in arithmetic, we may write

the multiplier in any convenient position beneath the multiplicand.

The partial products may then be obtained by beginning either

with the first term or the last term of the multiplier and multiplying

the terms of the multiplicand successively by it, either from left to

right or from right to left.

Mental Exercise VII. 3

Perform the following indicated multiplications :

1. a + b 9. 4a + 6 17. x^ — f
2 3c — ipy

2. b — c 10. d — 5h 18. 2 mn+ 3 be

3 4 a: 4 a;r

S. w + y 11. &m — 5n 19. lax +6 b^/

z —2y Smn

4.. y — z 12. ab + cd 20. 8cd-\-9bh

w xy — 2 kr

b. 2 m -\-3n IS. ab + ac 21. Aax^ + Sby^

4 be 2cd

e.ek — 8k U.xy — xz 22. Sa^b + 5 ab^

5 xy 4 ab

7. 2x-\- Sy 15. ab- be 23. Qxy^ - ifz
— 4 ca —2 xyz

8. 7m -n IQ. a^ - b^ 24. 4 a.r* + 3 by^

— 8 ab —Sabh
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25. Qa^z^ + ha^z 30. a" - 2 ah + b''

4 xyz 3 ab

26. 9a^6^c+ 12aZ>V

^abc

27.

7.rV

28. a» + a^ + a + 1

2a

29. 6« - ^^ + 6 - 1

4^^

31. m^ ^2 mn + w*

— 2mn

32. ab + be •{- ca

abc

33. abc + abd + ico?

abed

34. (a + ^ 4- c) a^c. 39. (^ — ^r^ + ^^^ _ ^s^^
^^^

35. (j-^ + r 4- ;:' + ^z) xyz. 40. («« + ^'^ + c) a/^V.

36. (I + a + «* + a*) «*• 41. Qri/z — «/2;2^ — zwx) xyzw.

37. (;r* — .r* + .i'" — ^ + 1) a^. 42. (^* + ^V + ^'^^ + '^«^) -^y-^-

38. (a» + a^^ + ab^ + 6«) a*. 43. (2 ahj -Sbh-4: c^w) 5 abc.

44. (1 - a*6^ + a^b^c — a^b^ed) abed.

45. (4 a^x - 3 b^y + 2 ^r^") 5 cxy.

46. (8 a"//* + 13 6V + 6 c2^)(- 4 a6c^.

47. (a" + a"+^ + a""^^ + «"+*) a.

48. C^**" + ^'^ + P" + ^z") ^>.

49. (c"-' + C-^ + c'-i + c«) c.

50. (d^-^ + d^ + d^+^ + d^+^ d^.

51. (w^'-' 4- w^-i + w"-"' + w""+') w'.

52. (tw*'--^ - w»'-^ + m^'^^ — ttT^) mK
53. (a''-^ + a"-^^" + a^^^^^ 4- ^""^') ab.

54. (ar"-* - ;r"-»/-i + ^-y-« - 3/"-^ ^V-
55. (a*'+=^ 4- «'"+'^'" - a=^"^'*+^ - ^=^^+') a'^r-.

56. (w''+^ — ^"^+2^2 ^ ^-+3;^« _ n^) 2^«-V+^

Multiplication of One Polynomial by Another

10. We have, by the Distributive Law for multiplication,

{a + h — c){qc — y) = ax + bx — ex — ay — by 4- cy.

Hence, to multiply one polynomial by another^ multiply eaeh term
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of the multiplicand by each term of the multiplier^ and write the

algebraic sum of the resulting partial products.

Ex. 1. Multiply 2a:2 4-3a;-7by3a:-5.
Two arrangements of the work are shown below

:

Form I Form II

Check. Let a: = 2.

2x2+ 3a;_ 7 Multiplicand

.

Zx — 5 Multiplier . .

2x2+ 3a;_ 7 _ ,

3 X - 5 . .

. . 7

. . 1

6x3+ 9a:2_21x Partial

- 10 x2 - 15 X + 35 Products

6ar8_ x2_36x + 35 ..Product .

- 10x2- 15X + 35

6x8+ 9a;2_21x
.6x8- a:2_36x + 35 . .

7

. . 7

In Form I the first and second rows of partial prockicts are obtained by

multiplying the terms of the multiplicand successively by 3x and by — 5

respectively.

In Form II the arrangement corresponds to the one adopted in arithmetic

multiplication.

Ex. 2. Multiply 3x3 + x2-4x + 5byx2-x-3.
For convenience in performing the work, it is usually best to arrange the

given polynomials according to increasing or decreasing powers of some

letter.

Arranging both multiplicand and multiplier according to descending

powers of x, we have

:

Check. Let x = 2.

Multiplicand 3x8+ a:2 -4x +5 25

Multiplier x2 - x -3 - 1

p. f. 1 ( using x2 3 a:6 ^ a;4 _ 4 ^.8 _|. 5 y2 _ 25

k

Products ) ^^'^"- - ^ - 3 x^ - x8 + 4 X- - 5 X

using - 3 -9x8-3x2 + 12x-15
Reduced Product ... 3 x^ - 2 x* - 14x8 + 6x2 + 7 a; _ 15 _ 25

11. From the Distributive Law for the maltiplication of polyno-

mials, it appears that the product of an algebraic sum of m terms

and an algebraic sum of n terms will contain mXn partial products

if all be written directly without the collection of like terms or the

suppression of terms which mutually destroy each other. This

principle relating to the number of terms in the reduced product

will sometimes serve as a check upon accuracy.

7
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E. g. When 2x -^3y + z + w is multiplied by a + 6 — c there will be

twelve sepjirate partial products in the result, for the first polynomial con-

tains four and the second contains three separate terms.

12.* Detached Coefficients. When two expressions are both

arranged according to either descending or ascending powers of

some letter, the work of multiplication may be shortened by writing

only the numerical coefficients of the different terms, writing in

place of each missing term.

Ex. 3. Multiply 3 x^ + a: - 4 by 2 a;^ - 3a; + 5.

Using Literal Factors. Using Detached Coefficients. Check. X = 1

3a:2+ X - 4 3 +1 - 4 .

2x2 _ 3a. ^ 5 2 -3

6 +2

+ 5 A

6x* + 2a:«- 8x^ - 8

-9x«- 3a:2+12a; -9 - 3 +12
+ 15x2+ 5a. -20 + 15 +5 -20

6x*-7x«+ 4x2+17x--20. 6 -7 + 4 +17 -20 (^)- .

6x*-7a:»+ 4x2+ 17a; -20. (2). .

The highest power of x in the product is x*, and since the terms in the

multiplicand and multiplier are arranged according to decreasing powers

of X, and no powers are missing, the remaining powers in the product will

follow in successive terms.

Hence from (1), we may write as the product required

6x^-7x8 + 4x2+ 17x- 20. (2)

By the use of detached coefficients the labor of writing all the literal

factors and their exponents has been saved.

Ex. 4. Multiply 5 x* - 6 x + 3 by 2 x2 - 4.

Supplying the " missing terms," it may be seen that the multiplicand

and multiplier are equivalent to 5 x^ + x2 — 6 x + 3 and 2 x2 + x — 4

respectively.

The process, using detached coefficients, is shown below

:

5 + 0- 6 + 3

2 + 0- 4

10 + 0-12 + 6

-20-0 + 24-12
10 + 0-32 + 6 + 24-12

* ThiB Bection may be omitted when the chapter is read for the first time.
/
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The term containing the highest power of x in the product is obtained by

multiplying hx^ by 2x2. Accordingly beginning with x^ we may write

the successive terms of the reduced product as follows

:

10 xS + a;4 _ 32 a:8 + 6 a:2 + 24 a; - 12,

that is, 10a:« - 32 x^ + 6a;2 + 24 a; - 12.

The detached coeflicients may be used for a numerical check as in Ex. 3.

13. A polynomial is said to be homog-eneous if the sums of the

exponents of all of the letters appearing in the different terms are

the same.

E. g. The polynomial a* — a% + a^^^ _ qX;& ^. ^4 \^ homogeneous and of

the fourth degree with reference to a and 6, since the sum of the exponents

in each of the terms is 4.

The polynomial 5 x^ + 2 x^\p- — a:*t/* + 3 ari/^ — -if is homogeneous and of

the sixth degree with reference to x and y.

Homogeneity as a "Check upon Accuracy

14.* The product of two homogeneous expressions is a homogene-

ous expression.

For if the homogeneous multiplicand is of the m^^ degree, every

term will, by definition, be of the w"* degree. Also, if each term of

the homogeneous multiplier be of the n^^ degree, then since each

term of the product arises from multiplying a term of the multipli-

cand by a term of the multiplier, each of the partial products must

be of the {m + w)*** degree ; that is, the product must be a homo-

geneous expression of the {m -j- iif^ degree.

Although the proof is given for two factors only, it may be ex-

tended to include any number of factors.

This property of homogeneous expressions may be used as a check

upon accuracy, since if the product obtained by the multiplication

of one homogeneous expression by another is not homogeneous,

then we know at once that there must be some mistake in the

work.

E. g. The product obtained by multiplying a* + a% + ah^ + ¥ by
a^ ~ ab + b^ is a homogeneous expression of the fifth degree, and may
contain terms such as a^, a%, aW, a%^, ab\ and b^. It cannot contain

terms such as a*, a^, a^^, ab^, etc.

• This section may be omitted when the chapter is read for the flrpt time.
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Perform the following

results numerically :

indicated multiplications, checking all

1. a + 6 ^' f+g
f-g

7. 27W + 3w
4?w + 5?»

2. b + c

b + d
5. F + >t

k +/
8. 6^- \<dn

Z. c — d
d-e

6. r^-r«
r^ + r*

9. a^ + 2ab + b"

10. («^-a6 + ^>^(« + b).

11. (2;r*+ 5.r?/+ 7?/^(2ar — 3?^).

12. (2c*+ 3cc? + 4i^(6c-5cr).

13. (w* + w^+ l)(tv* - w^ + 1).

14. («2 + 2 a - 3)(a=* + « — 6).

15. (5r»4- 4r-2)(3r2 — 2r-5).
16. (a^ -Sab- b''){a'- + Sab + b'').

17. (^' + gV + y'W - gV + /).

18. (F - % + ?^^(2 F - 3 A-z^ + y=0-

19. Qi^ + hhj + kf-^f){h-y).
20. (c?»-4c?^ + 36?+ l)(c?2-2<?+ 5).

21. (/-5/+ l)(2/+5f/+l).
22. (s« — 3s*+ 2s2— l)(s^ — .9+ 1).

23. (6>P + 4F + 2^+ l)(/5:^-A-2-l).

24. la^-ah-vb'-^ a-\-b-\-\){a-\-b- 1).

25. (1 — 27W + 2w^2 — W2»)(l + 2w + 2^2 + wz*).

Multiply

26. a^ -\- y"^ + z^ — xy — zx — zyhy X + y + z»

27. ^ + ^V + a^f + ^y + ^^* + / by ar — y.

28. x"" — xY + A^ - xy + /2 |3y ^2 ^ yj^

29. «2^ - 6V - c«^ + .^« by a^^c^ - ab^c.

30. 5a«^>'*-46V+ 5c»a»by4d;6 — 5^>c + 4ca.

31. a%c - ab^c + a^>c2 by ah^c^ - a'^bc^ + a%''c.

32. a6V - a6«c2 + a'^bc^ by a^Z^s^ _ a^c" + ««^*'c.
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No change in the process is necessary when some or all of the

coefficients are fractional.

Multiply

33. ia'+ia+JbyJa + J. 36. ^m^+ mn + ^7i^hy ^m + ^n.

34. i.r^-J^ + ibyi^'-i. 37. ^a^-^a'+la-lhyQa-j^.
35. W— iab+lb^hyia + ^b. 38. ^-fa + fa^— f «^by 2-5«.

Ex. 39. Find the product of 4 a»+^ — 3 a" + V rt«-i and 5 rt«+i — 2 ««.

The process of multiplication is not affected in any way because the

letter n appears as an exponent. We shall consider for the present that n

represents a positive whole number. The separate partial products are

obtained by adding the exponents of the like factors entering into them.

E. g. The first terra of the multiplicand may be multiplied by the fii'st

term of the multiplier as follows :

4a«+i X 5an+i = 20 a<«+i>+'n+i> = 20a2«+2.

The remaining partial products may be found in a similar way.

Multiply

41. 4a"+2 4- 3^»+i + 2a'' + 1 by a - 1.

42. 5er*'' + 4.r»"+ 3^2" + 2^"by 2;r- 1.

43. a-%^ - a'^-'fj' + a'^-'b by a«6" - a%\
44. 3 «'"+^ - 7 a"' + 4 a"'-' by 2 a"* - 5 a'-^

45.
^2n + ^« 4. 1 by ^'2« _ ^ _ 1,

46. af+y-^ + af^y+'- by x^-hf'+^ - ^^+y-\

47. a:^"-^' - a-"" + ^^"-i by ^""^ + ^^""^ + ^"'-^.

48. of-" + .z^* + of-' by .7f+'' + eZ;"+* + af'+',

49. «"•+" + a"* + 1 by «"-" — a'" + 1.

15. Removal of Parentheses. Parentheses may be removed

by applying the Distributive Law for Multiplication.

Ex. 1. Simplify 6a - 5{a - 4 [3 + 2 (a- 1)]}.

We have, 6a - 5{a - 4 [3 + 2 (a - l)]} = 6«-5|a- 4 [3 + 2a -2]}
= 6a-5{a-4[l + 2a]}

= 6a-5|a — 4-8a}
= 6a-5{ -4-7a}
= 6 a + 20 + 35 a

= 41 a + 20.
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Exercise VII. 5

Simplify each of the following expressions :

1. 1 + 2(1 +3[1 4-4(1 + 5^')]}.

2. a:~{(j;-z)-la: + 2/-z-2(^-ij + z)l}.

3. 2 + 2{2 - 2 [2 + 2 (2 - 2ar)]}

4. (.r + 1) - 2{(^ + 2) + 3 [(^ + 3) - 4 (;r + 4)]}.

6. 5{4 [3 (2 + a)]}- 5{- 4 [- 3 (2 - a)]}.

7. 7{^ _ 4 [6 _ 4 (^ + ^)]}_ 6{6 - 4[6 - 2 (6 - i/)]}.

8. a{l + 6[1 +c(l +d)^}-d{i + c[l 4-^(1 +«)]}•
9. a{b — c[a — b (a + b + c) — {b + a)] - c — 0}.

10. ^^^ - ^{/> + cla (b - c) + b (c - a) + c (a - b)]}.

Standard Identities

16. Special Products. Just as in Arithmetic we find it neces-

sary to commit to memory the Multiplication Table, so in Algebra

certain products occur so frequently that it is important to mem-
orize them.

17. A polynomial expression is said to be an expansion of a

second polynomial expression if it is obtained by raising the second

expression to some power.

E. g. The expansion of (a + 6)2 is a^ + 2 a6 + b^.

18. Square of a Binomial Sum.

Theorem I. {a + b)^ = a:^ + 2ab + b^.

The sqtuire of a binomial sum is eqiml to the square of the first

terrriy increased by twice the product of the two, plus the square oj

the second.

Check. Let x = Z.

Ex.1. (x + 4)2 =x2 + 8a; + 16. 49 = 49.

Check. Let m = n = 4.

Ex. 2. (m + w)2 = m2 + 2 mn + n^. 64 = 64.

Check. Let x = 3, i/ = 2.

Ex.3. (2a; + 3i/)2=(2a:)2 + 2-2a:-37/ + (3i/)2 144=144.
= 4x2+ i2x?/ + 9i/2.
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Mental Exercise VII. 6

Expand each of the

1. (a + 3)^

2. (b + 4)1

3. (c + 6)^

4. (c + 1)\

5. (5 4- d)\

6. (8 + h)\

7. {k + 9)^

8. {m + 10)'^.

9. (11 + n)\

10. [x + 12)^

(13 + yy.

(z + 14)^.

(15 + wy.

{2a+iy.
15. (3 6+ l)'^.

16. (4c+ 1)=^.

11.

12.

13.

14.

following binomial sums :

17. (5d+ ly. 33.

18. (4^+ 3)^^. 34.

19. (5^ + 4)^ 35.

20. (3^ + 5)''. 36.

21. (6^+ 7)^ 37.

22. (5 + 8 hy. 38.

23. (9 + 6^)'*. 39.

24. (7 + 9 my. 40.

25. (10^+ 3)=^. 41.

26. (4a + 5 by. 42.

27. (3c+ Idy. 43.

28. (6/i + 10 ky 44.

29. (5w+ 13 ny. 45.

30. (2/'+ llijy. 46.

31. (16 5+ 3wy. 47.

32. (12;r+ 5ijy. 48.

(7^ + 20 zy.

(18 A: + 10 ny.

(19a + 2c)^

(3 6+ 18 i)^.

(20 c + 5gy.

(10 6+ 16 ^)^

(14 6^+5^)=*.

(12 /i+ 11 r)''.

(21.9+ 2v)^

(8 ab + 5)^

(9 .r?/ + 10)^

(11 « + 4 6c)'*.

(l,T + 4yzy.

(6 a6 + 5 cd)^.

(10 XIV + 9ijzy.

(15ac+ 5 6c0'.

19. Square of a Binomial Difference.

Theorem II. {a-b)^ = a^ -2ab + b\

TTie square of a binomial difference is equal to the square of the

first term, diminished by twice the product of the two, plus the square

of the second.

\

Check. Let x = Q.

4 = 4.

Check Let z = 2.

1 = 1.

Check.

Ex.3. (3x-5y)==(3x)2 -2 •3a;-5i/ + (5i/)2 Let a: = 4, y = 2.

= 9 a;2 - 30x1/ + 25 y^. 4 = 4.

Ex.1, (a: -4)2 = a;^ - 8a: + 16.

Ex. 2. (3-2)2 =9_62+2;2.

Mental Exercise VII. 7

Expand each of the following binomial differences :

1. {a-^y. 3. {c-^y. 5. {b-ey.
2. (6 - ly. 4. (4:-d)' 6. (6 -fy.
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7.0- 9)^ 21. (8 ^ - 1)^ 35. (8 ;r - 7 z)\

8. (10 - h)\ 22. (3 k - 5)^. 36. (14 1 - 4.yf.

9. \h-\\y. 23. (4^-7)^ 37. {lOq-Szf.
10. (12 - my. 24. (6v-5)2. 38. (6r- lly)«.

11. (w - 14)''. 25. (7 «^ — 9)^. 39. (15 m — ^sf.

12. (16-r)\ 26. (8-65)'. 40. (I2 7i-20y)l
13. (« - 17)^ 27. (11-4 ty. 41. (17 g-^ rf.

14. (18 - 0*- 28. (13 r - 3)^. 42. (2 ab - 18)'.

15. [x - 19)^ 29. (2 5 - 15)^ 43. (5-4 cg)\

16. (2 a - \y. 30. (4 5' - 8)^ 44. (5 ab - 10 cd)\

17. (76- I)'*. 31. (9a -36)2. 45 (9 ^n^; - 4 yz)'*.

18. (9 c- \y, 32. (6 c - 7 oT)"- 46. (8 mx - ^ nyf,

19. (1-4 d)\ 33. (5 A - 12 r)'. 47. (2 ay - ^ bx)\

20. (1-5 ey. 34. (9 jt> - 7 qf. 48. (7 erf - 6 M)'.

20. Multiplication of the Sum of Two Terms by their
difference.

Theorem III. (a + h){a -b) = a^- bK

The product obtained by multiplying the sum of two terms by their

difference is equal to the difference of the squares of these terms.

Ex.1. (x + 5)(x-*5) =a;2-25.
Ex.2. (9 + m)(9-m) = 81 - m^.

Ex.3. (5x + 6y)(5x-6i/) = 25a:2- 361/2.

Let the student check each of the examples above.

Mental Exercise VII. 8

Obtain the following products :

1. (x + y)(x--y)- 10. {k + 9)(^ - 9).

2. (c + k)(c - k). 11. {n+g)(\l-gy
3. (r + M7)(r--w). 12. {h + 13)(^ - 13).

4. (m H- qXm -q)' 13. (14 + ^)(14-4
5. (a + z)(a --z). 14. {m + \l)(m — 17).

6. (x + 3)(x --3). 15. (16 + n){U — n).

7.
(l/ + 4:)(y--4). 16. (2a+ l)(2a- 1).

8. (5 + z)(5 --z). 17. (3 6+l)(3 6-l).
9. {e + wxe--w). 18. {c-\-2d){c'-2d).
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19. :c + id)(c~id). 35.

20. [a + bb)(a-'ob). 36.

21. \a + 8c)(a- 8 c). 37.

22. (4a + 36)(4a-36). 38.

23. 05c+7^)(5c-7^). 39. (

24. (8^' + 3^«^)(8^-3^^')• 40.

25. (;9;^^- ll;^)(9?i- lis;). 41.

26. (
'12 m + 8r)(12m- 8r). 42. (

27. (;7^+ 15 0(7^-15 0- 43. (

28. (;i3w + 90(13w-9s). 44.

29. <;i5^ + 12;2)(15(?-12 2:). 45. (

30. {;i7^+ 6v)(17c?-6v). 46. C
31. ([\Hn + 3s)(18w- 3.S'). 47. (]

32. {;iOjt>+ 16 0(10;^- 16 0- 48. (]

33. (;9^4- 20r)(9 5'- 20r). 49. (]

34. (;i9a + 5A)(19a- 5^). 50. (]

21. Square of a Polynoiiiial,

nomial consiatin;? of three terms :

(6c+ \2g){ioc— 12 g).

(45+ 14c)(4 5- 14. z),

(Sab + 5)lsab — 6).

(2cfi?+ 9)(2cc? — 9).

(7 + &my){l — ^my),

(8 + 9;2^)(8 - 9??c).

(4 6?^+ 5 c)(4 ab — 5 c).

(10 .r+ 7y;:)(10^— 1 yz).

(11M-+ div)(nbk — ^w).

(Sga; + l{)ky)(Sga: — 10 hy).

{I2am + rdbn)\uam — Vdbn).

llabc + Sd)(labc-Sd).
(14.2'+ l\yzw)(14:a'—llyzw).

(15^^^+ 10cc?)(15a^- 10c<^).

(16^>c + 16m7i)(Ubc — 16mn).

{llmn+ 18pq)(nmn— lSpq),

Consider the square of a poly-

(a + b + cy= (a-\- b + c)(a + b \- c)

= (a + b + c)a

+ (a + b + c)b

+ (a + b + c)c.

From the arrangement of the work above it appears that each

partial product obtained by multiplying any one of the terms in

parentheses by the factor outside must be of the second degree.

The only possible terms which can arise in this way will be those

which are the squares of the given letters, such as a^, b\ and c^ and

those which are the products of all possible pairs of the letters, such

as ab, ac, and be.

By examining the identity above it may be seen that a^ will occur

but once, that is, as a result of the multiplication in the first line

;

b"^ will occur but once, that is, as a result of the multiplication in

the second line ; c^ once only, and that from the multiplication in

the third line.

Furthermore, it appears that any product such as ab, of two dif-

ferent letters, will occur twice and twice only.
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Thus, ah will arise from the multiplication in the first line and

also from that in the second line ; ac from that in the first and third

lines ; be from that in the second and third lines.

The reasoning employed above may be extended to include a

chain of additions and subtractions containing any number of terms.

Hence we have

Theorem IV. (a + & + c)2 = a^ + 6^ + ^^ + 2 a& + 2 ac + 2 6c.

The square of any polynomial is equal to the sum of the squares of

the different terms^ Increased by twice the product qf each term and

every term which follows it.

22. The square of a polynomial may also be obtained by suitably

grouping the terms and then applying directly the theorem for the

square of a binomial.

E. ^. Find the square of a + 6 + c.

Reganling a + 6 in the polynomial as a single term, we may write

a + 6 -f c = (a + 6) + c.

Hence, [(a + 6) + cf = (a + 6)2 + 2 (a + 6) c + c^

= a2 -I- 2 a6 + 62 4- 2 ac + 2 k + c2

= a2 4- 62 + c2 + 2 a6 + 2 ac + 2 6c.

Ex. 1. Find the square of (a + 3 6 + 5 c + 7 rf).

(a + 36H-5c + 7rf)2 = a2 + (36)2 +(5c)2+ (J d)'^

Multiplying 2 a by following terms . + 2 a (3 6) + 2 a (5 c) + ^a{l d)

Multiplying 6 6 by following terms + 2 (3 6)(5 c) + 2 (3 6)(7 rf)

Multiplying 10cby7ci +2(5c)(7rf).

= a2 + 9 62 + 25 c2 +49 d^

+ 6a6 + 10 ac+ lAad

Check, a = 6 = c = (Z = 2. + 30 6c + 42 6f?

1024 = 1024. + 70 cd.

Ex. 2. (5x - 22/ - 42)2 =25a:2 + 4i/2 + 16^2 _ 20x1/ -40a;;3+ 16^2!.

Check, a: = 4,1/ = 3,2 = 1. 100=100.

Mental Exercise VII. 9

Expand each of the following polynomials :

1. (a + 26 + 3c)'. 4. (4^ + 7?/ + 2z)\

2. (4c + ^ + bej 5. (5« - b + 2c)'.

3. (6^ + 3 ?* + w)\ 6. (4^ + 33/ - zj\
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7. (6a + 2b- r> cy. 14. (a- 2b + c - 5 df.

8. (9(1 + 2b+ ly. 15. (1 —a — b — c)'l

9. (7^-.^y+ 2)^. 16. (2a + Sb + 4c + Sofjl

10. ((f + b + c+ ly. 17. (a-b~c-d- ef.

11. (^ + y - ;^ - 1)1 18. (a - 2 6 + c - 3 ^ + f?)2.

12. (a-b^-c-2)\ 19. (4.r + 2?/- ;^ + 3«^^- 5)^

13. (;6x — y + 2z — wf, 20. (^- 23/ + 3<^ — 2t«; + 1)'».

23» Product of Two Binomials in which the First Terms
are Equal and the Second Terms are Unequal.

Theorem V. {oc -\- a){3c + b) = x!^ + {a + h) oc + ab.

The product of two binomials having eqtialfirst terms, but unequal

second terms, is equul to the square of the common first term, increased

by the product of the algebraic sum of the second terms and the first

term, plus the product of the second terms.

Ex. 1. Multiply (x + 2) by (x + 3).

The two binomials havH equal first terms, x, but unequal second terms,

2 and 3. Hence, we may write :

(z + 2)(x + 3) = x2 + (2 + 3)x + 2 -3 Check. a: = 2.

= a;2 4-5a; + 6. 20 = 20.

Ex.2. (2x + 5)(2x + 6) = (2x)2+(5 + 6)2x + 5 • 6 Check. a;=:2.

= 4a;* + 22iC + 30. 90 = 90.

Ex. 3. (a; + 7)(x - 2) = x^ + (7 _ 2) X + 7 (-2) Check, a; = 3.

= x2 + 5x-14. 10=10.
Ex.4. (3a+ 6)(3a-26) = (3a)2+(6-26)3a +H-20 Check, a = 3,

& = 4.

= 9 a2 _ 3 a6 - 2 6^. 13 = 13.

Mental Exercise VII. 10

Obtain the following products :

1. (a + 2)(« + 1). 7. (^+6)(^ + 4).

2. (.r + 3)(;r + 2). 8. (^+6)(;r + 8).

3. (x + ^)(x + 1). 9. (x 4- i)(x + 2).

4. (^_4)(^-5). 10. (^+ 7)(^-5).
5. (« + 5)(a + 2). 11. (^+7)(^+6).
6. (x + h)(x + 3). 12. (.r + 8)(^-3).
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13. (ic + 8)(;i- + 7). 37. 0/ + U)(7/ - 8).

14. (d- + 9)(ii- - 2). 38. (m + 17)(w ~ 2).

15. (m + d)(m — 6). 39. (« - 10)(a - 19).

16. (a;- 10)(.«-2). 40. (/^ + 18)(A - 10).

17. (x - 3)(x + 10). 41. (a — 20)(« — 15).

18. (a;-5)(a;+ 11). 42. (a; - 20)(a; - 5).

19. (x - 2)(:x - 12). 43. {m - 8)(m + 20).

20. (x - Ui)(x + 8). 44. (a; - 16)(a; + 20)

21. Ix + U)lx - 4). 45. (a + 15)(« + 14).

22. (a; + 4)(a; + 13). 46. (b - 22)(6 - 3).

23. (a + d)(a + 10). 47. {a + 25)(rt + 8).

24. (a + 11)(« + 7). 48. (c + 20)(c + 30).

25. (w-ll)(w+10) 49. (2a+3)(2« + 5).

26. (a; - 12) (a; + 1). 50. (4 6 -f 5)(4 b + 1).

27. («r - 13)(a - 2). 51. (6c + l)(6c - 3).

28. (a + 3)(a + 14). 52. [l d - 2){1 d - 4).

29. {a + I2){a - 1). 53. (5 ^ + 8)(5 // - 6). .

30. (c + 13)(c - 3). 54. (8 ^ - 11)(8 h - 1).

31. (a-3)(a-16). 55. (3^^ - 1)(3A; - 19).

32. (6 + 15)(6 + 4). 56. (9 w - 2)(9 w - 4).

33. (a + 10)(a + 16). 57. (3« + 5)(3w - 8).

34. (« + 5)(a+18). 58. (11 a; - 9)(11 a; + 2).

35. (a + 19)(a-2). 59. l\2y + l){l2y - b).

36. (c--3)(c- 17). 60. (10;s-3)(10;s + 4).

24. The Product of Two Binomials of the forms aic + h

and ex + d, the first terms of wliicli contain a common fac-

tor X, may be found by applying the Law of Distribution for

Multiplication.

Theorem VI. {ax + h)[cx + d)= acx^ + {ad + he) x + hd.

That is, the product of two binomials of the types ax + b and

ex + d is equal to the product of the first terms of the binomials,

increased by ths sum of the ^^ cross products" plus the product of the

second terms.

Such products as adx and bcx, shown above, are commonly called

cross products, since when the given expressions are arranged as

multiplicand and multiplier in the vertical form for multiplication,



STANDARD IDENTITIES 109

in order to obtain these products we must cross over from one

column to another as suggested below :

ao! + bX
cw }- d
hex + cidiC or {ad + he) x.

The remaining terms of the product, acx'^ and bd^ are obtained by-

multiplying together terms which are in the same columns.

Ex. 1. Multiply (2 a + 5) by (3 a + 7). Check, a = 2

(2a + 5)(3a + 7)= Ga^ + 29a + 35. 117 = 117.

25. Products of expressions of the types ax + bij and ex + dy

may also be found by reference to the Theorem above.

Check. X = y = 2.

Ex. 2. (3 » + 8 y)(o x-2y) = 15 x^ + .34 xy - 16 ?/. 132 = 132.

Mental Exercise VII. 11

Obtain each of the following indicated products:

I4c?+ 11)(4<^+ 3).

20^ -f 17)(5/^-4).

13 a— lS)(2a- 8).

7g+12)(4^-7).
6 5r+7)(ll^-10).
12c- 13)(5c+ 7).

ldk+ l)(3k- 1).

17 c — 4)(3c— 10).

13 b+ 9)0'>^>-4).

18^ + 7)(8^ — 3).

15^-ll)(0^+5).
16 m + 9)(r)7n + 3).

14 71+ 13)(7w- 6).

')r + 3s)(4r + Is).

dp — 4^)(5j9 — 2q).

12 6 + 7d)(Sb - r)d).

15 c- 13^)(4c-f 3^).

14 A + 17^)(3A-4^).
16 m — dw)(Hm + 6w).

13 r+ dz)(lr — 4z).

1. (3« + 2)(«+ 1). 22. (

2. (2b+ l)(3 6 + 4). 23. C
3. (4c+ l)(2c + 3). 24. (

4. (Dd+l)(d+l), 25. (

5. (<7 + 2)(6i7+5). 26. ((

6. (lh-\- S)(2h+ 1). 27. (

7. (8^+5)(^-l). 28.

8. (9 m — 2)(m + 1). 29. (

9. (6/i- l)(4w + 3). 30. (

10. (5r-4)(2r-.3). 31. (

11. (7,_9)(,_4). 32. (

12. (ll;r-8)(3^+2). 33. (

13. (l0 7y-7)(57/-4). 34. (

14. (l2^+5)(7^-3). 35. (

15. (13 w; 4- G)(r)iv — 2). 36.

16. (Ss- 15)(3 5+ 5). 37. (1

17. (92^+ ll)(4^-5). 38. (

18. (I5i;+ 14)(5t' — 4). 39. (

19. (6^+ ll)(2k-f)). 40. (

20. (\()a + \[))(2a + 1). 41. (

21. (16 6- 9)(5 6 + 3). 42. (
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26. The product of two polynomials consisting of the same terms

arranged in the same order, but in which the signs of one or more

pairs of corresponding terms differ, may often be found by so

grouping the terms as to make the polynomials appear as the sum
and difference of the same combinations of terms.

Ex. 1. Multiply x + y-{-zhyx + y — z.

The terms of the polynomials may be grouped as follows

:

x + y-{-z = {x + y)-{-z and x -{• y — z= (x + y) — z.

Hence, we may write [(x + y) + 2] [(x + y) — z] = x'^ -^ 2 xy + y^ — zK

Ex. 2. (x + y-\- 3)(x _ y + 3) = (a: + 3)2 _ y2

= x2 + 6x + 9-y2.

The student should check the examples above numerically.

Mental Exercise VII. 12

Obtain each of the following products :

1. (771 + n + q){m -^ n — q). 7. (.r + y + z){x — y — z).

2. (a + c + 4)(a + c — 4). 8. {m -\- n + \){m — n— l).

3. {b + d-\- 2)Q) + 6? - 2). 9. (^ + c + 3)(6 - c - 3).

4. {a + h+ \)ia — b -{ \). 10. {a + b - c)(a — h + c).

5. (2 + c + d){2 — c-\-d). \l. {x-\-y — z){x — y — z).

6. (a + 6 + c){a — b — c). 12. \m + n — 5)(w — w + 5).

Ex. 13. (a + 6 + 3)(a + 6 + 2) ^ (a + 6)2 + 5 (a + 6) + 6

B rt^ + 2a6 + 6« + 5 a + 5 6 + 6.

Ex. 14. (x - 2/ + 7)(a: -y - A) = {x - yY + 3{x -y) - '2Q

= x2 - 2 a;?/ + 2/' + 3 X - 3 2/
- 28.

15. {m + n + 2)(m + w + 1). 21. (a — b + 6)(a — b - 2).

16. lj^ + y + 4)(.2r + y+ 5). 22. (b - c + 9)(6 - c - 5).

17. (« + 6 + 6)(a + 6 4- 3). 23. (c — ;r — 3)(c — ;r — 4).

18. (6 + c+7)(64-c+2). 24. (d - y - l)(d - y - 2).

19. (^ — y + 4)(.r — y + 1). 25. (m — q— 10)(m — g — 6).

20. (y — ;2 + o)(^ — ;:; + 3). 26. {m — w— ll){m — w—l).

Ex. 27. (a + 6 + c + d){a + h - c - d) = {a + hy - {c + dy
= a2 4. 2 a6 + 62 _ c2 _ 2 c(? - (^2.

28. {a'^-y-\-z-\-w)ix-\-y—z—^v). 31. («— ^;+ c--^(«— ^>— c + cT).

29. la-\-b-\-c-{-l){a+b—c—\). 32. (;r— ?/+ 2:—w)(^—y— ^+^')'

30. (;r+y+;5+3)(^+2/->2-3). 33. (a—6+c—2)(a-6— c+2).



STANDARD IDENTITIES 111

Powers of a Binomial.

27. The Binomial Theorem. The student should obtain the

following identities by actual multiplication:
q]^qq^ L^^ ^ _ ^ _ 1^

(a-\-by = a + b 2^ = 2. '

la + by = a^+2ab + b^ 2^ = 4.

(a + bf = (/ + 'Sa^b + 3 «^2 + b^ 2« = 8.

(a 4- by = a* + 4rt«/> + Qa%'' + 4«6« + ^^ 2^ = 16.

It will be well for the student to extend this set of identities as

far as the tenth or twelfth powers of the binomial {a + b).

By inspection of the identities above, we shall discover certain laws

of coefficients and exponents which will be found to hold true for

any positive integral powers of any binomial. (See Chap. XXVIII.

§§2,3).
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CHAPTER VIII

DIVISION OF INTEGRAL ALGEBRAIC EXPRESSIONS

(For Definitions, see Chapter V.)

1. When au expression A can be produced by multiplying

together two others, B and (7, then B and C are called factors of A.

The expression A is said to be exactly divisible by B, and also by C.

In multiplication we are given two factors to find their product,

while in division we assume a given expression to be the product of

two factors, and, having one of them, our problem is to find the

other.

2. Since the operation of division is the inverse of that of multi-

plication, it follows that if we multiply the quotient by the divisor

we shall always obtain the dividend.

3. To divide one power of a base by another power of the same

base, we may apply the following

Law of Exponents: The qiwtient obtained by dividing any

power of a given base by a lower power of the same base is a power

of that base. Its exponent is found by subtracting the exponent of

the divisorfrom the exponent of the dividend.

That is ^ ^'-^
«--«" = «--". if^>^.

If m and n are positive whole numbers, we may from the definition of a

power write the following

:

(i.) m > w.

,- TO factors > , n factors .

flwi -1. a" = (axaxaxax xrt)-f(axaxax • • • xa)

,
—(m—n) factors—> , n factors ^ , n factors-

= (axaxax • • • xa)x(axaxax • • • xa)-r(axaxax • • xa)

,—(m—n) factors

—

n

= {axaxax • • • xa)

= a"*~", by notation.
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(ii.) m < 71.

, m factors v r— » factors -^

a-n -i- a" = (axftxrtx • • • Xfl')-=-(axaxaxax xa)
, m factors v , m factors > -

—

{n—m.) factors—

v

= (axaxax • • • y.ci)-^{ay.ay.ay. • • xa)x(axaxax • • • xa)

, (n—nt) factors >

= 1 -f (axaxaxax xa)

= 1 -^ a"""*, by notation.

4. According as the exponent of one power is greater than or less

than the exponent of another power, the first power is said to be

bigher or lower than the second.

E. g. a^ is ta higher power than a^ or a^; but it is a lower power than

a^ or a^.

5. It will be shown in a later chapter that the Law of Exponents

may be applied whenever the exponents are positive or negative,

integral or fractional numbers. (See Chapter XIX. § 4.)

One power divided by anotber power of tbe same base.

6. The quotient resulting from the division of one power of a

base by another power^of the same base may be found by applying

the Law of Exponents.

Ex.1. a« -r a* = rt*-* = a2.

Ex. 2. W -^ 56 = /,9-5 = /,4.

Ex. 3. (- x)8 -1- (- xY = (- a:)»-« = (- x^.

Since all even powers of negative bases are positive numbers, we have

Let the student check the above results numerically.

Mental Exercise VIII. 1

Express the following quotients of different powers of the same

bases as single powers of positive bases :

I. 8« ^ 3^. 8. 2" -f- 2\ 15. (-2)i'>^(-2)^

2. 2' -- 2*. 9. 3^^ -f- 3^. 16. a« -^ a\

3. 3« -- 3^ 10. 4^^ ^ 4^ 17. 1/' -- /A
4. G«-f-6. 11. 6^ -^6^. 18. C"^ -r g\

5. 5' - 5^ 12. (-3)«-(--8)^ 19. h''-rh\

6. 4« -- 4«. 13. (-6)«-(--6)^ 20. o''-^(f\
7. V -r- 1\ 14. (-2)«-f-(-

8

-2). 21. m^'-^m'^
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22. k'^ -^ X;". 43. a^'+^ -4- a. 64. ?/»«+'•
-f- 7/'-=^.

23. (-«)" -T- (r-7iy. 44. ^''^^^
-J- 6. 65. z''''^'^ ^ z^^-".

24. (-ry^-f- (—?)*. 45. c*'^+^-i-c^ 66. a'*+^'^ ^ a^^^'^

25. (-a?)"-f-(—;r)". 46. d^'"+« -^ (f. 67. ^4^+'^ ^ ^8x+5^

26. (-i/)"-^(-^)". 47. /*"+* -^ /i". 68. c«"'+^" -7- c*'"+2«

27. i-zr-^i--^)^ 48.
^m+n ^ ^n

69. fPd+8 _j_ ^d+8^

28. a"* -T-a. 49. a^"'+^--a'». 70.
^+6+c ^ ^

29. b'' ^ b\ 50. ^4«+7 ^ ^2«^ 71.
ym^^Z^yn

30. c'^-rc. 51. c^'-2 -^ c«'-. 72.
^r+.+6 ^ ^6^

31. (P'-r-d". 52. ^-+2 ^ ^x^
73.

«»•+«+'•
-f-

«'"+''.

32. W" -^ 7W*. 53. a^r+2 ^ ^r+1
74. ix+y^-r _:_ Jf+z

33. a*" -^ «*. 54. ^4 .+6 ^ l^2s+4^ 75.
^.'+•+4 ^ ff^\

34. c^-f-c'. 55.
^6n+6 ^ ,.4«+6, 76.

«x+v+7 _^ ^x+,/+l^

35. -d^-^c^. 56. ^-^^^ 77.
^,«+*+c _^ ^+5^

36. (-^)*-(--^)-.57. g'^-^g^'- 78.
yn+n+8 _i_ ^y»>+8^

37. (-^)'-(--kr.58. hr ^ hr\ 79. ^+*+4 _i_ ^+2^

38. a'"+i -^ a. 59. t+i ^ i-\ 80.
^2m+n+l _^ ^m+n+1

39. ^-+« ^ b. 60. fji^n _^ ^«-l
81.

^3r+2a+4 _:_ ^^8r+s+8

40. c^" H- c". 61.
;,8r+2 ^ ^2.-. 82.

^4a+8*+2 ' _1_ ^ 8 r+2*+c

41. <^*^ -f- G^^^ 62.
^4x+3^^4x-6 83.

^a+«*+7 c_^ w4 a+8*+3c^

42. /^-^^'. 63.
^«+n ^ ^2n-l^

Division of One Monomial by Another

7. It may happen that the factors of a given divisor may be

found by inspection among the factors of the dividend.

In this case the quotient is by definition that part of the dividend

remaining after striking out the factors of the dividend which are

equal to those of the given divisor.

Ex.1. Divide a:2/2 by 2/-

We may write xyz -^ y = xzy -^ y. By the Commutative Law for

Multiplication.

^ xz. Since x y — y may be neglected.

Ex. 2. Divide 20 x* l>y 5x.

20 is 4 X 5, a:* is x^ x x.

Hence, 20afi -^ 5x = (-ix^ x 5x) -^ 5x = 4x^.
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Ex. 3. If we are required to divide mn by a:, then, since x does not

*' appear" as a factor of the dividend m?i, we may indicate the quotient by
. . mn

writing mn -^ x = —

.

X

Ex. 4. Divide \2abh^ by A:ahH,

12 ahh^ ^ 4abH = (12 -^ 4) x (a -f «) x (6^ ^ h^-) X {c^ -f d)

a

Ex. 5. ISx^yz ^ 7x^yw = (18 -J- 7) x (x^ -i- x"^) x {y ^ y) x {z ^ to)

= 18 -i- 7 X c -^ w

= 182 -^ / w z=-—

.

Iw

Let the student check these examples numerically.

8. The division of one integral monomial by another may be

indicated by writing the divisor beneath the dividend, separating

the two by a horizontal stroke of division.

It follows that, since the operation of division introduces neither

the symbol of addition +, nor the symbol of subtraction —, that the

quotient obtained by dividing one monomial by another is always a

monomial.

The quotient obtained by dividing one monomial by another^ is the

quotient of their numerical coefficients (considered as positive or nega-

tive numbers)^ multiplied by the quotient of their literalfactors.

Mental Exercise VIII. 2

Perform the following indicated divisions :

Divisor)Pividend

Quotient.

\.2b^b\, 7. -8ar )-16^' 13. ^ab )--\2a''b\

2. 3c )12c^ 8. 2a^ )8^«. 14. 4cc?)8cU

3. r)d}26d\ 9. Sb^^ )l5b\ 15. —3ga: )21ga:\

4. 4^ )24^'. 10. 4c^ )20c^ 16. -lla%)-22a%^

r>. Gm )-30m\ 11. -9c?' )-18^^ 17. 12 b^k' ) 36 bU:\

6. -ln )2Hn\ 12. 7/^' ) U h\ 18. dxyz ) — 21 .tYz\
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1 9. 1 5a% )30a»6V. 35.63 a?ys« -^ 7 ^z-y^r^.

20. - 13 acV ) 52aW. ^^- ^^ ^^^'^'^^ ^ (" 1^^^^>

37. — 45 m^nV -^ 9 w22wV.
21. 14«W)^6«W,/.

33 ^^^,,,, ^ .^. ^,,,

22. 16 a^fz)-ma:VzV. 39. 51 .^Vf' ^- (- H ;^y;^*).

23. - 15a%Y )loa'b'xy.
^0. (- 57 aW) - (" 19 a^/^V).

41. drlr-^ah,
24. -9^>'cV )-72 ^VyV.

25. 42 rt" ^ 6 a=^. 43. w^^w" ^ ww.

26. 39 ^' -f- 13 h\ 44. ^r^y ^ ;r^?^.

27. 72 tf'A' -^ 12 a%\ ^. a^'^^^n ^ ^m^^

28. 56 h'^d' -T- 8 b'^d^, 46. ^*y^ -=- ^>'y.

29. 44 .ry -^ (— 11 A-y). 47. c^+^i^+i -i- cw;.

30. 75 7nV -^ (- 15 wV). 48. ^"+V+^ -^ ^V.

31. (- 90 n^z') H- (- 10 nh""). 49. <^'-+*/+2 ^ ^r+y^

32. (- 96 gVr) -^ (- 16 g'h*), 50. a^m+s^sn+a _^ ^2^2

33. (- 72 h'P) ^ 18 ^F. 51. c»^+^(^^-^ -^ c^-^-^^^^+l

34. 80 aVc' -^ 1 6 a^Z/^^^. 52. a:*-+^Y"^'' ' -^ ^2«+y.+3 c^

Division of a Polynomial 'by a Monomial.

9. The quotient resulting from the division of a polynomial by a

monomial may be obtained as a direct application of the Distributive

Law for division. That is, since

(a -\- b — c)-r-d = a-T-d+b-^d— c-^df

it follows that we may divide each term of the polpiomial dividend

by the monomial divisor and write the algebraic sum of the resulting

partial quotients.

Ex. 1. Divide 15 a^b"^ - 10 a%^ + 5 ab^ by 562.

(15 a^62 _ iQ a2j3 _j. 5 ^65) ^ 5 52 = 15 ^4^,2 _^ 5 j^2 _ xo a%^ ^ 5 Z;^ + 5 ah^ ^ 5 //

= 3a* - 2a% + abK

Check. Let a = 3, & = 2.

(4860 - 720 + 480) -f 20 = 243 -36 + 2^

231 = 231.
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Mental Exercise VIIL 3

Perform the following indicated divisions:

1. 2a)_6ab_±_8ac. 10. 3a^)Qa^h+ 12a^c.

I 2. Sb )12bc+ 186.r. 11. ^^ .

4 c^ — 8 c^d^
3. Qd )S()da\i/ + 42

d

. 12. j^^^-

—

4. 5m ) 5m — \Omn . 13.

5. 7w ) 14n^+ 21nx. 14.

4c^

4a6c 4- 10 abd

2ab

,„ ,^ ,^ 32 7?^V - 40 ?w

V

6. 4c)8c7/ — 28fm 15. ; .

7. 8a?)24ir?/+ 1657^. 16- —
-^i

•

8. 9. )27^. + 45.v% . 17. l^^^^-^f^V^

9. 6».)30^V+48;yV . 18.
l^m'^V -^^ >»'.'.

"^^ '— 4 w^.«r

lOM^c - 15 «2^c2 + 5 a^bc

20.

21.

22.

5 a%c

da^bc^ + 12 aW; + 24ff7>V

3a6c

21 a^b'cy' - 7 r?^/;«c^ - 28 a^b^c^

7 «^/.2c=^

30 a^fz* + 12 ^y^' —1 8 ^^v/V

- 6^y;2«

25 m^nh^ — 30 ??z^;/^^' — 45 m^n'^z^
^^'

-5mbih'

28 T^sV + 32 r«.s«M;' — 44 rVw«
24.

25.

26.

4 r^sV
40a^bd^ + 24 g'^^^'^^^ + 32a^<^«(^*

8a2/^^8 .
*

27 m'^nh^ — 18 ^^"y^V — 54 ??2V^"
- 9 m^n^z^



33^y;j^- Ua:Yz'- 22 itYz^

-24a«'
- 7 g'h'k*

- 12 a'c'h' -48«Wi«

- 2G bVt'n'

- 12 a^c'h'

- IS b^h*n'' - SdlW?i'
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27.

28.

29.

-I3 6V*V
31. (f a»^c + § ff^'c + ^ t/^»c«) H- 2 «^c.

32. *(f a«Z;V + ia'^V + ^a^^V) ^ Sa^b^c^

33. (i ^^^2 - 2 a-Vz - i a^Y^ - i ^^^.

34. (^ m^n^w* — \^ m^n^w^ — \^ m*nV) -^ 5 m^nV.
35. (I a^bd'^ - ^ a%H - i a^bH") -r- (- J a%d).

36. [3(a + 6)« + 9(a + 6)* + C(« + ^)^] -^ 3(a + b)\

37. [5(.i- + yY - lh{x + ?/)' - S^{x + ^)*] -^ 5( ar + y)\

38. [4(6 - cO' + 20(/> - ay + 16(6 - df^^ ^ 4(6 - cQ'-

39. [6(^« - ^^ 4- 18(^ - lif + 12(i7
- /0«] - 6(i/

-
/O.

40. \ar^ + a^^^ + «'"+*) -^ a.

41. (6"+' + 6-+« + 6"+«) -^ 6«.

42. (c^ "+« + c^*
"+2 + c^ '"*"0 ^ ^'"^ "•

43. (<^"+2 - <?"+* + <^'*+*) -7- ^'^^^

44. (;r»
"+* — .i^

"+» — ;r« "^'^ -^ ^^ "+'.

45. (2^M- /" + //'* + /0^2/''-

46. (;J^ " + ;;*'' + -;°'' + ;:^ ") -4- 2; ^.

47. («*'+" + «»^+-'' + a^x+Si, _|_
^x+4y) ^ ^x4tr^

48 f/"'+4» 7 2m+8« I /8w+2» lAm+nX _j_ 1 m+n

49. (^7^'"+^ + rt2"'+265 + a2-+8^T) ^ ^2n,^2_

Division of One Polynomial by Another.

10. An expressed quotient is called a fraction ; the dividend is

called the numerator and the divisor the denominator.
11. The process by which the division of one polynomial by an-

other is performed, may be made to depend upon the following

Fundamental Principle : The quotient obtained by dividing an
integralfunction ofx by an integralfunction of x which is of degree

not higher than that of the dividend can be transformed into the sum

ofan integralfunction of x (the integral quotient) and a fraction the
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numerator ofwhich is the remainder resulting from the division^ and

the denominator of which is the given divisor.

The degree of the integral quotient obtained by the above Division

Transformation is equal to the excess of the degree of the dividend

over that of the divisor.

The degree of the remainder which is used as the numerator of

the fractional part of the transformed function is accordingly less

than the degree of the divisor which is used as a denominator.

(The following proof may be omitted when the chapter is read for the first time.)

Let the dividend D and the divisor d be integral functions of some letter

X, the degree,of the divisor being not higher than that of the dividend with

reference to x.

Letting Q stand for the integral part of the quotient and R for the

remainder, we have

We may construct the following identity :

D-^d = D^d + Q-Q. Since Q-Q = 0.

= Q + (J^ -7- d — Q). Commutative and Associative Laws.

= Q -}-(/) _j- (/_ Q) xd-^d. Since x d ^ d = 1.

= Q -\- (D -^ d X d — Q X d) -^ d. Distributive Law.

= Q + (D - Qd) ^ d. Since -r- d x d = I.

= Q -h B -^ d. Since D — Qd is by definition the same as B.

Division of one Polynomial by Another.

Development of the Process

12. In order to clearly understand the process of division, it is

well to obtain the product of two given integral polynomials, and

then, after having examined carefully the manner in which it is built

up, to reverse certain of the steps and processes. Then starting

with the reduced product as a dividend, and one of the factors,

say the multiplicand, as a divisor, wo may find the other, the

multiplier, which we shall now call the quotient.

13. For convenience, we shall select two polynomials in which no powers

are missing, and shall arrange them according to descending powers of the

same letter, say a.
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Multiply a* + 3 a^fe + 3 ah'^ + 6» by a^ 4. 2 aft + h\

Form I

Multiplicand . . . a* + 3 a-h + 3 ah^ +6* Divisor.

Multiplier . . . . a^ + 2 a6 + 6^ Quotient.

p . . M st row a^ + 3 a*6 + 3 a'ft'-^ + a-l)^
Partial

\
^^^^^ ^^^^^^ + 2 a*6 + 6 a^^^ 4. d a^&s + 2 aft*

FnKlucts.
(3j.Jj.^^^, + q8Z>-^4- 3a-^^8 + 3a/;^ + 6^

Reduced Product . a^ + 5 a*6 + 10 a^i^ _|_ 10 a'-^f/^ + 5 af;* + />* Dividend.

14. Observe that the number of terms in each horizontal row 0/

partial products corresponds to the number of terms in the multipli-

cand^ and there are as many rows as there are separate terms in the

multiplier. The degree of the first term of each row with reference

to the letter of arrangement is higher than that of any following

term.

15. If now we interchange the given pol3naomials and use the

first as a multiplier, and the second as a multiplicand, we shall

obtain the same reduced product and the same partial products as

before; but their orders of arrangement will be different, as in

Form II.

Form II
Check for both forms.

Let a = 3, ?* = 2.

Multiplicand . . rt2 + 2a6 +6^ 25

Multiplier . . . a^ + 3 ft^6 + 3 a/>^ -\-h^ J^5

I

1st row rt5 4. 2 a% + a*P 3125

2uil row +3 a*6 + 6 a^P- + 3 a%^

3rd row + ^aW -^ ^a%^-\-?,ah^

4th row + a%^ + 2 ah^ + h^

Reduced Product a^ ^o a^h + 10 a^W- + 10 a%^ + 5 ah^ + i^. . . 3125

""o~

16. Each horizontal row of partial products in Form II corre-

sponds to an oblique or diagonal row containing the same terms in

Form I, and each row in Form I has a corresponding oblique or

diagonal row in Form II.

E. g. The first horizontal row in Form II, a^ + 2rt*6 + a%'^^ appears as

the fii-st diagonal row a^ + 2a*6 + a%'^ in Form I C§ 13). Also, the terms
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in the first horizontal row of Form I, a^ + 3 a% + 3 a%'^ + a%^, are found as

the first terms of the different rows of Form II; that is, they occur in the

first diagonal row. The same is true for the other rows of partial products.

17. The arrangement of the partial products for a given example

depends simply on which of the two given polynomials is chosen as

multiplicand, and which as multiplier.

18. In either Form I or Form II, the terms of any particular row

are obtained by multiplying successively the terms of the multipli-

cand by one of the terms of the multiplier.

E. g. To obtain the first row of partial products use as a multiplier the first

tei'm of the polynomial chosen as multiplier; for the second row use the second

term of the polynomial multiplier; for the third row the third term, etc.

19. The first term of each row is obtained by multiplying the

first term of the multiplicand by the term of the multiplier corre-

sponding to the number of the row.

E.g. r a^ is obtained by multiplying rt' by 6^; (1)

In Form I ] 2 a*6 « " ""
a^ by 2 ah

; (2)

(. a862 " « « a'byi^. (3)

Similar results may be seen to be true by examining Form II. (§ 15).

20. It follows that, if we know the first term of any specified row,

we may, by dividing it by the first term of the multiplicand, obtain

the term of the polynomial multiplier corresponding in number to

the number of the row.

E. g. In Form I (§ 13) we have

:

From the first row of partial products a^ -^ a^ = a^, (1)

which is the first term of the polynomial multiplier.

From the second row of partial products ... 2 a*6 -^ a^ = 2 ah, (2)

which is the second term of the polynomial multiplier.

From the third row of partial products . . . a^b'^ -^ a^ = b^, (3)

which is the third term of the polynomial multiplier.

21. From the arrangement of the partial products in columns,

the first partial product, a^, is the first term a^ of the reduced pro-

duct in either Form I or Form II. (§§ 18, 15).

22. If now, returning to Form I, we divide a^ by a^, we obtain as

a quotient the first term a^ of the polynomial multiplier.

That is, a^ -^ a» = al (See (1) § 20.)
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23. If we multiply the terms of the multiplicand successively hy

this multiplier
J
a^, we obtain the first horizontal row of partial prod-

ucts as in Form I (§ 13). By subtracting the terms of this first row

from the reduced product, we have as below :

Step (i.

Reduced product, a^ + 5 a^h + 10 a^h"^ + 10 a%^ + bah^ + h^

First row of partial

proilucts ffS + 3a^6+ Za^"^-^ a%^

Fii-st partial remainder, 2a*b+ 7a%'^-{- 9 a%^ -{- 5 ab* + b^.

24. The result of the subtraction, 2 «*6 + 7 a^O' + 9 a%^ + 5ab* +
b\ we shall call the first partial remainder. From the nature

of the case the first term, 2ci% is the same as the first term of

the second row of partial products in Form I (§ 13). It is also the

sum of all of the partial products in Form I, except those in the

first row which were subtracted.

25. Dividing the first term 2 a*b of the first partial remainder hy

a^ we obtain 2 a^b H- «* = 2 ah. (See (2) § 20.)

The term 2 ab thus obtained is equal to the second term of the

original multiplier. Referring to Form I (§ 13) it may be seen

that this step in the process consists in dividing the term of highest

degree with reference to the letter of arrangement (that is, the first

term of the second row of partial products in Form I) by the first

terra of the multiplicand above.

26. By multiplying the multiplicand, as in Form I (§ 13), by

2 a6 as a multiplier, we obtain the second row of partial products

2 «*/> + 6 rt»^2 + 6 a'^' + 2 ab\

27. Subtracting these terms from tlie first partial remainder

obtained above in § 23 (i.), we have

f Fi rst partial remainder, 2 aSh + 7 a^"^ + 9 a^fts + 5 a54+ 56^

Step (ii.) - Second row of partial products, 2 a^6 + 6 a%'^ + 6 a^lfi + 2 ab\

VSecond partial remainder, a^^^ + 3 a^"^+ 3 a6*+ b^-

28. The first terma*6^ of the second partial remainder is the

same as the first term of the third row of partial products in

Form I (§13).

29. As we proceed in our work any particular remainder will.
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from the nature of the case, be the sum of the rows of partial pro-

ducts below the last one subtracted. (See Form I, § 13.)

30. Dividing, as before, the first term a^iP" by the first term of the

multiplicand a^ we have as in (3) § 20,

which is the third term of the original polynomial multiplier.

31. As before, we use this as a multiplier with the entire multi-

plicand, and obtain the third row of partial products in Form I

(§ 13), a^'U' -f 3a'^« + 3 ah'' + h\

32. Subtracting tliese terms from the second partial remainder^ we

find as below, that the third partial remainder vanishes, that is, it

is zero :

( Second partial reiriainder, a^V^ -f 3 a%^ + 3 «i* + h^

Step (iii.) \ Third row of partial products, a^lP- + 3 a^^^ + 3 uh'^ + h^

(

33. The process stops here, as we should naturally expect, since

we have recovered all of the terms of the original polynomial multi-

plier a^, + 2 ah and b\ (See Form I, § 13.)

34. Summary. By this process we have succeeded in finding

the original polynomial multiplier, when the reduced product and

the original multiplicand were given. The process would have been

exactly the same if we had started with the reduced product and

the original multiplier, a^ + 2ab + b^, to find the original multipli-

cand a^ + 3 a*^6 + 3 ab^ + b^. In that case, however, there would

have been this exception, that the successive rows of partial products

would have corresponded to the rows of partial products in Form II

(§ 1 5), where the polynomial to be found is used as a multiplier.

35. We have thus developed a method for finding the original

multiplier when the multiplicand and the reduced product are

given. The method holds good also for finding the original mul-

tiplicand when the multiplier and the reduced product are given.

36. It will be seen from the discussion above that the reduced

product takes the place, in our problem of division, of the dividend,

the original multiplicand of the divisor, and the original multiplier

of the quotient.
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Correspondence between Examples

IN

DIVISION MULTIPLICATION

DIVIDEND DIVISOR MULTIPLICAND
QUOTIENT .... MULTIPLIER

REDUCED PRODUCT

37. The rows of partial products in the process of multiplication

correspond to those appearing in the process of division.

38. The Division Transformation. Whenever division is

possible, we may carry out the different steps of the process as

follows :

First arrange the terms of both dividend and divisor accord-

ing to ascending oi' descending powers of some letter.

Place the divisor, for convenience^ at the right of the dividend.

Since the different terms of the quotient are to be used as multipliers

during the process, it will be convenient to write the quotient, term by

term, immediately below the divisor.

Divide the first term of the dividend by the first term of the divi-

sor, and ivrite tJie result as the first term of the quotient.

Multiply the whole divisor by this first term of tlie quotient, and

write the ?'esulti?ig partial products under the dividend.

Subtractfrom the dividend the polynomial composed of the partial

products, and bring down the result as the first partial remainder.

Divitle the first term of the first partial remainder by the first

term of the divisor as before, and write the result as the second term

of the quotient.

31ultiplf/ the whole divisor by the second term of the quotient, sub-

tract the resulting product from the first partial remainder, and

write the result as a second partial remainder.

Repeat the operations above either until the remainder is 0, or

until as many terms of the quotient arefound as are desired. In the

latter case, add algebraically a fraction having for numerator the

remainder at this stage, and for denominator the divisor.
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Arrangement of the Work •

39. A convenient arrangement of the different steps of the process

is shown below :

DIVIDBND

Multiplying divi- a^+5a*b+10a%-^+10a%^+5a¥+h^
801- bv a^ ««f 3(1*6+ 3a%'^+ a%»

1st partial remainder . 2a^b-\-

Miilt'g divisor by 2ab . 2a%+
2nd partial remainder . . .

Multiplying divisor by b'^ . .

7a862+ 9a%^+bab^+b^

6a268+2«6*

a862+ 3a%»+'3ab*+ b^

3a%»-{-3ab*-\-b^

a»+Sa%-h3a¥-^b^

a^+2 ab + b^

QUOTIBNT

Check. Let
a = 3, & = 2.

3125)125

Quot't sh'd be 25
Quotient is . 25

~0

"We have carried out the process above » on the assumption that

the degree of the dividend, with reference to the letter of arrange-

ment, was at least as high as that of the divisor,— that is, that

division was possible. It is the exception rather than the rule that

we find an integral quotient when dividing one integral polynomial

by another. We therefore apply the Principle of No Exception,

and assert that division may be performed, if indeed it can be begun

at all, by the steps of the process above.

40. In the division transformation two cases may arise :

First, it may be possible, or second, it may be impossible, to find

as a quotient an integral function of x.

In the first case the division, if carried out, is said to be exact

and there is no remainder. It may be shown that when division is

exact, the form of the quotient will be the same whether the division

be carried out with both dividend and divisor arranged according to

descending or ascending powers of some specified letter.

Ex. 1. Divide a;2 + lOx + 21 by a; + 3.

The process is shown below, at the left with the dividend and divisor

arranged according to descending powers, and at the right with both arranged

according to ascending powers.

Descending Powers. Ascending Powers.

a:2 + lOx + 21

X24. Sx
a: + 3

x + 7

21 +
21 +

10a; + a;2

7x
3 + a:

7+x
7a: + 21

7 a: + 21

3 a; + x'^

3a: + a:2

The student should check the example numerically.
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4i. The form of the quotient obtained when both dividend and

divisor are arranged according to ascending powers of some letter of

arrangement, is not the same as that of the quotient obtained when

the terms are arranged according to descending powers.

Ex. 2. Divide 8 x^ + 17 x + 1 4 by a: + 2.

The process is shown below, at the left with l)otb dividend and divisor

arranged according to descending powers ofx, and at the right with both

arranged according to ascending powers of x. Let the student check each

result numerically.

Descending Powers. Ascending Powers.

8x2+i7a:-f- 14 x + 2

8x2+ lOa;
«^+^'+x!:2

14+ 17x + 8rc2 2 + x

14+ 7x ^ + ^^ + 2 + x

x+14 10x + 8x2

x+ 2 10x+ 5x2

12 3^

42. When the operation of division is performed with both divi-

dend and divisor arranged according to descending powers of some

letter, it will happen either that division will be exact, or that

we shall arrive sooner or later at a remainder which is of lower

degree with reference to the letter of arrangement than the divisor.

Here, for the present, the operation of division terminates.

If, however, division be carried out with both dividend and

divisor arranged according to ascending powers of some letter, it

will happen that when division is not exact the degrees of the

remainders will be successively higher and higher, and an un-

limited number of terms may be obtained in the quotient.

Ex. 3. Divide 3 x + 4 x^ by 1 + x + x^.

3x + 4x2 1 + X + X2

3x + 3x2 + 3x8 3x + x2-4x3+
X2 - 3 X8

X2+ x3 + x^

-4X3- 2-4

-4x3-4x4-4x5
3x4 + 4x6

etc.
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The quotient obtained in the example above may be checked at any stage

of the process by adding to the quotient at that stage a fraction whose nu-

merator is the corresponding remainder and whose denominator is the

divisor, and then making numerical substitutions.

43. We may continue the operation of divisjon as long as the first

term of the arranged partial remainder is divisible by the first term

of the divisor.

By bringing down the terms of the dividend in the successive

partial remainders only as they are actually needed, we may save

labor when carrying out the process.

44. Detached Coefficients in Division. Detached coeffi-

cients may be used in division as well as in addition and mul-

tiplication.

To illustrate the use of detached coefficients in division, the

following example is performed first in the ordinary way and then

again by using detached coefficients.*

Ex.4.

Ox'-lTarS-f-Slx*-_44a;8 + r)5x2-40x«+14

-18x8 + 21x2

2x4-3x8 + 5x2_6x + 7

3x2 -4x _,_2

- 8x5 + 16a;*-

- 8x6 + 12x4-

-26x8 + 34x2 -40x
-20x8 + 24x2-28x

Check. Let x = 2.

138)23

4x*-

•4x*-

-6x8+ i()a;2_ 12X+14
- 6x«+ 10x2- 12x+ 14

Quotient should be 6

Quotient is 6

Using detached coefficients

:

6 -17
- 9

+ 31

+ 15

-44
-18

+ 55

+ 21

- 40 + 14 2 - 3 + 5 -6 +7
6 3 - 4 +2

3 x2 - 4 X +2- 8

- 8

+ 16

+ 12

-26
-20

+ 34

+ 24

-40
-28

4

4

- 6

- 6

+ 10

+ 10

-12 +14
- 12 + 14

45. Numerical Checks in Division. Since zero cannot be

used as a divisor, it follows that care must be taken when employ-

ing numerical checks in division to avoid giving to the letters such

values as would cause the divisor to become zero.

E. g. When checking the quotient obtained by dividing x2 — 7 x + 1

2

by X — 3, we must avoid giving the value 3 to x, for in this case the

'livisor X — 3 would represent the value zero.
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Exercise VIII. 4

When performing the following divisions, check all results

numerically. Divide

:

1. a^+ 6a + 8bya + 2.

2. Qb^ + 56 — 6 hy 36- 2.

3. 5c« + c-6by 5c+ 6.

4. 21c?^ + 386?+ 16by 7(3?+ 8.

5. 1 + 2c + 2c2 + c*by 1 + c.

6. 6a'^ + 8a + 28 by 3a + 7.

7. 6a*^+ 13a6 + 66^by 2a + 36.

8. 8a;'* — 22a^+ 15/by 2ic — 3^^.

9. a« + b* by a^ + b\

10. w* + 2 7^* + 3 m^n + 4 mn^ by ??2 + 7i.

11. P + Ar^w — km"^ — w* by /: — m.

12. a* - 2a»6 + 2a6* - 6* by a'' - b^.

13. 1635*— 1 by 2«— 1.

14. 32 TW*^ + 1 by 2 w + 1.

15. 3a«-24bya^-2.
16. Q(P-(P-12d+ 4.hyS€P+ 4:d-\.

17. 5* + ;:2««'2 + m;* by z^ + zw + w\
18. ^* - ^ - g2 _^ ^ by ^'^ + g + 1.

19. ^* - 6^«2 + 9AV - 4«* by F + 3^5; - 2;^^

20. c* — c» — Sc^ + 10c — 10 by c* + 2c - 2.

21. 15a* — a + 8a'— 1 — 19a» by 5a' - .3a — 1.

22. 6/ — 13 icy« + 13 £cy - 13 x^y — 5 a;* by 2if — ?*xy — ^.

23. c^-6c*+ 16c« — 25c'+ 13c + 5byc» — 4c'+ 3c+ 1.

24. a;* — 4a^y + 6ar*/ — 4a;/ + ?/* by a;' — 2 a;?/ + /.

25. s^+ 35* — 20s» — 60s'+64s + 192bys' + 9s'+ 26.9 + 24.

26. 3a;^ — 8 a;* — 5a;» + 26a;'-28a;+24bya;8-2a;' — 4a;+8.

27. a^ + 10a«6' + 6^ + 10a'6» i- 5a*6 + 5a6* by a' + 2a6+ 6'.

28. 3a;^+ 7 a;*?/— lla;y — 11 a;'/ + 6a;?/* — 18/ by a; + 3?/.

29. 1 + 2 a' — 7 a* — 16 a** by 1 + 2 a + 3 a' + 4 a^

30. -y^ - 2 v« + 1 by ^^' - 2 ?; — 1.

'

31. 3a;« + 43a;' - 6a;» — 30a; + 80 — 32a;* + 20a;^bya;+ 8.

32. 1 5 a* + 1 6 a^ + 8 a*— 9 a» — 7 a'+ 1 9 a — 42 by 5 a' + 2 a— 7.

33. c' — 6 cV* + 14 &d^ — 12 c*c?» by c^ - 2 c'^d^.

34. a;' + ?/' + c' - 3 a;^^ by a; + ?/ + 2;.
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46. The ordinary process for " long division " may also be em-

ployed when the coefficients are fractional.

Ex. 1 . Divide ^ x^ + -J^ xhj + lif by ^^x + \ y.

l^ +\y
ix^-^xy + ^y''.

^xhj-lxy"^

^xy^ + ly\

Let the student check this example numerically.

Exercise VIII. 5

Divide :

1. ^^* - ^^^y + ],xf + ^/ by i./- + \y.

2. § b''

-

f^e h^'' + ni b' -m b' + m h' -^hy^i^ -^.
3. IP - H^' + m\k' - -^^l" + 4^^^:* by ^F - Jy(: + }.

4. «^ - -^rt* + 10a« - 30a' + 90a — 27 by 81a — 27.

6. w'— ^ »^«+ TfVw^H^»^*-M^*- V^^+ ^iw-lbylw'^-iwi+ l.

7. a^ - §Ja* + ^1^5 a' + Hi «' - iM ^^ + f by §a' - ia + f
8. ^:«'- |-|a;« + 1^^ - ^-x!" + f|a;« - 4u;2by f x-« - f^ + f.

9. «"•+' + a'"^ + a^;"» + If'^'' by a"* + l^.

10. 2 a*'" — 6 a^'^lr + 6 a'"^'"' — 2 //'" by 2 a"* — 2 IT.

47. The Remainder Theorem. When a rational integral

expression containiny one unknown^ Xj arranged according to descend-

ing powers of x is divided by x — a, the remainder may be obtained

hy substituting a for x in the original expression.

Let .an expression or function of x, arranf,'ed according to descending

powers of a:, be represented by f{x). When f{pc) is divided by x — a, denote

the quotient by Q and the remainder by R.

Then, from the identical relation of division, we have

Kx) = {x-a)Q + B,

Since no restriction has been placed upon the value of x we may assign

to it any value we please, such as a. Representing the result of substitut-

ing a for x wherever x Jippears in the identity aVjove, we may write

/(a) = {a- a) Q + A'.

9
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Since (a — a) is 0, the product of (a — a) multiplied by the quotient Q
vanishes, and we have /(a) = R.

It follows that we may obtain the remainder after division by x — a,

by writing a in place ofx in the originalfunction.

48. The remainder obtained by dividing an expression such as

Ax^ + By? + Cotp- + Bx + ^^ by a binomial divisor x — a, may be

obtained by replacing x in the original expression by a. We may
show this by actually carrying out the process of division as

below :

Ax^—Aa:^ |via5»-|-(^a4-B)aB*+(^rt2+Ba+C)x

\-{^Aa-\-B)ofi-{Aa^B)ax'^

-^{Aa^^-Ba^C)x'i-{Aa^^Ba^C)ax
-\-{Aa>-\-Ba'-{-Ca-{-I))x^E

-h(Aa«+Bai+Ca+D)x-(Aa*-{-Ba»+Ca^+Da)

Remainder

It may be seen that wherever a appears in the remainder Aa* + Ba* +
Ca^ + Da -\-E,x is found in the given dividend Ax* + Bx^ + Cx^ + Dx-{-E.

49. Synthetic Division. If we write only the coefficients of

the dividend and place the second term of the binomial divisor

with its sign changed, that is, —(—«) = + a, at the right as

below,

-{A + B + C + D -\- E)a
we may obtain the coefficients shown in heavy-lace type in § 48

by the following process, known as Synthetic Division

:

+A + B + C -\-D +E ) + a

+ Aa + {Aa^+Ba) \- {Aa^+ Ba'^+ Ca) + {Aa* + Ba^+ 00^+ Da)

+A+(Aa-\-B) +(^a»+Ba+C)+ (Aa^ -{- Ba^-\-Ca+I)),-\-( Aa*-\-Ba,^+Ca'^-\-I>a-]-E)

Remainder.

50. Write under the long line the first coefficient -\- A oi the

original expression, then multiply it by a, and write the product

Aa diagonally above the line in the second place, that is, under B.

Then, adding Aa and B^ we obtain the heavy-face coefficient

Aa + B, which is written immediately underneath.
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Continue this process, that is, multiply this last expression Aa + B
by a ; write the result, Aa^ -\- Ba, above the line under G in the

third place. Then we have, adding Aa^ { Ba to (7, the second

heavy-face coefficient Aa^ + Ba + C
Continuing this process, we obtain as the last sum the remainder

Aa*^ + Ba^ + Ca'^ + I>a + E.

Ex. 1. Divide 4x^ + 3 x* - 2 x^ + x^ - x + 5 hy x - 2.

Writing the coefficients only, with + 2 in the divisor's place, we may

proceed as follows :

Coefficients of Dividend. Modified Synthetic Divisor.

4+ 3_ 2+ 1 - 1 + 5 ) +2

^+^ +22 + 40 + 82 +162
^4+11+20 + 41 +81, + 167

^~-——

r

TTTTr-r^ Remainder.
Coemcients of Quotient.

First bring down the 4 underneath the line. Multiplying the 4 hy 2 we

obtain 8 ; adding 3, 11 ; multiplying by 2, 22; combining with — 2, + 20 ;

multiplying by 2, + 40 ; adding 1, 41 ; multiplying by 2, 82 ; combining with

— 1, 81 ; multiplying by 2, 162, which when combined with 5 gives the

remainder sought, 167.

Using as coefficients the numbers below the broken line, mn, with the

exception of the last, we may construct the q\iotient by writing in the literal

factors. Since the first term of the dividend 4a;^ divided by the first term

of the divisor x, produces the quotient 4 x\ we begin in the first term with

the highest power x*.

The result thus obtained is 4 x* + 1 1 xS + 20 a;^ + 41 a: + 81 + —-^ •

61. It will be noticed that in carrying out this process we work

back and forth across the horizontal line mn in the directions in-

dicated by the arrows in the accompanying figure. We begin at

4 and arrive finally at the remainder 167.

4 167

'' 52. In case any powers of the pol3Tiomial dividend are lacking,

their places must be indicated, when this process is applied, by

writing in terms with zero coefficients, as in the following example :
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Ex. 2. Divide 5a;* + 3x2 - 2 by a - 3.

This expression is equivalent to

5x4 + 0a:3 + 3u;2 + 0a:-2.

The work may be arranged as follows :

5+0+3+ - 2 ) + 3

_ + 15 + 45 + 144_ + 432

5+ 15 + 48 + 144, + 430

Remainder.

The highest power of ar in the quotient is x^, since 5 x* divided by x is 5 x^.

430We have as a result 5 x^ + 15 x^ + 48 x + 144 + x-3

53. In order to divide an expression arranged according to de-

scending powers of a; by ic + a, that is, by ic — (— a), the same

process is employed, except that — a is used in the same way as

+ a was used when the divisor was x — a.

Ex. 3. Find the remainder when 4 x* — 3 x* — 5x2 — x + 10 is clivided

by X + 2.

4- 3- 5- 1 + 10 )-2
- 8 + 22-34+70

4-11 + 17-35, + 80

Remainder.

54. If when a function of x^ f{x)^ is divided hy x — a the division

is exact, that is, if there be no remainder, the identity /(a?) = (x — a)Q

+ B reduces to /(a;) = (x — a)Q. By substituting a for x this last

identity reduces \xif{a) = 0.

Hence we have the following

Factor Theorem : If, when a is substitutedfor x in an expression

arranged according to descending powers of x^ the expression becomes

0, then X — a will be an exact divisor of the expression.

Exercise VIII. 6

Find the quotient and remainder when

1. ar' + 5 a; + 7 is divided by a^ + 3.

2. ?/^ + 7 7/ + 11 is divided by ?/ + 4.

3. z^—llz-\- 39 is divided by ;j + 3.

4. w'2 — 48 w + 97 is divided by ?r + 10.

5. a* + 11 a^— 19a + 117 is divided by a + 4.
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6. ^» - 19 6^ + 18 6 - 17 is divided by 6 - 5.

7. c» - 14 c^ + 28 c — 42 is divided by c — G.

8. d^ - bd"" + 6d^ - lOd + 1 is divided by «^ + 1.

9. k^ + 2F + 3F + 4^ + 5 is divided by /; - 5.

10. 3 a^ — 5 aj* + 6 i«' — 2 ic^ + a; — 1 is divided by a; — 2.

Employing the Remainder Theorem, find the numerical value of

the following expressions when x is given the value indicated :

11. x^ + ?>x'' + 4a; + 3, when a; = 1.

12. 2a^ + a;^ + 7 a + 4, when a; = 1.

13. a^ 4- 2 a;2 + 3 a; + 5, when a; = 2.

14. a;* + 2 a;^ + 5 a; + 7, when a; = 2.

15. a;^ - 8 a;'* + 17 a; — 10, when a; = 1.

16. a:* + i)x^ + 3aj + 1, when a; = 2.

17. a^ + 9 a;^ — 7 a; + 5, when a; = 1.

18. a^ — 7 a;2 + 13 a; — 6, when a; = 2.

19. 3 a;» + 2a;2 + a; + 5, when a; = 2.

20. 2 a.-* — 5 a;'' + 4 a; + 7, when a; = 3.

21. 3a;» + a;' — 7 a; + 9, when aj = 1.

22. 4a."« - 9ar* - a; H- 6, when a; = 1.

23. 2x^ + x^ + 3 ^ + 2, when a; = 2.

24. 4a;« — 3 a;2 + 2 a; + 5, when aj = 3.

25. 3 x-* + 7 a;2 — 4 aj + 3, when a; = — 3.

26. 4a.-* — 5 a;^ + 3 a; — 4, when a; = — 2.

27. 2a.^ — 9 a;' + 4 a; + 5, when a; = 5.

28. 3 a;* + 11 a;*^ — 7 a; + 5, when a; = - 1.

29. 2x'» + 11 a;2 - 3 a; + 10, when a; = - 5.

30. 6 a.-' - 3 a;2 + 7 a; + 4, when a; = - 2.

31. 11 Q^ — 9 a;2 + 7 a; + 1, when a; = - 1.

32. a;^ + 2a.'» + 3 a.-^ + a; + 1, when a; = 1.

33. a;* — a;* — 7 a;^ + a; — 6, when a; = 1.

34. a:* — 3 a^ + a;2 + 2 a; + 5, when a; = 3.

35. a^ + 2 aj^ + 7, wlien a; = 2.

36. a^ + 1, when a; = 3.

37. a^ + 4 a;2 + 12, when a; = 4.

38. Q^ + ir)x+ 3, when a; = 5.

39. 2 a;' + 7 a; + 20, when a; = 2.
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40. 2 a^ + 5 ar» — 33 ic + 12, when x = 3,

41. 3s(^-Gx^+5x+ 21, when x = 2.

42. 2 ic* + 5 a' 4- 2 a + 1, when x = I,

43. 3 ic* + 5 a^ + 4 a; + 1 when x = — h

Applications of the Remainder Theorem.

55. (i.) TTie binomial difference af" — y"' is always divisible with-

out remainder by the difference x — y.

For, substituting y for a;, we have 'f — y'" = 0.

Hence by the Remainder Theorem the division is exact.

(ii.) TTie binomial sum af^ + y'^ is never divisible without remain

der by the difference x — y.

For, substituting y for x, we have f + y"^ = 2f^0.
Hence by the Remainder Theorem the division is not exact.

(iii.) The binomial difference x"" — y'" ism- is not divisible without

remainder by the sum x + y according as m is even m- odd.

For, substituting — ^^ for a^ we have {—yT — y^ (X)-

Examining this " remainder " for both even and odd values of m,

we draw the following conclusions :

If m be even, then, since all even powers of negative numbers

are positive numbers, (— y)"* — y" becomes y^ — y^ = 0.

By the Remainder Theorem the division in this case is exact.

If m be odd, then, since all odd powers of negative numbers are

negative numbers, (— y)"* — y" becomes — y^ — y"'=. — 2y^^0.
By the Remainder Theorem the division in this case is not exact.

(iv.) The binomial sum x"" + y'" is or is not divisible without re-

mainder by the sum x + y according as m is odd or even.

For, replacing x by (— y), we have (— 3/)*" + y^.

Examining this "remainder" for both odd and even values oim,

we find that

:

^

If m be odd, (— yY + f becomes — y'^ + f = 0.

Hence by the Remainder Theorem the division in this case is

exact.

If m be even, (— yY -f y'" becomes y"^ -\-f = 2f ^0.
Hence by the Remainder Theorem the division in this case is not

exact.

66. By (i.) a:"* — y"* is always divisible hy x — y whether m be
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odd or even, and by (iii.) it is also divisible by a; + ^ when m is even.

Hence it follows that when m is even, £c"* — ?/"* is divisible by either

X — y ore x-V y.

57. Since, when m is even, the binomial difference m^ — iT is

divisible by both the ^\xm x + y and the difference x — y/\i follows

that it is divisible by the product {x + y)(x — y) = x"^ — y\

58. The general principles established above may be stated as

follows :

I. The sum of the same odd poivers of two numheis is exactly

divisible by the sum of the numhers,

E. g. ^
^

^
= a* - a% + a%'^ - ab^ + 6*.

II. The difference of the same odd powers of two numbers is

eixactly divisible by the difference of the numbers,

E. «.
"^ ~ f = a« + a^b + a*b'^ + a%^ + a%^ + ab^ + b\
a —

III. The difference of the same even powers of two numbers is

exactly divisible by either the sum or the difference of the numbers.

a* — b*
E. g.

•

(1) y = a» - a^ + ab-^ - b\

(2) ^^f = a^ + a% + ab^ + 6».

IV. The sum, of the same even powers of two numbers is not

exactly divisible by either the sum or the difference of the two

numbers.

The division in each case is not exact.

a2 -\-b'^\

a + b

+ b^

a -b

liaw of Polynomial Quotients.

59. It may be shown by actual division that the polynomial

quotients obtained by dividing a" ± 6" by a ± 6 have the follow-

ing forms:
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If w is an odd positive integer, we have

The signs of the terms of the quotient are alternately + and —

.

If 71 is an odd positive integer, we have

^ "^ a — o

The signs of the terms of the quotient are all positive.

If n is an even positive integer, we have

(iii.)
^"7^" = a«-i T a^-^fr + a"-^^^ i^ an-^fts + + f,i,«-i =f

6«-i.

In the expression above, the double sign ±, read "plus or minus,"

is used with the double sign =F, read "minus or plus," to indicate

that according as the upper or lower sign is used in the divisor, the

corresponding upper or lower sign must be used in the quotient.

Hence, using the upper signs, the signs of the quotient are alter-

nately positive and negative when the divisor is a sum. Using the

lower signs, the signs of the quotient are all positive when the divisor

is a difiference.

Mental Exercise VIII. 7

Obtain each of the following quotients mentally, stating in each

case the general principle applied : (See § 58.)

6.

''•-*'

7.

8.

9.

5. J-. 10. . xu. r-a + 03+1 a + b

a^+y
X + y*

a' + b'

a + b'

c«-^
c -d'
m''-n'
m — n

«« -b'

a -b'
a^' + b''

a + b

^'>_yo

X -y
a' + 8

a + 2*

x' 4- 1

11.
y^^-^l

y - 3

12.
\ + ^
l + x'

13.
l-x'
1 —X '

14.

«^2 _ ^,12

a — b

1 K
a'-b'
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CHAPTER IX

GRAPHICAL REPRESENTATION OF THE VARIATION OF
FUNCTIONS OF A SINGLE VARIABLE

1. Any expression which depends for its vahie upon the value

assigned to some specified variable contained in it is called a

function of this specified variable.

E. g. The expression x + 1 does not represent any particular number

until some definite value is assigned to x. Hence we say tbut a: + 1 i.s a

function of x.

Similarly the expression a;^ -f 2 a: + 3 is a function of x. If x be 2, the

expression stands for the number 11 ; if a; be 5, the expression represents

38.

2. An expression containing several variables may be regarded

as being a function of any one of them, or of a combination of two

or more taken together.

E. g. a;2 4- a:y 4- y'^ may be regarded as being a function of either x ov y
separately, or of x and y together.

3. From our experience with algebraic expressions we have found

that definite numbers were commonly obtained when particular

values were assigned to the letters appearing in them.
*

E. g. For a; = 2, tlie following functions of one letter each represent 7 :

6a: + 23
x2 + 3, a: + 5,3a:+l,4a;-l and

5

4. We found also that a given expression commonly assumed

different values when different values were substituted for some

particular letter or letters appearing in it.

The expression x^ — 10 x -\- 21, regarded as a function oix, will

represent different values as x is given successively the values 0, 1,

2, 3, 4, 5, , 10.
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We will tabulate the resulting values of the function, writing the

results as in the accompanying table.

"When X has the values 0, 1, 2, 3, , the resulting values

of the expression are 21, 12, 5, 0, respectively.

5. Writing the expression x^ — 10 a; + 21 in

the form (x —3)(x— 7), it appears that, for

values of x equal to 3 or 7, the expression be-

comes 0. It cannot become for any other

values, since neither of the factors x — 3 nor

X— 7 can become for other values.

For any value of x greater than 7, the expres-

sion will represent a positive number, since each

factor jc — 3 and x— 1 will, in this case, be a

positive number.

6. Also, for all negative values of x, the ex-

pression will represent a positive number, since

for negative values of x, x— 3 and x — 7 are

both negative, and their product is accordingly

a positive number.

We may thus, by tabulating results, obtain an

idea of the variation in the value of the expression under examina-

tion as the letters are given different values.

7. We will now explain a graphic method for representing the

variation, or change in numerical value, of a given function as the

letters appearing in it are given different values.

i. We shall obtain a diagram or picture which will represent to us

the variation above and below zero in the numerical value of a

given function in much the same way as a profile map of some

section of a country gives us at a glance a different and far better

idea of the relative elevations of places than can be obtained from

a table of estimated distances above or below the sea level.

X Function
a;>-10x-|-21

21

1 12

2 5

3

4 -3
5 -4
6 -3
7

8 5

9 12

10 21

Specification of Points in a Plane

8. We will draw two perpendicular straight lines, JC'OJT and

Y'OY, as axes of reference separating a plane into four parts

or regions. By common consent among mathematicia,ns these parts
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into which the plane is separated are called quadrants. The parts

containing the Roman numerals I, II, III, IV in the accompanying

diagram are called the first, second, third, and fourth quadrants

respectively.

9. Letting P represent any point in the

plane, we will suppose that lines such as MP
and NP are drawn parallel respectively to the

lines of reference or axes Y'OY and X'OX.
10. Starting at the point of intersection of

the axes of reference, we may imagine taking

a first step OM equal to NP along the axis -p ,

X'OX from to M; then turning about at M
and moving away from the axis in a direction MP parallel to the

other axis of reference Y'O Y, we shall arrive at the point P by

taking a second step from M to P.

By taking steps of different lengths, we shall arrive at different

points in the plane.

11. We shall call the lines of reference X'OX and TOY the

a?-axis and the |/-axis respectively, and shall call their inter-

section 0, from which the first step of any pair is always taken, the

origin.

12. We shall speak of steps as being a;-steps or ^/-steps, ac-

cording as they are taken parallel to the a;-axis or the ?/-axis.

13. If we agree to call steps taken along the a^-axis toward the

right, as indicated by the arrow, positive steps, then those toward

the left will be negative. If y-steps be positive when taken upward,

as indicated by the arrow, then those downward will be negative.

14. Starting from the origin 0, and moving toward the right or

left, then either up or down, we may, by taking the proper positive

or negative a;-steps and ?/-steps, reach points lying in any of the

four quadrants.

15. If, starting from 0, we first take a positive ai-step and then

take a ^/-step, we shall pass into either the first or the fourth

quadrants, according as the ?/-step is positive or negative.

If our first ic-step be negative, then the y-step which follows it

will take us into either the second or the third quadrants.

Hence the signs of the steps which may be taken to reach a point

determine the quadrant in which it lies.
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II

III

(3.2)

X
(3.-2)

16. With reference to any particular point, i?, the corresponding

ic-step is called the abscissa, from the Latin meaning " to cut off,"

and the y-step is called the ordiuate, from the Latin meaning " to

set in order or arrange."

17. Since the abscissa and ordinate taken together enable us

to locate any particular point, they are together called the co-

ordinates of any particular point, and the axes parallel to which

they are drawn are called the coordinate axes.

18. Whenever, in the system of graphic representation which

we are presenting, the position of a point is described by means of

its coordinates, the a-step or abscissa is understood to be the one

named first, unless the contrary is stated.

19. By the notation (3, 2) we shall under-

stand that the abscissa of the point repre-

sented is 3 and its ordinate 2. After assuming

some convenient unit of length, we may locate

the point by first measuring off a distance of

three units irom the origin along the jc-axis

toward the right. Then, turning about in a

direction parallel to the ^/-axis, we shall find

the point, P, situated at a distance of two units measured in a

positive direction, that is, upward. (See Fig. 2.)

20. The point (3, — 2) is situated in the fourth quadrant at a

distance of three units to the right of the 2/-axis, and two units

below the axis of X, as in Fig. 2.

21. Such points as those represented

by (- 4, -I- 3), (- 4, - 2), (0, 2), ((J, - 1),

(2, 1), (2, - 3;, (3, 3), (4, 0), etc., will

(2,1) i be readily located by stepping off the in-

1

'

^^^ dicated distances, first toward right or

left fi-om the origin, then up or down, ac-

cording as the signs of the given coordi-

nates are + or — . (See Fig. 3.)

22. The scale units in terms of which

Fig. 3. the a;-steps and ?/-steps are expressed

are understood to be the same unless the contrary is stated.

It may happen for special purposes that it is convenient to choose

IV

Fig. 2.

II

,(-4.3)

l(-4.-2)

III

Y I

(0,2)

t(3.3)

(0-1)
I

1(2,-3)

IV



aRAPHS 141

a scale unit for the y-steps different from that chosen for the

jc-steps.

23. The operation of marking any point on a diagram when the

coordinates of the point are given, is called plotting the point.

Exercise IX. 1

Plot the points whose coordinates are

1. (2, 4). 5. (1, - 5). 9. (4, - 4). 13. (3, 0).

2. (8, 6). 6. (2, - 4). 10. (- 2, 4). U. (0, 2).

3. (1, 7). 7. (3, - 1). 11. (0, - 4). 15. (0, 0).

4. (5, 8). 8. (- 3, 11). 12. (- 1, - 1). 16. (- 6, - 6).

.(1.12)

1

I

1 I

I

I t(2.5)

I I

I t

i I

I I

I I

I I

(8.5),

(9.12)

24. If we regard the sets of values in the table calculated from

the function x^—U)x + 2l (see §§ 4, 5) as representing the

ic-coordinates and ^/-coordinates of

different points, we may obtain as

many points in a plane as we please,

such as (1, 12), (2, 5), (3, 0), etc.

We shall assume the numbers in

the column under x as abscissas,

and those in the column under

.2^^—10^+21 as ordinates, as in

Fig. 4.

25. By assigning fractional values

to X we may obtain corresponding

values of the function. (3.0)1 1 (7.0)

E. g. If a; be given values between

and 1, say .1, .2, .3, .4, etc., we may cal- (4,-3) . (6,-3)

dilate as corresponding valnes of y, 20.01, (5,-4)

19.04, 18.09, 17.16, etc. ,Fig. 4.

The points corresponding to these

values taken as coordinates will be found to lie between tlie points (0,21)

and (1,12).

26. Continuity* If we imagine that the value of x changes con-

tinuously from to 1, then from 1 to 2, and on to 3, 4, 5, etc., pass-

ing through all intermediate values without at any stage making a

sudden "jump" from one value to another, then the point P,
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determined by x and y (Fig. 2) will trace out a continuous line,—
that is, one having no breaks or discontinuities in it.

27. A continuous line passing through all of the points which

may be plotted for a given function is called the graph of the
function.

28. The graph of a given function is, from its construction, a
" point picture " of an algebraic expression.

A portion of the graph of the function ar*— 10a; + 21 will be

found by drawing a continuous line through the points plotted in

Fig. 4. The " accuracy " of the graph,
|{ai2)

|.jjg^^ -g^ ^jjg
<c
likeness of the picture,"

will depend largely upon the lengths

of the scale units adopted in its con-

struction. (See Fig. 5.)

29. The equality y = x^—\^x-\-

21, or in general, y =f(x), is called

the equation of the graph or
curve.

To every pair of values satisfying

the equality y = f{x) there corre-

sponds a point on the graph; and

conversely, the coordinates of all

points on the graph, and no other

points, satisfy the equation.

30. Whenever we construct a graph

by drawing a continuous line through different points which are

separately plotted, we assume in the operation that the graph of

the function is continuous between any two points through which

the continuous line passes.

We need not, at present, be at all concerned with the subject of

" breaks " or discontinuities in the graph, since it may be proved

that the graph of every rational integral function of one variable has

no discontinuities. It may also be shown, for finite values of the

variable, that a rational fractional function has no discontinuities

except for such values of the variable as make the denominator zero.

31. As an illustration of a break or discontinuity in a graph or

curve see the accompanying figure where we suppose that the point
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which is tracing the curve, on arriving at P, jumps immediately to

Q through a finite distance FQ, and then moves on along the branch

of the curve QQ\ y]

Typical Graphs

32. Consider a function of the form «ic^, in

which a is positive.

By assigning some numerical value to a through-

out the discussion, we may, by giving different ""^

values successively to x, calculate the corresponding

values of the function ax^. If we represent the

function by ?/, we may write y = ax^.

r

Fig. 0.

Fig. 7.

value of the

If, for the present purpose,

we let a = 2, we may obtain the graph of ?/ = 2 aj^

by plotting the points whose abscissas and ordinates

are given by x and 2 x^ respectively.

33. Since the number represented by a is positive

and x^ is an even power, ax"^ will be positive for all

values of x. It follows that there can be no negative

ordinates, and the graph can enter neither the third

nor the fourth quadrants. A portion of the graph of

the function 2 x^ which has the form ax^ is exhibited

in Fig. 7 in full lines, and we have shown in dotted

lines on the same diagram a portion of the graph of

another function, 4ic^, whose algebraic form is the

same as that of the function 2 x^.

It will be seen that the graphs have the same

general " shape " except that one comes to a

"sharper" point than the other.

34. In case the number represented by a is nega-

tive, that ,is, if in particular a represents — 2, the

ordinates corresponding to the function —2x^ will

be negative for both positive or negative values of x.

Hence, no part of the graph of — 2 a;^ can enter either

the first or the second quadrants. The graphs of

the two functions 2 x^ and —2x^ having the form

ax\ but in one of which the number represented by

a is positive and in the other negative, will have
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the same shape and size, but will be situated symmetrically with

respect to the axis ofX as in Fig. 8.

35. If we imagine the ic-axis to be a plane mirror perpendicular

to the ^-axis, either graph may be regarded as being the reflection

of the other in the ic-axis as a mirror.

By interchanging the letters x and y, we may, from the expression

of equality y = aa^, obtain x = ai/^. Hence, when plotting this last

function, x = at/^ we may simply interchange the values represented

by X andy, and make the same measurements as before for the

function y = ax\
36. Interchanging these values amounts to revolving the entire

system toward the right about the origin as a center, keeping the

axes and graph in the same relative po-

I sitions, through an angle such that the

j
y-axis shall swing around into a position

' originally occupied by the ic-axis. Hence,

/ if in Fig. 9 the dotted line represents a

portion of the graph of 2 x^ in its original
^"^

position, and we imagine the system to be

»
JC revolved about the origin until Y comes^ into the position originally occupied by

^'^- ^- OX, the graph may be supposed to turn

about and appear in a position indicated by the full line. It may
then be taken as the graph of the function 2 if.

37. Consider now the function ax^ + h. To ob-

tain the graph of this function we have simply to add

b to each of the ordinates calculated for the graph of

ax^. Hence, the ^-coordinates will be the same for

both of the functions ax^ and ax^ + h, but the y-ordi-

nates of the function am^ + b will be greater by b

than those of the function ax^. It follows that the

two graphs have the same size and shape, but because

of the greater length of the ?/-ordinates the graph of

the function ax^ + ^ is situated " higher up " in the

plane than the graph of the function ani?. That is,

it will be farther away from the origin in the ?/-direction, as in Fig.

10. In this figure we have given a and b the values 2 and 3 respect-

« \ y / 1

\\ /

1

\ \ / 1

\ \ / 1

\ \ / 1

\ \ / 1

\ \ / 1

\

\ 1

\ 1

\ /

\ /

\ /
,

\. y
,

X
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ively, and have shown a portion of the graph of the function 2x^+3
in full lines and a portion of the graph of the function 2 x^ in

dotted lines.

38. In Fig. 1 1 we have shown portions of the

graphs of (i.) 2 x\ (ii.) 2 cc^ + 3, and (iii.)

x^ + 2x — ^.

It may be noted that, so far as the portions of

the graphs shown are concerned, they have in

all cases the same general shape.

39. We will now show representative graphs

of certain common mathematical curves, leaving

the student to plot the functions in the next

exercise, comparing the forms of the graphs

obtained with those shown in Figures 12 to 16.

We cannot always safely assign a name to a

curve simply because a certain portion of it re-

sembles very closely the shape of a curve whose name is known, but

we may at least assert that the portions of the curves obtained

appear to have the same general form.

Fig. 11.

Fig. 13. Hyperbola Fig. U.. Ellipse

Fig. 15. Cubic Curve Fig. 16. Cubic Curve

40. The student, after having constructed a few of the simple

typical graphs, will understand the term " algebraic form " in a new
10
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light. It will be seen that there is a striking similarity in shape

among the " point pictures " or graphs of algebraic expressions which

have the same algebraic form.

41. Although the number of different graphs which may be con-

structed by plotting functions is as endless as the number of ex-

pressions themselves which may be written, comparatively few of

these forms will be encountered in elementary work, and these can

readily be separated into a certain small number of typical forms

which may be easily recognized.

We present a few of the more common forms in order that the

student may become somewhat acquainted with certain of the graphs

which are of practical and historic interest.

Exercise IX. 2

Obtain portions of the graphs of the following equations :

1. y = x.
23.

1

2. y = — x. ^ x-h I

3. y = 2ic.

4. y = — 4:X.
24.

1

'' = x-l'
5. x = 2.

6. y = S.
25.

1

^ x+2
7. 2/ = 0.

26.
x^

8. x = 0. ^-x+l'
d. y = x-\-l. 27. xy = 24.

10. y = -x+l. 28. xy = ~l.
11. y = Sx + 4.. 29. y = x^-~9x^+ nx+ 21.

12. y = — 2x+ 5. 30. y = X^ — 4:X.

13. y = 4.x\ 31. y = x^-Sx^+2Sx + 2.

14. y = x\ 32. y = x^ + x^ + x+ 1.

15. y = x^+2x-\- 1. 33. y::=x^ -\-Sx^ + 2x+ 1.

16. y = x'+lx-\-12. 34. y = x^-Sx^+ 2a;- 1.

17. y = x^-lx+d. 35. y = —x^+3x'' — 2x+h
18. y = x^-6x + 9. 36. y = a;8 + 1.

19. y = -4:x'+20x~23. 37. 7/ = £c« + 3a;'+ 6a;+ 11.

20. y = — 2x^-\-x. 38. y = x^—Sx'' ]- Qx— 11.

21. y = 1-
39.

40.

y = x^ + 4.x''+2x + 5.

y z= x^ — 4: a^ -\- 2 £c — 5.

^^-y = i'
41. y = x^-10x^-{- 12.
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Inverse Use of Graphs

42. When constructing graphs we have assumed that, starting

from the origin 0, every point in the plane may be reached by

taking definite ic-steps and ?/-steps. It may be seen that, when

the location of a particular point is given relatively to the axes of

reference, we may by reversing the process use a scale and obtain

by actual measurement approximate values for the cc-coordinate and

the ^/-coordinate of the point.

The accuracy of the numerical results thus obtained will depend

upon the accuracy with which the measurements are made.

43. The graph of a function is obtained by assigning values to

the variable appearing in it, and by locating points whose coordi-

nates are the values assigned to the variable and the corresponding

values calculated for the function.

If the graph of a function be given, we may measure the coordi-

nates of different points situated on it and estimate approximately

the values which must be given to the variable in order that the

function shall have certain specified values.

44. We may find an approximate value for VY by using the graph

of cc = vy as follows :

Since like powers of equal expressions are equal, from x = Vv/ it

follows that ar^ = y.

A portion of the graph oix^ = y may be obtained

by using as abscissas different values assigned to

£c, and for ordinates the corresponding values cal-

culated for the function ar^.

When to x is given successively the values 0, 1,

2, 8, 4, etc., the corresponding values of the func-

tion x^ are 0, 1, 4, 9, 16, etc., as shown in the

accompanjdng table.

By using these pairs of values, (0,0), (1,1), (2,4),

(3,9), (4,16), etc., as abscissas and ordinates, points

upon the graph may be located. (See Fig. 17.)

The accuracy of the figure obtained by drawing a continuous

line through the points thus located will depend largely upon the

lengths of the scale units employed when setting off the abscissas

and ordinates.

Abscissa Ordinate

X x^=y

6 6

1 1

2 4

3 9

4 16
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To find Vt our problem is simply to find the abscissa of a point

on the graph corresponding to the ordinate whose length is 7. To
do this we may start at the origin and move upward along the

y-axis through a distance equal to seven of the scale units used in

constructing the graph. Then, tracing along the horizontal line

passing through this point to the graph, we shall find the point

whose ordinate has the required length, 7.

The Vt which is represented by the

length of the abscissa a\ corresponding to

the point thus located on the graph, may
be readily estimated by measuring the dis-

tance passed over in tracing across from

the axis of Y to the graph. Thus, fi-om

Fig. 17, in which each small square repre-

sents .2, the value of Vl is found to be

2.6 -I-, nearly.

45. Approximate values for the square

roots of other numbers, such as 2, 3, 5, 6,

8, etc., may be found in a similar way by

tracing across the figure from the axis of

Y to the graph along horizontal lines situ-

ated at distances of 2, 3, 5, 6, 8, etc., units

respectively, above the ;r-axis.

We may thus obtain as approximations

for the square roots of 2, 3, 5, 6, 8, etc.,

the numbers 1.4 -I-, 1.7 -f, 2.2+, 2.5+,

2.8 +, etc.
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CHAPTER X

GENERAL PRINCIPLES GOVERNING TRANSFORMATIONS OF
ALGEBRAIC EQUATIONS

Identical Equations

1. An equality or equation is the assertion in s)mibols that

two different expressions represent the same number.

2. Two expressions are said to be identical if they are exactly

alike, or if either can be reduced to the form of the other by apply-

ing the laws of reckoning and the definitions of the symbols and

functions considered.

E. g. The expressions a + b and a + b are identical since tliey are ex-

actly alike.

The expressions 2 a + 3 a and 5 a are identical since 2 a -{-3 a may by

addition be reduced to 5 a.

Since the expression (a + b)c may l)y multiplication be transformed into

the expression ac + be, it follows that (a + b)c is identical with ac -\- be.

3. Two numerical expressions which represent the same number

are said to be identical.

E. g. Since 7 + 5 and 4x3 each represent 12, it follows that 7 + 5 and

4x3 are identical.

4. The triple sign of equality, = , commonly called the identity

Migii,— which is read, "is identical with," "may be transformed

into" or "becomes,"— is written between two expressions to de-

note that they are identical.

5. In an identity the expression at the left of the identity sign

is called the firsst member, and the expression at the right of the

sign the second member.

E. g. In the identity 2 a + 3 « = 5 a, the expression 2 a + 3 a is the first

member and 5 a is the second member.
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6. Since either member of an algebraic identity may be reduced

to the form of the other, it follows directly that, if both members

are finite expressions^ they must represent equal numerical values for

all values of the letters which appear in them.

E. g. Since {a + by can be expressed in the form a^ + 2 ah + h% it

follows that (« 4- 6)-^ = a^ + 2 a6 + h^ lor all values which may be assigned

to a and b.

7. In dealing with identical equations we are governed by the

following

General Principle: Either member of an algebraic identity

may be reduced directly to theform of the other, or both members may
be reduced to a common thirdformy by applying the principles and

definitions of algebra.

8. In applying this principle it will in certain cases be found

convenient to transform one member of an algebraic identity directly

to the form of the other.

E. g. In the identity (a: + 3) (a: + 2) = a:^ + 5 ^ + 6, the first member
may be reduced directly to the form of the second by performing the indi-

cated multiplication, and in a later chapter a method will be shown for

reversing the process and reducing the second member to the form of the

first.

In some cases the two members of an algebraic identity may be of

such forms that one does not readily reduce to the form of the other.

Hence, in such cases, it is convenient to transform both members to

a common third form.

a4 _ ^4
E. g. In the identity (a + &)2 — 2 a6 = -^ j^ » ^^'^ shall by performing

the indicated operations in the members separately, obtain in each case the

expression a^ + h^.

Accordingly, by reducing the members of the given identity to the com-

mon third form, a^ + b\ we shall derive the identity a"^ -\- b^ = a^ -[- b^.

9. An equality may be proved to be an identity, either by

showing that one member may be reduced directly to the form of the

othery or by shewing that both members may be reduced to a common

third form for all values which may be given to the letters which

appear in them.
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Mental Exercise X. 1

Show that each of the following equalities is an identity :

1. 2« + Sa = 5a. 15. 23//' + 5b^=lb X 4.b.

2. AO + (jb = 106. 16. 3ic^ — dc^= lie X 2c.

3. 8 c — 2 c = G c. 11. (x + 2)(x — 2) = x" - 4..

4. llc/=6(^+ 5c?. 18. (i/+ S)(i/-'d)=f~d.
5. lSe = 20e — le. 19. (;2 + 8) (;s - 8) = ;j' - 64.

6. 6 7W + 9 7W = 4 7« + 11 w. 20, (1 + m)(l — m) = I — m\
7. 7 ?? + lOw = 20w — 3?^. 21. (a + 3)' = a=^ + 6« + 9.

8. 12a;— 4cc= 17a;- 9ic. 22. (6 + bf = 36 H- 126 + 6^.

9. 2(3 r* + 4 6) = 6 a + 8 b. 23. (9 — c)^ = 81 — 18 c + c^

10. 3(56+7c)=156+21c. 24. ^r (a + 4) + 4 = ^ 2_|_ 4^^+ 1),

11. 4(6c-5) = 24c-20. 25. 6H 16(6+4)=/>(6+ 16)+64.

12. 13a + 7a = (5 X 4>. 26. a;(a!-20)+100= a;2—20(a.'-5).

13. 166 + 36 = 386-^2. 27. a;(a!-6) + 3 (2a;-3)= a;'''-9.

14. Ida^ + 5a^~Sa X 3a. 28. «(;«— 12) + 12(a;—3)=a;^- 36.

29. x(x + 18) - 9 (2a3 + 9) = x^ - 81.

30. a;(a; - 22) + 11 (2 a; — 11) = a;^ - 121.

31. x{x + 24) - 24 (a; + 6) = ar^ — 144.

32. 28 (a; + 7) - x(x + 28) = 196 - x\

33. {a+ iy-4.a = {a- 1)\

34. (6 + 2)^^-86^(6-2)1
35. (a + 3)'^ - 12 a = (a — 3)'.

36. (c + 5)2 - 20 c = (c - 5)-".

37. (d-Ay+ lGd = (d + 4.y.

38. (m - 6)2 + 24 W2 = (tw + 6)1

39. (7 - ny + 28 w = (7 + /?)'.

40. (2 a + by — Sab = (2 a — 6)1

41. (36-46-)2 + 48 6c= (3 6 + 4c)2.

42. (a+ 1)2 -(a- l)2 = 4a.

43. (6 + 2)2 -(6 -2)2 = 86.

44. (c + .5)2 - (c - 5)2 = 20 c.

45. (7-a;)2-(7 + a;)2 = -28a;.

46. (9-y)2-(9 + 2/)' = -36 2/.

47. (a - 5 6)2 _ (a + 5 6)2 = - 20a6.

48. (a + 6)2 + (a - 6)2 =2^2 + 262.
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49. (b + cy + (/> - c)- = 2 />2 + 2 cl

50. (m - ny + (m + ny = 2 (w- + n^,

51. (1 - xy + (l+xy = 2 + 2 x\

52. aj(a; + y) + i/-^
= ic^ + i/(ic + y).

53. «(« - 6) + 6^ =^2 - h{a - b).

54. x^ + 2/(2/ — ic) = i»(ic — 2/) + i/^

55. a6 + c (rt + 6) = b{a + f) + «c.

56. «(6 + c) -\- bc = c{a + ^) -h ab.

57. a*?/ + -(« — y) —xz + y{x — z).

58. a(6 + r) — cC^r + b) = b{a — c).

59. x(y - z) + z(x + y)= y(x + z).

60. x{z + ?/') + y{z + ?/') = z{x -\- y) + w{x + 2/).

61. x^ + {x' + xy-^- y^)y = xix" + a-// + y") + y\

62. jc(y - ~) + y{z -x) + z{x - y) = 0.

Conditional Equations

10. The number which an expression such as cc + 3 may repre-

sent depends entirely upon the particular value which may be

given to x.

E. g. If X be 1, then x + 3 represents 4.

If X be 6, then a: + 3 represents 9".

If X be 0, then x + 3 represents 3.

If X be — 10, then x + 3 represents — 7.

etc. etc.

It should be understood that, unless some condition is imposed which

restricts x to some particular value, the expression x + 3 taken by itself

may represent any number whatever.

If an expression such as x + 3 be assumed to represent some particular

number, such as 5, it may be seen that a restriction is placed u|)on the

value of X by this assumed condition. We shall lind that this condition is

satisfied providing x is restricted to the value 2.

11. Equalities which are true only on condition that specified

letters or sets of letters appearing in them be given definite values

or sets of values, are called conditional equations.

12. In a conditional equation, the expression at the left of the

sign of equality is called the first member of the equation and

the expression at the right of the sign the second member.
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13. The terms of the algebraic expressions which form the mem-

bers of a conditional equation are called the terms of the equation.

14. In order to distinguish conditional equations (which are true

for particuktr values only of the letters appearing in them) from

identities (which are true for all values of the letters), we shall use

the double sign of equality, =, when writing conditional equations,

and the triple sign of equality, = , when writing identical equations

in which one or more letters appear.

When writing numerical identities, that is, identities in which

numbers alone appear, we shall use the double sign of equality, =.

All definite arrangements of number symbols used in arithmetic

to represent numbers (except such as contain zero as a divisor)

represent definite numerical values. Hence, when two such arrange-

ments of symbols are written as members of a numerical equality,

no condition affecting the value of either can exist. That is, a

numerical equality is always an identity.

The use of the sign = for numerical identities in algebra conforms

with the use of this sign in arithmetic.

15. Although two different algebraic expressions may represent

unequal numbers when numerical values are given to the letters

appearing in them, it may happen that they represent equal num-
bers on condition that some particular value or set of values is

assigned to certain specified letters appearing in them.

E. g. It may be seen that the two expressions 2 a; + 5 and a? + 8 represent

unequal numbers when x is given the values I, 2, or 5.

If a; be 1, then 2 a; + 5 represents 7, and x + ^ represents 9.

If X be 2, then 2 a; + 5 represents 9, and a: + 8 represents 10.

If X be 5, then 2x + 5 represents 15, and a; + 8 represents 13,

On condition that x be given the particular vahie 3, tlie expressions

2 a; + 5 and a; + 8 each represent 11, and accordingly we may construct the

conditional equation 2a: + 5 = a; + 8.

The equality 4a; — 7 = 2a: + 3 is a conditional ecpiation in which the

members represent the number 13 on condition that x be given the particular

value 5.

16. A conditional equation is said to be integral, fractional,

rational, or irrational, with respect to certain specified letters

appearing in it, according as the algebraic terms appearing in its
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members are integral, fractional, rational, or irrational with respect

to these letters.

E. g. The conditional eqiuation a:* + 7 a:^ = 4 is integral and rational

with respect to x, since x docs not appear in the denominator of a fraction

in any term, nor under a radical sign.

The conditional equation = x — 3 is fractional witli reference to x,^
a; + 1

'

since x appears in the denominator of the fraction in the first member. It

is also rational with reference to x, since x does not appear under a radical

sign.

The conditional equation \/x + 2 + a: = 10 is irrational with reference

to a:, since x appears under the radical sign in the first term.

17. The degree of a conditional equation which is integral and

rational with respect to one or more specified letters is equal to the

degi*ee of the term of highest degree with reference to these letters.

E. g. Tlie conditional equation ar* + 2 a:^ — 5 a; + 1 = is of the third

degi-ee with reference to .r.

The conditional equation x^y + 2 a; — i/^ = 9 is of the third degree with

reference to x and y together.

It should be observed that the definition given for the degree of

a conditional equation requires that the equation be neither frac-

tional nor irrational with reference to the letters in terms of which

its degree is reckoned.

Equations which are either fractional or irrational with reference

to certain letters appearing in them are not spoken of as having

degree.

E. g. The conditional equations = x — 3 and ^x + 2 + a; =: 10

cannot be considered as having degree.

18. Since, when a conditional equation is constructed, we may
not know the value or values which must be assigned to a specified

letter or set of letters appearing in it in order that the expressed

equality may be true, it is consistent to speak of these letters as

unknowns.

E.g. In the conditional equation 3x= 12, the unknown x must have

the value 4 on condition that 3 a: shall represent 12.

The members of the conditional equation 5x4-2 = 6a;— 1 represent the

same number, 17, only on condition that the unknown x is given the value 3.
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In the conditional equation x^ — 5x4-6 = the unknown x may have

either of the values 2 or 3.

19. The particular values which must be given to the unknown

letters, in order that both members of a conditional equation may
represent the same number, are called the solutions, or roots, of

the equation.

20. To solve a conditional equation is to find its root, or its

roots if it has more than one, or to show that it has no root.

21. A number or quantity is said to satisfy a given conditional

equation if, when it is substituted for the unknown in the equation,

both members may be reduced to the same form, and hence may
take the same value.

E. g. The number 5 satisfies the conditional equation 4a;4-l =6a; — 9,

since when x is replaced by 5 we obtain 4x5+l=:6x5 — 9, or21 = 21,

22. Two conditional equations are said to be eciuivalent, with

respect to a specified unknown, a;, when they have the same solutions

with respect to x.

From this definition it follows that every solution of either equation

must be a solution of the other also ; that is, neither equation can

have any solution which the other has not.

E. g. The conditional equation 3x — 7 = 5— a; is equivalent to the con-

ditional equation 4 a; = 12. Both equations are satisfied when x is given the

value 3, and neither equation is satisfied for any other value of x.

23. If the solution of a given conditional equation cannot be

obtained immediately by inspection, it is often possible to derive

from it an ecjuivalent conditional equation in which the members

are of such forms that the solution may be readily obtained.

E. g. It may be seen that in the conditional equation a; + 1 = 5 the

unknown x must have the value 4; while the fact that the unknown may
have either of the values 1^ or 4^ would not appear immediately on inspec-

/v. O 2Q J.

tion of the conditional equation = -7^=-. <

^ a; — 3 27 \
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General Principles governing Transformations of

Conditional Equations

24. Throughout all of the discussions which follow in this

chapter we shall assume that none of the functions considered

become infinite for any values which may be given to the letters

which appear in them.

Whenever, in this and the following chapters, the word equation

is used, it will be understood that a conditional equation is meanty

unless the contrary is expressly stated.

25. Principle I. Substitution.

If for any ej'presf<ion in an equation we substitute an identical

ejcpression, the original and the derived equations will be equivalent.

E. g. Performing the imlittated operations we may reduce tlie first member
of the conditional equation, 7 a: + 8 — 2(3 x-\- A) = 10 a: — 5(2 x — 1), to

X, and the second member to 5. That is, we may replace the first and

second membei-s of the given conditional ecpiation by the identical expres-

sions X and 5, and obtiiin immediately the equivalent equation a; = 5.

26. Principle II. Addition and Subtraction.

If identical ejrpressions be added to or subtracted from both mem-

bers of an equation^ the original and derived equations will be

equivalent.

This principle follows from the Fundamental Laws of Algebra.

(The following proof may be omitted when the chapter is read for the first time.)

For, if A and B represent expressions wliich contain one or several

unknowns, and C is either a constant or any function of the unknowns, it

follows that from A = B, we may obtain either of the equivalent equations

A + C=B + CorA-C=B-C.
If, when certain values are given to the unknowns, A and B take the same

numerical value, that is, if ^ = B, then for the same values of the unknowns

A + C Avill take the same value as B + C, and A — G will take the same

value lis B — C.

Hence, all of the solutions of A = B are solutions of both.

A + C=B-]-Cimi\A -C=B-C.
Conversely : Every solution of either A-{-C=B-^C ot of A — C=B —

C

is also a solution of A = B.
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For, if when certain values are given to the unknowns, A -{- C and B + C
have equal values, and also A — C and B — C have equal values, — that is,

ifA + C=B-{-G and A — C= B — G,— then for the same values of the

unknowns we shall have A + G— C=B+C— G and also

A — G-\-G=B—G+G; that is, in either case A = B.

Hence, every solution of either of the derived equations A + G = B + G
or of J. — G = B — G h also a solution of the original equation A = B.

Hence, the two equations are equivalent, since no additional solution is

gained by tlie transformation.

27. From the principle above we have the following

Applications :

(i.) Transposition of Terms. Any term may be stricken out

from either member of an eqaation provided that a term equal in ab-

solute valuSf but opjwsite in sign, be written in the other member of

the equation.

This operation, which has the effect of carrying a term over from

one side to the other of the equality sign in an equation and at the

same time changing its sign from + to — or from — to +, is called

transposition.

E. g. From the conditional equation 4 a: — 5 = 3 a: + 2, we may, by

transposing the terms — 5 and Sx, obtain the equivalent e(j[uation

4a; — 3a:=2 + 5.

Combining the terms in the members separately, we obtain the equivalent

equation x—1.
It should be observed that, instead of transposing — 5 from the first mem-

ber to the second member of the given equation 4a; — 5 = 3j: + 2, we may
add 5 to both members and obtain 4 a; — 5 + 5 = 3 a; + 2 + 5.

By combining the terms in the first member of this last equation, we
obtain the e<|uiva]ent equation 4a; = 3a; + 2 + 5.

We may cause the term 3 a; to disappear from the second member by

subtracting 3 a; from each member of the equation. Hence, from the de-

rived equation 4 a; = 3a; -f 2 + 5, we may obtain the equivalent equation

4a; — 3.r=3a; + 2 + 5 — 3 a;, which is equivalent to4a; — 3a;=:24-5.

This equation, as before, is equivalent to the conditional equation a; = 7.

(ii.) Identical terms may be stricken out from both members of an

equation.

For, if either of two identical terms be transposed from one member of

th(; equation to the other, then both terms will appear with opposite signs
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in the same member. When combined, these terms will produce zero, and

accordingly will disappear from the derived equation.

E. g. If a; 4- rt = 5 -f a, we may immediately strike out a from both

members, obtaining as an equivalent equation a: = 5.

(iii.) From any equation we may derive an equivalent equation

by reversing the sign of every term in each member from -{• to — or

from — to -{-.

This operation, of reversing the signs of all of the terms, has the

effect of transposing every term in the equation from each member

to the other, and then interchanging the members of the resulting

equation.

E. g. Reversing the signs of all of the terms of the conditional equation

— 10x-fl = — 9a: — 2, we obtain the equivalent eciuation + lOic — 1 =
4- 9 X H- 2. From this equation we obtain, by transposing and combining

terms, the equivalent equation x = 3.

An integral equation is said to be in standard form if the

second member is zero ; if the first member is reduced to simplest

form and arranged according to descending powers of the un-

known ; and if the coefficient of the highest power of the unknown

is positive.

E. g. Each of the following equations is in standard form :

x^-8x+ 12 = 0,

2aH» + 3a:2-7a;-t-l=0.

(iv.) It follows directly fi-om the principle above that any condi-

tional equation may be I'educed to standard form by transposing the

terms from the second to the first member^ after which the second

member of the equivalent derived equation will be zero.

This operation, of transposing to the first member every term

appearing in the second member of a given equation, has the effect

of subtracting the original second member of the equation from each

member of the given equation, producing an equivalent equation

whose second member is zero.

E. g. From the conditional equation a:^ = 7 x — 1 2 we obtain the equiva-

lent equation a;^ — 7 a; -}- 12 = 0, in standard form.

By principles to be shown later, this equation will be found to have the

two solutions a; = 3 and a: = 4,
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Mental Exercise X. 2

From each of the following conditional equations derive an equiva-

lent equation by transposing to the first member the terms contain-

ing X, and to the second member all other terms ; then simplify the

members separately :

1. a; - 5 = 0. 32. a; - 4 + c = 0.

2. a; + 7 = 0. 33. a; + 9 + c? = 0.

3. a; - a = 0. 34. 2 a; = 13 -f- a;.

4. x^rh = 0. 35. 4a; = 3a; + 5.

5. = 9 — X. 36. 6a; = 8 4- 5a;.

6. = 12 - a;. 37. 9a; = 8a; — 15.

7. = - a; + 14. 38. 23 a; = 22 a; - 24.

8. = -a;— 17. 39. 3a; — 25 = 2a;.

9. a; -2 = 1. 40. 12 a; - 7 = 11 a;.

10. a; — 8 = 2. 41. 15 a; + 4 = 14 x.

11. a; — 9 = 13. 42. — 3 a; — 10 = — 4 a;.

12. a;+ 3 = 7. 43. 17 -f 30a; = 29a;.

13. a; + 7 = 8. 44. 14 — 8 a; = — 9 a;.

14. 6 -Fa; =11. 45. 2 a; -f 5 = a; + 7.

15. 8 -Ha; = 14. 46. 3 a; - 1 = 2a; 4- 6.

16. a; -F 9 = 2. 47. 4a; — 7 = 3a; — 2.

17. a; + 11 = 12. 48. 5a; -}- 8 = 4a; -h 5.

18. a; + 5 = 5. 49. 7 a; -f 3 = 6 a; — 5.

19. a;- 4 = 4. 50. 10a; + 11 = 9a;-F 7.

20. a; -I- 7 = — 7. 51. 13 a; — 6 = 12 a; — 5.

21. 3 = 4 — a;. 52. 6 a; -f 17 = 23 + 5 a;.

22. 4 = 9 — a;. 53. 15 a; — 1 = 11 -f 14 a;.

23. 5 = 11 — a;. 54. 13 -[- 12 a; = 11a; -|- 21.

24. 6 = 4 — a;. 55. 4 — 15 a; = 11 — 16 a;.

25. 12 = 5 — a;. 56. 16 — 17 a; = — 18 a; — 19.

26. 8 = - 3 — a;. 57. 5 — 19a; = — 6 — 20a;.

27. - 15 = 11 - a;. 58. — 19 a; — 33 = — 20a; — 31.

28. - 5 = - a; - 2. 59. - 28 a; - 37 = - 40 - 29 x.

29. — 12 = -a;— 18. 60. — 31 a; — 11 = 29 — 32 a;.

30. a;— 1— a = 0. 61. 21 a; -f- ^ = 1 -f 20a;.

31. a; -f 2-^^ = 0. 62. 26a; -f- i = 25a;-f 1.
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63. 27 35 + i = 2 4- 2G35. 74. ^^x + 18 = - tV« - 18.

64. 2335 — i = 22 3^+1. 75. ^' x — 23 = 23 + ^35.

65. 3435 + f = 333- + 1. 76. 3535+ 1 = « + 3435.

66. |35 + 1 = i 35 + G. 77. 37 35 — 2 = 36 35 + 6.

67. |35 + 2 = |35+ 9. 78. 4035 + c = 3935+ 5.

68. § 35 — 7 = 9 + ^ 35. 79. 42 35 — c^ = 41 35 - 6.

69. f 35— 13 = 4 — ^35. 80. m- 4835 = 4 -4935.

70. §35- 10 = 3- f 35. 81. 5035+ i = 4935 + a.

71. |35-| = f-|3-. 82. 5435 + ^> = i + 5335.

72. A a; — i = 5 - i\ a5. 83. 61 35 + ^> = a + GO35.

73. hx-\^ = \\-hx. 84. 6335- c = 62 35 + 6.

From each of the following conditional ec^uations derive an

equivalent equation by omitting the identical terms from both

members :

85. 35 + ^ = ^ + c. 90. a35 + 3; = «35 + 2.

86. 35 + /j = ff + ^>. 91. ^w + 35 = 3 + hx.

87. X — d = b — d. 92. mx — 1 = 35 + mx.

88. m •\- d = m + 35. 93. 35 + a = <7.

89. « — ^ = 35 — 6. ^X. X — cx = — d — ex.

From each of the following conditional equations derive an equiv-

alent equation in the standard form J = :

105. 63;2 — 435= 535^+ 21.

106. 235^ + 435 = 33;+ 3.

107. 8 35^+35=735— 1.

108. 7352+73;= 10 — 535^.

109. 33;'+ 93;+ 6 = 435+ 8.

110. 435'- 13 = 335^+ 5 — 335.

111. 35^-1235+4=1035—7 3;2—ll.

112. 935'+G3; = 635+3G + 83;2

113. 535 — 9 = 3 — 3352+53;.

114. 35^+53;2+935+7=3;^+43;2—11.

+ 3; + 6 = 3.^ — 4 35'^ + 11 3; — 18.

4 .^ — 5 = 35* + G 3;=^ — 5 35 + 7.

95. 35^ — a; = 12.

96. 35^— 5 = 4ar.

97. 35^+ 635=16.

98. 35^=735-30.

99. 35^=22-935.

100. 05^= 10 35+ 39.

101. 235^=3-535.

102. 33;2_ 5 = 14^

103. 2335 = 6-4352.

104. 10352=1335+ 3.

115. 35»- 3 352H

116. 35*+ 7352-
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28. Principle III. Multiplication

If both member's of an integral equation be multiplied by the same

number or expression^ the original and the, derived equations will be

equivalent^ provided that the multiplier used is neither zero nor

infinitely great, and that it does not contain the unknown letter or

letters.

(The following proof may be omitted when the chapter is read for the first time.)

Let a conditional equation be represented by A — B (1), in which either

A or i>, or both, are functions of some unknown letter, x.

If G 19, Q. number which is neither zero nor infinitely great, or if G

represents an expression which does not contain the unknown letter x,

then the given equation ^ = ^ is equivalent to the derived equation

AG = BG{^y
To show this we will write the derived equation (2) in the standard

form ^(7-5(7 = 0(3).

Since G is assumed to be neither zero nor infinitely great, we may divide the

expression AG — BG hy G and write equation (3) in the form G (A — B) =
(4).

Every value of x which satisfies the original equation A = B reduces the

factor A — B to zero.

Since G is assumed to have a value which is not infinitely great, it follows

that any value which, when substituted for x, reduces the factor A — B to

zero, reduces the product G(A — B) to zero. Accordingly such a value of a:

satisfies the equation G(A — B)= 0.

It follows that every solution of (I) is also a solution of (3), and hence

o(AG=BG(2).
That is, no solution of (I) is lost hy the transformation.

To show that equation (1) is equivalent to equation (2) it remains for us

to show that no solutions have been gained in passing from equation (1) to

equation (2).

Every value of x which satisfies G(A — B) = (4) reduces the product

G(A - B) to zero.

In order that the product of two factors shall become zero it is necessary

and sufficient that one of these factors shall become zero, the other factor

not becoming infinitely great.

Accordingly, since the value of G is assumed to be neither zero nor infi-

nitely great, it is necessary that the remaining factor A — B should become

zero.

Every value which, when substituted for x, reduces A — B to zero,

must satisfy the equation A — B = 0. It follows that every solution of

11
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C(A — B) z=0i3 a solution also of A — B = 0, and hence is a solution of

A = Bil).
That is, no solution is gained by the transformation.

Since, by the reasoning above, solutions are neither gained nor lost in

passing from the given equation A = B to the derived equation AC = BG,

these equations are equivalent.

E. g. From the equation a: + 1 = f x + ^, we may, by multiplying both

members by the constant multiplier 3, derive the equivalent equation

3x + 3 = 2a: + 7.

Transposing and combining terms, we obtain from this last equation x = 4.

Since the equation x = 4 has the single solution 4, it follows that the

given equation to which it is equivalent must have the solution x z=z 4, and

no other.

29. Caution. To be certain that solutions have not been gained

in solving conditional ecjuations, it is necessary that we know that

the multipliers with which we affect the forms of given equations

are different from zero.

30. The solutions which may be gained when the members of a

con"ditional equation are transformed by multiplication may be

determined by the following

Principle Relating^ to Extra Roots : 77is strange or extra

solutions which may be introduced into the members of a derived

equation by multiplying the members ofa given equaticm by an integral

expression containing the unknown number, are the values of the un-

known which, when substituted, reduce the multiplier to zero.

(The following proof may be omitted when the chapter is read for the first time.)

If C were a function of x it might happen that, when particular values

were given to x, C might l)ecome zeio and A — B become different from

zero.

Such values of x would satisfy the equation C {A — B) = without re-

ducing the fjictor ^ — ^ to zero, and hence without satisfying the given

equation ^ = jB (1) § 28.

Thus, if C were a function of a;, solutions of the derived equation AG= BG
might exist which were not solutions also of the original equation A = B.

In such a case the given and derived equations would not be equivalent.

E. g. If both members of the equation 3ar— 16 = a: — 2 (1) were multi-

plied by the expression a: — 3, containing the unknown, we should obtain the

equation (3 a; - 16) (a; _ 3) = (x - 2)(a: - 3), (2).
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The derived equation (2) would have, not only the solution a; =: 7 of the

original equation (1), but also the solution x = 3 which does not satisfy the

original equation (1), This extra solution x = 3 would have been intro-

duced by means of the multiplier x — '3 which becomes zero for a? = 3.

By using the multiplier a: — 3 we should thus gain a solution in passing

from the given equation (1) to the derived equation (2).

31. Principle IV. Division.

1/ both members of an equation be divided by the same number^ the

original and the derived equations will be equivalent^ provided that

the divisor used is neither zero nor infinitely great^ and that it does

not contain the unknown letter or letters.

(The following proof may be omitted when the chapter is read for the first time.)

Instead of division by a number D we may substitute multiplication by

its reciprocal y-.

Hence, since D can become neither zero nor infinitely great, it follows

that 1 jD can become neither infinitely great nor zero.

Accordingly, the principle under consideration is proved by the course

of reasoning employed for the proof of Principle III § 28, provided that

1/7) is represented in that proof by G.

E. g. From the equation 2 a: — 4 = 10, we shall, by dividing both mem-
bers by the constant 2, derive the equivalent equation a: — 2 = 5. Trans-

posing and combining terms, we have a; = 7.

Since the given and derived equations are equivalent, it follows that 7,

which is the single solution of the last equation, must be the single solution

of the given equation.

32. Caution. Beginners often make the error of dividing both

members of an equation by an expression containing the unknown,

and thus lose as solutions of the given equation such values as

would, when substituted for the unknown, reduce to zero the

divisor thus used and rejected.

33. Principle Relating- to Loss of Roots : If identical ex-

pressions containing the unknown be removed by division from both

members of an equation^ the given and the derived equations will not

be equivalent.

The solutions of the given equation which are not solutions of the

derived equation also are those values of the unknown which, if sub-

stitutedj would reduce to zero the expression removed by division.
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(The following proof may be omitted when the chapter is read for the first time.)

It follows from the reasoning employed in the proof of the principle of

§ 30 that the solutions of the equation AG = BG are the same as those of

the two equations A = B and G = 0, provided that A, B, and 6^ are functions

of the unknown.

Hence, it follows that if (7, which is common to both members of the

et^uation AG = BG, be removed by division and rejected, the solutions of

the equation formed by placing this divisor equal to zero, that is C = 0,

are thus lost.

E. g. If we divide both members of the conditional equation

(a: - l)(x - 4) = 2(x - 1)

by the divisor x ~l containing the unknown x, we shall obtain as a derived

equation x — 4 = 2. This derived e^j^uation, a; — 4 = 2, is satisfied by the

single value a: = 6. We have, by the process, lost a root, since the original

etjuation is satisfied by the value a; = 1 in addition to the value x = 6.

It should l3e observed that the expression a; — 1, which was removed from

both members of the given equation by division, becomes zero when x is

given the value 1, which is the root which was lost when passing from the

given to the derived equation.

The conditional equation a:* = 6 a; is satisfied by the values x = and

X = 6, and by no others. If, however, we derive the equation a: = 6 by

removing by division and rejecting x from both members of a:^ = 6 a:, we
shall lose one of the solutions of the original equation, namely x = 0.

34. From the principles of §§ 28, 31 we have the following

Applications :

(i.) If the terms ofan equation are integral with reference to some

specified letter, x, and the coefficients ofx are fractional, we may
derive an equivalent equation in which the coefficients of x are inte-

gral, hy multiplying all of the terms of the given equation hy the hast

number which contains all of the denominators of the fractional

coefficients exactly as divisors.

E. g. If we multi])ly the terms of both members of the conditional

equation 6x — 106 = |a; + J^ a; + 100 by 20, which is the least number

which can be divided without remainder by all of the denominators of the

fractional coefficients, we shall obtain the equivalent equation, 120 a: — 2120

== 15 a; + 2 X + 2000, in which the coefficients are integral.

Transposing and collecting terms in the derived equation, we obtain

103 a: = 4120, the solution of which is found to be a; = 40.
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(ii.) From an integral equation may be derived an equivalent

equation in which the coefficient of any specified term shall have any

desired value.

It is often desirable so to transform the terms of an equation that

the coefficient of the highest power of the unknown shall be unity.

E. g. By dividing each term of the conditional equation Sa:^ + 4 a: = 7

by 3, we may derive the equivalent equation x^ -\- ^x = \, in which the

coeflScient of the highest power of x is unity.

35. When by means of any step we derive an equation which is

equivalent to another, this step is said to be reversible, since,

either equation being equivalent to the other, we may derive either

equation from the other, and hence take the step forward or back-

ward without gaining or losing solutions.

36. Observe that we may derive an equivalent equation by adding

to or subtracting from both members of a given equation the same

expression containing the unknown. But in case we multiply or

divide both members by an expression containing the unknown, the

resulting equation may or may not be equivalent to the one from

which it is derived, because in certain cases we may gain or lose

solutions.

Mental Exercise X. 3

From each of the following conditional equations derive an equiva-

lent equation in which the coefficient of x is unity

:

1. 2iK = 8. 14. 9a; = — 54. 27. 5cc = 2.

2. 3 a; =15. 15. lla^ = — 77. 28. lx='d.

3. 4a; =12. 16. —16 = 8a;. 29. 8a; = 5.

4. 5a; =30. 17. -7 = 7a;. 30. 9a; = 2.

5. 6a; = 42. 18. -22 = 2a;. 31. 3 = 11 a;.

6. 7a; = 56. 19. 3a;=l. 32. 4=13a;.

7. 9a; = 81. 20. 4a;=l. 33. —5 = 14a;.

8. 14 = 2 a;. 21. 5a; = — 1. 34. 3 a; = 4.

9. 18 = 3a;. 22. l = 6a;. 35. 2a; = 5.

10. 25 = 5a;. 23. 1 = 8a;. 36. 4a; = 7.

11. 33 = lla;. 24. — l = 9a;. 37. 5a; =13.

12. 42 = 14a;. 25. 2a; = 0. 38. 6a; =19.

13. 8 a; = — 24. 26. = 3a;. 39. 7 a; = 29.
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40. 8 a; = 43. 77. 4i« = ff 114. f£c=l.
41. 9a; = — 28. 78. 5a; = Y. 115. fa;=l.
42. 12 a; = -25. 79. ia; = 2. 116. f£c=l.
43. 24 = 7a;. 80. ia; = 3. 117. i^aj=l.
44. 32 = 9«. 81. ia; = 5. 118. §a5 = 0.

45. 43 = 11 a;. 82. ia; = 4. 119. l=J^a;.

46. —49 = 13a;. 83. }a; = 9. 120. 1 = |a;.

47. -52 = 12a;. 84.^^^05=1. 121. 1=^^.
48. 6a; = 3. 85. T»5a;=12. 122. |a; = 2.

49. 8a; = 2. 86. ^x = — 10. 123. ^^^x = 4.

50. 18 a; = 6. 87. TVa; = — 3. 124. 4a; = 3.

51. 42a;=7. 88. i^ja; = — 13. 12^. ta; = 5.

52. 65a;=5. 89. ia; = 0. 126. fa; = 4.

53. 34a; = 2. 90. 6 = |a;. 127. T%a; = 8.

54. 50a; = — 10. 91. 12 = ia;. 128. ^a; = 9.

55. 3a; = a. 92. — 14 = Ja;. 129. ^a; = 6.

56. 4a; = 6. 93. ^x = ^. 130. Ja;=7.
57. 5a; = c. 94. ^a;=i. 131. fa; = 6.

58. 6a; = c?. 95. ia; = |. 132. |a; = f
59. 7a; = 27W. 96. ^a; = i. 133. fa;=f
60. 8a;=3w. 97. ^x = ^. l'34. ^x = ^j.

61. 9a;=5A:. 98. i^y a; = ,^5. 135. |a;=f.
62. 6rt=lla;. dd. ^x = j^. 136. ^x = %.

63. 126=17a;. 100. 5^5 a; = ^xr- 137. fa; = §.

64. 10a; = 8a. 01. ia; = i. 138. |a; = f
65. 12a;=146. 102. |a; = i lSd.^ = ^x.
66. 16 a; = 18 c. 103. J a; = f 140. \^ = ^x.

67. 21c?=14a;. 104. ^x = i. 141. ^jy = ^x.

68. 33^ = 6a;. 105. ix = ^. 142. f^ = |a;.

69. 3a; = i 106. ^-x = i. 143. \x = ^a.

70. 4a; = i. 107. ^V^^^i- 144. ia; = i6.

71. 5a; = f 108. i^x = \. 145. ^x = \c.

72. 6a; = i. 109. ^ = ^a;. 146. \x = ^d.
73. 8a; = i 110. \ = -i^x, 147. ia; = ia.

74. 9a; = — i. 111. i = ia;. 148. ^x = \h.

lo.2x = ^. 112. fa; =1. Ud.^x=^m.
16. Sx = \\ 113. |a;=l. 150.^x = ^a
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151. ^hx = ijb. 163. ^i h = tV X. 175. ^x = }a.

152. \x = ^a. 164. i^k^i^x. 176. lx = lk
153. ^x=^b. 165. s^m=^^^x. 177. ^x = ic.

154. ^l^X = j\jC. 166. ^§a = ^jx. 178. t ^ = f «.

155. ^x = ^d. 167. ^ja = ^jsx. 179. ^X = ^jb.

156. ^x = j\h. 168. aV^^^VaJ- 180. tic = fc.

157. ^X=j\k. 169. ^x= ^a. 181. %x = ^d.
158. \a = ^x. 170. ^x = ^b. 182. lx = ^m.

159. ^b = \x. 171. \x = %c. 183. ^a = ^x.

160. ^c = \x. 172. hx = ^d. 184. rb = 'zx.

161. id=^,x. 173. ^m = ^x. 185. ^c = ^x.
162. l9 = ^x. 174. ^m = ^x. 186. id = ^x.
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CHAPTER XI

EQUATIONS OF THE FIRST DEGREE CONTAINING ONE
UNKNOWN

1. A simple or linear equation containing a single unknown

is an equation which is of the first degree with reference to the

unknown appearing in it.

2. Solution of a Linear Equation. By applying the Prin-

ciples of Chapter X., any integral rational equation containing one

unknown, that is any linear equation, may be transformed into an

equivalent equation of the standard form

ax + b = 0, (1)

in which a and h are either simple or compound expressions, both

free from the unknown. The term 6, which is free from the un-

known, may be zero, but the coefficient a cannot be zero.

Equation (1) may be written in the equivalent form

ax = — h. (2)

Since a :?^ 0, we may divide both members by a, and obtain

. = ^. (3)

It follows that any linear equation in the form ax -\-h — 0, con-

taining one unknown, has one solution and one only, x = .

Ex. 1. Solve the equation 15 a: — 11 = 5 a: + 9. (1)

Transposing the terms 5 x and — 1 1 we obtain

15a;-5a:=9-f 11, (2)

which is equivalent to equation (1) by Chapter X. § 27 (i.) Principle II.

Combining like terms, we obtain

10 a; =20, (3)

which is equivalent to equation (2) by Chapter X, § 25 Principle I.
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Dividing both members by the coefficient of x, we obtain the solution

a; = 2.

Since throughout the entire process all of the equations obtained are

equivalent to one another, the solution of the last, a: = 2, is a solution of,

and the only solution of, the first.

We may verify the solution by substituting this value, x = 2, in the

original equation as follows :

15 -2- 11 = 5-2 + 9

19= 19.

Ex. 2. Solve the equation 12 - 7 a; = a; - 18. (1)

Transposing the terms so that all terms containing x shall appear in the

first member, and all terms free from x in the second, we have the equiva-

lent equation
-7a; -a; = -18 -12. (2)

Combining terms, we derive the equivalent equation

- 8 a; = - 30. (3)

Dividing both members by the coefficient, — 8, of x, we obtain as a

solution of this last equation

_-30_ 15
^~ -8 ~ 4'

Since, in obtaining the successive equations we have applied the prin-

15
ciples f(jr deriving equivalent equations, the result — , which is the only

solution of the last equation, must be a solution, and the only solution of

the given equation.

Substituting this value in the original equation, we obtain

12 - 7 (V) = J^ - 18

-I4i = -14i.

Ex. 3. Solve the equation |(a; - 5) + f (x - 3) = a; - |. (1)

Multiplying both members of the equation by 15, which is the least

number which contains the denominators of the different fractions exactly

as divisors, we obtain the equivalent equation

3 (a; - 5) + 5 • 2 (a; - 3) = 15 a; - 3 . 7. (2)

Performing the indicated operations, we obtain

3a; -15 + 10a; -30= 15a; -21,
and hence 13 a; - 45 = 15 a; - 21. (3)

By Principle I, Chapter X, § 25, this equation is equivalent to equation

(2) above.
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Transposing terms, we derive from (3) the equivalent

equation 13 a: — 15 a; = — 21 + 45. (4)

From (4) we obtain, — 2 a; = + 24. (5)

Dividing both members by the coefficient, —2, of ar, we obtain the solii-

24
tion X = —- = — 12.— ji

Since all of the steps used in the process of deriving these equations suc-

cessively are reversible, the solution of the last equation must be a solution

of, and the only solution of, the original equation.

Verifying the accuracy of the result by substituting in the first equation,

we have

i (- 12 - 5) + H- 12 - 3) = - 12 - ^
'

- 13f = -13f

3. It is possible that roots may be either gained or lost during

the process of solution of a conditional equation. (See Chapter X.

§§ 30, 33).

The substitution in the original equation of any roots which may
satisfy any one of the derived equations does not establish thereby

the equivalence of the equations.

By such a substitution we simply determine whether or not the

values substituted are solutions of the original equation.

The equivalence of the given and derived equations must be

determined by examining the process of derivation.

Ex. 4. Solve the equation (a: + 2)(x + 3) + 4 = (a; + 2)2. (1)

Performing the indicated multiplications, we obtain

a:2 + 5 a; + 6 + 4 = a;2 + 4a; + 4. (2)

Equal terms, such as x^ or 4, which occur in both members, may be

stricken out, since if transposed they would by combination produce zero.

Hence we have 5a; — 4x = — 6 (3)

a; = - 6.

No root is gained or lost by any of the operations performed on the

members of these equations. Hence, the root of the last equation is a

solution of, and the only solution of, the original equation.

Verifying the result by substitution, we obtain

(- 6 + 2)(- 6 + 3) + 4 = (- 6 + 2)2

16 = 16.

4. The ultimate test of the correctness of every solution is that,

when the value found is substituted for the letter representing it,
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the equation is satisfied. No matter how we may obtain the value

of an unknown letter, even if it be by mere guessing or by inspec-

tion, if it stands this test of substitution, it is a solution.

5. The process of solving a conditional equation consists of

obtaining and substituting for a given equation another equation

which has all of the solutions of the first, and, if possible, no more

solutions, and which is of such form that the relations expressed

between the letter whose value is to be found and the remaining

quantities in the equation is less complicated. This process is

continued until, if possible, an equation is finally obtained which

may be solved by inspection.

6. Suggestions Concerning the Solution of Simple Equa-
tions Containing One Unknown Number

(i.) Remove firactional coefficients, if there be any, by multiply-

ing both members of the equation by the least number which con-

tains the denominators of the different fractions exactly as divisors.

(ii.) Perform all such indicated operations as are necessary to

separate the terms of the equation into two distinct groups,— one.

group consisting of all of the terms containing the unknown num-

ber (and no other terms), and a second group consisting of all

terms which do not contain the unknown number.

The terms which contain the unknown number are commonly

transposed to the first member of the derived equation, and all

terms which are fi:ee from the unknown are transposed to the

second member of the equation.

(iii.) All numerical or all monomial or pol3momial factors not

containing the unknown numbers, which are common to all of the

terms of both members of the equation, should be removed by

division and rejected as soon as discovered.

(iv.) Combine into one term all of the terms containing the

unknown number, and into another term the remaining terms

which are free from the unknown.

(v.) Divide both members of the equation by the coefficient of

the unknown number.

(vi.) The expression found for the unknown number should be

reduced to simplest form.



172 FIRST COURSE IN ALGEBRA

Exercise XI. 1 (Mental and Written Examples)

Solve the following equations, verifying all results by substitution.

The first sixty-four examples may be solved mentally

:

1. 4ic-f 5 = 3ic4- 7. 24. 2a; — 37 = lx+ 3.

2. 6«+ 11 = 5ic+ 17. 25. Sx+ 5 = dx-\- 59.

3. 10a- 7 = 9a; 4- 8. 26. 5a;+ 1 + 2.'k = 15.

4. 7a;— 10-6a; = 0. 27. 6a;- 2 + 3iK = 25.

5. 5a; + 11 -4a; = 0. 28. 7a; + 10 -4a; = 40.

6. 11a;- 6- 9a; = 0. 29. 9a; — 2 — 4a; = — 57.

7. 3a;+ 1 =a;— 1. 30. 12a; = 8 + 30 - a;.

8. 9a;+l = 3a;+5. 31. 5a;-4+6a;-7 = 0.

9. 13a;+ 4= lla;+ 10. 32. 13 a; — 50 — 2a; = a;.

10. 6a;— 11 = 2a; 4- 9. 33. 19a;— 5 + 2a; = 39.

11. 13a;- 18 = a; -h 6. 34. 18a; — 33 — 7a; = 3a; - 1.

12. 8a;— 13 = 3aj-53. 35. 4a; + 5 + 6a; = 7 + 8a;+ 4.

13. 22a; + 15 = 19a;— 12. 36. 5a; + 7 + 3a; = a;+ 10 + Ga;.

14. 15a;+ 37 = 3a;+ 13. 37. 8a;+ 3 4- 6a;= 4a;+ 11 + 9a;.

. 15. 12a;+ 1 = 28 + 3a;. 38. 9a;— 7-5a;= 11 a;+ 5 — 8a;.

16. 19 + 17a; = 59 — 3a% 39. 9a;— 7 — 4a;= 10a; + 5 — 7a;.

17. 15a;— 13 = 29 + 8a;. 40. 15 — 7 a;+ 6 = 12- 2a;+ 19.

18. 21 + 22 a; = 8 a; — 35. 41. 5a; + 12—8a;= 19 — 13a; + 2.

19. 7a;+2 = 4a;+7. 42. 22a;— 9 — 6a; = 5a;— 6 + a;.

20. 17 — 18a; = 87 — 25a;. 43. 7a; — 5 + 2a; = 3a; + 8 + a;.

21. 15 + 11a; = 79 — 5a;. 44. 4a;+ 9- 7a>= 8a!— 11 + 3a;.

22. 2a;+ 23 = 5a;+ 2. 45. ll + 7a;— 18-3a;=9+ a;+5.

23. 4a; — 23 = 1 — 4a% 46. 12+ 11 a;+ 3 = 5a;— 2 — 4a;.

47. 19a;+ 9— 12a;+ 6 = 2a; + 35 + 3a;.

48. 25+ 12a;— 23 + 14a; = 25a;+ 12-23a;+ 2.

49. 8 — 4a;-2 + 9a;= 7 + 2a;- 19- 6a;.

50. 7a;+ 9 — 3a; + 5 = 4a;— 11 + 2a; + 45.

51. 3a;+ 13 + 5a;- 7 =a;+ 7 + 2a;+ 2.

52. 14a;— 1 + 3a;+ 5 = 7a; + 2 — 4a; — 8.

53. 5a;— (2a; + 3) = 12.

54. 3a;— (13 — a;) = 61.

55. 12- (4 a; + 7) = 13.

56. 17 a; + 5(2- 3 a;) = 18.
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57. 9a5-2(l + 4a?) = 3.

58. 17-3(aj+ 11) = - 7a;.

59. 5 (a; -4) = 4 (a; -3).

60. 3 (a; - 6) - 2 (4 - a;) = 0.

61. 7 (3 - a;) -4 (7- 2a;) = 0.

62. 6(a;+ 5)- 12=:3(3a:- 1) +4a;.

63. 22 - 5 (3 — 2 a;) = a; — 4 (a; + 8).

64. 8 (a; - 7) - 6 (a; - 5) = 5 (a; - 4) - 4 (a; - 3).

65. (a; + 1)^ = a;^ + 5.

66. (a;-3)^ = a;^-21.

67. (a; + Ay = a^(x + 3).

68. (3a;+ l)^-2a; = 9a;'+ 13.

69. lx+ l)(a;+ 2) = a;^ 4- 11.

70. (x + 3)(x + 5) = a;^ + 31.

71. (a; + l)(a; + 5) = (a; + 2)(a; + 3).

72. (x - 10)(a; - 7) = (a; - 9) (a; - 6).

73. (x + 2Xx + 4) = (a; + 3)(a; + 1) + 1.

74. (x - 4)(a; + 1) - (a; - 5)(a; - 2) = 0.

75. (x - 6)( X- 1) - (a; + 7)(a; + 3) = 0.

76. (2a;+ l)(3a;+ l) = (6a;- l)(a; + 2).

77. (16a; - 5)(3a; + 4) = (12a; - l)(4a; + 3).

78. (2a;+ 5)(5a;-4) - 5a; = (10a; - 3)(a; + 1) + 8.

79. ^x = S-^x. 89. §a; + §a; = ^.

80. f a;=: 1 -ia;. 90. $a; — 5 = | a; — 4.

81. ^x = S+ix. 91. h^ — ^^+i^ = h
82. ^a; = 4 4-ia;. 92. ^a; + ia; + ^a; = a; ~ 13.

83. I a; - 7 := i a;. 93. ^ (a; + 3) = 4.

84. ta;- 1 = 1 -^a;. 94. ^ (a; - 4) = 1.

85. ^x + lx = 2. 95. I (a; + 1) - 2 = 0.

86. ^x-^x = 4:. 96. i(a; + 4)-ia;=:8.

87. ia;-ia;==12. 97. ^ (x + l) = ^ (x + 6).

88. h^ + ^^ = h 98. |(5a;- l)-8 = K4a^-2).
99. i(l - a;) - tV (2 - «^) -= tV (3 + a;).

100. i(a; - 15) - T^ff (9a; - 2) = ia; + i.

101. ^(x + i)-i(x-'i) = 10.

102. |(4a;-^) + ^(3a;-i) = TV.

103. ^(12a;-f)-f(14a; + ^)=:84.

104. la; — li + a; = ^ (6a; - 9) - f,
a;.
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!Equatioiis in which Decimal Fractions appear aniougf
the Coefficients

Ex. 105. .5 a; = .015.

By multiplying both members of the equation by 1000 we shall obtain an

equivalent equation in which the decimal coefficients are replaced by

integral coefficients.

That is, 500 a: = 15 Check. .5 x (.03) = .015

Therefore, x = ^^ .015 = .016.

Or, X = .03, in decimal notation.

106. .01 X = 200. 113. a; — .1 = 1 — .liB.

107. .7 a; = .07. 114. .2 a; + 3 - .04 a; = 3.8.

108. .5a;=l. 115. .2 a; + .04 = .25 a; - .26.

109. .3 a; = 3. 116. .093 - .1 a; = .02 a; - .13 a; + .01.

110. .2 a; = 4. 117. a; — 10 + .1 a; = 1100 — .01 a:.

111. .25a;=1.25. 118. 3 -.2 a; + 30= .02 a;-300 + .002a;.

112. .2 a;= 48 — .04 a;.

Problems

7. A problem is a question proposed for solution.

8. A problem is said to be determinate if it has a limited or

finite number of solutions.

In the contrary case, it is said to be indeterminate.

9. To solve a given problem is to find the values of certain

unknown quantities whose relations with one another and with

certain known quantities are given.

The relations between the known and unknown quantities are

called the conditions of the problem.

In solving a problem which admits of algebraic solution, the first

step to be taken is to discover the relations between the unknown

and the known quantities, as given in the statement of the problem.

10. The beginner will find it helpful, whenever relations are given

between general numbers, to consider an analogous arithmetic

problem, choosing definite numerical values in place of the given

general numbers.

E. g. By how much does a exceed 15 ?

Consider a similar example in numbers. By how much does 21 ex-

ceed 15?
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The excess of 21 over 15 is the difference between 21 and 15, that is,

21 - 15.

By the same reasoning it appears that a must exceed 15 by the difference

between a and 15, that is, by a — 15.

ALGEBRAIC EXPRESSION^

Mental Exercise XL 2

1

.

By how much does x exceed yl •

2. By how much does a exceed 6 ?

3. By how much does x exceed 25 ?

4. By how much does 30 exceed y ?

5. By how much does a exceed 1 ?

6. What number must be added to x to obtain a ?

7. By what number must x be diminished to e<[ual z 1

8. What number is less than 10 by a ?

9. What number is greater than 15 by 6 ?

10. If a represents an integer how may the next greater integer be repre-

sented ? The next less ?

11. If 6 represents an odd integer how may the next greater odd integer

be represented ? The next less ?

12. If 2 c represents an even integer how may the next greater even in-

teger be represented 1

13. Find an expression for three consecutive integers of which a is the

least.

14. Find an expression for three consecutive integers of which b is the

greatest.

15. Find an expression for three consecutive integers of which c is the

one between the other two.

16. If a number represented by x is separated into two parts, one of

which is 5, what is the other part ?

17. If a number represented by a is separated into two parts one of

which is 6, what is the other part ?

18. Find an expression for the greater of two numbers if the less is I and

the difference is d.

19. A man sold a horse for ^h and gained % on the cost. Find an ex-

pression for the cost of the horse.

20. A boy is 15 years old now. Find an expression for his age x years

ago. How old will he be in y years ?

21. If a boy is y years old now how old will he be 5 years from now ?

How old was he three years ago ?
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22. A man has $a and spends $a:. Find an expression for the sum
remaining.

23. In uniform motion, Distance = Rate x Time.

How fai- can a person walk in a hours at the rate of b miles per hour ?

24. How long will a train require to move uniformly a distance of a

miles at the rate of x miles per hour ?

25. If a man's expenses are §x per week how much will they be for a

year?

26. How much will a man whose wages are $a per day earn in b days ?

In cd days ?

27. Express $a in terms of cents.

28. Express b cents in terms of dollars.

29. Express d dimes in terms of dollars.

30. Express ^ and b dimes in terms of cents.

31. Express x half dollars and y quarters in terms of cents.

32. Express y yards in terms of feet.

33. Express /feet in terms of inches.

34. Express h inches in terms of yards.

35. Express m inches in terms of feet.

36. Express x feet plus y inches in terms of inches.

37. Express a yards plus b feet plus c inches in terms of inches.

38. Find an expressiou for a gallons in terms of quarts. In terms of

pints.

39. Find an expression for x pounds in terms of ounces and of t tons in

terms of pounds.

40. Find an expression for a gallons plus & quarts in terms of quarts.

41. Find an expression for x pounds plus y ounces in terms of ounces.

42. Find an expression for a acres in terms of square rods.

43. Find an expression for x acres plus y square rods in terms of square

rods.

44. Express h hours in terms of minutes.

45. Express a minutes in terms of hours. In terms of seconds.

46. Express a days plus b hours in terms of hours.

47. Express m hours plus n minutes in terms of seconds.

48. What is the cost of m books at n cents each ?

49. If b books cost ^ find an expression for the cost of one book.

50. If one book cost c cents how many cents do b books cost ? How
many dollars ?

51. If the interest on $1 for one year is r cents what will be the interest

on ^ for one year at the same rate ]

52. Find an expression for one per cent of a ; five per cent of b ; seventy

five per cent of c ; thirty-seven and one-half per cent of d.
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53. Find an expression for a per cent of h.

54. Find an expression for x per cent of x.

55. Find an expression in square feet for the area of a rectangular room

which is a feet long and b feet wide. In square yards.

56. What is the area in square feet of a square room each of whose sides

is X feet in length ? In square 3'ards 1

57. Find an expression in square yards for the area of a rectangular

room which is x yards long and y yards wide. In square feet.

Exercise XL 3

Translate the following statements into algebraic language and

express the given conditions by means of conditional equations, and

solve. The solutions of the equations should in every case be ex-

amined to see if they satisfy the conditions of the given problems :

1. Find two numbers whose sum is 46, which are such that the greater

number shall exceed the less by 12.

In this problem the values of the two numbers required are unknown,

but by the statement we know that if ar represents the less number, a; + 12

must represent the greater.

Since the sum of the numbers is 46, we have

(first number) + (second number) = 46.

Hence, x + (a: + 12) =46.
Solving, we find that x = 17.

Accordingly the less number is 17 and the greater number which is

represented by a: -f- 12 must be 29.

These numbers satisfy the conditions of the problem.

2. Find a number which, when multiplied by 7, exceeds 36 by as much
as the number itself falls short of 36.

,

Let X represent the required number.

Translating the conditions of the given problem into algebraic language,

we obtain the conditional equation

7 a: - 36 = 36 - a:,

whose solution is found to be a: = 9, which is the required number.

It will be found that 9 satisfies the conditions of the given problem.

Suggestions for stating and solving simple problems.

Fi?'st, decide what unknown number is to be found, and represent

it by some letter, say ^.

It should be observed that the letters appearing in conditional

equations can represent abstract numbers only,

12
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E. g. The letter z cannot represent a given sum of money or a given

distance, but it may stand for the number of dollars in a given sum, or the

number of units of length, say feet, yards, or miles, in terms of which a

given distance is expressed.

It is essential that we should be consistent in expressing the

known and unknown numbers of the problem in terms of the same

unit.

E. g. If the unknown letter represents the number of miles in a given

distance, then the remaining numbers in the conditional equation must be

expressed in terms of miles.

Second, examine the statement of the problem to discover two

independent conditions which may lead to two different algebraic

expressions for the same number.

Third, obtain Uvo algebraic expressions for this number.

Fourth, use these expressions as members of a conditional equa-

tion, and solve.

Fifth, examine the solutions of the conditional equation, and

determine whether or not they satisfy the stated conditions of the

problem.

3. Find two numbers whose sum is 28 and whose difference is 6.

4. Find three consecutive numbers whose sum is 42.

Suggestion. Let x represent the first number, a: + 1 the second number,

and X + 2 the third number.

5. Find three consecutive numbers whose sum is 96.

6. Find four consecutive numbers whose sum is 206.

7. Find three consecutive even numbers whose sum is 54.

8. Find two consecutive numbers such that seven times the first shall

exceed four times the second by 29.

9. Find a set of six consecutive numbers such that the sum of the first

and last shall be 95.

10. What number is it whose double is 25 more than its third part ?

11. Find two numbers differing by 12 whose sum is twice their

difference.

Let X represent the greater number.

Then a; — 12 represents the less number.

We have a; + (x - 12) = 2 • 12

From which a: = 18.
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Accordingly the greater number is 18, and the less number, represented

by a; - 12, is 6.

These numbers will be found to satisfy the conditions of the given

problem.

12. Find two numbers whose sum is 36 and whose difference is 10.

13. Separate 63 into two parts such that one part shall be greater than

the remaining part by 5.

14. Separate 147 into two parts such that the greater part shall exceed

tlie less by 7 more than ^ of the less part.

15. Separate 72 into two parts such that three-fourths of the less part

shall exceed three-eighths of the greater by 9.

16. Find a number such that if one be added to three-fourths of the

number the result will be four more than one-half of the number.

17. One-half of a certain number exceeds the sum of its fifth and sixth

parts by 4. Find the number.

18. The sum of the third and fourth parts of a certain number exceeds

the sum of the fifth and sixth parts by 13. Find the number.

19. If 5 X -f- 4 stands for 49, for what number will x — 2 stand ?

On condition that 5 x + 4 shall represent 49, it is necessary that x shall

satisfy the conditional equation 5 a: -|- 4 = 49.

The solution of this equation is found to be a: = 9.

Accordingly, the expression x — 2 must represent 7.

20. The sum of the two digits of a number is 11. If 27 be added to the

number the digits will be interchanged. What is the number ?

Let X represent the digit in units' place.

It follows that 11 — a; represents the digit in tens' place.

The given number may be represented by

10 (digit in tens' place) -\- (digit in units' j)hvce),

that is, by 10 (11 — a;) -f x.

If the digits are interchanged, the resulting number will be represented by

10a:-f(ll -a:).

By the conditions of the problem, we have

10 (11 - ar) + a: -f 27 = 10 a: -f (11 - a:).

Solving, we find that x = 7.

Hence the digit in units' place is 7, and the digit in tens' place, which

is represented by 11 — a:, must be 4.

Accordingly, the required number is 4 x 10 -|- 7, that is, 47.

It may be seen that 47 satisfies the conditions of the problem, for the

sum of the digits is 11, and if 27 be added to 47 the resulting number is 74,

which may also be obtained by interchanging the digits of 47.
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21. The sum of the two digits of a number is 12. If 36 be added to

the number the digits will be interchanged. What is the number '?

22. The sum of the three digits of a number is 9, and the digit in hun-

dreds' place is three times that in units' place. If 180 be added to the

number, the digits in hundreds' and tens' places will be interchanged.

What is the number?

23. Find such a number that, when used to diminish each of the two

indicated fiictors of the two unequal products 45 • 75 and 51-66, the result-

ing products will be equal.

24. A's age exceeds B's by 14 years. Eight years ago A was three

times as old as B. Find the present age of each.

Let b represent the number of years in B's present age.

Then, by the conditions of the problem, the number of years in A's

present age is represented by 6 -}- 14.

The numbers of years in A's and B's ages eight years ago would accord-

ingly be represented by (6 + 14) — 8 and 6 — 8, respectively.

Since at that time A's age was three times that of B's, we may form the

conditional equation

(6-f 14)-'8 = 3(6-8).

Solving, we obtain 6 = 15.

AccoKlingly, B's present age is 15 years, and A's present age, which is

represented by 6 -j- 14, must be 29 years.

These numbers are found to satisfy both the statement of the problem

and the algebraic equation.

25. The ages of A and B are such that five years ago A's age was four

times that of B's, while five years hence his age will be twice that of B's.

Find the present age of each.

26. The sum of the ages of A and B is 36 years, and six years hence

A's age will be three times that of B's. Find their present ages.

27. In a company of 22 persons a resolution is carried by a majority of

12, all voting. How many voted for the measure ?

28. In an informal ballot a resolution was adopted by a majority of six

votes, but in a formal vote one-third of those who had before voted for it

voted against it, and the resolution was lost by a majority of four votes.

How many voted each way in the formal ballot?

29. A grocer estimated that his supply of sugar would last eight weeks.

He sold on an average 50 pounds a day more than he expected. It lasted

him six weeks. How much did he have ?

30. Determine how an amount of $135 must be divided among three

persons in such a way that the share of the first shall be three times that of

the second, and the share of the second twice that of the third.
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Let X represent the number of dollars in the share of the third. Then the

number of dollars in the shares of the second and tirst will be represented

by 2 X and 6 x respectively.

By the conditions of the problem, we may construct the conditional equa-

tion a; + 2a: + 6a:= 135, whose solution is found to be a; = 15.

Accordingly, the share of the third is $15 ; the share of the second repre-

sented by 2 a:, is $30 ; and the share of the first, represented by 6 a;, is $90.

These amounts are found to satisfy the conditions of the given problem.

31. A sum of $7924 was bequeathed to three persons with the stipulation

that the first was to receive twice as nuich as the second and one-half as

much as the third. Determine the amounts.

32. A man wishes to divide the sum of $99 into five parts in such a way
that the first part shall exceed the second by $3, be less than the third part

by $10, greater than the fourth part by $9 and less than the fifth part by

$16. Find the parts.

33. A paymaster, wishing to use $25,662 on pay-day, requested the pay-

ing teller to make up the amount in tlie following way: A certain number

of $100 bills, three times as many fifties, four times as many twenties as

fifties, twice as many tens tis fifties, three times as many fives as tens, as many
twos as tens, as many ones as twos.

How many bills of each denomination were given ?

34. At two stations, A and B, on a line of railway, the prices of coal are

$3.50 per ton and $4 per ton respectively. If the distance between A and B
be 150 miles and coal can be shipped for one-half a cent per ton per mile,

find the place on the railway between A and B at which it will be indiffer-

ent to a customer whether he buys coal from A or from B.

35. A farmer estimated that his supply of feed for Ids 50 cows would

last only 12 weeks. How many cows must he sell in order that the supply

may last 20 weeks ?

36. A contractor undertakes to complete a certain amount of work in a

given time. By the terms of the contract he is to receive $12 for each day's

work during the given time, and is to forfeit $5 for each day taken beyond

that time. If the total amount received was $167 for 21 days' work, find

the time for the original contract.

37. It was estimated that a certain amount of earth could be excavated

by a steam shovel alone in 12 days, or by a gang of laborers alone in 28

<lay8. After being used a certain number of days the shovel was disabled,

and the work was then completed by the men, who worked 2 days less than

the time during which the shovel had been used. During how many days

was the shovel used ?

38. Sixty laborers were engaged to remove an embankment. Some of
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them were engaged at the rate of^l.lO a day, and the others at the rate

of $1.60 a day. The memorandum having been lost, it was rec^uired to find

how many worked at each rate, if the total amount paid was ^0.
39. The help of a certain factory, numbering 31G, consists of men and

boys. If the weekly pay of each man is ^12 and that of each boy ^i thid

the number of each, if the weekly pay roll amounts to $2688.

40. It is observed that a square room requires one and one-ninth square

yards less of carpeting than a rectangular room whose length is one yard

longer, and width two feet less, than the side of the square room. Find

the area of each of the rooms.

41. A man has $4200 in four banks. He has twice as much in the

second bank as in the first, as nmch in the third as in the first and second

together, and twice as much in the fourth as in the first and third together.

How nmcli money has he in the fourth bank ?

42. A man invests \ of liis capital at 4 per cent, \ at 3 per cent, and the

remainder at 3^ per cent, and thus secures an annual income of $1390.

What is his capital ?

43. A man invests ^ of his capital at 3 per cent and the rest at 3^ per

cent, and thus receives an annual income of $55.50. What is his capital 1

44. A man desires to invest his capital of $10,000, partly at 5 per cent

and partly at 3 per cent. How must he invest the amounts so that his

yearly income shall be at the rate of 4j per cent ?

45. How may $3600 be invested, partly in 5 per cent stock whose market

value is eighty cents on a dollar, and the remainder in 6 per cent stock

selling for one dollar and twenty cents on a dollar, in order that the income

from the two sources may be the same ?

46. How long will it take an investment of $5730 to amount to $6589.50

at 3 per cent simple interest ?

47. At what time between three and four o'clock are the hands of a

watch together ?

Let X represent the number of minute spaces passed over by the minute-

hand, reckoned from the position occupied by the hand at 3 o'clock, to the

point where it overtakes the hour-hand. Then, during the same time, the

hour-hand will pass over a:/12 minute spaces.

Since at 3 o'clock the hour-hand is 15 minute spaces ahead of the minute-

hand, it follows that the distance x passed over by the minute-hand must

be greater by 15 minute spaces than the distance a;/12 passed over by the

hour-hand.

Accordingly, we have x — a:/12 = 15,

from which we obtain x = 16y\, which is the number of minutes after 3

o'clock when the hands of the watch are together.
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48. At what time between 9 and 10 o'clock are the hands of a watch

opposite each other ?

49. At what time between 7 and 8 o'clock will the hands of a clock

be at right angles to each other ?

50. At what time between 5 and 6 o'clock is the minute hand of a

watch two minutes in advance of the hour hand 1

51. Two trains start at the same time from different stations 400 miles

apart. One travels at the rate of 48 miles an hour and the other at the

rate of 32 miles an hour. How far does the faster train travel before meet-

ing the slower one 1

52. Two hours after a train left a certain station a second train was

dispatched, and it overtook the first train in four hours. To accomplish this

it was necessary for the second train to run 15 miles an hour faster than

the first. How many miles per hour did the trains run ?

53. Where must a side track be placed on a single-track railway in order

that an express train, travelling at the rate of 46 miles an hour, may not be

delayed by an accommodation train travelling toward it at the rate of 29 miles

an hour, the two trains stai'ting at the same time from two places 60 miles

apart ?

54. If an outward trip of an excursion train is made at the rate of 20

miles an hour and the return trip at 16 miles an hour, the whole time being

9 hours, what is the distance (

55. Two ships start from a given port at the same time, one going north

at the rate of 11 miles per hour and the other going south at the rate of 7

miles per hour. How long after starting will they at these rates be exactly

108 miles apart ?

56. Two ferry boats, whose rates are 15 miles and 12 miles an hour

respectivel}', start simultaneously from opposite shores of a river, three-

fourths of a mile wide. Where will they meet ?

Problems in Science

57. A certain grade of sulphuric acid is known to be 94 per cent pure.

How much distilled water must be added to a gallon of this sulphuric acid

in order that the mixture may be 75 per cent pure 1

Represent by x the number of gallons of distilled water to be added.

Then the number of gallons of the mixture will be represented by 1 -j- x.

Since 75 per cent of this diluted solution is pure acid, we have as an

expression for the number of gallons of acid .75 (I + x).

By adding water, the amount of acid, which was given as 94 per cent of

the original ''allon, has been neither increased nor decreased.
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Hence we may use these two expressions for the same amount of acid as

the members of a conditional equation, as follows :

.75(1 +a;) = .94,

from which we obtain x — .253J.

Accordingly it is necessary to add .253^ gallons of distilled water.

It may be seen that this amount of water satisfies the condition of the

problem as stated, for by the addition of .253^ gallons of wsiter the mixture

is made to consist of 1.253| gallons, and 75 per cent of this mixture, that is

94 per cent of one gallon, is pure acid.

58. How much water must be added to a pint of alcohol 85 per cent

pure, in OKler to make the mixture three-fourths water ?

69. How much 12 per cent solution of a certain chemical must be added

to a gallon of 4 per cent solution to raise it to a 6 per cent solution ?

60. How much water must be added to 6 quarts of acid which is 10 per

cent of full strength to make the mixture 8^ per cent of full strength ?

61. How much water must be added to a gallon of three per cent solu-

tion of a certain chemical to reduce it to a one per cent solution ?

62. How many ounces of pure silver must be melted with 300 ounces of

silver 600 fine in order to make a bar of metal 800 fine ?

By 600 fine is meant the number of parts \\\ 1000 which are pure metal.

63. How many ounces each of two bars of silver which are 800 fine and

725 fine respectively must be melted together to make a bar of GO ounces

which shall be 775 fine ?

64. How many pounds of pure copper must be melted with 500 pounds of

gold 67/72 pure in order to make the composition 9/10 pure gold ?

65. It has been said that the crown of Hiero of Syracuse, which was

part gold and part silver, weighed 20 pounds in the air and 18| pounds

when weighed while immersed in water. Find how much gold and how

much silver it contained, knowing that 19^ pounds of gold and 10^ pounds

of silver each lose one pound when weighed immersed in water.

66. The pendulum of a clock swings 364 times in 5 minutes while that

of a second clock swings 233 times in 4 minutes. After how long will the

second have swung 582 times more than the first ?
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CHAPTER XII

FACTORS OF RATIONAL INTEGRAL EXPRESSIONS

1. From the point of view of multiplication, the numbers or

expressions which are multiplied together to form a product are

called factors of the product.

E. g. Since 2 x 5 = 10, 2 and 5 are factors of 10.

Since 2 (m + ?i) = 2 m + 2 w, 2 and w + w are factors of 2 ?7i + 2 w.

Similarly a .+ 6 and a — b are factors of a^ — b^.

Also, X -\- 5 and x + 5 are factors of x^ + lOx \- 25.

2. Our present problem of factoring is that of finding two or

more numbers or expressions which may be multiplied together to

produce a given expression as a product.

3. Since for the present it will seldom be necessary to use factors

of given expressions, except such as are altogether integral and

rational, we shall in this chapter consider only integral rational

expressions, and shall restrict the word " factor " to mean only such

a factor as is entirely integral and rational.

4. An integral rational algebraic expression is said to be prime
if it has no exact integral rational divisors except itself and unity

(positive or negative).

E. g. The following expressions are algebraically prime :

a, 6 + C, X2+7/2+ 1.

5. An integral rational algebraic expression which is not prime

is said to be composite.

E. g. The following expressions are composite :

a^, 6^ — c^, rnx^ 4- my* + m.

6. When completely factored, all of the prime, integral, rational

divisors of a given polynomial expression are made to appear, and

a chain of additions and subtractions is transformed into one of

multiplications.
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E. g. The number represented by the chain of atUlitions 10 a^ -f 70 a -}-

120 may be expressed also by the following chain of multiplications:

2 • 5 (a + 3)(a + 4). Check, a = 2.

That is, 10 a^ + 70 a 4- 120 = 2 . 6 (a + 3)(a + 4). 300 = 300.

Hence it appears that the prime, integral, rational factors or divisors of

10 a2 + 70 a + 120 are 2, 5, a + 3, and a + 4.

7. The separate factors of an expression are never of degree

higher than that of the given expression.

8. The whole number of algebraic expressions which may be

written is unlimited, and of these some do not admit of being

expressed as the product of two or more integral rational factors.

Hence, in many cases it is impossible to tell beforehand whether

or not integral rational factors of a given expression exist, or to

determine their degrees even if they do.

9. Since factoring is commonly used as a means for abbreviating

algebraic work, it is necessary for the beginner to become thoroughly

familiar with certain methods which may be employed in elementary

work.

10. In examining an expression for factors, it is natural to deter-

mine first what factors, if any, are common to all of the terms.

Expressions in which all of the Terms contain a Common
Monomial Factor

11. 1/ some letter is common to all 0/ the terms of an expression

it follows that every term^ and accordingly the whole expression, is

exactly divisible by that letter.

This follows from the converse of the distributive law of

multiplication,

oca ¥ xh + xc + = x{a + 6 + c + ).

12. All expressions should be examined first for common factors,

for it often happens, after removing a common factor, that the form

of the resulting expression is such that some other process may be

then applied to simplify further the factors which may thus be

obtained.

Ex. 1. Factor 20 a^ + 15 «« + 10 a.

Observe that the monomial factor ba is found in every term, and that

this is all that is common to all of the terms.
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Using 5 a as a divisor, th& quotient obtained is 4 a^ + 3 a + 2.

Hence 20 a^ + 15 a^ + 10 a = 5 a{4a^ + 3 a + 2). Check. Let a = 2.

160 + 60 -f. 20 = 10 (16 + 6 + 2)

240 = 240.

It appears that the factors of the given expression are 5, a, and the ex-

pression 4 a^ + 3 a -f 2.

Ex. 2. Factor 44 a%^ - 22 a%\
Since 22a^6^ is all that is common to both terms, we have

Check. Let a = 2, 6 = 1.

44a%^ - 22a36* = 22a%\2a -h). 44 • 16 - 22 • 8 = 22 • 8 (4 - 1)

528 = 528.

The different prime factors of the given expression are 2, 11, a, and 6, and

the binomial (2 a — h).

Exercise XII. 1

Obtain factors of the following expressions, verifying all results

by numerical checks :

1. ah + ac. 10. a^ + a.-^ + x\

2. bed + bee. 11. 5 a^b'' + 3 ^^^ - 4 a''b\

3. 3ic + 3y+32;. 12. Ix'-Ua? + 2\x\

4. ^xij ^- \2zy + ZOwy. 13. 9a^c + ISac^ — 9ac.

5. 14ic + 14. 14. ^a'^bc + ^ab'^c + 3abc\

6. 4 a;» + 4 if''. 15. mhi" - 3 m^/i^* - mhi\

7. 5 a' - 6 a6. 16. a^b'' - b\ ~ b^'d^ + i^.

8. 9a;^ - 3x. 17. 5a^c^ + lOac^e - 5ar/.

9. 8 a'^^ - 8 ab\ 18. 14 a^/^'^ + 28 a^b"" - 7 a2<^«.

19. 20*^=^V + 25rtm*= - 3()rt'(^'c^

20. 38 xY + 57 a-Y - 19 x\

21. 34 a^b^ - 51 a«/^o + 85 a^bc\

22. 32 icY;?'' - 48 xfz^ + 64 xYz.
23. 77 w^;^r — 99 m^n + 88 wrs^

24. 13 a^gx^ +15 tt^V — 2 aVic — 9 agx.

25. a^^c^c^ + a^/^c^^^ + a'b'cd' + a^^Vc^.

26. xYz^ + xYz^ + xY^""'

27. a%''cH^ -^ ab^'c^'d^ + ah''c'd\

28. 3 icy;^ - 6 xifz'' + 3 xY""-

29. ffa!'"3r - ^a;"^/'" + C£c'"y'" - ^/a-"*?/"*.

30. a'"+^6'"+^c'" — a'"6"*+^c'"+^ + a"'+^6"*c"^+\
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13. If all of the terms of a given expression do not contain a

common factor, it may be possible to so arrange them in groups

that there shall be

Groups of Terms Having a Common Factor

The process for factoring such expressions may be obtained by

applying the converse of the law of distribution for multiplication.

Consider the identity

(a + b){x \-y-{-z) = {a + b)x+{a-\- h)y + (a + b)z

= ax + bx-]-ai/ + bi/ + az-\- bz.

By reversing the steps in this process the last expression, which

consists of a chain of additions, may be transformed into the origi-

nal expression, which is the product of two factors.

14. The complete distributed product of the sum of two terms, a and 6,

multiplied by the sum of three other terms, x, y, and z, different from the

first, will contain 2 x 3 or 6 terms, ax, bx^ ay, by, az and bz.

Consequently, when factoring ax -{ bx + ay -}- by -{- az -\- bz, we may re-

verse the process,.and when seeking groups of terms which have common
factors, we may look for either three groups of two terms each or two

groups of three terms each.

Ex. 1. Factor (a^ + 2)(m - n) - (3 a^ - 6)(m - n).

Since the factor m — n occurs in both terms we may add with respect

to m — n as a summand, and obtain

(a2 -f 2)(m - 7i) - (3 a2 - 6)(m - n) = (a^ + 2 - 3 a^ + 6)(m - n)

= (2 -2a^ + b)(m-n).

Check. Let a = 2, b = 2, m = 5, and n = 4.

(4 + 2) (5 - 4) - (12 _ 3) (5 - 4) = (2 - 8 + 3) (5 - 4)

- 3 = - 3.

Ex. 2. Factor ax - bay i- 2bx - 10 by.

There is no monomial factor common to all of the terms, but there are

groups of terms which have common monomial factors.

Since the expression contains four terms, we may expect to find that it

can be separated into a product of two factors, each of which contains two
terms.

The factor a is found to be common to the two terms ax and — 5 ay,

and the factor 2 6 is common to the two terms 2 bx and — 10 by.
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Separating the monomial factors, a and 2 b, by division, from the terms

containing them, we obtain

ax — 5 ay + 2bx — lOhj — a(x — 5y) + 2h(x — b y).

The binomial factor x — by is common to the terms a{x — by) and

2b{x-by).
Hence, using a; — 5 ?/ as a divisor, the expression a(x — by) -{-^bi^x — by)

may be written in the form (a + 2 b){x — by).

The work may be arranged as follows :

ax — bay -\-2bx — 10 by = a{x — bij) + 2b{x — by) Check.

Let a = 2, 6 = 3, a; = 6, 2/ = 1.

= (a + 2b)(x -by). 12 - 10 + 36 - 30 = 8 • 1

8 = 8.

The same result can be obtained by grouping the terms ax and 2 bx, and

also — bay and — 10 by.

The student should carry out the work with this grouping.

15. It should be remembered that an e.rpression is not factored,

unless it is ivritten as a single product, not as the sum of several

products separated, by + or — signs.

Thus, in the example above, the given expression is not factored

when written in the form a(x — o ?/) + 2 b(x — 5 ?/), though certain

groups of its terms are factored.

Ex. 3. Factor a* + a^ + a + 1.

We have a* -i-
a^

-}- a -i- I = a^ (a + I) + (a + I) Check, a = 2.

= (a2 + l)(a +1). 8 + 4 + 2 + 1 = 5-3
15 = 15.

The student should group the terms a* and a, and also a^ and 1, and

obtain the same result.

16. It often happens that an expression contains groups of factors

which differ only in sign.

Ex. 4. Factor x^a - 1) - ^/^(l - a).

Since 1 — a = — (a — 1), we may transform the expression so that both

groups of terms shall contain the common factor a — 1 ; we do this by

writing

z^(a - 1) - 2/2(1 -a) = x^(a - 1) + y^(a - 1) Check.

= (x2 + 2/2)(a-l). Letx = 2,a = 3,y = 4.

4 . 2 - 16 (- 2) = 20 • 2

40 = 40.
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Exercise XII. 2

Obtain factors of the following expressions, checking all results

numerically :

1. ac + ad+ be + bd. 8. a"^ — a^ + a — 1.

2. xi/ + onv — yz — zw. 9. ^* + 4 ?/^ + 2 y + 8.

3. bs — st — be + et 10. m^ — m — a + am.

4. m* — 2 7W^ — 3 7rt + 6. n. 1 + X + y + xy.

5. a' — la'^ — Sa -f 21. 12. a^ + abm — 4cab — 4^mb\

G. 2 w + 3 7WW 4- 3 /? 4- 2 7W^. 13. 6 ar* + 3 a-y — 2 a« — ^j/.

7. ar' — 4ic + a-y — 4^^. 14. 3a*— 15a + 106 — 2a*6.

15. oa; + a^ + 6aj + 6y + ca; + cy.

16. by — b — ey + c — dy + c?.

17. wa; — my + mz — nx + ny — nz.

18. 2mn — 2ny ^ mx -\- xy + 2n^ — nx.

19. 216 — 5a + 3a6- 2ac— 14c — 35.

20. icz + x — 5yz — 5y — Qz — Q.

21. ax -\- ay — bx — by •\- bz — az.

22. ax — bx -\- X — ay + by — y,

23. ca; — <?a; + cy — dy + C2; — (f^;.

24. aw — 6;i + aw — 6w + cw + cw.

25. a6a; + bex + caa; + a6y + bey + cay.

26. 8 aa: + 15 6y + 12 6aj 4- 10 ay.

27. a^c + b\ + aH 4- 6V + ah + 6^c.

28. ax 4- 6y 4- ay + 62; 4- a;:; 4- 6a; + ca; 4- cy 4- cz.

29. of— bg -\- ch -{- ag — bh -\- cf+ ah — bf \- eg.

30. ar + 6s — c^ 4- a5 4- 6^ — cr 4- a# 4- 6/- — C5.

17. Any identity obtained by the process of multiplication may,

by being "read backward," be used as a model form to give a

factorization.

Type I. Trinomial Squares

18. From Theorems I and II, Chapter VII. §§ 18, 19, we obtain

a^ ± 2 a& 4- 6' = (a ± h)\

The type expression «^ ± 2 a6 4- 6^ consists of two squares, a^

and 6^, having positive signs ; the remaining term ± 2 a6 is double
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the product of the numbers a and 6, whose squares are represented

by a^ and IP:

The sign of the middle term ± 2a6 is positive or negative

according as the signs of a and h are the same or different.

19. The student should become familiar with expressions of the

type a^ ± 2 a6 + h^, and should be able, when any two of the three

terms a^, ± 2 a6, or IP are given, to supply the third term which is

necessary to make the expression a trinomial square.

Ex. 1. Supply the term which is necessary to make a^ + ( ) + 25

a trinomial square.

Assuming that a^ and 25 are the first and third terms respectively of a

trinomial square of the form a^db 2aA + 6^, it appears that the missing

middle term + ( ), represented by ± 2 a6, may be obtained by finding ±
double tlie product of the square roots, a and 5, of the first and third terms

a^ and 25 respectively ; that is, the missing term is ± 2 • a • 5 = ± 1<^«-

Since the missing middle term is assumed to be positive, the required

trinomial square is a^ -f 10 a + 25.

Mental Exercise XII. 3

Find the terms which if supplied will make the following expres-

sions trinomial squares :

1. a^ + ( ) + 9. 17. 9t«^'-( ) + 9.

2. c^ + ( ) + 64. 18. 16a'-( )+ 16.

3. c?2 + ( ) + 100. 19. 6^ + ( ) + c\

4. ar^ - ( ) 4- 16. 20. a^ - ( ) + ^.

5. / - ( ) + 49. 21. 4^- ( )^x^.

^. z^-{ ) + 81. 22. 9A2-( )+F.
7. <f + ( ) + 121. 23. a;2+ ( ) + 4/.

8. e^— ( ) + 144. 24. /-( ) + 64;.«.

9. 4fl' + ( )+ 1. 25. ;2' -
( ) + 81 w\

10. 9 6^ 4- ( ) + 1. 26. 1 + ( ) + x\

11. 16 6-2+
( )^ 1^ 27. l-( )+/.

12. se^/'-C ) + 1. 28. 1 - ( ) + 169a^

13. 25/ -( )+ 1. 29. 1 - ( ) + 196 6^.

14. 9aj^ + ( ) + 4. 30. 4a' + ( ) + 9w^.

15. 16/ + ( ) + 25. 31. 1 + ( ) + 121 e.

16. 49 52-( ) + 4. 32. 1 - ( ) + 225 d\
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33. 1 + ( ) + 256 k\

34. 16 6^+ ( ) + 25 c^

35. ^d'-{ ) + l^k\

25a;'+( ) + 64/.
49.y2+( ) + 16/.

36 tf2 - ( ) + 4 b''.

64^^-( )+i)c\
49ic'' + ( ) + 49/.

36.

37.

38.

39.

40.

41. 81rt'2+ ( )_^ 25 6=*.

42. 121 a^* - ( ) + Ub\
43. 9c?'»+ ( ) + \(di)m\

44. 4/+ ( ) + 169;^=*.

45. Slc^- ( ) + \2\w\
46. \mh^- { ) + UqK
47. 225 r' - ( ) + 36 v\

48. 25 s' — ( ) + 256 1\

49. 196»2+ ( ) + 25 r'*.

Ex. 50. «^+ 2a6+ ( ).

In order that 2 aft shall be the middle term of a trinomial square of which

one of the terms is a^, the term supplied must be the square of the quotient

obtained by dividing 2 ah by two times the square root, a, of the term a^.

From 2 «6 -^ 2 a we obtain 6, which is accordingly the term whose square

fc2 is require<l.

Hence the desired trinomial square is a^ -f 2 oft + 6^.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

20.

terms

c2+2c</4-( ).

).

)•

)•

).

)•

).

).

).

a^H- 2ac+ (

6^ + 2^ + (

c^ - 2 rA' + (

<^^+ 4t/+ (

aj*+ 6a;+ (

/+102/+(
/-14y+(

a^ — 2la+ (

4«2+ 12a + (

9 6^ + 18 6 + (

25c2+ 40c + (

49c?2 — 28<^+ (

( ) + 2w+ 1.

) + 2i«+ 1.

) + 42^+1.

) + 10;^+ 1.

).

).

)•

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82-

83.

84.

85.

86.

(

(

(

Before attempting to factor a trinomial in which two of the

are squares, the student should examine the middle term to

+ 16«^;+ 1.

+ ^a + a\

+ 12 c + c\

- 14 c? + d\

+ 2ak-\- k\

+ 2 mn + 71^

-2ay + y\
-A:az + z\

- 10% + /.

+ 126 + 4^2.

+ 20c + 4c^

-42«6 + 96^.

+ 96«y + 64/.
-90 6/? + 81/^^.

- 66 ca; + 9 x^.

+ 120 aw + 2b w\
- 130%+ 25/.
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find whether or not it satisfies the conditions for a trinomial

square.

Ex. 1. Factor a:^ + 10 a; + 25.

Two of the terms, x^ and 25 are positive squares, and to be a trinomial

square the remaining or " middle term " should be double the product of

the square roots of these terms, x and 5, that is 2(a:)(5) = 10 ar.

Since the middle term is 10 a:, we may write

Check. Let a: = 2.

ar2 + lOx + 25 = (a: + 5)2. 4 + 20 + 25 = 7^

49 = 49.

Ex. 2. Factor 49 ar^ _ 28 ary + 4 y\

We find that the terms 49x2 and 4i/2are the squares of Tx and of 2y
respectively. The remaining term — 28 xy is double the product of these

terms 7x and — 2y.

Hence we have Check. Let x — %y — ^.

49a;2_28a;2/ + 4i/=(7a;-2 2/)2. 196-168 + 36= 8^

64 = 64.

Ex. 3. Factor 72 a:»i/« _ 81 a;* - 16 1/«.

The expression should be placed in "minus parentheses," because the

squares 81a:* and 16y* should appear as positive numbers to satisfy the

type expression a^ ± 2 ah + ly^.

Accordingly, 72 a:*/ - 81 x« - 16/ = - [81 a:« - 72 x^f + 16 !/«]

= - [(9 a;8)2 - 72 x^f + (4 y^Y\
= _(9x«-4i/«)2.

Check. x — %y—\.
576 - 5184 - 16 = - (72 - 4)2

_ 4624 = - 4624.

Exercise XII. 4

Factor the following expressions, verifying all results by numerical

checks :

8. y'-\-^h^ 16.

9. c2+ 12c + 36.

10. 6?=*- 18 c? + 81.

11. 25 + \^a-\-a\

12. 49- 14?/ + y.

13. 64- 16;^ + ;^'.

14 100 + 20^ + ^"^

13

1. a;2+ 2ic+ 1.

2. ?w2-2w+ 1.

3. z^ — 1zw->r w\
4. a''-^2ak + k\

5. r^ — 2rv + v\

6. q^-2qx-\- x\

7. a" \- \a-\- 4.
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15. 4a' + 4a + 1. 32. 2566'^+ 96 c^ + 9cP.

16. 9 ^' + 6 ?> + 1. 33. 64 a%^ + 80 a6c + 25 c^

17. 36 c^ + 12 c + 1. 34. 16 a;* - 56 xijz + 49 y^z\

18. 81 w''— 18w+ 1. 35. 4c'»— 36(^« + 81c?V.

19. 16 a'^ + 24 aft + 9 h\ 36. 25 a'^ft' + 40 abed + 16 cW
20. 9 c' + 30 cfl? + 25 cT*. 37. 36 aV — 84 aftar^ + 49 by.
21. 25F + 70X-ir + 49 w\ 38. 9 by + 48 ftcys + 64 c'z'.

22. 121 5'^ + 44 5^ 4- 4 1\ 39. 49 ay + 42 ahxy + 9 ftV.

23. 49 A^ - 140 ^^ + 100 /. 40. 4 ah"" - 20 acmz H- 25 c2»2^

24. 16 g^ + 72 ^w 4- 81 w^ 41. 25 a'ftV - 60 abed + 36 <^.

25. 121 k^ - 242 ^.<? + 121 5*. 42. 81 a;* + 180 xijzw + 100fzV.
26. 36 m- + 108 ww + 81 ?i\ 43. (a; + 3^)2 + 2 (a; + 3/) + 1.

27. 81 ^ - 126 de + 49 e". 44. (a - bf - 2 (a - b) + 1.

28. 64^2 + 320 ^m; + 400 m;^ 45. (m + n^ + 6 (w + w) + 9.

29. 225 r* — 120 rs + 16 s^. 46. [x - yf + io(x — y) + 25.

30. 169 f - 260 ^m; + 100 w\ 47. 16 + 8 (a + 6) + (a + 6)*.

31. 100 a'' - 280 a6 + 196 ft'*. 48. 36 - 12 (a - a;) + (a - a;)^

49. (a + ft)« + 2(a + ft)(a; + y) + (a: + yf.

50. (a - ft)2 - 2 (a - ft)(a; - y) -\- (x - yy.

51. (ft + c)' - 8 (ft + c)(x + y) + 16 (a; + yy.

52. 9 (a + ft)' + 12 (a + ft)(c + </) + 4 (c + <?)'.

53. 49 (d + ky —70(d + k)(m -\- w) + 25 (m + wy.

21. If an expression has the form of a trinomial square,

a' ± 2 aft 4- ft', we shall call the "middle term," represented by

± 2 aft, the finder term.

The finder term, ± 2 aft, of an integral rational trinomial square

a' ± 2 aft + ft', contains as factors the terms a and ± ft of the bi-

nomial a ± ft of which the trinomial is the square.

We may often, by using some particular term as a finder term,

select from a set of four or more terms a group of three terms, which

takan together form a trinomial square.

Ex. 1. Factor a:^ + ?/' - 2 a: + 2 a:?/ + 1 - 2 y.

Since there are three separate squares, cc^, y'^ and 1, and three terms, 2 ary,

— 2 a; and — 2 1/, each having a coefficient 2, we are led to suspect the exist-

ence of one or more trinomial squares among the terms of the given ex-

pression.
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"We may group x'\ y^, and 2 xy, since the product of the square roots x

and y of x^ and y^ is doubled to form the " finder term " 2 xy.

We may write,

x^-\-y^ -2x + 2xy + l -2y = x^ + 2xy ^y"^ -2x -2y + l

= (x-hyy-2x-2y + l.

Since (x -\- y)^ and 1 are squares, we may look for tioice the product of

their square roots, (x + y') and 1, that is, for 2{x -\- y).

This product is obtained by writing — 2 a; — 2 i/ in the form — 2(x -{- y).

Accordingly (x -\- yY — 2x — 2y + I may be written as (x + y}'^ —
2 (x + i/) + 1, which is the square of x -\- y — 1. Check.

Hence, x^-\-y^ — 2x + 2xy + l—2y = (x + y — iy. Let a: = 2, y = 3.

4 + 9-4+ 12 +1-6= (2 + 3- 1)2.

16= 16.

We may obtain the same result by grouping either x^, — 2x and 1, or

y% — 2y and 1

.

That hx^ + v^-2x + 9^y+i-2v = \
'''^'' ^"^ - ^Y + ^ 0) + 0)'

ltiati8,ar +y Zx + 2xy-\-l 22/_| ^^ (^ _ i)2 + 2 (?) + (])2

= (x + y-l)2.

The student should carry out the solutions as suggested above.

Ex. 2. Factor m^ + 2 mu -\-u^ + 2mz + 2 nz + z^.

The terms may be grouped in any one of the ways (1), (2), or (3) as

suggested below

:

{ (1) 7/i2 + 2wm+ n2withthecor- ( (1) + 2(m + n)2! leaving ( (\)+zK

^ (2) m2 + 2ms+22 responding -^ (2) + 2(w+ «)w the }(2)+rA

( (3) 71^ + 2 wxj + z^ groups ( (3) + 2(u-{-z)m squares ( (3) + m^.

Of these three possible arrangements, we will use the first,

(1) m^ + 2mn + n^ + 2(w + n)z + z^= (m + n)^ + 2(m + n)z + z^

= [(m + n) + 2^ Check.

= [?7i + n + zf. Let m = 2,

?i = 3, 2! = 1.

4 + 12 + 9 + 4 + 6+1 = (2 + 3 +1)2
36 = 36.

The student should show that the adoption of either of the arrangements

of the terms, (2) or (3), leads to the same result.

Exercise XIL 5

Obtain factors of the following expressions, checking all results

numerically :

1. a^ + 2ab + h'' + 2a + 2b + I.

10 m + 10/2 + 25.
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3. a^ + b^ + x" -\- 2ab + 2ax + 26a;.

4. ar^+ 6a;^+ 9/+ 2a;+ 6y + 1.

5. c^ + d^ -{- e^ - 2cd — 2c€ + 2de,

6. c'^ + cT* + 4 — 2 cfi? + 4 c - 4(/.

7. ar^ + 3/' + i;=^+ 22a; — 2;jy-2a:iy.

8. 4a^ + 6^+ 1 + 4tf6 + 4a + 26.

9. 9a*+ 46* + c''- 12a6-6ac + 46c.

10. a{a + 2X') + w(m; + 2a) + A*(X^ + 2w),

11. 6(6 + 2 c) + c(c + 2 (/) + c?(fl? + 2 6).

12. a{a — 2 6) + 6(6 + 2 c) + c(c — 2 a).

13. {x" + 2yc) + (/ + 2a;y) + {z'' + 2a;2).

14. a^ + }/+ c"- 2(ah - ac + be).

15. ^it^-\-y^-\-^2^+2{2xy -(ixz-^yz).

Type II. The Difference of Two Squares
a;' -2/2

22. From the converse of the identity in Chap. VII. § 20, we have

a^ — y'^ = {x-{-y){x— y).

0r, the difference of the squares of two numbers may be written

as the product of the sum and difference of the numbers.

Ex. 1. Factor 64 a:2 - 9.

Since 64 x^ is the square of 8 ar, and 9 is the square of 3, we may write as

factors of 64 a:^ — 9 the product of the sum 8 x + 3 and the difference 8 a; — 3

of these same numbers.
Check. Let a: = 2.

That is, 64a:2 - 9 = (8 ar + 3)(8a: _ 3). 256 - 9 = 19 . 13

247 = 247.

Ex. 2. Factor lOOa^ftV _ 25 dK

The terms of the binomial quotient 4 a*h\^ — d^y obtained by dividing

the terms of the given expression by the common numerical factor 25, are

squares.

Hence, the binomial difference, 4 a*6V — d"^, may be expressed as the

product of the sum 2 a%(^ + d, multiplied by the difference 2 a%c^ — d.

Hence, we have 100 a^ly^c* _ 25 c?2 = 25 [4 a*hh^ - d^
= 25 (2 a%c^ + d)(2 a%c^ - d).

Check. Let a = 3, 6 = 2, c = I, fZ = 4.

32000 = 32000.



INTEGRAL FACTORS 197

Mental Exercise XII. 6

Factor each of the following expressions :

1. a" — 4. 29. 289 «V _ 49 ^y.
2. ^2 - 16. 30. 324a27i=^ - 64 cW.
3. c' -- 25. 31. 121 a;' - 1.

4. ^2_49. 32. 64 a;**- 9.

5. ^"-81. 33. 25/- 16.

6. 25 -a;'*. 34. 36si°-49.

7. 36-?/'^. 35. 64F=^- 100.

8. 64-;^=^. 36. 81 -121 a".

9. 81a''- 1. 37. 1446^- 121c*.

10. 49Z»2-1. 38. Ua'-UhK
1 1. 100 a" - b\ 39. 49 x^ - 36 t/^^

12. 4 c'^ - 25 d\ 40. 9 a''' - 25.

13. 9 7^— 162^^. 41. a;^"* — 64/'".

14 16 ^'^ - 49 t\ 42. 49 a"' - 100 U^K

15. 25 ^2 - 64 m\ 43. 180 a**" - 121 7i^.

16. 1 — 121 n\ 44. 64 a^*" — 49 r\

17. 1-169 P. 45. a;^^- 1.

18. 144 ^2 - 25 f. 46. 4 «2/^V - 1.

19. 9 A* - 100 q". 47. 9 a;y;j2 - 1.

20. 64 a^h^ — 25. 48. 16 a^^^c^ — (P.

21. 49 a;y - 64. 49. 25 a^%'c^ - d^e\

22. 81 - 36 mV. 50. twV" - 1.

23. 36 - 81 c't^. 51. rV - if''.

24. 25p^ - 144 a;V: 52. a^* — b^''.

25. 100 a''^;* - 81 c^d\ 53. 4 x''' - 1.

26. 196 ar*/ - 100 2W. 54. 9 a""^ - ^>^

27. 169 aV - 225 6W 55. 16 a;'" - f.
28. 256 a^d^ - 144 ^>V. 56. 4 a*" - 9.

23. The difference of the squares of either binomials or polynomials

may be factored by applying the method under consideration.
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Ex. 1. Factor (a + b)- - (c + d^.

We have

(a + by - (c + dy = [{a + h) + (c + d)][(a + ?>) - (c + (^)]

= [a + 6 + c + rf][a + 6 - c - d].

Check. Let a=zb = 3, c = d = 2.

36 - 16 = 10 X 2.

20 = 20.

Ex. 2. Factor (x - yY - (m - n)^.

We have

(x _ yy - {in - n)2 = [(x - y) + (m - ?i)][(x - i/) _ (m - ?i)]

= [x — ?/ + wi — ?j] [x — y — m + w].

Check. Let x = 4, y = 2, w = 3, w = 2.

22 _ 12 _ 3 . 1

3 = 3.

Exercise XII. 7

Obtain factors of the following expressions, checking all results

numerically

:

1. {a + hf - 1. 15. 49 (a' + hf - 144 (a + b^.
2. (a + ^)' - 4 c^ 16. 16 \a^ + ^^* - 121 (a + 6)*.

3. \x-y\- zf - 1. 17. 64 (a + ^> + c)^ - 169 ^'.

4. (a + 6 — c)^ — 9^. 18. 121 (a — ^> + c)'— 225^2.

5. {a + by—{x-y-^zy. 19. 25(a-^+ c)^-81(ic-^-;^)2.

6. (a - 6)2 - (a; + ^ - zy. 20. 100 icV-* - 196 «' (6 + c)^.

7. (x-y- zy - (a + 6)^. 21. 121 a^ {b + c)^ - 81.

8. {a + b — cy-^d{x-yy. 22. im b^ {c + d)"" - l^& e\

9. 9 (a + ^)^ — 16 (^ + w)"- 23. 196 ic^ (y — ;s)'^ — 225 «/A

10. 9 (a - 6)^ - 49 (c - <^)2. 24. 36c*''((/-^)2- 121er2(7/ + ;^)'.

11. 4ar' — 49 (a + 6 + c)^. 25. lUa^(a + b + cy — 225 c?^.

12. 64 + ^)2 - 121 (k + r)2. 26. 64 ar^ (w - ny - 225 P^^
13. SQ(g — xy-Ud(h-yy. 27. 81a2(m+/j)'-256^/Xa^+^-^)2.

14. 225 (a + by- 225 (c + i)^.

24. Many polynomial expressions may be so transformed, by

suitably grouping the terms, as to appear as the difference of two

squares.

Ex. 1. Factor a^ + 2ah + h^ - c^ + 2 cd - d^.

The terms may be so grouped that the expression will appear as the

difference of two trinomial squares, as follows :
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a« + 2 a6 + 62 _ 0-2 + 2 cd - d^ = {0^ + 2ah -{-h'^) - {c^ - ^ cd + ^2)

= (a + 6)2 - {c - dy
= [((t + h) + {c - d)][(a + b) -{c - d)]

= [a + 6 + c - rf] [ft + 6 - c + rf].

Check. Let ft = 4, 6 = 3, c = 2, c? = 1.

16 + 24 + 9-4 + 4 -1 = 8-6
48 = 48.

Exercise XII. 8

Factor the following expressions, checking all results numerically ;

1. x'' + 2xi/ + f- z\ 13. 1 - a^ _ 2 ab - b\

2. m^ -\- 2 mil + ii^ — w^. 14. 1 — x^ — 2x}j — ?/.

3. a'-2a6 + ^'-/. ' 15. 4 - c^ - 2 c^ - i^.

4. c'-2cd-\- (P — k\ 16. ^-m^ ->r2mn — n\

5. a' + 2ab-{- b^ - 4.. 17. 25a-'- 10a/> + 6' - s^.

6. c'^ — 2 cc? + fl?2 - 9. 18. c^ — 18 c + 81 - (P,

7. a^ + 2a6 + ^/^^ - 1. 19. A' - 20A + 100 - F.

8. / — 2^A: + F — 4wl 20. 16a^ — 8«6 + 6^ - 16.

9. P -2kx + X''- 16/. 21. 49c?2 - Udr+r"" - 49.

10. a^+ 6a6 + 9 ^'^ - c''. 22. 81^ - 36/?a; + 4a;2 - 1.

11. cc'-lOa!^ -\-25f — z^ 23. 1 — 9^2 — 30a^ - 25^'.

12. w* - 12 w?« + 36 ?*' — ^''. 24. 49 a^ — 28 a6 + 4 6' — 9 c^.

25. 36 ^ + 60 fl?^ + 25 -s'^ — 121 w\
26. 64c2-48c/i + 9;*''- 16t;^

27. a'b'' + 28 a6 + 196 - 169 c\

28. cY — 24 c^ + 144 - 121 F.

29. a^-i-2ab + b^-c^-2cd- d\

30. c* - 2 cA + A' -

31. F+ 2/:w + w*

32. h^ — 2kt + t'-

33. 9a'' + 6a^ + ^2 - 6-2 - led -Ad^
34. a^ - lOaiij/ + 25/ — 36;52 — 122;^^; - w\
35. a'' - 14a^ + 49 6" - a;^ — Uxi/ — 64/.

36. 100^/2- 20^>G? + c?'-/+ 183/^-812;^

37. 48 a' — 3 b\ 41. ax^'t/ — axi/.

38. 7 a;' - 63 f. 42. a;' - / + a;;? + ?/;2^.

39. 45 - 125 a'6^ 43. x"" — f + x — 1/,

40. 28 a^y - 7 (c + c^)''. 44- a'6 - ab^ + «'/> + a6^

m' — 2mr--r\
-r^ + 2r5-•s\
n" + 2nij-f'
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25. An expression of the form x* ± hx-y^ + y/*, where h has

such a value that the trinomial is not a square, may be transformed

into one by adding a square represented by k'^x^y^^ and combining

the term thus introduced with ± kxhj\

By subtracting kVi/\ the value of the transformed expression

will become equal to that of the given expression, but will appear as

the difference of two squares, in which form it may be factored.

26. The value of the term Px^y\ used in making the transforma-

tion, is obtained by subtracting the given term ± hx^y^ of the ex-

pression ic* ± hx^y"^ -f y, which is not a trinomial square, from the

required middle term of the trinomial square of which aj* and y^ are

the first and third terms respectively.

Ex. 1. Factor ar* -f- 9 a:^ + 25.

If x* and 25 are the first and third terms of a trinomial square, the

middle term must be ± 10 x*.

Subtracting the given middle term, 9x*, of the expression x* -|- Ox'* + 25

which is not a trinomial square, from the required middle term ± 10 x^ of

the required trinomial square x* + 10 x^ -}- 25, we obtain x* and also — 1 9 x**.

Using the square x*, we may transform the given expression and obtain

its factors as follows :

X* + 9x2 + 25 = x* + 10x2 + 25 -x3 Check. Let x = 1.

= (x2 + 5)2 - x2 1 + 9 + 25 = 7 • 5

= (x2 + 5 + x)(x2 + 5-x). 35 = 35.

If, by adding and subtracting — 19 x^, the given trinomial had been so

transformed as to have a negative middle term, — 10 a;^^ the transformed

expression would have appeared as a sum (x* + 5)^ + 19x2, and in this

form would have had no " real " factors.

Ex. 2. Factor 9x* - l^xhf'^ + 16 j/*.

A trinomial square of which 9x* and 16 1/* are the first and third terms

must have for a middle term ± 2(3 x2)(4 y"^) = ± 24 x^y^.

Subtracting the given middle term —12x^y^ from the required middle

term ± 24x2j/2, we obtain 36x2|/2, and also - 12x2^2,

Using the square, 36 x^y^j we may transform the given expression and

obtain its factors as follows :

9x* - 12 xV + 167/ = 9x^ + 24x2|/2 + I6i/* - 36x2i/2 Check.

= (3x2 + 4y2)2 _ (6arj/)2 x = y=l.
= [3x2 ^ 4y'z + 6xi/][3x2 + 42/2 - 6xi/]. 13= 13.

The student should explain the reason for not using — 24x2j/2 as a "mid-

dle term " in the transformed trinomial above.
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Exercise XII. 9

Factor the following expressions, checking all results numerically:

1. X*' -f ar^/ + /. 13. 4 ic* — 8 xhf + y^

2. x^ + xY + /. 14. 9a;* + 3£cy + 4^^^

3. a;* + ic" + 1. 15. 9 ^^* - 21 F + 4.

4. a* — 7 a^ + 1. 16. 100 a* — 49 a^ + 4.

5. a;*+ 3ar^+ 36. 17. 36c*-40c2+ 9.

6. a*— 14«2+ 1. 18. 36m*+ 116 7wV+ 121 w*.

7. rt* + 9 a" + 25. 19. 25 + 9 m* + 26 m\
8. 4a;*— 13ar»+ 1. 20. 25a* + 101 rt'6' + 1216*.

9. 25a*- lla=^+ 1. 21. 49a;*+ 64?/*+ 87 a;y.

10. a;* — 13 xSf + A.y\ 22. 25 w* + 36 w* + 35 m^n\

11. a* + 24 a'b'' + 196 ^>*. 23. 25 a« + 81 6» + 41 a*6*.

12. 4 a* + 16 a^ + 25. 24. ix^^ — 34 a^y + 81 /'.

TYPE III. Trinomials of the Type ic'^ + sx + p
27. From the distributive law for multiplication, we have

{x + a)(x + 6) = ar* + (a + b)x + ah.

By comparing this result with the type expression, it appears

that the coefficient, a + 6, of a; corresponds to the coefficient s in

the t)rpe expression, and the constant term ab corresponds to the

term p.

Hence, reading the identity backward, the necessary and suffi-

cient conditions that the trinomial x^ -^ sx + p may be factored,

are that the first term should be a positive square with the coeffi-

cient 1, and that the coefficient, 5, of x should be the sum of two

numbers whose product is the constant term p.

28. To factor trinomials of the type x^ + sx + jo, examine first

the product term p^ and separating it into pairs of factors^ select

that pair whose sum is the coefficient^ s, of x.

Then write two binomial factors, each having x for a first term^

andfor a second term erne of the factors of the pair whose sum is s.

Ex. 1. Factor a:^ + 7 a; + 12.

This expression is of the type x^ + sx -{ p, because the first term, x\ is

positive, with the coefficient 1 ; the second term, 7 x, contains x to the first

power; and the third term, 12, is free from x.
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We find that the only possible pairs of integral factors of 12, whose

product is 12, are the numbers in vertical columns :

(12, 6, 4.

1 1, 2, 3.

7.

The sum of the factors 4 and 3 is 7, which is the coefficient of x in the

term 7 x. Check, x — % 4+ 14 4-12 = 6-5
Hence, we may write, a;^ + 7 x + 12 = (x + 4) (x + 3). 30 = 30.

29. Whenever the double signs ± and =F (read " plus or minus "

and " minus or plus " respectively) are used in algebra before num-

bers which are not separated by an equality sign, it is agreed that,

whenever we take the upper or lower sign of either double sign, we

must take the corresponding sign of the other double sign. (See

also Chap. XXII, § 12.)

We must never take the upper sign of one double sign and the

lower sign of the other in the same calculation.

T. ^ „ _ ^ < either 5 + 3-2 = 6,
E.g. 5 ±3^2 means-! ^^„ ^ /^

( or 5-3 + 2 = 4.

_, , .^ f neither 5 + 3 + 2 = 10,
But It means

^ k o « a
( nor 5 — 3 — 2 = 0.

Ex. 2. Factor a:« + 8 x - 20.

Comparing with the type expression x^ + sx + p, it appears that x^ + 8 x

— 20 satisfies the conditions for form, and that of any pair of factors of — 20

whose product is — 20, one factor must be positive and the other negative.

As possible pairs of integral factors of — 20, we have :

J ± 20, ± 10, ± 5.

IT 1,T 2, + 4.

± 8

The coefl&cient, 8, of x, of the term 8 x, is the sum of the factors 10 and

— 2, which are found in the second column. Check, x = 3.

Hence we may write, x*+ 8 x - 20 = (x + 10) (x - 2). 9 + 24 - 20 = 13 • 1

13=13.

Ex. 3. Factor x^ - 9 x + 14.

The expression x^ — 9 x + 14 is of the type x^ + sx + p, on condition

that — 9 is represented by s and 14 by j?.

Since the product term, 14, is positive, the signs of the factors of the pair

whose product is 14 and whose sum is — 9, must be like, and to produce

the sum — 9, these numbers must both be negative.
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Hence, the possible pairs of factors of 14, whose product is 14, are

5-14, -7.
}- 1, -2.

-9.

The sum of the factors — 7 and — 2 is — 9, which is the coefficient of x

in the term — 9 a;. Check, x =: 3.

Hence we may write, x^ — 9x+]4 = (x — 7)(z — 2). 9 — 27 + 14 = — 4 • 1

- 4 = - 4.

Ex. 4. Factor (a + 6)2 + 5 (« + 6) + 6.

This expression is of the type x^ + sa: + p, on condition that the binomial

a + 6 in the given expression is represented by x in the type expression.

Hence, we have,

(a + 6)2 + 5 (a + 6) + 6 = [{a + 6) + 2][(a + 6) + 2]

= (a + 6 + 3)(a + 6 + 2).

Check.

Let a = 6 = 2.

42 = 42.

30. If the sign of the coefficient of the highest power of the letter

with respect to which a given expression is to be factored is nega-

tive, we may, by placing the given expression in minus parentheses,

so transform it as to obtain an expression in which the coefficient of

the highest power is positive.

In this form it may be treated by the methods for factoring ex-

pressions of the form a^^ + so: + p.

Ex. 5. Factor 12 + 4 a: - x*.

We have 12 + 4a; - a:^ = - [x^ - 4a: - 12]

= - (x - 6)(x + 2) Check. Let x = 2.

= (6-x)(2 + x). 12 + 8-4 = 4.4
16 = 16.

Exercise XII. 10

Obtain factors of the following expressions, checking all results

numerically :

1. a^+3a + 2. 6. x'^ nx+ 18.

2. x'^+9x+ 14. 7. a^ — 12a; + 20.

3. a^'+la-h 10. 8. a^ - 15a + 26.

4. x^ + Sx+ 15. d. i^+ Ix- 18.

5. x'' + lOic + 24. 10. a^+ V2a- 45.
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11. ar»4- 5a;— 24. 32. c^H- 22c+ 112.

12. m^-^ dm + 8. 33. ar* + 14a; + 13.

13. a'* + 8a -9. 34. a;^ + 16a; + 55.

14. ar* — 9a; + 20. 35. f + Idi/ + 60.

36. z^+ 32 z+ 112.

37. (P- 13 c? -68.
38. s^+ 115- 180.

39. w^ +S5W+ 300.

40. ny^ -}- 5w — 300.

41. c^- 15 c -250.
42. «*^2 + dab + 20.

43. mH'^ — A.mn- 140.

44. 6V+.26 6C + 165.

45. c^/ + 36 aj + 320.

46. a''k^-\- 39aA: + 380.

47. a'm'^ — 3 am - 340.

48. (x + y)'' + 7 (a; + 3/) + 10.

49. {x-\-yy+n{x + y) + 28.

50. (a-6)2 + 13 (a - ^) + 42.

51. {x-yy+{x-y)-12.
52. {a~hy-l(a-h)- 18.

31. Certain expressions of the form x^ + saf* + ^, containing

only two powers of a particular letter, and one of the powers, a;^"*,

being the square of the other, a;"*, may be written in the form

(a.-'")'^ + ^(af) + p, and factored.

Ex. 1. Factor ar^o +6x5 + 8.

Since x^^ is the square of x^, we may write,

a;io ^ 6 z^ + 8 = {y^y + Q{x^) + 8 Check. Let a: = 1

.

= [x^ 4- 4)(a;5 + 2). 1 + 6 + 8 = 5-3

15 = 15.

Ex. 2. Factor x« + 6x8 - 27.

Observe that x* is the square of x*, and that the factors 9 and — 3 of — 27

produce by addition the coeflBcient, + 6, of x^.

Hence we may write, Check. Let x = 2.

x« + 6x«-27 = (x3 + 9)(x8-3). 64 + 48 - 27 = 17 • 5

85 = 85.

15. a;^+ 19a; + 18.

16. m^ — m- 110.

17. c^ + 10c - 39.

18. ar'— 11.T- 12.

19. a*-23rt + 60.

20. a''- 18 a + 32.

21. 7??^ + 3 m — 54.

22. ;w^+ 15 7W — 34.

23. a*+ 17 a + 42.

24. 0"+ 18a + 77.

25. a*+ 23a + 90.

26. a;^ — 25a;+ 100.

27. c* + 50 c + 600.

28. a^+ 17a -38.

29. c*-28c+ 75.

30. a* — 26a + 88.

31. c'' + 44 c — 45.
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Ex. 3. Factor 25 m^ + 15m + 2.

Observe that 25 m^ = (5 m)^, and that we may write

25m2 4-15m + 2 = (5m)2 + 3(5m) +2.

The expression (5 rri^) + 3 (5 w) + 2 is of the type x^ + sx + p ; 5m
corresponding to x, 3 to s, and 2 to the constant term p.

Hence, since the sum of the factors 2 and 1 of the constant term 2, is 3,

we may write

25 m^ + 15 m 4- 2 = (5 m)^ + 3(5 m) + 2

= (5 m + 2)(5m + l). Check. Let m = 2.

100+30 + 2 = 12 • 11,

132 = 132.

32. Expressions of the form x^ + sxi/ + py^^ which are homo-

geneous and of the second degree with reference to the letters x and

y, may be factored by the methods employed for factoring ^* + sx + p,

by separating the term py^ into two factors, each containing ?/, the

sum of which is the coefficient, s?/, of x in the term sxi/.

Ex. 4. Factor x^ -\-l4xy + 33 y^.

The term 33 y^ is the product of the factors II y and 3 y, the sum of which

is the coefficient, 14 1/, of x in tlie term 14 xy.

Check.

Hence we have x^ + 14 x?j + Z3 y^ = (x i- 11 y)(x + 3 y). x = 2,y = 3.

385 = 385.

Exercise XII. 11

Obtain factors of the following expressions, checking all results

numerically :

1. JB* + ISic** + 56. 12. 4:X^ + 20a; + 9.

2. «* +9a'+ 18. 13. 4/ -2Sij+ 13.

3. a"+ 19«»+ 90. 14. 9^^- 186 + 8.

4. b^+ 5b* + 6. 15. 25 c' - 35 c + 12.

5. ic^° + 22a^ + 40. 16. 49c?' + Ud- 3.

6. x^ + 2x^ - 15. 17. 16/^' + 40A + 9.

7. ««- 18a;«+ 72. 18. 8lP-45^- 14.

8. x""" + llic" + 30. 19. 36i»2 + 24.x — b.

9. x''"' - 14af" + 48. 20. 64/ - 80?/ - 11.

10. a;^'^ - 2 af - 35. 21. a" \-lbah-\- 26 ^j^.

11. 4a' + 16a + 7. 22. ar* — \2xij -\- 21if.
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23. P — 19 ^c + 34 c^. 27. x" ^2\xij — 46 y«.

24. x'-2lxy + Z^y\ 28. a" - 16ac - 57 c\

25. cr*- 12c</— 28fl?^. 29. ar* + lOiKj^ — 56/.
26. J»^ 4- 10 mn — 39 «^ 30. h^-Vdhk — 68 F.

TYPE IV. Trinomials of the Type aai^ + 6a5 + c

33. The expression ax^ + 6a; + c is called the general expression

of the second degree with reference to a single variable, jc, because by

assigning numerical values to a, b, and c, the expression ax^ -\- bx-\- c

may be made to represent any expression of the second degree with

reference to a single variable, x.

We will show two methods for factoring expressions of the type

an^ + bx + c.

34. First Method. A method for obtaining the factors of an

expression of the type ax"^ -\- bx + c may be obtained as follows :

If the expression ax^ -\- bx \- chQ assumed to be the product of

two binomial factors of the forms mx + n and m'x + «', the product

(mx + n){m'x + w'), which may be expressed as

'mm'x^ + {mn' + m'n)x + nn' must represent aa? -\- bx-\- c.

It should be observed that the term {mn' 4- m'n) x is the sum of

the two factors mn'x and m'nx of the product mm'nn'x'^^ obtained

by multiplying the term mm'x'^ by the term nn' which is free from x.

It follows that a given expression of the type ax"^ + bx + c can

be factored by inspection, provided that the product acx^ can be

separated into two factors of which the sum is bx.

To factor a trinomial expression of the type ax^ + bx + c, multiply

the term aoc^ by the term c, andfind two factors of the product ax'^c

(each containing x) of which the sum is the middle term bx.

The required factors of the trinomial expression may then be

obtained by grouping the te7'ms of the polynomial expression thus

obtained.

Ex. 1. Factor 4a^+l5a+ 14.

The product obtained by multiplying the term 4a2 by 14 is 56 a^; and

56 a^ is the product of two terms, 8 a and 7 a, of which the sum is the

middle term, 15 a.
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Hence we have,

4a2-f 15a + 14 = 4a2 + 8a + 7a + 14 Check, a = 2.

= 4 a (a + 2) + 7 (a + 2) 16 + 30 + 14 = 15 • 4

= (4 a + 7) (a + 2). 60 = 60.

Ex. 2. Factor 6 6« - 13 6 - 8.

Multiplying 6 b^ by — 8, we obtain — 48 6^ which is the product of the

factors 3 6 and — 16 6 of which the sum is the middle term, — 13 6.

Hence, we have,

662-13 6-8 = 6 62 + 36-16 6-8 Check. 6 = 2.

= 36(26 + l)-8 (26+ 1) 24 - 26 - 8 = - 2 • 5

= (3 6-8)(2 6 + l). -10 = -10.

35. Second or Trial Method. Certainexpressionsof the type

ax^ -\- bx + c may be factored by inspection as follows :

Separate the term ax^ into all possible pairs of factors^ each factor

containing x ; also separate c into all possible pairs offactors.

For the first terms ofthe required binomialfactors of ax^ -\- bx \- c,

use the factoids ofone of the pairs offactors whose product is ax^^ and

for the second terms of these binomial factors use the factors of one

of the pairs offactors whose product is c.

The different pairs offactms selected for first and second terms

of tJie required binomial factors must be so chosen that, when the bi-

nomials are arranged as multiplicand and multiplier^ the sum of

the cross products shall be the middle term bx of the expression

ax^ -^^ bx -\- c.

36. For convenience, when applying this method, we shall sup-

pose that a given expression of the type ax^ \- bx + c has been so

transformed that the number represented by a is positive. The

binomial factors may then be so chosen that their first terms will

be positive. Hence, when selecting the terms for these binomial

factors, it is necessary to consider only the signs of the second

terms.

37. If the third term, c, of an expression of the type ax^ -\- bx-{- c

be positive, the signs of any pair of factors of c must be like. Hence

the signs of the second terms of the required binomial factors are

the same, and must be like the sign of the middle term of the given

trinomial which is the sum of the cross products containing the fac-

tors of c.
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If the third term, c, be negative, the signs of any pair of its factors

must be unlike. Accordingly, the signs of the second terms of the

required binomial factors are unlike.

The signs of these second terms must be so taken that, when the

required binomial factors are used as multiplicand and multiplier,

the sign of the greater cross product is like the sign of the middle

term of the given trinomial.

Ex. 3. Factor Gx^ + 13 a: + 5.

This expression is of the type ax^ + fear + c, 6 corresponding to a, 13 to 6,

and 5 to c. The " trial " pairs of factors of 6 x* and 5 may be arranged as

follows:

For first terms of the

binomial factors,

3x.

2x.
we have

{'I

For second terms of the

binomial factors,

we have <

The first terms of the required binomial factors must be terras in the

same column,— that is, either 6 x and x, or 3 x and 2 x, respectively,— and

the second terms of the binomial factors must be 5 and 1.

We may now arrange the different pairs of factors, 6x and x, 3x and 2x,

as first terms of " trial " binomial factors, and 5 and 1 as second terms, as

follows

:

Selecting one pair Interchanging terms

of columns of second column

First Binomial. 6x + 5 6x + 1

Second Binomial.

First Binomial.

6 x2 + 1 1 X + 5.

Selecting a second

pair of columns

3x + 5

6 x2 + 31 X + 5.

Interchanging terras

of second column

3x + 1

Second Binomial. 2 x

6x2 ^ 13 X + 5.

2x + 5

6x2 + 17x + 5.

Examining the expressions resulting from the multiplications of the

different pairs of binomials above, we find that in the first expression of

the second row we have obtained the product Qx^ + 13x + 5, in which

the middle term 13xis the same as the middle term of the given expression.

Hence, we may write Check. Let x = 2.

24 + 26 + 5= U-5

55 = 55.
6x2+ I3x + 5 = (3x + 5)(2x+ 1).
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Ex. 4. Factor I2z^ + 8x- 15.

This expression is of the type ax^ -\- bx + c, 12 corresponding to a, 8 to 6,

and — 15 to c.

The sign of the constant term — 15 is minus, and accordingly the signs

of the second terms of the binomial factors must be unlike, one positive

and the other negative.

The "trial" pairs of factors of 12 a;^ and of— 15 may be arranged as

below, the double signs ± and =F being used to indicate that the factors of

— 15 are of opposite sign, one positive and the other negative

:

For first terms of the

binomial factors,

, ( 12x, Qx, 4x.
we have { '

'

( a:, 2 a;, 3 a;.

and For second terms of the

binomial factors,

± 15, ± 5.

=F 1, =F3.
we have

As in example 3, we may construct different " trial " binomial factors

by selecting combinations of first terms and second terms from among the

diff'erent columns above.

Since in all cases the products arising from the multiplications of the

first terms of the "trial" binomials as arranged below are 12 a;^, and the

products of the second terms are — 15, we have, for convenience, shown
only the cross-product terms.

With a given
1st column.

1st Binomial

2nd Binomial

Cross Product

With a second
Ist column.

1st Binomial

2nd Binomial

Cross Product

With a third
Ist column.

1st Binomial

2nd Binomial

Cross Product

Selecting Interchanging
a 2nd terms of
column. 2nd column.

New 2nd Interchanging

column.
terms of

2na column.

12a: db 15

XT 1

±'Sx

6x ± 15

2xT 1

±24 a;

4x± 15

3a: =F I,

±41 a:

12a: =F 1

a:± 15

± 179 a;

6a:± 1

2x± 15

±88 a;

4a:T 1

3a:± 15

±57a:

12a:± 5

a:=F3

=F31a;

6a:±5
2a:T3

4a:± 5

3a:T3

± 3 a:

12a:T3
a:±5

±57 a:

6a;=F3

2a:± 5

±24 a:

4a; T 3

3a: ±5
± 11a;

14
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The middle term, 8x, of the given expression 12x2 -f- 8ar — 15 jg ^he

cross-product, 8 X, which arises from the multiplication of the trial binomials

6a:-5
2a; + 3

+ 8x.

Hence we have, Check. Let a: = 2.

48 + 16 - 15 = 7 . 7

12x2 + 8x-15 = (6a:-5)(2a: + 3). 49^49.

38. It will not usually be necessary to write all possible com-

binations of trial binomial factors as in Ex. 4, above, since by

inspection we may perform the cross multiplications mentally, and

unsuitable combinations of terms may be rejected at once.

When constructing the different binomial factors, we should be

guided by the following

Principle : Ifno monomialfactor is common to all ofthe terms qfa
given expression^ there can be no monomialfactor common to the terms

ofany polynomialfactor of the given expression.

E. g. Since no monomial factor is common to all of the terms of the

expression 12x2 + 8x — 15 ^^^,^, g^. 4 § 37), it follows that such " trial
"

binomial factors as 12x ± li>, 12x =F 3, 6x ± 15, Cx =F 3, 3 x ± 15 and

3x =F 3 must be rejected.

Ex. 5. Factor 8 x^ - 10 x + 3.

Observe that, since the sign of the constant term 3 is +, and of the middle

term — lOx is —, the signs of the second terms of the binomial factors must

be like, and both —

.

The factors of 8 x^ and of 3 may be arranged for first terms and for second

terms of " trial " binomial factors as follows

:

First terms Second terms

First Binomial >ar, X> ^ ^•iJ^t — 3, —X*
Second Binomial ^J^^2x,X" —1, —^

Cancelling terms which we find cannot be used, we have finally,

8x2- 10x + 3 = (4x-3)(2x-l). Check. Let x = 2.

32 - 20 + 3 = 5 • 3

15=15.

39. Expressions of the form ax"^ + hxy + cy"^-, which are homo-

geneous and of the second degree with reference to two letters,
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X and y, may be factored by tbe methods employed for factoring

expressions of the type ax^ + hx + c.

When factoring such expressions it is necessary that each of the

factors of the term ax^ selected as the first terms of the required

binomial factors should contain x, and that each of the factors of

the term cif, selected as second terms, should contain y.

E.g. The expression 6 m^ + 25 m;i + lln^ may be expressed as the

product of tbe factors 3«t + 11 ?i and 2m + n.

Exercise XII. 12

Factor the following expressions, checking all results by making

numerical substitutions :

1. 3i«2+ 4a;+ 1. 26. Slj-^-Ub- 39.

2. 2 x^ + 5 ic + 2. 27. 7 a;'- 10a; + 3.

3. 5.^-^ + 26a5+ 5. 28. 30 6''-31c + 8.

4. 4.x' + lla;+ 7. 29. 56 a;' + 65 a; -9.
5. 3i«-^ + 8aj + 4. 30. 40?y'-|- 14?/ — 33.

6. 2a!' + 7a; + 3. 31. 7 a;' 4- 13 + 20a;.

7. lx^ + 33aj+20. 32. 28 a;' + 17 -48 a;.

8. 9a;'^+ 34a; + 21. 33. 48a;' -23a;- 13.

9. 10a''+ 19a; + 9. 34. 18 a;' + 37 a; + 19.

10. 6a;2 + 41a; + 30. 35. 20 a'- 17a-3.
11. 7ar^+ 13a;-2. 36. 8a'/>'+ 103 a/; -13.
12. 8a'-5«-3. 37. 17 aV — 69 aa; + 4.

13. 3a'-5«-22. 38. 20?7i'+ ldmn + S7i\

14. 6r*2~ 19a + 15. 39. 7 6' + 4:lbc-Gc\
15. 4a' + 8a -45. 40. 40 a;' -83 a;?/ + 42/.
IG. 18a;' + 9a; -4. 41. dx^ — ixy- 13/.

17. 2 a'- 15 a — 8. 42. 9 a;' + 55 a;?/ — 56?/'.

18. 11 a' -21 a + 10. 43. 6a'/>'+ 7a6c-5c'.

19. Ub^-b- 13. 44. 3(4ar*-21)-a;.

20. 13a' — 2? a + 2. 45. 13 7w'- (m+ 14).

21. 14 w' 4- 73 7W + 15. 46. 16 + w (l9?<;-34).

22. 14 a' — 33 a + 18. 47. h(2'2h- 19) — 15.

23. 54a'— 15a- 50. 48. b(l + 15 6) -16.
24. 36 w' + 27 m + 2. 49. 2(3?/'-28;s') + 41?/;r.

25. 30w'- 47 m- 5. 50. 7c (29c? + 14c) + 14^.
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Type V. Biuomial Sums and Differences of Like Powers

a»db6»

40. From §§ 55 - 58, Chap. VIII., we have the following principles:

(i.) The stun of the same odd powers of two numhei^s is equal

to the sum of tlie two given numbers multiplied by a polynomial
factor,

(ii.) The flifference of the same odd powers of two numbers is

equal to the difference of the two given numbers, multiplied by a
polynomial factor,

(iii.) The difference of the same even powers of two numbers is

eqtuil to the sum of the two given numbers, multiplied by a poly-
nomial factor, or is equal to the difference of the two given

numbers, multiplied by a polynomial factor.

The polynomial factors of binomial sums or differences of like

powers are formed according to the Law of Quotients. (See Chap.

VIII. § 59.)

Ex. 1. Factor m^ + 32.

To apply the principles of § 40, it is necessary that the terms of the

binomial be expre.ssed as like powers.

Since 32 may be expressed as 2^, it follows that m^ + 32 may be expressed

as m^ + 2^.

The binomial m^ + 2^ is the sum of the same odd powers, of m and 2

and hence by Principle (i.) the binomial sum w + 2 must be one of the

required factors.

Hence we have,

wi5 _|_ 26 = [m + 2] [m* - m8 • 2 + m2 . 22 - m • 28 + 2*]

That is, w6 + 32 = [m + 2] [m^ - 2 wi* + 4 m^ - 8 m + 16]. Check, m = 2.

64 = 64.

Ex. 2. Factor 125 a:«-/.

We may express 125x8 _ yZ ^g (Sx)' — y^, which is the difference of the

same odd powers of 5 x and y.

It follows from (ii.) that 5 x — y is one of the required factors of this

diflference.

Hence we have,

(bxy-y^ = {bx-y']l{bxy^ + (bx)y + y'^'] Check, x = 3, ^ = 2.

3375-8=13-259
That is, 125 x3 - y8 B [5 X - 2/] [25 x2 + 5 x?/ + y^\ 3367 = 3367.
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Ex. 3. Factor «« - 27 b^.

The binomial a^ — 27 b^ may be expressed as (a^y — (3 6)3 which is the

diflference of the same odd powei-s of a^ and 3 b.

By Principle (ii.), one of the factors of (a^y — (3 by is the binomial

difference a^ — 3b.

Hence we liave,
Check.

(a2)8 _ (3 6)8 = [a2 _ 3 b][(a'^y + «2 (3 5) _f. (3 j)2-] . a = 3, 6 = 2.

That is, a«-27 68 = [a^ - 3 b]la^ -\- 3 a% + 9 b^]. 513 = 513.

Ex. 4. Factor «« + 6«.

The binomial «• + 6*, which is the sum of the same even powers of

a and 6, may be expressed as {a^y + (6^)*j which is the sum of the same
odd powers of a^ and b^.

Considered as the sum of the same odd powers of a^ and b^, it follows

from Principle (i.) that one of the factors of (a^y + (b^y must be a^ + b^.

Hence we have,

(a2)8 + (b^y = [a2 + 62] [(a^y _ (a^) (^2) + (h^y] ciieck.

That is, a« 4- 6« = [a^ + 6^] [a* - a%^ + b*]. a = 2, b = I.

64 + 1 = 5(16-4+1)
65 = 65.

Exercise XII. 13

Factor the following expressions, checking all results numerically :

1. x^+ 1. 17. ««+ 729 ^^

2. a? + 8. 18. S2a^ — 2A3b\

3. 27r*'+ 1. 19. 8x^ + 21 y\

4. £c'- 1. 20. 32a^''+ 1.

5. a^ + 1. 21. 1728 -27/.
6. 32rt'+ 1. 22. 125a;«-8/.
7. c« — 64 (P. 23. 16 a* — 625 b*.

8. a:« - 64 y^ 24. 81 x^ — 2561/.

9. 81 a' — b\ 25. 8 c« + 343 ^8.

10. 125 + 21 a\ 26. 216^' + 129f.
11. a;^ — 2/1 27. c?" + 512 £c»

12.
«i' + 6^2. 28. 64a«+ 1.

13. 16a*- 1. 29. 128 a^- 1.

14. 1000 a;« — ?/*. 30. 1024 a^ + ^^

15. 343a»-^/«. 31. 3125 + c'.

16. w'' + 128. 32. 1296 - a\
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33. 2401 - x\ 37. o^ - 243/.

34. x^ — 216/. 38. 1000 7w» - z\

35. 64 a« + y. 39. 1728 a» - l}"".

36. / - 512 2*. 40. 3125 c« - 32 d^.

Polynomials of at Least the Third Deg^ree with Reference
to Souie Letter, a;

41. Consider the following product of binomials :

{x— a){x, — U){x —c)^^ — {a-\-b-\- c) x^ + (ab + ac + bc)x~- abc.

It will be seen that the first term, ^r*, is the product of the first

terms of the binomial factors, and that the last or constant term,

-- abcy is the product of the second terms, — a^ — b and — c, of the

binomial factors.

It may be seen that if two or more binomial factors of the form

X — a are multiplied together to form a product, the term of highest

degree with reference to x will be the product of the first terms of

the binomial factors, and that the constant term, which is the term

free from .r, will be the product of the second terms of all of the

binomial factors.

Hence, if binomialfactors of the form x — a exist for any given

integral polynomial whose highest power with reference to x has the

coefficient unity, we may discover their second terms among tJisfactors

of the term that is free from the letter of arrangement.

We may accordingly construct different ^^ triaV binomialfactors,

by icriting x minus each of these factors in tmm. Then we may
apply the Remainder Theorem to discover which of these ^' trial"

factors, if any, are factors of the given expression.

Ex.1. Factor x8- 6x2+ liar -6.

Since the expression is of the third degree with respect to ar, we shall look

for three binomial factors of the first degree with respect to x, having the

form X — a.

Since the term free from x, — 6, is negative, the signs of an odd number
of second terms of the binomial factors must be minus. Neglecting the

sign, the integral factors of 6 are 1,2, 3, and 6. We may assume as " trial

"

binomial factors, x— l.a: — 2, x — 3, and x — 6.

It may happen that, of the final set of three binomial factors selected,

two binomials may be sums instead of differences.
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Applying the Remainder Theorem, we find by trial that a: — 6 is not a

factor of the given expression.

It will be convenient to use the method of synthetic division as below

:

1 _6 +11 - 6 )+6
+ 6 + +66

1 +0 +11, +60

The remainder is 60. Hence the division is not exact.

By trial, we find that the remaining factors are contained exactly as

divisors in the given expressio- Hence, we may write

ars _ 6a;2 + 11 X - 6 = (x - 1) (ic - 2) (a; - 3). Check. Let x = 4.

64-96+ 44~6 = 3-2-l

6 = 6.

42. After having found one factor of a given expression, it will

often be possible to save work by dividing the expression by this

factor, and then examining the quotient for the remaining factors

of the given expression.

Ex. 2. Factora:« + 6a:2-a:-30.

The second terms of such binomial factors of the form a; — a as may exist

will be found among the integral factors of — 30, Since the expression is

of the third degree with reference to x, we may expect to find three bino-

mial factors.

The integral factors of 30 are 1, 2, 3, 5, 6, 10, 15, and 30. Since 30 is

negative, at least an odd number of the factors of 30, selected for second

terms of the required binomial factors, must have minus signs. We may
assume as " trial " binomial factors a; — 1, x — 2, a; — 3, a; — 5, a; — 6, a; — 10,

a; - 15, and x - 30.

Applying the Remainder Theorem, we find that a; — 2 is a factor of the

given expression. Since x — 2 is a factor of the given expression, the quo-

tient obtained by dividing the expression by x — 2 must be the product of

the remaining factors.

When dividing the expression x^ + 6 x^ — x — 30 by x — 2 it will be

found convenient to apply the method of synthetic division, as shown

below : 1+6-1 -30 )_2

+ 2 + 16 +30
1-1-8+15,

By using the coefficients 1, 8 and 15 and supplying the proper powers

of X we may immediately construct the desired quotient x^ + 8x + 15,
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Hence we may write

a:8 + 6x2 - a; - 30 = (a; - 2)(x^ + 8x+ 15).

The trinomial factor x^ + 8 a; + 15 is the product of the binomial factors

X + 3 and x + 5.

Hence we have finally, Check. Let a; = 3.

a:8+ 6x=*-a;-30= (x-2)(x+ 3)(x + 5). 27 + 54-3-30=1 -6 -8

48 = 48.

Exercise XII. 14

Obtain factors of the following expressions, checking all results

numerically :

1. x''^ 6a;^+ lla;+ 6. 11. a* + 4 a;^ - 28 a; + 32.

2. a;»4-8ar'+ 17aj4- 10. 12. iB« - Ux^ + 51 a; -54.
B. a^-\- 8a;^+ 19a; + 12. 13. x^ - ISa;^ + 87a; - 70.

4. x^+ na^+ 34a;+ 24. 14. a;« — lOa;^— 17a;+ 66.

5. a;«+ 10a;^+ 31 a; + 30. 15. a;« - 11 a^ + 55a;- 39.

6. a;«+ 8ar»+5a;- 14. 16. a;» - 3 ar^ - 34 a; - 48.

7. a;» + 3a;2- 13a;- 15. 17. a;« + 13a;' + 54a; + 72.

8. x^' + x''- 22 a; - 40. 18. a;» - 13 a;^ + 55 a; - 75.

9. X* — 2x^ — 29a; — 42. 19. a;* - 3a;2 — 24a; + 80.

10. a;^ — 27 a; — 54. 20. a;* + 66 a;' + 129 x + 64.

Determine by the Remainder Theorem whether or not a; + 2 is a

factor of each of the following expressions :

21. x^-{- 4a;'' + 2a; + 4. 27. x^ — 10a;2+ 27a;- 18.

22. a;* — a;' - 5a; + 2. 28. a;^ + lOa;' + 29a; + 20.

23. a;« - 2a;2 + 4a; - 6. 29. x(x^ - 9) - 2(3a;' - 7).

24. a;« + 2 a;2 - 29 a; - 30. 30. x(x^ - 10) - S{x^ - 8).

25. x^ + Sx^+ 3a; + 2. 31. a;«+ 6a;2-a;- 18.

26. a;^ + a;*'' — 10a; +8. 32. a;^ - 25 a; 4- ar' - 46.

Suggestions Relating to Methods

43. Although no rules can be given which will apply in all cases,

the student will find that the following general directions will serve

to systematize the work when factoring a given expression :

(1) Eemave all monomial factors which are common to all of the

terms of a given e.rpression.

(2) Examine the resulting expression and determine whether or
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not it can he simplified hy applying one or more of the methods shown

in this chapter.

Ex. 1 . Factor W x"- + 22 xy + II if.

Dividing all of the terms by the common factor 11, we obtain the quotient

x^ -\-2xy -{ y% which is the square oi x + y.

Hence we have Check. Let x = 2, y = 3.

Ux^ + 22xy-{-llf=n(x^-i.2xy-\- f) 44 + 132 + 99 = 11 . 25

= ll(x + 2^)2. 275 = 275.

(3) If a given expression is arranged according to descending or

ascending powers of some particular letter
^
factors will frequently

be suggested by the form of the expression.

Ex. 2. Factor x"^ {%i
— a) \- y'^ {a — x) \- o? {x - y).

Performing the multiplications, and rearranging the terms according to

descending powers of x, we obtain the expression

a;2 (7/ -a)-x (y^ - a') + (ay^ - ahj),

in which the binomial factor y — ah common to the different groups of terms.

Hence we have

^^
(2/ - ») + y^ {a-x)+ a'^ (x - y) = x\y -a)-x (y^ - a^) + (ay^ - ahj)

Check. =,x\y-a)-x{y + a){y-a)-{-ay{y-a)

Let a = 1, a: = 3, i/ = 2. = [x^ -x{y-\-a)-\- ay] [y - a]

9 + 4(-2)+l=:2 =(^x-y){x-a){y-a).
2 = 2.

(4) Occasionally different methods of factoring may be applied to

different groups of terms of a given expression. It may happen that

these groups^ after being separately factored^ arefound to contain one

or more common factors which in turn may suggest a method to be

applied to complete the factorization desired.

Ex. 3. Factor x^ •\- y^ -{ ax \- ay \- bx + hy.

In the given expression, the binomial sum of the same odd powers of x

and y, x^ + y^, may be expressed as {x + y){x^ — ^U + y^), and the remain-

ing terms ax + ay -{ bx + by may be grouped and expressed as the product

{a + bj(x + y).

Hence we have

a;8 + 7/ + ax + ay + bx -{-by^ (x^ + ?/) + [(ax + ay) + (hx + by)]

Check. = (x + y)(x^ -xy + y'^) + (a + b)(x + y)

Leta; = .3, 7/= 2, a= 4, &= 5. =ix^-xy + y'^ + a + b)(x + y).

80 = 16 • 5
^

^

80 = 80.
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(5) The Remainder Theorem may be applied when a given expres-

sion is of the third or higher degree with reference to some letter of

arrangement.

44. When for any reason a given expression appears to have

more than one distinct set of prime factors, we shall find, upon

closer examination, that factors which apparently differ, are identi-

cal. This is because some of the factors which were supposed at

first to be prime still admit of further reduction, or else differ only

in sign.

Ex. 4. Factor a:* — y*.

Using different methods, we obtain

Method I. (See § 22) x* _ y* = (a;2 ^ yi^(^x ^ y)(x - y).

Method II. (See § 40) x^-t^\ "^'^'^
^^ + 'If, 7^ | ""'l 7 '2'

Check. Let x = 3 and y = 2.

Method I. 81 -16= 13-5 -1

65 = 65.

Method IL 8l-ie=\'^^''^'ll^
( or 1 • 65.

65 = 65.

Neither of the polynomial factors obtained by Method II is prime.

Considering the first polynomial factor, x^ — x^y + xy^ — y^, we find that

a*-xhf-{-xy^-y^={x^-yf^)- {xh) - xy'')

= (a^ - y){^^ + a:y + 2/2) - xy{x - y)
= [(a:2 + xy + 7/) - xy]lx - 7/]

= (x^ + y^Xx-y).

Accordingly, the first set of factors obtained by Method II reduces to

(X + y)(x^ + y^Xx - y).

The factors in this set are identical with those obtained by Method I.

In a similar way we may show that the second set of factors,

(x - y)(x^ + x^y + X7/2 + y^),

obtained by Method II, may also be reduced to the set of factors

(x-yXx^ + y^)ix + y).

Ex. 5. Factor 1ax-3a^-2x^.

We may place the expression in minus parentheses and arrange the terms

according to descending powers of a, and factor as follows

;
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7ax-3a^-2x^ = ~ (3a^ -7ax -\-2x^) Check. Let a = 3, x = 2.

= — (Sa — x)(a — 2x). 7 = 7.

If, however, the expression be placed in minus parentheses and the terms

be arranged according to descending powers of a:, we have

7 ax - 3a^ - 2x^ = - (2x'^ - 7 ax + Sa^) Check. Let a: = 2, a = 3.

= -(2x-a)(x -3a). 7 = 7.

We shall find that the fnctors first obtained, — (3a — x)(a — 2x), difi'er

from tlie factors — (^2 x — a){x — 3 a) only in the signs of the terms of the

binomials.

We may show that the factors of the second set are identical with those

of the first set, as follows :

-(2x- aXx - 3a) = - (2x - a)(x - 3a)(- 1)(- 1)

= _ (2 a: - a)(- 1 )(x- - 3 a)(- 1)

= _ (_ 2 a: + «)(- a; + 3 a)

= — (a — 2 a;)(3 a — x).

45. Certain expressions may be factored by applying any one of

several different methods.

Ex. 6. Factor 16 a* - 41 aV + 25 c*.

First Method. On examination, we find that two of the terms 16 a* and

25 c* are squares. A trinomial square having these same two terms would

have as a middle term twice the product of the square roots of these terms,

— that is, 40 oV. The sign' of this term will be plus or minus according

as the trinomial is the square of a sura or the square of a difference.

Solution I. Assuming first that the middle term is + 40 a^c% we shall

obtain the factors as follows :

The difference between 40 a^c^ and — 41 aV-^ is 81 aV.
Accordingly we have,

16 a* - 41 aV + 25 c* = 16 a* - 41 «%« + 25 c* + 81 aV _ 81 a^c^

= 16 a-* + 40 aV + 25 c* - 81 a%2

= (4a2 + 5c2)2- (9acy
= [4 a2 + 5 c2 + 9 a6-][4 a^ + 5 c^ - 9 ac']

= (4a + 5c)(a + c)(4a - 5c)(a - c).

Solution II.

Assuming secondly that the middle term is — 40 a^c^, we obtain the

same result, as follows

;

16 a* - 41 oV + 25 c* = 16 a* - 41 a'^c^ + 25 c* + a^c^ - a^c^

= 16 a* - 40 aV + 25 c* - aV
= (4 a2 _ 5 c2)2 _ (^ac)^

= [4a2 _ 5 c2 + ac] [4a2 - 5 c^ - ac"]

= (4 a + 5 c)(a - c)(4 a - 5 c)(a + c).
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Second Method. We may apply the methods of §§ 33-39 to the

expression iis given, and thus obtain the same factors, as follows :

16 a* - 41 aV + 25 c* = (16 a^ - 25 c^)Ca^ - c^)

= (4a + 5c)(4a-5c)(a + c)(a - c).

Check. Let a = 3, c = 2.

1296 - 1476 + 400 = 22 • 2 • 5 . 1

220 = 220.

46. Any homogeneous function of two letters may be factored,

provided that it is possible to factor the non-homogeneous expres-

sion resulting from giving the value unity to one of the letters.

Ex. 7. Factor x^ - xhj + 26 xy^ - 24 y^.

By assigning the value 1 to i/, the expression x^ — x^y + 26 xij^ — 24 y*,

which is homogeneous with reference to x and i/, reduces to the non-

homogeneous expression z* — 9 x-^ -f 26 x — 24.

The expression x* — 9 a;"^ + 26 x — 24 may be factored as follows :

x« - 9x2 + 26x - 24 = (x - 2)(x - 3)(x - 4).

From this identity we may obtain the factors of the given expression by

introducing such powei-s of y as are necessary to make the members homo-

geneous expressions with reference to ar and y.

Hence we have.
Check

a;8_9a;2y 4.26XJ/2- 24?/8= (x - 2ij)(x -3y)(x-4ij). Letx=:3,y = 2.

27 - 162 + 312 - 192 = (- 1)(- 3)(- 5)

- 15 = - 15.

Exercise XII. 15 Miscellaneous

Obtain factors of the following, checking all results numerically

:

1. a« -f a^ -I- a. 11. 49F- 36/.

2. xif + Ax-Sij- 12. 12. x^^-f"",
3. a^ + 22a + 121. 13. ar^ - 22£c + 105.

4. ar» - 144. 14. si? + a^ — x — I.

5. a^ -t- 3ic + 2. 15. ii(^ + ex + 2 dx+ 2 cd.

6. 2ar^+ lla;+ 12. 16. (a-by-U (a-b) -12,

7. 3^2-12. 17. a«-343.

8. 3^ 4- 33^ + 72. 18. 2a* + 54.

9. km + 2lm — sk — 2 Is. 19. 1 a* — 1 a.

10. ar^4- 5a;-6. 20. 5m -f 6m^+ 1.
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21. m^ + m-2.
22. 2a^ + 2Sa^+ 66 a.

23. 3a' + 30a + 27.

24. 13 x" + 25 a; — 2.

25. 2a;2+ 12ic+ 18.

26. 2«2 + 3a + 1.

27. 6 a' — 3 a — 3.

28. 169 c' -9 c?'.

29. 56 — 15 a; 4- x\

30. 15a;' + 2xij-24.y\

31. 75a'-3^''.

32. 5a;' + 20a; + 20.

33. 15 a' + 41a + 14.

34. a + a\

35. a;«+ 19a;« + 88.

36. a'6'+ 30a6+ 104.

37. a'x'+ 3abx + 2b\

38. 14 — 21m— 14 m'.

39. 128 m* - 18 n".

40. c*-5c'c?' + 4g?^

41. 27c'4- 18c+ 3.

42. ^y^z^-^xyz- 12.

43. 8 a'h^c^ - 18 c^

44. a;*- 21a;'+ 80.

45. 25a^<'-26a'+ 1.

46. 144 a;'- 625/.

47. 16a^-41«'c' + 25 c^

48. 64 w" + 2.

49. 8 a9 + 729.

50. 6'+ 288 -34^>.

51. a;« + 25a;^ + 24.

52. 50 — 20a; + 2a;'.

53. 147 a'- 75.

54. x^ — 38 a;* + 105.

55. 8 - 9 a;* + «'.

56. 64 — a*.

57. 6a'+ 150 — 60 a.

58. 3a;'+ 36a^^+ 108/.

59. 4 a;' — 28 a;?/ + 49/
60. 80 a'- 20a'^>'.

61. 64r' + 80r5 + 25 s'.

62. a;»— 7 a;' + 14 a; — 8.

63. (a + hf - 1.

64. 9a'+ 24a6+ 16 Z>'.

65. (a + ^>)' + 8 (a + ^) + 15.

66. (a + ^)' 4- 5 (a + />) + 6.

67. 3c'— 14c?/ + 8/
68. a"" + 2a'"^'" + 6'"*.

69. 30 a'— 154 a + 20.

70. a;"" - /.

71. (c + ^' + 12 (c + of) + 20.

72. a'— 2a^>+ ^'-lla+ 11^^-12.

73. 4 a;*- 13 a;'/ + 9/.
74. a«-50a»+ 49.

75. a;«+ 9 a;' + 26a;+ 24.

76. a« - 9 a% + 23 ah"- - 15 6^

77. (a + 6)' - 2 (a + ^) + 1.

78. c?*+ 11 (2 6^'+ 11).

79. 18^'- 31M+ 6 A:'.

80. 16 a' -(2 6 + 3 c)'.

81. a«- 13 a + 12.

82. 12 a'— \2h{:la — h).

83. (c + ^' + 10 (c + cO + 21.

84. 2a(a + 6) + 18.

85. a;'?/'^;' — 8 xyzw — 20 w'.

86. 4m (m + 3)+ 9.

87. 2a (4a — 19)+ 35.

88. (2a; + 3?/)'-(3a + h)\

89. x^ — y^ — 2ijz — z\

90. 49 m* — 65 m'7^' + 16 n\

91. a'— 7 (2a— 7).

92. a^ + 8 a.

93. /'''-68/'- 140.

94. A X {x -\- y) + ?/'.
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95. 3^-2 + 4(2r+ 1). 98. c^ + (P J^ 2cd~a^~h^-2ab.
96. 0,8 _ 3 a-/ + 2 /. 99. c^ -2cd+ d'- 2(c- d)e+ e\

97. a" + 49^'^ - I + 14«^>. 100. x'^- (c-\-2d)x-\- 2cd.

101. a*_a«_ 7^2+ a + 6.

102. m^+n''+2mn- a" - h'' - 2 ah.

103. 1 -ir^cd-o'-dK
104. h"" + 2hm + 711" + 2hy + 2my + y\
105. 16 a;*- 81 7/^

106. 9 + 49 a^- 58 a;*.

107. aj'-9a;.

108. «2^«- 16/>V.

109. aj* + // + a + 2^.

110. x'-y'-{x + y)(:x-y).

111. a'^^H- 3a/>'— 3rt»-<^».

112. a" + ^'' - c* - w^ - 2a/; + 2 7»c.

113. 4a^»r- 32af*y + 64/".

114. 7? + 2xy + y'' + 'tixz ^ Hyz + l^zy

115. 4a^-2562+ 2a + 5 6.

116. xYz^-Haxyz-'20a\
117. «* + 9rt^/>*+ 18/;*.

118. /'"- 168/* -340.
119. a%^ - c^b^ - a^d^ + c^d^.

120. a^^+46^^-5a«/>«.

121. aft (ar»+ 1) +«(«'* + ft2).

122. 1 + 6- 56 6^.

123. 1 — 17a;2+ 16 a;*.

124. 4 — 52a;'^+ 169 a;".

125. ahc^ + 3 ahc'' — abc — S ah,

126. 4 (a" + c^jCa'^ - c^) + 3 ft' (4 a^ - 4 c^),

127. a« - ft« - a(a2 - ft^) + ft(a - bf.

128. 9a^+ 71a' — 8.

129. (x + y){x + y-\- 7) + 10.

130. a*-ft2(lla2-ft2).

131. w^2«_ 19 ^« + 34^.

132. a^^^^- 18a^ft^- 144 ft^**.

133. hcx^ + (ac + ft^ a; + a^.

134. T?"^ + (a + b)af" + ab.
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135. 25a' + 81b^+ Ua'^b*,

136. a^ (a + 1) + ^^^ + 1) + 2 ab.

137. x^ lx+ 1) — 2xij — f {y - 1).

138. a"" (a + 3b) + P (b + Sa).

139. x^+ 2ax + a^ — x-a.
140. 8 a« — 8.

141. 16 «^'- 16.

142. 12a^^+ 12.

143. 6«'^ + 5ax + x^.

144. 14 a^- 109 «^>- 24^2.

145. 7x^ + ^1x1/+ 30/.
146. a2-6P-^>(2a-6) + c(2 6?-c).

147. c^ + d^- e^ -r + 2 (^/- cfl?).

148. a!*-2a;8+2ic— 1.

149. w'x + 6V + b^x \-aSj + 2 (abx + a%).

150. (a + 6)2 + (6 + dy -(c + dy - (c + «)2.

Application of the Principles of Factoring to the
Solution of Equations

47. To solve an equation containing one unknown is to find such

a value, or values, for the unknown as will, when substituted for the

unknown, make the two members of the equation identical.

Ex.1. Solvea;2+15 = 8a;. (1)

By transposing the term 8 a; to the first member we have,

a;2_8a;+15 = 0.

Factoring, (x - 5) (a: - 3) = 0. (2)

Sy §§ 27, 25, Chap. X., the derived equation (2) is equivalent to the

original equation (1).

If either of the factors a: — 5 or x — 3 becomes zero for any particular

value of a:, the other remaining finite, the product of the two factors will

become zero. Hence for such a value of x the first member of the equa-

tion will take the same value as tlie second, that is, it will become zero.

If X be given either of the values 5 or 3, one of the factors will become

zero, and the other a finite number.

Accordingly these values are solutions of equation (2).

It may be seen that, by placing the factor x — b of the first member of

equation (2) equal to zero and solving the equation thus formed, we shall

obtain x = 5, which is one of the solutions of equation (2).
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It appears that the values for the unknown may he found hy solv-

ing the separate equations formed by ivriting equal to zero each of the

factors of the first member of the equation obtained by transposing all

of the terms of the given equation to the first member.

Accordingly, from (2) we may write

(x - 5) = 0, also {x - 3) = 0,

Hence, x = 5, x = 3.

By substitution, these values are found to satisfy the original equation.

Ex. 2. Solve x« + x2 = 12 X. (1)

Transposing and factoring, we obtain the equivalent equation

x(x + 4)(x - 3) = 0. (2)

Since this equation is satisfied by any value of x which makes any one of

the factors of the first member zero (the other factors remaining finite), we
may place each of the factors of (1) equal to zero, and solve the resulting

equations.

x = 0, x + 4 = 0, x-3 = 0.

Therefore, x = 0, x = — 4, and x = 3.

These values are all solutions of the given equation.

Substituting

for X in (1),

= 0.

Sub. —4 for X in (1),

(_ 4)8 + (-4)2 =12 (-4)
- 48 = - 48.

Sub. 3 for X in (1),

38 + .32 = 12 • 3

36 = 36.

48. These examples illustrate the following

Principle of Equivalence : If the terms of an integral equation

he all transposed to one member, and if this member be factored and

the sejMrate factors be placed equal to zero, tlie set of equations thus

obtained will be equivalent to the original equation.

That is, in particular, the equation

{x — a){x — b){x - c) = 0, (1)

is equivalent to the following set of equations :

X — a = X — b = 0j and x — c = 0. (2)

Solving these equations separately we obtain the following solu-

tions of the given equation :

X =: a, x^ b, and x== c.
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The equivalence may be established as follows :

It may be seen that when x is given any value which reduces one

of the factors of the first member of equation (1) to zero, the same

value will also reduce the first member of one of the equations of

set (2) to zero. Accordingly such a value of a; satisfies equation (1),

and also one of the equations of set (2)

.

Since the factors of the first member of equation (1) are the first

members of the equations of set (2), it follows that every solution

of equation (1) must also be a solution of one of the equations of

set (2).

Furthermore, any value which, when substituted for a?, satisfies

one of the equations of set (2), must reduce the first member of one

of the equations of set (2) to zero. Accordingly such a value of x

will reduce one of the factors of the first member of equation (1) to

zero, and hence will satisfy equation (1).

Hence solutions are neither gained nor lost in passing from the

single equation (1) to the set of separate equations (2) ; that is,

equation (1) is equivalent to the set of equations (2).

49. If^ after having transposed all of the terms of an equation to

one member, it is possible to separate the resulting member into factors^

we may completely solve the original equation, provided that these

factors are of such forms that we are able to solve the equations

formed by equating them separately to zero.

50. According as the unknown quantity appears in an integral

rational equation to the first, second, third, or fourth powers, the

equation is said to be linear, quadratic, cubic, or biquadratic.

Ex. 3. Solve the quadratic equation 2 a:^ = a: + 6.

Transposing the terms to the first member, we have,

2a:2-a;-6 = 0.

Factoring, (2 a: + 3) (a; - 2) = 0.

This single quadratic equation is equivalent to the following set of two

linear equations:

2 a; + 3 = 0, and a: — 2 = 0.

Solving these equations separately, we obtain the following values which

are the required solutions of the original equation

:

ar = — |, and a; = 2.

16
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Verifying these solutions by substituting in the original equation, we

have:

Substituting — | for x, Substituting 2 for z,

2 (- 1)2 = (_ I) + 6 2 (2)2 =2 + 6

I = |. 8 = 8.

Exercise XII. 16

Solve the following equations, regarding the letters appearing in

them as unknowns, and verify all solutions by substituting for the

letters in the original equations the particular values found :

1. X'-4:X+S = 0. 27. ^^ = -10^.
2. i/ — 5y+ ^ = 0. 28. P - 4 = 0.

3. a'^- 6a- 7 = 0. 29. a2 _ 9 ^ 0.

4. b^-7b+ 10 = 0. 30. b^- 16 = 0.

5. c^-8c+ 12 = 0. 31. v^ = 25.

6. g^'—^g^ 18 = 0. 32. m^ = 36.

7. A^ 4- 5^+ 6 = 0. 33. 71^ = 49.

8. P+ 6^+ 8 = 0. 34. (P=d,
9. T/i" + 4 7?2 — 5 = 0. 35. k'-k = Q.

10. n^+ In — S = 0. 36. h'-h = 12.

11. z^+ nz+ 30 = 0. 37. 7-2 + r = 20.

12. 2t'2+ lli«;4- 24 = 0. 38. 6-2 — s = 42.

13. c^-\- llc+ 10 = 0. 39. x" + x = 56.

14. g""- 10 g + 25 = 0. 40. t^- t = 72.

15. r^ + 14 r + 49 = 0. 41. 2/^ +22/ =15.

16. s^- 18s4- 81=0. 42. ;^2+ 3;S = 28.

17. x'+ 12a; +36 = 0. 43. ^2 + 4 «^ = 45.

18. f— 16^ + -64 = 0. 44. a^-\- Qa = U.

19. z^-2z = 0. 45. b-2— !jb = 50.

20. w^ — 3w = 0. 46. c2 _ 7 c = 18.

21. c2 + 4c = 0. 47. ^2_8^ = 48. •

22. ^ = 6 d. 48. A2 + 12 = 7 A.

23. m^=lm. 49. P + 40 = 13^.

24. 5n = n^ 50. m^-\- 32 = 12 m.

25. Sp=2y^' 51. n^+ 13 = 14;^.

2Q. q' = -^q. 52. r*— 14 = 5r.



INTEGRAL FACTORS 227

53. 5^-21=45.
54. t''—2Q> = lit.

55. -y' — 35 = 2v.

56. ^>2_38== 17 ^,.

57. F-48 = 13^.

58. A^ - 33 = - 8 A.

59. m^ — 34 = — 15 7W.

60. 7-=* — 27 = — 6 r.

61. 22^-7^ + 3 = 0.

62. 3g^-lg + 2 = 0.

63. 13 w^ - 14 « 4- 1 = 0.

64. 5<^ — 21fi?+ 4 = 0.

65. 7«<;^- 15i^; + 2 = 0.

66. liar*- 34a; + 3 = 0.

67. 6f— 11/ + 2 = 0.

68. Iz^— 10z+ 3 = 0.

69. 2w^ — 5w+S = 0.

70. 3a^4- 4a+ 1 =0.
71. 56' + 6^+ 1 =0.
72. 7 c' + 22 c + 3 = 0.

73. llG?*' + 23c?+ 2 = 0.

74. 55r2+7^+2 = 0.

75. 6F+ rjk+ 1 =0.
76. 10w'+ 7w+ 1 =0.

77. 15 72^ + 8;i+ 1 =0.
78. 20r'+ 12r+ 1 = 0.

79. 20s2+ 95+1=0.
80. 2U2+ 10^+ 1 =0.
81. 18 a;'— 11a; + 1 =0.
82. 26/- 15^^+ 1 = 0.

83. 305^2- 13;2;+ 1=0.
84. ««7« = 64w.

85. a« = 81a.

86. 6« = 100 b,

87. c» = cK

88. c' - 6 c' - 7 c = 0.

89. (P-ld^-Sd = 0.

90. h^+ Sh^- I0h = 0.

91. F + 4F— 12A: = 0.

92. m^ + Qm^—lm = 0,

93. w« - 8 w' - 9 /i = 0.

94. /+ lOj?'- llp = 0.

95. ^« + 4^2-21^ = 0.

96. ?•*— llr' + 28 = 0.

97. a;* - 12 ar' + 35 = 0.

98. i/- lSf+ 36 = 0.

99. z^+ 9;.'+ 14 = 0.

100. w^+ 10 2^'+ 16 = 0.
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CHAPTER XIII

HIGHEST COMMON FACTOR

1. In this chapter we shall undertake to find whether or not a

rational integral expression can be found by which two or more given

expressions which are rational and integral with reference to certain

letters, «, 6, c, x, y, z^ etc., can be divided.

2. Two given integral expressions are said to be prime to each
other if there exists no expression which is integral with reference

to the letters involved by which the given expressions may be

divided without remainder.

E. g. x^ -f- 3 a: + 5 and x'^ + 2 a; + 3 are prime to each other because no

monomial or polynomial divisor can be found by which both of these

expressions can be divided without remainder.

3. A common factor of two or more integral algebraic expres-

sions is an integral expression by which each of them can be divided

without remainder.

4. The highest common factor (H. C. F.) of two or more

integral algebraic expressions is the product consisting of the entire

group of factors, numerical and literal, by which each of the given

expressions can be divided without remainder.

5. From this definition it appears that, since the highest common
factor is the entire common factor, it must be of the highest possible

degree with reference to any particular letter.

When the given expressions are monomials, the highest common
factor must contain the numerical greatest common divisor (G. C D.)

of the numerical coefficients.

When the given expressions are polynomials, the highest com-

mon factor may be the product of a monomial and a polynomial fac-

tor. In that case the monomial factor is the highest common factor

of all of the terms of the given expressions, if they have common

factors; the polynomial factor is the polynomial expression of



HIGHEST COMMON FACTOR 229

highest degree with reference to some particular letter by which

both of the given expressions can be divided without remainder.

6. When the given expressions are monomials, the degree of the

highest common factor is usually reckoned by taking into account

all of the letters entering into it.

Highest Common Factor

By Factoring

Monomial Expressions

Ex. 1. Find the highest common factor of a^xhjh and a^x^yho.

A divisor may be constructed containing the letters a, x, and y, which are

common to the given expressions.

Observe that a is found in each of the expressions to at least the fourth

power, X to at least the second power, and y to the third power.

As there can be no common factor of higher degree with reference to any

of the letters, the entire common factor is a^x'^y^.

The degree of this highest common ftictor may be reckoned in terms of

any particular letter, but it is usual in such cases to reckon it in terms of

all of the letters.

Accordingly the highest common factor a*x^y^ is considered as being of

the ninth degree.

Ex. 2. Find the H. C. F. of a%\'^, a%k^ and a^^c.

The highest common factor is a%^c, for each of the letters a, b, and c is

found in every one of the expressions, and a^, b^, and c are the hi<,diest

powers of a, b, and c by which all of the given expressions can be divided

exactly.

Ex. 3. Find the H. C. F. of 8 a^b^c and 12 a%^d.

Observe that the greatest common divisor of the numerical coefficients 8

and 12 is 4. The literal parts have the highest common factor a%^.

Accordingly the highest common factor sought must be the product of

the greatest common divisor, 4, and a%^ ; that is, 4 a%^.

7. To find the H. C. F. of two or more monomial ex-

pressions :

Construct a term containing every letter and 'prime numerical

factor which is common to all of the given expressions^ taking each to

the lowest power vihich is found in any one of them,

8. It should be observed that no mention is made in the defi-

nition of the highest common factor of that factor's numerical value.
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The numerical value of the highest common factor of two given ex-

pressions is not equal to the arithmetic greatest common divisor of

the numerical values of the given expressions when numerical values

are given to the letters.

Hence, numerical checks cannot be used for highest common
factors.

9. There is no fundamental connection between the ideas of

greatest common divisor in arithmetic and highest common factor

in algebra. The word "highest," used in the definition of the alge-

braic highest common factor, refers simply to the degree of the

divisor, either with reference to a particular letter or with reference

to all of the letters in a tenn. (See § 5.)

The word " greatest " is used in the definition of the greatest

common divisor of two or more numbers in arithmetic, because the

greatest common divisor is the greatest divisor by which two or

more given expressions can be divided without remainder.

10. It does not follow that one expression represents a greater

number than another because it contains higher powers of one or

more letters.

E. g. The value of a^ is numerically less than that of a when a is posi-

tive and less than unity. The value of a^ is equal to that of a when a is

unity, and is numerically greater than a for all values of a which are

neither unity nor numerically less than unity.

For, when « = ^. o^^ = i ; that is, a- < a.

a = 1, a^ = 1 ; that is, a^ = a.

a = 3, a^ = 9 ; that is, a^ > a.

a = — 2, ^2 =: 4 ; that is, a^ > a.

Exercise XIII. 1

Find the highest common factor of the expressions in each of the

following groups:

1. ax\ af, az\ 6. ah\ a%d, aWe.

2. a'hc, ab\ abc\ 7. xhfz\ x'ij'z\ xhfz\

3. x^y\ x^fzw, y^z'w, 8. 10 a^ and 25 a».

4. ^^6% ^Va, Mb. 9. 12 ^'c acd X^b^.

5. ab\m, a^cmy, ab\z, 10. l^abc and 24 W,
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11. 56«4/;and Ua'b\ 15. 6abd\ 18 a^b^e, '60aW(Pe\

12. 42 ^/y and 12 xy. 16. Sa^bd, 21 ab^d^e, da%de\

13. 11 a% and S'Sab^c^d. 17. 2abx, 10 ahjx, Sax^z.

14 100rt'6Vand55a*^>»c. 18. 4a!7/<:^ 12a;y;^, lGxyz\
19. 20xyzWj 5xi/z% li)xi/zw.

20. 35 a^i^crf, 7 abed, 49 a'^6W.
21. 5a*6c», 10 ab\ 35(i^b.

22. 4a;y, 6a3y;3^ lOccy^, 12 xYz.
23. 40a»/;c, 24 a^^^ Uabz, 88 a%.
24. 14 ay, 21 icV> 42 ic/^, 35icy<^2.

25. 3«a;y^, 12£c/7w, 18'^i/z^ Sxfz.

26. SOajy^^w;, 125icy5''M;, lOOxYz'w, UxYz.
27. 18 ar^y^s^w, 27 x}/zw\ 81 ar^y^;^;^ 45 xyH^w.

11. When two given expressions are polynomials, the degree of

the highest common factor is usually reckoned with respect to some

particular letter.

Highest Common Factor of Polynomial Expressions

12. If the given expressions can be readily factored, we may
obtain the highest common factor by inspection as follows :

Obtain the pi'line factors of each of the given expressions. Write

the product containing each of the prime factors common to all of the

given expressions, taking each factor to the lowest power which is found

in any one of them.

Ex. 1. Find the H. C. F. of «2 + 2 a6 + h\ a?' - b% and Sab + 3 h\

The work may be arran^jed as follows :

a2 + 2 ah + h'^={a-\- b)^

The only factor which is common to all of the expressions is the first

power of a + b.

Hence the highest common factor is a + 6.

Ex. 2. Find the H. C. F. of a:2 + 11 x + 30, a;^ + 3a: - 10, and 4 a: + 20.

We have a:^ + 11 a: + 30 = (x + 5)(a; + 6)

x^-{. 3a:- 10=(a: + 5)(a;-2)

4a: + 20 = 4 (a: + 5)

Hence the H. C. F. is a: + 5.
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Ex. 3. Find the H. C. F. of 7 a^b%a + h)9(a - hy(x + y) and

6a-^6»(a + hy\a - h)\x - y).

The factors a^, b^^ (a + b)\ and (a — 6)'», and no others, are common to both

exprcRsions.

Hence the H. C. F. is their product, a%^{a + b)\a - bf.

Exercise XIII. 2

Find the highest common factor of the expressions in each of

the following groups :

1. (a + Oy\ (a + by. 5. x" - l&, x" - d x + 20.

2. (x + i/f, x' - /. 6. x^+ 5x+ G,x^+e,x-^ 9.

3. 5a(7»- w), 15a\m^ — ?i^. 7. «'- 9«, a^—lla-^ 18.

4. (or - 2)^ a^ - 2a. 8. a'^ + 2ab + b\ (a + b)\

9. a^ -b^,a-b,a^-2ab + b\

10. 2 a — 4y, a^ — 4^, ar^ — 4 a;?/ + 4 ?/^.

11. 3a6 + 36, 2aic+ 2x, Hah + Haz.

12. a + 6, a* + 2a6 4- h^\ a* + 6».

13. ar* + 8a;+ 15, jb^ — a;— 12, «' + 6a! + 9.

14. xz + xw — yz — yw and a:^ — y"^.

15. «* — y\ «* + /,« + 3^.

16. 4f/' + 20a 4- 25, 2a +5, 8a* + 125.

17. 3a2+ 7a6-206^ a^- 166^ a + 46.

18. 2ac-^^ad. — 2bc-^bdQ,ndi^c'—^oP.
19. a^ + 3a — 10, a^ + 6a + 5, a' + 2a — 15.

20. 2a;* + a;- 6, ar^ + 3 a; + 2, a;' — 4.

21. 2qi? — xy — ?/^, Qi? — y^., x^ — 2xy + y\

22. 56a*- 126a, 2a — 3, 4^2 _ 12a + 9.

23. Sla^— 72a6+ Ub\ 9a - 4 6, 81 a^— 16 6^.

24. xz + xw + yz -\- yyj, a^ + 2xy + y% ax + bx + ay + by.

25. (a - 6)*, a* - 2 a^b^ + b\ a» - a% - ab"- + b\

13. The term " greatest common divisor " is not appropriate when

applied to algebraic expressions.

When numerical values are assigned to the letters appearing in

two algebraic expressions and also to the letters appearing in their

highest common factor, it may happen that the value represented
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by the highest common factor is not the greatest common divisor of

the values represented by the given expressions.

E. g. The expressions x^ -{- I and x + I have no highest common factor

and are alj^ehraically prime. Yet, if 3 be substituted lor x, x'^ -\- I becomes

10, and a: + 1 becomes 4. The greatest common divisor of 10 and 4 is 2.

The highest common factor of a:^ _^ 7 a; _|_ j 2 and x^ -{- IO2; + 21 is a: + 3.

If X is given some particular value, such as 11, then the expression

x^ 4- 7 a: + 12 becomes 210 and the expression x^ + 10 a: + 21 becomes 252,

while the highest common factor, x + 3, of the algebraic expressions, becomes

14. The greatest common divisor of the numerical values 210 and 252,

however, is 42, not 14, which was obtained by substituting 11 for x in the

algebraic highest common factor x + 3.

If, however, 4 be substituted for x, the values of these expressions and

their highest common factor are 56, 77, and 7, respectively. The value, 7,

obtained from the highest common factor, is in this case the greatest common
^divisor of the numerical values 56 and 77 which are represented by the

algebraic expressions.

Highest Common Factor of Polynomials

14. When two integral functions of some common letter, x, cannot

be readily factored by inspection, the process for finding the highest

common factor, or of showing that the functions are prime to each

other, may be made to depend upon the following principles :

Principle I. If an integral expresssion be divisible ivithout

remainder by another integral expression which is of the same or of

lower degree with reference to some common letter of arrangement^ the

expression used' as divisor is the highest common factor of the two

expressions. »

For, if the divisor be contained without remainder in the dividend, it is a

factor of the dividend, and hence, by definition, must be the highest common
factor.

Principle II. The highest common factor {if there be one) of two

integral polynomial expressions is also the highsst common factor of

the divisor and the integral remainder obtained by dividing one

expression by the other.

(The following proof may be omitted when the chapter is read for the first time.

)

Let D and d represent any two integral expressions arranged according

to descending powers of some common letter, x, the degree of the divisor
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d being not higher than that of the dividend D with reference to the letter

of arrangement.

Let both the quotient Q and the remainder 12, obtained by dividing the

dividend D by the divisor d,, be integral.

(1) 1/ D and d have a highest common factor^ denoted by h, then d and B
will luive a highest commonfodor which is the same expression, h.

If all of the terms of either of the given expressions D or d have common
numerical or monomial factors, these should first be removed by division.

If the common factors thus removed have a highest common factor this

should he set aside as a factor of the required highest common factor of the

two given expressions D and d.

Accortlingly we shall assume in the following proof that the given ex-

pressions D and d have neither numerical nor monomial factors common to

all of their terms.

Representing by h the highest conmion factor of the dividend D, and the

divisor d, we may write

d = nh.)
0)

The factors m and n of the right members of identities (1) must be prime

to each other, otherwise h would not be the highest common factor of D
and d.

Since the dividend D is equal to the divisor d multiplied by the quotient

Q, plus the remainder R, we may write

I) = dQ + R. (2)

Substituting in (2) the values for D and d, from (I), we obtain

mh ='/nhQ + R.

Hence mh — nhQ = R.

Or, h(m-.nQ)=R. (3)

Since both members of the last identity are integral expressions, and h is

a factor of the first member, it must be a factor of the second member also.

That is, h must be a factor of R.

Since h is the highest common factor of D and d, it follows that h must

be a factor of d.

We have shown by the reasoning above that ^ is a factor of the remain-

der R also.

Hence d and R must Jiave a com,mon factor which is at least h. ^

We will show that d and R have no factor in common other than h.
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An expression as a whole is exactly divisible by another expression if its

terms are separately divisible by the other expression.

The highest common factor of d and B must be a divisor of the expres-

sion dQ + R, for it is contained in each of the terms dQ and B.

It follows from the identity D = dQ + R{2) that every factor of the

second member dQ -\- B must also be a factor of the first member D. Such

a factor which is common to both members of the identity D = dQ -} B
must be a factor of both d and D.

Hence the highest common factor of d and B must be a factor also of D,

that is, t)ie highest common factor of d and B cannot exceed h which is the

highest common factor of d and D.

It follows from the reasoning above that tlie highest common factor of two

given expressions is preserved in tJie integral remainder {if there be one) after

division.

If this remainder be used as a new divisor and the divisor first used be

taken for a new dividend, the principle will hold as before, and the highest

common factor will be carried over again, and will be found in the second

remainder (if there be one) after division,

(2) //, however, D and d he prim^ to each other, tlien d and B will also he

prime to each other.

If the dividend D and the divisor d have no factors in common, that is,

if they are prime to each other, it follows that d and B can have no factors

in common.

This is because all of the factors which are common to d and B are con-

tained in each of them, and from the identity jD = dQ + B (2), it follows

that such ftictors must be contained also in D.

Hence it appears that if d and B have any common factor it will con-

tradict our assumption that D and d are prime to each other.

From the reasoning above it appears that if D and d have no highest

common factor the divisor d and the remainder B will have no highest common

factor.

15. Development of the Process. From the principle above

it appears that, instead of examining two given expressions to de-

termine whether or not they have a highest common factor, we

may divide one expression by the other and examine for a highest

common factor the divisor and the remainder resulting from the

division.

16. The " division " may be carried out according to descending

powers of some letter of arrangement until a remainder is obtained

which is either a constant or an expression of lower degree than the
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divisor with reference to the common letter of arrangement accord-

ing to which the division is being performed.

If the remainder is an expression containing the letter according

to which the division is being performed, it may be taken as a new
divisor, and the divisor previously used may be taken as a new
dividend.

It follows that by repeating this process we must sooner or later

reach a stage at which :

Either the remainder-divisor is contained exactly in the corre-

sponding remainder-dividend,

Or, the last remainder is a constant free from the letter of arrange-

ment. In this last case the process of " division " must stop, that

is, become " inexact " at this point.

17. In case the last remainder-divisor is contained in the cor-

responding remainder-dividend, it must, by Principle I, § 14, be the

highest common factor of " itself " and the corresponding dividend.

Hence, it must be the H. C. F. of all previous pairs of corresponding

remainder-divisors and remainder-dividends, and conseciuently must

be the H. C. F. of the original divisor and the original dividend.

18. If, however, the last remainder is different from zero, and is

a constant free from the letter of arrangement according to which

the "division" is being performed, then the last remainder-divisor

and remainder-dividend have no highest common factor, and accord-

ingly the preceding pairs of remainder-divisors and remainder-divi-

dends have "none. Therefore the original functions have no highest

common factor ; that is, they must be prime to each other.

19.* Denoting the original expressions by D and d, and the successive

intej^ral quotients by Q^, Q2, Qg, , and the successive remainders by

R^, -K2, i?8, , we may indicate the process as follows

:

Indicated Process
Pairs of expressions which all

have the same H. C. F.

d ) D o d, B
R^ \£_ Rx,d.

R2IR1 ^2,^1-

-^3 ) -^2 -^8' -^2*

etc. etc.

* This section may be omitted when the chapter is read for the first time.
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In this process, I) = d (J^ + i?i

d = i?i(?2 + ^2

i?2 = ^^8^4 + ^4

20. The process above, for finding the highest common factor of

two integral functions, consists in substituting for the original pair

of functions a second pair, for these a third pair, and so on, all pairs

of functions having the same highest common factor.

Ex. 1. Find the H. C. F. of a:« - x^ + 2 and .t« - 2 a-2 + 3.

In order to make the arrangement of the process correspond closely with

that shown in the next section, § 21, we shall, throughout the work, write

the divisor at the left and the " quotient " at the right of the dividend.

The first stage of the work is carried out below :

DiviBor Dividend Quotient

x8 - g2 + 2 First Stage
First Remainder ... — ic'-^ + I

The remainder from the division, — x^ + l, is of lower degree with refer-

ence to X than the divisor x^ — x^ -\- 2.

By Principle II. § 14, we know that the H. C. F., if there be one, of the

divisor and dividend must be contained as a factor of the remainder, — .r^ + 1,

and must be the H. C. F. of this remainder — x^ + I and the divisor

aH» - a:2 + 2.

For the second stage of the work we will use this first remainder as a

new divisor and the first divisor, x^ — x'^ + 2, as a new or second dividend,

as follows

:

Original Divisor Quotient

First Remainder-Divisor — X^ + I) X^ — X^ -\- 2 ) — X -\- I

X^ — X

— x'^ + x 4- 2 Second Stage
-x^ +1

Second Remainder + a; + 1

This second remainder, x + 1, must contain the H. C. F. of the original

expressions. The work of the third stage of the process may he carried out

hy taking this second remainder, a:4- 1, as a new divisor and the corre-

sponding divisor, — x'^ -\- 1, as a new or third dividend, as follows

:
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Second Remainder- First Remainder- Quotient
Divisor Dividend

H. C. F. sought .... a: + 1 ) _ ar'i + 1 ) - a: + 1

- .r^ - X

+ a;+ I

Third Stage +3^+1

At this stage of the work, the divisor a: + 1 is contained without re-

mainder in the corresponding' dividend — a:^ + 1.

Hence, by Principle I, § 14, it must be the H. C. F. of ''itself " and the

corresponding dividend — a^* -f 1, and by Principle II, § 14, il must be the

H. C. F. of all previous pairs of corresponding divisors and dividends, and

hence, finally, of the original expressions.

21. The different steps of the process may be arranged in the

following compact oblique form:

i a:»- a:2 + 2
First Stage

: Urst Remainder-

: divisor

- a:«-fl)aH»--a:«-f 2)-a:
-X

- a:2 + X -f 2

-ar2 -f 1

. . . a:+l)

+ 1

Second Stage

: Second Remainder-

divisor

H.C.F. sought

.

Third Stage

- a:2 + 1 ) _ a; + 1 \

x^-x \

i

22. Whenever during the process of "division" a "quotient"

is obtained which is not integral, we may apply the following

Principle: At any stage of the iwocess offinding the highest com-

mon factor, any remainder-dividend or corresponding remainder-

divisor may he 7nultiplied by or divided by any number or expression

which is not already a factor of the other.

23. Caution. If at any stage of the process any common factor

is removed by division from both the dividend and the corresponding

divisor, this common factor must be set aside to be used as a

multiplier of the polynomial highest common factor resulting from

the "division" process.
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24. In practice it is often convenient to remove numerical fac-

tors from divisors by division and to introduce numerical factors

into dividends by multiplication.

By thus transforming the terms of the divisors and dividends

it is possible to avoid fractional *' quotients " at any stage of the

process.

Ex. 2. Find the H. C. F. of 3x4 + 2 x^ + 4 x^ + a: + 2 and 2x*y-\-5 x^y

+ 5 xhj + 3 xy.

We will first remove the common monomial ftictor xy from the terms of

the second expression by division, a.s follows:

2 a:*j/ + 5 x*?/ + 5 x^y + 3 xi/ = xj/ (2 x8 + 5 x2 -i- 5 X + 3).

Neither of the factors removed (x nor y) is a common factor of all of the

terms of the first expression 3x4+ 2x* + 4x* + x-f-2. Hence, neither x

nor y can be contained as a factor of the highest common factor of the

given expressions.

Accordingly the factors x and y which were removed by division from

the second expression may be neglected.

The expressions 2 x^ + 5 x'^ + 5 x + 3 and 3 x^ + 2 x^ + 4 x^ + .r + 2 may
now be used as divisor and dividend respectively to find the desired highest

common factor.

The fractional "quotient," |x, which would be obtained by dividing the

first term 3x4 ^f ^1,^ dividend by the first term 2x* of the divisor, may be

avoided by applying the princii)le of § 22, that is, by multiplying all of the

terms of the dividend 3 x4 + 2 x* + 4 x^ + x + 2 by 2.

Since the factor, 2, thus introduced into the dividend by multiplication,

is not also a factor of all of the terms of the divisor, the value of the highest

common factor sought will not be aftected.

The steps of the process are shown below :

Modified Divisor. Original Dividend. Place for Quotients.

2x8 + 5x2 + 5x H1-3)3x4
2(T

+ 2.A»+ 4x2+ a; +
o avoid fractional coefficients).

2

6x4 + 4x3+ 8a;2_^ 2x + 3x

6x4 + 15x8+ i5a;2_{_ 9 a;

-Ux^- 7x2- 7a._^ 4

2 (To avoid fractional coef.).

First Stage.

-22x8- 14x2- 14a; 4. 8) -11
- 22 x8 - 55 x2 - 55 X - ;33

Numerical factor 41 removed,
aince it cannot belong to the
H. C. F. sought.

41 ) +41x2 + 41 x + 41

X2+ X+ 1
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The remainder a:* + x + 1 is of lower degree with reference to x than the

corresponding modified divisor 2 a;* + 5 a;'' + 5 x + 3.

The process may now be continued by using this remainder x^ + ;r + 1

as a new divisor, and the first divisor, 2x* + 5ar2 + 5x + 3, asa new divi-

dend, as follows :

RemaiBder- Modified divisor Place for
divisor used as divideud quotients

H. C. F. sought a:2 + a:+l)2x3 4-5x2 + 5a: + 3 ) 2a;

2 a:« + 2 a:'^ + 2 a:

3 ) 3 x'' + 3"a: + 3 Secoud Stage
... x-2 + x + 1 ) I

x2 4- X 4- 1

Numerical factor removed

The numbers written in the place for quotients cannot be considered

quotients in the ordinary sense, owing to the introduction and rejection of

factors during the work.

The division becomes exact when x* + x + 1 is used as a divisor.

Hence, by Principles I and II, § 14, it must be the H. C. F. of the given

expressions.

25. It will be seen in the work above that, each time a remainder

is taken as a new divisor, the first term is contained an integral

number of times in the first term of the corresponding dividend.

It will be found that this very seldom happens in practice.

26. It should be observed that the successive "divisions" per-

formed when carrying out the process for finding the highest com-

mon factor are not commonly " divisions " in the ordinary sense,

since at different stages of the work we may introduce or remove

factors from either the dividend or the divisor.

27. For this reason the expressions written in the places of quo-

tients are not "quotients"* in the ordinary sense, and since in the

result we are not at all concerned with the " quotients," we may

neglect writing them altogether.

28. It will be seen that in the " oblique " arrangement of the

work used in the examples of §§ 21, 24, it is necessary to copy

again each divisor when it is used as a new dividend. Further-

more, when arranged in compact form, the work tends to extend

downward in an oblique direction, toward the right.
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These objections may be overcome by adopting a vertical ar-

rangement for the work.

The contrast between the oblique and the vertical arrangements

may be shown by carrying out the work of the example of § 24 in

vertical arrangement.

The given expressions are separated by vertical lines, as shown

below, and the " quotients " are placed in the side columns nearest

their dividends.

The divisors will be found sometimes on the left and sometimes

on the right of the corresponding dividends.

241

ar-1M

ents "

: Place Dividend Place :

for and for

; Quotients Divisor Quotients
[

2x8 + 5x2 + 5a: + 3 3a;* + 2a:8+ 4x^-\- a: + 2

2 (To avoid frac. coef.)

3a: 1

First i

Stage
i

-11
i

2x

1

2aH» + 2a:2 + 2a:

3)3a:2 + 3a: + 3
\

a:2+ a:+l i

a:2+ a:+l
;

;

Oa:*+ 4a:8+ 8a,-2 + 2a: + 4

6a:*+15x«+15a:2+ 9a:

-lla:8- 'jx2_ 7a:+ 4

2 (To avoid frac. coef.)

- 22a:8-14a:2-14a:+ 8

-22a:8-55a:2-55a:-33
41)41a:2 + 41a: + 41

a:2+ a:+ 1

H. C. F. sought.
Second

;

Stage :

29. In finding the H. C F. by the long " division " process, the

simple numerical or monomial factors must first be removed by

division from the terms of the expressions.

The H. C. F. (if there be any) of these factors thus removed

must be set aside to be used as a multiplier of the polynomial high-

est common factor resulting from the " division " process.

Ex. 3. Find the H. C. F. of 2a%^ - 4a*b* + 4a%^

2a*62 + a868.

16

2 a^b^ and a^b —
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a%)a^b + 2a*b^ + a%»

a2 -2ab + b'^

2 a^fts ) 2 a^b» - 4 a*b* + 4a%^ -

o8 -2a^b +2a62 -
flS _2a26 + a62

2a266

6» a

a a^ — ab

: -b - ab + b'^ ;

- ab + b-^

""
^»2 ) ab^ - 68

H.C.F. of modi- a -
fied expressions.

6

The H. C. F. of a% and 2 a'^ft^ which were removed by division at the

beginning of the work, is a%. Hence the H. C. F. sought is the product

of a% and the polynomial highest common factor (a — b). That is, the

highest common factor is a%{a — 6).

30. The process for finding the highest common factor has the

peculiarity of not only furnishing the highest common factor (if it

exists), but also of indicating when there is none.

31. To find the H.C.F. of two integrral functions (if it

exists) we may proceed as follows :

AJier hainng first removed all common monomial factors, treat the

modified expressions as dividend and divisor.

If the degrees of the expressions are the same with reference to the

common letter of arrangement either expression may he used as

divisory hut if the degrees are not the same then the expression oj

lower degree must he used as divisor.

Continue the process of " division " until the degree of the re-

mainder tvith reference to the letter of arrangement is at least as

low as the degree of the divisor.

Using this remainder as a new divisor, and the first divisor as a
new dividend, the process may he repeated until finally either the

" division " becomes exact, — in which case the last divisor used,

multiplied hy such common factoi'S as may have been removed at the

heginning of the work, is the H.C.F. sought, — or until a remainder

is obtained which is free from the letter of arrangement, in which

case no H.C.F. exists.

During the process the separate dividends and divisors may be

divided hy m- multiplied by stich numerical or literal factors as are

necessary to avoid fractional coefficients in the " quotients " in the

course of the " division."
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Exercise XIIL 3

Find the H. C F. of each of the following groups of expressions :

1. a? + 2i^-8x—U,x^ + Sx'-8x-24:.
2. z^-5z + 4,z^-5z' + 4:.

3. «*~a2-5a — 3, a»-4«'- Ua — 6.

4. ^» + 2b^-rdb+ 10, b^ + b^ - 106 + 8.

5. 4c*- 3c2- 24c- 9, 8c« — 2c2 — 53c — 39.

6. 2d' — 5d+2,V2d^ — S(P — Sd+2.
7. /+ 2^2+ 2^+ 1, /- 2^— 1.

8. h* - 2 A^' + 1, A* - 4^« + G/^•' - 4/i + 1.

9. 2s'' + '6sH-^,is^ + st'-t\

10. w* — 2w^ + w,2w* — 2w* — 2w-'2.
11. 2ic'-5iB + 2and2a;»-3aj2-8a;+ 12.

12. 4a» - a'^^ - ab'' - b b^ and 7 a» + 4^26 + io^)'* - 3 ^>».

13. 3y - 4/ + 2«/^ + ?/ — 2 and 3^* + 8/ - b y^ — Gij.

14. 6« + 3 /;' 4- 4 6 + 2 and 2 6» + /^'-^ + 1.

15. 2c*+ 9c«+ 14c4- 3and 3c'+ 15c« + 5c2+ 10c + 2.

16. ^d^—'6d'' — SSd+ 9 and 6^*+ (^cP -42d'— ISd.

17. 3A«- 9/^=*+ 2U- 63and2^*+ 19^'+ 35.

18. Qa^ -ea^b + 2ab^ - 2b^ and ^(i" -bab-{- b\

19. m^ +lm^ +lm}—\b m and 2 m* — 4 m^ — 26 ?w + 220.

20. 4wHl4w* + 20?j*+70w2and8;i'4-28w'— 8w^— 12w'+56w'.

21. 2 w;* — 2 i^;* + 4 w?^ + 2 w; + 6 and 3 i^?* + 6 m;* — 3 z^ — 6.

22. ic* + ic» — 9 ar^ — 3 a; + 18 and aj^ + 6 a;2 - 49 a; + 42.

23. 8s*— 6;s«+ 3s^ — 3s+ 1 and 18s«- 3s*- 15s + 6.

24. 64/ — 3/A* + 5^A* and 20/ — 3/y% + ^*.

25. 2s*- 7s* + 9s* — 85- 5 and 6s*— 11 s"- 16 s"^+ 155.

The H. C. F. of three or more expressions may be obtained by first

finding the H. G. F. of any two of them^ then the H. C, F. of this

result and a third expression^ and so on.

This is because any factor which is common to three or more expressions

must be a factor of the H. C. F. of any two of them.

26. ?w* + m — 6, ?w* — 2 7W* - w + 2 and w' + 3 w* — 6 w — 8.

27. 6« 4- 7 6*+ 56 - 1, 36*+ 56* + 6- land 3 6«- 6*- 36+1.
28. a* - 6a* + 11 a — 6, «* - 9a* + 26a - 24 and

a* -8 a* + 19 a- 12.
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29. c» - 9c2 + 26c - 24, & - lOc^ + 31 c - 30 and

c«- llc2+ 38 c -40.

30. d^ - 1, d'' - d^ - d - 2 &nd d^ - 2d^ - 2d - 3.

31. c* - c« — c^' — 2 c — 1, c* + c» + c^ + 1 and

c^ + 2c* + c8 + c2- 1.

32. k' - 1, /i' -h'- h^-h - 1 and A« - h' + h' - h' + h^-h.

33. 5a:*+ 7.c*-7a;'-6aj + 4, 5 a;* +12a^- 15 ar^- 14a; +12and
5a;*-3a;»+ 4ar'+ 8a;-8.

34. 46-' + 46«- 13^?=*- 15s, 4s»-86'^-75+ 15 and

4s*-26'»-4*''-3s- 15.
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CHAPTER XIV

LOWEST COMMON MULTIPLE

1. A coninion multiple 'of two or more integral algebraic ex-

pressions is an integral expression which may be divided by each of

them without remainder.

2. The lowest coinniou multiple or L. C M. of two or more

integral algebraic expressions is the integral expression of lowest

degree which may be divided by each of them without remainder.

The lowest common multiple of two numbers or expressions which

are prime to each other must accordingly be their product.

When dealing with monomials, the degree of the lowest common
multiple may be reckoned in terms of several letters, while if we are

considering integral polynomial functions of some single letter, say

X, the degree of the lowest common multiple is determined by the

powers of the common letter of arrangement, x.

Lowest Common Multiple of Monomials and Polynomials
which can be readily factored

3. In order to be exactly divisible by each of the given expres-

sions, the lowest common multiple of two or more given expressions

must contain every prime factor of each of them. Each prime factor

appearing in it must be raised to a power equal to the highest power

of this factor which is found in any one of the given expressions.

Hence, to find the lowest common multiple of ttvo or more
expressions, construct an expression consisting of the product of all

of the different prime factors (numerical and literal) found in the

giveti expressions, each prime factor being raised to the highest power

which isfound in any one of them.

Ex. 1. Find the L. C. M. oi^2a%, Qa%\ and l^ahhH.

We may exhibit the prime factors of the numerical coefficients, together

with the literal factors, by writing the expressions as follows:
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32 a% = 26 • a^b

6a»62c = 2 •3'a%^c
12 a68c2rf = 22 • 3 • aft^c^fi

The different prime factors are found to be 2, 3, a, b, c, and d, and the

L. C. M. must be constructed by writing the product of these prime factors,

each factor being raised to the highest power which is found in any one of

the given expressions.

Hence the L. C. M. is 2^ • 3 • a^b»cH = 96 a^bhH.

Ex. 2. Find the L. C. M. of eab^(a + b)^ and 4 rt^^Ca^ - b^).

6 ab^(a + &)2 = 2 • 3 ab'\a + b)^

4 a^ia^ - b-^) = 2^ • a%{a + b)(a - 6)

Hence the L. C. M. is

2^'3'a%\a + b)%a-b)=Ua%\a + h)^a-h)
= 1 2 a^b^+ 12 a*6»- 1 2 a%*- 1 2 tt^fcs^

Ex. 3. Find the L. C. M. of x^ + 7 a; + 12, a;^ - 16, and a:* + 6 x + 9.

a;2 + 7a;+ 12= (a: + 3)(x + 4)

a:2 - 16 = (a; + 4)(a; - 4)

a:2 + 6a;+ 9=(z + 3)(x + 3)

Hence the L. C. M. is (x+ 3)2(x+ 4)(a; - 4) = x' + 6 x^ - 7 a;^ - 96 x - 144.

Exercise XIV. 1

Find the lowest common multiple of the expressions in each of the

following groups

:

1. a, 6, c. 6. 4 r, 6 .9, 9 1.

2. xi/y yz, zw. 7. 8 7WW, lOwzX \^rnn^.

3. rt^6, 6*c, 6-^a. 8. 5F^//, ^m^xy^ 10 n^wy.

4. 6W, ^c^ ^c(^. 9. tf^^ ahc\ abccP.

5. ^''^j ^^ic, ^w. 10. 14.9£c*«^, 2Sty^Wy 2x^y\

11. 6^2^=^, 16 /F, 9^V, 18/^2.

12. 3 c'cPe', 4 ^£^y^, 5 a^j/V, 6 /;2W.

13. ar* + 5a; + 6, ar* + 6a; + 8.

14. y''-\-2y- 15, / — 4^/ + 3.

15. ;2'- 15;^+ 54, ;^2- 18 ;^ + 81.

16. ab-5b,a^ — 25, a' — 10a + 25.

17. w^ — 7i^ m^ — w^ w'^ + 2 WW + w^.

18. r + s,r^ + s%T^ + ^.
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19. w"^ —l,w^— 1, IV— 1.

20. h+ l,h + 2,h^ + 5k + Q,

21. ^2 - 1, / - 1, ^' - f.
22. 2a2 + « — 3, Sa^ + a - 4, 4^2 + « — 5.

23. 5c2+ 26c + 5, 5c2+ 31c+ 6, 5c2+ 36c + 7.

24. cx-{- dx + c?/ + dy, x(x + 2 ?/) + ^/^ ^^ — d^-

liOwest Common Multiple by means of Highest
Common Factor

4. If two integral polynomial functions of a single letter cannot

be readily factored by inspection, we may find their lowest common
multiple by making use of their highest common factor.

For, representing any two integral expressions, which are not

prime to each other, by A and B^ and denoting their highest

common factor by hy we may write

A = ak, )

B=bh.] (1)

Since h represents the highest common factor of A and B, it

contains every factor which is common to A and B^ and hence

a and b must be prime to each other.

The lowest common multiple of A and B^ represented by X,

must be the lowest common multiple of the right members ak and

bh of the identities (1).

Hence we have L =. abh.

The value of the right member abh remains unaltered if it be

successively multiplied by and divided by h.

Hence L = abh x h-r- h

_ (ak)(bh)

- h

That is, ^-^' ^^)

Or^ the lowest common multiple of two integral expressions may be

found by dividing their product by their highest common factor,

5. The lowest commcm multiple of two expressions may be found

by dividing either one of them by their highest common factor^ and

multiplying the quotient by the other expression.
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For, from Z = ^, (See § 4)

, . _ {ah)B
we have L = ^~—

»

n

or L = (iB.

Also from L = -^j
n

we have L = —r-^>
h

or L = Ah.

6. The product obtained by multiplying the lawest common multiple

oftwo expressions by their highest common factor is equal to theproduct

of the two given expressions.

For, from the identity L = —z—*
h

we obtain, multiplying both numbers by ^,

Lh^AB.
Ex. 1. Find the L. C. M. of x« + 5 x^* + a: - 10 and a;* + a:^ _ a; + 2.

The H. C. F. is fonml to Ije a: + 2. The quotient obtained by dividing

the first expression a:* + 5 a;^ + a; — 10 by a; + 2 is a:^ + 3 a; — 5. Hence,

the L. C. M. must be the product obtained by multiplying this quotient by
the other expression, that is,

(aH» + a:2 - X + 2)(x2 + 3 x - n) = ar^ ^ 4 a.4 _ 3 a:8 _ q a:2 + H x - 10.

Exercise XIV. 2

Find the lowest common multiple of the expressions in each of the

following groups :

1. «* + 5a^ + ha^—ha — 6 and ^» + 6^^+ 11 « + 6.

2. 6« + 3 6=^ - ^ - 3 and 6» + 4 if;2 + /> - 0.

3. c« + c^ - 8 c — 6 and 2 c* — 5 c^ - 2 c + 2.

4. ^x^ij—1 aoi^y — 20 a^xy and 6 a;^ + 2 ax — 8 a\

5. 2d^-2d^ — 2d—2a,nAd^ — 2d^-\-d.

6. / — 6/+ lly — 6 and?/« — 8/+ H>y — 12.

7. 14.9* — Is^ — 10 and U*-* + 245^ + 206' + 10.

8. 2;^ + 12 1^ + 22r + 12 and r^ + r^ — 4.7^ - 4r.

9. 6^«-8-:2- 172; -6 and 12^« - 5' - 21;^ - 10.

10. w^ + 3 m;2 + 4«/; + 2 and 2 z«;* + w^ + 1.

11. h^ - ^2 ^ A + 3 and ^* + F - 3^' - A + 2.

12. 6F+ 15F-6^ + 9 and 9 A' + 6F- 51^4- 36.

To find the lowest common multiple of three or more integral poly-

nomial algebraic expressions first find the lowest common multiple^
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Zi, of any two of ihem^ then the lowest common multiple^ X2, of this

result and a third expression^ and so on, until all of the given expres-

sions have been used.

The lowest common multiple last obtained will be the expression of

loivest degree which may be divided without remainder by each of the

given expressions.

13. a^ + «' - lOrt + 8 ;
«2 - 3rt + 2 and ^/» - 4^/^ ^ 5^^ _ ^

14. m^ + 2 am^ + 4 a'^m + 8 rt* ; m^ — 2 am^ + 4 a^m — 8 a^ and

m^ 4- 4 ff"^wi + «m^ + 4 rt*.

15. 2 /r+3 w—20 ; 6 ^"-25 wH21w+ 10 and 2 w*-5 ^i'+G 7«-15.

16. ar^-3^>a;+ 2^>^ ic'-5^«!+ 4 6'and3a;^- 19 6a;+ 28 6'-*.

Mental Exercise XIV. 3

Review

Simplify each of the following :

1. {x + y){x'- -xy + y'). 3. (b' + c^) -- (b + c).

2. (a - b){a'' + ab-\- b^). 4. (c« - cT) -r- (c=^ - ^).

Distinguish between

5. a + 6c and (« + 6)c. 6. £c + J/-^ + Wj {x + y)z + «^ and

{x + y)(z + w).

Perform the following multiplications :

7. (rtr + 6 + x){a -{-b-x). 9. {x-y+ \){x -^ y - I).

8. (a + 6 + 7)(a + ^^ — 7). 10. (r«4-6+ Wi+ w)(«+ 6— w«— ^0-

1 1. Find the continued product oix + y, x^— y'^, x^ + ?/ and ic*+ v/*.

12. Show that x^ — 2 x^ + aj- is the square of a binomial.

Are the following expressions conditionally or identically equal ?

13. 3 X and 2x + x. IQ. a + b and b + a.

14. 3ic and 2 + 1. 17. a + ^ and b + d.

15. (a + by and a* + 2«6 + b\ 18. f and 1.

Are the following expressions identical %

19. a« + 6* and (r* + 6)'. 21. ^^^ - ^^'^ and {a - b)\

20. {a^b)\a-by^x^^{a'-Wf. 22. (oj - 1)' and x"- - 1.
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Of the following equations, select those which are equivalent to

the equation 2 a; — 3 ^ = 5 :

23. 4:X— Qy=10;Qx— 9ij=15',8x + l2i/=^0; lOaj— 15?/=25.

Replace each of the following single equations by a set of separate

equations which, taken together, are equivalent to it

:

24. (x + 6)(x - 3) = 0. 27. (w + l)(w + 9) = 0.

25. (i/ — 2)(i/ + 7) = 0. 28. (a + G)(a + 10)(« + 12) = 0.

26. {z - 4)(2 - 8) = 0. 29. (b - 2)(0 + 5)(6 - 15) = 0.

Construct single equations which are equivalent to the following

pairs of separate equations :

30. x—2 = and « — 3 = 0. S3, w + 1 = and W + S=0.
31. y— 4 = and 3/ — 6 = 0. 34. a; = 1 and ic = 2.

32. z+ 5 = and z—\=0, 35. y = 5 and ?/ = 7.

Solve the following conditional equations for x, y, z and w :

36. 7a; — 7 = 0. 38. 3;^— 12 = 0.

37. 2y — 8 = 0. 39. 6 - 2 «<; = 0.

Show that the following identities are true :

40. 2(« + 6)3(« -b) = G(a^ - P).

41. aia"" -f b^) - a\a - b) = bicL^ + b^) + b\a - b).



FRACTIONS 251

• CHAPTER XV

RATIONAL FRACTIONS

1. In order to obtain as a quotient a number previously defined,

that is, a positive or a negative number, the dividend must be a

multiple of the divisor.

E. g. If the divisor be 7, the dividend must be some multiple of 7, that is,

7, 14, 21, etc., or - 7, - 14, - 21, etc.

We may obtain by actual diWsion

21 -f 7 = 3, 35 ^ 7 = 5, _ 14 -f 7 = - 2, etc.,

the quotients in all cases being numbers previously defined, that is, either

positive or negative whole numbers.

2. From this point of view a combination of symbols has no

meaning when it consists of a dividend which is not a multiple of

the divisor.

E. g. In this sense, 12 -^ 7, 3 -^ 7, — 2 -^ 7, have no meaning, since in

such cases the division can never be performed exactly.

It will be noted that expressions such as those above have the forms of

quotients, and by the Principle of No Exception our idea of number must

be extended to include such quotient forms as numbers. We shall admit

such expressions to our calculations and reckon with them as with ordinary

quotients.

3. Negative numbers were invented because of the impossibility

of subtraction in all cases, and broken numbers or fractions because

of the impossibility of division in all cases. Combining these two

extended ideas of number, we are led to the idea of negative frac-

tional numbers.

Thus, the idea of "fractured or broken numbers" arises from

division in a way similar to that in which the idea of negative

numbers arose in connection with subtraction.
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4. A fraction is expressed by writing the dividend above the

divisor and separating the two by a horizontal line or " stroke of

division." Thus, the fractional notation j and the solidus notation

ajb each express the same as a -^ b.

5. In the quotient symbol, or fraction, the divisor or part written

below the horizontal line is called the deiioiniiiator of the fraction,

since it mimes or danoininates the number of parts into which unity

is supposed to be divided. The number above the line indicates

how many of these parts are to be taken. Hence this number is

called the numerator, since it enumerates or counts the parts.

6. When either the numerator or the denominator of a fraction

is a polynomial, the horizontal stroke of division separating them

serves both as a sign of division and as a sign of grouping.

E. g. x +^ = a: + (2/ + z) ^ 3.

7. Algebraic fractions have the same properties and are governed

by the same rules of calculation as arithmetic fractions.

E. g. As 1/4 is to be regarded as being one of the parts obtained by

separating or dividing unity into four equal parts, so 1/6 is to be taken as

representing one of the h equal parts into which unity may be divided,

according to our extended idea of number. Furthermore, as 3/4 is under-

stood as meaning three of four equal parts of unity, a/b is to be understood,

as meaning a of the b equal parts of unity.

8. For a broken number or fraction, we may write as our

Definition Formula, ^ xb = a,
b

From this it appears that the iwoduct obtained by multiplying

the quotient symbol by the divisor is identically equal to the dividend.

9. The terms of a fraction are the numbers or expressions

separated by the line or symbol of division.

10. Since zero can never be used as a divisor, the ordinary laws

of reckoning cannot be applied to fractions whose denominators are

zero.

11. A rational aljjrebraic fraction is the quotient obtained by

dividing one rational integral function by another.
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12. A fraction is said to be proper if the degree of the numerator

is lower than that of the denominator when the degrees of both are

reckoned in terms of some common letter of reference.

2 X
E. g. ——r , .,

are proper fractions.
x -\- o cc -J- i

13. A fraction is said to be improper if the degree of the numer-

ator is equal to or greater than that of the denominator, reckoned

in terms of some common letter of reference.

-bi. g. ——T , j——r are improper fractions,

but g , ^ > , .
, ,

are proper fractions.

14. We say that a given value has the form of a fraction when
it can be expressed as a quotient.

E. g. Each of the following fractions represents the value 3:

6/2, 30/10, 12/4, 3/1.

Again, a%/a^, a*b^/ab^, 7 a*b*/7 a%^^ all represent a%.

15. To reduce a fraction is to change its form without altering

its value.

16. When a quotient can be so transformed as to become integral,

the dividend is said to be exactly divisible by the divisor.

17. When a quotient cannot be so transformed as to become

integral it is said to be fractional^ or for emphasis, essentially

fractional.

18. A fraction considered as a whole, that is, as a quotient, must

be regarded as possessing quality, that is, as being either positive or

negative.

The quality of a fraction as a whole may be indicated by writing

either + or — as a quality sign directly before the horizontal stroke

of division, separating the numerator from the denominator.

E. g. The expression -\ is to be understood as meaning that the

X
fraction as a whole is positive, while the expression ^ is to be under-

stood as meaning that the quotient resulting from dividing x by 2/
— ^s is

negative.
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19. In a fraction, the numerator as a whole, and also the denomi-

nator as a whole, may each be regarded as possessing quality.

Hence, as each may have a sign independent of the sign of the

fraction as a whole, we are led to consider three signs in connec-

tion with any fraction, as follows :

+ « -a . +a -a.
"^4-6' "^4-6' "^

-ft' "^-6'

_ + a _ — a _ 4- a _ — a
4-6' +b' -6' -b'

20. Since a fraction is an indicated quotient, the fundamental

laws of signs for multiplication and division may be applied directly.

(See Chap. V. §§ 9, 43.)

Hence we have the following Principles relatinff to the signs

of a fraction

:

(i.) The signs of both numerator and denominator as wholes may

he changed from + to — or from — to + without altering the value

of the quotient, and hence, without affecting the sign before the whole

fraction,

— a_ -f- a 4-a_ —a — (t _ -j- a 4- a _ —a
^•«- +=r6 = + :^'-zi = -:^'-ri,-~ + 6' -b- +b'

(The following proof may be omitted when the chapter is read for the first time.)

The changes of signs in the first illustration above may be explained as

follows:

4-^ = 4-[-a]-f[-&]

= + [-a]4-[-6]x(-l)-(-l)
= 4-[(-«)x(-l)]4-[(-6)x(-l)]
= 4- [4- a] 4- [4- &]

-^ + b'

The changes of signs in the remaining illustrations may be explained in

a similar way.

Ex. 1. Express
~ ^ ~ ^

as an equivalent fraction containing the least
^

11 — m
possible number of negative signs.

Reversing the signs of both numerator and denominator as wholes, we

— X - y _— {- X — y) _ X + y
have — {n — m) m — n
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Since if the sign of either the whole numerator or of the whole

denominator be changed, the sign of the fraction as a quotient will

be changed, it follows that the sign of the fraction will be restored

by reversing at the same time the sign before the fraction as a

whole. Hence,

(ii.) The sign before a fraction may be changed^ provided that the

sign of either the whole numerat&r or of tJie whole deiuyminator be also

changed.

— a_ +a +a_ +« — a _ +a —a_ —a

The changes of signs in these illustrations may be explained by using a

method of reasoning similar to that employed for the illustration of Prin-

ciple (i.)

Ex. 2. Transform —
j^

into an equivalent positive fraction.

An equivalent positive fraction may be obtained by reversing the quality

of the fraction as a whole, and also the quality of the denominator as a whole.

Accordingly, we have — t = —77 r= r*

Exercise XV. 1

Express each of the following negative fractions as an equivalent

13.
jc — b — a

positive fraction

1.
1

— a

2.
2

-b

3.
— c

5

4.
1 —a

2

5.
3

b^b

fi.

y-x

7.
m

b-c

8.

-5
a;-4

9.
c — a

b -V c

10.
x-\-y

^

z-y

1

1

— a
11. -6 + c

1
1

14. -

15. -

16. -

17. -

18.

X — y -\- z

z — X — y

-b + a

— X — y — z

1

{2/
— x){x-\-y)

a

(a-b)(c-by

— a

b — a + c
' {b—a){—b—c)
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Show that each of the following identities is true :

,9 _J_ = L^. 28.
b-c-a_a-b + c

b — a a — b

20. ^^, =T-^' 29.
c — b b — c

2i.l^ = -'-Zl.. 30.-

b - b

b-

c — a

— (1 —
-b-

_a — b + c

' a + b — c

c _ c

3 3 ' a(c — b) a(b — c)

^^ V — X X — y „, 1 1
22 *- = —- 31. —

' w — z~z — w ' (a — b)(c — b)~ (ii — b){b — c)

^_-a-J. a±b_
32. 1 - 1

b — a a — b ' {b — a){c — b) {a — b){b — c)

r.. X « «« 1 1

24. = 33.— y y — z 'hi — ^f {^-yy

2,.--^^-^-^. 34.- ' - 1

3 - 3
"• {y-xf-ix-yf

26. ^ = L_. 35.
-' - '

b — a — c~- a-b + c ' (I — xY ~ (x — ly

27. } = ^ 36. 1 -c-b-a- a + b-c {b^-ay- {a^ - by
1 1

37.

38.

39.

{y — x){z — y) (z — aj) {x — y)(i/ — z){z — x)

1 _ 1

(a — U){c — b){c — a) {a — b)(b — c)(c — a)

a — c _ c — a

(a - b)(c -b) = (a- b)(b - c)

*

^g (i/
— ^)Q/ — ^) - (^ — ?/)(y — ^)

41. -

{w — z)(w — x) {z — w)(w — x)

c — a — b a -^ b — c

{b — c — a)(a — b — c) (a — b + c){b + c — a)

21. An expression is said to be fractional if it contains one

or more fractional terms ; if it contains both fractional and integral

expressions, it is said to be mixed.
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An expression is said to be entirely fractional if it contains

fractions only.

ft O V _L fit

E. g. T + -, is entirely fractional;° b a z
•'

while m^ — n^ -\ \- - is a mixed expression.

22. Two fractions are said to be equal or equivalent when the

terms of either may be obtained from the terms of the other by

multiplying or dividing both numerator and denominator by the

same number or expression, zero excepted.

E. g. I is equal to ^, since the numerator and denominator of the second

fraction can be obtained from the numerator and denominator of the first

fraction by dividing each by 4.

Also, -^, = r» since by dividing the numerator and denominator of the

first fraction by the same expression, ah, we obtain the numerator and

denominator of the second fraction.

Reduction to Lowest Terms.

23. A fraction whose terms are wholly rational and integral is

said to be in lowest terms or simplified, when its numerator and

denominator have no common integral factors.

(The foUowing proof may be omitted when the chapter is read for the first time.)

Consider the fraction rr* a, ^, and h being positive integers. Then, if a

and h be prime to each other, and also to h, h will be the H. C. F. of the

numerator ah and the denominator bh.

By the Laws of Association and Commutation for multiplication and

division, and the definition of a quotient, we have

^ = (a/i)-fW

= axh-Tb-^h
= a-^bxh-7-h

^ ah _a
hh h

Read backward and forward, this identity establishes the following

17
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Principle: If both numerator and denominator of a fraction he

multiplied by or divided by the same number^ except zero, the value

of the fraction irill remain nnaltered.

24. From this principle it follows that a fraction may be reduced

to lowest terms if both numerator and denmninator be divided by their

highest common factor.

Ex. 1. Reduce 18 a%\- / Ah a^bc to lowest terms.

The H. C. F. of iiuinerator and denominator is found to be Qa^bc.

18 a^b^c_ (9a^bc)(2b) Check.
®°^^

46 a^bc - (9 a%c){b a^) a = 2, fc = 3, c = 4.

25. This operation of removing common factors from both

numerator and denominator of a fraction by division is called

cancellation.

The student should nei^er strike out equal terms which are found

in both numerator and denominator, unless they are factors of both

the whole numerator and the whole denominator.

E-ff- In —-s

—

— we must not strike out the first terms, 5x^, nor
ox-* — 14

attempt to remove 7 from 21 and 14, for neither 5x^ nor 7 is a factor of

both the entire numerator and the entire denominator.

Ex. 2. Reduce l2xhf^/(2Ax^y - 12 xy^) to lowest terms.

The terms of the denominator contain 12 xy as a common factor. Hence,

we may write

12xV _ 12xV
24xhj - I2xy^~ I2xy(2x-y)'

Dividing both numerator and denominator by the common factor, 12a:y,

-2x-y 18=18.

Ex. 3. Reduce (6 xhj - 15 xh/) / (10 x^/ - 25 xy^) to lowest terms.

6 a:«^ - 15 x^y^ _ 3 xhf (2x-5y) Check. x=2, y=l.
10a;V-25a:?/8

" 5xy^{2x-5y) | = f
_3ar

5y

It is sometimes necessary to find the H. C F. of numerator and

denominator by the division process.
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Ex. 4. Reduce (2x^ -h x^ - 16x + 15)/(6 a;» - 11 z^ + 7 a: - 6) to lowest

terms.

By the division process, the H. C. F. of numerator and denominator is

found to be (2 a; — 3). Hence we may write

2x8+ a:2-16a: + 15 _ (2a;-3)( a;2 + 2a:-5)

6a;8-lla;2+ 7x- 6 ~ (2a; - 3)(3x2 - x + 2)

_ a;^ + 2 a: - 5 Clieck. x = 2.

— 3a;=^— x + 2'
i = i-

Exercise XV. 2

Simplify the following fractions, checking all results by substituting

such numerical values as do not reduce the denominators to zero :

21 ^.1.
xz

2.
ab

a''

3.
7

216*

4.
20 2;

5.
28 a*

14 a»

6.

7.
25 A*

5A»

a.
^U
24 c*

9.
\^cd
9«5*

10.
ab^c

11.
xyz"

12.
a'b^c'

a'b'c'

13.
4tac^x

4. ex"

14.
12X2^

4:X1JZ^

1 ^
Uc'xy

33a;V^

ir.
19«6*c^

lU.
57 abc^cP

17.
a"*

18.
b^'

19. ^+1

90
iK»+*

22.

23.

24.

25.
af+y-1

af'-Y+^

26.
ab

ac + «G?

27.
xy

yz — yw

28.
m

rri^ + m

29.
2 a*

2a + 2

Qf\
aw + a/i

ic"+® aic + a^



260 FIRST COURSE IN ALGEBRA

ab + bc 4a"—

1

ia + Sb > (c + rf)'

12c + 16<i' c«-rf«

33. ^f^^- 39.
10 a + 20 s

34. «£+i|i. 40.

35. . . ..o
' 41.

3m — 9»

a4-*
(a + by

x+ 1

w^--w'^

(m--n)«

rf«-1
(^+1

«»-- 1

iC»- 1

a'--b^

(^-d*

7? -xiZ-^-f
x'+y"

a' + ab + b*

a'-U"

a^ + 2a + 1

a^ + '6a + 2

b' -5^ + 6

b^ — 46 + 4

c*+6c + 9

c' + C-6

Q? -3a;- 10

43. x^-2x+ 1

44.
y — 4

y^-8y+ 16

45.
a+ 1

a*4- 3a + 2

46.
a;-5

a;^- 7a;+ 10

47.
a«-3a^

a^- 6a + 9

48.
7W* + 2 7W*

m^ + 4 m + 4

2a^+ 5a + 3

5a^+ 12a + 7

a«+ 3a + 2

2a"+ 5a + 2

P-'7X:+ 12

36.^—
T-

42.^«_^^3

49.
^-^-^j--^

. 58.

50.
- ^-^ ;^ . 69.

^^-
• •• •

^^- F-5>t + 6

52. '-
:

:
' :

:• ei.
^._^f,_^^y

53. .. *• ' 62.
^^_^^^,__^,

^^- -^^ ^' ^^-
(a + c)«-6»-

^ ^^ ^^ „. (a;- yy-^
^

^^' a;a_ 63.^5* ^4. ^^ _
(^ + ^)2

y-8y+12 a;» + ar'+3a;-5
^^- y»_92^+ 18* ^^- ic'»_4a;+3

1 +5a;+ Gar' a;' + 3a;^+8a; + 2

1 +6a;+8ar'* «» - 2a;'' - 2aj - 3

I
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26. If the degree of the numerator be equal to or higher than

that of the denominator, the form of a fractional expression may be

such as to admit of transformation into an equivalent integral ex-

pression, or into a mixed expression.

E 1
gg - ftg _ (g 4- bXa - b) Check, a = 3, fc = 2.

a — b ~ (a — b) 6 = 5.

= a + 6.

Ex. 2. Reduce (a* + 2 a^ft + 3 b^/a^ to lowest terms.

By the Distributive Law for division, we may find the result by diyiding

each of the terms of the dividend by the divisor, and write

g* 4- 2 a^6 + 3 i!>^ _ «» 2a% 36* Check, a = 2, 6 = 3.

a* - g2 "^ gs "^ a^* jy = y

.

Ex. 3. Reduce s—-h—r-5— ^ lowest terms.
x^ + ZX -\- 6

Using the denominator as divisor, and carrying out the process for long

division, we obtain x as an integral quotient and — 4x + 2 as a remainder.

^, . x* + 2x^-x + 2 _ -4x + 2 Check, x = 2.
^^^*"''

x« + 2x + 3 =''"^x2-f2ar + 3 \\ = \\.

_ 4x-2
~^

a:* + 2x4-
3*

Exercise XV. 3

Reduce the following improper fractions to integral or mixed ex-

pressions, checking all results numerically :

1.
'^^-

6. ^^. 11.

2- ,-^- 7- ,-^- 12.

3.?!±i. B.'^-*^-''- 13.
aj -f 4

7i«-5w- 12
9. 14. ,

c^-f 9C4-20 c?»4-3<7'g-f3<//+g'

A -a M^4 ' (/^ + 2<^-f^'

a -f 3

0*^1
b -1
a^+1

a;

4fi?*4- 2<^-f 1

2<^

A»-3

'i
5«»

a -b
z' -!£;*

z — ^
8' + ^
8 + ^

«*
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Reduction of Fractions to Equivalent Fractions
having a Common Denominator

27. Two or more fractions are said to have a common denomi-
nator when their denominators do not differ.

T^ X . z a . c + d
E.g. - and -, or -5 jj, and -^

—

rx.

28. The lowest common denominator (or L. C. D.) of two

or more fractions is the lowest common multiple (or L. C. M.) of

their denominators, used as a new denominator.

29. Any number of separate rational fractions may be transformed

into equivalent fractions which have equal denominators.

(The following proof may be omitted when the chapter is read for the first time.)

Let a/h and c/d represent two fractions, and, for the present, let their

terms a, 6, c, and d be rational and integral. Let the L. C. M. of the de-

nominators b and d of the fractions be Z, and let bm = L, and dn = L.

In these identities the letters m and n represent integers since the lowest

common multiple of two integers is an integer, and m and n must be prime

to each other, for if they were not L would not be the lowest common

multiple.

Multiplying both numerator and denominator of the first fraction a/bhy
the factor m, necessary to produce the L. C. D. of the denominators b and d,

we have a _ am _ am
b ~ bm ~ L

Similarly,
c _cn _ en

d ~ dn~~ L

The two original fractions, a/b and c/d, are now expressed as the

equivalent fractions, am j L and cn/L respectively,^ which have equal

denominators, L.

From the proof above we have the following :

To reduee two or more fractions to equivalent fractions having the

lowest common denominator, first find the lowest common multiple of

their denominators. Then multiply both the denominator and numer-

ator of each fraction by the number or factor which, when taken with

the denominator of thefraction, will produce as a])roduct the required

lowest common multiple of all of the denominators.
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Ex. 1. Reduce 2/3(1, 4/5a^, 6/ 15 a^ to equivalent fractions having the

L. C. D.

The L, C. D. is 15 a'. Hence we have

2

3a
= 2.

3a
5a2

•5a2
=

10 a2

15 a3

4

5a2
=

4-

5a2

3 a

•3a
=

12a

15 a'

6

5a8
= 6

15 a«

Let the student check the example above.

Ex. 2. Reduce the fractions (a — b) / (a + b), (n + b) / (a — b) to equiva-

lent fractious having the L. C. D.

The L. C. D. of the two fractions is found to be (a -f d)(a -^ b).

Therefore:

a-b _ (a-b)(a-b) _ (a - b)^ Check. a = 3, 6 = 2.

a-i-b" (a + 6)(a - b) - a^ - b'^

'

^ = f

qjmnavW ^ + ^ - (« + b)(a + b) _ (a + 6)2 Check, a = 3, 6 = 2.
aimiiaiiy,

^ _ ^ = ^^ _ ^^^^ + ^j
= «2 _ ^2

'

5 ^ 5.

The student will find it a good plan, when transforming a fraction

to an equivalent fraction having a different denominator, first to

copy the fraction in its original form and then to make the necessary

alterations by mserting the proper factors in both denominator and

numerator. This is better than to attempt to copy the firaction

and make the transformation at the same time.

E. g. Thus, in the example above, we may write as a first step,

a -f ft _ (a + 6)

a — 6 ~ (« — b)

As a second step we will insert the factor (a + b) in both denominator

and numerator, as below:

a + h _ (g + b){a + b) _ (a + by
fc^b-{a- b)(a -\-b)- d^ - 6^

*



13.
a b

14.
y X

15.
be' cd

16.
yz zw

17.
1 2

Sab' 4tbc
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Exercise XV. 4

Reduce the fractions in each of the following groups to equiva-

lent fractions having the L. C. D. :

a a -56

^ b h 2 7

5 7 a^ a

o c c q 3 4
6. — J — • y. —

» — •

8 12 X y

4. -r ' 7:7:* 1^' ~' —
5 20 z w

5. -> 7" 11* TT"' ir~a 6 2a 7a

.22 19 ^ 1<^
6. -^» —^' 12. —r> "T-

«'' y'^ ab be

a 6 c

XXX
' 2y' 4^^' 6y

b b^ b^
21. — >

—

>

«« 1 1 1
22. — I — >

—
2£c 3y 4:Z x — y x + y

^o ^ y ^ on _i 1

2/ 2; a; ix—y){y — z) {y—z){z—x)

24. -, A,_l. 31.
2 3 4

' be ca ab *ar^ — 9£c + 3'ic— 3

25.?,J-,A. 32. 1
1 1

a ««

56c lOc^

26.
X

y-Vz Z + X

27.
1

x^\'
1

V-1

28.
1 1

a'-b^

99.
a; + ?/ X — y

a 2a a^ a — b b — c c — a
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30.* If all of the terms of two equal fractions^ xjy and n/d^ he

positive whole numberSy then if njdhe in lowest terms, it follows that

x=^ pn and y = pdy where p represents a positive whole number.

For, if 1 = 1 (1)

then ^ = ^- (2)

Or, the quotient obtained by dividing ny by c? is a positive whole num-

ber a;, and since n is prime to d, y must be some multiple of d, say y = pd,

where p represents a positive integer.

Hence, (2) becomes x = -~, ov x = pn.

31.* /w particular
y if ^ly is in lowest terms, x and y can him

no common factor p ', hence, putting p = 1, we have

x = n, y = d.

Addition and Subtraction of Fractions

32. Applying the Distributive Law for Division (See Chapter V.

§§ 58,59), a, b, and d being taken as positive integers as in other

proofs, we may write

-j-\--j = a-r-d+b-7-d and -:—, = a -r- d — b -t- d
d d d d

= {a + b)^d

^ a + h

- d

= (a-b)-i-d

_a — b

Hence, the sum of two fractions having a common denominator is

a fraction having for numerator the sum of the numerators of the

given fractions, andfor denominator their common denominator.

Also, the difference of two fractions having a common denomina-

tor is a fraction having for numerator the difference of the numera-

tors of the given fractions, and for denominator their common

denominator.

* Thi9 section may be omitted when the chapter is read for the first time,
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Ex. 1. Find the sum of a /be and hfcd.

The lowest common denominator is bed.tor is bed. Check. a = 2, 6 = 3,

a b _ad b^

bc'^ cd- bed
"^

bed

c = 4, rf = 5.
Hence,

Writing the sum of the numerators _ fid + b^

over the lowest common denominator, "~ bed

2a-\-b a-2b _ (2a + b)4 + (a-2b)3
^''•^'

• ~'3b"^~4b~= 12b

_ „ . , , . ,. . 8a + 46 + 3a-66
Perforimng the multiplications, =

^oh

_,..,., 11a -26 Check, a = 3, 6 = 2.
Combining like terms, =——r i4 — ii

Instead of finding a common denominator at once for all of the

fractions of a given set, it is sometimes desirable to combine the

fractions by groups, and after reduction of the groups separately, to

combine the results thus obtained.

^ «. ,.. 3 6 5 3
Ex. 3. S.mpl.fy ^^ + ^-f - ^-j-j - ^-^ •

The given fractions may be rearranged as follows

:

3 3 5 5_3(x-2) 3 (x + 2)

x + 2 a;-2^a;-l x + l
" (x + 2)(a: - 2) (a: - 2)(a: + 2)

5 (x + 1) 5 (x - 1)
^

(x - iXx + 1) (x-\- iXx - 1)

_ 3(a;_2)-3(a; + 2) 5 (a;+ 1) -5 (x- 1)
-

(a: + 2)(x-2) "^ (a: + l)(aj - 1)

3a;- 6 -3a;

Ex. 4. Simplify -, j-
^ ^ a + b 2a —

b

The L. C. D. of the fractions is (a + 6) (2 a - 6).

x^-4 x2-l
_ -12 10
-

a:2 ^ 4 '
a;2 - 1

- 12 (a:2 _ 1) + 10 (a;2 --4)
(x2-4)(x2-l)

- 2 x2 - 28 Check. X = 3.

- (x^ - 4)(x2 _ 1) -M = -M-
2x2 + 28

- (a;2_4)(x2_l)

. 3a-46
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Hence,

2a-Sb _ 3a-4b _ (2 a - Sb)(2a ^ b) _ (3 a - 4 h)(a + b)

a + 6 2a -b ~ (a + fe)(2a-6) ~ (2 a - b) {a -\- b)

_ (2 g - 3 6) (2 g - 6) - (3 fl - 4 &)(a + &)
""

(g + 6)(2a-6)

_ (4a^ - 8ab + 36'^ - (3g'-^ - ab - 4b^)
~

(g + 6)(2g-6)

_. 4a3 - 8a& + 35'^ - 3 g'^ + q& + 4 6^

•"
(g + b)(2 a-b)

__ a^-7ab + 7b^ Check, g = 4, 6 = 2.

-(g + 6)(2a-6)* - i = - f

Exercise XV. 5

Simplify the following expressions, reducing all results to lowest

terms, and check numerically :

i-r + rb b
10.^ + 1 + ^.

yz zx xy

b c
11.

'^ * *'

a-b a + 6 d^-b""

3.^ + *-'.
12- \ \-

c a a — b a + b

4.^ + A.
be ca

13- i/+ !
•

oca a + b a — b

g « + ^
1

b + c

c a
^^-

2 ' 3 •

„ a — b b — c
' a - b

^^ ,_3,^, + y_

a — b b — c
*• a b ~

c — a

a 6c

9."-*. ^ y ^ 3,_

xy yz 5 3
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a + 2 a-^^
29 ^^ + ^J^-

2 2 on ^ "^ ^ c — d
^^' ^MHl ~'^f^^' ^' 7^^ " 7+d'

4 5 ^^ a; + 1, ar* + 1

ic — 4 a; + 5 x— 1 ar—

1

a;+2 x+3 ' a+1 "^ a-1

23.-^ U' 33.
^-1

^ +
"

-1 w + l «=* — «+! 0" + a+1

oA a^ + y ,

g-y g + y „^ 5
,

8 3y
^^•"6""^

3 9 * "^^'x + y^x-y x" - f

25 ttl ^ + _^. 35
3 6 9_

^^' b-y b + y^y^-b^ x{x-\-3y x(x-'6) x'-'d

26.-l,-,^i-,. 36.-A,+ ^
^^^

a^ + aZ> 6^* + a6 a; + 5 a; - 5 a;^ - 25

3a! -ar" ar" - 9 a + 6 (a + 6)' {a + b)'

a — 6 a + b ' (a + xy (a— xY x^— a^

a^
39.

(c — a)(c — 6) (a — c)(6 — a) (6 — c)(a — h)

X y z

(x — y){x-z) (i^ — z)(t/ — x) {z — x)(z — y)

b+1
,

c4- 1 a + 1
41. -^ 7T7 T +

42.

(b-cXb-a) (c-bXc-a) {a - b){c - a)

1 + 1 + 1
,

(b — c){b — a) (b — c)(c — a) (b — a)(c — a)

4 2 2
43. 7 7^ r^ +

(a — l)(a — 3) (a — 2)(3 -a) (2 - a)(l - a)



44. ^ "^ ^- + -^
a4-4 a — 5 a — 4 a + 5

45.^+ ' ' '
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x — 2 X— 1 x+ 2 x+ 1

Reduction of Integral or Mixed Expressions to

Fractional Forms
33. Any integer or an integral expression may be written in the

form of a fraction having any required denominator.

This is because successive multiplications and divisions by the

same number or expression produce no change in the value of a

given number or expression.

In symbols, a = axb-^b =~»
Hence a given number or expression may he expressed as a fraction

having a required denominator provided that the numerator of the

desired fraction is the product obtained by multiplying the given

number or expression by the required denominator.

2 6 h^
Ex. 1. Reduce 1 H h —, to an improper fraction.

26
Expressing 1 and — as fractions having for denominators the L. C. D.

of a and a^, which is a^, we have

, 26 62 a^ 2a6 6'' ^.u i t 4. 1.01+— + ^ = -^ + —r + -2 Check. Let a = 6 = 2.
a a^ a* a^ a^

_ gg 4- 2 a6 + 6^* 4 = 4.

Exercise XV. 6

"Write the following expressions as fractions with the denominators

indicated :

1. 3 with denominator a. 5. xy with denominator xy.

2. 5 " " 10 a. 6. m + n " " m + n.

3. 7
" " x-\-y. 7. x+y " " x — y.

4. ah " "
a. 8. a''-\-ab+b^ " " a- b.

Reduce the following mixed expressions to the forms of improper

fractions, checking results numerically :
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9. ..|. 18. "=+^+4/

10.
b

a •

c
19. « + * + a + 6-

11. a + 2 + i-
a

20. h W + »•

12. a:-2 + --
X

21.
al,-^^

-

13.
a

22. .^4^^ ^•

14.
m 23. .'2 + ^-^^-

15. 24.
,

«^ + ^^

a + 6

16.
2 «!«"

25.
, 2a + 3

tt —47W — w

17.
, .

6iB+ 3
a — 4 + — 26. r^ + r + 1 + ^-rbx

34. The following principles are fundamental to the processes of

multiplication and division involving fractions.

Principle I. To multiply a fraction by a whole numbery ive may
either multiiyly the numerator alone by the given multiplier^ or divide

ths denominator alone by the given multiplier.

That is, «xc =5^^
or, ~Xc ~

fr
' - - ft _f. c

(The following proof may be omitted when the chapter is read for the first time.)

For convenience of proof we shall assume that the numerator and

denominator of the fraction a/b and the multiplier c represent positive

integers.

In the proof below, which depends upon the Fundamental Laws for Mul-

tiplication and Division and also upon the definition of a fraction, the

required product is obtained at the left by multiplying the numerator alone
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by the given multiplier, and at the right by dividing the denominator alone

by the given multiplier.

We have rxc=(a-^h)xc

= a X c -^ b

= (a X c) -r ^

axe

and also X c (a-^h) X c

= a -7- fe X c

= a ^ (& -f c)

a

b^c

E. g. Multiply 5/24 by 3.

The product may be obtained in either of the two following ways :

Multiplying the numerator alone

by the multiplier, we have

Dividing the denominator alone

by the multiplier, we have

Ax3 = 2ji3 = f-

Principle II. To divide a fraction by a whole number we may

either divide the numerator alone by the given divisor^ or multiply the

denominator alons by the given divisor.

That is,

or,

a
c = a -r c

h '

b
9

a
c = a

h h X c

(The following proof may be omitted when the chapter is read for the first time.)

In the following proof, where a, i, and c represent positive integers,

the quotient is obtained at the left by dividing the numerator alone by the

divisor, and at the right by multiplying the denominator alone by the

divisor.

We have T^c = (a-j-ft)-rC and also

= a -f ft -f c

= a -^ c -^h

= (a -f c) ^ 6

- h

E.g. Divide 15/17 by 5.

Dividing the numerator alone

by the divisor,

15^5

-I- c = (a -^ ft) -f c

= a -^ (h X c)

we have ^f ^ 5
17

= iV

b X c

Multiplying the denominator

alone by the divisor,

15
we have |^ -^ 5 =

17x5
= il = lV
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Multiplication of an IiiteKfer by a Fractional Miiltiplior

35. To multiply one number by another is, by the extended defi-

nition of multipliwition, to perform upon the multiplicand exactly

those operations whioh must be performed upon the unit of positive

numbers to produce the multiplier.

K. g. Let it 1)0 rwjuired to multiply a by c/iL

To obUiiii the imiltiplier from +1-, we may first divide +1 into il eipial

partA, tittch iHiuul to ^\/d^ and then take c of these parts as suunnanda, juul

thus obUiiii liu' multiplier c/d,

Hruie to multiply a by r/r/, wo may first divide the multiplicand, a, into

d ei^ual i)art8f each iMirt being represented by a/d, and then take c of these

parts 08 summauds. The result thus obtained is the desired product - -.

Thatis,
""^'d-J^

Uenct\ to multiply a whole number hff a fraction, mnUJphi

the whoU' nnndx'r hij the nunu'rutin' of the fraction and divide the

reanft by the denominatm',

E.g. Multiply 12 by 2/3.

12 X 2
We have 12 x | = ^-^ = V = »•

Multiplication of One Fraction l)y Another

36- I-^'t it be ritpiiixid to multiply ajb by c/t/, regarding «, A, o, and (/as

jwsitive whole numlx^rs in order to simplify prt)ofs.

Applying PrincipU»8 I. and II., § lU, and applying a course of reasoning

similfU' to that uswl above, it appears that we may perform the operation l)y

tirst se^wmtiug a/b into d e<puil parts, each of these parts being ix^presented

by a /(/> X (/)•

\\y Trinciple II., § 34, taking e of these ports as summands, we obtain as a

final n>suU

a/hd + a/hd + tor summands, that is, ac/hd.

Hence, we may wnte i: x :3 S x— -•
'' o a o X a

Accordinglt/y tlie product of two fractions h a fraction whose

numenrtor in the pn>dfirt of the tjiveu numerators, and whose denomi-

nator is the /o-odttef (f the (jir, n dt luoiiimttors.

37. It may be shown that fractions obey the Commutative Law
for Multiplication.
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Ilencey to find ilie product of two fractiom^ eitfier fraction may ha

used as multiplier.

„
J

ba^b 2ahx _(r,aVj)('2ahj:) Check.

_ h)aV/^x x=y=i I.

*• ^'
c^ _ d'^ ^ io (,^2 _ l,-^)

- 10 (« 4: ,l,)(c - «:/)(^/ + /y)(a --b)

CancMjIliiipj factoPH w>rinnon to ])(tiU _(«-- ft)(« — ^/) Check* «= ft, & = 2,

numerator and denoiriinator " 2(a — />)(c -f ^/)

'

c =r 4, ^/ = 3,

1 = 1-

38. Any factorH which occur in the uumer&tor of one fniction

and in the denomiimt<jr of another may be cancel le^l at the oiitnet,

instead of being carried over into the terms of the re^juirerl product

and then stricken out.

E, g. In Ejatrnplfi 2 of § 37, 5 in the niunerat^ir of the fIrHt fnuition may
be caiicellerl with 5 which i« a fty^tor of the denominator of the w;eond

;

(a + h) in the numerator of tiie lifHt fnw;tion with (a -f- h) in the da-

nominator of the second; and (c — d) in the denominator of the firnt

iiaction with (e — d) in the numerator of the second fraction.

Mental Exercise XV. 7

ExpreM each of the following products as a single fraction in

lowest terms

:

1. 'i X d.
C

6..nxl- 11. IH./..x(-±)

2- p X y- 7. 2X^i.
^^•^^K^.o^'

3. ?; X Zc.
h

8. 4X-- -^l•
4. -^ X 2»*.

10 «
9. tf* X '

/y 4

5. ^ X c^d.
c

10. 16iB*X
-y
Hx -Jxf.-

Vti
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16. n^ d
26.4xi.

ao ac

17.
d c

22. -X^-
X be

27. 4- X —.

18.
y z

23. — X —^. «-i<-iy
19.

a h
24 2« 4c

«-PH)
20.

c ^ 0'
25. ± X ^^

«2/ z »-ix?-

-{-m
^y'\

35.
a b c

b c a

- (f)(-
acy\

Ox)'
36. 5^ y ^2

- l-iX aczj
37.

2a 5^6.^.
3 4 c e

"•Mx| 38.
a ac ab
r- X -J- X —
be b c

Exercise XV. 8

Express the following products as single fractions in lowest terms,

checking all results numerically :

6a'b 25ar'y 5xz'Syz' 7 z*
-I. 5 /N rrZ 7" *

t). -— S X ~T. TT ^
bary^ IHab ' 21/ 8 a;' 30a;y

^ 5a'// 14^^ „ a^-b 6
2. ^^-^ X T^^ • 7. —^ X

lo'if Iba^b 2 d'-b

^
12abc

^^
9a^yz

S.
^ "" ^'

x ^

7 y2;2<7 28 ^6^ ' 10 iK ~ 3

13 rt^^ 6r'«7W « 35 ^
4. -—^r- X —-717— • 9. —— X

6 rs'^m 1 1 kHiP ' x -Y y x — y

^c^m? 2^>' 2cc? a + b a — b

4 6cc? 3 acx 3 ate ' c + c? e — d
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14 cc + 1 x^ — xy + y ao + b

12. ^X^. 22.»-+^-X^^
iC^ — 1 17 £C — ?/ X'^ + £C<2

13.±±ix^. 23.%±fx^^ar— 1 rt+1 a^ — b^ a -\- b

^^ a^+2a+l^ Q>xy n^^-j^ x{x \- y)
14. X —5 -* i54.

;

X •

3iB3^ a — 1 ^ -\- y m — n

2 « + 1 a?*^ — 9 ?^^ * a6ca; 8 a; + 3 3

4a ~ 6 m'^ — 25 72'^ a; + 5 5 o^ — 15
^^' ^"=T^ ^ 16a'^ - 6^

*

« - a 10 + 2a5'

a;'+ 7a;+ 12 ^ ^^^ 2a^-M^ a=^ - ^^^

17. i X —

•

zi' ,0 . 1 X
a6c a; +3 />' + a^ a' — 4a;2

(« + 2)^ « + 5 m^ — 2 mw + w^ ?w^
1^' 9 i Ti i 7T '^

i IT* '"^' !
'^ Q 5

a^ + 8 a 4- 1 5 <f + 2 m'^ + 7?27i m^ — n^

a" \- ?>a Sabc a;^ + a; - 6 a;' + a; - 12

"Sbc a + 3 ' x^ — X— G x^ — x— 12

a^ + ab + b' (x + yy ,. (a-b)b xy(a' ^ b")

^^' x+y a'-b^' a^-2ab+b^ a^+ 2ab+ b^'

(a-b)b a(b + a) xz(a' - b')

^^- a^^b^-\-2ab^ a^-\- b"- - 2ab a%^y

g'^ — 4 (^ + 3 g'^ — 4(^ + 4 a' — 2a — ^

(^'^ + ^^ + 2aZ>-c^ a^-2ac-^>' + c2

^2 _ 2^c - ^2 - c^ ^^' - 2^c - a' + c^

Power of a Fraction

39. A fraction may be raised to a power by applying the defini-

tion of a power and the principle for the multiplication of fractions.
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— \ = — , 771 being considered, for the 'present, a positive integer.

/3 a%'k\^_ 38 (a8)8(&'^)M Check.
• \JW) - 2* {d^)^ az=h = c = d = 2.

__ 27 aV)h* 1728 = 1728.

- 8iP

Since the converse of any identity is-trne, it follows from

\h/ 6'» b'» \bj

^' 2-
(x + 3)-^ = [ x + S )

_r(x + 3)(a: + 2) 1'^ Check. Let a: = 2.

"L (^ + 3) J 16=16.

= (x+ 2)2.

^ „ X, a^- 10a + 25 ^, r r ^'
Ex. 3. Express -^ r 77; as the power of a fraction.

^ a^+ 8a + 16

aa-lOa + 25 _ (a - 5)^ Check. Let a = 6.

a«+ 8a + 16 -(a + 4)2 ik = liir-

Mental Exercise XV. 9

Express the following powers of quotients as quotients of powers :

1. (1)' ' (-!)• - (!)'•

'• (ly- -(O- " (I)'

(-ly- '-ay- " (?)•

(-0' « (Sf- - {-'if-

-Gy- (-ly- "i-ij

(O- -(-O- .» (ny-
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--ay- -(^J- -©'
Express the following quotients of powers as powers of fractions :

25- ^- 34. §- 43. ^,.
25 625 mV

26. tt;* 35. -—-• 44. —s--

49 400 a"

2^- 81' ^^- ^" *^- 8^-

28 -A. 37 111. Aa 81 '^y.
^*'-

125 .

^^-
256

^^-
81 ^^-324

30. -JL. 39.
-^2«

*u.
16 a^^^

47.
8a«6«

27 a;y

48.
a=^ + 2«6 + ^>'

(«^ + 3^)^ •

AQ
(m - nf

c' + ^cd+d^

50.
{a + hf
(a' - by

K1 (x-yY

32 1000

27 4

qo 144 ,, 16 k"
''''•169'

.

*^- "25"" "^- i^-ff
^. If n is prime to d^ then the fraction n /d will he in lowest

terms and every positive integral power of the fraction n/d will be a

fraction in lowest terms.

Consider | — I = — , in which n, p, and d are positive integers.

\d/ -OP
Since n and d have no factors in common, the powers ^and r^P cannot

have any factors in common, and hence nP / dP must be in lowest terms.

Division of a Whole Number by a Fraction

41. To divide one number by another is, by the extended defi-

nition of division, to perform upon the dividend exactly those
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operations which must be performed upon the divisor to produce

positive unity ('''1).

(The following proof may be omitted when the chapter is read for the first time.)

Let it be reijuired to divide a by c/rf, a, c, and d being taken for conven-

ience as positive whole numbers.

To obtain + 1 from the divisor c/d we may reverse tlie steps which would

have to be taken to obtain c/d from + 1, that is, we may, by applying Prin-

ciple II , § 34, divide the fraction c/d by c, obtaining as a quotient 1 / d as

follows :

c
. _ c -f c _ 1_

d ' ~ d ~ d

Multiplying this result by d, we have by Principle I., § 34,

Hence, to divide a by c/d we may perform upon it successively the oper-

ations above • that is, first dividing a by c, we have

a
a 4- r = ->

c

and then multiplying this result by (/,

, a J
ad

we have - x d =
c c

,, c ad
Hence, a -j- =—

•

d c

That is, to divide a whole nutnher hy a fraction, we may
multiply the wlwle number by the denominator of the fraction and

divide the result by the numerato?'. (Compare with § 35.)

Division of One Fraction by Another
(The following proof may be omitted when the chapter is read for the first time.

)

42. Let the terms of two given fractions be represented by the positive

integers a, b, c and d.
'

Representing the fractions by a/6 and c j d we may write

CL C = (a -^ b) -^ (c -^ d) By the definition of a fraction.
6 • (/

= a ^ b -^ c X d
Removing parentheses preceded by the

sign of divison.

= a-^c^bxd By the Commutative Law for Division.

= (a -f c) -f (6 -^ fZ) By the Associative Law for Division.

-Wd By the Notation for a fraction.
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Thut is, to divide one fraction by a second fraction, divide

the numerator of the first by the numerator of the secondfor a new
numerator, and the denominator of the first by the denominator of the

secondfor a new denominatm\ (Compare with § 36.)

Ex. 1.

Ex. 2.

35 . 7 35 -^ 7 5

48 • 8 48 -f 8 ~ 6

10a268 . 2a6_10a26s^2a6_5a62
2\xhi ' 3a; - 21a;2^ ^ 3a; " Ixy'

Check. a = 6 = 2,

x = y=:'^.

This process is useful only in those cases in which the numerator and
denominator of the divisor are factors of the numerator and denominator of

the tlividend as shown above.

43. The reciprocal of a fraction is unity divided by the fraction.

That is, the reciprocal of y is 1 -r- -r-
b b

This result may be reduced to the form -•
a

The fraction bja is commonly referred to as being the reciprocal

of the fraction ajb.

It should be observed that the reduced value, bja, of the recipro-

cal, 1 -7- alb, of the fraction, a/b, may be obtained by interchanging

the terms a and b of the given fraction a/b.

The product obtained by multiplying the reciprocal of a fraction

by the fraction is unity.

That is, ('lH-|)x| = l.

44. It will appear upon examination of the expression

c d
a -^ - = a X -

a c

that the operation of dividing « by -3 has the same effect as that of

multiplying a by the reciprocal of the divisor, that is by - (see § 41).

Hence, for the operation of division by a fraction may be substituted

that of multiplication by the reciprocal of the fraction.
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I>ivisiou of One Fraction by Another

45. Let it be required to divide a/b hy c/d; a, b, c, and d repre-

senting positive integers.

Applying Principles I. and II., § 34, and employing a course of

reasoning similar to that used above, we obtain the result as follows

:

We may either separate the fraction a/b into c equal parts, and

then take d of these parts as summands, obtaining ad/bc^ or we
may substitute for the operation of division that of multiplication,

using the reciprocal of the divisor as a multiplier, and immediately

., a c a d ad

b a b c be

Hence it follows that the quotient obtained by dividing one fraction

by another is equal to the product of the dividend and the reciprocal

of the divisor.

E 3 ?^^i£!^ = ^^ ^h. Check. a = h = 2,
^'

' 4cd^ ' bbij -4cd'^^2ch: c=d = 3,x= y = l.

_ (3a^6)(5%) ^0 = ^0.

_ 15 a^b^y

2a2-f-7aft + 6 62 a-h a + 26
Ex. 4. Simplify

ab-b^ ^ 4a=2-962
•

Factoring and substituting x zr-, for -, j
, we niav write

^ a + 2o b

9a^+ 7a6 + 6/>2 a-b .rt+26_
ab-b^ ^4a2-962^ l -

(2q + .3 6)(a + 2Z>) a-b b

b{a-b) ^ (2a4-36)(2«-36) ^ a + 26

_ 1 Check. « = 4, b = 2.

= 2a-36

'

^ = 1
Since the factors are removed from the numerator by division, not by

subtraction, it follows that when we strike out the last factor, whichever

that may be, the quotient 1 remains.

46. Mixed numbers appearing in either dividend or divisor

should be reduced to fractional form before the division is carried

out.
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Ex. 5. Divide -^ + 1 +-^ by -^^^^
a + 6 a — b "^ a^ — b^

Expressing the dividend as an improper fraction and multiplying by

the reciprocal of the divisor, we have

/ a b \ _^
a^ _ gg - aft + gg - 52 + a6 + b^ oP- - b"^

'

1 + 6
"*" "^ ^^^>y "^

a2 - 62
-

a2 - 6^
x —^^

_ 2a2 Check, a = 3, 6 = 2.

~ a^ 2 = 2.

Mental Exercise XV. 10

Express each of the following quotients in simplest form

1. -r -i- a. 12. -*''

_ 5m
2. '-m.

n
13. K--

« 12a; ^
3. —20;.

3^

14.-H
4. l^«.(-3o). 15.

1

a.?.. 16.
5

6j^(-.). 17.

..^^. 18. 3-'-

8. |j^3a. 19.
a . 2

b ' 3'

9.1^26. 20.
a; . 4

2/
• 5'

-¥-• 21.
7 . m
8 '

^'

ll.V*^(-5). 22.
9 .

d
^

10 * c
'

23.
1

2 *

X
y'

24.
1

3
•

a

'V

25.
m
n

1

' 4'

26.
w -{-\

27.
a

b
'

d

c

28.
X

y
.1.
X

29.
m

7— •

n

30.
b^~

. b^

a

31.
ab

^

c c

32.
X

yz X

33.
abc ab

xy xyz
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Exercise XV. 11

Express the following quotients as single fractions in lowest

terms, checking all results numerically :

'jji^db_ _ 6 — 6 . 3
* 36 * 14a'

2.
2a^

56 •

8 a*

15 6*

3.
9a6«

.
12a«6

3b xy^

4.
dx Uz
lOy

'

12 w

5.
5ci/

4:bZ

Saw

6.
12 ad 32 be

23 Oc ' 21 ad

7.
3a%

.
4ab^

3cH

8.
1

\-x
1

• l+iC

9.
X— 1

X
. y
' x^- 1

10.
«+

1

5 * 10a

11.
a-\- 1

2

3

• a+1

12.
x — 2

3

5
' x + 2

13.
m -\- n

8

6

' m -\- n

1 4
a + 2 1

a + 3.

xo»
10 '6+1

16.
cH-4 . 4

5 ' c + b

17.
a-\-b , SB —

y

X -\- y ' a — b

18.
10a' 5a

(a + by ' a + b

19.
9 a:' . 3x

a;' -9 *
a; -3

OA 18a; . 6aj

16a;'- 1 • 4a;-
l'

21.
2 . 4

2x + 3ij ' 4a;'-92/'

22.
c' - 9 . c - 3

c' — c - 2 *
c' + c — 6

23.
w' — w — 2 . m^ — 2m
TV? — m — ^ ' 2 m -{• m^

24.
a-3 .

a^ - 9

a' — 2a + 4 * a' + 8

25.
(a; + ?/)'

.
(a;' - y^

x+3y ' x^ \-21f

26.
33 . 11

a« + 6« • d'-ab-\- b^

27.
x^ — f ^ x^ + xy -{- y^

14 • 7

28.
a« + 1 . a' - a + 1

^2__4 a 9J-2V
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\c ah) \a b cj

ob. — -— X —

s

r X

37.

Qax — 2()x a^ — 9 3a -8 ' 'da' — a — ^O

{a + by - if a ^ ab - by - b^

a^-aij + ab (a + yY - b^ ' (a- bf - f
m^-Vm-^ 7??H8m+15

.

^
m'^ + Am + S m + S \

m^— m — SO m^— 4m + 4:
' \m^— 4:m— V2 m— 2/

Complex Fractions

47. Since in algebraic expressions we cannot restrict ourselves to

using positive integers only, we shall find it necessary to admit to

our calculations iractions whose numerators and denominators, either

or both, contain terms which in themselves may be positive or

negative, integral or fractional.

By the Principle of No Exception we shall so extend our ideas

concerning fractions that whatever may be the nature of the numbers

entering into the terms of any particular fraction, the operands must

in all cases be governed by the laws demonstrated for fractions whose

terms consist of positive whole numbers only.

48. A complex fraction is a fraction containing one or more

fractions among the terms of its numerator and denominator.

E. g. The following expressions are complex fractions

:

a-\-b 1 _ 1

a c ah
T' rf~' c+d

'

c ab

49. When simplifying a complex fraction it is often convenient

to obtain the reduced value of the numerator alone and of the denom-

inator alone before attempting to perform the indicated division.
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Ex. 1. Simplify

1 _ 1

a b_

L_L
32 62

We have.

60. It is sometimes desirable, when simplifying complex fractions,

to multiply both the numerator and denominator by the L. C. M. of

the denominators of the fractional terms.

E. g. In the example above we might have multiplied the complex num-
erator and also the complex denominator by the L. C. M. of their denom-

inators, a%^, and have written

xa%^
ab _ ab _ (^ — a)«^ _ «&

62 _ rt2
- b-i- «2 - 62 _ a2 - a + 6—

^TT- —212- X *^
a^b^ a^b^

It will be observed that in this particular instance we have not

used the reciprocal of the divisor as a multiplier, but have adopted

another method.

Ex.2.

a + b a — b {a + b a-b\
a-b a + b _ [a-b « + ij^" + *>("

"-6)

a + b a — b ~ /a -\- b a — b\^ ^.,

a-b^a + b (a-6 + a4-6r + '^^^-

(a + 6)2 - (a - 6)2

- (a + by + (a - 6)2

_ 2a6
- a2 + 62

-6)

Check,
a = 3, 6 = 2.

12 12
13~13*

Exercise XV. 12

Simplify the following complex fractions, checking all results

numerically

:
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1 + 1 -- + '-

4. — • 7. ^

^+^ 1-i ^-l
z y a z

2. _l^. 5. ^. 8.—^±1-

C TTt X —\

1,1 1_1 ^_2/_^
3 .^ 2^. g _f^ y_. ^ y z Ic

^ y ^ f y z X

14 a + ^.« — ^<^_2 -— -H —-
-^ a + 3 IK c — » c +G?
10. — 15.

21 a + b , a — b

a \- 6 c +d c —a

1- _—

—

c—

3

c—

4

11. . ^ + ^
» 16. ^X ^

b c c—

4

c—

1

a + t* H— c a , ,

12. ^. 17. ^
•^+^-

b y c

13.

1 + ^

1 — ic 1 + a

1 1

l—x 1+a

^
2b-2c

14.
a + b — c

1+ \'

1_]_ • c'-y''

y c

1 + 2^ 1-2^
1-2^ 1 + 2^-

'
1 — 2^ 1 + 2 /;

1 + 2^"^
1 — 2A;

i + l + l
a;?/ a;^ y^

^^-
a;^ - (y + ^)^

'

a;y
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ah ah oo^ 2w — I

h a , b a ' w + I 2,«^1
a^6 1 ,1 ^22

a a

X y y^\ 1_
_l_

Z. 23 I .

a^ ary

t x + y-r.
24. —^ + 2

y aj 2/ a^

Continued Fractions

51. Rational functions of the form

are commonly called continued frac- i j^

^

tions. 7 ,
e

52. Certain simple forms of con-
f A-i.

tinued fractions may be simplified by h

beginning at the last mixed expression, /+ |, and after reducing

this, by proceeding upward, reducing successively the next higher

complex and mixed fractional expressions, until finally all have been

used.

2
Ex. 1. Simplify

1-

-?
/ 2 1,/—-^ ^-^

"
',^ In the accompanying figure we have indicated the

^ /^ _^^ J* ^^-^ successive steps of the process, 1, 2, 3, and 4, by

I ', 1/5 4. Ay ly enclosing the different mixed and complex fractional

\\^ ^^^ -i -^S/ expressions in different " spaces " bounded by curved

^^•^s-^-''^'^ lines.

The fraction may be simplified as follows:



o **" 41
6

'j8.

41

— __ ,

\
\

\

/

^ 2^
41

-'3^- =
41

/
/

\

2

23

41

\

\

J

/

/

= _82.

. 41 1

23

287

By reducing the improper fraction || we obtain the mixed number

3J|, which is the value of the given continued fraction.

Ex. 2. Simplify the following continued fraction ^—

.

Simplify the lowest mixed expression and di- ^ ^

vide h 1 >y the result. Subtract the result of this oper- a
ation from c. Use the reciprocal of the remainder

as a multiplier of a, to obtain the reduced value -r ^ of the given

continued fraction.

Check, a = 4, ft = 3, c = 2.

5 = 5.

Exercise XV. 13

Simplify each of the following :

1 . « „ a — 2
4. 7.X.

1

a + —
1

a +
a

a
2.

h
X + —

c
y +

z

a
a.

h
b — —

a
a —~

h

h a —

2

5. 1

e a —

I

1 . 1

1 m'—l
1 m

1-1 m+ '

X m — 1

-!
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53. Fractions whose terms contain binomial sums and differences

may be simplified as follows :

h -{- c a -\- c a + b
Ex. 1. Simplify

(a _ b){a - c) ^ {b ;^(6 -a)^ {c- a)(c - 6)

Among the six binomial factors oi the denominators there are but three

which are essentially different, such pairs aa a — b and b — a differing only

in sign.

We may accordingly choose for the form of the L. C. D. the expression

(a — b)(b — c^)(c — a). Hence we may write

:

6 + c a + c a -\-b

(a-6)(a-() ' (/, _c)(6-a) ' (c - a)(c - b)

= - (^ + .
- (« + , - (a + b)

- (a - 6)(c - a)
"^

(6 - c)(a -b)'^ {c- a)(b - c)

(The — signs are written in the numerators to compensate for the change

of sign resulting from the alteration of the signs of the factors in the

corresponding denominators.)

_ -(h + c)(b -c) -(C + aXc -a) -(a + b)(a - b)

ia-bXb-jXp-^)
_ -b^-\-c^-c^ + a^- a^ +T^
- (a - b)(b - c){c - a)

(It will be seen that the mutually destructive terms in the numerator

disappear through addition and subtraction, for example, a^ — a^ = ().

Hence, when striking out the last pair, whichever that may be, we must

write as a resulting numerator.)

- (a - 6)(6 - c)(c - a)

= 0, providing a :^ b ^ c. Check, a = 4, ft = 3, c = 2.

= 0.

This is because the value of a fraction is if the numerator be and the

denominator different from 0.

54. Complex Fractions Involving I>ecimal Fractions.

Although no new principles are introduced by the appearance of

decimal fractions, much labor may be saved by means of certain

special devices.

E. g. By expressing all of the decimal fractions and whole numbers in

a complex fraction as decimal fractions of the same order, we may disregard
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the decimiil points altogether, since this amounts to multiplying both

numerator and denominator of the complex fraction by the number repre-

senting the order of the decimal fractions.

E 2
3.06 g + -0204 _ 30600 a + 204

.255
~

2550

_ 300a + 2 . , , . „

• Check, a = 2.
= _^-_ ,

m algebraic form,

24.08 = 24.08. = 12 a + .08, in decimal notation.

Exercise XV. 14 Miscellaneous

Simplify the following fractional expressions, checking all results

numerically

:

1. 1-a + a -j-T—' 6. -—

^

1 + a 3a' 7

2. x^ + xi/ + y' + -^ 7. -2 T-^ X
, ,x — y m^ — ^x' imr -\- mn

a^b - h^ Sa ^-4 d' - 1 d-2
a 2ab-2b''' ^'

d' - l^ 2d ^2 + d

^ m^-a'
^^
m^ + a\

^ /I IV a^> \

az a — m ' \d^ b^)\a + b)

x + y xy — y^ \ xj\x — yj

\x a J\x^ a^J

4. o 9
12. 7 —. ^ +

{a — l)(a — H) (a - 2)(3 — a) (2 — «)(! - a)

2^a + b — c2^a + c — b2 b -\- c — a

a ab b ac c be

14
^''-2^+1 F-4^+ 4 Jc' -6^+9

,^ 3a2 + «-24 6a' a-

3

3«' + 9a
15. —

—

X —^ X X
6 aa; — 20 ic a' — 9 3 a — 8 3 a'"^ — a — 30

V a;+«y\ X — a J
19
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4
18. M^

I 1 Mr ^
I 1

^^ V

' \2 + a a J
' \a + 2 a J

m + n \m — n m -\- it)

21. ii I

"^ V; ^~"'%
(

"'^^ ^

\ m — ^J 4 — w* w^ + w — 6 7W + 2

23.

24.

25.

26.

a^bc h^ca
+

c^a6

(a — b){a — c) (b — c){b — a) (c — a){c — b)

r+\ s+l t+l
^r-.s){r-t)^ {s-t)(s-r)'^ {t-r)it-s)'

(c" - d')((^ - e^) ' (cP - e^)(d' - c^) ' (d' - c'Xe'' - (P)

d + b — c c + d-b b + c — d

(d-b)(d-c) ' (c-d)(c-b) ' (b-€){b-d)

Indeterminate Forms
Sections 55-72 may be omitted when the chapter is read for the first time.

55. It frequently happens that when particular values are

assigned to the letters appearing in the terms of a fraction, either

the denominator or the numerator or both become zero.

E.g.
a:+ 1

X +2

3C^ — X^

for a: = 1 becomes

for a: = — 1 becomes

for ar r= 2 becomes

for X = — 2 becomes

for X = becomes

for X =z I becomes
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For all other finite values of the letters the expressions above assume

perfectly definite values.

56. According to definitions previously given, expressions in

which zero appears as a divisor have been excluded from calcula-

tions as being meaningless as numbers.

In order that such " number forms " may without exception be

admitted to our calculations, we proceed to extend our idea of the

value of an expression.

Since Quotient X Divisor = Dividend,

we may regard 8 as meaning Quotient X = 0.

Hence, since the product of any number and zero is zero, we may
interpret § as representing any number.

57. If a variable be supposed to change in value in such a way

as to become and remain as nearly equal as we please to some definite

fixed value or constant, the variable is said to approach the constant

as its limit.

The symbol == is read "approaches as a limit."

E. g. The expression ^^^^ (x + 6) = a + & is read, " the limit of {x + h)

as X approaches a is equal to a + &."

a:2 _ 25
The fraction — assumes the form - when x — 6.

X — b

We may write ^-^ =
/_% = i- + "^^^ '

If we suppose that x approaches 5 as a limit, then so long as x has a value

diflFerent from 5, will have the value unity (since the numerator and
a: — 5

denominator are equal), while x + 5 will differ from 10 by exactly that

value by which x differs from 5.

Accordingly we can make the value of {x + ^)\~Z^] ^^ nearly equal

to 10 as we please by giving to a; a value sufficiently near to 5.

Accordingly, ^^, (^if^) = /f^ [(- + ^^i^^^^] = ^^-

58. We shall define the value of an expression for any par-

ticular value of its variable to be the limit (if there be one) ap-

proached by the expression as its variable approaches the particular

value as a limit.
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Although this general definition may be used in all cases, we
shall employ it only when, by using the definition given in Chap. I.,

§ 1 9, we fail to obtain a definite number.

59. To find the value of a fraction which assumes the

indeterminate form 0/0/w some ^particular value of the variable

appearing in it
^ find the limit approached by the fraction when the

variable approaches the given particular value as its limit.

60. It should be observed that a rational fraction assumes the

form 0/0 because some factor common to both numerator and de-

nominator becomes zero for some particular value of the letter

appearing in it.

61. Since the symbol 0/0 does not represent the same value all

of the time, but assumes different values according to circumstances,

we interpret 0/0 as representing an iiideteriiiinate value.

Ex. 1. Find the limiting value of the fraction {x^ — 6 a: + 9) /(a: — 3)

w~ ., a:2_6a; + 9_. /x-3\
We may wnte — = (x — 3) I ^ )

•

I^OT all values of x different from 3, ar — 3 ^t 0.

a: — 3
Hence the value obtained by multiplying a: — 3 by -, wliich is unity

X — o

when X is different from 3, is the value of the factor a: — 3.

As X approaches 3 as a limit the expression a: — 3 approaches zero as a

limit.

Accordingly the value of the given fraction is taken as zero when a: d= 3.

Another method for finding the limiting value of an indeterminate

fraction is shown in the following example :

Ex. 2. Find the value of {x^ - 49)/(x + 7) when x = - 7.

We may indicate that x differs from — 7 by writing x = — 7 + hj letting

h represent a value which may be made as small as we please.

jp2 49
Accordingly, substituting h — 7 for x,

'

becomes
X -p I

(h - ly - 49 _ /62- 14/1 + 49 -49
{h~l) + l "= h-1 + 1

= h
'

for all values of /i ^t 0, =h — 14.
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Hence (,/;- — 4Q)/{x + 7) differs from — 14 by li, which may become and

remain as small as we please.

Accordingly the given fraction approaches — 14 as a limit as a? approaches

-7.

62. Consider the fraction ajx in which the numerator a is re-

garded as having some fixed or constant vahie, different from zero,

while the value of the denominator is subject to change.

As the denominator is given successively smaller and smaller

values (1/10, 1/100, 1/1000, etc.), the numerator retaining some

constant value, it may be seen that as the value of the denominator

decreases, the value of the fraction increases.

E. g. -^ = 10 a, -^ = 100 a, -^ = 1000 a, etc.

By giving to the denominator a value small enough, the value of the

fraction a/ x can be made greater than any assignable number.

63. The symbol x> , read " infinity ", is commonly used to denote

all numbers or values which are greater than any assignable arith-

metic number or value.

The expression x = y:), read "a; increases in value without limit

"

or " X is infinite ", is to be understood as meaning that x has no

definite fixed value, but that it may assume dij^ereMt values which

are very great and are beyond the range of computation or imagi-

nation.

64. The symbol for an infinite number, oo, should never be

treated as representing a definite value, and it is not subject to the

Laws of Algebra.

Corresponding to the ideas of positive and negative numbers, we

have "*'ao , read " positive infinity," and "oo , read " negative infinity."

65. It is impossible to separate unity, or in fact any number, into

such small parts that one of these parts shall have no value at

all, that is, be zero. Hence it may be seen that, although the

successive denominators (1/10, 1/100, 1/1000, etc.) of the complex

fractions in § 62 become smaller and smaller in value, we can never,

by diminishing the denominators in this way, obtain zero as a

denominator.

66. A variable whose value may become indefinitely small with-

out ever becoming zero is called an infinitesimal.
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67. The symbol o (horizontal zero),— read " diminishes inde-

finitely in value without ever becoming zero," or " is indefinitely

or infinitely small," or "is nearly zero,"— has been used by certain

writers to denote an infinitesimal variable.

E. g. X =. o means " is nearly zero," that is, has a very small value.

X = means " is exactly zero," that is, has no value.

68. Such numbers as are neither infinite nor infinitesimal in

value are called finite numbers.

69. Interpretation of g. It may be seen from the preceding

paragraphs that if the numerator of a fraction remains constant in

value, the value of the fraction as a whole increases when the value

of the denominator decreases ; that is, for a given numerator, the

smaller the denominator the greater the value of the fraction.

Hence, as the denominator becomes infinitesimal the fraction

becomes infinite. Hence we may write ^ = qo .

Accordingly, although strictly speaking - has no meaning, we

shall define it to have the same meaning as -^ ; that is, we shall

interpret - = oo •

70. Interpretation of ^ . It may be seen that if the numerator

of a fraction remains fixed in value, the value of the fraction as a

whole becomes smaller indefinitely, as the value of the denominator

increases indefinitely.

Accordingly we may write ^ = ^ *

It should be observed that -^ is defined to mean nearly zero^ that

is o, not exactly zero^ which is 0.

71. By the Principle of No Exception we shall define - to mean

^, (which may have any finite value), -, to mean ^, that is qo,

(which represents any infinite value), and ^ to mean o (an infini-

tesimal value).
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The expressions - , -
, ^ are commonly called indeterminate

forms.
72. The symbol ]s , written at the right of a fraction or other

expression containing a single variable, is to be understood to

denote that the value represented by the subscript, s, is to be

substituted for the variable.

n, rru . a; + n 3+14
E. g. The expression ^-^J ^

means ^-^ = -

Exercise XV. 15

Find the limiting values of the following expressions for the

values specified :

*
a; — 1 Ji

*
ic — 2 Ja

"-25 "| x^-4:x'' + x+ G
")

1

a--25
' a + 5

3.^ +4- n a;'-3a;'^ + 3^- l "[

+ lj-i'
'

i«-l Ji*

6^-1 "! a;«-6a;'^+ 12a; -8 "|

6 - iji*
*

a;'-4a; + 4 Ja*

Factors of Fractional Expressions

73. Expressions which are fractional with respect to specified

variables may be factored by the methods which are employed for

factoring integral expressions.

a a I ( 1\ 1/ 1\ Check.

Ex.2. _-_..(^- + -j(^---j.
Check.

Let ft =r 3, & = 2, c = 1.

17 _ 11
115 — 16-
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Exercise XV. 16

Factor the followiDg expressions, checking all results numerically

:

a^ ab b^
7.

6«^ 13«

b' ^ b ^^'

-«^^¥n- 8.
a^ a

3..y-i. 9.
a or

4. -« — 2+ -^• 10. a^ + a + 2 + i + i
a a^

.$,%.. 11.
1 2/«

ic« 8*

y y
12. (^O-'CT

Mental Exercise XV. 17 Review

Obtain the following products :

1. (x - 1)(1 - x), 3. (4 + d){d - 4).

2. (2 - h)(b - 2). 4. (c + 5)(- c - 5).

Simplify each of the following :

5. 1 -r-«/6. 7. 1 -=- 1/^y.

6. rt -h 1 /6. 8. xy -^ a;/2/.

Distinguish between

9. - + - and —; 10. y and =-

^ y X + y a a —

11. __and-+l.

Simplify each of the following :

6 + c b — c y — z y + z

Supply the terms which make the following expressions trinomial

squares :

14. a^+8a+( )• 17. ^«+6^4-( )• 20. 9A*+6^« + ( ).

15. P—lOb+l ). 18. m^ + 2m^-\-( ). 21. 16£c«-24a;'+( )•

IQ. c*+ 2(^+1 ). 19. w*+4?i* + ( ). 22. 25y^'-S0f+l ).
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Are the following expressions conditionally or identically equal ?

23. 6 + 2 and 5-1-3. 25. 6 a; + 2 and 5 ic -h 3.

24. 6x+ 2x and 5 -h 3. 26. 6 a; -h 2 aj and 5 a; -f- 3 a.

27. To which of the equations, 5a;+ 2y = 1, 3a; — 4^/= 8,

4 a; -- 3 ?/ = 5, are the following equations equivalent ?

10x+ 4y=U; lox+ Qy = 21; 6x-8y = lQ',

9 a;— 12 y = 24; Ux—12y = 20.

Are the following expressions identical ?

28. -Ti ^ bhy - /*, and b - •

29. ^,|+|andi(.: + j,).

Show that the following identities are true :

1 1
30.

{b ^ a){c - b) — {a - b){b -c)

31.
1 _ 1

{d - cf - (c - dy

<?<>
1 1

(b-ay-(a-by

33.
(«-.)^_^ .y.
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CHAPTER XVI

FRACTIONAL AND LITERAL EQUATIONS

Equations which are Algebraically Rational and
Fractional with Reference to a Single Unknown

Having Numerical Coefficients

1. An equation is said to be fractional with respect to any

specified letter if that letter appears in the denominator of a fraction

in either member of the equation.

2x5
E. g. The equation H = 7 is fractional with respect to a;,

Q ~ Ax h
while r — ;7— = r is inteffral with respect to x but fractional with

a +6 2a a — 6
^ ^

respect to a and h.

2. The only equations which are spoken of as having degree are

those which are entirely rational and integral with respect to the

unknowns appearing in them.

Hence the tenn degree does not apply to equations which are

irrational or fractional with reference to a specified unknown.

3. If a given fractional equation cannot be solved immediately

by inspection, its solution may be made to depend upon the solution

of an integral equation derived from it by multiplying both members

by the lowest common denominator of all of the fractions appearing

in it.

This process of deriving an integral equation from a fractional

equation is spoken of as clearing the fractional equation of

fractions.

4. The equivalence of the given fractional and the derived inte-

gral equations may be determined by the following

Principle: If both members of an equation whose terms are

rational and fractional with reference to a single unknown^ x, be

multiplied by suck an integral function of x as is necessary to clear
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the members of fractions^ then the derived integral equation will

he equivalent to the given fractional equation.

(The following proof may be omitted when the chapter is read for the first time.)

Let the terms of a given equation which is rational and fractional with

reference to a specified unknown, a:, be all transposed to the first member,

and then added algebraically.

Let the resulting fractional first member, reduced to lowest terms, be

N
represented hy -jz, in which N and D represent expressions which are

rational and integral with reference to the unknown x.

Then, by the principles of equivalence, the given fractional equation

N
will be equivalent to the derived fractional equation — = 0. (1).

N . .

Since y: is in lowest terms, it follows that N and D have no factor in

common.

If for any value of x, such as x = a, both N and D should become zero,

it would follow from the Factor Theorem that N and D would have the

N
factor a; — a in common, and accordingly the fraction ^ would not be in

lowest terms.

Accordingly, when for any particular value of x the numerator N of the

N
fraction -tt , which is in lowest terms, becomes zero, the denominator D

must be different from zero.

. N .

The necessary and sufficient condition that the fraction -y- in lowest

terms shall become zero is that the numerator N shall become zero, the

denominator D remaining finite and diff'erent from zero.

N
Hence any solution of the fractional equation -tT = (2) must be a

solution also of the integral equation iV= (3), obtained by multiplying

both members of the fractional equation (2) by the multiplier D, which is

necessary to clear equation (2) of fractions.

Hence no solutions of the fractional equation (2) are lost by multiplying

both members by the multiplier D.

Since any value of x which reduces iV to zero cannot reduce D to zero

also (because NfD is in lowest terms), it follows that any solution of the

integral equation N = (3) must be a solution also of the fractional

N
equation 77 = (2).
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Hence no solutions are gained by multiph'ing the fractional equation (2)

by the multiplier D.

Accordingly, the given fractional equation and the derived, integral equa-

tion N =0 (3) are etjuivalent.

5. Although an integral equation which is equivalent to a given

rational fractional equation may be derived by transposing all of the

terms of the fractional equation to the first member, uniting these

terms into a single fraction, reducing this fraction to lowest terms,

and then clearing the ecpation of fractions, it is not always conven-

ient to carry out the steps of the process in this order.

6. We shall consider in this chapter rational fractional equations

containing a single unknown, the solutions of which may be made

to depend upon the solutions of linear equations.

Other fractional equations will be discussed in a later chapter.

11 9
Ex. 1. Solve the fractiqnal equation = -—'-—— • (1)

X -j- 1 Ji X — 1

1

We may derive an iutegral equation by multiplying both members of

(1) by the protluct (x + l)(2a; — 11) of the denon inators and obtain

U{x+ l)(2a: - 11) ^ 9 (a: + l)(2a: - 11)

a;+ 1 2a;- 11

Or, ll(2x-ll)=9(a:+l). (2)

From the integral equation (2) we may obtain the equivalent integral

equation 22 x - 121 = 9 a: + 9, (3)

the single solution of which is found to be a; = 10.

Since neither of the solutions, a: =: — 1 or a; = 11/2, of the equation formed

by placing the multiplier {x -f- l)(2a; — 11) equal to zero, is a solution of

the derived integral ec] nation (3), it may be seen that the single solution

x = 10 of the derived integral equation (3) must be the solution of the

original fractional equation (1), and there can be no other solution.

The solution may be verified by substituting 10 for x in (1), when we
shall obtain the identity 1 = 1.

11 9We may obtain the graph of the equation — = — as follows

:

Transpose 9/(2 x — 11) to the first member and then write the first

member of the equation thus formed equal to y, as follows :

11 9

x+1 2X-11 = y. (4)
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DiflFerent pairs of corresponding values of x and y, which may be taken

as abscissas and ordinates respectively of points on the graph, may be

obtained as follows :

By assigning different values to x and substituting these values for x in

(4) we may calculate corresponding values for y.

It will be found convenient to transform the first member of equation

(4) by addition, and to obtain the values of i/ by substituting values of x

in the transformed equation (5).

13 (a: - 10)
-y- (5)

(a:+ l)(2a;-ll)

After having computed pairs

of values for x and i/, points on

the graph may be located. (See

Fig. 1.)

7. If a fractional term of an

equation is preceded by a neg-

ative sign, then when deriving

an integral equation (by mul-

tiplying every term of the

equation by the lowest common
multiple of the denominators

of the different terms) it is

necessary to change the sign of

every term of the numerator

from -f to —, or from — to +.

X, « oti a: — 2 a:4-2 x —\ ^
Ex. 2. Solve —-— ^ - -.—- = 0.

X -\- 1 x — 2 x^ — ^

Clearing of fractions by nmltiplying every term by x'^

lowest common denominator of the fractions, and changing the signs of the

terms in the numerator a; — 1 of the last fraction, we have

(a; _ 2)2 - (x + 2)2 - X + 1 =

4, which is the

x^-4x-\-4 4x-4-a;-l- 1 =0
-9x = -

By substituting 1/9 for x in the given equation, the solution x = 1/9

may be verified as follows

:

- 17 19 72 _
19

"^
17 323

~

289 -f 361 72 =
= 0.
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8. In some cases, before clearing of fractions, it is well to unite

some of the fractions appearing in an equation.

Ex.3. Solve —^ !_ = _L^ !_. (1)x — 1 X — 3 a: — 5 x—\ ^'

Uniting fractional terms in each member separately,

(a:-3)-(x-7) _ (x-l)-(x-5)
{x -l){x- 3) (X _ 5)(a; - 1)

' ^^

Simplifying the numerators, we have

4 4

(x - 7)(x - 3)
~

(x - b){x - 1)' ^^^

Instead of obtaining an integral equation by dividing both members by 4

and clearing of fractions, we may proceed as follows

:

Since the members of the equation are equal fractions having equal

numerators, we may ec^uate the denominators at once, and write

(x - 7)(x _ 3) = (x - 5)(x - 1).

From this equation we obtain

x^ - lOx + 21 = x2 - 6x + 5.

Collecting terms, — 4 x = — 16.

Finally, we obtain x = 4.

Since the root 4 could not have been introduced when (3) was being

cleared of fractions, it must be the single solution of the original equation (1).

The solution may be verified by substituting 4 for x in the original

equation.

General Directions for Solving Fractional Equations

9. Although special devices may be employed to obtain the solu-

tions of fractional equations, the following general directions will

often enable the student to avoid unnecessary work, and also to

avoid introducing into the derived integral equations roots which do

not satisfy the given fractional equations.

1. Before clearing of fractions, all fractions should be reduced to

lowest terms.

2. Fractions having a common denominator should be combined.

3. Wherever possible, the denominators of fractions in lowest

terms should be factored and the factored forms retained until an

integral equation is derived, for the forms of these factors may sug-

gest a simple grouping of the terms of the equation.

4. When clearing of fractions, use the lowest common multiple

of the denominators of the fractions in lowest terms as a multiplier.
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Exercise XVI. 1

Solve the following fractional equations for the letters appearing

in them -, the first one hundred and twenty equations may be solved

mentally

:

1.
X

15. A='- 29. 1-15 = 0.
a

2.

y
16. =f. 30. 1-6 = 0.

X

3.
z

17.' =si- 31. 1-5 = 0.

y

4. 1=1.
w

18. I'- 32. 1-8 = 0.
Z

5. A = -i.m 19. A-- 33. 14 — i = 0.
a

6.
-* = i.
n

20. 8- ^
. 34. .,-1 = 0.

7. 1 = 2.
X

21. -A- 35. ?-8=0.
c

8. 1 = 3.

y
22. -£ 36. 1 + 5 = 0.

9. 4 = 1.
z

23. -A- 37. 1+13 = 0.

10. 6 = 1.
w 24. »=s- 38. 1-2 = 3.

X

11. h'- 25. 5-,.o. 39. 1-4 = 7.

y

12. i."^ 26. 1^-1 = 0.

2/

40. 1-1 = 1.

Z

13. A=-- 27. 11-1=0.
Z

41. i + 3 = 6.

14. /.=• 28. 1-1^ = 0.
t<7

42. l., = s.
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43. i + 8 = 2.
c

59. 1 = ^
^

• 75.
1 1

2a+l a+3

44. 5 + - = 8.
w ««-2.+ l-l- 76.

1 1

36— 2 26 + 2

45. 9 + - = 7.
a «^-3Al=--

77.
2 2

5c-l 3c+5

46. 10 + 7 = 6.
b

4
78.

1 2

a:
3*

47. 4 - - = 3.
X «^-. + 4 ^•

79.
1 6

48. 5 - - = 2. «*-, + 2-^- 80.
1 _ 8

z
9*

49. 6 - - = 10.
z «^-.+ 2-^- 81.

4_ 1

7 x'

50. 7-i = I2.w ^^-.-a-'^-
82.

3 2
8~y'

"^.='- 67. % = 7.m — 83.
1 5
5~2;*

-jfa- ''1=1-
n 6

84.
1 3

5 2w

53. ^ , = 1.
2 — 3 ^'H- 85.

2 _5^
7« 9'

54. —i— = 1.
W7— 6

™.i=-i. 86.
3 7

76~ 3'

55.^1^-1. 'J4- 87.
4_ 7

5~ 6c*

^«- 3-6-1- -.-i-.=r 88.

57. 5 = ^4

—

+ c "F^. = l-
89.

1/ y

5° 1- ''

".-i-. = r
90. ?-?-4.^- ^-d-7 2; r
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9xJ-5 = 2. 101.^ = 3. 111.
2 1

92. 1+1 = 10-?. 102. ^-ti = 4. 112.
b a — 2

4 3 ^ — 1
93. -+3 = - + 4. 103. -r—— = 5. 113.

c c + 6

94.2_£+| = i. 104. JL + Us. 114.
a; + 4 2x X

96.^^I1«=,. i06.J-+J- = l. 116.
^ 1

X -3 a;-2

7 6

X + 3 x-2
5

— 1

4

X a:+l

3 1

2 x+i x-l
7 2

m Sx 2x bx—1 2ic—

1

97. t^Lll^ = 3. ,07. ^-A=2. 117.
' '

2y 4y 3a;+2 5a;—

2

5^Il9_o 108. a +1=3. 118.^—A-
2^ bz 2z 3a;+ 4 2a;— 1

99.:r^ = 2. 109. 4^ = -U- 119. "
^

3A + 4 a;+5 a; + 2 7a;+3 6a;+2

'''• 41^5 = '' '''•^ = d^- '''' 2-^3-4^

121 ^+1 ^-^

122.

123.

124.

125.

a; — 2 a; + 5

4 a;— 3 _ 4a;— 7

2ic— 1 ~2a; —
5*

6a;—

2

_ 2a;+ 1

3a; + 4""
a;4-

3*

1 ^ 1

(x + l)(a; + 4)
~"

(a; + 2)(a; + 5)

1 1

(a; + 14)(a; - 7) (x - 13)(a; - 6)

12 4a; +30
126. 3 —T = '^

J^V-x-\- 1 x+ S

20
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127.
1

1

2 3

X — 2
1

X -3 X — 4

128.
X
J_

"7
—

X

3

-3 ~~
X

4

-4

129.
X

1

"2
— 1

X

1

— 4 X

1

X — 1 3

130.
1 1 .^. 1 1

« — 9 jc— 11 x—\h a— 17

Equations in which Numbers other than the Unknown are

Represented by Letters

10. Equations in which coefficients and known numbers are

represented by letters are called literal ecj nations.

In the preceding chapters principles were developed which may
be applied to obtain the solutions of literal equations containing

ing one unknown number.

11. A literal equation is said to be solved with reference to a

specified letter when the value of this letter is expressed in terms of

the remaining letters appearing in the equation. We shall com-

monly refer to the value thus obtained as the expressed value

of the unknown.

It should be understood that no numerical value is obtained for

the unknown by this process.

Numerical values for the specified unknown letters can be ob-

tained only when definite values are assigned to the letters which

are regarded as representing known values.

Liiteral Equations wliicli are Integral with
Reference to the Unknown

Ex. 1. Regarding x as the unknown, solve x -^ d — c.

Transposing, we have, x — c — d.

This expressed value is found by substitution to satisfy the given equation.

Ex. 2. Regarding x as the unknown, solve ax -\-n — m.

We have, ax = m — n.

Therefore x =
a

This expressed value will be found to satisfy the given equation.



LITERAL EQUATIONS 307

Mental Exercise XVI. 2

Regarding a;, 2/, ^, and w as unknowns, solve the following literal

equations which are integral with reference to x, y, z^ and w :

\. x^h = a, 34. ab'^cx = a%c^,

2. a; + 6? = c.

3. n =^ m — z.

4. k + /i = \o,

5. a; + 1 = c.

6. 2/ 4- 4 = ^.

7. 2; — G 3= ^.

8. IV -0 = 7.

9. aa; = 6.

10. by = c.

IL az = -h.
12. « = ^.
13. — c = dx.

14. ax — b = 1.

15. aic 4- c = 1.

16. bij — 2 = c.

17. S + mz = n.

18. aa;+ ^ = c.

19. by — c = a.

20. C2; — 6 = — a.

21. aa: + ^ = «c.

22. a = ^a; + c.

23. r = sx — t.

24. m = n — qy.

25. ace = 6 + c.

26. 2 a^ic = a + 6.

27. a^a; = Of + 1.

28. (m + n)x — 2 mn.

29. (« + 5) ?/ = 5 a.

30. (3 —m)z = 3 w.

31. aa; = a\

32. ^/^a; = b.

33. «fca; = 6c.

35. — abx = a --b.

36. (a -\- b)x = c'^d.
37. (c -2)y = c^ + 3.

38. (a + b)y = af^ - b"".

39. (m — w) z = m^ — n

40. (a--4)a.= a -2.
41. (b'-\)y = b+h

42.
x

a
= b.

43.
y
b
= c.

44.
r + s

45. m
—— = mn— n

46.
a l,^

= ,a.

47.
a

X 3

48.
X

c

1

~ b'

49.
X

a

_b^
~

c

50.
X

c

c

~~d

51.
X

2

2

a

52.
y

.

b

_b
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71. by — h = nij — n.

72. mx -V r^ =^ nx •\- m\
7.3. ax = bx-{- 1.

74. dy = \ — ny.

75. 2a}j = '6by-\- 4.

76. abx + bcx = ca.

77. aaj — to — 1 = cjB.

78. ay + ^// = d — cy.

79. a{y — b) = c.

80. a(ic+ 1)=^.
81. c(% + 1) = c?.

82. b{b —y)=a.
83. a(l — bx) = b.

84. - - 1 = 6.

85. ^ + 1 = c.
a

86. -4-7 -b = a.
a -\- b

^„ (IX , bx
87. — + — = 2.

«> a

12. Literal Equations as Formulas. Instead of stating a

mathematical law or principle in words, it is often more convenient

to express it by means of a literal equation in which the letters

used are understood as standing for particular quantities.

When so used, a literal equation is called a formula.

In applications of mathematics to other sciences, it is a common

practice to state principles by means of formulas.

E. g. The identity (a ± hy = a^ ± 2 a6 + h'^ is a formula for finding the

square of a binomial sum or difference.

The literal equation i=zp x r x t may be used as a formula for comput-

ing simple interest, provided that the lettei-s i, p, r, and t are understood aa

representing interest, principle, rate, and time respectively.

53.
n
= 1.

54.
dw
T = — 1.

55.
to

c

1

~ d'

56.
ax

T
_b
~ a

57. X — m = n -- »
58. a — x = X — a.

59. b- x = X — c.

60. dy-- 1 == 1 --dy.

61. ax •-b =--b--ax.
62. hz--3 == 3--hz.
63. a —bx =--bx — a.

64. b- ex = ex -b.
65. 1 -• ax == ax — 1.

66. 2- cy =cy--2.
67. ax-\- bx = a + b.

68. h-\- mx-= to + m.

69. to-- ex -= b — c.

70. Jcy-k =--ry — r.
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13. When solving numerical equations, certain terms are often

so combined as to cause particular numerical constants to disappear

from the calculation ; but, when solving literal equations or for-

mulas, it often happens that none of the given letters disappear, but

may be traced throughout the entire work.

14. The solution of a particular literal equation may be used to

obtain the solutions of an indefinite number of numerical equations

of corresponding typey that is, of equations in which numerical con-

stants appear in place of the literal constants of the given literal

equation.

The particular literal equation thus solved may be used as a

formula for obtaining the solutions of the numerical equations which

it may be taken as representing.

E. g. Let it be required to solve several ec^uations such as the following

:

6xH- 4 = 5a;-f 7, (1)

Sx+ 3 = 2x4-11, (2)

2x-\- 9= ar-M4, (3)

'Sx-l0 = 4x+\8. (4)

All of the equations are of the type az + b = ex -\- d, in which a, h, c, and d

represent in the first equation 6, 4, 5, and 7 respectively ; in the second

equation 8, 3, 2, and 11 respectively; etc.

We may obtain the solution of the literal equation as follows

:

From ax -\- h = ex -\- d,

we obtain ax — ex = d — h.

Hence, x(a — c) = d — b,

d-b
and finally, ^^^TT^'

From the process of derivation the successive equations are equivalent,

and hence solutions have neither been gained nor lost.

This solution may be verified by direct substitution.

The solution x = (d - b)/(a - c), which is a literal equation, may be used

as a formula for obtaining numerical values for x in the given equations by

substituting for a, &, c, and d the values which they represent.

7-4
For equation (1), we have, x = = 3.

11-3 4
For equation (2), we have, x =

q _2 ~ 3'
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14 — 9
For equation (3), we have, x = — = 5.

^ — i

T^ .. ,4X 1 18 + 10
For equation (4), we bave, x = — = — 28.

Ex. 1. Solve a (x - a) - 2ab = b {b - x). (1)

Removing parentheses by performing the indicated multiplications, we
obtain by Principle I, Chap. X. § 25, the equivalent equation

ax-a^-2ab=:b^-bx. (2)

Transposing to the first member the terms containing x, and to the second

member those free from x, we obtain by Chap. X. § 27, the equivalent

equation

ax-^bx = h^ + a^ + 2ab. (3)

Factoring the members separately, we obtain by Principle I, Chap. X.

§ 25, the equivalent equation

(a + b)x=(a-\-by. (4)

Therefore x = ^^44^ = a + b,
a +

which by the process of derivation must satisfy the original equation and be

its only solution.

We may verify this result by substituting in equation (1) as follows:

a(a + b — a) — 2 ab = 6[6 — (a + A)]

a(b)-2ab = b(b-a-b)
ab-2ab = Z>(- a)

— ab = — ab.

Numerical Checks for the Solutions of Literal Equations

15. Whenever numerical values are assigned to the letters repre-

senting known quantities in a literal equation, a numerical equation

is obtained. The solutions of this numerical equation are equal

to the numerical values found by substituting the same numerical

values for the known letters in the expressed value for the unknown

which is the solution of the given literal equation.

It follows that the values assigned to the known letters and the

value calculated for the unknown letter will, if substituted for the

known and unknown letters respectively in the given literal equa-

tion, reduce it to a numerical identity.

Regarding x as the unknown, we obtain from the literal equa-
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tion a{x — a) — 2ab = b(b — x), the expressed value x = a + b.

(See Ex. 1. § 14.)

By assigning particular numerical values to a and b we may,

from the expressed value x = a + b, calculate a numerical value

for X.

Thus, if a = I, and b = 2, it follows from x = a + b that x = S.

Substituting 1 for a, 2 for b and 3 for x in the given literal equa-

tion, a(x — a) — 2 ab = b(b — x), we obtain the numerical identity,

1 (3 — 1) — 2 • 1 • 2 = 2 (2 — 3), which reduces to — 2 = — 2.

Accordingly, we have by this method verified for particular

values of the letters the solution a; = « + ^ of the given literal

equation.

From the nature of the method it may be seen that if the check

holds in a particular case it holds in all cases.

Hence we have verified the solution of the given literal equation.

Exercise XVI. 3

Solve the following literal equations for x, verifying all results

either by substituting the literal solutions directly, or by making

proper numerical substitutions :

1. a(x •\-b) = b(x + a).

2. ax-\- bc = d(b -\- x).

3. {x + a)(x + b) = x{x -f c).

4. m = a -{- {n — \)x.

5. {m — n)x — m^ = (m + n)x.

6. a(l + x) + 6(1 +x)=x(a + b + 1).

7. a(x — 1) + (« — l)x = a + x.

8. ala — 2x) + b(b — 2x) + 2ab = 0.

9. 3(3 x-b) + 2b = b(bx — 3) + 6.

10. hk{x^ - 1) = (^ + kx){k + hx).

11. (x + a){x -b) = {x + a- by.

12. (b - c)(x -'b) = (b- d)x.

13; \x - a){b - c) = (a - c)(x - b).

14. {a + by + (« - x)(b -x) = {x + d){x + b).

15. \a - x){x + b)- c(a + c) = (c - x)(x + c) + ab.

16. -^ + b = a.
a + b
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a

19.^ + 1^=1.
a c

X . X
20. ~-\-b = j + a,

a

21.
a;

9
-h X

-9-

22.
X

m +
^— X

n
= 6.

23.
X

a

m — X

b
= n.

4U.
6 "" a

27.
d + X X

k ^ d-\'k

28.
x — a

^
X — b a^ + b^

b ^ a ~ ab

29.
b^ — ax , a^ — bx

b ='' a

30.
b a a b

31.
ex = c — a.

c — d

32.
c^x

bx «^-^_^-

33.
a-\- X (ix _b
a -f 6 b a

34.
CMC bx ex -

be ae ab '

24.f
= .-6 +

J.

25, bx + b = ^-\-l'b b

Literal Equations which are Fractional with
Reference to tlie Unknown

16. When solving literal equations which are fractional with

reference to certain specified letters it is often convenient to obtain

the solutions by deriving integral equations in which the unknown

letters are found in the second member instead of in the first.

Ill

Ex. 1. Solve for x, — = n.
X

Clearing of fractions, we have
m = nx.

Hence, — = x.
n

Ex. 2. Solve for «, i— = c.
X — t>

Clearing of fractions we obtain

ab — be = ex — he.

From which, ab = ex.

Hence, — = x.
c
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Mental Exercise XVI. 4

Solve the following equations for a, y, z^ and w :

m — n
1.

a

X

b
_

= 1.

2. y~= 1.

_d
3. 1 =

z

4. 1 =

1

m
= —

'

w

5.

2

= m.

6.
1)'

4

= n.

7.
z

7

= k.

8.
w

'= q.

9.
c

X

k _

= 2.

10. y~= 3.

r
11. 4 =

~ z

12. 8 =

h

t
^

' w

13.
X

he

- c.

14.
X

— a.

15.
d _
y~fif'

16.
a _
X

2
3*

17.
b_
y

5
9*

18.
m _
X

"= - 1.

19.
n
y~ -2.

20. 9 = _b
y

21.
ax

= 1.

22.
2

= 1.

23.
3 _
C1J~

= — 1.

24. 4 = _3_

mz

25.
mn
X

= q.

26.
r

__

sx"
:t.

27.
a-\- b ,= a — b.
X

28. ^-^=c + d.

y

A t/l1 lllr -r II' —
z

30., k'-1 = ^+1.
w

31.
1

X

a

32.
d

n
__ 1

X

33.
g
n
_ 1

y'

34.
X

c
~

~d

35.
3

X

4

a

36.
5

y'
b
6*

37.
m
2

3
~

z

38.
a

X
'
_b

^

a

39.
5 _h

z

40.
b _

c

_ c
~y'

41.
a
2^

2

ax

42.
b

3

3
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43.«=£-
CZ 6

58.

44 « =1
rfa- 8

59.

45.^ = 1.
6 ax

60.

46.^ = ^- 61.

47 2«^ c
. 62.

Aft
^ -1*o. w — I

49. \-ly-l

50.
1 _1

X — a

51.
1 1

iC — c
~ 6

52.
1 1

y -b~ c

53.
1 1

z + d m

54.
1 1

55.
1 1

a a; — a

56.
1 1

b y-b

^1
1 1

J J^
-\-2b~ bb

1 1

73. -r = 3.y-b

X — a a — b

X -^^ c c -{- d

1 1

z + a Sa

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

z-g g-h
1 1

2x—m m— 2

1 1

Sy — t ^-3

1 1

X — a '6 + c

1 1

x+ b~ a + c

1 1

x + c a + 6

1 1

ax + b'~6 + c

a
1.x-b~

c
1.

y + d"

2k
z + h

1.

Am — 1

w + m

a
:2.

74.

75.

76.

77.

78.

79.

80.

z-h

z\d

= 4.

= 2.

= 3.

= 4.

y-3

z^-h

= b.

= L

81.
w+1-^''

82. 5- ^ .^-^-2

83. ,',-

84. .-^=-

85.
a

r = C.
CC— ^

86.
m = n.

y — m

87.
,

" -(^.
X — a bx -\- c
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„ „ ^ ax — h hx — a , „

.

Ex. 1. Solve
^^

= —^ ah. (I)

Clearing of fractions by multiplying each of the terms by the lowest

common denominator, abx^ of the fractional terms, we obtain

ahx -b^ = abx - a^ - a%'^x. (2)

Hence, a%'^x = b^- a^. (3)

m,, . &' - «'

Therefore, x = —^—- .

We may apply the metliod of § 15 and verify this solution as follows:

9 — 4
If we let a = 2 and & = 3, it follows that x = ——— = ,\.

Substituting 2, 3, and 5/36 for a, &, and x respectively, in the given literal

equation, we obtain the following numerical equality which is found to be

a numerical identity :

ii)
~

KA)

-2-3

__49__49
5 ~ 5

*

Exercise XVI. 5

Regarding x as the unknown, solve the following literal equations :

h g 1

^ X X

2.
'^ = m{n-t) + -'XX

4:. b =

c + dx

c — X

ax

e — a
b. n = h 1.

X

e. m =

7. ^*- = l.
dx + kx

8.
X — a

X — s

9.
x+b 3

x-b 4

10.
X — a a^

x-b~b^

IL
b x-a^
a x — b'^

12.
c — dx c

ex — d d

13.
c — ax (

14
X a -\- b

a + K^-m) ,, _^:^ + i + ^ =bx

a
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15.2j!i* = _^. 19.g-x -g-h
x + p _ p-q
x-q p + q

e — X d-x

1%.-^^-^-^=^^--^' 20.

17. -,= 21.

X — X — e

X — 4 X — 5

a — X = X

a + X a — X

X — a 8 X + a

x—d x—e ' 3 X +

a

3

^^rn-^^m-X
22.1 + 1 + 1 + 1 = 1.n—xn—\ a c a X

- * 26c 2ac ^ 2ab a b c

2x + b

Exercise XVI. 6

Problems Solved by Fractional Equations

Solve the following problems, examining the solutions to see if they

satisfy the conditions of the problems as stated

:

1. What must be the value of a in order that (3a4- 10) /(14a — 4)

shall have the value 1 /2 ?

2. Find two numbers, whose sum is 73, which are such that the quotient

obtained by dividing the greater by the less is 3 and the remainder 13.

If X represents the greater number, 73 — a: will represent the less

number.

By the conditions of the problem, we have the conditional equation

' =3+ '^
73 -a; ' 73-a;

from which x is found to be 58, which is the greater number.

Accordingly the less number, which is represented by 73 — x, is 15.

These numbers are found to satisfy the conditions of the problem.

3. Find two numbers, whose sum is .36, which are such that the quotient

obtained by dividing the less by the greater is 2/7.

4. The sum of two numbers is 28, and the quotient obtained by dividing

the less by the greater is 3 / 4. Find the numbers.

5. The sum of two numbers is 59, and if the greater be divided by the

less, the quotient is 3 and the remainder is 3. Find the numbers.
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6. The sum of two numbers is 116, and if the greater be divided by the

less the quotient is 8 and the remainder 8. Find the numbers.

7. The difference between two numbers is 60 ; if the greater is divided

by the less the quotient is 7 and the remainder 6. Find the numbers.

8. What number must be added to the numerator and also to the

denominator of the fraction 41/57 in order that the resulting fraction shall

equal 11/15?

9. What number must be added to the numerator and subtracted from

the denominator of the fraction 7/12 in order that the result shall be equal

to the reciprocal of the given fraction ?

10. When four is subtracted from the numerator of a fraction of which

the numerator is three less than its denominator, the value of the fraction

becomes one-eighth. What is the original fraction ?

11. The reduced value of a certain fraction is 3/7 and its denominator

exceeds its numerator by 20. Find the fraction.

12. The value of a fraction is 1/12. If its numerator is increased by 5

and its denominator by 4, the resulting fraction will be equal to 1/5. Find

the fraction.

13. Separate 580 into two parts such that when the greater part is divided

by the less the quotient is 12 and the remainder is 21.

14. The recii)rocal of a number is equal to four times the reciprocal of

the sum of the number and 18. Find the number.

15. The figure in units' place of. a number expressed by two figures

exceeds the figure in tens' place by 4. If the number, increased by 11, is

divided by the sum of the figures in units' and tens' places, the quotient

is 5. What is the number?

16. The figure in tens' place of a number of two figures exceeds the figure

in units' place by 5, and if the number increased by 5 is divided by the sum

of its figures the quotient is 8. Find the number.

17. A can do a piece of work in 16 days, and B in 12 days. How many

days will be required if both work together ?

If X represents the number of days which will be required when A and

B work together, then \/x will represent the fractional part of the work

which will be performed in one day. According to the statement of the

problem, A in one day can perform 1/16 of the work, while B can perform

1/12.

By the conditions of the problem, we have

16 "^12" a:*

Hence ^ - ^^
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Accordingly 6^ days will be required when both work together.

This result will be found to satisfy the conditions of the problem as

stated.

18. A and B together can paint a house in 12 days, A and C together in

16 days, and A alone in 20 days. In what time can B and C together

paint it ? In what time can A, B, and C working together paint it?

19. A can do a piece of work in 12 days, B in 15 days, and A, B, and

C together in 5 days. In how many days can C do the work ?

20. A can do a piece of work in 10 days, B in 8 days, and C in 5 days.

How many days will l>e required if all work together ?

21. A can do a certain piece of work in 2^ days, B in 3} days, and C in

4^ days. If A, B, and C work together, how long will it take them to do

the work?

22. A sum of $1200 was to be divided equally among a certain number

of persons. If there had been four more persons, each would have received

2/3 as much. How many persons were there ?

23. A cask may be emptied by any one of three taps. It can be emptied

by the first alone in 25 minutes, by the second alone in 30 minutes, and by

the third alone in 40 minutes. What time would be required to empty the

cask by using all three together ?

24. A vat in a paper mill can be filled by one pipe in one and one-third

hours, by a second in two and one-half hours, and by a third in four hours.

What time will be required to fill it when all are running together ?

25. A train runs 164 miles in a given time. If it were to run 3 miles

an hour faster it would go 12 miles farther in the same time. Find the

train's rate of speed in miles per hour.

26. It is observed that a steamer can run 60 miles with the current in

the same time that it can run 36 miles against the current. Find the rate

of the current in miles per hour, knowing that the steamer can run 12

miles an hour in still water.

27. A can row five miles and B four miles an hour in still water. A is

12 miles farther up stream than B, and they row toward each other until

they meet 4 miles above B's starting-place. Find the rate of the current

in miles per hour.

General Problems

17. Since a particular letter may represent more than one value,

it is customary to speak of numbers represented by letters as

literal or general numbers.
18. A general problem is a problem in which the numbers
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whose values are supposed to be known are represented by letters

;

that is, in which the known numbers are general numbers.

Exercise XVI. 7

Problems Involving^ Literal ^Equations

Find the general solution of each of the following problems

:

1. Separate the number a into two parts such that m times the first

part shall exceed n times the second part by h.

If X stands for one of the required numbers, a — x will represent the

other. By the conditions of the given problem we have

mx =.n X (a — a;) + ft,

from which we obtain x = •

m + n

Hence, one of the parts into which a is required to be separated is

4. 1 V an-^b
represented by •

The other part, represented by a — a:, may be found as follows

:

an + 6 am — b
a — x = a m -{- n

By giving particular values to the letters appearing in the state-

ment of any general problem, it is possible to obtain as many

separate special problems of a given type as may be desired. The

solution of the general problem will in every case be the solution

of all of the special problems of the given type.

E. g. The following is a special problem which is of the same type as

Ex. 1 which is a general problem

:

Separate the number 19 into two parts such that 10 times the first part

shall exceed 3 times the second part by 8.

The solutions of this special problem may either be obtained directly by

solving a conditional equation, or by substituting the values a = 19, 6 = 8,

an -\-b ,

m = 10 and 71 = 3 for the letters appearnig m the expressions ^ _^ ^
ant^

~ which are found by solving the general problem.

The solutions of the special problem are found to be 5 and 14.

2. Separate a into two parts such that m times the first part shall equal

n times the second part.
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3. The sum of two numbers is s and their difference is d. What are the

numbers ?

4. Separate a into three parts such that the first part shall be m times

the second part, and the second part n times the tliird part.

5. Sepamte d into two parts such that when one part is divided by the

other the quotient shall be q and the remainder r.

6. What number must be added to each term of the fraction a/b in

order that the resulting fraction sliall be equal to c/d.

7. A can do a piece of work in a hours, and B can do the same piece of

work in b hours. How many hours will be required if both work together ?

8. One pipe can fill a tank in a houre and a second pipe can fill it in b

hours. If a thirtl pipe can empty it in c hours, how many hours will be

required to fill the tank when the three pipes are open ?

Discuss the problem for a + 6 = c.

9. A tank can be filial from three taps. By using the first alone it is

filled in a minutes, by using the second alone, in 6 minutes, and by using

the third alone, in c minutes. In how many minutes would it be filled if

the taps were all open at the same time ?

10. In how many years will P dollars amount to A dollars at r per cent

simple interest j)er year ?

11. What principal at r per cent interest per year will amount to A
dollars in t years ?

12. An alloy of two metals is composed of a parts of one to b parts of

the other. How many pounds of each are required to make c pounds of

the alloy ?

13. Two trains, A and B, d miles apart, start at the same time and travel

toward each other at the rates of a miles per hour and 6 miles per hour

respectively. How far will each have travelled when they meet ?

14. In a certain time a train ran a miles. If it had run 6 miles an hour

faster it would have gone c miles farther in the same time. Find the rate

of the train in miles per hour.

15. If A and B can travel at the rates of a and b miles an hour respec-

tively, how far must A travel to overtake B, if both move in the same

direction, and B be given a start of s miles ?

16. A naphtha launch can run a miles an hour in still water. If it can

run 6 miles against the current in the same time that it can run c miles

with the current, what is the rate of the current in miles per hour ?

17. A crew can row a certain distance up a stream in a hours and can

row back again in 6 hours. If the rate of the crew in still water is s miles

an hour, find the velocity of the stream in miles per hour.
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18. A dealer mixes a pounds of tea worth x cents a pound with h pounds

of tea worth y cents a pound and with c pounds of tea worth ^ cents a pound.

Find the value, v, of the mixture in cents per pound.

19. Pieces of money of one denomination are of such value that a pieces

are equal in value to one dollar, and pieces of money of another denomina-

tion are of such value that h pieces are equal in value to one dollar. Find

how many pieces of each denomination must be taken on condition that c

pieces of money shall he equal in value to one dollar.

The Interpretation of the Solutions of Problems

19. It often happens that there are restrictions on the nature of

the unknown numbers of a given problem which cannot be trans-

lated into algebraic language, and hence cannot be expressed by

means of algebraic conditional equations.

If, for example, the unknown number of a problem represents a

number of men, it is implied that the number sought is integral,

yet this implied condition cannot be translated into algebraic lan-

guage and expressed in a conditional equation.

20. It appears that, when solving the conditional equations aris-

ing from the translation into algebraic language of the conditions

of a stated problem, all that we know at the outset is that the solu-

tions of the problem, if indeed any exist, must be found among the

algebraic solutions of the conditional equations.

If it happens that none of these solutions are consistent with the

stated conditions of the problem, we conclude that the concrete

problem as stated has no solution.

Ex. 1. At an entertainment 75 cents was charged for each reserved seat

ticket and 35 cents for each admission ticket. The ticket seller showed by

his account that 500 tickets were sold, for which he received $236. How
many people bought reserved seat tickets ?

Let X stand for the number of people who bought reserved seat tickets

at $0.75 each. Then 500 — x will stand for the number of people who

bought admission tickets at $0.35 each.

By the conditions of the problem we have

.75 a: + .35 (500 - x) = 236.

Solving, we obtain x = 152^.

The result x = 152^ satisfies the conditional equation but not the im-

plied conditions of the problem, since it is impossible to give a sensible

21
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interpretation to a fractional number as representing tlie number of people.

It appears, then, that the conditions of the problem as stated are in-

consistent when applie<l to people.

If the amount received had been given as $235 instead of $236 the

number of people would have been found to be ec[ual to 150; that is, we

would have obtained an answer which could have been given a sensible

interpretation.

21. In connection with the interpretation of solutions, the follow-

ing problem has become classical

:

The Problem of the Couriers. Two couriers, A and B, are

travelling in the same direction along the same road at the uniform

rates of m miles an hour and n miles an hour respectively. At a

specified time, say at noon, B is c? miles in advance of A. Will

they ever be together, and if so, when 1

Let X represent the number of hours after 12 o'clock when they will be

together.

During that time A will travel mx miles, and B will travel tix miles.

Since at noon B is d miles in advance of A, we may form the conditional

equation mx = 7iar 4- f? (1), of which the solution is found to be

x=^— (2)m — n

We will now examine this expressed value of x and determine what

restrictions, if any, must be placed upon the numbers represented by d, m,

and n in order that the value of x shall be consistent with the stated

conditions of the problem.

1. If A is to overtake B after 12 o'clock, the value of x must be jyositive.

For this it is sufficient that fZ, m, and n all represent positive numbers, and

that m > n. The assumption that m > n implies that A is travelling

faster than B and accordingly will overtake him.

2. If m, n,.and d were all positive and m < n, the value of x would be

negative^ and accordingly we should interpret the negative quality of x

as indicating that A and B had been together d/(n — m) hours before

noon.

3. If m = n, then m — n = 0, and since we cannot divide any number

by zero it appears that when w = n, we cannot obtain the solution (2) Irom

the given equation (1).

If, however, m instead of being equal to n differs from n l)y a very small

amoimt, the difference m — n will be different from zero, and accordingly
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the smaller the value of m — n, the larger for a given value of d will the

value of the fraction d/ (m — n) become.

This is commonly expressed by saying that as m becomes nearly equal

to n, X becomes infinite.

This slioukl be interpreted as another way of saying that as A's rate

becomes more and more nearly equal to B's, the time required for A to over-

take B will become correspondingly greater and greater. Finally if A's

rate is equal to B's, A will never overtake B.

Accordingly, an infinite solution may he interpreted as meaning that it is

impossible to find the solution under the assumed conditions.

4. If we assume "that m = n and also that d = 0, the equation (1) is

satisfied by any value which we may assign to x and the general solution

assumes the indeterminate form x = 0/0.

This may be interpreted as meaning that, since the distance d between

A and B is zero, and their rates of travelling, m and n, are equal, that if at

any time they are together they will always be together.

22. The student will commonly find no difficulty in .giving sen-

sible interpretations to the solutions of particular problems whether

these solutions be positive or negative, fractional, zero, indeterminate,

or infinite.

Whenever it is impossible to give a sensible interpretation to any

particular solution which may be obtained, it will be a good exercise

for the student to examine the data of a given problem and if pos-

sible to ascertain the cause of the inconsistency.

Problems in Physics

23. The Horizontal Lever. A straight horizontal lever at

rest, supported at some point F called the fulcrum, and acted upon

at distances of a units and b units from F by two parallel vertical

forces having the same directions, which are represented numerically

by A and B, will remain at rest provided that the numbers repre-

sented by a, b, A, and B satisfy the conditional equation Aa = Bb.

24. The product obtained by multiplying the number which

represents the force A by the number which represents the distance

a of the point of application of the force from the point of support

F, is called the moment of the force A with respect to the point of

support F.

25. Since the forces A and B tend to produce rotation of the

horizontal bar in opposite directions about the fulcrum i^'as a point
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of support, it may be seen that the condition of equilibrium is that

the moment Aa shall be equal to the moment Bb.

See Fig. 2, in which vertical forces A and B have the same

direction and act upon the horizontal lever at points situated at

distances a and b on opposite sides of the fulcrum K In Fig. 3

the forces A and B have opposite directions and act on the hori-

zontal lever at points which are situated on the same side of the

fulcrum F.
b

. ^ .Baba ^

I i i 5 I
A B A

Fig. 2. Fig. 3.

26. A horizontal bar in equilibrium will remain at rest if vertical

forces, represented by ^, By (7, D, E, etc., acting at distances a, 6,

c, df Sf etc., from the fulcrum F, satisfy a conditional equation such

as Aa + Cc = Bb-\- Dd + Ee.

27. It is a principle that a mass may be treated in calculations

as if it were concentrated at a certain point called the center of

gravity of the mass.

Exercise XVI. 8

Solve each of the following problems :

1. How heavy a stone can a man, by exerting a force of 160 pounds,

lift with a crowbar 6 feet in length, if the fulcrum be one foot from the

stone (neglecting the weight of the crowbar) ?

2. A wheelbarrow is loaded with 50 bricks, each weighing 6 pounds.

What lifting force must be applied at the handles to raise the load (neglect-

ing the weight of the wheelbarrow), provided that the center of gravity

of the load is 2 feet from the center of the wheel and the hands are placed

at a distance of 4 feet from the center of the wheel ?

3. A beam 20 feet in length and weighing 50 pounds is supported at a

point 4 feet from one end. What force must be applied at the end farthest

from the point of support to keep the beam in equilibrium 1 What force

must be applied at the end nearer the point of support ?

4. A board 15 feet in length and weighing 21 pounds is supported at

a point 2 feet from the center. If the board is kept in equilibrium by a

Btone placed on it at a point 3 feet from the fulcrum, find the weight of the

stone.
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5. A horizontal bar 18 inches in length is in equilibrium when forces

of 4 pounds and 2 pounds respectively are acting downward at its ends.

Find the position of the point of support.

6. A basket weighing 100 pounds is suspended at a point two feet from

the end of a stick which is 8 feet in length and which weighs three pounds.

If the stick is being carried by two boys, one at each end, how many
pounds does each boy lift ?

7. Two boys, one at each end of a stick 12 feet in length which weighs

5 pounds, raise a certain weight which is suspended from the stick. How
heavy is the weight and at what point does it hang, if one boy lifts 35

pounds and the other lifts 30 pounds ?

Since the boys lift 35 and 30 pounds respectively, and the weight of the

Gtick is 5 pounds, it follows that the weight carried must be 60 pounds.

If the stick be assumed to be uniform, it may be seen that one boy will

carry 32^ pounds and the other Ijoy 27^ pounds of the weight.

We will represent by x the number of feet from the center of gravity of

the stick to the point at which the weight is suspended on the side of the

center of gravity nearer the boy exerting the greater force.

It may be seen that, with respect to the center of gravity, regarded as a

fixed point, the weight of 60 pounds which is carried and the force of

27^ pounds exerted at one end of the stick both tend to produce rotation

of the stick about its center of gravity in one direction, while the force of

32^ pounds exerted at the other end of the stick tends to produce rotation

of the stick about its center of gravity in the opposite direction.

Since the stick is in equilibrium, the sums of the moments of these forces

must be equal.

Hence we have the following conditional equation:

60a: + (27^) x 6 = (32^) x 6.

Solving, we obtain x = l^.

Hence, the weight is suspended from the stick at a point which is 6

inches from the center of gravity on the side nearer the boy exerting the

greater force.

This value will be found to satisfy the conditions of the given problem.

8. A safety valve having an area of 4 square inches is held down by a

lever which is hinged at one end.

The lever is 10 inches long and the point of application of the valve is

2 inches from the hinged end of the lever. If a weight of 12 pounds is

placed on the free end, find the pressure per square inch on the valve which

will lift the safety valve, disregarding the weight of the lever.

9. A dog-cart carrying a load of 576 pounds is found, when on a level

road, to exert a pressure of only 8 pounds on the horse's back. If the dis-

1
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tance from the point of support on the horse's back to the axle be 6 feet,

find the distance of the center of gravity of the load from the axle.

10. A board of uniform thickness, weighing 30 pounds, is balanced when
supported at a point 4 feet from one end and when a weight of 70 pounds

is placed one foot from this end. Find the length of the board.

11. A beam of uniform thickness, 20 feet in length, is supported at a

point 8 feet from one end. If the beam is balanced when a weight of 80

pounds is placed on the end nearer the fulcrum and a weight of 30 pounds

is placed on the end farther from the fulcrum, what is the weight of the

beam?

Exercise XVI. 9 Review

Simplify each of the following :

6. Find the remainder when 6 a* — 1 x^ + 5x^ — 2x + 3 is

divided by a — 5.

7. Factor 10 (a^ + 1) — 29 a.

8. Factor x^ + 2 xy -^ if + x + y.

9. Factor {a — bf - 8.

10. Find the L. C. M. of «* + «' + 1 and a^ - a" -[- 1.

Simplify each of the following :

12. (a3-,i,)-^(a^ + ia + ^.). 14. |^-|±|.

15. L^ ^_,_. ±.

16. Show that (ar^ + 3a+ 2)(a;'+7a;+12)= (a!2+4a;+3)(ar'+6a;4-8).

T^. ,,, 1 p^ — 6+1 V m + I ,, mn-\-m
1 7. Find the value of—--, » when a= -— and o = —- •

a + 6 — 1 mn + 1 mn + 1

18. Divide the product of a-\-b — c, b + c — a and c + a — bhy

a^-b''-c^-2bc.
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CHAPTER XVII

SIMULTANEOUS LINEAR EQUATIONS

General Principles of Equivalence

1. Two or more conditional equations are said to be simul-

taneous with reference to two or more unknowns appearing in

them when each unknown letter is assumed to represent the same

number wherever it appears in all of the equations.

2. A set or group of simultaneous equations is called a system

of simultaneous equations.

E. g. The equations 3 x + 2 y = 14 (1) and a: + 5 y = 9 (2) are simul-

taneous on condition that x represents the same number in (1) as in (2),

and that y lias the same value in one equation as it has in the other.

3. A solution of a conditional equation containing two or

more unknowns is any set of values which, when substituted for the

unknowns, reduces the conditional equation to an identity.

E. g. The sets of two values, a: = 2, 2/ = 4; a: = 0, i/ = 7;a: = 6, i/ = ~2,

etc. ; are solutions of the conditional equation 3a: + 2i/= 14 containing two

unknow^ns.

4. A solution of a system of simultaneous conditional equa-

tions is any set of values of the unknowns which satisfies all of the

equations of the system.

E. g. The single set of two values rr = 4, ?/ = 1 is the single solution of

the system of two simultaneous conditional equations 3x-{-2y= 14 (1),

and x + by = i) (2).

6. The word " solution " may be used to denote either the pro-

cess of solving an equation or system of equations, or the value or

values obtained by the process.

6. If the number of solutions, — that is, the number of different

sets of values which satisfy all of the equations of a given system

of simultaneous conditional equations,— is limited or finite, the

system is said to be determinate.
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If, however, the number of different sets of values which satisfy-

all of the equations of a system be unlimited or infinite, the system

is said to be indeterminate.

7. Two conditions restricting the values of two or more unknown
numbers are said to be consistent if both conditions can be satis-

fied by the same values of the unknowns.

In the contrary case, the conditions are said to be inconsistent.

E. g. If we are required to find two numbei-s whose suiii is 10 and

difference 8, tlie conditions restricting the vahies of the unknown numbers

ai-e consistent, since we can find two numbers, 9 and 1, which satisfy them.

Two conditions requiring that the sum of two unknown numbers shall

be 10 and also 8 are inconsistent, since it is impossible to find two such

numbers.

8. The i^rrapli of a conditional equation of the first degree

containing two unknowns is a straight line.

This may be shown directly by applying certain simple properties of

plane triangles.

(The following proof is offered for such students as are acquainted with a few of the simple

principles of geometry, and may be omitted when the chapter is read for the first time.)

Let A and A' represent any two points on

the graph of a given equation y = ax, located

by means of the coordinates (x, y) and (x', y'),

so taken that corresponding values of x and y
satisfy the given equation. (See Fig. 1.)

Draw straight lines from the origin to A
and A'.

Since the values a;, y, and x', y\ are assumed

to satisfy the equation y = oa:, we have y = ax

and y' z=: aj/.

V 1
y'

- = a. and ^ = a.
X '

x'

T

^ A

y

f
X B px
r

Fig. 1.

Hence

Therefore

The ordinates y and y' are taken parallel to the axis of F, and accord-

ingly the triangles DBA and OB'A' are similar, since they have an angle

of one equal to an angle of the other, and the included sides proportional.

The corre.sponding angles AOB and A'OB' are consequently equal, and

the lines OA and OA' coinpide.
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It follows that either of the points A or A' lies on the straight line

drawn from the origin to the other point, and since A and A' represent

any two points on the graph, they represent all points on the graph, which

must accordingly be a straight line passing through the origin.

It may be observed that the inclination of the line with the a:-axis

depends wholly upon the value of a, since for a given value of x the length

of y is equal to the product ax. The line will slope upward or downward

toward the right according as a is positive or negative.

The graph of the equation y = ax + b may be obtained by adding b to

each of the ordinates calculated for the graph of the equation y = ax. The
x-coordinates will be the same for the graphs

of both of the equations, but the y-ordinates of

the graph of the equation y = ax + b will be

greater by b than those of the graph of the

equation y = ax.

It may be seen that the figure AA'A"A'" is

a parallelogram by construction, and accord-

ingly the straight line A'"A" is parallel to the

straight line AA'. (See Fig. 2.)

Accordingly, the graph of the equation

y = ax + b is a straight line which is parallel

to the graph of the equation y = ax. (Conqjare with Chapter IX. § 37.)

9. Since the graph of every equation of the first degree contain-

ing two unknowns, such as x and y, is a straight line, an equation

of the first degree with reference to the unknowns appearing in it

is commonly called a simple or linear equation, that is, the

equation of a line,

10. To obtain gi'aphically the solution of a system of two

linear equations containing two unknowns, we plot the graphs

representing the equations and, locating their intersection, if there he

one, measure the x-coordinate and y-coordinate corresponding to this

point and estimate the corresponding numerical values, attaching the

proper quality signs determined by the quadrant in which the point

lies.

11. Since any two straight lines lying in the same plane, which

are not coincident, must either intersect or be parallel, it follows

that pairs of equations of the first degree containing two unknowns

may be separated into three classes : one class consisting of such

pairs of equations as are represented graphically by intersecting
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straight lines {Independent equations) ; a second class consisting of

those pairs of equations which are represented by lines which do not

meet, that is, which are parallel (inmnsistent equations); and a third

class consisting of those pairs of equations which may be reduced to

exactly the same form, that is, which represent coincident lines

(equivalent equations).

12. Two or more conditional equations which express different

consistent conditions restricting the values of the same unknowns
are called independent equations.

Of two equations which are independent, neither can be trans-

formed into the other.

E. g. The two conditional equations 2x -\-y = 12 and 3x + 7 y = 2d are

independent, since neither am by any transformation be made to take the

form of the other.

13. The point of intersection of the graphs of two linear equa-

tions containing two unknowns may be located by means of the two

coordinates which are equal tx) the values found by solving alge-

braically the two equations of which they are the graphs.

E. g. Consider the two independent linear

equations x -\-2y = S and 3x — y = 3.

Any set of values satisfying either equa-

tion may be taken as coordinates locating

a definite point on the graph.

Hence the values x = 2, y = 3, which

are the common solution of the two given

equations, are equal to the coordinates

X = 2 and i/ = 3 of the point common to

the two lines in Fig. 3.

14. Two or more conditional equations which express consistent

conditions existing between the unknowns appearing in them are

called consistent equations.

E. g. The two conditional equations x -\- y = 12 and x — y = 6 are con-

sistent since both are satisfied by the values x =z 9 and y = 3.

16. Consider the conditional equations x + 7/ = 1, x — y = 1^

3 ar + 2 ?/ = 18, and ic — 4?/ = — 8.

Each of these equations is satisfied by the values ic = 4 and y = S,
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Any two of

^

j:+y=7

Fjg. 4.

and the equations are all independent and consistent.

them will serve to determine the values of x and y.

Referring to the accompanying figure, in which portions of the

graphs of these equations are plotted, it appears that these equa-

tions represent separate straight lines,

all passing through a common point A
whose coordinates, ic = 4 and 2/ = 3, are

equal to the common solutions of the

equations.

From the illustration it appears that,

since any particular point such as A is

located definitely by means of any two

straight lines passing through it, and

not more than two lines are necessary to locate the point, so two

indejjendsnt conditional equations of the first degree containing two

unknmvns determine the values of two unkrwwn numbers^ and more

than two equatiims are unnecessary.

16. Two conditional equations which express inconsistent con-

ditions restricting the values of the unknowns appearing in them

are called iuconsisteut equations.

E. g. The conditional equations oj -f- 7/ = 7 and a; -f- 7/ = 5 are

inconsiatent.

17. Two or more inconsistent equations can have no solution in

common.
E. g. Consider the two conditional ec^uations

3x4-21/ = 6 and 3x-i-2y=l2.
Since it is impossible that 3x -\-2ij should

equal 6 and also 12 at the same time, these must

be classed as inconsistent equations.

On attempting to solve the equations as sim-

ultaneous equations we shall find that they have

no common solution.

If their graphs are plotted with reference to

the same axis of reference we shall find that

they appear to be parallel straight lines. (See

Fig. 5.)

18. Since the point of intersection, if there be one, of the graphs

of two linear equations containing two unknowns is located by

3x+2y=6 3x+2y=12

Fig. 6.
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means of coiirdinates equal to the values which form the common
solution of the given equations, it follows that if the equations have

no common solution their graphs, which are straight lines, can have

no point in common, and accordingly must be parallel straight lines.

19. Two conditional equations containing two or more unknowns

are said to be equivalent when every solution of either equation is

at the same time a solution of the other equation ; that is, when any

set of values satisfying either equation satisfies the other equation

also. (See also Chap. X. § 22.)

E. g. Since two conditional equations are equiv-

alent when each equation is satisfied by all of the

solutions of the other, it foHows that the graphs of

two equivalent equations such as 5 a; + 3 y = 15

and 10;c + 62/ = 30 must contain the same ])oint8,

and neither graph can contain any point which the

other does not.

Hence the graphs must be coincident lines. (See

Fig. 6.)

20. It may be observed that independent

conditional equations express different consist-

ent relations between the unknowns, while

equivalent equations express the same relations between the

unknowns.

E. g. Any one of the following equations is equivalent to any other,

since of any pair of equations either equation may be transformed into the

other

:

3x + 2 2/ = 7, 6x + 41/ = 14, 2x + 5^/ = 33/ - X + 7, ^ -}- -^^ = 1.

Fig. 6.

Exercise XVII. 1

Of the following equations select those which are equivalent to

the equation 2 a; + 3 ^ = 10 :

1. 4a; + 63/ = 20. 3. 3x+ S^j= 10 — a;.

2. 6a;+ 12?/ = 30. 4. x + -^ = 5.

5. 2{x + ^j+ 1) = 12-^.
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Of the following equations select those which are equivalent to

the equation 4 cc — 2 1/ = 3 ;

6. 12a; + 8?/ = 9. 8. 2a;-^ = |.

7. 8a; -4^ = 6. ^- | ~ 4
=

10. 20a;— 10?^= 16.

Among the following sets of equations,

(i.) which have equations which are independent and consistent 1

(ii.) equivalent? (iii.) inconsistent?

11. 2a! + 3 ^/ = 10, n.Sx — 22/ = 0,

4a; + 62^ = 20. 2a;- 37/=0.

12. 5x— 73^ = 9, 18. 4a; + 5?/ = 6,

2a;+ ?/ = 7. 5a; +63^ = 7.

13. 3a; + 8^= 12, 19. 10a;+ 8 7/ = 3,

6a;+16y = 22. 5a; - 4?/ = 6.

14. a; + ?/ - 2 = 0, 20. 2 a; + ^ = 3,

X — 1/ = I. a; +3?/ = 2.

15. 3a; — y=12, 21. 2a; — 3 = 4?/,

?/ , 2v/ — 3 = 4a;.
a; — - = 4.

3 *•

16. 12a;- 9y = 18, 22.5+ x = 6^,

8x — 6i/=U. 1/ + 5x=6.

21. It can be shown that the necessary and sufficient condition

that a system of simultaneous linear equations shall have a definite

number of solutions is that there shall be the same number of in-

dependent and consistent equations as there are unknowns whose

values are to be found.

22. Two systems of equations are equivalent when every solu-

tion of either system is also a solution of the other.

E. g. The equations in groups I. and II. below form equivalent systems,

for the equations in either <,'roup are satisfied by the solution x = I and
^

y = 3 ; we shall show later that they are satisfied by no other solution.

2. + 5, = 17,

I
j_ f + ^'' = "'

I
System II.
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Elimination

23. Any process by means of which the members of two or more

equations may be combined to produce a derived equation in which

fewer unknowns appear than in the equations whose members have

been combined to produce it, is called a process of elimination.

24. Any unknown which is found in two or more given equa-

tions but which does not appear in an equation derived from them

is said to have been eliminated.

25. The general principles governing the derivation of equivalent

equations containing one unknown, proved in Chapter X., hold true

also for equations containing any number of unknowns.

26. The processes of elimination employed in the solution of a

system of simultaneous linear equations may be made to depend

upon the following

General Principles

Principle (i.) If^for any equation of a system of simultaneotis

eqtuitions an equivalent eqtiation be substituted, the system composed

of this derived equation, taken together with the remaining original

equations^ will be equivalent to the original system of equations.

(The following proof may be omitted when the chapter is read for the first time.)

Let a system of simultaneous equations containing two unknowns, say x

and ?/, be re]3resented by
A — n ^

Given System.
^ = (7,)

B = D. i

Let the equation />' = D' be derived from the equation B = D, and let

^ = D' be equivalent to B = D.

Then the system composed of the other given equation, A = C, and the

derived equation, B' = U, will be equivalent to the original System I., for

by the definition of e(iuivalent equations, the equivalent equations B = D
aud B' = ly have the same solutions.

A = C, "^ Equivalent

V IL Derived

B' = D'. ) System.

Hence, any set of values whicli satisfies either of the equations B = D
or B' =^ D' and also the e<£uation A = C must satisfy both the given and
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the derived systems
; that is, the systems of equations I. and II. are

equivalent.

The reasoning may be extended to include systems of three or more
equations containing three or more unknowns.

27. In elementary algebra, methods of elimination by substitu-

tion, by comparison, and by addition or subtraction are commonly
employed.

I. Elimination by Substitution

28. The method of elimination by substitution may be made to

depend upon the following

Principle (ii.): If in any equation belonging to a system of
simultaneous equations the value of one of the unknowns be expressed

in terms of the remaining unknown numbers and known numbers

appearing in the same equation^ and this expressed value thus ob-

tained be substituted for the same unknown wherever it appears in

the remaining equation or equations of the system^ then the derived

system will be equivalent to the given system.

(The following proof may be omitted when the chapter is read for the first time.)

We will represent the linear equations composing a given system of two

simultaneous equations, in which two unknowns, x and i/, appear, by

B = D. (2) j

^^^^^ System.

Representing by E the expressed value of one of the unknowns, say y,

in terms of the remaining unknown ar, and of the known numbers appearing

in one of the equations,— say equation (1),— we may derive the equivalent

equation
y=E. (3)

Substituting this expressed value, E, for y wherever y is found in the

remaining equation,— say equation (2) of System I., —we may represent

the derived equation by

B' = D'. (4)

We are to show that System II., composed of equations (3) and (4), is

equivalent to the given system of equations (1) and (2), that is, to System I.

y = E, (3) )
Equivalent

>- II. Derived

B' = D'. (4) ) System.
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Since y = E 18 equivalent to equation (1), the system composed of this

equation and the remaining original equation (2), that is, System III., must

be equivalent to the original System I.

y = Et (3) { Equivalent

) III. Derived

B = D. (2) ( System.

Any solution of System III. satisfies equations (2) and (3), that is,

makes each of them an identity. Hence we have

y = E, and B = D.

Any solution therefore which satisfies (3) and (2) must also satisfy (2)

after E has been substituted for y, that is, must satisfy the equation

^ = 1/. (4)

It follows that any solution of System III. is also a solution of

System II.

Furthermore, any solution of System II. makes y = Ej and also B' = D'.

Hence, any solution of System II. must also satisfy B' = D' after y

has been substituted for E^ that is, must satisfy tlie equation B = D (2).

Also, since the equation y =. E \8 equivalent to the equation A = C\ any

solution of System II. must satisfy also System I.

Hence Systems I. and II. are equivalent.

The reasoning may be extended to include a system of three or more

equations containing three or more unknowns.

Systems of Linear Equations containing two Unknowns

29. The method of elimination by substitution may be used to

advantage whenever one of the given equations contains a single

unknown.

Ex. 1. Solve the following system of equations :

o"^"! ".o' 921^- Given System.
3a; + 51/ = 23. (2) j

^

From equation (1) we obtain directly

£c = 6. (3) ^ E • 1 t
Substituting this value for x in equation (2) we have (

r)
' 1

y= 1- (4) -'
'

Hence the solution of System II., and consequently of System I. is

a: = 6,
I

?/=l|
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In Fig. 7 portions of the graphs of the equations a: — 6 = and

3a: + 5^ = 23 are sliovvn, and the intersection of these graphs is a point,

of which the numerical values of the coor- ^

dinates are equal to the values of x and ?/,

found by solving the given equations.

The student may establish the equiva-

lence of the equations in Systems I. and II.

We may verify the solution by substi-

tuting the values 6 and 1 for x and ij

respectively, in the original equations (1)

and (2).

Substituting in (I),

6-6 =
= 0.

Fig. 7.

Substituting in (2),

18 + 5 = 23

23 = 23.

Ex. 2. Solve the system of simultaneous equations

2a;+ v= 15, (1) ) ^ ^.

5x-2,= 6. \i)V'
<^-- System.

"We are to find a value for x and also one for y which wall satisfy both

of the given equations.

Although we do not at fii-st know the values of x and ?/, we proceed upon

the assunq)tion that each letter has the same value in one equation that it

has in tlie other.

From equation (I) we may obtain the expressed value of y in terms of

X and the numbers entering into the equation.

That is, i/=15-2a:. (3)

Substituting 15 — 2 a: for y in equation (2), we obtain the following de-

rived equation in which y does not appear :

5a:-2 (15-2x) = 6. (4)

The derived System II., composed of equations (3) and (4), is equivalent

to the original system.

, ^ \ Equivalent

5..-2(15-2x) = 6. (4)^ gy^^^^_

From equation (4) we obtain, a: = 4.

Substituting this value in equation (3), we obtain ^ = 7.

Hence, the solution of System II., and consequently of System I., is

;}
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Fig. 8.

In Fig. 8 portions of the graphs of the ecjuations

2x + y = 15 and 5 a: — 2y = 6 are shown, and the

intersection of these graphs is a point, of which the

numerical vahies of the coordinates are equal to

the values of x and y, found by solving tlie given

equations.

We may verify the solution by substituting the

values 4 and 7, for x and y respectively, in the origi-

nal equations (I) and (2).

Substituting in (1), Substituting in (2),

2-4 + 7=15 5-4-2-7 = 6

15 =15. 6 = G.

The equivalence of the equations employed in the process of solution

may be established as follows

:

Equation (3) is equivalent to equation (I) by Chap. X. § 27 (i.). The

system composed of equations (4) and (3) is e([uivalent to the system

composed of equations (2) and (1) by § 26.

It follows that the solution of System II. nmst be the solution of

System I.

30. The general method of solution may be stated as

follows :

Obtain from one of the equations the, expressed value of one of the

unknowns in terms of the otJier ; substitute this expressed valuefor

tJie same unknown wherever it appears in the remaining equation

of the system^ and solve the 7'esulti?ig equation.

The value of the remainiiig unknown may befound by substituting

the value of the unknown just found, either in one of the original

equations or i?i the exp^r^ssed value of the other unknown.

31. An objection to this method is that, unless the coefficient

of the unknown to be eliminated is unity in the equation from which

the expressed value of this unknown is obtained, it may happen that

fractions are introduced into the derived equation.

32. The preceding examples illustrate the principle that the

solution of a system of simultaneous equations which consists of as

many equations as there are unknown numbers is finally made to

depend upon the solution of a single equation containing a single

unknown.
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Exercise XVIL 2

Solve each of the following systems of equations by the method
of substitution, verifying all results numerically :

1. ic4-9?^==19, 11. 12ic— 17v/- 2 = 0,

Hx— i/=ld. X— 7/ — 1 = 0.

2.x+nij= 0, 12. 4a; 4- 2.y- 12=^0,
x-\- .i/=lO. x+ 1/— 4: = 0.

3. 3ic-2?/= 4, 13..iB = 3?/ — 2,

5x+ ;i/ = lh 7/ = '6x + 2.

4:. X— y = 8f 14. ic = y,

5a;+ 6y = 51. 8a; + 3y= 11.

5. 2a; =12, 15. x— y = 0,

3a; + 51/ = 53. 2x+ Sij = 5.

6. 3a;— y= 6, 16. 25a;— Qi/= 3,

x-\- 9?^ = 86. 5a; + 21 1/ = 10.

7. 2 a; 4- ^ = 21, 17. 5 a; — ?^ — 5 = 0,

2^-|-a;= 12. 7a; + 3?/ — 24 = 0.

8. 3a;— 12?^ = 0, 18. x + i/ = 2a,

a; — 2 v/ — 14 = 0. (f* — ^)^ = (a + b)i/.

9. 4 a; = 3 ?/, 19. ca; — % = 0,

7 a; = 5 7/ + 1. bx — cy = a.

10. 7 a; = 4 ?^, 20. aa; + .y = ^,

10a; = 3 ?/ + 19. a; + c^/ = t?.

33. The method of elimination by substitution is sometimes em-

ployed in a special form called the method of

dimiuation by Comparison

An unknown is eliminated by the method of comparison by ob-

taining from each of two given equations the expressed value of this

unknown, and then constructing an equation the members of which

are the two expressed values thus obtained.
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Ex. 1. Solve the system of equations

3a: + 41/ = 40, (1) )

9x-5y= 1. (2)j
I. Given System.

From equation (1) we obtain the expressed value of x,

40-4y
x = (3)

From equation (2) we obtain the expre:

""-
9

ise«l value of a?, }- II

(^)

Equivalent

Derived

System.

Since these expressed values of x represent the same number, they may

be used as members of an equation ; or, from another point of view, we

may substitute for x in one of the equations, say (4), the expressed value of

X from the other equation, say (3), and obtain

40-42/
3

1+5?/
9

Hence, 2/ = 7

From either equation (3) or etjuation (4) we may
obtain x by substituting 7 for y.

1 + 5 • 7
From equation (4), x =

Hence,

The values

x = 4

(5)

E([uivalent

III. Derived

System.

y=7,f
are the solution of the given equations (1) and (2),

and by Principles (i.) and (ii.), the systems of equations I., II. and III. are

equivalent.

Hence, the solution of the given System I.

is the single solution of System III.

In Fig. 9, portions of the graphs of the given

equations 3 a; + 4 ^ = 40 and 9x — 5y =1
are shown, and the numerical values of the

coordinates x = 4 and y =7 of the point of

intersection of the graphs are equal to the nu-

merical values of x and y found by solving the

Fig. 9. algebraic equations.

The solution may be verified by substitut-

ing the values 4 and 7 for x and y respectively in the given equations (1)

and (2).
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Substituting in (1), Substituting in (2),

3. 4 + 4-7 = 40 9-4-5-7 = l

40 = 40. 1 = 1.

34. The preceding example illustrates the following rule for elimi-

nation by comparison :

From each of two given eqitations find the expressed value of one

of the unknowns and foi'm an equation the members of which are

these expressed values.

Solve the equation thus obtainedfor the single unknown appearing

in it. The value of the remaining unknown may be found by substi-

tuting the value of the first unknown^ thus obtained, for the first

unknown wherever it appears, either in one of the original equations

or in the expressed value of the remaining unknown.

Exercise XVII. 3

Solve the following systems of equations, eliminating the unknown
numbers by the method of comparison :

1. a; = 31/ -4, 7. y = 2x+l,
35 = 4^-7. y = Sx-5.

2. 5a;- 2?/= 11, 8. Sx-4y- 19 = 0,

2 « — 3 y = 0. 7a; + 27/ -50 = 0.

3. 3a; + 8y= 19, 9. 5a;+6y= 7,

lx—2y= 1. 8a; + 9?/ =10.

4. 8aj=6y, 10. 11a;- 9y= 7,

10a;=:27y — 4. 9 a;- 10y= 11.

5. 3a; +7^ = 42, 11. bx -{- ay = 2 ab,

5a;+ 6y = 53. ax-\-by = a^ + b\

6. 2 35- 5?/ = — 23, 12. X + ay + a^ = 0,

3a;-4y = — 3. x + by + b^ = 0.

11. Elimination by Addition or Subtraction

35. The method of elimination by addition or subtraction may be

made to depend upon the following

Principle (iii.) If, for any equation of a system of simultaneous

equations, an equation be substituted which is derived from two or
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more of the given equations of the system by either adding or sub-

tracting the corresponding members of these eqtiations, the resulting

system will be equivalent to the one given.

(The following proof may be omitted when the chapter is read for the first time.)

If d and n represent any finite numbers, d being diflferent from zero, the

System I. is equivalent to the derived System II.

'J
dA -\-nB = 0, (3)

")

Equivalent

li; ,.U^- Given System C II.

~
'^"M B = 0. (2) ) Derived System.

Every solution of System I., that is, every set of values making both A
and B zero, must make both dA and nB zero, and accordingly must satisfy

System II.

Furthermore, any set of values M'hich satisfies System II., making B and

dA + 7iB zeroj must make dA zero; and since d is different from zero, the

remaining factor A of the term dA must be zero.

Hence A and B must both become zero for any particular set of values

which satisfies System II.

Accordingly, such a set of values must satisfy System I., that is, Systems I.

and II. must be equivalent.

36. The elimination of unknowns by the method of addition or

subtraction will, in the majority of cases, be found to be more con-

venient than the method of elimination by substitution. This is

because fractions are not introduced into the derived equations dur-

ing the process.

37. The process of elimination by addition or subtraction is

effected by so transforming the given equations that the unknown

number to be eliminated appears in two equations with coefficients

which differ, if at all, only in sign. • Then, either by adding or sub-

tracting the corresponding members of the transformed equations,

the terms containing this unknown may be made to disappear, and

the resulting derived equation will be free from this unknown

number. After solving this last equation for the single unknown

appearing in it, the value of the other unknown may be found,

either by substitution or by repeating the process above.

Ex. 1. Solve the system of linear equations

3a:4-4v = 35, (1)) t ^- o ^
« ^ . / )^i r I- Given System.
6x-5y = U. (2))

^
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To eliminate x it is necessary to obtain equations equivalent to equations

(1) and (2) in which the coefficients of a; ditfer, if at all, only in sign.

Multiplying both members of equation (1) by 2, we obtain the equivalent

equation 6 a: + 81/ =70, (3), which, if taken with equation (2), forms a

System II. which is equivalent to the given System I.

a: + 8 ?/ = 70, (3)
]

Equivalent

y II. Derived
6a; -57/ = 44.

(2)

J

System.

131/ = 26. (4)

By subtracting the members of equation (2) from the corresponding

members of ec^uation (3), the terms containing x disappear and the derived

equation (4) contains ?/ only.

Solving (4), we obtain, 2/ = 2. (5)

By Principle (iii.) § 35, equation (5) taken together with either of the

original equations, say (2), forms a System III. which is equivalent to the

given system.

7/ = 2, (5) \ Equivalent

[ III. Derived

6 a: -5?/ = 44. (2)) System.

By substituting the value 2 for y in one of the given equations, say (2),

we shall obtain an equation in which x is the only unknown number.

Solving this equation we shall obtain the value a: = 9.

Instead of obtaining x by substituting the value found for y we may

transform the given e(iuations in such a way that their members may be

combined to eliminate ij, Jis follows

:

Multiplying the members of (1) by 5,

15a: + 20y = 175. (()) . . . .\ Equivalent

Multiplying the members of (2) by 4, V IV. Derived

24a: -20?/= 176. (7) .... ) System.

By addition, 39 a: =351
Hence, x =9. (8)

a: = 9 )

We may verify the solution _ „' r V substituting these values in the

given e<iuations, obtaining the. identities 35 = 35 and 44 = 44.

By Principle III, Chap. X. § 28, equation (1) in System I. is equivalent

to equation (3) in System II.

By Principle (iii.) § 35, equation (5), obtained from equations (3) and

(2) of System II., taken together with equation (2), forms System III.

which is equivalent to the original System I. Hence the solution of
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System III. must be the solution of the given system of equations (1)

and (2).

By a similar course of reasoning, we may show that System IV. is

equivalent to System I.

Hence, the solution of IV., which is the same as that of III., is the solu-

tion of the original equations.

The results of the algebraic work may
be illustrated graphically by the accompany-

ing figure.

The graphs are numbered to correspond

to the numbers of the dillerent equations.

It may be seen that the point marked A is

the intersection of the graphs (1) and (2),

representing the given equations (1) and (2).

It is also located by the graphs (3) and (2),

which represent the ef^uations of System II.

;

by the graphs (5) and (2), which represent

the equations of System III. ; by the graphs

Pjq jq (6) and (7), which represent the equations

of System IV.; and finally by the graphs (8)

and (5), which represent the solution, a: = 9, y = 2, of the given equations.

38. The preceding example illustrates the following rule for

elimination by addition or subtraction:

First, reduce both equations to the farm ax-\r by =c. Multiply

(yr divide both members of the equations, if necessary, by such con-

stants as are required to make the absolute values of the coefficients

of one of the unknowns equal in both equations.

Combine the corresponding members of the derived equations by

addition or subtraction, according as the signs of the coefficients of

the unknown numb&r to be eliminated are unlike or like.

Solve the resulting equation for the single unknown appearing

in it.

To find the remaining unknown, substitute the value of the unknown

just found for the sams unknown wherever it appears in one of the

(yriginal equations, and solve the derived equation for the single

unknown appearing in it ; or repeat the process of elimination by

addition or subtraction for the remaining unknown.
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Exercise XVIL 4

Solve the following sets of simultaneous equations, eliminating-

the unknowns by the process of addition or subtraction, verifying

all results :

1. 9£c + 7y = 25, 15. ^a; - eSj =f\
dx-li/= 11. d^x-cSj=f,

2. 3 cc + 4 ?/ = 47, 16. r£c + 57/ = 2 r.9,

3 a! + 2 3/ = 31. sx \- ry — r^ -\- s^,

,3. 6a; + 5^ = 23,

4 a; — 5?/= 7.

4. 2a;+ hy— 4,

4 a;— 10^ = 48.

5. 7a; + y=16,
^x — y= 4.

6. a; +2?/ =14,
2a; + 3?/ = 23.

7. 5a;-8y = — 39,

8a;— 5?/ = 0.

8. 2a;— ly = 2,

\i)x — 2ly = - 18.

9. 5a; + 3y — 90 = 0,

2a;— 7?/ — 94 = 0.

10. 3a; + 4y + 5 = 0.

5a; + 4?/+ 3 = 0.

11. 8a;- 9?/+ 1=0,
16a; + 273/- 17 =0.

12. 3 (a; + 3/) = 57,

5(a;-y) = 15.

13. ax+hy= {a — hf,

ax — by = a^ — IP'.

14. X— y — m — n^

mx — ny = 1 (m^ — n^).

17. Fa; + rn^y = 0,

kx + my = k + m.

18. X -{- ay + a^ = Oy

x+by+b^ = 0.

19. (p + q)x -(p- q)y = 3,

{p-q)x-Y {p + q)y = 3.

20. 0.8 a; + 0.13/ = 0.19,

0.6 a; + 0.93/ = 0.39.

21. 0.5 a; + 0.4?/ = 0.13,

0.7a; + 0.33/ = 0.13.

22. 0.3 a; + 0.23/= 9.5,

0.2 a; + 0.33/= 10.5.

23. -?=--.

.+ 1=17.

24. |+3y = 15,

| + 4a; = 37.

25. - +¥ =T
¥-'=¥
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26.^+ 5^ =9, 28.^+i^ = 3,

y+9 g— 2 ^ a; — y — 9 ^
10 3

*

ic + y — 9 *

2,. £±-2- ^-±1 = 0.

4 5

General Solution of a System of Two Consistent,
Independent, Linear Equations Containing^

Two Unknown Numbers

39. A system of two consistent, independent, linear equations,

containing two unknowns, has one and only one solution.

This may be shown by solving the following set of simultaneous

equations :

«ia: + % = c„(l)|j
Given System.

««« + % = C2, (2) )
^

In these equations a^ 6i, Ci, etc., are read "a sub-one," "b sub-

one," " c sub-one," etc.

The subscripts i and 2 are used for convenience to indicate that

the letters to which they are attached are found in either the first

or the second equation, respectively.

By applying the principles governing the derivation of equivalent

equations, it may be seen that equations (1) and (2) may be taken

as representing any system of two linear equations containing two

unknowns, x and ?/; a^ bi, Ci, «2, ^2, and c^ being known numbers

the values of which do not depend upon the values of x and ^.

We may apply the method of elimination by subtraction as

follows :

EUminating y

aJ3^x + hja^y z=z c.^b^

Eliminating z

a^a^ 4- b^a^ = c^n^

a^a^x + b^a^y = c^a^

{b^a^ - 6,«i)7/ = ci«2 -(ajb^ - agijx = C162 - C261 (3)

a^b^-aj)^^ -«2^
1(6)
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By Principle (i.), § 26, and Principle (iii.), § 35, the equations (3) and

(4) taken together, or either of the equations (3) or (4), taken together with

one of the given equations (1) or (2) constitute a system equivalent to the

given system.

The single solution of equations (3) and (4), that is, equations (5) and

(6) taken together, is accordingly the solution of, and the only solution of,

the given system.

It may be seen that the given equations (1) and (2) are equivalent, pro-

vided that

either (a^b^ — a^hj) = and (c^h^ — c^h^) = 0, from (3),

or («i&2 ~ <*2^i) = and (cia^ — c^a-^ = 0, from (4).

It m»y also be seen that the given equations are inconsistent, provided

that (a^ftg — ^2^1 ) = ^^ '"^^^^ (^A — ^2^i) ^ ^» fi'om (3),

or (a^ftg — «2^i) == ^ ^"*^^ (^1^2 — ^2^i) ^ 0, from (4).

It follows that the condition that the given equations shall be independent

and consistent is that a^h^ — a^h^ i^ ().

Systems of Linear ^Equations Containing Three
Or More Unknowns

40. It may be shown that a system of three or more consistent,

independent, linear equations has in general a single definite solu-

tion, provided that the number of equations is equal to the number

of unknowns appearing in them.

The solution may be obtained by applying the methods already

shown for systems containing two unknowns.

41. To obtain the solution of a system of three consistent, inde-

pendent, linear equations containing three unknowns, all of the

unknowns appearing in each of the given equations, we may proceed

as follows :

Using any two of the given equations, eliminate one of the un-

knowns ; then, using one of these same equations with the remaining

equation of the system, eliminate the same unknown as before.

Two derived equations will thus he obtained which, taken together

with one of the original equations, will form a system equivalent to

the given system.

Solve these two derived equations, for the two unknowns ajjpearing

in them, by the methods previously shown; substitute the values of the
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unknowns thusfound for tke.se unknowns in one of the original equa-

tions to obtain ths value of tJie third unknown.

42. Whenever a system consists of four equations containing

four unknowns, by elimination we may obtain : first, a system of

three equations containing three unknowns ; then from this, a

system of two equations contjiining two unknowns ; and finally,

a single equation containing a single unknown.

The value of the single unknown obtained by solving this last

equation may be substituted in one of the equations containing

two unknowns to obtain the value of a second unknown ; substitut-

ing the values of these two unknowns in one of the equations

containing three unknowns, we may find the value of a third un-

known ; the value of the fourth unknown may be obtained by

substituting the values of the three unknowns for these unknowns

in one of the equations containing four unknowns.

Graphical Record of tlie Process of Solution

43. The follo^ving device will be found to be helpful in planning

and keeping record of the different steps taken when solving a

system of simultaneous equations.

Since, by transposing all of the terms of a given equation to the

first member, we may derive an equivalent equation in which the

second member is zero, it is seen that the first member of the equa-

tion thus transformed is a function of the unknowns appearing in

it. It follows that any equation containing a single unknown, x^

may be represented by the notation /(cc) = 0, read "function of x

equal to zero " ; an equation containing two unknowns, x and ?/,

by the notation /(a;, y) = 0, read " function of x and y equal to

zero "
; and an equation containing three unknowns, x, y^ and z, by

the notation f{x^ y, z) = 0, read " function of x, y, and z equal to

zero."

Diff*erent equations may be denoted by subscripts.

Thus, ^ (a;, y, z) = 0, read "function one of x, y, and z equal to

zero," ^(ic, y, z) = 0, read "function two of x, y, and z equal to

zero," and /gCa;, y, z) = 0, read " function three of x, y, and z equal

to zero," represent three different equations which may be referred

to as equations (1), (2), and (3), each containing x, y, and z.
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The letters written within each parenthesis must in every case be

the same as the different unknown letters appearing in the equa-

tion numbered to correspond to the subscript of the symbol.

By this notation our attention is directed simply to the fact that

certain equations contain particular unknowns, and nothing is indi-

cated as to the forms of the equations in which the unknowns are

found.

If, using equations (1) and (2), one of the unknowns, say y, is

eliminated, the derived equation will contain the two unknowns

£c and ;s. This derived equation may be represented by the symbol

f^ (x, z) = 0. The derivation of equation (4) from equations (1)

and (2) may be suggested as follows :

A fc y. z) = —-^^/4 fe z) = 0.

If, during the process of elimination, the members of equations

(1) and (2) are multiplied by a and b respectively, this may be

indicated by placing a and b on the leading lines, as shown above.

A second equation (5) containing the same unknowns, x and z,

which may be represented by the symbol /^(x, z) = 0, may be

derived by using either equations (1) and (3) or equations (2)

and (3).

If equations (1) and (3) are used, the derivation may be sug-

gested as follows:

/i (a^, y,z)=o ^^^^

If equations (4) and (5) are used to eliminate z to obtain a single

equation (6) in which x alone appears, we may suggest the deriva-

tion as follows:

A (x, z) = —2:==^^/, (x) = 0.

The forms of the equations may be such that it is unnecessary

to use multipliers represented by a, b, c, d, e, and/, which are shown

on the leading lines.

It will be seen that the solution of the given system of three



350 FIRST COURSE IN ALGEBRA

equations, (1), (2), and (3), containing three unknowns, is made to

depend upon the solution of a system of two equations, (4) and (5),

in which two unknowns, x and z^ are found. The sohition of this

system in turn depends upon the solution of a single equation (6)

in which a single unknown, a;, appears.

44. It will be found that this device will enable the student to

plan the solution of a system of equations intelligently, and to carry

out the work systematically, with the advantage that at any stage

.

of the process the record will show the reason for each step taken,

and serve also as a guide for such additional steps as are necessary

to complete the solution.

45. To illustrate the use of this graphical record, we will solve

a system of three simultaneous, independent, linear equations con-

taining three unknowns.

Ex. 1. Solve the following system of simultaneous equations :

4a: + 3y + 93 = 53, (l)-\

11 a: - 2 y + 8 2 = 75, (2) [ Given System.

6a: + y + 55; = 47. (3))

An examination of the equations shows that it will be convenient to

select y as the unknown to be eliminated first.

The unknown, y, may be eliminated by using the first and third equa-

tions and also the second and third equations.

Two equations which may be called equations (4) and (5) will thus be

obtained, in each of which the two unknowns x and z will be found.

After the equations (4) and (5) are obtained the remaining steps of the

process of solution may be determined.

We begin the record of the process of solution by writing the symbols

representing the set of given equations j that is, the equations numbered

1, 2, and 3.

The elimination of y from equations (1) and (3), and also from equations

(2) and (3), to produce the derived equations numbered (4) and (5), may
be suggested as follows

:

/i (^, 2/, 2:) = ^..^^^^^^^^^

h (^, v^ ^) = -^^^^^^^ ^''' "^^ = ^

/3 (X, 7/, .) = ^:^^=^J^ {X, .) =
The multipliers, 3 and 2, which are used to multiply the members of

equation (3) in preparation for the elimination of ij to obtain equations (4)

and (5) respectively, are written on the leading lines, as shown above.
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Equations (4) and (5) may be derived as follows :

(2) Unaltered, liar—2?/+ 82= 75

(3) Modified.

Members

mult, by 2. l2x+2y-\-lOz=: 94

By addition, 23a: +18^= 169. (5)

(1) Unaltered. 4x+3y+ 9z= 53

(3) Modified.

Members

mult, by 3. 18a:+3?/+15;3=141

By subtraction, 14a: + 6s= 88,

Hence, 7x + Sz= 44.(4)

The solution of the given system of three equations containing three

unknowns, x, y, and 2, is thus made to depend upon the solution of a derived

systeiu consisting of two equations containing two unknowns, x and z.

7a: + 3z= 44, (4) )

23a:+ 18;3= 169. (5) [

It should be understood that this derived system is not equivalent to the

given system consisting of three equations.

However, the derived system consisting of equations (4) and (5), taken

together witli one of the given equations, will form a system of equations

which is equivalent to the given system of three equations.

Using equations (4) and (5), we may eliminate z by multiplying the

members of equation (4) by 6 and then combining the members of the

resulting ec^uation by adtlition with the members of equation (5). A sixth

equation, containing a single luiknown, x, will thus be obtained, and this

may be solved for x.

The graphical record of the process of solution may now be completed by

indicating the elimination of z by using equations (4) and (5) to obtain

equation (6), as follows :

/3 (X, y. z) = O-^^S^/5 C^, ^) = _^=-^/, (x) =

The process of the derivation of equation (6) may be carried out as follows :

(4) Modified.

Mem. mult, by 6. 42 a: + 1 8 z = 264

(5) Unaltered. 23a: + I8z= 169

By subtraction, 19a: =95.
Hence, x = 5. (6)

By substituting the value of x, which is 5, for x in either of the equations

(4) or (5) and solving the resulting equation, we shall obtain the value of

z, as follows

:

Using (4) we have, 7 • 5 + 3 rj = 44. Hence z = 3.
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To obtain the value of y we may select an equation containing y, say

equation (3), and substitute for x and z the values 5 and 3 respectively,

and solve the resulting equation as follows

;

6 • 5 + 1/ + 5 • 3 = 47.

Hence, y = 2.

The solution of the given system of simultaneous equations is the set of

x = 5,

values y
z

LI \Jl Olil

From the process of derivation, it will be seen that roots have neither

been gained nor lost during the transformation. Hence, these values con-

stitute the only solution of the given set of simultaneous equations.

Substituting in the original equations for z, y, and z the values 5, 2,

and 3 respectively, we obtiiin the following numerical identities : 53 = 53,

(1) ; 75 = 75, (2) ; and 47 = 47, (3).

Ex. 2. Solve the following system of four independent, simultaneous,

linear equations containing four unknowns, x, y, z, and w.

3x+ y-2z-\- w= 1, (1)
'

2x-4y +5m7= 5, (2)

3y + 2«-4«;= 16, (3)

4a;- 2/ + 3Z = 35. (4)

The accompanying graphical outline will serve to indicate the different

steps of the process.

/i(x,y,z,«;) = Ov

fi(.x, y, w) = N. /gCar, y, w) = 0^^^

Given System.

h{x,y,z, ) = /6(^»!/»*0 = <^- —Vg(x,u')=0
Equations (5) and (6) may be derived as follows:

(3) Modified.

(1) Unaltered. 3x+ y-2 2+ w= 1

(3) Unaltered. 3i/+2;^-4M;= 16

(5) By addit'n, 3 a:+4 y -3 iw = 17.

Mem. mult.

by 3.

(4) Modified.

Mem. mult. 8x
by 2.

(6) By sub-

traction

./,(«;) = 0.

9 2/+6;s-12Mfci48

2 i/-l-6 z =70

d>x—\\y -\-l2tv=22
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It will be seen that, when % is eliminated by using equations (1), (8),

and (4), the derived equations (5) and (6) contain the unknowns a;, ^,

and w.

Hence, equation (2) may be carried over unaltered as the remaining

ec][uation necessary to complete the set of three equations containing three

unknowns, a:, y, and w.

The solution of the given system of equations is thus made to depend

upon the solution of the three following equations :

3a: + 4^- Zw=. 17, (5)")

2a:- 4^+ 5w= 5, (2) [

8a:- ll2/ + 12ii? = 22. (6))

Equations (7) and (8) may be derived as follows

;

(2) Modified
(5)Unaltered3a;+47/-3t(;=17

(2)Unaltered2a:—4i/+5w= 5

By addition, bx 4-2r6-22.(7)

Mem. mult, by 11.

(6) Modified

Mem. mult.by 4.

22a;-447/+55w=55

32a:-44^/+ 48m;=88

(8) By subtraction, lOx lw-2>Z.

The solution of the given system of three equations has now been made

to depend upon the solution of the following system of two equations

:

5a: + 2w;=22, (7) >

10a;-7ry = 33. (8))

Equation (9) may be derived as follows

:

(7) Modified

Mem. mult, by 2.

(8) Unaltered,

By subtraction

10a; + 4«; = 44

10a;- 7wr=33
11m;= U

m;= 1. (9)

By substituting the value 1 for w in equation (7) or equation (8) we may

obtain the value of x.

Using (7), we have 5 a; + 2 • 1 = 22. Hence a: = 4.

By substituting the values 4 and 1 for x and w respectively in equations

(5), (2), or (6), we may find the value of y.

Using (5), we have 3-4 + 42/-3-l = 17. Hence ?/ = 2.

The value of z may be found from equations (1), (3), or (4), by substi-

tuting the values 4, 2, and 1 for x, y, and w respectively.

Using (3), and substituting the values for y and iw, we have

3-2 + 22;- 4-1 = 16. Hence z = 7.

23
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The solution of tbe <j;iven set of simultaneous equations is thus found to

be the following set of values :

a- = 4/

!/ = 2.

2 = 7,

V) = 1

.

Froui the nature of the derivation of the successive equations it may be

seen tliat solutions have neither been gained nor lost. Hence the solution

found is the only solution of the given system of simultaneous equations.

Substituting these values for x, y, z, and «?, respectively, in the given

equations, we obtain the following numerical identities :

1 = 1,(1); 5 = 5, (2) ; 16 = 16, (3) ; and 35 = 35, (4).

Exercise XVII. 5

Solve the following systems of simultaneous equations, verifying

all solutions :

6. a; + ^ + i; = 19,

y = 2a;- 3,

z= y — 10.

7. 3ic+ 4?/ + 52; = — 68,

2x+ y = — 2,

4?/ — z = — 14.

8. X— i/ — 2z = — 4:,

x — 2y— z = — 4:,

2x— y — z = 0'

9. 6 a; — y = 3 z — S6,

ij — 3z = 3x — S9y

z-2x=Sy+ 2.

10. 2x—3y = ^z-2\,
2y — Sz = 4:X— 14,

2z — Sx = 4:y— 10.

5. 5x + 4:y+Sz = S5, 11. 2x — 3y + 2 z = j^^,

4tX+Sy+2z = 25, 3a;-2y+ Sz = h
Sx+2y- z=15. 2x+3y-2z = U'

1. 3x+2y = 13,

Sy+2z = 8,

Sz+ 2x = 9.

2. a: — y = Sy

y-^ = h
z + x = Q.

3.

,-1 = 6.

4. 2x+ 5y- Sz == 23,

3ic-f 2y + *? •r
—= 41,

5x-4:y-\- Qz == 35.
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12. 2x-i- 3y + Az-^ 5 = 0,

2x + 3y-4:Z+ 6 = 0,

2x — 3y + 4;: + 7 = 0.

13. lOaj — 8y+ 2; = 40,

x+ y + 2z= 5,

3a;— z + 6 = 0.

14. 0.3 a; + 0.5^ = 0.8,

0.4 a; + 0.7 2^ = 1.8,

0.1 7/ + 0.1 2; = 0.3.

15. 0.1 a; + 0.3?/= 1.9,

0.2 a; 4- 0.4 5; = 3.2,

O.oy + 0.1;2 = 3.1.

16. X + y = c,

I/ + z = b,

z + X = a.

17. X + y = a + by

y + z = b + c,

z -\- x = c + a.

18. x+ 3y = a,

y-^3z = b,

z -\- 3 a; = c.

19. X + y — z = a,

x — y + z = b,

z + y — x = c.

20. bx + ay -{ cz = a,

ex 4- by i- az = b,

ax + cy + bz = c.

Systems of Fractional Equations Solved like Equations of
the First Degree

46. Certain systems of fractional equations which are linear with

reference to the reciprocals of the unknowns may be solved without

clearing of fractions before eliminating the unknowns.

21., 2x — 3y= 6,

4.y-6z=7y
2z'-3u = 8,

Au — 5x=d.

22. 2x-y = 8,

3y-z =13,
4:Z — W=1Q,
5w—x =13.

23. 3x + Ay-2z =:20,
2x— 1 y + 5u =

= -9,
8x+2z + 3u =--21,

2y—3z + 4:U =-- 17.

24. lx+ y ^ Az =: W,

a; + w — y =- 0,

2z— w -\-3y == 15,

3y-lx-2z =: 3W -

25. x + y + z=3,
y -{- z + u =A,
z + ti + x = 5j

u + X + y = Q.

26. X + y + z + u = 12,

x+y+z+v= 14,

x + y + u-\-v = 16,

X -\- z -\- u + V = 18,

y + z + u + V = 20.
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Ex. 1. Solve the system of fractional equations

15 18 „ „J- + - = 9, (1)
X y
20 6

-I. Given System

r- -y = '- ^'\

Instead of clearing of fractions before eliminating either of the unknowns,

in which case we should introduce into the ei^uations terms containing both

X and y, we will eliminate the reciprocals of the unknowns, - and - , and

then from the derived equations obtain values for x and y.

Multiplying members of

equation (2) by 3.

^-'1= 6.
X y

(3)

(1) Unaltered. 15 + 1?= 9.X^ y
(1)

By addition, Z5 =15.
X

Hence,
75 r

The value of y may be obtained by substituting 5 for x in one of the

given equations and solving the resulting equation for y, or by repeating

the process of elimination as follows

:

Multiplying members of

equation (1) by 4.

Multiplying members of

equation (2) by 3.

By subtraction,

Hence,

Thus, it appears that the following set of values is the solution of the

given system of simultaneous equations:

X y

^-15= 6.
X y

(4)

(6)

?2 = 30.

2' =30 = 3-

x = 5,)

y = 3.iy

Substituting these values in the original equations, we obtain the numeri-

cal identities 9 = 9, (1), and 2 = 2, (2).

From the process of derivation it may be seen that solutions have been

neither gained nor lost. Hence the set of values found is the only solution

of the given system of equations.

47. When solving systems of fractional equations it should be

kept in mind that during the process of clearing the fractional
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equations of fractions no solutions will be lost, but it may happen

that extra solutions will be introduced. (Compare with Chapter

X. § 30, also Chapter XVI. § 4.)

Exercise XVII. 6

Solve the following systems of equations which are fractional with

reference to the unknowns, verifying all results obtained :

1.
1 1

X y

a: y

2.
9 10

X y

3.
X y A:

X y ^

4.
4 7 5

6_14__1^
X y 2

5.
X y

X y

6.
3 4_ 7

X y 24*

8 6 1

X y 12*

7.
2a; +3^-^'

11 10

4a;"^93^" 3

8.
1 1 9

bx 12y 2'

15a; ' Gy~^'

9. L+^r'"'
' + '=20.
5x 6y

10. — + — -i,
ax by c

4 + 9- 1
.

ax by 2d

11.
a

,
b''— + — = c,

x y

X y

12. 11 a;-- = 3,

10a;~- = 4.
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13. - + -
X y

X y

14.^ + ^ =
X y

a h _d
X y~ c

FIRST COURSE IN ALGEBRA

1, 21.
i*r^'

3. \*\-'.
c

y -

Hint. From the sums of the

correspoiidiug members of all of

3 J
the e(iuutioii8, subtract the cor-

1*^* " + z 3 = 0, responding members of each ofX 6 y

t-\*\-
the equations in turn, and solve.

„. 3^7 43 22-

»"• S + ^ = 20'

2y-6^ = -I^.
•'

10

bx ay '

"^ y 23.

18. hx— by = 4:xy,

Qy + Gx = 5xy.

Hint. Divide both members
of each of the equations by xy.

19.
X

4

+ 1
+
y

5

-2

X

5

+ 1

—
y

3

-2

X

2

+ 2

3

+
y

3

+ 3

2

= 9,

= 2.

-4 = 0,

+ 4 = 0.

24.

1 2 + 3 =
X y

= 0,

1 ^ .
= 0,

x; a:

= 0.

X y a

- H— = 7>
y z b

2; ic c

X y z

1

2'

20.-^ + ^^-4 = 0. l-\ + \-\'

X+-2 1/ + S X y z i
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X y s '

27.
XII

X y z ,:=-'•

X y z

ZX

. + . = "•

359

12 8 Hint. Write the first equation
. 26. - + - + - = 20, 111^ y z

. in the form - + - = -.

2 3 1
y X a

—

I

1— = 17^ Write the others in similar

^ y '^ forms.

X y z

Problems Involving Simultaneous Equations

48. Whenever the unknown numbers of a problem are obtained

by solving algebraic conditional equations, it is necessary that the

number of independent consistent equations be equal to the number

of unknowns whose values are to be found.

49. It is often a matter of choice whether a particular problem

shall be solved by using a single equation containing one unknown,

or a system of two or more independent equations containing two

or more unknowns.

Exercise XVIL 7

1. Separate 101 into two such parts that 2/5 of the greater shall exceed

2/3 of the less by 2.

Let X stand for the greater of the two numbers into which 101 is sep-

arated, and let y represent the less number.

By the conditions of the problem we obtain the conditional equations

a:+ 2/ =101,

2a: %y
T " T - ^•

The solution of these equations is found to be a; = 65, which is the greater

number, and y = 36, which is the less number.

Tliese numbers are found to satisfy the conditions of the given problem.

2. Find a fraction such that, if 7 be added to both numerator and denomi-
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naU)r, its value becomes 4/5, and if 2 be subtracted from botli numerjitor

and denominator, its value becomes 1/2.

Let X represent the numerator and y the denominator of the fraction.

Then by the conditions of the given problem we have

ar + 7 . 4

and

y + 7-6'

g-2 1

y-2~2

The solution of these two ecjuations is found to be a: = 5 (which is the

numerator of the fraction), and y = 8 (which is the denominator).

Accordingly the required fraction is 5/8.

This fraction will be found to satisfy the conditions of the problem as

stated.

3. The difference between two numbers is 5 and their sura is 29. Find

the numbers.

4. Two numbers are to each other in the ratio of 7 to 9, and if 50 be

subtracted from each of the numbers the remainders will be to each other

as 1 is to 2. Find the numbers.

5. Separate 109 into two parts such that 3/8 of the greater part shall

exceed 4/9 of the less by 4.

6. If three times the greater of two numbers be divided by the less, the

quotient is 3 and the remainder is 15; and if four times the less be divided

by the greater, the quotient is 3 and the remainder is 14. What are the

numbers ?

7. What is that fraction which equals 1/5 when 1 is added to the numer-

ator, and equals 1/6 when 1 is added to the denominator ?

8. Find a fraction which is equal to 1 /5 when its numerator and denom-

inator are each diminished by 2, and is equal to 1 / 3 when its terms are

increased by 3.

9. If 1 is added to the numerator of a certain fraction its value becomes

5/7, and if 1 is added to the denominator the value becomes 3/5. What

is the fraction?

10. Find a fraction such that if 1 be added to both numerator and de-

nominator the value becomes .1/2, while if 1 be subtracted from both

numerator and denominator the value becomes 7/16,

11. If 3 be added to both numerator and denominator of a certain frac-

tion its value becomes 7/9; if 3 be subtracted from both numerator and

denominator its value becomes 1/3. Find the fraction.

12. If the numerator of a certain fraction be multiplied by 2 and its

denominator be increased by 5, the value of the fraction becomes 1/2 ; if
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the denominator be multiplied by 2 and the numerator be increased by 18,

the value of the fraction becomes unity. Find the numerator and denom-

inator of the fraction.

13. The numerator and denominator of a certain proper fraction each

consists of the same two figures whose sum is 9, written in different orders.

If the value of the fraction be 3/8, find the numerator and denominator.

14. The numerator and denominator of a certain improper fraction each

consists of the same two figures whose sum is 6, written in different orders.

If the value of the fraction be 7/4, find the numerator and denominator.

15. Separate 1(K) into three parts such that if the second part be divided

by the first the quotient is 3 and the remainder 2; and if the third be divided

by the second the quotient is 3 and the remainder is 1.

16. A immber expressed by two figures is equal to 7 times the sum of

its figures. If 27 be subtracted from the number, the figures in tens' and

units' places are interchanged. Find the number,

17. Separate the two numbers 75 and 70 into two parts each, such that

the sum of one part of the fii-st and one part of the second shall equal 100,

and the difference of the remaining parts shall equal 25.

18. Separate the two numbers 60 and 50 into two parts each, such that

the sum of one part of the first and one part of the second shall equal 75,

and the difference of the remaining parts shall equal 5.

19. Separate a into two parts such that 1/mth of the greater part shall

exceed l/wtii of the less by b.

20. A number is composed of two figures whose sum is 12. If the

figures in tens' and units' places are interchanged the number is increased

by 18. Find the number.

21. A farmer bought 100 acres of land for $3304. If part of it cost

him $50 an acre and the remainder $18 an acre, find the number of acres

bought at each price.

22. If five pounds of sugar and ten pounds of coffee together cost $3.80,

and at the same price ten pounds of sugar and five pounds of coffee cost

$2.35, what is the price of each per pound ?

23. A man invested $5000, a part at 5 per cent and the remainder at

4 per cent interest. If the annual income from both investments was $235,

what were the separate amounts invested ?

24. There are two pumps drawing water from a tank. When the first

works three hours and the second five hours, 1350 cubic feet of water are

withdrawn. When the first works four hours and the second three hours,

1250 cubic feet of water are withdrawn. How many^cubic feet of water

can each pump discharge in one hour ?

25. A plumber and his helper together receive $4.80. The plumber
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works 5 hours and the helper 6 hours. At another ti)iie the plumber works

8 hours anil the helper 9^ hours, and they receive $7.65. What are the

wages of each per hour ?

26 Three men and three boys can do in 4 days a certain amount of

work whicti can be done in 6 days by one man and 5 boys. How long

would it require one man alone, or one. boy alone, to do the work ?

27. A certain piece of work can be completed by 3 men and 6 boys in

2 days. At another time it is observed that an equal amount of work is

performed in 3 days by 1 man and 8 boys. Find the length of time re-

quired for one man alone or for one boy alone to do the given amount of

work.

28. Two persons, A and B, can complete a certain amount of work in I

days; they work together m days, when A stops; B finishes it in n days.

Find the time each would require to do it alone.

29. A steamer makes a trip of 70 miles up a river and down again in

24 hours, allowing 5 hours for taking on a cargo. It is observed that it

requires the same time to go 2^ miles up the river as 7 miles down the

river. Find the number of hours required for the up trip and for the

down trip respectively.

30. A train ran a certain distance at a uniform rate. If the rate had

been increased by 4 miles an hour the journey would have required 16

minutes less, but if the rate had been diminished by 4 miles an hour the

journey would have required 20 minutes more. Find the length of the

journey and the rate of the train in miles per hour.

31. A steamer runs a miles up a river and back again in t hours. It is ob-

served that it requires the same time to go b miles with the stream as it

does to go c miles against it. Find expressions for the number of hours

required for the up and down trips respectively, and also for the velocity of

the stream in miles per hour.

32. Three trains start for a certain city, the second h hours after the

first and the third k hours after the first. The second and third run at the

rates of a and b miles an hour respectively. If all three arrive together,

find an expression for the distance and for the rate of the first train in miles

per hour.

33. A marksman fires at a target 600 yards distant. He hears the

bullet strike 4 seconds after he fires. An observer, standing 525 yards from

the target and 300 yards from the marksman, hears the bullet strike 3

seconds after he hears the report of the rifle. Find the velocity of the sound

in yards per second and also the velocity of the bullet in yards per second,

supposing each to be uniform.

34. Having given two alloys of the following composition : A, composed



PROBLEMS 363

of 4 jiaits (by weight) of gold and 3 of silver ; B, 2 parts of gold and 7 of

silver ; how many ounces of each must be taken to obtain 6 ounces of an

alloy containing equal amounts (by weight) of gold and silver ?

35. Two alloys, A and B, contain : A, 2 parts (by weight) of tin and 9

parts of copper ; B, 7 parts of tin and 3 parts of copper. To obtain 1000

pounds of alloy containing (by weight) 5 parts of tin and 16 parts of copper,

how many pounds of each must be taken and melted together ?

36. A bar of metal contains 20.625 per cent pure silver, ami a second

bar 12.25 per cent. How many ounces of each bar must be used if, when,

the parts taken are melted together, a new. bar weighing 50 ounces is ob-

tained, of which 15 per cent is pure silver ?

37. A and B run two quarter-mile races. In the first race A gives B a

start of 2 seconds and beats him by 20 yards. In the second race A gives

B a start of 6 yards and beats him by 4 seconds. Find the rates of A and B
in yards per second.

38. A and B run a race of 500 yards. In the first trial A gives B a

start of 7 yards and wins by 10 seconds. In the second trial A gives B a

start of 56 yards and wins by 2 seconds. Find the rates of A and B in

yards per second.

39. In a race of one hundred yards A beats B by \ of a second. In the

second trial A give's B a start of 3 yards, and B wins by 1
J^ yards. Find

the time required for A and B each to run 100 yards.

40. A and B run a race of 440 3'^ard8. In the first trial A gives B a

start of 65 yards and wins by 20 seconds. In the second trial A gives B a

start of 34 seconds and B wins by 8 yards. Find the rates of A and B in

yards per second.

Solve the following- problems, employing" equations con-

taining three or more unknowns:

41. If 270 is added to a certain number of three figures the figures in

tens' and hundreds' places are interchanged. When 198 is subtracted from

the number the figures in hundreds' and units' places are interchanged.

The figure in hundreds' place is twice that in units' place. Find the number.

42. A number is expressed by three figures whose sum is 10. The sum

of the figures in hundreds' and units' places is less by 4 than the figure in

tens' place, and if the figures in units' and tens' places are interchanged the

resulting number is less by 54 than the original number. Find the original

number.

43. Find three numbers such that the sum of the reciprocals of the first

and second is 1/2 ; of the second and third, 1/3 ; and of the third and first,

1/4.
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44. Separate 400 into 4 parts such that if the first part be increased by

9, the second diminished by 9, the third multiplied by 9, and the fourth

divided by 9, the results will all be equal.

45. A and B together can do a certain piece of work in 7^ days, A and

C in 6 days. All three work together for 2 days, when A stops and B and

C finish the work in 2^ days. How long would it require each man alone

to do the work ?

46. A and B can do a piece of work in r days, A and C can do the same

work in s days, and B and C can do it in t days. Find in how many days

each can do the work alone.

47. In a mile race A can beat B by 60 yards and can beat C by 230 yards.

By how much can B beat C ?

Represent the rates of A, B, and C in yards per second by a, 6, and c

respectively.

The time required for A to run one mile or 1760 yards is 1760/a seconds.

Since A beats B by 60 yards, B in the same time runs 1700 yards. The

time required by B is 1700/6 seconds.

Accordingly we have the conditional equation

1760 _ 1700

a ~ h '
^^

Similarly, since A can beat C by 230 yards, we have the conditional

1760 1530 ,^^
equation = (2)

From (1) and (2) we obtain —j— = —— , (3), from which we find that

C's rate and B's rate must satisfy the conditional equation c = ^^ b. (4)

If B and C run a mile race the time required for B is 1760/ b seconds.

Let X represent the number of yards by which B beats C. Then the

time required for C to run 1760 — x yards is (1760 — x)/c seconds.

Accordingly, we have the conditional equation

1760 1760 - X .^.

-^ = —c ^'>

Substituting for c in (5) the expression ^j^ b from (4), and solving the

resulting equation for x, we obtain x = 176, which is equal to the number

of yards by which B beats C.

This value is found to satisfy the conditions of the given problem.

48. In a race of 500 yards A can beat B by 20 yards, and C by 30 yards.

By how many yards can B beat C ?

49. Having given 3 bars of metal, the first containing (by weight) 6 parts

of gold, 2 parts of silver, and 1 part of lead ; the second, 3 parts of gold, 4
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parts of silver, and 2 parts of lead ; the third, 1 part of gold, 3 parts of silver,

and 5 parts of lead ; find how many ounces of each must be taken to obtain

12 ounces of an alloy containing equal amounts (by weight) of gold, silver,

and lead.

50. Of three bars of metal, the first contains 13 parts (by weight) of

silver, 5 parts of copper, and 2 parts of tin ; the second, 35 parts of silver,

4 parts of copper, and 1 part of tin ; the third, 8 parts of silver, 7 parts of

copper, and 5 parts of tin. How many ounces of each bar must be used if

when the parts taken are melted together a bar is obtained which weighs

10 ounces, of which 5 ounces are silver, 3 ounces are copper, and 2 ounces

are tin ?
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CHAPTER XVIII

EVOLUTION

1. A POWER has been defined as the product of two or more equal

factors. (See Chap. V. § 25.)

With respect to the power, each of the equal factors is called a

root.

According as there are two, three, four, or n equal factors, each is

called a square root, cube root, fourth root, or wth root.

E. g. Since 3* = 3 x 3 = 9, 3 is a square root of 9.

Again, since (— 3)'-' = (— 3)(— 3) = + 9, — 3 is also a square root of 9.

Also, since 2* = 2x2x2 = 8, 2 is a cube root of 8.

We shall see later that there are in all three expressions whose cubes are

8, hence there are three different cube roots of 8.

2. The radical or root sigrn /y/ written before a number is a

sign of operation which is commonly used to denote that a root is to

be taken. This symbol is an abnormal form of the initial letter r,

from the Latin radix meaning root.

3. The number or expression whose root is required is called the

raclicand.

E. g. The expression y'g means that the square root of 9 is to be taken.

The number 9 is called the radicand.

4. A number called the index of the root is written before and

directly above the radical sign to indicate which root is required.

E. g. The symbols ^^ ^^ ^y/, ^, denote that the second, third, fourth,

and wth roots, respectively, of the numbers or expressions before which they

are placed are to be taken.

In case no index is written, the index 2 is understood, so that \/ indicates

that the square root is required.
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5. The radical sign affects only the factor before which it is placed.

Accordingly if the radicand consists of more than one factor or more

than one term, it must either be enclosed in parentheses, or an

overline or vinculum joined to the radical sign must be used to

denote that the root of the expression underneath is to be taken as

a whole.

E. g. Observe that the expression <y/4 x 9 means that the square root

of 4 is to be taken and the result is to be multiplied by 9. Hence, since

the square root of 4 is either + 2 or — 2, it follows that the expression

/y/4 X 9 represents either + 18 or — 18.

The expression is considered to be arranged in better form if written

as 9.Y/4.

If the square root of the product of 4 and 9 is required, we may write

either ^^(4 x 9) or \/4: x 9. Since the square root of the product 4x9,
which is 36, is either + 6 or — 6, either of these expressions may be taken

as meaning + 6 and also — 6.

The expression \/'S6 + 64 means that the square root of the sum of 36

and 64, which is 100, is to be taken.

Hence /\/36 + 64 means either + 10 or — 10.

6. According as their indices are equal or unequal, two roots are

said to be like or unlike without regard to the equality or in-

equality of the radicands.

E. g. The expressions \/x and v^ are like roots,

while -v/m and \/m are unlike roots.

7. A root is said to be even or odd according as its index is

even or odd.

E. g. The expressions \/a, \h^ v 7, v 10 denote even roots,

while Vc, V^' ^'^'^y VlO denote odd roots.

8. A number or expression which can be expressed either as an

integer or as a fraction of which the terms are finite integers, with-

out using an indicated root, is said to be rational or commen-
surable.

In the contrary case it is said to be Irrational or incommen-
surable.
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E. g. Since \/l6 can be expressed as either + 4 or — 4 it follows that

^li5 is a rational number ; while \/2, which cannot be expressed either as

a whole number or as a fraction whose terms are finite integers, is an irra-

tional or incommensurable number.

9. A number or expression is said to be an nth power if its nth.

root is a rational number or expression.

E. g. The number 36 is a square because either of its square roots, + 6

or — 6, is a rational number.

The number 27 is a cube because one of its cube roots is a rational

numljer 3.

The number 17 is not an nth power, because a rational number cannot be

found which is its nth root.

10. As a formal definition of a root (letting n represent a

positive whole number) we have

(^a)~ = a.

Or \/a is one of the 7i equal factors of a.

General Principles Governing Root Extraction

Number of Roots.

(i) A positive number has at least two even roots which are eqiial

in absolute value but opposite in sign.

We may use (± 3)'^ = 9 as a convenient abbreviation for the two

identities (+ 3)^= 9 and (-3)'= 9.

Since (+ 3)'' = 9 and (- 3)' = 9 it follows that V^ is + 3 and

also — 3. It is convenient to show that Vl) has two values by-

writing a/9 = ± 3. It should be understood that a/9 = ± 3 is not

an identity, but is simply a convenient abbreviation for two identi-

ties a/9 = + 3 and a/9 = — 3.

We may write Va'^ = ± « as a convenient abbreviation for the

two identities Va^ = + a and Va^^ = — a.

Similarly v^^^" = ± b is to be understood as meaning that

VP^ = + ^ and v^ = -L-
(ii.) There exists at least one odd root ofany positive or negative

number which has the same sign as the number itself.
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For siDce (+ cf^^ = + c^^+i, we have
'^""^Z?^ = + c. (1).

Also since (- c)'"'^^ = - c=^»+\ we have "*ty_ ^.2«+i ^ _ c. (2).

Changing the signs of both members of (1), we obtain

_^"V^^ =_e. (3).

It follows from (2) and (3) that ''*1^- c-^'-^ = - '"I^X?^^

From the reasoning above it appears that :

(iii.) J^hr the operation offinding an odd root of a negative number

may be substituted that offinding a like odd root of a positive number

having the same absolute value, provided that a negative sign is pre-

fixed to the result.

E. g. i^r^=_^27 = -3.

11. The principal root of a positive number is its single posi-

tive root.

E. g. Tlie principal square root of 4 is 2; of 9 is 3 ; of 16 is 4; etc.

12. The principal odd root of a negative number is its single

negative root.

E. g. The principal cube root of — 27 is — 3 ; the principal fifth root of

— 32 is - 2 ; etc.

13. The radical sign will be used to denote the principal root

only, unless the contrary is expressly stated.

That is, ^^' = \a\.

In order that the signs of operation + and — may be applied to

rational and irrational numbers without exception, we shall under-

stand that whenever a term of an algebraic expression is affected by

a radical sign the principal root of the radicand is to be taken ; and

this root is to be combined with the other terms of the expression

by addition or subtraction, according as the radical sign is preceded

by a -f or a — sign.

It should be observed, however, that the root of a monomial which

is not a term of an algebraic expression may, according to circum-

stances, be positive or negative.

Thus, V25 = ± 5
; V4 = ± 2.

24
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It should be observed that although 'y/25 = ± 5 and \/4 = ± 2, the

expression ^^25 + ^^4 = 5 + 2=7; also, the expression \/2b — 'y/4 =
5-2 = 3.

The expression V^5 + ^/J does not mean ± 5 ± 2, vvliich is either + 7

or — 7.

Whenever an even root is required, and we have means for know-

ing that a given radicand is an even power of a negative number,

it is necessary that a negative number be taken as the root.

Thus, if in a calculation a for some reason is regarded as being negative,

then if a is raised to the second power the result a* must be considered as

the s(juare of a negative number, not as the square of a positive number.

Accordingly, in such a case we would have ^/a^ = —
|
a |.

In particular, VC- 1)(- 1) = V{- I)^ = - 1.

14. Since (+ 5)^ = + 25 and (— 5)^ = + 25, it may be seen

that — 25 cannot be obtained by multiplying together two like

foctors which are either both positive or both negative. Accord-

ingly it is impossible to express V— 25 either as a positive or a

negative number.

Representing any even number by 2n, it may be seen that

(± aY" = + a''^". It is therefore impossible to express V— a'^"

either as a positive or a negative number.

In Chap. XXI we shall deal with indicated even roots of nega-

tive numbers which are commonly called imaginary numbers.
To distinguish them from these so-called imaginary numbers, all

other numbers, such as those with which we have previously dealt,

are called real numbers.
The following principles and proofs apply to real numbers only.

15. The operation of finding any required power of a given

number or expression is called involution, and that of finding

any required root of a given number or expression is called

evolution.

16. It may be shown, if we extend somewhat our idea of number,

that there are two square roots, three cube roots, four fourth roots,

etc., and n nth roots of a given number or expression.
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Roots of Monomials

Principles Governing Operations with
Radical Symbols

17. As fundamental to root extraction we have the following

Principle : Like principal roots of equal numbers or expressions

are equal.

18. In the statements of the following principles the principal root

is the root meant in each case, and for convenience of proof we shall

restrict the radicand a to represent a positive whole number the

value of which cannot become infinitely great.

19. Root of a Power.

(i.) The exponent of the rth root of a given base a^ is found by

dividing the exponent rx of the power by the index r of the indicated

root.

That is, A/a**** = «»*,

By (iii.) Chap. VII. § 1, a"'" = (a")'".

Hence ^~^r = ^J^^ny^

Or -v/rt^ = a«.

E.g. ^n^ = a\

20. Root of a Product.

(ii.) The rth root of a product of two or more factors is equal to

the product of the rth roots of the given factors.

That is, ^Jabcd . . . ) = '^Ti^hVc^d • • .

(The following proof may be omitted when the chapter is read for the first time.)

We will establish this principle for a radicand consisting of two factors,

and by similar reasoning the result may be extended to include three or

more factors.

Let jp represent the positive value of '\/a\/b.

That is, V = Va\^b.

Raising both members to the rth power, we have

Or, 2>'' = ^'^^-
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Accordingly p is one of the rth roots of the product aft, and since it is

real and positive, it must be the principal root.

Hence, ,^ = ^a^.
Similarly, ^abcd = ^^yb^/c^/d

Ex. 1. ^49 X 81 = ^^49 X '^ = 7 X 9 = (>3.

Ex. 2. v^-8a«6« = \/^^'^^^\/b^ = - 2 ab\

Mental Exercise XVIII. 1

Find the indicated root of each of the following expressions :

1. \^¥. . 10. ^?V?: 19. v'G4aW^
2. V^^^ 11. ^xYz'^ 20. ^-343««^iV^

3. V^ 12. -v^ajiy^". 21. V441 a^°^V.

4. V^"^ 13. Virt^ 22. ^1296 6V«6^«.

5. V?^ 14. V257i^ 23.
^-32^^°</i^

6. \^¥F: 15. V^=^8^ 24. ^1024^%^V^

7. Va*h'c\ 16. V^27a«6^ 25. '^64a«6^.

8. ^^^^f?. 17. ^^2lW. 26. Va^^'b^^'iT.

9. \^xyz'\ 18. ^16a^ 27. \/¥VW.

21. Root of a Root.

(iii.) TV/^* wM roo^ ^y' M^ 7'^A ro(9^ o/ «wy radicand is equal to the

nrth root of the given radicand.

That is, V^^ = "-V^.

(The following proof may be omitted when the chapter is read for the first time.

)

If we consider principal roots only, v^a must have a positive value.

The nth root of the positive value oi^^a must itself have a positive value.

If this nth root be represented by ^, we have p = y v^a.

Raising both members of the equation to the nth power, we have 7?"= -v/a.

Raising both members to the rth power, we have (^")'' = a.

Hence, j^"'- = a. (See (iii.) Chap. VII. § 1.)

Accordingly p is one of the wrth roots of a, and since it is positive, it

must be the principal root.
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Hence, p = ^a .

Consequently V l/« = V^« •

Ex. 1. ^^^64 = -^64 Ex. 2. Wela^P = ^2%«6i2

= 2. =2a62.

22. Power of a Boot.

(iv.) The pth power of the rth root of any radicand is equal to the

rth root of the pth power of the given radicand.

That is, {.^/ay = V^ .

(The following proof may be omitted when the chapter is read for the first time.)

Since a is positive, we have

a = '^^p.

Accordingly, ^a = \ "^av.

= ^^.

We have ^op = ^ ^J~aP.

Hence, ^ = V^a^.

Raising both members to the ^th power,

Or, (^a'') = ^^.

Ex. 3. ('^4)8 = ^48 = A^64 = 8.

Exercise XVIII. 2

Write the following roots of roots as rational expressions :

1. yl^'a^. 7. yj~¥¥^^\ 13. {V2^xY\

2. ^V(N}\ 8. ^~\/a^^¥^. 14. {\/bMcy\

3. V^'V^64^. 9. V^^^^V^. 15. {^/J^y.

I. yl'WW^. 10. {^/'ahy. le. (v'^^v^)^".

5. VVIe^v. 11. (^^^^)^ 17. (A/a«^)-".

6. S^¥^^^\ 12. {^/2xyy. 18. (^i«y;5''''*)''*+^
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23. Root of a Quotient.

(v.) The rth root of a quotient is eqiml to the quotient obtained, by

dividing the rth root of the dividend by the rth r^^ot of the divisor

.

(The following proof may be omitted when the chapter is read for the first time.

)

If a and h be both positive, h being difterent from zero, and we represent

the value of the positive fraction a/ b by /and of the whole number b by w,

we have, applying

Hence ^^b=
(^^'fj {Tb,

Therefore,
V^^ = (\/1) Vb.

Dividing both members by \/b, we have

Or

Ex. 1.

</6~ ^/b

/25_ V25_5
V 36

~
V36

~
6

'

Mental Exercise XVIII. 3

Simplify each of the following roots of quotients :

64c?V
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Square Roots of Polynomials

24. We have shown in Chap. XII. §§ 18, 19, a method for ob-

taining by inspection the equal factors, and hence the square root,

of a trinomial which is a square.

We will now present another method.

Representing any trinomial sijuare by a^ + 2 ah + ^^ we may
obtain the square root as follows

:

Arranged according to descending powers of a, we may write

r/ + 2«6 + ^' = a' + (2a + h)h. (1)

We may obtain the first term in the required square root by

taking the square root, a, of the first term, a^.

Subtracting the square of a from the given trinomial, we obtain

as a jivi^t remainder 2ab + 0'^, which may be written in the form

(2 a + 0)b.

The second term of the required square root may be found by

dividing the first term 2 a/j of the first remainder 2 ab + P, ar-

ranged according to descending powers of a, by a tfial divisor 2 a,

which is formed by multiplying by 2 the part of the root already

found.

From (1) it appears that by increasing 2 a hy b we may obtain

a complete divisor, 2a + b, which when multiplied by b will produce

the terms 2ab + b^ of the first remainder.

Subtracting the product of 2 a -f ^ and b, that is, 2 ab + b\ fi-om

the first remainder, 2 a^ + b^, we obtain zero as a second remainder.

The steps of the process are shown below:

Given Expression Square Root

First term of root, \/a^ = a. i^ + 2ab + h^
I

a-\-b

Trial divisor, 2 a. 4- 2 a6 + 62

Second term of root, 2ah-^2a = b.

Complete divisor, 2a -f &.

(2a + b)h = 2 a& -f fe2



376 FIRST COURSE IN ALGEBRA

Ex. 1. Find the square root of 9x< — 42x-i/ + 491/*.

First term of root, \/9x* =3 x\

(3x=»)« =

Given Expression Square Root

9a:* - 42 x'Y + -ly y^ |3x--7j/8

9x*

Trial divisor, 2(3x2) = Gx^*. -42xY + 49i/«

Second term of i-oot, — 42 x^y* ^6x^=-7/.
Complete divisor, 6 x* — 7 //*.

(6x«-7i/»)(-72/»)= -42xV + 492/«

(3)

25. "We will now show that the steps of the process may be

repeated to obtain the sc^uare root of any polynomial square which

contains more than three terms.

The scjuare of a polynomial may be written as follows :

For two terms, (a + Oy = a^ + 2 «/>
j

, .

For three terms, (a -\- -[ c-y = a^ -\-2ab + 2ac\

+ Ir { 2bc\{2)

For four terms, (a + 6 + c + </)* = a^ + 2 a^ + 2 ac + 2 «c?^

+ b^ + 2hc ^2bd
H- c^ + 2cd

+ ^.

Factoring the groups of terms which appear in the vertical

columns, the identities (1), (2), and (3) become respectively:

(a + by = a^+ (2a + b)b. (1)

(a + b + cf = a^ + (2a + b)b+ (2 a + 2b + c)c. (2)

(a + b + c-{- d)'' = a^+ (2a + b)b+l2a+ 2b + c)c +
(2a + 2b + 2c + d)d. (3)

It may be seen that, with each new letter added on the left, a

new group of terms in parentheses is added on the right. This new

group consists of the product of twice the sum of all previous letters

plus the last letter, multiplied by the last letter.

In (1), (2), and (3) the expressions in parentheses are in each case

the complete divisors used in the extraction of the square root of a

polynomial at the successive stages of the process.
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Ex. 2. Find the square root of

a2 + 2 a6 + 6=2 + 2 ac 4- 2 6c + c2 + 2 afZ + 2 &rf + 2 c(Z + ^2.

rt^ =
Given Expression Square Root

a^+2 ab-\-b^+2 ac+2 bc-{^^+2 ad+2 bd-\-2 cd+d^
\
a^h^-c+d

a2

2 X rt = 2 rt. 2ab

2rt6-^2« =6.

2a +h.

(2a -{-b)b = 2 ab-\-b^

2(a + 6) =2a-\-2b. 2ac

2ac-^2a =c.

2a -\-2b-\-c.

(2a +26 + c>= 2 fiw+2 bc-\-(!'^

2{a-\-b-\-c) = 2a + 2b^-2c. 2 ad

2ad-^2a =d.

2a-\-2b-\-2c-\-d.

(2a-\-2b + 2c-\-d)d= 2ad+2bU^2cd+d^

26. The method employed in §§ 24 and 25 for extracting the

square root of a polynomial may be stated in the following form

as a rule.

Rule for finding the principal square root of a poly-
nomial square.

Write the given polynomial according to descending or ascending

powers of some letter of arrangement.

Extract the square root of the first term and write the result as

the first term of the required square root.

Subtract the square of the first term of the root from the given

polynomial^ and arrange the fir.Ht remainder according to the

powers of the letter of arrangement^ and in the same order as before.

Divide the first term of the remainder by twice the first term of the

root, write the quotient as the second term of the root, and add it also

to the trial divisor to form the com^plete divisor.

Subtract from the first remainder the product of the complete

divisor multiplied by the term of the root last found, and arrange

the remainder, if there be one, as a second remainder.

Repeat the process, using as a trial divisor at each stage of the

work twice the part of the root already found.
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Ex. 3. Find the square root of 29a^- 40a^+ 16a«- 46a«+ 4 + 49a*- 12a.

Arrangetl according to descending powers of a we have

Given Elxpression Square Root

\/l6a«=4rt».

(4a«)2 =
16a«-40a»+49a*-46a»+29a»-12a+4 |4a»-5a«+3a-2

16a«

2x4a»= 8a>. -4()a6
-40a»-r8a?=-5a».

8as-^a«.

(8ii»^a»X-6o»)= -40a«+25a*

2(4o5 — 5a») = 8o»

24a<-f8<j3 = 3a.

8a»-10a»+3a.

(8a»—10aH-3«)3a =

10 a». + 24a*

+ 24«*-30rt»+ 9a2

2 (4 a» — 5 a» -f- 3 a)= 8fla—10o» + 6a.

— IScs^Sa'^- 2.

8a'«—10a»-|-6a— 2.

(8 a>—10 o»+ 6a—2X— 2)=

16<t8+ 2()a2

16a»+20a2-12a+4

In practice the student should obtain the successive terms of the root by

performing the divisions, — 40 a^ -f 9 a* = — 5 a^, etc., mentally.

Exercise XVIII. 4

Find the square roots of the following expressions :

1. a* + 2a^ — a^ — 2a+ 1.

2. Ux* — '2-kiiiP + 25x^—l2x-\-4.
3. 81a;* + 54a^ + 81a^+ 24«+ Ifi.

4. 9a;* + 24a-^ + 22a;* + 38a;* + 41 x^ + 10a; + 25.

5. 256« — 306* — 206^* + 96'+ 12^> + 4.

6. 36a'+ 48a6+ 12ac + 166' + 8^6' + c*.

8. a;* + 3 + -,-2a;'-^-
a;* x^

9. 4 - 4j/ + 13/ + 16/ + 17/ — 22/ - 24/.

10. 4a;*"+ 12a;«" + 29ar'" + 30af + 25.

Cube Roots of Polynomials

27. A process for finding the cube root of a polynomial which is

a cube may be developed as follows :

We know that (a + 6)8 = «' + 3 a^O + 3ab^ + b\
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Hence, ^a^-h'S a^b+'d ab^+b^ = \^a^+(S a'+^ ab+b^)b =a + b. (1)

It may be seen that the first term a of the required cube root is

the cube root of the first term of the given expression arranged

according to descending powers of a.

Subtracting the cube of the first term a of the root from the

given expression, we obtain as &> first remainder Sa'^b + Sab^ + b^.

Dividing the first term of this first remainder, arranged according

to descending powers of a, by a trial divisor, 3 a^, which is obtained

by taking three times the square of the first term of the root already

found, we obtain the second term, 6, of the root.

To obtain a complete divisor we may, as indicated in (1), add to

the trial divisor, 3 a% the term 3 ab which is three times the product

obtained by multiplying the first term a of the root by the second

term b, and add also the square of the second term b of the root,

that is, b^.

If the complete divisor thus obtained, 3 a^ + 3 ab + b"^, be multi-

plied by b and the product be subtracted fi:om the first remainder,

3 a^b 4- Sab^ + b^y we have zero as a second i-emainder^ and accord-

ingly the process stops here and the required cube root \^ a \- b.

The different steps of the process are shown below :

Cube Foot

\
a + h.First term of root, V «* = «•

c

Given Expression

i» + 3 a26 + 3 ab'^ + b^

Trial divisor, 3 x a" = 3 a'^.

Second term of root, 3 a% ^3a^ = b.

Complete divisor, '3a^-\-3ab + b^.

3a%-^'3 ab^ + b^

3 a^ft + 3 a62 + J8

Ex. 1. Find the cube root of 27 x« - 54x4|/8 + 36xY - 8 y^-

The process may be carried out as follows :

Given Expression Cube Root

27a;6 - b4xY + 36xY - 81/
|

Sx^ - 2/
27a;6

First term of root, 'V^27 a;« = 3x^.

(3a;2)8 =
Trial divisor, 3(3x2)» = 27a;*.

Second term of root, —54x*y^ -^^x*= — 2y\

Complete div., 3(3 a;2)2+ 3(3 x^)'— 2 2/3)+(-.2 y^)^.

(27 y* - ISrcV -|- 4g/«)(— 2y3) =.

54a;Y + 36a;V-8i/'>

54a:V + 36a:V-8?/'
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28. It may be shown that, by properly grouping the terms, the

cube root of any polynomial cube may be obtained by repeating the

steps of the process for finding the cube root of a^ + 8 a^b + 3 aO'^ + 6*.

The cube of a polynomial of three terms may be arranged as

follows

:

(a 4- 6 + c)» = (a + b)* + 3(rt -f 6)%+ 3(rt + b)c^ + c«,

= a»

= a*

+ 3a2&

+ 3 (162

+ b*

+ 3a«

+ 3a6

+ b^

+ 3(rt + 6)%

+ 3(rt + 6)c2

+ ^,

+ 3(a + /0'*

+ 3(a+6)c

+ C'

Similarly for four terms :

(a-[-b + c+dy = + 3a2

+ 3rt6

+ b^

+ 3(« + 6)2

+ 3(a + 6)c

+ c'

c + 3(a-\-b-\-cy

+ 3(a+ 6 + c)d

+ rf2

(0

(2)

(3)

[(4)

In (3) and (4) the expressions at the left of the vertical bars are

the complete divisors used in the extraction of the cube root at the

successive stages of the process.

29. From §§ 27 and 2.S it appears that we can find the cube root

of a polynomial cube of any number of terms as follows :

Rule for finding tlie principal cube root of a polynomial
cube.

Arrange the terms of the given expression and all successive re-

mainders according to descending or ascending powers of some letter.

For the first term of the required root write the cube root of the

first term of the arranged expression^ and subtract its cubefrom the

given expression to obtain the first remainder.

To obtain the next term of the root, divide the first term of the

arranged first remainder by a trial divisor which is three times the

square of the part of the root already found.

Construct a com^plete fUvisor by adding to the trial divisor three

times the product of the part of the root previously found and the

term of the root last obtained, and add ako the square of the term

of the root last obtained.



ETOLUTION ^81

Subtract from the first remainder the product obtained by multi-

plying the complete divisor by the term of the root last obtained.

Repeat these steps, with successive remainders, until zero is ob-

tained as a remainder.

Ex. 2. Find the cube root of 8 a:« - 36 x^ + 66 a:* - 63 x^ + 33 a:^ _ 9 x + 1.

Arranged according to descending powers of x, we have

:

Given Expression Cube Root

8ar«-36a;5+66a;4-63x3+33a;2-9x+l
1
2x2-3a;+l

2^8 = Sa,6

First term of root, ^^x^=^x^.

(2x2)

Trial divisor, 3(2a;2)2 = nx^.

Second term of root, — SCxf' -^ 12x«=— 3x

Completediv.,3(2x2)-^+3('2a;2)(—3j-)+(—3a;)2

(12j^ — 18x3 _|_ 9j;2)(— 3x) =

-36x6

-36x5+54x<-27x8

Trial divisor, 3(2x2 _ Zxy = I2x* — 36a^ -f 27x2.

Third term of root, 12x* -^ 12x4 =. i

Complete div., 3(2xS — 3x)2 -|- 3(2x2 _ 3^.) i _|_ (i)2.

(12x*— 36x3 + 33x2 — 9x + 1)1 =

+12a;*-36x«

+1 2x-*-36x3+33x2_9x+l

Exercise XVIII. 5

Find the cube roots of the following expressions :

1. 27a;« + b^x^ -^ 36 ic + 8.

2. 8 a;* + 84 x^y + 294 a;/ + 343 y^.

3. 512 a» - 1344 a^^ + 1 1 76 ab^ - 343 ^>».

4. 8 a« - 36 a^b + 66 a*^** - 63 a^b^ + 33 a^'b^ -9ab' + b\

5. 125a^—225«'+150«Hl35a^-180«*+ 33a»+ 546«'-36a+8.

6. 343aH441a^6+ 777«*^'+531«'/^'' + 444«'^*+144«6^^-64 6^

7. 729 «• + 972 a^?/ + 918 «*/ + 496 a^y + 204 xhf + 48 xy^-\-S y\

8. a''- 'da^^ - 3a« + 6a' + 8«« + 3a^- 3a*- 7a'- 6^2- 3a- 1.

27 ^ 6 ^ 3 ^ 8 ^ 4 ^ 32 ^ 64

Square Roots of Arithmetic Numbers

30. Any arithmetic number may be written in the form of a

polynomial whose different terms contain different powers of 10,

and hence the method for extracting the square root of a polynomial

may be applied to arithmetic numbers.
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E.g.

Or,
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625 = 6 • 100 + 2-10 + 5

= 6 • 102 ^ 2-10 + 5

= 4 • 102 + 20 • 10 + 25.

Ill this last form, in which the coefficients of the first and last terms are

squares, the square root of 625, considered as a polynomial, may be found

by the algebraic process.

Given Expression. Square Root.

2-10 + 5First term of root, ^4-102 =2-10. 4 • 102 ^ 20 • 10 + 25

(2 • 10)2 _ 4 • 102

Trial divisor, 2(2 • 10) = 4 • 10 + 20 10 + 25

Second term of root, 20 • 10 + 4 • 10 = 5.

Complete divisor, 4 • 10 + 5

(4 • 10 + 5)5 =

.

20 10 + 25

The square root of 625 is thus found to be 2 • 10 + 5, that is 25.

31. Consider the following relations between powers and roots

Since 12=1,

102 _ 100^

1002 _ 10000,

10002 ^ 1000000,

etc.

we have -y/l = 1.

4 // any number between \ /a number between

\

'V 1 and 100 J~\ 1 and 10 /

Vioo 10.

W/ any number between \ /a number between

\

'V 100 and 10000 / V 10 and 100 /

Vioooo = 100.

t/Zany number between \ _ /a number between

\

' V 10000 and 1000000 ^^ 100 and 1000 /

/y/lOOOOOi.) = 1000.

etc.

From the relations above it may be seen that the square of an

integral number having a specified number of figures may be ex-

pressed as an integral number having either twice as many figures

as the given number, or as one having a number of figures one less

than twice as many.

Accordingly, the number of figures in the integral part of the

square root of an integral number may be found by separating the

figu/res of the given integral number into groups of two figures each,

beginning at units place.

The number of figures in the square root will be equal to the num-
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her of groups thus obtained^ provided' that any single figure which

remains on the left is counted as a complete group.

E. g. The number of ficjurea in the square root of 974169 is three; in

the square root of 5 480281 is four.

Ex. 1. Find the square root of 3249.

Since, beginning with the units' figure 9, we can separate the figures into

two groups of two figures each, 32 49, it appears that the integral part of the

required square root must be a number of two figures.

Any given number expressed in the common system of arithmetic nota-

tion having two or more figures may be regarded as being composed of a

certain number, ^, of tens, increased by some number, w, of units. Hence we
may represent any number by < • 10 + u.

Accordingly, \i t - \0 -\- u represents the number which is the required

square root of the given number, 3249, we may represent the square of the

square root, that is 3248, by

{t ' 10 + w)2 = (^ . 10)2 + 2 (MO) w + w2

= <2 (100) + 2 «w • 10 + u^

Since, depending upon the value of t, ^^(loo) represents a number having

three or four figures, it appears that for this example t must have such a

value that its square f^ shall not be greater than 32.

The square next 4ess than 32 is 25, hence we assume that f^ represents

25, or that t = b.

c iven Number

3249
1

25 00

Square Root

0.10)2; (5

102 = (5 + ) . 10

10)2 ^
5. 10 + 7

2(«.10); 2(5

749 -f 100 = 7 +

2 (< . 10) + w ;

"2(i. 10)-+-w]i*;

10) = 100.

7= 7

107

107 X 7 =

7 49

7 49

Observe that the first remainder 749 contains the two terms, 2 (t . 10) u

and u^, combined into one arithmetic sum. Accordingly we cannot, as in

the algebraic process, obtain at this step the exact value of the next term

of the root represented by w, by dividing 749 by 100.
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It should be understood that, in the arithmetic process above, the quotient

7 + suggests but does not definitely determine the value of the root figure

sought. We may cissume 7 as the root figure desired, and determine the

accuracy of our assumption by the next remainder.

Since in this example the second remainder is zero, we find that 7 is the

second figure of the re([uired square root, 5-10+7, which is 57.

If in the first step of this example the square less than 32 had been

assumed to be 16 instead of 25, the first root figure would have been 4

representing 40, instead of 5 representing 50.

In this case the integral part of the (quotient resulting from the division

of the corresponding remainder 1649 by the trial divisor 80 would have

been a number of two figures, 20 +, instead of a number equal to or less

than 9.

This would have indicated that the square assumed, 16, was too small.

32. Since there are twice as many figures at the right of the

decimal point in the square of a decimal fraction as there are in a

given decimal fraction, it follows that the number of figures at the

right of the decimal point in the square root of a given decimalfrac-

tion may be found by separating the figures of the given decimal

fraction into groups of two figures each from left to right, beginning

at the decimal point.

33. When finding the square root of an arithmetic number it is

often convenient to refer to the formula

Vt"" +2tu-\-u'= Vf' -^ (:2t i-u)u = t + u.

At any stage of the process, t represents the part of the root

abready found considered as representing tens, and u represents the

next figure of the root, which accordingly may be considered as

representing units with reference to the part of the root already

found.

Thus, it may be seen that we may use 2 t and 2t i- uto suggest

the different trial and complete divisors respectively. It should be

observed that in each case the number represented by t is to be

multiplied by 10.
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Ex. 2. Find the square root of 3642.1225.

V«2. ^2(5 =6.

t^; 62 =
.3642.1225

36

2 t ; 2(60; = 120.

42 ~ 120 is not au integer.

Hence root figure is 0.

42

21; 2(600) = 1200.

4212 -f 1200 = 3 +
42 12

u] 3= 3.

2t + u; 1203.

(2« + w)w; 1203x3 = 36 09

2 «; 2(6030)= 12060. 6 0325

60325 -f 12060 = 5 +
m; 5= 5

2t-\-U; 12065.

(2« + 7z)w; 12065 x 5 = 6 0325

Given Number Square Root

I

60.35

34. The examples of §§ 31, 33 illustrate the following rule :

Separate tlie figures of the given number into groups oftwofigwes

each^ beginning at units' place.

Find tlie greatest square which is not greater than the number

represented by the figures in tlie first group at the left^ and write its

square 7'oot as the first figure of the required roof.

Subtract the square of tlie root figure thus found from the first

group at the left, and to the remainder annex the next group offigures

for a ^^ first remainder '\

Divide this " remainder " by a trial divisor which is obtained by

taking twice the part of the root already found, considered as repre-

senting tens, and write tlie integral part of the quotient as the next

root figure.

Add the root figure last found to the trial divisor toform a cojn-

plete divisor, and multiply this complete divisor by the figure of the

root last foundj subtracting the product from the " remainder " last

found to obtain a new **remainder '\

Bepeat these steps with successive groups of figures either until all

of the groups have been used or until as many figures have been ob-

tainedfor the root as are desired.

25
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Formula Vtf+WtuTt^= V^T~(2tTu)u = t + u,

35. Whenever, during the process of extracting the square root,

the product of the complete divisor multiplied by the figure of the

root last found is greater than the remainder last found, it is neces-

sary to choose a lower root figure and construct a new complete

divisor.

36. The number of figures at the right of the decimal point in

the square root of a decimal fraction is equal to the number of

groups of two figures each at the right of the decimal point of the

given number.

37. Since the position of the decimal point in the square root

of a decimal firaction may be determined by means of the number

of groups of two figures each at the left of the decimal point in

the given number whose root is to b.e found, it follows that we may
disregard the decimal point altogether when constructing the dif-

ferent trial and complete divisors.

38. The square root of a fraction may be obtained either by find-

ing the square roots of the numerator and denominator separately,

or by first reducing it to a decimal fraction and then extracting the

square root.

written as

The number 3642.1225 of example (2) § 33 might have been

36421225

10000

Hence, ^36421225 = J^^^ =^ = 60.35.
' ^ y 10000 100

Exercise XVIII. 6

Find the square roots of the following numbers :

1. 2209. 7. 64.1601. 13. 49.61511844.

2. 6241. 8. 4.008004. 14. .3603841024.

3. 26244. 9. 4096.256004. To four decimal places

4. 64009. 10. 4.141225. 15. 1.00001.

5. 643204. 11. .00009409. 16. 10000.00001.

6. 6625.96. 12. 1.00020001. 17. 59.



EVOLUTION 387

Cube Roots of Arithmetic Numbers

39. Consider the following relations between powers and roots :

Since

1^ = 1, we have y^l = 1.

i// any number between \ __ /a number between

\

'V 1 and 1000 / V 1 and 10 /

103 _ 1000, /y/lOOO = 10.

^' / any number between \ -— (^ number between \

'V 1000 and 1000000 / V 10 and 100 /

1003=1000000, /y^lOOOOOO =100.
. »// any number between \ -— / a immber between\

' V1000000 and 1000000000/ V 100 and 1000 /

10008=1000000000, ^1000000000 =1000.
etc. etc.

From the relations above it may be seen that the number of

figures in the integral part of the cube root of an integral number

may befound by sepai'at'mg the figures of the given integral number

into groups of three figures each, beginning at units place.

E. g. The number of figures in the cube root of 638 277 381 is three ;

in the cube root of 1 728 is two.

40. If t represents the number of tens and u the number of units

in terms of which an arithmetic number may be regarded as being

expressed, a process for finding the cube root of an arithmetic

number may be developed by referring to the identity

^/t"" + 3 ^% + 3 tu^ + m' = ^/t^ + (3 ^=^ + 3 ^M + u'')u = t + u.

Ex. 1. Find the cube root of 79507.

Since, beginning with the units' figure 7 to separate the figures into groups

of three figures each we obtain two groups, 79 507, we find that the integral

part of the required cube root must be a number of two figures.

If the required cube root is expressed as a number consisting of t tens

plus u units, then its cube, that is, 79507, must be represented by

(« • 10 + uy = (t ' 10)8 + 3 (^ . 10)% + 3 (/ • 10)m2 + u»

= <8 • 1000 + 3 tH • 100 + 3 tu^ -10 + ^8

= «8 . 1000 + [3^2 . 100 + 3«w • 10 + ii^]u.

From the term t^ • 1000 it appears that t^ must be a cube of which the



388 FIRST COURSE IN ALGEBRA

value is not greater than the number represented by the figures in the first

group at the left which is 79.

The integral cube next less than 79 is 64, hence we assume that t^ repre-

sents 64, or that < is 4.

• 10

Given Number

79507 [

64 000

Square Root

^t» • 1000
; ^^79 • 1000 = (4 +) 4-10 + 3

(M0)8; (4 10)» =
3««-100; 3 .

4*
• 100 = 4800 16 507

15507 -f 4800 = 3 +
Ztu. 10 j 3 -4- 3- 10= 360

w^; 3«= 9

3e2.100 + 3^Jt. 10+ u^; 5169

(3/2.i0O + 3<u.l0 + w2)w; 5169 x3 = 15 507

It should be understootl that the quotient 3 + obtained by dividinjif the

remainder 15507 by the trial divisor 4800 suggests but does not definitely

determine the value of the next root figure, 3.

Whenever the root figure thus found leads us to construct a complete

divisor which when multiplied by this root figure produces a product which
is greater than the remainder from which it i^to be subtracted, it i« neces-

sary to try the next less integer and construct a new complete divisor.

41. Since there are three times as many figures at the right of

the decimal point in the cube of a given decimal fraction as there

are in the given decimal fraction, it follows that the number offigures
at the right of the decimal point in the cube root of a given decimal

fraction may befound by sejmrating thejigu7'es of the given decimal

fraction into groups of three figures ecu^h from left to right, beginning

at the decimal pmlnt.

42, When constructing the trial and complete divisors during the

process of finding the cube root of an arithmetic number, it will be

convenient to refer to the formula

\^t^ + 3 ^^w -f 3 tu^ + u^ = \^t^ + (8 t^+ Stu + u^)u = t + u,

in which, at any stage of the process, t represents the part of the

root already found, considered as representing tens.

Thus, the expressions 3 1^ and St^ + 3tu -{- u^ may be used to

suggest the different trial and complete divisors respectively.

The number represented by t should in each case be multiplied

by 10.
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Ex. 2. Find the cube root of 12.326391.

'V^12 = 2 +
28 =

Given Number

12. 3iS 391

Cube Boot

12.31

3^2. 3(2 . 10)2 _ 1200.

4326 -f 1200 = 3 +
3tu ; 3 (2 . 10) 3= 180

162; 32^ 9

(3t^-\-Stu-h w2) u
;

1389

1389 X 3 =

4 326

4 167

3«2; 3(23- 10)2=158700. 159 391

159391 ^ 159700 = 1 +
3 tu ; 3(23 • 10) 1 = 690

1*2
; 12 = 1

3«24-3«w + it2; 159391

(3 <2 + 3 tu + w2) lA ; 159391 x 1 = 159 391

Ex. 3. Find the cube root of 204336469.

When carrying out the work we find that after multiplying the first

complete divisor 8764 by the figure of the root last found 8, and subtract-

ing the product 70112 from the first "remainder" 79336, a new "re-

mainder" 9224 is obtained which is greater than the complete divisor

8764. However the complete divisor constructed by using 9 as a root

figure instead of 8 is not contained in the corresponding "remainder"

9 times.

The student should carry out the process.

43. The examples of §§ 40, 42 illustrate the following rule :

Separate the figures of the given number into groups of three

figy/res each^ beginning at units^ place.

Find the greatest cube which is not greater than the number repre-

sented by the figures in the first group at the left^ and write its cube

root as the fii'st fifjure of the required root.

Subtract the cube of the root figure thus foundfrom the first group

at the left, and to the remainder annex the next group offigui-es to

obtain a ^^first remainder"
Divide this " remainder '' by a trial divisor which is obtained by

taking three times the squai-e of the part of the root already found,

considered as representing tens, and write the integral part of the

quotient as the next root figure.
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Constrtict a complete dlHsor hy adding to the trial divisor three

times the product of the jxirt of the root preinouslyfounds conmdered.

as representing tens, multiplied hy the root figure lastfounds and add

also the square of the root figure last found.

Multiply this complete divisor hy the root figure last found and

subtract the product from tha remainder last found to ohtain a

new **r€inain<1er ".

Repeat these steps with Ruccesmtfe groups offigures either until all

of the groups offigures have heen used or until as many figures of the

root have been obtained as are deMred.

Formula \/t^+SthA-\-S tu^ + m«= v^«» + (St^ + Stu + u^)u= t + u.

44. Whenever the product obtained by multiplying the complete

divisor by the figure of the root last found is greater than the re-

mainder from which it is to be subtracted, it is necessary to choose

a less number for the last root figure and construct a new complete

divisor.

Exercise XVIII. 7

Find the cube root of each of the following numbers :

1. 32768. 7. 28652616. To four decimal places

:

2. 42875. 8. 94818816. 13. 10.

3. 68921. 9. 569722789. 14. 34903.588968101.

4. 21952. 10. 967361669. 15. 4.

5. 140608. 11. 448399762.264. 16. f
6. 1061208. 12. 1.003003001. 17. h
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CHAPTER XIX

THEORY OF EXPONENTS

Extension of the Meaning of Exponent

1. In a previous chapter we have defined an exponent as a posi-

tive whole number, and it has been proved that, when m and n are

positive integers, operations with numbers affected by exponents

are governed by the following Index JLaws

:

I. Distribution Formulas
Bases Equal

1 ^ a" -tn

m > n,

7i>m.

II. Association Formula in*")*'
= ff»l.U = {a'y\

III. Distribution Formulas ^ {a X by" = a*"ft*".

Exponents Equal l^a -^ b)"' = a'" -f-
6*"',

2. These laws were established for positive integral exponents

only.

It may be shown by repeated applications of the formulas above

that these fundamental laws may be extended to apply to three or

more factors. We have the following general formulas :

(i.) «»" X «*» X aP X «« X • • • = rtm+n+i,+3+

(ii.) ((((a»")'*)^)«)'' = a^^'P'i''

(iii.) {abed )»"= a'" X 6'" Xc'" X rf"* X

3. According to definitions already given, no meaning can be

attached to such an expression as a*, for it is absurd to speak of

taking « as a factor one-third of a time.

Similarly, since we cannot use ^ as a factor "minus two times,"

we have excluded from our calculations such expressions as 6"^,

aj""", etc.
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4. When applying the Fundamental Index Laws we shall find

that in certain cases exponents are obtained which are not positive

whole numbers. Hence, in order that these Fundamental Index

Laws may hold without exception in all cases, it is necessary to

remove the restriction that an exponent must be a positive whole

number. We must accordingly investigate the meanings which

must be attached to numbers other than integers when used as

exponents.

5. It is essential that all exponents, without exception, should

obey the same fundamental laws; hence we shall impose the re-

striction that, no matter what may be the nature of the number w,

a" mast hai^e such a meaning that In all cdse^- it obeys all of the

Fundamental Laws qf Algebra^ and in particular the

Fuiiclamental Index Law a'" X a" = a™"^.

It will be found that as a consequence the remaining laws of

indices wiU be obeyed. (See § 1
.)

Interpretation of Zero and Unity as Exponents

6. Whenever in the operation of the index law a"* H- a" = a*""",

the exponents m and n are equal, we obtain zero as an exponent.

E.g. a^-^a* = rt^-^ \j^j^yp = hP-p

= «'. =6^

7. Since the fundamental law «"* x a** = a"*
"*

" is to hold, what-

ever may be the nature of the exponents involved, we have, taking

m equal to zero,

a^ X rtr" = «^ + " = «".

Hence, dividing both members by a", we have

«" X a" -^ a" = a" -^ a"

Therefore, a' = 1.

Accordingly, when a has any finite value whatever different fi-om

zero, a° is defined as meaning 1.

E.g. 30=1, 50=1, xo^l, (a-j-&)o=l,etc.

8. If 7W — w = 1, we obtain unity as an exponent by applying

the index law, a'" -h a" = a'""".

E. g. a'^ -7- a^ = a\
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9. Since, in the illustration above, the quotient is the base, it may
be seen that the use of unity as an exponent does not contra-

dict our previous definitions. Hence we define the first power of a

base to be the base.

That is,
«i = a.

A Neg-ative Integer as an Exponent

10. Negative integral exponents arise when we attempt to divide

a given power of a base by a higher power of the same base.

E. g. 3* -^- 36 = 3*-6 = 3-2.

11. Since negative exponents are to be subject to the Fundamen-

tal Index Law a'" X a" = «'"+", we have, if w = — wz,

or X a-'" = rt' = 1.

Dividing both members by dP\ « ?^ 0,

That is, we define any base^ «, with a negative exponent, — m, as

being equal to the reciprocal of the base with a positive exponent of

which the absolute value is equal to that of the given exponent.

12. Prom the identity «~"' = — it appears that a negative ex-

ponent, — m, indicates that the reciprocal 1 fa of the base a is to be

used as a factor m times.

Ex.l. 2-=i=i- E..2.5--i, = l.

Ex.3. «:= 3',
a* a^ a*

Ex.4. (ir' = j^.

_ 1

13. A negative integral power of zero is defined to be an infinite

number, for 0~*
,_ 1 1

14. Since a",^
1

_n :
(1)
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it follows that
1

a-"
= 1

1

or

1

a-"
= a\That is, -^ = a\ (2)

Hence, it follows from (1) and (2) that a factor may he trans-

ferred from the numerator to the denominator of a fraction^ orfrom

the denominator to the numerator
^
proiyided that the quality of its ex-

ponent is changedfrom -\- to — orfrom — to -\-.

Write each of the following expressions, using positive exponents only :

Ex. 7. ba-^b^c-*d»=^^'

Mental Exercise XIX. 1

Find the numerical value of each of the following expressions :

26. a)-«.

27. {^)-\

28. a)-«.

29. (f)-l

30. -(- iy\
31. .2-\

32. .5-\

1. 2-\

2. 3-».

3. 5-^

4. 2-^.

5. 3-«.

6.
-8"'2

7. 3-^.

8. 2-«.

9. -2- 2

10. -3-».

11. -(-•2)-

12. -(-•2)-

13. -(-•2)-

14.
1

2-'

15.
1

3-^

16.
1

5-*'

17.

1^

1

(~2)-«

1

in

(-3)-

1

-(-4)-

20 — • 33- ^''
^^- 2- 34. .1-".

5 35. .01-'.

21- ^' 36. .2-".

.
37. 2».

22. i-- 38. 5".

3

23.

5-. 39. -

2

2-» ^«- !

25. (i)
-1 41.
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42. 3 X 8". 46. 2'-8''. ,^ 2''

49.
43. 3 + 8^ 47. (ly. 3« + 4«

44. 5*^ + 9^ 1 50. (a + by.

45. 10*^ - G*'.
4'^

'

51. x'-(x- y)\

Write each of the following expressions with positive exponents

52. x-\ _ . 6

«

^^ b-^cct'^
._. _. ob.

53. y-\

54. -a^>-\ ^ ar'^b ^^ ar'b-^
75. 87. —5-3-

56. a-«^l

57. —x^y~^

74.
6«

75.

7fi

(/^-^

y

77
rnr^x

73. ^- 85.

88. ^^.

7ia~

58. m-^n-^. , ^ _„, „

59.-^-83^-4. 77. rr-- 89.

60. dx-^y.

61. 3a-\ 78. ^- 90. ^

62.
2-i/>.

63. 3-^^-1
79 Jl". 91

64. 5.-V
^-' ^^^'y'

&5.-7mx-K a-'b-' „^ (m - nY

66. ^a-%-\ c (x — y)''

67. 4.x-'yz-\ _^ 3 (g + 6)-^

68. 6-V^^-l ;2-« * 4(a^-7/)-2*

69. 2c*-«^>-V^
^^ _^ ^, 6 (c + ^)-^

70. 6-'a-'b-'.
^^' y-'' ^ l(a-by''

1 ^y-i 95. — (£c — ?/)~^

a-2
^'*-

;s-i«^; 96. ^-^ + ^"^

79 ?_ ftA ^ ^^' "^^
"^

'^~''

r»* ^^-
c^r** 98. m-'-n-^

4^ ^ ^,,-4 99. x'+2-^x-'.

c-^ •

;5w-=^ 100. a-''+2a-'b-^-\-b-\



116.
ace

b-'d-'

117.
1

a-%-'c

118.
1

119.
1

X + IJ

120.
(a + bXx-^y)
{a-b){x + y)

1Q1
n{a + b)-^
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In each of the following expressions transfer the factors from the

denominator to the numerator:

101.^- 108. --3. 115.^
* or w

102. -

103.

104.

105. V
106.

A Positive Fraction as an Exponent

15. Positive fractions as exponents arise from an attempt to find

the rth root of a^ when r and p are integers and p is not an exact

multiple of r.

p

Since it is absurd to speak of taking 5 as a factor two-thirds of a time, it

becomes necessary to find a meaning for an exponent which is a fraction.

16. We may obtain an interpretation for a positive fractional

exponent n/din which the numerator n and the denominator d repre-

sent any finite positive integers and d is different from zero.

We may assume that the denominator d is positive and that the

numerator n has the sign of the fraction which may be either posi-

tive or negative.

If a be real and positive, then since fractional exponents are fo

obey the Fundamental Index Law a"' X a" = a"*^", we must have

X
108.

3

f' a^'

2
109.

3a^,
z z

a^ 1

6»* 110. ~^«

c 5
111.

dr^ a-^b^

a-* 6
112.

b
'

a^r

1 8

X-'
113.

a-'h-'

1 a^U'
~?* 114. ^



THEORY OF EXPONENTS 397

/ d factors in all .

(J)'' = J X a'' X a'^ X X a"

» , » , n

terms iu all

Hence, U**/^ = a»*.

That is, restricting the roots to principal values, the c?th power of
n

a^ is equal to the wth power of a.

n

Or, a^ is the principal c?th root of a".

This may be expressed by means of the radical notation a/«".

n

Hence, a'' = Va\
n

In order that a'' shall, without exception, represent the same value

as V^", it is necessary that the restrictions relating to roots ex-

pressed by the radical notation hold for roots expressed by means

of the fractional notation a^l (See Chapter XVIII. § 18.)
n

In particular, we shall understand when «" is a term of an alge-
n

braic expression that a" = \a\ unless the contrary is expressly

stated.

If the signs of operation, + and —, are to be applied without ex-

ception to rational numbers and to irrational numbers which are

indicated by the notation of fractional exponents, it is necessary
n

t^t a*^ should be understood as representing the principal value of

the root unless it is known that a is the nth power of a number

which is not positive. In this case the root taken will be a number

which is not positive.

E. g. If X for some reason is regarded as representing the square of a

negative number, then Vx? represented by x^, must be a negative number.

In particular, [(- 3)2] ^ = - 3.
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We shall consider that a root of a mouomial expressed by the

notation of fractional exponents which is not a term of an algebraic

expression may, according to circumstances, be either positive or

negative.

That is, 49^ = ± 7.

17. It should be observed that the denominator of a fractional

exponent is the index of the root which must be taken, and that the

numerator is the power to which the base must be raised.

In particular, if w = 1, a*^ = ^/a.
n

18. Interpreting a'' as meaning the principal dth root of «", we

have by Chap. XVIII. § 22 (iv.),

Ex. 1. sS = ^^' = 4.

It is often better to obtain first the indicated root of the base and then

the required power of this result, rather than first to raise the base to a

power and then obtain the indiciited root of this result,

Ex. 2. 216^ = Cv'216)2 ^ g* = 36.

19. To agree with the interpretation for a negative exponent, we
n n

shall define a '^ to be the reciprocal of a'^.

That is, a d = ±-.

ad

20. It should be understood that the expressions "fractional

power," "negative power," etc., refer to the exponent of the power

and not to the value of the power itself.

E. g. The one-third power of 8 is the whole number 2. \

That is, 8* = 2.

Also the "minus second power" of 3 is the fraction 1/9.

That is, 3-2 = f
21. Both terms of a fractional exponent may he multiplied by or

divided by the same number {except zero) without altering the value of

a given expression.
n pn

That is, a** = a^*^.
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n

Let X represent the value of cC\ the base a being positive.

Then x = a^.

Raising both members to the dth power, we have,

xf^ = a".

Raising both members to the pth power, we have

Extracting the pdth root of both members,
pn

X = a^'^,

n ^
Hence, a^ = a^.

22. It should be understood that because the fractional exponent

n/dis equal in value to the fractional exponent pn /pd, it does not

follow as a conseciuence that the dth root of the nth power of a given

base is equal to the pdth root of the pnth power of the same base.

The demonstration of § 21 depends upon the principles that

like powers of equal numbers are eqiuil, and like roots of equal num-

bers are also equal. It does not depend upon the principle that

both terms of a fraction may be multiplied by or divided by the

same number (except zero) without altering the value of the

fraction.
n pn

That is, it does not follow that a'^ = a^'^ because nfd= pn/pd.

The laws governing operations with and upon fractions which are

factors of the terms of an expression must be shown to apply to

fractions which are used as exponents before they can be applied to

transform fractional exponents.

23. It may be seen that if the restriction be removed that prin-

cipal roots only be taken, the principle of § 21 does not always

hold.

E. g. 92 has a value which is different from 9^ if any other than the prin-

cipal values of roots be taken.

For 9^ = (9*)^ = (6561)* - ± 81, while 92 = 4- 81.

If only principal roots be taken it may be seen that 9^ has the single

value + 81, which is equal to the value of 9^.
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To find the value of 9^ we would commonly proceed as follows:

9^ = 9^ = 81.

From the illustrations above it may be seen that, for principal values only

of roots, 9^ = 9*.

That is, if a fractional exponent is not in lowest terras, by taking

only the principal values of roots we shall obtain the same result

as by reducing the fractional exponent to lowest terras and then

proceeding with the transformed expression.

24. Whenever a fractional exponent, njd, is negative, we shall

understand that d is positive and n is negative.

E. g. The expression 9" ^ will be understood as meaning

9-i = 9^' = (9-i)i=:a)^ = ±i-

Mental Exercise XIX. 2

Find the value of each of the following expressions :

1. 9^. 7. 49~i 13. 64"^. 19. (1^)1

2. 8^ 8. 64"i 14. 12ll 20. Gly)"*.

3. lei 9. 8X1 15. I69"i 21. (|1)^.

4. 4i 10. lOO'l 16. 125~i 22. .25"^.

5. Sl 11. 125"l 17. (D* 23. .343"l

6. 25i 12. 144"i 18. (§t)"^ 24. .008"^

Express by the radical notation the following relations which are

expressed by the notation of fractional exponents :

25. aK

26. b\

27. A
28. d\

29. a=-i.

30. y-i.

31. A 37. e. 43. y "\

3 - —
32. x^. 38. a^. 44. z^

.

33. /. 39. 6^. 45. w^.
a m

34. z^. 40. c^. 46. 3'.

m 5 2

35. a^, 41. d^. 47. 2''.

3 6^ n

36. h\ 42. z^"". 48. af + i.
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49. y
'•"^^

61. x'^f'z^ 73. Ic^d^. 85. x-T-y^.

50.

m — 1

62. a'n-^c-K 74. 11 abi 86.

1

51. ahK 63. a~'b''c~'. 75. ab\ 87. (a + bf.

52. m^n^. 64. SxK 76. Qib^)^. 88. (c.~d)\

53. hKX 65. ryyK 77. {ccPf^. 89. (:x + y)\

54.
1 1

66. 4-1 78. (^¥)'. 90. (z - ^)l

55. a'^'x'K 67. 7w^. 79. (^V)l 91. (m — n)~'^'.

56. ahK 68.

1

— Ha\ 80.

» + 2

2 '
. 92. (a' - b')i

57.
1 _1

69. 2c{ 81. 1-A 93. (a« + />«)3.

58. xUj\ 70. 10m^\ 82. 2^bK 94. (c^-4)*.

59. h-^y-\ 71. I2ahi 83. 3 -^ 4 cl 95. (b + cf.

60.

1 1

-a 'b ^. 72. -Ga%i 84. -6 -^11 6?^. 96. (a + bY + \

Express by the notation of positive fractional exponents the roots

which in the following expressions are indicated by the radical

notation :

97. V^. 109. 4^^. 121. ^6-^. 130. -^abh\

98. ^6. 110. - 5^p. 122. ^^. 131. Va'^-'b.

99. ^c. 111. la\/Fc. 123. ^/x--^. 132. 2^a\

100. ^x. 112. e^xy. 124. ^l^x-^ 133. - a</lf.

101. ^^. 113. Vl -=-«. 125. 5\^ab^c. 134. "^Vm.

102. -^r^. 114. — Vl-r-C. 126. m'^m^n^w
'

135. \l\^n.

103.

104.

105.

V-x^ 115

116.

117.

118.

\^l^b\

-</l-^d^

'^2 -^ c\

127.

128.

136.

137.

138.

yjaVb.

- a^b^/'c.

x^^yWz.
106. Vl -f- m.

107.

108.

Wx.
2^y.

119.

120.

Va-K
- Vx-\

129. m-
139.

140.
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Products of Powers and Quotients of Powers.

25. The laws relating to products of powers and quotients of

powers of the same base may be applied without exception when

exponents are zero, negative numbers, or fractions.

This is because exponents which are zero, negative numbers, or

fractions, were so defined as to obey the Fundamental Index Law
«'" X a" = rt'"''"'', and accordingly the derived law a"* -i- c*" = a'"~".

Ex. I. Simplify 9? x 27i

We have 9^ x 27^ = (O^)' x (27^2
= 38 X 32

= 36

= 243.

Ex. 2. Simplify a* X a-8.

We have a^ X a-8 = a^*

-a»'

Ex.3. Simplify h-l X hi

We have

Ex. 4. Simplify 8c^-i-2ci

We have

Exercise XIX. 3

Simplify the following products and quotients, applying the

Index Laws : I
^^,„ _^ ^^„ ^ ^^,„_„

L 4* X si 5. 3 X O"^. 9. rt'r«-^

2. 25^ X 125^. 6. 25"^ X 5-1 10. b-%-\

3. 64^ X lei 7. 32^ -^ 4^ n. c«c-«.

4. 4* X 2"^ 8. 8~* X 2-\ 12. ...-i
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33.

15. ^!/^ xiijK „, (- ^y

13.
(5^)(4^o).

14. ^*.r-'^-^ —a

16. Sw~^X2w~K ^~^^

17. m^m^rn*.

18. ifn-'tf.

19. (.r"-0(^~OC?^'").

21. .r«-T-^-'.

22. 2/^ -- y-'\

23. C-* H- c-^ — £t lit y
24. r^-^-ri , ,

25. 4s*-T-2A 39. ^.
26. fi?"!-^(^"l af/

27. o^+'-^-f-S/. ^ « -J.
40. aj"a;"'a; '"^

35.

36.
15«-*

-3«-^

37.
-20c-V;:-«

^dn'z-"

38.
- 18m-V

m+n w»—

n

28. § /^P-^
-T-

/^«-P

29. - 12ah^ -^ 3 ail 41. x^x^
30. a^6^ -7- Jbl

, ,
-9 -i

31. 16 w*?/^ -^ 8w%^

32. «^6*c;* -=- a*6V. 43. (b^-^c^)(l>^-^^c *).

26. Since exponents which are zero, negative numbers, or frac-

tions, have been so defined as to obey the Fundamental Index Law
a"* X a" = «"•+", and accordingly the derived law (.r ~r a"" = a"*"",

it remains for us to show that with the meanings thus obtained

these exponents obey all of the laws relating to positive integral

exponents.

Unless the contrary is explicitly stated we shall understand the

word " exponent " to have any of the meanings previously defined.

27. From the Index Law «'" X ^" = a""^'\ I, we may derive the

law a"" -j- f//* = a"*~", and from the law (aby = «" i" we may derive

thelawg)" = |;.
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Hence it is necessary and sufficient for us to show that the index

laws (a"*y = a*"", II, and (abf = oTW, III, apply for all commen-

surable exponents.

Powers of Powers.
28.* Proof that the index law («"*)" = '''""* applies for all com-

mensurable exponents.

(i.) If n be a positive integer, then for all values of tw, we have,

n factors »

{a^y = (r X oT X (r X x «"*

(ii.) Let w be a positive fraction, /> r, in which p and r are posi-

tive integers.

Then (a")" = (fff
p

Raising (a")' to the rth power, we have

= {a-y.

Since jo is a positive integer it follows that

Writing the principal rth roots of both members, it foUows that

p mp

Hence, substituting for p/r its value w, we have

(iii.) Let n be any negative number denoted by — q.

Then (cry = (oT)-^

._ 1

= «-"'.

Hence, substituting for — q its value w, we have,

(a"')" = a"^.

(iv.) Let n be zero.

Then {aT'y = «""" is satisfied if a ^ and n = 0.

For, (a^'y = «'"», means 1 = 1.

* This section may be omitted when the chapter is read for the first time.
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It follows from the reasoning of (i.), (ii.), (iii.) and (iv.) that for

all commensurable values of the exponents we have

29. Substituting 1 / r for w, and p for n, it may be seen that

from («"•)" = «r it follows that (a'V = {a)\

That is, the pth power of the rth root ofany base^ «, which is differ-

ent from zero^ is equal to the rth root of the pth power of the base.

30. It should be observed that if the restriction regarding prin-

1 p p 1

cipal roots is removed, the relation (a!") = (a Y does not always

hold.

E. g. (92)2 ^ 9^ but (92)^ = ± 9.

Hence, (92)2 :^ (92)2 except for principal values of the roots.

Ex. 1. Simphfy (16^^.

We have (16^)-8 = (2)-»

_ 1_
~28

I
~8*

Mental Exercise XIX. 4

Find simplified expressions for the following indicated powers of

powers, applying the Index Law («'")" = a"*" :

1. (c^)-«. 11. {k-'f. 21. {h^y.

2. {d-^y. 12. -(m')^. 22. (F'»)^.

3. {a-')-\ 13. in-"^)^. 23. {d^'^y.

4. (n-«. 14. -0^)i 24. (?^*0"^.

5. ix-y. 15. {x^)^. 25. -(O-
6. (/)-^. 16. (^-^)- 26. (a;«^)-^

7. {2^y. 17. {z-^yK 27. (a'^*.

8. {w^f. 18. -{w^)^. 28. -(^')^

9. (^1°)*. 19. _(w2-i)-i. 29. (c^-^.

10. {ii'Y\ 20. — (tw-'^'^)^ 30. (^)-".
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31. {h-y. 51. {by 71. {m^^y

32. {k-y. 52. {c-y. 72. {n'-y

33. -{my\ 53. {drr. 73. (af+*)'.

34. {ny\ 54. {x-")-. 74. (/-^)*

35. (ic-0-«\ 55. (f-r 75. {z^-^^y

36. (a*)"- 56. - (-)«^ 76. {w"-y

37. -{ify. 57. {w*^)^. 77. (m'"-y\

38. (0-». 58. {a'y. 78. {a''+')K

39. ((^-^)'. 59. {b''y\ 79. {b'^-^)K

40. (A-"')-*. 60. (c—)-^". 80. (^/"-1«.

41. (^)l

42. (mr.

61. {{..-yy. 81. {k^y^+\

62. {{fry- 82. /yJ^+2\.7-2^

43. {ny. 63. {(z^yy. 83. {a'^+y-^

44. (a-)"\ 64. (K)-»)- 84. {af+'y+\

45. {y-y 65. {a-^y 85. (/+«y+^

46. (r^)\ 66. {b'^-y 86.
/^7n-2\m+8^

47. (?/;""')". 67. {c^^y 87. {w^-^y\

48. -ia'S*' 68. {d^^^K 88. {b'+y-^'.

49. (6«^)-l 69. {hr-'- 89. (c'^'-^)^*.

50. {aj. 70. {k'y^^. 90. {<F+y"-y"^\

Powers of Products and Powers of Quotients.

31.* Proof that for all commensurable values of the exponents

we may apply the Index Law {aby = a^"".

(i.) Let w be a positive fraction.

The law has been shown to apply for all positive integral values

of the exponents.

This section may be omitted when the chapter is read for the first time.
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Substituting p/r hr nwe may write

(aby = (aby.
p

Writing the rth power of (aft)'", we have

[{abn^iaby.^
— ay¥, since jo is a positive integer.

Furthermore, {My = {ay{by = ayjf.

Hence, [Wl' = («V)^

Writing the principal rth roots, we have

{aby = a'b\

Or, {aby = a%", when n is a positive fraction,

(ii.) Let n have any negative value represented by — q.

Then {aby = {aby^

_ 1

- {aby

__ 1

~
a'^b'^

= a-^b-^.

Or, {aby = a%\

(iii.) Let n have the value zero.

Then {aby = a^b^^ because {(ihf means 1, and a^b^ means 1 X 1

for bases a and 6, which are different from zero.

It follows from the reasoning of (i.), (ii.), and (iii.) that for all

commensurable values of the exponent we have

{aby = a^^b^

Ex. 1. Simplify (ah'^y^

We have (ah- ^y^ = a%-*

Ex.2. Simplify (^/)'

V// ~rWe have y-rz
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Mental Exercise XIX. 5

Simplify each of the following expressions, applying either the

index law (aby = a"^", or the index law (a -H by = a" -^ b" :

1. (ahy. 17. (a-' -^ 6«)2. 33. (2c-y.

2. (b'c-y. 18. (^^«^cV- 34. (3t^«)-^

3. (c-'d*)-^ 19. (c-^ H- </«)-2. 35. (4 3!)^.

4. (d-^h-'^y. 20. (a-^-^x'y\ 36. - (9/)^.

5. (m'n-'y. 21. (6-^-c-y. 37. (lez^yK

6. (x-yr'' 22. (0-^-3,-1)-^. 38. (25 O"^-
7. -(a^x^K 23. {a--'-^b-y\ 39. (S^-^ab-yi

8. - (b'y^y. 24. (a^ ^ b^y. 40. (d-^m-'n-'yK

9. - ((rh*)K 25. - (6* H- x^y. 41. (a^^^-V)-^.

10. {d'w-^y^\ 26. (c* -r- 3^^)-^. 42. (bh'd-^y.

11. a-V*)i 27. (^-i-^)-«. 43. (a-^^^O-2.

12. (6V^)-«. 28. (h-T-m-y^. 44. (^«c-V^)-i

13. («¥)«. 29. (a2*-T-ic-*)i 45. {d-^x-YT^-

14. (6^c^)^«. 30. (b-^'^d^)K 46. (2a-«^-V0-l

15. (c-^r^)-^. 31. (2fl')-^. 47. (3-^a;«/r'-)~'-

16. (ry)-K 32. (4^-^)^ 48. (4-^a^6-V^)-«.

32. It is customary to regard a fractional power a^ as being
r

higher or lower than another fractional power a% according as

^ — - is a positive or a negative number.OS
E. g. We shall consider that x^ is a higher power than x^ since f — ^ = ^,

which is a positive number.

But xi is a lower power than x since | — 1 = — |^, which is a negative

number.
Exercise XIX. 6

The following examples illustrate the application of the principles

of earlier chapters to expressions whose terms involve negative and

fractional exponents.
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Multiply :

1. a* + b^ by a/^ + h^- 5. a'^ — h^ by a~^ — b^-

2. ic^ — y^ by a;^ — ?/2. g. ^"i + ^^ by b^ + c"^

3. a^^ — y^ by a:^ — y~^. 7. a^ + a* by a^ + 33^

4. x'^ + y"^ by a^^ — y^. 8. a;-*— 3a;-2+ 1 by aj-^ + 2a;-^

9. 2 a;^ — 3 a;^ — 4 + a;"Hy 3 «* + a; — 2 a;i

10. a-%-' + 2 a-^b'' - 3 a%-^ by a'^/"^ + 3 a'b.

Divide

:

11. a;-' — 3 x-^ + 2 x"'-' by a;-^' — 2 a;"^ + 1.

12. a* — a*/>^ — a^b^ + ^/^ by a^ — b^.

13. a; — y by x^ — ?/.

14. a;-« - 3 a^-V' + 3 aj-y - y'^ by a;"" - y-\

15. a + ^ by a^ + b^-

16. a;"^?/ — 5 xy~^ + 4 a?^^"^ by xhj-^ + a;V~^ — 2 aj^"^.

17. a — ^>by«* — ^/i

18. 2 a'%' - 4 a"^/!/^ + 2 by 2 a-%^ — 4 a"*^^ + 2 a"^6l

Exercise XIX. 7. Miscellaneous

Simplify each of the following expressions :

1. 4^ X 16"^ X 64i

16^ X 125"^

' 25^ X 32^

3. 9° + 9^ — 9"^ + 9^

4. 32<* + 32^ + 32^ + 32^ + 32^ + 32.

5. 2(0"" - («"'')' - («"')"'•

^
2"+^ — 2-2"

n+82-2

4(2"-^)" •
2-^

(2"+^)"^^ •
2""
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8. 2^Gi-9-«3»-^^

10. (x^Jf.

irh)'-

13
»"-»"

14. [(aj')'~-]A.

15. (^-./-'^^:

17. 3«+l y. 3—1 X g-n

18. (((««) c)i;.)'*^(((^ .y) «y

X9. l^Z^, X
-^^-^

ar^-a-^b ar^ + </"

'="• \a-'b-ab-^)\ab-' ) ' Vl + a^'V

a4-» 1 fr4-c 1 c+fl 1

22. [ti*-*^]''-* X [w'^^]'^-* X [w"-*]*-*.
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CHAPTER XX

IRRATIONAL NUMBERS AND THE ARITHMETIC THEORY
OF SURDS

I. Irrational Numbers

1. Two numbers are said to be commensurable, that is, to

have a common measure, if both can be divided without remainder

by the same integral or fractional number.

E. g. The numbers 9 and 12 are commensurable because both contain

3 exactly as a divisor.

Any two whole numbers, any two fractions whose numerators and

denominators consist of a limited or finite number of figures, or any

whole number and any fraction, are commensurable numbers.

E. g. The" two fractions \^ and f are commensurable, since they can be

expressed as integral multiples of a fraction having as a denominator the

common denominator of the two fractions; that is, \^ can be expressed as

22 times ^^, and | as 57 times ^.

2. Two numbers which are not commensurable with reference

to each other are said to be incoraimensurable.

3. Since any whole number or any fraction is commensurable

with respect to unity, whole numbers and fractions are commonly

called commensurable numbers. (Compare with Chap. XVIII. § 8.)

4. Since any whole number can be expressed as a fraction it

follows that anj/ number is commensurable if it can be expressed as

the quotient of one whole number divided by another whole number.

E. g. The number 5 is commensurable because 5 can be expressed as a

fraction, such as ^.
The square root of 5 is an incommensurable number because it cannot be

expressed exactly by any fraction.
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5. In order that the rth root of a commensurable number c may
be expressed as a commensurable number n, it is necessary and

sufficient that c be the rth power of some commensurable number n.

For if '^c = w, then c = w*".

E. g. Since 9 is the square of the . commensurable number 3, it follows

that V^ is a commensurable number. The number 10 is not the square of

a commensurable number. Accordingly, the square root of 10 is an incom-

mensurable number.

6. The classification of numbers as being either commensurable

or incommensurable may be made to depend upon the following

Principles Relating^ to Fractions :

(i.) The rth power of an integer is an integer.

For, since the operation of division does not enter into the process

of involution, a fraction cannot result from using an integer any

number of times as a factor.

(ii.) The rth power of a fraction in lowest terms is a fraction in

lowest terms. (See Chap. XV. § 40.)

It follows from the reasoning of (i.) and (ii.) that:

(a) The rth root of a positive integral number which is not the

rth power of another integer cannot be expressed eitJier as an integer

or a fraction^ that is, as a commensurable number.

E. g. Since 2 is not the square of any whole number, it follows that

-v/a cannot be expressed either as a whole number or as a fraction.

(b) The rth root of a positive fraction in lowest terms of which the

numerator or denominator, or both, are not rth powers of positive

integers, cannot be expressed either as an integer or a fraction, that

is, as a commensurable number.

E. g. Since 2 and 5 are prime to each other, and neither is the square

of a whole number, it follows thaty^f cannot be expressed as a commen-

surable number.

7. It is not possible to express the value of the rth root of a num-

ber which is not an rth power exactly as an integer or as a fraction

in lowest terms. Still it may be shown that it is possible to find

as approximate values two fractions, one greater than and the

other less than the true value of the indicated root, which shall
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differ from each other, and consequently differ from the true value

of the required root, by as small a value as we please.

(The following illustration may be omitted when the chapter is read for the first time.)

8. Different methods may be applied to obtain approximate

values for a particular incommensurable number, such as V2.
Since 2 is not the square of any integer, its square root cannot

be expressed exactly either as an integer or as a fraction. (See (i.)

and (ii.), § G.)

Since 2 is greater than 1^ and less than 2^ it follows that V2
must be greater than 1 and less than 2.

That is, 1=^ = 1< 2 < 4 = 2^.

Hence, V2 lies between 1 and 2.

Or, 1< V2 < 2.

The following are the only fractions having 10 for a common
denominator, the values of which lie between 1 and 2

:

\h \h \h \h U^ i§' \h if' H-
Writing the squares of these fractions, we obtain,

m^ m^ m^ m^ m^ u^^ nh uh m-
We find that ({^y =m <^<m = (nr-

Hence, since 2 lies between (1.4)'^ and (1.5)^, it follows that

1.4 < V2 < 1.5.

The following are the only fractions having 100 for a common
denominator, the values of which lie between {^ and {^ :

Hh uh Hh m^ Hh uh Uh \n^ m-
We find that the square of j^^ is less than, and the square of i^§

is greater than 2.

That is, . (mr =nm < 2 < nhu = (mr-
Hence, since 2 lies between (1.41)^ and (1.42)^, it follows that

1.41 < a/2 < 1.42.

Continuing the process indefinitely, it is possible to find two

fi-actions, one greater than and the other less than the true value of

a/2, which differ from each other, and accordingly from the true

value of a/2 by a value less than any assignable number, however

small.
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Consider the following relations :

1^ = 1 <2<4 = 2^

1.4^ = 1.96 < 2 < 2.25 = 1.5«

1.41^ = 1.9881 < 2 < 2.0164 = 1.42^

1.414'' = 1.999396 < 2 < 2.002225 = 1.415='

1.4142^ = 1.99996164 <'2< 2.00024449 = 1.4143^

1.41421^' = 1.9999899241 < 2 < 2.0000182084 = 1.41422^

etc. etc.

Since the true value of V2 lies between any two corresponding

numbers of which the squares are indicated in the first and last

columns above, it follows that the difference between the true

value of V2 and either of the numbers must be less than the

difference between the two numbers themselves.

Any number of which the square is indicated in either column

may be taken as an approximation to the true value of V2.

The numbers of which the squares are indicated in the first

column are all less than, and those of which the squares are in-

indicated in the last column are all greater than, the true value

of V2.

Hence, by extending the process indefinitely, as close an approxi-

mation to V2 as may be required can be obtained.

9. If we represent the different numbers, 1, 1.4, 1.41, etc., and 2,

1.5, 1.42, etc., which are approximate values of V2, by distances

firom a fixed point measured along a straight line, we may sug-

gest as in the accompanying figure that the successive pairs of

values, 1 and 2, 1.4 and 1.5, 1.41_ and 1.42, etc., approach nearer

and nearer to the true value of V2.

1.41 [11.42

1.4iKl.5

—^0 h \r2
^2—

10. By the reasoning employed in §§ 8, 9, any indicated root of

an incommensurable number can be obtained.

It should be understood that, although it may not be possible to

express the true value of a specified root exactly in terms of either

an integer or a fi-action, yet this value is definite.
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11. In order that there may be no exception to operations

involving indicated roots, we shall assume that, even when the

radicand c is not the rth power of a commensurable number, the

following identity is true :

E.g. (V3)^ = 3. (VA)^ = t\-

12. Two irrational numbers are said to be equal or un-

equal according as their approximate values are equal or unequal.

13. By means of the Principles of Variables and Limits it may
be shown that the Fundamental Laws of Algebra apply for incom-

mensurable as well as for commensurable numbers.

11. Arithmetic Theory of Surds

14. A rational number has been defined as a number which

can be expressed as the quotient obtained by dividing one whole

number by another. (See Chapter XVIII, § 8.)

E. g. The number 4 which can be expressed as a fraction such as | is a

rational number.

Any fraction such as f is a rational number.

A number which is not rational is said to be irrational.

E. g. Since ^/2 cannot be expressed exactly as a fraction, it follows that

'y/2 is an irrational number.

15. An indicated root of a number or expression is frequently

spoken of as a radical.

E. g. /y/S, Vis, V5» V^ + y-

16. A radical expression is an expression containing one or

more radicals.

E. g. 3 V^^, V^, y^ + 1, Va - ^A^

17. A surd is an irrational or incommensurable root ofa rational

or commensurable number.

E. g. ^^% ''^/It, a/A ^^^ ^^^^^ numbers, for in each case the radicand is

a rational number which cannot be obtained by raising another rational

numl)er to a power the exponent of which is equal to the index of the

indicated root.
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Observe that >y/9 is not a surd, since -y^Q = 3.

Expressions such as V -v/S — ^% VV*^ + 1, are not surds in the sense

of the definition, since the radicands y'S — ^^2 and -y/S + I are incom-

mensurable numbers.

18. Although, from the point of view of algebra, Vw is an irra-

tional function, yet it may or may not be arithmetically irrational

according to the particular values assigned to n.

E. g. If n = 4, 9, 16, , -y/m is not a surd
;

while if n = 2, 3, 5, 7, • • • •
, ^Jn is a surd.

19. According as the index of the indicated root is 2, 3, 4,

5, , w, surds are classified as being of the second order or

qnad/ratic, as VS ; of the third order or cubic, as V^o ; of the fourth

order or biquadratic^ as VlO; of the fifth order or quintiCy as

-^ ; of the wth order or n-tic, as \/x ; etc.

20. A single surd number or any rational multiple of a single

surd number is called a simple monomial surd number.

E. g. v^j 3\/2i 2V^-

21. The sum of two simple monomial surd numbers, or of a

simple monomial surd number and a rational number, is called a

simple binomial surd number.

E. g. V^ + V^ V^^ + 1-

The expression ^x + ?/ is not a simple binomial surd number, but is a

simple monomial surd number of which the radicand is a binomial.

22. The principles established in the chapter on Evolution apply

for irrational as well as for rational roots.

We shall, in the present chapter, consider such radicands only as

are positive, and shall use only the principal values of the indicated

roots.

Reduction of Surds to Simplest Form

23. A surd is said to be in simplest form when the expression

under the radical sign is integral, and is not a power of a rational

expression the exponent of which is equal to the index or which
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contains as a factor any factor of the index of the indicated root

;

and when there appears under the radical sign no factor raised

to a power of which the exponent is equal to or greater than

the index of the indicated root.

E. g. The following surds are all in simplest form

:

y'S, y^a, ^/(i^^ VC** + ^Y'

The following surds are not in simplest form :

VI, ^, '^^, Vi8-

For, in ^^\ the radicand f is not integral.

In V^ the radicand 8 is a power, 8 = 2^, of which the exponent 3 is a

factor of the index 6 of the radical. We have v^8 = ^/^.

The radicand x^ of '^x* may be expressed as a power, (x^)^, of which the

exponent 2 is a factor of the index 8 of the radical, and we have Vit® ^ '\/x^.

The radicand of the surd ^/\'^ contains as a factor 9, the square root of

which can be extracted.

We have VTs = \/9^ = 3^/21 (See Chap. XVIII. § 20.)

I. The Kadicanrt an Integer.

24. When the radicand is an integer, the reduction of a surd to

simplest form depends upon the following principles :

^57^ = ^a^/h. (See Chap. XVIII. § 20.)

Hence the following

:

Separate the expression under the radical sign into two groups of

factors^ one group containing all of the factors the exponents of which

are equal to or multiples of the index of the required root^ and the

second group containing allfactors of lower degree.

Extract the indicated root of the first group offactors and multiply

the result by the coefficient of the given surd, if there he one, and write

the product as the coefficient of the indicated root of the remaining

second group offactors*

Ex. 1. Reduce ^a%H to simplest form.

We may separate the radicaud into the two groups of factors, a%'^ and he.

The first group consists of all of the powers of highest degree of which the

exponents are exactly divisible by the index 2 of the indicated root, and the

27
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second group contains all of the remaining factors of degree lower than

the second.

Hence, V^^p^ = V{.a%*){bc)

= v«^v^
= ab^\/l)c.

In practice we may omit writing the step in the second line above. It is

given here simply to show that the expression in the third line results from

the expression in the first line by applying the law

Ex. 2. Simplify 5\/TT.

We have, 5 ^/li = 5^4^ = 5^^a/^ = 10^3.

It is sometimes convenient to write the prime factors of the

expression under the radical sign before attempting to express it as a

product of two factors or groups of factors.

Ex. 3. ^^^4320 = 4^2^ • 3« • 5

= >^(2« • 38)(22 • 5)

= ^(^^^)\/¥^
= 2 • ^\/W^
= 6 >y^20.

Mental Exercise XX. 1

Reduce each of the following surds to simplest form :

1. Vs. 12. a/45. 23. a/75. 34. 7a/200.

2. Vu, 13. V^l. 24. VT25. 35. V^16.

3. a/20. 14. a/90. 25. 3a/50. 36. V^24.

4. a/28. 15. a/99. 26. a/175. 37. ^32.

5. a/40. 16. 2a/27. 27. 4a/250. 38. 6V^40.

6. a/52. 17. 3 a/63. 28. Vl2. 39. 3^48.

7. a/60. 18. a/32. 29. a/iOS. 40. 5^56.

8. 3a/24. 19. a/48. 30. 2a/180. 41. 4^72.

9. 5A/i4. 20. a/80. 31. 3a/98. 42. 7^80.

10. 6a/56. 21. 2a/96. 32. 5a/128. 43. 8^/88.

11. a/18. 22. 3a/160. 33. 6a/162. 44. \/54.
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45. 4V^81. 55. 3V^25(). 65. Va^ 75. xVyh\
46. 2V^108. 56. 5^600. 66. V6^ 76. mVm^n.

47. v^32. 57. 9'^128. 67. Vc^. 77. V^V.
48. 5v^80. 58. 6^/500. 68. aVb\ 78. V6y.
49. 3v'96. 59. 12V700. 69. 6Vc^ 79. VwV.
50 \/64. 60. 5V243. 70. cVc«. 80. Va^b^c\

51. a/96. 61. 4V343. 71. (?V^^ 81. Va^y^^.

52. 3V242. 62. 2a/512. 72. Vx^f' 82. Vai°^«c^

53. 4a/288. 63. 3V450. 73. Vab\ 83. xVx'ijz^

54. lOVlOOO. 64. 3^375. 74. VcV. 84. V4a^6.

85. V9cV. 100. V(« + bye.

86. 3Vl6A*F. 101. A/(iK - ?/)Vw.
87. 5cVSab\ 102. a/(w2 + nfmn.

88. SbVl^c^d*. 103. V(b-cybh\
89. 6cV24a=^6V. 104. V«c'' + ^f".

90. 6«A/28a^V. 105. Vmif — mf,

91. 3v'8a*6. 106. 'v/«'"6.

92. 5'V^40a«^V. 107. v^^/n

93. 4arV27a*6»c2. 108.
"
v'c'-.

94. 2i/V5QxYz\ 109. "1i/«"+^.

95. 3cv^48a^^>V. 110. "v^6«-\

96. 5 5^81rVz^\ 111. a/c^^V.

97. 2</mg%'k\ 112. A/a;2y'*;2;.

98. 3^v^64rt*^c^ 113. ""V«"~'"^', ?^ >^.

99. 4gA^243 7?zV/. 114. 'v/«'-''<^'-'V+«, r > 3.

II. The Raclicand a Fraction.

25. To reduce a surd to simplest form when a fraction appears

under the radical sign :

Multiply both terms of the fractional radicand by the number or

ecppression of lowest degree that will make the denominator a power

of which the exponent is equal to or a multiple of the index of the

indicated root.
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Express the transformed radicand as the product of two groups

qf factcyrs^ one of which contains the denominator of the tran^ormed

radicand and also allfactoi's of the numerator which have exponents

which are equal to or a multiple of the index of the indicated root

;

the second group contains allfactors of the numerator of which the

exponents are not equal to or multiples of the index of the indicated

root.

Extract the indicated root of the first group offactorsand multiply

the result by the coefficient of the given surdy if there he one^ and write

the product^ reduced to simplest form^ as the coefficient of the indicated

root of the remaining second group offactors.

Ex. 1. Simplify |/?.

"We may obtain a fraction the denominator of which is the square of a

rational number by multiplying the numerator and denominator of 2/ 3 by 3.

Hence we have, /? = /? = -^ = V|

.

Ex.2. Simplify i/|^.
' 8

The radicand 9a^/Sb may be transformed into an equivalent fraction of

which the denominator is the square of a rational expression by multiplying

both numerator and denominator by 2 b.

Hence we have, f^ = f "l^^ = ^j^p =46^2^'

Exercise XX. 2

Reduce each of the following surds to simplest form :

1. Vi. 8. VtV- 15. Wh 22. 3^.
2. VI 9. VtV. 16. W^j- 23. 5^S-
3. Vh 10. 30V^. 17. VI 24. W^.
4. bVh 11. 28VS- 18. Vh 25. iVh
5. Wh 12. Wl 19. VI 26. tV^tV-

6. IIV^. 13. Wl 20. Vh 27. UV^^.

7. VI u. Wh 21. Vh 28. ^Vh
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:!:^- -\/i- "% -v^v

33.^. 52.^1. 66. V/^. 80. y/^^-

34. Vf ,/I /^^ . /T
o. /-T 53. ^>V-. 67. V-- 81. mV/— .

36. V^. 54. V^. 68.
yf. 82. «6y/^.

37. VM' /- 4 /-^

3aiV¥. '^-bfr ^^-v^l' «^-wl;_

3«-^i- 56.i^i.' 70.v/l. 84. V--

u.^w. ^^.41 ^^V|- «^-M»-
"•\;?- 58.i;/j. .2.^71- 86. Vf-43. V^. ^'^ ^ '^ c^ 6t V 6

-^^ -\/i- "VI- «^-^:v/f-

46.4.^A. ''-V^- '*•% ««-V27W^-

•\/J- «i-v^i- ^^V^ ««V8^-

V^3_63VV"- 77.^- 91.V«3
92. ^V/^ 94. (. + .)\/|^- 96. («-^Vf3|-

93.
(«»-V^,- 95. |i|v/:-^- 97. (« +V^V

47

48

49
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98

99

00.

01.

02.

. -i-rV/^- 106. {/-„' ^ >'^- 114. V^^-

v?->^- "oVj:. 1.8. ^{/|

m-i

03

04.^7^- 112- V^^ .

120. (/L, «<8

05.^1,,.»>2. 1.3.^. 121. I^i,

11. Recliietion of a surd to an equivalent surd of lower
order, when the index of the root and the exponent of
the radieand have a factor in common.

26. The reduction depends upon the following

Principle: TTie valtie ofa surd remains unaltered if the index of

the root and the exponent of the radieand he both multiplied hy or

divided by the same number.

"^^ = y/^aP" = -C/^. (See Chap. XVII. §§ 19, 21.)

Ex. 1. Reduce ^/s to an equivalent surd of lower order.

Expressing the radieand 8 as a power, 2^, we have,

Ex. 2. Reduce 'V^25 a%^ to simplest form.
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Mental Exercise XX. 3

Simplify each of the following :

1. A^25.

2. ^/36.

14. ^100 a=^.

15. ^/a'b^\

27. W-
28. 'V^.

- {/I-

3. n.
4. ^9.

16. ^a«6«.

17. \/xyz^

29. Va5"*r.

30. '^x'Y'.
- i/J-

5. ^27.

6. v^l6.

18. -v/ieaV.

19. v^a«/>V. - yi
7. ^a«6». 20. ^/xyz\

4 /

—

Sn
/
—

8. A^«^. 21. v^wzV. ^^- v/f 38.
Vi-.-

9. v'iya^ 22. V^.
» U

10. ^/xY. 23. 'a//7.

24. V^^.
- (^1^ 39. \/4-

11. -^125 a».

12. <^a%*c\

13. v'a^/.

25. '^?.

26. 'Vy'.
- ^i- *o-

V'^^"'

Addition and Subtraction of Surds

27. Two surds are said to be similar or like if they can be

expressed as rational multiples of the same monomial surd.

E. g. "v/s and \/2 are similar surds, for \/8 may be expressed as a

multiple of \/2j as follows : \/s = 2\/2.

V 27 and '\/48 are similar surds, since each may be expressed as a mul-

tiple of \/3, as follows

:

Vs? = 3 a/3, and ^48 = 4\/3.

V 75 and y^ are similar surds, since a/75 = 5 \/'S, and a/! = 3 V 3.

Two surds are said to be dissimilar or unlike if they cannot

be expressed as rational multiples of the same monomial surd.

E. g. y 2 and Vs are dissimilar surds.
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28. To add or subtract like surdsj first reduce them to simplest

form and then find the algebraic sum or difference of the coefficients

as a coefficient of the common surdfact(yr,

Ex. 1. Find the sum of ^'U., -v/3 and ISyT/S.

Reducing the surds to simplest form, we have,

^12 + VS + 18y/i = 2^3 + V3 + 6V3
= 9^3.

29. Unlike surds cannot be expressed as a single surd by addition

or subtraction.

Ex. 2. Simplify 2^48 + 5^/20 - Z^YJz + y^-

2^48 + 5^20 - ^\\ + V45 = 8^3 + 10^5 - V^ + 3V^
= 7V3 + 13V5.

Exercise XX. 4

Simplify each of the following :

1. V3 + 4V3. 17. V2 + V^.

2. 2\/5 + 3\/5. 18. a/3 - Vi-

3. 4^/13 - 7 Vis. 19. Vl - V6.

4. V3 + Vl2. 20. Vl + a/|.

5. V2 + Vl8. 21. VI - Vf

.

6. 2\/6 4- \/24. 22. \/lO + VJo + V90.

7. 4V3 + 2\/48. 23. V2 + V50 - ^72.

8. V45 - 2V5. 24. \/6 — V24 + V54.

9. 2V72 - 5V2. 25. 2^2 + Vl8 + V32.

10. a/50 + a/8. 26. 4a/3 + 2A/i2 + a/75.

11. 3a/80 - 2 a/20. 27. 2a/Ti + 5\/44 - 3 a/99.

12. 5a/72 - 2a/32. 28. a/| + a/3 + a/^.

13. 3^16 + V^54. 29. A/f + A^f + ^a/G.

14. 5^108 - ^32. 30. 2a/S + 3a/^.

15. 5^2 - aJ^32. 31. aA/2 + ^a/2.

16. A^2 + AJ^Slg. 32. CA/i<^ - c?v^.



33. a\/m + Vrn.

34. V4^ + V9^.

35. Vl^ — a/367'

36. 2V64^ - VSui.

37. V^ + Vo^

38. ^/a + V^.
39. ^'?-c^/~c.

40. 3a/81 wz + 2a/25 w.

41. 16a/9« — 9A/l6a.

42. A^8^ + A^.
43. aA/rt" + a/«"^

44. m'\/m^ + V?w'.

45. a/^ + a/^.

46. a\/Wc + a/c.

47.

48.

49.

50. vf + a/2.

63. ^a;''j/ + vl-v?
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51.

52.

53.

54.

55.

56.

57.

5V^--cV5.

Via + bf + a/^^ + /^.

Vx — y — Vi-^ — yf-

a/2 + A/2a'^ + a/86^.

A/a — 2A/a* + VaK

y/l + y/ij + y'i:.
a rt^ a^

58.iV^6-v/|4-v/i

J^ + J^+J.
1 1IZ y zx T '

a6

59.

60.

61.

62.

64. 2a/^+ 3a/«^ + 4a/^+ 5>

65. 3\/7 - a/28 + a/40 + a/90.

66. 2a/6 - a/54 + Vu — Vu.
67. Va+ Vb+ a/o" + a/^.

68. a/^ — a/^^ + a/^ + a/^-

aV^b + a/4^ + a/^.

'b\

Reduction to Equivalent Forms

30. Any finite rational number can be expressed in the form of a

surd of any desired order by applying the law a =
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Raise the given number to a power of which the exponent is equal

to the 07'der of the required radical and^ using this result as a radi-

cand^ express the requii-ed root.

Ex. 1. Express 3 as a surd of the f(furth order.

We have 3 = v^3* = ^^.

31. The coefficient of a surd rnay he placed under the radical sign

and made to appear as a factor of the radicand by raising it to a

power the exponent of which is equal to the index of the indicated

root.

This is an application of the principle a = '^a'.

We have ay/h = ^a^^Tb = V«'*»

32. A surd is said to be entire if its coefficient is unity.

E. g. V2, a/^j V^> ^"^ entire surds.

33. A surd is said to be mixed if its coefficient is a number

different from unity.

E. g. 3'v/5» o'^J^ft, (//I + w)\An~—"'^j are mixed surds.

Ex. 2. Express the mixed surds 2\/3, 3\/2» and \^/^ as entire surds.

We have 2^/Z= ^/T^ = y^,
3V2= \/9^ = VI8,

Mental Exercise XX. 5

Reduce to the forms of surds of the orders indicated :

1. 2, 2nd order. 5. 6, 3rd order. 9. ^, 5th order.

2. 3, 4th order. 6. 2, 5th order. 10. a, 6th order.

3. h, 4th order. 7. 12, 3rd order. 11. -> 5th order.

4. I, 3rd order. 8. 4, 4th order. 12. a"", nth order.

Transform each of the following mixed surds into an entire surd :

13. 2V3. 15. 4V2. 17. S\^. 19. 4v^3.

14. 3V5. 16. 2'v/2. 18. 5\/2. 20. 6^^.



21. iV2. 34. «V^.

22. iVe. 35. bVc.

23. iVS. 36. cv^^.

24. iVl- 37. m'^n.

25. 3V|. 38. aVS.

26. 5VS. 39. 2^v'y.

27. iVV5. 40. ahyj~c.

28. Wl 41. ar^Vi^.

29. iVi 42. JcV^^.

30. 3V|.
43. VS

31. Wl ^v^.

32. i^i.

33. fv^f.
44. y..

SURDS 427

45. iv/^. 51. ^V^.y

n46. Vi- '' W

54. a^/h.

48. iyi. 55. /^v^c.

49

56. c\/c.

57. ^a/^.

58. x'y^x.

59. icv"^.

^V 3 60. a^'^/a.

2V a

« Iv/

Change of Order.

34. Surds of different orders can be transformed into equivalent

surds of the same order by applying the principle ^/a'' = Vo^"*

(See § 26).

Using radical symbols, we may proceed as follows :

As a common index fm^ all of the transformed surds^ write the

lowest common multiple of all of the indices of the given indicated

roots. Then raise each radicand to a power the exponent of which

is equal to the number by which the root index must be multiplied

to produce the lowest common multiple of the indices.

Ex. 1. Transform -y^S, ^^2 and ^y/S into equivalent surds of the same

order.

The lowest common multiple of the indices 2, 3, and 6 is 6.

Hence, ^3 = v^3^ = ^^27,

^2 = ^2"2 = ^\

35. When transforming surds of different orders into equivalent

surds of the same order it is often convenient to use the notation

of fractional exponents, and to proceed as follows :



428 FIRST COURSE IN ALGEBRA

Express each of the indicated roots by using the notation offrac-

tional exponents, BedvLce the fractional expmients thus obtained to

equivalent fractional exponents having a lowest common denomina-

tor. Express the results thus obtained in the radical notation^ observ-

ing that the numerator of the fractional exponent denotes the power

to which the radicand is to be raised and that the dmwminator is the

index of the required root,

Ex. 2. Which is the greater, y/l or ^1 ?

We have ^5 = 5^ = 52^ = ^5* = ^625

;

also, ^ = 7^ = 7^= ^7^= ^343.

Since 625 > 343, it follows that ^625 > ^343.

Hence, ^b > ^.

Exercise XX. 6

Express as equivalent surds of the same order :

1. a/2 and \^5. 7. v^8 and ^l. 13. Va and ^\
2. V3 and v^. 8. ^2 and </l. 14. -v^^^and ^/b\

3. V5 and V^, 9. V3 and -^15. 15. Vx and v^^.
*4. V6 and \^U. 10. V^ and '^80. 16. Vy and "-C^y.

5. V7 and \/^. 11. Vs and -^75. 17. ^/i^and a/^^

6. '^2andA!^3. 12. V2 and ^^12. 18. 'fwand"^?^.

Which is the greater,

19. 3\/5or4\/3? 25. v^S or v^? 31. a/6 or v"^?
20. 4a/6 or 5a/3 ? 26. a/5 or v^20? 32. 2 or a^7 ?

21. 6A/2or2A/61 27. A/6or2A^2l 33. 3 or a/30 ?

22. 5 a/7 or 8 a/3? 28. \/l or a^50? 34. 4 or 2a^3 ?

23. A^or2v^? 29. V^ or 2v^ ? 35. 5 or 3a^7 ?

24. 3v^ or 2'^T0 1 30. a/3 or a^ ? 36. 3 or 2'V^IO %

37. Va or a^^ for a > 1 ? 38. a/^ or v^«, for b > I.

Multiplication of Surds

36. The product of two monomial surds of equal orders may be

found by applying the principle ^s/ay^b = Vab. (See § 24.)
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Xf the given surds are of different orders^ they must first he trans-

formed into equivalent surds of the same order.

Multiply the coefficients together for a new coefficient^ and the

expressions under the radical signs for a new 7'adicandj and reduce

the result to simplest form.

Ex. 1. 5/v/6 X 3v^ = 5 • Sy'e^ = 15y^ = SOy^S.

Ex. 2. 5 V^ X v^2 = ^5» X '^¥^ = '^58 x 2^ = ^500.

It is often convenient to obtain the prime factoi-s of the radicands before

multiplying.

Ex. 3. V35 X V^l = V^ • 7 x \/V^ • 7 = ^^1^ • 5 • 13 = 7V65.

Exercise XX. 7

Write each of the following products in simplest form :

1. a/8 X \/5. 20. v^«6V X ^/¥ed.

2. ^2 X V6. 21. ^xyh^w^ X v^?A«^.

3. V5a X VlOa. 22. Vi X Vi-

4. VS^ X Vl5. 23. Vt X Vf

.

5. Ve ^ X a/12^c. 24. V?^ X Vv^.

6. \/\^ X ^3^. 25. 4\/V X V¥.
7. v^4^ X v^8 ar/.

8. '^S^ X '^16^. 26. y/^ X y/^;.

9. 5a/15 X V^-
10. 2a/14c X 3VT^.

11. 6Vl2 X 4a/8^.

12. SVTS X 9\/2().

13. ^45 X ^18. 28. i/^ X \/-
14. v^X A/6aa;. ^ ^ ^^

15. ^^14 X ^^21.

27Y!x#

16. ^
17. v^tcy^^; X ^Jxy^zK

18. ^/'-la^hc'^y. \/ia^b^c.

19. -v/oP? X <^Mi.
30
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31. i/I X v/^. ^^- '^'^^ '^^'^^'

' y be ^ ab .Q7 ^aA**-! V a/^

32 v/^x{/Z.

37. wv'w^' X -</;?.

38. v^ X ^V^SO.

^« 39. V^ X V55.

33. v^a X v^a^. 40. Vf X ^J.

34. V^^^ X ^^lr^\ 41. 4 a!^ X 6^.
35. Vd^ X \^. 42. 3^^ X 9</9^.

Multiplication of Polynomials Involving Surds

37. The product of two polynomials the terms of which contain

surds may be obtained as follows

:

Multiply each term of the multiplicand by each term of the

multiplier.

Ex. 1. (V^-5/y/3+ 'v/6-7)x3V6=3\/l2-15'v/T8+3\/36-21V'6

= 6y^3 - 45^2 + 18 - 2iy'6

= 18 - 45v^ + 6>v/3
-

21/v/6.

Ex. 2. Multiply by/b + 2^/^ by 4^/5 - 3y^.

5v^+ 2^2

4<v/5- 3v^
100+ 8/v/^

-15^10-12
100- 7^10-12 = 88-7/^.

38. Two binomial quadratic surds which differ only in the sign

of one of the surd terms are called conjugate surds.

E. g. 'y/ft + V^ft aud ^/a — ^h ; 5 + 4-^/3 and 5 — 4y'3
;

-v/6 + V^ and - ^6 + ^1.

39. T^ product of two conjugate surds is a rational number or

Representing two conjugate surds hj ^/x + y^ and ^/x — y\/y, we

have, (yx + ^/y){^/x - ^y) = (\^x)^ - {^/yY = x-y.

Ex. 3. (2^7 + ^/U){2^1 - yU) = 28 - 11 = 17.
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Exercise XX. 8

Simplify each of the following expressions :

[Vn - Vl3 + V7)a/3. 9. (3a/2 - 2\/3 + ^12)^6.

y2 + Vl — V3)V5. 10. (V5 - V2I + 4^/27)2^3.

;a/7 - A/Tl 4- Vl3)V6. 11. (2a/5-4\/10-V30)3V5.

;Y^ - VlO - VT5)a/7. 12. (V« + Vb+ Vc)Vabc.,

(\/2 — V5 4- Vio) a/To. 13. (V^+ a/^ + Vzx)Vx^-

;\/2 + Vt + 2a/14)aA4. 14. (a^ + \^ - '^10)^.

;a/3 - a/5 + a/10)a/15. 15. (^9 - 2</s - ^18)'V^3.

yiO + 2a/3 - a/5)a/5. 16. (^4 + ^9 + 'V^SG) V^G.

y 100 - 'v/25 + V^4)^10.

[^;^c - ^/Wd + ^/'(?d)^/abdi.

y^ + A^^ + a/0\^«^-

;V3 + 4) (a/2 + 3).

;2 4- V3)(3 - a/2).

[a/6_- 5)(V_3 + 5).

^2a/7 + 7a/2)(3'v/7 + 8a/2).

;10a/G — 6a/T0)(5a/3 + 3a/5).

^2 + '^3)(^4 + A^5).

:
i + a/2 - a/3)(a/2 - a/6).

V3 4- a/5 X V^s - Vs.

V^6 4- 3a/3 X V^6 - 3a/3.

a/2 — a/3 4- a/5)(a/2 4- a/3 - a/5).

a4 - a/| 4- A/i)(A/6 4- a/7 - a/8).

W\ - A/f - V^)(a/§ - a/^ - a/?.

a/2 - a/3)(a/3 - a/5)(a/5 - \/l).

'a\/h — ^sfaJ) + h^/a){Va — ^b).

^ah + \/bc + ^fm)(y'\/a + a/^ 4- a/c)-

A/a 4- a/^ + a/c)(a/« 4- a/^ — a/^)(a/^ — a/^ 4- a/c)

(a/^ — a/^ — a/c).

1
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Involution of Monomial Surds

40. From the principle {^/af = 'C/a", it follows that

:

An entire monomial surd may be raised to a power by raising the

radicand to the indicated power.

Ex. 1. {^ly = >v^ = b^Z.

Ex. 2. (2 'v/eTt)' = 2V6*a* = 48 a ^/Wa.

Ex. 3. (^5^)2 = (5 a)^ = (5 a)^ =^u

Mental Exercise XX. 9

Reduce the following indicated powers to simplest form :

*
1. (\^2y. 13. (V7t)\ 25. (c'^Viy.

2. (\^5y. 14. (Vf^y. 26. (c\^y.

3. (\^sy. 15. (V^y. 27. (d^ny.

4. (V2)«. 16. (V?)l 28. (a\^cy.

5. (V5)*. 17. (\/c)^ 29. (b\/^'y. •.

6. (>^8)l 18. (v^)*. 30. (x'\^y.

7. (2V3)«. 19. (\^hy. 31. (2a;Vi)'.

8. (3^/5)*. .
20. (v^=^)'- 32. (^y\^y.

9. (4^4)^. 21. {\/^^f. 33. (Sa^^i^WO^.

10. (2^2)^ 22. (-
^/J^y.

34. ('v/«)^ 7^ > 2.

11. (-2V7)'. 23. (aVa)'. 35. ('^/^)^ 7^ > 3.

12. (V^^^)*. 24. (- b^/yy. 36. (a;A/y)^ w > 4.

Division of Surds

41. The quotient obtained by dividing one entire monomial surd

by another may be found by applying the principle

The process for finding the quotient of one mixed surd divided by

another may be made to depend upon the principle above.

Since two surds of different orders can be transformed into
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equivalent surds of the same order, it follows that it is necessary to

state the process only for mixed surds of the same order.

The index of the indicated root of the radicand of the quotient ob-

tained by dividing one monomial surd by another of the same m'der is

equal to the common index of the indicated roots of the radicands of

the dividend and divisor.

For the coefficient of the radical part of the quotient divide the

coefficient of the dividend by the coefficient of the divisor, andfor the

radicand of the quotient divide tJie radicand of the dividend by

the radicand of tlie divisor.

The result should be reduced to simplestform,

Ex. 1. Sz/Il -r 4V^ = (8 ^ A)^f\A^ = 2^7.

Ex. 2. Divide 21^2 by 7^.

We have, "^ = -^M=. = 3JZ?! . 3;/III^
7^Q V^(2 • 3)2 V 22 .32 V 32 . 34

= a7162.

Exercise XX. 10

Simplify each of the following quotients :

1. V6 -T- a/2. 15. ^^27 -^ 4^3. 29. 5^2 -^ \/lO.

2. VlO -^ V5. 16. ^50 -r- ^2. 30. 3V5 H- Vl5.

3. a/14 ^ a/2. 17. '^in -^ ^6. 31. 6a/7 -^ ^42-

4. V'2T -7- \/3. 18. \/7 -7- a/2. 32. 10a/3 -t- VQ-

5. a/15 H- V5. 19.. a/3 -^ Vs. 33. 14a/2 -^ VH.
6. 3V22 ~ a/Ti. 20. VTO -^ V3. 34. a/7 -f- 3a/21.

7. 5a/26 ^ a/T3. 21. a/13 -t- a/7. 35. Vn -i- 2a/22.

8. 8a/30 H- 2\/2. 22. a/10 ~t- a/6. 36. V3 -^ 4a/15.

9. a/39 -f- 2a/13. 23. VTs -^ a/To. 37. a/2 -i- 5a/6.

10. a/sT -7- 3a/17. 24. A/2I ^ a/14. 38. A^a^ -^ a/^-

11. Vi -r- V2. 25. A^2 - Vi. 39. V6^- Vc._

12. V9 -T- Vs. 26. VlO -^ VT2. 40. ^Mc -f- Va^'.

1.3. VT2 -^ Vi. 27. Vs -r- V2. 41. V^ -^ ^v^.

14. 5V18 -T- Va 28. V5 -^ Vi. 42. Va^ -^ Va.
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43. ^^ -^ ^. 48. ^ ^ y/h\ 53. ^/xyz -f- xy^fz,

44. ^/W?^^/Wc. 49. v^^v^. 54. ah^Tc ^ a^/Vc.

45. Va -T- V^» 50. av^ -j- Va. 55. Vicj^-s -r- "s/yzw.

46. Vc^Vx. 51. 6a/^ -i- \/6. 56. ^i^ -r- V^^^.

47. Vrf -^ a/^. 52. av^ -r- 6\/a. 57. V^ "^ V^.
58. V2c -^ V3^. 62. aJ/^ -^ v^a, ^^ > 2.

59. V7« -H A/l4y. 63. v'^*^ -h v^^Za^, w > 1.

60. ^lOab -r- Vi56c. 64. (^30 + a/42) H- a/6.

61. 6A/3«y -T- 3A/6az. 65. (12a/35 — a/45) -f- 3a/5.

66. (8v/5i - 5^^) -T- ( - 2^3).

67. (a/15 - \/6 + a/2 - a/3) -t- a/3.

68. (a/2 + a/8 — a/21) -7- a/2.

69. (8a/7 - 6\/5 + 4a/3) -i- 4a/2.

70. (10a/15 - 5V3 + 3a/5) -^ 30a/15.

71. (2A/^-8v^-4)-^^.

Rationalization

42. To rationalize a surd expression is to free it from indicated

roots.

If the product of two irrational factors is a rational number, either

factor is called the ratioualiziug factor of the other.

E. g. The rationalizing factor of y^ is y 9, since /y^3 x \/9 = y^27 = 3,

which is a rational number.

43. From the identity V^ X 'C/a^ = -^a*" = a, it may be seen

that when p is less than r the rationalizing factor of a simple entire

monomial surd represented by "^a^ is A/a'""^

Q

Ex.1. Rationalize the denominator of——

.

a/2

By multiplying both terms of the fraction 3/^/2 hj /y/2 the value of

the fraction remains unaltered and the denominator is made rational.

_., , 3 3^2 3^2
We have -—r = .J ,_ = —~ •

>v/2 a/2a/2
^



Hence ^3/3— Ao.VT " "2" — ^V^^^*
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Ex. 2. Rationalize the denominator of —^~z •

^2
The rationalizing factor of a/^ is y^ = y^.

^2~ ->^2^4

44. From the identity (V« + \^~l>){^/a — VT>) = a — b, it ap-

pears that a binomial quadratic surd may be rationalized by multi-

plying by the conjugate sm^d.

Ex. 3. Reduce (3 + V^)/(^ ~" V^J) to an equivalent fraction whose

denominator is rational.

The rationalizing factor of the denominator 3 — /y/5 is the conjugate

surd 3 + /y/5.

Hence,

3 + V5 _ (3 + a/5)(3 + V5) _ 9 + 6^5 + 5 _ 14 + 6\/5 _ 7 + 3/v/5
^

3- V5~(3- V5)(3+ V^)~ 9-5 " 4 ~
2 *

Ex. 4. Divide y^ + V^ + \/6 1^7 V^ + 1.

Expressing the quotient as a fraction, and rationalizing the divisor, we

have,

V2+V3+V6_ (V2+v/3+/v/6)(V'3-l) _ 3+2/^-^^/3_ 3 r-_\ r-

VS+I ~ (V3+l)(\/3-l) ~ 2
"2^2'^*

45. From the identity,

( Va+ \1 + Vc)( Va — V6+ 4/c)( Va+ v^5 — Vc)( i^— V6— Vc)= a* +6" \-c'^—2ah—2ac—2he,

it appears that the rationalizing factor of any one of the factors of

the first member is the product of the remaining three factors.

E. g. The trinomial surd (V^ — \/3 + ^^5) may be made rational by

multiplying by the product

(V^+ /y/S + //5)(/s/2 + a/3 - \/5)(V2 - a/3 - V^)-

When rationalizing a trinomial surd it will often be found con-

venient to group the terms of the trinomial and regard the expres-

sion as a binomial, of which one of the terms is a sum or a difference.

After multiplying by the conjugate binomial factor, the terms of the

resulting expression may be combined and the process of rational-

ization may be again applied.
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To rationalize either the denominator or the numerator of a frac-

tion, multiply both numerator and d^rwminator by the rationalizing

factor of the term to be rationalized.

Ex. 5. Rationalize the denominator of '\/3/('\/l0 — a/Q + ^/2i).

We have,

V3 V3(VTo- ye- yii)

Vio - Ve + \/3
~ (\/io - V6 + V^XVi^ - V6 - Va)

_ ^^30 - 3 ^2 -^ 3

~ 13-4 V15

_ (y^30 - 3V2 - 3)(13 -f 4^15)
~

(13 - 4Vl5)(13 + 4V15)

_ >y/3o - i2yT5 + 2\^/^ - 39

-71

= f! - ?^\/2 + ^f Vl^ - ^r V30-

46. The object of rationalizing the denominator of a given frac-

tion is to avoid the use of a divisor consisting of a non-terminating

decimal.

E. g. To find the value of -^ , correct to four places of decimals, if the

\/3
denominator is not rationalized, it is necessary to divide 1.41421 + by

1.73205 -f, as follows:

V2_ 1.41421

+

_ V

:^- 1.73205
+--^1^' + -

While, by rationalizing the denominator of the fraction, we may obtain

the required value by dividing 2.4492 -\- by 3, as follows

:

^3 3 3

Exercise XX. 11

Rationalize the denominators of each of the following :

1 J-. 3 ii- 5 -^- 7 i-
V6 VT V^ V^5

2. —p- 4. -7^- 6. —=• o. -37=-

V5 Vn a/10 V4
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9.-4. 13.-1^. 17. -A.. 21.^.

10. -^' 14. -^. 18. -^. 22. ^.
A/2I 3V1I 3'V^8 V12

11 12 _ 7 .^8 ^.. 2a/3
11. -^=:^* 15. —

r

19. ,, 23. —'
V28 5a/14 9V64 3\/2

12. -IL. i6.4-_. 20.^. 24.4..
^27 2V9 V2 2V6

25. ^-^. 31. -^. 37. ^+^ .

V 20 Vx-y a/5 - a/3

13. 17.

2a/5

14.

3a/11

15.

16. '• 20.
2^9

a/^
31. ^^^.

Vx — y

32. / .

A/a;+ 2

33. / .

34.
''^ + ^.

V-2

35. / •

36. " _.

26. -^. 32. -^. 88. ^^-^ .

a/3+1 A/a; + 2 V3 + a/2

27. -^=1— 33. _^. 39.
4±V^.

Vll - 2 a/» + 2 a/7 + V2

28. -i^. 34. ^-4±^. . 40. ^.
\/3 + 2 V2 i + V2

29.
iH^.

35. -^- 41. ^:$.
V 5 + 4 yb — c . a + yx

30.'^. 36. ^'^
. 42. ^-f.V 3 — 1 a/^ — A^c ^x + a/^

^3 V5+ a/6 ^^ ^vV±rV^.
a/7 + a/S ^a/^J — aJA^J/

^^ 2a/3 - 3a/2 .. Vo^^ + 5 + 3
44. —— -' 48.

,

3a/6-2a/2 a/«' + 5 — 3

45. 2^-^A 49.
^^

9a/8 - 7a/6 a + A/a' - ^

.- aA/^ + 6v^ _ 6
46. ;=

—' 50.

a/6 + a/^ A/a3+ 6 — A^a; — 6
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51.
V^+v^

. 5g_

2a/«

-3- Va
J + 6 4- 3V« - b

3VaJ + 6 - 2Va - 6

+ 3 + V<« — ii

+ 3-

+ 1 +

V^*—

3

y/x 4- 2

V^-1-
— 1 -

. Va?—

2

Va^ -Vic^+1

52.
-v^^^. ..v^^^^^ ^^^
3Va + 6 — 2^/a — b

Va + 3 + v;r^3
53. —

—

58.

V a + 3 — yo-— 3

54.
^f^^V^

, 59^

55. "^^ ^
,
^ ' 60.

1 + V2 + V3

V5- V7
2 + V5 + \/6*

A/T(")+y2- a/5

VIO — V2 + V5

a/3+ a/5+ a/2

2a/15 + 6

ic + a + A/aJ^ — «^

A/ar* — 1 + A/ar^ +1 a; + « - a/^'-^ - «'

47.* By means of the identities in Chapter VIII. § 59 a ration-

alizing factor can be found for any binomial surd '^x ± 'Vy.

(i.) Vx — ^y can be rationalized.

By letting ^x = a, and '^y = b, and representing the lowest

common multiple ofp and q by ;*, it may be seen that a" and 6"

are both rational.

For all values of n we have,

(a — 6)(a"-^ + a"-2^ + + a^""* + ^""^ = a" - //.

Hence, the rationalizing factor of "^x — Vy may be written by

referring to the polynomial factor iabove.

Ex. 1. Find the rationalizing factor of a/5 — a/^-

The lowest common multiple of the exponents 3 and 2 is 6. Accord-

ingly, it is necessary to multiply the binomial by such a factor as will raise

both terms to the sixth power.

The polynomial rationalizing factor may be found as follows :

Eepresenting /y^ = 5^ by a and \/2 = 2* by b, it follows that the

binomial yE — a/2 may be represented by the binomial a — b.

If a — 6 be multiplied by a^ + «*6 + a%^ + a%^ + ab^ + b^ the product

.

will be a® — 6*.

Hence the rationalizing factor of the given binomial may be constructed

by substituting 53 for a and 2 2 for 6 in the polynomial

a5 _|. a*jj ^ a%^ + a^b^ + ab* + ¥.

* This section may be omitted when the chapter is read for the first time.
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Hence the rationalizing factor of yS — y^ is

5! -|_ 5I22 + 5^22 + 532t 4_ 5^2^ + 2^

This factor reduces to b^Io + 5^5/y/2 + 10 + 2^)^25y^ + -i^ + 4^^.

(ii.) U n be even, 'v^ + y^y can be rationalized, since

(a + ^)(a""' - a""'^ + + «6"-^ - ^"-^) = a'^ - ^".

(iii.) If n be odd, '{^ic + \^i/ can be rationalized, since

(a + 6)(a"-i - a"-'6 + - a^/*^-^ + b"-^) = a" + ^>\

Exercise XX. 12

(This exercise may be omitted when the chapter is read for the first time.)

Find the rationalizing factor of each of the following binomial

surds :

1. 1 + ^2. 6. VS + V^.

2. 2 4- V^S. 7. ^7 - VTO.

3. 5 - V^I 8. V5 - \/Q.

4. '^5 + 1. 9. '^G+ v^9,

5. VS-\- ^2. 10. ^^2- aJ/3.

Factors Involving Surds.

48. Extending the idea of "factor" to include expressions in

which surd numbers appear among the coefficients, we may, by

applying the principles of Chapter XII., transform certain expres-

sions so that they shall appear as products of factors involving

surds.

We will now consider the problem of factoring the general ex-

pression of the second degree containing one unknown, x :

ax^ -{- bx + Cj a ^ 0.

We may write, ax^ + bx + c^ ax^ -\
i

—

-

= a\ x^ + - X -{- -

In the trinomial square a^ ± 2ab + V^ the third term ^^ is the

square of the quotient obtained by dividing the " middle term "
oir
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"finder term '' ± 2ah by twice the square root of the first term a^.

(See Chapter XII. § 21.)

The process of obtaining a trinomial square, a^ ± 2 aft + ft^ by

adding the term ft'* to a binomial such as a^ ± 2 aft, is called com-
pleting the square with reference to d^ ± 2 ah. (See also

Chapter XXII. §§ 18-20.)

We may complete the square with reference to the binomial x^ +
- X which appears in the expression a\ x^ -\- -x-\- - as follows :

Dividing the " finder term " - a; by twice the square root of the

first term t^ we obtain -— which is the term whose square must be
2a ^

added to complete the square with reference to a^ + - a%

Hence,

-[(-A)'-(v/51)']

-L(-rJ'-(v/^^yj
( ,

h ^ VW--Iac\f .
ft A/ft'-4ac\

V 2a 2a J\ 2a 2a J

Ex. 1. Factor x^ - 10. Check. Let a: = 1.

x2 - 10 = a:2 _ (ylo)2 _ 9 = - 9.

(See Chapter XII. § 22.) = [a: + y'lO] [x - y^].

Ex.2. Factoric2 + 6a; + 4. Check. Let x = 1.

11 = 11.

Using 6 ic as a " finder term," we may complete the square with reference

to a;'^ + 6 a: as follows

:

We have — = 3.
2a;

Hence, a:2 + 6x + 4 = a;2 + 6a; + 32-9 + 4
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(See Chap. XII. § 18.) = (x + 3)2 - (^by
(See Chap. XII. § 22.) = [x + 3 + ^5] [x + 3 ~ y^].

Ex. 3. Factor 3 a;^ + 8 a: — 5. Check. Let a: = 1.

The following luethod may be employed : 6 = 0.

3a;2 + 8a;-5 = ^[9x2 + 24a:- 15].

The square may be completed with reference to 9z^ + 24cX by using 24 x

as a " finder term," as follows

:

We have, 2S = ^•

Hence, 3a;2 + 8 a; - 5 = i [9 a:2 + 24a; + 4^ - 16 - 15]

= H(3^ + 4)2-(y31)2]

= |[3x + 4+ V31][3a: + 4- V^]-

Observe that in each of the examples above the factors obtained

are of the Jirst degree with reference to the letters appearing in them.

Exercise XX. 13

Obtain factors containing surds for each of the following :

13. x^- Ux- 18.

14. 9c?^- 12^+ 1.

15. a^H- 16a+ 19.

16. b'-l^b-^ 57.

17. c'- 10 c- 100.

18. x'-x-l.
19. x^ — x-\-l.

20. x^-'dx-b.

5 75

3 72

Evolution of Surds

49. A root of a monomial surd may be found by applying the

principles \ rZ^ " nr^ (See Chap. XVIII. § 21.)

( \Va= Vva.

Ex. 1. \l'^ = ^1.

Ex. 2. V'^SoS = Y^^8a8 = ^2^.

1. a^^-3.

2. x'-^.
3. x"-^.
4. ar^-50.

5. 92^2-13.

6. 16;2^-5.

7. ^" + 82;+ 1.

8. m^ + 6yw + 2.

9. a^+ 12a -3.

10. ^>2-106 + 20.

11. r'^ + 2r- 1.

12. m^— lOm- 17.
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Exercise XX. 14

Simplify each of the following :

1. V^. 9. V^8\/8^.

3. v^-c^. 11. Vy^.
4. V^VG^. 12. ^2V%
5. n/^^. 13. 21/2V2V2.

^- ^^ 14. |y^?P.
^- /^^^-

15. 3V^.3?I.

8. Va^V^.
16^ >/2W2 2/V2;3«.

Properties of Quadratic Surds

50.* In the statements and proofs of the following principles, the

radicands are restricted to positive commensurable values.

(i.) T/ie product or the quotient of two similar quadratic surds

is rational.

For if a, 6, and c be rational numbers,

aVc X b\/c = ab\/^ = abc.

<l\/C fl

h^/c ~~ h

(ii.) The product or the quotient of two dissimilar qvxidratic surds

is a quadratic surd.

For, in simplest form, every quadratic surd has as a radicand one

or more prime factors raised to the first power only.

Two dissimilar surds cannot have all of these factors alike, and

accordingly their product must, after it is simplified, have at least

one of these factors to the first degree as a radicand.

From this it follows that

(iii.) The sum or the difference of two dissimilar quadratic surds

cannot be equal either to a rational number or to a single su/rd.

* This section may be omitted when the chapter is read for the first time.
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Va ± a/^ 7^ c, when a ^ h, (1)

and Va ± v^ ^ V^, a 7^ 6. (2)

For if V^< ± V^ = <?, we should have

a ± 2Va \/6 + 6 = c^

it -"

Hence, we should have the product of two dissimilar quadratic

surds equal to a rational number, which is impossible by (ii.)

above.

It follows that \fa ± ^/h cannot be equal to c, when a i^ b,

A similar method of proof holds for (2).

(iv.) The square root of a rational number cannot be expressed as

the sum of another quadratic surd and a rational number.

That is, if ^fa and ^/b are quadratic surds, and c is any rational

number, it follows that a/S t^ ^/b + c.

For, if v^ = a/^ + c (1)

we have, squaring, « = 6 + 2 c^J'b + c\

Therefore, v^ = "^ ~ ^
~ ""'

• (2)
u c

That is, if (1) be true, we have in (2) a surd number V^ equal

to a rational expression, which is impossible.

Accordingly, ^/a cannot be equal to a/^ + c.

(v.) In any equation containing quadratic surds and rational

numbers^ the surd numbers in one member are equal to the surd num-

bers in the other member, and the rational numbers in one member

are equal to the rational numbers in the other member.

That is, if v^ + 3/ = v^ + ^, (1)

it follows that a; = «, and ?/ = 5, where a, b, x, and 1/ are all com-

mensurable numbers and a^^ and Vx are surds.

For, ify:^b,\eti/=b± n, where n ^ 0. (2)

Substituting b ± /» for 3/ in (1), we obtain,

^/x + b ± n = "s/a + b.

Or, ^/x = ^fa =f n^
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which is impossible by Principle (iv.) above.

Hence we cannot assume that y is different from i, as in (2)

above.

It follows that y = h^ and hence a/« = \/«, or a; = a.

(vi.) If N/^Tv^=a/^+ A/y, (1)

then \a — ^h = v^ — Vy, (2)

provided that a, h, Xy and y are commensurable, and that a > V^.

For, from (1), a + a/^ = ic + 2v^ + y.

Hence, by Principle (v.)

a = a; + y, and v^ = 2'^xy.

Hence a — Vf= jc + y — 2v^.

Or Sla — ^/b = v^ — Vy-
51.* Square Root of a Binomial Quadratic Surd may be

obtained by applying the principles of § 50.

Ex 1. Find the square root of 14 + 2y^.

Let Vl4 + 2v^ = ^/x+ ^/y. (1)

Then by (vi.), ^14 - 2/y/33 = y^ - y^. (2)

Multiplying the members of (1) by the corresponding members of (2) we

have, yi96 - 132 = x - y.

Or X - 2/ = 8. (3)

From (1), squaring, 14 + 2-^/33 = a: + 2^/xy + y. (4)

By (v.), a: + 2/ = 14. (5)

Solving (3) and (5), a: = 11, y = ^.

Hence, from (1), Vl4 + 2y'33 = ^^ + ^/^.

52.* Solution by Inspection.

From the identity, (v^ ± Vbf = a -{-h ± 1^/ah,

it follows that, V« ± V^ = \a-\-h± "l^fah.

It should be observed that the expression a •\-h ±. 'i^ab consists

of a surd term ± l^/ah and a rational binomial a •\- h.

* This section may be omitted when the chapter is read for the first time.
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The radicand of the surd term ± 2\/abis the product of two fac-

tors a and b of which the sum is the rational binomial a + b.

Hence, to find by inspection the square root of a binomial surd

which is a square, we may proceed as follows :

Transfoi^m the given binomial quadratic surd so that the coefficient

of the surd term shall be 2 ; then find by inspection two factors of the

radicand of the surd term of which the sum is the rational term of the

transformed binomial surd.

The square root required is the sum or the difference of the square

roots of tJie numbers thus obtained^ according as the given binomial

surd is a sum or a difference.

Ex. 2. Find by inspection the square root of 53 — IO-y/G.

We have ^53 - 10//6 = V^53 - 2 /y/ 150.

The two factors of 150, of which the sum is 53, are 50 and 3.

Hence V^53 - lOy^ = y^ - ^- 5/^/2 - /y/S.

53.* It may be shown that, if x and y are positive rational

numbers, Six ± Vy can be expressed as a simple binomial surd,

provided that ar^ — y is the square of a rational number.

Exercise XX. 15

'
(This exercise may be omitted when the chapter is read for the first time.)

Find the square root of each of the following binomial quadratic

surds:

1. 8 — 2Vl^. 6. 19 - Vl92. 11. 28 + 7a/12.

2. 7 — 2a/I2- 7. 64+ 6a/7. 12. 51 + 7a/8.

3. 17 + 2^/70. 8. 18 - 8'\/5. 13. 88 - 9a/28.

4. 5 + \/24. 9. 32 + 10a/7. 14. 6 + 3a/3.

5. 13 — A/T68. 10. 18 - 3\/20. 15. 3 + ^5.

* This section may be omitted when the chapter is read for the first time.
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CHAPTER XXI

IMAGINARY AND COMPLEX NUMBERS

I. Imaginary Numbers

1. An even root of a negative number cannot be expressed either

as a positive or as a negative number. (See Chap. XVIII. §§ 7, 14.)

By the Law of Signs in multiplication the product of an even

number of positive or of negative numbers is positive; hence a

negative number cannot result as the product of an even number

of positive or of negative foctors alone.

E. g. Since (± 5)* = 25, -y/— 25 cannot be expressed either as a positive

or as a negative number.

2. In order that an indicated even root of a negative number may
be admitted to our calculations, we shall assume that the identity

iVaY = a holds without exception for negative as well as for posi-

tive values of the radicand a. (See Chap. XVIII. § 10.)

E. g. >y/^l is defined to be such a number that its square shall equal

- 1, that is, (V^n^)* = - 1.

3. An even root of a negative number is called an imaginary
nuiuber,

2nj
E. g. V— 1) V— 2> V— 4, V— »> and y^— a are all imaginary

numbers.

4. The initial letter i of the word imaginary is commonly used

to represent a/—T, which is taken as the unit of imaginary

numbers. Hence 2^ = — 1. (See § 2.)

5. Imaginary numbers have no existence in an arithmetic sense,

and hence, when first introduced into mathematical science, were

called "imaginary" numbers before their meaning and use in con-

nection mth other " kinds " of number were understood.
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6. To distinguish them from imaginary numbers, all other num-

bers previously defined, — such as rational or irrational numbers,

whether they be positive or negative, integral or fractional, — are

called real numbers.
Certain other names have been suggested for " imaginary " num-

bers and "real" numbers, but we shall employ these commonly

accepted terms.

7. In order to be able to operate with imaginary numbers by the

same rules as with real numbers, we must assume that all positive

or negative multiples, or fractional parts of the unit of imaginaries,

V— 1 or i, are numbers, and that they obey all of the Laws of

Algebra.

E. g. Just as

4 = 1 + 1 -h 1 -I- 1, so 4V~ = ^^ + V^ + V^ + V~;
and as

I = i + i + i so |V=i: = iV=n[ + 1v=^ + iV=^-

8. Multiplication by i may be defined by assuming

that the Commutative Law holds for imaginary num-
bers :

that is, a X

Or

E. g. 3 X V^ = V^^ X 3 = V^+ V^^ + V-^-

By multiplying each of the numbers of the extended _ ^.

series of whole numbers by i, we may form the series _ 3^-

of purely imaginary whole numbers. - 4i

9. Powers of i. It should be observed that

— ooi

-\-ooi

"+ 3i

+ i

± Oi

and that V^H" V- 1 = V{- If ^ ^+ 1' = + 1.

This is because, whenever the radicand is known to be the square

of a negative number, such as (— 1)^, the square root must be a

negative number, — 1. (See Chapter XVIII. § i:^).)

We may obtain the following powers by multiplication :
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w~i)' = (V^nv^) = (- 1) v^i = - v^,

= - (V^iy = - (- 1) = + 1,

(V=rT)« = (V- 1)* V- 1 = a/=^.

The values of the first four powers of V— 1 are all different, and

the value of the fifth power is the same as that of the first. Con-

sequently, since each power is obtained by multiplying the power

next preceding it by V— 1, it follows that the results obtained

above must recur in groups of four different values.

That is,

= {*n+2 = _^^

• Z= I
;4n+3

n being zero or any positive integer.

From the reasoning above, it follows that

:

(a) A?ii/ even power of i is equal to one of the real numbers — 1 or

+ 1, and any odd power of i is equal to one of the imaginary numbers

+ V^^ m- - V^.
(b) According as the remainder obtained by dividing the exponent

mofa given power of i by 4 is 1, 2, 3, or 0, the value of i"^ is i, i^, i^

or i* ; that is, /, — 1, — /, or + 1, respectively.

E. g. i^ = i*
• 6+3 = ?3 ^ _ i . iSi = H • 8+2 = ^-2 ^ _ 1.

10. As a result of assuming that the Commutative Law holds, we

have the Distributive Law {x ± y) i = xi ± yi ; and also the

Associative Law xiyi = i\i/ = — xy.

11. Division by i. To conform with the definition of division,

— must be such a number that, when multiplied by i, the product

is ni»
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By our definition, n X i = ni.

Hence n X i -r- i = ni

Or
i

12. The square root of any negative number is an imaginary

number and may be expressed in the form V— ci = i\/a.

For, since (y^V^^Y = (Va)\V^iy = -a
and (V— ciY = — ^)

it follows that {V^^f = (V^V^^Y-
Accordingly, for principal values of the roots,

Of the two values, + V— « and — V— <^, of the square root of

any given negative number — a, the first one, + a/— «, is selected

as denoting the principal value of the square root of the given

negative number.

Ex. 1. /v/-25 = V^^C- 1) = ^25V-^ = 5/v/^ = 5 i.

Ex. 2. 3V'^e = 3>v/36(- 1) = 3-v/36V^ = 3 ' 6-^/^ = 18 i.

Mental Exercise XXL 1

Reduce each of the following powers of i to one of the numbers

1, — 1, i or — i :

1. P.

2. i'\

3. i'\

4. ^«^

5. ^«^

6. i'\

7. P.

8. — ^^

9. - 2«

10. e".

11. z^'^.

12.
^l''^

13. (V^Y-
14. (V^)^^
15. (V-£)"
16. (V- 1)''

17. (V^)''
18. (V=^)''

19. (V=^)'^

20. (V^)".
21. -(.v/^)"'.

22. (V^y\
23. (V=^)''.

24. (V=T)"l

Express each of the following imaginary numbers as a multiple

of the unit of imaginary numbers — 1

25. V- 9. 29. -3V-49. 33. 4V- 121. 37. --3'\/-^'.

26. V- 16. 30. 5V- 64. 34. V-rt^ 38. ^V- /•

27. V- 25. 31. -7a/-81. 35 \/—b'. 39. -aV-^;'.

28. 2a/— 36. 32. 9V- 100.

29

36. 2V- 40. V— 4«'^
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41. V- 49 b^ 46. a/^^. 51. V— 9 bK 56. b\/~Uz\
42. aV- x^. 47. V^^. 52. V-16c^ 57. {V^^f^
43. yV^f, 48. \/-rf^^ 53. V- 25</». 58. (V^)^®.
44. -cV^c'^ 49. V- ^". 54. 2V^^^U^\ 59. (V-c)^^

45. V^^. 50. V— 4 a* 55. 3V-49/. 60. (V^/*.

Addition and Subtraction of Imaginary Numbers

13. Since imaginary numbers may be written so as to appear as

arithmetic multiples of the units / and — /, they may be combined

by addition or subtraction by the same principles as real numbers.

In all operations involving imaginary numbers, it will be conven-

ient to write the terms of given expressions as multiples of the unit

of imaginaries, V— 1 = '•

It should be observed that V--^a = V— lV« = i^/a.

= bi + 3 i — i =7 i.

\/-49//'^=4ai -7bi=(4a-7 b)i,

^ + I'll = ^ + (_ ^) = 0.

t's + i'-^ = 1 + 1 = 2.

Exercise XXI. 2

Simplify each of the following :

1. 2V— 1 + 3V- 1. 7. 2V- 81 + 3\/— I.

2. V^^ + V^l. 8. 4V^ — 6V^n^.

3. V- 16 + V- 9. 9. V— 169 - 2V- 36.

4. V— 49 — V— 25. 10. V— 196 — 4\/^^-

5. V-64 + V— 100. 11. ttV— 100 - 2A/-49a^

6. V— 121 — V— 144. 12. 8V— 64ar' — 10 a;V- 25.

13. V— 121 — 2^—49 + 3V^^.
14. 13V^ - V- 169/ + 6a/~ 16/.

15. V— 144^2 — V— 64 a* — V— 16 a«.

16. 9V- 4 a' - 4aV- 9 «"« - aV- 36 a"".

17. V^^=^ -V^ - V==^.
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18. a/^^ + a/— 18 — V— 50.

19. V- 12 -h 5a/- 75 - lOV- 108.

20. 3a/- 20 - 2V- 45 + 5a/- 125.

21. ^« + e' + ^« + /^ 28. 13 i^"- - 31 P.

22. P - 11 P. 29. z^ + e* + ^*.

23. 3 ^» - 4 ^^ + 5 i^ 30. ^^« - ^^* - ^l^

24. 6 — i\
*

31. 8 ^' - 4 i^ + 2 ^2.

25. 7 * — ^^. 32. ^* + z^ + 2^ + «'•

26.

27.

33. P -

34. 2z2

Multiplication of Imaginary Numbers

14. In case either the multiplier or multiplicand, or both, are

imaginary numbers, the following principles apply

:

,

( (i.) ^/7l^/^^= VctiVb = iVab = V—ab,

I
(ii.) V— aV— b = iVa i\/b = i^Vcib = ~Vab,

Ex.1. V^ X V49 z=2ix7=l4i.

Ex. 2. V-2 X V-^ = *V2 X t'v^ = i'^^/lO = —v^lO.

Exercise XXL 3

Simplify each of the following :

1. 2i X i. 6. — 1 i X i.

2. 3 / X i. 7. 4 ^ X (— 3 i).

3. ^ X 6e. 8. — 9 z X {—i).

4. 4/ X 5e. 9. — 10« x(-2z).

5. 8 / X 3 i. 10. V3 X V^^.
16. — V^^ X V^^.
17. -\/^ X (- V^).
18. - 2a/^^ X (-3\/^^).

19. 2a/^^ X 3^/^^.

20. -V-^Te X V^.
21. V^^x V-^-

11. V5 X V^^.
12. V^^ X V^.
13. V^^l X V^.
14. V^^ X a/^.
15. V^ x V^.

22. V^^ X V— 10.

23. a/^ X a/^^.

24. a/— 14 X V^.
25. V^ X a/^.
26. ia X i.

27. ih X i.
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53. V— 10 a X V— '^ «.

54. V— 3^ X V-6 6.

55. V-21<?X V— 7 c?.

56. V— iPy X V— a%

57. ^/—xyz X V— ais.

58. xV—yz X xyV^^.

59. xV^^ X icV— a*.

60. 3 e X 2 2 X /.

61. 5 e X 3 ^ X /.

62. 6 e X 4 2 X /.

63. — 7 2 X 5 ^ X ^.

64. — 8 e X 3 e X 2 /.

65. ia X ib X ic,

66. /a; X iy X iz.

67. 2 /a; X 4 ix X 6 zaj.

68. ia^ X ia^ X ia.

69. V--^ X V^^ X V^.
70. \/^^ X V^^ X V^^.
71. a/- 2;") X V-49 X V^^.

V— 5 c X V— 6 c.

78. ^-^3^ X V—^y X V—^z.
79. V— 3 «6c X ^/—2ab X V^^-
80. V=^^ X V^' X \/^^.

81. (-\/:=^(-v=^(-V^^.
82. ia X ib X ic X id,

83. ib X ^c? X ix X iy.

84. 2 2a X 3 ih X im X 2.

72. V- 64 X V- 36 X V- 9.

73. V— 12 X V^ X V^.
74. V— 14 X V^ X V^.
75. V- 15 X V^ X V^^.
76. V--^ X V^^ X V^^'
11, -V—'Zc X ^/-'6dX V^^.
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85. iahc X iab X ia X
86. 5 ^6 X 4 ib X ic X 2.

87. V- 2 X V— 3 X V- 4 X V— 1.

88. V- 5 X V— 6 X V— 2 X V- 1.

89. V— 6 X V— 2 X V- 3 X V- 1.

90. V— 10 X V— 5 X V— 2 X V— 1.

91. ^* X i. 97. i^ X i^ X ^^

92. i' X i\ 98. — ^« X ^^ X /^

93. i' X i\ 99. 3 z* X 4 i^ X z^.

94. 2i'X 4e». 100. bi^ X 4i* X 3^^

95. - 7 i' X a /«. 101. -7e« X 5?'' X 2

96. ^* X e« X ^^. 102. z' X «* X ^« X i\

103. 2 2^ X 3 ^* X 4 2« X 5 i\

Division of Imagiuary Numbers

15. In case either the dividend or divisor, or both, are imaginary

numbers, the following principles apply :

V— a _ i^a __ .. la . I a

_ v«

(i.)

(ii.)

(iii.)

VI- v/-

Ex. 1.

Ex. 2.

Ex. 3.

^''^iV2.

V
J_
— i

V6 a/6

^_*V2_,/2_1 /^^ =
^V^

= V3 = 3^•

- 1
+ *.

16. In the last example, the operation of "realizing" the im-

aginary denominator, or making it " real," suggests the operation

of " rationalizing " an irrational denominator.
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9V- 16 H- I6V- 9.

Exercise XXI. 4

Simplify each of the following

:

1. V^^^^VTl. 20. iV- 14 -f

2. V-39 H- Vl3. 21.

3. V— 30 -r- V3. 22.

4. V^^ ^ \/=^. 23.

5. V- 14 -7- V^. 24.

6. V- 15 H- V^. 25.

7. - V-26 ^ V- l.S. 26.

8. V— 28 -^ (- V^^). 27.

9. V-20 -7- \/=^. 28.

10. 12e^3e. 29.

11. 18eH-6/. 30.

12. 24^-^8^. 31.

13. 35 2 ^ 5 i. 32.

14. V^ ^ V=^. 33.

15. V^^ -T- V^^, 34.

16. V^a ~- \/=nO. 35.

17. a/- 11-f- V^^. 36.

18. 2\/^ -T- \/^=^. 37.

19. SV^ -^ V^. 38.

2.

49V— 25 -^ 25V— 49.

V— «6c -r- V— a.

—V— a; -T- V— ^.

39.
2

V-3

40.
4

V-5

41.
6

V-2

42.
12

V-6

43.
11

V-

u

44.

45. V

46.

47.

48. ^

-9

V— abc -r- V— bed*

a^— a -T- hv— h.

iVi -^ iVTb.

W2 -7- zVs.

— iVii -^ «V3.

49. ^.

50. |.

51. |.

11
52.

;

53 i?5^-
,.10
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55. 56.

17. Both negative and fractional numbers were included in our

extended number system by bringing in the idea of measuring dis-

tances or counting in opposite directions.

From the point of view of the primary numbers 1, 2, 3, 4, etc.,

negative numbers and fractional numbers both have an existence as

imaginary as "imaginary numbers."

It remains for us to show that imaginary numbers may be given

a graphical interpretation.

18. By means of the principle of geometry that in a right triangle

the square on the hypotenuse is equivalent to the sum of

tJie squares on the remaining two sides^ we may repre-

sent graphically any surd number.

E. g. If in a right triangle the sides including the right

angle are each one unit in length, the hypotenuse has a

length represented by 'y/2. (See Fig. 1.)

Using the length thus found for v 2, we may find a length representing

'V/a. (See Fig. 2.)

-2 -V5 -yjl -1 ^J2^fZ2

Fig. 2. Fig. 8.

By setting off lengths thus found along a straight line, as in Fig. 3,

definite points can be located on the line, representing + a/2, + V3, +

^/1= 2, - V2, - Vs, - V4 = - 2, etc.

By separating the line from to 1 into equal parts, we may locate points

representing positive fractions, such as + |, + i, + f , etc.

In a similar way points r(;presentiiig negative fractions, such as — ^, — f,

^tc, may be located.
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Graphical Kepreseutation of Imaginary Numbers

19. Consider the following products consisting of a positive

arithmetic number a multiplied by — 1 and by (— 1)^.

Multiplying « by — 1, once^ « X (— 1) = — a.

Multiplying « by — 1, twice, « x (— 1)(— 1) = « x (+ 1) = + a.

It appears that multiplying a by — 1 once reverses the quality of

a, while multiplying by — 1 twice successiveli/ reverses and then re-

stores the quality of a.

Accordingly, if + « represents a length OAi, measured along our
" carrier line " in the ]X)sitice direction, since multiplying by — 1

reverses the quality of + «, to represent — a we must measure an

equal length OA3 in the opposite or negative direction from the

same starting point or origin, 0.

We may think of the line a as having made a " half revolution
"

about the origin from the position 0^1 1 to the position OA^.

Multiplying — a by — 1 will pro- _ ^ _^ ^
duce a second " half revolution ;

"

'

^1-

hence multiplying -fr/Jby — 1* 1

twice s^ivccestaively may be thought of as producing a "complete

revolution " of a about the origin 0.

20. Observe that by multiplying -f a by V— 1 = / once, twice,

three times, and four times successively, we obtain the numbers + «»,

— «, — ia and H- a, respectively, as follows :

ai = + ia,

aii =— a,

aiii — — ia,

aim = + a.

It appears that the quality of a may be reversed either by mul-

tiplying by i twice or by multiplying by — 1 o?ice ; and the quality

of a remains unaltered when a is multiplied by ifour times or by

— 1 twice successively.

If a represents a given distance measured along a fixed line in

one direction, it may be seen that the quality of a may be reversed

by turning a about one of its end points through a half revolution ;

and the quality of a remains unaltered when a is turned about one

of its end points through a complete revolution.
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ia-

V

^3 -a
V— ia

J A,

Hence, since performing the same algebraic operation two times

(multiplying a by V— 1 two times) has the same effect on a as

turning a about one of its end points through a half revolution, it

may be seen that it is consistent to interpret multiplying a by i

once as causing a quarter revolution of the line a about one of its

end points.

If we let OAi represent the original posi-

tion of the line a, then, having made a quarter

revolution, OA2, will represent ia; at a half

revolution, OAs will represent — a; at a three-

quarters revolution, OA^ will represent — ia
;

while 0^1 1 will represent the position of the

line a after having made a complete revolution

about the point 0.

It is customary to suppose the line OAi to swing upward and

around the point in the direction opposite to the movement of

the hands of a clock, that is, counter-clockwise.

It follows that the positive imaginary number + ia may be repre-

sented graphically by measuring a length " upward " along a line

at right angles to a in its

original position, OAi. The

negative imaginary number
— ia will accordingly be

represented by measuring

downward along the same

perpendicular line a dis-

tance equal to a.

The line AsOAi is called

the axis of real numbers
to distinguish it from the

axis of imaginary num-
bers, A4OA2, which is

drawn at right angles to the

line A3OA1.

We may represent the two series of numbers, " real and imagi-

nary," as in the accompanying figure. It should be observed that

the series of real numbers and the series of imaginary numbers

\+coi

f

.+2i

M

-3 -2 -1
t..

+1 +2 +3 +00

-2z.

I

»

I

I

Fig. 4.
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have in common the value zero, and no other value. This value

zero is represented by the point 0, which is the intersection of the

axis of real numbers and the axis of imaginary numbers.

21. One imaginary number, ia^ is said to be equal to another, ib^

if a =z I). We cannot say that a 7-eul number is equal to, greater

than, or less than an imaginary number.

22. Negative, fractional, surd, and imaginary "numbers" are

all " extended " or " invented " numbers with reference to arithme-

tic numbers, that is, to "positive whole numbers" which alone are

the result of counting. Of these " artificial " or " invented " num-

bers, each may have a graphical interpretation, and accordingly

from this point of view one " form " is no more " imaginary " than

another.

II. Complex Numbers

23. The algebraic sum of a real number and an imaginary number

is called a complex number.

E. g. 2 + y^, 5 - 8 i, a ± ib.

If a and h represent real numbers, the general expression for a

complex number is a -h ib»

In particular, if a = 0, « -f ib becomes ib^ which is an imaginary

number.

If 6 = 0, « -f ib becomes «, which is a real number.

24. Two complex numbers, which differ only in the signs of the

terms containing the imaginary unit ^, are called conjugate com-
plex numbers.

E. g. a -{-ih, and a — ib are conjugate complex numbers.

25. Two complex numbers, x -\- iy and a + ib, are said to be

equal if their real terms, x and a, are equal, and their imaginary

terms, iy and ib, are equal.

.^ 26. In order that a complex number, x -f iy^ shall be equal to

zero, it is necessary and sufficient that the real part shall equal zero

and the imaginary part shall equal zero.

For if a; -f /y .-^ = 4- /O, then by § 25, £c= 0, and also y = 0.

27. If either aj or y is infinite, the complex number x -f- iy is said

to be infinite.
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28. The Four Fuudamental Operations Involving Com-
plex Numbers are defined by assuming that the fundamental

laws of algebra, as proved for real numbers, apply also for complex

numbers.

29. Addition and Subtraction of Complex Numbers. The

sum of two complex numhers is in general a complex number obtained

by adding the real parts and the imaginary parts separately.

For, since complex numbers are assumed to obey the Fundamental

Laws of Algebra, it may be seen that

(a + ib) ± (x + iy) = (a ±x) -{- i(b ± y).

The principle applies for three or more complex numbers.

Ex. 1. (3 + 5^=1:) + (6 - 2^^ = (3 + 6) + (5 - ^)^/^^
= 9 + 3 *.

30. The sum of two crnijugote complex numbei's is a real number.

For, {a + ib) + {a — ib) = {a + a) + i{b -b) = 2a.

31. Multiplication of Complex Numbers is defined by as-

suming that the Distributive Law for Multiplication (Chapter V.

§ 21) applies to complex numbers.

(a + ib)(x + iy) = (a + ib)x + (a + ib)iy

=.ax + ibx + aiy + ibiy

= (ax — by) + i(bx + ay).

32. It may be shown, by applying the Associative Law (Chapter

III. § 4), that in general the product of two or more complex numbers

can be expressed as a complex number.

Ex. 2. (4 + 7 0(2 - 5 = 8 + 14^ - 20i; - 35 i^ = 43 - 6*.

Ex. 3. (a + ihy = a^ + 2 ai6 + %%'^ = a^ -b'^+2 iah.

33. The product of two conjugate complex numbers is a number

which is real and positive.

For, {a + ib)(a - ib) = a^ - i'b^ = a' + P.

Ex. 4. (-5 + 2a/=^)(-5-2V^)-^(-5)2-22(V^)'=25+12=37.

34. Division of Complex Numbers. The quotient obtained

by dividing one complex number by another can be expressed as a

comj)lex number.
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For,
a + ib __(a + ib)(x — ii/)

X + iy~ (x -\- iy){x — iy)

_ {ax + by) 4- i{bx — ay)~
x' + y'^

ax \- by .bx — ay

35. From the reasoning above it appears that a fraction the

denominator of which is a complex number can be expressed as a
complex number.

2-3/ _ (2-30(4-5i)
• • 4 + 5t~(4 + 5i)(4-6i)

_ -7-22t~ 41

Ex. 6.
7 - 2V--6 ^ (7 - 2^V6)(VlO + 3zV5)

_ 7yio + 6V30 + ^(21 a/5 - 4//I5)~
55

Exercise XXI. 5

Simplify each of the following expressions :

1. (2 + 30 + (5 + 2 e). 6. (9 - 5 2) - (5 + 9 1).

2. (5 + 80 + (2 + 40- 7. (3+ 4a/^) + (7+2V=^).
3. (7 - 10 + (2 + 9 0- 8. (8-7\/^)+(8-10'v/^).

4. (4 - 11 - (6 + 3 0- 9. (4-12a/=4)-(9-11 V=4).

5. (1 - 12 - (12 -e). 10. (6-2v^)-(5+4V^).
11. (2 + V^) + (4 + V=T6).

12. (3 + V^=^) + (6 + V- 4).

13. (5 - V-36) - (6 + V- 49).

14. (25 - ^-36) - (36 - V- 25).

15. (8 - a/^) - (18 - V- 18).

16. (5 + 2a/^ + (7 - 3\/- 12).

17. (11 + 2\/- 20) - (4 - 3V- 180).

18. (6 - 5V- 28) - (12 + W- 63).
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(a + 3 + (2 + bi),

(a;-4^•)-(2/+6^).

(m - 8 i) -(n-10 i).

(2a + 5bi) + (Qa — bi).

(5 + Si)i6-^i).

(-6 + 7 0(- 6 - 7 ^).

(7 + 4^)(7-4^).

(8 + V^^)(8 - V^^
(7 + 3V=^)(7 - 3a/- 5).

(3 + 2*)(4 + 5i).

(8-6^)(2 + 5 0.

(2-^Xl-2^).

(V2 + 2')(^;^ + 0-

(\/2 + V=n")(V2 - V-jO-

(V3_+\/=r5)(V3- V-5).

(3V5 + 2V3)(3a/5 - V3).

(6V7 + 8\/^(6V7 - SV- y).

(2 + 3 0(V5 4-«V6).

(1 + zy.

(1 + i)\

(3 + 4zy.

l-^(2 + 3z).

5 -- (2 -y^^)^_
10 -T- (V5 - V- 2).

51 -=- (1 - 5 V^^)-
2 + Si

2 — Si'

9+ V^
8+ y/^
1 + V- 1

.

1- v^
48. (/^ + aV'^^)(« + bV^^)'

49. (t/V^ + x\/^^)Q^V^ — 3/V- ^)-

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

84.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
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50. (- 1 4- V^)(--l - V^.
51. (aV^^i - bV^'-
52. (1-/7(1 + 0-

53. (1 - 2)(2 - 0(3 - e).

54. (1 + ^Xl -3f)(l + 5e«).

Complex Factors of Rational Integral Expressions.

36. The method of Chap. XX. § 48, may be applied to obtain

factors of expressions of the form ax^ + bx + c which are the prod-

ucts of complex factors.

The following identity was obtained in Chapter XX. § 48

:

L 2a 2a JL 2a 2a J

If the expression ^^ — 4 ac be negative, Vb" — ^ac will be imagi-

nary, and accordingly the factors of ax^ \- bx -\- Cy represented by

the expressions in square brackets, will be complex.

Ex. 1. Factor a;^ + 3z -|- 4.

We may complete the square with reference to x^ + 3 a; by using 3 a: as a

finder term as follows

:

w u 3a: 3We have t;— = t:
•

2a; 2

Hence, a;^ + 3a; -h 4 = x^ + 3ar + (|)2 _ | + 4,

= (^ + 1)' + ^, _
= (x + |)2_(y_7)2,

= (^ + f+^i^)(^4-|-^).
Square Root of a Complex Number.

37.* Corresponding to the principle employed when finding the

square root of a simple binomial surd (see Chap. XX. § 50 (vi.)), we
have the following

Principle : If the square root of a complex number can be expressed

as a complex number, then the square root of the conjugate complex

number can also be expressed as a complex number.

That is, if VcT+Tb = Vx -\- iVy, (l)

* This section may be omitted when the chapter is read for the first time.
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it follows that V« — 2^ = V^c — Wy- (2)

If a, ^, a;, and ^ are real numbers, we obtain, by squaring both

members of (1), a-\-ih = x — y-\-^ ia/xij.

Hence, by § 25, ^ = a; — ?/, and also h = 2^/xy.

Accordingly we may construct the expression

a — ib = X — y — 2 i\/xy

= {y/x — i^/yf.

Hence, V« — if> — Vx — lA/y-

38.* It follows that the square root of a complex number can be

expressed as a complex number.

For, from § 37, if ya + lb = Vic + Wy^ (1)

it follows that V« — ib — V-^ — Wy, (2)

in which a., b, x, and y are real numbers.

Hence, from (1) and (2) we obtain by multiplication,

V (« + ib)(a — ib) = (yx + iVy)(Vx — Wy\
or, V«' + b'' = x^-y, (3)

Squaring both members of equation (1),

a-^{b = x — y+2 iVxy. (4)

Hence, by § 25, a =x — y. (5)

Solving equations (3) and (5) for x and ?/, we have

x = - 2 (6) and 7/
=

^ (7)

Accordingly, from (1),

V« + lb = V ^ + ^V ^ (8)

Since a and ^ are real numbers, it follows that a^ + // is positive

;

hence a/oM-^ is a real number, and accordingly the right member

of (8) is a complex number.

Ex. 2. Express aJ— i as a complex number.

We may write V — i = y'O — i.

* This eection may be omitted when the chapter is read for the first time.
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Comparing \/0 - i with the form ^a + bi, it appears that a = and
6 = — 1 ; hence, carrying out the process shown above, or substituting im-
mediately in (8), we obtain,

_ (t-i)Va
"

2

Exercise XXI. 6

Find complex factors for each of the following :

1. a' + ^-. 4. aj2-4«-8.
2. 25ic2+ 1. 5. '2x'+ 3aj + 4.

3. 2!^ + 6a;+ 10. 6. 9a;' — 8a;— 7.

(The foUowing examples may be omitted when the chapter is read for the first time.)

Express as complex numbers the square roots of the following

complex numbers :

7. - 1 + 2V- 2. 10. — 36 - OV- 48.

8.3 — 4/. 11. — I — 6\/— 10.

9. 41 — 14V- 8. 12.-1 — 2eV2.

Graphical Representation of Complex Numbers.

39. Applying the method of §§ 19, 20, for the representation of

an imaginary number, we may represent a complex number a + ib

graphically by means of a point, B. This point is located by first

measuring a distance OA equal to a from the origin along the

axis of real numbers^ and then from the point A thus reached
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{a+ib)

AX

Fig. 5.

measuring a length AB, equal to b, in a

direction parallel to the axis of imaginai-y

numbers^ that is, at right angles to the axis

of real numbers. (See Fig. 5.) —
The point B may be called the graph

of tUe complex number a + ib. It may
be seen that the graphs of all complex num-

bers which have equal real parts a, lie on the same straight line, A B,

parallel to the axis of imaginary numbers, OY. It may also be

seen that the graphs of all complex numbers which have the same

imaginary part, ih, lie on the same straight line, passing through the

point B, parallel to the axis of real numbers, OX. (See Fig. 6.)

{a'-^ib')^ {a-\-ib')^

I

I

u
\X
I

[a-ib")^

Fig. 6.

40. * The length of the line OB may be shown by principles of

elementary geometry to be equal to the positive value of V^^ + ^"^.

The positive value of V^^ + b'^ is called the modulus of the com-

plex number a + ib. (See Fig. 7.)

E. g. The modulus of eitlier of the conjugate complex numbers, A + ^i

< ,r 4-3 i, is + y/4^ + 3^ =l + 5.

41.='^ The modulus of a complex number may be taken as repre-

senting the absolute or arithmetic value of the given complex

number.

42. * One complex number, a + ib, is said to be numerically

equal to, greater than, or less than another complex number, x + iy,

according as the modulus a/«^ + b^ of the first is equal to, greater

than, or less than the modulus V^c^ + if of the second.

* This section may be omitted when the chapter is read for the first time.

j]0
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43.* It may be shown that the points representing all complex
numbers having equal moduli lie on the circumference of the same
circle, while all those representing complex numbers of greater or

less absolute value lie without or within the circle according as their

moduli are greater than, or less than, the modulus of the given

complex number.

E. g. The complex numbers 4 + 3 i, 4 — 3 z, — 4 + 3 i, — 4 — 3 1, 3 + 4 i,

3-4i,

-

+ 5.

3 + 4i, — 3 — 4t, etc., all have tlie same modulua, ^^4* + 3^ =
Each of these complex numbers may be represented by a definite

point situatetl on a circle, of which the center is the origin and the radius

is 5. This circle passes also through the points representing the real num-

(See Fig. 8.)bers + 5 and — 5 and the imaginary numbers + 5 1 and — 5 i.

All numbers of greater or less absolute value may be represented

by points situated outside of, or inside of this circle, respectively.

E. g. The point representing the complex number 6 + 2 1, of which the

modulus is y'4() = 6 +, lies without the circle, while the point representing

the complex number 4 -\- 2i, of

which the modulus is 'v/20 = 4+,

lies within the circle. (See Fig. 8.)

44. By applying the Principle

of No Exception, we have ex-

tended our idea of number from

the primary arithmetic whole

number, to negative, fractional,

irrational, imaginary, and finally

to complex number.

We have shown in §§ 29-35

that the fundamental operations

of addition, subtraction, multi-

plication, and division, when
applied to complex numbers, result in general in complex numbers.

It may be shown by principles and methods beyond the limits of

elementary algebra that, whenever the direct operations of addition,

multiplication, and involution, or the indirect operations of subtrac-

tion, division, and root extraction, are applied to any of the kinds of

Fig. 8.

* This section may be omitted when the chapter is read for the first time.
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number, including complex number, the results in each case lead to

no new kind of number.

The number represented by {a + iby'^'^ is a complex number.

Accordingly, the complex number may be regarded as the most

general kind of tmmOer, and with its inclusion the number system

of algebra is complete.

Mental Exercise XXI. 7 Review

1. Show that a;® + 6 A-^ + 9 a;* is the square of a binomial.

2. Find the continued product of x^ — i/% x^ -f 7/\ x^ + ?/* and
«« + f.

Obtain each of the following quotients :

3. {a -b)--.{b-a). 5. (5 --^- (^-5).
4. (c--4)-- (4 - c). 6. (x'--f)-^(ij- x).

Square each of the following :

7. a. .12. - i. 17. .06. 22. .01.

8. b\ 13- §• 18. ai 23. c~K

9. c\ 14. .2. 19. bl 24. «f"l

10. i. 15. .3. 20. c\ 25. - 3.

11. h 16. .5. 21. (#. 26. - x^

Find the value of

-? - (i:

2

29.
2
3^*

Express as a single power of 5 :

30. 25^ 125' ; 625*.

Find the value of

31. 3' — 2^ 32. 2' + 2-^

Express as a power of a base:

33. (2^^. 34. (y^y. 35. (z^.

36. Find the values of {^y and - 2'^

Express the following with positive exponents :

37. a-^ -T- 6"l 38. x'"- 4- y-^. 39. (1/m)-'' -^ (1 /n)-\
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Show that the following identities are true :

42. {x - y){z - y){x ^z) = {x- y){y - z){z - x).

Simplify each of the following :

43. \^HM\ 44. v^l6^. 45. '^27 twV.

46. Regarding x as the unknown, solve - H !--=:</.XXX
Distinguish between

47. fa and ai 48. x'^ and — x.

49.(f)-l.(i)-,a„d(f)(-l). 52.2a„dl.
- a a^

50. rt-l + />-! and -4-7- no ^ r: r:0 nS ^ ^ ^
a + 6 53. • 5, 5^ 0^ - and -.

() 5

51. — 1 -^ a and 1 -f- a~\ 54. (— a)~^ and — a~\

55. (- ^)-« and - b-\

Which of the following complex numbers have equal moduli 1

56. 3 + 4 ?, 4 — 3 /, 5 + 12 /, — 3 + 4 /, — 12 — 5 i.

Simplify each of the following :

58.

59.

60.

61.

62.

i+ 1

i

i + 3

4 + i

i

i + i

20

a

ft-"

63.
y

y

z

y

• w
w

64.
z
~'

65. («-f «')(«=' - a-^.

66. (f"Xf-,).

67. (a^--?,f)^
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CHAPTER XXII

EQUATIONS OF THE SECOND DEGREE CONTAINING
ONE UNKNOWN

1. If the members of an equation containing the second power of

one unknown quantity, «, are rational and integral with respect to x,

and if they contain no powers of x other than the second and the

first, the equation is said to be of the second degree with reference

to ic, or quadratic.

E. g. a:2 4- 5 a: + 6 = 0,

a;24- 3ar = 7 -2a:2 + 5a;.

2. From every quadratic equation containing one unknown quan-

tity, X, may be obtained, by applying the principles of Chapter X, an

equivalent equation of the standard form ax^ \- bx -\- c = 0.

In this equation, which will be referred to as the Standard

Quadratic Equajtion, a, 6, and c represent known quantities, a

being positive and different from zero. The first term, ax^^ repre-

sents the sum of all of the terms containing oi? ; the second term,

bx^ is the sum of all of the terms containing x to the first power, and

the third or known term, c, stands for the sum of all of the terms

that are free from the unknown, x,

E. g. Froin 4a; — 2 a;* + 8 = 3 — 2a; — 5 x^ may be derived the equiva-

lent quadratic equation in standard form, 3a;2 4-6a:-|-5=:0.

In the equation 3 a;*^ -|- 6 a; -f- 5 = 0, the numbers 3, 6, and 5 take the place

of a, 6, and c respectively in the standard quadratic equation ax^ _(- fex -f- c = 0.

3. In the standard quadratic equation am? + bx + c =^ 0, either

of the letters b ox c may represent zero, causing the corresponding

terms to disappear from the equation, but a cannot be zero^ for in

that case there would be no term containing y? ; hence the equation

would not be quadratic.
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In all that follows we shall therefore assume that a 7^ 0, and that

a, 6, and c are all real quantities.

4. If, when reduced to the standard form rt'ar + bx + c = 0, &

quadratic equation contains all of the terms represented by ax^, hx

and r, it is said to be complete.

If either of the terms represented by bx or c be missing, the equa-

tion is said to be incomplete.

E. g. 7a:* + 3 a? — 5 = and x* — 3a:4-10 = 0are complete quadratic

equations, while 3i* — 4 = and 9x^ = 22; are incomplete quadratic

equations.

Graphs of Quadratic Equations.

5. The graph of a quadratic eciuation ha\nng the form of the

standard quadratic equation ax^ -\- hx -\- c = may be obtained as

follows

:

Let y represent the value of the expression aa^ + bx + c when a

particular number is substituted, for x. The value assigned to x
and the corresponding value calculated for y may be taken as the

x-coordinate and the y-coordinate respectively of a point on the

graph of the given quadratic equation a.i^ + bx + c = y. By as-

signing different values to x and calculating corresponding values

for yy the coordinates of as many points on the graph of the given

quadratic equation as may be required may be obtained.

E. g. We may obtain a portion of the graph ol the tpuulratic equation

x* + 4 X = 5 a.s follows

:

Transposing the terms of the given equation to the first member and

representing the value of this first member by t/, we have x^ -\- 4x — 5 = y.

Substituting different values for x in the equation x2 + 4x — 5 = 2/we

may calculate corresponding values for y.

If X = 0, we have + — 5 = y. Hence, — 5 = y.

x=l, 1+4-5 = i/. = y.

x-% 2^ + 4-2 - 5 = y. 7 = 1/.

X = 3, 32 + 4.3 _ 5 = y. 16 = y.

etc. etc. etc.

The values shown in the accompanying table may be readily

calculated.
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x2+4^ - 5 = ,/

X y

6 66
5 40
4 27
3 16
2 7

1

-5
-1 -8
-2 -9
-3 -8
-4 -5
-5
-6 7

(- 5£) m

Fig. 1. a:2 + 4x-5=y.

The general shape of the graph may be determined as follows :

By factoring the first member of x^ + 4:X — b = y^

we obtain (a; + 5) (a; — 1) =^y.

For all values of x greater than + 1 or less than — 5, the two factors

(x -\- 5) and (a: — 1) have like signs, and consequently the corresponding

values of y are positive, and the points on the graph of which these values

of X and y are coordinates must lie above the axis of X.

For all values of x lying between + 1 and — 5, the factors (x + 5) and

(a; — 1) have opposite signs, one positive and the other negative. It follows

that the product {x + b){x — 1), represented by y, is negative. Hence the

values of i/, obtained by substituting values lying between + 1 and — 5 for

X, must be negative, and the points on the graph of which these values of

X and y are coordinates must be found helow the axis of X.

The graph crosses the axis of X in the two points (— 5, 0) and (+ 1, 0),

and in no others, as shown in Fig. 1.

The values — 5 and + 1, which locate the points of "crossing," are the

values which reduce the expression x^ + 4 x — 5 to zero, and hence are the

roots of the equation x^ + 4 x — 5 = 0.

• 6. We have illustrated in this example the principle that every

quadratic equatimi containing one unknown has two roots, and can-

not have more than two roots.
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7. Approximate values for the real roots of a quadratic

equation may be obtained by first constructing its graph, and then

measuring the distances along the axis of A" from the origin to the

intersections (if there be any) of the graph and this axis, and

estimating the numerical values of x in terms of the scale unit

according to which the graph is constructed.

8. If, instead of crossing the axis of X, the graph lies wholly

upon one side of it, and simply touches it in one point, it is con-

venient to say that there are two values of x which satisfy the

equation, but that these values are equal.

E. g. The solutions of a:* + 4 x + 4 = 0, which

is equivalent to (x + 2)(aj + 2) = 0, are x = — 2,

and X = — 2.

By referring to Fig. 2, it will be seen that the

graph of x* -1-4x4-4 = 1/ touches the axis ofX at

the point (— 2, 0), and does not cross it.

9. If the graph neither crosses nor touches

the axis of X, there are no " real " points of

intersection with the axis, and in such cases

it will be found that there are no "real"

solutions to the equation, but there are two
" imaginary " values which may be found

by solving the equation.
Fig. 2. x'^ + ^x + A = y.

E. g. By methods which will be shown later,

the solutions of x^ + 4 x + 5 = are found to be

X = - 2 + V"-^ ^^^^ X = - 2 —y/^.
These solutions are complex numbers, and it will

be seen, by referring to Fig. 3, that the correspond-

ing graph of x'-^ + 4 X + 5 = 2/ neither crosses nor

touches the axis ofX ; that is, the points of crossing

are "imaginary."

I. Incomplete Quadratic Equations
Fig. 3. x^+ '^x+ b—y,

10. Any incomplete quadratic equation in which the first power

of the unknown is missing, may be reduced to the form
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ax'' + c = 0. (1)

We have assumed a to be different from zero (see § 3) ; hence,

dividing both members by a and transposing, we may write

.^ = ^. (2)

In this form, the general solution of the equation may be

obtained by either of the following methods.

11. First Method. We may employ the principles of fac-

toring by first expressing as the square of its square root,

at is. ?Kv/v)'

Hence, we have -(v/~y- (3)

Transposing, '-(v'-7=»- (4)

Accordingly, fx + y -^) (x - \-^) = 0. (5)

The single equation in this form is equivalent to the two sepa-

rate equations formed by equating to zero each of the factors.

(Compare with Chap. XII. § 48.)

Hence we may write

x+)J—^ = 0, and x-\/^^ = 0. (6)

The solutions of these equations are found to be

=-v^. and a; = +l/— . (7)

It should be observed that the two roots are equal in absolute

value, but opposite in sign.

If c and a have unlike signs, both roots will be real, but if c and a

have like signs, both roots will be imaginary.
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12. Second Method. By extracting the square roots of
— c

both members of x^ =— (see (2) §10), we may obtain
Or

V a

which is a convenient abbreviation for the separate equations,

a y a
(See (7) § II.)

Observe that, while it is not incorrect to write the double sign ±
before both members of the equation after extracting the square

roots, it is unnecessary.

This is because the equation x= ±y— might have been written

± x= ± y— > which is a convenient abbreviation for the foUow-
a

ing set of four equations :

-x= + \/^- (3) — = -sl^- (4)

By changing the signs of the terms in both members of (3) and

(4), we obtain (2) and (1) respectively.

Hence, when extracting the square roots of both members of an

equation, it is sufficient to write the double sign ± before the square

root of one member only.

13. Observe that, since there can be two, and only two square

roots of a given quantity, an incomplete quadratic equation of the

type an? + c = can have two, and only two roots.

Ex. 1. Solve the incomplete quadratic equation,

5a:2-50=x2a:2 + 25.

Transposing, collecting terms, and dividing the terms of the resulting

members by the coefficient of x^, we obtain the equivalent equation

x2 = 25.
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Extracting the square roots of both members,

X = ± b.

Accordingly the solutions are

a: = + 5, and x = - 5. (See Fig. 4.)

By substitution, these values are found to

be solutions of the original equation.

Substituting + 5,

5(+ 5)2 _ 50 = 2-52 + 25

75 = 75.

Substituting — 5,

5(- 5)2 - 50 = 2(- 5)2 + 25

75 =: 75.

Ex. 2. Solve 3 a;2 = (3 + .r)(3 - x).

We may derive, 3 x^ = d — x'^

Hence, x^ = |.

Accordingly, x = ± ^.

The given equation is found to be satisfied

by both of these values.

Substituting + f

,

Substituting - |,

mr = ('^ + l)(3 - f

)

3(- ly = (3 - |)(3

475

Fig. 4. x- — 26 z= y.

I)

V=i

Ex. 3. Solve a;2 + 1 = 0.

Transposing, x^ = — 1.

Extracting the square roots, x = ± ^/^^.

The solutions, x = -\- y"— 1 and x = — /y/^T
(see Fig. 5), are both found to satisfy the original

equation.

-V=i

Fig. 5. x^ -\- I = y.

Substituting + /y/— 1,

(V=^)' + 1 r.

-1 + 1 ::=0

= 0.

Substituting — y—l,
(- a/^)' +1 =

-1+1=0
= 0.

14. Any incomplete quadratic equation containing no term free

from X may be reduced to the form

ax' + bx = 0. (1)
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In this form its solution may be obtained by factoring.

Factoring (1), we have x {ax + ^) = 0, (2)

which is equivalent to the set of two separate equations,

iP = 0, and ax -\- b = 0.

The solutions of these equations are found to be

12.0)

and X =
d

(3)

Ex. 4. Solve 3x2 = 6x.

Transposing and factoring, 3x(x-2) = 0.

Hence, a: = 0, and a: - 2 = 0.

Hence the solutions are

a: = 0, and x = 2.

(See Fig. 6.)

These values are found by substitution to isatisfy

the given equation.

Substituting 0, Substituting 2,

= 0. 3 • 22 = 6 • 2

12= 12.

Fig. 6. 3xi-Qx = y.

15. By the Principles of Equivalence, roots have neither been

gained nor lost in making the different transformations in the pre-

ceding examples ; hence the solutions shown are the only ones which

satisfy the given equations.

Exercise XXII. 1

Solve the following Incomplete Quadratic Equations, verifying

results :

1. Gar' -54 = 0. 11. Ux" + 1 = 6x^ + 43.

2. ISar' = 64 - icl 12. 6 ar' - 5 = ar^ + 45.

3. 3ar*- 16 = a;2+ 16. 2ar'-

7

_
4. 5ar'-8=:2a;2+ 19. 13 ~
5. ear'- 8 = 12a;''— 11. 3ar'+ 13 _
6. 3a;='+ 11 = 7a!2-5. 16 ~"

7. 5x^-1 = 7x^-9. , . a!^ + ,5 a;' + 2
lo.

8. (x+ 5y= lOa^-f 34. 2 3

9. (a;+3)^-6(a;+3) = 7. _ 3x^-2
.

x'' + 4

10. ax'-b = a- hx\
16.

"-^^ + '^—^ = 4.
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17. 2(x - l)(2i« + 1) + (8 + a!)(10 -x)=Ax^+ 29.

18. 2(x — S)(x + 4) = (a; + 2)(x + 5) -x^ — 6x,

19. (x + 2)(ar^ + 4) == (a; + 1)' + a; - 2.

20. bx^={a- b)\a + b) - ax\

II. CoxMPLETE Quadratic Equations

16. After having transformed a given quadratic equation into an

equivalent quadratic equation in standard form, ax^ + 6ic + <? = 0,

the solution may be obtained by different methods. These methods,

however, are all based upon " factoring."

17. If the factors of the expression represented by ax^ -\- bx + c

can be readily obtained by inspection, the method shown in Chap.

XII. § 47, may be applied to the equation ax^ + 6ic + c = 0, and we

can obtain its

Solution l)y Factoring

Ex. 1. Solve a;2 + 4 a: - 5 = 0.

Factoring, (a: + 5)(a; — 1) =: 0.

This single eqnation is equivalent to the set of two linear equations

obtained by writing the factors separately equal to zero.

That is, X + 5 = 0, and a; - 1 = 0.

From which a; = — 5, and x = + 1.

(Conq)are with § 5 ; see also Fig. 1.)

Ex.2. Solve 6x2 + 3= lla:. y|

In standard form, 6 ic^ — 1 1 x -|- ,3 = 0.

Factoring, (3 « - 1)(2 a; - 3) = 0.

This efjuation is equivalent to the set of two

linear equations,

3 X - 1 = 0; and 2 x - 3 = 0.

The solutions are

X = \, and X = |.

(See Fig. 7.)

Verifying these results by substituting in the

given equation, we have, ^'^- ^- 6 r — llx + 3

Substituting \, Substituting |,

6(^)2 + 3= n(^) 6(1)2 + 3^11(1)

¥ = ¥• ¥ = ¥•

(>f.O)
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Exercise XXIL 2

Solve the following Complete Quadratic Equations by the Method

of Factoring, verifying results :

1. x''-x = 20. 13. 3aj2 + a;- 14 = 0.

2. iB^ + 20 = 9aj. 14. Sar*- 3a;- 2 = 0.

3. a;2_4« = 45. 15. 6a;^+ 7aj=5.

4. x'Jt 3ar = 40. 16. 12 a;'' + 10 = 23 a;.

5. 15a; = ic^ + 36. 17. 8a;'' = 9(3a;- 1).

6. 110 = 0-^ -a-. 18. (a; + 3)-' +(x- 4)' = 65.

7. ic(a?— 10) = 11. 19. (a;+ 2)^-_17 = 2(a;-l)2.

8. x{x - 12) = - 27. 20. (a;-3)'-3(a;-5)^-4= 0.

9. xix + 15) = 54. 21. x^ -^^ ax — X = a.

10. x(x- 14) = 51. 22. x"^ + a = a^ + X,

11. 2x'-{- 5a; + 3 = 0. 23. x^ + x(h — a) = ah.

12. 3a-''— 7 a; + 2 = 0. 24. ^x + a;^ = c^x + &.

18. If the factors of the expression represented by ay? + bx ]- c^

which is the first member of the standard quadratic eciuation

ax'^ -b bx + c = Of cannot be readily obtained by inspection, we

may obtain the

Solution by Completing tbe Square

19. The expression " completing the square " may be given a

geometric significance.

By attaching a strip a units in width to each of two adjacent

sides of a square, of which each side is x units in length, a geometric

figure may be constructed which is made up of

parts represented by x^, ax, and ax, that is,

x^ + 2 ax, as shown by the heavy lines in

Fig. 8.

The figure maybe made a "complete" square,

each side of which is (x + a) units in length,

by adding the part represented by a^.

By adding a'^ to a;^ + 2 ax we obtain the

algebraic trinomial x^ + 2 ax + a% which is

the square of the binomial x + a.

The algebraic operation of obtaining the trinomial square

ax a a2l

X

X^ X ax

Fig. 8.
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Qi? + 2ax -h a% by adding the square a^ to the binomial x^ + 2 ax,

is commonly called " completing the square " with reference to the

binomial x^ + 2 ax.

Ex. 1. Complete the square with respect to the binomial x^ -\- 6x.

The term, the square of which must be added to the binomial x^ -\- (5x to

obtain a trinomial square of the form x^-\-6x-\-{ y, may be found by
dividing 6 x by twice the square root of the term x^.

That is, 1^ = 3.

Adding the square of 3 to the binomial x^ -^ 6 x, we obtain the required

trinomial square a:^ + 6 a: + 3^ = x^ + 6 a: + 9.

Ex. 2. Complete the square with respect to the binomial 25 a^ + 40 ab.

We have -—-- =4 6.
2 • 5a

Accordingly the required trinomial square is

25 a2 + 40ab + (46)2 = 25a^ + 40 a6 + 1662.

Mental Exercise XXII. 3

Complete the square with respect to each of the following bi-

nomials :

17. 25 z^- GOzw.

18. 64 a'' + 4.Sab.

19. 9a^+ 66 «6.

20. 121 (r^ — Ucd.
21. xY — 2 xy.

22. c2^ + 2 cc?.

23. 2r)/P_4Q^^^
24. 81 6-2^/2 -36 cd.

1. a;^ + 2x.

2. xf + 47/.

3. z'^-^z.

4. a" -\- \2a.

5. W- Ub,
6. c"— 16 c.

7. ^2+ 18 c?.

8. /-20^.
9. 8U'- 18 A.

10. 121^2 -22 c,

11. h'' + 2 he.

12. x^ + 22 xy.

13. a^-2^ah.
14. 4aj^— 12a^.

15. 9A'+ 60 M.
16. 4 ^/^ + 28 hy.

25. 49 ^V+ 70 ^c.

26. 144 cV + 120 ex.

27. 16 6^ + 8 h\

28. 9 c*- 12c^c?2.

29. 4W* + 36A^F.

30. 36 c« - 12 cW
31. 25/^8+ 30^*)?:*.

32. 49 d^ + 84
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33. 81a^'"4-36a5~. 35. c^y^H- 2c«y^.

34. lOOaj^V-60 a^y". 36. 121«*y"+44ar^y.

37. a^ + 3a%

38. z^-lz.
49.a^ + |. 56.^ 'f-5

39. y'+5y.

40. a^ + a.

50. 3^ + |. 57. 4a;2 + r

41. 4a^+ 5a.

42. 9 6^ + 8 6.

43. 16r»— IOp. 52. z.^+\^.

53. a' + *5"•

58. 9y« + |-

59. 16c^+ f-5

60. 4«,^ I'".

44. 25cr*-5rf.

45. 36 A^- 13^.

46. 9 m^ + m.

47. 16 w**- w.
-^'-*-•\^ 61. 9a^+*'^

48. a^ + |. 55. <.-^^ 62.256^ 2f

20. To solve a complete quadratic equation in the standard form

ax- + l/x + c = 0, hy the method of " completing the square," our

problem is to obtain an equivalent equation, one member of which

contains all of the terms in which x appears, and which has the form

of a trinomial square.

The values for x may then be found by the methods used in the

previous sections of this chapter.

Ex. 1. Solve a:^ -I- 6a; = 7.

To have the form of a trinomial square, the first member must contain

two terms which are squares and positive, and another term which is twice

the product of the square roots of these two.

The first term, a;^, is the square of x. Hence, using the remaining

term, 6x, as a "finder term" (see Chap. XII, § 21), we may obtain the

sciuare root of the missing " square-term " by dividing the " finder term "

by twice the square root of the first term.

That is, 1^ = 3.

By adding the square of 3 to a;^ + 6 a:, we obtain the complete trinomial

square x^ + 6 a: + 3^.
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We may obtain an equation which is equivalent to the one given, having

this expression as a first member, by adding to both members of the given

equation 3'-^ or 9.

That is, a:2 + 6 X + 32 = 7 + 9.

Or, (a: + 3)2^=42.

Extracting the square roots of both members, we obtain

x-\-3 = ±4,

which is a convenient abbreviation for the set of two equations,

a; + 3 = + 4, and a: + 3 = - 4.

The solutions are

X = -\- I, and X z= — 7.

These values are found by substitution to be solutions of the original

equation.

This equation may also be readily solved by factoring. The student

should obtain the graph.

Ex. 2. Solve a:2_8ar + ll =0.

The first term, x% is a square and is positive ; hence, using the second

term — 8a; as a " finder term," we may obtain the "missing term " which

is required to complete the s([uare, with reference to the binomial x^ — 8 a;.

That is, =^ = - 4.
Hx

Adding the square of — 4 to both

members, and transposing +11 to the

second member, we obtain the equiva-

ent equation.

a:2_8a;+16 = -ll + 16.

Hence, (x — 4)^ = 5.

Extracting the square roots,

x-4: = ± /y/B.

It follows that a; — 4 = + y^, and

a; - 4 = - /y/5.

Hence,

(4+V5,0)

Fig. 9. x^-Sx+n=y.

x = 4-\- /y/5, and a: = 4 - ^5. (See Fig. 9.)

These solutions may be verified by substituting in the given equation.

Substituting 4 + y^. Substituting 4 — a/5,

(4 + v^)2 - 8(4 + /y/5) + 11=0 (4 - ^5)2 - 8(4 - ^/6) + 11=0

21 + 8/y/5 - 21 - 8/v/5 = 21 - 8v^5 - 21 + 8/v/5 =
= 0. = 0.

31
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Although thp values x = 4 + /y/5 and x = 4 — /y/5 are mathematically

exadf it is often convenient to use approximate results that are correct to

some specified number of decimal places.

Finding the value of ^5 correct to four places of decimals, approximor

tions to the true values of x obtained above are

a- r= 4 + 2.2360 + and x = 4 - 2.2360 +,

that is, x = 6.2360 +, and a; =1.7640+.

Ex.3. Solve 8x2- 7a: - 1 =0.
Observe that the equation as written contains no term which is " en-

tirely " a square.

By either dividing or multiplying both members by such a number as

will transform the term Sx^ into a square, an equivalent equation may be

obtained which can be solved by the method of completing the square.

Dividing 8 x^ by either 8 or 2, we obtain the squares x^ or 4 x^y respec-

tively, or by multiplying by either 2 or 8, we obtain the squares IGa:^ or

64 x\ respectively.

We may obtain an equation containing the term x^, equivalent to the

given equation, by dividing the separate terms by 8.

Accordingly, transposing the known term to the second member, we

7^_ 1

8
~8*

Y I To find the term required to " complete the

7 X
we may use — as a " finder term,"

o

obtain

i-W
square

iliO) as follows

:

_7x
8

2x = - 7x

-— + (-
8
^^

S-2x- ^^'

Completing the square with reference to

x^—— , by adding to both members (— ^^y =

+ 2^> ^'^ obtain the equivalent equation

Or, (a:_J^)2 = ^8^.

Extracting the square roots of both mem-
bers, we obtain,

l-y Hence, x - ^^ = + j\, and x - J-^ = - ^.
Accordingly, x = I, and x = — ^.

(See Fig. 10.)

These values are found, by substitution, to satisfy the given equation.

Fig. 10. 8 x2 - 7 ar
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Ex. 4. Solve x^+x + l=0.
X

Usiiifj a: as a " finder term," we have --— =
° 2a:

Adding tlie square of \ to both members

of the equation, and transposing the known

term to the right member, we obtain,

x^ + x + {^y = - 1 + i,

which may be written in the form

Extracting the square roots of both mem-
bers, we obtain,

a: + 4 = ± V^-
Hence,

a; + 4 = + \/^, and x-\-\ = - ^^/^.

Hence the required solutions are

a; = - 4 + 4V^ and x=-^- ^\/^.
(See Fig. 11.)

->^+KV=3

'H-Vif^

Fig. 11. x^ + x+l=y.

These values will be found, by substitution, to be solutions of the original

equation.

Substituting ~ 2 + 4 V~" ^>

(-4 + 4 V=^)' + (- 4 + 4 V^) + 1 =

i - 4 \/^ - f - 4 + 4 V^ + 1 =
= 0.

Similarly, substituting — 4 — 4 V— 3, we obtain = 0.

Exercise XXII. 4

Complete the square, and solve each of the following equations,

verifying all results obtained. "Whenever surds appear in the

exact solutions, approximate values correct to four places of decimals

should be obtained.

1. x^ + 2x= 15. 8. a;2 — 12 = 4a;.

2. ar' + 4aj = 60.

3. x^ — Qx= 16.

4. x^ + 8x = 65.

5. cc^ — 2a; = 8.

6. x"" + 10a; = 11.

7. a;^ - 6 a; = — 8.

9. x^+ 1 = 2x.

10. a;2 — 51 = 14a;.

11. x^— 242 = 11a;.

12. x{x + 6) = — 9.

13. x(x— 12) = 64.

14. 63- 2a; = a;2.
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15. x^+lx+ 5 = 0. 24. 9a;' + GiB - 4 = 0.

16. JB^ + 6a; + 10 = 0. 25. Gaj*^ + a; = 6.

17. 7(x - 3) = x^ 26. 5a;' - a; = i.

18. (a;-2)(a;-3) = 4.

20. 3 af + a; = 4. 2

21. 5ar* — 6a;+ 7 =0.
22. 6ar»+ 10a; = 9. o«^2,16iK_.
23. 12a;' - 13a; = 32.

28. a; +— - 4.

The methods employed in the solution of numerical equations

may be applied also to literal equations.

Ex. 29. Solve ax" - (a - b)x - b = 0.

We may obtain an equivalent equation containing the square aH^ by

multiplying every term of the given equation hy a.

Hence, we have, a^ — a(a — b)x — ab = 0.

Using — a(a — h)x as a " finder term," we may obtain the term required

to complete the square, as follows:

— a(a — b)x _ —(a — b)

2ax ~ 2

Completing the square with reference to a^x^ — a{a — b)x, and transpos-

ing the known term — ab to the second member, we obtain,

aV - aia - b)x + (- ^)' = + <.6 + (- ^^T-^.

Or, aV-a(a-b):c + (^^ = + ab+(^^.

Writing the first member as the square of a binomial and combining the

terms in the second member, we obtain

-by 4 ah + (a -by( a- b\'

Or, (ax-^y =

4

(a + by
4

-^ a —ba + b
Hence, ax — = ±—^ '

This is a convenient abbreviation for the set of two separate equations,

a — h a->rb . a — b a-^h«^--2- = + -Y-' and ax ^ = --^.
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We obtain the solutions as follows :

« — fta + 6 a ~h a 4-b

a — b -\- a -{- b a — b — a — b
ax = ax = —

2a - 2b
ax = -^ ax = ———

^ 2

b
x = I. X —

a

These values will be found, by substitution, to satisfy the given equation.

30. ar^ - 2 c?ic = c^ - d^, 34. «V - 2 «a; = 6 — a^.

31. a;^ — 4 ca; = 12 c". 35. 11 Ma; = 6 ic^ - 7 m".

32. ar* - 3 a^ = 2aa;. 36. 4(3 a;^ - 5 d'') = dx.

33. x^+^ax + V' = 0. 37. 2(6a;' + 5 A^^ + 23 hx = 0.

38. i^-(a + h)x + bab = ^ia" + ^').

21. Hindu Method. In the method employed for solving the

preceding equations it will be observed that, to complete the square,

it was necessary to add the square of a fraction whenever the quo-

tient obtained by dividing the " finder term " by twice the square

root of the term containing x^ was fractional.

Quadratic equations may be solved by a method employed by

the Hindus which allows of the completion of the square without

introducing fractions during the process.

The solution of the following equation illustrates the Hindu

Method.

Ex.1. Solve 3a;2_ 13 a; +11 = 0.

The first terra may he made a square, 36 a;^, by multiplying by four

times the coefficient of a;^, that is, by 4 x 3 = 12.

Accordingly, multiplying all of the terms of the given equation by 12,

we obtain the equivalent equation

36a:2- 156a: + 132 = 0.

We can find the number, the square of which must be added to complete

the square with reference to the binomial 36 a;^ — 156 a;, as follows

:

- 156 a;

2-6ar

It will be observed that — 13 is the coefficient of x in the given equation.

Adding the square of — 13 to both members of 36 a:^ — 156 a: + 132 =
and transposing 132 to the second member, we obtain
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36x2 - 156 X + 169 = - 132 + 169.

Hence, (6 a: - 13)2 = 37.

Therefore, 6ar - 13 = ± ^^7.

Hence, 6 x - 13 = + ^^7, and 6 x - 13 = - \/37«

The exact solutions of these equations are

13 + V37 1
13 - V37X = ^— and X = .

6 6

By extracting \/37» correct to four places of decimals, we obtain the

following approximate values:

13 + 6.0827 + , 13 - 6.0827 +X = and X = ~
6 6

Or, x=: 3.1804 +, and x = 1.1528 +.

The student should verify the exact results by substituting in the given

equation.

22. It should be observed that, when the Hindu Method is applied

to the solution of a quadratic equation in thefm^m ax^ + ^a; + c = 0,

the separate terms are all multiplied by four times the coefficient a

of x^y and the square is completed with reference to ay? + hx by

adding the square of the coefficient of x^ represented by b.

Exercise XXII. 5

Solve each of the following equations by the Hindu Method,

verifying all exact rational results. Whenever surds appear in the

eocact solutions, approximate values correct to four places of decimals

should be obtained.

1. 3ic2+ 10a + 8=0. 9. (2 a; -7)2 = 6a;.

2. 8a;^ + 26a; + 15 = 0. 10. (a; + l)(2a; + ^)=x^ -W.
3. 5ar^- 16a;+ 121 =0. 11. 3(a;+ l)(a;— l)= 2(27--5a;).

4. Sar' + 50 = 25a;. 12. (2a;+ l)(a;+ 2) = (a;- 1)1

5. 15ar*+ 16a; =15. 13. —-\ = ^

x^ X 20
6. 10ar^-9 = 43a;. 14. Y'l'^Yl

2 1

7. 25ar'+ 20a; = 33. ^^-11+
^

8. a;-l=20a^. le. ^^^^^ + i = ?

.

20 4 5

c^_^_2(
3 7"~21

11
"^ 11~5

«-5)
30 6
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General Solution of aa?^ + bx + c = O

23. The general solution of the standard quadratic equation

ax^ + bx+ c = 0, (1)

in which a is assumed to represent a positive number different from

zero, may be obtained as follows :

From (1) we may obtain the equivalent equation

- bx — c

a a
hoc oX u

Using — as a *' finder term," it appears from = -—

»

(2)

hx
that the square may be completed with reference to x^ -] by adding the

square of -— •

T 1 ^ bx /bY -c b^ ,„v
Accordmgly, x^ + - + (^--j =— + ^,' (3)

Hence, ^x +—j =-^^' (4)

Extracting the sc^uare roots of both members,

b /b^ — 4ac ,_v

Instead of writing the two separate linear equations which, taken to-

gether, form a system of which (5) is a convenient abbreviation, we may
proceed as follows

:

Transposing ^— to the right member and simplifying the radical, we

obtain,

b . I
x = — --±-— a/6'^ — 4 ac.

2a 2a ^

rTM c
-b ± y^b^-4ac .„.

Therefore, x = ^ (6)
A a

The separate expressions for the value of x may be obtained by using

either the + or the — sign before the radical.

Accordingly, from (6) we obtain the following set of two equations in

which the value of x is expressed in terms of the known numbers a, b,

and c:

_ & + ^^2 _4ac . -b- ^/b-^ -4ac
X — 5 . and x = \ (7)
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In obtaining these solutions we have employed only those methods of

derivation which lead to equivalent equations. Hence, the "expressed"

values found are the solutions of the original equation, and there are no

others.

By using the double sign ± before the radical, as in (6), we can verify

the two results at the same time.

Substituting the expressed values (6) for x in equation (1), we have,

f_ b ± V6'^-4ac\g, ,l-h± a/6^-4/-h±\/h'^-4.acy (
-b± Vb^-4ac\

+ c =

b^T^ h^b'^ -4ac + 5»~4oc -2b^± 2 6^/6^-400 4ac_
4a

"^
4a "^ Ta

~

6^ T 2 6^62 -4ac + 62-4ac-2 62±2 6^6=^- 4 ac + 4 ac =
= 0.

24. After a given quadratic equation has been reduced to the

standard form, ax^ -\- bx -\- c = 0, the solutions may be obtained

immediately by substituting in the general solution of the standard

equation, x = , the values corresponding to a, 6,

and c, respectively, in the given equation reduced to standard fonn.

Ex.1. Solve a:2 + 6x- 216 = 0.

Referring to the standard quadratic equation, ax^ + 6x + c = 0, we find

that 1 corresponds to a, 6 to 6, and — 216 to c.

Hence, substituting these values for a, 6, and c, respectively, in the general

- , — 6 ± V^ — 4 ac
formula x = ^ ,

2 a

_ 6 ± /i/62 - 4(- 216)
we have x = =^-^—-—^^

2i

_ _6_±jv/36_+864
~

. 2

_ _ 6 J: 30
~ 2

That is, X = 12, and x = — 18.

These values are found by substitution to satisfy the original equation.

Hence, they are its roots.

Ex. 2. Solve 6 a:2 - 5 a; - 375 = 0.

Referring to the standard quadratic equation, ax^ + 6a; + c = 0, it appears

that 6 corresponds to a, — 5 to 6, and — 375 to c.
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Hence, substituting these values in the general formula,

h ± -Y/P-4ac

we have
(-5)± V(-5)^-4((i)(-375)

2-6

_ + 5 db V25 + 9W0~
12

_ 4- 5 ± 95

12

That is, X = 8|-, and a: = — 7^ •

Both of these values satisfy the original equation, and hence they are its

roots.

Ex.3. Solve a:2+ll = 8a:.

Observe that, when reduced to the standard form x"^ — 8x -\- 11=: 0, the

numbers 1, —8 and 11 correspond to a, b and c respectively in the

standard quadratic equation ax^ -^ bx + c = 0.

Substituting these values in the general formula.

,, . _(_8)± V(-8)'-4- 11
we obtain x = —^^ ^^

_ + 8 ± ^(J4 - 44~
2

" 2

_ S± 2^5
" 2

That is, x = 4± ^/5.

(Compare the solutions above with those shown in Ex. 2, § 20, and also

see Fig. 9.)

Ex. 4. Solve a;2 + 4 a: + 5 = 0. (See § 9 ; also Fig. 3.)

Referring to the standard quadratic equation, we find that a, b, and c

represent the values 1, 4, and 5 respectively in the given equation.

Hence, substituting these values for a, b, and c in the general solution,

, , . - 4 ± V16 -4-5we obtain x = ^^-^

2
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That is, x = -2± V- 1-

Let the student check these solutions, using the double sign before V— !•

Ex. 5. Solve ax^-{a-b)x-b = 0.

It will be observed that the coefficient a of x^ in the given equation

corresponds to the coefficient a of x^ in the standard quadratic equation

ax^ -r bx -\- c = ; that — (a — b) which is the coefficient of x, corresponds

to b in the standard equation ; and that the known term — 6 in the given

equation corresponds to the known term + c in the standard equation.

Hence, substituting these values in the general formula,

-b ± Wb* — 4 ac
x=i ^

we have.
[_ (a _ 6)] ± V[- (a - 6)? - 4a(- 6)

2a

+ (a - 6) ± -y/itP' ~2ab + b^ + 4ab
~ 2a

+ (« - 6) ± (rt + &)
~ 2a

Hence,
-l-a — 6 + a + 6 , -]-a — b — a —

b

2a ^^^ ^= 2a
2a -26
2a 2a

. = -".
a

(Compare this method of solution with that in Ex. 29, Exercise XXII, 4.)

Exercise XXII. 6

Solve the foUowing equations by the formula, verifying such re-

sults as are neither irrational nor imaginary. Whenever surds

appear in the exact solutions, approximate solutions correct to four

places of decimals should be obtained.

1. a' — 6 £c + 5 = 0. 1, x^—12x+ 16 = 0.

2. ar^ + 9 « = — 20. S. x^—Ux+ d = 0.

3. a;2 - 12 = x. 9. x" -\- 16 = 6x.

4. ic2 _ 45 = 4a;. 10. tc" - 6 ic + 1 == 0.

5. Q^+ llx=12. 11. £c'+ 16 = 4a;.

6. a;^ + 8a;=l. 12. 4a;"' — 3a; = 85,



23.

QUADRATIC EQUATIONS 491

13. 2aj'=5a;+ 117. ^, x^ 1 x
24. — = - •

14. a;-+ 25 = ISx. 21 7 3

15. 6a;2+ 7ic+ 8 = 0. 25 - - - + i =
16. 7a;2-6£c + 5 = 0.

'
'^ ^ '^

17. x(x + 12) = - 27. 26. x" - 2mx + n" = 0.

18. 15^(a.-l) = 2(a.-2).
21. x^ + Aab = 2ax + 2bx.

/ X / .
28. «(«;' - 1) = (a' - l)x.

19. 3a;(a;— 1) = 2(1 + 2ic). ^^ 2 , /j \7 i i^ / V
' / 29. acx^ -\- bd = adx + hex.

20. (3a; -2)2 = 7a;. ^2 ^ ^2

21. {x - 2)2 + 5(a; - 3)^ = 0. ^0. x" ^^ a; + 1 = 0.

22. 2a;2~ 1.1 a; = 4.2. _
+ 12 ^ ^_x a + b ^

12 ~^ 2' Z2. x' + d^ + ^cix-cTj^^^dx.

33. a^»ca;2 - (a^^^ _|_ ^2^^^ _|_ ^^^ ^ q^

Rational Fractional liquations. Containing One
Unknown

25. We shall now consider equations, which are rational and

fractional with reference to a specified unknown, the solutions of

which may be made to depend upon the solutions of quadratic

equations.

26. If a fractional equation cannot be solved by inspection, then

its solution may be made to depend upon the solution of a rational

integral equation. This integral equation may be derived from the

given fractional equation by multiplying the terms of both mem-
bers by the lowest common multiple of the denominators of all of

the fractions which appear in the different terms of the equation.

27. The derived integral equation will not always be equivalent

to the given fractional equation, for in exceptional cases it may
happen that extra roots which do not satisfy the given fractional

equation are introduced into the derived equation.

28. Such extra roots as may be introduced during the process

of clearing a given fractional equation of fractions may be deter-

mined by an examination of the equation, as may be seen by con-

sidering the following

Principle Relating* to Extra Roots : Ifan integral equation
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is derived from an equation which is rational andfractional with

reference to a specified unknoion^ x, by multiplying both members of

the fractional equation by a function of x^ it may have soluticms which

do not satisfy the given fractional equation.

(The following proof may be omitted when the chapter is read for the first time.)

Let all the terms of a given equation which is rational and fractional

with reference to a specified unknown, x, be transposed to the first member
and then added algebraically.

Let -y- represent the resulting rational fractional expression, N and I)

being rational integral polynomials with reference to the unknown, x. Then
since the second member of the derived fractional ei^uation is zero, it follows

that the given fractional equatioir will be equivalent to the derived frac-

N
tional equation — = (1).

NWe have seen in Chapter XVI, § 4, that if y- be reduced to lowest

N
terms, the fractional equation - = (1) is equivalent to the integral

equation N = (2). The latter is derived by multiplying both members

of tj = by the multiplier D, which is necessary in order to clear (1) of

fractions.

N
If, however, -=r is not in lowest terms with reference to x, then the

values of a; which reduce the factor common to N and D to zero will reduce

N
both the numerator and denominator of the fraction -j- to zero, and for

N
such values of x the true value of jz may be different from zero.

Accordingly, such values of x may not satisfy the fractional equation

Hence, such solutions of the derived integral equation N = as are solu-

tions also of the equation constructed by jyla^ing the multiplier D equal to zero,

may not be solutions also of the fractional equation — = 0, and accordingly

must he rejected.

Hence, if when deriving the integral equation iV^ = 0, a multiplier D is

used which contains factors which are not necessary to clear the fractional

N
equation — = of fractions, extra solutions may be introduced by the

process.
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12
Ex. 1. Solve + = 1.

re — 5 X — S

The fractions are in lowest terms and an integral equation may be derived

by multiplying the separate terms by (x — b){x — 3) wliich is the lowest

common multiple of the denominators of the fractions in the given equation.

Accordingly, x — 3 -\- 2(x — b) = (a: — 5) (a; — 3).

Reducing to standard form, we obtain

a;2_iia;4-28 = 0,

the solutions of which are found to be

X = 4, and x = 7.

It should be observed that neither of these values is a solution of the

equation (x — 5)(x — 3) = which is obtained by equating the multiplier,

(aj — 5)(a; — 3), to zero. Hence, neither of these values can have been in-

troduced as an extra root during the process of solution.

The values 4 and 7 are found by substitution to be the solutions of the

original equation.

Substituting 4, Substituting 7,

z^-f-- M--
1 = 1. 1 = 1.

"Ry 9 Sr.lvp - ^
- 1

-3 =
1

x^ --1
"

"a;-l (1)

Observe that the fractions are in lowest terms. Using as a multiplier

cc^ — 1, which is the lowest common multiple of the denominators, we may
derive the integral equation,

3 a; - 1 - 3(a;2 - 1) = a; + 1. (2)

From this we obtain the equivalent equation in standard form,

3a;2_2a;- 1 = 0. (3)

Factoring, (3 a; + l)(a: - 1) = 0. (4)

This last equation is equivalent to the set of two linear equations formed

by writing the factors of the first member separately equal to zero.

3 a: + 1 = 0, and a; - 1 = 0. (5)

The solutions of these equations are

a; = — ^, and a: = 1.

It should be observed that the value a: = — ^ is not a solution of the

equation obtained by e(iuatii]g the multiplier x^ — 1 to zero. Hence it

cannot have been introduced during the process of solution.



494 FIRST COURSE IN ALGEBRA

(-K

By substitution a: = — ^ is fouud to be a solution of the given equation.

(See Fig. 12.)

Y : The remaining value, a:=l,

/ is a solution of the multiplier

; equation, a:^— 1 = 0, and accord-

/ ingly may have been introduced

• as an extra root during the process

^1 r\\ i?_^ -n
o^ solution.

,£iliO]_Extra Root ^ , ... • . . , ,
.• jf By substitution it is found

that this value does not satisfy

the given equation, and accord-

ingly it must be rejected as being

an extra root. (See Fig. 12.)

Hence, x = — \ is the single

solution of the given equation.

If, instead of deriving an inte-

gral equation from the fractional

equation in the form as given,

we first write equation (1) in the

form

( Dotted line 3x2 -2t

3a:- 1

3 = .y.

z + 1

a:«- 1

Combining the fractions,

which reduces to

{X - l)(ar + 1)

2(^ - 1)

(X + l)(a: - 1)

2

a;2 _ 1 a; - 1

we may obtain

3 = 0.

0,

3
a:+l

Hence, 2 - 3 x - 3 = 0.

The single solution of this last equation is a: = — ^.

It will be observed that, when deriving the integral equation in the first

solution, we used a multiplier containing more factors than were necessary

to clear of fractions, and accordingly introduced an extra solution into the

derived equation.

29. It is often advisable, before deriving an integral equation, to

combine the fractions in a given fractional equation, and to reduce

to lowest terms all of the fractions then appearing.1111
Ex.3. Solve + +a;-3a;-7 a; + 2a;-2
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Instead of deriving an integral equation at once by multiplying the terms

by the lowest common multiple of the denominators, we shall find it to our

advantage to transpose the fractional terms in such a way as to obtain differ-

ences between two pairs of fractions, as follows :

X — 3 x + 2 a;—

/

Combining the first and second fractions, and also the third and fourth

fractions, we obtain

(x-3)(x-\-2) ' (a:-7)(x-2)

Multiplying the terms of this equation by the lowest common multiple

of the denominators, (x — '3)(x -\- 2)(x — l)(x — 2), and dividing both mem-
bers by 5, we obtain

{x - 7)(x - 2) + (x - 3)(x + 2) = 0,

which reduces to a:^ — 5 a; + 4 =: 0,

The solutions of this equation are

a: = 4, and a; ~ 1.

Neither of these values is a solution of the equation

(x - 3)(x + 2)(x - l){x - 2) =
obtained by equating to zero the multiplier used in deriving the integral

equation a;^ — 5 a; + 4 = 0. Hence neither value can be an extra root intro-

duced during the process of solution, and accordingly these values must be

solutions of the given equation.

Both values are found by substitution to satisfy the given equation.

^ ^ g^^^^ ^ x-Q _ _x^ 2 (a; - 6)
^

a: — 2 (a; — 4)(a; — 2)
"~

a; — 3 (a; — 5)(a: — 3)

Clearing of fractions by multiplying all of the terms by the lowest com-

mon multiple of the denominators, (a: — 2)(x — 4)(a5 — 3) (a; — 5), and com-

bining terms, we obtain the integral equation a;^ _ 5 ^ — 6 = 0, the solutions

of which are found to be a; = 3, and a: = 2.

Since these values are solutions of the equation

{x - 2)(x - 4)(a; - 3)(a; - 5) = 0,

formed by placing equal to zero the multiplier employed in clearing the

given equation of fractions, they must be rejected as being extra roots

introduced during the process of solution.

By substituting these values, it will be found that neither satisfies the

original equation.

Accordingly the fractional equation, as given, has no finite solution.
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Exercise XXIL 7

Solve the following equations, rejecting extra solutions, and veri-

fying all others :

^ 2^a 8 _4 24 ^
2"'"a; 8a; 'ic-6 a; (a; -6)

7 6 _13 7a;+23 _ 8a; + 7

^- 6^""7a;^~42' ^^- ^ a;+ 2 ~ a;+ 2
~^^-

q l4.A=l? 17 g + 5 a; - 5 ^ 37

ar»'^5«^ 5 a;-5"^a;+5 6

a;-6 ^ 8 a; + 4 a;-4 ^82
8 ~a;+6* •a5-4a; + 4~9'

^*
4 -a:-3 ^^^

x' - 'd a; - 3 ^
" ^•

6. 7 = a. 20. — 1 =
a; — 4 aj— 1 a;^—

1

2a; + 1 ^ 1 G + a; a; - 5 ^ 15

3 2a;-
1*

* l+a; 2a; 8
*

a; — 5 a; a;--2a;(a; — 2)

1— a; 1— a; a; — 2 a;^ — 4

= 9. 24.^+ 2 1
10. X +

3a;-

a; -

-8
-3 X -

-7
-3

5a;--7 2a;-21
XX. ji.

X --4 a; •— 4

12.
1

X
+

1

13'

1

a;-f 13

13.
X

X

T^i-
a;-f 1

X
•

14. X
7a;--30 _3a;- 20

a;— 1 a;+2 a;-Fl

1. 25.^ +^ = 6.
a; — 2 a;^ — 4

26.^ + 1 = -?^.
X + 2 a; a; -f 3

27. 1

+

-4—

+

'-4—

=

^•
3 S + X 4 + a;

2. 28.^+ ^
«

a;—

5

a;—

5

a; — 1 a; — 2 a; — 3
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3
zy.

a; — 4 (x—l)(x'-4:) a; + 6

30.
1 11 1

a; — 5 (x+ Q)(x — 6)
~

S (x — 6)

31.
2a;- 7 2a;+ 3 17

a;-l ' ~ a; 20

32.
4(a;+ 5)_7a;- 10

a; — 3 7

33.
2a;+3 7a;—

6

a;— 5 a;+ 7

34. ' + ^' =1.
a; + 3 a;^ - 9

35.
5 2 1

^-l a; + 1
~ 8

36.
7 17a;- 155 _„

a; — 5 x^ — 2b

37.
X a; — 3 5

a; - 1 ' a;^ - 1
~ 4

38.
5 4 17 a; — 42

a; -6 5~ a;^ - 36

39.
1 14 1

a; - 7 a;2 - 49 ~ 17

d.n
X 9(a; - 1) 2

a;-3 a;2-9~5

41.
1 1 1

1— a; 1 — 2a; 1 — 3 a;

42.
10 9 8

X a; + 1 a; + 2

43.
4 3 1

4-a; 3 — a; 1 -4aj

44.
5 3 16

5 — a; 3 — a; a; — 2

45.
a; — 1 5 5 — x

x—S 2
~

a;2 - 5 a; -f- 6
32
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_ X—5X + 4: 25
4b. +

47.

48.

X— 7 2aj+ 5 7

1 aj+ll
25-2 (2aj+ 9)(a;-2) 3(2a;-5)

1 x+1 3

3iC-2 (4aj- l)(3ic-2) 5(2 a; + 1)

49
^ 325+2 ^9

'

2(a; +2) aj* - 4 10

50.^+ ^-^ ^

$1.

52.

53.

54.

55.

aj— 2 (x—l)(x—2) x+1
x — 4: 3a;— 12 _ 5

x—d x + 4:
~~ X— d'

2 a;-

3

5

a; + 5 (a; + l)(x ,+ 5)
~

a; + 9

1 7 2

a; + -4 (a; - 3)(a; + 4)
~

a; + 2

2 x+ S 1

a; +5 (a;+4)(a;+5) 4(a; - 8)

2 a; —

8

_ 2

a;+ 2 ar' — a;--6""a;+ l'

56. -L+ ' '

57.

58.

a; — 5 ar^— 11 a; +30 a; + 10

1 1 1

a; +6 2(aj-3) a^+lSx + 4.2

1 3 1

2a;-l (4a;+ l)(2a;- 1) 8a;-l

59. -L^H- ' '

a; -4 3a;- 7 (2a; - 3)(a; — 4)

5 26 1

5 a; — 1 (x+ 5)(5 a; - l)
~"

3 a; — 5

61. ,r^+ '' '

60.

6 a;— 1 (5 a; — 9)(6 a; — 1) a; + 3

62.-^+ 2a;- 10 4

3a;— 1 (a;+ l)(3a;— 1) 3a;+l
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1 X- 16 2

3ic— 2 (4a3 + 3)(3a3 — 2) 6 a;—

1

64.
^'' + 4(/>..-ll) _ 15

5 a; — 2 (a; + 2)(5 a; — 2) 3 a; + 2

65. ^ 2(5 a; 4- 2) _ 1

66.

67.

68.

2 a; — 5 (12 a; — l)(2a; — 5) 4 a; +5
1 4(a;+ 1) __ 3

2a; + 3 H^x-\- 7)(2a;+ 3)
~ 6a;+ u'

X 5x — 6 x^-7 3

a; — 6 (a; — 2)(a; — 6) (a; - 3)(a; — 1) a; — 1

a;-

5

_ a;+ 17 _ a;^ — 5a;— 15 1_
a; -7 (x + 5)(x - 1)

~ (x - 8)(a; + 1) a; + l"

69. -^+, ^ .=^-+ '"-'

70,

aj-1 ' (^ — 3)(a;— 1) a; + 1 (a; — 2)(a;+l)

X 13 a; +24 x 7 a; +8
a; -4 (a;+ll)(a; — 4) a; — 2 (a; + 9)(a; - 2)

X 2 (a; — 9) _ x a; — 8
*

a; — 3 (x— l){x - 3)
~

a; — 2 {x — b)(x — 2)

'

X 3 (5 a; + 8) _ _x 5a; + 4

a; — 6 (a; + 13)(a; — 6)
~

a; + 4 (x + 8)(a; + 4)

-^ ^ .
12 (a; + 2) _ x Ix — 20

a; +3 (a;— l)(a;+3) a; — 2 (a; + iX^c — 2)

74.
^

I

4 (a; -5) ^ x ^ 6 (a; - 3)

a; — 4 (a; — 3)(a; — 4) a; — 2 (a; + l)(a; — 2)

X 2(3a;+8) _ x 7a; +15
a; + 2

"^
(a; + 4)(a; + 2)

~
a; + 3

"^"

(a; + l)(a; + c3)

Exercise XXII. 8. Miscellaneous

Solve the following equations, verifying such solutions as are

neither irrational nor imaginary :

1. a;' — 15a; + 54 = 0. 4. (x + 4)^ = 9x^

2. 2 a;^ — 7 a; = 15. 5. 55(a;''^ — a;) = 11 a;.

3. 3(a;2 - 1) = 8 x. 6. (x + 2)(a; + 3) = 20.
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7. (a;+ l)(a;-4) = 50. 22. i - ^ = ^

28.
2x
3

..•=!

29.
15 a;

X- 1
= ll(a;- 1).

Qfi
1 1 1

X 2 x — 2

s-^ZTT-iO'^-a- 23. - + - = -.

2ar — 1 7 a; 5

,0.^+1 = 2 + 1. 25.?-^ = ^-5,
2 a; 5 6 5a;

n.. + 1=5 + 1. 26.^ + ? = ^.
5 a; 2 a; 3

12. 10(aH-2)(a^-2) = 41a;. 27. - + a; = 3 + -•
X X

IS. x^ + x = (P + d,

U. x-{-\ = b-h-'
X

mn
15. X -\ = m -\- n.

X a;+ 1 a;+2 a;+3

-./> 2 . 2 2 . ^ o^ « + 16 64 — a; x
16. x^ + n^ = m^ + 2 nx. 31. — = - — 13.

8 a; — 4 4

17. a;(2a;-«) + a;(a;-a)=^>a;. 32. -^ + ^^ = i^.
a; + 1 a; 6

^^-
2 ^ a;

~ 2 ^ 3
'^'^'

x 6
~

a; - 6

19.?4-^ = -^ + ^ 34. U-^ = i.
a X a a;8— a;8

20 _^ + _?--3 35 -^- + ^±1-11^.^"-
a; - 3 + a; + 2 ~ •^" ''•^-

a; + 1 + x ~ 56

21 _3 5^_^^. 36 ^±2 , ^±3^41.
a;—

5

a;-3 a; + 3 a: + 2 20

a; — 2 a;^ — 4 a;+2

38. (2a; + l)(2a; - 1) + (a; + 2)(a; — 2) = x{x + 3).
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39. (x + 2)(x - 3) + (^ + 9)(a; + 3) = 3aj + 15.

X a X — a

41. « +_:^ = 2.
X — X — a

• ^ a
, £c 33a^ — £c^

42. —I— =
X a ax

a; a^ aj 6^
43. -2 H— =72 H

a^ X Ir X k

44. a;2+ 8a;= 16^ + 2^a;.

45. a' + 2^;a; = rt2_|. 2^^,.

46. {x + />)2 + 6(a; + ^) + 9 = 0.

47. a;' + 4«6 = 2ic(^) + a).

48. 2a;(7ic- «) = (« + «)(« -a).

7W + 1
49. ^ =

50.

x^ a; + 1

a — 4w + w 9 n + x

n — m X

^^
(x+l)(x-2) (x-l)(x-h2) ^

2 3

52. (a - xy + (b- xY = (b- ay.

53. (x - gY + {x- hY = / + h''.

54. (c — a)x^ + {a — b)x + b — c = 0.

a + b + X a b x

56 ^ + ^ ^ ~ ^ ^ 1
^' + 2 <^

' X — d X + d x^ — d^

a; a; + 4 aj+1 7a; + 3

',8.
^

I

^ ^ ^
I

^
*6 + iC c + a; a + 6 a + c
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Problems Solved by Means of Quadratic Equations

30. In the solution of problems by means of conditional equations,

it is often convenient to represent the unknown quantities by such

"initial letters " as may suggest the quantities considered.

E.fj. In the case of a body movinjjj at a uniform rate during a specified

time, the distance passed over may be found as follows

:

distance = rate x time.

In particular, if a train moves uniformly at the rate of forty miles an

hour for two hours, the distence travelled will be eighty miles.

If we represent the number of units in terms of which distance, rate, and

time ai-e expressed by the initial letters d, r, and t, respectively, we may
express the general relation between distance, rate, and time for uniform

motion by the formula d = r x t.

For simple interest we have the relation

interest = principal x Tate x time.

Representing the numbers, in terms of which interest, principal, "rate, and

time ai-e expressed, by the initial letters i, p, r, and t, respectively, we have

the formula i = p x r x t.

31. When using a particular formula, the letters which are to be

regarded as representing unknowns must be determined by the

nature of the problem to the solution of which it is applied.

Solution of Formulas for Specified Letters

32. The Greek letter tt, read "pi," is used in mathematical

calculations to represent a certain incommensurable constant the

approximate value of which may for many practical purposes be

taken equal to 22/7. In particular, the ratio of the circumference

to the diameter of a circle is equal to tt.

Exercise XXII. 9

In the following formulas find the expressed values of the letters

specified in terms of those remaining:

1. Solve for E, s = ttR''. 3. Solve for t, S= ^at\

m ms
2. Solve for E, w = —^ • 4. Solve for s, F=
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5. Solve for r, /= —^•
r

a^ -
6. Solve for a, s = —^3.

4

7. Solve for n, d = -—- ^ •

n(n - 1)

Find the value of n, \{ d = 2, / = 19, and s = 96.

8. Solve for ^, V = ^ ttE^.

Find the value of ^, if T = 132, and h = 14.

9. Solve for R, T = 2 tt R (ff + R).

Find the value of i^, if r= 352, and j^ = 10.

10. Solve for t, ab = t^ + pq.

Find the value of #, if a = 16, 6 = 14, jo = 7, and q =
11. Solve for c, a^ = b^ + c^ + 2 cp.

Find the value of c, if « = 18, 6=11, and jt? = |^.

12. Solve for m, 2 a"" + 2 ^^^ = c^ + 4 m^
Find the value of m, if a = 12, b = 16, and c = 20.

13. Solve for n, s = ^[2a +(?^ — l)d].

Find the value of n^ if 5 = 272, a = 6, and c? = 8.

14. Solve for «, s = — h •

2 2t db

Find the value of a, if 5 = 70, / = 16, and d — 2.

V" — a^
15. Solve for /, d = -,

2s— I — a

Find the value of /, if c? = 15, a = 18, and 5 = 1206.

The Solution of Problems

33. Whenever the translation into algebraic language of stated

relations between the unknown quantities of a problem leads to one

or more conditional equations of the second degree, we may expect

to find two or more solutions.

It may happen, however, that one or both of the solutions of the

algebraic equations must be rejected as not fulfilling the conditions

expressed by the given problem.
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Solutions consisting of negative numbers or fractions cannot, in

certain cases, be given a sensible interpretation.

E. g. If the number of people in a given assembly be in question, negative

or fractional answers must necessarily be rejected.

In the case of a body in motion, fractions have a significance aa indicat-

ing definite distances, while negative answers may be interpreted as meaning

a reversal in the direction of the motion.

34. Positive results will in general be found to satisfy all the

conditions of a given problem.

A negative result will, in general, satisfy the conditions of such

problems as are concerned with abstract numbers.

Whenever the unknown quantities referred to in a problem are of

such nature as to admit of being taken in opposite senses, that is, of

being regarded as positive or negative, then in such cases it is

usually possible to give a sensible interpretation to a negative result.

Ex. 1. Find two numbers of which the sum is 30, and of which the

product is 221.

If X stands for one of the required numbers, then by one of the condi-

tions of the problem, 30 — a: will stand for the other.

We may express the remaining condition, that the product is 221, by

means of the conditional equation

a:(30-a:) = 221.

Solving, a: = 17, and a; = 13.

Hence one of the numbers is 17 or 13, and substituting either of these

values for x in the expression for the other number, 30 — a:, we obtain 13

and 17 respectively.

These values satisfy both the algebraic equation and also the conditions

of the problem as stated, and hence are its solutions.

35, Imaginary results must always be interpreted as indicating

inconsistent relations among the conditions of a given problem as

stated.

Ex. 2. Separate 50 into two parts the product of which is 630.

We may represent the required numbers by x and 50 — a: respectively.

Expressing the condition that the product of these numbers is 630, we
may construct the conditional equation x(50 — x) = 630, the solutions of

which are both found to be imaginary.

These imaginary results must be interpreted as indicating that two such

numbers cannot exist.
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36. When expressing the relations of a given problem by means

of one or more conditional equations, all that we know at the outset

regarding the number of the solutions is that they must be found

among the abstract numbers which constitute the algebraic solu-

tions of the equations ; if none of the numbers thus found can be

given a reasonable interpretation, then the given concrete problem

as stated has no solutions.

Exercise XXIL 10

Solve the following problems, employing equations containing one

unknown quantity :

1

.

Separate 42 into two parts such that one part is the square of the

other.

2. The sum of two numbers is 45 and their product is 476, Find the

numbers.

3. Find two consecutive integers the product of which is 702.

4. Find two consecutive even integers the product of which is 528.

5. Find two consecutive odd integers the product of which is 1023.

6. Find two consecutive integers, the sum of the squares of which is 481,

7. Find two consecutive even integers, the sum of the squares of which

is 2180.

8. Find a number which equals 4 more than the square of its fourth part.

9. Find three consecutive even integers such that the product of the first

and third shall equal three times the second,

10. Find three consecutive even integers such that the square of the

greatest shall be equal to the sum of the squares of the other two.

11. Find three consecutive integers, the sum of the products of which,

by pairs, is 674.

12. Find four consecutive even integers such that the product of the first

and third shall equal the sum of the second and fourth.

13. Find four consecutive odd integers such that twice the product of

the second and fourth is equal to eleven times the sum of the first and

third.

14. Find three consecutive integers the sum of which is one-third the

product of the first two.

15. Find two consecutive integers such that the sum of their reciprocals

is if.

16. Separate a number represented by a into two parts such that one

part shall be the square of the other.
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17. Find a number such that, if 87 be subtracted from it, the remainder

equals the quotient obtained by dividing 270 by the number.

18. Find a positive fraction such that two times its square is 3 more than

the fraction.

19. The denominator of a certain fraction exceeds its numerator by 3,

and the reciprocal of the fraction exceeds the fraction by 39/40. Find the

fraction.

20. The numerator of a certain improper fraction exceeds the denominator

by 5, ami the fraction exceeds its reciprocal by 45/14. Find the fraction.

21. Find two numbers in the ratio 2 : 7, the sum of the squares of which

is 212.

22. Find a number such that the sum of its third part and its square is

1100.

23. Find a number such that one-half its square shall exceed the square

of one-half the number by one-lialf the number.

24. If the seventh part and the eighth part of a certain number are mul-

tiplied together, and the product is divided by 3, the quotient is 298|.

Find the number.

25. It is found that when a number which is the product of three con-

secutive integral numbers is divided separately by each of these three factors,

the sum of the quotients thus obtained is 191, What are the numbers ?

26. I have thought of a number. I multiply it by 2^, then add 4 to

the product ; I then multiply the result by three times the number thought

of, and finally divide by 5 and subtract from the quotient five times the

number originally thought of, obtaining thus 20. What was the original

number ?

27. It is necessary to construct a coal bin to hold 6 tons of coal. Allow-

ing 40 cubic feet of space per ton of coal, what must be the dimensions if,

the depth being 6 feet, the length is equal to the sum of the width and the

depth ?

28. A crew can row 8 miles, down a stream and back again, in 3 hours

and 40 minutes. If the rate of the stream is two and one-half miles an

hour, find the rate of the crew in still water in miles per hour.

29. A man bought two farms for $3600 each. The larger contained 15

acres more than the smaller, but $8 more per acre was paid for the smaller

than for the larger. How many acres did each contain 1

30. If $3000 amounts to $3213.675 when put at compound interest for

two years, interest being compounded annually, what is the rate per cent

per year ?

31. If $4250 amounts to $4508.825 when placed at compound interest

for 2 years, interest being compounded annually, find the rate per cent

per year.
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32. Telegraph poles are placed at equal intervals along a certain railway.

In order that there should be two less poles per mile it would be necessary

to increase the space between every two consecutive poles by 24 feet. Find

the number of poles to a mile.

33. A man bought a certain number of shares of a railway stock for

16600. The next day they declined in value $12 a share, when he could

have bought five shares more for the same amount. Find the price paid

per share.

34. A broker purchased a certain number of shares of stock for $2560.

After reserving 10 shares, those remaining were sold for $2450 at an advance

of $3 a share on the cost price. How many shares did he buy ?

35. It is desired to carpet a floor in the form of a rectangle 15 feet long

by 12 feet wide, with a carpet having a plain color border of uniform width.

Allowing $1.44 per square yard for the center and $0.45 per square yard

for the border, determine the width of the border in order that the entire

expense may be $18.68.

36. Two steamers ply between two ports, a distance of 475 miles. One

goes half a mile an hour faster than the other, and requires two and one-

half hours less for the voyage. Find the rates of the steamers in miles

per hour.

Let X represent the rate of the slower steamer in miles per hour.

Then the rate of the faster boat in miles per hour will be represented

by X + 1/2.

From the general formula expressing the relation between distance, rate,

and time for uniform motion, we have, by the conditions of the problem,

475/x and 475/(a:-f ^) as representing the times required for the slower

and faster boats respectively to make the entire trip.

By the conditions of the problem, the time required by the faster boat is

^\ hours less than that taken by the slower. Hence we obtain the condi-

tional equation 475/x = 475/(x + ^) + 4.

From this equation we obtain the integral equation

2ic2 + ic- 190 = 0,

the solutions of which are found to be

X = ^-, and x = - 10.

Since, from the nature of the problem, the forward motion only of the

boats is considered, we shall use the positive value, x = 9^, and reject the

negative value x = — 10,

Accordingly, x + 1/2, which is the rate of the faster boat, is 10 miles

an hour.

The values 9^ and 10 will be found to satisfy the condition of the given

problem.
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37. An engineer, on a trip of 108 miles, found it necessary at the

thirty-sixth milestone to decrease his speed to a rate 9 miles an hour less,

with the result that he was on the road 24 minutes longer than would have
been the case had no alteration in speed been made. Find the rate in miles

per hour before the speed was changed and also the time required to make
the entire trip.

Let the speetl, in miles per hour before the change was made, be repre-

sented by X.

By the conditions of the problem the time, 36/a;, required to cover the

first 36 miles, taken together with that for the remaining 72 miles at the

decreased speed, a; — 9, that is, 72/(a; — 9), is equal to the time which would
have been required to run the entire distance of 108 miles at x miles per

hour,— that is, 108/x, increased by 24/(jO hours.

Hence we have the conditional equation

36 72 _ 108 24

X "^a:-9~T~'^60*
which reduces to x^ — ^x — 1620 = 0.

Of the two solutions of this equation, a: = 45 and x = — 36, the negative

value cannot be admitted, since only the forward motion of the train is in

question.

Hence, as a solution of the problem, we find that at first the train was
going at the rate of 45 miles per hour.

The time in hours required to cover the entire distance is expressed by

36/a; + 72/(3; -9).

Substituting 45 for x in this expression we obtain as the number of hours

required for the entire trip, ff + H» which reduces to 2-|.

These values, 45 and 2|, will be found to satisfy the conditions of the

given problem.

38. In answering a false alarm, a fire engine travelled a distance of 3/5

of a mile at the rate of 5 miles an hour faster than when returning. If it

returned immediately on reaching the "alarm box" and was gone from the

station 16^ minutes in all, what was its rate at first in miles per hour ?

39. A and B run a half-mile race. A, who is faster than B by 1/2 a

yard a second, allows B a start of 1/4 of a minute, and beats him by 5

yards. Find their respective rates in yards per second.

40. A warship which is approaching a port is discovered when it is 12

miles away. A flotilla of torpedo boats, the maximum speed of which is

known to exceed that of the warship by 7 miles an hour, is sent out 5f
minutes later to meet the warship. They intercept it when it has covered

half the distance to the port. Find the rate of the warship in miles per hour.
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41. After having gone 40 miles of his trip at a uniform rate, an engineer

found that his train was behind time. He immediately increased the speed

of the engine to a rate 4 miles an hour more, and completed the trip of 62

miles, arriving at the terminus 3 minutes earlier than would have been the

case if no change in rate had been made. Find the rate of the train in

miles per hour.

42. A man travels 24 miles by an accommodation train and returns by

an express which runs 10 miles an hour faster. . Find the rates of the two

trains in miles per hour, provided that the time occupied for the two trips

was one hour and twenty-four minutes.

43. It is found that two steam fire engines can, by working together,

pump all of the water out of a partly filled cellar in 22^ minutes. The
more powerful one alone would have been able to perform the work in

24 minutes less than the other one alone. Find the time required by each

one working alone.

44. After travelling 8 miles in an automobile, a man found that, on

account of an accident to the machine, it was necessary to walk back. If

the rate of the automobile exceeded the man's rate when walking by

17 miles an hour, and he was 2 hours, 16 minutes longer in returning than

going, find the rate of the machine in miles per hour.

Problems in Physics

37. If a moving body passes over equal distances in successive

equal intervals of time, the motion of the body is said to be uniform.

If the distances passed over in successive equal intervals of time

are not equal, the motion is said to be variable.

38. When the motion of a body is uniform its vebcity is defined

to be the number of units of distance passed over by the body in

one unit of time. When the motion of a body is not uniform the

velocity at any instant is defined to be the number of units of

distance which would be passed over in the next unit of time if the

motion of the body were to become uniform at that instant.

39. If the velocity of a moving body increases during successive

intervals of time, the motion is said to be accelerated.

Acceleration is defined to be the rate at which velocity changes.

Since velocity is distance per unit of time, it follows that acceler-

ation is distance per unit of time per unit of time.

Acceleration is said to be positive if the velocity increases in

successive intervals of time, and negative if the velocity decreases.
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E. g. A body which is falling freely from any point above the surface

of the earth moves toward the earth with uniformly accelerated motion.

A body which is thrown upward moves away from the surface of the earth

^fnth. a uniformly retarded motion.

40. For uniform motion, the velocity, v, expressed in feet per

second, of a body which in t seconds passes over a total distance,

St expressed in feet, may be found from the formula

S

41. Falling Bodies. If a body in a state of rest starts to fall

from any point above the surface of the earth, and is acted upon by

the force of gravity alone, the total distance S^ expressed in feet,

passed over in t seconds, is found by the following formula. In

this formula ^ is a numerical constant of which the approximate

value may be taken as 32 in the following examples.

s=hgt'-
It should be understood that the results obtained by using the

formulas in the following examples are only approximate, because

the value 32 substituted for g is approximate and because no al-

lowance is made for the retarding influence due to the resistance of

the air.

42. The velocity, v, expressed in feet per second, of a falling

body at the end of t seconds, may be found by the formula

v = gt.

Exercise XXII. 11

Solve the following problems relating to moving bodies :

1. What velocity, expressed in feet per second, will a body acquire by

falling 5 seconds ?

2. In what time will a falling body acquire a velocity of 224 feet per

second ?

3. What is the height of a tower, if a stone dropped from it requires 3

seconds to reach the ground ?

4. A stone dropped from the top of a cliff is observed to reach the bottom

in 5 seconds. Find the height of the cliff.

5. A balloon is moving horizontally at a height of one mile above the

ground. How long will it take a bag of ballast to reach the ground ?
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By substituting for t in the formula S= - gt^ the value - ob-
2 g

tained from v = gt, we obtain

v^ = 2gS.

This formula may be used to find the velocity, v, in feet per

second, ac(|uired by a body falling a distance of S feet.

6. What velocity, expressed in feet per second, will a body acquire by

falling a distance of 576 feet?

7. What velocity, expressed in feet per second, would a body acquire in

falling a distance of 500 feet ?

The velocity of a body which is thrown vertically upward with a

velocity of Vi feet per second will be retarded by an amount equal

to g feet per second per second. The time of the ascent is found

by dividing the initial velocity, Vi, expressed in feet per second, by

the constant g*

That is, ^ = -'.

9

It may be shown that, if there were no retarding influence due to

the resistance of the air, the times required by the body in ascend-

ing and descending would be equal, and that it would return to its

starting point with a velocity equal to that with which it was thrown

upward. Hence it follows that the height to which a body will rise

when thrown vertically upward with an initial velocity of v feet per

second is given by S in the formula S = —--
^9

8. A stone thrown vertically upward strikes the ground after an interval

of 10 secon<ls. With what velocity was it thrown and to what height did

it ri.se ?

9. How high is a tree if it requires three seconds for a stone which is

thrown over it to reach the ground ?

10. With what velocity,* expressed in feet per second, must an arrow be

shot vertically upward to reach the top of a tower which is 169 feet high ?

If a falling body is given an initial velocity downward of Vi feet

per second, the total space S, expressed in feet per second, passed

over by the body in t seconds, may be found by the formula
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11. Find the distance passed over in three seconds by a body which is

thrown vertically downward with a velocity of 24 feet per second.

12. Find the time, expressed in seconds, required for a body which is

thrown vertically downward with an initial velocity of 5 feet per second

to move a distance of 475 feet.

13. A balloon is two miles from the ground and is descending at the

rate of eight feet per second when a sand bag is dropped. Find the number

of seconds required for the sand bag to reach the ground.

If a body be thrown vertically upward, with an initial velocity of

V feet per second, the velocity of the body will be retarded by an

amount eiiual to g feet per second per second.

Accordingly, since the acceleration due to gravity acts in such a

way as to diminish the upward motion of the body, it follows that

the initial velocity and the acceleration due to gravity must be con-

sidered as positive and negative numbers.

Hence, if a body is projected vertically upward with an initial

velocity of ^i feet per second, the velocity Vt at the end of t seconds

may be found from the formula

«\ = ^h — gt.

The height, expressed in feet, to which the body will rise, is repre-

sented by S in the following formula :

S=i\t-\gf.
14. A balloon is 500 feet from the ground and ascending at the rate of 12

feet per second when a sand bag is dropped. How many seconds will be

required for the sand bag to reach the ground ?

15. If a body is projected upward with an initial velocity of 160 feet per

second, what is the height to which it will rise ?

16. A rifle bullet is shot vertically upward with an initial velocity of

400 feet per second. Find the height to which it will rise.

17. A bullet is fired vertically upward with a velocity of 100 feet per

second. Find the time required for it to reach a point 156 feet above the

ground, and also the velocity with which it passes this point.
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CHAPTER XXIII

THEORY OF QUADRATIC EQUATIONS CONTAINING
ONE UNKNOWN

1. From every quadratic equation containing one unknown, an

equivalent quadratic equation in the standard form a'3^ -{• hx -\- c

= can be derived by making suitable transformations. The equa-

tion aar* + bx-\- c = has been shown to have two solutions. Hence,

it follows that everi/ quadratic equation containing one unknown has

two roots. (See Chapter XXII. § 23.)

Denoting the two solutions of the standard quadratic equation

aa^ + bx + c = Ohyxi and x^, we may write Xi = >

2 a

and Xi =
2a

In all of the discussions which follow, it will be assumed that a,

b, and c have real rational values.

2. It follows from the Remainder Theorem (Chapter VIII.) that

if, when any value represented by r is substituted for x the value

of the quadratic expression aar* -{- bx + c becomes zero, then x — r

is a factor of ax^ + b^x + c.

Since ax^ -\- bx + c is of the second degree with reference to x,

it cannot be the product of more than two factors which are each

of the first degree with reference to x.

The roots of the quadratic equation ax^ + bx + c = are the

roots of the equations obtained by equating the factors of the first

member ax'^ + bx + c to zero.

Hence, it follows that the quadratic equation ax^ + bx + c =
cannot have more than two roots. (See Chapter XXII. § G.)

33
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Nature of the Roots

3. In the general solution x — of the standard

quadratic equation ax^ + />a; + c = 0, the expression ^^ — 4 ac is

called the discriminant of the quadratic equation. This is because

it affords means for discovering the nature of the roots of a given

equation, — that is, for determining whether the roots are posi-

tive or negative, equal or unequal, rational or irrational, real or

imaginary.

4. When values represented by a, 6, and c, in the standard quad-

ratic equation a:i^ + 6ic + c = 0, are selected from a given equation

and substituted in the discriminant h^ — 4 ac^ it may be seen that

the resulting value must be zero, a positive number or a negative

number.

By referring to the general solution

^_-h± ^/b- — 4:ac
•C —

2a

of the quadratic equation ax^ + ^a; + c = 0, it may be seen that

:

(i.) Ifb^— 4 ac he zero, the rcjots are real, rational, and equal.

That is, a^i = — —
. and ^ — ~-^' (See § 1.)

(ii.) If I? — A^ ache positive, the roots are real and unequal, and

rational or irrationcd, accm-ding as the value represented hy h"^ — A^ ac

is, or is not, the squai'e of a rational number.

(iii.) If h^ — A:ac he negative, the expression \/l/ — 4ac repre-

sents an imaginary quantity, and the roots are conjugate complex

numbers.

It follows from the general solution that irrational and also com-

plex roots enter in pairs.

Determine, without solving, the nature of the roots of each of the

following equations :

Ex.1. Examine x^ -\-Ax + A = Q.

Substituting in the discriminant Ir^ — Aac the values from the given

equation represented by a, b, and c in the standard quadratic equation

ax^ -f 6a; + c = 0, we obtain
42 - 4 • 4 = 0.
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Since the value represented by the discriminant is zero, it follows that

the roots of the equation are real, rational, and equal. (See (i.), § 4, and

also Chap. XXII. § 8, Fig. 2.)

Ex. 2. Examine ar^ + 4 a: - 5 = 0.

Substituting in the discriminant b^ — 4ac the values from the given

equation represented by a, 6, and c in the standard quadratic equation, we
obtain

42 _ 4. i(_5) = 36.

Hence, by (ii.), § 4, the roots are real and unequal. Also, since the

value of the discriminant is the square of a rational number, — that is, 36

is the square of the rational number 6, — the roots are rational and un-

equal. (See Chap. XXII. § 5, Fig. 1.)

Ex. 3. Examine a:^ - 8 a: + 1 1 = 0.

Substituting in the discriminant b^ — 4:ac the values from the given

equation represented by a, 6, and c in the standard quadratic equation, we

have (-8)2-4.1.11 = 20.

Since the value represented by the discriminant is a positive number,

20, it follows from (ii.), § 4, that the roots are real and unequal.

Also, since 20 is not the square of a rational number, that is, ^/^ is

irrational, the roots are conjug.ite irrational numbers.

Ex. 4. Examine a;^ + 4 a: + 5 = 0.

The value represented by b^ — 4ac is negative, that is,

42 _ 4 . 1 . 5 = _ 4.

Accordingly, by (iii.), § 4, the roots are imaginary ; that is, they are

conjugate complex numbers. (See Chap. XXII, § 9, Fig. 3.)

Ex. 5. Examine mx^ -}- (m }- n) x -\- n = 0, m 7^ n.

Comparing with the standard quadratic equation ax^ -{- bx -{ c = 0, we

find that m is represented by a, (m + n) by &, and nhy c.

Hence, substituting these values in the discriminant b^ — Aac, we obtain

(m + n)2 — 4 mn = (m — n)^.

Since the square of any real number is positive, it follows from (ii.), § 4,

that the roots are real, rational, and unequal, for real values of m and n.

Exercise XXIII. 1

Determine, without solving the equations, the nature of the roots

of the following

:

1. x^ + 10a; + 25 =0. 3. 2a?' + ^x — 27 = 0.

2. 9£c2- 24ic+ 16 = 0. 4. Gx'-x- 15 = 0.
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5. 3a^- 5;r + 1 = 0. 12. x^ + Ax- 11 =0.
6. a;^+ 6ic— 247 = 0. 13. 3ic^ + 2a; + 2 = 0.

7. 3ic = ar^ + 4. 14. 2 + 9a; - Sic^ = 0.

8. a;2+ 3a;= 180. 15. 4ar' - 5a; + 3 = 0.

9. 7 a;^ — 8a; + 2 = 0. 16. ar» — a; — 342 = 0.

10. 4ar'— 10a;+ 3 = 0. 17. 6ar^ + 5a; + 4 = 0.

11. a;^ — a;H- 1 =0. 18. ar* — a; - 756 = 0.

19. Prove that the roots of a;^ — 2 aa; + a^ = ^^ + c^ are real.

20. Prove that the roots of 2 aar^ + (2 « + 3 ^>) a; + 3 6 = a,re

real for all real values of a and b.

21. Prove that 3 cx^ — (2 c + 3 d)x + 2 of = has rational roots.

22. Show that the roots of 5 a;^ + 4 aa; + fl'^ = are imaginary.

23. Show that the roots of {a + A)V^ - 2(«2 — b'^)x + {a - bf =
are neither irrational nor imaginary.

Determine the value which k must have in order that the following

equations shall have equal roots :

Ex. 24. x^ + (k - 3)a; + ^' = 0.

The condition for equal roots is that the discriminant (k — 3y — Ak shall

be zero. (See (i.), § 4.)

Accordingly, placing the discriminant equal to zero, we obtain the con-

ditional equation,

(^- _ 3)2 _ 4^-0,

the solutions of which are A: = 9, and k = I. (See (i.) § 4.)

It will be found, if 9 is substituted for k, that the given equation will

reduce to x^ + 6 a: + 9 = 0, which has equal roots.

Also, substituting 1 for k, the given equation reduces to a:^ — 2 a: + 1 — 0,

which also has equal roots.

25. a;2 = 2A:(a; — 4) + 15. 32. 12^a;2 — 2a; + 3^ = 0.

26. x" + 2(k + 2)a; + 9^ = 0. 33. a;^ - (2^ — 3)a; + 2^ = 0.

27. ar' — 2^a;+ 6a;+ 4^^ = 0. 34. (8^ + 5)ar^— 12^a;+ 1 = 0.

28. it' + k(2x-S) = 15. 35. (^4-2)a;H3^+4=5(^-l)a%

29. a^ = (k — l)x - 2(k — 1). 36. ar'+(6/;+7)a;+6^+22=0.

30. (2^+l)a;2 + 3^a; + ^ = 0. 37. (^+ 6)a;'-3(^-2)a;=l-A:.

31. ar* + Skx + 4^+1 = 0. 38. (^-ll)a;2+3^+4=2(^-l)a;.
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Relations Between Roots and Coefficients

5. Representing the two roots of the standard quadratic equation

ax^ + ^ + c = by

— h^- Vb^ — 4:ac , -h— ^/h^ — ^ae
Xi = i ana X2 = ; >

2 a 2 a

as in § 1, above, it follows immediately by addition that

[- b 4- Vb^ -Aac] + [-b- Vb^-4.ac]
x, + x,= —

,

or ici + iCa = (1)
ci

Writing the product of the roots, we have

^^^
=

L

—

^—J L

—

^—

J

_ 4- 4ac

Hence
c

xix^ = -- (2)
d

If the terms of a quadratic equation in standard form,

ax^ + 6ic + c = 0,

be all divided by «, which is the coefficient of £c^, the coefficient of

x^ will be unity in the derived equivalent equation

aj2 + - a; + - = 0. (3)
a a ^

Referring to (1) and (2), it may be seen that in (3) :

(i.) The sum of the roots xi and x^ is equal to the coefficient of

X with its sign changed

(ii.) The product of the roots is equal to the term free from x,

, • c
that IS, - •

a
Principles (i.) and (ii.) may be used as checks upon the solution

of a quadratic equation.
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E. g. The roots of 2 x^ + 7 x + 3 = are - 3 aiul -1/2.

Dividing the terms by 2, which is the coefficient of x^, we obtain the

7 3
equivalent equation, a:* + -a5 + - = 0.

It may be seen that the sum of the roots — 3 and — 1 /2 is the coefficient

of X with its sign changed, that is, — ^, and the product of the roots is ^.

c
6. From xix^ = -

, (2), obtained in § 5, it appears, if the roots

Xi and a?2 are real, that according as the numbers represented in

the standard equation by <i, and c have like or unlike signs, the

quotient - will be positive or negative, and the roots of the given
u

equation will be both positive or both negative.

E. g. CJonsider 2 re* _ 7 x + 3 = 0.

Using the discriminant we find tliat the roots cannot be imaginary, since

(— 7)^ — 4 • 2 • 3 = 25, which is a positive number.

The quotient f, represented by - 1 is positive. Hence the roots cannot

differ in sign, and must be either both positive or both negative.

It may also be seen that the roots of the equation 2x=^ + 5x — 3 = are

also both real, but they have opposite signs because —^ is negative.

7. From a*i + 3*2 = > (1)} § 5, it appears that the sum of the

roots is represented by Hence the roots either both agree in

sign with the quotient - with its sign changed^ or if they differ in

sign, the sign of the greater root must agree with the reversed sign of

the qtiotientj - • (See (i.) § 5.)

From this it follows that, if the number represented by a in the

standard quadratic equation aa:^ + bx -\- c=^0 is positive, the root

which is numerically the greater is opposite in sign to the sign of the

number represented by b.

E. g. The roots of 2x2 — 5x — 3 = ^re both real, but they have oppo-

— 3 .

Bite signs, since -^- is negative.
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The greater root must be positive because its sign must agree with the

reversed sign of the quotient — ^.

For convenience of reference, the illustrations used above are given in

tabular form as follows :

Equation.
c

a
The roots

are

6

a
Signs of
roots are

Greater
root

1^-

1'-

7 .

-7 .

2 "

Both -

Both + +

.2x2 + 5x-3 =

2a:2-5x-3 =

-3.

-3.
2 '^ 2

'^

Different

Different +

Formation of an equation liavinj? Specified Roots

8. A quadratic equation having specified roots may be con-

structed by applying Principles (i.) and (ii.) § 5.

— b c

.

We may substitute xi -f- x^ for and Xix^ for - in the quadratic

equation x^ -\—x •{— = and obtain
a a

X^ + [— (Xi + X<i)]x + [XiXi] = 0.

A quadratic equation having specified roots may be obtained by

constructing a quadratic equation of which the coefficient of x^ is

unity, the coefficient of x is the sum of the roots with sign changed,

and the term free from x is the product of the specified roots.

Whenever fi:actions appear in any of the terms of an equation

thus constructed an equivalent integral equation may be obtained

by multiplying the terms by the lowest common multiple of all the

denominators of the firactions.

Ex, 1. Construct the quadratic equation the roots of which are 5 and 7.

The sum of the roots is 5 + 7 = 12, and the product is 5 • 7 = 35.

Hence, changing the sign of the sum 12, we may write as the required

equation, a^ — 12 x + 35 = Q.
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Ex. 2. Construct the equation the roots of which are + 3 anil — ^.

The sum of the roots is + S — 8 = — 5, and the product is 3(— 8) = — 24.

Changing the sign of the sum, — 5, the equation required is

x2 + 5 X - 24 = 0.

Ex. 3. Constnict the equation the roots of which are J and — f

.

The sum of the roots is 4 ~ f = ?V
The product of the roots is (i)(— §) = —f^'

Changing the sign of the sum, we may construct the equation

Or, 24x2-5 a; -14 = 0.

Ex. 4. Construct the equation the roots of which are — and — 1.

The sum of the roots is 1 =
n n

The product of the roots is (
— )(— M = *

Using the sum, with its sign changed, as the coefficient of x, we have,

x^ X = 0.
n n

Or, iix"^ — (m — n)x — m = 0.

Ex. 5. Construct the equation the roots of which are the conjugate

irrational numbers 2 + \/5 and 2 — ^b.

The sum of these values is (2 + ^5) + (2 - V^) = 4.

The product is (2 + V5)(2 - ^/b) = 4 - 5 = - 1.

Reversiug the sign of the sum, we may write the equation

x2_4x- 1 = 0.

Ex. 6. Construct the equation the roots of which are the complex

_ 1 + ^^32 - 1 - V^numbers tt^ and -^^

_ 1 + V-^ — 1 — a/—~2 — 2
The sum of these values is ^ 1 ^-^^ = -^ •

The product is,

Using the sum with its sign changed, we have for the equation

a;2+ 2^4-^ = 0.

Or, 3x24-2a: + 1 =0.
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9. The roots of a quadratic equation in the standard form

ax^ + 6.r + c = are the roots of the two linear eqiuitions fm^med by

equating to zero the two linear factms the product of which is the

first member of the equation. (See Chap. XII. § 48.)

It follows that, by reversing the process, we may construct a

quadratic equation having specified roots by equating to zero the

product of the two linear factors which^ when equated' to zero and

considered as equations, have as roots the given values.

Ex 7. Construct the equation the roots of which are 5 and 7.

We may indicate that these are roots x^ and z^ of an equation by writing

aTj = 5 and x^ = 7.

Accordingly, x^ — 5 = 0, and Xg — 7 = 0.

These two equations taken together are equivalent to the single quadratic

e(iuation (x^ - 5)(x2 — 7) = 0.

Performing the indicated multiplication and neglecting subscripts, we
obtain x'^ - 12x + 35 = 0. (Compare with Ex. 1, § 8.)

10. It will be found that, whenever the roots are irrational or

imaginary, the method of § 8 is to be preferred.

Exercise XXIII. 2

Construct integral equations the roots of which are

1. 3 and 5. 15. — ^ and t^.

2. 2 and 9. 16. — ^ and 2.

3. G and 8. ^17. f and 3.

4. 4 and 7. 18. 5/a and - ^/6.

5. I and 2. Id. m/n and n/m.

6.-5 and — 8. 20. b/2c and c/2 b.

7.-7 and — 10. a — b

8. -3 and + 5. 21. ^-;^ and + 1.

9. + 2 and — 15.

10. 2 and -2. 22. t-?- and -

11. 0and4.
b + c

12. f and f 23. 2\/5 and — 2^5.

13. ^ and i. 24. Vs and - a/3.

14. f and §. 25. 1 + V^ and T — Vg
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26. 2 + A/^^and 2 — a/^. 28. c+ V^=*— 1 andc— Vc^-l.

27. «+V?ianda-V6. 29. ?±^ and^i:^

.

() 6

11.* One Root Known. When one root of a given quadratic

equation is known, by applying principle (i.), § 5, the other root

may be found immediately without solving the equation.

Ex. 1. Knowing that one root of x^ + 5x — 24 = is 3, find the other.

Since the coefficient, 5, of x with iUs sign changed is tlie sum of the roots,

we may obtain the required root, — 8, by subtracting the given root 3 from

- 5, that is, — 5 - 3 = - 8.

The root may also be obtained by dividing the known term — 24 by 3.

(Compare with Ex. 2 § 8.)

Ex.2. Knowing that one root of the ecpuition a;^ — 4a;— 1=0 is

2 — /y/S, we can find the remaining root by subtracting 2 — \/5 from the

coefficient of x with its sign changed.

We have, + 4 - (2 - V^) = 2 + ^5. (Compare with Ex. 5, § 8.)

Since in an efjuation in which the coefficients are rational, irrational or

complex roots enter in conjugate pairs, if indeed they enter at all, it follows

that we may obtain the reipiired root immediately by writing the binomial

2 + -V^, which is the conjugate of the one given, 2 — ^E.

Exercise XXIII. 3

(ThiB exercise may be omitted when the chapter is read for the first time.)

Find, without solving, the remaining root of each of the following

equations, when one of the roots is given :

1. ic^ — 3 a; — 130 = 0, one root being 13.

2. ic* + 2 a; — 323 = 0, one root being — 19.

3. Qc^ — 21x— 130 = 0, one root being — 5.

4. 4 ar* 4- 28 aj — 15 = 0, one root being ^.

5. 18 ar^ ~ 117 a; + 37 = 0, one root being ^.

6. 25 a^ — 85 a; — 18 = 0, one root being — ^.

7. 3 ar* — 5 a; — 308 = 0, one root being 11.

8. 98 a;'^ — 7 a; — 6 = 0, one root being f .

9. 0^ — (a + b)x+ 2 ah — 2 ^^ = 0, one root being a — b.^

* This section may be omitted when the ciiapter is read for the first time.
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10. 2 ax^ + (4 — ah)x = 2b, one root being b/2.

11. cdx^ — {(• -r d)x +1=0, one root being 1/c.

12. 6 aV + 5 «ic + 1 = 0, one root being — 1 /2 a.

13. 4:X^ — Aax = b^ — a^, one root being (a -\- b)/2.

14. ab^cx^ — b(c — a)x —1=0, one root being 1/ab.

15. 4 abx^ + 2 (a^ + b'^)x + ab = Oy one root being — «/ 2 6.

16. acx^ -j- b(a^ + c^)x + ab^c = 0, one root being — abj c.

Mental Exercise. XXIII. 4. Review

Cube each of the following

:

1. x. 5. - b\ 9. x^. 13. a-K

2. y\ .-'.. 10. ijK 14. ri

3. z\ 11. zl 15. c~K

4. -a. 8. -f. 12. ^- 16. (TI

Express each of the following numbers as a power of 2 :

17. (4«)l 18. (2«)^ 19. (16^)^ 20. (32')».

Solve each of the following equations :

21.^^=1. 22.25/=l. 2S.'-^=i. 24.g = 4

Factor each of the following expressions

:

25. a^ - 10 ab + 25 b"" — 36. 27. 9 w^ + 23 twV + 16 n\

26. 2^^+180;^ + 45/. 28. 15aj'' + 13a;^ + 2/.

Solve each of the following equations:

29. x^ = 3. 32. w^ = -2. 35.^/ = 3.

30. y^ = 2. 33. x^ = -l. 36. x-^ = - r'

31. z^ = i 34.V/|
= 3. 37. 'v/S = w.

Express the following as positive fractions :

38. ', 39.-*:^ 40. ^-^^T"-
1 — a 3 ic +
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Express the following without negative exponents:

41. (-a)-l 42. (- b)-\ 43. (-O-s.

Simplify each of the following expressions

:

44. -2aa-\ 46. aia^y. 48. (2«-r6V.

«s-
49.

50.

Distinguish between

— - 1
51. a * and -i*

a*
52. - a' and

-i
a ^-

53. Express ( y j^ as a quotient of powers.

Find the value of

54. .2-^ 55. .04-\ 56. .5"^ 57. (.02)"

Rationalize the denominators of each of the following :

58. -4=- 60. -^- 62. ^

V2 ' ^ ' \/bb12 2
59. -^^' 61. —=. 63.

V^4 V2 a \/2c

What roots may possibly be introduced by squaring both members

of each of the following equations ?

64. jc = 5. 66. ;? - 1 = 6. 68. ^ — 3 = 7.

65.
:j/ + 2 = 3. 67. a — 2 = 0. 69. ;^ + 8 = 3.

Distinguish between

70. (- a/2)' and W^^f- 71. - ^8 and ^^^.

72. V6 — V6 and V6 + V'^-

Simplify each of the following expressions :

73. (V5 +\/=^)^ 74. (V=l - V^y. 75. (2a^ + i)'.

Solve each of the following equations :

76. = 2^/7 Vic - 7. 77. a/« - « = 0.

78. (a; - 3)(9 • 7 •

i + 32 • 16 - 5) = 0.
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Show that the following identities are true :

19.—i = \- SO. —i = i-\ Sl.—i-^=l.

82. (a-b)(c -b){d- c){d -a) = (a- b)(b - c)(c - dXd-a).

83. Rationalize —- • 84. Realize
V2 a/-2

85. Find the values of {a' + by and (a' + by.

Simplify each of the following :

86. - (a-i^/-V«)-^. 87. - {x-^ -^ y-y\ 88. (wv^)".
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CHAPTER XXIV

IRRATIONAL EQUATIONS AND SPECIAL EQUATIONS
CONTAINING A SINGLE UNKNOWN

Irrational Equations

1. An irrational equation is an equation in which one or more

terms are irrational with reference to the unknown.

E.g. Vx^-S = x-l.

V^ar + S -I- y'x-f. 12 = 7.

^x + 4 - 2 Va: + 13 + Vx + 22 = 0.

2. It is understood that, when the terms of an equation are af-

fected by radical signs, principal values only of the roots are to be

taken, unless we have means for knowing that other values should

be t^ken. (See Chap. XVIII. § 13, also Chap. XXIV. Ex. 3, § 6, and

Ex. 5 and Ex. 6, § 10.)

3. To be consistent it is necessary that a specified letter represent

the same numerical value wherever it appears in the terms of a given

conditional equation.

E. g. Ill the equation a:^ — 5a: + fj = 0, x may represent either 3 in

every term or 2 in every terra, but never 3 in one term and 2 in another

term.

Thus the equation x^ — 5a; + 6 = represents either of the following

numerical identities :

32 _ 5 . 3 + 6 = or 22 - 5 • 2 + 6 = 0.

It is also necessary that a specified symbol of operation, such as

\'^j represent the same root wherever it may appear among the

different terms of an equation.

It may be seen that if V is to be considered as representing the

positive value of the root in one term, to be consistent we must
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understand it as representing the positive value of the root in every

other term of the equation.

Thus, V cannot represent a positive value of the root in one

term of an equation and a negative value in another term.

4. When solving irrational equations it is necessary to consider

the following

Principle Relating to Extra Roots: Whenever both members

ofan equation are raised to the same positive integralpower no solu-

tions of the original eqmition are lost in the process ; but solutions

may be gained which satisfy the derived equation^ yet do not satisfy

the original equation.

Let the members of a given equation be represented by

A=B. (1)

Raising both members to the nth. power, n being a positive in-

teger, we obtain A'' = /?". (2)

Transposing, ^" - 7i" = 0. (3)

For all positive integral values of w, ^" — ^" is exactly divisible by

A — By and the quotient Q resulting from the division is of degree

n-\.
Accordingly, factoring ^" — Z?", we may from (3) obtain

{A-B)Q = ^' (4)

This last equation (4) is equivalent to the set of two equations

^ - ^ = 0, • (5) and Q = 0. (6)

Equation (r>) is equivalent to the original equation A= B (1),

and ((i) is an additional equation introduced by the process of rais-

ing both members of (1) to the nth. power.

Since equation (2) and its equivalent equation (4) are satisfied

by any solution either of equation (5) or of equation (6), it follows

that any solution of the additional equation Q = (6), which is

not at the same time a solution of equation (5) must have been

introduced by the process of raising the members of (1) to the nth.

power.

E. f?. If both members of .r + 2 = 5 be raised to the second power, we

shall obtain the equation {x + 2)2 = 25, which has two solutions,

ar = 3 and x = — l.
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The first of these values, 3, is the single solution of the given equation,

while the second value, — 7, clbes not satisfy the given equation, but was
introduced by the process of squaring.

5. Irrational equations are ustialli/ prepared for solution as

follows :

First the terms are so transposed that one member of the equation

consists of one of the irrational terms appearing in the equation^ all

other terms being transposed to the remaining member.

Both members of the equation are then raised to the lowest power

necessary to rationalize the term which has been separated from the

others.

If irrational terms still appear after the operation^ the process is

repeated until an equation is obtained which is entirely rational with

respect to the unknown quantity appearing in it.

All solutions of the rational equation thus obtained which do not

satisfy the given irrational equation must be rejected as being extra

solutions introduced during the process of rationalization.

Ex. 1. Solve 14 - a: = ^\m - x\ (1)

Squaring both members, 196 - 28 x + x^ = 100 - a:^. (2)

The equivalent equation a:^— 14x + 48 = (3)

has the two solutions, x = 8 and x = 6.

We find by substitution that both values satisfy the given equation.

Hence in this case no solutions have been introduced by the process of

squaring the meml>ers of the given equation.

If the given equation (1) be written in the form

14-x- /v/l00-x2 = 0, (4)

it may be seen that a rational equation can be derived from it by using the

rationalizing factor 14 — x + >v/lOO — x^.

Any root which may possibly be introduced into the derived e(|uation

by the use of this factor must be a root of the equation obtained by placing

this factor equal to zero,— that is, of the equation

14 _ a; + yiOO - x2 = 0,

or, 14 - X = - ^/\00 - x\ (5)

Either of the solutions of equation (3), x = 8 or x = 6, if substituted in

(5), makes the first member positive and the second member negative, pro-

vided that we take only the principal value of the root.
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Hence, with the restriction that the principal value only of the root is to

be taken, these values could not have been introduced during the process of

rationalization.

6. It should be observed that we may write an equality which

expresses a relation between two numbers or expressions which is

inconsistent with the laws governing relations between numbers.

Such an equality is sometimes spoken of as an "impossible

equation."

E. g. Thus, since it is impossible that a positive number be equal to a

negative number, equation (5) of § 5 is an illustration of an "inqjossible

equation."

Rational, fractional equations having no finite solutions may be

written.

E. g. = expresses a condition which cannot be satisfied
X — 2 X — 3

by any finite value of a;, that is, it is a so-called "impossible equation."

It may be seen that by clearing of fractions we obtain the inconsistent

relation a: — 2 = a: — 3, or — 2 = — 3, which is impossible.

Ex. 2. Solve a: - 5 + y'a; - 5 = 0. (1)

Transposing, ^x — 5 = 5 — a:. (2)

Squaring both members, a: — 5 = 25 — 10 a: + a;^, ^3^

Equation (3) is equivalent to a;^ — 11 a: + 30 = 0, (4)

of which the solutions are x = 6, and x = 5.

Both values are roots of the rational equations (3) and (4), but if we

restrict the roots to principal values only, equation (I) is satisfied by the

value X = 5, but not by the value x = 6.

It appears that x = 6 is an extra root introduced by squaring the

members of (2).

It should be observed that if, instead of first transposing the terms of

equation (1) and then squaring, we had obtained a rational equation by

multiplying both members of (1) by the rationaliziiig factor x — 5 — y\/x— 5,

we would have obtained the same rational equatipn (4) as before, and con-

sequently the same solutions, x = 6, and x = 5.

We find that both of these values satisfy the "multiplier equation,"

x — 5 — -y/x — 5 = 0, formed by equating the rationalizing factor to zero.

Hence, either of the values a: = 6 or a: = 5 might have been introduced

during the process of rationalization.

It is, therefore, necessary to substitute in the original equation to find

34
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whether or not either or both of these values can be accepted as solutions

of the given equation (1).

Ex. 3. Solve X + ^y/x — 2 = 0.

It should be observed that this equation is quadratic with reference to

-y/x. Hence we may factor with reference to /y/a:, and obtain,

(V^+2)(v^- 1) = 0.

Hence, ^/x + 2 = 0, and /y/x —1=0.
Or, ^x = — 2, and ^x — 1.

Hence, a: = 4, and x = 1.

It should be observed that tlie value 4 is the square of the nef^ative

number — 2. Hence, when substituting 4 for x in the given equation, it

is necessary that ^x be considered equal to — 2.

With this understanding, it will be found that the value 4 satisfies the

given equation.

For, we have 4 + (- 2) - 2 = 0. That is, = 0.

The remaining value x—\ will be found by substitution to satisfy the

given ecination.

For, we have 1 + 1-2 = 0. That is, = 0.

7. If ^, 5, and C be any functions of x^ it may be shown that

the equations

\/J+ \/5+ v^= o, (1)

VI +^^-^^^=0, (2)

VZ-V^+VC'=0, (3)

V3"-v^-Va = o, (4)

when rationalized, all lead to the same derived equation

A^'-^B'^C-^AB-^BC-'iGA^^. (5)

Accordingly, equation (5) is equivalent to the set of four equations

(1), (2), (3), and (4).

It follows that, when solving an irrational equation having the

form of any one of the irrational equations (1), (2), (3), or (4), we

shall obtain the solutions, not only of the given equation, but also

of the equations represented by the remaining three equations of the

set, obtained by changing among themselves in all possible ways the

signs of the radicals of the given equation.
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8. We cannot speak of the degree of an equation which is irra-

tional with reference to the unknown, and we have no means for

knowing before solving, as we have in the case of integral equations,

the number of roots of a given irrational equation.

9. Often no solution of the derived rational equation will satisfy

the given irrational equation, if the roots are restricted to principal

values only.

Ex. 4. Solve I - ^/x+ ^2x-\-l = 0. (1)

Transposing, 1 + '\/2x + 1 = -y^. (2)

Squaring both members, 1 + 2\/'2x + 1 + 2ic + 1 = a?. (3)

Collecting terms and transposing, 2^2 x + 1 = — 2 — x. (4)

Again squaring both members, 4 (2a: + 1) = 4 + 4a; + a;^. (5)

The equivalent equation x^ — 4 a: = 0, (6)

has as solutions x = 0, and a: = 4.

We find by substitution that neither of these values satisfies the given

equation (1). Hence equation (1) has no root.

It may be seen that, if the signs of the terms of the given equation are

changed among themselves in all possible ways, we shall obtain the set of

four irrational equations which all lead, when rationalized, to the rational

equation (6). (See § 7, (1), (2), (3), (4), (5). )

Substituting the values a; = and a: = 4 in these equations, we find that

(i.) Neither value satisfies the given e([uation

1 - V^ + /v/2 a3 + 1 = 0, (1)

(ii.) One value x = 0, satisfies the additional equation

1 _ y^ _ .y/2a:-|- 1 = 0, (7)

(iii.) Neither value satisfies the additional equation

I + \/x + \/2x-\- I = 0, (8)

(iv.) Both values satisfy the additional equation

- I - V^ + V^x + l = 0. (9)

10. Certain irrational equations may be so written as to appear in

quadratic form with respect to some expression appearing in them,

and the principles for the solution of quadratic equations may then

be applied to obtain their solutions, if indeed any solutions exist.

Ex. 5. Solve x2 + 53:- 2^./.=^ + 5 ^Ts -12 = 0. (1)
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Observe that we may duplicate the expression x^ + 5 .r + 3, which appears

iiiuler the radical sign, by adding 3 to the expression x'^ + bx which appears

outside.

Accordingly, adding 3 and also subtracting 3 from the first member of (1),

we obtain the equivalent equation

a;2 + 5 a: + 3 - 2^/x^ -\- bx + S -15 = 0. (2)

Factoring with reference to >y/a:^ + 5 a: -f 3, we obtain

[V'a:--» + 5a:+3 - bj_.y/x^ + 5 x + 3 + 3] = 0. (3)

The roots of equation (3) include all of the roots of the ftdlowing equations:

/y/x^ + 5 X -I- 3 -5 = 0, (4) and ^/x^T~5x~^ + 3 = 0. (5)

The roots of e^iuation (4) are found to be x = ^^^ . These

values will be found by substitution to satisfy the given equation.

From equation (5) we obtain

y^x2 + 5x + 3 = - 3. (6)

Hence, x^ _^ 5 a; -|_ 3 = 9. (7)

Or, x« + 5 X - 6 = 0.

Factoring, (x + 6)(x — 1) = 0.

Hence, x = — 6, and x = 1.

Since the right member, 9, of equation (7) was obtained by squaring a

negative number in the second member of equation (6^, it follows that when
the values — 6 and + 1 are substituted for x in the expression x^ 4- 5 x + 3

appearing under the radical sign in equation (6), the expression will repre-

sent the square of a negative number. Accordingly, when finding the value

of y\/x^ + 5x + 3, after having substituted — 6 and + 1 for x, it is necessary

to consider that the result is a negative number.

With this understanding, it may Ixi seen that the values — 6 and + 1

satisfy the given equation.

For, substituting— 6, we have, 36 — 30 — 2(— 3) — 12 = 0. Hence, = 0.

Substituting - 1, we have, 1 + 5 - 2(- 3) - 12 = 0. Hence, = 0.

Ex.6. Solve2x2-2x- /^x2-x + 4 4-2 = 0. (1)

Equation (1) may be written in the equivalent form

2x2-2x + 8- >y/x'«-x + 44-2-8 = 0. (2)

Or, 2(x2 _ X + 4) - yy/^^^T^T^ -6 = 0. (3)

Equation (.3) is quadratic with respect tx) the expression /y/x^ — x + 4.

Hence, factoring with reference to -y/x^ — x + 4, we have,

(2>v/x2 - X + 4 + 3)(y'x2-x + 4- 2) = 0. (4)
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Placing these factors equal to zero, we obtain the equations

2/y/x''« - a; + 4 + 3 = 0, (5) and ^/x^ - a: + 4 -2 = 0. (6)

From equation (5) we obtain /\/x2^^^^^ + 4 = — f , the solutions of which

are found to be x = ^-

It shouhl Ije observed that when these values are substituted for x.

'y/x'^ — X -\- 4 must be a negative number, — f

.

Accordingly, with this understanding, these imaginary values will be

found to satisfy the given equation.

Equation (6) is found to have the solutions a; = and a: = 1, both of

which satisfy the given equation.

Exercise XXIV. 1

Solve the following irrational equations, verifying integral or

fractional results and rejecting " extra roots "

:

1. V^ + a;"' — 3 = 0. 6. VaJ + 6 = ^'i\x — H — 2.

2. Vx^ + 15 — 7=0. 7. a/25 -a? + Vl6. + x = 9.

3. 'v/3ic+ 4 + V2x-\- 9 = 1. 8. Vx -\- 13 + V2ic— 45 = 7.

4. Vie + X + Vl -« = 5. 9. Vx-\- 5 + V2a; + 8 = 7.

5. VSx+lo = VSiB- 1 - 1. 10. V''2x+ 1 + Va;+ 5 = 6.

11. «\/ic^ + 20 H- a;\/a;2 + 10 = 5.

12. (a) 2 + ^30; — 2 — V8^ = 0.

(b) 2 — VSx-2 — VSx = 0.

(c) 2 — V3 a; — 2 + V^ = 0.

(d) V3a;— 2 — 2 - VSaj = 0.

13. (a) Vx+ 2 + Va;— 13 + Va; — 5 = 0.

(b) Vi«4- 2 - Va;— 13 — ^/x- 6 = 0.

(c) a/«+ 2 - Va; - 13 + V^c - 5 = 0.

(d) ViB+ 2 + Vaj- 13 — Vx — 5 = 0.

14. Va;+ 12 + Va;— 12 - Vx+ 23 = 0.

15. V5 — a; + V2 + a; = Vl4.

16. a/5 — a; + \/8 - a? = Vl3 — 2 a;.

17. ^2 a; + 9 — Vaj — 4 = Va^ + 1.

18. ^5 + 2a; = a/3 + a; + a/2 + a;.
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19. V4-a; = V^ + x + V9 + a.

20. V2aj+ 9 + Va — 4 = Va; + 41.

21. V'^x+ 1 + Va— 1 = V2 a; — 6.

22. VSx + 4: — \/2x+ 6 = Va; - 14.

23. V(a; ~ 4)(x ~~3) + V(^ - 2)(x - 1) = V2.
24. V(4 + «)(« + 1) + V(4: - x)(x - 1) = 4v^.
25. Va + « — Va — x= Va.

26. Va=* + X + Vb^-x = a + b.

27. Va — x + Vft — aj = a/« + ^ — 2

28. '^S^^^^ - 'iJ'a'^^ = V^6'=r^.

3

Ia%

29.

Vx — 4
+ V« - 4 = 4.

30.
^^+^^"-^ = 1.

3 a; — V3 a; — 3

31
1

X + Va^— 1 ic — Var^ — 1

32

33. 2A/2a + \/2a;+ 9 =

V2a; — 3 VSa; —

2

_ 7

A/3a;- 2 V2a;--3~ 12

65

^20;+ 9

34. Vx + 2+ ^
= a; + 3.

Vx + 2

_. x+ 1 6+ 1
35. —-=- =—— •

yx yb

a — X x — b
36. -:^^ + ^=^=v^^r6.

V a — X yx — 6

37
I _ I _k

^ _ VF - ar^ ^ + v^F=^^ a^

38. i/^_v/^ = v/^_v/^.Vic Va; Vw Vw2
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Va^ + x^ + Va^ — x^ _ Va + Vc
OJ. .

— "z: IT'

V «^ + x^ — wd^ — Q? V a — Vc

40. Va;' - a; + 1 - V^M^^T+T = c.

41. aj2 — 3 a; — Va?"' — 3 £« — 2 = 0.

42. VlO -ar' — a; = « — a;2 — a.

43. 2a;2 + a; + A/2a;' + a; - 42 = 0.

44. 2 cc^ + 6 aj + Va;' + 3 a; = 10.

45. 2 a;' + a; - 3V2ar^ + aj+ 4 = 6.

46. 2a;'-^ — 10a; + 12 — 2Va;' — 5a; + 8 = 0.

47. 3ar* — 4aj+ V3a;'-4a; — 6 = 18.

11. At least one solution of certain equations which have the
p

special form x'' = a may be obtained by the following process :

p

From the equation a;*" = a,

p r r

we obtain, {x'Y = dP.

r

Therefore x = aJ^.

12. It should be observed that more solutions exist than are

commonly obtained by the process above.

Ex. 1 . Find one or more solutions of x^ = 3.

From x^ = 2,

we have, (x^y = 3^.

That is, x = 9.

In this case the solution obtained is the only one which exists tor the

given equation.

Ex. 2. Find one or more solutions of y^ = 8.

From y^ = 8,

we have (y^r = ^ •

That is, y = ^^64 = 4.

The solution obtained, y = 4, is in this case one of the three possible

solutions of the given equation.
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The complete solution of the equation may be obtained as follows

:

From y^ = 8,

we obtain 2/* = ^4.

Hence y« _ 64 = 0.

Factoring (y - 4) (y^ .f 4 ?/ + 1 '0 = 0.

Solving the equations obtained by i>ljicing these factors separately equal

to zero, we have

from y — 4 = 0, and from y^ + 4y -{ IG = 0,

2/ = 4, and 2/ = - 2 db S/y/^.
Accordingly, the three solutions of the given equation are the real nmnher

4 and the conjugate complex numbers — 2 + 2^'— 3 and — 2 — '2,^/— 3.

These solutions will be found, by substitution, to satisfy the given

equation.

Mental Exercise XXIV. 2

Obtain one or more solutions of each of the following equations,

regarding a, y, z, and w as unknowns and all other letters as repre-

senting known numbers :

1. x^ = 2. 17. rz=h 33. x^ = 64.

2. a* = 3. 18. x^ = b\ 34. x^ = 32.

3. a^ = 2. 19. x^ = c*. 35. .^ = -1.

4. jc* = - 3. 20. y^ = ab\ 36. x^ = S.

5. y^ = - 6. 21. y^ = kV. 37. x^ = a\

6. -.^^ = 4. 22. z^ = ab\ 38. x^ = a\

7. -y^ = 6. 23. qi^ = — bc^. 39. S = a\

8. V^ = 5. 24. W^ = 4:. 40. y^ = b\

9. v^=7. 25. x^ = 27. 41. z^ = a-\

10. ^z = 4.. 26. xi = 8. 42. y^ = nr\

11. ^w = S. 27. / = 27.
rt^

12. v^ = -4. 28. yi = S. 43. J=±.
13. v^ = 3. 29. z^ = 16.

14. ^x = 2. 30. z^ = 9. 44.
4 a' •

15. </x=l. 31. ^^=36. 9

16. \/y = -2. 32. ^/=16. 45. V2^ = 4.
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46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

V^y = 6.

.

^57= 10.

a/22^ = 8.

^Ix =^ - 2.

\)^2a' = 2.

A^4^ = 4.

a/6^ = 2.

VHjrc = 5.

a/3 w = 4.

\/5w = 6.

x^ = h

zi = h

J = '-^

a

1 a

V'W = ^.

Vx = h
\/x = i

V^ = — i.

2a;^ = 3.

3aj^ = 4.

2ic* = 5.

3 a;* = 2.

2a;^ = 5.

3V^=2.

3V^ = 4.

74. 4a/^ = 1.

75. 5V^=6.
76. 2a/3^=5.

77. 3V2^ = 2.

78. 4a/5w = 5.

79. V«ic = ^.

80. Vcx = d.

81. V%"= 1.

82. a\/w = b.

83. ca/^ = d.

84. c?V^ = 1.

85. aVx = 2.

86. V^ = 7^.

T m

87. \/^ = 6.
a

88. V~z = ^-

89. v^

90.^=1.
a

91. a/^=2.
92. v':?/ = 3.

93. -5^21 = 1.

94. a/2^=:3.

95. a/3S = 3.

96. "-^3;= 2.

97. x^ =a-\-b.

98. 2/^ =za — b.

99. ;j^ = c + ^.

w^ = m — n.

W:

02.

03.

04.

05.

06.

07.

2

\/x

v^

= 3.

= 3.

= 5.

3
~^-

2V/- = 7.

08. -

09.

10.

11.

12.

13.

14.

15.

3V 2

2

3V 5

a/3^
3

5

i_

= 1.

= 2.

^ ^ = 6.

z~^ = 3.

;5"^ = 2.

Jl — 1.

ii?* 2

1-1.
x^ 3

16. a; ^ =

17. ^J
-i
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llg ;j-i = 1. 121. z^ = 2K 124. \^x = Ve.
^ — — _

^,^ 1 1 122. Vy='V^5. 125. V3^ = 2'^5.
119. a^^ = o*.

120. V« = Vq. 123. «<;* = 5^ 126. Vz = 3v^7.

Special Equations

13. We will now consider certain special equations, the solutions

of which depend upon the solutions of quadratic or of linear equations.

Certain ecjuations containing two different powers, tc^" and a;", of

an unknown quantity or expression x, one power being the square of

the other, may be reduced to the form ax^" + hx^ + c = which is

quadratic with reference to af*. Such equations may be solved by

the methods employed for the solution of the standard quadratic

equation.

E.g. The following equations are all in quadratic form, since in each case

the power of the unknown appearing in the first term is the square of the

power appearing in the second terra :

a:4 _ 25 x2 + 144 = 0,

a; -14x^ + 45 = 0,

a;^- 13x^ + 36 = 0,

ar2 - ari - 6 = 0.

Ex. 1. Solve x* - 25 a;2 4- 144 = 0. (1)

Factoring, (x^ - 16)(x2 - 9) = 0. (2)

This equation is equivalent to the set of two quadratic equations

ar2_i6 = and x^ - 9 = 0. (3)

Hence x = ± 4 and x = ± 3.

All of these values will be found by substitution to satisfy the given

equation.

Ex. 2. Solve X - 14 xi + 45 = 0. (1)

Observe that x, which appears in the first term, is the square of x^ which

appears in the second term.

Factoring with reference to x^, we obtain,

(x^ - 9)(x2 - 5) ^ 0. (2)
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This single equation is equivalent to the set of equations

a;^ — 9 = 0, and x^ _ 5 = 0. (3)

Hence, x^ = 9, and x^ = 5.

Squaring both members of each of the equations above,

(x^y = 92, and (x^y^ = 52.

Therefore a: =: 81, and x = 25.

These values will be found, by substitution, to satisfy the given equation.

Ex. 3. Solve a;^ - I3x^ + 36 = 0. (1)

Factoring with reference to a:^, we have

(a:f _9)(a;t_4) = 0. (2)

Hence, a;^ - 9 = 0, and art _ 4 = 0. (3)

Tlierefore, x^ = 9, and x^ = 4.

To obtain x from a:», we may raise x^ to the third power and extract the

square root of the result, or first extract the square root of x^, and then find

the third power of the result.

That is, (xt)t=:9^ and Gf)t = 4^.

Therefore a; = i 27, and x = ±H.

These values will be found, by substitution, to satisfy the given equation.

Ex. 4. Solve ar2 - a;-i - 6 = 0. (1)

Factoring with reference to xr\

we have (xr^ - 3)(a;-i + 2) = 0. (2)

Hence, x-^ - 3 = 0, and a;-i + 2 = 0. (3)

We find that ar^ = 3, and a:-i = - 2. (4)

To obtain x from xr\ we may write (x~^)~^ = x+^.

Hence, (a:-i)-i = 3-1, and (a;-i)-i = - 2-\

Therefore, ^ = h ^^^^ ^ = — \-

Instead of proceeding as above, we may obtain the values as follows

:

From ari = 3 and x-^ = - 2,

we obtain - = 3 and - = — 2. (5)
X X

Hence, a: = ^ and x = — \.

Verifying by substituting in (1), we have,
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Substituting |^, Substituting — i,

a)-^-a)-'-6=o (-h)-'-(-h)-'-(i = o
9 _ 3 -6=0 4+2 -6=0

= 0. = 0.

14. If the solution of a given equation cannot be readily obtained

by factoring, we may either resort to the method of completing the

square, or we may use the formula.

Ex. 5. Solve 3x-Hxi + 2 = 0.

Observe that x in the first term is the square of x^ in the second term.

Referring to the standard equation ax^ + ftx + c = 0, we find that x and

a:* in the given equation are represented by x^ and x respectively in the

standard equation; the coefficient 3 of a: in the given equation is repre-

sented by the coefficient a of x^ in the standard equation ;
— 8 is repre-

sented by 6, and 2 is represented by c.

Corresponding to the solution of the standard equation,

_ -h ± ^b^-4ac^-
2a

I - (- 8) ± V(- 8)^^- 4. 3"^
we may wnte x' =—^^ 5^-^—

_ + 8 j- V64 - 24~
6

+ 8 ± 2\/l0~
6

_ + 4 + yio
~ 3

*

, .
" i + 4 + VlO , 1 + 4 - a/To

That is, a:^ =
^
— and x^ = ^

Squaring both members of each of the equations above,

26 + 8a/10 , 26-8/v/lO * .

Or, x = -—^-^— , and x= ^
These exact values will be found by substitution to satisfy the given

equation.

By extracting the square root of 10 to any required number of significant

fifnires, and replacing /y/lO by the approximate value thus found, approxi-
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mate values may be obtained for x, which are correct to any required

number of significant figures.

Thus, X = 5.6997+, and x - .0780+. (See Chap. XXII.

§ 20, Ex. 2.)

Exercise XXIV. 3

Find one or more solutions of each of the following equations,

verifying all integral and fractional solutions: ;

1. x' - U)x' + 9 = 0. 17. 4^1 _ i^J +5 = 0.

2. ;«^- 200^^+64 = 0. 13. 14a^^ = 1107-a^.
3. x' -14x^ = — 1225.

19. Sx^ - 4x^ = 160.

4. 0.^3 0.^ +19) =124. 20. Sx^-l = 4xK
5.x^-(x + 2r = 0. 21..U.^ = 756.
6..^=(.+ 6y.

22. 5-3.- = 2.-.
7. 16(a;^-3)=a.^

23 x'^ - x'^ = Q
8. (,+ 12)^_,. = 0.

24. 4.--32 + .- = 0.

9. 2.« + 48 = .«.
25. 20.-^-.-^ = 64.

10. «« + 9ic» + 8 = 0.

11. 5a;^ — 2a; = — 3.

26. x^-5x''= Ux.
Hint. Write in the form

12. x+ 5x^ = 36. x(x^ - 5x - 14) = 0,

13. 3 £C^ — 5 a = — 36. Then a; = is one solu-

14. x^ + 4a;^ = 21. ^io"-

15. x^ (3 x^ — 2) = 8. 27. x(x' - 16) = 45(£c — 4).

16. 2a;^ - 2 = SxK 28. a;^ — Gx^ - 40aj^ = 0.

15. Occasionally the terms of an equation of degree higher than

the second may be so grouped as to allow of the reduction of the

equation to a form which is quadratic with respect to some definite

group of terms containing the unknown.

If we let/(x) represent a group of terms containing the unknown,

X, we may represent an equation which is quadratic with reference

to this group of terms by

a[/(x)r + b[f(x)] + c = 0.

Ex. 1. Solve (a;2 + 3 x)2 - 2(a;2 + 3 a;) _ 8 = 0. (1)

Observe that the equation is quadratic with respect to the group of terms

(x2 + 3a:).
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(-4.0)

Factoring with respect to this group of terms, we obtain,

[(x2 + 3 a:) - 4][a;2 + 3x)+2]=0. (2)

Equation (2) is equivalent to the

set of two equations obtained by-

writing the factors of its first member
separately equal to zero.

Hence, a:^ + 3 a; - 4 = 0, (3)

and a:2 + 3a; + 2 = 0. (4)

These equations in turn are equiv-

alent to

(x + 4)(x-l) = {),

and (x + 2)(x + I) z= 0.

Hence, ar = — 4, a: = 1,

(6)

(6)

and ar = -2, a; = -l.

Fig. 1. (T2+ 3x)2-2(a:2-f 3a:)-8= .y.

These values are all found by sub-

stitution to be roots of the given

equation, which is of the fourth de-

gree or biquadratic. (See Fig. 1.)

Ex. 2. Solve

a:*-12a:8+ 25a;2+66a:-80= 0. (1)

We may obtain the tenn which is necessary to complete the square with

respect to x* — 12 a:* by using — 12 jc^ as a " finder term " with a;*, as follows :

-12a:8

2a;2
= -6x.

Accordingly the complete trinomial square of which x^ and — 12 a:* are

the first two terms is

x*-l2x»-\- (-6xy 12a;8 + 36a;2.

This may be constructed in the first member of (1) by adding 11 a;^ to

25a:2.

Hence,

Or,

Hence,

c*- 12a:« + 25x2+ 11 a;^- 11 cc^ + 66x - 80 = 0.

X* - 12a:8 + 36 3.2 _ n a:^ + 66a: ~ 80 = 0.

{a:2 - 6 a:)2 _ 11 a:2 + 66 a: - 80 = 0.

(2)

(3)

(4)

To arrange the terms in quadratic form with respect to a;^ — 6 x, we must

so group them as to have both (a:^ — Gx)'^ and (x^ — 6 a:).
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Grouping the terms — 11 a:^ and 66 a;, we have

(a;2_6;r)2- 11 (a:2-6a:)-80=:0. (5)

We have derived from equation (1) the equivalent equation (5) in

quadratic form.

Solving (5) by the method of factoring, we have

[(a:2 -(5x)- 16][(a:2 _ 6 a;) + 5] = 0. (6)

This equation is equivalent to the set of two equations

a;2 _ 6 a; - 16 = 0, (7) and a:2 _ 6 a: + 5 z= 0. (8)

The solutions of these equations are found to be

a: = 8, a: =: — 2, and a: = 5, a: = 1

.

All of the values are found by substitution to be solutions of the given

equation of the fourth degree.

16. The introduction of an auxiliary letter in place of a

term or group of terms containing the unknown often simplifies

the process of solution of an equation.

a;2 + 6 5 a; „
Ex.3. Solve ___ + _^__ = 6. (1)

Observe that in the given equation the expression and its

X
reciprocal

^
both appear.

a:^ + 6 X 1
If we let = y, then its reciprocal may be written -^—- = - •

X X "^ o y

For (1) we may substitute, ^ + - = 6, (2)

from which y^ — 6y + 5 = 0. (3)

We find that 2/ = 5, (4) and y=l. (5)

Substituting these values for y in = y we shall obtain the two

following equations, which are together equivalent to equation (1) :

?1±^ = M6) and ^-if5=l.(7)

The solutions of these equations are found to be

1 ± V- 23
a: = 3, a; = 2, and x = 1

These values all satisfy the given equation.

Ex.4. Solve (a;2 4-a: + 2)(a:2 + a: + 7) = 36. (1)

If we let a:2 + a: + 2 = y,

tlien x^ + x + 7 = y-\-5.
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Substituting y and y -\- 5 for the polynomials in the given equation,

we have y (y + 5) = 36. (2)

Or, 2/2 + 52/ -36 = 0. (3)

The solutions of this equation are found to be

!/ = -9, (4) and y = 4. (5)

Substituting these values for y in the assumed equation x^ + x -{- 2 = y^

we obtain the two following equations, which are together equivalent to

equation (1) :

a;2 + a: + 2 = - 9, (6) and x^ -\- x + 2 = 4. (7)

The roots of these equations are found to be

X = ~
, and a; = — 2, a: = + 1.

These values will be found, by substitution, to satisfy the given equation.

Examples 3 and 4 may also be solved by the method employed for

examples 1 and 2.

Exercise XXIV. 4

Solve the foUowiDg equations, verifying all integral and fractional

solutions :

1. (x" -Sxy- six" -^x) = 20.

2. (x" + xy - 2G(x^ + x) + 120 = 0.

3. 3ar'+2ic+ 1 =77-3

4. £c2 - 4a; - 26 + ^ — = 0.

Sx^ + 2x

105

x^ — 4x

5. X* + 2x'^-Gx^-~ 7£c- 60 = 0.

6. x*-2x^ + Qx''-5x= 14.

7. X* + (Jx^ + Ux^ + 15ic + 6 = 0.

8. X* — 10a;* + 14a;2 + 55a; + 30 = 0.

9. (x^-x- 4)(x^ - aj - 3) - 6 = 0.

10. (ar^ + a; 4- l)(a;' + a; + 3) = 63.

11.

12.

X
1

x^-
X

35 _
6
~

1 _

X

73

x"

7?

- 1

+ 2

1

1

24

-3
X -3 1 + 2
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- i'-iy

+ - + a; = 42.
X

x^+ 1 = 12.

+ Sx
24 = 10.

17. A binomial equation is an equation of the form cc" + a = 0,

in which ?i is a positive integer. Whenever the binomial x"" + a

can be expressed as the product of two or more factors of the first

or second degrees, the binomial equation x"" -\~ a = may be solved

by the methods employed for the solution of linear and quadratic

equations.

Ex. 1. Find the three cube roots of + 1.

If X represents any one of the cube roots of + 1,

we have

a:8 = + l. (1)

By solving the binomial equation, we shall find

the three cube roots desired.

Equation (1) is equivalent to a;* — 1 = 0. (2)

Factoring, (x - l)(x2 + a: + 1) = 0. (3)

This equation is equivalent to the set of two

equations

a; _ 1 - 0, (4) and x2 + x + 1 = 0. (5)

The solutions of (4) and (5) are

-1± v^

K{-i+V=3)

K(-i-V=3

Fig. 2. x^ - 1 = y.

x=l and (See Fig. 2.)

The positive real value x = + 1 is the principal root of + 1. This is the

root found by the arithmetic process for the extraction of the cube root.

The three values obtained above will all be found to satisfy the algebraic

equation (1).

18. An equation in which the coefficients are the same, whether

read in order forward or backward, is called a reciprocal equation.

Ex. 2. Solve the binomial equation x^ — 1 = 0. (1)

Factoring, (x - l)(r* + ar* + x^ + x + 1) = 0. (2)

This single equation is equivalent to the binomial equation

x-l= 0, (3)

35
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and the reciprocal equation x* -{ x^ + x^ + x + I = 0, (4), taken together.

The solution of (3) h x = 1.

The solution of the reciprocal equation (4) may be obtained as follows :

Dividing each of the terms of (4) by x% we obtain

a:2 + X + 1 + ^ + i^ = 0, (5)

or,
•

a:2 + 1+ L + a: + i = 0. • (6)
X X

The terms x^ and 1 /x^ suggest a trinomial square, a;^ _|_ 2 -^ __.

By adding 1 and also subtracting 1 in the first member of equation (6),

we obtain,

ar« + 2 + i + a: + i-l = 0, (7)

or,

Equation (8) is quadratic with respect to (^ + ~
)

*

Accordingly, applying the formula, we obtain

X z

Equation (9) is equivalent to the set of two separate equations

From these we derive

:.._(
-l + V^')x+1^0 and x=- (^i^)x + 1 = 0.

These four complex values, taken together with the real value, a; = 1,

obtained from equation (3), are the five fifth-roots of + 1, which are the

solutions of the given equation a^ — \ =0.

Exercise XXIV. 5

Solve the following equations, verifying all integral and fractional

solutions :

1. ic« - 27 = 0. 3. x^ = 1.

2. aj^ - 64 = 0. 4. a?« + 1 = 0.



PROBLEMS IN PHYSICS 547

5. ic^ + 8 = 0. 7. (x - sy = 8.

6. a;« - 64 = 0. 8. (x - 4/ -81 = 0.

9. 6a?* -35a^ + 62a;2 — 35£C+ 6 = 0.

10. lOx*— 11 x^ + IbOx^ — nx-^- 10 = 0.

11. 6a;*-49a;* + 86a;' — 49a;+ 6 = 0.

12. 6a;* — 25ic^4- 38a;'- 25£c+ 6 = 0.

13. 12a;* - 91 a;«+ 194a;'- 91a; + 12 = 0.

14. 15a;» - 49a;' + 49a;- 15 = 0.

15. 8 a;^ — 46 a;* + 47 a;' + 47 a;' - 46 a; + 8 = 0.

Problems m Physics

19. The Simple Pendulum. If a simple pendulum swings

through an arc the extremities of which are A and B, the motion

of the pendulum from A to B or from B to A is called an oscillation

or a vibration.

20. The time of vibration is the time required for the pendulum

to make a single vibration, that is, to move from A to B^ or from

B to A.

21. The distance from the lowest point of the arc AB to either

extremity, A or B, that is, one-half of the arc AB, is called the

amplitude of vibration.

22. When the amplitude of vibration is very small, an approxi-

mate value of the time of vibration, t, expressed in seconds, of a

pendulum of length /, expressed in feet, is found by the formula

^ g

In the following examples the approximate value 22/7 maybe
taken for the numerical constant tt.

Exercise XXIV. 6

Solve each of the following problems relating to the simple

pendulum :

1. Find the length in feet of a pendulum which vibrates once in a second

at a place at which g = 32.16.

2. Find the value of g at a certain place if a pendulum which is 10 feet

in lenjjth makes 20 vibrations in 35 seconds.
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3. If a certain pendulum vibrates once in a second, find the time required

for a pendulum which is twice as long to vibrate once.

4. Find the length of a pendulum which makes 80 vibrations per minute

at a place at which the value of g is 32.16.

5. Find the length of a pendulum which vibrates once per second at a

place at which the value of g is 32.19.

6. If at a certiiin place.a pendulum 39 inches in length vibrates once in a

second, find the length of a pendulum which at the same place will make
one vibration in one minute.

7. If a ball suspended by a fine wire makes 88 vibrations in 15 minutes,

find the length of the wire.

8. If a pendulum which is 39.1 inches in length vibrates once in a

second at a certain place, find the length of a pendulum which will vibrate

once in 5 seconds.

Exercise XXIV. 7. Review

1. Ifa = 1, J = 3, and c = 2, find the value of

(a + b)ib + c)(c + a)+ a" + b' + c«.

2. Factor 1 + 10a;- liar*.

3. Factor x^(j/ + 1) + f(x + 1) + a; + 3^ + 2 a;y.

4. Factor «» - a;* - a(a^ - x^ + x(a - xf.

5. Find the prime factors of (a - a^f + {a" - If + (1 - a)\

Simplify the following expressions :

«(--i)-('-0- -^^^
(«* - h''){a^ - b')

a b

^'
(a« - 6«)(a -b)' 13. {x-^ + r') -^ (a;~* + y\

27-2 . 9 X -1-^ _ 3-8

14. — ^

27' • 3«

15. Express (— a — ^) -^ (— ar^ — b'^) with the minimum number

of minus signs.
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16. Find the value of

x-\- 2m x — '2m
^ 4:mn .

.

mn
-r -z ; 1—3

:
—5' II £c =

2 71 — X 2n + X x^ — 4:71^ m + n

17. Show that (a^ - Pf = a^ - ab + b\ if a + b = 1.

Simplify each of the following expressions :

18. (3 - ^^(2 - V^).
19. ab + Vab + (a - \/b)(Va - b).

20. (V^ - V=^)' + (\/3 - V^y.
21. (V5 - 'v/? + 2)(V5 + V7 - 2).

22. (\/7 + V^ - V^Xa/t - Vs + Vs.)

23. (Vn - a/6 + 5)(Vll - a/6 - 5).

\Vb Va) ' \Vb Va)
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CHAPTER XXV

SYSTEMS OF SIMULTANEOUS EQUATIONS INVOLVING
QUADRATIC EQUATIONS

Systems of Two Equations Containing Two Unknowns

1. The most general form for an equation of the second degree

containing two unknowns, x and y, is

ax^ + 2hxii + by'' + 2 gx + 2fy + 6 = 0,

in which «, b, Cyf^ g^ and h all represent real known numbers.

If one or more of these letters be given the value zero, the terms

of which they are the coefficients disappear, and we have special

types of quadratic equations containing two unknowns, x and y^

such as the following :

If /, g, be zero, we have ax^ + 2 lixy + hy^ -\- c = 0. (i.)

f^g.h, ax^ + hy^ + c = 0. (ii )

6,/, gf, ax2 -f 2 hxy + c = 0. (iii.)

a,/, 5f, 2hxy-^ by^ -\ c = 0. (iv.)

b, g, K ax^ -{- 2fy -\-c = 0. (v.)

<hf,hy hy^ + 2yx +c = 0. (vi.)

etc. etc.

2. In this chapter we shall obtain the solutions of certain sys-

tems of simultaneous equations, containing one or more equations oi

the second degree, of the general t)rpes shown above.

3. In Chapter XVII, we found that there exists a definite set of

values of the unknowns which satisfies all of the equations of a given

set simultaneously, provided that the given equations are inde-

pendent and consistent, and that the number of equations is equal

to the number of different unknowns appearing in the system.

We shall find, whenever one at least of the given equations

composing a system is of the second or higher degree, that there
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can be found more than one set of values which satisfies all of the

equations at the same time.

4. There are many systems consisting of two equations of the

second or higher degrees with reference to two unknowns which

cannot be solved by means of quadratic or linear equations.

5. Whenever a system consists of one equation of the second

degree and another of the first degree with reference to two un-

knowns, say X and y^ the equation of the second degree having the

form either of the general equation

ax^ + 2 hxy -^ Of -h 2 gx + 2fy + c = 0,

or of one of the special forms ax"^ -{- bi/'^ + c = (see § 1), we may
always make the solution of the system depend upon the solution

of equations of either the second or of the first degree.

6. ^rom the eqiMtian of the first degree, we 7nay ex'press the value

of one of the unknowns, say y, in terms of the other, x; on substi-

tuting this expressed value for the same unknown, y, wherever it

appears in the equation of the second degree, we shall derive an

equation of the second degree containing but one unknown, x, called

the x-eliniinant of the system ; this x-eliminant may be solved by

the methods already sJiown fm^ tJie solution of quadratic equations

containing one unknown.

From the given system is thus derived an equivalent system con-

sisting of the given equation of the first degree with reference to

both of the unknowns, and, as the case may be, either the a;-eliminant

or the ?/-eliminant of the system, which contains but one of the given

unknowns.

The number of solutions of the particular eliminant employed

depends upon its degree with reference to the unknown contained

in it, and by substituting the solutions of the eliminant separately in

the remaining original equation of the first degree, we shall, for each

value of the unknown substituted, say x, obtain a corresponding value'

for the remaining unknown, y.

The number of sets of values thus obtained is the same as the

degree of the " eliminant " equation.

If the eliminant be of the second degree, the number of solutions

of the given system for finite values of the unknowns is two ; if it

be of the third degree, three ; etc.
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7. We shall speak of the number of sets of values which satisfy

all of the equations of a given system simultaneously, as the Order
of the System.

8. We will state, without proof, the following Principles :

(i.) The number of roots of an integral equation contai?iing one

unknown is egmil to the degree of the equation with reference to that

unknown, and these roots may be equal or unequaly rational or irra-

tionalf real or complejr^ acco?'ding to circumstances.

(ii.) Ths number of sets of values which satisfy all of the equations

of a given determinate system cannot be greater than, and is in

general equal to, the pi'oduct of ths degrees of the separate equations

of which the system is composed.

E. g. Since the equations 2 a; + y = 9 and 2 a;^ + y^ = 33 are of the first

and second degrees respectively, they may be spoken of as constituting a

1-2 system of the second oixler.

The product of the degrees, 1 and 2, of the equations leads us to expect

that there are two sets of values which satisfy the equations simultaneously.

These sets are found to be, a: = 2, y = 5, and z = 4, y =\.

9. Since the ar-eliminant or the y-eliminant of a 1-8 system

containing two unknowns, x and y, is of the third degree with

reference to either x or y, it follows that, to solve a system of the

third order, we must solve an equation of the third degree, such as

ax^ -{ bx^ -{- ex + d = Oj containing one unknown. Also, since the

ehminant of a 2-2 system is of the fourth degree, it follows that

to solve a system of the fourth order, we must solve an equation

of the fourth degree, such as ax^ + bx^ + ca^ + dx + e = 0, contain-

ing one unknown.

10. Except in certain very special cases, the solutions of systems

of the third or higher orders cannot be made to depend upon the

solutions of equations of either the second or of the first degree.

11. It should be observed that, although the solution of a given

system in which quadratic or higher equations appear leads in

general to the solution of an equation of higher degree than the

second (that is, to the solution of the eliminant equation), the solu-

tions of a great number of systems of simultaneous equations may
be made to depend upon the solutions of quadratic equations.

12. We will now consider certain methods which may be applied
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to obtain the solutions of systems of two simultaneous equations

containing two unknowns.

I. Slimination by Substitution

13. If one equation of a system of two simultaneous equations

is of the first degree, and the other equation is of the second or

higher degree, the solution of the system may in certain cases be

made to depend upon the solution of a quadratic equation.

Ex. 1. Solve the system

3x2 + 2/' = 84, (1)^
> I. Given System.

3a: + 51/ =42. (2))

Since the equations are of the second and first degrees respectively, this

may be classed as a 2-1 system, and accordingly we may expect to find 2 • 1

or 2 sets of values for x and y which satisfy the equations simultaneously.

From equation (2) we may derive an equivalent equation in which the

value of y is expressed in terms of x as follows

:

42 -3 a;

Substituting this expressed value in place of y in the first equation, we

obtain the aj-eUminant,

3..+ (l^^)^84. (4)

Or, (x + l)(a; - 4) = 0. (5)

The original system is equivalent to the derived system

y = > (3) / Equivalent

r * Derived System.
(x + l)(a: - 4) = 0. (5) )

The solutions of the x-eliminant (5) are

X = — 1 , and X = 4.

Substituting these values for x in the remaining equation (3) of System

II., we obtain:

Substituting - 1 for x, Substituting 4 for x,

42 + 3 42-12

y=9. 2/ = 6.
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= 4, ) These two groups of equations

= 6. ) form an eiiuivalent System III.

The two solntions of the given equations are thus found to 1)6

y = 9, j y

By substitution we find that the given equations are satisfied by these

sets of values.

Graphical Interpretation.

14. The algebraic problem of finding the common solutions of a
system of equations containing two unknowns suggests the graphical

problem of finding the points of

intersection of the graphs repre-

senting the given equations.

In Fig. 1 tlie straight line AB,
which is a portion of the graph of

the linear e([uation 3 ar + 5 y = 42

(see Ex. 1, § 13), cuts the ellipse

which is the graph of the quadratic

equation 3x^-\- if = 84 (see Ex. 1,

§ 13), in two points, A and B.

By writing the first member of the

a:-eliminant (5) et^ual to y, we obtain

the equation of which the graph is

the parabola, a portion of which is

shown in dotted line.

The distinction between the

solution of a single equation con-

taining one unknown, and the

solution of a system consisting bf

several equations containing sev-

eral unknowns, should be care-

fully noted.

The solutions of a single equation containing one unknown, that

is, the values of its roots, may be taken as locating the points at

which the graph of the equation crosses the axis of X.

Referring to Fig. 1, it may be seen that the solutions of the given System

I. or of the equivalent derived System III.,

\i !
Y 1 ;

1\U, —ku-
~~~~~pff^ \

y^jLjR ^^A[^
/

h\\ "Hi^ff^"

%
•A

•1 i
. . \ f0^

ID Jt

\ '1 /I/

\!wV y\
1

1

FlGl.

= — 1) X = 4 )
^' >- and _' ^ if taken as coordinates,
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serve to locate the intersections A and B of tlie ellipse and the oblique

straight line which are the graphs of the given e(iuations.

By eliminating y from the given equations (1) and (2) we derive the x-

eliminant (5), which is a conditional equation expressing tlie relations

existing between the x-values sought, without for the moment referring to

the corresponding t/-values.

In Fig. 1 it will be seen that the result of this elimination graphically

is to locate, by means of the intersections of the parabola with the axis of

X, two points C and D the distances of which from the origin are equal

to the a:-co()rdinates of the points A and B respectively.

Tiie roots of the z-eliminant, therefore, gave us these values,

X = — 1, X = 4.

The ?/-eliminant, y^ — 15i/ + 54 = (not shown in the figure), would
in a corresponding way express the relations existing between the 7/-values

sought. Hence the roots of the y-eliminant, y^ — Wy -{- 54 = 0, would thus

give these values, y = 9 and y = G.

If instead of substituting the values a: = — 1 and ic = 4, obtained from

the solution of the aj-eliminant x^ — 3a: — 4 = (5) in the given linear

equation 3a; + 5y = 42 (2), we had substituted these same values in the

([uadratic ecpuition 3x^ + y^=S4 (1), we would have obtained, corre-

sponding to each value of x substituted, two values for y instead of one as

before. Hence in addition to the values previously found we would have

obtained the extra sets of values

;=:«:} •- ;=J.}
By examining Fig. 1, it appears that these values serve to locate extra

points on the ellipse, marked •JSJ.g and E^^, which do not lie also upon the

given straight line AB.
Accordingly these sets of values cannot be accepted as being solutions

of the given system.

By substitution it will be found that these sets of values do not satisfy

the given linear equation (2).

Hence the system composed of the solutions of the x-eliniinant and the

given quadratic ecjuation is not equivalent to the original system.

Similarly, the system composed of the solutions of the i/-eliminant

7/2 _ 15?/ + 54 = and the given quadratic equation is not ec^uivalent to

the original system, for the solutions of this system bring in the extra

solutions

' y and ,. y
y = 9, ) y= 0. i
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These extra sets of values may be taken as locating the extra points

E^ and E_^ which lie neither upon the oblique line AB which is the graph

of the given linear ecjuation 3x + 5y = 42, nor upon the ellipse which is

the graph of the quadratic equation Sx^ + y^ = 84.

Acconlingly these sets of values luust be rejected as not being solutions

of the given system.

The vertical dotted lines which are the graphs of the root values x = — I

and X = 4 of the x-eliminant, by their intersections with the oblique straight

line, locate the points A and B respectively of the line ABj and no other

points.

The horizontal dotted lines which are the graphs of the root values

y = 9 and y = 6 of the y-eliminant y'^ — 15y + 54 = 0, by their

intersections with the oblique straight line also locate the points A
and B, and no other points.

It follows that the derived si/stem composed of the solutions of either

the o'-eliminant or the y-eliminanty if taken together with the given

equation of the first degree^ is eiiuivalent to the given system.

Furthermore, it will lie seen, by referring to Fig. 1, that the horizontal

and vertical dotted lines intersect in the four points A, B, R and R'.

The sets of values x = — 1, 2/ = 6, and x = 4, y = 9, corresponding to the

coordinates of the points R and R', are not solutions of the given system,

and must accordingly be rejected.

Thus, it may be seen that to solve a given system it is not sufficient

dimply to obtain a certain number of different valuss^ as when

solving a single equation^ but it is necessary also to arrange properly

in sets the different values founds in such a way that on substitution

the values of each set will satisfy all of the equations of a given

It will be observed that the dotted straight lines which are the graphs of

jc =: — 1, 1/ = 9, intersect at -4, while the dotted lines which are the graphs of

a; = 4, y = 6, pass through B.

From the reasoning above, it appears that the two systems of equations

x = -l,> , a: = 4,)

y^ 9,1 ^"^ y^%\

taken together, are equivalent to the given S^'^stem I.
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Ex. 2. Solve the system

3x^-2xy-y^ =64, (1) ) ^ ^. o .

l-ly= 2. (2)r-
G-- System.

Since this is a 2-1 system, we may expect to find two sets of values

for X and y.

Substituting in the first equation the expressed value of x in terms of y
from the second equation, we obtain as the ^-eliminant,

3(2 + 3yy- 2(2 + 3 y)y - y^ = 64. (3)

Or, (y-lX5y + l3)=0. (4)

By the principles of equivalence, the system composed of the solutions

of this eliminant, taken together with the linear equation (2), is equivalent

to the given system.

That is, (2/ - 1)(5 ?/ + 13) = 0, (4) | Equivalent

X — liy = 2. (2) I ' Derived System.

The solutions of equation (4) are

y=l, and y = -^-
Substituting these values in the remaining equation of System II., we

obtain :

Substituting 1 for y. Substituting — J/ for y,

a: - 3 • 1 = 2 a; - 3(- Y) = 2

x = b. x = -^'
The following sets of values are solutions of the given system of equa-

tions, and by substitution are found to satisfy both equations

:

^ =M and ^ = -X'
2/ = 1,

) 2/ = - ¥•

Exercise XXV. 1

Solve each of the following systems of equations, rejecting all sets

of values which do not satisfy both of the given equations

:

1. 35^ + / = 200, 4. x^J = 104.

X= 1 1/. X — 2/ = 5.

2. X — 1/ = — 2f 5. icj/ = 14,

a^ + f= 10. 4iB-^ = 26.

3. x^-^ f = 34, 6. x^-f = 40,

X +2i/=l3. 2x + t/=^n.
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7. a-2 4-y2= 17,

jc— 3y= 1.
18. ^+ -^ = 2,

y X

8. x'+ 4/ = 32,
Qx— [>y= 1.

9.

5x + Qi/ = 8.

ar»+2/ = 73,

19.
1 1 1

a y~ 2'

a;-3y = - 1.

10.

Sx - y = S.

5x^ — xy = 15,

2x + 3y = 36.

20.
X y __5

y X 2

x-y = -2.

11. x-h 8y = xy, 21.
4 + 5-^'

X— y = ij.

12. x^ + xy-\- y^ = 7,

4 5 6

X y" 'o'

X -{ 4y = — 1. 22. x-y-^ = o,

13. x— ity =
Sx — 2y + 4/ =

h
9.

1 + 1-5 = 0.
X y

14. x + y + 2xy = Ys 23. M-'
15.

5x- 2y = ^.

2x^+ 3iCj/ + 4:f == 64, y 2 3

16.

x+ y =

2x-Sy =

^x^-3xy+ y' =

-- — 2.

-- 2,

I 44.

24.
a;4- 1 6

y+l""5'
a;2 + ?/ 65

a; + / ~ 46

17.

xy = 45.

25.
a; 1 7/ _61

ic + ^ X — y 11

2a; + 8?/ = 54.

II. Reduction of Systems of Equations by Factoring

15. We have seen that, if the factors of the first member of an

equation, the second member of which is zero, be separately equated to

zero, the system composed of the entire group of equations thus formed

is equivalent to the given single equation. (See Chap. XII. § 48.)
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E. g. If a given equation be represented by A • B - C = 0, in which

A, Bf and G are rational and integral with reference to certain unknowns,

then the system composed of the separate equations A = 0, B = 0, and G=0
is equivalent to the given single equation A • B ' C = 0.

16. From this principle it follows that, if a single determinate

system of equations he represented by A - B ' C = and D = 0, in

which A, B, (7, and D represent expressions which are rational and
integral with reference to certain unknowns^ the single system

_ ' >• 1. (jiven System.

is equivalent to the group of separate derived systems

A=Q,\r^ B = 0,lr\ C=Q,}r"\
i)=o:l^''^ i>=o:p") i>=o:[^^"->

(The following proof may be omitted when the chapter is read for the first time.)

For, any solution of the given system must reduce D to zero and also

ivduce to zero either one or all of the factors A, B, or C.

Hence, every solution of the given system must be a solution of at least

"IK! of the derived sy.stems.

Any solution of (i.) must reduce 7) to zero and also A to zero, and

accordingly must reduce to zero the product A • B ' G.

Hence every solution of the derived system (i.) is also a solution of the

given SystiMU I.

Similarly, every solution of any one of the derived systems (i.), (ii.) or

(iii.) is also a solution of the given System I.

Accordingly the original single system is equivalent to the group of

derived systems.

17. The application of this principle is not affected by the number

of factors in the first member of any particular equation the second

member of which is zero, or by the number of such equations.

E. g. Let it be required to separate the single system of equations

A B = (\ 7
^ (. .^gj^ System.

a-/> = o, >

into a group of separate systems of equations which, taken together, are

equivalent to the given system.

The two following derived systems of equations are equivalent to the

given system

:

^ = 0,
^

/? = 0, >

G-D = i\S G- !) = ().)
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further separated, we shallSince each of these derived systems can be

obtain finally

^ = H(i.) ^ = ^'l(ii.) ^'-^4
(ill.) ^ = ^'l(iv.)

These systems of equations, taken together, are equivalent to the given

system of equations.

Ex. .1 . Solve the system of equations

2x^ + 3Ty + y^= 0, (1) >
j (.j^.^ g ^^m.

a:2_3a:=10. (2)1 '^•

Since this is a 2-2 system, we shall expect to obtain 2 • 2 or 4 solutions.

Writing the given equations so that their second members shall be zero,

and factoring the resulting first members, we obtain the equivalent system,

(2 a: + y) (x -\- y) = 0, (3) >
j
j Equivalent

(x + 2)(x - 5) = 0. (4) ) ' Derived System.

By the principle under consideration, the given system is equivalent

to the foUowing group of separate derived systems taken together

:

2a: + y = 0,),j 2x^y = 0,>^.^ ^ + 2/ = «'
t (iii.)

^ + ^ = ^'l (iv.)

We have thus reduced the solution of the given system of quadratic equa-

tions to the solution of four systems of simultaneous linear equations.

The solutions of thesse separate systems are found to be

y= 4. S ^ ' »/ = - loJ * '

-=-^'|(iii.) y= M(iv.)
y= 2. ) y = -5.>
By substitution, each of these sets of

values is found to be a solution of the

the given system.

Graphical Interpretation

18. In Fig. 2 a portion of the graph

of the equation 2x^ -[- 3xy + y^ =
(See Ex. 1, § 17) is represented by the

two oblique straight lines passing

through the origin 0. The graph of

the equation x^—3x — 10 = y (see Ex.

1, § 17) is the parabola.

It should be observed that, since

x^ — 3x — 10 = contains the single

unknown x, this equation may be treated
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as the a:-eliminant of the given system. Hence our graphical problem be-

comes that of finding points on the oblique lines the a:-coordinates of which

are equal to the root values of the equation of which the graph is the parabola.

Accordingly, the solutions of this particular system of equations may be

taken as locating points on the oblique lines, but not as locating the points

of intersection of the parabola with the straight lines. (Compare with

Fig. 1, § 14.)

Ex. 2. Solve the system of equations

2.^=7;,. (2)^-
G-- System.

Since this system of equations is of the fourth order, we may look for four

solutions.

Transposing all terms to the first members, and factoring, we obtain the

equivalent system

(x-y + 5Xx-y-b) = 0, (3) ) jj
Equivalent

x(2x — *Jy)= 0. (4) ) ' Derived System.

This single system is equivalent to the entire group of separate systems ;

x=:0.>^^ 2x-1y = Q.) ^^
X — y — 5 z=0,} .... . x — y — 5z=0\

The solutions of these systems of equations are found to be

x = 0, >,. ^ x = -7,l ^.. . x= 0, }..... a; = 7, ).. .

,, = 5:f('-> j, = -2.^"-)
!, = - 5.

;('"•)
y = 2.]("-^

By substitution, these sets of values are all found to satisfy the given

equations.

Exercise XXV. 2

Reduce each of the following systems of equations to equivalent

groups of separate systems of equations, and solve :

1. (x - iy)(i/ - 9) = 0,

x + i/=10.

2. 5x^-xi/ = 0,

4a; — 7/ = 1.

3. (x — 2)(x + i/-S) = 0,

(x-'1J-4.)0j-5) = O,

4. (x - y){x + 7/ - 1) = 0,

{x + \){x + 2) = 0.

5. a;'+ ?>xy= 18/,

ic + ?/ = 2.

36

6. a;2 + 3/=:12,
x'^ — '2xy= 3 2/1

7. (x-yy-^= 0,

(x + yY = 25.

8. x' — ^xy^ 15/,

ic2_^2^ 1^ 2aj.

9. xy — &y-[- 5a; = 30,

x-\-y= 9.

0. xy + x — y = 25,

x(x-y)= 0.
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11. Q? — xy^ 66, 13. x^ -^-xy ^-x — y= 72,

5a;^— 16a^+ 11/= 0. '6x^ -'lxy — f= 0.

12. a^ — / =x — y, U. Ax^ — ^xy -\- bx — y=ll,
Q? — Axy = Ax—l&y. x^ + xy= 0.

III. Systems of Two Homogeneous Equations of the
Second Degree Containing Two

Unknowns
19. An equation, one member of which is a homogeneous function

of x and y and the other member of which is either a homogeneous
function of x and // or a kno^vn number, is said to be homogeneous
with respect to the unknowns, x and j/, appearing in it.

E.g. x'^ + xy=y\ x* + a:2y + X//2 + 2/8 = 0,

x2 _ Axil + 3 J/3 = r)x - y, a:2 + a:y + 6 1/2 = 8.

20. If the equations of which a system is composed are homo-
geneous with respect to the unknowns appearing in them, the

system is called a homogeneous system.
21. The solutions of every system of two equations of the second

degree, which are homogeneous with reference to two unknowns,

can be obtained.

22. If the first members of the equations of a homogeneous

system containing two unknowns, x and ?/, are of the second degree,

while the second members are either known numbers or homogen-

eous functions of the same degree with reference to the unknowns,

and if these second members differ only by a numerical factor, we
may obtain the solution by factoring.

Solution by Factoring

"We may represent two equations the first members of which are

homogeneous with reference to two unknowns, x and y, and the

second members of which are known numbers, by

aix^ -f hixy + Ci/ = di, (1)

a^x^ + h^xy + c^y^ = d^. (2)

In these equations «i, «2, ^i, ^2, etc., represent different real

known numbers.

The known terms d^ and c?2 may be eliminated from the two

equations as follows :
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Multiplying all of the terms of the first equation by d^, and those

of the second equation by c?i, we obtain the equivalent equations

aid^Q? 4- hxd^xy + Cxdiif = d^d^^ (3)

a^dx^ -V h^dixy + c^dxy'^ = d^di. (4)

By subtraction,

(«iG^2 — (tidijx^ + (bidi — hidi)x7j + (cic?2 — c^d-^y'^ = 0. (5)

Representing the known expressions in the different parentheses

by the letters a, ft, and c respectively, it appears that the derived

equation (5) has the form

ax^ + hxy + cy'^ = 0. (6)

Equation (6), taken with either of the original equations (1) or

(2), forms a system of equations which is equivalent to the given

system. The factors of the first member of equation (6) may be

obtained either by inspection or by applying the general quadratic

formula with respect to either a; or ?/ as an unknown. Then the

solutions of the derived system of equations may be obtained by the

method of factoring.

Ex. 1. Solve the system of homogeneous equations

2x2 - xy + 5 yi = 20, (1) ) T /^- a *-^ •' \x M- Given System.

Since the given system of equations is of the fourth order, we may expect

to find four solutions.

In preparation for the elimination of the known terms 20 and 15, we

may derive the equivalent system

6 a;2 - 3 xj/ + 15 y^ = 20 • 3, (3) ] ^ , Equivalent

4 a;2 + 4 a:?/ + 12 2/2 = 15 . 4. (4) j
* Derived System.

Subtracting the members of equation (4) from the corresponding mem-

])ers of ecpiation (3) we obtain,

2 a:2 - 7 xy + 3 y^ = 0. (5)

Or (2 x-y)(x-'Sy) = 0. (6)

Since the multipliers 3 and 4, nsed in the derivation of equations (3) and

(4), are different from zero, it follows that ec^uation (6), taken with either

of the given equations (1) or (2), forms a system of equations which is

equivalent to the given system.

As an equivalent system, we may take

x2 ^ xy + 3 ?/2 = 15, (2) )
jjj

Equivalent

(2x-yXx-'Sy) = 0. ((>) ) ' Derived System
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This system may be resolved into the. two separate derived systems

which, taken together, are equivalent to System III.

2x-y= 0. > x-Zy
5,?

0.)

The solutions of these systems of equations are

By substitution, these four sets of values are all found to satisfy both of

the given equations.

Ex. 2. Solve the system of equations

o. ^^'^I = -!"'P,Ul. GivenSystem.
2x^-\-xy-Qy^= 4x. (2))

^

Since this is a 2-2 system, we may look for four solutions.

Observe that the e(iuations contain no known terms, and that the terms

— 7 X and 4x, which are the only ones below the second degree, are similar,

— that is, differ only by a numerical factor. Hence we may eliminate, these

terms and solve the system of equations by the method of factoring.

One solution of the system may be obUiined inmiediately by inspection.

It may be seen that if ?/ be given the value zero, the first equation reduces

to x^ + 7 a: = 0, and the second equation reduces to 2 x^ — 4x = 0. These

ecjuations have in common the solution x = 0, and no other. Hence, to

the value ?/ = 0, in either equation, corresponds the single value aj = 0.

Accordingly, one solution of the

given system of equations is _ r. t"

The remaining solutions of the

system may be obtained as follows by

the method of factoring

:

By eliminating the terms of the first

degree from equations (1) and (2) we

obtain the homogeneous equation

18x2 + 7 XT/ - 30 i/2 = 0. (3)

Equation (3), taken together with either of the given equations, consti-

tutes a system equivalent to the given system.

Accordingly we have

18x2 + 7x?/- 301/2 = 0,

Fig. 3.

.2 + 37/2 =-7x. (I)j

(.3) \ Equivalent

Derived System.
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Whenever the factors of an expression such as the first member of equation

(3) are not readily obtained by inspection, we may proceed as follows :

Solving (3) as a quadratic with reference to x, y being for the moment
taken as a known number, we have

^ _ - 7 1/ ± V49 j/'^ - 4(18)(- 30 y^)

That is, a: = i^, (G) and x = -^' (7)

The factors of the first member of equation (3) may immediately be

written from (6) and (7) which are the expressed values of x in terms of y.

Hence (3) becomes (9 x - 10 y)(2 x + 3 y) = 0. (8)

Accordingly the derived System II. may be written in the equivalent

form,

(9 x - 10 ?/) (2 a; + 3 iy) = 0, (^) I t t t
Equivalent

x^ + '3y^ = -7x. (1)1 ' Derived System.

The student should complete the process and obtain the remaining

solutions of the given system. (See Fig. 3.)

Exercise XXV. 3

Solve the following systems of homogeneous equations :

1. x' + xf/ =6, 7. (2x + y)(2f/ + x) = 500.

xu +i'Mf = 8. (x + y){x- y) = 75.

2. ^^+0.^+15=0, 8. 13^y-2^^-18/ = 12,

2x^+'6xy+ y^=lO, 2x^-bxy- ^y=U.
9. ()x(x-\- 2y) +2/' =4,

3. x" + 2xy = 39, ^2 ^ 4^(^ + 2?/) = 16.

^ ^
'

10. ?>x{x^2y) +5/ = 21,

4. x^- ,/= 3,
x'^-2y(x^2y) = 2^.

5ar^-4a!y + 31/2= 15. n. (2x + y){:2y + x) = |,

5. x^^xy^f=l,^ ^" + ^)^" -^^^^^-

x'~xy + if= 7. 12. x + y = -^
X

6. 5 3;=^- 18a!y + 16/= 9, _^=1.
2a3'- Sicy- 3^^=12. ^ ^ y*
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Solution by Expressini? the Value of One Unknown
as a Multiple of the Other

23. The solution of a system of two equations which are of the

second degree and homogeneous with reference to two unknowns,

X and y^ may be obtained by expressing the value of one unknown,

as a multiple of the other.

24. If by letting x = ??y, we express the valvs of one of the un-

knownSy Xj as a multiple of the other^ y^ we may substitute vy for x

and obtain a derived system of equations in which v and y are to be

regarded a^ the unknowns.

By eliminating y from the new system of equations thus obtained^

we shall obtain a single equation in which v is the only unknown.

This equation is the v-eliminant of the new system.

Ths system of three equations consisting of the v-eliminant^ the

assumed equation x = vy, and either of the equations obtained by

substituting ly for x in one of the oi'iginal eqiujitions, institutes a

system of equations which is equivalent to the given system of two

equations.

The values of v found by solving the v-eliminant^ when substituted

in the remaining equations of the new system^ determine the values of

the unknowns' x and y.

25. It should be observed that, on condition that y is different

X
from zero, we may from x = vy obtain - = v.

Hence, for finite values of x, v increases in value indefinitely,—
that is, it becomes infinite when y diminishes in value numerically,

that is, when y s^pproaches zero. Hence, whenever x is replaced by

vy, the solutions of which y = is a part musty if they exists be

obtained separately.

Ex. 1. Solve the system of homogeneous equations

.^+2,^^17, (1)>
^ Given System.

xy- 2/2= 2. (2))
^

Since this system is of the fourth order, we may expect to find four

solutions.

In this particular example it will be noted that if \j is given the value

zero the resulting equations have no common solution with reference to x.

Hence y = is no part of a solution of the given system.
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If we assume that x = vy, we may, by substituting vy for x in the given

equations, obtain the equivalent system

(i;t/)2 + 2w2= 17, (3)1 _ . ,

/\ 2 o ),i\ Tr EciuivalentMy - y^ = 2, (4) III. \^ . , „ ^
;_. Derived System.

X = vy.
(5)J

^

To obtain the solutions of System II., we may proceed as follows:

From equation (3), From equation (4),

y^ = -T^- (6) y^ = -^. (7)

Since the given equations are simultaneous, these "expressed" values for

y^ must be equal.

That is, ^Z_^=:^_^.
. (8)

Or, 2v2_i7v + 21 = 0. (9)

The solutions of the v-eliminant (9) of the derived System II. are found

to be V = I and V = 7. (10)

Since neither of these values could have been introduced by the multi-

pliers -u^ + 2 and v — Ij when deriving (9) from (8) they must also be roots

of equation (8).

The system composed of the -y-eliminant (9), the assumed equation

X = vy and either equation (6) or equation (7), constitutes a system of

equations which is equivalent to System II.

2u2_i7^ + 21= 0, (9) \

2 _ 2 (
jj

J Equivalent

^ ~
1) — V ( ' Derived System.

x = vy. (5) /

Substituting the solutions of equation (9), v = 3/2 and v =7, in equa-

tion (7), we olitain

:

Substituting 3/2 for v, Substituting 7 Jbr v,

2/ = ± 2. y = ± iV3.
To find the corresponding values of x, we may either substitute these

values of y in the given equations (1) or (2), or we may substitute corre-

sponding values of v and y in x = vy.

Substituting Substituting Substituting Substituting

ty = 2. (y = -2.
(^-7, (. = 7,

(
y = iV3- \y = - iV3.

We find that We find that

^=(1)2 x = ^(-2) X = 7aV3) x = u- jv^)
x^3. x = -d. X = W^' x = -W-6.
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The four solutions of fche given system are thus Ibiuid to be

x = -3.

. = -2.[(«->
y = - iV3. )y = W^'

These four sets of values are found to Siitisfy the equations of the given

system.

By extracting the squai-e root of 3, we may obtain from (iii.) and (iv.)

approxiiuiite values of x and y, correct to any required number of significant

figures.

Ex. 2. Solve the system of homogeneous equations

x« + xy-y2= 29, (1)\ . ^. _, ^

2x«-xy-,/ = -19. (2))^-
Given System.

Since this is a 2-2 system, we may expect to find four solutions.

By assigning the value zero to y, it may be seen that the corresponding

values of x in the two equations are not equal. Accordingly, it follows that

y = is no part of any solution of the given system.

Hence we may assume that x = vy, and substituting vy for x in the given

equations, we obtain the equivalent derived system

x= iry. (5)J
^

Observe that, by dividing the corres-

ponding members of the two equations

(3) and (4), the unknown y^ may be

eliminated, and we may inmiediately ob-

tain the i>eliminant of System II.

v^ -\- V — I

Hence 77 v^ _ jq ^ _ 43 = o. (7)

The solutions of (7) are found to be

v = ^, and v = — ^. (8)

The system composed of the i;-eliminant

(7), either one of the equations (.3) or (4)

in System II., and the assumed equation

(5), constitutes a system equivalent to

^iG- 4. Svstem II.

77 ^2 _ 10 V - 48 = 0, 0)
vY + rf - f = 29, (3)

X = vy. (5)

III.
Equivalent

Derived System.
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Substituting the solutions -y = f and v = — J^ of (8) iu (3), we obtain,

the values ior y.

Substituting ^ for v, Substituting — ^^ for v,

We find y^ = 49. We find -6y'^ =121.

Or, 2/ = ± 7. Or, y = ± VV^^-
The values of x may be found by substituting corresponding values of v

and y in the assumed equation x = vy (5), as follows :

ing 1"""^^^ Substituting j
^ = " i't'

" U = ± 7. - 1 ,^ = ±_i^V- 5.

We find x = ±6 and a: = =F fa/-^-
Accordingly the solutions of the given system of equations are :

-=+64(i.) ^=-iVEZ4(iii.)

^ = -6'[(ii.) ^ = +^^:z^'l(iv.)

By substitution these values are all found to satisfy the given equations.

Since we have found four sets of values, it appears that, in deriving the

-y-eliniinant (7), no solutions were lost.

By referring to Fig. 4, it will be seen that the graphs of equations (1)

and (2) intersect in but two points, the coordinates of which are ic = 6,

y = 7, and a; = — 6, y = — 7.

We nmst accordingly interpret the imaginary values (iii.) and (iv.) of

X and y as indicating that the graphs have no points of intersection the co-

ordinates of which are these solutions.

Exercise XXV. 4

Solve the following systems of homogeneous equations

:

1. 3a;' + 2x1/ + 3/ = 88,

2x^ — Sxi/+ 2y^ = S7.

2. x'' + 4:Xi/ + f = - 11,

7 a' -3 2/'= 51.

3. 3x^ — 2x1/+ f = h

4. x'^-xij + f= 93,

x^ + 2x1/ = — 40.

5. 2x1/ + f = 51,

Sx^—x!/= 126.

6. 3a;''+10a;?/4- 3/ = -21,
x'- y'= 5.

7. x^- 3aj^=10,

5a^-13/=33.
8. x' + Sxi/-f^2d,

lx^-2f=13.
9. 3x(x-Stj)+f=:-lh

x^ + 2i/(x-3tj)=21.

10. 2x'-ly{x-y) = 23,

3x{x-2y)-'oif= 3.
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IV. Reduction of Systems of Equations by Division

26. Representing by A, //, C, and D expressions which are in-

tegral with reference to two unknowns, x and //, it may be seen that

//* the meryibers A • C and BJ) of one equation (1) of a JSt/stem L,

composed of two equations, contain as factm-s the cori-espondimj mem-
bers A and B of the remaining eqiuntion (2) of the system, then the

given Si/stem I. is eguival-etit to the derived double system (i.) a?id (ii.).

That is, AC=BD, (1)) ^. ^ ^

1 = B (2^ \
^^^®° System.

is equivalent to the double system

It should be observed that the derived equation C = 1) (8) is

obtained by dividing the members of equation (1) by the corre-

sponding members of (2), while the remaining ec^uation (2) of

the given System 1. is carried over unchanged into the derived

system (i.).

The remaining system (ii.) is composed of the equations formed

by equating to zero separately the factors A and B which are

common to the corresponding members of equations (1) and (2)

of the given system.

The Principle may be established as follows :

Substituting for i? in (1) the equal value A, we obtain the equivalent

equation A • C = A • D.

Or, A-C-A'D = 0. (6)

Factoring, A{C-D) = 0. (7)

Accordingly, from System I. we may obtain the equivalent system

A{C-D) = Q, (7) 1 J J
Equivalent

A-B = 0. (8) > ' Derived System.

By the principle of § 16, this single system is equivalent to the derived

double system

C-D = 0, (9)> ^^^^ ^=0, (10) >

A-B = (}, (8) i A-B = 0. (8) )

These systems in turn are equivalent to

C=A (3)l(i.) and ^=0' Wkii.)
4 = ;?, (2) i ^

'^

i>' = 0. (5) P '
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Ex. I. Solve the system of equations

2a:2-z = i/2_ 1, (1))^ n- a ^
, )J. c I- Given System.

Since the members of equation (2) are contained as factors in the corres-

ponding members of equation (1), the given single System I. is equivalent

to the derived double system

x = y+\, (2)i''
J/ + 1=0. (5)P -"

Equation (3) is formed by dividing the members of equation (1) by the

corresponding members of equation (2). Equations (4) and (5) are

obtained by eipiating separately to zero the members of equation (2) wliich

aie contained as factors in the corresponding members of equation (1).

The solutions of the derived systems (i.) and (ii.) are

a; = -1,7 1 x = 0, >
>• and ' >

The number of sets of values thus obtained is equal to the order, 2, of

the given sj'stera. By substittition these sets of values will be found to

satisfy both of the given equations.

27. Whenever one of the expressions represented hy A or B (see

§ 20) is a known number, it follows that the derived system (ii.)

A = 0, (4), B = 0, (5), will have no finite solutions.

Ex. 2. Solve the system of equations

a:8-,/ = 26, (1)
| j Given System.

X -y = 2. (2)3

Dividing the members of equation (1) by the corresponding members of

equation (2), we may derive the equivalent system

a;2 + xy + 1/ = 13, (3) >
jj^

Equivalent

X — y = 2. (2) ) * Derived System.

Observe that by separately equating to zero , the factors x — y and 2,

which are common to the corresponding members of equations (1) and (2),

we would have as one of the expected conditional equations a known num-

ber equal to zero, that is, 2 = 0.

Hence the expected derived "double" system reduces to a single Sys-

tem II., equivalent to the one given.

Accordingly, although the given system of equations is of the third order,

the number of finite solutions does not exceed the order of the derived

equivalent System II., that is, there will be but two sets of values.
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The solutions of the derived System II. are found to be

= ''^\ and ^ = -'^i
= 1, S 2/ = - 3, S

X = 3,

both of which satisfy each of the given equations

Exercise XXV. 5

Solve each of the following systems of equations :

1. jc» = i/(x + ^), 8. x^ + f = 72,

x^ = x-\- y. ic + 3/ = 6.

2. 1+ .?/ = a^ 9. a;« - / = 7,

1 + / = a*. x — y = 2.

3. ic(a; - 3) = 4 - y*, 10. ic« - i/» = a» - ^>»,

ar = 2 + y- X — y = a — b.

4. aj(y+3)==9y-l, 11. a;« + / = 91,

a; = 3y— 1. ic'-a-y H-/= 13.

5. x{x -a) = b^- f, 12. a;" - 7/8 = 19,

X — a = b + y. x^ -\- xy + y'^ = Id.

6. a;*^ - / = 77, 13. 27 «;*-/ = 0,

x — y=l. 9 a;2 + 3 a:// + / = 243.

7. a; H- ?/ = 14, 14. x^ + xhf + / = 21,

ar*-.2/' = ^6. x" - xy + y"" = 3.

V. Systems of Symmetric Equations

28. An equation is said to be symmetric with respect to the

unknowns appearing in it, when its members remain unaltered in

value if any two of its unknowns are interchanged.

29. The necessary and sufficient condition that an equation be

symmetric with respect to two unknowns, x and y, is that the

coefficients of like powers of the unknowns be equal.

E. g. The following equations are symmetric with respect to x and y .-

a; + 2/ = 5, x^ - xy -\-
y'^ = 1 ^

a;2 + 2/2 = 10, a:V -\-xy + \ =0.
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30. A system of two equations is said to be symmetric with

respect to two unknowns, x and y^ if the equations obtained by

interchanging x and y are identical with those given.

E.g.

31. It follows from the principles of symmetry that if any solu-

tion of a system of two symmetric equations containing two un-

knowns, X and
J/,

be represented by a; = «,«/ = 6, then x — b^y — a,

will also be a solution.

Ex. 1. Solve the system of symmetric equations

x + y = 4, (1)|^ Given System.

Observe that botli equations are synmietric with respect to x and % and

that the first member of equation (I) is the sum of x and y.

By combining the given equations in such a way as to obtain the differ-

ence between x and i/, it will be possible to make the solution of the given

system of equations depend upon the solution of a system of two linear

equations.

Squaring the members of (I), a;^ + 2 x?/ + i/^ = 16. (3)

Multiplying members of (2) by 4, -{-4xy =12. (4)

By subtraction, x'^ — 2xy -^ y^ = 4. (5)

The given System I. may be replaced by the following equivalent derived

system of the same order

:

a; 4- 1/ = 4, (1)?tt Equivalent

x^ — 2xy -^ y^ = 4. (5) > Derived System.

This derived system is equivalent to

X -{-y z= 4, (1) ? TTT Equivalent

(x-yy = 4. (6) > ' Derived System.

System III. is equivalent to the set of two derived systems,

a;-2/ = 2,
y^^ x - y = - 2A ^

The solutions of these systems are

y = l,>
and

= 1,?

= 3. Sy

Both of these sets of values satisfy each of the equations of the given

system of the second order. (See Fig. 5.)
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If with the derived equation (5) we had used the given equation of the

second degree (2) instead of the equation of lower degree (1) to form the

derived system, we would have passed Irom
the given 1-2 system to a derived 2-2 sys-

tem, and accordingly the two systems would

not have lieen equivalent.

The derived 2-2 system would have been

found to contain, besides the solutions of

the given system of the second order, the

two additional solutions

x=z — 3,y = — lj and x = — l,y = — 3.

These would have been introduced dur-

ing the process of solution by squaring the

members of equation (1).

Ex. 2. Solve the system of symmetric

equations

Fig. 5.

/ >-^x M- Given System.x+ 2/= 1.(2)3

Since this is a 2-1 system we may expect to obtain two sets of values

which satisfy both efjuations.

"We will first obtain the value of the difference x — y.

Squaring the members of ef|uation (2) and subtracting from the corre-

sponding members of equation (1), we obtain the equation — 2arv = 24. (3)

Combining the corresponding members of equations (1) and (3) by

addition, we obtain

a:2 _ 2 arj/ -I- 2/2 = 49.

The given system is equivalent to the derived system

a:2-2a:y + 7/ = 49, (4) > jj
Equivalent

as 4- 1/ = 1. (2) ) ' Derived System.

This single system is equivalent to the system

{X - yy = 49, (5)
I jjj

Equivalent

X -\- y z= 1. (2) j ' Derived System.

This last system is equivalent to the set of two systems

(4)

X —
X
-^^ = +;'|(i.)and ^-^ = -M(ii.)
+ 2/= lA x-^y= 1. )

The solutions of these systems are

= - 3, f 2/ = 4. i

X =
y
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These sets of values are found to satisfy each of the given equations.

(See Fig. 6.)

Ex. 3. Solve the system of symmetric

equations

a;2 + i/2= 100, (1)") ^ ^.
.o /^x r I- Given System.

xy= 48. (2)j
^

We may expect to obtain four solu-

tions, since this is a 2-2 system.

To obtain the solutions we will find

the sum and also the difference of the

unknowns, as follows

:

Multiplying the members of equation

(2) by 2, then combining with equation

(1) by addition and subtraction succes-

sively, we obtain

a:2 + 2a:7/ + i/=196, (3)")

a;2 - 2 xy -\- if = 4. (4) j

XL

Fig. 6.

Equivalent

Derived System.

Equation (3) may be written in the form (x + y)^ - 196 = 0, which is

equivalent to (x -\- y -\- 14)(x- -\- y - 14) = 0, (5). Similarly, equation (4)

may be written in the form

(x - yy -4 = 0,

which is equivalent to

(x-y-{-2)(x-y-2) = 0, (6).

Accordingly System II. is equiva-

lent to the following derived svstem :

III.
(x+y+U)(x +y-U) = i\ (5),

(x-y+ 2Xx-y- 2)=0. (6)]

Equivalent Derived System.

System III. is equivalent to the

roup of systems of equations

Fig. 7.

-2/ = -2. I
^^

(i-)

= - 14,

a: + 7/ = 14,

X — y = 2.

x+?/ = - 14,") ... x + y

X ~y= 2.
J

^ '^ x — y = — 2.

From these systems of equations we obtain the following solutions, which

are numlxjred to correspond to the systems from which they are obtained.

(See Fig. 7.)

:!
(iv.)
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X = 8, ) . ^ X = 6, ) ... V a; = — 6, ) ,... . x = — 8, ) ,. ^

By substitution these values are all found to satisfy the given equations.

Exercise XXV. 6

Solve the following systems of symmetric equations :

l-^-^^' = "' 13.1+1=11.
xy = 20. X y

2. a^ + / = 61, -, + -2 = 73.

x-\-y =11. x^ y'

3. x" + y' = 53,

x + y = 9.

14. 1 + 1 = - 4,
X y

4. a^ + / = 73, i- = -45.

a; +y =11.
ajy

5. a;+y = 15,

a-y = 5(-.

15. 1 + 1= 1,
X y

1

6. a;» + f = 126,
'"^= 132-

jc 4- 3^ = 6.

i-^ = --
1. a^ + xy + y^ = 73,

16.

xi/ = 8.

1+1=6.
a; ?/8. ar^ - a?y + / = .^^,

xy = i.
1 1

9. aj2 + a;^ + / = 61,
17.

x^^f =
''^

a; + ?/ =

10. ar' + a;^^ + y""

9.

= 37,

^ = ^-

x + y -= -7. 18. a;?/(a; \-y) = 30,

11. ar^ + y = ^ a; + ?/ _ 5

X + y = a. a;?^ 6

12. a; + ?/ = a, 19. aj* + a^y + 7/ = 21,

xy = b. X-— xy +/= 3.
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i) = ¥
xy= 1.

13 23. (a;+ l)(v + 1) = Y
20. x" + xy -\-y'= —> ^ ^V ^

ic* + icy + /==^

21. x" {- xy -{ y'' = 84,

X + a/^ + ^' = 14. a? 1^ 3

22. x^ + iK// + / = 133.

jc — Vicy + y = 7. a;+ 1 y+ 1 4

Solutions by Special Devices

32- Certain systems of equations are of such special forms that

special methods must be employed to obtain their solutions.

Ex.1. Solve the symmetric system of equations

2 Q T r /^( r I- G^iven System.
2/2 = 3 1/ + 5 X. (2) )

-^

By addinf; the corresponding members of equations (1) and (2), we
obtain x^ + t/^ = 8 (a: + y), (3) ; and by subtracting the members of equa-

tion (2) from the corresponding members of equation (I), we obtain

x' - if =2(y- x), (4).

Hence, the given system cf equations is equivalent to the following

derived system

:

x^ + 2/2 - 8(a: + y), (3)
|

Equivalent

a;2 — 2/2 = 2(y — x). (4) )
' Derived System.

Transposing the terms of equation (4) to the first member and factoring,

we obtain the equivaleiit derived equation

(a; + 2/ + 2)(a;-2/)=0. (5)

Accordingly, equations (3) and (5) taken together constitute the follow-

ing system of equations which is equivalent to the given system :

a;2 + 1/2 = 8(x + y), (3) ) Equivalent

(ar + 2/ + 2)(ic — 2/) = 0. (5) j * Derived System.

The solutions of System III. may be obtained by the method of § 16.

Ex. 2. Solve the symmetric system of equations

.y + ., 12= 0, OH J oi,en System.
a;2 4- 2/2 = 10. (2) )

Solve the first equation for xy as the unknown by factoring. Then,

using the values thus found with equation (2), solve the two resulting

symmetric systems.

87
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Ex. 3. Solve the symmetric system of equations

xy= 8. (2)j
-^

By multiplying the membei-s of ec^uation (2) by 2 and adding the results

thus obtained to the corresponding members of equation (1), we obtain the

derived equation
(x + yy ^x + y = 90. (3)

Hence the given system of equations is eriuivalent to the system

(x + y + 10)(a: + 1/ - 9) = 0, (4) ) jj
Equivalent

xy = 8. (5) ) ' Derived System.

This system of equations is equivalent to the following set of two

systems :

a: + y+10 = 0,) , + ,,_ 9 = 0,1

xy = H.\^''^ x./ = 8.
[("•->

The solutions of these systems of equations may be obtained by applying

the method of § 31.

33. Systems consisting of equations which become symmetric

by changing the signs of one or more terms may be solved by

the methods employed for the solution of systems of symmetric

equations.

Ex. 4. Solve the system of equations

^''-^^
.1' i\l \ I- Given Svstem.

xy = 16. (2) )

Multiplying the members of equation (2) by 4 and adding the results to

the squares of the corresponding members of equation (1), we obtain the

equation (x + yf = 100, (3).

Accordingly, the given system of equations is equivalent to the system

(x + yy - 100 = 0, (3) ]
Equivalent"

X — y = 6. (1) I ' Derived System.

This system of equations is equivalent to the following set of two systems

of equations, the solutions of which should be obtained by the' student

:

, + , + 10 = 0,| . + .,_ 10 = 0,1
x-y = (i.\

^^ x-y = 6.)
^^

34. A system of equations having the forms

ax + bi/ = c,
')

dxy = e,S
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may be solved by the methods employed for solving systems of

symmetric equations.

Ex. 5. Solve the system of equations

3x-{-2y= 11, (1)) , ^. ^

xy= 3. (2)1^-
Given System.

Since the first member of equation (1) is the binomial sum Sx + 2y we
proceed as follows to obtain an equation the first member of which is the

binomial difference 3x — 2y.

By squaring both members of equation (1) we obtain

9 ar2+ 12 XT/ + 4 1/2= 121. (3)

Since the square of the difference 3ic — 2i/ differs from the first member
of equation (3), only in the sign of its " middle term " 12 xy, we may, by

subtracting from the members of equation (3) the corresponding members
of equation (2), each multiplied by 24, obtain

9a:«-12a;i/ + 4i/2 = 49. (4)

Equation (4) is equivalent to

(3a;-2?/ + 7)(3a;-2i/-7) =0. •
(5)

It follows that the given system of equations is equivalent to the follow-

ing system :

3a; + 2^=11, (0 ) tt Equivalent

. 2 1/ - 7) = 0. (5) I .
Derived ^(3 a: - 2 y + 7) (3 a: - 2 1/ - 7) = 0. (5) j .
Derived System.

The solutions of this system of equations may be obtained by applying

the method of § 16.

35. The solutions of a system of two symmetric equations

containing two unknowns, x and ;/, may be obtained by solving

the system of equations obtained by substituting particular func-

tions of new unknowns for the given set of unknowns, x and ^,

and solving the resulting equations for the new unknowns.

It will sometimes be found convenient to substitute for the

given unknowns, x and i/, the sum and difference respectively of

two other unknowns, r and s, that is, to let x = r + s and

y = r — s.

Solving the resulting system of equations, we obtain values

for r and s which, when substituted in the assumed equations

x = r -i- s and y = r — s^ determine the values of the unknowns,

.'• and y.
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Ex. 6. Solve the system of symmetric equations

If we let ~ ' [ (3) we may substitute for the given system of
y — r — s,

)

equations (1) an<l (2) the equivalent derived system

(r + .y+(r-s)*=l7, (4)^

2r= 3, (5)

" = '• + ^'1(3)

Eliminating r from equations (4) and (5), we obtain,

16«* + 2165'* -55 = 0. (6)

The system of equations consisting of equations (6) and (5), and the

assumed equations (3) is equivalent to the given system.

The solutions of equation (6) are found to be

« = ± ^, and s = ± i \/—b5.

Accordingly, using each of these values with the value of r from (5),

we have the following pairs of values for r and s

:

Derived System.

::|:}o->::4:}("-)::i,^}(Ui.):.:j-^}ov.)

Substituting the sets of values (i.) and (ii.) for r and s in the assumed
equations (3), we obtain the following sets of real values of x and y :

^-M and ^=M
^ = 1,

)

2/ = 2. j

The values of x and y obtained by using the real and imaginary values

for r and s in (iii.) and (iv.) are complex.

All of the values thus obtained will be found to satisfy the given

equations.

Ex. 7. Solve the system of equations

, I /ox \ I- Given Svstera.
x + i/= 4. (2)j

,
Let a: = r + s, and y = r — s. (3)

Using the equations obtained by suV)stituting r + s for x and r — s for y
in equations (1) and (2) with the assumed equations x = r + s and y = r — s,

we obtain the following derived system of equations which is equivalent to

the given system of equations :
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Equivalent

3r^s + s^= 13, (4)

r= 2, (5)

x = r + s,\
'

I (3)
y = r — s. )

^ ^

Derived System.

From equations (4) and (5) we obtain, eliminating r, and transposing,

s«+ 12 s -13 = 0. (6)

By the Factor Theorem we find that s — 1 is one of the factors of the

first member of equation (6).

Accordingly equation (6) is equivalent to

(s_l)(s2 + 5s + 13) = 0. (7)

The solutions of (7) are found to be

s = 1, and s = ==-^ .

Using the value of r from (5),. we obtain the following pairs of values

for r and s :

r=2.

("•)
.

./-^hOii-)_i4..^/:r5T r^-^ _i_^_5i
'
= r

"'

Substituting these different pairs of values for r and s in the assumed

equations (3), we obtain pairs of values of x and y which are solutions

of the given system of equations.

Exercise XXV. 7. Miscellaneous

Solve- the following systems of equations:

1. X =6-1/, e. x^ + 2x1/ + f = 36,

f = — 20 — x7/.

'

x^ — 2x// + f=16.
2. x'^dif= 16,

X +37/ = 8.

3. X + 1/ = x^j

S(/-x = f.

4. x^ + f= 178,

X —y = 10.

5. (a;+v/)= = 81,

{x - yY =9. i^y = 12.

7. {x - 1)0 + 1) = 39,

x — y=l2.

8. « — 3 ?/ = 5,

icz/ = 4 a;^ — 2.

9. !-'
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^^- ^-^ = 1^' 21. (x + 1)0, + 1) = 54,

1= 4,,
ic + v/ = l3.

^
22. aj2 + icy/ = 28,

11. 02, = a^ xi/ + f = ^ 12.

? = 6^. 23. a:-^-/= 7,

•^
xi/ = 12.

12. ^±J^ = 5, 24. a!(a; + y) - 20 = 0,
^ y(y + aj) -16 = 0.

a^ = 64
2o. a;'^ + i»y = 42,

13. ^±J? = a, K^-y) = 5.

^ ic~3, a;4- v, 3
'

14. ic + - = 1,
«'' + / = 45.

^
27. ic* + xY + / = 3,

y + - = 4. a;2 - i«y + 7/2 = 1.

J J
28. a:^ + ^ + -,,2 ^ 133,

15. 9a;+- = 4=15ic x + ^xy + ;/ = 19.

36ic_25y 29. 3ajy-a.y= 14,

xy-\-x — y=^ 122. 30. aj^ ^- xy = 20,

11 a; + 3,= 5.

^^* ^~^"^' 31. a^2 + 7/2 = 189 - ^,
1 1 5 a; + ?/ = 9 + Va^.

ic — 1 3/ — 1 3
*

32. a;» + 7/8 =:. 133,

18 i4.i-^ «^^ + «^/- 70.

•

ar^
"^

7/2 49 '

33 ^3 + ^8 ^ g5^

1 1__8 xy{x^y)^2^,

^ y~~ l' 34. aj« — 7/3 = 26,

19. a;-^ — 7/-1 = — 1, x^y — aj/ = 6.

""' - r' = - 5. 35. x'^-.f^ 56^
a;

20. 7/(a; ^y)=A
x{x-y)=y. ^ y-

16

a;^
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y ^

Ko ^ + y
53. ——^ = ax,

y

xy = h.

X x-{- y x'' 0"-

X -\- y =\. ^^ _ 1

37. yis^-^y)^-x{y-^x) — ^xy, ^y

y{x + y)^x+y = 2L
^^ ax^hy^^ah,

* V« + V^ V'Xr-^/y ^

x^ + 2/2 = 97^ 52. bx^-by = 2,

39. a.- + //Va- = 40,

'

a6..y-l.

a;-2 + xy"- = 1312.

40. (5i«-2/)(2/-'^^) = -l>

{by + x){y ->r bx) = 189.

41. .X.8 + / = 224,

xy= 12. ., x — y __
54. -__ .- - 8,

42. a; 4- y + 2Va^ + ^ = 24,
'V/^J VJ/

a;2 _j_ y2 ^ j3Q^ y^^ = 12.

43. a^' + r - '^('^ + y) = ^' «._,,_
, + ^ + ..^ = -7. 5s-:^^z^-^'

44.
^~

, = r!' Va^y = ^•

56. x^-=Q>x+ 4.y,

y^ = 4.X+ 6^.

57. x"^ = cx + dy,

y'^ z= dx -{ cy.

58. a^ + / = 33.

a; + 2/ = ^*

59. ^^ + / = 97,

a- + 7/ = 5.

60. x'-\-y^ = 97,

X -y '^ 1.

7/-l_
a;- 1

/ + .y + 1
_

^3'

43

a;^ + a; + 1 21

45.

{x-y){x'-y'^^-^'^.

46. ax = by,

^^ + / = c.

47. VX = gy,

{p-\-q)x-{p-'q)y = r.

48. a(:x + y) = b(x-y)=xy.

49. x" — y"- = «,

a;4 _ 7/* = 6.
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1 _1 =_L-, 62 ^' + ^ + ^-.^ = 111
X y X — y' ' y^ 'it? y X m
J__J._J_ 1

Simultaneous Kquations Involvingr Decimal Fractions

Solve the following systems of equations and find approximate

values of the unknowns which are correct to three places of decimals:

63. a; + ?/ = 2.8, 72. o? + / = 9.0625,

xy = 1.87. X -\-y = 3.25.

64. a; + y = .051, 73. 4 a^ - / = 2.03,

xy = .000518. x-\-y=.%

65. 10a; — 10^ = .5, 74. .2a!^ - xy = — .742,

10a;^ = .126. x+.ly= .82.

66. .5a; — .17= .1?/, 75. 2.5a; + .3?/ = 7,

\Oxy= 1.2. .5a;y = 6.

67. .001 xy= 1.075, 76. .1 x + y = 8,

,\x — .\y= 1.8. xy = 2A,

68. a?-\-f = .89, 77. a;^ + 10/ = 14.49,

10a:ry = 4. x \- y = 1.5.

69. 100 ar^ + 100r = 65, 78. 5 a;^ + ^2 ^ 9.2,

a;;/ = .28. xy = .6.

70. .01 a; + .01 y = .0015, 79. a;» - / = .056.

.lar^H- .ly'-' = .00125. x — y = .2

71. ar^ + / = 11.3, 80. 3 a;-' — / = 299.99.

a; -J- 7/ =r 4.4. xy = 1.

Systems of Three or More Equations Containing

Three or More Unknowns

36. The solution of a system of three simultaneous equations

containing three unknowns can be made to depend upon the solution

of a quadratic equation only in exceptional cases.

There are certain systems of special equations the solutions of



X - y-2z = 0,

X -^2y-h^:: = 11,

X 2 + 2/2 4. .2 ^ 21.
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which can be made to depend upon the solutions of quadratic

equations.

37: If a system of three or more simultaneous equations contains

one and only one equation of the second degree with reference to

the unknowns, the remaining equations being all of the first degree,

the solution of the system can be made to depend upon the solution

of a quadratic equation containing one unknown.

Ex. 1. Solve the system of equations .

(1)]

(2) V I. Given System.

(3))

The unknowns x and y may be expressed in terms of the remaining

unknown, z, as follows :

Employing equations (1) and (2), and eliminating y, we obtain

3a; -2 =11. (4)

Hence, x =— (5)
o

From equations (1) and (2), eliminating x, b}'^ subtraction, we obtain

3y + 5z=U. (6)

Hence, y =—^ . (7)

Substituting these " expressed " values for x and y in equation (3), we

obtain a quadratic equation containing z alone, from which the values of z

are found to be 1 and |-|.

Substituting these values for z in equations (5) and (7), we obtain cor-

respondinf:^ values of a: and y.

Accordingly the solutions of the given system are found to be

x = 4A ^ = W'
y = 2A and i/ = f

,

^=lj ^-M-
These sets of values will be found to satisfy the given equations.

Ex. 2. Solve the system of equations

xy = 2,i\)\
yz = 4, (2) yi. Given System.

zx = ii. (3) J

We may obtain the following equation, the members of which are tbo
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continued products of the corresponding members of the three given

equations

:

xhjh^ = 64. (4)

From equation (4) we obtain

ryz = ±S. (5)

This result may be interpreted as representing the set of two equations,

xyz = + 8 and xyz = — 8, which, taken together, are equivalent to equa-

tion (4).

.

Dividing the members of (5) by the corresponding members of equations

(1), (2), and (3) respectively, we obtain the following results

:

2 = ±4, x = ±2, y = ±l.

Since the different members of all of the given equations are positive,

and the first members contain two factors each, it follows that the signs

of these factors must be like. Accordingly, we may arrange these values

in sets, as follows

:

X =
= 1, [- and 2/ = - 1,1

= 4,J z = -4.}

These sets of values are found by substitution to satisfy the given

equations.

Ex. 3. Solve the system of equations

(x + i,)(x + .)= 4, (1)^

. (2/ + 2)(y + x) = 16, (2) U. Given System.

(;2 + x)(s + i/) = 36. (3) J

Multiplying together the corresponding members of the given equations

and taking the square roots of the results, we obtain

(x + yXy + 2)(2 + a:) = ± 48. .(4)

Using the members of the given equations as divisors with the corre-

sponding members of (4), we obtain

y-{.z = ± 12, (5) x + y = ±3, (6) ^ + x = ± f

,

(7)

from which the values of x, y, and z may be obtained.

Ex. 4. Solve the system of equations

x^-\-2yz=l, (1)^
y^ + 2zx=l, (2) VI, Given System.

z'' + 2xy=2. (3) J

Adding the corresponding members of the given equations, we obtain,

r^ + y^-\-^^^ -h^y^^ + ^zx -\-2xy = 4. (4)

Hence, [x + y + z + 2]lx -^ y + z - 2] = 0. (5)
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Subtracting the members of equation (2) from the corresponding mem-
bers of (1), we obtain

x^-y^-\-2yz-2zx = 0. (6)

Or,
'

(x-y)[x-\-y-2z-] = 0. (7)

The system composed of equations (5) and (7), and any one of the given

equations, such as (1), is equivalent to the given system of equations.

[, + , + . + 21[. + , + .- 2] = (5)1
^.^^^^^^

(x-,)[x + ,-2.] = 0, II.
'derived System.

x^ 4- 2yz = 1. (l)j "^

Equating the factors of the first members of equations (5) and (7) sep-

arately to zero, and applying the method of § 16, we may separate the

derived System II. into a group of four derived systems, which taken to-

gether are equivalent to System II.

Solving these systems separately, the solutions of the given system of

equations may be obtained.

Ex. 5. Solve the system of equations

x + xy + y=z 3, (l)\

y + 2/2 + 2 = 8, (2) M . Given System.

x-^xz+z=15. (3)J

From the first equation we may obtain the value of x, expressed in terms

of y, as follows

:

xO- + y) +y = 3.

Hence, x = • (4)
1+3/

Substituting this value for x in equation (3), we obtain an equation con-

taining y and z the members of which may be combined with those of equa-

tion (2) to obtain the values of y and z.

The values of x may be obtained by substituting in equation (4).

Ex. 6. Solve the system of equations

x^-yz = a, (1)^

y^-zx = b, (2) V I. Given System.

z^-xy = c, (3)j

If, from the squares of the members of equation (1) we subtract the

product of the corresponding members of equations (2) and (3), we shall

obtain equation (4).

Equations (5) and (6) may be obtained in a similar way.

x[x^ -^
yi ^ z^ - 3 xyz] = a^ - be. (4)

y [a;8 4. ys + ?j8 _ 3 xyz] = &2 - ca. (5)

2 [a;3 + y8 + z^ - 3 xu;i\ = c^ - ah. (6)
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From equations (4) and (6) we obtain by division the value of the fraction

xjz. Similarly, from equations (5) and (6) we obtain the value of the

fraction yf z.

From the equations thus obtained we may find the expressed values of

X and y in terms of z.

Substituting for x and y in equation (1) their expressed values thus found,

we obtain the value of z in terms of the known numbers a, 6, and c, in the

form of a fraction having an irrational denominator,

± (c^ - ah)

^a8 + 6«H-c8-3a6c ^^

Either by substituting this value for z in the remaining equations, which

may then be solved for x and y, or by repeating the process above with dif-

ferent pairs of equations, we obtain expressions of the same type as (7) for

X and 1^.

Exercise XXV. 8

Find sets of values which satisfy each of the following sys-

tems of equations:

I. xy= 30, 7. yz = 6c, 10. xy^z^ = - 24,

yz = - 60, ^
. 3^

yz^ 4
xz = — 50. «+!='• x= r

2.yz = a\ X z ^
x'y _ 9^

xz = b'. - + - = 1.

a c z 2

xy — f^.
xy _ 4.^

3. ^z= 2,
11.

x + y
3*

fz= 1. 8. x'-^y^^ 13,

z^x = 32. ar^ + ;:« = 34,
yz _ 12

^

y + z 5
'

4. xh)z = a, y'' + z^ = 29.

xys^ = c.

zx 3

y + z = ~^

X

2; + a; 2

5. yz = '2y-\- 4tz, 9.
12.

"^" =2,
ZX= 4:Z + Xy jc + y
xy = x+ 2y.

^ + ^ ^ 7/

JK?/;:; 3

6. x(:y + z) = 5,
y x + z 2

y(x + z) = 8,

z{x + y) = ^.
x^-y=-'

a;?/2; _6^
y + z 5
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13
^.y- = a ^^' (^ + "^^^^ + ^) = ^''

xyz _ + ^)(a; + z) =^ c^.

y + z
'

23. a; + i/ + 2; = a,

^yz ^ ^^
a;^ = ^,

a; + 2; * xyz = c.

^.+ . 5 2i.x + y = 3,

y-±jL^^, x^+s = 8.
xyz 12

^. + ^. 17 25. « +y + ^= 9,

= T^* ajv + V2; + ;:^£c — 26,
"^^ ^' j+;._,. =^3.

15. (« + \){y + 1) = 8, 26. a;^ - (2,
- ;^)2 = 1,

(^ + !)(;, + 1) = 24, / - (;2^ - a^)' = 4,

(;^+l)(a;+ 1) = 12. z''-{x-yy = ^.

16. a;(2 - ?/) = 16, 27. a;(?/ + z) + 3 = 0,

3/(2- Is) = 9, y{z-^x)-¥21 = 0,

z(2 — x)= 4. 2^(3 X— y)=^0.

17. ar^ = ?/2;, 28. x + xy + y=15,
x + y + z= 21, y + yz + z = 24.,

xijz = 2ie. x + xz + z = S5.

18. xy + xz + yz = 3, 29. x^ — yz = 2,

x — y = 2y
y"^ — zx = 4.,

y — z=\. z^ — xy=l.

19. a;(a; + ?/ + 5r) == 6. 30. g? -yz = 49,

y(a; + y + 4 = 12» y — 2:a;= 1,

2^(a; + y + 4 = 18. z^ — xy= 79.

20. (3/ + z)(x + 7/ + 2;) = 6, 31. 7/2; + a; + y = - 9,

(z + x)(x + y -\-z)= 8, a;2; + 2/ = -5,

(a; + 2/)(a; + ^ + ^) = — 6. a^^ = 2.

21. a:^^ = c(a; + y + 2;), 32. x" -{ xy + y'' -= 3,

3^;^ = flr(a; + 3/ + 2;), / 4- ^^ + z^ = 7,

a!;r = ^'(a; + 7/ + ;s). 2;^ + ^^a; + a;^ = 7.
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X y z 3

xyz = 1.

Exercise XXV. 9

Solve the following problems employing conditional equations

containing two or more unknown quantities

:

1

.

Find two numbers the sum of which is 40, and the product of which

is 256.

2. Find two numbers the difference of which is 15, and the sum of the

squares of which is 293.

3. Find two numbers the difference of which is 6, and the product of

which is 247.

4. Find two numbers the sum of which is 40, and the product of which

is 391.

5. Find two numbers the prwluct of which is 96, and the sum of the

squares of which is 208.

6. Find two numbers the difference of the squares of which is 112, and

the square of the difference of which is 64.

7. Find two numbers the sum of which is 10, and the sum of the cubes

of which is 370.

8. The product of two numbers is 64, and the quotient obtained by

dividing the gre.ater number by the less is 4. Find the numbers.

9. If the sum of two numbers is divided by the less number, the quo-

tient is 4; the protluct of the numbers is 27. Find the numbers.

10. Find two numbers the sum of which is 20, such that the snm of

the quotients obtained by dividing each number by the other is 17/4.

11. Find two numbers such that, if each be increased by 1, the product

is 124, and the product obtained by multiplying the first number by a

number less by one than the second number is 60.

12. Find two numbejps the sum of which is twice their difference, and

the difference of the squares of which is 200.

13. The product of two numbers is 12, and the sum of their squares is

five times the sum of the numbers. Find the numbers.

14. Find two numbers, of which the sum is 14, which are such that the

product of the first and the reciprocal of the second, increased by the

product of the second and the reciprocal of the first, is 25 / 12.
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15. The sum of two numbers is 30, and the sum of the quotients result-

ing from dividing each number by the other is 82/9. Find the numbers.

16. The first of two numbers is ten times the reciprocal of the second,

and the sum of the second number and ten times the reciprocal of the first

is equal to the square of the second number. Find the numbers.

17. Find two fractions such that the sum of the first fraction and the

reciprocal of the second is equal to 2, and the sum of the second fraction

and the reciprocal of the first is 8/3.

18. Find two numbers the sum of which is 36, and half the product

of which is equal to the cube of the less number.

19. Find a fraction the value of which is 3/4, and the product of the

numerator and denominator of which is 48.

20. If a certain two-figure number, the sum of the figures of which

is 12, be multiplied by the units' figure, the product is 375. What is the

number 1

21. A number expressed by two figures is equal to four times the sum of

the figures. The number formed by writing the figures in reversed order

exceeds three times the product of the figures by the square of the figure in

tens' place of the given number. Find the number.

22. If it requires 240 rods of fence to enclose a rectangular field of 20

acres, what are the dimensions of the field 1

23. A rectangular field contains 30 acres. By increasing its length by

40 rods and diminishing its width by 4 rods, the area is increased by 6

acres. What are its dimensions ?

24. The length of the fence around a rectangular field is 274 yards, and

the distance measured diagonally from corner to corner is 97 yards. What

is the area?

25. Thirty-two yards of the fence about a rectangular field which is 184

yards long and 76 yards wide are destroyed. What must be the dinien-

.^ions of a rectangular field in order that the length of fence remaining shall

enclose the same area as before ?

26. A property owner wishes to use the material from a stone wall

enclosing a field, which has the form of a rectangle 80 rods long and 60 rods

wide, to build another wall greater by 16 rods which shall enclose a second

liact of land which has the form of a rectangle having the same area as the

first. Find the dimensions of the second tract of land.

27. In widening a street, a strip of land 6 feet in width was removed

from the entire frontage of a tract containing 28,800 square feet. By

increasing the frontage of the reduced lot by 8 feet, the entire area became

the same as before. Find the original dimensions of the land.

28. It is observed that, if a guy rope which is attached to a stake 7 feet
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from the foot of a derrick were lengthened by 15 feet, it would rea€h to a

stake 32 feet from the foot of the derrick. Find the height of the derrick

and the length of the rope.

29. A tract of 10 acres of land is enclosed by a certain length of fence in

such a way that there are two separate lots, each in the form of a square,

so situated that the side of the smaller lot forms a part of the side of the

larger lot. It is observed that the fence may be rebuilt to enclose a single

lot in the form of a square containing 5| acres more than the original lots.

Find the dimensions of the original lots.

30. At an entertainment $750 was realized from the sale of seats. For

each reserved seat twenty-five cents more was charged than for an un-

reserved seat, but the sale of the unreserved seats yielded the same total

amount as that of the reserved seats. Find the total number of seats sold,

if the number of unreserved seats exceeded the number of reserved seats

by 125.

31. Three stone crushers working together can crush a certain amount

of stone in a week. The first machine has a capacity twice as great as that

of the second, but working alone would require one week more than the

third machine to perform the work. What time would each require,

working alone ?

32. The sum of a fraction and its reciprocal is equSil to the numerator

increased by the reciprocal of twice the denominator ; and the difference

between the reciprocal of the numerator and the reciprocal of the de-

nominator is equal to the reciprocal of twice the denominator. What is

the fraction ?

33. Find a fraction such that, if its numerator be increased by 3 and its

denominator diminished by 3, the result is the reciprocal of the fraction
;

but if the denominator be increased by 3 and the numerator diminished by

3, the result will be 1^ less than the reciprocal of the fraction.

34. Find a fraction, the value of which is 2/3, such that if the numerator

be diminished by the reciprocal of the denominator and the denominator

be increased by the reciprocal of the numerator, the value of the fraction

will be multiplied by 149/151.

35. Find two numbei-s the sum of the cubes of which is 133, and the sum
of the squares of which diminished by their product is 19.

36. Find two numbers of which the sum multiplied by the product is

equal to 30, and the sum of the cubes of which is 35.

37. A number is expressed by three figures, the sum of which is 10.

The middle figure exceeds the sum of the other two by 2, and the sum of

the squares of the separate figures is seven times the figure in tens' place,

increased by the sum of the other two. Find the number.
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38. Two boats leave simultaneously the opposite shores of a river which
is 2} miles wide, and pass each other in 15 minutes. The faster boat com-

pletes the trip 6| minutes before the other reaches the opposite shore.

Find the rates of the boats in miles per hour.

39. A train starts from a certain station to make a trip of 180 miles,

travelling uniformly. Forty-five minutes later a faster train, also travelling

uniformly, starts from the same station, and after travelling two hours and

fifteen minutes reaches the station which the first train had passed thirty-six

minutes previously. The speed of the second train is now increased by

four miles an hour, with the result that the trains reach the terminus at the

same time. Find the rates in miles per hour, at which they started.

40. Fifteen hours after an ocean steamship leaves the American shore to

make a voyage of 3300 miles at a certain average uniform rate, a second

ship starts for America from the opposite shore. The two ships meet after

the second ship has been out 7 If hours, and they complete their trips at the

same instant. Find the rates of the ships in miles per hour.

41. An express train, an electric car, and an automobile all leave a given

place for a certain destination. The express train travels 9 miles an hour

faster than the electric car, and the automobile 13 miles an hour faster than

the express. The express starts one hour after the electric and 39 minutes

before the automobile. If all arrive at the end of their journeys at the same

time, find the distance and the rates of travelling in miles per hour.

42. Sighting an enemy's war vessel at a distance of 10 miles, a submarine

boat starts toward it, running on the surface at a certain uniform rate which

exceeds its speed when submerged by 6 miles an hour. At a certain point

in its course it dives beneath the surfiice, and when submerged at a distance

of one-half mile from the battleship, a torpedo is discharged which travels

at the rate of a mile in two minutes. It is observed from the shore that the

time, measured from the instant the submarine starts until the explosion

takes place, is exactly 44| minutes. Returning immediately after deliver-

ing its torpedo, and travelling the entire distance under water, the time

required is one hour, three and one-third minutes. Find the rate of the

submarine on the surface in miles per hour and also the distance from the

starting-point of the spot at which it sank beneath the surface.

43. A torpedo boat, on being discovered 1^ miles from port, immedi-

ately turns and tries to escape. One minute later a torpedo-boat destro3'er

is sent out and this overtakes it after a run of 9^ miles. If the rates of the

torpedo boat and destroyer could have been increased by 6 miles an hour

and 2 miles an hour respectively, when the distance between the two boats

was reduced to 1 mile the torpedo boat would have escaped to its squadron

I <
».V miles away. Find the rates of the boats in miles per hour.

38
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CHAPTER XXVI

RATIO, PROPORTION, AND VARIATION

I. Ratio

1. The ratio of one number to another of the same kind is the

quotient obtained by dividing the first number by the second.

The ratio of « to ^ may be expressed by any symbol of division.

E. g. a-^b;
J-

; a/b ; or by a : 6.

The ratio of 6 to 3 is | or 2.

2. In a ratio a : b (read, "the ratio of a to ^"), a is called the

first term or antecedent of the ratio, and b the second term
or consequent.

3. Since a ratio has been defined as a fraction, it follows that all

of the properties of fractions apply also to ratios.

„ am _a 1 2 _ 3
°* bm~V l6~4"

4. According as a > h or a < b the ratio a : b is said to be a

ratio of greater inequality, or a ratio of less inequality.

5. The values of two ratios may be compared by expressing them

as fractions and then reducing the iractions to equivalent fractions

having a common denominator.

E. g. Compare the values of the ratios 2 : 3 and 7 : 8.

We have 2:3 = f = :^f; also 7 : 8 = | = f
i

.

Hence since |^ > ^|, it appears that 7 : 8 > 2 : 3.

6. Two or more ratios are said to be compounded if their

corresponding terms are multiplied together.

E. g. acx : bdy is compounded of a : b, c : d, and x : y.
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7. A duplicate ratio is the ratio formed by compounding two
equal ratios.

E. g. a^ : &2 is the duplicate ratio of the ratio a : h.

8. A triplicate ratio is the ratio formed by compounding three

equal ratios.

E. g. a^ : b^ is the triplicate ratio of the ratio a : h.

9. The inverse ratio of a ratio is obtained by interchanging the

antecedent and the conseciuent.

E. g. a : h and b : a are inverse ratios.

10. Principle : A ratio of greater inequality is diminished, and
a ratio of less ineqiialiti) is increased, by the addition of the same

positive number to each of its terms.

If a, b, and x are any positive numbers, the ratio j is greater than

or less than the ratio -. according as a is greater than or less

than b.

Since b and x are both positive, the denominator b{b + x) is

positive, and the value of the second member of (1) is positive or

negative according as the factor {a — b) of the numerator is positive

or negative,— that is, according as a is greater than or less than b.

CL a ~l~ X
The value of 7 is greater than or less than the value of t——

b b + X

according as the value of the difference a — b is positive or negative.

In a similar manner it may be shown that a ratio of greater

inequality is increased, and a ratio of less inequality is diminished, by

subtracting the same positive numberfrom each of its terms.

11. If two concrete quantities of the same kind can each be ex-

pressed in whole numbers in terms of some unit of measure, this

common unit is called a common measure of the two given quan-

tities, and the two given quantities are said to be commensurable.

(See Chap. XVIIL § 8, and .Chap. XX. § 1.)

12. The number which expresses the number of times a given
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unit is contained in a given quantity of the same kind is called the

iiiiinerical measure of the quantity with respect to the given

unit.

13. The ratio of two concrete quantities of the same kind,

which can both be expressed in terms of the same unit by means of

two rational numbers, is defined to be the ratio of their numerical

measures.

E. g. The ratio of
2J^ feet to 3^ feet is the ratio -y, or ||. By einploy-

ini^ A ^^ ^ ^^^^ ^'^ *^ common unit of measure, we can express 2^ feet and

3^ feet in terms of this common unit by the numbers 35 and 48 respectively.

14. Two quantities of the same kind are said to be incoinnien-

surable if both cannot be expressed in whole numbers in terms of

a common unit of measure.

The exact value of the ratio of two incommensurable quantities

cannot be expressed in terms of a whole number, or of a fraction

the numerator and denominator of which contain a finite number

of figures.

An approximate value mat; he found which will difier from the

true value of the ratio of two incommensurable quantities by less than

any assignable value^ however small.

(The foUowing proof may be omitted when the chapter ia read for the first time.)

Let A and B i-epresent two incommensurable quantities of the same

kind. It is always possible to find two whole numbers of which the ratio

differs from the true value of the ratio of A to B by as small a value as we

please.

For, if we separate the lesser of the two quantfties, say B, into any integral

number n of equal parts, then, since A and B are assumed to be incom-

mensnrable, it will follow that when A is divided by this unit B/n, there

will l)e a remainder which is less than one of these nth parts of B.

Suppose that one of these nth parts of B is contained in A more than

m times and less than m + 1 times.

Then the true value of A jB will lie between the approximate values

m -m+1 ,,. m A m+1— and 5 that is, — < >, < "

"

n n n b n

It follows that either approximate value, say m/w, differs from the true

value of AjB by a value less than that by which it differs from the other

approximate value, say (rn + ^)Jn.
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The difference 1/n, between the approximate values mjn and (m+ l)/n,

can be made as small as we please by taking n great enough, but it can

never he made .equal to zero.

Accordingly, an approximate value may be found which will differ by

less than any assignable value from the true value of the ratio of two given

incommensurable quantities, A and B.

It should be observed that the commensurable ratios min and

{m + \)l?ij which approximate to the true value of the ratio of the

incommensurable numbers A and B, define an incommensurable

number.

Accordingly, the fixed valm which is the ratio of two incommen-

surable quantities is called an incommensurable ratio.

E. g. The numbers y^ and 3 are incommensurable with respect to each

other ; hence their ratio —^ is an incommensurable ratio.

The incommensurable numbers 2-y/3 and 5/y/3 are commensurable with

2a/3
respect to each otJier, since their ratio —~= is equal to f •

o-Y^ 3

It may be shown by applying the Principles of Variables and

Limits that two incommensurable ratios are equal if their approxi-

mate values remain equal as the unit of measure is indefinitely

diminished.

Exercise XXVL 1

Write each of the following ratios in simplest form :

1. 10 : 12. 4. x'-.xij. 7. i : i • 10.

2. 25 : 30. 5. abc -. bed. 8. ^ : i- 11.

3. 6«:8a. 6. la^-.'i^ab. 9. | : f- 12. -g

Find the ratio compounded of

13. 4:5 and 10 : 6. 14. 2:3 and 4 : 9. 15. 21 : 4 and 10 : 7.

16. 6:7 and the duplicate of 2 : 3.

17. 50 : 32 and the triplicate of 4 : 5.

18. The duplicate of x^ :
y"^ and the triplicate of y : x.

X z

y

'

w
a b

b
'

' c

x' X'
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Which is the greater ratio :

19. 3 : 4 or 4 : 5 ? 20. 4 : 11 or 2 : 5 ? 21. 7 : 8 or 23 : 24

1

Arrange in order of increasing values :

22. 5 : 7, 6 : 8, 9 : 14, and 27 : 28.

Which ratio is greater, (1) for a; positive, (2) for x negative:

23. 2 : 3 or (2 + x) : (3 -\- x)% 24. 7 : 4 or (7 - a) : (4 - cc) ?

Find the value of the ratio x\y\\i each of the following :

25. ^l{^^-\-f) = V6{xy-f). 26. 10 (ar' + /) = 29 a^.

II. Propoetion

16. A proportion is an expressed equality of two equal ratios.

E. g. The abstract numbers a, 6, c, and d are said to be in proportion in

the given order «, 6, c, </, if a : 6 = c : d (read " a is to 6 as c is to d, ").

16. The numbers a, h, c, and d are called the terms of the

proportion a : b ^= c : d.

The first and fourth terms, a and </, are called the extremes,

and the second and third terms, b and c, the means, of the

proportion.

17. In a proportion a \ b = c : d^ the antecedents a and c of the

equal ratios a : b and c : d are called the antecedents of the

proportion.

18. Similarly, the consequents b and d of the equal ratios are

called the consequents of the proportion.

19. In any proportion, a : b = c : dj the value of either of the

equal ratios is called the common ratio of the proportion.

20. The symbol : : is frequently used instead of the equality sign

between the equal ratios of a proportion.

E. jT. 2 : 3 : : 4 : 6 instead of 2 : 3 = 4 : 6.

21. The numbers a, bj c,d, e,f, , are said to be in contin-

ued proportion if - = - = - = - = - =
, the consequent

c a e J
of any ratio being equal to the antecedent of the one following.

22. In a continued proportion, a : b = b : c, containing three

numbers, a, b^ and c, b is called the mean proportional between

a and c, and c is called the third proportional to a and b.
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23. In a proportion, a .b = c . d, containing four numbers, a, h,

c, and (/, the fourth number d is called the fourth proportional
to the three numbers a, b, c, in the given order, a, b, c.

24. Proportions may be transformed according to the following

General Principles

(i.) In any numerical proportion the product of the extremes is

equal to the product of the means.

That is, a aih = cid, then ad = he.

For, multiplying both ratios of the proportion ajb = c/d by bd we
obtain ad = be.

This principle may be used to determine whether or not four

numbers are proportional in some specified order.

(ii.) The mean projxyi'tional between any two numbers is equal to

the square root of their product.

That is, if a : 6 = 6 : c, (1), then h — ^sfac.

For, from (1) we have ^^ = ac. Hence b = ^/ac.

It should be observed that, since the two numbers which form

either of the ratios of a given proportion must be numbers of the

same kind, it is impossible that one should be positive and the

other negative.

Accordingly, when a and c are both positive numbers, the positive

sign only is taken for ^fac in the expression for the mean propor-

tional, b = \/«c. (Compare with Chap. XXVII. § 39.)

If, however, the numbers of which the mean proportional is

to be found are both negative, for example — 4 and — 9, we
— 4: m

have, representing the mean proportional by m^ = -—- •

Hence, m — ^( — 4)( — 9) = — 6, which is a negative number,

(iii.) If the product of two numbers is equal to the product oftwo

others, the numbers of either set may be made the extremes, and those

of the other set may be made the means of a proportion.

That is, if ad = 6c,

we obtain, dividing both members by 66?, a lb = cl d.

Therefore either €t\h = cid (1) or cd = a:b. (2)
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Similarly,

Dividing by ac, d : c =b : a (3) or h : a = d\ c. (4)

Dividing by ab, d -.1 = c : a (5) or c : a = d : b. (6)

Dividing by cd^ a : c = b : d (7) or b : d = a : c. (8)

It appears that if a, b, c, and d form a proportion in any one of

the eight orders given above, they also form a proportion when
\vritten in any one of the remaining orders.

From the results obtained above, it may be seen that the means

of a proportion may be interchanged. Hence,

(iv.) if /our numbers or quantities of the same kind are in pro-

portion^ the terms may be rearranged by alternation ; that isy tha

first term is to the third term as the second term is to thefourth term..

That is, if a : 6 = c : <f, then a : c = b : d.

It should be observed that the terms of a concrete proportion can be

transformed by alternation only when the terms of both ratios are quantities

of the same kind. For, if the quantities appearing in the terms of the first

ratio are of a different kind from those appearing in the terms of the second

ratio, the transformation by alternation will result in a proportion in

which the terms of the first ratio are quantities of different kinds and the

terms of the second ratio are also quantities of different kinds.

(v.) In any proportion the terms may be rearranged by inversion,

that isj the second term is to the first term as thefourth term is to the

third term.

That is, if a : 6 = c : dy then hia = dic.

For, expressing the proportion a -.b = c : dm the fractional no-

tation, dividing unity by each member and simplifying, we obtain

b/a = d/c.

(vi.) In any proportion^ the terms may be combined by addition;

that is, the sum of the first and second terms is to either the first term

or the second term as the sum of the third and fourth terms is to

either the third term or the fourth term.

That is, if a : 6 = c : c«, (1)

then {a + ft): a = (c + d)i c, (2), and also (a + 6): 6 - (c + d)i d, (8)



PROPORTION 601

(3) may be derived as follows :

Employing the fractional nota-

tion for the ratios, we may express

(1) as the equation

a _ c

h~d'
Adding unity to each ratio,

h^=2^-
Hence,

a-\-b c + d

~d~'

(2) may be derived as follows :

Writing (1) by inversion, and
expressing the result in frac-

tional form, we obtain

h_d,
a c

Adding unity to each ratio,

Hence,

a

a-\-b

c

c + d

(vii.) In any proportion the terms may be combined by suhtrac-

Hon ; that is^ the difference between the first term and the second

term is to either the first term or the second term as the difference

between the third term and fourth term is to either the third term

or the fourth term.

That is, if a:b = c: d, (1)

then {a-b)ia={c-tl)i c, (2) and also {a - h) ih = {c - d) : d, (3)

(3) may be obtained as follows

:

Expressing the ratios of the

given proportion by the fractional

notation, we have

a _c
b~d'

Subtracting unity from each

ratio, we have

a _ c

b~ ~d

Hence,

— 1.

c — d

(2) may be obtained as follows:

Writing (1) by inversion and

expressing the result in fractional

form, we have

b _d
a c

Subtracting both

unity, we obtain

a

ratios from

d

c

TTpnr»A = -d

(viii.) In any proportion the terms may be combined by addition

and subtraction ; tJmt is, the sum of the first and second terms is

to their difference as the sum of the third and fourth terms is to

their difference.

Thatis, ifa:&=c : e«, (1), then a + & . a-h^c + d : c-d. (2)
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The proportion (2) may be obtained by dividing the ratios ob-

tained by applying (vi.) to (1) by the corresponding ratios obtained

by applying (vii.) to (1).

(ix.) In a series of equal ratios the sum of the antecedents is to

the sum of the consequents as any antecedent is to its consequent.

That is, if « : Z> = c : €? = e : / =1 = in : n,

then (a + c + € + -\- tn) : (h + d -\- f -\- + n) =
a : b = c : d = e : f= = ni : n^

provided that (b + d -{f+ -f ??) ^t 0.

Let r denote the value of each of the e(]ual ratios.

1 hen rrom 7 = r, j = r, >= ^, , — = r,
a J n

we have a = hr^ c ^ dr, e ^=fr^ , m •=^nr.

By addition, (a + c + e + + m) = (ft + cZ +/+ -{-n)r.

Then on condition that (/> + ^ + / + + «) ^ 0,

, a + f' + ^+ + w a c m
we have . , ,

. ^ .

;— = ^ = t=j= =—

•

(x.) The products or the quotients of the corresponding terms of

two projxyrtionsform a proportion.

That is, if a : 6 = c : r/, (1), and oc : y = z i w, (2),

then aoc : &// = cz : dw, (8), and also a/icih I y = c/zi d/ iv» (4)

Writing (1) and (2) in fractional form, and multiplying corre-

sponding members of the equations, we obtain (3).

Similarly, (4) is obtained by division.

(xi.) Like powers o?- like principal roots of the terms ofa propor-

tion are in proportion.

That is, if a:h = c:d, (1)

then a** : b'' = c" : <^^ (2), and also ^a:^b = ^c: ^d. (3)

Let a : b = r and c : d = r.

Then from a = br^ (4) and c = dr, (5)

we have a" = ^"^•", and c" = 6/"r".

Hence ^ ^*^' ^°^ ^ ^ ^*

Therefore ^~^/ (^)
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Similarly, from (4) and (5),

111 111
al' = b'^r^y and c* = c?V,

1 1

and finally, — = — •

(7)

l,k flic

Ex. 1. Find the mean proportional, x, between 4 and 25.

Let 4 : a; = a; : 25. Then x = ^^4 • 25 = 10.

Ex. 2. Show that if a : 6 = c : c? it follows that

(a2 + c2) : {ah + erf) = (tt& + cd) : (62 + d^). (1)

Let a : 6 = r and c : d = r.

Then a = &r (2) and c = dr. (3)

Rence, a^ + c^ = bh^ + rfV. (4)

Multiplying the members of (2) and (3) by b and d respectively and

adding the corresponding members of the resulting equations, we have

ab + cd = bh + dh. (5)

Fron.(4)a„d(5). '^^ = ^5^^^r. (6)

Similarly, ____^ = -___^- = n (7)

Therefore, (1) follows from (6) and (7).

Ex.3. Solve V£+lziV^ = 3
(1)

/y/a: + 6 + ya; - 15 '

Applying 0-iu.) to (1), '^^^ = -^ (2)
— 2y a: — 15 ~ *

a: + 6 _25
ar-15~ 4

4 a: + 24 = 25 a: - 375

a; =19.

Verifying by substituting 19 for x in (1), f = f •

Exercise XXVI. 2

Find the fourth proportional to

1. 2, 3, and 4. 3. 15, 16, and 14.

2- 14, 15, and 16. 4. 16, 15, and 14,
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Find the mean proportional between

5. 2 and 8. 6. 1 and 4. 7. 12 and 6. 8. aand--
a

Find the third proportional to

9. 2 and 8. 10. 5 and 10. 11. ^ + - and y •

b a

Construct proportions from the following products :

12. a' = be. 13. x' = 4-40. 14. (a + b)(a — b) = c\

If a:b = c :d obtain each of the following proportions :

15. a:b = ^:-- IQ. ac :bd = (^ :d'. 11. a-{-c :b+d=a'd -.bh.
a c

18.

19.

(fl

(a

^by

^by

a'

4 a' -5b'

21.

22.

a :b =

a'-b'
'a + b'

Vb''-

-d":-
c

-d\

+ d'

{c + d)'-
~ 4 c' -5d' 23. Ua:b = b : c show that

20. a\ a+c=a-\-b.a+ b-[-c'.+ d. a + b b-c .^ + c a--b
a ' b b ' a

24. What quantity must be added to the terms of a^ -^ c^ to make it

equal to a : c /

25. What expression must be subtracted from each of the following

expressions in order that tlie remainders shall form a proporti(m ?

4a4-6 + f, 5a + 6 + c, rt+13 6 + c, and a+176 + c.

Solve for x in each of the following proportions :

26. 2:21 = 3: x. 28. (m' - n^) : {m — n) = x : 1.

27. 70 : a.- = 14 : 2. 29. (a; - 5) : 3 = 5 : 12.

Simplify the following equations by applying the Principles

Governing Proportions, and then solve for x :

30
"^"^ "^^ — ^. 32

'V^ + ^ + vV
V^ — a/^ ^

a/^j + a — Va; — a

x+ ^/x— \ _2l ^/a-k-^a-\-x _ Vc+Va;—

c

X — "s/x — I 1^ ya—\/a-\-x Vc

—

'Vxr—c

34, Find three numbers in continued proportion whose sum is 14 and

whose product is 64.

35. Divide $42.00 between two men so that their shares shall be in the

ratio of 3 : 4.
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36. Divide 44 into two parts such that the less, increased by one, shall

be to the greater, decreased by one, as 5 : 6.

37. Two numbers are in the ratio of 4 : 5. If each is increased by 5 the

sums will be in the ratio of 5 : 6. What are the numbers ?

38. What number must be added to the numbers 3, 4, 7, and 9 in order

that their sums shall form a proportion ?

39. What number must be subtracted from 24, 27, 40, and 55, in order

that tlie remainders shall form a proportion I

40. Find the ratio of the numerator of a fraction to its denominator if

the value of the fraction remains unchanged when the numerator is in-

creased by a and the denominator is increased by b ?

The areas of two similar plane figures have the same ratio as the squares

of any two corresponding dimensions.

41. The area of a triangle is 90 square inches and tlie base is 12 inches.

What is the area of a similar triangle, provided that the base is 16 inches?

42. The area of the first of two simihir polygons is 128 square inches, and

the area of the second is 200 square inches. If one side of the first polygon

is 8 inches, find the corresponding side of the second polygon.

The volumes of two similar solids have the same ratio as the cubes of

any two corresponding dimensions.

43. The diameter of the first of two bottles which are of similar shape is

three times that of tlie second. If the first holds 2 ounces, how much does

the second hold ?

44. If a sphere which is 2 inches in diameter weighs 5 lbs., what is the

weight of a sphere of the same substance which is 3 inches in diameter ?

Problems in Physics

25. The Inclined Plane. If a bodt/ rests on a smooth in-

clined plane, the force {disregarding friction) which must be applied

along tJie plarie to hold the body in place against the action of the

force of gravity has the same ratio to the weight of the body that the

height of the plane has to the length of the plane.

26. If F represents the force applied along an inclined plane,

W the weight of the body, h the height of the plane, and / the

length of the plane, we have

W l'

The force represented by F which is applied along the plane is

called the component of the weight W which is parallel to the plane.
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Exercise XXVL 3

Solve the following problems

:

1. Find the force which must be exerted to draw a sled weisrhinsr

240 lbs. up a hill which is 300 feet long and 50 feet high.

2. What is the weight of a body if a force of 125 lbs., exerted along a

smooth inclined plane which is 80 feet in length and 20 feet in height,

prevents the body from sliding down the plane?

3. A boy who is able to exert a maximum force of 80 lbs. is able to

keep a barrel from rolling down a plank which is 12 feet in length and

the upper end of which is 3 feet from the ground. Find the weight of

the barrel.

4. A porter who can exert a maximum force of 200 lbs. undertakes to

roll a cask weighing 500 lbs. up a board wliich is 10 feet long. How high

can the u])per end of the board be placed without compelling the porter to

allow the cask to roll down the board ?

5. A car weighing 1200 lbs. is held at rest on a smooth inclined plane

by a force of 30 lbs. applied parallel to the plane. If the length of the

plane is 800 feet, find the height of the plane.

6. A boy is able to exert a maximum force of 80 lbs. How long an

inclined plane must he use to push a truck weighing 320 lbs. up to a

doorway which is 3^ feet above the ground 1

Boyle's Law. Tlie volume of a gas is {approximately) inversely

proportional to thk pressure^ providsd^ that the temperature remains

constant.

That is, representing the pressure by Pi when the volume is Fi,

and the pressure by Pi when the volume is V^^ we have

V, Pi

7. If, when confined with a pressure of 20 lbs. per square inch, a mass

of gas occupies a volume of one cubic foot, find the volume of the gas

when the pressure becomes 40 lbs. per square inch.

8. A gas bag containing 3 cubic feet of gas under a pressure of 18 lbs.

per square inch must be subjected to what pressure to reduce the volume to

half a cubic foot 1

9. Six cubic feet of gas under a pressure of 45 lbs. per square inch will

have what volume if the pressure is reduced to 15 lbs. per square inch ?

10. A bladder holds 40 cubic inches of air under a pressure of 15 lbs.
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per square inch. What is the size of the bladder when the pressure is

reduced to 12 lbs. per square inch ?

11. When under a pressure of 75 lbs. per square inch, the volume of a

a mass of gas is 128 cubic inches. What is the pressure when the volume

becomes 240 cubic inches ?

12. If 100 cubic inches of air, at a pressure of 27 lbs. per square inch,

be admitted to a vessel the volume of which is 450 cubic inches, what will

be the pressure i

By absolute temperature expressed in degrees centigrade is

meant the number of degrees above 0° C, plus 273° C
Representing the absolute temperature by T^ and the number

of degrees above 0° C. by tj we have

T =t + 273.

Charles's Law. The volume of a gas is directly proportional to

the absolute temperature^ provided that the pressure remains constant.

Assuming that the pressure remains constant, we will repre-

sent by Vi the volume of a mass of gas when the absolute tem-

perature is 7\° C, and by Fg the volume when the tempera-

ture is 2^2° C. Then we have (approximately)

13. The volume of a certain quantity of gas is 100 cubic centimeters at

0° C. At what temperature will the volume become 200 cubic centimeters,

assuming that the pressure remains constant ?

14. If the volume of a certain mass of gas is 500 cubic centimeters at

20° C, find the volume of the gas at 87° C, assuming that the pressure

remains constant.

15. A mass of gas occupying a volume of 160 cubic centimeters at a

temperature of 47° C. is cooled to a temperature of 17° C. Find the volume

at the lower temperature.

16. A certain mass of gas occupying a volume of 90 cubic centimeters at

12° C. is raised in temperature to 50° C. Find the volume at the higher

temperature.

Representing by Fi the volume of a gas when the pressure is P\

and the absolute temperature is Ji° C, and by V^ the volume of

the gas when the pressure is P^ and the absolute temperature of

7^2° C, it may be shown that the following relation is true:

VxP. _ V2P2
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Since the barometer is commonly used to measure the pressure

of a gas, it will be convenient to give the pressures of the gases

in the following examples in terms of the height of a column of

mercury.

17. Five hundred cubic centimeters of a gas at a temperaturo of 27° C
are cooled to 2° C, and at the same time tlie external pressure upon the

gas is changed from 74 centimeters of mercury to 76 centimeters of mercury.

What does the volume of the gas become ?

18. Fifty liters of gas are generated at a temperature of 12° C-. and a

pressure of 68 centimeters of mercury. Find the volume of the gas at ()° 0.

when the pressure is 76 centimeters of mercury.

19. The volume of a certain quantity of <^'as is fouu<l to be 300 cubic

centimeters at a temperature of 0° C. and pressure of 75 centimeters of

mercury. What must be the temperature of the <j;as in order tliat the

volume may be 350 cubic centimeters when the pressure is 76 centimeters

of mercury ?

20. The volume of a certain mass of gas is found to be 784 cubic centi-

meters at a pressure of 75 centimetei*s of mercury and a temperature of 7° C.

What nmst be the pressure in centimeters of mercury if the volume of the

gas becomes 900 cubic centimeters when, the temperature is 27° C, ?

Linear Expansion of Solids. A solid expands when heated,

and the increase in length of a substance in the form of a bar is

approximately proportional to the original length of the bar and to

the change in temperature, provided that the change in temperature

is small.

The coefficient of lineai' expansion of a body is the ratio of the

increase in length per degree rise in temperature to the length of

the body at 0° C.

If k represents the coefficient of linear expansion of a bar the

length of which at 0° C. is represented by 4 and the length of

which at tx° C. is represented by /i, we have

/i = /o + hkh = 4 (1 + ^^i)-

If the length of the bar at #2° C. is represented by 4, we have

Hence, from the relations above, we have the following proportion

:

/, _ 1 + kh

Ur 1 -Vkt^'
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21. An iron steam pipe is 75 feet in length at 0° C. What does its

length become when steam at a temperature of 112° C. is passed through it,

provided that the coefficient of linear expansion of iron is .000012 ?

22. The distance between two graduations on a brass bar is exactly one

meter at 25° C. What is the distance between the graduations at 60° C,
provided that the coefficient of linear expansion of brass is .000018 ?

23. A lightning rod which is made of copper is 40 feet in length when

at a temperature of 0° C. Find the length of the rod when the tempera-

ture is 30° C, provided that the coefficient of linear expansion of copper

is .000017.

24. What allowance should be made for expansion in a 1700-foot span of

a steel bridge, assuming that the highest summer temperature is 40° C. and

the lowest winter temperature is 20° C, provided that the coefficient of

linear expansion of steel is .00001 1 ?

25. If a steel rule is exactly one foot in length at a temperature of 0° C,
find the error in the rule, expressed as a fraction of* an inch, at a tem-

perature at 20° C, provided that the coefficient of linear expansion of steel

is .000011.

III. Variation

27. One variable number or quantity is said to be a function

of a second if a change in the value of the second produces in general

a change in the value of the first. (See also Chap. IX. § 1.)

If the values of two variables are so related that the value of the

first variable is regarded as depending upon the value which may

be assigned to the second variable, then the first is called the

dependent variable and the second the independent variable.

E. g. If the values of x and y be restricted to satisfy the conditional

equation, x = y -{• 7, the value of either variable depends upon the value

which may be assigned to the other.

If y be selected as the independent variable, then by assigning succes-

sively the values 0, 1, 2, 3, 4, etc., to y, the dependent variable x will assume

successively the values 7, 8, 9, 10, 11, etc.

One Independent Variable

28. Two variable numbers or quantities are said to vary directly

one as the other, if when the value of one is changed the value of

the other is changed also, and in the same ratio.

E. g. The distance travelled in an hour by a person walking uniformly

varies directly as the rate.

39
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29. The symbol of direct variation, qc, (which is read "varies

directly as," or simply "varies as"), when placed between two

variables denotes that their ratio is a constant number.

E.g. Representing some constant number by c, we may from a; oc y,

obtain - = c.

y

30. As a result of the definition above, we have the following

Fuudaniental Principle : 1/ the value of x depends on the value

of y and y alone in such a way that if (ic, y) and (a;i, y^ repi^e-

sent two pairs of corresponding values^ and if for every two stick

pairs we have x : Xi = y : yi, then it follows that x is a constant

multiple of y.

For, if - = ^, (1)
xi yx \^

it follows that ?=^. (2)
y yi

If we let Xj an<l y^ denote any particular pair of corresponding values of

X and y, while x and y denote any other pair of corresponding values, it

appears that, if the ratio of all pairs of values are equal to the ratio of the •

same pair, x^ and
j/i,

as in (2), we may denote the value of the ratio of this

particular pair chosen for reference by some constant, c.

Hence (2) becomes xjy = c (3), ot x = cy (4), in which c denotes some

constant.

31. Since the ratio of any pair of corresponding values, x and y,

is equal to the ratio of any other pair of corresponding values, it

follows that any two pairs of corresponding values may be used to
,

form a proportion.

Accordingly x ^ y \& often read, "a; is proportional to y^
32. From x = cy, it follows that the value of the constant c may

be obtained, provided that the value of x corresponding to any

specified value of y is known.

Ex. 1. \i X (X. y and a; = 6 when y = 3, find x when y = 13.

From X ac y we obtain the conditional equation x = cy, in which c de-

notes some constant.

Substituting 6 and 3 for x and y respectively, we obtain

6 = c-3 or c = 2. Hence x = 2y.

Accordingly, when y = 13, we have x = 2 • 13 or 26.
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33. One variable number or quaatity is said to vary inversely

as a second, or to be inversely 'proportional to a second^ when the

first number varies as the reciprocal of the second.

We may indicate that x varies inversely as 3/, or is inversely pro-

portional to ?/, by writing a; « - •

1 X . .

From the notation aj a - we have -r- = c, in which c denotes
y 1

y
some constant. Hence xy=-c.

E. g. If eight men can do a given amount of work in 24 hours, hy reduc-

ing the number of men to four, the time required to do the same work

would be increased to 48 houra ; two men would require 96 hours, and one

man alone 192 hours.

It may be seen that the products 8 x 24, 4 x 48, 2 x 96, and 1 x 192,

are all equal.

Two or More Independent Variables

34. One variable number or quantity is said to vary as two
others jointly, or to be proportional to two others jointly^ if it

varies as the product of the other two.

We may indicate that x varies as y and z jointly by writing

X oc yz, from which it follows that — = c, in which c denotes a
yz

constant.

E. g. The distance passed over by a body moving uniformly is propor-

tional both to the rate and the time.

35. One variable number or quantity is said to vary directly

as a second and inversely as a third if it varies directly as the

second and inversely as the third jointly.

We may indicate that x varies directly as y and inversely as z by

writing x ^ -t from which we obtain — = c, in which c denotes
^ z y

z
x^

some constant. Accordingly ~ = c.

E. g. The time required to complete a journey varies directly as the

distance and inversely as the rate.
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36. From the definitions above we obtain directly the following

General Principles

In the proofs of the following principles, a;, y^ z^ etc., represent

variables, and c, Ci, etc., represent constants.

(i.) Ifx<x. y and y ^ Zj then ic ^ z.

For, i{x<x y then - = c, and if y cc z, then - = Ci.

y z

Therefore - x - = cci, or - = cci. Hence, x ^ z.
y z

'

z
(ii.) If ac c^ z and y oc tf, then xy a zw.

For, \ix ^ Zy then 7 = f, and if ?/ « ?^;, then — = ci.

Therefore, - X — = Wi, or -^ = cci : that is, xy oc ;2;2^.

;3 W ZW ^

(iii.) If oc cc yz, then x/y oc s, anrf x/z oc //.

For, if a; oc yz^ then — = c.

a?

X ~~ 11 11

Hence '-^ = c, or — = c : that is, xl y oc z.

Similarly xl z ^ y.

(iv.) If X ^ z and y oc «, «/*c» x -{- y ct: z and x-y ^ z.

X Ii

For, if a; oc ;:;, then - = c, and if ;y
oc 5, then ~ = c.

Therefore - + ^ = c + Cj.

2;

X
Also, -^ = c — Ci.

;2 Z

That is, ^ = c — Ci.

Hence, x — y ^ z.

That is, ^-±^ = c + ci.
z

Hence, x + y ^ z.

(v.) iy ^^e 'ya/?^^ o/a; depends upon the values of both yand z^ and

on these alone, and ifx oc y vjhen z is constant and x ^ z when y is

constant, then x ^ yz when both y and z vary.

To establish this principle we will suppose that (a^i, yi, Zi),

(x, yo, Zi), and (xo, yz, -2) represent three sets of corresponding

values of the variables x, y, and ;::. These values are such that in

passing from the first set to the second set the value of z, repre-
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sented by zi, remains constant, and in passing from the second set

to the third set the value of ^, represented by 1/2, remains constant.

Then from (xi, 1/1, zi) and (x, 1/2, zi), since Zi remains constant,

we have, _i=r^. (1)

Also from (x, 1/2, zi) and (o^, 1/2, Z2), since 2/2 remains constant,

we have, _ = ^

.

(2)
Xo Z2 ^ ^

Accordingly, multiplying together the corresponding members of

(1) and (2), we have
ici _ yxZx

^

X2 yiZ2

Hence, =
y\Z\ y2Z2

Therefore the corresponding values of {x^, y^, z^ and (a^, y^^ Z2)

are proportional ; that is, x<xyz.

The principle may be shown to apply when x depends for its

value upon the values of three or more variables, y^ z, w, • - - .

Ex. 2. If X QC y and a; = 20 when y = 4, find x when y = 7.

If X cc y we may assume x = cy, (I), in which c is a constant. Since

this equation is satisfied when a; = 20 and y = 4, we have 20 = 4 c. There-

fore c = 5.

To find X when y = 7, we may substitute 5 for c and 7 for y in equation

(1), and obtain x = 36.

Ex. 3. If w varies as x and y jointly, and w = 42 when x = 2 and y = 3,

find w when x = 4 and y = 6.

From the given conditions we may assume that iv = cxy, (1) in which c

denotes some constant.

Substituting the given values for w, x and y in (1), we find that c = 7.

We may substitute 7, 4, and 5 for c, x, and y, respectively, and obtain

w = 140.

Exercise XXVL 4

1. If X (X y and when y = 8, x z= 56, find x when y = I.

2. If a; oc l/y and a: = 6 when y = 2, find x when ^ = 9.

3. If a; oc l/y and a; = 1 /2 when y = 16, find y when a: = 2.

4. If X varies jointly as y and z, and a: = 24 when y = 4 and s = 2, find

x when ^ = 5 and 2! = 3.
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5. If X varies directly as y and inversely as s, and a: = 22 when t/ = 1

1

and 2 = 7, find x when y = 36 and 2 = 9.

6. Find x when y = 3, if a: oc \/y^ and a: = 9 when y = 2.

7. Find y when x = 15 and ty = 3, if 2/ varies as x and ly jointly, and

y = 1 when x = 12 and «? = 1 , 8.

8. If a; oc y, show that ax x ay when a is either a constant or a

variable.

9. Ifx cc l/y and y cc l/z show that x cc z.

The area of a circle varies as the square of its diameter.

10. If the area of a circle the radius of which is 14 feet is 616 square

feet, find the area of a circle the radius of which is 18 feet.

11. Show that the area of a circle, the diameter of which is 10 inches,

is equal to the sum of the areas of two circles, the diameters of which are

8 inches and 6 inches respectively.

12. The volume of a sphere varies as the cube of its radius, and the

volume of a sphere of which the radius is 3 inches is 113y cubic inches.

Find the volume of a sphere the radius of which is 5 inches.

13. Prove that the sum of the volumes of three spheres, the radii of

which are 3, 4, and 5 inches respectively, is equivalent to the volume of a

sphere the radius of which is 6 inches.

Problems in Physics

It has been found by experiment that the distance passed over

by a falling body, moving freely and receiving no initial impulse,

varies directly as the square of the time.

14. If a body falls 16 feet in 1 second, how far will it fall in 8 seconds ?

15. A stone is dropped from the top of a cliff and strikes the bottom of

the cliff in 3^ seconds, nearly. What is the approximate height of the

cliff?

16. From what height must a body fall from a state of rest to reach the

earth after 10 seconds ?

It has been found by experiment that the velocity acquired by a

body falling freely from a state of rest varies directly as the time.

17. If the velocity of a falling body is 180 feet per second at the end of

5 seconds, what will be its velocity at the end of 9 seconds ?

18. If the velocity of a falling body is 128 feet per second at the end of

4 seconds, what will be its velocity at the end of 7 seconds ?

The intensity of illumination from a source of light varies in-

versely as the square of the distance from the source.
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19. A candle is placed at a distance of 1 foot from a cardboard screen,

and a second candle is placed at a distance of 7 feet from the screen on the

other side. Compare the intensity of illumination on the two sides of the

screen.

20. A gas jet which is 16 feet from a photometer, and a candle which is

4 feet from the photometer, are found to illuminate it equally. Compare
the intensity of lij,dit from the two sources.

21. A "standard" 16-caiidle-power lamp, when placed at a distance of

51 centimeters from a screen, is found to illuminate it with the same inten-

sity as an incandescent light placed at a distance of 49 centimeters from

the screen. What is the candle power of the incandescent light ?

When an elastic body is stretched, it is found that within the

limits of perfect elasticity the elongations of the body are directly

proportional to the forces producing them.

The elongation E produced by a stretching force F upon a

substance in the form of a rod of diameter D and length X, varies

directly as the force F, directly as the length Z, and inversely

as the cross section, — that is, inversely as the square of the

diameter D.
FL
D'

22. If a certain wire, 1/10 of an inch in diameter and 36 inches in

length, stretches 3 inches under a force of 18 lbs., how much will it stretch

under a force of 24 lbs ?

23. A certain wire, the diameter of which is 1/10 of an inch and the

length of which is 5 feet, is increased in length 4 inches by a force of 24 lbs.

Find the length of a second wire of the same material and diameter if a

force of 40 lbs. increases it in length by 7 inches.

24. If a wire which is 1/16 of an inch in diameter and 25 feet in length

stretches 3 inches under a force of 15 lbs., how long is a wire the diameter

of which is 1 /20 of an inch, if a force of 40 lbs. produces an increase in

length of 2 inches?

That is, ^« n2

Mental Exercise XXVI. 5. Review

Solve each of the following equations

;

1. (x-Q>y= 16. 4.

2. {x-^y = 4.x', 5.

3. a; + 1 = 9 + ^- 6. --Ty

= 0.

= 0.

= n.
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7. Show that a;' — 1 = 0, if ic — 1 = 0.

8. Show that a;' — 4 = 0, if a; — 2 = 0.

9. Show that a;- — 9 = 0, if a + 3 = 0.

10. Show that a^ — ab + b"" = 0, if a + b = 0.

Simplify each of the following:

Va-^ b 13. (3 + a/^)(3 - ^/^^).

14. (2 + V^){2 -V^.
11

12.

V« + Vb
15. (2\/-3 - 3a/^2^

16. (5V^^ - 2a/^^)^

Distinguish between

17. — 2 ~ V^±_ and — 4 ~ aA^-
.18. —5-7- V— 25 and — 25 -=- V— 5.

19. Simplify V250^'; \w^2> V^^^^-

Express the following as entire surds:

20. 2\^. 22. 3a;v^

23. I VSaa. 25. ^^8c.
2c

21. a^^''.

Simplify and express with positive exponents

:

Solve each of the following equations

:

31. x^ = 9.

30. a;^=:4. ^'> -^

29 ^-^
^^-

3
~

x'

32. a;^ = 1.

33. x^ = -h

34.^=1.

35. Rationalize the denominators of —iz and —=

V a + 1 V a^ — 1

From each of the following conditional equations find the ratio

ofxtoy:

36. 2a; = 3y. 37. 5a; = 2y. 38. 7i/ = 4.x.
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S9.Sx = 2/. 40. ic = |. 4:l.x = — y.
o 11

Distinguish between

42.
I
+ - and a^ + b^. 43. (x - i/y and a;"^ - 2/-K

Find the value of each of the following expressions :

1

50. 3-2-22.

51. 2-2.

«.^. «(!)-. (I)--..-,..

53. 2-2 - 21

54. 3-^-3.

55. (V- 2)« + (-V2)\

Show that

56. 12^ • 82 = 2^2 . 38. 57 g8 . jg5 ^ 28 .
3i».

Simplify each of the following

:

V

58. a^-ira''. 65. (« -^ a")".

59. x^ -^ ici -

.

7 a^»

60. a°f^ -I
5«*» + 26<^

61. ^. 67

62. 4_.

63. -37=^- 69. {Va - V^^Y

64. -jj:^' 70. J-

Find the mean proportional between

71. am^ and am. 72. 6'c and bd^.
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Simplify the following ratios :

73. 2/3 : 4/5. 77. ajb : c/6.

74. 3/7 : 3/8. 78. xjy : z/x.

75. 5/6 : 11/6. 79. a/x : b/x.

76. 3/4 : 4/3. 80. m/n : n/q.

Express the following proportions in the least numbers possible

without altering the terms containing x :

^^•io-*
*'^- 10-75 '^^•eo-io

15 x 36 24 00 o

83.?2 = !5. 87.1« = i?. 91. g = ^.
4 a; 15 jc 24 aj

^^•42~6' ^^•21~60 ^^•80"24
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CHAPTER XXVII

THE PROGRESSIONS

1. A SUCCESSION of numbers, each of which is formed according

to some definite law, is called a sequence.

The successive numbers are called the terms of the sequence.

2. It should be understood that we cannot take numbers at

random to form a sequence.

There must be some definite relation between the numbers chosen

such that when the number of any particular term of the sequence

is known, its value can be computed.

Hence it is possible to determine whether or not any specified

number occurs in a given seciuence.

E.g. 1,2,3,4, , w,

1,4,9, 16, ,n^,

1/2,2/3,3/4, ,n/(n+l),

3. A sequence of numbers, ai, a^, aa, a^y , n^„, , is

said to be given or known if the value of any specified term is

known or can be found when the position of the term in the

sequence is given.

4. The law governing the formation of the successive terms may
be such that any term after the first may be obtained by performing

some definite operation upon the term which immediately precedes it,

E. g. In the sequence 5, 8, 11, 14, , each term is obtained by

adding 3 to the next preceding term.

In the sequence 2, 6, 18, 54, 162, , each term is obtained by

multiplying by 3 the term which immediately precedes it.

5. The law may be such that any term may be found when its

location in the sequence is specified.

E. g. In the sequence 1, 4, 9, 16, ,n^ , the seventh term is

72 = 49 ; the tenth term is 10^ = 100 : etc.
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III the sequence i, f , f, t, , -—r » , the ninth term is

9 9'

= — ; the twentieth term is |^, etc.

6. A sequence is said to be finite if it contains a finite or limited

number of terms, and infinite if it contains an infinite or unlimited

number of terms.

I. Arithmetic Progression

7 An arithmetic prog^ression (A. P.) is a sequence of numbers

each of which, after the first, may be obtained by adding to the

number which precedes it in the sequence a definite number called

the common difference.

E. g. In the A. P. 4, 6, 8, 10, 12, 14, the common difference is 2
;

In — 22, — 12, — 2, 8, 18, the common tlifference is 10
;

In 10, 7, 4, 1,-2, — 5, — 8, the common difference is — 3.

8. An arithmetic progression is said to be increasing or de-

creasing according as the common difference is positive or negative.

9. In order that the terms of the sequence, fl^i, ^2, «3, «*,
,

a„ shall form an arithmetic progression, it is necessary that

ch — ai = cis — 02 = = a„ — «„ _ 1.

10. If (ii represents the first term, d the common difference (that

is, the difference between every two consecutive terms), and n the

number of the place of any specified term in the progression, any

arithmetic progression may be represented by the general expression

ai, ai -{- dj ai + 2 dj ai -[- S dj , ai + (n — l)d.

11. The nth term. Observe that, since each term of the arith-

metic progression after the first is obtained by adding d to the pre-

ceding term, the coefficient of d in any specified term is always less

by unity than the number of the term.

Accordingly, in the nth. term, ai + (n — 1) d, the coefficient of

d is n — 1,

Representing the nth term by a„, we have the formula

Ex. 1. Find the ninth term, Og, of an A. P. the first term of which is

5 and common difference 3.
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Substituting 5, 9, and 3 for ai, ?i, and d respectively, in the formula

above, we may write: ctg = 5 + (9 — 1) 3 = 29.

Ex. 2. Find the tenth term of the A. P. 11, 7, 3, - 1,

We have a^ = 11, ?i = 10, d = — 4.

Therefore, a^o = 11 + (10 - 1)(- 4) = - 25.

12. Since the formula <a!„ = ai + (n — \)d contains four quantities,

a„, «!, n, and d, it follows that if any three of them are known the

fourth may be found.

Ex. 3. Write the A. P. the first and fourteenth terms of which are 9 and

87 respectively.

We have a^ = 9, a{^ = 87, 7i = 14.

Hence, substituting in a„ = aj + (u — l)tZ, we have 87 = 9 + I3d.

Hence d = 6.

Hence, the required A. P. is 9, 15, 21, 27, , 81, 87.

13. From the principles relating to the solution of simultaneous

linear equations, it follows that, if the values of any two of the

quantites «„, (ti, w, or d be unknown, two conditional equations

are necessary to determine their values.

Hence, an arithmetic progression may be written if any two of its

terms are given.

Ex. 4. Write the A. P. the fourth and thirteenth terras of which are

29 and 92 respectively.

We have a^ = 29, and Ojg = 92. Hence, when n = 1, the terra a„

represents 29 ; and when n = 13, tiie term «„ represents 92,

Substituting these values in the formula a„ = «i + (w — 1 )<i,

we have 29 = flj + ( 4 - l)d (1),

and also 92 = a^ + (13 - l)d (2).

Solving (1) and (2), we find that a^ — 8 and d = l.

Accordingly the required A. P. is 8, 15, 22, 29, 36, , 85, 92.

The required arithmetic progression may also l)e obtained by the follow-

ing method

:

Since the thirteenth term of the progression is the tenth term of the pro-

gression of which the given fourth term, 29, is the first term, we may

reduce our problem to that of finding an A. P. the first term of which is

29 and the tenth term of which is 92. After determining this progression

we may write the three necessary terms preceding the term 29, now

considered as a first term.

We have 92 = 29 + 9 d, hence, d=l.
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By writing three terms before the "first term," 29, and nine terms after

29, we obtain the same sequence as above.

Exercise XXVIL 1

1. Find the 12th and loth terms of 2, 6, 10,

2. Find the lOth and IGth terms of 3, 9, 15,

3. Find the 17th and 11th terms of— 8, — 3, 2,

4. Find the 7th and 13th terms of 2/3, 1, 4/3,

5. Find the 20th and 40th terms of 2 / 15, — 1 / 30, — 1/5,

6. Find the 12th and 21st terms of— 4, — 13, — 22,

7. Find the 10th and 37th terms of h h }h •

8. Find the 8th and 13th terms of ^-^^,^^ '^^^,
a a a

9. Find the 1 4th and 1 9th terms of (a — 3), 4 a, (7 « + 3),

10. Find the 17th and 31st terms of (5 a; — 4), (2x — 2), — x,

(-4a: +2),
^

Find the last term in each of the following arithmetic progressions:

11. 4, 8, 12, to 36 terms.

12. 8, 2, — 4, to 93 terms.

13. - 23, -17,-11, to 100 terms.

14. 1, 1.3, 1.6, to 21 terms.

15. (a + 5 b), (a + 3 ^), (« + 6), to 13 terms.

Arithmetic Means

14. If three numbers are in arithmetic progression, the one that

lies between the other two is called the arithmetic mean of these

two.

If a, A, b, be an arithmetic progression, A is called the arithmetic

mean of a and b.

From the A. P. represented by a. A, b, we have by definition

A-a = b-A.

Solving for A, we have A = —-

—

That is, ths arithmetic mean of two numbers is one-half their sum.

E. g. The arithmetic mean of 5 and 17 is 11.

15. All of the terms of an A. P. which lie between two specified

terms are called the arithmetic means of these two terms.
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E. g. Ill the A. P. 2, 3, 4, 5, 6, 7, 8, the five numbers 3, 4, 5, 6, and 7

are called the arithmetic means of 2 and 8.

In the A. P. 2, 3^, 4f , 5|, 6|, 8, the four numbers 3^, 4f, 5f , and 6f are

called the arithmetic means of 2 and 8.

In the A. P. 2, 4, 6, 8, the two numbers 4 and 6 are called the arithmetic

means of 2 and 8.

In the A. P. 2, 5, 8, the single number 5 is called the arithmetic mean
of 2 and 8.

Ex. 1. Insert 11 arithmetic means between 20 and 116.

The given numbers 20 and 116, taken together with 11 arithmetic means,

form an A. P. containing 13 terms.

Hence, using the formula a„ = ai + (n — l)d, by substituting the values

«i3 = 1 16, ttj = 20, and n = 13, we obtain 1 16 = 20 + 12 d. Hence d = 8.

Accordingly the required arithmetic means are

28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108.

16. The student should note the distinction between the arith-

metic mean or average of n numbers, and the n arithmetic means

inserted between two numbers.

E. g. The arithmetic mean or average of the five numbers 2, 6, 15, 50,

67 is (2 + 6 + 15 -}- 50 + 67)/5 = 28, but these numbers do not form an

A. P., and cannot be regarded as being arithmetic means of any two

numbers.

Exercise XXVII. 2

Find the arithmetic mean of

1. 26 and 32.

2. 17 and 11.

3. 8 and 47. w. . , ,a + b

7. Find the thirty arithmetic means of 18 and 142.

8- Find the nineteen arithmetic means of— 27 and 113.

9. Find the seventeen arithmetic means of 25 and 115.

10. Find the eight arithmetic means of 19 and 23.

11. Find the twelve arithmetic means of 2 and 3.

12. Find the fifteen arithmetic means of 2 and 9.

17. A series is the sum (or the limit of the sum) of a succession

of numbers, each formed according to some common law.

The successive numbers are called the terms of the series.
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E. g. If 2, 4, 6, 8, , 2w be a given sequence of numbers, the ex-

pression obtained by writing the sum of the successive terms of the sequence!

is called the series 2 + 4 + 6 + 8 + + 2w.

18. A series is said to be finite or iufinite according as the

number of its tferms is finite or infinite.

19. Although a succession of numbers forming a sequence might

be described as a series of numbers, the word "series," as used in

mathematics, has especial reference to addition.

Accordingly, we speak of the succession or sequence of numbers

«!, a2> «8, «4, y dn) but by writing the sum of these numbers

we obtain the series «i -f ^^2 + ^3 + «4 + + ctn-

20. An arithmetic series is a series the terms of which are in

arithmetic progression.

Sum of the Terms of an Arithmetic Progression

21. The sum *y„ of the terms of an arithmetic progression of n

terms may be found as follows :

Sn= fli + (ai + fiO + («i + 2^+ +K - 2 fi?) + («« - 0+<2„,

>S;= «, + («, - tQ -f (a» - 2 (/)+ + (ai + 2 qT) + («i + flQ+«!

.

By Addition

2 AS;=(ai+tf„)+ («!+«„)+(«!+«„)+ +(«l+«„)+ («l+«»)+ («l+«n)

= w(ai + a^.

Hence

Sn = |(«i + any (1)

Expressing the last term, «„, in terms of ^i, n, and d, by means of

the formula a„ = «i + (n — l)d, the expression above may be

written

Sn = ^[«i + ^1 + (n - l)d].

Or, Sn = '^[2ai + (n-l)d]. (2)

Ex. 1. Find the sum of 46 terms of the A. P. 11, 18, 25,

Substituting the. values n = 46, a^ = II, and c? = 7, in the formula
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we obtain S^^ = ^[2 • 11 + 45 • 7] = V751.

Ex. 2. Find the sum of the terms of the arithmetic series

5 + 8 + 11 + +95.

We have a^ = 5, d = 3, and On = 95.

To use either of the formulas for S„, it is necessary to know the value of w,

which may be found by means of the formula a„ = rtj + (w — l)d.

By substitution, 95 = 5 + (>i — 1)3. Hence n = 3l.

71

Substituting in the formula, <S'„ = -(a^ + «„),

we have S^^ = ^^(5 + 95) = 1560.

22. The five numbers represented by a„, «i, d, n, and >S'„ are called

the elements of an arithmetic progrression.

Ex.3. Write the A. P., having given the elements /Sj^ = 510 and

«io = 87.

Substituting 510 for /S,„ 87 for a„ and 10 for n in Sn = -x (ai + a„), we

obtain, 510 = 5 (aj + 87). Hence a^ = 15.

To write the required A. P. it is necessary to know d. Using the

formula a„ = a^ + (w — l)dj we find that d = &.

Hence the required A. P. is 15, 23, 31, 39, , 87.

Ex. 4. How many terms of the arithmetic series — 16 — 12 — 8 — 4

+ + 4 + must Ixi taken to obtain the sum 72 ?

Substituting 72 for ;S„, — 16 for a^, and 4 for c? in /S„ = - [2 aj + (w — l)d]y

we obtain 72 = ^[- 32 + (n - 1)4].

Or, 72 = -16?i + 2w2-2w.

Solving this quadratic equation for w, we obtain n = 12, and n = — 3.

It will be found that the sum of the following twelve terms is 72

:

- 16, - 12, -8,-4, 0, 4, 8, 12, 16, 20, 24, 28.

It may be observed that if, beginning with the last term 28, we count

backward three terms, the sum is 72.

We have thus an interpretation for the negative value of n.

Ex. 5. How many terms of the A. P. 39, 34, 29, , must be taken

in order that the sum shall be 168 ?

Substituting the values a^ = 39, (i = — 5, and Sn = 168, in the formula

,S'^ =
o [2 «i + (»* — I)^]» we obtain 336 = 78n — 5n^ -i- 6n, the solutions

of which are found to be w = 7, and n = 9f

.

40
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It will be found that the sum of seven terms of the given arithmetic

progression is 168.

The fractional value n = 9f may be interpreted as meaning that the sum
168 is greater than the sum of nine terms and less than the sum of ten

terms of the series.

In this particular arithmetic progression it will be found that 168 is the

sum of nine terms increased by 3/5 of the common difference.

Exercise XXVII. 3

Find the sum of the terms of each of the following arithmetic

progressions :

1. 3, 8, 13, ,33. 5. i f , 1, , 39f •

2. 20, 18, 16, ,0. 6. I, 0, - ^, ,
- 24^.

3. 25, 23, 21, ,
- 15. 7. 2/3, 14/15, 6/5, ,6.

4. 19, 32, 45, , 188. 8. 7/12, 7/6, 7/4, • , 7.

9. 6, 10, 14, to 31 terms.

10. - 23, — 27,-31, to 19 tenns.

11. — 17, — 6, 5, to 13 terms.

12. — 32, 23, 78, to 15 terms.

13. 7/2, 9/2, 11/2, to 16 terms.

14. 1/2, 0, - 1/2, to 25 terms.

15. 3, 4^, 6, to 83 terms.

16. J > > to a terms.
a a a

11. (c -\- d), {- c + 2 d), (- 3c -\- Sd), to 60 terms.

18. Find the sum of all of the even numbers from 20 to 80 in-

clusive.

19. If ai = 22, d=2, and >S; = 820, find n.

20. Find c?, knowing that «i = 9 and an = 29.

21. If >Su = 66 and «„ = 23, find ««.

22. If r(i = 16 and d = — 5, find the terms the values of which

lie between — 70 and —100.

23. Find «2o, having given «6 = 2 and a^ = — 2.

24. Find the sum of the terms the values of which lie between

and 50 of the series the fourth term of which is 13 and the common
difference of which is — 7.



HARMONIC PROGRESSION 627

25. The product of three numbers in arithmetic progression is 48,

and the first number is three times the last. Find the numbers.

26. Of three numbers which are in arithmetic progression the

third is eleven times the first. Find the numbers if the sum of the

three numbers is equal to the eighteenth term of the arithmetic

progression — 18, — 16, — 14,

27. The sum of three numbers in arithmetic progression is 30

and the sum of their squares is 350. Find the numbers.

28. Find the number of terms in the arithmetic progression

1, 9, 17, , the sum of which approximates most closely to

1000.

29. Find the sum of all of the multiples of 7 which lie between

zero and 200.

30. Show that the sum of the first n odd numbers is equal to n\

Problems in Physics

31. A car starting from a state of rest moves down an inclined track,

passing over distances of 1 foot the first second, 3 feet the second second,

5 feet the third second, etc. Find the distance passed over in one minute.

32. A ball starting from a state of rest rolls down an inclined hoard,

passing over distances of 5 inches, 15 inches, 25 inches, etc., in successive

seconds. Find the number of seconds required for the ball to pass over

a distance of 15 feet.

33. If a ball, starting up an inclined plane, passes over 40 feet the first

second, 36 feet the second secoiul, 32 feet the third second, etc., find the

number of seconds required by the ball to pass over a distance of 196 feet.

34. It is found that when a ball is thrown vertically upward the force of

gravity diminislies the distance passed over in successive seconds by 32 feet

per second (nearly). Find the distance passed over in 4 seconds by a ball

which, when thrown vertically upward, rises to a height of 128 feet during

the first second.

35. If the force of gravity increases the space passed over by a faUing

body in successive seconds by 32 feet per second, find the distance passed

over in 6 seconds by a falling body which, when thrown' downward, passes

over a distance of 24 feet during the first second.

11. Harmonic Progression

23. A liarmonic progression (IT. P.) is a sequence of numbers

the reciprocals of which are in arithmetic progression.
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A harmonic series is a series of numbers the terms of which

are in harmonic progression.

Principle : If three numbers, represented by «, ft, and c, are in

harmonic progression, it follows that a : c = a — b : b — c. (l)

For, if a, b, c are in harmonic progression, it follows by definition

that -, T, -, is an arithmetic progression.
a c

Hence, we have
1

b~
1

a
_ 1

c

1

b

a --b _b-- c
Hence, , — ,

ab be

Or c{a — b) = a(b — c).

That is, a: c = a — b :b — c,

24. The numbers of any sequence are in harmonic progression

if every three consecutive numbers are in harmonic progression.

25. When three numbers form a harmonic progression the

middle number is called the harmonic mean of the other two.

E. g. Th(i harmonic mean of 1/2 and 1/4 is 1/3.

26. The harmonic mean of two numbers, represented by a and 6,

may be found as follows :

Representing the harmonic mean by H, we have the harmonic

progression, a, H, b.

Accordingly, -, 7^, 7, must be an arithmetic progression.
a H h

Hence H-a^b~H'

Solving for H, we obtain H = •

Ex. 1. Find the harmonic mean of 4 and 12.

Substituting 4 for a and 12 for h in the formula H = 2 ab / (a + h), we

obtain 6.

27. In any harmonic progression all of the terms lying between

any two specified terms are called the harmonic means of these

two terms.

E. g. 3/7, 3/8, 1/3, 3/10, 3/11 are harmonic means of 1/2 and 1/4.
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28. Problems in harmonic progression are generally solved by-

obtaining the reciprocals of the terms and making use of the proper-

ties of the resulting arithmetic progression.

Ex. 2. Find the 12th term of the harmonic progression 1/4, 1/7, 1/10,

1/13, The reciprocals of the terms of the given harmonic pro-

gression form the arithmetic progression, 4, 7, 10, 13, , the 12th term

of which is found to be 37.

Accordingly, the required term of the given harmonic progression is 1/37.

29. There is no general formula for the sum of the terms of a

harmonic progression.

Exercise XXVII. 4

1. Find the 8th term of 1/2, 1/3, 1/4,

2. Find the 6th term of 1/50, 1/65, 1/80,

8. Find the 17th term of 2, 3/2, 6/5,

4. Find the 4th term of the H. P. the first term of which is 1/51

and the 13th term of which is 1/3.

5. Find the 17th and 18th terms of the H. P. the second and

sixth terms of which are 1/11 and 1/27 respectively.

6. Find the H. P. in which the 6th term is 1/7 and the 11th

term 1/13.

7. Find the H. P. in which the 37th term is 1/74 and the 13th

term is 1/26.

8. Find the H. P. in which the 9th term is 1/4 and the 15th term

is — 1/14.

9. Find the H. P. in which the third term is 5/6 and the

sixth term is 1/3.

10. The first two terms in a harmonic progression are 14 and 7.

Find the number of terms which lie between — 7 and — 2.

11. Find the harmonic mean of 3 and 9.

12. Find the harmonic mean of 1/7 and 1/8.

13. Find the harmonic mean of 1/20 and 1/30.

14. Find the two harmonic means of 3 and 10.

15. Insert 4 harmonic means between 5 and 15.

16. Insert 3 harmonic means between 1/4 and 1/324.

17. Insert 5 harmonic means between 1/7 and 1/22.

18. Insert 7 harmonic means between 1/9 and 1/65.
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19. Find two numbers the sum of which is 20 and the harmonic

mean of which is 15/2.

20. The difference between the arithmetic and harmonic means

of two numbers is 99/10, and one of the numbers is four times the

other. Find the numbers.

21. IfX -{
1/, y -\- z and z + x form a harmonic progression, show

that i/'\ x^ and z^ form an arithmetic progression.

III. Geometric Progression

30. A geometric progression (G. P.) is a sequence of numbers

each of which, after the first, may be obtained by multiplying the

number which precedes it in the sequence by some particular

multiplier.

31. From this definition it follows that the quotient obtained by

dividing any term in the progression, after the first, by the one

which immediately precedes it, is the same for every two consecu-

tive terms. The quotient thus obtained is called the common
ratio and is usually denoted by ?\

E. g. In the G. P. 2, 4, 8, 16, 32, the common ratio is 2.

In 81, 27, 9, 3, 1, 1 /3, 1/9, the common ratio is 1/3.

In 100, - 20, 4, - 4 /5, 4/ 25, - 4/125, the common ratio is - 1 /5.

32. If rtTi represents the first term, r the common ratio, and n the

number of the place of any specified term in the progression, any

geometric progression may be represented by the general expression

«i, (fir, air\ «l^^ air\ , air"'^.

33. Observe that in any specified term the exponent of the power

to which r is raised is less by unity than the number of the term.

E. g. r^ appears in the fourth term ; r® in the tenth term, etc.

34. The wtli term. It appears that a particular term, repre-

sented by «„, may be calculated by means of the formula

That is, in any geometric j^rogresdon any term can befound by

multiplying the first term by the common ratio raised to a power the

exponent of ujhich is equal to a number which is less by unity than the

number of the required term.
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Ex. 1. Find the eighth term of the geometric progression 3, 6, 12,

The common ratio is obtained by dividing any one of the terms by the

term immediately preceding it, for example 6-^3 = 2.

Substituting 8 for w, 3 for a^, and 2 for r in the formula a„ = «ir«~i,

we obtain ag = 3 • 2' = 384.

Ex. 2. Find a^, having given a^ = 12288 and a^ = 768.

Using the formula a„ = «i?
«~i we obtain two conditional equations in

which ttj and r may be regarded as unknowns.

12288 = air«, (1) and 768 = a^r*. (2)

Dividing the members of equation (1) by the corresponding members of

equation (2), we obtain 16 = r^. Hence r = ± 4.

Substituting for r in (2), we obtain a^ = 3.

Substituting in rtg = AjT, we obtain the required second term.

a2 = S (±4) = ± 12.

35. A geometric progression is said to be finite or infinite

according as the number of its terms is finite or infinite.

E. g. 1, 3, 9, 27, 81, is a finite G. P. the common ratio of which is 3.

1, 3, 9, 27, 81, , is an infinite G. P. the common ratio of which is 3.

81, 27, 9, 3, 1, 1/3, 1 /9, 1/27, , is an infinite G. P. the common
ratio of which is 1 /3.

36. A geometric progression is said to be increasing or de-

creasinjf according as its successive terms increase or decrease.

The successive terms of a geometric progression increase or de-

crease according as the common ratio is greater than or less than

unity.

37. Representing the first term of a geometric progression by «i

and the common ratio by r it may be seen that the following general

expression may be used to represent any geometric progression :

The values of the different terms depend entirely upon the values

which may be assigned to the letters a^ and r, considered as inde-

pendent variables.

Hence, in general, a geometric progression is completely deter-

mined when two independent conditions affecting the values of its

terms are given.
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Exercise XXVIL 5

Find the terms specified in each of the following geometric

progressions :

1. The 8th and 9th terms of 2, 4, 8, 16,

2. The 9th and 11th terms of 20, 10, 5,

3. The 6th and 10th terms of 1/2, 1/4, 1/8,

4. The 6th and 12th terms of 1, 1/3, 1/9,

5. The 5th and 13th terms of 3, — 6, 12,

6. The 6th and 14th terms of 100, 50, 25,

7. The 10th and 20th terms of .1, .01, .001,

8. The 15th and 30th terms of m, m% m\
9. The 12th and 40th terms of 1/a*, l/«*, l/a^

10. The 19th and 51st terms of 1, 1/c, l/c^

11. The 11th and 14th terms of a;, — i/y y^jx,

12. The cth and 6th terms oiajb, ajbc, a/bc^

Geometric Means

38. When three numbers are in geometric progression, the middle

number is called the geometric mean of the other two.

E. g. In the geometric progression 2, 4, 8, the geometric mean of 2 and

8 is 4; in the geometric progression 1,-6, 36, the geometric mean of

1 and 36 is — 6.

39. The geometric mean of any two numbers, a and 6, may be

found as follows :

Denoting the geometric mean of a and b by G, we have the geometric

progression a, Gy b.

By the definition of a G. P. we have G -^ a = b -^ G.

Hence, G = ± \/ah.

That is, the geometric mean of two numbers is the sqaare root of

their product.

It should be observed that, since the common ratio of a geometric progres-

sion may be either positive or negative, the successive terms of a geometric

progression may be either all positive or all negative, or alternately positive

and negative. Accordingly, the double sign ± should be employed before the

radical sign in the expression for the geometric mean G^ = ± ^ab,

(Compare with Chapter XXVI. § 24 (ii.).)
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Ex. 1. Find the jjeoraetric mean of 9 and 16.

Using the formula G = ± ^ab, we have G = ± \/9 • 16 = ± 12.

40. In any geometric progression all of the terms lying between

any two specified terms are called the geometric means of these

two terms.

Ex. 2. Find the four geometric means of 1/32 and 32.

Taken together with the four geometric means, 1/32 and 32 may be

regarded as the first and sixth terms, respectively, of a geometric progression.

Substituting 1/32 for a^ and 32 for a^ in the formula a,t = a^r^'^

we have • 32 = ^^ r^

or r« = 32 • 32

Hence r = 4.

Writing the geometric progression the first term of which is 1/32 and

c(mimon ratio 4, we obtain 1/32, 1/8, 1/2, 2, 8, 32.

Accordingly, the required geometric means are 1/8, 1/2, 2 and 8.

41. Representing the arithmetic mean of two numbers, a and b, by

Af the geometric mean by (?, and the harmonic mean by H^ we have

^=^*. (1)

O = Va6, (2)

^=^. (3)

From (1) and (2), A-G = ^-^-^ - v^ (4)
it

a — 2-v/a& + h

2
(5)

(6)

The expression {^/a — a/^)^/2 is positive if a and b are real num-

bers and a ^ b.

It follows that A is greater than G for real values of a and h

which are such that a i^ b.
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From (1) and (3),
2 a + 6

From (2),

From (9) and (8),

G' = ah.

G' = A'ff.

Hence,
A G
G~ H

(7)

(8)

(9)

(10)

(11)

That is, the geometric mexin of any two numbers is also the geometric

mean of the arithmetic and harmonic mean^ of the same numbers.

Since A>G\t follows, from (11), that G > H.

Hence^ for any positive numbers^ A > G > II.

E. «;. If a = 1 and b - 49, we have ^ = 25, (? = 7, and H = l^.

It should be observed that 25 > 7 > 1||.

Exercise XXVIL 6

Find the geometric mean of

:

1. 4 and 16. 5. 2 and 32.

2. 4 and 25. 6. 2 and 50.

3. 100 and 1. 7. 1/2 and 32.

4. 20 and 5. 8. 1/2 and 1/8.

9. Find the two geometric means of — 8 and 64.

10. Find the two geometric means of 3 and 192.

11. Find the two geometric means of 1/20 and 25/4.

12. Find three geometric means of 27/8 and 2/3.

13. Find three geometric means of 6 and 486.

14. Find the four geometric means of 1 and 1024.

42. A geometric series is a series of numbers the terms of

which are in geometric progression.

43. A geometric series is said to be increasing or decreasing

according as its terms form an increasing or decreasing geometric

progression.

Sum of the Terms of a Geometric Progression

44. We can obtain an expression for the sum, Sn, of n terms of a

given finite geometric progression, as follows ;
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>Sn =«i +rtir + air^ + air^ + + air"-" +ai?'"-^ (1)

rS^ = ai?- + air^ + ay + + ai?-'"'^ +«ir'^~^+^ir'* (2)

Hence, rSn — S„ = ay — ai. (3)

Or, S,(r - 1) = aiCr** - 1). (4)

Therefore, ^^^^
ai(rH-l)

r — 1 ^ ^

It should be observed that (2) is obtained by multiplying both

members of (1) by r, and (8) results from subtracting the members

of (1) from the corresponding members of (2).

46. When the first term ai and the wth term a,, are given, it is

convenient to employ an alternative form for the sum S„.

This may be obtained as follows :

The second member of the equation S^ = may be

expressed in the form — —^ •

r — 1

That is, ^.^^
^ir"-^i

^

r — 1

The first term ay of the numerator may be transformed as

follows : ay = ray~^ = a,{r.

Hence, we have, 8n = "^ _ • (7)

46. The sum of a finite number of terms of an arithmetic pro-

gression or of a geometric progression may be obtained by adding

the consecutive terms as written.

When a formula is used it is unnecessary to add the terms

separately. Hence, a formula is a labor-saving device.

Ex. 1. Find the sura of 7 terms of the geometric progression 5,

15, 45,
a^Or^ — 1)

Substituting 5 for dj, 3 for r and 7 for n in the formula >S„ = r-\ '

we have ^^ = ^^'"^^ ~
^ = 5465.

47. If r = 1, all the terms of a given geometric progression are

equal, and hence the sum of n terms is w^i.



636 FIRST COURSE IN ALGEBRA

By taking n great enough, the sum noi can be made greater than

any assignable number ; hence it can be made infinitely great.

48. By taking n great enough, the sum of n terms of a geometric

pi'ogression in which r is numerically greater than unity may he

made to exceed any assrignable positive number.

For, it appears from S, = "^^^"^ ~
^ =^ --^ that if r

has a value which is numerically greater than unity, the value of

7-", and accordingly of air^/{r — l), may be made as great as we
please by taking the value of w great enough.

Hence the value of S„ may be made greater than any assignable

number, for r > 1.

49. The values represented by the five quantities an, «i, r, n, and

S^ are called the elements of a geometric progression.

It may be seen that w, representing the number of terms of a

geometric progression, must be a positive integer, while the remain-

ing elements, a„, ai, r, and S^, may be positive or negative, integral

or iractional.

Exercise XXVII. 7

Find the sum of the terms of each of the following progressions :

1. 2, 4, 8, 512.

2. 20, — 10, 5, to 6 terms.

3. 1/2, 1, 2, to 8 terms.

4. 1/2, 1/2^ l/2», to 9 terms.

5. 12, 4, 4/3, to 7 terms.

6. 1/5, 1/5^ l/5«, to 10 terms.

7. 224, - 168, 126, to 5 terms.

8. 6, — 4, 8/3, to 1 1 terms.

9. 15, — 1/3, 1/15, to 6 terms.

10. 2a/3, 6a/6, 36V3, to 8 terms.

Sum of the Terms of an Infinite Decreasing Geometric
Progrcfssion

50. By changing the signs in both numerator and denomi-

nator of the formula for the sum of n terms of a finite geometric

progression.
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'S'„

r —
-1)

1 '

-s,.
_ ^1 a,r-

63T

we obtain
\ — r i — r

We shall for convenience of proof regard «i as being positive.

If 7' has a numerical value less than unity, the absolute value of

aii^ and accordingly of ai/'"/(l — r) will decrease as n increases in

value.

Accordingly, by giving to n a value great enough, we may make

the value of air"/(l — r) as small as we please, but we can never in

this way make the value of the fraction zero.

As the value of the fraction «!/'"/( 1 — r) diminishes, the sum S^

approaches more nearly the value of the first fraction axjil — r),

but it never becomes exactly equal to it, because «ir"/(l — ?') can

never become zero.

We may, by taking n great enough, make the sum become and

remain as nearly equal to ai/(l — r) as we please.

This is expressed by saying " the limit of the sum of an infinite

number of terms of a decreasing geometric progression is «i/(l — r)."

Expressed in symbols, we have: lim>S^oo = . _ .
> which is read,

" the limit of the sum of an infinite number of terms (of a given

geometric progression) is equal to «i/(l — r)."

As an alternative form we have Src — :; , which is read,
1 — r

" the sum of an infinite number of terms (of a given geometric pro-

gression) approaches -

—

— as a limit."

Ex. 1. Find the sum of an infinite number of terms of the decreasing

geometric progression 1, 1/2, 1/4, 1/8,

Substituting the value 1 for aj, and 1/2 for r, in the formula

/S„ = T—^ ' we obtain S^ = 2.
^ \ — r

Ex. 2. Find the sum of an infinite number of terms of 36, — 12, 4,

- 4/3,

We have a^ = 36, r = - 1/3.
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Hence from the formula, S^ =
1 -r

36
we have ^« -

1 + 1/3

Or, S^ = 27.

51. By means of the formula for the sum of an infinite number

of terms of a decreasing geometric progression we may obtain the

ffeneratinjf fractiou of a repeating decimal fraction, that is,

the fraction which gives rise to a repeating decimal fraction if

the numerator is divided by the denominator.

Ex. 3. Find the generating fraction of the repeating decimal fraction .3.

It should be observed that the dot written above the 3 indicates that 3 is

to be repeated indefinitely ; ,that ia, .3 = .333333 +.

We may write .33.33 = ^^4.^^^ + ^^^ + ^^^ +
In this form the repeating decimal fraction appears as a decreasing geo-

metric series the first term of which is 3/10, and the common ratio of which

is 1/10.

Using the formula for the sum, S^ = -—

^

we have *S^ =
1 - 1/10

Or S^=l
Ex. 4. Find the improper fraction which may be transformed into the

repeating decimal fraction 3.236.

We may write 3.236 = 3.2 + .036.

It should be understood that the dots above the 3 and 6 denote that 36

is to be repeated indefinitely, that is, .036 = .0363636363636 + .

Accordingly, we have .036 = yff^ + j-^U^ + T^lfolTo + »

from which a^ = 36/1000, and r = 1/1(X).

Usinsr the formula
«i

1-r'

, , . ^ . 36/1000
weobtam .^^^____.

The required fraction may be obtained by finding the sum of 3.2 and

2/55, which is found to be 178/55.
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The student should show, by dividing the numerator by the denominator,

that the fraction 178/55 gives rise to the given repeating decimal fraction

3.23636-f.

52. The process of finding the generating fraction corresponding

to any given repeating decimal fraction is sometimes spoken of as

evaluating the given repeating decimal fraction.

Exercise XXVII. 8

Find the sum of an infinite number of terms of each of the fol-

lowing series :

1. 1/2 + 1/4 + 1/8 +
2. 1 - 1/2 + 1/4 -
3. 2/3 + 2/9 + 2/27 +
4. 500 + 100 + 20 +
5. 5 - 1/2 + 1/20 - 1/200 +
6. 2-4 + 8-16 +
7. 1 — aj + a;^ - a;» + , for a; < 1.

8. 1- 1/3 + 1/9 -
9. 1 + 1/a; + llx" + , for a; > 1.

Evaluate the following

:

10. .3. 13. .61. 16. 3.279.

11. .6. 14. .i23. 17. 7.543.

12. .25. 15. .227. 18. 2.564.

19. Find r, having given nfg = 6 and a^ = 384.

20. Find two numbers the difference of which is 48 and the

geometric mean of which is 7.

21. Find >Vio, having given «4 = 72 and a-, = — 64/3.

22. Find ai, provided that «« = 1/32 and a^ = — 1/968.

23. Find «9, knowing that a^ = .008 and a^ = .000064.

24. The difference between two numbers is 70 and their arith-

metic mean exceeds their geometric mean by 25. Find the numbers.

25. Find three numbers in geometric progression such that their

sum shall be 14 and the sum of their squares 84.

26. The sum of the first four terms of a geometric progression is

15, and the sum of the next two terms is 48. Find the progression.

27. A number consists of three figures in geometric progression.
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The sum of the figures is 7, and if 297 be added to the number the

order of the figures will be reversed. Find the number.

28. A ball is thrown vertically upward to a height of 120 feet

and after falling it rebounds one-third of the distance, and so on.

Find the whole distance passed over by the ball before it comes

to rest.

Mental Exercise XXVII. 9

Classify each of the following as Arithmetic, Harmonic, or

Geometric Progressions :

1. 1, 4, 7, 28. 1/2, 1/3, 2/9,

2. 12, 16, 20, 29. — 1, 1, 8, • •

3. 23, 17, 11, 30. -1, 1, 1/3, •

4. 4, 12, 36, 31. 1, 3, 9, • . .

5. 5, 20, 80, 32. 1, 1/3, 1/9, •

6.-15,-12,-9, 33. 5, 1, — 3, • .

7.-7,-11,-15, 34. 5, 1, 1/5, • • •

8. 2, - 4, 8, 35. 5, 1, 5/9, • •
•

9. — 3, 6, — 12, 36. 4, 6, 12,

10. 2, 5/2, 3, 37. 3, 5, 15,

11. 2, 2/5, 2/9, 38. 6, 9, 18, • • .

12. 1/3, 1/6, 1/9, 39. 6, 4, 3,

13. 3/7, 3/5, 3/2, 40. 20, 15, 12, •
•

14. 1/3, 1/9, 1/27, 41. 1, a;, ar*,

15. 1/20, 1/10, 1/5, 42. a;, 2 a;, 3 a;, . •

16. 1/4, 1/2, 1, 43. tf^ a\ a\

17. 1/4, 1/2, 3/4, U. b% h\ 6», . . .

18. 1/3, 1, 3, 45. c\ c\ c^\ • . .

19. 1/5, 2, 20, 46. 6/2 a, b/Aa, b/Qa,

20. 15, 3, 3/5, 47. ^, c?«, d^\

21. 21, 28, 35, 48. a^ a% a^b^, • • •
•

22. 1/2, 2/5, 1/3, 49. a, ab'', ab\

23. 1/2, 2/5, 8/25, 50. a;/5, a;/10, a;/15,

24. 1/2, 1/3, 1/4, 51. 1, 1/a;, 1/a;^ • •
•

25. 1/2, 1/3, 1/6, 52. 1///, l/6^ llb\

26. 2, 3, 6, • 53. llx\ 4/a;^ 7/a;^

27. 6, 3, 2, ' 54. c, 1, 1/c,
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55. «/2, a/S, al4:, ^^ 1 2

56. a, 6, b^ja, b b

57. 3M 4/x, 5/a;,
^, a-l a~2 «-3

Pie ^.-1 iy.-2 ^-3 71. >
}
— , ,

59. ajbcy a/c, ab/c^

c 2c 4c
61. a, a/bj a/h^

62. a,a + b,a + 2b, 73. ai-b,a^+ab,a^+a%

QS. x,x-y,x-2^, ^^^ 2
64. a + 2,a-2,a-6, 74. -y-

, 1'^+"^'
65, a; — 6, ic — 3, £c,

Q6. a — 2b,a — b,a, 75. —£_, 1, £JZi?,

67. a+ 26, «, «-26,- • • . . .

'c-d ' c

68. ?w,2 7w+w,3m+2;2,- • • • •
. „. 6

69. a^«^-^.^a^-26^ ^^' ^^' ^' ^^-^^^ ""

Exercise XXVII. 10. Review

Simplify each of the following :

5. (« ^ — 6 ^) -7- (« — 6). 6.

' (S)ll)~(l)

a-1 + b-

a+b

8. If« = -1, ^) = -2, c = -3, fmdthevalueof^ + — + -^' ' '

be ca ab

9. Simplify [(a; + y) V^~^][(a; — 2/)V^ + 3^]-

10. Simplify (V^^ _ /)(Va; + y)(va; - 3^)-

11. Simplify (v^ + Vb){^/a+ v^)(v^a - V^).
41
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12. Show that (a 4- 3)(rt + 4)(a + 5)(a H- 6) + 1 = (a' + 9 a + 19)'

13. Show that (a; + 2)(a; + 'S)(x + 4)(x + 5) + 1 is a square.

14. Show that V2 w + 2 ^/m^ — n^ = Vm + n + ^m — n.

15. Show that

16. Show that

^/a — ^/h ^/a — b

?/ n-f-l/— n/— n+2/—

5 + 3a/5
17. Rationalize the denominator of

3 + 5V3

Solve each of the following equations

18. a* + 7 ic' = 8.

19. -J— + ^
^

Vaj+i Vi— 1 x — \

20. Va5 4-5 + V^a;4- 5 = 12.

21. V7a;- 6— A/I7a5 — 2 + V3a;- 2 = 0.

22. \/3a; + 10+ \/5a= Vl9ic + 5.

23.
2(.-a)^3(.-6)^^^
x — b X — a

X
, 5a; — 56 a; , 7a;+90

24. —;^ + 7 -r-7
——^n- = —:-—- +

a; +8 (a;-4)(a; + 8) a; + 10 (a; — 6)(a; + 10)

X 2 (a; + 9) _ x 7^ — 6

a; - 3 (ar + 5)(a; - 3) a; + 6 (a; - 2)(a; + 6)
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CHAPTER XXVIII

THE BINOMIAL THEOREM

1. In this chapter we shall consider the laws governing the ex-

pansion o( a binomial to any real power, proving them for any

positive integral exponent and applying them for positive or

negative, integral or fractional exponents.

The Binomial Theorem for Positive Integral Exponents

2. The student should obtain the following identities by actual

multiplication :

Check, a = b = 1

ia + by = a^+ b 2^= 2

la + by= a^ + 2ab+ b^ 2^= 4

la + bf=a^ + Sa''b+ 3rWr+ b^ 2«= 8

(a-\-by = a'' + 4a^b+ CyaV/'-h 4a^>«+ b^ . . . .
2^=16

la-\-bf=a^ + [)a*b+h)a^b^+Wa'b^+ 5ab'+ b^ .
2^= 32

(a + by= a^ +Qa^b+ Ida^b' + 20a'6« + ISr/^^* +6ab'+ b" 2'= 64

By inspection of the identities above, we shall discover certain

laws of coefficients and exponents which will be found to hold true

for the expansion of any binomial raised to a power the exponent

of which is any positive integer ; and they may be shown to hold

without exception for all powers, whether the exponents be positive

or negative, integral or fractional, real or imaginary.

3. Observe that, in the expansion of a binomial to any power

(obtained for the present by multiplication) :

(i.) The number of terms is greater by unity than the index of the

power of the binomial.

E. g. In the expansion of (a + hy there are four terms ;
of (« + by, six

terms ; of {a + by, ten terms.
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(li.) The expomnts of the first and last terms, and also the coeffi-

cients of the second term and the term next to the last, are equal to

the index of the given binomial.

E. g. In the expansion of (a + h)\ the number 4 appears as exponent

in a* and 6*; and as coefficient in 4a*6 and 4a6*.

(iii.) The exponent of the first term, a, de^creases by unity in succes-

sive terms, and the exponent of the second term, b, increases by unity in

successive terms, appearing to the first power in the second term.

E. g. In the expansion of (« + 6)', a has the following exponents in the

successive terms : 6, 5, 4, 3, 2, jnul 1 ; 6, beginning with the second term,

has the exponents 1, 2, 3, 4, 5, and 6.

The distribution of the exponents among the literal factors of the

successive terms of the expansion of (« + bf is indicated in the

following table :

Terms 1 2 3 4 5 6 7 8 9 10

9

(a
Powers of

]
\b

9 8

1

7

2

6

3

5

4

4

5

3

6

2

7

1

8

Sum of

Exponents
9 9 9 9 9 9 9 9 9 9

The exponents of the literal factors in the different terms wiU

accordingly appear as follows :

9 81 72 63 54 45 36 27 18 9

Inserting the letters, we have the following powers of a and b :

a\ a^b\ a^b\ a%\ a'b', a^b\ a''b\ a^b\ a^b\ b\

For the expansion of {a + b) to any power, such as the nih, we

have

a", a"-^&, a"-^^^ «"-'^^ a"-*^^ a''-^^ , a%''-\ ab''-\ b\

(iv.) The sum of the exponents oj a and b in any term of a given

expansion is equal to the index of thepower of the binomial.

E. g. As indicated in the lowest row of the table for the exponents in the

expansion of the ninth power of (a + 6) given above, the sum of the ex-

ponents of the literal factors in each term is 9.
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(v.) The coefficient of the first term of every expansion is 1, and
that of the second term is equal to the index of the power to which the

binomial is raised,

E. g. Ill the expansion of (a + by, the coetficient of the first term is 1,

and that of the second term is 4.

We have the following multiplication and division rule for calcu-

lating the coefficients successively

:

(vi.) In the expansion of the binomial {a + b) to any power, we
may find the coefficient of any specified term from the coefficient and
exponents ofthe preceding term by dividing theproduct of the coefficient

and exponent of the first letter, a, in this preceding term, by a num-

ber which is greater by unity than the exponent of the second letter, b.

E. g. In the expansion of (a + 6)®, we may obtain the coefficient 15 of

the third term, 15 rt*^^, from the coefficient and exponents of the second

term, Qa%, by multiplying the coefficient 6 by the exponent 5 and dividing

the result by a number greater by unity than the exponent of 6,— that is,

by 2.

Similarly, we may obtain the coefficient 20 of the fourth term, 20 a%^,

from the coefficient and exponents of the third term, 15 a^ft^, by performing

the operations 15 x 4 -f- 3 = 20.

To find the coefficient 15 of the fifth term, 15 a%\ we use the coefficient

and exponents of the fourth term as follows :

20 X 3 -f 4 = 15.

The coefficient of the sixth term is 15x2-f5=:6.
To obtain the coefficient of the seventh term, we write

6 x l-f6= 1.

If we attempt to calculate the coefficient of another term after the seventh,

we shall have 1 x ^ 6 = 0, and since the coefficient is zero, no such term

exists.

In calculations such as these, it is convenient to perform the

divisions before the multiplications.

E. g. In calculating the coefficients in the expansion of (x + yy^ we

may begin by writing (x -{- yy° = x^^ + 20x^^y +
To calculate the coefficient of the third term, we may proceed as follows

:

20 X 19 -^ 2 = 20 -^ 2 X 19 = 10 X ] 9 = 190.

Hence, the third term is IQOx^^y^
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To obtain the coefficient of the fourth term, we may write

190 X 18 -^ 3 = 190 X 6 = 1140.

Hence, the first four terms of the required expansion of (x + ij)^, are

(x + 2/)20 = x20 + 20 x^^y + 190 x^^y^ + 1 1 40 x^''y^ +
The student should complete the expansion.

(vii.) The coefficients are repeated, in inverse order after passing

the middle term or terms oj any expansion^ so that after the coeffi-

cients of the terms in the first half of any particular expansion are

calculated, the coefficients of the terms in the second half may im-

mediately he icritten.

(viii.) If—h is substituted for b throughout the expansion of

{a + by, the signs of all terms containing odd ptot^^rs of b will be

changed from + to —, and those containing even powers of b will

remain unchanged.

E. g. (a - hy = a* - 5 a*6 + 10 a%'^ - 10 aHfi + 5 «6* - h^.

4. From the observations above we obtain the following rule for

expanding any power of a given binomial (restricting the exponents,

for the present, to positive integral numbers) :

In the expansion of (a \- by, the index, n, of the given binomial,

the exponent, n, of the first term of the expansio7i (in which the first

letter a appears alone), and the coefficient, n, qf the second term, are

equal.

The exponent of the first letter, a, decreases by unity in succeeding

terms, while the exponent of the second letter, b, increases by unity in

succeeding terms, beginning with unity in the second term.

To find the coefficient of any term from the coefficient and exponents

of the preceding term, divide the product of the coefficient and the ex-

ponent of the first letter, a, in this preceding term, by a number greater

by unity than the exponent of the second letter, b, in this term.

The calculation of successive terms will stop when, in the computa-

tion, a term appears having a coefficient equal to zero.

If the given binmnial is a sum, represented by (a + b), the signs

of all of the terms in the expansion will be positive. If the given

binomial is a difference, represented by (a — b), the signs of all of the

terms in the expansion will be alternately positive and negative, those

terms being negative in which odd powers of b are found.
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5. If the given binomial is symmetric, the expansion of any power

of the binomial will be S3rmmetric. Hence, the coefficient of the first

term, the coefficient of the second term, the coefficient of the third

term, etc., will be respectively equal to the coefficient of the

last term, the coefficient of the term next to the last, the coefficient

of the term which is second from the last, etc.

Ex. 1. Expand (2 a: + 3?/)^

We have,

(2x + 3?/)5 = (2a:)5 + 5 (2x)^ {3 i/) + 10(2x)3 (3^)2+10(2x)2 (3.y)3+5 • 2x{3y)*+(3y)^

= 32a:S +240x*y +720a;V +1080j;2_y3 -|-810:ry/4 +243,y5.

Check. X = ?/ = 1.

3125 = 3125.

Ex. 2. Expand (m^ - 4 n^)».

We have, (m* - 4 n^y = (m^)^ - 3 (m^y (4 n^) + 3 (m2)(4 n^y^ - (4 n^y
= m« -Um^n'^ -\- 48 m^n^ - 64 w^.

Check, m = 3, ?i = 1.

125= 125.

Proof of the Binomial Theorem for Positive
Integral Exponents

6. We have found by actual multiplication that for positive

integral values of w, equal to or less than 6,

(a + hy = a"" + na^'-^b +

+

71(n — 1)
a^'-'h'

n(n— l)(y^ — 2)

2-3
W + (1)

It will now be shown that the formula above applies for all posi-

tive integral values of n.

Multiplying both members by a + ^, we have

+ +

n{n— 1)

+

+

a"-2^>«+.
n(n-\){n—2)

2-3

2

2

(2)

(3)
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It may be seen that, wherever n appears in (1), w + 1 appears in

(3). It follows that, if the theorem be true for any particular

integral number represented by n, it will be true also for the next

higher value, that is for the number represented by n + 1.

Hence the laws which apply to the coefficients and exponents in

the expansion of {a + by apply also to the coefficients and ex-

ponents in the expansion of {a + ^)"''"^.

We have found by actual multiplication that they apply for the

second power ; hence, by the reasoning above, they must apply for

the third power.

Since they hold for the third power, they must hold for the

fourth power, and so on indefinitely.

Hence, the general formula (1) applies for all positive integral

values of the exponent.

The method of reasoning employed in this proof is known as

matbeuiatical induction.

Exercise XXVIII. 1

Write the expansion of each of the following powers :

1. im + n)\ 8. Qi - yf. 15. (2 + e)\

2. it + ny. 9. ir - sy. 16. (3 +/)^
3. {d + gy. 10. {p - qy\ 17. (2 - gy.

4. (a + cy. 11. (a + 1)*. 18. {\ + v y.

5. {k + wy\ 12. {b - 1)^ 19. (2 a; - yy.

6. [c -/y. 13. (c - by. 20. (2 h + wy,

7. (6 - x)\ 14. {d - 9)2. 21. (m + 2 ny\

Write the first five terms of

:

22. (a + 6)^. 24. (Jc + z)"^, 26. {m + xy\

23. {h + c y\ 25. {d + r y\ 27. {v - yy\

Write the first six terms of

:

28. (^ - d)^\ 29. (s - xy. 30. (a - w^.

Write the first and last three terms of

:

31. (c + dy. 32. (x + yy\ 33. (p + qy\

Write the expansion of each of the following :

34. (5 a + 4 by. 36. (3 w? - 5 ny. 38. (2b - ^ x)',

35. (6 a - 7 by. 37. (9 c - 11 d)\ 39. (4 a; - y^.



THE BINOMIAL THEOREM 649

The Binomial Theorem for Negative or

Fractional Exponents

7. It may be proved, by means of certain principles, that the

binomial theorem applies even when the exponent is a negative or a

fractional number.

Without proving the theorem, we shall assume that for all positive

or negative, integral or fractional values of the exponent, the formula

is true in the following form for such values of the letters as make
the first term of the given binomial greater than the second term :

(a + by E a" + 7^^"-'^> + ^^^ ~ ^K^-%^

+ "(''-/)("-'^>^»-w+ .,

It may be seen that, whenever n is negative or fractional, the

numerator of the coefficient of the rth or general term,

n(n — l)(n - 2) (n — r + 2)

1 • 2 • 3 (t" 1)
'

can never become zero, and hence the number of terms for a parti-

cular expansion is unlimited.

Ex. 1. Write the expansion of (2 a^ - 3 b~^y.

We have,

(2a^ - 36-^)» = (2a^)8 - 3(2a^)2(3r^) + 3(2a^)(3ri)2_ (36 "1)8;

= 8a -36ah~^ +54a*fe-i _27 6~^-

Check. Let a = 8, b = 4.

Ex. 2. Write the first four terms in the expansion of (1 — 2 x)~^.

We have,

2 ^ o

= I +4a:+ 12a:2 + 32a;8 +

Since (1-2 a;)-2 = -—L-— = -i —^

,

^ (l-2ic)2 l-4a; + 4x2'

we can check the result by performing the division

j__2__^= 1+4.= + 120.^ + 32.3 +
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Ex. 3. Write the first four terms in the expansion of (8 — x)~^.

We have,

I X x^ 7x»
- 2 ^ 48 ^ 576 ^ 41472

^

Since (8 — ar) ^ = —L L
, jt is possible to check the result by divid-

ing ^^64- 16x4- x» by 8 - a:.

Exercise XXVIII. 2

Write the expaDsion of each of the following :

1. (a-^ + ^»)^ 6. (772-2 _^ 2 w)*.

2. (3 cr-^ - 0^)2. 7. (r'-2 + 3 ^/e^)^

3. (5a^ij-^c-Ax~^i/-y. 8. (a^"^-7/-^)^

4. (a-^ + 6*)«. 9. (</* - k^y.

Expand to four terms each of the following :

11. (1 +x)-\ 19. (1 + x)K

12. (1 — a)-\ 20. (1 4- 7/)i

13. (1 - b)-^ 21. (1 + z)^.

14. (1 — c)-\ 22. (1 — m)~K

15. (l-d)-^. 23. (4-3ic)"l

16. (l-^)-'. 24. (l-3r)~l

17. (l-2n)-\ 25. (l + 4^)"t

18. (a-^/2)-6, 26. (8-^3a;)l
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Selection of a Particular Term in the Expansion of
{a + 6)"

8. Consider the following terms in the expansion of {a + ^)", n

being positive and integral.

{a + by = «» + noT-^b 4- ^^^-^ «""'/>'

^ .(.-!)(. -2) ^..3,3^

It should be observed that the denominator of the coefficient of

any particular term consists of the product of the primary numbers

1, 2, 3, etc., up to a number which is less by unity than the number

of the term.

E. g. In the fourth term the denominator is 1 • 2 • 3.

Accordingly, the tienominator of the coefficient of the rth term from the

beginning must consist of the product 1 • 2 • 3 • 4 • 5 (r — 1).

9. The product of the successive primary numbers 1, 2, 3, 4, 5,

, up to and including any specified number, /, is called

factorial /, and may be indicated by |_ or !, as shown in the fol-

lowing illustrations :

E.g. If/ be 5, [5 =l-2-3-4-5 = 120.

4 ! = 1 • 2 • 3 • 4 =24.
a\ = 1-2-3-4 (a-2)(a-l)a.

(r - 1) ! = 1 • 2 • 3 • 4 - 2)(r - 1).

10. The denominator of the coefficient of any specified term in

the expansion of a binomial to any power can be expressed by the

fctctorial notation.

E. g. In particular, the first five terms in the expansion of (a + hy^ may

be written as follows :

^a+hy^=a^o^\Oa%+^-^^aW^^^a^^^^ •

Or («+6)io=aio+ iOa«6+^a«6Hi^a'68+^^^^^^

11. By examining any particular term in the expansion of

{a 4- by (see § 8) it may be observed that:
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(i.) The exponent of the second letter^ 6, is equal to the lastfactor

in the denominator of the coefficient.

E. g. In the fourth term the exponent of the second letter b is 3, which

is the hist ftictor in the denominator of the coefficient.

In the rth term, the last factor in the denominator is r — 1, and the

exponent of the second letter 6 is r — 1.

(ii.) The exponent of the first letter, a, is eqiml to the difference

between the ind^x of the power to which the given binomial is raised

and the exponent of the second letter, 6, in the same term.

E. g. In the expansion of (a + 6)" the exponent of a in the rth term from

the b^inning is 7i — (r — 1) = w — r + 1.

(iii.) The first factor in the numerator ofany coefficient is n which

is the index of the power to which the given binomial is raised. The

successive factors w — 1, w — 2, etc., decrease successively by unity,

and the number offactors in the numerator' ofany coefficient is equal

to the number offactors in the denominator.

E. g. In the expansion of (a + hy^ the fii-st factor in the numerator of

each numerical coefficient is 10, and in each coefficient the number of

factors in the numerator is equal to the number of factors in the denomina-

tor. It should be observed that the last factor in each numerator is greater

by unity than the exponent of the first letter, a, in the same term.

In particular, in the fourth term the last factor in the numerator is 8

which is greater than 7 by unity ; in the fifth term the last factor in

the numerator is 7 which is greater than 6 by unity.

Ex. 1. Write the 8th term in the expansion of (a + h)^^.

Since all of the terms in the expansion of a binomial sum are posi-

tive, the sign of the 8th term must be positive.

Since the exponent of the power to which the second letter h is raised is

less by unity than the number of the term, the exponent of h in the

8th term must be 7. Accordingly, the coefficient of a, which is found

by subtracting the exponent of h from the index of the power to which the

given binomial is raised, must be 10 — 7 = 3.

To obtain the numerical coefficient we may write a fraction the numera-

tor of which consists of the product of the seven numbers 10 • 9 • 8 • 7 • 6 • 5 • 4,

and the denominator of which is 7 !, that is, the product l-2-3'4-5-6-7.
Hence the required 8th term is

10 • 9 8 7 • 6 • 5 • 4
+ 1-2-3-4-5-6-7""
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12. It may be seen that the rth term or general term in the

expansion of (ci + hy may be written as follows :

n{n - \){n - 2){n - 3) {n - r {- 2) ,_,

1 • 2 • 3 • 4 (^ _ 1) " ^ •

13. It should be observed that in the expansion of {a — hf the

sign of every term is negative in which the exponent of the power

to which — 6 is raised is odd, and the sign of every term is positive

in which the exponent of the power to which — 6 is raised is even.

Accordingly, since in the rth term the exponent of the power to

which — b is raised is r — 1, it follows that the sign of the term may
be determined by the factor (— 1)'"^

Hence, we have the following expression as the rth term or general

term in the expansion of {a — by :

/ ,.,._, n{n-\){n-2){n-^) (y^ _ ^ + 2) ,

C-1)
1 . 2 • 3 • 4 ir-l)''

E, g. In the expansion of (x — yY^ the fifteenth term containing (— yy^

is positive ; the sixteenth term containing (— yY^ is negative. In the ex-

pansion of (m — n)" the nineteenth term containing (— ny^ is positive; the

twenty-sixth term containing (— nY^ is negative.

Ex. 2. Write the sixth term in the expansion of (h — c)i^.

We have (- l)«-i \^ '

^f
' V ' \^ '

^l
^'''' = " 11628 b^'c^1'2'3'4*5

Exercise XXVIII. 3

Write the indicated terms in the expansions of the following

powers of binomials :

1. The 5th term of (a + by\ 8. The 11th term of {p - qY'.

2. The 8th term of {b + cy\ 9. The 10th term of {a - yy\

3. The 7th term of (c + dy\ 10. The 4th term of {g — h)

4. The 9th term of {x + yy\ 11. The 13th term of (c - wY^.

5. The 6th term of (m + nY\ 12. The 20th term of (z + wY^

6. The 10th term of (r + sY^- 13. The 16th term of (a + by^

7. The 15th term of (a - by. 14. The Uth term of (b - cY^
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Expand each of the following powers of binomials :

15. (a^ + hy. 19. (z' - ly.

16. (c^-d)\ 20. (2a+by.
17. (£c'-2)*. 21. (2a»+ 8/^V.

18. (f — 1)^ 22. (37W^ + 5 ?iy.

14. The formulas of §§ 12, 13, for the general or rth term in

the expansion of (a + by and (a — by may be used also when the

exponent n is negative or fractional.

Ex. 1. Find the prime factors of the coefficient oia^lr'^^ in the expan-

sion of («-2^) •

It may be seen that a^^ and 6"^^ appear in the term of the expansion in

which a^ and — (ot) ^^^ found.

Since the exponent of the power to which ( — ^) is raised is less by

unity than the number of the term, it appeal's that we are required to

write the 12th term.

Since the given binomial is a difference and in the 12th term the factor

( — —
j is raised to the 11th power, it may be seeu that the sign of the

term is minus.

Hence, we may write

31 . 30 . 29 . 28 • 27 • 26 • 25 . 24 . 23 . 22 . 2125 > 24 » 23 ' 22 • 21 2o/J_V^-
7- 8- 9- 10- 11* Ylb) -1 . 2 . 3 • 4- 5 • 6

- (^)iA
. 3» • 5 . 7 • 13 • 23 • 29 • 31 a^b-^^.

Ex. 2. Write the term containing x^ in the expansion of

("-;<)"

Referring to the general formula for the rth term in the expansion of

(a — 6)", § 13, it may be seen that x^ appeiiring in the first term, '2x^, of

the given binomial, is to be raised to the power represented by (m — r + 1)

in the formula for a general term, and that x~^ appearing in the second

term,
[

j- ], of the given binomial, is to be raised to the power repre-

sented by r — 1-

When reduced to simplest form, the rth term must contain x^.
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Hence, observing that n = 17, we may find r as follows

:

Hence a; 2 = x^^.

Since the bases are equal we can form a conditional equation of which

the members are the exponents.

That is,
lOQ-lr ^ ^^^

Hence, r = 7.

Accordingly, we are required to find the 7th term, which may be written

as follows:

H-^f^^^f^^f^(-)"gr-——

^

a:i

= 16384- 729- 1547 a;^

= 18477268992x80.

Exercise XXVIII. 4

Write the specified terms in the expansions of the following

powers of binomials :

1. The 4th term of («-' + h^Y\

2. The 6th term of (6"^ + 2 t^y.

3. The 8th term of (w"^ + 4 n-y\

4. The 13th term of (a; — xhj)'^.

5. The term of {x^ + 2 cc"^)^^ which contains a;".

6. The middle term of («"« + "lahyK

7. The term of {^ — y^Y' which contains x^y^.

8. The term of (3 a; + 2 a?"^)^" which is free from a;.

9. The 5th term of (1 - 2 a;)^.

10. The 7th term of (1 - x^^.

11. The 5th term of («-* - ^'-')-'-

12. The6thtermof(a^-^>-V)-«.
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15. The coefficients appearing in the expansion of (a-\-by, called

biiiouiial coefficients, may be denoted by the following abbrevi-

ations :

_n__fn\ n {n — \ ) _ fn\ n (n — l)(n — 2) fn\
'^^l-Vl/ 1-2 -{2} l^J^S -\S/

n (n— l)(n — 2) (n — r + 2) _ f
7i \

1-2-3 (^—1) ~\r-l)'
Accordingly, we may write

It may be observed that in the notation above the upper number

in each symbol is the exponent of the power to which the given

binomial is raised, and the lower number indicates the number ot

factors appearing in both numerator and denominator of the

numerical coefficient.

E. g. In the expansion of (a + by^ the coeflBcient of the 7th term is

/10\ 10-9-8-7-6.5

In the expansion of (a 4- 6)* the coefficient of the fifth term is I j =
4. 321 .

^^^

1.2-3.4
= 1.

16. The binomial theorem may be used to obtain any required

root of a number, as illustrated in the following example :

Ex. 1. Find the square root of 11 correct to four places of decimals.

We may write //H = ^/3^ -\- 2 = (3^ + 2)i.

Hence, to find yTT we may expand (3^ + 2)i as follows:

(32+2)i=(32)^+^.32)-*-2-i(3T^-2^-h^(3T^ ' 2»-ifg<32)-^ '2*+ ,

= 3 + i — -g^T + J^ ~ TTf57 + »

= 3+ (.33333+) -(.01851+) + (.00205+) -(.00020+) +
= 3.3166 + , correct to four places of decimals.

Exercise XXVIII. 5

Find to four places of decimals :

1. V26. 4. v^. 7. V^n. 10. v^65.

2. \/50. 5. v^. 8. v^. 11. v^730.

3. a/102. 6. Vi24. 9. a/626. 12. V2188.
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Mental Exercise XXVI 1 1. 6. Keview.

Solve each of the following equations :

' " ^
0.

1.
1 t)'

a~ ^'
4. \^^x'-b^ =
5. \^x -\- b = a.

2.

3.

mot?

n

6. f - a'b.
b

= mn.

8. Show that a;* + // =:0'\ix-\-b = 0.

;iniplify the following

:

o
y-'^ 2-x

10.
V y — 3 ' Vx — 2

11. (a/5 + a/=^)(a/5 - ^=^3).

12. (V^y + a/-'3)(a/^^ - a/=^).

13. {a^ + i)l

14. (b^ - ^y.

15. (2xi + ^y.

\x y zj\xy -\- yz-^ zxj

16. (3\/- 3 - 3a/3)''.

b's/a

18. ^'

20. - (- a;V^^)^

Find the value of

:

21. ix'^ + fy^

22 A.

25. Show that - 3\

10

24. (- V2)^ -(V- 2)2_.

3 = 3V^3 while - 2a/- 2 7^ 2^2.

26. Simplify -( -
) , and express the result with positive

exponents.

27. Show that a, b, c, and d are proportional if 7 :
- = 1.

28. Express 2\^\/h in simplest form.

42
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Simplify

29. (?i^^')(fi - l)Vn. 30. (^l + c-'^('^^-cA'

31. Find the geometric mean oi a and I /a.

32. Find the mean proportional between a and 1/a.

Classify each of the following progressions as being arithmetic

harmonic, or geometric :

33. 2, 4, 6, 34. 2, 4, 8, 35. i, i, ^
Find the values of

:

3' 8'
36. 2! 3!. 37. ^. 38. |j.

Show that the following identities are true :

39. 4 ! = 3 ! 2 ! 2 !

.

41. ^ + 2 • 3 ! = 3 • 4 !

.

95 1 1

40. 2 • 3 ! - 3 ' 2 ! = 3 !

.

42. f^ = -^ + ^

.

5 1 4 ! 3 !

Exercise XXVIII. 7. Review

Simplify each of the following expressions :

1. 6a/yc4-(c + a)*+ (^ + c)« + (« + />)'-(« + ^ + c^.

2. («+«/ + zy ^{x^.y-zf-(^^rz- xf-iz ^-x- y)\

1
3. ^—^-'

.+ 1

iC+ 1

a — h h — c c — a

6. Showthat(-^+-^+-^Vf-^+A + -^^ = 3,
\x—a x—o x—cj \xr—a x—b Xr-Cj

\i X i^ a, X ^ b^ X ^ c.

7. Show that [{a - by + (b - cy + (c - ayf
= 2 [(a - by + (/> - c)* + (c - a)^].
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x--y -2

8. Simplify ~—^ ^ , using the minimum number of nega-
X y

tive signs.

9. Simplify ^ X g^' X g.

10. Simplify

4" • 2 X^ - 32'

2'" X 4

12. Show that -k'*i)k'-ii

(-«-)"('-^)
iv -\b)

13. Show that

(-:)"0-f)
14. For what value of n is a;"'^^?/"'''^ — t/^"^"" ^ a homogeneous

binomial %

15. For what value of n is a;""'"'*^^ + ^"^2+^ a homogeneous

binomial ?

16. Simplify "li^^:^^-

17. Square the complex number — \ — \y— 2.

18. Simplify (\/m + ^ + Vm^—nY — (\/mr^i^ — Vm — rif.

19. Simplify LV '^ V '^ J
3 — 2V3 _

V30
20. Rationalize the denominator of

a/S + V3 - a/2
Solve each of the following equations :

21. \/« + 2 + V'4 a; — 3 — a/D £c + 1 = 0.

22. (a^ + -) -4 fa3+ ^
j

== 60.
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oQ g
, 8a; — 77 _ x 11a;— 70

a; + 7 {x— 12)(a; +7) a; -H 10 (ic — H){x + 10)

X
. 8a; — 35 x . 4a; — 99

24' ? + 7 :7w TT = 7 ^ +

27.

x—b (a; — 6)(a; — 5) (a; — 9) (a; — 2)(a; — 9)

„. _x 5 ^ X 2(a; + 9)

•a;-l (a;+4)(a;— 1) a; — 3 (a; + r>)(a; - 3)

*

2^ a? ,
g— 12 __ __^ 2(a; + 5)

*
a; - 2 (a; + 3)(a; - 2)

""
a; - 5 (a; - l)(a; - 5)*

X 2a;— 15 _ x 3 a;— 16

a: - 3 (a; — iS){x — 3)
~

a; - 4 (a; — 5)(a; - 4)
'

X 3(2 a; -33) _ _x 270

a; - 9
"^

(a; - 4)(a; - 9)
~

a; - 15 (a; + 3)(a; - 15)
*

Solve the following systems of equations :

29. 18 a; + 12y= 1 xy,

12a; + 18^ = 8a-j^. 31. 7^ + xy + y =21,

y\-m n x + xy + y' = <d.

30. X = '^——— + X

.

^ 3 32. a;' _ ic^ _ 7/ = 22,

„ = ^-±^ + ^. ^^ -a;^ + / = -2.
^ 2 3

33. Expand (3 a;"* — 'ly^f by the binomial theorem.

34. Expand ( 1 — i x^y by the binomial theorem.

35. Find the middle term in the expansion of f a;
J

•

36. Find the middle term in the expansion of (
^^'^ + ^ )

*

(<i xY
37. Find the middle term in the expansion of I

- H—
J

•

38. In the expansion of f a; + -
j

write the term which is free

from X,

39. Find the term free from x in the expansion of ( a;
j

•

40. Find the coefficient of a^%^ in {a + hy\
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