
$4_{4}{ }^{2}$

Cambritage

きtyool and College

Cent liooks.

Cambrioge:
PRINTED BY C. J. CLAY, M.A.
AT THE UNIVERSITY PRESS.
CAMBRIDGE SCHOOL AND COLLEGETEST BOOKS.
THE FIRS'T THREE SECTIONSor
NEWTON'S PRINCIPIA,WITH AN APPENDIX;
AND
THE NINTH AND ELEVENTH SECTIONS.
BY
JOHN H. EVANS, M.A.
LATE FELLOW OF ST JOHN'S COLLEGE, CAMBRIDGE.
THE FIFTH EDITION,
EDITED BY
P. T. M A IN, M.A.FELLOW OF ST JOIIN'S COLLEGE, CAMBMIDGE.
CAMBRIDGE:DEIGHTON, BELL AND CO.

$$
\begin{aligned}
& 857 \\
& 2 / 411890
\end{aligned}
$$

PREFACE TO THE FIFTH EDITION.

In the present Edition the first three sections of Newton's l'rincipia, together with the Chapters headed ' Definitiones,' and 'Axiomati, sive Leges Motiss,' which form the Introduction, have been translated from the Latin edition of Le Seur and Jacquier, with omission of the Scholia at the end of these Chapters: notes have been added in small print in cases where the text secmed to require explanation. This part of the book is followed by an Appendix, consisting mainly of examples in illustration of the methods used in the Lemmas, and of three important propositions from the first book of the Principia. The ninth and eleventh sections are added with little alteration from the last edition of Evans.

A collection of Examples is given at the end, for which I am partly indebted to the kindness of Mr Hudson, Fellow of St John's College, partly to various University and College Examination Papers.

In the course of preparing this Edition I have received many useful suggestions from friends, and especially from Mr Besant, late Fellow of St John's College, which I am glad to take this opportunity of gratefully acknowledging.

P. T. MAIN.

St John's College, August 29, 1871.

ERRATUM.

On page 93, last line but three,

$$
\text { for } \pi \sqrt{\frac{A C^{3}}{\mu}} \text { read } 2 \pi \sqrt{\frac{A C^{3}}{\mu}}
$$

NEWTON'S PRINCIPIA.

DEFINITIONS.

1) wer. 1. Quantity of matter is the metasore of it arising foom its density and bulk comjointly.

An, when its density is doubled, and it also oeenpies twice the space, is quadrupled in amomet; in thrice the space is increased six-fold. The same is to be understood when show or powders are comdensed by compression or liquefaction. And the same rule applies to all bodies which are condensed in different manners by any causes whatever.

Noateonnt is taken here of the medium, if there be one, which penetrates frecly the interstices between the parts of borlies.

This quantily of matter is, in what follows, sometimes called the body, or mass. It is known for each buty by means of its weight; for it has been found, by very accurate experiments with pendulums, to be proportional to the weight.

Note 1. It is found by experiments with pendulums that the time of oscillation at any given phace depends on the length of the perdulum, but not on the nature or amount of the substance of which it is composed.

From this it is inferred that the motion produced in a pendulum by the earth's attraction is produced equally on every part of the matter of it , so that the whole motion produced (Def. 2) is proportional to the quantity of matter in it: and for any two pendulums of the same length, since each oscillates in the same period, the whole motion produced in each is simply proportional to the quantity of matter.

This is also confirmed by experiments in tubes exhausted of air, in which a feather, a lump of lead, of gold, or of any other substance, are all found to occupy equal times in falling through equal spaces. The motion produced by gravity in every part of each body being thus seen to be the same, it follows that the whole quantity of motion which gravity produces or tends to produce in each-in other words, the weight-is proportional to the quantity of matter.

Note 2. The quantity of matter, or mass, of a body, is denoted by the symbol M.

Note 3. The density of a body may be defined as the quantity of matter it contains in a unit of volume.

If this be represented by ρ, and the volume by V, we have

$$
M=V^{\nu} \rho .
$$

Def. 2. The quantity of Motion of a body is the Measure of it, arising from its celocity and the quantity of matter conjointly.

The motion of the whole body is the sum of the motions of its several parts; and therefore in double the body with an equal velocity there is double, and with double the velocity quadruple the quantity of motion.

Note. Let M be the mass of a body, v its velocity, then $M v$ is the motion of a body, i.e. the quantity of motion of the body.

Def. 3. The innate force of matter is its power of resisting, rhereby every body, so far as depends on itself, persereres in its state, either of rest, or of uniform motion in a straight line.

This is always proportional to the body, and differs in no respect from the inertia of the mass, except in the mamer of viewing it. To the inertia of matter is due the difficulty of disturbing bodies from their state of rest or motion ; on which account the innate force may be called by the very suggestive name, force of inertia.

A body, however, only exerts this force when a change is made in its state by another force impressed on it ; and the exertion of it constitutes, from opposite points of view, both resistance and pressure: resistance, inasmuch as the bolls, in order to preserve its own state, opposes the impressed force ; pressure, inasmuch as the body tries, by yiclding with difficulty to the force of an opposing obstacle, to change the state of the obstacle.

People in general attribute resistance to bodies at rest and pressure to bodies in motion ; but motion and rest, as ordinarily moderstood, are only distinguished ono from another in appearance; and bodies are not always really at rest which are popularly supposed to be at rest.

Note. To produce a given change in the velocity of a body a force must be excrted on it which will be greater or less according to the mass of the body, and will in faet be proportional to the mass, so that a boly of twice the mass will require twice the force to promluce the same change in the velocity. It is in this sense that a body is said in this Definition to possess an innate power of resisting an attempt to move it, proportional to its mass.

Def. 4. An impressed force is an action exerted on a body, tending t" change its sinte cither of rest or af unifirm motion in a straight liue.

This force consists in the action only, and does not remain in the body after the action. For the body perseveres in each new state by the force of inertia alone.

An impressed foree maty arise in various ways, as from a blow, a pressure, a centripetal furce.

Note. In modern works on Mechanics it is customary to restrict the use of the word force to impressed furces only; in
place, therefore, of the expression, force of inertia, the word inertia alone is used.

Def. 5. A centripetal force is one by which bodies are draun, impelled, or in any other way tend from all parts towards some point as a centre.

Of this kind is gravity, by which bodies tend to the centre of the earth; maguctic force, by which iron approaches a magnet ; and that force, whatever it may be, by which the planets are perpetually drawn away from rectilincar motions, and forced to revolve in curves.

A stone whirled in a sling tries to get away from the hand by which it is whirled; and by its effort stretches the sling, and that the more powerfully the quicker it revolves; and as soon as it is released, it flies off. The force, which opposes this effort, by which the sling perpotually drags the stone back towards the hand and retains it in its orbit, since it is directed to the hand as the centre of its orbit, is called the centripetal force.

The same account applies to all bodies, which are made to move in an orbit. They all try to recede from the centres of their orbits; and unless there is some centripetal force, as it is called, opposing the effort to recedeby which the bodies may be kept back and retained in their orbits-they will go off in straight lines with uniform motion.

A projectile, if it were deprived of the force of gravity, would not be deflected towards the earth, but go off into space in a straight line; and with miform motion, if the resistance of the air were withdrawn. By its gravity it is drawn away from a rectilinear course, and perpetually turned towards the earth, and more or less according to its gravity and the velocity of its motion. The less gravity it has for a given quantity of matter, or the greater the velocity with which it is projected, the iess will it deviate from a rectilinear course, and the farther it will go. If a ball of lead, shot from a camon by the force of gunpowder with a given velocity in a horizontal direction, went in a curve to a distance of two miles before falling to the ground; with double the velocity it would go twice
as far, and with ten times the velocity ten times as far ; provided the resistance of the air were removed. And by increasing the velocity the distance to which it is shot may be increased at pleasure, and the curvature of the path it deseribes be diminished, so that it may fall at a distance of ten, or twenty, or ninety degrees; or even go all round the earth, or lastly go right away into space, and proceed for ever with the motion with which it went off.

And for tho same reason, that a projectile can be deflected ly the force of gravity and go all round the earth, the moon may, either by the foree of gravity, if it has weight, or by some other force urging it towards the cartl, be always drawn from its rectilinear courso earthwards, and deflected into its orbit; and without such a force the moon camot be retained in its orbit. This force, if it were less than the proper amount, would not sufficiently deflect the moon from its rectilinear course; if greater than the proper amount, it would deflect it more than enough and turn it out of its orbit earthwards. In fact it is necessary that the force should be of the right amonnt ; and it is for mathematicians to find the foree by which a body can be exactly retained in any given orbit whatever with a given velocity; and conversely, to find the curvilinear path into which a body, moving from any given place with a given velocity, would be deflected by a given force.

The quantity of this centripetal foreo is of three kinds, absolute, accelerative, and motive.

Der. 6. The alsolute qumentity of a centripetal fince is a mensure af it which is grenter or less according t" the efficury of the rause orhirh propugates it firm the centre therougl the regions of space all round it.

Just as megnetic force is greater in one magnet and less in another, according to the mass of the magnet or the intensity of its magnetism.

Note. This absolute quantity of a centripctal force arising from any cause, such as, for iustance, the attraction of the earth, is
usually measured by the efficacy of the cause at a unit of distance from the centre of the force,-in this case, the centre of the earth; and it is measured by the acceleration (Def. i) which it is capable of producing at this distance.

Thus, if μ be the absolute quantity of a centripetal force, the force is such that at a unit of distance the acceleration produced by it would be represented by μ.

The absolute quantity of a centripetal force is, for brevity, called the absolute force.

Def. 7. The accelerative quantity of a centripetal firce is a measure of it proportional to the relocity uthich it generates in a yiven time.

Just as the power of the same magnet is greater at a less distance, less at a greater. Or, as gravituting fionce is greater in vallers, less on the peaks of high momntains, and so (as it is proved to be) less the greater the distance from the earth; but at equal distances the same on all sides, beeause it accelerates equally all falling bodies (heavy or light, great or small).

Note 1. In treating of centripetal forces, where simply the force is spoken of in Newton's Principia, the accelerutice quantity of the force is meant, unless otherwise stated.

The accelerative quantity of a centripetal force is usually called, for brevity, the uccelcrating, or accelerative force.

If a body is moving in a straight line to or from a centre of force, and the force alds a velocity r in time t, it proluces an accelerating effect equivalent to an addition (during the time t)
of a velocity $\frac{r}{t}$ each unit of time, on the arcrage.
A force which adds equal velocities in equal times is called a uniform, or constant furce.

Thus ${ }_{t}{ }^{v}$ is the measure of an accelerating force when the fore. may be considered to remain constant during the time t.

Note 2 . If t be taken sufficiently small ${ }_{t}^{v}$ may also be take:a
as the measure of a variable force, for a variable force may be considered constant during a very small time, the variation of the force bearing a ratio to the force itself which is smaller the smaller the time is, and which becomes indefinitely small when the time does.

Hence, if v be the velocity gencrated in time t, the accelerating force is in all cases measured by the limit of $\begin{aligned} & v \\ & t\end{aligned}$, when t is indefinitely small.

The accelerating force is usually denoted by f; thus $f=$ limit of ${ }^{2}$.
.iote 3. A force which acts to diminish the velocity of a body moving in a straight line is called a retarding force, and is measured, as to its retarding effect, by the velocity subtracted in a given time; thus a retarding force may be measured by ${ }_{t}^{v}$ if it is constant, v being the velocity subtracted in time t; and by the limit of ${ }_{t}^{v}$ if it is variable.

Note 4. Forces are compared as to their accelerating or retarding effect by comparing the velocity, r, added or subtracted in equal indefinitely small intervals of time.

1) me. 8. The motier quantity of a centripetal force is a measure of it propurtional to the motion rhich it generates in a giren time.

Just as wriglet is greater in a greater mass, less in a less mass; and, in the same, is greater near the earth, less in remote space.

This quantity is the body's entire centripetency or tendency towards the centre of force, and (so to speak) its weight ; and it is always known by the force equal and opposite to it, by which the fall of the body may be prevented.

These quantities of forces may for brevity be called motire, acceleratire, and absolute forces; and, for the sake of distinctness, may be ascribed severally to the bodies
which tend to the centre, to the positions of the bodies, and to the centre of forces: so that, in fact, the motive force is ascribed to the body, as if it were the effort of the whole composed of the efforts of all its parts; the accelerative force to the position of the body, as if there were diffused from the centre to all places around it some power efficacious towards moving bodies which are in those places : and the absolute force to the centre, as if at this point there were situated something which was the cause of motive forces being propagated through space in all directions; whether that cause be some central body (just as a magnet is at the centre of magnetic force, or the earth at the centre of gravitating force) or any other cause which is not ascertained. This is simply a mathematical conception ; the physical causes and seats of the forces are not here considered.

The accelerative force is, then, to the motive force as the velocity generated is to the motion. For the quantity of motion arises from the velocity and the quantity of matter conjointly, and the motive force from the accelerative force and the quantity of the same matter; for the sum of the actions of the accelerative force on the several particles of a body is the motive force of the whole.

Hence, at the surface of the earth, where the accelerative gravity, or force of gravitation, is the same on all bodies, the motive gravity, or weight, varies as the body; but if we ascend into regions where the accelcrative gravity is less, the weight will diminish equally, and will be always as the body and the accelerative gravity conjointly. Thus in regions where the accelerative gravity is half as great, the weight of a body half or a third as great will be a fourth or a sixth as great.

Moreover, we may in the same sense speak of attractions and impulses as accelerative and motive. But the words, attraction, impulse, tendency, of any body towards a centre may be used indifferently and promiscuously one for another ; these forees being here considered not in a physical, but only in a mathematical sense. The reader should beware, in using words of this sort, of considering them as defining the kind or manuer of the action, or their
physical cause or reason ; or of attributing to the centres (which are mathematical points) forces in a real physical sense, when it is said cither that the centres attract, or that there are furces at the centres.

Note 1. By motion is meant, in this definition, and elsewhere, the quastity of motion as defined in Def. 2.

The worl bocly is used here in the sense of Def. 1.
If M be the mass of a boxly, x the velocity generated in it by a force in time $t, M c$ is the measure of the motion produced in it in time t; and $\frac{M / r}{t}$ is the measure of the average motive force during the time t; or of the actual motive force, if t be taken indefinitely small.

Note 2. Forces are compared with each other as to their motive efflect hy comparing the motion, or M c, produced in equal indefinitely small intervals of time.

AXIOMS, OR LAWS OF MOTION.

Law I. Exery body persereres in its state of rest, or of uniform motion in a straight line, except in so fare as it is compelled to change that state by forces impressed on it.

Projectiles persevere in their motions, except in so far as they are retarded by the resistance of the air, and driven downwards by the force of gravity. A hoop, whose parts continually draw each other from their rectilinear motions by cohesion, ceases to roll only in consequence of its motion being retarded by the air. But the larger bodies of planets and comets, whose motions, both progressive and circular, take place in less resisting spaces, retain these motions longer.

Law II. Change of motion is proportional to the moring force impressed, and takes place in the straight line in which that force is impressed.

If a foree produce any motion, twice the force will produce twice the motion, thrice the force three times the motion, whether it has been impressed all at once, or by successive gradations. And this motion (since it must always take place in the same direction as the force which produces it) is-if the body was originally in motionadded to its original motion if that motion was in the same direction, subtracted from it if in tho opposite; or if in an inclined direction, is added to it in an inclined direction, and compounded with it, the position of the body being letermined by the motion in each direction.

Law III. An ection is aluca!/s "pposed b!y an equal reation; or, the mutual actions of tue bodies are always rqual and art in opposite directions.

Whatever presses or pulls something else, is pressed or pulled by it in the same degree. If a man presses a stone with his finger, his finger is also pressed by the stone. If a horse draws a stone tied to a rope, the horse will be (so to speak) drawn back equally towards the stone : for the rope being stretehed at both ends will by the same attempt to relax itself urge the horse towards the stone and the stone towards the horse ; and will impede the progress of one as much as it promotes the progress of the other. If a body impinge on another and ly its force change the motion of the other in any way, the latter will in its turn on account of the equality of the mutual pressure) undergo the same change of motion in a contrary direction. To these actions are equal the changes, not of velocities, but of motions; that is, in bodies not hindered in their motions by other forces. For the changes of velocities, which also take place in the same direction, are-since the motions are changed equally-reciprocally proportional to the bodies. This law holds also in Attractions.

Cor. 1. By the combinerl action of turo, forioss a lud!! will aleserine the diadgamal of a puralleluarame in the same timer as the silles would br described by the berly under the retion of erall joriece sepurately.

If a body, ly the action of the force i/ only, impressed at A, would move with uniform motion from A to
B in a given time, and, by the action of the force N only, impressed at the same point, would move from A to \mathscr{C} '; complete the parallelogram $A B D C$; then, by the action of both forces, the body will move in the same time on the diagonal from A to D.

For, since the force N acts in the direction of $A C$ parallel to $B D$, this force, by Law II., will not alter the velocity of approach to the line $B D$, due to the other foree.

Therefore the body will approach the line $B D$ in the same time, whether the force N be impressed or not; and thus, at the end of the given time, it will be found somewhere on the line $B D$.

By the same reasoning, it will be found at the end of the same time to be somewhere on the line $C D$; and therefore it must necessarily be at the point D where these lines meet.

And it will go from A to D with uniform rectilinear motion, by Law I.

Cor. 2. And hence follons at once the composition of a force AD out of other forces AB and AC acting in different directions; and concersely the resolution of any force AD into two others AB and AC .

Note 1. In other words the parallelogram of forces follows at once from Corollary 1.

For by Law II. the change of motion of a body, or of the velocity of the body, is proportional to the moving force im. pressed.

Now, ly Cor. 1, the resultant of M and N impresses on the body a velocity with which it would describe the straight line $A D$ in the same time as the straight lines $A B, A C$ would be described with the velocities impressed on the body by M and N.

Therefore M, N and the resultant of these, being, by Law II. proportional to the velocities impressed by them severally, are proportional to $A B, A C^{\prime}$, and $A D$; and they act respectively in these directions, by Law II.

Aud thus, if $A B, A C$ be taken to represent the forces M and
N in magnitude and direction, $A D$ will represent their resultant alsc in magnitude and direction.

As stated under Law II., it is immaterial in what manner the forces M aud N aet; if they be measured, as that Law directs, simply by the change of motion (Def. i) produced.

Note 2. Force may le conceived to act in two ways; (1) impulsively, that is by instantaneously generating a change of motion of the borly on which it acts: (2) continuously, that is, so as to generate a change of motion which shall be finite in any finite time, but indefinitely small in an indefinitely small time.

A force which is supprsed to act in the first way is called an impulsite jorce: and a force which is supposed to act in the second way is called a finite force.

An impulsive foree is measured, by Law II., by the change of motion p^{r} roduced; a finite force by the change of motion produced in u giren time (Def. 8).

A finite force is said to be comstant, or miform, if the motion produced in any given interval of time is always the same. Thus a constant force proluees in a given body always the same change of velocity in a given time. It is hence also called a uniformly accelerating force. A finite force is said to be rariable, when the motion produced in a given time is not always the same. Thus, the force of gravitation is variable, the variation depending on the distance of the attracted from the attracting body.

Note 3. When force is constant, since equal changes of motion are produced in equal intervals of time, the change of motion pronluced in any time is proportional to the time; this is not the case with variable forces. Put in either cave the amonnt of force impressed in any, gircn time is measured by the amount of motion proluced in that time.

Forees are compared with one another by comparing the motions generated in the same given time; hence constant foress, since they generate equal amoments of motion in equal times, are to one another in a ratio independent of the time in which they generate their motions.

Again, during any indefinitely small period (1)ef. 7, Note 2), a rariable force prosiuces, in equal times, motions proportional to the times; therefore the motions proxhuced by any two variable. forces in given equal times are to one another ultimately in a ratio
independent of the time in which the motions are generated, when the time is indefinitely diminished.

If therefore forces whether uniform or variable be compared among one another by comparing the motions produced by them in equal times when those times are indefinitely diminished, their measures will be independent of the time in which they generate their motions. For this reason forces are always estimated by comparing the motions produced by them in equal indefinitely small interrals of time.

Con. 3. The quantity of motion, rhich is obtained b!f taking the sum of the motions which take place in the same direction, and the difference of the motions in opposite directions, is not changed by any action of bodies among one another.

For an action and its opposite reaction are equal, by Law III.; and therefore by Law II. equal changes of motion are produced by them in opposite directions. Therefore, if the motion of two bodies take place in the same direction, whatever is added to the motion of the foremost, will be subtracted from the motion of the hindermost, so that the sum remains the same as before. And if the bodies meet there will be an equal loss of the motion of each, and therefore the difference of the motions taking place in opposite directions will remain the same.

Cor. 4. The common centre of grarity of two or more bodies does not change its state of motion or rest through the mutual actions of the bodies; and hence, in the alsence of external actions or resistances, the common centre of grarity cither is at rest or moces uniform!! in a straight line.

Con. 5. Bodles iurlosed in a giren space hare the same motions relatirely to one another, whether that space be at rest, or be moring uniformly in a straight line without rotation.

Cor. 6. If bodies are moring relatirely to one another in any manner; and are urged by equal accelerating

Axioms, or Lavs of Motion.
 15

forces in parallel directions; they will all continue to mose relatirdy to one another in the same manner as if they were not acted on by those forces.
[The proofs of Cors. 4, 5 , and 6 , together with the Lemma on which they depend, are given in the A_{p} pendix.]

SECTION I.

On the Methool of Prime and Ultimate Ratios.

Lemma I.

Quantities, and ratios of quantities, which tend constantly to equality duriny any finite time, and approach each other mone nearly than for any assignable difference, become ultimately equal.

If not, let them become ultimately unequal, and let their ultimate difference be D.

Therefore, they camot approach each other more nearly than for the difference D; contrary to the hypothesis.

Note 1. In this Lemma, the quantitics, and the ratios of quantities, are supposed to remain finite throughout.

When, as in succeeding Lemmas, quantities are concerned which become indefinitely small, or which become indefinitely great, another set of quantities is taken which bear constant ratios to the quantities with which we are concerned, and one at least of which remains finite.

The ratios of the quantities inter se is then the same for each set; and to these rutios, if they remain tinite, the Lemma applies.

Note 2. If the quantitics tend constantly to equality during a time which is not finite, they will not necessarily become equal in any finite time.

Note 3. If a, b, and c be quantities, which at the end of a finite time ranish together, and the ratio of a to b be ultimately a ratio of equality, the ratio of $\mathrm{a}+\mathrm{c}$ to $\mathrm{b}+\mathrm{c}$ shall be ultimately a ratio of equality.

For, take A, B, and C always proportional to a, b, and c respectively, and such that A is ultimately finite;
then, ultimately, $A=B$;
therefore, ultimately, $A+C=B+C$;
therefore, ultimately, the ratio of $A+C$ to $B+C$ is one of equality.

But, by hypothesis, ${ }_{A}^{a}={ }_{B}^{b}={ }_{C}^{c}$, always; and each of these fractions is equal to $\begin{gathered}a+c \\ A+C^{\prime}\end{gathered}$ and $\begin{aligned} & b+{ }^{\prime} c \\ & B+C\end{aligned}$; therefore

$$
\frac{a+c}{A+C^{\prime}}=\frac{b+c}{B+C} ;
$$

$$
\begin{aligned}
& a+c=\frac{A+C}{B+C} ; \\
& \dot{b}+c
\end{aligned}
$$

and this being true always, is true ultimately ; therefore the ratio of $a+c$ to $b+c$ is ultimately a ratio of equality.

The ultimate value of a quantity or a ratio is called its limil; thus limit of $a+x$ (when x vanishes) is a; this word is sometimes abbreviated into $l t$., thus,

$$
\text { lt. } \frac{1+x}{1-x}(\text { when } x=0)=1
$$

Note 4. The ultimate value of the ratio of two quantities is often called the limiting ratio; as we shall frequently have occasion to speak of limiting ratios, we shall allude to them by the abbreviation L. r.

Thus, in the previous note, it is proved that, if the limiting ratio of a to b is one of equality, the limiting ratio of $a+c$ to $b+c$ is one of equality ; or, if L.r. of a to b is one of equality, then L.K. of $a+c$ to $b+c$ is one of equality.

Again, a ratio of equality will for brevity be often designated simply by 1 .

Thus, if L.B. of a to b is 1 , then also L.R. of $a+c$ to $b+c$ is 1 .

Note 5. Two quantities are said to be equal when their difM.s.
ference vanishes, and to be ultimately equal when their difference ultimately vanishes.

The ratio to one another of two equal quantities is a ratio of equality.

But the limiting ratio of two quantities which are ultimately equal is not necessarily a ratio of equality; for the quantities themselves may vanish, and their ultimate ratio may then be any whatever.

The student is therefore advised, in any reasoning in which vanishing quantities are concerned, not to say merely that two quantities are ultimately equal when he means that their ratio becomes a ratio of equality. If this distinction be not borne in mind, he will be apt sometimes to draw, from the fact that two quantities are ultimately equal, the inference that their ratio is one of equality, where such inference is not warranted.

In Note 3, we proved that ultimately

$$
A+C=B+C
$$

and we inferred that ultimately the ratio of $A+C$ to $B+C$ is a ratio of equality ; this is correct, because their difference vanishes, but they themselves do not. We were not able to infer from the fact that $a+c$ is equal to $b+c$, that the ratio of $a+c$ to $b+c$ is one of equality, because both these quantities vanish.

In fact, we can infer, from two quantities being ultimately equal, that their limiting ratio is one of equality, only vihen the quantities do not ranish.

Lemma II.

If in any figure AacE bounded by the straight lines Aa, AE, and the curve acE, there be inscribed any number. of parallelograms $\mathrm{Ab}, \mathrm{Bc}, \mathrm{Cd}, \ldots$ on equal bases AB , $\mathrm{BC}, \mathrm{CD}, \& \mathrm{c}$., and with sides $\mathrm{Bb}, \mathrm{Cc}, \mathrm{Dd}, \ldots$ parallel to the side Aa of the figure; and the parallelograms aKbl, $\mathrm{bLcm}, \mathrm{cMdn}, \ldots$ be completed: then, if the breadth of these parallelograms be diminished and their number. increased indefinitely, the ultimate ratios which the inscribed figure AKbLcMdD , the circumscribed figure AalbmendeE, and the currilinear figure AabcdE bear to one another are ratios of equality.

For the difference of the inscribed and circumscribed figures is the sum of the parallelograms $\mathrm{Kl}, \mathrm{Mm}, \mathrm{Nn}, \mathrm{Do}_{0}$; which is (since all the bases are equal) the rectangle con-

tained by one base $K^{\prime} b$ and the sum of all the altitudes $A a$. i.e. the parallelogram ABla.

But this parallelogram, when its breadth is diminished indefinitely, becomes less than any assignable quantity.

Therefore by Lemma I., the inseribed and circumscribed figures, and it fortiori the curvilinear figure which is intermediate between them, are equal. Q.e.d.

Lemma III.

The same ultimate ratios are also ratios of equalit!. rhen the lreadths $\mathrm{AB}, \mathrm{BC}, \mathrm{CD} . .$. of the parallelograms are unequal, and are all diminished indefinitely.

For let $A F$ be equal to the greatest breadth, and let the parallelogram $F A$ af be completed.

This will be greater than the difference between the inscribed and circumscribed figures; but when its breadth
$A F$ is diminished indefinitely, it will become less than any assignable rectangle. Q.e.d.

Cor. 1. Hence the ultimate sum of the vanishing parallelograms coincides in all respects with the curvilinear figure.

Cor. 2. And a fortiori the rectilinear figure, bounded by the chords of the evanescent ares $a b, b c, c d \ldots$, coincides ultimately with the curvilinear figure.

Cor. 3. As also does the circumscribed rectilinear figure, bounded by the tangents to the same ares.

Cor. 4. And consequently these ultimate figures (in respect of their perimeters $a c E$) are not rectilinear but curvilinear limits of rectilinear figures.

Notc. By this is meant that the curvilinear perimeter of any curvilinear fygure is identical with the limit of a rectilinear perimeter of a polygon; consisting either of an infinite number of sides which coincide ultimately with consecutive chords of indefinitely small arcs of the curve into which the polygon degenerates, or, which is the same thing when the limit is reached, of tangents to consecutive points of the curve; so that any proposition regarding the perimeter of such a polygon is true of the curve which is its limit.

This corollary gives implicitly a means of measuring an arc of a curve in terms of an indefinite number of indefinitely small straight lines, which may be either the series of consecutive chords or of consecutive tangents. It is tacitly assumed that these two measures would be ultimately the same. This is easily proved by Newton's method.(vide Appendix, Lemma VII.).

Lemma IV.

If in the two figures AacE, PprT there be inscribed two series of parallelograms, and there be the same number in each series, and if when the breadths are indefinitely diminished the ultimate ratios of the parallelograms in the one figure to the parallelograms in the other. are the same, each to each; the two figures AacE, PprT are to each other in that ratio.

For as the parallelograms are to each other, each to each, so (componendo) is the sum of all in one figure to the

sum of all in the other, and so therefore the one figure to the other; the former figure being to the former sum, and the latter figure to the latter sum (by Lemma III.), in a ratio of equality. Q.E.D.

Cor. Hence if two quantities of any kind whatever be divided in any manner into the same number of parts; and those parts, when their number is increased and their size diminished indefinitely, have a given ratio to each other, the first part to the first, the second to the second, and the rest to the rest in their order, the whole shall be to each other in the same ratio. For if, in the figures of this Lemma, the parallelograms be taken to each other in the same ratios as the parts, the sums of the parts will be to each other always as the sums of the parallelograms; and there-fore,-when the number of the parts and parallelograms is increased and their magnitude diminished indefinitely,-in the ultimate ratio of parallelogram to parallelogram, i.e. (by hypothesis) in the ultimate ratio of part to part.

Note. The proof of this Lemma requires to be amplified; for it assumes that for the purposes of the proof each parallelogram in one figure bears to the correnponding parallelogram in the other the same ratio, whereas this is not supposed to be true till the limit has been reached. We may, however, say that the sum of the parallelograms in the first figure, hears a less ratio to that in the other than it would if each parallelogram of the first figure were to each parallelogram in the second in the greatest of the ratios of
the corresponding parallelograms, and a less ratio than if each parallelogram were to each in the least of these ratios; and thus, since these greatest and least ratios are both, by hypothesis, ultimately the same, we infer that the sum of one set of parallelograms is ultimately to the sum of the other set in that ratio.

Lemma V.

The homologous sides, both curvilinear and rectilinear, of similar figures are proportionals; and their areas are in the duplicate ratio of the sides.

By Euclid VI. Def. 1, similar rectilinear figures have their homologous sides proportional.

Hence, componendo, the sum of any number of sides of one figure has the same ratio to the sum of the corresponding sides of the other that any side of one has to the corresponding side of the other. Again (Euclid VI. 20), the areas are in the duplicate ratio of the sides.

Now let the number of the sides be increased and their lengths diminished indefinitely ; then the sum of the sides in each figure becomes (Lemma III. Cor. 4) the arc which is their curvilinear limit, the areas become curvilinear areas, and the similar rectilinear figures similar curvilinear figures.

Note 1. No proof of this Lemma is given by Newton, the truth of it appearing at once from Lemma III. Cor. 4, and Euclid VI. 20, as indicated above.

Note 2. All lines which are proportional in similar rectilinear figures are proportional in the similar curvilinear figures which are their limits. And it appears, from Euclid VI. 20, that lines joining corresponding pairs of points in two similar rectilinear figures are all proportional to each other; this is therefore also true of similar curvilinear figures.

Lemma VI.

If any aic given in position be subtended by a chord AD , and be touched at a point A in the midst of conlinuous curcature by a straight line Al) produced in either direction; then, if the points A, B move up to each other and finally coincide, the angle BAD between the chord and the tangent shall diminish indefinitely and ultimately ranish.

For if that angle does not vanish the arc $A C B$ will make with the tangent $A D$ an angle equal to a rectilineal

angle, and hence the curvature will not be continuous; contrary to the hypothesis.

Note. A straight line $A D$ touches a curve $A C B$ when it ccinciles with the limiting position of a straight line joining A with a point of the curve near A which moves up to and ultimately coincides with A. Thus the limiting position of $A B$ touches the curve at A; and if it does not coincide with $A D$, there are two straight lines touching the curve at A, so that the curve in passing through A passes abruptly from contact with the limiting position of $A B$ to contact with $A D$; in this case, the curvature at A, that is, its rate of separation from the line that touches it at A, changes abruptly, and is therefore not continuous.

Lemma ViI.

If any are giren in position be subtended by a chord AB , and be touched at a point A in the midst of continu, wes curvature by a straight line AJ) ; the ultimute ratio betocen the arc, chord, and tangent is a ratio of equality.

For while the point B moves up to A, suppose $A B$ and -ID to be produced to distant points b and d, so that $l d$ is
parallel to $B D$. At $A b$ let an are be described alwars similar to the are $A C B$. Then, when the points A, B

coincide, the angle $d A b$ vanishes, by the preceding Lemma; and thus the straight lines $A b, A d$ and the intermediate arc $A c b$ coincide, and are therefore equal. Hence the straight lines $A B, A D$ (which are always proportional to $A b, A d)$ and the intermediate arc $A C B$, will ultimately vanish in a ratio of equality. Q.e.d.

Cor. 1. Hence, if $B F$ be drawn through B parallel to the tangent cutting any straight line $A F$ through A in F, this line $B F$ will ultimately have to the vanishing are

$A C B$ a ratio of equality, since-completing the parallelogram $A F B D$-it has always a ratio of equality to $A D$.

Cor. 2. And if through B and A be drawn several straight lines $B E, B D, A F, A G$, cutting the tangent $A 1$) and the parallel to it $B F$; the ultimate ratio of all the abscisse $A D, A E, B F, B G$, and of the chord and arc $A B$, will be a ratio of equality.

Cor. 3. And hence all these lines, in all reasoning on ultimate ratios, may be used one for another.

Note 1. By distant points b, d are meant points taken so as to be always at a finite distance from A (see note to Lemma I.).

Note 2. By the tangent $A D$ in this Lemma, is meant a part of the unlimited tangent at A cut off by a line $B D$ which always make a finite angle with it. For in the proof it is assumed that the points b and d coincide in the limit, which they do not necessarily unless bd makes always a finite angle with $A d$.

Note 3. It is here assumed that $A c b$ is always touched by $A d$. That it is so may be seen thus: by the properties of similar figures (ride Lemma V. Note 2) straight lines from A to corresponding points on $A C B, A c b$ make the same angle with $A B$ or $A b$, and are proportional to $A B, A b$. Hence any straight line through A meeting the two curves will be divided by them in the constant ratio of $A B$ to $A \%$. If then such a line be supposed to move up to and ultimately coincide with $A D$, the portion cut off by $A C B$ vanishes, since $A D$ touches $A C B$; therefure the portion cut off by $A c b$ vanishes, and consequently $A D$ touches $A c b$.

Note 4. These observations apply also to the two following Lemmas.

Note 5. In this and succeeding Lemmas Newton.finds the limiting ratio of vanishing quantities by taking quantities always proportional to them, one of these new quantities, as All, remaining finite; he thus determines the ratios of quantities which vanish by means of the ratios of quantities which do not vanish.

The figure which the Lemma is concerned with may in fact be conceived to be magnified, the magnifying power applied being continually increased as the figure continually diminishes, so as to keep the image continually finite.

Note 6. If one angle A of a triangle ABD continually diminishes and ultimately vanishes, the others remainin! finite, the ratio of the sides including the angle whirh ranishcs is in the limit a ratio of equality.

This proposition is incidentally proved in this Lemma.
Note 7. In this and succeeding Lemmas, the magnified lines and areas are proved to be erpual, by Lemma I.; and hence the vanishing lines and areas, which are always proportional to them, vanish in a ratio of equality.

Thus, in this Lemma, we have $A d$ equal to $A b$, by Lemma I.; and therefore $A D, A B$ vanish in a ratio of equality.

Lemma VIII.

If the straight lines AR, BR make with the chord AB , the arc ACB and the tangent AD , the three triangles RAB, RACB, RAD ; then, if the points A, B move up to

cach other, the evanescent triangles are ultimately similar, and their ratio is a ratio of equality.

For, while the point B moves up to A, suppose $A B$, $A D, A R$ to be produced to distant points b, d, r so that $r b d$ is parallel to $R D$, and an are $A c d$ to be described always similar to $A C B$.

Then, when the points A, B eoincide, the angle $b A d$ will vanish, and therefore the triangles $r A b, r A c b, r A d$ (which remain always finite) will coincide, and be, for that reason, similar and equal. Hence, also, RAB, RAC'B, $R A D$, which are always similar and equal to them, will be ultimately similar and equal to each other. Q.E.D.

Cor. And hence these triangles, in all reasoning on ultimate ratios, may be used one for another.

Note 1. For the direct application of Lemma I. to the proof of this Lemma it is essential that the triangle $r A d$ should be finite, and therefore that its angles, and the angles which are equal to them of the triangle $R A D$, should be finite. Hence $R D$ moves up to A in such a manner as to make finite angles with $A B$ and $A R$; and the points R, D ultimately coincide with A.

Note 2. The Lemma is also true if R is fixed and $R D$ revolves about R so as ultimately to coincide with $R A$, for then r moves to an infinite distance, and therefore the triangles $r A b, r A c b$, $r A d$ are ultimately in a ratio of equality.

Note 3. Let $B T$, the tangent at B, meet the tangent at A in T.
Then by using the construction and method of proof of this Lemma it is easy to see that the figure $A T B R$ is ultimately in a ratio of equality with the triangles $A B R, A D R$, and the area $A C B R$.

Note 4. In the case of this Lemma, and also in the case of Note 2 , that is when $A R, I B R$ make always finite angles with $A D$,

$$
L \cdot R \cdot R B: R D=L \cdot R \cdot r b: r d=1 .
$$

Lemma IN.

If the straight line AE amel the curre ABC , giren in position, cut one another at a given angle 1 , amd ordimates B1), CE be drawn to the straight line, mueting the curre in B, C; then if the points B, C more up simultuneously to the point A , the areas of the triungles ABD ,

ACE will be to each other ultimately in the duplicate ratio of the sides.

For while the points B, C are moving up to the point A, suppose $A D$ to be produced to the distant points d and

e, so that $A d, A e$ may be always proportional to $A D, A E$, and the ordinates $d b, e c$ to be drawn parallel to the ordinates $D B, E C$ and meeting $A B, A C$ produced in b and c.

And suppose a curre $A b c$ to be drawn similar to $A B C$. and the straight line $A g$ touching both curves in A, and cutting the ordinates $D B, E C, d b, e c$ in F, G, f, g.

Then the length $A e$ being fixed, let the points B, C, coincide with A; thus, when the angle $c A g$ vanishes, the curvilinear areas $A b d$, Ace will coincide with the rectilinear areas Afd, Age, and will thereforo (by Lemma V.), be in the duplicate ratio of the sides $A d, A c$.

But to these areas the areas $A B D, A C E$, are always proportional, and to these sides the sides $A D, A E$.

Therefore also the areas $A B D, A C E$ are ultimately in the duplicate ratio of the sides $A D, A E$. Q.E.d.

Note 1. In this Lemma the angle A which $A E$ makes with the curve must be finite: for the proof will not bold if $A E$ coincides in the limit with the tangent $A D$.

Note 2. Since $D F$ is to $D B$ as $d f$ to $d b$; and that $d f$ is ultimately equal to $d b$, because the angle $f A b$ vanishes; therefore the ultimate ratio of $D F$ to $D B$ is one of equality.

Lemma \mathbf{X}.

The spaces described by a body under the action of any finite force, whether that force be constant or either continually increasing or continually diminishing, are at the rery begimning of the motion in the duplicate ratio "f the times.

Let the times be represented by the lines $A D, A E$, and the velocities generated by the ordinates $D B, E C$.

Then the spaces deseribed with these velocities will be as the areas $A B D, A C E$ described by these ordinates, that is at the very beginning of the motion (by Lemma IN.), in the duplicate ratio of the times $A D, A E$. Q.e.d.

Note 1. The object of this Lemma is to determine in what manner the displacement of a body by any finite force will initially vary with the time during which its action is considered; or starting from any given moment, what amounts of diwplacement the body will experience due to the action of the force during indefinitely small intervals of time.

Note 2. By a finite force is meant a force which, if it remained constant for a finite time, would produce a finite change in the motion of a body; that is, would produce a finite change in its velocity. Thus in the figure, if the initial force had remained constant throughout the time Ae, it would have gencrated in the body the finite velocity $a g$: and since the velocity generated by a constant force is equal in equal times, the velocity generated is
proportional to the time; the velocity generated in time AI) would thus have been $D F$; and since $e g$ is finite $D F$ bears always, and therefore ultimately, a finite ratio to $A D$.

Hence the ultimate ratio of the measure of the velocity generated by a finite force to the measure of the time is finite; so that $A g$ makes a finite angle with $A a$, and thus Lemma IX. is applicable.

Note 3. To shew that the space described in any time $A E$ by the action of the force is represented by the area $A C E$ we proceed as follows:

Suppose the time $A E$ divided into any number of equal intervals

AII, $I I K, K L$, \&c., and let parallelograms $A h, I I k, K l$, \&c. on these bases, be inscribed in the figure $A c$ as in Lemma II.

Then $A h, I k, K l, \& c$., are the spaces which would be described in the times $A H, H K, K L$, \&c., by a succession of impulses which should cause the body to move during the successive intervals with the velocities $I I h, K k k, L l$, \& $\cdot \mathrm{c}$.

Thus the space described in the time $A E$ is represented by the sum of the parallelograms.

And when these intervals are increased in number and diminishod in magnitude without limit, the space described becomes by Lemma II. the area AEC; and the series of impulses then becomes a continuous force causing the body to have at each instant, as at end of time ΛL, the velocity represented by $L l$ drawn perpendicular to $A L$ to meet the curve.

Note 4. To find a measure for a force in terms of the space described from rest by a boly under its action, and the time.
liy Def. 7. the accelerating force is proportional to the velocity generated in a given time: thus a uniform force is measured by the velocity generated in a unit of time; or, which is the same thing, by the ratio which the velocity generated in a given time bears to the time. In the same way a variable force may be measured provided the given time be taken indefinitely small (Def. 7, note 2).

Let v be the velocity produced in time t by the action of the force, s the space described; then ${ }_{t}{ }^{v}$, when t is indefinitely diminished, is the accelerating measure of the force. Now in the figure to Lemma $\mathbf{\lambda}$.,

$$
\text { L. R. of area } A B D \text { to triangle } A B D=1 \text {; }
$$

or L. R. of space described from rest : ${\underset{2}{2}}^{1}{ }^{v t} t=1$;
$\therefore f=$ accelerating measure of the force

$$
\begin{aligned}
& =\operatorname{limit}{ }_{t}^{v}=\operatorname{limit} \frac{r t}{t^{2}} \\
& =\operatorname{limit} \begin{array}{c}
2 \times \text { space from rest } \\
(\text { time })^{2}
\end{array} .
\end{aligned}
$$

We have then

$$
f=\operatorname{limit}_{t}^{v},
$$

and

$$
f=\operatorname{limit} \frac{28}{t^{2}}
$$

$$
=\operatorname{limit} \stackrel{2 s}{2 s}{ }_{v^{2}}^{2 s} \cdot \frac{v^{2}}{t^{2}}
$$

$$
=\operatorname{limit} \frac{28 f^{2}}{v^{2}} \text {; }
$$

hence

$$
\begin{aligned}
& 1=\operatorname{limit} \frac{2 f 8}{v^{2}}, \\
& f=\operatorname{limit} \frac{v^{3}}{28} .
\end{aligned}
$$

Thus we have three expressions for the force; viz. the limit of

$$
\frac{v}{t} \text {, of } \frac{2 s}{t^{2}}, \text { and of } \frac{r^{2}}{28} .
$$

Note 5. If the force is uniform, let the ordinates $B D, C E$

perpendicular to $A E$ represent the velocities produced by it in the times $A D, A E$.

Since the force is uniform $B D$ is proportional to $A D$; and the locus of B is the straight line $A B C$.

Let $A D=t: B D=v: f$ the accelerating measure of the force :

$$
\therefore v=f t .
$$

Again, let s be the space described from rest in time t;
then $\quad s=$ triangle $A D B=\frac{1}{2} v t=\frac{1}{2} f t^{2}$:

$$
\therefore v^{2}=f^{2} t^{2}=2 f s:
$$

thus for a uniform force f,

$$
\frac{v}{t}=\frac{2 s}{t^{2}}=\frac{v^{2}}{2 s}=f
$$

Def. When a body is moving under the action of a centripetal force, the space through which it would have to fall from rest in a straight line to the centre of force, (the furce being sup. posed to remain constant,) in order to acquire a given velocity, is called the space due to that velocity.

Thus if f be the accelerating force, v the velocity, the space due to the velocity $=\frac{v^{2}}{2 f}$.

Cor. 1. Hence it is easily inferred that, when bodies which describe similar parts of similar curves in proportional times, are disturbed by any equal forces similarly applied to them, the errors so generated, measured by the
distances of the bodies from those points on the similar figures which they would have reached without these forces, are as nearly as posible as the squares of the times in which they are generated.

Con. 2. But the errors generated by proportional forces similarly applied at similar parts of similar figures, are as the forces and squares of the times conjointly.

Cor. 3. The same is true of any spaces whatever which bodies describe ly the action of different furces. These are, at the very begiming of the motion, as the forces and the squares of the times conjointly.

Cor. 4. And therefore the forces are directly as the pates de-cribed at the very begiming of the motion and inversely as the squares of the times.

Con. 5. And the squares of the times are directly as the spaces described and inversely as the forces.

Note 1. By equal forces in Cor. 1 are meant forces capable of pronlucing equal accelerations; for example, the forces exerted by a planet on the Eart! and Moon when these are at the same distance from the planet are, in this sense, considered equal, becanse they produce equal accelerations in the two bodies. It is found in mature that bodies possess by their attractions a power of producing acceleration, which power depends on the mass of the attracting body and on its distance from the body attracted, but not on the mass of the latter body: this power is called by Newton the arcelerating force of the attracting body, and is measured by the acceleration produced.

The moring forre exerted on a body by this accelerating force is measured according to the second law of motion by the whole motion produced, that is, by the mass of the body moved and its acceleration conjointly.

Note 2. By the crror in these corollaries is meant the distance of the point actually reached at the end of the time from the point which would have been reached if the disturling force had not been acting. The change of motion by which the borly has been brought to the former point instead of the latter is, by the second law of motion, always proportional to and iu the direction of the moving force to which it is due.

If the force were, throughout the small time during which it is supposed to act, constant in direction, the straight line joining the points would be the path of the body due to the force, and is (since the Lemma is approximately true for small intervals of time) very nearly proportional to the square of the time.

If, however, the direction of the force during that time were not constant, the motion of the body which is due to the disturbing force would be in a curve joining the two points; the curvature of this curve from point to point corresponding to the change of direction of the force ; but in a small interval of time this change of direction, and therefore the curvature of the curve, may be neglected, and the error, which is approximately proportional to the square of the time, is approximately the straight line joining the two points.

Note 3. By proportional forces in Cor. 2 are meant forces which produce proportional accelerations. The quantities of motion produced in equal times under the action of forces producing proportional accelerations, must be, by the second law of motion, proportional to the moving forces; the spaces described must therefore be in the ratio of the accelerating forces; and by the Lemma, the spaces due to the action of equal aceclerating forces are proportional to the squares of the times.

Hence the spaces due to the action of different accelerating forecs during unequal times are proportional to the accelerating forces and the squares of the times conjointly.

Scholitm.

If varying quantitics of different kinds be compared together, and oue be said to be directly or inversely as another; the meaning is that the one increases or diminishes in the same ratio as the latter or as its reciprocal. And if any quantity be said to be directly or inversely as two or more others, the meaning is that the first increases or diminishes in the ratio which is compounded of the ratios in which the others or the reciprocals of the others increase or diminish. Thus, if A be said to be directly as B and C and inversely as D : the meaning is that A increascs or diminishes in the same ratio as $B \times C \times \frac{1}{D}$; that is, that A and $\frac{B C}{D}$ are to each other in a given ratio.

Lemma XI.

The ranishing subtense of the angle of contact, in all carres which hare finite curcature at the point of contact, is ultimately in the duplicate ratio of the chord of the conterminous arc.

Case 1. Let $A B$ be the are, $A D$ its tangent, $A B$ the chord; and let the sultense $B D$ of the angle of contact be perpendicular to the tangent.

To the ehord $A B$ and the tangent $A D$ draw perpendiculars $B G, A G$ meeting in G; and let the points B, D, G

move towards the points d, b, g, and I be the ultimate intersection of the lines $B G, A G$ when the points D, B move up to A.

It is evident that the distance GI may be made less than any assignable length.

Now (from the nature of the circles through the points $A B G, A h g)$ the square on $A B$ is equal to the rectangle under $A(i$ and $B I$, and the square on $A b$ is equal to the rectangle under $A g$ and $b d$; and thus the ratio of the square on $A B$ to the square on $A l$ is comprounded of the ratios of $A G$ to $A g$ and $B D$ to $b d$.

But since GI may be made less than any assignable length, the ratio of $A G$ to $A g$ may be mado to differ from a ratio of equality by less than any assigned difference, and therefore the ratio of the square on $A B$ to the square on $A b$
may be made to differ from the ratio of $B D$ to $b d$ by less than any assigned difference. Therefore, by Lemma I., the ultimate ratio of the square on $A B$ to the square on $A b$ is the same as the ultimate ratio of $B D$ to $b d$. Q.E.D.

Case 2. Now let $B D$ be inclined to $A D$ at any given angle; the ultimate ratio of $B D$ to $b d$ will always be the same as before (Note 2), and therefore the same as that of the square on $A B$ to the square on $A b$. Q.E.D.

Case 3. And even if the angle at D were not given, but the straight line $B D$ were to converge to a given point or were drawn according to any other law whatever; still the angles at D, d, being constructed according to the same law, will always tend to equality and will approach each other more nearly than for any assigned difference, and will therefore by Lemma I. be ultimately equal, and consequently (Note 3) the lines $B D, b \not b$ will be ultimately to each other in the same ratio as before. Q.e.d.

Note 1. In Case 1 it is assumed in the proof that I is at a finite distance from A, or that the circle which touches the curve at A and passes through B becomes neither indefinitely great nor indefinitely small when 13 moves up to and coincides with A. This is implied in the phrase finite curvature in the enunciation.

Note 2. The ultimate ratio $B D$ to $b d$ is the same in Case 2 as in Case 1, because any parallel straight lines through B and b make with $B D, A D$, and with $b d, A d$, a pair of similar triangles.

Note 3. To complete the proof of Case 3, draw a straight line $b e$ always parallel to $B D$: then, since the angles at D and c

are ultimately equal, the angles at e and d are ultimately equal, and their difference, the angle $d b c$, ultimately vanishes.

Therefore, by the proof of Lemma VII., the ultimate ratio of $b d$ to be is one of equality : and thus the ultimate ratio of $B D$ to $b d$ is the same as that of $B D$ to $b c$, that is, it is the ultimate ratio of the squares on $A B$ and $A b$, by Case 2 .

Cor. 1. Hence, when the tangents $A D, A d$, the arcs $A B, A l$, and the lines $B C, b c$, perpendicular to $A G$, become ultimately equal to the chords $A B, A b$, their squares also will ultimately be as the subtenses $B D, b d$.

Cor. 2. The squares of the same lines are also as the sagittie (Note 1) of the arcs, which bisect the chords and converge to a given point. For these sagittae are as the subtenses $B I$), bul.

Con. 3. Thus the sagitta is in the duplicate ratio of the time in which a body deseribes the are with a given velocity.

Cor. 4. The rectilinear triangles $A D B, A d b$ are ultimately in the duplicate ratio of the sides $A D, A d$, and in the sesquiplicate ratio of the sides $I M B, a b$; for they are in the ratio compounded of the ratios of $A D$ and D / B to $A d$ end dll. So also the triangles $A B C, A b c$ are ultimately in the triplicate ratio of the sides $B C$, bc. The sesquiplicate ratio-which is the ratio compounded of the simple and subduplicate ratios-is also called the subduplicate of the triplicate ratio.

Con. 5. And since $D 13, d b$ are ultimately parallel and in the duplicate ratio of $A D, A d$, the curvilinear areas $A D B, A d b$ will ultimately (from the nature of the parabola, Note 2) be two-thirds of the rectilinear triangles $A D B$, $A d b$; and the segments $A B, A b$ will be the third parts of the same triangles.

And hence these areas and these segments will be in the triplicate ratio of the tangents $A D, A d$, and of tho chords and ares $A B, A b$.

Note 1. Dep. By a sagitta of an ave is meant a straight line drawn at a finite angle to its chord from the middle point of it to meet the arc.

The sagitte of the arcs $A B, A b$ are as the subtenses parallel to them.

For let $E K F$ be the sagitta parallel to $B D$ of the arc $A K B$:

so that $A B$ is twice $A E$, and therefore $A D$ twice $A F$, and $D B$ twice $E F$.

Then by Cor. 1 of the Lemma, since $A D$ is twice $A F, D P$ is ultimately to $K F$ in the ratio of 4 to 1 ; therefore the ultimate ratio of $E F$ to $K F$ is 2 to 1 ; therefore that of $E K$ to $E F$ is 1 to 2 ; and hence that of $E K$ to $D B$ is 1 to 4.

Thus the sagitte vary as the subtenses parallel to them, and are therefore to each other as the squares of the arcs, chords, and tangents.

Note 2. Since the ultimate ratio of the square on $A D$ to the rectangle under $D B$ and $A I$ is a ratio of equality, if a parabola were described touching $A D$ at A, having A for its vertex and a latus rectum equal to $A I$, the ordinates to the parabola and the curve for any the same abscissa $A D$ are ultimately in a ratio of equality: hence, by Lemma IV., the areas which $A D, D B$ include with the parabola and with the curve are ultimately in a ratio of equality.

That this area is two-thirds of the area of the triangle $A D \eta$; is proved thus. Complete the parallelngram $A D B C$ as in the figure to the Lemma. Then the curvilinear area $A B C$ is twothirds of the parallelogram $A D B C$ (Appendix, Lemma II.); therefore the curvilinear area $A B D$ is one-third of this parallelogram, and thus, two-thirds of the triangle $A D B$.

Scholicm.

In all that precedes we suppose that the angle of contact (Note 1) is neither infinitely greater than the angles of contact which circles make with their tangents,
nor infinitely less; that is, that the curvature (Note 2) at the point A is neither infinitely small nor infinitely great, or that the distance $-1 I$ is finite. For $D B$ can be taken as $1 / J^{3}$, in which ease no circle can be drawn through the point A between the tangent $A I$) and the curve $A B$, and consequently the angle of contact will be infinitely less than in circles. And by similar reasming, if $D B$ be made
 series of angles of contant extending to infinity of which each is intinitely less than the preceding. Also if DIB he
 there will be another infinite series of angles of contact, of which the first is of the same kind as in cireles, the second infinitely greater, and each infinitely greater than the preceding. And moreover, between any two of these angles con be inserted a serics of intermediate angles extending to infinity in either direction, every one of which is infinitely greater or smaller than the preceding. Thus we may ineert between the terms $I I D^{2}$ and $A J^{3}$ the series
 . i $^{\prime}{ }^{\prime}$.... Aud again between any two angles of this series can be inserted a new series of angles, intermediate between them, and differing from them by infinite intervals. And in the nature of things there can be no limit to the process.

The properties proved of curved lines and areas endosed by them are carily applied to curved surfaces and contents of solids. But these lemmas have hecn introduced to escape the tedions ad absurdum method of proof adopted ly the ohd geometers. For the proofs are made shorter ly the method of indivisibles; but as the hypothesis of indivisilhes is somewhat harsh. and that methond consequently must the eonsidered somewhat ungeometrical, it has been thomght better to reduce the demonstrations of the following propositions to the ultimate sums and ratios of vamishing quantities, and the prime sums and ratios of naseent quantities; and accordingly to give, as briefly as possible, demonstrations of these limits. For while we thas establish the same prineiples as by the method of indivisibles, we shall use them with greater
safety. In what follows, then, if quantities are treated as consisting of small parts, or if small curve lines be considered straight, they are to be understood not as being indivisibles but evanescent divisibles, and their sums and ratios not as the sums and ratios of determinate parts but as the limits of sums and ratios; and the foree of the proofs is made to depend on the method of the preceding Lemmas. It may be objected that there is no ultimate proportion of vanishing quantities; for, before they have vanished it is not ultimate, and when they have vanished there is no proportion. But by the same argument it might be contended that there is no ultimate velocity of a body arriving at a certain place, where its motion comes to an end; for the velocity before the body arrives at the place is not the ultimate veloeity, and when it reaches it, there is no velocity. And the answer is easy: namely, that by the ultimate velocity is to be understood the velocity with which the body is moving, neither before it reaches the ultimate position where the motion ceases, nor afterwards, but at the moment it arrives there; that is, that very velocity with which the body reaches the ultimate position, and with which the motion ceases. And similarly we are to understand by the ultimate ratio of vanishing quantities not their ratio before they vanish nor after, but that with which they vanish. Similarly the prime ratio of nascent quantities is the ratio with which they begin to exist. And prime and ultimate sums are the sums with which they begin and cease to be (or to be increased or diminished). There is a limit which the velocity can attain at the end of the motion, but camnot exceed; this is the ultimate velocity. And similarly for the ratio of the limits of all quantities and proportions in their initial and final statcs. And since this limit is a certain and definite result it is strictly a geometrical problem to determine it. But any geometrical method may legitimately be used in determining and demonstrating other geometrical results.

It may also be contended that, if ultimate ratios be given of vanishing quantities, it must be granted that they have ultimate magnitudes: and thus every quantity will consist of indivisibles, enntrary to what Euclid has proved in reference to incommensurable quantities in the tenth
book of the elements. But this objection rests on a false hypothesis. The ultimate ratios with which quantities vanish are in fact not the ratios of ultimate quantities, but limits which the ratios of quantitics diminishing without limit continually approach, and which they can come nearer to than for any assigned difference, but never go beyond, and which they cannot reach before the quantities are indefinitely diminished. The matter will he more clearly understood in the case of quantities which are indefinitely great. If two quantities, whose difference is given, be increased indefinitely, their ultimate ratio will be given, namely a ratio of equality, and yet there is not given any ultimate or greatest quantities of which that is the ratio. In what follows, therefore, if ever, with a view to making any matter easier to comprehend, quantities are spoken of as being as small as possible or evanescent or ultimate, quantities of determinate magnitude are not meant, but quantities which are to be conceived as diminishing without limit.

Note 1. Angle of contact. L.t $A D$ be the tangent at A to a curve $A l B ; A B$ any small are of the curve: then angle $B A D$

is the angle of contact of the arc $A B$. Draw $B I$) at ripht angles to $A /$). With centre A describe an arc of a circle 1 BF ; moeting the tangent at A in E : then the angle of contact of are $A B$ with the tangent at $A=$ ratio of $B E \cdot$ to chord $A B$.

Let $A^{\prime} I I^{\prime}$ be the tangent at A^{\prime} to any other curve $A^{\prime} I^{\prime} ; J^{\prime} E^{\prime \prime}$ an arc of a circle cutting the tangent at A^{\prime} in $E^{\prime \prime}$; draw $\left(X^{\prime} l\right)^{\prime}$ at right angles to $A^{\prime} D^{\prime}$: the angle of contact of $A B$ is to angle of contact of $A^{\prime} B^{\prime}$ as ratio of $B E$ to $H B E^{\prime \prime}$ is to ratio of chord $A B$ to chord $A^{\prime} I K^{\prime}$. But the limiting ratio of $B E \prime$ to $A E^{\prime}$ is equal to ratio of $B 1$) to $B^{\prime} D^{\prime}$ (by Lemma VII. Cor. 1); and the limiting
ratio of chord $A B$, to chord $A^{\prime} B^{\prime}$ is equal to the ratio of are $A B$ to arc $A^{\prime} D^{\prime}$, and of tangent $A D$ to tangent $A^{\prime} D^{\prime}$. Hence, the limiting ratio of the angles of contact of two arcs of any curves is the ratio which the ratio of the subtenses bears to the ratios of the ares, chords, or tangents: and thus, the limiting ratio of the anylles of contact of two ares is that of the subtenses of equal ares, chords, or tangents.

Note 2 . Let $A D$ be the common tangent at A to any two curves $A B, A B^{\prime}$: draw $D B B^{\prime}$ at any finite angle to $A D$ ineeting

the curves in $B B^{\prime}$; join $A B, A B^{\prime}$. Then the angles $B A D, D^{\prime} A D$ are the angles of contact of the curves at A with the tangent $A D$.

When B and B^{\prime} move up to A, the limiting ratio of the angle of contact of $A B$ to that of $A B^{\prime}$ or of angle $B A D$ to angle $B^{\prime} A D$ may be finite, or zero, or infinite; if zero, the angle of contact of $A B$ is said to be infinitely smaller than that of $A B^{\prime}$; if infinite, infinitely greater.

If $A B^{\prime}$ be an arc of a circle, the angle of contact of $A B$ is said to be finite or infinitely small or infinitely great according as the limiting ratio of the angle $B A D$ to the angle $B^{\prime} A D$ is finite, zero, or infinite.

Note 3. The curvatures of curves are comparel by comparing at any points the angles of contact with the same or equal tangents. If the limiting ratio of these angles is one of equality the curvatures are said to be equal, or the curves are said to have the same curvature at those points. If the limiting ratio of the angle $B A D$ to $B^{\prime} A D$ be less than unity, the curvature of $A B$ at A is less than that of $A B^{\prime}$; if greater than unity, the curvature of $A B$ is the greater.

If the limiting ratio of the augle of contact of $A B$ to that of $A j^{\prime}$ be zero or infinite, the curvature of $A B$ at A is said to he infinitely less or infinitely greater than that of $A B^{\prime}$; or, if $A B^{\prime}$ le a circle, to be infinitely small or infinitely great.

Note 4. Def. By the circle of currature of a curve at any mint is meant the circle which hus the same curvature (Note 3) ats the curve at that point.

Thus in the Lemma the limiting position of the circle described about the triangle $A B G$ is the circle of curvature of the curve $A B$ at A.

The eirele of curvature to a curve at A is therefore the limiting position of the circle which has the same tangent as the curve at A and passes through a point B near A, when B moves up to and coincides with A.

Or, the circle of curvature at A is the circle which touches the curve at A, and the limiting ratio of the subtense of which for a given tangent . $1 /$) to the sultense $1 ; 1$) of the curve is one of equality.

Note 5. Def. The diameter and radius of the circle of rurcature at any print P of a curve are gomerally called the diameter and radius of curveture of the curre at that point; und "chord of the circle through P ' in any dircction is called the chord of curratare at P ' in that direction.

SECTION II.

On finding Centripetal Forces.

Prop. I. (Theorem I.)

When a body moves in an orbit under the action of forces tending to a fixed centre, the areas described by radii to that centre are in a fired plane, and are proportional to the times of describing them.

Suppose the time to be divided into equal parts, and in the first part the body to describe by its inertia the straight line $A B$; the body would, if unimpeded, proceed in the second part of the time straight on to c (by Law 1), describing the line $B c$ equal to $A B$; so that radii $A S, B S$, $c S$ being drawn to the centre, there would be formed the equal areas $A S B, B S c$.

But when the body comes to B, suppose a centripetal force to act on it by a single but great impulse, so as to make the body swerve from the straight line $B c$ and g_{0} in the straight line $B C$. To $B S$ let a parallel $c C$ be drawn, meeting $B C$ in C ': then at the end of the second part of the time, the body will (by Cor. 1 of the laws of motion) be found at C 'in the same plane with the triangle $A S B$.

Join $S C$; then the triangle $S B C$ will, because $S B, C C$ are para!lel, he equal to the triang!e $S B c$, and therefore to the triangle $S A B$.

By similar reasoning, if a centripetal foree acts successively at ' ', I, $E, \&$ \& making the boly describe in the several portions of time the several straight lines ('D, DE, $E F$, \&e these will all lie in the same phane, and the triangle $M^{\prime} I$) will he equal to the triangle SBC, and SDE to $S(I)$, and $S E F$ to $S D E$; therefore in equal times equal areas are deseribed in a fixed plane: and componendo, any sums of these areas, as SADS'S.SAS', are as the times of describing them.

Now let the number of triangles be increased and their width diminished indefinitely; then the limit of the perimeter ADF' will (hy Lemma III. Cor. f be a curve; and thus the centripetal foree by which the body is perpetually drawn away from the tangent to this curve will act incessantly; and the areas which are deseribed, as SADS, SAF', being always proportional to the times of describing them, will be proportional to the times in this case. Q.e.d.

Note. The motion of the body in the proof of this proposition is determined by impulses towards s acting at the end of equal intervals of time in which the body describes $A B, B C$, $C D, \ldots \ldots$; for each one of these times it receives one impulse. Thus $C \cdot$ is the effect of the impulse correspouding to the time t of describing $A 13$: and the impulse is measured an to its accelerating quantity (Def. 7) by the velocity which it generates in a given time; also the accelerating effect of the force is to generate in an interval of time t the velocity with which the body describes Cc in time t.

Now velocity generated in time $t=\frac{C c}{t}$,
\therefore accelerative measure of the force

$$
\begin{aligned}
& =\text { limit of } \frac{\text { velocity generated in time } t}{t} \\
& =\text { limit of } C c \\
& t^{2} .
\end{aligned}
$$

Cor. 1. The velocity of a body attracted to a fixed centre is (at any point in its orbit), in non-resisting spaces, reciprocally as the perpendicular let fall from that centre on the straight line touching the orbit at that point.

For the velocities at the points A, B, C, D, E are as the lases $A B, B C, C D, D E, E F$ of equal triangles; and these bases are reciprocally as the perpendiculars let fall upon them.

Note. If v be the velocity at A, p the perpendicular on $A B$ from S, t the time of describing $A B$; then $A B=v t$; therefore $r_{p} t=2 \times$ area of triangle SA B.

Let now $h=2 \times$ area described by the body about S in a unit of time ; then, since equal areas are described in equal times, $h t=2 \times$ area described in t units of time:
$=2 \times$ area of triangle $S . A B$,
or $\quad \quad \quad l t=\imath p t$;
the:efore $\quad h=\tau p$.
This equation is a symbolical expression of the law of equable description of areas.

Con. 2. If $A B, B C$ are chords of two arcs successively described in equal times in non-resisting spaces by the same body, and the parallelogram $A B C U$ be completed, and its diagonal $B U$, in the position which it ultimately takes when those axes are diminished indefinitely, be produced both ways; $B U$ will pass through the centre of forces.

Note. Draw $C U$ parallel to $A B C$, meeting $S B$ in U : join $A C^{*}$. Then since $C U$ is equal and parallel to $B c$ which is equal to $A B$, $\triangle B C U$ is a parallelogram (Euc. i. 33).

Cor. 3. If $A B, B C, D E, E F$ be chords of arcs described in equal times in non-resisting spaces, and the parallelograms $A B C U, D E F Z$ be completed; the forces at B and E are to each other in the ultimate ratio of the diagonals $B U, E Z$ when those ares are diminished indefinitely.

For the motions $B C$ and $E F$ of the boly are compounded (by Cor. 1 of the Laws) of the motions $B C, B U$ and $E f, E Z$; but $B U$ and $E Z$, being equal to $C ' c$ and $F \prime$, were (in the proof of this proposition) described by the impulses at B and E of the centripetal force, and are therefore proportional to these impulses.

Core 4. The forces by which any bodies in non-resisting spaces are drawn away from rectilinear motions and deflected into curved orbits, are to one another as those sagitte of ares described in equal times which eonserge to the centre of forces, and bisect the chords when those ares are diminished indefinitely.

For these sugittee are the halves of the diagonals with which we had to do in the third Corollary.

Notc. Let $1 C$ meet $B I^{\circ}$ in g; then $C y=g A$, and $B y={ }_{2}^{1} B C^{\circ}$: a'so accelcrative measure of force at B

$$
\begin{aligned}
& =\text { limit of } t_{t^{2}}^{C^{\prime}} \text { (Prop. I. Note 1), } \\
& =\text { limit of } \begin{array}{c}
2 B g \\
t^{2}
\end{array} \text {; where } t \text { is the time of de. }
\end{aligned}
$$

keribing A B.
Cor. 5. And therefore these forces are to the force of gravity an those sagitte are to sagittae drawn vertically to parabolic ares which projectiles describe in the same time.

Con. fo. The same things hohl (by Cor. 5 of the Laws), when the planes in which the bodies move, together with the centres of forces which are in those planes, are not at rest, but in uniform motion in a straight line.

Prop. II. (Theorem II.)

Erery lonly, which mores in a plame curre, and rhich -by a rudius drarn cither to a fired point or to a puint mocing uniformly in a straight lini-describes areus about that point proportional to the times, is acted on by a centripetal firce tending to that point.

Case: 1. For every body which moves in a curve is deflected from a rectilincar course by some force acting on it (by Law 1).

And the force, by which a body is deflected from a rectilinear course, and compelled to describe the equal in-

definitely small triangles $S A B, S B C, S C D$, \&c. about the fixed point S in equal times, acts at B in a line parallel to $c C$ (by Euc. I. 40, and Law 2), that is, in the line $B S$; and at C in a line parallel to $d D$, that is, in the line $C S ;$

Thercfore the force acts always in lines tending to the fixed point S.

Case 2. And, by the fifth Corollary of the Laws, this is true, whether the surface in which the body describes the eurvilinear figure be at rest, or be moving together with the body, the figure described, and the point S, uniformly in a straight line.

Cor. l. In non-resisting spaces or media, if the areas are not proportional to the times, the forces do not tend to the point in which the radii meet; but deviate from that direction; in consequentia, or towards the direction of motion, if the description of arcas is accelerated; in antecedentia, if it is retarded.

Cor. 2. Also in resisting media, if the description of areas is accelerated, the directions of the forces deviate from the point in which the radii meet towards the direction of motion.

Note. In this proposition, as in Prop. I., the force is supposed to act by impulses at equal indefinitely small intervals of time, so that the boly describes successively $A B, B C, C D, \& c$.: also $L C$ is equal to $A B$ as in Prop. I.; hence

$$
\triangle S B C=\triangle S .1 B=\triangle S B C,
$$

nince equal areas are described in equal times; therefore by Euc. I. $40, c C^{\prime}$ is parallel to $S B$; and by Law 2, $c C^{\prime}$ is the direction of the force at B.

Scholicm.

A body may he acted on by a centripetal force compounded of several forces. In this case the meaning of the proposition is, that the foree which is compounded of them all tends to the point S. Moreover if any force acts continually in a direction perpendicular to the surface deseribed, this will have the effect of deflecting the body from the plane of its motion : but it will neither increase nor diminish the amount of surface deseribed, and may therefore be left out of consideration in compounding the forecs.

Phop. III. (Theorem III.)

Eecrybudy, rhich describes areds proportional to the times about the comere of amother body mocing in any mamner, tiy rulii dratn to that centre, is acted on by a firver rompu, und at the centripetal force tending to that sther bully, aml of the whole accelerating foree by which that other bod!y is affected.

Let L be the first body, and T the other: then (by Cor. 6 of the latws, if by a new force equal and opposite to that (Q) by which the other body T is acted on, both bodies bo acted on in praralled directions, the first body L, will go on describing about the other T the same areas as beforo: but the force by which the other T was acted on will now Le destroyed by a force equal and opposite to it.

Therefore (by law 1) T being now left to itself will either keep at rest or move uniformly in a straight line: and L will proceed to describe areas proportional to the times about T under the action of the difference of the
forces, that is, of the foree which remains [when L 's force is compounded with Q reversed]. Therefore (by Theorem II.) the difference of the foress tends to the other body T as centre [therefore L 's force is compounded of Q, which is T "s force, and of a centripetal foree to T as centre]. Q. E.D.

Note. By the difference of two forces is here meant the resultant of one of them and of the other reversed; and in Cor. 1 of this proposition one force is said to be subtractel from another when, its direction being reversed, it is compounded with the other.

Con. 1. Mence, if one body L, by radii drawn to another T, describes areas proportional to the times; and if from the whole foree (whether it be a single force, or compounded of several according to the second corollary of the Laws), by which the first body L is acted on, be subtracted (by the same corollary of the Laws) the whole accelerating foree by which the other body is acted on: all the remaining force by which the first body L is acted on tends to the other T as centre.

Cor. 2. And if those areas are very nearly proportional to the times, the remaining force tends very nearly to the other body T.

Cor. 3. And rice rersâ, if the remaining force tends very nearly to the other body T, the areas will be very nearly proportional to the times.

Cor. 4. If a body L by radii drawn to another T describes areas which are very far from being proportional to the times, and the body T is either at rest or moving uniformly in a straight line: cither there is no action of centripetal foree tending to the body T, or it is merged in and compounded with very powerful actions of other forces; and the whole force compounded of them all (if there are more than one) is directed to another centre (either fixed or moving). The same holds when the other body (T) is affected with any motion whatever; provided that force be taken as the centripetal force which remains after subtracting from the whole force on L the whole force which acts on the other body T.

Scholiem.

Since the equable description of areas indicates the centre which that force tends to, by which the body is most affected and by which it is drawn away from rectilinear motion and retained in its orbit; we shall in what follows make use of the property of equable description of areas as a means of finding the centre about which any orbital motion in free space is performed.

Anyular V'clocity.

When a boly P moves in an orbit, its angular velocity round any point C ' is the rate at which $C^{\prime} P$ separates from any fixed line through C^{\prime}; and, if miform, is measured by the angle described ly C C P^{\prime} in a sceond of time.

Thus the angle described in t seconds $=$ angular velocity $\times t$; and angular velocity $=\frac{\text { angle described in } t \text { seconds }}{\ell}$.

If the angular velocity be not uniform, the fraction on the right-hand side will not be independent of t; but, if t be an indefinitely small fraction of a second, the fraction will in general approach some limiting value ; this limiting value of

$$
\frac{\text { angle described in } t^{\prime \prime}}{t}
$$

is calle: the angular velocity which the bolly has at the instant under consideration; and it is such that if the body moved round ' $'$ with such an angular velocity through an interval of time t, the angle it would describe is in a ratio of equality with the angle actually described in that interval, when t is indefinitely diminished.

If therefore $I^{\prime} C^{\prime} Q$ be the angle described by a body in $t^{\prime \prime}$ after leaving P ',

$$
\text { the angular velocity }=\text { limit } \frac{\text { angle } P C Q}{t} \text {. }
$$

The angular velocity at P is, when variable, the angle which would be described by the body in one second after arriving at P, if it remained throughout that second of the same magniturle as at I.

Pror. To find a relation between the angular velocity of a lody about any point and its linear velocity.

Let C be the point; $P Q$ a small are described by the body;

join $C P, C Q$: describe about C an arc of a circle $P R$ cutting $C Q$ in R; join $P Q, P R$.

Let v be the velocity, ω the angular velocity about C, and $P T^{\prime}$ the tangent, at P; and let $C P=r$, and angle $C P T=\phi$.

Then, the angle $C R P$, and therefore its supplement the angle $Q R P$, is ultimately a right angle when Q moves up to P;

$$
\begin{aligned}
\therefore \text { limit } \frac{\text { are } P R}{\text { are } P Q} & =\operatorname{limit} \frac{P R}{P Q}=\operatorname{limit} \frac{\sin P Q R}{\sin P R Q} \\
& =\sin C P T=\sin \phi ;
\end{aligned}
$$

but

$$
\text { limit } \begin{aligned}
\operatorname{arc} P R & =\operatorname{arc} P R \\
\operatorname{arc} P Q & \frac{C P}{\operatorname{arc} P Q} \cdot C P \\
& =\operatorname{limit} \frac{\angle P C Q \times C P}{\operatorname{arc} P Q}=\frac{\omega r}{v} ;
\end{aligned}
$$

$\therefore \omega r=v \sin \phi$; the relation required.
If p be the perpendicular from C on the tangent at P, $p=r \sin \phi$; hence the relation found above may be expressed in the form

$$
\omega r^{2}=p v .
$$

Cor. Since in an ellipse the focal distances make equal angles with the tangent at any point P, if ω_{1}, ω_{2} are the angular velocities about S and S^{\prime}, we have

$$
\omega_{1} \times S P=\omega_{2} \times S^{\prime} P
$$

Prop. If \mathbf{C} be the centre of force about which \mathbf{P} describes its orbit, the angular velocity $\omega=\frac{\mathrm{h}}{\mathrm{CP}^{2}}$.

For, since (' is the centre of force,

$$
\begin{aligned}
h & =\tau p \text { (Prop. I. Cor. 1, Note), } \\
& =\omega r^{2} .
\end{aligned}
$$

Def. When a body describes an orbit under the action of a centripetal foree, its mean omgular relocity about any point is the angular velocity with which, if it remained constant throughout a revolution, the body would describe its orbit in the same period as it actually does.

Thus, let Ω be the mean angular velocity of a body ; P its periodic time; then in time I ' with uniform angular velocity Ω the bedy would deseribe an angle 2π about the point ;

$$
\begin{aligned}
& \therefore 2 \pi=\Omega P ; \\
& \text { and } \Omega=\frac{2 \pi}{1} .
\end{aligned}
$$

Def. The rorsine of a circular are $B A$, centre S, is the intercept $A C$, cut off by the perpendicular from B on the radius $A S$.

The versine of an are BA is, thus, the sagitta-through the centre S of the cirele-of an arc $B A B$, which is twice $B A$.

Let $A G$ be the diameter of the circle: join $B G$,

then

$$
A C=\frac{(\mathrm{chord} A I)^{2}}{A G} ;
$$

or

$$
\text { versine }=\frac{(\text { chord })^{2}}{\text { dianeter }} .
$$

Prop. IV. (Theorem IV.)

The centripetal forces by which bodies describe circles with uniform motion tend to the centres of the circles; and are to one another directly as the squares of ares described in equal times and inversely as the radii of the circles.

These forces tend to the centres of the circles, by Prop. II. and Prop. I. Cor. 2; and are to one another as the versines of indefinitely small ares described in equal times, by Prop. I. Cor. 4 ; that is, directly as the squares of those arcs and inversely as the diameters of the circles, by Lemma VII.

Therefore, as these arcs are as the ares described in any equal times, and the diameters are as the radii ; the forces are directly as the squares of any arcs described in equal times, and inversely as the radii of the círcles. Q.E.d.

Note. By Prop. II. the forces tend to a point about which equal areas are described in equal times.

By Prop. I. Cor. 2, the point which has this property is found; and in this case it is found to be the centre of the circle.

That the centre of the circle is the point about which equal areas are described in equal times in the present case is sufficiently obvious; but Prop. I. Cor. 2 is here alluded to as giving a method generally applicable for finding the centre of forces.

Cor. 1. Since these arcs are as the velocities (r) of the bodies, the centripetal forces are directly as the squares of the velocities of the bodies, and inversely as the radii (r).

$$
\left[\text { force } \propto \frac{v^{2}}{v} \cdot\right]
$$

Note. Let t be the time of describing an arc $A B$ of the circle $A B G$ about a centripetal force at the centre S; then the force is (Prop. I. Note)
$=$ limit of
$2 A C$
$(\text { time of describing } A B)^{2}$
$=$ limit of $\frac{2 \times(\text { chord } A B)^{2}}{\text { diameter } A\left(i \times t^{2}\right.}$
$=2$ limit of $\frac{(\operatorname{nrc} A B)^{2}}{2 A S \times t^{2}}$
$=(\text { velocity })^{2}$ radius;

Or, if r be the velocity, r the radius, f the accelerating force,

$$
f=\frac{r^{2}}{r} .
$$

Cor. . And, since the periodic times $\left(I^{\prime}\right)$ are directly as the radii and inversely as the velocities; the centripetal forces are directly as the radii, and inversely as the squares of the periodic times $\left[\right.$ force $\sim{ }_{r}^{r}$; and $P \propto{ }_{v}^{r}$; therefore force $\left.{ }^{r} r\left(\frac{r}{r}\right)^{2} \times r^{r}\right]$.

Note.

$$
I=\begin{gathered}
\text { circumference } \\
\text { velocity }
\end{gathered}
$$

$$
=\frac{2 \pi r}{v} .
$$

Con. 3. Hence, if the periodic times are equal, and therefore the velocities are as the radii, the centripetal forces will be as the radii $\left[\right.$ for here force $\left.{ }_{r}^{o^{2}}, \frac{r^{2}}{r} \leqslant r\right]$.

And conversely [if the forces vary as the radii the periodic times are equal; for here ${ }_{r}^{r^{2}} \propto r$: therefore $v \propto r$; therefore $\boldsymbol{P} \propto \frac{r}{\boldsymbol{v}}$ is constant].

Cor. 4. If the periodic times, and therefore also the velocities, are in the subduplicate ratio of the radii ; the centripetal forces will be equal [for here $P \propto r^{\frac{3}{2}}$; therefore $\frac{r}{v} \propto r^{\frac{1}{2}}$, and $v \propto r^{\frac{1}{2}}$; therefore force $\propto \frac{r^{2}}{r}$ is constant]. And conversely [if the centripetal forees are equal the periodic times and the velocities will both be in the subduplicate ratio of the radii; for here ${ }_{r}{ }_{r}^{2}$ is constant ; therefore $x \propto r^{\frac{1}{2}}$; therefore $\left.P \alpha_{v}^{r} \alpha r^{\frac{1}{2}}\right]$.

Cor. 5. If the periodic times are as the radii and consequently the velocities equal, the centripetal forces will be inversely as the radii [for here $P \propto_{r}^{r} \alpha r$; therefore r is constant ; therefore force $\left.\propto \frac{v^{2}}{r} \propto_{r}^{1}\right]$. And conversely [if the forces are inversely as the radii the velocities will be equal, and the periodie times will be as the radii ; for here $\frac{r^{2}}{r} \propto \frac{1}{r}$: therefore z is constant and $\left.P \propto r_{r}^{r} \propto r\right]$.

Cor. 6. If the periodic times are in the sesquiplicate ratio of the radil, and therefore the velocities reciprocally as the subduplicate ratio of the radii, the centripetal forces will be inversely as the squares of the radii [for here

And conversely [if the forees are reciprocally as the squares of the radii the periodic times will be in the sesquiplicate ratio of the radii; for here $\frac{r^{2}}{r} \propto \frac{1}{r^{2}}$; therefore

Cor. 7. And generally, if the periodic time be as r^{n}, and therefore the velocity reciprocally as r^{m-1}, the centripetal force will be reciprocally as $r^{\operatorname{sn}-1}$ for here
 And conversely [if the forees are reciprocally as r^{n-1}, the periodic times will he as r^{m}; for here $r_{r}^{r^{\prime}} \frac{1}{r^{2}-1}$; there-

Cor.s. The same statements with respect to the times, velocities, and forces, with which bodies describe similar parts of any similar figures about centres of force similarly situated in those figures, follow by applying to these cases the demonstrations which have preceded. But in applying them we must substitute the uniform deseription of areas for uniform motion, and the distances of the bodies from the centres of forees for the radii.

Con. 9. By the methol of proof used in this proposition it follows that the are described in any time by a body revolving uniformly in a circle under the action of a given centripetal force, is a mean proportional between the diameter of the circle and the space through which the body would fall by the action of the same force during the same time.

Scholiem.

The case of the sixth Corollary is that of the heavenly bodies (as Wren, Hook, and Halley inferred independently); and therefore questions relating to a centripetal force decreasing inversely as the square of the distance from the centre of force, is treated of at greater length in a subsequent part of the work.

Moreover by means of the preceding proposition and its corollaries wo can determine the proportion of a centripetal force to any known foree such as that of gravity. For if a body revolves by its own gravity in a circle concentric with the earth, this gravity is its centripetal foree ; and, by Cor. 9 of this proposition, given the space through which bodies fall by their gravity in a given time, the time of one revolution is known, and the are described in any given time. And it is by propositions of this kind that Inugghens in his tract De IIorologio Oscillatorio compared the foree of gravity with the centrifugal forces of revolving bodics.

> Prop. V. (Problem I.)

Giren at any points the relocities with which a body describes any figure under forces all tending to one common centre, to find that centre.

Let the figure described be tonched at the points P, $Q . R$, by the straight lines $P T, T(Q V, V R$ which meet in T and V. Draw $P A, Q B, R C$ perpendicular to the tangents, and reciprocally proportional to the velocities of the body at the points I, Q, R at which they are drawn : that is, so that $P A$ may bo to $Q B$ as the velocity at Q to the velocity at P, and $Q B$ to $R C$ as the velocity at R to the velocity at Q; at the extremities A, B, C of these perpendiculars draw AD, DIBE, EC' at right angles to them and meeting in I and E. Then the lines $T D, V E$ will meet in the required centre.

For the perpendiculars from the centre S on the tangents I'T', QT are (ly Prop. I. Cor. 1) reciprocally as the velocities of the body at P and Q, and therefore, by construction, direetly as the perpendiculars $A P, B Q$, that is, as the perpendiculars from the point D on the tangents; hence it easily follows that S, D, T are in one straight line.

And ly similar reasoning the points, S, E, V may be shewn to be in one straight line : and therefore the centre S is situated at the point of intersection of the straight lines TD, V'E. Q. e. ı.

Note 1. In this proposition the velocities at three points P, Q, R of a given orbit are given; also the orbit being given the ponitions of the tangents $P^{\prime} T, T\left(Q V^{\prime}\right.$, and $R V^{\prime}$ are known. Only thrce points are tiken in the proof, that number being sufficient, as the prive shews.

Note 2. It is shewn in the proof that the perpendiculars from S on $P T, Q T$ are directly as $A P, B Q$; that is, directly as the perpendiculars from $/$) on $P T, Q T$; and it is inferred that S, D, T are in one straight line.

This is easily seen thus: the perpendiculars from s and 1) on $P T$ are to each other in the ratio of the distance of Sand l) from the point in which $S D$ produced mects $P T$; and these perpendiculars are, by what has been proved, as the perpendiculars from S and I) on (QT, that is, as the distances of S and l from the point in which SD produced meets QT.

Hence $S D$ produced is divided by the point in which it meets $P T$ in the same ratio in which it is divided by the point in which it meets $Q T$: and therefore $S D$ produced meets $P T$ and $Q T^{\prime}$ in the same point, that is, in T.

Prop. VI. (Theorem V.)

If a body recolce in non-resisting space in any orbit about a fixed centre, and describe any indefinitely small arc in an indefinitely small time; and a sagitta of the arc be drawn to bisect the chord, and so as to pass through the coutre of forces when produced; the centripetal force on the body while describing the are will be directly as the sagitta, and inversely as the square of the time.

For the sagitta of the are described in a given [indefinitely small] time is proportional to the force (by Prop. I. Cor. 4); and as the time increases in any ratio, since the are increases in the same ratio, the sagitta (by Lemma XI. Cors. 2 and 3) increases in the square of that ratio ; therefore, the sagitta varies as the force and as the square of the time. IIence, dividing both sides ly the square of the time, the force varies directly as the sagitta and inversely as the square of the time. Q.E. D.

This proposition is also easily proved by Lemma x . Cor. 4.

Note 1. In the proof of this proposition we must suppose the same construction and the same suppositions made as in Prop. I.; then, referring to the figure of Prop. I., we have, velocity added in each equal interval of time by the impulse to S, proportional to $C C^{c}$, which is equal to $B V$; but half $B V^{\prime}$ is the ragitta of $A B C$, which is deseribed in a given interval : thus, the sagitte of arcs described in equal (indefinitely small) times are proportional to the forees. This is the substance of Prop. I. Cor. 4.

Again, in the same orbit describel by the same body under the same forces, the sagitta of an indefinitely small are through
any given point is (by Lemma XI. Cor. 3) in the duplicate ratio of the time in which the body deseribes the are with the velocity it then has at that point. Thus, in equal times the sarittax vary as the forces: and with equal forces as the square of the time: and therefore, the sagitte of arcs described in various indefinitely small times under various forces vary conjointly as the force and the spuare of the time.

Note 2. Again, as in Lemma X. Note 4, a force is measured by the rato which the measure of the velocity produced by it in any given time bears to the measure of the time; if, then, r^{\prime} measure the velocity due to the impulse at B (fig. Pop. I.), t the time of describing $A B$, the foree at B it measurcel by ${ }_{t}{ }_{t}^{\prime}$.

But r^{\prime} is the velocity with which $C c$ is described in time 6 ; hence the measure of r^{\prime} is ${ }_{t}{ }_{t}$ ' ;
therefore, the measure of the force at B is $C_{t^{2}}{ }^{2}$,
and this (Prop. I. Cor. 4) $=2 \times$ It. sagitta of arc $A B C$ (time of describing $A B)^{2}$

Note 3. Let $I{ }^{\prime}$, the the sacitta to S of a small are $Q P Q^{\prime}$: $Q R^{\prime}$, ($\ell^{\prime} R^{\prime}$ subtenses parallel to S^{\prime} (sce figute on next pare): then, ly Lemma XI.,

$$
\text { ⿺. . . } \begin{aligned}
Q R: Q^{\prime} R^{\prime} & =\text { L. к. } Q P^{2}: Q^{\prime} P^{2} \\
& =\text { 1. н. } Q u^{2}:\left(Q^{\prime} u^{2}(\text { (by Lemma VII. Cor. } 1) ;\right. \\
& =1 ;
\end{aligned}
$$

therefore, since $P^{\prime} v$ is intermediate between $Q R$ and $Q^{\prime} R^{\prime}$,

$$
\text { L. н. }\left(\ell R: P^{\prime} u:(Q R=1 .\right.
$$

Hence, force at P

$$
=2 \times \mathrm{lt} . \frac{P u}{\left(\text { time of deacribing } P(Q)^{2}\right.}=2 \times \mathrm{lt} .(\text { time of dexcribing } P Q)^{2}
$$

$=2 \mathrm{lt} . \stackrel{Q R}{t^{2}}$, where t is the time of describing $P(Q$.

Note 4. By Note 3, since t is the time of describing the area $P S Q$ abont S, if any curves touch each other at P and pass through Q, the forces to S by which they may be described vary (when Q moves up to P) inversely as the square of the times of describing equal areas. For $Q R$ is the same for all the curves, and the areas $P^{\prime} S Q$ are ultimately in a ratio of equality.

Hence, since these curves have ultimately the same curvature at P, the forces to the same centre, at a point in which any curves touch each other and have the same curvature, are inversely as the square of the times of describing equal areas: that is, directly as the squares of areas described in equal times, or directly as l^{2} (Prop. I. Cor. 1, Note).

Con. l. If a body P revolving about a centre S describe the curve $A P Q$, and the straight line $P R$ touch the curve at any point P, and from any other point $Q, Q R$ be drawn parallel to $S P$, and $Q T$ perpendicular to $S P$, the centripetal force will be reciprocally as $\begin{gathered}S P^{2} \times Q T^{2} \\ Q R\end{gathered}$, that value of this fraction being always taken which it has in the limit when the points P and Q coincide.

For $Q R$ is equal to the sagitta of an are double of the are $Q P$, of which P is the middle point ; and twice the triangle $S Q P$, or $S P \times Q T$, is proportional to the time in which that double are is described, and may therefore be written for that time.

Note 1. By Note 3 of the proposition, $Q R$ is ultimately in a ratio of equality to the sagitta $P^{\prime} u$ of an are $\left(2 P^{\prime} Q^{\prime}\right.$, which is ultimately double of the are ($2 I$ '.

Nuti -. By Prop. I. Cor. 1, Note, twice the triangle $S Q P=h t$:
therefore

$$
S P \times Q T \text { ht; }
$$

$$
\begin{aligned}
& \text { and force at } P=2 \mathrm{lt} . \frac{Q R}{t^{2}}, \\
& \text { or } F=2 \mathrm{lt} \begin{array}{c}
Q R \times h^{2} \\
\times 2 T^{2} \\
82
\end{array}
\end{aligned}
$$

Con. 2. For the same reason the centripetal force is recinocally as the fraction $\frac{S^{2} \times(Q)^{2}}{(2 R}, S Y$ being the perpembicular from the contre of forces on the tangent $P R$ to the orinit.

For the rectungles $S^{\prime} V^{\times} \times Q$ and $S P^{3} \times Q T$ are equal.

$$
\text { Nutc. L. R. S夭 Y } \times P R: S P \times(T)=\text { L. R. } \triangle S R P: \triangle S(Q P \text {; }
$$

Con. 3. If the orbit cither is a circle, or touches or cuts a circle concentrically, that is touches or cuts the circle at the least possible angle ; having the same curvature and the same raliut of curvature at the point I^{\prime}; and if $P V$ be the chord of this circle drawn through the centre of forces, the centripetal force will be reciprocally as $S^{2} \times V^{2}$.

For $P V$ is the limit of $\begin{aligned} & Q P^{2} \\ & Q K\end{aligned}$

Note 1. Let $A B$ be a small are of a curve; and let a circle be described passing through A and B, and having at A the same tangent $A D$ as the curve: this circle touches or cuts the curve at the angle $B A D$.

Now let B move up to and coincide with A : the limiting position of this circle will touch or cut the curve at the least possible angle; this limiting circle is concentric and coincides with the circle of curvature at A, and in this sense touches or cuts the curve concentrically.

Note 2. If on passing from A to B the curvature of the eurve remains constant, $A B$ coincides with an arc of the circle of curvature; but if it diminishes, $A B$ falls between $A D$ and the circle of curvature ; if the curvature increases from A to B, the circle of curvature falls between $A D$ and $A B$.

In general, in any indefinitely small are $B . A B^{\prime}$, the curvature is either continuously increasing or continuousiy diminishing from B to B^{\prime}; and thus, if the curvature increases from B to A, it diminishes from B^{\prime} to A; and vice versâ. Hence, the circle of curvature, in general, falls between the curve and its tatigent at one side of its point of contact, and inside the curve on the other side of the point. In this sense the circle of curvature in general cuts the curve at the point of contact.

The only cases in which the circle of curvature toucles the curve at the point of contact, in thie sense of falling outside the curve on both sides, or inside the curve on toth sides of the point, are the cases in which the curvature of the curve increases as we proceed in both directions from the point, or diminishes as we proceed in both directions; that is, at points of minimum or maximum curvature.

Note 3. Describe a circe touching the curve at P and cutting it at Q, and meeting P 'S produced in V : then $\angle Q P R=\angle P V Q$ (Euc. III. 32) ; and $\angle R Q P=\angle Q P V$: thus $\triangle P Q R$ is simitar to $\triangle P V Q$;
therefore -

$$
\begin{gathered}
P V^{\prime}: P Q=P Q: P R ; \\
P V=\frac{P Q^{2}}{P R} ;
\end{gathered}
$$

and $P V$ is ultimately the chord through S of the circle of curvature, or, in the worls of the Corollary, of the circle which touches or cuts the curve concentrically.

And force $=2 \mathrm{lt} . \begin{gathered}Q R \times l^{2} \\ S Y^{2} \times\left(21^{\prime}\right.\end{gathered}($ Cor. 2$)$,
thus $F=\begin{gathered}2 h^{2} \\ s Y^{2} \times P V^{\circ}\end{gathered}$
Cor. 4. Uuder the sume cirenmstances (as in Cor. 3), the centripetal force varies directly as the square of the velocity and inversely as the chord $P V$.

For the velocity is inversely as the perpendieular $S Y$, by I'rop. I. Cor. 1.

Nute 1. Thus force $=2 \mathrm{lt} . \frac{h^{2}}{5 r^{2}} \times \mathbf{p l}^{\prime}($ Cor. 3, Note 3),

$$
\text { or } F \begin{aligned}
& 2 t^{2} \\
& P V
\end{aligned} \text { (Prop. I. Cor. 1, Note). }
$$

Note 2. Let s be the space through which the foree r, if it remained constant, would be required to draw the hody fiom rest in order to give it the velocity r; this space is called the spure due to the relocity v .

Now

$$
\begin{aligned}
& \mathfrak{r}^{2} 2 F s, \\
& v^{2}=F^{\prime} \frac{V}{2} ;
\end{aligned}
$$

and by Note 1,
therefore

$$
s=\frac{P V}{4}:
$$

hence, the space due to the velocity at any point of an orbit described about any centre of force is one-fourth of the chord oi curvature through the centre of force.

Cor. 5. Hence if any curvilinear figure $A P Q$ be given, and also the point S in it to which the centripetal force continually tends, we can find the law of the centripetal force by the continuous action of which any body \boldsymbol{P} may be drawn from its rectilinear course, and made to move in the perimeter of that figure, and to describe it as an orbit. In fact we have simply to find the value of $\frac{S P^{2} \times Q T^{2}}{Q R}$ or of $S Y^{2} \times P V$, which are reciprocally proportional to this force. Examples of this will be given in the problems which follow.

Note. And by Cor. 1, Note 2, the measure of the force is given by 2 limit $\frac{Q R \times h^{2}}{S P^{2} \times Q T^{2}}$, or, by Cor. 3 , Note 3 , by $\frac{2 h h^{2}}{S Y^{2-2} \times P V^{\prime}}$, where $P V^{\prime}$ is the chord of curvature through the centre of forces S.

Prop. VII. (Problem II.)

A body mores in the circumference of a circle: required the law of centripetal force tending to any gicen point.

Let $I Q P A$ be the circumference of the circle, S the given point to which the force tends as its centre; P a

point on the circumference at which the bedy has arrived, Q a point very near to l^{\prime} towards which the body is moving, and PRZ the tangent to the circle at l.

Through the point S draw the chord $P V$; draw the diameter $I A$ and join $A P$; draw $Q T$ perpendicular to $S P^{\prime}$ meeting the tangent $I^{\prime} R$ in Z; and, lastly, through Q draw $L R$ parallel to $S P$ and meeting the cirele in L, and the tangent $I^{\prime} Z$ in R.

Then, from the similar triangles $Z Q R, Z T I^{\prime}, V^{\prime} A$,

$$
\begin{gathered}
R P^{2}(-R Q \times R L): Q T^{2}=A V^{2}: I^{P} I^{\prime 2}, \\
\therefore R Q \times R L \times P^{2} V^{2}=Q T^{2} . \\
A V^{2}
\end{gathered}
$$

Multiply both these equals by ${ }^{S P}{ }^{2}$, and, as the points I^{\prime} and Q coincide in the limit, write $P V$ for $R L$.

$$
\therefore \begin{gathered}
S P^{2} \times P^{P} V^{3} \\
A V^{2}
\end{gathered}: \frac{S P^{2} \times Q T^{2}}{Q R} \text { in the limit. }
$$

Therefore by I'rop. VI. Cors. 1 and 5) the centripetal force is inversely as $\frac{P^{2} \times P^{2} V^{3}}{A V^{2}}$; that is (since $A V$ is given, inversely as the square of the distance SP and the cule of the chord $I^{\prime} V$. Q. e. i.

Ni,r 1. The triangles ZTP, IPA are similar by Euc. mi. 32, as in Prop. VI. Cor. 3, Note 3.

Note 2. The law of the force is found in this proof by the expression for it in Prop. VI. Cor. 1.

The measure of the furce is found by lrop. VI. Cor. 1, Note 2 ; thus,

$$
\text { force at } P=2 \text { lt. } \frac{Q R \times h^{2}}{S P^{2} \times Q T^{2}} \text {; }
$$

and
 hence force at $P=\frac{2 A V^{2} \times h^{2}}{S P^{4} \times V^{2}}$.

Note 3. The measure of the force is often found to consist of two factors, one factor depending on the position of the body with respect to the centre of force, and the other factor constant for all positions of the body. The constant factor is usually denoted by μ.

Thus in the above expression,

$$
\text { the force at } \begin{aligned}
P & =\frac{\mu}{S P^{2} \times P V^{3}} ; \\
\text { where } \mu & =2 A V^{2} \times \hbar^{2} .
\end{aligned}
$$

Another Proof.

Draw $S Y$ perpendicular to the tangent $P R$ produced; then from the similar triangles $S Y P, V P A$,

$$
\begin{gathered}
A V: P V:: S P: S Y, \\
\therefore \frac{S P \times P V}{A V}=S Y \\
\therefore \frac{S P^{2} \times P V^{3}}{A V^{2}}=S Y^{2} \times P V
\end{gathered}
$$

Therefore (by Prop. VI. Cors. 3 and 5) the centripetal force is inversely as $\frac{S P^{2} \times P V^{3}}{A V^{2}}$; that is, since $A V$ is given, inversely as $S P^{2} \times P V^{3}$. Q. E. I.

Note. In this proof the law of force is found by Prop. VI. Cor. 3.

The expression for the force is found thus by Prop. V1. Cor. 3, Note 3.

$$
\text { Force at } \begin{aligned}
P & =2 \text { lt. } \frac{h^{2}}{S Y^{2}} \times P V \\
& =\frac{2 A V^{2} \times h^{2}}{S P^{2} \times P V^{3}} \text { (by this proof). }
\end{aligned}
$$

Cor. 1. Hence if the given point S, to which the centripetal force always tends, be situated on the circumference of the circle as at V, the centripetal force will be inversely as the fifth power of the distance $S P$.

Cor. 2. The force by which a body P is made to revolve in the circle $A P^{\prime} T V$ about a centre of forces S, is to the force by which the same body P may be made to revolve in the same circle and in the same periodic time

about any other centre of forces R as $R P^{2} \times S P$ to $S G^{3}$; where $\mathcal{C}(\underset{r}{ }$ is a straight line drawn from the first centre of forces S to the tangent $P(;$ to the orbit, parallel to $R P$ the distance of the body from the other centre of forces.

For, hy the proposition, the former foreo is to the latter as $R P^{\prime \prime} \times J^{\prime \prime}$ to $\mathscr{S}^{\prime 2} \times P^{\prime} l^{-3}$; that is, as $S P \times R P^{2}$ is to $\boldsymbol{N}^{3} \times \rho^{\prime 3}$
$1 \cdot T^{3}$, or since the triangles $P S G, T P V$ are similar), as $S \Gamma^{\prime} \times R I^{2}$ is to $S G^{3}$.

Note 1. On referrin'r to the firure and pronf of Irop. I., it is seen that the force at any point B is known if C^{\prime}. is known, and the interval of time between successive impulies: or by ('or. 4, if the saritta of an indefinitely small are is known, and the time of describing the are : or again, by Prop. VI. Note : 3 , if the subtense $C R$ be known, and the time t of describing $P(Q$: the force being in ail cases proportional to the limit of $\frac{Q R}{t^{3}}$. This expression is proportional to the force at any point of any orbit, so that the forces at different points of the same orbit and at any prints of different orbits are all proportional to the limits of this expression in the different cases.

When, as in the Corollaries to Prop. VI., and in the succeeding applications of them, expressions are obtained by substituting for the time t of describing $P(1$, the area $P S Q$ about
S, which is proved in Prop. I. to be, in any given orbit described about a fixed centre of forces, proportional to the time, it must be remembered that this proportionality is only true for the same orbit, described in the same manner by the same body; in different orbits the areas described in equal times differ in general : and thus the expressions so obtained are only in general applicable for comparing the forces at different points of the same orbit.

If two bodies describe the same orbit in the same periodic time, they will describe any given fraction of that orbit in the same fraction of the periodic time; that is, they will describe any the same area in the same time; hence the expressions obtained in the Corollaries to Prop. VI. are available for comparing at any points, the same or different, the forces with which bodies are acted on which describe any the same orbit in the same periodic time.

Note 2. By Prop. I. we have, in any orbit about a fixed centre of forces,

$$
\frac{\text { area } P S Q}{t^{\prime \prime}}=\frac{\text { area described in } 1^{\prime \prime}}{1}=\frac{\text { area of orbit }}{\text { periodic time in seconds }} \text {; }
$$

or, if the periodic time in seconds be P, and $h=2 \times$ area described in one second,

$$
\frac{2 \text { area } P S Q}{t}=h=\frac{2 \text { area of orbit }}{P}
$$

Thus the expressions for the force in the Corollaries, found by substituting for t the area $P S Q$, are available for comparing forces at points of the same or different orbits provided h is the same; or, provided the area of the orbit and the periodic time are the same (or proportional) in the two cases.

Cor. 3. The force by which a body describes any orbit about a centre of forces S, is to the force by which the same body P can be made to describe the same orbit in the same periodic time about any other centre of forces R, as $S P \times R P^{2}$-that is, the product of the distance of the body from the first centre of forces S, and of the square of the distance from the second centre of forces R-to the cube of $S G$, which is the line drawn from the first centre S to the tangent $P G$ to the orbit, parallel to the distance $R P$ of the body from the second centre of forces.

For the forces in this orbit at any point of it, P, are the same as in a circle of the same curvature.

Note. The proofs of Prop. VII, and of its Corollaries 1 and 2 apply to any orbit, the circle referred to in the proot and in the results being the circle which touches the curve at P and passes through Q, or the limit of that circle when Q moves up to l ', that is, the circle of curvature at P.

For $S P, Q T$ and $Q R$ are the same for the curve and the circle, and, therefore, the limit of $\begin{gathered}s P^{2} \times Q T^{\prime 2} \\ Q R\end{gathered}$, on which (Cor. 2, Note 2) the expression for the force depends, is the same for both.

Prop. VIII. (Problem III.)

A bod!y mores in a semicircle PQA ; to find the lane of centripetal force tending to " point S which is sod distunt that all lines, as l's, RS, drawen to it may be comsidered prirallel.

From the centre C of the semicircle draw the semidiameter CAL cutting those parallels in M and N; and join CP.

Because the triangles $C P M, P Z T$ and $R Z Q$ are similar,

$$
C P^{2}: P M^{2}:: P R^{2}: Q T^{2} ;
$$

and (Enc. ini. 36)

$$
P R^{2} Q R \times(R N+Q N) ;
$$

or, when the points P and Q coincide,

$$
P R^{2}=Q R \times 2 P M ;
$$

$$
\therefore C P^{2}: P M^{2}: Q R \times 2 P M: Q T^{2}:
$$

$$
\begin{gathered}
\therefore Q T^{2}=\frac{2 P M^{3}}{C P^{-3}}, \\
\frac{Q T^{2} \times S P^{g}}{Q R}=\frac{2 P M^{3} \times S P^{2}}{C P^{2}} .
\end{gathered}
$$

:nd

Therefore (by Prop. VI. Cors. 1 and 5), the centripetal force is inversely as $\frac{2 P M^{3} \times S^{2} P^{2}}{C P^{2}}$; that is (neglecting the constant ratio $\binom{2 S P^{2}}{C P^{2}}$, inversely as $P M^{3}$. Q. E. I.

The same result is also easily obtained by means of the previous proposition.

Note 1. The measure of the force is (Prop. VI. Cor. 1, Note 1)

$$
2 \text { lt. } \frac{Q R \times h^{2}}{S P^{2} \times Q T^{2}} ;
$$

which in the case of this Proposition is shewn to he equal to

$$
\begin{gathered}
R^{2} \times C P^{2} \\
I^{\prime} M^{3} \times S P^{2}
\end{gathered}
$$

thus force $=\underset{P, M^{3}}{\mu} ;$ where $\mu=\begin{gathered}h^{2} \times r^{\prime} P^{2} \\ \text { SP: }\end{gathered}$.
Sciolitem.
And by somewhat similar reasoning it can be shewn that a body may be made to deseribe an ellipse, or even a liyperbola or a parabola, by a centripetal force which varies inversely as the cube of an ordinate drawn towards a very distant centre of forces.

Prop. IX. (Problem IV.)

A body recoles in a spiral PQS uhich cuts all the radii $\mathrm{SP}, \mathrm{SQ}, \& \mathrm{c}$. in the same gicen angle-(an equiangular spiral); to find the late of centripetal force tending to the centre of the spiral.

(iiven any indefinitely small angle $P S Q$, the form of the figure $\mathscr{P} P R Q T$ is given, since all its angles are given.
 (-ince the form of the figure is given), as $S P$.

Now let the angle PSQ be changed in any manner: then $Q R$, which subtends the angle of contact QPR , will (by lemma XI. be changed in the duplicate ratio of P l , or of $Q T$. Therefore $\left\langle Z T^{2}\right.$ will remain the same as before, that is, proportional to $S P$.

Therefore $\frac{\left(T^{2} \times S T^{2}\right.}{\left(2 R^{2}\right.}$ varies as $S P^{3}$: and thus (by Prop. VI. Cors. 1 and 5) the centripetal foree varies inversely an the cube of the distance s'l'. Q. $\begin{aligned} & \text {. } . ~ \\ & \text {. }\end{aligned}$

A nother Proof.

The perpendicular ςY on the tangent and the chord $P V$ of the circle concentrically cutting the spiral (that is, of the circle of curvature at P, are to the distance $S>$ in given ratios ; and thus $S^{\prime 2}$ varies as $S P^{2} \times P^{\prime \prime}$, that is
(by Prop. VI. Cors. 3 and 5), inversely as the centripetal force.

Note 1. Def. An equiangular spiral is a curre which cuts all radii from a certain point called the focus at the same anyle: and this angle is called the angle of the spiral.

Given any radius $S P$ of an equiangular spiral, the curve is known through P for any distance in either direction, if the angle of the spiral is known : hence if $S Q$ be taken making a given angle with $S P$, the figure $S P R Q T$ is completely known; and its angles (and the angles of all the triangles into which it can be divided) and the lengths of its sides depend only on SP, the angle of the spiral, and the angle $P S Q$. The angles of this figure are therefore known in terms of the angle of the spiral and the angle $P S Q$; and the sides in terms of $S P$ and those angles.

Hence, if in any the same equiangular spiral an angle $P S Q$ be given, all the angles of all the triangles into which the figure $S P R Q T$ is divided are given, and the ratios of the sides to each other : the figure is therefore given in respect to its angles and the ratios of its sides, but not in the absolute magnitudes of the sides ; this is what is meant in the Proposition by the form of the figure being given.

Note 2. The angles of the triangle $S P Y$ are known, the angle of the spiral being known, and therefore the ratio of $S Y$ to $S P$ is given.

Again, the circle touching $P Y^{*}$ in P and passing through Q is given in magnitude and position if the angle $P S Q$, the angle of the spiral, and $S P$ are given : hence $P V^{V}$ is known in terms of $S P$ and those angles, and therefore the ratio of $P V$ to $S P$ is given in terms of the angle of the spiral when the angle $P S Q$ vanishes, that is when $P V$ becomes the chord through S of the circle of curvature.

Note 3. To find the expression for the force to the focus by which an equiangular spiral is described.

By Prop. VI. Cor. 3, Note 3, the force to $S=\frac{2 h^{2}}{S Y} \times P V$;
let the angle of the spiral $=\alpha$; then $S Y=S P \sin \alpha$;

$$
\text { and force to } S=\frac{2 h^{2}}{S P^{2} \times P V \times \sin ^{2} a} .
$$

To find $P V$.
An equiangular spiral is the limit of a polygon, the lines joining whose angular points with S form a number of similar triangles (Note 1).

Let $P S B, B S C$ be two euccessive triangles of the series into which the polygon is divided, so that $\angle P S B=\angle B S C$; and $\therefore S P B=\angle S B C$ ': draw $C ' V$ parallel to $B S$ meeting $P S$ produced in ${ }^{\circ}$.

Then

$$
\angle S P B=\angle S B C \text {; }
$$

$$
\therefore \angle \mathrm{S} S P B, S B P=\angle P B C^{\prime} ;
$$

and

$$
\angle P S B=\angle P V^{\circ} C ;
$$

$\therefore \quad \angle \mathrm{S}, \mathrm{SP}, \mathrm{SBP}, P S B=\angle \mathrm{A} P B C, P V^{\circ} C$; thus $\angle s P B C, P V^{\prime} C=2$ right angles;
therefore the circle through P, B, C^{\prime} passes through V.
Now the limit of the circle through P, B, C is the circle of curvature when P, B, C coincide.

Again, because $S B$ makes equal angles with $S P, S C$; and $V C$ is parallel to $S B$;

$$
\begin{aligned}
& \therefore \angle C V S=\angle V C S, \\
& \therefore S V=S C=S P \text { ultimately. }
\end{aligned}
$$

Hence $l^{\prime} l$ the chorl of curvature at P through $S=2 S P$; therefore force to therefore force to $S \quad S P^{\prime 2} \times P V \times \sin ^{2} a$

$$
\begin{aligned}
& =\frac{h^{2}}{S P^{3} \times \sin ^{2} \alpha} \\
& ={ }_{S P^{3}}^{\mu}
\end{aligned}
$$

$$
\text { where } \mu=\frac{h^{2}}{\sin ^{2} \alpha}
$$

Note 4. In this case, and in all cases in which the variable factor in the expression for the force is some power of the distance of the body from the centre of force, the cinstant factor μ is the absolute force (Def. 6, Note).

Lemma XII.

All parallelograms described about amy conjugate diameters of a given ellipse or hyperbola are equal to one another.
(See Besant's Conic Sections, pp. 69 and 113.)

Prop. X. (Problem V.)

A body moves in an ellipse; required the centripetal force tending to the certre of the ellipse.

Let $C A, C B$ be the semiaxes of the ellipse ; $G P, D K^{-}$

any conjugate diameters ; $P F, Q T$ perpendiculars on those diameters; $Q v$ an ordinate to the diameter $G P$; then, completing the parallelogram $Q v P R$, we have (Besant's Conic Sections, page 66, Prop. XX.),

$$
P c \cdot v G: Q v^{2}:: P C^{2}: C D^{2} ;
$$

and, from the similar triangles $Q r T, P C F$,

$$
Q v^{2}: Q T^{2}:: P C^{2}: P F^{2}
$$

\therefore componendo,

$$
\begin{aligned}
& P r \cdot x G^{G}: Q T^{2}:: P C^{4}: C D^{2} \cdot P F^{2}, \\
& \therefore v G: \frac{Q T^{2}}{P v}:: P C^{2}: \frac{C D^{2} \cdot P^{2} F^{2}}{P^{2} C^{2}}
\end{aligned}
$$

For Po put QR, and (by Lemma XII.) BC. CA for CD. $P^{P} F^{\prime}$; and (as the points P^{P} and Q coincide) $2 P^{\prime} C$ for rf, and we have

$$
\begin{gathered}
2 P^{\prime} C: \begin{array}{c}
Q T^{2} \\
Q R
\end{array}: P C^{2}: \frac{B C^{2} \cdot C A^{2}}{P C^{2}}, \\
\therefore Q T^{2} \cdot P^{P} C^{2}=\frac{2 B C^{2} \cdot C A^{2}}{P C} .
\end{gathered}
$$

Therefore (by Prop. VI. Cor. 5) the centripetal force is $\frac{2 B C^{\prime 2} \cdot C^{2} A^{2}}{P^{2} C^{-}}$; that is (since $2 B C^{2} \cdot C \cdot 1^{2}$ is given), inversely as $\frac{1}{P^{\prime} C}$, or directly as the distance $P^{\prime} C$.
Q. E. I.

Note 1. The expression for the force is

$$
=\mu C^{\prime} P^{\prime} ;
$$

where

$$
\mu=\begin{gathered}
h^{2} \\
H C^{2} \times C^{\prime} A^{2}
\end{gathered}
$$

Note 2. Since
$\frac{h}{1}=\underset{\text { periodic time }}{2 \times \operatorname{arca} \text { of the ellipse }}$ (Prop. VII. Cor. 2, Note 2)

$$
\begin{aligned}
& =\begin{array}{c}
2 \pi A C^{\prime} \times B C \\
P
\end{array} \\
\mu & =A C^{2} \times B C^{\prime 2} \\
& =\frac{4 \pi^{2}}{P^{2}} ;
\end{aligned}
$$

and force $=\frac{4 \pi^{2}}{P^{2}} C P$.

Note 3. The forces at different points of the same ellipse described about a centre of force in the centre vary as the distance of the body from the centre.

The forces at points of different ellipses described about centres of force in the centre vary as the distance directly, and the square of the periodic time inversely. Hence, in ellipses described about the centre in the same periodic time, the forees at all points vary as the distance.

Con. 1. The force therefore varies as the distance of the body from the centre of the ellipse. And conversely, if the force vary as the distance the body will move in an ellipse whose centre is at the centre of the forces; or else in the circle which the ellipse may become in a particular case.

Notc 1. Since the circle is a particular case of the ellipse, the forces to the centre by which bodics describe different circles vary as the radii of the circles directly, and as the squares of the periodic times inversely (sec Note 3 to the Proposition) ; and, if the periodic times are equal, the forces to the centre by which different circles are described vary as the radii of the circles.

Cor. 2. The periodic times of all bodies which deseribe ellipses about the same centre of force in the centre of the ellipses will be equal.

For (by Prop. IV. Cors. 3 and S) the periodic times are equal in similar ellipses; and in ellipses having the same major axis the periodic times are directly as the whole areas of the ellipses and inversely as the portions of the areas which are described in equal times; that is, directly as the minor axis, and inversely as the velocities at the extremity of the major axis; that is, directly as the minor axis, and inversely as the ordinates at the same point of the common major axis: or (since these ordinates are as the minor axes) in a ratio of equality.

Note 1. In this Corollary the periodic times in any two ellipses A and B about the centre are compared by comparing (1) the periodic time in $A,(2)$ the periodic time in B-with that in an ellipse similar to A, and having a major axis equal to that of B.

Note 2. If P is the periodic time (in seconds) in an ellipse whose major axis is given, about a centre of force in the ceutre,

$$
\begin{aligned}
& \quad \begin{array}{l}
P \\
\times \text { area of ellipse } \\
2 \times \text { area described in } 1^{\prime \prime}
\end{array}=\frac{1}{h} \\
& \therefore \quad P \propto{ }^{\text {area of ellipse }} \propto \frac{B C}{h}, \text { since } A C \text { is given. }
\end{aligned}
$$

And if V is the velocity at the extremity of the major axis,

$$
h=V \times A C \propto \cdot V^{V} \text {, since } A C \text { is given ; }
$$

and the velocity V varies as the are described in a given indefinitely small time, or as the ordinate (Lemma VII. Cor. 1) corremponding to a given indefinitely small abscissa from A; and such ordinates in different ellipses are as the minor axes.

Thus $k \& B C$; and thercfore l ' is constant.
Or thus;-by Note 2 to the Prop. $P:=\frac{4 \pi^{2}}{\mu}$; and therefore the periodie times are all equal if μ is given.

Scholirm.

If the ellipse is changed into a parabola by its centre being removed to an infinite distance, the body will move in this parabola; and the force tending to a centre at an infinite distance becomes eonstant. This is Galileo's theorem. And if the parabolic section of the cone, by varying the inclination of the plane, be changed into a hyperbola. the body will move in the perimeter of this hyperbola with a centrifugal in place of a centripetal force.

And just as in a circle or an ellipse, if the forces tend to the centre of figure-which is a point on the abscissaand if the figure be altered by increasing or diminishing the ordinates in any given ratio, or by changing the angle of inclination of the ordinates to the abscinsa, the forces are in all cases increased or diminished in the ratio of the distance from the centre, provided the periodic times remain unchanged; so, in any figure whatever, if the ordinates be increased or diminished in any given ratio, or their angle of inclination to the abscissa be changed, the periodic time in the new figure being the same as in the
old ; the forces tending to any point whatever on the abscissa as centre, will be changed, in the case of each ordinate, in the ratio of the distance from the centre.

Note. Let $P R$ be the tangent at P to the small arc $P Q$ of any curve described about a centre of force C : draw $C D$ parallel

to $P R$, and $=\sqrt{\frac{1}{2} P \bar{V} \times C P}$, where $P V$ is the chord of curvature at P through C. Then $P V$ is also (Besant's Conic Sections, Art. 162, Cor. 3) the chord of curvature at P of the ellipse whose centre is C, and of which $C P, C D$ are semi-conjugate diameters.

Now the forces at P to C by which the ellipse and curve may be described in equal periodic times are to each other (Prop. VI. Note 4) as the squares of the areas described in equal times, and therefore as the squares of the whole areas of the ellipse and the curve.

Now let the ordinates of the curve and ellipse be all changed in either of the ways mentioned in the Scholium: in each case the areas of the curve and ellipse are altered in the same ratio (see Lemma IV. Appendix); also the ellipse still becomes an ellipse with centre C '. And since the limiting position of a secant through P of the curve and ellipse is the same for both, being the common tangent at P, the limiting position of the corresponding secant to the altered curve and ellipse is the same for both, and is a tangent at the point (p) corresponding to P; and
the limiting position of the circle touching at P, and passing through a point near P of the curve or ellipse, is the same for both, and becomes in the altered figure an ellipse having the same curvature as each of the altered figures at the point of contact.

Thus the ellipse and curve have, after the alteration of the ordinates as in the Scholium, the ratio of their areas unaltered, and still have a common tangent and common curvature at the point p corresponding to P.

Hence the forces at p to c by which the altered ellipse and curve are described in the same periodic time are to each other as the supuares of their areas,-that is, as the squares of the areas of the original ellipse and curve, or, by what was proved, as the forces at P to C ' by which these curves are described in equal periodic times.

Therefore

force at P in original curve : force at P in original ellipse $=$ force at p in altered curve : force at p in altered ellipse.

And hence the forces at P and p in the curves are to each other as the forces at P and p in the ellipses, or as $C^{\prime} P$ to $C^{\prime} p$; the periodie times being equal.

SECTION III.

On the Motion of Bodics in Excentric Conic Sections.

> Y'rop. XI. (Problem VI.)

A body revolees in an cllipse; required the law of entripetal force tending to one of the foci.

Let S be the focus. Draw $S P$ cutting the conjugate diameter $D K^{-}$of the ellipse in E, and its ordinate $Q v$ in x; and complete the parallelogram $Q x P R$.

Then $P E$ is equal to the semi-axis major $A C$ (Besant's ('mics, p. ふ).

Draw \& T perpendicular to $S P$. Then the centripetal force to S varies inversely as the limit of $\frac{S P^{n 2} \times Q T^{2}}{Q R}$, when Q and l coincide (Prop. VI. Cors. 1 and 5).

$$
\text { Now } \quad \begin{aligned}
Q R: P c & =P x: P c \\
& P E: P C \\
& =A C: P^{\prime} C
\end{aligned}
$$

Again, if the normal at I^{\prime} meet $I K^{-}$in r,

$$
\begin{aligned}
Q T^{2}: Q x^{2}= & P P^{2}: P E^{2} \\
= & P F^{2}: C I^{2} \\
& C B^{2}: C D^{2}(\text { Comics, } \mathrm{p} \cdot(6: 9) ;
\end{aligned}
$$

and $\left(2 . r^{2}: \Omega r^{2}\right.$ is a ratio of equality when Q and P coincile (lemma VII. Cors. 2 ;
als,

$$
\left(Q r^{2}: G r \cdot P^{3}=C D\right)^{2}: C P^{2} .
$$

Therefore. componuding these ratios,

$$
Q T^{2}: \text { lir. Pr C C } B^{2}: C P^{2} \text {; }
$$

but ('r. $I^{\prime} \delta: 2\left(C^{\prime} . I^{\prime} s\right.$ is a ratio, of equality when Q and ${ }^{1}$ ' coincide ; hence ultimately

$$
Q T^{2} \cdot C P^{P} \quad C B^{2} \times 2 C^{\prime} \cdot P^{\prime} c ;
$$

therefore

$$
\frac{Q T^{2}}{P C}=\frac{2 C B^{2}}{C D^{\prime}} ;
$$

und, from above, $\quad \frac{P r}{Q R} \frac{C P}{C \cdot I}$;

$$
6-2
$$

$$
\mathrm{lt} \cdot \frac{Q T^{2}}{Q R}=\frac{2 C B^{2}}{C A}=L \ldots \ldots \ldots \ldots \ldots . .(a) ;
$$

where L is the latus rectum of the ellipse.
Thus

$$
\frac{S P^{2} \times Q T^{2}}{Q R}=L \times S P^{2}:
$$

and force varies inversely as $L \times S P^{2}$, or inversely as the square of the distance $S P$. Q.E. I.

Notc. Hence, measure of the force to the focus of an ellipse

$$
\begin{aligned}
& =2 \mathrm{lt} . \frac{Q R \times h^{3}}{S P^{2} \times\left(T^{2}\right.} \text { (Prop. VI., Cor. 2, Note) } \\
& =\frac{2 h^{2}}{L} \times \frac{1}{S P^{2}} \text {, from }(a) \\
& =\underset{S P^{2}}{\mu}, \text { where } \mu=\frac{2 h^{2}}{L} .
\end{aligned}
$$

Axother l'roof.
Since the force tending to the centre of the ellipse, ly which the body P can be made to revolve in the ellipse. varies by l'rop. X . Cor. 1) as the distance $C l$ ' of the body from the centre \mathcal{C}, draw $C^{\prime} E$ parallel to the tangent $P R$.

Then the force, by which the same body P can be made to revolve about any other point S, varies as $\frac{P E^{3}}{S P^{2}}$ (by Prop. VII. Cor. 3); that is, if S be a foeus of the ellipse, and $I^{\prime} E$ therefore constant, inversely as $S P^{2}$. Q.e.i.

We may proceed in the present caso with the same ease as in Problem V. to extend it to the case of motion in a parabola or hyperbola ; but on account of the importance of the problem, and of the use that will be made of it, it will be desirable to confirm the other cases by independent proofs.

Prop. XII. (Problem ViI.)

A brady mores in a hyperbola: required the law of centripetal force tending to one of the foch.

Let $C A, C B$ be the semi-axes of the hyperbola: $P G$, $D K^{\prime}$ any conjugate diameters: $P^{\prime} \boldsymbol{F}^{\prime}$ perpendicular to $D K^{-}$: and $Q r$ an ordinate to the diameter $G P$?

Draw $S P$ cutting the diameter $D K^{-}$in E and the ordinate $Q \subset$ in r, and complete the parallelogram QRI'. x.

Then $P E$ is equal to the transverse semi-axis A^{\prime} Besant's Comics, p. 99).

Draw $Q T$ perpendienlar to $S P$. Then the centripetal force to,S varies inversely as the limit of $\frac{S P^{2} \times Q T^{2}}{Q R}$, when Q and l^{\prime} coincide (Prop. VI. Curs. 1 and 5).

$$
\text { Now, } \quad \begin{aligned}
Q R: P r & I^{P} r: P r \\
& P E: P^{\prime}(, \\
& =A C: B C^{\prime}
\end{aligned}
$$

Again,

$$
\begin{aligned}
Q T^{2}: Q x^{2} & =P F^{2}: P E^{2}, \\
& =P F^{2}: C A^{2} \\
& =C B^{2}: C D^{2}(\text { by Conics }):
\end{aligned}
$$

and $Q x^{2}: Q r^{2}$ is a ratio of equality, when Q and l^{\prime} coinide ; (Lemma VII. Cor. 2.)
also, $\quad Q c^{2}: G r \times P^{3} v=C D^{2}: C P^{2}$.
Therefore, compounding these ratios,

$$
Q T^{2}: G c \times P^{3} r=C B^{2}: C P^{2}:
$$

but $G r \times P r$ is in a ratio of equality with $2 C P \times P v$ when Q and P coincide ;
$\therefore Q T^{2} \times C^{2}=C B^{2} \times 2 C P \times P v ;$

$$
\therefore \underset{P C}{2 T^{2}}=\frac{2 C B^{2}}{C D}:
$$

and, from above,

$$
P r \quad(P
$$

$$
\left(Q R A C^{\prime}\right.
$$

therefore lt. $\frac{Q T^{2}}{Q R} \quad 2 C B^{2}=L \ldots \ldots \ldots \ldots . .(a)$,
where L is the latus rectum of the hyperbola:

$$
\therefore \frac{S P^{2} \times Q T^{2}}{(Q R}=L \times S P^{2} ;
$$

therefore force varies inversely as $L \times S P^{3}$, or inversely as the square of the distance $S P$. Q.e. I.

Notc. Hence the measure of the force to the focus of a hyperbola

$$
\begin{aligned}
& =2 \text { lt. } \stackrel{Q R \times h^{2}}{S P \times\left(Q T^{\prime 2}\right.}=\frac{2 h^{2}}{L} \times \frac{1}{S P^{2}} \text {, from }(a) \\
& \quad \mu \\
& S P^{2}, \text { where } \mu=\frac{2 h^{2}}{L} .
\end{aligned}
$$

Another l'roof.

Find the force tending to the centre C of the hyperbola ; this will be found to be proportional to $C P$.

Hence hy Prop. VII. Cor. 3) the force to the focus S $I^{\prime} E^{3}$ will vary as NP^{3}; that is, since $P E$ is constant, inversely as sP'. Q. e. I.

In the same manner it may be shewn that if this centripetal force be changed into a centrifugal the body will move in the conjugate hyperbola.

Lemmi XII.

The parameter of any diameter of a parabola is four. times the dional distance of the rertes of that diameter. (C'onics, 1. 3:.)

Lemma XIV.

The perpendienlar frome the jiens of a purabola on any tanagent is the mean proprortional beturen ther distromers if the fiscus from the point of contact and the evertex of the parabola. (Comics, p. 23.)

Con. 1. S $S^{2}: S \mathrm{I}^{2}=S P: S A$.

Cor. 2. Since $S A$ is constant $S Y^{2}$ varies as $S P$.
Cor. 3. The perpendicular from the focus on any tangent meets it on the tangent at the vertex.

Prop. XIII. (Problem VIII.)

A body mores in a parabola: required the law of centripetal force to the focus.

Let the tangent $P M$ at any point P meet the axis of the parabola in M : draw $S Y$ perpendicular to $P M$.

From a point Q very near P, draw $Q R$ parallel and $Q T$ perpendicular to $S P$: and $Q c$ parallel to the tangent meeting the diameter $P^{\prime} G$ in r, and $S^{\prime} P$ in x.

Then, from the similar triangles $P x r, S P M$, since $S P=S M, P \cdot x($ or $Q R)=P r$.

$$
\text { Again, } \quad \begin{aligned}
Q v^{2} & =4 S P \times P r(\text { Lemma XIII. }) \\
& =4, S P \times Q R .
\end{aligned}
$$

And in the limit when the points Q, P coincide, $Q x$ is to $Q . x$ in a ratio of equality ; therefore in the limit,

$$
Q \cdot r^{2}=4 S P \times Q R .
$$

And by similar triangles $Q x T, S P I$,

$$
\begin{aligned}
Q T^{2}: Q . x^{2} & =S Y^{2}: S P^{2} \\
& =S A: S P \text { (Lemma XIV. Cor. 1), }
\end{aligned}
$$

or in the limit

$$
\begin{gathered}
Q T^{2}: 4 S P \times Q R=4 S A \times Q R: 4 S P \times Q R ; \\
\therefore \text { lt. } Q T^{2}=4 S R \ldots \ldots \ldots \ldots \ldots \ldots(a) ; \\
\therefore \frac{S P^{2} \times Q T^{3}=4 S A \times S P^{2} ;}{Q R}=4 .
\end{gathered}
$$

or, since $4 S A$ is constant, the centripetal forco (by Prop. V1. Cors. 1 and 5) varies inversely as the square of the distance S'I'. Q. E. I.

Note. Hence the measure of the force to the focus of a parabola

$$
\begin{aligned}
& =2 \text { lt. } \begin{array}{c}
Q R \times l^{2} \\
\\
\\
\end{array}=\frac{\mu}{S P^{2}}, \\
\text { where } \mu & =\frac{2 h^{2}}{L},\left(\begin{array}{c}
1 \\
4 S A
\end{array}, \begin{array}{c}
h^{2} \\
S P^{2}
\end{array}, \text { from }(\alpha)\right.
\end{aligned}
$$

Con. l. From the last three Propositions it follows that, if a borly ${ }^{\prime}$ ' be moving at the point P ' in any direction $P R$ with any velocity whatever, and is at the time under the action of a centripetal force varying inversely as the square of the distance, it will move in a conic section having a focus in the centre of force ; and conversely.

For given a focus, a point of contact, and the position of the tangent at the point, a conie section can be described having a given curvature at that point. Now the eurvature is given by the centripetal foree and the velocity of the body being given : and there camot be two orlits touching each other described with the same veloeity and the same centripetal force.
[For the centripetal force is that which deflects the body towards the centre of force; and a body which is moving from a given point in a given direction with a given velo-
city, and is deflected in a given manner, has obviously its whole motion given, and can describe but one orbit.]

Note. Given the focus and three points of a conic the directrix can be found (Besant's Conics, p. 215, Prop. V.) : hence by making the points move up to one another, we see that a conic can be described having a given focus, touching a given straight line at a given point, and having a given curvature at that point.

In the case of this Corollary, we have v and p given, and therefore h (Prop. I., Cor. 1, Note); and by Prop. VI. the force at any point is known if h, p, and $P V$ are given; and hence conversely $P V$ (and therefore the curvature) is known when h, p, and the force at P are known, as in the case of this Corollary.

If then a conic be described having the given centre of force as a focus, and passing through the given point, and having the given tangent and curvature at that point, it may by the present and preceding Propositions be described by a body under the action of the given force, varying inversely as the square of the distance.

Also, the motion of a body starting from a given point with a given velocity depends simply on the force at that point and the law of variation of the force, and is therefore completely determined if these are given.

Thus not more than one orbit can be described under the given conditions; and the body will therefore move in the conic section found above.

Con. 2. If the velocity with which a body moves at P be that with which a body can describe the very small straight line $P R$ in any given very small time, and the centripetal force is such as could move the body in the same time through the space $Q R$, the body will move in some conic section, the latus rectum of which is the limit $\frac{Q T^{2}}{Q R}$ when $P R$ and $Q R$ are diminished indefinitely.

In this Corollary a circle is reckoned as a particular case of an ellipse ; and the case of motion in a straight line to the centre is not included.

Nute. The orbit which the body will dessribe has been proved in Cor. 1 to be a Conic Section.

And it has been proved for all the Conic Sections that $Q_{Q}^{Q}=L$, the latus rectum [see equations (a), Props. XI., XII., XIII.].

Prop. XIV. (Theonem VI.)

If au!y mumber of bodies repoler about a common rentre, allel the centripetal foree th that contre rary inrevely as the square of the distance from it ; the latera recta of the ortits are as the squmes of the areas described in equal times liy radii drant from the bodies to the contre.

For (by Prop, XIII. Cor. 2) the latus rectum L is equal to the limit of $Q T^{2}$ when P and Q coincide.

But the indefinitely small line QR described in a giren time in the direction $S P$, is in the limit as the centripetal force which produces it, i.f. (by hypothesis) inversely as $\overbrace{}^{2}$.

Therefore $\frac{Q T^{2}}{Q K}$ varies as $Q T^{2} \times S P^{2}$; that is, the latus
rectum L as the square of the area ${ }_{2}^{1} Q T \times S P$ described in a given time. Q.E. D.

Note 1. In the figure to the present Proposition, let $Q R$ be the subtense of an arc $P Q$ of one of the orbits, described in any given indefinitely small interval of time t.

Then (Prop. VI., Note 3) the forces in the different orbits vary as lt. $\frac{Q R}{t^{2}}$; or, since t is given, as lt. $Q R$.

Note 2. Since in each orbit the areas described are proportional to the times, the ratio of areas described in equal times in any two of the orbits is independent of the time; and therefore the ratio of areas described in the two orbits in a given indefinitely small time is equal to the ratio of areas described in any the same finite time, and is the ratio of $h: h^{\prime}$, if h, h^{\prime} aro twice the areas described in the two orbits in a unit of time.

Cor. Hence the whole area of an ellipse (also the rectangle contained by its axes, which is proportional to this area) varies in the ratio of the periodic time and in the subduplicate ratio of the latus rectum conjointly.

For the whole area is proportional to the product of the area ${ }_{2}^{1} Q T \times S P$ described in any given time, and the periodic time.

Note 1. The area of an ellipse $=\pi A C \cdot B C$ (Appendix, Lemma IV.).

Note 2. The whole area is equal to the product of the area described in a unit of time, and the periodic time (Prop. I.).

Also from Prop. XIV. the area described in a unit of time varies as square root (or in the subduplicate ratio) of the latus rectum.

Note 3. In any orbit about a fixed centre of forces, if P be the periodic time,

$$
\begin{aligned}
h P & =2 \times \text { area described in time } P \text { (Prop. I. Cor. 1, Note }) \\
& =2 \times \text { area of the orbit; }
\end{aligned}
$$

also by the preceding l'ropositions, if the force vary inversely as the square of the distance, the orbits will be conic sections with the centre of force in the centre; and if L be the latus rectum in one of these orbits, the absolute force $\mu=\frac{2 h^{2}}{L}$.

Thus, area of the orbit $=\frac{h P}{2}=\frac{P}{2} \sqrt{\frac{\mu L}{2}}$.

Prop. XV. (Theorem VII.)

If any mumber of bodies recolre about a common centire, aned the centripetal force to that centre rary inrersely as the square of the distance from it ; the periodic times in the ellipses are to each other in the sesquiplicate ratio of the major ances.

For

$$
\because 4 B C^{2}=2 A C \times L \text {, }
$$

$$
\therefore(2 A C \times 2 B C)^{2}=5 A C^{3} \times L \text {; }
$$

$\therefore 2 A C \times 2 B C$ varies as $(2 A C)^{\frac{2}{2}} \times L^{\frac{1}{2}}$:
but (by Prop. XIV. Cor.) the rectangle contained by the axes varies as $L^{\frac{1}{2}}$ and the periodic time conjointly : therefore the periodic time varies as $\left(2 A C^{\prime}\right)^{\frac{3}{2}}$. Q.E.D.

Note. As in Prop. XIV. Cor., Note 3,

$$
\begin{aligned}
& 2 \times \text { area of orbit }=h P=\sqrt{\mu L} \cdot I_{2}^{\prime}, \\
& \text { or } 2 \pi A C \times B C^{\prime}=\sqrt{\frac{\mu B C^{\prime 2}}{A C^{\prime}} \cdot I^{\prime} ;} \\
& \text { therefore } P \frac{\sqrt{\frac{A}{2}} \pi \sqrt{C^{5}}}{\mu} .
\end{aligned}
$$

Cor. The periodic times in ellipses are the same as in circles whose diameters are equal to the major axes of the ellipses.

Prop. XVI. (Theorem VIII.)

Under the same conditions, if tangents be drawn to the orbits at any points, and nerpendiculars from the common focus upon them; the velocities of the bodies at these points are inversely as the perpendiculars and directly in the subduplicate ratio of the latera recta.

Draw $S Y$ from the focus S perpendicular to the tangent $P R$; then the velocity of the body at P shall be inversely as $S Y$
$L^{\frac{1}{2}}$
For the velocity is as the are $P Q$ described in a given indefinitely small time ; that is (by Lemma VII.), as the tangent $P R$. And, since $Q T$ is equal to the perpendicular from R on $S P$,

$$
R P: Q T=S P: S Y
$$

therefore

$$
P R=\begin{gathered}
S P \times Q T \\
S Y
\end{gathered}
$$

or $P R$ varies inversely as $S Y$ and directly as $S P \times Q T$. And $S P \times Q T$ varies as the area described in a given time, that is (by Prop. XIV.), in the subduplicate ratio of the latus rectum. Q.E.D.

Note. Let v be the velocity at P,

$$
\text { then } \left.r=\frac{h}{p} \text { (Prop. I., Cor. } \mathbf{I}, \text { Note }\right)=\frac{\sqrt{\mu L}}{\sqrt{2 \times p}} .
$$

Cor. 1." The latera recta are proportional to the product of the squares of the perpendiculars and the squares of the velocities. [$L \propto S^{\prime} Y^{2} \times(\text { velocity })^{2}$.]

Nutc. Since \quad| μ | $=\frac{2 h^{2}}{L}$, |
| ---: | :--- |
| L | $=\frac{2 r^{n} \gamma^{2}}{\mu}$. |

Cor. 2. The velocities of bodies, at their greatest and least distances from the common focus, vary inversely as the distances and directly in the subduplicate ratio of the latera recta.

For the perpendiculars are in these cases the same as the distances.

Cor. 3. And thus the velocity in a conic section at the greatest or least distance from the focus is to the veloeity in a circle at the same distance from the centre in the subduplicate ratio of the latus rectum to twice that distance.

Notc. For the circle is an ellipse whose latus rectum is equal to its dianeter, that is to twice the distance of the body.

Cor. 4. Bodies moving in ellipses about a common focus have velocities at their mean distances from the common focus equal to the velocities in circles at the same distances; that is (hy I'rop. IV. Cor. 6), inversely in the subduplicate ratio of the distances.

For the perpendiculars here are the semi-axes minor, and these are mean proportionals between the mean distances and the latera recta. Inverting this ratio and compounding with the direct ratio of the latera recta, we have the inverse subduplicate ratio of the distance.

Notc. The mean distance, that is, the mean of the greatent and least distances, is the semi-axis major $A C^{\prime}$, and the points at this distance from the focus are the extremitics of the minor axis.

Velocity at the point $B=\frac{h}{p}=\begin{gathered}h \\ B C\end{gathered}$

$$
\begin{aligned}
& =\frac{\sqrt{\prime}^{\prime} L L}{\sqrt{ } 2 \times B C}=\sqrt{\mu} C^{\prime} \\
& =\sqrt{\frac{\mu}{A C^{2}} \times A C}
\end{aligned}
$$

$=$ velocity in circle radius $A C$
(Prop. IV., Cor. i, Note).
Cor. 5. In the same figure, or in different figures whose latera recta are equal, the velocity of a body is inversely as the perpendicular from the focus on the tangent.

Note. For $\varepsilon=\frac{h}{p}$, and this (Props. XI., XII., XIII., Notes), $=\frac{\sqrt{\mu L}}{\sqrt{2 \cdot p}}$, when force varies inversely as the square of the distance.

Cor. 6. In a parabola the velocity is inversely in the subduplicate ratio of the distance of the body from the focus; in an ellipse it varies more than in that ratio, in a hyperbola less.

For (by Lemma XIV. Cor. 2) the perpendicular from the focus on a tangent to a parabola is in the subduplicate ratio of the distance. In the hyperbola the perpendicular varies in a ratio less than this, and in an ellipse more.

Note. In any orbit $v=\frac{h}{p}$; thus in a parabola, since

$$
\begin{gather*}
p^{2}=S Y^{2}=S P \cdot S A, \\
v^{2}=\frac{h^{2}}{S P \cdot S A}=\frac{\mu L}{2 S P \cdot S A}=\frac{2 \mu}{S P} . \tag{1}
\end{gather*}
$$

in an ellipse, since

$$
\frac{S Y}{S P^{\prime}}=\frac{S^{\prime} Y^{\prime \prime}}{S P^{\prime}}, \text { and } S Y \cdot S^{\prime} Y^{\prime \prime}=B C^{2}, \text { and } S P+S P^{\prime}=2 A C,
$$

therefore
and

$$
S Y^{2}=\frac{S P}{2 A C-S P} \cdot B C^{2}
$$

thus

$$
\begin{align*}
& v^{2}=\frac{h^{2}}{S Y^{2}}=\frac{h^{2}}{B C^{21}} \cdot \frac{2 A C-S P}{S P}, \\
& =\frac{\mu}{A C} \cdot \frac{2 A C-S P}{S P} \\
& =\underset{2 B C^{2}}{\mu L} \cdot \frac{2 A C-S P}{S P} ; \\
& v^{2}=\frac{2 \mu}{S P} \begin{array}{c}
\\
S C^{-}
\end{array} C^{\mu} \tag{2}
\end{align*}
$$

in a hyperbola, since $S^{\prime} P-S P=2 A C^{\prime}$,

$$
\frac{S Y^{2}}{S P^{2}}=\frac{S Y \cdot S^{\prime} Y^{\prime}}{S P \cdot S^{\prime} P}=\frac{B C^{2}}{S P(2 A C+S P)},
$$

and

$$
S Y^{2}=\begin{gathered}
S P \\
2 A C+S P
\end{gathered} B C^{2}
$$

therefure

$$
\begin{align*}
& r^{2}=\begin{array}{c}
h^{2} \\
S Y^{2}
\end{array}=\frac{h^{2}}{B C^{2}} \cdot \begin{array}{c}
2 A C+S P \\
S P
\end{array}, \\
&=\mu L \\
& 2 B C^{\prime 2} \cdot \frac{2 A C+S P}{S P}, \\
&=\mu C^{\mu} \cdot \frac{2 A C+S P}{S P}, \tag{3}\\
& 2 \mu \\
& S^{\prime}+A C^{\prime} \cdots \cdots \cdots \cdots \cdots
\end{align*}
$$

From (1), (2), and (3), we see that the velocity is in all cases less the greater the distance, and vice versa. Take any two points P, Q; and suppose them to be points on a parabola de scribed about the centre of force at S, varying inversely as the spluare of the distance; next suppose them to be points on an ellipse; and lastly on a hyperbola, about the same centre of force. Then by (1), (2), and (3), the ratios of the squares of th: velocities at $P Q$ in the three cases are respectively

$$
\begin{array}{ll}
S Q \\
S P
\end{array} \quad \frac{S Q}{S P} \cdot \frac{2 A C-S P}{2 A C-S Q} ; \text { and } \frac{S Q}{S P} \cdot \frac{2 A C+S P}{2 A C+S Q} .
$$

If now $S P$ be greater than $S Q, \begin{gathered}S Q \\ S P\end{gathered}$ is less than unity, $\frac{2 A C-S P}{2 A C-S Q}$ is less than unity, $\frac{2 A C+S P}{2 A C+S Q}$ is greater than unity; thus, in the parabola the ratio of the square of the velocities is less than unity, in the ellipse is still less, and in the hyperbola it is nearer unity than in the parabola. In other words the inequality between the velocities at any two points is greater for the ellipse, and less for the hyperbola, than it is for the parabola.

The equations (1), (2), (3) give the velocity at any given point of a conic section deseribed about a centre of force varying inversely as the square of the distance. The student should commit then to memory.

Cor. 7. In a parabola the velocity of a body at any distance from the focus is to the velocity of a body revolving in a circle at the same distance from the centre as the square root of 2 is to 1 : in an ellipse the ratio is less than this, in an hyperbola greater.

For, by Cor. 2 of this proposition, the velocity at the rerter of a parabola is in this ratio; and by Cors. 6 of this proposition and of Prop. IV., the same proportion obtains at all distances. Hence also, in a parabola the velocity is at every point equal to the velocity of a body revolving in a circle at half the distance, in an ellipse less, and in a hyperbola more.

Note. The velocity in any orbit $=\frac{h}{p}=\frac{\sqrt{ } \mu L}{\sqrt{ } 2 \cdot p}$: at the vertex A of a parabola p is the same-namely $S A$-both for a body describing the parabola and a circle radius $S A$; thus velocity at A in the parabola and circle varies as the square root of the latus rectum of the parabola and circle, that is as $\sqrt{4 S A}: \sqrt{2 S A}$; or as $\sqrt{ } 2: 1$.

Again, in a parabola, at $P, v^{2}=\frac{2 \mu}{S P}$ (Cor. 6, Note); and in a circle, radius $S P, v^{2}=\frac{\mu}{S P^{2}} . S P$ (Prop. IV., Cor. 1, Note).

$$
=\stackrel{\mu}{S P} \text {; }
$$

therefore at any point P, velocity in parabola : velocity in circle $=\sqrt{ } 2: 1$.

Cor. S. The velocity of a body describing any conic section is to the velocity of a body describing a circle at the distance of the semi latus-rectum of the conic, as that distance is to the perpendicular from the foens on the tangent to the conic. This appears from Cor. 5.

Note. For the latus rectum of the circle is double its radius, that is , it is equal to the latus rectum of the conic section; and the velocities are inversely as the perpendiculars on the tangents; hence

Vely. in conic: vely. in circle $=$ semi-latus rectum : perpendicular on tangent to the conic.

Cor. 9. Ilence, since ly l'rop. IV. Cor. 6) the velocity of a boly deseribing this circle is to the velocity of a body revolving in any other circle inversely in the subduplicate ratio of the distances ; it follows that the velocity of a body describing any conic section is to the velocity of a borly describing a circle at the same distance, as a mean proportional between that eommon distance and the semilatus rectum is to the perpendicular from the common focus on the tangent to the conic.

$$
\left(V_{\mathrm{el}} \mathrm{l} \cdot\right)^{2} \text { in circle ralius } S P=\frac{\mu}{S P^{2}} \times S P=\frac{\mu}{S P} \text {; }
$$

hence these two velocitics are in the ratio $(S P \times L)^{\frac{1}{2}}$ to $S Y$.

Prop. XVII. (I'roblem IX.)
Giren that the centripetal fore is iurersely proportional to the square of the distance from the centre of forces, and the absolute quantity of that force is knowen;

7-2
required the path described by a body which mores from a gicen point in a given direction with a given velocity.

Let the centripetal force tending to the point S be that with which a body p describes amy !iren orbit $p q$, and suppose the velocity of the body at p to be known. From the point P let the body P move in the direction $P R$,

from which it is deflected by the action of the centripetal force so as to describe some conic section $P Q$; the straight line $P R$ will therefore touch the orbit at P. Let $p r$ be the tangent at p to the orbit $p q$.

Then, if from S perpendiculars be let fall on the tangents at P and p, the latus rectum of the required conic section $P^{\prime} Q$ will he to the latus rectum of the given orbit $p q$ (by Irop. XVI. Cor. 1) in a ratio composed of the duplicate ratio of the perpendiculars and the duplicate ratio of the velocities, and is therefore given. Let L be the latus rectum of the conic section $P Q$: its fueus S is given; and the angle RPS' being the supplement of RPS is given, and therefore the line $P S^{\prime \prime}$, in which is the other focus S^{\prime}, is given in position.

Draw $S K^{\prime}$ perpendicular to $P S^{\prime}$; and let $B C$ be the semiasis minor.

Then

$$
\begin{aligned}
& S P^{2}-2 P^{\prime} K^{\prime} \cdot P S^{\prime}+P S^{\prime 2}=S S^{\prime 2}=4 C S^{2} \\
&=4 C \cdot A^{2}-4 C B^{2} \\
&=\left(S P+P^{\prime} S^{\prime}\right)^{2}-L \times\left(S P+P S^{\prime}\right) ; \\
& \therefore L \times\left(S P+P S^{\prime}\right)=2 S P \times P S^{\prime}+2 P^{\prime} \times P S^{\prime} \\
&=P^{\prime} S^{\prime \prime}\left(2 S P+2 P K^{\prime}\right) ; \\
& \therefore S P+P^{\prime}: S^{\prime}: S^{\prime}:: 2 S P+2 P K^{\prime}: L ;
\end{aligned}
$$

thus P S $S^{\prime \prime}$ is given in length as well as in direction.
If, now, the velucity of the body at P be such that the latus. rectum L is less than $2 S^{\prime}+2 P^{\prime} K$, $P^{\prime} / 1$ lies on the s:me side of the tangent as $P S$; and therefore the figure will be an ellipse, and will be determined from the known foci $S^{\prime} S^{\prime \prime}$, and the major axis $S^{\prime}+P^{\prime} S^{\prime}$.

If, however, the velocity is so great that the latus rectum L is equal to $2 \boldsymbol{N} \boldsymbol{P}+2 K^{\prime} P$, PS will be infinite ; and thus the figure will be a parabola whose axis is a straight line through is parallel to $P^{\prime} K^{\circ}$, and the parabola is determined since the foens, axis, and one point are given.

If the velocity with which the body moves through the point P le still greater L will be greater than $2 S^{\prime} \boldsymbol{P}^{2}+2 P K$,
 to the ratio $\frac{2 S P+2 P K^{-}}{L}$, is less than unity : thus $P S$ must be drawn in the opposite direction or on the other side of the tangent $/$ ' R; hence, the tangent passing between the foci, the figure will be a hyperbola, whose major axis equals the difference between $S P$ 'and $P^{\prime} S^{\prime \prime}$, and which is therefore determined.

The figure formed in each of these cases is the required path. For, if the body revolve in the conic section thus fouml, it is proved in lrops. XI., XII., XIII. that the centripetal forco will be inversely as the spuare of the distance of the body from the centre of forcess s; and therefore the
path $P Q$ has been determined which the body will describe under the action of such a force starting from the given point P in the given direction $P R$ with the given velocity. Q. . F.

Cor. 1. Hence in any conic section, given a vertex A^{\prime}, the latus rectum L, and one focus S, the other focus $S^{\prime \prime}$ is given by taking $A^{\prime} S^{\prime \prime}$ to $A^{\prime} S$ as the latus rectum to the difference between the latus rectum and $4 A^{\prime} S$.

For the proportion

$$
S P+P S^{\prime \prime}: P S^{\prime}:: 2 S P+2 K P: L
$$

becomes in the case of this corollary,-since K and S co-incide-

$$
\begin{aligned}
S A^{\prime}+A^{\prime} S^{\prime} & : A^{\prime} S^{\prime}:: 4 A^{\prime} S: L \\
S A^{\prime}: A^{\prime} S^{\prime} & :: 4 A^{\prime} S-L: L .
\end{aligned}
$$

Cor. 2. Hence, if the velocity of the body be given at the vertex A^{\prime}, the orbit will be readily found, by taking for its latus rectum a line which is to $2 A^{\prime} S$ in the duplicate ratio of the given velocity to the velocity of a body describing a circle at distance A 'S (by l'rop. XVI. Cor. 3); and then taking $A^{\prime} S^{\prime}$ to $A^{\prime} S$ as the latus rectum is to the difference between the latus rectum and $4 A^{\prime} S$.

Cor. 3. Hence, if a body move in any conic section, and be disturbed from its orbit by any impulse; we can find the orbit which it will then proceed to describe.

For, compounding the undisturbed motion of the body in its orbit, with the motion generated by the impulse, we shall have the motion with which it will proceed from the given point in a given direction.

Cor. 4. And if that body be contimuously disturbed by any force extraneously impressed, the path is known very approximately, by calculating the changes of motion produced by the force at certain points, and estimating the changes continually made at intermediate places by interpolation.

Scholicm.

If a body describe any given conic section whose centre is C under the action of a centripetal foree tending to any

point R whatever, and the law of the centripetal force is required; draw $C G$ parallel to the radius $R P$, meeting the tangent $P^{\prime} G$ in G; then the force will (by Prop. X. Cor. I. and Scholium, and Prop. VII. Cor 3) vary as ${ }_{R}{ }_{R C^{3}}$.

Note. By Prop. VII. ('or. 3, if the conic section be described in the same periodic time under forces to R and C, force to R : force to $C^{\prime} C G^{3}:\left(P \cdot R P^{2}\right.$; also, by Prop. X. Cor. 1 , and Scholium, force to C' varies as CI';
therefore, force to R varies as $\frac{C r^{3}}{K P^{2}}$.

APPENDIX.

On the Parallelogram of Forces.

1. Tie parallelogram of forces, deduced from the second law of motion in Cor. 1 of the laws of motion, can be expressed conveniently in another form, thus;

Since the resultant of forces, which act at a point and are represented in magnitude and direction by the sides $A B$ and $A C$ of a parallelogram, is represented in magnitude and direction by the diagonal $A D$; and since the side $B D$ of the triangle $A B D$ is of the same magnitude and in the same direction as $A C$;

therefore the forces represented by $A B$ and $B D$ have for resultant a force represented by $A D$; and thus the force which will with the forces $A B, B D$ form a system in equilibrium, may be represented by $D A$; or in other words, forces which act at a point and are represented in mag-
nitude and direction by the sides AB, BD), 1) A (taken in order) of the triangle ABD form a system in equilibrium.

This proposition is called the triangle of forces.
2. The following is yet another form in which the same proposition may be expressed, which is sometimes useful.

If either (1) ther, firces and their resultant, or (2) three forces in cquilibrinm, act at a point and have divections purallel to the sides af a triengle ABI, their magnitudes shall be propustiomal to the same sides.
(1) Let $A B, B D$ be the directions of two forces acting at a point, $A D$ that of their resultant; then the magnitudes shall be proportional to $A B, B I$, $A D$.

Complete the parallelogram $B C$: and represent the magnitude of the force in direction $A 1$) by $A I$) : then the forces in directions $A B, A C$, of which $A I$) is the resultant, are fomd by drawing $D B$ parallel to $A C$ and $D C$ parallel to $A B$, so as to form the parallelogram $B C$; they are therefore represented in magnitude (as well as in direction) by $A B$ and $A C$, or by $A B$ and $B 1$.

Thus the magnitudes of the three forces are proportional to $A / B, B D, A I)$.
(2) Let $A B, B D, I A$ be parallel to the directions of three forees in equilibrimm, the magnitudes of these forees shall be proportional to the sides $A B, B D, I D$.

For since a force in direction parallel to $D A$ is in equilibrium with forees parallel to $A B, B D$, the resultant of these two forces must be in direction parallel to $A 1$): and the proposition is therefore proved for the magnitude of the forces in this case in the same mamer as in case (1).
3. By considering the proof of Cor. 1. of the laws we see that the parallelogram and triangle of forces may be applied, mutatis mutandis, to velocities.

Lemma XXIII.

If two straight lines AC, BD be terminated at A, B, and have a given ratio to one another, and the straight line CD , joining the rarialle points C, D, be cut in a giren ratio at K : the point K will lie on a straight line given in position.

Let the straight lines $A C, B D$ meet in E. On $B E$ take $B G$ to $A E$ as $B D$ is to $A C$; thus $B G$ is given and

the point G is given in position ; take $D F$ always equal to the given length $E G$;
then from the construction, $G D=E F$;
therefore $E C^{\prime}: E F=E C: G D$

$$
=A C: B D \text {, a given ratio ; }
$$

thus the triangle $E F C$ is given in form.
Divide $C F$ at L so that

$$
C L: C F=C K: C D, \text { a given ratis, }
$$

then the ratio of $L F$ to $C ' F$ is given :
also the ratio of $E F$ to $C F$ is given :
therefore the ratio of $E F$ to $F L$ is given, and the triangle EFL is given in form, and thus the point L will lie always on a straight line $E L$ given in position.

Join $L K^{-}$; then the triangles CLK, CFD are similar ; also $F l$) is given ($=E(G)$; and the ratio of $L K^{-}$to $F D$ is given: thus $L K^{-}$is given.

Take $E / I=L K^{-}$; then $E L K^{-} / I$ is always a parallelogram. Thus K^{\prime} lies always on the straight line $/ 1 K$, which passes through a fixed point $I /$ and is parallel to $E L$, and is therefore given in pesition. Q.e.D.

Con. Since the triangles $E L F, E C N$ are given in form, the three straight lines $E F, E L$ and $E($-that is, $G D$, $I I K^{\circ}$ and $E \subset-$-are to each other in given ratios.

Note 1 . Thus if two borlies moving in the same plane are at the sane instant at A and B, and describe the indefinite straight lines $A(C, B D$ with uniform velocities, and arrive simultaneously at C^{\prime} and D, their centre of gravity K will describe a straight line $/ / K^{\prime}$: and it will move with uniform velocity, since $I I K$ is to $L^{\prime} C^{\prime}$ and (il), and therefore to $A\left(C^{\prime}\right.$ and $B D$, in constant ratios.

Nite 2. If the bodies move in different planes, let $A C^{\prime}, B D$ the the projections on a given plane of the spaces described by them in a given time, and let K be the projection of the eentre of gravity; then K divides ('l) in a given ratio; hence, by the construction and proof of this Lemma, K describes a straight line $/ / K^{\circ}$ with uniorm velocity; thus the centre of gravity of the two bodics describes a path the projection of which on any phane is a straight line, and which is therefore itself a straight line ; :and it describes it with uniform velocity, since its projection K describes $/ 1 K$ with uniform velocity.

We now proceed to the proofs of Cors. 4,5 , and 6 of the laws of motion.

Cor. 4. The common centre af ararity of taro or mure buties dues not change its state af mution or rest thromagh the mutual actions of the budies; and honce, in the ahsernce at external actions or resistances, the cimmon centre of yrarity either is at rest or mores unifiomly in a straight line.

For if two points move uniformly in straight lines, and the distance between the points be divided in a given ratio, the point in which it is divided either is at rest or moves uniformly in a straight line (Lemma XXIII., Cor. and Notes).

If, therefore, any number of bodies move uniformly in straight lines, the common centre of gravity of any two either is at rest or in uniform motion in a straight line: for the line which joins the centres of these bodies which move uniformly in straight lines is divided by that centre in a given ratio ;
similarly, also, the common centre of these two and any third either is at rest or moves uniformly in a straight line; for this point divides the distance between the common centre of the two bodies and the centre of the third in a given ratio;
in the same way the common centre of these three and any fourth body cither is at rest or moves uniformly in a straight line: for it divides the distance between the common centre of the three and the centre of the fourth in a given ratio; and so on in infinitum;
therefore, in a system of bodies, which are acted upon neither by mutual actions nor by external forces, and each of which therefore moves uniformly in a straight line, the common centre of gravity of them all either remains at rest or moves uniformly in a straight line.

Moreover, in a system of two bodics mutually acting on each other, since the distances of their respective centres from their common centre of gravity are reciprocally as the bodies, the relative motions of these bodics to or from that centre will be equal ; now the position of the centre of gravity is moved neither forward nor backward by equal motions of the two bodies in opposite directions, and hence it undergoes no change in its state of motion or rest through the mutual actions of the bodies.

Again, in a system of several bodies, since the common centre of gravity of any two which act on each other is unaffected in its state of motion or rest by that action; and since the common centre of gravity of the remainder is
unaffected by this action, in which they are not concerned; since also the distance of these two centres is divided by the conmon centre of all the bodies into parts inversely proportional to the sum totals of the bolies whose centres they are, so that, those two centres maintaining their state of motion or rest, the common centre of all maintains its state also; it is evident that the common centre of all the bodies never changes its state as regards motion or rest in consequence of the mutual actions of pairs of them.

Now in a system such as we are considering, all the mutual actions of the bodies are either actions between the bodies two and two, or composed of such actions, and therefore never induce in the eommon centre of all the bodies a change in its state of motion or rest.

Therefore, since the centre of gravity of a system of boclics which do mot act upon one another either remains at rest, or moves miformly in some straight line; it will continue, in spite af mutual artions between the bodies composing it, either to remain for ever at rest, or to progress uniformly in a straiglit line; unless it be disturbed from that state by forces impressed on the system from withont.

Thus, there js for a system of several bodies the same law as for a single hody, in respect of persevering in its state of motion or rest: for the progressive motion, whether of a single borly or of a system, must always be estimated by the motion of the centre of gravity.

Cor. .j. Bemlies inclosed in a gieen space have the xame motions relutiedly to one another, rhether thent space be at rest, or be moring unifurmly in a straight line without rotation.

For the differences of velocities in the same direction, and the sums of velocities in oprosite directions, are initially the same in both cases by hyothexis, , and from these stims and differences of velocities arise the eollisions and the impacts with which bodies strike one another.

Therefore, by Law II. the effects of the collisions will be the same in the two cases; and thus the motions of the bodies relatively to one another in the one case will remain equal to the motions relatively to one another in the other case.

The same thing is proved very clearly by experiment; thus, all motions on board a ship take place in the same manner, whether the ship be at rest or be moving uniformly in a straight line.

Cor. 6. If bodies are moring relatiedy to one another in any manner, and are urged by equal accelerating forces in parallel directions; they will all continue to move relaticely to one another in the same manner as if they were not acted on by those finces.

For these forces, being equally accelerating forces, act on the bodies in motion in proportion to the quantities of the bodies, and they act in parallel straight lines; therefore, by Law II. they move all the bodies equally-as regards velocity-and can never alter their positions and motions among one another.

The following propositions are added in illustration of Lemma I:-

1. If frum quantitios of the same kind ranish together in such a manuer that the ultimute ratio of the first to the secomel is squal th that at the third to the fienth; the ultimate ratio of the first the the third shatl bwe equal to that of the second to the fiourth; all the ratios being surpused to remain finitr.

Let n, l, r, d be the four quantites: take $A, B, C, I)$ always proportional to them, making one, say A, always finite: then, since all the ratios remain finite, the rest B, C, and $I)$ remain finite. We have, therefore,

$$
\text { in the limit } A: B:: C: D \text {; }
$$

therefore in the limit $A: C:: B: D$;
therefore the ultimate ratio of a to c is equal to that of b to d.
2. Straight lines are draten from a point Λ cutting two fired straight lines $1 \mathrm{~B}, \mathrm{I} \mathrm{C}$. If $\mathrm{B}, \mathrm{C} ; \mathrm{B}^{\prime}, \mathrm{C}^{\prime}$ arr the prints in rhirh they are cut by tuen of theser straight
 D) C to DC^{\prime}, when $\mathrm{ABC}, \mathrm{AB}^{\prime} \mathrm{C}^{\prime}$ mure up ts and cıincide with Al).

For, the ratio of D / B to $D C$ depends simply on the angles of the triangle $D B C$; and these angles approach a
fixed and finite limit; therefore the limiting ratio of $D B$ to $D C$ is fixed, and is the same as that of $D B^{\prime}$ to $D C^{\prime}$:

therefore the limiting ratio of $D B$ to $D B^{\prime}$ is the same as that of $D C$ to $D C^{\prime}$.

The following propositions are added in illustration of Lemma II.

1. To find the area of any portion of a plane.curce referred to Curtesian co-ordinates.

Let $A B D C$ be the area required, bounded by the arc $A P B$, the ordinates $A C, B D$, and the line of abscissas DC:

Inscribe, as in the Lemma, n parallelograms on n equal bases, and let $P N$ be one of these.

Then the area required is by the Lemma equal to the limit of the sum of the parallelograms when n is indefinitely increased.

Let $D C=a: A C=b_{1}: B D=b_{2}: \angle B D C=i$:
then area of parallelogran $P N=P M \times M N \times \sin i$

$$
=P M \times{ }_{n}^{a} \times \sin i=\frac{P M}{n} \times a \sin i,
$$

therefore, area required-limit of $a \sin i \Sigma^{P M}{ }_{n}$;

where ${ }^{P}{ }^{\prime \prime} M^{\prime}$ indicates the sum obtained by adding all the u values of $P^{\prime} M$ from b_{1} to l_{2}, ard dividing l y $~ u$.
2. To find the area of a portion of a purabole cut off by a diameter and one af its ordinates.

Let A.e be the diameter, $P M$ any ordinate; (B the

ordinate bounding the area $A B C$ required : $A B=h$, (' $B=1$.

Then, by a property of the parabola,

$$
\begin{gathered}
P M^{2}=\frac{A M}{A B^{2}} \\
\therefore A M=\frac{P M^{2}}{i^{2}} h .
\end{gathered}
$$

Let $A y$ be the tangent at A : and draw $P N, C D$ parallel to $A x$ to meet $A y:$ let $\angle y .4 . c=i$, then $A M=P N$: and $P^{\prime} M=A N$:
therefore

If, now, in the figure $A D C P$ be inseribed n parallelograms on n equal bases formed by dividing $A D$ into n equal parts,
the area $A D C=$ limit of $\Sigma P N \times \frac{A D}{n} \times \sin i$,

$$
\begin{aligned}
& =\text { limit of } \Sigma N_{k^{2}}^{A N^{2}} k \times{ }_{n}^{k} \sin i, \\
& =\text { limit of } \frac{k}{k} \sin i \Sigma \frac{A N^{2}}{n},
\end{aligned}
$$

by taking all the values of $A N$ from O to $A D$;
these values are

$$
\frac{A D}{n}, \frac{2 A D}{n}, \frac{3 A D}{n}, \ldots \ldots . . \frac{n \times A D}{n}
$$

$$
\begin{aligned}
& \therefore \Sigma \frac{A N^{2}}{n}=\Sigma A D^{2}+2^{2} A D^{2}+3^{2} A D^{2}+\ldots+n^{2} A I J^{2} \\
& n^{3} \\
&=A D^{2} \times \Sigma \frac{1^{2}+2^{2}+\ldots \ldots+n^{2}}{n^{3}} \\
&=A D^{2} \times \frac{1}{n^{3}}\left(\begin{array}{c}
n^{3} \\
3
\end{array}+\frac{n^{2}}{2}+\frac{n}{6}\right) \\
&=A D^{2}\left(\frac{1}{3}+\frac{1}{2 n}+\frac{1}{6 n^{2}}\right)
\end{aligned}
$$

and the limit of this when n is indefnitely increased

$$
\begin{aligned}
& \therefore \text { area HIO }{ }_{k}^{\prime \prime} \sin i \times \frac{k^{2}}{3} \\
& \frac{1}{3} h k \sin i \\
& { }_{3}^{1} \text { of the parallelogram } A B C^{\prime} D \text {; } \\
& \therefore \text { 期abolic area } 1 \text { IBC } \quad \stackrel{3}{3} \text { circumscribing barallelogram. }
\end{aligned}
$$

3. Ti, find the culume of a pyramial.

Lect A the the area of the lase of the pramid; h the perpendicular from the vertex on the base. Divide h into " equal. garts, and through the rth peint of division from the vertex draw a phane parallel to the base.

Then the area of the section of the pramid thus made

$$
.1 \stackrel{\binom{r / h}{n}^{2}}{h^{2}} . A_{n^{2}}^{r^{2}}
$$

on this area as a base describe a right prism, whose altitude $=\frac{h}{n}$;
the volume of this prism $=A \frac{r^{2}}{n^{2}} \cdot{ }_{n}^{h} \quad A h \frac{r^{2}}{n^{3}}$; therefure volume of the pyramid
$=$ limit of sum of all the prisms
$=A h \times$ limit $\sum_{n^{3}}^{r^{2}}$

$$
\begin{aligned}
& \text { Neuton's Principia. } \\
& =.1 h \times \text { limit of }\left(\begin{array}{l}
1 \\
3
\end{array}+\frac{1}{2 n}+\begin{array}{c}
1 \\
6 \mu^{2}
\end{array}\right) \\
& =\frac{1}{3} .4 h
\end{aligned}
$$

$=\frac{1}{3}$ the volume of a right prism whose base and altitude are equal to those of the pyramid.
4. The rolume of a solid of recolution may be deduced by applying the method of Lemma $I I$.

Let $A B C$ be any plane eurvilinear area, by the revolu-

tion of which abont $A B$ the solid is generated, and let C C B be perpendicular to $A B$.

Divide $A B$ into n equal parts, and inscribe in the figure $A B C$ " rectangular parallelograms on these parts as bases.

Then, by the method of Lemma II. it may be shewn that the volume of the solid of revolution is the limit of the sum of the cylinders formed by the revolution of all these parallelograms-such as $P N$-about $A D$.

The volume of the eylinder described by $P N$

$$
\begin{aligned}
& =\pi P^{2} \cdot M N \\
& =\pi P M^{2} \times \frac{A B}{u} ;
\end{aligned}
$$

Appendix.
then volume of revolution recpured

$$
=\text { limit of } \Sigma_{\pi} P M^{2} \times \frac{A B}{u},
$$

when u is indefinitely increased,

$$
=\pi A B \times \Sigma{ }_{u}^{P}
$$

5. To find the rolume af a right cone.

A right cone is the figure generated by the revolution of a right-angled triangle about one of the sides containing the right-angle.

Let $A B C$ be any right-angled triangle; to find the

volume of the right cone described by its revolution abont A 13 .

Inscribe in the triangle, $"$ rectangular parallelograms on n equal bases; and let $P N$ be one of them; so that $M N=l_{n}^{1} \times A B$; then volmme of eylinder described by $P N$

$$
\begin{aligned}
& =\pi I^{2} M^{2} \times \frac{.1 B}{n} \\
& =\pi .1 M^{2} \times \frac{B 1^{\prime 2}}{.1 B^{\prime}} \times \frac{1 / 3}{n}
\end{aligned}
$$

118
Newton's Principia.

$$
=\frac{\pi B C^{2}}{A B} \times \frac{A M^{2}}{n} ;
$$

\therefore whole volume of revolution required

$$
\begin{aligned}
& =\text { limit of } \Sigma \frac{\pi B C^{2}}{A B} \times \frac{A V^{2}}{n} \\
& =\text { limit of } \frac{\pi B C^{2}}{A B} \Sigma \frac{A M^{2}}{n},
\end{aligned}
$$

when u is indefinitely increased.
Now the values of $A M$ are ${ }_{n}^{A B}, \frac{2 A B}{n} \cdots \cdots{ }_{n}^{n A B}$;

$$
\begin{aligned}
& \therefore \Sigma_{n}^{A} M_{n}^{2}=\mathrm{\Sigma} \frac{A B^{2}+2^{2} A B^{2}+\ldots \ldots+n^{2} A B^{2}}{n^{3}} \\
& =A B^{2} \times \Sigma^{1^{2}+2^{2}+\ldots \ldots+n^{2}} n^{3} \\
& =A B^{2}\left(\begin{array}{l}
1 \\
3
\end{array}+\frac{1}{2 n}+\begin{array}{c}
1 \\
6 n^{2}
\end{array}\right) \text {; } \\
& ={ }_{3}^{A B^{2}} \text {, in the limit }:
\end{aligned}
$$

\therefore volume of cone of revolution required

$$
\begin{aligned}
& =\frac{\pi B C^{2}}{A B} \times \frac{A B^{2}}{3} \\
& ={ }_{3}^{1} \pi B C^{2} \cdot A B \\
& ={ }_{3}^{1} \text { cireumscribing cylinder. }
\end{aligned}
$$

The following propositions are added in illustration of Lemma IV.:-

1. If all the ordinates of any given curre be increased or diminished in any gicen ratin, the area of the curee is increased or diminished in the same ratio.

Inserihe in the given curve a series of parallelograms as in Lemma IV., and let PMMQ be one of the series, cor-

responding to a point P of the curve: draw $p q$ parallel to $I^{\prime}(t$ and entting the ordinate $P M$ in the given ratio.

Then PMNQ, $M M N Q$ are in the ratio of PM to $m M$, that is, in the given ratio: hence the sum of the parallelograms $I M N\left(\begin{array}{l}\text { is in the given ratio to the sum of the }\end{array}\right.$ parallelograms piVN\%.

Thus, by Lemma IV. the area of the given curve is increased or diminished in the given ratio.

Ex. The area of an ellipse is to that of a circle on its major axis as diancter as the minor axis is to the major axis.

Hence, area of ellipse $=\frac{B C^{\circ}}{A C^{\circ} \times \pi A C^{2}}$

$$
=\pi \cdot 1 C^{\prime} . B C^{\circ} .
$$

2. If all the ordinates of any given curve be turncd through any giren angle, the area of the curce is diminished in the ratio of the cosine of that angle.

Inscribe a series of paralle!ograms in the given figure, as in Lemma IV.; and let PMNQ be the parallelogram

corresponding to the point P of the curve: let $P M, Q N$ be turned through the given angle and come into the positions $p M, q N$: join $p q$; then $p q$ is parallel to $M N$ (Euc. I. 833).

Draw $p R$ perpendicular to $M N$.
Then $p M N_{q}: P M N Q=p R \times M N: P M \times M N ;$
hence

$$
\text { L. R. } \begin{aligned}
p M N_{q} & : P M N Q=p R: P M \\
& =p R: p M \\
& =\cos p M P: 1 .
\end{aligned}
$$

Thus, by Lemma IV. the area of the given eurve is diminished in the ratio of the cosine of the angle $p M P$.
3. To find the area of a portion of a paralula included beticeen the curve, a dirmetor, and an ordinate to the diameter.

Let $P M B$ be the area required; $B M$ being the ordinate, parallel to the tangent $P^{\prime} N$.

Take two points Q, Q^{\prime} near each other，and draw $Q V^{\prime}$ ， $Q^{\prime} V^{\prime} ; Q L, Q^{\prime} U^{\prime}$ ；parallel to $I^{\prime} N$ and $I^{\prime} M$ respectively．

Then，since the（acute）angles at V and V are each equal to the angle at I ，they are equal to each other；
therefore the area of the parallelogram $Q U^{\prime}$ is to area of the parallelogram Q $V^{\prime \prime}$ as $\left(Q L^{\prime} \cdot U U^{\prime}: Q V . V V^{\prime}\right.$ ．

Now，by the nature of the parabola，

$$
Q V^{\prime 2} 4 S P \cdot I^{\prime}
$$

and

$$
U^{\prime} l^{\prime 2}+\infty l^{\prime} \cdot I^{\prime \prime} ;
$$

$$
\therefore\left(a^{\prime \prime 2}-\left(l^{\prime 2}+\mathscr{C}\right) \cdot l^{\prime \prime},\right.
$$

or

$$
\begin{aligned}
& \text { ' } \left.2^{\prime} l^{\prime}+Q l^{\prime}\right)\left(Q^{\prime} l^{\prime \prime}-\left(Q V^{\prime}\right)=4 ふ ゚ \Gamma^{\prime} \cdot l^{\prime} V^{\prime} ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{lt} \text {. } \\
& Q V^{\circ} \cdot V^{\prime \prime}=4 S P \cdot Q V^{r} \\
& \text { (2V.Vレ" } \\
& =\stackrel{4 S P \cdot V^{\circ}}{2\left(2 V^{2}\right.} ;
\end{aligned}
$$

\therefore by Lemma IV, whole area $P B N=\frac{1}{2}$ area $P B M$;
\therefore area $P M B=\frac{2}{3} \times$ parallelogram $M N$.
4. To, find the rolume of a polate spheroid; i. e. of the solid generated by the recolution of an ellipse about its: major a.xis.

Let P, P^{\prime} be two points near each other on the ellipse: and draw $P N, P^{\prime} N^{\prime}$, parallel to the major axis, mecting

the minor axis in N, N^{\prime}; and $P M, P^{\prime} M M^{\prime}$ parallel to the minor axis, meeting tangent at B in M, M^{\prime}.

Let $C A=a, C B=b, P N=x, C N=\eta, M M M^{\prime}=h$, $N N^{\prime}=l$; thus $I^{\nu} N^{\prime}=x+h, C N^{\prime}=y-l i ;$
then

$$
\frac{x^{2}}{a^{2}}+\frac{!y^{2}}{b^{2}}=1 ;
$$

and

$$
\frac{(x+l)^{2}}{a^{2}}+\frac{\left(y-l^{2}\right)^{2}}{l^{2}}=1 ;
$$

$$
\begin{align*}
& \text { Appendix. } \\
& \therefore \quad \frac{2 x h+l^{2}}{a^{2}}+\frac{-2 l y+l^{2}}{b^{2}}=0 \text {; } \\
& \therefore \begin{array}{l}
h(2 r+h) \\
l(\because y-l)
\end{array}=\frac{a^{2}}{b^{2}} \text {; } \\
& \therefore \text { lt. } \stackrel{2 . r h}{2 y / k}=\frac{a^{2}}{b^{2}} \text {; } \\
& \therefore \text { lt. }{ }_{k}^{\prime \prime}=\frac{a^{2}, y}{b^{2}, c} \tag{1}
\end{align*}
$$

Again, area described by revolution of $N N^{\prime}$ about $C .1$

$$
=\pi C N^{2}-\pi C N^{\prime 2}
$$

\therefore volume described by revolution of parallelogram $P N^{\prime \prime}$

$$
\begin{aligned}
& =\pi\left(C V^{2}-C V^{\prime 2}\right) P^{\prime} V \\
& =\pi\left(r^{\prime} V^{\prime}+C N\right) P N \cdot N V^{\prime} \\
& =\pi(2!\prime+l) x k .
\end{aligned}
$$

Alsn, area described by revolution of $P M$ (or of $B . V$)

$$
\begin{aligned}
& \left.=\pi^{(} l^{\prime} l^{2}-r^{\prime} I^{2}\right) \\
& =\pi\left(l^{2}-y^{2}\right) ;
\end{aligned}
$$

\therefore volume described liy revolution of parallelogram PM'

$$
=\pi\left(l^{2}-y^{2}\right) l ;
$$

\therefore these volumes are in the ratio of $\frac{(2 \eta+l)}{\left(l^{2}-y^{2}\right) h}$,
or of

$$
\frac{(2 y+k}{b^{2}-y^{2}} \cdot r^{l^{2} x} \cdot a^{2} y, b y(1)
$$

or, in the limit, of $\frac{2 t^{2} x^{2}}{a^{2}\left(t^{2}-y^{2}\right)}$ (since l vanishes);
and this $=\Omega$, from the equation to the ellipse.

IIence by Lemma IV. the volume of the ellipsoid is twice the volume between it and the circumscriling cylinder;
\therefore the volume of the ellipsoid is two-thirds of the circumscribing cylinder.

The following proposition was referred to in the note to Lemma III. Cor. 4.

The limiting ratio of the sum of the series of chords joining consecutive points of a curre to the sum of the series of tangents at those points is one of equality.

Let $A T, T B$ be the tangents at two points A and

B, very near each other on any curve, $A B$ the chord. Produce $A B$ to a fixed distant point b.

As the points A and B move up to one another, draw $l t$ always parallel to $B T$, meeting $A T$ produced in t.

Then (by Lemma VI.) the angles TAB, TBA diminish indefinitely and ultimately vanish: hence also the angles $t A b, t b A$, which are equal to them, ultimately vanish.

Thus ultimately t lies on $A b$, and thercfore the ratio of $A t+t b$ to $A b$ is a ratio of equality : and by similar triangles $A T B, A t b$, the ratio of $A T+T B$ to $A B$ is always the same as that of $A t+t b$ to $A l$.

Hence, in the limit, the ratio of $A T+T B$ to $A B$ is one of equality : and this is true with respect to each chord.

Thus the limit of the ratio of the sum of the series of chords to the sum of the series of tangents is a ratio of equality.

The following propositions are added as illustrations of Lemmas VI. and Vil.

1. AB is the chord, aut AT, BT the tangents at A and $\mathrm{B}, \cdots \boldsymbol{J}^{\text {an }}$ are AB , of contimeots curcature; BX is a

straight liue mediang the tangrat at N . If the single N is alura!k finite. the limitimy retio of the triangles ATB, XTB is inn 'fy cqualily.

For, since the curvature of the curve is continuons,
เ. п. $A T: T B=1$ (page 130 ;
and since the angles $T N B, T B N$ re:main finite when $B T N$ vamivhes,

\therefore L. R. $\triangle A T B: \therefore N T B=$ l. R. $A T: N T$ -1 .
2. Twiful the ultimater ration of illir selments of ten
 ohor cand rosiacide.

Let $.1 B, I^{\prime} D^{\prime}$ be two equal chords intersecting in O (fion uext prage.

On O.I' take Om equal to O.1: and on OB take On cqual to $O E^{\prime}$; join $A A^{\prime}, D B^{\prime}$.

Then

$$
A n=B^{\prime} m ;
$$

$$
\therefore A B=A n+n B=B^{\prime} m+n B \text {; }
$$

add $A^{\prime} m$ to each;

$$
\therefore A B+A^{\prime} m=A^{\prime} m+B^{\prime} m+n B=A^{\prime} B^{\prime}+n B ;
$$

but

$$
\begin{aligned}
& A B=A^{\prime} B \text { (by hypothesis), } \\
& \therefore A^{\prime} m=B n
\end{aligned}
$$

and by similar triangles $A O m \quad B^{\prime} O n$,

$$
\begin{gathered}
\frac{A O}{A m}=\frac{B^{\prime} O}{B^{\prime} n}, \\
\therefore A O \times \frac{A^{\prime} m}{A m}=B^{\prime} O \times \frac{B^{\prime} n}{B^{\prime} n} ; \\
A^{\prime \prime} m=\frac{\sin A A^{\prime} m}{A^{\prime} m} ; \\
\therefore \text { lt. } \frac{A m}{A^{\prime} A m}=\tan A A^{\prime} m
\end{gathered}
$$

but
(since $\angle A m A^{\prime}$ is ultimately a right angle);
similarly lt. $\frac{B^{\prime} n}{B n}=\tan B^{\prime} B n$;
$\therefore \frac{A O}{\tan A A^{\prime} m}=\frac{1 B^{\prime} O}{\tan B B^{\prime} B n}$, ultimately ;
$\therefore \mathrm{lt} \cdot \frac{A O}{B^{\prime} O}=\mathrm{lt} \cdot \frac{A O}{B O}=\mathrm{lt} \cdot \frac{\tan A A^{\prime} m}{\tan B^{\prime} B n} ;$
and the angles $A A^{\prime} m, B^{\prime} B n$ are ultimately the angles which $A B$ makes with the tangents to the curve at A, B. Calling these angles a and β, we have
L. R. $A O: B O=\tan a: \tan \beta$.
3. Tis fimd the ultimate ration of the segments of tuo chords cutting off equal arcs "f a curce.

Let $I B, . I^{\prime} B^{\prime}$ be two chords meeting in O, and

cuttine off equal ares, so that are $A B$ arc $I^{\prime} B B^{\prime}$, and therefore are $A . I^{\prime}$ are $B B B^{\prime}$
1)raw $I^{\prime} m, ~ B n$ perpendicular to $A B, I^{\prime} I^{\prime}$: join $A . I^{\prime}$, I ${ }^{\prime} b^{\prime}$.

Then l. r. chd $A . I^{\prime}$: chd $B B^{\prime}$ L. r.are $L . I^{\prime}$: are $B B^{\prime}$;

$$
\begin{aligned}
& \therefore \mathrm{lt} \text {. }{ }_{\text {chord }}^{\text {chord } A} B I^{\prime} 1 \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& =1 \mathrm{t} . \sin \cdot \mathrm{A}^{\prime} \mathrm{A} / \mathrm{m} \\
& \sin 1313^{\circ}
\end{aligned}
$$

Let the tangents at A and B meet in T;
then

$$
\begin{aligned}
& \text { lt. } A_{B n}^{A^{\prime} m}=1 \mathrm{t} . \frac{\sin A I^{\prime} A m}{\sin B S^{\prime} n}, \\
& \therefore \mathrm{lt} . \quad A^{\prime} O=\frac{\sin T A m}{\sin T B m}
\end{aligned}
$$

(when A, A^{\prime} and B, B^{\prime} coincide);
or

$$
\text { 1t. } \frac{A O}{O B}=\frac{T B}{T A}
$$

or
ц. в. $A O: B O=T B: T .1$.
4. The limiting ratio of tuo angles uhhich ranish together is that of their sines, and tangents.

Let $B . A C, B A D$ be two angles which vanish together ; draw $D C B$ perpendicular to $A B$ meeting $A C, A D$ in C^{\prime}

and D : with centre A and radins $A B$ deseribe an are of a circle $B C^{\prime} D^{\prime}$ cutting $A C^{\prime}, A D$ in C^{\prime}, D^{\prime}; and draw $C^{\prime} E, D^{\prime} F^{\prime}$ perpendicular to $A B$.

We have to shew that the limiting ratio of the angles $C A B, D . A B$ when they vanish is equal to that of $C^{\prime \prime} E$ to $D^{\prime} F$; and of $C^{\prime} B$ to $D B$.

Since the angles at C, D, E and F remain finite, we have by Lemma VII. Cor. 1, limiting ratio of $C^{\prime} E$ to $D^{\prime} F^{\prime}$ equal to that of $B C^{\prime \prime}$ to $B D^{\prime}$;
again, ly the same Lemma, limiting ratio of $C B$ to $D B$ is equal to that of $C^{\prime} B$ to $D^{\prime} D^{\prime}$;
and arc $C^{\prime} B$ is to $D^{\prime} B$ as angle $C^{\prime} A B$ to angle $D^{\prime} A B$: therefore the limiting ratio of the sines and of the tangents is the same as that of the angles.

Remarlis on Lemma XI.

1. By this Lemma it is proved that subtenses of ares of any enve in the neighbourhood of any given point vary as the squares of the ares, provided the subtenses ultimately coincide in direction with any straight line through that point other than the tangent.
2. Let $B I F^{\prime} D I ;$ be the chord, and tangent at A, of any are $B .1 B^{\prime}$; C a point on the chorl; join C.A, and

draw $B 1$), $I^{\prime} I^{\prime}$ paralle to $C A$. Then $A C$ is intermediate in magnitule and position between BI), and $\left.13^{\prime} 1\right)^{\prime}$.
lisy the Lemma, l. r. of $B I$) to $B^{\prime} D^{\prime}$ is L. R. of $A B^{2}$ to $A / S^{\prime 2}$; if then t. r. of $A B$ to $A B^{\prime}$ is 1 , เ.. r. of $\left.B I\right)$ to $\left(B^{\prime} D^{\prime}\right.$ is also 1: and therefore the limiting ratio of $A C$ to either $13 D$ or $1 j^{\prime} J^{\prime}$ is a ratio of equality.

And comversely, if B / S^{\prime} be drawn parallel to the tangent at A 'or if the limiting ratio of $B D$ to $\left.B^{\prime} 1\right)^{\prime}$ be one of equality, the are $B .1 / B^{\prime}$ is ultimately bisected in A.

Hence, ly Lemma VII., if eithor the are BAB^{\prime} or the chored BC ' B ' he ultimatelyl lisected by AC, AC is attimately in a ratio, at oquality to the sultenses, dramen parallel to AC fome B and B , th the tamyent at A ; amd orncersoly, if cithor BB' bir dionen parillel to the tangent at A. or the limiting ration of BD) to $\mathrm{B}^{\prime} \mathrm{D}$ the ome of equality, the chirirl, are, and tangent, are ultimately bisected in C and A.
3. Again, draw the tangent $B T$ mecting $C A$ produced in T; then $A T, 13 D$ being parallel sultenses of the same are $A 13$, their limiting ratio is one of equality, by Lemma XI.

If; therefore, either BB^{\prime} be dramen parallel to the tamgent in A , or the are BAB' be uttimately bisected in A , the limitimy ratio of TA to AC is one of equality, or TC is ultimatcly bisected in \mathbf{A}.
4. The chord AB of any arc ACB of continuous currature malies angles with the tangents TA, TB at the

extremities, which are ultimately in a ratio of equality when the are is indefinitely diminished.

For, if these angles were ultimately in a ratio of inequality, the curvatures at A and B would be ultimately unequal (Lemma XI. Scholium Note 3), when A and B coincide, and the curvature of the are would not be continuous.
5. Hence, the limiting ratio of TA to TB is one of equality (page 12s).

Also, the limiting ratio of TA or TB to the arc or chond AB is 1 to 2 : this is seen by constantly magnifying the figure so as to keep $A B$ finite.
6. Draw any straight line $T C D$ meeting the are in C and the ehord in a finite angle at I.

Then, since the angles TAB, TBA continually diminish and ultimately vanish when B and A coincide, the limiting ratios of $A C$ to $A D$ and $A T$, and of $B C$ to $B D$ and $B T$, are ratios of equality by Lemma VII. Cor. 1 ; therefore the limiting ratios of $D A$ to $D I B$, and of $C . A$ to $C B$, are the satine as that of $T A$ to $T B$, or are ratios of equality.

Therefore, the chord $A B$ and are $A C B$ are ultimately bisected in D and C; therefore (page 129, Art. 3), the limitiong ratio of TC to CD) is one of equality.

On Cureature.

1. If PV be a chord of curvature at a pint P of a rares, PR the tangent at P, PQ a chord, QR a subtense

parallal to PV , then, rhen Q mores up to and coincide's with P ',

$$
I V \text { limit of } \begin{aligned}
& P^{\prime} Q^{2} \\
& Q R^{2}
\end{aligned}
$$

Describe a circle touching the curve at I ' and passing througl: Q; the limiting ${ }^{\text {mesition }}$ of this circle is (page 43, note 4) the circle of curvature at P. Let this circle meet $I^{\prime} V^{\prime}$ in $V^{\prime \prime}$; join $\left(l V^{\prime \prime}\right.$.

Then (Euc. nir. 32$) \angle R I^{\prime} Q=\angle P^{\prime} Q$;
and, because $Q R$ is parallel to $P^{\prime} V^{\circ} \angle P^{P} Q R=\angle Q P^{\prime}$;
therefore the triangles $R P\left(Q, Q V^{\prime} D^{\prime}\right.$ are similar ;

$$
\therefore P^{\prime}\left(Q^{2}=Q R \cdot I^{\prime} l^{\prime \prime} ;\right.
$$

$\therefore P^{\prime} V=$ limit of $P^{\prime} V^{\prime}=$ limit of $I^{\prime}\left(Q^{2}\right.$.

Also by Lemma VII. the ultimate ratio of $P Q$ to the arc and tangent of cither the circle or the curve is one of equality ;
$\therefore P V=\operatorname{limit}$ of $\frac{\left(\operatorname{tangent} P l^{2}\right)^{2}}{\text { subtense }\left(Q R \text { parallel to } P^{\prime} V^{\prime},\right.}$
or limit of $\quad(\text { are } P Q)^{2}$
subtense QR parallel to $1^{\prime} V^{\prime}$
2. If the chords of curvature PU', IV at any point P of a curve meet any straight line parallel to the tangent at P 'in u and v , then

$$
\frac{P U}{P V}=\frac{P r}{P^{\prime} u} .
$$

Let a circle touching the curre at P and passing through Q mect $P U, P V$ in $U^{\prime}, l^{\prime \prime}$: join $U^{\prime \prime} l^{\prime \prime}$.

Then, $\angle P U^{\prime} V^{\prime}=\angle R P^{\prime} l^{\prime \prime}$ (Euc. in. 32)

$$
=\angle P C \prime \prime
$$

similarly $\angle P V^{\prime} U^{\prime}=\angle P_{u x}$:
\therefore triangles $P^{\prime} u r, P V^{\prime} U$ are similar;
therefore $\frac{P U}{P^{\prime} V} \begin{aligned} & \\ & P^{\prime}\end{aligned}$ limit of $\begin{aligned} & P U^{\prime} \\ & I^{\prime} V^{\prime}\end{aligned}=\begin{aligned} & P^{\prime} r \\ & P^{\prime} u\end{aligned}$.
3. The chord of currature, thronyl the centre, ct any' point P of an cllipse $=\stackrel{2 \mathrm{Ci}}{\mathrm{CD}^{\prime}}$.

Let $l^{\prime} Q$ be a small are of the ellipse, $Q R$ parallel to the diameter $P C^{\prime} G$; draw $Q o$ parallel to the tangent $P{ }^{\prime} R$ meeting $P^{\prime} C$ in c.

Then chord of eurvature of the ellipse, through C,

$$
\begin{aligned}
& =\text { limit of } \frac{P R^{2}}{Q R} \\
& =\text { limit of } \frac{Q r^{2}}{P O} ;
\end{aligned}
$$

\therefore chord of curvature through C limit of $C D^{C D^{2}} . . v G^{2}$;
and when Q coincides with $I^{\prime}, G \boldsymbol{G}=\mathbf{2 C P}$;
\therefore chord of curvature through $C=\frac{2 C D^{2}}{C L^{2}}$.
Con. 1. The chorel if curcature through the focus

$$
\begin{gathered}
2 \mathrm{CH})^{2} \\
\mathrm{CA} .
\end{gathered}
$$

Join P with the focus S, and let $P S$ meet $(C D$ in E; then, since ($' l$) is parallel to $I^{\prime} R$, chord through S^{\prime} : chord through $C^{\prime}-C I^{P}: I^{\prime} E$;

$$
\left.=\frac{2 C D)^{2}}{(C .1} \text { (Conics, p. } 5 \mathrm{~s}\right) .
$$

Con. 2. The diameter af currature of an ellipse at I

$$
=\frac{2\left(I^{\prime}\right)^{2}}{1^{\prime} F} .
$$

For since the diameter of eurvaturo coincides in direction with the normal $I P$ to the ellipse,
diameter of curvature : chord through $C^{\prime}-C^{\prime} P^{\prime}: P^{\prime} F$,
\therefore diameter of curvature $=\frac{2 C D^{2}}{C P^{\prime}} \cdot \frac{C P}{P F}$

$$
=\frac{2 C D^{2}}{P F^{\prime}} .
$$

4. The same results may be obtained by precisely similar reasoning for the chord through the centre and focus, and the diameter, of curvature of a hyperbola.
5. The chord of currature of a parabola at P parallel to the axis=4SP.

Let $Q R^{\prime}$ be a subtense parallel to the axis; and $Q c$ an ordinate to the diameter through P; then chord of curvature parallel to the axis

$$
\begin{aligned}
& =\text { limit of } \frac{P R^{\prime 2}}{Q R^{\prime}} \\
& =\text { limit of } \frac{Q v^{2}}{P^{\prime} v} \\
& =4 S P(C o m i c s, \text { p. 34). }
\end{aligned}
$$

Con. 1. The chord of curvature of a parabola through the focus $=4, S P$.

Let $Q c$ meet $S P$ in x;
then chord through S : chord parallel to axis $=P r: P x$; but $P r$ and $P \cdot r$ make equal angles with $Q r$, which is parallel to the tangent at P;

$$
\therefore P v=P \cdot x ;
$$

Appendix.
\therefore chord through $S=$ chord parallel to the axis

$$
=4, S P .
$$

Con. .. The diameter of curvature of a parahole

$$
=\frac{4 S P^{2}}{S Y}
$$

Let the normal $I^{\prime} L$ meet $Q r$ in u;
\therefore diameter of curvature : chord through $S=P x: P u$;
\therefore diameter of curvature $=P_{P}^{P} \cdot r \cdot 4 . S P$

$$
=\begin{gathered}
4 S P^{2} \\
S Y
\end{gathered}
$$

ly similar triangles $S Y$ Y', Pur.
6. The dinmeter of corralure at any p int of a comic

$$
=\frac{5 \text { normal }{ }^{3}}{\text { latur rectum }^{2}} \text {. }
$$

(1) For the ellipse and hyperbola, diameter of eurrature $=\frac{\because(1 /)^{\prime}}{R F^{\prime}}$;

$$
\text { bat } P F \cdot P L=B C^{\prime 2}, C \text { C.mics, p. } 62 \text {, }
$$

\therefore diameter of curvature $=\frac{2.1 C^{\prime 2} . B C^{\prime 2}}{I^{2} F^{\prime 3}}$

$$
\begin{aligned}
& =\xrightarrow[B C C^{\prime \prime}]{2 \cdot 1 C^{\prime 2}} \cdot P L^{3} \\
& =\begin{array}{c}
{ }^{\wedge} P^{3} L^{3} A C^{2} \\
+B C^{2}
\end{array} \\
& =\frac{4 \text { normal }{ }^{3}}{\text { latus rectumin }} \text {. }
\end{aligned}
$$

(2) For the parabola,

$$
\text { diameter of curvature }=\frac{4 S^{2}}{S Y^{2}} \text {; }
$$

let $P Y$ meet the axis in M; then $S P=S M$;

$$
\begin{aligned}
& \therefore P Y=Y M ; \\
& \therefore P L=2 S Y ;
\end{aligned}
$$

\therefore diameter of curvature $=\frac{4 S P^{2}}{S Y}$

$$
\begin{aligned}
& ={ }_{S}^{4 S P^{2} . S . S 1^{2}}=\stackrel{4}{4} S^{4} Y^{4} \\
& =\frac{4 S Y^{3}}{S A^{2}}=\frac{8 S Y^{3}}{2 S I^{2}} \\
& =\underset{2 S L^{3}}{P L^{2}}=\underset{16 S^{3} L^{3}}{ } \\
& =\frac{8 \text { normal }{ }^{3}}{\text { (hatus rectum }^{2}} .
\end{aligned}
$$

Note. In the following propositions the curvatures of the curves in the neighbourhood of the points concerned are surposed to be continuous.
7. The limit of the circle through threepints A, B, C,

more one another on " emree, rhen these points coinicile, is the circle of curcature.

Iraw the normal $A y$ to the curve at A, and let I be the extremity of the diameter of eurvature at A; draw $(' I), B I)$ perpendicular to $A C^{\prime}$ and $A B$, mecting each wher in D, and the normal to the curve at A in G and g.

Then, as in Lemma X., the points G^{\prime} and g ultimately coincide with I;
therefore rig vamishes, and the angles $D r_{i}, D_{y}, f_{i}$ vanish; therefore the triangle $D C i g$ vamishes, and D, G, g, and I all ultimately coincide.

Now, since the angles $A B D, A C D$ are right angles, the circle through I, B, C passes through D, and $A D$ is it: diameter ;

Whas the diameter $A D$ of the circle through A, B, C, concides ultimately with the diameter $A I$ of the circle of curvature, and therefore the circles coincide.
8. Hence, the icutro at the circle of curature is the limiting prsition af the intersection of perpendiculars to tre: consecutire chords BA, AC thoongh their midelle peints.

For the distances of this print of intersection from 1. B, and C are eqmal, therefore the circle described with this point ats centre at the distance of any one of them will pass through the others and will be the circle throngh the three points I, B, C^{\prime}.
9. The limilin! position of the intersiction of the "nmalx ut tere near points A and 13 on a courer, rluen A "tul B coinide, is the contre af the circle af curcature.

Let $A I, B D$ be the normals at A, B, meeting in D; drath BC; perpendicular to $A D$ or parallel to . It the tangent at A, and the tangent $B T$ at B mecting I). 1 produced in T '.

Then, by the similar right-angled triangles $T C B, T i B D$, we have

$$
T C . T D=T B^{2} ;
$$

therefore

$$
T D=\frac{T B^{2}}{T C}
$$

Now the limit of $T D$ is $A D$, when B and A coincide: and (page 129) since $B C$ is parallel to the tangent at A, $T C$ is ultimately bisected at A :
therefore limit of $A D=$ limit of $\frac{T B^{2}}{2 T A}$:
but the limit of $\frac{T B^{3}}{T A}$ is (page 132) the limit of the chord of curvature at 13 parallel to $A D$, which is the diameter of curvature at A;
therefore, limit of $A D=\frac{1}{2}$ limit of $T B^{2} T A$

$$
=\text { radius of curvature at } A \text {; }
$$

thus, the limiting position of D is the centre of the circle of currature at A.
10. Ther radius of currature of amy are AB is the limit of the are dicided by the circular measure of the cxterion angle BTI between the tangents at its extromities.

Draw $B D$ perpendicalar to $A D$:
then, diameter of curvature $=$ ultimate value of $\frac{A D D^{2}}{D / 3}(\mathrm{p} .132)$; and L. r. of $D B$ to $A D=\angle D A B$ (in circular measure); therefore, diameter of curvature $=$ limit of $\begin{gathered}A D \\ \angle D . I B\end{gathered}$, and (hy Lemma VII.) radius of curvature $\left.1 \mathrm{lt}: \begin{array}{c}\text { arc } A B \\ 2 \times \angle I) \\ \hline\end{array}\right]$; but, since I.. r. of $\angle T A B$ to $\angle T B .1$ is one of equality,

$$
\text { L.. R. of } \angle \mathrm{s} T . A B+T B . A \text {, that is of } \angle B T D \text {, to }
$$ $2 \times \angle T .1 B$ is one of equality ;

therefore the radius of curvature $=$ limit of $\begin{gathered}\text { are } A B \\ \angle B T D\end{gathered}$.
11. Required the radius of curnature (p) at any point of a curre considereal as the lemit af a dulyyon.

Let A, B, C be three $p^{\text {wints }}$ near each other on the curve ; a, b, c the sides of the triangle $A L^{\prime} \prime^{\prime} ;$ produce $A B$ to A^{\prime} :
then, by trigonometry, diameter of the circle about $A B C$

$$
=\frac{b}{\sin B}:
$$

\therefore (page 137) radius of curvature $=$ limit of $\frac{A C}{2 \sin B}$: and, the L. r. of $\angle I^{\prime} B C$ to $\sin B$ is unity page 12S):

$$
\therefore \rho=\operatorname{limit} \frac{A C}{2 \times \angle A^{\prime} B C} \text {. }
$$

Con. Therefore, l. r. $\angle A^{\prime} B C^{\prime}: \begin{aligned} & -1 C^{\prime} \\ & 2 \rho\end{aligned}=1$.
12. The limit of tho circle touching three tangents to a curve, when these tungents coincille, is the circle 'if curcature.

Let $A B, C B, C A$ be the three tangents : t, t^{\prime}, T their points of contact with the curve: and τ, τ^{\prime} the points of contact of $B . A, B C$ with the circle touching $A B, B C, C A$;
then

$$
\begin{equation*}
2 B \tau=B \tau+B \tau^{\prime}=B A+B C+A C . \tag{1}
\end{equation*}
$$

also $\quad B t+B t^{\prime}=B A+B C+A t+C t^{\prime} \quad \ldots \ldots \ldots \ldots \ldots . .(2)$,
and since $B t, B t^{\prime}$ touch the curve the limiting ratio of $B t$ to $B t^{\prime}$ is one of equality (page 130) ; similarly, the limiting ratios of $A t$ and $C t$ to $A T$ and $C T$ respectively are ratios of equality ;
therefore, L. R. of $B t+B t^{\prime}$ to $2 B t$ is one of equality ;
and L. r. of $A t+C t^{\prime}$ to $A T+C T$, or $A C^{\prime}$, is one of equality;
and therefore l. R. of $2 B t$ to $B .4+B C^{\prime}+A C^{\prime}$ is the L. r. of $B t+B t^{\prime}$ to $B A+B C^{\prime}+A t+C t^{\prime}$, or is a ratio of equality, from (2);
thus from (1) the I.. r. of $B t$ to $B \tau$ is a ratio of equality ; similarly the l.. r. of $B t^{\prime}$ to $D \tau^{\prime}$ is a ratio of equality ; thercfore the L. n. of $B t+B t^{\prime}$ to $B \tau+B \tau^{\prime}$ is one of equality.

But $B t+B t^{\prime}$ is ultimately in a ratio of equality with the are of the curve between t and t^{\prime} :
and $/ 3_{\tau}+I ; \tau^{\prime}$ is in a ratio of equality with the are of the circle between τ and τ^{\prime} :
also the tangents at the extremities of these ares are the same, namely B. $1 t$ and $B C^{\prime} t$ ' ;
and thus the radins of curvature, heing equal to the L. n. of the are to the exterior angle between the tangents at its extremitics pace 139, is the same for both the curve and circle.

Thercfure the limit of the circle is the circle of curvature.

The following proposition is given as an illustration of the method of Section ir. Prop. I.
A body describes a curve under the action of any forces;

to find the accelerations at any point resolved in the directions of the tungent and normal at the point.

Let the forces be supposed to act by impulses at indefinitely small intervals of time, t.

In one of these intervals let the body describe $A B$; then if no foree arted the body would describe in the next interval $B c$, in the direction of $A B$ produced, equal to $A B$.

But at B let impulses act simultaneonsly on the body, causing it to move in the straight line $B C^{\prime \prime}$, and to describo $B C^{\prime \prime}$ in the same time in which it described $A B$.

On $B C^{\prime}$ take $B C=A B-B c$: join $c C^{\prime}$.

Appendic.

Then the effect of the impulses at B is the same as that of two impulses, one in direction B S', parallel to $c C^{\prime}$, deflecting the body from c to C, and the other in direction $B C^{\prime}$, cansing the body to describe the spute $B C^{\prime \prime}$ instead of $B^{\prime} C$, in the interval.

The velocitics due to these impulses are respectively ${ }_{t} c_{t}$ and ${ }_{t}{ }^{\prime \prime \prime}$; and they are alded in an interval of time t;
\therefore the accelerating effects of the impulses are respec-

But i. li. C'c: $B c \times \angle C B c=1$ by Lemma VII.;
or

$$
\begin{aligned}
& \text { 上. R. }\left(c: B C \times \begin{array}{l}
A C \\
2 \rho
\end{array}=1\right. \text { (page 140); }
\end{aligned}
$$

$$
\begin{align*}
& \text { limit } \underset{\rho \times t^{2}}{ } A J^{2} \\
& \text { (velocity) }{ }^{2} \\
& \text { radius of curvature } \tag{1}
\end{align*}
$$

Again, $C C^{\circ} \quad B C^{\prime \prime}-B C^{\prime}=B C^{\prime \prime}-A B$;
differcuce of velocities at A and B;
\therefore limit ${ }_{t^{2}}{ }^{2}=$ rate of increase of velucity \ldots. (2).
And since $\angle(c / B$ is ultimately a right angle, (1) and 2) are the accelerations of the body resolved normally to the curve and tangentially.

The following proposition is often found useful in estimating the effect on the motion of a body about a centre of force rarying inversely as the square of the distance, produced by a disturbing foree.

A body describes a conic section under the action of a centre of force in one focus s; to resolec the relvcity ret

any point P into treo components, one perpenclicular t, the redius ector SP, and the other perpendicular to the majur axis.*

Draw SY perpendicular to the tangent, $P L$ the normal and $L M$ perpendicular to $S P$: then the sides of the triangle PSL are at right angles to the directions of the velocity and of its components, and are therefore proportional to them (page 105).

If then r be the velocity, $r_{1} r_{2}$ the components perpendicular to $S^{\prime \prime}$ 'and $S L$,

$$
\begin{aligned}
& r_{1}=S_{N L}^{\prime \prime} v=\frac{S P}{P L} \cdot \stackrel{\leftrightarrow}{S} \\
& =\begin{array}{ccc}
\prime \prime & S P & h \\
\rho L & S L & \rho^{\prime} L \cdot I M
\end{array} \text { (by similar triangles } \\
& =\frac{h}{\Gamma M}=\frac{h}{l},
\end{aligned}
$$

where l is the semi-latus-rectum. (Conics, p. 16.)

* For the proof of this proposition here given I am indebted to Mr Besant.

Again, $\quad \begin{aligned} & r_{2}=S L \\ & r_{1}=S P\end{aligned}$
$=e$, the excentricity of the orbit :
therefore

$$
r_{2}=e r_{1}=\frac{e l}{l} .
$$

Hence, the rolocity at any point of a conic section descriled by a body under the action of a force to the finces may be ressulced into tuco constant components, one $\binom{h}{1}$ perpendicular to the radius cector, and the other. $\binom{\mathrm{eh}^{2}}{1}$ perpendicular to the major a.xis.

To find the veloeity at any point of any orbit described by a body abont any centre of force, the law of the force being known, we use the formula given in Prop. VI. Cor. 4 , Note 1 , from which we get

$$
c^{2} \quad F \times \begin{gathered}
P V \\
2
\end{gathered},
$$

where r is the velocity at P, F the force, and $P V$ the chord of curvature through the centre of force.

We will apply this formula to finding the velocities in the cases of section II.

In Prop. VII. the orbit is a circle about :uy point ; anl (Prop. Vil. Note 3)
and

$$
\begin{aligned}
& F \stackrel{\mu}{\mu} \stackrel{\mu}{2} \times V^{3} ; \\
& \therefore r^{2}=\frac{\mu}{2 S I^{2} \times \Gamma^{2}} \text {; } \\
& r=\frac{\sqrt{ } \mu}{\sqrt{ } \because S P \times P \Gamma}
\end{aligned}
$$

In Prop. VIII. the orbit is a semicircle about a point infinitely distant ; and (Prop. VIII., Note)

$$
F=\frac{\mu}{P M^{3}} ;
$$

also

$$
\begin{aligned}
& P V=2 P M \text { (fig. page } 71 \text {) } \\
& \therefore v^{2}=\begin{array}{c}
\mu \\
P M^{3}
\end{array} \times P M=\frac{\mu}{P M^{2}} ;
\end{aligned}
$$

and

$$
v=\frac{\sqrt{\mu}}{P M} .
$$

In Prop. IX. the orbit is an equiangular spiral, about the centre of the spiral ; and (Prop. IX. Note 3)

$$
F=\frac{\mu}{S P^{3}} ;
$$

and

$$
P V=2 S P ;
$$

$$
\therefore \quad v^{2}=\begin{gathered}
\mu \\
S P^{2}
\end{gathered}
$$

:nd

$$
\boldsymbol{v}=\frac{\sqrt{\mu}}{S P} .
$$

In Prop. X. the orbit is an ellipse about the centre; and (Prop. X. Note 1)

$$
\begin{aligned}
F & =\mu C P ; \\
P V & =\frac{2 C D)^{2}}{C P} ; \\
\therefore r^{2} & =\mu C D^{2} ; \\
r & =\sqrt{\mu} C D .
\end{aligned}
$$

also
and

Firce carying as (distance) ${ }^{-2}$. To find the time motion amel the celweity acquired by a boly fallim!, thromith a gicen space fiom rest (Props. XXXill. and XXXVI.).

Let s be the centre of force, \boldsymbol{A} the point from which the body begins to fall ;

$$
s_{P^{P^{2}}}^{\mu}=\text { force at distance } S P .
$$

Let $A P I B$ be a semi-cllipse, focus S and axis major ASB; ADB : semicirele, whene diancter is ANB; and suppose a bedy revolving in the ellipse romad the fiens os th come to 1 '; bisect A / B in 0 , draw $D P^{\prime} C^{\prime}$ perpendicular to $A B$, and join OI', O1).

Then the time through $A P$ sarea $A S P^{\prime}$ sarea $A N D$; and this beine trace fir all values of the axis minor will be true when it is diminished without limit, in which case the ellipese coincides with the axis major and the point $/$ ' with ' ', or the body is moving in the straight line . Ie; the point
 and since space due to velocity at $A=1$ chord of curvature at A through $S-1$ latus rectum $=\frac{(a x i s, ~ m i n o r)^{3}}{4 A B}-0$, the body berins to move from rest at . I

Hence time from rest through $A C \propto$ area $A B D$,
time through $A C$
\therefore time through $A B$ ($=\frac{1}{2}$ periodic time in ellipse)

$$
=\frac{\operatorname{arca} A B D}{\text { semicircle } A B D} \text {; }
$$

\therefore time through $A C=\frac{\pi \cdot A O^{\frac{3}{2}}}{\sqrt{\mu}} \cdot \frac{\frac{1}{2} A O \cdot(A D+C D)}{\frac{1}{2} \pi \cdot A O^{2}}$

$$
=\sqrt{\frac{A S}{2 \mu} \cdot(A D+C D)}
$$

 when the ellipse coincides with the axis major,
velocity at $C=\sqrt{\frac{2 \mu}{A S^{\prime}} \cdot \frac{A B-B C}{B C}}=\sqrt{\frac{2 \mu}{A S^{\circ}} A C^{\prime}} \cdot$
Cor. Time through $A S=\sqrt{A \bar{S}} \underset{2 \mu}{ } \cdot \pi \frac{A S}{2}=\frac{\pi\binom{A S}{2}^{\frac{3}{3}}}{\sqrt{\mu}}$
$=\frac{1}{2}$ per. time in an ellipse,
of which $A S$ is the axis major.

Force raries as distance. To find the time of motion and the relocity acquired by a body in falling through a given space from rest. (Prop. XXXVIII.)

Let S be the centre of force, A the place from which the body begins to fall: on $A B=2 A S$ describe a semiellipse $A P B$, and a semicircle $A D B$, and let a body moving in the ellipse come to P. Draw $D P^{\prime}$ perpendicular to $A B$, and join $S P^{\prime}, S D$.

Then time through $A P \propto$ area $A S P \propto$ area $A S D$, and this being true, whatever be the axis minor of the ellipse,

will be true when it is diminished without limit, in which c:ase the body will be at C, having fallen from rest at A,
\therefore time through $A C$ s area $A S D$;
time through $A{ }^{\prime}$
\cdots time through $A S\left(=\frac{1}{4}\right.$ periodic time in a circle $)$

$$
=\frac{\text { sector } A S D}{\frac{1}{4} \text { area of a circle }} \text {; }
$$

$$
=A_{A S}^{\sqrt{2}_{\mu}^{\prime}}
$$

Again, let $S l:$ he the semi-axis minor, then vel. at P semi-conjugate at $P \cdot V_{\mu}$ (page 146)

$$
=\sqrt{ } A S^{\prime \prime 2}+S E^{1}-S P^{2} \cdot \sqrt{\mu},
$$

\therefore vel. at $C=\sqrt{\prime} A S^{\prime 2}-S C^{2} \cdot \sqrt{\prime}^{\prime} \mu$

$$
=\left(I^{\prime}\right)^{\prime} \mu .
$$

Cor. Time to centre of force $=\frac{\frac{1}{2} \pi A S}{I S S^{\prime} \mu}=\frac{1}{4} \frac{2 \pi}{V_{\mu}}$ force in centre.
$=1$ per. time in an ellipse,

Hence the times through all distances to the centre of force are equal.

Vel. acquired in falling through $A S=A S \sqrt{\mu}$.

If the velocities of turo bodies, one of which is falling directly towards a centre of firce, and the other describing a curve about that centre, be equal at any equal. distances, they will always be equal at equal distances. (Prop. XL.)

Let S be the centre of force, and let one of the bodies he moving in the straight line $A P S$ and the other in the

curve $A Q q$; with radii $S Q, S q$ describe the eircular arcs $Q P, q p$: let $S Q$ cut $p q$ in m, and draw $m n$ perpendicular to $Q q$; and suppose the velocities of the bodies at P and Q to be equal.

Since the centripetal forces at P and Q are equal, P_{p}, $Q m$ may be taken to represent them: $P^{p} p$ is wholly effective in aecelerating I, but the effective part of $Q m$ is $Q n, n m$ lieing wholly employed in retaining the body in the curre. Also since the velocities at l^{\prime} and Q are equal, the times
of describing P_{l}, and $Q q$, when the spaces are diminished indefinitely, are proportional to P_{p} and $Q q$; hence

$$
\text { force at } P \text { : force at } Q=P P: Q n \text {, }
$$

and time through $P p$: time through $Q q=P p: Q q$;
\therefore velocity alded in describing $P p$: velocity added in describing Q_{4}

$$
\begin{aligned}
& =P p^{2}: Q n \cdot Q q=Q m^{2}: Q n \cdot Q q \\
& =1: 1,
\end{aligned}
$$

and the same may be shewn at all corresponding points equally distant from s: Therefore, If the celocities, de.

SECTION IX.

On the Position of the Apsides in Orbits very nearly circular.

Prop. XLIII. The orbit in which a body moves rerolves round the centre of force with an angular relocity, which always bears a fixed ratio to that of the body; to shew that the body may be made to more in the revolving orbit in the same manner as in the orbit at rest. by the action of a force tending to the same centre.

Let C be the centre of force, and when the body in the fixed orbit $V C P$ has described the are $V P$, let $v C p$ be

the position of the revolving orbit, and p that of the body moving in it ; then $\angle x C_{p}=\angle V C P$. Also let the angular velocity of the orbit be to that of P as $G-F: F$.

The angles $V C v, V C P$ begin together at V, and their contemporary increments are as the angular velocities of
$C r$ and $C P$, that is, as $G-\boldsymbol{F}: F$, therefore the angles themselves are in that ratio, or

$$
V\left(' c: V\left(' P \text { (or } x C^{\prime} p\right)=G-F^{\prime}: F ;\right.
$$

\therefore componendo $V C_{p}: V C^{\prime} P^{\prime}=G: F$;
hence, if the angle $V^{r} p$ be always taken $=\frac{G}{F^{\prime}} \times$ angle $V C P$, and (' p (' 1 ', V_{p} ' the locus of p will be the curve traced ont in fixed space by a body p moving in the revolving orbit in the same manner as I ' in the fixed orbit.

Also the body may describe the orbit V_{p} by the action of a force placed in C.

For let $P C K, p C \%$ be the areas described by $C P, C^{\prime} p$ in the same small increment of time ; draw $K^{-} T$, k perpendienlar to C'I', C'p; then the contemporary increments of the areas, described by I and I, are ultimately as
$C_{p} \cdot k \ell: C P \cdot K^{-} T-C P^{2} \cdot \sin p C K: C P^{2} \cdot \sin P C^{-}$
$=\angle P C K: \angle P C K^{\prime}=\angle{ }^{\text {r }}$ vel. of $C^{\prime} \prime: \angle^{\text { }}$ vel. of $C P=G: F$;
and the whole areas begin together at V, therefore they are themselves in the same ratio; hence area V ' p s area V('I's the time (I'rop. I.) ; and therefore (Prop. II.) a body may be made to move in the orbit $V p$ by a proper centripetal force placed in C'.
1)er. An apse or apside is a point in an orbit at which the direction of the body's motion is perpendicular to the distance; and the angle between two consecutive apsidal distances is called the apsidal angle.

Con. If a be the apsidal angle in the orthit VI', the corresponding apsidal angle in the orbit $\mathrm{Vp}=\mathrm{F}^{\mathbf{(i}}$ a.

For the motion of p is compounded of two motions, one arising from the angular motion of the orbit, and therefore
perpendicular to the distance, and the other the same as the motion of P in the fixed orbit; hence when the latter body is at an apse. the whole motion of p will be perpendicular to the distance, or p will be at an apse; also the angles described in the same time in the orbits V_{p} and $V P$ are always as $G: F$,
\therefore apsidal angle in orbit $V_{p}=\frac{G}{F^{\prime}} \alpha$.

Prop. XLIV. To find the difference of the forces, by which the bodies are retained in the fixed and revolving orbits.

Let P and p be contemporary positions of the two bodies, $P K^{\prime}$ a small are of the fixed orbit deseribed in $t^{\prime \prime}$;

take $p k=P K^{\prime}$, and with radius $C K^{\prime}$ or $C \%$ describe the circle $K \%$;
draw $K R$, k perpendicular to $C P, C_{p}$ and in $r k$, produced if necessary, take $r m=\frac{{ }^{\prime}}{F} \cdot k r$. Let the velocities of P and p be each resolved into two, one central or in the direction of the distance, and the other transverse or perpendicular to it ; then since $P K^{-}$is very small, $P R$ and $R K^{-}$may be taken to represent P 's central and transverse velocities respectively: and since the angular motion of the orbit affects only the transverse motion of $\eta, p r=1 P R$ will represent ρ is central motion : also transverse vel. = angular vel. \times dist. ;
\therefore transp. vel. of $p:$ trans. vel. of $P=\angle^{\prime}$ vel. of $p: \angle^{\text {r }}$ vel.
of I

$$
=G: F ;
$$

\therefore transverse vel. of $p=\frac{G}{F} . K R=r m$.
Hence, in consequence of the two motions $p r, r m, p$ will be at m, when I^{\prime} is at K. But if we take

$$
\angle V C n={ }_{F}^{G} \angle V C K, \text { and } C n=C K
$$

p must be at n, when P is at K^{\prime}, in order that it may move in the manner required; join $m m$; then an additional force must have acted on p, sufficient to draw it through mm in $t^{\prime \prime}$, and therefore the difference of the forces on I^{\prime} and 1 '

$$
=2 \text { lime. } \sum_{t^{2^{-}}}^{m n} \text { (Lem. X. Note 4, and Cor. 4). }
$$

Let $m n, m r$ produced cut the circle again in t and f,
then

$$
m n=\frac{m k \cdot m f}{m t}
$$

$$
\text { Now } \quad m r=\frac{G}{F}, k r, \therefore m k=\frac{G-F}{F} k r,
$$

and

$$
m f=\frac{G+F}{F} \cdot k r ; \therefore m k . m f=\frac{i^{2}-F^{2}}{F^{\prime 2}} \cdot k r^{2} .
$$

Let $h=2$ arca described by P in $1^{\prime \prime}$,
$\therefore h=2 \lim . \frac{\text { area } P C K}{t}=\lim \cdot \frac{C P . K R}{t} ; \therefore \lim \cdot \frac{K R}{t}=\frac{h}{C P} ;$
also $m t$ ultimately passes through C and equals $2 C P$;

$$
\therefore 2 . \lim \cdot \frac{m n}{t^{2}}=2 . \lim \cdot \frac{G^{2}-F^{2}}{F^{2}} \cdot \frac{k r^{2}}{t^{2}} \cdot 2 C P^{3} ;
$$

\therefore force on p-force on $P=\frac{G^{2}-F^{2}}{F} \cdot \frac{h^{2}}{C P^{3}}$, and $\therefore \propto \frac{1}{C P^{3}}$.

Prop. XLV. The law of force in an orbit nearly circular being given, to find an approximate calue of the apsidal angle.

Let $\frac{1}{r^{3}}, f r$ be the force at any distance r, a the greatest value of r, and $a-x$ any other value; then

$$
\frac{1}{i^{3}} f r=\frac{1}{r^{3}} f(a-x),
$$

which being expanded in a series ascending by powers of x $=\frac{1}{r^{3}}\left(f a-f^{\prime} a \cdot x+\& \mathrm{c}.\right)=\frac{1}{r^{3}}\left(f a-f^{\prime} a \cdot x\right)$ very nearly, since x is very small.

Let $V P$ (Fig. Prop. XLIII.) be an ellipse of small excentricity, C the fucus, $C V$ the greatest distance $=a, L$ the latus rectum, and let $\frac{F^{2}}{a^{2}}=$ force at V; then (Prop. XI. Note), if $h=2$ area described in $\mathbf{l}^{\prime \prime}$ by a body revolving in the ellipse round a centre of force in the focus,

$$
F^{2}=\frac{2 h^{2}}{L}=\frac{h^{2}}{a}, \text { since } L=2 a \text { uearly; hence, }
$$

$$
\begin{aligned}
& \text { furce on } p=\frac{F^{2}}{\left(y^{2}\right.}+\frac{i^{2}-F^{2}}{F^{\prime 2}} \cdot h^{2} C_{p^{3}} \text { (Prop. XLIV.) } \\
& ={\underset{\left(l^{3}\right.}{ }}_{1}\left\{F^{2}\left(l^{\prime}\right)+\left(G^{2}-F^{2}\right) a_{\}}^{\prime}\right. \\
& ={ }_{r^{3}}^{1}\left\{F^{2} \cdot a-x ;+\left(G^{2}-F^{\prime}\right) a_{j}^{\prime} \text { since }(p=r \text { or } a-x \text {, }\right. \\
& =\frac{1}{r^{3}}\left(G^{2}\left(a-F^{2} x\right) .\right.
\end{aligned}
$$

Now the values of r and F being indeterminate, this expression may be made equal to the above value of the force in the orbit, of which the apsidal angle is required, that is,

$$
G^{2} a-F^{2} x=f u-f^{\prime} \cdot x x,
$$

from which equation, since it must hold true for the different values of x, we obtain

Now since the proposed orbit is nearly circular, (vel.) ${ }^{2}$ at apsidal distance $(\boldsymbol{t})=$ force \times a nearly (I'rop. Vl. Cor. 4), $=\frac{1}{a^{2}} \cdot f a$, and since at an apse the velocity is wholly transverse, (vel. 2 at V in orbit $V=\frac{V^{2}}{V^{2}}$. (vel. $)^{2}$ at V in orbit
 Since then in the orbit $l^{\prime} p$, and in that of which the :psidal angle is required, the apsidal distances and the fores at equal distances, as well as the relocities at the apsidal distances, are equal, the whits will be similar, and the apsidal angles equal ; but the apsidal angle in the orbit $V^{\prime \prime}$

$$
=\frac{G}{F} \cdot 150^{n} \text { (Prop. XLIII. Cor.) }=\sqrt{\frac{d^{\prime} \|}{a f^{\prime \prime} a} 1+\theta^{n} ;}
$$

and therefore the apsidal angle required $\sqrt{\overline{\operatorname{jit}}} 1$ nion.

Ex. 1. Let the force $=\mu r^{n-3}$;

$$
\begin{aligned}
& \begin{aligned}
& \therefore \text { foree }=\frac{\mu}{\gamma_{3}} r^{n}=\frac{\mu}{r^{3}}(a-x)^{n} \\
&=\frac{\mu}{r^{3}}\left(a^{n}-n a^{n-1} \cdot x\right), \text { nearly } ; \\
& \therefore f a=\mu a^{n}, f^{\prime} a=\mu n a^{n-1} ;
\end{aligned} \\
& \therefore \text { apsidal angle }=\frac{180^{0}}{\sqrt{n}} .
\end{aligned}
$$

Ex. 2. Let the force $={ }_{r^{3}}^{\mu r^{m}+\nu r^{n}}$,

$$
\left.\begin{array}{rl}
\therefore \text { force } & =\frac{1}{r^{3}}\left\{\mu(a-x)^{m}+\nu \cdot(a-x)^{n}\right\} \\
& =\frac{1}{r^{3}}\left\{\mu a^{m}+\nu a^{n}-\left(m \mu a^{m-1}+n \nu l^{n-1}\right) x+\& \mathrm{c} .\right\} ; \\
\therefore f a & =\mu a^{m}+\nu a^{n}, \\
f^{\prime} a & =m \mu a^{m-1}+n \nu a^{n-1} ; \\
\therefore & \text { apsidal angle } \left.=\sqrt{i} \mu a^{m}+\nu a^{n}\right) \\
\left(m \mu l^{m}+\mu \nu a^{n}\right)
\end{array}\right) .180^{\circ} .
$$

$$
\text { If } a=1 \text {, apsidal angle }=\sqrt{\left\{\begin{array}{c}
\mu+\nu \\
m \mu+n \nu
\end{array}\right\} 186^{\circ} . . ~}
$$

In this manner, as will be shewn in the next section, the motion of the moon's apsides might be found approximitely, if the direction of the disturbing foree of the sun upon the moon tended wholly to the earth's centre ; but since this is not the case, their motion cannot be determined by the method here proposed.

SECTION XI.

On the Motion of Bodies mutually attracting each other.

Tue motion of a physical point, attracted to an immovable centre of force, has been explained in the preceding sections. We now proceed to consider the motions of mutually attracting bodies, of which the masses bear a finite ratio to each other. In this case the attracting body plated in the centre of force is no longer immovable, for ly the third law of motion the actions of the attracting and attracted bodies are mutual and equal ; so that if M represent the matnal attraction of two bodies, whose masses are S and I, the bodies themselves will be acted on by accelerating forcess ${ }_{\text {is }}^{S}$ and ${ }_{P} /$, respectively, and a motion will consequently be generated in cach, the nature of which it is now proposed to investigate.

Prop. LVII. Turo budies attrarting earh wther deseribe similar figures about their centre of grarity, and atrout each other.

Let \mathscr{S}^{\prime} and P be the bodies, join $S P$ and take $S C: S P$ $I^{\prime}: S^{\prime}+l^{\prime}$, then C^{\prime} is their centre of gravity. If C ' be in motion, let a motion always equal and opposite to that of C'be applied to the system, then C ' will continue at rest; and since the same motion applied to all the parts of a system produces no alteration in their relative nations,
the relative orbits deseribed by S and P about C and about each other will not be affected.

Let $S T$ and $P Q$ be ares deseribed in the same time round C; then

$$
\begin{gathered}
T C: C Q=P: S=S C: C P \\
\therefore T C: S C=C Q: C P
\end{gathered}
$$

and angle $S C T=$ angle $P C Q$; therefore $S T$ and $P Q$ are similar figures, and they are the figures deseribed about the centre of gravity.

Again, draw $T p$ parallel and equal to $S P$. To a speetator at S, who is insensible of his own motion and refers the whole motion to P, P at first will be seen in the direction S'C P or $T p$, and afterwards in the direction $T($, and will therefore appear to have described the angle $p T Q$ about S,

$$
\begin{gathered}
\text { and } S P\left(\text { or } T_{P}\right): C P=S+P: S=T Q: C Q ; \\
\therefore T p: T Q=C P: C Q,
\end{gathered}
$$

and angle $p T Q=$ angle $P C Q$, therefore the curves $p Q$ and $P Q$ are similar ; that is, the figure deseribed by P round S in motion is similar to the figures deseribed by P and S round their centre of gravity.

Prop. LVIII. An orbit similar and aqual to the apparent orbit af P round S in motion may be described romed sisised by the ation of the same contral force.

Let I' Q and ${ }^{\prime} T$ be the similar orbits described by I ' and S rome C, their centre of gravity. Take

$$
S_{P}-S P, \angle P S_{Q}=\angle P C Q \text {, }
$$

and take Sif such, that

$$
\begin{gathered}
S_{1}: S_{p}^{\prime}=C Q: C^{\prime} P=T Q: S P ; \\
\therefore A_{1}=T Q,
\end{gathered}
$$

and therefore q traces ont the apparent orbit of I. Draw the subtenses ($2 R, q /$; parallel to C' $P, S \prime \prime$, and meeting the tangeuts at P, p in R, r.

Let a body be projected from p, with a velocity c, which is tol V the velocity at I,

$$
: \text { as } \sqrt{\prime}+P: \sqrt{\prime} \text {, at } \sqrt{\prime \prime p}: \sqrt{\prime} \text { (} P \text {, as } \sqrt{m p}: \sqrt{\prime \prime} R
$$

be similar figures, and let T, t be the times of describines PR. pr: then ultimately

$$
\begin{aligned}
& \mathrm{M} \text {. }
\end{aligned}
$$

Also the force being the same,
$\begin{gathered}\text { space through which } P \text { is drawn in } T^{\prime \prime} \\ \text { space through which } p \text { is drawn in } t^{\prime \prime}\end{gathered}=\frac{T^{2}}{t^{2}}=\frac{Q R^{\prime}}{q r}$ ultimately,
but $R Q=$ space through which P is drawn in $T^{\prime \prime}$,

$$
\therefore r q=. ~ p ~ ~ t^{\prime} ;
$$

and therefore q is the place of the body at the end of $t^{\prime \prime}$; it will also continue in the curve, for the forces being equal and the orbits similar, the resolved parts of the forces in the directions of the tangents will be equal at all corresponding points in the arcs $P^{\prime} Q, p q$; hence the increments of the velocitics continually generated, as the bodies describe the ares, will be ultimately as the times of describing similar ares, that is,

$$
\text { as } T: t \text {, as } \sqrt{ } S^{\prime}: \sqrt{ } S+P
$$

\therefore componendo, vel. at $q:$ vel. at $Q=\sqrt{ } S+\Gamma: \sqrt{S}$,
hence the body is under the same circumstances as at p, and will therefore continue in the curve.

Cor. 1. Tuo bodies, which attract each other with forces rarying as the distunce, describe similar ellipses: about their centre of gracity and about each other as centres.

For the orlits described about C and about each other are similar to that described about S fixed, which in this case is an ellipse, whose centre is S.

Cor. 2. Turn badies, which attract each other with firces rarying inrersely as the square of the distance, describe similar ellipses about their centre of grarity and about each other as ficici.

Cor. 3. Tiro bodies rerolving round their centre of gracity describe round it areas proportional to the times.

Let $P Q, P Q^{\prime}$ be ares respectively similar to $p q, p q^{\prime}$, and let $T, T^{\prime}, t, t^{\prime}$, be the times of describing the four ares respectively;
now

$$
t_{T}^{t}=\frac{\sqrt{S}+P}{\sqrt{S}}=\frac{t^{\prime}}{T^{\prime}} ;
$$

$$
\therefore \begin{array}{cc}
t & T \\
t^{\prime} & T^{\prime}
\end{array}
$$

also by similar figures,
\therefore area $P C(Q x$ time of describing it.

Prop. LIX. The priodic time of P romed S at rest : that af P , s romend $\mathrm{C}=\sqrt{\prime} \mathrm{s}+\mathrm{P}: \sqrt{ } \mathrm{s}$.

For the orbits, heing similar, may be divided into the same number of similar parts, as $P^{\prime \prime}, P Q$ in Prop. LVIII.;
and time of describing p^{\prime} : time of describing $P^{P} Q$

$$
=\sqrt{S}+P: \sqrt{S} ;
$$

and the same being true for the times of describing all the similar ares, we have componendo
periodic time of P^{\prime} round S^{\prime} at rest : that of P^{\prime} or S^{\prime} round C^{\prime}

Pror. LX. Force s (dist.) ${ }^{-3}$. If (a) be the axis muji,t,
 that af an orbit descrilhed by P roumd s' at rest in the same' periodir time, then $a: a^{\prime}=\sqrt[3]{\mathrm{S}}+\mathrm{P}: \mathfrak{N}^{3} \mathrm{~S}$.

Let $p^{\prime} q^{\prime}$ be the ellipse, of which a is the axis major, that is, let $p^{\prime} q^{\prime}$ be an ellipse described by I ' round s' at rest, in the same periodic time as that in which P deseribes an ellipse round S in motion, or as that in which $P^{\prime}\left(Q\right.$ is described; and let $p^{\prime \prime}$ be the apparent orbit deseribed ly P round S in motion; then, bince the force in the two orbits is the same,

$$
11-2
$$

periodic time in $p^{\prime} q^{\prime}$: periodic time in $p q=a^{\frac{3}{2}}: a^{\frac{3}{2}}$ (Prop. XV.); also by Prop. LIX. period. time in $p q$: period. time in $P Q=\sqrt{S+P}: \sqrt{ } s$;
\therefore period. time in $p^{\prime} q^{\prime}$: period. time in $P Q$

$$
=\sqrt{(S+l)} a^{a^{3}}: \sqrt{S_{a}^{3}},
$$

the first term of which proportion is equal to the secons by the hypothesis,

$$
\begin{aligned}
& \therefore(S+P) a^{\prime 3}=S a^{3} ; \\
& \therefore a: a^{\prime}=\sqrt[3]{S+P}: \sqrt[3]{S}
\end{aligned}
$$

Prop. LXIV. To determine the motion of a system of modies attracting each other with forces rarying as the distance between their centres.

Let P and Q be two bodies collected in their respective centres of gravity. Join $P Q$ and take $P F: P Q$

$=Q: P+Q$, then F is the ceutre of gravity of P and Q : $\operatorname{and}\left(P^{\prime}+(Q) \cdot P^{\prime}=Q \cdot P^{\prime} Q=\right.$ force of Q on $P^{\prime} ;$ but $(P+Q) P P^{\prime}$ $=$ the force, which two bodies equal to P and Q placed at F^{\prime} would exert on P, therefore P^{\prime} is attracted in the same manner as if a body equal to the sum of the bodies were placed at F, and will therefore describe an ellipse round F at rest as its centre. Similarly Q will describe an ellipse round the same point as a centre, and in the same periodic time, since the absolute force $P+Q$ is the same in both cases.

Let R be a third body, join $R P, R Q, R F$; the forces R. $P R$ and R. $Q R$, which R exerts on P and Q, may be
resolved respectively into $R . P F, R . F R$, and $R . Q F$, $R . F R$; the force $R . F R$, being the same for either body, produces no disturbance in their relative motions, and therefore the bodies will move in the same manner with respect to each other, as if that force did not act. The other forces $R . P F, R$. QF', varying as the distance of P and Q from F, will not cause any perturbations in the orbits described by l^{\prime} and Q round F, and therefore these bodies will still describe ellipses romed F, but since the ahoolute foree is increased in the ratio of $P+Q+R$: $P+Q$, the periodic time will be diminislied in the ratio of $\imath^{\prime} r+\Omega: \imath^{\prime} r+Q+R$.

Again, in $F R$ take $F G: F R=R: P+Q+R$, and join $P\left(, Q^{\prime} ;\right.$; then $(i$ is the centre of gravity of P, Q, R; anll $R . F R(\boldsymbol{R}+\boldsymbol{Q}+\boldsymbol{R}) . F\left(\begin{array}{l}\text {; hence the foree which }\end{array}\right.$ R exerts on P^{\prime} is equivalent to the forces R. $P^{\prime} F$ and $l^{\prime}+(Q+R) . F\left(\begin{array}{l}\text {, and the force which } Q \text { exerts on } P \text { ' is }\end{array}\right.$ equal to (P ' $+Q . P^{\prime} F^{\prime}$; hence the whole force on P ' is equal to $P+(Q+R) P P^{\prime}$ and $(P+(Q+R) P G$, that is, to $(P+(Q+R) P(i$, and therefore I ' will describe an ellipse round $(;$ as a centre. Similarly ℓ will describe an ellipse romed the same point as a centre, and therefore I 'and Q describe ellipses romed their common centre of gravity and round the centre of gravity of the system.

In the same mamer it may be shewn that P and R, and Q and R, will describe ellipses round their common centres of gravity respectively, and romel the centre of gravity of the system : and the same may be proved of any number of bodies.
 rorolee renend a third T in such a memner, that I' deseribiss the interion "rthit: t", share that 1' will describe round T areas more werly promitioual ti, the times. atul a figmere more nearly resembling an ellipse, if T' be arted on by the attractions of the othor tiro, than" if it sere rither not attracted by them at all, wr attracted much more or much less.

Let $P^{\prime} I B, E S F$ be the orbits of P and S respectively.

1. Let the orbits be in the same plane. Juin $S P, P T$, $T S$, and in $S P$, produced if necessary, take $K S$ equal to the mean distance of P from S, and let it represent the

accelerating force of attraction of P to S at that distance ; take also $L S=\frac{K S^{2}}{P S^{2}} . K S$, then $L S$ will represent the attraction of P to S at the distance $P S$. Draw $L M$ parallel to $P T$ meeting $S T$, produced if necessary, in M, and resolve $L S$ into the forces $L M, M S$.
P is acted on by three forees, $L M, M S$ and its original gravitation to T, the last of which would cause it to describe areas proportional to the times and an ellipse, focus T : the force $L M$, acting in the direction $P T$, does not affect the equable deseription of areas, but since by composition with the attraction of T on P it forms a force not varying as (dist.) ${ }^{-2}$, it will disturb the elliptic form of I 's orbit; and the force $M S$, neither in the direction $P T$, nor varying as (dist.) ${ }^{-2}$, will disturb both the equable description of areas and the elliptic form of the orbit.

Let $N S$ represent the attraction of S on T; then if $M S$ and $N S$ are equal, these equal forees, acting in parallel directions on P and T, will not disturb the relative motions of the two bodies; but if they are unequal, the disturbing force on P will be represented by their difference $M N$; hence the less $M N$ is, the smaller will be the disturbances produced: now since the distance of P from S is sometimes greater and sometimes less than that of T from S, the mean attraction $K S$ of I^{\prime} to S differs less from $N S$, than if T were attracted by a much greater or much less
foree ; that is, the disturbing force $M N$ will be less, and therefore the equable description of areas and the elliptic form of P 's orbit will be less disturbed, if T be attracted by S^{\prime}, than if it were not attracted by S^{\prime} at all, or attracted much more or much less.

Def. The Line of Nudes is the straight line, in which the planes of the orbits of I and s intersect each other.
2. Let the orbits lie in different planes. The same construction being made, the force $L M$ acting in direction $P ' T$, which is in the plane of I 's orbit, produces the same effect as in the first case, and has no tendency to draw P from the plane of its orbit. But $M N$, acting in a direction inclined to that plane, exeept when the line of nodes passes throngh s., mot only promences the effects mentioned in the first case, but also tends to draw I from the plane of its orbit; and this and the other perturbations depending on the magnitude of $M N^{*}$ will be least, when $M N$ is least, that is when NS' is equal or nearly equal to $K S^{\prime}$, as before.

Obs. In the proposition P is supposed to describe an orbit round T fixed; this cannot in reality be the case, as long as its magnitude bears a finite ratio to that of T; for, leaving out the consibleration of the forces which S exerts, the two borlies I 'and T 'describe orbits about their centre of gravity. The orbit here meant is the "purent orbit of I 'to a mectator at T, that is, the orbit $p()$ in Prop. 57. If, however, we suppose a force applied every instant to P and T equal and opposite to that which P exerts on T. T will remain at rest, and the gravitation of P to T will be the sum of the attractions of T on P, and of Γ on T, acting in the direction $1 \times \Gamma$; so that the whole gravitation of P to $T=\begin{aligned} & \Gamma+T \\ & \Gamma T\end{aligned}$

1'mon. I. Ti, intersigate expressions for tho disturling
 circular, and coimident with the plane afos orbit.

Furce of S on 1 ' represented by $L, S=\begin{gathered}\prime \prime \\ S \prime \prime\end{gathered}$
\therefore force of S on P in direction $P T$

$$
=\frac{S}{S P^{2}} \cdot \frac{L M}{L S^{5}}=\underset{S P^{2}}{S} \cdot \frac{P T}{S P^{\prime}}=\frac{S \cdot P T}{S P^{3}} .
$$

this is called the addititious force, and is represented by LM.

Again, foree of S on P in direction $T S$

$$
=\frac{S}{S P^{2}} \cdot M S=\frac{S}{S S^{\prime}}=\frac{S P}{S T} \cdot \frac{S \cdot S T}{S P^{3}},
$$

and foree of S on T in direction $T S=\frac{S}{S} T^{2}$;
\therefore disturbing force of S on P in direction $T S$
this is called the ablatitious force, and is represented by $M N$.

Draw $N R$ perpendicular to $L M$; then $M N$ is equivalent to $M R, R N$,

$$
R N=M N \sin N M R=S \cdot\left(\begin{array}{l}
S T \\
S P^{3}
\end{array}-\begin{array}{c}
1 \\
S T^{2}
\end{array}\right) \sin P T S \ldots(3,
$$

this force acts in the direction of the tangent at 1 , and is called the tangential force.

$$
\text { Similarly, } \left.M R=S \cdot \frac{\{S T}{S L^{13}}-\frac{1}{S^{\prime} T^{2}}\right\} \cos P T S \text {, }
$$

hence $L R=L M-M R$

$$
S \cdot P T-S \cdot\left(\frac{S T}{S P^{3}}-\frac{1}{S P^{3}}-S^{2} T^{2}\right) \cos P T S, \ldots \ldots \ldots(4)
$$

this force, which is the resultant of the disturbing forees of S on P^{\prime} in direction $I^{\prime} T$, is called the central disturbing force.

Hence the gravitation of P to T

$$
\left.=\frac{P+T}{P^{\prime} T^{2}+S \cdot\left\{\begin{array}{l}
P T \\
S P^{3}
\end{array}-\left(\begin{array}{l}
S T \\
S P^{3}
\end{array}-S T^{2}\right.\right.} \text {) } \cos P T S\right\} .
$$

Prob. II. To, find approrimute reppessions for the alure disturthing forces, when ST' is rery great compared with PT.

$$
\begin{aligned}
& S P=S T^{2}-2 S T \cdot P T \cos P T S^{\prime}+P T^{2, \frac{1}{2}}
\end{aligned}
$$

lience the ablatitious force

$$
\begin{gathered}
3 s \cdot P^{\prime} T \\
\therefore T^{3} \cos I^{\prime} T S
\end{gathered}
$$

the tangential force

$$
\begin{array}{cc}
3 S \cdot P T \\
S T^{s} & \cos P T S \cdot \sin P T S \\
& 3 S^{\prime} P T \\
2 T^{s}
\end{array}
$$

the central disturbing force

$$
\begin{aligned}
& \text { s.1'T }
\end{aligned}
$$

Con. 1. Let F the mean central disturbing force, or the furce, which, acting unifurmly for a whole revolution of P romed T, would prownce the salme effect as the variable central disturbing fores : and let the four right angles through which TIP moves in one revolution be divided into n equal anglex; then

$$
\begin{aligned}
& \left.+\cos \binom{4 / \pi}{n}\right\} \text { when " is infinite, }
\end{aligned}
$$

$$
=-S \cdot P T \cdot\left\{1+\frac{3}{n} \cdot \frac{\cos \left(\frac{n+1}{n} \cdot 2 \pi\right) \sin 2 \pi}{\sin \frac{2 \pi}{n}}\right\}
$$

when n is infinite,

$$
=-\frac{S \cdot P T}{2 S^{2^{2}}},
$$

and therefore the mean central disturbing force is ablatitious, and diminishes the gravitation of P to T.

Def. 1. P is said to be in syzygy, when its orthogonal projection on the plane of S 's orbit lies either in $S T$ or in $S T$ produced, and in quadruture when the projections lic in a line drawn through T in the plane of S 's orbit perpendicular to $S T$.

In the first nine corollaries to the Proposition the planes of the two orbits are supposed to coincide, and therefore P will be in syzygies at A and C, when crossing the line $S T$ or $S^{\prime} T$ produced, and in quadratures at B and $D, 90^{\prime \prime}$ distant from A or C. S and P move in the directions $E S F$, IAB. The distance $P S$ is supposed invariable, and so great as to be always considered parallel to TS: In the cighth and ninth corollaries the excentricity of P 's orbit is taken into account, but the expressions above obtained for the disturbing forces on the supposition that l 's orbit is circular, may, on account of the smallness of the excentricity, be applied without affecting the general correctness of the results deduced.

Cor. 2. If the planes of the two orbits coincide, the central disturbing foree $=-\frac{2 S . P^{\prime} T}{N T^{3}}$ when P is in syzygies, and $=\frac{S . P T}{S T^{3}}$ when P is in quadratures; and is therefore ablatitious in the former case, and addititions in the latter.

Def. 2. If the Earth, Moon and Sun be supposed to be represented by T, I, and S, the Moon is said to be in perigee when at the nearer, and in apngee when at the farther anse.

Corollaries to the l'roposition.

Cor. 1. What has been proved as to the disturbances cansed by S may be proved as to those produced ly any other body revolving round T : hence if several bodies P, S, R, de. revolve abont another T, the motion of the innermost body l^{\prime} will be least disturbed by the attractions of $s, R, d e$. when T is attracted by the others in the same manner as they mutually attract each other.

Cor. 2. The areas, described by P round T in the same'giren times, comtinually increase as I mores firm 'juddratur' t" sy=ygy, and continually decrease from sy: y!!! ti, quadrature.

For the ouly part of the disturbing force which affects the equable description of areas is the tangential foree, and it acts in consequentia from upper quadrature to syzygy, and in antecedentia from syaygy to lower quadrature.

Similarly the areas described in the same given times increase continually from lower quadrature to syzygy, and decrease from syaggy to upper quadrature.

Cor. 3. The rolwity of ${ }^{\prime} \mathrm{P}$ 'is greatest in s!yyyies, and loast in qualratures.
 ture af the distur-mod orthit rill be gromest inquadratures, and least in syzyyirs.

For the radius of curvature in an orbit nearly circular (vel. ${ }^{2}$
${ }^{\infty}$ central force, and therefore the curvature, which varies inversely as the radius, varies as force $\begin{gathered}\text { vel. }\end{gathered}$. Now the force of I^{\prime} to T is greatest in quadratures, and least in syzggies, and the velocity of P is least in the former case, and greatest in the latter; hence on both accomints the eurvature is greatest in quadratures and least in syzygies.

Cor. 5. Hence P's orlit, if it be origimall!, circular, will assume the form of an oval, whose axis mujor passes through quadratures and axis minor through sy=ygies.

Cor. 6. To consider the effect produced by the disturbing furces on the periodic time of P round T .

The tangential force accelcrates and retards P 's motion equally in a whole revolution, and therefore does not affect the periodic time. But the central disturbing foree in a whole revolution diminishes the gravitation of P^{P} to T, and therefore increases the distance $P T$; hence the (rad.)
periodic time, which \propto, will from both $\sqrt{ }$ absolute force
these causes be increased by the action of the central disturbing force.

Obs. If S approach towards the system T and P, the central disturbing force, which varies inversely as $S T^{3}$, will be increased, and consequently the gravitation of I^{\prime} to T will be still more diminished, and the distance $P T$ increased: hence the periodic time will be still farther increased.

Cor. 7. The orbit of P being supposed nearly circular, to consider the effect of the central disturbing force om the motion of its apsides during a whole revolution.

Let $P T=r$, and let ${ }_{r .2}^{\mu}$ represent the force of T on P; then if νr represent the addititious force, when P is in quadrature, $-2 \nu r$ will represent the ablatitious force when P is in syzygy; and therefore the whole attractions of P to T in quadrature and syzygy respectively will be ${ }_{p, 2}^{\mu}+\nu r$, and $\frac{\mu}{r^{2}}-2 \nu r$. Hence if the force in quadratures prevailed for a whole revolution, the apsidal angle would $=\sqrt{\frac{\mu+\nu}{\mu+4 \nu}} \cdot 360^{n}$, which is less than 360°, or the apside would regrede; and if the force in syzygies prevailed for the same time, it would
$=\sqrt{\mu-\geq \nu}{ }_{\mu-\Delta \nu} \cdot 360^{\circ}$, which is greater than 360°, or the apside would prosrede. At any other point the apside will regrede or progrede, according as the disturbing force at that pint increases or diminishes the gravitation of P^{\prime} to T; but the gravitation is on the whole diminished by the central disturbing force, and therefore its tendency is to make the apmides progrede.

Obs. In investigating in this and the following Corollaries the effects produced on P's orbit by the different disturbing forces, it is to be observed that ouly general results are obtained: the disturbing force may be supposed to act hy impulses, its effects are then examined at the peints, where its action is most effective, and from these a gencral conclusion is drawn as to its effect in a whole revolution of P.

Cor. s. The orlit to P being sumposed excentric, to romsider ther affert of the central disturling force on the motion af its apssides.

1. Let the apsidal line he in a syzygy ; draw the tangent $P y$ in the direction of I 's motion. As I approaches perigee, the central disturbing force being ablatitions*, tends tu draw I ' from T; hence the acute angle $T T^{\prime}!$ is increased l, it, or I^{\prime} arrives at an ape (π) sooner than it would have done in the undisturbed orbit; therefure the apsidal line regredes. For a short time after passing perigee, the disturbing force, being still ablatitious, tends to increase the "bluse angle TP'y, so that P^{\prime} appears to have proceeded from :an apse (π^{\prime}) still more distant than π; hence if the disturbing foree now ceased acting, so that I described an undisturbed ellipse, the apogee, found by prowncing $\pi^{\prime} T$, will have regreded more than that fomed by prolucing πT, and therefore buth before and after perigee, the tendeney of the central disturling force is to make the apsidal line regrede. As i 'aproaches near to

[^0]apogec, the disturbing force being still ablatitious increases the obtuse angle $T P y$, and $\therefore P$ arrives at the apse later than it would otherwise have done, or the line of apses progredes; and in like manner as before it may be shewn to progrede still farther after P leaves apogee; hence when P is near apogee the line of apses is progressive. Now the disturbing force, varying as $P^{\prime} T$, is greater in the latter case than in the former, hence the progression of the apsidal line, when P is near apogee, is greater than the regression, when P is near perigee.
2. Let the apsidal line be in quadrature : then at the apsides the disturbing force is addititious; and it may be shewn as above, that when P is near perigee, the apsidal line progredes, and regredes when P is near apogee ; and the regression in this case is greater than the progression ; therefore since the whole motion of the apsides for other positions of P is inconsiderable, in this position the apsidal line is regressive.

The apsidal line then progredes when in syzygy, and regredes in quadrature : but the progression exceeds the regression ; for the former is due to the difference of the ablatitious forces at apogee and perigee, when the apsidal line is in syzygy, and the latter to the difference of the addititious forces at the same point, when that line is in quadrature, and the former difference equals twice the latter. As the line of apses by the actual motion of S appears to revolve from syzygy to quadrature, the progression for the same reason exceeds the regression; hence during a whole revolution of S the effect of the central disturbing foree is to make the line of apses progrede.

Moreover, when the apsidal line is in syzygy and therefore progressive, it is moving in the same direction as S, and thus continues longer in syzygy than if S were quiescent, and hence the progression is increased. When the apsidal line is in quadrature, the contrary takes place, and the regression is not so great as if S were stationary. (Vid. Airy's Gravitation.)

Cor. 9. To consider the effect of the central disturling force on the excentricity of P 's orbit.

As P moves from perigee to apogee, the ablatitious force tends to increase, and the addititious force tends to diminish the ohruse angle TT'y, which the tangent P'y makes with $P T$; also the velocity at any point, and therefore the axis major, remains nearly unaltered; therefore in the former case the form of the orbit departs farther from, and in the latter approaches nearer to that of a circle ; that is, the tendency of the ablatitions force is to increase, and that of the addititious to diminish the excentricity. As P moves from apoge to perigee, the acuto angle TPy is increased by the former furce, and diminished by the latter, that is, the excentricity is diminished by the ablatitious and increased by the addititions force.

1. When the line of apsides is in either syaygy or quadrature, the effects in either case of these disturbing forecs separately, as P^{\prime} moves from perigee to apogee, are equal and opposite to those produced by them during 1 's motion from apogee to perigee : and therefore the excentricity of I 's orlit in either of these pusitions of the apsidal line is unaltered ly the central disturbing force.
2. Let the perigee π lie between lower quadrature and nearer syzygy.

At A and C the disturbing force is ablatitious, and at the former point P is moving towards, and at the latter

from perigee; hence at A the force tends to diminish, and at ' ' to increase the excentricity: but $T C$ ' is greater than $T A$, and $2 \times$ distance is a measure of the ablatitious force at these points, therefore the combined effects of the forces at A and C will increase the excentricity. A
B and D the foree is addititious, and at B, P is moving from, and at D towards perigee, hence the tendency of the foree at B is to diminish, and at D to increase the excentricity ; but $T D$ is greater than $T B$, and the distance is a measure of the addititious force at these points, therefore on the whole the forces at B and D increase the excentricity. Hence in this position of the apsidal line the excentricity is increased in a whole revolution.
3. By reasoning similar to the above it may be shewn, that as the perigee moves from syzygy to upper quadrature, the excentricity is continually decreasing; that it increases as it moves through $D C$, and decreases through $C B$; so that generally, the excentricity continually increases as the apsidal line recolves from quadrature to syzyyy, and decreases as that line reooless firom sy=ygy to quadrature.

Cor. 10. To comsider the effects produced on the inclination of P's orbit to that of 'S by the ablatitious force.

Let $N^{r} n$ be the line of nodes: through P draw $P I$ parallel to $T S$ to represent the ablatitious foree at $P, I M I$ perpendicular to the plane of P 's orbit, and join $P M$: the force PI may be resolved into the two $P M, M I$, of which the latter alone affects the inclination of the orbit; and since during I 's motion from upper to lower quadrature the ablatitious foree acts in direction TS' or P PI, and through the remaining part of the orbit in direction $S T^{\prime}$ or $I I$, the perpendicular force in the former case acts in direction $M I$, and in the latter in direction $I M$; hence the perpendicular force tends towards the plane of S 's orbit through $D \|$ and $B N$, and from it through $n B$ and ND; and similialy, whatever be the position of the nodal line, the perpendicular force tends towards the plane of S "s orbit, except when l^{\prime} is between quadrature and the nearer node.

In the plane of P 's orbit, draw $Z T^{\prime} Z^{\prime}$ perpendicular to Nu.

1. When the nodes are in syzygy, since no part of the disturbing foree acts out of the phaue of 1 's orbit, the inclination will not be affected by it.
2. Let the node \boldsymbol{N} lie between upper quadrature and farther syzygy, and let the portion NPn of its orbit be above the plane of that of S. From upper quadrature to

Z, P is moving from the plane of S 's orlit; let $P y$ the tangent at P (fig. 2) be produced backward to meet that plane in u, draw $P^{\prime} m$ parallel to $M I$; then $P x$, the new

direction of P^{\prime} motion will fall between $P_{!}$and $P m$, and when produced backwards will cut the plane in v at a less angle than that in which $y P$ cuts it, and therefore the inclination of P 's orbit, the position of which is determined

by the point T and the direction of P 's motion, is diminished. From Z to n, P is moving tovards the plane of S 's orbit, and therefore, as appears from fig. $3, P \cdot x$ will cut the plane at a greater angle than that at which $P y$ cuts it, or the inclination is increased.

From n to lower quadrature P is moving from the

plane, and the perpendicular force now tends from the plane, and therefore, as in fig. 4, the inclination is increased.

In a similar maner it may be shewn, that as P moves from B to Z^{\prime} the inclination is diminished, that it increases from Z^{\prime} to N, and also from N to D; hence if $N T D=\alpha$, the inclination in this position of the line of nodes is increased, while P describes $180^{\circ}+2 a^{\circ}$ and diminished through $180^{\circ}-2 a^{0}$.
3. When the nodes are in quadrature the inclination is as much increased as it is diminished, and therefore at the end of one revolution it is unaffected by the ablatitious force.
4. Let N lie between C and B at an angular distance (a) from B; then it may be shewn by reasoning similar to the above, that in this position the inclination is increased, while P moves through $180^{\circ}-2 a^{\circ}$, and diminished through $150^{9}+2 a^{0}$.

As the node recedes (see Cor. 11) from quadrature to syzygy, the inclination is increased, and from syzygy to quadrature it is as much diminished, so that in a whole revolution of the nodes the inclination is neither increased nor diminished. The inclination is a maximum when the nodes are in syzygy, and a minimum when they are in quadrature ; and least of all when the nodes are in quadrature and P in syzygy.

Cor. 11. To consider the effects produced on the motion of the Nodes by the ablatitious force.

Let P be the place of the body ; resolve the ablatitious foree at P into two, one perpendicular to and the other in
the phane of P 's orbit: and let $P Q$ be a small are of the orbit which l ' would describe, were there no perpendicular foree; $P^{\prime}\left(y^{\prime}\right.$ a sumall are of the disturbed orbit.

Then it is manifest that when P is ascending from the node, N^{\prime} the node of $P^{\prime}\left(Q^{\prime}\right.$ will lie behind or before N, that

is, the node will be retrograde or progressive, acoording as (ℓ ' is at a less or greater distance from the plane of S"s orbit than (2 , that is, according as the perpendicular force tends towards or from that plane; and the same is true of the node n, when I ' is approaching that node. Now by what has been shewn in the first part of Cor. 10, the force tends always towards the plane, exeept between quadraturo and the nearer node; hence the motion of the node is always retrograde, except when P^{\prime} is moving letween quadrature and the nearer node.

If a be the amgalar distance of the nome from guarrature, the mode will be progressive while I moves through $2 a^{\prime \prime}$, and retrograde throngh $360^{\prime}-2 a^{\circ}$.

Since a is less than !o except at syager, the nodes in a whole revolution of I regrede more than they progrede.

If the nodes be in quadratures, they will regrede during the whole rewhtion; when they are in syzgres, the disturbing force acting in the phane of P^{\prime} s orbit, probluces no effect upon the mode, which therefore remains stationary ; it will however pass out of syaggy by the motion of S, and become retrograde.

Cor. 12. The effects produced by the disturling forces are greater, when P is in conjunction than when in opposition.

For when P is at nearer syzygy or in conjunction, the addititious force $=\frac{S \cdot P T}{S A^{3}}$, and when at farther syzygy or in opposition, it $=\frac{S \cdot P T}{S C^{3}}$; and $S A$ being less than $S C$, the former value is greater than the latter. Also in the former case the ablatitious force $=\frac{3 S^{\prime} . P T}{S A^{2}}$, and in the latter it $=\frac{3 S . B T}{S C^{2}}$, and therefore is greater in conjunction than in opposition. Hence, the effects produced by these forces will be greater in conjunction than in opposition.

Cor. 13. The reasoning employed in this proposition is wholly independent of the magnitude of S; if therefore S be so great, that the system of P and T revolves round S fixed, the disturbing forees will be of the same kind as when S moved round T fixed; but since each varies as S, they will all be increased in the same ratio as that in which we suppose S to be increased.

Cor. 14. If S and the distance ST rary, whilst the system of P and ' T remains the same, the angular errorof P as seen from T , produced in a given time by the disturbing firce of S , will vary incersely as the square of the periodic time of ' T round S , or directly as the cube of the apparent diameter of S as seen from T .

For let $S^{\prime \prime}$ and $S^{\prime} T$ be other values of S^{\prime} and $S T$; then in any given position of P, since $P T$ is the same, the disturbing forces of S on P are to those of S^{\prime} as $\frac{S}{S T^{3}}: \frac{S^{\prime}}{S^{\prime \prime} T^{3}}$, and therefore the lincar errors produced by them in the same unit of time are in the same ratio, and $P T$ being given, the angular errors as seen from T will be proportional to the linear errors; and the same being true of all corresponding angular errors, componendo, the angular
errors generated in a given time will be as $\frac{S}{S T^{3}}: \frac{S^{\prime \prime}}{S^{\prime} T^{3}}$, that is, by Prop. XV. as

$$
\left(\text { per }^{\prime} . \text { time }{ }^{2} \text { of } T \text { round } S: \quad \frac{1}{\text { per. time })^{2} \text { of Tround } S^{\prime \prime}},\right.
$$

and therefore the angular error varies inversely as

$$
\text { (perc. time) of } T \text { round } S \text {. }
$$

Alsa if 1$)$ diameter of S, S s. D^{3}, and therefore angular error $8 \frac{J^{3}}{S^{3}}$ \& the cube of the apparent diameter of S as seen from T.

Cor. 15. If thore be tirn systoms $\mathrm{P}, \mathrm{T}, \mathrm{S}$ and $\mathrm{P}^{\prime}, \mathrm{T}^{\prime}, \mathrm{S}^{\prime}$,
 the wrbits af P 'and l' be similar and similarly situated, their periodir ambular errors round T and T ' arisim!! fiom the disturbin! fiorces of s' and s' will be equal.

The bolies P^{\prime} and P^{\prime} at any two similarly situated prints in each orbit, are similarly acted on by proportional forces, and therefore the linear errors, generated while they move through small similar parts of their orbits, will be similar and proportional, and will therefore be respeetively as the diameters of the orbits; henee, the angilar errors through those small parts will be equal; and this being true of the crrors throngh all corresponding parts, the periodic angular errors will be equal.

Con. 1f. In ally tirn systome P, T, S and P', T', 心', in rheirh the "rthits af P^{\prime} amel P^{\prime} aroes similare athed similarl!! sitmutal, tuc comperer the proindic atymlare arons round T and ' T '.

Let P and P be the periolic times of T round S amd of P round T',

$$
\begin{aligned}
& I^{\prime} \text { and } \rho^{\prime} \ldots . T^{\prime} \text {. S'and of } \Gamma^{\prime} \\
& \text { romind } 7 \text { ". }
\end{aligned}
$$

In TS', produced if neeessary, place a body s such that $s: S^{\prime}=T: T^{\prime \prime}$, and at a distance $s T$ from T, such that $s T: P T=S^{\prime \prime} T^{\prime \prime}: P^{\prime} T^{\prime} ; \therefore s={ }_{T}^{T} S^{\prime}$, and $s T=\stackrel{P}{P^{\prime} T,} . S^{\prime} T^{\prime}$. Then by Cor. 15, the periodic angular errors in the system $P^{\prime}, T^{\prime \prime}, S^{\prime}$ equal the errors in the system P^{\prime}, T, s. Again, by Cor 14 , in the systems P, T, S and P, T, s the angular errors in a given time, and therefore the periodic angular errors are
as $\quad \frac{S}{S T^{3}}: \frac{s}{s T^{\prime 3}}, \quad$ or as $\frac{S}{S T^{\prime 3}}: \frac{S^{\prime \prime}}{S^{\prime \prime} T^{3}} \cdot \frac{T}{T^{\prime \prime}} \cdot \frac{P^{\prime} T^{3}}{P T^{3}}$,
as $\quad \underset{S T^{3}}{S} \cdot T^{P} T^{3}: \underset{S^{\prime \prime} T^{\prime / 3}}{S^{\prime}} \cdot T^{\prime \prime} T^{\prime 3}, \quad$ or as $\frac{p^{2}}{P^{2}}: \frac{p^{\prime 2}}{P^{\prime 2}}$;
therefore the periodic angular errors in the systems P, T, S and $P^{\prime}, T^{\prime}, S^{\prime}$ are as $\frac{p^{2}}{P^{2}}: \frac{p^{\prime 2}}{P^{p_{2}}}$.

Hence, if the orbits of two satellites be similar, and equally inclined to the orlits of their primaries, the periodic angular errors in their orbits will vary directly as the squares of the periodic times of the satellites, and inversely as the squares of those of the primaries.

The errors here spoken of are the angular motions of the nodal line, apsidal line, \&c.

Cor. 17. To compare the mean addititious force with the force of T on P .

Let P be the periodic time of T round S,
p that of P and T round their centre of gravity;
therefore $\sqrt{\bar{P}+T} \cdot p=$ time in which P would revolve round T at rest at the same distance $T P^{\prime}$, by Prop. LIX.

Now, mean addititious force $=\frac{S . P T}{S T^{3}}$,
and force of S on $T=\frac{S}{S T^{2}}$;
\therefore mean addititious force : force of S on $T=P T: S T$, and by Prop. IV.
force of S on $T:$ force of T on $P=\frac{S T}{P^{2}}: \frac{P T}{P^{2}} \cdot \frac{T}{P+T} ;$
\therefore mean addititious force : force of T on $P^{\prime}=\frac{1}{P^{2}}: \frac{1}{p^{2}} \cdot \frac{T}{P+T^{2}}$.
The force of T on P here spoken of is that with which T alone draws P, and this force is to that with which P and T are drawn towards each other as $T: P+T$; hence compounding this with the above proportion, we have
mean addit'. force : force of P and T towards each other
$=\frac{1}{1^{n}}: \frac{1}{\gamma^{2}}$.

The formule which we subjoin have been proved in Sections II. and III., but are here collected together on account of their great use in examples on motion in conic sections about a force to the centre or a focus.

In all orbits,
and

$$
\begin{aligned}
h & =r p \\
v^{2} & =F \frac{P V}{2} .
\end{aligned}
$$

In an ellipse or hyperbola about the centre,

$$
\begin{aligned}
& F=\mu \cdot C P=\mu r, \\
& h=\sqrt{\mu} \cdot a b, \\
& v=\sqrt{\mu} \cdot C D\left(\operatorname{or}_{\frac{h}{p}}^{p}\right) ;
\end{aligned}
$$

in an ellipse about the centre,

$$
P=\frac{2 \pi}{\sqrt{\mu}}
$$

In an ellipse about the focus S,

$$
\begin{aligned}
& F=\frac{\mu}{r^{2}}, \\
& h=\sqrt{\mu L}, \\
& v^{2}=\frac{2 \mu}{r}-\frac{\mu}{a}\left(\text { or } \frac{h}{p}\right) ;
\end{aligned}
$$

in a hyperbola about the fucus, the same formulæ except for r, which is

$$
x^{2}=\frac{2 \mu}{v}+\frac{\mu}{a}
$$

in an ellipse about the focus,

$$
P=2 \pi \sqrt{\frac{a^{3}}{\mu}}
$$

in a parabola about the focus,

$$
\begin{aligned}
& F=\frac{\mu}{r^{2}} \\
& h=\sqrt{\frac{\mu L}{2}} \\
& v^{2}=\frac{2 \mu}{r}\left(\text { or }_{1}^{\mu}\right) ;
\end{aligned}
$$

r being the distance of the body from the centre of force, L the latus rectum, a, b the semi-axes of the ellipse or hyperbola, and μ the absolute force.

In order to understand the relation which numerical results given hy these formula have to munerical measures of space and time, consider any force f whatever, and snpfose it to act constantly on a borly for timo t and to generate in that time a velocity with which a borly would deserile a space x in an equal time t; then if t were our unit of time f would be numerically equal to s (l)ef. 7 , page 6) ; if not, the velocity generated is represented by ${ }_{t}^{8}$, and therefure the force by $\frac{\left(\frac{8}{t}\right)}{t}$ or by ${\frac{t^{2}}{}}_{\frac{8}{2}}$

Thus $\frac{s}{f}=t^{2}$; that is, f is a linear space, and is so related to the space s that the ratio of s to f is equal to the square of the ratio which the time t of generating the velocity ${ }_{t}^{s}$ bears to the unit of time; or briefly, $\frac{s}{f}$ is the square of a time.

We will apply this consideration to the expressions above given for the forces in an ellipse about the centre, and about the focus.
(1) The orbit is an ellipse about the centre:
here

$$
F=\mu C P .
$$

And if s be any linear space,

$$
\frac{s}{\boldsymbol{F}} \text { is the square of a time, }
$$

or

$$
\frac{s}{\mu C \bar{P}} \text { is the square of a time; }
$$

let

$$
\frac{s}{\mu C P}=t^{2}:
$$

then

$$
\frac{1}{\sqrt{\mu}}=\sqrt{\frac{\overline{C P}}{s}} \cdot t,
$$

or $\frac{1}{\sqrt{\mu}}$ is a constant time connected with the variable time t by multiplying the latter by the variable ratio $\sqrt{\overline{C P}}$.

The periodic time in the orbit must bear some definite numerical ratio to this time $\frac{1}{\sqrt{\mu}}$: or $P=\frac{c}{\sqrt{ } \mu}$; where c is some number. This number is (page 79) 2π, or $6.18 \ldots$
(2) The ortit is an ellipse about the focus S :
here

$$
\boldsymbol{F}=\stackrel{\mu}{S_{1}^{22}} .
$$

And if s be any linear space,

$$
\stackrel{s}{F} \text { is the square of a time ; }
$$

let then

$$
\frac{s}{\mu} \equiv \frac{s \times S P^{2}}{\mu}=t^{2},
$$

therefore $\quad \sqrt{\frac{s \times y^{2}}{\mu}}$ is the variable time t :
thus μ must contain a factor expressing linear space in such a manner as to bear a ratio to $s \times S P^{2}$.

Let then l be any given length, and let $\mu=\mu^{\prime} l^{3}$;
therefore

$$
\sqrt{s \times S^{\prime} p^{3}}=t:
$$

and

$$
\frac{1}{\sqrt{\mu^{\prime}}}=\sqrt{1_{8 \times S 1^{2}}^{1^{3}} \cdot t}
$$

Thus $\frac{1}{\sqrt{\mu^{\prime}}}\left(\right.$ or $\left.\sqrt{l^{3}}\right)$ is a time, which is constant, because l and μ, and therefore $\frac{l^{3}}{\mu}$, are constant-and is comected with the variable time t by multiplying the latter by the variable ratio $\sqrt{a \times s^{3} l^{n}}$.

The periodic time in the orbit must bear some definite numerical ratio to this time $\frac{1}{\sqrt{\mu^{\prime}}}$ or $\sqrt{\frac{l^{3}}{\mu}}$: hence

$$
\boldsymbol{P}=c \sqrt{\frac{\bar{l}^{3}}{\mu}},
$$

where c is a numerical constant: if l be taken equal to a the semi-axis-major of the ellipse, we have (page 93) $c=2 \pi$.

As another example, let a body describe an orbit about a centre of force varying as the inverse $n^{\text {th }}$ power of the distance.

Here

$$
F=\frac{\mu}{r^{n}} ;
$$

and, if s be any linear space,

$$
\begin{gathered}
\stackrel{s}{F}=t^{2} \text {, where } t \text { is a time ; } \\
\therefore \frac{s v^{n}}{\mu}=t^{2}:
\end{gathered}
$$

let

$$
\mu=l^{n+1} \mu^{\prime},
$$

where l is a constant length ;
then

$$
\frac{1}{\sqrt{\mu^{\prime}}}=\sqrt{\frac{l^{n+1}}{s r^{x}} \cdot t: ~}
$$

thus

$$
\frac{1}{\sqrt{\mu^{\prime}}} \text { is a coustant time : }
$$

hence

$$
\boldsymbol{P}=\frac{c}{\sqrt{\mu^{\prime}}}=c \sqrt{\frac{\bar{n}^{n+1}}{\mu}},
$$

where μ is the absolute foree, c a numerical constant, l a coustant length.

The following examples are added to be worked out by the processes employed in Newton's first three sections. In some of them the following proposition will be found useful; for the proof of which we refer the student to Todhunter's Algebre, Art. 666.

Prop. The limiting value of the fraction

$$
\mathbf{1}^{p}+2_{n^{p+1}}^{3^{p}+\ldots+n^{p}},
$$

when n is indefinitely increased, is $\frac{1}{p+1}$.

EXAMPLES.

SECTION I.

1. Two straight lines $A B, A^{\prime} B^{\prime}$ cut off the same area from a given oval curve; find their point of ultimate intersection when $A^{\prime} B^{\prime}$ moves up to coincidence with $A B$.
2. Two circles have their centres on a given curve and pass through a given point; find the limiting position of their chord of intersection as their centres move up to coincidence with a given point of the arc.
3. Circles of the same radius R are described cutting a straight line $A B C$ in $A B, A C$ respectively ; prove that when C approaches indefinitely near to B the line joining the centres of the circles is inclined to $A B C$ at an angle whose sine is $\frac{A B}{2 R}$.
4. $A P$ is a chord of a given circle, $A Q$ a chord near $A P$; find the position of the point of ultimate intersection of cireles described on $A P, A Q$ as diameters, when Q approaches and ultimately coincides with P.
5. $A B, A E$ are two straight lines intersecting in $A ; A E$ is divided into three equal parts in $C, D ; S$ is any other point ; $S C, S D, S E$ cut $A B$ in $M, M^{\prime}, M^{\prime \prime}$. Prove that

$$
\text { L. R. } \frac{M M^{\prime}}{M^{\prime} M^{\prime \prime}}=\frac{3}{1},
$$

when $A E$ is indefinitely great.
6. In a right-angled triangle the altitude is constant, and the base variable: find the ultimate ratio of the increment of the base to the increment of the hypothenuse.
7. A and B are two fixed points, $C D$ is a fixed straight line, and $c l$ is another straight line moving, subject to the condition that the rectangle under the perpendiculars upon it from A and B is equal to the rectangle under the corresponding perpendiculars upon (' D). If the lines $C D$ and a intersect in P, prove that, ultimately, when $C D$ and $c d$ coincide, the angle $A P C$ will be equal to the angle $B P D$.
8. Prove that the surface generated by the revolution of a semicirele round its bounding diameter is to that generated by the revolution of the same semicircle round the tangent at the extremity of the diameter in the ratio of the length of the diameter to the length of the semicircle.
9. Two tangents are drawn to an ellipse; draw a third so that the area of the triangle formed shall be the least possible.
11. Two similar lumps of ice are melting, and the diminution of volume at any instant is proportional to the area of the surface of each lump. Do the volumes tend to equality ?
11. Find the area of a portion of a circle cut off by the diameter $A B$ and a chord $A P$.
12. Find the area bounded by a portion of a hyperbola, two ordinates parallel to one asymptote, and the other asymptote.
13. There are n curves of which the areas cut off by ordinates at any the same distances from their vertices are as $a_{1}: u_{2} \ldots: a_{n}$. Shew that if they revolve about their axes, the solids of equal heights st) generated are as ${a_{1}}^{2}: a_{2}{ }^{2} \ldots: u_{n}{ }^{2}$.
14. Find ly Lemma II the area bounded by the curve $a^{4} y=x^{5}$, the ordinate $y \quad b$, and the axis of x.
15. Find the volume gencrated by the revolution of the area bounded by the curve $y^{3}=a x^{2}$, the ordinate $y=b$, and the axis of s, about the same axis.
16. Find the position of the ordinate which bisects the area bounded by the curve $a y^{3}=x^{4}$, the ordinate $y=b$, and the axis of x.
17. Find the area of the curve $r^{2}=u^{2} \cos \theta$.
18. Find the area of a loop of the curve $r^{2}=a^{2} \cos 3 \theta$.
19. Apply Lemma IV. to shew that the volume of a right cone is one-third that of the cylinder on the same base and of the same altitude.
20. Assuming the area of a parabolic segment to be twothirds of the circumscribing triangle, deduce the volume of a sphere by comparing it with a right cylinder having for its base the parabolic segment described upon a diameter for chord and latus rectum.
21. Compare the volume of the ring generated by revolution of a circle round a line in its own plane with the volume of a cylinder whose base is the circle and whose height is the distance of the axis of revolution from the centre of the circle.
22. If two bodies move so as to have their velocities at every instant in a constant ratio, shew that the spaces described by them will be in the same ratio.
23. Similar conterminous arcs which have a common tangent at one extremity have parallel tangents at the other extremity.
24. $S Y$ is perpendicular to the tangent at P to a curve from a fixed point S; and $S Z$ is the perpendicular from S on the tangent at Y to the locus of Y : shew that $S Y$ is a mean proportional between $S P$ and $S Z$.
25. $A B$ the chord of an arc $A C B$ is bisected at right angles by $C D$; shew that, as B approaches A, C becomes the middle point of the arc.
26. Equilateral triangles are described about a given oval curve; shew how to draw a tangent at any point of the curve described by their vertices.
27. If S be a fixed point $P T$, the tangent at P to a curve, $P Q$ a small arc of the curve, $S T$ perpendicular to $S P, Q R$ perpendicular to $S P$; shew that

$$
\text { L. R. } Q R: S Q-S P=S T^{\prime}: S P \text {. }
$$

28. If a circle touch a parabola at the vertex, and their centre and focus coincide, and a straight line parallel to the axis cut the common tangent and the curves in T, P, Q; then when these points move up to coincidence at A,

$$
\text { L. R. area } T A P: \text { area } P A Q=1
$$

29. If the curve in Lemma X. be an arc of a parabola the axis of which is perpendicular to the straight line along which time is measured, prove that the accelerating effect of the force will vary as the distance from the axis of the parabola.
30. One circle rolls uniformly within another of twice its radius; prove that the resultant acceleration of a particle situated on the circumference of the rolling circle tends to the centre of the fixed circle, and varies as the distance from that centre.
31. An are of continuous curvature $P Q Q^{\prime}$ is bisected in Q; $P T$ is the tangent at P; shew that, as (Q^{\prime} approaches P, the ultimate ratio of the angle $Q^{\prime} P^{\prime} T$ to the angle $Q P^{\prime} T^{\prime}$ is two to one.
32. $A P B$ is a semicircle and $P N$ is an ordinate to the diameter $A B$; if from $A P, A Q$ be cut off equal to $P N$, shew that the area enclosed by the curve traced out by Q is one-fourth the area of the semicircle.
33. A fixed line intersects a curve in the point P; a point Q in the line is joined with two fixed points $A, B ; Q A, Q B$. meet the curve in R, S. Find the limiting ratio of $Q R$ to $Q S$, as Q moves ul to P.
34. The extremities of a straight line slide upon two given straight lines, so that the area of the triangle formed by the three straight lines is constant: find the limiting position of the chord of intersection of two consecutive positions of the circle described about that triangle.
35. A straight line of constant length moves with its extremities upon two given straight lines; find the limiting position of the chord of intersection of two consecutive positions of the circumscribing circle.

3t. $A B$ is a diameter of a circle, P a point contiguous to A, and the tangent at P meets $B A$ produced in T : shew that ultimately the difference between $B A, B P$ is in a ratio of equality to $\frac{1}{2} T \mathrm{~A}$.
37. If $P Q$ be an arc of continuous curvature, and the tangent and normal at Q meet the tangent at P in T and N, prove that L. к. $\triangle P(Q N: \Delta P Q T=2: 1$.
38. The circle of curvature at a point of an ellipse passew through a vertex; find the abscissa of the point.
39. If the circle of curvature at one extremity of the major axis of an ellipse passes through the farther focus; find its excentricity.
40. The foci of all parabolas which have the same curvature as a given curve at a given point lie on a circle.
41. If the angle between the tangent and radius vector of a curve is a maximum or a minimum, the chord of curvature through $S=2 S P$.
42. Two curves of finite curvature touch each other at the point P, and from T, a fixed point in the common tangent, a secant is drawn cutting one curve in the points A, B, and the other in the points A^{\prime}, B^{\prime}, and the lines $A P, A^{\prime} P, B P^{\prime}, B^{\prime} P$ are drawn ; shew that, if the secant moves up to and ultimately coincides with the tangent, the angles $A P A^{\prime}, B P B^{\prime}$ will be ultimately in a ratio of equality.
43. In the curve in which the difference between the are and the intercept of the normal on the axis of abscissie is constant, the difference between the ordinate and the normal is also constant.
44. From a point on the circumference of a vertical circle a chord and tangent are drawn, the chord terminating in the lowest point, the tangent in the vertical diameter produced. Compare the velocities açuired by a heavy body falling down the chord and tangent when they are indefinitely diminished.

SECTIONS II, III.

45. If a particle describe an ellipse about a focus S, the rate of description of areas round the other focus S^{\prime} varies as $S^{\prime} Z^{2}$, where $S^{\prime} Z$ is the perpendicular from S^{\prime} on the tangent.
46. A particle P moves in space under the action of two centres of force S and S^{\prime}; shew that the projection of P on a it hane perpendicular to $S S^{\prime}$ describes areas in equal times about the point where $S S^{\prime}$ meets the plane.
47. If a particle acted on only by a central force, not necessarily continuous, move with constant velocity, prove that its path will be a straight liue, a circle, or straight lines alternating with ares of circles.
48. In a central orhit the velocity of the foot of the perpendicular from the centre on the tangent varies inversely as the length of the chord of curvature through the centre of force.
49. A point moves on the circumference of a circle; prove that the angular velocity about all points in the circumference is the same.
50. A bruly is describing an ellipse round a centre of force in one of the foei. Prove that the velocity of the point of intersection of the perpendicular from that focus upon the tangent at any point of the orbit is inversely proportional to the square upon the conjugate diameter.
©1. A number of bodies describe different circles round the same ecntre of force varying as $\begin{gathered}1 \\ r^{2}\end{gathered}$, setting out together from the same radius vector ; find the curve in which they will be situated when one of them has completed a revolution.
$5:$. Find the time of revolution of a conical pendulum.
51. A body describing an orbit about a central force equal to
μ. p has, at the distance of 27 fect from the centre, a velocity of 15 miles prer hour find the numerical value of μ (1) when a foot and a second are the units of space and time, (2) when a yard and a minute are the units.
52. If the angular velocity about the centre of force varic: as the linear velocity, find the orbit.
5.5. Two equal circles are described in equal times under the action of forces to the centre and a point in the circumferencerespectively. Compare the absolute forces.

Eti. A borly moves in an ellipse with uniform velocity under the action of two central forces at the foci : shew that the forces to the foci are always equal and vary inversely as the product of the foreal distances.
5.7. If in an ellipse the velocity varies as the diameter parallel to the direction of motion directly and as the distance from the major axis inversely, shew that the centre of force is infinitely distant.
58. T describes a circle uniformly about \boldsymbol{C}; \boldsymbol{P} describes another circle uniformly about T as centre in the same direction,
and their velocities are as $C T: P T$. Shew that P describes a circle about C, and find the force on P tending to C.
59. T describes a circle uniformly about $C ; P$ describes another circle uniformly about T as centre in the opposite direction, and their velocities are as $C T: P T$. Shew that P describes an ellipse about C, and hence that an ellipse may be described by a force to the centre which varies as the distance.
60. What is the acceleration of a point in the circumference of a circle which rotates uniformly while its centre describes a straight line? In what case would such a point describe a cycloid?
61. A parabola can be described by a body acted on by two forces, one a constant repulsive force to the focus, and the other a force inwards along the normal and varying inversely as the normal.
62. If a perfectly elastic particle describing an equiangular spiral impinge upon a hard plane, prove that after impact it will describe an equiangular spiral. How must the plane be placed that it may describe a similar spiral?
63. What impulse must be applied to a body moving in an equiangular spiral to make it proceed to describe a circle ?
64. In an ellipse described about a centre of force at the centre the square of the velocity at the end of the equi-conjugate diameters is the arithmetic mean between the squares of the greatest and least velocities.
65. Two bodies are describing equal and similar concentric ellipses under the action of a force tending to their centre, the axis-major of the one being at right angles to the axis-major of the other; determine the time that each is within the orbit of the other, and find its limiting value as the excentricity is indefinitely diminished.
66. In an ellipse described about a force to the centre, shew that the time in which any given area will be swept out by the radius vector is independent of the excentricity of the ellipse if the area of the ellipse be given.
67. A particle describes an ellipse about a centre of force in the centre. Prove that the angular velocity of the particle about a focus is inversely proportional to the distance from that focus.
iis. If a triangle be inscribed in an ellipse so that its centre of gravity coincides with the centre of the ellipse, prove that the velocitics of a partiele describing the ellipse under the action of a force to the centre when at the angular points A, B, C will be propertional to the opposite sides of the triangle, and also that the times from A to B, B to C, C to A will be equal to each other.
6. Two particles describe concentric, similar, and similarly situated ellipses under the action of the same force tending to their common centre ; shew that their centre of gravity moves in another concentric, similar and similarly situated ellipse.
70. An ellipse is described by a body under a force to the centre. If the accelerating effect at the extremity of the axisinajor is equal to that of gravity, and the period is a day, find the number of miles in the axis-mitoor.
71. Two particles describe the same ellipse about the same force in the centre in the same periodic time: shew that their directions of motion at any time intersect on a similar ellipse.
72. A particle is describing an ellipse about the centre, and when it arrives at one extremity of the minor-axis the centre of force is suddenly transurred to the other; find the orbit subserpuently described. What is the excentricity of the ellipse if the new orbit is a circle?
73. A body is describing an ellipse about a force to the eentre; when at the extremity of an equi-conjugate diameter the direction of motion is suddenly changed the velocity remaining unaltered ; tind the prosition of the axes of the new orbit, and the condition that it may be a circle.
74. A body moves in a parabola about a centre of force in the focus. If the velocity be diminished in the ratho of $\sqrt{ } / 2: 1$ when the body is at the extremity of the latus rectum, find the prosition and axes of the new orbit.
75. If any number of bodies describe parabolas about a common centre of force in the focus, the square of the time of bissing from one extremity of the latus rectum to the other varies as the cube of the latus rectum.

7\%. A body describes an ellipse about a centre of force in a focus; prove that the velocity of the point of intersection of
the perpendicular from that focus upon the tangent at any point of the orbit varies inversely as the square of the conjugate diameter.
77. The ratio of the periodic times of two bodies revolving about two centres of force varying inversely as the square of the distance is $\frac{1}{13}$, and the ratio of the mean distances of the bodies from the centres of force about which they respectively revolve is $\frac{1}{400}$; compare the absolute forces at the two centres.
78. If v, v^{\prime} be the velocities of a body descibibing an ellipse about a centre of force at one focus, at the extremities of any focal chord, and u that at the extremity of the latus rectum, then will $r^{2}, u^{2}, v^{\prime 2}$ be in arithmetical progression.
79. The time of moving in an ellipse from P to D, the extremities of equi-conjugate diameters, by a body acted on by a force to the focus, is one-fourth of the periodic time.
80. In an ellipse about the focus S, the velocity may be resolved into two equal velocities perpendicular respectively to $S P$ and $H P$, and each varying as $M P$.

S1. A particle describes an ellipse about a centre of force in one of the foci; if lines be drawn always parallel to the direction of motion at a distance from the centre of force proportional to the velocity of the particle, these lines will touch a similar ellipse.

S2. A particle moves in an ellipse about a centre of foree in the focus S; when the particle is at B, the extremity of the minor-axis, the centre of force is changed to R in $S B$, so that $R B$ is one-fifth of $S B$, and the absolute force is diminished to one-eighth of its original value; shew that the periodic time is unaltered, and that the new minor-axis is two-fifths of the old.
83. A body deseribes a hyperbola round a centre of foree at the nearer focus. Find, when possible, the point in the orbit at which the angular velocities about the foci are in a given ratio, and state the limits between which the given ratio may vary.
84. A body describes a hyperbola under the action of a force tending to one focus. Prove that the rate at which areas are described by the moving particle about the centre of the hyperbola, is inversely proportional to the distance of the particle from the centre of force.
85. A body is moving in a given hyperbola under the action of a force tending to the nearer focus s; when it arrives at a point P, the force suddenly becomes repulsive, find the position and magnitude of the axes of the new orbit; shew that the difference of the squares of the excentricities of the new and old orbits varies iuversely as s P.

8ti. A particle describing an ellipse about a force in the focus comes to the extremity of the major-axis nearer to the centre of force; find in what ratio the absolute force must be then suddenly diminished so that the particle may proceed to describe a hyperbola whose excentricity is the reciprocal of that of the ellipse.
47. Three tangents are drawn to a given orbit, descrihed by a particle under the action of a central force, one of them being parallel to the external bisector of the angle between the other two. If the velucity at the point of contact of this tangent be a mean proportional between those at the other two points, prove that the centre of force will lie on the circumference of a certain eircle.
85. A borlv describes a parabola under a force to the focus, and a straight line is drawn from the focus perpendicular to the tancent and proportional to the velocity; prove that its extreinity deacribes a circle.
89. A prefectly clastic particle, describing a parabola about a centre of force in the focus and moving towards the vertex, impinges on a fixed plane passing through the latus rectum and perpendienlar to the plane of the parabola ; determine its subsequent moticn.
90. A benly moves in a parabola about a centre of force in the vertex; shew that the time of moving from any point to the vertex varies as the cube of the distance of the point from the axis of the paratola.
91. Two particles describe the same ellipse about a centre of force in one of the foei, starting simultanconsly from opposite extremities of the transverse axis. When will they be moving with equal velocitics?
92. Two brelies describe the same ellipse, one about a focus, the other about the centre ; the forces are such that at the point where they are equal the velocities are also equal; prove that the p riods are an $1 \pm e: 1$.
93. When a body arrives at P in an ellipse about the focus S, the centre of force is suddenly transferred to the other focus, and the same orbit is described; shew that, if $\lambda, \lambda^{\prime}$ are the absolute forces, $\lambda: \lambda^{\prime}=S P^{2}: S^{\prime} P^{2}$.
94. A particle is describing an ellipse about the focus; when it comes to the extremity of the conjugate axis, the absolute force is diminished by one-third. Determine the position and dimensions of the new orbit, and prove that the distance between its focus and its centre is bisected by the conjugate axis of the original orbit.
95. If a body be moving in an ellipse under the action of a force $=\frac{\mu}{r^{2}}$, and if at any point the velocity V and the absolute force μ be increased by very small increments such that the ratio of the increment of V to V is half that of the increment of μ to μ, shew that the orbit will remain unaltered, but the periodic time will be changed.

A LIST

OF

EDUCATIONAL BOOKS

FOR PRIVATE AND

UNIVERSITY STUDENTS,

Al. So

FOR USE IN PUBLIC SCHOOLS, GRAMMAR SCHOOLS,

AND

MIDDLE CLASS, ELEMENTARY, AND)

NATIONAL SCHOOLS.

LONDON, WC.
merton, Bell and Co., Cambridge.

CONTENTS.

Classical Page
Bibliotheca Classica 67
Grammar-School Classics 68
Cambridge Greek and Latin Texts 70
Public School Series 71
Critical and Annotated Editions 72
Latin and Greek Class Books 74
Classical Tables 76
Translations, \&c., adapted for School Prizes 76
Mathematical, Etc.:
Cambridge School and College Text Books 79
Arithmetic and Algebra 80
Geometry and Euclid 81
Trigonometry 82
Analytical Geometry and Differential Calculus 8 ?
Mechanics and Natural Philosophy S3
Miscellaneous:
History, Topography, \&c. 87
Philology 90
Divinity, Moral Philosophy, \&c. 91
French, German, and English Ciass Books:
Forcign Classics 96
French Class Books 97
German Class Books 99
English Class looks 100

York Strat, Cuath! Gardin, London.

EDUCATIONAL BOOKS.

2bibliotljeca $\mathbb{C l a s s i c a . ~}$

A Series of Greek and Latin authors, with English notes; edited oy eminent scholari, under the direction of (g. Lovis, Esq., M. A., ormerly fellow of Trinity College, Cambridge ; and the late Rev. A. J. Macleine, M. A., IIead Master of King Edward's School, Bath. Svo.

AFiSCHYLUS. By F. A. Palcy, M. A. Nezo alition raisad. ISs.
CICERO'S ORATIONS. By (i. Long, M. A. 4 vols. 3. 4s. Vol. I. ıGs.; 'ool. II. 1.f. ; V'ol. III. 16s.; Vol. IV'. Iss.

DEMOSTHENES. By R. Whiston, M. A., Head Master of Rochester Grammar school. Vol. I. IGs.; Vol. II. ibs.
EURIPIDES. By F. A. Paley, M. A. 3 vols. iGs. each.
HOMER. Vol. I. Hiad 1 -12, with Introduction. By F. A. Paley, M. A. izs. Vol. II.i\&s.

HERODOTUS. liy Rev. J. W. Blakesley, B. I). 2 vols. 32 s .
HESI()I). By F. A. Paley, M.A. Ios. Gd.
HORACF. By Rev. A. J. Macleane, M. A. Nezo cdition. revised ty (ieorge Lomg. iSs.
JUVENAL and PERSIUs. Hy Rev. A. J. Macleane, M. A, Trinity College, Cambrilge. Nico calition, tevi col l.y (ienge lang. 12 s.

PLATO. By W. H. Thompson, D.D., Master of Trinity College, Cambridge.

Vol. I., " Phaedrus," 7s. 6d. Vol. II., "Gorgias," 7s. 6d.
SOPHOCLES. By Rev. F.H. Blaydes, M.A. Vol. I. i8s. Contents:-(Edipus Tyrannus. (Edipus Coloneus. Antigone.
TACITUS : The Annals. By the Rev. P. Frost. Price 15 s.
TERENCE. By E. St. J. Parry, M.A. i8s.
VERGIL. By the late J. Conington, M.A. Corpus, Professor of Latin at Oxford. Vol. I., The Bucolics and Georgics. Thired cdition, $12 s$ s. Yol. II., The Ameid, Books I. to VI. Second cdition, 14s. Vol. III., Sciond cditition, I4s.

Uniform zuith abowe.
A COMPLETE LATIN GRAMMAR. By J. W. Donaldson, D.D. Third clition. I4s.
A COMPLETE GREEK GRAMMAR. By J. W. Donaldson, D. D. Third edition. I6s.
For other Critical and Annotated Editions see pages 71-73.

Grammar=

A Series of Greek and Latin authors, with English notes, edited by eminent scholars ; especially adapted for use in public and grammar schools. Foolscap Svo.
ASAR DE BELLO GALLICO. Edited by George Long, M. A. Nczu clition. 5s. 6ad.
CAESAR DE BELLO GALLICO. Books I.-III. With English notes for junior classes. By George Long, M. A. New edition. 2s. 6d.
CATULLUS, TIBULLUS, AND PROPERTIUS. Selected Poems. Edited by the Rev. A. I. Wratislaw, of Bury St. Edmunds School, and F. N. Sutton, B. A. With short biographical notices of the Poets. $3^{s .6 d t}$.
CICERO : De Senectute, De Amicitia, and Select Epistles. Edited by George Long, M. A. Neze edition. 4s. 6 d .
CORNELIUS NEPOS. Edited by the late Rev. J. F. Macmichael, Head Master of the Grammar School, Ripon. 2s. 6 d.

HOMER: Iliad. Books I.-XII. Edited by F. A. P’aley, M.A. 6s. 6.t.
HORACE. Edited by A. J. Macleane, M. A,, late Head Master of King Edward's School, Bath. With a short Life. Newo clition, raisst. 6s. 6d.
JUVENS.DL: Sixteen Satires (expurgated). By Herman P'rior, M. I., late Scholar of Trinity College, Oxford. \&s. 6d.
MARTIAL: select Fpigrams. Edited by F. A. Paley, M. A., and the late W. H. Stone, Scholar of Trinity College, Cambridge. With a Life of the P'oet. Gs. 6id.
OVII): The six llooks of the Fasti. Edited by F. A. I’aley, M.A. Aizu cilition. 5s.
S.AlLUST: Catilina and Jugurtha. With a Life. Edited ly Gerge Long, M.A. 5^{s}.
IACITUS: (icrmania and Agricola. Edited by the Kev. P'. Front, hate Felluw of St. John's College, Cambrilge. 3s. $6 . \%$
VIRCiII, Bucolics, (ieorgics, and Eneid, Books I.—IV. liy the Rev. J. (i. Sheppard, D.C.L. Abridged from l'rofesson Coningtom's edition. 5s. 6 d.
—— Encid, looks V.-XII. Abridged from Professor Comingten's edhtion, hy If. Nettle hip, Fellow of Jincoln College, Oxford, and W. Wagner, Plol). 5s. Gid.
NENOPHON: The Anabasis. With life, Itinerary, Intex, and Three Maps. E Elited loy the hate J. F. Macmichacl, late Head Marter of the Grammar Schom, Ripon. Neau dition, revised, corrected and enlarged. 5 .
The Cyropredia. Eidited by (i. M. Corham, M. A., hate Fellow of Trinity Colllege, Cambralge. Näe caition. 6s.

Memorabilia. Edited by Percival Frost, M. A., late Fellow of St. John's College, Cambridge. 4. 6 d.
t「nijorm acilh tire Sorvis.
IHE NEN TESTAMENT, in Greck. With English Notes and Preface, Syopsis, and Chromological Tables. Dy

\mathbb{C} ambrioge $\mathfrak{G r c e k}$ and Latin $\mathbb{C e r t s}$.

AESCHYLUS. Ex novissima recensione F. A. Paley, A. M. 3^{s}.

CASAR DE BELLO GALILICO. Recognovit G. Long, A. M. $2 s$.

CICERO de Senectute et de Amicitia, et Epistole Selectr. Recensuit G. Long, M. M. Is. $6 d$.
CICERONIS Orationes, Vol. I. (in Verrem). Ex recensione G. Long, A. M. $3^{s .6} 6$.
EURIPIDES. Ex recensione F.A. Paley, A.M. 3 vols. $3^{\text {s. } 6 d .}$ each.
Contents of Vol. I.-Rhesus. Medea. Iippolytus. Alcestis, Iteraclidae. Supplices. Troades. Index.
Contents of Vol. II.-Ion. Ielena. Andromache. Electra. Bacchac. Itecuba. Index.
Contents of Vol. III.-Hercules Furens. Phocnissac. Orestes. Iphigenia in Tauris. Iphigenia in Aulide. Cyclops. Index.
HERODOTUS. Recensuit J. G. Blakesley, S. 'T. I' 2 vols. 7 s.
HOMERI ILIAS I.-XII. Ex novissima recensione F. A. Paley, A. M. 2s. 6d.

HORA'TIUS. Ex recensione A. J. Macleane, A.M. 2s. 6d.
JUVENAL, ET PERSIUS. Ex recensione Λ. J. Macleane, A. M. Is. 6 d .
LUCRETIUS. Recognovit H. A. J.Munro, A.M. 2s. Gd. SALLUSTI CRISPI CATILINA ET JUGURTHA, Recognovit G. Long, A. M. Is. 6 d .
TERENTI COMOEDIAE. Gul. Wagner relegit et emendavit. 3 s.
THUCYDIDES. Recensuit J. G. Donaldson, S. T. P. 2 vols. 7 s.
VERGILIUS. Ex recensione J. Conington, A.M. $3^{\text {s. }} 6 \mathrm{~d}$. XENOPHONTIS EXPEIITTIO CYRI. Recensuit J. F. Macmichacl, A. B. 2s. Gud.

NOVUM TESTAMENTUM GRAECUM, Textus Ste-

 phanici, 1550 . Accedunt variac lectiones editionum Bezae, Eľeviri, Lachmanni, Tischendorfii, Tregellesii, curante F. II. Scrivener, A.M. Nian chition. 4s. 6d. An Edition with wide margin for notes, 7 s . 6 d .EURIPIDES. Alcestis. Sihool adition, with Notes and Introndection. liy l. A. laley, M.A., abridged from the larger edtition. Ficap. Svo.
AESCHYILS. Prometheus Vinctus. School alition, with Notes and Intronluction. Riy F. A. Paley, M.A., abridged from the larger edition. Foap. Sw.
[Prequrins.

1Public School surics.

A series of Clanical Texts, amotated by well-hnown schohar, with a special view to the refuirements of upper forms in Public School, or of U'niversity Studems.

CICERO. The Letters of Cicero to Atticus, 13k. I. With Notes, and an Essay on the Character of the Writer. I:dited ly A. Pretor, M.A., late of Trinity College, Fellow of St. Catharine's College, Cambridge. Crown Svo. 4s. 6d.
DEAOSTHLNES de Falsa Legatione. Fenth caition, carifully nerisit. By R. Shilleto, M.A., Fellow of St. Peter's College, Cambridge. Crown Svo. Gs.
-The Oration Against the Law of Ieptines. With Finglish Notes and a Translation of Wolf's P'rolegomena. By W. B. Beatson, M.A., Fellow of Pembroke College. Smail Svo. 6s.
PLATO. The Apology of Socrates and Crito, with Notes. critical and exegetical, ly Willelm Wagner, Ph. 1). Small 8vo. 45. 6 d.

- The Phaedo. With Notes, critical and exegetical, and an Analysis, ly Wilhech Wagner, I'h. I). Small Sio. 5s. 6 d.
-The Protagoras. The Greek Text revised, with an Analysis and English Notes. Liy W. Wayte, M. A., Fellow of King's College, Cambridge, and Assistant Master at Eton. Svo. Sciond adition. 45. 6d.
PL.AUTCLS. 'Trinummus. With Notes, rritical and excgetical. By Wilhelni Wagner, 1'h. 1). Small Svo. 4r. Gd.

SOPHOCLIS TRACHINIÆ. With Notes and Prolegomena. By Alfred Pretor, M.A., Fellow of St. Catherine's College, Cambridge.
[1'reparing.
TERENCE. With Notes, critical and explanatory. By Wilhelm Wagner, Ph. D. Post 8vo. 1os. 6d.
THEOCRITUS. With Short Critical and Explanatory Latin Notes. By F. A. Palcy, M. A. Second edition, corrected and cnlarged, and containing the newly discovered Idyll. Crown 8vo. 4s. $6 d$.

Others in freparation.

$\mathbb{C r i t i c a l}$ and $\mathfrak{G n n o t a t e d} \mathbb{E}$ ditions.

AETNA. Revised, emended and explained by H . A. J. Munro, M.A., Fellow of Tiinity College, Cambridge. Svo. 3s. 6d.
ARISTOPHANIS Comoediae quae supersunt cum perditarum fragmentis tertiis curis recognovit additis adnotatione critica summariis descriptione metrica onomastico lexico Hubertus A. Holden, LL. D. [IIead-Master of Ipswich School; Classical Examiner, University of London.] 8ro.
Vol. I. containing the Text expurgated with Summaries and critical notes, 18 s.
The Plays sold separately ; Acharnenses, 2s. Equites, 1s. 6 d . Nubes, 1s. 6 6 . Vespac, $2 s$. Pax, $1 s$. $6 d$. Aves, $2 s$. Lysistrata, et Thesmophoriazusae, 3 s. Ranae, $2 s$. Ecclesiazusac et Plutus, 3 s.

Vol. II. Onomasticon Aristophaneum continens indicem geographicum et historicum. 5s. 6d.
_- Pax, with an Introduction and English Notes. By F. A. Paley, M. A. Fcap. 8vo. 4s. 6d.

EURIPIDES. Fabulæ Quatuor. Scilicet, Hippolytus Coronifer, Alcestis, Iphigenia in Aulide, Iphigenia in Tauris. Ad fidem Manuscriptorum ac veterum Editionum emendavit et Annotationibus instruxit J. II. Monk, S.T.P. Editio noca. 8vo. Crown 8vo. i2s.

Scharat' y-Hippolytus Cloth, 5r. Alcestis. Sewed, 4s. 6ad.
HORACE. Quinti Horatii Flacci Opera. The text revised, with an Introduction, by II. A. J. Munro, M. A.; Fellow of Trinity College, Cambridge, Elitor of "Lucretius." Illustrated from antique gems, by C. W. King, M. A., Fellow of Trinity College, Cambridge. Large 8ro. il. is.

LINI'. 'Titi livii Historie. 'The first five liooks, with English Notec ly J. l'rendeville. Eichth clition. $12 m o$. roan, 5 s. Or liooks I. to III. 3s. Gr. IN. and V. $3^{s .}$ 6t.

LUC(RドTUS. Titi Lucreti Cari de Rerum Natura libri Sex. With a Trantation and Nutes. By 11. A. J. Munro, M.A., Fellow of Trinity College, (Cambridsc. Third citition nerised throughent. 2 vols. Svo. Vol. 1. Text, 1 os. Vis). 11. Translation, 6. Sukl separately.

OVII). I'. Ovidii Nasonis Heroides XIV. Edited, with Introductury Preface and English Notes, ly Arthur Palmer, M.A., I ellow of Trinity College, 1)uldin. I)emy Svo. ©s.
llaUTUS. Aulularia. With Notes, critical and exepetical, and an Intronluction on D'hatian l'ronoly. By Wilhelm Wagner, Ihh.D. Svo. 9s.

PROPERTIUS. Sex. Aurelii Propertii Camina. The Blegies of Propertint, with Englih Notes. liy 1: A. laley, M.A., Editur of "Ovid's Fanti," "Sclect lepgrams of Ma tial," ice. Sicombd dition. Svo cloth. 2 .

THCCYDHAES. The History of the I'cloponnesian War. With Nioter and a careful Collation of the two (Gambridge Manneripe, and of the Aldine and Juntine Fiditom. 1y. Richard Shilletw, M. A., Fellow of S. I'eter's Collese, Cambrilge. 1enk 1. Soo. Gs. Git. Dook II. in the fiess.

GREFK TES"I'AMENT'. With a Critically revised 'lext; a digent of Varions Readings ; Margimal references tw verbal and idiomatic unage; Prolegomena; and a critical and eacgetical commentary. For the we of theolegical
 Canterlury. 4 vols. Sxo. Sold seprately.
Kiol I., Sorentit E:itition, the Four Gompels. 1/. S. Vol. II.,
 and Corinthians. 1t. 4 - Vol. I11., litth Fidition, the Vipistle (1) the Galatians, F.phe rians, Mhilippians, Cohowians, 'Theesa
 Jart I., Pourth clition. The lipitle to the Hebrews: The

 and the kevelation. 1.4. Or Lid. N', in one Vol. 32 .

A l.ATIN GRAMMAR. By T. Hewitt Key, M. A., F. R. S., Professor of Comparative Grammar, and IIead Master of the Junior School, in University College. Sixth Thousund, zuith nuw corvections and additions. P'ost Svo. 8s.

Latin and Ereck Class $2 \mathfrak{b o o k s}$.

CHURCH (A. J.) Latin Prose Lessons. By Alfred J. Church, M. A., Ilead Master of the Grammar School, Retford. A netu clition. Fcap: Svo. 2s. 6d.
1)AVIS and BADDELEY. Scala Greca: a Series of Elementary Greck Exercises. By the Kev. J. W. Davis, M. A., Ilead Master of Tamworth Grammar School, and R. W. Baddeley, M. A. Secoud cdition. Fcap. Svo. cloth. 2s. 6d.
FROST (P.) Eclogæ Latinæ: or First Latin Reading look, with English Notes and a Dictionary. liy the Rev. I'. Fro:t, M. A., St. John's College, Cambridge. Nizo edition. Fiap. Svo. 2s. 6d.

- Materials for Latin Prose Composition. Nezo clition. Fcap. Svo. 2s. 6d.

Key. 4 s.

- A Latin Verse Book. An Introductory Work on 1 Iexameters and Pentameters. Fcap. Svo. 3s. Nizo citition, ravised and cnlarged.

Key. 5^{5}.

- Analecta Greca Minora, with Introductory Sentences, English Notes, and a Dictionary. Nizo citition, verisisd and chlargscd. Fcap. Svo. 3r. 6d.

Materials for Greek Prose Composition. Constructed on the same plan as the " Materials for Latin Prose Composition." Fcap. Svo. $3^{s .6 \pi}$.

Key. 5s.

GRETTON (F. E.) A First Cheque Book for Latin Verse Makers. lyy the Rev. F. E. Gretton, Head Master of Stamford Free Grammar School, sometime Fellow of St. John's College, Cambridge. is. Gad.
—— A Latin Version for Masters. $2 s .6 d$.
Reddenda ; or Passages with Parallel Hints for Thamslation into Lakin Prose and Veroc. Crown Svo. 4r. 6d.
 from Engli lı P'oetry with a Latin Verse Translation. Crown Svo. $6 s$.

HOLIEEN (II. A.) Foliorum Silvula. Part I. Being lawsere for Tranlation into Latin Elegiac and Hervic Verse, edited loy Hubert A. Hollen, IL..1)., late Fellow of Trinity: Conllege, Ilead Mater of Queen D:lizaleth's School, Ipswich. Sixth clitition. Y'ost Sxo. 7rad.

- Foliorum Silvula. Part II. Being Select Passages for Tranlation into Latin 1 yric and Comic Iambic Verse. liy Hubert A. Itoklen, L.L., I). Thivid ádition. P'ost Svo. 5 s.
- Foliorum Silvula. Part III. Being Select Passages for Trandation into Greck Veree, elited with Notes ly Huber A. Holden, L.L. I). Thidid clition. P'ost Svo. Ss.

Folia Silvula, sive Eclogre Poctarum Anglicorum in Latinum et Grecum converne quas disponii Hubertus A. Holden, l.f..1). Volumen Prime continens Fanciculos I. 11. Svo fos. Gid. Volumen Alterum continens lanciculos III. IV. Svo. 12 s.

- Foliorum (Centurix. Sclections for 'Translation int, Latin and (sicel Prowe, chicfly from the University and Conlege Famination Paper- liy Itubert A. Holden, LI., I). Fitth chlition. I'ost Swo. S.

KEY (T' H.) A Short Jatin (irammar, for schools. By T. H. Key, M. I, F.S.A., P'ofewor of (omparatise Giammar in Linivesity Conlege, Lomblom, and Head Mater of the school. Sighth aitition. Pout Swo 3r. Gid.
M.ACLEANE (A. J.) Sclections from Ovid: Amores, Tritia, Heroides, Metamophoses. Winh Englihh Notes, hy the Rev. A. I. Macleane, M. A. Nocte ctitione. Fcap. Is. get.
MASON (C. P.) Amalytical Iatin Wexcises; Aecidence and Simple Sentences, Compmition and Detivation of Worls and Compround sentences. liy (․ P. Masin, B.A., Fellow of L'niverity College, Landm. Pont Swo jr. 6ut.

PRES'ON ((i.) (Sreck V'erse Composition, for the use of Public schooh and l'riwate stuldents licing a revied
 Preton, M.A., Fellow of Maglatenc follege (rown Sio. 4. $6, \%$.

$\mathbb{C l a s s i c a l} \mathbb{C}$ ables.

GREEK VERBS. A Catalogue of Verbs, Irregular and Defective ; their leading formations, tenses in use, and dialectic inflexions, with a copions Appendix, containing Paradigms for conjugation, Rules for formation of tenses, \&ic. \&c. By J. S. Baird, T. C. D. Nicu cdition, rerisct. 2s. 6d.
GREEK ACCENTS (Notes on). On Card, $6 d$.
HOMERIC DIALECT. Its Leading Forms and Peculiarities. By J. S. Baird, T.C. D. 1s. 6 ll .
GREEK ACCIDENCE. By the Rev. P. Frost, M.A. is.
LATIN ACCIDENCE. By the Rev. P. Frost, M.A. is.
LATIN VERSIFICATION. is.
NOTABILIA QUADAM : or the Principal Tenses of most of the Irregular Greek Verbs and Elementary (Greek, Latin, and French Constructions. Neizi cdition. is. 6 d.
RICHMOND RULES TO FORM THE OVIDIAN DISTICH, \&c. By J. Tate, M. A. Nizi" calition. Is. 6 d.
THE PRINCIPLES OF LATIN SYNTAX. is.

Translations, Selections, and Jllus: trated \mathbb{E} ditions.

** Many of the following books are well adapted for school prizes. See also pages $87-90$.

AESCHYIUS. Translated into English Prose, by F.... Paley, M. A., Editor of the Greek Text. Scoond cdition, retisca. 8vo. 7s. 6d.

Translated by Anna Swanwick. With Introductions and Notes. Nizu clition. Crown Sro. 2 vols. $12 s$.

Folio Edition with 'Thirty-three Illustrations from Flaxman's designs. Price $\mathscr{E}_{2} 2.5$.
ANTHOLOGIA GRACA. A Sclection of Choice Greek loetry, with Notes. By Rev. F. St. John Thackeray, Assistant Master, Eton College. Nizi cuition, corrected. Fcap. 8vo. 7s. 6d.
ANTHOLOGIA IATINA. A Selection of Choice Latin Foetry, from Nevius to Boethius, with Notes. By Rev. F. St. John Thackeray, Asisistant Master, Eton College. Niw cidition, wharsed. Fcap. Soo. 6. Gd.

ARISTOPHANES, The Peace. The Greck text, and a metrical transhation on opporite pages, with notes and introduction, de. By Benj. Bichley Rogers, M.A., late fellow of Watham College, Oxford. l'eap. fio. 7s. 6d.

- The Wasps. Text and metrical translation, with notes and introfluction. By Benj. B. Kogers, M... Fcap. Swo. 75. $6 . \%$
[In the Press.
CORIUS P(OETARUM L.ITINORUM. Edited by Walker. I thick wol. Swo (${ }^{\text {Wothe, iss. }}$

Containing: - Chtrifos, Licretios, Virghiles, Tibithats, Probertiss, Oyhmis, Hobathes, Phamert's, I.icintes, lersils, Jutexalis, Martialis, S'ipicia, Shatus, Shats Itmacts, Vaberios Fhacces, Cabrornios swotis, Ausoxits and Ctathonis.
HOR.ICE. The Odes and Carmen Saculare. Translated inte English Verse by the late John Conington, M. A., Compus l'roferon of Latin in the L'niversity of Oxforl. Fïfth c:ïturn. lecap. Svo. 5s. 6,
——The Satires and Epistles. Translated in English Vैerse by John Conington, M. A. Third atition. Gr. Gd.
Illustrated from Antique (iems by C. W. King, M. A., Fellow of Trinity college, Cambridge. The text revied with an Introxluction hy H. A. J. Munro, M. A., Fellow of Trinity College, Cambridge, Editor of Lucretin:Large Svo. fils.
MV'SH ETONENSES sive Carminom Ftone Condibonm Delectrs. Series Nova, Tomos Dros complectens. E.didit Kicardw, Okes, S. I'. S. Coll. Regal. apwd Cantabnigienses I'reposites. Sso. 15 s.

Vol. II., to complete sets, may le had separately, price 5 s.
PROPER'TIUS. Verse translations from Book V. with a revised Latin Text and brief English notes. liy F. A. Paley, M. A. Fcap. Swo. 3 S.

PLATO. Gorgias, literally translated, with an Introductory Fosay containing a summary of the argument. By the late E: M. Cope, M. A., Fellow of Trinity College. Svo. 7 s.
Philcbus. 'Translated with short Explanatory Notes ly F. A. lakey, M. A. Small Swo. $4^{\text {s. }}$
Theactetus. 'Translated with an Introduction on the nhlject-matter, and short explanatory notes. By F. A. P'aley, M.A. small Sto. 4 .

PLATO. An Analysis and Index of the Dialogues. With References to the Translation in Boln's Classical Library. By Dr. Day. Post Svo. 5s.
REDDENDA REIDITTA ; or, Passages from English Poetry with a Latin Verse Translation. By F. E. Gretton, IIead Master of Stamforl Free Grammar School. Cruwn Svo, $6 s$.
SABRINÆ COROLLA in hortulis Regiae Scholae Salopiensis contexuerunt tres viri floribus legendis. Editio tertia. 8vo. 8s. 6d.
SERTUM CARTHUSIANUM Floribus trium Seculorum Contextum. Cura Gulielmi Haig Brown, Scholx Carthusiane Archididascali. Sro. 14 s.
THEOCRITUS. Translated into English Verse by C. S. Calverley, M. A., late Fellow of Christ's College, Cambridge. Crown Sxo. 7s. 6ad.
TRANSLATIONS into English and Latin. By C. S. Calverley, M. A., late Fellow of Christ's College, Cambridge. Post 8vo. 7s. 6 d .
—— Into Greek and Latin Verse. By R. C. Jebb, Fellow of Trinity College and Public Orator in the Unisersity of Cambridge. 4to. cloth gilt. IOs. 6 d.
VIRGIL in English Rhythm. With Illustrations from the British Poets, from Chaucer to Cowper. By the Rev. Robert Corbet Singleton, first Warden of S. Peter's College, Radley. A manual for master and scholar. Sicond dation, re-rivitten and conlargoul. Large crown 8ro. 7s. 6d.

A HISTORY OF ROMAN LITERATURE. By W.S. Teuffel, Professor at the University of Tuilingen. Translated, with the Author's sanction, by Wiilhelm Wagner, Ph. D., of the Johanneum, ILamburg. Two vols. Deny 8vo. 2is.
" Professor Teuffel skilfully groups the varions departments of Roman literature according to periods and according to subjects, and he well brings out the leading characteristics of each." -Saturday Recicio.
THE THEATRE OF THE GREEKS. A Treatise on The IIistory and Exhibition of the Greek Drama, with a Supplementary Treatise on the Language, Metres, and P'rosody of the (ireck Dramatists, by John William Donaldson, D.I)., formerly Fellow of Trinity College, Cambridge. With numerous Illustrations from the best ancient authorities. Eizith calition. P'ost Sio. 5 s.

Mathematical and OTHER CLASS BOOKS.

Cambrioge gebool and College ©ert 2b00ks.

I Series of Elementary Treatises adapted for the we of students in the L'niversities, Schools, and candidates for the P'ublic Examinations. I'niformly printed in Foolscap Svo.

ARITHMETIC, By Rev. C. Elsee, M. A., hate Fellow of St. Jolun's College, Cambridge; Anitant Mater at Rughy. Intended for the use of Rughy school. Feap. Swo. Fijth calition. 3 s. 6 k .
ELEMENTS OF ALCEBRA. By the Rer. C. Flsee, M. . . Staond catition, conlarsot. 4 s.

ARITHMETIC. For the Use of Colleges and Schorils. liy A. Wrigley, M. A. 3c. 6\%.
AN INTRODUC'TION TO PLANE AS"TRONOMY' For the U'se of Colleges and schools. By P. T. Main, M. A., Fellow of st. John's College. Sicond chition. $4^{\text {s. }}$
ELEMENTARY CONIC SECTIONS treated (eometrically. By II. II. Besant, M. A., Lecturer and late leclow of St. John's College. 4s. 6a.
ILLALSNTARY STATICS. By the Rev. Harvey Coodwin, I. I., Bishop of Carlisle. Nicu cation, reaisal. 3 •.
ELEMENTARY DYNAMICS. By the Rev. Harsey

ELEMENTARY HYOROSTATICS. By W. H. Besant, M. A., late Fecllow of St. John's College. Sixth cititions. as.

AN ELEMENTARY TREATISE ON MENSURA. TloN. By B. T. Moore, M. A., Fellow of P'mbroke College. With numerous Fxamples. 5.

THE FIRST THREE SECTIONS OF NEWTON'S PRINCIPIA, with an Appendix ; and the Ninth and Elevents sections. ly John II. Evans, M.A. The liffh Edition, edited by I', T. Main, M. A. 4 .

ELEMENTARY TRIGONOMETRY. With a Collection of Examples. ly 'T. I'. Iludson, M. A., Fellow of Trinity College. 3s. 6d.
GEOMETRICAL OPTICS. By IV. S. Aldis, M. A., Trinity College. 3 s. $6 d$.
COMPANION TO THE GREEK TESTAMENT. Designed for the Use of Theological Students and the Upper Forms in Schools. By A. C. Barrett, A. M., Caius College. Third chition, reaised and collurged. Fcap. Svo. 5s.
A.N HISTORICAL AND FXPLANATORY TREATISE ON THE BOOK OF COMMON PRAYER. By W. (.) 1 lumphry, B. 1). Fijfth chition reaised. Feap. Svo. 4. Gd.

MUSIC. By II. C. Banister, Professor of Harmony and Composition at the Royal Academy of Music. Third chition, raisul. 5 s.

Others in Prataration.

Gritbmetic and Glgcota.

HINI) (J.) Principles and Practice of Arithmetic. Comprising the Nature and Use of Logarithms, with the Computations employed ly Artificers, Ciangers, and Land Surveyms. Designed for the Use of Student., hy J. Ifind, M. A., formerly Fellow and Tutor of Sidncy Sussex College. Ainth calition, with (unestions. 4. 6 6
A Second Appendix of Miseellaneons Questions (many of which have been taken from the Examination l'apers given in the University during the last few years) has been added to the present edition of this work, which the Author considers will conduce greatly to its practical utility, especially for those who are intended for mercantile pursuits.
** Key, with Questions for Examination. Second cdition. 5s.
—— Elements of Algebra. Designed for the Use of Students in Schools and in the L'niversities. By J. Hind, M.A. Sixth cdition, revised. 540 pp. Sro. ros. Gut.

WATSON (J.) A Progressive Course of Examples in Arithmetic. With Answers. By James Watson, M. A., of Corpus Christi College, Cambridge, and formerly Senior Mathematical Master of the Ordnance School, Carshalton. Secomed adition, reaised and correctad. Fcap. Svo. 2.s. 6d.

Seometry and שuclio.

ALIIIS (T. S.) Text Book of Gcometry. By T. S. Aldis, M. A., Trinity College, Cambridge. Small Svo. 4. 6 d . P'art I.-Angles - Parallels-Triangles-Equivalent Figures--Circles. 2s.6.\%. Part II. Proportion. Fust fublishet. 2s. Sold separately.
The olject of the work is to present the subject simply and concisely, leaving illustration and explanation to the teacher, whowe freedom text-books too often hamper. Without a teacher, howeser, this work will possibly be found no harder to master than others.
As far as practicable, exercises, largely numerical, are given on the different Theorems, that the pupil may learn at once the value and use of what he studies.

Hypothetical constructions are throughout employed. Important Theorems are proved in more than one way, le the pupil rest in words rather than things. I'roblems are regarded chichly as exercises on the theorems.
Short Appentices are added on the Analysis of Reasoning and the Application of Arithmetic and Algelora to Geometry.
EUCLII). The Elements of Euclid. A new Text based on that of Simson, with Exercises. Edited by H. J. Hose, formerly Mathematical Master of Westminster School. Fcap. Svo. 45. 6d. Exercises separately, is.

Contents:-books I.-VI.; XI. i-21; XII. i, 2.

- 'The Elements of Euclid. The First Six Books, with a Commentary liy Dr. Larducr. Tinth clition. 8vo. 6s.
——The First Two Books Explained to leginners ; by C. P. Mason, B.A. .Sccond cdition. Fcap. 8vo. 2s. 6d.

The Enunciations and Figures belonging to the l'ropositions in the First Six and part of the Flecenth Books of Fuclid's E:tements (usually read in the Universitics), prepared for Students in Geometry. By the Rev. J. Brasse, D. D. Neiu elition. Ficap. 8vo. Is. On cards, in case, 5s. 6it.

Without the Figures, 6d.
McDOWELL (J.) Exercises on Euclid and in Modern Geometry, containing Λ_{P} plications of the P'rinciples and Processes of Modern P'ure (Geometry. By J. McDowell, B. A., 1'embroke College. Crown 8vo. 8s. 6 d.
BESANT (W. H.) Elementary Geometrical Conic Sections. liy W. II. Beesant, M.A. 4r. 6. ${ }^{\text {d }}$.

TAYLOR (C.) The Geometry of Conics. Sccond clition revised and enlarged. By C. Taylor, M.A., Fellow of St. John's College. Sro. 4s. Gd.
l'ages So to 112 to complete the First alition may be had separately, price $1 s$.
GASKIN (T.) Solutions of the Gcometrical Problems, consisting chiefly of Examples, proposed at St. John's College. from 1830 to $\mathbf{1 8 4 6}$. With an Appendix on the General Equation of the Second Degree. ly T. Gaskin, M. A. Svo. I2s.

Crigonometty.

ALDOUS (J. C. P.) The Shrewsbury Trigonometry. A Step to the Study of a more complete treatise. liy J. C. P'. Aldons, Jesus College, Cambridge, Senior Mathematical Master of Slirewsbury School. $2 s$.
HUDSON (T. P.) Elementary Trigonometry. With a Collection of Examples. By T. P. IIudson, M. A., Fellow and Assistant Tutor of Trinity College. 3s. 6d.
HIND (J.) Elements of Plane and Spherical Trigonometry. With the Nature and Propertics of Logarithms and Construction and Use of Mathematical Tables. Designed for the use of Students in the University. By J. Inind, M.A. Fifth clition. 12mo. 6s.
MOORE (B. T.) An Elementary Treatise on Mensuration. By B. T. Moore, M. A., Fellow of Pembroke College. With numerous Examples. 5 .

Gnalytical $\mathfrak{G c o m e t r y}$ and ©ifferential \mathfrak{C} alculus.

TURNBULL (IV. P.) An Introduction to Analytical Plane Geometry. By W. P. Turnbull, M.A. Fellow of Trinity College. Bvo. I2s.
O'JRIEN (M.) Treatise on Plane Co-ordinate Geometry. Or the Application of the method of Co-ordinates to the solutions of problems in I'lane Geometry. I'y M. O'Brien, M.A. Svo. gs.

VYVYAN ('T. G.) Elementary Analytical Geometry for Schools and Beginners. By T. (i. Vyvyan, Fellow of (ionville and Caius College, and Mathematical Master of Charterhonse. Sicend citition, reatisch. Crown Swo 7s. 6d.

WALTON (W.) Problems in illustration of the Principles of Plane Co-ordinate Geometry. By W. Walton, M.A. Svo. IGs. WHI'TWOR'TH (W. A.) 'Trilinear Co-ordinates, and other methods of Modern Analytical Geometry of 'Two Inmembions. An Elementary Treatise. liy W. Allen Whitwroth, M. A., Profensor of Mathematies in (Dueen's College, Liverpool, and late Scholar of St. John's College, Cambidge. Svo. Ibs.
ALI)S. (W. S.) An Elementary Treatise on Solid (ieometry. Ricised. Dy W. S. Aldis, M.A. Second dition, reisal. Svo. Ss.
GRE(;ORY (I). F.) A 'Ireatise on the Application of Analysis to solid Geometry: By I). F. Gregory, M. A., and W. Walton, M. A. Sciond cilition. Svo. 12s.

PEIL, (M. B.) (icometrical Illustrations of the Differential Calculus. By M. B. I'ell. Svo. 2s. 6.t.
()DRIEN (M.) Elementary 'Treatise on the Differential Calculus, in which the method of Limits is exclusively matle use of. By M. O'brien, M. A. Sro. Ios. 6d.
BESAN'T (W. II.) Notes on Roulettes and (ilissettes. liy WV. II. lesant, M. A. Sro. 3s. 6\%

Mecthanics and תatutal lphilosopby.

GARNSHAW (S.) Treatise on Statics: Containing the Theory of the Eypuilibrium of Forces, and munerons Examples illustative of the General l'rinciples of the Science. By S. Eamshaw, M.A. Fourth ciltion. Svo. ios. ot. WHELVEI,I, (DR.) Mechanical Euclid. Containing the l:lements of Mechanics and Hydrontatics. liy the late W. Whewell, I). I. Iijth citition. 5^{s}.
FENWICK (S.) 'The Mechanics of Construction; including the Theories of the Strength of Materials, Koofs. Arches, and Suspension bridges. With numerous Example. By Stephen Fenwick, F.K. A.S., of the Koyal Military Academy, Woolwich. Svo. 12 s.
(i.\KNE゙l"' (W.) A 'lreatise on Elementary I)ynamics for the we of Colleges and Lchools. Liy William (iarnetl, B. A. (late Whitworth Scholar), Fellow of St. John's College, and Demonstrator of I'hysics in the C'niverity of Cambridge. Crown Svo. 6s.
GOODIVIN (Bp.) Elementary Statics. By II. (Goodwin, D. D., Bp. of Carlisle. Fcap. Svo. Niat cidition. 3s. cloth.

COODWIN (Br.) Elementary Dynamics. By H. Goodwin, DD., Bishop of Carlisle. Fcap. 8vo. sccond editition. 3s. cloth. WALTON (W.) Elementary Problemis in Statics and Dynamics. Designcd for Candidates for IIonours, first three days. By W. Walton, M. A. Svo. ros. 6d.
POTTER (R.) An Elementary Treatise on Mechanics. For the use of Junior University Students. By Richard Potter, A. M., F. C. P. S., late Fellow of Queens' College, Cambridge. Professor of Natural Philosophy and Astronomy in University College, London. Fourth cdition, revised. 8s. Gd. Elementary Hydrostatics Adapted for both Junior University readers and Students of Practical Engineering. By R. Potter, M. A. 7s. 6d.

BESANT (W. H.) Elementary Hydrostatics. By W. II. Besant, M. A., late Fellow of St. John's College. Fcap. 8vo. Sixth edition. 4s.
-- A Treatise on Hydromechanics. By W. H. Besant, M. A. Svo. Neczedition in the press.

GRIFFIN (W. N.) Solutions of Examples on the Dynamics of a Rigid Body. By W. N. Griffin, M. A. Svo. 6s. 6id. LUNN (J. R.) Of Motion. An Elementary Treatise. By J. R. Lumn, M.A., late Fellow of St. Joln's, Camb. 8vo. 7s. 6d. BESANT (W. H.) A Treatise on the Dynamics of a Particle. Preparing.
ALDIS (W. S.) Geometrical Optics. By W. S. Aldis, M.A., Trinity College, Cambridge. Fcap. Svo. 3s. 6 d .

- A Chapter on Fresnel's Theory of Double Refraction. By W. S. Aldis, M.A. Svo. $2 s$.
POTTER (R.) An Elementary Treatise on Optics. Part I. Containing all the requisite Propositions carried to first Approximations ; with the construction of optical instruments. For the use of Junior University Students. By Richard Potter, A. M., F.C. P. S., late Fellow of Quecns' College, Cambridge. Third edition, revised. 9s. 6d.
An Elementary Treatise on Optics. Part II. Containing the higher Propositions with their application to the more perfect forms of Instruments. Py Richard Potter, A. M., F. C. P. S. $12 s .6 d$.

Physical Optics ; or, the Nature and Properties of Light. A Deseriptive and Experimental Treatise. Dy Richard Potter, A. M., F. C.P. S. 6s. 6d.

POT"TER (R.) Physical Optics. Part II. The Corpuscular Theory of Light discussed Mathematically. By Richard l'olter, M. A. 7s. 6d.
HOPKINS (W. B.) Figures Illustrative of (ieometrical Optics. From Schellach. By W. B. Hopkins, B. D. Finlio. l'lates. ios. 6 d.
MAIN (P. 'T.) The First 'Three Sections of Newton's Principia, with an Appendix; and the Ninth and Eleventh Sections. By John II. Livans, M. A. The lïith alition, celited by I'. 'T. Main, M. A. $4^{\text {s. }}$
-- An Introduction to Plane Astronomy. For the use of Colleges and Schools. By I'. T. Main, M. A., Fellow of St. John's Collcge. Fcap. Svo. cloth, 4 s.
MAIN (R.) Practical and Spherical Astronomy. For the L'se chicfly of Students in the Universities. By R. Main, M.A., F.R.S., Radeliffe Observer at Oxford. 8vo. 14 s.
—— Brünnow's Spherical Astronomy. Part I. Including the Chapters on l'arallax, Refraction, Aberration, 'recession, and Nutation. Translatel by R. Main, M. A., F. K. S., Kadeliffe Observer at Osford. Svo. 8s. 6dt.
(:OODNIN (Br.) Elementary Chapters on Astromomy, from the "Astronomic Physique" of Biot. By 1farvey Gordwin, 1). 1), Bishop of Carlisle. Svo. 3s. 6 d.

- - Elementary Course of Mathematics. Designed principally for Students of the L'niversity of Cambridge By Harvey (iondwin, 1).1., Lord Bihhop of Carlisle. Siath chition, revisel and enlarged by 1'. T. Main, M. A., Fellow of St. John's College, Cambridge. Svo. IGs.
Problems and Examples, adapted to the "Elementary Course of Mathematics." By Harvey Goolwin, 1).1). With an Appendix, containing the (enestions proposed during the first three days of the Senate-Ilonse Examination, hy T. G. Vyvyan, M. A. Third ditition. Swo. 5.f.
--Solutions of Goodwin's Collection of Problems and Examples, By W. W. Hutt, M. A., Late Fellow of Comville and Caius College. Third cdition, raissel and conlursed. By T. (.) \yyyan, M. A. 8vo. 9s.
SMAILEEY (G. R.) A Compendium of Facts and Formuln in P'ure Mathematics and Natural Mohosophy. liy (i. K.

TAYLOR (JOHN). A Collection of Elementary Examples in Pure Mathematics, arranged in Examination Papers ; for the use of Students for the Military and Civil Service Examinations. By John Taylor, late Military Tutor, Woolwich Common. Svo. 7:. 6d.
FILIPOWSKI (H. E.) A Table of Anti-Logarithms. Containing, to seven places of decimals, natural numbers answering to all logarithms from 0000 to $\cdot 99999$, and an improved table of Gauss' Logarithms, by which may be found the Logarithm of the sum or difference of two quantities. With Λ_{p} pendix, containing a Table of Annuities for 3 joint lives at 3 per cent. ly II. E. Filipowski. Third ediliton. Svo. 15 s.
BYRNE (O.) A system of Arithmetical and Mathematical Calculations, in which a new basis of notation is employed, and many processes, such as involution and evolution, become much simplified. Invented by Oliver Byrnc.
—— Dual Arithmetic ; or, the Calculus of Concrete Quantities, Known and Unknown, Exponential and Transcendental, including Angular Magnitudes. With Analysis. Part I. 8vo. I4s.

In it will be found a method of obtaining the logarithm of any number in a few minutes by direct calculation; a method of solving equations, which involve exponential, logarithmic and circular functions, ©c. \&c.
—— Dual Arithmetic. Part II. The Descending Branch, completing the Scicnce, and containing the Theory of the Application of both Branches. Svo. Ios. 6 d .

- - I)ual Tables (Ascending and Descending Branches). Comprising Dual Numbers, Dual Logarithms, and Common Numbers; Tables of Trigonometrical Values, Angular Magnitudes, and Functions, with their 1)ual Logarithms. 4to. 2is.
ELLIS (Ifslife). The Mathematical and other Writings of Robert Leslie Ellis, M. A., late Fellow of Trinity College, Cambridge. Edited by William Walton, M. A., Trinity College, with a Biographical Memoir by LIarvey Goodwin, D. D., Bishop of Carlisle. Svo. I6s.
CHALLIS (Prof.) Notes on the Principles of Pure a id $\Lambda_{1 p l}$ plicd Calculation, and A pplications to the Theories of Physical Forces. By Rev. J. Challis, M.A., F. R.S., \&ic., Plumian Professor of Astronomy, Cambridge. Demy 8vo. 15 s.
The Mathematical Principle of Physics. An Fssay. By the Kev. James Challis, M.A., F.R.S. Demy Sro. 5s.

MISCELIANEOUS EDUCATIONAL WORKS.

Distory, © Copograpby, ※c.

BURN (R.) Rome and the Campagna. An Historical and Topographical Description of the Site, Buildings, and Neighbourhood of Ancient Rome. By Rolbert Burn, M. A., late Fellow and Tutor of Trinity College, Cambridge. With Eighty five fine Engravings by Jewitt, and Twenty-five Maps and I'lans. Ilandsomely bound in cloth. 4to. 3t. 3s.
IDYER (T. H.) The History of the Kings of Rome. I'y I)r. T. II. Dyer, Author of the "IIistory of the City of Kome;" "'lompeii: its Ifistory, Antiquities," \&c., with a I'refatory Dissertation on the Sources and Evidence of Early Koman Ilistory. Svo. $16 s$.
" It will mark, or help to mark, an era in the history of the subject to which it is devoted. It is one of the most decided as well as one of the ablest results of the reaction which is now in progress against the influence of Niebuhr."- Pall Mall Gazetli:

- A Plea for livy, throwing a new light on some passages of the first Book, and rectifying the German doctrine of the imprerative moorl. Svo. Is.
- Roma Regalis, or the Newest Phase of an Old Stury. Sxo. 2s. Gd.

An examination of the views and arguments respecting Regal Rome, put forth by Professor Secley in a recent edition of "Livy," BorkI.

- The History of Iompeii; its laildings and Antiquities. An accomet of the city, with a full description of the remains and the recent excavations, and also an Itinerary for visitors. Edited by T. II. I)yer, I.I.. I). Illustrated with nearly Three Itundred Woorl Engravings, a large Map, and a
 2 voli. poot Swo.
[/w the press.
——Ancient Athens: Its History, Topography, and Remain. Ly Thomas Henry I yer, LL. I)., Author of "The Ilitory of the Kings of Rome." Super-royal Svo. cloth, il. 5s.

This work gives the result of the excavations to the present time, and of a recent careful examination of the localities by the Author. It is illustrated with plans, and wook engravings taken from photographa.

LONG (G.) The Decline of the Roman Republic. 8vo.
Vol. I. From the Destruction of Carthage to the End of the Jugurthine War. 14 s .

Vol. II. To the Death of Sertorius. I4s.
Vol. III. Including the third Mithridatic War, the Catiline Conspiracy, and the Consulship of C. Julius Cæsar. 14 s.

Vol. IV. History of Cæsar's Gallic Campaigns and of the contemporancous events in Rome. 145 .

Vol. V. Concluding the work. 14 s .
"If any one can guide us through the almost inextricable mazes of this labyrinth, it is he. As a chronicler, he possesses all the requisite knowledge, and what is nearly, if not quite as important, the necessary caution. He never attempts to explain that which is hopelessly corrupt or obscure : he does not confound twilight with daylight ; he warns the reader repeatedly that he is standing on shaking ground; he has no framework of theory into which he presses his facts."-Saturday hiczizio.

PEARSON (C. H.) A History of England during the Early and Middle Ages. By C. II. Pearson, M. A., Fellow of Oricl College, Oxford, and Lecturer in History at Trinity College, Cambridge. Seco:d celition, revised and enlarged. 8 vo. Vol. I. to the Death of Ccur de Lion. I6s. Vol. II. to the Death of Edward I. Ifs.
—— Historical Maps of England. By C. H. Pearson. Folio. Second calition, reaised. 31s. 6d.

An Atlas containing Fise Maps of England at different periods during the Early and Middle Ages.
BOWES (A.) A Practical Synopsis of English History ; or, A General Summary of Dates and Events for the use of Schools, Families, and Candidates for Public Examinations. Hy Arthur Bowes. Fourth cdition. 8vo. $2 s$.

BEALE (I).) Student's Text-Book of English and Gencral IHistory, from i. c. 100 to the Present Time, with Genealogical and Literary Tables, and Sketch of the English Constitution. By D. Beale. Crown Sro. 2s. 6d.

STRICKLAND (AGNES). The Lives of the Queens of England ; from the Norman Conquest to the Reign of Queen Anne. By Agnes Strickland. Abridged by the Author for the use of Schools and Families. Post Sro. Cloth. Gr. Got.

HUGiHES (A. W.) Outlines of Indian History: comprising the Hindu, Mahomedan, and Christian Periods (down to the Revignation of Sir J. Lawrence). With Maps, Statistical Appendices, and numerons Examination Questions. Adapted specially for Schools and students. By A. W. Hughes, Lom. Uncor: Civil Service, and Gray's Imn. Small post Sro. $3^{s .6 \%}$.
HELPS (SIR A.) The life of Hernando Cortez, and the Conquest of Mevico. Dedicated to Thomas Carlyle. 2 vols. crown Svo. I5s.
'The Life of Christopher Columbus, the Discoverer of America. Fiouth adition. Crown Sso. Gr.
The Life of Pizarro. With Some Aecount of his Asoceiates in the Conguest of Perw. Sirintatition. Cr. Svo. Gs.
—— The Life of Las Casas, the Apostle of the Indies. Thivid dition. (rown Svo. Gs.
TVTLER (PROF:) The Elements of (ieneral History. lice calition. Revised and bronght down to the present time. small post Swo. $3^{s .}$ Gad.
ATIASES. An Athas of Classical (ieography ; Twentyfour Maps by W. Hughes and (ieurge Lomg, M.A. Aizu alition, with coloured untlines. Imperial Soo. I2s. Gd.

This Allas has been constructed from the best authorities by Mr. W. Hughes, muler the careful supervinion of Mr. Lomes. The publibers believe that by this combination they have secured the most correct Atlas of Ancient deography that has yet been proxluced.
—— 1 (irammar School Athas of Classical (iengraphy. Containing Ten Mapes selected from the above. Imperial Svo. .ian crition. 5:

Conaters :-The l'rowinces of the Roman Empire. Gallia. Italia. (iraceia (including Epirts and Thessalia, with patt of Macelonia). The ('onsts and Islands of the Aegaean Sea. A wia Minor, and the Nothem part of Syria. I'alacetina, with part of Syria, Anyria, and the Adjacent Comtries. Sicilia; and a I'lan of Kome.

First Classical Maps. By the Rev. J. 'late, M.A. Third aition. Imperial Sso. 7s. 6d.
——Standard Library Athas of Classical (icography:
 tis. With a complete Index (accentuated), gising the latitudr and longitude of every place named in the Maps. Imperial Sow. 7. 6\%

lPbilology.

R^{\prime}ICHARIDSON (Dr.) New I)ictionary of the English Language. Combining Explanation with Etymology, and copiously illustrated by Quotations from the best Authorities. Now clition, with a Supplement containing additional words and further Illustrations. The Words, with those of the same family, are traced to their origin. The Explanations are deduced from the primitive meaning through the various usages. The Quotations are arranged chronologically, from the earliest period to the present time. In 2 vols. 4 to. $£ 4$ 145. 6 dl ; ; half-bound in russia, $£ 515 \mathrm{~s} .6 \mathrm{~d}$. ; in russia, $£^{6}$ 12s. The Supplement separately, 4to. I2s.

An 8vo. Edition, without the Quotations, 15 s. ; half-russin, 20.s. ; russia, 24 s.

ADAMS (Dr.) The Elements of the English Language. By Ernest Adams, l'h. I). Thirtconth adition. Pont Svo. 4i: 6d. KEY (Prof.) Philological Essays. By T. Hewitt Key, Professor of Comparative Grammar in University College, London. Svo. ros. 6 d.

- Language, its Origin and Development. By 'T. - IIewitt Key, I'rofessor of Comparative Grammar in University College. Sro. 14 s.

This work is founded on the Course of Lectures on Comparative Grammar delivered during the last twenty years in I'niversity College. The evidence being drawn chiefly from two of the most familiar members of the Indo-European family, Latin and Greek, especially the former, as that to which the writer's hours of study, for half a century, have been almost wholly devoted.
DONALDSON (J. W.) Varronianus. A Critical and Historical Introduction to the Ethnography of Ancient Italy and to the Philological Study of the Latin Language. Thivid colition, rezised and considerally conlarged. By J. W. 1)onaldson, 1). I). Sro. 16 s.
SMITH (Archdn.) Synonyms and Antonyms of the Engli.sl Language. Collected and Contrasted by the Ven. C. J. Smith, M. A. Second edition. l'ost Svo. 5s.

- Synonyms Discriminated. Showing the accurate signification of words of similar meaning. liy the Ven. (. J. Smith. Demy 8vo. I 6 s.
PHILLIPS (I)r.) A Syriac (irammar. By (i. Phillips, 1). I., President of Queens' College. Third cdition, raiseld and collarged. Sro. 7s. 6d.

BEAMONT (IW. J.) A Concise (irammar of the Arabic Language. By the Rev. W. J. Beamont, M. A. Revised ly Sheikh Ali Nady el Barrany, one of the Sheil:s of the EL Azhar Marmue in Cairo. 12mo. 7s.
WEBSTER. A Dictionary of the English language. By Dr. Welmer. Re-edited by N. Borter and C. A. Gocdrich. The Etymological portion leing by Ir. C. F. Mahn, of Berlin. With Appendix and Illutrations complete in one volume. Cilis. 6ad.

Besides the meaning and derivation of all words in ordinary use, this volume will be found to contain in greater fulness than any other Dictionary of the English Language hitherto published, scientific and technical terms, accompanied in many instances by explanatory woodeuts and an appendix giving supplementary list., explanations, and 70 pages of claborate diagrams and illustrations. In its mabridged form as above, it supplies at a moderate price as complete a literary and scientific reference book as could be obtained in the compass of a single volume.
"For the student of Einglish etymolerically Wedgwood, Ell. Muller, and Mah's Webster are the best dictionaries. While to the general student Mahn's Webster and Craig's 'Universal I hetionary' are most useful.' -. Athentrun.
"The best practica, Eicilish Imctionioy extant." - Quarterly Reaiai.

Divinity, Ggoral dpbilosopby, ac.

SCRIVFNER (1)r.) Norum Testamentum (irecum, Textus Stephanici, 1550 . Accedunt varixe lectiones editionum Beze, Elzeviri, I achmamni, Tichondorfii, et Tregellesii. Curante F. H. Serivener, A. M., L.L. I). IGmo. $4^{\text {s. } 6 i l}$.

This Edition embodies all the readings of Tregelles and of 'Tischendorf's Eighth or Latest Edition.

Codex Beze Cantabrigiensis. Edited, with Prolegmema, Notes, and Facsimiles, by F. II. Scrivener, M. A. 4 (1). 26 s.

A Full Collation of the Codex Sinaiticus, with the Received Text of the New Testament; to which is prefixed a Critical Introduction. liy F.. II. Scrivener, M. A. Scombt alition, raised. Feap. Sro. 5s.
"Mr. Serivencr has now placed the results of Tiechendorf's diacovery within reach of all in a chaming little volume,
which ought to form a companion to the Greek Testament in the library of every Biblical student."-Riader.

SCRIVENER (Dr.) An Exact 'Transcript of the Codex Augiensis, Graco-Latina Manuscript in Uncial Letters of St. Paul's Epistles, preserved in the Library of Trinity College, Cambridge. To which is added a Full Collation of Fifty Manuscripts containing various portions of the Greek New Testament deposited in English Libraries : with a full Critical Introduction. By F. II. scrivener, M. A. Koyal Svo. 26s.

The Critical Intronuction is issued separately, price 5 s.

- A Plain Introduction to the Criticism of the New Testament. With Forty Facsimiles from Ancient Manuscripts. Containing also an account of the Egyptian versions, contributed by Canon Lightfoot, I).I). For the use of Biblical Stulents. Hy F. II. Scrivener, M. A., LL. D. P'rebendary of Exeter. Sro. New alition. I 6 s.
——Six Lectures on the Text of the New Testament, and the MSS. which contain it, chiefly addressed to those who do not read (ireek. By Rev. F. H. Scrivener. With facsimiles from Mss's. Crown Svo. 6s.

ALFORD (Dean). Greek Testament. See p. 9.

BARRETT (A. C.) Companion to the Greek Testament. For the use of Theological Students and the Upper Forms in Schools. By A. C. Barrett, M. A., Caius College ; Author of "A Treatise on Mechanics and Hydrostatics." Thiral clition, conlarged and imfrooed. Fcap. Svo. 5 s.

This volume will be found useful for all classes of Students who require a clear epitome of Biblical knowledge. It gives in a condensed form a large amount of information on the Text, Language, Geography, and Archrology; it discusses the alleged contradietions of the New Testament and the disputed quotations from the Old, and contains introductions to the separate books. It may be used by all intelligent students of the sacred volume; and has been found of great value to the students of Training Colleges in preparing for their examinations.

SCHOLFFIELD (J.) Hints for Improvement in the Authorized Version of the New Testament. By the late J. Scholefield, M. A. Fourth cidition. Fcap. Svo. 4 .

TERTULLIIN. Liber Apologeticus. The Apology of Tertullian. With English Notes and a Preface, intended as an introduction to the study of Patristical and Ecelesiastical Latinity. By H. A. Woodham, LI. D. Second alition. Svo. S.s. 6\%.
PEROWNE (CaNon). The look of Psalms ; a New Translation, with Introluctions and Notes, Critical and Explamatory. by the Kev. J. J. Stewart Perowne, 13. 1), Fellow of Trinity College, Cambridge ; Canon Recilentiary of Llandaff. Svo. Vol. 1. Third alition. 18s. Vol. II. Third atition, $16 s$.
_The liook of Psalms. Abridged Edition for Schools. Crown Svo. 10s. Gd.
WELCHMAN (Archos.) The Thirty-Nine Articles of the Church of Fingland. Ihustrated with Notes, and confirmed by Teats of the Holy scripture, and Testimonies of the Primitive Father, together with References to the Passages in several Authors, which more largely explain the Doetrine contained in the said Articles. By the Ven. Archleacon Welchman. Nö̈ ddition. Fap. Sio. 2s. Inteleaved for stulents. 3 -
PEARSON (Bishop). On the Creed. Carefully printed from an Early Edition. With Analysis and Index. Edited by E. Walford, M. A. P'out Svo. 5 .

HUMPHRY (W. (B.) An llistorical and Explanatory Treatice on the book of Common Irayer. liy \mathbb{W}. (. Humphry, B. I., late Fellow of Trinity College, Cambrike, Prehendary of st. Paul's, and Xicar of St. Martin's-in-thecFïelds, Wetminster. Fïfh adition, reatised and enlargot. Small pont Svo. 4. 6r\%.
The New Table of lessons Explained, with the Table of Lessons and a Tabular Comparison of the Ohel and New l'roper Lessons for sundays and Holy-days. Jiy W. (i. Humphry, B. D., Fcap. 1s. Gid.
1)WNON (W.) A Commentary on the (iospels for the sundays and other Itoly bays of the Chititian lear. Dy the Rev. W. Denton, A. M., Worcenter Conlege, Offorl, and Incumbent of Sit. Bartholomew's, Criphlegate. Nia cation. 3 vols. Svo. 54 .
Kol. I.-Advent to Fiaster. ISs.
Vol. 11.-Baster to the sistemth sumbla after Trinity. 18 s .
Kinl. III. - Serentemth Sunday after Thinity to Advent; and Illy Days. 18 \%.

DENTON (IV.) Commentary on the Epistles for the Sundays and other Holy Days of the Christian Year. By the Rev. W. Denton, Author of "A Commentary on the Goipels," $\& \mathrm{c}$.

Vol. I.-Advent to Trinity. Svo. ISs.
Vol. II.-Trinity and I Ioly Days. i8s.
Commentary on the Acts. By the Rev. W. Denton. Vol. I. Svo. iSs. Vol. II. in preparation.
JEWEL (Br.) Apology for the Church of England, with his famous Epistle on the Council of Trent, and a Memoir. 32 mo . 2 s.
BARRY (1)R.) Notes on the Catechism. For the use of Schools. By the Kev. A. Barry, D. D., Principal of King's College, London. Second cdition, reaised. Fcap. $2 s$.
BOYCE (E. J.) Catechetical Hints and Helps. Λ Manual for Parents and Teachers on giving instruction to Young Children in the Catechism of the Church of England. By Rev. E. J. Boyce, M. A. Second edition. Fcap. 25.

Examination Papers on Religious Instruction. Sewerl. Is. 6 d.
MONSELL (Dr.) The Winton Church Catechist. Questions and Answers on the Teaching of the Church Catechism. l'y Kev. I. S. B. Monsell, LLL.1., Author of "Our New Vicar." Third Edition. Cloth, 3 s.; or in Four l'arts, sewed, price $9 d$. each.
SADLER (M. F.) 'The Church Teacher's Manual of Christian Instruction. leeing the Church Catechism Expanded and Explained in Question and Answer, for the use of the Clergyman, Parent, and Teacher. Dy the Kev. M. F. Saller, Kector of IIoniton. Third cdition. 2s. 6 d .
KEMPTHORNE (J.) Brief Words on School life. A selection from short addresses based on a course of ticripture reading in school. By the Rev. J. Kempthorne, late Fellow of Trinity College, Cambridge, and Head Master of Blackheath lroprietary School. Fcap. $3^{\text {s. }} 6 \mathrm{~d}$ d.
SHORT EXPLANATION of the Epistles and Gospels of the Christian I'ear, with Questions for Sichools. Royal \mathbf{z}^{2} mo. 2s. 6 dd ; calf, 45. 6 d .
BUTLER (Br.) Analogy of Religion; with Analytical Introduction and copious Index, ly the Rev. Dr. Stecre, Bishop in Central Africa. Fcap. Nicu cidition. 3s. Gd.

1:CIIER (Bp.) Three Sermons on Human Nature, and Diwertation on Virtue. Edited by W. Whewell, I). I). With a l'reface and a Syllabus of the Work. Fourth : ind chator dititon. F'cap. Sro. 2s. $6 d$.
WHEWELL, (Dr.) Lectures on the History of Moral l'huleroply in England. ly W. Whewell, D. I). Nizu amd imprectad cidition, with Additional Lectures. Crown Sio. 8:.
*. The Additional Lectures sold separately. Crown Sio. l'ice 3 c. $6 d$.
Elements of Morality, including Polity: By W. Whewell, 1). 1). Nicie clition, in Svo. 155.

Istronomy and (ieneral Physics considered with reference to Natural Theology (Bridgewater Treatise). Nī" catithen, acith neio trifuce, uniform with the Aldine Editions. 5 .

IUN゙ALISS(NN (1)r.) Classical Scholarship and Classical Learning considered with eepecial reference to Competitive Tents and L'niversity Teaching. A Practical Essay on L.iberal Lilucation. liy J. W. Donaldson, I), I). Crown Svo. 5 .

- The Theatre of the Grecks. Nea and cheafer cilition. Port Sw. 5 .
STUDENT"S (GUHEE TO THE UNIVERSITY OF CAMBRIDGE: Riorisat and correctat in actordanco with the lutest resulations. Thirad chition. Fcap. Svo. 6s. Gd.
This volume is intended to give useful information to parent, desirous of sending their soms th the L'nivervity, and to indicate the peints on which to seck further information from the tutor.

Sugketions are also given to the younger members of the L'niversity on expenses and course of reading.
" Partly with the view of assisting paremts, guardians, schoolmaters, and students intending twe enter their mames at the C'niversity-partly aloo for the lenefit of undergradlates them selve-a very complete, though concise, volume has jut been inned, which leaves little or mothing to le desired. For lucil arrangement, and a rigid alherence to what is positively useful, we know of few mannals that could compete with this Stulent') Guide. It reflects mo little credit on the l'niversity to which it supplies an unpretending, but complete, introwluction," - Satur. doy Rictite.
 with Notes and Canes brousht down the the penent time. Datited ly J. T. Amp, I.I., D., Barriter at law, Regins l'o. fenor of Laws in the C'niver ity of cambidge. Swo is.

LEAPINGWELL (G.) A Manual of the Roman Civil Law, arrangel according to the Syllabus of 1mr. Hallifax, Designed for the use of Students in the Universities and Inm, of Court. By G. Leapingwell, LL.D. Svo. I2s.
MAYOR (Rev. J. B.) A Guide to the Choice of Classical Books. By I. 13. Mayor, M. A., I'rufessor of Clasical 1, iterature at King's College, late Fellow and Tutor of St. John's College, Cambridge. Crown Svo. $2 s$.

FRENCH, GERMAN, ANI) ENGLISH CLASS BOOKS.

foreign $\mathbb{C l a s s i c s}$.

A carefully celited series for use in schools, with English note:, grammatical and explanatory, and renderings of difficult idiomatic expressions. Fcap. Swo.

HARLES XII. par Voltairc. Edited by L. Direy. This-d chition, rectisced. 3s. 6a.
GERMAN BALLAlSS from Uhland, Goethe, and Schiller ; with Introductions, copious and biographical notice. Edited by C. L. Bielefeld. 3s. 6d.
AVENTURES DE TELEMAQUE, par Fenelon. Edited by C. J. Delille. Second calition, revised. 4r. 6d.
SELECT FABLES of La Fontaine. Edited by F. Gasc, Nav clition, ratisal. 3 .s.
PICCIOLA, by X. B. Saintine. Edited by Dr. Dubuc. Fourth atition, reaised. 3s. 6d.
SCHILLER'S Wallenstein. Complete Text, comprising the Weimar Prologuc, Lager, l'iccolomini, and Wallenstein's Tool. Edited by Dr. A. Buchheim, Professor of German in King's College, London. Riarisal cilition. 6s. 6d. (or the Lager and Piccolomini, 3s. 6d. Wallenstein's Tol, 3s. 6d.
__Maid of Orleans ; with English Notes by 1)r. Wilhelm Wagner, Editor of Plato, l'lautus, ,"c., and Tran lator of Teuffel's "History of Roman literature." 3s. 6d.
GOE'THES HERMANN ANI DOROTHEA. With Intronduction, Notco, and Arguments. liy le. Recll, B.A., Trinity College, Cambrilge, and L. Wolfel. 2.. Got.

frencb Class 2books.

BREBNER (W.) Twenty Lessons in French. With double vocabulary giving the pronunciation of French words, notes, and appendices. By W. Brebner. Post Sxo. 4s.
CLAPIN (A. C.) French (irammar for Public Schools. liy the Kev. A. C. Clapin, M. A., St. John's College, (ambrilge, and Bachelier-is-lettres of the University of France. Fcap. Svo. Sectond cidition sriatly chlarocid. 2s. 6ad. Or in two parts separately. Part I. Accidence, 2 s . Part II. Syntax, 1 s. 6 d .
(i.ACC (F. E. A.) First French Book; being a New, Practical, and Easy Method of Learning the Elements of the French L.anguage. Fcap. Svo. Nicu ciltion. is. 6d.
-Second French Book; being a (irammar and Exercise Book, on a new and practical plan, and intended as a requel to the "First French Book." Nizu citition. Fcap. Svo. 25.0 d .

- Key to First and Second French looks. Fcap. Svo. 3s. 6 ul.
French Fables, for Reginners, in Prose, with an Index of all the Words at the end of the work. Aici catition. 12 mo .25.
——Select Fables of Ia Fontaine. Naz calition, raiscd. Fcap, Svo. $3^{\text {s. }}$
Histoires Amusantes et Instructives; or, Selections of Complete Storics from the beet French mondern authors, who have written for the young. With English notes. Aizu clition. I cap. Svo. 2s. 6 \%.
- Practical (iuide to Modern French Conversation: containing: - - . The most current and, useful Phrases in Exery-day Talk; If. Everybely's Neceesary (Questions and Amwers in Travel-Talk. Fcap. Swo 2c. Ged.
French Poetry for the Young. With English Notes, and preceled ly a few phain Rules of French Irosody. Fcap. Svo. $2 s$.
- Materials for French Prose Composition ; or, Selections from the bee Englith Irone Witers. With copions from notes, and hints fur idiomatic renderings. Nico catition. Fcap. Svo 4r. Gd. Kis, 6 .
I'rosateurs Contemporains ; or, Sclections in Prove chicfly from comemperary French literature. With Englihh notes. 12 mo . 5 .

GASC (F. E. A.) Le Petit Compagnon ; a French TalkBook for Little Children. 16 mo . 2 s. 6 ll .

- An Improved Modern Pocket Dictionary of the

 French and English Languages; for the every-day purposes of Travellers and Students. Containing more than Five Thousand modern and current words, senses, and idiomatic phrases and renderings, not found in any cther dictionary of the two languages. A nou cdition with additions and corrections. 16 mo . Cloth, 4^{s}.—— Modern French and English Dictionary, with upwards of Fifteen Thousand new words, senses, \&c., hitherto unpublished. Demy 8vo. 15 s.
GOMBERT (A.) The French Drama ; being a Selection of the best Tragedies and Comedies of Moliere, Racine, P'. Corncille, T. Corneille, and Voltaire. With Arguments in linglish at the head of cach scene, and notes, critical and Explamatory, by Λ. Gombert. Sold separately at $1 s$. each.

Contents.
Moliere:

+ Le Misanthrope.
* L'Avare.
*Le Bourgeois Gentilhomme.
*Le Tartuffe.
Le Malade Imaginaire.
Les Femmes Savantes.
Les Fourberies de Scapin.

Les Précienses Ridicules.
L'Ecole des Femmes.
L'Ecole des Maris.
Le Médecin malgré Lui.
M. de Pourceaugnac.

Amphitryon.

Racine:

La Thébaide, ou les Frères Ennemis.
Alexandre le Grand.
Andromaque.
Les Plaideurs.
Britannicus.
Bérénice.

1. Corvellile:

Le Cid. Itorace. Cimna.

Bajazet.
Mithriclate.
Iphigénic.
l'hédre.
Esther.
*Athalic. (In the priss.)

P'olyencte.
'ompée.
T. Corneille:

Ariane.
Voltaire:

Brutus.
Alzire.
Le Fanatisme.

Mérope.
La Mort de César.
Semiramis.

* New Fiditions of those marked with an asterisk have lately been issteed, carefully revised by the Rev. W. Hotmes and M. Gasc. Fcap. 8vo. Neatly bound in cloth. 1s. each. Ghers will follow.

LE: NOUVEAU TRESOR : or, French Student's Companion ; designed to facilitate the Translation of English into French at Sight. By M. E. S. Sixtionth adition. Feap. Sro. 3. 64.

Contrives:- Grammatical Introduction, 100 I essons, Vocalulay: Conversational sentences, Aphabetical Arrangement of the Verbs. General Table of Keference.

Sic also "foreign Classic," p. 96.

German $\mathbb{C l a s s} 2 b 00 k s$.

BLCHHELM (1)R. A.) Materials for (ierman Prose Composition; consisting of Selections from Modern linglish writers, with grammatical notes, idiomatic renderings of difficult passages, and a general introduction. By 1)r. Buchheim, I'rofessor of Cerman Language and Literature in. King's Collere, and Examiner in German to the London L̈niversity. Third calition, reised. lecap. 4s. 6d.

In this edition the notes in I'art I. have been entirely revised and increased in accordance with the suggestions of experienced teachers.
Cl.APIN (A. C.) A (ierman (irammar for Public Schooks. liy the Rev. A. C. Clapin, Compiler of a lrench Grammar for P'ublic Schools, ansisted by F. Itoll-Muller, A wistant Master at the Bruton Grammar School. Ficap. 2s. Gid.

KOTZEBUE. I)er (;efangene (the l'risoner). Edited, with Englinh Notes laplanatory and Grammatical, by 1)r. WI: Stromberg. The firct of a selection of German Plays, suitable for reading or acting. is.

Englisb $\mathbb{C l a s s} 2100 \mathrm{ks}$.

ADAMS (Dr. E.) The Elements of the English Language. By Ernest Adams, Ph. D. Thirticuth ctition. lost 8ro. 4s. 6 d .
—— The Rudiments of English Grammar and Analysis. Nicu cdition, cnlarged. Fcap. Sro. $2 s$.
MASON (C. P.) First Notions of Grammar for Young Learners. By C. P. Mason, B. A., Fellow of University College, London. Fcap. Sro. Cloth, Sd.
_- First Steps in English Grammar, for Junior Classes. Demy 18mo. Nezu clition, cnlarscil. is.

- Outlines of English Grammar for the use of Junior Classes. Cloth, is. 6 a .
—— English Grammar : including the Principles of Grammatical Analysis. Nincticuthic clition, with a new Etymological Appendix. Post Svo. 3s. 6 d .
—— The Analysis of Sentences applied to Latin. Post Syo. 2s. 6d.
——Analytical Latin Exercises: Accidence and Simple Sentences, Composition and Derivation of Words, and Compound Sentences. Post Sro. 3s. 6d.
- The First Two Books of Euclid explained to Beginners. Sccond cdition. Ficap Sro. 2s. 6d.

Editad for Middlle-Class Examinations.

With notes on the Analysis and Parsing, and explanatory remarks.
_- Milton's Paradise Lost, Book I. With a Life of Milton. Thisid calition. Post Svo. 2 s .
_- Milton's Paradise Lost. look II. With a Life of the Poet. Second cidition. Post Svo. $2 s$.
—— Milton's Paradise Lost. Book III. With a Life of Milton. P'ost 8vo. $2 s$.
—— Goldsmith's Deserted Village. With a Short Life of the I'oet. I'ost Svo. is. $6 d$.

MASON (C. P.) Cowper's Task. Book II. With an Outine of the l'oet's Life. l'ost Sro. $2 s$.
——Thomson's "Spring." With a short Life. Post 8vo. $2 s$.
——'Thomson's "Winter." With short Life. Post 8vo. 2s. MENET (J.) Practical Hints on 'Teaching. Containing Advice as to Organization, 1)iscipline, Instruction, and Practical Management. By the Kev. John Menet, M. A. I'erpetual Curate of Hockerill, and late Chaplain of the Ilockerill Training Institution. Fonrth edition. Containing in addition Plans of Schools which have been thoroughly tested, and are now being adopted in various localities. Crown 8vo. Cloth, 2s. 6d.; paper cover, $2 s$.

TEST LESSONS IN DICTATION, for the First

 Class of Elementary School.s. This work consists of a series of extracts, carefully selected with refercence to the wants of the more advancel pupils; they have been used successfully in many Elementary schools. The book is supplementary to the excreises given in the "l'ractical llints on "eaching." Paper cover, is. 6, .SKEAT (W. W.) Questions for Examinations in English Litenature; with a Preface containing lrief hints on the stuly of Einglishl. Arranged by the Rex. W. W. Skeat, late Pellow of Christ's College. 2s. Gd.

This volume will be found useful in preparing for the various public examinations, in the universities, or for government appointment.
DELAM(OTTE (P. H.) Drawing Copies. By I. H. Delamote, Profenor of 1 hawing in King's College and School, London. Containing 48 outline and 48 shaded plates. Oblong 8 vo. $12 s$ s ; sold also in parts at is. cach.
This volume contains forty-eight outline and forty-eight shaded plates of architecture, trees, figures, fragments, landscapes, boats, and seapieces. Drawn on stone by Professor 1) elamotte.

POETRY for the School Room. Ncio cdition. Fcap. 8vo. is. 6 xl.

GATTY (MRS.) Sclect Parables from Nature, for Use in Schools. R'y Mrs. Alfred Gatty. Fcap. Svo. Cluth, is.

SCHOOL RECORD for Young Ladies' Schools; a useful form of Register of Studics and Conduct. 6d.
GEOGRAPHICAL TEXT-BOOK ; a Practical Geography, calculated to facilitate the study of that useful scicnce, by a constant reference to the Blank Maps. By M. E: . . . S $12 \mathrm{mo} .2 s$.
II. The Blank Maps done up separately. 4to. $2 s$. coloured.
JOHNS (C. A.) A First Book of Geography. By the Rev. C. A. Johns, B.A., F.L.s., Author of "Botanical Ram. bles," "Flowers of the Field," \&c. Illustrated. 12mo. 2s. 6d.

LOUDON (Mrs.) Illustrated Natural History. Nezi, edition. Revised by W. S. Dallas, F. L. S. With nearly 500 Ensravings. 7 s.
——Handbook of Botany. Newly Edited and greatly enlarged by David Wooster. Fcap. 2s. 6d.
HAYWARD. The Botanist's Pocket-Book, containing in a tabulated form, the Chief Characteristics of British Plants, with the botanical names, soil or situation, colour, growth, and time of flowering of every plant, arranged under its own order; with a Copion; Index. By W. K. Hayward. Crown Svo. Cloth limp, 4s. 6d.
STÖCKHARDT. Experimental Chemistry, founded on the Work of Dr. Julius Adolph Stöckhardt. A hand-book for the study of the science by simple experiments. By C. W. Iteaton, lrofessor of Chemistry in the Medical School of Charing Cross llospital. Post 8vo. 5 s.
BONNEY (T. G.) Cambridgeshire (ieology. A Sketch for the use of Students. liy T. G. Bomney, F.(i.S., ©.c., Tutor and lecturer in Natural Scicice, Sto John's Coll. Cambridge 8vo. 3 s.
FOSTER (B. W.) Double Entry Elucidated. By B. W. Foster. Seventh clition. 4to. 8s. 6d.

CRELLIN (P.) A New Manual of Book-keeping, combining the Theory and Practice, with Specimens of a set of Books. By Phillip Crellin, Accountant. Crown 8vo. $3^{\text {s. } 6 d .}$.
This volume will be found suitable for merchants and all classes of traders : besides giving the method of donble entry, it exhibits a system which combines the results of double entry without the labour which it involves.

PICTUKE SCHOOL BOOK゙S．Written in simple language，aml with numerous illustrations．Koyal amo．

sCHOOL l＇RIMER．Gu．

SCHOOL，REAlNER．Dy J．Tilleard，Hon．Member of aml Waminer to the College of D＇receptors．Numerons Illnstrations．is． IOETRY BOOK FOK SCHOOLN．
THE：IFF：OF JOSEPH．Is．
＇THE \＆ Clarke．is．
 Clarke．is．
THE NEW TESTAMENT HISTORV，By the Rer． J．（；Wood，M．A．is．
THE OLI TESTAMENT HISTORL，Hy the Res．J． （i．Winel，M．．I．is．
 GRESS．Is．
THE LIFE OF CHRISTOHHER COLUMBL゙S．ly sarah Crompton．is．
THE LIFE OF MARTIN ILTIIER．By Sarah Cromp－ toll．IS．

CRAN゙T．Comme of In－truction for the loung，by the late Ilomace Grant．

Aridnmetic for loung Children．A Sories of lixercises ex－ emplifying the mamer in which Arithmetic shomb be tanght to Vong Chaldren．is．Get．

Arthmetic．Scoond Stage．For Schools and Families， exemplifying the mode in which Childrea may be bed to discover the main principle of Figurative and Mental Arithactic． 18 mo ． $3^{\text {s．}}$ ．
lixercises for the Improvement of the semes，and providing innernction and amusement for Chiklren who are tho young to learn to read amilw rite．1smo．is．

Geography for Vongs Chiden．With Illastrations for 1．Aementary Plam lrawing．：8mo．2s

These are not chosslamks，tmat are copecially adapted for me by teachers who wish to create habits of observation in their pupils and to teach them to think．

EOOKS FOR YOUN゙G RE．SDEKS．In light l＇arts．Limp thoth．\＆d，each；or extra binding，is，each．

[^1]
104 George Bell and Sons' Educational Books.

2Bell's 1Reading 2books

For Schools and Parochial Librarics.

The popularity which the Scries of Reading-Books, known as "Books for loung Readers," has attained is a sufficient proof that teachers and pupils alike approve of the use of interesting stories with a simple plot in place of the dry combinations of letters and syllables, making no impression on the mind, of which elementary reading-books generally consist. There is also practical testimony to the fact that children acquire the power of reading much more rapidly when the process involves something more than the mere mechanical exercise of the faculties of sight and memory.

The publishers have therefore thought it advisable to extend the application of this principle to books adapted for more advanced readers; and to issue for general use in schools a series of popular works which they venture to think will in practice be found more adapted for the end in view than the collections of miscellaneous and often uninteresting extracts which are generally made to serve the purpose.

These volumes will be printed in legible type, and strongly bound in cloth, and will be sold at $1 s$. or $1 s$. $6 d$. each, post 8 vo.

The first of the series, viz. Captain Marryat's MASTERMAA READY, which was written expressly for young people, is now ready, condensed, price $1 s .6 d$; also,

Mrs. GAtty's PARABLES FROM N.ITURE (selected), foolseap, Sro., price Is.

The following are in preparation :-
ROBINSON CRUSOE.
OUR VillagE. By Miss Mitford (selections).
GRIMAIS GERMAN TALES.
ANIERSEN'S INANISH TALES. ,
FRIENDS IN FUK AND FEATIERS.

UNIVERSITY OP TORONTO LIBRARY

Do not remove
the card
from this
Pocket.

Astron
N

Newt on, (Sir)
 Frincipi

857

[^0]: In this aud the remaining Corollaris, the central disturbing force is called ablatitions, when it acts In the direction 71 , and therefore tends to duminish the gravatation of 1 to T.

[^1]: Part I．contains simple stories toll in monosyllable of not more than fonr letters，which are at the same time sufficiently interenting toperecree the attention of a child．Part 1I．exercies the pmpil hy a smilar method in lighly longer casy words：and the remaining pats comsin of storion krounated in difficulty，watil the leanacr i ，tanght to read with ordinans facilits．

