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PREFACE

THE greater part of the subject matter of this book appeared in a
series of articles in the Mechanical World. The purpose in writing it
is so fully explained in the Introduction that a Preface is hardly
required. As the forms given to the various parts of a machine or
engine are on analysis invariably found to be combinations of certain
geometrical solids, a knowledge of how each of these should be drawn
when in any position should be first acquired by the student draughts-
man. To this end a series of problems is given in the following pages,
.commencing with the construction of those simple geometrical figures
which form the surfaces of the solids which give shape to mechanical
details, and subsequently the method adopted in representing the solids
themselves, singly and in combination.

As no amount of copying “drawings” of mechanical details will
ever give the student a knowledge of the reasons why they are made
to take the special forms given to them, so in the earlier stages of the
study of mechanical drawing it is impossible for him to acquire the
power to draw the simplest solids in different positions correctly
without a knowledge of the principles of “Orthographic Projection,”
which is the basis of the representation of all solid objects. In this
part of the subject an extended series of problems is given, the solution
of which should enable the student to draw any simple object without
further help.

In the method of studying the contents of this work, the student is
advised to take the different parts of the subject in the order in which
they are arranged, as he will thereby be led to acquire a mastery of it
in a way that will impress upon his mind the connection that each
part bears to that which follows. The order of study may not be that
usually followed, but it is such as an association of many years with
draughtsmen and students has proved to the author to be the best for
the acquisition of the preliminary knowledge necessary to the successful
practice of the draughtsman’s art.

This work is not intended as a treatise on either Plane or Solid
Geometry, but as much of these subjects is given as will be required
by the student to attain to an easy comprehension of the first principles
of mechanical drawing as herein exemplified. Their actual application
to the delineation of machine elements and engine details may possibly
form the subject of a further work.

. H. HoLT-BUTTERFILL.

Qreenwich, 1897.
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INTRODUCTION

- THE ‘'FIRST PRINCIPLES OF MECHANICAL AND ENGINEERING
' DRAWING

It being incumbent on every one who aspires to become a really
efficient Engineer, that he should possess a thorough practical know-
ledge of the Mechanical Draughtsman’s art, we would in the outset
of an attempt to explain the fundamental principles which govern its
operations, observe, that the inducement to undertake such a task is
the desire to place within the reach of every earnest engineering student
and apprentice, a means of enabling him to read and to make such
drawings as are placed before him in an engine factory to work from,
and to prepare him for the subsequent study of engine and machine
design.

It is assumed by the majority of engineering students and appren-
tices, that the drawing practised in the Drawing Office will be taught
them upon their first admission to it, but an experience of many years
in some of the principal offices in England, has made the writer alive
to the fact, that so far as the ¢ principles ” which underlie the practice of
the draughtsman’s art are concerned, absolutely nothing is taught the
student, and that if he ever acquires a knowledge of them, it will be
by his own unaided study, independent of any drawing-office help.
With a view, then, to the aocquisition by the student of this all-
important knowledge, in the best possible way, we have in the following
pages formulated a method of imparting it, which from practical
experience as a draughtsman, and teacher, we have found answers
every requirement. Whether that method is an improvement on any
now adopted, is left to those who earnestly follow its exposition to
determine.

Before proceeding with that exposition, we would, however, put
before the student, some facts bearing upon the study of drawing (and
Mechanical Drawing more particularly), which may help him to
appreciate the necessity that exists for his acquiring the ability to
draw, if he desires to rise in his profession. Vgithout wishing in the
least to under-estimate the great worth of a really first-class skilled
workman, who may have little or no knowledge of drawing, it is still
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a fact very generally admitted that just in proportion to the knowledge
of drawing possessed by one workman over his fellow, so is he superior
to him; and it follows that those ignorant of that art must hold a
lower position as workmen, than those having a knowledge of it.

The utility of the power to draw may not present itself to the
mind of the workman on its first suggestion to him, but a little thought
about the matter will soon make it clear that it has a much closer
connection with his daily work than he had any idea of. Neither
spoken nor written language can at all times convey ideas that we wish
to impart to another, and recourse must be had to some other means,
more especially if those ideas relate to the form and position of material
substances. To assist us in making our meaning clear, we must make
use of what has been aptly called the “language of mechanics,” or
Drawing—a language which appeals at cnce to the eye for the truth
of its assertions, and which enables us, without further assistance, to
judge of the form, appearance, and dimensions of bodies.

To the intelligent mechanic, a real power of drawing is a priceless
advantage, as it enables him to either reproduce a true representation
of forms, that upon a casual inspection may have made an impression
on his mind ; or, on the other hand, to transfer to paper what he may
have conceived, but which has not as yet had any existence. Many
a valuable invention has been lost to posterity through the want of the
power to draw, on the part of the would-be inventor.

Again, a knowledge of the graphic art is now demanded of all who
are in any way connected with mechanical constructions of any kind,
and no one can now hope to obtain any position of trust that an |
engineer fills, who has not acquired the power of correct drawing. It
was long a fallacy with many, that draughtsmen were born, not made ;
that although a youth, or a man, may be taught to write—or copy
letters—the law did not hold good as regarded drawing. This fallacy
has happily gone the way of many others, and it is now held that those
who will give to the study of Drawing the necessary concentration of
thought, coupled with persistent effort, will undoubtedly attain its
mastery and achieve success.
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MECHANICAL AND ENGINEERING DRAWING

CHAPTER 1
THE TOOLS AND MATERIALS REQUIRED BY THE STUDENT

1. Drawing-Board.—As all drawings of Mechanical and Engineering
subjects are made on flat surfaces, and as the most suitable material
on which such drawings may be made is paper, the first requisite of
the student is a drawing-board, on which to lay or stretch the paper.
The board should be made of well-seasoned pine, of a convenient size—
say 23 in. by 17 in., which will take half-a-sheet of Imperial paper,
leaving } in. margin all round—i in. in thickness, and fitted at the
back, at right angles to its longest side, with a couple of hardwood
battens, about 2 in. wide and § in. thick; the use of these battens
being to keep the board from casting or winding, and to allow of its
expansion or contraction through changes of temperature. This latter
purpose, however, is only effected by attaching the battens to the back

- of the board in the following manner :—At the middle of the length of
each batten—which should be 1 in. less than the width of the board—
a stout well-fitting wood screw is firmly inserted into it, and made to
penetrate the board for about } in., the head of the screw beingmade
flush with the surface of the batten. On either side of this central
screw two others, about 3} in. apart, are passed through oblong holes
in the battens, and screwed into the body of the board until their
heads are flush with the central one; fitted in this way the board itself
can expand or contract lengthwise or crosswise, while its surface is
prevented from warping or bending.

The working surface of the board—or its front side—should be
perfectly smooth, but instead of being quite flat it should have a very
slight camber, or rounding, breadthways, this latter feature in its con-
struction being to prevent the possibility of a sheet of paper when
stretched upon its surface having any vacuity beneath it. The four
edges of the board need not form an exact rectangle, as much valuable
time is often wasted in the attempt to produce such a board ; but it

B
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will answer every purpose of the draughtsman so long as the adjacent
edges at the lower left-hand corner of it are at right angles to each
other, or square. To produce really good work in the shape of a
mechanical drawing, one perfectly straight edge only is required on a
drawing-board, and that the left one, which is always known as the
working edge ; but for the convenience of being able to draw a long
line across the board at right angles to its lower edge, this edge is made
truly square with that on the left side of the board.

Fig. 4

A further improvement in such a drawing-board as above described
is made by cutting—lengthways—a series of narrow grooves in the back
of it and inserting in its working edge a strip cf ebony, to help in
keeping it true, and to serve as a guide to the stock of the drawing
square. Such an improved board is shown in Fig. A. There are
other kinds of drawing-boards in use; but as the one described has
stood the test of many years’ service, and finds most favour in
drawing offices, a detailed description of them is not necessary here.
A reason for giving -at such length a description of the kind of
drawing-board so universally in use in modern engineering drawing
offices is that it ma# be the means of inducing students and apprentices’
capable of handling joiners’ or patternmakers’ tools to make such a
board for themselves, which, if made of good well-seasoned pine, free
from knots and shakes, will retain its specially good features for years.
Those, however, who may be unable to accomplish such a feat, may
purchase such boards at a reasonable price from manufacturers of
drawing materials, who make them a speciality.

2. Tee-Square.—The next most important adjunct to the drawing-
board is the drawing- or tee-square. Some inexperienced youths, and
even those of larger growth, have a notion that anything will do for a
tee-square ; but, if correct work is to be done, the tee-square is as import-
ant to the draughtsman as the drawing-board. It need not, however,
be an expensive one, provided a knowledge of what constitutes a really
serviceable and efficient tool is possessed by its intended user. As its
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name implies, it is an instrument in the form of the letter T, the two
parts of it being known as stock and blade, the horizontal component of
the letter being the stock, and the vertical one the blade. To form the
square, the two parts are joined together in such a way as to make them
exactly at right angles to each other; the stock, which is applied to the
working edge of the drawing-board, being about one-third the length of
the blade, and about three times its thickness.

The manner, however, in which the stock is united to the blade
determines its adaptability or otherwise to the use made of it by the
draughtsman. In some the stock is rectangular in section, and the
blade morticed into it, as in Fig. 1. In others the blade is dovetailed
and let into the stock for the whole of its thickness, as in Fig. 2; or
morticed, as in Fig. 1, but fitted with a tongue-piece the length of the
stock, as in Fig. 3. Neither of these plans is to be recommended ;
they involve unnecessary work and care in fitting during their manu-
facture, are more liable to get damaged in their usage, and are
practically imperfect as a tee-square in some of its essential require-
ments. To be perfect in construction, a tee-square should be as light
as is consistent with its necessary strength and stiffness of parts; it
should be made of suitable material, easily manufactured, put together,
and repaired, and withal as truly correct as it is possible to be made.
Such a square is represented in Fig. 4 ; it has a taper blade, which is
generally about double the width where secured to the stock as it is at
the tip. Its tapering form serves two purposes, the primary one being
that it adds strength and stiffness to the blade and prevents its buck-
ling—a common fault with all parallel-bladed squares—and the other,
its excess of width at the stock, prevents it from rocking, and gives
ample room for securing it to the stock. The blade is also easily and
correctly fitted to the stock, and has also one great advantage over all
the others in that the set-squares used with it are far more easily manip-
ulated than is possible with any of the three previously referred to.

3. In cases where many parallel lines have to be drawn, of lengths
beyond the capabilities of ordinary set-squares, and in directions other
than square with, or parallel to, the working edge of the drawing-
board, it is convenient to have for use an adjus able-bladed tee-square,
or one whose blade can be set at any desired angle. The blade of such
a square should be tapered as in Fig. 4, but shaped at its wide end as
in Fig. 6, and have a stock wide enough to allow for the surface
required in the washers of the fittings necessary to make the blade
adjustable. These fittings, though requiring to be well made and
neatly finished, are not expensive or difficult to make, as they consist
merely of two washers, a square-necked bolt, and a fly-nut, articles
that any one capable of making a pair of calipers could supply himself
with. Fig. 5 shows a section of these fittings, which are generally
made in brass. The top and bottom washers A, B, are slightly dished
on their faces to ensure contact with blade and stock, and the spread
of the .wings of the fly-nut is such as to give sufficient leverage for
a good grip.

Reference is here made to an adjustable-bladed square, as one may
possibly be required later on by the student; but there is no present
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necessity for the provision of such a tool, as all lines that may be
required other than those drawn with the tee- and set-squares in
conjunction, are easily put-in by a proper manipulation of the set-
squares, which will be explained in due course. _

Set-Squares.—Of the set-squares used conjointly with the tee-
square, those of 45° and 60° are all that are required by the student in
the earlier stages of study. A 6-in. 45° and an 8-in. 60° set-squares
are the most useful sizes. Framed ones, well made, of foreign manu-
facture, may now be obtained at a reasonable price, but the kind most
generally in use are made of vulcanite. Those, however, of this
material made with the middle part cut out to imitate framed wooden
ones should be avoided, as they are very hable to fracture at the
angles, and it is impossible to repair them.

The other requirements of the student of mechanical graphics,
apart from what are known as ¢nstruments, are some pencils, drawing-
pins, rubber, paper, and ink. A few words descriptive of the qualities
that should obtain in each of these articles, that satisfactory work may
be done, will be of advantage to him.

Pencils.—The present great demand for pencils has, notwith-
standing the millions that are annually made and sold, added few to
the number that are specially suited to the wants of the mechanical
draughtsman. Many erroneously assume that any sort of pencil will
suit a learner. No greater mistake can be made. If he is to acquire
a draughtsman’s habit of work, his first necessity will be a good,
serviceable, reliable pencil—one that is neither too hard nor too soft,
and that will retain a good point for a considerable time. The pencils
now generally used in drawing offices are of Faber’s make, which can
be had of different degrees of hardness from H to six H’s, the cedar
covering of the lead being hexagonal in form, instead of round. But
such pencils are too expensive for students’ use. A good, serviceable
pencil, made by Cohen, and known as the “ Alexandra H pencil,” has
been in use by the writér for some years, and costs about half the price
of Faber’s. They are, however, of the ordinary round form, which is
inimical to the draughtsman, it tending to cause them to be constantly
rolling off his board and damaging their points. To obviate this, the
writer’s practice is to cut a flat side on the pencil throughout its whole
length, taking care not to bend the pencil in doing this for fear of
breaking the lead. If neatly done a perfectly flat side is produced,
which serves as a guide to the way in which the pencil should be
. pointed and held, and will prevent any tendency to rolling, even if the
drawing-board is much inclined. To. do away, however, with the
necessity for constantly sharpening the pencil, and thereby reducing
its length at every such operation, pencils with movable leads have
been in use in drawing offices for some years. They are far to be
preferred, as the part of the pencil which is held by the fingers never
alters in length, and the lead can be used to the last quarter of an
inch. This kind of pencil is known as ‘“Faber’s artist’s pencil,” is
hexagonal in outside form, and thus partly prevented from rolling.
The acme of perfection in this class of pencil has, however, only lately
been introduced, the part for holding the lead being triangular in
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section, which renders it easy to hold without turning in the fingers,
and rolling off the drawing-board is impossible. It is made by Hardt-
muth, of Vienna, but can be purchased of any photographic chemist
or artists’ colourman.

4. Drawing-Pins.—In the study of mechanical drawing in its-

T L

Fig. B

earlier stages, and even in the making of working drawings for shop
use, it is not necessary or essential that the paper on which the
drawing is made should be secured to the drawing-board in any other
way than by pinning it. This is effected by the use of drawing-pins.
There are, however, several kinds of drawing-pins to be had, and their
variety is often the cause of difficulty in choosing, to the uninitiated
user. A pin that would answer well the purpose of the free-hand
draughtsman in putting a sheet of paper on his drawing-board, might
be the very worst that a mechanical draughtsman could possibly use.
The former, not needing a tee-square in the practice of his art, if he
dces not stretch his paper, pins it down to his board with any drawing-
pins that are at hand. These may possibly be pins with heads a
sixteenth of an inch thick, beautifully milled on their edges and
perfectly flat on their under and upper sides. Such pins would be
shunned by any mechanical draughtsman who wished to keep the
edges of his tee- and set-squares intact and free from notches, Pro-
jecting the whole thickness of their heads from the surface of the
paper, they would foul the edges of the tee- and set-squares and cause
damage. The only kind of drawing-pin a mechanical draughtsman
should use should have a head as thin as possible, without cutting at
its edge, slightly concave on the under side or that next to the paper,
and only so much convexity on its upper surface as will give it
suflicient central thickness to enable the pin to be properly secured to
it. There is neither sense nor reason in making the head of a drawing-
pin half-an-inch in diameter if its circumferential edge does not bear
on the paper when its pin is as far into the board as it will go. The
purpose of the pin is to keep its head from rising from the surface of
the paper, and it need only be long enough and strong enough to effect
this. It is better practice to use four small, good-holding drawing-
pins as shown in Fig. B, along the edge of a sheet of paper, than one
large, clumsy, badly-made pin at each end of it. Suitable drawing-pins
which answer every purpose required of them by the draughtsman are
now to bhe obtained for half-a-crown per gross.

5. Paper.—As the student from the very commencement of learn-
ing to draw should study to acquire the good draughtsman’s habits of
work, and as one of these is the making of clear, sound lines in his
drawing, whether in ink or pencil, it is advisable that he should
accustom himself to draw on fairly-good paper. It is not meant by
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this that such paper as Whatman’s is recommended for use in his
preliminary work, but rather to guard him against purchasing soft,
spongy paper, which will not stand the application of indiarubber for
erasing, or of ink for lining in, without damaging its surface or causing
the ink to run. Drawing-papers are of two kinds—viz.,hand-made and
machine-made. The former is the best, but is expensive; while the
latter is made in great variety, and, as a consequence, of varying
quality. Most students, in learning to draw, require a frequent use of
the rubber ; therefore a tolerably hard-faced paper is desirable. Since
the advent of so much drawing as now obtains, a new special make
of hard-faced, close-textured cartridge paper has been produced for
students’ use. It costs about 2d. per imperial sheet, and is very
suitable for the purpose. For more advanced work there is, to the
writer’s knowledge, nothing that will compare with Whatman’s smooth
double-elephant paper, which takes the finest line either in ink or
encil.

P Rubber.—For cleaning drawing-paper, a piece of soft, grey vulcanized
rubber should be used, as it will not injure the surface of the paper if
properly applied. Its only drawback is the appearance at times in it
of small specks of some hard substance like coke-dust, which find their
way into it -during the process of manufacture; these, however, are
easily removed when detected. For erasing any portion of a line in
pencil, a piece of prepared white vulcanized rubber is the best—small
rectangular pieces of this material are now to be had of any artists’
colourman. What are called pencil-erasers, or rubber-sticks, are now
in common use amongst draughtsmen for the same purpose. They are
made in the form of a large square pencil, with rubber inserted in the
body of it. To use it the wood is cut away, as is done in pointing an
ordinary pencil, exposing the rubber, and it is then applied to the
pencilled line with a to-and-fro motion of the hand, pressing lightly,
until the line disappears.

S ¥ L oogw

Fig. C

Ink.—A further and all-important requisite to the student draughts-
man is ink with which to line in his drawings after they have been
carefully put in in pencil. We say this is an “important ” requisite,
because so much depends on its quality. It is generally known as
India or China ink. The definition given of it in standard dictionaries—
viz., “a substance made of lampblack and animal glue”—is no doubt
answerable for the large amount of a material made and sold in
Britain under its name. Pure India or China ink is only made in
those countries, because the special wood from which it is produced is
found only in those regions; therefore in purchasing ink for use on
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drawings, the only way to ensure its being the real article is to obtain
it from a bond fide importer. The best mathematical instrument-
makers are generally importers of it. It is sold in hexagonal sticks,
as shown in Fig. C, and is expensive, but small oval and round sticks
of it are to be had costing about a shilling each.

8. Before noticing the few ‘instruments” that are necessary when
commencing the study of mechanical drawing, we think it advisable to
show, in a combined sketch (Fig. D), the special tools—viz., drawing-
board, tee- and set-squares—recommended, that the student may note
the position they each should assume when in use. The teesquare
should only be used in the two positions indicated by its outline in full
and dotted lines. In the latter it will seldom be required. All lines at
right angles to its edge, when in the first position, should be drawn
with the 60° set-square applied, as shown. The 45° set-square is placed
as it would be applied when a line is required at that angle near the
left edge of the sheet of paper. Care should be taken, when drawing’
by lamp or gaslight, that the light is in such a position as to cause little
or no shadow to be cast on the paper by the edges of the tee- or set-
squares. This is important, as such shadows often cause errors in lining
in,whether in ink or pencil. ~'We may mention that the drawing-board
and teesquare recommended for use are known as “Stanley's’

TImproved,” they having been introduced many years ago by Mr. W. F.
Stanley, of London.
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Instruments.—The Drawing Instruments required by the student
draughtsman are few in number, and should be acquired as the neces-
sity for their use arises. No greater mistake can be made than that of
purchasing a “ box of instruments,” as it generally contains some articles
that are never required, and is wanting-in those that are necessary for
the special kind of drawing practised. All that the student requires for
nse for some time is a pair of 6-in. compasses with a pen-and-pencil leg,.
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pen-and-pencil bows, a ruling- or drawing-pen, and a set of drawing-
scales. For future service, everything depends on a proper choice in
their purchase, more particularly if their use is to be continuous;
and as we assume throughout this work that the student has little,
if any, previous knowledge of the subject, it is especially necessary
that he should know what constitutes a good serviceable instrument,

as the possession of inferior ones will be a constant source of annoyance
to him. -

(o]

B

Fig. 7

7. In giving the characteristics of a good instrument, it is of the
first importance to understand the use to which it is applied. With
draughtsmen, a pair of compasses and a pair of dividers serve two very
different purposes, and are therefore differently constructed, but their
names and uses are often misunderstood. ¢ Compasses” are never used
for dividing, nor are “dividers” applicable to compass-work. Beginners
should therefore note that the former are specially intended for putting
in circular lines in pencil or ink, and that the proper and only use of
the latter is the division or measuring-off of lines and spaces. These
separate and distinct purposes give at once a clue to their proper form
and construction.  They are both instruments with two movable legs,
joined together by a forked end, and secured by a pin and washer, as
shown in Figs. 7 and 8 at A, A. The compasses, however, being used
to draw circular lines, or lines described about a point everywhere equi-
distant from it, should have jointed legs, one with a knee-joint at B, and
the other. with a socket, as at C, to enable it to be easily removed
and replaced by the ink- or pencil-points D, E, Fig. 10, when required.
The purpose of the knee-joints shown at B in the compasses, and b b
in the pen and pencil points, is to enable the lower parts attached to
them to be adjusted perpendicular to the surface of the paper, in
order to obtain a truly circular line, and to allow both nibs of the
inking-point to bear fairly upon it.

Dividers, which are not necessary to the student for some time
forward in his study, should have legs of equal length, but without
joints, as in Fig. 8, their lower parts being made of steel of triangular
section to within $ in. of the ends, which should be gradually worked
off into nicely-rounded points, as shown. This latter feature is one that

‘* —

Fig. 8

should obtain in the points of compasses, bows, etc. 7Triangular-pointed
instruments should never be used, as their points act the part of a
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rimer, cutting their way through the paper into the drawing-board,
making unsightly holes, and causing them to describe anything but true
circles.

Pen-andpencil Bows are compasses intended for putting in smaller
circles and circular arcs. Single-jointed ones, such as are shown in Fig.
9, will serve all the present wants of the student, if well made. The
socket in the pencil-bow should be tubular, and of a size to take leads,
and not lead-pencils. As these two instruments will be much oftener
used than any other, it is advisable that the student should supply him-
self with the best to be afforded, as they will amply repay any present
outlay.

What are known as ¢ half sets,” shown in Fig. 10, are now specially
made by drawing-instrument makers, for the use of students. They
comprise compasses, lengthening bar, pen and pencil point, and knife
key, and are a very serviceable outfit if well made.

e | S N—

© =" —
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Pencil Point D. Pen Point E.

In selecting the foregoing instruments, care should be taken that -
they are all sector-jointed with double-leaves and well made; there
should be no shake or slackness in any of them, and they should be
equally stiff in the joints at any point from being full open to closing.
The test for a pair of compasses is to open out their legs well apart and
then to fold each lower half-leg together—if the points meet each other
truly, they are correct in the ]omts if they cross one another, the joints
are not properly made.

Drawing or Ruling-pens are of two kinds—rviz., those made with a
jointed nib, as in Fig. 11, and those without a joint, as in Fig. 11a. The
former, though more expensive, is*to be preferred, on account of the
facility in cleaning and sharpening ; but the latter is a very serviceable
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pen, if well made and finished. It will be observed in the sketch of the
first, that the under or fixed nib is much straighter and thicker than the
hinged one; this is so made to resist the pressure of the hand upon it
when drawn along the edge of the tee- or set-squares. In all ordinary
pens the nibs are of equal thickness, and the hand-pressure tends to
close them and prevent the flow of the ink; but by providing a stout’
springless inner nib this tendency is overcome. = The stem or handle of
this pen, it will be noticed, is squared, to indicate how it should be held
by the fingers when in use.

O] IO
' Fig. 11a

The Drawing-scales recommended for present use by the student are
a set of three lately introduced by Messrs. Jackson Bros., of Leeds,
made of pliable varnished beech, and giving twelve scales of the
standard units of measurement generally used in engineering drawing.
They are decidedly to be preferred to any cardboard-scale, as the dividing
is well done and there is no tendency to double up or get dirty by use.
‘When the student acquires a more perfect knowledge of the use
of instruments and scales, he can add to his stock already in possession
whatever is necessary, always bearing in mind that a good tool in
the hands of one who knows how to use it will invariably do
better work, and is to be preferred to one of inferior quality ; in
the meantime, those herein recommended are all-sufficient for present
requirements.



CHAPTER II
MECHANICAL AND FREEHAND DRAWING: THEIR DIFFERENCE AND USES

8. BEFORE proceeding with an exposition of the principles on which
the practice of mechanical drawing is based, it is necessary that the
student—who is assumed to have no previous knowledge of the subject—
should thoroughly understand the radical difference, in character and
application, which exists between it and that kind of drawing known as
¢ freehand.”

The generic term ‘drawing,” strictly speaking, is the art of
representing objects on a surface—generally flat—by means of lines
showing their forms and general contour, independent of colour or
shading ; for the latter, without form, would be meaningless and
incapable of expressing anything. Freehand drawing is the practice of
the art of drawing by means of the hand, the eye alone controlling and
guiding the tool or instrument used for delineation. The hand guided
by the eye can, however, only picture or draw what is seen from one
position at a time ; for were it otherwise, a distorted view of the object
would be the result, as its appearance to the eye from one point of view
would be different to that from any other.

All objects are made visible to the sense of seeing by the agency
of light, whether natural or artificial, for without light it would be
impossible to distinguish one object from another. To the artist or
draughtsman, light is a stream of matter given off by a luminous
body, travelling from its source in thin straight lines—or rays—to
the object illumined, from which it is reflected or transmitted in the
same way to his eye. What is seen, or is apparent to his sense of sight,
he depicts or draws on his paper. If he changes his position with
respect to the illumined object, he sees it differently, and obtains a
different view of it; each such view, if correctly drawn, is known
as a “perspective,” and would agree with that obtained in the following
manner.

In the diagram (Fig. 12) let HP represent a flat surface, such
as a piece of ground or a floor, exposed to sunlight, and VP a sheet
of glass set up on HP, in a vertical position. At any distance to
the left of VP, and parallel to it, is erected a piece of fencing OO,
having its top and bottom edges parallel to HP, and its side edges

12
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perpendicular to it. At a given distance to the right of VP, and
perpendicular to HP, a staff S, surmounted by a small rectangular
plate of any opaque material, and pierced with a sight-hole is fixed ;
the height of this sight-hole from HP being supposed to equal
that of an observer’s eye from the ground. The sheet of glass
VP being transparent, it is evident that the spectator, on looking
through the sight-hole, will see the whole of the piece of fencing,
and can judge of its appearance from the position occupied by his eye.
If he wish for a record of this appearance he can obtain it by drawing
on the glass what he sees through the sight-hole. The view he
would get would be a perspective of the original object OO, or
the fence. But its contour or outline on the glass, although similar,
would be much smaller than its original. How much smaller,
would entirely depend upon the distance between the eye at sight-
hole, the sheet of glass VP, and the fencing OO. It is evident that
the nearer VP is to OO, the eye remaining in the same position, the
larger would be its image or picture upon VP, and the converse of this
would obtain were the conditions reversed.

It will be seen from the diagram that the perspective view of the
original object is obtajned by finding where the luminous or visual rays
—represented by broken lines—proceeding from its principal points,
are intercepted on VP in their passage to the eye, and then joining
such points by right lines as in the original. Now, as these visual rays,
or ‘“projectors,” are the means by which the view of the object is
projected or thrown on VP, such a view is called a “ projection,” and in
the special case we are considering a ‘ perspective projection.” In such
a delineation it is apparent that all rays proceeding from the visual
points in the object form a pyramid, the vertex of which is the point
where they meet in the eye; and from this fact it will at once be
seen that a perspective drawing of an object can serve no other
practical purpose than that of showing its appearance when viewed
from a certain fixed position, for its boundary lines altering with
the altered position of the spectator, it is difficult to determine their
actual lengths, as they only bear a relative proportion to their originals.
As they cannot be measured with an ordinary rule or scale, it would
be impossible to construct a machine or erect a building from such
drawings. In perspective drawing, HP in the diagram is known as
the horizontal or ground plare, and VP the perspective or picture plane,
which latter is always supposed to be transparent, although actually
represented by the artist’s sheet of drawing-paper or canvas.

9. As, then, a perspective, or freechand drawing, does not fulfil
the requirements of the workman, in that he cannot determine at sight
the actual form, dimensions, or arrangement of the piece of work he is
called upon to execute, some other method of delineation becomes a
necessity. This want is supplied in what is generally known as a
“mechanical drawing,” or a drawing obtained by the correct application
of the principles of a kind of projection called “orthographic,” which
gives results differing widely from that already explained, in that it
affords a means of at once determining the actual form, size, and
disposition of every part of the object represented, and gives an adept
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in -the application of its principles the power to commit to paper the
entire design of a machine or engine, that will enable the engineer
or machinist to determine at sight whether the stationary and working
parts of one or the other are disposed in such a way as to meet the
requirements for which they were designed. In fact, a mechanical
drawing is the only efficient way of describing by means of lines,
properly disposed according to fixed rules, the actual construction and
arrangement of a plece of mechanism.

As “orthographic” projection is the basis of mecha.mca.l and
engineering drawing, its difference as compared with perspective
projection must be understood before the study and application of
its principles are entered npon. An important consideration in
connection with either kind of projection is, that the bodies, or objects,
whose forms it is wished to depict on paper, are in all cases assumed
to be illumined by solar light, and have the.power of reflecting or
throwing off the light that is cast upon them. As the source of
light—or the sun—is at a comparatively nfinite distance from all
objects illumined by it, its rays will not sensibly diverge, or approach
each other, but may be regarded as exactly parallel among themselves.
Then if, instead of the rays from an illumined object being reflected
so as to converge in the eye—as in perspective projection—they be
conceived as travelling from the object in parallel lines, till intercepted
on a plane surface at right angles to themselves, and the points of
interception be joined by straight or curved lines, the representation
thus formed on that surface will be an ‘“orthographic” projection
of the original object. In this case the visual or projecting rays,
being always parallel to each other and perpendicular to the surface
on which they are projected, form a prism; and it follows, that,
however far that surface is from the object, its representation remains
the same, and the projected length of all its lines parallel to that
surface will be of the same length as in the orginal, and therefore their
exact dimensions can be at once ascertained.

It will be understood from this explanation that instead of the eye
being stationary and viewing the object-from one point alone, as in
perspective, it is in orthographic projection supposed to move in such:
a way as to be directly opposite to each of the principal points of the
object, the projecting rays from it being always perpendicular to the
plane on which its image is projected. It is manifest, however, that in.
this way only one prOJectlon of an object is obtained; but as any
solid body has more than one dimension, it becomes evident that more
than one view of it must be given before its other dimensions can be
ascertained. . To this end it is usual to determine its projections on
two planes, which are always at right angles to each other, and from
‘these correct and definite ideas as to- its shape and ‘dimensions may
at once be obtained. X

10. To illustrate the foregoing diagrammatically, let ‘HP (Flﬂ’ 13)
be a horizontal plane, and “VP another plane at right angles or
perpendicular to HP. At any distance from VP, and in front of
it, a rod R is set up perpendicular to HP, supporting on its upper end
a bar F of rectangular section and a given length. Visual rays or
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projectors parallel among themselves and perpendicular to VP are
shown proceeding from the corners A, B, C, D, of the bar penetrating
VP in a, b, ¢, d: As the edges of the original object, or the
rectangular bar F, are all straight, it follows that if a, b, ¢, d on VP
be joined by straight lines, an orthographic projection of the face
A, B, C, D, of the bar will have been obtained, which will, on
measurement, be found to be an exact counterpart .of it. But this
projection only gives the length and depth of the bar; and as it is
necessary to know its other dimension, or width, a view showing that
dimension must be obtained. Now it is evident that a view of the
bar, looking at it from above and in the direction of the arrow, will
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supply the information required. If, then, visual rays, or projectors,
proceed as before from the four corners of the face of the bar seen
from above, to the plane HP below, they will penetrate that plane at
the points o/, b, ¢, f, and these points being joined as before—as the
same conditions obtain—there is- produced on HP an orthographic
projection of the top face of the bar which determines its width.
‘With these two projections, or views of the original, it will be seen that’
a workman could produce any number of such bars without the
assistance of a model or other guide. To distinguish the two pro-
jections of the same object, the one obtained on VP is known as an
“elevation ” or vertical projection, and that obtained on HP is called
a “plan” or horizontal projection.



CHAPTER IIT

PRACTICAL GEOMETRY AND MECHANICAL DRAWING

As it has been necessary, in explaining the difference between a
mechanical and a freehand or perspective drawing, to make use of
terms which pre-suppose a knowledge of geometry by the student which
he may not possess, and as it is advisable to take nothing for granted
in the exposition of our subject, it will be necessary at this stage to
define the meaning of the geometrical terms that will be made use
of as we proceed, and to show how, by a special combination of
lines, those geometrical figures are constructed which form the
surfaces of objects whose delineations are subsequently to be obtained
by orthographic projection.

The term ‘geometry,” in its generally-accepted sense, means the
science or knowledge of magnitude reduced to system, and has to do
with the measurement of lines, surfaces, and solids. It has, like other
sciences, two sides or branches, one ‘theoretical,” which demonstrates
or proves its principles, and the other ‘practical,” or that which
applies those principles to construction. Theoretical geometry, or
Euclid, will seldom be referred to in the course of this work, as
most of the demonstrations used are self-evident; but practical
geometry—a sub-divison of which is the basis of our subject—must
be understood by the student to such an extent as will enable him
to work out the problems that will arise in the exposition of it.

The two parts into which practical geometry is divided are: Plane
geometry, which has reference only to the solution of questions relating
to points, lines, and figures, situated in one plane; and solid geometry,
which shows by special representations on two o0r more defined planes,
the relations of the points, lines, and surfaces of bodies having length,
breadth, and thickness.

We would, in passing, guard the student, on his entering on the
study of geometrical drawing, against wasting valuable time in
working out the problems—many of which will be of no use to
him—given in most text-books on the two subjects of plane and
solid geometry, as all that is absolutely necessary for him to know
in connection with either will be explained to him as occasion arises.

As we cannot form a conception of the magnitude of any material

c
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object without reference to one or more of its dimensions, and as each
of these involves the idea of extension in some direction, the word
length, or its representative, “a line,” would appear to be the first
term used in geometry requiring definition, but as a line can have
no existence till it is generated or drawn, our first term must be that
of the generator, or “point.” We therefore define—

A point, as having no magnitude, that it is used to denote
‘“position” only, and is represented geometrically by a dot or mark
made by any pointed instrument, such as a pen, pencil, etc.

A line, as the path made by a point moving over a surface.
It may be straight, crooked, or curved, according to the direction in
which the point travels or moves.

A straight line, as the shortest path that can be made by a point
moving from one position to another, or the nearest distance between
two points, as the line A between points 1 and 2.

A crooked line, as the path of a point that has changed its direction
after moving in a straight line for a given distance—1 to 2,—as the
line B from 1 to 3.

A curved line, as the path of a point that continually changes its
direction, as the line C from 4 to 5.

If the path of a moving point changes in such a way as to enclose a

certain amount of surface, then the enclosed surface is called a “figure,”
and the i ath its boundary line, as in Fig. 14, where the ¢ point path”
from a, through b, ¢, d, defines the form of the figure.
. If a point move continuously in such a way as to be a.lways at a
given distance from some fized point, then the surface enclosed by the
“point path” becomes the figure called a “circle,” as the continuous
line ABC (Fig. 15), any point in which is equi-distant from D, which is
called its centre.

It is evident from the foregoing that two straight lines cannot enclose
a surface, or form a figure, but that one such line in combination with
a curved or a crooked line will effect this, as shown in Figs. 16 and 17,
where we have in one case a straight line and a crooked one, and in
the other a straight and a curved line, combined to form figures.

A surface is a magnitude that has extension in two directions only
—viz., lengthwise and crosswise. Its dimensions—with one or two
exceptions—are given as length and breadth.

A plane surface is one that a perfectly straight edge will touch
or coincide with if applied to it in any direction. A mathematical or
perfectly true plane does not exist—it can only be imagined.

Parallel straight lines are the point paths of two lines on a plane
surface that are everywhere equi-distant from one another, as the lines
A and B.

Converging straight lines are the point paths of two lines on a plane
surface, which, if continued, meet and cross each other as the lines C, D.
‘When the paths or lines increase their distance from each other as they
leave the meeting point, they are said to diverge. .

An angle is formed when two straight lines meet each other in a
point, as D meets F in & (Fig. 18). If the inclination of one line to
the other be such that the angles are equal on both sides of the meeting
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point, then the angle formed by the lines D and F is a right angle. 1f
they are not equal, as in the meeting of E and F in d, then the smaller
of the two, or angle a, will be an acute angle, and the larger, or angle b,
will be an obtuse angle. And as the line D makes equal angles on both
sides of it with the line F, the two lines D and F are perpendicular to
each other.

11. As angles cannot be measured without a knowledge of the parts
and divisions of the circle (Fig. 15), we must, before giving further
definitions of plane figures, explain these. The boundary line ABC of
this figure is called its circumference. ~Any straight line drawn through
D, its centre, and touching the circumference on both sides, is a diameter.
Half of such a line is called a radius. Any portion of the circum-
ference, such as from A to B, would be an arc, and a straight line
joining A and B the chord of that arc; the space enclosed by the arc
AB and its chord is called a seyment, and that by the arc AC and the
two radii AD, CD, a sector. One quarter of the whole figure or circle
is a quadrant, and one half of it a semi-circle. For the measurement of
angles, arcs, chords, etc., the circumference of every circle is supposed
to be divided into 360 equal parts called degrees, which are indicated
when speaking of them by attaching a small circle to the right of the
number stated—as 30° 60°, etc. (or 30 degrees, 60 degrees, etc.). A
quadrant, therefore, contains 90 degrees, and a semi-circle 180 degrees.
The size of any angle is determined by the number of degrees contained
in the arc subtending the angle, described about the angular point d,
as a centre (Fig. 18). The complement of the angle a is the number of
degrees it is wanting to make it a right angle, and its supplement is the
number of degrees contained in the angle &.

Circles are concentric when they have the same centre as in Fig. 19,
and eccentric when their centres are different, as in Fig. 20.

A tangent is a straight line which touches a circle or a curve in one
point, and when produced does not cut it, as in Fig. 21.

Tangent ctrcles and tangent curves are those which. touch each other
in one point, but do not cut as in Fig. 22.

The point of contact is that point where a tangent touches a circle
or a curve, or where two tangent curves touch, as a in Fig. 22.

1la. In continuing our definitions of plane figures, we take first
those constructed with the least number of straight lines that will
enclose a space, which is three. Such figures are called triangles or
three-angled, and are named according to the disposition of their sides
and quality of their angles.

An equilateral triangle has equal sides and equal angles, which are
all acute, as in Fig. 23.

An 4sosceles triangle has two sides equal and two of its angles always
acute, the third angle being acute or obtuse, dependent on the length of
its third side, as Figs. 24 and 25, the latter having one obtuse angle at a.

A right-angled triangle has one of its angles a right angle, the other
two being acute, as Fig. 26.

A scalene triangle has three unequal sides, as Fig. 27; an obtuse-
angled triangle has one obtuse angle, as Fig. 28; and an acute-angled
triangle has all its angles acute.
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Of four-sided figures bounded by straight lines—

A square has all its sides equal, and its angles right angles, as in
Fig. 29. A rectangle has opposite sides pairs, and parallel, and its
angles right angles, as in Fig. 30. A parallelogram, or rhomboid, has
two pairs of parallel sidesy, as Fig. 31. A rhombus has all its sides
equal, two of its angles being acute, as Fig. 32. A trapezoid has only
two sides parallel, as Fig. 33. A trapezium is an irregular figure of
four sides, none of which are parallel, as Fig. 34.

A regular polygon is a figure having all its sides and angles equal.
One of five sides is a pentagon, as Fig. 35. One of six, a hexagon, as
Fig. 36. One of eight sides, an octagon, as Fig. 37. An drregular
polygon is a figure whose sides and angles are unequal.

The centre of a polygon is a point that is equi-distant from its sides
and its angular points. A polygon is circumscribed when all its
angular points touch a circle described about it, as in Fig. 38.

A circle is 7nscribed in a polygon when its circumference touches all
the sides of the polygon, as in Fig. 39.

2
N

Fig. 89 Fig. 40 " Fig. 41

A right or straight-lined figure is described about a circle when all
the sides of the figure touch the circumference of the circle, as in Fig.
40 ; and a straight-lined figure is inscribed in another such figure when
the angular points of the inscribed figure are upon the sides of the
figure in which it is inscribed, as in Fig. 41.

A straight line joining the opposite angular points of any four-
sided figure is a diagonal. A square or a rectangle has its diagonals of
equal length. In a rhombus, rhomboid, trapezium, and trapezoid the
diagonals are unequal. )

As an apprenticeship to any mechanical trade cannot be served in
a factory or workshop without the apprentice, as he advances in know-
ledge and skill in it, being often called upon to line out his own work,
it is necessary that he should be able to draw any of the above-described
plane geometrical figures on the material he works in, with a straight-
edge, a scriber, and a pair of shop compasses, instead of the tee- and
set-squares, etc., of the draughtsman. With this fact in view, we shall
give in the solution of each of the following problems the simplest
possible method of construction, it being undesirable to burden the
aemory of the student with the many ways of solving them tv be
found in text-books.



CHAPTER IV
PLANE GEOMETRY PROBLEMS

12. As the lines forming the boundaries and détermining the forms
of the plane geometrical figures previously described, have a certain
relative position, it is necessary, before attempting to construct the
figures themselves, that we know how to draw geometrically, lines
having any defined relation to each other. As this knowledge is
generally imparted in the form of problems, with their solutions, we
shall adopt the same plan; but in explaining the constructions do
not confine ourselves to any orthodox method where a simpler one
may be used. The student will remember that in solving the sub-
sequent problems, only the tools mentioned in the last paragraph
of the previous chapter are to be used, as the assistance of either
a drawing-board or squares is inadmissible. As it is not always
possible to apply a rule or a scale to a line, when we wish to sub-divide
it into parts, our first problem is—

Problem 1 (Fig. 42).—70 divide a given straight line into two equal
parts. *

Now, if the given line is near the edge of the material on which it is
drawn, a different method of construction must be used to that which
would be possible if the line were some distance from that edge. In
the former case proceed as follows :—With a distance greater than half
the length of the given line AB, as a radius, and with A and B a3
centres, describe arcs cutting each other in C, and with a still larger
radius than before, and from the same centres describe arcs cutting
each other in D; then the point E, where a straight-edge laid exactly
on C and D crosses the line AB, is the middle of the given line, and
divides it into two equal parts. In the latter case, with the distance
greater than half AB (which may be gauged by eye) as radius, and
from A and B as centres, describe arcs on both sides of the line AB,
cutting each other in C and F. Then the straight-edge applied to C and
F will give E in AB as its point of section, dividing it into two parts
of equal length.

23
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Problem 2 (Fig. 43).—At a given point C, in a sitraiglt line, to erect
a perpendicular.

Here the point’ may be near the middle of the line or near the end
of it. If the former, as at C, in the line AB, and if AB be near the
edge of the material, proceed as follows :—8et off from C, on either side
of it, equal distances, as CD, CE, and from D and E as centres, with a
radius greater than half the distance between D and E, draw arcs
cutting each other in F, then a line drawn through F and C will be
perpendicular to AB. If the given point is near the end of the line
and the edge of the material, as A in BD (Fig. 44), then from any
point a, above BD, and with a radius equal to a A, describe an arc
CAT, passing through A, and cutting BD in T. Draw a line from
‘T through @, and produce it till it cuts the arc in C. A line from C
through A will be perpendicular to BD at A.

Problem 3 (Fig. 45).—From a given point A, above a straight line
BC, to let fall a perpendicular to that line.

Here the point may be nearly over the middle, or over the end of
the given line. If in the first position, with any radius greater than
the distance from the point A to the line BC, describe an arc cutting
BCin D and E, and from points D and E as centres, with a radius
greater than half the distance between D and E, draw arcs cutting each
other in @ and &; then a line drawn through the given point A and
the intersections of the arcs in @ and & will be the required perpen-
dicular. If the point is nearly over the end of the given line, as 4 in
Fig. 46 is over AB, from b, draw a line intersecting AB in C, and
bisect it in S; with SC as radius and S as centre, describe an arc
cutting AB in D, join b and D, and the line will be perpendicular to
AB. The student will notice that the construction in the second cases
of Problems 2 and 3 is similar. This arises from the fact that the line
drawn to the given point has in each case to be at right angles to the
given line, and as the angle in a semi-circle is always a right angle, the
problem is to draw a semi-circle that shall contain the three angular
points of a right-angled triangle, one of which is the given point in the
problem.

Problem 4 (Fig. 47).—To bisect (or divide into two equal parts) a given
angle.

‘When speaking of an angle, it is usual to name it by affixing either
a single letter at the angular point, or a letter to each of its lines and
the angular point, the one denoting the latter being always the second.
In the problem, let BAC be the given angle. With any convenient
radius set off from A equal distances on BA and CA in the points D
and E, and from these points, with a radius greater than half the
distance across from D to E, draw arcs intersecting in F; a line
through F and A will bisect the angle BAC. This construction, it
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will be seen, is tantamount to bisecting a line from D to E, and
drawing a line through its bisection and point A, the only requisite
condition being that the two points D and E in the lines forming the
angle must be equi-distant from the angular point A.

Problem 5 (Fig. 48).—T0 draw a line parallel to a given line at a given
distance from it.

Here it is evident that if from any two points C and D in the given
line AB, arcs be drawn, of a radius equal to the given distance the two
lines are to be apart, and a line EF be drawn tangent to those arcs, then
the line EF will be parallel to the given line AB. This is the simplest
possible solution of the problem, involving the least work, but requires
care in drawing the parallel line exactly tangent to the arcs. Another
solution, requiring much more work in the construction, is the following :
—At the points C and D, in line AB (Fig. 48), erect two perpendiculars
to AB, and set off on each of them from C and D the distance the
parallel lines are to be apart. Through the two points obtained draw a
line, and it will be parallel to the given line AB.

Problem 6 (Fig. 49).—Through a point P, to draw a line parallel to a
gtven line AB.

With P as a centre and any convenient radius, describe an arc EC,
cutting the given line AB in C, and from C as a centre, with the same
radius, draw an arc through P, cutting AB in D. Set off the distance
PD on the arc EC, and through P and E draw a line ; it will be parallel
to the given line A B.

Problem 7 (Fig. 50).—70 draw an angle equal to a given angle A.

This means that two lines are to be drawn having the same inclina-
tion to each other that two given lines have. We must therefore first
find the inclination of the given lines. To do this we have only to
draw on the given angle an arc of any convenient radius, with A as
centre, such as BC. The length of its ckord is the distance subtended
by the lines forming the angle at the radius AB or AC. If, then, from
point @, in the line DE, and with a radius equal to AB, we describe
an arc bc, and from c¢ set off a distance on bc equal to the chord of the
arc BC, then a line drawn through & and a will make the same angle
with DE that AB does with AC in the given angle, which solves the
problem.

Problem 8 (Fig. 51).—T0 draw a line making a given angle—say 60°
—with a given line.

The solution of this problem involves the relation that the radius of
any circle has to the chord of an arc which subtends an angle of 60° in
the circle. To solve it, let AB be the given line, and C a point in it at
which it is desired to draw a line making an angle of 60° with AB.
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From C, as centre, and with a convenient radius, draw the arc DE,
cutting AB in E; from E with the same radius cut DE in D, then a
line drawn through D and C will make an angle of 60° with the line
AB. If the circle were completed with the same radius, it would be
found, on stepping the radius round it, that it exactly divides it into
six equal parts, and as every circle for geometrical purposes (as before
explained) is divided into 360°, one-sixth of the circle must contain 60°,
or the angle which the two lines in the problem have to make with
each other. Knowing this specific relation subsisting between the
radius and the chord of an arc of 60° of a circle, we are enabled to lay
down any angle with the assistance of a ‘“scale of chords,” which will
be found on one of the set of drawing-scales previously recommended.
- To show its use, let us take, for example—

Problem 9 (Fig. 52).—To draw a line, making an angle of, say, 70°,
with a given line at a given point in i,

Let AB be the given line, and a the given point in it. From the
zero point, on the extreine left of the scale of chords, and with a radius
in the compasses equal to the distance from that point to the one marked
60—with the arrow over it—on the scale, draw with a, on the line AB
as a centre, the arc be, cutting AB in ¢, and from ¢ as a centre, with a
radius equal to 70° on the scale of chords, cut the arc dc in b. A line
drawn through 4 and a will make, with the given line AB, an angle of
70°; and so with any other angle, always remembering that from zero
to 60 on the scale of chords is the radius with which the first arc in the
construction is to be drawn.



CHAPTER V
PLANE GEOMETRICAL FIGURES

13. It may be noted, before passing on to the construction of the
plane geometrical figures which form the surfaces of the plane solids
whose projections we shall next show how to obtain, that as the angles
most generally chosen for the surfaces of mechanical details are those
which contain some multiple of 5°, it is not necessary to use even ‘a
scale of chords in laying them down on paper or other material, as most
of them can be obtained by simple geometrical construction, which has
fewer chances of error than even measuring from a scale. A few of
such angles are 15° 30° 45° 60° 75° 120° 135° etc., and are thus
obtained : For 30°, bisect 60° ; for 15° bisect 30°; for 45° bisect 90°;
for 60° use radius ; for 75° add 15° to 60°; for 120°, mark off radius
twice ; for 135° take 45° from a semi-circle. = With these simple con-
structions committed to memory, and the use of a scale of chords for
any angle not easily obtained otherwise, the student will be able to lay
down any angle that may be required. We may now proceed with the
construction of plane figures, taking first—

Problem 10 (Fig. 53).—ZL'o construct an equilateral triangle on a given
. base.

(Note : The base of any triangle is that side of it on which it stands ;
the verter, the point immediately over the base; and the altitude the
height of the vertex from the base.) With the given base AB as a
radius, and from A and B as centres, describe arcs cutting each other
in C, the vertex, join AC and BC, and the triangle is constructed. If
the altitude only be given as CD (Fig. 54): Then, as the sum of the
angles of any triangle are together equal to two right angles, or 180°,
and as the triangle required is equi-angular, the angle at its vertex will
be one-third of 180° or 60°. To construct it, draw EF, GH through
C and D at right angles to CD, and from C, with any convenient
radius, describe a semi-circle cutting EF in a and ¢, with the same
radius, and from @ and ¢ as centres, cut the semi-circle in d and e,
draw lines through Cd and Ce, and produce them to meet GH in g and

then gCh is an equilateral triangle having an altitude CD.
28
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Problem 11 (Fig. 55).—T0 construct an isosceles triangle,-the base AB
and one of the equal sides CD being given.

With CD as a radius, and from A and B as centres, draw arcs inter-
secting in a, join aA and aB, and the triangle is constructed. If the
base AB and the altitude ab are given (Fig. 56): Bisect the base
AB in b, and at b erect a perpendicular and make it equal to ab, join
aA and aB, then AaB is the required isosceles triangle.

Problem 12 (Fig. 57).—T0 construct a scalene triangle, the sides being
given.

Take the longest side AB for the base, and with the shortest as a
radius, and from B as a centre, describe an arc; then with the length
of the third side as radius, and from A as centre, cut the arc described
from B in b, join & a.nd A and b and B, then A)B is the required
triangle.

Problem 13 (Fig. 58).—T0 construct a square on a given line AB as
a side.

Erect at A a perpendicular to AB, and from it cut off AC equal to
AB; then from C and B as centres, and with AB as radius, draw
arcs intersecting at D, join C and D and B and D, and the square is
constructed. If the given line be a diagonal and not a side: Bisect
the diagonal AB (Fig. 59) in a, by a perpendicular &, @, ¢, and from &
set off ab, ac, equal to aA, or aB, join Ab, 6B, Be, cA, and the square
is constructed on the given diagonal AB.

Problem 14 (Fig. 60).—7o construct a.rectangle, the length of two
adjacent sides being given.

Let the line AB be one of those sides. At A erect a perpendicular
to AB, and cut off from it in C, a length equal to the other given side;
from B as centre, and with a radius equal to AC, draw an arc, and
from C as centre, with a radius equal to AB, draw another intersecting
the first in D, join CD and DB, and the required recta.ngle is con-
structed.

Problem 15 (Fig. 61).—To construct a rectangle, a diagonal AB and
one side BC being given.

As the diagonal of a rectangle divides it into two right-angled
triangles, if it is made a diameter, and on it a circle is described, the
circle will contain the two right-angled triangles which will form the
rectangle sought. Therefore, bisect the given diagonal AB in @, and
from a, with aB as radius, describe the circle ABCD; from B as a
centre, and with BC as radius, cut the circle in C, and from A, with
the same radius, cut it in D, join ACBD, and it is the required
rectangle.
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Problem 18 (Fig. 62).—7o construct a rhombus, one of a pair of
opposite angles and length of a side being given.

Let AB be the length of given side, and C the given angle; at A
make the angle BAD equal to angle C, and the side AD equal to AB;
from B and D as centres, with AB as radius, draw arcs intersecting in
E; join EB and ED, and ADEB will be the required rhombus. If a
diagonal AB and length of a side AC be given (Fig..63): Then, if from
A and B as centres, with a radius equal to AC, arcs be struck cutting
each other in C and D, and lines be drawn joining A and B to C and
D, the figure ACBD will be the required rhombus.

Problem 17 (Fig. 64).—To construct a rhomboid, the lengths of two
adjacent sides and one of a pair of its opposite angles being given.

Let AB be one (the longest) of the adjacent sides, and E one of
the opposite angles. At A make the angle CAB equal to the angle E,
and cut off AC equal to the shorter adjacent side. From C, with AB
as radius, describe an arc, and from B, with AC as radius, describe
another cutting the first in D, join ACDB, and it is the required
rhomboid. If a diagonal AB (Fig. 65) and the lengths of two adjacent
sides be given : Then, with the length of one of those sides as a radius,
and from A and B as centres, describe arcs on opposite sides of AB,
and from the same centres, with the length of the other adjacent side
as radius, describe arcs cutting those first drawn in C and D, join AC,
CB,BD,DA, and it will be the required rhomboid.

Problem 18 (Fig. 66).—7T0o construct a trapezium, the length of its
stdes and one of its angles being given.

Let AB be the base of the figure or side on which it stands, and C
the given angle. At A in AB make DAB equal to the angle C, and
let AD equal the length of that side of the figure; with the length of
the opposite side as radius, and from B as centre, describe an arc, and
from D as centre, with the length of the fourth side as radius, strike
. an arc cutting the last in E, join ADEB, and the required trapezium is
constructed.

14. In the construction of the preceding plane figures, the lengths
of one or more of their sides, with their relation to each other, are
previously known or determined by the given problem. In the case of
a regular polygon, the data generally given are its kind, and the length
of a side, or a given circle within which it is to be inscribed. The-
ordinary solution in such cases involves the remembering of certain
specific constructions which are liable to be forgotten when most
needed. All that is absolutely required to be known for the con-
struction of any regular polygon, is the relative position of any two of
its adjacent sides, and in certain cases the length of one of them.

The relative position, or, in other words, the angles made by any
two adjacent sides of a regular polygon, are easily determined. - The-
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exterior angle, or that formed by one side with the other produced, is
always equal to 360° divided by the number of the sides of the polygon,
and the interior angle, or that formed by the meeting of the two
adjacent sides, is 180° minus the exterior angle. The angle at the
centre (or central angle) of a regular polygon is equal to the exterior
angle. 'With these simple facts committed to memory, the student or
apprentice can, with a scale of chords—now generally found on all
pocket rules,—lay down at once on his work any regular polygon
having either an odd or an even number of sides. To apply these facts . -
we will take— '

Problem 19 (Fig. 67).—To construct a regular pentagon with a given
length of side.

Here 360° < 5 equals 72° the exterior angle; and 180° — 72° =
108°, the interior. Let AB be the given side, produce it (say to the
left) at A, draw the line AC, making an angle of 72° with AB produced,
and of a length equal to AB; bisect AB and AC by perpendiculars
intersecting in 8, then 8 is the centre of the circumscribing circle.
Describe it, and from C, with AB as a distance, set off on it the points
D, E, join CD, DE, EB, and ACDEB is the required pentagon.

If the pentagon has to be inscribed in a given circle, then from its
centre—which will be the centre of the pentagon—draw any radius
as SA (Fig. 67) at 8, draw a line making with SA an angle of 72°,
and cutting the circle in B, join A and B, then AB is one side of the
required pentagon ; set off the distance AB from A or B round the
circle, and it will give points C, D, E; join ACDEB, and the pentagon
is constructed in the given circle.

Problem 20 (Fig. 68).—To construct a regular hexagon with a given
length of side.

Here 360° =+ 6 equals 60°, and 180° — 60° = 120°. Let AB be
the given side, produce it, and draw AC, making with AB produced
an angle of 60°; make AC equal to AB, bisect them by perpendiculars
intersecting in 8, which is the centre of the circumscribing circle;
describe it, and set off the distance AB round it from C, in points
D, E, F, join CD, DE, EF, FB, and the required hexagon is constructed.
If a hexagon has to be inscribed in a given circle, the central angle
will be 60°; this angle laid down with the centre of the circle as the
angular point will give A, B (Fig. 68), points in the circle, and the
line joining them will be a side of the hexagon ; step this length round
the circle in points C, D, E, F, join AC, CD, etc., and the required
hexagon is inscribed in the given circle. As the side of a hexagon is
the chord of an arc of 60°; and is equal to the radius of the circumscribing
circle, that radius set off round the circle will divide it into six equal
parts, and if the points of division be joined by right lines they would
form the inscribed hexagon as before.
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Problem 21 (Fig. 69).—Z0o construct a reyular octagon, with a given
’ length of side.

Here 360° + 8 = 45°; and 180> — 45° = 135°. Let AB be the
given side. Produce it in both directions, and at A and B draw lines
AE, BF, of the same length as AB, and making with AB produced
angles of 45°; bisect the angles formed at A and B, and their inter-
section at S will be the centre of the circumscribing circle. With SA
or SB as radius, describe this circle, step AB round it from E to F in
the points 1, 2, 3, 4; join E 1, 2, 3, 4 F, and the required octagon is
constructed. To inscribe an octagon in a given circle : Draw two radii
(Fig. 69) at an angle of 45° to each other, and they will cut the circle
in points A and B; join AB, and it will be a side of the octagon. Its
length stept round the circle will give the same points as in the previous
construction ; join them, and an octagon will be inscribed in the given
circle.

15. The same principle of construction as used in the last three
problems is applicable to any regular polygon, whatever may be the
number of its sides; but in practice it is preferable to subdivide the
sides of those we have given—if the division will give the required
number of sides—than to lay down an independent construction, the
chances of not obtaining the exact length of the side of the polygon
required increasing as the number of sides increase. On paper, and
with the assistance of tee- and set-squares, many of the figures already
given can, of course, be easily and quickly constructed ; but, as before
observed, the ability to draw them without such aids is absolutely
essential, when we consider the calls often made upon the workman
for the practical application of such knowledge.

As figures, or solids, having more than eight sides or plane surfaces
are seldom met with in mechanical construction, and as those we have
given include all that form the surfaces of the plane solids intended to
be used as objects for projection, we shall now proceed to show how
their projections are obtained.




CHAPTER VI
ORTHOGRAPHIC PROJECTION

16. A careruL study of the preceding chapters, and the solution
of the problems contained in the two last, will have prepared the
student for entering upon that more important part of our subject—
viz., ¢Orthographic Projection,” or that special kind of delineation
which, when applied to the representation of mechanical subjects, en-
ables the engineer or machinist to determine at sight the actual dimen-
sions and arrangement of any part of an engine or machine. As, how-
ever, a part of a piece of mechanism is but a compound of simple forms
made up of what are known as plane solids and solids of revolution—
alone or combined—it is at once manifest that to be able to draw any
part of a machine, the would-be draughtsman must first master the
delineation of its component parts, and as these resolve themselves into
solids, with either plane or curved surfaces, having straight or curved
lines for their boundaries, the question of their ultimate accurate
representation as a whole becomes one of the correct projection in the
first stage of the study, of the lines bounding the surfaces of solids ;
and as straight lines and flat surfaces are more easy of projection than
curved ones, we commence this part of the subject by an illustration of
its principles in the projection of points, straight lines, and the simple
figures which form the surfaces of those plane solids used in giving
shape to machine and engine details.

By a reference to the latter part of Chapter IL, it will be noted
that to obtain the views of an object required for the purposes of
manufacture its projections are determined on two planes, at right
angles to each other—that is, their relative positions are as shown in
Fig. 13 ; that lettered VP being a plane assumed to be vertical, and
the other HP a horizontal plane perpendicular to VP. These two
planes are called the wertical and lhorizontal “planes of projection,”
and will throughout the exposition of the subject of ¢ projection” be
denoted by the letters VP and HP.

17. The student should be particular to note the precise difference
of meaning existing between a “vertical ” line or plane and one that is
¢« perpendicular.” One line or plane may be perpendicular to another
line or plane, and yet neither of them be vertical. A wvertical line is a

35
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plumb line, or the position a weighted line assumes when freely
suspended. A horizontal line is one which is parallel to the horizon,
and, therefore, perpendicular to a vertical one. A ‘vertical plane,”
then, is one with which a plumb line will coincide, and similarly a
“horizontal plane” is one parallel to the earth’s surface taken as a
plane, and is at right angles to the vertical.

A plane, strictly defined, is nothing more than a perfectly flat sur-
face,” without any reference to substance,; but as it cannot be dealt
with for explanatory purposes without being assumed to be material
and inflexible, it will, when spoken of, or used for that purpose in this
work, be considered as having such a thickness as would be repre-
sented by a line. Assuming this, the edge view of a plane will, under
any circumstance of position, be a perfectly straight line. If, then, two
planes intersect or meet each other at an angle, as the ‘planes of pro-
jection ” we are about to deal with do, their meeting will be in a line,
which forms a boundary or dividing line between them, and is called

<

Fig. 70

the “intersecting line” of the planes. This line will throughout the
subject have IL for its distinguishing letters.

Knowing, then, the true relative position of the ¢ planes of pro-
jection” on which we wish to obtain the representations of an object,
we will first proceed to find the projections of a ¢straight line” in
different positions with respect to those planes. Let its position at
first be perpendicular to the VP.

Here, as the thing to be projected is a ¢line ” having ends or points,
before we can obtain its projections we must first know how to find
those of a “point.” Let, then, A on the left in the diagram Fig. 70 be
a point in space, such as a small bead invisibly suspended, and let it
be required to find its vertical and horizontal projections—that is, its
projections on the VP and HP.

To obtain these, we have to find the points in the VP and HP
where a visual ray or projector perpendicular to each of the planes, and
drawn through A, would penetrate them. This, it will be seen in the
diagram, is in @ in the VP, and o' in the HP, and therefore they are
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the required projections, @ being an elevation or vertical projection of
A, and a’ its plan or horizontal projection. If it were required to find
Jrom its projections the position of the original point A with respect to
the VP and HP, then perpendiculars to those planes let fall from its
projections a and a' would intersect in A, giving it as the position of
the original point.

Knowing how to obtain the projections of a point, we shall now Le
able to find the projections of a straight line,

1st. Let the line AB (Fig. 70) be perpendicular to the VP.

Here AB being perpendicular to the VP, will be parallel to the
HP; therefore, from its position with respect to the VP, its projec-
tion on that plane will become a point @, as the eye being directly
opposite the end of it, the visual ray or projector proceeding from the
eye will travel along the line itself, coinciding with it, and penetrate
the VP in a, then a is the “elevation” of the line AB. To find its
“plan” or projection on the HP, let fall projectors perpendicular to
the HP from both ends of AB, and the points a’ 5," where these pro-
jectors penetrate the HP, will be projections of the ends A and B of
the line AB, and if a’' & be joined, then a'é will be the plan or hori-
zontal projection of the original line.

2nd. Let CD (Fig. 70) be the given line, and let it be perpendicular
to the HP, and its projections required.

In this case CD is parallel to the VP, and its projection on that
plane will be obtained by letting fall from C, D its ends, projectors to
the VP, and the points ¢ d, where these fall on that plane, will be the
vertical projections of C and D in it; then, if ¢ and d be joined, ¢ &
is the elevation of the line CD. As the given line is perpendicular
to the HP, its plan will be a point obtained by producing a visual ray
passing through and coinciding with CD itself, until it penetrates the
HPin d'.

3rd. Let EF be the given line (Fig. 70), and let it be parallel to both the
VP and the HP, and its grojections required.

Here EF being parallel to both planes, by letting fall projectors
from E and F to the VP, we obtain points ¢ and f, and to the HP
points ¢’ and f, then ¢f and ef” being joined will be the required
projections. It will be noted here that the projections of the original
line EF are two lines of the same length as their original. This is
owing to the relative positions of the original line, and the planes on
which its projections were required. Had the line been in any other
position with respect to those planes, a different result would have been
obtained, as will be seen by the following problem.
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4th., Let GH be the given line, and let it be parallel to the VP, but inclined
to the II P, and its projections required.

Here GH being parallel to the VP, its vertical projection or eleva-
tion is found by letting fall projectors from G and H to the VP, giving
points g and A, which, when joined, will be a line of the same
length as GH ; but its horizontal projection, obtained by letting fall
projectors from the same points G and H on to the HP, giving g%/, will
-be found to be projected into g'A’, a much shorter line than its original.

The diagram Fig. 70, the student must note, is drawn in what is
known as “ quasi-perspective,” and is adopted as a simple and ready
means of showing the two planes of projection in their relative positions,
and the positions of the lines given in the foregoing problems in relation
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to those planes. It is in no sense an ortlfographic projection diagram,
although used to explain the application of the principles of that kind
of projection.

17. To convert the actual relative positions of the two planes of
projection, as shown in the diagram Fig. 70, into the positions they
occupy on the sheet of drawing-paper when laid on his board, the
student has to suppose the ‘“upper” plane, or that we have named the
VP, turned backwards on the IL (intersecting line) as a hinge, until it
is on the same level with the ““lower ” one or the HP, the two planes
thus becoming one flat surface, as in Fig. 71, with the IL dividing them,
and the plans and elevations of the lines in the problems shown on them
as obtained by projection.

Assuming that the student has found no difficulty in understanding
the explanations already given of the way in which the projections of a
line when it is in either of the suggested positions, with respect to the
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planes of projection, are obtained, there are yet two other positions
that a line may occupy with respect to those planes, whose projections
we must know how to find before we can proceed with the projection of
plane figures. One of those positions is that of a line inclined to both
the VP and the HP. We have shown, in Figs. 70 and 71, that if a
line be parallel to one plane and inclined to the other, its projection on
the plane to which it is parallel will be a line equal in length to the
original, and on the one to which it is inclined its projected length will
depend upon the angle the given line makes with its plane of projection,
This will be made still clearer by the demonstration of the problem
where— ’

5th. A line AB s inclined to both the VP and HP (Fig. 72), and its pro-

Jections are required.

Let the given line at first be parallel to the VP, and perpendicular
to the HP. In this position its projection on the HP will be a point,
as @, and on the VP a line AB, at right angles to the IL. While
keeping AB parallel to the VP, conceive it to swing round to the right
on A as a joint, until it makes any desired angle with the IL; or say
until B has moved into the position 3, its elevation dA in this position
is a line inclined to the IL, of the same length as AB, but its plan,
obtained by letting fall from & a projector perpendicular to the HP, or
IL, in ¢, gives ac as its projection on the HP, or a line less than half
the length of its original. It is evident from this that the projected
length of a line is entirely dependent upon its angle with the plane of
its projection, for if the motion of the line AB in this case were con-
tinued until it coincided with the IL, its projected length ad, and its
original length AB, would then become equal.

But so far the given line is only inclined, as at Ab, to one of the
planes of projection, the HP ; for although we have moved it from its
assumed first position—that is, perpendicular to the HP—to that of
making an angle 8AD with it, it is still parallel to the VP. Let it also
be inclined to that plane, say 45°. For distinctness, let C be a new
position of A on the IL; at C draw Ct, at an angle of 45° with the IL
and equal to ac, or the projected length of Ab in the HP ; then C¢ will
be a plan of A when at 45° to the VP, and at the angle bAD with the
HP. To obtain its elevation, draw from ¢ a projector perpendicular to
the IL, and from & another parallel to it, to cut the one from # in p, join
C and p, and the line Cp will be the elevation of the original line AB,
inclined to both planes of projection. Here it will be noticed that the
original line AB, in addition to its having been moved on A as a joint
from B to b, has also, while making the angle bAd with the HP, been
swung round on A through 45°

Now to make this matter of the projection of inclined lines still
more clear, as much depends on the student having a thorough grasp of
this first part of the subject. We will assume that the two projections,
Cp in the VP, and Ct in the HP, are given, and it is required to find the
real length of the line of which they are the projections.

Here the line Ct is the plan or horizontal projection of the line Cp,
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the latter being a line having one of its ends C, ¢n the HP, and the other
end p a given distance above that plane. Cp is also the projected length
of the hypothenuse (or longest side) of a right-angled triangle, having
Ct for its base, and a line equal to the vertical height of p from the HP
for its perpendicular. With these two sides given, we can find the third
side, or the actual line of which Cp is the projection. Therefore, at ¢ in
the line Ct, and perpendicular to it, draw a line indefinitely, and from it
cut off in A, a length th equal to the height that p in the line Cp is above
the HP or IL, join C and % ; then Ch is the real length of the original
line, of which Cp and Ct are its projections. This is self-evident, for if
the right-angled triangle CtA, which may be assumed to be lying on the
HP, with its base line coinciding with Ct, be raised to a vertical position,
moving on Ct as a hinge, its base and hypothenuse will then be coincident
with Cf, and its third side /¢ is a vertical line perpendicular to the HP
represented by the point .
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The other position a line may have, with respect to the planes of its
projection, is that of being parallel to the HP, but making an angle with
the VP. Putting this in the form of a problem, we will say—

6th. Let a given line be parallel to the HP, but inclined to the VP, and its
projections required.

In this case, let the given line at first be perpendicular to the VP;
its elevation when in that position in the VP will be a point as e, and
its plan a line EF at right angles to the IL. But as EF is perpendicular
to the VP it is parallel to the HP. While keeping it so, let it be con-
ceived to swing on its end F as a joint in its direction of the arrow,
until it makes any desired angle with the VP or IL, or until, say, E
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has moved into the position f; its elevation in that position is found by
drawing a projector through f, perpendicular to the IL, and a line
through e parallel to it to cut the projector from f in g, then the line eg.
is the vertical projection of EF when making the angle LEf with the
VP. Here it is again seen that the projected length of a line, although
parallel to one of its planes of projection, is determined on the other
plane by the amount of its inclination to that plane ; for had the given
line EF in this case been moved through any greater or less angle than
the one assumed in the diagram, its projected length in the VP would
have been greater or less than eg, directly in proportion to its altered
position with respect to the VP. If EF had been swung so far round
on F until it had coincided with Ef, then its projection in the VP
would be eg’, or a line equal in length to the given line EF.

18. In the foregoing problems in this chapter, we have given all the
positions which it is possible for a line to occupy with reference to its
planes of projection, and we could at once proceed to the projection of
plane figures, were it not necessary at this stage that the student should
thoroughly understand the true significance of the line lettered IL in
previous and all future diagrams throughout this work.

This line, we have already shown, is the line of intersection of the
two ¢ planes of projection”; but it is much more than this. The VP
and HP, being for all the future purposes of the student draughtsman
represented by the one flat surface of his sheet of paper, with the IL
either shown on it or assumed to be there, dividing its surface into two
planes, it becomes—when shown in on a drawing or explanatory diagram
—at one and the same time the representative, not only of the IL, but
of the VP and HP as well, for it is a plan of the VP and an elevation of
the HP, and as these it is a datum line from which heights above the
HP, or distances from the VP, may be measured or set off.

These facts, it will be seen, are verified by a reference to Fig. 72.
Here the IL is for all the figures, a plan of the VP, showing the line Ab
by its plan to be parallel to the VP, and in front of it, at a distance
equal to Aae. Similarly C, the lower end of the line Cp, is shown
touching the VP, while its upper end p, projected into ¢ in the HP,
stands out from the VP a distance equal to ¢, and above the HP a
height equal to t’p. Then again Fe is the height of the line EF above
the HP, the end F touching the VP in ¢, and the end E being a distance
equal to EF from the VP when in the first position, and a distance equal
to fh when in the second. In the two last cases, it will be seen that the
IL is a plan of the VP and an elevation of the HP. With the foregoing
explanation of the projection of lines thoroughly digested, the student
should have no difficulty in finding the projection of plane figures, to
which we now proceed.



CHAPTER VII
PROJECTION OF PLANE FIGURES

19. Kxowine how to find the projections of a line having any given
position with respect to the planes of its projection, we can now proceed
to the projection of those straight-sided plane figures which form the
surfaces of the solids used in giving shape to machine details. As the
same principles apply to the projection of all plane figures, whether their
sides are few or many, it is only necessary that their application should
here be shown in the case of one of each class of figure chosen. Com-
mencing with that figure having the least number of sides—the triangle
—we shall give as additional subjects for projection the square, rectangle,
pentagon, and hexagon, or those which usually form the sides and ends
of the plane solids we have before referred to. Our first problem in thig
subject is—

Problem 22 (Fig. 73).—7he line ac s the plan of an equilateral
triangle, with s base resting on the HP, and parallel to the VP ; 1t
18 required to find its elevation or vertical projection.

Here, as the base of the triangle is parallel to the VP and its
plan is represented by a line, the triangle itself is parallel to the VP,
and therefore perpendicular to the HP. To find its elevation, through
a and ¢ draw projectors perpendicular to the IL, cutting it in A and C;
through A and C with the 60° set-square draw lines intersecting in B,
join A, C, and the figure ABC is the required vertical projection of the
triangle of which the line « ¢ is the plan. The projection, it will be seen,
is an equtlateral triangle, for all the sides of the triangle being by the
conditions of the problem parallel to the VP, they are projected on that
plane into lines of the same length.

Problem 23 (Fig. 74).—70 find the elevation of the triangle obtained
in the previous problem when it is inclined 45° to the VP, its plan
" being the line a c, as before.

Here the IL may be considered as a plan of the VP. If we draw
a line (with the 45° set-square) of a length equal to a ¢, at an angle of

-
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45° with the IL, that line will be a plan of the triangle ABC when at
that angle with the VP. Bisect ac in b, through & draw a projector
perpendicular to the IL, and from B, in Fig. 73, another parallel to it,
cutting the one drawn frombind’. Then, from a and ¢ draw projectors
to the IL, cutting it in &’ and ¢, join a'¥', a'd, ¢'b’; the figure a'd'¢’ is
the required elevation of the given triangle inclined 45° to the VP. In
this case it will be noticed that the elevation obtained is an 4sosceles
triangle, resulting from the altered position of its original with respect
to the VP, the plane of its projection. The line ac is bisected in & to
find the plan of the vertex B of the triangle ABC, Fig. 73; and the
vertical projector through this bisection & determines, by its intersection
with a parallel one through B, the elevation ¥ of the vertex in its new

position.

Problem 24 (Fig. 75).—7The line ac is the elevation of an equilateral
triangle having its base touching the VP and parallel to the HP ; to
Jind its plan or horizontal projection.

The position of the original figure, of which the line a ¢ is the eleva-
tion, is in this case the converse of that in Fig. 73. Here a ¢ being a
line in the VP parallel to the IL, the triangle whose projection it is
must be parallel to the HP. To obtain its plan let fall from a and ¢,
its ends, projectors perpendicular to the IL, cutting it in A and C, and
through AC with the 60° set-square draw lines intersecting in B, then
the figure ABC is the required plan of the triangle of which a c is the
elevation.

Problem 25 (Fig. 76).—Let the triangle obtained in the last problem
be inclined to the HP at 45°, its base resting on that plane at right
angles to the VP, and one angular point touching the VP ; to find
it8 projections in that position.

Assume the position of the triangle at first to be perpendicular to
both the VP and HP ; its elevation will then be a line perpendicular to
the IL, equal to the altitude of the triangle, as Cp; and its plan, a line
AG, also perpendicular to the IL and equal to the base of the triangle.
If, then, the triangle be moved on AC as a hinge (to the right) through
45°, its elevation at that angle is found by drawing—with the 45° set-
square—through C a line CB equal to Cp. To find the plan, bisect AC
in @, and through a draw a line parallel to the IL: let fall from B a
projector perpendicular to the IL to cut the line drawn through a in b,
join Cb and Ab, and the figure CAb is the projection of the triangle
ABC (Fig. 75) when inclined at 45° to the HP.

Problem 28 (Fig. 77).—Given a straight line b ¢ parallel to the IL as
the plan of a square resting with one of its sides on the HP ; to find
its elevation.

_ The plan of the square heing a line parallel to the IL, the square
itself will be parallel to the VP and perpendicular to the HP; there-
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fore, from b and ¢ draw projectors perpendicular to the IL, cutting it
in A and D; set off on one of them a distance AB equal to b¢c in the
plan, and through B draw BC parallel to the IL; join AD, and the
{'{gur: ABCD is the required elevation of the square whose plan is the
ine b c.

Problem 27 (Fig. 78).—To find the elevation of the square obtained in
the last problem when it 18 inclined at 30° to the VP, its plan being a
line b c, as before.

Draw in the HP (with the 60° set-square) a line & c—the plan of
the square—making an angle of 30° with the IL; and from b and ¢
draw projectors cutting the IL in @’ and &', make «'d’ equal to bc, and
through &’ draw &'c’ parallel to «'d’, then the figure a'd’c’'d’ is the elevation
required.

Problem 28 (Fig. 79).—A square with one of its sides touching the
VP is represented in elevation by a line b ¢ parallel to the IL ; to find
s plan.

From & and ¢ let fall projectors perpendicular to the IL; make AB
equal to be, andthrough B draw BC parallel to the IL, join ABCD,
and it is the required plan of the square. .

Problem 29 (Fig. 80).—7%he square ABCD obtained in the last prod-
lem 18 inclined at 60° and 30° to the HP, with one of its sides
touching the VP and an adjacent side the HP; to find its plan
and elevation tn those positions.

At B in the IL, draw BC, BC’ (both equal to AB) with the 60° set-
square, making angles of 60° and 30° with the IL; then BC, BC' are
the required elevations of the square at those angles. From Bdd', draw
BA, de¢, d'¢, perpendicular to the IL, and each equal to BC; and Acc’
parallel to it; then BAed; BAc'd are the plans of the given square
when inclined at 60° and 30° to the HP. The projections of the rect- .
angle are not given, as the method of obtaining them is in all respects
the same as that for the square, but allowing for the difference of length
of adjacent sides.

20. The method of obtaining the projections of a pentagon and
hexagon in different positions with respect to the VP and HP is fully
shown in Figs. 81—88, and will not need explanation further than to
say that the elevations in Figs. 81 and 85—shown with reference letters
in capitals—must be drawn first, according to the construction rules
given in Problems 19 and 20, before their plans can be found ; in all
other respects the procedure is the same as in the previous figures.

To make himself thoroughly conversant with the application of the
principles of projection to the delineation of plane figures, which it is
most important he should be before passing on to the projection of
solids, the student should draw all the foregoing plane figures at least
twice, making them three times the size here given.
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CHAPTER VIII
THE PROJECTION OF SOLIDS

21. AssuMmiNG that the student has followed the advice given in the
last paragraph of Chapter VII., and thoroughly mastered the elementary
principles of projection which we have expounded in it and Chapter
VI., we can now proceed to apply those principles to the delineation
of the simple geometrical solids of which engine and machine details
are invariably made up. These solids are of two kinds—uviz., plane,
and circular or curved. The first-named have all their surfaces plane
figures, the projections of which the student already knows how to
obtain, and the second includes all solids whose bounding surfaces are
all curved, or plane and curved combined. What are known as the
simple solids are the cube, the prism, the pyramid, the cylinder, the
cone, and the sphere, the first three being plane solids, and the others
circular or curved solids.

NN

]
_t 4=~
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Fig &9 }’iy g0

A cube (Fig. 89) is a solid having six equal sides or faces, all of
them squares. )

A prism (Fig. 90) has two ends or bases parallel to each other, each
being equal and similar figures ; its sides are rectangles.

A pyramid (Fig. 91) has one base, its sides being triangles, with
their vertices meeting in one point a, called the apex of the pyramid.
(As it is advisable for the student to confine himself for the present to
the study of the projection of plane solids, we defer any consideration
of the circular ones until after the projection of curved lines in any
position is understood by him.)
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Regular prisms and pyramids have ‘“regular” figures for their

es.

The aaxis of a prism, or pyramid, is an imaginary line joining the
centres of the bases of the former, and the centre of the base and the
apex of the latter, as the dotted lines AA in Figs. 90 and 91.

A right prism, or pyramid, has its axis perpendicular to its base, as
Figs. 90 and 91. If its axis is inclined to its base, the prism or pyramid
is oblique, as in Figs. 92 and 93.

A truncated pyramid, or prism, is the part of the solid left when its
upper part is cut away by a plane, and is called a frustum. The cutting
plane may be either parallel or inclined to the base of a pyramid, but
only inclined to the bases of a prism. In Figs. 94 and 95, A and B
are frustums,

Fig. 92 Fig. 93 Fig. 94 Fig. 95

As all the sides of a prism are parallel to its axis, the edges of the
sides connecting its bases are perpendicular to the bases in a “right”
prism, and inclined to them in an “oblique” one.

In a right pyramid all its sides are isosceles triangles, and its axis is
perpendicular to its base. If the base is a regular figure and the axis
perpendicular to it, the sides of the pyramid will all be equal and
similar isosceles triangles, but if the axis be inclined to the base, then
the sides become unequal triangles and the pyramid an oblique one.

Both prisms and pyramids are named according to the figures of
their bases. If the base is a triangle, square, pentagon, hexagon, or
octagon, then the solid becomes a triangular, square, pentagonal, hexa-
gonal, or octagonal pyramid or prism, as the case may be.

There are other plane solids, such as the tetrahedron, octahedron,
etc., ete., but such forms are seldom adopted by the engineer or machinist
in his constructions. Their special features may, however, be studied
to advantage by the student draughtsman in his spare time.

22. The working out of the problems in Chapter VII. will have
shown how the projections of the figures chosen are obtained, and as
they form the surfaces of the solids used in giving shape to machine
details, our next step is to show how to obtain the projections of such
solids in any given position. Now, as a sketch is often a much more
satisfactory means of explaining a method of procedure than many
words, we give in Fig. 96 a perspective view of the planes of projection,
and the construction or working lines, showing how the plans and
elevations of a few simple objects (all bounded by plane surfaces) are
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obtained, which will, we think, materially assist the student in his study
of the application of the principles involved. The objects chosen for
the illustration of these principles are simple prismatic solids, or a com-
bination of such, and only require for the comprehension of the method
of their projection, such a knowledge of principles as the student—from
what has gone before—should have now acquired.

The diagram is so plain that it hardly requires explanation ; but as
it is important that the procedure in obtaining the projections should
be thoroughly understood, we will at the risk of repetition endeavour to
make it, if possible, still more intelligible. The constructions to the
left of the diagram are a repetition of the three first problems in Fig.
70, but show more fully, by means of the arrows, the direction of the
projectors or visual rays with respect to the VP and HP. After the
very full explanation given in Chapter VI. of the way of obtaining the
projections of a straight line in any position, nothing more need be said
in reference to it here than that the positions of the lines given in those
problems are the positions of the edges—which are all straight lines—
of the prismatic solids given in the diagram as the subjects for
projection.

The first solid, whose projections in the VP and HP of the
diagram are figured 1, 1, is that of a right prism (of any material
substance—say wood) ; its bases or ends are rectangles, square with
its sides, and its position with respect to the planes of projection is
such, that its sides are perpendicular and its ends parallel to the VP,
its upper and under sides are parallel to the HP, while its other
two sides are perpendicular to it; its ends being parallel to the
VP are also perpendicular to the HP. As the sides and ends of
the solid are plane rectangular surfaces, and in known position with
respect to the VP and HP, their projections on those planes are
obtained in the same way as those of any plane figures of the same
form, and in the same position.

23. At this stage in our subject it will have become apparent
to the would-be draughtsman that he must either be possessed of a
perfect knowledge of the forms of the solids he is attempting to
delineate, or have models of them to guide him in his delineations;
in other words, he must have either a true conception or a possession
of the object he wishes to draw, for it is evident from the diagram
we are proceeding to explain, that without a model of the object to
be delineated, or its conceived counterpart, neither plan nor elevation
of it could be obtained. This is one great reason why an earnest
student of mechanical drawing should at this stage in his study
possess himself of a convenient set of models of the solids enumerated
in a previous paragraph, for no greater mistake can be made in the
study of the ‘projection of solids” than that of making a servile
copy of any diagram or drawing to be found in text-books on this
subject. 'With this slight digression—which has been necessary in
the interest of students of projection-—we proceed with the explanation
of our diagram.

The form and dimensions of the solid having been predetermined,
and its position with respect to the VP and HP known, its

. E
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projections—plan and elevation—are obtained as shown. Projectors,
or visual rays (shown by the dotted lines in the digram), are let
fall perpendicularly, as shown by the arrows, from the principal points
in the object—which are the ends of the lines or edges bounding
it—upon the VP and HP. The points on these planes where
the projectors fall are each the plan, or elevation, as the case may
be, of the original line end, or edge end, and these points or
projections being joined by what their originals are connected with
—viz., straight lines—give the plan and elevation required. The
other objects in the diagram, whose projections are numbered 2, 2;
3, 3; 4, 4, are all prismatic in form, and represent a carpenter’s
pencil, a hollow wooden tube, and the lower end of a square post.
Their projections are all obtained in the same way as those just
explained, numbered 1, 1, so there is no necessity for their
demonstration. The actual rendering of the true projections of the
four objects chosen for illustrating the subject of this chapter will
now be given with the sheet of drawing-paper as one plane surface.

To obtain the correct projection of the four objects shown in the
diagram Fig. 96, we must assume that we have their exact models
before us, and are able to draw in the VP on the sheet of paper
a full-size view of each of their ends—such, in fact, as are shown at
A, B, C, D, Fig. 97. Each of these views is an end elevation,
or vertical projection, of the “original object” or model, and will be
found to agree with those shown in the diagram Fig. 96, on the
“Vertical Plane of Projection,” and numbered 1, 2, 3, 4. The height
of these views above the IL on the sheet of paper is immaterial;
but whatever it is, it should be understood that the objects represented
by A, B, C, D are the same height above the HP as these end views
of them are above the IL of the VP and HP. Having these end
views given, and knowing by measurement the length of the models,
we can find their ¢ plans” or projections in the HP.

Now A, B, C, D are the front end views of objects in front of
the VP, and as the objects are a given length, their back ends must
either be assumed to touch the VP, or to be a given distance from
it. Assume them to be as in the diagram Fig. 96—rviz., a certain
distance from the VP; in this case the ends will all be in a straight
line that distance from the IL, for, as before shown, the IL is a ¢ plan”
of the VP. Taking, then, the IL as a datum line, set off from it the
distance it is intended the back ends of the objects shall be from
the VP, and through the point set off draw with the tee-square a faint
line parallel to the IL, as b, ¢; then as the objects are assumed to
be of the same length, and their front ends (or those nearest the
eye) are parallel to their back ends, set off from the line &, ¢, a distance
equal to the length of the objects, and at this distance draw another
faint line f, e, parallel to &, e; then the plans of the front ends of
A, B, C, D will, in the HP, be ¢n the line f, ¢, and of their back ends
in the line 4, e. From the points 1, 2 of A, in the VP, let fall
projectors perpendicular to the IL into the HP, cutting the faint
lines b, ¢ and f, ¢ in points 1, 1; 2/, 2; join these by straight lines as
shown, and the plan, or horizontal projection of the object, whose
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end elevation is A in the VP, is obtained; for two of the sides and
the two ends of the object being vertically disposed to the HP, and
their edges only seen from above, their horizontal projections become
severally the lines 1, 1; 2', 2, for the sides, and 1’, 2'; 1, 2, for the
ends. The exact shape of the object’s upper surface as viewed in
the direction of the arrow, is truly shown in the plan by the disposition
of its bounding edges obtained by projection.

As the plans of the other three original objects represented in
elevation by B, C, D, in Fig. 97, are obtained in the same way as the
plan of A, all the necessary construction lines for obtaining them
being shown in, nothing further need here be said of the method of
their projection, it being advisable that the student should think it
out for himself that it may be the better remembered. In this
exercise in projection, which we will call Sheet 1, the elevation of
objects being given, and their plans required, the subject is called
“Projection from the Upper to the Lower Plane” ; the examples given
should be drawn to as large a scale as a half-imperial sheet of drawing-
paper will admit of, leaving a fair margin all round; the four
elevations A, B, C, D should be disposed in a row (suitably spaced)
the long way of the paper, and the lengths of the objects may be
assumed to be such as will occupy about two-thirds of the space
between the IL and the lower edge of the sheet of paper.

24. In our explanation of the method of obtaining the actual
projections of the simple objects shown in perspective in the diagram
(Fig. 96), we purposely ignored the fact that «/l the objects depicted
were not ““solid ” in the sense of their having perfect solidity, although
prismatic in form. Our reason for this was to prevent confusion in
the mind of the student on his first introduction to the study of this
part of our subject; but as it will be necessary for him to know how
to obtain other views of objects than their mere outside plan and
elevation (as shown in Figs. 96 and 97), we will, before proceeding
further, explain what those views are, as they will in part be required
for the completion of the problems given in Sheet 2.

On referring to the object in the diagram (Fig. 96), whose
projections in the VP and HP are figured 2, 2, it is stated in the
description of it that it represents a carpenter’s pencil, or an article
composed of two material substances—wood and plumbago. In
manufacturing such an article it would be important to know how
much of each of the substances which go to make a pencil is to be
put into it. To decide this, we must have such a view of it as would
show how far the lead or plumbago extends into the wood covering
it. Such a view is called a “section,” and is obtained by supposing
the pencil to be cut—horizontally, in the case before us—right through
the middle of its depth from end to end, the cutting plane dividing
the pencil into two halves. This cutting, when the upper part of the
pencil is removed, will show at once the extent of the lead, as the
“plane of section” will have passed through it. How to give a view
of the section of the pencil after being cut will be shown further
on. The principle involved in obtaining it is that of assuming the
plane of projection—or the sheet of drawing-paper—to be transparent
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with the object beneath it, the visual rays from all its principal points
being projected on that plane in points which are afterwards joined
by right lines. ‘Such a view when obtained is called a ‘“sectional
plan,” the plane of its projection being the original HP, the position
of the object only with respect to that plane having been reversed.

A similar plan of the object whose projections are figured 3, 3,
in Fig. 96, will have quite a different appearance to that given of
it in Fig. 97. It is, we are told, a Aollow wooden tube, whose
thickness is shown in its end elevation on the VP. - When looked at
from above, in the direction of the arrow, its appearance is the same as
if it were merely a rectangular prism of solid material throughout,
with its sides inclined to the HP: ‘but if a cutting plane be caused to
pass through it horizontally from end to end, it would then be seen
(on the removal of the part cut off) that its interior is Aollow, and
its “sectional plan” something very different from that before obtained.
‘What that view would be we shall see later on.

25. Now, in addition to the simple plan and front elevation of
an object being given, it is necessary, before its exact shape and
construction can be understood, to have one or more “side views”
or side elevations of it, for there is hardly anything—in mechanical
constructions, at any rate—which is of the same shape when viewed
from the side and end. To show how such views are obtained, let VP
and HP in the sketch (Fig. 98) represent the two planes of projection,
as before, in their normal position—that is, at right angles to each
other—and let it be assumed that the VP is in two parts, A and B,
hinged together at ¢ d, and that the part A is capable of being swung
round on ¢ & until it is at right angles to the part B. When so swung
we have virtually ¢hree “planes of projection,” two of which are
vertical and one horizontal, and each at right angles to the other.
With planes in thesé positions it is evident that three different
projections of an object may be obtained on them. Let the object
be, say, a simple prismatic solid, as S, and let its position be such that
two of its sides are respectively parallel to the two vertical planes
A and B; then the view obtained on A, looking in the direction
of the arrow s, will be a side elevation of S; and that on B, in the
direction of f, a front elevation; the plan P of the object in the
HP being obtained as shown by the projectors to that plane. If, then,
the part A of the VP, with its obtained side view of S, be swung
back on ¢ d into its original normal position with respect to the part B,
we should have in the VP a front and side elevation of the original
object 8, and in the HP the plan P or view obtained when
looking in the direction of the arrow ¢. On turning down the VP on
the IL as a hinge until it and the HP become, as before explained,
the one flat surface of the sheet of drawing-paper, the three true
projections—viz., the front and side elevations and the plan of S
—will appear as shown in Fig. 99. In that figure the assumed
motion of the part A of the VP into the position of being at right
angles to the part B, is shown by the dotted arcs and arrows, the
winged arrow indicating the assumed motion of the plane A, and the
barbed ones the transference of the projections.
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From the foregoing explanation it will be seen, on reference to Fig.
98, that a sectional front or side elevation of an object may be ob-
tained in the same way as a simple elevation, for it is only necessary
to assume the object as cut through by a vertical section plane, such as
that shown in the figure, and the part cut off by it nearest the eye
removed ; the view then obtained when looking in the direction of the
arrow 8 would be the elevation required.

28. Having explained at some length the specific meaning of a
sectional plan, and of a front, and side, and ¢ sectional elevation ” of
an object, we will now revert to the problem of showing how to obtain
by actual projection the sectional plans of objects, taking for our pur-
pose those given in the diagram Fig. 96. The first on the left is
assumed to be a beam of wood of rectangular section, shown with its
two widest sides parallel to the HP, and its narrow ones perpen-
dicular to it. As a horizontal section of a beam in such a position
would give in plan a similar projection to the one already shown, and
lettered in the diagram Fig. 96 ¢ Plan of Original Object,” we will, for
the better practice afforded, assume the beam to have its sides inclined
to the HP, as shown at A, Fig. 97, Sheet 2, and the cutting or section
plane x y to pass through it horizontally when in that position from
end to end. We will assume also that all the sides of the beam are
coloured green. The problem then is to obtain by projection a plan
of the beam when the upper part cut off by the section plane x y is
removed.

Now it is evident on looking at the beam from abore that the
surface exposed by the cutting plane, showing the nature of its
material, will have two edges at b, ¢, parallel to each other and at right
angles to the VP, and in length equal to that of the beam ; and at a
an edge parallel to that at &, the surface between these latter edges
being that untouched by the cutting plane, and therefore coloured
green ; the lower edge of the beam at d, not being seen from above,
will have no counterpart in the plan, and the two ends of the beam
being square with its sides, and therefore parallel with the VP, will
be represented in plan by lines in that position. Therefore, having
drawn in—in the VP of the sheet of paper, as at A, Sheet 2—the
end elevation of the beam with its sides at the intended inclination to
the HP, let fall from the points a, b, ¢ projectors perpendicular to the
IL into the HP, set off on the projector let fall from a a distance
from the IL equal to that the inner end of the beam is assumed to be
from the VP—which is arbitrary—and from this point «”, on the
same projector, set off a distance a”, a’, equal to the length of the -
beam ; through a”, @’ draw lines parallel to the IL cutting the projec-
tors from a, b, ¢, in a”, b", ¢", @/, b, ¢'; join these points by straight
lines as shown, and the required projection is obtained. As the sur-
face bounded by the parallel lines 8", ¥, ¢”, ¢/, and 3", ¢", &', ¢/, is the
plan of the section of the beam exposed after cutting, it is indicated by
drawing lines with the 45° set-square, as shown.

The projection of the sectional plan of the ¢ carpenter’s pencil,”
shown in elevation at B, Sheet 2, will present no difficulty to the
student, as the procedure is clearly shown ; there is, however, one
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point in reference to it to which his attention is to be directed. The
pencil being made of two kinds of material, this is indicated in the
projection by drawing the sectional lines referred to in the last prob-
lem in opposite directions across the materials, as shown. This point
will, however, be more fully enlarged upon later on.

From the projection of the pencil we pass on to that of the hollow
tube, whose elevation is given in Sheet 2 in the VP at C, the section
plane being shown by the line x y. Now in the plan of this object,
given in Fig. 97, Sheet 1, it will be noted that as there are only
three side edges, and the two ends, seen from above, its “plan” is
obtained by the projection of these edges into the lower plane or HP,
and joining them up, as shown. But in the problem before us the
upper part of the tube is assumed to be cut away, leaving the section
of two of its sides exposed, together with part of its interior. To find
its plan under these conditions we proceed as follows :—From a and b
in the elevation C, let fall projectors perpendicular to the IL into the
HP ; and as the tube is assumed to be of the same length as the beam
and pencil, and its back end the same distance from the VP as their
ends are, at this distance from the IL, and parallel to it, draw the line
a”’ b", cutting the projectors from @ and b in those points ; and parallel
to this line and at a distance a” &’ equal to the length of the tube from
it draw the line o' ". 'We have so far obtained the bounding lines of
the plan sought. For the plan of the parts of the tube cut by the
section plane i« y, let fall projectors from points 1, 2, 3, 4 in the eleva-
tion, cutting the lines a” 8", a’ ¥, in the plan in points 1’, 2/, 3!, 4/, 17,
2", 3", 4”; join these points by lines as shown, and the surfaces
between each of these pairs of lines will be the plan of the parts of the
sides of the tube seen from above when the upper part cut off by the
plane z y is removed. By its removal, however, a part of the in-
terior of the tube is now seen when viewed from above, and this
must be indicated in the plan. The part seen is the angle formed by
the meeting of the two bottom inside surfaces of the tube immediately
over the point lettered ¢, and as these are plane surfaces, their inter-
section forms a line the plan of which is found by letting fall a pro-
jector from ¢ cutting the lines «” 8", @' ¥', in ¢” ¢, and joining them by
a straight line. 'With the section lining of the parts cut by the plane
« y, the “sectional plan ” of the ¢ original object,” or hollow tube C, is
completed.

The projection of the sectional plan of the object represented in
end elevation by D, in Sheet 1, would give little useful practice to the
student if kept in the same position as there shown, all its surfaces
being either parallel or perpendicular to the HP, and therefore result-
ing in a very trifling change in the plan (got by a horizontal section of
it) from that previously obtained ; it is consequently shown with its
principal surfaces inclined to the HP, thereby giving a more difficult,
but more useful, problem in projection. With the original object in
this altered position the student will at once be struck with the
identity in appearance of its elevation with that of the hollow tube in
the last problem, and he will perhaps be momentarily puzzled to under-
stand how two apparently similar end views are the vertical projections
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of two such different objects. Here we have an instance showing
the absolute necessity of a pre-conceived knowledge of the form of
the object to be delineated, or the possession of a model of it. Having
either, little difficulty would be experienced in fully understanding the
similarity of the two views in the diagram. The object represented
by D in elevation (Sheets 1, 2) is merely a combination of two prisms
of different dimensions cut from one solid piece of material, from which
a portion is cut off by a plane—such as a saw-blade—throughout its
whole length, the cut being a horizontal one ; and the problem is to
show the actual appearance of the remaining part of the post when
looked at from above, after the part cut off is removed. :
To do this, let  y in the elevation D (Sheet 2) be the section
plane, as before ; let fall projectors from @ and d into the HP, and
assuming the back end of the object to be the same distance from the
VP as those of the pencil and tube, draw parallel to the IL a line
cutting the projectors from & and din a” d"; from a”, on the pro-
jector from a, set off @ «', the length of the thick end of the post—
which is arbitrary—and through &' draw a faint line a’ d' parallel to
a” a" ; then from & and ¢ in the elevation D let fall projectors into the
HP, cutting the line drawn through «' &', in & ¢/, and from these last
points set off on their projectors in the points b” ¢” the length of the
small part of the post; then a line drawn through 4" ¢”, parallel to
a” d", will give the bounding lines of the plan of the post. For the
sectional part of it, let fall projectors from points 1 and 4, and 2 and 3,
in the elevation D, the former to cut the line a” d” in points 1’ 4, and
the latter the faint line @’ &' in points 2’ 3'; through 1’ 4’ draw lines
parallel and equal to ¢” «'; and through 2’ 3' lines parallel and equal
to b’ b” ; the surface enclosed by the last drawn lines is that made by
the cutting plane z g, and is indicated as such by the section lining.
As the post is of solid material, the edges formed by the meeting of its
under sides in ¢ and f will not be seen from above, and are, therefore,
not shown in the projection.



CHAPTER IX
PROJECTION IN THE UPPER PLANE

27. Having carefully worked out the problems given in Sheets 1
and 2, and studied, with the assistance of Figs. 98 and 99, and the
descriptive matter in connection with them, the principles involved in
obtaining the sectional plans and elevations of objects, the student
should find no difficulty in solving the problems in the projection of
solids which are now to follow.

The first subject we take—it being the simplest of all the plane
solids—is the “cube”; but although simple, it is necessary that the
student should fully comprehend the specific relations of its various
faces and edges to each other, before starting to find its projections.
This solid is defined as one having six equal sides or faces, all of them
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squares. It follows from this that adjucent sides must be at right
angles to each other and opposite faces parallel; the adjacent and
opposite edges of the solid having the same relative positions. Bear-
ing these facts in mind, the projections of the cube are easily ob-
tained. To put the original object on the paper as required in the
problems, it is necessary to note the difference between the diagonal of
a fuce of a cube, and a diagonal of the cube itself. The first is a line
joining the opposite corners of any one of its faces (as d, Fig. 994), and
the latter is an imaginary line joining the vertices of any two of its
opposite solid angles, or those formed by the junction of three adjacent
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faces of the solid, as the dotted line D in Fig. 99a. Our first problem
in the projection of this simple solid is—-

Problem 30.—Given the front elevation of « cube, with the diagonal
of one of its faces parallel to the VP, and perpendicular to the HP,
to find its side elevation, or a view of it looking in the divection of
the arrow x. 'To solve it—

Draw in on the left side of the sheet of paper, with the 45° set-
square, the square A, B,C,D (Fig. 100), with its diagonal AC at
right angles to the IL, ag shown. This figure will be the front
elevation of the given cube in the position stated in the problem. To
find its side elevation, through points A, B, C, draw projectors of in-
definite length parallel to the IL, and as the back face of the cube is
parallel to its front one and the VP, draw a line at right angles to the
IL, cutting the projectors from A, B,C, in a4, b, ¢; this line will re-
present the back face of the cube. Then, as the edges of a cube are all
of the same length, set off from @, on the projector drawn through it, a
distance a @', equal to the length of a side of the cube, as AB, and
through a' draw the line &’ &' ¢’ parallel to a b ¢ ; the four bounding lines,
accc,c a,a a,and the line b 8’ when joined up as shown give the
side elevation (Fig. 101) of the cube when looked at in the direction of
the arrow . Next—

Problem 31.—Let the cube be cut by a plane through its diagonal AC,
and let it be required to give a side elevation of it. when the part to
the left of the cutting plane is removed.

Here the part of the cube to the left of the diagonal AC being
removed, only four edges of the part left are seen. These are the top
edge from point A to the point beyond it nearest to the VP, and the
corresponding bottom' edge from point C; also the two edges of the
front and back faces of the cube, cut through by the section plane.
Therefore, in the projector drawn through A, Fig. 100, at any con-
venient point (say d), draw, as in Fig. 102, at right angles to the IL,
the line d ¢, and parallel to it, at a distance equal to the length of the
side of the cube, the line d' ¢’ ; join the points d d', e ¢/, as shown, and

" the required projection is obtained. Again—

Problem 32.—Let the original objéct——l/w cube—be cut by « section
plane, as SP, and a side elevation of it be required, after the part
cut off to the left of the cutting plane is removed.

In this case the section plane cuts through two adjacent sides of
the cube, leaving parts of those sides, as SA and PC, in view. To
obtain the projection required, at any convenient point (say f), in the
projector drawn through A, Fig. 100, draw a line fg perpendicular to
the IL, and parallel to it at a distance f¥’, equal to the length of a
side of the cube, the line fy,; through the points AS, PC, and parallel
to the IL, draw the lines ff", ss, pp’, g¢', and the required projection
iy obtained. As in Fig. 102, the section obtained is that produced by
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the cutting of the cube through the plane of one of its diagonals, it is
evident that no greater section could be got, and therefore its whole
surface must be section-lined, as shown. In Fig. 103, however, as the
cutting plane SP leaves a portion of the faces AB, BC of the cube
untouched, section-lining is only required on the part of the cube
actually cut through by that plane, as shown.

28. As some further problems in connection with the projections of
the cube will follow, it will be well at this point to more fully explain
the significance of the lines obtained in the three preceding projections,
as upon their correct comprehension depends the ease or difficulty with
which subsequent ones will be found.

As in Fig. 100, the points A, B, C, D are the front ends of four
edges of the cube perpendicular to the VP, and parallel to the HP,
any edge produced by a section or cutting plane passing through the
cube in a direction perpendicular to the VP, and making any angle
with the HP, will be a line parallel to the HP, and at right angles to
the lines representing in projection the two faces of the cube which are
parallel to the VP. And as these faces are distant from each other
a space equal to the length of a side of the cube, the projection of
these faces will in all cases be lines parallel to each other at that
distance apart, their projected lengths being dependent upon the angle
the cutting or section plane makes with the HP.

This reasoning will be verified on applying it to the three projec-
tions given in Figs. 101, 102, and 103. In these figures the lines
ac, a'c’; de, d¢'; fy, f'g', are the projections of the front and back
faces of the cube, the three parallel lines aa’ &%, c¢’ in Fig. 101 being
the projections of the three edges of the cube at right angles to those
faces, and the equal parallel lines dd’, e¢’ the projections of the top
and bottom edges of the cube, of which A and C in Fig. 100 are the
front ends. In Fig. 103 the boundary lines of the projection are the
same as in Fig. 101, but the part of the cube exposed by the action of
the section plane SP, is that between the parallel lines ss', pp, and
has to be section-lined, as shown. Had all the faces of the cube been
coloured, only those parts of the two seen when looking in the direc-
tion of the arrow z—viz., from the edge at S to that at A, and from
P to that at C—would show of that colour; the surface exposed by
the section being, of course, that of the material of which the cube is
made. The faces of the cube parallel to the VP in Fig. 100 are, of
course, in Fig. 103 seen only as lines, as at fg, f'¢’, and as the cube is
of solid material the edge of it at D, directly opposite to that at B, will
not be seen in the side elevation.

As further problems in the projection of solids in the ‘“upper
plane,” we give those shown in Figs. 105, 106, and 107, where the
original object or cube, Fig. 104, is cut by section planes 1, 2, 3,
making different angles with the HP, but all of them perpendicular to
the VP. As there is really no material difference of procedure in
obtaining such projections of the solid from that already so fully
explained in the previous problems, it is not necessary here to go
through the process in detail, as the construction lines given in con-
nection with each figure are sufficient to enable the student to work
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out the problems without further explanation. He has only to bear
in mind, as before advised, the relationship of the faces and edges of
the original object—the cube—to each other, and knowing this, no
possible difficulty should be met with in obtaining the required projec-
tions. A couple of sheets of paper should at the least be devoted to
these projections, varying the direction of the plane of section in each
problem, so as to thoroughly master any apparent difficulty that might
arise in any similar problem in the future.

29. Advancing from the simple to the more difficult, we again take
the cube as the original object, but instead of it being solid through-
out, as in the last problems, it is now hollow and of an equal thickness
of material all over. To indicate this, in drawing in on the sheet of
paper a front or other elevation of the object, we have to resort to the
use of “dotted” lines. In mechanical drawings especially, such lines
are invariably used to indicate those parts of an object not directly in
sight, and it will be found, as we proceed in the study of this special
kind of drawing, that although appropriated more especially to this
purpose, their use is indispensable to the draughtsman, for by their
proper &pplication an insight is given—on the mere inspection of a
drawing—into the internal structure of the object depicted. In the
case before us, we indicate by their use the thickness and disposition of
the material of which the object is made, for, being opaque, its outward
appearance would be the same whether solid or hollow. Drawing in,
then, as in Fig. 100, Sheet 3, the front elevation of a cube with one of
its diagonals perpendicular to the IL, and indicating by dotted lines as
shown in Fig. 108, Sheet 4, the thickness of the material of which it is
made, we proceed to obtain by projection the various elevations required.
Let the first be— :

Problem 33.—7%¢ front elevation of a hollow cube being given, to find
it8 side elevation, or a view of it when looked at in the direction of
the arrow x.

For convenience, letter the four corners of the front face of the
cube Fig. 108 as in Fig. 100, and obtain a side elevation of it as in
Fig. 101, lettering it in the same way. The two views, so far, are
identical ; but to show that the cube represented by Fig. 108 is hollow,
set off from points &, &' the thickness b 5, b 5" of the cube equal to ¢
in Fig. 108. Through 5, 5" draw dotted lines parallel to ac, a'c’; and
from points 3, 4 (Fig. 108) draw projectors to cut the dotted lines
drawn through 5, 5” in points 3, 3'; 4, 4'; dot in the lines between
the last-named points, and the required elevation (Fig. 109) is
obtained. Next—

Problem 34.—Let the cube Fig. 108 be cut by a plane passing through
its diagonal AC, and an elevation of it be required, when the part
to the left of the cutting plane is removed.

Proceed as before to obtain, as in Fig. 102, the bounding lines
dd, d'¢, ¢, ¢'d of the section; set off at 5’ 5 from de, d’e¢’—the
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front and back faces of the cube—the thickness of its sides, and
through 5’ 5” draw lines parallel to those sides; through points 3, 4 in
Fig. 108 draw projectors to cut the parallels drawn through 5’ 5” in
points 3’ 3", 4’ 4”; the surface included between the inner and bound-
ing lines of the figure is that exposed by the cutting plane AC in
passing through the cube, and is indicated by cross or section-lining.
As the removal of the part of the cube to the left of the cutting plane
AC exposes its interior, the angle formed within it at point 5, by the
meeting of the sides AD, DC, will be seen as a line between points
5 5" in Fig. 110. With the drawing in of this line as shown, the
required sectional elevation is complete. Again— ‘

Problem 35.—Let the cube Fig. 108 be cut by a plane ‘SP, and let it
be required to give a side elevation of it, when the part cut off to the
left 18 removed.

Proceed as in Fig. 103, Sheet 3, to obtain by projection the top and
bottom edges, and the front and back faces of the cube, and letter
them as before. Through points S P in the section plane Fig. 108,
draw projectors parallel to the IL, cutting the line fg (Fig. 111) in
points sp, and through these points parallel to ff’ draw the lines &'s”,
p'p". Then to show the thickness exposed by the cutting plane in
passing through the sides AB, BC of the cube, through points 1, 2
(Fig. 108), and parallel to the IL, draw in Fig. 111 the lines 11",
2'2”. Parallel to, and at a distance from the front and back faces
f9, f9, equal to the thickness ¢ of the cube, draw the lines 1/, 2';
1, 2”: cross-line the surface between the inner and bounding lines of
the section as shown, and as in the case of the section obtained in
Fig. 110 the interior of the cube is exposed, a line will be seen at the
junction (point 5) of its two inner inclined surfaces ; with the drawing
of this line 5’ 5 the required sectional elevation is complete.

As all the construction lines and the reference letters in the
further examples given in Figs. 112 to 115 are shown in, it is left
to the student to work them carefully out without further explan-
ation. No difficulty need be experienced with either of the sectional
projections, provided due thought is given, as before advised, to
the relative positions of the faces and edges in the original object.
Throughout the problems, the views required are in all cases those of
the part of the object left, when that to the left of the cutting plane
is removed.

30. Having satisfactorily worked out the problems in Sheet 4, the
student will now be able to proceed with the following, which will require
on his part a closer study of the construction of the original object
than before, for although it is still in the form of a cube, the per-
foration of its sides by openings, as shown in Fig. 116, Sheet 5, will
involve greater attention to the method of procedure in obtaining its
projections than has before been necessary. This, however, is to be
expected in drawing, as in every other art worthy of study or
acquisition.

On an inspection of Fig. 116, it will be seen that the cube is in the
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same position with respect to the VP and HP as in the two last sheets
of problems—that is to say, the diagonals of its front and back faces
are respectively perpendicular and parallel to the HP, the faces them-
selves being parallel to the VP. Each side of the cube, however,
instead of being, as in the last problems, solid, has now a square hole
through it, the sides of the holes being parallel to the sides of the cube.
It is therefore possible to see right through the cube from any of its
six sides. The consideration of these simple facts in connection with
the original object will be found of service in the attempt to obtain
any required projection of it. Let the first be—

Problem 36.—Given the front elevation of a hollow cube, with square
openings th a central position in each of its sides, and a diagonal
of its front fuce perpendicular to the HP, to find its side elevation
when viewed tn the direction of the arrow on the left.

First draw in the front elevation of the cube, showing the thick-
ness of the material by dotted lines, as in Fig. 108, Sheet 4. Letter the
corners of it A B C D as before. Divide each of the edges AB, BC,
of the cube into three equal parts, in the points 1, 2, 3, 4, and through
these points draw faint lines parallel to the edges BC, AB respectively
across it. The square a b ¢ d formed by the intersection of these four
lines gives the opening on that face of the cube, and the one directly
behind it, and the position of those on the other four faces is shown by
the parts of the same four lines which cross the thickness of the sides
of the cube at the points 1 to 8 in their edges. On putting in the
square @ b ¢ d in full lines, and dotting in those last referred to, the
elevation of the cube shown in Fig. 116, Sheet 5, is that specified in the
problem.

To give the side elevation required, proceed to obtain first, as in
Fig. 109, an elevation of the cube without openings in its sides. Then,
to show the openings that will be seen when looking in the direction of
the arrow «, we have to remember that only two faces of the cube (of
which AB, BC, are the front edges) are in sight, and that therefore
only the two openings figured 1, 2; 3, 4 are seen. Now, as the sides
of these openings are one-third the length of the sides of the cube, and
as the four edges of these openings figured 1, 2, 3, 4 will be seen of
their actual lengths, to show them in the position they occupy on the

" cube, set off in points y z from the lines ac, a'c’ (Fig. 117)—the front
and back faces of the cube—the distance (@ 1 or & 3) that the edges of
the square opening a b ¢ d are from the edges of the cube. Through
these points draw short lines in the upper and lower half of the figure
parallel to ac a’c”, and from points 1, 2, 3, 4 (Fig. 116), and parallel
to aa’ or cc’ (Fig. 117) draw lines cutting those drawn through v z in
1'17, 2" 2", 3" 3" 4’ 4”. The outer edges of the two openings seen from
« will thus have been obtained. Two of their inner edges, one at e and
another at f, are also seen, the first at e being that of the top side of
the upper opening, and that at f the corresponding edge of the lower
opening. Projecting these points over on Fig. 117, and drawing in the
lines they represent, will give their elevation. To complete the view of
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the cube required, we have yet to show the position of the two open-
ings in its front and back faces, represented in Fig. 116 by the square
a bed. This is found by drawing in in dotted lines in Fig. 117, the
projection of the two corners a and ¢ of that square; the other corners
b and d being directly behind the edge of the cube at B, and coinciding
with it, will not be seen in the required elevation.

Figs. 118 and 119 are sectional side elevations of the same original
object, the first being that of the cube cut by a plane passing through

ts diagonal AC, and the second by a similar plane at SP parallel. to
that diagonal. With- the foregoing explanation, showing how the out-
side view of the cube is obtained, and the assistance of Fig. 110,
together with that given by having all the principal projectors shown
in for each figure, the attentive student should be able to obtain
without further aid or assistance the two elevations of the cube shown
in the figures referred to.

In Fig. 120 is given an elevation of the same hollow cube in the
‘same position as that shown in Fig. 116 ; but the sectional side eleva-
tions of it required by planes cutting through it at 1, 2, 3, and shown
in Figs. 121, 122, and 123, although found in exactly the same way as
Figs. 118 and 119, necessitate much closer attention on the part of the
student in obtaining them, the section planes being purposely drawn in
such directions as to make the resulting projections a test of his ability
in applying the principles which have previously been so fully ex-
plained to him.

In obtaining the three sections required, the only likely difficulty
to be met with may possibly occur at that part of each projection where
the cutting plane crosses an opening in one or other of the sides of the
cube. No. 1 section plane, it will be noticed, is shown to cut three
such openings—viz., the one immediately in front and its fellow one at
the back of the cube, and the lower opening at f; No. 2 plane cuts
through the upper left-hand opening at b, the lower right-hand one at
d, and the front and back ones, dividing the cube into two equal parts ;
and No. 3 plane cuts through the upper right-hand opening at g, and
across the corners of the front and rear openings.

31. In showing the parts of the sides of the cube in section in the
three views, care must be taken to note especially where the section
plane enters and leaves the solid parts of the object, and crosses the
open parts, for these points determine what parts are in section and
seen, and what are not. In Fig. 121 the upper part of the projection
is shown as being solid right across, because the section plane cuts
through a solid part of the cube’s side. The same is seen in the lower
part of Fig. 123 ; but in the opposite parts of each of these figures the
section plane has cut through an opening in that side of the cube, and
this is indicated by the gaps shown. The same reasoning will explain
the projection obtained at Fig. 122, only in this instance the section
plane has equally divided the four openings it passes through. With
the foregoing explanation, the three sectional elevations of the original
object should be obtained without difficulty, projectors being shown in
the front elevation of it (Fig. 120), partly drawn in, from all the
important points cut through by the section planes.
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As the side elevations of the prism and the pyramid are obtained in
the same way as those of the cube—so fully shown in Sheets 3, 4, and
5,—a few problems in their projection are given in Sheet 6, for the
student to solve without further aid than that afforded by the con-
struction lines shown in the diagrams.

Fig. 124 is the elevation of a square prism, assumed to be solid in
the first instance, with its base resting on the HP, and two of its sides
—adjacent ones—respectively parallel and perpendicular to the VP.
It is required to give side elevations of the prism—Ilooking in the
direction of the arrow a—when cut by the section planes A and B.
Then, assuming the prism to be hollow, but with closed ends, as shown
by the dotted lines in Fig. 124, side elevations of it are required when
cut by the same section planes as before.

Fig. 126 is the elevation of a square pyramid, with its axis
vertical, and two adjacent edges of its base respectively parallel and
perpendicular to the VP. Side elevations—as in the previous prob-
lems—are required of the sections produced by the cutting planes C, D :
first, assuming the pyramid to be solid, and then hollow. In obtaining
the projections of the pyramid, the student must not forget that as
each of its sides are triangles, their width at any height from the base
varies with that height, and must be found accordingly.

After some further practice in “ projection in the upper plane,” by
devoting a sheet or two of paper to finding the projections of the cube,
prism, and pyramid, cut by planes drawn in other directions than those
given in the problems, the student will be enabled to enter upon the
next stage in advance in our subject.




CHAPTER X
PROJECTION FROM THE LOWER TO THE UPPER PLANE

382. Ir has already been shown in Figs. 70, 71, that if a point in the
HP be the plan or horizontal projection of a line, then the line is a
straight one, perpendicular to the HP and parallel to the VP, and
that its “elevation” is obtained by drawing through the given point
a straight line in the VP, perpendicular to the IL, of a length equal
to that of the line represented by the point. It is also shown in the
same figures that if a line be represented in plan—or in the HP—by
a line of the same length as its original, perpendicular to the IL or
VP, then the elevation of that line will be a point in the VP, where
the foot of the projector drawn through the original line touches the
VP. These two cases embrace the principles involved in finding by
projection the “elevation of an object when its plan is given,” or pro-
jection from the lower to the upper plane.

Having previously worked out the problems of finding the
“elevations” of any of the four plane geometrical figures from their
“plans,” we proceed now to show how the elevations of solid objects,
whose sides or faces are plane figures, are obtained when their plans
are given. As previously advised in the case of the cube, prism, etc.,
no difficulty will be met with in obtaining these projections, if the
relations of the several sides of the original objects to each other are
previously understood. Our first problem in this part of the subject

18—

Problem 387.—Given the plan of a rectangular slab of solid ma-
tertal, with its vertical sides inclined to the VP, to find its
elevation.

Let the rectangle ABCD, Fig. 126, Sheet 7, be the plan of the slab
in the position stated in the problem. Thus shown, all its sides and
ends are rectangular plane surfaces, the upper and under ones being
assumed to be parallel to the HP. The parts of it that will be seen,
looking in the direction of the arrow z, will be the end AB and
the side BC. The points A, B and C are the upper ends of the corner
edges, or lines, which have a length equal to the thickness of the slab ;
therefore to find its elevation, through points A B C, draw projectors
Aa, Bb, Cc perpendicular to the IL7into the upper plane or VP. If the

1
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slab is resting on the HP, set off its thickness on the projector from A,
from the IL, as at a’, and through a° draw a line parallel 1o IL
Ixtween a’ and ¢'; then Fig. X will be the elevation required.

But if the slab is not resting on the HP, but is assumed to be
some distance above it, then on the projector from A set off from the
IL the assumed distance that the top surface of the slab is from the
HP, say at a; through a draw a line parallel to the IL cutting the
projectors from B C in &c; then a b ¢ will be the elevation of the
puints A BC in the plan,and the line drawn through them that of the
top surface of the slab. Set off from a, on its projector towards the
IL, the thickness of the slab; through this point draw a line parallel
to abe, or the IL, and Fig. Y will be the required elevation. The
corner D of the slab will of course not be seen in the elevation ; but
to show that the form and position of the slab are understood by the
student, he should indicate its position by a dotted line, as shown.

Our next object is that of a solid with inclined sides, and the
problem is—

Problem 38.—G'iven the plan of a frustum of a square pyramid with
its base on the HP, and its basc edges inclined to the VP; to
Let Fig 127 be the plan of the frustum in the position specified,
A B C D being the four corners of the base, and let its height be equal
to the length of the side ab of its upper surface, shown in plan. Find
the elevation of the points A BC in the plan, by projectors to the IL,
. cutting it in points A’, B, C. On the projector from A produced, set
up from the IL the height of the frustum in point a”, and through it
draw indefinitely a line parallel to the IL ; then the points a',¥’, ¢’ in
this line, where the projectors from «, b, ¢ in the plan cut it, will be the
elevations of the three corners of the upper face of the frustum, seen
when looking at it in the direction of the arrow .. Join a’A’, 8’ B,
¢'C’ by straight lines, as shown, and the required elevation is obtained.
Proceeding from the simple to the more difficult, our next problem
is—

Problem 39.—Given the plan of the frustum of a square pyramid
resting on the HP, and surmounted by a cube, its sides being inclined
to the VP ; required its elevation.

Let Fig. 128 be the plan of the combined solid, in the position
given in the problem, and let the height of the frustum be equal to the
length of a side of the cube. Then, having found the elevation of the
frustum, as in the last problem, find by projectors from points 1, 2, 3
in the plan the elevation of the three corners of the cube, seen when
looking in the direction of the arrow. On the projector from point
1 in the plan set off from the upper face of the frustum, or the line
«' b ¢, the height of the cube, and through the point 1’ draw the line
1’ 2’ 3', and the required elevation is obtained. The elevation of any
of the regular plane solids from their plan is found in the same way.
For example—
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Problem 40.—Let Fig. 129, Sheet 8, be the plan of an hexagonal prism
with tts axis vertical and its base on the HP, and let its height be
equal to twice the diameter of the inscribed circle of its base ; required
its elevation.

In the position in which the object is standing with respect to the
VP, three of its sides and four of its vertical edges will be seen. Find
the elevation of these edges by projectors through the points ABCD ;
on the one through A set up the height of the prism equal to twice a/,
and at this height and parallel to the IL, draw a line cutting the
projector from D in d, and the required elevation is obtained. Again—

Problem 41.—Let Fig. 130 be the plan of a square pyramid, its axis
vertical, its base resting on the HP, and its height equal to twice
the length of the diagonal of its base ; fnd its elevation.

As the solid is resting with its base on the HP, the elevation of its
three base corners that will be seen—viz., A B C—will be found in
abc on the IL. Itsapex is the point pin the plan where the two
diagonal lines—which are the plans of its side edges—intersect. Find
the elevation of the axis by a projector through p ; set off on this from
the IL upwards the height of the pyramid in the point g/, and join p’
by right lines with points a’ %' ¢’ on the IL, and the required elevation
is obtained.

The “ sectional ” elevation of an object is obtained from its plan by
similar methods.

Problem 42.—Let Fig. 131 be the plan of a solid cube resting
with one of its faces on the HP, and let it be cut by a plane SP
perpendicular to the HP, and an elevation of it be required, when
the part X, cut off by the plane, is removed.

Projectors being drawn from the points A 8 P C, into the upper
piane, as shown, and the height of the cube set off from the IL in point
@’ ; on the one drawn through A, a line through ', parallel to the IL,
cutting the projector from C in ¢’ and the cross-lining of the part cut

'tAhm}lgh by the section plane, completes the elevation required.
gain—

Problem 43.—Let Fig. 132 be the plan of a hollow square pyramid,
its height being twice the length of a side of its base, and a sectional
elevation of it on the line SP be required.

As the cutting plane passes through the axis of the pyramid, its
section will be a triangle. First find the elevation of this triangle,
making its altitude the given height stated ; then to show the thickness
of the material cut through by the plane, find the elevation of the
points 1, 2 in the plan on the IL, and through these points 1’ 2/, and
parallel to the sides of the triangle, draw lines meeting in the axis in
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the point a, cross-line the part cut by the section plane as shown, and
the required sectional elevation is obtained.

From the foregoing problems it will be seen that to obtain the
elevation of an object from its plan alone, without other important
data, would be impossible, as the heights and conformation of its
different surfaces not seen in the plan must be known before its correct
elevation can be attempted.

It being necessary, at this stage of the student’s progress in the
study of our subject, that he should know something about the correct
lining-in of his work in ink, we shall next explain the proper applica-
tion of the different kinds of lines used in mechanical drawings, that
he may be able to practise in spare moments on the sheets of drawings
in pencil the results of his study, which it is assumed he has preserved.



CHAPTER XI

LINING-IN DRAWINGS IN INK

33. ArrHOUGH the student, up to the present stage in his study, has
not been called upon to draw anything to scale—which necessitates a
greater amount of exactness in the use of his pencil and instruments
than he may yet have exercised—he should still have acquired a sufficient
ability in their manipulation to enable him to put in fairly sound and
fine lines when necessary. But as the permanence and practical use of
a drawing—especially one of any engineering subject—are matters of
necessity and great importance, it must be committed to paper in a
better medium for its preservation than that offered by the use of
plumbago. The lead-pencil is only employed for the rapid committal
to the paper of the ideas embodied in the drawing, but for the preser-
vation of these, and for constructive purposes, the design must be
fixed in some coloured pigment or ink. As previously stated at
the commencement of this work, China or India ink is the special
pigment used by the mechanical draughtsman for this purpose, and it is
now intended to explain the proper application of the different kinds
of lines used in inking or lining-in an outline mechanical drawing.

‘We may state at the outset in this part of our subject that in what
are known as ordinary, workshop, or “shop drawings,” only one kind
of line is used in inking them in, and that is a firm, sound, black line,
about g of an inch in thickness. In all good modern workshops, no
workman is allowed to decide by measurement with his rule the dimen-
sions of any part of a piece of mechanism shown on a drawing, as all
such parts are, or should be, dimensioned with figures on the drawing
itself before it leaves the drawing office. But for the purposes served by
a drawing in outline, or one not intended for shop use, different thick-
nesses of lines are necessary to enable it to be properly read and
understood. These lines are generally of three degrees of thickness,
and are defined as fine, medium, and shadow or thick lines. Their use,
however, without some well-defined rule of application, would be futile ;
as the very reverse effect of that intended would be produced by the
incorrect use of either of them.

34. Now, as the proper application of these lines is directly con-
cerned with the effect caused by light falling on an object, it is a
matter of importance in this special kind of drawing that a uniform

77
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rule be adopted with respect to the direction in which the light is
supposed to fall upon the object represented. With the free-hand
draughtsman or artist, this direction is optional, as he can adapt it to
the way he thinks most conducive to effect in showing up any particu-
lar object in his picture ; but with the mechanical draughtsman, as his
drawings are not representations of objects as they appear to the eye,
but are projections obtained by parallel rays from all parts of them
falling upon certain planes having definite relations to each other, but
represented by his sheet of paper, he has to adopt some rule of illu-
minating the visible surfaces of his objects, in accordance with the system
he uses in projecting their outlines.

Although the illuminant is the sun, and its light is diffused equally
around, it is generally assumed that we see objects by light coming from
above and behind us; but it is evident that if the light shone directly
from behind, the spectator would be in his own light, and part of the
object would be in shade. The light must then be assumed to come
either from the right side or the left. As a rule, the rays of light are
always assumed to come over the left shoulder of the draughtsman in
parallel lines, and to strike the planes of projection—or the VP and HP
—of the drawing at an apparent angle of 45° with the IL, or inter-
secting line of those planes. The actual direction of the rays is
graphically shown in the diagram Fig. 133.

Let VP and HP represent the two planes of projection, and the
line IL the intersecting line dividing them. In these planes draw in
ABCD to represent the elevation, and a'd'c'd’ the plan of a cube. -
In the position shown, the front and back faces of the cube are parallel
to the VP, and all the others perpendicular to it. Through Cin the
elevation, and ¢’ in plan, draw lines EC, ec¢’, making angles of 45° with
the IL; then EC and ec’ will represent the plan and elevation of a
ray of light and the apparent direction in which it falls upon the VP
and HP. The actual direction, or path of the ray, is from the upper
anterior or front corner of the cube at A, to the lower posterior or back
corner. of the cube behind C. In other words, the ray of light is
assumed to travel in a direction coinciding with the diagonal of the
cube, drawn between point A and the point beyond C.

To find the actual angle that this ray of light makes with the
planes of projection : At point A in the elevation of the cube erect at
A, a perpendicular to AC; on this set off from A a length Ad equal to
a side of the cube; join d and C; then the angle ACd is that made
by the ray of light with the planes of projection VP and HP. For
‘if the right-angled triangle dAC be supposed to turn on its base AC as
a hinge until its plane coincides with AC, then the angular point &
will coincide with A, and the hypothenuse dC of the triangle dAC
will become, as before stated, the path of the ray of light. The angle
made by this ray with the VP and HP will be found to be, both by
measurement and calculation, one of 35° 16”.

To make the rule—adopted by the mechanical draughtsman—as to
the assumed direction of the light falling on a body still more clear,
let the student cut out in stiff paper a model, allowing a strip for gum-
ming, as in sketch A, of the right-angled triangle dAC, Fig. 133;
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fold over the strip on the model, on line AC, until it is at right angles
to the triangular part, gum the strip on its under side and apply the
model to the elevation of the cube, making the lines AC on each
coincide. Then prepare a similar model of the triangle and apply it
to the plan of the cube on the line o’ ¢. With the sheet of paper on
which the plan and elevation of the cube are drawn, flat on the draw-
ing-board, the triangular models will both stand perpendicular to the
plane of the paper. If now the VP be bent over forwards on the IL
as a hinge until it is at right angles to the HP, the direction of the
ray of light with respect to both planes of projection will at once be
seen, for the hypothenuses of the triangles with which the ray of light
coincides are parallel to each other, and make equal angles with the
VP and HP. It will also be proven by the aid of the model, that a
line drawn in the VP and HP at an angle of 45° with the IL, cor-
rectly represents the elevation and plan of a ray of light when making
an angle of 35° 16” with those planes.

85. We have now to explain why a distinction should be made in the
quality of the lines used in inking-in an outline mechanical drawing.
It will be readily understood on looking at any illumined object that
there are some boundaries in its surfaces on which the light will
fall direct, and others on which it will not so fall, but will cause them
to cast a shadow on some other surface beyond them. Of the former,
some are often so much in the light that the edges bounding the sur-
faces are almost imperceptible; all such must of necessity be repre-
sented by fine lines. Those on which the light does not fall direct, but
which cast a shadow on some more distant surface, are represented by
thick lines. A medium thickness of line is only used under exceptional
conditions of position of the bounding edges of surfaces; but of their .
use we shall speak later on. For the present we shall deal only with
fine lines, and thick or shadow lines, and their application to plane-
surfaced solids, or such as the student has already drawn-in in pencil.
Knowing all the forms of the solids which have been taken as subjects
for projection, their proper inking-in should present no difficulty. All
that has to be determined in connection with the pencilled-in lines is
what each represents—that is to say, is it an edge or bounding line on
which the light falls direct, or does it cast a shadow? This decided,
the line can be drawn-in in ink.

Taking the two projections of a cube—given in the diagram Fig.
133 as an explanatory example—let it be determined how they should
be inked in. To begin with the elevation, and knowing the direction
in which the light falls upon the object, it is evident that on two of its
front edges—AB and AD—the light is falling direct ; their representa-
tive lines—AB and AD—must therefore be fine ones. It is equally
obvious that the edges BC and DC will cast a shadow on the VP
against which the cube is resting, therefore the lines BC and DC, repre-
senting these edges, must be thick, or shadow lines. Three other edges
of the cube are also affected by the light—viz., those of which A, B
and D are the front ends; but this cannot be indicated in the ele-
vation. The cube whose plan is shown in the diagram is for explan-
atory purposes set forward some distance from the IL, and must not
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therefore be taken as that of the cube given in elevation. In this
case it is assumed to be standing with one of its faces on the HP. In
that position two of its top edges—a'd’ and a'b-—are directly in the
light, and will therefore have to be fine lines, while the corresponding
opposite edges &'¢’ and ¢'d, as they will cast a shadow on the HP,
must be thick, or shadow lines. Of the *cast shadows” thrown on
the VP and HP by the cube in the positions shown, we shall speak
later on.

86. To show the importance of correctness in the use of fine and
thick lines in an outline drawing, we give in Fig. 135 a very simple
drawing which may be made, by a different application of such lines, to
represent totally different objects. The figure being drawn-in altogether
in fine lines may represent anything; say a square thin plate of any
material, with a small square lined-in on' its surface. To give an
idea of substance or thickmess in the plate, this would be effected
by thickening the lines from A to B and B to D, as in Fig. 136. The
inner square would represent a ‘“recess” in the plate by thickening the
- lines ac and cd, as in Fig. 136 ; but if the opposite sides, ab, bd, of this
small square were thick lines, then this square would represent a
‘“projection ” on the surface of the plate or slab as shown in Fig. 137.
That Figs. 136 and 137 are plans or horizontal projections of objects is
evidenced by the position of their shadow, or thick lines, the shadows
cast by their projecting edges—shown in—indicating the direction in
which the light falls upon them. The original drawing, Fig. 135, may
be either a plan.or elevation, there being nothing in its lining to show
which is intended.  The student should be careful to note that even in
this simple drawing of only eight lines, the reversing of the positions
of the thick lines bounding two of the sides of the inner square
produces not only a different appearance in the object, but gives quite a
different reading as to its construction. :

37. From the foregoing explanation of the use and application
of a fine and thick line in defining the meaning of an outline drawing,
it will not surprise the student to find that an alteration in the position
of an object with respeoct to the light falling upon it may, and possibly
will, affect its lining-in. To show the effect of such an alteration
in position, let E and P in the diagram Fig. 134 be the elevation
and plan of a cube, with four of its faces vertical, and making
; angles of 45° with the VP.  In this position the light falls wholly and
directly upon the vertical face Ae C¢/, leaving its parallel and opposite
one wholly in shade, while the face ¢B ¢'D and its opposite one are
in the plane of the light. In this case the lining-in of both plan and
elevation of the cube becomes quite different to that of the same objects
when differently placed with respect to the light falling upon them.

As in the previous figure, in elevation, the under side of the cube is
assumed to be some distance above the HP, but in plan it is supposed
to have that side resting upon it. The correct lining-in of the two
views in accordance with their altered position will then be as
follows :—In elevation, the top front edges Ae, ¢B, forming one
line, being directly in the light, must be a fine line. The vertical
edge AC, being “in the plane of the light,” must also be a fine line,

G
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The edge ¢ is in the plane of the light, but it being s0 nzar to
becoming one that would either cast a shadow or be fully in the light, a
medium thickness of line would be most appropriate.  As the vertical
edge BD of the cube would cast a definite shadow on any surface
behind it, it must of course be a thick line. The same applies to the two
lower front edges of the cube C¢’ ¢'D, forming one line, which must also
be a thick one. Practice among mechanical draughtsmen varying as to
the appropriate use of a medium thickness of line in a drawing, it may
be remarked in the case here presented that if “colour™ were used
to assist the eye in determining the form of the object represented
in elevation by E in the diagram, the tint would be dark near the edge
e, and gradually lighten off as it approached the edge BD, although
the latter would cast a shadow on any surface behind it. For this
reason a medium thickness of line seems best suited to the position. As
to the lining-in of the plan P of the cube, it will at once be seen from its
position that only one edge, or that between points f and b, will cast
a shadow, and it must therefore be made a thick line. The other three
—two in the plane of the light and one having light falling direct upon
it—must be fine lines.

38. To prevent the misreading by the student of some engravings
of mechanical subjects in outline still to be met with, it is as well here
to observe that in England some draughtsmen and engravers line-in
both plans and elevations of objects as if they were situated in the same
plane, and cast their shadows in the same directions; but that this
i8 contrary to the principles upon which their projections were obtained
may at once be seen from a study of the shadows cast by the cube
in plan and elevation in Fig. 133. As the planes of projection are
at right angles to each other, it would be impossible for the shadows
to fall in the same direction in botk planes, unless the light fell upon the
objects represented in two totally different directions at one and the
same time, which would be absurd. In all representations of objects,
therefore, throughout this work, where any difference in the lining is
shown, we shall recognize the existence of the two planes of projection,
in their proper relative positions, and apply the rules for such lining
in accordance with the principles before explained.

As the study of the projection of solids having curved surfaces will
be the next division of our subject that will occupy attention, a few
words only are here necessary with reference to the lining-in of such
objects in ink. As a general rule, only one kind of line—the fine line—
is applicable to the outline representation of the curved surface of the
solids of this class—the cylinder, the cone, and the sphere—with which
we shall deal, consequent on the fact that the particular part of the
curved surface of each which would cast a shadow on any adjacent
surface, falls within the bounding lines of its representation, and cannot
be expressed by a line, a8 in the case of bodies having plane surfaces.
‘We shall, however, before completing our explanation of the projection
of such solids, give all necessary information as to inking them in.

39. Before leaving this part of our subject a few words are
necessary for the guidance of the student in reference to the mixing
and usage of the ink with which he will line-in his drawings. Although
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liquid ink for this purpose is now to be purchased, it is advisable for
the student to know how to make suitable ink for himself. He will not,
of course, without some considerable practice, succeed in making really
serviceable ink, but such as he will be able to produce will sufficiently
serve his present purpose.

To prepare the ink for use, let the student provide himself with a
medium-sized colour saucer—sold in nests of half-a-dozen by any artists’
‘colourman—and having procured a stick of good India-ink and a
camel’s-hair water-brush, proceed as follows :—Charge the brush with
clean water, and by its means put as much of it in the saucer as would
half-fill an egg-spoon. With the stick of ink held vertically, and with
one end in the saucer, rub it in a circular direction, applying a gentle
pressure at first, until the water has attained a dark brown colour and
begun to thicken ; continue rubbing, gradually adding water in drops
from the water-brush, until a sufficient quantity of liquid ink is made.
To test its blackness and consistency, blow steadily into the saucer: if
the ink is a good black all through, the bottom of the saucer will not be
seen ; but if too thin, it will come in sight, and the rubbing must be
continued. For the ink to be in working order it should be neither too
thin nor too thick. To bring it to a proper consistency, about a quarter
of an hour’s rubbing will be required. If it is found at any time to
have thickened by evaporation of the water in it, add more in drops
by the use of the water-brush, keeping it well stirred while doing so.

Some writers on this subject advise the student to always use fresh-
rubbed ink, taking care to wash out the saucer before making it. ~ This
is by no means the practice in many of the largest drawing offices
in the kingdom. On the contrary, good ink is never wasted, but is
improved by being worked up afresh. The writer’s practice for years
has been to keep by him in his instrument-box a home-made india-
rubber pestle, similar in shape to a diminutive Indian club. ~With the
use of this and a few drops of clean water added as required in the ink-
saucer, he is able to produce an ink of equal density and colour
throughout, and which does not contain a particle of anything held in
suspension in it that would be liable to clog the drawing-pen.

Special unglazed saucers are now to be purchased for the rapid
making of India-ink, but these the writer finds very extravagant sub-
stitutes for patience and the expenditure of a few minutes of time. A
maore suitable saucer would be one made of glass of the same shape as
now used, but with its inner surface finely ground. Through want of
patience on the part of the draughtsman, and the application of too
much pressure while rubbing, the ink is liable to break away from the
stick in small lumps, which are never thoroughly reduced to the liquid
state, but cause constant annoyance by clogging the pen. With a
properly-ground glass saucer this tendency of the ink-stick to fray away
in particles would be avoided. One great mistake made by many
draughtsmen is the practice of dipping the rubbing end of the ink-stick
in water before starting to make their ink. By so doing it becomes
soddened, and when dry will be found to be cracked all over at that
end, and ready to break away in pieces on the least pressure being
applied. The rubbing end of the ink-stick should always be wiped dry
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directly it is done with, if it is wished to keep it in good order for use ;
and the ink saucer should only be uncovered while filling the pen. This
latter operation is best effected by capillary attraction, and not by the
use of a brush. 'When more ink is required, first pass a piece of soft
wash-leather between the nibs of the pen, to remove any deposit, and
before dipping in the ink draw it through the lips, which will give
sufficient moisture to cause the ink to flow freely between its nibs, and
so fill it. The use of a brush is objectionable, on the ground of its
being liable to pass into the pen any sediment that may have collected
in the ink-saucer.

‘With reference to the drawing-pen and how to use it—the compass
or bow pens will not at present be required—the student will remember
the explanation of its construction given at the commencement of this
work, and from that will understand that in using it, it must be
held nearly upright, keeping its strong nib in contact—without pressure
—with the edge of the tee- or set-square ; that all horizontal lines must
be drawn from left to right, and vertical ones upwards, or from bottom
to top of the board. The drawing-pen when purchased should be set
for use, and its satisfactory manipulation will soon be acquired if due
care is taken not to damage its points.



CHAPTER XII
THE PROJECTION OF CURVED LINES

40. Up to the present stage in our subject we have purposely
refrained from dealing with figures having curved bounding lines, or
solids with curved surfaces, knowing how important it is for the student
to thoroughly understand the projection of straight-lined plane figures
and plane-surfaced solids, before attempting anything in which a curved
line or surface occurs. Assuming that he has mastered all that has now
been explained, he will be the better able to apply himself to that part
of the subject to which we next proceed—viz., the projection of solids
having “curved ” surfaces. As this, however, involves a knowledge of
the projection of curved lines, this must first be acquired.

From our definition—Chapter IIT.—of a curved line—viz., that it is
the path of a point which is continually changing its direction—it will
at once be manifest that its projection cannot be obtained in the same
way as that of a straight line, in that all that is here required is to find
the projections of its ends and join them by a right line. As the
generating point of a curved line is moving in a different direction at
all parts of its path, it follows that the only way in which its projection
can be obtained is by getting the projection of that point in several of
its positions, and joining them by a line passing through them, which
will be the projection sought To obtain this, however, it is first
necessary to have a perfect knowledge of the original curved line
and its varying direction, as it may be a line lying wholly in a plane,
or, on the other hand, one of such a character that no part of it would
coincide with or lie in a plane. For a first example in curved line
projection we take as our problem—

Problem 44 (Fig. 138).—Given the front elevation AB of a curved
line in a plane parallel to the VP, it is required to find its side
elevation and plan, or views of it when looked at in the direction of
the arrows.

Here the line being a simple curve, it is evident, on looking in the
direction of the arrow on the left, that its projection will be a straight
line @b, No. 1, as all the points in the curve are in one and the same
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plane. For the same reason, the plan of this curve will be the straight
line a'd’, No. 2, obtained by letting fall projectors from its two ends
AB into the HP, and joining them by a right line.

Now, let the plan of this curved line—or a'd’, No. 2—be assumed
to make an angle of 40° with the VP, and its front and side elevation
be required. To obtain these, we must know the position of some
points in the curve with respect to a fixed datwm line, from which
measurements may be taken. Let the points in the curve of which
a't’ is the plan be A, 1, 2, 3, B, in the elevation, and let the line CB,
drawn through B at right angles to the IL, be the datum line, which
is assumed to be in the same plane as AB. Through A 1, 2, 3, B,
draw lines parallel to the IL, cutting CB in points C, 1’, 2, 3', B. Now,
the line "¢’ in the HP is the plan of the curved line AB in elevation,
moved through an angle of 45° with the VP, the point a” being nearest
the eye, and &' farthest from it. To find the plans of the intermediate
points 1, 2, 3, in the curve AB, set off from &' in the plan the distances
CA, 11, 22, 33, in elevation in the points a”, , y, z. Through these
draw projectors into the VP, cutting those from A, 1, 2, 3, in ¢, d, £, g.
Then a line drawn through these points to B will be the required
elevation of the curve.

To find its side elevation, take a new datum line C'B’, No. 3, parallel
to CB, and produce the projectors drawn through A, 1, 2, 3, B, in the
original curve line AB, No. 1, to cut it in points C', 4, 5, 6, B'; at
each of these set off in points ¢/, &, /7, ¢/, the distances—measured from
the datum line—that their corresponding points a”, #, ¥, #, in the plan
No. 2 are from a'®’, measured on the projectors drawn through them ;
then a line drawn through the points so obtained, as shown in No. 3,
will be the side elevation of this curved line in its new position.

If the given line of which the projections are required is one of
double curvature, but still in one plane, its projections are obtained in
. the same way as those of a simple plane curve. As an example we
will take a very common double-curved line known as the ogee moulding ;
and let the problem be—

Problem 45 (Fig. 139).—Given the front elevation of a line of double
curvature AB, No. 1, to find its plan and side elevation, the plane of
the curve being parallel to the VP.

In this case, as every point in the curve is at an equal distance
from the VP, its plan will be a straight line a'¢!, No. 2, parallel to the
IL, and its projected length will equal the distance between projectors
let fall from its ends A and B into the HP. Its side elevation will
also be a straight line ub, at right angles to the IL, for as every point
in it is equi-distant from the VP, it will coincide with or lie in a plane
which we are told in the problem is parallel to the VP, and therefore
perpendicular to the HP.

To find the elevation of the line AB when the plane in which it
lies makes any given angle with the VP, proceed as follows :—

Choose any convenient points—other than its two ends—in the
curve as 1, 2, 3, 4, No. 1. Through these let fall project,ors into the
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HP to cut a'd’, No. 2, the plan of AB in the points 1', 2, 3, 4. At
Y, in this plan, draw a line making with a'é6’ an angle equal to that—
say 45°—the plane containing the curve line is to make with the VP
Transfer—by arcs struck from &'—the points 1, 2, 3, 4’ in a'd’ to
a’t', and through these draw projectors into the VP, cutting those
drawn through A, 1, 2, 3, 4, No. 1, to the datum line CB in ¢, d, ¢, f,
g; a curve drawn through these points, as shown, will be the elevation
required. In this way the elevation of any curved line lying in a plane
making any angle with the VP, may be found, for the line, or the plane
in which it is supposed to lie, may be assumed to rotate round the
datum line as an axis, carrying with it all its points, the position of
which with respect to the VP may always be easily determined, and
from them the projections of the lines in which they lie may be found.

41. To find the projections of a compound curved line, or one no
part of which would coincide with or lie in a plane, the process is some-
what more difficult, as its appearance in two directions at right angles
to each other must be known, or given, before a third view of it can be
obtained. As an example—

Fig. 140
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Let AB, No. 1 (Fig. 140), be the elevation of such a curved line,
and ab, No. 2, another elevation of the same line, at right angles to
the first. It is evident that such a line could not coincide with a
plane, yet if the relation of any points in it with the planes of its
projection be known, or can be determined, then the plan or horizontal
projection of the line can be found. Let, then, the line ab, No. 2, be
the front elevation of the line, the VP being behind it, and AB, No. 1,
its side elevation, looking in the direction of the arrow x. Then the
end A or a of the line is nearest the VP, or farthest from the eye;
and the end B or b the converse. To prove this, through A, No. 1,
and b, No. 2, draw the lines Ap, ¢b, perpendicular to the IL; then Ap
will represent an end elevation or edge view of the VP—looking in the
direction of the arrow z—and cb that of a plane at right angles to the
VP. With the assistance of these as datwm planes we can determine
the distance of any point in the line AB from each of them, and thus
obtain its horizontal projection. A line drawn through a series of
points thus found will be the plan of the curved line sought.

To find it, choose a suitable number of points in the given line AB,
No. 1, say at 1, 2, 3, 4; project these over on to ab, No. 2, and produce
the projectors to meet the datum plane cb, as shown ; the exact position
in plan of any of these points can now be fixed. From a, 1/, 2/, 3, 4/,
b, No. 2, let fall projectors into the lower plane, or HP, and on these,
in No. 3, set off from the IL the distances that the corresponding
points in AB, No. 1, are from Ap ; through the points thus found draw
the line a’ &', and it will be the plan of the given compound curved line

_sought. By letting fall similar projectors from the points in AB, No.
1, and setting off on them the distances that their corresponding points
in ab, No. 2, are from the datum plane ¢b, a similar plan of the com-
pound curved line will be obtained, as shown at &' B, No. 4, to that
found in No. 3, but at right angles to it, as AB, No. 1, is at right
angles to ab, No. 2.

From the foregoing explanation the student should be enabled to
apply the principles involved to the projection of any single curved
line, whether simple or compound ; but to show the actual appearances
the same curved line will assume in projection when occurring in
different positions, we give one problem in this connection before pass-
ing on to the projection of curve-bounded figures.

By way of making the problem more interesting, and of practical
application, we will take an ordinary curve—such as is given to the
foot of a square or six-sided column—combined with a straight line,
and let the problem be—

Problem 48.—Given the elevation of a combined curved and right
line parallel to the VP, to find its plan and elevation when it makes
ang given angle with the VP or HP.

Let ABC, No. 1 (Fig. 140a), be the elevation of the combined line.
Being parallel to the VP, every part of it is equi-distant from it. Its
plan, in this position, will be the straight line a'?’, No. 2, parallel to
the IL, its length being determined by projectors from A and B in the
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elevation. Produce BC, No. 1—the straight part of the line—verti-
cally to ¢, and let ¢'C be assumed as an axis round which the curved
line can be turned through any given angle; and also as a datum line
from which measurements may be taken. In AB—the curved part of
the line—take any convenient points 1, 2, 3, 4; and through them and
A draw projectors parallel to the IL, to meet the axis, or datum line,
in¢, 1,2, 3, 4. Now, suppose ABC to rotate on the axis line ¢'BC,
from its normal position—parallel to the VP—through any given
angle ; then its plan at that angle will still be a straight line, but it
will be at an angle with the IL—or with its plan when in its first
position—equal to that it has been turned through. Let this angle
be one of 60°. Then to find its elevation in this new position, proceed
as directed in solving Problem 45 by first projecting over on to ab in
plan the points in the curve, transferring them by arcs to a”4’, and
from thence by projectors into the upper plane, cutting those drawn
through A, 1, 2, 3, 4, B, in the points shown ; then a line through @’
and these points to B will be the elevation of the curve in its new
position.

Next, let this newly-found elevation of the combined line be inclined
to the HP in such a way that the axial line—and with it the part BC
of the combined line—makes an angle of 45° with the HP or IL; and
let its plan when in that position be required.

To put on the paper the new elevation, No. 3, in the reqmred posi-
tion, draw in the axial line at the required angle, and to it transfer the
points in the same line, No. 1; through these draw ordinates as shown,
and on them set off in points a', 1, 2, 3, 4, the corresponding lengths
of the same lines in No. 1, and draw in the curve. To obtain its plan
in this position, let fall projectors from the several points in it in the
elevation, and through the corresponding points in the plan, No. 2,
draw projectors parallel to the IL, cutting those let fall from No. 3;
a line drawn through the points of intersection of these projectors will
give o/ BC, No. 4, the plan of the line required.

In the foregoing, Nos. 1 to 4, the axial line about which the com-
bined line has been supposed to rotate has in each case been assumed
to be parallel to the VP. Let it now be supposed, while still inclined
to the HP at the same angle as before, to be also inclined to the VP
at an angle say, of 45°, and let an elevation of the combined linc in
this position be required.

To obtain this, we must first show in on the paper, the plan of the
combined line in its new position with respect to the VP or IL,
before we can proceed with its elevation. This means that the last-
obtained plan of the combined line must be moved from its present
position—viz., that of having the assumed axial line ¢’ C parallel to the
VP—to one in which that line will make an angle of 45° with the VP
or IL; and is tantamount to swinging the line on its end C, as a pivot,
through an arc of 45° in such a way that each point in it while being
swung is kept at the same height—in its plane of rotation—above the
HP. This new position of the last-found plan of the line is therefore
correctly shown, by drawing a line—the assumed axial one—at an angle
of 45° with the IL, and transferring to it, as was done in the case of
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No. 3, the various points, ordinates, etc., of No. 4, as given in No. 5.
Its elevation is then obtained by producing the projectors drawn
through the points o', 1, 2, 3, 4, BC, No. 3, and intersecting them by
those drawn through the corresponding points in the plan No. 5. A
line drawn through the points where these projectors intersect will give
the line 'BC, No. 6, which is the required elevation.

42. To familiarize himself with the principles involved in this very
interesting part of our subject—viz., the projection of curved lines in
any position—the student should accustom himself to make wire
templets, of copper or lead, bent to the exact shape of the lines
given for projection. Such models, when posed before him in the
positions stated in the problems, would materially assist him in
obtaining the correct projections required, as he would be able to
follow the movements of any points in them in the different positions
they assume. Practice with such models is all the more advisable in
view of the more difficult problems that will have to be mastered in the
projection of solids having curved surfaces, when inclined, or otherwise,
to the planes of their projection.

After the foregoing full explanation of the application of the
principles of projection to curved lines, the projection of curved-
bounded figures, to which we now pass, will present little or no
difficulties.

As the simplest possible curve-bounded figure is the circle, its
projections claim first attention. 'We have defined such a figure as the
path described by a moving point that is always at the same distance
from a fixed point, around which it moves. When such a figure is cut
out of any material substance, such as a piece of metal plate, or card, it
is called a disc. Looked at in various directions, it assumes different
forms. The exact form taken is obtained by projection. Our first
problem in connection with it is—

Problem 47.—Given the plan of a circular plate, to find its front
and side elevation.

Let the straight line AB, Fig. 141, No. 1, be the given plan. Now
as the edge view of a disc, looked at from above, is a straight line, we
see that if AB is such a view, the plate must be perpendicular to the
plane of its projection, or the HP, and being parallel to the IL every
part of its surface must be parallel to the VP ; therefore its elevation
will be a circle and have its bounding-curved line everywhere equi-
distant from its centre. To find this bisect AB in C, and through C
draw a projector into the upper plane at right angles to the IL. Take
any convenient point in this projector at a greater distance from the
IL than half AB—say a’—and through @’ draw a line parallel to the
IL. With a’ as a centre and AC, No. 1, as a radius, describe the circle
acbd, No. 2, which will be the front elevation of the circular plate. If
correctly drawn, vertical projectors through A and B in the plan should
cut the diametral line drawn through the centre a’ of the circle in the
points @ and b in that line. Then as the surface of the plate is parallel
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to the VP, the side elevation of it will be the straight line ¢'d, No. 3,
parallel to cd, No. 2, obtained by projectors from ¢ and d, as shown.

Py 241 22

Next, let the line AB, Fig. 142, No. 1, be the given plan of the
circular plate, and its elevation be required.

Here the plate being still represented in plan by a line, is perpen-
dicular—as in the previous case—to the HP, but being inclined to the
VP its elevation becomes an ellipse, or a curve-bounded figure in which
points in its bounding line are not all the same distance from its centre.
To find the elevation, bisect AB as before in C, and through C draw Ce,
at right angles to the IL. Choose any point in Ce, as @/, and through it
draw a line parallel to the IL. Set off in ¢ and d from &’ on the pro-
jector through C, a distance equal to AC or CB, and through A and B
draw projectors into the VP, cutting the line through &’ in @, b ; then
acbd, No. 2, will be four points in the ellipse, the line between ¢, d being
its major axis, and that between a, b its minor axis. Divide AB in the
plan into any number of equal parts, say six, in the points 1, 2, C, 3, 4 ;
through these at right angles to AB draw ordinates to the semi-circle.
Project points 1, 2, 3, 4,in AB on to the minor axis «b in the elevation,
and through them draw lines parallel to c¢d. Set off on these on either
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side of «b, the length of the corresponding ordinates to the semi-circle in
No. 1, and through the points thus obtained draw the curve of the ellipse
as shown in No. 2, which will be the required elevation of the circular |
plate in its new position.

43. For the better comprehension of this last problem by the student,
before passing to the next a few words in further explanation of its
solution is desirable. It has been shown in previous problems in the
projection of curved lines that if the position of points in the curve can
be determined the problem is virtually solved. In the case of the circle
in Fig. 141, it would have been quite possible to have first .found any
number of points in the bounding line and then to have joined them
by a line passed through them, and thus have produced the circle, but
the use of the compass obviated the necessity. In the problem before
us, the necessity exists for finding exactly several points in the required
elevation of the object in the readiest possible way. The original object
being a circle, a regular figure—as distinguished from an irregular one
—whose surface is readily divisible into parts, it is apparent that by
turning down one half of that surface on the line AB in No. 1 as a
diameter, and drawing lines upon it at right angles to AB, through any
points in the semi-circle, we can at once find the actual length of those
lines and transfer them to their vertical projections in No. 2. The
solution of this problem may also be reasoned out in another way. The
original line AB, No. 1, is in fact—as was shown in the previous
problem—a curved line, although presented to the eye as a straight
one, every point in it, on either side of that at C, being farther from the

" eye the farther it is to the right or left of C. As the actual length of a
line drawn across the circle at C, through its centre to the opposite
edge, is known to be equal to AB, or twice Cec, so can the distance
across the circle through any other point in AB be ascertained in the
same way. For, as the ordinate Cc is measured at right angles to AB,
80 any other, as 2, 2/, is equal to half the distance “From the point 2’
across the circle to the corresponding opposite point in its edge.
With this explanation the followmg problem should present no
difficulty in its solution. .

Problem 48 (Fig. 143).—Given the plan of a circular plate as a
circle ; to find its projections in the VP and HP when making
gwen angle with either plane.

Let the circle ABCD, No. 1, be the given plan, the diametral line
AB being parallel to the IL, and the similar line CD perpendicular to
it. Bisect each quarter of the circle in the points 1, 2, 3, 4. As
shown, the surfaces of the plate are evidently parallel to the HP. Let
it now be inclined to that plane at an angle of 60°, keeping the
diametral line AB parallel to the HP, and the point C uppermost, or
nearest to the eye. To obtain its elevation when in that position, an
edge view of it—looking in the direction of the arrow z—must first be
given, which will be a line equal in length to CD, inclined to the IL at
the required angle. Draw in this line CD as in No. 2, and bisect it in
the point B, which will be the end of the diametral line AB, nearest
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the eye in side elevation, A being the point beyond it across the
circle. Through B, No. 2, draw a projector parallel to the IL, and in-
tersect it in points a, b (No. 3) by projectors from A and B in No. 1.
Transfer points 2 and 4 in No. 1 to 2 and 4 in No. 2, and through
them draw projectors parallel to that through B; then from 3, 4, in
No. 1, intersect by projectors—which will pass through 1, 2—those
drawn from 2, 4, No. 2, in 1’, 2’ 3/, 4', No. 3. Through the eight
points thus found, draw the closed curved-bounding line shown, and
the figure or ellipse will be the front elevation of the circle No. 1 in
plan when inclined at an angle of 60° to the HP, and 30° to the VP.

To find the plan of the plate in this position, let fall projectors
from the points in No. 2 into the HP, and their intersection by those
drawn through C, 2, B, 4, D, No. 1, will give points through which
the ellipse No. 4—which is the plan of the circular plate—is to be
drawn. It is here seen that the form assumed by a circular plate
—or a circle—entirely depends upon the direction in which it is
viewed, alternating, as it may be made to do, from that of being a true
circle—or any form of ellipse—to that of a perfectly straight line.
The student will note what may appear to be a discrepancy in the
lettering of the last-obtained projection of the original object, No. 1,
but he will find that it is correct when he remembers that the view of
it given in No. 2 is that of No. 1 looked at in the direction of the
arrow z, and therefore turned through an angle of 90°. If a disc,



96 ’ FIRST PRINCIPLES OF

similar in size and similarly figured, be cut out in card and laid upon
No. 1 with a pin through the centres, it will be found, on turning the
card disc through an angle of 90°, that all the points on it will have
shifted through that angle, bringing A and B where C and D now are,
thus showing the projection No. 4 to be correct. "

44. Before leaving this part of our subject, as elliptical figures
will be very frequently required, we here give a simple method of
drawing such a figure, which is sufficiently near the true form for all
the practical purposes of the draughtsman, and which obviates the

necessity of finding all the points in the curve. Premising that the
student understands that an ellipse differs from the circle in having its
diameters of unequal length, and that the sum of the distance of any
point in its curved-bounding line, from two fixed points—called its
foci—in its longest diameter is always the same, then draw an ellipse
by the method above referred to :—

Let the line AB, No. 1 (Fig. 144), be its major or longest diameter
or axis, and CD, drawn at the mid-length of and at right angles to
AB, its minor or shortest diameter or axis. Anywhere on the sheet
of drawing paper draw two lines, as ac, b¢, No. 2 making an angle
with each other—say 30°—intersecting at ¢. On a ¢ set off with the
compasses from ¢, half the length of AB, No. 1, and describe the arc
de, and on b¢c with half CD as radius, and from the same centre,
describe the arc fg, join df by a right line, and parallel to it draw
lines through e and g, cutting ac in point 1, and b¢ in point 2. Then
on the major axis AB, No. 1, set off from A and B the distance cl,
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No. 2, in the points 77, and with it as a radius from /7 as centres,
draw arcs of about 30° through A and B. On the minor axis CD set
off from C and D, the distance ¢2, No. 2, in the points m m/, and
with it as a radius and mm' as centres draw through C and D arcs
similar to those drawn through A and B. For intermediate points
take a straight-edged slip of paper SP and mark on its edge with a fine-
pointed pencil in points 1 and 3, half the longer axis aA, or ¢B, No.
1, and in point 2—measured from point 1—half the shorter axis aC,
or aD. If, then, this slip of paper be laid on the figure No. 1 and
moved over it in such a way that point 2 in its edge is always on the
major axis, while point 1 is on the minor, point 3 will describe, if
carried through a whole revolution, a perfect ellipse. As, however,
only a few points are required between the ends of the arcs already
drawn, these can be marked off from the edge of the slip of paper by
moving it in the desired consecutive positions.

u



CHAPTER XIII
THE PROJECTION OF SOLIDS WITH CURVED SURFACES

45. THE particular solids with which we have here to deal are
those known as “solids of revolution,” which are assumed to be
« generated,” or produced, by the revolution of certain geometrical
figures round one of their bounding lines as an axis ; the other lines
in their circling round this axis enclosing a space—assumed to be
material-—of a certain form, dependent upon that of the generat-
ing figure. A “solid of revolution” therefore implies an object
having curved-bounding surfaces. Of such solids there are three
primary ones of which machine details are made up—viz., the cylinder,
the cone, and the sphere—the subsidiary ones being generated by
figures which are portions of plane sections of the first two primary
ones. :

A Cylinder is a solid generated by the revolution of a rectangle
about one of its sides as an axis. If ABCD, Fig. 145, be the rect-
angle, then if it be caused to revolve round AB as an axis, making one
complete circuit, the sides AD, DC, CB will generate the solid called a
“ cylinder,” having a height, or length, equal to DC, a diameter equal
to twice AD, and its ends E, F, circular flat surfaces, at right angles
to its axis AB.

A Cone.—If one half of the rectangle—divided diagonally—Fig.
146, be removed, leaving the right-angled triangle ABC remaining ;
then, if this triangle be revolved on AB as an axis, as before, the solid
generated will be a “cone,” as in Fig. 146, its base DC being a circular
_ flat surface at right angles to its axis AB.
98
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A Sphere.—Again, if the two lines AC, BC of Fig. 146 be removed
and a semi-circle be described on AB as a diameter, as in figure 147,
then on revolving this figure AB as an axis, as before, the solid gene-
rated will be a “sphere,” as in Fig. 147.

As the subsidiary solids before referred to are generated by parts of
certain sections of the cylinder and cone, their definition is deferred
until those sections have been found by projection. Taking the
“cylinder ” as the first curved-surfaced solid as our object, the prob-
lem is — : ‘

Problem 49 (Fig. 148).—Given the plan of a cylinder with its awxis
. perpendicular to the I1P, to find its elevation when its length is twice
its diameter. :

Let the circle AB, No. 1, be the given plan; then its centre o will
be the plan of the axis of the cylinder. Find by projection the eleva-
tion of this axis o’ @. Assume the cylinder to be standing with one
end on the HP; then, as its ends are in the same relative position as

the sides of the rectangle which generated them—rviz.; parallel to each
- other—and one of them is on the HP, set off on the axis, from the
IL, the length of the cylinder in the point a’, and through it draw a
line parallel to the IL. Now, in looking at the cylinder in the direc-
tion of the arrow in the plan No. 1, the visual rays will impinge upon
its surface from A to B; at A and B the rays will be tangential, and
being' at the same time perpendicular to the plane of projection, or the
VP, they will strike both sides of the cylinder in lines drawn through
A and B on its surface, perpendicular to the HP. Therefore through
A and B, No. 1, draw the lines AC, BD, No. 2, and the required
elevation is obtained.

Now, let the cylinder be inclined to the IIP, at an angle of 456°—its axis
being still parallel to the VP—and its plan when in that position be
required. ¢

First draw in the elevation of the cylinder in the given position, as
in No. 3. Its ends AB and CD are now inclined to the IL or HP,
and will in plan become ellipses—as explained in Problem 40—
because they are circular, but inclined to the plane—the HP—on
which their projections are required. Now, in viewing the ¢ylinder
in this position from above, or in the direction of the arrow, only one
of its ends, AB, will be seen, the other, CD, being by its inclination in-
visible. To find its plan when so inclined, first draw in the plan of its
axis a'a; on it obtain by projection the plan of the end AB, No. 3,
as shown by the ellipse A1, B2 ; through points t and 2, in this ellipse,
draw lines parallel to the IL, which will be plans of the sides of the
cylinder seen from above, or along the line a’a, No. 3; then find
by projection the plan of that part of the bottom edge of the cylinder
that will be seen, and the required plan will be obtained.

Again, let the cylinder, as in No. 5, have its axis inclined to the VP, at an
angle of 39°, but parallel to the HP, and its elevation be required. -

To ob*ain this, proceed as in the last case, by getting first the
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elevation of the axis, and then finding by projection the two ends of
the cylinder upon it, and drawing in its sides as shown in No. 6.
For the projections of the ¢ cone ” the first problem is —

Problem 50 (Fig. 149).—Given the plan of a cone, having its axis
perpendicular to the HP, and an altitude equal to twice the diame-
ter of ita base, to find its elevation.

Let the circle No. 1, Fig. 149, be the given plan of the cone; its
centre a as in the cylinder will be the plan of its axis. Find by pro-
jection the elevation of this axis, and on it set off from the IL the
altitude of the cone in point a’. Through a, the centre of the circle in
No. 1, draw AB parallel to the IL. Find by projection the elevation
of points A and B—in the base of the cone—on the IL, and join these
by right lines with point a’ on the axis a’ a. The triangle A o’ B will
be the required elevation.

Next, let the base of the cone be inclined to the HP at an angle of 45°,
keeping its axts parallel to the VP, and its plan be required.

Here, an elevation of the cone at the given angle must first be
drawn in, as in No. 3; then find the plan of its axis, which, being
parallel to the VP, will be a line parallel to the IL, as in No. 4.
Obtain by projection the plan of the base of the cone, which is an
ellipse, its major axis being CD and its minor AB, No. 4 ; then find
the plan of the apex a’, No. 3, of the cone in a’, No. 4, and join it by
right lines to points C and D ; the required plan of the cone in the
position stated will thus have been obtained. '

Again, let the axis of the cone be parallel to the HP, but inclined to the
VP, at an angle of 45°; and tts elevation te requrred.

To obtain this, draw-in the plan of the cone in the position
stated, then find the elevation of its axis, and on this, by projection
from the plan, draw-in the base, which will be an ellipse; join the two
ends of its major axis with the projected apex as. shown in No. 6, and
it will be the required elevation.

As a “sphere,” when looked at from any direction, is a circle,
when projected, we shall defer any problems in connection with it
until we come to consider the projections of its sections—which will
follow those of the cylinder and cone, to which we next give attention.
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CHAPTER XIV
THE PROJECTION OF THE SECTIONS OF A CYLINDER

46. Frou the definition previously given of a “cylinder,” it
follows that any and every point in its curved surface is at the same
distance from 1its axis; every plane section of it taken parallel to
the axis is a rectangle, while every section at right angles to its
axis—or parallel to its ends—is a circle. These are self-evident truths,
and require no graphic illustration to prove them. It is then with its
sections not taken in either of the directions mentioned that we shall
now deal. Our first problem in connection with them is—

Problem 51 (Fig. 150).—Given the elevation of a cylinder, cut by
a plane making an angle with its axis; to find the sectional
elevation.

Let the cutting plane KP, No. 1, make an angle of 45° with the
HP, and be perpendicular to the VP, and the view required be that
in the direction of the arrow. To solve this problem, we must know
the distance between any point in the line of section on the front
side of the cylinder, and its corresponding point on the side of the
cylinder nearest the VP. To determine this, first find the plan of
the cylinder No. 2, and project over in No. 3 the elevation of the
lower part of the cylinder not affected by the cutting plane. Then
to find the contour of the section, choose any points 2, b, 3, in the
line KP; from these let fall projectors into the HP, cutting the
circle No. 2 in the points 2'2”; 3'3". Similarly through points 1, 2,5, 3,
4, in KP, No. 1, draw projectors parallel to the IL through the axial
line «’ No. 3, and on them set off from No. 2 the lengths of the lines
2'2"; 3'3"; then a curve drawn through the points thus obtained will
give the required projection. As the cylinder is standing vertically
on the HP, the plan of No. 3, although having its upper surface in-
clined to its base, will still be a circle ; but as that surface is in section,
it has to be cross-lined as shown in No. 4.

Next, let the direction of the cutting plane be KP, No. 5, and an clevation
and plan of the section be required, when the part to the left of the

cutting plane is removed.
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. The portion of the cylinder left in this case is called an ungula, and
the required elevation and plan of the section are obtained in a similar
way to No. 3 and No. 4. First, to find the elevation: choose, as
before, a convenient number of points in the line KP; from them
let fall projectors, cutting the plan of the oylinder No. 6, as was
done in No. 2. Similarly, from the same points draw—parallel to
the IL—projectors through the axial line No. 7, and on these set off,
in their proper order, the lengths of the corresponding lines found
in No. 6; a line drawn through the points thus found will give the
elevation or contour of the section made by the cutting plane KP,
in its altered position, which is a portion of an elongated ellipse.
The plan of this section of the cylinder shown in No. 8, differs
little from that of No. 3; the section plane KP, passing out of the
cylinder within its base at K, cuts off a portion of the base, as shown
by the line ¢c'.

As the projections of all the possible sections of a oylinder are
obtained in the same way as the foregoing, further examples need
not be given, and we can now proceed to consider those of the cone. -



CHAPTER XV
THE PROJECTION OF THE CONIC SECTIONS

" 47. THE same preliminary remarks may be made in reference to
the simple sections of a “cone” as were made in the case of the
cylinder. From the definition given of a cone, and its assumed mode
of generation, it will be at once seen that any section of it taken
through its apex to its base will be a triangle. while a section parallel
to its base—or at right angles to its axis—will be a circle. Admitting
these as self-evident truths, we have then to define those other
sections of the cone not taken in the directions mentioned, and to
show how their projections are obtained.

The three most important sections of a cone—other than the two
mentioned—are the “ellipse,” the “ parabola,” and the *hyperbola.”

If a cone be cut by a plane inclined to its axis, or its base, the
section is an ellipse, or a regular closed curve having diameters
differing in length.

If the section of a cone be made by a plane parallel to its axis,
but not coinciding with it, then the section is a A

If a cone be cut by a plane parallel to its slant sxde, then the
section is a parabola. From its definition it will be readily understood
that the eleva.tion of a cone when standing with its axis vertical is a
triangle, and its plan a circle. Before attempting the projection of any
of its sections, it must first be known how to find the plan, or
elevation—either being given—of a point on its surface, as this will
materially assist in finding its sections.

In Fig. 151: If No. 1 be the plan of a cone, No. 2 its elevation,
and z in No. 1 a given point on its surface, it will be seen from its
assumed mode of generation that this point must lie somewhere in the
slant side of its triangular generator a’Ab, No. 2. Now every point
in this line—it may be assumed to be made up of points—in its
revolution about the axis a'a of the cone describes a circle, and the
circle in which z must lie will have a radius equal to the distance
between it and «; therefore in No. 1, with @ as a centre and a x
as radius, describe a circle cutting the diametral line AB in 2. Again,
through the given points # and @ in No. 1, draw the line axe, cutting
the base AB of the cone in ¢. Find in No. 2 the elevation ¢’ of ¢
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No. 1, and from it draw the line c'a’ No. 2; then this line will be the
elevation of ca, No. 1, on the surface of the cone, and it is ¢n ¢¢ that
the given point x lies. To ascertain where, get the elevation of the
circle drawn through « in No. 1 by a projector from &, cutting the
slant side a’A of No. 2 in point Z/, then the point x, where a line
through «' parallel to AB cuts a'c’ No. 2, will be the required elevation

e

Zzg 151

of the original point # given in No. 1, for the line last drawn may be
assumed to be the base of a cone of a lesser height than the given one,
z being a point in its base in the same position relatively that ¢ or ¢’ is
in the base of the larger or given cone. By a converse process to that
here so fully explained, the plan of a point on the surface of a cone
may be found from its given elevation. We now proceed to the
projection of - the conic sections, and as a first problem we take—

Problem 52 (Fig. 152).—G'iven the plan and elevation of a cone,
to find its sectional projections when cut by a plane at an angle

of 30° with its axis. .

Let No. 1 and No. 2 be the given plan and elevation of the cone,
and LS, No. 2, the line of section. Draw in__the axial line No. 3, and
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produce it into the HP. Choose any convenient points, as, 1, 2, 3, 4,
5, in LS, No. 1, and through them, parallel to the IL, draw lines to
cut the sides Aqa’, Ba/, of the cone. These, being parallel to its base,
will each be the edge-view of a circle or base of a small cone. To find
the distance through the cone at the points 2, 3, 4, in LS, No. 2—for
this is what is wanted to be known—let fall from them projectors
into No. 1, parallel to the axial line aa’; then from a, No. 1, as
centre, and with radii equal to half the length of the lines drawn
through 2, 3, 4, No. 2, draw arcs, cutting the projectors let fall from
these points in 22", 3’3", 44", No. 1, the length between which
is the distance through the cone at their corresponding points in
No. 2.

Then, for the contour of the section, project over on to the axial
line No. 3, the points 1 and 5 in LS, No. 2, and from the other points
2, 3, 4, draw projectors parallel to the IL through the axis No. 3. On
these, set off the lengths 22", 3’3", 4’4", taken from No. 1, and
* through the points thus found draw the curve of the ellipse. With
the radius aA, or aB, No. 1, set off from the axial line on the IL,
No. 3, the base of the cone in CD; join these with points 3’3", and
the required elevation is obtained. The plan of the section obtained
in No. 3, will be the ellipse, found by drawing a line through the
intersections of the arcs and double ordinates in No. 1. To show this
in its correct position as a projection of No. 3, transfer the points and
lines in it to No. 4, as shown, and it will then be seen that projectors
let fall from the points in the section No. 3 will fall upon their
transferred plans in No. 4. A line drawn through these points will be
the required plan of the cone when cut by the section plane LS, No. 2.
The student must remember that the view No. 3 being at right angles
to that of No. 2, the plan No. 4 is necessarily in the same position
with respect to No. 1.

Next, let the cone be cut by a plane parallel to its axis, and its
sectional projections be required.

48. In this case the projected section will be a true “hyperbola,”
as the view obtained of it will be directly at right angles to the
cutting plane. Let No. 5 and No. 6, Fig. 152, be the given elevation
and plan of the cone, and LS, No. 5, the line of section. The simplest
way to obtain the required elevation will be to cut up the cone—from
the point where the cutting plane enters it—into horizontal sections, and
then find where the plane of section enters and leaves their horizontal
surfaces. To do this, draw lines at suitable distances apart, as 1 1’,
22,33, 4 4, parallel to the IL, as shown in No. 5. These will all be
edge-views of circular planes perpendicular to the VP. The circle
ACBD, No. 6, is the plan of the cone; to find where the section
plane passes through it, produce the line LS, No. 5, and it will cut the
circle in a line p p’ parallel to CD. The part of the cone to the left of
the section plane may now be supposed to be removed, showing when
looked at in the direction of the arrow on the left the exact contour of
the section. To.find this, all that is required to be known is the
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width across the face of the section at the heights of the circular
planes 1, 2, 3, 4, No. 5. Draw in, as in No. 7, the side elevation of
the cone. Project over from No. 5 on to its axial line the point 1,
where the cutting plane first enters the side of the cone—which will be
the highest point in the curve—through points 2, 3, 4, in LS, No. 5;
draw lines in No. 7, parallel to.the IL or CD. In No. 6, with a as
a centre, and the half-lengths of the lines drawn through 2, 3, 4,
No. 5, as radii, draw arcs cutting the line pp/, No. 6, in the points
2 2,33,44; the distances between these points severally will be
the distances across the face of the section at the heights of their
corresponding points in No. 5. Set these distances off on the lines
drawn in No. 7; then a curve drawn through the points thus found
will be the required sectional elevation of the cone, cut by a plane in
the position given. This ourve is a true Ayperbols, because the plane
of the section of the cone producing it is parallel to the cone’s axis and
to that of the plane of its projection. The plan of this section, from
its position with respect to the HP—viz., perpendicular to it—becomes
a straight line, which, combined with the part of the cone not affected
by the cutting plane, will appear as shown in No. 8.

Again, let the cone be cut by a plane parallel to its slant side, and the
sectional projections, elevation, and plan be required.

Let No. 1 and No. 2 (Fig. 153) be the elevation and plan of the
cone, and LS the cutting plane, drawn parallel to its slant side Aa'.
Here the true form of the section will be a *parabola,” but the plane
of the section being inclined to that of its projection, or the VP, the
view obtained of it, looking in the direction of the arrow, will be its
apparent and not its true form; but this point will be explained
further on.

To find the sectional elevation, first choose, as before, suitable
points, such as 1, 2, 3, 4, in the line LS, No. 1; through them and
point S draw lines parallel to AB—the base of the cone—to touch both
of its slant sides Aa’, Ba'. These lines, as in the last problem, will be
edge-views of circular planes. From the points §, 1, 2, 3, 4, L, let fall
projectors on to the plan No. 2, parallel to the axial line a'a. With
the half-lengths of the lines first drawn through 8, 1, 2, 3, 4, as radii,
and a, No. 2, as centre, cut the vertical projectors let fall from these
points in 1'1", 2'2”, 3’3", 44". Through the corresponding points in the
elevation No. 1 draw horizontal projectors through the axial line a'a,
No. 3, and on them set off the distances—taken from No. 2—between
the points 1’17, 2'2", 3’3", 4’4" ; then a line drawn through the points
thus found will give the elevation required.

The plan of this section, as shown at No. 4, is obtained in the same
way as the plan of the hyperbola No. 6 (Fig. 152)—viz., by transferring
to No. 4 the points obtained by the intersection of the arcs and double
ordinates in No. 2, and through them drawing the parabolic curve, as
‘shown.

By the same method of procedure as shown in the three foregoing
problems, the projection of any possible plane section of the cone can be
obtained. Nor is the method confined to the sections made by a plane :
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it is‘equally applicable to those producing a curved sectional surface.
As an example in this direction, take the following as a problem—

Problem 53 (Fig. 154).—G1iven the front elevation of a cone, and the
curve of the line of section, to find the sectional elevation of the same.

Let No. 1 (Fig. 154) be the given elevation of the cone, and LS the
curved line of section. Take, as in the previous problems, any con-
venient number of points in LS, No. 1, and through them draw lines
parallel to the base of the cone. Draw in the plan of the cone No. 2,
and let fall into it, parallel to the axis, projectors from the points taken
in LS, No. 1. With a, No. 2, as centre, draw arcs as before, cutting
the vertical projectors from the points in the curve in No. 1 in corre-
sponding points in No. 2. Then, to find the elevation of the curved
section, draw in the outline of the cone as in No. 3, and the projectors
from the points in LS, No. 1; upon these set off the length of the
double ordinates previously found in No. 2, and through the points so
obtained draw in the closed curve shown in No. 3. The plan of the
section found in No. 3 is obtained in precisely the same way as in the -
R;‘evmus problem—viz., by transferring the points found in No. 2 to

o. 4, and drawing through them the closed curve as shown therein.

49. Ina previous paragraph reference is made to the _question of
the true and apparent form of the section of a solid. As it is absolutely
necessary that the student should distinctly appreciate the difference
between these views of a solid, we give in Fig. 155 a graphic illustration,
showing wherein the difference exists. The solid chosen for its
explanation is the cylinder, it being the simplest for the purpose.

4 cylinder—ABCD (Fig. 155)—is placed with the axis perpendicular to,
and one of its ends resting on, the HP ; the trueform of a section of
1t 18 required when cut by a plane SP, inclined to its axis at an angle
of 45°.

Now, a true section of the solid on the line given should be such
that—supposing the cylinder to be of material substance and cut
through on that line—the section of it obtained by projection, if cut
out in paper and laid on the cut surface of the solid, should exactly
fit it.

In the projected section of a similar solid in Fig. 150, it is evident
that if the ellipse obtained were cut out in paper and applied to the
solid on the cut surface, it could not possibly fit it, as the major axis of
the projected ellipse would be found to be of a less length than that of
the line of section ; to find, therefore, the true section, a view of it must
be got directly at rlght angles to the plane of section, or in the direction
of the arrow y in Fig. 155.

This view may be obtained in two ways, either by direct projection
from the plane of section with the cylinder standing as it is in the
figure, or by moving the cylinder into such a position as to bring the
plane of section SP at right angles to both the VP and HP, and then
getting a side elevation of it. The latter of the two ways, as it gives
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the student a fuller insight into the methods of procedure in such a
case, is the one adopted.
Now, as the cylinder is shown as vertical and the section plane

" inclined at 45° to its axis, to bring this plane perpendicular to the HP

it must be moved through an angle of 45°. For the purpose of the
projection it is assumed that the upper part of the cylinder above the
section plane is removed. To bring the lower part into the required
position it must be turned through a vertical arc of 45°. To do this, at
the point D in its base draw indefinitely to the right and left lines
making angles of 45° with the IL. On the one to the right, set off Dp

A

equal to DP; and on that to the left, D¢ equal to DC—the diameter of
the base of the cylinder ; at ¢ draw cs equal to CS, the long side of the
cylinder, at right angles to ¢D; join sp, then Dcsp will be the lower
end of the cylinder when the plane of section SP is vertical, or at right
angles to the VP and HP. The true form of the section can now be
found. First draw in No. 2 the plan of the cylinder in its vertical
position. Divide its diametral line AB into four equal parts in points
1, 2, 3; through these draw double ordinates and projectors to cut CD,

"No. 1,in 1, 2, 3. Transfer by arcs points 1, 2, 3 in CD, No. 1, to ¢D,

and through these last draw lines parallel to cs to cut sp in peints
1



114 FIRST PRINCIPLES OF

1, 2, 8. For the form of the section sp draw in, in No. 3, the axial
line a'a; project over to it from sp, No. 1, the points ¢ and p’, and
from 1’, 2, 8" in sp draw projectors through a’a, No. 3. On these set
off- the length of the corresponding double ordinates drawn through
1, 2, 3, No. 2, and through the points thus found draw the ellipse
S2p2, No. 3, which is the required ¢rue form of the section at the line
SP, No. 1. .

50. As opportunities will occur as we proceed with this part of our
subject of obtaining the true form of section of any solid in another
way than that just explained, we pass on to the sections of the third of
the primary solids with which we are dealing—viz., the “sphere.”

Now, as the sphere is generated by the revolution of a semi-circle
about its diametral line—or chord—as an axis, it follows that any plane
section of the generated solid must be a circle, whether it pass through
the axis or not, for any and every point in the curved-bounding line of
the semi-circle not only describes in its circuit round the axis a true
circle, but is at the same time at an equal distance from the centre of
the solid which is generated. It follows from this that all the sections
of a sphere, by planes passing through its centre, are equal circles,
having the same diameter and centre as that of the sphere. Such
circles are known as “ great circles ” of the sphere, and their projections,
if taken at right angles to the plane of section, are circles equal to their
originals. If, however, a sectional projection of a sphere is required at
an angle to the plane of section, then the projection becomes an ellipse,
and is obtained in the same way as that of any circular plane or disc
when at an angle to the plane of its projection. As all such sections of
a sphere would in projection be ellipses, only one problem is given in
this connection, which will show the difference between the sections of
the same sphere when cut by a plane at varying angles to its plane of
projection. The problem is—

Problem 54.—Given the plan of a sphere and the line of section, to find
its sectional elevation.

Let AB, No. 1 (Fig. 156), be the plan of the sphere, and 8P the
line of section, the axis a’ or pole of the sphere being perpendicular to
the HP. Here SP being parallel to the axis a’ and to the VP, the
section of the sphere by it will be a circle. To find its elevation, first
show in that of the sphere AB, No. 2. Project over point 1, in SP,
No. 1,to 1 in AB, No. 2; then in No. 2, with s as centre and sl as a
radius, describe the circle 1, 2, and it will be the sectional elevation
required. For SP, No. 1, being parallel to the VP, the circular section
made by it will be concentric with the great circle AB, No. 2, and
therefore their centres will be coincident; and as SP cuts the great
circle AB, No. 1, in points 1 and 2, the elevation of the section made
by SP will be a circle, having a diameter equal to the distance between
those points, as shown by its projection in No. 2.’

Next, let the sphere be turned on its axis in the direction of the arrow in
No. 1, until the section plane SP is at an angle—as in No. 3—with
the VP, and its elevation be required.
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Here, SP being inclined to the VP, the elevation of the section will
be an ellipse. To find it, first get the elevation of the sphere, as in No.
4, having a'a for its axial line. Bisect the distance between 1, 2 in SP,
No. 3, in the point b, and through it draw a projector to cut AB, No. 4,
in ¥, also project over points 1, 2 in SP, No. 3, to points 1, 2 in AB,
No. 4. Now the true section of the sphere made by SP is a circle of a
diameter equal to the distance between points 1 and 2 in that line, and
it is the elevation of this circular section inclined to the VP, as shown,
that is here required. It is left to the student without further explan-
ation to find the resulting elliptic section, as was done in Problem 48,
Fig. 143.

Again, let the problem be—

Problem 55.—Given the elevation of a sphere cut by a plane inclined
to the HP, to find its sectional projections.

Let No. 5, Fig. 156, be the elevation of the sphere, and SP the line
of section. To find the side elevation, first draw the outline of the
sphere, as in No. 7. Then as the true section of the sphere by SP is a
circular plane, find by Problem 48 its vertical projection when inclined
as in No. &, which will be an ellipse as shown in No. 7.  For the plan
of No. 7 in its correct position, proceed as was done in the case of the
cone No. 1, Problem 52, by finding the plan of the points in the contour
of the section, as in No. 6, and transfer them to No. 8; then a line
drawn through the points so found will give, as in No. 8, the required
sectional plan of No. 7.

In the same way as here shown can the projection of any possible
section of the sphere be obtained, no matter how the line of section be
drawn, or whether it is straight or curved, as the same rule holds good
in this case as in that of the cylinder and the cone—viz., Find the
actual distance across the face of the cut surface of the section, from
any points on the surface of the solid—in the line of section—nearest
the eye, to those directly behind them on the opposite side farthest from
the eye, and the problem of its projection is solved, for the points
denoting the distances thus found have only to be put in on the paper
in their proper places, and a line drawn through them will give the
sectional projection sought.

51. Having shown how the sectional projections of the three primary
solids—the cylinder, the cone, and the sphere—are found, we now pass
on to the consideration of those subsidiary solids of revolution which
are generated by parts of the sections of the primary ones.

The particular solids of this class which assist in giving shape to
machinery details are the ‘spheroid,” the * conoid,” the “cylindroid,”
the “spindle,” and the “oval”; and they are thus defined :—

A spheroid is a solid generated by the revolution of a semi-ellipse
about one of its diameters. If about its longer one, it is a prolate
spheroid ; if about its shorter one, an oblate spheroid.

A conoid is a solid generated by the revolution of half of a conic
section ahout its axis, and becomes an ellipsoid,” *paraboloid,” or
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“hyperboloid,” according as its generating figure is half an ellipse,
parabola, or hyperbola.

A cylindroid is a cylindrical solid having elliptical ends.

A spindle is a solid generated by the revolution of an arc or portion
of a curve cut off by a chord or double ordinate, around which it
revolves as an axis. It is circular, elliptic, parabolic, or hyperbolic,
according as the generating arc, or curve, is a portion of a circle, ellipse,
parabola, or hyperbola.

An oval is an egg-shaped solid, and may be conceived to be com-
pounded of half a sphere and a like portion of an elliptic conoid.

As all the above-defined solids are assumed to be generated by the
revolution of a particular figure about an axis, it follows that a cross-
section—at right angles to its axis—of any one of them will be a circle,
while a section through its axis will be a similar figure to that of which
its generator formed a half-part. An oblique section through the axis
of all of them would be a figure of elliptic form, while one which did
not cut the axis would partake of the form of its axial section. Under
these circumstances, as the finding of any required section of one or all
of them merely involves the application of methods of procedure already
explained, it is unnecessary here to further elaborate them. All that
is required by the student for the mastery of this part of our subject,
is to thoroughly appreciate the exact form and mode of generation of
the different solids enumerated. This attained, there will be no difficulty
in the solution of any problem that may arise in connection with their
projection.

Before concluding this chapter, and with it the subject of the
“Projection of Solids with Curved Surfaces,” it will be necessary to
show, how the principles explained in Chapter XI., on the * Lining-in of
Drawings in Ink,” are to be applied to representations of this class of
solids.

It has been shown in Chapter XI., that the projections of rays of
light, in the direction they are assumed (in Mechanical drawing) to fall
upon the object illumined, are parallel right lines in plan and elevation,
making an equal angle of 45° with the intersecting line of the planes
of projection. To determine then how to line-in the representation
of a curved-surfaced solid, we have to find how the light falls upon it.

Now to do this, let the circle cedb in No. 1, Fig. 156a, be the plan
of a cylinder, and the rectangle ABCD No. 2 its elevation. Through
a, the axis in No. 1, draw lines at an angle of 45° with the IL, cutting
the circle in points 4 and ¢,; and through & draw a line. parallel to ca.
Also through b and ¢, in No. 1, draw lines in No. 2, perpendicular to
the IL, and produce them to meet AB, the top-end of the cylinder in
¢ and 5. Now the lines drawn through &, and ca in No. 1, are the
plans of two planes of rays of light; the former touching the cylinder
throughout its length in the line 80’ ; and the latter striking it in the
line ¢¢’ (No. 2). The line 46’ is known as the “line of shade,” as it
divides the cylindrical surface in the light from that part which is in
the shade, and is moreover the darkest part of the visible surface. The
brwhtest part of the cylindrical surface will be the “line of light” ¢,
as it is here that the light shines directly upon it.
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It follows from the foregoing considerations, that in lining-in the
representation of a cylindrical surface in ink, fine lines only should be
used, as either a medium or shadow line would be inappropriate, the
lightest, and darkest, parts of the surface of such a solid always falling
wuthin the outlines of its representation, as shown at b&', and ¢¢’, in the
elevation No. 2, Fig. 156«. The same rule also applies to either conical
or spherical surfaces, as shown in Nos. 4 and 6, in the figure where it
is seen that the “lines of shade ”—obtained in the same way as in the
case of the cylinder—are well within the outlines of the solids, and
must therefore be put in, in fine lines.

It would, however, be correct to shade-line the end of a cylinder,
or the base of a cone—if inverted—as a part of their edges would
throw a shadow., To determine how much would do so: in No. 1,
Fig. 156a, produce the line drawn through 4, @ to ¢, and that through
¢, @ to d. Now as all the rays of light falling on the cylinder, and its
upper end AB, are parallel to the one drawn through ¢, a, d, it follows,
that the semi-circular edge ech in No. 1 will be directly in the light,
and will cast no shadow, while the opposite similar edge edd will do so,
either on the HP or VP,—according to its position with respect to
those planes—and must therefore be shade-lined. But as the semi-
circular edge edb—of the cylinder end—would cast different intensities
of shadow, the shade-line from ¢ through d to b must be of varying
thickness (as shown in the diagram), its thickest part being at d.

If the aylinder be hollow—as represented in No. 1—then that part
of its inside top-edge, or the semi-circle 1, 2, 3, will throw a shadow on
the opposite inside surface, and must be shade-lined as shown, the
thickest part of the line being directly opposite the similar part of the
outer semi-circle edb. In the sphere and other entirely curved-surfaced
solids, no shade-lining is admissible in inking them in, fine lines being
the only proper ones to be used for the purpose.
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CHAPTER XVI
THE PROJECTION OF OBJECTS INCLINED TO THE PLANES OF PROJECTION

52. For the more immediate purpose of representing anything in
process of manufacture in the workshop, it will be readily understood,
from what has already been explained in these chapters, that the only
drawings absolutely necessary to the workman are those in which the
plans, elevations, and sections of the objects he is called upon to make
are correctly shown. But as many of the elements which go to make
up a machine, or engine, are often inclined to the vertical and horizontal
positions, it is essential that the draughtsman should know how to
draw the plan or elevation of an object, however intricate, when inclined
to the VP or HP, at any angle other than a right angle. Before
showing how the principles of projection are applied in this part of our
subject, we would guard the student against accepting as true, the
notion entertained by some, that it is a different kind of drawing to
that which has preceded it, and that a knowledge of it is more difficult
to acquire. The projections of an object inclined to the planes of its
projection, certainly differ in appearance to those of it when not so
placed, but the method of finding such projections involves no new
departure in principle, as the “planes of projection ”—the VP and HP
—are still in the same relative position as before—viz., at right angles
to each other—although the “object” is ¢nclined to both. The * pro-
jections,” therefore, of an object so placed, are nothing more than its
appearances when viewed at right angles to those planes.

To show this graphically, let A, No. 1 (Fig. 157), be the plan of a
wooden block, with its under side resting on a flat plate abed, lying on
the HP, and its sides inclined to the VP, or IL, as shown. A front
elevation—or view in the direction of the arrow e—of the block in this
position would be B, No. 3. Now, assume the plate—with the block
upon it—to be raised through an angle, moving on its edge ab, as a
hinge ; the elevation of the block in this position would then appear
like C, No. 3; for its upper face would become more and more visible
as the angle made between the plate on which it rests and the HP
increased, until the plate had attained a vertical position, when it
would again appear as shown in plan at A, No. 1; but as an elevation.
We therefore see that its “appearance” when inclined to the planes

120
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of its projection, although radically different to either its plan A, No. 1,
or its elevation B, No. 3, is still nothing more than an ordinary pro-
jection of the original object when in its changed position. This is
further shown in No. 2 (Fig. 157), where a side view is given of the
plate with the block upon it, such as would be seen when looked at in
the direction of the arrow f, No. 1. Then by the aid of a few projectors
from No. 2 and No. 1, it is seen that C, No. 3, and D, No. 4, are just
ordinary projections, differing little from those which have preceded
them, and certainly no more difficult to obtain than some which the
student has already projected or drawn. As the projections of the
object given in this figure form a problem for solution later on, we
defer showing how they are exactly obtained until we have, as in
previous instances, explained how the projections of simple “figures”
in similar positions are found.

53. Now, to facilitate the process of finding the projections of an
object when inclined to the VP and HP, we have to introduce into
the construction an imaginary inclined plane interposed between the
VP and HP, on which the object whose projections are required is
agssumed to rest. This plane is represented in Fig. 157 by the line OP,
No. 2, and is the only new feature in our subject of study, it being not
a fixed plane like the VP or HP, but one that may assume any desired
angle with those planes. Such a view of an object ‘as is shown in
No. 2 (}I:"ig. 157) could of course be given without the assistance of the
line OP; but as it determines the inclination of the object to the
vertical or horizontal, it is of material help in finding its projections,
as will be seen as we proceed.

Throughout the problems that will be given in this part of our

" subject the original object whose projections are required is to be
always understood as resting on a horizontal plane, and the view first
given of it, is its plan or horizontal projection, such as A, No. 1 (Fig.
157), which shows all that would be seen of such an object when looked
at from above.

Now, to find the projection of a point situate in a plane which is
inclined to the VP and HP, we must know the angle made by the
plane—in which the point lies—with either the VP or HP. Our first
problem is—

Problem 58.—Given the plan of a point, it is required to find its
elevation when the plane in which it lies 18 inclined to the HP at an
angle of 30°.

Let a (Fig. 158) be the plan of the given point, IL being the inter-
secting line. At O draw a line OP, making with the IL an angle of
30°. Through the point @ draw a projector into the VP. Set off on
OP from O, a distance Oa’, equal to that which point @ is from the
IL. Through a’ draw a line parallel to the IL, cutting the projector
from @ in plan in point a”; then a” is the required elevation. In the
same way, the elevation of a line lying on a plane inclined to the VP
and HP is found, for we have only to find the vertical projection of its

ends, and join them by a right line, and the desired elevation is
obtained. ;
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Problem 67.—Given the plan of a line, to find its elevation when the
plane in which it lies is equally inclined to the VP and HP.

Let AB (Fig. 159) be the plan, IL being the intersecting line as
before. As the plane on which the line AB is to lie equally inclines to -
the vertical and horizontal, its angle with either will be one of 45°.
Therefore, at any point in the IL, say O, draw a line OP at that angle
with it. Now OP, we have before said, is a side view of the inclined
plane on which the object—in this case a line—is to lie ; the view we
shall obtain of the object in elevation will be one looking in the direc-
tion of the arrow z, and the position of the VP with respect to OP can
be either in front of or behind it. If in front, it would be represented
by a line drawn through O perpendicular to the IL; if behind, then a
similar line through P. Generally, OP is assumed to be interposed
between the VP and HP, and therefore a side view of the three planes
would be correctly represented by the right-angled triangle PzO in the
diagram ; the vertical projection or elevation of the inclined object
being made on Px or the VP, and the horizontal one, or plan, on Oz,
or the HP. . :

We can now proceed with the solution of the problem before us.
Having the inclination of the plane on which the line AB is lying, to
find a front elevation of it we require to know the exact position of its
two ends with respect to the foot of the plane on which it is lying.
Now, the intersection of two planes is a straight line ; therefore, as the
inclined plane OP in the figure intersects the HP in O, the plan of that
intersection will be a straight line parallel to the VP or the IL; and
assuming the VP to be as far from the foot of the inclined plane OP as
z is from O, set off from the IL a distance equal to Oz, and through
the point so found draw the line DL parallel to the IL, and it will be
the plan of the intersection of the HP with the inclined plane OP. It
is from this line that all measurements of points in the plans of original
objects have to be taken, when giving their elevations on the inclined
plane OP. Then to find the required elevation of the line AB, set off
from O on the line OP in b and a, the distances aA and Bb, that its
ends A and B are from DL, and through them parallel to the IL draw
projectors to cut those drawn from A and B in the plan in the points
A'B’; join these by a l%ht line and it will be the elevation required.

Then, as lines are the boundaries of “figures,” the projection of a
figure in a similar position with respect to the VP and HP is obtained
in the same way. One problem in this connection will be sufficient to
show the application of the principle. Let it be this—

Problem b68.—Given the plan of a triangle, and the inclination of
the plane OP ; to find the elevation of the trianyle.

Let ABC (Fig. 160) be the plan of the triangle, and the inclination
of the plane OP be 30° with the HP. Draw in the line OP at the
given angle with the IL and the line DL as in the last problem. Find
‘the position of the angular points ABC on the plane OP, and through
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them draw projectors parallel to the IL, cutting those drawn through
the corresponding points in the plan. The intersections of these pro-
jectors A'B'C’ will be the elevations of the angular points of the
triangle ; join these by right lines and the triangle ABC’ will be the
elevation required.

If the plan of the original figure in its new position be required as
well as its elevation, this is found in a similar way. Let the problem
be—

Problem 6§9.—Given the plan of a rectangular plate and the inclina-
tion of the plane OP ; to find vts projections.

Let A, No. 1 (Fig. 161), be the given plan of the plate, and the
inclination of OP be 30° with the HP. Draw OP, No. 2, at the given"
angle with the IL, and the line DL as before. Number the corners of
the plate 1, 2, 3, 4, as shown in No. 1. Find the position of these
points on OP, No. 2, and from them obtain, by projection, the elevation
of the plate shown at B, No. 3. To find the plan of the plate in its
inclined position, let fall projectors from points 1, 2, 3, 4, in the line
OP, No. 2, perpendicular to the IL; then the corners of the plate in
plan will lie in these projectors, and the problem is to decide where.
The line DL, below the original plan of the plate at A, No. 1, is, we
have shown, the plan of the intersection of the inclined plane OP with
the HP; then a line d/, drawn through O, No. 2, at right angles to
the IL, as shown in No. 4, will also be a plan of the same intersection.
As the distances of the points 1, 2, 3, 4, in A, No. 1, from the line DL,
were set off on OP, No. 2, the position of this plane—with the plate
upon it—will be at right angles to that of A, No. 1; therefore, its plan
No. 4—or the view of it looking in the direction of the arrow z, No. 2
—-will be in the same position with reference to A, No. 1. Then if the
points where the projectors drawn through 1, 2, 3, 4, in A, No. 1, cut
the IL, be transferred to the line dl, No. 4, and lines be drawn through
them at right angles to that line, their intersections with the projectors
let fall from 1, 2, 3, 4, No. 2, will give 1, 2, 3, 4, No. 4; join these by
right lines, and the required plan of the plate in its inclined position is
obtained.

54. As the projection of any plane figure, inclined to both the
planes of projection, is found in the same way as here shown, we can
without further example proceed with the application of the principles
involved, to the projection of solid objects similarly placed. Now, a
solid object, such as the block of wood taken for explanatory purposes
in Fig. 157, has not only length and breadth, but thickness also, and
each of these dimensions has its representative lines in the projections
that are obtained of it, when it is inclined to both the VP and HP.
The actual thickness of an object—or its measurement from surface to
surface—is the distance through it at right angles to the surface from
which it is measured. If the thickness be represented by a line, then
the line will be perpendicular to that surface, and its projections will
depend upon its position with respect to the planes of projection.

In Fig. 162, if the plan of a line be represented by the point a,
then, when the plane to which the line is assumed to be perpendicular
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is-inclined, say, 30° to the horizontal, its side elevation on that plane
OP will be @’s.  To find its front elevation, we draw a projector through
« perpendicular to the IL, and from «’ and 5—the two ends of the line
—projectors parallel to the IL, to cut the one through @ in a’4’; then a
line joining these points is the front elevation of the original line a'd
when inclined to both planes of projection. To apply this reasoning to
the projection of such an object as the rectangular block of wood in
Fig. 157, proceed as follows :—First draw in its plan as at A, No. 1,
and number the four corners as shown. Each of these will be the end
of a line perpendicular to the HP, of a length equal to the thickness of
the block. On OP, No. 2, drawn at an angle of 30° with the IL, give
an elevation of the block, looking at it in the direction of the arrow f;
remembering the position of its corners and top surface with respect to
the plane on which it is assumed to be standing. Having drawn in
this view, proceed to find by projection that of C, No. 3. This is best
and most correctly doue by numbering both top and bottom ends of
the lines representing the angular corners of the block in No. 2. The

— -

a
Fig. 162

intersection of horizontal projectors drawn through these points, and
their corresponding vertical ones in No. 1, will give the position of all
the corners of the block that will be seen looking in the direction of
the arrow x in No. 2, and the joining of these by straight lines, as
shown in C, No. 3, will give the required elevation.

To find the “plan” of the block when inclined as shown, let fall
vertical projectors from all the corners of it seen from above in No. 2,
when looking in the direction of the arrow y; transfer the points
where the vertical projectors from 1, 2, 3, 4, No. 1, cut the IL, to the
projector drawn through the foot of the inclined plane at O, as shown
in Fig. 161 previously, and through these draw projectors to cut those
let fall from 1, 2, 3, 4, No. 2; then the intersections of these projectors
will be the plans of the corners of the block seen from above it, which,
on being joined by straight lines, will give D, No. 4, the plan of the
block, when inclined in the position shown in side elevation at No. 2,
and front elevation at No. 3.

55. As a test of the correctness of the two last-found projections,
all the lines in the original object A that are parallel to each other
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should be parallel in their projections, for if they are not, there is some
inaccuracy in projecting over corresponding points in the different
views, as no alteration of position of the original object, with respect to
the planes of its projection, can in any way affect its form, or the
relative position of its surfaces, from whatever direction it may be
viewed. These deductions apply, of course, to all “original” objects,
but they require to be more particularly remembered here, as in no
other part of the subject is there the same likelihood of making a false
projection of an object, as when it is inclined to doth the planes of its
projection.

As no better examples of plane-surfaced solids, as objects for pro-
jection in this part of our subject, can be chosen than those whose
forms the student is already familiar with—viz., the cube, prism, pyra-
mid, etc.—they will be taken in the same order as before, and the first
problem is—

Problem 60 (Fig. 163).—Given the plan of a solid cube, with one of
its faces upon the HP ; to find its plan and elevations, together with
a sectional plan and elevation, when the plane on which it rests is
inclined to the horizontal at an angle of 30°.

Let the square 1,2, 3, 4, No. 1, be the given plan of the cube, IL
being the intersecting line of the VP and HP, and DL a datum line
parallel to the IL, at any convenient distance below the plan of the
eube. At O, say in the IL, draw a line OP, making with the IL an
angle of 30°. Set off on OP, from O, in points 1, 4, 3, the distances
that points 1, 4, 3 in No. 1 are from the line DL, measured at right
angles to it. Through 1’, 4, 3, No. 2, draw lines perpendicular to OP,
and on that through 1’ set off from OP a height 1’1, equal to a length
of the side of the cube. Through 1, draw a line parallel to OP, cutting
the perpendiculars to it at points 4 and 3 ; and the view No. 2 will be a
side elevation of the cube—looked at in the direction of the arrow x
in the plan—when inclined to the HP at 30°.

To find a front elevation of the cube at the same inclination, we
have to consider what parts of it will be seen in such a view. This
will evidently include the two inclined front faces and a top face, or
what would be seen lookingrin the direction of the arrow to the left of
No. 2. To find the projection of these faces, project over points 1,
1'; 4, 4 in No. 2, on the projectors drawn through points 1, 2, 4, No.
1, cutting them in points 2, 2'; 1, 1; 4, 4, No. 3; join these by right
lines as shown, and the projection of the two front faces of the cube
will have been found. To find the top face, project over in like man-
ner point 3 in No. 2, to cut the vertical projector through the corre.
sponding point in No. 1, and it will give point 3 in No. 3 ; join this by
right lines with points 2 and 4, and the required front elevation of the
cube in its inclined position is obtained.

To find the plan of No. 2, or a view in the direction of the arrow
shown above it, first find the plan of the top face of the cube, by letting
fall vertical projectors from points 1, 4, 3, in it, into the lower plane,
or HP; intersect these by horizontal projectors from points- 1, 2, 3,
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No. 1, in points 1, 2, 3, 4, No. 4; join these by right lines, and the
plan of the top face of the cube is found. For the plan of its two
inclined faces, seen from above, produce the horizontal projectors drawn
through the three corners 2, 3, 4 of the top face—just found—and by
vertical projectors from points 4 and 3', in No. 2, cut the produced
horizontal ones in points 2', 3', 4, No. 4; join points 2, 2'; 3,3'; 4, 4';
and 2, 3’; 3/, 4, by right lines as shown, and No. 4 is the required plan
of the cube in its given inclined position.

58. Before proceeding to show how the sectional projections of the
cube are found, it is advisable here—to save repetition later on—to
explain the reasoningwhich has directed the process of solving the
first part of this problem. Taking the “original ” object—the cube—
as the first subject of thought, we have to note its special form, and the
shape and relative position of its six faces and their bounding edges, as
upon the correct realization of these features depends in a great mea-
sure the truth or falsity of its projections. For whatever relative posi-
tion its sides have to each other in the original, they cannot, as long as
they remain uncut, have any other than the same relationship in their
projections. A second consideration is the position of the object, and
its faces, with respect to the plane on which it is assumed to be stand-
ing ; and a further one is that of the inclination this plane eventually
assumes with respect to the planes of projection.

Now, the cube is standing with one of its faces on the HP, thereby
making its four corner edges, figured 1, 2, 3, 4, No. 1, in the diagram,
at right angles to that plane, and the top face of the cube parallel to
it. It follows from this that however much the plane on which the
cube rests is inclined to the horizontal, the position of the faces and
corner edges of the cube with respect to that plane will remain exactly
as before its inclination. Therefore, in setting the cube on the inclined
plane OP in the diagram, all its vertical edges will be perpendicular to
OP, and its horizontal ones parallel to it. Then as to its projections
No. 3 and No. 4, although the cube itself in its new position No. 2
is inclined to the VP and HP, this has not in any way altered the
relative position of the bounding edges of its faces in the projections,
as the lines 1, 1'; 2, 2'; 3, 3'; 4, 4/, are still parallel to each other, as
well as those representing the top and bottom edges of the cube.

To assist the student to a more complete realization of the position
of the “planes of projection” with respect to the original object, in
Fig. 163 let a line be drawn perpendicular to the IL through point 3’
of the cube in No. 2. This line would then represent an end elevation
of the VP, with the corner 3’ of the cube touching it. If, then, the
inclined plane OP, with the cube upon it, together with this vertical
plane, be imagined to swing round on the HP through 90° the view of
the cube shown at No. 3 would be identical with its appearance on the
inclined plane when viewed at right angles to the VP.

57. With the foregoing explanation of the reasoning applied in
finding the projection of the cube in its uncut state when inclined to
the VP and HP at a given angle, there should now be no difficulty in
obtaining its sectional projections required by the problem, as these
are nothing more than similar views to those already found, with the
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exception that a portion of the solid is assumed to be removed, exposing
the cut surface.

The fact of the cube being in the same position as before, reduces
the problem to the finding of the projections of its exposed cut surface,
when the part to the left of the cutting plane is removed. For the
sectional elevation, draw in first—in faint lines—to the right of No. 2 a
similar view of the cube to that given in No. 3. The cutting plane ac,
it will be seen, passes through five of the faces of the cube, entering it
at ¢ on its top face, passing through its two back and front faces, and
leaving it at @ in its foremost edge.

Now, the position of the cube in No. 3, with respect to the VP, is
that of having its two front and back faces making equal angles with
it, and it follows from this that a plane passing through the cube, as
ac is assumed to do, will cut opposite faces of it in parallel lines. There-
fore to find the projection of the section in No. 5, made by ac in No. 2,
through ¢ draw a horizontal projector to cut the back top edges of the
cube in ¢’ ¢, No. 5, and similar projectors through b and a, the former to
cut the side edges 2, 2'; 4, 4’ in b ¥, and the latter the front edge in a.
Then join by right lines in No. 5 the points ab, be, cc/, cb’, b'a thus
found, and the space enclosed by them will be the sectional surface of
the cube cut by the plane @ac. Put in, in full lines, the remaining
uncut part of the cube, and the complete view, as at No. 5, thus
obtained will be the required sectional elevation of the cube.

Then as this last-found view is one looking at the cube in No. 2, in
the direction of the arrow on its left, when the portion on that side
of the cutting plane ac is removed, the plan now required is a view
of this remaining part when looked at from above, and as the position
of No. 2 is at right angles to that of No. 5, the plan of this latter,
which is what has now to be found will be in the same posntmn with
respect to No. 4.

" Now, the simplest way to obta,m this view is to make use of the
assumed VP, previously drawn in No. 2, touching the corner 3’ of the
cube. As No. 5 is a view of the cube directly at right angles to that
at No. 2, this assumed VP will be bekind it in No. 5, and a plan of
it in that position will be a line in the HP parallel to the IL. Draw
such a line as z y, No. 6 ; then all the points and lines seen in No. 2
from above can be set off from this line. The back lower corner of the
cube is touching it, and we know its position is behind 1’, No. 5;

therefore let fall first a vertical projector from this point to « y, No. 6
in point 3, and similar projectors from points 2’ and 4'. Set off from
xyon the projector through 3, and similar projectors from points 2’
and 4. Set off from zy on the projector through 3’, the distance
3" 3 equal to that of point 3, No. 2, from the assumed VP, and on
those let fall from 2'4’, No. 5, in points 2’3, 4’ b, the distances that
their corresponding points in No. 2 are from the same assumed VP.
Join points 2’ and 4 with 3' by right lines, and parallel to them
draw two others indefinitely through point 3. The plan of the line
c'e, No. b, is next required. ~ This may be found in two ways: Either
by setting off from xy on the projector through 3', the distance that
¢ in No. 2 is from the assumed VP, and drawing a line through the
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points so found parallel to zy to cut those drawn through 3 in c'c,
No. 6; or by letting fall projectors from the ends ¢’ ¢ of the corre-
sponding line in No. b to cut the same lines from 3 as before. The
plans of the two short inclined edges of the section between c¢'6’ and
¢b in No. 5 are found by joining the corresponding points in No. 6 by
right lines. On cross-lining the parts of the cube exposed by the
cutting plane in both views the required sectional plan and elevation
will be completed.

58. Now, to test the accuracy of these projections, the same reason-
ing holds good with reference to the sections thus found as with the
original uncut solid. For it will be found, if the sections are correctly
projected, on applying the set-squares or a parallel-ruler to any one of
the bounding lines of the sections, the edge of that section on the
opposite face of a cube is exactly parallel to it. This is as it should
be ; for if otherwise, the section obtained would be incorrect, for the
opposite faces of the cube being always parallel to each other, any plane
section of it will have parallel edges on opposite or parallel faces.

Before passing to the next problem, which is a variation of the last,
and somewhat more difficult of solution in that it involves a greater
amount of thought, it is necessary to point to the case of finding the
plan of the uncut cube, No. 4, Fig. 163. The student will remember

_the reference made in a previous problem to the change of position which
takes place in an original object when a plan of it is obtained from its
side elevation, as No. 4 is from No. 2 in Fig. 163. In this case,
the matter of finding the plan is simplified by the position the cube
occupies with respect to the VP ; its vertical faces making, as they do,
equal angles with it, enable the corners figured 3, 4, 1 in No. 1 to be
used as the representatives of 2, 3, 4, in finding the plans of its edges,
shown in No. 4, by the lines 2, 2; 3, 3'; 4, 4. Had the original
position of the cube, however, in No. 1 been any other with reference
to the VP than that actually occupied by it, then the plan of the cube
in No. 1 could not have been used-to project from. The reason of this
-will be seen in the next problem, to which we now proceed.

Problem 61 (Fig. 164).—Given the plan of a solid cube, with its
vertical faces making unequal angles with the VP ; to find itz
projections, and sectional projections when the plane on which it
rests 18 inclined to the HP at 45°, and the section or cutting plane
alters in direction.

Assuming that the student has worked out the previous problem,
and repeated it, with the section plane in varied directions, he will be
the better able to arrive at a solution of the one now presented to him.
As the first part of it is nothing more than a repetition of the process
adopted in the last case, applied to the altered position of the original
object, no further assistance is given than that indicated by the con-
struction lines shown, as the views almost explain themselves. - No. 1
is the plan of the original object or cube in the given position; No. 2
its side elevation when inclined at the given angle; No. 3 its front
elevation ; and No. 4 its plan at the same inclination. Some of the
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reference figures are purposely omitted that the student- may feel less
dependent upon such helps as he proceeds.

In views Nos. 5 and 6 (Fig. 164), the only point likely to cause
difficulty in a first attempt at getting the sectional elevation and plan
of the object will be at the change of the plane of section on the line
c'c. This, however, should be thought out by the student, as it only
involves the finding of the exact position of the two ends of this line
on opposite faces of the cube. If it is borne in mind that it is the inter-
secting line of two plane surfaces, and that one of its ends is repre-
sented in elevation—c in No. 2—by a point, it is known at once that
it must be a line passing through ¢, parallel to the HP, and therefore
to the IL. Then, as it is parallel to the HP, its ends must be of
equal height from the bottom face of the cube. This height is evidently
the perpendicular distance between ¢ and the plane OP ; or the depth
through the cube along the line c'c, square with its bottom face.
‘With these data, the position of its ends should be easily determined
without further guidance. Having found the elevation of this line,
its plan offers no difficulty, as it may be got in one of two ways
already explained.

As a test of the knowledge of our subject the draughtsman in
embryo should by this time have acquired, we give for solution, without
assistance other than that afforded by the few projectors shown in the
views of the object, the following problem—

Problem 62 (Fig. 165).—Given the plan of a hollow cube, with square
holes, centrally situated in all its sides ; to find 1its projections, when
the plane on which it rests inclines 30° to the hortzontal, and its
sectional projections at the same inclination, when cut by a plane
along a given line.

The view No. 1 (Fig. 165) is the given plan of the cube, and the
line sp in No. 2 the line of section. The different views should be
drawn in on the sheet of paper in the order of their numbers, as they
are consecutive projections, each one of which, when correctly found,
enables that which follows to be more easily comprehended and drawn.
This problem, with the one that follows it, may be looked upon by the
young student as the pons asinorum in this particular part of the sub-
ject, which, when ably surmounted, may be regarded by him as one
landmark passed on the road to his success as a practical draughtsman.

59. The problem referred to in the last paragraph is that of finding
the projections of a skeleton cube, whose plan is given, resting on a
plane inclined at an angle to both planes of projection.

In Fig. 166 is given the several views that would be obtained of
such an object when in the assumed position, but without construction
lines or any explanation of the process of finding its projections ; the
problem being intended as a test of the student’s ability in applying
the methods of procedure in its solution, which have previously been so
fully dealt with. The order in which the several views should be drawn
is the same as that shown in the three previous problems, Figs. 163,
164, and 165; and as the bounding edges of the different members of
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the original object are all straight ones, and their surfaces plane, the
finding of its projections should offer no difficulty to the learner who
has attentively followed the development of the subject to its present
stage.

The projections of the prism and pyramid, or other plane-surfaced
solid, when similarly inclined, should also be found without trouble,
their surfaces being in most cases plane figures having straight bound-
ing lines or-edges. As, however, it is often necessary to obtain a view
of an inclined object, when turned through any given angle, to show
the method of procedure in such a case, the following problem is given,
as it combines the projection of both the prism and pyramid when
inclined to both planes of projection.

Problem 63 (Fig. 167).—Given the plan No. 1, and elevation No. 2,
of a hexagonal pyramid, with a similar shaped prismatic base, to
Jind its projections ; first, when its axis 18 inclined to the HP, and
parallel to the VP; and again when it 18 tnclined to both the VP
and HP.

If the inclination of the plane on which the given object is to rest
be, say, 30° to the horizontal, this at once determines the angle made
by its axis with the HP as one of 60°, the one angle being the com-
plement of the other. Then the elevation No. 2 being given, to find
the projections first required, show as in No. 3 a view of the object on
a plane inclined to the HP at 30°. This is nothing more than a
tramsfer of the view given in No. 2, directly to this plane, as the same
faces of the object seen in No. 2 will be seen in No. 3, the former view
having been obtained by direct projection from its plan No. 1, efore,
and not after, its inclination, as in previous problems. The plan of No.
3, given in No. 4, is found, as before, by projection from No. 3 and
No. 1.

Then to find the projections of the object when inclined to both the
VP and HP, as required in the second part of the problem, assuming
the angle its axis is to make with the VP is known, we proceed as
follows :—Draw in, in the HP, a line as ab, No. 5, making the same
angle with the IL that the axis of the solid is to make with the VP—
say one of 45°. To this line—which is a plan of the axis of the solid—
transfer the view obtained in No. 4, and from it, and No. 3, find by
projection that given in No. 6, then will the views Nos. 3, 4, 5 and 6,
Fig. 167, be the required projections of the original object, represented
in plan and elevation by Nos. 1 and 2 in the figure. In the same way
as here explained may the plan or elevation of any plane solid in any
desired inclined position be obtained.

60. Passing to the projection of solids bounded by curved surfaces

" inclined to both the VP and HP, a similar combination of the cone and
cylinder is taken as the object for projection, the problem being—

Problem 64 (Fig. 168).—Given the plan No. 1 and elevation No. 2
of a cone having a cylindrical base, its projections are required, first
" when it rests on a plane inclined to the HP at 45°, with its axis
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parallel to the VP, and after it has been swung from that position
through a horizontal angle of 30°.

The method of procedure in this case being the same as in the
previous problem, little difficulty should be found in obtaining the pro-
jections shown in Nos. 3, 4, 5 and 6 in the figure. As both portions
of the object—the conical and the cylindrical—have a curved surface,
greater care will be required in drawing in the ellipses, into which the
top and bottom edges of the cylindrical portion are projected, but with
this exception there is nothing to prevent correct projections of the
object being easily found if the instructions previously given in refer-
ence to curved-surfaced solids are carefully followed.

To assist the student in determining the direction of the axes of the
ellipses with respect to the IL, in the view required in No. 6 let him
assume the base of the given object to be cut out of a square prism, as
shown in dotted lines in No. 6, then the projection of the diametral
lines @, b; ¢, d, of No. 1 on the upper face of this prism represented in
No. 6 by the faint lines a'd’; ¢'d’, will be the axes of the ellipse
sought, and &/, ¥, ¢, @’ will be four points through which the curve of
the ellipse—into which the base of the cone is projected—has to be
drawn. The lower edge of the cylindrical portion of the solid in its
new position is, of course, projected into a similar ellipse as the upper
edge, or base of the cone, but only half of it, as shown, will be seen.

As the projections of a sphere, in similar positions to the other solids
taken as examples, offer little useful practice beyond that of the correct
drawing of ellipses, we give as the concluding problem in this part ef
our subject, one in which the application of its principles is practically
shown in the delineation of an ordinary ‘“nut,” in such positions as
frequently occur in actual machine details. The problem is—

Problem 85 (Fig. 169).—Given the plan and elevation of a six-sided

chamfered nut, to find its projections when the plane surface on which
#-lies 13 inclined to the plunes of its projection.

Before proceeding to find the required projections of the nut, it may
be noted in reference to such an article, that its flat sides at right angles
to its top and bottom fuces are called “panes”; that its height, or
thickness, is generally equal to the diameter of the bolt it is intended to
fit ; its width across the ‘“panes” or ‘“flats” bears a certain fixed pro-
portion to this diameter, and the “chamfer,” or cutting down of its
upper corners or angles, is usually at an angle of 45° with its top face.

To draw in the plan of a nut such as that shown at No. 1, Fig. 169,
it is necessary to know first what its width across the flats is to be.
This width for all nuts up to 6 in. diameter of bolt may be found in any
engineer’s pocket-book. With the given width—for the size of nut
proposed to be drawn—as a diameter, describe a circle in the HP at a
convenient distance from the IL, and from the same centre a second
circle equal in diameter to that of the bolt for which the nut is intended.
Through the common centre of these circles draw lines indefinitely,
parallel and perpendicular to the IL. Then with the T-square and set-
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square of 60° draw lines tangential to the outer circle in the positions
shown, and the resultant hexagon, with its inscribed circles, will be the
plan of the intended nut when resting on the HP.

To find its elevation in this position, project over into the VP the
four corner edges of the nut seen when looked at in the direction of the
arrow in plan. These will, of course, be lines perpendicular to the IL.
Now, as the thickness, or height, of an ordinary nut generally equals the
diameter of its bolt, set off this diameter as a height—from the IL—
and through it draw a line parallel to the IL. This line will represent
the top face of the nut, and were it a plane-faced one and not chamfered,
its elevation would be completed by making this line to cut the four
perpendiculars previously drawn in. The chamfering is represented in
elevation by the three circular arcs and the two short lines at an angle
of 45°, tangent to the outer arcs, the reason for which will be fully
explained when treating of screws, nuts, etc., later on.

The plan and elevation of the nut being thus given, its projections
ag required in the problem are now to be found. Assuming the angle
of the plane surface on which the nut is supposed to rest to be one of
30° to the horizontal, draw in a line making with the IL such an angle.
Transfer to this line the view of the nut given in No. 2, and obtain by
projection its plan in this inclined position, as shown in No. 4. Then
to find its elevation when swung through a horizontal angle—say of 45°
—draw in its axial line in the HP making that angle with the IL, and
transfer to it the plan of the nut found in No. 4, giving the view of it
shown in No. 5. From this plan, and the elevation No. 3, find by
projection the view given in No. 6, and the requirements of the given
problem will be fulfilled.

An infinite variety of problems might be given in this very interest-
ing part of our subject, but as they would only involve in their selution
the correct application of principles which have been fully explained, we
pass on to the elucidation of projection as applied to the * penetration ”
and “intersection ” of solids, a knowledge of which is of the first import-
ance to the would-be draughtsman.



CHAPTER XVII
THE PENETRATION AND INTERSECTION OF SOLIDS

81. Upr to the present stage in our subject, all the objects chosen as
examples to illustrate the application of the principles of  projection
have consisted of simple solids, with either plane or curved surfaces——or
bhoth—and have each been treated independently. They have ‘not, of
course, included all the elementary forms which, in combination, give
shape to machine and engine details; but they have been such as will
enable the student to delineate correctly any subsidiary solid-—generally
derived from one of the primary ones—which may enter mto -the con-
struction of a complete mechaniocal structure.

As in the details of such a structure, some of the solids, which have
so far been dealt with singly, are joined to, or made to penetrate, one
another, their surfaces by such junction or penetration produce a line or
lines which require accurate delineation in any drawing having preten-
sions to truthfulness. Such lines are, however, not only required for the
correct representation of the objects in combination, but they are neces-
sary to be known before the objects represented could be constructed in
any material. It is then to the solution of problems—by the aid of
projection—presented by such combinations, that attention is now to be
directed.

In determining the lines of intersection of two solids, the sl.mplest
possible method of {)rocedure—so long as it gives correct results—should
be aimed at ; and although plane-surfaced solids are probably not so often
met with in combination in mechanical details as t ey are in building
constructions, yet it is necessary that their intersections should be
thoroughly understood by the draughtsman. The introductory pro-
blems in this part of the subject will therefore consist of those in
which the intersections of plane-surfaced solids only are required to be
found.

62. One of the first facts realized by the student in commencing the
study of Projection, was that the intersection of two planes at any angle
produced a straight line. It follows from this that the intersections of
plane solids must also be straight lines, as the surfaces which inter-
sect are planes. This consideration, then, is the key to the solution of
_any problem in which the intersections of plane-surfaced solids are
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concerned ; for if through two such intersecting solids a section plane
is passed, the points where that plane cuts the surfaces of both solids
will be at once shown. If, then, the two solids be imagined to be cut
stnultaneously by a number of planes, and the points of intersection of
their surfaces by those planes be noted, a line drawn through those
points will be the “line of penetration” of one solid by the other. As
the plane solids usually met with in machine details are prisms and
pyramids, with their frustums, the problems in this connection will deal
first with prisms penetrated by prisms. The first is—

Problem 68 (Fig. 170).—Given the plan No. 1, of two square prisms
A and B, of equal length, one penetrating the other at right angles ;
to find their elevation and lines of penetration.

As shown in the plan, A is the penetrated, and B the penetrating
prism ; the former having two of its sides parallel to the VP, while all
four sides of the latter are perpendicular to it. The lines of intersection
of the two, therefore, will only be seen on the front side of A, or that
nearest to the eye in elevation. As that side is parallel to the VP, and
the prism B penetrates it at right angles, the lines of penetration will
coincide with those forming the front end of that prism. Therefore,
find by projection the elevation of the prisms, in the positions shown in
plan, and the lines ab, b¢, ¢d, da, in No. 2 will—although representing
the front end of prism B—be the lines of penetration sought. In this
problem, as the four sides of the penetrating prism B are planes of
intersection with the two sides—or the one nearest to, and that farthest
‘from the VP—of the penetrated one A, the use of any section planes in
finding the lines of penetration is unnecessary.

Next, let the two prisms be moved on the axis of A—as shown in No, 3—
wnitil that of B makes an angle of 30° with the 1L, and their elevation
and lines of penetration be required.

Here, although the axes of the prisms are in the same relative posi-
tion as before, that of B, being inclined to the VP, brings the vertical
sides of both at an angle with that plane, and will, in elevation, show
—as in No. 4—two sides of A and only one of B, and consequently but
one actual line of penetration, or that formed by the intersection of the
plane of the side a, b, ¢, d of the prism B, with the side ¢, £, g, & of the
prism A. To show this line, draw a projector through point z in the
plan No. 3 into the VP, and it will cut the lines @, b, ¢, d in No. 4 in
«', y, which is the line sought. The other lines of penetration of A by
B cannot be seen, as they are covered by those representing the front
edges of B, and the back ones do not come into view at all.

To find the lines of penetration of two intersecting square prisms
when the axis of one of them is inclined to doth planes of projection,
the procedure is as shown in Nos. 5, 6, 7, and 8, Fig. 170. First draw
in the elevation—as at No. 5—of the prisms with the axis of the pene-
trating one B, parallel to the VP, and at the angle it is to make with
the HP, and find their plan in this position. Swing this plan, No. 6,

~=mcvnd on the axis of the prism A until that of B makes the required
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angle—say of 45°—with the VP or IL. Then with this plan, No. 7,
and the elevation, No. 5, find by projection the: elevation of the prisms
in their new position, as shown in No. 8. Thus posed, but two lines of
penetration will be seen—viz., where the prism B passes through the
side @,b, ¢, d of A,—and are found by projectors drawn through e and
fin No. 5, and g and 4 in No. 7. The lines of penetration of A by B
on the side opposite to a, b, ¢, d—shown in dotted lines—are found by
similar projectors from points ¢, /' in No. 5, and ¢', &’ in No. 7.

The next problem is a case in which a diagonal of the intersected
prism is in the same plane as that of a diagonal of the prism intersect-
ing it.

Problem 67 (Fig. 171).—Given the plun of two square prisms of
equal length, penetrating each other at right angles, their axes and a
diagonal of each being in one and the same plane, to find their lines
of penetration.

First, let the axes of both prisms be parallel to the VP, then No. 1
(Fig. 171) will be their plan. From this, first find the elevation of the
prism A, making it equal in Aeight to the length—given in the plan—
of B. At the middle of this height draw in the axial line of B, and on
it project over from the plan No. 1, the two ends of that prism. Now
the lines of penetration of A by B may be found in two ways, either by
projecting over to the elevation the points of intersection of the visible
edges of B with A, seen in plan, or by the use of section planes. By the
first method it will be seen at a glance, that in elevation only two sides

“with their three edges of the prism B will be seen as penetrating A.
These are the top, bottom, and front edges, the two former of which
intersect the right and left vertical edges of A in points 1, 2, 3, 4. To
find where the front edge of B enters and leaves A, project over from
the plan of this edge the line ab No. 1, to its elevation ab No. 3, the
points 5, 6; join points 1, 5; 5, 3; 2, 6; 6, 4 by straight lines, and they
will be the lines of penetration sought. .

63. To find the same lines by the use of intersecting planes, it will
be seen at once that if a plane be caused to pass through the axes of
both prisms parallel to the VP, it would intersect the prisms in' the
points 1, 2, 3, 4, No. 2; and if a second plane, parallel to the first and
tangent to the edge ab of the prism B, be passed through A, it would
intersect the edge ab, No. 1, in the points 5 and 6, as the section of A
made by this plane would be the parallelogram cdef shown in faint lines
in No. 2, the points of intersection of the edge ab by it being 5 and 6,
which, joined to 1 and 3 and 2 and 4, give the same lines of penetration
as by the first method. It will be seen, on studying this figure, that

" the resultant lines of penetration are nothing more nor less than the
intersections of pairs of planes at an angle, and it is in the judicious
application of such section planes that the whole art of finding the lines
of penetration of solids consists. It will, however, be evident that in
the problem just solved, and that which follows it, their use in practice
would be dispensed with, as the lines sought can be found at once by
simple projection from the plans of the objects; but, as it is advisable
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that at this stage the student should understand the application.and
use of such planes, they have been introduced thus early.

For our next problem, the same solids are taken as in the last, but
instead of both axes being parallel to the VP, that of the prism B is
inclined at an angle to it. This position is shown in plan in No. 3,
Fig. 171—a transfer of No. 1 at an angle to the VP or IL—and it is
required to find the elevation of the prisms, and their lines of penetra-
tion when so posed.

To do this, first find by projection from No. 3 and No. 2, the eleva-
tion of the prisms as if they were entire. From the plan No. 3, draw
projectors from the points 1, 2, 3, 4, in it, where the edges of the prism
B-that will be seen in élevation—intersect those of A then straight
lines joining these points will be the lines of penetratlon sought, as
shown in No. 4.

64. In cases where the axes of the intersecting solids are not in the
same: plane, it may happen that the lines of penetration cannot be found
by direct projection alone, as in the previous problems, but will necessi-
tate the use of section planes to discover them.: As an instance of
this, take the following problem—

Problem 68 (Fig. 171).—Given the plan of two square prisms of equal
length, intersecting each other at right angles, but having their
axes in different plunes ; to find their lines of penetration.

Let No. 5, Fig. 171, be the given plan of the prisms, the axis of A
being vertical and that of B horizontal, but inclined to the VP. Ob-
tain by projection the elevation of the prisms as if they were entire.
The two lines ab, bc of penetration, of A by the prism B, that will be
seen in elevation, assuming it to enter A from the lef?, can be found by
direct projection from the plan, as in the previous problem. Those
through the front side of A to the right may be found in either of two
ways, by the use of a section plane.

First assume a plane passing vertically through the prism B, and
coinciding with the right-hand front side of prism A, a plan of which
would be the faint line ax, No. 5. The section of B by this plane
would be a triangle, its apex being the point d in the frontmost edge
of the prism B, and its base, a line across the right end of that prism,
perpendicular to the HP. Find, by projection, the elevation of this
triangular section, as shown in No. 6, and the points 5, 6 in its sides
will be those where the two front sides of the penetrating prism B in-
tersect the vertical line 2 4, or the right edge of the prism A in passing
through it. Right lines joining points 5 and 6 with d the apex of the
triangle thus found, will be the lines of penetration required.

The same lines may be found by assuming a plane to pass vertically
through both prisms parallel to the axis of B at point 2 in plan; or
through the line 2 4 in elevation. Find, by projection, the elevation of
the rectangular section of B made by this plane, and it will give the
points—>5 and 6—in No. 6, as those where the two front sides of the
prism B intersect the. vertical edge 2 4 of prism A. These points, joined

1
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by right lines to the vertical projection of point d in the plan, give the
same lines of penetration as before obtained.

65. Had the prisms in the foregoing problems been egual pairs, the
resultant lines of penetration would of course have been different. In
such case, when seen in elevation as in No. 6, Fig. 172, there would be
no lines of penetration at all, as the two visibles faces are in one and
_ the same plane, and therefore show no juncture. If, however, their
sides were inclined to the planes of projection—their axes being still at
right angles and in one plane parallel to the VP—then the lines of
penetration would be as shown in No. 2, Fig. 172, taking the form of
a cross, due to their surfaces intersecting each other equally. This
may be proved to exactness by the use of section planes. Let No. 1,
Fig. 172, be the plan of two equalsized prisms A and B, intersecting
each other at right angles, and with their axes in one and the same
plane, and let it be required to find their lines of penetration.

From the position, shown in plan, in which the prisms are with
respect to each other, it is evident that a section plane passing vertically
through both their axes, would give equal rectangular sections of each,
and four points of intersection with the prism B; ¢ and & being those
of entering, and ¢ and d those of leaving it. Then as the prisms are
equal, it follows that any number of parallel planes passing simultane-
ously through both of them would give equal sections and points of
intersection ; lines, therefore, drawn through these points, taken in
order, will give the lines of penetration of one solid by the other.

To find these lines in the given problem, obtain by projection from
the plan No. 1, an elevation, as in No. 2, of the prisms as if they were
entire. Parallel to the axis of B in No. 1, draw thelines1 1, 2 2, 3 3,
which will be the edge view, or plan, of the section planes to be used.
Find the elevation of each of the sections of the prism A, produced by
these planes, by vertical projectors from the points 4 4, 5 5, 6 6/, in
No. 1; then as the prisms are equal, and the section planes are assumed
to pass through both, the horizontal one B will give similar sections to
that of A. To find their bounding lines, produce the axial line = y of
the prism B in No. 2 to the left, and on it draw in a hkalf-end view of
that prism looked at in the direction of the arrow on the left. On this
set off from the line ¢f the distances that the lines 1 1',2 2,3 3/ in
plan No. 1 are from the axis of B, and through the points thus found
draw vertical lines to meet the two sides of the triangles in the points
11,2 2,383, Then parallel to the IL, and through these last-found
points, draw lines from end to end of the prism B, as shown in No. 2.
The points where these lines cut the corresponding vertical ones drawn
through points 4 4, 5 5, 6 6, in No. 1, will be points in the lines of
penetration of the two prisms. On drawing lines through these points,
they will be found to be straight ones, crossing each other at the point
2, where the two frontmost edges of the prisms intersect. Although
these lines might have been at once obtained by joining the points a d,
b ¢, in No. 2, by straight lines, it is advisable that the student should
be able to prove that they become straight, rather than take the matter
for granted.

If the axis of one of such equal prisms be inclined to the VP,
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the other remaining parallel to it as before, then the lines of penetration
will be as shown in No. 4 ; obtained by first finding the elevation of the
prisms as if they were entire, and then projecting over from No. 3—
which is No. 1 with the axis of the prism B at the desired inclination
to the VP—to the corresponding edges in No. 4, the points where the
edges of B that will be seen in elevation intersect those of the prism A.
The right lines joining these points as shown in No. 4 are then the
visible lines of penetration of the two prisms.

For the next problem a case is taken where, although the axes of
both prisms are still in the same plane, yet neither of them is vertical
or horizontal.

Problem 69 (Fig. 173).—Two equal square prisms have their axes in
one and the same plane, and intersect each other at the middlz of thewr
length ; give the elevation and plan of the prisms, and their lines of
intersection when their axes are parallel to the VP, but inclined to
the HP at 52%°.

As there would be no visible lines of penetration of the two prisms
given in the problem, if their sides were parallel and perpendicular to
the plane in which their axes lie, it is assumed that that plane divides
each square prism into two equal triangular ones, and as their axes are
inclined to the HP, it is evident that their elevations must first be
drawn. Now the axes being in a plane which is parallel to the V P, to
draw the elevation of the prisms in the position stated in the problem,
proceed as follows :—

Draw in, in the VP, two lines at an angle of 521° with the IL,
intersecting each other. This may be done by using a “scale of chords”
or a “protractor,” or with the set-squares of 45° and 60°. If neither
of the former is to hand, take the set-square of 45°, and at a convenient
point—say a—in the IL, draw a faint line at 45° with it; through the
same point draw a similar line with the 60° set-square ; bisect the angle
formed by these lines, and the line of bisection will be at an angle
of 524° with the IL, as it is the mean betwen 45° and 60°; for

45 + 60
2

=524. Through a convenient point—as x—in this line, let

fall a perpendicular to the IL, cutting it in point &’ ; make a5 in
that line equal to «'a, and from & through x draw a line indefinitely.
Then as the lines passing through x each make an angle of 521° with
the IL, they will represent the axes of the required prisms, and from
their position with respect to the VP, their frontmost edges also. Set
off from z, in points 1, 2, 3, 4, half the length of the intended prisms,
and at those points draw lines at right angles to the axial ones;
those drawn through 2 and 4, cut the IL at 2, 4'; in these make 2 2",
4 4" respectively, equal to 2 2', 4 4. Through 2' 2" and 4' 4" draw
lines parallel to the axial lines 2 = 3, and 4 x 1, and the resultant rect-
angles will be the elevations of the prisms as if they were entire, resting
on the HP, on the two opposite corners, 2/, 4/, of their lower ends.
Having drawn in the elevation, the plan of the prisms may now
be found. Their axes being parallel to the VP, and in one plane, that
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plane will be correctly represented by a line—as a b in No. 2—parallel
to the IL. It is evident such a plane will pass through the two
diagonals of the ends of the prisms—seen from above in the direction
of the arrows—which are parallel to the VP. Having found the plan
- a8 shown in No. 2, the lines of penetration of the prisms are now required.
" These in elevation will be the intersections at equal angles of the front
sides of the prisms. The points of intersection of the edges of the prisms
are those between which the lines of penetration will pass, and as the
prisms are equally inclined to each other, those lines will pass through
point z in No. 1 at right angles to each other, as shown. In the plan
No. 2, only two such lines will be seen—viz., 2y, and the one directly
behind it in elevation—but which, on account of their position—both
being in one plane—merge into one line x y 2/, shown in No. 2. Now,
as such junctions of prisms as are shown in No. 1 (Fig. 173) often
occur with their axes in a plane at an angle with the VP, we give such
an instance in the following problem—

Problem 70 (Fig. 173).—Given the plan of the equal square prisms
with their axes inclined to each other at the same angle as in the
last problem ; to find their elevation and lines of penetration, when the
plane of their axes i inclined to the VP at an angle of 30°.

The position the prisms will now assume will be tantamount to
swinging the two together as shown in No. 1 (Fig. 173), on the corner
figured 2', of the left-hand one, through a horizontal angle of 30°. If
then the plan of the prisms obtained in No. 2 be drawn in with the
line a b, making that angle with the IL, as shown in No. 3, then the
elevation of the prisms in this position may be obtained by direct
projection from No. 3 and No. 1, care being taken that the projectors
used in doing so are drawn from corresponding points in each. If due
consideration be given to the relative position of the edges of the prisms
to each other, no difficulty should be experienced in obtaining a correct
projection of them, as shown in No. 4. The lines of penetration in
elevation do not, of course, in this case show as being at right angles to
each other, although they are virtually in that position.

Nos. 5 and 6 in Fig. 173 show the application of the same method
of procedure to the case of the penetration of triangular prisms as
to those of square section ; which require no further explanation than
that afforded by the projectors shown in the diagram. One side of the
penetrating prism is shown as coinciding with and passing through the
axis of the penetrated one. In each case the cross-section of the prism
is an equilateral triangle, the size of the penetrating one being shown by
the end views given at A and B. As a multiplicity of similar examples
to the foregoing would only show the application of the same principles
in determining the lines of penetration of prisms by prisms, a few
problems will now be taken in which the intersections of pyramids
are involved.



CHAPTER XVIII
THE INTERSECTIONS OF PLANE SOLIDS (continued).

66. BEFORE passing directly to the finding of the lines of penetration

of one pyramid by another, the solution of such a problem will come
_much easier to the student if some preliminary practice is had with the
case of a pyramid penetrating a prism. As such a combination is often
used in practice, in giving form to sxmple ventilators, cowls, etc., we
give as problems in this connection those in which the two solids are
combined for such purposes. :

The first combination, shown in plan and elevation in No. 1 and No.
2 (Fig. 174), is the simplest possible, it being that of a square prism,
with its axis vertical and sides parallel and perpendicular to the VP,
penetrated by a square pyramid, the axis of which is parallel to both
the VP and HP, and in the same piane as that of the prism.

From the relative position of the two solids, as shown in the figure,
it is evident that neither in plan nor elevation will any lines of penetra-
tion be visible in this case, as the two faces @ and b of the prism, which
are penetrated by all four faces of the pyramid, are in plan and
elevation—through being perpendicular to both planes of projection—
each represented by one straight line only, with which the actual lines
of penetration coincide, and therefore cannot be seen. Had the faces of
the prism, however, been in the least inclined to the VP—still remain-
ing perpendicular to the HP,—then one line of penetration only would
have come into view, dependent upon the inclination of the axis of the
pyramid to the VP.

For all purposes where combinations of sohds are used to give form
to mechanical details, it is usual in practice to so combine them that
their intersections shall be symmetrical. That is to say, that when the
Jorm of the article to be made requires that one solid should penetrate
another, the penetration is made in such a way that an axial plane
passed through the solids shall divide each of them into equal parts.
This, although it necessitates the axes of both solids being in one and
the same plane, does not necessarily prevent either the axes or sides
of the solids from being inclined to the VP or HP. As instances we °
may take the following cases put in the form of problems—
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Problem 71 (Fig. 174).—Given the plan of a square prism, with its
axis vertical and its sides equally inclined to the VP, penetrated by
« square pyramid having its axis parallel, and its opposite sides
inclined to one of the planes of projection and perpendicular to
the .other ; to find the elevation and lines of penetration of two
solids.

Let No. 3 (Fig. 174) be the plan of the two intersecting solids.
Then from the definition of a prism, and of a pyramid, it will at once be
manifest that an axial section—or one along the line A Cg—of these
solids will in elevation give a rectangle for the prism, and a triangle for
the pyramid. Obtain these sections by projection from the plan; and
the points 1, 2, 3, 4 in that of the pyramid will be the limiting ones in
the penetration. Complete the elevation of the prism by drawing in its
front vertical edge. To determine the intersections of the front side of
the pyramid fg¢'f’, No. 4, with the two inclined vertical sides of the
prism seen in elevation, find by projection the elevation of the lines
formed by the meeting of those sides. Now the points @ and b, in the
line f¢g in No. 3, are evidently the plans of the lines required. There-
fore, through them draw projectors into the VP, and they will cross the
front face of the pyramid between the points 5, 6, and 7, 8 in its top
and bottom edges, and will give the lines of penetration seught. These
being put in, in full, and joined up to f and f", and ¢  respectively, will
complete the solution of the problem.

As shown in a previous problem, the lines of penetration just found
can also be determined by assuming a section plane to pass vertically
through the prism on the line of the front face of the pyramid giving
the rectangular section—a bc¢d, No. 4—shown in faint lines, intersect-
ing the triangular section first found in the points 5, 6, 7, 8; and
thereby giving the lines of penetration sought.

The second case of the penetration of a prism by a pyramid is that
in which the prism is in the same position with respect to the VP
as before ; but the pyramid penetrates it in such a way that an axial
plane passing through both, divides each solid into two equal ones
having triangular bases.

Problem 72 (Fig. 174).—A square prism, in the same posilion as in
the last problem, is penetrated by a square pyramid having its sides
equally inclined to both planes of projection ; rejuired thewr plan and
elevation and lines of penetration.

‘With one exception, the plan of the solids in the positions given in
the problem will be similar to that given in No. 3 (Fig. 174). The
exception is caused by the altered position of the pyramid. The triangle
efg in No. 3 represented a flat surface perpendicular to the VP—one
of the faces of the pyramid—whereas in No. 5, the pyramid having
been turned on its axis through 90°, has brought two of its sides
into view in both plan and elevation—equally inclined to the planes
of their projection, and therefore requiring a third line to represent
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their junction. This line or edge in No. 5 will be aa’; that part of it
where it passes through the prism being out of sight. "From this plan
No. 5, find by projection the elevation No. 6 of the solids as if they
were entire. For the lines of penetration that will be visible, draw
projectors from the points 1, 2, in the line b4’ in No. 5, to cut & ¢” in
No. 6 in the points 1, 2’; then lines drawn from these last-found points
to 3,3'; 4, 4; or where the upper and lower edges of the pyramid
enter and leave the prism, will be the lines of penetration required. .
67. Although, as stated in a previous paragraph, it is usual in
practice to make the intersections of solids in the design of mechanical
details symmetrical, cases may sometimes arise in which this symmetry .
cannot be adhered to. Through the exigencies of position of the solid
penetrated, it may be impossible to bring the axes of both into one and
the same plane, although at right angles to each other. To meet such
a case the following problem will show the method of procedure in
determining the lines of penetration.

Problem 73 (Fig. 175).—Given the plan of a square prism, pene-
trated by a square pyramid, their axes being in different planes ; re-
quired the elevation and lines of penetration of the solids.

From No. 1 (Fig. 175), which is the given plan of the solids, it is
seen that the axis d, @’ of the pyramid passes through the prism in a
direction parallel to two of its opposite sides, but some distance in
front of its axis. To find the lines of penetration when in such a posi-
tion, obtain by projection the elevation of the solids as if they were
entire, both of them being of the same dimensions as in the previous
problems. As a vertical plane passed through the axis of the pyramid
would divide it into two equal triangular ones, and give an isosceles
triangle for the section made by the cutting plane, it is evident that
any vertical plane passing through the apex of the pyramid would glve
a similar—though not equal—triangular section.

Now, in looking in the direction of the arrow in No. 1, it is seen
that the frontmost edge a'a of the pyramid enters the left visible face
of the prism at point 1, and leaves it on the right face at point 2.
These points projected over to the corresponding edge of the pyramid
in No. 2, give 1, 2”. To find where the vertical edge b5’ of the prism
—seen in elevation in No. 2—enters and leaves the two front faces of
the pyramid, draw (in No. 1) a line through o/, its apex, and the
corner b of the prism, and produce it to cut the base line @ ¢ of the
pyramid in the point 3. 'We have then to find by projection the eleva-
tion of the section thus made, to enable us to obtain the points re-
quired. Taking this line, 3 ba’, as the edge view, or plan, of a verti-
cal plane passed through the pyramid, it will give a triangle for the
section. To determine it we must first get an end view (in elevation)
of the base of the front half of the pyramid. Now, its whole base is a
square, with diagonals equal in length to the line ¢ d «—in No. 1-—one
of them being vertical and the other horizontal. To draw the half-
base required, find the elevation of the vertical diagonal of the base of
the pyramid, represented in No. 2, by the faint line drawn between the
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points d and d, they being the top and bottom ends of that line;
produce the axis a @’ of the pyramid, and on it draw the half-square
d xd as shown.

Now the assumed section plane, represented by the line 3 44’ in
No. 1, cuts through the base of the pyramid at the distance d 3 from
its vertical diagonal. To find the line on the half-base so made,
through d in No. 1 draw a line indefinitely, parallel to the IL ; with d
as centre and radius d a, draw an arc, cutting the line through d pro-
duced, in the point z, and from the same centre, with a radius equal to
d 3, describe an arc cutting #d in 3. As the line d, No. 1,is a plan
of the half-square dx d’, No. 2, swung round on its diagonal d, d’ as a
hinge, until it is parallel to the IL, on this half-square—or front half-
base of the pyramid—can now be found the exact length of the base
of the isosceles triangle produced by the cutting plane, and from it the
section itself, and the lines of intersection of the sides of the prism and
pyramid.

For the triangular section, draw a projector into the VP through
pomt 3', in the line 2 d, No. 1, and it will cut the lines xd and zd in
No. 2 m points 3, 3'; the distance between which is the length of the
base of the tnangula.r section. For its sides, cut by projectors drawn
through points 3, 3', parallel to the IL, the lines d«, « d, in points 4, 4',
and through these and the apex «' draw faint lines as shown in No. 2;
then the points 5, 5, where these faint lines—or edges of the tri-
angular section—cut the vertical edge 64’ of the prism, are two of the
points sought. Join 1’ in the line a «’ to these points by straight lines,
and they will be the lines of penetration on the left front face of the
prism. For those on its »ight face, find by projection the elevation of
the points—2 and 6—in the edges of the pyramid where they leave
that face, and join these as before by the straight lines 6 2/, 2’ 6', and
they will be the lines of penetration seen on that face. For the corre-
sponding lines on the back faces of the prism—not seen, but shown
dotted—the same method of determining them is employed as for those
that are directly in view.

68. As an example of the case of the penetration of a prism by a
pyramid, when the axes of the two solids are in one plane, but not at
right angles to each other, we give in Nos. 3, 4, 5, 6 (Fig. 175) the re-
sultant projections and lines of penetration of the solids when having
these relative positions. Nos. 3 and 4 show the plan and elevation of
the solids when the plane of their axes is parallel to the VP, and
therefore perpendicular to the HP ; and Nos. 5 and 6, those of the
same solids when that plane is inclined to the VP, but still in the
vertical position. As the required projections and lines of penetration
should now be found by the student without further assistance than
that given—Dby the projectors—in the diagram, we pass on to the de-
termination of the lines of penetration of one pyramid by another.

The first case is that of the penetration of a square pyramid by a
similar one of equal size, the axes of both being in one plane, parallel to
the VP, and at right angles to each other.

First, let the penetrated solid be in such a position that the
diagonals of its base are respectively parallel and perpendicular to
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the VP, and those of the penetrating one at equal angles with both
the planes of projection. Then to find their lines of penetration, draw
in first the plan and elevation of two pyramids—having equal bases
and altitudes—with their axes at right angles. The combined triangle
and square shown in No. 1, and the three triangles shown in No. 2
(Fig. 176) will be the plan and elevation of the solids—as if they were
entire—in the given positions.

Now an axial section of both solids by a vertical plane along the
line a b, No. 1, will give a triangle for each, and points 1, 2, 3, 4, No.
2, as the extreme ones in the penetration. Any other vertical section
of the -solids, taken through the apex & of the penetrating one, will
also give a triangle for the section of each. If then a plane, coinciding
with the front face fb of the penetrating pyramid, be passed through
the penetrated one, it will give in No. 2 the triangle ¢ d e—partly
shown in faint lines—as the section; the parts of its two sides—
between d'¢’ and d'¢, shown in full—being the lines of penetration
seen in elevation. To find those seen in plan, let fall from points 1, 3,
d',d” in No. 2, projectors to cut -the corresponding front and back
edges of the pyramids in 1, d', d”, 3, No. 1; join these points by
straight lines as shown, and they will be the lines of penetration of
the top face of the horizontal pyramid with the slant sides of the ver-
tical one. To find the similar lines on the under face of the same
pyra.mld project over from No. 2, to the plan No. 1, the points 2, ¢/, ¢/,

; join these by dotted lines, as shown, and they will be the ones
requlred _

Assuming the axial plane ab of the two pyramids to be at an
angle, say of 30° with the VP, but still perpendicular to the HP, and
an ‘elevation of the solids in that position to be required; then the
projection shown in No. 4 (Fig. 176) will be what would.be obtained,
as the vertical pyramid has been moved round on its axis until the
axial plane of both solids makes the required angle with the VP.
The elevation and lines of penetration have then been found by direct
projection from the plan No. 3 and elevation No. 2.

The case in which two equal square pyramids penetrate each other
in such a way that both have one of their greatest plane sections in one
and the same plane, their axes being at right angles, is shown in Nos.
5 and 6 (Fig. 176).

69. Now, the greatest plane section of a square pyramid is evidently
one obtained by cutting it through from apex to base in such a way as
to divide its base diagonally into two equal triangles. Then, if two
such pyramids as A and B (Fig. 176), equal in size, and at right angles
to each other, be cut simultaneously by a plane passing through their
axes and cutting their bases diagonally, their elevation, assuming them
to be entire, and both axes parallel to the VP, will be as shown in No.
5, but without the lines of penetration 1, 2, 3; 4, 5, 6. To find these
lines, first draw in the plan (No. 6) of the pyramids as if entire.
Assume a vertical plane, tangent to the front edge x & of pyramid B, to
cut through A to its base. It would intersect that base in its two front
edges at points f, g, and its front slant edge in point <. Obtain by
prOJectlon the elevation of the triangular section f; 7, g thus produced—
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shown in faint lines in No. 5—and it will be found to cut the front
edge x b of the prism B in points 2, 5; join these by straight lines to
{)oints 1, 3 and 4, 6—previously found—and they will be the required
ines of penetration of the two solids seen in elevation.

To find the plans of these lines, let fall projectors from points 2, 5
and 1, 4, in No. 5, to cut the corresponding edges of the prism B in
No. 6, and they will give points 1, 2, 4, 5; join these as before by
straight lines as shown, and they will be the plans of the two lines of
penetration 1, 2, 4, b previously found in No. 5.

On looking uponr the two pyramids, in the direction of the arrow
gshown in No. 5, two pairs of lines of penetration will be seen. These
are the two front ones 1, 2; 4, 5; and the two, 1, 2'; 4, 5, imme-
diately behind them, shown in No. 6. To show the position of the four
lines of penetration made by the two lower inclined sides of pyramid B,
let fall projectors from points 3, 6 in No. 5, to cut the corresponding
edge of the same pyramid in 3, 6 in No. 6 ; join these points by dotted
lines to 2, 2'; 5, 5 respectively, and they will be the plans of the lower,
or return lines of penetration of the two solids.

Should the two prisms have such a relative position that their axes
are inclined to each other at some angle other than a right angle, in a
plane common to both, the procedure for finding their lines of penetra-
tion would still be the same. As a test of its application, let the two
pyramids in the last problem penetrate each other in such a way that
the axis of the penetrating one is inclined at an angle of 30° to the
horizontal, while that of the penetrated remains vertical, and let it be
required to find their projection and lines of penetration when the axial
plane of the solids is parallel to the VP, and also when that plane is
inclined to the VP at a given angle.

As the solids in the first-named position have their axial plane
parallel to the VP, and the axis of one of them is inclined to the HP,
their elevation, as if they were entire, must first be drawn. Having
done this as shown in No. 1 (Fig. 177), from it find by projection their
plan—also as if entire—as given in No. 2. The points of intersection
of the upper and lower edges of the pyramid B with A are at once seen
in No. 1, to be 1, 2, 3, 4. Proceed as in the previous problem to find
the section of A, by a vertical plane passing through it tangent to the
front edge of B, and the points in that edge cut by it; join these up
to the first found points by straight lines as before, and they will be
the lines of penetration in elevation. On finding the plans of these
lines as before explained and shown in No. 2, the first part of the
problem is solved. For its latter part, draw in as shown in No. 3 in
the figure, a repeat of No. 2, but having its axial line a b at the required
angle—say 30°—with the VP or IL; and from it and No. 1 find by
projection the elevation of the pyramids and lines of penetration in
their new position. This view, if obtained in accordance with the pro-
cedure already explained in a previous problem, will give No. 4 (Fig.
177) as the result.

" 70. As a concluding problem in the penetration of plane-surfaced
solids, we give in No. 5 and No. 6 (Fig. 177) a case in connection with
pyramids which sometimes occurs in practice—viz.,, that wherein a

M
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square pyramid is penetrated by a similar solid, the relative position of
the two being such that an axial plane passed through both gives a
similar section in each, but divides them into dissimilar solids. The
problem is—

Problem 74 (Fig. 177).—A square pyramid A, with its axis vertical
and base edyes parallel and at mght angles to the VP, 18 penetrated
by a similar pyramid B, having its axis horizontal and parallel to
the VP ; required the projections—plan and elevation—of the lines
of penetration of the two solids, when the diagonals of the base of the
penetrating one are respectively parallel and perpendicular to the VP.

First draw in the plan and elevation of the pyramids—as if they
were entire—in the position stated in the problem, and shown in Nos.
5 and 6 in the figure. The extreme points of intersection of the top
and bottom edges of the pyramid B, with the right and left faces of A,
are at once seen to be 1, 2, 3, 4, No. 5. Then to determine where the
front and back edges of B enter and leave A, assume a horizontal plane
to pass through both solids on the line of the axis—a a’—of B, and the
parts cut off by it to be removed. The sections exposed will be a
triangle ba'd’, for B, and a square—in faint lines—for A, shown in
No. 6. : :

Now the two sides, b @’ and &'/, of this triangle are the plans of the
front and back edges of the pyramid B, and as the square is a section
of the pyramid A made by the same cutting plane, it is at once seen
that the two horizontal edges of B enter the pyramid A at points 5, 5’
in its front and back faces, and leave it at points 6, 6" in its right face.
Project over point 5 in &'/, No. 6, to 5 in aa’, No. 5. Then to find the
direction of the lines of penetration—which will meet in point 5 in
No. 5—get a side elevation of one-half of the pyramid A, using the
base line of B produced to p' as an axis. On this line find by projec-
tion a half-section of the pyramid B, made by a plane passing through
points 1 and 3 on the left face of the pyramid A, which will be a
triangle, having the line 1’3’ for its base, and its two sides cutting the
slant side p'o’ of the half-pyramid previously found in two points.
These projected over to the left edge of the pyramid A, and joined to
point b in a a’ as shown, are the lines of penetration sought. As the
finding of the plans of these lines, as shown in No. 6, require only the
careful application of principles already explained, they are left to the
student to draw in without further assistance.

As the lines of penetration of prisms and pyramids by similar
solids, having any number of sides, are found by a similar procedure to
* that so fully explained in this and the preceding chapter, the subject of
the penetration of solids having curved surfaces—a most important one
to the engineering draughtsman—will next be considered.



, CHAPTER XIX
THE INTERSECTIONS OF SOLIDS HAVING CURVED SURFACES

71. As the cost of any engine, or machine detail, depends in a great
measure upon the number of processes involved in its production, it
will readily occur to the student of engineering that the simplest possi-
ble form, and one requiring the least amount of machining, to fit it for
the purpose to which it is to be applied, will be that which is produced
by a revolving motion of the material to be acted upon by the cutting
tool which gives it shape. The product of this motion, a “solid of
revolution,” has also a larger cross-sectional area within the same
bounding line than any plane-surfaced solid; and for this reason, it
will be found on studying the construction of engines, machines, and
all ordinary steam generators, that the cylinder, the cone, and the
sphere—all of them solids having curved surfaces—entér much more
largely into their design than do any other of the solids. A knowledge
of the way in which their surfaces intersect when in combination is
therefore highly essential, not only to the draughtsman who is called
upon to design such details, but to the skilled workman who will pro-
duce them.

This knowledge is the more necessary, as upon the correct applica-
tion of the principles of projection to the determining of the actual
intersections of such solids, depends the truth or otherwise of the
results arrived at when finding the ¢ developments” of their surfaces—a
subject which immediately follows that now being considered, and one
which includes within its scope the determination of the exact shape
the material should take when the article to be produced is one made
entirely of metal plates.

The preliminary problems in connection with the intersections of
curved-surfaced solids are those in which cylinders are penetrated by
cylinders. The first is—

Problem 75 (Fig. 178).—Given the plan of two equal-sized right
cylinders, with axes at right angles in one plane parallel to the VP,
and penetrating each other ; to find their lines of intersection.

Now, from the way in which a right cylinder is generated, it is
known that an axtal section of the solid is a rectangle, and any other
164
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section parallel to an axial one is a similar figure. Therefore, if No. 1
(Fig. 178) be the given plan of the two solids, to find the lines of inter-
section of their surfaces, first get an elevation of them as if entire. As
only the front halves of the two cylinders will be seen in elevation, it
is with them that we have to deal. If, then, a series of vertical section
planes parallel to each other and the axial plane ap of the solids, be
assumed to pass simultaneously through their front halves, the points
of intersection of the sections of the cylinders by these planes will be
points in their lines of penetration.

To find these lines, draw in No. 1 (Fig. 178) parallel to the line a p,
as many lines—say three—at convenient distances apart, as it is in-
tended to use section planes. Find by projection from the points 11,
22, 3 3—where these lines cut the plan of the vertical cylinder—the
sectional elevations produced by them, as shown in dotted lines in No.
2. For the corresponding sectional elevations of the horizontal cylinder
by the same planes, on its axial line x , No. 2—produced to the left—
with point « as centre and x a as radius, describe the semi-circle a z'a’.
This will be one-half of the end of the horizontal cylinder turned on its
vertical diameter a a’ as a hinge. In this semi-circle set off from z—in
the line za'—the distances that the lines 11,22, 33'in No. 1 are from
the line ap, and through the points thus found draw lines parallel to
ada’ to cut the semi-circle in points 11, 22, 33. Faint lines drawn
through these points from end to end of the horizontal cylinder, parallel
to « y, or the IL, will give the corresponding sections of it made by the
same planes as used in the vertical cylinder. Then the points where
the edges of the corresponding sections of both cylinders cut each other,
as shown in No. 2, are points in their lines of intersection, which, when
joined, will be found to be straight ones crossing each other at right
angles.

The student will note that in this case the cylinders being equal in
diameter and at right angles to each other, their intersections form true
mitres dividing them into four equal parts, each having semi-elliptic
sectional surfaces perpendicular to each other.

In the case of two equal cylinders intersecting at right angles, and
having the plane of their axes at an angle to the VP, but still in the
vertical position, their lines of intersection would be found in the same
way as shown in No. 2; ‘the only difference in the result being that
such lines will be curved instead of straight, showing, as will be seen in
No. 4 (Fig. 178), that they become, thfough the altered position of the
solids with respect to the plane of projection, portions of ellipses. As
the finding of the elevation and lines of penetration of the two cylin-
ders, in their new position, offers to the student some practice in the
projection of ellipses, which will very frequently occur in this part of
the subject, no further assistance is given in this problem than that
afforded by the few projectors shown in the diagram.

72. The next case is one where the intersecting cylinders are not of
equal diameter, but still have an axial plane common to both. The
problem is—
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Problem 78 (Fig. 179).—Given the plan of two cylinders of unequal
diameter intersecting each other, with their axes at right angles and
in one plane parallel to the VP ; to find their elevation and lines of
penetration.

The plan of the two cylinders in the position stated in the problem
will be that shown in No. 1 (Fig. 179), the penetrating one being
horizontal. From -this plan, find by projection the elevation of the
cylinders as if entire, making them both of the same length, with the
horizontal intersecting the vertical one at the middle of its height.
Then to find the visible lines of intersection of the solids in elevation,
draw in—as in the last problem—the plans of the intended vertical
section planes to be used ; and obtain by projection the elevation of
the sections of the vertical cylinder made by these planes. Also draw
in, in No. 2, on the axis of the horizontal cylinder produced, an end
view of the front half of that cylinder. On this, show in—as in the
previous problem—the lines made by the vertical section planes in
passing through that cylinder, and from the points in the semi-circle,
or end view, cut by these lines, obtain as before the front elevation of
the sections of the horizontal cylinder; then the points where these
sections cut the corresponding ones of the vertical cylinder, will be
points in the lines of penetration of one solid by the other. On joining
these by lines drawn through them, they will be found to be (as shown
in No. 2, Fig. 179) symmetrical curves ; the highest and lowest points
in them being determined by the intersections of the bounding lines of
the two solids, at 1, 2, 3, 4, while the middle ones, a'd’, are the vertical
projections of a b in No. 1, or where the frontmost. part of the horizontal
cylinder is seen to enter and leave the vertical one.

Should the axial plane of the two cylinders be at any given angle
with the VP—as in No. 3—instead of being parallel thereto, the lines
of their intersection would still be found in the same way as before
shown, but they will not be symmetrical curves as in the problem
just solved, but such as are seen in full lines in No. 4 (Fig. 179),
the dotted ones being the return lines of intersection of the penetrating
—or horizontal—cylinder, with the surface of the vertical one, which is
out of sight. As the correct finding of the intersecting lines—shown in
full, and dotted in No. 4—of the two cylinders is but a matter of
careful projection by the student, no further assistance than that given
in the diagram will be required by him.

73. The next case is that of the intersections of unequal cylinders,
at an angle other than a right angle, and having their axes in different
planes at a given distance apart. The problem is—

Problem 77 (Fig. 180).—Two cylinders of wunequal diameter, with
their axes in parallel planes, intersect each other at an angle of 30°;
1t 18 required to find the projections and lines of penetration of the
solids, when the axis of one of them is vertical, and the other paral-
lel to the VP.
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- As one of the cylinders is inclined, an elevation of both as if they
were entire must first be drawn, as shown in No. 1. From this obtain
by direct projection the plan of the solids as given in No. 2. Then to
find the visible lines of intersection, assume parallel planes represented
by the lines 1, 2, 3, in No. 2, to pass vertically through both solids. An
elevation of their sections made by these planes will show where they
intersect, and will give the points through which the required lines will
pass. For the return lines of intersection, or those out of sight—shown
dotted in No. 1—the same method of procedure is repeated as in
finding those which are seen. As a vertical plane would be tangent to
the extreme back surface of both cylinders, the point « in the elevation
No. 1 would be where the lines of penetration of the two solids would .
cross. A plane passing through the vertical cylinder tangent to the
Jfront surface of the inclined one gives the two points @b in plan and
elevation, as those where that surface enters and leaves the vertical
cylinder. Should the plane of the axis of the inclined cylinder, repre-
sented by the line a ¢ in No. 2, be otherwise than parallel with the VP
—say, as in No. 3—the lines of intersection of the two solids would be
found in the same way as that explained in Fig. 179, the difference in
their appearance—as seen in No. 4—being the result of the changed
position of the solids with respect to the plane of their projection, the
vertical cylinder having been turned on its axis through a certain angle,
carrying the inclined cylinder with it. 'With the assistance of the few
projectors shown, and bearing in mind that each point in the lines of
intersection found in No. 1 has, by the turning of the vertical cylinder,
passed through the same angle horizontally, the student should be able
to find without trouble the actual lines due to the altered position of
the solids which are shown in No. 4 (Fig. 180).

As the intersections of cylinders in any position only require the
correct use of section planes as exhibited in this chapter to determine
them, no further examples are given in this connection, but we pass on
to the solution of one or two problems in which the intersections of the
cone and cylinder are involved.

Problem 78 (Fig. 181).—A cylinder in a wvertical position 1is peme-
trated at the middle of its height by a cone, having its axis horizontal
and parallel to the VP ; to find the lines of intersection qf the two
solids when their axes are in one plane.

Let No. 1 (Fig. 181) be the given plan, and No. 2 the elevation of
the two solids ; then from their relative position it is evident that an
axial plane passed through both of them will give the rectangle abcd,
and the triangle efg, as their respective sections. The extreme points
in the penetration of the cylinder by the cone will be 1, 2, 3, 4. Now,
although a series of vertical planes passed through both solids, parallel
to this axial one, would give rectangular sections of the cylinder, those
of the cone by the same planes, instead of being triangular, would be
hyperbolic, necessitating a great amount of careful projection in finding
them. To obviate this unnecessary trouble the same results may be
arrived at by a much more simple procedure. Instead of assuming a
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number of parallel planes to pass simultaneously through both solids, all
the points of the intersection required may be found by making the
cutting planes divergent.

74. In a previous chapter it was shown that all the sections of a cone
made by a plane passed through its apex to its base, gave triangles for
those sections. If, then, in the problem under solution, cutting planes
are assumed to pass through the apex of the cone in varying directions,
cutting it and the cylinder simultaneously, it is evident that all the
sections of the two solids will be similar to those obtained by the axial
section—rviz., rectangles and triangles, each of which will give four
points in the lines of intersection sought.

To find these points in No. 2 (Fig. 181), through f, the apex of the
cone in No. 1, draw the lines f1, f2, /3, and let them, with ¢ fand A/,
be the plans of vertical section planes passing through both solids in the
directions shown. Then find by projection the rectangular sections of
the cylinder produced by the cutting planes, as shown in faint dotted
lines in No. 2. For the corresponding sections of the cone by the same
planes, on its base line eg in No. 2 as a diameter, and A as centre,
describe the semi-circle ¢ « g, which will be the front half of the base of
the cone looked at from the left. On the line x A, measuring from 4,
transfer the distances el, ¢2, ¢3 in No. 1, and through the points thus
found draw lines parallel to eg, to cut the semi-circlein11’, 2 2,3 3';
project these points over to eg, and through them draw faint lines to
the apex f. The triangles formed by these lines will then be the
sections of the front half of the cone, made by the same planes that cut
through the cylinder, and the points- of intersection of these respectively
will be the points in the lines of penetration sought.

Should the axis of the cone be inclined to the V P, as in No. 3, that
of the cylinder still remaining vertical, and the lines of intersection be
required, the process of finding them is exactly the same as before. The
lines will, however, assume a different form of curve, due to the altered
position of the cone with respect to the plane of its projection, the V P.
This alteration, it will be noted, brings the base of the cone into view,
but causes the surface of the cylinder penetrated by its small end to
pass out of sight. As the axis of the cone in the previous figure was
parallel to the VP, the lines of intersection of its back half with
the surface of the cylinder being directly behind those in front, could
not be shown ; but the cone being now inclined to the VP, it is possible
to indicate exactly the form of the return curve of penetration. This is
shown by the dotted line /, obtained by projecting over the points 4, 5,
6, in 1A, No. 3, and finding as before the corresponding sections of the
back halves of the cone and cylinder, which give the points required.

75. Had the penetrating solid been but a portion of a cone—say a
frustum—then the lines of intersection of the two may be got in two
ways. If the apex of the cone is accesstble, the method already explained
would be the simplest and best ; but if the taper of the cone be only
slight, and its apex out of reach or at an inconvenient distance, then the
procedure would be as shown in Fig. 182.

First, let it be assumed that the axis of the penetrating solid is
parallel to the VP, and at right angles to that of the cylinder. Having
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drawn in the. plan and elevation of the solids as if entire, to find
their lines of intersection divergent planes are assumed to cut through
both, as in the last ¢ase; but to ensure that the planes used will pass
through the apex of the cong—of which the frustum forms part—and
thus give true sections, the procedure in finding them is as follows :—

In No. 2 (Fig. 182), on a b, ¢ d (the ends of the frustum), as diameters,
describe semi-circles ; divide each into the same number of equal parts—
say, six—and project the points of division in them over to their
respective diameters (ab, cd), and join them by faint dotted lines, as
shown. Then the surfaces included within the bounding lines 1 1’,1' 4
44,41,and 2 2,2 3, 3 3,3 2, will be the true sections of the front half
of the frustum, made by the two section planes passing vertically
through it, at distances from its axis at either end equal to that which
- the vertical lines drawn through points 1, 4, and 2, 3 in each semi-circle
are from the lines a b and ¢ d respectively.

To find the sections of the cylinder by the same cutting planes, set
off at the corresponding ends of the frustum in the plan No. 1 the
distances that these planes are from the axial one pp’ of the two solids,
and through the points 1 1’, 2 2, thus found, draw faint lines cutting
the plan of the cylinder at e¢, /f’. Obtain by projection the elevation
of the sections of the cylinder at these lines, and the points where they
cross the corresponding sections of the frustum—in elevation—will be
points in the lines of intersection sought. To find the two points in the
cylinder’s front surface, where the frustum penetrates and leaves it,
draw projectors through gg' in the plan No. 1, and they will give g ¢’
in the elevation; through these and the points of intersection of the
sections—already found—draw the curved lines eg k, ¢ ¢’ ¥, and they
will be the lines of penetration of the cylinder by the frustum of the
cone.

If the axis of the penetrating solid is inclined to the VP or HP, or
to both, that of the cylinder still remaining as before, as shown in No. 3
(Fig. 182), the lines of intersection of the two are found as in No. 4
(Fig. 181)—viz.,, by direct projection from the plan—No. 3—of the
solids in their new position, and from the elevation No. 2; the result
being the view given in No. 4. The return lines, or those on the surface
of the cylinder nearest the VP shown dotted, are found as indicated by
the projectors.

Taking the converse position of the two solids—which frequently
occurs in practice—or that where a cone is penetrated by a cylinder,
for a further problem in this connection, it would be solved on the same
principles, though in a different way.

Problem 79 (Fig. 183).—A cone with its axis in a vertical position
18 penetrated by a cylinder ; required the lines of intersection of the
solvds in plan and elevation, when the axis of the cylinder is hori-
zontal, and parallel to the V P, and in the same plane as that of the

cone.

Draw in first the plan and elevation of the solids as if entire. Then
as the axes of both are in one and the same plane, an axial section
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of them will at once give 1, 2, 3, 4 in No. 2 as the extreme points in
the penetration. To find others through which the lines sought will
pass; at one end of the cylinder—say the left—give a side elevation of
the front halves of the two solids as shown. Assume the right-angled
triangle aa’b, and the semi-circle on ¢'d, to be halfsections of both
solids swung round on the axis of the cone until parallel with the VP.
From these it will be seen that a part of the front and back surfaces
of the penetrating cylinder lie wholly within the cone. To find how
much, and thus determine the lines of intersection sought, proceed as
follows : —

Through the vertex of the right-angled triangle a «’ b, draw straight
lines to its base ; the first one tangential to the semi-eircle on ¢ d, and the
others cutting it at suitable points, as shown. These lines are the edge
. views of the section planes passing through both solids, which will give
the points required, as the sections produced by them will be triangles
for the cone and rectangles for the cylinder. The rectangles are at once
found by drawing lines through the points in the semi-circle (cut by the
assumed section planes) parallel to the axis of the cylinder.

For the corresponding triangular sections of the cone, describe on its
base BC as a diameter the semi-circle BXC. On its axis, A A’
produced, set off from A’ the several distances that the points 5, 6, 7, 8
in the base of the triangle a @’ b are from the point a’ in it. Through
the points 5, 6', 7', 8, thus found, draw lines parallel to B A’ C, and from
where they cut the semi-circle find by projection the elevation of the
triangular sections of the cone, as shown in No. 2; then the points
where the corresponding sections of the two solids intersect are points
in their lines of penetration. The two points, 'y in those lines—or
where the plane drawn through a8 in the side elevation is tangent
to the surface of the cylinder—are found by drawing a line through «,
where the plane a 8 touches, and intersecting it with the triangular
section A 2 ' of the cone made by the same plane.

The plans of the lines of intersection 12 and 3y 4 in No. 2
are niost easily determined by finding horizontal sections of the cone—
which will all be circles—at several points in those lines in elevation,
and letting fall projectors from them on to the circular sections so
found ; then the points where the projectors cut these sections will be
those through which the required lines of penetration are to be drawn.
As the solids are directly at right angles to each other, their lines of
intersection are consequently symmetrical on either side of the cone,
both in plan and elevation.

78. As the procedure in finding the lines of intersection of a cone
and cylinder having their axes in the same plane, but not at right
angles, would be the same as in the last example, as any plane passing
through the apex of the cone to its base, and simultaneously cutting
through a cylinder parallel to its axis, however inclined, would still give
a triangle as the section of the former, and a rectangle as that of the
latter, and the points of intersection of the sectional surfaces so
produced as points in their lines of penetration, we pass on to the next
combination of solids employed in giving form to engine and boiler
details—viz., that of cones with cones, a knowledge of their intersections
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being the more important, as combined conical surfaces enter into
almost all designs where metal plates are used as the material of con-
struction. As a problem in this connection take—

Problem 80 (Fig. 184).—A4 cone with its axis in a vertical position
18 penetrated by another cone having its axis horizontal and parallel
to the plane of projection ; required the lines of penetration in
plan and elevation of the two solids in the position given.

Draw in first the plan and elevation of the two cones as if entire.
Then, as a series of planes passing through the apex of one of the cones
to its base would give triangles for the sections made of that particular
cone only, but hyperbolas for those of the cone in combination, it is
evident that the finding of the lines of intersection of the two solids
by the use of section planes in such a way would be a long process and
very liable to error. "What has to be aimed at, is to so use a section
plane that it will, in the problem to be here solved, give similar
sections of both cones. To effect this, a triangular plane is assumed
to pass through the apices of both simultaneously, and to be swung
on one of its sides—its hypothenuse—as a hinge through varying
angles.

gTo apply this principle to the problem to be solved (in the elevation
of No. 1, Fig. 184), produce the base line Ac of the horizontal cone
indefinitely in both directions; then draw a line through the apices of
both cones to cut the produced base line in the point «' and the IL
in point z. Then will the produced base of the horizontal cone from
2’ to the IL at B be the perpendicular, the line Bz the base, and that
drawn through the apices of the cones from 2’ to « the hypothenuse, of
the right-angled triangular section plane for finding the lines of
intersection of the two solids. Such a plane in its normal position
—or parallel to the VP and perpendicular to the HP—at once gives 1,
2,3,4 in No. 1 as the extreme points in the lines of penetration.
To find others through which these lines will pass, the positions of the
triangular plane 'Bz in its swinging on the line 2’z as a hinge have
next to be shown.

To do this, describe on the base Ac¢ of the horizontal cone as a
diameter, a semi-circle, then through the vertex «’ of the right-angled
triangle a’Bx, draw straight lines, the outermost one '3 tangential
to the semi-circle, and the others, «'2, «'1, at about equal distances
apart. These lines are the end elevations of the perpendicular edge
of the triangular plane 'Bix, when swung on its hypothenuse 'z as a
hinge. Its oufer position, represented by the line z3, is drawn
tangent to the front surface of the horizontal cone, to find the points
5 and 6 in the lines of penetration. To determine their exact position
and that of other points in these lines, déscribe on the base CE of the
vertical cone as a diameter, the semi-circle CDE ; transfer the points
1, 2, 3 on the IL by arcs, as shown, to 1’, 2', 3', on the produced base
line of the horizontal cone, and through these last-found points draw
lines to z, intersecting the semi-circle last drawn in the points £ g, A,
and 1, j, k. Find by projection from these points and those made by

N
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the same section plane, in the semi-circle drawn on the base A ¢ of the
horizontal cone, the corresponding vertical sections of the two cones,
and the points where they intersect will be points through which their
lines of penetration will pass, as shown in No. 1 (Fig. 184). To find
the plans of these lines, the simplest method, and one involving the
" least confusion of lines in the diagram, is that shown in No. 2, where
the tnangular sections of the vertical cone made by the pla.nes x'3,
«'2, 2’1, are first found, the points required being then projected over
from No. 1 to their correspondmg sections in the plan, and lines of
penetration drawn through them, as shown in No. 2.

Should the axis of the penetrating cone be at an angle with the
VP, and an elevation of the solids with their lines of penetration be
required, this would be obtained by transferring the plan of them -
already found in No. 2, to such a’ position in the HP as would bring
the axis of the horizontal cone to make the required angle with the
VP or IL; the required elevation is then found by direct projection
from the plan of the solids No. 2 (in their new position) and the
elevation given in No. 1.

In finding such a view of the two solids, the student is to be
reminded that great care is necessary in projecting over the various
points ‘in both plan and elevation, so as to ensure the correct
representation of the solids themselves, as well as their lines of
intersection.

77. As the same procedure would be followed in finding the lines
of penetration of two cones, when the axis of the penetrating one is
inclined to both the VP and HP—the only difference being, that
the triangular section plane used in finding the points in the lines
of intersection of the solids in the first part of the solution, would not
be right-, but acute-angled—the student is left to work out such
a problem himself, and we now pass to the finding of the lines of
penetration or intersection of the sphere, with such of the solids as are
generally used in combination with it.

Premising that it has not been forgotten by the student that any
plane section of the sphere when viewed at right angles to the plane of
section is a circle, and when seen at an angle to that plane, an ellipse,
it is assumed that the intersections of the sphere by any of the
plane-surfaced solids will present little difficulty, and therefore will not
necessitate more than two or three such problems being given for
solution. The intersections of the sphere by solids having curved
surfaces, being much more difficult, will require a close attention to
the procedure followed in determining them. The first problem,
therefore, in this connection is— .

Problem 81 (Fig. 185).—A sphere is penectrated wvertically and
centrally by a square prism whose sides make equal angles with the
VP ; 1t i8 required to find the lines of penetration of the solids,
n plzm and elevation.

Here, it is evident from the way in which the sphere is penetrated,
that its axis, and that of the prism, coincide. Therefore, to find the
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lines required, first draw in the plan of the solids, with the sides of
the prism at an angle of 45° with the IL or VP, as in No. 1. Then
find by projection the elevation of them as if entire.. As the axes
of the sphere and prism are coincident, their lines of intersection in
plan are in the planes of the sides of the prism, and therefore coincide
with the four lines in No. 1 representing its plan. Then, in the
elevation No. 2, as the sides of the prism are egually inclined to the
vertical plane of projection—or the VP—the lines of penetration of
the sphere by the prism will all be portions of ellipses, or parts of
vertical plane sections of the sphere—taken through it at the sides
or faces of the prism—seen at an angle of 45°. To draw in these
lines, find from the plan No. 1 the major and minor axes of the
ellipses into which the circular sections of the sphere are projected
in elevation, and by means of the paper trammel—previously explained
—find the points through which the lines of intersection are drawn, as
shown in No. 2 in the figure.

As the lines of intersection of a prism—having any number of
sides—with a sphere, are but a series of circular or elliptic arcs, or
both, obtained in the same way as those in the case of the square
prism, further examples of their penetrations are unnecessary; and as
the bounding edges of the faces of a prism are parallel, the next
problem is a variant from this, or one in which the sides and edges
of the penétrating solid incline equally to its axis. The problem is—

Problem 82 (Fig. 186).—A sphere is penetrated by the frustum
of a square pyramid, having its base edges parallel .and perpen-
dicular to the VP ; required the lines of penetration of the solids, in
plan and elevation, when their axes coincide and are in a vertical
position.

First draw in an elevation of the frustum of a square pyramid, as
if entire, in the position given in the problem. At about the middle
of its height, and on its axial line, describe a circle to represent the
sphere to be penetrated; then find by projection a plan of the solids,
as in No. 2 in the figure. Now, as only part of the front face of the
frustum is visible in the position given, the lines of penetration on
that face only will be seen in elevation. This face being inclined to
the vertical, it is evident that a section of the sphere taken at it,
although actually circular, will become elliptic in projection; but in
this case very slightly so, due to the small inclination of the sides of -
the frustum.

To draw in the portions of the ellipse, which are in fact the lines
of penetration required in elevation, its two axes must first be found.
One of them, so far as its position is concerned, will coincide with the
axis of the frustum ; and the other, which will be at right angles to it,
must be drawn through the point which is the actual centre of the
circular section of the sphere, made by a plane coinciding with any
one of the sides of the frustum. For convenience, take that side
which is on the right in No. 1, and bisect that part of it which is
contained between the points @, b. Through the point of bisection
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¢ draw a line perpendicular to the axis of the frustum, and on it set off
from d—where the axes intersect—on either side, a distance equal
to ¢, a or ¢, b, which is half the major axis of the elliptic section.
For the minor axis, project over to that of the frustum the points a, d
in its right side or edge; then with these lengths, and the paper
trammel, mark off a few points at either end, and through them draw
the elliptic arcs to the right and left edges of the front face of the
frustum, and they will be the lines of penetration of the solids seen
in elevation.

For the plans of these lines on the upper surface of the sphere, let
fall projectors from points 1, 2, in No. 1, to cut the corresponding slant
edges of the frustum (in No. 2) in points 1 1, 2 2'; and for points
b¥b, 5 5, in the same diagram, set off from «, on the two lines drawn
through it at right angles to each other, the distance that b or &, in
No. 1, is from the axial line—or point 5; then curved lines drawn
through the points thus found, as shown in No. 2, will be the lines
of penetration on the upper surface of the sphere by the frustum.
The corresponding lines on its under surface, if required, are found in
the same way. If the sides of the frustum are equally inclined to the
VP, as in the case of the square prism in Fig. 185, and an elevation
of the solids in this position be required, then, as in previous problems,
transfer the plan No. 2 to the required position shown in No. 3, and
from it and the elevation No. 1 find by direct projection the view
given in No. 4. The dotted lines and projectors show how the major
axes of the elliptical portions of the intersections are obtained, the
line ¢ ¢, in which the minor ones lie, being a projector drawn through
d in No. 1.

78. As a sphere penetrated centrally by a cylinder or cone would
in each case give circles as the lines of intersection, becoming in
projection either straight lines, circles, or ellipses, according to their
positions with respect to the planes of projection, it is considered
unnecessary to give any problems for solution with the solids so
combined, as the truth of the statement is.self-evident without
illustration. It must not, however, be forgotten by the student that
such combinations of the sphere with the cylinder or cone, or both,
more frequently occur in practice than any other; as, for instance,
in many kinds of cocks and valves, tee-pieces, handrails, stanchions,
boiler mountings, etc. As cases, however, arise where these three solids
are in such combination that their axes are not coincident, or even in
one plane, the remaining problems in this part of the subject will have
reference to instances in which these infrequent junctions occur.

Problem 83 (Fig. 187).—A sphere is penetrated by a cylinder whose
axis 18 vertwcal and parallel to that of the sphere; required the
lines of intersection of the solids, when their axes are a given
distance apart, in a vertical plane inclined at an angle to the VP.

Let No. 1 (Fig. 187) be a plan of the solids, the larger circle being
that of the sphere, and the line v p, drawn through its axis a, and that
of the cylinder ¢, a plan of a vertical plane at an assumed angle of
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60° with the VP. Then as vertical .sections of the sphere parallel to
the VP will be simply circles, and similar sections of the cylinder,
rectangles, it is evident that the visible lines of penetration of the two
solids may at once be found by assuming vertical planes to pass
simultaneously through them both, and drawing lines through the
points of intersection of the sections thus produced, giving the lines
required. Therefore, having the plan of the solids given in position, as
in No. 1 in the figure, from this obtain by projection an elevation of them
as if entire. Then draw in, parallel to the IL and through the front
halves of the sphere and cylinder, as many lines as it is intended to
use section planes; find by projection elevations of the circular and
rectangular sections produced by them, and through the points of
intersection of these, draw in the lines of penetration as shown in
No. 2, Fig. 187.

The next problem is a combination of a sphere with a cone.
It is— :

Problem 84 (Fig. 188).—A sphere is penetrated by a cone having
its axis vertical ; required the lines of imtersection of the solids
when their axes are not coincident, but parallel, and lie in a plane

which 18 inclined to the VP.

It may not have occurred to the student, in dealing with the
previous problems in which the sphere is involved, that it is quite
possible for its axis to lie in a vertical plane and yet be inclined at an
angle to either or both of the planes of projection. In the problem
for solution the axis of the cone being vertical, and that of the sphere
parallel to it, both will be vertical, and be represented by points in
plan. Therefore in No. 1 (Fig. 188) let the points ¢ and s be the plans
of the axes of the two solids, ¢ being that of the cone and s that of
the sphere, both being in a plane—of which the line @ b is the plan
—at an angle of 60° with the VP. Then as the sphere is the solid
penetrated, with s as centre, and half the sphere’s diameter as radius,
describe the circle to represent its plan, and with ¢ as a centre and half
the diameter of the base of the intended cone as radius, describe a
second circle, dotting in that part of it covered by the sphere, as shown -
in No. 1 in the figure. From this plan find by projection the elevation
of the two solids as if entire, making the height of the centre of the
sphere—from the IL—about half the height of the cone. Then to
find the curved lines of penetration the principal points in them
should first be ascertained.

For points 1, 2, 3, 4, in No. 2, get a sectional elevation of the
sphere on the line fg in No. 1. The section obtained, which is a
circle, having a diameter equal to fg, will be found to cut the sides of
the cone ¢d and ce, in 1, 2, and 3, 4. For points 5-and 6—the lowest
and highest in the curves of intersection in the two hemispheres
—conceive the come to be turned on ts axis in the direction of
the arrow, carrying the sphere with it, until the line ab in No. 1
becomes parallel to the IL. In so doing, the axis s will have moved
to 8", and the sphere itself to the dotted positions shown in No. 1 and
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No. 2, the latter giving points 2y, which will determine the actual
positions of the points sought on the conical surface, with the solids, as
originally placed. To fix these, find in No. 2 the elevation ¢}’ of the
line from ¢ to b in No. 1, and to it project over—parallel to the IL—
the points (xy) last found, cutting it in 5 and 6, which are those re-
quired, the projecting over of = and y being tantamount to turning the
cone back on its axis to its original position. For other points in the
lines of penetration, take a few horizontal sections—which will all be
circles—of both solids, between those already found, and through their
points of intersection, in plan and elevation, draw lines, and they will
be the lines of intersection of the surfaces of the cone and sphere, as
required in the problem, and shown in No. 1 and No. 2 (Fig. 188).

79. The next problem will show that although sections of the two
solids might be taken in such a way that they would produce circles
for both cone and sphere, and give apparently an easy solution of it, it
is necessary for the draughtsman to exercise judgment in deciding
upon his method of procedure. The problem is—

Problem 85 (Fig. 189).—A sphere is penetrated by a cone horizon-
tally ; required the lines of pemetration in plan and elevation,
when the axes of both solids are in a plane parallel to the VP, and
at right angles to each other, but that of the cone mot passing
through the centre of the sphere.

Draw in first, as if entire, the plan of a sphere penetrated by a
cone, having its axis parallel to the IL, and passing through that of
the sphere, as shown in No. 1 (Fig. 189). From this plan get an ele-
vation of the solids, showing the axis of the cone some distance above
the centre of the sphere. Now, if sections of the solids be taken by
planes parallel to the axis of the sphere—which is assumed to be
vertical—and at right angles to the VP, the sections would in reality
be circles for both solids, but only straight lines in projection in
both plan and elevation, which would be useless in determining their
intersections.

Again, sections taken through both solids parallel to the axis of
the cone, although giving circles for the sphere, would still give hyper-
bolas for the cone, which are not desirable. The simplest method in
solving the problem will therefore be to assume vertical section planes
to be taken through the apex of the cone in varying directions and
passing through both solids simultaneously. These would give tri-
angles for the cone and circles for the sphere; the latter, however,
being at an angle to the VP, would in elevation be proiected into
ellipses. Therefore in No. 1 (Fig. 189) draw in, through &' the vertex
of the cone, to its base, as many lines—say three—a’l a’2 a8, as it
is intended to use section planes. Next find in No. 2 the elevation
of the triangular sections produced by these planes, as in previous
problems. Then, so far as the sections of the sphere are concerned, all
that is required is to find the points in the ellipses—into which the
circular sections of the sphere are projected—which intersect the
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triangular sections of the cone, for it is through them that the lines of
anetration of the sphere by the cone will pass.

To determine these points, there is no necessity to draw in the
elliptic projections, as they may be found very readily by the use of
the paper trammel before mentioned. Having numbered the section
planes, in plan and elevation, as in No. 1 and No. 2 in the figure, and
noted the points 4, 5, 6, 7, where they cut the great circle of the
sphere in No. 1, draw in, in No. 2 through line ¢s, which passes
through the centre of the sphere, the lines in which the major axes of
the ellipses will lie. One of these only—viz., that from « in No. 1—is
drawn in, in the diagram, so as to prevent confusion. Then with half
the major and projected half of the minor axes of each ellipse—there
being one for each section taken—on the trammel, manipulated as
explained, all the points in the lines of intersection, except the
extreme ones, are- found as shown in elevation No. 2. For the plans
of these lines that will be seen from above—shown in No. 1—let fall
projectors from the points in the lines 1, 2, 3, 4, in No. 2, to cut the
corresponding ones in No. 1, and through the intersections draw the
curved lines as shown, which will be the ones required.

-Should the axis of the cone be inclined to the VP, still remaining
parallel to the HP, and the lines of intersection of the two solids be
required, when in this position, proceed as in previous cases to transfer
the plan No. 1 to such a position in No. 3 as will bring the axis of the
cone to make the required angle with the IL, and then from it and the
elevation No. 2 obtain by direct projection the view shown in No. 4.

From the problems which have been given in this part of the sub-
ject, the student will be able to appreciate the endless variety of posi-
tions the solids in combination may be made to assume, but as it is not
our object to multiply examples, but to give only such combinations as
are likely to occur in practice, we pass on now to the last section in
the application of the principles of projection—viz., the “ Developent
of the Surfaces of Solids,” a subject of the highest importance, not
only to the draughtsman, but to all who have to shape or fashion any-
thing constructed of sheet metal.



CHAPTER XX
THE DEVELOPMENT OF THE SURFACES OF SOLIDS

80. To determine the exact form of the surface of any solid,
whether it be plane or curved, it is necessary to obtain what is known
ag its “development ”; or, in other words, the particular shape its sur-
face will assume when laid out flat, supposing it possible that it can be
so treated.

For such a surface to be ‘developable” it must be one, on every
part of which a sheet of any flexible—but non-elastic—material can be
made to lie when bent, without leaving any hollow spaces. Should
this not be possible, then the surface is non-developable.

From this definition, it will at once be seen, that all plane-surfaced
solids are developable, while of those having curved surfaces, only the
cylinder, and the cone, with their frustums, fall within the same
category ; the sphere, with the spheroids, ellipsoids, and many other
solids of revolution, having surfaces which will not coincide with a
plane when laid out flat, but would tear or crease, being non-
developable.

The figure of the developed surface of every solid, which when bent
will cover it at any and every point, is called the ¢ envelope ” of that
surface.

In the cylinder and cone, as well as in every other solid of revolu-
tion, any line drawn on their surfaces, in the same plane as their axes,
is called a “meridian.” If such a line is straight, the surface is de-
velopable, but if curved it is non-developable.

A surface which is generated by the motion of a straight line is
called a “ruled” surface, and may be either developable or non-
developable ; if the latter, it isa “ twisted ” surface, in that it cannot be
laid out on a plane without being torn. A ruled surface may, how-
ever, be curved, and developable, and yet form no part of a cylinder
or a cone, as will be shown later on.

_ The finding of the developments of plane-surfaced solids involving -
no difficulty, few problems are necessary in connection with them, as it
will be seldom that any will occur in the practice of the student, with
which he will not be able successfully to grapple. The first is the
simplest possible, and hardly requires demonstration, but as it shows

187
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the method of procedurein finding the development of the surface of
any plane solid, it is here given.

Problem 86. (Fig. 190).—Given the plan of a cube; to find the
development of its surface.

Let abcd in the diagram be the plan of ‘the cube. Then as its six
sides are all of them equal squares, with every two adjacent ones at
right angles, all that is required in finding its development, is to con-
ceive each of its vertical faces turned down on its lower edge as a
hinge, until it lays flat on the HP, one of the faces in its turning
carrying the top face aded with it.
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To show this graphically, in Fig. 190, produce the four sides of
the square @ b ¢ d indefinitely ; then from its four corners, set off on
the produced lines at o', ¥, ¢, &, a length equal to any one side of the
cube, and through the points thus found, draw lines parallel to its
sides, as shown. From &' in ab produced, set off a length 'z, equal
to that of the edge @b, and at « draw a line parallel to by, and the
development of the cube will be complete. The surface enclosed
within the bounding lines of the diagram will then be the *“envelope”
of the given solid, for it is its whole surface laid out Aat, and will, if
cut out of a sheet of paper, and folded over on the lines ac, cd, d b,
ba, and by, until each adjoining surface is at right angles, exactly
cover all the cube, without leaving any vacant space between it and
them.

81. As the development of the whole of the surface of a square
prism would merely be a repetition of that given of the cube, in the



MECHANICAL AND ENGINEERING DRAWING 189
next problem only a part of a prism is taken, as the solid whose de-
velopment is required.

Problem 87 (Fig. 191).—Given the elevation of a truncated square
prism, to find the development of its surface.
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Fig. 191

Let No. 1 (Fig. 191) be the side elevation of the prism, standing on
its base in a vertical position. As its base is square, its vertical sides
will all be of the same width ; therefore on the line ¢ d produced inde-
finitely, draw in first an elevation of the prism, looking at it in the direc-
tion of the arrow. From ¢ and ¢’ in it, set off in points 2, 2’ a distance
equal to cd in No. 1, and through them draw vertical lines, and cut
them in ‘points 3 and 3, by a projector from a. Join &’ 3 and b 3.
For the base, and top surface of the prism, produce the lines ¢'¥, ¢ b,
in both directions indefinitely. Then with ¢’ as centre, and ¢'2 as
radius, cut ¢’ produced in point 1; and from &', with '3 as radius,
cut the same line in point 4, and complete the rectangle 46 (above)
and the square ¢l (below) as shown. From point 2 in ¢d produced
set off a length 2'y, equal to ¢2, and through point y draw ya,
parallel to 2’ 3'; join 3’ and ®, and the development is completed. If
the resultant figure (the envelope of the prism) be cut out in paper,
and treated in the same way as that of the cube, it will be found to fit
the solid exactly. ,

82. As the surface of an oblique prism is often found to be more
difficult of development by the student draughtsman than that of a
right one, the next problem will show how it may be correctly found.
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Problem 88 (Fig. 192).—Given the side elevation of an oblique prism ;
. to find the development of its surface.

Let abcd, No. 1, Fig. 192, be the given elevation of the prism, with
its end ¢ d resting on a horizontal plane. In this position, it is evident
that an ordinary front elevation of it, as of that of the frustum in No.
2, Fig. 191, would be of no service in this case, as the bounding edges
of its sides, being inclined to the horizontal, would not give actual but
only apparent lengths in projection. To find the actual sizes of all the
sides and ends of the solid, and their relative position to each other, on
a flat surface, a view directly at right angles to one of the sides of the
prism is necessary.

Now this view may be found in two ways. The prism may be
turned on its horizontal edge at c, as on a hinge, until its inclined edge
a ¢ becomes vertical—as shown in dotted lines—and its development
found when so posed. Or, it may be found at once from the prism in
its inclined position, with less chances of error, by a projection of its
bounding surfaces, taken when looked at in the direction of the arrow
x; such a view being tantamount to assuming the IL of the plane of
projection to be drawn through ¢, at right angles to the edge ¢ a of the
prism, and its surface laid out flat on the VP. To find the develop-
ment as shown in No. 2, Fig. 192, proceed as follows :—At right angles
to @ c—in No. 1 in the figure—and through ¢, draw a line indefinitely.
At any convenient point, as ¢’ in that line, draw through ¢’ a line
parallel to ¢ @ in No. 1. Then as all the side edges of the prism are
parallel to each other, set off on the line drawn through ¢ in No. 1 from
¢, the distances—measured at right angles—that those edges are apart ;
and through the points in ¢ ¢’ produced thus found, draw lines indefi-
nitely, parallel to that first drawn from ¢/, or to ¢ a No. 1.

Now it is evident that the four side (or inclined) edges of the
prism will, when the surface is unfolded, lie in the lines last drawn, for
if the prism No. 1 as a solid, is laid with its edge ca coinciding with
the line ¢'a’ in No. 2, and rolled over—to the right—its edges would
fall upon the lines drawn parallel to ¢'a’

To complete the development, project over from No. 1—at right
angles to a c—the points ac; bd; to cut the corresponding edges in
No. 2; in d'c, ac, a’c"; and b'd, bd. Join a'¥’, ba, aa”; and ¢'d, dc,
¢ c”, by straight lines as shown. For the two ends of the prism—which
is square in cross-section—produce the line bd in No. 1 in both direc-
tions, and from b and d, set off in ¢ and /] a length equal to a b or ¢ d.
Project over ¢, f to ¢f” in No. 2, and through them draw lines at right
angles to b'd’, to cut bd, which completes the development required.
The envelope of the prism thus produced will, when folded over on the
edges represented in dotted lines, be found to cover without vacuities
all the surfaces of the given prism.

83. As the development of the surface of any prism—whether right
or oblique—having any number of sides, may be found as above shown,
a pyramid is taken as the next object for its surface development. The
problem is—
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Problem 89 (Fig. 193).—Given the elevation of a square pyramid; to
Jind the development of its surface.

Let ABC, No. 1, in Fig. 193, be the elevation of the pyramid. As
all its sides are alike, and incline equally to its apex, it is first necessary
to know the actual length of one of its side edges. To find this, at B
in No. 1, draw a line perpendicular to the IL. With B as centre, and
BA—the length of a side of the pyramid—as radius, describe an arc
cutting the perpendicular line in a. From B, set off in b, a length
equal to half BC, and join @, b, then aB will be the length of a side of
the pyramid, and a b that of one of its edges.

For the development, at a convenient distance from No. 1, draw a
line perpendicular to the IL, and project over to it in a’ the point a in
No. 1. Then with ' as centre, and a b in No. 1 as radius, describe an
arc indefinitely, which will cut the IL in points &'¢. From &', set off—
on the arc—in 4", a length equal to &'¢, and from ¢ the same length
twice in ¢” and &”; join 6'0"'; ¢'¢”; ¢"8"; and draw lines from a’ to these
points. For the base, construct a square on b'¢’ as shown, and the
development is complete ; the figure enclosed within the boundary lines
of No. 2 being the envelope of the given pyramid.

A development of the same surface of the form shown in the small
diagram No. 3, may also be found by turning down the four sides of
the pyramid on their respective base edges. If, however, such an
object—if large—were made in metal plate, this development would
involve a great waste of material, and necessitate more seams than are
required.

84. As the frustum of a hollow pyramid is often combined with
parts of other solids in metal plate constructions, a problem in finding
the development of such a surface is next given.

Problem 80 (Fig. 194).—Given the elevation of the frustum of a
hollow square pyramid; to find the development of its surface.

Let ABCD, No. 1, Fig. 194, be the elevation of the frustum. Pro-
duce its edges AB and CD, till they meet in @, and find the actual
length of one side, and an edge of the pyramid of which it is a part, as
in the last problem. Then draw in, as in No. 2, the development of
the base edges of the frustum. For its top edges, through A and C in
No. 1, draw faint lines across the front face of the pyramid, parallel to
its base BD, and with arcs struck from B as centre, transfer the points
A and z in Ba to the vertical line Ba’, and project them over to C'A’
in the line a’d. Then from «' in No. 2, set off on the corresponding
lines of the pyramid, the distances that C’, A’, are from &' in the line
a'b in No. 1; join the points thus found by straight lines as shown in
No. 2, and they will be the development of the edge required. By
connecting A'B’; A”B"—at the ends of the diagram—by lines as
shown, the development of the whole surface of the hollow frustum will
be completed.

85. As solids of a pyramidal form, with curved, in place of plane

0
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sides, are often used in giving shape to mechanical details, the solution
of the following problem will show how the development of the surfaces
of such solids is found.
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Problem 91 (Fig. 195).—Given the plan and elevation of a square
pyramidal-shaped solid ; to find the development of its surface.

Let ABCD, No. 1, Fig. 195, be the plan, and AaB, No. 2, the
elevation of the solid, its axis @a’ being perpendicular to its base.
Divide the side B, No. 2, into any number—say five—of equal parts,
and through 1, 2, 3, 4, the points of division, draw lines parallel to
AB and BD. Through a'—the axis—in No. 1, draw a line indefinitely,
cutting BD in x; from « set off in this line the equal parts that aB,
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No. 2, is divided into, and through the points of division draw faint
lines parallel to BD. Then the intersection of these, by lines drawn—
parallel to AB—through the points in the diagonals BC and AD, cut
by those let fall from 1, 2, 3, 4, in aB, No. 2, will give b, ¢, d, ¢; and
v, ¢, d, ¢; through which, from B and D to a, the curved lines shown
are drawn. The surface enclosed by them and the line BD will be the
development of one side of the given solid. As its axis is perpendicular
to its base, and all its faces are alike, the development found of one
face, if repeated on the other base edges (AB, AC, CD) of the solid,
will, with the base itself, give the complete development required. The
difference between the apparent and real surface of a side of the solid
is shown in No. 2 in the diagram, where the full lines give the apparent
surface when bent to its shape, and the dotted ones the same surface
laid out flat.

The solid here dealt with, has been chosen to show that although it
has compound curved surfaces—convex and concave—combined with a
flat one—its base—yet it can all be made, if necessary, though at a
great waste of material, out of a single flat plate, its sides being after-
wards bent to the shape required.

86. As the whole, or a part of the surface of another plane solid,
the “oblique pyramid ” (which often contributes in giving form to plate
and other metal structures), is rather more difficult of development than
that of a “right pyramid "—on account of its frequent great inclination
from the vertical—the solution of the next problem will show how its
correct development may be found with the least number of construc-
tion lines.

Problem 92 (Fig. 196).—Given the elevation of an oblique square
pyramad, to find the development of its side surfuces, when its axis
18 inclined 45° from the vertical; also the development of the surfoce
of a frustum of the same pyramid, of a given vertical height.

Let ABC, No. 1(Fig. 196), be the elevation of the pyramid. As all
its sides with their edges are inclined to both the VP and HP, it is
evident that the actual shape of the whole or any part of its surface,
cannot be found by direct projection, or from the elevation ' 'alone,
without a plan of the solid. Now although an oblique pyramid differs
from a right one, in having its axis inclined to its base it must be
remembered that any section of it parallel to its base is still—as in the
case of a right pyramid—of the same form as its base. Bearing this in
mind, there will be no difficulty in solving the given problem, more
particularly the latter part of it.

~The elevation of the pyramid being given, find by projection a plan
of it, as shown in full lines in No. 2, Fig. 196, keeping the axial line
Aq a convenient distance from its base BC, in No. 1. Then to find the
development of the surface required: in No. 3, Fig. 196, draw a line
(indefinitely) at right angles to BC the base, and a projector from its
apex parallel to that base, to cut it in A’.  On the line through A’ set
off from A’, the length of the longest side AB of the pyramid in «
and through «’ draw a line at right angles to A'e’. From a', set off to
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right and left in B and B’, half the length of one edge of the base
of the pyramid, then the line B'B will be the development of the edge
BB in No. 2. Join Band B’ with A’ by straight lines, then will
the triangle A'B'B be the development of the longest face of the
pyramid. .

For the adjacent faces BA'C, and B'A’C’: with BB’ as radius and
B,B’ as centres, describe arcs to right and left, and from A’ as centre
with the actual length of the edge AC in No. 1 as radius, cut the arcs last
drawn in C and C". Join A’C’ and A’C by right lines, and the triangles
A’CB’ and A’BC will be the development of the front and back faces
of the pyramid. For the shortest face—or that to the right in No. 1—
of the pyramid in No. 3, with C as centre, and CB as radius, describe
an arc, and from A’ as centre, with AC as radius, cut that arc in C';
join A’C” with a right line, and the development of the four faces of the
pyramid when laid out flat is complete.

The actual length of A’C in No. 3 is the hypothenuse of a right-
angled triangle, of which the line AC in No. 2 is the base, and the
vertical height of the pyramid—or Az in No. 1—the perpendicular.
This hypothenuse is shown by a dotted line drawn from A to y in
No. 1, the length zy being equal to AC in No. 2.

For the development of the frustum BbcC of the pyramid, as its top
edges are parallel to the base BC, it is only necessary to set off the
length Ab in No. 1 from A’ in No. 3, in the point @, and through it
draw a line parallel to B'B, cutting A'B’, and A’'B in &' and b; then
parallel to BC; B'C’; and CC'; draw b, b'¢’, and ¢'¢”, and the develop-
ment is complete. = The dotted arcs in No. 3 show the direction the
developed side and end surfaces would move in to form the covering of
the solids. '

87. The foregoing examples of the development of the surfaces of
plane solids being sufficient to show the principle on which they are
obtained, we pass on to the consideration of those which are bounded
by developable curved surfaces, such as the cylinder and cone, with
their frustums.

Problem 93 (Fig. 197).—Given the plan and elevation of a right
cylinder; to find the development of its curved surface, and that of
a given point, and line on that surface.

Let the circle No. 1, Fig. 197, be the plan of the cylinder, the rect-
angle bcde, No. 2, its elevation, and the line a @’ its axis. Also letzand
y be two given points in its front surface. Now, a cylinder has been
defined to be a solid generated by the revolution of a rectangle about
one of its sides as an axis; or its surface may be conceived to be
generated by the motion of a straight line around another which is
fixed; the former being always parallel to the latter, and at a given
distance from it, thereby causing every point in it to lie in the
cylindrical surface throughout its motion. This surface being generated
in one complete revolution, it is evident that it may be developed or
laid out flat, by causing, as it were, the solid to give up its surface while
rolling on a plane through one revolution.
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To show this graphically : in No. 2, Fig. 197, produce indefinitely in
one direction—say to the right—parallel to each other, the linesb d and
ce, then divide half the circle in No. 1 into any number of equal parts—
say eight—and number them as shown. Project over each point thus
found to ce No. 2, and through them draw meridians parallel tobc. On
ce in No. 2 produced, set off from e the eight equal parts into which the
semi-circle 8, 4, 0 is divided, number them as shown, and repeat the
divisions to point /. Through points 1 to 8, and f, draw lines parallel
to the side de of the cylinder; then will the rectangle defg be the
development of the surface of the cylinder bcde; for its length ¢f or
dg, equals the circumference, and its width de or gf; the height of the
cylinder ; and if it be conceived to roll on a plane with that part of its
surface represented by the line d e in No. 2 touching it when starting, it
is evident that it will roll over the surface included in the rectangle
defg, and at the completion of one revolution, the line de (if drawn on
the cylinder’s surface) would be found to fall exactly on the line g/, as
the meridians 1 to 16—assumed to be drawn on that surface—would
each fall on its corresponding one drawn on the development.

By laying out the surface of any solid of revolution (if developable)
in a similar way to that of the cylinder, it will be apparent that the
development of any point or line on its surface in any position, or direc-
tion, may be soon found by the help of a few meridians.

For instance, let y be two points on the front surface of the
cylinder, and it is wished to find their position on its envelope. First
let fall projectors from x and y in No. 2, on to the plan of the front
face of the cylinder in No. 1; they will be found to cut it in 'y’ ; the
first between points 5 and 6; and y between 2 and 3 in the semi.
circle 8, 4, 0. Then on ef (the developed edge of the base of the
cylinder) set off from points 3 and 5 in it, the distances that 'y’ are
from the corresponding points in the semi-circle 8, 4, 0; and through
these draw faint lines parallel to de. Then the points 2”,%"” in No. 3,
where these lines are cut by projectors drawn through x and y in No. 2
parallel to ef, are the positions of those points on the envelope of the
cylinder.

Again, if a line be given in position on the surface of a cylinder,
drawn, say between the points  and y, and its development is required,
then, as a line is the path of a moving point, take any convenient points
in the given line zy, and draw meridians through them. Proceed, asin the
case of the points , y,to find the position of these meridians in No. 3—
the development of the cylinder—and then through the points chosen in
the given line z y in No. 2, draw projectors to cut the new meridians
found in No. 3. A line drawn through the points of these intersections
will be the development required.

88. Assuming the converse of the last problem, or one where the
development of a line is given, and its position and delineation on the
solid itself is required, then to show these, we have in effect to re-cover
the solid, with the envelope that contains the given line. Let the
problem be—
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Problem 94 (Fig. 197).—Given a straight line 'eg, drawn on the
envelope d e fg of the cylinder ; required the projection of that line
on the solid itself.

To find this, divide the length of the given envelope into any
number—say 16—of equal parts, and assume the circle of No. 1, and the
rectangle defg of No. 2, Fig. 197, to be the plan and elevation of the
cylinder whose envelope is given. Divide the circumferential line of
No. 1 into the same number of equal parts, that the length of the
envelope is divided into, and through the points of division draw
meridians as in No, 2. On to each of these meridians in consecutive
order, project over the points where the given line eg cuts its corre-
sponding meridian drawn in No. 3. Eight of these—from 1 to 8—will
be on the front side of the cylinder in No. 2, the remaining eight being
on its rear side.

Now, if through the points in the meridians—1 to 8 in No. 2—pro-
jected over from No. 3, a line be drawn, it will be that part of the
projected line required, which will be on the front side of the cylinder.
For the part on its rear side, project over the remaining eight points—
9 to 16—in the line eg in No. 3, on to the corresponding meridians in
No. 2, and through them draw a dotted line—it being out of sight—and
the spiral line thus produced will be the projection of the straight line
e g in No. 3, when the surface on which it is drawn is wrapped round
the cylindrical solid represented in elevation by No. 2, Fig. 197.

In the same way as above shown, may be found—by projection—
the delineation on the solid itself of any line drawn on its envelope, the
method of doing it being merely the converse of that adopted in finding
the development of a given line drawn on a solid.

89. As frustums of a cylinder constantly occur in pipe connections,
when it is desirable to alter the direction, or lead of a pipe, the solu-
tion of the next problem will show how a plate has to be shaped to
form such a connection.

Problem 95 (Fig. 198).—Given the elevation of the frustum of a
right cylinder, the plane of section being at an angle with the axis of
the solid ; to find the development of the surface of the frustum.

Let abcd, No. 1, Fig. 198, be the elevation of the frustum. Here,
as the plane of section ad of the cylinder is at right angles to the VP,
the height of any point in the edge of the section nearest the VP will
be the same as that of a point directly in front of it, in the opposite
edge ; it is therefore only necessary to give a plan of the front half of
the frustum, to enable the whole of its development to be found.
Consequently, on the base b¢ of the frustum as a diameter, describe a
semi-circle and divide it into any number of equal parts—say eight—
and through the points of division draw in the meridians on the
frustum. Next produce its base line b ¢ indefinitely, and set off on it
from ¢, the eight equal parts into which the semi-circle on b ¢ is divided.
Through the points of division, draw lines parallel to the sides of the
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frustum, and number them as shown. Then from each of the points in
the line ad, where the meridians drawn on the front side of the frustum
intersect it, draw projectors parallel to bc¢ produced, to cut its corre-
sponding meridian in No. 3. A line drawn through the points of
intersection of the projectors and meridians, will then give the develop-
ment of the front half of the frustum.

For the back half, produce the projectors drawn through the points
1 to 7 in ad, to cut the corresponding meridians on the back face of the
frustum ; then a line drawn through their intersections as shown in No.
2, will give the development of the top edge of the frustum. TFor the
side and bottom edges, draw in, in full, the lines d ¢, d'¢, ¢ ¢, and the
required development is complete.

90. As parts of the surface of an oblique cylinder sometimes enter
into the design of boiler flues, uptakes, air shafts, etc., it is necessary
that the difference between its development and that of a right cylinder
should be understood by the student.

The particular difference between the two solids, the right and the
oblique cylinder, is, that in the former its axis is perpendicular to its
bases or ends ; whereas in the latter it is inclined to them ; the ends in
both cases being circular and parallel to each other. There is, however,
another important difference, which affects their developments ; viz., that
a section of either, taken parallel to its ends, is a circle; while a
section at right angles to the axis of either is a circle for the right
cylinder, and an ellipse for the obligue one. This difference in cross-
section, it may interest the student to know, is the reason why all cir-
cular vessels or pipes intended to withstand an internal pressure when
in use, are right cylinders, while those employed as mere conduits for
the passage of air, smoke, or light gases, not under pressure, may be
made in whole or in part of oblique cylinders. The solution of the fol-
lowing problem will show how the development of the surface of an
oblique cylinder is found.

Problem 986 (Fig. 199).— 7o find the development of the surface of
anoblique cylinder of a given diameter and length, and having its
axtis inclined at a given angle.

Let the inclination of the axis of the cylinder be 60°; then to find
the development of its surface, we must first draw its elevation.
Assuming it to be resting on one of its ends on a horizontal plane,
take the IL as that plane, and at any convenient point in it, as @ in
No. 1, Fig. 199, draw a line making with the IL an angle of 60°. With
a as centre, and half of the intended diameter of the base of the
cylinder as radius, describe a semi-circle cutting the IL in b and ¢ ;
and through those points draw lines parallel to ¢a’. On the axial
line, set off from @ the intended length of the cylinder, and through
the point thus given, draw the line d ¢ parallel to bc; thend bce will be
the elevation of the cylinder.

Next, divide the semi-circle into any number—say eight—of equal
parts, and through each point of division draw a line—perpendicular
to bc—to cut bc¢in the points 1, 2, 3, etc.; and through these draw
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faint lines parallel to the axis aa’. At any point, s in bd, draw the
line 8! at right angles to aa’, and produce it indefinitely. From the
points in 8 / where the meridians 1, 2, 3, etc., cross it, set off on each
of these respectively, the lengths of the ordinates in the semi-circle’
measured from bc, and through the points thus found draw the semi:
elliptic line as shown.

Then, for the development No. 2, on the produced line through s!
in No. 1, set off from [ to &, the distances that the points 1, 2, 3, etc.,
in the semi-ellipse 84/, No. 1, are from each other, and through the
points thus found, draw lines parallel to the side ¢/ ¢ of the cylinder.
These lines will be the meridians shown on the front surface of the
cylinder when it is laid out flat ; for those on its near face, set off the
same spaces from &' to I as for the front face, and draw in the meri-
dians as shown. - For the development of the top and bottom edges,
draw projectors through points 1, 2, 3, etc.,, in them, in No. 1, to cut
the corresponding lines in No. 2; a continuous line drawn through the
points of intersection—at both ends of the meridians—1, 2, 3, etc., will
be the edges required. If the extreme meridians, ¢'¢, be put in
full, as shown, the figure bounded by the lines ede¢, cbc, and elc,
el'c, will be the complete development of the curved surface of the
oblique cylinder dbce, No. 1. -

If the student now compares this development with that of a por-
tion of the surface of the right cylinder, lying between the two
parallel but oblique section planes ad and ef—the latter shown in
dotted lines—in No. 1, Fig. 198, he will note that, though apparently
similar, they are actually different in form and in outline, caused by
one solid being perfectly circular in cross-section, while the other is
elliptic.

p91. From the development of the surface of the cylinder, and its
frustums, we proceed to that of the cone. From the definition of this
solid “as one generated by the revolution of a right-angled triangle
about its perpendicular side as an axis,” it will be understood at once,
that, although all meridians drawn on its surface are, like those on a
cylinder, actually of the same length, yet in the representation of
them in elevation they are all, with the exception of the extreme
bounding ones of the figure foreshortened, and of varying length, de-
pendent upon their position. As errors are very likely to occur in
any attempt to develop the surface of a cone, if this fact is not borne
in mind, it is here referred to, to prevent a false development from
being made by the student. As a first problem in connection with
the cone and its development, we take the following—

Problem 97 (Fig. 200).—Given the elevation of a right cone; to find
the development of its curved surface.

Now as the curved surface of a right cone may be conceived to be
generated by the revolution of astraight line round an imaginary verti-
cal axis, one end of that line moving in a circle described about the
axis as a centre, while the other is in the axis itself, it follows that if
a solid so generated be laid on a plane, and be caused to roll through
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one revolution, all the points in its base edge will together form the
arc of a circle having the apex of the cone as its centre, and the length
of its slant side as radius ; the length of the arc so struck or produced
being equal to the circumference of the base of the rolling cone. If,
then—as in the case of the cylinder—the cone be conceived to give off
ity surface during one complete revolution, while rolling on a plane,
the surface of that plane actually rolled over by it, will be its de-
veloped surface. To show this graphically will be to solve the problem
above given.

Let ABC, Fig. 200, be the elevation of the cone, A being its apex,
the line BC its base, and that through Ac its axis. Then to find the
development of its curved surface, with ¢ as centre, and half BC as
radius, describe a semi-circle, which will be a plan of the front half of
the cone. Divide this semi-circle into any number of equal parts—say
eight—and number them 1, 2, 3, etc. With A-—the apex of the cone
—as centre, and AC its slant side as radius, describe from C—indefini-
tely—the arc of a circle, and on it from C, set off in C, ¢wice the num-
ber of equal parts that the semi-circle on BC is divided into. Join C’'
with A, and the sector included by the two radii AC, AC, and the
arc CBC, will be the development required.

From the foregoing it will at once be seen, how the surface of a
frustum of a right cone may be readily found, for it is only neces-
sary to set off vertically from the base line BC of the cone the intended
height or depth of the frustum, through the point thus given to draw
a line parallel to BC, as b¢ in Fig. 200, and with A as a centre, and
Ac as radius, to describe an arc from ¢, cutting AC' in ¢, then the
figure included between the concentric arcs CC’, ¢ ¢, and the lines Cc,
Ce, will be the developed surface of the frustum.

If the line of section of a right cone be inclined to its base, as 8 ! in
Fig. 200 is to BC, then the development of the frustum’s curved
surface is found as follows: — Through the points of division
1, 2, 3, etc., of the semi-circle on BC, draw lines perpendicular to BC
to cut it in 1, 2, 3, ete. ; join these with A, the apex of the cone, by
right lines, and they will be meridians on its surface at these points.
Then, from the points set off on the arc drawn from C to C, draw
lines to A, and they will be the development of the meridians both on
the front and back surface of the cone. Number these from C to B,
and B’ to C’ as shown. On to the slant side, AC of the cone, project
over parallel to BC, the several points where the line s/ is cut by
meridians drawn from points 1’, 2/, 3, etc., in BC to A ; then from A
as centre, and the distances of the points just found in the slant side
AC from it as radii, cut the corresponding meridians drawn on the
development of the cone as shown, commencing on the one drawn
through AB', with As as radius, which will give the lowest point s’
in the curve. The surface enclosed by a continuous line drawn
through the points thus found, with the arc CB'C’, and the lines
Cl', Cl, will then be the development of the surface of the frustum
required.

92. As the oblique cone and its frustums play as important a part
in giving shape to flues, uptakes, funnel bases, etc., as the oblique
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éylinder and pyramid, the solution of the following problem will show
how the development of their surfaces is found.

Problem 98 (Fig. 201).—An oblique cone of a given diameter of
base and vertical height, has its axts inclined to its base at 4}5°;
required its elevation and the development of its curved surface,
together with that of a frustum of the same solid of a given height.

Fig. 201

Assuming the cone to be resting with its base on the HP, to draw
its elevation, take any convenient point, @ in the IL as a centre, and
with half the intended diameter of itd base as radius, describe a semi-
circle cutting the IL in B and C. At a draw a line, making with BC
an angle of 45°, and another perpendicular to it. On the perpen-
dicular line set off from « in o’ the intended vertical height of the cone,
and through a’ parallel to BC draw a projector to cut the inclined line
from @ in A, which will be the apex of the intended cone. Join
B and C with A by right lines, and the triangle ABC will be the
elevation.

To find the development of its curved surface, divide the semi-
circle drawn on BC into any number—say eight—of equal parts, and
from A let fall a vertical projector to the IL—or base BC of the cone
produced—to cut it in 2. Now it is evident that the longest and
shortest meridians that can be drawn on the surface of the cone, will
be its bounding lines AB and AC; then to determine the lengths of
any intermediate ones—for that is what is required to be known—
proceed as follows :—

From z in BC produced, draw right lines to the several points of
division in the semi-circle, and take each of these lines as a radius,
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and x as centre, and describe arcs to cut BC in points 1, 2, 4, ete.
Join each of these by right lines with A, the apex, then will they be
—taken in order—the actual lengths of meridians drawn on the front
surface of the cone, from A its apex to the points 1, 2, 3, etc., in its
base edge. The axis of the cone being in a plane parallel to the VP,
or plane of the paper, the meridians on its back surface will be of the
same length as those on the front one, being directly behind them.

93. To make the finding of the actual lengths of meridians on an
oblique cone’s surface as clear as possible to the student, let him con-
ceive a right-angled triangular plane (having a constant altitude, or
perpendicular, as 4 x in the figure, but a varying base, of lengths equal
to the distances between x and the points 1, 2, 3, etc., in the semi-
circle on BC) to swing on its perpendicular edge 4« as a hinge,
through the arcs drawn between the points 1, 2, 3, etec., in BC, to the
corresponding one in the semi-circle drawn on BC, it will then be
seen that the hypothenuse of such a trianglar plane would coincide
with, and be of exactly the same length, as a line drawn on the cone’s
surface from its apex to the point in its base corresponding with that
of the particular- plane taken. For instance, take the plane having a
base 23" in No. 1, then the line A3 will be the actual length of
a meridian drawn on the surface of the cone from point 3 in its base
edge to its apex, and so with any other of the planes.

Having thus found the length of any meridian drawn on the cone’s
surface, its development offers no difficulty. To find it, draw a line in-
definitely in No. 2, Fig. 201, parallel to A « in No. 1, and project over
to it the point A ; on this line set off from A the distance AB, equal
to the length of AB, No. 1. On either side of B, No. 2, draw an arc of
a radius equal to the length between B and point 7 in the semi-circle
on BCin No. 1, and from A in No. 2, with the distance between A
and point 7 in BC, No. 1, as radius, draw arcs cutting those struck
from B in points 7, 7’; and join these points with A by faint lines as
shown. From 7 and 7' as centres, strike arcs of the same radius as
from B; and from A with A6’ in No. 1 as radius, cut the arcs last
drawn in points 6, 6'; join these points with A by right lines, and repeat
the process till AC in No. 1, as radius, is reached ; then join C and C'
with A, and the figure AC'BCA will be the complete development of
the whole surface of the oblique cone, of which ABC, No. 1,is the
elevation,

For the development of the surface of the frustum 4BCe, No. 1, of
the same cone, we have in effect to cut off from that just found so
much of the surface as will cover the smaller oblique cone in No. 1,
having the line of section dc¢ for base, and A for vertex. With the
meridians already drawn in, all that is required to be done is to
measure off on each of them respectively, its length from the vertex A
to the point in b ¢ in No. 1, where that meridian crosses it, and
transfer it to its corresponding meridian in No. 2 ; then a continuous
line, as c'’bc, drawn through the points thus found, will be the de-
velopment of the top edge of the frustum, giving the remaining lower
part of the figure in No. 2 as the required development of the surface
of the frustum 4BCc, given in elevation in No. 1, Fig. 201.
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94. Having shown how to find the development of the surfaces of
the cylinder and cone—right or oblique—with that of their frustums,
we have now to explain how the covering of a “sphere” is obtained.
Its surface, as a whole, has been previously. stated to be non-
developable, but it does not necessarily follow that such a solid cannot
be covered. The impossibility of doing this with one sheet of material
is overcome in practice by dividing its surface into what are called
< gores,” or figures which may be defined as made up of two spherical
triangles joined at their bases; such a triangle differing from a plane
one in having all its sides curved—they being arcs of great circles of
the sphere—instead of being straight.

In previous problems in connection with the sphere, it was shown
that any section of it made by a plane passing though its axis, gave
a great circle—or one equal in diameter to the sphere—for that section ;
and from the fact, that such a solid is generated by the revolution
of a semi-circle about its diameter as an axis, it follows that any plane
section of it, at right angles to a great circle section, will be a circle
having a diameter proportioned to the distance that the cutting plane
producing it, is from the centre of the sphere. Then as the halves of
a sphere—or hemispheres—are equal solids, the covering of only one
half need be found. : '

The parts into which a sphere is supposed to be divided for the
purpose of finding its covering, are such as would be produced by a
series of vertical planes passed through its axis, dividing its equatorial
circumference into equal parts, and giving what are called ‘“lunes” as
the resultant solids ; and it is the development of the surfaces of these
lunes which has to be found. The first problem in this connection is—

Problem 99 (Fig. 202).—Given the plan and elevation of a hemisphere ;
to find its approximate covering, the axis, or pole, being assumed
to be vertical.

Let Nos. 1 and 2, Fig. 202, be the given plan and elevation of the
solid, resting with its base AB, on the HP, and its pole Pp, perpen-
dicular to it. First divide its surface in No. 1 into, say six equal parts,
by meridians AB; 11'; 2 2'; passing through the pole P, and find
their elevations as in No. 2. Now the meridian lines passing through
P are the plans of meridian planes cutting the hemisphere into
six half-lunes, and as these are equal solids, having similar and equal
surfaces, it is only necessary to find the covering of one of them.

To do this, divide the quadrantal arc AP in No. 2, into, say
four equal parts, in points 3, 4, b, etc., and through them draw
lines parallel to AB, to meet the opposite arc PB. Assume these lines
to be parallels drawn on the surface of the hemisphere, and find their
plans—which are circles—in No. 1. Number the points where they cut
the meridians 2 2', 1 1", to correspond with their elevations. From the
point z, in the base of the hemisphere in No. 1, on the axial line Pp
produced, set off a length x p, equal to the actual length of the arc AP
in No. 2; divide this into the same equal parts that AP is divided
into, and through the points of division, draw lines at right angles
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to Pp. On either side of Pp, on these lines, set off in points 3 3', 4 4/,
5 5, the actual lengths of the arcs drawn between the meridians 2 2',
11, in No.1; and through them and p, draw curved lines. Make the
length of these—measured along them from p to 1’, 2—equal to p x,
and through 2, , 1', draw the curved line shown. Then the spherical
triangle p2 1', will bé the development of the surface of one-sixth of
the hemisphere.

The greater the number of gores, or parts the surface of the
hemisphere is divided into the nearer will they—when properly bent
and joined together—approach the true spheric form.

95. In practice, where a hemispherical surface is required, as, for
instance, in egg-ended boilers, tops of floating buoys, dome-shaped
coverings, etc., it would not bz possible to make it of plates cut to
the shape of a perfect gore, as the plates could not be riveted together
at their upper or pointed ends. In such case, it is usual to cut the
gores short of the required length, and fit a dished circular crown
plate to which the upper ends of all the gores are riveted. In the
hemisphere given in the problem this crown plate would about equal
in diameter the smallest circle shown in the plan No. 1, necessitating
the gores being cut at their top ends, to the curve of an arc—shown
dotted—struck from p, of a radius to suit the crown plate.

In many curved surfaced structures of hemispherical form—to save
expense and much labour in construction—the covering adopted is that
of a spherical polyhedron, having a great number of faces; each face
being tangent to a hemispherical surface, the touching part being a
straight line, coinciding with, and falling on a meridian, which divides
the face into two equal parts throughout its length. In the case of
the covering of a truly hemispherical surface, each gore would not only
have to be bent lengthwise, to the arc of a circle of the radius of the
sphere, but it would also require to be bent crosswise, or dished, which
would necessitate special care, 80 as to ensure the same curvature in all.
By adopting the polyhedron surface, the covering material only needs
bending in one direction—lengthwise—as each gore is a part of a
cylindric surface and therefore developable. To develop such a
surface proceed as follows—.

Let the circle ABCD, No. 4 (Fig. 202), be the plan of a hemisphere
to be covered by a surface of the form of a spheric polyhedron of
twelve faces or sides, and let the lines AB and CD—which are at right
angles to each other—be meridians on the hemisphere. Divide the
quadrant AC into six equal parts, and at the points of division draw
faint lines to the centre, or pole p. Also divide the arc CB into
the same number of equal parts, numbering the points of division 1, 2,
3, etc., as shown in No. 4. From p, draw radials through points
5, 6; and at C, a tangent to the circle, to cut them; then will the
triangle p, 5, 6 in No. 4, be the plan of one of the gores of the
given surface.

To' find its development, parallel to the diameter AB No. 4, and
through the points 1, 2, 3, etc., in the arc CB, draw lines to cut the
two radials pb, p6; produce the diameter CD indefinitely—upwards
—and on it from C, set off to p/, the equal parts into which the arc CB

P
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is divided, and through the points of division draw lines parallel to the
tangent drawn through C. Then from the points of division in the
radials p 5, p 6, cut by the lines drawn from points 1, 2, 3, etc., in the
arc CB No. 4, draw projectors parallel to CD produced, to cut the lines
drawn through it in the points 11', 2 2, 3 3', etc. Through these last~
found points and p/, draw curved lines as shown, and the triangular
figure p'6 5 will be the development of the gore required.

96. If a hemispherical or dome-shaped surface is of large area,
a different method of covering it would be resorted to. Instead of
dividing the spherical surfaces into gores, that of *zones” or circular
belts cut into convenient-sized sections would be the form given to the
material. The method of finding the proper shape of such sections is
shown in Fig. 203, and is as follows—

With p, in the given straight line AC in the figure as centre, and
with pA as radius, describe the circle ABCD. Let the upper half of
it, No. 1, be the elevation, and the lower half,-No. 2, the plan, of the
front part of a given hemisphere, whose surface is required to be
covered by material in the form of zones or belts.. Divide the arc AB,
of the semi-circle ABC, into any number of equal parts, say four; and
at the points of the division 1, 2, 3, draw lines parallel to AC.
Produce the diametral line BD—upwards—mdeﬁmtely, and through
the points A, 1, in the arc AB, draw a line to cut this_produced line in
. Through points 1 and 2, and 2 and 3, draw similar lines to cut
BD produced in y and 2. Then with xA, and «1, as radii, draw arcs
indefinitely, and repeat the process with y and z as centres, and y1, %2 ;
22, 23, as radii. Now the surface enclosed between each of the pairs -
of concentric arcs, struck from =, y, z, as centres, are portions of the
surfaces of frustums of cones, having those centres as their apices, and
the lines AC, 11, 22, 33, as their bases; the heights of the frustums,
and the slope of their sides, being determined by the number of parts
into which the arc AB of the semi-circle ABC is divided.

The lengths of each of the covering pieces in the zones or belts are

determined by the number into which the belt is to be divided. Let
this number be four; then to show their position and length on the
spheric surfa,ce, find by projection on the plan of the front half of the
hemisphere in No. 2, the plans of the lines 11’,2 2/, 33" in No. 1, which
will be semi-circles as shown. Now the radial line pD divides each of
the semi-circular belts into two parts, and as four such parts of each
-belt will cover the hemisphere—with the exception of the crown plate
—the length of one of them in each, taken in order, will be the length
that each of the strips E, F, G, in No. 2, must be. Therefore on each
of the outer arcs drawn from z, y, 2, set off the actual lengths in
points, d, f, g, of their corresponding arcs in the quadrant Ap, D,
No. 2; and through d, £, g, draw lines radiating to z, y, 2, to cut the
inner arcs, or edges of each belt as shown.

In arranging the plates for covering such a surface, they would for
strengthening and other important reasons be made in practice to
“break joint,” a8 shown by the short radiating thick lines in the half-
plan of the hemisphere No. 2 in the figure.

By one or the other of the methods shown and explained in
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Figs. 202-3 the coverings of the sphere—oblate or plolate—the ellipsoid,
paraboloid, and hyperboloid with their frustums may be found.
Combinations of parts of these solids, with-those of the cylinder,
cone, and sphere, constantly occur in “practice, and all that is required
of the student for the mastery of each case as it-arises, is to make
himself thoroughly acquainted with the actual forms of the solids
which enter into combination, and then apply_ the principles which
have been so fully explained in this and prekus chapters, and on
which their correct delineation -depends. -

97. With the problems on the covering of the sphere, etc., the
subject of the “Development of the Surfaces of Solids” is concluded,
and with it the exposition of the principles of that special kind of
“ projection ” on which the art of Mechanical and Engineering Drawing

is based. The problems in ench-division of the subject might have
~ been considerably increased in number, but as such an extension would
have involved the expenditure of more of the student’s time than the
subject warrants, as many have been given as will be found necessary
for all his future requirements.

A careful study of the foregoing first principles of the Mechanical
Draughtsman’s art, and the conscientious working out of all the
problems furnished for their complete elucidation, will lead the student
to an easy comprehension of the method of their practical application
to the delineation of all kinds of machine elements, and engine
details, which may form the subject of a further work by the author
of the present one here concluded.
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