UNITED STATES DEPARTMENT OF THE INTERIOR
 Harold L. Ickes, Secretary
 FISH AND WILDLIFE SERVICE
 Ira N. Gabrielson, Director

Fishery Bulletin 35

STUDIES ON THE STRIPED BASS (Roccus saxatilis) OF THE ATLANTIC COAST

By DANIEL MERRIMAN

From FISHERY BULLETIN OF THE FISH AND WILDLIfE SERVICE
Volume 50

united states
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1941

Abstract

The results of an investigation of the striped bass (Roccus saxatilis) of the Atlantic coast, from April 1, 1936, to June 30, 1938, are discussed and the systematic characters of the species described in detail on the basis of the literature and material alforded by fin-ray, seale, and vertebral counts, and by measurements on more than 350 individuals.

Studies on the fluctuations in abundance of this species over long-term periods show that there has been a sharp decline in numbers. Dominant year-classes have at times raised the level of abundance, but the intensity of the fishery is such that their effects have been short lived. The dominant year-class of 1934 was the largest to be produced in the past half century, although the parental stock was probably as low as it has ever been. There is a good correlation between the production of dominant year-classes of striped bass and below-the-mean temperatures during the periods before, of, and immediately after the main spawning season.

The striped bass is strictly eoastal in its distribution from the Gulf of St. Lawrence to the Gulf of Mexieo, is anadromous, and spawns in spring. Sex ratios in northern waters show that males seldom make up more than 10 percent of the population, while in waters farther south the sex ratios are not so disproportionate. Females first mature as they become 4 ycars old, males as they become 2 years old. This difference in age at maturity may account for the small percentage of males in northern waters, for the time of the spawning season in the South coincides with the time of the spring coastal migration to the North, which is made up mainly of immature females. The age and rate of growth have been studied by scale analysis and the average sizes of the different age groups, and the growth has been calculated to the cleventh year.

Striped bass $(3,937)$ have been tagged, and returns have shown that there is a striking migration to the North in spring, and to the South in fall. The population in northern waters in summer remains static. These migrations do not occur until the bass become 2 years old, and have their greatest intensity off the southern New England and Long Island shores. There is little encroachment. by the stock in the Middle Atlantic bight on the populations in the North or South.

The available evidence from general observation, tagging, and scale analysis points to the conclusion that the dominant 1934 year-class originated chicfly in the latitude of Cheasapeake and Delaware Bays, and that those fish born as far south as North Carolina contribute directly only a relatively small fraction to the population summering in northern waters.

Stomach-content analyses show that bass are universal in their choice of food, a large variety of fishes and crustacea forming the main diet. It is suggested that the increased bulk and availability of Menidia menidia notata in Connecticut waters late in summer and early in fall are responsible for the increase in, or maintenance of the growth rate of striped bass in this region despite the sharp drop in water temperature at this time.

The parasites of the species are discussed and several new host records listed. It is suggested that the bilateral cataracts in a high percentage of individuals bass in the Thames River, Connecticut, are the result of a clictary deficiency.

The decline in abundance of the striped bass of the Atlantic eoast over long-term periods and its canses are diseussed from a theoretical point of view, and it is pointed ont that the present practice of taking a large proportion of the 2 -year-olds annually is apparently mot an efficient utilization of the supply. It also is pointed out that both the fishery and the stock would probably benefit from the protection of these fish until 3 years old, at which time the average individual length is 41 cm . (16 inches), measured from tip of lower jaw to fork of tait.

STUDIES ON THE STRIPED BASS (Roccus saxatilis) OF THE ATLANTIC COAST ${ }^{1}$

By Daniel Mermman, Osborn Zoological Laboratory, Yale University, formerly Temporary Investigator, Fish and Wildlife Service ${ }^{1}$

CONTENTS

	Page		Page
Introduction	1	Age and rate of growth	22
Acknowledgments	2	Migrations. -	33
Deseription of the striped bass	2	Origin of the dominant 1934 year-class	46
Size and range of the striped bass	4	Foud of the striped bass.	52
Review of the literature on the life history of the striped bass.	5	Parasites and abnormalities of the striped bass	55
Fhuctuations in abundance of the striped		Discussion	56
bass.----------------------------1.	7	Recommentations.	62
Spawning habits and early life history		Summary and conc	63
of the striped bass.-	15	Tables	66
Sex and age at maturity.	20	Bibliography	75

INTRODUCTION

The following account of the life history and habits of the striped bass (Roccus saxatilis) is the result of an investigation originally sponsored by the Connecticut State Board of Fisheries and Game, and undertaken by the author.

The main objectives of this investigation, throughout its entire course, were to obtain information on the life history and habits of the striped bass, to study the fluctuations in abundance of this species and their causes, and to accumulate material on the effect of the fishery-both commercial and sporting-on the present supply.

The striped bass investigation was begin on April 1, 1936, and was concluded on June 30, 1938. Its headquarters have been the Osborn Zoological Laboratory, Yale University, New Haven, Conn., and, during the summer months, the Niantic River, Com,-an area where this species is more casily available for study than elsewhere in the immediate ricinity. During the first 3 months the work was financed by a group of Connecticut sportsmen. The Connecticut State Board of Fisheries and Game then supported the investigation through December 31, 1937, and also supplied much of the equipment essential to the progress of the work. By that time it had become apparent, as a result of targing experiments, that the striped bass was a highly migratory species, and that therefore the problem was essentially coastwise in its scope. Clearly the objectives could not be accomplished satisfactorily by studies in one limited area. The American Wildife Institute generously contributed a substantial sum in March 1937 when a break in the continuity of the work wouk have been a severe blow to its progress, and thus made it possible for the investigation to extend its scope to include a large portion of the Atlantic coast. On July 1, 1937, the United States Bureau of Fisheries insured the financial backing of the investigation for a full year from that date, and the State Board of Fisheries and Game appropriated a sufficient amount for the continuation of the work within Connceticut.

[^0]The North Carolina State Department of Conservation and Development also contributed to the striped bass investigation in the fall of 1937, and thus made it possible to accumulate valuable information from the Albemarle Sound region in November 1937 and March, April, and May, 1938.

The author has published a preliminary account of the results of the striped bass investigation through December 1936 (Merriman, 1937a). A review covering much of the same material has also appeared in the Transactions of the Second North American Wildlife Conference (Merriman, 1937b), and a paper given at the New England Game Conference on February 12, 1938, and the Third North American Wildlife Conference on February 14, 1938, was published later (Merriman, 1938). Several progress reports submitted to the Connecticut State Board of Fisheries and Game have been mimeographed and sent out in limited numbers. This bulletin, therefore, incorporates some previously published material as well as the main accomplishments of the investigation from its inception to its conclusion.

ACKNOWLEDGMENTS

Since the author was a graduate student in the Department of Zoology at Yale University during the whole course of this investigation, the facilities of the Osbom Zoological Laboratory were always at his disposal. He especially wishes to acknowledge the help and advice of Prof. A. E. Parr, Director of the Peabody Museum. He is also indebted to Mr. Marshall B. Bishop of the Peabody Museum for his excellent work in the field in North Carolina in the spring of 1938, to Mr. Donald L. Pitcher of the Bingham Oceanographic Laboratory, and to many members of the Osborn Zoological Laboratory and the Peabody Museum for their assistance at various times. Furthermore, the investigation owes much of its progress to Mr. Otto J. Scheer, of New York, who made it possible to tag striped bass at Montauk, L. I., N. Y., in the spring and fall of 1937, to Mr. J. D. Chalk, Commissioner of Game and Inland Fisheries in North Carolina, to Mr. David A. Aylward and Mr. Oliver H. P. Rodman of the Massachusetts Fish and Game Association, and to a number of commercial fishermen and sport fishermen's clubs.

It is also a pleasure to acknowledge the assistance of Mr. Earl E. Sisson, who was employed by the Connecticut State Board of Fisheries and Game to aid in the seining and tagging of striped bass. And finally, the writer wishes to express his sincere thanks to his wife, who has done most of the recording in the field and has given her support in every possible way.

DESCRIPTION OF THE STRIPED BASS

During the past few years the striped bass has been called Roccus saxatilis and Roccus lineatus. These two specific names have been used about equally in the literature, and with more or less indiscrimination. Jordan, Evermann, and Clark (1930) say:

This species is usually called Roccus lineatus after Sciaena lineata Bloeh (Ausländische Fische, VI, 1792, 62); but it eannot be the same. The form, serrae of the preopercle, and the stout spines of the fin, as well as the asserted locality 'Mediterranean' indicate that the speeies concerned is Dicentrarchus lupus of Europe. The only resemblance to Roccus is found in the striped color; but Bloeh says that the stripes on the sides are yellow.
A glance at Bloch's (loc. cit.) illustration substantiates this statement. The name Roccus saxatilis (Walbaum) therefore appears to be the more valid, and lately it has come into more widely accepted usage.

Two common names are regularly applied to this species. North of New Jersey "striped bass" is almost universally used, while to the south "rock" or "rockfish" is the generally aceepted terminology. Among other names that have been applied in the past, but are seldom if ever heard now, are "green-heads", "squid-hounds" (Goode, 1884), and "missuckeke-kequock" (Jordan, Evermann, and Clark, loc. cit.).

The striped bass, Roccus saxatilis, belongs to the family Serranidae, of the order Percomorphi. It has been well deseribed in most of the standard iehthyological references for both the Atlantic and Pacific coasts (e. g., Hildebrand and Schroeder,

1928; Bigelow and Welsh, 1925; and Walford, 1937), and the following account is based on these works and on the material afforded by fin-ray, scale, and vertebral counts, and measurements on over 350 individuals 15 cm . in length or greater studied during the investigation. The majority of these fish were taken in Connecticut waters. The numbers indicate the extremes of variation, while those in parentheses are the approximate averages.

Morphometric description.-Body elongate, moderately conpressed; back little arched; greatest depth (at or slightly posterior to origin of spinous dorsal fin) 3.45 to 4.2 (3.7) (young individuals tend to be more slender than old ones), average least depth (at candal peduncle) 9.6, average depth at anus 3.9 -in standard length. Head long and pointed, 2.9 to 3.25 (3.1) in standard length. Dorsal fin rays: IX (VIII in one individual)-I, 10 to 13 (12); fourth and longest dorsal spine 2.2, first and longest dorsal soft ray 2.0 in head. Anal fin rays III, 10 to 12 (11); first and longest soft ray 2.0 in head. Ventral (pelvic) fin rays: I, 5 ; length of ventrals 1.9 in head. Pectoral fin rays: 15 to 17 ; length of pectorals 2.0 in head. The two dorsal fins approximately equal in basal length, the first (spinous) being roughly triangular in outline and originating over the posterior half of the pectoral, the second (soft) usually distinctly separate from the first, its soft rays becoming regularly shorter posteriorly. Anal fin of essentially the same shape as second dorsal and slighty smaller; situated below posterior two-thirds of second dorsal. Pectoruls and ventrals of moderate size; insertion of ventrals slightly behind that of pectorals. Caudal somewhat forked. Scales: 7 to $9-57$ to 67 - 11 to 15 ; typically ctenoid (the character "scales on head cycloid" as given by Jordan, 1884, for the genus Roccus, does not hold true in the striped bass); extending onto the bases of all the fins except the spinous dorsal. Vertebrae (including hypural): 24 or 25 (almost invariably $12+13=25$). Gill-rakers on first arch: 8 to $11+1+12$ to $15(10+1+14)$. Eyc 3 to 4.9 in head (less in smaller individuals). Mouth large, oblique, maxillary extending nearly to midelle of eve (except in small individuals) and broad postcriorly (width at tip nearly two-thirds diameter of cye); lower jaw projecting. Teeth small, two parallel patches on base of tongue; also present on jaws, vomer, and palatines. Preopercle margin clearly serrate.

Color in life.-Dark olive-green to stecl-bluc or almost black above as a rule, but occasionally light green. Paling on the sides to silver, and white on the belly. Sometimes with a bronze luster on the sides. Sides with seven or eight prominent dark stripes, much the same color as the back. Usually the stripes follow scale rows, thirce or four above the lateral line, one invariably on the lateral line, and three below it. Normally the two above the lateral line, that on the lateral line, and sometimes the first below it, are the longest, reaching or coming close to the base of the caudal. None extend onto the head. All except the lowest are above the level of the pectoral fins. The highest stripes and those below the lateral line tend to decrease in length. The stripes are often variously interrupted and broken. Young of less than $6-7 \mathrm{~cm}$. usually without dark longitudinal stripes, and those of $5-8 \mathrm{~cm}$. often with dusky vertical crossbars ranging from 6-10 in number. Vertical fins dusky green to black, ventrals white or dusky, pectorals greenish.

Distinguishing characters.-There is little danger of confusing striped bass above 10 cm . with any other species cither on the Λ tlantic or Pacific coast. Its prominent dark longitudinal stripes, gencral outline, and fin structure are sufficient to separate it at a glance from other species. The dorsal fins are usually clearly separate, but sometimes touch. In specimens less than 7 cm . it is often difficult to distinguish striped bass from the white perch (Morone americana), whose dorsal fins are contin-nous-not contiguous, as in the striped bass. The normally separate dorsals of the larger striped bass become an almost useless character here, and the stripes frequently are not present. The general body outlines of the young of these two species are much alike, although the back tends to be somewhat more arched in the white perch. The most valuable differentiating characters are: (1) The sccond spine of the anal fin, which is almost equal in length to the third spine and more robust in the white perch, and intermediate in length between the first and the third spines and less robust in the striped bass; (2) the relatively thicker and heavier spines in the fins of the white perch; (3) the sharp spines on the margin of the operele, of which the striped bass has two and the white perch but one; and (4) the soft rays of the anal fin, usually 9 in the white perch and 10-12, normally 11, in the striped bass.

Two fresh-water Serranids bear a superficial resemblance to the striped bass. Morone interrupta, the yellow bass of the Mississippi Valley, also has seven longitudinal dark stripes, but is immediately distinguished by its slight conncetion of the dorsals, greater depth of the body (2.7 in standard length), lesser number of scales in the lateral line $(50-54)$, lack of tecth on the base of tongue, and its robust spines of the dorsal and anal, as well as the more numerous spines of the first dorsal (X). Lepibema chrysops, the white bass of the Great Lakes region and Mississippi and Ohio Valleys, also has a number of dark longitudinal narrow stripes. Here the dorsals are separate as in the striped bass, but this species differs in having only a single pateh of teeth on the base of the tongue, and in having a much deeper body (over one-third of the length) that is more compressed.

SIZE AND RANGE OF THE STRIPED BASS

The striped bass most commonly taken at present by commercial and sport fishermen on the Atlantic coast vary in size from less than 1 pound to about 10 pounds in weight. Individuals up to $25-30$ pounds, however, are by no means rare, and not infrequently striped bass up to $50-60$ pounds are caught, although, judging from old records, these larger fisb are not as abundant as they have been in the past. Bass above 60 pounds are now decidedly rare. The largest striped bass taken in recent years was the 65-pounder caught on rod and line in Rhode Island in October 1936 and one weighing 73 pounds was taken on rod and line in Vincyard Sound, Mass., in 1913 (Walford, 1937). Authentic records show that a striped bass weighing 112 pounds was taken at Orleans, Mass., many years ago (Bigelow and Welsh, 1925), and Smith (1907) reports several weighing 125 pounds caught in a scine near Edenton, N. C., in 1891.

Figure 1.-The striped bass (Roccus saxatilis).
The striped bass has a range on the Atlantic coast of North America, where it is indigenous, from Florida to the Gulf of St. Lawrence, and is most common from North Carolina to Massachusetts. Jordan and Evermann (1905) state that its southern limit is the Escambia River in western Florida, on the Gulf of Nexico. Jordan (1929), however, states that the striped bass exists as far west as Louisiana. Bean (1884) records the striped bass from the Tangipahoa River, near Osyka, Miss., and this river also flows through Louisiana. Gowanloch (1933) also mentions the striped bass in his "Fishes and fishing in Louisiana."

The striped bass was introduced on the Pacific coast where its present center of abundance is the San Francisco Bay region (Scofield, 1931), and the extreme limits of its distribution are Los Angeles County, Calif., and the Columbia River (Walford, loc. cit.). Walford also states: "There is an indigenous population of bass at Coos Bay, Oreg., about 400 miles north of San Francisco."

This fish is strictly coastwise in its distribution, and records of its being taken more than sereral miles offshore are extremely rare. It is most commonly taken in salt water, but, since it is anadromous, its capture in brackish and even fresh water is a regular occurrence-particularly during the winter and spring months. It has been taken in the Hudson River as far north as Albany, and is caught in large quantities in the Roanoke River at Weldon, N. C., each spring. Temperature appears to play no little part in its distribution (see p. 42), yet the striped bass can be taken at the extreme limits of its range throughout the year.

REVIEW OF THE LITERATURE ON THE LIFE HISTORY OF THE STRIPED BASS

Mention of the striped bass appears carly in American literature. This is undoubtedly because of its great abundance in times past and its coastal distributiontwo factors that made it casily available to the early colonists.

Capt. John Smith wrote:

Abstract

The Basse is an excellent fish, both fresh \& salte. . . They are so large, the head of one will give a good eater a dinner, \& for daintinesse of diet they excell the Narybnnes of Beefe. There are such multitudes that I have seen stopped in the river cluse arljoining to my honse with a sande at one tide as many as will loade a ship of 100 tonnes (Jordan and Evermann, 1905).

And one of Captain Smith's contemporary divines wrote:

There is a Fish called a basse, a most sweet \& wholesome Fish as ever I did eat the season of their eoming was begun when we came first to New Fingland in June and so continued about three months space. Of this Fish our l'ishers take many hundreds together, which l have sene lying on the shore to my admiration... (Jordan and Evermanm, 1905).

William Wood in his New England's Prospect (1635) wrote:
The Basse is one of the hest fishes in the country ... 1the way to catch them is with hooke and line: the Fisherman taking a great cod-lime, to which he funteneth a pecer of Lobster, and throwes it into the sea, the fish hiting at it he pall her to lim, and knockes her on the heall with a sticke. . . the English at the tol, of an high water doe crosse the creekes with long seanes or basse netts, which stop in the fixl; and the water elhine from them they are left on dry grommel, sometimes two or three thousand at a set.

Such references to the striped bass became increasingly common in the eighteenth and nineteenth centuries, all of them deating with reeord catches or the abmindace of this species, and extolling the virtues of the bass as a game and food fish. Irobably the earliest onservations of any consequence on any phase of the life history are those by S. G. Worth, who published a scries of papers from 1881 to 1912 on the spawning habits and artificial propagation of the striped hass in the Roanoke River, N. C (See under section on spawning liabits and early life history.) Turning to more modern times, mention is made of the striped hass frequently, but in all the litcrature dealing with the fishes of the Athantic coast there is scant information on the life history of this species. Such standard and well-recognized references as Bigelow and WHelsh (1925) and Hillehrand and Schrocder (1928), sum up the avaitable knowledge on the striped bass in a few bricf pages. In the past few years, however, the need for further information on this species on the Atlantic coast has resulted in several investigations in different localities, apart from the present work. These have given rise to much interesting material and more general knowledge (e. g., see Vladykov and Wallace, 1937), a great deal of which, however, is yet to be published. Reference to some of this work is made in the following pages.

In the last quarter of the nineteenth century striped bass were introduced on the Pacific coast, where they prospered beyond all expectations and soon became the object of an intensive and prosperous fishery conducted by both commercial and sport fishermen. This fishery has been of great importance ever since. The storv of this introduction of the striped bass to the Pacific coast is particularly interesting (Throckmorton, 1852 ; Scofield, 1931, etc.). In 1879 and 1881 a number of y carling bass were seined in New Jersey, taken across the continent in tanks by train, and planted in San Francisco Bay. A total of only 435 striped bass survived the rigors of these 2 trips. Yet by 1889,10 years after the first plant, they were caught in gill nets and offered for sale, and in is99 the commercial net catch alone was $1,234,000$ pounds.

In 1915 the greatest catch in the history of the fishery was made, when $1,784,448$ pounds of striped bass were delivered to the markets. Since the World War the annual catch has varied between 500,000 and $1,000,000$ pounds. The Division of Fish and Game of California has made thorough studies on the life history of the striped bass, as well as the conservation needs of this species. These have been published in a long series of papers from 1907 to the present, of which the outstanding publication is that by Scofield (1931). But, because the conditions of the fishery on the Pacific coast differed so much from those on the Atlantic coast, much of the

Figure 2.-Length-weight relationship of the striped bass, based on faffish. Measnrments are to the fork of the tail.
information presented by the Division of Fish and Game of California cannot be applied to the striped bass of the Atlantic. On the Pacific const the main method of capture was by gill net, and it was easy to eliminate the capture of small fish by regulating the mesh size. At the present time commercial fishing for striped bass is prohibited in California. On the Atlantic coast, however, pound-nets, seines, and other methods of capture are used, and striped bass are taken indiscriminately with a great many other species-a situation which would make it highly impractical and most unfair to the commercial fishermen involved if any attempt were made to control the size categories of striped bass taken in these nets by regulating the mesh size.
[Length is stated in centimeters, measured to fork in tail; weicht is in pounds]

Length	W゙eight Length	Theight	Length	Weight
20.	0.25 57	5.25	94	21. 00
21	. 2558	5. 50	95	21. 25
2	. 2559	5. 75	96	22. 00
23	. 2560	6.00	97	22. 50
2	. 5061	6. 25	98	23. 00
25	. 5062	6. 75	99	23. 50
26	. 5063	7. 00	100	24. 25
2	. 50 64.	7. 25	101	25. 00
28	. 7565	7.75	102	25. 50
29	. 7566	8.00	103	26. 00
30	7567	8. 50	104	26.75
31	7568	9. 00	105	27.25
32	1. 0069	9. 25	106	28. 00
33	1. 0070	9. 75	107	28. 75
3	1. 00	10. 00	108	29. 25
35	1. 2572	10. 50	109	30.00
36	1. 2573	11.00	110	30. 75
37	1. 5074	11.25	111	31.50
38	1. 5075	11. 75	112	32. 25
39	1. 7576	12. 00	113	33. 00
40	1. 7577	12. 50	114	34. 00
41	2. 0078	13. 00	115	35. 00
42	2. 0079	13. 50	116	35.75
43	2. 2580	14. 00	117	36. 75
44	2. 2581	14. 50	118	37. 50
45	2. 5082	15. 00	119	38. 50
46	2. 50 S 3	15. 50	120	39.50
47	2. 7584	16. 00	121	40. 50
48	3. 0085	1f. 50	122	11. 50
49	3. 2586	17.00	123	42. 25
50	3. 5087	17. 75	12.	43.25
51	3. 75 S8	18. 00	125	14. 25
52	4. 0089	18.25	126	45. 25
53	4. 2590	19.00	127	46. 25
54	4. 5091	19.25	128	47.25
55	4. 7592	19.75		
56	5. 0093	20. 25		

FLUCTUATIONS IN ABUNDANCE OF THE STRIPED BASS

Quotations from early settlers point to the enormous abundance of striped bass in those times. Nor is it difficult to find records of unusual eatches in the past contury. Thus Caulkins (1852) says in a footnote:

Four men in one night, (Jan. 5th, 1811), eaught near the bridge at the hear of the Niantic River with a small seine, 9,900 pounds of bass. They were sent to New Tork in a smack, and sold for upwards of $\$ 300$. (New London Gazette.)
A quotation from a letter writton by a well-known sportsman to the author, dated August 16, 1937, in which the tells of surf-easting for striped bass in the early 1900's at Montauk, Long Island, N. Y., reads as follows:

As for quantities, almost any time through late summer and into late October, provided one knew the ropes, one could, almost literally, fill a wagon, alt hongh I, myself, seldom continued beyond local give-away-that is, until neeessity more or less compelled me to beeme a rod-and-reel market fisherman, and I fished like one: on one occasion to the ture of just under a ton of fish in a single period of seven days.
And even in the last 2 years, when the dominant 1934 year-class of striped bass appeared along the better part of the Athantic coast, eateles reaching extraordinary proportions have been commonplace. As but one example, it is of interest to mention that 90,000 pounds of striped bass were taken by a single trap in 2 weeks in October 1936, at Point Judith, R. I.

Close examination of the available records reveals that the abundance of striped bass on the Atlantic coast has shown tremendous fluctuations over a long period of years. As will be shown below (see p. 13), this is because the striped bass is subject to year-class dominance, a phenomenon which has received increasing attention in the past quarter century, since it has been found to apply to so many different species. Briefly explained, year-class dominance may be said to be the production of such unusually large quantities of any species in a single year that the members of this agegroup dominate the population for a considerable period, and are noticeably more abundant than the individuals produced in the preceding and following years. Such dominant year-classes usually make their appearance only at fairly lengthy intervals.

Year-class dominance in any species docs not, of course, insure the maintenance of the population at a consistently high level. It is also clear that dominant yearclasses are often produced by a comparatively small parental stock (see p. 14), and that therefore-at least down to a certain point-their appearance is not correlated with an unusual abundance of mature and spawning fish. There may even be an inverse correlation between these two factors-that is, a large production in any season by a comparatively small population of mature individuals. Such a correlation has been suggested by Bigelow and Welsh (1925) for the mackerel (Scomber scombrus), the "ycars of great production always falling when fish are both scarce and average very large . . ." This phenomenon is probably most common in particularly prolific species that produce a large number of eggs. Such a species is the striped bass, and such a production of a dominant year-class took place in 1934 (sce p. 11).

In the case of the striped bass a study of the size of the stock over short-term periods may, therefore, be most deceptive. Thus the first manifestation of a large year-class might give the impression of increasing abundance, or, if the study started shortly after an exceptionally productive year, a sharp decline in the population would be apparent under the conditions of the existent intensive fishery. To get a true picture of the trend in abundance, it is therefore essential to study the fluctuations over long-term periods.

Accurate catch records, which form the most reliable means of studying the relative size of the population in different periods, are unfortunately not available farther back than the latter half of the ninetcenth century. Bigelow and Welsh (1925), however, state: ".. that a decrease was reported as early as the last half of the eighteenth century." Nor is it surprising that such a decline was noticed so long ago when it is considered that the striped bass is a strictly coastwise species, and one that is easily available throughout the year. If haddock (Melanogrammus aeglefinus) (Herrington, 1935), halibut (IIippoglossus hippoglossus) (Thompson and Herrington, 1930), and other offshore fishes have become scarcer through the intensity of fishing, and this is admitted, it is much more likely that a purely coastal species such as the striped bass, which is far more accessible and therefore unceasingly the object of fishermen's attention, should soon have shown a marked decrease in numbers. Also, the availability of the striped bass and the resultant heavy drain on the stock is not the only factor involved. Since this fish is anadromous, there bas been every chance for civilization to do irreparable damage to valuable spawning areas. There is abundant evidence to show that such destruction has often occurred (see p. 16). In view of these facts it was not an unreasomable expectation that the supply should soon have diminished, and that in spite of the production of dominant year-classes the stock could not be maintained at its original high level.

Even in the absence of catch records or figures to prove the point, there can be no question but that the numbers of striped bass along the Atlantic coast have decreased during at least the past 2 centuries. There have undoubtedly been periods when the population showed sudden and pronounced increases, presumably due to the presence of unusually good year-classes. But these peaks have probably been short-lived, and the general trend over long periods has been downwards.

Two series of accurate catch records going back to the latter half of the nineteenth century have been made available to the author. Both of these bear out the above contention and substantiate such a hypothesis. The first record is that of the numbers of striped bass taken annually from 1865 to 1907 , on rod and line, by the members of
the Cuttyhunk Club at Cuttyhunk, Mass. ${ }^{2}$ A graph of this material is shown in figure 3. (For the annual average poundage of the fish caught and the weight of the largest bass in each year, see table 3.) The most striking fact about this curve is its rapid decline from fairly large numbers to extremely low numbers in the $43-y$ ear period that it covers. Unfortunately a rod-and-line fishery such as this one cannot be considered a strietly reliable index of abundance-especially sinee the members of the club confined themselves to fishing for large bass. Morcover, there is no indication of the intensity of fishing, so that the low numbers in the twentieth century might represent the catch of only a few individuals, while the high numbers before 1880 may be the catch of a much larger group. Therefore, the ammal fluctuations in this graph are perhaps not real indications of varving abundance, and the rate of decline may be too stecp. Nevertheless, it is difficult to imagine from this evidence that a scrious depletion did not take place. Even though such a record, lacking as it does information on the effort expended, cannot represent changes in abundance in detail, there can be little doubt that its downward trend indicates the general decline in abundance over the period it covers.

Another record of considerable interest and significance is that of the numbers of striped bass taken in pound-net catches from 1884 to 1937 at Fort Pond Bay, Long Island, N. Y. (see fig. 4 and table 4). From 1884 to 1928 these pound-nets were owned by members of the Vail family, who kept aceurate records of the numbers of striped bass eaught at each haul. ${ }^{3}$ They also indicate the number of traps in operation each year. These varied from 6 to 10, and the catches shown in this graph up to 1928 have been weighted to make them equivalent to a fishing intensity of 10 poundnets throughout. In 1928 the ownership of these nets changed hands, but the author has been able to complete the records up to the present. ${ }^{4}$ Unfortumately no recurd of the number of pount-nets in operation from 1928 to 1937 had been kept, and although this number is known to have varied only from 8 to 12 , a small error is thus introduced. The magnitude of the catches is such, however, that this part of the graph-indicated by the dotted line-may be properly considered a reasonably accurate continuation of that before 1929. It is of further interest that these poundnets have occupied essentially the same position cach year over the entire period covered by this record.

It is impossible to test the validity of this record as a method of sampling the total population, and thus accurately record fluctuations in abundance that occured. However, it is probable that it gives a fair indication of the decrease in abundance from 1884 to 1935 , and that the 1936 and 1937 peaks give a correct picture of the

[^1]magnitude of the increased abundance resulting from the 1934 dominant year-class. The peaks at 1894 and 1895, 1906, and 1922 perhaps also represent good year-chasses that bolstered the stock temporarily, but there is no adequate means of checking this, since practically no other records covering the same period are available. Striped bass tend to school heavily, and the presence of several schools might easily form the main part of such a peak as the ones shown at 1906 or 1922 in figure 4. Consequently, it may have been that in these years striped bass were not more numerous, but that one or more large schools hit the traps while on migration and gave a false impression of abundance. In another year the reverse situation might have taken place-that is, that the population was unusually high, but that comparatively few bass happened to strike the pound-nets, thus producing a low point on the curve that is not a true indication of abundance. It is, therefore, best not to assume that these fluctuations represent actual changes in the size of the population-at least not until there is further evidence on this score.

Figure f. - Numbers of striftl bass taken each year in the pound nets at Fort Pond Bay, L. l., N. Y., from 1884 to 1937. The fishung intensity has been equalized throughout (seo Table 4).

The peak years mentioned by Bigelow and Welsh (1925) for the catches from Boston to Monomoy, Mass., from 1896 to 1921, show some discrepancy with those in figure 4. In this area 1897 and 1921 were years in which exceptional catches were made. It will be noticed, however, that these years are close to the peaks at 1895 and 1922 shown in figure 4. It may therefore be true that dominant year-classes were present from 1895 to 1897 , and in 1921 and 1922, but that they made their presence felt in successive years in somewhat different areas.

The peaks at 1936 and 1937, however, are no doubt reasonably accurate indications of the increased abundance in those ycars. In 1936 the enormous numbers of striped bass that appeared along the Atlantic coast were mainly made up of fish 2 years old, the age at which this species first makes its appearance in the commercial and sport fishermen's catch in Long Island and New England waters. In 1937 a large proportion of the population along the Atlantic coast was composed of 3-year-olds.

The increased abundance in these 2 years was due, therefore, entirely to the 1934 yearclass. This group of fish is treated in some detail in the section on age and rate of growth (p. 26), but a glance at figure 5 will sufficiently emphasize the relative abundance of the 3 -year-olds in 1937. This figure is composed of three length-frequency curves made up from a random sampling of the commercial catch at different localities. Since striped bass 3 years old ranged in size roughly from 35 to 55 cm . (peak at 40 to 45 cm .) during the period these samplings were made, it is evident that the great majority of the cateli was made up of 3-year-olds.
LENGTH FREQUENCIES OF STRIPED BASS MAKING
LENGTH FREQUENCIES OF STRIPED BASS MAKING
UP COMMERCIAL CATCHES IN CAPE COD BAY (A).
UP COMMERCIAL CATCHES IN CAPE COD BAY (A).
AT NEWPORT,R.I.(E), AND AT MONTAUK,LI,(C),1937
AT NEWPORT,R.I.(E), AND AT MONTAUK,LI,(C),1937

Figune 5-Length-frequency curves madr up from random samplings of the commercial catch in diferent localities in 1937. Data smoothed by threes in all cases (sce Table 5 for original measurements).

Additional information on the 1934 year-class is seen in the catch records of a haule-scine fisherman at P'oint Judith, K. I., from 1928 to $1937 .{ }^{5}$ (See figs. 6, 7, aud S.) Not only were the numbers and approximate poundage of the fish taken at each haul recorded, but also the date of each haul and the number of hauls amually, thus making it possible to equalize the fishing intensity throughout the entire period. The same areas were fished over this 10 -year period. The annual catch in numbers of fish and total poundage are shown in figure 6 , and the average weight of the striped bass taken each year is plotted in figure 7. The small proportions of the eateh from 1928 to 1935 correspond well with that shown in figure 4, and the tremendous inerease

[^2]in 1936 and 1937 is added evidence on the size of the 1934 year-class. It will be noticed, however, that the decline in the catch in 1937 is not as sharp as that shown in figure 4, probably due to the fact that this seine fishery at Point Judith took a goodly number of 2-year-olds (members of the 1935 year-class) in the spring of 1937. These fish did not make up as large a proportion of the catch at Fort Pond Bay, Long Island, N. Y., during the 1937 season. The records are not sufficiently accurate to permit an exact analysis of the relative numbers of 2- and 3-year-olds in the 1937

Figure 6.-Annual total catch of striped bass by seine at Point Judith, Rhode lsland, 1923-37. Fishing intensity equalized throughout (see Table 6 for original data).
catch at Point Judith. The average annual poundage shows, however, that the catch in 1936 was composed mainly of 2 -year-olds, and there is a noticeable increase in the average poundage in 1937, due to the dominance of this same 1934 age-groupat that time 3 -year-olds. The decline in the average weight of the striped bass making up the annual catches by seine at Point Judith from 1930 to 1936 is quite

Figure 7.-Arerage weight of the striped hass making up the annual catches hy seine at Point Judith, R. I., $192 s-37$ (see Table 0 for original data).
striking, the drop in this period being from an S-pound average to a 2 -pound average (see fig. 7). European investigators have shown a similar decline in the average annual weight making up the catch following man's intervention on a virgin stock. Thus after the World War, when the North Sea fisheries began to operate again, the larger size-categories were removed first, and in each succeeding year the catch was made up of fish of a smaller average size. In the case of the striped bass, however, the general decline in the average weight from 1930 to 1936 cannot be explained
in the same manner. This is so because although this particular seime fishery at Point Judith was a new one, it was not operating on a virgin stock, for the striped bass is a highly migratory species and is the object of intensive fisheries of different types along the entire Atlantic coast. A more logical explanation is that this downward trend in annual average weight over this period was brought about by the decreasing numbers of large fish that formed the remnant of a dominant year-class produced some years before. That there was a definite decrease in the proportion of large fish making up the catch from 1930 to 1936 is evident from figure 31, in which the percentages of small, medium, and large fish taken in each year are shown. The peak in the annual average weights at 1930 (fig. 7) was caused by the comparatively great numbers of large fish that made up the catch. Thereafter the composition of the yearly catch showed a decrcasing percentage of fish from the larger size-categories (except in 1935). It seems logical, therefore, that a fairly good remmant of a dominant year-class, whose members had attained a large size, existed in 1930, and that in each successive year this remmant became increasingly smaller, thus producing the downward trend in the annual average weight of hass making up the catch in these years. The sharp drop in average weight in 1936 was primarily due to the appearance of the 1934 dominant year-class in the commercial catch.

Figure 8.-Numbers and sizes of striped bass making up the annual catches by scine at Point Judith. R. 1.. 1928-37. The left column in each year is for Apriland Alay, and the right column for June to November. The fishing iutensity bas been equalized throughout.
The tremendous numbers of 2 -year-olds in this year is well shown in fig. 8. It will also be noticed that there was an exceedingly small percentage of large fish in this year. The increase in anmal average weight in 1937 was due to the imerease in size of the members of the 1934 dominant yun-chass-at this time 3 -year-olds. If no other dominant year-class comes along for a considerable period of years, it is to be expected that the ammal average weight of the striped bass making up the yearly catch will climb steadily to a cortain linit, i. e., until the numbers and larger size of the striped bass born in 1934 become insufficient to increase the average weight of the individuals making up the entire catch. If the production of young then continues at a low level, the annual average weight should show a steady decline until the members of another dominant year-class attain sufficient size to start it on an upward trend again. It seems likely that it is the latter part of this cycle that is shown in figures 6 and 7 .

The question of precisely what caused the appearance of the dominant year-chass of 1934 is of especial interest. Judging from the catch records shown in figures 4, 6, 7 and 8 , there can be little doubt that this year-class represents the largest production of striped bass on the Λ tlantic coast in the past half century or more. Yet it is apparent, as las been pointed out, that the parental stock in 1934 was probably as small as it ever as been (see figs. 4, 6, and 8) (the catch in northern waters can be used as an indication of the size of the stock from Massachusetts to Virgibia since this species is highly migratory within these limits). It would seem, therefore, that the production
of a dominant year-class of striped bass is in no way dependent on the presence of a great number of mature individuals. It is thus necessary to look to other factors for the explanation of this phenomenon. Russell (1932) has pointed out that especially large dominant year-elasses were produced in the North Sea in 1904 simultaneously by three different species-herring (Clupea harengus), cod (Gadus morhua ${ }^{6}$), and haddock (Melanogrammus aeglefinus). It would seem from this evidence that environmental factors apparently play some part in producing these exceptional year-elasses. Russell (loc. cit.) has also mentioned the fact that ". . . there is no necessary connection between the number of eggs produced in a particular spawning season and the amount of fry which survives," and it is apparent that environmental factors are most effective in determining the pereentage of survival. This is probably especially true in a speeies with pelagic eggs, a category to which the striped bass essentially belongs (see p. 18). Since the striped bass is anadromous, anything that might affect the rivers in which this speeies spawns, and the areas in which the eggs hatch and the larvae develop, is worthy of consideration. Unfortunately, the only records that are available are meteorologieal. Attempts have been made to correlate both temperature and precipitation, since either is capable of seriously influencing the regions where spawning and early development take place, with the prominent peaks shown in the catch records in figure 4. Such a correlation necessarily assumes that the peaks at 1894 and 1895, 1906, and 1922, represent dominant year-classes, and, as has already been mentioned, it is impossible to test the validity of such an assumption. It also takes for granted that these dominant year-classes were produced 2 years before, since striped bass first make their appearance in the commereial cateh as 2 -year-olds. In the case of the peak at 1936, it is definitely known that a dominant year-class was present, and it is further known that the fish that produced this peak were born 2 years before, in 1934. Figure 9 shows the deviations from the mean temperature from 1880 to 1935 at Washington, D. C., for February, March, April, and May. Washington

Figure 9.-The deviations from the mean temperature for February, March, April, and May, 18s0-1935, at Washington, D. C. The hack columas on the base line indicatc the years when exceptionally good catches of striped hass were made, and the arrows connect them with the temperatures 2 years before, when in all probability, dominant year-classes were produced.
D. C., was ehosen because it is in the general latitude of the majority of the important spawning areas for striped bass. The 4 months from February to May were chosen because May is the main spawning season (sce below), and because temperatures over this period may well affect the river temperatures as late as May and thereafter. It will be seen from figure 9 that the peak years in the catch record in figure 4 invariably correspond with a below-the-mean temperature 2 years before. It seems likely, therefore, that dominant year-classes in the striped bass are produced only on a subnormal temperature. On the other hand, a low temperature during the late winter and spring months does not necessarily cause the production of \mathfrak{a} dominant year-elass. There are undoubtedly other factors which must concatenate with a subnormal temperature to bring about such a production. It is impossible to state what thesc factors are, but examination of the precipitation records shows that there is no correlation between rainfall and the dates 2 years before the peaks at 1884 and 1885, 1906, and 1922, shown in figure 4. The inverse correlation between temperature and this cateh record, however, is good. The coefficient of correlation for the entire cateh record (1884-1937) and the temperature over this whole period is -.354 , which is significant to the 1 percent level. It is thus highly probable that the production of dominant year-classes in the striped bass is quite closely associated with low temperatures.
"The spelling "morhua." instead of "morthua" as used by most recent authors, is in keeping with Schultz and W"elander (1935).

In conclusion, it may be said that there is every evidence that over a long-term period the abundance of the striped bass of the Atlantic coast has shown a sharp decline. Dominant year-classes have at times temporarily raised the level of abundance, but the intensity of the fishery is such that their effects have been short-lived. This is well shown in figure 4, where it will be noticed that the return to a state approaching the normal low abundance usually follows immediately after the appearance of a dominant year-class in the commercial catch. In the 19.34 year-class, however, the numbers of striped bass reached such enormous proportions that not only did the 2-year-olds of 1936 dominate the fishery, but the 3-year-olds of 1937 also formed the main part of the catch. None the less, the sharp decline in numbers of bass taken in 1937, as compared with those caught in 1936, is clearly evident, and there can be little doubt that the members of this dominant year-elass will be reduced within a few years--under the conditions of the present intensive fishery-to a point where they are negligible. The rate of remoral of the different age-groups of the striped bass by the fishery is shown in some measure by the percentage of returns of tagged fish. These pereentages are shown in tables 17-20, and 22. It is of interest that the extreme in percentage of recapture is seen in the case of 303 fish (predominantly 3-year-olds) tagged and released at Montauk, Long Island, N. Y., in late October 1937. Six months later over 30 percent of these tagged fish had been recaptured. Furthermore, it is not reasonable to expect that the percentage of tag returns gives a sufficiently great valuation of the rate of removal of the fish of different ages, for, among other reasons, no reward was offered for the return of tags, and it is undoubtedly true that many of the marked fish that were captured were never reported. It is roughly estimated that about 40 percent of the 2 -year-olds of 1936 were taken during their first year in the fishery, and that at least $25-30$ percent of the remaining 3 -year-olds were caught in 1937. This means that a minimum of 50 percent of the 2 -year-olds entering the fishery in the spring of 1936 had been removed by the spring of 1938, negleeting the effect of natural mortality. It thus becomes clear why dominant year-classes only raise the level of abundance over short periods, and why, in spite of the oceasional inereases in number, the general trend of the ammal catch of striped bass has been downward. Looking to the future, there is no reason to suppose that the increased abundance caused by the 1934 dominant year-class--luge as it was-will produce any lasting effect on the stock. It is more probable that the return to the normally low level of abundance, so characteristic of the years before 1936, will soon take place, and that only the production of another dominant yor-class will raise the population of striped bass to such unusually high numbers.

SPAWNING HABITS AND EARLY LIFE HISTORY OF THE STRIPED BASS

It is commonly stated in the standard iehthyolngieal references for the Athantic coast that striped bass are anadromous, spawning in the spring of the year from April through June, the exact time depending on the latitude and temperature (Smith, 1907, and Hildebrand and Schroeder, 1928). Most of the statements on the spawning of this species have been based on a series of papers in which S. G. Worth (1903 to 1912) discussed the problem of artificial propagation and presented many interesting sidelights on the various phases of spawning and early life history from his studies at Weldon, on the Roanoke River, N. C. Although most of the information in Worth's work is fragmentary, his observations are of value because there has been so little work on any part of the Atlantic coast to corroborate and amplify his statements. The work of Coleman and Scoficld (1910) and Scoficld (1931) on the Pacific coast indicates that striped bass spawn from April through June in the low-lying delta country adjacent to Suisun Bay, Calif., where the water borders between brackish and fresh.

The presence of young fry and small striped bass in the brackish waters of large rivers of the Atlantic coast offers proof that this is an anadromous species, and the absence of juvenile and yearling bass along the outer coast indicates that this species does not undertake coastal migrations until they are close to 2 years old. Thus

Mason (1882), Throckmorton (1882), Norny (1882), and Bigelow and Welsh (1925) present interesting accounts of baby bass being taken in various rivers along the coast in the past (Navesink River, N. J.; Wilmington Creek, Del.; Kennebee River, Maine). Hildebrand and Sehroeder (1928) record them as being taken in Chesapeake Bay during the summer months, and Dr. Vadim D. Vladykov, while working on the survey of anadromous fishes for the State of Maryland, also took many juvenile striped bass $5-10 \mathrm{~cm}$. in length on the eastern shore of Chesapeake Bay during the summer of 1936. More recently juvenile bass have been taken in the Hudson River by the New York State Conservation Department, and in the Parker River, Mass., by the author (p.17). There is also some evidence, from the reportcd capture of baby bass, that isolated spawning areas still exist as far north as Nova Scotia.

There can be little doubt that striped bass in early times entered and spawned in every river of any size, where the proper conditions existed, along the greater part of the Atlantic coast, and that as eities were built and dams and pollution spoiled one area after another, the number of rivers that were suitable for spawning became fewer and fewer. At the present time there is every indication that by far the greater part of the production of striped bass along the Atlantic coast takes place from New Jersey to North Carolina, and that the addition to the stock from areas to the north is so small as to be almost insignificant and of little consequence. Thus in Connecticut, where there is much evidence-from the statements of old-time fishermen-that striped bass used to spawn, there is now every reason to believe that spawning seldom if ever occurs. During the entire course of this investigation the author has tried innumerable times in different localities to find juvenile striped bass in Connecticut waters, for since the juveniles are found close to or in arcas where the adults are known to spawn, their presence in Connecticut waters would have indicated the probability of spawning occurring nearby. These efforts never met with any suceess. Most attention was centered on the Niantic and Thames Rivers, especially the latter, because accounts of baby bass having been caught there within the last 50 years are more numerous than for other regions. Areas similar to those where small bass were taken in the Hudson River in the summers of 1936 and 1937, as well as many other likely localities, have been worked with minnow seines and small-meshed trawls that were efficient cnough to catch large numbers of young fish of many other species and occasionally even adult striped bass. However, the smallest striped bass taken in Connecticut waters was a small 2 -year-old which measured 23 cm . (9 inches). If spawning occurred to any great extent, small fish $3-8 \mathrm{~cm}$. long, comparable to those caught in other areas in the summer, would most certainly have been found. Plankton and bottom hauls taken at weekly intervals in the Niantic River in an area where bass were known to be present from April through November 1936, have failed to reveal the existence of anything that might be construed as evidence that striped bass spawn there. Further than this, not a single ripe fish of this species has been taken by the author in the course of this investigation in Connecticut waters, although many thousands of bass have been handled at all times of year save the winter months. Inquiries among commercial fishermen in New England and Long Island waters show that ripe striped bass have been caught so rarely and at such irregular times in recent years that their presence can be considered nothing more than abnormal. The fact that large fish that showed no signs of even approaching ripeness were commonly taken in the Niantie River during the spring and early summer months, when bass are known to be spawning in other areas, suggests that this species is not necessarily an annual spawner. The impression from the available information is that spawning does not occur in the region investigated, although it is possible that other Conneeticut waters provide proper breeding grounds.

Despite the fact that there is no evidence that striped bass spawn in Connecticut waters at the present time, studies in recent years have diselosed two probable spawning areas in other northern waters. In 1936 the New York State Conservation Department took large numbers of juvenile striped bass in various localities on the Hudson River from Beacon downstream. A length-frequency curve of these fish is
shown in figure $10 .^{7}$ Curran and Ries (1937) in describing the capture of juvenile striped bass in the Hudson River, say:

During the survey few adults but many juvenile striped bass were taken throughout the stretch of river from the eity of Iludson to New lork. Collections of young for the year were taken first on July 20 in Newbirgh Bay. At this time they were 2 inches in length and later study of their scales proved that they were 1936 fish. From Newburgh to Yonkers, about 35 miles dorinstream, they were found in considerable numbers. Gravelly beaches seemed to be the preferred habitat as few were taken over other types of bottom. In night seining over the gravel they were found to be associated with herring and white perch while daytime hauls showed the herring replaced by shad. Nearly every seine haul in which young striped bass were caught brought in white perch as well.
The chlorine as ehlorides ranged from 10.0-8,560.0 parts per million (water of low salinity) over this stretch of the Hudson River (Biological Survey (1936), 1937). Larger individuals-up to 2 pounds- have been taken in the Ifudson as far up as Albany. There can be little doubt, therefore, that the Hudson River is a spawning area for striped bass. Their eapture by commercial fishermen in April and May in this region, and the not uncommon reports of ripe individuals at this time of year, is added evidence that spawning takes place in the spring in water that is at least braekish and perhaps entirely fresh.

On August 4, 1937, the author took three small striped bass in the Parker River, near Newburyport, Mass. These fish were $7.1,7.6$, and 8.5 cm . long, and subsequent

Figure 10.-Length-frequeney curve of juveaile striped bass from the 11 udson Rirer, July 3 to Stpt. 1. 1936. The number of fish making up this curve is 628 . The data have been smoothed hy threes. The great majority of these fish were taken in late August (see Table 7 for uriginal measurements).
examination of their seales showed them to be jureniles. They were takeu about 6 miles from the mouth of the river and about 2 miles below the Byfield Woolen Mills, where a dam prevents anadromous fishes from going further upstream. The bottom, on which these fish were seined was mostly mud and sand, with little gravel and a few scattered rocks. The salinity at this point was 10.23 parts per 1,000 , and the water temperature at the surface was $25.5^{\circ} \mathrm{C}$. and at the bottom $24.5^{\circ} \mathrm{C}$. (ebb tide, one-third out). The depth of the river in this area at this time was 8 feet, and the width $40-50$ feet. Other fish found in association with these juvenile striped bass were juvenile white perch (Morone americana), and various Clupeoid species; snapper bluefish (Pomatomus saltatrix) were also included in seme hauls in this recrion. The Parker River is free from pollution and is strongly tidal all the way to the Byfich Woolen Mills, where a large amount of fresh water empties into it, particularly in the spring. From this point down, the river winds through the Rowley marshes and eventually empties into Plum Island Sound. It has steep sides, and the rise and fall of the tide along the better part of its length is 5-6 feet. The failure to eateh more small striped bass in this river, despite several attempts, is probably best explained by the great difficulty of seining in such an area. The steep sides of the banks and the fast tidal current both make it next to impossible to handle a seine efficiently along

[^3]this river. The eapture of only three juvenile striped bass, however, is significant, and probably indicates that striped bass spawn in the Parker River. Added evidence that this is a spawning area is seen in the fact that striped bass are known to winter in this river, as is shown by their capture through the ice by bow-net fishermen. It is considered likely that this is an example of an isolated spawning area in northern waters, supported at least in part by a resident population, and possibly added to by migrants from the south in exceptional years. Although this is the northernmost point from which juveniles have been definitely reported in recent years, there can be no doubt that they were commonly taken in the coastal rivers of the Gulf of Maine in old times (Bigelow and Welsh, 1925), and there is good reason to believe that other isolated spawning areas still exist north of Cape Cod.

Another area in which juvenile striped bass were taken was in the Delaware River, near Pennsville, N.J. On November 8, 1937, the author was present when the game protectors for the State of New Jersey Board of Fish and Game Commissioners took 104 small striped bass from the intake wells of a large power plant on the Delaware River, where fish of all sorts are regularly trapped against the screens by the strong flow of water, and are removed and liberated in other regions. A length-frequency curve of this material is shown in figure 11. The examination of scales from these fish showed that the bulk of this sampling was composed of yearlings, and that only a few juveniles from about $9.0-12.5 \mathrm{~cm}$. long were present. It is considered probable, therefore, that the Delaware River region, including some of the smaller streams that enter Delaware Bay, forms another area in which striped bass spawn.

Figure 11.- Length-frequency curve of juvenile and yearling striped hass taken in the Delaware River, near Pennsville, N. J., on Nov.8, 1937. The number of fish included in this graph is 104. The data have been smoothed by threes (see Table 9 for original measurements).

It has long been known from the observations of Worth (1903 to 1912) at Weldon, N. C., that striped bass spawn in the Roanoke River. The main observations on the eggs and larvac of the striped bass that are recorded in the literature for the Atlantic coast are taken from Worth's papers, and were made during the time that he condueted a hatchery at this point. Bigelow and Welsh (1925) sum up the available information as follows:

The eggs (about 3.6 mm . in diameter) are semi-buoyant-that is, they sink but are swept up from the bottom by the slightest disturbance of the water-and this is so prolifie a fish that a female of only 12 pounds weight has been known to yield $1,250,000$ eggs, while a 75 -pound fish probably would produce as many as $10,000,000$. The eggs hateh in about 74 hours at a temperature of 55°; in 48 hours at 67°.
In recent years the hatchery at Weldon has again resumed operations, thus affording an excellent chance for the study of the eggs and larvae of the striped bass. Others have already accumulated detailed information on this subject (Pearson, 1938), and the following material (from data collected in 1937 and 1938) included herewith, is therefore nothing more than a brief account of some of the more interesting highlights of the spawning and early life history of the striped bass.

Spawning in the Roanoke River normally oceurs in April and May, although occasionally there are a few stragglers that appear as late as June. It is probable that spawning takes place over a goodstretchof theriverfrom Weldondown. (Weldon is over 75 miles by river from Albemarle Sound.) At Weldon the river flows about 4 miles an hour, and is approximately 100 yards wide. Water samples taken on March 29, 1937, showed the chlorinity to be less than 5 parts per million (fresh water), the pH 7.7 , and the alkalinity 53.1 estimated as milligrams of bicarbonate per liter.

In 1938 the first spawning striped bass were taken at Weldon on April 11, and by May 10 spawning was apparently completed and the fish had left this locality. This was an unusually early and short spawning season, probably due to the abnormally high temperatures during this time. From April 29 to May 11 the water temperature averaged well over $70^{\circ} \mathrm{F}$. ($21.11^{\circ} \mathrm{C}$.) and at one time reached $77^{\circ} \mathrm{F}$. ($25.0^{\circ} \mathrm{C}$.). During the spawning season it is a quite common occurrence to see the so-called "rock-fights"' deseribed by Worth (1903), and well known to local fishermen on the Roanoke River. These consist of a great number of small males, 1-3 pounds in weight, and apparently only a single female, appearing on the surface and causing a tremendous commotion by splashing about and creating general confusion. The activity is said to be so great that the fish often injure one another quite seriously, and fishermen who catch striped bass when they are "in fight" attest to this fact and to the number of small males, $10-50$ as a rule, that take part in such a display with a single female of from 4-50 pounds. Whether or not this is actually part of the spawning act or a form of courtship does not seem to be definitely established, but general opimion favors the former view. There can be little doubt that the spawning fish at Weldon are composed mainly of males, the females probably never making up as much as 10 percent of the population. In May 1938 the examination of 127 individuals taken at Weldon showed but 6 of them to be females, and much the same sex ratio was found to obtain farther down the Roanoke River at Jamesville, N. C.. at the same time.

There is no reason to doubt the accuracy of Worth's estimates of the number of eggs produced by a single female striped bass. Records kept at the batchery at Weldon during 1928, 1929, 1931, 1932, 1937, and 1938, show that the number of eggs per female varied from 11,000 to $1,215,000$ in a total of 111 individuals examined in this time. The majority of these fish yiclded from 100,000 to 700,000 eggs each. Unfortunately the weights of the individun fish on which these counts were made were not taken, but a single female weighing $4 / 2$ pounds, taken at Weldon on May 4 , 1938, produced 265,000 eggs.

The eggs of the striped hass average about $1.10-1.35 \mathrm{~mm}$. in diameter when they become fully ripe, and at the time that they are extruled into the water. During the first hour after fertilization the vitelline membrane expands tremendously, thus ereating a large perivitelline space. Measurements on a scries of 50 eggs that were preserved 1 hour after fertilization in a solution of 7 percent formaldehyde gave an average measurement of 3.63 mm . in diameter, the extremes being 3.24 and 3.95 mm . Eggs similarly preserved at longer time-intervals after fertilization showed the same general measurements. So far as one can judge from preserved specimens, the description given by Bigelow and Welsh (loc. cit.) of the eggs as being semibuoyant fits perfectly. These eggs are undoubtedly swept far downstream by the strong current, and the protection against injury by jarring afforded by the large perivitelline space is probably of no small consequence in the survival of the developing cmbryos. The speed of development and the time to hatching is of course dependent on temperature. At $71^{\circ}-72^{\circ} \mathrm{F}$. $\left(21.7^{\circ}-22.2^{\circ} \mathrm{C}\right.$.) hatching oceurs in about 30 hours, while at $58^{\circ}-60^{\circ} \mathrm{F} .\left(14.4^{\circ}-15.6^{\circ} \mathrm{C}\right.$.) hatching normally takes place in about $70-74$ hours. In view of the fast current in the Roanoke River, and the rate at which the developing eggs are carried downstream, it is reasonable to assume that hatrhing probably does not take place until they are close to the month of the river or even in Albemarle Sound. Figure 12 shows the different stages of development of striped bass egges and larvae that were reared in the hatchery at Weldon, N. C. These egres were fertilized artificially and held at a temperature of $70^{\circ}-72^{\circ} \mathrm{F}$. ($21.1^{\circ}-22.2^{\circ}$ C.). The photographs of the eggs were taken from above looking down. A side. view would in reality show that the yolk, with the developing embryo and oil globule, lies at the lower pole of the whole egg as it floats normally in the water. The single large oil globule which is imbelded in the surface of the yolk always lies uppermost, and the blastodise appears on the side of the yolk in an area that is approximately at a 90° angle with the oil globule-not just opposite the oil globule on the lower pole as Wilson (1891) has shown for the sea bass ("Serranus atrarius"- Wilson, loc. cit., now called Centropistes striatus). Hatching occurred in 30 hours in the lot under observation, and it will be seen in figure 12 (F) that $6 \frac{1}{2}$ days later the yolk sac was almost completely absorbed.

To the author's knowledge, the smallest striped bass that have ever been taken in their natural habitat were seined along the shore of Albemarle Sound from Mackeys to Rea's Beach, N. C., on May 11, 1938. Since the first spawning fish were taken on April 11 in this year at Weldon, it is likely that these individuals were not more than 1 month old. A length-frequency curve of the 85 juveniles taken at this time is shown in figure 14, and it will be seen that they ranged in size from 1.9-3.1 cm. , the peak falling at 2.7 cm . The growth of the striped bass from this age on is further discussed in a later section.

In gencral, then, it may be said that all the evidence points to the fact that the striped bass is anadromous, spawning in the spring of the year, the exact time probably depending on temperature and latitude. It is not definitely established, however, how high a salinity the eggs and larvae of bass will tolerate. Considering the wide variation in the type of river in which bass are known to reproduce, it does not seem unlikely that spawning may at times take place successfully in areas where the water is at least strongly brackish and perhaps even strongly saline. Worth (loc. cit.) first noticed that in raising artificially fertilized eggs of striped bass, an apparatus similar to MacDonald jars-in which the eggs are kept in a strong circulation of water-was necessary in order to get a high percentage of nornal development. It would seem, therefore, that a fairly strong current is probably essential for the development of the eggs, but that this may be either tidal, such as that in the Parker River, Mass., or mainly fresh water, as in the Roanoke River. Some possible evidence that spawning does not neeessarily always take place in waters of extremely low salinity is provided by the irregular and inconstant manifestation of what appear to be distinet spawning marks on the scales of moture striped bass (see p. 24), for it is generally assumed that such marks are only found on fish that enter fresh water. It would be logical to expect that if all striped bass entered fresh water for spawning purposes, spawning marks on the scales would be more common than they actually are. Such spawning marks are, of course, particularly well-known on seales from salmon (Salmo salar), which do not feed to any great extent during their sojourn in fresh water for spawning purposes, and whose scales are probably partially resorbed during this period, thus forming the characteristic spawning mark. It should be pointed out, however, that striped bass undoubtedly do not stop feeding to the same extent or for a similar length of time during spawning.

SEX AND AGE AT MATURITY

It is impracticable to get large quantities of striped bass for sex determinations and stomacli-content analyses anywhere along the Atlantic coast. This is so because this fish is almost universally shipped to market, and frequently even sold to the individual customers, without being cleaned; hence it was not possible to examine the body cavities in large numbers in the wholesale markets. Since there is no valid method of determining sex without inspecting the gonads, the collection of quantitative data on this phase of the work was necessarily limited to the study of fish canght on rod and line by sportsmen and cleaned by the author, to a number of small random samplings of bass that were seined during tagging operations, and to a few fish that were examined on different markets as they were being sold.

A total of 676 striped bass eaught in northern waters (Long Island and New England) from April to November 1936 and 1937 were examined for sex. These fish ranged in size from 25 to over 110 cm ., and in age from 2 years old to over 12 years old. Of these 676 fish, only 9.7 percent were males. One hundred and eightythree of them were 3 years old or more, and only 4.4 percent of these were males. No males above 4 years old have been found in northern waters. The remaining 493 fish examined were 2 -year-olds, 11.8 percent of which were males. Although the number of fish examined for sex is too small to permit any final conclusions, there is little doubt that the number of males in northern waters seldom reaches much over 10 percent of the entire population. And the evidence so far is that the percentage of males is greatest among the 2-year-olds-that age at which this species first undertakes the migration from further south (see p. 44), and appears in large quantities in northern waters; the percentage of males apparently decreases in the age categories above the 2-year-olds.

F

 days after liatching.

A

Such a disproportionate number of females to males is of course most unusual, and it scems unlikely that this condition prevails among the total population of the Atlantic coast. The examination of 29 small bass from Delaware Bay in November 1937 showed approximately 45 percent were males. A sample of 126 bass ranging in size from 21 to $42 \frac{1}{2}$ cm., from Albemarle Sound, N. C., in Nareh and April 1938 was composed of 31.7 percent male fish. There is also evidence that the composition of the spawning populations of striped bass is predominantly male (p. 19). A theoretical explanation of the strikingly low percentage of males in northern waters is included in the section under migrations (p.44).

In studies of the age at maturity, miscroscopic examination of the gonads presented the most plausible method of procedure in northern waters. The fact that ripe ${ }^{8}$ individuals were not available in Connecticut precluded the possibility of studying the age groups making up a spawning population. Gonads from 109 female striped bass ranging in size from 32 to 110 cm . were collected at various intervals from April through November 1936 and 1937. Of these, 46 were fixed in Bouin's fluid and slices from the anterior, middle, and posterior region of each one were cleared in toluene. ${ }^{9}$ These were sectioned, stained with Delaficld's hematoxylin and cosin, and mounted. Samples of up to 50 ova from each of the three regions of the gonads from which slices were taken were then measured by means of an ocular micrometer. It was soon found that samples from the anterior, middle, and posterior parts of each ovary contained eggs of the same general sizes, and that there was no significant difference between the ova of these regions, no matter at what stage of development the gonads were. Thereafter only sections from the middle of each orary were studied. The remaining 63 ovaries from striped bass collected from April through November 1936 and 1937 were preseryed in a solution of 10 percent commereial formalin and water. Slices from the middle of each one of these gonads were then macerated mechanically, until the eggs either floated free or could be easily teased from the surrounding epithelinm. Eamples of up to 50 ova from each ovary were then measured under a dissecting microscope ly means of an ocular micrometer. The measurements on the eggs from 109 ovaries by these 2 methods gave comparable results throughout.

A study of the measurements of the ergs from striped bass of differme sizes almost immediately revealed that there were two easily distinguishable typers of oraries. (See fig. 13.) The first type had eggs whose diameters consistomly averaged 0.07 mm . There were occasionally eggs as large as 0.18 mm . in dinmeter, but more commonly the largest eggs measured 0.11 mm . The sceond type contained egge of two definite size categories; there were small eggs of the same size as all those that were seen in the first type of ovary, ayeraging 0.07 mm . in diameter, and there were large eggs averaging 0.216 mm . in diameter or greater, the extreme size that has licen encountered being 0.576 mm . It is a reasomable assmmption, especially in view of Scofield's (1931) work, that those ovaries containing only small eggs represent immature fish, and that those oraries having eggs of both small and large size come from fish that are mature, in the sense that the large eggs are those that will be produced the following spawning season. A possible criticism of this assumption is that part of the material camined might have been composed of ovaries from fish that had just completed spawning, and that such ovaries might, therefore, contain only eggs of the small size. On the basis of the distinction between mature and immature individuals proposed above, these fish would then be considered immature, a conclusion that would be entirely erroncous. There is no evidence, however, that ovaries from fish that had completed spawning immediately before were included in the material. It has already been pointed out that spawning individuals were not found in the waters from which this material was collected, and it is most unlikely that any freshly spawned bass were studied for the purpose of determining the age of maturity. Moreover, by far the greater part of the collection of gonads of striped bass of different sizes took place in the summer and fall, by which time spawning is known to be long since past. Another possible criticism of this method of determining the age at maturity of striped bass is that some of the material may have come from fish that were not spawning the following year, for this species is not necessarily an annmal

[^4]spawner (see p. 16), and might therefore not have contained eggs of the larger size although the fish were mature. It is considered unlikely, however, that any serious error in the results is introduced by this means.

The results from this method of studying the age at maturity indicate that approximately 25 percent of the female striped bass first spawn just as they are becoming 4 years old, that about 75 percent are mature as they reach 5 years of age, and that 95 percent have attained maturity by the time they are 6 years old. The average lengths of individuals of these sizes are discussed in the following section (p.30), and table 10 gives the results of determining the age at maturity of 109 female striped bass of known length by measurements of the diameters of the ova.

The examination of spawning individuals in North Caroling in the spring of 1938 gives added evidence on the age at which female striped bass first spawn. Scale samples from 25 fully ripe females of measured length (43 to $78 \frac{1}{2} \mathrm{~cm}$.) were collected in late April and carly May. The smallest of these fish was 43 cm .-a bass that was just becoming 4 years old, but was somewhat smaller than the average individual of this age. There were also 5 other individuals from this lot of 25 mature females that were the same age as this smallest fish. Of the remaining 19 fish, 16 were just reaching 5 , 6 , or 7 years of age, while the other 3 were 8 or 9 years old. During the period when these mature females were encountered, a great many hundreds of smaller females

FIGURE 14.-A length-frequency curve of 85 juvenile striped bass taken in Albemarle Sound on May II, 1938. Data smoothed by threes (see Table 9 for original measurements).
from 1 to 3 years old were handled, but none were ever found to be ripe, thus offering further proof that female striped bass do not arrive at maturity until they reach at least 4 years of age.

Male striped bass, on the other hand, become mature and first spawn at a much earlier age. A total of 303 ripe males were encountered in late April and carly May in the Albemarle Sound regrion in 1938. The smallest of these was 21.5 cm . long and was just becoming 2 years old, although it was unusually small for a fish of this age. The largest was 51.5 cm . long, and was just becoming 5 years old. Of the 303 ripe males examined, 150 were just becoming 2 years old, and all the remainder, except the largest individual mentioned above, were becoming either 3 or 4 years old. It thus becomes apparent that a large percentage of male striped bass are mature at the time they become 2 years old, and it is probably true that close to 100 percent are mature by the time they become 3 years old. (See Vladykov and Wallace, 1937.)

AGE AND RATE OF GROWTH

It has been well established in an ever increasing number of species of fish that scales, since they present more or less concentric rings or annuli, may be used for age determinations. It is generally assumed that the formation of a true annulus is caused by the slowing down or almost complete cessation of growth in the winter, resulting in the arrangement of the circuli so that an annulus appears. Actually, in the striped bass, the annulus does not appear in the winter and only becomes evident by April or May. Further than the determination of age, scale analysis has other vitally important applications in studies on the life histories of fishes. It can be used for growth calculations, is often a method for determining the geographical
point of origin of individual fish, and provides a means of studying migrations-e. $\underline{\text { a }}$, in salmon, Salmo salar (Masterman, 1913), and herring, Clupea harengus (Dahl, 1907)-age at maturity, and the number of times spawning occurs in different individuals.

In the case of the striped bass, there had been no previous work on the Atlantic coast to determine the validity of the scale method for age and rate of growth studies, although Scofield (1931) had applied it successfully on striped bass in California. The preliminary examination of scales immediately disclosed the presence of distinct annuli, which were increasingly numerous, the larger the fish from which the seales were taken. Moreover, the number of annuli were normally constant on different scales taken from a single individual. Also the scales taken from 17 fish that were tagged in 1936 and recaptured from May to September of 1937 invariably showed that the formation of an added annulus had taken place in the winter intervening between the dates of release and recapture. In view of this and much other evidence, it seemed that the scale method was definitely applicable to the striped bass.

During the course of the investigation seale samples were taken from approximately 7,000 striped bass of measured length. Over 5,000 of these samples have been mounted and studied. It is essential that all scales be taken from the same area on the different fish if they are to be used for growth-rate studies, for the shape and size of scales from different regions of the body vary to a marked extent and thus seale measurements can only be considered comparable if the samples are homologous.

Figure 15.-Diagrammatic sketch of a striped bass scale to show parts and method of measurement.
Hence all scales were taken from the first or second white stripe above the lateral line in the mid-region of the body directly below the gap between the spinous and soft dorsal fims, for it was found that seales from this area were more consistently suitable for study than those from any other place. A single sample generally consisted of 4 or 5 seales.

Length measurements of all striped bass were made from the tip of the lower jaw to the fork in the center of the caudal fin, for it became evident in handling live fish which were being tagged that measurements of this type were the easiest to make and the least subject to error. All lengths given in this bulletin are to the fork in the tail, unless otherwise specified. Figure 16 is a graph for the conversion of different types of length measurements. A flat measuring board with vertical head-picee was always used, and measurements were made to the nearest half centimeter.

Scale samples were prepared for study ly two different methods. The first 600) were mounted on standard 3 - by 1 -inch slides with $\%$-inch corcr-slips, the mounting medium being corn sirup. All the remaining samples were prepared by taking the impressions of the finely seulptured outer surfaces of the scales on transparent celluloid. Lea (1918) first showed with herring scales:

[^5]Lea produced casts, or imprints of the outer surfaces of seales in thin celloidin films and found them ideal for study. Nesbit (1934a) devised an efficient method of pro-
ducing scale impressions that was fast and at the same time gave accurate results. This method has been applied with complete success to striped bass scales. Transparent celluloid, acetate base, was obtained in sheets 20 by 50 inches and 0.050 inch thick. It was cut into pieces 1 by $2 \frac{1}{2}$ inches so that over 100 fitted in an ordinary wooden slide-box of 25 -slide capacity. The seale-sample numbers were written on each slide with Volger's Opaque Quick-Drying Ink. The surface of a slide was then softened slightly by spreading a thin film of acetone over it with a glass slide, and the scales making up that particular sample were placed outer surface downward on the area that had been moistened with acetone. The slide and scales were next subjected to pressure under a reinforced seal press having a die approximately $11 / 4$ inches in diameter. The scales were then removed and the impressions of their outer surfaces were left clearly imprinted on the slide. Measurements on 50 scales from striped bass of all sizes were made before they had been subjected to pressure, and then the impressions of these same scales on transparent celluloid were measured; there was no significant difference in the two measurements. Thus it is clear that no stretching takes place in the scale impression method described above. The advantages of this method are threcfold: (1) The cast of the outer surface is easier to

Figure 16.- Diagram for the conversion of different types of length measurements.
study than the scale itself because the light does not have to penetrate the fibrillar layers of the scale to show the desired marking; it is also better for photographic purposes. (2) The method is much faster. (3) The cost is far less.

All scales, or scale impressions that were studied for age determinations, or on which measurements were made, were first examined under a dissecting microscope, a magnification of about 20 times being satisfactory for most purposes. Those that were measured were then placed in a micro-projection apparatus and the necessary measurements were made on the image, which was magnified 13.75 times.

The problem of interpreting annuli correctly at all times in scales from striped bass is somewhat complicated by the occasional presence of accessory, or false ammli. Usually, however, these false ammuli are different in structure, so that they are quite often easily recognizable. The false annuli are mainly of two types. The first is a broad accessory anmulus that is scarlike in its appearance and is frequently seen on scales from larger fish, extremely rarely on those from smaller individuals 2 or 3 years old. This type of mark invariably appears just outside a true annulus or in close conjunction with it. It seems likely that these are spawning marks, since striped bass are anadromous and spawning occurs in the spring near the time of the formation of a true annulus (pp. 20 and 22). The second type of false annulus has much the same appearance as a true annulus, but is distinguishable on close examination by the
character of the circuli that border it. This type occurs most commonly on scales that overlap a regenerated scale. It appears that the process of regeneration in a scale modifies the growth of adjacent scales sufficiently to form false annuli on the latter. This type was observed frequently, particularly on scale samples from tagged fish that had been recaptured and had regenerated scales in the area from which a sample was taken at the time of their original release. Regenerated scales were common in all samples, often forming at least 10 percent of those examined. Sometimes entire samples had to be discarded because there were no scales that were not regenerated. Up to 15 percent of the samples have been rejected on rave occasions because of false annuli, regenerated scales, and other factors which made the age determinations and scale measurements subject to serious errors. Seales from larger striped bass were found to be much more difficult to read for age than those from smaller individuals. Not only did the first annuli become indistinet, but there wer likely to be more false anmuli so that age determinations were confusing. For this reason growth ealculations by the scale-measurement method have been confined to fish less than 5 years old. Particularly on scales from fish over 8 years old it was almost impossible to be sure that the age reading was correct, and on fish of this size or larger it was only feasible to make approximations as to the age of each individual. As a cheek on age determinations of striped bass of all sizes the growth rings on otoliths have frequently been counted, and it was found that on individuals up to 3 years old this method was satisfactory. The opercular and subopercular bones have also been examined for annular markings, which were best seen after these bones had been cleared in a lanf-and-half mixture of 5 percent glycerine and potassium hydroxide. On the whole such markings were found to be indistinct and irregular, and did not constitute an adequate means of making age determinations.

Since the youngest striped bass taken in Connecticut waters during the course of the investigation were 2 years old, age determinations and rate of growth studies on juvenile and yearling fish were necessarily confined to material from elsewhere. The growth of the larvae has already been discussed under spaming habits and early life history ($\mathbf{p} .19$). The smallest juweniles that have beon taken in their natural habitat have also been described, and, as is shown in figure 14, these fish, which were not more than 1 month old at the time they were semed in Albemarle Sonnd. averaged about 2.7 em . in length. Figures 10° and 11 show the range in size of juvenile bass from the Hudson River, and of juwenile and yearling bass from Delaware Bay. It is apparent that juvenile striped bass in the Indsom averaged $5-7 \mathrm{~cm}$. in length by the middle of the summer (see fig. 10). The jurenile bass taken in Delaware Bay in November 1937 formed only asmall part of the curve shown in figure 11, the bulk of this sample being made up of yearling fish. The juveniles at this time, however, were from $9.5-12.5 \mathrm{em}$. long. Growth practically ceases in the winter, and when striped bass become 1 year old in the spring they average 11-12 cm. long. Six yearling individuals taken in the Iludson River in dily and August, 1936 and 1937, averaged 14.3 cm . (extremes $12.0-15.9 \mathrm{~cm}$.). The yoarlings in the Delaware Bay region (see fig. 11) averaged approximately 19 cn. in November 1937. By the time they become 2 years old striped bass are about $20-23 \mathrm{~cm}$. in length, and it is at this age that this species probably first takes any large part in the coastal migrations. It should be mentioned at this time, however, that even in juvenile and yearling striped bass there is a tremendous variation about the menn in the measurements of any age group at any one time, as can be seen from figure 11. The subject is further complicated since the populations under consideration were from different areas where in all probability slightly different growth rates occur. Thus the lengths given for striped bass of different ages throughout can only be rough approximations.

Fish 2 years old and older were sufficiently abundant to give ample material for growth-rate studies in Long Island and New England waters, particularly on the members of the dominant 1934 year-class. Figure 17 shows length-frequency curves of all striped bass measured in Connecticut waters from April through October 1936 and 1937. The prominent peaks that characterize these two curves are mainly marle up of the 2-year-olds in 1936 and the 2-and 3-year-olds in 1937, and they give some idea of the relative abundance of the members of the 1934 year-class. The measurements that make up these graphs come mainly from scined individuals, but they also come from fish that were caught on rod and line and in pound-nets. Although this
method of sampling the total population cannot be entirely free from error, it is probable that these curves represent the relative proportions of the different size- or agegroups to one another fairly accurately for the general region of the Niantic and Thames Rivers, Conn. The tendency of this species to school heavily, particularly among the smaller size-categories, thus making them more available and easier to catch, may have resulted in an over-emphasis on the relative numbers of the members of the 1934 year-class. And the fact that the larger fish tend to lie among the rocks in or near the surf, in places where they cannot be reached by seining, perhaps provides reason to suppose that these larger fish are not proportionately represented in these graphs. On the other hand, evidence from samplings of the striped bass population from commercial fishermen's nets in northern waters indicates that the 2 -year-

Figure 17.-Length-frequency curves of all the striped bass measured in Connecticut waters from April through October, 1936 and 1937. The data have been smoothed by threes throughout. See text for further discussion. See Table II.
olds in 1936 comprised over 85 percent of the stock available at this time (see fig. 8) and that the members of this year-class continued to dominate the population in 1937 in spite of the fast rate of depletion of fish of this age due to the highly intensive fishery (see figs. 5, 6, 7, and 8). Evidence from other samplings of the stock in northern waters in the summer of 1937 shows that the 2 -year-olds of 1937 are apparently represented too strongly in the length-frequency curve for this year (see fig. 17). It is difficult to account for the large proportion of 2-year-olds in the lower graph in figure 17, but it is clear that they were not relatively as abundant in 1937 in all northern waters (see fig. 5). It seems probable that the Niantic and Thames Rivers, where most of the fish that make up the length-frequencies in figure 17 were taken, are especially favorable for the smaller sized (2-year-old) bass.

The growth by months of the 2-and 3 -year-olds seined in Connecticut waters from June through October for 1936 and 1937 is shown in figure 18. It will be seen that the 2 -year-olds in June 1936 averaged about 29 cm ., and that there was a steady progression in the monthly modes through to October 1936 where the 2-year-olds were roughly $37-38 \mathrm{~cm}$. long. The 3 -year-olds in 1936 showed much the same type of growth, the modes of the monthly length-frequency curves for this age-group progressing from $40-41 \mathrm{~cm}$. in June to $48-49 \mathrm{~cm}$. by October 1936. The 2-year-olds of

1937 exhibited approximately the same amount of growth ($8-9 \mathrm{~cm}$.) from Junc through October as fish of the same age in 1936, but it will be noticed that they eonsistently averaged at least 2 cm . larger over this entire period. Thus the modes of the lengthfrequeney curves of the 2-year-olds of 1937 moved from 31 cm . in June to 39 cm . in October. However, the 3 -year-olds of 1937, although growing the same amount as fish of the same age in 1936 over an equivalent period of time, averaged 2 cm . smaller throughout, the modes moving from approximately 38 cm . in June to 46 cm . in October. The comparison of any of the monthly length-frequency curves in 1936 with its counterpart in 1937 elearly shows that the 2-year-olds in 1937 were distinctly larger than those of 1936 , while the 3 -year-olds of 1937 were definitely smaller than fish of the same age in 1936. The members of the dominant year-elass of 1934 (2 years old in 1936 and 3 years old in 1937) therefore appear to have been below average size.

FIGURE 18.-The growth of the $2-$ and 3 -year-old striped hass seined in Connecticut waters during 1936 and 1937. The eurtes aro smoothed in every case by a moving average of threes. The numbers of fish making up each curve have not been equalized except in that for Septemher 1936, where the total number of fish was divided by three. The dotted line in the June 1937 , length-frequency curves is a repetition of curve for the 2-year-olds in Octoher 1936, and is included for tho purpose of comparing the 2-year-olds of October 1936, with the 3-year-olds of June 1937 (members of the same year-class) (see Table 12 for orlginal measurements).
They were consistently smaller than the fish which were born in 1933 or 1935 were at equivalent ages; both the 1933 and 1935 year-classes were few in numbers by comparison to the dominant 1934 year-class. It is quite elear that this lesser average length of the members of the dominant 1934 year-elass developed before the individuals became 2 years old. The smaller sizes of the individuals making up this dominant age-group agree well with Jensen's (1932) studies on plaice (Pleuronectes platessa) in the North Sca, where it was shown that a strong year-class checks the growth of the fish in this age-group. Jensen (loc. cit.) also points out that the principle of the smaller-than-average size of the individuals making up a dominant year-class, at least in plaiee, also appears true from Thursby-Pelham's work, where it is shown that the rich year-elass of 1922 was distinguished by a small average length. This is explained by Jensen on the basis of inereased competition for food among the members of the
same size category. Other European investigators, however, have not found that the same phenomenon applies in other species of fish in the North Sea. It is possible that environmental factors, such as low temperatures in the spring and early summer of 1934, played some part in the smaller-than-average size of the members of the 1934 dominant year-elass of striped bass.

It will be noted in figure 18 that the growth rate of the 2-and 3 -year-olds in 1936 and 1937 was fairly steady over the period from June through October. In general, the modes of the length-frequency curres for the 2-year-olds progressed about 2 cm . each month. In October 1936, however, the 2-year-olds appear to have shown an increased growth rate, the mode for this curve having progressed $3-4 \mathrm{~cm}$. beyond that for September. In October 1937 the fish of this age did not exhibit a similarly increased growth rate, but the mode for this length-frequency curve progressed about 2 cm.-an amount about comparable to the growth during the summer months. Since the temperature fell sharply in late September and October in both 1936 and 1937 (see fig. 30), the normal expectation would be that the increase in length at this time would hare been less than in the summer months, assuming that the food supply remained constant over this entire period. There are a number of possible explanations of this apparently higher growth rate in October. There is some chance that errors in sampling were responsible. Thus it is known that the population was starting to change late in October (see Míigrations, p. 37), and there is a slight possibility that fish that had summered farther north, where they apparently grow faster despite somewhat lower average temperatures (see fig. 19) were included in the samples at the end of this month. This does not seem likely, however, for the consistent recapture of individuals tagged in this area from June through October gives good evidence to the contrary. Another explanation of the apparently greater growth rate in the fall is suggested by the skewness of the length-frequency curve for October 1936. It will be noted in figure 18 that in all curves for the 2 -year-olds, except that for October 1936 the peaks come about midway between the two extremes of the range in size, or below that point. In October 1936, however, the peak falls well above the midpoint between the extremes of size, and there is also a tendency toward the same situation in the curve for October 1937. It may be, therefore, that this apparently greater growth rate is possibly the result of "eompensatory growth," the name given by Watkin (1927) to the phenomenon of the smatler fish of a single age group making up a deficiency in size between themselves and the larger fish of the same age group in a relatively short period after having lagged behind for some time. The most probable explanation of the inereased growth rate in the fall, however, is that the food supply or its availability increased at this time. The analysis of the stomach contents of striped bass is discussed in a later section of this paper, but for the present it is interesting to consider the fact that this species is voracious in its feeding habits and that it preys on small fish, particularly young menhaden (Brevoortia tyrannus) and shiners (Menidia menidia notata) in Comecticut waters. Both of these species spawn in the spring and early summer, and during July the young are still so small and stay so elose to shore that they do not form a large part of the diet of the hass. But by late summer, and particularly early fall, they have increased in size to such an extent that they have added enormously to the a a vailable food supply. (For information on the growth rate of Menidia, see Food of the striped bass, p. 53, and fig. 36.) The analysis of stomach contents during September showed that striped bass continually gorged themselves on these small fish to the virtual exclusion of other types of food. Furthermore, judging from the relative numbers taken in seine hauls in 1936 and 1937, and from the statements of local fishermen, young menhaden were unusually abundant in Connecticut waters in the latter part of 1936. It is likely that these juvenile menhaden were responsible for the greater growth rate of the striped bass in the fall of 1936, and that the increased availability of the food supply in the late summer each year accounts for the maintenance of or increase in the growth rate through October despite the sharp drop in temperature at this time.

As will be shown subsequently, there is evidence that the growth rate of the striped bass varies considerably in different localities along the coast. It has already been pointed out, however, that there was a great variation about the mean in measure-
ments of fish from any one region at any one time, and that the samples from different areas may have been composed of stocks from widely separated localities which showed different growth rates. Nevertheless, scale analysis (see Origin of the dominant 1934 year-elass, pp. 46-52) points to the fact that the striped bass on which studies were made in northerm waters in the summer of 1936 and 1937, were mainly of essentially the same origin and with similar growth rates in their first and second years. Figure 19 shows length-frequency curves for 2 - and 3 -year-old striped bass taken north and south of Cape Cod in 1937. Those taken horth of Cape Cod were from Massachusetts, and those south of Cape Cod from Connecticut. The striking difference in the striped bass of the same ages from these two areas is at once apparent. The 2-year-olds north of Cape Cod show a peak at approximately 40 cm ., while those south of Cape Cod have a peak near 34 cm . The $3-y e a r-o l d s$ from the same areas present peaks at 45 and 40 cm ., respectively. It is almost certain that all these fish were of southern origin (see Origin of the dominant 1934 year-elass, p. 51), and that they first migrated to northern waters as 2 -year-olds in the spring (see Migrations, p. 44). It is possible that the difference in size can be accounted for by differential

Figure 19.-Length-frequency curves of 2 - and 3-year-old striped bass taken north and south of Cape Cod from June through September 1937. Data smoothed by a moving average of threes throughout (see Table 13 for original measurements).
migration-that is, that the larger fish of the age-categories concerned migrated farther north than the sinaller individuals. This is unlikely, however, and the difference in size is probably best explained by differential growth rates in the spring, summer, and early fall in the areas under consideration. The samples from these areas are perhaps poor, in that they are composed of rod-and-line caught fish in order that they might be comparable, for it was impossible to get samplings of the population north of Cape Cod over this entire period by any other method. The differences in size may be slightly exaggerated, owing to the fact that the sampling in the carly summel south of Cape Cod was somewhat more intensive than that of the middle and late summer, while the sampling north of Cape Cod was eventy distributed throughout the entire period from June through September 1937. There can be little doubt, however, that in 1937 the 2 - and 3 -year-old striped bass north of Cape Cod grew much faster than those in Connecticut waters from June through September.

The average length attained by striped bass each year from the first to the tenth year has been calculated by two different methods, and is shown in figure 20. It is of some interest that these lengths of striped bass at different ages compare almost exactly with those given by Scofield (1931) and Clark (1938) for striped bass on the Pacific coast. Since bass 2 years old and older were available in Connecticut waters in large numbers, it was possible to calculate the average lengths of the different age groups simply by making age determinations from the seale samples of fish
of measured leugth. 'This has been done on 2,500 fish, and the results are shown by the solid line in figure 20. The average lengths of striped bass from 1 to 4 years old have been calculated from the scales of 4 -year-old bass of measured length (see below). This is indicated in figure 20 by the dot-and-dash line. There is every reason to believe from the available samplings of fish of the ages covered by this part of the graph that the lengths derived by this method are accurate estimates. Further than this, it will be noticed that in the center part of the growth curve in figure 20 , where the lengths at different ages calculated by both the ahove-mentioned methods overlap, there is an almost perfect correspondence in the estimated lengths as derived by the two different procedures. It should be emphasized again, in connection

Figure 20.-The growth of the striped bass, as calculated from scales and the average leagths of differeut age groups. See Table 14 for a verage lengths of striped hass at the time they become 1 year old, 2 years old, etc., to 9 years old.
with figure 20 , that the lengths represented on this graph are averages, and that there is a wide variation about the mean in the lengths at any age. This is of course particularly true among the larger sizes, as is indicated by the broken line at the upper end of the growth curve. In general, fish 100 cm . (nearly 40 inches) long average about 25 pounds and are about 11 or 12 years old; those 125 cm . (nearly 50 inches) long weigh approximately 50 pounds and are roughly 20 to 25 years old. The largest striped bass taken in recent years (caught in Rhode Island on rod and line in October 1936) weighed 65 pounds and measured 137 cm . (54 inches); examination of several scales leads the author to believe that this fish was 29,30 , or 31 years old. ${ }^{10}$

In calculating the growth of striped bass up to 4 years old by the scale method, the following formula was used:

$$
L_{1}=C+\frac{V_{1}}{V}(L-C)
$$

L_{1} equals the length of the fish at the end of year "x," V_{1} the length of the scale included in the annulus of year "x," V the total length of the scale, L the length of the fish from which the scale is taken, and C the length of the fish when scales first appear. (The use of the factor C has various limitations, see pp.31-32). The measurements on striped bass scales were made from the focus to the anterior edge of the scale and to the annuli along a line that bisected the angle formed by the junction of the two

[^6]lateral fields at the focus. (See fig. 15.) Scales from striped bass that were beyond their fifth year were not used, since the annuli were often indistinct and it was therefore difficult to make precise measurements. Van Oosten (1929), Creaser (1926), and others have pointed out that the validity of the scale method of determinuig the length of a fish at different years in its life depends on 3 main factors: (1) That the scales remain constant in number and identity throughont the life of the fish; (2) that scale growth is proportional to the growth of the fish; and (3) that the amnuli are formed yearly and at the same time of the year. Since it has been proved in many other species that seales do maintain their identity throughout the life of the fish, and because there is no evidence to the contrary in the striped bass, it has been assumed that the first requirement holds true. In testing the relation of seale growth to the growth of the fish, the radii of seales from 153 bass of measured length

Figure 21.- The relationship of seale growth to body wow th in the striped basa (sce Table 15 for original data).
from 10.5 to 67 cm . were plotted against the lengths of the fish. (See fig. 21.) It will be noted that there is a good straight-line relationship, and that therefore the scale growth may be considered proportional to the growth of the fish within the limits studied. There is no proof, however, that seale and body growth are proportional in the smaller sizes below 11 cm ., or in the extreme larger sizes above 67 cm . The formation of amuli has already been discussed, and there can be no doubt that they are formed yearly and at the same time of year-during the winter.

Since all the larval stages of development of the striped bass were not arailable, it was impossible to determine the factor C (that length at which seales first appear on the fish) by careful examination of preserved material. Bass down to 2.0 cm . were collected in the field, and these all showed prominent scales. Individuals up to $0.5-0.6 \mathrm{~cm}$. (approximately 8 days after fertilization of the eggs and 6 days after hatching) were preserved from the hatchery at Elenton, N. C., and these did not show any signs of scale formation. It was therefore necessary to estimate at what length scales first appear on striped bass between 0.6 and 2.0 cm . by other means. The material that forms the basis of figure 21 was used for this purpose. A regression equation expressing the body-scale growth relationship of the striped bass was
obtained by means of the product moments method, and it was found that the line intersected the abscissa at 0.6 cm . This value for the length at which seales first appear seems to be too low in view of the evidence mentioned above, but it has been used for the factor C in the seale formula for lack of any other means of determining it more accurately. There is no evidence, as shown before, that scale growth and body growth in the striped bass are proportional in individuals below 11 cm ., and an error in the value of 0.6 cm . for C may thus be introduced, since the method applied above necessarily assumes such a relationship. It is considered likely that scales do not first appear until the bass are about 1.0 cm . long, and that scale growth is not directly

Figure 22.-The annual increment in the length of the striped bass. The annual increments throngh the fourth year are calculated from the scales from striped bass of the 1933 year-class caught in northern waters in the summer of 1937. The annual increnents in the fifth to eighth years inclusive are calculated from the average lengths of the age groups involved, these lengths heing taken from fish caught in northern waters in 1936 and 1937 (see Table 16 for actual figures on annual increment).
proportional to body growth until a short time after they have formed. But the error introduced in the calculation of the lengtlis of striped bass at different ages from the scale formula by this discrepancy in the value for C is negligible, and does not affect the points on the growth curve in figure 20 to a significant extent. It should be mentioned that the use of a constant, C, although superficially plausible, is not sound theoretically. The seale probably does not begin as a geometric point, but as a plate whose radius may well approximate the size appropiriate for the fish at that time.

Figure 23.-The growth of tagged striped bass as shown by measurements at the time of release and subsequent recapture.
Thus, in the weakfish (Cynoscion regalis) a negative C would be needed to correct for the negative Lee's phenomenon observed (Neshit, mpublished material).

The annual increment in the length of the striped bass is shown in figure 22. It is apparent that the greatest growth occurs in the third year, that age at which this species first undertakes coastal migrations to any great extent. Thereafter the increment in growth falls off sharply, particularly in the fourth year, and from then on maintains an average of about $6.5-8.0 \mathrm{~cm}$. each vear at least up to the eighth year. There is some cvidence from the available material that the growth rate decreases still more in the cighth and succecding years.

The growth of tagged individuals that were measured at the tines of release and subsequent recapture provides a good means of eheeking on the caleulated growth rate of the striped bass as shown in figure 20. This material is shown in figure 23.

Only measurements which came from reliable sources were included in this graph, and the great majority were on fish that were taken at or near the point of release by the author; hence the growth rates refer mainly to fish in Connecticut waters. The lines connecting any two points in this figure of course only represent the total growth in the period intervening between release and recapture. The growths of these individual tagged fish over different lengths of time and in different seasons of the year check well with the growth rates calculated from other material, and in general substantiate the previously discussed information on the growth of the striped bass. It will be noted that the fastest growths occurred in the small fish (2 years old) in the late summer and early fall of 1936, that the growth rates were slow during the winter of 1936-37 (these measurements were in all probability mainly on individuals that wintered in the north), that the growth rates picked up again in the summer of 1937, and that they slowed down once more during the winter of 1937-38. The normally faster growth rate of the 2 -year-olds is also indicated by the relative steepness of the lines in the smaller size categories.

MIGRATIONS

There have been no accounts in the literature of the migrations of the striped bass on the A tlantic coast until the present investigation, ${ }^{11}$ with the exception of Pearson's (1933) brief paper which was limited to the movements of bass within Chesapeake Bay. There was, howerer, much evidence to show that this species makes seasonal movements of considerable magnitude. Thus the examination of catch records of commercial fishemen over a period of years at Montank, Long Island, N. Y., and Newport and Point Judith, R. I., shows that striped bass are caught in large quantities as a general rule only in the spring and fall of the year. This is shown in figure 24, where the bulk of the pound-nct catches at Fort Pond Bay, Long Island, N. Y., from 1884 to 192s, were made either in May or October and November. It is also gencrally known that the date of capture of striped bass along the coast of the Middle and North Atlantic States by pound-nets and scines in great numbers in the spring is progressively later the farther north these catches are made. Moreover, the reverse is true in the fall; for example, the main catch at Point Judith, R. I., regularly preceds the time that the fishermen on the south side of Long Island make their birgest hauls. It therefore appeared logicol to suppose that striped bass undertake definite coastal migrations to the north and cast in the spring, and to the south and west in the fall. Various tagging experiments to demonstrate the time and extent of these migrations have been carried out during the cutire course of the investigation. The results of these taggings are summarized in tables 17, 18, 19, 20, and 22.

Two methods of tagging have been carried on. External disc tags have been used the greater part of the time, and internal belly tags have also been tried on juvenile and yearling striped bass. Both of these lags were used at the suggestion of Mr. Robert A. Neshit, of the United States Bureau of Fisheries. The external dise tag is actually a modification of the Scottish Plaice Label, the main changes consisting of reduced dimensions, the use of celluloid instead of hard rubber, the addition of printing, and the substitution of nickel pins for silver wire as the method of attachment. Sketches illustrating these methods of tagging are shown in figure 25. Scale samples were taken in most cases, and lengths and the dates and localities of release were always recorded on all striped bass that were tagged.

The external dise tag proved to be a fairly efficient and practical means of marking striped bass. A single tag of this type consisted of two dises of bright red (Dulont No. 6671) celluloid, each 0.025 inch in thickness and one-half inch in diameter, with a center hole $1 / 32$-inch in diameter. Each pair of dises bore the same number in black print across the middle, and the necessary instructions to insure their return were printed in black around the circumference. The discs were made by printing on 0.020 -inch opaque celluloid and cementing onto the side bearing the printing a

[^7]0.005 -inch transparent celluloid, so that the numbers and legends were covered and protected. The first 1,500 tags bore the words, RETURN TO FISH \& GAME, HARTFORD, CONN. In the remaining tags this inscription was changed to, RETURN TAG, etc., etc., since it was found that a certain number of returns were being lost because the original wording was sufficiently misleading so that some individuals thought the whole fish should be sent in and were unwilling to part with their catch. Each tag was attached to the fish by means of a pin. This pin was put through the center hole in one dise and pushed through the flesh of the back between the two dorsal fins-one-fourth to one-half inch below the dorsal contour of the bodyin a horizontal plane. The matching dise was then put on that part of the pin that

Figure 24.-Numbers of striped bass caught in the pound mets at Fort Pond Bay, L. I., N. Y., from 1854 to 1928 , for each 5 days during the flshing season, by 5 -year periods. The catches bave been weighted to make them equivalent to a fishing intensity of 10 pound-nets throughout (see figure 4, tahle 4). Note that the catches are made only in the spring and fall of the year It is of interest to note that the size of the sprlng catehes has shown a sharp decline over the period covered by this record, while the size of the fall catches has remained about the same during this time.
had come through the flesh on the other side of the body, and the pin was crimped over with a pair of finely pointed pliers in such a way that both dises fitted closely against the back of the fish. The printing on the tags was faced out so that it was immediately evident. It sometimes happened, however, that over periods of more than several months Bryozoans and other forms attached themselves to the tags and obscured the printing and even the color of the dises, so that it was necessary to scrape the entire surface with a sharp knife before the inscription became legible. Mussels (Mytilus edulis) over 1 cm . long have been found on the tags at times, and barnacles (Balanus balanoides) covering the entire dise were by no means uncommon. It became evident from the recapture of tagged individuals that it was best to crimp the pin to such a degree that there was less than one-sixteenth of an inch of free space
between the dises and the sides of the fish. If more space was left to allow for growth, sores were created where the edges of the discs rubbed against the body, and weeds were more likely to eatch on the tags and cause added irritation. Moreover, since there have been only a few recaptures of fish marked by this method more than a year after the date of release-the longest recovery of a tag of this type was from a fish that was tagged September 7, 1936, in the Niantic River, Conn., and recovered May 2, 1938, in the Hudson River, off Nyack, N. Y.-there is little point in allowing for much growth. In an attempt to preclude any possibility of chafing, both flat and saucer-shaped dises were used. The flat dises showed far less tendency to cause irritation and to pick up weeds and debris, and were in general more satisfactory, although there is some evidence from recaptures in the summer of 1938 that the saucer-shaped dises stay on longer. Two types of pins were used for attaching

Figure 25.- Sketches to illustrate the external dise and internal buily tas methods of markine sirined bass.
the external lags. Those tried with the first 500 bass were stainless steel insect pins. There was abundant evidence in the early work from the subsequent recapture of fish that still showed a sear in the area where they had been tagged with this type of pin, but had lost the tag, that these pins were not adequate in salt water. Not only did they become brittle and fragile after a short time (no fish marked by moans of this pin was recaptured more than 2 months after its release), but their slender shafts showed a distinct tendency to cut through the flesh, thus allowing more room for the movement of the tags and causing sores. All these difficultues were fairly well obviated by the use of heavier noncorrosive nickel pins. The nickel pins were made of No. 20 B. \& S. pure nickel wire. The diameter of the head of each pin was not less than 0.080 inch in diameter. The pins were ordered in two lengths, $13 / 8$ and $13 / 4$ inches, for use in tagging different sizes of striped bass. These pins never showed any tendency to corrode in salt water.

The external dise tag method of marking striped bass, however, has two definite disadvantages. These are that the evidence from the recapture of fish tagged by this means shows that the discs do not usually stay on for periods much over 1 year; probably because the pins "migrate" toward the dorsal contour of the fish and are eventually sloughed off, and that it is impractical to tag bass less than 8 inches long with dises and pins of the sizes given above. The internal belly tag devised by Nesbit (1934b) has therefore been used on small striped bass (see fig. 25). Since this type of tag has been used successfully over long-term periods with small weakfish (Cynoscion regalis), herring (Clupea pallasio), and other species, it seemed logical to expect that it was applicable to juvenile and yearling striped bass. This tag consisted of a piece of bright red celhuloid 0.030 inch thick, $15 / 16$ inches long, and $1 / 4$ inch wide, with wellrounded ends. One side of the tag bore the number, and the other side the words RETURN TO STATE BOARD OF FISHERIES AND GAME, HARTFORD, CONN., in black print. The printing was made on 0.020 -inch opaque red celluloid, and a 0.005 -inch transparent celluloid was cemented to each side so that the numbers and legends were well protected. This type of tag was inserted and carried in the body cavity. A small incision was made in the side of the body wall, $1 / 2$ to 1 inch in front of the anus with a scalpel. The tag was then pushed through this incision into the body cavity by means of small forceps, so that it lay parallel to the antero-posterior axis of the fish but well on the side of the body cavity where it did not interfere with or displace any of the viscera. Some 581 juvenile and yearling striped bass have been tagged in this manner, and subsequent recaptures have indicated that this method is both feasible and practical with this species, although the returns to date have been few. The advantages of this method over the external dise tags are that it enables the marking of striped bass down to at least 5 imches, and that it is probably a much better long-time tag-although this latter remains to be definitely proven in this species. The only disadvantage of the internal tag with the striped bass is that this species is practically never dressed until it is sold to the individual customer, and since this fish is commonly shipped great distances to market, the tag is likely not to be found until it is difficult to discover the exact locality and date of capture of the fish that bore it.

A total of 3,937 striped bass were marked by means of the external dise and internal belly tags from April 1936 to June 193S. Of this number, 2,573 were tagged in Connecticut and Long Island waters. These were all tagged by the external disc method, and were all 2 years old or more, since there are comparatively few areas in northern waters where juvenile and yearling striped bass are available. Returns from fish tagged in this region reached 544 (21.1 percent of the total) by July 1938 and gave abundant proof of a coastwise northern migration in the spring, a relatively stable population showing no movement of any consequence in the summer, and a sonthern migration in the fall and early winter.

In the period from April through October 1936, 1,397 striped bass were tagged in Connecticut waters, of which 337 , or 24.1 percent of the total were returned by July 1, 1938. (See fig. 26 and table 17.) In the spring of 1936 these returns showed that an eastward extension from Connecticut to Rhode Island of what undoubtedly was a mass migration to the north, reaching its peak during May in southern New England waters, definitely took place. During late April and May only a few striped bass were tagged, yet returns from the Thames River, Conn., and Point Judith and Newport, R. I., proved that many of these fish were taking part in what the spring catch records of the seines and pound-nets had suggested was a tremendous mass morement to the north. Fish tagged in the Niantic River, Conn., in May were returned from Point Judith and Newport, a distance of 40 to 50 miles in a straight line, 5 to 7 days after their release. The recapture of tagged fish in the summer and early fall showed that the striped bass population in the Niantic and Thames Rivers remained static. Only minor migrations and movements up to 10 miles from the original point of release were recorded from June to October, and it is significant that during the spring, summer, and early fall, there was not a single recapture of a marked bass to the south or west of the areas in which they were tagged. The stability of the population through the summer and up to the latter part of October was shown by the consistent recapture of tagged fish at or near the localities where they were released. An
extreme example of this is that of a bass that bore tag No. 197, which was seined, tagged, and released in June in the Niantic River. This bass was caught in a trap in Niantic Harbor in July and relcased, eaught on a rod and line in the Niantic River in September by the author and released, and caught and released again while seining for tagging purposes in the Niantic River in early October. Returns from tagged striped bass first indicated that a migration to the south was starting in late October,

Figure 26.-Chart of the Atlantic coast showing the migrat lons of striped bass as determined by the returns fram 1, 397 individuals tagged from April through October 1936 (see table 17).
when two fish tagged in the Thames River were recovered in the Niantic. Although these fish had only moved about 10 miles, they were the first that had ever been taken to the south or west of the original point or release. Almost immediately thereafter bass that had been tagged in Connecticut waters during the summer began to be caught in large quantities in the pound-nets at Montauk, Long Island, N. Y.,
and in seines and on hook and line on the south side of Long Isłand. The number of returns from Montauk reached a peak during the first 10 days of November. Thereafter tags were sent in from bass caught progressively farther south as time went on. No marked fish were caught north and east of the original point of release during the fall and winter, and it was plainly evident from the examination of commercial fishermen's catch records, as well as from tag returns, that an intensive migration to the south had taken place. Scattered returns of tags throughout the winter and early spring months from New Jersey, Delaware, the entrance to Chesapake Bay, and North Carolina showed that striped bass may go great distances on their southern migration.

In 1937 added tagging experiments were undertaken in Connecticut and Long Island waters to obtain additional information on the northern migration in the spring and the return to the south in the fall. A group of 103 striped bass were marked and released at Montank, Long Island, N. Y., from May 15 to 19, 1937, and 14 of these, 13.6 percent were subsequently recaptured. None of these returns came from points to the soutI of Montauk, all recaptures being in Long Island Sound, on the New York

 targed mas 103 , the manker of retums 14 (13.6 percent of the total). Note that there wrer no returns from the sunth, and contrast with the results of tageing from the same area in the fall as shown in figure 28 (set table 18)
and Connecticut coasts, or from Rhode Island and Massachusetts (see fig. 27 and lable 18). Such results gave addal evidence that these bass were being tagged near the end of their northem migration, and that an eastward extension of this movement was still taking place in May and June.

From October 25 to 27, 1937, 303 bass were narked and released at Montauk, from the same nets and in exactly the same place as those that were tagged in the spring. Six months later $95,31.3$ percent, of these fish had been reported. The only recaptures to the north of the point of release, until the following spring, occurred almost immediately after tagging took place and were so few in number and so minor in scope that they may be considered insignificant. The longest movement to the north that was recorded in the fall was less than 10 miles. On the other hand, recaptures to the south and west of the area where the tagged fish were released were so numerous as to make it certain that these fish were taking part in an intensive southern migration at that time of year (see fig. 28 and table 19). Many returns in the fall, winter, and early spring months from the south side of Long Island, New Jersey, Delaware, Chesapeake Bay, and North Carolina as far south as Pamlico Sound, indicated the approximate extent and speed of the migration, and further amplified
the results of 1936. The rate at which striped bass may travel south in the fall is shown by the recapture of several fish tagged at Montauk, $450-500$ miles away from the point of release, 35-40 days after the date of tagging-an a verage of 12 miles per day. This distance was measured in a straight line along the coast, which the fish undoubtedly did not travel. Moreover, there is no proof that the fish left the moment they were tagged or were caught at the other end of their migration as soon as they arrived. It seems likely, therefore, that they averaged far more than 12 miles per day. It is of interest that a considerable number of recaptures in the winter and early spring months were from well up large coastal rivers, where spawning occurs in May, thus indicating that some bass probably winter in or near the spawning areas. It is probable that the majority of the spawning individuals in any year do not move into these areas until the late spring, ${ }^{12}$ particularly in southern rivers.

A total of 770 striped bass were also tagged from April to October in 1937 in the Niantic and Thames Rivers, Conn., and the returns from these further corroborated the results obtained from other marling experiments in northern waters. (See table 20.) There were an insufficient number of fish tagged in April and May to expect

Figure 28. - Migration route of striped bass taged and released at Montauk, 1, 1. N. Y. Oct. 25-27. 10a3. The anmber of fish tagged was 3u3, the number of returns 100 (33 yercent of the total). Note that thure were no returns of any signficance to the north of the point of relegse, and contrast with the results of taging from the sume areas in the spring as shoman Figure 27 (see table 19).
any returns showing the northern migration at that tine of year. Consistent recaptures at or near the point of release diring the summer and early fall months, however. again demonstrated the stability of the population in Connecticut waters from June to October. The returns from the south in the fall and winter months offered additional proof of the migration south from northern waters in late October and November, recaptures on the south side of Long Island, in New , Tersey, Delaware, and Chesapeake Bay being not infrequent. The total number of rethims from the 760 striped bass that were tagged was $93,12.1$ percent, by July 1, 1938. By comparison with other tagging experinents on striped bass carried on in these waters, this was a strikingly low percentage of recapture. This may be accounted for by the fact that exeessively high temperatures in the latter part of August 1937, apparently drove the bass out of the Niantic and Thames Rivers, where they are normally subject to a highly intensive fishery, to the cooler coastal waters where they were not so casily available, and because a large number of the fish tagged in 1037 were released in areas that are not so well known to loeal fishermen.

Thus the evidence accumulated from tagging experiments on striped bass in Connecticut and Long Island waters in 1936 and 1937, and from the examination of commercial catch records, leaves little room for doubt that there is a mass migra-

[^8]tion to the north in the spring and to the south in the late fall, and that the summer populations in New England waters are essentially stable. The impression created by the information derived from tagging in these waters is that the migrations of the striped bass have their maximum size and intensity along the southern New England and Long Island shores, and that the farther south the fall movement goes the smaller it becomes, as individuals and groups split off from the main lot to winter in different localities. Conversely, starting from the south in the spring, the numbers making up the mass migration northward become greater and greater as the movement proceeds up the coast, being augmented as it progresses by the fish that have wintered farther north (see fig. 29). Having once reached northern waters an increasing number of striped bass stop along the coast to summer, and the migration dwindles in size and intensity as it progresses up the New England shore line. In the fall the migration south probably starts with many of the individuals that went farthest north in the spring, and increases in size and intensity at least until it reaches southern New England and Long Island. In years directly preceding 1936, when the level of abundance was consistently low, it is probable that the northern limit of

Figure 29.-The general migration routes of striped bass during the spring movement to the north, and the return to the south in the fall.
the striped bass migration from the south in the spring was Cape Cod, for north of this point this species was comparatively rare save in a few isolated localities that probably contained self-supporting permanently resident populations. Moreover, there is no commercial fishery for striped bass on the outer coast of Cape Cod comparable in size to those in Rhode Island and Long Island-a fact which indicates that there is no annual migration around Cape Cod of sufficient intensity to support such a fishery. In 1936 and 1937, however, when the members of the dominant 1934 year-class first reached northern waters, striped bass not only appeared in great numbers in Massachusetts north of Cape Cod, but were also commonly taken in New Hampshire and Maine. Three mackerel seiners caught 29,000 pounds of striped bass on August 2 and 4, 1937, in Cape Cod Bay. These fish were landed at the Boston Fish Pier, where it was the first time that this species had been handled in over 30 years. The study of scale samples of fish from these areas in 1937 showed them to be predominantly 3 -year-olds of apparently the same origin as those taken off southern New England shores at the same time-evidence is presented later in this paper to show that the bulk of the dominant 1934 year-class was produced in the Middle Atlantic States (see p. 46). The dominant year-class of 1934 was of such
tremendous size that in 1936 and 1937 its members either spread or were crowded farther north than in recent times. It is also the case that the widening and enlargement of the Cape Cod canal in the past few years has undoubtedly provided an casy means for fish to reach northern New England waters, and reliable witnesses attest to the fact that striped bass passed through the eanal in large quantities in the summer of $1937 .{ }^{13}$

The most northerly return of a striped bass tagged in southern New England or Long Island waters was from Cape Cod Bay. But there can be little doubt from the

Figure 30.-Wher temperatures in the Niantic River, Conn. The surface and bottom temperatures were taken in an area where striped hass were canght throughout the season. The open sea temperatures were taken at the mouth of the Niantic River, where the water passes through a narrow gut on the incoming tide with such force that the surface and bottom temperatures are the same. The open sea temperatures were takenduring the spring and fallmigrations of the striped bass. Arrows indicate when the first and last bass of the season were caught. Upper graph is for 1936, lawer for 193 .
catch records and the examination of scale samples that the migration north in 1936 and 1937 at least reached Maine, and that north of Cape Cod the migrants from further south mingled with resident populations that probably had been isolated for some years past. In the summer of 1937 striped bass were taken in large quantities in Nova Scotia, but it is almost certain that there are self-supporting resident populations in various localities along the Canadian coast, and in the absence of length measurements and seale samples it is impossible to be sure of the origin of these fish. Two alternative possibilities suggest themselves in explanation of the presence of striped bass in Nova Scotia; first, that these fish are of northern origin and are completely separate from the

[^9]populations farther south, and second, that they are made up of individuals of mixed origin-that is, that the northern stocks are added to by the migrants from the south.

The southernmost return of a striped bass tagged in Connecticut and Long Island waters was from the northern tip of Pamlico Sound, N. C. It is probable that the striped bass of the Southern Atlantic Bight-that part of the coast of United States south of Cape Hatteras-are a completely separate population, that may possibly be added to under rare circumstances by the stock from the Middle Atlantic BightCape Hatteras to Cape Cod-and it seems reasonable to expect that the striped bass population of the Gulf of Mexico, which presumably extends as far west as Louisiana is entirely isolated.

The Middle Atlantic Bight is undoubtedly the center of abundance for the striped bass over its entire range, and tagging experiments indicate that there is comparatively little encroachment by this stock on the populations to the north and south. This is well in keeping with the conclusions of Parr (1933), who has shown that the shallow-water fish population of the highly heterothermal Middle Atlantic Bight is bounded on the north by a cold-water barricr in the Cape Cod-Nantucket Shoals region in the summer, and on the south by a warm-water barrier at Cape Hatterasin the winter. Parr (loc. cit.) has pointed out that". . . in neither locality are such barriers found to be a permanent feature during all seasons." But in the case of the striped bass they exist at those times of year when they are most effective in keeping the bulk of the population of the Middle Atlantic Bight from encroaching on the areas to the north or south. Thus the cold-water barrier at Cape Cod in the summer marks the end of the northern migration in normal years, and the warm-water barrier at Cape Hatteras in the winter may play some part in delimiting the extent of the southern migration, and so at least partially separate the populations north and south of this boundary.

The question as to how much temperature influences the migration of the striped bass is one of particular interest. This is a highly eury thermal species, yet temperature rariations well within the maximum and minimum limits appear to play some part in determining the time of migration. It seems to be more than coincidence that the times when the first striped bass of the year were taken-in April 1936, 1937, and 1938-and the times that the last ones of the year were eaught-in November 1936 and 1937 - in the Niantic River, Conn., were always when the temperature of the water was approximatcly the same, 6.0° to $7.5^{\circ} \mathrm{C} .\left(42.8^{\circ}\right.$ to $45.5^{\circ} \mathrm{F}$.) (see fig. 30). Moreover, the migration of striped bass on the outer coast of North Carolina in late March and early April 1938 was observed to take place over a period when the water temperatures areraged 7.0° to $8.0^{\circ} \mathrm{C}$. $\left(44.6^{\circ}\right.$ to $46.4^{\circ} \mathrm{F}$.).

The migrations north in the spring and the return to the south in the fall do not include all striped bass, for this species is eaught consistently through the summer in southern waters and not uncommonly in northern waters in the winter. It is a relatively small percentage of the stock that remains north in the winter months. However, those that do stay north are of two types-the individuals that form the resident. more or less isolated populations of the north Atlantic, and those that may have had their origin farther south but spend an oceasional winter in northern waters. The latter may possibly bolster the northern sparning stocks, but are often composed of individuals that are not spawning in that particular year, for this species is not necessarily an annual spawner (see p. 16). Striped bass that do remain in the north through the winter months apparently become domant and inactive in many cases and actually hibernate to much the same extent that has been described for the black bass (Micropterus dolomieu) in the northern part of its range by Hubbs and Bailey (1938). Their easy capture through the ice by scoop nets and by gigging testifies to their sluggish state in cold water, and the outward appearance of individuals taken in the winter and extremely carly spring often shows that they are in poor condition. Striped bass certainly undergo partial hibernation as far south as New Jersey, the extent of this southern limit undoubtedly being determined by the prevailing temperatures. Dormant individuals are most commonly taken in northern waters during the winter in shallow bays and in the brackish waters of estuaries. Thus it appears that although temperatures from 6.5° to $8.0^{\circ} \mathrm{C}$. play some part in causing the migrations of this species, their effect is not universal. It may be that the first and last fish of the
season in such a place as the Niantic River, where striped bass are caught so consistently at approximately the same temperature in the spring and fall, are mainly winter residents, but it is also known that migratory individuals are present at the times of the earliest and latest catches. It is of interest to note that during October and November 1936, a time which was characterized by sudden drops in temperature, it was plainly indicated that with each cold snap, and resultant decline in temperature of the water, some of the striped bass in the Niantic River moved out and their place was almost immediately taken by fish that presumably came from farther up the coast. Such changes in the population were definitely observed on at least two occasions, both immediately following sharp drops in temperature. Strong winds and storms in the fall also play a part in causing the fish to undertake their migrations.

The maximum temperatures for this species appear to be in the neignborhood of $25^{\circ}-27^{\circ} \mathrm{C} .\left(77.0^{\circ}-80.6^{\circ} \mathrm{F}\right.$.), for in New England waters in the latter part of August and early September 1937 when there was a protracted period of exceptionally warm weather (see fig. 30), dead bass in considerable numbers were reported simultaneously in Connecticut and Massachusetts. Such mortality oceurred chiefly in shallowwater estuaries where the water temperatures reached especially high levels. A number of dead bass were observed by the author in the Niantic and Thames Rivers at this time, and an examination of them diselosed no parasites or injuries that might possibly have been fatal. The water analyses of the Connecticut State Water Commission taken at various intervals in the Thames River near New London, Conn.-an area where many dead bass were found-showed nothing unusual nor the presence of any toxic substances during this period (see table 21). There also was a marked migration of bass that normally spend the entire summer in the Niantic and Thames Rivers out to the cooler constal waters at the time the water temperatures were so high. This was shown by the recapture of tagged fish outside, and by the almost complete absence of bass in the rivers where they are usually found at this time of year. In view of such facts, the evidence is strong that a temperature of $25^{\circ}-27^{\circ} \mathrm{C}$. $\quad\left(77.0^{\circ}-\right.$ $80.6^{\circ} \mathrm{F}$.) marks the maximum tolerance limit. This is a water temperature which is seldom exceeded over the entire range of the striped bass.

It is of some interest to note that although a considerable number of striped bass weighing from 5 to 25 pounds were marked by external dise tags, there have been no returns from these fish save in the immediate locality at which they were released and within a short time after marking took place. Returns of tagged fish from any other area then the general point of release have been confined to individuals not more than 4 years old. It is difficult to account for this cireumstance, and, although it may be that the larger bass did not take such a great part in the migrations as the younger individuals, information as to the size-categories appearing in commercial catches in previous years does not make it seem likely that this is an adequate explanation. By the same token, it is improbable that the larger fish migrate in waters farther offshore, thus reducing the chances of their being caught along the coast. It is possible that the larger individuals do not carry the external dise tags as well as the smaller fish, and that the tags are not retained for more than a short while. It is true that the larger the bass the nearer the top of the back the pin bearing the tags must be inserted, because the breadth of the fish makes it impossible for pins only 1_{4}^{3} inches long to penetrate to the other side far below the dorsal contour. Other reasons for the lack of returns of the larger tagged fish are, first, the overwhelming abundance of the members of the dominant 1934 year-class, and second, the tendency of the smaller size-categories-2- and 3-year-olds-to sehool heavily. This schooling instinct, or schooling "synaprokrisis" (Parr, 1937), tends to make them much more a vailable to commercial fishermen than the larger individuals which are not so strongly inclined to congregate together. The heary schooling of the smaller fish of definite size-categories was observed countless times in the course of seining for tagging purposes in 1936 and 1937. That these schools tend to travel considerable distances without breaking up is suggested by the recapture in several instances at the same time and in the same area some distance away from the original point of release of two or three fish that had previously been tagged in a single seine haul in the Niantie River.

The recapture of tagged fish as well as observations on the commereial and sports fisheries for striped bass along the Atlantic coast from Maine to North Carolina gives abundant proof that this species is preeminently coastal in its distribution. But studies of the migrations by tagging experiments give convincing evidence that bass do at times cross open bodies of water of considerable size. Thus the spring migration route north apparently takes striped bass from the tip of Long Island straight across to Connecticut and Rhode Island shores, and in the fall the reverse appears to be truethat bass travel from Rhode Island and Comectient to Montauk and do not follow all the way around the shore line of Long Island Sound. This is shown by the recapture of tagged fish at Montauk shortly after their release in Connecticut waters in the fall, and by the almost complete absence of tag returns at any time from the western half of Long Island Sound. A few fish do round Montauk Point and go west along the north shore of Long Island in the spring (see fig. 27), but the majority go to the north and east. Commercial fishermen of long experience in Rhode Island are convinced that in the fall migration to the south a heavy offshore wind eauses the main body of fish to go straight from a point at least as far east as Newport to the tip of Long Island, and that a storm from the south causes the bass to follow down the coast of Rhode Island and part of Connecticut before crossing to Montauk. The evidence from the catch records of pound-nets under different conditions in the fall tends to confirm this view. It also is probable that striped bass often cross the mouths of Delaware and Chesapeake Bays in much the same way that they cross the tip of Long Island Sound.

It has been pointed out (see p. 20) that approximately 90 pereent of the individuals examined for sex in Long Island and New England waters in 1936 and 1937 were females, and it also appears that there is an increasingly smaller percentage of males in northern waters among the large size-categories. On the other hand, this strikingly abnormal sex ratio does not exist in waters farther south, and the following theoretical explanation of this condition is offered. The spring coastal migration to the worth in April and May comcides with the spawning season in the south, and is mainly composed of small immature fish and a relatively small number of individuals that are not spawners in that particular year. Because of the discrepancy in the age at maturity of the males and females, the males spawning for the first time at the end of their second year while the females do not become mature at least until the end of their fourth year, many of the males do not take part in the spring migration but stay belind to spawn with the larger females. Thus the migration northward at this time of year is largely made up of immature females 2 and 3 years old. The examination of the size-eategories making up the catch in northem waters at different seasons indicates that there is a less intensive migration along the coast in June, which is composed of fish of a much larger average size. In all probability these are mainly females which have completed spawning farther south and have moved up along the coast singly or in small groups. This is demonstrated in figure 31 , where the different sizes of striped bass making up the annual catch of a haul-seine fisherman at Point Judith, R. I., before and after June are shown. It is apparent that the small fish make up the bulk of the eatch before June each year, but that thereafter bass of the larger size-categories comprise a far greater part of the catch. In 1936 and 1937 an unusually large percentage of the total were small fish, due to the dominance of the 1934 year-class.

There is no evidence that striped bass younger than 2 years old undertake the coastal migrations discussed above. The complete absence of juvenile and yearling individuals anywhere along the coast, save in or close to areas that have been established as being places where striped bass spawn, is proof that the coastal migrations do not occur until this species becomes 2 years old. In northern coastal waters, where the author handled many thousands of striped bass, individuals less than 2 years old were only encountered on the rarest of occasions.

Two interesting tagging experiments were conducted in North Carolina during March, April, and May, 1938. These were earried on for the purpose of determining to what extent the bass from this region take part in the spring migration to the north, and how much they contribute to the population in northern waters during the spring, summer, and fall. This whole question is discussed in some detail under the section on the origin of the dominant 1934 year-class, where evidence is presented
which supports the conclusion that North Carolina does not contribute directly more than a small percentage to the supply summering in the north. In general the results of these experiments substantiate this view as far as they go. In one of the experiments a total of 506 juvenile and small yearlings-fish that were just becoming 1-and 2-year-olds-were tagged internally in the general region of the Sutton Beach haulseine fishery, between the mouths of the Chowan and Roanoke Rivers in the western end of Albemarle Sound, N. C., with the idea that subsequent recaptures of these fish would demonstrate to what extent bass from this region contribute to the populations farther north. These fish were tagged from April 18 to 28, 1938, and 47 were recaptured in the same area before the fishery closed in May. Several others were taken within a short distance of the point of release in the spring, thus indicating that this method of tagging striped bass is satisfactory, at least for short-time returns. It is hoped that the internal tags will also prove satisfactory for long-time returns, as they have in some other species, so that it will be possible to prove the amount of Nortl Carolina's contribution to northern waters over a period of years. The other tagging experiment in North Carolina during March and April 1938, was conducted partially at the extreme eastern end of Albemarle Sound and mostly on the outer coast in the general region of Kitty Hawk and Nags Head. In this experiment, 600 2 -, 3-, and 4-year-old striped bass, of which the great majority were 2-year-olds, were marked with the external dise tags. Of these, 62 were caught in the same general

Figure 31. - The percentages of small, medium, and large striped bass making up the annual catch by seine before and after June at Point Judith, R. 1., from 1928 to 1937. The left-hand column is for April and May, and the right-hand colunn for June to November in each year. Sce Figure 8 for the same material graphed in terms of actual numbers instead of percentages.
area within a short time after they had been tagged, and 46 were again released. By June 15, 1938, there had been 45 returns from these 600 tagged fish from areas some distance away from the point of release. Despite the fact that these fish were tagged at the time of the spring migration to the north, they did not show an intensive oneway movement such as has been proven to take place, for example, in northern waters by tagging in the fall. Thus 24 of the 45 returns were from Pamlico, Croatan, and Albemarle Sounds, indicating that many of the fish tagged on the outer coast moved south and west, some of them being taken in the extreme western tip of Albemarle Sound. The remaining 21 returns came from areas to the north of the point of release; 9 came from the Virginia Beach region; 8 from well into Chesapeake Bay (mainly from the James River and Rappahannock River sections) ; and 4 from more northern wa-ters-2 from New Jersey, 1 from Wainscott, Long Island, N. Y., and the other from Point Judith, R.I. Had there been a heary migration to the north at this time from this area, it seems reasonable to expect that in view of the highly intensive fishery for this species as shown by the percentage of recapture from other tagging experiments, there would have been a far greater number of returns from more northern waters. That this tagging experiment was not conducted at a time that was too late to coincide with the bulk of the spring migration to the north seems virtually certain, in view of the fact that tagging was started as soon as the outer-coast fishermen began to catch striped bass and was not concluded until the catches had dwindled so that few bass were being taken. Further evidence along this line appears in tables 22A, 22B,
and 22 C , which show that there were no returns from outside the State of North Carolina from the small number of striped bass that were released there in March and April, 1937. It does not appear, therefore, from the preliminary results of this work that the North Carolina stock contributes more than a small percentage directly to the summer population in the north. Rather, it scems that the bulk of the northern migration of the striped bass in the spring, and the corresponding return to the south in the fall, takes place between the Chesapeake Bay area and Cape Cod, and that only a relatively small number of migrants from the north and south of these regions take part in these movements.

In this connection the author is grateful to Mr. David H. Wallace, of the Chesapeake Biological Laboratory of the University of Maryland, for giving him the results of a tagging experiment conducted in conjunction with Dr. Vadim D. Wadykov's investigation of anadromous species for the State of Maryland. Of 483 bass tagged from November 15 to 19, 1937, in the east end of Albemarle Sound, in Croatan Sound, and on the outer coast of North Carolina, most of which were yearling and 2-and 3-year-old fish, only 2 had been recovered from northern waters by June 1, 1938, these coming from New Jersey. This is added evidence that North Carolina contributes only a small amount direetly to the population summering in northern waters. It is of interest that 1 of these fish tagged on November 15, 1937, was caught in New Jersey on January 16, 1938, showing that some fish migrate north before the spring months.

ORIGIN OF THE DOMINANT 1934 YEAR-CLASS

The problem of the geographical point of origin of the dominant 1934 year-elass, that age-group which has already been discussed at some length, is of particular interest. There is considerable evidence to support the conclusion that these fish were produced mainly in the Chesapeake Bay region. Thus, in the summer of 1935, when the members of this year-elass were 1 -year-olds and probably averaged $15-20 \mathrm{~cm}$. (approximately 6-8 inches) in length, an unusually great abundance of striped bass of about this size and presumably of this age was observed and reported from Chesapeake Bay by many competent people. Truitt and Vladykor (1936) also "found that fish ranging from 21 to 25 cm . in standard length" seemed to be the most abundant ageeategory of striped bass in Chesapeake Bay during the early and midsummer in 1936. These fish were undoubtedly 2-year-olds at that time--members of the dominant 1934 year-class. Vladykov and Wallace (1937) also corroborate this information. On the other hand, diligent inquiry elieited no reports of yearling bass in 1935 from waters farther north. In the light of these observations it therefore seems logieal to suppose that this large group of fish that were 2 -year-olds in the summer of 1936, and first appeared in north Atlantic waters in that year, eame in the majority from the Chesapeake Bay area and that general latitude. (See below for evidence that the dominant 1934 year-class did not come from farther south, p. 49.) From what is now known of the paucity of the spawning areas in the north, it is most unlikely that those regions nortli of the latitude covered by Delaware Bay contributed more than a small fraction to this dominant year-class-or for that matter, that they ever play more than a small and unimportant role in contributing to the total stock along the Atlantic coast under present conditions. Thus it becomes apparent that the striped bass fishery from New Jersey northward is almost entirely dependent for its existence on the stock of bass produced to the south, and on the migrations from the south to the north in the spring, which do not occur until bass become 2 years old or older.

Granting that the major portion of the production of striped bass takes place from the northern part of Delaware Bay south, it is of interest to determine bow far south the stock contributes to the supply in northern waters, and to what extent different areas contribute to this supply. It is known that the Chesapeake Bay area is an important spawning center, and the work of V. D. Vladykov and D. H. Wallace (as yet unpublished) on tagging striped bass in comnection with the survey of anadromous fishes for the State of Maryland has shown that the migration of bass out of Chesapeake Bay to the north in the spring is not an uncommon occurrence. Thus it seems well established that this general region contributes to the supply in the north and is an important center of production.

The question of how much the areas to the south of Chesapeake Bay contribute to the population in the north, and whether or not the dominant year-class of 1934 was produced simultaneously in Albemarle and Pamlico Sounds as well as in Chesapeake Bay, is of further interest. The author has found no evidence from talking with commercial fishermen in the Albemarle Sound region in 1937 and 1938 that there was an unusually large quantity of yearling bass in 1935 in these waters, as was the case in Chesapeake Bay. Further than this, tagging experiments in March and April in 1938 on the outer coast of North Carolina and in the eastern end of Albemarle Sound tend to show that the bass from this area do not undertake such an intensive migration to the north in the spring, and that they do not contribute a large amount to the summer population in northern waters. It has been pointed out that these tagged fish did not show an intensive one-way migration at this time, but rather a diffusion from the point of release with only a small percentage of the fish making definite movements of considerable distance to the north. This was in spite of the fact that these fish were released at exactly the time they would be expeced to undertake the spring migration northward, and was in direct contrast to the one-way mass migration southward as shown by tagging in the north in the fall (see pp. 36-39 and 44-46). It is clear from this information that the stock in North Carolina waters probably contributes only a relatively small percentage directly to the populations summering in the north.

There is further evidence from the results of scale analysis that the main source of supply for the summer populations in northern waters is in the Chesapeake Bay area-or at least that general latitude (which includes Delaware Bay), and not from farther south. Unfortunately vertebral counts are of no value in showing the general point of origin of individual striped bass or for racial analysis, for this is a species with a virtually constant number (25) of vertebrac (sce p. 3), and therefore the counts show no variation with latitude such as has been shown to occur in other forms (e. e.. Hubbs, 1922). Scale and fin-ray counts may possibly be of some use in this respect, but they have not been used in this stuty because of the impracticality of making such counts, especially where the material was limited and it was desirable to tag a large proportion of the fish that were taken in northem waters. But wheras scale and fin-ray counts were not feasible in conjunction with tagging work, it was perfectly practicable to take scale samples from live fish. For these reasons, and becaluse the scale method has given such successful results in determining points of origin in other species, scale analysis was used throughout for this purpose.

The assumption on which such a method rests in a species that spawns orer a considerable latitude is that since there are likely to be different environmental factors over the entire range of spawning, there are also likely to be different growtl rates which should be reflected in the scales. The problem is, then, to detect these differences in the scales from fish of different latitudes, and to establish that they are constant and therefore good criteria for determining the points of origin of the individuals from which the samples are taken. The striped bass is known to spawn over a wide latitude, and apparently does not migrate along the coast until it becomes approximately 2 years old. Thus, if there are any differences in the growth rate of this species in various localitics along the coast, those that are to be used in determining points of origin must be found within that part of the seale bounded by the sceond amnulus. With this in mind, as well as the fact that scale growth is proportional to body grow th (sce p. 31), the width of the first and second growth zones of scales from striped bass of known and unknown origin were measured by the method described in the section on age and rate of growth (see fig. 15).

Figure 32 shows the length-frequeneies of the widths of the growth zones in millimeters on scales from striped bass taken in different localities along the Atlantie coast in 1937. The top three series of length-frequency curres (those from seales from fish taken at (1) Cape Cod Bay, Mass., (2) Harkness Point, Conn., and (3) Montauk, Long Island, N. Y.) are from members of the 1934 dominant year-classthat group of fish whose origin is of especial interest. The samplings of fish from which these three sets of curves come, were made in the summer and fall of 1937 in northern waters. In the three sets of measurements, the widths of the first and of the second growth zones are strikingly alike throughout-a fact which at least suggests
$277580-41-4$
tbat the members of the dominant 1934 year-class that visited northern waters in 1937 were of much the same origin. It should be mentioned that measurements of the first and second growth zones on the scales from 2-ycar-old bass in Connecticut waters in 1936 (nembers of the 1934 dominant year-class) also gave length-frequency curves that were exactly comparable to those shown in the top three sets of curves in figure 32. Had they been of different origin-from areas scattered along the entire length of the Λ tlantic coast-it would be expected that the distribution of the lengthfrequencies of the widths of the first and second growth zones in these cases would have been much wider and not nearly as constant in the range of measurement as they actually are.

Fifure 32.-The Iength-frequencies of the growth zones on scales from striped bass taken in different localities in 1937. The measurements making up cach curve have been smoothed by a moving average of threes throughout.

One other point is of interest in the length-frequencies of the growth zones on the scales from these fish taken in northern waters in 1937. This is the comparison of the fourth growth zones (incomplete marginal zones) of the samples from Cape Cod Bay and Harkness Point. It has been pointed out in the section on age and rate of growth that there is much evidence that striped bass north of Cape Cod grew much faster than those south of Cape Cod during the summer of 1937 (see fig. 19 and $\mathrm{p}, 29$). Since seale growth is proportional to body growth (see fig. 21), this phenomenon shonld be reflected in the scales, and a glance at the length frequencies of the incomplete marginal zones mentioned above (see fig. 32) shows this to be true. Thus the measurements of the fourth growth zones of the seales from fish from Cape Cod Bay present a peak slightly in advance of the similar peak for the Harkness Point sample, despite the fact that the sample from Cape Cod Bay was taken more than 1 month earlier than the one from Harkness Point. This is probably best explained by the faster growth rate of the fish summering north of Cape Cod, for if the growth rates were the same, the peak for the Harkness Point sample would have been far in advance of the one for the Cape Cod sample, since it was taken so much later in the summer.

Turning now to the two middle sets of length-frequencies in figure 32, those from scale measurements from fish taken in northern and southern Chesapeake Bay in February and Mareh 1937, it is apparent that these are also from samples of the dominant 1934 year-class at the time its members were just becoming 3 years old, and when the third annulus was in the process of formation on the anterior margin of the scale. Looking at the widths of the first two growth zones, it is immediately apparent that the general distribution of the length frequencies and the peaks of the first growth zones and the second growth zones are similar throughout. Furthermore. they coincide almost exactly with the same growth zones of the scales from fish born in the same year but collected at a later date in northern waters- see the top three sets of curves in figure 32. It cannot be assumed, however, although it may well be true, that these samples from Chesapeake Bay are from fish that were produced in that region and had remained there, since it is known that this species often undertakes coastal migrations after it becomes 2 years old. Thus these fish might have moved into Chesapeake Bay in 1936, and might, therefore, not hare had their origin in this region. On this account, it is not possible to assert that the similarity in the widths of the first growth zones and those of the second growth zones in the top five sets of curves in figure 32 is proof that the dominant year-class of 1934 originated in Chesapeake Bay. These similarities do, however, suggest that this is so.

Looking at the bottom set of curves in figure 32, those from scales from fish taken in Currituck Sound, N. C., it is again apparent that the widthe of the first growth zones are much the same as those for all the other samples in this figure, although they do tend to be slightly less. The widths of the second growth zones of scales of the fish from this area, however, are strikingly different from any that precede it in figure 32. Whereas the widths of the second growth zones of the scales from fish from northern waters and from Chesapeake Bay in 1937 all range from approximately 0.5 mm . to or slightly over 2.0 mm . (with peaks at 1.0 mm .), the widths of the second growth zones of scales from fish from Currituck Sound range from atout 2.0 to 3.6 mm . (with a peak at 2.9 mm .). These second growth zones of the seales from fish from Currituck Sound are labelled ineomplete marginal zones in figure 32 because the second annuli, although in the process of formation on the anterior marcins of the scales, were still indistinct. 'Therefore, the measurements of the margimal zones are to all intents and purposes equivalent to what those on the second growth zones would have been had the second anmuli been completely formed. It should not be necessary to point out that if there were any differences from this factor, the wilths of the second growth zones would have been even greater.

There is no doubt that these completely different and execptionally wide secome growth zones on the scales from fish from Currituck Sound are characteristic of the bass born in that general region in 1935, for these scales were taken from fish that were slightly less than 2 years old, and therefore had not undertaken any coastal migration. Thus the wide second grow th zones on seales from fish bom in the gemeral Albemarle Sound region in 1935 give promise of being a means of distinguishing fish from this area from those born farther north. And since these wide growth zones are so different from the other growth zones in figure 32, they provide added evidence that the dominant 1934 year-class arose in the general latitude of Chesapeake Bay They also tend to show that those bass born in North Carolina do not contribute a large proportion of the population that summers in northern waters. On the other hand, the fish that make up the top five sets of curves in figure 32 were all born in 1934, while those that make up the bottom set of curves (Currituck Sound) were born in 1935; and it should be pointed out that the comparison of the widths of the second growth zones of seales from fish born in different years may be fallacious. Thus there is no evidence from the single sampling in Currituck Sound in 1937 as to whether the wide sceond growth zone is truly a regional difference that occurs ammally, or whether it was only a characteristic of the 1935 year-class. However, scale measurements from samplings of bass of the same age-i years old in the spring of 1937-as those from Currituck Sound but taken in different areas, southern New England and southern Chesapeake Bay, appear in figure 33. (Tbe length-frequency curves of the seale measurements of the sample from Currituck Sound shown at
the bottom of fig. 32 are also repeated for the sake of comparison at the bottom of fig. 33.) These provide proof that the members of the 1935 year-class that contributed to the population summering in northern waters as 2 -year-olds in 1937 came, in the main, from the Chesapeake Bay area. Thus the middle set of curves in figure 33 are measurements of the growth zones of scales from fish that were just becoming 2 -year-olds in Chesapeake Bay in 1937. They are, in other words, from bass that had not yet migrated to any great extent, and the curve for the second growth zone may therefore be considered typical for bass that had been born in 1935 in Chesapeake Bay. The upper set of curves in figure 33 is from measurements of the growth zones of scales from 2-year-old fish taken from northern waters in the summer of 1937. They are from bass of unknown origin that had migrated north along the coast in the spring. It will be noted immediately that the curve for the second growth zone of the scales from northern fish in the summer of 1937 compares well with the similar curve for the bass of the same year-class known to be of Chesapcake Bay origin.

Figure 33.-The leagth-frequencies of the growth zones on scales from 2-year-old striped bass taken in southern New England southeru Chesapeake Bay, and Currituck Sound (repeated from Figure 32 for comparative purposes), in 1937. The measurements making up each curve have been smoothed by a moving average of threes throughout.
However, it does not compare well with the similar curve for bass of the same yearclass known to be of North Carolina origin. (Sec lower set of curves, figs. 32 and 33.) There is somewhat of an overlap between the curves of the widths of the second growth zones on scales from fish of the 1935 year-class of known origin from Chesapeake Bay and North Carolina, so that scales from fish of the same age-group but of unknown origin that show a second growth zone measuring from about $2.0-3.0 \mathrm{~mm}$. might have been born in either of the above-mentioned areas. It is apparent that the majority of the widths of the second growth zones on the scales from fish taken in northern waters in the summer of 1937 fall below 2.0 mm . Judging from these measurements, it is possible to say that the North Carolina fish (assuming the Currituck Sound sampling to be representative of that area) contributed at an absolute maximum about 20 percent of the 2-year-olds summering in northern waters in 1937. The percentage that North Carolina contributed to the northern population at this time was probably much less. In fact, a comparison of the widths of the second growth zones of the scales from fish of the same year-class from Chesapeake Bay and from northern waters in 1937 (see fig. 33) shows that it is possible that North Carolina did not contribute anything directly to the population of 2 -year-olds summering in the north in 1937, and that this population came entirely from the Chesapeake Bay area or north of it. The latter, however, is undoubtedly an extreme view.

It is thus apparent that in 1937 North Carolina contributed directly not more than a small fraction of the 2 -year-old striped bass summering in northern waters, and that the 2-year-old bass in northern areas in that summer came mainly from the Chesapeake Bay latitudes and perhaps from the Dclaware Bay region. There is, however, a possibility that the fish born in North Carolina contribute indirectly to the popu-
lation summering in northern waters-that is, that they move up into Chesapeake Bay in the spring as 2 -year-olds (e.g., see under the last part of the section on migrations) and then migrate to northern waters a year or more later. This is added evidence that the dominant 1934 year-class, which first appeared as 2 -year-olds in northern waters in 1936, came from the general area of Chesapeake and perhaps Delaware Bays, although evidence of the above type should be obtained for severa successive years before it can be considered conclusive proof of the fact that the contribution to northern waters in the spring and summer comes essentially from the latitudes of Chesapeake and Delaware Bays each year.

Measurements of the growth zones of scales from striped bass born in 1936 in the Delaware Bay and Albemarle Sound regions are shown in figure 34. It will be noted that the widths of the second growth zones of the scales from the fish of Delaware Bay origin born in 1936 are slightly below those for the growth zones on the scales from the fish of Chesapeake Bay origin born in 1935. (Compare upper set of curves in fig. 34 with middle set of curves in fig. 33.) It is probable that this difference is at least in part due to the fact that the second growth zones on the scales from the Delaware Bay fish were not yet quite complete (the fish were taken on November 8, 1937) because the annuli on seales do not appear until spring, although the growth from November to March is almost negligible. Whether or not there is a constant difference in the widths of the second growth zones of scales from fish of Delaware

Figure 34.-The length-frequencies of the growth zones on scales from yearling and 2 -year-old striped bass taken in Delaware Bay

and Chesapeake Bay origin remains to be seen from sampling orer a period of years. It is probable that this method will not provide a good means of distinguishing between bass born in these two regions, as the environmental differences are apparently insufficient to cause any constant difference in growth rate during the second year.

The widths of the sceond growth zones of scales from fish born in 1936 in Albemarle Sound (see lower set of curves in fig. 34) are interesting because although they are quite great, they are not so distinctively different from the others as those from North Carolina collected in 1937 (see bottom set of curves, figs. 32 and 33). They indicate, in other words, that althongh a wide second growth zone is apparently a characteristic of North Carolina fish from the general region of Albemarle Sound, this characteristic varies from year to year sufficiently so that it can only be used as a means of distinguishing fish of North Carotina origin from fish of Chesapeake Bay origin when the scales from fair samplings of bass that are just becoming 2 years old in the spring, before any coastal migrations have been undertaken, are available from both areas during any one year.

In conclusion it should be emphasized once more that the available evidence from general observation, scale analysis, and tagging experiments, gives every indication that the dominant 1934 year-class originated chicfly in the latitude of Chesapeake and Delaware Bays; that those fish produced in North Carolina contribute directly only a relatively small fraction to the population summering in northern waters; and that the main body of the northern summer population of striped bass comes from the area bounded on the south by Virginia and on the north by New Jersey. Further proof that Chesapeake Bay in general contributes a large proportion of the stock summering in northern waters is seen in figure 35 , where the catches
in New York and Maryland are compared in certain years from 1887 to 1935. (The material for this figure is taken from the U. S. Bureau of Fisheries canvass, and is not an anmal comparison because the data are incomplete.) It will be noted that the trends of the catches in these two localities over this entire period show a remarkable correspondence-an agreement that could not reasonably be expected to occur umless the supply for both areas came mainly from the same source. In view of the evidence already presented, there can be little doubt that this source is the Chesapeake Bay area. In figure 35 the Maryland catch has been plotted at one-tenth its actual value throughout, a reduction which brings the annual catch in that State

Figure 35.-Total catch of striped bass in certain years by all types of gear in Maryland and New York from 1887 to 1935 (from U.S. Bureau of Fisheries canvass). Maryland cateh reduced to one-tenth throughout.
down to the same proportions as that of New York. Assuming the fishing intensity to be about the same in New York and Maryland, it is therefore reasonable to expect that this means that about one-tenth of each year's production of young in Chesapeake Bay reach New York. However, since immigrants from Chesapeake Bay are also taken in New Jersey and southern New England (unpublished material of V. D. Vladykov, p. 46), it is probable that somewhat more than one-tenth of the annual production of young leave Chesapeake Bay near the time that they become 2 years old, at the beginning of their third summer, and before they are old enough to be of any great value to the Chesapeake Bay fishery.

FOOD OF THE STRIPED BASS

The stomach contents of over 550 striped bass ranging in size from 6.5 to 115 rm . have been examined during the course of this investigation. These fish were all taken from April to November 1936 and 1937. Most of them were caught in Connecticut waters, although a few came from the Massachnsetts coast and others from Long Island and New Jersey. Of the total number of fish examined, the majority were caught on rod and line; the others were taken by net. Over 75 percent of the stomachs studied came from bass that ranged in size from 30 to 50 cm .

The rugose lining of the stomach of the striped bass probably indicates a rapid rate of digestion. It is apparently not a steady feeder, but may gorge itself over comparatively short periods of time and then stop feeding until its stomach is completely empty again. Stomach-content analyses of individuals taken in the same seine hauls often showed the food to be in similar states of digestion, thus providing evidence that the members of a single school of striped bass feed simultaneously and then digest their food over essentially the same period of time. Often a high percentage of the bass in one haul would be filled with recently eaten fish such as menhaden (Brecoortia tyrannus) or silyersides (Menidia menidia notata). Stomachcontent analysis of the bass taken in another haul would reveal partially or welldigested food. At other times most of the fish taken together would be entirely empty. Approximately 52 percent of all the stomachs examined were completely empty. This high percentage may be explained, at least in part, by the fact that a large portion of the total number of stomachs examined were from rod-and-line caught
fish, which are commonly empty because bass are more likely to be taken by anglers at the start of a feeding period when they usually have nothing in their stomachs, and also because bass taken on hook and line are often seen to regurgitate recently swallowed food.

Studies of the food of juvenite and yearling striped bass ranging from . $3-11 \mathrm{~cm}$. in standard length, seined on gravelly shoals of the Hudson River at Dennings Point, near Beacon, N. Y., have been made by Townes (1937) in connection with the binlogical survey of the Lower Hudson Watershed carried out in 1936 by the State of New York Conservation Department. The majority of these fish ranged from $3.0-5.5 \mathrm{~cm}$. in length. It was found that the fresh-water shrimp (Gammarus fasciatus) formed about 60 percent of the food, with chironomid larvae the next most important item. Small fish remains (not identified, save for one eel, Anguilla rostrata), leptocerid larvae, and planktonic Crustacea such as Latona, Cyclops, and Eurytemora, formed a small percentage of the food. Hildebrand and Schroeder (1928) examined the stomach contents of small striped bass from the salt and brackish waters of Chesapeake Bay, and fond that ". . . the young had fed on Mysis, Gammarus, annelids, and insects." The stomach-content analysis of small bass has been confined in the present study to 3 juveniles ranging from $6.0-7.5 \mathrm{~cm}$. in standard length taken in the Parker River, Mass., on August 4, 1937, and 30 juvenile and yearling individuals from 11-23 cm. long taken in the Dclaware River, near Pennsville, N. J., on November S, 1937. Those from the Parker River all had their stomachs filled with the shrimp. Crago septemspinosus. ${ }^{14}$ Those from the Delaware River were large enough to have become more voracious in their feeding habits, as is evidenced by the fact that 19 of the 30 examined contained the remains of fish of different species; the others were empty. A clupeoid species (probably menhaden, Preconrtia tyrannus) formed the main diet, while white pereh, Morone americana, and shiners, Notropis hudsonius amarus, were also commonly eaten. It is of some interest that one bass 16.5 cm . ($6 \frac{1}{2}$ inches) long contained a 7.5 cm . (2.95 inches) Morone americana, and examination of the stomach of an 18.5 cm . (7.28 inches) bass revealed the presence of a 10 cm . (3.94 inches) Notropis sp.

The examination of stomach contents of larger striped bass (above 25 cm .) has confirmed the commonly held view that this species is voracious in its feeding habits, and fairly gencral in its choice of food. It has also made it clear that hass often feed ofl the bottom, and blind individuals that were frequently taken in the Thames River, Conn. (see under section on parasites and abnormalities of the stripel hass), appeared to manage woll by feeding only on bottom-dwelling forms such as those included in the list below.

The most common form of food in Comecticut waters is the shiner, or silversides (Menidia menidia notata). This is a species which spawns in the spring (Hildebrand, 1922), and the young of each year stay so close to shore and are of such small size that they do not become arailable to the striped bass as food until August. At this time they reach 2 em. in length and often stray farther offshore. The growth rate of juvenite. Menidia shown in figure 36 . The length-frequency curves making up this graph are from random samples of the popnlation seined at biweckly intervals from July to Scptember 1937 in the Niantic River, Conm. It is apparent from a glance at the modes of these curves that in 1937 a peak of 2.0 cm . was attained shortly after the middle of August. Stomach-content analysis of striped bass $30-50 \mathrm{~cm}$. long in this area in 1936 and 1937 showed that adult Menidia and the common prawn (Palacmonetes vulgaris) formed the main food from April to August, but that in August and September the bass fed on juvenile Menidia to a large extent. Shortly after this change in diet in 1936 there was a decided increase in the growth rate of the 2-yearold striped bass (sec p. 28), which, despite the drop in water temperature (see fig. 30), was greatest in October. The presence of what was apparently an unusually great number of juvenile menhaden (Brevourtia tyrannus) in 1936 may also have played a part in this increased growth rate, for from August on striped bass commonly fed

[^10]heavily on this species during this year. However, juvenile menhaden were not as abundant in 1937 in this area, yet the growth rate of striped bass in September and October continued much as it had throughout the summer in spite of the drop in temperature (see fig. 18). It therefore appears that the increased food supply of striped bass resulting from the availability of juvenile Menidia after the middle of August may be corrclated with the maintenance or increase of the growth rate in the early fall when the water temperature falls rapidly, and when the normal expectation

Figure 36.-The growth of Menidia menidia notata, from Jnly to September 1937, in the Niantic River, Conn. The length-frequencies hare been smootbed by a moring arerage of threes throughout (sec Tahle 23 for original data).
would be that the growth rate would slow down. Other possible explanations of this apparently faster growth rate of striped bass in the late summer and early fall, such as faulty sampling and "compensatory growth," have been discussed in the section on the age and rate of growth of striped bass.

The following comprise all the forms of food found in the stomachs of the 550 striped bass examined in 1936 and 1937:

Comman types:
Shiners, or silversides (Mcnidia menidia notata).
Menhaden (Brevoortio tyrannus).
Shrimp, or prawns (Palaemonctes vulgaris).
Mummichogs, or killifish (Fundulus heteroclitus and majalis).

Uncommon types:
Sand Launces (Ammodytes americanus).
Ilerring (Clupea harengus).
Squid (Loligo pealei).
Sandworms (Nercis virens). ${ }^{15}$
Bloodworms (Glycera dibranchiala). ${ }^{15}$

Rarc types:
Flounders (Pseudopleuroneetes americanus). Eels (Anguilla rastrata).
Tomeod (Microgadus tomcod) - one 20 cm . specimen in a $40-\mathrm{cm}$. striped bass.
Clams (Mya arenaria) - of small size.
Crabs (Callinectes sapidus and Ovalipes ocellatus)--of small size.
Snails (Littorina, sp. ?).
Mussels (Mytilus edulis).
White perch (Morone americana).
Mullet (Mugil cephalus).
Shiners (Nolropis hudsonius amarus).
Blennies (Pholis guncllus).
Amphipods.
Isopods.

[^11]It is apparent from a glance at this list that bass feed on a wide variety of animals, and it is likely that a study of stomach contents in other localities would yield as many more species as are common in the coastal waters inhabited by striped bass. In this connection, the examination of the stomach contents of 101 striped bass (yearling to 3 -year-olds from the Albemarle Sound region and Mantco, N. C., in April 193 S yielded the following definitely identified forms, to say nothing of those that were too well digested to be identified: Teleosts.-Striped killifish (Fundulus majalis); sea trout, or spotted squeteague (Cynoscion nebulosus) ; silver perch (Bairdiella chrysura) ; croaker (Micropogon undulatus); gizzard shad (Dorosoma cepedianum); spotted ling, or hake, or codling (Phycis regius); anchory (Anchoriella mitchilli); ecl (Anguilla rostrata); white perch (Morone americana); glut herring (Pomolobus aestivalis); and minnow, or shiner (Notropis, sp.?). Crustacea ${ }^{16}$.-Three species of shrimp (Peneus brasiliensis, Palaemonctes carolinus, Crago septemspinosus); young blue crab (Callinectes sapidus); and isopod (Aegathoa oculata). ${ }^{17}$

PARASITES AND ABNORMALITIES OF THE STRIPED BASS ${ }^{18}$

Parasites of the striped bass have been collected whenever they were obscrved

 from 1936 to 1938.Two species of nematodes have been found that are endoparasitic on the striped bass. The first, Goezia annulata (syn.: Lecanocephalus annulatus Molin), was found in a single specimen in the stomach mucosa, and las been reported and described by Linton (1901) and MacCallum (1921). The second, Dicheilonema rubrum (sym: Filaria rubra Linton), has been observed in innumerable striped bass. It was found in the peritoncal cavity, usually in the posterior end in close association with the gonads, but it never appeared to do any serious harm to its host. This species has been reported for the striped bass by Railliet (1918), and is described by Linton (1901).

Among the forms that are ectoparasitic on the striped bass are two specios of copepods which have been found on various occasions. Caligus rapar, which oceurs on many species of marine fish, and described by Wilson (1905 and 1932), is not uncommon. Argulus alosae Gould was taken on three striped bass in the Niantic River, Conn., in August and September, 1936, thus constituting a new host record for this species; it was described by Wilson (1903). It is also of interest that in the collection of juvenile bass taken from the western end of Albemarle Sound on May 11, 1938, a high pereentage of the fish were parasitized by glochidia. It is supposed that these glochidia attached themselves to the fish in the fresh water at or near the mouth of the Roanoke River, and it is not known whether or not they can eomplete their normal encystment and development after being carriod into the brackish waters of Albemarle Sound.

A review of the literature indicates that many other parasites have been reported for the striped bass. The monogenctic trematodes include Lepidotes collinsi (Mneller, 1936), Aristocleidus hastatus (Mucller, loc. cit.), Epibdella melleni (Nigrelli and Breder, 1934), Microcotyle acanthophallus, M. (urides, and M. macroura. 1)igenetic trematodes that have been reported on striped bass are Distoma ruforiride (syn.: D. terve) (Linton, 1898), D. tornatum (Linton, 1901), and D. galactosomum. Two cestodes, Rhynchobothrium bubbifer and R. speciosum, have been reported by Linton (1901 and 1924), the former as plerocercoids in the intestine (adults in Selachians), the latter in cysts in the viscera. Besides the nematodes already mentioned, an Ascaris sp. has also been reported by Linton (1901). Two arantiocephalans, Echinorhynchus gadi (syn.: E. acus) (Linton, 1901) and Pomphorhynchus lapeis (syn.: E. proteus), have been taken from striped bass. Two other copepods besides those found by the author are the Lemacopodid, Achtheres lacae (Wilson, 1015), and the Ergasilid, Ergasilus labracis (Wilson, 1911 and 1932).

In regard to the general well-being of the striped bass, there is no evidence that any of the parasites that are associated with it are of any great importance. Dichriloncma rubrum, which is so commonly found in the peritoneal cavity, shows a tendency

[^12]to become partially cmbedded in the mesenteries, but the infection never appears to be serious. Goezia annulata, although comparatively rare, is probably a much more scrious pest. MacCallum (1921: 261) says:

Abstract

Its mode of living is calculated to interfere very materially with the function of the stomach, inasmuch as it burrows under the mucous membrane, in fact excavating in some cases quite a space where several worms colnabit. . . . There are often several of these nests in the stomach, each nest may be 30 mm . to 40 mm . across, and as they cause a good deal of swelling and irritation, they may and do in some cases so restrict the cavity of the host's stomach that its food cannot be taken in any quantity sufficient to keep it alive. Thus the worms are a very serious menace to the fish.

This species is not common in striped bass, however, and according to reports is quite cosmopolitan in its choice of host, having been recorded from many other species of fish. 'Trematode infections are probably sufficiently rare in striped bass in their natural habitat to be of small importance. Nigrelli and Breder (1934) have shown that many of the Serranid fishes have developed a resistance to Epibdella melleni, while Jahn and Kuhn (1932) noted that". . . the possibility of the development of immunity seems to be more strongly suggested in this family" (Serranidae). Copepod parasites are also apparently of small consequence to the striped bass.

It is worth mention that a surprising number of striped bass were encountered in the Thames and Niantic Rivers, Conn., that had cataracts of the eye. These were found commonly only in the Thames River, where they sometimes reached above 10 percent of the catch by seine. This opacity of the lens was encountered in all degrees from a slightly cloudy to a dead-white condition. It was almost universally bilateral, was rare in 2 -year-old bass, and more common in the larger sizes. It was equally common in all months from April to October. A number of dissections under lowpower magnification failed to reveal any parasites, such as larval digenetic trematodes, which might reasonably be expected to eause such blindness. Hess (1937) has recently shown that bilateral cataracts are common in trout in New York State, both in hatchcry and wild stock, and he has proved with rainbow trout (Salmo irideus) ". . . that cataract in these fish is due to an unbalanced diet." He has been able to demonstrate that contagious infection, light, and hereditary factors, are not in any way connected with the production of such cataracts, and that the feeding of trout exelusively on pig spleen caused a high incidence of cataract; while trout fed with beef liver and heart never showed any trace of cataract. It seems likely, therefore, that a dietary deficieney may perhaps account for the high percentage of blind striped bass in the Thames River. It is interesting in this comection that the extraction of earotene by acetone from the liver and fatty tissue of blind and normal bass has tended to show less carotene per gram of tissue in the blind than in the normal individuals, and it is thus possible that a lack of vitamin A is associated with the dietary deficiency causing cataracts.

It is also of interest that Sehultz (1931) has recorded a case of what gave every appearance of being completely functional hermaphroditism in the striped bass. This fish was taken in Oregon in May, and the eggs in one half of the gonads measured about 1 mm . in diameter, close to the size at the time of spawning (see p. 19), while the male half of the gonads was apparently developing normally.

DISCUSSION

It has been pointed out that there has been a striking decline in the numbers of striped bass along the Atlantic coast over long-term periods. (See under section on fluctuations in abundance of the striped bass, p. 8, and figs. 3 and 4.) The records show that this decline has been fairly steady from at least as far back as the middle of the nineteenth century, and perhaps before. They also indieate that it has been interrupted only ly the oceasional appearance of dominant year-classes-groups of striped bass that were produced in such huge amounts in certain years that they caused a marked increase in the numbers caught for short periods (see p. 8, et seq.). It is apparent from the available catch records (see fig. 4), however, that these dominant year-classes did not bolster the stock for more than a few years, and that their effects invariably have been short lived. In other words, the surplus created by them was soon removed, no permanent increase in abundance-and a consequent permanent increase in catch-resulted, and the decline in numbers of striped bass, although temporarily interrupted, soon resumed its normal trend.

Of especial importance in this respect is the dominant year-class of 1934 , probably the largest production of striped bass in a single year in the past half century, whose members appeared along the Atlantic coast as 2-year-olds in 1936 and were at once subjected to the highly intensive fishery that confronts this migratory species over the greater part of its range. Information gathered in the course of this investigation makes it possible to demonstrate that this dominant year-class was direetly responsible for a greatly increased catch, and also to make a rough estimate of the approximate rate at which this surplus was removed. Such an estimate is based on the pereentage of tag returns from 2 - and 3 -year-old striped bass of the dominant 1934 year-class. (See pp. 36-41 and tables 17-20.) It includes all the factors which show that the percentage of tag returns on this age-group was far lower than the actual pereentage removed by the fishery from 1936 to 1938. (See pp. 15 and 36.) Using this method, the most reasonable approximations show that abont 40 percent of the members of this year-class were removed as 2-year-olds, and that at least $25-30$ percent of the remaining 3 -year-olds were taken by the fishery in 1937 and 1938. If these estimates are correct it means that over 50 percent of the 2-vear-olds entering the fishery in the spring of 1936 had been removed by the spring of 1938 , neglecting the effect of natural mortality, which is taken up below (see p. 59, et seq.), and which is an important factor in the rate of removal of the members of any population. Even though these estimates are only rough approximations, it is plainly pevident that the enormous surplus created by the production of the dominant 1934 year-elass, resulting in the largest eatch of many years in 1936 (see figs. 4 and 6), is rapidly being removed, and that the members of this age-group will soon have been depleted to such an extent that they will no longer holster the ammal eatch.

Granting, then, that there has been a sharp decline in the numbers of striped bass along the Atlantic coast despite the oceasional appearame of dominant year-chases that bolstered the stock temporarily, it is of interest to know what has eaused this decline. Two factors appear to have been responsible - first, the destruetion of spamming areas by pollution and dams, and second, orerfishing. Let us now consider these two factors in some detail.

There can be little doubt that striped hass formerly entered and spawned in nearly every river that was suitable along the better part of the Atlantic coast. As civilization advanced, dams were built, many of the streams were polluted, and the number of spawning areas that were available became less and less. It has been pointed out under the scetion on spawning habits and early life history, and elsewhere in this paper, that the majority of the spawning areas for striped bass are now confined to the coastal rivers from New Jersey south. There remain, however, a few isolated localities to the north that are still suitable-probably but a fraction of the areas that were once available. Yet it is clear from the production of the dominant 1934 year-elass that there are still a suffieient number of goorl spawning areas left along the whole Atlantic coast to produce a large supply under the proper conditions. It should not be necessary to emphasize the fact that these remaining localities should be carefully protected against anything that might damage them, and other areas should be restored if it is possille.

Further investigations on the striped bass should eontinue the study of spawning areas along the Atlantic coast and determine the necessary requirements for the normal produetion, fertilization, and development of the eggs and larvar. In the case of some of the isolated spawning areas in northern waters, where the stock appears to have been maintained by a more or less self-supporting and partially resident population, there is some evidence that intensive winter and spring fisheries on the supply in the spawning localities have practically exhausted the stock. Under normal conditions the populations north of Cape Cod are probably not increased to any great extent by migrants from outside-especially from the south. This only occurs under exceptional cases, althongh it may oceur more commonly in the future now that the Cape Cod canal provides an easy means of access to the north (see p. 41). Thus an intensive fishery in the winter and early spring when the members of sueh on isolated self-supporting stock are dormant and inactive, and hence more easily arailable for capture, may come close to entirely depleting a population of this sort.

Turning to the other factor, overfishing, which in conjunction with the destruction of spawning areas by dams and pollution has been responsible for the decline in
abundance of striped bass, the problem is to see how overfishing affects the stock. Theoretically this factor may act in two ways-first, by the removal of too high a proportion of undersized and immature fish so that there are too few spawning individuals, and second, by failing to take the members of the available population at the most efficient size.

In regard to the removal of too great a number of striped bass before they have been given a single chance to spawn, evidence has already been presented to show that the fishery for the smaller size-categories of bass, 2 - and 3 -year-olds, is highly intensive, and that a large percentage of each successive year-class is caught before its members attain maturity. Yet there is no reason to believe that an additional supply of spawning individuals would result in an increased production, with the one possible exception noted below. Thus it has been emphasized in the section on fluctuations in abundance of the striped bass that the dominant 1934 year-class was apparently produced by as small a parental stock as there bas ever been. This means that in southern waters the production of dominant year-classes is not completely dependent-at least down to a certain limit-on the quantity of spawning individuals. In other words, there appears to be no need for concern over the size of the spawning population in the south as long as it is at least as large as it was in 1934. If such a hypothesis be granted, there can be little good in raising the legal-length limit solely for the purpose of increasing the number of spawning fish-especially since we know that under the conditions of the present fishery the number of striped bass along the Atlantic coast is sufficient to produce a year-class of enormous proportions, zuch as the one that originated in 1934.

There is, however, one way in which an increased number of spawning adults may possibly bolster the supply in northern waters, for this supply has apparently declined in some cases to such an extent that the population has been practically wiped out. It has been shown before that in certain years striped bass from the south migrate north of Cape Cod. Since it has been well established that some of these migratory fish remain in northern waters through the winter, it is a reasonable expectation, if they were mature fish, that they would repopulate some of those areas which formerly supported small populations in northern waters and are still suitable for spawning purposes. Thus the striped bass has been virtually an unknown quantity north of Cape Cod for the past 30 years or more; that is, until the members of the dominant 1934 year-class came north of Cape Cod in huge quantities in 1936 and 1937 and provided a renewed sporting and commercial fishery of considerable size in those waters. It is certainly not unreasonable to predict that if a sufficient number of mature fish repopulate the spawning areas that still remain north of Cape Cod, the stock in northern waters can be replenished and the supply increased and maintained if the fish are given the proper protection.

It may therefore be said that measures designed to increase the supply of striped bass along the Atlantic coast by providing a greater number of spawning fish might quite possibly prove ineffective in the more southern waters of the Middle Atlantic Bight, for it is known that there are now a sufficient number of mature individuals to produce huge quantities of fish if the envirommental factors are right; witness the dominant 1934 year-class. On the other hand, such measures would probably renew, at least partially, the supply north of Cape Cod where the stocks have been practically exhausted in many instances.

The other aspect of overfishing to be considered is whether or not the present fishery along the Atlantic coast takes the available members of the population at the most efficient size, or, whether or not the fishery makes the best possible use of the supply each year. Thompson and Bell (1934), Graham (1935), Thompson (1937), and others, have all discussed the thcory of the effect of fishing on various stocks of fish, and have studied the problem of the most efficient utilization of the stock in different species. These papers have laid the foundation for future studies along this line, and it is possible to apply many of the principles set forth in them to the striped bass fishery of the Atlantic coast. Those who are critically interested in this whole subject should refer to the work of these authors.

The first problem in connection with the striped bass is to get some measure of the yield from the stock under the existing conditions of the fishery at the present time. Having attained this, it is possible to compare it with the yield from the stock under
different conditions of the fishery and thus determine which is the most advantageous, not only from the point of view of profit to the fisherman, but also in the light of what is known about the life history of this species. In other words, it is clesirable to discover at what age (or length) it is most adrantageous to start the fishery for striped bass; i.e., whether the fishery gets the most profit out of taking the fish for the first time when they are 2 -year-olds (averaging roughly three-quarters of a pound and 12 inches in length) as it does at present, or whether it would benefit by allowing the fish one or two more growing seasons before catching them.

In order to find the answers to these questions it is essential that the fishing mortality at different ages- the percentage of fish of each age taken by the fisheryand the natural mortality, be known. This can only be done accurately by careful studies and the collection of detailed statistics on the annual catches of striped bass over long-term periods, although the present work has given some information along these lines. Considering the dominant 1934 year-class, it has been assumed from the percentage of tag returns (see p. 57) that approximately 40 percent of its members were taken by the fishery as 2 -year-olds in 1936 and 1937 , and that about 25 percent of the 3 -year-olds of 1937 and 1938 were also taken by the fishery. It is known from various catch records from Virginia to Rhode Island that only about onequarter as many 3 -year-old striped bass were caught in 1937 as the 2 -year-olds that were taken in 1936. This is demonstrated in figure 4, where the catches of a poundnet fisherman at Fort Pond Bay, Long Island, N. Y., were approximately four times as great by number in 1936 as they were in 1937, and where the catch was over 90 percent 2-year-olds in 1936 and 3-year-olds in 1937. Given this information it is possible to estimate the natural mortality in 1936 by the following equation:

$$
N M=S_{1}-\left(F M_{1}+S_{2}\right),
$$

wherein $N M$ is the natural mortality in 1936, S_{1} the stock arailable in 1936, $F M_{1}$ the fishing mortality in 1936, and S_{2} the stock available in 1937. S_{1} can be given any arbitrary value, for example, 1,000 . If $F M_{1}$ is assumed to be 40 percent of S_{1} (see above), $F M_{1}$ is $400 . \mathrm{S}_{2}$ is equal to approximately $4 \times F M_{2}$, where $F M_{2}$ is the fishing mortality in 1937, for tagging experiments indicate that rourhly 25 percent of the 3-year-olds were taken in 1937. $F M_{2}$ is known to be $\frac{1 / 4}{} F M_{1}$, as only one-quarter as many 3 -year-olds were taken in 1937 as there were 2 -year-olds taken in 1936. Under these conditions $F M_{2}$ therefore becomes 100, and in the equation above, where S_{1} was assumed to be $1,000, S_{2}$ becomes 400 . Substituting these valucs in the equation, the natural mortality in 1936 attains a value of 200 . Thus of the original 1,000 fish in 1936, 400 were caught as 2 -year-olds, and of the remaining 600 fish, 200 were lost through natural mortality. It is therefore apparent that if the estimates on which the figures making up this equation are based are correct, natural mortality accounted for about one-third of the 2-year-olds in 1936 which were not taken by the fishery. It should be pointed out, however, that slight rariations in the percentages assigned to $F M_{1}$ and $F M_{2}$, which are only rough approximations, can materially change the value obtained for $N M$.

Taking the figures in the equation above. since they seem to be the besi arailable, it is possible to get some estimate of the yield from the stock under the existing conditions of the fishery. Table 1 is a theoretical treatment of 1,000 striped bass of the 1934 year-class to show the rate of remoral by the fishery and natural mortality, the numbers and poundage caught, and the market value, when the fish of this age group were caught over a 5 -year period from 1936 - 40 (as 2-, $3-$, 4 -, 5 -, and 6 -year-ohds). This treatment, in other words, considers the value when the fishery starts eatching striped bass for the first time as 2-year-olds, which is exactly what occured in 1930 along the Atlantic coast. The natural mortality is figured at one-third of the population, exeluding those taken by the fishery. The fishing mortality was estimated to be 40 percent in 1936, 25 percent in 1937, 15 percent in 1938 (when the members of the 1934 year-class were 4 -year-olds), 10 percent in 1939 (5 -year-olds), and 5 percent in 1940 (6-year-olds)-a declining fishing mortality that undoubtedly represents as sharp a decrease in the percentage of fish of any year-class caught each year as could possibly exist, and probably over-estimates the decline in the percentage taken by the fishery as the members of a year-class become older. It will also he noted in table 1 that the price per pound varies with the different size categories under con-
sideration. Thus the 2 -year-olds averaging three-quarters of a pound each are listed as bringing 6.5 cents a pound, the 3 -year-olds averaging 2 pounds cach as 9.5 cents a pound, and the 4 -, 5 -, and 6 -year-olds as bringing 10 cents a pound throughout. These prices were determined from information collected by the Bureau of Fisheries from an important dealer on the Atlantic coast. The average price per pound for the different size eategories was determined by dividing the total dollar volume for each month by the total number of pounds of striped bass purehased each month from March through November 1937. The prices for each of these months were then averaged, giving the average price for the different size categories for the entire period. Since this dealer handled a total of approximately 200,000 pounds during this period, the prices for the different size categories should be accurate estimates.
Table 1.-Theoretical treatment of 1,000 striped bass of the 1934 year-elass to show the rate of removal by the fishery and natural mortality, the numbers and poundage eaught, and the market value, when the fish were caught over a 5-year period from 1936-40. Note that in this treatment fish were caught for the first time when they were 2 -year-olds

	Age	A verage length	A verage weight	Total weight	Average price per lo.	Market value
Assuming 1,000 bass were arailable in 1936, of which 400 would be canght in 1936 (fishing mortality, 40 percent); 200 would die in 1936 (natural mortality, 33 percent of those not caught), leaving	$\begin{array}{r} \text { Years } \\ 2 \end{array}$	$\begin{aligned} & 31 \mathrm{~cm} .(12.2 \\ & \text { inches). } \end{aligned}$	Pounds 0.75	Pounds 300.0	Cents 6.5	\$19.5
400 bass available in 1937, of which 100 would be caught in 1937 (fishing mortality, 25 perceut); 100 would die in 1937 (natural mortality, 33 percent of tbose not caught), leaving	3	$\begin{aligned} & 41 \mathrm{em} .(16.1 \\ & \text { inches). } \end{aligned}$	2.0	200.0	9.5	19.00
200 bass available in 1938, of which 30 would be caught in 1938 (fishing mortality, 15 percent); 57 would die in 1938 (natural mortality, 33 percent of those not caught), leaving	4	$\begin{gathered} 50 \mathrm{~cm} .(19.7 \\ \text { inches.) } \end{gathered}$	3.5	105.0	10.0	10. 50
113 bass available in 1939, of which 11 would he caught iu 1939 (fishing mortality, 10 percent); 34 would die in 1939 (natural mortality, 33 percent of those not caught), leaving	5	$\begin{aligned} & 58 \mathrm{~cm} .(22.8 \\ & \text { inches). } \end{aligned}$	5. 5	60.5	10.0	605
68 hass available in 1940, of which 3 would he caught in 1940 (fishing mortality, 5 percent).	6	$\begin{aligned} & 66 \mathrm{~cm} .(26.0 \\ & \text { inclies). } \end{aligned}$	8.0	24.0	10.0	2. 40
Total number of striped bass caught during 1936-40, 544.		Total...	.-....-	689.5	-----.---	57.45

In table 1 it will be seen that the total market value derived from 1,000 bass of the 1934 year-class over the 5 -year period $1936-40$ was 857.45 , the total number of individuals caught was 544 , and the total weight taken was 689.5 pounds. These figures represent the yield to the fishery when striped bass are caught for the first time as 2 -year-olds (12 inches in length).

Table 2 gives similar information for the same number of bass of the 1934 yearclass when the fishery did not eatch them as 2-year-olds in 1936 but took them for the first time as 3 -year-olds in 1937, and caught them over the 4-year period 1937-40. It will be noted that the total market valne under these conditions was $\$ 64.48$, the total number of individuals eaught was 242, and the total weight taken was 661.5 pounds. Thus, less than half as many individuals were taken when the fishery first caught bass as 3 -year-olds, yet the gross profit was substantially more. It is, therefore, plainly evident that if the figures upon which these calenlations are based are reasonably accurate, the fishery is not utilizing the available supply of striped bass in the most efficient manner when it first takes them as 2 -year-olds.

Since it has been shown that it is apparently more efficient for the striped bass fishery of the Atlantic coast to start taking the fish as 3-year-olds rather than as 2-yearolds, it is of interest to consider what the yield would be if the fishery waited still another year and did not begin to remove the members of the bass popalation until they became 4 -year-olds. Treating the same 1,000 fish of the 1934 year-class in the same manner as shown in tables 1 and 2 , with the sole difference that the fishery only operates over a $3-$ year period from 1938-40, the total market value drops to $\$ 43.60$, and there appears to be an inefficient utilization of the available stock from every point of view. This striking drop in the gross profit under these conditions is
due to the high value estimated for natural mortality each ycar, for the amount added in total growth by allowing the fish to live until they are 4 years old does not compensate for the numbers lost through natural mortality under these conditions.

Table 2.-Theoretical treatment of 1,000 stripcd bass of the 1934 year-class to show the rate of removal by the fishery and natural mortality, the numbers and poundage caught, and the market value, when the fish were caught over a 4-year period from 193\%-40. Note that in this treatment the fish were caught for the first time when they were S-year-olds

	Age	A verage length	Aterage weight	$\begin{aligned} & \text { Total } \\ & \text { मeight } \end{aligned}$	A ferage price per pound	Market value
Assuming 1,000 bass rere available in 1936, of wbich 333 would die in 1936 (atural mortality, 33 percent), leaving	Years		Pounds	Pounds	Cents-.
667 bass avallable in 1937, of which 167 would be caught in 1937 (fishing mortality, 25 percent); 167 would die in 1937 (atural mortality, 33 percent of those not caught), leaviag	3	41 cm . (16.1 inches).	2.0	334.0	9.5	\$31. 33
333 bas available is 1938, of which 50 pould be caught in 1938 (fishing mortality, 15 yercent); 94 would die in 1938 (natura] mortality, 33 percent of those not caught), leaving	4	$\begin{gathered} 50 \mathrm{~cm} .(19.7 \\ \text { iaches). } \end{gathered}$	3.5	175.0	10.0	17.50
189 bass a vailable in 1939, of which 19 would be caught in 1938 (fishing mortality, 10 percent); 57 would die in 1939 (aatural mortality, 33 percent of those not caught), leaving	5	$58 \mathrm{~cm} .(22.8$ inches).	5.5	104. 5	10.0	10. 45
113 bass available in 1940, of which 6 would be caught in 1940 (fishing mortality, 5 percent).	6	$\begin{gathered} 66 \text { cm. }(26.0 \\ \text { inches). } \end{gathered}$	8.0	480	10.0	+50
Total number of striped bass caught durimg 1937-40, 242.		tal.	--.-.	661.5		14.4

In tables 1 and 2 it was shown that the total market value of striped bass taken from the available stock of 1,000 fish of the 1934 year-class from 193640 (bass caught for the first time as 2 -year-olds) was $\$ 57.45$, as compared with $\$ 64.48$ when this same stock was utilized by taking its members for the first time when they were 3 -year-olds over the period from 1937-40. It should be pointed out that the gain from allowing the fish to become 3 years old before being caught has been figured in these examples. as the least that can result. In the first place, the fishing mortality on the members of the 1934 year-class was estimated from tagging experiments as 40 percent in 1936 and 25 percent in 1937. It has been arbitrarily placed at 15 percent in 1938, 10 percent in 1939 , and 5 percent in 1940, because they are considered the lowest values possible. Whether or not this annual decline in the pereentage taken is as steep as indicated above and in tables 1 and 2 is extremely questionable. It is obrims that if this decline is less sharp, the gain from allowing the fish to become 3 years oht before being caught is relatively greater. Further than this, the natural mortality of the bass of the 1934 year-class is estimated to be 33 percent of the population (negleeting fishing mortality) in 1936, and it has been arbitrarily placed at 33 percent for the years from 1937 to 1940. Actually, it is extremely unlikely that it remains as high as 33 percent over this period, for it is reasonable to assume that as hass become older than 2 years of age they are less likely to be killed through natural causes. It is possible that when bass become much older the death rate increases, but in the examples in tables 1 and 2 that stage is probably not reached. Thus it is likely that the annual uatural mortality of 33 percent from 1937 to 1940 is far ton high. If this be so, the gain from allowing the fish to become 3 years old before being caught is again relatively greater than is shown by the total market value in the examples given above. It is evident therefore that the gain from catehing striped bass for the first time as 3 -year-olds is far more than is shown in tables 1 and 2. Nor shouht it be necessary to point out that the figures used in the examples in tables 1 and 2 represent only gross values, and that the net values would be far greater.

It is also of importance that if the fishery first starts to operate on the striped bass population when its members are 3 years old, a greater proportion of the stock is given a chance to spawn. It has already been shown (see p. 22) that female striped bass first mature at 4 years of age. If the stocks available at this age are compared in tables 1 and 2 , it will be seen that of the 1,000 original fish of the 1934 year-class only 200 were
left by 1938 when the fishery started taking the fish for the first time as 2 year-olds, while 333 were left by 1938 when the fishery started to operate on 3 -year-olds. In other words, on the basis of these calculations about $1 \frac{2}{3}$ times as many female striped bass would be given a chance to spawn if the fishery were to allow the 2-year-olds to remain in the water and first started to catch them as 3 -year-olds. It has previously been pointed out that although a conservation measure designed to increase the stock by adding to the number of spawners in the south has no evidence to prove that it is not a fallacious policy, an increase in the number of mature fish in northern waters should repopulate this area to a certain extent and revive the fishery in this region There are, of course, many spawning areas in northern waters that have been ruined by pollution and dams so that they could not be repopulated, but it is widely believed that depletion in northern waters is in part due to insufficient numbers of spawners. Thus Bigelow and Welsh (1925) say:

Sinee striped bass have dwindled as nearly to the vanishing point in the St. John (whieh still sees a bountiful yearly run of salmon) as in the estuaries of rivers that have been dammed and fouled by manufacturing wastes, the chief blame for its present seareity can not be laid to obstruction of the rivers; and as this is a very vulnerable fish, easily eaught, always elose inshore, always in shallow water, and with no offshore reservoir to draw on when the local stock of any particular locality is depleted by such wholesale methods of destruction as the early settlers employed-overfishing must be hold responsible.
Probably one of the reasons why the depletion in northern waters has been so great is that bass which remain north in the winter become dormant and inactive (see p. 42), and hence far more easily available for capture, so that it is not impossible to wipe out an entire population. Under these circumstances there is good reason to believe that an added number of mature fish in northern waters would assist materially in renewing the supply in these areas, and that this supply could be maintained by affording the population adequate protection.

It should be mentioned at this point that the abundance of striped bass in California, where the present fishery arose as a result of two small original plantings (sce p. 5), has been successfully maintained by protecting this species up to the time they become 4 years old, at which time they are about 20 inches in length. Thus Craig (1930) and Clark (1932 and 1933) have studied the fluctuations in abundance of the striped bass in California, and both of these authors came to the conclusion that "the striped bass population could support a commercial fishery as well as a sport fishery"-a conclusion to which, however, the California State legislature apparently paid scant attention, since commercial netting was prohibited by law after August 14, 1931.

In consideration of all the foregoing evidence, even though it is based on assumptions that need further corroboration by continued investigation of this species, it seems highly advisable to try the experiment of allowing striped bass to become 3 years old before they are caught in large quantities along the Atlantic coast. Both sportsmen and commercial fishermen should benefit by this apparently more efficient utilization of the available stock, the former by having an increased number of large bass to fish for, and the latter by making a definitely higher profit than they do under the present conditions. An addition to the spawning stock in northern waters, where the supply has been depleted to such an extent that an added number of mature individuals is badly needed, should also result from protecting this species up to the time it becomes 3 years old.

RECOMMENDATIONS

The preceding section has dealt with a theoretical discussion of the striped bass population of the Atlantic coast. The causes for its decline in numbers over longterm periods, its lluctuations, and the effects of different fishing intensities and natural mortality on the stock under the existing conditions have been considered. Also, an attempt has been made, on the basis of the limited information at hand, to determine how the available supply of striped bass can be utilized most efficiently from every point of view. The data tend to show that the way in which the fishery for striped bass along the Atlantic coast can make the best possible use of the available supply is to start taking the fish as 3 -year-olds, when they average 41 cm . (16 inches) to the fork of the tail and weigh roughly from $1 \frac{3}{4}$ to 2 pounds each. There is apparently
more profit when the fishery first starts to take the bass as 3 -year-olds than there is when the fishery starts to take the bass as 2 -year-olds, because the greatest increment in growth in the entire life of the striped bass takes place during the third year of life-when the fish are 2 years old. This growth in the third year is sufficient to more than compensate for the losses due to natural mortality, and its advantages are missed when the fish are caught for the first time as 2-year-olds.

It is therefore recommended, on the basis of existing knowledge and as a practical experiment in conservation, that striped bass on the Atlantic coast less than 16 inches in length be protected.

The problem is, then, how striped bass should be protected up to the time they become 3 years old. Unfortunately the commercial fishery is not one which exists for the purpose of catching this species alone; rather, striped bass are taken in association with many other forms by different types of gear along the whole coast. It is impossible to make any limitation on the size of mesh to be used, since this would affect the capture of other species that do not need to be protected up to as large a size as do striped bass. Further than this, the striped bass is highly migratory and should be protected along the entire length of its range. It is only feasible, on this aceount, to suggest a universal length limit (or at least a commercial sale limit) for the entire Atlantic coast, and let the individual States determine by appropriate investigation whether additional restrictions on the gear employed in the striped bass fishery, and on the seasons when the fishery shall operate, would be profitable. It is no great hardship for commercial fisheries to return mudersized bass to the water, and it is to their ultimate advantage to do so-not only from the point of view of the increased return it should bring them, but also in order to eliminate any legitimate objection by anglers to their fishing methods. That the mortality of these undersized bass from being caught in a net and handled before being released would be small under normal conditions is abundantly illustrated by the fact that some of the most suecessful tagging experiments that have been carried on during this investigation have been made on fish that were caught in seines and pound-nets.

It is apparent that there is nothing to be lost and much to be gained by allowing the striped bass of the Atlantic coast one more growing season than they liave under existing conditions in the fishery-that is, by allowing them to become 3 -year-olds before they are taken in large quantities. However, the gaus from sueh an experimental measure will depend directly upon its universal acceptance along the entire Atlantic coast, and on the complete cooperation of those engaged in the fishery. The adoption of measures designed to protect striped bass of less than 16 inches in length should result in greater profit to the commercial fishormen, an inereased supply of larger fish for the sportsmen, and a larger number that reach maturity-of which a certain number should spawn in northern waters and possibly replenish stocks whieh have been badly depleted.

It is also apparent that there is need for much more study on the striped bass of the Atlantic coast. This is especially true since the specific recommendations as to the size limit of the striped bass made in this paper are suggested on an experimental basis. It is therefore essential that more detailed and more accurnte eatch records be made available, and further biological studies be undertaken in order to trace the results of the recommendation if adopted, to make possible a suitable revision of the size limit if the results indicate that modification would be desirable, and to amplify the results of the present investigation.

SUMMARY AND CONCLUSIONS

(1) The foregoing report is concerned with the results of an investigation of the striped bass (Roccus saxatilis) of the Atlantic coast, from April 1, 1936, to June 30, 1938.
(2) The general morphology and systematic characters of the species are described in detail on the basis of the literature and material afforded by fin-ray, scale, and vertebral counts, and measurements on more than 350 individuals.
(3) The striped bass is strictly coastal in its distribution from the Gulf of St. Lawrence to the Gulf of Mexico. Those most commonly taken at present range from less than 1 pound to 10 pounds in weight; but larger individuals are by no means rare. The largest striped bass of which there is authentic record weighed 125 pounds.
(4) Studies of the fluctuations in abundance of the species over long-term periods show that there has been a sharp declime in numbers. Dominant year-classes have at times temporarily raised the level of abundance, but the intensity of the fishery is such that their effeets have been short-lived. The dominant year-class of 1934 was the largest to be produced in the past half century, although the parental stock at this time was probably as small as it ever has been. Evidence is presented to show that there is a good correlation between the production of dominant year-classes of striped bass and below-the-mean temperatures during the period before and immediately after the main spawning season.
(5) The striped bass is anadromous, spawning from April through June, the exact time depending on the latitude and temperature. The majority of spawning takes place from New Jersey south, although there are a few isolated spawning areas in northern waters. The development of the eggs and larvae is pictured, and the size of the juveniles at different times of the year is discussed.
(6) Sex determinations of striped bass in Long Island and New England waters show that the number of males in this northern range of the species seldom reaches much over 10 percent of the population; the percentage of males apparently decreases in the age-categories above the 2 -year-olds. In waters farther south the sex ratios are not so disproportionate. Studies of the age at maturity show that approximately 25 percent of the female striped bass first spawn just as they are becoming 4 years of age, that about 75 percent are mature as they reach 5 years of age, and that 95 percent have attained maturity by the time they become 6 years old. A large percentage of the male striped bass are mature at the time they become 2 years old, and probably close to 100 percent are mature by the time they become 3 years old. This difference in the age at maturity of male and female striped bass may well account for the small percentage of males in northern waters, for the time of the spawniug season in the south coincides with the time of the spring coastal migration to the north, which is made up mainly of immature females. (See under migrations, p. 44.)
(7) The age and rate of growth have been studied by scale analysis and by the average sizes of different age groups. The scale method and its applicability to the striped bass is discussed in full. Striped bass are roughly 12 cm . long when they become 1 year old, 24 cm . when they becone 2 years old, 38 cm . when they become 3 years old, and 45 cm . when they become 4 years old. Thereafter the annual increment in length is about $7-8 \mathrm{~cm}$. up to the tenth year. The growth rate of striped bass in the summer months in 1937 was much greater just north of Cape Cod than it was slightly south of Cape Cod. The growth rate of 2 -year-old striped bass in Connecticut waters was approximately the same from June through October 1937, and increased in September and October 1936, despite the drop in water temperature. This maintenance of or increase in the growth rate in the fall was probably due to increased food supply at this time. The growth and availability of juvenile silversides (Menidia menidia notata) are shown to be of direct consequence in this relation. The members of the 1934 dominant year-class averaged 2 cm . smaller than the members of the 1933 and 1935 year-classes, neither of which were large, at similar ages. This difference in size developed before these fish became 2 years old.
(8) A total of 3,937 striped bass have been marked by either external dise tags or internal belly tags. Returns from these tagged fish, and the examination of commercial catch records, show that there is a mass migration to the north in the spring and to the sonth in the fall, and that the population in northern waters is stationary in the summer. These migrations have their greatest intensity along the southern New England and Long Island shores. They take place chiefly between Massachusetts and Virginia, although bass north and south of these areas play some part in the migrations. The Middle Atlantic Bight is undoubtedly the center of abundance for the striped bass over its entire range, and tagging experiments indicate that there is little encroachment by this stock on the populations to the north and south. Temperature undoubtedly plays some part in the migrations, for in Connecticut waters they have been observed to occur on each occasion when the water reached $7^{\circ}-8^{\circ} \mathrm{C}$. The migrations of the striped bass, however, are not universal, for this species is caught through the summer in southern waters and in northern waters in the winter. Those fish that stay north
in the winter often become dormant and inactive. The evidence is strong that the maximum tolerance limit for the species is $25^{\circ}-26^{\circ} \mathrm{C}$., which is about as high a temperature as coastal waters ever reach in the North and Middle Atlantic. Coastal migra. tions are not undertaken by bass less than 2 years old. Tagging experiments conducted in North Carolina in the springs of 1937 and 1938 tend to show that bass from this region contribute directly only a small percentage to the population summering in northern waters.
(9) The available evidence from general observation and scale analysis points to the conclusion that the dominant 1934 year-class originated chiefly in the latitude of Chesapeake and Delaware Bays, and confirms the results of the tagging experiments in North Carolina in the springs of 1937 and 1938 mentioned above.
(10) Stomach-content analyses on over 550 striped bass from northern waters, and on over 100 individuals from the south, show that bass are general in their choice of food-a large variety of fishes and crustacea forming the most common diet.
(11) Various nematodes and copepods have been found parasitic on the striped bass, and a number of trematodes, cestodes, and acanthocephalans have also bcen listed by other authors. Glochidia were found on small juveniles from the western end of Albemarle Sound. Several of the parasites listed constitute new host records. None of these parasites are of any great consequence to the general well-being of the striped bass population. A high percentage of bass in the Thames River, Conn., were found to have bilateral cataract. It is suggested that this is the result of a dietary deficiency.
(12) The decline in abundance of the striped bass of the Atlantic coast over longterm periods and its causes are discussed, and it is pointed out that the present practice of taking such a large proportion of the 2 -ycar-olds annually is apparently not an efficient utilization of the supply, and that both the fishery and the stock should bencfit by protecting this species until it is 3 years old, at which time it is approximately 41 cm . (16 inches) long to the fork of the tail and weighs $13 / 4$ to 2 pounds. The adoption of such experimental measures designed to protect striped bass up to the time they become 3 years old should result in a greater profit for the commercial fishermen, an increased supply of larger fish for the sportsmen, and an added number of individuals that reach maturity, some of which may possibly spawn in northern waters and thus replenish the stocks in these areas where in many instances the populations have been exhausted. The need for further studies on the striped bass is emphasized in order that the results of the recommendation, if adopted, may be traced, so that snitable revision of the size limit may be made if the results indieate that modifications would be desirable, and in order to amplify the results of the present investigation.

TAble 3.-Record of striped bass taken by members of Cuttyhunk Club, Cuttyhunk, Mass., 1865-1902

Year	$\begin{aligned} & \text { Number } \\ & \text { of fish } \end{aligned}$	A rerage weight	Largest fish	Y'ear	Number	Averame weight	$\begin{aligned} & \text { Largest } \\ & \text { fish } \end{aligned}$
1865.	1,174		28	1887	235	12	42
1866	659	6.75	24.50	1888	29	16. 50	56
1867	906	6. 25	55	1889	4	22.50	41
1898	942	6.75	57	1890	154	14	41.50
1809.	887	6. 50	48	1891	43	11.75	24.25
1870.	615	7.25	47	1892	18	16. 5 ($)$	38.50
1871.	804	8.50	42	1893	39	16. 25	35. 50
1872	581	8	39	1894	80	9	35. 25
1873	592	6.75	37	1895.	21	17.25	36.75
1874.	500	8. 25	65	1896	25	1425	
1875.	724	9.25	50. 25	1897.	59	11.25	33.50
1876	835	7	51	1898	45	9	23.75
1877.	321	10.25	51.50	1899	21	13	35
1878	648	8.25	51	1900	14	18	54
1879	489	9.75	49	1901	13	14	29
1880	403	9	50.25	1902.	2	17	
1881.	184	9.25	44	1903.	4	10.75	15.75
1882.	200	10.25	64	1904	5	15	35
1883	154	8.25	31.75	1905	7	10	40
1884	124	9	43	1906	1	9.25	9. 25
1885	46	9	29. 50	190%	5	18	23. 50
1886	3	22	27.25				

Note.-See fig. 3.

Table 4.-Number of striped bass taken cach year in pound-nets at Fort Pand Bay, Lang Island, N. Y., 1884-1937

Date	Number of striped bass	Number of poundnets in operation	Date	Number of striped bass	Number of pounduets in operation
1884.	3, 630	6	1911.	221	9
1885.	1.872	6	1912	702	9
1886	4.354	6	1913.	378	9
1887	2,658	6	1914	1,579	10
1888	2,046	6	1915.	236	10
1889	915	8	1916.	804	9
1880	720	7	1917.	197	8
1891	636	7	1918.	1,310	7
1892	455	7	1919.	157	7
1893	1.953	7	1920	463	7
1894	3, 643	8	1921 -	240	7
1895	3,689	8	1922..	1.976	7
1896.	35	9	1923.	401	7
1897	895	9	1924 -	878	7
1898 1899	708 189	9	1925.	389 321	
1899 1900	1, 185	9	1927.	321	7
1901	1,310	9	1928	184	$6 ?$
1902.	348	9	1929.	100	8-12
1903.	1,107	9	1930.	325	8-12
1904.	219	9	1931.	500	8-12
1905	64	9	1932	35	8-12
1908	3,374	9	1933.	50	8-12
1907.	926	9	1934.	100	$8-12$
1908	425	9	1935.	400	8-12
1909	300	9	1936.	15,600	12
1910.	495	9	1937.	4,200	12

Note.-See figs. 4 and 24.

Table 5.-Length-frequency distribution of striped bass making up the random samplings of the commercial catch in Cape Cod Bay, at Newport, R. I., and at Montauk, Long Island, N. Y., in $193 \bar{r}$

Length (cm.)	Number of individuals			Length (cm.)	Number of iudividuals		
	Cape Cod Bay	$\begin{gathered} \text { Newport, } \\ \text { R. } \mathbf{I} . \end{gathered}$	Montauk, Long Island, N. Y.		Cape Cod Bay	$\begin{aligned} & \text { Newport, } \\ & \text { R.I. } \end{aligned}$	Montauk. Long Island, N. Y.
20.--	1			57....	4		
22	1			58.	2	3	
${ }_{32} 2$	1		i*	59.	3	1	1
34	1			61.	4	-	
35.	2		1	62	3	- 1	
36	8		2	63.	2	1	
37.	3		5	64	2	\cdots	
38	16	2	${ }^{4}$	65.	3	-.......	
39.	22	1	12	66.	2	
40	17 31	4	24	67.	3 2 2	-.-.--...	
42.	21	22	40	70	2		
43	21	28	56	71	1	-----7....	
44.	19	29	61	73.	2	----.....	
45.	19	44	34	77.	1	-.-.-...-	
46.	17	39	39	78	1	.-...	
47	20	44	26	80.	1	-..---.	
48	12	25	31	81.	1		
49.	23	21	12	84	1		
50	16	17	18	90	2		
51.	15	14	6	96	1	...--.-.	
52	11	24	6	102			1
83.	9	21	4	108.	2		
${ }_{5}^{51}$	5	7		Total.	366	378	413
56..	3	10	1				

Note,--Sea fig. 5 for length-frequency curves smothed by threes made up from this material.

Table 6.-Total catch of striped bass by seine at Point Judith, K. I., 1998-8:

Date	Num. ber	Pounds	Number of days fishing (equalizing factor)	Average weight (pounds)	Date	$\underset{\text { ber }}{\text { Num- }}$	Pounds	Numher of days fishing (equalizing factor)	Arerage weight (pounds)
1928	225	1,925	19 ($\times 14 \mathrm{4}$)	8.5	1933	I, 513	9.625	$66(\times 1.3)$	6. 2
1929	1,050	5,700	$83(\times 1.0)$	5.4	1934	234	1. 300	31 ($\times 2.3$)	5. 5
1930	600	4,825	$70(\times 1.2)$	80	1935.	1. 250	7,000	58 ($\times 1.4$)	5.6
1931	375	5,200	$48(\times 1.7)$	6.f)	1936	7. 500	18.000	49 ($\times 1.7$)	2.4
1932	1. 375	8, 800	$60(\times 1.4)$	f. 4	1937	4,500	12.000	44 ($\times 1.8$)	27

Note.-Seefigs. 6 and 7.

Table 7.-Length-frequency distribution of juvenile stripel bass from the Hudson Riter, July 3-Scpl. 1, 1936

Leugth (mm.)	Number of individuals at each millimoter	Leggth (mm.)	Number of individuals at each millimeter	Length (rmu.)	Number of individuals at each millimeter	Length (mm.)	Number of individuals at exch millimeter
20.	1	49.	16	70.	18	91.	,
		50	14	71	12	92	1
30.		51	16	72	11	93	3
31	-	52.	23	73	10	94	
32		53.	15	74	12	95.	4
33.	1	54	17	75	7	96	
34.	1	55	19	76	5	97	1
35	2	56	22	77	13	98.	
36	4	57	18	78	7	99	
37.	2	58	17	79	11	100.	
38.		59	19	S0	8	101.	
39.	2	60	28	81	5	102	1
40	2	61	17	82	8	103	
41	4	62	17	83	6	104	1
42	8	63	19	84	5	105	,
43	7	64	13	85.	1	106	
44	8	65	10	88.	3	107.	1
45	10	66	17	87	6		
48.	15	67.	10	88.	8	Total	828
47.	10	68	18	49	4		
48.	16	69.	12	90.	3		

Note.-See fig. 10 for length-frequency curve of this material smoothed by thrers.

Table 8.-Length-frequency distribution of juevile and yearling striped bass taken in the Delaware River, near Pennsuille, N. J., Nou'. 8, 1997

Length (em.)	Number of iudividuals
10	1
11	4
12.	4
13.	3
14.	5
15.	6
16	8
17.	13
18.	19
19.	4
20.	11
21	11
22	10
23.	4
24.	2
25.	1
Total.	104

Table 9.-Length-frequeney distribution of juvenile striped bass taken in Albemarle Sound, N.C., on May 11, 1935

Note.-See fig. 14 for length-frequency curves of this material smoothed by threes.

Notr. - 8ee fig. 11 for length-frequency curve of thls meterlal amoothed by threes.

Table 10.-Age at maturity of 109 female striped bass of known length

Centimeters	2-year-olds (number of fish)		3-year-olds (number of fish)		4-yesr-olds (number of fish)		5-year-olds (number of fish)		8-year-olds and over (number of fish)	
	$\begin{gathered} \text { Immes } \\ \text { ture } \end{gathered}$	Mature	Immature	Mature	$\underset{\text { ture }}{\operatorname{Imme}}$	Mature	Immature	Mature	$\begin{gathered} \text { Imma- } \\ \text { ture } \end{gathered}$	Mature
23	1			-----.-						
31.	2									
32	1									
33.	2									
34	2	-		-------	-----	.				
35	3	- - .-....				---				
36	1									
38.	3					-				
39	1	----	1							.-.-.---
40.	2	-	2							---.--- -
41.	1	--	1			-				-
42	1	------..	2						
43			2							
44			3							--------...
46			2	1		,				
47.	.			2	3	.-				
48.	.	----.-			2					
49.										
50			1		1	6				
51.					2	3				
52.				1					
$53 \ldots$					1	1		1		
5 S								1		
57							1	5		
58								1		
59.								1	-...-.	
60.				-...	-.		1		
61.								2		
62			---		-------	------		1		1
63										1
										2
67.										1
68										1
69										1
72										1
74.										
76.										
78.										2
113.										1
Total	100\%		14	26.6\%	9	2.5 73.5%	1	93.3\%	-.......	19 100%

Note.- Those individuals were listed as mature if their ova had attained sufficient size to indicate that spawning would occur the following season. See text (p. 21).
Table 11.-Length-frequency distribution of all striped bass measured in Connecticut waters from April through October, 1996 and 1937

Length (cm.)	Number of individusls		Length (em.)	Number of Individuals		Length (cm.)	Number of individuals	
	1936	1937		1936	1937		1936	1937
23.	3		49.....-.-...-	11	16	75.....-.......	3	.-..-
24.	4		50...-------	13	17	76............	4	
25------------	8		51	12	9	77...	3	3
26.-.---.....	16	1	82	5	6	78.	1	
27	21	2	83.	7	7	79.	1	
28.	43	8	54.	11	7	80		
29	61	22	55	5	8	81.	2	.-.--
30	83	50	56	7	6	82	3	...-
31.	121	62	57	8	5	83.	1	---.
32	138	85	58	6	2	84	2	-----
33	190	127	59	7	2	85	2-
34	174	111	60-.....-.----	9		86	1	...-
35	198	111	61.	5	2	87		
36	162	118	62.	2		88	2	-----
37.	136	102	63.	6	2	89		
38.	81	100	64.	4	2	90.	1	
39	35	81	65----...----	5	1	91.	2	
40	53	72	66--..........	10	2			2
41.	35	70 57	67-.......--	8		93 94.	1-
43	28	43	69-.......-......	6		95.	1	
44.	16	40	70	4		96.		
45.	27	30	71.	4			1	
46	15	25	72	4	1			
47.	25	24	73.	4		Total..	1,033	1,460

Notr.-See fig. 17 for length-frequency curres of this material smoothed by threes.

Table 12.-Length-frequenry distribution of 2 - and S-year-old striped bass seined in Connecticut waters during 1936 and 1997, grouped by months

Note.-See fig. 18 for length-frequency curves smoothed by threes to show growth from June to October each year.
Table 13.-Length-frequency distribution of 2- and S-year old striped bass taken north and south of Cape Cod, June to September 1987

Length (em.)	2-sear-olds (number of individuals)		Length (cm.)	3 -year-nids (oumber of individuals)	
	North of Cape Cod	South of Cape Cod		North of Cape Cod	South of Cape Cod
25.			30.......-		
26...			31		
27.....			32.		1
28....			33..		6
29....	1		34		7
30...			$35 \ldots$		7
31		8	36	2	12
$32 \ldots$	3	6	$37 .$		
33	3	13	35	3	11
$34-$--	1	7	39	4	14
35	2	8	40	9	10
36	5	8	41	16	10
37		3	42.	7	6
38.	9	4	43	15	?
39.	9	2	44.	14	$\overline{7}$
40.	17	1	45.	28	3
41.	8	--	4 B	3	3
42	9	1	47	22	4
43	9	1	48	11	3
44	4	------.-.	49	11	1
45...	6		50	19	3
47...	1		52.	4	--------
48.			53.	11	
49.			54.	8	
Total.		--	65.	6	
	88	66	68.	2	
			59	1	
				205	124

Note. - See fig. 19 for length-frequency curres of this material smoothed by threes.

Table 14.-Average lengths of striped bass at the time they become 1 year old, 2 years old, etc., to 9 years old

Age	A verage length		Age	A verage length	
	Centimeters	Inches		Centimeters	Inches
1 year old	12.5	4.92	6 years old	61.0	24.02
2 years old	23.5	9.25	7 years old	68.5	26.97
3 years old.	36.5	14. 37	8 years old	75.0	29.53
4 years old.	45.0	17.72	9 years old	82.0	32. 28
5 years old	53.0	20.87			

Note.-See IIg. 20.

Table 15.-Original measurcments of the radii of scales from 153 striped bass of measurcd length from 10.5-67 centimeters long

Length (cro.)	Scale radius (mm.)	Length (cm.)	Scale radius (mm.)
10.5	1.22.	32.0	3.76
11.0	1.37, 1.37.	32.5	4.16, 4.56.
11.5	1.52, 1.59.	33.0	4.12 .
12.5	1.95, 1.59.	34.5	4.48, 4.30, 4.19, 4.09, 4.02.
13.5	1.81.	35.0	4.05, 4.26, 4.48, 4.26.
14.5	1.79, 1.70, 1.86.	35.5	$4.38,4.26,5.03,4.84,4.48$.
15.0	1.92, 1.85.	36.0	4.55, 4.84, 4.34.
15.5	2.02, 2.09.	36.5	4.52, 4.56, 4.30.
16.0	1.95.	37.0	5.10, 4.78, 4.38.
16.5	2.09, 2.24, 2.24.	37.5	4.67, 4.41, 4.56.
17.5	2.24, 2.09 .	38.0	4.84, 4.84, 4.91, 4.39, 4.70, 5.06.
18.0	$\begin{aligned} & 2.24,2.39,2.31,2.09,2.24, \\ & 2.37,2.31 . \end{aligned}$	$\begin{aligned} & 39.5 \\ & 40.0 \end{aligned}$	$4.88,4.42,5.27$ $5.24,5.24$
18.5	2.24, 2.53,2.46.	40.5	5.20, 5.24, 4.91.
19.5	2.35, 2.35 .	41.0	5.35, 4.70. 4.91.
20.0	2.60, 2.39. 2.53.	42.0	5.13, 5.49, 5.29.
20.5	$2.55,2.67,2.53$.	43.0	5.67 .
21.0	2.89, 2.74, 2.43, 2.67.	43.5	5.56, 6.11.
21.5	2.67, 2.69, 2.74, 3.10.	45.0	5.75
22.0	3.03, 2.82 .	45.5	6.43 .
22.5	2.89.	46.0	6.18.
23.0	2.70, 2.86.	46.5	5.99.
24.0	3.14.	47.0	5.71.
24.5	3.40.	47.5	6.40, 6.60, 6.43.
25.0	3.03 .	48.0	6.40, 6.28, 5.85.
26.0	3.62.	48.5	6.36.
26.5	3.36 .	50.0	6.57, 6.36, 6.71.
27.0	3.32, 3.58.	51.0	6.07, 6.14 .
27.5	3.83 .	52.0	6.36.
28.0	3.99.	53.5	7.00.
29.0	3.90, 3.69	54.0	6.79.
29.5	3.52, 4.12.	55.0	6.93.
30.0	3.62.	62.0	7.87.
30.5	4.12, 4.12.	63.0	8.73.
31.0 31.5	$4.19,3.83$. $4.19,4.31,4.56,4.05$.	67.0	9.17.

Note.--See fig. 21 for graph of relationship of scale growth to body growth in the striped bass, plotted from data in this tahle

Table 16.-Annual increment in the length of the striped bass

Age	Increment	
	Ceutimeters	Inches
First year	12.5	4. 92
Second year	11.0	4.33
Third year	13.0	5. 12
Fourth year	8.5	3.35
Fifth year.	8.0	3. 15
Sixth year	8.0	3. 15
Seventh yeat.	7.5	2. 95
Eighth year..	6.5	2.88

NOTE.-See Ag. 22.

Table 17.-Returns from 1,997 striped bass tagged in Connecticut, Apr. 23 to Oct. $27.193 \theta^{\circ}$

Table 18.-Returns from 103 striped bass tagged and released at Fort Pond Bay, Montauk, Long Island, N. Y., May 15-19, 1937

Dato of return	Number of returas each month	Localits of recapture	Total number of returns each month
Msy 1937.......-.-.-...-	1	Montauk, Lone Island, N. Y Shelter Island, Long Island, $\mathrm{N} . \overline{\mathrm{Y}}$	
	1	Point Judith, R. I .-...-.-.....	3
June 1937.	1	Connecticut River, Conn	1
July 1937	2	Peconic Bay, Long Island, N. Y	
	1	Oyster Bay, Long Island, N. Y.	3
August 1937.....-.......	,	Montauk, Long Island, N. Y	
	1	Peennic Bay, Long Island, N.	
	1	Smithtown, Long Island, N.	
	1	Cohasset, Mass Cape Cod Bay, Mass.	5
October 1937.............	1	Narragansett Pier, R. I.	1
May 1938.....................	1	Connecticut River, Conn	1
Total rccaptures...			14.
Total percentage recaptured.			13.6

Table 19.-Returns from 309 striped bass tagged and released at Fort Pond Bay, Montauk, L. I., N. Y., Oct. 25, 26, and 27, 1937

Date of return	Number of returas each month	Locality of recapture	Total number of returns each month
October 1937..	2	Gardiners Bry, Long Island, N. Y..	
November 1937	23	Montauk, Long Island, N. Y -----	25
	1 5	Gardiners Bay, Long Island, N. Y Montauk, Long Island, N. Y....	
	27	South shore of Long Isiand, N. Y	
	1	Monmouth Beach, N. J...-.-.-	
	1	Barnegat Bay, N. J.-..	35
December 1937..........-	4	South shore of Long Island, N. Y	
	1	Mullica River, N. J .-..........	
	1	Indisu River, Del........	
	I	Rappabannock River, Va Great Choptank River, Md	
	1	Cape Charles, Va...	
	1	Croatan Sound, N. C.	
	1	Stumpy Point, N. C.	
	1	Pamlico Sound, N. C	12
January 1938.............	1	Barnegat Bay, N. J	
	1	Mullica Rlver, N. J	
	1	Egg Harbor, N. J....	
	1	Synapuxent Bay, Md...-....	4
February 1938...-.......	3	South shore of Long Island, N. Barnegat Bay, N.J	
	1	Great Egg Marhor River, N.J.	
	1	Rappahannock River, Va...	6
March 1938......-......-	2	Hudson River, N. J.	
	2	Barnegat Bay, N. J. Great Ege Marbor River N. J	
	2	Rappahannock River, Va..	
	1	New Point, V8......	
	1	Kitty Hawk, N. C.	9
April 1938	1	Great Bay, N. J	
	1	York River, Va	
	1	Potomac River, Va-...-	
	1	Rappabannock River, Va	4
May 1938.-.-.-........-	1	Plymouth, Mass.	
	1	Pohury Park, N. J.	3
June 1938................	1	Oak Bluffs, Mass.	
	I	Chatham, Mass..	2
Total recaptures...			100
Total percentage recaptured.			33.9

Table 20.-Rcturns from 770 striped bass tagged in Connecticut, Apr. 19-Oct. 30, 1997

Date of return	Total number tagged by the end of each month	Original point of release	Number of returns each month	Locality of recapture	```Total number of returns each month```
June 1037.	182	Nlantic River, Conn.	3	Niantic River, Conn.	
		--- do.	1	Thames Rjver, Conn--	
July 1937.----.........	434	do. Thames River, Conn	11	Niantic River, Conn. Thames River, Conn-	
August 1937-..........	614	Niantic River, Conn	11 9	Thames River, Conn-	
		Thames River, Conn	$\stackrel{2}{2}$	Thames River, Conn	
		--do-.-.-.-.-....	2	Harkness Point, Conn.	13
September 1937-......	628	Nlantie River, Conn	$\stackrel{2}{1}$	Niantie River, Conn-- Harkness Point, Conn.	
		Thames River, Conn	1	New London Light, Conn	
		---- do..------------	2	Markness Point, Conn...	
		do.	1	Milford, Conn.	
October 1937.	770	Niantic RIver, Cond	11	Niantic River, Conn	
		do.	$!$	Harkness Point, Conn--.-	
		. do	1	Gardiners Bay, Long Island, N. Y	
		. .do.		Mnntauk, Long I sland, N. Y \% ${ }^{\text {South shore of Long 1sland, }}$, Y.	
		Thames River, Conn	4	Niantic R!ver, Conn..	
		--- do.	1	Harkness Point, Conn	
		. do	1	Montauk, Long Island, N, Y	21
Novemher 1937..-	770	Nlantic RIver, Conn	1	Niantic River, Conn--...-	
		T-do...-	1	South shore of Long Island, N. Y	
		Thames River, Conn		Gardiners Bay, Long Island, N. Y South shore of Long Island, N. Y.	
December 1937	770	Niantic River, Conn	1	--do....	
		.-.do.....	1	Hampton, Va	
		Thames River, Conn	1	Barnegat Bay, N. J	
Januery 1938.-.-....--	770	Nlantic River, Conn	1	South shore of Long Island, N. Y	
		---- do.	t	Broadkill River, Del...........	
March 1938...	770	-..do...............	1	Delaware Bay, N. J	
		Thames River, Conn	1	Iorms River, N. J. Y	
	770	Niantie River, Conn	1	Delsware Bay, N.J	
		. ${ }^{\text {d }}$ dn..........	2	Nisntic RIver, Conn	
		Thames River, Conn.	2do..	
M8y 1038.....-.-...-	770	Nlantic River, Conn	6	Connecticut Rjver, Conn	
		Thames River, Conn	1	Nisatic River, Conn ...	
June 1038.	770	Niantle River, Conn	3	...-do..........-...-	
Total recaptures.					93
Total precentage recaptured. \qquad					12.

Table 21.-Chemical analysis of the water at 2 stations in the Thames River, Conn., in the summer of $193 \gamma^{1}$

Locality	Date	pH	Dis. solved oxygen, parts per million	Chloride, parts per million	Sulfste, parts p+r milition	Calcium, parts per million	Phosphates, parts per million
Off the submarine hase, 1 mlle abovo New London on tho onst side of the Thames River	June 2	7. 70	7.76	13,350	1,834	316	0.30
	July 1	7. 64	6. 30	14,250	2. 027	36.4	52
	(Sept. 15	7. 59	5. 11	15,350	2,176	254	69
Off tho State pler at New London, on the west side $n f$ the Thames Rivor \qquad	June 2	7.82	8. 80	15,100	2,133	314	. 20
	July 1	7.74	7.10	15,5003	2, 279	346	. 52
	sept. 15	7. 69	6.07	16,400	2. 279	400	1.38

[^13]Table 22A.-Returns from 52 stripcd bass tagged Table 22B.-Returns from 17 striped bass tagged and released at extreme west end of Albemarle and released off Coinjack, Currituck Saund, Sound, N. C., Mar. 26, Apr. 9, and 21, 1937 N. C., Mar. 27, 1937

Date of return	Number of returns each month	Locality of recapture	Total number of returns each month
March 1937.........	6 5 1	Mackeys, N. C Edenton, N. C Columbla, N. C	12
April 1937	1 4 1 1	Pasquotank River, N. C. Mackeys, N. C Edenton, N. C.... Hertford, N. C....	7
Total recap-			19
Total per-			36.5

Table 22C.-Returns from 8 striped bass tagged and released at Kitty llawk, N. C. (outer const), Apr. 29 and May 10, 1987

Date of return	Number of returns each month	Locality of recapture	Total number of relurns each month
January 1938 Total recaptures \qquad Total percentage recaptured	1	Pasquotank Rlver, N. C........	1
			1
			12.5

Table 23.-Original measurements of Menidia menidia notata ta show growth of juveniles from July through September 1937 in the Niantic River, Conn.

Standard length in millimeters	Number of individuals at each length				Standard length in millimeters	Number of individuals at each length			
	July 17	Aug. 2	Aug. 17	Sept. 2		July 17	Aug. 2	Ang. 17	Sept. 2
5.	2				24	5	7	11	24
6.-.........					25	16	3	10	20
	1	1			26.	9	8	5	16
8.	7	2			27	3	2	7	21
9	13	5			28.	4		2	10
10	22	10	1		29.	5	2	1	3
11-........	23	13			30	6	1	1	3
12.	29	13	1		31		1	1	2
13.	21	19	2		32	1	1		
14.	14	22	6		33	2	1		
15.	5	22	17	1	34.			1	2
16.	3	16	16	2	35.				2
17.	2	16	16		36				
18	1	10	29	1	37.				2
19.		3	20	5	38.				
20.		8	17	8					1
21		8	11	18	Tolal.	200	200	200	197
23.	5	3	13	26					

Note.-See fig. 36 for length-frequency curves of this material smoothed by threes.

LITERATURE CITED

Bean, T. H.
1884. On the oecurrence of the striped bass in the Lower Mississippi Valley. Proe. U. S. Nat. Mus., vol. 7, pp. 242-244. Washington.
Bigelow, H. B. and W. W. Welsh.
1925. Fishes of the Gulf of Maine. Bull. U. S. Bur. Fish., vol. XL, pt. I, 1924 (1925), pp. 201, 251-256. Washington.
Cauliins, F. M.
1852. History of New London, Connecticut. p. 610. Published by the author, New London, Conn.
Clark, G. H.
1932. The striped bass supply, past and present. Calif. Fish and Game, vol. 18, No. 4, pp. 297-298. Saeramento.
1933. Fluctuations in the abundance of striped bass (Roccus lineatus) in C'alifornia. Div. Fish and Game Calif., Fish Bull., vol. 39, pp. 1-18. Sacramento.
1930. A seeond report on striped bass tagging. Calif. Fish and Game, vol. 22, No. 4, p1. 272-283. Saeramento.
1938. Weight and age determination of striped bass. Calif. Fish and Game, vol. 24, No. 2, pp. 176-177. Saeramento.
Coleman, G. A. and N. B. Scofield.
1910. Notes on spawning and hatehing of striped bass eggs at Bouldin lsland Hatehery. 21st Bienu. Rept., Calif. Board of Fish and Game Comm., 1909-1910, p. 109. Sacramento.
Craig, J. A.
1930. An analysis of the eatch statistics of the striped bass (Roccus lineatus) fishery of California. Div. Fish and Game Calif., Fish Bull. No. 24, pp. 1-41. Saeramento.
Creaser, C. W.
1926. The structure and growth of the seales of fishes in relation to the interpretation of their life-history, with special reference to the sunfish Eupomotis gibbosus. Mus. of Zool., Univ. of Mieh., Mise. Pub. No. 17, pp. 1-80. Ann Arbor.
Curran, H. W. aud D. T. Ries.
1937. Fisheries investigations in the Lower IIudson River. Biological Survey (1936) No. XI, pp. 124-128. State of N. Y. Cons. Dept. J. B. Lyon Co. Albany.
Dahl, K.
1907. The seales of the herring as a means of determining age, growth and migration. liopt. Norweg. Fish. and Mar. Jnv., vol. 2, pt. 2, No. 6.36 pp.
Goode, G. B. and associates.
1884. The fisheries and fishery industries of the United States, vol. 1, Suc. III, mp. 425428. Washington.
Gowanloch, J. N.
1933. Fishes and fishing in Louisiana. State of La. Dept. of Cons., Bull. No. 23, pp. 208213. New Orleans.

Graham, M.
1935. Modern theory of exploiting a fishery, etc. Jour. du Conseil Internat. bour l'Exploration de la Mer, vol. 10, No. 3, pp. 261-27.
Merrington, W. C.
1935. Modifications in gear to eurtail the destruetion of undersized fish in otter trawling. U. S. Bur. Fish., Inv. Rept. No. 24., vol. 1, 18 pp. Washingtum.

Hess, W. N.
1937. Produetion of nutritional cataract in trout. Proc. Soe. Nxp. Jini. and Med., vol. 37, pp. 306-309.
Hildebrand, S. F.
1922. Notes on habits and development of eggs and larvae of the silversides, Menidia menidia and Menidia beryllina. Bull. U. S. Bur. Fish., vol. NXXVIll (Doc. No. 918), mp. 113-120. Washington.

- and W. C. Schroeder.

1928. Fishes of Chesapeake Bay. Mull. U. N. Bur. Fish., wol. XLIII, pt. 1, 1927, pp. 247-200. Washington.
Hubbs, C. L.
1929. Variations in the number of vertebrae and other meristic characters of fishes currelatert with the temperature of water luring development. Am. Nat., vol. $56, \mathrm{pt} .645, \mathrm{p}$. 360-372.
and R. M. Bailey.
1930. The small-mouthed bass. Cranbrook Institute of Seience, Bull. No. 10, pp. 1-92.

Jahn, T. L. and L. R. Kuhn.
1932. The life history of Epibdella melleni MacCallum, 1927, a monogenetie trematode parasitic on marine fishes. Biol. Bull., vol. 62, pp. 89-111.
Jensen, A. J. C.
1932. The effect of the plaice fishery on the stock of undersized plaice and its influence on the yield of the plaice fishery in the North Sea. Rapp. et Proc. Verb. des Réunions (Cons. Perm. Internat. pour l'Exploration de la Mer), vol. 80.
Jornan, D. S.
1884. Manual of the vertebrates of the Northern United States. p. 231. Jansen, McClurg and Co. Chicago.
1929. Manual of the vertebrate animals of the Northeastern United States. 13th Ed., p. 172. World Book Co. Yonkers-on-Hudson, N. Y.
and B. W. Evermann.
1905. American food and game fishes. pp. 373-375. Doubleday, Page and Co. New York.

- B. B. W. Evermann and H. W. Clark.

1930. Cheek list of the fishes and fishlike vertebrates of North and Middle Ameriea north of the northern boundary of Venezuela and Colombia. Rept. U. S. Comm. Fish., 1928, pt. 2, p. 307. Washington.
Lea, E.
1931. Report on the age and growth of the herring in Canadian waters. Canadian Fisheries Expedition, 1914-1915. Ottawa.
and A. E. Went.
1932. Plastic copies of microscopical reliefs, especially of fish scales. Hvalrådets Skrifter, Nr. 13, pp. 1-18. Oslo.
Linton, E.
1933. Notes on trematode parasites of fishes. Proc. U. S. Nat. Mus., vol. 20, pp. 507-548. Waslington.
1934. Parasites of fishes of the Woods Hole region. Bull. U. S. Fish. Comm., vol. XIX, pp. 405-492. Washington.
1935. Notes on cestode parasites of sharks and skates. Proc. U. S. Nat. Mus., vol. 64, Art. 21, pp. 1-114. Washington.
MacCallom, G. A.
1936. Studies in helminthology. Pt. 3, Nematodes. Zoopathologica, vol. 1, No. 6, pp. 255284.

Mason, H. W.
1882. Report of operations on the Navesink River, New Jersey, in 1879, in collecting living striped bass for transportation to California. Rept. U. S. Conm. Fish and Fish., 1879, pp. 663-666. Washington.
Masterman, A. T.
1913. Report on investigations upon the salmon. Bd. of Agric. and Fish., Fish. Inv., vol. 1. Merriman, D.

1937a. Notes on the life history of the striped bass (Roccus lincatus). Copeia, No. 1, pp. 1536. Ann Arbor.

1937b. Notes on the life history of the striped bass. Trans. Sec. N. Am. Wildlife Conf., pp. 639-648. American Wildlife Institute, Investment Bldg., Washington.
1938. A report of progress on the striped bass investigation along the Atlantic coast. Trans. 3 d N. Am. Wildlife Conf., pp. 478-485. American Wildlife Institute, Investment Bldg., Washington.
Moore, E., et al.
1937. A biological survey of the Lower Hudson Watershed. Biological Survey (1936), No. XI, pp. 16, 62, 76, 127-128, 225-226, and $260-261$. State of N. Y. Cons. Dept. J. B. Lyon Co. Albany.

Moeller, T. F.
1936. New gyrodactyloid trematodes from North American fishes. Trans. Am. Fish. Soc., vol. $5 \tilde{5}, \mathrm{pp} .457-464$. Washington.
Nesbit, R. A.
1934a. A convenient method for preparing celluloid impressions of fish scales. Jour. du Conseil Internat. pour l'Exploration de la Mer, vol. 9, No. 3, pp. 373-376.
1934b. A new method of marking fish by means of internal tags. Trans. Am. Fish. Soc., vol. 63, pp. 306-307. Washington.
Nigrelli, R. F. and C. M. Breder.
1934. The susceptibility and immunity of certain marine fishes to Epibdella melleni, a monogenetic trematode. Jour. Parasitol., vol. 20, pp. 259-269.
Norny, E. R.
1882. On the propagation of the striped bass. Bull. U. S. Fish Comm., vol. I, 1881, pp. 67-68. Washington.
Parr, A. E.
1933. A gengraphic-ecological analysis of the seasonal changes in temperature conditions in shallow water along the Atlantic coast of the United States. Bull. Bingham Oceanographic Collection, vol. 4, No. 3, pp. 1-90.
1937. On sclf-recognition and social reaction in relation to biomechanics, with a note on terminology. Ecology, vol. 18, No. 2, p. 321-323.
Pearson, J. C.
1933. Movements of striped bass in Chesapeake Bay. Maryland Fisheries, No. 22, pp. 15-17.
1938. The life history of the striped bass, or rockfish, Roccus saxatilis (Walbaum). Bull. U. S. Bur. Fish., vol. XLIX, No. 28, pp. 825-851. Washington.

Railliet, A.

1918. Le genre Dicheilonema Diesing, 1861 (Nematoda, Filarioidea). Bull. Soc. Zool. de France, vol. 43, pp. 104-109.
Rossell, E. S.
1919. Fishery research: its contribution to ecology. The Journal of Ecology (edited for the British Ecological Society by A. G. Tansley), vol. 20, pp. 12§-151.
Schultz, L. P.
1920. Hermaphroditism in the striped bass. Copeia, No. 2, p. 64. Ann Arbor.

103nd A. D. Welander.
1935. A review of the cods of the Northeastern Pacific with comparative notes on related Scofield, E. C. . Copeia, No. 3, pp. 127-139. Ann Arbor.
1931. The striped bass of California (Roccus lineatus). Div. Fish and Game Calif., Fish. Bull. No. 29, pp. 1-82. Sacramento.
Smith, H. M.
1907. The fishes of North Carolina. N. Car. Geol. and Eeon. Surv., vol. 2, pp. 271-273. Ralcigh.
Thompson, W. F.
1937. Theory of the effect of fishing on the stock of halibut. Rept. Internat. Fish Comm., No. 12, pp. 1-22. Seattle.
and F. H. Bell.
1934. Biological statistics of the Pacific halibut fishery. (2) Effect of changes in intensity upon total yield and yield per unit of gear. Rejt. Internat. Fish. Comm., No. 8 , pp. 1-49. Scattle.
and W. C. Herrington.
1930. Life history of the Pacific halibut. (1) Marking experiments. Rept. Internat. Fish. Comm., No. 2, pp. 1-137. Seattle.
Throckmorton, S. R.
1882. The introduction of striped bass into California. Bull. U. S. Fish Comm., vol. I (1881), pp. 61-62. Washington.
Townes, M. Ki., Jr.
1937. Studics on the food organisms of fish. Biological Survey (1936), No. Xil, pp. 225-226. State of N. Y. Cons. Dept. J. B. Lyon Co. Albany.
Treitt, R. V.and V. D. Vladykov.
1937. Striped bass investigations in the Chesapeake Bay. Trans. Am. Fish. Suc., vol. 66 (1936), pp. 225-226.

Van Oosten, J.
1929. Life history of the lake herring (Lcucichthys artedi Le Sueur) of Lake Ifuron as revealed by its seales, with a critique of the scale method. Bull. U. S. Bur. Fish., vol. XldV, 1928, pp. 265-428. Washington.
Vladykov, V. D. and D. II. Wallace.
1938. Is the striped bass (Roccus lincatus) of Chesapeake 13ay a migratory fish? Trans. Am. Fish. Soc., vol. 67 (1937), pp. 67-86.
Walforn, hionel A.
1937. Marine game fishes of the Pacifie coast from Alaska to the equator. Univ, of Calif. Press, pp. 93-97. Berkeley.
Watkin, E. E.
1927. Investigations on Cardigan Bay herring. Rept. Mar. and Fresh Water Iuv., vol. 2, pt. 5, Dept. Zool., Univ. Coll., Wales.
Wilson, C. B.
1903. North American parasitic copepods of the family Argulidae, etc. Proc. U. S. Nat. Mus., vol. 25, pp. 635-742. Washington.
1905. North American parasitic copepods belonging to the family Caligidac. Proc. U. S. Nat. Mus., vol. 28, pp. 479-672. Washington.
1911. North American parasitic copepods belonging to the family Ergasilidae Proc. U. S. Nat. Mus., vol. 39, pp. 263-400. Washington.
1915. North American parasitic copepods belonging to the Lernacopodidae, with a revision of the entire family, Proc. U.S. Nat. Mus, vol. 47, pp. 565-729. Washington.
1932. The copepods of the Woods Hole region, Massachusetts. Bull. U. S. Nat. Mus., vol. 15S, pp. 1-635. Washington.
Wilson, H. V.
1891. The embryology of the sea bass (Serranus atrarius). Bull. U. S. Fish Comm., vol. IX, 1889, pp. 209-277. Washington.
Wood, W.
1635. New Lingland's Prospect. Tho, Coates for John Bellamie, 83 pp. London. Worth, S. G.
1903. Striped bass hatching in North Carolina. Trans. Am. Fish. Soc., vol. 32 (1902), pp. 98-102.
1904. The recent hatehing of striped bass, ete. Trans. Am. Fish. Soc., vol. 33 (1903), pp. 223-230.
1910. Progress in hatching striped bass. Trans. Am. Fish. Soc., vol. 39 (1909), pp. 15.5-159.
1912. Fresh-water angling grounds for the striped bass. Trans. Am. Fish. Soc. vol. 41 (1911), pp. 115-126.

UNITED STATES DEPARTMENT OF THE INTERIOR

Harold L. Ickes. Secretary
FISH AND WILDLIFE SERVICE
Ira N. Gabrielson, Director

Fishery Bulletin 36

THE YOUNG OF SOME MARINE FISHES TAKEN IN

LOWER CHESAPEAKE BAY, VIRGINIA, WITH SPECIAL REFERENCE TO THE GRAY SEA

TROUT Cynoscion regalis (BLOCH)

By JOHN C. PEARSON

From FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE
Volume 50

UNITED STATES
COVERNMENT PRINTING OFFICE
WASHINCTON: 1941

ABSTRACT

Plankton collections made at the mouth of Chesapeake Bay, Va., yielded specimens of 45 species of marine fishes that were recognized. As a result of these weekly collections during the summer and biweekly collections during the winter, from May to October 1929, from April to December 1930, and during January and Mareh 1931, sufficient data were acquired to provide distributional and deseriptive data on 31 of the 45 species recognized.

Larval and postlarval stages of the gray sea trout, or weakfish, Cynoscion regalis; the bluefish, Pomatamus saltatrix; the butterfish, Poronotus triacanthus; the harvestfish, Peprilus alepidotus; and the stargazer, Astroscopus guttatus, are described and illustrated.

Collections of juvenile gray sea trout by seine and trawl indicate that this food fish attains an average total length of 16 to 20 em . at the end of its first year of growth in lower Chesapeake Bay.

THE YOUNG OF SOME MARINE FISHES TAKEN IN LOWER CHESAPEAKE BAY, VIRGINIA, WITH SPECIAL REFERENCE TO THE GRAY SEA TROUT Cynoscion regalis (BLOCH)

By John C. Pearson, Aquatic Biologist, Fish and Willlife Service

CONTENTS

	Page 79		Рば
Introduction	79	Phanktonic fishes-Continued.	
Methods	80	Centropristes striatus (Linnaeus). Sea	
Planktonie fish	80	bass; Blackfish.	90
Brcvoorlia (yrannus (Latrobe). Menhaden; Fatback.	83	Bairdiclla chrysura (Lacépède). Sand pereh.	91
Anchoviella mitchilli (Cuvier and		Micropogon undulatus (Limnacus).	
Valencjennes). Anchovy	83	Croaker	91
Conger conger (Linnaeus). Conger eel.	83	Menticirflus americanus (Linnaeus). Kingfish; Whiting.	92
Lophopsetta maculata (Mitchell).		Cynoscion regalis (Bloch and Schnei-	
Windowpane.	83	der). Gray sea tront; Weak-	
Etropus sp. Etrop	83	fish; Squeteague....	92
Parolichthys sp. Flounde	S 4	Prionotus sp. Sea robin	97
Ancylopsetta sp. Flounde	81	Tauloga onitix (Linnacus). Tautog	97
Achirus fasciatus Lacépède. American sole; Hogehoker	84	Wicrogobins tholassinus (Jordan and (iilbert). Scaled goby	98
Symphurus plagiusa (Linnaeus).	81	Gobiosoma sp. Naked goby------	98
Tonguefish	84	Astroscopus gultatus Abbot. Star-	
Syngnathus foridac (Jordan and Gilbert). Pipefish		gazer------------------	15
bert). Pipefish_ Syrictes fuscus (Storer). Common	84	Hypsoblennius hentz (Le Sueur).	
Syrictes fuscus (Storer). Common pipefish	Si)	Rissola niarginata (De Kay) Cusk	99
Hippocampushudsonius Dekay. Sea-		cel-----	99
horse-..--.-.-.	8.7	Gobicsox strumosus Cope. Oyster-	
Menidia menidia (Linnaeus). Silverside		fish; Clingfish	99
Peprilus alepidotus (Linnaeus). Har-		Sphoeroider). Puffer......-....	100
vestfish.-.--	8.5	Lophius piscotorius Limnaeus. Goose-	
Poronotus triacanthus (Peek)		fish.-...-.-.---..-. -- .-. -	100
fish-----------.-.	87	Summary	101
Pomatomus saltatrix (Linnaeus). Bluefish.	89	Literature cited.	101

INTRODUCTION

Our knowledge concerning seasonal and geographic distributions of the planktonic young of most inshore marine fishes of the Atlantic coast is meager. This is especially true of certain common food fishes such as the weakfish, or gray sea trout, Cynoscion regalis, which provides the most valuable inshore fishery along the Middle Atlantic
seaboard. The importance of such information concerning our marine food fishes has been brought out by Bowman (1914), who asked

Are the chief spawning places such that when the bulk of the larvae appear from the egg they find themselves in the immediate neighborhood of a locality suitahle for development? To what extent do the prevailing physieal conditions assist the passive eggs and helpless larvae in securing a suitable habitat for further development?
It is of considerable import to the annual success of the American fisheries that there should be an intimate connection between the spawning grounds of a species and the localities suitable for growth.

The present paper presents additional distributional and descriptive data on the young of a number of marine fishes regularly occurring in lower Chesapeake Bay. These data should help to increase our knowledge of the spawning season and spawning habitat of these fishes. ${ }^{1}$

METHODS

The area of Chesapeake Bay included in this study is bounded roughly by Cape Henry and Cape Charles on the east, Lynnhaven Roads on the south, Old Point Comfort on the west, and Back River Light on the north (fig. 1).

Plankton collections were made at weekly or biweckly intervals at definite points within this area with a meter ringnet towed by powerboat. All except two of the collecting stations were permanently marked with navigation buoys and nearly all plankton was taken at definite localities over the entire period of collection-extending from May to October 1929, from April to December 1930, and during January and March 1931. The period of each tow was standardized at 15 minutes, the tow usually being with the tide and at as constant a rate of speed as conditions permitted. ${ }^{2}$ Collections were usually taken from 10:30 a. m. to $2: 00 \mathrm{p} . \mathrm{m}$. Both surface and subsurface tows were frequently made at cach station. Subsurface tows were made from 10 to 20 feet below the surface of the water-the depth of water at no station exceeding 30 feet.

PLANKTONIC FISHES

Over 7,400 young fishes, representing 45 species, were taken in the plankton collections in lower Chesapeake Bay during 1929-30. Of the total number, 7,380 fishes were identified and separated into 31 recognizable species, while 50 fishes were separated into 14 unknown species. The planktonic young of the sea trout, Cynoscion regalis, constituted over 50 percent of the total number of fish identified; followed in abundance by the young of the common anchovy, Anchociella mitchilli; the sea robin, Prionotus sp.; and the blenny, Hypsoblennius hentz. ${ }^{3}$ The numerical seasonal relationship of the various species of larval and postlarval fishes in the plankton given by the month and year is presented in table 1.

The planktonic fishes, usually in larval or postlarval stages, were secured princi-

[^14]pally from April 1 to November 1. ${ }^{*}$ The months from May to August yiclded the most abundant catches, as well as the largest varicty of species. While certain species, such as the blemny, Hypsoblennius hentz, and the common pipefish, Syrictes fuscus, were generally found widely distributed in the plankton from carly spring until late fall, other species, such as the bluefish, Pomatomus saltatrix, occurred only once.

Figure 1.-Entrance to Chesapeake Bay, Va. Circled letters Indicate plankton-collecing stathons. Depth is given in feet.
Subsurface collections generally yielded a larger number of fishes than surface tows. Certain species, such as Gobiesor strumosus, however, were taken proportionately more often in surface than in subsurface hauls. Many investigators have found that the surface layers contain few larval fish during the day. (lark (1914), in a study of the larval and postlarval fishes in the vicinity of Plymouth, England, found that night

[^15]hauls yielded a much larger percentage of young forms from the surface layers than did day hauls. Possibly the same condition might have occurred if night collections had been made in Chesapeake Bay (table 2).

Table 1.-Seasonal distribution of young fishes in the plankton, Chesapeake Bay, 1929-S0. Nearly all fishes were taken in larval or early postlarval stages

Species	$\begin{aligned} & \text { April } \\ & 1930 \end{aligned}$	May		June 1929	July		August		September		October 1930	$\begin{array}{c}\text { Novem- } \\ \text { ber } \\ 1930\end{array}$
		1929	1930		1929	1930	1929	1930	1929	1930		
. Schirus fosciatus					34		34	45		1		
Anchoriello mitchilli.			24	79	120	11	87	4	13	19		
- Ancyclopsetta sp.					2							
- stroscopus guttatus					1	1						
Bairdiella chrysura.				0	1							
Stenoortia tyromus.	2	1										
Centropristes striatus			-.	1	55	2		--		-		
Conger conger-	1											
Cynoscion regalis		9	8	2, 418	1,540 108	268		5				
Gobiesor strumosus		13	55	13	4		1	1				
Gobiosoma sp.-				18	87	23	99	29	7	31	11	-........
IIppocampus hudsonius				6	3	$\stackrel{2}{7}$	$\xrightarrow{2}$	2	1			
Hypsoblennius hentz-		5	$\stackrel{2}{12}$	117	98	47	72	26	33	26	38	1
Lophius piscatorius...			118									
Lophopsetta maculata Menidia menidia.	55	$\stackrel{2}{7}$	118 12	---				-				
Menticirrhus a mericonus				30	34	73	23	4	10	1		
Microgobius tholassinus.					11			1	1	12		
Micropogon undulotus						9		11	48	$2{ }^{6}$	17	
Pntalichthys sp.-.-...-												1
Peprilus ale pidotus...					17	2	53	1				
Pomatomus snltotrix. Poronotus triacanthus.		5	4	82	75	4	36					
Prionotus sp.--------				138	223	63				8		
Rissoln marginata.					3	2	1		3	1	2	
symphurus plagiusa					2							
Syngnathus floridae				3		1			1			
Syrictes fuscus		5	15	26	12	4	4	1	2	8	3	3
Sphoeroides maculatus.			22	58	14	3	2			1		

Table 2.-The surface and subsurface distrobution of planktonic fishes in Chesapeake Bay, expressed as the percentage of hauls in which the various species occurred
[108 surface and 140 subsurface hauls were made from May to October, 1929, and 111 surface and 168 subsurface hauls from April to December, 1930, omitting June. No fishes were obtained in 24 surface bauls and 47 subsurface bauls made in January and March, 1931]

Species	Percent of hauls. 1929		Percent of hauls, 1930		Species	Percent of bauls, 1929		Percent of bauls, 1930	
	Surface	Sub-surrace	Surface	$\begin{aligned} & \text { Sub- } \\ & \text { sur- } \\ & \text { face } \end{aligned}$		Surface	Sub-surface	Surface	Sub- sur- face
Achirus fasciatus.	3	14		3	Lophopsetta maculata	1	1	20	22
Anchoriella mitchilli.	5	18	9	12	Menidin menidia.	4		6	4
. ncyclopsetta sp...			I		Menticirrhus americanus.	8	29	3	6
- 1 stroscopus puttatus		1		1	Microgobius thota*sinus.-	1	1		2
Bairdiella chrysura.		4			Micropegon undulatus...		3	5	12
Brepoortin tyrannus.		1			Parnlichetys sp-......			1	
Centropristes striatus.	1	5		2	Peprilur ale pidotus..	6	16	1	2
Conger conger				1	Pomatomus saltotrir.				1
Cynoscion regalis	12	40	9	9	Poronotus triacanthus.	12	25	2	10
Etropus sp...	3	9		1	Prionotus sp.......	3	16	3	4
Gohiesox strumosus	10	8	11	6	Rissola marginata	1	5	1	2
Gohiosoma sp...	4	21	5	7	Symphurus plagiusa.		1		
Hippocampus hudsonius	2	6	1	2	Syngnathus floridoe.	1	3	2	1
Hypsoble mius hentz-...-	17	43	17	16	Surictes fuscus	7	16	12	11
Lophius piscatorius			7	5	Sphoeroides maculafus. . Tautoga onitis.	6 10	21 9	9	8

BREVOORTIA TYRANNUS (Latrobe). Menhaden; Fatback
Distribution.-Young menhaden were taken four times during May 1929 and April 1930 near Old Point Comfort. The scarcity of young indicates that spawning probably occurs outside of the area of collection, although a limited number of menhaden eggs were taken during late summer. The occurrence of these young fish in early spring indicates that some spawning occurs during the winter months, as suggested by Hildebrand and Schroeder (1927).

Description.-The young menhaden were from 20 to 24 mm . in length. The young of the species have been deseribed by Kuntz and Radeliffe (1918).

ANCHOVIELLA MITCHILLI (Cuvier and Valenciennes). Anchovy

Distribution.-Young anchovies were taken from July 6 to Sept. 13, 1929, and from May 16 to Sept. 13, 1930. The larval and postlarval young were the most numerous of all species of fishes in the plankton. The separation of A. mitchilli from its relative, A. epsetus, is difficult if not impossible for young under 5 mm . Consequently, numbers of young A. epsetus may be represented in the collections of A. mitchilli. According to the relative abundance of eggs and adults of the two species in lower Chesapeake Bay, however, mitchilli far outnumbers epsetus.

Description.-The size range of the young extended from 2.5 to 20.0 mm . The young of A. mitchilli have been described by Kuntz (1914) and the young of A. epsetus by Hildebrand and Cable (1930).

CONGER CONGER (Linnaeus). Conger eel
Distribution.- A leptocephalus, probably that of Γ. conger, was taken on A pr. 18 , 1930, at Station J.

Description.-The larva measured 100 mm . in length and possessed $150+$ myomeres.

LOPHOPSETTA MACULATA (Mitchell). Windowpane
Distribution.--The young of the windowpane flounder were taken during April and May 1930, at stations nearest the sea. The appearance of young only during April and May suggests an early spring spawning season in the region of Chesapeake Bay.

Description.-The young ranged from 2 to 10 mm . in length. They are quite distinctive in appearance. Several stages of the young have ben described by Bigelow and Welsh (1925).

ETROPUS sp. Etrope

Distribution.-Planktonic young of this small flatfish were taken principally in July 1929.

Description.-This fish ranged in length from 2.5 to 13 mm . Although the correct generic identification of the young was possible through counts of fin rays of the larger specimens, doubt exists as to the specific identity owing to the probable presence of two species of the genus in the Chesapeake Bay area-namely, E. crossotus and E. microstomus.

Distribution.-A fish, perhaps referable to the summer flounder, P. dentatus, was taken on Nov. 28, 1930, at Station B.

Description.-The fin rays of this fish, measuring 10 mm . in length, were differentiated, but the eye had not completed transition. Pigmentation consisted of three parallel rows of weak chromatophores lying along the dorsal, median, and ventral sides of the body. Each row contained eight distinct chromatophores. The specimen was too badly damaged to permit aceurate fin-ray count, although the latter fell within the known range of P. dentatus.

ANCYLOPSETTA sp. Flounder

Distribution.-Two planktonic young taken on July 12, 1929, at Station B are probably referable to this genus of flatfishes.

Description.-The young measured 5 and 6 mm . in length. The most characteristic features of the two fish are the pronounced elongation of the first two dorsal rays, the latter reaching nearly a quarter the length of the body, and the elongation of one of the ventral fins into a filament extending to the vent. The other ventral fin is not evident and apparently is undifferentiated.

The pigmentation consists of a series of six chromatophores along the upper side of the body; a single chromatophore along the median line on the posterior part of the body; a thin, black, continuous line along the ventral edge of the body; and many branching chromatophores on the ventral surface of the abdominal cavity. The fishes are symmetrical in shape.

ACHIRUS FASCIATUS (Lacépède.) American sole; Hog choker

Distribution.-The planktonic young of this flatfish were taken during July 1929, August 1929-30, and September 1930. Most young were obtained during July 1929 and August 1929-30. This seasonal distribution indicates that the species spawns largely in midsummer. The greatest abundance of young was found about 1 mile off Little Creck, Virginia, near Station G. The latter estuary contains many adult and young fish during the summer months, and may constitute a spawning area.

Description.-The length range of planktonic young extended from 1.5 to 4 mm . At 4 mm . the fin rays are clearly differentiated and identification is easily determined. The close resemblance of larval fish at 1.5 mm . to larger sizes permits ready identification. A strikingly heavy black pigmentation is characteristic of all young Achirus. The latter at 4 mm . in length still retain a symmetrical shape with an eye on each side of the head.

The young have been described by Hildebrand and Cable (1938).
SYMPHURUS PLAGIUSA (Linnaeus). Tonguefish
Distribution.-Several larval tonguefish were secured at Station A on July 9, 1929.
Description.-The fish ranged from 5 to 6 mm . in length. The young of this species has been described by Hillebrand and Cable (1930) and is readily identified.

SYNGNATHUS FLORIDAE (Jordan and Gilbert). Pipefish

Distribution.-The young of this species were taken during June, August, and September 1929, and during May and July 1930, at many localities.

Description.-The young pipefish ranged in length from 14 to 48 mm . Identification was based on body and tail ring counts.

SYRICTES FUSCUS (Storer). Common pipefish

Distribution.-The young of this species were taken from May 11 to Sept. 16, 1929, and from May 6 to Nov. 22, 1930.

Description.-The length of the young ranged from 91050 mm . Identification was based on body and tail ring counts.
hIPPOCAMPUS HUDSONIUS De Kay. Seahorse
Distribution.-The young of the seahorse, Hippocampus hudsonius, were taken in plankton from June 6 to Sept. 13, 1929, and from July 7 to Sept. 12, 1930. Although spawning may occur within the bay, the young seahorses were generally taken in masses of floating sea regetation and probably had drifted in from open sea.

Description.-The young fish ranged from 6 to 33 mm ., which included the distance from the tip of the snout (head flexed) to the end of the caudal fin. The young of the species has been described by Ryder (18S1).

MENIDIA MENIDIA (Linnaeus). Silverside
Distribution.-The young of the silversile were taken in plankton during May 1929-30. Nost young were secured at stations well within the bay. Hildebrand and Schroeder (1928) stated that the largest number of ripe adult Menidia oceurred in April and May.

Description.-The length range of the young extended from 5 to 9 mm . The various developmental stages have been described by kuntz and Radeliffe (1917) for the northern form, M. menidia notuta, and by Ihildelrand (1922) for the southern, or typical form, M. menidia.

PEPRILUS ALEPIDOTUS (Linnaeus). Harvest tish
Distribution.-The young of this important food fish were taken in the plankton during July and August, 1929-30, at all stations.

The appearance of the young fish accompanied the incursion of large numbers of the coelenterates, Dactylometra and Cyanfa. The long tentacles of these stinging "jellyfish" appear to act as a shelter and possibly as a food provider for the young harvestfish, for young fish were frequently observed hovering under the coelenterates.

Description.-The lengths of the young fish ranged from 1.5 to 32 mm . The young harvestfish at 1.8 mm . in length has the larval yolksac absent and the larval fin fold entire. The larval gut is clongate, reaching about half the length of the body. A lateral pigmentation occurs as a scattering of black chromatophores on the body (fig. 2).

At 2.5 mm . the young fish possesses the lateral chromatophores in a more pronounced and characteristic pattern. One series of pigment cells follows the median line of the body from the pectoral fin to about half way the length of the body, while another, more regular series, lies along the lower side of the body dorsal to the gut. Scattering anastomosed chromatophores are found above the opercle and along the
posterior sides of the abdominal cavity. The fin fold remains entire. A reduction in the length of the gut occurs at 2.5 mm . and what appears to be a secondary, or true vent is developed anterior to the gut. Several young at this length showed this peculiar structure, the exact nature of which has not been determined (fig. 3).

Figuri 2.-Peprilus alepidotus. From a specimen 1.8 mm . Jong.
The harvestfish at 3.5 mm . is more compressed, the gut has become greatly reduced and only one vent is evident. The location of the chromatophores becomes

more elevated. The fin rays are slightly differentiated, although the fin fold remains entire (fig. 4).

The young fish can be easily recognized at 7 mm . for the fin rays are fully differentiated. A further deepening of the body takes place and the ehromatophores

Figure 4.-Peprilus alepidotus. From a specimen 3.5 mm , long.
become more scattered, enlarged, and anastomosed. The pigmentation is confined to the forward part of the body (fig. 5).

The young fish becomes still further compressed at 9 mm . The pigmentation is darker and a considerable reduction in the size of each chromatophore oceurs (fig. 6).

The fish has assumed a characteristic adult shape at a length of 62 mm . The body has become strongly compressed, deep, and oval. The caudal fin has become forked, while the dorsal and anal fins are similar in shape and notably clevated ante-
riorly. The body chromatophores have disappeared and their place is taken by a thiek peppering of black dots over the sides. The tips of the elevated dorsal and anal fins are heavily pigmented with blaek (fig. 7).

PORONOTUS TRIACANTHUS (Peck). Butterfish

Distribution.-Young butterfish were taken abundantly in plankton from May 25 to Aug. 19, 1929, and from May 28 to Sept. 12, 1930. The young fish, similar to

Peprilus, were generally found in association with the coclenterates, Dactylometra and Cyanca. Butterfish 6 mm . long were seeured from May 25 to July 23, indicating a late spring and early summer spawning season. The young were taken at all colleeting points.

Description.-The young butterfish ranged from 1.8 to 57 mm . in length. On the basis of an extensive series of butterfish from Chesapeake Bays the writer believes

the fish represented in figures $62,63,64$, and 65 (Kuntz and Radeliffe 1918) are not the young of the butterfish, Poronotus triacanthus, but most probably the young of a hake, Urophycis. Several fish obtained in Chesapeake Bay in 1929 are herein deseribed as larval butterfish. Several figures of larger butterfish from Kuntz and Radeliffe (1918) are reproduced to show the gradual transformation to the adult shape.

The smallest butterfish taken in the plankton measured 1.8 mm . A fish at this length has lost the yolksac but has the larval fin fold entire. The pectorals are faintly outlined, and a few rays of the candal are discernable. A series of anastomosed

Figurfa 7.-Peptilus alepidotus. From a specimen 62 min. long.
chromatophores lies along the dorsal region of the abdominal cavity. The ventral edge of the abdominal cavity and the body is sharply bordered with a solid narrow black line (fig. 8).

The young possesses a deeper body at 3.7 mm . The fin fold is still entire, althongh the rays of the cautal are becoming differentiated. The same arrangement

of chromatophores exists as in smaller fish, but an additional series of markings are now found along the ventral edge of the body from the gut to the caudal fin. Seattered chomatophores may appear at random along the sides, although never abundantly or in any definite armgement as in young P^{\prime} epilus (fig. 9).

Succeeding stages of development have been described by Kuntz and Radeliffe. ${ }^{5}$ (figs. 10 and 11).

[^16]Distribution.-One plankton tow on July 24, 1930 at Station B yielded four specimens of young bluefisl.

Description.-The young ranged from 4 to 7 mm . in length. The bluefish at 4.3 mm . has the larval fin fold entire, although the dorsal, anal, and caudal fin rays

are slightly differentiated. The yolksac is absent. Three distinctive series of black dashes occur laterally on the body; one along the dorsal ridge, another along the median lime, and the other along the ventral edge. Other chromatophores occur above the abdominal cavity and on the top of the had. The teeth are well developed and appear quite diagnostic. The writer is unfamiliar with any other local fish in which the tecth are so strongly dereloped at such an early age (fig. 12).

407898-41-3

At 7.3 mm . the fish has lost its larval fin fold and the fin rays are clearly differentiated. The pigmentation remains essentially the same, but the lateral markings have become more pronotuced and the dashes are now joined to form narrow black

Figure 12.-Pomatomus saltatix. From a specimen 4.3 mm , long.
bands. The number of chromatophores on the head and on the abdominal cavity also increases (fig. 13).

A later stage at 26 mm . no longer possesses the lateral bands but the entire body

Figure 13.-Pomatomus saltatrix. From aspecimen 7.3 mm. long.
is covered with fine black dots. The caudal fin has become forked and the fins, particularty the spinous dorsal, have become further developed (fig. 14).

At 72 mm . the young bluefish closely resemble the adult, except that the young fish has a silvery sheen in life and in preservation appears thickly peppered with fine

Figuee 14.-Pomotomus saltatrix. From a specimen 26 mm , long.
dots (fig. 15). Both figures 14 and 15 were furnished to the writer by Samuel F. Hildebrand and Louella E. Cable. The bluefish represented in these illustrations were taken off the coast of North Carolina, near Beaufort.

CENTROPRISTES STRIATUS (Linnaeus). Sea bass; Blackfish
Distribution.-Larval and early postharval sea bass were secured during Jume 1929 and July 1929-30. Most young were taken in July 1929 at Station A.

Description.-The length range of the young extended from 2.5 to 9 mm . Young sea bass remain undescribed but comparison with a series of known sea bass from southem New England waters establishes the identity of the Chesapeake fish. Fin rays may be counted when the young reach 9 mm . in length. A distinctive type of pigmentation along the ventral edge of the body is characteristic of the larvae.

BAIRDIELLA CHRYSURA (Lacépède). Sand perch

Distribution.-The young of Bairdiclla chrysura apparently are hatched largely outside of the area of collection, for only seven larval and postlarval fish were taken in the plankton. The young were secured from Jume 7 to July 1, 1929, principally at Stations A and B. Young fish ranging from 6 to 25 mm , wre commonly taken by trawl on the muddy bottom in Little Creek in July 1930.

Description. -The planktonic fish were from 2.5 to 5 mm . in length. Larval and postlarval sand perch are recognized by two vertical bands, the first behind the head

and the second, less pronounced, about two-thirds the distance from the vent to the tip of the tail. The band nearest the tail is often weak and indistinet. Kuntz (1914) described the eggs and the young of the species.

MICROPOGON UNDULATUS (Linnaeus). Croaker

Distribution.-Notwithstanding a great abuntance of juvenile croakers within lower Chesapeake Bay throughout the year, a relatively small number of larval amel postlarval fish were taken in the plankton. Young fish were taken on Sept. 13, 1929. and from July 29 to Oct. 17, 1930. Practically all catches were made at stations nearest the sea.

An extended spawning period for croakers noted by Hildebrand and Cable (1930) in North Carolina evidently occurs also in the region of Chesapeake Bay.

Description.-The young croakers ranged from 1.5 to 15 mm . in length. Larval croakers and larval gray sea trout appeared together in the plankton on several occasions in late July 1930. The two species closely resemble each other when mewty batched. The young croaker at 2 mm . in length, however, possesses a much deeper body than the sea trout at the same size. The croaker usually has a dark, crescentshaped area above the abdominal cavity, while this marking is usually not as distinct in young sea trout. The pronounced chromatophore at the base of the anal firn. found on all young sea trout, is not especially pronounced on young croakers, although
the latter do have a series of ventral chromatophores that greatly resemble comparable markings on the sea trout. The ventral chromatophores on the croaker are more mumerous, however, and more evenly spaced than on the young sea trout. A perceptible difference in the shape of the head and snout is also evident in the two species. Larval and young croakers have been described by Welsh and Breder (1923), Pearson (1929), and Hildebrand and Cable (1930).

MENTICIRRHUS AMERICANUS (Linnaeus). Kingfish; Whiting
Distribution.-The young of Menticirrhus americanus were secured abundantly from June 12 to Sept. 13, 1929, and from July 21 to Sept. 2, 1930. The largest collections were made at Stations A, B, and C.

Description.-The length-range of young extended from 1.5 to 7 mm . Young fish, 3 to 7 mm . long, are characterized by profuse jet-black chromatophores scattered over the entire body. Under 3 mm . pigmentation is restricted to an area along the median line of the body. The jaws at all sizes are tipped with black. Fin-ray counts are possible at 5 mm .

The young of M. americanus may be confused with the young of M. saxatilus, a closely related species. However, a comparison with a description of young eaxatilus by Welsh and Breder (1923) and of americanus by Hildebrand and Cable (1934) indicates that the fish from Chesapeake Bay most probably represent the young of americanus.

CYNOSCION REGALIS (Bloch and Schneider). Gray seatruut; Weakish; Squeteague

Distribution.-Over 4,000 young gray sea trout were taken in plankton hauls from May 25 to July 25, 1929. The majority of fish were secured at Stations A, B, C, and D during the latter lalf of June 1929. In 1930 planktonic sea trout were taken from May 21 to Aug. 1. The seasonal distribution of the young sea trout thus corresponds closcly for 2 successive years (table 1 and fig. 23).

The young of the gray sea trout were taken in 55 subsurface tows, with an arerage of 67 fish to a tow, and occurred in 13 surface tows, with an average of 25 fish to a tow. While more subsurface than surface tows were made, a comparison of simultaneous surface and subsurface hauls at the same station indicates that in most instances the subsurface tow contained far more youngr fish than the surface tow.

The planktonic sea trout decreased in abundance at those stations farther within the bay, compared with localities nearer to the sea. However, protected coves and preeks in the vicinity of Lynnhaven Roads yielded large quantities of young fish (8 mm . and over) just leaving the planktonic existence for a semidemersal life. The roung fish were found on the botton, where they were readily obtainable by trawl and seine. Various creeks from Lymbaven Roads to the York River also had their compleanent of young sea trout during early summer, all young probably originating on spawning grounds off the entrance to the bay.

Description.-The planktonic sea trout ranged from 1.5 to 7 mm . in length. At a length of 1.8 mm . they are characterized by a very elongated slender body and by a large eye covering most of the side of the head (fig. 10). The larval fin fold is entire but the pectorals are differentiated, although iudistinct. The greatest depth of the body is contained 4.0 to 4.5 times in the length to the end of the notochord. A
series of small black chromatophores is present along the ventral edge of the body extending from the vent to the tail. A chromatophore at mideaudal length, or at the primitive base of the anal, is consistently more pronounced than the rest. Several small chromatophores are found along the rentral edge of the abdomen. No other color markings are evident. The yolksac has been absorbed at 1.8 mm ., although Welsh and Breder (1923) found a yolksac present on young of 2.2 mm . length taken in Delaware Bay. ${ }^{6}$

The roung sca trout at 3 mm . has the body depth proportionately increased. The only color marking is the series of chromatophores along the ventral edge of the

body. All chromatophores become more pronounced, particularly the one at mithcaudal length. The fin fold remains entire. Minute teeth, usually evident at this length, help to distinguish the young sea trout from some related Sciaenidae such as the sand perch, Bairdiella chrysura, and the croaker, Micropagon undulatus (fig. 17).

Figure 17.-Cynoscion regals. From aspecimen 3 mm . long.
The roung sea trout at a length of 4.6 mm . has the caudal fin rass evident and shows a slight differentiation of the anal and dorsal fin rays. The fin fodd remains entire. The greatest depth of the body is containet 2.7 to 3.0 times in the length to the end of the notochord. The series of ventral chromatophores has largely disappeared, with the exception of the spot at the base of the anal which appears enlarged and anastomosed. This anal spot is signifieant for it apparently distinguishes the young of C. regalis from both C. nebulosus and C. nothus. Markings on the abelominal cavity are also pronounced. The mouth is more oblique and the tecth further dereloped (fig. 18).

The young fish is quite readily identified at 8.2 mm . for the anal fin rays are usually distinct, while the soft dorsal rays are almost fully differentiated. The fin fold remains entire to the caudal fin. The greatest depth of the body is now contained about 2.8 times in the standard length. The snout is quite blunt, the lower jaw

[^17]projecting but little. The chromatophore at the base of the anal is extremely pronounced, while the markings on the abdominal cavity are somewhat reduced in size and intensity (fig. 19).

At 10.5 mm . the young have usually passed out of a planktonic existence and have adopted a semibottom habitat in quiet, muddy coves and creeks. Lateral chroma-

tophores now profusely appear, although the spot at the base of the anal still persists. The fin fold has nearly disappeared, while the caudal fin has changed to a symmetrically pointed shape (fig. 20).

At 17 mm . in length the young are characterized by the presence of heavy lateral chromatophores arranged in four indistinct vertical bands or saddles. The chromatophore at the base of the anal has now disappeared. The amount and intensity of

Fantre 20.-Cynoscion regalis. From a specimen 10.5 mm . long.
pigmentation along the sides of the body seem to depend largely on the type of environment in which the fish is found. Young taken on sandy and light bottom do not have as much pigmentation as fish secured on a muddy, or dark bottom. Tracy (1908), for instance, found several young gray sea trout in sunken canvas bags off Rhode Island
which at 6.5 and 12.5 mm . in length possessed more extensive pigmentation than fish of corresponding sizes taken in Chesapeake Bay. The greatest depth of the body is contained about 3.3 to 3.4 times in the standard length. In both larval and postlarval stages of the gray sca trout the body continues to increase in proportionate depth until at about 17 mm . it commences to decrease. In other words, the body becomes

Figure 21.-Cynoscion regalis. Frow a specimen 17 mm . long.
progressively stouter and shorter in proportion to length from the slender, newly hatched fish up to about 17 mm . in length, while after 17 mm . is reached the body tends to become more slender and elongate (fig. 21).

Young sea trout over 17 mm . in length are characterized largely by four distinct saddles on the body. Both Eigenmann (1901) and Breder and Weleh (1922) have described various stages of the young sea trout (fig. 22).

Growth.-Juvenile sea trout were found to grow rapidly during their first summer. Planktonic young ranging from 8 to 10 mm . soon settle to the bottom after entering

Chesapeake Bay. Brackish crecks and coves are favorite shelters for the young. Collections of fish at varying intervals during 1929-30 indicate that the young attain an average length of 16 to 20 cm . (6.3 to 7.8 im .) by the end of the first year. A growth diagram of young sea trout collected during their first summer and following spring is shown in figure 23.

The length-range of young fish taken during the summer of 1930 is considerably less than for fish secured in 1929. This difference appears largely due to size selection by the type of fishing gear employed. Seines were used exelusively during 1929 and allowed a greater escapement of the smaller fish than occurred in 1930, when fine-meshed trawls were employed. Similarly, year-old fish taken during the spring
of 1930 by commercial pound nets were larger than fish of the same approximate age taken during June 1930 by experimental trawt. Unfortunately, targer series of young collected at regular intervals at rarious localities and with all types of gear coutd not be obtained in order to show the selectivity of the gear and the effect of environment on the size distribution of the young fish.

Notwithstanding limitations in the sampling of the juvenile sea trout population, it is believed that the average growth during the first year of life in lower Chesapeake Bay is reliably shown by figure 23. The young sea trout evidently have a length range of at least 10 cm . at the end of the first year of growth. Any clear-ent growth curve must involve large collections of young from diverse loealities and by varied types of collecting gear.

Eigenmann (1901) stated that juvenile sea trout (squeteague) doubled their length during Juty and August. This observation appears substantiated for Chesa-

FIGURE 23.-Spawning period and juvenile growth of gray sea trout, Cynoscion regalis, in lower Chesapeake Bay. A circle is placed at the mean length of the frequency distribution represeuted by the fertical dotted line. The horizontal solid line at the halfcentimeter unit shows the approximate spawning period as indicated by collections of larval fish under 6 mm. in length. Young fish taken in April 1930 were secured by commercial pound net. All other fish were captured with experimental gear.
peake Bay fish taken on Juty 2, 1929, having an average length of 3.5 cm . Apparently these fish reached an average length of 8 to 9 cm . by the end of the month. Young fish in all instances were secured at the same locality and by the same fishing gear.

Welsh and Breder (1923), on the basis of length-frequency distributions from Delaware Bay, reached the conclusion that sea trout, averaging 3 cm . on July 1 , should be 17 cm . in length on October 1. Such growth also appears substantiated by the collections in lower Chesapeake Bay.

Young sea trout appear to gather in schools in autumn at various places along the coast for departure to their winter habitat. For a brief period before departure they frequently appear in considerable numbers in pound nets. In table 3 are listed the lengths of young sea trout secured by R. A. Nesbit from pound-net catches in various localities.

Many juvenile sea trout remain in lower Chesapeake Bay during the greater part of their first year of life. Juvenile fish were obtained by the writer in the bay from

March to October, while Hildebrand and Schroeder (1928) found young in November and December. Although some fish may remain in the deeper waters throughout the winter, most young seek the warmer offshore oceanic water. Trawlers operating off the Virginia and North Carolina coasts during the winter of 1930-31 secured many juvenile sea trout from 13 to 17 cm . in length (Pearson, 1931).

Hildebrand and Cable (1934) have presented extensive data on the growth of gray sea trout at Beaufort, N. C.

Table 3.-Length-frequency distributions of gray sea trout, Cynoscion regalis, secured from pound nets at various localities along the Atlantic coast by R. A. Nesbit

$\begin{aligned} & \text { Length } \\ & \text { in } \end{aligned}$	North Carolina		Chesapeake Bay			Exmore		Wildwood			Begch Haven		Northern New Jersey					Fire Island				Nontauk				
meters	1933	1934	1931	1933	1934	1933	1934	1930	1932	1934	1930	1931	1928	1929	1930	1931	1934	1928	1929	1930	1931	1929	1930	1931	1932	1934
9.0.	1																									
10.5	3																									
11.0...	2																									
11.5 ...	1																									
13.0						1																				
13.5	1																		1			1		1		
14.0	1																					2	1			
14.5	1																		4			5	1	1		
15.0.	1					2													12			2	2	1		
15.5	9					2				1									14			11	2			
16.0	9				1	1				1									27			10	3	1		
16.5	13	2			3	5				6					1		3		31			11	7			2
17.0	15				3	14	1			8					2		6		48	1		8	11	2		10
17.5	8	2				17	2			9		1	1		8		3	2	100	1	1	13	10	1	2	19
18.0	12	1			3	25	4			18			5		4		8		156	2		7	16	6	9	30
18.5	11	5			9	44	9			26			11	1	7	1	12	1	136	3	2	17	20	2	11	44
19.0	15	6			7	57	26			28			16	1	9		20	3	172	4	1	22	21	4	23	49
19.5	4	8			9	71	24	2	3	25			9		9		30	1	175	3	1	26	16	8	25	54
20.0.	3	6	1		15	56	21	1	4	30	1		39		9	1	32	3	304	3	3	12	27	7	20	30
20.5---	3	5		2	11	65	11	5	1	24			32		13		42	6	15.4	8	4	9	15	7	12	29
21.0	2	4		1	2	51	9	5	13	29			21		13	2	49	2	*9	3	1	11	28	9	5	9
21.5	1	9			3	46	3	4	5	31			22		17	2	11	4	91	14	4	3	6	12	6	4
22.0	2	6				16	2	6	4	24	2		18	1	17	4	26	4	98	8	4	6	12	14	5	4
22.5		4				17	1	4	2	7	1		6	1	18	6	22	1	45	11	10	2	7	9	4	2
23.0.		1				7	1	5	3	5			f)		5	3	14		33	12	4	2	11	18	2	1
23.5		1				2	-. .	6	3	2	1		3		5	6	8		35	8	9		3	16	2	
24.0						3		4	1	1			4		7	6	1		15	6	12		2	16	1	
24.5						.		4		3			4	1	1	2	1		5	3	4	1	2	12		
25.0								.-		2	1		1		1	7	-		7	1	4		1	10	1	
25.5								---		1			.								-		1	4		
26.0										...						\cdots								2		
26.5										.							\cdots							1		
27.0												--												3		
27.5																								1		
'Total	118	60	1	3	66	502	114	46	47	281	6	1	128	5	146	40	315	27	1.661	92	64	131	225	168	128	2×7

PRIONOTUS sp. Sea rubin
Distribution.-The young of the genus, Prionotus, were taken abundantly from June 19 to July 29, 1929, and from July 21 to July 29, 1930, principally at points adjacent to the sea.

Description.-The lengths of the young ranged from 1.5 to 11 mm . Positive specifie identification of these young Prionotus could not be made. On the basis of descriptions of P. carolinus by Kuntz and Radeliffe (1917), the writer is inclined to beheve that the Chesapeake Bay fish may belong to the closely related species, P. evolans. The larval stages of both species are perhaps quite similar and separation may prove impossible.

TAUTOGA ONITIS (Linnaeus). Tautog
Distribution.-A few larvae of the tantog were secured at several localities from May 6 to May 23, 1930.

Description.-The lengths of the larvae ranged from 2 to 3.5 mm . Various stages of the young tautog have been described by Kuntz and Radcliffe (1918). Careful examination of larval tautogs is essential in order not to confuse the species with the young of the oysterfish, Gobiesox strumosus, which it strongly resembles.

MICROGOBIUS THALASSINUS (Jordan and Gilbert). Scaled goby

Distribution.-The young of this goby occurred in the plankton during July and September 1929, and August and September, 1930. Postlarval and juvenile fish from 9 to 36 mm . in length were taken by trawl in Little Creek during the summer. All gobies were secured at stations well within the bay.

Description.-The young ranged from 4.5 to 9 mm . in length. They can be distinguished by a series of 14 to 16 solid black dots along the edge of the anal fin. These dots are also evident along the ventral edge of the body prior to the formation of the anal fin. The mion of the ventral fins to form the ventral disk occurs at about 10 mm .

The young have been described by Hildebrand and Cable (1938) under the name of Microgobius holmesi.

GOBIOSOMA sp. Naked goby

Distribution.-The young of this genus of gobies occurred abundantly in the plankton from June 6 to Sept. 9, 1929, and from July 29 to Oct. 3, 1930, at all localities. The period of maximum abundance was in July and August. Hildebrand and Schroeder (1927), on the basis of adult fish collections, observed that spawning of G. bosci takes place from June to October, and that the leight of the spawning period probably occurred in July.

Description. -The length-range of the young extended from 2 to 14 mm . Kuntz (1916) and Hildebrand and Cable (1938) have described the young of the genus. The transparency of young fish is quite characteristic.

ASTROSCOPUS GUTTATUS (Abbott). Stargazer

Distribution.-Several pelagic young of this fish were taken in July 1929 and 1930 at Station A. Larger young were taken by seine during summer along sandy beaches within the lower bay.

Dcseription.-The fish ranged from 2.5 to 5 mm . in length. The young stargazer at 4.9 mm . has the eyes laterally placed, as contrasted with the dorsally situated eyes of the adult. A heavy pigmentation covers the body from the origin of the pectorals to the vent. The soft dorsal, anal, and caudal fins are slightly differentiated at this size, although the larval fin fold remains entire (fig. 24).

A marked change in the general shape and pigmentation of the body occurs at a length of 23 mm . The eyes have slowly migrated dorsally; the mouth becomes more vertical; the lips fringed; and the pigmentation more seattered. The fin rays become fully differentiated and the pectorals much enlarged. Two bony processes, apparently originating from the frontal bones of the skull, project from the surface of the skull (fig. 25). The migration of the eyes to a dorsal position is completed soon after 25 millimeters is reached (fig. 26).
hYPSOBLENNIUS HENTZ (Le Sueur). Blenny
Distribution.-The planktomic young were found widely distributed from May 8 to Sept. 13, 1929, and from May 16 to Nov. 22, 1930. The greatest abundance was noted during Jute and July. This young blenny occurred in more plankton hauls than any other species, but the number taken in any one tow was never large.

Description.-The length-range of the young extended from 2 to 8 mm . The larvae may be distinguished by the elongated black pectoral fins and the series of

black dots along the ventral edge of the body posterior to the vent. Fin-ray counts are not definite mitil the fish reaches 8 mm . in length.

The young have been described by Hildebrand and Cable (1938).
RISSOLA MARGINATA (De Kay). Cusk eel
Distribution.-The young of the cusk ed were taken from July 1 to Sept. 13. 1929, and from July 21 to Oct. 3, 1930.

Description.-The length range of young extended from 2 to 7.5 mm . The young are undescribed but can be distinguished by an extremely elongated body that possesses two narrow, parallel black lines along the ventral edge.

GOBIESOX STRUMOSUS Cope. Oysterfish; Clingfish

Distribution.-The spawning of the oysterfish occurs principally in the spring. Young fish were takeu from May 2 to Aug. 1, 1929, and from May 6 to Aug. 29. 1930. The largest collections were obtained during May. Hildebrand and Schroeder (1928) recorded adult fish with well developed gonads during April and May in Chesapeake Bay.

Apparently the young oysterfish soon adopt the characteristic bottom habitat, for no fish over 45 mm . were obtained in the plankton. The young were taken largely over oyster reefs, where spawning probably occurs.

Description.-The young ranged from 2 to 4.5 mm . in length. They are rather broad, anteriorly depressed and posteriorly compressed, somewhat similar to the adult. The body pigmentation is heavy, consisting of diffuse chromatophores very similar in arrangement to those on the young tantog (Tautoga onitis). The posterior caudal region of both species remains free from pigment.

Larval Gobiesox resembles larval Tautoga closely. Care is essential in distinguishing the larval fish of these two species, which are at times found to occur simultaneously in the plankton. Young Gobiesox possesses a less distinctive chromato-

Figure 26.-Astroscopus guttatus. Dorsal surface of head; from a specimen 235 mm . long. From Hildebrand and Schroeder (1928).
phore pattern and the pigmentation does not cxtend so far back on the body as in Tautoga. Gobiesox also has a shorter gut and lacks the black-tipped upper jaw most characteristic of young Tautoga.

SPHOEROIDES MACULATUS (Bloch and Schneider). Puffer

Distribution.-The young of the puffer were taken from June 5 to Aug. 15, 1929, and from May 9 to Sept. 2, 1930.

Description. -The lengths of the fish ranged from 1.5 to 4 mm . The early stages of the puffer have been described by Welsh and Breder (1922).

LOPHIUS PISCATORIUS Linnaeus. Goosefish
Distribution.-The young of this species were taken in small numbers during May 1930 at Stations A, B, and C. Since the adult fish are rarely taken within the bay, spawning probably occurs offshore. Hildebrand and Schroeder (1927) secured newly hatched young on June 10, 1916, in the lower bay.

Description.-The young ranged from 3 to 5.5 mm . in length. Bigelow and Welsh (1925) have described the larvae of the species.

SUMMARY

1. The area of study is located at the mouth of Chesapeake Bay and is bounded roughly by Cape Charles and Cape Henry on the cast, Lynnhaven Roads on the south. Old Point Comfort on the west, and Back River Light on the north.
2. A series of collecting stations was risited, usually weekly in summer and biweekly in winter, to determine the seasonal and geographic distribution and variation of the marine plankton. The present paper deals only with the young fishes taken in this plankton.
3. Forty-five species of fishes were recognized in the plankton. Thirty-one species were identified and 14 remain unidentified. Larval and postlarval stages of the gray sea trout, or weakfish, Cynoscion regalis; the bluefish, Pomatomus saltatrix: the harvestfish, Peprilus alepidotus; the butterfish, Poronotus triacanthus; and the stargazer, Astroscopus guttatus, are described and figured.
4. Collections of juvenile gray sea trout by scine and trawl indicate that this food fish attains an average total length of 16 to 20 cm . (6.3 to 7.8 in .) at the end of its first. year of growth in lower Chesapeake Bay.
5. Brief distributional and descriptive records for the planktonic young of 31 species of marine fishes are given.

LITERATURE CITED

Bhelow, Henry B., and Welsh, William W.
1925. Fishes of the Gulf of Maine. Bull. U. S. Bur. Fish., vol. 40, pt. 1, 1924 (19025): 567, illus.
Clark, R. S.
1914. General report on the larval and post-larial teleosteans in Plymouth waters. Jour. Mar. Biol. Assoc. United Kingdom, 10 (n. s.), 1913-15: 327: 394, illus.
Eigenmann, Carl 1 I.
1901. Investigations into the history of the young squeteague. Bull. L. S. Fish. Comm., vol. 21, 1901 (1902): 45-51, illus.
Hildenrand, Samuel F.
1922. Notes on habits and development of eggs and larsac of the silversides, Mchidia meridio, and Menidia beryllina. Bull. C'. S. 13ur. Fish., vol. 38, 1921-22 (1923): 113-120, illus.
-... and Schhoeder, William C.
1928. The fishes of Chesapeake Bay. Bull. ['. S. I Bur. l'ish., vol. 43, pt. 1, 1427 (1928): 388, illus.

- and Cable, Louella E.

1938. Further notes on the development and life history of some teleosts at Beaufort, N. C. Bull. U. S. Bur. Fish., vol. 48, 1938 (1939): 505-642, ilhus.
1939. Development and life history of fourteen teleostean fishes at Beaufort. N. C. Bull. U. S. Bur. Fish., vol. 46, 1930 (1931): :383-488, illus.
1940. Reproduction and development of Whitings or Kingfishes, Drums, Spot, Croaker, and Weakfishes or Sea Trouts, Family Sciaenidae, of the Atlantie coast of the United States. Bull. U. S. Bur. Fish., vol. 48, 1934: 4I-117, illus.
Kuntz, Albert.
1941. The embryology and larval development of Bairdiclla chrysura and Anchoria mitchclli. Bull. U. S. Bur. Fish., vol. 33, 1913 (1915): 3-19, illus.
1942. Notes on the embryology and larval develomment of five species of teleostean fishes. Bull. U. S. Bur. Fish., vol. 34, 1914 (1916): 409-429, illus.

- and Radcliffe, lewis.

1918. Notes on the embryology and larval development of twelve teleostean fishes. Bull. U. S. Bur. Fish., vol. 35, 1915-16 (1918): 87-134, illus.

Pearson, John C.
1929. Natural history and conservation of the redfish and other commercial Sciaenids on the Texas coast. Bull. U. S. Bur. Fish., vol. 44, 1928 (1929): 129-214, illus.
1932. Winter trawl fishery off the Virginia and North Carolina coasts. Inv. Rept. No. 10, U. S. Bur. Fish., 1932: 31, illus.

Perlmetter, Alfred.
1939. A biological survey of the salt waters of Long Island, 1938. Pt. II, N. Y. Cons. Dept., Sec. I: 11-71, illus.
Ryder, John A.
1882. A contribution to the development and morphology of the lophobranchiates (Hippocampus antiquorum), the sea horse. Bull. U. S. Fish Comm., vol. 1, 1881 (1882): 191-199, illus.
Tracy, Henry C.
1908. The fishes of Rhode Island. VI. A description of two young specimens of squeteague (Cynoscion regalis), with notes on the rate of their growth. 38th Ann. Rept. Comm. of Inland Fish., State of Rhode Island and Providence Plantations. 1908: 85-91, illus.
Welsh, William W., and Breder, C. M., Jr.
1922. A contribution to the life history of the puffer, Spheroides maculatus (Schneider). Zoologica, vol. 2, No. 12, 1922: 261-276, illus.
1923. Contributions to life histories of the Sciaenidae of the Eastern Vinited States Coast. Bull. U. S. Bur. Fish., vol. 39, 1923-24 (1924): 141-201, illus.

UNITED STATES DEPARTMENT OF THE INTERIOR
Harold L. Ickes, Secretary
FISH AND WILDLIFE SERVICE Ira N. Gabrielson, Director

Fishery Bulletin 37

THE SALMON RUNS OF THE COLUMBIA RIVER IN 1938

By WILLIS H. RICH

From FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE
Volume 50

UNITED STATES
GOVERNMENT PRINTING OFFICE
W'ASHINGTON: 1942

Abstract

EACEPTIONAL DATA are avalable for the study of the salmon runs of the Columbia River in 1938. Detailed figures on catch were supplied by Oregon and Washington in such form that they could readily be combined with the counts at Bomeville Dam to provide a basis for estimating the escapement. Tables show the eatch of each species for each weok in each of six zones, and the counts at Bonneville and Rock Island dams. The ecmeral course of the run of each species is shown. The numbers of fish bound for the spawning gronmels above Rock Island Dam are estimated as follows: Chinook salmon entering Columbia River before May 1, 4 percent; during May, 6 percent; June and July, 15 percent; and August to December, l percent. Blueback salmon entering the river during the above periorls, 40 percent. Steethead trout eutering the river during June to September, 1 percent; during the rest of the year, 10 percent. Fishing intensities are shown by escapement to catch ratios. Percentages of chinook samon escapement are less than 15 during May; 17 durine June and July; and 33 during the remainder of the year. The Jme and July runs are now greatly depleted, and an important part of these runs spaws abore Rock Island Dam. The blueback sumon escapeucnt is about 20 percent, and of steethead trout about 33 percent. Weekly and seasonal closed periods are shown to be almost entirely incffective for increasing the spawning eseapement. Exploitation is further increased by the intensive troll fishery conducted from Nonterev Bay to sontheastern Alaska. Chinook salmon are also subjected to a sport fishery of considerable importance. Main rums of salmon to the Columbia River are practically unprotected and are fished with destructive intensity.

THE SALMON RUNS OF THE COLUMBIA RIVER IN 1938^{1}

By Willis H. Rich, Professor of Biology, Stanford University and Director of Research, Fish Commission of Oregon; in cooperation with the Division of Fishery Biology, Fish and Wildlife Service

*			
CONTENTS			
	Page		Page
Introduction-	103	Chinook salmon-Continued.	
The Columbia River salmon fishery	104	Intensity of fishing in general	130
Data for the runs of 1938	107	Percentage of grilse.	132
Modified tables.--	113	Bluehack salmon.	134
Nature of the analysis of runs	116	Steelhead trout-	138
Chinook salmon-----------	119	Silver and chum salmon	14.3
History of the run of 1938.	119	Summary	145
Rate of travel....	124	Literature cited	147
The June-July run.	125		

INTRODUCTION

With the announcement of plans for the construction of the Grand Coulee Dam on the Columbia River in eastern Washington, questions were raised as to the effect that this development would have on the salmon runs and as to the possible means for preserving those salmon populations that had formerly reproduced in the area above the site of the dam. Funds were provided by the United States Bureau of Reelamation to the Washington State Department of Fisheries for the purpose of making a preliminary study of possible means for preserving the runs. A report (Washington State Department of Fisheries 1938^{2}) was presented in January 193S, in which the chief recommendation was for an extensive system of artificial propagation. Later the Bureau of Reelamation appointed a board of consultants to review the proposed plan and to make recommendations. In their report (Calkins, Durand, and Rich $1939{ }^{3}$) these consultants recommended, substantially, the plan proposed by the Washington Department of Fisheries.

In the preparation of this report the writer made an analysis of the available data on the salmon runs of 1938 for the particular purpose of determining the relative importance of those fractions of the runs that would be affected by the construction of the Grand Coulee Dam. Various other facts bearing upon the state of the Columbia River salmon resources and the problems of their conservation were developed during the course of this analysis and it has seemed desirable to amplify the part of the

[^18]report that treats of the 1938 rum and to present it as a separate publication. For this purpose the data presented in the original report of the board of consultants have been supplemented by data that have become available since the original report was prepared. At that time no catch data were available later than the close of the "spring" fishing season on August 25. In this revision the catch data for the "fall" season also have been included. Various omissions and minor changes have been made, and some additional aualysis is given.

Acknowledgment is due the Bureau of Reclamation and the writer's associates on the board of consultants for permission to use here the material of the original report. Acknowledgment also is due the Washington Department of Fisheries, the Fish Commission of Oregon, the United States Army Engineers, and the Bureau of Reclamation for many data used in the original report and in this revision.

THE COLUMBIA RIVER SALMON FISHERY

Five species of salmon are taken in the commercial fishery on the Columbia River. These are (1) chinook salmon (Oncorhynchus tschauytscha), (2) silver salmon (O. kisutch), (3) blueback salmon (O. nerka), (4) chum salmon (O. keta), and (5) steelhead trout (Salmo gairdnerii).

Fishing is permitted throughont the year except during March and April, and during the period from August 25 to September 10. The open season from May 1 to August 25 is spoken of as the spring season, and that from September 10 to March 1 as the fall season. Comparatively few fish are taken during December, January, and February, however, so that the fall season is practically limited to the period from September 10 to about the end of November. In addition to these seasonal closed periods there is a weekly closed period extending from 6 o'clock Saturday evening until 6 o'clock Sunday evening, effective during the spring opeu season.

Because the estimate of the intensity of the fishery is based on the ratio of the commercial catch to the fish passing Bonneville Dam, it is important to consider the relative extent of spawning which, for each species, takes place above and below this point. Obviously, if a large proportion of the fish of any one species, population, or group of populations spawns below Bonneville Dam, estimates of relative spawning escapement based upon the number of fish passing Bonneville will be in error.

Practically all the bluebacks spawn above Bonneville. As is well known, their habit is to spawn only in lakes or the tributaries of lakes in which the young remain for 1 or more years before making the seaward migration, and no lakes typical of those in which bluebacks spawn are to be found in the tributaries of the lower Columbia.

The chinooks spawn in nearly all the accessible tributaries of the river, both above and below Bonneville; a fact certain to lead to some crror. With one exception, however, this error is probably negligible during the main part of the run because it is chiefly the late fall fish that spawn in the lower tributaries. The exception is the considerable run of chinooks that ascends the Willamette River in April and early May. There are, unfortunately, no reliable estimates of the extent of this run, but it forms the basis for an extensive sport fishery in the Willamette River, especially just below the falls at Oregon City. No commercial fishing is permitted in the Willamette River itself and the peak of the rum is ordinarily past Oregon City by the opening of the season on May 1. Although some of these Willamette River chinooks are undoubtedly taken in the commercial fishery in the Columbia below the month of the Willamette, it does not seem likely that these constitute a large percentage of the total
commercial catch. It is believed, therefore, that error in the estimates of fishing intensity of chinooks, due to spawning in the tributaries that enter the Columbia below Bonneville Dam, is relatively small, even during the first fow weeks of the spring open season. After about the middle of May it scems reasonably certain that there is very little error duc to this cause until at least the first of August, at which time some fish that will eventually spawn in the smaller tributaries below Bonneville Dam begin to enter the river.

In none of these lower tributaries is there a large run of spawning fish while the count of fish passing Bonneville is at its peak during August and September. These facts indicate clearly that, even during these months, the error in the estimate of fishing intensity based on a comparison of catch with the count at Bonneville will not be serious. As the season advances, however, progressively larger percentages of the fish entering the river are destined to spawn in the lower tributaries. Althongh the total number of fall fish spawning below Bonneville Dam is probably not large compared with the number spawning above the dam, the crror will tend to increase, and great dependence cannot be plaeed on the results of the study of the late fall fish.

Stechead trout spawn generally throughout the accessible tributarjes, but apparently are more abundant in the upper than in the lower streams. In the case of silver and chum salmon, a very large proportion of the spawning occurs in the tributaries below Bonneville Dam, so that the ratio between the count at the dam and the catch gives no reliable indication of the intensity of the fishery.

This report deals primarily with the salmon runs of 1938 and it is to be hoped that similar studies, either by this writer or by others, will be made of future runs for which similar data will be available. As a part of the "frame of reference" into which are placed these studies of the runs of individual years, however, it is important to present something of the earlier history of these runs. This has been done in some detail elsewhere (Craig 1938 ${ }^{4}$; Oregon State Planning Board 1938^{5}; Craig and Hacker 1940; and Rich 1940b) and there is presented here only a graph showing the average annual eatch of each species for each 5 -year period. The data for this graph have been taken from Craig (1938), and recent numbers of the Pacific Fisherman Year Book. Previous to 1888 there was no segregation of the salmon catch by species, but there can be no doubt that chinooks formed the bulk of the eateh. For the first 2 decades during which the pack was segregated the chinooks formed about 80 percent of the total, and it has been assumed that approximately the same percentage existed prior to 1SSS. No attempt has been made to estimate the catch of the other species previous to the period IS90-94. The catch in pounds has been estimated from the figures for the canned and mild-cured packs, which inelude a large part of the total. Further details may be found in the several references given.

Figure 1 shows the rapid growth of the industry during the first 2 decades after its inception, a period of 35 or 40 years in which the catch of chinook salmon fluctuated from about $20,000,000$ to $30,000,000$ pounds and a final period of some 20 years in which there has been a constant decline. In all probability this decline is an indication of true depletion; that is, a reduction in productivity below the point that can be maintained over a long period of time. The picture is complicated by the existence of an extensive oceanic fishery cextending from Monterey Bay to southeastern Alaska, which draws heavily upon the supply of Columbia River chinooks (Rich 1941).

[^19]The catch within the river does not, therefore, represent the eutire productivity of the runs of this species, but with available data it is not possible to determine with much accuracy what this total productivity actually is. The constant decline of the last 20 years, however, taken in comnection with data presented in this report, certainly warrants the conclusion that the chinook runs are seriously depleted. ${ }^{6}$ We shall show below that the present exploitation of these depleted runs is being conducted with an intensity so great that it can only lead to disaster in the not far distant future unless the present trends can be altered.

The blucback salmon catch for both of the first 2 periods shown in figure 1 is approximately twice that of the succeeding periods, and there is some reason to think that the abundance of blueback salmon previous to 1890 was at least the equal of that

Figure 1.-Average annual catch by 5 -year periods of chinook salmon, 1866-1938; and of blueback, silver, and chum salmon; snd steelhead trout, 1891-1938.
which existed during the decade of the 90 's. Since 1900, however, there has been little change-the trend is almost horizontal. These facts imply that this species originally was fairly abundant in the Columbia River, but that this early abundance was sharply reduced about 1900 , and since that time there has been comparatively little change. This species almost universally spawns in or above lakes and it seems quite possible that the damming of lakes for use as reservoirs withont providing adequate fisbways, and the unrestricted use of unsereened irrigation ditches, were chiefly responsible for the depletion.

In figure 1 considerable fluctuation is shown in the estimated catch of steelhead trout, especially in the early years of the record, but there is little evidence of a marked

[^20]trend. It suggests, however, that the slightly reduced averages for the past two 5 -year periods may signify some real reduction in abundance.

The general trend for both silver and chum salmon is distinctly upward (fig. 1) despite rather wide fluctuations. This doubtless reflects an increased usage of these 2 less desirable species that has come with the reduced abundance of the other species, especially the chinook.

DATA FOR THE RUNS OF 1938

In this study of the 1938 salmon runs to the Columbia River, data have been available for the first time in the history of the fishery that have made it possible to evaluate the intensity of the fishery as a whole, the relative intensity at different times and in different parts of the river, and the proportion of the total that is formed by the run to the upper Columbia River (Clarks Fork). These data include the following series: (1) Daily commercial catch in pounds and by species in each of 6 districts corresponding to the 6 counties of the State of Washington that form the northern shore of the Columbia; (2) daily counts, by species, of the salmon passing Bonneville Dam begimming with May 7, and estimates for the period from February 15 to May 6; and (3) daily counts, by species, of the salmon passing Rock Island Dam across the upper Columbia near Wenatehee, Wash., about 100 miles below the site of the Grand Coulee Dam. The latter have been available since the season of 1933.

The importance of the data on the Bonneville count and the total daily catches to the proper development of a sound program for the conservation of the salmon of the Columbia River should be emphasized. Without them an intelligent consideration of the problems raised by the Grand Coulee Dam would have been impossible, and they will be of equal importance in the study of any other problems dealing with the maintenance of this valuable resource. For the previous three seasons the Washington Department of Fisheries had collected records of the daily deliveries of each species of salmon in each of the counties of the State bordering on the Columbia River. The Fish Commission of Oregon also had collected data on the daily deliveries of salmon, but not until 1938 were these presented in such form as to make it possible to combine them with the data from Washington so as to give a record of the total daily deliveries by species and by locality. For no other year are such data available, although figures for 1939 will be in suitable form for study when they are available. Now that a uniform system for presenting the eatch data has been started by the two States, it probably will be continued so that in the future data will be available showing the total daily deliveries in each of the six distriets.

Of equal importance has been the record of counts of fish passing the dams at Bonneville and Rock Island. Since 1933 there have been counts, more or less connplete, at Rock Island, but the Bonneville Dam was not finally elosed to the passage of fish previous to 1938, so that this year marks the begimning of the count at this point. The tremendous value in the conservation program of the count of salmon passing over the Bonneville Dam cannot well be overstated. This count should, by all means, be made a permanent feature and should be in the hands of competent men familiar with the fish and with the teehniques of fishery research, and having a primary interest in the fishery problems upon which these data will bear.

In presenting these data it has been found expedient to sum them for the smallest practical time interval. The unit of 1 week was selected as the shortest period that would avoid insignificant fluctuations, particularly the disturbing effect of the Sunday closed period. For special purposes the data have also been arranged relative to
longer time intervals, but these have been selected carefully on the basis of facts apparent from the tabulations made on a weekly interval. The use of relatively short time intervals has been important because of the considerable fluctuation in the commercial value of the salmon, particularly chinooks, during the season. The spring fish, entering the river during the period from April to the early part of August are much more valuable than those running later in the season. Furthermore, the magnitude of the run varies greatly from week to week and some portions of the run are far more seriously depleted than others. The intensity of fishing also varies, and the closed seasons tend to favor certain portions of the run and leave others practically unprotected from intensive exploitation. The commercial and biological importance of the various portions of the rum of each species must, therefore, be determined independently, and to do this a relatively short time interval is essential. Because the fishing season begins May 1, the first week in May has been taken as the point of departure, and the weekly intervals, both before and after, are arranged to conform to this.

Table 1.-Catch of chinook salmon in the Columbia River, 1938

Week ending	Outside	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zove 6
Apr. 2	Pounds 2.393	Pounds	Pounds	Pounds	Pounds	Pounds	Pounds
Apr. 9	38,292						
Арг. 16	8.193						
Apr. 23	11,123						
Apr. 30	11,309				38,294	41,327	14,447
May 7 May 14	225	1312, 269	390, 116,015	237.612	29,720	28,531	18, 464
May 21		69, 042	71. 280	17, 411	5, 097	4, 662	19.509
May 28		36.6.5.5	43, 170	7,619	1.805	1. 476	7,395
June 4	1.358	35, 00.5	19,783	539	20	129	4. 346
June 11.	9. 062	53,963	35, 554	736	51	30	6.955
June 18	5, 872	81,434	48,300	3,392	1,683	947	4,495
Jupe 25	6, 398	110, 052	86, 608	11, 544	2, 931	1, 113	4. 248
July 2	12.494	127,078	66, 401	11.230 2634	4, 340	2,306	1,959 1.217
July 9	${ }_{5}^{5}, 984$	189, 276	133,845 108,092	26,334 34,388	4,1572 5,202	4,605 7,358	1,217 1,118
July 16	5,580	154, 680	108, 092	$34,3,38$ 30,224	5,202 7,414	7,358 5,988	1. 118
July ${ }^{\text {July }} 30$	8.517 21.454	187,621	81.095 123.905	30, 29.135	11,648	10,111	2,070
Aug. 6	40.596	6,58, 106	127, 847	16. 158	7,733	6. 899	6. 157
Aug. 13-	12, 969	1,000, 675	482, 395	55.821	15, 180	9, 363	15,373
Aug. 20.	9.911	1, 121,362	6.17, 908	84, 876	7.755	17,030	49. 676
Aug. 27	26, 875	${ }^{2} 960,365$	288.497	65, 964	19,611	29, 544	37. 532
Sent. 3	18,806 7,573						
Sept. 17	12,648	189,933	142,308	83,724	${ }^{3} 94.942$	45, 331	${ }^{3} 772,785$
Sept. 24.	2, 247	146, 414	164, 363	130, 829	39, 201	52,156	398, 660
Oct. 1.	2. 037	30, 114	30. 701	S, 264	14.075		117.743
Oct. 8.	2,794	8,700	13,987	4.776	5, 385	34	69, 656
Oct. 15.	502	14, 4\&1	15.990	6. 303	1.371		23, 199
Oct. 22.	1. 295	9, 356	9, 273	4.446	1,929	28	B. 022
Oct. 29		2, 1,35	6. 592	2, 852	671	63	5. 507
Nov. 5	6	1, 477	2. 952	1. 305	1. 035		1.358
Nov. 12.		547	812	701	151		
Nov. 19.		83	164	171	142		
Nov. 26		65	141	30	------	6	1
Dec. 10			96				
Dec. 17.			14				

[^21]Table 2.-Catch of blueback salmon in the Columbia River, 1998

Week ending	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	Week ending	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
May 21.	Pounds	Pounds.	Pounds	Pounds	Pounds	Pounds	July 16.	Pounds 2,310	$\begin{gathered} \text { Pounds } \\ 0,75 \end{gathered}$	$\begin{gathered} \text { Pounds } \\ 2,40 \mathrm{a} \end{gathered}$	$\begin{gathered} \text { Pounds } \\ 1,919 \end{gathered}$	$\begin{gathered} \text { Pounds } \\ 4.571 \end{gathered}$	$\begin{array}{r} \text { Pounds } \\ 29.322 \end{array}$
May 28.							July 23	518	350	\%19	175	919	17, 744
June 4.	4						July 30..	65	T2	71	12	71	3. 960
June 11.	47	16				4	Aug. 6	7	8			6	1. 125
June 18	2. 242	8. 138	905	469	834	203	Aug. 13--						111
June 25.	20.804	63. 156	7.342	6. 393	9.040	2. 8.2	Aug. 20..					48	57
July 2.	18,326	59, 368	13,534	7.325	10,579	15. 312	Aug. 27^{1}.						15
July 9	8,301	37,708	11,624	6, 430	8,117	27.348							

1 Season closed on August 25.
Table 3.-Catch of stecthead tront in the Columbia River, 1988

Week ending	Outside	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
Mar 7	Pounds	Pounds 1, ©33	Pounds 5.347	Pounds 1.174	$\begin{gathered} \text { Pounds } \\ 169 \end{gathered}$	rounds 449	Pounds 1.238
May 14-		1,166	4,385	- 51	75	IS4	3.253
May 21		722	2,495	213	41	56	2.212
May 28		447	1, 703	144	56	74	1.203
June 4		56.6	6.27	$2 \times$	5		737
June 11.		894	890	39	7	10	503
June 18.		3.448	5, $0: 70$	171	113	57	255
June 25.	667	17.724	20, 5tif	1.297	3.1	327	416
July 2	35 K	20. 149	38.342	2. 939	1. 105	503	451
July 9	$3 \times$	54, fin6	24, 512](1, 614)	2, 112	1.701	$\times 29$
July 16.	22	50,226	7f, 305	23080	3. 224	3.821	1,029
July 23.	45	36, 914	54, 5in	24.920	4, ling	3, 104	6, 214
July 30.	72	37.829	58, 537	11.747	2, 225	2. 210	3. 524
Aug. 6	119	22.8.99	3n, 215	7.382	2. 0100	3.154	3,457
Aug. 13.	50	45, 215	91, 016	11,2\%4	2.408		15, 384
Aug. 20	100	32.8×5	-2. 520	15,294	3,152	3. 25	20, $\times 1 \times 3$
Aup. 27	64	121.852	40, 8 ()	11,017	3,524	3. 293	11, 563
Sept. 3	19					
Sept. 10	12						
Sept. 17		1. a $^{\text {a }}$	7.317	4. 332	14.411	2. 324,	$212 \% .4 t 5$
Sept. 24.		11.54.3	30.153	10.0.036i	5. 0 , (0)	3, 1009	9.1. 731
Oct. 1.		6, 6.4	14, Mis	3, 741	3.ins		23, 007
Oct. 8		2.258	5.025	2.021	1.007		10, 223
Oct. 15		1,337	3.050	1,174	376		4, 24.3
Oet. 22.		1.730	2.545	Mッ2	104		1,456
Oct. 29.		1,143	2.234	730	41	12	24610
Nov. 5		1. 130	2.503	${ }_{403}$	50	14	1. 250
Nov. 12		2. 240	5. 206	1,357		13	83
Nov. 19		2,810	5.497	1,520	91		
Nov. 26.		2.197	*. 4.59	2, 0,41	177		
Dec. 3		930	2.150	2,133			
Dec. 10		2.85	19, 101	1.58,2			
Dee. 17		1, 094	8.800	1. 2013			
Dec. 24		774	$8,35.5$	1, 496			
Dec. 31.		427	9, 6,60	1.741			

[^22]Table 4.-Catch of silver salmon in the Columbia Rirer. $1038{ }^{1}$

Week ending	Outsille ${ }^{3}$	Zone 1	Zone 2	Zone 3	7 ch 4	$\underset{5}{\text { Zone }}$	Werk ending	Out- side ${ }^{2}$	Zone 1	Zone 2	Zone 3	Zune	$\underset{5}{\text { Zone }}$
	Lbss.	Lbs.	Lbs.	$L b s$	Lbs	Lb:		Lbs.	Ih.e.	Ithe	I b,	Lbs.	L.bs.
June 19.	34, 196						Oet 8	94. 171	+1.359	64, 417	14. 519	9. 811	20
June 25.	43,611						Oct. 15	祡, 334	141. 290	142, ${ }^{3} 23$	50, 433	9, 029	27
July 2.	17, 464						Oct 22	104, 482	154, Bath	164, 545	45, 6, 64	7.593	246
July 9	01.362						Oct. 20	24	6, 0.087	134, 595	44.495	6, 415	24.5
July 16	30, 448						Nor. 5	799	74.403	158, 285	3r, 200	3.604	373
July 23	51,354						Nov. 12	3,464	46, 270	A. 1 1.4	14. 721	1. 054	17
July 30.	90, 517						Nov. 19		12, 127	49.906	14,703	1, 105	
Aug. 6.	114, 534	8		7			Nov. 26		3.374	19.35\%	8, 165	149	
Aug. 13.	153, 8.56	478	69	19			Der. 3		1.312	14,610	8. 410	234	
Aug. 20	257.407	7.844	6. 632	100	27		Dee. 10		4, 699	52,425	5,470		
Aug. 27	238, 50.7	19,457	6.904	2, 327	44		Dee. 17		754	9,040	2.039		
Sept. 3 ---	327,02\%						Dee. 24		2 Sa	1.573	\$82		
Sept. 17....	154, 168	${ }^{3} 23,730$	21,906	7.674	1,198	152	Dec. 31.		97	1,430	487		
Spt. 1													

[^23]449668-42-2

Table 5.- Catch of chum salmon in the Columbia River, 1988

Week ending	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6	W"eek ending	Zone 1	Zone 2	Zone 3	Zone 4	Zone 5	Zone 6
	Lbs.	Lbe.	Lbs.	$L b s$.	Lbs.	Lbs.		Lbs.	Lbs. 130.691	Lbs 43,80	Lbs.	Ibs.	Lbs.
Celt.	32 473	699				165	Nov. 19 Nov. 26	29,875 7,650	130,691 53,078	43, 24.680	5, 5¢9 3.45	2, 2,965	
Oct. 8	1,732	1, 6.06	265	2.577		247	Dee. 3	${ }^{+} \mathrm{T}, \mathrm{0S}$	10,021	11.407	${ }^{1} 695$		
Sept. 15	19,686	22, 704	2,962	241		693	Dec. 10	1,784	21,075	4,395			
Uct. 22	54.781	104.820	13.567	1.815		69	Dec. 17.	262	4. 264	568			
Oct. 29.	60.490	163.206	22,293	6. 945	73	3.188	Dec. 24		439	232			
Nov. 5	106,475	408. 107	43,541	6. 419	3, 653	1,380	Dec. 31		148	82			
Nov. 12	94.797	321, 213	69,073	2,990	284								

Table 6 - Miscellaneous catches in the Columbia River, 1989

Month	Chinook	Steelhead	Blue-	Silver	Chum	Month	Chi- nonk	Steelhead	Blueback	Silver	Chum
April	Pounds	Pounds	Pounds	Pounds	Pounds	October	Pounds 9.753	Pounds 1,146	Pounds	Pounds 4. 420	Punnds 1. 060
May	18, 714	2, 725				November		${ }^{5} 51$		3,164	5,551
June	1, 170	178	2, 219	166		December		423		21	29
Autust	1,503	311	+27	152	9	Total.	86,355	7,561	2,968	8,146	6,649
September	47,099	2,0.4		218							

Tables 1 to 5 give the aggregate Washington and Oregon catehes for 1938, by speeies, weeks, and zones. These figures include only those catches that were reported by locality and date. There is a relatively small portion of the total catch that is reported without these important data and these have becn excluded from this analysis, although for completeness they are given in table 6 . The catch of chinook and silver salmon made in the ocean outside the mouth of the river by troll fishermen was not given in the original report by the board of consultants, but is inchuded here. Occasionally deliveries are reported during the spring season as of Sunday. Since the period from $6 \mathrm{p} . \mathrm{m}$. Saturday to $6 \mathrm{p} . \mathrm{m}$. Sunday is closed to fishing each week during the spring season, such catches have been added to those of the preceding week. Catches made on Saturday are not infrequently held over and delivered on Sunday, and it rarely happens that catches are made after $6 \mathrm{p} . \mathrm{m}$. on Sunday and delivered that same evening.

The zones correspond to the Washington counties bordering the river, begiming at the mouth. Zone 1 is that part of the river that is bounded on the north by Pacific County, Zone 2 by Wahkiakum County, Zone 3 by Cowlitz County, Zone 4 by Clark County, Zone 5 by Skamania County, and Zone 6 by Klickitat County. The catch in Zone 5 has, on the adviee of both the Washington and Oregon officials, been referred wholly to the area below Bonneville Dam. This zone extends above Bonneville for some distance, but for a part of this distance the river is closed to all fishing and the catch in the remaining portion is so small as to be negligible, either when omitted from the record of the catch above or added to the record of that below Bonnerille.

In this analysis we have necessarily omitted consideration of three elements in the eatch which are recognized as important but which camot, with the data at hand, be evaluated. These are: (1) The catch in the ocean by the troll fishery; (2) the hook-and-line catch by sport fishermen; and (3) the catch made lyy Indians for their own use, especially at Celilo Falls.

The troll fishery is rery important, and from southeastern Alaska to the month of the Columbia it draws largely upon the supply of Columbia River chinooks-as demonstrated by tagging experiments (Pritchard 1934, Fisheries Service Bulletin, Jan. 3,

1928）．Fairly good data are available as to the aggregate troll catch of chinooks and silvers in Alaska，Oregon，and Washington．The percentage of Columbia River fish in this eatch，however，undoubtedly varies greatly during the season．There are no satisfactory data on this latter point．Even though we knew the proportions of Columbia River fish in the catch at different times and in different localitics，it would be impossible to allocate these to the scasonal runs of the Columbia and thus，eventually， to determine the element in the troll catch derived from the runs to the Columbia River above Rock Island Dam．Likewise，we have no data on the eateh of the sport fishery or on that part of the Indian catch that is not sold．All of these dements increase to some unknown extent the economic importance of the salmon runs with which we are here concerned．

Table 7．－Estimates and counts of fish passing Bonneville， 1988

Werk ending	$\begin{aligned} & \text { Chi- } \\ & \text { nook } \end{aligned}$	Grilse ${ }^{3}$	$\begin{aligned} & \text { Stesl- } \\ & \text { hear } \end{aligned}$	Blue－ back	Silver	Chum	W゙ット entrong	Chi－ bouk	Grilse ${ }^{\text {a }}$	$\begin{aligned} & \text { Etupl- } \\ & \text { head } \end{aligned}$	Rhes－ back	Silure	Cluam
Feh，19．			55				Aug．${ }^{\text {f }}$	1．327	329	4．Sbim	1． 125		
Feh． 26			15.5				Aug．1：3	4． 11.3	Fid	6，0xi	\cdots		
Mar． 5	4		201				1119． 21	5．101	1，016	6． 4.4 .8	230	0	
Mar． 12	68		gra				Alue．${ }^{7} 7$	10，112	2，14tis	6． 4 ！ 6	219	11.5	
Mar． 19	84		1，267				ハッ口゙， 3	53．73	4． 452	17．54	15	6， 311	
Mar．26．	0		51				$\because \cdots \mathrm{lt}$（10	N）（6）	－ 913	1i， 514	\％	1． 7 ， 42	
Apr．${ }^{\text {a }}$	14		981				E19．17	P3， 221	5． 7.16	13， 314	11	1． 4838	
Apr． 9.	339 402		7.319 1.927				Sinte ${ }^{\text {unt．}} 1$	12， 2,15	1． 641	3.435 1,201	10 1	2393	
Apr． 23	481		1.033				Oct．	－9．4	24	5	11	4	2
Apr． 30.	1，54．5		321				0ct． 15	48.4	99	141	3	341	5
May 7.	3．359		135				（e）t．22	161	3.1	230	1	240	179
May 14	12．036	1， 357	3.217	131			（12． 2	231	1%	25\％	，	212	14，
May 21．．．	5.047	842	1，422	572			K心．	204	41	1.5	0	13.4	1：4
May 28	3． 227	87	1．6．14	318			Nov．12	4	111	［101	2	14	236
June 4.	205	53	164	24			Nサ5． 19	21	5	10	11	9	285
June 11.	1，［ $\mathrm{Mc}_{1} 1$	710	03.2	15.3			Nov．z	9	1	58	0	4	210
June 18.	2.932	515	6.52	1． 3 NW			Inec． 3	5	1	30	1	1	4
June 25	2， 2330	33.4	521	5，719			l hece 10	21	5	43	0	7	1
July 2	1，210	16.4	641	15.441			1 Pere 17	$\stackrel{1}{2}$	0	14	0	0	13
July ${ }^{\text {a }}$	884	112	8110	16．491			1 bres 21	！	0	1	0	0	1
July 16.	1， 85.5	22.4	4.081	21． 173			b4c． 31	2	0	13	$1)$	，	1
July $23-$	1， 5134	337 430		7.835 2.70					3 tra 250	1201， 95.3			
July 30.	1，753	430	6，667	2．770					7．．．14）		15，18．	2，137	

 ＂Chinooks．＂the figures it which are，therefore，the totals for this species．

In table 7 are given the comis and estimates of the number of salmem and andmed passing Bonneville Dam during 1938．Aetual counting did not begin urtil May 7 ， but estimates could be made from partial comts－－the so－called＂spot＂counts－ covering the period from the midde of February to and including May 6 ．Theer partial coments were made by observers stationed for portions of the day at the several fish ladders．The records consisted of（1）the length of time during which the obser－ vations were continued，and（2）the nmmer of fish of each species observed．This is essentially a sampling method，and it is laown that the fish do not run uniformly during the entire 24 hours，or even during the dayhght hours．A fairly good estimate can be made from such records，howerer，if the hours during which the fish run are determined with eare，and if the periods during which the counts are made are suitably distributed．Tine method adopted here for estimating the total number for the day from the partial counts is to multiply by 12 the arerage hourly count as determined from the records．This is the method recommended and used by Fred Morton，who
was actively in charge of the count. This method assumes that the fish are passing over the ladders for 12 hours per day at the same average rate as observed during the period of the count and has been applied to each ladder separately and the sum is the estimated total for the day. For periods during which no count was made a linear interpolation between the preceding and the following days' estimated counts was used. Although not comparable in accuracy to the actual count, these estimates appear to give a reasonable basis for further calculations.

A chief source of error in these counts and estimates is undoubtedly the identification of species as the fish were passing up the ladders. After May 7, when the actual count began, the fish were forced to pass through a small opening in a weir placed across cach fish ladder and over a submerged platform painted white. Identification of species under these conditions can be made with some accuracy by careful observers and, in general, reasonable confidence can be placed in the identifications so made. Those made under less favorable conditions must, necessarily, be accepted as the best available. Circumstances may arise in which a particular misidentification is especially likely to occur, in which case it may be recognized and steps taken either to improve the identification or to determine its influence and allow for it in the estimates of the number of fish of the species confused.

It is apparent that one such particular case of misidentification might easily arise during the time when the blueback run is at its peak. Grilse, which are approximately the same size as the bluebacks, are anong the clinooks and run at the same time, and it has seemed likely that bluebacks might be mistaken for grilse or grilse for bluebacks. An analysis has been made in which the correlation was determined between the percentage of grilse in the total count of chinooks and the number of bluebacks for the 10 weeks of the blueback run-June 11 to August 13.

The Pearsonian coefficient of correhation is -0.72 . Using the standard procedure the probability of chance occurrence of a coefficient of correlation as high as this is only 0.03 , so that the observed negative correlation between the percentage of grilse and the number of bluebacks can be accepted as significant. Furthermore, it seems likely that the relationship between these two variables is curvilinear rather than rectilinear, as assumed by the Pearsonian coefficient, and that a true measure of the correlation would be even higher than that calculated. Our measure is, therefore, conservative. It scems quite likely that this negative correlation can be ascribed to a tendency on the part of the observers to mistake grilse for bluebacks when the bluebacks are numerous.

This raises the question as to what other errors there may be in the counts. It is certainly difficult to distinguish species under the conditions of counting unless there is a fairly well marked difference in size, shape, or markings, especially if light conditions are not favorable. Observers shonld not be blamed for making errors under these conditions, but, in view of the evidence of error in identification just given, it would seem proper to investigate carefully to see how extensive these errors may be. The importance of having properly trained and experienced observers is obvious.

Table 8.-Counts of chinook salmon at Rock Island Dam, 1933 to 1938

$\begin{aligned} & \text { Week end- } \\ & \text { ing } \end{aligned}$	1933	1934	1935	1936	1937	1938	Week ending	1933	1934	1935	1936	1937	1938
Apr. 10.		2					Ang. 6	257	836	686	848	645	383
Apr. 23.		11					Aug. 13.	253	741	689	275	42	419
Apr. 30		9				14	Aug. 20	2, 500	3. 047	2. 1.87	139	211	196
May 7.		30	65	${ }^{6}$		28	Aug. 27	404	386	3,342	65	112	82
May 14.		87	117	13	2	70	Sept. 3--	1, 1,44	133	2. 710	21	102	162
May 21.		137	509	St	7	78	Sept. 10.	656	57	1. 104		61	131
May 28.		43	532	399	30	6.50	Seput. 17	210	113	437		65	209
Junt 4		47	4182	727	63	235	Sept. 24	70	67	1, 077		371	515
June 11		26	282	254	2.5	195	Oct. 1		5.9	3 Пी		239	344
June 18.		13	321	2148	33	$6{ }^{19}$	Oct. 8.		111	629		65	314
June 25.		11	86	201	19	94	Oct. 15	-..--	350	123		55	111
July 2.		29	59	45	159	123	Oct. 22		30	41		9	8
July 9.		104	116	91	180	39	Oct. 23		2	5			15
July 16..		126	38	183	148	\bigcirc	小洔 5		3				
July 23-...	51	12.1	290	1. 245 1, 550		- 4.25	Total.	3.668	7. 100	16,301	6.475	5. 132	5, ¢03
July 30-...	51	258	255	1,530	1, 61	120	Totar-						

Table 9.-Counts of bluebock salmon at Rocl: Island Dam, 1983 to 1938

$\begin{gathered} \text { Week end- } \\ \text { ing } \end{gathered}$	1933	1931	1935	1936	1937	1938	Wiok enditig	1933	1934	1935	1936	1937	1938
May 21.			15				Ang. 20	4. 8.41	104	2, 172	168	211	266
May 28.			3				Auts. 27	827	35	56_{1}	20	74	43
June 4.			2	1			Sent. 3	125	30	140	14	12)	43
June 11.			3	4			Sept. 10	86	15	23		45	35
June 18.		2	5	8			Supt 17...	12	13	$\stackrel{4}{4}$		i	37
Junce 25.			6			2	Sunt. 24.	26	4	3		12	96
July 2.		22	5	9	4	89	Oct. 1			1		5	61
July 9		93		313		139	Oct. 8			.----		5	
July 16		144	62	1,865	2, 811	871	Oci. 15		-			8	
July 23	1,218	667	1.058	8,011	6,310	8,955	Oct ${ }^{\text {Oct }}$						
July 30...-	8.960	561	3.856	4.474	4, 678	4. 530	Uct. '3)						
Aug. 6-... Aug. 13...	16,868 7,668	410 126	2,263	$\begin{array}{r}1,217 \\ \hline 380\end{array}$	939	1, 637	Total	40.737	2.227	14,011	16.482	15, 069	17.123
Aug. B.-													

Table 10.-Counls of stcelhead trout ot Rock Island I) am, 1933 to 19.98

Week ending	1933	1931	1935	1936	1937	1938	Werkending	1933	1934	1935	1936	1937	1938
Apr. 9.		14	S				Anfr 27.	$14!$	2	308	52	68	25
Apr. 16		7	8			17	Sent. 3	14.3	2	336	21	60	33
Apr. 23.		71	23			222	Sert. 10	16	17	397		84	56
A rir .30.		62	191			143	Sopt. 17	178	26	5.4		109	97
May 7.		3	338	15		243	Septr. 24	:30	25	411		312	200
May 14			146	35	9	$6!$	Uet. 1		13.	6113		3 SH	40
May 21.		8	$8:$	135	55	5.3	Mct. ${ }^{\text {ch }}$	-	36.	675		26.5	126
Mas 29		1	132	304	211	345	Oct. 15		51	215		3119	39
June 4.		1	87	615	${ }^{6}$	14%	ret 22		31	306		42	34
June 11.			9	70	15	5	(10.0)		23	25			6
June 18.		3	12	32	1\%	ca	Nov.		16	5			
June 25.		1	2	9	3	2',	Nub. 12		20				
July 2		1		11	24	8	Nov. 1!		8				
July 9.		2	1	18	11	1	\ov. 26		'				
July 16		1	-	10	10	1	1see. 3		3				
July 23			7	27		$!2$	1 bre. 10		11				.
July 30	39	$?$	1.4	\%		iif	1 1e. 17		5				.-
Aug. 6	13.	3	44	71	12	5	bee. 24		2				
Aug. 13....	90 87	4	8.5 268	3		58 4.5	Total			${ }^{15} 5111$	1.637	2.214	2.400
Alug. $20 .-.$.	87		2 l	,	1	4.				1, 41			

${ }^{1}$ Includes 20 counted previous to the week ending Afrils.
Tables S, 9, and 10 give the counts made at Rock Iskand Dam during the years 1933 to 1938 , inclusive. Tbese were all actual counts which are presumably accurate, both as to number and identification. In addition to the records given in these tables, 78 silver salmon were counted at Rock lsland Dam late in September and early in October 1938.

MODIFIED TABLES

The data on the rum of 1938 (tables 1 to 10) are presented below in such form as to bring out certain facts bearing upon the biological and economic importance of
different portions of the salmon runs and upon matters important to their conservation. This section deals with the methods used in forming these modified tables and the reasons for the various modifications that have been introcluced. The chief purpose in the original report was to show the contribution that the Rock Island runs make to the commercial catch for different periods and also the intensity with which the run as a whole, and particularly the Rock Island component, is being exploited. In that report only the spring runs of chinook and bheback salmon and the steelhead trout were considered. In the present report all of the species of salmon found in commercial quantities in the Columbia River have been included and the data covering the fall season to the end of the year have been considered. Information not available at the time the original report was prepared has, we believe, made possible an improved analysis. Additional facts not pertinent to the original report but bearing on the more general problems of the depletion and conservation of these fishery resources have been introduced.

Primarily for the purpose of comparing commercial catch with escapement of fish to the spawning grounds, it has been necessary to convert the catch as given in pounds into numbers of fish. Entirely satisfactory conversion factors (average weights) are not available, so that the estimated numbers as given in the following tables tamot be considered as anything more than reasonable approximations. The terminal digits in the figures as given are not, therefore, to be taken as significant.

In the original report the following conversion factors were used in converting the catch, given as poundage landed, into numbers of fish: For chinook salmon 2 systems were used; (1) an average weight throughout the season of 22 pounds, and (2) an average of 15 pounds during May, 20 pounds during Jume, and 25 pounds during July and August. For bluebaclis abso 2 systems were used; (1) an average of 3 pounds throughout the season in all zones, and (2) an average of 3 pounds throughout the season below Bonneville (Zones 1 to 5) and $21 / 2$ pounds above Bonneville (Zone 6). For steelheal trout an average weight of 10 pounds throughout the season in all zones was assumed. In general these were in accord with accepted figures. In the present report we introdnce no change in respect to the figures used for bluebacks and steelheads, but have considerably modified our treatment of the chinooks.

In another paper (Rich 1940a) the writer has described the seasonal changes in weight of chinook salmon in the commercial catch on the Columbia River cluring the scason of 1939 , and the estimated weekly average weights given in that paper have been used in this report to convert poundage to number of fish. The validity of applying the 1939 averages to the 1938 run is perhaps questionable, but appears to us to be by far the most acceptable procedure available.

It was shown in the paper just mentioned that a satisfactory empirical graduation of the observel weekly mean weights in 1939 is given by the use of two linear equations. Letting $y=$ weekly mean weight, $x=$ the week, with origin at the week of July 9 , the data for the first part of the season, up to and including the week ending July 9 , are fitied by the equation $y=30+1.78 x$, and those for the last part of the season, including again the week of July 9 , are fitted by the equation $y=30-0.55 x$. Table 11, gives the estimated weights for each week of the spring season as determined from these equations. For this present report, estimated average weights for the weeks previous to the opening of the fishing season on May 1 and for the fall season have also been determined by the dubious method of extrapolation. We fully recognize the dangers of this procedure but, in the absence of any better objective basis for estimate, believe
it to be justified here. This gives the following estimated weights: For the week ending April 30, 12.20 pounds; April 23, 10.42; September 3, 25.60 ; September 10, 25.05 ; September 17, 24.50; September 24, 23.95; October 1, 23.40; October 8, 22.S5; October 15, 22.30; October 22, 21.75; October 29, 21.20; and for the week ending November 5, 20.65. After this date so few fish were taken in the fishery that an approximation on the basis of about 20 pounds is adequate for all purposes.

Table 11.-Estimated weights of chinook salmon in the commercial catch in Zones 1 and 2 for the spring season of 1939. Figures for the first 3 weeks were cxtrapolated

Week endiag	$\begin{aligned} & \text { Estimated } \\ & \text { mean } \\ & \text { weight } \end{aligned}$	Week ending	$\begin{aligned} & \text { Estimated } \\ & \text { mean } \\ & \text { weight } \end{aligned}$	Week ending	$\begin{gathered} \text { Estimated } \\ \text { mean } \\ \text { weight } \end{gathered}$	Wreek cnding	$\begin{gathered} \text { Estimated } \\ \text { mran } \\ \pi \subset \text { ight } \end{gathered}$
May 7	(13.98)	Tune 4	21. 10	July 2	28.22	Aug. 6.	27.80
May 14	(15.76)	June 11.	23.88	July 9	30. (4)	Aug. 13	27.25
May 21.	(17.54)	June 18	24. 66	July 16.	24. 45	Aug. 20	26.70
May $28 . \ldots-{ }^{\text {- }}$	16. 32	June 25	26.4	July 23. July 30	28.408 25.35	A108. 27	26.15

In converting poundage of silver and chum sahon to numbers of fish we here adopt an average weight of 10 pounds for both species-the same as that adopted for steelhead trout. This is not in accord with the figures commonly given, riz, 7 , 9 pounds for silvers and $8-10$ pounds for chmes. Some years ago, howerer, the writer measured and weighed several hundred silver and chum salmon taken on the lower Columbia River, and these gave averages for both species that were considerably over 10 pounds- 240 chums averaged 10.3 pounds with a standard deviation of ?.(), and 133 silver salmon averaged 10.9 pounds with a standard deviation of 2.6 . This arerave does not include 16 silver salmon grilse which were in the same collections. The samples came from fish caught in traps and the small grilse are sehtom takn by gill nets although, as stated above, this form of gear is of primary importance in the Columbia River fishery. In view of these figures, and the purpose to which the estimates are to be put, it seems reasonable to use a conversion factor of 10 poumb for both of these species. ${ }^{\text {? }}$

Some time is required for the journey of the fish u_{1} the river, so that on a givm day the fish in the upper river may be expected to represent an entirely different stock from that to be found simultaneonsly in the lower riser, although it is the same sterk as was to be found in the lower river during an earlier period. Therefore, in orter to aid interpretation of some of the more important data, these have been presented so that as nearly as possible those referring to the same stocks of fish are placed on the same lines in the table. In other words, the several scries of data have been so "laperel" that comparable portions are related to the sume marginal date-which date is the end of the week in which the fish may reasonably be expected to have catered the river from the ocean. From a careful examination of tables 1 to 5 it appears that a given group of fish that entered the river and were to be fomed in Zones 1 and 2 in a given week (the week of the marginal date in the table) would be in Zones 3 to 5 the next week, at Bonneville and in Zone 6 during the second week, and at Rock Island the fourth week after their appearance in Zones 1 and 2 .

In table 12 the dates given in the left-hand margin are those ending the weekduring which the fish were in Zones 1 and 2, the estimated catches made in Zones 3 to 5

[^24]were made 1 week later than that indicated by the marginal date, the Bonneville count and the estimated catch above Bonneville were made 2 weeks later than that indicated by the marginal date, and the Rock Island count 4 weeks later. For convenience we shall refer below to the assumed position of the fish during their upward migration as in Zones 1 and 2 the first week, in Zones 3 to 5 the second week, at Bonneville and in Zone 6 the third week, and at Rock Istand the fifth week of their freshwater migration. The same system was followed in preparing the similar tables for the other species.

Thus, reading across any one line, say the line for May 7 in table 12, the first column gives the estimated catch made in Zones 1 and 2 during the week ending May 7, the second columin the estimated catch made in Zones 3 to 5 during the week ending May 14, the fourth column the count at Bonneville during the week ending May 21, the fifth column the estimated catch above Bonneville during the week ending May 21, and the seventh column the count at Rock [sland during the week ending June 4. Columns 3 and 6 are derived by summing across the rows in the appropriate columns and therefore show totals for the rum as a whole-all referred back to the week that the fish were presumably in the extreme lower part of the river and, therefore, approximately to the time that they entered the river.

Individual fish undoubtedly vary greatly in respect of their rate of travel upstream, but the obvious similarity in the trends of all the columns in this table is evidence that, on the average, these assumptions are well founded.

NATURE OF THE ANALYSIS OF RUNS

From the tables of this structure it is possible, for those species that largely spawn above the site of the Bonneville Dam, to estimate the number of fish of each species that escaped the intensive fishery below Celilo Falls (the upper limit of commercial fishing) in 1938 and were available for reproduction above Bonneville Dam. This is readily done for any desired portion of the season by subtracting the catch above Bonneville from the Bonneville count. Such an estimate of the escapement is subject to error from several causes, of which the following may be mentioned: (1) Error in the count of fish of the different species at Bomeville, (2) crror in the catch figures due to the fact that a considerable catch that does not appear in the record is made by Indians, and to some extent by Whites for home use, and (3) error in converting pounds to number of fish. While these sources of error are present, it is believed that their total effect is relatively small and will not affect the general conclusions that may logically be drawn. Furthermore, in making these estimates no attempt has been made to correct for the spawning that takes place in the tributaries below Bonneville Dam. In the case of the silver and chum salmon such a large percentage of the spawning takes place below Bonneville that a similar analysis has not been made. Also, as mentioned above, there is a considerable part of the fall rum of chinooks that spawns below Bonneville so that our study of the fall run is probably less reliable than that for the spring scason. Since our estimate of the escapement is based primarily upon the count at Bonneville (from which is subtracted only the estimate of the number of fish in the recorded commereial cateh above Bonneville) the spawning in the tributaries between Bonneville and the upper end of the commercial fishing district at Celilo Falls will not affect the results. If any considerable portion of the run that is actually derived from the tributaries below Bonneville be ascribed to the
river above Bonnerille, this will tend to magnify the importance of the spawning in the river above Bonneville, including that above Rock lsland. Undoubtedly a part of the commercial catch of all species except the blueback is composed of fish derived from the tributaries below Bonneville, but it seems probable that this forms a relatively small part of the total catch of chinook salmon, at least until after the peak of the fall run. There is a very large count of chinooks at Bonneville immediately after the beginning of the closed period in August-certain evidence that a large proportion of the fish that are in the river at that time are derived from populations spawning in the higher tributaries. On the whole we feel fairly confident that only a relatively small part of the commercial catch of this important species that is made before the first of October comes from the runs into tributaries below Bonneville.

An understanding of the analysis of these runs, particularly in relation to the fish destined to spawn in the upper Columbia River above Rock Island Dam, may be aided by the following discussion (see also fig. 2). ${ }^{8}$ While this particular treatment is related specifically to the run to Rock Island, a similar treatment could be applied to any other tributary runs for which similar data were available.

Let us assume:
A. That the estimated eseapement at Celilo is the total escapement for the total rum of the period; and
B. That the ratio between the escapement at Rock Island Dam and the eateh made from the same stocks of fish that furnished this eseapement is the same as that between the escapement at Celilo and the total catch. This assumes that there is no appreciable loss between Celilo and Rock Island,

Figure 2.-Diarram of the ultimate subulixisions of the matn run of chinook salmon entoring the Columbia River. illustrating the various ratios. If denotus total rum: C_{1} denotes total catch below Bonnowille I)an; BC denotes Bonneville count: C_{3} denotes catch above Bonnevill. Dam; E1denotes eseapement at npper limit of commercia! fishing: Fiz denotes escapement at Rock lsland Dam; " denotes diversions of unknown amounts at various points in the river. and that, for each species, the proportion of Rock lsland fish caught is the same as the arerage for all satmon of the species that are passing through the fishery at the same time.

From this it would follow also that the relation between the escapement at Rock Island Dam and the rum reforable to this escapement will tee the same as that between the escapement at Celito and the total run.

Having then determined, for a selected time interval, the total catch, denoted by C , the escapement at Celilo, denoted by E_{1}, and the count at Rock Island, denoted by E_{2}, we are able to determine the following:

[^25]1. The fraction of the total run (R) derived from that portion normally spawning above Rock Island. This will be $\frac{E_{2}}{E_{1}}$.
2. The fraction of the total catch (C) referable to the Rock Island escapement (Rock Island count). This also will be $\frac{E_{2}}{E_{1}}$.
3. The eatch derived from the Rock Island contingent. This will be $\frac{E_{2}}{E_{1}} C$. This catch in numbers of fish can then be converted into pounds weight on the basis of the assumed arerage weight per fish.
4. The total rum referable to Rock Island. This will be $\left[\frac{E_{2}}{E_{1}} C+E_{2}.\right]$ Likewise, the ratio of the catch referable to Rock Island to the total run referable to Rock Island. This will be $\frac{E_{2}}{E_{1}} C \div\left[\frac{E_{2}}{E_{1}} C+E_{2}\right]$ which reduces directly to $C \div\left(C+E_{1}\right)$ or to total catch divided by total run, as might be expected. This may also be written, rather neatly, as $\frac{1}{1+\frac{E}{C}}$. That is, the ratio of the catch referable to Rock Island to the run referable to Rock Island is the same as the ratio of the total catch to the total rum. This again follows from the assumptions A and B.

In carrying out the analysis along the lines indicated above, the catch in number of fish and in pounds that may properly be ascribed to fish of the runs to the river above Rock Island has been taken as a measure of what may be termed the aholute importance of the Rock Island factor in the commercial fishery. The percentage of the entire run that, for any period, may be ascribed to these Rock Island fish, may similarly be taken as a measure of the relative importance of the Rock Island factor. These two series serve somewhat different purposes. These values may be determined for any selected portion of the season, and this is important because the Rock Island complement in the total run varies widely from time to time and the ratio of catch to escapement also varies during the fishing season. But for any one period it is possible to determine the ratio of eatch to escapement-a ratio that may be applied to the entire run for the period or to fish bound for other tributaries above Bonneville Dam as well as to those destined to tributaries above Rock Island Dam. Given the ratio for any period, the catch ascribable to the upper Columbia may be determined by multiplying the Rock Island count, E_{2}, for the corresponding period, by this ratio, $\frac{C}{E_{1}}$, giving $\left(\frac{C}{E_{1}}\right) E_{2}$. Or, on the other hand, we may use the fraction of the entire run that may be attributed to the river above Rock Island, $\frac{E_{2}}{E_{1}}$, and multiply the total eatch, C, by this fraction to get the number of fish derived from those spawning athove Rock Island giving $\left(\frac{E_{2}}{\bar{E}_{1}}\right) C$. Mathematically these two procedures are ubviously identical and, where either may be applied, they will give identical results; but the latter procedure, making use of fractions of Rock Ishand fish in the rum, may be applied when necessary to determine the part that the Rock Island fish play in producing the eatch in any portion of the river, while the former can only be applied to the catch as a whole.

We will now consider, specifically, certain runs and portions of runs in respect of their importance to the general prebiems of the preservation of the salmon of the Columbia River, and in particular of those that have derived from the river above Grand Coulee Dam. Aithough the data have been studied and presented on the basis of time units of 1 week, it is convenient and even more illuminating to consider them also for longer intervals of time which have been selected for various reasons as being of special importance.

CHINOOK SALMON

HISTORY OF THE RUN OF 1938

On account of the dominating importance of this species in the fishing industry, particular attention has been paid to it. The data are presented in tables 12 to 14 and are shown graphically in fig. 3 .

The earliest pat of the run to the Columbia River above Bonucrille does not enter into the commercial fishery-it is past the commereial fishing area before the opening of the season on May 1. The first of the run to contribute to the commereial catch is that which enters the mouth of the river during the week conding April 23. These fish, in general, may be expected to pass Bonneville and to be in Zone 6 during the first week in May--the first week of the spring open season. We have therefore considered as a sparate period the weeks up to and including the woek ending on April 16. The next period includes the part of the run that provides the peaks in cateh and Bonneville count that oceur in May. Wo consider that this perical terminates with the week ending May 28. The next period includes the suceecding 9 weeks ending on luly 30 , during which the cateh and the Bonneville count were both relatively low, while at corresponding weeks the Rock Island count athaned the maximum for the year.

In the original report the last period treated covered only the 4 weeks conding August 27 -the last 4 weeks of the spring fishing season. It was impersible to camy the study beyond this because at the time the report was prepared data were not available for the fall season. But, with the data now on lame, it is obvious that the portion of the run beginning with the week ending August if and extending to the end of the year should be considered as forming a single unit rather thatn two or more units. In table 12 it is apparent that the run from the week of August 6 to the end of the year contains the main morle which, for purposes of study, should certainly not be broken up without good reason. Furthermore, table 12 and fig. 3 show that there is a mode in the Rock Island count for this period. In the present report, therefore, we shall take for the final period to be studied the entire remainder of the year after the week ending July 30.

The data for these selected periods are given in table 13, which, for comparison, also inchutes the figures for the last period considered in the origital report-- July :31August 27. Table 14 gives some of the more significant comparative higures that may be derived from table 13.

Table 12.-Chinook salmon run in the Columbia River, 1999
[Catch in number of fish cstimated from weekly average weights, as determined from the 1939 run. Data combined and arranged by correspunding weeks]

Week ending	Zones 1 and 2	$\begin{gathered} \text { Zones } 3 \\ \text { to } 5 \end{gathered}$		Bonneville "stimatp and count	Catch above Bonneville	Total catch	Rock Island count	Total run
Feb. 19				4				4
Feb. 26				68				8
Mar. 5				84				4
Mar. 12.				14				0
Mar, 19				14				14
Mar. 26				339				333
Apr. 2.				402			14	4112
Apr. 9				484			$\underline{20}$	44
Apr. 16.				1,545			80	1. 54.5
Apr. 23.				3. 359	1,346	1,386	78	3.359
Apr. 30		26, 003	26,0013	12,93h	3,153	29,156	$6{ }^{6} 0$	38, 439
May 7	43, 143	11. 7199	54, 4.52	5, 1947	1,395	56. 247	23.5	54, 449
May 14	15,691	1. 724	17,415	3. 827	469	17.834	195	21.242
May 21	8.000	1321	8.621	205	24.4	8. 869	69	$8.82+$
May 28.	4. 132	36	4.169	1,981	3310	4. 524	94	B, 149
June 4	2,597	39	2, 635	2.932	218	3.949	130	$5 . \sin$
June 11	3,912	263	4, 175	2. 230	184	4.3 21	39	6. 405
June 18	5. 261	63.2	5, 815	1.240	¢	5,974	77	7. 133
June 25	7,438	676	8.114	884	46	8, 160	450	8 8, \%han
July 2	6. 856	1, 259	8.114	1, 85.5	40	8. 1.54	725	9, 969
July 9	10, 771	1,565	12.336	1, 2334	4	12, 432	383	13.870
July 16.	8,923	1, $\pm>1$	10, 414	1.753	70	10.474	419	12. 157
July 23.	9.402	1,758	11, 140	1,327	21.3	11.373	196	12.47\%
Juty 30.	15. 277	1, 0nti	16,313	4.1153	512	16. 405	82	20.53t
Aug. 6	29.272	2, $\times 11$	31. 11/3	5. 104	1. 418	32, 1206	162	35,265
Aug. 13.	54.425	4.024	56, 414	10. 112	1,377	54.826	171	196, 5fl
Ang. 20	65, 145	4,312	69.457	53.753		69. 4.57	209	123.210
Ang. 27.	47, 758		47, 75 k	40, 693		47.758	515	124.451
Sept. 3.				fi3,221	30, 109	30, 109	344	13.324
Sept. 10		8.942	8, 342	12. 254	15,415	24. 857	314	21. 200
Sept. 17	13,520	9.069	22,584	2.1154	4. ${ }^{2} \times 106$	27, 395	$11!$	24, itio
Sept. 24	12.976	933	13,904	09	2.904	16,817	$\stackrel{8}{8}$	14. 903
Oct. 1	2,612	4.36	3. 04.4	489	191	4. 1039	15	3. 537
Oct. 8	993	336	3, 324	111	204	1. 293	-	1.490
Oct. 15.	1,366	287	1, nita	234	247	1,940		1. $\times 4.0$
Oct. 22	857	165	1.022	204	62	1,04t		1,230
Oct. 29	435	110	54.5	47	- .	54.5		5%
Nov. 5	214	41	25.1	29		255		24
Nov. 12.	tis	11%	84	9	1	8.5		93
Nov. 19	13	3	Ifi	5		111		21
Nov. 26.	11		11	21		11	\cdots	32
Dec. 3	1	. .--	,	2		1		3
Dec. 10	4		4	2		1		4
Total.	370, 074	80, 416	450, 490	275,665	66, 624	517,131	5,303	724, 155

TABLE 13.—Catch and escapement of chinook salmon by selectel and correspomeling purionls

Period	Catch be low Bonneville	$\begin{aligned} & \text { Bonne ville } \\ & \text { count } \end{aligned}$	(atch abow Bonneville	Toudal catch	Estimatel] eseabrment past Celilo	Rock 1sland count
To and including Apr. 16	None	2.910	None	None	2.940	112
Apr. 17-May 28	111, 0.59	27. 4115	7,011	118.070	20,3381	1,321
May 2a-July 30	70. 1145	17.918	1.48:	80, 482	14, 431	2, 4131
July 31-Aug. 27.	201i, 827	149.642	2.840	209. 617	143, 822	1,457
July 31-Dec. 17.	260,236	229.402	58,143	318.379	171,299	1.879
Total ${ }^{1}$	451), 490	2-7, 3636	66,641	517, 131	211, 024	5.003

[^26]Table 14.-Sigrificamt ratios betere ne demons of the chimone ran

Period	Tolal catch to escapement	Catch below Bonneville to-		Catch above Bonneville to-		Rock Isfand connt to escapement
		Total catch	Bojneville c. Junt	Total catch	Bonneville count	
Аик, 17-M8y 2 ,	5. 79	0. 941	4 mi	0.059	0256	9.065
May 29-July 30	4. 91	. 181	442	019	. 0×3	.15\%
Jinly 31-Aug. 27	1.43	. 144	13	014	019	. 007
July 31-Dec. 17...	186	- 814	1.13	1×2	253	. 011

For the season prior to April 16 there was, of course, no catch; the estimated escapement was 2,940, and the corresponding count at Rock Istand was 112. The pereentage of the run going to the upper Columbia River was, therefore, 3.8. (All of these statements and other similar ones to follow are approsimations that are affected by errors in the data and in the rarious assumptions involved. We believe, however, that neither the data nor the assumptions are seriously in error so that these are valid approximations.)

During the period from April 17 to May 28, the period when the first conspicuous peak of the run occurred, the catch amounted to over $1,681,000$ pounds (table 1), estimated as representing approximately 118,000 fish. The Bonneville count was 27,400 , the catch above Bomerille 7,000 , and the estimated escapement 20,400 The Rock Island count was 1,321 . The ratio of catch to escapement (catch divided by escapement) is $5.8: 1$-in other words, it is estimated that 5.8 fish are caught for every one that escapes and is available for reproduction. The percentage of the entire escapement that went to Rock Island was 6.5. The catch that may le attributed to the Rock Island contingent in the run is, therefore, 6.5 percent of 118,000 fish, about 7,650 . An estimate of the poundage derived from the Rock Island run during this period may also be had by taking 6.5 percent of the total weight of chinooks in the catch made in the corresponding periods on the lower river. (This includes the catch of the first 4 weeks in Zones 1 and 2 , of the first 5 weeks in Zones 3 to 5 , and of the first 6 weeks in Zone 6.) The estimate of the poundage derived from the Rock Island run is, therefore, $109,000 \mathrm{lbs}$. (6.5 percent of $1.681,000$ pounds).

For the period from May 29 to July 30, the total catch was 2,242,000 pounds, representing an estimated 80,700 fish. The Bonner ille count was only 17,900 . The catch above Bomeville amounted to some 1,500 fish, leaving an estimated escapement of 16,400 . The Rock Island count was 2,491. The ratio of eateh to escapement is 4.9:1-approximately 5 fish are captured for every one that escapes. The Rock Island count was 15.2 percent of the estimated escapement. The catch that may be attributed to the Rock Island run, therefore, is 12,300 fish of an aggregate weight of 341,000 pounds.

It is to be noted especially that the Rock Island portion of the rum during this period constitutes over 15 percent of the total and that this is the period during which the run is slack and the catch relatively poor. It is well known that this condition exists each year and it is the general opinion that the populations that characterize this period are the most seriously depleted of any. Certainly it is evident that they are without adequate protection at the present time. By far the greater part of the fish taken in the commercial fishery during these weeks is of high quality and produces the finest of the Columbia River pack. The preservation of so important a part of the run is obviously a matter of the highest importance. This part of the run will be considered in more detail betow.

The run from July 31 to August 27 provides a large part of the total catch of the spring scason, but the contribution made by the Rock Island runs is relatively small. The total catch for this period during 1938 was $5,640,000$ pounds, representing about 207,000 fish. The Bommeville count was approximately 149,600 , and the catch ahove Bonneville was 2,800, giving an estimated escapement of 147,000 . The ratio of catch to escapement during this period was, therefore, only $1.4: 1$, which was undoubtedly reduced by the increased escapement during the last 2 days of the period after the fishing season closed on August 25. The Rock Istand count was 1,057, which
is only 0.72 percent of the escapement. The catcin that may be attributed to Rock Island is, therefore, 1,500 fish with an aggregate weight of 40,600 pounds.

The data last presented (for the period July 31 to August 27) are similar to those given in the original report and are presented here chicfly for comparison with those that follow. We have already stated that this is not a natural subdivision of the run and that, properly, the period from July 31 to the end of the year should be treated as a unit. This larger period takes in the major peak of abundance that oceurs in late August and early September and indudes completely the chosed period. August 25 to September 10 , and all eatches that mary be referred to the stocks of fish affected by the closed season. The total catch was recorded as $8,326,000$ pounds, which we estimate inchuded some 318,000 fish. In contrast to the other sclected periods, the eatch above Bomeville Dam forms a large part of the total and it is of interest to note (tables 1, 12, and 13) that the major part of this catch above Bonnerille takes place after the closed period. The total eatch during the fall season alone was 2,685,000 pounds (109,000 fish), of which over half, $1,395,000$ pomels (55,000 fish) were taken above Bonnevitte. It is obvious that one important result of the closed period is to permit enough fish to escape the fishery on the lower river so that upwards of a million pounds may be taken above Bonneville Dam.

The Bonneville count during the period Juty 31 to the end of the year was 229,000 fish. The net escapement (Bonneville count les the catch above Bonneville) was, therefore, approximately 175,000 fish. The ratio of rateh to escapement is $1.9: 1$, which, while still high, is much less than that dume the earlier periods. It is to be noted, however, that this ratio is considerably higher than that for the month of August, when the ratio is 1.4:1. This was one of the results of treating the period from Juty 31 to August 27 as a unit. The facts the this period is not a matural subdivision of the rum and that the connt at Bonneville for the period is undoubtedly influenced by the incidence of the closed season on Aurust 25 hawe resulted in this and other differences between the data for the month of Lugust and these for the entire period of the fall rum.

The Rock Ishand count for the period corresponding to that from July 31 to the end of the year was 1.879 , or 1.1 pereent of the estimated net excapement. Taking this as the pereentage of Rock latand fish in the rma as whole, the eatch that may be attributed to the Rock lsland rum is atimated at 3.500 fish, or 91.500 prounds. This is to be compared with an estimate of 1,500 fish of an acreregate weight of 40.600 pounds for the month of August.

Table 15 presents the more signiferat figure bearing en the absolute and relative importance of the Rock Ishand rmen of chinook salmon. There are given not only the figures obtained through the basis of estimate adopted in this report, but also, for comparison, those ohtained through the two hases used in the oriminal report by Calkins, Durand, and Rich. (The estimates given here for the full season on the hases used in the original report were not, of comrse, given in that report, which treated the catch only up to August 25.) It is apparent that, in general, the results of all there procedures are of the same order of magnitude so that one may assume with some eonfidence that no gross errors have been introduced. Although we believe that the estimates based on the arerace weights ohtained in 1839 are the most accurate, and! should cerdainly be used for detailed study of parts of the rum, it is dear d!at sumpler mothods will give approximate results of real value.

Table 15.-Chinook salmon-comparison of certain estimates as made on the following bases: (1) An average weight of 22 pounds throughout the scason; (2) average ueights of i5 pounds in Ma! 20 pounds in June, and 25 pounds for the remainder of the year; and (3) average veights for cach week as calculated from the trent lines described in the toxt. The first two were used in the original report by Calkins, Durand, and Rich

Basis of estimate	Ratio of catch to escapement	Percentage of Ruck Island fish in total run	Catch attributed to Rock lsland run-in fish	Catch attributed to Rock IEland run-in pounds
April 17 to May 28				
(1)	3.3	5. 67	4.300	95,300
(2)	$5 . \frac{2}{8}$	6. 19	6.900	104.000 109,000
May 29 to July 30				
(1)	6.3	15. 46	15, 800	346.900
(2)	5.8	15.38	15,700	373.000
(3)	4.9	15. 20	12,300	341, 000
July 31 to August 27				
(1)	1.8	0.72	1, 860	40, 900
(2)	1.5	. 72	1, 600	41, 000
(3)	1.4		1, 500	40,600
July 31 to December 17				
(1) (2)	2.3	1.11	3, 300	92, 500
(3).	1.9	1.10	3,500	91,500

On the basis of these figures the total catch that may reasonably be attributed to the Rock Island runs is between 500,000 and approximately 600,000 pounds, of which by far the larger proportion was of the valuable spring run. Furthermore, it is of especial importance to note that the Rock Island run forms a particularly large percentage of the seriously depleted and heavily fished June-July run.

RATE OF TRAVEL

These data provide additional information relative to the rate of migration up the river. We have given the reasons for thinking that the interval between the time that the fish appear in Zones 1 and 2 and at Bonneville is approximately 2 wecks. The peak of the rum that occurs in late August and carly September is obviously an important landmark and should, therefore, provide important evidence on this pointevidence that was not arailable at the time the original report was prepared.

From the figures of the numbers of fish caught (estimated on the basis of the trend lines of arerage weights obtained in 1939) it would seem that the peak of the catch in Zones 1 and 2 came 3 weeks before the peak of the count at Bonne ville, instead of 2 weeks (fig. 3). The drop in the catch that oceurs between the weeks ending August 20 and 27 , however, is due, at least in large part, to the fact that there were only 4 days of fishing in the week ending August 27 . The spring fishing season closed on August 25. An estimate may be made of what the catch would have been if the full 6 days of fishing had prevailed, instead of 4 days, by multiplying the estimate aheady presented by $1 \frac{12}{2}$. The result is over 71,000 fish; actually a few more than estimated for the week ending August 20. This result indicates strongly that the real peak of abundance in Zones 1 and 2 came not carlier than the week ending August 27 \because weeks earlier than the actual peak in the Bonnoville connt and quite in agreement
with the original assumption. Whether, without the closed period, the peak in the Bonneville count would have come in the week ending September 10 is perhaps somewhat doubtful, and no method has occurred to us whereby that can be independently determined. From the total run (table 12) this would seem to be a reasonable inference, but it has been based on the assumption that 2 weeks are required for the journey from the mouth of the river to Bonneville.

In passing, it should be emphasized for future use in similar situations that the effect of the closed period has been to so increase the Bonneville count immediately following the beginning of the closed period that it has the effect of shifting the peak of the count upward. This would be true even if the final week of the open period had consisted of 6 days instead of 4 days of fishing. In general, the incidenee of a closed period will increase the eseapement in the following weeks, but in this case the peak of the run happens to coincide so closely with the beginning of the closed period (probably actually preceding it on the lower river) that the (ffect is to shift the peak of the escapement upward. Also, in this particular ease, the fact that the last week of the open season contained only 4 fishing days had the effect of apparently shifting the peak of the catch downward. The combined result was an apparent lag of 3 instead of 2 weeks between the peak of the catch in Zones 1 and 2 and the peak of the count at Bonneville. Similarly, at the beginning of an open period there will be the reverse tendency for the peak of the eseapement to be shifted downward and the peak of the eatch to be shifted upward. Doubtless the peak of the Bomeville count that occurs during the week corresponding to that of April 30 has been so modified. Actually this count was made during the week ending May 14, and the fish passing Bonneville during that week were doubtless partly through Zones 1 and 2 before the fishing season opened on May 1. These rather coufusing effects are, of course, due to the complementary relationship existing between the eatch and the count at Bonneville.

Related to these phenomena is the fact that there appears to have been some delay in the passage of fish through Zone 6 following the peak of the run and the closed season. This is shown particularly by the fact that during the weeks ending September 10 to October 15 (almost the antire offertive fall season) the catch above Bonneville exceeded the Bonneville comt. Howerer, we helieve that this does not indicate a general lower average rate of travel, but is due, rather, to the combined influence of individual variation in the rate of travel and a constant reduetion in the number of fish passing Bonneville. The anomaly, then, of the existenee over a number of weeks of a greater catch above Bonncville than count over the dam is closely related to the fact that the peak of the escapement curve is shifted to an earlier date by the ineidence of an open season.

THE JUNE-JULY RUN

As previously mentioned, the Junc--Tuly run of chinooks is poor compared with that in May or August, and it is rather generally thought that the populations forming this part of the run are the most scriously depleted of any. Some evidence of this was developed at the time the original study was made, but was not ineluded in the original report. It has seemed worth while to pursue the investigation further.

As bearing on the extent to which the. June-July pun has been depleted, we hate examined data secured through the cooperation of the Columbia River Packers Association. These data are in the form of reports of daty deliveries to this company
over the period from 1912 to 1937, with the exception of occasional years for which no figures were available. It is unfortunate that similar data are not available for the entire river.

During this long period the eatch delivered to the association has averaged nearly 25 percent of the total deliveries on the Cohmbia River, and has ranged quite consistently between 20 and 30 percent. To test the reliability of these data as an index of changes in relative abundance during different periods, the Pearsonian coefficiont of correlation, " r," has bern calonated between the total ammal deliveries to the company and the total deliveries for the entire fishery as given in the report by the Oretron State Plaming Board (1938). Between 1912 and 1937 there were 20 years for which complete records were available, and for these the coefficient of correlation is 0.56 . The records appear to show, however, that some change took place about 1934, so that the reeords for the last 3 or 4 years are not consistent with those for earlier years. We have, therefore, calculated " r " for the 16 years of record between 1912 and 1028. The value is practieally 0.9 . Both show such a high degree of correlation that reasonable confidence may be placed in the assumption that the deliveries to the Columbis River Packers Association will serve to indicate long-time (secular) changes in relative abmentance of chinook salmon in different parts of the scason.

Table 16. Monthly totals of deliecries of chimook salmon to the Columbia Rimer P'achers Associotion, 101?-37, in thomands of pumeds, for the spring fishing scasm only

Year	May	June	July	August	Total	Year	N1ay	June	July	August	Total
1912	120	749	1.624	1,628	4, 426	1924	409	992	1,270	1,296	4,167
1913	754	683	1,351	414	3,741	1925.	703	996	1, 100	1,747	4,546
1914	859	1, 203	1,43:	1,378	5,375	1921	164	732	934	1, Cis0	3,516
1915	1. 163	2,194	2, 1943	1, 18.5	7. 736	1927	638	764	704	1. 64.4	3.830
1916	684	$4{ }^{4}$	1,611	3. 232	6, 220	192	440	513	702	1, 560	3,235
1917	717	57.	1. 275	2, 182	5, 552	1931	246	502	tisf	2, 781	4, 260
1318	378	643	1.246	3,444	5, 356	1932	428	688	714	2,457	4,286
1419	882	665	1,436	2, 200	5,683	1933	43	84.3	456	2. 044	3. 435
1420	854	1. 194	1,271	3. 199	6,514	1934	229	616	889	2, 5 8, 3	4, 614
1921	478	594	1, 113	2.344	4,599	1936	6.18	701	605	1,970	3,884
1922	727	440	80.9	2. 128	4, 103	1937	58.	445	6.6	2,559	4,265
1923	624	973	1,24	1,150	4,000						

Nore.-The sears 1929, 1930, and 1935 are omitted because of incomplete recorts.
From data giren in table 16 we have calculated the trends by the method t aremges, and these are shown in figure 4 , which has been put on a semilogarithme grid so that relative changes will be enreetly shown and the serema trends can be directly compared. It is apparmt from this that while a seneral reduction has taken plaee, as is shown in each month and also in the total, the reduction in the Tuly eatch has been by far the greatest. From a value of nearly $2,000,000$ pounds at the beriming of this period (1912), the line of trend of the Tuly doliveries has dropped to only aboat 600,000 ponnds in 1937 . The present deliveries are, therefore, approximately one-third of what they ware during July 25 years ago. At the same time the totals for the entire spring fishing season have dropped from ahout $6,000,000$ pounds to about $3,500,000$ pounds. This graph also shows that the deliveries during May hare been smionsly reduced. Curiously emongh, the trend of the Tume deliveries is approximately the same as for the spring season as a whole, although those of Muy and July show avidence of much more serious depletion. Deliveries in August have not suffered nearly so much as thase of the other months of the springe season-perhaps berause of increased utilization of these later rumning fish which are not of so grood a quality as those of May, Jume, and July.

Before adopting the policy of treating all of the data on the basis of time units of 1 week, the daily records were examined and it soon appeared that there was, especially in June and July 1938, a rery definite weekly eycle of abundance as indicated by the catch in Zones 1 and 2. The Sunday closed season, of course, resulted in

Figure 4. -Trends of the total monthly deliveries to the Columbia River Packers Association, 1912-37.
practically no catch on that day, but there was a distinct tendency for the catches to be highest carly in the week and to drop gradually toward the ent of the werk. The natural interpretation was that during the Sunday closed period a body ol fisli entered the river and on Monday (actually beginning Sunday evening) there were available to the fishermen, in addition to those left at closing time on Suturday, all of the fish that had entered the river and that were free of all commercsal fishing during an
entire day; 6 om . Saturday to 6 pm . Sunday. The effect of this accumulation was to increase the catch during the following day or two, but it wore off until, by the end of the week, little if any effeet of the closed period remained. The character of the eycle obviously has been determined by the combined influence of a Sunday closed period and a very intensive fishery which, as shown above, takes approximately 80 percent of the fish entering the river during these 2 montlis.

As an additional line of evidence of a dangerous intensity of fishing we have examined in some detail the daily catches and, for comparison, the daily count at Bonneville Dam for the months of June and July, with attention to the variations in catch and count within weeks; in other words, with respect to the variation that is associated with the day of the week on which the eatch or the count was made. The data are presented in table 17, together with certain derived figures. From the figures of catch and count given we have calculated for each week day, excluding Sunday in dealing with catches, (1) the mean of the total deliveries for that day of the week during the S weeks under investigation, (2) the mean percentage of the total cateh for the week, (3) the mean delivery per gill net, and (t) the mean percentage of the weekly total count at Bonneville. These values are presented in table 18. It is apparent that all three measures relating to the catch show much the same thing; namely, that there is a fairly constant and unform decrease during the first half of the week, while the catch during the last lalf is relatively stable and at a much lower level. On the other hand, no such progression is apparent in the count at Bonneville. This is as one would expect in view of the fact that has just been demon-strated-that the intensive fishery takes out of the rum during the first 3 days of the fishing week a very large part of the fish that have entered the river during the Sunday closed period.

Table 17.-Daily catch of chinonk salmon in Zones 1 and 2, June 5 to July 80,1938 , and Bonnerille count for corrcsponding runs, June 19 to 1 Hgust 18 , with derived figures showing fluctuations in catch during the weet

Date	Total, all gear	Total, gill nets only	Number of gill-net deliveries	Mean catch per delivery	Percentage of weekly total	Bonneville count	Percentaqe of weetly total
ine 5 Su.	Pound, 605	Pounds 605	7	S6	0.7	240	11.
June 6 M1.	17,612	17.612	258	61	19.5	2×3	12.7
June 7 Tu.	16, 047	16,047	291	55	17.8	318	143
June 8 W .	13,499	13,499	244	55	15.0	422	14:3
June 9 Th.	15, 567	15,867	240	66	17.6	253	12.7
June 10 F	14,353	14,353	246	58	16.0	446	20.0
June 11 Sa	12,139	12, 139	235	51	13.5	218	9.8
June 12 Su-					0.0	191	15.4
June 13 M	19.462	19, 462	335	58	15.1	191	15.4
June 14 Tu	20, 542	20, 519	336	61	15.8	167	13.5
June 15 W	23,412	23, 134	358	65	18.1	159	12.8
June 16 Th .	19,502	19,025	324	59	15.1	243	19.6
June 17 F	21, 267	20. 204	318	65	16.8	159	12.8
June is Sa.	24, 6, 51	21,915	334	65	19.1	130	10.5
June 19 Su	368	308	4	92	0.2	231	24.1
June 20 MI	40, 894	35. 627	416	\$6	20.8	243	25.4
June 21 Tu.	39, 243	35, 039	429	82	20.0	128	13.4
June 22 W	32,141	26. 451	374	71	16.3	113	11.8
June 23 Th.	27,201	21, 596	332	65	13.8	133	13.9
June 24 F .	23,979	19,578	305	64	12. 2	36	3.8
June 25 Sa	32, 40s	23, 550	366	65	16.7	10	7.7
June 26 SH	389				0.2	149	4.2
June 27 M1.	42.643	37. 596	421	89	22.2	79	4. 4
June 29 Tu.	3 n . 411	34, 501	419	82	20.0	10	17.3
June 29 W	33, 443	31, 638	391	81	17.2	618	17.3
June 30 Th	27.712	25,871	354	73	14.4	471	26.4
July 1 F	23,605	21,452	328	66	12.3	261	14.6

[^27]Table 17.-Daily catch of chinook salmon in Zones 1 and 2, June 5 to July 30, 1938, and Bonneville count for corresponding runs, June 19 to August 19, with dcrived figures showing flucluations in calch during the week-Continued

Date	Total, all gear	Total, gill nets only	Number of qill-net deliveries	Mean catch per delivery delivery	Percentage of treekly total	Bonneville eount	Percentage of weekly total
	Pounds	Pounds					
	26,612 1,413	23,951 3.4	370 11	${ }_{34}^{65}$	$\begin{array}{r}13.8 \\ 0.4 \\ \hline\end{array}$	27\%	115.6
July 4 M .	49, 9336	40,315	396	102	15.5	231	15.1
Juls 5 Tu	54, 333	44,373	435	102	16.9	206	13.4
July Gi W.	51,809	38, 866	419	${ }^{93}$	16.2	239	15.6
July 7 Th	53, 254	42, 44.1			-	17	13.1
July 8 F	54, 530	36, 13	474	18	15.5	172	11.2
$\mathrm{July}^{\text {July }} 10 \mathrm{Sa}$	43. 3.697	34, 32	1	30	1.4	213	2.2
Jnly 11 M	72.215	57, 57,	510	111	27.3	270	15.4
July 12 Tu .	52, 111	33. 0105	492	79	19.3	2 n	16.4
July 13 W	47.137	3ti. 259	$4: 6$	76	17.8	209	11.9
July 14 Th	36, 822	27, 9.52	440	${ }_{5}^{63}$	13.9	212	12.1
July 15 F	29, 583	22.3.32	394	57	11.2	$2{ }^{245}$	16.9
July 16 Sa	22,313 2,591	15, 5 4, 410	328 5	${ }^{48}$	1.5	241	15.2
July 17 Su July 18 M	2, 4951 49,528	39, ${ }^{4639}$	$4 \%^{5}$	82	15.4	2×5	21.5
July 19 Tu	45,097	33, 295	440	76	17.2	18:1	14.2
July 20 W	40,6553	27, 37\%	410	67	15. 2	201	15.2
July 21 Th.	32, 998	22, 64,	364	62	12.3		12.3
July 22 F	40, 156	29, 917	367	82	15.0	176	12.1
July 23 Sa	56, 26,	36, 345	$37 \times$	96	21.0	44	
July 24 Su.	6.021	52×5	4	71	1.4	2rs	${ }_{6}$
July 25 M	87. 161	56,6,39	485	${ }_{1}^{12}$	15.1	471	
July 27 W0.	81,890	64, 598	545	119	15.8	445	10.
July 29 Th	60, 369	51, 119	444	103	13.8	1. 102	26.4
July 23 F .	63, 156	53,332	4×5	110	14.5	870	20.4
July 30 Sa .	57,918	52,139	530	99	13.3	24.	

Table 18.- Variation in certain fealures of the chinook solmon calch in Zones 1 and 8 and of the Bonneville count during June and July, related to the days of the week

| Day of the week |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The intensity with which the June -July run is being exploited is shown in still another way by comparing the change in the weckly totals of the catch with the weekly totals of the Bonneville count for the cormeonding weeks. These data are given in table 12, where the wo serics may be readily compared. It is seen that the cateh below Bonneville during June and July constanty increased from 2,636 fish in the weck of June 4 , to 16,363 fish in the weok anding July 30. At the same time the number of fish passing the Bonneville 1 anm remained, exeept for the last weck, below the count for the first week of the period. It is obvious that the effect of an increased rum entering the river is not felt at Bomeville--a result, without doubt, of a concurrent increase in the intensity of fishing. It is to be noted that the record of the catchabove Bonneville Dan agrees with that of the Bomeville count, and thus supports this interpretation. As a measure of this intensity we may take the total number of
landings per week derived from the figures given in table 17, and shown in the following statement:

Total number of deliveries per week in Zones 1 and 2 during June and July

Week ending	Delireries
June 11	-1,551
June 18	- 2,008
June 25	- 2,229
July 2	- 2,283
July 9	2,692
July 16	- 2, 647
July 23	- 2,424
July 30	- 3,013

It is shown by the preceding statement that the number of deliveries practically doubles during the months of June and July-an increase in fishing effort that could readily account for the fact that the count at Bonneville Dam does not increase, although there is better than a fourfold increase in the number of fish taken in the fishery in Zones 1 and 2.

In this connection it has been of interest to determine something of the relationship that exists between the abundance of fish as measured by the average poundage per delivery and the number of deliveries. The number of deliveries may be taken as a fair measure of the number of men fishing. We have, therefore, taken these two series of values from table 17 and calculated the coellicient of correlation. This proved to be +0.75 . The interpretation is quite clear that the abundance of fish, as shown by the size of the individual catches, is an important factor in determining the number of fishermen that will fish.

INTENSITY OF FISHING IN GENERAL

The runs of chinook salmon considerably outweigh in importance and vahe the runs of all other species in the Columbia River fishery combined. Of the entire run the part that enters the river during spring and carly summer, April to July inchusive, is the most valuable on account of the fine quality of the fish. This part of the run, perhaps more than any other, has been adversely affected by the reduction of spawning areas and localities suitable for the rearing of the young fish that has attended the utilization of the water resources in the headwaters, especially for power and irrigation. Since the salmon industry began on the Cohmbia River the chinook has been the mainstay of the fishery and the most relentless exploitation has fallen upon the spring run.

It has been shown above that the present intensity of fishing is such that, in 1938, over 80 percent of the spring run and between 60 and 70 percent of the main fall run of chinook salmon were taken in the commercial fishery. In this connection it is pertinent to recall that in the regulation of the Alaska salmon fisheries the Federal Govermment, acting through the Fish and Wildlife Service, has adopted the principle that the escapement should be not less than 50 percent of the entire run. There are sound theorelical grounds for thinking that the maximum sustained yield of the salmon fisherjes can le maintained with an escupement of this order of magnitude, and the practical results obtained with the Alaska fisheries support this view. It seems
reasonably certain that, at least for the spring run of chinooks on the Cohmbia, the escapement is well below the level that would provide the maximum sustained yield.

Such regulations and restrictions as have been imposed upon the Columbia River salmon fisheries apparently have very little effect insofar as they may act to reduce the intensity of fishing and provide a greater eseapement of breeding fish to the spawning grounds. It is to be noted that in the lower river the peaks of both spring and fall runs come within the spring open season so that, insofar as the fishery in the lower river is concerned, the main portions of both rums are exposed to the full foree of the exploitation. There is the weekly closed period from 6 pm . Saturday to 6 pm. Sunday that is in force during the spring fishing scason, May 1 to August 25 , but it has already been shown that this has little value from the standpoint of coneervation; its chicf effect being to spread the fishery out over a longer streteh of the river. Again it has been shown that whatever effect tha dosed season, August 25 to September 10, may have in increasing the escapement though the lower river, it is largely oflset by the intensive fishery that exists during September and October above Bonneville Dam. In a larger way this closed season acts much the same as docs the weckly closed period, and chiefly tends to distribute the fishery orer a wider area withot materially increasing the breeding population. The effeet of the closed seasm may be seen by examining table 19 , which is a diagram representing the passage of a serise of stocks of

Note. - Bohd-face letters represent clused ineriod.
fish through the fishing district at the rate we have assmane to hokl. It is obvious from this diagram that there is no stock of fish that is wholly protected from exploitation by the closed scason. For example, stock C is only protected be the closed season from exploitation in Zone 6; stock D is protected in Zones 3 to 6 ; stock E in Zones 1 to 5 ;and stock F in Zones 1 and 2 only. But, on the other hand, stock C is open to the very intensive exploitation below Bomeville just before the closed season, and stock D to the fishery in Zones 1 and 2 where a very large part of the total catch is made during the week just before the closed season. Stock E , however, is completely protected from the fishery below Bonnerille but is exposed immediately after the closed season to the much intensified fishery above Bonnerille. Stock F is protected
from the fishery in Zones 1 and 2 only, and also feels the full force of the intensified fishery above Bomevilte, white stock G, entering the river at the end of the closed season, is given no protection at all. The closed season undoubtedly does hetp to increase the escapement to some degree, but it seems very probable that the heary, coneentrated run that enters the river during August and September is actually less intensively fished than is the spring run. This lowered fishing intensity is perhaps due in part to retuced effort by the fishermen, brought about by the lower price reccived for the fish, and also to the fact that with constant effort the percentage of fish caught when the run is light is probably greater than when the run is heavy. The actual catch per unit of effort is, of course, greater with the heavier run, but the efficiency of the total effort, as measured by the ratio of catch to escapement, is probably inversely related to the intensity of the run.

Within the last few years the use of fish wheels has been entirely eliminated, and the use of traps greatly curtailed. Ostensibly these restrictions were imposed in the interest of conservation, but they could only be effective insofar as they inereased the escapement of fish to the spawning groumds, and correspondingly decreased the commercial eatch. It seems rather doubtful that these restrictions have actually had this result, although the araitable data are inadequate either to prove or disprove the point. It may well be, however, that the elimination of these two forms of gear has only resulted in increasing the catch of other forms, without materially increasing the breeding stock.

On the whole it would appear that the chinook salmon runs of the Columbia River are subjected to an exceedingly intensive fishery without any effective protection whatsoever, except such as has been afforded by the etimination of certain forms of gear and by artificial propagation.

PERCENTAGE OF GRILSE

Along with the larger fish that form the bulk of the chinook salmon run there are always some smaller fish, from 2 to 10 pounds in weight, that are commonly designated as "grilse," or, among the Columbia River fishermen, "jack salmon," or simply "jacks." These are practically all mates that have become sexually mature 1 or 2 years younger than the average and have, perforce, joined the spawning migration. It has been shown by Gilbert, Rich, and others that most grilse are in their second and third years, while the larger fish are in their fourth, fifth, or sixth years. In counting the fish past Bonneville Dam an effort has been made to record these gritse separately, as shown in table 7 , and a study of these records has shown some interesting and significant fluctuations in the percentages of these sinaller fish (fig. 5).

It is apparent from this graph that, except for 2 periods during which the percentage of grilse is consistently low, the average is about 20 percent. The fluctuations that involve only individual weeks may be taken as due to "sampling error," but those that extend over several weeks and show consistent change challenge some other explanation.

The 2 periods that show consistently low pereentages are those covering the weeks ending June 25 to July 16, and those ending September 10 to September 24. We have already explained the lower percentages of the first period as probably due to confusion of chinook grilse with blucback salmon during the peak of the run of this last species. The second period is that during which the Bonneville count is
greatly increased on account of the elosed season from August 25 to September 10. The explanation is obvious. A very large part of the total catch of chinooks in the river below Bonneville is made by means of gill nets, and this type of gear is selee-tive-taking more of the larger fish and permitting most of the smaller ones to pass through. During the elosed period this selection is not operating, and both large

and small fish pass through the lower river and arrive at Bonneville with their proportions practically unmodified.

The grilse passing Bonneville during the 2 weeks ending September 10 and 17 (the weeks in whieh the run has been least affected by the intensive fisher: in the lower river) form approximately 10 percent of the total count, so that it secms probable that this figure is not far from the correct one for the fall run as a whole. This is approximately half of the percentage of grilse found both earlier and later in the season-a fact which supports a previous conclusion based on quite different
data, that well over half of the fish that enter the river after the first of August are captured before they can reach Bonneville. If a greater percentage of the larger fish are caught it naturally follows that the percentage of grilse at Bonneville would be approximately doubled.

BLUEBACK SALMON

Table 20.-Blueback salmon run, Columbia River 1938
[Catch in number of fish estimated on the basis of an average weight of 3 pounds. Data combined and arranged by corresponding weeks]

W'eek ending	Catch in Zones 1 and 2	$\begin{aligned} & \text { Catch in } \\ & \text { Zones } \\ & 3 \text { to } 5 \end{aligned}$	Total catch helow Bonneville	Bonneville count	Catch above Bonneville	Total catch	Rock lsland count	Total run
Apr. 30				131				131
May 7				572				572
May 14				318				318
May 21	2		2	24		2		28
May 28				153	1	1	2	153
June 4	1		1	1.358	68	69	80	1,359
June 11..	21	740	761	5,719	957	1.718	139	6, 480
June 18.	3,470	7.570	11,040	15,441	5,104	16, 144	871	26.481
June 25.	2S,000	10, 970	38.480	16, 431	9.123	47. 593	8,958	54,961
July 2	25,900	8,715	34, 615	21, 673	9, 774	44.389	4,530	56, 258
July 9	15,340	2,900	18, 300	7,835	5, 916	24,216	1,234	26, 135
July 16.	3, 030	Clo	3,640	2, 770	1.320	4,960	677	6, 410
July 23.	300	52	352	1,125	37.5	727	268	1,4i7
Ju!y 30	46	2	48	621	137	185	93	664
Aug. 6	5		5	279	19	24	43	254
Aug. 13.		16	16	209	5	21	35	225
Aug. 20				156			37	156
Aug ${ }^{2}$,				76	---		96	76
Spept. 3	--------	---*----		71	----		61	71
Sept. 10				10	--------		0	10
Sept, 17	--------	--- --.	--	1	--.-.		0	,
Sept. 24				0 3	---*-		0 1	3
Oct. 8 -				1				1
Oct. 15.				1				1
Oct. 22				0				0
Oct. 29.				2				2
Total.	76. 115	31, 135	107, 250	75,040	32,799	140.049	17,123	182, 290

Table 21.-Blueback salmon run, Columbia River, 1988
fCatch in number of fish estimated on the hasis of an averare weight of 3 pounds below Bonneville and of $21 / 2$ pounds above Bonnerille. Data combined and arranged by corresponding weeks]

Week ending	Catch in zones 1 and 2	$\begin{gathered} \text { Catch in } \\ \text { zoness } 3 \\ \text { to } 5 \end{gathered}$	Total catch helow Bonne. ville	Bonneville count	Catch above Bonueville	Total catch	$\begin{gathered} \text { Rock } 1 \mathrm{~s} \text { - } \\ \text { land } \\ \text { count } \end{gathered}$	Total run
Arr. 30.				131				131
May 7.				572				572
May 14				318				318
May 21	2		2	24		2		26
May 28				153	2	2	2	153
June 4.	1		1	1,358	81	82	80	1,359
June 11	21	740	761	5,719	1,149	1,910	139	6,480
June 18	3,470	7,570	11,040	15,441	6, 12.5	17, 165	871	26, 481
June 25.	28,000	10, 470	38,470	16,491	10,950	49,420	8,958	54, 6161
July 2	25,900	8, 715	34, 615	21,673	11,730	46, 345	4, 530	56, 285
July 9	15,340	2,9\%0	18,300	7, 835	7,100	$2.5,409$	1,231	26, 135
July 16	3,0:30	610	3, 615	2, 770	1, 5,0	5, 220	677	6, 410
July 23.	300	52	352	1, 125	450	802	266	1,477
July 30.	46	2	48	621	164	212	93	669
Aug. ${ }^{\text {a }}$	5		5	279	23	25	43	294
Aug. 13		16	16	209	6	22	35	225
Aug. 20				156			37	156
Aug. 27.				76			96	76
Sent. 3				71			61	71
Sept. 10				10			0	10
Sept. 17				1			0	1
Srpt. 24				0			0	0
Oct. 1.				3			1	3
met. 5				1				1
Oet. 15				1				1
Get. 22				0				0
Ort. 29				2				2
Total	76,115	31, 135	107, 250	75,040	39,360	146,610	17, 123	182. 290

Data on the blueback run are presented in modified form in tables 20 and 21. As previously stated (p.114), two methods have been applied in changing the poundage records to numbers of fish; (1) assuming an average weight of 3 pounds throughout the season in all zones, and (2) assuming an average of 3 pounds throughout the

Figure 6.-Dominant elements in the 1938 blueback salmourun, by weeks.
season below Bonneville and of $21 / 2$ pounds throughout the season above Bonneville. The first method gives the figures of table 20 and the second those of table 21 . It is known that the fish caught above Bomeville are smaller than those eaught below on accomnt of the selective effect of the gill nets which provide a large portion of the cateh below Bonneville, while the eateh above Bonneville is made largely by means of dip nets which are not selective. These conversion figures are based on data secured from Harlan B. Holmes, of the Fish and Wildlife Service.

The general features of the rum are much simpler than in the case of the chinook salmon just considered. There is a single, well defined peak formed by fish that enter the lower part of the river late in June and early in July. The first fish of this species to appear in the records were in the Bonneville count for the second week in May, and a few were counted past the dam during the next 4 weeks. It was not until the week ending June 18, however, that bluebacks began to show up in large numbers at Bonneville. From that time on for the next 6 or 7 weeks bluebacks were a very important element in the Bonneville count, but after the first of August their numbers dwindled rapilly although a few were recorded as late as the second week in November (1able 7). It is to be noted that bluebacks did not appear in the catch of corresponding weeks as early as they were recorded in the Bomeville count, nor as late (tables 20 and 21). This is proloably due in part to the use of small-meshed nets especially adapted for catching bluebacks while this species is most abundant; and also in part to inaccurate identification in the Bomeville count. Evidence has been given above to show that during the height of the blueback run there is a tendency to mistake the smaller chinooks (grilse) for bluebacks. It seems not uneasonable to suppose that the same error may also be made while bluebacks are scarce (or even entirely absent) which would account for the very long "tails" to the time-frequency curve given in figure 6 , since these tails are formed almost entirely from the fish recorded in the Bomeville count (tables 20 and 21).

There are no complications due to spawning below Bonneville because in all probability all of the fishof this species spawn in streams tributary to lakes far above the upper limits of commercial fishing. The bluebacks of the Columbia undoubtedly represent a mumber of races, populations, or stocks, each breeding in its "home" lake basin; but so far as the immediate problems are concerned they act from the mouth of the Columbia to Celilo as a unit run. Above Celilo not much is known of the representative races; the arailable data consist chicfly of the counts made at the Rock Island Dam.

In preparing the modified tables for the blueback run the same rate of migration up the river has been assumed as for chinooks; i. e., that fish that were in Zones 1 and 2 in the first week would be found in Zones 3 to 5 the second week, at Bonneville and between Bomeville and Celilo during the third week, and at Rock Island the fifth week. The data in tables 20 and 21 and figure 6 show that this assumption is well justified, since the conspicuous peaks are made to coincide almost perfectly.

These data have been analyzed by applying methods similar to those used in the study of the chmook salmon. From the totals given in table 20 it may be seen that, for the entire season, the ratio of the estimated number of fisli taken in the commercial fishery to the estimated escapement is approximately 3.32:1. In other words, as shown by this estimate, over 3 fish are caught to 1 that escapes, passes through the commercial fishing area, and becomes available on the spawning grounds for perpetuating the run. The Rock Island count was 17,123. Multiplying this by the ratio of eatch to escapement gives 56,800 as an estimate of the number of fish caught out of the populations normally spawning in the Columbia River above Rock Island. Reconverting this to pounds by multiplying by 3 gives a total of 170,000 pounds canght that may be attributed to the runs spawning above Rock Island.

These figures are based upon a consideration of the catch and eseapement for the entire spring season up to and including August 25, and the total Rock Island count.

For the blucbacks this comprises practically the entire season. But there is evidence that the catch during the central portion of the season constitutes a higher percentage of the run than at the begiming and end of the run-in other words that the fishing is more intense while the fish are most abundant. For the period covered by the weeks ending June 11 to July 16 the estimated number of fish caught is 139,000 , while the escapement is 37,600 ; giving a ratio of eatch to espapement of $3.69: 1$. Applying this ratio to the Rock Island comnt for the period gives an estimate of 60,500 fish weighing 181,500 pounds that may be attributed to the Rock Island runs during this period only.

The percentage that the Rock Island count constitutes of the total estimated escapement of this species is a measure of the rdative importance of the Rock Island runs in the total. On the basis of the entire season the percentage is 40.58 , and on the basis of the central, more important period of 6 weeks, the percentage is 43.55 . From these figures it appears that approximately four-tenths of the entier run of bluebacks on the Columbia River in 1933 was composed of fish derived from the rums to the upper Columbia River, and that the aggregate commoreial catch was approximately 182,000 pounds.

The application of the second method for converting poundage figures into numbers of fish increases the estimate of the number of fish taken above Bonneville, and correspondingly decreases the estimated number in the escapement-since this is derived by subtracting the estimated catch above Bonterille from the Bonneville count. As shown in table 21, it gives an estimate of 39.400 blucbacks taken above Bonneville, instead of 32,800 , on the assumption of an arerage weight of 3 pounds. The estimated escapement is reduced to 35,600 from 42,200; the ratio of catch to escapement is $4.11: 1$, and the pereentage of the fotal escapement later rounted ant Rock Island is 48.05 . The total catch and pomadare attrituatable to the Rock Istand rums can be determined by multiplying separately the catches made above and below Bonneville hy the pereentage of Roek Island dish in the whole run (48.05 perecont). For the number of 3 -pound fish caught bekw Bomeville this gives 51,500 , and for the number of $21 / 2$-pound fish caught above Bonneville 38,900 -a total of 70.400 fish with an ageregate weight of 202,000 pounds. A similar estimate for the period from June 5 to duly 16 gives a ratio of catch to escapement of $4.66: 1$, and the peremenge of Rock Island fish in the total run is 52.57 . The total catch on the basis of these ratios is 76,500 fish of an aggregate weight of 219,300 pounds.

These estimates show quite conclusively that in 1938 about half of the buchark run was derived from the tributaries above Rock Istand ; that about four fish were caught in the commercial fishery for every one that was left to propagate, and that the total weight of the fish taken in the commercial fishery and derived from the Rock Island runs was of the order of 200,000 pounds.

STEELHEAD TROUT

Table 22.-Steelhead trout run, Columbia River, 1938
Catch in number of fish estimated on the basis of an average weight of 10 ponads. Data combined aud arraaged by corresponding weeks|

| |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Table 23.-Catch and escapement of steelhead trout by selected and corresponding periods

Period	Catch below Booneville	Bonaerille count	Catcb ahove Bonneville	Total catch	Estimated escapement past Celito	Rock Isiand connt
Apr, 17-May 25.	2, 160	7,416	920	3, 050	6,496	660
May 29-Jnly 30	69,335	31, 474	3,235	72, 570	28, 239	274
July 31-Sept. 24	51, 524	66, 608	29, 223	80,747	37,385	675
Sept. 25-Dec. 31	15,080	1,552	1,068	16. 148	484	167

' Iacompletc.
Table 24.-Stelhead trout, sigrifieant ratios between eifments of the run

Period	Total catch to escapement	Catcb below Booneville to -		Catch above Bonneville to-		Rock Island count to escapement
		Total catch	Bonneville conut	Total catch	Bonneville counat	
Apr. 17-May 28	0.48	0.702	0, 291	0. 298	0. 124	0.101
May 29-July 30.	2.57	. 955	2. 200	. 045	. 103	. 010
July 31-Sept. 24	2. 16	. 638	. 773	. 362	. 439	. 017
Sept. 25-Dec. 31	33.35	. 934	9.716	. 066	. 688	. 139

Table 22 gives the data relative to steclhead trout in modified form. The eatch figures have been converted to number of fish on the basis of an average weight of 10 pounds throughout the season and in all zones. Tables 23 and 24 present some of these data and certain derived figures for selected periods that have particular signific-

ance. In preparing these tables and the graph (fig. 7) the same rate of travel has been assumed as proved satisfactory for the study of the chinooks and bluebacks, and the results appear to justify this assumption.

From table 22 and figure 7 it is apparent that the steelhead run extends broadly over the entire year, although the major part of the run comes during summer and early fall months-from the middle of June to about the first of October. This major portion shows 2 well marked modes, one at the week of July 9 and the other at the week of

August 20. These 2 modes are clearly indicated in each of the component elements into which it has been possible to divide the run as a whole-except possibly the catch above Bonneville Dam (fig. 7). The exact significance of these 2 modes is not apparent, Jut it is evidently a real phenomenon so far as the run of 1938 is concerned.

In addition to these 2 major modes there are at least 3 minor modes; one centering about the week of March 26, another about the week of May 7, and a third about the week of December 10. It is quite prohable that each of these modes, both major and minor, represent races (stocks) or groups of races that dominate the run at those times. Only future observations will show how constant these modes are from year to year, and to which part of the Columbia Basin the fish go for spawning.

The run that centers about the week of March 26 evidently enters and passes through the lower river before the commercial fishing season opens. Up to the week ending April 16 the escapement of steelhead, as shown by the estimate of fish passing Bonneville, amounted to 13,934 fish, of which 724 were later counted over the dam at Rock Island-slightly over 5 percent. This part of the run is practically untouched by the commercial fishery. It should be kept in mind that, for this and the following period, the records of the number of fish of each species passing Bomeville is only an estimate based on "spot counts." It was not until May 7, 1938, that actual counting through gates placed in the fish ladders was begum.

For purposes of study we have separated the portion of the run from which the commercial catch is made into four parts-dividing them, first, at about the center of the period of searcity that includes the latter half of May and the first half of June; secondly, between the 2 major modes, and finally separating the late fall run from the preceding portion that contained the second major mode. For the first period, April 17 to May 28, the total catch was 30,800 pounds, or 3,080 fish, on the basis of an average weight of 10 pounds. The estimated escapement past Zone 6 was 6,496 , and the Rock Island count 660. The ratio of catch to escapement was only $0.48: 1$, and the percentage of the total run that may be referred to the upper Columbia races is 10.1. The estimated number of Rock Island fish in the total commercial catch is 311 , with an aggregate weight of 3,110 pounds.

The second period extends from May 29 to July 30, roughly the months of June and July, and includes the first major mode. The total catch from the fish that entered the river at this time was nearly 750,000 pounds-some 72,500 fish. The estimated net escapement was less than 30,000 fish-the ratio of catch to escapement 2.57:1. Of this escapement only about 1 percent can be referred to the races breeding in the tributaries above Rock Island Dam. By inference only some 7,000 pounds of the total catch for the period can be considered as deriving from these races.

In the period from July 31 to September 24, the ratio of total catch to escapement was 2.16:1. This was not greatly different from that of the preceding period, but the catch was very differently distributed. Whereas, in the period from May 29 to July 30, only 4.5 percent of the total catch was made above Bonneville, in the next period, covering roughly the months of August and September, over 36 percent of the total catch came from the river above the dam. The estimated net escapement was over 37,000 fish. This was an increase of some 9,000 over that of June and July-a little over 30 percent.

It might have been expected that the closed season from August 25 to September 10 would have hat a more favorable effect upon the escapement of those stocks of
fish that form the second of the two major peaks-roughly those that enter the river during the months of August and September. The count at the Bonneville Dam during these months was over twice that of the preceding 2 months, during which the first of the 2 major peaks appeared. A more complete examination of the data in table 22, however, shows that this improvement in the Bonneville count is by no means indicative of a corresponding improvement in the net escapement beeause the intensive fishery above Bonneville during September and October takes such a large number of steelheads that the actual escapement past the upper end of the fishing district is, relatively, not much greater than in the preceding period. The ratio of total catch to net escapement during June and July is $2.57: 1$, and during August and September is 2.16:1. (Both catch and escapement figures are, of course, estimates, and the periods of time are to be referred to the marginal dates of table 22.) It is to be noted that these ratios are considerably higher than $1.65: 1$, which was the figure given in the original report for the months of June, July, and August. The difference is obviously due to the fact that the data now arailable are much more complete, containing those for the last half of the main run as well as for the first half.

The steelhead run of the final period to be considered, from September 25 to the end of the year, is much less important than that of the two periods just considered and is characterized particularly by the relatively slight importance of the part of the run that passes Bonneville. The total count at Bonneville was only 1,552 steelhead trout, and the catch in the river below the dam was nearly 10 times as great. It is clearly indicated that the steelheads spawning in the tributaries below Bonneville form a much larger part of the late fall run than of those entering the river previous to September 25. Of the stcelheads that do pass Bonneville, however, the data appear to show that a relatively large percentage spawn in the Columbia above Rock Island.

The last column of table 24 shows the percentages of Rock Island fish in the estimated escapement to the river above Celilo Falls for each of the selected periorls. The percentage of Rock Island fish in the run up to April 16 was a little over 5 ; for the period ending May 28 was over 10 percent; for the period ending July 30 and including the first major mode, only 1 percent; for the period of the second major mode, ending September 24, 1.7 percent; but for the late fall period it was nearly 14 percent. Although the figures are not particularly reliable on account of the relatively few fish involved, it is interesting to note the indieation of greater importance of the upper Columbia races in the late fall and winter runs and also in the early spring runs. These data at least indicate that a relatively large percentage of those steelheads that pass Bonneville during fall and winter spawn in the main Columbia River and its tributaries above Rock Island Dam, and that the Rock Island contingent in the main part of the steelhead run is, both absolutely and relatively, of much less importance than in fall and early spring months.

These data also provide some evidence that a larger proportion of late fall fishentering the river after the first of October-spawn in tributaries below Bonneville. This is shown by the ratios of the catch below Bonneville to the Bonneville count for the different parts of the year (table 24). For the first part of the run to be affected by the commercial fishery, April 17 to May 2S, this ratio was 0.291:1—only about one-fourth of the fish entering the river were taken below the dam. During the June and July run the ratio was 2.2:1. During the next 2 months, influenced by the closed period, it dropped to approximately $0.8: 1$. During the last 3 months of
the year, however, the ratio rose to nearly $10: 1$; i. e., about 10 fish were caught in the river below the dam for every 1 that reached the dam. Various explanations might be offered, but it seems most likely that, as suggested above, it is due to the fact that a large percentage of the fish entering the river during the late fall spawn in tributaries that enter the main river below the dam.

We have discussed the importance of the chinook catch above Bonneville during the first few weeks following the closed period, and the fact that the closed period has more effect in spreading the catch out over a longer fishing area than it has in the way of increasing the spawning escapement. Evidently the same effect is apparent in the case of the steelheads. This shift in the relative importance of the fisheries below and above Bonneville is shown somewhat more clearly by the percentages of

Figure 8.-Ratio of steclhead trout to chinook salmon in three important elements of the 1938 run, June 500 tober 2 s , by weeks.
the total catch formed by the catches above Bomeville (table 24). For the months of June and July only 4.5 percent of the total cateh was taken above Bonneville, but during August and September the percentage was 36.2. The relation of this to the net escapement also is shown by the pereentages that the catch above Bonmeville form of the Bomeville count. For the months of June and July only 10.3 percent of the fish counted past Bonneville were later captured in the fishery above the dam. During the months of August and September, however, 43.9 percent was taken.

As with the chinooks, the eatch of steelheads above Bonneville during the first few weeks following the closed period of August 25 to September 10 exceeds the Bonneville count. This anomaly has been discussed and there seems to be no reason to doubt that the same factors were operating with the steethearls as with the chinooks. It has seemed possible in the ease of the steelheads, however, that this phenomenon
might have been the result of misidentification of this species in the Bonneville countsteelheads being mistaken for the much more numerous chinooks. In order to test the possibility of such misidentification on a large scale in the Bonneville count, a study was made of the ratios of the number of steetheads to chinooks in (1) the cateh below Bonneville, (2) the Bomeville count, and (3) the catch above Bonneville for each week over the period beginning June 5 and ending October 29. It is to be expected that such series of ratios would vary over the entire period with the relattive numbers of fish of the 2 species, but the general trends of the ratios should be similar in the 3 localities in the absence of disturbing factors-such as misidentification in the Bonneville count. Figure S is a graph of these ratios wherein ordinary aritlmetic coordinates are used, since the absolute values are the significant ones. It is apparent from this that the trends are very similar in the 3 localities; which is evidence that the identification at Bomeville was sufficiently accurate and probably was not responsible for the anomalous fact that more fish were recorded in the commercial catch above Bonneville than were counted over the dam.

The data thus graphed are interesting in themselves in addition to their bearing on this particular problem. It is quite obvious that, in numbers of fish, the steelheads approach the chinooks and, during the June-July period when chinooks are few, greatly execed them. It is chiefly during the peak of the chinook run in August and September that the ratio is down to about $1: 5$ in the catch below Bonneville and the Bonneville count. The parallelism in the 3 trends up to about the middte of September is quite striking and is supporting evidence that, for this part of the run, the assumed rate of travel is satisfactory.

SILVER AND CHUM SALMON

As mentioned in the introduction, the purposes of the original report by Calkins, Durand, and Rich were such that consideration of the eatches of silver and chum salmon was not important. In this revision, however, it is pertinent to include the data available on these 2 species, and to examine these for whatever light they may throw upon the characteristics of the runs. The general features of the runs of silvers and chums are so similar that it is convenient to treat them together.

The data for these species are given in modified form in tables 25 and 26. In converting poundage to numbers of fish an average weight of 10 pounds per fish has been used for both species. The same rate of migration up the river has been used as with the other species, although the rate of migration of both lsilvers and chuns is more doubtful and of far less significance than in the case of the other species. There is, however, no good evidence that the rate of travel is any different in the case of these 2 species than in the others, although the obvious irregularities in the time at which the main portion of the eatehes is made in the different zones (tables 4 and 5) lead one to suspect that the rates of travel of these species may be somewhat different. This is a matter that should be investigated, but it is necessary for the present to assume the same rate of travel-which has been done in preparing the modified tables.

Table 25.-Silver salmon run in the Columbia River, 1938
[Catch in number of fish, assuming an average weight of 10 pounds. Data combined and arranged bs corresponding weeks]

Week ending	Catch in Zones 1 and 2	Catch in Zones 3 to 5	Total catch	Bonneville count	Week ending	Catch in Zones 1 and 2	Catch in Zones 3 to 5	Total catch	Bonneville count
July 30		1	1		Oct. 29.	20,268	4,128	24,396	18
Alug, 6	1	2	3		Nov. 5	23, 275	1,979	25, 254	9
Aug. 13.	54	13	67	115	Nov. 12	13,346	1,596	14.942	4
Aug. 20	1, 454	238	1,692	6. 964	Nov. 19	6. 209	831	7.040	1
Aug. 27	2,636		2,636	4, 766	Nov. 26	2, 275	894	3. 139	7
Sent. 3				1,933	Dee. 3	1,592	547	2, 139	
Sept. 10	4	902	906	239	Dec. 10	5.762	204	5,966	
Sejot. 17	4. 559	2,470	7,029	56	Dec. 17	1,069	88	1,157	
Sent. 24	23,032	1, 166	24.198	94	Dec. 24	186	49	235	
Oct. 1.	14, 454	2,838	17, 292	349	Dee. 31	154		1.4	
Oct. 8	10, 578	5. 951	16,529	240					
Oct. 15	32, 410	5,346	37. 756	212	'Total	195, 232	34,329	229, 561	15,185
Oct. 22.	31,914	5,116	37. 030	138					

Note.-No catch was recorded for Zone 6 .
Table 26.-Chum salmon run in the Columbia River, 1998
[Catch in number of fish, assuming an average weight of 10 pounds. Data combined and arranged by corresponding weeks]

Week ending	Catch Zones 1 and 2	Catch iu Zones 3 to 5	Total catch below Bonneville	Bonneville count	$\begin{aligned} & \text { Catch } \\ & \text { in } \\ & \text { Zone } 6 \end{aligned}$	Week ending		$\begin{aligned} & \text { Catch } \\ & \text { in } \\ & \text { Zones } \\ & 3 \text { to } 5 \end{aligned}$	Total catch below Bonneville	$\begin{gathered} \text { Bonne- } \\ \text { ville } \\ \text { count } \end{gathered}$	$\begin{aligned} & \text { Catch } \\ & \text { in } \\ & \text { Zone } 6 \end{aligned}$
Sept. 24	3		3	2		Nov. 26	6.074	1,210	7,284	46	
Oct. 1	117	294	401	68		Dec. 3	1, 083	440	1,523	13	
Oct. 8	334	293	627	179		Dee. 10	2, 286	57	2,343	,	
Oct. 15	4,839	1. 533	6,377	945	7	Dec. 17	453	23	476		
Oct. 22	15.960	2,931	18.891	174	365	Dec. 24	44	8	52		
Oct. 29	22, 370	5, 361	27.731	236	28	Dec. 31	15		15		
Nov. 5	51,458	7, 235	58, 693	225	195						
Nors 12	41, 601	5,084	46,685	202	297	Total	162, 604	27,576	190, 270	2, 117	802
Nov. 19	16,057	3, 112	19, 169	26							

For both silver and chum salmon it is quite apparent that such a small part of each run goes above Bonneville that the same sort of analysis that was made of the data for the other species would be meaningless for these. Obriously the chief spawning areas are in the tributaries that enter the main river below Bonneville-an inference that is in entire accord with the known facts of the distribution of these species. Not only in the Columbia River but generally throughout their entire range, both silver and chum salmon tend to spawn in the lower tributaries of the larger rivers or in the shorter coastal streams. The same is true of the pink salmon, which do not appear in the Columbia in commercial quantities. Under such circumstances it is not possible even to approximate the number of fish in the entire run because the sum of the fish taken below the dam and those counted past Bonnerille do not form a sufficiently large percentage of the whole, and without at least approximate information as to the total number of fish in the run it is impossible to make the sort of analysis that has been done with the chinooks, bluebacks and steelheads.

The silver salmon first appeared in the river about the first of August, but the catch did not amount to much until after the closed period from August 25 to September 10. On the other hand, a very large part of the total count past Bonneville was made during the 2 or 3 weeks that were chiefly affected by the closed season. (In table 25, the weeks ending August 20, August 27, and September 3.) Several factors, alone or in combination, may account for these facts. First it appears that a. much larger percentage of the earlier fish than of the later ones pass above the dam to spawn in the upper tributaries. Secondly, the intensity of fishing for this species
may be greater after the closed period than before. This may be due in part to a change in the gear used on the lower river after the height of the fall run of chinooks has passed. The silvers, being smaller fish, may be more readily caught with gill nets of smaller mesh than is most effective for the larger chinooks. However this may be, it seems reasonably certain that in 1938 there was a small but fairly well separated run of silver salmon that entered the river late in August.

The main part of the run of this species comes from about the middle of September to about the middle of November. There is some evidence of separate modes in the run during this time, but it is not conclusive or even very strongly marked. The height of the entire run in the lower river comes close to the middle of October.

Chum salmon do not begin to enter the river much before the first of October. From that date on the run gradually increases to a peak that comes about the first weck in November. After this the run as gradually decreases to terminate late in December. There is no evidence of significant minor modes. As in the case of the silver salmon, comparatively few of these fish pass Bonneville Dam, although a small catch was recorded from Zone 6. It is clear that the majority of the fish of this species spawns in the tributaries below Bonneville Dam.

SUMMARY

1. Exceptional data are available for the study of the salmon runs of the Columbia River for 1938. For the first time the catch data for Oregon and Washington were given in similar form so that they could be combined. As a result, the daily catch in pounds of each species in each of 6 zones (corresponding to the parts of the river bounding the 6 contiguous counties of Washington) is available for study. Coincident with this the Bonncville Dam was closed and fish ladders were constructed, by means of which the fish summounted the dam. On their way through the ladders the fish were conducted through narrow passages and over white surfaces, and the number of each species was recorded. There have also been available for study the counts of salmon passing through the fish ladders at the Rock Island Dam, on the upper Columbia River near Wenatchee, Wash.
2. By using appropriate conversion factors the catch in pounds has been converted into numbers of fish, so as to make these data directly comparable with the counts at Bonneville and Rock Island dams. Tables have been prepared in which are given (1) the weekly eateh for each of 3 major areas representing natural groups of zones, (2) the total catch, (3) the Bonneville count, and (4) the Rock Island count. For each major area the data have been appropriately "lagged" so that, as nearly as possible, those for the same part of the run will lie on the same line as the table is read from left to right. This lag has assumed that fish entering the river and to be found in Zones 1 and 2 one week will be found in Zones 3, 4, and 5 the second weck, at Bonneville and in Zone 6 the third week, and at Rock Island the fifth week. These modified tables form the basis for study and analysis.
3. The general course of the run of each species is shown so far as possible by the available data. The chinook salmon enter the river throughout most of the year, but two quite distinct peaks are shown: One near the end of April, the so-called "spring" run, and the other the latter half of August. There is a period of marked scarcity during June and July. The blueback run is of much shorter duration, the main portion lasting only 6 or S wecks and showing a marked peak toward the end of June. Steelhead trout enter the river throughout the year but the chief run is during the
months of June to September. There are 5 modes: minor ones about the end of March, the first of May, and the first of December, and major modes early in July and about the middle of August. The run of silver salmon extends from early in August to the end of the year, butcenters rather broadly from the middle of September to the middle of October. The chum salmon run attains a well marked maximum about the first week in November, but extends from about the first of October to about the middle of December.
4. The main parts of the chinook, blueback, and steelhead runs spawn above Bonneville, but silvers and chums spawn chiefly in the tributaries below the dam.
5. There is some cvidence of error in the identification of species in the Bonneville count.
6. The importance of the runs to the river above Rock Island (largely affected by the dam at Grand Coulee) is shown by the ratio of the Rock Island count to the estimated escapement. Some 4 percent of the very early chinooks passing Bonneville previous to the first of May appear later at Rock Island. Of the May run of this species, about 6 percent apparently went to this portion of the river. Of the JuneJuly run, which is poor and apparently seriously depleted, some 15 percent is attributahle to these races. During the remainder of the year only about 1 percent of the estimated escapement appeared here. Approximately 40 percent of the blueback rum spawns above Rock Island. In the case of the steelbeads, the early and late runs contain 10 percent or more of fish spawning above Rock Island; but during the main portion of the rum, June through September, only about 1 percent of these fish go to this portion of the river.
7. The intensity of the fishery for chimooks, bluebacks, and steelheads is measured by the ratio of the commercial catch to the escapement, as calculated from the data given in the modified tables. For the May run of chinooks it is shown that only about 1 fish out of 7 escapes the commercial fishery and is available for the future maintenance of this run. During June and July, a period of great scarcity, only about 1 fish in 6 escapes, and during the remainder of the rmi, August throngh December, the escapement is considerably better but even at this time about twice as many fish are taken in the commercial fishery as remain to reproduce. These figures do not take into consideration the effect of the intensive oceanic fishery which would materially increase the catch-escapement ratio. In the case of the blueback salmon the ratio of catch to escapement is approximately $4: 1$, indicating that only about 1 fish out of 5 of this species escapes the fisbery. The ratio for the steelleads varies with the season, but for the main part of the run, June to September, it is somewhat greater than $2: 1$; i. e., more thim 2 out of 3 steelbeads are taken in the fishery. Similar ratios for the silvers and chums camot be determined because few fish of these species pass Bomeville; consequently no estimate of the net escapement can be made.
8. The weekly closed period, $6 \mathrm{p} . \mathrm{m}$. Saturday to $6 \mathrm{p} . \mathrm{m}$. Sunday, in force during the spring fishing season, May 1 to August 25 , is almost entirely ineffective insofar as it may tend to increase the number of breeding fish on the spawning grounds. Its chief effect is to spread the fishing over a longer stretch of the river. This is the result of an intensive fishery conducted over a long area. The closed season from August 25 to September 10 is designed to protect the peak of the chinook rum and a portion of the steelhead rum, but it acts, in a larger way, much the same as does the weekly closed period in that it chiefly tends to extend the fishing areas. The cffect of an increased escapement of fish through the fishing area below Bonneville is almost
entirely offset by the very intensive fall fishery that is concentrated in Zone 6, above Bonneville Dam.
9. The closed period of March and April protects from the commercial fishery the run of chinooks that enters the Willamette River during April and carly May, but this run is subjected to an intensive sport fishery below the falls at Oregon City. Unfortunately there are no data on the sport catch or on the Willamette run as a whole. This closed period also protects a small run of chinooks to the main river, the principal portion of which passes through the commercial fishing area before the season opens on May 1.
10. The main runs of all species of salmon to the Columbia River are practically unprotected from exploitation. If all existing restrictions were removed, it is doubtful whether the catch would be materially increased, or, conversely, that the remaining brood stock would be materially decreased. The only present aids to the conservation of these runs are apparently those afforded by artificial propagation, stream improvement, and, possibly, the restrictions that apply to the use of traps and wheels.

LITERATURE CITED

Craig, Josefil A., and Hacker, Robert L.
1940. The history and development of the fisheries of the Columbia River. U. S. IBur. Fish. Bull. 49(32): 133-216. Washington.
Pritchard, Andrew L.
1934. Pacific samon migration: The tageing of the suring salmon in British Columbia in 1929 and 1930. Biological Board of Canada, Bull. 41, 31 pp . Ottawa.
Rich, Widies Horton.
1940a. Seasonal variatious in weight of Columbia River chinook salmon. Copeia 1:34-43. New York.

1940b. The future of the Columbia River salmon fisheries. Stanford Ichthyologieal Bulletin vol. 2, No. 2. Palo Alto.
1911. The present state of the Columbia River salmon resources. Sixth Pacific Science Congress, Proceedings, vol. 3. Berkeley.
U. S. Bureau of Fisheries.
1928. Fisheries Service Bulletin No. 152, Jan. 2, 1928.
.

UNITED STATES DEPARTMENT OF THE INTERIOR
 Harold L. Ickes, Secretary
 FISH AND WILDLIFE SERVICE
 Ira N. Gabrielson, Director

Fishery Bulletin 38

BIOLOGY OF THE ATLANTIC MACKEREL (Scomber scombrus) OF NORTH AMERICA

Part I: Early life history, including the growth, drift, and mortality of the egg and larval populations

By OSCAR ELTON SETTE

From FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE
 Volume 50

UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1943

Abstract

This portion of a comprehensive study on the Atlantic mackerel (Scomber scombrus) treats of the early life history from spawning up to about the time the schooling habit develops, with emphasis on the quantitative aspeets.

Sparning takes place along the Atlantic coast, mostly 10 to 30 miles from shore, from Chesapeake Bay to Newfoundland, with perhaps $9 / 10$ of the volume between the Chesapeake Capes and Cape Cod; $1 / 0$ in the southern half of the Gulf of St. Lawrence, and negligible amounts elsewhere. Embryological development at the temperature usually enconntered , wcupies about 1 week. The pelagic eggs are confined to a surface stratum 15-25 meters thick. Hatching at 3 mm . of length, larvae grow to 10 mm . in about 26 days, and to 50 mm . in an additional 40 days, by which length they approximate the typical form for adult mackerel, and assume the schooling habit.

In 1932, it is estimated, 64,000 billion eggs were produced south of Cape Cod by a spawning population estimated at 100 million individuals. That year dominant northeasterly winds (which were abnormally strong) drifted one concentration of larvae, originating off northern New Jersey, and another concentration, originating off southern New Jersey, in a southwesterly direction, to localities abreast of Delaware Bay and Chesapeake Capes, respectively. A reversal of dominant winds, consequently of drift, returned both groups to northern New Jersey, by the $9-\mathrm{mm}$. stage of growth.

Mortality during most of the developmental period was 10 to 14 percent per day, but was as high as 30 to 45 percent per day during the 8 - to 10 -millimeter period when fin development wes rapid. Survival from spawning of the eggs to the end of the planktonic phase of life (50 mm .) was in the order of 1 to 10 fish per million eggs spawned. This rate of survival is an abnormally low one since the fish from this spawning season were abnormally searce in the adult populations of subsequent years. The low survival rate is ascribed to the abnormal amount of southerly drift, coupled witl a general seareity of plankton in the rying of 1932.

BIOLOGY OF THE ATLANTIC MACKEREL (SCOMBER SCOMBRUS) OF NORTH AMERICA. PART 1: EARLY LIFE HISTORY, INCLUDING GROWTH, DRIFT, AND MORTALITY OF THE EGG AND LARVAL POPULATIONS

By Oscar Eltox Sette, United Stales Fish and Wildlife Service

$*$
 CONTENTS

lintroduction Page
Account of field work 151
Synopsis of results. 1.52
Significance of results 155
life history 156
Reproductive age
Fecundity 1.56
Apawning grounds and spawning sea- sons 156
Niumbers of eggs spawned and size of
spawning stock
Cuast of sonthern Now Jngland and Widdle Atlantic States 1.5
Gulf of Maitue 1.59
Coast of Nova Scotia 160
Gulf of St. Lawrence 160
ious spawning grounds 161 16-1
Drift and migrationPage
Life history-Continmed.
Spawning habits. 165
The egg $16 t$
The larsa 170
Growth 73
Nortalit y 91
Appendix 208
Drothods of determining size atmaturity.208
Methods of collecting egre and larvae 209
Enmmeration of egse and larvae 211
Computations of catch per station 213
lecords of tow netting and catches of 1932 219
Sizes of youngest post-planktonic
mackerel. 235

Among the commercial fishes, the mackerel is remarkable for its speetacular changes in yield. To illustrate this, only a few records need be selected (Sette and Needler, 1934, p. 25). From $116,000,000$ pounds in 1834 the United States catch dropped to $23,000,000$ pounds in 1840 , only to rise again to $137,000,000$ pounds in 1848. From its peak of $179,000,000$ in 1884 , the catch dropped to $30,000,000$ in 1886 , only 2 years later. More recently it increased from $13,000,000$ pounds in 1922 to $68,000,000$ pounds in 1926. For the United States and Canada together the largest eatch, $234,000,000$ pounds, was landed in 1884, the lowest, $12,600,000$ pounds in 1910.

Although these fluctuations had prolound effects both on the economic welfare of the fishermen and on the business of the fish markets, and although speculation, both popular and scientifie, as to the causes of these sharp changes in returns from the fishery, has been indulged in for many years, no satisfying explanation has been fortheoming. This is not particularly surprising, for the scientific research concerning work on this species has been of desultory nature and unsuited to the solution of a problem as intricate as is presented by the fluetuations in fish populations. Nonetheless, from the fragmentary records then available, Bigelow and Welsh (1925, pp. 198-199) found evidence suggesting that the mackerel, like the Norwegian herring, was subject to marked inequalities in the annual success of reproduction or of survival to commereial size of the various year classes, and attributed the intermittently good and poor years ol fishing to intermittently good and poor seasons of spawning or survival.

This hypothesis, being the most reasonable one thus far adranced, determined the method of approael in the present investigation. Obviously, its pursuit required two basic series of observations: (1) An estimate of changes in abundance, and (2) determination of changes in age composition. Carried through a nmber of years, these observations should provide material for measuring the relative numerical strengths of year classes arising from each scason's spawning, for tracing the influence of the annual increments afforded by each year class and their subsequent mortality on the suecess of the commercial fishery, and conversely for examining the influence of the commercial lishery both on the reproductive success and on the mortality.

Accordingly, after some preliminary field work in 1925 at Woods Hole and Boston, Mass., in which various techniques of sampling and measuring were developed, a routine program of observations was commeneed at the principal mackerel fishing ports. For the estimation of changes in abundance, pertinent details covering the landings ly mackerel vessels were recorded to form the basis for computing eatch per unit of fishing effort; and for the determination of age-eomposition, samples of mackerel were drawn daily from each of a number of the fares landed. These basic observations began in 1926 and hare continued to the present time. In addition, inquiries were pursued into the natural history and habits of the mackerel, sinee more adequate knowledge of these was required for interpretation of the data derived from the commercial fishery.

During the 10 years, 1926 to 1935 , sufficient material has accumulated to provide substantial contributions to the understanding of the life history of the mackerel, with special reference to its fuctuations in abundance; and, accordingly, a series of papers, of which this is the first, is to be published. ${ }^{2}$ The present paper deals with features of the carly life history, with particular reference to the understanding of variations in the ammal replenishment of the commercial stock. It summarizes present knowledge

[^28]of the course of cvents from the time the eggs are spanned mitil the young mackerel attain the juvenile phase and closely resemble the adults in form and habits. Other papers in this series, now in course of preparation, deal with (1) habits and migrations, (2) age and rate of growth, and (3) fluctuations in abundance of the commercial stock.

Acknowledgments.-The entire portion of the mackerel's life considered in this paper is passed suspended in the waters of the sea, hence as a member of the plankten community. Accordingly, the data were secured by towing fine-meshed plankton nets through the waters of the spawning grounds. A preliminary cruise in Massachusetts Bay was taken in 1926 on the U.S. Fisheries steamer Gannet, Captain Greenleaf, commanding. Cruises in succeeding seasons 1927 to 1932 were on the U. S. Fisheries rescarch steamer Albatross $I I$, Captain Carlson, commanding. In June 1932 the Albatross $I I$ was taken out of service and completion of that season's program was made possible by the kindness of the Woods Hole Oceanographic Institution in putting at our disposal for two cruises during June and July the keteh Atlantis, Captain MacMurray, commanding.

Numerous persons assisted in the scientific work abourd slip. Of these, E. W. Bailey, Wm. C. Neville, and Herbert Ingersoll took part in many cruises. Wm. C. Herrington's suggestions contribited greatly to the development of the use of current meters to measure flow through the plankton nets.

In the separation of eges and larrae from the other planktonts, numerous persons assisted, but the major portion of the responsibility rested on Mildred Moses, whose vigilance insured a constant level of accuracy in removal of the deared material. Her performance of subserqent numerical computations was also an important contribution to the present results.

To C. P. Winsor I am indebted for suggestions relating to the statistical treatment of the mortality eurves.

Certain tabulations and the gemphe used herein were products of W. P. A. offietial projert No. 165-14-6999.

Throughout the investigation, and in all of ite many phaswe the constantly arailable concouragement and advice of Henry B. Bigedow has been insaluable. To the extent that this account proves reabable, the reader may thank Liond 1. Walford whose editorial suggestions have been fredy followed.

ACCOUNT OF FIELD WORK

As before mentioned, when work began in 1925 it was strongly susperted that the fluctuations were due mainly to annual variations in the comparative suceess of survival through the larval stages (Bigelow and Welsh, 1925, pp. 198-199). Accortingly, work on the early life history was begnu at the outset of the inverigation in 1926. At that time, it was not known where mose of the spawning took place of where the nursery grounds for larvae were located. The literature recorded the oceasional finding of eggs in the sea south of the Gult of St. Lawrene, hat no larvae; yet the spawning population apparently favored the southerly waters off the United States coast as much as the northerly waters off the Camadian coast. Massachusetts Bay was a spring mackerel fishing ground well known to be risited at this season by mumerous ripe adult individuals, so the first search took place there. Towing in various parts of the bay yielded large numbers of eags, especially in that portion of the waters partially enclosed by Cape Cod. Not only were the eggs abundant, but numbers of larvae in various stages of development were found.

Encouraged by this success in waters south of the previously known distribution of larvae, search was in 1927 extended south of Cape Cod. Here eggs were found in abundance from the offing of Cape Cod nearly to the mouth of Chesapeake Bay. As in Massachusetts Bay, larvae were present in abundance also.

To determine whether this was the usual condition, the survey was repeated in a single cruise during May of 1928, when approximately the same conditions were found.

These three seasons of prospecting for mackerel eggs and larvae completely altered the previous notion that spawning was more successful in the northwest portions of the range of the species. Not only were specimens regularly obtained from Massachusetts Bay to Chesapeake Bay, but the numbers of individuals per tow were greatly in excess of those taken by similar methods in the Gulf of St. Lawrence during the Canadian Fisheries expedition of 1914-15. Evidently this southerly region was far more important than previously supposed, and hence a suitable one in which to study variations in the survival rate during early stages.

However, it was still necessary to determine the length of the spawning season and the duration of the period of larval development. For this purpose, successive cruises were made during the spring and early summer months of 1929. These proved that in the area between Cape Cod and Cape Hatteras spawning began in early April, and larval development had nearly run its course by the end of July.

In 1930 and 1931, such successive cruises during the spawning season were repeated and every opportunity was taken to devise methods of estimating the abundance of the various young stages.

This development of quantitative technique reduired the determination of veriical distribution so that the proper levels would be fished; determination of the ineubation and growth rates so that cruises might be planned at proper intervals to inclucle all the important events; and finally, it required devising a reliable method of measuring the amount of water strained by the tow nets so that hauls would be comparable from time to time and place to place. By 1932 knowledge and techniques were advanced sufficiently for the survey of that season to provide arlequately quantitative data for the more important sections of this report dealing with growth, drift, and mortality. Toward the close of this season, the Albatross II was withdrawn from service as a Govermment economy measure. This prevented continuing the research into its next phase, that is, the measurement of mortality and its accompanying hydrobiological conditions through a series of seasons, to see how mortality is affected by particular conditions in seasons of good survival contrasted with other conditions in seasons of poor survival. Since the hoped-for resumption of surveys has not yet been possible, the present available results are now reported.

SYNOPSIS OF RESULTS

Most mackerel reach reproductive maturity when 2 years ohd. Some precocious individuals, usually males, first spawn a season earlier and others of both sexes a year later. The percentage of the later is higher among the females that the males.

Mackerel are said to spawn 360,000 to 450,000 eggs in a scason, but this is a point nceding further study. Doubtless smaller individuals spawn fewer and larger individuals more eggs than this. The eggs are ripened in successive batches; it is not known how many batches or what interval of time intervenes between their diseharge.

Spawning takes place over nearly the entire spring and summer range of the species, from off Chesapeake Bay to Newfoundland. By far the most important ground is
between the Chesapeake capes and Cape Cod; second in importance, with perhaps one-tenth as much spawning, is the southern half of the Gulf of St. Lawrence. Other stretches of the coastal waters may at times receive negligible amounts of spawn, but it is safe to say that the entire Gulf of Maine (excepting Cape Cod Bay), and the entire outer coast of Nova Scotia, the northern two-thirds of the Gulf of St. Lawrence and the waters around Newfoundland are not regular spawning grounds of any importance.

Figure 1.-Geogrephical features and landmarks mentioned in the text.
Spawning takes place in open waters in some places elose to shore, in others as far as 80 miles to sea, but mostly 10 to 30 miles from shore. Open hays, such as Cape Cod Bay and Caseo Bay, are spawning sites of minor importance while wellenclosed bays and sounds, especially those receiving considerable river water, such as Chesapeake Bay, Delaware Bay, and Long Island Sound, are neglected by the spawning mackerel.

Spawning occurs at any time of day or night, and probably near surface.

Embryological development is similar to that of other teleost fishes. It progresses more rapidly in warm water than in cold, eggs hatching in 2 days at $21^{\circ} \mathrm{C}$. $\left(70^{\circ} \mathrm{F}\right.$.) and in $8 \frac{13}{2}$ days at $10^{\circ} \mathrm{C}$. ($50^{\circ} \mathrm{F}$.). The prevailing temperatures on the spawning grounds at the height of the spawning season are between 9° and $12^{\circ} \mathrm{C}$., so that in nature the ineubation period usually occupies about a week.

During incubation the eggs are suspended in the sea water between its surface and the thermocline, which is usually 15 to 25 meters (8 to 13 fathoms) deep in the area studied. They have a tendency to sink gradually as development proceeds, so that the late stages are found at deeper levels than the early ones, but even so, not below the thermocline.

After hatehing, the young mackerel passes through three phases of development, conveniently designated as yolk sac, larval, and post-larval stages. During the yolk sae stage-a matter of about 5 days - the fish is about 3 mm . ($1 / 8-\mathrm{inch}$) long and subsists on the yolk. During this period, the mouth and digestive organs develop into usefulness and the yolk sae is absorbed. During the period occupied by the larval stage, that is, between yolk sae absorption and development of fins, whieh lasts about 26 days, the fish grows from a length of 4 mm . ($1 / 6 \mathrm{inch}$) to 10 mm . $\left(3_{8}^{\prime}-\right.$ inch) in length. Then, when the fins have appeared, the post-larval stage begins. It continues about 40 days and during this time the fish grows to a length of about 50 mm . Toward the end of this stage, while growing from 30 to 50 mm ., the body assumes the trim fusiform shape of the adult. At that time, the fins, relative to the body, are even larger than in the adult, and the coloration includes shiny, silvery iridescence, though still lacking the characteristic wavy black bands of the adult.

During the yolk sac stage, movements are feeble, not even serving to keep the fish right side up. Swimming faculties increase during the larval stage and are exercised in performing vertical dimenal migrations, the larvat ascending toward the surface at night and descending toward the thermoeline at day. But they do not swim any considerable distanees during this stage; instead they drift with the water masses in which they are suspended. In post-larval stages, true swimming takes place, the young fish at times moving in a direction opposite to the prevailing drift of water. The sehooling habit probably begins to assert itself toward the end of this stage and thereafter is followed in much the same fashion as by the adults.

In 1932, the larvae were drifted initially in a southwesterly direction, and the main body was transported about 80 miles down the coast, one subgroup drifting from the offing of northern New Jersey to the offing of Delaware Bay; another, from the offing of southem New Jersey nearly to the Chesapeake capes. Then, a reversal of drift returned both groups to the offing of northern New Jersey by the time they had reached the end of the larval stage, and were 9 mm . long. The southwesterly drift coincided with the predominance of northeasterly winds, and the northeasterly return with a reversal of dominant winds.

Compared with other seasons, 1932 had an abnormally large northeasterly wind romponent, which left the $9-\mathrm{mm}$. larvae farther to the southwest and farther offshore than in other seasons. After the post-larval stage of active swimming commenced, the direction of travel was toward southern New England, and by the latter part of July, some of the largest of the post-larvae had even passed Nantucket Shoals and were taken off Cape Cod.

In 1932 the mortality over most of the developmental period was 10 to 14 percent per day. There was a notably higher mortality of 30 to 45 percent per day during the δ - to $10-\mathrm{mm}$. period, when fin development was rapid. Other departures from

The general rate, of doubtful significance, were during egg stages, when about is porcent per day was indicated, and during the yolk sac stage (3-mm. larvae), when about 23 percent per day was suffered.

The indicated total mortality, from the spawning of the eggs to the end of planktonic existence (50 mm . or 2 inches long.), was 99.9996 percent. That is, the survival was in the order of magnitude of only 1 to 10 fish per $1,000,000$ of newly spawned eggs.

This mortality was not due to sharply higher death rate at the yolk-sac stagea theory of year-class failure holding favor among fishery biologists. Mortality was substantial in all stages. It was greatest during fin development in the transition phase from larval to post-larval stages. The higher mortality at this time appears to have been connceted with the particular pattern of drift caused by the dominant wind movement, which in 1932 left the larvae farther than usual from their nursery grounds along the southern New England coast. This, together with a general searcity of plankton, is considered the cause of failure of the 1932 . year class.

SIGNIFICANCE OF RESULTS

Most conservationists lay particular stress on the maintenance of adequate spawning reserves. It is important to do so. If an annual commercial crop is to be constantly obtained, the spawning stock must be kept large enough to produce as many young as are needed to replace the fish caught by man and other predators. This can be done, in most cases, only by controlling the annual yicld. From this springs an obvious, but not miversally appreciated, fact that accumulating a surplus of spawners is a wasteful pructice, for it means holding the amual yicld below the amount that the resource is capable of producing. It would be simple, for instance, to insure an adequate spawning reserve by allowing no fish to be caught. But this would be more futile than to allow all to be caught. The latter would utilize one crop, the formes nonc. Obviously, efficient exploitation calls for an intermediate course of action, one that would permit taking the maximum annual yield commensurate with the maintenance of an adequate spawning reserve; no more and no less.

But what is an adequate spawning reserve? It can be defined as one laren cough to reproduce the young needed to recruit the commercial stock. Its determination is a matter of observing the numbers of recruits produced by spawning stocks of different sizes. Thus, the answer rests on knowledge of reeruitment.

Two things affeet recruitment: First, the numbers of spawners; second, the mortality in young stages-"infant mortality." The latter is tremendous and variable. Its variability is so great that it could readily obscure such correlation between number of spawners and number of recruits as might be present intriusically. For example, under a given quality of survival conditions a large spawning population may produce a large number of reeruits and a small population a small number of recruits, but with variable survival conditions a large number of spawners might produce only a small number of recruits it infant mortality be relatively high; and conversely, a small number of spawners might produce a large number of recruits if infant mortality be relatively low. As long as one can observe only the changes in numbers of spawners and numbers of recruits, the relation between the two cannot be scen, for it is obscured by the intervening infant mortality. Therefore, as long as the effect of infant mortality is unknown, so long will the size of an adcquate spawning reserve be unknown.

Thus the measurement of infant mortality is the key to the problem. In the course of this study, a technique for making this measurement has been devised, and
was applied during the season of 1932 . With similar observations in enough additional seasons, it should be possible to determine what reeruitment can be expected from given sizes of spawning stocks for particular infant mortality rates. Thus there will be determined an adequate spawning reserve, for it will be one that produces the nceded average recruitment over the observed range of infant mortality rates.

LIFE HISTORY

REPRODUCTIVE AGE

According to information formerly available (Bigelow and Welsh, 1925, p. 205), "Some few females ripen when still not more than 11 inches long; most of them, and all males, at 12 to 13 inches." Present observations indicate first attainment of maturity at somewhat larger sizes, the difference possibly being due to the manner of measurement. The lengths given below were from snout to tip of the middle rays of the caudal fin, whereas the earlier measurements may have excluded the caudal fin.

Of 1,116 mackerel sampled from catches of traps in the vicinity of Woods Hole, Mass., and at three localities on the shores of Massachusetts Bay between Jme 24 and July 21, 1925, the smallest male with mature gonads was 26 cm . ($10 \frac{1}{4}$ inches) long and the smallest female 29.5 cm . ($11 \frac{1}{2}$ inches). At 30.5 cm . (12 inches) 30 percent of the males and a negligible percentage of females were mature. At 34 cm . ($13 \frac{1}{2}$ inches) abont two-thirds of the males and one-half of the females were mature; and at 37 cm . ($14 \frac{1}{2}$ inches) nine-tenths of both sexes were mature. (Sce fig. 2.)

It is possible that our data may not be typical because they were taken somewhat after the peak of spawning, which usually falls in May and Tune, and some individuals which had ${ }^{3}$ spawned early, and whose gonads had somewhat recovered, might have been mistaken for immature individuals. The number so mistaken camot have been large for there was little difficulty in recognizing the two categories, "ripe" and "spent," which make up our class of "mature." The mistakes, if any, because the spawning of some individuals was too long past, should have been mostly among the larger sizes, because they are usually first to appear along the coast and presumably the earliest to spawn. But among these (52 specimens over 38 cm . in length were examined) only 1 individual appeared immature, hence the crror, if any, must have been small.

By means of size and age relations to be published in another paper of this sories, it may be concluded that only a few males, and even fewer females, spawn as yearlings. Four-fifths of the males and two-thirds of the females spawn when 2 years old, amd virtually all of both sexes when 3 years old.

FECUNDITY

Various statements have appeared in the literature purporting to give the numbers of egres spawned by individual mackerel. Brice (1898, p. 212) in "The Manual of Fish Culture" states that the average number of eggs at one stripping is about 40,000 , that a $1 \frac{8}{8}$ pound fish gave 546,000 , and that the largest fish yielded probably a full $1,000,000$ eggs. Bigelow and Welsh (1925, p. 208) say, "Mackerel is a moderately protific fish. females of medium size producing 360,000 to 450,000 egess, but only a small part of these (40,000 to 50,000 on the average) are spawned at any one time." But Noore. whose report appears to be based on more intensive study than others, more cautiousty states (J. P. Moore, 1899, p. 5) "seldom 50,000 and frequently a much lesser number of ova are produced at one time, but the aggregate number matured (in a spawning season) in one female of average size is several hundred thonsand." This is probably as precise a statement as is warranted at the present time.

Moore (loc. cit.) has shown that there are successive batches of eqgs ripened by an individual female during the course of the season. This introduees the uneertainty as to whether any particular enumeration has included, on the one hand, all batehes destined to be spawned during the current season and, on the other hand, none that were destined to be spawned during a following season. The difficulty of making a correct decision is amply portrayed by the thorough study by Clark (1934) on the California sardine, Sardinops caerutea, a speeies which, like the mackerel, spawns successive batches. Clearly this subject requires additional study to provide statisti-

Figure 2.-Length and age at which mackerel reach repreductive maturity. The upper panel shows, hy $21 / 4 \mathrm{~cm}$. bugth groupa, the percentage of each sex matured. The lower part shows by half cm . length groups, the numbers camind for determingtion of percentage of raturity.
cally adequate data, and deserves such study because the ability to compute tife number of eggs that can be produced by a population of known size-composition or, eonverscly, to compute the size of a parent popatation of known size-composition from the known numbers of eggs found in a spawning area would provide useful, if not indispensable, data for clueidating several perplexing problems connected with the fluctuations of fish populations and the management of fish resources. See pages 164 and 165 for an example of the uses of such data.

SPAWNING GROUNDS AND SPAWNING SEASONS

Bigelow and Welsh in 1925 (pp. 206-208) summarized the information available on the spawning of the mackerel. Apart from the generalization that mackerel spawn along the American Atlantic coast from Cape Hatteras to the Gulf of St. Lawrence mainty in suring and carly summer, most of the conclusions reached at that time are now subject to revision. Their statement (p. 206) "**** a much greater production of mackerel eggs takes place east and north than west and south of Cape Cod, with the Gulf of St. Lawrence far the most productive nursery for this fish," is particularIy at variance with present available facts, as will appear from the following accoms, of the numbers of mackerel fggs found in the various parts of the spawning range.

Coast of the Southern New England and Middee Atlantic States

Numbers and distribution.-Until the present investigations there was little known about the spawning in the great bight bordered by the shores of southern New England and the Aiddle Atlantic States. Although ripe individuals are commonly taken in the fishery in this area, no appraisal had been made of the egg concentrations to be found there; nor was it known whether larvae hatehed from such eggs as were spawned there could survive; in fact it was suspected that reproduction was unsuccessful, for no larvae of the mackerel had been captured there.

As a result of information gained from the survers of the present investigation during the seasons 1927-32, this region now appears to contain the most important spawning grounds of the mackerel. In horizontal tows at the surface, i. e., in the stratum of densest concentration, a meter net has taken, in 20 minutes, as many as 185,000 eggs. In 1929 the arerage catch per positive tow ${ }^{3}$ of this kind was 2,600 eggs during the cruise of May 10 to 18, and 5,000 eggs during the crnise of Nay 28 to 31 . These mumbers may be taken as fairly typical of concentrations at the surface when and where spawning is netive, and will be useful for eomparison with other regions where similar data are available. Nore informative, in the absolute sense, are the results of oblique tows of 1932, which sampled all levels and covered systematically the entire region between Cape Cod and the Chesapeake Capes. The arcrage catch of such tows, including all between May 2 and June 21, i. e., the najor portion of the spawning season, and including both positive and negative tows, was slightly over 1,100 eggs. Since these tows strained 17 cubic meters of water per meter of depth fished, the average concentration was 65 eggs per square meter of sea surface.

Within this region eggs have been consistently most abundant along the inner portions of the continental shelf. The area of densest distribution occupies about the inner half of the shelf off New York with the zone narrowing and trending somewhat offshore southerly, and also narrowing but trending inshore northeasterly. By far the greatest concentrations have been fonnd regularly somewhat southerly of the Fire Island Lightship, and this undoubtedly marks the usual center of greatest spawning activity.

So far as is now known, no spawning takes place in the enclosed waters of the bays and sounds west and south of Block Island. A few eggs are spawned in the southern part of Buzzards Bay and Vineyard Sound, but these are negligible in quantity compared with the spawning in open waters.

[^29]Season.--Spawning begins in the southern end of this region during the middle of April about as soon as the mackerel appear in the offing of Chesapeake Bay. Thence it proceeds northeastward along the coast, taking place during the month of May off the New Jersey and New York coasts and extending into June off southern Massachusetts. In 1932, spawning in this region reached its climax about the middle of May. (See table 5.) Surveys of other spawning seasons indicate that this is the usual time of maximum spawning.

Temperature at spawning.-In this region we have found mackerel eggs in water as cool as $7.3^{\circ} \mathrm{C} .\left(45^{\circ} \mathrm{F}\right.$.) and as warm as $17.6^{\circ} \mathrm{C}$. ($64^{\circ} \mathrm{F}$.). In 1932 , the greatest numbers of eggs (9 S percent) were found in water of 9.0° to $13.5^{\circ} \mathrm{C}$. $\left(45^{\circ}\right.$ to $57^{\circ} \mathrm{F}$.) and this may be regarded as the range in which the bulk of mackerel cggs are usually spawned in this region.

Gulf of Maine

Numbers and distribution.-On visits to the western portions of the Gulf of Maine during the present investigation, eggs were found only in Cape Cod Bay. There the concentration was only slightly less than in waters south of Cape Cod but practically none were found in waters off the outer face of Cape Cod and the coast between Boston and Cape Elizabeth. Moore (1899) found them in the outer portions of Casco Bay in 1897, but the numbers were few. Bigelow and Welsh (1925, p. 206) oceasionally found a few in various parts of the Gulf of Maine. The maximum haul was recorded by them as " 200 phus."

Although Bigelow and Welsh (1925, p. 207) say, "That Nantucket Shoals, Georges Bank, and Browns Bank, like the Scotian banks to the east, are also the sites of a great production of mackerel exgs is proven by the ripe fish caught there * * * ", it now hardly appears likely that these banks around the periphery of the Gulf of Maine ean be the site of important spawniugs. The records of cags taken by Bigelow and Welsh did not include any from these banks and during the present investigation the waters about Nantucket Shoals were visited repeatedly, and the western half of Gcorges Bank oceasionally, without finding more than negligible numbers there. It is likely that the ripe fish caught on these grounds were a part of schools destined to spawn elsewhere, presumably the Gulf of St. Lawrence, and were taken during the course of migration to that area. This is in harmony with the results of investigations on migration which are to be reported on in another paper of this series.

Thus it appears that the only spawning ground regularly important in the Gulf of Maine is Cape Cod Bay. This body of water is so small compared with the grounds south of Cape Cod or with those of the Gulf of St. Lawrence that reproduction in the Gulf of Maine must be negligible compared with that of the other spawning regions.

Season.-Spawning probably takes place somewhat later in the Gulf of Maine than south of Cape Cod in consequence of later vernal warming and later incursion of mackerel into the waters of this region. It evidently was on the inerease and perhaps near its maximum in Massachusetts Bay between June 9 and June 14 of 1926, when hauls taken on a line of three stations rumning out from Wood End Iaght toward the middle of Cape Cod Bay averaged 700 and 1,200 per tow on June 9 and 14 , respectively. A more precise determination of the time of maximum spawning awaits the sorting of additional hauls made in 1926 and 1930.

Coast of Nova Scotia

Numbers and distribution.-Information on the occurrence of mackerel eggs along the coast of Nova Scotia is limited to the results of a survey in 1922 reported by Sparks (1929, pp. 443-452). ${ }^{4}$ Stations were occupied along the entire coast from Cape Sable to the Straits of Canso during the period May 31 to September 18, but no eggs were taken after the middle of July. For the most part the hauls yielded very few eggs, the average number taken being 14 per station, which presumably represents the sum of three tows. ${ }^{5}$ Although Sparks stated neither the dimensions of his nets nor the duration of his tows, it may be presumed that at least the surface net was a meter in diameter at the mouth and that the tows were 15 to 30 minutes in duration. If so, the egg concentration was exeeedingly low compared with the other regions. Furthermore, the occurrence of eggs even in this low concentration was limited to a relatively narrow band along the coast (table 1). Thus the waters along the Nova Scotian coast are poorer in mackerel eggs than any others within the known habitat of the species.

Season.-Spawning occurs along the Nova Scotian coast from abont the last of May to the middle of June.

Table 1.-Number of mackerel eggs taken per station in Nova Seotian waters at various dislances from shore

Statlon	Distance	Number of eggs	Station	Distance	Number of eggs
	Miles			Miles	
380.	1	2	381.	7	1
383.	6	19	382	11	
385	612	11			

Gulf of St. Latrence

Numbers and distribution.-The Canadian Fisheries Expedition of 1914-15 explored the Gulf of St. Lawrence during the spring and summer of 1915 (Dannevig, 1919 , pp. 8-12). Their surveys were made with a meter net hauled at the surface for 10 to 15 minutes, supplemented in many instances by vertical hauls, which, however, took few mackerel eggs. The average eatch in horizontal tows was 324 eggs per pusitive haul, and the largest catch was 3,800 eggs. Since eggs were taken at almost all stations south of the 100 -fathom contour marking the southern border of the Laurentian Channel, it may be presumed that mackerel spawn over this entire area. The numerous larvae taken there indicate that this area not only is the site of considerable spawning, but also that conditions there are suitable for the development of the larva. The largest larva taken measured 9 millimeters in length.

In addition to the catches in the southern part of the Gulf of St. Lawrence, a few larvae were taken near Cape Anguille on the southwestern coast of Newfoundland. Also, there was a number of mackerel eggs in a sample of fish eggs collected from the Bay of Islands by the Newfoundland Fishery Research Commission and referred to the Burean of Fisheries for identification. It thus appears that spawning takes

[^30]place occasionally on the western coast of Newfoundland, but probably only in bays in which the water warms up to $10^{\circ} \mathrm{C} .\left(50^{\circ} \mathrm{F}\right.$.) ; perhaps it is of irregular occurrence and it is certainly of minor importance.!

Season.-In the southern half of the Gulf of St. Lawrence, eggs were present as early as May 29 and as late as August 12. The maximum catches were taken on June 30, July 7, and July 8, and it may be presumed that the height of the season was in the latter part of Junc and carly part of July.

Relative Importance of the Several Spanning Regions

Because it is important to know which grounds are mainly responsible for recruitment of the mackerel population, an appraisal of the relative amounts of spawning in the four regions will be attempted, even though the available information is not adecpuate for precise treatment. Since these four regions are roughly equal in size and cach is sufficiently large to constitute a major spawning area, it will suffice to examine only average concentration of eggs in each region. The pertinent data, in terms of average or usual number of eggs taken per positive surface tow with a meter net are as follows:

Of course, these numbers cannot be taken at their face values for there are many factors affecting their comparability. However, the last two items in the list are so low that it may be concluded that the coast of Nova Scotia and the Gulf of Maine are of necrigible importance as mackerel spawning areas.

On the other hand, the Gulf of St. Lawrence and the continental shelf between Cape Cod and Cape Hatteras are both grounds of evidently some importance, and their comparison with each other deserves more careful consideration. The two things that might affect most obvionsly the comparability of the data on them are: (1) the techmique of towing, including the distribution of stations, (2) the fact that the Gulf of Si. Lawrence survey took place more than a decade carlier than the townetting over the continental shelf betweon Cape Cod and Cape Hatteras.

The techmiques employed in the Gulf of St. Lawrence by the Canadian Fishories Expedition obviously were not inteuded for ruantitative purposes. According to Damevig (1919, p. 3) "The duration of the surface hauls raried somewhat, as a rule between ten and filten minutes; * * *" and ITuntsman (1919, p. 407) states, "The tow hauls (as distinguished from the vertical hauls) are the most uncliable, owing to lack of information in the records as to the manner in which they were taken * * *. The tow hauls were taken in a great varicty of ways." Further, lluntsman's table (loc. cit., p. 419) of hauls ly the C. G. S. No. 38, which contributed most of the mackerel egres, shows that some of these hauls in reality were oblique and that towing periods varied between 5 and 20 mimutes, with the time not given for certain of the hauls containing important numbers of mackerel eggs.

Furthermore, the stations were closely spaced in some portions of the Gulf and widely spaced in others. They may have chanced to be concentrated where the eggs were thickest or the contrary. Similarly, the distribution with respect to time nay have been favorable to the taking of abnormally large numbers of eggs, or the contrary. On the other hand, the coverage, both as to space and time, was far from haphazard. The Princess occupied stations in the Gulf of St. Lawrence during June 9 to June 15
and again during August 3 to 12, and, in the meantime, No. 33 was making net hauls in the southern half of the Gulf during June, July, and August, the two boats together making about 50 net hauls in the productive southern half of the Gulf during the mackerel spawning season (Dannevig, 1919, charts and tables).

While it cannot be said whether more intensive work over a more uniform pattern of stations would have revealed substantially a greater or less number of eggs than was taken by the Canadian Fislieries Expedition, the fact remains that only one of their hauls yielded more than a thousand eggs and only a few, more than a hundred. Experience in the area between Cape Cod and Cape Hatteras indicates that a similar coverage, with similar techniques, would have resulted in many more hauls containing thousands of eggs, and the conclusion appears inescapable that eggs were much less abundant in the Gulf of St. Lawrence in 1915 than in the area between Cape Cod and Cape Hatteras during 1927 to 1932.

It is difficult to determine how much the decade of difference in the time that the Gulf of St. Lawrence and the area between Cape Cod and Cape Hatteras were investigated affects the comparability of the data on egg numbers, but at least two obvious flatures may be considered-annual fluctuations and long-term trends in volume of spawning. In the area between Cape Cod and Cape Hatteras the numbers of eggs were consistently high during the years 1927 and 1932. Though the methods of towing varied too much and the coverage in some years was too deficient to permit mathematical demonstration of this, in every year the eggs were sufficiently abundant to be taken by the several thousand per surface tow at favorable times and in favorable places; and it may be concluded that annual fluctuations were not sufficient to alter the general magnitude of egg production. It appears also that the numbers of spawners, judging from catch statistics, did not fluetuate by orders of magnitude during this period. Thus, experience suggests that the egg yield does not fluctuate markedly as long as the number of spawners does not.

Referring now to the catch statisties in the Canadian and the United States fisheries (Sette and Needler, 1934, p. 43) it appears that the trend in Canada was nearly horizontal between 1915 and the late 1920's, but that in the United States the general level was about three times as high in 1929 as in 1915. If it may be assumed that the spawners are, in general, proportional to the catch and that the numbers of eggs are proportional to the number of spawners, both of which are admittedly questionable premises, then it could be argued that the 1915 Canadian data on eggs would roughly hold for recent times and the comparison justified as indicating relative amounts of spawning in the two areas in recent times. On the other hand, comparison as of 1915 might be expected to reduce by two-thirds the numbers of eggs in the Cape Cod to Cape Hatteras area, and thus indicate relatively greater importance for the Gulf of St. Lawrence. Even so, the change would not be one of order of magnitude.

All available information considered, it appears most likely that the spawning in the area between Cape Cod and Cape Hatteras is distinetly more important than in the Gulf of St. Lawrence, and though it is possible that the difierence is one of an order of magnitude, with eggs so concentrated in the Cape Cod to Cape Hatteras region as to be available in the thousands per tow, and so scarce in the Gulf of St. Lawrence as to be available in the hundreds per tow, it is also possible that the true divergence is less marked and that the numbers are really in the upper and lower levels of the same order of magnitude. The diagrammatic representation of relative egg, numbers in the various regions given in figure 3 should be considered with this rescrvation. Although the collection of more adequate data on the subject is greatly
to be desired, present information supports the view that the present survey has covered the most important spawning ground.

The existence of large regions with little spawning near the middle of the spawning range of the species is a peculiarity that may be explained by hydrographic conditions. It will be noted from the diagrammatic representation of relative intensity of spawning in figure 3 that the regions of greatest intensity are the southern and northern quarters of the spawning range. That of the least intensity is the middle half of the range. The places of intense spawning, that is, the great oceanic bight between Cape Cod

Figure 3.- Relative intensity of mackere spawning in various regions alung the Atlantic coast of North America, as indicated by the average number of eggs caught in plankton nets.
and Cape Hatteras, Cape Cod Bay, and the southern half of the Gulf of St. Lawrence, have this in common: they are all bodies of relatively shoal water orelying relatively flat bottom, where topography and circulation favor vertical stability, and vernal warming of the upper strata proceeds rapidly, producing temperatures suitable for mackerel spawning earlier than in the intervening areas. On the other hand, the

```
52,29:3-44--2
```

places of least intense spawning are areas with broken bottom where tidal and general circulation produce extensive vertical turbulence, drawing cold water from the depths to the surface, thereby delaying the vernal warming of the upper strata, as a rule, until the mackerel spawning season is over. As nearly as may be determined from the information on hydrographic conditions (Bjerkan, 1919, pp. 379-403, Bigelow, 1928, pp. 550-585) and on spawning times and places (see above), the dividing line between good and poor spawning areas may be drawn at a vernal temperature of about $8^{\circ} \mathrm{C}$., ($46^{\circ} \mathrm{F}$.). The areas that receive little or no spawn are, during the spawning season, usually colder, and those that recejve much spawn are usually warmer than this temperature.

NUMEER OF EGGS SPAWNED AND SIZE OF SPAWNING STOCK

A rough estimate of the total number of cggs spawned in the region between Cape Cod and Cape Hatteras can be made from the data of the 1932 survey of spawning. The arerage catch during the first seren curuses was about 1,000 eggs per 17 square meters of sea surface (table 19), or an equivalent of about 200 million eggs per square nautical mile. Taking 25,000 square miles as the areas surveyed, this would amount to a total of 5,000 billion egrs. Since this figure is based on the average concentration during a 50 -day period, and since the period of incubation would average about 7 days at the prevailing temperature, there must have been about 7 renewals or approximately 35,000 billion egs spanned to maintain this arerage concentration. From a curve of numbers of eggs token in successive cruises, it appears that perhaps one-seventh should be added to allow for the fact that the cruises did not begin parly enough or extend late enough to include ali the spawning. This raises the figure to 40,000 billions eggs. These are in all stages, and it may be computed from mortality rates of eggs (table 7) that this would be equivalent to 1.6 times as many newly-spawned eggs. Applying this factor, the final estimate of eggs spawned in this area in 1932 becomes about 64,000 billiou.

It is difficult to appraise the reliability of this estimate because of the uncertainty of its components. Judging these as well as may be, it appears that at best it may be within 25 percent of the true value and at worst only within the true order of maguitude. But this is only personal judgment, and siuce it is impossible to study slatistical probabilitics, there is utility in testing the result by deriving a related statistic from an entirely different source.

During 1932 the catch of mackerel on or near spawning grounds during the spawning season; that is, in area XXIII (Fiedler, Manning, and Johnson 1934, p. 96), and in area XXII, west of Nantucket Shoals during April, May, and June, was abont $13,000,000$ pounds. From mpublished records on size composition of this catch, it appears that about $10,000,000$ pounds of it consisted of fish of spawning size, and that their average weight was nearly 1.9 pounds. Thus, a take of about $5,000,000$ spawners is indicated.

To estimate from this the size of the spawning stock it is necessary to know what percentage this was of the spawning stock in 1932. This may be done only in an indirect manner. The 1923 class of mackerel, alter reaching spawning age, declined at a rate of 20 percent per year as measured by the cateh per purse seine boat during the four seasons, 1928 to 1931 (Sette, 1933, p. 17). This decline was so stendy that it pronably should be ascribed to mortality rather than to other causes, such as changes in availability. Of eourse one camot be sure that the spawning population in 1932 was subject to the same mortality as the 1923 class during the previous years, but
as far as the intensily of fishing is concerned, there was no significant change between 1931 and 1932. The fleet numbered 112 seiners in 1931 (Fiedler, 1932, p. 211) and 114 in 1932 (Fiedler, Manning, and Johnson 1934, p. 97).

Views may differ as to the relative part played by catch mortality and by natural mortality in causing total mortality, but by taking divergent riews, say three-quarters cateh mortality on the one hand and one-quarter catch mortality on the other hand, one would arive at 15 and 5 percent, respectively, as catch mortality; or, taking a middle ground, it would be 10 percent. Similarly divergent views may be taken as to the fraction of ammal mortality suffered during the spawning scasom. Perhaps threequarters and one-quarter, respectively, may reasonably be taken as the extremes and one-half (or 10 percent) as the middle ground. These would gire ns extremes 11 and 1.25 percent that the catch during the spawning season was of the total spawning stoek. The middle view would be 5 percent.

This results in an estimated total population between $45,000,000$ and $400,000,000$, with a middle ground estimate at $100,000,000$ individuals in the spawning population on the spawning grounds as derived from catch statistics.

It will now be recalled that the estimate derived from tow net hauls was 64,000 billion eggs spawned, and if 400,000 eggs are produced by the average female (p. 156) the indicated spawning population would he $160,000,000$ females, or $320,000,000$ fish of both sexes. This is within the extremes computed from the eatcla data and about halfway between the middle and largest ligures. Considering the approximate nature of some of the elements in the estimates, this is a remarkahle agreement between the two methods of computing the size of the spawning stock, and strengthens the view that the total estimate of eggs is sufliciently reliable to warmant the comelusion that the egg production was in the order of 50,000 billion in 1932.

This, of course, refers only to the spawning in the region south of Cape C'od, and it has been pointed out (p.160) that important spawning occurs also in the Gulf of St. Lawrence. Since spawning in the latter region seemed to be of lesser magnitude than south of Cape Cod, it is probable that the entire spawning ofl the east const of North America would not be more than double the estimated 64,000 billion, or, since the tater is an uncertain figure, let us say in the order of one hundred thousand billion eggs.

SPAWNING HABITS

Aceording to Bigelow and Welsh (1925, p. 208), "Mackerel spawn chielly at night." It this be true, the earliest egg stages should be relatively more ahundant at certain times of the day than at others. From material collected at a number of stations in 192?, the egys in "early clearage" and "late clearage" were cumted, representing respectively the first and second 10 hours of derelopment at the temperatures prevailing at the time. If spawning took phace chiofly at night the early cleavage eggs should predominate between midnight and 10 a. m. and be in the minority during the remander of the day. It the 14 stations from eneth of which more than 10 eggs of both stages were examined, the average perentage of early clearage in the midnight to 10 a . m . group was 45 and in the $10 \mathrm{a} . \mathrm{m}$. to midnight group 33 . The difference between the two groups was not statistically signifieant $(t=0.91$ and $P=0.3+$, according to the method of lisher, 1932, p. 114) and it may be concluded that the diumal variation in percentage of eary stage eggs does not indicate a tendency toward more spawning by night than by day. Tabulation of percentages aceording to the hours of the day did not indicate that any other particular part of the day was favored.

THE EGG

Deseription.-Aecording to published deseriptions, (Ehrenbaum, 1921, p. 4 for the European mackerel; Dannevig, 1919, p. 11, and Bigelow and Welsh, 1925, p.208, for the American mackerel) the mackerel egg is 0.97 to 1.38 mm . in diameter and contains an oil globule 0.28 to 0.35 mm . in diameter. Measurements of eggs taken at sea during this investigation had a similar range in dimensions. By far the commonest dimension (modal) was 1.2 to 1.3 mm . for the egg and 0.31 to 0.32 mm . for the oil globule.

There is a tendency toward a decrease in size of mackerel eggs as the season adrances. Data given by Ehrenbaum (1921, p. 4) show the same tendency in the egg of the European mackerel. This could be due to the seasonal trends of cither temperature or salinity, but the experiments of Fish (1928, pp. 291-292), who found cod eggs fortilized in cold water to be larger than those fertilized in warm water, suggest that temperature alone could be responsible. Whatever its mechanism, the phenomenon of decrease in size as the season advances probably holds true for all species oceuring in the tows of the present investigation. It was my practice to make seatter diagrams in which oil globule diameter was plotted against egg diameters for all eggs in hauls containing troublesome mixtures. Invariably, when mackerel eggs were near the limits of the over-all range of their dimensions and thus might be expected to overlap the range of the eggs of other species, the latter were also near the corresponding limits of their respective over-all range and the groups remaned discrete, showing that tendencies for smaller or larger than average size were shared simultaneously by all species. Thus, in individual collections the range in dimensions was much less than the relatively large range of all collections, and a feature that might have been a hindrance in identification was in reality not very troublesome.

In the collections made during the course of this investigation there were eggs of four species whose dimensions approached those of the mackerel. The egg of the common bonito (Sarda sarda) is 1.15 to 1.33 mm . in diameter, but in its early stages it has a cluster of small oil droplets instead of a single large one. In its late stages, these droplets often become united into a single oil globule. In this condition there might be some diflieulty in distinguishing the two, were it not that bonito eggs occur later in the season (in areas we have prospected) when the mackerel eggs are considerably smaller. For instance: Mackerel eggs taken in Cape Cod Bay, July 19, 1929, were 1.00 to 1.12 mm . in diameter while bonito eggs taken July 25,1929 , in the offing of No Man's Land were 1.12 to 1.27 mm . in diameter. The eggs of the cusk (Brosmius brosme) and the tilefish (Lopholutilus chameteonticeps) are similar in size but have oil globules distinctly smatler (0.19 to 0.23 mm .) than those in the mackerel's eggs. Closer to the mackerel egg in its dimensions was that of a species not yet identified. Although overlapping the mackerel egge in dimensions, its modal size was distinctly smaller and the oil globule somewhat larger, and in its late stages the embryonic pigment was arranged in bars unlike the diffuse arragement in the embryo of the mackerel. Inasmuch as eggs of this type were found only at the edge of the continental shelf, their distribution was discontimuous with that of the mackerel; and since no mackerel larvae were later found in the same or neighboring localities this egg caused no confusion.

Rate of embryonic developmont.-Although mackerel have never been observed in the act of spawning, it is generally supposed that both eggs and sperm are disclarged into the surmounding water, where fertilization takes place. Observations have shown
that thereafter, during the period of embryonic development, ${ }^{6}$ the egrgs are suspended in the sea water mostly near the surface and all above the thermocline.

As is true with most cold-blooded organisms the rate of development depends on the temperature at which it takes place, being slower at low temperatures and fastor at high temperatures. According to Worley (1933), who examined this feature of the development at the U. S. Fisheries Biological Station, Woods Hole, Mass., the time clapsing between fertilization and hatching was 50 hours at 21°, 70 hours at 18°, 95 hours at $16^{\circ}, 115$ hours at $14^{\circ}, 150$ homs at 12°, and 208 hours at 10°. There is no reason for believing that the rates differ at sea. thongh this is diflecult to demonstrate.

According to Wordey (1933, p. 857), "Wxperiment showed that typieal development (and survival) could he realized only between 11° and 21°." It sea in 1932, however, eggs were most abundant at temperatires below 11°, as appears from the following average numbers taken at each degrec (centigrade) of surface temperature encountered in the surver:

The embryos in egges from water below $11^{\circ} \mathrm{C}$. differed in no pereeptible way from those found in wamer water, and there is no reason for believing that development was not procecding as "normally" at the tower as at the high temperatures.

Worley also found (loc. cit.) that "The total mortality during the incobation period was least at $16^{\circ} \mathrm{C}$. Where it amounted to 43 pereent." He had there experiments at this tomperature with mortalitios of 37 , 40 , and 33 pereont respectively (loc. cit. p. 847). At sea, in 1932, the average mortality was 59 pereent (from interpolation to the hatching point from the data of the sth cotumn in table 7), of only a litte greater than in the least favorable of the haboratory experiments. The werghted mean temperature of the water from which these sea-caught mags were taken was $10.9^{\circ} \mathrm{C}$. Worler's laboratory exges sulferd 90 athe 95 pereent mortality in his two experiments at 11°.

Obviously, both the range for momal development and the point of mamman survival were at fower temperatures at sea than in the laboratory experiments of Worley. The explanation for this disparity between results in the haboratory and observations at sea probably lies in the fact that Woders experiments took place at a time when tenperatures of the sea water from which he took bis fish were in the neighborhood of $16^{\circ} \mathrm{C}$. The lesser mortality at amel near this temperature was connected no doubt with the lesser change involved in binging the cergs from the temperature of the parent to the temperature of the experiment. It is obviously desirable that laboratory experiments be repeated on waterial taken from water of lower temperature.

Verticat distribution.-Athough it has been known that mackerel eges are suspended in the sea, usually near the surface, there has been in American waters no previous detemmation of rertical distribution, apart from the general observation

[^31]that surface hauls take more eggs than deeper hauls. The present determination is based on a series of horizontal hauls at different depths in 38 meters of water in the offing of the Tire Island Lightship on Mav 19, 1929.

Four series were taken: one at dawn, another at noon, another in the evening, and the final series at midnight. The net was one-half meter in diameter at the mouth and rigged with a elosing device actuated hy a messenger. It was lowered while npen, towed for 20 minutes, then closed and hauled to the surface. Each series included hauls at the surface and at the $5-, 10,20$-, and 35 -meter depths. The courses of the nets were kept as nearly horizontal as possible by periodical estimation of depth based on measuring the towing warp's angle of stray and paying out or hauling in the line as needed to keep the net at the proper level. Since the net was lowered while open, and since the tripping mechanison failed on several occasions, there was some contamination of the haul during its passage through the water overlying the stratum fished. Correction for this contamination was estimated on the basis of the average concentration of eggs in the overlying water and the time it took the net to pass through the overlying water in an opened condition. An additional correction for variations in speed of towing, based on the angle of stray of the towing warp, was applied to all catches on which data adequate for this purpose were available.

Table 2.-Verital distribution of mackerel eggs at station 20498, May 17, 1999

Depth	Numbers taken per haud				Numbers per haul adjusted to standard 1			
	Dawn	Noon	Sunsct	Midnight	Dawn	Noon	Sunset	Midnight
Surface.	12,080	34, 600	27,000	13.320	${ }^{2} 12,080$	- 32,900	2 27.900	2 13,320
5 meters.	10, 810	13,210	21, 600	13,200	13,880	17,900	${ }^{2} 224,850$	${ }^{2} 13,145$
10 meters.	11, 120	8.850	8,750	8,260	7,550	8.210	11, 480	2 7,600
20 meters.	5.120	1, 070	350	694	-2,960	750	0	2418
35 meters.	1,182	20	124	285	0	0	0	215

${ }^{1}$ Adjusted for ime (20 minutes); speed (to cause stray of 23.5° in towing wire): and for contaminat ion in passing through over Jing strata in pasing nut and hauling in.
${ }^{2}$ Not adjusted for speed.
Anjustment firt contanination was large and probably inaccurate.
As may be seen from figure 4 , the numbers decrease rapidly with depth. When the numbers from the several hauls at each level (exclusive of certain unreliable subsurface hauls designated as questionable in the figure) are averaged, the distribution is as follows: surface, 22,000 per haul; 5 meters, 13,$000 ; 10$ meters, 8,$000 ; 20$ meters, $700 ; 35$ meters, 0 . Except for the surface hauls which were not adjusted for towing speed, and certain of the subsurface hanls on which reliable corrertions were impossible, the successive hauls at each level yielded nearly the same numbers, indicating at once the reliability of the method of sampling and the stability of the rertical distribution.

Comparing the distribution of egres with physical conditions, it is obvious that eggs were abundant from the surface down to a depth of 10 meters, the range in which temperature, salinity, and therefore density were approximately uniform. Between 10 and 20 meters the temperature decreased sharply, the salinity inereased sharply, and therefore the density inereased sharply. In this zone of increasing density, the markerel egrs rapidly diminished in number so that at 20 meters few were taken and below 20 meters, none. At this station, therefore, the distribution of mackerel eggs was limited to the stratum above the pyenocline (zone of sharp increase in density).

While this has been demonstrated in detail at only this one station, that it is a general rule is indicated by subsequent experience with obliquo hauls, where, with several nets on the line, the deeper nets, when towed entirely below the thermoeline,
took very few eggs that were not otherwise accounted for (by the contamination correction based on the average catch of the upper net and on the time taken to pass through the upper stratum). It is safe to conclude therefore, that the pycnocline forms a barrier to the downward extension of mackerel eggs. Further, the pyenocline is sufficiently well indicated by the thermocline in this region so that the latter may be used an an indicator of the lower limit of mackerel ergs.

Figure 4.-Vertical distribution of mackerel eggs in relation to temperatures, salfity, and density of water. Observations were adjusted to the basis of standard speed of towing, except those indicated as cuestionable.

The serial tows of May 17, 1929, also illustrated significant differences in the vertical distribution of eggs in different stages of embryonic development. When the eggs were separated into three stages of development occupying approximately equal periods of time, it was found that those of the early slage (A) were mostly near the surface, those of the late stage (C) mostly between the 5 - and 10 -meter levels, and those of the intermediate stage (B) intermediate between A and C in their vertical distribution (table 3). Too few eggs were taken at greater depths to indicate reliably the proportionate numbers at each of the three different staces of development.

Table 3.-Verlical distribution of various stages of mackercl eggs acording to noon series, station 20498, May 1 $\gamma, 1029$
 circumference of the egg; stage C is from this noint to batching]

Depth	Number taken				Number adjusted to stanlard I			
	Stage A	Stage B	Stage 0	Total	Stage A	Stage B	Stage C	Total
Surface...	30, 250	4.250	100	31.610	29,630	4, 170	4. 100	33, 9000
5 meters...	3. 360	5,680 2,250	3.569 4,920	13,210 8,850	5, 2×00	7,760 2,750	4.360 4.640	17,300 8,210

${ }^{1}$ Adjustments the same as in table 2.
The differential vertical distribution of the several egg stages could result cither from a decrease in specific gravity of the water after the eggs were spawned or an increase in the specific gravity of the eggs as embryonic development proceeded. Moore (1899, p. 14) concluded that the eggs increased in specific gravity during developinent when he noted that mackerel eggs which he was incubating in the laboratory sank during the third day. But he gives neither the specific gravity of
his 3 -day-old eggs ${ }^{7}$ nor that of the sea water either at the begiming or end of bis experiment. Since he was working before rigid control of temperature was customary, it is likely that the specific gravity of the water in his experiment may have been changed by warming.

In the present example, at least, it is known that the temperature of the water was increasing at the time station 20498 was risited. At the temperature of the water in Which the erges were found on May 17, it takes about 5 days for incubation (p. 167), and it may be estimated that stage C ergs were spawned at least 3 days prior to stage A eggs, hence on May 14, when unfortmately this station was not visited. However, from interpolation (linear) both in space and time between the temperature at station 20498 on May 17 and temperature at neighboring stations on May 12, it appears that the density of the water at the surface on May 14 could have been very nearty the density of the water at the 10 -meter level on May 17. Hence it is preferable to aseribe the simking of the late stages to the warming of the water with attendant decrease in density, rather than to an increase in the density of the eggs.

THE LARVA ${ }^{*}$

Yolk-sac stage. . The newly hatched larva ${ }^{9}$ is slighty less tham 3 mm . in length, well covered with scattered black pigment spots whieh tend to be denser dorsally than ventrally. The eycs are colorless. The region of the grut is oceupiet by the yolk sace with its oil globule. Both sac and globule are about the sume size as they were in the egg. The mackerel is readily distinguished from other similarty marked larve with which it is found, hy its harger size, stouter shape, coarser pigment spots, and its 30 myomeres.

As development proceds, the pigment becomes localized on top of the head and along dorsal and rentral edges of the body, the eye becomes black, the yolk sar absorbed, the mouth and gut formed. These clanges are completed at a length of 4 mm .

As sern in the laboratory and hatchery, the mackerel swin very feebly duriog the yolk-sare stage, with short, spasmodic, bandom movements. Their batancing faculty is undereloped, their position being indiferently upside down, right side up, and at ramous angles. At sea they must be totally at the merey of the water movements.

Latal staye. - is used herein, this stage represents the period begiming after yolk-sac absorption and ending after fom formation, and it includes individuats between 4 and 8 mm . in length. In this stage, the mackerel is reatly distinguished from other species by the row of back spots of irregular size and spacing along dorsaland ventral afges of the body, begiming about midway between snout and tail and extending almost to the end of the notochord (hut not into the lin fold). Those in the dorsal row are less numerous and more widely spaced than those in the ventral. Other species which were fomm with the mackeret, and which have also such dorsal and bentral rows of pigment, are the winter flounder (Pseudopleuronctes amerivanus), which differs from the mackerel by its greater number of myomeres (37-40) and its

[^32]strongly, laterally compressed body; the bluefish (Pomatomus saltatrix), which differs by its fewer myomeres (24); and the roscfish (Sebastes marinus), which has the same number of myomeres (30) and in the 4 - to $5-\mathrm{mm}$. stage could be confused with mackerel. With both the rosefish and mackerel available for comparison, the former is readily distinguished by the closeness of the spots in the dorsal and rentral rows, those in the rosefish forming almost a continuous black streak, whereas those of the mackerel are discrete. Other differences, less useful, are the more slender shape and the greater relative length of the post-anal region in the rosefish larva. After passing the 5 -mm. stage, the rosefish larva is readily separated from the mackerel larva by its prominent preopercular and cranial spines. An additional character of use in separating the mackerel larva from the others is its strong teeth, which are readily visible in specimens of the $7-\mathrm{mm}$. size but less so in smaller individuals.

Inability to keep larvae alive in the laboratory or hatchery during this stage precluded direct observation on their activity, but, as is shown in a later section, their movements are sufficiently well-direted for performance of diumal vertinal migrations of 20 to 30 meters but not sufficiently sustainable for migrations of miles in extent.

Transition phase.-Intervening between larral and post-larval stages is a trancition plase ineluding indiriduals 9 and 10 mm . long whose fins are in ratious states of completion. ${ }^{10}$ Fin formation is a gradual process, neither beginning sharply at 9 mm . nor ending sharply at 10 mm . It the former length, the caudal fin already shows a number of rays, and at the latter length, the laggard first dorsal fin does not yet show any of its spines. But the tail fin makes its greatest changes, the seeond dorsal fin and finlets and the anal fin and finlets are all developed within this size range, hence it is most appropriately desigmated as a transition phase.

Post-larral stage.-This stage incudes the latter part of phanktonic existence begimning at about completion of fin formation and lasting until the young fish are nimble enough to evade the phankton nets. It is comprised of individuals 11 to 50 mm . long.

Since all the vertical fins execpt the first dorsal are complete, identifeation by adult characters is simple. The harve enter this stage somewhat laterally compressed. and by its end fill out to the trim fusiform slape of the adult. At the beginning of this stage the color pattern is typically lawal, but by its end the dark pigment has spread over the dorsal portions, and in live specimens the silvery her is apparent, though the black wayy bands characteristice of the adult are yet to form. The appearance is in general like a miniature adnte with somewhat oressized head and fins.

As appears in a later seetion, the post-larvae are capable of externsive swimmine. Furthermore, as they near the and of this stage the sehooling instinct aserts itsolf. The transition from a primarily planktonic habit to a primarily swimming and schooling habit probably is gradual, in the sense that all individuals may not experrience the change at the same size. 'The available evidence is that it involves individuals between about 30 and 50 mm . in length. This evidence is from two sources. First, the survival curve (fig. 17) has a substantially miform trend from 11 to 30 mm ., from which it may be infered that there was no change of trend within this size ranger sufficient to indicate a loss of larvae such as could be expected if some had begun to

[^33]school and were no longer susceptible to capture in plankton nets. Second, a school of small mackerel was observed and sampled in Woods Hole Harbor in July 1926, containing individuals between 35 and 65 mm . in length (table 21). The first evidence shows that the schooling habit did not involve fish under 30 mm . in length; the second proves that some fish, at least, begin sehooling as soon as they exceed that size.

Vertical distribution.-From series of horizontal hauls at $0,5,10,20$, and 35 meters at early morning, midday, evening, and midnight, at a station (Albatross II No. 20552) southeast of Fire Island Lightship (latitude $40^{\circ} 20^{\prime} \mathrm{N}$., longitude $70^{\circ} 57^{\prime}$ W.) visited on July 13 and 14, 1929, there is evidence that the larvae of the mackerel do not descend far below the surface, probably being limited by the thermocline, and that they perform a diumal vertical migration (fig. 5).

Table 4.-Vertical distribution of mackerel larvae' at various times of the day as indicated by horizontal tows with a closing half-meter plankton net at Stotion 20552 (Albatross II), latitude $40^{\circ} 20^{\prime} \mathrm{N}$., longitude $78{ }^{\circ} 59^{\prime} W_{\text {., July }} 13$ and 14, 1929

Depth of haul	Time:	Length of larvae (millimeters)						Total	
		4	5	6	7	8	9		
Dawn:	$\begin{aligned} & 2.53 \text { a. m..... } \\ & 3.27 \mathrm{a} . \mathrm{m} . \\ & 3.54 \mathrm{a} \cdot \mathrm{~m} \\ & 4.20 \mathrm{a} \cdot \mathrm{~m} \\ & 6.03 \mathrm{a} . \mathrm{m} \end{aligned}$	Number	Percent						
5 mueters.-.		1							
10 meters..								None	
20 meters.								None	
35 meters.								None	
Total.		1		2	2		2	7	100
Noon:									
5 meters.	$12.08 \mathrm{p} . \mathrm{m}$.							None	
10 meters.	$12.24 \mathrm{p} . \mathrm{m}$.							Noue	--
20 meters.	$12.52 \mathrm{p} . \mathrm{m}$							None	
35 meters..	$1.17 \mathrm{D} . \mathrm{m}$ -							None	
Evening:									
Surface. 5 meters	6.26 p. ma. 6.51 p. ma		2					None ${ }^{2}$	14
10 meters.	$7.17 \mathrm{p}$.	1	10	13	1			None	86
20 meters.	$7.44 \mathrm{p} . \mathrm{m}$							None	
35 meters.	S.12 p. m.							None	
Total.		1	12	13	1			27	100
Midnight:									
Surface-	${ }_{11} 11.34 \mathrm{p} . \mathrm{m} . \mathrm{m}$.	1	13	4 2	5	1	1	12	38 53
10 meters.	$12.22 \mathrm{3} . \mathrm{m}$ -		2		1			${ }^{1}$	0
30 meters.-	$12.47 \mathrm{a} . \mathrm{m}$							Nous	
35 meters.	1.13 sm .							None	
Total		1	16	6	7	1	1	32	100

- Midpoint of the 20 -minuta haulis? ${ }^{\text {given. }}$

In detail it will be noted (trable 4) that in any one series of hauls the larvae were caught mostly at only one or two levels; indicating that they were confined to such thin strata that the entire population could easily, at times, be situated between the levels of the hauls, and hence at those times be missed. Accordingly, it is probable that in the evening the larvae were nearly all at the 10 -meter level, probably traveling upward, and by midnight some had reached the 5 -meter level and some the surface. The deeper ones probably continued upward so that nearly all reached the surface shortly after midnight; and by $3 \mathrm{a} . \mathrm{m}$. , when the next series began, they had begun to descend so that they were between the surface and the 5 -meter level, and few were taken in the hauls at either level. By noon, they probably had descended beyond 10 meters and were located between the 10 and 20 meter hauls, and none was caught.

It is improbable that the daytime descent was beyond the 20 meter level at this station or was ever beyond the thermocline. During 1930, 1931, and 1932, when the nets were hauled obliquely below as well as above the thermocline, the lower tows seldom eaught larvae that could not be accounted for as contaminants resulting from passage through the upper layers.

From the length-distribution of the larvae it appears (table 4) that the larger individuals (6 to 9 mm .) were more stongly inclined to migrate, reaching the surface at night, while the smaller ones (4 to 5 mm .) tended to stay in the intermediate 5 - to 10 -meter levels.

Though these observations do not provide a precise description of vertical distribution and migration, they do demonstrate the necessity of sampling all levels down to the thermocline to get the representative statistics needed for the studies on growth and mortality to follow.

Frgure 5.-Vertical distributhon of makerel larvac at several points of tme in the dirunal cycle in relation to teraperature. Tript solid lines connect ohservational points. The hroken lines indionte the probable vertical position of the hulk of the population of larvan.

GROWTH

Very little has been published on the growth of marine fishes during that early period of the life history spent in the plankton community, and nothing on the growth of the mackerel during this stage. Of the data collected during the present investigation, only those of 1932 were collected in a mamer sufficiently quantitative and at short enough intervals of time to be used in deducing growth rate.

The method of analysis consists, essentially, in following the advance in position of the mode of homologous groups of larvae by comparing sizes collected in successive cruises. But this cannot be done in a simple and direct manner. Mackerel eggs are spawned over a period of several months. The larvae are subject to high mortality. As a result, almost always there are vastly more small larvae than large ones, and the predominance of small larvae is so great during most of the season that the groups of larger ones do not form distinct modes. Instead, in ordinary arithmetie frequency distributions they are apparent principally as a lengthening of the "tail" of the distribution at its right-hand side (table 5).

Table 5.-Number of eggs and larvae token on each cruise in 1939, elassified according to stages of eggs and lengths of larvae
[Daring eruises 1 to 7 , tow nets I meter in diameter at mouth were used, and during crulses 8 and 9, tow nets 2 meters in diameter were used; all hauls were ohliquely towed and numbers caught were adjusted to represent an equal amount of towing per meter of depth fished]

Egg st ages and lengths of tarvae iu millimeters	Cruises								
	$\frac{1}{\text { May 2-6 }}$	May	$\begin{aligned} & 111 \\ & \text { May } \\ & 19-23 \end{aligned}$	1V 21ay $24-28$	$\begin{gathered} \text { V } \\ \text { June } \\ 1-5 \end{gathered}$	$\begin{gathered} \text { VI } \\ \text { June } \\ 5-8 \end{gathered}$	$\begin{aligned} & \text { VII } \\ & \text { June } \\ & 15-21 \end{aligned}$	$\begin{aligned} & \text { VIII } \\ & \text { June 25- } \\ & \text { July } \end{aligned}$	$\begin{gathered} \text { IX } \\ \text { July } \\ \text { 16-24 } \end{gathered}$
A.	11,415	21,563	22,294	12, 172	2,907	2,815	851	(1)	(1)
B	7,895	13, 58.5	13, 519	15,287	2,057	1,161	1,303	(1)	(1)
C	4,667	18,228	5,266	21,712	6,011	1, 562	2,733	(1)	
3	4,017	6,310	7,338	18,392	5, 215	9,214	8,805	10.3	11.6
4	1,690	838	2,207	24,462	1,243	8, 236	734	104	112.5
5.	239	751	I, 607	2751	1,049	2, 371	546	15.6	18.9
6.	38	311	544	${ }^{2} 200$	1, 132	501	208	${ }^{1} 15.9$	111.4
7.	12	21	151	${ }^{2} 25$	911	399	55	36.6	8.9
8	4	2	40	248	200	470	19	30.1	17.2
0.	1	1	15	${ }^{2} 28$	54	186	13	16. 6	8.9
10.			7	${ }^{2} 3$	7	41	12	9.6	3.4
11.			5	22	6	12	5	5.8	1.9
12.		-			2	4	9	3.8	1.2
13.	-------		------	----	1	4	7	. 8	. 1
14.	------				2	2	8	1.1	. 4
15.	------	-------		-..---		1	5	. 6	. 3
16.	---	-------	----	------	------.	2	. 5	- 8
17.							3	. 2	. 1
19.							3	.2	1
20.	,			\cdots		-	1	. 3	. 3
21.					--	--	1		,
22.				-...	----	---.	1	. 1	. 3
23						--1.-			1.3
24.						--			. 3
25.				--.	---	----	---		. 8
26				----	---	.-.	---		1.0
28	,								1.3
29									1.3
30									,
37.									,
51....									1
Total.	29,978	61,610	53,000	73, 082	20,797	26,974	15, 329	129.6	84.5

${ }^{1}$ Eggs and larve below 7 mm . were not retained in their full numbers by the coarse-meshed nets used on cruises 8 and 9 . ${ }_{2}$ The numbers given in this class are deficient, due to failure to occupy the usual number of stations at the southern end of the area of survey where many of the larvare of this size were to be found at this time. For revised data see fontnote on p. 192.

The groups of more than average abundance were brought into prominence by a modification of the conventional deviation-from-average-frequencr method. The average numbers per cruise of the larvae at each length ("observed values" of table 6) were converted to logarithms and plotted against logarithms of lengths. Straight lines were fitted to these observed values (figure 6) from which the theoretical values were derived. These were subtracted from the logarithms of the frequencies of each cruise, giving remainders which represent the relative amounts by which the number of larvae of particular sizes deviated from the average number at partieular times in the season (last 9 columms of table 6).

Since the average curve was, in effect, an estimate of mortality by sizes, the deviations may also be regarded as frequencies from which the effect of mortality was removed, leaving only the eflects of rate of hatching, rate of growth, and, of course, the random variations of sampling. Fluctuations of hatching (resulting from fluctuations in spawning) give rise to modes, and growth causes the modes to progress from one eruise to the next. If early growth of the mackerel is exponential as in many animals and plants, the progress of modes should be along straight lines when the deviations are plotted against logarithms of length, as in figure 7. This idea influenced the selection of homologous modes marked by corresponding letters R, S, and T, in the figures.

That each series includes truly homologous groups is indicated by several criteria, independent of the straight-line conformity. In the R series, the modes all tend toward peakedness. In the S series, they all tend to be broad. In the T series they are intermediate in shape. The progress in each series is reasonably consistent and the course of growth is roughly parallel in the three series; moreover, the slight departure from parallelism is in the expected direction, the later series having the higher growth rates consistent with their development in the warmer water to which they are subjected. Furthermore, the modes are consistently present in the material from each cruise with only two execptions, R in cruise III and S in cruise IV. The absence of S in cruise IV is plainly due to failure on that cruise to visit certain stations in the southerly end of the spawning area, where previous cruises would lead one to expect

Figute 6.-Frequency distribution of lengths of harvae platted logarithmienlly.
to find larvac of sizes appropriate for this series (fig. 13, IV). Absence of R in cruise III has no such simple explanation, and can be explained only as chance sampling fluctuation.

Only one other reasonably semsible alternative to the series of homologies in figure 7 is possible. According to this alternative, R of eruises I and II would be considered forerumers of the 9 - and $10-\mathrm{mm}$. larvac of cruise IIl; S of cruise IIl considered the forermmer of R of cruses V and VI ; the 3- and 4-mm. larvae of eruise IV, the forerumner of S of cruise V; S of cruises V and V, the forerumer of R of cruise VII; and T of cruise VI, the forerunner of S of cruise VIII. But, this would not account for the presence of such prominent modes as R of cruise IV, S of cruise VII, or T of cruise VIII; and there are other objections to this alternative set of homologics which will be considerel later.

Table 6.- Deviutions of individual cruise frequencies of lengths of larvae and postlarvae from the averuge frequency ${ }^{\text {' }}$ of the 9 cruises of the season of 1932

Lungth		Arerago number per cruise			Cruises								
		Observed values ${ }^{2}$		Thenretical	I	II	III	IV	V	VI	V1I	VIII	1.
Min.	$\begin{aligned} & L o g \\ & 0.477 \end{aligned}$	Number8.470	Log number ${ }^{3}$	Log number ${ }^{3} 14.00{ }^{\text {a }}$	Dev.	Deo.	Ded.	Deo.	Der.-0.28	$\begin{aligned} & \text { Dev. } \\ & -0.04 \end{aligned}$	Der.	Dev.	Lec.
			13.93		-0. 40	-0.20	-0.13	+0.26			-0.06		
4	. 602	2,773	13.44	13.41	-. 18	-. 49	$-.07$	+.24	$-.32$	+. 51	-. 54		
5	. 699	1,045	13.02	12.95	-. 60	$-.10$	$+.23$	-. 10	+. 04	+. 39	-. 24		
6	. 778	121	12.62	12.63	-1.05	-. 14	+. 11	-. 33	$+.42$	+. 07	-. 31		
7	. 845	225	12.35	12.36	-1.25	-1.04	-. 18	-. 14	+. 60	+. 24	-. 62	-0.80	-1. 41
8	. 903	112	12.05	12.05	-1.45	-1.75	-. 45	$-.37$	$+.25$	$+.62$	-. 77	-. 5%	-. 81
9	. 954	43	11.63	11.55	-1. 55	-1.55	-. 29	-. 10	+. 18	$+.72$	-. 44	-. 33	-. 64
10	1.000	10	11. 00	11.10			-. 25	-. 62	-. 25	+.51	-. 02	-. 12	-. 56
11	1. 041	4.29	10.63	10.72			-. 02	-. 42	$+.00$	+. 36	$-.02$	+. 04	-. 44
12	1. 079	2.14	10.33	10.33					-. 03	+. 27	+. 62	+. 25	-. 26
13	1.114	1.44	10. 16	10.15					$-.15$	+.45	+. 30	-24	-1.11
11	1.146	1. 49	10. 17	10.00	-				+30	+ 30	$+30$	+. 03	-. 43
15	1.176	. 77	9.89	9.82						+. 18	$+.85$	-. 01	-. 40
16	1. 204	. 36	9. 5 ¢	9.72							+. 58	-. 013	+. 18
17	1. 230	. 37	9.57	9.81							$+87$	-. 31	-. 53
15	1. 255	. 87	9.76	9.48							+1.22	-. 53	
19	1. 278	.	9.57	93.35							+1.13	+. 01	-. 31
20	1. 301	.17	9.23	9.27							$+.33$	+. 15	$+15$
21	1. 322	.17	9.23	9.16							+.84		
\because	1. 342	. 16	9. 20	9.08							+. 82	$+.07$	+.34
\% 2	1. 362	. 14	9.15	9.00									+1.11
24	1.380	. 03	8. 48	8.90									+. 52
25	${ }_{1} 1395$. 09	8.95	8. 83									+1.0\%
26	1. 415	. 11	9.04	8.75									+1.23
27	1. 431	. 14	9.15	8.67									+1.44
\%	1. 447	. 14	9.15	860									+1. 51
29	1. 462			8.50									
30	1. 477	. 03	8. 48	8. 45									+. 97
37	1. 268	. 03	8.45	8.00									+1.42
51	1.708	. 01	8.60	7.35									+1.65

[^34]There is, in addition, external evidence that the chosen series of homologies is correet and the alternate series incorrect.

The geographic distribution of successive stages needed to fit the alternate series would not be in hamony with any possible system of drifts. The 3 - and 4 -mm. larvae of eruise IV were off Long Island and the 6 - to 8 - mm . larvae of cruise V were mainly in the offing of the southern coast of New Jersey by the next cruise. To assume that these were homologous would require drifting at an average rate of 25 miles per day, which is far too fast for non-tidal currents in this area, comparing ruther to such swift ocean currents as the Gulf Stream (Iselin, 1936, p. 4.). On the other hand, the system of homologies indicated by the letters in fignee 7 requires no fantastic assumptions as to drift. In fact, it will be shown below (p. 183) that the movements of larvae designated by this system of homologies follow a pattern closely aud definitely related to wind-impelled drifts.

Furthermore, the growth rate of the larvae that would be indieated by the alternate series is not consistent with the lengths of the smallest post-planktonic stages. The range in size and the modal lengths of small post-planktonic mackerel taken in July and August of certain years have been indieated in figure 8. Unfortunately, the carliest arailable sample of such material in the 1932 measurements was drawn August 30, nearly 50 days after the latest tow net material. It lies close to the projected S-S and T-T lines of the chosen homologies and far from the projected line that would result from the alternative homologies. That this does not result by coincidence from altered growth rates intervening between eruise material and postplanktonic material is shown by the range and modal sizes from earlier dates in 1926
and 1927 when several samples were secured by dip net early in summer. ${ }^{11}$ Their lengths (table 21) agree closely with the terminal position of the growth curves described by the chosen homologies, and are far below a growth curve predicated on the alternatives. Hence it may be concluded that the chosen series consist of truly

Figure 7.-Growth of mackerel larvae and post-larvae as indicated by the progress of modes in the levitt ions of numbers of speechmons in each size-class taken on individual cruises from the arerage umber taken on all cruises. The letters R , S , and T park the positions of homologous modes referred to the scale of dates; and the straight lines are fitted to the homologous series. The vertical interior scale is the scale of deviations in logarithms. Roman numerals are cruise numbers.
homologous modes, and that the straight lines fitted to the respective series correctly describe the larval and post-larval growth in 1932.

[^35]

Figtine 8.-Growth of mackerel larvae and post-larvae derived from the progression of modes of figure 7. The vertical lines at the upper right represent the range of sizes and position of modes (diamonds) of young mackerel collected hy dip net from pound nets in the ricinity of Woods Hole, Mass., in the years designated. The straight lines in the upper part of the graph are on the lngarithmie scale. The eurved line in the lower part represents the achal growth of the S series being plotted on an arithmetle scale.

Inasmuch as the S series had its origin in the area and near the time of maximum spawning and formed the most distinct mode in the deviation curves, it may be taken as most nearly typical of the growth of larvae in the season of 1932. In the lower part of figure 8 , the growth of this series has been plotted on an arithmetic seale from which it is readily seen that mackerel hatching in early May attain a length of 4 mm . by about May 20, 7 mm . by June $1,12 \mathrm{~mm}$, by June 15 , and 22 mm . by July 1 . This rate projected to the 22 nd of July reaches 48 mm . (nearly 2 inches), which closely agrees with the largest larva of the final cruise and also with the length of individuals in the dip net sample of July 22, 1926, which ranged from 35 to 65 mm . (1.4 to 2.5 inches).

From the above relationship of sizes and ages, and from Worley's (loce cit.) data on rates of incubation, it is possible to compute the duration and average age of beh of the egge stages and of each size-class of harvac. Apart from its value per se, this is of use in further computations of mortality rate.

This was calculated as follows: the weighted mean temperature in which the stage A eggs were found during the cruises of 1032 was $10.9^{\circ} \mathrm{C}$. At this temperature the incubation period occupies 7.23 days (Worley 1933, fig. 5). Stage A, representing the development from fertilization to complete epiboly constitutes 35 percent of the
incubation period, stage B, from complete epiboly to embryo $3 / 4$ around the yolk mass constitutes 32 percent, and stage C from embryo $\frac{3 / 4}{4}$ around the yolk mass to hatching constitutes 33 percent (Worley 1933, fig. 5). The average time occupied by these three egg stages was therefore $2.53,2.31$, and 2.39 days, respectively, and the average age of each stage was derived by simple arithmetic.

The duration of each larval length-class was computed from the formula:

$$
\text { duration }(\text { in days })=\frac{\log 1_{2}-\log 1_{1}}{0.01591}
$$

where 1_{1} is the lower boundary of the length class interral in mm., 1_{2} the upper boundary of the length class interval in mm . The constant 0.01591 is the increase per day of the logarithm of lengths computed from the straight line fitted to the points of the S series (fig. S).

The average age of each length-class was computed by the formula:

$$
\text { age }(\text { in days })=\frac{\log 1_{2}-\log 1_{1}}{0.01591}+7.23
$$

where 1_{1} is the length of newly hatehed larvae (2.8 mm .) and 1_{2} the midvalue of the length class interval. The constant 7.23 is the average age of newly hatched larvae.

The boundaries of class intervals were as follows: for 3 -mm. larrae, 2.9 to 3.5 mm .; for 4 - to $25-\mathrm{mm}$. larvae, the designated length $\pm 0.5 \mathrm{~mm}$.; for $30-$ to $50-\mathrm{mm}$. larvae, the designated length $\pm 5.0 \mathrm{~mm}$. The mid values of class intervals were: for $3-\mathrm{mm}$. larvae, 3.2 mm .; for all others, the designated lengths.

Accuracy of determination.-The resulting values for duration of egg stages and of larval-length classes are given in table 7 to hundredths of days, thus expressing a smooth curve that gives the most probable relationship for the body of data from which they are derived. Purely from the standpoint of instrumental and sampling accuracy, they have no such high degree of precision. The durations may be accurate to the nearest tenth of a day for the egg stages, and of lesser accuracy for the lar-val-length classes. The duration of the 3 -mm. class, derived by extrapolation, is especially in doubt, and may be in error by as much as a day. The other classes probably are within several tenths of a day of true values.

From the standpoint of variability in growth itself, the values are even more approximate. While growth obviously follows a curve of percental increase, there must be fluctuations about this curve due to local variations in environment affecting accessibility of food and rates of metabolism. Furthermore, the particular curve of growth given pertains only to the S group, which developed under a particular set of envirommental conditions. From figure S it appears that the carlier hatching R group, developing, on the whole, in cooler water, grew more slowly than the S group, while the later hatching T group grew faster in the generally warmer water in which it developed. Thus the R group took 56 days, the S group 50 days, and the T group 47 days in growing from a length of 4 to a length of 25 mm ., a divergence from the S group of 12 percent in one instance, and 6 percent in the other. This is by no means the extreme variation to be anticipated, for it is conceivable that temperature or other influences might vary more widely than happened in these three instances, and correspondingly greater differences of growth would follow. On the other hand, the S group developed from eggs spawned somewhat early in a season that was slightly warmer than average (Bigelow, 1933, p. 46) and thus in temperatures that would likely be reproduced in the middle portion of less unusual seasons, and therefore

[^36]the rates computed from the S group must be near the usual rate, probably within 10 percent.

Discussion of growth.-Having determined the rate of growth of the mackerel through its early life, it would be interesting to have comparisons of the carly growth of other fishes, particularly to see if logarithmic growth is the general rule. Unfortunately, there is a paucity of data on this subject, most of the material on growth of fishes being confined to the portion of life following the larval or post-larval stages. From various sources, however, it has been possible to assemble material on the early growth of three other species: the herring (Clupea harengus) in the Clyde Sea area, the haddock (Melanogrammus aeglifinus) in the waters off the northeast coast of the United States, and the northern pike (Esox lucius) of North American fresh waters.

Figure 9.- Orowth of pre-metamorphosis herring on the Clyde Sea area, after Marshall, Nicholls, and Orr, plotted logarithmleally (upper part) and arithmetically (lower part).

Since the data on these need to be formalized for comparison with the mackerel, each will be presented in turn.

For pre-metamorphosis herring caught by tow net and sprat trawl in the Clyde Sea area in 1934 and 1935, Marshall, Nicholls, and Orr (1937, pp. 248-51) determined the median lengths at successive intervals of time. Plotting the median values against age, they concluded that "The points do not lie on a straight line but it is obvious that, apart from four points, a straight line expresses the relationship best." Their curve is reproduced in the lower part of figure 9, and the four exceptional points thought by them not to have represented the main shoals are indicated by question marks. When the same data are plotied logarithmically, as in the upper part of figure

9 , it is seen that logarithmic curves with a change in slope at 30 days of age, or length of 19.5 mm ., fit the points as well or better than does the straight line in the lower part of figure 9 .

The observations on haddock (Walford, 1938, p. 68-69) were taken in a manner similar to those on mackerel. In fact, the material consisted mainly of haddock larvae caught on our mackerel cruises. Walford summarized these by months, giving frequency distributions for each of the four months: April, May, June, and July. From these polyınodal frequency distributions, he sclected modes that he considered to be homologous, recognizing three such series. Taking his middle scrics as perhaps the most typical, the modal values, as nearly as can be read from his figure 50 , were

Fioure 10.-Orowth of haddock during early life. Data from Walford, 1038.
$3,3.5,18$, and 43 mm . on the mid-dates, April 11, May 15, June 17, and July 17, respectively. According to Walford, the 3 mm . mode of the first cruise consisted of recently hatched individuals. Assuming this size to be zero days old, the logarithms of the modal sizes were plotted against age in figure 10, whence it is apparent that the growth of the haddock was logarithmic as in the mackerel. ${ }^{12}$

Data on the northern pike (Embody, 1910) consisted of the average length in samples of two or more specimens drawn from a population reared in the laboratory at water temperatures of 65° to $72^{\circ} \mathrm{F}$. Since the data are not readily accessible, they are repeated below: ${ }^{13}$

Age in days after hatching:	-	Total lenout in \|millimeters	Age in days after hatching:	Total length in millimeters
0..---------------		-.-- 7		-. - 13
2		- 9.25	7	114
3		-- 10.5	9	15.25
4.		-11.5	11.	- 16

1 Sae absorbed.

[^37]Plotted on a logarithmic scale, these values describe the curve given in figure 11. It is interesting to note that the change in slope approximately coincides with yolk sac absorption.

For ready comparison the growth curves of mackerel and of these other species are assembled in figure 12. In all of them, length was used as an index of size. Mass or volume would be a more nearly true index. However, if there is no change in form, length would serve well to test for logarithmic growth since a certain power of length would be proportional to the mass or volume, and in logarithmic plots the only difference between the two would be a difference in vertical scale. Since the mackerel and haddock undergo little change in form during early life history, a simple logarithmic curve well fits their growth as indicated by length. The herring larva, on the other hand, is slender and almost eel-like when young, growing stouter as de velopment proceeds. This being true, length overestimates size early and under-

estimates it later. This may be the reason for the nearly linear arrangement of points when lengths are plotted directly against age. Further, the change in slope when the logarithms of lengths are plotted against age suggests that the change in form is greatest at about 30 days of age when the herring is about 18 mm . long. The growth of the northern pike, too, shows a change in slope. In this instance it approximately coincides with yolk sac absoption, hence this might as easily be a real change in growth rate due to difference in food availability or assimilation rather than an apparent change due to altered form. Evidence from the information available on these several species supports the view that growth in the early life of other fishes, as well as the mackerel, is logarithmic in character and at a uniform percental rate throughout this stage of life except when there is a change in mode of living (e. g., yolk sac absorption) and that the use of length as an index of size may complicate interpretation of growth rates when there is considerable change in form.

DRIFT AND MIGRATION

The current system in the waters overlying the continental shelf between Cape Cod and Cape Hatteras has yet to be studied. Evidences collected during this investigation from releases of drift-bottles and computations of dynamic gradients, the latter subject to large errors of interpolation, were not sufficiently conclusive to deserve publication. They indicated slight tendency for movement in a southwesterly direction parallel to the coast, probably not strong enough to transport eggs and larvae of the mackerel important distances.

On the other hand, evidence from the distribution of mackerel eggs and larvae themselves leads to definite conclusions. From the growth curve of larrac, figure 8, or from the position of homologous modes in the deviation curves, figure 7 , it is possible

Figure 12.-Growth of northern pike, herring, mackerel, and baddock.
to ascertain the lengths attained by certain groups of larvae at each successive cruise. By plotting the geographical distribution of larvae of these particular lengths in successive cruises, as in figure 13 based on the S series, their movements may be followed.

In general, this series represents a population spawned over the continental shelf off the New Jersey coast. Larvac hatehed from these eggs remained in this area until they reached a length of 8 mm . about a month later. Thereafter, there was a northeasterly shift which brought the population to the region just south of Long Island at the end of their second month when they were about 20 mm . long. Movement toward the northeast probably persisted still longer, for the only individuals large enough to have been members of this series were taken at stations along the east coast of Massachusetts (Chatham II and Cape Anne II in table 20) during the cruise of July 14 to 28 . Although there is local spawning in Massachusetts Bay, it is unlikely that it was responsible for these large individuals, because spawning usually is later in Massachusetts Bay, and the locally produced larvae could not have grown to as large a size as the 37 - and $51-\mathrm{mm}$. post-larvae taken on July 22.

Examining in greater detail the distribution in the successive cruises, two concentrations were evident within the area over which the larvae of this series were distributed. One may be called the northern center; the other, the southern center. The northern center was off the northern part of New Jersey (New York II) ${ }^{14}$ in the

CRUISE.	DATE	Stage	CONTOUR INTERVAL
1	MAY 3-5	A \& B	1000
II	May 10-4	3 Mm	750
III	MAY 21-23	4.6 MM	300
II	MAY 24-28	5-8MM	150
F	JUNE 2-5	8.8 MM	100
71	SUNE S-8	8-IOMM	50
\#11	JUNE 16.19	$13-15 \mathrm{Mm}$	2
VII	JUNE 23JUL. 1	19.22 mm	0.05

Fioure 13.-Location on successive cruises during 1932 of the population of mackerel comprising the S group, as indicated by the relative concentration of larvac of appropriate sizes. The Arabic numerals at the ends of rows of stations give the day of month on which each row was occupied.
early egg stages. In the successive cruises it may be traced to the north central coast of New Jersey (Barnegat I), to the southern part of New Jersey (Cape May II, III, Atlantic City II), back to the south central portion of the New Jersey coast (Athantic City I), to the north central portion (Barnegat I), to the northern portion (New York II), to the offing of Long Island (Shinnecock II and Montauk III), to the Long Isłand coast (Shinnecock I and II), and finally to the offing of eastern Massachusetts (Chatham II and Cape Anne II).

[^38]The southern center shifted southward from off Delaware Bay (Cape May II) half way to the Chesapeake Capes (Winterquarter I) where it remained during the following cruise and possibly the next one also, though these stations were not visited on the fourth cruise. During the fifth cruise it was found farther north and seaward in the offing of the southern New Jersey coast (Atlantic City III and Cape May IV). Next it appeared to join the northern center and was apparent as a tongue extending from this center to the offing of the middle of the New Jersey coast (Atlantic City II). Thereafter its location apparently coincided with the northern center.

During the time that the two centers were separate they moved in essentially identical directions (fig. 15). Both moved southward from May 3 to May 22 and then northward until June 7, apparently under a common impulse. If the resultants of wind direction and force during the cruises be plotted, ${ }^{15}$ as in figure 15 , it is seen that the strong winds blew in essentially the same direction as the larvac moved, southerly until May 22 and then northerly until June 7. Obviously the wind, by drifting the surface water, was responsible for the transport of the larvae. After June 7, however, the movements of larvae did not correspond so closely with the movements of the wind (fig. 16) and must have been to some extent independent of them. Thus the movements of the population of mackerel larvae may be divided into two phases, an carly passive phase and a later active phase. The break between the two came, as might. be expected, when the larvac, at a length of $8-10 \mathrm{~mm}$., developed fins (p.171) and graduated from the larval state to the post-larval stage. The morements in the two stages will be considered in detail separately.

During the passive phase, although the morements of the two centers of larvae are essentially similar and both correspond to that of the wind, there are minor differences worthy of note. The southern center was found at the same place on eruises II and III in spite of considerable sustained wind from the northeast and corresponding movement of the northern center in the interim between the cruises. Later there was the great shift of the southern center between crises III and V without correspondingly great wind movement and without correspondingly great drift of the northern center. To some extent these discrepancies may be due to failure precisely to locate centers of distribution with the stations as far apart as of necessity they were. ${ }^{16}$

But it is more likely that the peculiarity in the relation of the drifts of the northern and southern centers has a physical rather than statistical basis. The outstanding peculiarity was that the northern center traced a course in a southerly dircetion almost equal in distance to its return in a northerly direction (up to cruise VI) whereas the southern center moved southerly a much shorter distance and then returned northerly a much greater distance. Considering now the topographical features, it is noticeable that at the northern and middle portions of the area the continental shelf is broad and the water relatively deep, while at its southern end the shelf narrows sharply and the water is much shoaler. A water mass impelled by the wind could move in a southerly direction freely until it reached the narrow, shoal southerly end where it must either: (1) stream very rapidly through the "bottle neck" at the southern extremity; (2) turn out to sea; or (3) pile up temporarily.

[^39]

That it did not do (1) or (2) is proved by the relative scarcity of larvae of appropriate sizes at stations of the Chesapeake section and the outer station of the Winterquarter section; though the few caught at Chesapeake II, III, and Winterquarter III indicate a slight tendency for southward and outward streaming. That (3) was the major result is shown by the "snubbing" of the southern center in its southward travel and by the increase in numbers of larvae in the southern center relative to the number

Figure 15.-Drift of the 2 centers of distribution of the S group compared with wind movemonts, as recorded at Winterquarter Lightship.
in the northern center, ${ }^{17}$ as if indeed the water and its burden of larvae did pile up in the vicinity of Winterquarter I. This piling up very likely was in the nature of a thickening of the surface stratum of light water offset by a depression of the lower layers of heavier water rather than an outright raising of the water level. Of course, the depressing of the subsurface stratum would set up a subsurface flow to restore equilibrium. This flow would not transport the main body of larvae, since they were

[^40]confined to the upper stratum (p. 172); it could and probably did carry a few that happened to be near the interface as indicated by the light spread of larvae southward and outward to Chesapeake II and III and Winterquarter III.

While this accounts for the halting of southerly drift of the southern center and its increase in relative numbers, there is still to be considered the apparently too rapid drift of this ecnter northward when the wind direction was reversed. Let it be supposed that the aforesaid piling-up of surface waters took place more rapidly than could be counterbalanced by subsurface flow. Then the sea surface would actually have risen and remained at a higher level as long as the wind continued to transport surface water to the area faster than the subsurface water could flow away. Then when the wind reversed its direction, the energy so stored would be released and aet in the same direction as the wind. The two forces together would produce a faster drift than could result from the wind force alone, and thus aecount for the high rate of movement of the southern center between May 22 and June 3.

Whether the interactions of the wind forces and water movements here postulated were theoretically probable from dynamie considerations must be left to the physical oceanographer. He can find here an example of biologically marked water probably of considerable aid in the deciphering of the pattern of circulation in shallow water, where difficulties of dynamic analysis are heightened by topographical features, and where a better understanding would be of greatest practical use in dealing with fishery problems.

Whatever the outcome of any future examination of the dynamics of this situation, the outstanding resemblance of the main features of wind movement to larval drift, together with the fact that deviations from the parallelism between the two have a plausible though not proved explanation, leaves no doubt that the larvae (and the water with which they were surrounded) were drifted from place to place by the wind's action on the water, and that this alone accounted for their movements until they reached the end of the larval stage at a length of about 8 to 10 mm . and entered upon the post-larval stage.

Subsequently the movement of larval concentrations corresponded less perfectly with that of the wind (fig. 16). Between cruises VI and VII, when there was a gentle easterly wind movement, the post-larvae also moved eastward, but proportionately father than might have been anticipated from the moderate wind movement. Between cruises VII and VIII, when there was a northeasterly wind movement, they moved northwesterly. After eruise VIII it is difficult to be sure of the homology of the group under consideration, but the only post-larrac (lengths 37 and 51 mm .) of eruise IX identifiable as belonging to this group were caught at Chatham II and Cape Ann II, off eastern Massachusetts. The indicated movement was in the same general direction as the prevalent strong wimds, but again suffieiently divergent to indicate some independence. Since the drift of water under impulse from the wind accounts for only a portion of their movement and since such evidence as is available on residual surface flow in this region ${ }^{18}$ indicates water movement westerly, hence in a direction contrary to the movement of the post-larvae, the evidence does not favor the transport of the post-larvae as purely passive organisms, and it must be concluded that they moved to an important extent by their own efforts.

This is in complete harmony with their developmental history. As larvac, without swimming organs other than the rather flaccid finfold, they drifted with the

[^41]current; as post-larvae, with capable fins, they were able to swim and exercised this faculty. The change in locomotive ability coincided with change in method of transport.

Thus far, attention has been focused on the main centers of larval concentration. It will have been noted in figure 13 that there were indications of a smaller body of larvae not included in the groups whose centers were followed. This body probably became separated from the southern center about May 23 , when the center was at its extreme southerly position, and, as previously pointed out (p. 187), there wrs a spread to Chesapeake II and III and Winterquarter III, probably consisting of only

Figure 16.-Drift of post-larvae of the S group compared with wind movement, as recorded at Nantucket Shoals Lightship.
those larvac that were at the interface between the accumulating surface water and the outward streaming subsurface layer (p. 187). Having been caught in this outward and perhaps somewhat northerly flow, their northward drift could start sooner and would take place farther offshore than the drift of the southern center itself. With this in mind, it is easy to account for the catches at Atlantic City IV on cruise IV and at Montauk II and No Man's Land II on cruise VI. That they did not appear on other cruises is not surprising, for their numbers were few (1,1 , and 2 were canght at the respective stations above mentioned) and as the result of chance fluctuations in random sampling they could easily fail to appear in our hauls.

The average rate of movement of the S group larvae during the period from May 4 to June 6, while they were dependent for transport on wind-impelled drift, was 6 nautical miles per day. As nearly as may be estimated from data recorded on the Beaufort Scale, the net wind movement in the direction of the resultant (neglecting forces under Beaufort 3), was about 60 nautical miles per day. The movement of the center of post-larval abundance between June 6 and July 1, accomplished in part by swimming, averaged $31 / 2$ nautical miles per day. If the movement of post-larvae between June 27 and July 24 may be taken as from off Shinnecock to off Chatham, the average rate during this period was 6 nautical miles per day.

The movements of the R and T groups of larvae can be traced in the same manner as were those of the S group. The R group, beginning with cruise I, as 3 to 5 mm . larvae, moved southward from the Winterquarter section to the Chesapeake section. Like the S group, they remained at this southern extremity of the range through cruise III and also probably through cruise IV, though during the latter cruise there were not sufficient stations occupied in this area to prove this. On cruise V, however, they were found to have moved northward to Cape May, and on cruise VII were discovered off Shinnecock. At the beginning of this northerly movement, they were already 8 to 10 mm . long, and thus capable of swimming. With favoring winds during all but the last portion of this northerly trip, their movement was rapid, averaging 11 nautical miles per day.

The T group could not be so readily followed, but in general its movements were with the wind in the larval stage and indifferent to the wind in post-larval stages. Between cruises III and VI, when the winds were from the southwest, it shifted in an easterly direction from the Shinnecock section to the Martha's Vineyard section. The correspondence between wind direction and this movement was not as perfect as that of the S group, formerly described. From cruise III to cruise IV, there appeared to be a spread in both easterly and westerly dircetions, and between IV and V, there was a contraction toward the center of the group off Montauk Point. These changes in distribution may be indicative of spurts of spawning rather than movements of the egg population, for they occurred during periods of egg development, and the stages chosen may not have been exactly the continuation of the original stage A eggs of cruise III. It probably suffices to note that when first seen as stage A, they were off Shinnecock, and by attainment of lengths of 4 to 5 mm . at cruise VI, they were off Martha's Vineyard. Then between cruises VI and VII, with only a slight wind movement from the west, the zone of densest larval population remained at Martha's Vineyard, though fair numbers were as far west as Shinnecock. Between cruises VII and VIII, while the winds were from the southwest, the members of this group spread over the waters abreast of Long Island, extending from the New York to the Shinnecock section. During this interval they had grown into the post-larval stage, 10 to 12 mm ., when swimming activity made their movements fairly independent of the wind.

It may be concluded therefore, that the movement of eggs and larvae (up to 10 mm . in length) in the southern spawning area between Cape Cod and Cape Hatteras was governed by the drift of surface waters, and this, in turn, by the direction of the stronger winds during the 40 days while the mackerel were passing through these phases of development and growth. These drifts may be as fast as 6 nautical miles per day and may convey the mackerel several hundred miles. After reaching the post-larval stage (10 mm . and upward) the movements are less dependent on drift, and probably are considerably aided by the tiny fisbes' own swimming efforts. The
average rate of movement is sometimes about $3 / \frac{1}{2}$ nautical miles per day and may at times, on the part of the largest individuals, attain eleven nautical miles per day. In 1932, the combined drift and swimming movements brought the larvae to the shores of Long Island and southern New England.

MORTALITY

Outstanding in the early life history of marine fishes is the high mortality in early stages. At sea, this is evident from the low numbers of larvae compared to the high number of eggs taken in plankton tows. In marine fish hateheries, it has been evident from the high loss of larvae in all attempts to keep them beyond absorption of the yolk sac. It is probable that the fish cultural experience led to the generally accepted theory that the time of yolk sac absorption is the most critical period, and that it is so because the fish at that time must find proper food or die as soon as all the yolk is gone. Moreover, Hjort (see p. 207) believed that annual variation in the times and places of plankton inerease during spawning might be such that an abundance of the right kind of food might coincide with this critical stage in one year and not in another. The coincidence of the two would produce a successful year class; the non-coincidence, a failure.

However elaborate the theory, it has yet to be proved at sea that the yolk sae stage is critical or that the annual variation of mortality in this stage is responsible for the variation in year-class strength. Thus, a determination of mortality of the young stages of mackerel in 1932 is not only of interest in itself, but has an important bearmg on the general theory of fluctuations in fish populations. Inasmuch as the year class of 1932 has subsequently failed to appear in the commercial stock in important numbers (Sette, 1938), the present examination of mackerel mortality in the season of 1932 deals with the record of a failing year class and should bring to light the stages that were critical in its failure.

Determination of mortality.-There is at hand a simple way of determining the mortality rate of that year if it may be assumed that all the various egg and larval stages were sampled in proportion to their abundance in all parts of the spawning grounds, and during the entire period of planktonic existence. Then a frequency distribution of the summed numbers at each stage through the season would express their average relative numbers and constitute a survival curve. Although the sampling in 1932 approached a stage of perfection warranting treatment based on this general plan, there were nevertheless imperfections requiring secondary modifieations, as will be explained.

The actual drawing of hauls appears to have been qualitatively and quantitatively adequate. At each station, all levels at which eggs or larvae might be expected to oceur were sampled uniformly, and the subsequent adjustment for volume of water strained per meter of depth provided totals at each station which may be taken as the summation of individuals below 17.07 square meters of sea surface, irrespective of their level in the water. Comparison of 1 -meter and 2 -meter net hauls indicated that there was relatively little selective escapement from the nets (p. 215). Also, the towing stations formed a pattern reasonably well covering all parts of the important spawning grounds off the United States coast.

On the other hand, in some respects the samples did not adequately cover the entire season. At the time of the first cruise, spawning had already begun and larvae were taken for which there were no corresponding eggs. Similarly, foree of circumstances prevented cruises from being taken as frequently in July as earlier in
the season, and also prevented their continuation into August. Thus, there was less opportunity for taking large larvae corresponding to the eggs and small larvae of the earlier cruises. However, the cruises did thoroughly cover the major portion of the season of maximal spawning and subsequent larval development; so there need be only a treatment which excludes from comparison the large larvac early in the season and the eggs and young larvae late in the season which were not proportionately represented in the other stages of their planktonic existence.

This was done by taking the average numbers of eggs and larvae per cruise for the several cruises that spanned the period of maximal numbers of each stage of egg and larva. ${ }^{19}$ The selection of cruises for these avcrages was as follows: for egg stages A to C, cruises I to IV; $3-\mathrm{mm}$. larvae, cruises II to $\mathrm{V} ; 4-$ to $7-\mathrm{mm}$. larvae, cruises III to VI; 8- to $9-\mathrm{mm}$. larvae, cruises IV to VII; 10- to $12-\mathrm{mm}$. larvac, cruises V to VIII; 13- to $15-\mathrm{mm}$. larvae, cruises VI to IX; 16- to $22-\mathrm{mm}$. larvae, cruises VII to IX; and $23-$ to $50-\mathrm{mm}$. larvae, cruise IX.

Table 7.-Survival of young stages of mackerel in 1992

Categorles ${ }^{\text {a }}$	Duration of cstegery ${ }^{2}$	Average age of category ${ }^{2}$	Frequeacles		Survival per million newly spawned eggs			
			Average per crulse ${ }^{3}$	Arerage per cruise ad. justed for dusation of eategory 4	Logarithmie values		Arithmetie values	
					Empirical 1	Com. puted ${ }^{6}$	$\underset{\text { icsl }}{\text { Empir }}$	Com. puted ${ }^{8}$
Ege stages:	Days	Days	Number	Number	Log		Number	Number
A......	2.53	1.3	16,900	B, 650	5. 866	5. 915	735.000	822,000
$\stackrel{8}{\mathrm{C}}$	2.32	3.7	12, 600	5,430	5.776	4. 759	597, 000	574,000
Fish leagths (millim	2.38	6.0	12,500	5,250	5.761	5. 609	576,000	406,000
3.2..-..........	5. 14	9.9	9,310	1,810	5. 299	5. 354	200, 000	226,000
4.	6. 86	16.0	4,250	622	4. 835	4. 957	68. 400	90, 600
5.	5. 48	22.1	1,760	321	4. 547	4. 559	35. 200	36, 200
6.	4.56	27.1	717	157	4.237	4. 233	17,300	17, 100
8.	3.91	31.3	403	103	4. 054	3.959	11,300	9, 100
8.	3. 41 3.04	34.9 38.1	192	56.3	3. 791	3. 724	6, 180	5,300
10	2. 73	41.0	18.4	24. 6.74	3. 2870	3.516 2.950	2, 760	3,280
11.	2.48	43.6	7.70	3. 10	2. 532	2. 483	340	304
12	2.28	46.0	4.95	2.17	2. 377	2. 372	238	236
13	2. 10	48.2	2.98	1.42	2. 193	2. 271	156	187
14.	1.95	50.2	3.38	1. 73	2. 279	2. 179	190	158
15.	1.82	52.1	1. 72	. 945	2. 016	2. 092	104	124
16.	1.71	53.8	1. 10	. 643	1.849	2.013	71	103
17.	1. 60	55.5	1. 10	. 688	1.879	1.935	76	86
18.	1.52	57.1	1. 30	1. 118	2. 090	1.861	123	72
19	1.43	58.5	1. 10	. 769	1.927	1. 797	85	63
20.	1.37	59.9	. 533	. 389	1.631	1. 733	43	54
21	1.27	61. 3	. 500	. 388	1. 630	1. 668	43	47
22	1.24	62.5	. 467	. 377	1. 617	1. 613	41	41
23.	1.19	63.8	1. 300	1. 092	2.078	1. 553	120	36
24.	1.14 1.09	64.9 66.0	. 300	. 263	1. 461	1. 502	29	32
25.	1.09 8.85	66.0 71.0	.800 3. 900	.734 .451	1. 1.907 1.695	1. 4.422	81	28
40.	6.86	78.9	3. 800	. 45437	1.695 .681	1.222 .858	50	17
50	5. 72	85.0	.100	. 0175	. 284	. 577	2	4

${ }^{1}$ The categerirs of egg stages are defined on p. 178, the categories of larval lengtbs are the midpoints of the class interval.
See text p. 179.
3 See text p. 192.
4 Items in the third colums divided by the Jtems in the first colums.

- Logarithms of the items in the fourth column plus the constant 2.0in.
- Tbese are the values represeated by the heavy lines of fg .17.

This selection provides a series that approximately follows the eggs of cruises I to IV through their subsequent stages. Since by far the largest numbers of eggs were

[^42]taken on the first 4 cruises, the treatment includes the population resulting from the major portion, perhaps 70 percent, of the season's spawning. It of course ignores the fate of the fewer eggs spawned prior to or later than the first four cruises, but the neglected portion is probably so small that it is unlikely that the survival of the whole season's brood of young differs from that of the treated portion. It could do so only if the mortality of the neglected portion differed widely from the included portion. There appears to be no reason for believing that there was any such wide difference. On the contrary, examination of the relative numbers of the various stages and sizes caught on those cruises which included a part of the history of the neglected portions suggests that these had a survival rate similar to that of the included portion.

Having the average relative numbers of each category of egg and larva from this selected series (table 7, column headed "Average per cruise") there remained the necessity of adjusting the numbers to compensate for the differences in the duration of

Figure 17.-Surviral of young stages of mackerel in 1932. Solid dots represent the means of three or four eruises each. Open eireles represent the less reliable values based on only one crulso. The heavy lines represent a simple interpretation of survival rates, and the fine lines, a more complex alternative interprotation. Solid lines are flted to the solid dots by the metbod of least squares. Lines of dashes connect their ends, and the line of dots and dashes is an extrapolation.
time represented by each egg stage and each larval-length class. The stages or classes representing a long period of development would be passed slowly and the catches of such a category would represent a larger acemmution of indiriduals than a category representing a shorter period of development. Since the accumulation would be directly proportional to the duration of the category, the true relative values were obtained by dividing the numbers of individuals in each category by the number of days refuired to pass through that category, according to the schedule, given in the column headed "Duration of category" of table 7 . This, in eflect, reduces the data to represent what the relative numbers would have been had it been possible to subdivide the material into categories that occupied uniform time intervals-in this
instance, one day. The resulting values are given in the fourth column, and the logarithms of these (column 5) of table 7 are plotted in figure 17.

Reliability of the survival curve.-The determination of the survival curve was based on plankton bauls generally considered to be only approximately quantitative, it utilized only selected portions of the original material, and it involved extensive computations. The reliability of the result therefore depends not only on quantitative adequacy of the original material, but also on whether the subsequent procedure introduced any biasing influences. The following discussion will draw attention to the facts which appear to have an obvious bearing on reliability. Unless some pertinent features have escaped notice, the conclusion is inevitable that this survival curve has surprisingly high reliability for all stages up to the length of 22 mm ., or, for the first 60 days of life.

Considering first the collection of material, attention may be confined to those influences that might possibly cause large larvae to be caught in relatively greater or lesser proportion than small larvae, for it is only by such "size selection" that the slope of the survival curve, and hence the conclusions as to mortality rates, could be affected. On this score there are two possibilities: the nets' catching ability might differ for different sizes of larvae; or the distribution of the larvae might vary in such a way as to cause a less complete sampling of one size than of another.

In the appendix (p .215) there is given evidence which appears to be indicative, if not conclusive proof, that the nets caught practically all the larvae in the paths of their travel, at least up to the 22 mm . size; hence net selection was probably not a biasing influence in this size range.

Since the nets were fished from surface to below the thermocline, and since the larvae probably do not descend below that point (p. 173), and since straining was substantially uniform for all levels fished, there is little likelihood that differential vertical distribution was a biasing factor. There remains, then, the possibility that larvae of different sizes had different horizontal distributions, and that these distributions differed in a manner which would have affected the relative adequacy of the sampling of the various sizes.

For small larvae up to 10 or 12 mm . in length, the drift was determined (pp. 183 to 191) with sufficient precision to establish the fact that the population of these sizes did not drift out of the area sampled. The majority of large larvae 22 to 53 mm . long, however, taken off eastern Massachusetts on the final (ninth) cruise, were outside the area covered on earlier cruises. Could, then, a portion of the population of medium sizes (12 to 22 mm .) have left the waters south and west of Nantucket Shoals, that is, the area of survey, prior to the ninth cruise, and thus have been undersampled? If so, they should have been found in the intervening area during the eighth cruise, which, fortunately, included that area. This cruise took place shortly after the main portion of the larval population was in the $12-$ to $22-\mathrm{mm}$. size range. It included stations around Nantucket Shoals and on the portion of Georges Bank just east of the Shoals; ${ }^{20}$ hence, in the area through which larvae would have been drifting or swimming if they had, by this time, begun their movement north and east past the Shoals. Since no larvae of these sizes were taken there, it seems unlikely that these sizes were undersampled as a consequence of emigration from the area south and west of the Shoals. In other words, the intermediate, as well as small sizes of larvae, were sampled in approximately their true proportions.

[^43]For the larvae over 22 mm . long there is no evidence to determine whether or not they were caught by the nets in their true proportions. On general grounds, one would expect that they could clude the nets, though the taking of a specimen as long as 51 mm . shows that the gear could catch at least some large-sized larvae. Offsetting the probability of undersampling the larger sizes, there is the opposite probability of oversampling them, because the stations were somewhat more closely spaced (see fig. 14) in the area north and east of Nantucket Shoals, where they were found, than south and west of the Shoals, where the smaller sizes were most abundant. Whether or not the loss of large larvae by eluding the nets and the gain by possible oversampling as the result of closer station spacing offset each other perfectly is indeterminable from the available data. Hence, the mortality determination is of uncertain reliability for sizes over 22 mm . For those smaller than 22 mm ., the determination is reliable as far as collecting methods are concerned.

Having found little reason to suspect size-connected biases in collecting, excepting possibly for sizes over 22 mm . long, two questions remain: were the hauls themselves sufficiently quantitative to give reliable indices of abundanee for each station; and were the stations spaced properly to give a reliable summation of abundance for the entire area? To answer the first question separately would require a study of the variation in series of duplicate hauls, and is precluded for lack of material, but both questions may be answered simultaneously by a study of the relative numbers caught at the various stations in relation to the probable nature of distribution of numbers of individuals in the sea.

Inspection of charts of egg or larval distribution (fig. 13) suggests that the pattern of concentration has a form closely related to a normal frequency surface. Near the middle of the area in which eggs or larvae occur are one or several stations with very high concentrations corresponding to the mode; surrounding these are more stations with decidedly lower concentrations corresponding to the slopes; and at the periphery are many stations with very low concentrations corresponding to the "tails" of the normal frequency surface. Let us assume, for the monent, that the concentrations of eggs really do form a normal frequeney surface. Then the number of a particular stage caught during a particular eruise is a reliable index of the abundance of that stage at that time, provided that: the stations where the catches were made were so located as to give proper relative representation of the various parts of this normal frequency surface, sucli as the mode, slopes, and tails; and that the catches also were sufficiently reliable to provide the true relative numbers to be found at the various parts of this surface. Therefore, a test as to the conformity of catches to the normal frequency surface would at onee indicate whether the above assumption is correct; whether the catch stations were arranged so as to sample adequately the various parts of the distribution; and whether the hauls themselves were quantitatively reliable.

To translate the normal frequeney distribution into a convenient form for making the tests, table 8 has been prepared. ${ }^{21}$ It was derived from the curve of the normal frequency distribution where, for unit standard deviation and unit N

$$
y=0.3989 e^{-\frac{x}{2}}
$$

[^44]by calculating for values of y (catch magnitudes) the corresponding values of x^{2} (relative number of catches) over a range of y from 10,000 to 5 and at intervals of 500 for the first 19 classes, of 25 for the next 19 classes, and of 5 for the next 4 classes. For convenience the x^{2} series was converted to values giving a cumulative total of approximately 1,000 (actually 999.96). This table can be used for any range of catch sizes in which the maximum is not more than 2,000 times as large as the minimum, by first multiplying the empirical values by 10,000 times the reciprocal of the maximum catch. Linear interpolation is fairly accurate in the table ranges of 10,000 to 5,000 and of 500 to 250 ; but the work is facilitated and is more accurate for all parts of the range when the tabular values are graphed.

Table 8.-Relative number of catches of given magnitudes to be expected from a population of organisms distributed in the form of a normal frequency surface

Magnitude of catch	Number of catches, cunulative	Number of catches, by classes	- Magnitude of catch	Number of catches. cumulative	Number of catches, by classes
10,000...			425..	415.44	
9,500...	6.71		400.	423.40	8. 9
9,000	13.82		375.	431.89	
8,500	21.32		350.	440.97	
8,000	29.28		325	450.71	
7,500..-	37.77		300.	461.24	
7,000	46.85	0.8	275.	472.69	12.45
6,500	66.59	0.7	250	485.26	,
6,000...	67.12		225.	499.14	
5,500...	78.57		200.	514.67	
6,000...	91.14	12.57	175.	532.24	
4,500 \ldots	105.02		150.	552.50	
4,000	120.55		125.	576.52	
3,500	138.12	17.07	100.	605.86	.
3,000	158.38		75.	643.69	
2,500	182.40	4.02		697.05	
2,000	211.74	2.34	25.	785.24	
1,500	249.57			817.58	
1,000	302.93			855.41	
500.	394.12			008.77	
475.	400.83			999.98	
450.	407.94	7.50			

In table 9 there are given, as an example, the computations involved in determining the class limits for dividing the catch magnitudes into 5 categories, using the data for stage A eggs from cruise I . Since the sampling of the plankton usually was of a portion that permitted detection of eggs down to 20 per station, 20 was taken as the minimum, giving a range of 5806 to 20 for catch magnitudes (first and last items in column 4 of the example). Multiplying these by $\frac{10,000}{5,806}$ gives 10,000 to 34 as the corresponding tabular range (first and last items of column 3 of the example). Entering table 8 with catch magnitude 34 , by interpolation, it is found equivalent to a cumulative catch number of 755 , and this figure is entered as the last item in column

Table 9.-Example of the computation of limits for 5 classes within each of which an equal number of catches would be expected if the distribution of stage A eggs during cruise I conformed to a normal frequency surface; and the actual and theoretical number of catches for these class limits

1	2	3	4	5	6
Equal fifths, cumulative	Tabular number of catches expected. cumulative	Tabular class limits for catch magnitudes	Actual class limits for catch magnitudes	Actual number of catcbes	Theoreticsl number of catches
0.0.		10,000	5,806	2	1.8
0.2-	151	3,190	1,853	1	1.8
0.4.-	302	1,010	586	4	18
0.6.	453	321	186	2	18
0.8	604	102	59		
1.0..	755	34	20		
Total.				9	9.0

2 of the example. It indicates that $755 / 1000$ of the frequency surface is to be taken into account. Then 755 is multiplied by the items in column 1 of the example, giving the series of items in column 2. Successive differences in this series would represent equal fifths of the frequency surface out to 755 , but it is, of course, not necessary to compute these differences. The corresponding catch magnitudes are secured by entering table 8 in the column of "Number of catches, cumulative," and reading, by graphical interpolation, from the column of "Magnitude of eatch." This gives the series of column 3 in the example. These represent the class limits within each of which one-fifth of the catches would fall if the maximum and minimum had been 10,000 and 34 , respectively, and the distribution of eatch magnitudes conformed perfectly to the distribution expected from a normal frequency surface. Since they were, instead, 5,806 and 20 , respectively, the factor $5,806 / 10,000$ is used to convert them from the tabular to the actual basis, giving the values in column 4 in the example. Between each pair of successive figures there should be found, theoretically, an equal number of catches of stage A eggs from cruise I. In the first column of table 19, cruise I, the adjusted totals of individuals of stage A are given, and a count of those lying between each pair of specified class limits gives the numbers in column 5 of the example. Since the total number of catches was 9 , neglecting those below 20 , the theoretical number for each class is $9 / 5$, or 1.8 , as given in column 6 of the example.

When the same computations are performed for the stage A eggs of cruises II, III, and IV, and the actual number of catches are added together, by classes, there results the series of values given under the appropriate heading in the first line of table 10. There are now enough items in each class to apply the χ^{2} test; and the probability P, that random variation would exceed the actual variation, is found to be 0.85 . This value would appear to be rather high; but when the work is done for the remaining stages up to 22 mm . With due regard to the necessity of having fewer classes for the later stages in order to keep the numbers per class high enough to use the χ^{2} test, it is found that the values of P are distributed almost exactly as would be expected, for there are 7 of them below and 8 above 0.5 , and the mean is 0.53 . Hence it must be concluded that the catch magnitudes of stages up to 22 mm . larvae are related to each other quite as would be expected had these stages been distributed in the sea in conformity with the normal frequency surface.

Table 10.-Summary of test to determine whether the magnitudes of catches of eggs and larvae conformed to the distribution expected from sampling a normal frequency surface

Stage	Cruises included	Lower limit of catch magnitude	Actual number of catches by classes					Expected number of catches in each class	x^{2}	P
Eggs:										
	I-IV	20	8	8	10	6	6	7.6	1.4	0.85
B	I-IV	20	8	13	9	9	$\stackrel{9}{12}$	9.6	1.6	. 80
Larvae (millimeters):		2		9						
3---------------	II-V	20	7	8	13	6	7	8.2	3.7	. 44
4.	111-VI	20	9	7	9	4	5	6.5	3.0	. 55
5.	111-V1	10	6	6	8	9	4	6. 6	2.4	. 67
6.	111-T1	5	10	4	8	3	4	5.8	6.3	. 18
7.	111-V1	1	7	8	6	9	5	7.0	1.4	. 85
8	1 V -V11	1	6	5	4	4	10	5.8	4.3	. 36
9.	IV-V11		(1)	4	4	3	9	5.0	4.4	. 22
10.	V-V111	$1-20.10$	(3)	(3)	8	6	7	7.0	. 3	. 82
11.	V-VIII	1-2.10	(3)	${ }^{(3)}$	7	2	10	6.3	5.2	. 07
12	V-V111	1- 2. 10	${ }^{(3)}$	(3)	7	5	2	4.7	2.7	. 27
13-15.	V1-IX	1-2.10	(3)	(3)	6	5	7	6.0	. 3	. 82
16-22.	VII-1X	1-2.10	(1)	(${ }^{\text {a }}$	(1)	7	4	5.5	. 8	. 35

: The catches were divided into four classes, leavine this class racant.
${ }^{2}$ Lower limit for cruises VIII and 1 X where 2 -meter nets were used.
${ }^{3}$ The catches were divided into 3 clases. learing this class vacant.

- The catches were divided into 2 classes, leaving this class vacant.

This result may seem one in which the empirical data are closer to theoretical expectation than they should be, for it will be recalled that the frequency surfaces, as exemplified by the charts of figure 13 , were not normal, but were skewed in one direction or another, and were elongated rather than circular in form. The skewing might not necessarily be detectable in the test, for the loss on one side may be approximately offset by the gain on the other, but the elongation should have its effect, as is readily apparent if one imagines such elongation carried to its logical extreme. Then the distribution would be in a band so that constant values would be found when sampling longitudinally to the band, and values distributed in accordance with the normal frequency curve, rather than the normal frequency surface, when sampling across the band. At this extreme the catch magnitudes should be related to each other as if drawn from the normal frequency curve instead of the normal frequency surface. With intermediate elongation, such as indicated by the isometric lines of figure 13 , it is uncertain whether the distribution of catch magnitudes might be intermediate between the type expected from the frequency curve and that from the frequency surface, and hence fit neither; or whether it might still closely conform to the type expected from the frequency surface as would easily be true if, in the elongated surface, the form of the normal frequency curve were retained in the section along its major axis.

In any event, it is probably significant that the elongation of isometric shapes of figure 13 is generally parallel to the coast, and also that the station grid is rectangular rather than square, so that the mean spacing between stations in a direction longitudinal to the coast is greater than that in a direction perpendicular to the coast, the ratio of the latter to the former averaging 0.44. Furthermore, by measurement it may be found that the mean ratio of the minor to the major axis in the isometric shapes of figure 13 is 0.47 . Thus the sampling pattern was warped about the same amount and in about the same direction as the egg and larval distribution patterns. One compensates almost exactly for the other, and it is therefore less surprising that the empirical data should fit the theoretical distribution, even though the latter did not specifically take into account the elongation of the egg and larval distributions.

Since it is impossible that hauls of indifferent quantitative accuracy, or that sampling at a pattern of stations that did not adequately explore the area could,
by chance, produce a serics of catch magnitudes conforming so well to hypothesis, it has been proved not only that the hauls were quantitative, but also that the sampling provided adequate representation of all parts of the distribution of each of the various stages of eggs and larvae up to 22 mm . long. Nothing is yet proved as to the extent of random variability, either of the quantities caught per haul or per cruise. This would control the scatter of points in figure 17 and will receive consideration in the final paragraphs of this section.

The foregoing has dealt with the collection of material. Turning now to the mathematical treatment, the initial step was to total the catches of a given stage for each cruise and then average these totals for certain groups of cruises. This use of total per cruise is equivalent to a direct arithmetic integration of the frequency surface and could introduce no errors if the same stations were occupied on each cruise, and if all stations represented equal unit areas. These requirements were approximately met because the same station plan (fig. 14) was used for each cruise, and the stations were distributed uniformly enough to represent approximately equal unit areas. The principal change from cruise to cruise was the omission of some stations. As earlier mentioned, stations north and east of Nantucket Shoals were omitted from the first seven cruises, and it already has been pointed out that this probably had no effect on the computation because these northeasterly stations could have contributed nothing to the totals of the group of mackerel that is followed in the survival curve. Besides this the stations at Martha's Vineyard IV, Montauk IV, New York V and VI, and Cape May I were usually omitted. Since they proved always to be at the periphery of the egg and larval concentrations, their exclusion or inclusion could make little difference. However, on four of the first seven cruises, there were additional omissions which could possibly have had important effects.

On cruise I the station at New York I and all of those on the Montauk and Shinnecock sections were omitted. Judging from the catches at adjacent stations, and also from the distribution of appropriate stages on the following cruise, thee of these omitted stations might have added low to medium catches to the totals for stage A and B eggs, but this could not have increased their totals for that cruise by more than 5 percent, and could have modified the average per cruise of the four cruises used for these stages by less than 2 percent, so the effect of this omission is inappreciable.

On cruise IV all stations on the Winterquarter section, and those at Chesapeake I and III were omitted. This omission would have a serious effect on the total for that cruise, for these stations could have been expected to yield nearly maximal numbers of 4 - to $8-\mathrm{mm}$. larvae, but the effect of this omission was rectified by substituting the cruise III values for these stations in calculating the average per cruisc. (See footnote p. 192.) This substitution could have introduced error only to the extent of 2 days' growth and mortality-an effect that would not be perceptible after inclusion of the data for the three other cruises in the group average.

On cruise V the stations on the Martha's Vineyard section, at Montauk III, and at Shinnecock I and II were omitted. This probably reduced the totals of $3-\mathrm{mm}$. larvae appreciably, and $4-\mathrm{mm}$. larvae slightly. If the effect on the $3-\mathrm{mm}$. larvae is estimated by examining the result of substituting numbers interpolated from the previous and subsequent sampling at these stations, the total for this size of larvae is increased from 5,215 to 12,549 for cruise V and the average per cruise for cruises II to V is increased from 9,310 to 11,144 . Substituting the latter in table 7 and carrying the work through to the logarithm of the empirical number surviving per million, it is
found that the value increases from 5.299 to 5.378 , indicating that the point for $3-\mathrm{mm}$. in figure 17 should probably be raised by an amount nearly equal to the diameter of the dot representing it. Similar examination of catches of 4-mm. larvae indicates that the total for cruise V might be raised from 8,236 to 9,945 , a change that becomes imperceptible when worked through to the values on the graph of survival.

On cruise VIII the stations at Fenwick, Winterquarter, and Chesapeake were omitted. At the very most these could have contributed nothing to any of the averages involving this cruise, excepting possibly a very few individuals in the 7 -, 8 -, and $9-\mathrm{mm}$. classes. These would not cause a perceptible change in the survival curve.

By the time of cruise IX, only one larva was found along the New York section, and it was so probable that none at all remained south of that locality that the omisson of all stations from there southward could not have had any effect on the survival curve.

Hence it may be concluded that the use of cruise totals introduced no errors other than a slight lowering of the $3-\mathrm{mm}$. point on the survival curve.

Turning now to the possibility that errors were introduced by the selection of certain cruises, it will be recalled that the successive points on the survival curve consist of averages of the catches in groups of cruises, using successively later cruises for the successively older larvae so as to follow the main population through the season from egg stages to late post-larvae. Owing, however, to exigencies of boat operation, the cruises toward the end of the season were separated by wider intervals of time, so that the average numbers of older larvac were calculated from samples more widely spaced in time. This would tend to include relatively more submaximal values for the older larvae than were included for the eggs and younger larvae. Although the effect of this cannot be directly measured, it is possible to deduce the extreme amount of distortion to be expected from the inclusion of submaximal values.

This can be done by restoring submaximal values to the computation of the average number of young larvae. For instance, for $5-\mathrm{mm}$. larvac, the average of the catches for cruises III to VII, which were the ones used in the mortality determination, was 1,760 . Inclusion of cruises I, II, and VII would restore submaximal values and produce an average of 1,220 . Substituting the latter figure in column 3 of table 7 and carrying the computation over to column 5 gives a figure of 4.387 instead of 4.547 for the $5-\mathrm{mm}$. class. This would lower the point for 5 mm . in figure 17 by about $1 \frac{1}{2}$ times the diameter of the dot representing that point in the graph. This is a very small alteration brought about by a relatively large increase in submaximal values. Therefore the inclusion of what was probably a relatively small number of submaximal values for the older larvae by the method used in averaging cruises to obtain the mortality curve could have lowered the points representing the older larvae very little indeed, and therefore have altered the curve by only the slightest amount.

Next may be examined the distortion that could be connected with the growthrate data employed in computing the mortality curve. Evidences of the reliability of the growth-rate determination were given in the section on that subject, and it was concluded that the general course of the growth curves must be essentially correct. It remains to be considered here whether there might nonetheless actually have been irregularities in growth, and because they were not reflected in the growth statistics used in computing mortality rates, they could have produced the observed peculiarities in the survival curve.

The outstanding peculiarity in the survival curve is, of course, the abrupt change of level and slope at the age of 40 days, or length of 10 mm . To investigate the possibility that this might have been due to the mathematical effect of a fluctuation in growth rate, rather than a fluctuation in mortality rate, let it be assumed that the mortality rate through and beyond this period was constant, and compute the changes in growth rate required to fit this hypothesis. The resulting new values for growth rate, in terms of days required to grow one mm . in length, are as follows:

Millimeters:	Days	Millimeters-Continued.	Days
9.	3. 04	13.	. 15
10.	. 80	14.	. 18
11.	. 38	15.	. 09
12.	. 24		

Thus, this hypothesis would require growth at an ever-accelerating rate from 10 mm . on, such that less than a day would be occupied in growing from a length of 10 to a length of 15 mm ., and by that time growth would be at the rate of 10 mm . per day. Clearly this hypothesis is untenable, for such high growth rates are not only absurd per se, but also inconsistent with the distributions of lengths of lartae taken on successive eruises; and it may be concluded that the outstanding peculiarity in the mortality curve cannot have resulted from a fluetuation in growth rate. This demonstration, having proved that it requires striking ehanges in growth rate to produce material effects on the survival curve, indicates also that errors of the order of magnitude which likely exist in the determination of growth would not materially affect the determination of mortality rates.

Thus far attention has been centered on the possible elements of selective error or bias connected either with collection of the material or the subsequent mathematieal treatment. There remains the question of the effect of random variability. This could not alter the level or the trend of the survival curve, for random variability would produce empirical values that tend to deviate equally above and below the true values, so that the sole effect would be on the seatter of points, or, in other words, the relative reliability of fit by any lines expressing their trends. This is readily investigated by conventional statistical methods.

Because the points in the eurve obviously lie along straight lines over considerable segments, such lines have been fitted, by the method of least squares, to various combinations of segments. Since our interest lies prineipally in the mortality rates expressed by the slopes of the lines, attention may be focussed on the b value, or regression coefficient, in the equation: ${ }^{22}$

$$
y=a+b x
$$

which describes these lines. The standard deviation s of the regression coefficient b may be estimated by the formula

$$
s=\frac{S(y-Y)^{2}}{\frac{1}{n^{1}}-2}
$$

To investigate the reliability of the slopes of the lines for various segments of the diagram, one may caleulate

$$
t=\frac{b-\beta \sqrt{S(x-\bar{x})^{2}}}{s}
$$

and find, from published tables, the probability, P, that any other slope β might result from sampling the same universe. Being interested in knowing the limits of

[^45]accuracy of the slopes, values of t may be selected for $\mathrm{P}=0.05$, and by substituting these in the equation,
$$
b-\beta=\frac{s t}{\sqrt{S(x-\bar{x})^{2}}}
$$
values of $b-\beta$ may be calculated which, when added to b, or subtracted from it, will give the limits of a range of slope values. The chances will then be 19 out of 20 that the true slope lies within this range.

From these calculated ranges (table 11), it is clear that there was so little random variability of the points about the lines of best fit, that mortality values are accurate to within one or 2 percent per day for all segments other than A to C .

There still remains the question: which of these combinations of straight lines gives the most probably true series of survival rates? This may be investigated by the formula for the significance of the difference of two slopes, again going through the t test, using the formula

$$
t=\frac{b_{1}-b_{2}}{\sqrt{s^{2}\left[\frac{1}{\mathrm{~S}\left(x_{1}-\bar{x}_{1}\right)^{2}}+\frac{1}{\mathrm{~S}\left(x_{2}-\bar{x}_{2}\right)^{2}}\right]}}
$$

where

$$
s^{2}=\frac{S\left(y_{1}-Y_{1}\right)^{2}+S\left(y_{2}-Y_{2}\right)^{2}}{n^{\prime}-4}
$$

From the results given in table 11, where the subscripts of b represent the initial and terminal points of the segments, it is apparent: (1) That b_{A-c} differs from b_{4-8} just enough to indicate that the survival rate probably is significantly higher in the larval stages than in the egg, and therefore the two lines $A-C$ and $4-8$ better describe this segment than the one line A-9. Howerer, the latter does not differ significantly enough from each of the former to preclude the possibility that it fairly well represents the general course of survival from the early egg stage to the $9-\mathrm{mm}$. larva. (2) That b_{11-22} is certainly significantly different from b_{A-9}, though not from b_{4-8}. The interpretation of these findings will be discussed in the following section.

Table 11.-Estimatcs of accuracy of slopes of lines in figure 17

Segment	b	s	$b-\beta$	Equivalent mortality rates in percent per dsy		
				Indicated (b)	Lower limit $b-(b-\beta)$	Upper limit $b+(b-\beta)$
A-C.	-0.02246	0.0307	0.1170	5.0	-21.0	27.5
4-8.	-. 05465	. 0337	. 00716	11.8	10.4	13.3
A-9.	-. 06521	. 0905	. 00515	13.9	13.0	15.0
11-22.	-.07467	. 1165	. 0128	10.1	7.4	12.7

Table 12.-Significance of the differcnces of the slopes of the lines fitted to various segments of the survival curve

Slopes compared	Difference	*	S. E. $b_{1}-b_{2}$	t	P
	0.03219	0.03294	0.0102	3. 169	0.05-0.02
b_{A-8} and b_{11-22}	. 01901	. 10こ62	. 0058	3. 2.6	<. 01
b_{A-C} and b_{A-s}	. 01275	. 08574	. 0259	1. 651	. $2-.1$
b_{4-3} and b_{A-9}	. 01056	. 07898	. 0056	1.875	.1-. 05
$b_{1-1} b^{\text {and }} b_{11-32}$. 00845	. 01030	. 0056	. 885	.4-3

Mortality rates.-When the logarithms of the fully adjusted survival numbers are plotted, as in figure 17, the series describes nearly straight lines over certain portions of its extent, indicating that in each of these straight-line segments, mortality must have proceeded at a uniform percental rate. The major feature to be noted is the break at about 35 days when the larvae are 10 mm . long. At this point there is a change of level and of slope which may be considered as dividing the curre into three portions: (1) egg, yolk-sac, and larval stages, (2) transition between larval and postlarval stages, and (3) post-larval stage. Each will be discussed separately.

The first portion representing stages up to 10 mm . in length is subject to alternative interpretations due to the nearly, but not wholly, linear arrangement of points. The simplest interpretation is that the mortality rate was uniform and that the deviations from linearity were due to defective sampling. If so, the single heary straight line drawn from A to 9 mm . in figure 17 expresses the mortality. Accordingly, this mortality was at a constant rate, and amounted to 14 percent per day. On the other hand, it has been shown in the previous section that there is little ground for suspecting serious defects in sampling, and also that the slope of the line A to C differs significantly from that of the line 4 to 8 mm . This being true, the mortality rate would be better deseribed by the three fine lines of figure 17 , the one extending from A- to C-stage eggs; another from 4 - to 8 -mm. larvae; and still another joining their ends across the $3-\mathrm{mm}$. (yolk-sac) stage. According to this interpretation, the initial rate, i. e., the rate during the egg stage, was 5 percent per day. The next rate, i. e., during the yolk-sac stage, was 23 percent per day, and the third rate, i. e., during the larval stage, was 12 percent per day. ${ }^{23}$ However, according to both interpretations, mortality has reduced the population to about one-tenth of its original numbers by the time the larvae reach 4 mm . long, and when they attain 9 mm . in length at 35 days of age, to one-thirtieth of the original number.

If any one period is to be singled out as the most critical, it must be the ensuing period during the transition from larval to post-larval stages, when in passing from 9 to 11 mm ., the numbers are reduced by 90 percent in the short space of about 3 days. The rate of mortality may be rariously computed, depending on the choice of straight lines in figure 17. The lowest is 30 percent, and the highest, 44 percent per day. Either of these rates is distinetly higher than the highest alternative estimate (23 percent per day) in the yolk-sac stage. The high mortality during this short period, coupled with the losses previous to this stage, reduced the survivors to only one three-hundredth of their original numbers; thus the population was already severely decimated on entering the post-larval stage.

During the post-larval stage, the rate of mortality apparently was more moderate than in earlier stages. The data on which the rates are based appear fairly reliable up to the $22-\mathrm{mm}$. stage, or 62 days of age, and the fitted line for the segment 11 to 22 mm . in figure 17 represents a mortality of slightly over 10 percent per day. Beyond 22 mm . the catches of larvae were few and were confined to only one cruise, so that the reliability of their relative numbers is in doubt; but the evidence, such as it is, points towards the continuation of the same rate of mortality to the size of 50 mm ., or age of 85 days.

Restating the history of mortality, it appears that there was a general basic rate of 10 to 14 percent mortality per day throughout the period studied. The most important deviation from this general rate was during the $9-$ to $11-\mathrm{mm}$. stage, when the population suffered about 30 to 45 percent mortality per day. Other deviations

[^46]of somewhat doubtful significance occurred during the egg stages, when a lower rate of 5 percent per day was indicated, and during the yolk-sac stage, when a higher rate of about 23 percent may have intervened. The net survival to the $22-\mathrm{mm}$. stage, or 62 -day age, was 40 per million newly spawned eggs, and, assuming a continuation of the 11 to $22-\mathrm{mm}$. rate of mortality to the $50-\mathrm{mm}$. stage, or 85 -day age, it was 4 per million newly spawned eggs.

Discussion.-Since it is probable that the success or failure of year classes is determined during early life, and since it is known that the year class of 1932 was a failure, it is natural to assume that the mortality curve just given represents the record of that failure. That this is true appears from the following considerations. From fecundity data (p. 156) it is estimated that a female spawns about 500,000 eggs per year, and from the size composition of the adult stock (unpublished notes) it may be estimated that each female spawns over an average period of about four years, producing a total of $2,000,000$ eggs. Therefore, to keep the population constant, from $2,000,000$ eggs, one female on the average should reach average spawning age; i.e., a survival of one fish per million. But in 1932 only four fish per million were left at the early age of three months. At this age, the rate of mortality was about 10 percent per day. Were this rate to continue only 35 days longer, the survivors would number only 0.1 per million; i.e., only 0.1 the number required to reach average spawning age. Of course, it should not be assumed that the 10 percent mortality would continue indefinitely. But even should it be as low as 2 percent per day, the year class would be reduced to the 0.1 per million level before the end of the first year of life; and even then they are at least 2 years removed from average spawning age. To reach that age with survival of one per million, mortality could not average more than 0.12 percent per day during the time intervening between 50 mm . and average spawning age. It is unreasonable to suppose that the mortality, last observed at 10 percent per day, could immediately drop to such a low rate and remain there. Hence it is likely that a year class, to be successful, must have a survival well above four per million at the $50-\mathrm{mm}$. size, and that the 1932 class was a failure because of the high mortality during stages preceding the $50-\mathrm{mm}$. length.

The causes of this failure may be sought in the record of mortality during the various stages. The outstanding feature in this record is that no single period could be considered crucial in the survival of the year class with which we are concerned. Mortality in all phases of development contributed substantially to the decimation of the population. This fact is most readily appreciated when the contribution to total mortality by the periods of relatively high rate is compared with the contributions by the periods of low rate. The mortalities in the yolk-sae stage and in the transition between larval and post-larval stages (taking the highest alternatives in each case) together represent the passage through 1.9 logarithmic phases. All the other stages together represent 3.6 logarithmic phases. Hence, one may say that about one-third of the mortality was suffered during the so-called "critical" stages, and the other two-thirds during what might be called "non-critical" stages.

The question naturally arises, which of these was in 1932 the determining factor in the failure of the year class? To answer the question calls for comparable data on mortality during the early life history of a successful year class. Lacking this, one can only speculate. If in 1932 the so-called critical stages were to have been eliminated, the survival to the $50-\mathrm{mm}$. point would have been 250 per million eggs spawned. If the so-called noncritical stages were to have been eliminated, it would have been 12,500 per inillion eggs spawned. Of course, it is difficult to conceive of complete
elimination of mortality from any of these stages, but if a year class is to be successful there is obviously greatest opportunity for improved survival in the noncritical stages, for they contributed most heavily to the failure of the year class. For this reason, one must look with at least as much suspicion on the mortality during non-critical stages as on the mortality during critical stages when in search for casual agencies that may have been operative during 1932.

In looking for such agencies, there are two features of the 1932 season that appeared to be unusual and of the sort likely to have affected surviral. One of these was the relative paucity of zooplankton in the area of survey during the spring and early summer (i.e., May and June). The zooplankton catches averaged only 280 cc . per haul, as compared with 556 cc . in 1931 and 547 cc . in 1930 (Bigelow and Sears, 1939, p. 200). Both of the last named seasons produced good year classes, and there is, thercfore, an indication of correlation between zooplankton abundance and the survival of a mackerel year class. If failure to survive in good numbers in 1932 was in fact due to dearth of food, and the dearth was continuous throughout the season

Figure 18.-Resnltants of wind movement, as recorded at Winterquarter Lightship daring May of each year 1930-1933.
of larval development, as the data indicate, it could easily affect the mortality through virtually all stages, for the smaller fish larvac probably feed on the young stages, and larger larvae on the adult stages of zooplankton forms.

The other distinctive feature was the prevalence of northeasterly winds during the period of larval development in 1932. Figure 18, in which are plotted the resultants of wind movement of force 3 Beaufort scale or higher, during May of each year, 1930-33, demonstrates how 1932 differed from the other years in having an excess of northeasterly over southwesterly winds. That this may well be related to the production of successful year classes is indicated by the fact that 3 years, 1930, 1931, and 1933, all with an excess of winds from the southwest, gave rise to successful year classes, while 1932, the only one with an excess from the northeast, failed to produce a successful year class ${ }^{24}$ (Sette, 1938, p. 19).

Since the discovery of this relation between successful mackerel year classes and wind movement, similar phenomena have been reported for other fishes. Carruthers

[^47]and Hodgson (1937) reported correspondence of relative success of six herring year classes and the strength of winds from certain quarters as inferred from pressure gradients; and Carruthers (1938) amplified these findings, presenting the relation for 11-year classes in the East Anglian herring fishery. He concluded: "It is reasonable to argue along these lines:-as from year to year, increased 'from-Channel' air flow means increased 'from-Channel' water flow, and this in turn means:-(1) That the passively drifting spawning products will be drifted farther aficld-apparently a good survival augury for the herring * * *." In the same paper, Carruthers demonstrated the parallelism between changes in both certain pressure gradients and east wind component, on the one hand, and relative strength in a series of 15 haddock year classes on the other hand. These illustrations support the theory that local winds affect year-class survival. Though they demonstrate the importance of transport, the remainder of the survival (or mortality) mechanism, particularly its biological aspects, has yet to be clucidated.

For the mackerel of the American Atlantic seaboard, however, it is possible to advance a reasonable explanation for the connection between wind direction and survival. The center of spawning, it will be remembered, is southwest of Fire Island. The juvenile nursery grounds, judging from relative quantities of young mackerel usually found along various parts of the Atlantic seaboard, is along the coast of southern New England from Cape Ann to about the eastern end of Long Island. Therefore the prevalent southwest winds during May of 1930, 1931, and 1933 conveycd the larvac toward the nurscry grounds. Conversely, the prevalently northeastcrly winds of May 1932, on the average, were of hindrance rather than help to the larvae in reaching their nursery ground.

If this be truc, there is the further probability that the significantly higher mortality in 1932 at the transition phase when fins were developing was a conscquence of the pattern of drift in that ycar. The formation of fins and their subsequent use undoubtedly cnlarged the expenditure of cucrgy and hence increased the food requirement at the transition phase. At this time, on the average, the larvae were still distant from their nursery ground and if feeding was poorer where they were than on the nursery ground, the observed heightened mortality at this phase would thus be explained. Shortly after, by directional swimming, and with some assistance from favorable winds, some of the larvac did reach the presumedly more favorable location and thereafter were subject to a distinctly lower mortality rate.

Thus, there are evident two influences that contributed to the failure of the 1932 class. One was the gencral paucity of plankton, which probably increased mortality throughout the entire early life history; the other was the apparently unusual direction of their drift, which probably heightened mortality mainly during the transition from larval to post-larval stages. Though either one of these influences might conceivably have been the sole cause of the failure of the 1932 class, the shape of the survival curve suggests that both contributed substantially. Indeed, the two might be related to each other as woll as to the mortality of the mackercl. To be sure, these are speculative conclusions. However, they furnish hypotheses that should be uscful in planning further observations, especially in seasons of successful survival.

Significance of observed mortality in 1932.-Although one scason's observations on one species of fish form a slender basis for generalizations, the fact that it is perhaps the only determination of mortality of a marine species under natural conditions gives special significance to the results, for it affords opportunity, for the first time, of comparing actual observations with theory.

In stating existing theory, one can do no better than to quote Johan Hjort, who, perhaps more than anyone else, was responsible for bringing attention to the importance of year-class success or failure as the explanation of fluctuations in the sea fisheries. In 1914 he advanced, and in 1926 (p.32) reiterated, the theory that:

The rich year-classes appear to make their influence felt when still quite young; in other words, the numerical value of a year-class is apparently determined at a very early stage, and continues in approximately the same relation to that of other year-classes throughout the life of the individuals.
It has already been shown that the observations on mackerel in 1932 are in harmony with this theory (p. 204).

Hjort (1926, p. 33) in discussing the great Norwegian cod and herving fisheries, suggested further:

As factors, or rather events which might be expected to determine the numerical value of a new year-elass, I drew attention to the following two possibilities:
(1) That those individuals which at the very moment of their being hatehed did not succeed in finding the very special food they wanted would die from hunger. That in other words the origin of a rich year-elass would require the contemporary hatching of the eggs and the development of the special sort of plants or nauplii which the newly hatehed larva needed for its nourishment.
(2) That the young larvae might be earried far away out over the great depths of the Norwegian Sea, where they would not be able to return and reach the bottom on the continental shelf before the plankton in the waters died out during the autumn months of their first year of life.

Observations on mackerel do not support the first possibility. Mortality immediately after hatching was little, if any, greater than at other times, and hence failure of the 1932 class could not have been due to acute dearth of food at the hatching time. If shortage of food was responsible, it had its eflect either throughout the period of planktonic existence or at the transition phase (9 - to $10-\mathrm{mm}$.), well after the hatching time.

On the other hand, the second possibility las strong indications of support in the mackerel data. Not only did the heightened mortality at the 9 - to $10-\mathrm{mm}$. lengths appear to be connected with drift of the larnae, but there also was a marked correspondence between success of the year-classes 1930 to 1933, and the drift that they must have experienced as the result of dominant winds in May of these four years.

That drift may in general be an important influence on success of year classes is further suggested by a similar finding for the American haddock (Walford, 1938, P. 55), wherein the relative failure of the 1932 class corresponded with drift of larvae away from Georges Bank, and relative success of the 1931 class corresponded with a pattern of circulation that kept the larval population on Georges Bank.

Thus, in the two instances where the events at sea lave becn traced, it was the oceanic circulation that influenced the success of ycar-classes; and in the one case where the course of mortality (in a failing year class) at sca was traced, it was not any, if at all, higher at the hatching time, and hence failure could not be attributed to acute shortage of food at this period.

In addition to the actual facts observed and their contribution to the understanding of year-class success or fadure, the development of technique for determining mortality rates can have significant influence on future development of fishery science. If applied over a series of years, it would provide the data needed for separately evaluating the correlation of the size of the spawning stock with numbers of resulting offspring, and the correlation of the survival of offspring with the contribution of the year-class to the commercial stock. The predictive uses of such knowledge would be of obvious value to the conduct of fishing operations and to the trade in fishery products. But the value of such knowledge in formulating conservation policies would
be even greater than its value for predictions. These separate correlations would provide a basis for determining the size of spawning stock necessary to maintain an undepleted fishery. Efficient utilization will be possible when a reliable estimate can be made of the proper size of spawning reserve. Until then, there will always be danger of reducing the annual take, on the one hand, by attempting to preserve more spawners than needed, or, on the other hand, by catching more spawners than can be spared from the stock needed for adequate reproduction.

APPENDIX METHODS OF DETERMINING SIZE AT MATURITY

Samples of fish were taken at various times at Woods Hole, Provincetown, and Sagamore, Mass., during the period June 24 to July 21, 1925. The fish were measured to the nearest half centimeter on a straight line from tip of snout to the extremity of the mideaudal rays. Gonads of the males were graded by eye as small translucent, small opaque gray, enlarged white, running milt, and spent. The last three grades were classified as mature. Gonads of females were graded by eye as small translucent, small granular, enlarged granular, translucent spots, running ripe, and spent. The last three grades were classified as mature. The results are summarized in table 13.

Table 13.-Size of mackerel at maturity as indicated by 1,116 individuals taken by traps in the vicinity of Woods Hole, Mass., and in Massachusetts Bay during the period, June 24 to July 21, 1925

Length, centimeters	Males			Females		
	Immature	Mature	Mature	Immature	Mature	Mature
22.0	Number ${ }_{1}$	Number	Percent	Number ${ }_{1}$	Number	Percent
22.5	1					
23.0 .	10	-.-------	---	3		
23.5	10			6		-.---------
Total...	13	--	-	10	-.-........	--.-........
24.0...	16	---		8		--.--------
24.5	22	.	.-	16		-.-.------....
25.5	25			33	--	
26.0	37	2		45		
Total	127	2	2	134	-.-....----	-------....
26.5	35	1		47		...-......
27.0	17 18	1	...--...---	22	--------...-	--..........
28.0	7	2	-	20	------------	
28.5.	10	2		14		--
Total.	87	7	9	130	---------	------------
29.0.-	14	5	----.......-	21		-----------
39.5	12	7	---	16 21	1
30.5	10 9	3		17	1	--
31.0	9	2		14		
Total....	60	21	26	89	2	2
31.5-		5		13		-----------
32.0 32.5	11 5	7	-	12	5	.-.-...---
33.0.	5 5	11		14 9	6	---............
33.5	3	5		7	6	--....---.-.
Total.-	33	36	52	55	17	24
34.0	${ }_{6}^{6}$	15	..-		5	--
34.5 35.0	6 7	29		8	${ }^{7}$..
35.5.	3	28		4	8	--
36.0	2	20		2	11	
Total	24	117	83	20	45	69

Table 13.-Size of mackerel at maturity as indicated by 1,116 individuals taken by traps in the vicinity of Woods Hole, Mass., and in Massachusetts Bay during the period, June 24 to July 21, 1925.-Continued.

METHODS OF COLLECTING EGGS AND LARVAE

Mackerel eggs and larvae were collected during the spawning season in the spring of each year from 1926 to 1932, inclusive. The initial work was exploratory and qualitative in nature. Tows during the period 1926 to 1929 were drawn horizontally at the surface, mid-depth, and just above bottom. In 1930 and 1931 oblique hauls were employed. In 1932, oblique hauls were continued, and a device employed to measure the quantity of water strained through the nets. The following description refers to the collections made during 1932.

Nets used.-The phankton net used during the first 7 eruises was 1 meter in diameter at the mouth, and 4 meters long. The first meter of length was eylindrical amd composed of No. 0 millers' gauze with 15 meshes per lineal centimeter, and for the last 3 meters the shape was conical and the material of No. 2 gauze, with 21 meshes per lineal centimeter. At the end of the cone, attached by a coupling device, was a "cod-end" 5 inches in diameter and 10 inches long, of No. 12 gauze, in which the eatch collected. During the ninth and tenth eruises, a stramin net was used, which was 2 meters in diameter (at mouth), and of the same proportions as the meter net.

Method of towing.-To sample uniformly throughout the range of vertical distribution of eggs and larvae, the method of oblique towing was used. This consisted of paying out an amount of line appropriate for the maximun depth to be reached by the particular tow, then hauling back a certain amount of line at fixed intervals of time, usually 5 meters every 2 minutes or 2 meters every 1 minute, until completion of the haul. During the period of hauling, the speed of the ship was kept as nearly uniform as possible.

During the first seven cruises, when 1 -meter nets were used, one net was towed at the shoal stations where the water was nearly uniform from surface to bottom, and two nets at the deeper stations where thermal stratification of water was prevalent. At the stations where two nets were used they were attached to the towing cable at intervals estimated to be appropriate for the upper net to sample down to the thermocline and the lower net a nearly equal distance below the thermocline. In a typical instance, with a sounding of 50 meters, the lower net would be attached at the end of the line, the upper net 25 meters from the end, and another 25 meters payed out, making 50 meters of line all told. Towing at the usual speed, the line would stray
45° above the first net and 28° below it. The depth ranges of fishing would then be $0-18$ meters and 22-44 meters, respectively, for the upper and lower nets. Since the course of plankton nets through the water usually is undulating (Russell, 1925, pp. 603-604), the theoretically unfished gap between the nets and the theoretically stepwise character of hauls would both be practically obliterated and the sampling virtually uniform, except for the greater depth range covered in unit time by the lower net. The latter was taken into account in the subsequent treatment of data.

During the eighth and ninth cruises when the hauls were made with a 2 -meter net, only one such net was used, and at the deeper stations it was sent down to a depth roughly equivalent to that reached by the deeper of the two nets employed on earlier cruises, so that the single, oblique haul of the 2 -meter net sampled through approximately the same strata as the two nets of the preceding cruises.

Measurement of quantity of water strained by the nets.-It is obvious that two variables, speed of towing and degree of clogging, seriously modify the flow of water through plankton nets, causing variations in the catching capacity. To eliminate these sources of variability, a current meter was installed in the mouth of the net to measure the flow. The utility of current meters in measuring the volume of water passing through a plankton net depends on whether or not the flow past the meter is equal to or proportional to the average flow of water into the net. By towing, at usual speeds, a standard net with a current meter in the center of the mouth and another meter at the periphery, it was found (William C. Herrington, unpublished notes) that the flow past these two positions differed less than 10 percent. Since these positions were such as to register the maximum difference in rate of flow, if any existed, this evidence was taken as indicating uniform flow into all parts of the mouth of the net. Hence we regarded the registration of flow past the meter as directly measuring the flow through the entire opening.

The instrument used for measuring the flow consisted of the propeller mechanism and revolution counter from a dismembered Ekmann current meter, turning five to six revolutions per meter of flow at usual towing speeds. For precise determination the meter was calibrated over the range of towing speeds. The total revolutions turned during a tow were converted to speed by dividing by the duration of the haul, in seconds; and the equivalent rates of flow were found from the calibration graph. These are the rates used in the specimen computation of table 15.

While the current meter was used as a standard procedure, there were times when mechanical difficulties prevented proper registration. To provide basic data for comparable treatment of hauls made on such occasions, records were taken periodically, during each haul, of the towing wire's angle of stray and of the ship's speed as measured by timing the progress of the ship past a chip cast alongside. An estimate of the extent to which the net was clogged was made at the end of each haul. Relations between these observations and flow past the current meter gave average factors by which angles of stray or ship's speed could be translated to terms of equivalent current meter measurements. This afforded means of estimating the flow on those hauls which were not accompanied by reliable current-meter records. All the hauls of cruise I, and 5 percent of the hauls on subsequent cruises were of this class. For these hauls there was some error of estimate which may have been considerable for individual instances, but were, we believe, of random nature tending to balance each other, and so could have introduced very little inaccuracy into the general results, based on averages of a number of statious.

Only one current meter was available, and this was used in the upper of the two nets. When more than one net was on the line, the flow through the lower net was assumed to be the same as that through the upper net except as modified by clogging.

Four degrees of clogging were recognized according to the following definitions: 0 - When net is hauled to deck, water runs freely out of net and cod-eud so that no water is left by the time the net reaches deck. 1-Water runs out of net freely but out of cod-end slowly so that some water is left in cod-end when net reaches deck. 2-Water runs out of net so slowly that it remains above level of cod-end coupling when net reaches deck, but falls to level of coupling after a short interval of time. 3 -Entire net visibly covered with clogging organisms and water stays above coupling so that special means must be taken for washing down net.

By the graphical partial correlation method (Ezekiel, 1930, pp. 143-145), it was found how much the relation between the angle of stray and the quantity of water strained was modified by the various degrees of clogging. The amounts by which clogging changed the average rate of flow for given angles of stray was $+0.032,-0.03$, -0.073 , and -0.108 meters per second for cloggings of $0,1,2$, and 3 , respectively, on the clogging scale as above defined. For the hauls made without current meters in the nets, these values were added to the theoretical flow as estimated from the angle of stray. The magnitude of these corrections is given by their percentage relations to the average rate of flow, which were $+8,-1,-18$, and -26 for the respective degrees of clogging. These, of course, are averages for each of the 4 degrees of clogging. The extreme individual values were plus 37 percent and minus 29 percent, which indicates that the total flow through an extremely clogged net at times was only half as much as through a very clean net. Since the elogging is progressive during a haul, it is obvious that practically no water is strained toward the end of any haul in which the net becomes badly clogged. The hauling method employed in this work, therefere, would undersample the upper layers relative to the lower layers. This would be a serious difficulty if clogging were often severe, but during 1932 ouly 4 percent of the hauls were of third degree and 15 percent of second degree clogging; hence uneven vertical distribution of sampling did not often oceur. No adjustment was made for this effect.

ENUMERATION OF EGGS AND LARVAE

Eggs and small larvae were so abuudant in many of the meter-net catches that a sampling method was necessary to estimate the total mumbers caught. The formalin preserved plankton catch was transferred to a wide-mouthed graduated receptacle, enough liquid added to bring the level to a certain mark (often 2,000 ce.), the contents stirred vigorously to mix uniformly, and a dipper then plunged into the mixture and withdrawn level full. The dippers were of the type made for dipping cream, each comprised of a small straight-sided cup with a long handle. Several sizes of dipper, each of known capacity, were used and one or several dipperfuls taken, depending on the size of sample desired. All fish eggs and larvae were removed from the sample. From the remainder of the eatch, all larvae larger than about 5 mm . in length were removed. From the 2 -meter net catches all the larvae were removed.

Mackerel eggs and larvae were separated from those of other species and further examined, counting the number of eggs at each of three stages of development and the number of larvae at each millimeter of length. Measurements were made with the aid of micrescope and eye-piece micrometer for larvae under 7 mm . and with millimeter rule and unaided eye for larger ones. The measurement was from tip of snout to end of notochord in larvae, and to base of caudal rays in post-larvae. Dis-
torted specimens were classed by matching them with straight specimens of known length.

The method of converting the counts to total catch was simple in the majority of instances because usually the mackerel material consisted either entirely of eggs and small larvae, so that the total catch could be computed directly from the known volume of sample sorted and the known volume of the plankton from which the sample was drawn; or entirely of large larvae sorted from the entire catch, so that a simple count represented the total. In a minority of instances, when both small and large larrae occurred in the same haul the total had to be computed from a combination of the sampled numbers of small larrae and the total numbers of large larvae.

The specimen tabulation (table 14) illustrating the computation is selfexplanatory except for the treatment of those sizes of larvae which were too scarce to be adequately represented in the small sample. Referring to columns 2 and 3 of table 14, it is obvious that the numbers of S-mm. laryae were too few to have been taken in the small sample and also that in sorting the remainder, larvae as small as 6 mm . and perhaps also 7 mm . were not fully removed. Therefore, the $3-$ to $6-\mathrm{mm}$. larvae, inclusive, in the small sample were taken as representing the catch of these sizes and the items of column 2 were multiplied by $\frac{2,000}{112}$ and entered in column 4. The numbers (2) in the $7-\mathrm{mm}$. category in the small sample (column 2) were taken as representing the numbers of larvae 7 mm . and over, which should then total $2 \times \frac{2,000}{112}=36$ in the entire sample. Since there were known to be 6 larvae of $8-\mathrm{mm}$. length (column 3) in the catch, the entry of 6 was made opposite the $8-\mathrm{mm}$. class in column 4 and the entry of $36-6=30$ opposite the $7-\mathrm{mm}$. class. The count of larvac in the lower haul (table 14) included no larvae larger than those found in the small sample, and the total numbers of cach size (column S) were computed simply by multiplying the counts in the sample (column 6) by $\frac{1,500}{112}$.

Table 14.-Specimen computation for converting counts of eggs and larvae to total catch on the standard basis of 17.07 cubic meters of water strained per meter of depth fished
[Data relate to station 21491]

Classes	Upper hau]					Lower haul						$\frac{\begin{array}{c}\text { Total } \\ \text { eateh }\end{array}}{\begin{array}{c}\text { Col- } \\ \text { umn } 12\end{array}}$	
	$\begin{aligned} & \text { Col- } \\ & \text { umn } \end{aligned}$	Column 2	Colutan 3	$\begin{gathered} \text { Col- } \\ \text { uma } 4 \end{gathered}$	$\begin{gathered} \text { Col* } \\ \text { uman } 5 \end{gathered}$	$\begin{gathered} \mathrm{Col}- \\ \mathrm{uma} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Col} \cdot \\ \mathrm{umbn} \\ \hline \end{gathered}$	$\begin{gathered} \text { Col- } \\ \text { umas } \end{gathered}$	Column 9	Col. umn 10	$\begin{aligned} & \text { Cole } \\ & \text { unn } 11 \end{aligned}$		
	Count in sample of $28 / 2000$ sorted for eggs	$\begin{array}{\|c\|} \text { Count } \\ \text { in } \\ \text { sample } \\ \text { of } \\ 112 / 2000 \\ \text { sorted } \\ \text { for } \\ \text { larvae } \end{array}$	Count in remain- der sorted far large larvae	Computed total catch	$\begin{aligned} & \text { Stand- } \\ & \text { ard- } \\ & \text { ized } \\ & \text { catch } \\ & \text { (Col- } \\ & \text { umn } \\ & \times 0.70) \end{aligned}$	$\left(\begin{array}{c} \text { Count } \\ \text { in } \\ \text { sample } \\ \text { of } \\ 112 / 1500 \end{array}\right.$	$\begin{array}{\|c\|} \text { Count } \\ \text { in } \\ \text { remain- } \\ \text { der } \\ \text { sorted } \\ \text { for } \\ \text { larger } \\ \text { larvae } \end{array}$	Commated total cateh	$\begin{gathered} \text { Con- } \\ \text { tam- } \\ \text { ina- } \\ \text { tion } \\ \text { (Col- } \\ \text { umn } 5 \\ \times 0.21) \end{gathered}$	$\begin{gathered} \text { Set } \\ \text { catch } \\ \text { (Col- } \\ \text { umu } 8) \\ (\text { Col- } \\ \text { umo } 9) \end{gathered}$	$\begin{aligned} & \text { Stand- } \\ & \text { ard } \\ & \text { ized } \\ & \text { catch } \\ & \text { (Col- } \\ & \text { umn } 10 \\ & \times 0.63) \end{aligned}$	$\begin{gathered} (\operatorname{Col}- \\ u m n 5) \\ (+\operatorname{Col}- \\ u m a 11) \end{gathered}$	
4		12		214	150	4		54	32	22	14	164	
5		15		218	188	6	1	80	39	41	26	214	
6		11	10	197	138	1	2	13	29	-16	-16	122	
7.		2	20	30	21	1	3	13	4	9	6	27	
8			6	6	4				1	-1	-1	3	

In this particular sample the special treatment concerned the larvae of 7 -mm. and upward. This was not uniformly true. The completeness of removal of large larvae from the remainder varied with the character of the plankton with which they were mixed and also, no doubt, with the fatigue of the person sorting the material. Due to this variation each haul was treated according to the internal evidence provided by the counts therefrom. More often than not the relative counts of the small sample and of the remainder indicated completeness of removal of smaller than $7-\mathrm{mm}$. sizes from the latter so that the length of larrae concerned in the special treatment was usually 5 or 6 mm . rather than 7 mm . as in the sample given.

COMPUTATIONS OF CATCH PER STATION

Standard haul.--Since it was desired to have a number representing the total population of egres and larvac at each station, regardless of depth, the catches were converted to the basis of a standard amount of straining per meter of depth fished. The standard amount selected was the average of actual performance, as measured by the current meter during the first seven eruises of 1932, which was 17.07 cubic meters of water strained per meter of depth fished. The arerage performance was taken rather than any arbitrary amount because it involved a minimum alteration of original data, and the resulting figures represent nearly the actual numbers eaught, except for the last two cruises, when the adjusted two-meter net eateles represent approximately one-sixth of the actual numbers taken. Where an upper and a lower net were employed, the standardized catch of the lower net was added to the standardized catch of the upper net after a correction for contamination was applied to the numbers found in the eateh of the lower net. The computations are illustrated in table 15.

The procedure for 2 -meter-net hauls was exactly the same as for 1-nct hauls by 1 -meter nets except that an additional factor of one-fourth was applied to offset the quadrupled cross-sectional area of the net's mouth. Other things being equal, this would have resulted in standardization factors about one-fourth as large as those for the 1 -meter nets, but actually the 2 -meter net was towed somewhat faster and its oblique path was somewhat more gradual due to a higher towing angle in relation to the amount of line hauled in at each time interval. Hence the average amount of water strained per meter of depth fished was about 6 times, instead of 4 times, as great as in the 1 -meter nets, and the factors for standardizing aecordingly averaged about one-sixth.

For both sizes of net, therefore, the resulting factors for standardizing given in the columns headed "S factor" in tables 17 and 18 are such as to convert the catches at each station to the equivalent of the numbers that would be found in a column of water with a eross-sectional area 17.07 square meters, and extending from the surface to the deepest level reached by the nets at each station. This may also be stated as being equivalent to 21.7 times a vertical haul of a 1 -meter net of perfect straining capacity.

Table 15.-Specimen computation of factors for adjustment of haul to standard basis of straining 17.07 cubic meters of water per meter of depth fished and for ascertaining contamination of catch of the lower net in passing through the upper stratum
[The data relato to station 21491]

Item	Unit	Upper net	Lower net
1. Length of lime payed out	Meters	0-25	25-55
2. A verage stray.	Degrees from vertical	51.3	35.0
3. Stratnm flshed.	Meters	0-16	20-45
4. Thiekness of stratum fished	Meters.	16	16
5. Time fished (exelusire of time spent by the lower net in passing through the upper stratum).	Seconds	865	980
6. Rate of flow through net (from eurrent meter)-	Meters per second	0.574	
7. Clogging (on arbitrary scale, see text) -.....--		1	1
8. Adjustment for clogging.....	Meters per second		-0.007
9. Adjusted flow (item 6 plus item 8)	Meters per sccond	0.574	0.567
10. Total flow (item 5 times item 9).	Me	490	556
11. Standard flow (item 4 times $17.07 \frac{4}{\pi}$) -	Meters.	348	348
12. Factor for adjusting to standard haul ($\left(\frac{\text { item 11 }}{\text { item 10 }}\right)$)		0.70	0.63
13. Time spent by lower net in passing through the upper stratum	Seeords		127
14. Flow through net while passing through the upper stratum (item 9 times item 13).	Meters		72
15. Factor to be applied to catch of upper net to find the number of organisms caught by lower net while passing through the upper stratum.			0.21

Correction for contamination.-The nets were lowered and raised without closing. Consequently when two nets were used, the portion of the catch of the lower net taken during its passage through the stratum fished by the upper net may be considered as a contamination. The amount of this contamination was computed from the known average concentration of mackerel eggs and larvae in the upper stratum, the known time spent by the lower net in passing through this stratum and the assumed flow through the net (the same as that registered by the current meter installed in the upper net after correction for clogging). The computations were made for each stage of egg and length of larva, and the resulting numbers subtracted from the catch of the lower net (table 14). In all instances, the corrections were substantial, and at many stations approximated the entire catch of the lower net. Important numbers usually remained after the correction at those stations where the upper net did not fish down to the thermocline and the lower net fished in the stratum above the thermocline for a time in addition to the time spent while it was being payed out and hauled back through this stratum. As might be expected from consideration of the laws of random sampling, the amounts to be subtracted were sometimes in excess of the amounts caught in the lower net. When this occurred, differences were negatively added to the catch of the upper net, these instances of over-correction offsetting other instances of under-correction, leaving the average undisturbed.

Relative catch of 1 -meter and 2-meter nets.- A comparison of the catching efficiency of 1 - and 2-meter nets is afforded by 19 instances during cruises VI and VII where both nets were hauled at the same station. The hanls were made, and the results were converted to the standard basis by the methods already described for both
nets, excepting that no current meter was employed to measure the flow of water through the 2 -meter net. In lieu of this measure, the speed of towing was measured by timing the travel of the ship past a chip cast alongside. It was later found from a statistical analysis of the relation between chip speed and flow through meter nets as measured by the current meter, that the force of the wind modified the chip speed materially. From the relationship established, a schedule of adjustments was applied to the apparent chip speed, to convert it to an approximation of true towing speed. This apparent flow was used instead of a current meter reading. Because of the substitution of a deduced value based in part on average performance instead of on actually measured value, the two members of individual pairs of hauls are not strictly comparable, but the average, or sum, of the 19 hauls with each type of net is not subject to this fault.

From the distribution of sizes of larvae caught by the respective nets (table 16), it is obvious that the smallest sizes of mackerel larvae were almost entirely lost through the coarse meshes of the 2 -meter net; that the 6 - to $9-\mathrm{mm}$. sizes were incompletely retained; and that sizes from 10 mm . upward were fullv retained by the larger net.

Two conclusions may be drawn from the comparison: (1) the catches of the two nets, per unit volume of water strained, are virtually identical for larrae 10 mm . and upward, and nearly so for the 7 - to $9-\mathrm{mm}$. sizes, hence no material distortion can have resulted from the pooling of data from the two types of nets, according to the methods employed in this report. (2) Both types of net must have taken essentially all the larvae of sizes 10 to 22 cm . in length that chanced to be in their path, for if any larvae tended to dodge the nets they would surely have been relatively more successful in eluding the 1 -meter net, and thus lowered its eatch of the elusive sizes in relation to that of the 2 -meter net. The closeness of the parired values for the size range specified is eloquent evidence this did not take place. It is to be regretted that no such paired hauls are arailable for the later cruises, when catches of still larger larvae might have indicated the upper size limit for effective catching of larrae by plankton nets.

Table 16.-Comparison of numbers of larvae caught by 1 -meter nets and by 2 -meter nets at identical stations of cruises I'I and VII
[Catches of both nets were converted to the basls of straining 17.07 cuble meters per meter of depth fished]

Length of larvae (millimeters)	$\begin{gathered} 2 \text {-meter } \\ \text { net } \end{gathered}$	$\begin{gathered} 1 \text {-meter } \\ \text { net } \end{gathered}$	Length of larvae (millimeters)	$\begin{aligned} & 2 \text {-meter } \\ & \text { net } \end{aligned}$	$\begin{aligned} & \text { 1-meter } \\ & \text { net } \end{aligned}$
3.	Number 0.39	Number 6, 214	12.	$\begin{gathered} \text { Number } \\ 12 \$ 1 \end{gathered}$	$\text { Number } 13$
4.	. 61	230	13.	9.50	10
5.	1.76	143	14.	5. 86	5
6	7. 40	56	15	3.14	4
7	17.33	33	16.	. 48	
8	28. 10	25	17	. 48	1
9.	20. 28	37	14.		1
10.	13. 75	24	20	. 09	
11.	13.17	14	22	. 09	.

Table 17.-Record of oblique hauls made by 1-meter nets during cruises I to VII, inclusive, in 1932
[For explanation, see items of table 15 desiguated by the figures cnclosed in pareutheses in the column headings of this tahle]

Cruise, locality, and	Station	Date	Hour	Upper net					Lower net									
				Depth (4)	Time (5)	Flow (10)	$\begin{gathered} \text { Sactor } \\ (12) \end{gathered}$	Clog. ging (7)	Denth (i)	$\underset{(5)}{T i m e}$	Flow (10)	$\begin{gathered} \text { Sact or } \\ (12) \end{gathered}$	Clogging (7)	$\underset{(13)}{\text { Time }}$	$\begin{gathered} \mathrm{C} \\ \text { factor } \\ (15) \end{gathered}$			
cruise I																		
Martha's Vineyard:	21327		0	39			2 16											
III	21328	do	23	25	1. 960	1406	1. 34	0	30				0					
III	21329	May 3	2	44	780	1203	4. 71	2	48				2					
IV	21330	-- do....-	7	54	1,380	1538	2.18	2	72				2					
New York: ${ }^{\text {N }}$ (${ }^{\text {a }}$																		
II	21335	May 4	3	14	1,140	1492	. 62	0	17	1,324	392	0.94	3	2116	0.06			
III	21334	May 3	24	13	1,320	1470	. 60	2	17	1, 444	507	. 73	2	2116	. 09			
IV	21333	...do...	21	15	1,260	${ }_{1} 1521$. 62	0	18	1, 414	601	. 65	0	2110	. 12			
V	21332	...do	18	15	1,320	1465	. 70	1	18	1,444	578	. 68	0	2116	. 12			
VI	21331	.do.....	17	17	1,200	1442	. 84	0	15				0					
Barnegat: I..........	21336	May 4	7	19	800	1292	1. 41	2										
Atlantic City:					000			0										
II	21338	---do	13	15	660	126	1.22	0	18	664	243	1. 61	1	${ }^{2} 116$	11			
III	21339	---do.	15	19	960	1377	1. 10	0	22	1,059	419	1. 14	0	2141	.12			
IV	21340	-. do.	18	19	900	${ }^{1} 367$	1.12	0	22	- 999	410	1. 17	0	${ }^{2} 141$. 12			
Cape May: 21345 May 5 0 19 950 1416 09																		
III	21344	.-.do.-.-	9	14	805	${ }^{1} 309$. 98	1	17	920	360	1.03	1	100	10			
IV	21343	-..do.	5	18	850	1368	1.06	0	22	900	292	1. 64	2	139	. 07			
V	21342	-. do	2	18	820	${ }^{1} 306$	1.28	1	22	900	350	1. 26	0	154	. 13			
VI	21341	...do	,	18	860	1350	1. 12	0	22	940	395	1.24	0					
Fenwick: I	21346	... do.	13	19	860	${ }^{1} 330$	1.25	2										
II.	21348	-- do-	16	21 16	845	1394 1386	1.96 .90	2	20	920	385	1. 13	1	150	17			
III.	21349	do	21	16	820	1295	1. 18	0	20	900	407	1.07	0	145	. 12			
1 I	21351	-..do....	5	20	900	${ }_{1} 394$	1. 10	0										
III	21350	do.	2	16	805	${ }^{1} 363$. 96	0	30	860	390	1.11	0					
crutas il																		
Martha's Viveyard:	21381	May 16		15	710	283												
II	21380	--da ${ }^{\text {do }}$	9 6	19	8.0	235	1. 1.8	0 2	22	965	254	1.48	${ }_{1}$					
III	21379	-...do	3	17	940	256	1. 44	3	21	1,020	213	2.14	2					
Montauk: ${ }_{\text {M }}$																		
-	21375	May 15	15	22	910	$3 \mathrm{ti4}$	1.31	0										
II	21376	--do....	18	18	915	3×9	1.01	0	22	960	441	1.08	0					
III.	21377	--do.	21	15	895	283	1.15	2	20	965	298	1. 46	1					
Shinnecock:																		
İ	21374 $213-3$	May 15	11	13	$\stackrel{635}{8} 8$	1 180 481	1.13	1	17	695	297	1. 24	0					
New York: $\quad 21309$ Itay 14.18																		
, 1.......	21309	May 14	18	19	895	421	. 98	0										
II	21370	-- do.	21	12	725	276	. 95	0	$1{ }^{1}$	795	329	1.06	0	140	. 15			
III	21371	do	24	16	840	+ 298	1.17	1	20	900	344	1.25	0					
IV	21372	May 15	3	17	920	389	. 95	0	22	965	442	1.08	0					
Barnegat: I...	21368	May 14	14	17	700	267	1.38	0										
15	21366	- 10.	10	20	840	311	1.40	1										
111	21365	- . do..--	5	16	910	369	. 94	0	20	945	376	1.16	1	150	12			
IV	21364	-.-do.	3	18	920	488	. 80	0	22	975	550	. 87	0					
III	21361	--do--.-	15	22	760	284	1.68	0										
1 V	21362	. do ...	18	19	960	332	1.24	0	22	1,030	392	1. 22	0	130	. 09			
V	21363	. do	20	16	860	423	. 82	0	21	910	479	. 95	0	140	. 15			
11	21357	- do	9	13	720	242	. 8.8	1	21	785^{-}	269	1.70	2	130	08			
II	21354	- 10.	20	21	860	406	1.12	1										
III.-...	21355	... do	24	19	865	326	1.27	0	22	1,010	415	1.15	0	155	. 12			

1 The flow was deduced from angle of stray of towing wire and degren of clogeing by means of correlation diagrams based on the relation between these and flow through the net as measured hy current meter at atl other stations of this series.
${ }^{2}$ Deduced from average data on sabsequeut hamls.

Table 17.-Record of oblique hauls made by 1-meter nets during cruises I to VII, inclusive, in 1992Continued

Cruise, locality, and haul	$\begin{aligned} & \text { Sta- } \\ & \text { tion } \end{aligned}$	Date	Hour	Upper net					Lower net									
				Depth (4)	Time (5)	Flow (10)	$\begin{gathered} \mathrm{S} \\ \text { factor } \\ (12) \end{gathered}$	Clogging (7)	Depth (4)	Time (5)	Flow (10)	$\xrightarrow[\substack{\mathrm{Sactor} \\(12)}]{ }$	$\underset{(7)}{\mathrm{Clog} .}$	$\underset{(\mathbf{I} 3)}{\operatorname{Time}}$	$\xrightarrow[\substack{\text { Cactor } \\(15)}]{ }$			
Cruise ill																		
Martha's Vineyard																		
I	21382	May 19	17	13	770	396	0.71	0	16	845	463	0.75	0					
111	21383	-.do.....	20	18	880 870	1264	1.32 2.02	1 3	20	9005	315 113	I. 38	0 3					
Montauk:																		
	21.387	May 20	10	12	815	327	.80	2	16	885	298	1. 16	2					
11	21386	.-do.....	7	15	875	281	1.34	1	22	960	252	1. 90	2					
111.	21385	. do..	4	16	1.000	243	1.43	2	21	1,110	154	2. 96	3					
Shinnecock:																		
II	21389	-.do.....	18	18	925	353	1.11	1	22	1,060	398	1. 20	1					
$11 . .$.	${ }_{21393}^{21393}$	May 21 do.....	8 5	15	72.5 785	297	1.10 .80	1	18	820 1,060	359 489	1.09 .71	1	108	0.11 .18			
III	21391	-do....-	1	15	49.5	438	. 74	1	19	1,140	483	. 84	1	154	. 16			
1 V	$213: 0$	May 20	22	18	875	412	. 95	1	22	1,030	478	1.00	1	146	. 14			
Barnegat: 1	21394	May 21	13	18	760	170	2.30	2										
Atlantle City: $\quad 21305{ }^{\text {a }}$																		
11	21396	- do.	19	14	775	205	1.42	2	17	. 800	230	1. 60	1	94	. 08			
111	21397	do..	22	20	340	323	1.35	0	23	1.020	385	1. 30	1	121	. 08			
IV	21398	May 22	I	19	9.55	465	. 89	0	22	1,040	56	. 84	0					
Cape May:																		
111	21401	do.	11	13	765	2150	1.05	1	17^{-7}	445	316	1. 17°	0	85	. 09			
1 V	21400	- do	9	18	$8: 15$	[313	1.16	2	22	955	300	1. 59	2	113	. 07			
V	21349	. do.	$?$	16	850	50 S	.fix	0	20	955	8.04	. 72	0	128	. 18			
Fenwick: 1.	21403	. . do	15	16	765	264	1.32	0		- .-								
11	21405	. do...	22	20	92.5	324	1.34	1										
111.	21406	-do...-	24	16	97.5	400	. $8 \hat{i}$	1	20	1, 105	460	. 89	0	122	. 12			
Chesapeake:																		
Ii	21103	do	4	21	\$2.5	331	1.37	1										
III	21407	do....	7	11	225	349	. 60	2	13	\$10	440	. 74	1	115	20			
cruise iv																		
II	$21+30$	May 27	24	22	400	205	2.33	3	2.1	1, 1.40	228	2.23	1	1:5	(0)			
III	21129	. do.	21	19	435	34.5	1. 14	13	23	1.030	437	1. 14	0	110	. 63			
Montak: 21.26 do 10 20 860 363 1.20 I																		
	21-126	..do.	10	20	8 CO	363	1. 20	1										
11	21427	. do	13	1.5	300	401	. 41	1	19	1,050	432	. 30	,	120	. 13			
11	21424	-do.	2	16	1, (19)	435	1.31)	${ }_{1}^{2}$	21	1,145	537	. 85.	0	131	14			
II	21421	-d0	14	14	73.5	251	1.20	0	17	\$50	322	1. 15°	0	100	. 09			
111	21422	do...-	18	1.	8.30	307	1.01	0	21	981	442	1.03	0	130	. 12			
IV	21423	do	21	20	915	327	1. 33	0	23	1,081	406	1.23	-	102	. 07			
Barnecat: I	21419	do	7	20	810	325	1.34	1										
	21418	- do.....	4	21	910	25.7	1. 78	,										
If,	21417		1	11	550	161	1.45	2	18	840	159	2. 48	3	1140	. 04			
III	21416	May 25	22	20	905	35.5	1. 22	0	23	1.075,	433	1. 15	0	123	. 09			
IV	21415	. do....	20	30	860	404	1.05	0	23	460	454	1.03	0	115	. 11			
IL	21.412	- do	9	10	800	27.	1. 27	0	18	8890	334	1.1"	0	109	. 10			
IV	21413	. do...	12	15	955	28.	1.37	2	22	1,080	210	2.23	3 0	120	. 04			
V...-.	21.11.	do...-	14	15	940	369	. 88	0	20	1,035	443	. 95	0	121	. 11			
Chesapeake: II.	21410	May 24	19	19	750	215	1. 66	0									
CrUise V																		
11.	21433	June 1	23	$1{ }^{18}$	1,080	383	. 88	3	20	1,255	379	1.15	$\underline{2}$	162	. 13			
Shinnecock: 111......	21434	June 2	4	15	, 935	303	. 89	0	20	1,050	402	.44	0	137	. 12			
New York:																		
II	21438 21437	...do-...	20 16	20	915 895	324	1.34 .50	1	17	985	605	51	0	170	. 29			
111	21436	-..do.....	12	16	980	$4 \mathrm{t} \mathrm{C}_{6}$. 75	0	21	1.090	551	.83	0	13.3	. 14			
IV.	21435	do	9	20	915	$3: 34$	1.30	0	32	1.050	419	1.14	0	122	. 09			
Barnegat: I...---...	21436	June 3	1	19	8151	336	1. 23	1										

Table 17.-Rccord of ollique hauls made by 1-meter nets during cruiscs I to VII, inclusive, in 1998Continued

Cruise, locality, and haul	$\begin{aligned} & \text { Sta- } \\ & \text { tion } \end{aligned}$	Date	Hour	Upper net					Lower net									
				$\underset{(4)}{\text { Depth }}$	$\underset{(5)}{\operatorname{Time}}$	Flow (10)	$\left\|\begin{array}{c} \text { S } \\ \text { factor } \\ (12) \end{array}\right\|$	Clog. ging (7)	Depth (4)	Time (5)	Flow (10)	$\begin{aligned} & \text { factor } \\ & (12) \end{aligned}$	Clog ging (7)	Time (13)	C factor (15)			
cruise v																		
Atlantic City:																		
II	21444	do	7	20	885	437	0. 98	0	20	析	502	87			16			
III	21442	---do-.....	10	14	985	458	.66	0	19	1,090	544	. 86	0	131	. 15			
IV	21443	...do..	13	16	905	428	. 81	0	21	1,005	510	. 90	0	142	. 15			
Cape May:																		
11 I	21446	Jo. do..-.	1	11	690	300	2.86 .80	1	20	1,200	563	. 77	0	122	13			
1 V	21445	June 3	23	14	915	416	. 73	0	19	1,060	519	. 80	0	150	$\checkmark 17$			
V	21444	...do.....	20	18	915	366	1. 07	0	22	1, 050	456	1.05	0	120	. 10			
Winterquarter:	21448	June 4	11	18	1,050	497	. 79	0										
	21449	Jun ${ }^{\text {do }}$	14	16	1,890	358	. 97	0	20	985	396	1.10		143	. 13			
III	21450	- do.---	17	15	905	450	. 72	I^{-}	20	1,020	542	. 80	0	135	. 17			
II	21452	Jo. do.	2	18	9	346	1.30 1.13	2										
ILI.	21451	June 4	23	16	910	447	. 78	1	20^{-}	1,025	538	. 81	0	150	. 18			
cruise vi																		
11	21467	--.do....-	4	16	845	232	1.50	2	20	975	166	2. 62	,	139	. 04			
II.	21465	. . do	19	15	985	335	. 97	2	20	1, 195	282	1. 54	3	131	. 06			
III	21461	June 7	1	18	895	218	1. 80	$\stackrel{2}{2}$	22	1,030	180	1.30	2	124	. 05			
IV.	21462	...do....	4	21	835	420	1. 09	0	21	1, 030	553	. 94	0	136	. 13			
Atlantic City:																		
	21459	June 6	14	22	1,075	530	. 90	0										
11	21458	--do.....	11	15	855	387	. 84	0	20	975	475	. 92	0	132	. 14			
III	21457	.. do....	9	15	950	449	. 73	0	19	1,065	540	. 76	0	113	. 13			
Cape May:																		
III	21455	Jo....	23	11	855	438	. 55	0	15	1,015	555	. 59	0	118	14			
IV.	21456	June 6	2	16	855	389	. 97	0	41	, 985	446	2. 00	0	131	. 04			
cruise vil																		
II-----------...-	21490	June 19	16	10	890	511	- 42	0	10	1,050	638	. 34	0	73	- 19			
111	21492	--.do	24	17	910	473	- 6	1	16	185	556	. 63	0	127	. 21			
IV	21493	June 20	6	15	830	484	. 67	0	16	${ }^{1+975}$	602	- 58	0	100	. 17			
Montauk: ${ }_{\text {M }}$																		
1.	21459	June 19	110	12	725	393	. 66	0	12	830	414	. 59	1	\$6	. 16			
11	21488	-. do ${ }^{\text {do }}$	6	16	895	484	. 72	0	16	1, 010	598	. 58	0	113	. 18			
111	21487	do	2	15	930	523	. 62	1	16	1,175	700	. 50	0	141	. 24			
Shiunecock: ${ }^{\text {S }}$,																		
11.	21486	Jume 18	21	17	1.040 900	1401 345	1.07	1	17	1,015	382	. 97	1	121	12			
11	21483	do.	4	14	975	275	1.11		15	1,150	324	1.01		135	. 12			
III	21482	June 17	23	13	860	1457	. 62	0	14	990	559	. 54	0	128	. 22			
IV	21481	do.	20	15	965	422	. 77	0	16	1,130	532	. 65	0	110	. 14			
Atlantic City:																		
II	21477	June 17	6	15	900	43.5	. 75	1	20	1.045	498	.87	1	120	. 13			
III	21478	..-do.-.	9	16	940	496	. 70	0	20	1. 050	590	. 74	0	149	. 18			
IV.	21479	---do-...	12	21	925	356	1.28	0	24	1,035	434	1. 20	0	135	.10			
IV.	21475	June 16	20	16	960 820	438 388	.79 .73	0	18	1,080 980	530 440	.82 .89	0	102	.19 .12			
V .	21474	-. do....-	18	14	830	365	. 83	0	19	925	438	. 94	0					
İ...	21471	--. do.....	8	17	750 895	1242 428	1. 63	2	22	990	507	.94	0					
II.	21472	...do.....	8	18	895	428	. 91	0										

Table 18.-Record of oblique hauls made with a 2-meter net during cruises VIII and IXI, 1932

Locality	Station	Date	Mour	Depth (f)	$\underset{(5)}{\operatorname{Time}}$	Flow (10)	$\underset{\substack{\text { Factor } \\ \text { (12) }}}{\text { S }}$
CRUISE VIII							
Martha's Vineyard:	1283	July 1	20	28	1,440	1,128	0.135
	1282	--do--.	16	27	1,500	1, 075	. 135
Montauk:							
I ${ }^{\text {V }}$--*	1276	June 30 June 25	11	21	1, 639	2,319 1,331	.049 .135
Shinnecock:							
I	1275	June 29	13	26	1.2f0	87	. 141
II	1274	...do.	18	34	1,620	729	. 256
New York:							
	1270 1271		$\begin{array}{r}21 \\ 2 \\ \hline\end{array}$	29	1,440 1,440	1, 128	.137 .088
11	1271 1272	June 29	$\frac{2}{7}$	25	1,440	1,736	. 088
V	1260	June 26	2	21	1.740	2,526	. 043
Vi	1251	--do..	4	25	1,440	1,632	. 053
Barnegat:I	1263	June 28	16	17	9 ¢0	704	. 131
Atlantic City:							
Iİ...........	1979 1263	June 26	20	14	780 1.680	572 812	. 131
III	12 fr	June 2^{7}	4	34	1,500	725	. 256
IV	1265	...do.	7	34	1,380	667	. 268
Cape May:							
II	1266	-..do....	18	22	1,260	987	. 119
IIV	1267	---do	21	33	1,560	884	. 196
	1268	-..do . .-	24	25	1,560	1,664	. 080
CRUISE IX							
Cape Ann: II	1319	July 23		43	2,460	2, 050	- 112
Boston: II-	1318 1318	July 22	13 17	27 31 1	1,260 1,500	1,440	. 282
Cape Cod Bay:	1315	- $10 .-{ }^{\text {do }}$	13	31	1, 321	1,152	. 145
Chatham: II.	132 m	July 24	23	40	1, 840	S 81	. 256
Western Qeorges: III	1305	July' '?1	8	63	1.9×0	1,551	. 214
South Channel: IV.	1307	. . 10 - . .	4	72	1, 0×0	5n*	. 680
Martha's Vineyard:				39	2,230	1,900	. 110
Iİ	1302	do do.	1	49	1,620	1,053	. 256
Montauk:							
1.	12 CR	3uly 16	13	18	9 Fm	960	. 101
IIJ.	1290	July 17	10	34	1,400	1,040	. 194
Sbinnecock: I	1294	July 18	3	15	1. 510	1.925	- 080
New York: II.	1296	..-do...-	16	23	1,360	1,021	. 122

Note:-The above table does uot include hauls falling to take meckercllarvae. For a list of these see foot of table 19 and table 20 .

RECORDS OF TOW NETTING AND CATCHES OF 1932

Since the methods of reducing catches of eggs and larvae to the standard basis on which the conclusions of this paper rest, are, to a considerable extent, novel, and therefore have not stood the test of usage, and since techniques may be altered in the future in such a way as to require recaleulation of present results to provide material for comparison, there are given in tables 17 to 20, inclusive, the more pertinent of the records of the cruises of 1932 .

Tables 17 and 18 give the conditions under which the hauls were made, and the relation of the data to each other may be understood by consulting table 15 . Similarly, tables 19 and 20, giving the counts of examined portions of eatches and the standardized total eatehes, were based on computations illustrated by table 14.

Since the data on hydrographic conditions have already been published (Bigelow, 1933, pp. 124-128 and 131-133) thev are omitted from this paper.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932
[Numbers following the locality designation are the serial numbers of the stations. Numbers in parenthesis are the fractions of the haul sorted for eggs and larvae. The entire haul was sorted for larget larvae. The numbers given in the table are the actual counts in the sorted fractions; numbers given on the adjusted total lines are these counts converted to total catch and adjusted to r'present the number per 17.07 square meter of sea surface]

CRUSE I

Item	Number of eggs by stages			Number of larvae by millimeter classes						
	A	B	C	3	4	5	6	7	8	9
Adjusted total.	5,805	206								
Adjusted tetal	344	314	37							
Adjusted total	66	17	5							
New York V $21332{ }^{1}$: Upper haul: Eggs aud larvae (0.1000)										
Adjusted total.		6								
Barnegat I 21336: Upper haul: Eggs and larvae (0.1000)										
Adjusted total.	254									
Athantio City I 21337: Upper haul: Eggs and larvae (0. 1000) .										
Adjusted total	105	12								
Adjusted total	621	72	18							
Atlantic City III 21339: Upper haul: E.ggs and latvac (0.0500) Lower haul: Eggs and larvao (0.0500)	10	47 13	14							
Adjusted tetal	194	1,189	291							
Atlantic City 1V 21340: Upper haul: Eggs and larvae (0.0500) Lower hanl: Eggs and larrae (0.0500) .	1	49 19	12 2							
Adjusted total.	19	1,389	278							
Cape May Il 21345: Upper haul:										
Adjusted total.	3.503	515	138							
Cape May 1II 21344: Uiper haul: Eggs and larvae (0.1070) . Lower hanl: Eggs aud larvae (0.1000) .	32 22	220 80	134 37							
Adjusted total	491	2,635	1.485							

See footnotes at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1930-Continued CRUISE 1-Continued

CJRUISE II

See footnotes at end of table.

Table 19.-Record of mackercl eggs and larvae caught during cruises I to VII in 1982-Continued CRUISE II-Continued

See footnotes at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932—Continued CRUISE II-Continutd

See footnotes at end of table.

Table 19.-Record of mackercl eggs and larvac caught during cruises I to VII in 1932-Continued CRUISE III

Item	Number of eggs by stages			Number of larvae by millimeter classes								
	A	B	C	3	4	5	6	7	8	9	10	11
Martha's Vineyard I 21382: 1 Upper hanl: Eggs (0.0280) larvae (0.0560)												
Adjusted total	2,060								...			----.
Montauk I 21387: ${ }^{3}$ Upper haul: Eggs (0.0187) Jarvae (0.0373)												
Adjusted total	74	74			---				-			
Shinnecock I 2138s: Upper haul: Eggs (0.0224) lar vae (0.0448) 327												
Adjusted total.	15.470	4, 500	1. 183	47					--			
Adjusted total	20	240	100	-..								-..
Adjusted total	786	4,130	295	312						--		-----
Adjusted total.	94	910	658	363								-----
New York IlI 21391: ${ }^{2}$ Upper haul: Eggs and larvae (0.0373) 281												
Adjusted total		40	99	17								...
New York IV 21390: ${ }^{1}$ Upper haul: Eges and Jarvac (0.0373) Large larvae.		2	1						1			
Adjusted total		51	25	.					1			...
Barnegat I 21394 : Upper haul: Eggs and larvae (0.0280)		18	9	38	2							----
Adjusted total		1.479	730	3,120	$16 \frac{1}{2}$							
Atlantic City I 21395: Upper haul: Eggs and larvae (0.0448)		10	1	10	3							
Adjusted total		286	24	286	86							
Atlantic City II 21346: Upper haul: Eggs and larvae (0.0373) Large larvae. Lower haul: Larvae (0.0448)		4	27	58 \cdots 6	9 1 2							---.-
Adjusted total.		1611	1,070	2. 250	3×3	----	----		...	-..	-	
Atlantic City III 21397: 2 Upper haul.												
Adjusted total..	72	109	66	-..	-....		...	-...	...	-..	...-

See footuotes at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932-Continued CRUISE III-Continutl

See footnotes at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932-Continued CRUISE IV

Item	Number of eggs by stages			Number of larvae by millimeter classes								
	A	B	C	3	4	5	6	7	8	9	10	11
Martha's Vineyard I 21431: ${ }^{7}$ Upper haul: Eggs (0.0187) larvae (0.0373) $\ldots \ldots$ 27 88 131 28												
Adjuster total.	1,574	5,140	7,650	753	-----							
Adjusted total	499	1,122	748	972	---*		---			--.-		----
Adjusted total	283	232	40									.--
Montruk I 21426: Upper hand: Eggs (0.0280) larrae (0.0560) $\ldots \ldots$ 103 16 15 15												
Adjusted total	4,416	686	643	322								
Adjusted total	36	259	2,061	2, 203								
Montauk III 21428: 1 Upper haul: Eggs and larvae (0.0560)												
Adjusted total	16		241	347			---		.-.-			
Adjusted total	3,953	5,380	4,600	2,875	144							
Adjusted total	285	71	$8: 0$	1,754								
New York I 21420: Upper haul: Eggs and larvae (0.0373)												
Adjusted total.		41										
Adjusted total	300	1,155	4,630	6,861	2,549	31						
New York 111 21422: Upper haul: Eggs and larvae (0.0373). Lower baul: Larvae (0.0448)	5	2	1	22 1	1							
Adjusted total.	135	54	27	546	24-..-	-----	
New York IV 21423:1 Upper haul: Eggs and larsae (0.0448)	19	1		3								-----
Adjusted total...	563	30		83								------

See footnotes at eud of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932-Continued CRUISE IV—Continued

Item	Number of eggs by stages			Number of larvae hy millimeter classes								
	A	B	C	3	4	5	6	7	8	9	10	11
Barnegat I 21419: Upper haul: Eggs (0.0187) larvae (0.0373)												
Adjusted total.		36	36	72	72	----.			
Adjusted totsl.				382	477	573	95	.-.				
Adjusted total	80	79		820	731	1-.-.	..		.	
Adjusted total.	32		16	60		-.	---	...-	...--			-----
Adjusted total.			10				1	2				
Cape May II 21411: U Iper haul: Eggs and larvae (0.0448) Large larvae		26	2		2	1	2 5	1				- . . ${ }^{\text {a }}$ -
Adjusted total		922	71		71	36	70	1	--			
Cape May III 21412: Upper haul: Eggs and larrae (0.0747) Large larvae. Lower haul: Larvae (0.0500)			7	15 \cdots 1	15 \ldots 1	$\stackrel{7}{6}$	14^{2}	2				
Adjusted total.			119	247	247	107	31	2				
Cupe May IV 21413: Upper haul: Eggs and larvae (0.0896) Lower haul: ${ }^{3}$ Large larvac.				6	10			1				
Adjusted total				88	147			2				
Cape May V 21414: ' Upper haul:												
Adjusted total.				7						...		
Chesapeake II 21410: Upper haul: Eggs and larvac (0.0896) Large larvae						2	2	10	$\begin{array}{r} 1 \\ 28 \end{array}$	17	2	1
Adjusted total..						3	3	15	48	28	3	2
Grand adjusted total..	12,172	5,287	21,712	18,392	, 462	751	200	25	48	28	3	2

See footnotes at end of table.

TABLE 19.-Record of mackerel eggs and larvae caught during crunses I to VII in 1932-Continued CRUISE V

See footnotes at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932-Continued CRUISE V-Continued

Item	Number of eggs by stages			Number of larvae by millimeter classes											
	A	B	C	3	4	5	6	7	8	9	10	11	12	13	14
Adjusted total	.-.		22	1	96	57	346	290	41						
Atlantic City IV 21443: Upper haul: Eggs and larvae (0.0747) \ldots I															
Lower haul: Larvae (0.0747)															
Larvae (0.0i47) Large lar					1	1									
Large larvae.						1								-	
Adjusted total			11	7	22	20									
Large larvae.															
Adjusted total.	--...			-		29	29	---	1		\ldots	2	1	1	
Cape May III 21446:															
Upper haul: Eggs and larvae (0.0747)						1	1	4							
Large larvae-								1	2		4	2			
Lower haul:															
Larvae (0.0373)										1	...		-		
Large larvae. -					\cdots		-	2	1	1					
Adjusted total.		.-.				10	10	32	3	2	3	2			
Eggs and larvae (0.0747)						2	2	11	11	4					.-.
Large larvae										7					
Lower haul: Larvae (0.0960)								4	4						
Large larvae. .							6	15	11	6					
Adjusted total.			----	--. -		17	22	10.5	104	38				-	
Large larvae						1									
Adjusted total			1		1							
Winterquarter I 21448: 10															
Upper haul: Large larvae.								5		2					1
Adjusted total								4		2		--			1
Winterquarter II 21449: 11															
Adjusted total				---				1				1	1		1
Winterquarter III 21450:															
Upper haul: ${ }^{3}$ Large larvae. . .									2	4	1	\cdots			
Lower haul: ${ }^{\text {? }}$															
Larvac (0.0112).									1					
Large larvae. -									1	2					
Adjusted total.		-----	--	--.	---				2	5	1				
Chesapeake III 21451:															
Upper haul: Eggs and larvae (0.0747)									1		1				
Large larvae-------...								7	10	5	3				
Lower haul:															
Larvae (0.1120).									1		1				
Large larvae. .								1	1			1			
Adjusted total.								5	9	3	3	1			
Grand adjusted total.	2,907	2,057	6,011	5,215	1, 243	1,049	1,132	911	200	54	7	6	2	1	2

See footrotes at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932-Continued cruise vi

See footnotes at end of table.

Table 19.-Reeorl of mackerel eggs and larvae caught during cruises I to VII in 1982-Contimued CRUISE VI-Continued

See footnote at end of table.

Table 19.-Record of mackerel eggs and larvae caught during cruises I to VII in 1932-Continued CRUISE VII

See footnate at end of table.

Table 19.-Record of mackerel cggs and larvae eaught during eruises I to VII in 1932-Continued
CRUISE VII-Continued

Note-The abore given table does not include stations at whieh hauls were made and noeggs or larrae of mackerel found. All these hauls were completely sorted for large larvae, but only fractions for eggs and small larvae. In the followiog enumeration that includes all such stations, the fractions of hauls sorted are included in parentheses, and the letters U and L refer to upper and lower thaus, respectively. Unless otherwise specificd, the fraction firen for upper hanl was sorted for both eqgs and larvae, those of the

 yard IV 21493 (U 0.1120) (L 0.0806); Cape May II 21470 (U0.63i3); Cape May 11121476 (U 0.2000 (L 0.2000); Cape May V 21454
 for larvae) (L 0.0896)

1 Nolarvae found in 0.0500 of lower haul.
${ }^{2}$ No larvae found in 0.0448 of lower haul.
a No larvae found in 0.03 .3 of lower haul.
4 No larvae found in 0.0373 of uper haul.
5 No eggs or larvae found in 0.0 .47 of unper haul

- No eggs or larrae found in 0.0250 of upper haul.

7 No larvae found ia 0.0320 of lower baul.
8 No eggs or larvae foupd in 0.0407 of upper haul.

- No larvae found in 0.1120 of lower haul.
${ }^{10}$ No eggs found in 0.0448 of upper haml or larvae in 0.0224 of upper haul.
11 No eges or larvae found in 0.0747 of upper haul and no larvae in $0.074{ }^{\circ}$ of lower baul.
${ }^{12}$ No larrae fouad in 0.0250 of lower haul.
${ }^{12}$ No eges or larvae fonod in 0.1120 of upper haul.
14 No larvae found in 0.0747 of lower haul.
${ }_{15}$ No eges or larvae found in 0.1120 and no large larvae in entire upper haul.
16 No small larvae found in 0.1667 of lower hanl.
${ }^{17}$ No eggs or larvae found in 0.1000 of upper haul and no large larvae in entire upper haul.
${ }^{18}$ No larvae found in 0.2000 of lower haul.
19 No eggs or larvaf found in 0.1120 of upper haul, no larrae found in 0.166% of lower haul, and no large larvae in entire lower haul, ${ }^{20}$ Before applying the regular adjustments the count in the upper hatul was multiplied by 4 to adjust for the accidentsl loss of a (estimated) of the plankton.

Table 20.-Record of mackerel larvae caught on cruises VIII and IX
[Column A gives the actual count, Colnmn B the standardized total. Sizes nnder 7 mm . in length have been omitted on account of their incomplete retention by the 2 -meter stramin net used on this cruise]

CRUISE VIII, JUNE 26 TO JULY 1, 1932

Table 20.-Record of mackerel larvae caught on eruises VIII and IX-Continued
CRUISE IS, JULY 16-24, 1932

Note- -In addition to the above, hauls which yirlded no nackerel material were made during cruis Vill at New York IV on June 29, Montauk I, II, and III on June 30, and Martha's V'ineyard III and IV on July 1; and luring cruise IX at Montank II and IV and Shinnecock II and III on July 17, at New York I, III, and IV on July 18, at New York Vand Martha's Vineyard III and IV on July 19, at Nantucket Shoals I, II, and III on July 20, at South Channcl II and Western Georges I and II on July 21, at South Channel I, Chatham I, Nanset I, Race Point I and Bostun Light I on July 22 at Cape Anne I, Newhuryport I, Boone Island I, and Cape Flizaheth I and II on July 23, at Juone Island II, Capu Anne III, and Race Point If on Jaly $24,1932$.

[${ }^{2}$ SIZES OF YOUNGEST POST-PLANKTONIC MACKEREL

To afford comparison between the largest tow-netted mackerel and smallest sizes canght by other gear, there are given in table 21 the length frequencies of several samples selected for their pertinence to this subject. The measurements were taken to the nearest half centimeter on a straight line from the snout to the fork of the tail.

Table 21.-Sizes of young machercl in the earliest available samples of post-planktonic stages in 1926, 1927, and 1932
[The sample of July 22, 1926, was taken by dip net in the hoat basin at the Fisheries Biological station at Woods Ifole, Mass. The otber samples of 1926 and those of 1927 were taken by dip net in jound nets in the vicinity of Wurds Ilole, Mass.; and the 1932 sample came from the cummercial catch of a pound net in the vicinity of Montank, $\mathrm{N}, \mathrm{y}^{+}$.]

Length in millimeters	July 22, 1926	$\text { Ang. 4, } 1926$	$\frac{\text { Aug. 8. } 192 \mathrm{~h}}{\text { Numbet }}$	July 22, 1927 Number	Aug. 3-4, 1927	$\frac{\text { Aug. 30, } 1432}{\text { Nutatcr }}$
35.						
40	8					
45.	5			2		
50.	5			1		
55.	s					
60.	7			\cdots-.		
65	1			2	
70.					6	
75.		2	1		6	-.-.-...
80			1		3	
85		2			1	
90		1			5	
95.			1		32	
100		1	- .-.-.-.-.-.		96	
105.					100	
110					30	
115					2	
145.						1
150						1
155						10
160						5
165						6.
170----						
Total	35	7	4	3	283	26

LITERATURE CITED

Bigelow, Henry Bryant. 1927. Physical oceanography of the Gulf of Maine. Bull. U. S. Bur. Fish. vol. 40, part 2, Document No. 969, Dec. 12, 1927, pp. 511-1027, figs. 1-207.
Bigelow, Henry Bryant. 1933. Studies of the waters on the continental shelf, Cape Cod to Chesapeake Bay. I. The cycle of temperature. Papers in Physical Oceanography and Meteorology, vol. I1, No. 4. Contrib. No. 34.
Bigelow, Henry Bryant, and Mary Sears. 1939. Studies of the waters of the continental shelf, Cape Cod to Chesapeake Bay. III. A volumetric study of the zooplankton. Memoirs of the Museum of Comparative Zoology, vol. LIV, No. 4.
Bigelow, Henry Bryant, and Wilhiam W. Welsh. 1925. Fishes of the Gulf of Maine. Bull. U. S. Bur. Fish., vol. 40, part 1, Document No. 965, pp. 1-567, figs. I-278.

Bjerkan, Paul. 1919. Resnlts of the hydrographical observations made by Dr. Johan Hjort in the Canadian Atlantic waters during the year 1915. Dept. of the Naval Service. Canadian Fisheries Expedition, 1914-15, pp. 349-103, 4 pls., 11 figs., Ottawa.
Brice, Joun J. 1898. The common mackerel. In a manual of fish culture based on the methods of the United States Commission of Fish and Fisheries. Rept. U. S. Commission of Fish and Fisheries for 1897, pp. 209-213, pls. LVIII.
Buchanon-Wollaston, II. J. 1935. On the component of a frequency distribution ascribable to regression. Jour. du Conseil, vol. X, No. 1, pp. S1-98.
Carruthers, J. N. 1938. Fluctuations in the herrings of the East Anglian autumn fishery, the yield of the Ostend spent herring fishery, and the haddock of the North Sea in the light of relevant wind condition. Cons. Perm. Internat. p. l'explor. de la Mer, Rapp. et Proc.-Verb. CVII, 3e'me Pt. 10-15.
Carruthers, J. N., and W. C. Ifodgson. 1937. Similar fluctuations in the herrings of the East Anglian autumn fishery and certain physical conditions. Cons. Perm. Internat. p. l'explor. de la Mer, Rapp. et Proc.-Verb. CV, 3e'me Pt. 10-13, Copenhagen.
Clark, Frances N. 1934. Maturity of the California sardine (Sardina caerulea) determined by ova diameter measurements. Calif. Div. Fish and Game. Fish Bull. 42; 49 pp., 19 figs.
Dannevig, Alf. 1919. Canadian fish-eggs and larvae. Canadian Fisheries Expedition, 1914-15, pp. 1-74, 3 pls., 26 figs., Dept. of Naval Service, Ottawa.
Embenbaum, E. 1921. Ueber die Makrele. Wissensch. Meeresuntersuchungen. Abt. Helgoland. Bd. XV. No. 2, 1921.
Embody, George Charles. 1910. The ecology, habits and growth of the pike, Esox lucius. Unpublished thesis deposited in the library of Cornell University.
Ezeriel, Mordecai. 1930. Methods of correlation analysis. John Wiley \& Sons, Inc., New York, 1930.
Fiedler, Reginald Hobson. 1932. Fishery industries of the United States, 1931. Report of U. S. Commissioner of Fisheries for the fiscal year 1932, App. II. Oct. 12, 1932, pp. 97-440.

Fiedler, Reginali Hobson, John Ruel Manning, and Fred Francis Johnson. 1934. Fishery industries of the United States, 1933. Report of U. S. Commissioner of Fisheries for the fiscal year 1934, App. I. Aug. 17, 1934, pp. 1-237.
Fish, Charles John. 1928. Production and distribution of cod eggs in Massachusetts Bay in 1924 and 1925. Bull. U. S. Bur. Fish., vol. 43, pt. 2. Document No. 1032, Feb. 25, 1928, pp. 253-296, figs. 1-16.
Fisher, R. A. 1932. Statistical methods for researeh workers. Oliver and Boyd, Edinburgh.
Goone, George Brown. 18S4. The mackerel (Scomber scombrus) in Fishery Industries of the United States. Natural Hist, of Useful Aguatic Animals, Seet. 1, pp. 281-303, U. S. Govt. Printing Office.
Garstang, Walter. 1898. On the variation, races, and migrations of the mackerel, Scomber scombrus. Jour. Nlarine Biol. Assoc., vol. V, No. 3, ир. 235-295.
Hsort, Johan. 1926. Fluctuations in the year class of important foud fishes. Jour. du Conseil, Feb. 1926, wol. I, No. 1, pp. 5-39.
llontsman, A. G. 1919. Sume quantitative and qualitative phankton studies of the Eastern Canadian plankton. ('anadian Fisheries Expedition, 19t4-15, pp. 405-485, 12 figs., Dept. of Naval Service, Ottawa.
Iselin, Columbus O'Honnell. 1936. A study of the circulation of the western N. Athantic. lapeers in Physical Ceeanography and Meteorology. Vol. IV, No. 4, August 1936.

Marshall, S. M., A. G. Nicholls, and A. P. Orr. 1937. On the growth and feeding of the larval and post-larval stages of the Clyde herring. Jour. Marine Biol. Assoc., vol. XXI, No. 1, Nov. 1937, pp. 245-267.
Moore, J. Percy. 1899. Report on mackerel investigations in 1897. Report Commissioner, U. S. Comm. Fish and Fisheries for 1898, [App. I.,] pp. 1-22.

Russell, F. S. 1925. Depth recording with plankton-ncts. Nature, vol. CAV, 1925, pp. 603604. London.

Sette, Oscar Elton. 1931. Outlook for the mackerel fishery in 1931. Fishery Circular No. 4 , Bur. of Fish., U. S. Dept. Commerce, Aug. 1931, pp. 1-20.
Sette, Oscar Elton. 1932. Outlook for the mackerel fishery in 1932. Fishery Circular No. 10, Bur. of Fish., U. S. Dept. Commerce, June 1932, pp. 1-25.
Sette, Oscar Elton. 1933. Outlook for the mackerel fishery in 1933. Fishery Circular No. 14, Bur. of Fish., U. S. Dept. Commerce, May 1933, pp. 1-23.
Sette, Oscar Elton. 1934. Outlook for the mackerel fishery, 1934. Fishery Circular No. 17. Bur. of Fish., U. S. Dept. Commerce, April 1934, pp. 1-6.
Sette, Oscar Elton. 1938. Relative strength of year classes of certain fishes of the Western Atlantic. E. Mackerel. Cons. Perm. Internat. p. l'explor. de la mer, Rapp. et Proc.-Vcrb. CI, 4e'me, Pt. 1, Copenhagen.
Sette, Oscar Elton, and A. W. H. Needler. 1934. Statistics of the mackerel fishery off the east coast of North America, 1804 to 1930. Inv. Rept. No. 19, Bur. of Fish., I'. S. Dept. of Commerce, 1934, pp. 1-48.
Sparks, M. Irvino. 1929. The spawning and development of mackerel on the outer coast of Nova Seotia. Contrib. to Canad. Biol. and Fisheries, N. S., vol. IV, No. 2s, pp. 443-452.
Walford, Lionel Albert. 1938. Effect of currents on distribution and survival of the eqges and larvae of the haddock (Melanogrammus aeglefinus) on Georges Bank. Bull. L. A. Bur. Fish., vol. 49, Bull. No. 29, pp. 1-73, figs. 1-50.
Wilson, Henry V. P. 1891. The embryology of the sea bass (Sertanus atrarius). Bull. U. \&. Fish. Comm., vol. 9, Document No. 160, July 7, 1891, pp. 209-277, pl. LXXXVIII-CVII, text-figs. 1-12.
Winsor, Charles P., and Lionel A. Walford. 1936. Sampling variations in the use of plankton nets. Jour. du Conseil, vol. XI, No. 2, pp. 190-204.
Worley, Leonard G. 1933. Development of the egg of the mackerel at different constant temperatures. Jour. Gen. Physiology, vol. 16, No. 5, pp. S41-857.

UNITED STATES DEPARTMENT OF THE INTERIOR
Harold L. Ickes, Secretary
FISH AND WILDLIFE SERVICE
Ira N. Gabrielson, Director

Fishery Bulletin 39

FLUCTUATIONS IN ABUNDANCE OF RED SALMON, Oncorhynchus nerka (WALBAUM), OF THE KARLUK RIVER, ALASKA

By JOSEPH T. BARNABY

From FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE
Volume 50

UNITED STATES
GOVERNMENT PRINTING OFFICE
WASHINCTON : 1944

Abstract

Karluk River red sammon migrate to the ocean in their first to their fifth year. The majority migrate during their third or fourth year. They mature, and return to fresh water to spawn in their third to eighth year. The 5 -year age group is dominant, with the 6 -year age group next in importance. In the period from 1921 to 1936, the spawning escapements bave fluetuated from 400,000 to $2,533,402$ with an average escapement of $1,113,594$. The fluctuations in the ratio of return to escapement have been considerable, and no correlation has been found to exist between escapement and return.

Certain adverse environmental conditions in the lake and tributary streams appear to have a deleteriou effect upon the young red samon. Insufficient amounts of phosphorus and silica present in the lake waters is one such condition. This shortage of essential elemieals indireetly affeets the production of zooplankton of the lake, and thus appears to indirecily affeet the growth and survival of young salmon which depend upon zooplankton for food. A marked change is oceurring in the percentage of fish of a given fresh-water history in the escapement, in relation to the percentage of fish of the same fresh-water history in the return. A higher pereentage of fish spend 3 years in fresh water in the eseapement than in the return, and a higher percentage of fish spend 4 years in fresh water in the return than in the escapement. Unless this relationship ehanges, the majority of salmon in the Karluk River runs will be fish that have spent 4 years in fresh water, whereas, formerly, the dominant age group was composed of fish that had spent 3 years in fresh water.

Seaward migration takes place during the last week of May and the first 2 weeks in June. The pereentage of 4 -year fingerlings decreased, and the percentage of 3 -year fingerlings inereased during the period of migration. Growth rate affects the time of migration, as the fastest growing individuals migrate first. Marking experiments at Karluk River have shown the ampntation of the adipose and right, left, or both ventral fins to be better methods of marking than those which included the pectoral fins. The fresh-water mortality of Karluk River red salmon was found to be in excess of 99 percent. The average ocean mortality was 79 percent. The older and larger 4 -year seaward migrants experienced a lower ocean mortality than the 3-year migrants; the average mortality of the former was 76 percent as compared to 83 percent for the younger age-group. Returns from marking experiments on the red salmon of Karluk River have been consistently greater than returns from similar experiments in other areas.

FLUCTUATIONS IN ABUNDANCE OF RED SALMON, ONCORHYNCHUS NERKA (WALBAUM), OF THE KARLUK RIVER, ALASKA

\author{

By Joseph T. Barnaby, A. M., Aquatic Biologist, Division of Fishery Biology, Fish and Wildlife Service
 CONTENTS
 \begin{tabular}{|c|c|c|c|}
\hline \& Page \& \& Pago

\hline Indrodu \& 237 \& Marking experiments-Continued. \&

\hline Statistical history \& 238 \& liecorery of marked fish \& 281

\hline Age at maturity \& 211 \& Experiments in 1926-- \& 282

\hline Spawning population \& 2.17 \& Experinments in 1927 and 1928. \& 283

\hline Total populations. \& 252 \& Fxperiments in 1929 \& 283

\hline Returns from known spawning popula- \& \& Experiments in 1930 \& 281

\hline \& 25.5 \& | Experiments in 1931 |
| :--- |
| Frperinents in 1030 | \& 286

\hline Chemical analyses of lake and stream waters \& 260 \& Experiments in 1032 \& 287
289

\hline Change in age composition of the population \& 297 \& Disenssion of marking mentis. \& 290

\hline Seaward migrations \& 272 \& Mortality in fresh water \& 291

\hline Sex ratios of adult fish \& 275 \& Stmmary and conclusion \& 292

\hline Marking experiments. \& 277 \& Liturature rited \& 291

\hline
\end{tabular}

One of the major problems of the Federal Coremment on the Pacific const is the conservation of the Alaska salmon resources which yield more than 280 million pounds of salmon to the commercial fisheries each year. In order to conserve these resources, so as to provide for an optimum yield cacl seasm, it has been found neeessary to impose certain regulations on the fishing industry. These regulations aim primarily to provide an adepuate escapenent of the salmon to the streans each season so that they may reproduce and maintain the supply.

Knowledge of fluctuations in the abundance of salmon populations provided the basis upon which the regulations were formulated. Since the commercial catch records gave insufficient and frequently unreliable information on the abundance of salmon, picket weirs were established in a number of important salmon rivers through which the fish were counted on their upstream migration to the spawning grounds. The count of the number of salmon migrating into a river, together with the record of the commercial catch in the locality of the river, furnished information

[^48]on the magnitude of the total run during a particular season. It was soon evident, however, that information on the fluctuations in abundance was not sufficient. A knowledge of the causes of the fluctuations was both desirable and valuable in promulgating sound and adequate regulations.

The Karluk River on Kodiak Island, Alaska, was selected as an appropriate site for the study of the causal factors responsible for the yearly fluctuations in the abundance of a single population of red salmon, Oncorhynchus nerka (Walbaum). This river supports a commercial red-salmon fishery of considerable importance. The area in which the Karluk River red salmon are caught is confined to a readily delineated zone near the mouth of the river within which very few red salmon from other watersheds are taken, consequently the commereial catch can be determined quite accurately. The stream bed and water flow of the river are of such a nature that a counting weir for determining the number of salmon migrating upstream can be operated successfully throughout the season. Karluk Lake, the source of the river, and its tributaries are fairly accessible. Thus, this watershed fulfills admirably the requirements essential for a study of the biological background of the red salmon.

The White Act (43 Stat. 464-467; June 6, 1924) provided that there should be a 50 percent escapement of all salmon populations. Subsequent to the passage of that act, commercial fishing in the Karluk area has been so regulated that the catch of red salmon for a season has never exceeded the escapement. Unfortunately, this restriction of the commercial catch has not increased the size of the runs of red salmon in the river to the level of abundance that existed during the early years of the fishery. Factors other than the total number of salmon spawning in the river system each season have played an important role in the abundance of the runs. In this paper a statistical review is presented of the Karluk River red-salmon fishery from its inception in 1822 to 1936, together with a report on the major biological studies carried on to date.

STATISTICAL HISTORY OF THE FISHERY

Statistics of the catch of Karluk red salmon presented in this report are not always identical with those published by Gilbert and Rich (1927) but do agree for the years 1882 to 1920 with those given by Rich and Ball (1931) as these latter statistics are considered more reliable for this period. From 1921 to 1927, the statistics of the catch given herein are not identical with those presented by Rich and Ball, who include in their figures for the Karluk catch only those fish caught between Cape Karluk and Cape Uyak, although they mentioned that a large part of the fish caught to the northeast of Karluk in later years were Karluk fish. The development of the fishery between Cape Uyak and Uganik Bay resulted in the capture of a part of the Karluk run before it reached the mouth of the Karluk River. That fish caught as far north as Uganik Bay were chiefly derived from the Karluk run was shown by a tagging experiment (Rich and Morton 1929) carried on at West Point. The Karluk area, as defined in this report, includes all of the coast line between Cape Karluk and West Point on Kodiak Island.

Table 1.-Catch of Karluk River red salmon from beginning of the canning industry in 1882 to 1986

Year	Number of fisb	Year	$\begin{gathered} \text { Number of } \\ \text { fish } \end{gathered}$	Year	Number of	Year	$\underset{\text { fish }}{\substack{\text { Number of }}}$
1882	58, 800	1896.	2,638,976	1910	1, 492, 544	1924	890,839
1883	188, 706	1897	2, 204. 425	1911	1, 723, 132	1925	1,323,302
18.84	282. 184	1895	1, 534, 064	1912	1. 245,275	1920	2, 386, 335
1885	465, 580	1899	1,399, 117	1913.	86,5, 422	1927	714,780
1886	646, 100	1900	2, 594, 774	1914	540, 455	1925	1,000,774
1887.	1,004,500	1901	3, 985, 177	1915	828, 429	1929	227. 399
1888	2,751,100	1902	2,981.112	1916	2.343, 104	1930	167,091
1889.	3,411,730	1903	1,319,975	1917	2,324,492	1931	751,899
1890	3,148, 796	1904	1, 638, 948	1918.	1,094,665	1932	674.407
1891	3, 500, 588	1905.	1,787, 642	1919	1.089, 809	1933	845,423
1892.	2,852,458	1906	3.382, 213	1920	1,368, 526	1934	919.200
1893.	2,908,508	1907	2, 929,856	1921	1,643, 119	1935.	65.817
1894	3.349,976	1908	1, 608, 418	1922	658, 159	1936	1,075, \&31
1895.	2,055, 984	1909	923, 501	1923	730,170		

Table 1 gives the yearly catch of Karluk red salmon from the beginning of the commercial fishery in 1882 up to and including the season of 1936. There has been a marked decline in the abundance of the run of fish. The total runs (catch plus escapement) for the past 16 years (table 19) have averaged slightly over $2,000,000$ fish per year, and the average yearly run for 12 of these years was less than $1,600,000$ fish, whereas for the 7 -year period, 1888 to 1894 , inclusive, the catch alone averaged over $3,000,000$ fish per year.

In table 2 are presented, for the period 1895 to $1921,{ }^{2}$ the coefficients of corrclation ${ }^{3}$ between the catches during the years of escapement and the catches 4,5 , and 6 years later, together with corresponding values of $P .{ }^{4}$

The values of P for 4 -year and 6 -year intervals are such that the coefficients of correlation cannot be considered statistically different from zero. The value of P for the 5 -ycar interval is such that the coefficient of correlation can be considered statistically significant. It can be concluded from the fact that a statistically significant correlation of over 0.6 exists between the cateles at 5 -year intervals and that no statistically significant correlation exists between the catches at 4-year or 6 -year intervals that the runs of Karluk red salmon from 1895 to 1921 , inclusive, were composed largely of 5 -year fish. Such a conclusion is verified by the age determinations based on examinations of seale samples taken during 1916, 1917, 1919, and 1921.

Table 2.-I'alucs of coefficients of corrclation between catches during year of escapement and catches 4, 5, and 6 ycars later for the period 1895 to 1921, inclusive

$\begin{aligned} & \text { Yearly } \\ & \text { interval } \\ & \text { between } \\ & \text { catches } \end{aligned}$	Number of pairs of catches correlated	* 1	$z:$	18	P^{4}
				1.076	0.2-0.3
5	22	. 644	. 765	3.341	. 01
6	21	. 375	. 394	1. 669	$0.1-0.2$

1 Coefficient of correlation.
${ }^{2}$ Transformed coeflicient of correlation.
${ }^{2}$ Ratio of z to the standard deviation of z
4 Probability that z is not different from zero.

[^49]

Figure 1.-- Catch of red selmon at Karluk from 1588 to 1936, inclusive, arranged according to 5 -year cycles. Solid line indicates trend.

It is evident from the statistical study of the catches of Farluk River red salmon and also from the analysis of the scale samples that the majority of the fish comprising the runs during the early years of the fishery were 5 years of age on attaining maturity. Therefore, the annual catches have been divided into five groups and the data are presented in figure 1. This method of presenting the data gives a elearer indication of the trend of catches from one cycle-year to another, as the catch of a particular year can be easily compared with the eatch during a year 5 years previous to, or 5 years following that year. While these data represent the catches of red salmon, not the size of the rums for the various years, the nature of the fishing operations at Karluk from 1895 to 1921 was such that the fishing eflort was fairly constant from year to year; hence the catches, in a mensure, depict the relative size of the runs. The trend for each of the 5 cycles has been downsard since the beginning of intensive fishing, and although such a condition might be due to a long period of unfavorable envirommental conditions, it seems probably that overfishing must be largely responsible.

AGE AT MATURITY

One of the major problems involved in the study of the Karluk Fiver red salmon is the determination of the approximate number of fish derived from each spawning population. This necessarily involves the determination of the approximate number of fish of each age group ${ }^{5}$ found each year, but such a determination is by no means a simple matter. Karluk red samon vary from 3 to 8 years in age, and the percentage occurrence of the various age groups changes throughout the season.

In addition to the wide spread in time of maturity of the Farluk River red salmon there is a further complication, in that fish of a given age have different combinations of fresh-water and ocean histories. Thus of the fish maturing in their fifth year, some migrate to the ocean in their second year, some in the third year, some in their fourth year, and some in their fifth year. These four groups of fish, with different fresh-water histories, may stay in the ocean $3,2,1$, and 0 years (a few months), respectively, and all return in the fifth year as mature fish. This diversity in fresh-water and ocean history also oceurs in the fish of other ages, so that 20 different age groups have been found in the samples eollected for age determination, the complete list being as follows: $3_{1}, 3_{2}, 3_{3}, 4_{1}, 4_{2}, 4_{3}, 4_{4}, 5_{2}, 5_{3}, 5_{4}, 5_{5}, 6_{2}, 6_{3}, 6_{4}, 6_{5}, 7_{3}, 7_{4}, 7_{5}, 8_{4}$, and 8_{5}.

The age of a fish may be determined with substantial accuracy by an examination of some of its scales under a microscope, but it is impossible to cxamine seales from every fish in the run. Recourse must be had to a process of sampling so that by the examination of the scales of a few thousand fish the age-group composition of the escapement and commercial catch ean be calculated. Samples of scales are obtained for this purpose several times a week during each season from the fish caught in the seine fishery near the mouth of the river. It is fainly certain that the fish so caught are representative of the population of fish congregated near the mouth of the river

[^50]on the day of capture. Each scale sample contains scales from about 100 fish, these fish being taken at random from the day's catch. The scales are cleaned, mounted in sodium silicate between glass slides, examined under a microscope, and the age of the fish in the sample determined.

A preliminary study of the age-group composition of the various samples showed that the composition of the run changes throughout a season, and consequently it was found advisable to divide the season into a series of short successive periods of time. For the purpose of comparison these units of time should begin and end on the same dates each year, and so the scale samples, escapements, and runs have been grouped in 7-day periods which coincide from year to year.

Tables 3 to 16 give the age-group analyses of the several weekly samples taken in 1922, and in the years 1924 to 1936, inclusive. It will be seen from these tables that the age-group composition of the run changes considerably during the season, and also that the percentage occurrence of any one age group varies from year to year.

In considering the three principal age groups, $5_{3}, 6_{3}$, and 6_{4}, it will be noted that 5_{3} usually is the dominant age group present in the run. The percentage occurrence of the 6_{3} age group always decreases as the season progresses, this age group never being important toward the end of the run. The percentage occurrence of the 6_{4} age group generally increases as the season progresses. This age group, while seldom of importance in the early part of the season, usually is quite important in the latter part of the season.

The data included in tables 3 to 16 are of further value in that they are essential in calculating the percentage occurrence of the various age groups in the yearly escapements and in the returns from these escapements as given in tables 18 and 25 , respectively. Since the salmon returning to Karluk each year from each of the previous spawning populations, or escapements, can be segregated according to age, the data in tables 3 to 16 are likewise essential in calculating the returns from known escapements. These returns are given in table 20.

Table 3.-Percentage occurrence of each age group, during week, in the Karluk red-salmon run of 1922, determined by analyses of scale samples collected from a total of 2,469 fish

Week ending-	Age groups											
	41	42	43	4.	5ı	53	5	58	68	64.	68	74
June 7.	0.7				1.4	31.0			66.9			
June 14	. 7	0.7			2.1	34.4			60.7	1.4		
June 21	. 6	. 7			. 7	36. 1	1.3		58.7	1.9		
June 28			2.2		1.3	32.3	. 9	-...	60.3	3.0		--
July 5		7	---			37.3	. 7		56.0	5.3		.-
July 12.						36.0	2.7		51.3	10.0		
July 19.		. 6	. 6			62.0	.7		26.7	8.7		0.7
July 26		. 6				76.0 693	. 7		18.0 21.3	4.0 8.0		. 7
Aug. 2		. 7	1.3			69.3 72.0			11.3 16.6	8.0	0.7	.7
Aug. 16		. 7	1.			87.2	7		8.7	2.0		
Aug. 23.		1.3				85.3	7		6.7	6. 0		
Aug. 30		1.4	. 7			87.0	2. 0		2.7	16.2		
Sept. 6		. 7	. 7	0.7		80.1	3.3		3.3	11. 2		
Sept. 13		6	2.7			91.1	2.1		1.4	2.1		
Sept. 20.		2.0	2.7	1.4		87.8	2.0	0.7	1.4	2.0		.-

Table 4.-Percentage oceurrence of each age group, during earh weck, in the Karluk red-salmon run of 1924, determined by analyses of scale samples collectcd from a total of 5,182 fish

Week ending-	Age groups										
	33	41	43	43	4	52	53	54	63	6.	7
June 14			0.7	1.7		0.9	80.8	0.2	11.0	3.6	1.1
June 21			. 6	2.2		. 8	81.4	1.1	6.1	7.2	. 6
June ${ }^{8} 8$. 2	1. 9		. 2	54.3	. 6	6. 3	6. 1	.4
July 5				5.0		. 8	36.2	1.7	6. 3	9.6	. 4
July 12.			. 4	. 4		1.1	75.3	. 4	5.7	10.3	. 2
July 19			. 3			. 1	73. 1		5.7	19.	. 9
July 26.			. 9	. 3			33.5	. 2	4.8	19.7	. 6
Aug. $2 .$.			. 3	. 6			87.6	. 1	3. 4	17.7	. 3
Aug. 9.				1. 6		. 3	71.0	. 3	2.4	24.4	
Aug. 16.				. 9			81.0		. 8	17.2	
Aug. 23.			. 3	4.2			75.8	4.7		15.0	
Aug. 30	0.2			2.9	0.7		77.3	2.2	1.0	15.7	..
Sept. 6	. 2			9.2	. 4		13.3. 3	15.1		11.8	
Sept. 13				6. 9	2.8		66.1	13.2	. 1	10.9	
Sept. $20 .$.				9.7	2.8		64.9	11.4	. 9	10.3	

Table 5.-Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1925 , determined by analyses of scale samples collected from a total of 5,513 fish

Week ending-	Age grouns										
	31	4_{1}	$4{ }_{2}$	43	52	53	54	63	6.	$6{ }^{5}$	\therefore
June 7			0.5	0.8		60.2		26.7	2.5		
June 21			. 4	2.4	0.5	72.4		1. 1	5.2		0.5
Jupe 28			6.5	2.0	. 2	69.1	(1.) ${ }^{\text {a }}$	13.9	7		. 4
July 5		0.2	3.8	4.4		70.4	. 8	10. 5	9.0		. 9
July 19.	0.2	.2	3.3	12	1.0	69 \%	. 4	3.7	19.15		.
July 26.		1.1	1.5	. 4		6ie.	. 2	1.5	25.2		4
Aug. 2	2.0	. 2	1.8	1. 5	. 1	?2. 7	\cdots	. 7	20.7		. $]$
Aug. 9.	. 5		1.2	1. 1	. 2	75. 1	. 7	1.9	18.4		. 9
Aug. 16	1.5	. 3	1.3	3.9	. 4	$\because 2$	1.0	. 6	13.0	${ }^{8}$
Aug. 23	. 4	. 3	.4 .3	9.5 10.2	. 2	88.8	1.6	. 4	16.3 13.4		. 2
Sept. 13				10.6		52.1	3.6		29.5	0.2	

Table 6.-Percentage occurrence of each age group, during each ucek, in the Karluk red-salmon run of 1926 , determined by analyses of scale samples collected from a total of $8,172 \mathrm{fish}$

Week ending -	Age groups													
	31	41	4)	4_{3}	4.	5_{2}	53	56	CH_{3}	64		7	Is	8
May 24			4.8	0.8		4.9	$\because 6$		06	16		0. 8		
May 31			4. 5	. 6		1. 3	714.0		12.0	2.1		. 5		
June -			4. 4	. 8		. 4	n 32		80	28		. 4		
June 21.			3.9	.7		2.3	73.9		13.	15		. 3		
June 28.			5.3	1.9		2.4	35. 3	0.2	10.9	30		. 5		
July 5		0.3	7.5			3.4	11 7		9.9	6. 8		4		
July 12		. 2	5. 9	. 4		2.4	75.4		9.1	5. 2		1.2		0.2
Juily 19.	0.4	. 9	3. 8			7.7	69.2		8.3	8.4		1.3		- - -
July 26.	. 9	1. 3	2.4			2.0	74.5		4.5	12.1		2.0	0.3	
Aus. 2.	. 4	. 4	. 6	.2		. 8	-1.5		4.0	11.2		. 9		-
Aug. 9			. 6	. 2		. 2	29		30	123		1.1	. 2	
Aug. 16	. 3		. 3	\bullet		. 3	¢1.9		2.4	10.2		1.4	. 5	
Aug. 23	. 2	1.1	. 3	-2	0.2		86.1	. 3	1.0	97	0.2	. 7		
Auc. 30	. 4	.7	. 2	. 5			84.3	5	. 7	12.3		4		
Scpt. 6.	. 2			. 2			83.6	. 2	. 2	15.1			. 3	-- -
Sept. 13.			. 3	: $\%$			790	8	. 3	189	1.	. 1	1	
Sept. 20.			2.0	1.0			79.6		- .	16.4	1.0			

Table 7.-Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1927, determined by analyses of scale samples collected from a total of 4,963 fish.

Week ending-	Age groups													
	3 l	4_{1}	43	43	44	52	53	5	63	64	65	7	75	8s
May 31				3.0		10.6	69.7	1.5	15.2					
June 7-			0.4	. 4		13. 1	69.9		15.3			0.9		
June 14.				. 4		9.1	77.3		12.2	0.3		. 7		
June 21				1.0		13.0	79.0		7.0					
June 28			. 2	2. 2		5.7	S0. 3	. 4	10.8	. 4				
July 5			. 8	.8		9. 4	73.8	- 8	12.6	1.4	.	. 6		
July 12			1.8	.8 1.0		5. 6	79.6 76.5	.3 1.0	$\underline{11 .} 9$	1.5 6.0		. 2		
July 26				4.0		3.0	78.0	3.0		10.0		20		
Aug. 2.				1.7		1.4	782	1.0	3.1	13.6		1. 0		
Aug. 9				2.7		1.9	76.9	17	3.4	11.2		1.7	0.5	
Aug. 16.		1.0	. 2	4.4		1.4	69.9	3.6	4.8	12.7	0.2	1.0	. 6	0.2
Aug. 23.	0.2	1.0	. 5	6.3		. 5	66.0	25	2.5	20.0		. 2		
Aug. 30		. 2	. 4	7.4		.6	58. 1	8.4	- 8	23.5		. 6		
Sept. 13				6.7	0.4	. 4	49.2	14.4	1.5	25.9	. 4		1.1	

Table 8.-Percentage occurrence of cach age group, during each week, in the Karluk red-salmon run of 1928, determined by analyses of scale samples collected from a total of 4, 247 fish .

Week endiug-	Age groups									
	4_{1}	42	43	52	53	54	P_{13}	64	7	75
June 14.		0.5			54.5		44.5	0.5		
June 21.			1.0		60.0		3 3\%. 0	3. 0	--	----
June ${ }^{\text {July }} 5$. 8	. 4	0.3	44.8	---	51.6 44.5	2.5 4.9		
July 12			. 3		41.8		51.4	6.2	0.3	
July 19.			. 3	. 7	48.3		35.0	13.0	24	
July 26		. 5	. 5	. 5	66.3	0.3	15.2	12.4	1.3	
Auc. 2.		1.3	---	. 7	60.7		13.7	19.3	4.0	0.3
Aug. 9.		. 5			72.0		9.5	15.5	2.5	
Aug. 16			. 3		76.7		6.0	16. 3	. 7	
Allg. 23.		1.0			78. 5	1. 5	3.0	15.0	. 5	. 5
Sent. 6		. 3	. 5		64.5	12	3.5	298	. 2	
Sept. 13		1.0	3.0		43.0	20	4.0	460	1.0	
Sept. 20			. 3		42.3	2.0	2.7	51.3	. 7	. 7
Sept. 27.			1.0		35.0	4.0	1.0	59.0		

Table 9.-Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1929, determined by analyses of seale samples collected from a total of 1,602 fish

Week ending-	Age groups									
	4	48	43	52	53	5.	$6{ }_{6}$	64	75	74
June 21		2.0		2.0	39.4		50.2	3.3	1.3	1.3
June ${ }^{\text {Juty }}$ Jul.		. 8	0.8	1.9	40.2	0.4	51.7	3.1		1.1
July 12		. 7	--		42.4		54.1	2.8		
July 19				8	35.3		572	4.2		2.5
July 26				. 8	54.7	. 8	31.0	11.9		. 8
Aug. 2 -			6.9		61.4		9.9	19.8		2.0
Aug. 9 -			1.4		47.9	. 9	15.3	31.2		1.9
Aug. 16.		2.3			42.4		30.3	24.2		. 8
Aug. 23.					50.9		11.8	32.4		1.9
Aug. ${ }^{\text {a }}$ S					126.7		6.7 3.4	${ }_{75}^{66.6}$		
Sept. 13					32.5			8×5.0		
Sept. 20					19.4	1.2		7 S .2		1.2
Sopt. $27-$--					26.2	2.4		71.4		

Table 10.-Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1930, determined by analyses of scale samples collected from a total of 3,617 fish

Table 11.-Percentage occurrence of cach age group, during each weck, in the Karluk red-salmon run of 1931, determined by analyses of scale samples collected from a total of 7,258 fish

Week ending-	Agegroups												
	31	41	42	43	52	53	5.	63	64	66	is	is	is
Mas 31.			1.4		0.7	45. 6		12.6	3i. 2			25	
June 7.			1. ${ }^{1}$	0.4	1.2	41.5	0.5	20.4	31.5	0.2		1.9	
June 14.			4.4	1.3	. 6	33.4		22.2	$31+1.6$			1.2	0.3
June 21.			2.	. 3	1.1	37.5	. 3	159	33.2		0.3	3.8	...
June 25.	0.2		1.9	1.4	. 4	47.1	1.4	11.5	34.2			1.9	--
July 5		0	9.9	. 5		50.5	. 5	8.0	$2 \cdot 2 \cdot 2$			- ${ }^{3}$	
July 12			2.5	2	1.0	51.8 8.1 1	1.8	4.5 3.0	31.8 28.4			1.3	\cdots
July ${ }^{\text {July }}$ 20,			1.4			fiO. 5 50.5 5	. 3	3.0	28.4			1.4	-2
July 20 Aug.	2		1.7 .2	. 4	. 3	54.5 0.4 0.9	. 3	7.6	2. 2			1.1 .3	-2
Aug. ${ }^{\text {A }}$. 3	. 5	.3	4, 7	. 2	3.0	4.3			.6	.
Aug. 16.			. 3	. 6	. 3	72.5	. 3	1.9	23.6			. 9	
Aug. 23						62.4	3.9	. 6	32.3			. 3	
Aug. 30				. 2		54.7	1.8	1.9	40.1				
Sept. 6			- 4	. 6		43.0	4.1	. 2	51.5			'2	
Sept. 13			. 4		. 9	23.7	90		529	\%		- 4	
Sept. 20			-	1.1		2	13.6		54	. 4			
Sept. 27			. 5	. 5		37.0	9.0	. 5	51.5	. 5			. 5

Table 12.- Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of $193 \geqslant$ determined by analyses of scale samples collecled from a lotal of 4, 200 fish

Table 13.-Percentage occurrence of each age group, during each week, in the Karluk rcd-salmon run of 1933, determined by analyses of scale samples collcted from a total of 3,867 fish

Week ending-	Age groups											
	4	42	43	5 2	53	5.	63	6.	65	\%	π	7s
June 7		0.5	0.3	1.3	65.3	0.2	21.3	9.8		0.2	1.1	
June ${ }^{\text {June } 21}$	0.2	1.1	. 3	2.2 2.8	54.3 51.5	$\cdot{ }^{3}$	$\stackrel{29.6}{26.3}$	11.8			1.0	
June 28	. 2	1.1	. 5	2.8	31.5 56.6	. 6	26.3	${ }_{21.2}^{15.7}$	0.2		1.989	0.2
July 5		. 9	2.8	11.2	44.0	. 9	23.4	14.0			2.8	
July 12		. 5		4.2	51.1		18.6	22.8			1.9	9
July 19			. 7	1.4	55.6	. 7	13.2	27.1			1.1	. 2
July 26.		. 5		2.0	57.4		6.9	31.2			1.0	1.0
Aug. 30				. 5	58.6	4.8	1.4	29.6			1.9	3.3
Sept. 6.		7			42.7 32 3						. 7	1.4
Sept. $13-$			1.2		32.0 23.0	4.0 1.5	1.0 1.5	68.0 65.5			.5 2.0	3.3 6.0

Table 14.-Percentage accurrence of each age group, during cach wefk, in the Karluk red-salmon run of 1934, dctermined by analyses of scalc samples collccted from a total af 6,551 fish

Week ending-	Age groups										
	42	43	5 ?	53	54	63	64	6_{5}	7	is	Ss
May 24	1.3			39.5		47.4	11.8				
May 31.	6		2.9	47.2 2	2.9	35.2 53	11.9		2.9		
June 14.	:8	${ }^{.} 3$	2.4	27.9	${ }^{2}$	54.3	10.2		3.6		
June 21	. 5	. 2	1.2	26.0	. 5	62.8	6.0			0.2	
June 28	. 5			31.5	. 7	48.8	14.7		3.1		
July 5	28.6	--	3.7	18.8		36.4	8.4		3.9	2	
July 12.	23.9	---	3.3	${ }^{23.5}$	-	${ }^{29.4}$	15. 8		4.1		
July 19.	5.5	--	$\cdot 7$	31.4	.	35. 8	23.3		3. 3		
July 26.	1.5 8	30.5		27.5	${ }_{3}^{37.2}$		$\stackrel{3}{2}$	2	
Aug. ${ }^{2}$	1.8		. 8	36.4 37	- 4	22.4 16.4	${ }_{42.9}^{35.8}$		3.3 1.8	2	
Aug. 16.	${ }^{1} 4$			33.	. 8	8.6	54.9		1.6		
Aug. 23				40.3		6.1	52.1		1.5		
Supt. 20		0.4		25.2	1.4 2.0	3.6	67.6 63.8	0.4	1.4	${ }_{4}^{4}$	
sep.											

Table 15.-Percentage occurrence of each age group, during cach week, in the Korluk red-salmon run of 1995, determined by analyses of scale samples collcted from a total of 7,152 fish

Wrek euding-	Age groups															
	32	4	42	43	52	53	54	62	63	64	65	73	74	is	84	8_{5}
June ${ }^{\text {- }}$			4. 6	1.0	4.1	20.2	1. 7	0.5	40.2	15.1		0.2	12.0	0.2	0.2	
June 14			3.2	1.6	1.8	3 6. 5	1. 2		28.2	15.8	0.1	. 5	10.7	. 3		
June 21			9.0	1.9	3.3	332	1.4	. 1	21.2	15.0	-- -	. 2	10.2	. 4		0.1
June 28			16.0	6.6	5.8	29.7	0.7		19.3	13.5			6.4	. 2		
July 5	0.1		11.5	4. 2	7.5	30.7	2.2		21. 5	13.6			9.6	. 1	-	
July 12		1. 4	3. 7	5.1	6.0	35.8	3.7		24.7	11.6	. 5		7.0	. 5		
July 19.		2.4	8.2	. 6	9.5	46.3	. 6		12.6	15.6	. 2		3.4	. 6		
July 26.		. 8	4.7	1.2	4.6	59.2	. 7		9.0	17.7			1. 6	. 3		. 1
Aug. 2		. 5	1.5	2.1	1.1	55.4	1. 5		8.3	25.5	. 2		32	. 6		
fug. 9			1.7	3.3	. 8	54.1	1.7		4.2	31.7			2.5			
Aug. 23		. 4	. 7	16. 6	. 2	21.4	3.9		3.0	47.3			. 1	2.4		
Nug. 30.				16.7		19.2	6. 7		. 8	51.2	. 8		. 8	. 8		
Sept. 20				8.0		28.0	8.0			4.0				12.0		
Oct. ${ }^{\text {a }}$						3.0	19.0		3.0	69.0	3.0			3.0		

Table 16.-Percentage occurrence of each age group, during each week, in the Karluk red-salmon run of 1936, dctermined by anolyses of scale samples collected from a total of 7,033 fish

Week ending-	Age groups																
	31	4_{1}	43	4	4	52	53	54	63	63	64	65	73	74	is	84	8s
June 7			0.8	2.8		4.9	62.0	0.1		13.4	10.6		0.1	4.9	0.3	0.1	
Jume 14			2.5	3.8		5.0	58.8	. 4	0.1	13.9	11.2		. 1	3.7	. 4		0.1
June 21			1.5	2.5		7.6	65.6	. 4		10.9	8.5			2.7	. 4		
June 28.			. 5	2.7		6.7	66.3	. 5		11.5	8.6		. 3	2.4	. 5		
July 5.			12	4.9		1.2	f.4. 7	1.2		14.6	3.7		1.2	6. 1		1.2	
July 12			4.3	3.6		27.7	40.5	. 2	. 5	9.7	2.8			1. 5			. 2
July 19		0.1	2.2	2.1		5.3	57. 4	. 3		16.6	11.0			4.9	. 1		
July 26.	0.1	. 3	2.0	.7		4.4	75.1		. 1	6.8	8.5			1. 5	. 5		
Aug. 2				. 7			82.3	. 3		6.8	8.0			1.3	. 6		
Aug. 30.				. 2			75. 3	5.6		1.8	14.2			1. 6	1.3		
Sept. $\mathrm{B}^{\text {a }}$							72.2	7.4		1.3	15.8			1. 8	.9		
Sept. 13				1.1	0.5	. 3	64.3	6. 4		. 6	22.3			. 3	42		
Sopt. 20				. 6		. 6	71.2	1. 3		3.2	21. 2			1.3	. 6		
Sept. 27				. 9			61.5	5.6		1. 5	22. 5	0.3		1.2	6. 2		
Oct. 4 --				1.4			60.6	28		1. 4	29.6			1.4	2.8	

SPAWNING POPULATIONS

The determination of the size of the escapement, or spawning population, of a river or district is of vital importance in intelligently administering the fishery. In a self-perpetuating salmon population an adequate part of the yearly run must be allowed to escape the fishery and continue uninterrupted to the spawning grounds in order to insure future supplies of fish. Not only must a proper number of fish be allowed to escape in a given area or district, but each indiridual salmon stream, and in large watersheds, each small area in the watershed, must receive a sufficient escapement if adequate runs of fish are to be maintained. Under natural conditions, an extremely high percentage of the fish returning to spawn proceed to the same area where they emerged from the spawning gravel as fry. There is a slight degree of straying, but the fact remains that if a spawning area has not been seeded, there will not be a run of fish returning to that area in one or more subsequent years. Thus, large river systems such as the Kvichak, Copper, Fraser, Columbia, and others, must not only receive an escapement suflicient in number, but the fish nust be distributed in the proper proportions to the various tributaries in the river system. If a part of the spawning area in a given watershed be depopulated for a period of time, the chief hope of restoring the productivity of that watershed to its maximum value would be to restock the depleted area by the planting of eggs or fry for a period of several consecutive years, an expensive undertaking which would have no positive assurance of success.

The determination of the magnitude of the escapement of Karluk River red salmon is important not only in regulating the commercial fishery, but is also another of the major problems involved in the biological study of this population. The calculation of the total size of populations, the returns from known spawning populations, the mortality in fresll water, and the mortality in the ocean are based upon a knowledge of the number of fish entering the river each season to spawn.

Table 17 gives the weekly eseapements of red salmon to the Karluk River for the years 1921 to 1936 , inclusive. The escapement records are complete except for 1921, 1922, 1924, and 1934. In 1921, the first year the weir was operated, it was removed on September 18, as the companies fishing in the Karluk area were about
to discontinue canning, and the importance of keeping the weir in to the end of the season was not appreciated. The counted escapement was $1,325,654$ and Gilbert and Rich (1927) estimated that the total escapement that year was approximately 1,500,000 red salmon.

Table 17.-Escapements and cumulative totals of the escapements of Karluk red salmon for each w'eek from 1921 to 1996

Week ending-	1921		1922		1923		1924		1925	
	Escapement for week	Cumula tive total, thousands	Escanement for week	Cumula. tivetotal, thousends	Escare. ment for week	Cumula. tive total, thousands	Escanement for week	Cumula. tive total, thousands	Escane. ment for week	Cumula. thousands
May 24.			${ }_{6} 0$		141		402		19	
May 31.	5,304	6	418		1. 102	1	4. 149	5	30, 24.9	30
June 7	16.254	22	9. 921	10	71. 724	73	86.111	91	33, 333	${ }^{63}$
June 14	155, 097	177	8.355	19	28,843	102	148.417	239	20.440	83
June 21.	137, 334	315	56. 339	75	42. 169	144	127.64 .5	367	263, 029	348
June 28.	195. 151	510	29, 897	105	62.954	207	64.913	432	211.021	557
July 5	74.291	584	46.770	152	35. 647	243	57.674	489	31, 298	592
July 12	72. 556	6.57	24,336	177	9. 274	252	39,837	529	32, 927	${ }^{632}$
July 19	28, 668	885	18,660	196	3,497	255	10.892	540	25, 447	657
July 28	19,737	705	6.877	203	31,491	287	25,659	566	24, 482	682
Aug. 2.	70.954	776	8.035	211	24, 691	312	57,894	624	64,752	746
Aut. 9	96. 677	873	19,403	231	66. 404	330	36. 2 fi3	660	110.570	857
Aug. 16	114.102	987	7,919	238	13.036	391	61. 502	721	95, 8.52	953
Aug. 23	58, 867	1,046	8, 595	244	48. 610	440	54.357	726	19, 705	973
Aug. 30	79. 316	1. 125	${ }^{2}$ 2)		38.46\%	478			33, 797	1,006
Sept, ${ }^{\text {a }}$	42, 974	1.168	${ }^{(2)}$		27.919	506			200, 247	1,207
Sept. 13.	143.022	1,311	24,343	285	61,389	567			74, 330	1. 281
Sept. 20	14.760	1,326	35, 618	321	43. 217	611			100.431	1,392
Sept. 27	(1)			321	10. 570	621			51. 814	1,443
Oct. 4.			15,721	336	62,641	684			182, 763	1,616
Oct. 11			29, 116	365	9,110	693			4,619	1,621
Oct. 18.			34, 336	400	1, 653	695				
Oct. 25.			236	400						
Total	${ }^{3} 1,500,000$		${ }^{2} 400,000$		694, 575		1,109, 161		1, 620,927	
Week ending-	1928		1927		1928		1929		1930	
	Escepement for week	Cumula- tive total, thousands	Escancment fo weet	Cumulatire total thousands	Escanement for week	Cumula tive total thousand	$\begin{aligned} & \text { Escane- } \\ & \text { ment for } \\ & \text { week } \end{aligned}$	Cumulativetotal thousands	Escapeweek	Cumulstive total, thousands
May 24.	577	1			41		22		1,00s	
May 31	80,704	81	9, 339	10	13, 600	14	838	1	1,125	2
June 7	479. 455	561	52, 532	62	152. 569	166	75.305	76	42,352	44
June 14	437.051	998	209, 213	271	303.976	470	85.347	162	22, 808	66
June 21	127. 337	1, 125	188, 798	460	97, 5n3	56.8	116.624	278	228. 405	295
June 28	45, 520	1, 171	85, 010	345	75, 234	6.3	30, 171	325	35, 018	330
July 5	41516	1.212	51.492	597	55, 817	699	12.229	341	22, 427	352
July 12	43, 339	1.256	13,965	${ }_{611}$	36.723	735	10, 376	${ }_{3}^{351}$	10.084	362
July 19	34, 277	1,290	7.064	618	20, 048	756	9.656	361	6, 201	371
July 26	${ }^{30} 300$	1,320	2, 826	621	21. 781	777	1, 125	362	4. 706	376
Aug. 2	77,956	1,399	12.454	633	3, 514	781	21.241	393	+2,939	419
Aug. 9	101, 703	1,500	53,219	686	22, 734	804	24,725	408	82, 949	842
Aug. 16.	80,647	1,581	19,461	706	31, 255	835	27, 343	435	62,714	564
Aug. 23	104. 139	1,685	7.421	713	71.015	906	69. 210	504	98, 491	${ }^{663}$
Aug. 30	224, 592	1. 909	8,456	722	67, 857	971	69. 552	574	6. 162	669
Sept. 6	230,438	2.140	15,392	737	19,966	994	35,960	610	115.970	788
Sept. 13.	91.136	2,231	10, 007	747	22. 591	1,016	${ }^{169,916}$	720	65. 392	853
Sept. 20	1760.939	3,408	43, 245	790	14,929	1,031	${ }^{93} 9.918$	814	60, 590	914
Sept. 27	49,609	2. 457	1. 294	791	7.471	1,039	13.950		135.468	1, 049
Oct. ${ }^{\text {Oct }}$	$\begin{array}{r}9.448 \\ \hline 4.314\end{array}$	2,467 2,510	72, 8 8.491	864 873	$\begin{array}{r}\text { \% } \\ \text { 45, } 952 \\ \hline 6.97\end{array}$	1.039	72, 667	${ }_{900}^{900}$	45,538	1,097
Oct. 18	23.145	2,533			9,074	1,094				
Oct. 25										
	2, 533,402		872, 538		1,003, 817		000, 310		1,096, 511	

[^51]Table 17.-Escapements and cumulative totals of the escapements of Karluk red salmon for each week from 1912 to 1996 -Continued

Week ending-	1931		1932		1933		1934		1835		1936	
	Escapement week	Cumи- lative total, thou- sands	Escaneract $\stackrel{1}{\text { freek }}$	Cumu- lative total, thou- sands	Escapemer fork nee	Cumu- lative total, thou- sands	Escapement $\underset{\text { week }}{\text { rar }}$	Cumu. lative total, thou- sarids	Escapement for week	Cumu. lative total. thousands	Escape- ment for weet	Cumu. lative total, sands
May 2	1.250	1	34		253		878	1			32	
May 31	11.342 50.382	${ }_{63}^{13}$	1.097 48.191	${ }_{43}^{1}$	2. 24.101 281	27		204	132.8967	162	141.208	183
June 14	103.047	172	150.058	199	204, 014	231	16\%,718	374	172.726	335	93, 157	276
June 21	34,584	207	85. 616	255	¢4. 840	316	233.626	607	64.249	359	82. 300	359
June 28	38,913	246	66, 583	322	65. 221	381	118.167	726	31.440	430	79.290	438
July 5.	29,930	225	26,685	348	46. 621	438	20. 570	746	3.812	434	51.411	495
July 12.	9.117	285	11, 803	360	61. 6.65	4×9	${ }_{6}^{6,748}$	753	3, 10.3	438	11.378	507
July 19	3. 167	2.8	5,903	365	23,519	513	6,325	760	$3{ }^{3,4}$	433 441	3, ${ }^{3} 11.045$	${ }_{522}^{511}$
July 26	1,756	289	6, 305	${ }_{3}^{312}$	5,923	${ }_{535}^{19}$	5.431 3.196	765 765	3, ${ }_{2}$	444	1,202 2.201	522
Aug. ${ }^{2}$	-6, ${ }^{6+1}$	308	14, 10.3	398	40, 509	576	23,341	791	32.513	47%	1. 087	525
Aug. 16	54. 209	362	23, 403	422	5. 126	681	3,943	795	${ }^{30,983}$	508	34, 950	560
Aug. 23	75,989	438	8.877	430	49,952	631	- 5, 847		52.513	560	44. 451	604
Aug. 30	106, 362	545	12. 541	443	100, 530	732	(2)		10,571	550	130. 582	735
Eept. 6	89,360	634	28,062	4.1	14,218	746	(2)		15, 631	$\stackrel{692}{ }$	311.917 204 200	1, 1.258
Sept. 13	121,464	${ }_{756}^{756}$	87, 1.785	88.1	145, 879	${ }_{923}$	(1) 319	1,103	${ }_{151,051}^{353}$	74	27, 74	1.250
Sept. 27	64. 601	820	120,052	681	1,385	425	43,072	1,146	115.218	859	81, 156	1,361
Oct. 4	41,671	862	4i,078	228	4,056	929	${ }^{626}$	1.146	17,319	886	14,622	1,375
Oct. 11	11, 427	873	10, 050	\%38	57,540	957	17	1,146	11	886	361	1,376
Oct. 18												
Tot	873, 428		731, 772		956, 865		1,140,299		876,335		1.375,659	

[^52]In 1922, there was a large escapement of pink salmon in the Farluk Ricer, and toward the end of their spawning season the carcasses of the fish that had finished spawning and died began drifting down stream agoinst the weir. Although a crew was engaged in removing the dead fish from the face of the weir, it finally became impossible to remove them as fast as they accumulated. As the fish piled up against the weir, they obstructed the passage of water until there was danger of the weir collapsing from the weight of the impounded water, and consequently, a number of pickets were removed from the weir so as to allow the pink salmon carcasses to pass downstream. The weir was not in use from August 21 to September 4, inclusive. It was replaced on September 5, and the counting of fish was continued until the end of the season. The counted escapement was 383,446 , and it is estimated that the tolal escapement that year was approximately 400,000 red salmon.

In 1924, there was a tremendous run of pink salmon to the Karluk River and, as in 1922, it was impossible to keep the weir in operation due to the dead pink salmon drifting down against it. The weir was not replaced that season, so that it is necessary to estimate the escapement from August 21 to the end of the season. The counted and partially estimated escapement was 775,705. Giibert and Rich (1927) estimated that the total rum that year was approximately $2,000,000$ fish. Subtracting the catch from this figure leaves about $1,100,000$ as the number of red salmon in the escapement.

In 1934 , it was again impossible to keep the weir in continuous operation due to spawned-out pink salmon damming the weir and to extremely high water in the river caused by the run-off of heavy fall rains. The weir was out from August 22 to Septem-
ber 17, inclusive, a period of 27 days. It was replaced on September 18, and counting was continued until the end of the season. Unfortunately, fishing for that season stopped on August 18, and catch data are not available from which to judge the relative abundance of fish in the run. Data on the trend of abundance of the various age groups in the run up to August is have been examined and compared with data for previous years, and from this analysis it is estimated that the escapement during the period was approximately 300,000 red salmon. The counted escapement during the period the weir was in operation was 846,299 .

The weir is located approximately 4 miles from the mouth of the river and in this 4 -mile stretch the river widens out to form a lagoon, the lower end of which is usually slightly brackish. The fish, after entering the mouth of the river, stay in this lagoon for a varying period of time, averaging about 1 week, hefore they proceed up the river through the weir. Consequently, in calculating the age-group composition of the escapement, the percentages of the various age groups in one 7 -day period, as determined by an analysis of the scale samples, (tables 3 to 16) were applied to the escapement of the following 7-day period.

The percentage occurences of the various age groups in the spring, fall, and total escapements for the years 1922 and 1924 to 1936, inclusive, are presented in table 18 . There was a considerable fluctuation in the perecntage occurrence of the principal age groups in the escapement from year to year. The percentage of the three principal age groups in the total eseapements ranged from 24.1 to 81.1 for the 5_{3} group; 4.0 to 38.6 for the 6_{4} group; and from 4.5 to 32.8 for the 6_{3} group.

This variation in the age composition of the escapements was due anainly to the fact that each year's eseapement is composed of returns from several brood years. For example, a single escapement may be composed of 5 -year fish from a brood year producing a small rum, together with 6-year fish from a brood year producing a large rum. In this instance the percentage of $\overline{5}$-year fish would be below average, and the percentage of 6 -year fish would be above average. However, if the 5 -year fish were from a very productive hrood year and the 6 -year fish were from a less productive brood year, the results would be just the reverse.

Table 18.-Percentage occurrence of the various age groups in the spring, fall, and total escapements of 1902, and of 1924 to 1936, inclusive

Year of escapement	Age groups																
	31	41	4_{2}	43	4	52	53	5	55	6_{2}	63	64	65	73	71	75	83
1922:	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Fct.	Pct.	Pct.	Pcl .	Pct.	Pct.	Pet.	Pct.	Pct.
Spring		0.4	0.4	0.5		1.2	34.3	0.8			59.3	3.1					
Fall.			1.2	1.7	0.6		83.2	1.7	0.3		6.1	5.0	0.1		0.1		
Escapement for year.		. 2	. 8	1.1	. 3	. 6	59.3	1.3	.1		32.2	4.0			. 1		
1924:																	
Spring			. 6	2.0		. 8	80.8	. 5			9.4	5. 0			. 9		
Fall			.2	4.3	. 8		71.7	5. 7			1.5	15.7			. 1		
Escapement for year			. 4	3.2	.4	.4	76.0	3.2			5.4	10.5			. 5		---
1925:																	
Spring Fall			1.4	2.0		. 3	71.0	3.18			19.8	5.0			. 4		
Fall ----	0.3	. 1	. 6	7.4 5.2		-1	63.8	3.8			.5 8.3	23.1	. 1		. 2		
1926:	,		. 8	5. 2		. 2	60.8	2.3			8.3	15.8			. 3		
Spring			4.6	. 7		1.4	80.0				10.2	2.6			. 5		
Fall	.2	. 6	. 6	. 3		. 4	81.8	. 4			1.6	13.2	. 1		. 7	0.1	
Escapement for year.	.1	. 3	2.6	. 5		.9	81.1	. 2			6.0	7.6			. 6	. 1	...
spring			. 2	. 9		10. 8	74.5	2			12.7	. 2			5		
Fall		. 1	. 1	5.1	.2	. 9	61.0	8. 8			2.1	20.4	. 2		. 5	. 6	
Escapement for year			. 1	2.1		7.9	70.8	2. 7			9.6	6.1			. 5	. 2	

Table 18.-Percentage occurrence of the various age groups in the spring, fall, and total eseapernents of 1922, and of 1924 to 1936, inclusive-Continued

Year of escapement	Age groups																
	31	4_{1}	42	43	4	52	53	5	53	63	63	64	65	73	7	75	85
1928:	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pct.	Pci.	Pct	Pct.	Pct.	Pct.	Pct.	Cl.	Pct.	Pct.	Pct.
Spring			. 5	. 1			53.7				44. 4	1.3					
Fall			. 4	. 4		. 1	63.5	1.3			6.9	26.2			1.0	. 2	
Escapement for jear			. 4	. 2			56.9	. 4			32.8	0.0			. 3		
1929:						19					50.5	32		1.2	1.9		
Fpring			1.9	3		1.9	40.0	4			9.5	50.6		1. 2	1.2		
Escapement for sear			1.0	. 2		8	34.8	.3			26.0	35.1		. 5		1.3	
1930:																	
Spring				5.4		1. 4	5]. 1	1.6 17.2			33.9 4.6	$10 . \frac{2}{9}$			1.4	.	
Escapement for year				4.0		.6	51.5	11.9			14.5	16.0			3.5		
1931:																	
Spring			2.3	7		9	42.7	. 1			17.3	33.1			2.2		
Fall.			. 2	. 5		. 1	. 53.2	4.2			1.0	40.3			. 3	. 1	
Escapement for jear			.9	. 5		.3	49.8	3.0			6.4	3 3. 1	. 1		. 9		
1932:																	
Spring			1.1	1.0		1.3	740	1			6.6	9.8			6.1		$\bullet-$
Fall		. 1	1.1	. 8		. 3	23.6	4.0			2.4	67.0			. 3	1.4	
Escapement for yesr			1.0	. 9		. 8	48.2	2.1			4.5	38.6			3.2	. 7	-
1933:																	
Spring		.]	. ${ }^{\prime}$. 6		3.3	5.7. 7	-3			22.9	13.0		. 1	1.3	, 1	
Fall.			. 3	. 2		. 6	4t. 2	2.6			2.4	44.1			1.2	25	
Escapement for year			. 5	. 4		2.0	523	1.3			13.1	27.9			1.3	1.2	
1934:																	
Spring			- 9	. 2		2. 5	32.2	1.0			50. 6	8.8 58.9			3.6	- ${ }^{1}$	0. 1
Fall			. 2	. 2		. 1	31.7	. 9			6. 2	58.9	. 2		1.4	. 2	
Escapement for year			.7	. 2		1.7	32.9	1.11			35. 7	25.7			2.4	. 1	
1935:																	
Spring			4.4	1.2		3.7	23.7	1. f		0.4	34, 9	15.3		3	11. 6	3	
Fall.		. 1	. 5	7.3		. 4	24.5	H.1			2. 6	50.1			. 9	3. 5	
Escapement for year.		. 1	2.7	4.2		2.0	2.4 .1	5.4		.2	14.7	32 k		. 1	6.2	1.9	
1936:																	
Spring			1.2	3.0		5. 6	6i. 5	$\therefore 3$			12.9	9.9		,	4.0	. 3	. 1
Fall.				. 3		. 1	71.3	5.11			23	15.0			1.6	1.4	
Escaperant for year			. 5	1.3		2.2	$5 \% .9$	3.2			6. 2	13.1		1	2.5	1.0	

The time of the season during which commercial fishing takes its toll also has an effect on the age composition of the eseapement due to the fact that the age composition of the fish in a season's run is not constant but raries from week to week, If the commercial catch does not take a constant proportion of each week's run of fish, the age composition of the escapement is very apt to be different from that of the run of fish from which it resulted. Except in instances where an abormal condition indicates the adrisability of giving special protection to a eertain part of a rum, it is considered preferable to have the commercial eatch so regulated that it constitutes the same percentage of the run from week to week thronghout the season. When the eatch is regulated in such a manner, the age composition of the escapement for a season will closely approximate the age composition of the run from which it is derived.

The escapement data presented in table 17 are used during each scason in the regulation of the fishery, and in addition are also used in the study of the number of fish returning from known escapements, a subject discussed in a later section of this publication.

The data presented in table 18 are used together with data presented in table 25 in the study of the change in the age composition of the runs. This subject also is discussed later.

TOTAL POPULATIONS

As the commercial catch of Karluk River red salmon can be ascertained from the records maintained by cameries operating in the Karluk area, and as the escapement can be determined by counting the fish passing upstream through the weir, it is possible to determine the number of fish in the total population or run. In determining the run of a 7 -day period the eatch of that period has been added to the escapement of the following 7 -day period because of the aforementioned lag between the time the fish enter the river and the time they go through the weir. The weekly cumulative totals of the runs for the years 1921 to 1936, inclusive, are presented in table 19.

Table 19.-Cumulative totals of the runs of Karluk red sulmon for each week from 1921 to 1936, and percentage of the total run that had cumulated to the end of each week
[run based on eatch plus escapement of following week, as explained in the text]

[^53]Table 19.-Cumulative totals of the runs of Karluk red salmon for each week from 1921 to 1936, and percentage of the total run that had cumulated to the end of each weeh-Continued

$\begin{gathered} \text { Wrek } \\ \text { ending- } \end{gathered}$	1932		1933		1934		1935		1936		Average age 1921-36
	Number in thousands	$\begin{aligned} & \text { Percent- } \\ & \text { age of } \\ & \text { total } \\ & \text { run } \end{aligned}$	$\begin{gathered} \text { Number } \\ \text { of fish } \\ \text { in thou- } \\ \text { sands } \end{gathered}$	Percent. age of total run	$\begin{gathered} \text { Number } \\ \text { of fish } \\ \text { in thou- } \\ \text { sands } \end{gathered}$	$\begin{gathered} \text { Yercent- } \\ \text { age of } \\ \text { total } \\ \text { run } \end{gathered}$	Number in thousands	$\begin{gathered} \text { Percent- } \\ \text { age of } \\ \text { total } \\ \text { run } \end{gathered}$	$\begin{aligned} & \text { Number } \\ & \text { of fish } \\ & \text { in thou- } \\ & \text { san 1s } \end{aligned}$	Percentage of run	
May 24	1	0.1	2	0.1	1	0.1	23	1.5	39	1.6	0.6
May 31	4.3	3.5	27	1.5	201	9.9	162	10.6	153	7.5	5.2
June 7	223	15.8	351	${ }^{21.0}$	503	24.4	424				${ }_{21}^{14.1}$
June 14	369 $4>1$	$\underset{\substack{26.1 \\ 3+1}}{ }$	583 784	31.7 43.2	817 1.097	43.4 33.1	${ }_{710}^{625}$	40.8 76.4	585 786	23.8 32.0	23.8 31.0
June 23....	541	35, 3	895	49.1	1,16:	56.4	-49	43.9	906	36. 9	35.8
July 5	597	42.3	9,50	54.1	1,24	60.2	809	52.8	917	37.4	35.7
Juls 12	¢34	44.9	1.1223	56. 8	1,309	63.4	836	54.6	979	39.9	41.3
July 19	680	3.8	1.1140	59.6	1,350	67.1	875	57.3	1.069	43. 5	44.7
July 26.	740	52.7	1.163	64. 1	1.499	72.6		${ }^{61.9}$	1.199		
Aus. ${ }^{\text {a }}$	829	5. 7	1,255	7692	1. 5.651	88	1.039 1.100	67.8 71.8 8.8	1.423,	38.1 64.1	${ }_{6.23}^{56.7}$
Aug.	9716	64.2	${ }_{1}^{1,307}$	\% 4	1,700	82.3	1.172	76.5	1,682	64.6	67.8
Aug. 23	1,081	76.6	1,5013	83.1	(i)		1.223	80.2	1,813	73.9	72.9
Aus. 30	1,145	81.1	1.52)	83.3			1.217	81.4	2.125	86.6	79.3
Sept. 6	1,147	81.2	1,606	91.9			1.393	91.3	2.330	95.0	87.0
Sept. 13	1,235	87.3	1.742	4151			1. 399	91.4	2.357	96.1	92.4
Sept. 20	1. 355		1.752	${ }_{4}^{95} 96.9$	2. ${ }^{\text {2 }}$. 465	100.0 100.0	1,514	98.9 100.0	2. 2.439	99.4 100.0	97.2 88.6
Oet. 4.	1. 1.412	99.3 104.0	1,813	98.9 100.0	2.450	100.0	1, 1.31	100.0	2.453	100.0	99.7
Oet. 11											100.6
Oct. 18.											

${ }^{1}$ The number of fisb in the run from here to the end of the season was calculated as explained in the text.
In discussing the time of appearance of the rums, Gilhert and Rich (1927, p. 63) pointed out the apparent "uniformity in the development of the runs" from year to year and stated that if supported by future data the size of the total run could be predicted with some degree of accuracy at least by the end of June. Uufortunately, additional data have shown that there is considerable variation in the cumulative percentage occurrence of the runs from year to year. Up to the week ending July 5 the data indicate that from 25 to 60 percent of the run may have come in. Therefore it is impossible to estimate, with any degree of accuracy, the size of the total run enty in the season. The main reason for the variation in the development of the rums from year to year is that the run of any single year is composed of fish of several age groups, and the various age groups do not appear uniformly during the seasou nor is there a correlation as previously explained between the abundance or scarcity of one age group appearing during one year with the abundance or scarcity of the other age groups appearing during that same year.

Figure 2 shows the average pereentage of the run appearing during each 7 -day period of the season. There is a definite mode in June, a minimmm during the week ending July 12, followed by a second mode. The seeond mode itself is slightly bimodal; however, the data for any single year clearly show that the minumum oceurs during the period of the weck ending July 5 to the week ending July 19 and only one mode is present during the fall run. It appears that there are two distinct red salmon runs to the Karluk River each year, the spring rum wheh reaches a maximum during Jume and the fall run which reaches a maximum between the last week of July and the first week of September.

Overlapping of these two runs cannot be denied, but the bimodality of the runs is evidenced not only in the appearance of the fish at the mouth of the river but also in their appearance on the spawning grounds. The spring run first appears on the
spawning grounds during the last of June and the peak of the spawning occurs during the third week of July. These fish populate all the spawning streams entering the lake and, to a slight extent, certain parts of the lake shores where seepage through the gravel promotes conditions suitable for spawning. By the end of July or the first week of August the fish have completed spawning, and there is a definite scarcity of live fish on the spawning grounds. During late August, fish again appear in numbers on

the spawning grounds. An appreciable percentage of the fall run spawns along the beaches, and some of the fish spawn in the Karluk River for a distance of a mile or two below the lake, an area never populated by fish of the spring run. The majority of the fish in the fall run do spawn, however, in the tributary streams of the lake.

Although the two rums of fish spawn, to a great extent, on the same spawning grounds, the time interval precludes a thorough interbreeding of the two populations. The only interbreeding possible is between the late spawners of the spring run and the carly spawners of the fall run. Whether or not the separation between the two groups has been sufficient to produce any anatomical differences that might be detected biometrically has not been determined conclusively. Even though the differences could not be detected biometrically, such an absence of differences would not repudiate the theory of two populations of red salmon inhabiting one watershed and spawning in the same gravel. Environmental conditions undoubtedly do account, in a large
measure, for the minor fluctuations in the time of appearance of the runs from year to year and may be the cause of bimodality in the runs. Regardless of the primary cause of this phenomenon, it would seem that there are two self-perpetuating components of the red-salmon population in the watershed, and that each should be given adequate protection.

During the 16 years under consideration the spring runs have ranged from 303,000 fish in 1922 to $1,715,000$ fish in 1926, the average being 817,000 fish. The fall runs have ranged from 652,000 fish in 1929 to $3,205,000$ fish in 1926, the average being $1,211,000$ fish. The total run has ranged from $1,058,000$ fish in 1922 to $4,920,000$ fish in 1926, the average being $2,028,000$ fish. Thus, there has been a rather wide range in the number of fish in the runs from year to year, and the average run has been far below that of the early days of the fishery when for a period of 7 years the catch alone exceeded the run (catch plus escapement) during this period by more than $1,000,000$ fish per year.

RETURNS FROM KNOWN SPAWNING POPULATIONS

In order to maintain the salmon runs at a high level, an adequate escapement must be obtained for each and every suitable spawning area. The question at once arises as to what constitutes an adequate escapement. This question has confronted the salmon conservationist since the first attempt was made to regulate a fishery, and it is a question that still needs considerable study. Each small section of a spawning area must have its proper escapement, and in the final analysis, it is necessary to determine, for each small area, the size of an adequate spawning population. The problem is further complicated because an adequate spawning population for a given spawning area is not necessarily constant. Variations in meteorological conditions result in changes in environmental conditions on the spawning grounds during the spawning and incubation periods from year to year, consequently, a spawning escapement which may be adequate in one year may be inadequate, or may be more than adequate, in some other year. As there is no means of predicting what meteorological conditions will prevail during the spawning season and the subsequent incubation period, we can at best determine an a verage figure for the optimum size of the spawning population for each spawning area.

Most of the progeny from a year's spawning population of Karluk red salmon return as adults in their fourth to seventh year. ${ }^{6}$ In order to determine the return from the spawning of 1930 , for example, it is necessary to determine the number of 4 -year fish in the run of 1934 , the number of 5 -year fish in the run of 1935 , the number of 6-year fish in the run of 1936, and the number of 7 -year fish in the run of 1937. The numbers of these several groups are then added together to determine the total return from the spawning of 1930 . The returns from the escapements of the spring rum, from the fall run, and from the total run of each year are given in table 20.

The escapement of 1921 ($1,500,000$ fish) produced a very good return both in the ratio of return to escapement and also in the total number of fish produced. While the return from the spring escapement was good, the return from the fall escapement was much better and was largely responsible for the exceptionally good total return.

[^54]Table 20,-Returns from escopements of Karluh River red salmon

	Year and season	Escapement	Return	Pationf return to oscaperment	Return minus escapement
Spriug	1921	$\begin{aligned} & 685,245 \\ & 814.755 \end{aligned}$	$1,522,032$ $2,970,282$	$\begin{array}{lll}2 & 2: & 1 \\ 3.6: & 1\end{array}$	$\begin{array}{r} 83 n, 787 \\ 2,155,517 \end{array}$
Total		1,500,000	4. 492,304	$30: 1$	2. 992,304
		$\begin{aligned} & 196,186 \\ & 203,814 \end{aligned}$	$\begin{aligned} & 1,252,839 \\ & 1,001,451 \end{aligned}$	6. $4: 1$ 4.9 .1	$\begin{array}{r} 1,056,653 \\ 707,644 \end{array}$
		400,000	2. $254,30 \mathrm{~m}$	5. f: 1	1.854.300
		255,351 439,228	1. $\begin{array}{r}801.86,053 \\ \hline\end{array}$	3. 1: 2. $7: 1$ 2.	$\begin{aligned} & 546,302 \\ & 747,722 \end{aligned}$
		604, 579	1, 9RQ, fin 3	2. $5: 1$	1.294, 024
		$8.40, n 30$ 560,131	409,352 $4.55,114$	$\begin{array}{r}\text { 8: } \\ \hline 8: 1\end{array}$	$-130,678$ $-134,013$
		1, 109, 161	844, 470	, 8: 1	-364, 691
		$\begin{aligned} & 657.154 \\ & 963,773 \end{aligned}$	$\begin{array}{r} 538,113 \\ 1,062,973 \end{array}$	1.1:1	$\begin{array}{r} -119,041 \\ 99,180 \end{array}$
		1.620, 927	1. 401.065	1. 0: 1	-19, 861
Spring Fall		$\begin{aligned} & 1,259,976 \\ & 1,243,426 \end{aligned}$	$\begin{array}{r} 33 \mathrm{n}, 507 \\ 1,177,101 \end{array}$	$\begin{array}{r}\text {. } 3: 1 \\ \text { 9: } \\ \hline\end{array}$	$\begin{array}{r} -953.469 \\ -66.325 \end{array}$
Total		2,533, 402	1,513.609	. f : 1	-1,019.794
Spring Fall		$\begin{aligned} & 617.613 \\ & 254,925 \end{aligned}$	$\begin{aligned} & 926,611 \\ & 651,563 \end{aligned}$	1. 5: 11	$\begin{aligned} & 308,998 \\ & 396,638 \end{aligned}$
Total.		872,538	1, 578,174	1. 8: 1	705,636
Spring Fall		$\begin{aligned} & 755,511 \\ & 33,506 \end{aligned}$	$\begin{array}{r} 1.519,176 \\ 925,4.53 \end{array}$	2. $0: 1$ 2.7 1	$\begin{aligned} & 763,665 \\ & 5 \$ 7,147 \end{aligned}$
		1,093, 17	2, 444,69?	2.2: 1	1.350 .812
		$\begin{aligned} & 360,567 \\ & 539,752 \end{aligned}$	$\begin{aligned} & 883.509 \\ & 623.056 \end{aligned}$	2. 5: 1	$\begin{array}{r} 529,942 \\ 83,304 \end{array}$
Total		900, 319	1, 50f, 565	1. $7: 1$	606,246

The escapement of 1922 (400,000 fish) was rery poor. Howerer, this eseapement produced a fair-size run because the ratio of return to escapement was exceptionally high both in the spring and fall.

The escapement of 1923 (694,579 fish), although it produced a good ratio of return to escapement, produced only a moderate run because the size of the escapement itself was below average.

The escapement of $1924(1,109,161)$, while considered satisfactory in size, produced a very poor return. In fact there were fewer fish in the return than in the escapement. This was due probably to the tremendous escapement of pink salmon in the Karluk River in 1924. Normally, the pink salmon spawn in the lower half of the river, but in that year, beeause of population pressure, large numbers of this species continued up the river and occupied the red salmon spawning grounds. Quoting from a report made by Fred R. Lueas in 1924 (Gilbert and Rich 1927):
...On Augnst 21st hundreds of thousands of fish died in the twenty miles of river between the
weir and the still water at the Larson Bay portage. The mortality ineluded adult red salmon, humpbaeks, and trout, as well as young fish. The cause is unknown unless it was due to overcrowding of humpbacks, with a possible fall of the water level in the river . . . it is estimated that over four million humpbaeks passed through the weir this seavon.

Quoting from Lucas' notes taken while visiting the red-salmon spawning grounds at Karluk Lake, September 16 to 24:
... Behind every rock and in every eddy piles of humpback eqgs lay. Within twenty-two steps the writer counted twelve piles that would average five gallons to a pile; and behind a small jsland about six fect in diameter there were more than a fifty-gallon barrel full of humphack eggs. These eggs were all dead; . . . a small percentage of red acgs was among thom. In fact, more or less red eggs were noticed adrift in every stream where humpbacks had spawned . . . The dead, red eggs . . . were more numerous than the live ones. Ill of these live eggs will probably be pieked up by the birds and trout before they hateh. . . .

It was apparent that there was too large a pink-salmon escapement, and this was borne out by the failure of the pink-salmon run of 1926, the total return from the escapement of over $4,000,000$ being less than 100,000 fish. The overcrowded conditions on the spawning grounds in 1924 not only resulted in a very poor return of pink salmon in 1926 but undoubtedly were largely responsible for the poor return from the red-salmon eseapement.

The eseapement of 1925 ($1,620,927$), while good, also produced a relatively poor return, and the total return was slightly less than the number of fish in the escapement. Karluk Lake was not visited during the summer of 1925 , and consequently no information as to conditions on the spawning grounds during that year is aralable. The moderately large escapement should not have caused an undue mortality due to orercrowding under normal conditions, and there is no reason to belicve envirommental conditions were abnormal during the spawning period. It is known that the winter of 1925-26 was exceptionally mild. A mild winter should cause the eggs to fatell earlier than usual, but just what effect this wouk have on the fry is impossible to state.

The excellent escapement of $1926(2,533,402)$ suffered from unfarorable conditions caused by an exceptionally warm, dry summer, and the return was $1,000,000$ fish less than the number of spawners in the escapement. The lack of rainfall coupled with a large escapement of red salmon produeed conditions somewhat similar to those encountered in 1924. Quoting from notes made by Willis H. Rich in 1926:

On July 18, in Spring Creek . . . it was very noticeable that many of the femates were not eompletely spawned out : six of twelve examined had eges apparently still in good condition. Most of these were apparently not spawned at all, although ripe . . . Tpor Thumb River . . . we saw many dead females, ripe but unspawned, and many others that were not eompletely spawned out. Causes of death quite unknown, as most of them appeared to be in fine condition.

Olservers at Karluk Lake in 1926 considered that "about 25 percent of the females that reached the lake died only partially spawned ont." Not only did many fish die before spawning, but large numbers of eggs deposited in the gravels died because the spawning grounds dried up. Again quoting from Rich's notes:

August 9 . . . In Thumb River, where the spawning had been heaviest, mony of the nests were exposed by the lowering of the water. We dug in some of them and found mainly dead eggs, although a very few live ones mere found.

In many of the other streams similar conditions were noted. Thus, the poor return from the spawning of 1926 might have been due largely to the conditions on
the spawning grounds during that year. The spawn of the spring escapement, in the opinion of observers, suffered the greatest loss, and it is significant that the return per fish from the spring escapement was only one-third as great as the return per fish from the fall escapement.

The escapement of 1927 (872,538 fish) produced a moderate-size run and probably would have produced a better rum had not the spring run suffered to some extent from unfavorable conditions. Precipitation during the summer of 1927 was in marked contrast to that of 1926 . In 1927 the spring spawning population suffered because the streams were at flood stage for a period of time, whereas in 1926 the fish suffered from a lack of sufficient water.

The escapement of 1928 ($1,093,817$ fish) produced a fairly good run, and the ratio of return to escapement in both the spring and fall was cqual to, or greater than, the ratio of return of $2: 1$ on which the Alaska fishery regulations are based.

The escapement of 1929 (900,319 fish) produced a relatively small rum. The spring escapement produced a good ratio of return to escapement, but the fall escapement produced only a few more fish than were in the escapement for that period.

Although fluctuations in the ratio of return to escapement were anticipated, it was expected that some correlation would be found between these two factors. The big escapements to the Fraser River (Rounsefell and Kelez, 1938) every fourt ${ }_{1}$ year prior to the rock slide in the river in 1913, always resulted in a large run 4 years later. Observations made on the escapement and returns of pink salmon in Puget Sound and Alaska indicate that usually big rums are produced from good escapements and poor or only fair runs produced by poor escapements. The cyclic nature of the catches at Karluk during most of the history of the fishery also indicates that some correlation exists between escapement and return. These and many other instances which might be cited give reason to believe that, normally, a positive correlation exists between escapement and return.

Figure 3 shows the correlation between the total yearly eseapement and the total returns. The most striking point about these data is the utter lack of correlation between the escapements and the returns from the escapements. That such a condition could not have existed during the early days of the fishery is apparent when one considers that for 3 of the 9 years under consideration the ratio of return to escapement did not exceed 1.0 to 1.0. Obviously, unless this ratio is greater than 1.0 to 1.0 a fishery camnot be sustained. For only one of the years under consideration, 1921, did the return exceed the escapement from which it resulted by an amount approximately equal to the catches made during the carly days of the fishery.

In the consideration of returns from escapements the most important point is the surplus, or return minus escapement, produced by a given escapement. The aim of every regulatory body governing a self-perpetuating biological resource should he to allow the greatest possible catch without endangering future supplies. The size of the population inhabiting a watershed is, in itself, of little concern. For example, if an escapement of $1,000,000$ fish always produced a run of $3,000,000$ fish, and an escapement of $4,000,000$ fish always produced a run of $5,000,000$ fish it would be wasteful to require an escapement of $4,000,000$ fish solely on the basis that such an escapement produced the largest run. In this hypothetical example the escapement of $1,000,000$ fish would produce a surplus of $2,000,000$, and the escapement of $4,000,000$
would produce a surplus of only $1,000,000$. It is then of considerable importance to determine, for each given area, the size of the eseapement which will consistently produce the greatest surplus.

In figure 4 the return minus escapement, or surplus, has been plotted against the escapement. A negative corrclation between escapement and surplus is indicated, and it appears that, overlooking the return from the fall escapement of 1921 , the

Figure 3.-Returns from the spring and fall escapoments for the years 1921 to 1929, inclusive.
optimum escapement for the spring and fall rums was approximately 200,000 fish for each period or a total yearly eseapement of 400,000 tish. There are sevoral farch, however, that should be considered before drawing conclusions from the data. 'The escapement of 1921 , and especially the fall eseapement, produed a very good smphes. The Karluk pink salmon spawning population of 1922 produced an exreptionally large surplus, as did the red salmon spawning population of that year, indicating unusually favorable envirommental conditions. Conditions on the spawning grounds were judged to be very unfavorable during 1924 and 1926 , and hence the returns from those eseapements were likely much lower than if the environment had been nomal. Furthermore, only the escapement of 1921 ($1,500,000$ fish) produced a surplus comparable to the average catch mate during the 20 -year perind from 1888 to 190%. While
it is obvious that the catches made during the early days of the fishery were such as to cause serious depletion of the population, it would seem likely that the fishery could have been stabilized with a yearly eatch of $1,500,000$ to $2,000,000$ fish.

Fwitre 4.-Surphis (roturn minus escapement) produced by spring and fall escatements for the years 1921 to 1929 , inclasive.

CHEMICAL ANALYSES OF LAKE AND STREAM WATERS

A factor to be considered in relation to the optimum magnitude of the escapements of red salmon is the addition to the lake water of phosphorus and other inorganic salts from the bodies of the fish which migrate into the watershed to spawn. Prior to the
inception of the commercial fishery, Karluk Lake received a large supply of chemieal compounds each year because practically all of each season's run of fish proceded to the lake and its tributaries to spawn and die. As soon as the commercial fishery began, the spawning escapements became less, and not only were there fewer spawers available to deposit eggs in the gravel, but the yearly increment of chemical compounds to the water was considerably decreased.

That the productivity of bodies of fresh and salt water is controlled in part by the abundance of certain inorganic salts such as phosphorus has long been known and the relationship between the chemical content of the water of ponds, lakes, and the ocean and their productivity has been studied by a large number of investigators. Soluble phosphorus has been considered by most workers to be the chief limiting factor in the productivity of aquatic organisms during the summer months, athough nitrogen and carbon dioxide have also been shown to be limiting factors at times.

During the 2 or 3 years that the red-salmon fingertings spend in fresh water, prior to their sojourn in the ocean, they feed upon certain minute forms of animal life existing in the lake. These animal forms, or zooplankton, are dependent upon the plant forms, or phytophankion, and they in turn are depentent upon the sumbith and the inorganic salts in the lake water. Hence, lluctuations in the supply of salts in the lake water can indirectly affeet the growth and survival of the fish.

In tables 21 and 22 are presented the results of temperature and dhenical observations made on the waters of Kiaduk and 'Thmmb Lakes in 1935 and 1 !abg. Simidar data collected in 1027 were presented and disensad by duday, Rich, Kemmerer, and Mam (1932).

The demperature of both Karluk and Thmmb Lakes was higher in 1935 than in 1927 and still higher in 1936. At Station 1, in Kimhk Lake (fig. i), for example, the surface temperature on August 13,1927 , was $11.1^{\circ} \mathrm{C}$. : on the same date ia 1985 it was $12.2^{\circ} \mathrm{C}$.; and in 1936 it was 15.5° ('. There was widenty a marked dilferenee in the amount of sumshine during these 3 yatas, and such a conelasion is confirmed hy the precipitation data. The Junc-daly-Augst precipitation at kodiak, the nearest recording station, was 22.33 inches in 1927 ; 13.85 in 19 路; and (i.5t inches in 1936. During the 47 yeas that dune-nhly-August precipitation data has been tabuated at Kodiak, the averare precipitation was 13.32 inches.

Sohble phosphorns was found in the water of karluk ame Thumb Lakes in 1927 on the dates samples were taken, and whenes the surfare waters of these lakes latked a measurable amount of phosphorus duatis the summers of 1935 and 1936 , it was not montil September, at the end of the satmon growing seasem, that measumble amombe of phesphoms were fomel.

Silica was almest entirely absent fron the surface waters of Karluk Lake during 1935 and 1930 , whoreas a smal! amount was presone in 1927.7 A greater amoum of silica ocenred in the water of Thmmb Lake in 193.5 and 1936 than in 1927.

[^55]

Fioure 5.-Mup of Karluk Lake region.

Table 21.-Kesults of chemical analyses of the waters of Karlul Lake and Thumb Lake in 1935
[The results are stated in millimams per liter of watrr. 'Tr. = Trace]

	'Tinar:	12.11h im nurirs	Tromer ature, ('.	115	4.arlon diming fiee	- (aldilla phose jhurn	Sillat	$\begin{gathered} \text { Viflic } \\ \text { Hiffosen } \end{gathered}$
May	11:15	$1)$	110 11	7.7				
Junr is	10: 27	11	11.0	\% :		(1). 11031	1.5	01102
Junezas		211	\% 8	7. 5		, 111714	1.1	.1112
June 28		30	60	3		.1000	11	112\%
June 28		1110	4	7.4		- 1002	11	(191)
dily 11.	8:30	11	11. i	¢ 11	0.8	- 14100	${ }^{\prime} 1 \mathbf{r}$.	11182
Juiy 11		20	$\cdots 7$	73	1. ${ }^{3}$. 000	11	(110)
Tuly 11		30	13. 9	\bigcirc	15	000	11	101
July 11		11111	\& X	7.3	1.*	. 0102	11	0) (1)
July 30	$8: 21$	1	11.4	7.7	,	. 14101	11	1027
luly 30	- 8.21	100	5.11	72	20	1102	11	1111
July 30		121	1. !	71	21	0172	11	$17(1)$
Aug. 13	9:4\%	(1)	$12 \geqslant$	7.4	\cdots	(114)	'It.	1611
Aug. 13		21	8. 1	72	1. 2	${ }^{\mathrm{Tr}}$	11	(10) 1
Aug. 13	1190	5.1	70	$\because 1$. 1102	1 r .	[171]
Aug. 13		123	$4!1$	(1)	25	. 11012	Tr.	(11)1
Sept, if	11:25	0	127	5:1		, 1171	5	
sept. is		20	10.3	- :	.	(thel	0	
Sept. 6		100	5. 3	-0		. 11114	0	. .
Sent. 6		120	5.1	71		. 010	. 5	- . . .
Sept, it		121	5.1	7.11		(1)13	. 5	

KARITK LAKE, STATION 2 (JHETHL゙MB!

1 Itmer ati, racepl as moled.
2 Jinle 1. In.
In tables 23 and 24 are presented the results of temperature and chemical amalyses made on 15 affluents of Kartuk lake during the summers of 1935 and 1936. These data, with the exepption of the siliea valnes, agree with the results presented for 1927 by Juday, Rich, Kommerer, and Mam (1932). Vambitions in domperature, pht,
 on the time of day observations are mate, the mumber of fist in the streans, and the depth of water in the streams.

TAble 22.- Results of chemical analyses of the uaters of Karluk Lake and Thumb Lake in 1936
[The resulfs are stated in milligrams per litur of water. $\mathrm{Tr}=\mathrm{Trace}]$
KARLUK LAKE, STATION I

Date	Time ${ }^{1}$	Tepth in muters	$\begin{aligned} & \text { Temper- } \\ & \text { ature. } \end{aligned}$	n^{H}	Soluble plosihorus	Silica	Nitrite nitrogen
June ${ }^{\text {a }}$	19:30	0	136	76	0.000	0	0.002
2.2		21.	¢. 1	7.5	(114)	0	Tr.
28		311		7.5	\%190	0	Tr.
20x		1011	43	7.3	Tr.	11	Tr.
Juls 11	11:15	0	122	7.6	, 1011	0	0.1
11		21	7.1	7.5	. 11414	0	Tr
11		310	5 -	T.	. 1010	0	Tr.
11		1004	1.5	$\bigcirc 3$	\% 11010	0	'Tr.
14	8:15	11	12. 5	E.	$111+1$	19	
Anc. ${ }_{\text {I }}^{6}$		311	6.3	7.5	. 010	0	
Anre	0.44	11	171	6. 4	. 1001	Tr.	001
		211	6.5	73	1710	11	0101
$\begin{aligned} & 1: 3 \\ & 1: 3 \end{aligned}$	9:2fi	11	1.55	A. 1	. 11010	0	101
$\begin{aligned} & 1: \\ & 1: \end{aligned}$		201	$\bigcirc 0$	8.11	- 1482	0	Tr
$1:$		104	46	71	- 143		-602
\because	815	1	15. 1	\bigcirc	-1140	Tr	01411
\because		211	$\checkmark 1$	$\div 3$	1000	0	001
27.		30	ts. 1	7.	11100	0	
27		1010	4	\cdots	005	. 5	Tr.
Stre. 9	4,09	1	12.7	7.15	(1)69	Tr.	001
9		211	83	7.	. 1000	0	0100
4		30	4 s	71	- 11610	0	06\%
3		1014	$4{ }^{4}$	7. 1	.004	Tr.	'r.

たАRLUK 1.AK゙E. ST.ATION 2

[^56]
 In 1935. Whe sitica values maged from 5.0 to 13.0, and in 1036 they ranged from 4.0 to 15.0 milligrams per liter. In both 1935 and 1936, it was noted that the silica content of the water of any one stwan variel with the stream flow. In the summer months of 1923 thro was 1.6 times as muel precipitation as during the same period in 1935, and 3.4 times as much as in 1936 ; hence, the strem flow in 1927 must have been con-

Table 23.-Results of chemical analyses of stream waters in 1935
[Results are stated in milligrams per liter of water. Tr. = Trace]

Stream	Date	Time ${ }^{1}$	Temperature ${ }^{\circ} \mathrm{C}$.	pH	Carbon dinxide		Solible thlowphorus	Silica	Nitrite nitrogen
					Free	Fixed			
Cold Crafk' Spring Creek	July 1	$9 \cdot 10$	3.9	6. 3	12.2	100	0.012	13.0	
	do	9:15	5. 8	b. 8	78	6.8	(162	11.0	0. 001
	July 15	900	fi 1	12.3					
	Auc. 15	1000	6. 8	6.	6. 7	10.8	. 022	90	Tr.
	Aug. 29	10.10 0.25	6.1	57	5.9 32	11.0 11.0	, 01015	911 7.0 80	Tr.
Moraine Creek	$\begin{array}{lll}\text { July } \\ \text { July } & 1 \\ 15\end{array}$	9.25 930	7.2 8.3	-1 1	32	11.0	. 110	7.0 9.5	.14\%
	Aug. 15	11.15	10. 4	7.8	. 8	11.0	(122	80	001
	Alug. 29	1025	9.4	$\checkmark 4$	0	102	. 014	110	01
Cotommood Creek	July 1	1005	7.2	3.2	2.8	78	. 015	Q 0	003
	July 15	1045	9.4	$\bigcirc 3$. 160	9. 5	
	July 97	9.30 3.90	7.8 9.8	$\div 3$	1. 4	13.4 13.6	.030 .020 .020	8.11	(003
	${ }_{\text {Ang. }} 15$	${ }^{3} 12.01$	9.9	$\div 7$	111	13.6	. 020	8.5	- 0102
Alder Crefk 1 Alder Creek.	Suly ${ }^{\text {Smp }}$	8:45	6.7	$\div 8$	21	148	OH2	8.5	Tr.
	do.	940	7.2	$\div 2$	3.2	15.2	015	90	ino
	Inly 15	11:55	83	$\bigcirc 2$					
	July 97	9:05	6. 7	\square	16	13. 4	025	8.0	$\mathrm{Tr}_{0} \mathrm{i}$
	Aug, Sept	740 9.05	5. 6.1	\% 7	16	13.0	0		
Little Lagoon Creek :	May	10.42	35	79					. 1040
	Juy 7	10.10	3.6	7.7	14	25.0	. 614	9.0	(1)
Little Lagoon Creek.	do.	10.00	$4 ;$	74	24	246	010	8.5	(H)
	July 13	10:00					$011 i$		
Little Lagoon Creek:	Aur. 15	-:50	3.3	7. 5	1.4	23.0	(H)Fi	8.	(0)0
Little Lagoon Creek	do	8.10	3.4	7.7	22	23.5	1114	90	CHNO
Lower Thumb River	Nay 3	10:20	$\times 3$	61			...		
	Junie 26	$: 120$	1113	\%	- -	-	--		
	July 9	312.105	192	3				- -	
	Aug. 14	4.00 10.12	12	41.					
Salmon Creek	Nay ${ }^{\text {Junt }}$	10:12	5						
		3100 1140	-	\bigcirc	23	126	. 1114	* 0	(M14
	Jaly ! 1	4.4	\cdots	73	2.11	11.4	1115	[!	1412
	Aug. 14	540	fi. 1	7	,	132	(12\%	;	cre
Tpmer Thumb River	June ${ }^{5}$	1145	3.2	71					0145
	Jaly ${ }^{\text {J }}$	11:10	$\times 3$ $\times 3$	19 70 0	33 00	10.0 10.8	022	7.	015 1924
	July 21	9:20	8.3		30 3.4	10.8 120	025	30	1014
		3.20 9.9141	-2	4.9 $\div 3$	3.4	10	(112)	4.5	Tr.
Italfway Creek.	do	$9 \cdot 15$	T. 8	\% 1	24	40	(0)4	10.0	001
	July 27	10:5	$\div 4$	72	12	$8 \times$	125	9.11	7 r
	Alue. It	10:06)	(i)	73	$1 \because$	42	011	10.0	(4) 1
	Sopt. 7	8.10	fi. 1	$\div 4$			014		
Grassy Point Creek	July 6	3:10	8.9		36		11314	4.11	-140
	Tuly 27	10:010	7.9	72	16 16	10.	045 1164	9. 4.11	1007 $-(1) 2$
	Auc. 16	10:25	7.2	- 5	10	10. 4	1116	4, 5	. 012
	Sept. 7	$8: 20$	6.1	5			114		
Meaduw (reek	Juy 17	0 0:5.5	± 3	70					
Cosceade Creek	Alse. 16	9:10	$3 \cdot$	5		${ }^{9} 8$	018	$7_{4} 5$	18
	Smy ${ }^{\text {lin }}$	10335	$4 ?$	5	1% 0 0	14.5		4.	Tr:
	Inly Ane 16	9:35	43	$\bigcirc 1$	10 10 10			${ }^{2} .5$	(6):
	Ange. 68 July	10.15	\%. 78	; ${ }_{6}$	51	10%	123	¢:	(m)
	do.	9:30	$\times .3$	73	38	\bigcirc	Mint	50	(nil)
O'Malley Liver ${ }^{4}$	do.	10 (\%)	9.1	73	11	91	mis	50	Ir
	July 17		4 4	73	\because	1118	-106,	55	. mix
	July 33	10:50	\% 3	$\div 1$	$\because 6$	104	014	$6_{10} 1$	- 1112
	Ang. 1i	8. 35	42	-11	\because	11.19	012	1,0	(1)2

${ }^{1}$ Timen a. m. rexpet as noted.
${ }^{2}$ A bose salmon.
; Time P m.

- Ahove Falls ('reck.
siderably greater than in 193.5 or 1936. The stemans wer lower for a part of the summer of 1936 than in 1935, and this is reflected in shighty higher silica values in What year.

Karluk Lake recoves silica, in part from the action of the water on the silica bearing rocks on the bottom and on the beaches, and in part from its tributary streams which leach the siliea from their respective watersheds. Consequenty, the yearly inerement of silica, although undoubtedly affected by temperature and precipitation, is probably

T\bue 24. Resulls of chemical anolyses of stream waters int 1936
[Results are staifol in millitrams per liter of water, Tr = Trace]

Simam	Date	Time ${ }^{1}$	Temper ature ${ }^{\circ} \mathrm{C}$.	H^{H}	Soluble phosphorus	Silim	Nitrile nitrogen
- ind Crerk? sfuling 'reeh	July 1	10. 18	3.9	6. 2	0.015	15.0	0. 0001
	dra.	10:3\%	7.2	6. 7	0015	13.5	. 1 M 5
	Ithly 10	9:20	6. 9	6. 7	. 005	13. 5	Tr
	Alig. 8	9:15	6.1	ti. 6	Ontir	13.0	. m (0)
	Srpt. II	10.10	4. 6	6. 6	014	11.5	. 0101
Noraine 'rcek	July 1	11.05	8.3	7.5	-032	95	. 082
	July 15	9:55	10.3	7.3	. 130	9.5	. 024
	Aug. 8	9:30	11.1	6. 6	. 135	10.0	. 018
	Srpt. 11	10:35	5.6	7.8	. 030	9.0	. 002
Cotonmond Creek.	July 1	11:40	9.5	7.1	. 015	9.5	. 002
	July 15	10:35	9.2	7.2	. 045	3.5	- 004
	Ang. 8	10:00	10. 7	7.1	. 183	10.0	. 018
	Sejit. 11	11.25	5. 1	7.6	. 014	9.5	. 001
Alder Crpelt	July 5		6.7	7.5	4n90	9.5	
	July 15	11:05	7.5	7.3	. 1220	9.5	. 001
	Aug 8	11:(4)	10. 0	7.3	. 050	10.0	. 008
	Sept. 11	$312: 20$	5.1	7.6	. 012	8.0	. 001
Little Lagon Creek.	Juns 25	3.30	\&. 3		. 0104	11.0	
little lagoon Creek ${ }^{2}$	July 7	10:00	3.6	7.8	. 004	10.5	. 000
Lower Tlumb River.	- do -	30.05	4.4	7.6	. 008	10.5	.000 000
	$\begin{array}{cc}\text { June } & 30 \\ \text { July } & 9\end{array}$	${ }^{3} \begin{aligned} & 11: 35 \\ & 12: 15\end{aligned}$	12.2	7.4	. 6100	5.5 5.5	.000 .002
	July July 17	${ }^{3} 112: 15$	12.8	7.4 7.5	.000 .002	5.5 4.0	. 002
	Aug. 29	3 3:35	17.1	\bigcirc			
	Sept. ${ }^{\text {d }}$	$3 \mathrm{l} 2 \times 30$	12.3	7.3			
Salmon Creek.	June :0	11:20	5.3	7. ${ }^{2}$. 004	7. 5	. 000
	July 9	12.19	7.8	7.3	. 018	75	. 002
	July if	$31: 10$	12.2	4.9	-06\%	7.5	
	Athe. 10	$312: 40$	S. 4	7.0	. $0: 50$	9.0	. 007
	Aug. ${ }^{\text {a }}$: 3:15	11.1	7.1	. 1118	8. 5	. 1011
	Srlt. 6	${ }^{3} 12.05$	7.8	78	. 1110	\% 0	. 004
Upper Thmmb, Tiver..	Jime 30	485	4.3	5	. 1208	45	- OUV
	Juls 9	11:30	8.3	70	-020	$\bigcirc 0$. 012
	July 17,	11:30	11.7	6. 7	. 045	$\bigcirc 5$	
	Ans. 10	11:30	111.14	8.9 -1.0	.070 .1024	8.5 8.0	.007 .001
	Sept. 6	$10: 03$	9.7	¢ 4	-02t	8.0	. 008
Inaliway Creek 2	luly ${ }^{\text {a }}$	9:40	7.2	7.4	. 604	100	. 000
1laliway Creek	-10.-.-	10:00	7. 2	72	.010	10.0	. 000
Malfway Crerk ${ }^{2}$	Aug. 11	31:45	8.3	7. 6	. 004	11.0	. 000
Halsway Creek	do..-	312:15	8.9 4.0	7.3 7.3	.040 .012	12.0 9.5	. 0002
	July 6	10:25	7.8	7.2	. 0.58	10.0	. 004
Grassy Point Creck	Aug. 11	$312: 45$	9.2	73	. 100	11.5	. 006
	Sept. 11	9.05	4.4	7.4	. 019	8.5	. 012
Mcadow 'reck	July 3	11:00	9.2	7.0	. 012	6. 5	. 001
	July 16	11:06	8.3		. 025	7.5	. 0113
	Ang. 14	${ }^{3} 12: 35$	9.7	3.4	- 0608	9.5	. 017
	Sent. 10	${ }^{3} 1: 15$	6.7	$\because 3$. 008	90	. 001
Casuade freot	Jnly 3	10:15	$\times 3$	7.f.	. 013	6. 5	. 000
	July if	10:20	9. 2		. 0106	$\checkmark .0$. 011
	Ang. 14	${ }^{3} 12: 04$	9.9	7	. 1225	90	- nimi
	Srot in	\% 12: 10	7.3	7. 5	. 003	90	- 081
	Jinly ${ }^{3}$	95	7.8	$\because 1$. 61414	5. 0	(tiry
	duly if	10:161	8.3 10.6		- 116 .030 .108		
	$\begin{array}{cc}\text { Ang } \\ \text { Sut } & 11 \\ \text { Sin }\end{array}$	-11\% 1210	10.6 8.9	7 7 7	-. 11714	¢!	. OH
Hallicher .	laly 3	2\%	¢. 3	7.1	. 11414	5. 0	. 1171
	Juns lis	315	92		. 106	${ }^{6} 50$. mm
	tue 11	11110	111	-3	(1)4	\bigcirc	
	srin. 10	12,411	S. 3	7.2	.1116	4.0	- 101

a thase dalminn.
*'bimie pr 116.
 as a limiting factor in the porbuction of diatons but would not inhibit the production of other forms of phytoplankton.

The yoarly increment of soluble phosphorus is dependent, rery largely, upon the number of spaming fish which enter the lake each year. There was from $1 / 1 / 2$ to 10 times the coneent ration of phosphome in the water at the mouthe of the streans as
in the water of the same streams, on the same dates, above the area where spawning and spawnot-out salmon were found. Furthermore, a part of the salmon spawn along the beaches of the lake and erentually die, and the eareasses, together with the careases whith drift downslream into the lake from the tributaries, derompose and the phophorus contamed therein becomes available to the phytoplanktom. A shortage of phosphorus in the lake water would inhibit the erowth of all forms of plyteplankton.

It is apparent from a study of the chemical analyses of the lake water and of the stream waters that both phosphorus and silica are being absorbed, during the summer months, by the phytoplankton as fast as they become available, for otherwise the concentration of these chemicals in the lake water would approach that found in the streams. Since the concentration of these chemicals in the lake water duing most of the summer was less than a measumble amount, it is evident that ther must be limiting factors in the production of the phytophankton and may possibly be affecting indirectly the growth and survival of the red salmon fingerlings of karluk Lake.

CHANGE IN AGE COMPOSITION OF THE POPULATION

The peremage oreurrence of the varions age gromps in the population, as determined from a stuty of the sala samples (tables 3 to 16), appears to be changing from year to year. Howerer, a dired, comparison of one year's data with another camot traly represent, the change, if amy, since a friven ratrs rum is composed of the progeny from the eseapements or several yours.

To detemine whether or not a change has been daking phace in the age composition of the population, it is necessary to compare the age composition of the escapements with the age composition of the fish returning from the respective escapements. The age compositions of the escapements for a series of years are presented in table 18, and the age compositions of the returns from the escapements appear in table 2.5 .

The percentage of 53 fish in the escapements for the years 1022 and 1024 to 1929 , inclusive, was 09.3 , 76.0 , 66.8, $81.1,70.8$, 56.8 , and 34.8 white the percentage of 5_{3} fish in the returns from these cseapments was 50.0. $19.3,412,52.5,45.2,39.5$ and 42.0. respetively. There was a lower pereentace of 5_{3} fish in the return than theme was in the esapement for every year with the exrption of 1929 . A simitar rondifion is fombd to exist if the rethris from the spring and fall eseapments are eonvitered sparately.
 inclusive, are as follows (the first hage being the peremtage of the fia group in the resapement for a given year and the serond fogere beine the perentage of the for froup in the peturn from the eseapement): $1.0: 11.3$; $10.5: 22.8 ; 15.8: 39.3$; $7.6: 33.2:$ 6.1:29.4; 9.0:20.3;:3.1:27.7. In all years exerpt 1929 there was a greater peremater of the G_{4} group present in the return from the escapements than there was in the esenpements.

In considering these two major age groups there appears to be a decrease in the relative abundance of one, and an increase in the relative abundance of the other. It thus becomes of interest to determine if a change is taking place in the length of ocean residence and in the length of fresh-water residenee of these fish.

Table 2.)- Percentage occurrence of various age groups in returns from escapements of the spring, fall. and total run for the years 1920 to 1929, inclusive

Year of escaprment	Age groups																
	31	41	42	43	4	52	53	54	62	6_{3}	64	F_{5}	73	71	75	84	85
1920:	Pct	Pct.	Pct.	Pct.	P cl.	Pct.	Pct.	Pct.	Pct.	Pet.	Pct.	Pct.	Pet.	Pcl.	Pct.	Pct.	Pct.
Spring			0.5	1.8		0.3	6.9. 7	0.1		21.9	5.3			0.4			
Fall			. 1	2.8	0.5	. 1	69.4	3.1		3.1	20.3	0.1		. 3	0. 2		-
Returns for year			. 2	2.5	. 4	. 2	19.5	2.2		8.6	15.9	. $]$. 3	. 1	- -	-
1921:																	
Frpring			1.1	1.2		1.8	80.3 879			6.4	4. 6						-.-.
Fall - -		0.1 .1	. 6	4. 5		1.7	87.9 88.1	2		2.6	4. 61			. 6		
1922:																	
Spring			6.3	1. 1		6. 5	47.9	. 2		35.9	1.3		0.4	. 4			
Fall	1. 2	1.8	2.1	.9	. 1	1.0	52.6	4. 5		11.1	23.8			. 1			
Returns for year	. 6	. 8	4. 5	1.0		4.1	50.0	2.1		24.8	11.3		. 2	. 6			--
$1923:$. 2	1.0						30.4	1.8			. 7			
$\begin{aligned} & \text { Sprim } \\ & \text { Fall } \end{aligned}$	8	1	. 1	3.0	. 1	. 2	10.7 50.7	. 7		30.4 6.9	27.8			1.0			
Returns for year	.4	. 1	.2	2.2		.1	62.:	.4		16.4	17.1			. 9		---	-...-
1924:																	
Siring			1.1	- 4		2.0	46.7	\cdots		36.0	11.2		. 1	${ }^{2} .4$.1		
Fall		. 1	1.3	. 9		1.1	51.8	, 1		10.2	33.5			1. 0	- 2		
Returns for jear			1. 2	- 6		1. 1	49.3	. 4	---	22.7	22.5			1.7	- 2	----	-----
Spring			1. 5			1.4	43.1	1.7		15.1	30. 7			6.4	. 1		
Fall			. 2	. 4		. 1	40.2	12.01		2.0	43.7	.1		. 5	. 3	- - -	---
Returns for bear			.6	. 3		. 6	41.2	5.5		6.4	39.3	. 1		2.5	. 5		--- -
1926:																	
Spring			. 1	37		1. 2	61.6	- 8		11.9	19.4		. 2	3. 7	. 3		0.2
Fall				3.7		\therefore	49.4	3.9		2.8	37.2			. ${ }^{2}$	1.5		---
Returns fur year			. 1	3.1		. 4	$55^{2} .5$	3.2		4.8	33.2			1.5	1. 2		
1927: Sming			1.5	. 4		1.4	51. 0	. 3		25.9	15.1			5.2	. 1	0.1	
Fall. -			. 7	. ${ }^{\text {S }}$. .4	3 s .7	2.8		4	49.4			2.1	.2		
Returns for year			1. 2	. 6		1.2	46.2	1,3		1\%.1	29.4			3.9	.1		
1928:																	
Spring			.7	-3		2.1	38.7 10.4	1. $\frac{2}{4}$		43.4	8.3 3.4		. 1	6. 0	1	. 1	
Fall -		2	.!	. 7		. 7	10. 4	1.9		11.8	$3!5.4$, I	-- ${ }^{-1}$	1,0	1. 9	---	
Returns for jear		1	. 5	. 5		1. ${ }^{\text {d }}$	39.5	. 8		31.4	20.3		. 1	4.1	. 8		
19世5:		.]	. 8	. 0		3.7	43. 6	1.1	0.2	31.0	14. 3		. $]$	4. 1	. 4		
Fall			. 4	. 3		. 3.3	34.7	1.7		4.8	46. ${ }^{\text {i }}$. 7		3.9	2.5		
Peturis for jear		. 1	.6	. 4		2.3	42.1	.1	. 1	20.2	27.7	. 3	.]	4,0	1. 3		

In figures 6 and 7 is presented the relationship between the percentage of fish of a particular ocean history in the escapement and the perentage of fish of the same ocean history in the return. In these and the following figures in this section, lines purportedly fitting the data have been omitted intentionally. The two important questions on which information is desied are (1) whether or not there is a correlation between the percentage occurrence of a particular age group in the escapement and the perembage oceurrence of that same age group in the return, and (2) whether or not the values fluctuate aromd a ratio of 1 to 1 . To facilitate observation of the second point, a line representing a ratio of 1 to 1 has been ineluded in each figure.

Fhe metatonship between the perentage of fish of a certain ocean history in the "sapement and the pereentage of lish of the same ocean history in the return, may be considered linear and is such that there will he approximately the same pereentage of fish of a single oeron history in the return as there was in the eseapement. There appeas to be a slight indication that the fwo-ocean fish are making up a lesecr perrentage of the returns than they did of the escapements and, conversely, that the threc-orem fish are making up a greater percentage of the returns than they did of the escapements, but the tendency is not marked and probably is not significant.

In figures 8 and 9 is presented the relationship between the percentage of fish of a particular fresh-water history in the esrapement and the percentage of fish of the same fresh-water history in the return. There is a positive correlation between the the two variables, although the relationship is very peculiar. For each 1 percent of three-fresh-water fish in the eseapement there is approximately 0.75 percent of three-fresh-water fish in the return, and for earh 1 percent of four-fresh-water fish in the

 1921 to 1929 . inchusibe. The straight line represents a ratio of 1 to 1.
escapement there is more than 2 perent of form-frsth-wain fish in the return. Sheh a comdition conld not have prevaled for any ereat length of time. Obvionsly, if such a relationship had existed for semeral complete eyeles, the there-fresh-water fish would disappear from the population and only these that migrate to the ocean in their fourth year would remain.

The age analysis based on seale samples eolleefed during 1916, 1917, 1919, and 1921 (Gilhert and Rich, 1927), demonstrated 88.5, 88.1, 91.3, and 93.4 percent,
respectively, of threc-fresh-water fish in the samples. While the pereentages of three-fresh-water fish in the small samples taken from the rums of those years are not exactly comparable to the data under consideration, it is evident that the threc-freshwater ace group was dominant.

The change in are eomposition might be due to any one, of a rombination, of the following canses: (1) An inerease in the ocean mordatity of the 3-year seaward

 1922 and 1921 to 1929 inclusise. The straight line rebresnts a ratio of 1 tol.
mixants of a derrease in the neean mortality of the i-year seamarl migrants; (a) an merease in the fresh-water modality of the 3-year seaward migrants of a dererase in the fresh-water mortatity of the 4 -year seaward migrats; (3) an increase in the longth of fresh-water residence.

The ofean mortality of the 4 -year seavard migrants, as detemined by the marking exprimens reported in a later section, is less than hat of the 3 -year seawardmigrants. This might be expected as they are larger at the time of migration than the 3 -year
migrants. There is no evidence that a marked change has taken place in the ocean mortality of either the 3 -year or the 4 -year seaward migrants.

A change in enviromment that would increase or decrease the mortality of the fingerlings in the lake should affect each age group of seaward migrants in a similar manner. No data are at hand to indicate that envirommental conditions have

Figure 8. - Percentage of three-fresh-water fish in the returu plotted against percentage of three-tresh-water fish in escapentent for the years 1922 and 1924 to 1929, inclusive. The straight line represents a ratio of 1 to 1.
altered in such a manner as to affect the mortality of one age group without affecting the mortality of the other age group.

It is probable that the shortage of phosphorus and silica in Farluk Lake during the summer months, which acts as a limiting factor in the production of phytoplankton, also indirectly affects the growth of the red samon fingerlings. A decrease in the growth rate of the fingerlings may well result in an increase in the length of time spent in fresh water. Data presented in a later section indicate that the fastest growing fingerlings migrate scaward sooner than do the slower growing ones. Consequently, anything affecting the growth rate of the fish would probably cause a change in the time of seaward migration.

FIGUBE 9.- Percentage of four-fresh-water fish in return photed against percentage of four-fresh-water fish in escapement for the jears 1322 and 192 to 1929, inclusive. The straight line represents a ratio of 1 to 1.

SEAWARD MIGRATIONS

The seaward migration of Karluk River red salmon takes place during the last week of May and the first 2 weeks of June each year. A fow fish migrate sometimes a day or two ealier or later than this period but the major part of the migration, and frequently the entire migration, takes place during these 3 weeks. During the migration period the seaward migrants can be observed in front of the connting weir where they congregate in schools of a few hundred to tens of thonsands. Only oceasionally can they be seen going through the weir during the daytime, but just at dusk the sehools above the weir drop downstream and becin to pass through the spaces between the pickets. Where there is any appreciable curent, the fish atways head upstream even when migrating downstream. Seaward migrants are present in the river above the weir for only 10 to 16 days each year, although the migration period may extend over a period of 3 weeks. They may be quite abundant one day, entirely absent the next, and present again the following day

The perentage oecturence of the various age groups in the random samples of seaward migrants collected at the weir site is presented in table 26 . Samples were not collected every day that migrants were present in the river, but since 1930 samples have been taken every day that fish were abundant.

Table 26.-Percentage occurrence of various age groups in the random samples of secuard migrant red salmon for the years 10.25 to 1936 , inclusive

2-YEAR SEAWALD MGRASTS

Week entiog-	1425	1926	1027	1925	1929	1930	1931	1432	1933	1934	1935	1936
May 31.						1.0						
June 7	0.4					1. 0	0.3	0. 2		0.5	0.1	411
June 14.		0.9	0.6			1.9	1.0	. 2			.7	7.7
June 21.			1.7	0.8		1.2	1.0	2.0		1.0		
June 23.									3.5			

3-YEAR SEAWARD MHGRANTS

Mry 31.		67.3			21.0	56.8	73.5	33.8	32.5	83.2	81.0	58.8
June 7	90.0	79.9	46.7	45.0	30.3	52.1	- 6.2	53.0	45. 2	93.3	82.3	79
June 14	840	73.5	52.1	72.9	70.6	69.8	42.5	75.3	6.7		88.5	80. 3
June 21			\%8. 2	86.7		71.1	96.1	A. 0		93.11		
June 25.								85.0	75.5			

4-YEAR SEAWAIRD MIGRANTS

May 31.		327			73	40.2	25.6	60.3	55.0	15.6	19.1	41). 2
June 7	4. 6	19.7	53.3	42	69.3	45.2	13.0	$44_{5} 2$	52. k	t. 11	17.6	1711
June 14-	16.0	25.1	47.1	26.7	24.4	27.1	6. 5	23.1	300		10. 7	11.3
June 21.			20.1	125		24.5	2.3	15.0	21.0	3.11		
Junt 28.								12.0				

5-YEAR SEAWARD MIGRANTA

May 31					2.0	20	0.9	0.7	2.5	1,0		1.0
June 7		0.4		(0.8	. 1	1.7	. 5	ti	20	. 3		
June 14		5		4		4		8	1.3		(1. 1	7
June 21.						2		2.0				
Number of fishiu semple	644	602	356	720	1,025	1, 811	2,050	2,007	1, 147	1400	1, (m)	1.00w

In considering the two major age groups, 3 and 4 , it will be noted that the percentage of the 4 -year group decreases as the migration proceds while the percentage of the 3 -year group increases. This phenomenon, while not so obvious because of the small numbers in the samples, also appears to exist in the two minor age groups for the perentage of the 5 -year group decreases and the perecntage of the 2 -year group increases as the migration proceds. There is a tendeney for the older age groups to migrate carlice than the younger age groups.

The average sizes of the seaward migrants in the sumples collected in the years 1925 to 1936 , indusive, are presented in table 27 . There is a marked decrease, especially among the 4 -year migrants, in the arerage size during sucerssive periods of sampling. The deerease in size of the 3 -year migrants would probably be more apparent were it not for the fact that the fish are just commencing to grow at the beginning of the migration period, and those fish which migrate late in the season have grown a certain amount as indicated by two or theec wide-spaced rings beyond the winter check on their seales. Fish of the 4 -year and 5 -year gronps seldnn show any new growth of the year until late in the migration period.

From a study of the rate of growth of the fingerlings, as detemined by their scales, and from the above-nentioned data rehating to the change in age composition and size of the migrants during each fear's scaward migration, the following trent of events is indicated. Of the progeny of a given brood year, the fastest growing individuals (hence the largest) migrate to the ocean in the spring of their second year. In the spring of the third year the largest imbindals of the population left in the lake

Table 27.-Average length in millimeters of 2-, 8-, 4-, and 5-year seaward migrants in weekly samples for the years 1925 to 1936, inclusive

2-YEAR SEAWARD MIGRANTS

Yegr	Item	Week ending--					Year	Item	Week ending -				
		May 31	June 7	June 14	June 21	June 28			May 31	June 7	June 14	June 21	June 28
1925	Number.		2				1932	$\begin{aligned} & \text { Number } \\ & \text { Meaner } \end{aligned}$		3	1	1	
	Mean.		11250							110.17	96. 50	10:. 5	
1926	Number		7.07				1933	Number Mean		12.34			7
	Mean			100.00									113. 79
	σ......			1006				Number Mean					4. 68
1927	Number			1	2		1934			2		1	
	Mean			12\%.50	103.00	------				119.5		125.5	...
					3.53			Number Meen.		2.83			
1928	Nuraber						1935				6		
	Mean				110. 50					10\%. 5	11\% 5		
					283						9. 36		
1930	Number						1936			11	21		
	Mean.	118.17	101. 17	105. 50	109.33	113.85		Mean		109.95	111.07		
		2.58	7.15 2	4. 16	426	6.87				3.59	3. 43		
1931	Number		99. $\stackrel{3}{0}^{2}$	113.17^{6}	119.50								
			25,45	21.61									

3-YEAR SEAWARD MIGRANTS

4-YEAR SEAWARD MIGRANTS

5-YEAR SEAWARD M1GRANTS

1932	Number
1933	Numbier
	Медп
	a
1934	Number
	Mean
	\checkmark
1935	Number
	Menn
1936	Number
	Mean
	σ

5	3	\therefore	2
152.90	153. 50	144.50	132. 50
498	≥ 00	10.75	2.83
5	10	4	
14.5.90	150.00	14475	
207	5 72	6. 94	
4	1	... -	
161. 35	158. 50		
479			
		14.5. 50	
4		2	
149.75		152. 60	
310		1344	

migrate seaward. At the end of the migration period a part of this population is present in the lake. These fish remain for another year and obtain more growth. In the fourth year, the largest individuals remaining in the lake proceed seaward, the time of appearance in the migration being correlated with their size. The slowest growing individuals of the entire progeny which have not migrated remain in the lake for another year and then migrate seaward in their fifth year.

The older fish are of a larger average size than those of lesser age and their larger size is due to the longer growing period that precedes migration. Fish in the older age groups are usually the slower growing fish of the progeny from a particular spawning. Thus, the urge to migrate seaward is related to the size and growth rate of fingerlings, and it appears that environmental conditions that affeet the growth of the fish during the time spent in the lake also affect the time at which the fingerlings migrate to the ocean.

The data on the percentage of males in the samples of migrants which were examined to determine sex are presented in table 28 . The males and females were equally represented. Grouping the 3 - and 4 -year fish, it was found that the total of 11,080 fish examined consisted of 5,557 males and 5,523 females. The slight rariations in the sex ratios from year to year are probably due to chance beeause there is no significant statistical difference in the ratios.

Table 28.-Number of 3-year and 4-year migrants examined and percentage of males in the samples

Year	Number of 3-year fish examined	$\begin{aligned} & \text { Number of } \\ & \text { males } \end{aligned}$	Percentage of males	Number of 4.year fish examined	Number of males	Percentage of males
1925	570	23	51.9	72	40	55.6
1926	448	232	51.8	150	71	4.3
1927	211	113	54.5	144	75	52.1
1928	491	262	53.4	221	127	56.7
1929	318	1tis	52.8	287	161	56.1
1930	1,308	659	50.4	8 8it	33.5	51.3
1031.	1,754	831	42.4	27.	132	47.6
1932.	1,256	632	50.3	833	401	48.1
1933.	646	320	49.5	525	252	48.0
1934	502	401	50.0	90	47	52.2
Total.	7, 804	3,916	50.18	3,206	1. 641	50.09

SEX RATIOS OF ADULT FISH

The sex ratio of the adult fish is in marked contrast to that of the seaward migrants. Data on the percentage occurrence of males in the samples for the years 1922 and 1924 to 1936 are presented in table 29 , arranged according to the length of time spent in the ocean. The pereentage oceurrence of the males deereases with increased ocean residence. All of the zero-ocean fish ${ }^{8}$ are males. The average percentages of males in the one-ocean fish, of varying periods of fresh-water residence, range from 100 percent to 75 percent. The average percentages of males in the two-ocean fish range from 62 percent to 32 percent, while the average percentages of males in the threeoccan fish of varying fresh-water residence range from 38 pereent to 35 pereent.

[^57]Table 29.-Number of fish of each age group examined, and the percentage of males in samples for the years 1929, 1924, to 1923, and 1930 to 1986, inclusive

Age group	1922		1924		1925		1926		1927			
	Number examined	Percentage males	Number examined	Percentage males	Number examined	Percentagemales	Number examined	Percent. agemales	Numher exsmined	Percentage males		
33.			1	100.0								
4.	3.	100.0 100.0	18	100.0			1	100.0	1	100.0		
43												
	19	89.5	161	95.1	228	94.7	35	100.0	151	05.4		
${ }_{6}^{5}$	27	85.2 100.0	176	69.3	${ }^{1} 1$	S4. 5 100.0	15 3	100.0 100.0	136 2	87.5 50.0		
	1				30	100.7	19	57.9	1	${ }_{0} 50$		
43--	16	18.8	17	23.5	100	45.5	207	46.4	17	29.4		
	1.511	48.4	3, 845	46.6	3,877	43.15	6, 426	432	3, 478	43. 1		
B_{5}	138	57.2	660	46.8	920	43.2	743	$44^{2} .4$	477	46.1		
56							$\begin{array}{r}9 \\ \hline\end{array}$	82.2	9 10	55.6 40.0		
41.	3 9	100.0 44.4	18	100.0 38.9	12	41.7 35.7	35 141 4	30.0	10 201	40.0 27.9		
$52 \ldots$ 63	7374	41.9	217	41.2	227	41.4	47^{9}	340	315	35.6		
${ }_{7} 7$		25.0	18	50.0	23	34. 8	67	31.3	${ }_{1}$	43.3		
85										100.0		
$\begin{aligned} & 8_{4}^{3} \\ & \varepsilon_{4} \end{aligned}$							1	100.0				
Total.	2,469		5. 132		5.513		8,172		4,829	-----.....		
Age group	1928		1930		1931		1932		1933			
	Number	Percent.	Number	Percent.	Number	Percent-	Nurnber	Percant-	Number	Percent.		
	examined	age males	examined	agemales	exsmined	age males	examined	age niales	examised	azemales		
33										--		
4.												
58												
43 -	16	93.8	19	100.0	14	100.0	40	97.5	2	100.0		
54	22	90.9	34	100.0	105	71.3	59	91.5	4	75.0		
65					6	6,6. 7			1	100.0		
$\begin{aligned} & 3 \\ & 4 \end{aligned}$	18	44.4	2	50	51	32.9	71	36.6	2	50.0		
63	2, 391	42.2	6.01	42.3	1,821	42.8	1, \$21	40.5	85	5 5. 9		
6	68.8	41.9	141	44.7	1, 4.53	39.2	1,314	40.4	91	48.4		
75	4	50.0			3	33. 3	25	29,0	7	$2 ¢ .6$		
4	1	100.0					8	25.0				
5.	7	42.9	19	12.1	16	37.5	85	42.4	4	50.0		
63	1,05?	35.1	223	41.2	236	36.1	233	32.6	21	25.0		
7	37	51.4	13	30.8	44	34.1	80	37.5	1	100. 0		
$\begin{aligned} & 85 \\ & 7_{3} \end{aligned}$			1	100.0								
Tot	4. 236	1.053		3,782		3,736		221				
Age group		1934		1935		1936						
		1922-36										
		Number examined	Percentagemales	Number examine	Percentage males	Number examined	Percentage males	num examined	Number males found	Percentage niales		
33.										1	1	100.0
4								23	23	100.0		
53.								1	1	100.0		
32				1	100.0			1	1	100.0		
43.				210	96.2	114	100.0	1,009	970	97.1		
5.		4	75.0	64	79.7	13	92.3	733	543	80.9		
6_{5}				2	100.0			16	12	75.0		
31								50	31	f2 0		
42.		70	38.6	148	49.3		48.7	807	359	44.5		
53		- 311	51.8	1,312	42.5	3. 510	42.2	30.937	13,517	43.6		
6		273	392	. 898	39.9	492	43.3	8,258	3,523	42. 5		
7.		1	100.0	30	23.3	22	45.5	110	36	32.7		
41.				29	41.4			99	35	35.4		
52.		- 22	59.1	107	30.8	241	39.4	8×4	317	35. 9		
63.		327	43.4	284	35. 9	567	356	4,912	1,891	38.3		
74		- 34	32.4	91	33.0	154	40.9	593	227	38.0		
88								1	1	100.0		
73								1	1	100.0		
8.								1	1	100.0		
To		1,042	--.--	3,176	-----...	- 5,191		48,552	21. 540			

Thus there is a decrease in the percentage of males, and conrersely an increase in the percentage of females, with increased length of time spent in the ocean. The males tend to mature after a shorter period of ocean residence then the females, and this precocious development of the males also is apparent from a consideration of the total age of the mature fish. In a group of the same ocean history, with the exception of the three-ocean fish, the younger fish are more predominately male than the older members of that group.

The percentages of males and females returning from the seaward migrations of 1923 to 1933, inclusive, are presented in table 30 . These percentages were determined by calculating the number of males and females of various ocean histories returning from a single seaward migration and then adding the several groups together to obtain the total number of males and females returning from that migration. The percentage of males varied from 40.1 to 48.8 percent and the percentage of females from 51.2 to 59.9 percent, and the average for all years was 43.9 percent males and 56.1 percent females.

Table 30.-Percentage of males and females in the returns from the seaward migrations of 1029 to 1953

Year of seaward migration	Ferentaer of males in retura	Percentace of femates in roturn	Year of seaward migration	Percentage of man's in return	Percertace of females in return
1923.	44.3	55.7	1430.	401	59.9
1424	45.3	64.	11931	45.8	51.2
1925	43. 0	57.0	1432	43.5	56.5 54.3
1926	45.0	55.10	1933	410.7	54.3
1927	43.3 42 4	56.7 58.0	A verage.	43.9	56.1
1229.	47.0	53.0			

The sex ratio of these fish changes from approximately 50 percent males and 50 percent females at the time of scaward migration to approximately 44 percent males and 56 percent females on their return from the ocean. Since the males, on the average, spend less time in the ocean than the females, the mortality of the males should be less than that of the females, which should result in a preponderance of males. A part of the Karluk run is interecpted by a gill-net fishery to the north and east of the Karluk River, and because of the size of the gill-net mesh employed, a great percentage of the larger fish in the run is captured. As the average size of the males is slightly greater than the average size of the females, more males than females are captured and thus the percentage of males in the fish arriving at the Karluk River, where the data for table 30 were obtained, is reduced. It is not considered thet the selective action by the gill nets accounts entirely for the discrepance in the sex ratio because the gill-net catches are fairly small in relation to the size of the run as a whole. A differential mortality in favor of the females during the time spent in the ocean does not appear probable. A satisfactory explanation of this phenomenon is lacking at the present time.

MARKING EXPERIMENTS

A series of marking experiments was begun at Karluk River, Alaska, in 1926. ${ }^{\text {. }}$ In these experiments, red salmon migrating seaward were marked by the removal of

[^58]two or three fins, so that their presence in the future runs of fish could be noted. The experiments were initiated to determine the rate of survival of the fish during their stay in the ocean.

Rich and Holmes (1929), in reviewing the results of previous marking experiments, pointed out that fish occasionally have one fin, or two fins in close proximity to each other (both ventrals), accidentally missing. In the marking experiments carried on at Karluk the adipose and one or two other fins trere amputated, as it was considered that the finding of a fish with two widely separated fins missing as a result of an accident would be an extremely rare occurrence.

During the marking of seaward migrants at Karluk and the subsequent examination of the run of adult fish, salmon have been found with the following fins missing: adipose, right ventral, left ventral, both ventrals, right pectoral, and left pectoral. Fish with the dorsal, anal, and caudal, or one of the above mentioned fius badly deformed, have also been observed. More than 400,000 seaward migrant red salmon bave been examined at Farluk, and in no case bas a fish been found which had both the adipose and some other fin missing or badly deformed.

The results of other marking experiments, in which data on the percentage return of marked fish from the experiments were obtained, are reviewed for the sake of comparison with the results obtained at Karluk. It should be noted that in several instances species other than red salmon were marked, and in no instance were the fish marked as large as the seaward migrants marked in the Karluk experiments.

Rich and Holmes (1928) in their experiemnts in marking chinook salmon on the Columbia River, from 1916 to 1927 , had returns ranging from 0.002 to 0.45 percent of the number of fish liberated from a single marking experiment. They pointed out that-

Thess figures have very little significance, however, because they represent not the total
returns but an unknown and varying proportion of the total.
In four of their experiments the records are believed to be fairly complete, and in their opinion
. . . the returns that have not come to our attention certainly would not add enough to make the totals more than 1 or 2 percent of the liberation.
Snyder $(1921,1922,1923,1924)$ marked chinook salmon on the Klamath and Sacramento livers in California, and the proportion of marked fish recovered was approximately the same as in the experiments of Rich and Holmes.

In 1930, Daridson (1934) marked 36,000 seaward migrant pink salmon at Duckabush River, Hoods Canal, Wash., by amputating the adipose and dorsal fins. In 1931, 50,000 seaward migrant pink salmon were similarly marked at Snake Creek, Olive Cove, Alaska. These fish were approxinately 40 mm . long at the time of marking. From the first experiment 10 marked fish were recovered, or 0.028 percent of the number marked. From the second experiment 23 marked fish were recorered, and it was calculated that the total number of marked fish in the escapement was 54 , or 0.108 percent of the number marked. These data represent only the return of marked fish in the escapement. However, the total retun from either experiment could hardly have equaled 1 percent of the number of fish marked.

Pritchard (1934a) marked 8,741 pink-salmon fingerlings at Cultus Lake, British Columbia, in 1932, by the amputation of both ventral fins. These fish were released
into the Vedder River below the mouth of Sweltzer Creek which is the outlet stream of Cultus Lake.

One hundred and twenty-four thousand pink-salmon fingerlings of Tlell River (east coast of Graham Island) were marked by the amputation of the adipose and left rentral fins. These fish together with 750,000 unmarked individuals, from the same source, were liberated in McClinton Creek, Massett Inlet.

In 1933 , fish with the following fins missing were recovered at various localities in Puget Sound, British Columbia, and Chignik, Alaska: adipose 576, adipose and left ventral 40 , both ventrals 64 , right ventral 54 , adipose and right ventral 20 , left ventral 56. No marked fish were recovered in Sweltzer Creek, Tlell River, or MicClinton Creek though counting weirs were maintained in these streams.

During 1933, Pritchard (1934b) marked 108,000 pink-salmon fry at McClinton Creek, Massett Inlet, by amputating both ventral fins. The following numbers of fish with fins missing were recovered at various localities in British Columbia during 1934: both ventrals 3,285, left ventral 195, right veutral 139, adipose 100, and left pectoral $15 . .^{10}$ Of these totals, 2,950 with both ventrals, 66 with left ventrals, 95 with right ventrals, and 2 with adipose fins absent were recovered at McClinton Creek. Thus, of the number of fish marked by removal of both ventrals 2.33 pereent returned to MeClinton Creek. The total return was possibly higher than 3,255 (3.04 percent of the number marked) because all of the fish bound for McClinton Creek were not sampled.

In 1934, Kelez (1937) initiated two marking experiments on hatchery-raised coho salmon at Friday Creek, a tributary of the Samish River. In the first experiment 26,150 fingentings were marked ly the amputation of the adipose and dorsal fins. The fish were liberated during May when they averaged 47.4 mm . in length. Seven marked fish were recovered as adults, or 0.027 percent of the number marked.

In the second experiment 26,150 fingerlings of the same brood were marked by the amputation of the dorsal and left ventral fins and liberated during November when they averaged 101.6 mm . in length. From this experiment 469 marked fish were recovered, or 1.79 percent of the number marked.

Assuming that there was not a differential mortality caused by the marking in the two groups of fish in the experiments, these data indicate a striking increase in the survival rate of the fingerlings retained in the hatehery ponds for a longer period of time. The returns from these experments comprise only those fish which escaped the sport and commercial fisheries.

A series of marking experiments has been conducted on the red salmon of Cultus Lake, British Columbia. In 1927 (Foerster, 1934), 91,600 seaward migrants were marked by the amputation of the adipose and both ventral fins. From this marking, 804 fish, or 0.88 percent, were recovered during 1929 and 1930 at the counting weir below Cultus Lake, these being the total number of marked fish returning to Cultus Lake from this experiment. Of the 158,100 ummarked fish. 3,930 , or 2.49 percent, returned to Cultus Lake.

During 1928 (Focrster, 1936a), 99,700 seaward migrants were marked by the

[^59]amputation of both ventral fins and the posterior half of the dorsal. From this marking, 1,340 fish, or 1.34 percent of the number marked, were recovered at the counting weir below Cultus Lake; and these were the total number of marked fish that returned to Cultus Lake from this experiment. Of the unmarked seaward migrants, 3.2 percent returned to Cultus Lake.

In 1939 (Foerster, 1936b), 104,061 seaward migrants were marked by the amputation of both rentral fins. A total of 3,521 fish, or 3.67 percent of the number marked, was recovered from the commercial fishery and at the counting weir below Cultus Lalse. It was considered that the recovery was at least 00 percent of the total number of marked fish returning from the experiment, so that the actual return ". . . probably lay somewhere between 3.67 and 4.1 per cent."

During 1931 (Foerster, 19361), 365,265 seaward migrants were marked by the amputation of the adipose and both ventral fins. A total of 12,803 fish, or 3.51 percent of the number morked, was recovered from the commereial fishery and at the counting weir below Cultus Lake. The recovery was at least 95 percent of the total number of marked fish retnrning from the experiment so that the actual return ". . . lies between 3.5 and 3.7 percent."

In Foerster's experiments of 1927 and 1928 a greater survival was found among the ummarked fish than among the marked fish. Three factors were considered in an endeavor to account for the disparity.

[^60]Evidence was produced to show cause for ruling out the first two factors, and it was concluded that-

There remains, thercfore, only the factor of differential mortality among the marked individuals, and on the data available this is held to be the one largely responsible for the lower return of marked adults when compared with that for the unmarked.
The differential mortality was calculated to be 65 percent for the 1927 experiment and 58 percent for the 1928 experiment, and the probable value was considered to be the mean of the two values or 62 percent. Thus there was a 186 percent greater survival among the ummarked fish than among the marked fish of the first experiment, and a 138 percent greater survival among the ummarked fish than among the marked fish of the second experiment, and the probable value was considered to be approximately 163 percent.

Based on the information on differential mortality between marked and unmarked fish derived from the 1927 and 1928 marking experiments and on the data collected from the marking experiments of 1930 and 1931, Focrster considered that the survival of Cultus Lake red salmon during the time spent in the ocean ranged between 3.5 percent (his lowest percentage return uncorrected for differential mortality) and 11.7 pereent (his highest percentage return, 4.1 percent, multiplied by 2.56 to correct for differential mortality). The most probable value was considered to be 9.9 percent (the mean probable value of the recoveries, 3.75 percent, multiplied by a mean value, 2.63, io correct for differential mortality).

MARKING OF KARLUK RIVER RED SALMON

The Karluk River is relatively shallow, and as the scaward migrant fingerlings tend to congregate aloove the counting weir, they can easily be captured. A pen about 5 feet square of $1 / 2$-inch bar wire netting, having a gate for the fish to enter, was constructed in the river. A seine was passed around a school of fish, and an end of the seine brought to each side of the gate. By gradually drawing in the ends of the scine, the fish were induced to enter the pen, and the gate was closed. Several thousand migrants can be held in the pen at one time without injury. Two or three hundred migrants were caught and transferred to a wash tub partially filled with water. The tub of fish was then carried from the pen to the marking shed below the weir. The fish were removed from the tub one at a time, the adipose and one or two other fins removed by means of a nail clipper, and the fish dropped into the river free to proceed downstream. During the entire operation the fish are out of water for less than 10 seconds. Samples of marked fish have been held in tanks for several days after marking, and the fish have shown no ill effects from the operation, though some of the fish marked by the removal of either of the pectoral fins appeared to have a slight list.

The age group composition of the marked migrants was determined by multiplying the number of migrants marked each day by the percentage of the various age groups in the migration for that day as detemined by the analysis of data obtaned from seale samples of the fish.

RECOVERY OF MARKED FISH

Owing to the magnitude of the run of Fimuk red samon, it was impessible to examine every fish to search for marked individuals. The method employed to dietermine the tatal number of marked fish was as follows:

As large a portion as possible of each day's cateh of red salmon, taken hy means of beach seines near the mouth of the Farluk Piver, was examined for the presmee of marked fish by an employee of the Fish and Wildife Service who, during the examination, was stationed in the camery. Fah red salmon was examined and comeded as it passed along the chute. All fish with missing or mutilated fins were put aside and re-examinet later to determine whether they were marked fish. Scale samples were taken from all marked fish found, and scale samples were taken at random from the catch to determine the age composition. The number of manked fish of each age found and the number of fish of that same age examined were determined at weekly intervals throughout the season. The total number of marked fish of each age found was divided by the total number of fish of the same age group examined to determine the percentage ofeurrence of matked fish in that age group. Data were collected on the number of Karluk red salmon in the commercial eatch and also the number in the escapement, bence, the total number of fish of each age group in the run com be determined for the season. Multiplying the number of fish of a given age in the rum by the percentage occurrence of marked fish in that age group gave the ealculated number of maked fish of that age group returning.

Since it is considered that there are two runs of red salmon to the Karluk River, it would be preferable to divide each marking experiment into tho parts, i. e., spring rum and fall run. Unfortunately, there is wo way of determining which are spring
run or which are fall run seaward migrants. The percentage occurrence of marked fish of each age group is fairly constant throughout the season, indicating that proportionate numbers of the two runs are marked.

EXPERIMENTS IN 1926

A total of 47,691 seaward migrant red salmon were marked by the amputation of two fins. Two combinations were used, the adipose and right ventral, and the adipose and left ventral. Since approximately the same number of fish were marked each day by each mark, the data can be grouped together and considered as one experiment or divided according to the marks used and considered as duplicate experiments. Although the experiments were carried on simultancously, the one in which the fish were marked by the amputation of the adipose and right ventral fins will be referred to as the first experiment, and the one in which the fish were marked by the amputation of the adipose and left ventral fins will be referred to as the second experiment.

Commereial fishing was limited in 1929 and the run of that year could not be adequately sampled to detect the presence of marked fish. Consequently, no aceurate means of determining the number of three-ocean fish returning from these experiments is available. The number of marked fish returning and the percentage return, as presented, are lower than they would have been had information on the threeocean fish been available.

In the first experiment (table 31), 25,000 seaward migrants were marked, 740 marked fish were recovered and a calculated total of 5,151 marked fish returned from this experiment, not counting the marked fish returning during 1929. The return from this experiment was at least 20.6 percent.

Table 31.-Data for the first 1926 marking experiment

Age of seaward migrants marked	Calcu- lated number of eachage marked	Age of fish returning from 1226 migration	Calculated number of each age group examined	Number of marked fish of each age groupfound	Percentage occurrence of maried fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentagereturn at various agcs	Total per centage return
	92	42 53 5	1,509	1	0.066	9,934 8,836	7	7.6	17.6
3			2,690 168,042	5 498	.186 .246	43,551 $1,236.953$ 325.943	81 3.661	19.1	
	19,	63 73				325,643 20			
		4				1,040			
4.	5,641	54 64 64	4.527 44.264	211	. 243	47.298 254.138	1,258	2.0 22.3	124.3
		74				14,294			
	71	6,5 75	279	6	2.151	$\begin{array}{r} 895 \\ 1,325 \end{array}$	29	40.8	40.8
Total.	25,000		221,311	740		1,443.927	15.151		

${ }^{1}$ Based on incomplete data, see text.
The incomplete returns from the marked 2-, 3-, 4-, and 5 -year seaward migrants were $7.6,19.5,24.3$, and 40.8 percent, respectively. Very few 2 - and 5 -year seaward migrants were marked, and the returns from those age groups are based on the re-
covery of only one and six fish, respectively; hence, the percentage returns are unreliable. As the size of the migrants increases with age, the data indicate that the larger migrants have the highest survival value.

In the second experiment (table 32) 21,791 migrants were marked, 659 were recovered, and a calculated total of at least 4,582 marked fish returned from this experiment (at least 21.0 percent). The incomplete returns from the marked 2 -, 3 -, 4 -, and 5 -year seaward migrants were $0.0,20.5,23.0$ and 28.6 percent, respectively.

The returns from the two experiments agree closely except for the 2 - and 5 -year fish of which few were marked. If the data are combined as one experiment, 46,791 seaward migrants were marked, 1,399 were recovered, and a calculated total of at least 9,733 fish returned (a minimum of 20.8 percent).

Table 32.-Data for the second 19.26 marking experiment

- Rased an incomplete data, see tent.

EXPERIMENTS IN 1927 AND 1928

Fifty thousand seaward migrants were murked in both 1927 and 192s. However, the curtailment of commercial fishing in 1929 and 1930 made it impossible to adequately sample the runs of those years for the presence of marked fish, and the data are consequently not included here.

EXPERIMENTS IN 1929

In 1929 (table 33), 50,061 seaward migrants were marked by the amputation of the adipose and both ventral fins, 1,315 fish were recovered, and a calculated total of 11,157 marked fish returned from this experiment (22.3 percent). The return from the 3 -, 4 -, and 5 -year marked seaward migrants was $18.3,24.4$, and 13.5 percent, respectively. As very few 5 -year scamard migrants were marked and only 3 recovered, the latter figure cannot be considered reliable; howerer, considering the returns of the 3- and 4-year seaward migrants, it is again apparent that the older and larger migrants had the highest surviral value.

Table 33.-Data for the 1929 marking experiment

EXPERIMENTS IN 1930

Three marking experiments were carried on simultaneously (tables 34-36). Although the experiments were simultaneous they have been designated first, second, and third for reference purposes and to provide for facility in discussion.

In the first experiment (table 34), 25,000 seaward migrants were marked by amputation of the adipose and right ventral fins, 631 of these were recovered, and a calculated total of 5,177 fish returued (20.7 percent).

In the second experiment (table 35), 25,000 seaward migrants were marked by amputation of the adipose and left ventral fins, 666 of these were recovered, and a calculated total of 5,350 marked fish returned (21.4 percent). Two marked fish of the 7_{3} age group were recovered, but according to the data, no fish of that age group were examined or were present in the return from the migration. The 7_{3} age group, undoubtedly, was present among the fish examined, but its numbers were so few that representation was not afforded in the samples from which scales were secured for age determination.

Table 34.-Data for the first 1930 marking experiment

Table 35.--Data for the second 1930 marking experiment

Age of seaward migrants marked	$\begin{gathered} \text { Calcu- } \\ \text { lated } \\ \text { number of } \\ \text { eachage } \\ \text { marked } \end{gathered}$	Age of fish returning from 1030 migration	Calculated number of each age group examined	Number of marked 6ish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentagereturn at various ages	Total percentage retura
1.		41	130			804			
	237		2,078			18.664			0.0
			3,212 1,252	6	0. 470	38,624 8.664			0.0
	14,923	53	67, 451	150	. 222	714,745	1,587	10.6	
	14,323	63	32, 251	97	. 301	268, 334	508	5.4	6.3
		7 5 4	8,669	37	. 427	49,829	230	2.4	
	9,554	6_{4}	72, 392	345	. 477	502.844	2,398	25.1	29.2
		76	1. 769	13	. 735	21,838	161	1.7	
	285		325 1,145	16	1. 336	1,507 8,535	123	41.6	41.6
Tetal.	25,000		190.675	656		1,633 788	5. 350		

1 See p. 284.
Table 36.-Data for the third 1930 marking experiment

Age of seaward migrants marked	$\begin{gathered} \text { Caleu- } \\ \text { lated } \\ \text { number of } \\ \text { each age } \\ \text { marked } \end{gathered}$	Age of fish returning from 1930 migration	Calculated number of each age group examined	Number of marked fish of each age group lound	Percentage accurrence of marked fish in fish examined	Calculated number of 6sh of each age group returaing	Calculated number of marked fish returning	Percentagereturn at rarious ages	Total per centage return
1.		41	130			804			
2	46	4_{4}	2, 078			18. 064			0.0
			3, 212	1	0.080	38.624 8.764	7	0.2	
	2,956	53	67, 451	31	. 046	714. 745	329	11. 1	15.2
		63	32. 251	14	. 043	268, 334	115	3.9	
		5.	8, 6,69	8	. 092	4S.523	45	2.3	
4.	1.939	60	72.392	50	. 069	502.844	347	17.9	20.8
		7	1,789	1	. 057	21.838	12	. 6	
	59		1, 148	2	. 175	8.835	15	25.4	25.
Total	5.000		190.675	10%		1,633, 585	870		

In the third experiment, 5,000 seaward migrants were marked by amputating the adipose and right pectoral fins, 107 of these were recovered, and a calculated total of 870 marked fish returned (17.4 percent).

The data for the first and second experiments are considered more reliable than those of the third, because more fish were marked and more fish recovered, and because there is the possibility that an unusual mortality occurred among the fish of the third experiment. Some of the scaward migrants, marked by removal of the adipose and right pectoral fins appeared to have a slight "list" and appeared to be maintaining balance with difficulty.

Grouping the data for the first and second experiments, 50,000 were marked, 1,297 were recovered, and a calculated total of 10,495 marked fish returned (21.0 percent). The return from the marked $2-, 3-, 4-$, and $5-$ year seaward migrants was $2.4,16.6,28.0$, and 32.0 percent, respectively.

EXPERIMENTS IN 1931

Two marking experiments were conducted in 1931 (tables 37 and 38). For easy reference they have been designated first and second although they were simultancous.

In the first experiment, 50,000 seaward migrants were marked by amputating the adipose and both ventral fins, 1,549 of these fish were recovered, and a calculated total of 11,790 fish returned (23.6 percent of the number marked). The return from the $2-, 3-, 4$-, and 5 -year marked fish was $54.8,21.2,34.5$, and 40.8 percent, respectively.

In the second experiment, 5,000 senward migrants were marked by amputating the adipose and dorsal fin, 124 were recovered, and a calculated total of 1,016 fish returned (20.3 percent). The return from this experiment, although slightly lower, agrees closely with results of the first experiment. Amputation of the entire dorsal fin close to the base results in a large wound that may hare a deletcrious effect on the fish. The results of the first experiment are believed to be more reliable than those of the second.

Table 37.-Data for the first 1931 marking experiment

Age of seamard migrants marked	Calculated number of each age marked	Age oi fish returning from 1931 migration	Calculated number of each age group examined	Number of marked fish of each age group found	Pcrcentage occurrence of marked fish in fish examined	Calculated number of fish of each age gronp returning	Calculated number of marked fish returning	Percentage returnat various ages	Total percentage return
2.	84	42	788	2	0.254	9. 191	23	27.4	54. 8
		52	5,947	4	. 067	34,756	23	27.4	
		62				2,143			
	41,403	4 s	1,166	4	. 343	11,516	39	. 1	212
3..........		58	86,623	345	. 398	966, 015	3, 845	9.3	
		6 s	136, 439	863	. 633	767, 240	4,857	11.7	
		75	249	5	2.008	2. 276	46		
	s,145	5.	1, 434	8	. 5558	21, 291	-119	1.5	34.5
4		64	48,318	246	. 509	161, 349	2', 349	23.8	
		\%	10, 669	58	. 544	62. 249	339	4.2	
		75	1,721	14	. 813	18, 407	150	40.8	
	368	85				671		0.3	40.8
Total	50,000		293, 418	1,549	-.-...---..	2, 358, 320	11,790	-...--------	

Table 38.-Data for the second 1931 marking experiment

EXPERIMENTS IN 1932

Four marking experiments were conducted (tables 39-42). The fish marked in the first experiment were captured on May 27 and 28; those in the second experiment on May 30, 31, June 3, and 4; the fish for the third experiment on June 6, 7, S, and 9 ; and the fish in the fourth experiment on June 11, 12, and 22 . The experiments were planned, in part, to determine whether or not a differential mortality in the ocean existed between fish marked b r the amputation of the adipose and one rentral fin and fish marked by the amputation of the adipose and one pectoral fin, and to determine if a correlation existed between the time of occurrence of fish in the migration period and the tine of their occurrence in the runs on their return as adults.

In the first experiment (table 39), 15, 100 seaward migrants were marked by amputation of the adipose and right ventral fins, 341 fish were recovered, and a calculated total of 2,957 marked fish returned (19.7 percent). The return from the $3-$, 4 -, and 5-year marked seaward migrants was $19.1,20.5$, and 3.0 percent, respectively.

Table 39.-Data for the first 1932 marking experiment

Age of sesward migrants marked	Calculated number of each age marked	Age of fish returning from 1932 migration	Calculated number of each age group examined	Number of marked fish of each are group found	Percentage occurrence of marked flsh in fish examined	Celculater! number of fish of each are group returning	Calculated Dumber of marked fish returning	Percentace reture at Farions ages	Total percentage returb
1-..--------	6, 275	4	837						
		42	12,225			53.258			
		5_{2}	5,525			41. 298			
		${ }_{4}{ }_{4}$	175			190			14. 1
3.		53	88, 164	110	. 132	632.884	833	13.3	
		63	26, 912	30	. 111	304, 0.4	334	5.4	
		73	113	1	. 885	1.241	11	5	
		54	2, 077	11	. 530	20, 624	109	1.3	
	8, 593	64	56, 466	139	. 245	494. 716	1. 212	141	20.53.0
5.	8,593	7	9,551	39	. 408	100, 909	412	4.8	
		$8{ }_{6}$	57	2	3.509	60. 1	23	. 3	
	132	6	60 171		---	1.418			
		88	46	1	2.174	${ }^{2} 207$	4	3.0	
Total.	15,000		203, 593	341		1.662.491	2,957		-.. . -----

Table 40.-Data for the second 1982 marking experiment

Table 41.-Data for the third 1992 marking experiment

Age of segward migrants marked	Calculated number of each age marked	Age of fish returning from 1932 migration	Calculated number of each age group examined	Number of marked fisb of each age group fould	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returaing	Calculated number of marked fish returning	Percentage return at various ages	Total percentage return
1.	9,381	4	837			2.811			23.7
		4.	12.225			53.258			
3..------....		43	1.041			6. 771			
		53	88.164	175	0. 198	632,884	1,253		
		63 7 7	26. ${ }_{1} 113$	8	3. 549	1281	45		
	5,580		2,077	5	. 241	20.626	50	9	
4.		64	56, 666	68	. 120	494. 716	594	10.7	17.3
		74	9, 551	29	. 304	100, 909	307	5. 5	
5.	39				1.854	418		. 2	
		75	171			1,778			0.0
			46			207			
Total	15,000		203, 593	364		1,662,491	3,185		

Table 42.-Data for the fourth 1939 marking experiment

Age of seaward migrants marbed	Calculated number of each age marked	Age of fish returning from 1932 migration	Calculated number of tach age group examined	Number of marked fish of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentage returnat varicus ages	Total percentage return
$2 .$	11,420	4_{1}	837			2, 811			16. 2
		42	12.225	2	0.016	53.25s	9	(1)	
		52	5, 525			41, 299			
		B_{2}	148			6.790			
		43	1,041			6,771 632.584			
3..------.---		53 63	85,164 26,912	101	. $16 \begin{array}{r}2 \\ .35\end{array}$	304, 079	1,140	10.0	
		73	26, 113			1,281			
	2,416	5	2, 077			20,626			
4----.---...-		64 74	56,666 9,551	120	.035 .115	494,716 100,909	173 116	4.8	12.06.1
		S				664			
	164	65	60			${ }_{1} 418$			
5...------.....		75 85	171 46	1	. 585	1.748 207	10	6.1	
Total	14,000		203, 593	234		1,662,491	2,157		---

${ }^{1}$ See text.
In the second experiment (table 40), 15,000 seaward migrants were marked by amputation of the adipose and right pectoral fins, 286 fish were recovered, and a calculated total of 2,555 fish returned (17.0 percent). The return from the $3-, 4-$, and 5 -year marked fish was $20.7,14.6$, and 9.8 percent, respectively.

In the third experiment (table 41), 15,000 seaward migrants were marked by amputation of the adipose and left ventral fins, 364 fish were recovered, and a calculated total of 3,185 marked fish returned (21.2 percent). The return from the 3 -, 4 -, and 5 -year marked fish was $23.7,17.3$, and 0.0 percent, respectively.

In the fourth experiment (table 42), 14,000 seaward migrants were marked by the amputation of the adipose and left pectoral fins, 234 fish were recovered, and a calculated total of 2,157 fish returned (15.4 percent). The return from the $3-, 4-$, and 5 -year marked fish was $16.2,12.0$, and 6.1 percent, respectively.

Two marked fish of the 4_{2} age group were recovered (table 42). Howeser, according to the data presented, no 2-year seaward migronts were marked. Some 2-year
seaward migrants, undoubtedly, were marked but their numbers probably were so few that they were not represented in the samples of fish from which seales were taken for age determination.

From the results of these experiments it appears that there was a differential mortality between the fish marked by excising the adipose and one ventral fin, and those marked by excising the adipose and one pectoral fin. The average survival from the first and second experiments was 18.4 percent, and the average survival from the last two experiments was also 18.4 percent. However, the average survival from the first and third experiments was 20.5 , while the average survival from the second and fourtl experiments was only 16.2 percent. Hence, there was only 79.2 percent as good a return from the fish marked by removing the adipose and one pectoral fin as there was from the fisl marked by removing the adipose and one ventral fin. These results agree closely with those obtained in the 1930 experiment in which the total return from the the fish marked by amputing the adipose and one ventral fin was 21.0 percent, and the total return from the fish marked by amputating the adipose and one pectoral fin was 17.4 percent. In the 1930 experiments, there was only 89.2 percent as good a survival of fish marked by excising the adipose and one pectoral fin as there was of fish marked by removing the adipose and one ventral fin.

The percentage oceurrence of marked fish of a single age and one type of mark remained fairly constant throughout the seasons in which they were sampled. However, from the marking of 3-year seaward migrants, the ratio between the return of two-ocenn fish and the return of three-ocean fish was 2.38 to $1,1.25$ to $1,1.37$ to 1 , and 0.62 to 1 for the first, second, third, and fourth experiments, respectively. Thus, of the 3-year seaward migrants the early migrating fish spent, on the arerage, a slorter time in the ocean than the late migrating fish. From the marking of 4 -year seaward migrants, the ratio between the return of two-ocean fish and the return of three-occan fish was 2.94 to $1,1.64$ to $1,1.95$ to 1 , and 1.5 to 1 for the first, second, third, and fourth experiments, respectively. The returns from the marking of 4 year scaward migrants and the retums from the marking of 3 -year seaward migrants both demonstrated a positive correlation between the time of occurrence during the migration period, and the length of time spent in the ocean.

As there appears to be a differential mortality between fish marked by removal of the adipose and one ventral fin, and fish marked by removal of the adipose and one pectoral fin, in comparing the results of the 1932 experiments with experiments of other years, it scems advisable to consider only the two experiments in which the fish were marked by the amputation of the adipose and one ventral fin. Grouping the data of the first and third experiments, 30,000 migrants were marked, 705 fish were recovered, and 6,142 marked fish returned (20.5 pereent). The returns from the marked $3-, 4-$, and 5 -year seaward migrants were $21.9,19.1$, and 2.3 percent, respectively, giving evidence for the first time contrary to the hypothesis that there is no positive correlation between age at time of migration, and survival.

EXPERIMENTS IN 1933

In 1933 (table 43) 40,000 seward migrants were marked by the amputation of the adipose and both ventral fins, 959 fish were recovered, and a calculated total of 8,212 marked fish returned (20.5 pereent of the number marked). The return from the $2-, 3-4$-, and 5 -year marked seaward migrants was $18.8,18.3,24.9$, and 15.6 percent, respectively.

Table 43.-Data for the 1933 marking experiment

Age or seaward migrants marked	Calcu- lated number of each age narked	Age of Alsh returning from 1933 migration	Calculated number of each age group examined	Number of marked fisi of each age group found	Percentage occurrence of marked fish in fish examined	Calculated number of fish of each age group returning	Calculated number of marked fish returning	Percentagereturn at virious ages	Total percentage return
	250	$\left\{\begin{array}{l}41 \\ 43 \\ 5 a\end{array}\right.$	7,614 9,942	2	0.026	58,018	--.-------15		
2--.....----..........--								6.0	18.8
				4	. 0171	80,153 3,654	32	12.8 0.0	
	25,394	43 53	, 548	$\underset{453}{1}$.171 .700	3,654 458,344	3,208	0.0 12.6	18.3
		63	24.536	189	. 770	157, 190	1. 441	5.7	
4.-.-...-.-.---.....		54	901	3202	. 333	13, 655	- 42	0.3	24.9
	13,692								
		64	34, 756		. 591	417, 073		17.7	
		74	6, 244	98	1. 570	54, 934	941	6.9	
5	664	\% 8	1.037		. 386	20,043	26	11.6 4.0	15.6
		85		3	5. 852	499			
Total	40,000	------.-....	150,523	959		1,293,675	8,212		

DISCUSSION OF MARKING EXPERIMENTS

In comparing results of the several years marking experiments, it scems advisable to consider the returns from only those experiments in which the fish were marked by the amputation of the adipose and one, or both, ventral fins. It also seems advisable to combine the results in those years when duplicate experiments were rim.

In those experiments in which the adipose and one, or both, of the rentral fins were amputated, the returns from the experiments of the years 1926, and 1929 to 1933, inclusive, are 20.5 (incomplete), 22.3, 21.0, 23.6, 20.5 and 20.5 percent, respectively. These results are remarkably uniform and indicate that the survival rate of the fish, during their stay in the ocean, has been quite constant.

Grouping the data of all experiments wherein the fish were marked by the amputation of the adipose and left, right, or both ventral fins gives a total of 169,836 three-fresh-water fish marked and a calculated return of 29,560 marked fish, or a 17.4^{11} percent return. For the four-fresh-water fish it is found that 93,944 were marked, and 24,142 marked fish returned, or a 25.7 percent return.

While combining the data in this manner may be subject to some criticism, it is quite evident that a differential mortality exists between the three-fresh-water fish and the older and larger four-fresh-water fish. The greater survival of the four-freshwater fish during their stay in the ocean would seem to indicate that a longer lake residence was advantageous. However, this greater ocean surviral may be drastically over-balanced by the mortality during the extra year spent in fresh water.

The percentage occurrence of marked fish in the diflerent age groups examined varied considerably, and whle a certain amount of the variation is due to random errors in sampling, it cannot all be ascribed to that factor. The age-group composition of the seaward migration changes considerably during the migration period, and as there is no means of determining, actually or relatively, how many migrants pass downstream each day, it is impossible to mark a constant proportion of the migration.

[^61]Since a constant proportion of the migrating population cannot be marked day by day during the migration period, and as the 1932 experiments indicated that early migrating fish tended to return after a shorter perjod of ocean life, it is apparent that critical comparisons of the returns of any two or more years cannot be made. The longer the period of time spent in the ocean the greater the mortality will be, consequently, for exact comparisons between marking experiments of 2 or more years, it is necessary that the fish of one experiment have remained in the ocean the same length of time as the fish of the other experiments.

In view of the possible errors in the calculated percentage return from the marking of any one age of seaward migrants, especially in the returns of the 2-and 5 -year age groups, it is believed that the best average value for the ocean survival is the mean of the several yearly values, i. e., 21.45 percent.

Unfortunately, there is no way of knowing whether or not a differential mortality exists between marked and unmarked fish, although a differential mortality was found to exist between fish marked by the amputation of the adipose and one pectoral fin, and the fish marked by the amputation of the adipose and one of the rentral fins. This might be caused by any one, or a combination, of the following:

1. Regeneration of the pectoral fins. The pectoral fins were amputated as close to the body of the fish as possible, and it does not seem probable that any of the amputated fins could have regenerated to such an extent as to be unrecognizable. None of the marked fish recovered showed the slightest sign of regeneration of this fin.
2. Mortality of the fish as a direct result of the operation. Some of the fish were held in a pen for several days after being marked and then carefully examined. The wounds had begun to heal and the fish showed no ill effects other than that a few specimens appeared to have a slight "list." Consequently, the marking probably did not have a direct influence on the mortality.
3. Mortality caused by the inabulity of the fish to elude their enemies to as great an extent as could the fish marked by the amputation of the adipose and one rentral fin. The pectoral fins are used, almost entirely, for maintaining equilibrium, and it is possible that fish marked by the amputation of the adipose and one pectoral fin were handicapped. Such a handicap should not binder fish feeding on plankton. However, it might be a serious disadrantage when being pursued by predators. This is considered the most likely of the sereral possible explanations for the differential mortality found between the two groups.

There may have been a differential mortality between the unmarked fish and those marked by the amputation of the adipose and one, or both, of the ventral fins. It is not believed that the differential mortality could have been very great in vien of the relatively good returns from all the experiments. If the factor used by Foerster at Cultus Lake, to correct for differential mortality, were applied to the Kiarluk data, the survival of unmarked Karluk fish would be in excess of 56 percent.

MORTALITY IN FRESH WATER

Having ascertained the probable average ocean mortality of Karluk red salmon to be 78.55 percent, as determined by the marking experiments, it is of interest tocalculate the mortality of this species between the egg stage and the searard migrant stage. The
average number of eggs per female, as reported by Gilbert and Rich (1927), is approximately 3,700 . If the spawning fish are 56 percent females (table 30), then there would be an average of 2,072 eggs per fish in the escapement. With a ratio of return to eseapement of 2 to 1 the mortality between eggs and seaward nigrants would be 99.55 pereent, while with a ratio of return to eseapement as high as 4 to 1 the mortality between eggs and seaward migrants would still be over 99 pereent. Thus the mortality rate of these salmon, during the fresh-water stage of their life history, is extremely high.

There are a number of factors which contribute to this terrifie loss in fresh water. Many eggs are destroyed by the spawning fish which, during their spawning aetivities, dig out eggs laid by earlier spawners. While the eggs are being deposited and during the incubation period, there is a loss caused by predators such as trout and birds. Meteorological conditions during the meubation period affeet the suceess or failure of a brood year. Floods, dry spells, or freezing weather may affeet the eggs adversely. After hatching, the fry work their way out of the gravels of the spawning beds and, if in the tributaries, migrate downstream to the lake. Until the young fish distribute themselves along the lake shores and seek shelter among the roeks and boulders on the bottom, they are preyed upon by trout. During the next 2 or 3 years they are subject to diseases and parasites, and many are devoured by fish-eating birds suel as mergansers and terns. Thus, there is a constant deeimation of the population, until less than 1 percent of the possible number of progeny have survived to migrate to the occan.

Of the fraction of 1 percent of possible progeny which have survived to the seaward migrant stage, 79 pereent perish while in the ocean due to disease and natural enemies, leaving only 21 percent of the seaward migrants (between 0.1 and 0.2 percent of the possible number of progeny) to return as mature fish.

SUMMARY AND CONCLUSIONS

1. There has been a marked reduction in the abundance of Karluk River red salmon since the inception of intensive commereial fishing in 1888. The average yearly eatch for the period 1888 to 1894 , inclusive, was more than $1,000,000$ fish greater than the average yearly total run (cateh plus escapement) for the period 1921 to 1936.
2. Karha red salmon migrate to the oeean in their first to fifth year counting from the time the eggs are deposited in the gravel of the spawning beds, the majority migrating in their third or fourth year.
3. From a few months to 4 years are spent in the ocean, after whieh the fish return as adults to spawn.
4. While the fish range from 3 to 8 years of age at maturity, the 5 -year age group is usually dominant, followed in importance by the 6-year age group.
5. The number of fish in the spawning escapements during the period 1921 to 1936 has ranged from 400,000 to $2,533,402$ and averaged $1,113,594$.
6. The runs of red salmon at Karluk are bimodal, and it is considered that there are aetually two distinet runs, spring and fall.
7. The fluetuations in the ratio of return to escapement have been considerable, and no correlation has been found between escapement and return. This is due in part to unfavorable envirommental conditions on the spawning grounds in certain years.
8. A negative correlation exists between escapement and surplus which might indicate that most of the escapements have been too large. This suggestion is believed to be untrue. The negative correlation is related to adverse factors influencing the survival value.
9. While the afluents of Karluk Lake contained appreciable amounts of phosphorus and silica, during the summer months, less than a measurable quantity of these inorganic salts were present in the lake water, indicating that they are limiting factors in the production of phytoplankton and indirectly of the zooplankton of Karluk Lake. As the lack of these inorganic salts indirectly affects the production of zooplankton it is probable that it also indirectly affects the growth and survival of young red salmon which depend, to a large extent, on the zooplankton as a source of food.
10. Little change, if any, is taking place in the relationship between the percentage of fish of a certain ocean history in the escapement and the percentage of fish of the same ocean history in the return. However, a marked change is occurring in the percentage of fish of a particular fresh-water history in the escapement in relation to the percentage of fish of the same fresh-water history in the return. This relationship is quite unusual, and though evidently existent during most of the period of time under consideration could not possibly have existed for any great length of time in the past. Unless the relationship changes, the majority of the fish in the Karluk runs will be four-fresh-water fish, whereas formerly the three-freshwater age group was dominant.
11. The change in the period of time spent in fresh water is considered to be due to unfavorable envirommental conditions, which may also adversely affect the survival value of the population.
12. The seaward migration of Karluk red salmon takes place during the last week of May and the first 2 weeks of June.
13. The percentage of 4-year fingerlings decreases, and the percentage of 3-year fingerlings increases, during the period of the migration.
14. The time of seaward migration depends on the growth rate of the fingerlings, the fastest growing individuals migrating first.
15. Among the seaward migrants the males and females are equally represented.
16. Among the adult fish there is a greater proportion of females than males.
17. There is a decrease in the percentage of males among the adult fish, with increased ocean residence.
18. Among the fish of a single ocean history, there is usually a decrease in the percentage of males with increased total age.
19. The returns from the marking experiments at Karluk have been consistently greater than returns from similar experiments in other areas. This is probably true because the Karluk seaward migrants were larger at the time of marking and migration than the fish in similar experiments in other areas.
20. A greater return, or survival, was found among the older and larger 4-year migrants than among the 3 -year migrants.
21. Although the ocean survival is greatest for fish that have had the longest lake residence, these fish suffer a greater mortality in fresh water due to the longer residence in the lake.
22. Removal of the adipose and right, left, or both ventral fins is considered preferable in marking fish rather than the removal of adipose and dorsal, or adipose and one pectoral fin.
23. The adipose and dorsal mark compared equally well with the adipose and right ventral mark in the returns. However, the removal of the dorsal fin left a large wound on the back of the young fish which may cause a high rate of mortality.
24. The right and left pectoral marks are definitely inferior to the others, due probably to the need of these fins by the fish for maintaining their equilibrium when eluding their enemies.
25. The total calculated returns from those experiments wherein either the adipose and left ventral, adipose and right ventral, or adipose and both ventral fins were amputated were 20.8 (incomplete), 22.3, 21.0, 23.6, 20.5, and 20.5 percent for the experiments of $1926,1929,1930,1931,1932$, and 1933 , respectively.

26 . The average return from the marking of 3 -year seaward migrants was 17.4 percent and for the 4 -year seaward migrants 25.7 percent.
27. While a slight differential mortality probably exists between the marked and the ummarked fish, it is not considered to be great in the case of the fish marked by the amputation of either the left, right, or both ventral fins, as the survival of the marked fish during their stay in the ocean is relatively high, averaging 21.45 percent.
28. The mortality of Karluk River red salmon during the fresh-water stage of their life history is usually over 99 percent.

LITERATURE CITED

Asbociation of Official Agricultural Chemists.
1930. Nitrogen in the form of nitrite-official, p. 405. Official and Tentative Methods of Analysis. Assoc. Official Agr. Chem. third edition, 593 pp. Wash.
Davidson, Prenerick A.
1934. The homing instinct and age at maturity of pink salmon (Oncorhynchus gorbuscha). Bull. U. S. Bureau of Fisheries, vol. XLVIII, 1933 (1934) pp. 27-39, Wash.
Dienert, M. M., and F. Wandenbulcke.
1923. On the determination of silica in water. Compt. rend. soc. biol. Paris 176: 1478-1480. Fisher, R. A.
1930. Statistical methods for research workers. 283 pp . Oliver and Boyd, London.

Foerster, R. E.
1934. An investigation of the life history and propagation of the sockeye salmon (Oncorhynchus nerka) at Cultus Lake, British Columbia. No. 4. The life history cycle of the 1925 year class with natural propagation. Contributions to Canadian Biology and Fisheries, vol. VIII, No. 27 (Series A, General, No. 42). Toronto.

1936a. An investigation of the life history and propagation of the sockeye salmon (Oncorhynchus nerka) at Cultus Lake, British Columbia. No. 5. The life history cycle of the 1926 year class with artificial propagation involving the liberation of free-swimming fry. Jour. Biol. Bd. Can. vol. 2, No. 3, pp. 311-333. Toronto.

1936b. The return from the sea of sockeye salmon (Oncorhynchus nerka) with special refcrence to percentage survival, sex proportions, and progress of migration. Jour. Biol. Bd. Can. vol. 3, No. 1, pp. 26-42. Toronto.

Gilbert, Charles H., and Willis H. Rice.
1927. Investigations concerning the red-salmon runs to the Karluk River, Alaska. Bull. U. S. Bureau of Fisherics, vol. XLIII, Part II, pp. 1-69. Wash.

Juday, C., Willis H. Rich, G. I. Kemmerer, and Albert Mann.
1932. Limnological studies of Karluk Lake, Alaska, 1926-1930. Bulletin U. S. Bureau of Fisheries, vol. XLVII, pp. 407-436. Wash.
Kelez, George B.
1937. Relation of size at release to proportionate return of hatehery-reared coho (silver) salmon. The Progressive Fish Culturist. July, No. 41, pp. 33-36. L. S. Bureau of Fishcries, Wash.
King, E. J., and C. C. Lucas.
1928. The use of picric acid as an artificial standard in the colorimetric estimation of silica. Jour. of Am. Chem. Soc. vol. 50, pp. 2395-2397.
Pritchard, A. L.
1934a. The interpretation of the recoveries of marked pink salmon in 1933. Biol. Bd. of Can. Progress Reports of Pacific Biol. Sta., Nanaino, B. C., and Pacific Fisheries Exper. Sta. Prince Rupert, B. C., No. 20, pp. 3-5. Prince Pupert.

1934b. The recovery of marked pink salmon in 1934. Biological Board of Canada. Progress Reports of Pacific Biol. Sta., Nanaimo, B. C., and Pacific Fisheries Exper. Sta., Prince Rupert, B. C., No. 22, pp. 17-18. Prince Rupert.
Rich, Willis H., and H. B. Holmes.
1928. Experiments in marking young chinook salmon on the Columbia River, 1916-1927. Bull. U. S. Bureau of Fisheries, vol. XLIV, 1p. 215-264. Wash.
Rich, Willis H., and Frederick G. Morton.
1929. Salmon-tagging experiments in Alaska, 1927 and 192s. Bull. U. S. Bureaul of Fisheries, vol. XLV, pp. 1-23. Wash.
Rich, Willis H., and Edward M. Ball.
1931. Statistical review of the Alaska salmon fisheries. Part II: Chignik to Resurrection Bay. Bull. U. S. Bureau of Fisheries, vol. XLIV, pp. 643-712, Wash.
Robinson, R. J., and G. I. Femmerer.
1930a. Determination of silica in mineral waters, Trans. Wis. Acad. Sci., Arts, and Letters, vol. 25, pp. 129-134.

1930b. Determination of organic phosphorus in lake waters. Trans. Wis. Acad. Sci., Arts, and Letters, vol. 25, pp. 117-121.
Rounsefell, George A., and George B. Keled.
1938. The salmon and salmon fisheries of Swiftsure Bank, Puget Sound, and the lraser River. Bull. U. S. Bureau of Fisheries, vol. NLIX, pp. 693-823. Wash.
Seyler, C. A.
1894. Notes on water analysis. Chem. News, vol. 70, pp. 82-83, 104-105, 112-114, 140-141. Snyder, J. O.
1921. Three California marked salmon recovered. Calif. Fish and Game, vul. 7, No. 1, Jan. pp. 1-6. Sacramento.
1922. The return of marked king salmon grilse. Calif. Fish and Game, vol. 8, No. 2, April, 1922, pp. 102-107. Sacramento.
1923. A second report of the return of king salmon marked in 1919, in İlamath River. Calif. Fish and Game, vol. 9, No. 1, Jan. pp. I-9, Sacramento.
1924. A third report on the return of king salmon marked in 1919 in Klamath River, Calif. Fish and Game, vol. 10, No. 3, July, 1p. 110-114. Sacramento.

UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary

FISH AND WILDLIFE SERVICE
Ira N. Gabrielson. Director

Fishery Bulletin 40

THE WHITEFISH FISHERY OF LAKES HURON AND MICHIGAN WITH SPECIAL REFERENCE TO THE DEEP-TRAP-NET FISHERY

By John Van Oosten, Ralph Hile, and Frank W. Jobes

From FISHERY BULLETIN OF THE FISH AND WILDLIFE SERVICE Volume 50

Abstract

This study of the whitefish fishery of Lakes Huron and Michigan includes: (1) a review of the available statistics of production, 1879-1942; (2) a detailed analysis of the annual fluctuations in the production and abundance of whitefish and in the intensity of the whitefish fishery in the State of Michigan waters of the lakes, 1929-1942, with special reference to the effects of fishing with deep trap nets; (3) an account of the bathymetric distribution and vertical movements of whitefish and certain other species; and (4) a report of field observations made in 1931 and 1932, as related particularly to the destruction of undersized whitefish by pound nets and deep trap nets. The main body of the manuscript and appendices A, B, and C , completed in March 1942, contain statistics through the year 1939. Since that time, records for the years 1940-1942 have become available. Because these additional data did not alter any of the conclusions of the manuscript but actually strengthened them, it was not dcemed justifiable to expend the considerable amount of time and money that would be required to rerise the study. The 1940-1942 records are therefore presented in appendix D.

From a relatively high production in the earlier years of the period, 1879 to 1942, the vield of whitefish declined to a lower level about which the catch fluctuated until the late 1920's and early 1930's when a general increase in production occurred. This recent increase was higher and the subsequent decline more severe in the Michigan waters of Lake Huron than in other areas.

THE WHITEFISH FISHERY OF LAKES HURON AND MICHIGAN WITH SPECIAL REFERENCE TO THE DEEP-TRAP-NET FISHERY ${ }^{1}$

86
By John Van Oosten, Ph. D., Ralph Hile, Ph. D., and Frank W. Jobes, Ph. D., Aquatic Biologists, Division of Fishery Biology, Fish and Wildlife Service

36			
	CONTENTS		
	Page		Page
General introduction	298	Bathymetric distribution, etc.-Continued	
Part I Production of whitefish in Lakes Huron and Michigan, 1879-1939.		Harbor Beach grounds	352
	302	Bathymetric distribution of whitefish in Lake Michigan.	352
Lake Huron...	302	Green Bay area (Marinette, Esca-	
Lake Michigan	305	naba, and Fairport)...................	352
Recent large increase in the production of whitefish in Great Lakes		Northeastern Lake Michigan (Manistique, Epoufette, and Naubin-	
waters	308	way)	353
P		Summary and comparison of the bathymetric distribution of white-	
luctuations in the production and abundance of whitefish and in the intensity of		fish in Lakes Huron and Michigan,	
the whitefish fishery in the State of Michigan waters of Lakes Huron and Michi-		with special reference to the regulation of the fishery.	357
$\begin{aligned} & \text { igan waters of Lakes Huron and Michi- } \\ & \text { gan, 1929-1939 ... } \end{aligned}$	311	Bathymetric distribution of other	
Introduction	311	species	359
Methods of analysis	311	Lake trout..	359
Statistical districts	311	Yellow pike	361
Production	312	Burbot	363
Units of fishing effort	313	Thite sucker and long-nosed or	
Estimation of abundance and fishing intensity	314	sturgeon sucker Part IV	364
General remarks	315	Observations on the fishing action of pound	
Whitefish fishery of Lake Huron, 1929-		nets and decp trap nets	365
1939	317	Effect of the size of the mesh on the	
Fluctuations in the production of whitefish in Lake Huron	317	catch of legal- and illegal-sized whitefish and lake trout	365
Changes in production in Lake Hu ron as related to fluctuations in the abundance of whitefish and in		Destruction of whitefish through gilling in the meshes of pound nets and deen trap nets	370
the intensity of the fishery.........	323	Bloating of Jive whitefish in pound	
Whitefish fishery of Lake Michigan,		nets and deep trap nets.	371
1929-1939	333	Dead whitefish in pound nets and	
Fluctuations in the production of whitefish in Lake Michigan.	334	deep trap nets Estimates of the probable destruction	372
Changes in production in Lake		of illegal-sized whitefish in certain	
Michigan as related to fluctua-		localitics and years	373
tions in the abundance of whitefish and in the intensity of the		Shrinkage of the twine in pound nets and deep trap nets	5
fishery	335	Summary	376
PART III Bathymetric distribution of whitefish and		Appendix A-Sources of the data on production, 1879-1939	380
of certain other species in the shallower		Appendix B--Detailed statistics on white-	
waters of Lakes Huron and Michigan....	348	fish production in State of Michigan	
Bathymetric distribution of whitefish in Lake Huron	348	waters of Lakes Huron and Michigan. 1929-1939	382
Northern Lake Huron (Cheboygan		Appendix C.-Investigation of pound nets	
and Rogers City)........	348	and deep trap nets in the Wisconsin	
Alpena-Ossineke grounds	348	waters of Lake Michigan, 1931.	385
Saginaw Bay area (Oscoda, East Tawas, and Bay Port)	350	Appendix D.-The whitefish fishery of Lakes IIuron and Michigan, 1940-1942	388

[^62]
GENERAL INTRODUCTION

The great economic value of the whitefish (Coregonus clupeaformis) and the widespread demand for it by the general public combine to make conservation of this species a matter of primary importance. Accordingly, conservation officials were gravely disturbed by the numerous reports and complaints of commercial fishermen in 1928, 1929, and 1930 concerning the operation of a new type of gear-the deep trap net-in the waters of Lake Huron off Alpena, Mich. These nets, the complainants contended, took whitefish literally by the tons, threatening the immediate extinction of the commercial stock. They held further that the deep trap net not only took legal-sized whitefish in unreasonable quantities but that it was also highly destructive to immature fish.

Gill-net fishermen stated that they were forced to suspend operations in areas in which deep trap nets were fished because of the thousands of rotting, undersized whitefish that drifted into their nets. These fish, they believed, had been destroyed in the deep-trap-net fishery. They charged specifically that young whitefish were killed by confinement in deep trap nets, by gilling in the trap-net meshes, by the rapid change of pressure when the nets were lifted, and by excessive and rough handling in the sorting of the catch. They charged further that deep-trap-net fishermen habitually dumped the dead, undersized whitefish overboard, and thus ruined the best whitefish grounds by polluting the bottom and driving away the fish.

Operators of both gill nets and pound nets objected to allegedly unfair tactics of deep-trap-net fishermen. Gill-netters stated that deep-trap-netters had usurped the traditional gill-net grounds and even had deliberately set deep trap nets across strings of gill nets. Pound-netters asserted that deep trap nets were set offshore in such positions as to block the passage of whitefish to the inshore pound-net grounds.

Both groups of fishermen complained that the high production by deep trap nets had glutted the market and depressed prices, making operations with other gears unprofitable.

The extent to which the many accusations leveled against deep trap nets and their operators were just could not be determined without extensive field observations. Preliminary inquiries, nevertheless, revealed that the deep trap net constituted an undeniably serious threat to the whitefish fishery. It was in recognition of this menace that the Michigan Department of Conservation and the United States Bureau of Fisheries (now the Fish and Wildlife Service) agreed to carry out cooperatively a program of field observation, in order first, to determine the effects of the deep trap net on the whitefish fishery, and second, to obtain information on which to base recommendations for sound regulation of the gear.

By 1931, the first year of the cooperative field investigations, the deep-trap-net fishery had expanded so rapidly that in a number of localities the net had become the dominant gear for the catching of whitefish. These nets were then being fished extensively in the State of Michigan waters of Lake Huron as far south as the "Middle Grounds" off the mouth of Saginaw Bay and had spread also into Lake Michigan where they were used in Grcen Bay and in northern Lake Michigan, out of Manistique and especially out of ports of the north channel area (region north of the Beaver Islands). In 1931 deep trap nets were fished also in the waters of Door County, Wisconsin. (For a condensed report of the brief survey of these waters in 1931 consult appendix C.)

The Michigan Department of Conservation's Patrol Boat No. 1 was placed at the serrice of the United States Bureau of Fisheries investigators from July 22 to 27, 1931, when a general survey of the deep-trap-net grounds of northern Lake Michigan and of Lake Huron was made. For the conluct of the later routine field observations, the Department of Conservation assigned one field assistant and paid the operating expenses of one automobile from August 1 to October 21, 1931, and during the month of May 1932. Begimning June 1, 1932, and extending into October, when the field work was discontinued, the Michigan Department of Conservation furnished three field assistants and paid the operating expenses of two automobiles. This increase of the staff made it possible to conduct the investigation simultancously on both northern Lake Michigan and Lake Huron. The fishermen were practically all willing to cooperate by allowing
the investigators to go aboard their boats, by giving specific information requested, and by discussing frankly problems conecrning the fishing industry on the Great Lakes.

The researeh staff of the U.S. Fisheries Vessel Fulmar obtained data in 1932 on some of the deep trap nets and pound nets fishing in Green Bay and around Gull Island in northern Lake Miehigan.

The general procedure in the field investigation was to observe the lifting of the deep trap nets, to make counts of all fish in the net, and to take notes both from observation and interviews with the fishermen.

Certain data were, of necessity, obtained from the fishermen. They were: distance and direction from port or from some charted landmark; depth of water in whieh the net was set; size of mesh (as manufactured) in the lifting pot; depth of lead; and the dimensions of the net.

Other data were recorded as observed. These included: size of mesh (as found in use) in the lifting pot; preservative with which the twine was treated; numbers of legal- and illegal-sized fish, and of dead, bloated, and gilled fish of each species. Gilled whitefish were measured and weighed whenever posible. When it was impossible to measure or weigh the gilled fish, an estimate was made of the numbers that were of legal or illegal size. Lengths, weights, and scales were procured from samples of the eatches of whitefish when possible. Few data could be obtained on the sex and maturity of the legal-sized whitefish beeause practically all were sold in the round.

The procedure for the study of. pound nets was the same as that for the deep trap nets. As these two types of gear are of such similar construction, it has been possible. in eertain phases of the study to combine the data collected from both.

The data collected during the course of the 1931-1932 field investigations form the basis of parts III and IV of the present report.

Statistical investigations also have been mate an integra! part of the present study of the whitefish fishery of Lakes Huron and Michigan. In order to provide a better baekground for the understanding of conlitions in the recent critical years, a compilation was made of all available statisties of production in the United States waters of the two lakes and of production in the ontario waters of Lake Huron, beginning in 1879. These data are presented in part I.

Detailed statistieal analyses have bern male of local fluctuations in the protuction and abundance of whitefish and in the intensity of the whitefish fishery in the State of Michigan waters of Lakes Huron and Michigan over the period, 1929-1939 (part II). These analyses, which were basod on commereial fishing reports supplied by the Michigan Department of Conservation, hase eontributed greatly to the understanding of the effects of extensive deep-trap-net operations on the general conditions of the fishery.

The deep trap net, with the effect of which on the eouree of the whitefish fishery this report is primarily coneerned, was developed by the late John H. Howard at Cape Tincent, N.Y., and was first used by him in Lake Ontarin in 1924. By experimentation Mr. Howard discovered that "the bigger the trap the bigger was the eateh of fish taken." ${ }^{2}$ Aceordingly, he built larger trap nets. ming his Lake Erie type of trap nets as a pattern, and inereased their depth from about 12 feet to as much as 30 feet. This type of net soon was adopted by other fishermen in the vieinity of Cape Vincent, but apparently did not spread to other ports on Lake Ontario.

The deep trap net was introduced into lake Huron July 12, 1928, when John H. Howard and his brother, D. C. Howard, set fise nets in Thunder Bay off Alpena, Mieh Deep-trap-net operations were confinel to the Alpena region in 1928 and 1929. In 1930, however, an expansion of the fishery got under way, that ultimately carried the deep trap net to all parts of the United States waters of Lake Huron and to most of the important whitefish grounds of Lakes Michigan and Superior.

In all three of these lakes the deep-trap-net fishery was confined to, or underwent its principal development in, the State of Michigan. Since deep trap nets were never permitted in the Province of Ontario or introduced into the Minnesota and Wiseonsin

[^63]waters of Lake Superior, operations with the gear in Lakes Huron and Superior were limited to Michigan waters. Deep trap nets were fished in Lake Superior as far west as Ontonagon but were most abundant in Whitefish Bay at the eastern end of the lake. The use of deep trap nets beeame illegal in the Miehigan waters of Lake Superior, July 1, 1936. The most extensive deep-trap-net fisheries of Lake Michigan were developed in the State of Michigan waters of Green bay and of the northeastern section of the lake. Relatively limited operations were carried on also in Miehigan waters off Grand Haven (chiefly in 1934), in the Wisconsin waters off Door County (1931-1935), and in Indiana (Jime 1935-July 1, 1936). The 1se of deep trap nets became illegal in the Michigan ant Wisconsin waters of Lake Michigan after the 1935 season and in Indiana, effective July 1. 1936. This type of gear was never used in Illinois. The deep trap net may now be legally operated in the Great Lakes only in Lake Huron (Miehigan waters) and Lake Ontario (New York waters).

Figene 1.-The defp trap net.
The deep trap net (fig. 1) consists of the leader, learts, hood or breast, tumel, and lifting pot or crib.

The lifting pot or erib of the deep trap net is covered with webbing, whereas that of the pound net is open at the top. Deep trap nets are held in position by means of anchors and buoys while pound nets are genemally held in position by stakes driven in the lake bottom. Aside from these two differences, deep trap nets and pound nets are of similar construction. In fact, during the earlier years of the deep-trap-net fishery the gear frequently was termed a "submarine pound net."

In the nets observed, ${ }^{3}$ the anchors were 2 -point hook anchors weighing :about 35 pounds each except the "king" anchor which weighed about 60 pomms. The smather anchors (usually numbering 12 to 16) were attached to lines that varied from 400 to 600 feet in length; the "king" line attached to the back of the erib was about 1,800 feet long. The leader was from 40 to 80 rods long, from 20 to $47 / 2$ feet deep, and had mesher of 7 to 9 inches. (All mesh sizes in this description are extension measure as manufactured.)

The hearts had the same depth as the leader. The size of mesh in the hearts was reported to have ranged from 5 to 7 inches. The hearts were about 45 feet long with a spread of approximately 100 feet between the tips. In some nets the outside walls of the hearts were extended forward about 24 feet as single thicknesses of netting known as wings. The hood or breast, which comects the heats and the tomnel, varied from 24 to 27 feet in length.

The tumel, the length of which variod from about 45 to 75 fect, taperel from a depth equal to that of the hearts to form a 3 -foot square opening inside the pot. Meshes in the part of the tumnel outside the pot varied from 5 to 7 inches, but meshes as small as 2 inches were reported for the tunnel inside the pot. Variations reported in the length

[^64]and depth of the lifting pot were: depth-18 to $471 / 2$ feet; length- 30 to 40 feet. The lifting pot usually tapered from front to rear so that the width in a single net varied from about 24 to 20 feet. Mesh sizes in the pots ranged from $31 / 2$ to 5 inches as manufactured ${ }^{4}$ except that the front side of the net (the side through which the tunnel enters) contained meshes measuring not more than $31 / 2$ inches. In some nets this small mesh was extended along the sides and bottom of the net, but for a distance of not more than one third the length of the pot.

The lifting methods employed varied considerably, the most general method being that in which the net was brought to the surface by means of a lifting line attached to the "king" anchor line 75 to 150 fect from the back of the pot. When the net was brought to the surface, the boat was pulled unler the anchor line and worked forward until it was under the pot of the net. The fish were shoaled on the front or tunnel side of the net and removed through laced openings. After the fish were removed, the boat was worked back to the point where the lifting line was attached, the lines were allowed to slip into the water, and the net was permitted to settle to the bottom. The average time required to lift a deep trap net was approximately one hour. Numcrous mechanical devices have been feveloped to reduce the amount of labor involved and several types of power lifting machines are now in use. Some fishermen released the tension on the back anchor line and hathlerl the met alonesile the boat in a way similar to that employed for lifting pound nets.

[^65]
PART I

PRODUCTION OF WHITEFISH IN LAKES HURON AND MICHIGAN, 1879-1939

LAKE HURON

Because of defects in the data on the eatch of whitefish in the United States (State of Michigan) waters of Lake Huron in certain of the earlier years, the graphical representation (fig. 2) of the production history of the lake (table 1) begins with the year

Figure 2.-Commereial production of whitefish in Lake Huron, 1889-1939. Lower solid line, Ontario waters of Huron proper; short dashes, North wive Channel and Geurgian Bay; long dashes, State of Michigan waters; upyer solid lize, entire lake.
1889.5 It is true that data are available for Ontario waters of Lake Huron for years prior to 1889. However, it is with the course of production in the State of Michigan waters that the present study is most concerned.

Despite the known inclusion of the catch of Menominee whitefish or pilots ${ }^{6}$ in the data for 1879,1885 , and 1890, the recorded production of whitefish in the State of Miehigan waters of Lake Huron exceeded 2 million pounds in only 2 of the 4 earliest years for which records are available (1879 and 1889) and was less than $11 / 2$ million pounds in 1885 and 1890 (only slightly above a million in the latter year).

The production of whitefish in the State of Michigan waters of Lake Huron was well over 2 million pounds in 1889, the first year for which acceptable data are available. In 1891, the second year for which presumably usable statistics are available, this yield was somewhat above $11 / 2$ million pounds. The next several years saw an irregular but distinct downward trend. The average production for the years, 1889

[^66]and 1891-1896 (1896 was the last of the earlier years in which the catch exceeded a million pounds), was $1,464,000$ pounds. (In the discussion of this section, yields will be given to the nearest thousand pounds.) The period, 1897-1921, was one of rather consistently low output, the catch of whitefish exceeding a million pounds in only 4 isolated years of the 22 for which there are records. The average annual yield for this period was 885,000 pounds.

Table 1.-Production of whitefish in pounds in Lakes Michigan and Huron, 1879-1939
[See appendia A for list of sources of the data]

Year	Lake Michigad			Lake Hurun			
	Wisconsin	Michigan	Entire lake ${ }^{1}$	Michigan	Ontario Huron proper	Ontario Georgian Bay	Entire lake
1879			212,030,400	82,700.778	726,600	864.400	3,292,178
1880 1881						1,540,400	
1882					836.500	$12 \times 34.4 \times 5$	
1883					620,400	1,66\%.392	
1884 184	${ }^{21,733,675}$	86,672,225	88,652,986	${ }^{31,425,380}$	$\xrightarrow{701,50}$	$1,640,946$ $1,421.160$ $1,0,10$	3,603,640
1856	1,73,605	-6,0r2,20	8,02,	,40,	\%57,000	$1,823,449$	
1887					325.600	2,664,406	
1888					236.550	4	
1889	481.955	5.004.641	5.523,971	2.391 .503	210.219	5.003,259	7,604,991
1890	187,442	4.2×1.921	4,056,541	${ }^{3} 1,033,158$	442,020	5.499,600	6,973, 9178
1891		2,404,571		1,624.560	26.9	4.236.m0	6.129,640
1892	334,080	2,522,4122	2.85,452	1,446, 1×3	${ }^{57,050}$	$5,63,106$ $3,6450.909$	7.694 .339 5.444 .400
1893 1894	470,325 417,100	$1,975,800$ 1,295 1005	2.446, 3.125	$1,577,600$ $1,214,250$	$\underline{926000}$	$\underline{3,645,909}$	$5.449,400$ $3.955,266$
1895	520,325	$1,122,740$	1,543,065	-945, ${ }^{\text {a }}$	54,230	1.355,2\%	2,359,372
1896	553,000	$1.447,300$	2,000,300	1,06t, 735	16, 530	1,41) 1×10	2.672.435
1897	nin6,355	2,41-933	3,345,071	865, 960	1:2,500	910.466	1,94.996
1898 1899	125,355		1.769,793		249340 20.054	, $1,6651,04964$	1, \%10,600
1900		1,625,600		555,420	26,154	1,503,101	2.044.675
1901		2,004,550		-59,245	23,606	1,413,239	2,225,090
1902		2,723,350		(13, 533	17,015	1,621,540	2,532,088
1903	116.764	2,244,600	2,404,269	937,460	19,630	1,279,060	2,236, 150
1904		$2,501.760$		$3 \mathrm{NF}, 366$	16,500	$2,002.500$	2.906, 30
1905 1906		2, $2,5020,7000$			75,300	(1,273, 950	2,
1907		3,273,500		1,132, 172	\$2:120	1,095,220	2.310,212
1908	116,900	3.106,095	3,24,995	973.905	¢45, 242	1,211.251	3,060.44
1909	${ }^{1,33,253}$				43.34 .415	861,721	
1910	${ }^{17,5651}$				22, 332	1,072.663	
1911	124.519	1.305 .447	1,429,966		-70,352	1.114.336	
1912	${ }_{1}^{1 \times 1 \% 925}$		${ }^{1,337,793}$	8	39,017		1.760.299
1914	117,925	$1,212,294$ $1,331,364$	$1,320,294$ $1,372,1029$	1,343,139	69,6015	1, $1,211,499$	2.654 .246
1915	120,916	1,355,638	1,47,954	812.246	36,459	1,335,4 4	2,204,629
1916	104,221	1,521,107	1,629.328	1,914,364	77,160	1,944.109	3,540,6,38
1917	126,933	2,458,084	2,622,6\%	1880.97\%	76.535	1,144,620	$2.110,182$
1918	254.079	2,092,334	$2,346,413$	1.101.:14\%	65.665 $9-419$	1,123,608	2.291.224
1920		1,266,601	1,465,720	227, 144 640,696	9,419 $8,0.04$	$1,200,482$ $1,354,506$	$2,044,296$
1921	362,4,5	458,709	1,321,124	257,616	76,493	1,224,676	$2.056,765$
1922	163,201	1,151,250	1.335.251	1,401,347	68.111	1,323,399	$2.742,4 \times 8$
1923	442,923	1,061,701	$1.504,684$	1,199907	128.909	$\xrightarrow{1,390,021}$	2,717,901
1924	24781114	1,149,683		${ }^{1.351,694} 1.203149$		$1,282.564$ $1,495,581$	
1925 1926	242,374 325,420	1,403028 $1,537,534$	$1,652,000$ $1,85,065$	$1,203,149$ $1,722,758$	121,524 15,531	$1,495,481$ $1,365,055$	3, $3,2020,534$
1927	314,232	2,254,623	2.591,291	1,676,875	191,4:4	1,773,963	3,642,093
1928	554,067	2,956,146	3,523,66\%	1,469,001	224,262	1,56, 2687	3,261,330
1929	644,489	4,24T, 6.9	4,964, 3 3	1,456,364	204,761	1,35,, 316	$3,046.445$
1930	559,023	4,412,n25	5,342.54	2, 5 \% 4 4	246,551	1,1st. 319	4,3112,319
1931	841.539	3,423,983	4,675,27\%	$4.139,77^{4}$	24.5157	1,214.918	5,599,477 $5,632,370$
1932 1933	${ }^{491,606}$	3,332,244	$3,5 \times 36,340$	4, $0.50 .3,33^{4}$	1819,227 300959	l $1,362,409$	5.632 .370
1933 1934 1	${ }^{332,0100}$	2, $23,23,840$ 1,432178 1	${ }_{2}^{2.154 .4 .46}$		- 30.439	${ }_{1,635,832}$	
1933	26:3,9011	1,431,724	1,647,124	1,994, mi	340.327	1.596,312	3, $\times 31,446$
1936	142.600	5,6.411	1,025,511	1,442,16.9	23.304	$1.244,030$	2.921 .503
${ }_{1}^{1937}$	122.3106 141.800 1	1.1176.867	1.102, 1,2867	$1,05.61$		${ }_{1}^{1,372,130}$	
$\begin{array}{r}1938 \\ 1939 \\ \hline\end{array}$	141,800 110,500	$1,117,079$ 839,550	$1,255,979$ 950,556	$\begin{array}{r} \mathbf{5} 2.969 \\ -255,183 \end{array}$	- 205.23015	${ }^{1,3 \times 1,4+1}$	$2,145.040$ $1,645,499$

[^67]The production of whitefish in the State of Michigan waters of Lake Huron rose to a higher level in 1922 and was consistently between 1 and 2 million pounds through the period, 1922-1929. The average catch for the 8 years was $1,439,000$ pounds, practically the same as that for 1889 and 1891-1896.

In 1930, the whitefish fishery entered a period of chaotic change. The production of $2,879,000$ pounds in this year was nearly double that of 1929 and was greater than that of any previous year. A further increase carried the yield of whitefish to an all-time high of $4,140,000$ pounds in 1931 . The 1932 output ($4,050,000$ pounds) was only a little below the record eatch. In the years following 1932, whitefish production declined rapidly. This deeline culminated in a 1939 yield of only 255,000 pounds, less than half the lowest production recorded for any previous year (555,000 in 1900). Detailed treatment of the violent fluctuations in the eateh of whitefish in the State of Michigan waters of Lake Huron over the periot, 1930-1939, is given on pp. 317-333. There evidence is presented that the high production in the earlier years of the period was made possible in large measure by the use of deep trap nets, and that this excessive yield in turn brought about a depletion of the stock that was responsible for the great severity of the subsequent decline.

The history of production of whitefish in the State of Michigan waters of Lake Huron may be summarized as follows. Au early perior of relatively high but deereasing yield (1889-1896) was followed by a long period (1897-1921) over whieh the catch was fairly stable at a rather low level. Production was stable in the years, 1922-1929, also, but the level of the take was considerably higher than that of the period, 1897-1921. The most recent period of the fishery ($1930-1939$) was one of violent fluctuations. Production rose suddenly to an all-time peak in 1931 of more than 4 million pounds only to decline to an all-time low in 1939 of $1 / 4$ milion pounds. The normal annual take may be estimated as $1,114,000$ pounds, the average catel per year for the period, 18891929.

The early yield of whitefish was high in the (ontario waters of Lake Huron proper: ${ }^{\text {T }}$ the average was 759,000 pounds for the 7 years, $1879-1885$. The annual eatch varied crratically but averaged mueh lower (283,000 pounds) in the period, 1886-1898. The rear 1899 was the first in a long period of low production. With the exception of 1908 and 1909, for which years the aceuracy of the statisties is open to question (appendix A), the take of whitefish did not exced 100,000 pomids at any time in the years, 18991922 (average, 57,000 pounds). These ye:tr: of low output nearly coincided with a similar period in Michigan (1897-1921). The increase to a higher level of production in 1923 in Ontario resembles the increase that occurred in the State of Michigan waters of the lake a year earlier, in 1922. The significance of the increase in 1923 is made questionable by the fact that additional waters were included under Huron proper in 1922 and later years (see footnote 7). It should be pointed out, howerer, that this extension of Huron proper was not accompanied by an increase in the recorded eatch in 1922. Furthermore, comparisons may be made among the years, 1922-1939. Within this period the yield inereased irregularly through 1935 and thereafter dropped rapidly. The take exceeded 300,000 pounds in each of the years, 1933-1935. The relatively high yields of these years were still eonsiderably less than those of the early period (18791886) even though the recent figures covered more territory. Although production leclined in the Ontario waters of Lake Huron proper after 1935, it was still above 100,000 pounds in 1939.

The eateh of whitefish in Georgian Bay ${ }^{8}$ increased from an average of $1,622,000$ pounds per year in 1879-1886 to an average of $4,267,000$ pounds in 1887-1894. The deerease that began toward the close of the latter period brought the production of whitefish in 1895 approximately to the level about which the yield fluctuated during the 45 vears, $1895-1939$. The relative stability of the take in 1895-1939 is brought out by the fact that production exceeded 2 million pounds only once (1904) and fell below

[^68]one million pounds only 5 times (1897, 1898, 1905, 1909, and 1912) during the 45 years. The average annual production of $1895-1939$ was $1,333,000$ pounds. This average may be accepted as an estimate of normal production in Georgian Bay. The relatively good yields of 1933-1935 suggest an increase comparable (but less pronounced) to that which took place in the same years in the Ontario waters of Lake Huron proper. Again it maty be observed that the change in the territory covered by the statistics collected after 1921 showed no effect on the figures of yield.

It may be noted here that the periods of decline and of inerease in the production of whitefish in the Michigan waters were followed a year or two later by similar periods in the Ontario waters of Lake Huron. This correspondence suggests that the annual fluctuations in ecological conditions on the two sides of the lake may be similar. The change- in take in the Georgian Bay waters. however, shotwed no similarity with those in Lake Huron proper.

The totals for the entire lake indicate that the earlier years of the fishery were the years of the heaviest yields. Especially noteworthy was the high production in the period, 1889-1894, when the average annual catch was $6,295,000$ pounds. ${ }^{\circ}$ Suberguent to 1894 the production of whitefish was relatively stable over a long period. The catcla rose above 3 million pounds only once (1916) in the period, 1895-1925, ${ }^{\text {, }}$ and dropred below 2 million pounds only 5 times ($1897,1898,1905,1912$, and 1913). The average production in this period (with the catch for 1908 omitted) was $2,351,000$ pounds, which yield may be accepted as the normal for the cutire lake. Good catches in both Canadian and United States waters made possible rield. that were consistently above 3 million poonds in the yeus, $192(6-1929$ average, $3,298,000$ pounds). It was in the period, 1930-1934, however, that the production of the modem fishery reachell its greatest heights. The take was greater than 4 million pounds in all 5 years and exceeded 5 million pounds in 3 years. The average was $5,087,000$ pounds. "The most recent of the earlier years with comparable production was 1893 . It is to be noted that Canadian waters were largely responsible for the high production of the early years (1893 and earlier), whereas in 1930-1934 United States waters arcounted for the bulk of the cateh. In fact, the Canadian production excecled that of the United States in every year except 1914, 1922, 1926, and the years, 1930-1934. By reason of a continuous decrease in production the average yield for 1935-1939 was only $2,645,000$ pounds. The cateh of $1,645,000$ pounds in 1939 was the lowest for which there is a record. The small yield in that year can be attributed in large measure to the collapse of the fishery in United States waters.

LaKe michigan

The first acceptable records of the procluction of whitefish in Lake Michigan (table 1), as in the United States waters of Lake Huron, begin with the year 1889. (The 1890 record for the State of Michigan inclurles speeies other than whitefish.) ${ }^{11}$ Attention will be given first to the production in the State of Michigan waters, the area with which the present report is most concerned. It is true also that the data are more eomplete for the State of Michigan waters than for other regions of the lake and that the production in these waters dominates the catel in the entire lake.

The production of whitefish in the State of Mifhigan waters of Lake Michigan was between 2 and 3 million pound in 10 of the 19 years, 1889 and 1891-1908. (See fig. 3.) The eateh was less than 2 million pounds in 6 years (less than 1^{1} 응 million pounds in the 3 years, 1894-1896) and was more than 3 million pounds in only 3 years (1889,1907 , and 1908). The 1889 yield of $5,005,000$ pounds was the highest for which there is a dependable record. The average for the period was $2,370,000$ pounds. Production tended to decrease in the carlier span of years but to increase in the later part of the period.

[^69]

Figure 3.-Commercial production of whitefish in Lake Michigan, 1890-1939. Short dashes, State of Wisconsin waters; long dashes, State of Michigan waters; solid line, entire lake.

The general level of the yield was lower over the period, 1911-1926, than in 1889 and 1891-1908; the 1911-1926 average was only $1,361,000$ pounds. The catch was between 1 and $11 / 2$ million pounds in 10 of the 16 years. Four years (1916, 1917, 1918, and 1926) had productions of more than $11 / 2$ million pounds (more than 2 million pounds in 1917 and 1918) and two years (1920 and 1921) had yields of less than a million pounds.

An increase in production that got under way as early as 1924 and proceeded slowly in the years, 1924-1926, became sufficiently rapid in 1927 to raise the catch above 2 million pounds. The catch continued to increase rapidly until a maximum of $4,813,000$ pounds was reached in 1930. The subsequent decline did not carry the take of whitefish below 2 million pounds until 1934. The average yield for the 7 years, $1927-1933$, was $3,386,000$ pounds. This average was greater than the largest yield reported for any single year earlier than 1929 with the exception of 1889 and possibly of some other years prior to 1891 -years for which accurate statistics are lacking.

The average production of whitefish in the most recent period, 1934-1939, was $1,191,000$ pounds. The yield exceeded $11 / 2$ million pounds in only one year (1934), and in two years (1936 and 1939) it was not far above the lowest catch recorded for any previous year (806,000 pounds in 1920).

The history of the production of whitefish in the State of Michigan waters of Lake Nichigan may be summarized as follows. The catch fluctuated about a level of somewhat more than $21 / 3$ million pounds during the earliest period (1889 and 18911908) for which reliable statistics are available; the ammal yields tended to be below average and to decrease in the earlier years and to he above average and to increase in the later years of this period. The level of production was relatively low in the years, 1911-1926, with the catch exceeding 1^{11}. million pounds in only 4 of the 16 years. The grand average of $1,909,000$ pounds covering both periods (1889-1926) may perhaps be aecepted as the normal yield in these Michigan waters. The years, 19271939, constituted a periol of wide fluetuations in production that resembled the variations that took place in the State of Miehigan waters of Lake Huron at about the
same time (1930-1939). Further considerations of these more recent fluctuations will be found in the next section.

The take of whitefish was relatively high in the Wisconsin waters of Lake Michigan ${ }^{12}$ in most of the earlicr years for which records are available. The catch averaged 481,000 pounds for the years, 1889-1897, and was less than 300,000 pounds in only 1 of 8 years (1890). The yield of 886,000 pounds in 1897 was the highest for which there is a record. (The statistics for 1885 inelude species other than whitefish.)

Statistics of the production of whitefish in the Wiseonsin waters of Lake Michjgan are available for only 2 of the 10 years. 1898-1907. The catches of both 1899 and 1903 were a little above 100,000 pounds and at approximately the level of production for 1908-1917. The average annual take for 12 years within the 20 -year periorl. 1898-1917 was 116,000 pounds. In these 12 yars the production exceeded 150.000 pounds only once (1912) and was less than 100.000 pounds twice (1910 and 1914).

An increase occurred in 1918 in the gencral level of production. The average catch of the 8 years, 1918-1925, was 256,000 pounds. Production within the period was variable and ranged from 131,000 pounds in 1920 to 443,000 pounds in 1923.

The year 1926 was the first in an S-year perioxl during which the output of whitefish in the Wisconsin waters of Lake Michigan rid not fall below 300,000 pounds. The average 1926-1933 yichd was 508,000 pounds. the maximum of 842,000 pounds in 1931 constituting the highest production since 1897. The increased catch in Wisconsin waters of Lake Michigan in 1926-1933 corresponds to the high production in the State of Michigan waters of Lakes Michigan and Huron in approximately the same general period.

The peak Wisconsin yicld of 1931 was followed by a rapid if irregular decrease. The average annual production of the most reeent 6 -year period, 1934-1939. was 171,000 pounds. The eateh of 111,000 poumls in $19: 99$ was the lowest since 1916. Production was below the 1939 level in only 3 years (1910, 1914, and 1916) of the 42 years for which there are records in the period, 1889-1939. Probably the best estimate of the normal take of whitefis for the Wisemsin waters is the grand average for all years (1889-1939), namely, 295,000 poumls.

Despite defects (inchusion of the catches of batckfins. longiaw, and Menominee whitefish) in the whitefish statistics for the whole of Lake Michigan in 1879 and 1885 (in 1890 a separation of the eatches of whitefish and of blackfins. longjaws and pilots was possible for the entire lake but not for Michigan waters; Wiseonsin data were taken from State sourees) the that provile evidence, nevertheless, that the level of proluction of whitefish in the earlier years was consilerably higher than in later rears. The only information on the extent to which the whitefish statistics for Lake Miehigan may have been distorted by the inchasion of the catehes of blaekfins, longjaws, and Menomince whitefish is provided by the flata for 1890. In that year. according to the Report of the United States Commissioner of Fisheries, the cateh of these three species made up $1,398,238$ polnds of the reported whitefisl take of $5,455,079$ pounds in the entire lake. (Data were not given on the production of the species named, in the waters of the individual States.) The catel of whitefish alone (4.056 .841 pounds), therefore mate up 74.4 pereent of the combined output of whitefish, blackfins, longjaws, and Menomince whitefish.

If it is assumed that whitefish made up the same percentage of the reported catch in Lake Michigan in 1879 and 1885 as in 1890 , the following estimates of produetion in these years are obtained: 1879, 8.951.000 pounds; 1885, 6,438.000 pounds. To be sure, the use of the percentage derived from statistical data for 1890 for the estimation of the catch of whitefish in earlier years is open to scyere criticism. Undoubtedly, the relative abundance of whitefish and of blackfins, longjaws, and Menomince whitefish in the catch varied from year to year. Nevertheless, the preecding estimates, inexact as they may be together with records for 1889 and 1890 provide strong evidence in support of the belief that production of whitefish in the

[^70]earlier years of the fishery was greater than in 1891 and subsequent years. The normal annual output of these earlier years most probably exceeded 5 million pounds.

The description of the fluctuations in the production of whitefish in the entire lake before 1911 is made difficult by the lack of complete information in a number of rears. ${ }^{13}$ Records of the total yield are available for only 11 years of the period, 1889 1910. These catches exhibited considerable rariation. The production was less than 2 million pounds in 3 years (1894, 1895, and 1899), ranged between 2 and 3 million pounds in 4 years (1892, 1893, 1896, and 1903), fell between 3 and 4 million pounds in 2 years (1897 and 1908), and exceeded 4 million pounds in 1889 and 1890, the carliest years of the period. The average for the 11 years was $2,813,000$ pounds.

The level of whitefish production for the entire lake was considerably lower in the years, 1911-1926. The catch was greater than 2 million pounds in only 2 years (1917 and 1918) of the 16 , and in 10 years production was below $11 / 2$ million pounds. The 16 -year average was $1,566,000$ pounds.
lmproved catches in both Wisconsin and Michigan waters were responsible for an minterrupted period of 8 years, 1927-1934, in which the total catch of whitefish in Lake Michigan did not fall below 2 million pounds. The production was more than 3 million pounds in 5 of these years (1928-1932), was above 4 million pounds in 3 years (1929-1931), and exceeded 5 million pounds in 1930 . The average for the 8 -year period was $3,717,000$ pounds. The production in each of the 3 years, 1929-1931, was greater than that recorded for any year of the period, 1890-1928, although a higher yield was recorded for 1889 and there is cvidence that the catch of whitefish in certain years prior to 1889 may have been cren greater.

The average annual production of whitefish in Lake Michigan in the most recent 5 -year period, 1935-1939, was $1,201,000$ pounds. The catches in 1936, 1937, and 1939 were all below the smallest yield recorded for any year prior to 1936 except 1920; the 1939 record provides the second report of a total whitefish catch in Lake Michigan of less than a million pounds.

The grand average of $2,074,000$ pounds for the years, $1889-1926$, may perhaps be accepted as the normal yield of whitefish for the entire lake.

RECENT LARGE INCREASE IN THE PRODUCTION OF WHITEFISH IN GREAT LAKES WATERS

The preceding pages were devoted exclusively to a description of fluctuations in the production of whitefish in the various waters of Lakes Huron and Michigan. A discussion of these fluctuations in terms of variations in the abundance of whitefish has been avoided deliberately because of the many disturbing factors that render such interpretations exceedingly unreliable.

A fundamental difficulty in the use of the statistical data of the type given in table 1 for estimations of fluctuations in the abundance of fish lies in the lack of adequate information on the intensity of the fishery. It is known that in general the fishing intensity of the early fishery was far less than that of the modern fisherythat with the passage of the years the number of men and boats engaged in commercial operations increased greatly. It is known too that certain technical developments such as the invention of power lifters, improvements in the efficiency of nets, and the construction of faster and more cheaply nocrated craft, permitted an expansion of fishing activity out of proportion to the mere increase in men and boats. Because of the known increase in fishing intensity a given annual catch in the carlier years of the fishery may be held to indicate a greater abundance of fish than an equally large production a number of years later.

Changes in fishery regulations also may affect production significantly. Increases or decreases in the minimum legal mesh size, the imposition of a closed scason, the establishment or abandonment of a fishery for spawn, the closure of grounds or the restriction of operations in certain areas, changes in the size limit of fish-all these

[^71]and other changes in fishery regulations can lave a profound if undeterminable effect on total yields.

Production may vary according to general economic conditions. In periods of depression low prices may render operations mprofitable and thus bring about a curtailment of fishing activities. On the other hand, an economic depression has been observed in at least one industrial district to have the reverse effect of stimulating fishing intensity. Here numbers of umemployed turned to small-scate fishing as an emergeney source of income-meager, to be sure, but preferable to none at all.

Other factors, such as weather conditions, might be listed which cause fluetuations in production that are independent of the level of abundance of the stock. However, those mentionerl are sufficient to bring out the difficulties inherent in the use of catch statistics for the estimation of changes in the abundanee of fish, particularly over long periods of time.

Despite the limitations just outlined, there in wood reasom to believe that under normal conditions (without disruption in the methods or regulations of the tishers). over limited areas, and for short periods of years, large increases or decreases of production may serve as reliable indieators of increase or dereases in the abundane of fish on the grounds. The changes in anmal vields to not measure the ehangein abundance, but merely indicate their oreurence. This view concerning the general relationship between the production and abundace of fish has grown from the careful examination of records that have been maintained, beginning in 1929, of the ammal fluctuations in the eateh and abmutance of fish on the grounts and in the intensity of the fishery for all commercially important species in 21 fishing areas of the State of Michigan waters of the Great Lakes.

Ordinarily fluetuations in production exemt thone in abundance; that is, the increases in the eatch tend to be relatively greater than the increases in abundance when the latter rises above the average, ant romversely, the deereases in the yields tend to be greater than the decreases in abundane when the latter falls below the average. As a result the curves of proluction oftom are "exaggerations" of the eurves of abundance. This general relationship betwen abundance and cateh has its origin in the eircumstance that fishing intensity tomi to be above average when abundance is above average and below when abundance is below. Of course, exceptions oceus in the relationships outlined above but thres exemtions do not affect the general validity of the statements. ${ }^{14}$

Among the increases in production that afoly may be held to reflert (but not measure) a greater abundance of fish on the gromms are those that occurred in the catch of whitefish in Great Lakes waters near the beginning of the 1930's. Although the actual years of high yields varied somewhat in the different waters an increase occurred in every important center of production. Tlie increase in the eatch was relatively greater in the State of Michigan water- of Lake Huron than in other areas.

The extent to which the recent increase in production was relatively greater in the State of Michigan waters of Lake Huron than in other areas may be brought out by comparisons of the take in the 2 or 3 reernt years of greatest rield with the average eatch neve a period of earlier years. The average production in the peak years, 1931 and 1932. was 3.67 times the average for the years 1889 and 1891-1929. This value is considerably higher than the ratios for other areas as the following labulation shows:

[^72] the whitefish fishery in Lakes Huron and Michigan.

Although the selections of the periods for the preceding comparisons, based on the examination of the statistical data, were to a certain extent arbitrary, reasonable changes in the years included in these periods would not affect the validity of the general conclusion that the increase in the production of whitefish was greater in the State of Michigan waters of Lake Huron than in other Great Lakes areas.

Despite the known risks involved in the estimation of changes in abundance from changes in production, the ratios of the preceding paragraph would suggest the possibility that the recent increase in the abundance of whitefish may have been somewhat higher in the Michigan waters of Lake Huron than in other Great Lakes areas. Information from other sources, however, proves that such an assumption would be utterly invalid. The higher production in the Michigan waters of Lake Huron (as compared to other waters) was made possible by the introduction of a new and marvelously efficient gear, the deep trap net. The use of this net made possible a tremendous increase in fishing intensity. No doubt an inerease in eatch would have taken place without the use of deep trap nets; however, it was deep-trap-net operations that accounted for the relatively greater heights of production attained in the Michigan waters of Lake Huron.

The description of the annual fluctuations in the yields and abundance of whitefish and in the intensity of the whitefish fishery in the Michigan waters of Lakes Huron and Michigan, 1929-1939, presented in part II, is concerned largely with the effects of deep-trap-net operations on the fishery. It is shown that the widespread use of deep trap nets in Lake Huron the gear was fished much less extensively in Lake Michigan) led to a multiphication of fishing intensity that raised production far beyond a reatonable level and was responsible for the subsequent collapse of the fishers:

PART II

FLUCTUATIONS IN THE PRODUCTION AND ABUNDANCE OF WHITEFISH AND IN THE INTENSITY OF THE WHITEFISH FISHERY IN THE STATE OF MICHIGAN WATERS OF LAKES HURON AND MICHIGAN, 1929-1939

INTRODUCTION

In the proper administration of commereial fisheries it is of primary importance to have at hand statistical data that afforl a reliable indication of changes in the abundance of the commercially available stocks of the leading species. These data must include a record not only of the quantity of fish taken, but also of the extent of the fishing operations that led to the reported catch. Obviously, a decrease in production cannot be held with certainty to represent a depletion of the stock unless it can be demonstrated that this lowered rield has not resulted from a reduction of fishing intensity. On the other hand, an increase in catch with its suggested danger of possible overfishing may not be the result of an expansion of fishing activities but may originate in an increase in the abundance of fish on the grounds. Nor can it be said that a sustained production over a period of years demonstrates a corresponding stability of abundance, for abundance may decline or increase greatly while compensating fluetuations of fishing intensity holi the total catch at a nearly con-tant level. The true condition of the fisheries, therefore, cannot be measured accurately be statisties of catel alone, but should be expressed in terms of proluction in relation to fishing intensity, that is, eateh per unit of fishing effort.

It was with a view toward obtaining complete and reliable information on the fisheries of the Great Lakes waters under the jurisdiction of the State of Michigan that the senior author devised and recommended to the Michigan Department of Conservation the monthly report system now in effect. Culer this system all licensed commercial fishermen must submit each month a complete recorl of their daily fishing activities. The required data on each day's fishing inchude: fishing locality; kind and amount of gear fished; the length of time (number of might= out) stationary gear fished before it was lifted; and the eatch in pounds of euch species taken. From these data it is possible to determine both the yield and the intmsity of the fishery.

The law requiring the submission of momthty reports became effective in September 1927. The early returns were incomplete and the individual reports were often faulty, By the beginning of 1929, however, the fishermen had obtained sufficient experience in making out their reports so that almost all returns contained the complete data necessary for statistical analysis. These records for the 11-year period, 1929-1939, eomprise the basic materials on which part II of this paper is founded.

METHODS OF ANALYSIS

Methods proposed for the analysis of Great Lakes fishery statistics were deserihed by Hile and Duden (1933). ${ }^{15}$ In general, the procedure outlined in this publication has proved satisfactory, although subsequent experience has shown certain simplifications of the original methods to be valid. (See discussion meler "Tnits of Fishing Effort" in this section.) As an addition to the original procedure, methods have been devised for a more precise statement of changes in aboudanee and fishing intensity.

sTATISTICAl, DISTRICTS

Statistical tabulations and analyses have been made separately for six areas in Lake Huron and eight in Lake Michigan. (The boundaries of the different districts are indicated in the accompanying chart, fig. 4.) It was attempted to make these dis-

[^73]

Floure 4.-Map showing the statistical districts of the State of Michigan waters of Lakes Huroo and Michigan.
tricts natural divisions from the standpoint of both fishing grounds and fishing operations. ${ }^{16}$ For some purposes the data for the separate districts have been combined to provide more general information for different regions of the lakes and for the entire lakes. For convenience, the districts will be designated in later discussions by the initial letter of the lake and the number of the district. For example, the third district of Lake Huron will be termed H-3, the fifth district of Lake Michigan, M-5,***.

PRODUCTION

The production was tabulated according to gear for each month. The only important gears used for the taking of whitefish are the large-mesh gill net ($41 / 2$ inches or larger, stretched measure), the deep trap net, and the pound net. The discussion in this paper will be concerned chiefly with annual totals of the catch of the different gears and of all of them combined. Data on monthly yiclds will be confined to the discussion

[^74]of the effects of the deep trap net on the seasonal trend of production in Lake Huron (p. 332).

CNiTs OF FISHING EFFORT

> The units of fishing effort employed in this paper are:
> Cill nets.-The lift of 10,000 linear feet of net $\left(10,000\right.$ foot-lifts). ${ }^{1 t}$
> Impounding nets (deep trap nets and pound nets). The lift of one net (1 netlift).

Fishing effort may be expressed as total effort and as effective effort (with respect to a given species). In large-mesh gill nets, for example, the total effort for a given area over a certain interval of time is the total number of units of 1,000 feet (see footnote 17) of net lifted. The effective effort with respect to whitefish is the number of units of gill net lifted that actually took this species. Corresponding definitions of total and effective effort apply to the pound net. A distinction between total and effective effort is necessary because both large-mesh gill nets and pound nets are fished for other species on grounds where whitefish do not occur. In the deep trap net, which was designed and operated primarily for the capture of whitefish, the total fishing effort and the effective cffort with respect to this species may be considered identical. All tabulations of eatch per lift in this paper are based on effective fishing effort.

In addition to the above "units of effort," the methods proposed by Hile and Duden defined "units of intensity" which included a consideration of fishing time (nights out). The intensity unit for gill nets was defined as the fishing effort of 1,000 fect of gill net over a period of one day, and for impounding nets as the fishing effort of one net over a period of one day. The basis for these definitions of intensity units was the assumption that the amount of fishing done by tationary gear varies directly with the time out. This assumption holds, for example, that and which is out three nights may be expected to take three times as many fish a- the same net in one night.

Subserfuent detailed anatyses of hundreds of fishermen's reports made by Hile and described briefly by him in 1935^{18} and by Van Oosten (1935) ${ }^{19}$ have proved this preliminary assumption to be erroneous. Although the cateles of both gill nets and impounding nets, on the average, become larger with increase in fishing time, the improvement in the cateh is far less than might be expected on theoretical grounds. A summary of the data on the actual relationship between fishing time and the average size of the lift in the gears most important in the whitefish fishery appears in table 2. In this table all catches are expressed as percentages of the eatch of nets one night out. Although the data for the three gears disagree somewhat as to the relationship between the actual size of the catch and the number of nights out, these small discrepancies lose signifieance in the face of the large deviations that all the actual catches show with respect to the theoretical catches. For example, the largest inerease in nets 2 nights out over nets 1 night out (pound nets) was only 16 percent of the expected inerement of 100. Similarly, the largest increase in the cateh of nets 5 nights out over 1 night out (54 in pound nets) was only 13.5 percent of the expected inerement of 400 . It is obvious, therefore, that only small increases in the catch can be expected as the time between lifts is increased. Consequently, the use of the catch per net per night as a measure of abundance is not valid. The strictly valid mit for the measure of ahondance in neither the eatch per lift nor the catch per night, but is rather the eatch per lift, corrected for fishing time (from empirical data of the type contained in table 2).

The necessity for considering fishing time in the computation of annual fluctuations in abundance depends, of course, on the existence of annual variations in the average number of nights out. Amnual variations in fishing time oceur in all areas and for all stationary gears, but for a single area and a single type of gear these variations have a limited and characteristic range. The limited range of variation in the average number of nights out, together with the fact that a clange in fishing time affects the

[^75]Table 2.-Relationship betueen fishing time and the average size of the lift
[In order that the data for the different ycars may be comparable, the catch per lift at one night out is set at 100 and all other catches
expressed as perceatuges of this value. In pareutheses, the number of fishermen's reports upon which determination was based]

Item		Number of nights out				
		1	2	3	4	5
Theoretical catch.		100	200	300	400	500
	Large-mesh gill nets	100	${ }_{(311}$	120 (430)	133 (403)	${ }^{150}$
Actual catch.	Deep trap nets.-.-	100	115	116	128	1126
			(15\%)	(228)	(272)	(197)
	Pound nets	100	$\begin{array}{r} 116 \\ (35.3) \end{array}$	$\begin{gathered} 138 \\ (458) \end{gathered}$	$\begin{gathered} 141 \\ (306) \end{gathered}$	$\begin{aligned} & 154 \\ & (177) \end{aligned}$

${ }^{1}$ Less than preceding catch.
size of the eatch only slightly, suggested the porsibility that abundance curves calculated from the average catch per lift without reference to time might differ only slightly from curves calculated from the average catch per lift, corrected for time. To test this possibility a series of abundance curves for the period, 1929-1934, was computed by cach of the two methods, covering all types of stationary gear and a variety of species and fishing areas. For each gear particular care was taken to select the statistical district with the widest annual variation in the average fishing time. Despite this selection, in each example the two curves resembled each other so closely that the same conclusions concerning the anuual changes in abundance would have been drawn from either of them. As the neglect of the time element does not affect the results materially, all computations of abundance have been based on the ratch per hift, without reference to time.

Estimation of abundance and fishing intensity

The method employed for the estimation of the abundance of species of fish in the State of Michigan waters of the Great Lakes in different calendar years was outlined by Hile (1937). ${ }^{20}$ The definition of fishing intensity was given by Hile and Jobes (1941). ${ }^{21}$ The steps in the determination of the general abundance of a species within a fishing area (statistical district) in a particular calendar year are:
(1) The "expected catch" of each important gear is determined as the product of known fishing intensity (number of impounding nets or thou*ands of feet of gill nets, that took the species, lifted within the district haring the entire 12 months) and the average catch of that species per unit of fishing effort over a period of ycars.
(2) The expected catches as determined individually for the important gears are added to obtain the "total expected catch."
(3) The "general abundance" is the actual catch of the important gears expressed as a percentage of the total expected catch of the same gears.

As the average catch per unit of effort is constant in all of the computations of expected catch for a single type of gear, annual fluctuations in the expected catch by each gear and hence for all gears combined depend only on the amount of gear lifted. Consequently, the total expected catch of any single rear, expressed as a percentage of the average total expected catch over a period of years, provides a measure of the relative intensity of the fishery in that particular year.

The above procedures make it possible to combine the data for all gears important for the capture of a particular species in such a way as to obtain estimates of the "gencral" abundance and of the total fishing intensity.

Originally all estimates of abundance and fishing intensity were made with reference to average conditions over the 6-year period, 1929-1934. Later, the percentages were adjusted to describe deviations about the mean for the 11 years, 1929-1939.

[^76]
GENERAL REMARKS

It does not come within the province of this paper to undertake a detailed criticism of the statistical methods employed here, to discuss at length possible sources of systematic errors, to attempt to estimate the degree of reliability of certain necessary approximations, or to explain the basis for the selection of methods followed over possible alternative procedures. It can be said only that the methods employed for the analysis of the statistics of the commercial fisheries of the Great Lakes have been developed gradually from a careful study of extensive data covering all the commercially more important species over a period of years and in a large number of different localities. These methods have been adapted specifically to conditions in the Great Lakes. An outstanding feature of the Great Lakes fisheries is that most species are taken in quantity by several types of gear and that most types of gear take several species (usually simultineously). These circumstances add greatly to the complexity of the problem of analysis.

No claims are advanced for the indexes of abundance and fishing intensity as "precision measures" of the changes that occurred in the fishery. On the other hand, we believe them to be sufficiently sensitive to bring out all changes of significant magnitude. This belicf is supported by the consistency with which conclusions based entirely on our statistical data have been corroborated by reliable evidence gained independently from other sources (interviews with fishermen; observations of field workersi.

Although, as stated previously, a general eriticism of our methods of analysis will not be undertaken, it does appear desirable to call attention to certain difficulties of interpretation peculiar to the statisties of the whitefish fishery.

It is indeed unfortunate that the statistical data on the commercial fishery for whitefish are less satisfactory than those for any other important commercial species. The invention and rapid expansion in the use of tlat tremendously efficient gear, the deep trap net, brought about, particularly in Lake Huron, an almost immediate threat of depletion or commercial extinction to the whitefish stoeks of the areas in which the net was fished. In this critical situation the nee! for dependable statistical measures of abundance was most pressing. However, the very circumstances that made the need for adequate statistical data so urgent also made the interpretation of these data difficult. The chief obstacles to appraising the statistical data on the whitefish over the period. 1929-1939, are: lack of information concerning normal conditions, inaccurate data on the deep-trap-net fishery, and the difficulty of bridging the transition to a fishery dominated by this gear.

As stated earlier (p. 314), in the statistical study of the important commercial species in the State of Michigan waters of the Great Lakes, the average conditions of production, abundance, and fishing intensity during the 6-year period, 1929-1934, were employed tentatively as the point of refcrence for the study of fluctuations. The fisheries for most species appeared to be approximately normal (with reference to modern ennditions) during this period; consequently the 6 -year arerages may be experted to proride a fairly reliable basis for estimating changes in the enndition of the fisheries, not only in that periol but in suberquent rears as well.

The whitefish fishery, however, was not normal in the years, 1929-1934, nor can ther average conditions in the longer period, 1929-1939, be held to provide a satisfactory: mint of reference. It is reeognized generally that whitefish were abnormally abundant at the beginning of these periods. The peak of abundance probably was reached in Lake Michigan in 1929 and in Lake Huron a year or so later. The high abundance in turn stimulated fishing intensity. As a result, production, abundance, and fishing intensity were all doubtless far above normal in the earlier years of the period for which detailed statistics are available. It should then be kept in mind throughout the diseussion of the following sections that all fluctuations are described with reference to averages the relationshin of which $t \mathrm{n}$ the normal is not known.

The interpretation of the Lake Huron data is made even more difficult by the disturbing effects of the use of the defp trap net. This gear, which berame the dominant one for the capture of whitefish as early as 1931, raised production to excessjue heiglits and disrupted completely the ordinary eourse of return to normal conditions.

The fact that in all districts but H-2 the deep trap net was not fished throughout the entire "period of reference" (1929-1934) introduced certain difficulties into the estimation of abundance. For example, the deep trap net was operated in H-1 during only 5 years $(1930-1934)$ of this 6 -year period. The average catch of whitefish per lift of deep trap nets in the years, 1930-1934, was 111.08 pounds. However, the data for large-mesh gill nets and pound nets indicated that the 1930-1934 abundance averaged only 99.12 percent of the 1929-1934 mean. Consequently, the average catch per lift of deep trap nets would have been higher had the gear been fished in 1929 also. It was necessary, therefore, to base the computations of the expeeted catch (p.314) of deep trap nets on the "corrected" eatch per lift, $111.08 / 0.9912=112.07$ pounds.

Although this method of "correcting" the average catch per lift of deep trap nets (in some districts the data for pound nets had to be treated similarly) is sound logically, the actual reliability of the results is open to question in some districts in which the rise of the deep-trap-net fishery was accompanied by the practical extinction of the gill-net and pound-net fisheries (for whitefish). The correction was based, for example, on the data for only 3 years in H-3 and H-5 and for 2 years in H-6. The difficulties involved in following annual changes in abundance in areas in which the deep trap net replaced other types of gears completely or nearly completely will be mentioned again on page 328 .

The deep trap net was important also in Cireen Bay and northern Lake Michigan, but the disturbance of the fishery was not as severe as in Lake Huron.

Although the greatest need for dependable statistical data existed with respect to those districts in which the deep trap net became almost the only gear that produced whitefish, it was for precisely these areas that the original data were least trustworthy. This lack of dependability had its origin in the extensive inaccuracies and misstatements of fact known to have occurred in the reports of numerous deep-trap-net fishermen. This observation is not intended as an indictment of any fisherman or group of fishermen. Nevertheless, the fact that these inaccuracies existed cannot well be ignored. To discuss changes in abundance computed from deep-trap-net data without giving some idea as to their degree of dependability would be misleading. Misstatements were found in the reports of deep-trap-net fishermen as to the type of gear fished, the numbers of nets lifted, and the size of the eatch.

Numerous deep-trap-nct reports were indicated erroneously to be reports of poundnet operations. Most of the errors of this type were made by operators in the Saginaw Bay region in 1931 and in both the Saginaw Bay and Harbor Beach regions in 1932. In other years and in other districts the designation of deep trap nets as pound nets was much less frequent. Without naming sources of information or explaining the procedure followed, it may be stated that we are certain that we have detected and corrected practically all, if not all, of the misstatements as to the type of gear. Consequently, this originally serions source of error does not affect materially the data of this paper.

It has not been possible to correct the inaccuracies of data as to the number of nets lifted and the size of the catch, nor is there any basis for a good estimate of the extent of these inaccuracies. Where there was opportunity of comparing actual and reported data the discrepancies were sometimes appalling. Some fishermen not only reported incorrectly the number of nets lifted but gave dates of lifting that did not coincide with the dates on which they actually left port. The reported catches were often understatements. The extreme in this tape of misrepresentation is offered by the report of an nnerator who is known to have taken more fish in a single day than he reported for the entive month. It must be considered highly mohable that the actual total production of whitefish in deep trap nete was far abow that recorded in this study.

In calling attention to the defects in the deep-trap-net data it is not intended to imply that all operators of deep trap nets submitted erroneous and carelessly prepared reports. There is good evidence that many of them prepared scrupulously accurate accounts of operation and of catch. Although the number of inaccurate reports may be sufficient to invalidate the deep-trap-net data as descriptive of details, these data still serve satisfactorily to indieate the trends of the fisheries in the different districts. This view finds support in the fact that for the whitefish as well as for other species there
was good agreement between conclusions as to the course of the fishery based on statis－ tical data and on the testimony of the fishermen themselves．

WHITEFISH FISHERY OF LAKE HURON，1929－1939

In part I attention was called to the general increase in the abundance and pro－ duction of whitefish that occurred in the waters of the Great Lakes in the late 1920＇s and early 1930 ＇s．Emphasis was placed on the fact that the inerease in yield in Miehi－ gan waters of Lake Huron was relatively much higher than in other waters．The average Michigan eatch in Lake Huron in the two peak years， 1931 and 1932，was 3.67 times the average annual production over a period of earlier years，and the years 1930， 1933，1934，and 1935 had vields well above normal，whereas in other waters the average annual productions during the recent maximum were only 1.26 to 2.86 times the earlier arerages（ p .309 ）．The excessive catch in Lake Huron was attributed to the widespread use of the deep trap net in that lake．The detaile！data that will be presented for the six statistical districts in the State of Michigan waters of Lake Huron fully support this earlier position．In fact，the origin and expansion of the deep－trap－net fishery dominate the recent history of Michigan＇s whitefish fishery of Lake Huron so completely that a summary of the 1929－1939 statisties constitutes in reality little more than a study of the effects of this new gear．

The deep trap net was introduced into Lake Huron off Alpena，Mich．，in district H－2 in July 1928，and continued to be fisherl in the same area in 1929．The rapid expansion of the deep－trap－net fishery got under way in 1930．In this year the net was fished extensively not only in the neighborhood of Alpena but also in H－1（especially in Hammond Bay）and in $\mathrm{H}-3$（mostly from Au Sable－Oscoda）；a few deep trap nets were used also in 1930 on the＂Middle Grounds＂off Saginaw Bay（H－4）．No new sta－ tistical districts were added to the deep－trap－net grounds until 1932．in the latter part of which season the net was introduced into the waters of southern Lake Huron of Harbor Beach（H－5）．The expansion into H－6 in 1933 completed the coverage of the Diehigan waters of the lake．This sequence makes the history of the deep－trap－net fishery，in a sense，discontinuous as the major＂scene of action＂shifted from year to year．

FLL゙CTL゙ITION゙ IN TIIE PRODC゙CRIUN゙ OF W゙111TEFIC11 IN LAKE HC゙RON

The production of whitefish in Lake Huron ${ }^{22}$ increased phenomenally in 1930 and 1931 （table 3）．The catch of 2.879 .000 pounds in 1930 was nearly twice the 1929 vield of $1,456,000$ pounds．and the 1931 production of $4,140,000$ pounds represented an addli－ tional increase of $1,260,000$ pounds above the 1930 level．The decline from the 1931 yield was relatively insignificant in 1932 decereave of 89,000 pounds）．The reduction in the cateh was large，however，in the succeeding years，averaging 719.000 pounds per year for the 3 years， $1933-1935,446,000$ pounds for the 3 years， $1936-1938$ ，and 303.000 pounds in 1939．Despite these large decreases the eateh did not return to an approxi－ mately nomal level until 1936．The subsequent deches earried the production far below normal．The 1938 yield of 558.000 pounds was only a little above the lowest rateh recorded for any previous year（ 555.000 pounds in 1900），and the 1939 production of only 255,000 pounds was less than half the previous all－time low．The 11－year period（1929－1939）saw，therefore，a remarkable cyele in the yield of whitefish in Lake Huron．From a nearly normal level in 1929 the eateh increased suddenly to the un－ precedented height of more than 4 million pounds in 1931 and 1932 only to decline rapidly to an unprececlented low yield in 1939.

Much of the inerease to the 1931－1932 peak and of the high production in 1933－1935 can lie traced to the new gear，the deep trap net．The eatch by this gear jumped from 87.000 pounds in 1929 to 871.000 pounds in 1930 （a ten－fold increase），2，080，000 pounds in 1931，and 2．764．000 pounds（the peak production for the gear）in 1932．The catch of deep trap nets did not fall below 2 million pomels in the 4 years，1931－1934．

[^77]Table 3.-Production of uhitefish in pounds according to gear in the State of Michigan waters of Lake Huron, 1929-1999

[Percentages of annual yield in parentheses]						
Year	Production in gear				$\begin{gathered} \text { Total } \\ \text { annual } \\ \text { production } \end{gathered}$	$\begin{gathered} \text { Increase } \\ \text { or } \\ \text { decrease } \end{gathered}$
	Large-mesh gill net	$\begin{aligned} & \text { Deep trap } \\ & \text { net } \end{aligned}$	Pound net	Other		
1929	$\begin{array}{r} 489,961 \\ (33.6) \end{array}$	$\begin{array}{r} 87,121 \\ (6.0) \end{array}$	$\begin{array}{r} 823.696 \\ (56.6) \end{array}$	$\begin{array}{r} 55.590 \\ (3.8) \end{array}$	1,450, 368	-12.433
1930.	$\begin{array}{r} 613.752 \\ \{21.3\} \end{array}$	$\begin{array}{r} 8 \pi 1,321 \\ (30.3) \end{array}$	1,302,586 (45.2)	$\begin{array}{r} 91,781 \\ (3.2) \end{array}$	2,569,40	1,423,072
1931	$\begin{array}{r} 619,515 \\ (15.0) \end{array}$	$\begin{array}{r} 2,079,596 \\ (50.2) \end{array}$	$\begin{array}{r} 910,940 \\ (22.0) \end{array}$	$\begin{array}{r} 1529,721 \\ (12.8) \end{array}$	4,139,772	1,260,332
19.32	$\begin{array}{r} 385.566 \\ (9.5) \end{array}$	$\begin{array}{r} 2,764,317 \\ (68.2) \end{array}$	$\begin{array}{r} 569.698 \\ (14.1) \end{array}$	$\begin{array}{r} 1330,753 \\ (8,2) \end{array}$	$4,050,3334$	-89,438
1933	$\begin{array}{r} 269,271 \\ (5.1) \end{array}$	$\begin{array}{r} 2,704,576 \\ (51.1) \end{array}$	$\begin{array}{r} 305.229 \\ (9.2) \end{array}$	$\begin{array}{r} 54,85 \\ (1.6) \end{array}$	3,333,901	-716.433
1934	$\begin{array}{r} 189,701 \\ (7.4 \end{array}$	$\begin{array}{r} 2,061,483 \\ (s) 0.3) \end{array}$	$\begin{array}{r} 258,207 \\ (10.0) \end{array}$	$\begin{array}{r} 59,342 \\ (2.3) \end{array}$	2,565,233	-765.663
1335..	$\begin{array}{r} 132,789 \\ (7.0) \end{array}$	$\begin{array}{r} 1,497,342 \\ (78,5) \end{array}$	$\begin{array}{r} 172.250 \\ (9.1) \end{array}$	$\begin{array}{r} 102.396 \\ (5.4) \end{array}$	1,994,807	$-673,426$
1936	$\begin{array}{r} 8 \times, 951 \\ (6.2) \end{array}$	$\begin{array}{r} 1,166,707 \\ (90,9) \end{array}$	$\begin{array}{r} 127,100 \\ (8.5) \end{array}$	$\begin{array}{r} 59,411 \\ (4.1) \end{array}$	1,442.169	-4.52,638
1937	$\begin{array}{r} +9,937 \\ (4.9) \end{array}$	$\begin{array}{r} 834,154 \\ (\$ 1,4) \end{array}$	$\begin{array}{r} 107,221 \\ (10.5) \end{array}$	$\begin{array}{r} 27,3.39 \\ (2.1) \end{array}$	1,018,681	-423.488
1938	$\begin{aligned} & 53,677 \\ & (10.0) \end{aligned}$	$\begin{array}{r} 423.073 \\ (50.45 \end{array}$	$\begin{aligned} & 58,813 \\ & (10.5) \end{aligned}$	$\begin{array}{r} 20,406 \\ (3.7) \end{array}$	557,969	$-460,712$
1939	$\begin{aligned} & 41,072 \\ & (16.1) \end{aligned}$	$\begin{array}{r} 178,517 \\ 170.07 \\ \hline \end{array}$	$\begin{array}{r} 28,911 \\ (11.3) \end{array}$	$\begin{array}{r} 6.693 \\ (2.6) \\ \hline \end{array}$	235.183	-302.786
Average	266,927 (12.4)	$\begin{array}{r} 1,232,365 \\ (62.1\} \end{array}$	$\begin{array}{r} 424.062 \\ (19.5) \end{array}$	$\begin{array}{r} 121,615 \\ (5.7) \end{array}$	2,145,163	

tA considerable portion of this catch, entered in the urigiaal records under the heading, "Gear unknown," was taken by decp trap nets,
It cannot be concluded that all of the production of deep trap nets represented additional demands on the whitefish stoek of Lake Huron or that an increase in yield would not have taken place after 1929 without the operation of this gear. Substantial increases occurred in the production of whitefish by both gill nets and pound nets in 1930, and the 1931 catch in these gears was above the 1929 level. Unquestionably the output of gill nets and pound nets would have been even higher in 1930 and 1931 and the subsequent decline in production in those two gears would have been less rapid had not considerable numbers of fishermen abandoned the use of gill nets and pound nets in favor of the much more efficient deep trap net. On the other hand, the fact that deep trap nets produced more whitefish in every year of the 5-year period, 1931-1935, than did all gears combined in 1929, and did so, as will he shown later (p. 330) in the face of a rapid decline in abundance after 1931, suggests that this gear possesses capabilities for the capture of whitefish far greater than can be attributed to either gill nets or pound nets. (Superiority of deep trap nets over pound nets is due largely to the greater range of fishing depths of the former. Sce pp. 331 and 332.) Although the deep trap net cannot be held to be solely responsible for the inerease in production that took place after 1929, the conclusion is justified, nevertheless, that the increase would have been much smaller had this gear not been fished.

The superiority of the deep trap net for the capture of whitefish is indicated strongly by the speed with which it replaced other gears. In 1929 deep trap nets aecounted for only 6.0 percent of the total yield of whitefish in Lake Huron. Two years later in 1931 they took more than half the total and by 1933 were responsible for more than 80 percent of the catch. Deep-trap-net production as a percentage of the total yield fluctuated about the 80 -percent level for 5 years (1933-1937) and declined only with the virtual collapse of the fishery in 1938 and 1939.

The deep trap net became at some time the dominant gear for the eapture of
whitefish in every statistical district of Lake Huron (table 4 and appendix B). With the increase in the use of deep trap nets the operations with pound nets and gill nets declined in most districts to the point of insignificance. Only in $\mathrm{H}-1$ did the deep trap net fail to become established as the overwhelmingly dominant gear. The percentage of the total production of whitefish taken by deep trap nets was not greater than 38 percent in that district before 1935, and exceeded 50 percent in only 3 years (1936, 1937, and 1939). In other districts the deep trap net accounted for more than 50 percent of the total catch of whitefish in the first or second year of operation (possible exception in H-4 where considerable quantities of whitefish taken by deep trap nets in 1931 are included in the catches for which the records of gear were not available) and maintained a dominant position with great consistency throughout the later years. This statement is true especially for southern Lake Huron ($\mathrm{H}-5$ and $\mathrm{H}-6$ combined) where the cleep trap net was responsible for more than 90 percent of the total yield in every year after 1932 and for more than 95 percent in every year after 1935.

Table 4.-Production of whilefish in pounds in deep trap nets in Lake Huron, 1929-1999
[In parentheses, the deep-trap-net production expressed as a percentage of the total whitcfish production]

[^78]A peculiar feature of the production of whitefish in Lake Huron, 1930-1935, lay in the circumstance that a high level of yield was maintained by a successive rather than a simultaneous exploitation of the stocks in the various portions of the lake (table 5 and appendix B). In each area the catch of whitefish followed a typical cycle after the introduction of the deep trap net. Production was raised to tremendous heights for about 2 years, only to fall away sharply. Since the use of the deep trap net spread gradually throughout the lake, first one area and then another bore the burden of heary fishing.

Although the deep trap net was fished in H-2 in 1929 (in 1928 also), it did not produce large quantities of fish until 1930. In this same year the net was employed extensively in $\mathrm{H}-1$ and $\mathrm{H}-3$ also and was introduced into $\mathrm{H}-4$. In 1931 high yields were obtained in each of these first four districts. Thus it was possible for the production of whitefish in Lake Huron to increase phenomenally in 1930 and attain an

Table 5.-.Total annual production of whitefish in pounds in the different districts and areas of the State of Michigan waters of Lake Huran, 1939-1939
[Each total is expressed also as the percentage (in parentheses) of the production of the entire lake]

District or area	Total whitebish production in year											Average
	1929	1930	1931	1932	19.33	1934	1935	1436	1937	1938	1939	
H-1	$\begin{aligned} & 375,577 \\ & (25,8) \end{aligned}$	$\begin{gathered} 127.5,362 \\ (26.2) \end{gathered}$	$\begin{aligned} & 2987.465 \\ & (23.8) \end{aligned}$	$\begin{aligned} & 623,670 \\ & (15.4) \end{aligned}$	$\begin{aligned} & 361,683 \\ & (11.0) \end{aligned}$	$\begin{aligned} & 375,105 \\ & (14.7) \end{aligned}$	$\begin{aligned} & 372,874 \\ & (19.7) \end{aligned}$	$\underset{(37.5)}{5+1,392}$	$\begin{aligned} & 373,755 \\ & (36.7) \end{aligned}$	$\begin{gathered} 180,127 \\ (32.3) \end{gathered}$	$\begin{aligned} & 141,051 \\ & (55,3) \end{aligned}$	$\begin{aligned} & 463,197 \\ & (21,6) \end{aligned}$
	$\left\{\begin{array}{l} 1274,640 \\ (18.9) \end{array}\right.$	$\begin{aligned} & 254,526 \\ & (20.7) \end{aligned}$	$\begin{aligned} & 2478,969 \\ & (11.6) \end{aligned}$	$\underset{(2,9)}{11 \pi, 432}$	$\begin{aligned} & 56,745 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 93,116 \\ & (3.6) \end{aligned}$	$\underset{(6.2)}{118.285}$	$\begin{gathered} 35,606 \\ (3.9) \end{gathered}$	$\begin{aligned} & 20,81: 3 \\ & (2.0\rangle \end{aligned}$	$\underset{(3,4)}{41,363}$	$\begin{gathered} 42,295 \\ (16.5) \end{gathered}$	$\begin{aligned} & 172,162 \\ & (8.0) \end{aligned}$
	$\left\{\left.\begin{array}{c} 650,247 \\ (44.7) \end{array} \right\rvert\,\right.$	$\begin{gathered} 1,349,888 \\ (46.9) \end{gathered}$	$\begin{aligned} & 1,466.435 \\ & (35.4) \end{aligned}$	$\begin{gathered} 741,102 \\ (15,3) \end{gathered}$	$\begin{aligned} & 422.42 \mathrm{~s} \\ & (12.7) \end{aligned}$	$\begin{aligned} & 471,221 \\ & (18,3) \end{aligned}$	$\begin{aligned} & 491,161 \\ & (25.9) \end{aligned}$	$\begin{aligned} & 396,998 \\ & 41,4) \end{aligned}$	$\begin{aligned} & 394,56 \mathrm{~s} \\ & (38.6) \end{aligned}$	$\begin{aligned} & 221,490 \\ & (39.7) \end{aligned}$	$\begin{aligned} & 153,336 \\ & (71,8) \end{aligned}$	$\begin{aligned} & 635,34.2 \\ & (29.6) \end{aligned}$
H-i	$\frac{98,515}{(6,5)}$	$\begin{gathered} 12247.572 \\ (8.6) \end{gathered}$	$\begin{aligned} & { }^{2} 470.422 \\ & (11.4) \end{aligned}$	$\begin{aligned} & 137,463 \\ & \{3.4) \end{aligned}$	$\begin{aligned} & 14,130 \\ & (0.4) \end{aligned}$	$\begin{aligned} & 14,393 \\ & (0,6) \end{aligned}$	$\begin{aligned} & 8.907 \\ & (0.5) \end{aligned}$	$\begin{gathered} 8.006 \\ (0.6) \end{gathered}$	$\underset{(0,799}{(0,3)}$	$(1,7)$	$\begin{gathered} 5.5 \\ (0.2)^{5} \end{gathered}$	$\begin{aligned} & 92,021 \\ & (4.3) \end{aligned}$
$\begin{aligned} & \mathrm{H}-4 . \mathrm{Co} \\ & \text { Central Lake } \\ & \text { Huron }(\mathrm{H}-3 \text { and } \\ & \mathrm{H}-4) \end{aligned}$	$\begin{aligned} & 5.11 .605 \\ & (39.2) \end{aligned}$	$\begin{gathered} 1,043,395 \\ (36.2) \end{gathered}$	$\begin{gathered} 1,914,055 \\ (47.0) \end{gathered}$	$\begin{gathered} 2,462.958 \\ (60.8) \end{gathered}$	$\begin{gathered} 261.562 \\ (22.8) \end{gathered}$	$\begin{aligned} & 194,945 \\ & (7.6) \end{aligned}$	$\begin{aligned} & 212,513 \\ & (11.2) \end{aligned}$	$\frac{138,717}{(4.9)}$	$\begin{aligned} & 15,5,091 \\ & (15.2) \end{aligned}$	$\begin{gathered} 55.895 \\ (10.0) \end{gathered}$	$(10.2)^{25.945}$	$\begin{aligned} & 687,337 \\ & (32.0\rangle) \end{aligned}$
	$\left\{\begin{array}{l} 670.427 \\ (46.0) \end{array}\right.$	$\begin{gathered} 1,230,967 \\ (44,8) \end{gathered}$	$\frac{2,41,5,505}{(5 x, 4)}$	$\begin{gathered} 2.600,421 \\ (64.2) \end{gathered}$	$\begin{aligned} & 755.642 \\ & (23.2) \end{aligned}$	$\begin{aligned} & 209.344 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 221,420 \\ & (11.6) \end{aligned}$	$\begin{aligned} & 136,723 \\ & (9,5) \end{aligned}$	$\begin{aligned} & 157.859 \\ & 15.59 \end{aligned}$	$\begin{aligned} & 65,045 \\ & (11.6) \end{aligned}$	$\begin{gathered} 26,502 \\ (10.4) \end{gathered}$	$\begin{aligned} & 779,353 \\ & (36.3) \end{aligned}$
H-5	$\begin{aligned} & 62,987 \\ & (4,3) \end{aligned}$	$\begin{aligned} & 91,+93 \\ & (3.2) \end{aligned}$	$\begin{aligned} & 74,038 \\ & (1.8) \end{aligned}$	$\begin{aligned} & 1513,409= \\ & (12.7) \end{aligned}$	$\begin{gathered} 1,676.432 \\ (50.3) \end{gathered}$	$\begin{aligned} & 784,215 \\ & (30.5) \end{aligned}$	$\begin{aligned} & 273,421 \\ & (14.4) \end{aligned}$	$\begin{aligned} & 119,140 \\ & (4,3) \end{aligned}$	$\begin{aligned} & 66,325 \\ & (6.6) \end{aligned}$	$\begin{gathered} 41.915 \\ \langle 7.5\rangle \end{gathered}$	$\frac{10,24}{(4,8)}$	$\begin{aligned} & 337.830 \\ & (15.8) \end{aligned}$
H-6	$\begin{aligned} & 7,0,71 \\ & \{5,0\rangle \end{aligned}$	$\begin{aligned} & 117.092 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 180.791 \\ & (4.4) \end{aligned}$	$\begin{aligned} & 195,4(12) \\ & (4.8) \end{aligned}$	$\begin{aligned} & 459.349 \\ & (13.8) \end{aligned}$	$\begin{gathered} 21,103,4.53 \\ (43.0) \end{gathered}$	$\begin{aligned} & 3908,80,5 \\ & (4 \times, 0) \end{aligned}$	$\begin{aligned} & 359,304 \\ & (40.3) \end{aligned}$	$\begin{aligned} & 399,399 \\ & (59.2) \end{aligned}$	$\begin{aligned} & 209.516 \\ & (41.1) \end{aligned}$	$\begin{gathered} 33,095 \\ (13.0) \end{gathered}$	$\begin{aligned} & 392,633 \\ & (15.3) \end{aligned}$
Susthern Lake Hirou (H-5 and H-6)	$\left\{\begin{array}{l} 135,728 \\ (9,3) \end{array}\right.$	$\underset{(8,3)}{238,585}$	$\begin{gathered} 254,829 \\ (6.2) \end{gathered}$	$\begin{gathered} 708.811 \\ (17.5) \end{gathered}$	$\begin{aligned} & 2,135.781 \\ & (64.1) \end{aligned}$	$\begin{gathered} 1.857 .668 \\ (73.5) \end{gathered}$	$\begin{gathered} 1,142,206 \\ 162.4) \end{gathered}$	$\begin{gathered} 708.44 x \\ (49.1) \end{gathered}$	$\begin{aligned} & 406.224 \\ & (45.3) \end{aligned}$	$\begin{gathered} 271,431 \\ (4 \times .6) \end{gathered}$	$\begin{gathered} 45,345 \\ (17.8) \end{gathered}$	$\begin{gathered} 730,462 \\ (34.1) \end{gathered}$
Lak ! Muron (all 6 distriets)......	$1.456,368$68	$\begin{gathered} 2.579 .440 \\ 134 \end{gathered}$	$\begin{gathered} 4,139,772 \\ 193 \end{gathered}$	$\begin{gathered} 4,050,334 \\ 159 \end{gathered}$	$\begin{gathered} 3,333,901 \\ 155 \end{gathered}$	$\left\lvert\, \begin{gathered} 2,568,233 \\ 120 \end{gathered}\right.$	$\begin{gathered} 1,594,507 \\ 85 \end{gathered}$	$\begin{gathered} 1,442,169 \\ 67 \end{gathered}$	$\begin{gathered} 1,01,6,681 \\ 4 \end{gathered}$	5.57,969 26	255.183 12	2,145.169
average												

${ }^{2}$ Year of introduction of deep trap net.
Years of heaviest production of whitefish in deep trap nets.
all-time high in 1931 without the benefit of a really significant contribution from the southern region of the lake ($\mathrm{H}-5$ and $\mathrm{H}-6$) where the increase from 1929 to 1931 amounted to only 119,000 pounds.

In 1932 the first three districts, $\mathrm{H}-1, \mathrm{H}-2$, and $\mathrm{H}-3$, after 2 peak years, suffered a severe decline in production. The combined decrease amounted to more than a million pounds. This reduction was compensated to a large extent by further increases in $\mathrm{H}-4$, the center of the deep-trap-net fishery in 1932, and by the phenomenal rise in output in $\mathrm{H}-5$, into which district deep trap nets were introduced for the first time. As a result, the total catch for the lake fell only slightly from the 1931 maximum.

After 2 years of extremely high production the catch of whitefish in H-4 decreased $1,701,000$ pounds in 1933. The yield in the first four districts combined dropped from $3,342,000$ pounds in 1932 to $1,198,000$ pounds in 1933, a decrease of $2,144,000$ pounds. It was hardly to be expected that this large decline in the first four districts could be compensated fully by a rise in production in southern Lake Huron, a region that produced only 136,000 pounds of whitefish in 1929. The increase in catch in southern Lake Huron was nevertheless enormous- $1,163,000$ pounds in H-5, 264,000 pounds in $\mathrm{H}-6$, and $1,427,000$ pounds in the two districts combined. In $\mathrm{H}-5$ the 1933 production was 26.6 times the yield in 1929 ; for $\mathrm{H}-5$ and $\mathrm{H}-6$ combined the 1933 catch was 15.7 times that of 1929 . The production in the entire lake, however, decreased in 1933 by 716,000 pounds.

The output of whitefish increased markedly in $\mathrm{H}-6$ in 1934 (increase of 644,000 pounds), but the larger decrease of 892,000 pounds in H-5 led to a drop of 248,000 pounds in southern Lake Huron. Increases ranging from an insignificant recovery in $\mathrm{H}-3$ to a sharp rise in $\mathrm{H}-2$ occurred in the first three districts. In $\mathrm{H}-4$, however, the eatch dropped 567,000 pounds (from 762,000 pounds in 1933 to 195,000 pounds in 1934). The decrease for all six districts was $\mathbf{7 6 6 . 0 0 0}$ pounds.

The increases in the catch of whitefish in $\mathrm{H}-2$ and $\mathrm{H}-4$ in 1935 exceeded the decreases in $\mathrm{H}-1$ and $\mathrm{H}-3$; consequently, the totals increased slightly in both northern and central Lake Huron. However, the large decreases in $\mathrm{H}-5$ and $\mathrm{H}-6$ (705,000 pounds for the two districts) caused the rield of the entire lake to deeline 673,000 pounds.

With the onset of the deche in production in $\mathrm{H}-6$ in 1935 the cycle of exploitation of the stocks of Lake Huron whitefish by means of the deep trap net was approaching its final stages. As the fishery failed in other areas deep-trap-net fishermen had moved on to new grounds. H-6, however, had provided the last unexploited fishing area available. The lack of new grounds may account for the fact that large numbers of deep-trap-net fishermen remained longer in $\mathrm{H}-6$ than they had in any other district. H-6, despite a continued decline in the catch. maintained first rank among the districts in the production of whitefish during the 5 -year period. 1934-1938, relinquishing this position only with the almost complete collape of the fishery in 1939.

It is true that in some districts the general deeline during the later vears of the fishery was interrupted by temporary increases as fishermen returned to glean a scant harvest from their former gronds. The most noteworthy recovery occurred in $\mathrm{H}-1$, where in 1936 the production of whitefish rose above a half million pounds. However, the deep-trap-net operations in $\mathrm{H}-1$ in 1936 were not centered in the southeastern part of the district (especially in Hammond Bay) as in carlier years but were carried on chicfly in the northwestern end (Cheborgan-st. Ignace) in an area that formerty had been exploited only moderately. These temporary increases in certain districts were insufficient by far to halt the general downward trend of the catch in the lake as a whole.

An ontstanding feature of the statistical data diseussed in the preceding pages was the shift from year to year in the center of production of whitefish. The output fluctuated over a wide range in all districts. Especially striking, however. were the increases in southern Lake Huron which accounted for only 9.3 percent of the 1929 production but yiclded more than 60 percent of the total for the lake in 1933, 1934. and 1935 (73.5 pereent in 1934).

These violent fluctuations in production and shifts in the eenter of operations suggest distinctly abnormal conditions in the fishery. The belief that conditions were abnormal in the years following 1929 finds supprit in the data on the catch of whitefish in the various districts in the earlier period of the fishery, 1891-1908 (table 6). Although a certain amount of shifting did occur in the relative importance of the several districts for the production of whitefish, these ehanges were insignificant in comparison with the tremendous fluctuations that took place during the recent years. 1930-1939 (table 5). In the earlier period. for example. $\mathrm{H}-1$ and $\mathrm{H}-4$ held first or second rank in every year except 1891 when the second highest yield was marle in $\mathrm{H}-2$ ($\mathrm{H}-1$ in first position and $\mathrm{H}-4$ in the third). Third and fourth rankings usually were held by $\mathrm{H}-2$ and $\mathrm{H}-3$ (characteristically in that order) while $\mathrm{H}-6$ commonly ranked fifth and $\mathrm{H}-5$ was normally sixth (only one exception). The limited extent of the fluctuations in the rankings of the districts with respect to the produetion of whitefish in 1891-1908 is brought out by the following tabulation tleft halft which shows the number of years each position was held by each dietrict. The right half of the tabuation brings out the sharp contrast in riek with that for the period of the deep-trap-nct fishery, 1930-1939:

The range of rank was the greater in the more recent period in each district except $\mathrm{H}-3$, a region in which the whitefish fishery was unimportant after 1932. The greatest increase in range occurred in $\mathrm{H}-5$ which held every position from first to sixth although this area had ranked sixth 17 times (fifth in the remaining year) in the period, 1891-1908, and had not yielded more than 7,500 pounds in any one of the 18 years.

It should be noted further that with only one exception (the rank of 5) each of the rankings from 1 to 6 occurred in more districts in 1930-1939 than in 1891-1908. For example, first position was held in four districts (all but $\mathrm{H}-2$ and $\mathrm{H}-3$) in the more recent period as compared with only two ($\mathrm{H}-1$ and $\mathrm{H}-4$) in the earlier years, second rank was held by four districts in 1930-1939 as compared with thrce in 1891-1908,***.

The actual figures of catch of tables 5 and 6 support the observations based on the rankings, for the yields of the individual listricts were in general far less variable in the early than in the recent period.

Table 6.-Production of whitcfish in pounds in Lake Ifuron according to statistical districts, 1591-1908

Year	Statistical district						Total
	H-1	H-2	11-3	H-4	H-5	H-6	
1891	1,304,200	133,000	54,500	91,540	6.000	31,600	1,624,560
1592	1,950, 313.3	:14,000	29,200	160,4.50	3,500	48,100	1,486,183
1593	1,244,400	12,000	131,500	199,900	2.000	27,600	1,57,600
1804		11,500	61.500	116,550	1.0150	8,350	1,218,250
1895	614,830	75,5.50	39.500	203,687	1,500	10,500	945,867
1896	440,600	115,616	167,300	264,119	500	14,600	1,005,735
1897	342,100	141,555	3x,300	28.5 .200	4.100	4,805	865,960
1593	2331,800	50,500	34,500	240,150	1,530	4.400	542,750
1899	201.600	\$15,000	36,100	306,580	1, , 100	3,520	$645.5<0$
1900.	152,400	104,000	49, 500	141,520	4,500	3.500	555.420
1901	219,025	137,000	154,300	263, 20	5,000	1,200	$788,24.5$
1902	317,000	137,500	122,000	331,930	6060	14,500	913,5.30
1903	312,700	106,100	70.700	436,360	400	11,200	937.460
1904	325.1610	54,000	$\times 5,000$	303,460	1.000	15,500	787.360
1905	351,200	30,300	2,, 500	205.260	3,500	21,500	684.860
1906	4 42,300	34,500	25,600	198,220	5,1000	32,100	791,70
1907	654,5100	45,000	64,600	282,772	3,300	7s. 600	1,122,4\%
1008.	STS.615	45.963	41,666	270,832	7.500	26.029	418.905
Average.	$8.30,987$	84.621	71.865	242,474	2,922	20,367	9\%3,236
Percentage.	56.6	8.7	7.4	24.9	0.3	2.1	

The records of yield for the years, 1891-1908, indicate also that the percentages of the total catch of whitefish in the different districts were approximately normal in 1929, the only recont year (with data for each district scparately) in which the statistics were not scriously distorted by the deep-trap-net fishery. It is true, the percentage distribution of the catch of whitefish in Lake Huron in 1929 (table 5) differed somewhat from that for the average for 1891-1908. It will be noticed, for example, that in 1929 the greatest production (39.2 percent) was from $\mathrm{H}-4$ with $\mathrm{H}-1$ in second position (25.8 percent) whereas in 1891-1908 the greatest average yield came from H-1 (56.6 percent) with $\mathrm{H}-4$ in sccond position (24.9 percent). Among the remaining districts the percentages were higher in 1929 in $\mathrm{H}-2$ (in part becanse of the catch in deep trap nets), $\mathrm{H}-5$, and $\mathrm{H}-6$, and possibly lower in $\mathrm{H}-3,{ }^{23}$ but the rankinge of the districts were the same.

The differences in the values of these percentages are not large enough, however, to warrant the conclusion that the relative capacities of the various districts for the production of whitefish in 1929 were changed greatly from those of 1891-1908. Although the high percentage of the total yicld of whitefish in H-4 in 1929 is in disagreement

[^79]with average conditions in 1891-1908, evidenee that the 1929 percentage for the district did not represent an abnormal condition may be seen in the fact that the catch in H-4 exceeded that in $\mathrm{H}-1$ in 6 successive years (1898-1903) of the 18 in the early period. The percentage of the Lake Huron catch produced in H-4 in 1929 apparently was somewhat above the average for the modern as well as the early period, as in the 9 years, 1920-1928, the percentage of whitefish taken in Saginaw Bay (in $\mathrm{H}-4$) did not exceed 31.3 percent and averaged only 23.5 pereent. (This statement is based on statistics published for Saginaw Bay and Huron proper by the Miehigan Department of Conservation.)

The evidence that the percentages of the 1929 yield of whitefish taken in the several districts were within the normal range of variation lends further support to the belief that the deep-trap-net fishery brought about abnormal conditions in 1930-1939.

CIIANGES in production in lake hlron as related to FLUCTUATIONS IN THE ABUNDANCE OF WHITEITSH AND IN THE INTENSITY OF THE FISHERY'

Up to this point the discussion has been concerned only with the fluctuations in the catch of whitefish, because it was believed that this, the more obvious plase of the fishery, should be outlined clearly before the changes in production were analyzed in relation to concurrent fluctuations in the abundance of whitefish and the intensity of the whitefish fishery. The fundamental problem in the analysis of the statistical data relative to the whitefish fishery of Lake Hurm is the determination of the probable effects of deep-trap-net operations on the abundance of marketable whitefish. As pointed out previously (p. 315) this problem is complicated greatly by the circumstance that whitefish are known to have leen abnommally abundant during the years in which the deep-trap-net fishery was umergoing its most rapid expansion. The abundance of whitefish in Lake Huron was posibly above normal in 1929; eertainly it was well above normal in 1930 and 1931 (table 10). A deeline from this abnormally high abundance would have werured even if deep trap nets had not been operated in the lake. It is only logieal to believe also that the high abumblane following 1929 would have stimulated fishing intensity awn hard deep thap nete not been fished. The general problem resolves itself, therefore, into the estimation of the degree to which the inereased fishing intensity and the heightened production male possible by the use of deep trap nets affected the rate of the dectine in abundance and its ultimate extent.

That the deep trap net accounted for the bulk of the extremely high yields of whitefish over the period, 1930-1935, was hought out in the preceding section. It will now be demonstrated that the high probluction resulterl from an umreasonably great fishing intensity and that this overfishing in turn accelerated the deche in the abundance of whitefish. In the four sonthemmost distriets in which the deep trap net was fished most extensively the whitefish fishery reached a state of collapse. Abundance and catch were reduced in the other two districts in which the deep-trapnet operations were less extensive but the decline was far less pronounced than in the four districts.

A comparison of the extent of the changes in procuction, abundance, and fishing intensity in the several districts may be found in table 7 . In this one table the rear 1929 rather than the 11-ycar period (1929-1939) has been taken as the point of referenee. To be sure, there is no certainty that 1929 was a "normal" year. However, the catch in 1929 was at approximately the typical level for 1922-1929, and there is no evidence of any unusual conditions in the fishery in that year. Certainly, 1929 is the most nearly nomal year for which detailed satistieal data are available.

The data of table 7 do not provide a complete history of the deep-trap-net fishery. They do serve, however, to show the variation among the districts in the maxima of yields and fishing intensity that followed the introduction of the deep trap net, and the apparent relationship between these maxima and conditions in 1939. The increases in catch were by no means as great in $\mathrm{H}-1$ and $\mathrm{H}-2$ as in the remaining districts. In
these two northern districts the maximum productions were 263 and 317 percent, respectively, of the 1929 yield. In central Lake Huron the maxima were 476 percent in $\mathrm{H}-3$ and 431 percent in $\mathrm{H}-4$. It was in southern Lake Huron, however, that the greatest relative increases in production occurred. The maximum yield was more than 26 times the 1929 catch in $\mathrm{H}-5$ and more than 15 times the 1929 production in $\mathrm{H}-6$.

The differences in the relative maximum yields attained in the several districts are to be attributed primarily to differences in the relative increases in fishing intensity. The maximum intensity in $\mathrm{H}-1$ and $\mathrm{H}-2$ was a little more than twice that of 1929. It was roughly 5 times the 1929 level of intensity in $\mathrm{H}-3$ and 4 times in $\mathrm{H}-4$. In $\mathrm{H}-5$ and $\mathrm{H}-6$, however, the maximum fishing intensities were, respectively, 42 and 27 times the 1929 intensity.

The relative maximum abundance attained in the various districts exhibited remarkable agreement. In four of the six districts (H-1, H-4, H-5, and H-6) the maximum abundance was between 140 and 150 percent of the abundance in 1929, and in a fifth (H-2) the maximum was a little less than 140 percent (136 percent) of the 1929 level. In H-3 the greatest estimated abundance occurred in 1929 in which year the pound nets were particularly successful (table 11). The abundance in $\mathrm{H}-3$ fell in 1930 but increased in 1931; peculiarly enough the abundance in 1931 was 143 percent of that in 1930 (cf. increases in other districts over 1929 abundance).

Production and abundance in 1939 were below the 1929 level in every district, and the fishing intensity was less than that of 1929 in all but the two southernmost districts. Of especial significance is the fact that the abundance in 1939 was relatively much higher in $\mathrm{H}-1$ and $\mathrm{H}-2$, the two districts in which production and intensity had reached the relatively lowest maxima. In the remainder of the lake the whitefish had almost disappeared. So great was the depletion that in $\mathrm{H}-5$ and $\mathrm{H}-6$

Table 7.-Maximum and 1939 production and abundance of whitefish and maximum and 1939 fishing intensity for whitefish expressed as percentages of the 1929 values in each statistical district of Lake Huron

District	Year of maximum production	Production		Year of maximum intensity	Intensity		Year of maximum abundance	Abundance	
		Maximum	1939		Maximum	1939		Maximum	1939
H-1.	1931	263	38	1931	233	89	1930	140	41
H-21	1930	317	23	1930	228	50	1930	136	43
H-3	1931	476	1	1931	528	5	1929	100	6
H-4.	1932	43 I	5	1932	377	60	1931	149	7
H-5.	1933	2.662	19	1933	4,211	433	1931	142	5
H-6.	1934	1,517	46	1935	2,678	489	1932	148	10

'The deep-trap-ret fishory of 1929 waceveluded in the computations of these procentages of production and fishing intensity for H -2.

fishing intensities between 4 and 5 times those of 1929 yielded productions amounting to only 19 and 46 percent, respectively, of the 1929 catch. For practical purposes it can be said that there was no whitefish fishery in H-3 in 1939, and that the fishery in H-4 was insignificant.

The data of table 7 have brought out the fact that a disastrous depletion of the

Figure 6.-Stcond district, H-2.

whitefish oecurred in the four distriets in which the use of the deep trap net led to an excessive multiplication of fishing intensity and catch. The decline in the abundanee of whitefish was much less severe in the two districts in which the exploitation of the stock was more moderate. Further evidence on the harmful effects of deep-trap-net operations with be brought out by a more detailed eonsideration of the annual changes in proluction, fishing intensity, and abumbance in the various districts with reference to the 1929-1939 averages.

In the previous section attention was called to the existence of a typical deep-trap-net cycle of production (p. 319) in which the catch "was raised to tremendous heights for about 2 years, only to fall away sharply." It is equally ralid to speak of "typical deep-trap-net cycles" of fishing intensity and in the abundance of whitefish. (For graphical representations of the annual fluctuations in the catch and abundance of whitefish and in the intensity of the whitefish fishery in the several distriets, see figs. 5 to 10.) The tremendous increases in yields were accompanied by

great increases in fishing intensity (table 81. To a large extent these increases in intensity represented deep-trap-net operations (table 9). In about 2 years, however, the fishing intensity declined in a district as the fishermen moved on to more productive grounds. An exception to this cycle of intensity is to be found in H-6 where an extremely intensive fishery was carried on for 5 years (1934-1938) despite a rapid decrease in the returns. Operators of deep trap nets remained longer in $\mathrm{H}-6$ because the more northerly grounds had been exploited thoroughly in previous years (p. 321). $\mathrm{H}-1$ and $\mathrm{H}-2$ showed limited secondary increases in fishing intensity (about 1935-1937 in $\mathrm{H}-1$ and 1934-1935 in $\mathrm{H}-2$) as some fishermen returned from the depleted grounds in the south.

Without exception the abundance of whitefish fell sharply after a period (usually 2 ycars) of intensive deep-trap-net operations. This fact is brought out clearly by the data of table 10 in which the years of greatest production of deep trap nets have been designated. (The comparison of tables 4 and 9 will reveal that the years of greatest yields of deep trap nets and the years of greatest intensity of the deep-trap-net fishery were not always the same.) The nature of the changes in abundance that followed heavy removals of whitefish may be summarized for the districts as follows:
$I I-1$. Abundance began to decline in 1931, the sccond year of heavy production by deep trap nets. This decline continued through 1933.

Table 8.-Amual fluctuations in the intensity of the fishery for whitefish in each distriet of Lake IIuron
[Expressed as percentages of the average 1929-1439 intonsity in the distriet]

District	Fishing intensity as pereentage of average in yrar										
	1929	1930	1931	1932	1933	1934	1935	1936	1037	193*	1939
H-1.	66	94	154	129	93	92	105	130	$10 \times$	70	59
H2-	152	246	203	114	48	65	95	54	26	40	54
H-3.	61	250	322	153	39	50	69	6.7	19	67	3
H-4.	70	94	174	264	170	70	68	4	52	52	42
H-5	9	9	8	84	379	192	141	11.	645	53	39
H-6	9	15	19	16	62	168	241	172	182	172	44

H-2. Abundance was high in 1930 and 1931, the years of high yields; in 1932 abundance declined to less than half that of 1931.
$H-3$. Abundance increased in 1931, the second year of heary production, but was less than half as great in 1932 as in 1931.
$H-4$. Abundance decreased somewhat in 1932, the second year of high production; the abundance in 1933 was less than half that of 1932.

Table 9.-Annual fluctuations in the intensity of the whitefish fishery for all six districts of Lake Huron combined (third row from bottom of table) and distribution of each year's fishing intensity among the districts

TThe average annual intensity for the entire lake, 1929-1939, is 100.0 . In parentheses are the iutensity values of the depp-trap-natt fishery. The value of one unit is $1 / 1,100$ of the total expected catch \lfloor p. 314 of all districts, 1929-193.! $]$

District or area	Fishing intensity in year											Total	Perceatage of intensity represented by deep trap nets
	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939		
H-1.-.-------........	$\left\{\begin{array}{r}13.8 \\ \ldots--1\end{array}\right.$	$\begin{gathered} 19.9 \\ (7.5) \end{gathered}$	$\begin{gathered} 32.4 \\ (13.0) \end{gathered}$	$\begin{array}{r} 27.0 \\ (\mathbf{5} .1) \end{array}$	$\begin{aligned} & 19.6 \\ & (4.5) \end{aligned}$	$\begin{gathered} 19.3 \\ (4.2) \end{gathered}$	$\begin{array}{r} 22.0 \\ (7.3) \end{array}$	$\begin{array}{r} 27.3 \\ (16.0 \end{array}$	$\begin{array}{r} 22.7 \\ (13.5) \end{array}$	$\begin{gathered} 14.7 \\ (7.4) \end{gathered}$	$\begin{aligned} & 12.6 \\ & (6.2) \end{aligned}$	$\begin{gathered} 231.3 \\ (n 7.5) \end{gathered}$	37.9
H-2 Northern Lake Huron ($\mathrm{H}-1$ and $\mathrm{H}-2$)	$\left\{\begin{array}{r} 9.7 \\ (2.8) \end{array}\right\}$	$\begin{aligned} & 15.5 \\ & (9.5) \end{aligned}$	$\begin{array}{r} 12.8 \\ (10.1) \end{array}$	$\begin{array}{r} 7.2 \\ (5.7) \end{array}$	$\begin{array}{r} 3.1 \\ (1.5) \end{array}$	$\begin{array}{r} 4.1 \\ (2.2) \end{array}$	$\begin{array}{r} 6.2 \\ (4.7) \end{array}$	$\begin{array}{r} 3.4 \\ \{3.1\rangle \end{array}$	$\begin{array}{r} 1.7 \\ (1.3) \end{array}$	$\begin{array}{r} 2.5 \\ (2.4) \end{array}$	$\begin{gathered} 3.4 \\ (3.4) \end{gathered}$	$\begin{array}{r} 69.6 \\ (4.7) \end{array}$	67.1
	$\left\{\begin{array}{l} 23.5 \\ (\mathbf{2} .8) \end{array}\right\}$	$\begin{array}{r} 35.4 \\ (17.0) \end{array}$	$\begin{array}{r} 45.2 \\ (23.1) \end{array}$	$\begin{array}{r} 34.2 \\ (13.8) \end{array}$	$\begin{array}{r} 22.1 \\ (6.0) \end{array}$	$\begin{array}{r} 23.4 \\ (6.4) \end{array}$	$\begin{array}{r} 28.2 \\ (12.0) \end{array}$	$\begin{array}{r} 30.7 \\ (19.1) \end{array}$	$\begin{array}{r} 2+.4 \\ (14.8) \end{array}$	$\begin{aligned} & 17.2 \\ & 19.8) \end{aligned}$	$\begin{array}{r} 16.0 \\ (9.6) \end{array}$	$\begin{array}{r} 300.9 \\ (134.4) \end{array}$	44.7
H-3.-.-.---...-..........	1.6	6.3 (4.6)	$\begin{array}{r} 8.2 \\ (7.0) \end{array}$	$\begin{array}{r} 3.9 \\ (3.5) \end{array}$	$\begin{array}{r} 1.0 \\ (0.7) \end{array}$	$\begin{array}{r} 1.2 \\ (1.0) \end{array}$	$\begin{array}{r} 1 . \bar{i} \\ (1.6) \end{array}$	$\begin{array}{r} 1.7 \\ (1.6) \end{array}$	$\begin{array}{r} 0.5 \\ (0.4) \end{array}$	$\begin{gathered} 1.7 \\ (1.6) \end{gathered}$	$\begin{array}{r} 0.1 \\ (0.1) \end{array}$	$\begin{gathered} 27.9 \\ (23.1) \end{gathered}$	79.2
H-4 \qquad Central Lake Huron ($\mathrm{H}-3 \mathrm{aod} \mathrm{H}-4$). \qquad	16.4	$\begin{gathered} 21.8 \\ (4.5) \end{gathered}$	$\begin{array}{r} 40.2 \\ 1(16.6) \end{array}$	$\begin{array}{r} 61.2 \\ 1(4.4) \end{array}$	$\begin{array}{r} 39.4 \\ (30.5) \end{array}$	$\begin{array}{r} 16.2 \\ (11.2) \end{array}$	$\begin{gathered} 15.6 \\ (10.7) \end{gathered}$	$\begin{aligned} & 10.1 \\ & (7.2) \end{aligned}$	$\begin{gathered} 12.0 \\ (9.2) \end{gathered}$	$\begin{gathered} 13.1 \\ (10 . \hat{i}) \end{gathered}$	$\begin{array}{r} 0.7 \\ (5.6) \end{array}$	$\left.\begin{array}{r} 2.54 .7 \\ (1.56 .9) \end{array} \right\rvert\,$	61.6
	1 18.0	$\begin{aligned} & 25.1 \\ & (9.1) \end{aligned}$	$\begin{array}{r} 48.4 \\ (23.6) \end{array}$	$\begin{array}{r} 65.1 \\ (50.9) \end{array}$	$\begin{array}{r} 40.4 \\ (31.5) \end{array}$	$\begin{array}{r} 17.4 \\ (12.2) \end{array}$	$\begin{array}{r} 17.3 \\ (12.3) \end{array}$	$\begin{aligned} & 11,8 \\ & (8,8) \end{aligned}$	$\begin{array}{r} 12.5 \\ (9.6) \end{array}$	$\begin{aligned} & 13.8 \\ & (12.3) \end{aligned}$	$\begin{array}{r} 9.8 \\ (9.7) \end{array}$	$\begin{array}{r} 282.6 \\ (179.0) \end{array}$	63.3
H	1.8	1.9	1.5	$\begin{array}{r} 16.6 \\ (15.8) \end{array}$	$\begin{array}{r} 75.3 \\ (64.5) \end{array}$	$\begin{array}{r} 38.2 \\ (38.1) \end{array}$	$\begin{array}{r} 27.9 \\ (27.7) \end{array}$	$\begin{gathered} 23.4 \\ 23.4 \end{gathered}$	$\begin{array}{r} 13.6 \\ (13.5) \end{array}$	$\begin{array}{r} 10.6 \\ 10.5 \end{array}$	$\begin{array}{r} 7.7 \\ \langle 7.5\rangle \end{array}$	$\begin{array}{r} 218.5 \\ (211.1) \end{array}$	96.6
H-6 Southern Lake Huron ($\mathrm{H}-5$ and $\mathrm{H}-6$).....	2.5	4.0	3.1	4.4	$\begin{array}{r} 16.9 \\ (12.6) \end{array}$	$\begin{array}{r} 45.4 \\ (42.2) \end{array}$	$\begin{array}{r} 6 \overline{3} .3 \\ (62.9) \end{array}$	$\begin{array}{r} 46.5 \\ 45.5 \end{array}$	$\begin{array}{r} 49.2 \\ (4 \times .5) \end{array}$	$\begin{array}{r} 46.6 \\ (46.4\rangle \end{array}$	$\begin{array}{r} 12.1 \\ (12.0) \end{array}$	$\begin{array}{r} 298.0 \\ (270.1) \end{array}$	90.6
	4.3	5.9	6.6	$\begin{array}{r} 21.0 \\ (15.7) \end{array}$	$\begin{array}{r} 92.2 \\ (87.1) \end{array}$	$\begin{array}{r} 83.6 \\ (80.3) \end{array}$	$\begin{array}{r} 93.2 \\ (90.6) \end{array}$	$\begin{array}{r} 69.9 \\ (68.9) \\ \hline \end{array}$	$\begin{array}{r} 62.8 \\ (62.0) \end{array}$	$\begin{array}{r} 57.9 \\ (56.9) \end{array}$	$\begin{array}{r} 19.8 \\ (19.7) \end{array}$	$\begin{array}{r} 516.5 \\ (481.2) \end{array}$	93.2
Lake Huron (all 6 districts)	$\left\{\begin{array}{l} 45.8 \\ (2.8) \end{array}\right.$	$\begin{array}{r} 69.4 \\ (26.1) \end{array}$	$\begin{aligned} & 100.2 \\ & (46.7) \end{aligned}$	$\begin{array}{r} 120.3 \\ (50.4) \end{array}$	$\begin{array}{r} 155.3 \\ (124.6) \end{array}$	$\begin{aligned} & 124.4 \\ & (98.9) \end{aligned}$	$\begin{array}{r} 134 . \overline{7} \\ (11+.9\rangle \end{array}$	$\begin{gathered} 112.4 \\ (96.8) \end{gathered}$	$\begin{array}{r} 99.7 \\ (86.4) \end{array}$	$\begin{gathered} R 9.2 \\ (79.0) \end{gathered}$	$\begin{array}{r} 45.6 \\ (38.0) \end{array}$	$\begin{aligned} & 1,100.0 \\ & (794.6) \end{aligned}$	72.2
Percentage of intensity represented by deep trap nets.	6.2	37.6	46.6	66.8	80.2	79.5	82.8	86.1	86.7	89.6	83.3	72.2	

1 Value toolow; the estimate of the total intensity for H-4 141931 and 1932 included consideration of large catches for which gear records were lacking, but a large part of which was taken by depn trap nets. Uther totalsand percentages in the computation of which thesp figurea were involved were affected, but relatively less severely than those indicated by the footnote.

H-5. Abundance decreased considerably in 1933, the first of the two years of heaviest production, and declined slightly in 1934, the second of these years. In 1935 after the two years of heaviest production the abundance fell to less than half the 1934 level. ${ }^{24}$
$H-6$. Abundance declined somewhat in 1934, the first year of heaviest production, and fell sharply in 1935, the second year. (See footnote 24.) The decline was small in 1936 but a rapid rate of decrease was resumed in 1937.

Comment was omitted deliberately on the recorded decreases in abundance from 1931 to 1932 in H-5 and from 1932 to 1933 in H-6. Because of the difficulty of bridging the gap between a fishery dominated by gill nets and pound nets to one dominated by decp trap nets (p.316) there is some question as to the accuracy of the comparison between the two years involved in each district. However, comparisons are valid within each of the periods, 1929-1931 and 1932-1939 in H-5, and 1929-1932 and 1933-1939 in H-6. Consequently the observations on the change in abundance that followed the extensive use of deep trap nets in these two districts also are valid. Furthermore,

[^80]Table 10.-Annual fluctuations in the abundance percentages for whitefish in the various districts and areas of Lake Huron, 1939-1939
[Espressed as percentages of average 1929-1939 abundance. In the computation of percentages for areas of more than one district and for the entire lake, the abundaoce percentage for each district was weighted according to the percentage of the total 1,129 production contributed by that district]

District or area	Abundance percentage in year										
	1929	1930	1931	1932	1933	1934	1935	1936	1937	1939	1939
H-1.	129	12181	? 141	$10 \times$	85	94	80	93	78	34	53
H-2	1135	${ }^{2} 183$	${ }^{179}$	T 4	89	106	91	31	45	65	58
Nortbern Lake Huroo (H-1 and H-2)..	131	182	157	95	87	99	85	94	64	61	55
H-3.	301	12183	2361	115	67	55	25	32	26	26	19
H-4.	152	1211	3236	$: 149$	88	49	59	45	54	17	10
Central Lake Huroo (H-3 and H-4)..	174	207	231	178	85	50	53	43	50	18	11
H .5.	164	231	233	147	:106	98	4	24	23	19	8
H-6.	130	173	166	193	1129	${ }^{2} 114$	261	59	$3!$	23	13
Southern Lake Huron (H-5 aod H-6).-	146	200	197	172	117	$10:$	54	43	$\therefore 2$	21	11
Lake Huron (all 6 districts).	152	195	145	140	$8: 1$	π	67	61	3.5	35	31

1 Year of introduction of the deep trap net.
${ }^{2}$ Years of geatest production by deep trap nets
T'able 11.-Annual fluctuotion in the catch of whitefish per unit of fishing effort of gill nets, deeptrop nets, and pound nets in the various districts of Lake Huron, 1929-1939

District	1929	1930	1931	1932	1933	1934	1935	1936	1937	1936	1939	Average
	Pounds of wbitefish per 10,000 -foot-lift of gill nets											
H-1.	1094	1159	994	653	678	302	$56 \times$	578	367	411	+ \downarrow !	759
H-2	294	61 \%	488	$10 \times$	163	219	150	15.3	61		21	223
H-3	625	606	487	245	167	11.	!	(i) 1	40	3	$!$	33.3
H-4	721	815	693	63.	13%	405	11		36	42	61	301
H-5	1312	1875	1860	1374	453	141	6		\checkmark i	3.		4t
H-6	888	1158	1079	1344	1066	430	33 ti	18.5	$2+0$			72 \%
	Pnuods of whitefish per lift of ooe deep trap out											
H-1.		167 i	1256	31.	B1	109 5			is:	433	513	
H-2	1152	1419	1341	62	7311	7153		56	(1) 1		45%	it!
H-3		24.4	4761	2011	11.3	191	41 \%	34.3	41%	$45!$		14:
H-4.		1273	1704		185.3	97	104\%	41	114	301	い?	1.34:
H-5.				4143	24.	37	130	14.	193?	52	21.	16.3 \%
H-6.					411:	323	2022	1192	125	76 \%	414	2129
	Pounds of whitefish per lift of nne pound oet											
H.1.	$65^{5} 3$	120.5	93%	ist	346	311	33.	471	428	292	242	
H-2	70%	446	971	4.31	4.31	fis	$39+$	341		5		5.54
H-3		6.5	531	12			43			32		473
H-4	331	575	400	351	13	48	113	$\checkmark 1$		43	23	201
H-5	$4{ }^{4} 1$	60 ?	74 3	$100:$	263	123	1012	31				5.35
H-6.	300	420	517	34	251	14*	93	11 i		123	69	

these same decreases are apparent in the records of the actual catch per lift of deep trap nets in these same districts (table 11).

The history of the annual fluctuations in the abundance of whitefish in the years subsequent to the decline that followed immediately upon the extensive use of the deep trap net varied widely among the districts.

In H-1, where the use of deep trap nets may be described as "moderate," the abundance percentage for whitefish dropped to 85 in 1933 , fluctuated irregularly in 1933-1937, and declined to a level of less than 60 percent in 1938 and 1939. Abundance did not fall significantly below 80 before 1938. In $\mathrm{H}-2$, the other district in which the maxima of production and fishing intensity were relatively low, the sudden decline to

78 percent in 1932 was followed by recoveries in 1933 and 1934 (89 and 106 pereent, respectively) and relatively high abundance in 1935 (91 percent). The decreases in 1935-1937 that led to the minimum of 45 in 1937 were followed by a recovery in 1938 and a slight decline in 1939. In both $\mathrm{H}-1$ and $\mathrm{H}-2$ the secondary deelines in abundance were preceded by secondary increases in fishing intensity-increases traceable to revirals of cleep-trap-net operations.

The remaining distriets experienced greater ultimate declines than did $\mathrm{H}-1$ and $\mathrm{H}-2$. Furthermore, these districts failed to show recoveries comparable to those that oecurred in $\mathrm{H}-1$ and $\mathrm{H}-2$. In $\mathrm{H}-3$ the decline in abundance continued through 1935; abundance remained rather stable at about 25 in the years, 1935-1938, and deelined to 19 in 1939. The abundanee in $\mathrm{H}-4$ leclined through 1934, was at approximately 50 percent in 1934-1937, and dropped to an extremely low level in 1938 and 1939. In both $\mathrm{H}-5$ and $\mathrm{H}-6$ the decline in abundanee that followed the introduction of the deep trap net proceeded without interruption (albeit at an irregular rate) through 1939. In that year whitefish were extremely searce in both districts.

The data that have been discussed in the preceding pages support the general conelusion that the deep trap net was in large measure responsible for a disastrous depletion of the whitefish in the four southernmost districts of Lake Huron. This depletion was the result of the unreasonable increases in fishing intensity and henee in production in these districts. In the northern portion of the lake where the net was used more moderately the decline in the abundance of whitefish was severe but it did not reach such extremes as were found in the central and southern regions of the lake.

Largely for the sake of completeness the annual fluctuations of production, abundance, and fishing intensity for all six districts combined have been presented graphically in figure 11 (data from tables 5, 9, and 10). To some extent the data for the entire

Figure 11.-Annual fluctuations in the production (solid line) and abundance (long dashes) of whitefish and in the intensity of the whitefish fishery (short dashes) in Lake Huron (all six districts combined), 1924-1939.
lake lack significance as the combination of the data for all districts obscures the extreme nature of the fluctuations that took place within the individual districts. The data serve chiefly to show that a relatively great abundance of whitefish contributed materially to the high production in 1930-1932 (especially in 1930 and 1931), and that the decline in catch subsequent to 1932 would hare been much more rapid had not the intensity of the fishery been so great. Although the decline in abundance began in 1932 the intensity of the fishery increased rapilly until 1933. Beyond 1932 the abundance of whitefish was below the 11-year average and decreasing in every year. Fishing intensity, however, did not return to the 11-year average before 1937 or to the 1929 level before 1939 .

The question now arises, "What characteristies made the deep trap net so deadly effective?" The tremendous production of deep trap nets was possible ehiefly beeause: (1) they ean be set in deeper water, and hence in areas with greater concentrations of whitefish, than can the pound nets; and (2) ther are much more efficient in taking whitefish than are gill nets fished on the same grounds. Attention will be given first to the adrantages of the deep trap net over the pound net.

In size and construction the pound net and deep trap net resemble each other so closely that the latter gear was known in some localities as the "submarine pound net" (p. 300). If the two gears are fished in the same depth of water neither has an important advantage over the other. ${ }^{25}$ However, pound nets which are held in place by stakes driven into the bottom of the lake, and have cribs or pots extending from the bottom to above the surface, ordinarily cannot be fished successfully at depths greater than 80 feet. Most pound nets are operated in much shallower water. Deep trap nets, on the other hand, have covered cribs and are held in position by means of lines attached to anchors and by buoys. Consequently, they can be employed at all depths frequented by whitefish. The use of stakes also limits pound nets to areas with a soft bottom into which stakes can be driven. Deep trap nets do not suffer from this limitation.

A further advantage of the deep trap net lies in its greater mobility. Pound nets are fished in the same locality throughout the season (and usually year after year) but deep trap nets can be moved much more easily and consequently can be fished in the exact locations at which whitefish are found to be concentrated.

The vertical distribution of the whitefish will be treated in part III. It may be stated at this time, however, that usually whitefish are readily available to pound nets

Figure 12.-Comparison of the monthly production of whitefish in the Michigao waters of Lake Huron io 1929 and 1931, to bring out the effects of the deep-trap-net fishery on the seasonal distribution of the catch. Gill nets, long dashes; deep trap oets, short dashes; pound cets, short aod long dashes; total production, solid line.

[^81]Table 12.-Monthly production of whitefish in Lake Huron, 1929 and 1931, in gill nets, deep trap nets, pound nets, and all gears combined
[Percentages are in parentheses]

Gear	Production of whitefish in pounds in month												Total
	Jan.	Feb.	March	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	
$\begin{array}{r} 1929 \\ \text { Gill net... } \end{array}$	$\begin{array}{r} 180 \\ (0.0) \end{array}$	$\begin{array}{r} 5 \& 0 \\ (0.1) \end{array}$	$\begin{array}{r} 2,465 \\ (0.5) \end{array}$	$\begin{array}{r} 52,029 \\ (10.6) \end{array}$	$\begin{gathered} 94,066 \\ (19,2) \end{gathered}$	$\begin{gathered} 79,724 \\ (16.3) \end{gathered}$	$\begin{array}{r} 82,332 \\ (16.8) \end{array}$	$\begin{aligned} & 88,840 \\ & (18.2) \end{aligned}$	$\begin{aligned} & 58,534 \\ & (12.0) \end{aligned}$	$\begin{array}{r} 21,744 \\ (4.4) \end{array}$	$\begin{aligned} & x, 848 \\ & (1.8) \end{aligned}$	$\begin{array}{r} 569 \\ (0.1) \end{array}$	$\begin{aligned} & 489,961 \\ & (100.0) \end{aligned}$
Deep trap net				$\left\{\begin{array}{l}1,239 \\ (1.4)\end{array}\right.$	$\begin{aligned} & 1,74 \\ & (2.0) \end{aligned}$	$\begin{aligned} & 10,867 \\ & (12.5) \end{aligned}$	$\begin{array}{r} 20,535 \\ (23.6) \end{array}$	$\begin{aligned} & 15,068 \\ & (17.3) \end{aligned}$	$\begin{array}{r} 9,809 \\ (11.3) \end{array}$	$\begin{array}{r} 24,061 \\ (27.6) \end{array}$	$\begin{array}{r} 3,768 \\ 14.3 \end{array}$		$\begin{array}{r} 57,121 \\ (100.0) \end{array}$
Pound net.				$\left(\begin{array}{l}1,278 \\ (0.2)\end{array}\right.$	$\begin{aligned} & 19,582 \\ & (2.4) \end{aligned}$	$\begin{array}{r} 101.424 \\ (12.3) \end{array}$	$\begin{array}{r} 165,066 \\ 20.0 \end{array}$	$\begin{array}{r} 33,145 \\ 4.01 \end{array}$	$\begin{array}{r} 163,763 \\ (19.91 \end{array}$	$\begin{array}{r} 244,055 \\ (29.61 \end{array}$	$\begin{aligned} & 91, \times 78 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 3,505 \\ & (0.4) \end{aligned}$	$\begin{gathered} 823,606 \\ (100.0) \end{gathered}$
All gears	$\begin{array}{r} 150 \\ (0.0) \end{array}$	$\begin{array}{r} 580 \\ (0.0) \end{array}$	$\begin{aligned} & 2,468 \\ & (0.2) \end{aligned}$	57,364 (4.0)	$\begin{array}{r} 117,463 \\ (8.1) \end{array}$	$\begin{array}{r} 193,906 \\ (\mathbf{1 3 . 3}) \end{array}$	$\begin{array}{r} 276,917 \\ 199.01 \\ \hline \end{array}$	$\begin{array}{r} 137,161 \\ (9.4) \\ \hline \end{array}$	$\begin{array}{r} 233,074 \\ (16.0) \end{array}$	$\begin{array}{r} 302,085 \\ (20.7) \end{array}$	$\begin{array}{r} 130,694 \\ \quad(9.01 \\ \hline \end{array}$	$\begin{aligned} & 4,0.4 \\ & (0.3) \end{aligned}$	$\begin{array}{r} 1,456,368 \\ \quad(100.0) \\ \hline \end{array}$
$\begin{array}{r} 1981 \\ \text { Gill net... } \end{array}$	$\begin{array}{r} 390 \\ (0.1) \end{array}$	$\begin{array}{r} 317 \\ (0.1) \end{array}$	$\begin{aligned} & 4,663 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 82.423 \\ & (13.3) \end{aligned}$	$\begin{array}{r} 124,07) \\ (20.0) \end{array}$	$\begin{array}{r} 112,766 \\ (15.2) \end{array}$	$\begin{array}{r} 113,365 \\ (18.3) \end{array}$	$\begin{array}{r} 107,3 \geq 9 \\ (17.3) \end{array}$	$\begin{array}{r} 36,492 \\ (5.9) \end{array}$	$\begin{aligned} & 7,752 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 9,001 \\ & (1.5) \end{aligned}$	$\begin{array}{r} 20.936 \\ (3,4) \end{array}$	$\begin{array}{r} 619,515 \\ (100.0) \end{array}$
Deep trap net.				$\left\{\begin{array}{c} 19,220 \\ (0,9) \end{array}\right.$	$\begin{array}{r} 115,241 \\ (5.6) \end{array}$	$\left\{\begin{array}{r} 334,943 \\ (16.1) \end{array}\right.$	$\begin{array}{r} 528,609 \\ \{25.4\} \end{array}$	$\begin{array}{r} 495,954 \\ (24.0) \end{array}$	$\begin{array}{r} 391,921 \\ (18.8) \end{array}$	$\begin{array}{r} 172,701 \\ (8.3) \end{array}$	$\begin{array}{r} 15,757 \\ (0 . x) \end{array}$	$\begin{gathered} 2,220 \\ 10.1) \end{gathered}$	$\begin{array}{r} 2,074,546 \\ (100.0) \end{array}$
Pound net		$\left(0.0^{2}\right.$	$\begin{array}{r} 35 \\ (0.0) \end{array}$	$\begin{aligned} & 3.340 \\ & (0.4) \end{aligned}$	$\begin{array}{r} 41.852 \\ (4.6) \end{array}$	$\begin{array}{r} 264,224 \\ (29.5) \end{array}$	$\begin{array}{r} 169,001 \\ (18.5) \end{array}$	$\begin{array}{r} 53,513 \\ (5.9) \end{array}$	$\begin{gathered} 65,801 \\ (7.2) \end{gathered}$	$\begin{array}{r} 184.552 \\ (20.3) \end{array}$	$\begin{array}{r} 121,774 \\ (13.4) \end{array}$	$\begin{aligned} & 1,796 \\ & (0.2) \end{aligned}$	$\begin{array}{r} 10,940 \\ (100.0) \end{array}$
All pears.	$\begin{array}{r} 390 \\ (0.0) \end{array}$	$\begin{array}{r} 319 \\ (0.0) \end{array}$	$\begin{aligned} & 4,785 \\ & (0.1) \end{aligned}$	$\begin{array}{r} 116,754 \\ (2.5) \end{array}$	$\begin{array}{r} 289.342 \\ (7.0) \end{array}$	$\begin{array}{r} \mathrm{s} 08,065 \\ (19.5) \end{array}$	$\begin{array}{r} 961,095 \\ (\stackrel{2}{2}, 2) \end{array}$	$\begin{array}{r} 709.469 \\ (17.2) \end{array}$	$\begin{array}{r} 591,594 \\ (14.3) \end{array}$	$\begin{array}{r} 44,301 \\ (10.7) \end{array}$	$\begin{array}{r} 186,997 \\ (4.5) \end{array}$	$\begin{array}{r} 20,161 \\ (0.7) \end{array}$	$\begin{array}{r} 4,139,772 \\ (100.0) \end{array}$

only during limited periods, one in late spring and carly summer and another in midautumn. Many fishermen discontinue pound-net operations at other seasons. It is true also that even in periods of active operation the greatest concentrations of whitefish may be at depths beyond the reach of pound nets.

The offshore movement that leads to a concentration in relatively decp water in the summer and early autumn exposes the whitefish to the inroads of the deep trap net at the time it is most vulnerable. Formerly, the only toll on the whitefish in its summer concentration was that levied by gill nets, and in the moden fishery of Lake Huron this type of gear has not proved generally effective for the large-scale catching of whitefish. The gill net is so ineffective for the capture of whitefish under morlern conditions that gill-nct fisheries are supported by this species alone only in very limited areas or orer extremely short periods of time (chicfly during the spawning season). ${ }^{26}$ The largemesh gill-net fishery is now conducted ordinarily for the capture of both trout and whitefish or of trout alone, but rery seldom cxclusively for the taking of whitefish. ${ }^{27}$ The comparative ineffectiveness of gill nets made the time of summer concentration of the whitefish a "semi-closed" season during which the species was in large measure immune to capture. The introduction of the deep trap net made this same period the season of maximum production.

The effect of the decp-trap-net fishery on the monthly distribution of the whitefish catch and the high production this gear made possible in the summer months may be illustrated by the data of table 12 and figure 12. The gill-net scason extended through the months, May-August, in both 1929 and 1931. (September was a fairly good month in 1929.) No distinct peaks occurred in cither ycar. The pound-net catch, on the contrary, was divided into two distinct seasons, each with a sharp peak. The earlyseason maximum occurred in July in 1929 and in June in 1931. Both of the autumn maxima were in October. The 1931 data which show the more pronounced summer depression provide the better description of the monthly distribution of pound-net production because the 1929 early-summer peak was later and the September catch was relatively higher than usual. The rlata for both ycars, however, have a distinct latesummer minimum-August in 1929 and August-September in 1931.

The curve of total catch in 1929 has a minimum in August corresponding to the August depression in the pound-nct data. A similar minimum would have existed in

[^82]the curve of total production in 1931 if only gill nets and pound nets had been in operation. The deep-trap-net catch, however, changed the form of the curve completely. This gear not only deprived the whitefish of its former temporary respite during the period of habitation in deep waters, but actually exposed the fish to a far more severe exploitation in late summer than it had previously suffered at any season. From these facts it is obvious that effective regulation of the deej trap net must include the reduction of its catches on the deep-water grounds on wheh whitefish congregate during late summer.

The summer assemblings of whitefish that made possible the great effectiveness of the deep trap net seemingly were not as dense in northern Lake Huron as in the central and southern regions of the lake. In each of the four southerly districts the average catch per lift of deep trap nets exceeded 400 pounds in one year and was more than 200 pounds per lift in 2 or 3 years (table 11). In the northern districts the greatest average eatch per lift of deep trap nets was 168 pounds in $\mathrm{H}-1$ and 142 pounds per lift in $\mathrm{H}-2$ (in 1930 in both districts). The relatively poor success of deep trap nets is the more remarkable in $\mathrm{H}-1$ because that area under normal conditions had been an important and in many, if not the majority of years, the leading center of whitefish production in the lake. At any rate these mall catches per lift account for the more moderate use of deep trap nets in $\mathrm{H}-1$ and $\mathrm{H}-2$.

A final point that deserves consideration is the possibility that mass migrations of whitefish may have played a role in the shift from year to year in the center of the deep-trap-net fishery. The failure of the grounds on which the deep trap nets first were fished and the resultant necessity for opening up new areas gave an early indication of the disastrous results to be expected from the murestricted operation of this gear. Deep-trap-net fishermen denied most vigorously, however, that their activity had caused any depletion on the grounds. They contended that the fish had not been eaught but that they merely had migrated to another area. They held further that in changing the center of the fishery they were only following the movements of the whitefish population. In support of their contention they stresed the argument that only mass migrations could make possible such high production in southern Lake Huron ($\dot{\mathrm{H}}-5$ and $\mathrm{H}-6$), an area in which the eateh of whitefish hadalways been small.

The assumption of a mass migration of whitefish proceeding in the same direction year after year runs counter to all known facts concerning the habits of the species. Nevertheless, the possibility cannot be denied that extraordinary conditions might bring about unusual reactions on the part of the fish. The strongest argument against the theory of mass migration lies in the fact that such an assumption is altogether unneccessary. The heavy yield in southern Lake Huron in 1932 and later years was not made possible, as fishermen contended, by the influx of whitefish from more northerly grounds. The records of the eatch of gill nets per unic of effort (table 11) prove that dense concentrations of whitefish had been present on the offshore grounds of $\mathrm{H}-5$ and H-6 for years before the deep trap net was introflueed. In fact, the eatch of whitefish per unit of effort of gill nets in $\mathrm{H}-5$ exceeded that in every other district during the four years, 1929-1932. The eatch per unit of effort of gill nets in H-6 was greater than that in any other district in 1933 and was second only to the eateh per lift in $\mathrm{H}-5$ in 1931 and 1932.

The large production of deep trap nets in $\mathrm{H}-5$ and $\mathrm{H}-6$ was made at the expense of the reserve stock rather than of a population of recent migrants. The generatly low output of whitefish in southern Lake Huron prior to the introduction of the deep trap net can be attributed to a low fishing intensity. (iill nete, comparatively ineffective gear for the capture of whitefish, accounted for the bulk of the eatch (appendix B). Apparently the relatively few pound nets were fished either at the wrong localities or depths to produce large quantities of whitefish. Actually, suitable localities for whitefish pound nets are scaree in southern Lake Huron.

WHITEFISH FISHERY OF LAKE MICHIGAN, 1929-1939

The most important difference between the histories of the whitefish fisheries of Lakes Michigan and Huron, 1929-1939, lies in the relatively limited development of the deep-
trap-net fishery in the former lake. With the exception of the deep-trap-net fishery out of Grand Haven, Mich., in 1934 (the deep trap net was the dominant gear for the production of whitefish in M-7 in that year), significant operations with this gear were confined to the extreme northern portion of the lake ($\mathrm{M}-1, \mathrm{M}-2$, and $\mathrm{M}-3$). Deep trap nets were introduced into M-1 and M-3 in 1930 and into M-2 in 1931. Even in these northern districts the place of the deep trap net in the fishery resembled that which it oceupied in northern Lake Huron rather than in central and southern Lake Huron. At no time did the deep trap net become the dominant gear for the capture of whitefish in the Green Bay area (M-1). In M-2 and M-3 deep trap nets led other gears in the production of whitefish in only two years (1932 and 1933 in both districts). The use of deep trap nets in the Miehigan waters of Lake Michigan beeame illegal after $1935 .{ }^{28}$

The fact that the deep trap net did not disturb the whitefish fishery as seriously in Lake Michigan as in Lake Huron makes it possible to follow a more or less natural course of events subsequent to an abnormal increase in abundance. Comparisons with the data on the whitefish fishery of Lake Huron should prove particularly instructive.

FLUCTUATIONS IN THE PRODUCTION OF W+HITEFISH . IN LAKE MICHIGAN

The increase in the eatch of whitefish that eliaracterized the late 1920 's and early 1930 's in the various waters of the Great Lakes got under way early in Lake Michigan. ${ }^{29}$ Production exceeded 2 million pounds in 1927 and was nearly 3 million pounds in 1928.

Table I3.-Production of whitefish in pounds according to gear in the State of Michigan waters of Lake Michigan, 1989-1939
[Percentages of anmal yield in parentheses]

Year	Production in gear				$\begin{gathered} \text { Total } \\ \text { annual } \\ \text { production } \end{gathered}$	1ncrease or decrease
	large-mesh gill net	$\begin{gathered} \text { Deep trisp } \\ \text { net } \end{gathered}$	Pound net	Other		
1929	$\underset{(32,3)}{2,24,093}$		$\begin{array}{r} 2,032,083 \\ (47.4) \end{array}$	$\begin{array}{r} 11,693 \\ (0.3) \end{array}$	$4,287,869$	$+1,331,723$
1930	$\begin{array}{r} 2.339,162 \\ (48.6) \end{array}$	$\begin{array}{r} 135,634 \\ (2.8) \end{array}$	$\begin{array}{r} 2,328,326 \\ (48.4) \end{array}$	$\begin{aligned} & 9,703 \\ & (0.2) \end{aligned}$	4,812,825	+524,956
1931	$\begin{array}{r} 1,986,579 \\ (51.9) \end{array}$	$\begin{array}{r} 408,209 \\ (10.7) \end{array}$	$\begin{array}{r} 1,421,576 \\ (37.2) \end{array}$	$\begin{gathered} 7.619 \\ (0.2) \end{gathered}$	3,823,983	-988.842
1932	$\begin{array}{r} 1,564,505 \\ (46.9) \end{array}$	$\begin{array}{r} 856,804 \\ (25.7) \end{array}$	$\begin{array}{r} 890,667 \\ (26.7) \end{array}$	20,308 (0.6)	3,332,284	-491,699
1933	$\begin{array}{r} 1,307,943 \\ (58.4) \end{array}$	$\begin{array}{r} 440,090 \\ (19.7) \end{array}$	$\begin{array}{r} 485,187 \\ (21.7) \end{array}$	$\begin{gathered} 2,620 \\ (0.1) \end{gathered}$	2,235,840	-1,096,444
1934.	$\begin{array}{r} 1,001,074 \\ (51.8) \end{array}$	$\begin{array}{r} 398,635 \\ (20.6) \end{array}$	$\begin{array}{r} 531,070 \\ (27.5) \end{array}$	$\begin{aligned} & 1,399 \\ & (0.1) \end{aligned}$	1,932,178	-303,662
1935.	$\begin{array}{r} 911,079 \\ (63.6) \end{array}$	$\begin{array}{r} 211,246 \\ (14.8) \end{array}$	$\begin{array}{r} 301.367 \\ (21.0) \end{array}$	$\begin{aligned} & 8.032 \\ & (0.6) \end{aligned}$	1,431,724	-500,454
1936	$\begin{array}{r} 635,284 \\ (72.5) \end{array}$		$\begin{array}{r} 240,508 \\ (27.4) \end{array}$	619 (0.1)	876.411	-555.313
1937	$\begin{array}{r} 709,515 \\ (74.9) \end{array}$		$\begin{array}{r} 236.527 \\ (25.0\} \end{array}$	$\begin{array}{r} 2.3 \\ (0.1) \end{array}$	946, 567	$+70,456$
1938	$\begin{array}{r} 765,416 \\ (65.5) \end{array}$		$\begin{array}{r} 351,447 \\ (31.5) \end{array}$	216 (0.0)	1,117,079	+170,212
1939	$\begin{array}{r} 482,801 \\ (57.5) \\ \hline \end{array}$		$\begin{array}{r} 356,488 \\ (42.4) \end{array}$	$\begin{array}{r} 567 \\ (0.1) \\ \hline \end{array}$	839.856	-277.223
Average	$\begin{array}{r} 1,267,950 \\ (54.4) \end{array}$	$\begin{array}{r} 222,754 \\ (9.6) \end{array}$	$\begin{array}{r} 834.113 \\ (35.5) \end{array}$	$\begin{aligned} & 5.742 \\ & (0,2) \end{aligned}$	2,330,629	

[^83]In 1929, the first year for which detailed statistics are available, the catch of whitefish ($4,288,000$ pounds) was greater than that of any previous year, except 1889 , for which there are usable records (table 1). The increase over the take for 1928 was $1,332,000$ pounds (table 13). A further rise of 525,000 pounds in 1930 brought the yield of whitefish in Lake Michigan to the peak of $4,813,000$ pounds.

Whitefish production deelined continually throughout the next 6 years. The decreases were large (average of 656,000 pounds per year). In two years (1931 and 1933) the drop in eateh amounted to roughly a million pounds. In three years (1932, 1935, and 1936) the deereases were approximately a half million pounds. The smallest drop in production (304,000 pounds) in the 6 -year period occurred in 1934.

The 1931-1936 decline in eateh was followed by increases in 1937 (70,000 pounds) and 1938 (170,000 pounds). A new drop of 277,000 pounds in 1939 carried the yield to a level that was only a little above the lowest recorded for any previous year (806,000 in 1920).

Great as the deeline in production was in Lake Michigan, the yield in 1939 amounted to 17.5 percent of the 1930 maximum as compared with a 1939 eatch in Lake Huron that was only 6.2 percent of the 1931 peak in that lake.

The records of the production of whitefish in deep trap nets (tables 13 and 14) eonfirm the earlier statement that the gear failed by far to become as important in Lake Mieligan as in Lake Huron. In Lake Michigan the deep trap net accounted for only 25.7 pereent of the total eatch in 1932, the year of its greatest success. This percentage was less than that of pound nets (26.7 percent) and was far below the percentage for gill nets (46.9 percent). In fact, the total quantity of whitefish taken by deep trap nets in Lake Michigan in their 6 years of operation (1930-1935) was less than the amount taken by the same gear in Lake Huron in each of the single years, 1932 and 1933. The gill net was the most important gear for the capture of whitefish throughout the 11-year period and accounted for more than 50 percent of the total yield in 9 years (average of 54.4 percent for 1929-1939). With equal consistency the pound net held second rank. and aceounted for 35.8 percent of the 1929-1939 take.

Table 14.-Production of whitefish in pounds in decp trap nets in Lake Miehigan, 1930-193:" (use of Ieep trap nets illegal after July $1,10,35$)

District or area	l'roduction in dorp trap hets in year						Tout
	1930	1931	1932	1933	1934	1935	
M.1.	$\left\{\begin{array}{r} 37,655 \\ (3.5) \end{array}\right.$	$\begin{array}{r} 11,523 \\ 9.31 \end{array}$	$\begin{gathered} 191,9617 \\ (21.1) \end{gathered}$	77.161 (32.4)	$\begin{aligned} & 56,91 \% \\ & (21.6) \end{aligned}$	22.7×3	448, 019
M-2.		$\left\{\begin{array}{l} 13,64, \\ (16,7) \end{array}\right.$	$\begin{aligned} & 51.303 \\ & (61.0) \end{aligned}$	$\begin{aligned} & 30.753 \\ & (72.7) \end{aligned}$	$\begin{aligned} & 11,540 \\ & (43.1) \end{aligned}$	3,621	118,902
M-3.	$\left\{\begin{array}{r} 97.454 \\ 4.01 \end{array}\right.$	$\begin{array}{r} 273,242 \\ (114.5) \end{array}$	546,246 (40.0)	$\begin{array}{r} 318.260 \\ (35.7) \end{array}$	$\begin{array}{r} 251,01 \cdot 3 \\ 32.41 \end{array}$	172,384	1.213.122
M-4		$\left\{\begin{array}{r}174 \\ (0.2)\end{array}\right.$	$\begin{aligned} & 1,216 \\ & (1.5) \end{aligned}$	$\begin{aligned} & 1.56! \\ & (3,1) \end{aligned}$	249 (0.5)	4,35,	7.549
Northern Lake Michgan (M-1, M-2, N-3, and M-4).	$\left\{\begin{array}{r} 135.109 \\ (3.6\} \end{array}\right.$	$\begin{array}{r} 399,624 \\ (14.5) \end{array}$	$\begin{array}{r} 44,746 \\ (33.0) \end{array}$	$\begin{array}{r} 427,4,3 \\ \{35.01 \end{array}$	$\begin{array}{r} 310,750) \\ (29.1) \end{array}$	208, 167	2,338,14
Central Lake Michigan (M-5)			$\begin{aligned} & 3.797 \\ & (0.7) \end{aligned}$	$\begin{aligned} & 3.4 .22 \\ & (0.7) \end{aligned}$		- - --	7.279
M-6.	$\left\{\begin{array}{r} 525 \\ (0.2) \end{array}\right.$	$\begin{gathered} x_{1} \times 77 \\ (3, i) \end{gathered}$	$\begin{array}{r} 173 \\ (0.2) \end{array}$	$\begin{array}{r} 2.625 \\ (6.97 \end{array}$	$\begin{aligned} & 3.920 \\ & (10.5) \end{aligned}$	---	16.120
M.7.		$\left\{\begin{array}{r} 34 i \\ (0.3) \end{array}\right.$	$\begin{aligned} & 3,819 \\ & (8,0) \end{aligned}$	$\begin{array}{r} 6,240 \\ 14.0\} \end{array}$	$\begin{aligned} & 74,956 \\ & (39.3) \end{aligned}$	3,079	S8,441
M-8.		$\begin{array}{r} 361 \\ (0.3) \end{array}$	$\begin{gathered} 269 \\ (0.4) \end{gathered}$			-------	630
Southern Lake Michisan (M-fi, M- $\overline{\text { a }}$, and M-8).	$\left\{\begin{array}{r}525 \\ (0.1)\end{array}\right.$	$\begin{aligned} & 9,585 \\ & (1.9) \end{aligned}$	$\begin{gathered} 4,261 \\ (2.2) \end{gathered}$	$\begin{aligned} & x_{1}, 655 \\ & (1.6) \end{aligned}$	$\begin{aligned} & -\mathbb{N}, 576 \\ & (14.5) \end{aligned}$	3,079	105.191
Lake Michigun (all \& districts).........	$\left\{\begin{array}{r} 135.634 \\ (2.5) \end{array}\right.$	$\begin{array}{r} 408,209 \\ (10.7) \end{array}$	$\begin{array}{r} 856,804 \\ (25,7) \end{array}$	$\begin{array}{r} 440.090 \\ (1!4.7) \end{array}$	$\begin{array}{r} 398.635 \\ (20.6) \end{array}$	211,246	$2,450.618$

The deep trap net became the dominant gear for the taking of whitefish in only three (M-2, M-3, and M-7) of the eight distriets of Lake Miehigan (table 14 and appendix B), and maintained that position in the first two distriets only 2 years (1932 and 1933) and in M-7 only 1 year (1934). With the exception of the fishery in M-7 in 1934, deep trap nets were operated only sporadieally in waters south of M-3.

Althougli the aetual yield of whitefish in each distriet and the percentage distribution among the several distriets of the total for the lake both varied rather widely in Lake Michigan during the period, 1929-1939 (table 15), there is no evidence of a shifting of the center of production comparable to that which took place in Lake Huron. For example, M-3 did not relinquish once its position as the most productive distriet of the lake; neither did northern Lake Michigan (M1-1, M-2, M-3, and M-4) fail in any year to account for more than 50 percent of the eatch of the entire lake.

Table 15.-Total annual production of whitefish in pounds in the different districts and areas of the State of Michigan waters of Lake Michigan, 1939-1939
[Each total is expressed also as the pereantage (in parentheses) of the production of the entire lake]

District or area	Total whitefish production in year											Average
	1929	1930	1931	1932	1933	14.34	1935	1936	1937	193\%	1939	
M-1	$\left(\begin{array}{c} 1,139,62 x \\ (26.6) \end{array}\right.$	$\begin{gathered} 1,075,748 \\ (22.4) \end{gathered}$	$\begin{gathered} 1,194,914) \\ (31.3) \end{gathered}$	$\begin{aligned} & 910,106 \\ & (2.3) \end{aligned}$	$\begin{aligned} & 238,164 \\ & (10.7) \end{aligned}$	$\begin{aligned} & 263,005 \\ & (13,6) \end{aligned}$	$\begin{gathered} 174.637 \\ 12.21 \end{gathered}$	$\begin{aligned} & 90,293 \\ & (10.3) \end{aligned}$	$\begin{aligned} & 104,55 \\ & (11.1) \end{aligned}$	$\begin{aligned} & 354,235 \\ & (31.7) \end{aligned}$	$\begin{aligned} & 23,504 \\ & (29.3) \end{aligned}$	$\begin{aligned} & 525,336 \\ & (22.6) \end{aligned}$
M-2	$\begin{aligned} & 90,0103 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 100,625 \\ & 2.1 i \end{aligned}$	$\begin{aligned} & 81,618 \\ & (2.1) \end{aligned}$	$\begin{aligned} & 97,248 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 42,277 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 26,5,58 \\ & (1,4) \end{aligned}$	$\begin{aligned} & 46,26 i \\ & (3,2) \end{aligned}$	$\begin{aligned} & 46,46.7 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 31,49 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 34.221 \\ & (2.2) \end{aligned}$	$\frac{15,402}{(1,8)}$	$\begin{aligned} & 54,772 \\ & (2.3) \end{aligned}$
M-3	$\frac{2,202,064}{(51.3)}$	$\begin{gathered} 9,460,656 \\ (51,1) \\ \hline \end{gathered}$	$\begin{gathered} 1,3 \times 1), 450 \\ (36.1) \end{gathered}$	$\underset{(44.8)}{1,489,472}$	$\begin{aligned} & 840,899 \\ & (39,5) \end{aligned}$	$\begin{gathered} 761,531 \\ (39.4! \end{gathered}$	$\begin{aligned} & 549.656\} \\ & (52.4) \end{aligned}$	$\begin{aligned} & \frac{145,963}{5} \\ & (010.9) \end{aligned}$	$\begin{aligned} & 4.70,614 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 497,86 \\ & (4.6) \end{aligned}$	$\begin{aligned} & 425,495 \\ & (50.7) \end{aligned}$	$\begin{gathered} 1.068 .627 \\ (45.9) \end{gathered}$
M-4	$\left\{\begin{array}{l} 72,629 \\ (1.6) \end{array}\right\}$	$\begin{aligned} & 84,119 \\ & (1.7) \end{aligned}$	$\begin{aligned} & 84,253 \\ & (2,2) \end{aligned}$	$\begin{gathered} 78,771 \\ (2.4) \end{gathered}$	$\begin{gathered} 51,010 \\ (\mathbf{2}, 3) \end{gathered}$	$\begin{aligned} & 48,369 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 47,975 \\ & (3,3) \end{aligned}$	$\begin{aligned} & 56,234 \\ & 16,4 \end{aligned}$	$\begin{aligned} & 43,466 \\ & 4,661 \end{aligned}$	$\begin{aligned} & 29.244 \\ & (2.51 \end{aligned}$	$\begin{aligned} & 31,76 i \\ & (3,4) \end{aligned}$	$\begin{gathered} 57,113 \\ (2.4) \end{gathered}$
Northern Lake Michigan (M-1, $\mathrm{M}-2, \mathrm{M}-3, \& \mathrm{M}-4$	$\begin{aligned} & 3,504,340 \\ & (181.7) \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 3,721,14.8 \\ (77.3) \end{array}\right\|$	$\begin{gathered} 2,741,290 \\ (71.7) \end{gathered}$	$\begin{gathered} 2,575,597 \\ 171.31 \\ \hline \end{gathered}$	$\begin{aligned} & 1,222,355 \\ & (54.6) \end{aligned}$	$\begin{gathered} 1,104,063 \\ (56.9) \end{gathered}$	$\begin{aligned} & 1,018,545 \\ & (11.1) \end{aligned}$	$\begin{aligned} & 63, ~, ~ 669 \\ & (\overrightarrow{12}, 17) \end{aligned}$	$\begin{aligned} & 630, .502 \\ & \text { (26.6) } \end{aligned}$	$\begin{aligned} & 905,4,1 \\ & (\$ 1.1) \end{aligned}$	$\begin{aligned} & 210,173 \\ & (\times 4.6) \end{aligned}$	$\begin{aligned} & 1,706,248 \\ & 173.2) \\ & \hline \end{aligned}$
Central Lake Michigan (M-5)..	$\begin{aligned} & 24,620 \\ & (6.6) \end{aligned}$	$\frac{240,701}{(5.85}$	$\begin{gathered} 580.536 \\ (15.2) \end{gathered}$	$\begin{aligned} & 5.3 \times .573 \\ & (16.8) \end{aligned}$	$\begin{aligned} & 529,697 \\ & (23.7) \end{aligned}$	$\begin{aligned} & 24 \times, 497 \\ & (15.5) \end{aligned}$	$\begin{aligned} & 204,417 \\ & (14.61 \end{aligned}$	103.801	$267,385$	$\begin{aligned} & 189.658 \\ & (17.0) \end{aligned}$	$\begin{array}{r} 97.268 \\ (11.61) \end{array}$	317.686
M-6	$\begin{aligned} & 103,397 \\ & (2.4) \end{aligned}$	$22,14$	$\begin{aligned} & 25,015 \\ & (6.6) \end{aligned}$	$\begin{aligned} & 85.0 \times 8 \\ & (2.5) \end{aligned}$	$\begin{aligned} & 43,1 \times 1 \\ & (1.9) \end{aligned}$	$\begin{aligned} & 37,4,50 \\ & (1,9) \end{aligned}$	$\begin{aligned} & 34,861 \\ & (1.6) \end{aligned}$	$\begin{aligned} & 14,06,2^{2} \\ & (1.6) \end{aligned}$	$\begin{aligned} & 11,100 \\ & (1.2) \end{aligned}$	$\begin{aligned} & 6,750 \\ & (0.61 \end{aligned}$	$\begin{gathered} 4,653 \\ (0.5) \end{gathered}$	$\begin{gathered} 73,158 \\ (3,2) \end{gathered}$
M-7	$\begin{aligned} & 139,690 \\ & (3.3) \end{aligned}$	$\begin{aligned} & 44 \pi, 760 \\ & (9.4) \end{aligned}$	$\begin{aligned} & 10,206 \\ & 2.2 .5 \mid \end{aligned}$	$\begin{aligned} & 47,934 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 107,694 \\ & (7,1) \end{aligned}$	$\begin{aligned} & 100,582 \\ & (9.9\rangle \end{aligned}$	$\begin{aligned} & 30,506 \\ & (2.2) \end{aligned}$	$\begin{aligned} & 5.212 \\ & 0.61 \end{aligned}$	$(0,8)^{k, 017}$	$\begin{aligned} & 1,137 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 1,537 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 103.389 \\ & (4.4) \end{aligned}$
M-8	$\frac{235,422}{(6.0)}$	$\begin{aligned} & 1+1,060 \\ & \{2.9\} \end{aligned}$	$142,936$	$\begin{aligned} & 6.5 .100 \\ & (2.6) \end{aligned}$	$\frac{292,908}{(12.61)}$	$\begin{aligned} & 305,5.56 \\ & (15,8) \end{aligned}$	$\begin{aligned} & 149,005 \\ & (10.4) \end{aligned}$	$\begin{aligned} & 19,44,6 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 2+44 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 1+, 016 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 26.225 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 130.14 \times \\ & \{5.6\} \end{aligned}$
outherm Lake Michigan (M1-6, M-7, and $\mathrm{M}-\mathrm{s})$	$\left[\begin{array}{c} 495,909 \\ 1 \\ 111.6) \end{array}\right.$	$\begin{aligned} & 810,976 \\ & (16.9) \end{aligned}$	$\begin{aligned} & 502,13 \pi \\ & (13.1) \end{aligned}$	$\underset{(5.17)}{198,114}$	$\begin{aligned} & 483,785 \\ & (21.6) \end{aligned}$	$\begin{gathered} 533,618 \\ (27.6) \end{gathered}$	$\begin{aligned} & 204,372 \\ & (1+, 3) \end{aligned}$	$\begin{aligned} & 34,741 \\ & (4.4)^{2} \end{aligned}$	$\begin{aligned} & 4,615 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 31,940 \\ & \{1.9\} \\ & \hline \end{aligned}$	$\begin{aligned} & 32,415 \\ & (3,8) \\ & \hline \end{aligned}$	$\begin{aligned} & 306.635 \\ & (13.2) \end{aligned}$
Lake Michigan (all 8 districts) Percentage of aver-age.-.	$\begin{gathered} 4,297,869 \\ 184 \end{gathered}$	$\begin{gathered} 4,812,825 \\ 2015 \end{gathered}$	$\begin{gathered} 3,823,983 \\ 164 \end{gathered}$	$3.332,284$ 143	$\begin{gathered} 2,235,840 \\ 96 \end{gathered}$	$\begin{gathered} 1,932,178 \\ \mathrm{~s}! \end{gathered}$	$\begin{gathered} 1,431,72 t \\ 61 \end{gathered}$	$\begin{gathered} 306.411 \\ 3.4 \end{gathered}$	$\begin{gathered} 946,767 \\ 41 \end{gathered}$	$\begin{gathered} 1.116 .079 \\ 48 \end{gathered}$	$\begin{gathered} 839, ~ 45 t 9 \\ 36 \end{gathered}$	2,330,609

Nevertheless, the relative importance of the districts raried considerably. M-3 produced as little as 36.1 percent (1931) and as much as 52.4 pereent (1935) of the total eatch of whitefish in the lake. In M-1, the district that ranked second in average yiekl, the percentages ranged from 10.3 (19:36) to 31.7 (1938). The distriet that ranked third in average production (M-5) yiedded from 5.8 percent (1930) to 28.3 percent (1937) of the total for the lake.

The percentage contributions of the less important distriets varied relatively more widely than did those for the more productive areas. The greatest relative variation oecurred in M-7 which produced 9.9 percent of the 1934 total but only 0.I percent of the 1938 eatch. However, among the five districts that each accounted for less than 10 percent of the 1929-1939 average only one (M-8) proluced more than 10 percent of
the total for the lake in any single year (percentages of $12.6,15.8$, and 10.4 in 1933, 1934, and 1935, respectively).

Comparison of later and earlier production of whitefish in the various districts of Lake Michigan (tables 15 and 16) reveak that $M-3$ contributed an even higher percentage of the total for the lake in 1891-1908 (59.5 percent) than in 1929-1939 (45.9 percent). M-2 and M-4 also accounted for higher percentages of the total in the earlier period (7.4 and 7.3 percent, respectively, as compared with 2.3 and 2.4 percent). However, the percentages for these two districts may be too high for the years, 18911908. As stated in footnote 23 , the division of the catches for the early period was based on the home ports of the fishermen, not necessarily on the actual location of their fishing grounds. In recent years, at least, numbers of fishermen who operate from ports of M-2 and M-4 have done part of their fishing in other districts (chiefly in M-3). It is believed that the data for the remaining districts were not affected greatly by the separation of the catch of the earlier years according to the port from which the fishermen operated.

Table 16.-Production of whitefish in pounds in Lake Michigan according to statistical districts, 1891-1908

Yesr	Statistical district								Tutal
	N-1	M-2	M-3	\$14	\$1.5	11-k	M. ${ }^{\text {\% }}$	N-n	
1891	-7, 140	237.000	1,521.101	214.5.0	290, 1100)	+1,051)	17.1100	5.500	$2,404,5: 1$
1892	143,6010	325,650	1,475.412	$16 \times .25$	32:1,3100	+1,100	11,1010	20, 215	2.322.402
1893	123,450	¢3,000	1,326,900	137,0.50	233,600	14,500	23.300	25.100	1,975, 4+1!
1594	81.050	\$1.100	. 501.850	145.300	147,300	4.130	31.4 .31	24.925	$1,295,5115$
1805	71,850	18,500		109.9830	13s,1010	i, 41011	21.150	24.360	1,122, ${ }^{1010}$
1896	$8 \times, 810$	145,000	463.409	66, 5000	210.750	10.0000	13.350	26.600	1.447.300
1897	83,570	180,000	1,762,900	4. 4.3110	261,200	1.1,200	6,05)	213, 2.30	2.414 .465
1898	$\times 5.0 .51$	302.100	1,301,160	+4,200	303,000	16,700	ti,5.50	17,610)	2.320 .1011
1899	111.560	104,100	1,040,470	8.5000	$24,6,100$	12,350	2 V 20	- $2.5,1104$	1,633.4811
1900	\$3,350	140,500	根1.800	104.0041	- \%, 1000	16,117)	3,100	21,730	1,635.6917
1901	14.700	146. 100	1.323 .800	145.709	274.200	4,700	$\square 900$	18, 8.711	$2,020.5019$
1902	140,150	173,500	1.739, 800	2011,509	42:9,000	16,000)	3.4190	23.0001	$2,-123.350$
1903	228.294	166.004	1.354.46\%	145,.009	313,5170	17.100	4.3010	2.761	3.34, 6 , ${ }^{\text {a }}$
1904	2×3.009	158,000	1,337,006	262,500	335, 3000	3:3, 1910	14.100	51. 100	2,561.70)
1905	348,0100	184.000	1.240, 200	≥ 15.1000	3. 4.50	62.6509	7.3.710	18.0.6\%	2.5\%1),101
1906	2!1,300	89,500	1.2×7.800	322.300	33, ${ }^{3}, 5006$	7-3010	170,3441	1-1.306	$\because 20,7010$
1907	291.800	179,000	1.6.s $: 4,500$	214.100	(33), 1000	1.34,309	2 Fi 5.8019	1.34.700	8.273, 2111
1903	22.2.5(1)	250.400	1,743,155	119.124	337.116	-3, 3161	S. 3.404	142.(11)0	3,10t, 1995
Average	1514,291	164,96.	1.32;404	163,13\%	240, $200!$	34.35\%	43.15;	$4.02 \% 6$	2233.80
Percentage.	72	74	545	73	12	16	11	3.2	

M-1, M-5, M-6, M-7, and M-8 yielderl mather percentages of the total catch of whitefish in 1891-1908 than in 1929-1939. Especially noteworthy are the comparative yields for M-1 which accounted for only 7.2 percent of the early total catch as against 22.6 percent of the recent production. The change was not large in M-5 (12.9 percent in the early period; 13.6 percent in the recent). The perentages were considerably lower in 1891-1908 than in 1929-1939 for all three distriets ($11-6, ~ М 1-7$, and $11-8$) of southern Lake Michigan (1.6, 1.9, and 2.2 pereent as compared with $3.2,4.4$, and 5.6 percent).

Despite the changes just described in the werentage distribution of the cateh of whitefish according to district, the most productive areas of the earlier years seem to be in general the best areas of recent years. This conclusion is supported by the following comparison of regions of the lake:

Area

CHANGES IN PRODUCTION IN LAKE MICHIGAN AS RELATED TO
FLUCTUATIONS IN THE ABUNDANCE OF WIIITEFISH AND IN THE INTENSITY OF THE FISHERY

In Lake Michigan as in Lake Huron the abundanee of whitefish was abnormally high near the beginning of the 1929-1939 period. The peak of abundance occurred a year or two earlier in the more productive areas of Lake Michigan than in Lake Huron. The abundance of whitefish was greater in 1929 than in any other of the 11 years in each of the four districts of northern Lake Michigan, a region that accounted for 73.2 percent of the 1929-1939 production. The maximum abundance occurred in 1929 in M-8 also. The large increase in catch in 1929 (table 1) suggests strongly that the abundance in this year was greater than that in 1928 and hence constituted the maximum for the modern fishery. (Certainty on this point is not possible as the intensity of the fishery in 1928 is unknown.) The maximum abundance of the 1929-1939 interval occurred later in the remaining districts (1930 in M-6 and M-7, 1931 in M-5). However, these districts were relatively far less important in the fishery of the entire lake than were those in which 1929 was the year of peak abundance. Lake Michigan resembles Lake Huron again in that a decline from the high level of abundance that existed early in the period was to be expected.

These resemblances between the data for Lake Michigan and Lake Huron are fortunate, as they make possible a comparison of the course of the decline in Lake Michigan, where the whitefish fishery was not disturbed violently by the use of deep trap nets, and in Lake Huron where the introduction and widespread use of that new and efficient gear brought about an utterly chaotic condition in the fishery. Accordingly, compari sons of data for Lakes Michigan and Huron are emphasized in the present section.

Several reasons may be advanced to account for the failure of the deep-trap-net fishery to develop as extensively in Lake Michigan as in Lake Huron: (1) no extensive or good whitefish grounds are found in Lake Michigan south of Frankfort; (2) pound-netters and gill-netters rather than trap-netters were dominant on Lake Michigan and opposed the use of deep trap nets (the Lake Huron deep-trap-netters who entered M-7 in 1934 were driven out by local fishermen; shortly thereafter the Lake

Table 17.-Annual fluctuation in the catch of whitefish per unit of fishing effort of gill nets, deep trap nets, and pound nets in the various districts of Lake Michigan, 1929-1939

District	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	Average
	Pounds of whitefish per 10,000-foot-lift of gild nets											
M-1	1834	1500	1310	1163	714	1002	1052	765	717	1197	740	1090
M-2	694	638	443	270	1.53	195	494	430	321	262	244	377
M-3	1389	1316	876	894	704	740	S5 8	590	546	486	473	807
M-4	520	501	600	482	377	294	345	$4{ }^{4} 3$	257	253	258	397
M-5	1039	(4.7 8	1271	1106	1041	784	565	571	602	469	313	784
M-6	550	654	756	401	375	319	315	145	226	149	170	369
M-7	1325	1615	728	924	1931	1333	1565	1288	1331	764	710	1229
M-8	1567	1176	1116	815	1602	1419	1020	447	731	708	791	1041
	Pounds of whitefish per lift of one deep trap net											
M-1		1317	1002	1180	546	746	911					950
M-2			1844	2575	1206	681	431					1348
M-3		1537	1372	1648	978	1218 1182	946					1282 1182
	Pounds of whitefish per lift of one pound net											
M-1.	1132	887	1045	741	410	560	418	476	380	539	630	656
M-2	1052	859	2171									1361
M-3	15.33	145 8	960	800	856	935	924	853	815	800	756	979
M-4	734	710	57%	633	637	630	543	567	63 ถ	315	407	584
M-5	1231	1342	1592	1068	1450	714	736	605	652	841	539	979
M 6		2617	1264	552	266	412	342	847		1218	550	89.7
M-7	1029	1954	598	257	394	611	110	8 S	131	127	92	490
M-8		2431	1460		376	737	240	541	701		134	S3 4

Michigan fishermen were able to abolish the net from their waters by law) ; (3) the summer aggregation of whitefish oceurs in shallower water in Lake Michigan than in Lake Huron and hence the Lake Michigan fish never moved beyond the reach of pound nets to the same degree as did those in Lake Huron; (4) the deep-water population of whitefish arailable to the deep trap nets was less dense in Lake Mieligan than in Lake Huron, hence in contrast to the situation in Lake Huron the deep-trap-net lifts did not always average much larger than those of the pound nets. (Sce, for example, DI-1 and D1-2 for 1931, table 17.)

Although the deep trap net usually took more whitefish per lift than did the pound net in Lake Michigan, and from this point of riew may be considered to have been very effective and successful, in no district of the lake did the eatch per lift of deep trap nets approach the level that it attained in the four southerly districts of Lake Huron (tables 11 and 17). The average eateh per lift of deep trap nets in Lake Michigan reached values of 257.5 pounds in $11-2$ in 1932 and 184.4 pounds in the same district in 1931. (perations were limited, however, in M-2. In M1-1 and M1-3, where deep-trap-net operations were more extensive, the greatest average catehes per lift were 131.7 pounds ($\mathrm{I}-1$ in 1930) and 164.9 pounds ($\mathrm{M}-3$ in 1932). These ralues were far below the greatest averages in the districts of central and southern Lake Huron (402.5 to 476.1 pounds per lift), but compared favorably with the maxima in northern Lake Huron (167.7 pounds per lift in $\mathrm{H}-1$ in 1930; 141.9 pounds per lift in $\mathrm{H}-2$ in 1930). The deep trap net was relatively unsuceessful in southern Lake Michigan also, for the only significant operations with the gear ($M-7$ in 1934) yielded an average of 118.2 pounds of whitefish per lift.

To be sure, the deep trap net was introluced into northern Lake Miehigan after the peak of abundance of the whitefish had passed. The examination of the abundance pereentages of table 21 suggests that if this gear had been fished in 1929, the year of high abundanee, the average eatel per lift in that year most probably would have execeded the highest yields listed in table 17 for deep trap nets in each of the northern distriets. On the other hand, abundance pereentages may not validly serve as an exact index to the average size of a lift since the fluetuations in the eatch per lift of this gear did not always correspond with those in abundanee subsequent to 1929. For example, the average eatelı per lift of decp trap nets in M-1 deereased in 1931 and increased in 1932 despite the fact that abundance remained practically unchanged in 1931 and fell in 1932. Again, the highest yield (257.5 pounds per lift) of the northern area oceured in a district (11-2) when abundance wa- normat (1932).

As the average decp-trap-net lifts were small in comparison with those of central and southern Lake Huron irrespective of how much abundance was above average. the ennclusion appears valid that in northern Lake Michigan as in northern Lake Huron the deep trap net was far less suceessful than it was in central and southern Lake Huron.

The maximum and 1939 pereentages of production, fishing intensity, and abundance in table 18 have been computed with reppect to average conditions in 1929-1939. The correponding estimates for Lake Huron (table 7) were made with reference to

Table 18.-Maximum and 1939 prohluction and abundance of whitefish and maximum and 1939 fishing intensity for whitefish
[Expressed as perentages of the average 1929 1939 valum in each statistical district of Lake Michigan]

District	Year of taximnm prosuction	Production		Yiarar of maximum intensily	Intensity		Year of maximum abundance	Abundance	
		Maximum	1933		Maximum	1939		Maximum	1939
M-1.	1931	227	4.5	1431	196	65	1929	170	81
M-2	1930	14	24	11932	140	41	1929	189	69
M-3.	1920	230	40	1430	159	65	1429	166	67
M-4.	1931	145	36	1431	127	8	1929	127	6
M-5.	1931	183	31	1932	129	\because	1431	162	41
M-6.	1931	345	-	1931	24.	16	1930	209	53
M-7.	1930	433	1	1930	271	7	1939	222	33
M-8.	1934	235	20	1934	215	34	1929	151	31

conditions in the single year, 1929. The figures for this year were taken as the most nearly "normal" data available (p. 323). The computation of the above percentages for Lake Michigan also with respect to 1929 conditions would not have been valid because production, abundance, and almost certainly fishing intensity, as well, were above normal in Lake Miehigan in that year. On the other hand, the data for the period, 1929-1939, were not greatly, if at all, distorted by the deep-trap-net fishery in Lake Michigan. Furthermore, these 11 years ineluded periods of high, moderate, and low production and apparently also periods of high, moderate, and low abundance and fishing intensity. Consequently, the 11-year averages have been taken as the most nearly normal bases available for the estimation of the maximum and 1939 percentages of production, fishing intensity, and abundance for the Lake Michigan whitefish. It is believed that this variation of procedure has made the data of tables 7 and 18 as nearly comparable as is possible.

In comparison with Lake Huron the maxima of yields in Lake Miehigan were relatively small. The maximum exceeded 3 times the assumed normal in only two districts (433 percent in $11-7$ and 345 percent in M-6). Of the remaining six districts the maximum production was greater than twice the normal in three (M-1, M-3, and M-8), was between $11 / 2$ and 2 times the normal in two (M-2 and M-5), and was less than $11 / 2$ times the normal in one (M-4). In Lake Huron, on the contrary, the relatively lowest maximum yield was 263 percent of the 1929 catch (H-1) and the maxima in the remaining districts ranged from 317 in $\mathrm{H}-2$ to as high as 2,662 in $\mathrm{H}-5$. This comparison lends additional strong support to the belief that the use of the deep trap net brought about an excessive increase in yield in Lake Huron, especially in the four southern districts.

The maxima of fishing intensity were relatively lower in Lake Michigan than were the maxima of production. The peak fishing intensity was more than twice the normal only in southern Lake Miehigan (M-6, M-7, and M-8). The five remaining percentages were all below 200, and two of them ($\mathrm{M}-4$ and $\mathrm{M}-5$) were less than 150 . In Lake Huron the maximum percentage was more than twice the normal in every district; in the four southerly distriets the maxima ranged from roughly 4 to 42 times the normal. Again the comparison of data for Lake Miehigan and Lake Huron supports the earlier conclusion, namely, that the deep-trap-net operations led to an abnormally inereased fishing intensity in Lake Huron with the increase greatest in the central and southern regions of the lake.

The maxima of abundanee of whitefish were relatively higher in Lake Miehigan than in Lake Huron. In two districts the percentages exceeded 200 (M-6 and M-7) ; of the remaining six districts the percentages were above 150 in five and below 150 in only one. The corresponding percentages for Lake Huron were all below 150. These low values of the maximum abundance of whitefish in Lake Huron suggest the possibility that abundance in 1929, the year taken as normal, may have been somewhat above normal as well as above the Lake Huron average for 1929-1939. An alternative explanation is offered by the possibility that, in some districts at least, a higher maximum abundance might have been attained if fishing intensity and production had been less.

The estimates of the 1939 conditions in Lakes Michigan and Huron in relation to the assumed "normals" for the lakes provide further striking eomparisons. Production was at a low level in both lakes in 1939. In Lake Miehigan, however, only two districts of eight had yields below 20 percent of normal, whereas in Lake Huron three of the six districts were below that level. Three of the Lake Miehigan districts had percentages of 40 or above; in Lake Huron the only production greater than 40 percent of normal (46 in $\mathrm{H}-6$) was made possible by reason of a fishing intensity that was more than 4 times the normal.

Fishing intensities in 1939 were generally relatively lower in Lake Miehigan than in Lake Huron. In five of six districts of lake Huron the intensity of the fishery for whitefish was 50 percent or more of the 1929 "normal"; in 2 distriets. (H-5 and H-6) the intensity in 1939 was more than 4 times the normal. The intensity of the whitefish fishery in lake Michigan was above 50 percent of nomal in only four of eight districts and was only 88 percent in M-4, the district with the most intensive fishery.

The comparison of the relative abundanee of whitefish in Lakes Michigan and Huron in 1939 provides an explanation for the fact that the percentages for production were the higher in Lake Michigan in that year despite a relatively more intensive fishery in Lake Huron. The abundanee of whitefish was below normal in 1939 in every distriet of Lake Michigan. However, the percentage was below 50 in only two of the eight distriets (M-5 and M-7) and was below 60 in only three (M-5, M-6, and M-7). In Lake Huron, on the other hand, the abundanee of whitefish was less than 50 percent of the 1929 "normal" in every distriet, and was so low as to suggest the virtual disappearance of the speeies from the four most southerly districts. Thus it seems that where the whitefish merely declined in abundance in Lake Michigan the speeies approached extermination in most of Lake Huron.

The possibility that abundance may have been above normal in 1929, the "normal" year of reference for Lake Huron, does not affeet the validity of the preceding statement. If it is assumed, for example, that the abundance of whitefish in Lake Huron was 50 pereent above normal in 1929, hence that the pereentages for 1939 should be inereased 50 pereent, the following estimates are obtained of 1939 abundance as percentages of normal:

District	Abundance	District	Abundance
H-1	62	$\mathrm{H}-4$	10
H-2	64	$\mathrm{H}-5$	8
$\mathrm{H}-3$	9	$\mathrm{H}-6$	15

Even this inerease leaves the pereentages extrmely low for the four southerly distriets, although the pereentages for $\mathrm{H}-1$ and $\mathrm{H}-2$ are raised to a point corresponding roughly with the general level in Lake Miehigan.

The evidence that the use of deep trap nets in Lake Huron led to an exeessively great, and ultimately ruinous, expansion of the whitefish fishery should not be taken to signify that overfishing did not take patec in Lake Miehigan also. The eapacity for overfishing is not an exelusive characteristic of any one type of gear. Emphasis has been placed on overfishing by the (keep trap net merely beause its extraordinary effieieney made possible the extreme condition of overfishing observed in central and southern Lake Huron. Obviously the rmoval of an equal quantity of whitefish by any other gear would have proved equally disastrous.

Although the maxima of produetion were relatively lower in Lake Miehigan than in Lake Huron, it must be eonsidered probable that in some of the Lake Michigan districts the eateh of whitefish was sufficiently great to affect adversely the abundance of the species in later years. In M-1, for example, the high fishing intensity ftables 19 and 20) that made possible the production of roughly a million pounds of whitefish in

[^84]the four consecutive years, 1929-1932 (table 15), may well have contributed to the sharp decline in abundance in 1933 (table 21). Similarly, in other districts the declines in abundance that followed years of increased fishing intensity and high yields might have been less severe had the fishery of the preceding years been less intensive. The actual detection of the possible effects of high production on the abundance of whitefish in later years is difficult, since in Lake Michigan as in Lake Huron a decline from the peak of abnormal abundance was to be anticipated whether or not extensive overfishing occurred. Furthermore, the data for Lake Michigan do not provide the sharp contrasts that made the presence and effects of overfishing in Lake Huron so easy to detect. (Compare especially the annual fluctuations in the production and fishing intensity in the various districts of the two lakes-figs. 5-10 for Lake Huron and 13-20 for Lake Michigan.)

Figure 14.-Second district, M-2.

Figure 15.-Third district, M-3.

Figure 19.-Seventh district, M-7.

Table 19.-Annual fluctuations in the intensity of the fishery for whitefish in each district of Lake Michigan [Expressed as percentages of the average 1929-1939 intensity in the district]

District	Fishing intensity as percentage of averaze in year										
	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939
M-1	149	173	196	174	84	68	45	28	38	80	65
M-2.	98	115	118	180	147	117	4.7	31	64	60	41
M-3.	136	1.99	133	141	107	39	d	59	64	76	65
M-4.	104	125	127	123	4.5	85	85	95	93	80	88
M-5.	70	82	116	129	128	100	9.	90	113	101	77
M 6.	135	201	242	160	89	82	57	57	35	26	16
M 17.	136	271	165	95	150	214	24	14	12	5	7
M ${ }^{-8}$	152	99	114	is	183	215	13.9	36	36	15	34

Table 20.-Anmual fluctuations in the intensity of the whitefish fishery for all eight districts of Lake Michigan combined (third row from bottom) and distribution of each year's intensity among the districts
[The average annual intensity for the entire lake, 1924-1934, is 100.0 . In parentheses are the intensity values of the deep-trap-net fishery. The value of one unit is $1 / 1100$ of the total expected catch (p. 314) of all districts, 1929-1939]

District or area	Fishong intensity in year											Total	Percentage of intensity represented by deep trap nets
	1929	1930	1931	1932	1933	1934	1435	1936	1937	1938	1939		
M-1	32.1	$\begin{gathered} 37.5 \\ (1.2) \end{gathered}$	$\begin{gathered} 42.3 \\ (4.8) \end{gathered}$	$\begin{array}{r} 37.7 \\ 7.0 i \end{array}$	$\begin{gathered} 18.1 \\ (6.1) \end{gathered}$	$\begin{array}{r} 14.7 \\ (3.3) \end{array}$	$\begin{array}{r} 9.7 \\ (1.1) \end{array}$	6.1	8.2	17.3	14.0	$\begin{array}{r} 237.7 \\ (23.5) \end{array}$	9.9
M-2	2.6	3.0	3.1 10.71	$\begin{array}{r} 4.6 \\ (2.3) \end{array}$	$\begin{array}{r} 3.8 \\ (2.6) \end{array}$	$\begin{gathered} 3.1 \\ (1.7) \end{gathered}$	$\begin{array}{r} 2.3 \\ (0.5) \end{array}$	1.4	1.7	1.6	1.1	29.i	24.2
M-3	63.6	$\begin{array}{r} 74.7 \\ (3.7) \end{array}$	$\begin{array}{r} 62.6 \\ (11.5) \end{array}$	$\begin{array}{r} 66.1 \\ (21.4) \end{array}$	$\begin{array}{r} 50.4 \\ (19.4) \end{array}$	$\begin{array}{r} 37.4 \\ (12.2) \end{array}$	$\begin{gathered} 37.9 \\ (11.1) \end{gathered}$	27.7	30.0	35.4	30.5	516.6 (79.6)	15.4
M 4	2.7	3.3	3.4	3.3	2.3	2.2	2.3	2.5	2.5	2.4	2.3	24.2	
Northern Lake Michigan $\left(\mathrm{M}-1, \mathrm{M}-2, \mathrm{M}-3, \& \mathrm{M}_{1}-4\right)$	101.0	$\begin{gathered} 118.5 \\ (4.9) \end{gathered}$	$\begin{gathered} 111.4 \\ (17.3) \end{gathered}$	$\begin{array}{r} 111.7 \\ (30.7) \end{array}$	$\begin{array}{r} 74.6 \\ (28.1) \end{array}$	$\begin{gathered} 57.4 \\ (17.2) \end{gathered}$	$\begin{array}{r} 52.2 \\ (13.0) \end{array}$	$3 \times .1$	42.4	56.7	4×2	$\begin{array}{r} 812.2 \\ (111.2) \end{array}$	13.7
Central Lake Michigan (M-5)	10.3	12.1	17.2	19.1	18.9	14.7	13.9	13.2	16.7	14.9	11.5	162.5	
M-6	3.4	5.1	6.1	4.0	2.3	2.1	1.5	1.4	0.4	0.6	0.4	27.8	
M-7	4.9	9.7	5.9	3.5	5.4	17.7	1.0	0.5	0.4	0.2	0.2	39.4	-. 4
M-8.	8.0	5.2	6.1	3.9	9.6	11.3	7.4	1.4	1.9	1.0	1.8	58.1	
Southern Lake Michigan $(\mathrm{M}-6, \mathrm{M}-7, \& \mathrm{M}-8) .$	16.3	20.0	18.1	11.4	17.3	21.1	9.9	3.8	3.2	1.4	2.4	125.3	2.3
Lake Michigan (all districts!	127.6	$\begin{gathered} 150.6 \\ 4.9 \end{gathered}$	$\begin{aligned} & 146.7 \\ & (17.3) \end{aligned}$	$\begin{aligned} & 142.2 \\ & (30.7) \end{aligned}$	$\begin{gathered} 110.5 \\ (25.1) \end{gathered}$	$\begin{array}{r} 43.2 \\ { }^{1}(20.11 \end{array}$	$\begin{gathered} 76.0 \\ (\mathbf{1 3 , 0}, 01 \end{gathered}$	55.1	62.3	33.4	62.1	$\begin{aligned} & 1.100 .0 \\ & 114.1 \end{aligned}$	10.4
Percentage of intensity represented by dep trap bets.		3.3	11.8	21.6	2.4	21.6	17.1					10.4	

[^85]Table 21.-Annual fluctuations in the abundance percentages for whitefish in the various districts and areas of Lake Michigan, 1929-1939
[Expressed as percentages of average 1929-1939 abundance. In the computation of percentages for areas of more than one district and for the entire lake the abundance percentage for each district was weightell according to the percentage of the total 1924-1939 production contributed by that district]

District or area	Abundance percentage in year										
	1929	1930	1931	1932	1933	1434	1935	1936	1937	1938	1939
M-1.	170	137	135	113	63	56	34	31	62	99	
M-3	169	159	106	109	${ }^{3} 5$	$4{ }^{4}$	95	${ }_{71}$	\%	${ }_{6}$	69 67
M4.	127	123	120	114	104	102	92	107	4	59	66^{6}
Northern Lake Michigan (M-1, M-M-3, and M-4).	166	150	116	109	\%	93	92	ir	70	i	81
Central Lake Michigan (M-5)	132	111	162	140	134	$9{ }^{\text {a }}$	22	73	i	61	41
	144	209		101	46	in	2	47		51	
M-7 $\mathrm{M}-8$	136 151	1228	86 113	$\stackrel{619}{74}$	$\underset{1+2}{135}$	117 130	${ }_{\substack{133 \\ 96 \\ \hline}}$	5	91	33 64 6	$\stackrel{33}{11}$
Southern Lake Michigan (M-6, M-7, and M-8).	144	180	123	is	126	113	10.5	30	is	52	54
Lake Micbigan (all \& districts).	158	$1{ }^{4}$	123	109	92	96	91	33	72	:2	65

A suggestion of overfishing is provided by the data for $M-\mathbf{7}$. In this district the greatest maximum yield (433 percent of the 1929-1939 average) was associated with the lowest relative abundance (33 percent) in 1939 (table 181. Abundance in 1939 was low also in M-6 (53 percent), the thistrict with the second highest maximum production pereentage (345). The maximum fishing intensity also was relatively high in both M-6 and M-7 (242 and 271, respectively). (In the other hand, the 1939 abundance was low (41 percent) in M-5, where there was no indication of overfishing in 1929-1939 (maximum production, 183 percent of normal; maximum intensity, 129 percent of normal).

Although, as stated previously, overfishing cannot be disregarded as a possible contributing factor in the decline in abundance of the Lake Michigan whitefish, there can be no doubt that overfishing was relatively unimportant in Lake Michigan as compared with Lake Huron. In the discussion of the data for Lake Huron emphasis was placed on the unreasonable expansion of fishing intensity and especially on the fact that this intensity remained abnormally high eren in the face of decreasing abundance. The data for Lake Michigan, on the contrary, reveal a much more rational relationship between abundance and fishing intensity (and hence between abuntance and yield).

Despite certain exceptions it can be said that in the Lake Michigan districts, as a whole, periods of relatively high abundance were also periods of relatively high fishing intensity and production (tables 15,19 , ami 21; figs. 13 to 20). It is true that the changes in fishing intensity tended to lag somewhat behind the changes in abundance. Commonly the peak of fishing intensity oceured a year or two later than the peak of abundance, and the subsequent decline in fishing intensity was lelayed eorrespondingly. Nevertheless, fishing intensity and yield were above average in a large majority of the years in which the abundance of whitefish was abose areage, and, conversely, fishing intensity and production were below average in the majority of the years in which the abundance of whitefish was below average. There was a tendency also for the percentages of fishing intensity and catch to be greater than the abundance percentages when abundance was above average and leas than the abundance percentages when abundance was below average. The curves of fishing intensity tended to lie outside (with reference to the average) the curves of abundance, and the curves of production tended to fall outside both the curves of abundance and fishing intensity.

The tendency for the Lake Michigan fishermen to regulate their fishing activities accorting to the abundance of whitefish is brought out further by the fact that the coefficient of correlation between the percentages of fishing intensity and abundance
over the 11-year period (88 pairs of percentages) was 0.70 . For Lake Huron, where intensive fishing frequently was carried on despite a low abundance of whitefish, the coefficient of correlation between the percentages of fishing intensity and abundance (66 pairs of percentages) was only 0.23 .

The statement that fishing intensity and production were better adjusted to the abundance of whitefish in Lake Michigan than in Lake Huron applies to the data for the entire lakes (table 22) as well as to the data for the individual districts. (Compare also figs. 11 and 21.) In Lake Michigan the fishing intensity for whitefish was

Figune 21,-Anfral fluctuations in the production (solid line) and abundance (long dashes) of whitefish and in the intensity of the whitefish fishery (short dashes) in Lake Michigan (all eight districts eombined), 1929-1939.
above average in every year in which the abundance was above average and was less than average in 6 of the 7 years in which abundance was below average. Furthermore, the intensity percentage exceeded the abundance percentage in 3 of the 4 years in which abundance was above 100 but was less than the abundance percentage in 5 of the 7 years in which abundance was below 100 . Every year in which the abundance of whitefish was above average was a year of greater than average production; the catch of whitefish was below average, however, in every year in which the abundance of the species was below average. The production percentage exceeded the abundance percentage in every year in which abundance was above average, but the former was less than the latter in 6 of the 7 years with abundance below average.

Table 22.-Production and abundance of whitefish and the intensity of the uhitefish fishery in the State of Michigan waters of Lakes Michigan and Huron
[Expressed as percentages of the 1929-1939 average]

Lake	Item	Year										
		1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939
Michigan	Production..	184	206	164	143	96	83	61	38	41	48	36
	Fishing intensity	128	151	147	142	111	93	76	55	62	73	62
	Abundance -	158	149	123	109	92	96	91	73	72	72	65
Huron	Production.	68	134	193	189	155	120	88	67	48	26	12
	Fishing intensity	46	69	100	120	155	125	139	112	100	88	46
	Abundance	152	195	195	140	89	3	67	61	55	38	31

Altogether different was the relationship of fishing intensity and production to the abundance of whitefish in Lake Huron. In that lake the fishing intensity was above average in 5 (exactly 100 percent in 1 year) of the 7 years in which abundance was below average; furthermore, the intensity percentage exceeded the abundance percentage in every one of these 7 ycars. The eatch also was disproportionately high in periods of low abundance. The eateh percentage exceeded the abundance pereentage in

4 of the 7 years in which abundance was less than 100 . The circumstance that fishing intensity was so mucli below the maximum in the years in which the abundance of the Lake Huron whitefish was above average should not be taken to indicate that the Lake Huron fishermen were less prompt than the Lake Michigan fishermen to take advantage of this abnormal abundance. In fact, the fishing intensity rose sharply in Lake Huron as the increase from 46 in 1929 to 100 in 1931 shows. The 1931 intensity was more than twice that of 2 years earlier. The fishing intensity in thesc early years of the 11-year period is represented by small percentages simply because the excessive use of deep trap nets led to a 1929-1939 average of fishing intensity that was far above a level that could reasonably be considered normal. It is doubtful whether without the use of deep trap nets the intensity would have reached the high level recorded for 1932, and much less have risen to still higher levels and maintained itself above the 1932 intensity until 1936. These considerations serve to bring out again the immensity of the overfishing that occurred in Lake Huron.

From the mass of evidence obtained from the statistical data of the whitefish fisheries of Lakes Huron and Michigan the following general conclusions may be drawn.

Lake IIuron.-The deep-trap-net fishery, expansion of which was fostered by an abnormal abundance of whitefish that reached its peak in 1930-1931, was the primary cause of excessive overfishing in Lake Huron. This overfishing led to the collapse of the whitefish fishery in central and southern lake Huron and contributed to the decline of the fishery in the northern part of the lake.

Lake Michigan.-A similar abnormal abundance of whitefish in Lake Michigan, with the peak probably in 1929, was accompanied by increases in fishing intensity and production. Although this intensive fishery mas have affected adversely the later abundance of whitefish, there is no evidence of overfishing comparable to that which occurred in Lake Huron. The decline of the whitefish in Lake Michigan was pronounced but not disastrous. The difference in the course of the fishery in the two lakes can be attributed to the relatively limited use of deep trap nets in Lake Michigan.

PART III
 BATHYMETRIC DISTRIBUTION OF WHITEFISH AND OF CERTAIN OTHER SPECIES IN THE SHALLOWER WATERS OF LAKES HURON AND MICHIGAN

The following sections are based on counts of whitefish and certain other species in 456 lifts of pound nets and deep trap nets in Lake Huron and 380 lifts in Lake Michigan in the years, 1931-1932. The original compitations of the data were much more detailed than those presented here. The tables showing the bathymetric distribution of the fish represent combinations of large-mesh (4 inches and larger, stretched measure) and small-mesh (less than 4 inches) nets of different dimensions, of different fishing grounds in the same general area, and of data for corresponding months in 1931 and 1932. However, these combinations were made only after a careful examination of the material demonstrated that the condensed data did not lead to conelusions that were at rariance with those that would have been drawn from more detailed information.

In the main, the data have been compiled according to 10 -foot depth intervals. However, for species other than the yellow pike, all lifts of nets from depths of 40 feet and less have been combined, as have also those from $41-60$ feet. In deep water all lifts from more than 120 feet (more than 110 feet in Lake Michigan) have been combined. The greatest depth in whieh a deep trap net was set, so far as we know, was about 160 feet. This net was set in Lake Huron. Seldom were deep trap nets placed in water deeper than 140 feet. In Lake Michigan the whitefish grounds were located in much shallower water. Although a few pound nets set in more than 60 feet of water were visited and a few deep-trap-net lifts from depths of 60 feet or less were observed, for practical purposes the 60 -foot contour may be considered as the line of separation of the two types of gear. The ehange from pound nets to deep trap nets at a depth of about 60 feet should not affeet the value of the data, since we did not find any important differences in the eatch of pound nets and deep trap nets that were fished in the same depth of water. All lifts observed from depths of more than 120 feet were made in Lake Huron.

As a convenience in reading the tables, asterisks have been employed to designate those denth intervals that contained the more significant peak concentrations of fish. As an additional convenience, whitefish and yellow pike frequently will be termed merely "legal" and "illegal" fish on the basis of a 2 -pound and $11 / 2$-pound size limit, respectively, which limits were in effect in Michigan at the time of the investigation.

BATHYMETRIC DISTRIBUTION OF WHITEFISH IN LAKE HURON

NORTHERN LAKE HURON (CHEbOYGAN AND ROGERS CITY)

The number of lifts (20) of pound nets and deep trap nets observed in northern Lake Huron was insufficient to provide reliable data on the bathymetric distribution of the whitefish. The largest lifts of legal-sized whitefish were taken from depths of 71-80 feet in July and August and of 61-70 feet in September (table 23). The greatest numbers of illegal-sized fish occurred in lifts from 71-80 and 91-100 feet. (Only one lift from the latter depth was observed.)

ALPENA-OSSINEKE GROUNDS

Although a fairly large number (158) of pound-net and deep-trap-net lifts was examined on the Alpena and Ossineke grounds, the scarcity of data for the shallower water makes a detailed description of the depth distribution of whitefish in this area impossible (table 24). Nearly half of the lifts were from depths of 111-120 feet and the
bulk of the remainder were from depths of $81-110$ feet. For no month were data available for all waters. Outstanding features of the Alpena-Ossineke data were the comparative scarcity of legal whitefish and the great abundance of undersized individuals.

Table 23.-Number of legal and illegal whitefish per lift of pound nets and deep trap nets in northern Lake Huron (ports of Cheboygan and Rogers City), 1931-1932

Month	Number of legal whitefish per lift at depth (in feet)					Month	Number of illegat whitefish per lift at depth (in feet)				
	+1-60	61-70	71-80	\$1-80	$91-100$		41-60	61-70	-1-40	81-90	91-100
July		$\left\{\begin{array}{r} 200 \\ (2) \end{array}\right.$	$\begin{array}{r} 51 \\ (4) \end{array}$			July,		465	$\begin{gathered} 400 \\ (4) \end{gathered}$	\cdots	-------
August.			$\left(\begin{array}{r}190 \\ (2)\end{array}\right.$	30 (2)	$\begin{gathered} 120 \\ (1) \end{gathered}$	August			480	175 129	6919
September.	90 $11)$	$\begin{gathered} 26.2 \\ (5) \end{gathered}$	$\begin{array}{r} 123 \\ (3) \end{array}$			September	$\begin{aligned} & 60 \\ & (1) \end{aligned}$	3	$\begin{gathered} i \\ i \\ i \end{gathered}$		-.......
A verage.	(100	24 ${ }^{4} 4$	$\begin{gathered} 311^{\circ} \\ \hline 9)^{\circ} \end{gathered}$	30 (2)	$\begin{array}{r} 120 \\ 11) \end{array}$	Averaze	$\begin{aligned} & 60 \\ & 11) \end{aligned}$	17.4	392°	175	$\begin{array}{r} 69 \\ 11 \end{array}$

Table 24.-Number of legal and illegal whitefish per lift of pound nets and deep trap nets in the . NipenaOssineke area, 19.31-1.032

Month	Number of legal whitefirh per lift at depth (in fere)							
	41-60	61-.0	21-40	41-90	91-161)	101-110	111-120	>130
May				200		$\begin{array}{r} 200 \\ 15 \end{array}$	$\begin{aligned} & 341 \\ & (23) \end{aligned}$	$i 40^{\circ}$
June.	98 (4)	90 ${ }^{(1)}$		390 11	230 11	$\begin{gathered} 237 \\ 161 \end{gathered}$	$\begin{gathered} 147 \\ 14 \end{gathered}$	$\begin{array}{r} 150 \\ 15 \end{array}$
July -	70 (1)		$\begin{array}{r} 240 \\ (1) \end{array}$	43.20	37 12	$\begin{array}{r} 126 \\ 10 \end{array}$	$\begin{aligned} & 360^{\circ} \\ & (23) \end{aligned}$	
August	420	$\begin{aligned} & 710 \\ & 11) \end{aligned}$	$02 i^{\circ}$	304	443 (3)	$\begin{array}{r} 210 \\ 5 \end{array}$	${ }_{35}^{32^{\circ}}$	
September.						9	$\operatorname{lon} 5$ 2	
Average.	196	41) ${ }^{12}$	$\begin{gathered} 4+20 \\ 141 \end{gathered}$	$\begin{array}{r} 45 \% \\ 165 \end{array}$	37	$\begin{aligned} & 350 \\ & 241 \end{aligned}$	$\begin{array}{r} 345 \\ 66 \end{array}$	$\begin{array}{r} 323 \\ 91 \end{array}$
Month	Number of illegal whitufis per lift at depth in fept)							
	41-60	61-80	71-80	$41-40$	91-100	101-110	111-120	>120
May.				$\begin{array}{r} 2190 \\ 11 \end{array}$		$\begin{array}{r} 2430 \\ 111 \end{array}$	$\underset{125}{255}$	23
June.	$\begin{array}{r} 1060 \\ (4) \end{array}$	$\begin{array}{r} 1090 \\ \text { (1) } \end{array}$		$\begin{array}{r} 3110 \\ 11 \end{array}$	$\begin{gathered} 16311 \\ 11 \end{gathered}$	$\begin{gathered} 1900^{*} \\ 161 \end{gathered}$	$\begin{aligned} & 84 \\ & 15 \\ & 10 \end{aligned}$	624
July.	$\begin{array}{r} 2620 \\ (1) \end{array}$		$\begin{aligned} & 900 \\ & (1) \end{aligned}$	$\begin{gathered} 19.5 \\ 1.5) \end{gathered}$	11: 11.	$\begin{array}{r} 52 \\ 3 \\ -3 \end{array}$	$\begin{gathered} 6^{9} 0^{\circ} \\ 203 \\ 20 \end{gathered}$	
August	$\begin{gathered} 1730^{*} \\ (2) \end{gathered}$	$\begin{gathered} 860 \\ (1) \end{gathered}$	75 (a)	1149	$\begin{array}{r} 3,7 \\ (3) \end{array}$	$\begin{array}{r} 364 \\ 15 i \end{array}$	$\begin{aligned} & 8155^{\circ} \\ & 110{ }^{\circ} \end{aligned}$	
September.						$\begin{array}{r} 33+ \\ 1.5) \end{array}$	925°	
Average.	1474 (7)	975 (2)	781	$\begin{aligned} & 1545 \\ & (16) \end{aligned}$	$\begin{array}{r} 1058 \\ (16) \end{array}$	$\begin{aligned} & 474 \\ & 124\rangle \end{aligned}$	1247	$\begin{array}{r} 1412 \\ 19) \end{array}$

Distribution of legal-sized whitefish.-In May the average numbers of legal whitefish taken in 111-120 feet and in "deep-water" (more than 120 feet) lifts were above those of the single lifts from 81-90 and 101-110 feet. In June, however, the average catches of the nets from the deeper water were exceeded by the catch of the 6 nets set in 101-110 feet. The 5 lifts in shatlow water (41-70 feet) averaged only 9.0 and 9.8 fish for the two intervals involved. The largest average lifts in July occurred at depths of $81-90$ feet (43.2) and 91-100 feet (37.3). However, the average number of fish in lifts from 111-120 feet was almost three times that of lifts from the 101-110 foot interval. The single lift in shallow water (41-60 feet) was again small (7.0 fish). The depth from which the largest lifts were made in August was shallower than that in July (71-80 feet). It is to be noted also that the average numbers of fish taken in the shallow water far exceeded the corresponding averages for June and July. In August, again, the eatch of nets set at 111-120 feet was well above that of nets set at 101-110 feet. This agreement between the July and August data suggests that in late summer whitefish may be concentrated at more than one depth. ${ }^{30}$ The September data cover only two intervals of depth. In this month the average number of legal whitefish per lift from 111-120 feet was twice that of nets from 101-110 feet, and in both intervals the numbers were relatively large, suggesting a return of the fish to deep water.

The data offer some evidence of an onshore movement of legal whitefish as the summer progresses. In May concentrations were greatest in the deepest water (beyond 110 feet). In June a general shift seemed to have occurred to waters between 80 and 111 feet deep, in July to waters of depths between 70 and 101 feet, and in August to depths between 60 and 91 feet.

In the averages for the entire season the number of legal fish per lift increased from shallow water to a maximum of 84.2 fish at depths of $71-80$ feet. Beyond this depth interval there was a continuous deeline in the average number of legal whitefish per lift. ${ }^{31}$

Distribution of illegal-sized whitefish. -The data on the bathymetric distribution of illegal whitefish bear considerable resemblance to those of legal fish. In both size groups the average number of fish per lift was greater at 111-120 feet than at 101-110 feet in every month but June. Furthermore, both groups appear to undertake an onshore movement as the summer progresses. A difference is found between the vertical distribution of legal and illegal whitefish in the greater abundance of the latter group in shallow water.

The averages for the entire season show heavy concentrations of young whitefish in the intervals: 41-60 feet, 81-90 feet, and more than 120 feet. These fish were least abundant in depths of $71-80$ and $101-110$ feet. These averages, however, are influenced by the shift in concentrations. The monthly figures indicate a heavy concentration in all depths beyond 80 feet in May, between 80 and 111 feet in June, between 80 and 101 feet in July, and in 81-90 feet in August. In September the number again inereased in the 111-120 foot interval. A comparison of the seasons' averages reveals that the maximum concentration of illegal whitefish ($81-90$ feet) was in water 10 feet deeper than the maximum for legal fish (71-80 feet). However, legal fish did not share the inshore abundance of the smaller whitefish.

SAGINAW BAY AREA (OSCODA, EAST TAWAS, AND BAY PORT)
A total of 223 lifts of pound nets and deep trap nets was examined in the Saginaw Bay area. Despite this large total, the rlistribution of the lifts leaves certain depths of less than 91 feet poorly represented (table 25). With the exception of a few lifts on northerly and easterly courses out of Oscoda, the deep-trap-net lifts were made on the grounds of district H-4. (See fig. 4.) Most of the pound nets observed were in the neighborhood of East Tawas. The Saginaw Bay area differed from the Alpena-Ossineke grounds in the relatively high abundance of legal, as compared with illegal, fish.

[^86]Table 25.-Number of legal and illegal whitefish per lift of pound nets and deep trap nets in the Saginaw Bay area (ports of Au Sable-Oscoda, East Tawas, and Bay Port), 1931-1932
[Number of lifts in parentheses. Asterisks indicate concentrations]

Distribution of legal-sized whitefish.-Again there is evidence of an onshore movement of legal whitefish during the summer followed be return to deeper water in early autumn, apparently beginning in August. (See also p. 350.) The depths of maximum concentration in the different monthe were: Nay-more than 120 feet; Jume and July-101-110 feet (the shift was more toward shallower water in Juty than in June); August-91-100 feet; September-111-120 feet; October-more than 120 feet (only two intervals represented). There were two peaks in the August data (41-60 feet and 91100 feet) and in the September data ($71-80$ feet and $111-120$ feet). However, the number of lifts was so small at some dopths that it ramot be concluded that the whitefish were concentrated at two depth intervals. The average number of legal whitefish per lift through the entire season increased continuously from shallow water (less than 41 feet) to the maximum at $81-90$ feet, feclined in the next three intervals, and increased slightly at depths greater than 120 fect.

Distribution of illegal-sized whitefish.-The data on the bathymetric distribution of young whitefish indicate an onshore movement followed by an offshore movement similar to that of legal fish. The depths of maximum coneentration were: May, June, and July-101-110 feet (in each succeeding month, however, the shift was toward the shallower water) ; August-81-90 feet; September-101-110 feet; October-more than 120 feet. In the arerages for the entire season the maxima for legal and illegal fish
were in the same interval (81-90 feet). The strongest indication of two concentration zones of illegal fish is found in the scanty September data. Young whitefish were much searcer in the shallower water of the Saginaw Bay area than at corresponding depths on the Alpena-Ossineke grounds.

HARBOR BEACH GROUNDS

The observations of 55 lifts of deep trap nets off Harbor Beach (no pound nets were observed here) were all made in the latter part of the 1932 season (table 26), when on the basis of the preceding data the whitefish would be expected to be concentrated in the deeper water. Actually here is where the deep trap nets were found in operation. Fifty of the lifts were made from depths greater than 90 feet. Consequently, no detailed description of the vertical distribution of whitefish at all depths in this area is possible. The maximum concentration of both legal and illegal whitefish oceurred in the 101-110 foot interval in all three months. In the season's average the number of legal fish per lift was greater at 91-100 feet than in waters deeper than 110 feet, but the reverse relationship was found in the data for illegal whitefish. The single shallow-water lift (41-60 feet) contained no whitcfish. The legal whitefish were more abundant than the illegal fish at all clepths.

Table 26.-Number of legal and illegal whitefish per lift of deep trap nets off Harbor Beach, 1983
[Number of lifts in parentheses. Asterisks indicate concentrations]

Month	Number of legal whitefish per lift at depth (in feet)							
	41-60	61-70	71-80	\$1-90	91-100	101-110	111-120	>120
Aurust.					$\begin{array}{r} 2510 \\ \text { (1) } \end{array}$	$\underset{(2)}{4205^{*}}$	$\begin{array}{r} 4053 \\ (4) \end{array}$	$\begin{gathered} 135.8 \\ (5) \end{gathered}$
September.	$\begin{aligned} & 00 \\ & (1) \end{aligned}$		$\begin{array}{r} 1010 \\ (1) \end{array}$	$\begin{array}{r} 420 \\ (3) \end{array}$	2705 (8)	$\begin{gathered} 2917^{7} \\ (12)^{*} \end{gathered}$	1342	$\begin{array}{r} 1630 \\ \text { (3) } \end{array}$
October					$\begin{array}{r} 625 \\ (2) \end{array}$	1173^{*}	$\begin{array}{r} 345 \\ (2) \end{array}$	$\begin{array}{r} 460 \\ (2) \end{array}$
Average	$\begin{aligned} & 00 \\ & (1) \end{aligned}$		1010	$\begin{array}{r} 420 \\ (3) \end{array}$	$\begin{array}{r} 2315 \\ (11) \end{array}$	$\begin{gathered} 2761^{*} \\ (17)^{*} \end{gathered}$	$\begin{array}{r} 2089 \\ (12) \end{array}$	$\begin{array}{r} 1260 \\ (10) \end{array}$
Month	Number of illegal whitefish per lift at depth (in feet)							
	41-60	61-70	71-80	81-90	91-100	101-110	111-120	>120
August					$\begin{gathered} 1500 \\ (1) \end{gathered}$	$\underset{(2)}{2980^{*}}$	2668 (4)	$\begin{array}{r} 790 \\ (5) \end{array}$
September	$\begin{aligned} & 00 \\ & (1) \end{aligned}$		650 (1)	$\begin{array}{r} 33 \quad 3 \\ (3) \end{array}$	732	$\begin{gathered} 1672^{*} \\ (12)^{*} \end{gathered}$	677 (6)	753 (3)
October.					$\begin{array}{r} 320 \\ (2) \end{array}$	67 -* (3)	$\begin{array}{r} 320 \\ (2) \end{array}$	$\begin{array}{r} 55 \quad 5 \\ (2) \end{array}$
Average	00 (1)		$\begin{array}{r} 650 \\ (1) \end{array}$	333 (3)	727	$\begin{gathered} 1650^{*} \\ (17)^{*} \end{gathered}$	$\begin{aligned} & 1281 \\ & (12) \end{aligned}$	$\begin{gathered} 732 \\ (10) \end{gathered}$

BATHYMETRIC DISTRIBUTION OF WHITEFISH IN LAKE MICHIGAN

GREEN BAY AREA (MARINETTE, ESCANABA, AND FAIRPORT)

The 30 lifts of pound nets and deep trap nets observed in the Green Bay area do not offer adcquate information on the bathymetric distribution of the whitefish at any one time or on the seasonal movements of whitefish. The data of table 27, however, indicate rather clearly that legal whitefish in this region were in deeper water in September ($61-80$ feet) than in May (60 feet and less). Illegal whitefish were relatively numerous in May at depths less than 61 feet, and were present in large numbers also in the two lifts from the 81-90 foot interval. Few illegal whitefish were taken at any depth in September.

Table 27.-Number of legal and illegal whitefish per lift of pound nets and deep trap nets in the Green Bay area (ports of Marinette, Escanabn, and Fairport), 1931-1932
[Number of lifts in parentheses. Asterisks indicate concentrations]

Montb	Number of legal whitefish per lift at depth (in feet)						
	<41	41-60	$61-70$	71-80	$81-90$	91-100	101-110
May	$\begin{array}{r} 614 \\ (5) \end{array}$	$51 \underset{(5)}{2}$	160 (1)		235 $12)$		
September.	$\begin{aligned} & 40 \\ & (1) \end{aligned}$	$\begin{gathered} 9.8 \\ (4) \end{gathered}$	$\begin{gathered} 338 \\ (5) \end{gathered}$	68 ${ }^{6}{ }^{\circ}$		$\begin{aligned} & 45 \\ & 23 \end{aligned}$	85
Average	jl 6 (6)	324 (9)	$\begin{gathered} 308 \\ (6) \end{gathered}$	67 (3)	$\begin{array}{r} 235 \\ 121 \end{array}$	45	$\begin{aligned} & 5 \\ & (2) \end{aligned}$
Month	Vumber af illegal whitefish per lift at depth (in feet)						
	<41	41-10	61-70	$\therefore 1-80$	$81-40$	91-100	101-110
May	$\begin{array}{r} 560 \\ (5) \end{array}$	65 x (5)	110		1630 12		
Septernber -	20	$\begin{array}{r} 35 \\ 41 \end{array}$	32			15 121	$\begin{aligned} & 20 \\ & 121 \end{aligned}$
Average .	170 161	$\begin{gathered} 3 k \\ 19 \end{gathered}$	78 (6)	(3)	1.30 (2)	18)	$\begin{array}{r} 20 \\ (2) \end{array}$

NORTHEASTERN LAKE MlCHIGAN
INANISTIQTE, EPOUFETTE, AND N.AT゙BINWAM
The data on the bathymetric distribution of the whitefish are more complete for northeastem Lake Michigan than for any other region. Not only was the number of lifts of pound nets and deep trap nets observed large (350) but these lifts were well distributed as to depth of water. Only the defp water (depths greater than 110 feet) was poorly represented, largely because few nets were set there owing to the comparative scareity of whitefish.

Distribution of legal-sized whitefish.-Peak concentrations of legal whitefish in June oceurred at 61-70 feet and 81-90 feet (table 28 and fig. 22). The arerage number of fish jer lift in "deep water" (more than 110 feet) exceeded slightly the average in 101-110 feet but the deeper water was representel by only two lifts. There were again two peaks in July, but in this month they occurred in water 20 feet deeper (81-90 and 101-110 feet). This offshore movement was reflected also in the reduced eatehes of nets in all waters shallower than 71 feet. The depths of greatest concentration of legal whitefish were the same in August as in July although the small decrease in the average number of fish from nets set in 21-80 feet together with the increase in the eateh per net from all deeper waters may be taken as an indieation of possible further offshore movement. In September the average number of legal whitefish per lift was below the August average at all depths less than 91 feet. The single peak oceured in the 101-110 foot interval. (Nothing is known conceming the abundance of whitefish at depths greater than 110 feet in september.) The improved catches in the shallower water (less than 71 feet) in October offer eridence of a return onshore movement. In this same month the condition of two concentration zones reappeared although it was by no means pronouneed.

The seasons' arerages show a consistent increase in the number of legal fish per lift from shallow water (less than 41 feet) to the $81-90$ foot interval, followed by a sharp deche at 91-100 feet and a rise to a seeond peak at 101-110 feet. The average of 7 lifts from the deepest water was about half that of lifts from the 101-110 foot interval.

Distribution of illegal-sized whitefish.-The data on the depth distribution of illegal whitefish resembled in general those for legat fish. Both groups were eliaracterized by

Figroe 22.-Bathymetric distrabution of legal-and illespal-sized whitefish in northeastern Lake Michigan as determined from the average numbers of hish per lift of pound nets and deep trap nets. June, solid line; July-August, loug dashes; September-October, short dashes; entire season, dotted line.
two concentration zones in every month but September, and both showed an offshore movement of the fish during the summer. The two groups of data differed at times, however, as to the actual depths of the concentrations. A further difference lay in the łack of evidence of an onshore movement of illegal fish in October.

The June averages of the number of undersized whitefish per lift had peaks at 6170 and 91-100 feet. With the illegal, as with the legal, fish the average for the deepest water (more than 110 feet) exceeded that for the $101-110$ foot interval. The inshore concentration coincided with that of the legal fish, but the offshore concentration occurred 10 feet deeper. In July the movement toward deeper water increased the depth of each of the concentration zones of illegal whitefish by only 10 feet as compared with 20 feet for the legal fish. The depth intervals of the concentration zones remained unchanged in August although the decrease in the average number of fish per lift in all depths less than 91 feet points toward further offshore movement. The decrease in the number of illegal fish per lift at these depths continued in September. At the same time the number per lift increased in the 91-100 foot and 101-110 foot intervals. The September data had only one peak (at 101-110 feet) but there were again two eoncentration zones in October. The October averages for shallow-water lifts (depths less than 71 feet), contrary to the data for legal fish, showed no tendency to increase over those for September.

The seasons' averages indicated an increase in the number of illegal whitefish per lift from shallow water (less than 41 feet) to a peak at $71-80$ feet, followed by a decline to $91-100$ feet, a rise to a sceond peak at 101-110 feet, and yet another decrease in the

Table 28,-Number of legal and illegal whitefish per lift of pound nets and deep trap nets in northeastern Lake Michigan (ports of Manistique, Epoufette, and Noubinway), 1931-1932
[Number of lifts in parentheses. Asterisks indicate concentrations]

Month	Number of legal whitefish per lift at depth (in feet)							
	<41	41-60	61-70	71-80	$81-40$	91-100	101-110	>110
June.	$\left\{\begin{array}{r} 575 \\ (8) \end{array}\right.$	$\begin{array}{r} 593 \\ (3) \end{array}$	$\underset{(4)}{138}$	$\begin{array}{r} 595 \\ (n) \end{array}$	$\begin{gathered} 1643 \\ (23) \end{gathered}$	$\begin{array}{r} 1225 \\ (11) \end{array}$	$\begin{array}{r} 1137 \\ 18 \end{array}$	$\begin{array}{r} 1175 \\ (2) \end{array}$
July .	$\left\{\begin{array}{r} 100 \\ 1 \\ 17 \end{array}\right.$	$\begin{array}{r} 176 \\ (5) \end{array}$	$\begin{array}{r} 392 \\ (5) \end{array}$	$\begin{array}{r} 1043 \\ (11) \end{array}$	$\begin{gathered} 1409^{*} \\ (17)^{*} \end{gathered}$	$\begin{gathered} 5 \& 4 \\ (5) \end{gathered}$	429 (13)	(3)
Angust.		440		$\begin{aligned} & 902 \\ & (16) \end{aligned}$	$\begin{gathered} 1623^{\circ} \\ (22) \end{gathered}$	$\begin{aligned} & 594 \\ & (15) \end{aligned}$	$\begin{gathered} 1000^{*} \\ (15) \end{gathered}$	635 (2)
September	$\left\{\begin{array}{r} 76 \\ (20) \end{array}\right.$	281	$\begin{array}{r} 180 \\ (3) \end{array}$	$\begin{gathered} 36{ }^{2} \\ (13) \end{gathered}$	$\begin{aligned} & 550 \\ & (14) \end{aligned}$	$\begin{aligned} & 5.4 \\ & (17) \end{aligned}$	1216°	
October	$\left\{\begin{array}{l} 231 \\ (23) \end{array}\right.$	$\begin{aligned} & 315 \\ & (111) \end{aligned}$	$\begin{array}{r} 3.57 \\ (3) \end{array}$		$\begin{aligned} & 326^{\circ} \\ & (13) \end{aligned}$	$\begin{array}{r} 49.5 \\ 66 \end{array}$	$\begin{gathered} 12270 \\ 78 \end{gathered}$	
Average............	$\begin{aligned} & 209 \\ & 15 x) \end{aligned}$	$\begin{aligned} & 314 \\ & (29) \end{aligned}$	$\begin{aligned} & 608 \\ & (15) \end{aligned}$	$\begin{aligned} & 737 \\ & (44) \end{aligned}$	12.58°	802	$\begin{gathered} 10670 \\ 15010 \end{gathered}$	550
	Number of illegal whitefish fur lift at dopth in freet							
Juire.	$\pi 14$	1047 (3)	$\begin{gathered} 2300^{\circ} \\ (4) \end{gathered}$	1122^{2}	1177	$\begin{gathered} 126 \\ 11)^{\prime} \end{gathered}$	$\begin{gathered} 10510 \\ (1) \end{gathered}$	$\begin{array}{r} 1600 \\ (2) \end{array}$
July .	$\begin{array}{r} 257 \\ (7) \end{array}$	242	$\begin{gathered} 69 b_{i} \\ (5) \end{gathered}$	$\underset{(102)}{10 \cdot}$	$\begin{aligned} & 8.1 \\ & 101 \end{aligned}$	$\begin{array}{r} 394 \\ 4 \\ \hline \end{array}$	6.59 $13\}$	107
August		$\begin{array}{r} 240 \\ (1) \end{array}$		1014° (16)	40 i (22)	$\begin{aligned} & 402 \\ & 15)^{2} \end{aligned}$	$\begin{aligned} & 73.1^{\circ} \\ & (1.5)^{\circ} \end{aligned}$	450
Septembrr.	$\begin{aligned} & 40 \\ & (201) \end{aligned}$	217	$\begin{array}{r} 207 \\ (3) \end{array}$	$\begin{array}{r} 236 \\ (13) \end{array}$	$\begin{aligned} & 351 \\ & (14) \end{aligned}$	$\begin{aligned} & 703 \\ & (17) \end{aligned}$	$\begin{gathered} 1110^{\circ} \\ (4) \end{gathered}$	
Octuber.	$\begin{array}{r} 55 \\ (23) \end{array}$	$\begin{aligned} & 15: \\ & 11 \end{aligned}$	207		$\begin{aligned} & 4 \times 5{ }^{\circ} \\ & 130^{\circ} \end{aligned}$	$43=2$	$\begin{gathered} 5.3 \\ 18 \\ (3) \end{gathered}$	
Average	$\begin{aligned} & 165 \\ & (5 \mathrm{~s}) \end{aligned}$	$\begin{array}{r} 293 \\ 2901 \end{array}$	$\begin{aligned} & 932 \\ & (15) \end{aligned}$	$\underset{(4 n)}{100}$	$\begin{aligned} & 3!16 \\ & 1404 \end{aligned}$	$\begin{aligned} & 65 \\ & 54 \\ & 54 \end{aligned}$	$\therefore 34^{\circ}$	$\begin{array}{r} 631 \\ (1) \end{array}$

deepest water (more than 110 fect). The zones of concentrations of illegal fish (reatons: average) are separated by 30 feet (difference betwen average depths of the intervals) as compared with 20 feet in the legal fish. This same difference is to be found in the data for the three months-June, July, and Augu:thut is lacking in October (relatively incomplete data, however).

In general, undersized whitefish tended to live in shallower water than tid legal-sized individuals. This tendency is apparent not only from the lesser depth of the inshore concentration zone (71-80 feet for illegal fish and 81-90 feet for legal fish) but also from the large numbers of small whitefish per lift in the still shallower interval, 61-70 feet. Legal-sized fish were slighty the more numerous, however, at tepths shallower than 61 feet.

The vertical movements of the whitefish in northeastern Lake Michigan are the reverse of those inclicated by the Lake Huron data for the Alpena-Ossineke and Saginaw Bay areas (pl. 350 and 351). In each of these regions of Lake Huron the data indieated an onshore movement of both legal and undersized fish during the summer. Whitefish of both size groups made an offshore movement in northeastern Lake Michigan.

Possible significance of two concentration zones.-The oecurrence of two concentration zones of both legal and illegal whitefish in northeastern Lake Michigan ${ }^{32}$ raises the interesting question of the possible existence of distinct inshore and offshore populations or races. Certainly, the consisteney of the occurrence and the scasonal move-

[^87]ments of these two concentration zones are such as to label their existence as a real phenomenon, and not a chance result to be ascribed to inadequate data. However, the mere presence of two distinct groupings of whitefish throughout all or most of the season does not make absolutely necessary the assumption of two permanently separated stocks. It is possible that conditions within the lake at certain seasons may produce an "ecological division" of an otherwise homogeneous population.

Rccords of a number of vertical series of temperature readings made in northeastern Lake Michigan ${ }^{33}$ failed to give a clue to the cause of two zones of concentration of whitefish. Both the inshore and offshore concentrations of legal fish were below the thermocline ${ }^{34}$ in June, July, and August and hence were in a region with extremely small temperature gradients. Preferences for water of different temperature, therefore, do not provide a logical explanation for the presence of two concentrations. The illegal whitefish of the inshore concentration were in the region of the thermocline in July and August, hence in substantially warmer water than were the fish of the offshore concentration. Horever, both groups were below the thermocline in June, and an inshore concentration at the thermocline was lacking in September.
lmportant arguments in support of the assumption of the existence of inshore and deep-water populations of whitefish are:
(1) The separation into two groups involved both large (legal) and small (illegal) fish. Consequently, the two groups are not entirely the result of different reactions of fish of different size to the same or similar environmental factors. This statement holds even though the concentration zones of the legal and illegal fish were not always identical in the same month.
(2) The fish of both concentration areas have similar seasonal vertical movements. The similarity of vertical movements kept the two zones of concentration distinct in all months but September. The presence of only one peak in the September data may represent the temporary approximation of the two concentrations or may be the result of lack of information on the distribution of whitefish bevond the 110 -foot contour.
(3) There is evidence that some whitefish seldom, if ever, spawn in shallow water. The introluction of the deep trap net on gill-nct grounds or in areas beyond the reach of pound nets was marked by the capture of considerable numbers of whitefish of exeeptionally large size. These large fish could not be taken on these same grounds by the gill nets commonly employed since their great size prevented their becoming gilled. Pound nets, which are selective only with respect to small fish, are fully capable of taking large individuals of any size. Consequently, their failure to capture many fish as large as those found in the early catches of the cleep trap nets may be taken as evidence that these giant individuals were seldom, if ever, present on the inshore pound-net grounds, at least during the period of fishing operation.

It must be remembered, nevertheless, that there is no proof that the smaller mature fish of the offshore group of whitefish do not spawn in shallow water. The separation of the whitefish into two depth groups may represent only a summer and early-autumn condition. Possibly most of the small fish of both groups spawn in shallow water and most of the large fish of both groups spawn in deeper water. However, it also scems logical to hold that the giant fish taken in deep trap nets were members of a decpwater population (that lived beyond the reach of pound nets) that had survived to a size at which they could not be taken in gill nets, and hence had become exempt from eapture in the commercial fishery.

Even if the inshore and offshore groups of whitefish are held to be semi-independent or indepentent, it must be recognized that both groups exhibit similar fluctuations in the fishery. The records of the catch per lift and of production in $\mathrm{M}-3$ (table 17 and appendix B) demonstrate a close correlation between the annual fluctuations in the

[^88]abundance of whitefish on the pound-net (shallow-water) and gill-net (deep-water) grounds of the district and also between the production of whitefish by these two gears. A similar close resemblance between the statistical data for pound nets and gill nets is to be found in other districts.

It must be remembered also that any assumption of the existence of shallow-water and deep-water stocks of whitefish in northeastern Lake Michigan does not make a similar assumption valid for any other region. In districts $\mathrm{H}-3$ and $\mathrm{H}-4$ of Lake Hurm, for example, the simultaneous collapse of the rleep-trap-net and pound-net fisheries must be interpreted as strong evidence that both gears drew a large part of their production from the same stock. It is not known, even in northeastern Lake Michigan, to what extent there may be an interchange of individuals between the inshore and offshore groups of whitefish.

SUMMARY AND COMPARISON OF THE BATHYMETRIC DISTRIBUTION OF
 Whitefish in lakes huron and michigan, with special REFERENCE TO THE REGULATION OF THE FISHERY

The present study of the bathymetric distribution of the whitefish was part of a program conducted to obtain reliable data upon which to base a sound regulation of the deep-trap-net fishery. One question was: "What regulation as to the depth of water in which deep trap nets should he fished will ofree het the dual purpose of protecting

[^89] from the combination of the data for all localities, years, and months in each lake.
young fish from capture and excessive handling, and of reducing production ${ }^{35}$ to a level which does not threaten the extermination of the commercial stock?"

Ordinarily fishery legislation must be framed in conformity with average conditions during the entire season over a large part of a lake or an entire lake. Consequently, the most suitable data on the bathymetric distribution of whitefish in Lakes Huron and Michigan, as they pertain to fishery regulation, are those obtained by combining the available material for all grounds and all times in the fishing season in each of the two lakes. The data of table 29 (see also fig. 23) represent such combinations.

Table 29.-Number of legal and illegal whitefish per lift of pound nets and deep trap nets in Lakes Huron and Michigan, 1931-193?
[Number of lifts in parentheses. Asterisks indicate concentrations]

Lake	$\begin{aligned} & \text { Size } \\ & \text { group } \end{aligned}$	Number of whitefish per lift at depth (in feet)								
		<41	41-60	61-70	71-80	81-90	91-100	101-110	111-120	>120
Huron	Legal	73 (11)	$\begin{gathered} 205 \\ (24) \end{gathered}$	$\begin{array}{r} 269 \\ (12) \end{array}$	$\begin{aligned} & 792 \\ & (24) \end{aligned}$	$\begin{aligned} & 916 \\ & (36) \end{aligned}$	$\begin{gathered} 1231^{*} \\ (55) \end{gathered}$	1147	$\begin{gathered} 702 \\ (152) \end{gathered}$	$\begin{aligned} & 875 \\ & (56) \end{aligned}$
	1 Ilegal	$\begin{aligned} & 159 \\ & (11) \end{aligned}$	$\begin{aligned} & 549 \\ & (24) \end{aligned}$	$\begin{aligned} & 382 \\ & (12) \end{aligned}$	$\begin{aligned} & 653 \\ & (24) \end{aligned}$	$\begin{gathered} 125 \text { b* }^{*} \\ (36) \end{gathered}$	$\begin{aligned} & 769 \\ & (55) \end{aligned}$	$\begin{gathered} 842 * \\ (86) \end{gathered}$	$\underset{(152)}{837}$	457
Mictigan	Legal	238 (64)	$\begin{aligned} & 317 \\ & (38) \end{aligned}$	$\begin{aligned} & 522 \\ & (21) \end{aligned}$	$\begin{aligned} & 734 \\ & (51) \end{aligned}$	$\begin{gathered} 1236^{*} \\ (91) \end{gathered}$	775 $156)$	$\begin{gathered} 1030^{*} \\ (52) \end{gathered}$	550	
	1llegal	194 (64)	$\begin{gathered} 315 \\ (38) \end{gathered}$	$\begin{aligned} & 688 \\ & (21) \end{aligned}$	$\begin{aligned} & 954^{*} \\ & (51)^{*} \end{aligned}$	$\begin{aligned} & 818 \\ & (91) \end{aligned}$	$\begin{aligned} & 652 \\ & (56)^{2} \end{aligned}$	$\frac{\mathrm{s} 0}{(52)^{2}}$	$\begin{array}{r} 63 \quad 1 \\ (7) \end{array}$	

It should be pointed out, however, that recommendations based on the averages of table 29 which cover general conditions likewise cover very well the local conditions on the different grounds in the lake despite the variations in the bathymetric distribution of the legal and illegal whitefish in different localities.

In Lake Huron the average number of legal whitefish per lift increased continuously with inerease in the depth of the water up to a maximum at $91-100$ feet, deereased in the next tro intervals, and inereased slightly at more than 120 feet. The increase in the deepest water can be traced to the small number of lifts from this depth off Alpena, a region in which legal-sized whitefish were searee. The limits of the general region of greatest abundance of legal fish may be set at approximately $81-110$ feet. The number of undersized whitefish increased also from shallow to deeper water, but the maximum oceurred at 81-90 feet, or 10 feet slatlower than the depth of maximum abundance of legal fish. A second but lower peak in the number of illegal whitefish per lift was found at $101-110$ feet. If legal fish are to be protected from excessive exploitation and illegal fish from frequent handling, the obvious depth limit beyond which impounding nets should not be fished in Lake Huron is 80 feet. Although this restrietion eurtails the production of deep trap nets severely, it camot be considered extreme or oppressive, since a closely similar gear, the pound net, long supported a productive and prosperous fishery in even shallower water. (Few pound nets are fished in depths of more than 65 or 70 feet.)

The restriction of impounding nets in Lake Huron to depths of 80 feet or less does not mean the complete closure of the deeper waters to the commercial fishery for whitefish. These deeper areas are still open to the gill net, which was formerly the only gear fished in them. However, past experience has demonstrated that in these areas gill nets ordinarily did not eatch whitefish in quantities dangerous to the stability of the stock. Furthermore, the selective action of the gill nets commonly employed precludes the capture of excessive numbers of small fish and also spares the large individuals that constitute the spawning reserve.

The Lake Michigan data differ from those of Lake Huron chiefly in the presence

[^90]of two distinet concentration zones for both legal and undersized fish and in showing a somewhat shallower habitat for the whitefish. The inshore concentrations, in both of which the numbers of fish per lift exceeded those of the offshore concentrations, were 10 feet shallower than the maxima for the eorresponding size groups in Lake Huron. Consequently, the most suitable limit for the depth of water in which impounding nets should be operated in Lake Miehigan is 70 feet. 10 feet shallower than in Lake Huron.

BATHYMETRIC DISTRIBUTION OF OTHER SPECIES

Other speeies were much less numerous in the eatehes of pound nets and deep trap nets than were whitefish. The data on the bathymetrie distribution of these "miseellaneous" species, therefore, will not be given in the same detail as those on the distribution of whitefish.

LAKE TROUT

Nearly all of the lake trout (Cristivomer namaycush) were of legal size (minimum legal weight, $11 / 2$ pounds). As undersized lake trout were so few and because there was no evidence of important differences in the vertieal distribution of legal and undersized fish, tables 30, 31, and 32 have been prepared from the reeords of all trout taken, regardless of size.

Lake Huron.-In the Alpena-Ossineke area (table 30) lake trout were numerous in May (31.0 to 39.8 fish per lift) at depths greater than 100 feet, but only one trout was taken in the lift from 81-90 feet. In June lake trout were fairly numerous in the shallower water (41-70 feet) while the average eateh per lift declined (in comparison with the averages for May) in depths greater than 100 feet. The reeords for four lifts from depths between 40 and 71 feet in July and August suggest that most lake trout had abandoned the shallower water in these two monthe. Possibly this offshore movement accounts for the inerease over the eateli for the month of June in the average number of trout per lift from 81-120 feet. The average lifts in August were consistently below those of July from depths of 71-120 feet, and the September catehes were smaller than those of August from the 101-120 font interval. These deereases possibly may represent a movement of the lake trout to depthe greater than those in which deep trap nets were operated.

Table 30.-Number of lake trout per lift of pound nets and deep trap nets in the AlpenaOssineke area, 1931-19.33

Month	Number of take trout per lift at depth infeet)							
	41-60	61-70	71-80	41-90	91-100	101-110	111-120	>120
May				$\begin{aligned} & 1.0 \\ & (1) \end{aligned}$		$\begin{array}{r} 31.0 \\ (1) \end{array}$	$\begin{aligned} & 37.4 \\ & (23) \end{aligned}$	$\begin{array}{r} 39.8 \\ \text { (4) } \end{array}$
June.	21.3	40.0		12.0)	8.0	$\begin{gathered} 16.9 \\ (6) \end{gathered}$	$\begin{aligned} & 11.8 \\ & (1 \mathrm{n}) \end{aligned}$	$\begin{array}{r} 18.8 \\ 15) \end{array}$
July.	0.0		$\begin{array}{r} 56.0 \\ (1) \end{array}$	40.2 (5)	$\begin{gathered} 35.5 \\ (12) \end{gathered}$	26.2	$\begin{aligned} & 5 \times 10 \\ & 23 \\ & 2 \end{aligned}$	
August.	$\begin{aligned} & 5.0 \\ & (2) \end{aligned}$	$\begin{aligned} & 1.0 \\ & \text { (1) } \end{aligned}$	7.9	$19 . i$	25.3 (3)	22.4	$\begin{gathered} 26.7 \\ 10) \end{gathered}$	
September						$\begin{aligned} & 6.6 \\ & (5) \end{aligned}$	$\begin{array}{r} 15.5 \\ (2) \end{array}$	
Average	$\underset{(i)}{13.6}$	$\begin{array}{r} 20.5 \\ (2) \end{array}$	$\begin{array}{r} 13.9 \\ (8) \end{array}$	$\begin{aligned} & 24.5 \\ & 161 \end{aligned}$	31.9	$19 . ?$	$\begin{aligned} & 33.2 \\ & (76) \end{aligned}$	$\begin{array}{r} 2 Q_{.} 1 \\ (9) \end{array}$

The seasons' averages indieate an irregular trend toward an increase in the abundance of lake trout with inerease in the depth of the water. The deeline in numbers in depths of 101-110 feet may be real since similar deereases oceurred in the eateh for July
and August. The decline in depths greater than 120 feet may be the result of the lack of data for months later than June.

It shoukl be emphasized that, in contrast to the whitefish data, those presented for the lake trout on the Alpena-Ossineke grounds and in other areas should not be taken as deseriptive of the general distribution of trout in Lake Huron and northern Lake Michigan. The chief summer fishery for trout is conducted by gill nets at depths eonsiderably greater than those from which the pound nets and deep trap nets were lifted. The data given here describe only the distribution of the presumably sparse inshore population of trout.

Lake trout were considerably less abundant in the Saginaw Bay area (table 31) than off Alpena and Ossineke. In four of the six months (all but July and September) the largest lifts were made from the deenest water (more than 120 feet). Trout were searce in shallow water (less than 61 feet) in June and were not taken at all in July and August. The data fail to indicate whether the improved catches beyond 90 feet in July and August were the result of an offshore movement of an inshore group of trout or of an onshore movement of an offshore group. The averages for September and possibly October are suggestive of a migration toward deeper water.

Table 31.-Number of lake trout per lift of pound nets and deep trap nets in the Saginaw Bay area (ports of A u Sable-Oscoda, East T'awas, and Bay Port), 1931-1932
[Number of lifts in parentheses]

The seasons' averages show a general tendeney for the number of lake trout per lift to increase with increase in the depth of water.

Tabular data are not given on the bathymetric distribution of lake trout in northern Lake Huron (Cheboygan and Rogers City area) and on the Harbor Beach grounds. (For the number of lifts at the various deptlis of water at these localities see tables 23 and 26.) The average number of trout per lift in northern Lake Huron varied widely (from 1.5 to 76.5 fish) with the best eateh in 81-90 feet in August. Lake trout were fairly searce on the Harbor Beach grounds. The best eatches were: 20.3 fish per lift from 111-120 feet in August; 19.8 fish from depths greater than 120 feet in August; and 15.5 fish from 111-120 feet in September. Catches of lake trout were uniformly amall in water shallower than 101 feet. In October only three trout were taken in a total of nine lifts, all from depths greater than 90 feet; apparently the lake trout had migrated from the Harbor Beach deep-trap-net grounds in that month.

Lake Michigan.-The rather extensive data from northeastern Lake Michigan (table 32) suggest that in certain months the lake trout as well as the whitefish may oceur in two concentration zones. (See 1. 353, table 28, and fig. 22.) In June and

July inshore concentrations occurred at 61-70 feet and offshore peaks at more than 110 feet. The offshore concentration in August was still in deep water but the inshore maximum was at 81-90 feet or 20 feet deeper than in June and July. (The August data were inadequate, however, for depths of less than 71 feet.) The data for September and Oetober yield no evidence of two concentration zones of lake trout in these two montlis. Data were lacking, however, for depths beyond 110 feet.

Table 32.-Number of lake trout per lift of pound nets and deep trap nets in northeastern Lake . Michigan (ports of Manistique, Epoufette, and Naubinuray), 1931-1992
[Number of lifts in parentheses. Asterisk indieate concentrations]

There was no general agreement as to the actual location of the coneentration zones of lake trout and whitefish. It is true that lake trout, large (legal) whitefish, and small (illegal) whitefish (table 28) were all concentrated at 61-70 feet in June and that both trout and legal whitefish exhibited peaks at 81-90 feet in August. On the other hand, the inshore concentration of lake trout was shallower in July than the concentration of either the legal or illegal whitefish, and the offehore concentrations of lake trout in June, July, and August were without exeeption deeper than the concentrations of whitefish. In October, however, a peak was evident at 101-110 feet in both lake trout and the whitefish (large and small).

Possibly it is not strictly proper to term as "concentrations" the increased abundance of lake tront at depths in excess of 110 feet, for these inereases in the number per lift may be merely part of a general trend for trout to becone more plentiful with inerease in depth of water and not, as the term concontration implies, be indicative of a peak abundance bordered on either side by a lesec abundance.

The data of table 32 as a whole point toward an off:hore movement of lake tront in mortheastern Lake Miehigan from June to Oetoher. (A few trout appear, however, to have returned to shallow water in October.) The scasons' average show an inerease in the eatch per lift from shatlow water (less than 41 feet) to a peak at 61-70 feet, followed in turn by a decline through the depth interval, 71-100 feet, and a secondary rise beyond 100 feet.

In the Green Bay region of Lake Michigan the best eatehes of lake trout were made in 41-60 feet in May (19.8 fish per lift). The september eatelses varied but little with depth of water, averaging 6.8 fisl for 13 lifts in $41-80$ feet and 5.0 for 4 lifts in 91-110 feet.

yELLOW PIKE

Yellow pike (stizostcdion ritreum) oceurred in large numbers in the lifts of pound nets and deep trap nets only in the Saginaw Bay region (table 33). Because of the concentration of yellow pike in the shallower water of the area it was considered desir-
able in the preparation of the table to employ a greater number of intervals at depths less than 61 feet than was necessary in the tabulation of the data for the whitefish and the lake trout.

No data are available on the abundance of yellow pike in shallow water in May, but in June legal-sized fish ($11 / 2$ pounds or larger) were plentiful in the lifts from 31-60 feet. In both May and June legal-sized yellow pike were totally lacking in all lifts from depths greater than 90 feet. The eatch per lift in shallow water (less than 61 feet) declined in July and August. At the same time legal yellow pike penetrated to the greatest depths from which deep trap nets were lifted. The abundance at depths of more than 80 feet was generally higher in August than in July. Legal yellow pike were still present in the deeper water in September and October. The distribution in September was irregular. An average of 17.0 fish per lift was obtained at 111-120 feet, while yellow pike either were searee or lacking in the lifts from other depths.

Undersized yellow pike as well as legal fish were abundant in 31-60 feet in June (with the greatest abundance in 31-40 feet) and absent from depths beyond 90 feet in both May and June. Illegal yellow pike had penetrated to a depth of 101-110 feet in July and 111-120 feet in August and September. None were taken in any month from water deeper than 120 feet.

Not only did illegal yellow pike fail to range as deep in summer as did fish of legal size, but apparently a smaller pereentage of them left the shallow water. In

Table 33.-Number of yellow pike per lift of pound nets and deep trap nets in the Saginaw Bay area (ports of A u Sable-Oscoda, East Tawas, and Bay Port), 1931-193.2

Month	Number of legal yellow pike per lift at depth (in feet)										
	<31	31-40	41-50	51-60	61-70	71-80	81-90	91-100	101-110	111-120	>120
May..								00 (1)	00 (7)	00 (6)	$\begin{gathered} 00 \\ (5) \end{gathered}$
June		82 (5)	43 (6)	$\left.\begin{array}{r}27 \\ \text { (3) }\end{array}\right\}$				(1) $\begin{aligned} & 0 \\ & \text { (1) }\end{aligned}$	$\begin{gathered} 00 \\ (\mathbf{L 4}) \end{gathered}$	00 (22)	$\begin{gathered} 00 \\ (11) \end{gathered}$
July	$\begin{aligned} & 03 \\ & (3) \end{aligned}$	(3) 0		$\left.\begin{array}{r} 240 \\ (1) \end{array}\right\}$			05 (2)	(11)	19 (7)	19 (15)	$\begin{aligned} & 07 \\ & (6) \end{aligned}$
August.			$\begin{array}{ll} 10 \\ (1) \end{array}$	$\underset{(4)}{9.2}$	$\begin{aligned} & 25 \\ & (3) \end{aligned}$	$\begin{gathered} 45 \\ (1) \end{gathered}$	$\begin{gathered} 97 \\ (12) \end{gathered}$	$\begin{gathered} 58 \\ (12) \end{gathered}$	$\begin{array}{r} 64 \\ (15) \end{array}$	17 (15)	$\begin{gathered} 04 \\ (10) \end{gathered}$
September						25	00	00 (2)	00 (2)	170 (4)	10
Oetober										1.5	$\begin{gathered} 0 \\ 0 \\ (3) \end{gathered}$
Average.	03 (3)	$\begin{array}{r} 524 \\ (8) \end{array}$	$\begin{gathered} 376 \\ (7) \end{gathered}$	$\begin{array}{r} 177 \\ (8) \end{array}$	${ }^{2} 5$	${ }_{(6)}^{38}$	78 (15)	$\begin{gathered} 28 \\ (27) \end{gathered}$	$\begin{gathered} 20 \\ (45) \end{gathered}$	19 (64)	$\begin{gathered} 03 \\ (37) \end{gathered}$
Number of illegal yellow pike per lift at depth (in feet)											
May.								0 (1)	00	00 (6)	$\begin{aligned} & 0.0 \\ & (5) \end{aligned}$
June.		+1288	163 (6)	$\left.\begin{array}{r}63 \\ \text { (3) }\end{array}\right\}$				${ }_{(1)}^{00}$	$\begin{array}{cc} 0 & 0 \\ (14) \end{array}$	00 (22)	$\begin{gathered} 00 \\ (11) \end{gathered}$
July	$\begin{array}{r} 560 \\ (3) \end{array}$	87		$\left.\begin{array}{r} 1590 \\ (1) \end{array}\right\}$			00 (2)	$\begin{gathered} 04 \\ (11) \end{gathered}$	01 (7)	00 (15)	$\begin{gathered} 00 \\ (6) \end{gathered}$
August.			$\begin{gathered} 810 \\ (1) \end{gathered}$	$\begin{array}{r} 2180 \\ (t) \end{array}$	$\begin{array}{r} 1195 \\ \text { (3) } \end{array}$	$\begin{aligned} & 50 \\ & (1) \end{aligned}$	$\begin{aligned} & 100 \\ & (12) \end{aligned}$	$\begin{aligned} & 47 \\ & (12) \end{aligned}$	$\begin{array}{r} 95 \\ (15) \end{array}$	19 (15)	$\begin{gathered} 00 \\ (10) \end{gathered}$
September					-.	50 (2)	00	05	05	93 (4)	$\begin{gathered} 0.0 \\ (2) \end{gathered}$
October.										$\begin{array}{r}00 \\ (2) \\ \hline\end{array}$	$\begin{aligned} & 00 \\ & (3) \end{aligned}$
Average..	360 (3)	2909 (8)	1513 (7)	$\begin{gathered} 1528 \\ (8) \end{gathered}$	$\begin{array}{r} 1195 \\ (3) \end{array}$	50 (6)	$\begin{gathered} 80 \\ (15) \end{gathered}$	$\begin{gathered} 23 \\ (27) \end{gathered}$	$\begin{gathered} 32 \\ (45) \end{gathered}$	$\begin{gathered} 10 \\ (64) \end{gathered}$	$\begin{aligned} & 00 \\ & (37) \end{aligned}$

the shallow-water lifts (less than 71 feet) the average numbers of illegal yellow pike per lift were consistently several times as great as the numbers of legal fish. Especially noteworthy were the large cateles of undersized fish at these depths in July and August, months in which legal fish were scarce in shallow water. At the greater deptls, however, the numbers of legal and illegal yellow pike per lift differed only slightly and in a random manner.

A total of seven yellow pike (all of legal size) was taken in northern Lake Huron (Cheboygan and Rogers City area). One of these fish was caught in 71-80 feet in July and the remaining six in 41-70 feet in September.

Yellow pike were searce at all depths on the Alpena-Ossineke grounds, but were more numerous at depths less than 70 feet than at greater depths. No yellow nike were taken in water deeper than 90 feet before July. A few individuals "(both legal and illegal) penetrated to depths of at least 111-120 feet in July and August. (No nets were lifted beyond 120 feet in these montlis and in September-see table 24.) In September a total of three legal fish but no illegal fish was taken from depths of 101-120 feet.

The single lift from shallow water (41-60 feet) off Harbor Beach contained eight legal and three illegal yellow pike. The maximum depths at which legal fish were taken were 111-120 feet in August and more than 120 feet in September and October. No illegal yellow pike were captured in August, but in September and October fish of this group penetrated to depths in excess of 120 fect.

Not one yellow pike was taken in the lifts of pomd nets and deep trap nets in northeastern Lake Michigan. In May a total of five fish (all legal) was captured in the 10 lifts in the Green Bay area from depths of less than 61 feet and 28 yellow pike (10 legal and 18 illegal) were taken in the tro lifts from $81-90$ fect. No yellow pike were caught in the Green Bay area in September.

BURBOT

Because of the small total number capured and the sporadic nceurrence of hurbot (Lota maculosa) in the catches, a combination of the data for all localities appears to provide the most valid description of the inshore bathymetric distribution of the species in Lake Huron (table 34). This table cannot serve as the basis for a detailed discussion; attention will be called, however, to certain general trends. Burbot were scarce or lacking at all depths from which nets were lifted in both May and June. In June they occurred in both shallow water (less than 71 feet) and deep water (more than 100

Table 34.-Number of burbot per lift of pound nets amd deep trap) nets in Lake Inuron, 19.31-1933: (data for all localities eombined)
[Number of lifts in parentheses]

Month	Number of burbot perlift at depth (in feet)								
	<41	41-60	61-70	71-40	* $1-50$	41-100	101-110	111-120	>120
May.					$\left(\begin{array}{ll} 0 & 0 \\ 1 \\ (1) \end{array}\right.$	$\begin{gathered} 10 \\ (1) \end{gathered}$	02	$\begin{aligned} & 0.5 \\ & 29) \end{aligned}$	02
Junc.	${ }_{(5)}^{0}$	$(13)^{2}$	$\begin{aligned} & 10 \\ & (1) \end{aligned}$		00	$\begin{gathered} 10 \\ (2) \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 20 \\ 201 \end{gathered}$	$\begin{gathered} 06 \\ 40 \end{gathered}$	$\begin{gathered} 06 \\ (16) \end{gathered}$
July -	$\begin{gathered} 00 \\ (6) \end{gathered}$	$\begin{aligned} & 00 \\ & (2) \end{aligned}$	$\begin{array}{ll} 00 \\ (2) \end{array}$	$\begin{aligned} & 0.6 \\ & (5) \end{aligned}$	${\underset{(i)}{23}}^{2}$	$\begin{gathered} 31 \\ (23) \end{gathered}$	$\begin{gathered} 06 \\ (14) \end{gathered}$	$\begin{gathered} 08 \\ (38) \end{gathered}$	$\begin{aligned} & 03 \\ & (6) \end{aligned}$
August.		$\begin{gathered} 00 \\ (i) \end{gathered}$	$\begin{aligned} & 00 \\ & (4) \end{aligned}$	$\underset{(13)}{2} 0$	$\begin{gathered} 19 \\ (23) \end{gathered}$	$\begin{array}{r} 20 \\ (17) \end{array}$	$\begin{aligned} & 15 \\ & (22) \end{aligned}$	$\begin{gathered} 09 \\ (29) \end{gathered}$	$\begin{gathered} 12 \\ (15) \end{gathered}$
September		$\begin{aligned} & 00 \\ & (2) \end{aligned}$	${ }_{(5)}^{08}$	${ }_{(6)}{ }_{(6)}$	$\begin{aligned} & 12 \\ & (4) \end{aligned}$	$\begin{gathered} 13 \\ \langle 10\rangle \end{gathered}$	$\begin{aligned} & 22 \\ & (19) \end{aligned}$	$\begin{gathered} 32 \\ (12) \end{gathered}$	$\begin{aligned} & 28 \\ & (5) \end{aligned}$
October.						$\begin{aligned} & 00 \\ & (2) \end{aligned}$	${ }_{(3)}^{5}$	$3 n$	$\underset{(5)}{28}$
Average	$\begin{gathered} 01 \\ \{11\} \end{gathered}$	$\begin{gathered} 0 \\ (24) \end{gathered}$	$\begin{gathered} 04 \\ (12) \end{gathered}$	$\begin{gathered} 19 \\ (24) \end{gathered}$	$\begin{gathered} 18 \\ (36 i \end{gathered}$	$\begin{gathered} 21 \\ (55) \end{gathered}$	$\begin{array}{ll} 11 \\ (86) \end{array}$	$\begin{array}{r} 10 \\ (152) \end{array}$	$\begin{aligned} & 11 \\ & (56) \end{aligned}$

feet). Burbot were absent from shallow water in July and August, and appeared to be concentrated at intermediate depths (81-100 feet in July and 71-110 feet in August). In September and October they apparently were concentrated in depths beyond 100 feet. The changes in the average number of fish per net at the various depths for the months, July-October, suggest a general tendency for the burbot to move toward deeper water. The regular increase from July to September in the catch from 71-80 feet provides an exception to this general trend. The seasons' averages show a scarcity of burbot at depths of less than 71 fect and the greatest abundance at intermediate depths ($71-100$ feet), with the abundance in deep water (more than 100 feet) about half that at intermediate depths.

Table 35.-Number of burbot per lift of pound nets and deep trap nets in northeastern Lake Michigan (ports of Manistique, Epoufette, and Naubinway), 1931-1932

Month	[Number of lifts in parentheses]							
	Number of burbot per lift at depth (in feet)							
	<41	41-60	61-70	71-80	81-90	91-100	101-110	>110
June.	$\begin{array}{ll} 0 & 1 \\ (S) \end{array}$	$\begin{gathered} 03 \\ (3) \end{gathered}$	$\begin{aligned} & 40 \\ & (t) \end{aligned}$	$\begin{aligned} & 31 \\ & (8) \end{aligned}$	$\frac{2}{(23)}$	$(24$	$\begin{aligned} & 17 \\ & (7) \end{aligned}$	30
July .	$\begin{array}{ll} 0 & 0 \\ (7) \end{array}$	$\frac{35}{(5)}$	$\begin{aligned} & 30 \\ & (5) \end{aligned}$	$\begin{array}{r} 16 \\ (11) \end{array}$	$\begin{gathered} 19 \\ (17) \end{gathered}$	$\begin{aligned} & 08 \\ & (5) \end{aligned}$	$\begin{array}{r} 54 \\ (13) \end{array}$	$\begin{array}{ll} 13 \\ (3) \end{array}$
August.		00 (1)		$\begin{array}{r} 36 \\ (16) \end{array}$	$\begin{gathered} 20 \\ (22) \end{gathered}$	$\begin{array}{r} 13 \\ (15) \end{array}$	$\begin{array}{r} 16 \\ (15) \end{array}$	100 (2)
September	$\begin{gathered} 01 \\ (20) \end{gathered}$	$\begin{aligned} & 10 \\ & (9) \end{aligned}$	$4(3)$	$\stackrel{2}{2}$	$\begin{array}{r} 37 \\ (14) \end{array}$	$\begin{array}{r} 20 \\ (17) \end{array}$	$\begin{aligned} & 28 \\ & (8) \end{aligned}$	
October	$\underset{(23)}{18}$	$\begin{array}{r} 46 \\ (11) \end{array}$	107 (3)		$\begin{gathered} 86 \\ (13) \end{gathered}$	$\begin{aligned} & 23 \\ & (6) \end{aligned}$	54	
Average	$\begin{aligned} & 08 \\ & (58) \end{aligned}$	$\begin{aligned} & 26 \\ & (29) \end{aligned}$	$\begin{gathered} 51 \\ (15) \end{gathered}$	$\begin{gathered} 27 \\ (48) \end{gathered}$	$\begin{gathered} 33 \\ (89) \end{gathered}$	$\begin{aligned} & 1.8 \\ & (54) \end{aligned}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{aligned} & 43 \\ & (7) \end{aligned}$

The data on the bathymetric distribution of the burbot in northeastern Lake Michigan (table 35) provide little evidence of any extensive vertical movements. Characteristic of the averages for each month appeared to be an inshore concentration at 41-60 or 61-70 feet (except in August when only one lift was observed from a depth of less than 70 feet), a reduced abundance at intermediate depths up to 101 feet (111 feet in June), and a second concentration at 101-110 feet or more than 110 feet. The average catches in October were greater than those in other months from every depth but 91-100 feet. (The average catch from 101-110 feet was the same in July and October.) The seasons' averages show an increase in the number of burbot from 0.8 in shallow water (less than 41 feet) to a maximum of 5.1 fish per lift at $61-70$ feet. The average catch per net varied between 1.8 and 3.3 fish in depths of $71-110$ feet and rose to 4.3 in water more than 110 feet.

WHITE SUCKER AND LONG-NOSED OR STURGEON SUCKER

Separate counts of white suckers (Catostomus commersonnii) and long-nosed or sturgeon suckers (C. catostomus) were obtained for only a limited number of lifts in the Alpena-Ossineke and Saginaw Bay areas of Lake Huron. The available data indicate that white suckers were most numerous in depths of less than 81 feet; only one individual was captured in deeper water (in 101-110 feet). Long-nosed suckers also were most plentiful inside the 81 -foot contour, but were taken in fair numbers at greater depths. No long-nosed suckers were captured in depths beyond 110 feet.

PART IV
 OBSERVATIONS ON THE FISHING ACTION OF POUND NETS AND DEEP TRAP NETS

EFFECT OF THE SIZE OF THE MESH ON THE CATCH OF LEGALAND ILLEGAL-SIZED WHITEFISH AND LAKE TROUT

The question of the proper legal minimum size of mesh is a highly controversial one that involves nearly all commercial fishing gears. Certainly the most desirable size of mesh is that which releases the greatest number of illegal-sized and immature fish without serious loss of legal-sized fish. However, a great diversity of opinion exists as to what this "desirable" size of mesh may be. Although there are a few exceptions, commercial fishermen usually oppose most vigorously any attempt to increase the legal minimum mesh size, and in practice generally fish the smallest mesh permitted by law.

The lack of proper legal regulations and enforcement in the early years of the deep-trap-net fishery led to a wide range of mesh size in this gear. Many of the early deep trap nets had meshes that were ridiculously small (as small as $21 / 4$ inches, stretched measure as fished) for a gear designed to take a species with a 2 -pound legal-size limit. Continued experience, however, led many deep-trap-net fishermen to increase the size of mesh in their nets. This increase in mesh size not only reduced the labor of sorting out the illegal fish and returning then to the lake, but also improved the catch of legal fish as will now be shown.

The data in tables 36 and 37 on mesh selcetivity in pound nets and deep trap netare based on comparison of the numbers of legal- and illegal-sized whitefish 12 -pound size limit) taken in nets with meshes less than 4 inches (stretched measure as fished) and in nets with meshes of 4 inches and more. For convenience in the discussion, the two groups of nets will be termed "small-mesh" and "large-mesh" nets. ${ }^{36}$

Table 36 lists the total numbers of legal and illegal fish, the average numbers per lift, and the percentages of fish of both size groups in all lifts of large-mesh and smallmesh pound nets and deep trap nets observed in the course of the investigation. On the average, small-mesh nets took more fish per lift, both legal and illegal, than did large-mesh nets. The percentage of legal fish in the lift was higher (58.7 as compared with 51.3) in large-mesh nets.

Table 36.-Comparison of total numbers, averages per lift, and percentages of legal and illeghl whtofish taken in small-mesh and large-mesh pound nets and deep trap uets

Item	Whitefish taked in moesh				
	Less than 4 inches		4 inehers and maro.		
	Legal	Illegal	Legal		Itheral
Total oumber of whitefsh taken.	49,939	46,441	- (238)		
Average number of whitefish per lift.	818	77	766		-39
Corrected for equal cornmercial yields	$\begin{array}{lll}81 & 8 \\ 31 & 3\end{array}$	78	819		3.6 +18
Percentage legal and illugal.-	313	45	537		413

The unequal numbers of fish in the lift. of large-mesh and small-mesh nets make a comparison of their selective action difficult. A better comparison is made possible by the determination of the numbers of illegal fish that must be handled in nets of

[^91]each mesh size when the commercial yields are equal. This determination (third row in body of table) shows that large-mesh nets that take an average of 81.8 legal fish may be expected to contain an average of 57.6 illegal individuals as compared with 77.7 undersized whitefish in small-mesh nets with equal commercial lifts.

From the averages of 77.7 and 57.6 illegal whitefish per lift it may be estimated that large-mesh nets released $100 \times \frac{77.7-57.6}{77.7}$ or 25.9 percent of the undersized individuals. For every 100 illegal whitefish taken in small-mesh nets, 74.1 should be taken by large-mesh nets with the same commercial catch.

The data of table 36 and the computations based upon them are open to the very serious objection that the actual numbers and the percentages of legal and illegal fish taken in nets of any size of mesh vary according to the nature of the stock at the place and time the nets are fished. Truly discriminating data on selectivity must be founded on the lifts of nets that are identical except for the size of mesh and that are fished under strictly comparable conditions, that is, on the same grounds, at the same depth, in the same year, and at the same time within the season.

Table 37 contains comparisons of the catch of large-mesh and small-mesh pound nets and deep trap nets, based on lifts made \cdot in the same year (1932), in the same month, on the same grounds, and at the same depth. The data are confined to comparisons in which nets of both sizes of mesh are represented by at least 5 lifts. The necessary restrictions reduced the number of possible comparisons. However, the averages of the 10 independent sets of observations are reasonably reliable.

Table 37.-Comparison of the numbers of legal and illegal uhitefish per lift in small-mesh and large-mesh pound nets and deep trap nets fished in the same year (1932) and month, on the same grounds, and at comparable depths
[Number of lifts in parentheses]

The averages of the 10 comparisons show that the large-mesh pound nets and deep trap nets took more legal whitefish and fewer illegal fish than the small-mesh nets fished under comparable conditions. In round numbers, small-mesh nets took an average of 92 undersized individuals in producing 74 fish of marketable size, whereas large-mesh nets took only 78 illegal whitefish for a commercial production of 92 fish. The correction for equal commercial production shows that small-mesh pound nets and deep trap nets with a commercial catch equal to that of large-mesh nets (92 fish)
may be expected to capture 113 illegal whitefish to only 78 in large-mesh nets. The release of undersized fish by large-mesh nets is, therefore, $100 \times \frac{113.4-77.9}{113.4}$ or 31.3 percent. This percentage of release is more reliable than the release of 25.9 percent computed from the average catches of the two groups of nets without consideration of the effects of locality, depth, and time.

That the undersized whitefish, as well as the lake trout commonly taken with them, do escape from the pots of impounding nets with the larger meshes is further suggested by the progressive increase in the average sizes of these fish with each increase in the size of mesh (table 38).

The controversy concerning the proper size of mesh in the pots of impounding nets does not, however, revolve so much around the release of undersized fish as around the escape of legal-sized fish, both whitefish and lake trout. It is not believed that any legal-sized whitefish can go through mesies smatler than 4^{16} inches as found in use (the minimum size required by Michigan's law', but it is most probable that some legal-sized lake trout escape as is suggested by the larger average size of these fish in the bigger-meshed nets (table 38).

Table 38. - Average size of whitefish and lake trout taken from Lakes IInron and Wichigan in 1931 and 193 ? in impounding nets with different sizes of mesh in the pot

Size of tacsh (incturs) in impounting nets	["ntorsized whitafish fors than 2 pmunds		lake traut		
			[Tndersized Hess thath I' a pounds	Legul-sized	
	Averag - tot.al bength (imehes)	Averugr wioght llhs. and uz.)	Avorage weight llas. and oz.)	Abreage tatal lenzth inurpesi	Avrpage weight lbe. and oz. 1
<3.			$\begin{array}{r} 1-16 \\ 13) \end{array}$	$\begin{gathered} 1 \times 4 \\ 10 \end{gathered}$	$2-2$
3-37/16.-.-....-.-.	$\begin{aligned} & 1 \pm 1 \\ & (54\} \end{aligned}$	$0-131$		$\begin{gathered} 21 \\ 4! \\ 41 \end{gathered}$	$=114$
$31 / 2-315 / 16 \ldots \ldots$.	$\begin{gathered} 174 \\ (123) \end{gathered}$	$\begin{aligned} & 1-46 \\ & (123) \end{aligned}$	$\begin{gathered} 1-32 \\ 101 \end{gathered}$	$\begin{aligned} & 221 \\ & 1441 \end{aligned}$	$2-112$
4-47:16.	$\begin{aligned} & 178 \\ & (335) \end{aligned}$	$\begin{array}{r} 1-102 \\ 1364 \end{array}$	$\begin{array}{cc} 1 & 3 \\ i+1 \end{array}$	$\begin{array}{r} 235 \\ 20 \end{array}$	$\begin{array}{r} 2-14 \\ 20.3 \end{array}$
41/3-11516......			-... -	- - .	34

Additional information on this question of escapenent is provided by the length and weight frequencies of the whitefish and lake trout gilled in the different sizes of mesh (tables 39, 40,41, and 42). Table 39 shows that all of the whitefish gilled in meshes smaller than 3 inches were undersized. Presumably, then, no legal-sized whitefish can eseape through these meshes. It was not matil a mesh of 3^{1} a to 31516 inches (about 4 to $47 / 16$ inches as manfactured) was used that legal-sized whitefish were gilled in any numbers, althougl 91 pereent of the gilled fish were still below the 2 -pound legal limit. Even the largest meshes for which data are adequate (4 to $47 / 16$ inches) did not permit many of the smaller fish to escape as 79 percent of the gilled individual in these meshes were undersized, and the average weight of all fish was noticeably less than 2 pounds (1 pound, 11 ounces).

It is of interest to note from the frequencies that the bulk of the gilled whitefish varied from 1 to 2 pounds in weight in meshes of 3 to $315 / 16$ inches and from 1 to $21 / 4$ pounds in the larger meshes-a range of only 1 or $1^{1 / 4}$ pounds. The corresponding range in length of these fish (table 40 was 312 inches (15-181/2; $15^{1} 2-19 ; 16-19^{1}$ 。 inches).

The progressive increase in the average weight of the undersized gilled whitefish, as well as in the average length (table 40), with eath increase in the size of mesh
indicates that some of the smallest individuals escaped. The average weight of the legal-sized, gilled whitefish, however, did not increase progressively with an increase in mesh size (the average length showed a slight increase), thus suggesting that virtually no whitefish of 2 pounds or larger passed through any of the meshes for which there were adequate data.

Table 39.-Weight frequencies and average weights of uhitefish gilled in the pots of impounding nets of Lakes Huron and Michigon, 1931-1932
[The weight intervals apply to fish with weights up to but not including the upper limit. Undersized fish were separated on the basis of a 2-pound limit]

Weight interval (pounds)	Sizes of stretehed mesh (inches) as found io use					Total number
	<3	3-3.7/16	$31 / 2-315 / 16$	4-4 $/ 16$	4 1/2-4 15/16	
1/4 to $1 / 2$	2	1	1			4
$1 / 2$ to $3 / 4$	7	7	4			18
$3 / 4$ to 1	2	5	9	6		22
1 to $11 / 4$	3	24	75	29	-	131
$11 / 4$ to $11 / 2$	1	23	118	45		187
$11 / 2$ to $13 / 4$		27	114	50		191
$13 / 4$ to 2	2	16	63	35	------------	116
2 to $21 / 4$		2	20	24		46
$21 / 4$ to $21 / 2$		1	14	10	1	26
$21 / 2$ to $23 / 4$		1	3	4	-..------.-. -	8
$23 / 4$ to 3				4	---.--------	4
3 to $31 / 4$			1	$\stackrel{2}{2}$		3
5 to $51 / 4$.						1
Total.	17	107	422	210	1	757
Number of undersized fish.	17	103	384	165	1	669
Number of legal-sized fish.	0	4	38	45	1	88
Percentage of undersized fish	1000	963	910	786	00	884
Average weight of all fish.--	0-14 4	1-61	1-80	1-110	2-40	1-8 4
Average weight of undersized fish	0-14 4	$\begin{array}{lll}1-5 & 5 \\ 2-5 & 1\end{array}$	$1-69$ $2-38$	1-7 ${ }^{1-5} 6$	2-40	$1-66$ $2-48$
Average weight of legal-sized fish		-5 1	2-38	--5 6	-40	

Table 40.-Length frequencies and arerage lengths of whitefish gilled in the pots of impounding nets of Lakes Huron and Michigan, 1931-1932
[The total-length intervals apply to fish with lengths up to but not including the upper limit. The average lengths of legal-sized and undersized fish were based only on those iodividuals for which records of weight also were available (oumber of specimens in parentheses). Undersized fish were separated on the basis of a 2-pound limit, not on length]
Total length interval
(inches)

Table 41.-Weight frequencies and average weights of lake traut gilled in the pots of impounding nets of Lakes Huron and Michigan, 1931-1932
[The weight intervals apply to fish with weights up to but not including the upper limit Undersized fish were separated on the basis of a $1^{1} 2$-pound limit]

Table 42.-Length frequencies and average lengths of lake trout gilled in the pots of impounding rets of Lakes Huron and Michigan, 1931-1992

The total-length intervals apply to fish with lengths up to but not including the upper limit. The average lengeths of Iegal-sized and undersiz+d fisb were based only on those individuals for which records of weight also were available (number of specimens in parentbmes). Uudersized fish were separated on the basis of a $1^{1} 2$-ponad limit, not on lengeth]

Total length interval (inches)	Sizer of stretched mesh (inches) as found in use				Total number
	<3	3-3 7/16	$312-31516$	4-4716	
$151 / 2$ to 16			1		1
16 to $161 / 2$	2	1			3
$161 / 2$ to 17.			4		5
17 to 171/2.	3	1	13		17
$171 / 2$ to 18.		2	21		23
18 to $181 / 2$.		6	27		33
$181 / 2$ to 19.		3	30		33
19 to $191 / 2$.		7	28	3	34
191/2 to 20.		1	22	1	24
20 to $201 / 2$.		4	13	8	25
$201 / 2$ to 21.			13	5	18
21 to $211 / 2$?	19	${ }^{3}$	24
$211 / 2$ to 22		1	6	2	$\stackrel{\square}{9}$
22 to $221 / 2 \ldots$........................-			\%	2	4
22 1/2 to 23 to $231 / 2$.-...............................			5		5
$231 / 2$ to 24.			1	1	1
24 to $241 / 2$				1	,
Total.	5	29	205	26	265
Average total length (inches) of all fish..	168	188	191	207	192
Average total length (inches) of undersized fish	$\begin{array}{r} 169 \\ (4) \end{array}$	$\begin{array}{r} 173 \\ (7) \end{array}$	$\begin{aligned} & 152 \\ & (18)^{2} \end{aligned}$		$\begin{gathered} 172 \\ 29)^{2} \end{gathered}$
Average total length (inches) of legalsized fish..		$\begin{aligned} & 1!43 \\ & (22) \end{aligned}$	$\begin{gathered} 194 \\ (136) \end{gathered}$	$\begin{gathered} 206 \\ 124 \end{gathered}$	$\begin{aligned} & 195 \\ & (182) \end{aligned}$

The situation with respect to the lake trout was somewhat different. The few trout gilled in meshes smaller than 3 inches were all undersized (less than $11 / 2$ pounds) (table 41). The legal-sized trout started to gill noticeably in meshes of 3 to 3 7/16 inches. Only 24 percent of the gilled fish in these meshes were undersized, and the average weight (1 pound, 11.8 ounces) of all gilled fish was well over the legal size limit. The percentage of undersized gilled trout decreased to 11.4 in the $31 / 2$ - to 3 15/16-inch meshes, and no illegal-sized fish were gilled in larger meshes. An exam-
ination of the frequencies and averages indicates that probably few legal-sized trout escaped through the meshes of $31 / 2$ to $315 / 16$ inches (about 4 to $47 / 16$ inches as manufactured) since the modal weight of the fish in these meshes (between $11 / 2$ and $13 / 4$ pounds) was the same as in the 3 - to 3716 -inch meshes and the average weight of legal-sized fish increased only 1.6 ounces in nets of the latter sizes of mesh. Individuals of these sizes did escape through meshes larger than $315 / 16$ inches. It is doubtful, however, whether many fish of $13 / 4$ pounds or larger were able to pass through meshes of exactly 4 inches (about $41 / 2$ inches as manufactured).

It may be observed from the frequencies of weights that the bulk of the gilled trout shifted to a higher weight-interval with each increase in the mesh between 3 and $47 / 16$ inches, but the fish were always enncentrated within a relatively small range of weight ($3 / 4$ to 1 pound). The majority of the gilled trout weighed between $11 / 4$ and 2 pounds in the 3 - to $37 / 16$-inch mesh, between $11 / 2$ and $21 / 2$ pounds in the $31 / 2$ - to $315 / 16$ inch mesh, and between $13 / 4$ and $21 / 2$ pounds in the 4 - to $47 / 16$-inch mesh. The ranges in length of the bulk of the trout (table 42) varied from about 1 to $2 \frac{1}{2}$ inches in these various meshes ($18-191 / 2 ; 171-20 ; 20-21$ inches).

The average weight of the undersized gilled trout, as well as the average length (table 42), increased with an increase in the size of mesh from less than 3 inches to 3 to $37 / 16$ inches (indicating release of some small fish). The size of fish did not change, however (slight increase in weight; slight decrease in length), with a further increase of $1 / 2$ inch in mesh size suggesting that, though additional undersized fish were released by the larger meshes, the size of mesh was not yet sufficiently large to permit the larger undersized trout to escape. An increase of another ${ }^{1}$ / 2 inch in the size of the mesh apparently did permit this escapement for no undersized trout were gilled in meshes of 4 to $4 / 16$ inches. Even though these meshes or larger ones are used, it may not be assumed that no undersized fish would remain in the net. They do not all attempt to escaje.

The average weight and length of the legal-sized gilled trout increased slightly with an increase in mesh size from 3 to $37 / 16$ to 312 to $315 / 16$ inches (indicating release of only a few fish), but increased to a greater degree with a further $1 / 2$-inch increase of mesh size, suggesting that some of the smaller fish of legal size had escaped. Nearly all of the trout gilled in meshes of 4 to $47 / 16$ inches weighed $13 / 4$ pounds or more.

In general, the data on the gilleal fish and on the average sizes of fish retained in the impounding nets indicate that Nichigan's minimum size of mesh 4^{1}.2 inches as found in use) prescribed for the pots of impounding nets employed in eatching whitefish and lake trout should not be reduced. This mesh is in fact too small to liberate a large proportion of the undersized whitefish found in the nets, although on the other hand it is too large to hold the smaller individuals of the legal-sized trout. A 4 -inch mesh as found in use would mobably prove more effective for the eapture of trout at the present size limit of $1^{1} 2$ pounds. A better solution than a reduction in mesh to prevent the escape of tegal-sized trout would be a substantial increase in the legal size limit since most lake trout (especially the females) under 3 pounds are sexually immature. It is not practicable to prescribe difierent meshes for whitefish and trout as both speries are usually taken together on the same grounds. Further, a 4^{1}, winch mesh is also preseribed for gill nets emploved for both species. I it

destruction of whitefish through gilling in the meshes OF POUND NETS AND DEEP TRAP NETS

The gilling of undersized fish in the meshes of impounding nets constitutes a certain source of destruction since death follows soon after the individual is enmeshed. It is, therefore, of importance to know what percentage of the illegal-sized whitefish become gilled in commercial pound nets and deep trap nets, and how this percentage varies with the size of the mesh. The death of legal individuals throngh gilling is of lesser importance, although the market value of such fish may be impaired and large numbers of gilled fish of any size add considerably to the fishermen's labor in clearing their nets.

The data of table 43 on the numbers and nercentages of gilled whitefish in pound nets and deep trap nets are based on a combination of all nets of similar sizes of mesh irrespeetive of fishing grounds, depth of water, and the month and year in which the nets were fished. ${ }^{37}$ None of these variables was found to affeet the pereentage of gilled fish.

Table 43.-Numbers and percentages of legal and illegal uhitefish gilled in large-mesh and small-mesh pound nets and deep trap nets, 19.31-199.2 data combined for all localities and all depths of water
[The table is based only on the lifts io which gilled fish were couated and separated according to size]

ltem	Whitefish taken in nets of mesh size			
	Less than 4 inchis		4 inches and more	
	Legal	1 llegal	Legal	111 pral
Total number of whitefish takeo	4.441	+4.59	1-.024	12.613
Number of whatofish gillerl	154	1,10:7	161	341
Perentage of killed whitefish.	43	24	11.4	27

A larger percentage of both the legal and the illegal whitefish became gilled in large-mesh nets than in small-mesh nets. The pereentage of the legal fish gilled in large-mesh nets although small was three times that gilled in small-mesh nets, but the pereentage of the illegal fish gilled in large meshes was only slightly above that in small meshes. It may be considered probable that the greater ability of large meshes to gill the larger illegal fish is compensated by the numbers of smaller illegal fish that ean pass through the meshes.

The percentages of gilled illegal whitefish in pound nets and deep trap nets (2.4 pereent in small meshes and 2.7 percent in large meshes) do not point to gilling as a very important source of destruction of undersized fish in a single lift. Should the same fish be taken repeatedly the risk of death by gilling would be increased.

BLOATING OF LIVE WHITEFISH IN POUND NETS AND DEEP TRAP NETS

Another possible source of destruction uf illegal-sized whitefish is the bloating (the result of changing pressure) that frequently occurs when nets are lifted. It eannot be stated exaetly how serious the effects of hoating may be. It is possible that many fish that are not visibly bloated when a net reaches the surface may have been injured seriousty by the ehange of pressure, particularly if the net was lifted rapidly. On the other hand, visibly bloated fish often appear to make a complete reeovery, and swim away vigorously upon return to the water.

Table 44 shows the relationship between thr depth of water from which nets were lifted and the extent of bloating of whitefish of legal and illegal size. The percentage

Table 44. Relationship beturen the depth of water and the hoating of live whitcfish in pound nets and deep trap nets, 1a31-153. data combined for all localities

Depth of water (ffet)	Total mumber of	Number of bhaturd fisl:	Pererntare bloated tish	Percentage bloated legral fish ${ }^{2}$	Perethage bloted Hhegal fish:
<61	3.2045	11	1600	000	() 00
61 to 80	14.111	(in)	045	046	1) 44
81 to 100	45, 109	223	1149	031	072
101 in 110	24, 4 4, 3	265	118	${ }^{0} 65$	166
>110--	31,102,	527	170	133	205
Total or average....	122.64	1.0.3	0 an	063	117

[^92][^93]of bloated fish (legal and illegal fish combined) in the lift rose consistently as the depth of water increased. No fish were bloated in nets (mostly pound nets) set at depths of 60 feet and less. At depths of 61-80 and 81-100 feet slightly less than one-half of one percent were bloated. The percentage of bloated whitefish increased to 1.08 in 101110 feet, and rose still further to 1.70 percent in deep water (more than 110 feet).

The data on the percentages of the legal and of the illegal whitefish that were bloated reveal that both sizes of fish share the general trend toward increased bloating with increase in the depth of the water. The greater percentage of bloated legal fish at 61-80 feet in comparison with the percentage at 81-100 feet constitutes the only exception. At all depths bevond 80 feet relatively more of the illegal whitefish than of the legal whitefish were bloated. This difference was probably due to the thinner body wall of the younger fish. The averages for fish taken at all depths show that 0.63 percent of all legal fish and 1.17 percent of all illegal fish were bloated.

The bloating of live whitefish was probably an unimportant source of destruction of undersized individuals. Only 1.17 percent of all illegal fish were bloated and the maximum percentage of bloated fish at any one depth was 2.08 (deep water). However, the repeated capture of undersized fish would increase the risk of injury or death througl bloating.

DEAD WHITEFISH IN POUND NETS AND DEEP TRAP NETS

Commercial fishermen opposed to the use of deep trap nets contended that confinement in this type of gear was fatal to whitefish and that dead illegal fish were very numerous in the lifts. The data of table 45 , which show the number and percentage of dead fish (exclusive of dead gilled fish) at three different depths and the percentages of the legal and of the illegal fish found dead at these same depths, do not, in general, support this contention.

Table 45.-Relationship between the depth of the water and the numbers and percentages of dend uhitefish in deep trap nets in Lakes Huron and Michigan, 1931-193? data combined for all localities in each lake

${ }^{1}$ Includes only lifts in which dead fish were counted.
2 Only 72 percent of the dead fish were separated as to size.
Almost 4 percent of the undersized whitefish were dead in the Lake Huron deep trap nets lifted from depths of 80 feet or less. However, at that time (1931-1932) relatively few deep trap nets were fished in such shallow water. Less than 1 percent of the illegal whitefish were dead in nets lifted from greater depths. The average percentage of the undersized fish found dead in the lifts of all deep trap nets observed in Lake Huron was slightly above 1 percent. The percentage of the dead among the legal whitefish in Lake Huron deep trap nets was small (average, 0.38 percent) and showed little variation with the depth of the water.

The percentages of both the legal and the illegal whitefish found dead in deep trap nets were much smaller in Lake Michigan than in Lake Huron. The shallow-water lifts (80 feet and less) in particular had relatively few dead fish as compared with nets from the same depth in Lake Huron. The percentages of dead whitefish in Lake

Michigan do not appear to vary according to the depth of the water. (The data for deep-water lifts are too scanty to be reliable.)

Although it cannot be said that deep-trap-net lifts contained large numbers of dead whitefish, there is good evidence that pound-net lifts contained even fewer. Not one dead whitefish was found in all the pound-net lifts observed in Lake Michigan. In Lake Huron pound nets only 0.61 percent of the whitefish were dead (0.94 percent of the legal fish and 0.45 percent of the illegal fish). The percentage of dead legal fish was rather high, but the percentage of dead undersized fish was far below that for deep trap nets in shallow water (80 feet and less).

ESTIMATES OF THE PROBABLE DESTRUCTION OF ILLEGAL-SIZED WHITEFISH IN CERTAIN LOCALITIES AND YEARS

It may be stated that the percentage of undersized whitefish handled by the fishermen and destroyed in the lifting of pound nets and deep trap nets was small, although that percentage was somewhat larger for deep trap nets than for pound nets. If we define as "known destruction" the quantities of whitefish dead at the time the nets were lifted (including dead gilled fish). the data of the preceding sections make possible the following estimates of the percentages of the undersized whitefish destroyed in Lakes Huron and Michigan in pound net-and deep trap net of different size= wine-h:

Lake	Mesth size	Pound nets	Derpetrap newa
Huron.	Less than 4 inches	2 n	3.511
	t inches and more Less than t inches.	815	8911
	t inches and more.	3.811	

These estimates, percentages of "known destruction," range from 2.40 to 3.80 . To the "known" destruction of undersized whitefish must be added the undetermined loss that resulted from the death of bloated live fish (this loss could not hare been much greater than 1 percent-see table 44) and of fish killed or injured fatally during the sorting of the catch.

Despite the fact that the percentage of the undersized whitefish that was destroved in a single lift was relatively small, the total destruction during the entire season may have been considerable, especially in those locilities where the fishery was intensive and young whitefish were abundant. It is of some interest, therefore, to hare estimates of the total number of undersized whitefish captured by pound nets and deep trap nets and of the total "known" destruction in certain fishing areas (table 46).

The estimates of the total number of yoing whitefish captured were based on the known number of nets lifted (as determined from fishermen's reports) and the arerage

Table 46.-Estimated numbers of illegal-sized whitefish captured by pound nets and deep trap nets in certain areas of Lakes IIuron and Michigan in certain calendar years, and the estimated hnown destruction (fish dead at lime of lifting) of undersized whitefish

Seatistical districts	Year	UTuldersized fish tahtor			Kinwn destructupt		
		$\begin{aligned} & \text { Pound } \\ & \text { nets } \end{aligned}$	Deep trap ant to	Both	Pound nets	Derep trap ruts	Buth
H-2.	$\begin{aligned} & 1931 \\ & 1932 \end{aligned}$	$\begin{array}{r} 137.0190 \\ 64.0100 \end{array}$	$\begin{aligned} & 321,0009 \\ & 1 \times 1,0009 \end{aligned}$	$\begin{aligned} & +4,0004 \\ & 2+4,0004 \end{aligned}$		$\begin{array}{r} 11,910 \\ 6,4101 \end{array}$	$\begin{aligned} & 15,011 \% \\ & -.3018 \end{aligned}$
H-3, H-4	$\begin{aligned} & 1931 \\ & 1932 \end{aligned}$	$\begin{aligned} & 14 \times, 000 \\ & 113,000 \end{aligned}$	$\begin{aligned} & 124,000 \\ & 269,0100 \end{aligned}$	$\begin{aligned} & 322,000 \\ & 32,000 \end{aligned}$	$\begin{aligned} & 3,600 \\ & 3,200 \end{aligned}$	$\begin{aligned} & 4.810 \\ & 4.6910 \end{aligned}$	$\begin{aligned} & 1,0009 \\ & 1: 2.9010 \end{aligned}$
H.5.	$\begin{aligned} & 1932 \\ & 1933 \end{aligned}$		$\begin{aligned} & 130,000 \\ & 616,000 \end{aligned}$	$\begin{aligned} & 130,000 \\ & 616,900 \end{aligned}$		$\begin{array}{r} 4.6010 \\ 21.8109 \end{array}$	$\begin{array}{r} 8.600 \\ 21.500 \end{array}$
M-2, M-3	$\begin{aligned} & 1931 \\ & 1932 \end{aligned}$	$\begin{aligned} & 186,9010 \\ & 120,600 \end{aligned}$	$\begin{aligned} & 169.000 \\ & 315,010 \end{aligned}$	$\begin{aligned} & 305.000 \\ & 43.0000 \end{aligned}$	$\begin{aligned} & 3.6199 \\ & 3,2(10) \end{aligned}$	$\begin{aligned} & 1,8001 \\ & 8.900 \end{aligned}$	$\begin{array}{r} 8.4(0) \\ 12.1001 \end{array}$

number of undersized whitefish per lift (as determined from our observations in the fiek). Estimates were made separately for large-mesh (4 inches and greater) and small-mesh (less than 4 inches) nets and combined to obtain the totals listed in the table. It was necessarily assumed that the relative numbers of large-mesh and smallmesh nets in the general fishery were the same as those observed by our investigators in the field. Estimates were made of the capture and destruction of illegal-sized whitefish by deep trap nets in H-5 in both 1932 and 1933, although field observations ${ }^{38}$ were made only in 1932. The computations for 1933 (based on the assumption that the abundance of young whitefish and the relative numbers of large-mesh and smallmesh nets were the same in that year as in 1932) were carried out merely to provide a rough idea of the large numbers of whitefish that probably were handled during the years of intensive fishing in southern Lake Huron.

The estimated numbers of young whitefish handled by pound-net and deep-trapnet fishermen in the various districts and years were large (130,000 to 616,000). The estimated destruction, however, appeared to be relatively small $(4,600$ to 21,700$)$. The combination of the data for all districts and years indicates a loss of 2.8 percent of all undersized whitefish taken in pound nets and of 3.4 percent of those captured by deep trap nets. These figures should not be taken as indicative of the percentage loss of the total population of undersized fish (of the sizes handled) as many fish may have been captured more than once and others, doubtless, were not captured at all.

Estimates were made also of the loss of small whitefish in the entire lakes (Michigan waters) in 1932, the year of our most extensive field observations. The 1932 pound-net yield in districts $\mathrm{H}-2$ to $\mathrm{H}-5$, inclusive, amounted to 43.5 percent of the catch of whitefish in pound nets in the entire lake. The "known" destruction of whitefish by pound nets in these districts in 1932 amounted to 5,100 individuals (table 46). If the average conditions of the pound-net fishery (abundance of young fish on the grounds and relative numbers of large-mesh and small-mesh nets) in $\mathrm{H}-1$ and $\mathrm{H}-6$ are assumed to have been similar to those of the fishery in $\mathrm{H}-2$ to $\mathrm{H}-\mathbf{5}$, the "known" destruction of undersized whitefish in the pound nets of all Michigan waters of Lake Huron in 1932 can be calculated as $5,100 / 0.435$ or 11,700 fish. Similarly, the deep trap nets of districts $\mathrm{H}-2$ to $\mathrm{H}-5$ accounted for 93.8 percent of the total deep-trap-net catch and for the estimated destruction of 20,600 young whitefish. The estimated "known" destruction for all six districts was, therefore, $20,600 / 0.938$ or 22,000 fish. The combined "known" destruction of pound nets and deep trap nets in Lake Huron in 1932 was 33,700 whitefish.

The same calculations for the Michigan waters of Lake Michigan showed that in 1932 districts M-2 and M1-3 yielded 52.1 pereent of the total cateh of whitefish in pound nets and 76.5 percent of the deep-trap-net production. These percentages applied to the figures on "known" destruction in table 46 yielded the following estimates of the loss of undersized whitefish in all eight distriets: pound nets-6,100; deep trap nets11,600; pound nets and deep trap nets-17,700.

The estimates of the "known" destruction of undersized whitefish by deep trap nets in all Michigan waters of Lakes Huron and Michigan in 1932 (22,000 and 11,600 individuals, respectively) can not be termed large. If that gear was extremely harmful to the stocks of small fish the loss must have nceured through the death of fish that were killed or injured fatally in the sorting of the catch.

The opinions of the fishermen concerning the ability of the whitefish to withstand handling were fom to vary widely. Some particularly those who were opposed to the use of deep trap nets) contended that whitefish are extremely delicate-that they are unable to survive removal from the water for even short periods of time and will die as the result of the least amount of handling. Others re-pecially deep-trap-net fishermen) held that the whitefish is exceptionally hardy-that with only reasonable care very few or nome at all are imjured during the sorting of the rateh.

Data are not available to show which of the above diametrically opposite viewpoints is the more nearly correct. However, the fact that 101 or 22.1 percent of 457

[^94]young whitefish tagged in Lake Miehigan were later recovered (Smith and Van Oosten, $1940)^{39}$ suggests that they successfully withstand eareful handling.

Our field investigators reported that almost all deep-trap-net fishermen were extremely careful in the sorting of the catch. To be sure, they may have been more than ordinarily painstaking when the investigators were aboard their craft. Nevertheless, most of them appeared to be following a well established routine that involver a minimum of handling of illegal-sized whitefish and a minimum length of time out of the water. Only one fisherman was observed whose method of sorting was considered likely to result in the death of a high pereentage of the undersized whitefish.

The fact that the illegal whitefish taken by the deep trap nets in Lakes Huron and Michigan were so near the legal size increased greatly the potential harm resulting from the destruction of undersized individuals. It was estimated that practically all of the illegal-sized whitefish observed would have attained the legal weight of 2 pounds within another year, as their average weight at capture was 1 pound, 9.7 ounces (17.6 inehes, total length). However, the illegal-sized whitefish from the pound nets of Lake Huron (no data from Lake Michigan pound nets) were relatively small (13.1 ounces and 14.1 inches, total length).

SHRINKAGE OF THE TWINE IN POUND NETS AND DEEP TRAP NETS

The fact that pound-net and deep-trap-net twine is treated regularly (usually in the spring of each year) with tar or copper oleate as a preservative gives rise to a troublesome question as to whether the minimum legal size of the mesh shall be designated "as found in use" or "as manufactured." It is well known that the application of a net preservative to eotton twine is almost always aecompanied by some shrinkage. However, the exact extent of this shrinkage is not pretirtable for individual nets. The amount of shrinkage of the twine varies with the method of applying the treatment, the number of times the webbing is treated, the nature of the webling as received from the manufacturer, and possibly with the type of preservative employed. If the minimum legal mesh size is defined "as found in use," honest fi-hermen eoneeivably might find themselves confronted with the problem of large amounts of expensive gear rendered useless hy unexpeeted high shrinkage. On the other haml, if the minimum mesh size is defined" as manufactured," unserupulous fishermen may so control the type of twine purehased and the method of preservation as to shrink the mesin to a size far below the intended legal minimum. Regarilless of how the legal minimum mesh size is designated, it is of importance to have data available on the average amount and the range of the shrinkage of pound-net and deep-trap-net twine following the applieation of a preservative.

The results of 648 measurements of pormd-net and deep-trap-net meshes as found in use are recorded in table $47 .{ }^{40}$ The data have been grouped aceording to the size of the mesh (extension measure) as manufactured and to the type of preservative applied. The former grouping (as to size of mesl when manufactured) is based entirely on the fishermen's statements. The meshes were measured by inserting a thin steel rule in one end of the collapsed mesh, pulling the twine tant, and reading the length between and inside the knots (not from the centers of the knots). Measurements were made both parallel with the selvage (first measurement of each series in table 47) and at right angles to it (second measurement).

Although most of the fishermen who were interviewed believed that tar shrinks webbing more than does copper oleate. their belief is mot entirely supported by the data of table 47 . It is true that tarred nets of $41 / 1$-ineh and 41%-ineh original mesh size sufferel greater shrinkage than nets of the same mesh size treated with copper oleate. On the other hand, nets with a factory measurement of 3^{1}. inches shrank considerably more under copper-oleate treatment than did nets of the same mesh size treated with tar; a slightly greater shrinkage from copper oleate was found also for 4 -inch-mesh nets. If all sizes of mesh are considered together, there appears to be little difference between the

[^95]Table 47.-Shrinkage of pound-nct and deep-trap-net twine following the application of tar or copper oleate as preservatices
[The average amounts of shrinkage are given in parentheses below the average measurements of the meshes as found in use. All averages are to the nearest sixteenth of an inch]

Type of erratment	Size of mesh as manufactured							
	312 inches		4 inches		$41 / 4$ inches		$41 / 2$ inches	
	Number of measurements	Mesh sizo as fished	$\begin{gathered} \text { Number of } \\ \text { measure. } \\ \text { ments } \end{gathered}$	Mesh size as fished	Number of measurements	Mesh size as fished	$\left\{\begin{array}{c} \text { Number of } \\ \text { measure- } \\ \text { ments } \end{array}\right.$	Mesh size as tished
Tar	38	$\begin{aligned} & 31 / 8 \times 318 \\ & (616 \times 6 / 16) \end{aligned}$	144	$\left\{\begin{array}{r} 39 / 16 \times 358 \\ (7,16 \times 616) \end{array}\right.$	59	$\left(\begin{array}{c} 3 \\ 13 / 16 \times 3 \\ (5 / 16 \times 5 / 16) \\ (5) \end{array}\right.$) 206	$\begin{gathered} 3,7,8 \times 315 / 16 \\ (10,16 \times 916) \end{gathered}$
Cepper oleate.	47	$\left\{\begin{array}{l} 215,16 \times 3 \\ (9,165016) \end{array}\right.$	80	$\left\{\begin{array}{c} 3916 \times 3916 \\ (6,16 \times 7 / 16) \end{array}\right.$	34	$\left\{\begin{array}{l} 3 \mathrm{I} / 16 \times 4 \\ 15 / 16 \times 4 \cdot 16) \end{array}\right.$	40	$4 \underset{(-16 \times 4}{1} 168$
Total or average	83	$\begin{gathered} 3 \times 3 \\ (\mathrm{~s} / 16 \times 7 \\ \hline 16) \end{gathered}$	224	$\left\{\begin{array}{r} 39,16 \times 35 / 8 \\ (7 / 16 \times 6 / 16) \end{array}\right.$	93	$\left\{\begin{array}{l} 37 / 8 \times 4 \\ (6 / 16 \times 5 / 16) \end{array}\right.$	(246	$\left\{\begin{array}{c} 4 \times 4 \\ (9 / 16 \times 8,16) \end{array}\right.$

-hrinkage produced by tar and by copper oleate. With both treatments measurements made parallel with the selvage showed on the average $1 / 16$ inch greater shrinkage than clid those made at right angles to the selvage.

The data for individual nets showed a rariation from "no shrinkage" to a maximum chrinkage of 1 inch. It is this wide range of variation in shrinkage that makes the designation of the legal minimum mesh in terms of "size as manufactured" so eminently undesirable. The average shrinkage of meshes measured in this study was $7 / 16$ inch or slightly less than ${ }^{1} 16$ inch. If it were known that the shrinkage of all nets closely approximated this average, the designation of a legal minimum mesh size (as manufactured) ${ }^{1} \frac{1}{2}$ inch larger than that intended for nets as found in use might prove reasonably satisfactory. However, the wide range of shrinkage makes such a procedure impractical. If the legal minimum mesh is to be defined "as manufactured," allowance should be made not for the average observed shrinkage but for the maximum possible shrinkage. A further objection to the designation of the legal minimum mesh size "as manufactured" lies in the fact that illegal nets can be fished with impunity if they have been treated before examination by a conservation officer. In other words, there is no exact means of determining the original mesh size of a treated net.

The conclusion is obvious that the most satisfactory method of designating minimum legal mesh sizes of pound nets and deep trap nets is on the basis of mesls size "as found in use." The wide experience of most commercial fishermen with different kinds of webbing and preservatives is certainly sufficient to preclude excessive losses as the result of undue shrinkage of their twine.

SUMMARY

1. The present investigation of the whitefish fi-hery of Lakes Huron and Michigan was undertaken because of the threat to the whitefish stocks offered by the introduction and rapid expansion in the use of a new and tremendously efficient gear, the deep trap net. This net, which was developed in Lake Ontario, was introduced into Lake Huron off Alpena, Mich., in 1928. Beginning in 1930, the use of the deep trap net expanded rapidly throughout the State of Michigan waters of Lake Huron and northern Lake Michigan. Operations with this gear were relatively limited in other waters (Wisconsin waters of Lake Michigan; Indiana waters of Lake Michigan; Michigan waters of Lake Superior and southern Lake Michigan). The greatest development of the deep-trap-net fishery occurred in the Michigan waters of central and southern Lake Huron.
2. The investigation was carried out along the following general lines:
a. A review of the available statisties on the mroduction of whitefish in Lakes Huron and Michigan over the period, 1879-1939.
b. A detailed analysis of the fluetuations in the production and abundance of whitefish and in the intensity of the whitefish fishery in the different areas of the Michigan waters of Lakes Huron and Michigan in the years, 1929-1939, with speeial reference to the effects of the operations with deep trap nets. The methods of analysis are described.
c. A study of the bathymetric distribution of whitefish of legal and illegal size in order to obtain data on which to base recommendations for possible restrietions on the depth of water in which deep trap nets may be fished.
d. Observations in the field on the fishing action of pound nets and deep trap nets -particularly on the extent of the destruction of undersized whitefish. The field work was carried out in 1931 and 1932.
3. Although the fluctuations in the yield of whitefish in the various areas of Lakes Huron and Michigan over the period, 1879-1939, were by no means the same, certain general trends may be deseribed. Production was high in all areas in the early years of the period. Later declines brought the catch to a much lower, and in some waters remarkably stable, level about which the production fluctuated for several deeades. A pronounced general increase in the yield of whitefish oceurred in the late 1920's and/or early 1930 's. This inerease was relatively greater and the subsequent decline was relatively more severe in the State of Michigan waters of Lake Huron than in other regions of the Great Lakes. Graphical representations of the history of whitefish production in different areas of Lakes Huron and Mirhigan are given in figures 2 and 3.
4. The increase in the abundance of whitefish that occurred in the late 1920 's and early 1930's complicated greatly the mollem of detecting the effeets of deep-trapnet operations on the whitcfish firhery of the state of Niehigan waters of Lake- Hurm and Michigan. This inerease would have brought about a rise in both fishing intensity and catch even had deep trap nets not bern introduced. Furthermore, a decline from this abnormally high level of yield and atmmance was logically to be expeeted; the mere oceurrence of a decline could not be interpreted as the result of the use of deep trap nets.
5. Despite this difficulty, the following observations demonstrated conelusively the disastrously harmful effects of extensive deep-trap-net operations on the stocks of whitefish:
a. The regions in whieh the deep-trap-net fishery underwent its greatest expansion (the four southernmost statistical districts of Lake Huron-see fig. 4) suffered an unreasonable multiplication of fishing intensity. In these districts of eentral and southern Lake Huron ($\mathrm{H}-3$ to $\mathrm{H}-6$) the maximum yield of whitefish was 4.3 to 26.6 times the 1929 catch; the maximum fishing intensity was 3.8 to 42.1 times the 1929 intensity. In the two northerly districts ($\mathrm{H}-1$ and $\mathrm{H}-2$) -areas in which the use of deep trap nets was much less extensive-the respective maximum productions were only 2.6 and 3.2 times the 1929 catch; the maximum fishing intensity was 2.3 times that of 1929 in each district.
b. In all distriets of Lake Huron the introduction of the deep trap net brought about a tremendous increase in the eatch of whitefish. After about two years of high production the eateh fell sharply. This decrease in yield was accompanied by a rapid deeline in the abundance of whitefish. However, these declines were relatively greater in central and southern Lake Huron. The 1939 production of whitefish, expressed as a percentage of the 1929 eatch, was 38 in $\mathrm{H}-1$ and 23 in $\mathrm{H}-2$. These pereentages were only 1 and 5 in $\mathrm{H}-3$ and $\mathrm{H}-4$. In H-5 and $\mathrm{H}-6$ the 1939 yields were only 19 and 46 pereent, respectively, of the 1929 production despite fishing intensities that were 4.3 and 4.9 times those of 1929. The 1939 ahondance of whitefish, expressed as a pereentage of the 1929 abundance, was 41 in $\mathrm{H}-1$ and 43 in $\mathrm{H}-2$. In central and southern Lake Huron these pereentages reere: $\mathrm{H}-3,6 ; \mathrm{H}-4,7 ; \mathrm{H}-5,5 ; \mathrm{H}-6,10$. These figures demonstrate that whereas the whitefish fishery merely declined in those districts (H-1 and $\mathrm{H}-2$) in which the use of the deep trap net was relatively moderate, it collapsed in the districts ($\mathrm{H}-3$ to $\mathrm{H}-6$) in which deep-trap-net operations underwent their greatest expansion. The excessive use of deep trap nets, therefore, may be stated positively to be the eause of the present critical condition of the whitefish fishery in Lake Huron. The severity of the depletion is illustrated by the fact that the 1939 production of only

255,000 pounds was less than half the previously reported all-time low (555,000 pounds in 1900).
c. The statistics of the whitefish fishery of northern Lake Michigan (districts M-I, M-2, and M-3) for the years, 1929-1939, lend support to the conchusions based on the data for Lake Huron. In these Lake Michigan districts as in $\mathrm{H}-1$ and $\mathrm{H}-2$ the development of the deep-trap-net fishery may be termed relatively moderate. Although the whitefish fishery of northern Lake Michigan underwent a decline-a decline to which the use of deep trap nets may have contributed substantially-the severity of the deereases did not approach that of the decreases of central and southern Lake Huron; rather the changes resembled those that took place in northern Lake Huron. The deep trap net was of no significance in the State of Michigan waters south of district M-3, except in M-7 where it was the dominant gear for the production of whitefish in the single year, 1934.
6. The harmful effects of the decp-trap-net fishory can be traced to its great efficiency for the capture of whitefish in comparison with pound nets and large-mesh gill nets. Pound nets, which are held in position by stakes driven into the bottom of the lake, occupy the same position throughout the season, can be set only on soft bottom, and seldom are fished in water deeper than 60 feet. Deep trap nets, which are held in position by anchors and buoys, can be set on almost any kind of bottom and can be moved readily to any depth of water in which whitefish occur abundantly. These characteristics of the gear made possible the heavy exploitation of the whitefish at the time of their summer concentration in relatively deep water-far beyond the reach of pound nets. Gill nets have long been fished in these depths of the summer concentration of whitefish but in the modern fishery this gear has proved to be relatively unsuccessful for the capture of whitefish, except under certain special conditions (as during the spawning run or in limited local areas).
7. Records of the catch per lift of deep trap nets revealed that the gear was much less successful in northern Lake Huron (districts $\mathrm{H}-1$ and $\mathrm{H}-2$) and Lake Miehigan (distriets M-I, M-2, M-3, and M-7) than in eentral and southern Lake Huron (H-3 to H-6) This situation doubtless accounted in part (see p. 339) for the relatively less extensive development of the deep-trap-net fishery in Lake Michigan and northern Lake Huron.
8. Counts of legal- and illegal-sized whitefish in lifts of pound nets and deep trap nets from different depths of water were employed in a study of the bathymetric distribution and vertical movements of the species during the summer and early autumn.
9. The combined data for the months, May to October, inelusive, indicated that legal-sized whitefish were most abundant in Lake Huron at depths of 81 to 110 feet with the peak concentration in 91 to 100 feet. Illegal-sized fish were most abundant in 71 to 110 feet with a maximum concentration at 81 to 90 feet, 10 feet shallower than the depth of greatest abundanee of legal fish. The records for the grounds off Alpena and in the Saginaw Bay area suggest that both legal- and illegal-sized whitefish may move onshore during the summer and return to deeper water in the autumn.
10. The whitefish lives in shallower water in northern Lake Michigan than in Lake Huron. The averages for the entire season (May to October, inclusive) showed legalsized whitefish to be most abundant in 71 to 110 feet (peak concentration at 81-90 feet) and illegal-sized fish in 61 to 110 feet (peak at 71-80 feet). The depths of the peak coneentrations were 10 feet shallower in northern Lake Michigan than in Lake Huron for fish of corresponding size.
11. The records for the individual months indicated that both legal- and illegalsized whitefish in northeastern Lake Michigan moved toward degper water from June to September. The October data provided some indieation of a return migration in the autumn. These movements are the reverse of those indicated by the data for the Lake Huron whitefish.
12. The vertical distribution of whitefish in northeastern Lake Michigan was characterized by the presence of two concentration zones of both legal- and illegal-sized fish. Although the artual depths at which the zones occurred varied from month to month with the offshore and onshore movements of the fish, the two concentrations remained
distinct nevertheless in every month but Reptember in the 5-month period, June to October. The inshore and offshore concentrations of legal-sized whitefish were separated by a difference in depth of 20 feet in each of the four months in which both were present. The offshore concentration of illegal-sized whitefish was 30 feet deeper than the inshore concentration in June, July, and August, but was only 20 feet deeper in October.
13. The persistent occurrence of two concentration zones of whitcfish in northeastern Lake Michigan throughout most of the summer and early autumn raises the question of the possible existence of distinct inshore and offshore populations or races. Arguments were outlined briefly for and against this interpretation of the two concentrations; available data do not, however, permit a definite decision.
14. On the basis of the observations on the bathymetric distribution of whitefish, it was suggested that young fish would be protected from excessive handling and possible destruction and legal-sized fish from ruinous exploitation if the operations of deep trap nets were limited in Lake Huron to depths of 80 feet and less and in Lake Michigan to depths of 70 fect and less. The proposed restriction has been effective in Lake Huron since August 1, 1934; the use of deep trap nets was made illegal in Lake Michigan after 1935.
15. A limited amount of infomation was presented on the bathymetric distribution and scasonal movements of the lake trout; vellow pike. burbot, white sucker, and longnosed or sturgeon sucker.
16. Comparisons of the average numbers of fish per lift of large-mesh (meshes of 4 inches or more, extension measure, in the potl and small-mesh (less than 4 inches) pound nets and deep trap nets operated under comparable conditions (on the same grounds, in the same calendar year and month, and in the same depth of water) rereated that in general the large-mesh nets took the greater numbers of legal-sized whitefish and the lesser numbers of illegal-sized individuals. Large-mesh nets took 31.3 percent fewer undersized whitefish than did small-mesh nets that captured an equal number of legal-sized fish. Further evidence for the cacape of undersizel whitefish from the nets with larger mesh sizes was powided by the regular increase, with increase in the size of mesh, in the average length and weight of illegal-sized whitefish captured in pound nets and deep trap nets or gilled in the mesties of the lifting pot. (In the basis of the selectivity data a minimum mesh size of 4^{1} aimehes or greater (extension measure as found in use) in the pots was recommended for pound nets and deep trap nets employed for the capture of whitefish and lake trout. (This size of mesh is prescribed by the present State of Michigan law.) Although the data indicated that meshes of $41 / 2$ inches or more will permit the escape of the smaller legal-sized lake trout, a smaller mesh cannot be recommended because lake trout and whitefish ordinarily are taken together. Furthermore, data on the size of lake trout at first maturity indicate the need for an increase in the size limit now 1^{1} 上pomb) rather than a lecrease in the mininum legal mesh size of pound nets and leep trap nets.
17. Observations of the lifting of promd nets and deep trap nets did not indicate the destruction of illegal-sized whitefish to be excessixe even in those areas in which it was estimated that hundreds of thousands of young fish were captured in a single season. The "known" destruction of meler-izel fish (individuals tead from gilling or other causes at the time of lifting) ranged from 2.40 to 3.80 percent according to the lake, type of net, and size of mesh. These percentages tended to be higher for deep trap nets than for pound nets. To the "known" destruction must be added the undetermined losses from the later death of live bloated fish (only a little more than 1 percent of the live illegal-sized whitefish were bloated) and of fish killed or injured fatally during the sorting of the eateh. Fich observations indicated. however, that most (but not alh fishermen attempted to avoid rough handling of small whitefish and returned them to the water as soon as possible.
18. Extensive measurements were obtaned of meshes in the pots of pound nets and deep trap nets in order to determine the amount of shrinkage produced by different types of preservatives applied to the twine. No significant difference could be found between the shrinkage brought about by treatment with tar and copper oleate. The mesh size
of treated nets averaged a little less than a half inch smaller than the mesh size as manufactured. The amount of shrinkage varied widely, however, in the individual nets. Because of this variation the minimum legal size of mesh should be specified "as found in use" rather than "as manufactured." Once a net has been treated, it is impossible to determine exactly the original size of the mesh.

APPENDIX A

SOURCES OF THE DATA ON PRODUCTION, 1879-1939

The following paragrapls contain the details concerning the sources of the production data of table 1. Where more than one source was available for any single year, preference usually was given to that with the most continuous record over a period of years.
(1) Sessional Papers of the Parliament, Dominion of Canada: all data for the Canadian waters of Lake Huron, 1879-1905.
(2) Annual Reports of the Game and Fisheries Department of the Province of Ontario: all data for the Canadian waters of Lake Huron, 1906-1939.
(3) Reports of the United States Commissioner of Fisheries and his administrative successors: all data for United States waters, 1879 (repeatedly listed erroneously in the reports as for 1880) and 1885; United states waters, except the Wisconsin waters of Lake Michigan, 1890 (including the total for the Lake); Wisconsin waters of Lake Michigan, 1926-1939; total for Lake Michigan, 1925; Indiana and Illinois waters of Lake Michigan, 1879, 1885, 1890, 1897, 1903, 1917, 1922, and 1925-1939 (actually, no whitefish catch was reported from these States in 1938 and 1939). The Indiana and Illinois catches of whitcfish in Lake Michigan for the above years, although not recorded in table 1, have been included in the Lake Michigan totals. All other Lake Michigan totals for individual years, except 1889 and 1908, are cxclusive of the Indiana and [llinois catches.
(4) Reports of the State of Michigan Department of Conservation and its administrative predecessors: State of Michigan waters of Lake Michigan, 1911; State of Miehigan waters of Lakes Huron and Miehigan, 1912-1928.
(5) United States Bureau of the Census-Fisheries of the Great Lakes, Census Bulletin no. 173: all United States waters (including catches in Illinois and Indiana), 1889. Fisheries of the United States, special Report: Wisconsin waters of Lake Michigan, 1908; Indiana and Illinois waters of Lake Michigan, 1908 (not listed in table 1 but included in the total for the lake).
(6) Compilations made from original State records:

Wisconsin.-Wisconsin waters of Lake Michigan. 1890, 1892-1897, 1899, 1903, and 1909-1925.

Michigan.-Michigan waters of Lakes Huron and Michigan, 1891-1908.
Michigan.-Compilations from the daily reports of commercial fishermen-State of Michigan waters of Lakes Huron and Michigan, 1929-1939. (These data are treated in detail in part II.)

Although certain data are available for earlier years, the statistical records for the whitefish fisherics of the United States waters of Lakes Huron and Michigan may be assumed for practical purposes to begin with 1889 and 1891. The 1879, 1885 , and 1890 catches ineluded longjaws, blackfins, and Menominee whitefish in Lake Michigan, and Menominee whitefish in Lake Huron. The only clue as to the extent of the errors brought about by these inclusions is provided by the fact that in 1890 longjaws, blackfins, and Menominee whitefish made up about 26 percent of the reported catch of whitefish in Lake Michigan ($1,398,238$ pounds in a total of $5,455,079$ pounds). The 1890 total for the Wisconsin waters of Lake Michigan is based on State records and is not known to include any species other than whitefish. However, Wisconsin contributes a relatively small part of the total whitefish catch in Lake Michigan.

As has been mentioned previously, the Lake Michigan totals for several individual years do not include the catch of whitefish in Indiana and Illinois waters. However,
the error involved is small, as the following catches for the years in which the production in these two States is known will show:

${ }^{1}$ Includes longjaws, blacking, and Menominee white fish.
${ }^{2}$ Includes longjaw, blackfins, and Menomince whitefish-the total listed for the lake dops nut, huwever, include thesp species.
${ }^{3}$ l"iscal year.
The tabulation of the statistics of the production of whitefish in the Canadian waters of Lake Huron has been started with 1879 , the first year for which statistics are available for United States waters. Available statistics on the production of whitefish in the Canadian waters of Lake Huron for the earlicr years, 1867-1878, have been omitted from table 1 because of the lack of comparative data for United States waters. These earlier Canadian records also are open to the criticism that in a number of years the production reported for Huron proper included the catch in the St. Clair River and in Lake St. Clair to the point of inflow of the Thames Piver. The catches listed under "Huron proper" for the years, 1879-1921, were taken between the tip of the Saugeen Peninsula at Cape Hurd, Ontario, and the extreme southern end of Lake Huron. Beginning in 1922 the islands of the open lake and the westerly shore of Manitoulin Island to the nortl: of the Saugeen Peninsula were included in "Huron proper."

As stated in footnote 8 , the catches lited under the heading, "Georgian Bay." represent a combination of the take in the Bay and in the North Channel and Manitoulin Island regions to the north and west exept in 1922 and later years as explained above. This combination was made partly in ath attempt to reduce the size and complexity of table 1 and partly because of variation in the extent of the waters included in the two areas. For example, reports for certain of the carlier years listed the catches along the cast shore of Georgian Bay as far south as Penctanguishene as part of the production in the Manitoulin I\&land and North Channel area.

Reference should be made here to the Canadian records compiled for the Intermational Board of Incuiry for the Great Lakes Fisherice and published after this manusript was completed. ${ }^{41}$ The distriets employed by Ford are not always the same as those used in this report and her statistics for these areas are therefore not always comparable with ours. However, both records of the total Canadian catch of Lake Huron should be the same. Minor discrepancies occur for some years because, in contrast to our records, Ford's figures were rounded to the nearest hundredweight. In other years the discrepancies are larger, though still insignificant. The reason for these differences is not known. A check with the published records of the Game and Fisheries Department of Ontario receats that our figures agree with theirs. At any rate our conclusions would remain the same whether we utilized Ford's data or our own.

The accuracy of the catches recorded for the Ontario waters of Huron proper in 1908 and 1909 has been considered so questionable that the values were not plotted in figure 2 and were mitted in the computation of averages for periods that included these 2 years. The contrast between the catches for 1908 and 1909 and the production in the years immediately preceding and immediately following is in itself sufficiently great to give just grounds for suspicion. This suspicion is heightened by the observation that the large 1908 and 1909 catches are to be traced to reports of excessive quantities of whitefish as barrels of salt whitefish. In 19083,515 barrels (703,000 pounds) and in 1909550 barrels (110,000 pounds) of salt whitefish were reported. In other years of the period, 1900-1917, the number of barrels of salt whitefish reported for Huron proper did not exceed 82, and averaged only 12 barrels.

Barrels of salt fish have been converted to fresh fish at the rate of 200 pounds per barrel. Catches given as numbers of tish have been converted to pounds at the rate of 2 pounds per fish.

[^96]
APPENDIX B
 DETAILED STATISTICS ON WHITEFISH PRODUCTION IN STATE OF MICHIGAN WATERS OF LAKES HURON AND MICHIGAN, 1929-1939

Table 48.-Production of whitefish in pounds according to gear in the several districts of the State of Michigan waters of Lakes Huron and Michigan, 1929-1939
[The districts of Lake Huron are numbered H-1, H-2, *** and nf Lake Michigan, M-1, M-2, ***. In districts M-4, M-5, M-6, and 21-8 the catch of deep trap nets is included under "Other."] DISTRICT H-1

Year	Gear				Tutal annual production	Percentage of average annual production
	Large-mesh gill net	$\begin{aligned} & \text { Defp trap } \\ & \text { net } \end{aligned}$	Pound net	Other		
1929	232,063		142, 18.8	1,332	375,577	81
1930	174,551	386,4.73	291.765	2,243	755,362	163
1931	246,897	375,122	337,805	27,642	987,466	213
1932.	1,35,059	170,313	306,435	11,360	623,670	135
1933.	121,664	64, 251	161,133	18,635	365,683	79
1934	105,542	104.644	166,577	947	375,105	82
1935	106.498	163,465	96,512	4,399	372,574	80
1936	82,464	346,821	100,242	11,525	341,392	117
1937	43,626	236,196	42,428	30.5	373,755	81
1938	54,834	73,164	31.035	1,074	1*0,127	39
1939	40,368	73,406	25.206	1,401	141,051	30
Average 1924-1939	122,173	172,174	161,439	2.401	463,187	100

DISTRICT H-2

DISTRICT H-3

1929	43,426		54.536	656	98,818	107
1930	63,216	157,248	21,99\%	5,110	247.572	269
1931	44,336	395, 230	7,121	23,736	470.423	511
1932	7,644	85,236	47.5	44,10s	137,463	149
1933.	4,21	9,912			14,130	15
19.34	1,74]	12,555		50	14,399	16
1935	428	7.964	9	6	6,407	10
1936	439	5,567			8,006	9
1937	799	1,434		65	2,798	3
1935.	1×7	8,910	42	24	9,163	10
193!	230	275		50	557	1
Aserage 1929-1939	15.201	62,440	7,653	6,728	92,022	100

DISTRICT $\mathrm{H}-4$

1929	85, 126		437, 448	48,571	571,605	83
1930	137,402	65,74	75-,20	79.525	1,043,395	152
1931	96,446	4.32 .357	446,010	472,32	1,948,085	283
1932	46.400	1,934,325	224,245	257.94	2.462 .958	355
1933	2,96i	620,125	105,255	33,213	-61.562	111
1934	$4,6 \times 7$	116,84!	44,1!2	24,217	194,945	98
1935.	183	138,446	51,002	22,883	212,513	31
19.36		75,4.36	21,529	31.450	128,717	19
1937.	200	121,896	12, 116	20.319	155,091	23
1938	154	38.224	5.70\%	11.2! 15	55.845	8
1939	176	18,745	2,319	4,665	25,94,	4
Arerage 1929-193:3	34,637	360,5.54	141,717	42,029	687,337	$100)$

Table 4S．－Production of whitefish in pounds according to gear in the several districts of the State of Michigan waters of Lakes Huron and Michigan，1929－1939－Continued
［The districts of Lake Huron are numbered H－1，H－2，＊＊＊and of Lake Michigan，M－1，M1．2，＊＊＊．In districts M－4，M－5，M－6，and M－8 the catch of deep trap nets is included under＂Other．＂］

DISTMICT H－5

Year	Gear				Total annual production	Percentare of average annual production
	Large-mesb gill ne：	$\begin{aligned} & \text { Deep trap } \\ & \text { net } \end{aligned}$	Pound net	Other		
	61，052					
1930	84， 50.3		4×5		91，493	27
1931．－			6,125	1，26t		， 9
1932.	29.000	479，916	4．413		513.410	159
1933．．	15.114 253	$1.655,753$ 785,596	2,569 34.	11	1，606．4．3．	4968
1935	230	272.746	40.5		273.421	81
1936		119，103	37		119，14！	3.
1937	137	66， 5×5			6ibs，${ }^{\text {a }}$	211
1938.	83	＋1，432			＋1，41．5	1.1
1939.		12，247			12，247	＋
Average 1929－1939．	23.404	312.203	1，582	201	33\％，㑣	100

DINTRICT H－b

1929	35， 52		13．21	3.924	72.74	11
1930	105，324		3 aran	2，9ヶ2	14\％．10．2	37
1931	146，397		30.200	4，1：14	1以15913	$4{ }^{\circ}$
1932	16．3．598		14．364	17，040	19\％．412	31
1933	119，66．3	323．445	13，ご	こ， 54	$4.54,344$	11%
1934	70，0．57	64＊， 515	7．05\％	26，1020	1，11，\％，45．	－41
1935	21，257	810，13\％	3.324	74，041	（10）W W 15	232
1936	4，，，51	351，176	1．563	11， 17.3	5x4．30x	$1.51)$
19.37	3，142	$393,5+1$	1．0：\％	1，564	$394.34+4$	10！
1938	390	226，504	1．7 1.9	719	22：4，516	5
1939	2931	31.20	715	270	33.04 n	\checkmark
A verage 1929－1939	62，737	305.052	11．86t	13，20：1	392.632	1110

DISTRICT A1－2

1929	b． 2.334		2F，miv	2	（1），1114	101
1930	84，55．5		16．070		1100，63．5	1－1
1931	50.593	13．64．	13，394	t	－ dil $^{\text {a }}$	14＇4
1932	36，610	$54,30.3$	1，330	3	00^{-124}	1in
1933	11．284	30.753	236		42．30	7
1934	15．25\％	11，5m）	．．．		2tin．${ }^{\text {cha }}$	4
1935	42， 643	$3,6 \geq 1$			4thentit	4.
1936	46，46．5	－－．－－－．－－－．	－		4b，4tis	\％
1937	31， 3 ¢！		＊－－	4	31， 5^{4} ？	5
1938	24，291		－		24，－31	44
1939.	15.402				15．402	\because
Average 1929－1939．1	35.717	111，403	5，244	2	54.172	1001

DKTRICT M－3

Table 48.-- Production of whitefish in pounds according to gear in the several districts of the State of Michigan waters of Lakes Huron and Michigan, 1929-19.39-Continued

The districts of Lake Huron are numbered H-1, H-2, ${ }^{*=}$ aod of Lake Michigan, M-1, M-2, ${ }^{* * *}$, In districts M-4, M-5, M-6, and M- 8 the cateb of deep trap nets is included under "Other."]

DISTRICT M-4

DISTHICT M-5

DISTRICT M-

1929	102.934		463		103.397	141
1930	$140.70{ }^{\circ}$	--------------	80,916	525	222,148	304
1931	195,233	---------------	47.905	8.8 .7	252,015	345
1932	77,454		7,450	17.3	85,080	115
1933	37.498	--.-.--.---------	3.058	2,625	43,181	59
1934	29,405	4.125	3.420	37.450	51
1935.	24,415	-------------	444	2	24,861	34
1936	9,998	-----------	4,065		14,063	19
1937.	10,857	--+------.---	210	3	11,100	15
1938.	4.717		2,070		6.757	9
1939.	2,600		2,037	16	4,653	7
Average 1929-1939.	57.405	..----.-.-.-.-.-	13,886	$1.46{ }^{\circ}$	73,158	100

DISTRICT M-テ

1929	123,905		15,647	1.38	139,690	135
1930	202.878		244,882	- -	447,760	433
1931.	41,836	347	65,023		107,206	104
1932	24,096	3,819	14.970	49	47.934	46
1933	118,728	6.240	32,725	6	157,699	153
1934	66,400	74,956	49,17K	48	190,582	144
1935	26,090	3,079	63.	699	30,506	. 30
1936.	4,243	--.........	893	76	5,212	5
1937	7.306	-.... .-....-.-.	705	6	人,017	8
1938.	5.50	-...-. . . .	559	28	1,137	1
1939	1,022		471	44	1.337	1
Average 1929-1939.	56,096	8.040	39,154	99	103,380	100

DISTRICT M-

APPENDIX C

INVESTIGATION OF POUND NETS AND DEEP TRAP NETS IN THE WISCONSIN WATERS OF LAKE MICHIGAN, 1931^{42}

The brief investigation of the pound-net and deep-trap-net fisheries of the Door peninsula was conducted for the specific purpose of determining the validity of the strenuous complaints of commercial fishermen against the use of the decp trap net. The objections against the deep trap net as a dangerously efficient gear, as a source of destruction to young fish, and as a usurper of pound-net grounds were in general the same as those put forward by Michigan fishermen, and, consequently, need not be outlined in detail here. (See p. 298.) The procedure of the investigation involved observations of the lifting of pound nets and deep trap nets, interviews with operators of both types of nets (including a public hearing attended by more than 250 fishermen at Fish Creek, July 10, 1931), and the empilation of statisties on (1) the production of whitefish in the Wisconsin waters of Cireen Bay and Lake Michigan. beginning in 1889, and (2) the production of whitefish and the eatch per lift in pound nets and deep trap nets of the Door penimsula, 1930-1931.

PRODUCTION OF WHITEFISH IN THE GREEN BAY AND LAKE MICHIGAN WATERS OF WISCONSIN, 1889-1939

The data on whitefish production in the state of Wiseonsin waters of Green Bay and Lake Miehigan (table 49) were compiled from original records in the file of the Wisconsin Conscrvation Department. ${ }^{43}$

[Compiled from State records at Madison. Wir.]

Year	Green Bay	Lake Miehigan	Green Bay and Lake Michigan	Yuar	Cirerfl Bay	Lake Michugat	Green Bay and 1.ake Michigan
1889	248,810	74,4.50	327,260	1920.	42,411	49,022	131,433
1890	181,6912	5,550	187.442	1921	171,496	100.519	36i2,415
1892	54,540	279.540	334.080	1922	40,65\%	22.543	163.201
1893	450,000	20,325	470,325	1923	74,484	36.3,4:99	437,923
1894	392,100	25,000	415.100	1924	1.4.,9x	+34.115	24:104
1895	500,000	20.32 .5	320,325	1923	147.556	94, $\times 2.3$	242,399
1896	525,000	28,000	553,000	1926	249,976	90,479	340,453
1897.	568,367	317,991	4-6,35.3.	192%.	141,779	129.453	314.232
1899	37.685	37.670	12.5,35.5	1924	430,346	123,64	5,54,063
1903.	5.949	110,815	116.764	1929	257,64	44.965	332,613
1909	K.3,114	50, 129	133.253	1430	500.946	34, $\times 32$	33, 3 , 8 2
1910	49,340	25,221	73,561	1931	+62, 117	235, 6.63	1997.8×0
1911	36.424	88,095	124,519	1932	183, 0102	93, 5322	276,524
1912	102,080	74,203	140,283	1933	80.051	37.412	123,453
1913.	41,850	76.175	117,925	1934	82.105	17.54	[19,696
1914	21,435	19,230	10,665	1935			?63,900
1915	(60), 3 3. ${ }^{\text {a }}$	(00,0) 1	120,416	1936	44.1046	43.58 .5	152.601
1916	12,049	96, 172	105.231	1937	45.54\%	91, 5 \%	136, 83.
1917.	20,453	106,080	126,933	1438	tift 142	40,663	141.623
1918	91,012	233,067	254.1070	193:4	27.2001	96.630	113,820
1919	83,18.t	118,935	202.119				

Green Bay.-Whitefish production was large in the early and middle nineties, but there was a sharp drop in the eatch at about the turn of the century. Production remained rather consistently at a low level over the years, 1909-1923; only two years (1912 and 1921) of this period had yields in exces of 100,000 pounds. Beginning in 1924 the production of whitefish in Green Bay followed an irregular but definite upward trend that culminated in a yield of a half million pounds in 1930. This eateh (1930) was the greatest since 1897 and was the third largest in the known history of the fishery.

[^97]Production was still high in 1931; however, the years, 19:32-1939, comprised a period of rapid decline. The 1939 catch of 27,200 pounds was the lowest since 1918.

Lake Michigan.-The Lake Michigan data are much more variable than those for Green Bay, and it is correspondingly difficult to speak of definite periods of high or low production. Frequently exceptionally good or poor years are isolated (as, for example, 1892 and 1931). The period of most consistently low production was 19091916 (all years below 100,000 pounds) and the most extended era of heavy yield was 1917-1923 (all but two years above 100.000 pounds). The best of the more recent bears was 1931 with a catch of 236,000 pounds. The 1931 catch was exceeded by that of only one year (1923) since 1897 and was the fourth highest in the history of the fishery. Production was consistently below 100,000 pounds in the years, 1932-1939 (no data for 1935).

Green Bay and Lake Michigan.-The data for all of the State of Wisconsin waters of Lake Michigan show a fairly consistent high level of yield for the years, 1889-1897. Available data indieate a relatively low production in the period, 1899-1917; only once (1912) did the catch exceed 150,000 pounds in the 11 years for which there are records, and it fell below 100,000 pounds in 2 of them (1910 and 1914). An upturn occurred in 1918. Over the period, 1918-1925, production fell below 200,000 pounds only twice (1920 and 1922) and exceeded 400,000 pounds in 1923. A still higher level was maintained during the six years, 1926-1931. All of the annual yields were above 300,000 pounds and 3 years had eatehes in excess of 500,000 pounds. The 1931 take of 698,000 pounds was the largest since 1897 and the second largest in history. Production was at a relatively low level in the years, 1932-1939. The catch exceeded 200,000 pounds in only two of these years (1932 and 1935). The 1934 catch was the lowest since 1914 and the third lowest on record.

A striking feature of the State of Wisconsin data is the lack of agreement between the statistics for Green Bay and Lake Michigan. Some years were good or poor in both areas, as for example, 1897, 1931, and 1934. It is true also that the data for the two areas occasionally agreed rather well in general trend over a period of several years as in 1909-1917 and 1931-1934. On the other hand, there were numerous years that had a very high catch in one area and exceptionally poor production in the other. Outstanding examples of such disagreements occurred over the period, 1890-1896, and in the years $1918,1923,1926,1929$, and 1930.

POUND-NET AND DEEP-TRAP-NET FISHERY, 1930-1931

Table 50 contains data on the pound-net and deep-trap-net fisheries for whitefish in Door County waters, 1930-1931. (Practieally all of Wisconsin's whitefish are produced in these waters.) The comparison of the average catch per lift of the two gears in corresponding months confirms the contention of fishermen that the deep trap net is the more effective gear. The catch per lift of deep trap nets was 2.7 times that of pouml nets in May 1931, 2.2 times in June, and 2.3 times for May and June com-

Table 50.-Production of whitefish and catch per lift in pound nets ant deep trap nets of Door Comenty, W'is., 19,30-1931

Datte or period	Pumbl net			Deep trap net		
	Number of lifts	Production (pounds)	Catch per lift (pounds)	Number of lifts	Production (pounds)	Catch per lift (pounds)
May ${ }^{1930}$						
Jinne.	545	85.540	$143 \frac{1}{7}$			
May and June	860	108,973	1267			
April $\begin{array}{r}1931\end{array}$				17	803	472
May.	253	21,524	851	130	29,65:	2281
June.	391	66,364	1697	154	69,359	3764
July				43	11.509	9676
April to July May and June	614	87.688	1364	374 314	111,323 99,011	$\begin{array}{r}297 \\ 315 \\ \hline\end{array}$
			190			

bined. The data do not, however, support the complaint that the deep-trap-net fishery was extremely harmful to the pound-net fishery in 1931. It is true that the total production in pound nets was less in 1931 than in 1930, but the decline was the result of reduced fishing intensity. The average catch of whitefish per lift of pound nets was approximately 10 pounds greater in 1931 than in 1930.

Although the average lifts of whitefish in deep trap nets in 1931 were 2.3 times those of pound nets, this advantage depended onty on the greater depth of water in which deep trap nets were fished. The effect of the depth of water on the size of the lift is brought out by the comparison of the lifts of whitefish in shallow pound nets, deep pound nets (more than 50 feet of water), and deep trap nets (table 511. There was little difference between the size of the lifts of deep pound nets and deep trap nets, but both took more than 8 times as many fish per lift as shallow pound nets (less than 50 feet of water). It is obvious, therefore, that any indictment of the deep trap net in Door County waters as a dangerously effective gear must apply also to deep pound nets. ${ }^{44}$

TABLE 51.-Compurison of the catch of whitefish of shallow pound nets, of deep pound nets, aud of deep trap netw fished in Door County, Wisconsin uraters, June 1931

Grar	Number of lifts	Total production prounds	Catch werlift pounds)
Shallow pound net.	in	2,566	44.2
Deep pound net...	60	21.461	3643
Deep trap net...	1×4	610,35:	3764

Further conclusions based on observations of pound nets and deep trap nets in Door County waters are summarized as follows:
(1) The sorting of fish was more difficult in deep trap nets than in pound nets. However, less sorting was necessary with deep trap nets than with pound nets which ordinarily had 2 -inch mesh (stretched measure). Very few illegal whitefish (legal size limit, 13 inches, total lengtla, at the time of the investigation) were seen in deep trap nets, the mesh of which ranged from $3{ }^{1} \frac{2}{2}$ to 4^{1} inches. On several occasions small fish were seen to escape through the meshes as deep trap nets were lifted.
(2) Very few gilled fish were observel in tecp trap nets. and most of the fish gilled were of legal size. A 3^{1}-inchimesh net allow the eseape of whitefish of 13 to 13^{12} e inches, total length, and smaller; 4^{12}-inch meshes release whitefish about 16 inches long, and smaller.
(3) The observations did not support the contention that illegal whitefish brought to the surface in deep trap nets die. Small whitefish and herring were seen to pass through the bottom of the trap nets when they reached the surface, apparently uninjured and rertainly not bloated.

REGULATIONS RECOMMENDED FOR THE DEEP TRAP NET IN WISCONSIN WATERS

The investigating committee submitted the following recommendations for the regulation of the deep trap net in Wisconsin waters (almost entirely direct quotation from report):

1. The size of the mesh in the lifting pot must he not less than $4 \frac{1}{2}$ inches but the side of the pot where fisl are bagged may be of smaller mesh.
2. The length of the lead shall be not more than 50 rods.
3. A buoy must be attachen to every anchor and each buov must hate a flag attached to it, extending not less than 30 inches above the surface of the water.
4. The shortest distance between strings of trap nets or between trap nets and pound nets shall be not less than one-half mile. A trap net as here defined refers to any part of the net constructed of webbing and includes the pot, tunnel, heart, and lead (not the anchors, ropes, buoys, and flags).

[^98]5. A trap net shall not be set in water more than 60 feet deep. A trap net under this ruling is the same as that defined under regulation no. 4.
6. No more than two trap nets shall be placed in one string and an open space free from netting of not less than 50 fect shall be left between the nets.
7. In the event of a dispute between a trap-netter and a pound-netter concerning the distance between nets, priority consideration shall be given the pound-netter if it is established that he has fished for several yeats the grounds where his nets had been set. Such consideration shall be given even though the trap-netter was the first to set his nets on the disputed grounds at the beginning of the season.
8. A trap net or a string of trap nets must be set approximately at a right angle to the shore line or shoal or reef.
9. Regulations 2, 4, 5, 6 , and 8 have been recommended for trap nets on the assumption that they will be observed by pound-netters also. Enforcement is to be contingent on the atherence of pound-netters to these regulations.

APPENDIX D
 THE WHITEFISH FISHERY OF LAKES HURON AND MICHIGAN, 1940-1942

Because of unavoidable delays in publication, statistics of the whitefish fishery have become available for three additional years (1940, 1941, and 1942) since the preparation of the main body of this paper and appendices A, B, and C. The data for these years are presented in this appendix. Diseussion is brief and is concerned chiefly with the demonstration that the new information substantiates the conclusions drawn previously. Emphasis is placed on the detailed statistics for the State of Michigan waters although production data are given for other areas.

Table 52.-Production of whitefish in pounds in the State of Michigan waters of Lake IImon, 19.40-19.90

District or area	Yesr	Production in gear				Total	Percentage of total eatch of lake	$\begin{gathered} \text { Percentage } \\ \text { of } \\ \text { 1929 1939 } \\ \text { average } \end{gathered}$
		Large-mesh gill net	$\begin{aligned} & \text { Deep trap } \\ & \text { net } \end{aligned}$	Pound net	Other			
H-1	1940	43,661	32.696	23,637	41.5	122,709	65.	26
	1941	24,283	41.987	2x,298	367	94,934	835	21
	1942	22,657	29,450	23,527	104	75,738	797	16
11-2	1940	149	11,42]	11	7010	12,371	66	7
	1941		3,384		$46{ }^{\circ}$	3,850	34	2
	1942	\$1.	34.3		5,914	7.075	74	4
Northern Lake Huron ($\mathrm{H}-1$ and $\mathrm{H}-2$) \ldots	(1940	43,510	64.417	25,648	1,20.5	135,050	718	21
	1941	24,282	45,371	28,299	$\times 33$	98,784	869	16
	1942	23.475	20,393	23,527	6,01\%	52.813	871	13
H-3	1940	$2 \times$	1,282	4	435	1,749	09	-
	1941	10		10	459	479	04	1
	-1942	66%		48		716	07	1
H-4...	(1940	80	25,454	3,847	2.173	31,553	16 S	5
	1941	217	8,604	975	1.719	11,517	101	2
	1942	907	5,06	60	1.263	-1,298	77	1
Central Lake Hurn (H-3 and H-4)...	1940	108	26,736	3.451	2.607	33,302	177	4
	1941	227	8,604	987	2,178	11,996	105	${ }_{2}$
	1942	1,57.	5.065	10 s	1,263	8.014	84	
H-5	1940		8.702			8,702	46	3
	\{1941	-.-	63			633	06	10
	1942						00	0
H-6.	1940		10,795		153	11,030	59	3
	\{1941	256	1,996	37	25	2,314	20	1
	1942	13.5	3,238	188	706	4,267	45	1
Southern Lake Huron (H-5 and (1-6)...	1940		19,497	82	153	19,73?	105	3
	1941	256	2,629	37	25	2,947	26	10
	1942	13.5	3,235	188	706	4,267	4.5	1
Lake Huron (all 6 districts)	1940	43,918	110,650	29,581	3.965	$1.5 \times, 114$		9
	$\left\{\begin{array}{l}1941 \\ 1942\end{array}\right.$	94, 765 2.185	56,604 3×099	29.322 23,823	3,036 7,985	113,727 9		5 4

[^99]
WHITEFISH FISHERY OF LAKE HURON, 1940-1942

The downward trend in the production of whitefish in the State of Michigan waters of Lake Huron which got under way in 1933, and in 1939 had carried the annual yield to less than half the previously recorded minimum (555,000 pounds in 1900), continued through 1940-1942 (table 52 of this appendix-for further data on production see also table 1 of part I, tables $3,4,5$, and 6 of part II, and appendix B). The production of 95,000 pounds in 1942 amounted to only 4 percent of the 1929-1939 average for Lake Huron, ${ }^{45}$ and was only 2 percent of the 1931 maximum yield. Aside from unimportant inereases in $\mathrm{H}-2, \mathrm{H}-3$, and $\mathrm{H}-6$ in 1942 the trend was downard in all districts during the 3 -year period.

With the exception of $\mathrm{H}-1$, where the production percentages ranged from 16 to 26 , the 1940-1942 yields of all districts amounted to only 7 percent ($\mathrm{H}-2$ in 1940) or less of the 1929-1939 mean. The 1942 production was nil in $\mathrm{H}-5$, a distriet that yielded $1,676,000$ pounds of whitefish in 1933.

H-1 accounted for 65.2 to 83.5 percent of the total whitefish yield of the lake in 1940-1942. The only other district that rielded as much as 10 pereent of the total in a single year was $\mathrm{H}-4$ (1940 and 1941). The dominance of $\mathrm{H}-1$ in this limited fishery was even more pronomeed than in the carly years, 1891-1908.

The progressive decline in production in the years, 1940-1942, can be attributed to a continued general decrease in fishing intemity (tables 53 and 54 -see tables 8 and

Table 53.-. Immal fuctuntions in the intensity of the jishery for whilefish in each district of Lake IIuron, 1940-19.4

District	[Expr+ssed as percentages of the averace 1920-1939 mpartity in the distrine]							
	Lntensity as pertentage of mean for districs			Districe		Intensity as percentage of mean for distriet		
	1940	1941	1443			1444	1441	$14+2$
H-1.	54	14	23	H-1		35	$1: 3$	*
H-2	$2{ }^{2}$	7	4	H-5		1*	1	(2)
H-3..	(1)	(1)	3	[1-6		14	\therefore	2

${ }^{1}$ Inadequate data.
${ }^{2}$ No production.
Table 54.-Anmual fluctuations in the intensity of the whitefish fishery for all six districts of Lake Muron combined (third row from bottom of right half of table) and distribution of each year's intersity among the districts

TThe average annual intensity for the enture lake, 1929-1939, is 100.0. In parenthrses are the intensity batues of the derphetrap-int fishers, The value of tone unit is $1 / 1,100$ of the tintal exymeted catch of all districts, 1924-1939)

District or area	Intensty as percentage of manal for cutire lake			Inserict or arta	Intensity :as percantage of mean for enture lake		
	1940	1941	192?		1940	1441	1942
H-1.	$\begin{array}{cc} 11 \\ 15 & 1 \end{array}$	$\left.\begin{array}{ll} 4 \\ (3) \\ 2 \end{array}\right)$	(1)	H.j.	(3) $\begin{gathered}3 \\ \text { (i) }\end{gathered}$	(1) 11	(*)
H-2	$\left(\begin{array}{ll}17 \\ 17\end{array}\right.$	0 0 0 0	$\text { (1) } 1)^{11}$	H-6	$3{ }^{3} 9$	${ }_{411^{0}}^{-}$	06 0 0
Northern Lake Huron (H-1 and H-2)	$\begin{array}{cc} 130 \\ (6 x) \end{array}$	$\begin{array}{r} 8 \\ (37 \end{array}$	$\begin{array}{r} 50 \\ (17 \end{array}$	H-6)	$\left.\begin{array}{l} i \\ i \\ i \end{array}\right)$	$\text { (1) } 0$	$\begin{gathered} 0.6 \\ 105 \end{gathered}$
H-3	(1)	(1)	01				
	$\begin{gathered} x \\ (72) \end{gathered}$	$\begin{array}{r} 31 \\ (26) \end{array}$	$\begin{array}{r} 20 \\ 20 \\ 18 \end{array}$	Lake Huron (all 6 distriets).	$\begin{array}{r} 20 \\ \hline \end{array}$	$\frac{12}{61} 1$	$\begin{array}{r} 7 \pi \\ 1+07 \end{array}$
Central lake Huron (H-3 and H-4	(\%)	(26) ${ }^{3} 1$	$\left(1^{2} x^{1}\right.$	Percentage of intensity represented by deep trap ncts		563	519

[^100][^101]Table 55.-Annual fluctuations in the abundance of whitefish in the various districts and areas of Lake Huron, 1940-1942
[Expressed as percentaces of average 1929-1939 abundanee, In the computation of percentages for areas of more than one district and for the entire lake, the abundance percentage for each district was weighted according to the percentage of the total 1929 productioo contributed by tbat district]

District or area	Abundance percentage io year			District or area	Abundance percentage in year		
	1940	1941	1942		1940	1941	1942
H-1	52	56	75		12	21	(2)
H-2	32	36	24		14	13	28
Northern Lake Huron (H-1 and H-2)	44	48	53		13	17	28
H-3.	(1)	(1)	41	Lake Huron (all 6 distriets) .---. -			
-	17	1			29	31	35
Central Lake Huron (H-3 and H-4)	17	15	19				

9 of part II) brought about by a level of abundance (tables 55 and 56 -sce tables 10 and 11 of part II) that made profitable operations impossible.

Although the abundance percentages (table 55) and records of catch per unit effort (table 56) can not be considered very reliable for the districts in which the production reached extremely low figures, the data of table 55 nevertheless give some indication that with respect to the entire lake the abundance, which began to dectine in 1932, reached its lowest level in 1940 (29 percent of the 1929-1939 average) and improved slightly in 1941 (31 percent) and 1942 (35 percent). ${ }^{46}$ These small increases in the abundance percentages can not be taken as the basis for optimism concerning a possible early recovery of the whitefish fishery. On the contrary, it is to be considered most probable that the abundance and production of whitefish will continue to be low for years to come. The fishing intensity which was relatively low in all districts in 1940-1942 (table 53) and which had declined to 7.7 percent of average in 1942 for all districts combined (table 54) can not be expected to increase materially until abundance has risen to a level that permits profitable fishing. If a significant recovery occurs at all in the whitefish fishery of Lake Huron it may be expected to be slow. It is conceivable, of course,

Table 56.-Annual fluctuation in the catch of whitefish per unit of fishing effort of gill nets, deep trap nets, and pound nets in the various districts of Lake Huron, 1940-1940

(iear and unit of effort	District	Catch of whitefish (pounds) per unit of effort		
		1940	1941	1942
Gill net (unit lift of $10,000 \mathrm{f}$	H-1	39%	395	503
	H-2-	101		37.9
	H-4	29	32	118
	H-5.		132	70
Deep traf net (unit lift of one net).	H-1.			
	H-2	249	280	62
	$\stackrel{+}{\mathrm{H}-3}$	295		238
	H-5	320	57	
	H-6.	448	425	981
Pound net (unit lift of ooe net)	${ }_{\mathrm{H}-1}$	322	300	409
	$\mathrm{H}-2$ $\mathrm{H}-3$.	16		
	H-4	45	31	14
	H-6	12	18	111

${ }^{46}$ Tables 53, 54, 55, and 56 cootain no figures for $\mathrm{H}-3$ in 1940 and 1941 and for $\mathrm{H}-5$ in 1942 . In $\mathrm{H}-3$ the small catches of whitefish in 1940 and 1941 were mostly reported by fishermen using a gear (shallow trap net) not considered in our estimations of abundanee or by operators whose reports did not contain information on the amount of gear lifted. No whitefigh were produced in $\mathrm{H}-5$ in 1942.
that unusual conditions in the lake which permitted an abnormally high survival of young in one or more years may restore the stock at a much higher rate than the present depleted condition of the population would give reason to expect.

Not only did the Miehigan production of Lake Huron continue its decline after 1939, but the Canadian yield showed a similar trend (table 57), although not to the same disastrous degree. In Lake Huron proper (see p. $30 t$ for its boundaries) the Canadian eatch fell to 92,000 pounds in 1940 and increased only 1,000 pounds in 1941. These records are the lowest two for these waters since 1922 and comprise 42 percent of the average catch (219,513 pounds) for the perioul. 1923-1939. In Georgian Bay (includes the North Channel-see p. 304) the take decreased progressively from 1,275,000 pounds in 1939 to 833,000 pounds in 1941, the lowest production recorded for this area at least since 1922. This figure represents 58 pereent of the average yield ($1,427,564$ pounds) for the years, 1923-1939. In the Michigan waters the 1941 eatch equaled only 6 percent of the average production ($2,052,331$ pounds) during the period, 1922-1937, a value considerably less than the comparable Canadian percentages of 42 and 58 . The 1939-1941 records of total eatch for all waters (United States and Canadian) represent the lowest three ever recorded for the lake.

Table 57.-Production of whitefish in poumls in Lakes Michigan and Huron, 19.39-1943

Year	Lake Mıchigan			Lake Huron			
	Wisconsin	Michigan	Entire lake	Michigan	Ontario		Entire lake
					Huron proper	Georgian Bay	
1939....	110.700	$\times 39.356$	9.30 .536	25.143	115.061	1,275.295	1.64.5.494
1940.	196.600	754,115	954,415	145.114	92.403	1,006.043	1,2mb.54,
1941.	400.538	896,474	1,296,354	113.627	93.053	(33, 111	1,039, $\times 96$
1942....	279.363	1,061,056	1.340 .419	95.094			,

WHITEFISH FISHERY OF LAKE MICHIGAN, 1940-1942

The production of whitefish in the State of Miehigan waters of Lake Michigan, which had declined irregularly from the modern peak of $4,813,000$ pounds in 1930, reached an all-time recorded low of 754,000 pounds in 1940 (table 58 -for further data on production see also table 1 of part I, tables $13,14,15$, and 16 of part II. and appendix B). Although this yield amounted to only 32 percent of the 1929-19:39 arerage, it was relatively much higher than the 1940 cateh in Lake Huron (9 pereent of the 1929-1939 mean-table 52). The take of whitefish in Lake Nichigan improved substantially in 1941 (896,000 pounds; 38 percent) and 1942 ($1,061,000$ pounds; 46 percent). The 1940-1942 trend of production was consistently upward in northern and northeastern Lake Michigan (M-2, M-3, and $M-4$) and in the Grand Haven-Muskegon district (M-7), but was consistently downward in Creen Bay (M-1) or irregular in the remaining districts ($M-5, M-6$, and M-8).

In all threc years M-3 contributed considerably more than half of the total production ($63.8,58.4$, and 67.5 percent in 1940,1941 , and 1942, respectively). The Green Bay district ($\mathrm{M}-1$) ranked second each year but contributed a constantly decreasing percentage of the total ($16.3,12.9$, and 8.7 percent). Third position was held by M-5 in 1940 and 1941 (11.5 and 10.0 percent) and by M-4 in 1942 (6.7 percent). The percentage of the total yield procduced in the districts that ranked lower than third ranged from 7.5 percent in M-4 in 1941 to 0.1 percent in M-7 in 1940 . It may be noted that the pereentages of total production in the various districts in $1940-1942$ resembled the corresponding figures for 1891-1908 much more elosely than they did those for 19291939.

The abundance percentages, records of catch per unit of effort, and figures on fishing intensity (tables 59, 60, 61, and 62-see tables 17, 19, 20, and 21 of the main body of this paper) show that but for a low level of fishing intensity, production would have been much higher in 1940-1942, particularly in the last two years of the period. The abundance of whitefish which had dropped to an extremely low level in 1940 (23

Table 58.-Production of whitefish in pounds in the State of Michigan waters of Lake Michigan, 1940-1942

District or area	Year	Production in gear			Total	Percentage of total catch of lake	Percuntage of 1929-1939 average
		large-mesh gill net	Pound net	Other			
M-1.	$\left\{\begin{array}{l} 1940 \ldots \\ 194 \ldots \\ 1942 \end{array}\right.$	$\begin{aligned} & 50,170 \\ & 73,7 \\ & 66,654 \end{aligned}$	71,015 41,982 25,884	1,618 63 4	$\begin{array}{r} 122,803 \\ 115,752 \\ 42,546 \end{array}$	163 129 8	23 92 18
M-2	$\left\{\begin{array}{l} 1940 \\ 1941 \\ 1942 \end{array}\right.$	$\begin{array}{r} 8,310 \\ 25,88 \\ 60,444 \end{array}$	1,463		$\begin{array}{r} 9,773 \\ 25,853 \\ 60,494 \end{array}$	13 29 57	$\begin{array}{r} 18 \\ 47 \\ 110 \end{array}$
M.3.	$\left\{\begin{array}{l} 1940 \\ 1941 \\ 194 ? \end{array}\right.$	$\begin{aligned} & 225,939 \\ & 280,571 \\ & 384,704 \end{aligned}$	254,771 241,884 331,285	$\begin{array}{r} 66 \\ 639 \\ 64 \end{array}$	$\begin{aligned} & 4 \times 0,776 \\ & 523,0 \times 4 \\ & 715,986 \end{aligned}$	$\begin{array}{r}638 \\ .384 \\ \hline 635\end{array}$	$\begin{aligned} & 45 \\ & 49 \\ & 67 \end{aligned}$
M-4.	$\begin{aligned} & 1940 \\ & 1941 . \\ & 1942 \end{aligned}$	$\begin{aligned} & 28,726 \\ & 2 \times, 435 \\ & 26,277 \end{aligned}$	11,572 34,024 44,10s	$\begin{array}{r} 17 \\ 28 \\ 261 \end{array}$	$\begin{aligned} & 40,335 \\ & 67,487 \\ & 70,666 \end{aligned}$	53 75 6%	$\begin{array}{r} 71 \\ 118 \\ 124 \end{array}$
Northern Lake Michigan (M-1, M-2, M-3, and M-4)	$\left\{\begin{array}{l} 1940 \\ 1941 \\ 1942 \end{array}\right.$	$\begin{aligned} & 313,1+5 \\ & 40,536 \\ & 535,129 \end{aligned}$	$\begin{aligned} & 338,821 \\ & 322,840 \\ & 401,220 \end{aligned}$	$\begin{array}{r} 1,721 \\ 720 \\ 323 \end{array}$	$\begin{aligned} & 653,687 \\ & 73,206 \\ & 939,672 \end{aligned}$	$\begin{array}{r} 46 \\ 817 \\ 886 \end{array}$	$\begin{aligned} & 38 \\ & 43 \\ & 45 \end{aligned}$
Central Lake Michigan (M-5) .-.	$\left\{\begin{array}{l} 1940 \\ 1941 . \\ 1942 . \end{array}\right.$	$\begin{aligned} & 85,118 \\ & 85,132 \\ & 57,802 \end{aligned}$	$\begin{array}{r}1,970 \\ \hline 980\end{array}$	${ }_{10}^{6}$	87,094 511,422 57,802	115 104 54	$\begin{aligned} & 27 \\ & 28 \\ & 18 \end{aligned}$
A1-6.	$\left\{\begin{array}{l} 1940 \\ 1941 \\ 1942 \end{array}\right.$	$\begin{array}{r} 925 \\ 6,348 \\ 1,523 \end{array}$	108	130 62	$\begin{aligned} & 1,163 \\ & 6,348 \\ & 1,885 \end{aligned}$	$\begin{array}{ll}0 \\ 0 \\ 0 & 7 \\ 0 & 2\end{array}$	$\begin{aligned} & \frac{2}{9} \\ & 9 \\ & \hline \end{aligned}$
M.7.	$\begin{aligned} & 1940 \\ & 1941 . \\ & 1942 \end{aligned}$	$\begin{array}{r} 706 \\ 24,965 \\ 22,315 \end{array}$	131 2,672 6.304	14 26	$\begin{array}{r} 851 \\ 27,663 \\ 29,119 \end{array}$	$\begin{array}{ll}0 & 1 \\ 3 & 1 \\ 21\end{array}$	$\begin{array}{r} 1 \\ \frac{1}{27} \\ \hline \end{array}$
M-8.	$\left\{\begin{array}{l} 1940 \\ 1441 \\ 1942 \end{array}\right.$	$\begin{aligned} & 11,312 \\ & 36,460 \\ & 31,559 \end{aligned}$	$\begin{aligned} & 4,373 \\ & 1,114 \end{aligned}$	8 5	$\begin{aligned} & 11,320 \\ & 40,835 \\ & 32,578 \end{aligned}$	15 45 31	$\begin{array}{r} 9 \\ 31 \\ 25 \end{array}$
Southera Lake Michigan (M-b, M-7, and M-8)	$\begin{aligned} & 1940 \\ & 1941 . \\ & 1942 \end{aligned}$	$\begin{aligned} & 12,943 \\ & 67,73 \\ & 55,697 \end{aligned}$	$\begin{array}{r} 239 \\ 7.047 \\ 7.818 \end{array}$	$\begin{array}{r} 152 \\ 26 \\ 67 \end{array}$	$\begin{aligned} & 13,334 \\ & 74,846 \\ & 63,5 ヶ 2 \end{aligned}$	$\begin{array}{ll} 1 & 8 \\ \times 3 \\ 6 & 0 \end{array}$	$\begin{array}{r} 4 \\ 24 \\ 21 \end{array}$
Lake Michigan (all 8 districte) - -	$\begin{aligned} & 1940 \\ & 1941 \\ & 1942 \end{aligned}$	411,206 ว305,501 651,62s	$\begin{aligned} & 341,030 \\ & 330,217 \\ & 409,038 \end{aligned}$	$\begin{array}{r} 1,579 \\ 756 \\ 390 \end{array}$	$\begin{array}{r} 754,115 \\ 996,174 \\ 1,061,056 \end{array}$		$\begin{aligned} & 32 \\ & 38 \\ & 46 \end{aligned}$

to 73 percent of the 1929-1939 average in the individual districts and 63 percent for the 8 districts combined -table 61 improved in every district in 1941. This general improvement was reflected in a rise in the abundance percentage from 63 to 91 for the lake as a whole. Further increases in 1942 in M-2, M-3, and M-8 more than compensated for declines in the remaining districts and carried the abundance percentage for all districts combined to the still higher level of 95 . The abundance of whitefish was above the 1929-1939 average in three districts (M-4, M-6, and M-7) in 1941 and in five districts ($\mathrm{M}-2, \mathrm{M}-3, \mathrm{M}-4, \mathrm{M}-7$, and $\mathrm{M}-8$) in 1942. Conspicuous among the percentages are the high value of 257 in M-6 in 1941 and the low figures of 45 and 34 in M-5 in 1941 and 1942. M-5 was the only district with abumdance below 85 in 1941 or below 76 in 1942.

Table 59.-Ammal fluctuations in the intensity of the fishery for whitefish in earh district of Lake Michigan, 1940-1943
[Expressed as percentages of the average 1929-1939 intensity in the district]

District	Intensity as percentage of mean for district			Bistrict	lutensity as percentage of mean for district		
	1940	1941	1942		1940	1941	1942
M-1	3.3	30	27	M-5,	71	64	5.5
M-2	4	45	1		4	5	4
M-3.	$8{ }^{6 \%}$	61	${ }^{64}$	M-7	5	23	27
M-4...	$10 \times$	96	126	M-*.	$1 \times$	44	27

Table 60.-Annual fluctuations in the intensity of the whitefish fishery for all eight districts of Lake Michigan combined (bottom of right half of table) and distribution of each year's intensity anong the districts
[The average annual intensity for the entire lake, $1029-1939$, is 100.0 . The value of one nent is $1 / 1,100$ of the total expected catch of all districts, 1229-1939]

Table 61.-Amual fluctuations in the abordance of whitefish in the marious districts and areas of Lake Michigan, 1940-194~
[Expressed as percentages of average 1920-1939 abundabce. In the computation of percentages for arcas of more than one district and for the catire lake, the abundance percentage for earh distriet was weighted aceording to the percentage of the total 1920-1939 production contributed by that district]

District or area	Abundaner percentage in ypar			District or area	Abundaner percontake in yatar		
	1894	1943	1942		1140	1941	1942
M-1.	70	\% 5	86	M-6	15	259	no
M-2	38	96	121	M-7	23	161	147
M-3	73	87	11.5	M- X	5.	45	10.8
M-4	64	128	101				
Northern Lake Michigan (M1-1, M-2, M-3, and M-4)...	71	88	10.3	sumthern Lake Mielongan M-6, $\mathrm{M}-\mathrm{i}$, and $\mathrm{M}-\mathrm{x} \mid$	4.3	152	114
Central Lake Michimun (\$1-5)	40	45	34	Laike Muhman (all hastriets)	(13)	91	4.1

Table 62.-Anmual fluctuation in the catch of whitefish per unit of fishing effort of gill nets and ponnd nels in the various districts of Lake Michigon, 19.40-194,

Despite the markedly improved abundance of whitefish in the State of Michigan waters of Lake Michigan in 1941 and 1942, fishing intensity was relatively low. For the eight districts combined (table 60) the intensity. which was lower in 1940 (55.6 percent) than in any year except 1936 (55.1 percent) of the period, 1929-1939, decreased even further in 1941 (51.8 percent) and remained at about the same level (52.0 percent) in 1942. Among the individual districts (table 59) fi-ling intensity tended to be rela-
tively high in $\mathrm{M}-2, \mathrm{M}-3, \mathrm{M}-4$, and $\mathrm{M}-5$ and low in southern Lake Michigan (M-6, M-7, and M-8) and Green Bay (M-1).

The significance of the most recent figures for the whitefish fishery of the State of Michigan waters of Lake Michigan may be summarized in the one statement that the abundance of whitefish appears to be returning to an approximately normal level while production is held in check by a low fishing intensity.

Whether this statement is equally true for the whitefish of the Lake Michigan waters of other States is not known. Virtually no whitefish production is recorded for Illinois and Indiana in 1940-1942. The liisconsin statistics (table 57) suggest some improvement in that State. In contrast to the Michigan catch, that of Wisconsin increased in both 1940 and 1941, reaching a relatively high level in 1941, although again in contrast to Michigan's yield, it decreased to approximately the normal level in 1942. With respect to the entire lake (all States) the trend of production is upward, after 2 years of extremely low yields.

BEARING OF THE 1940-1942 STATISTICS OF THE WHITEFISH FISHERIES OF lakes huron and michigan on the validity of EARLIER CONCLUSIONS

The 1940-1942 statistics of the whitefish fishery of the State of Michigan waters of Lakes Huron and Michigan do not give the slightest reason for modifying the summary paragraphs at the end of part II of the main body of this paper. In Lake Huron the "collapse of the whitefish fishery" proved to be even more devastating than had been anticipated. The belief that in Lake Michigan the decline of the whitefish was "not disastrous" has been substantiated by the return of the whitefish to nearly normal abundance (91 and 95 percent) in 1941 and 1942 .

The contrast between conditions in the whitefish fisheries of Lake Huron and Lake Michigan in 1940-1942 is brought out sharply by the data of table 63 (see also table 22 of part II). In Lake Huron, production and fishing intensity, already at an extremely low level in 1940, continued to decline in 1941 and 1942. Any improvement that did occur in the status of the whitefish was relatively small. The abundance of whitefish was relatively much higher in 1940 in Lake Michigan (63 percent of average) than in Lake Huron (29 percent). Furthermore, the abundance in Lake Michigan rose sharply in 1941 and increased again in 1942. The production of whitefish also increased significantly in 1941 and 1942. Only fishing intensity declined (in 1941) or remained unchanged (in 1942). The supplementary data of this appendix, therefore, support the conclusion that overfishing traceable to deep-trap-net operations brought about the ruin of the whitefish fishery in Lake Huron. Although overfishing admittedly may have occurred in Lake Michigan and may have contributed to the decline that culminated in 1940. this overfishing was much less severe than in Lake Huron and did not carry the level of abundance of whitefish so low as to make rapid recuperation of the stock impossible. In fact, only low fishing intensity prevented nearly normal production of whitefish in Lake Michigan in 1941 and 1942.

Table 63.-Production and abundance of whitefish and the intensity of the whitefish fishery in the State of Michigan waters of Lakes Michigan and Huron

[Expressed as percentages of the 1929-1939 average]				
Lake	1tem	Year		
		1940	1941	1942
Michigan	Production Fishing intensity Abundance	32	38	46
		55	52	52
		63	91	95
Huron	Production	9	5	4
	Fishing intersity	29	13	8
	Abundance . .	29	31	35

STUDIES ON THE STRIPED BASS (Roccus saxatilis) OF THE ATLANTIC COAST

 Sob (lifind *)
 4. ack 12 , \% 28
 (1 (2)

估

[^0]: ${ }^{1}$ The Fishery Bulletin of the Fish and Wildife Survice is a continuation of the Bulletin of the Bureau of Fisheries, which ended with rol. 49. The Fish and Wiblife Service was established on June 34, 1940, by consolidation of the Fureau of Fisheries and the Bureau of Biological Survey.

[^1]: ${ }^{2}$ This record was placed at the author's disposal through the courtesy of Mr. Bruce Crane, Dalton, Mass.
 3 These records were made gvalable by the U. S. Fish gnd Wildife Serrice and the Bingham Oceanographic Foundation.

 - These records were made arailable through the cooneratlon of Capt, Daniel D. Parsons, Montauk, Long lsland, N. Y.. the present owner.

[^2]: *These records were provided through the courtesy of Mr. Chester Whaley, Wakefield, R. I.

[^3]: 'The entire collectlon of striped hass made by the members of the Biological Survey in 1936 was placed at theauthor's disposal in February 1938 by Dr. Dayton Stoner, State Zoologist of the New York State Museum at Albany, N. Y. Further than this, Dr. Moore, Chief Aquatic Biologist of the New York Conservation Department, and other members of the staff, gave the author much information regarding the capture of small hass in the Hudsou River, hefore the results of the Biological Sur rey of 1936 were published.

[^4]: 8 The word "ripe" is used throughout to connote flowing milt or eggs.

 - Oil of wintergreen and other clearing agents were also used at arst, but in general toluene gave the most satisfactory results.

[^5]: that all details which are subjected to observation when the scales are used for the purpose of age determination and growth calculations, arise from the play of light on the delicately moulded relicf forming the outer surface of the seales (Lea and Went, 1936).

[^6]: ${ }^{10}$ In connection with the age of striped bass, Bigelow and Welsh (1925) write, ". . . they are certainly long-lived, for one kept in the New York Aquarium lived te an age of about twenty-three years."

[^7]: ${ }^{11}$ In California, however, tagging experiments on the striped bass have shown that there were ". . . no definite mlgrations, simply a diffusion (rom the locality in which the hass were tagged " (Clark, 1936).

[^8]: ${ }^{12}$ In this connection, Mr. Rohert A. Nesbit taged of striped bass in Sandy Hook Bay, N. J., April 22-25, 1938, and recaptures in late A pril and May showed that many of these fish went up the Hudson River. Recaptures in the summer showed a movement to the east and Dorth.

[^9]: ${ }_{13}$ Part of a letter to the anthor from Mr. John R. Webster, of the U. S. Bureau of Fisheries, dated March 8, 1938, reads, ". . . it now seems almost certain that these fish passed through the Canal. Mr. Churbuck told me the water around State Pier was loaded with bass and that people fished for them all along the banks of the Canal with great success."

[^10]: ${ }^{14}$] dentifed by Dr. Charles J. Fish, Director of the Marine Laborators at Narragansett, Rhode Island State College, Kineston, R. I.

[^11]: $1 s$ These 2 marine annelids are generally used for bait, thus pieces of them are often fond in bass that were cauglet on rod and line. 110 wever, whole nitividuals also have been observed in the stomachs of striped hass.

[^12]: ${ }^{16}$ Identiffed hy Dr. Charles J. Fish, Director of the Marine Lahoratory at Nartagansett, Rhode Island State College, Kingston, R.I.
 ${ }^{17}$ The lsopod, A. oculata, is normally found parasitic on squid (Laltoo pealei) and joung mullet (Mfugil sp), but since neither of these forms was seen in the stomachs of these bass, it is prohahle that A. oculata wre taken hy the bass while it whs free-swiming during tho brecdiag seasot.
 ${ }_{18}$ The author wishes to express hisgratitude to Dr. John S. Rankln, of the Department of Biology at Amberst College, for bis assistance in the preparation of the material on the parasites of the striped bass, and for his identifications of the nematodes and copepods.

[^13]: 1 These water analyses were supplied by the Connceticut State Water Cornmission. The samples were taken as catch samples, and therefore in no way represent a completo tidal cyclo. The 2 localitios listed above are both places where striped bass are commonly caught, and where a good number of bass were found dead in late August and early September 1937.

[^14]: 1 Acknowledsment is due the War Department for extended use of laboratory space at OId Point Comfort, Va., and to the many fish dealers and fishermen about Hampton Roads for valued information and assistance. Special mention is due Miss Louella E. Cable for the original drawings (figs. 2 to 9.12 to 21,24 , and 25) in this report.

 The length of the net was approximately 4 meters (13 feet), the upper 1 the meters of No. 0 silk bolting cloth (38 meshes to the lnch), the lower 3 meters of No. 2 silk cloth (54 meshes to the juch), and a detachable cap of No. 12 silk cloth (150 meshes to the inch.
 ${ }^{3}$ Numerically the young of A. mitchilli were far more abundant in the plankton than the young of C. regalis but, owing to the labor involved, only a small proportion of young mitchilli was removel from the plankton, while all the goung of C. Tegalis as well as all other species were removed and identified.

[^15]: -The term "larval" as used in this paper refers to the growth stages of a fish from the time of batching to the point where the fn rays appear differentiated and the young fish hare considerable power of movement. The term "postlarval" refers to the growth stages following the development of the fin rays to a size where all tracps of the larval fin folilhave disappeared. The terms "larval" and "postlarval" fill a need for differentiating the more or less helpless young of many marine fishesfrom the juvenile young whieh have more or less complete control of their movements.

[^16]: - Perlmutter (1939) has also recognized tho crroneous descriptions by Kuntz and Radeliffe (1918) and has glven figures of young butterfsh 2.8 mm , and 3.5 mm . length.

[^17]: - All length measurements in this paper are referable to preserved specimens and denote total length.

[^18]: ${ }^{1}$ Contribution No. 7. Department of Research, Fish Commission of Oregoa.
 Report of the prelinioary investigations into the possible methods of preserving the Columbia River salmon and steellead at the Grand Coulee Dam. $1^{121} \mathrm{pp}$. U. S. Bureau of Reclamation, Washington. (Processed.)
 ${ }^{1}$ Report of the board of coosultants on the fish problems of the upper Columbia Ruer. 83 pp . U. S. Bureau of Reclamation, Deover, Colo. (Processed.)

[^19]: - Memorandum regarding fishing in the Columbia River above and below Bonnerille Dam. $16 \mathrm{pp} . \mathrm{U}$. S. Bureau of Fisherles, Washington. (Processed.)
 ${ }^{5}$ Commercial fishing operations on the Columbia Nirer. 73 pp . Oregon State Planning Board. Portland, Oreg. (Processed.)

[^20]: - Since this report was in page proof an additional study of these data has been made using the methods of the control chart as developed by Shewhart, Deming, and others, for the control of quality io manufactured products. The results show conclusively that the productivity of the chinook fishery since 1925 has been at a distinctly lower level than was maintained during the period 1876 to 1920 . These will be published elsewhere.

[^21]: 1 Outside may Include some fish caught by troll inside the river and along the coast from Neah Bay to Coos Bay.

 - The season on the riyer closed on August 25.
 ${ }_{3}$ The fall season noprned at noon on September 10 and on that day 450 pounds were delivered in Zone 4 and 93,837 pounds in Zone 6. Since these eatches represented a fishing period of only one-half day, they have been added to the catches of the following week.

[^22]: 1 Season closed on Aurust 25
 2 Includes 14,531 delivered on September 10 (see fuot note 3, table 1).

[^23]: : No catch reported from Zone fi.
 ${ }^{2}$ Ineludes 43 pounds delivered September 10 (seet ootnote $\}$ - table 1)

[^24]: 7 Since this report went to press a paper by Wiltert Chapman, of the Washington State Department of Fisheries, dealing with tho weichts of fish taken in the Columbin River fisheries bas appeared. His figures are somewhat differnt from ours but it is not pussible to give a critical disussion of them here.

[^25]: ${ }^{8}$ This clarifying symbolic treatment was contributed to the original report of the Board of Consultants by In. Durand, who has kindly permitted slightly altered repetition here.

[^26]: 1 Eliminating duplication in the last 2 periots.

[^27]: 1 The ladders were closed this day heeause of manipulation of the water levels. In calculating the percentage of the weekly total, the count of the following day was divided equally betwern the two days.

[^28]: - Results, of preliminary nature, previously publisherd are to be found in Sette, 1931, 1932, 1933, and 1934. Also see Sette and Needler, 1934.

[^29]: ${ }^{2}$ Positive here indicates a tow in which mackerel eggs were caught.

[^30]: 4 In addition to Sparks's results there is the listing by Dannevig (1919, p. Bi) of two mackerel eggs taken off Falifar and othe egg (listed with a question mark) near Sable laland.
 ${ }^{3}$ Accerding to Sparks, three tows wre taken at each station: No. 5 net, ahout 7 meters decp; Nu. 0 net, 0-2 meters deep; No. u net. :23-27 meters deep.

[^31]: - For the minutiae of the embryologs of mackerel, the reaner Is referred to Noure (1590, po. 5-14), and to Wilson"s (1991) decerip tion of the sea buss, which the mackerel in its umbryongy chasely remembles.

[^32]: "Jut he dors give the wecific gratity of newly spawned eggs as between 1.02 a and $1.02 \overline{\text { a }}$, a figure very close to that of curface water at our station 2044's. (Sce fig. 4.)

 * W"!ule the term larva may he appled to the entire planktonic existence. it is convenient to recognize three subdwisions: yolk. sae stage, larval stage, and post-larval stage.
 - This dectiption is based on formaldehyde preserved specimens because this is the form commonly available for study. In life, the newly-hatched lar"a is longer, measuring 3.1 or 3.2 mm . (disturtion and shrinkage fecrease the length of preser red specimens). and in addition to the flack pizmentation, haw yollow and grectish figment on cach side of the bpad between the eye and otocyst. an? un the surface of the oil clobule (Ehrenbam. 190: 11. 31).

[^33]: 10 The pregent desription of lengths at whicb fins appear diters from published figures (Ehrenbaum, 1921, figs. 1 to $\overline{1}$, and Bigelow and Welsh, 1925 , fig. 92) prohably hecause the latter give lengtls inchasive of finfold or caudal fin, though this is ant defonitely stated: whereas our mensurements were taken to the fond of the notochord, i. e., exclusive of the finfold in early stages; and to the
 injury to the caudal spmentage.

[^34]: 1 Deriations were then from the theoretical rather than observed values. The theoretical values were derived from the obsurbed ralues by fitting straght lines to the points resulting from the plot of logarithm of aumbers against logarithra of lengths in tig. 6.
 ${ }_{2}^{2}$ From 3 to 12 1nm., inclusive, the arerage was of the first 7 cruises; from 13 to 51 mm . inclusive, it was of 9 cruises.
 310 was added to the logarithin of each number in order to simplify notation in the case of lecimal numbers.

[^35]: ${ }^{n}$ Schools of very small mackerel wander Into pound-nets from which they can be removed by dip net if the pound-nets are visited before hauling. Once hauling commences they are frightened and usually escape through the meshes. In addition tu samples so collected, ono was taken from a school which wandered into the boat basin at the U. S. Fisheries Biological Station. Woods Hole.

[^36]: $525293-44-3$

[^37]: "A Anther of the series of modes seleeted by Walford also becomes logarithmic with sifght re-interpretation of his ag. 49. The new interpretation Involves the assumption that the sroup in question was under-represented in the April sample, an assumption that is reasonable in view of the fact that his samples for this month were from a more easterly area than that subsequently sampled. (This is true alsu of the central mode, above discussed, but the group forming this mode could have drifted into the arca subsequently sampled, whereas the tlme scqucnces were such that the group here under consideration in all probability conld not have so drifted). It further involves taking the mode for May at 12 instead of 17 mm . and for June at 30 instead ol 33 mm . These selections are or prominences on the curve, which are equal to these selected by Walford, and by reason of parallelism with the middle group, seem more reasonable than the puints glven in Wailurd's figures 40 and ${ }^{(0)}$. Walford's third series obviously consists of a jounger group not present enough months to repay studs.
 ${ }^{1} 1$ am grateful to the late Professor Embody for communieating thesc data to me by letter.

[^38]: ${ }^{16}$ For location of this and below-mentioned stations see 6g. 14.

[^39]: ${ }^{18}$ Records of the Wiaterguarter Lightship, 8 a. m. and 4 p . m., iacluding only those winds of force 3 (Beanfort Scale) or higher, were ploted in vector diagranas to determine the resultants.
 ${ }_{10}$ The true position of the northern ceater at the time of cruise 111 (fig. 13) was particularly uncertain. On the chart of movement (flg. 15) it seemed logical to plot it at the center of gravity between the three northerastations with largest catches, that is, Atlantic City II, Cape May 1, and Cape May 11I. hut its true position most likely was between stations, there or clsewhere, and heace missed. This aecounts also for the almost complete obliteration of mode S on this cruise, to which attention was earlier called in discussing progress ol modes as indicating growth.

[^40]: 17 It is not supposed that the entire increase In relative number at the southern center was due to the mechanism being discussed. Part of it could have been due to random fluctuatlons of sampling.

[^41]: ${ }^{18}$ Drift-hottles set ont by Wm. C. llerrington (unpublished data) in connection with his haddock investigations in the spring of 1931 and 1932 drifted westward past Nantucket shoals, fetching $u p$ on beaches of southern New England and Long lsland.

[^42]: ${ }^{19}$ Before the averages were drawn an adjust ment was made in the numbers of larvae from crulse 1 V on wbich a group of stations, Fenwick 1. Winterquarter 1, II, and III, and Chesapeake I and 111 had been omitted. These stations were located in the area wbere only 2 days previonsly there had been found most of the 5 - to $11-\mathrm{mm}$. harvae and the omission of these stations caused a marked, deficiency of these sizes in the totals of cruise 15 (note in table 5 , column 4 , the abrupt drop in numbers from the 3 - to the 5 -mm. class). Since these particular stations were occupied at the very end of cruise 111, growth and mortality in the fen intervening days hefore cruise IV would have only slightly altered the catches at these stations by the time of the latter cruise. Thercfore, to restore the deflciency, the catches of cruise III at these stations were added to the cruise IV totals, giving gew values of 5381, 1908, 682, 150, 67, 31, 5, and 3 for the 4- to 11-mm. elasses in the 4th column of table 5.

[^43]: ${ }^{80}$ These stations of cruise VIII have not been included in any of the tables beeause the hauls there lacked pertinent materlal.

[^44]: ${ }^{4}$ Buchanon-Wollaston (i935, ค. 85) has gisen a table purnorting to give the same statistics, but it appears to represeat the results of sampling only along a line passing through the mode of a normal frequency surfuce, not the results of sampling over the entire surlace. For the latter, account aust be taken of the fact that in such a surface, so sampled, the areas of classes of equal range in ordinate height increase as the square of the distance from the mode.

[^45]: ${ }^{3}$ The symbols given in this and following equations aro those used by Fisher (1032).

[^46]: ${ }^{23}$ Also, according to this interpretation, the data in the last column of lable 7 should be taken as representing the number of snrvivors per 840,000 newly spawned eggs instead of per million, as given in the column beading.

[^47]: * The wind directions in 1028 and 1929 were not consistent with this rule of correspondence of southwesterlies and successful year classes, but there were other unusual features of the year elasses from these seasons and therefore consideration of them will be left to a suhsequent paper of this series.

[^48]: 1 Pacific salmon spend the early part of life in frosh water, the time spent there depending on the species and loeality. They then migrate to the oceau and after a varsing period of time return to fresh water to spawn. Fishery Bulletin 38. Approved for publication May 6, 1940.

[^49]: 2 The data for the years 1895 to 1921 were used in this analysis as the fishing effort was fairly constant during this period.
 ${ }^{3}$ Where tbe relationship betwen two variables is found or assumed to he linear, the coefficient of correlation r measures the proportion of the variation in nue variable which is associated with the second variable. As the number of pairs of observations are relatively small the method of analysis given by Fisher (1930, p. 163) was used
 $1 P$ is the probability that tho value of the transformed coefticient of correlation z would bave heen obtained by chance, i . e., a value of P of 0.01 indicates that if the true value of z was 0.0 a value as large as the ono obtained would occur only once in 100 random samples. Tbe relationship between z and r is such that the values of P also indicate the statistical reliabillty of t.

[^50]: T The method, first used by Oilbert and Rich (1927), for designating the age of salmon is as follows: A fish resulting from an egg laid in the spawning gravels in 1930 and which migrated to the ocean in 1933 and returned to the river in 1935 is called a "flve-three" and designated thus " 53_{3} ". Such a fish would have emerged from the erarels of the spawning beds in the spring of 1931 and would have spent two growing seasons, i. e., the summers of 1931 and 1932, in fresh water. In referring to its fresh-water history it is called a "three-fresh-water fish" hecause it migrated seaward in its third year. It would have sjent two full growing seacons, i. e., 1933 and 1934, and part of a third year in the ocean; tut in referring to its ocean history it is called a "two-ocean fish," because it returned as an adult in the second year following its seawerd migration. A flsh which migrated to the occan in its fourth year and which returned in lts sixth year is called a "six-four" and desigaated thus " 6 "".

[^51]: See footnotes at end of table

[^52]: 1 Escapement to end of season estimated; see text.
 ${ }^{2}$ Escapement for these periods estimated; see text.
 Estimated; sce text.

 - Escapement for only a part of these weeks; see tert.

[^53]: See footrote at eud of table.

[^54]: - There are a few 3 -jear and 8 -year fish in the Karluk runs which are included in the tabulations, but their presence is quite unimportant.

[^55]:

 was donfirmed by kobinson and behmeter (1930a) and was used on the presemt analysis.

[^56]:

[^57]: ${ }^{6}$ Fish which spend only a few months in the ocean and return as mature fish in the fall of the same year in which they migrated seaward.

[^58]: - These marking experiments were initiated by the late Dr. C. H. Gilbert, and Dr. W. H. Rich, looth of the former United States Bureau of Fisheries.

[^59]: ${ }_{10}$ The finding of fish with adipose fins missing, and left pectoral fins missing only confirms the long establisbed fact that flsh occur ln nature with fins missing. The finding of fish with right or left ventral fins missing is due in part to astural deformities, aud may be due to regeneration of one or the other of the fins of the fish marked both veutrals. A part of the fish with both ventral fins missing may not be returns from the experiment but may be fish with natural detormities.

[^60]: . . . infiltration of umarked adults from other areas, the straying of marked individuals to other spawning regions or a definite differential mortality among marked groups.

[^61]: ${ }^{11}$ Does not include the three-ocean fish from the experiments of 1926 . However, this omission would not materially affect the results.

[^62]: ${ }^{1}$ Approved for publication September 5, 1944. Fishery Bulletin 40.

[^63]: ${ }^{2}$ We are indebted to the late John H. Howard and to J. P. Suyder, former Superintendent of the Federal Fish Hatehery, Capp Vinernt, N. Y.. for information on the deep trap furt in Lake Ontario.

[^64]: ${ }^{3}$ The dimensions given in this description were obtainul from the fishermen and based on those nets observed in the fild and possibly roay not cover the full range of variation in the size of deep trap nets. It was, for examplo, reported to us that one fisherman operated a net that was 75 fert derp.

[^65]: 4 The present minimum size of mesh permitted in the pots of deep trap nets operated in the Michigan waters of 1,ake Huron is 42 inches as found in use: provision is made for a section of netting the meshes of which may not be more than $31 / 2$ inches on which the fish may be shosled.

[^66]: ${ }^{5}$ See appendix A for a listing of the sources of the statistical data of table 1 and statements concorning their limitations in certain years. Also see appendix D for the 1940-1942 records.

 - Although there can be no certainty concerning the production of Menominee whitefish in the early years of the fishery, it is not believed that catches of that species made up a great part of the reported production of whitefish in years carlier than 1891 . Consequently, the catch for 1890 was graphed in figure 2 although the yield for that year was cxclusted from the computation of averages. The catch of Menominee whitefish in the State of Michigan waters of Lake Huron exceeded 100,000 pounds only 6 times in the 32 years for which dista are available within the period. 18931439, and frequently was less than 50,000 pounds.

[^67]: ${ }^{1}$ Sue appendix A for list of years in which the Lake Michigan total inclades the catches in the waters of Minois and Indiana,
 ${ }^{2}$ Includes blackfins, longan's. and pilots (Menominee whitefish); the total for the lake in 1800 does not include the cateh of these three species
 Includes pilots; the totals for the lake include only the pilots from the Siate of Michigan waters.

 - Accuracy considered questhonably; see p. 381.

[^68]: '-1 ${ }^{7}$ Production listed in table 1 under this heading for the years, 1879-1921, is for the shore of Lake Huron from Cape Hurd at the tip of the Bauguen Peninsula to the extreme southern end of the lake. Beginning in 1922, however, more northerly localities (islands of the open lake sad the westerly shore of Maoitoulin Islaud) were included in "Huron proper."

 8 Production listed in table 1 under this healing includes the catches from the entire North Chanael and Manitoulin Island regions except in 1922 and later years. (See fnotnote 7.)

[^69]: average materialy.
 ${ }^{10}$ No data for 1904-1911; the production of $3,060,000$ pounds in 190s may be discounted bec use of the questionable accuracy of the data for the Ontario waters of Huron proper in that year (p .381).
 ${ }^{11}$ See appendix A for a discussion of the defe 'ts in the atatistics for 1479 and 1885 and for the state of Michigan maters in 1890 atid appendix 1) for the 1940-1942 records.

[^70]: ${ }^{12}$ For a diseussion of Wisconsin's whitefish production in Green Bay and Lake Michigan proper separately, see appendix C.

[^71]: ${ }^{43}$ Totals were omittel for all years in which records wore lacking for either the State of Michigan or the State of Wisconsin waters. Certain of the totals listed for Lake Michigan in tahle 1 do not include the production in Illinois and lndiana waters, but the omission of these catches most probably had little effect on the values of the totals. (Sce appendix A.)

[^72]: 14 See part 11 for a discussion of the relationships among the fuctuations in the production and abondance of whitefish and in the intensity of

[^73]: ${ }^{15}$ Hile, Ralph and William R. Duden. Methods for the Investigation of the Statistics of the Commercial Fisheries of the Great Lakes. Trans. Am. Fish. Soc., vol. 63, 1933, pp. 292-305.

[^74]: 16 Hile and Dudea (loc. cit.) stated that Lake Muhipan had been divided into 11 statisticul districts. Exparicnee revealed, however, that certaio of the original tentative divisions were nut practical. Changes of boundaries and combinatius of areas have reduced the number of statistical distruts in Lake Michigan to eight. The alx itatistical listricts of Lake Huron all proved satisfachory av urigitally defined.

[^75]: ${ }^{15}$ The unit of effort was defined originally as the lift of 1,000 fret of gill nets. In the present atudy, however, the eateh of gill nets has bern recorded in terms of the vield per 10.000 foot-lifts (tables 11 and 17) in order to obtain values more nearly comparable with the eatch per unit of effort of pound nets and deep trap nets.
 ${ }^{18}$ The Fisherman, vol. 4, no. 12, pp. 1 and 2, 1935.
 ${ }^{19}$ Van Oosten, John. Logically Justified Deductions Concerning the Great Lakes Fisberies Exploded by Scientifie Researeh. Trans. Am. Fish. Soc., vol. 65, 1935, pp. il-i5

[^76]: ${ }^{20}$ Hlle, Ralph. The tncrease in the Abundance of the Yellow Pike-Perch, Stizostedion vitreum (Mitchill), in Lakes Huron and Nichigan, in Relatimn to the Artifieial Propzeation of the Sprejes. Trans, Am, Fish. Soc., vol. 66, (1936) 1937, pp. 143-159.
 ${ }^{21}$ Hile. Ralph and Frank W. Jobes. Age, Growth, and Production of the Yellow Perch, Perca flovescens (Mitchill), of Saginaw Bay: TransAm. Fish. Soc., vel. 70, (1940) 1941, pp. 102-12?.

[^77]: ${ }^{22}$ In this and the folloming section the terms，＂Lake Hurun＂and＂the entire lake，＂pefir to the State of sfichigan waters only．

[^78]: Pounds and the corresponding percentage are too low; the total production in $\mathrm{H}-4$ in 1031 and 1932 included conaiderathe quantitics of white fish for which records of the gear of capture were lacking, but a large part of which came from deep trap nets. Other totals and percentages in the computation of which these figures were involved were affected relatively less severely.

[^79]: ${ }_{23}$ The division of the statistics for the earline years was based on the location of the home port and not necessarily on the grounds actually fished. It is k now that, in more recent years at least, sume fishermen from Au Sable-Oscoda (H-3) have operated with gill oets in H-4 on the "Dliddle Grounds" off Sagnaw Bay. In 1929 and 1930 these fishermen accounted for about 14 percent of the total whitefish catch of $\mathrm{H}-4$. If this same percentage held for the earlier years the average production in $\mathrm{H}-3$ and $\mathrm{H}-4$ should have been 32,392 pounds and 281,947 pounds, respectively, instead of 71,865 pounds and 242,474 pounds as recorded in table 6 ; the percentages should have been 3.3 and 29.0 instead of 7.4 and 24.9 . There is no reason to believe that the data for other districts were affected significantly by the division of the catch according to port.

[^80]: ${ }^{24}$ Part of the decline from 1973 to 1934 and 1934 to 1933 may be attributed to the fact that effective August 1, 1934, deep trap nets were restricted in Lake Huron to water with depths of 80 feet or less.

[^81]: ${ }^{25}$ Field observations in northern Lake Michigan indicated that pound nets may take slightly more fish than deep trap nets fished at the same depth. This relationship is not surprising since the pound net is a "lighter" net (that is, the open top permuts the free pedetration of light) and would, therefore, be entered by fish more readily than the "darker" deep trap net. Also see table 51, appendix C.

[^82]: ${ }^{26}$ When gill nets were fished on the gpawning grounds the catches were sometimes enormous-thousands of pounds in a single lift.
 ${ }_{27}$ This statetnent holds true even in Lake Michigan where the gill net is normally the dominant gear for the production of whitefish.

[^83]: ${ }^{24}$ Limited operations have been carried on in the northern Michigan waters since 1935, with a modified deep trap net in which the crib or pot extends ta the surface of the water and is open at the top. This arrangement has qualified the nets for legal defnition as pound nets with which gear they have heen grouped in the preparation of this report.
 ${ }_{29}$ In this section the terms, "lake Michigan" and "the entire lake," refer to the State of Michigan waters only.

[^84]: Figures 13 to 20 show th. Anma! fluctuatoons in the production (solid lines) and abondance it ma dashes) of whitefish and in the intensity of the whitefish fishery (shurt dashos) over the period, 1929-1929, in each of the eight stathotical districts of Lake Michugan (see fig. 4). In each figure the central horizomal line represcuts the average conditions for the 11 years, 1929-1939.

[^85]: ${ }^{1}$ [ntensity represented by deen-trap-het operations in M-7 in 1934 was 2.9.

[^86]: ${ }^{30}$ The evidence for more than one "concentration depth" is not strong (particulariy for legal whitefish) in the Alpena-Ossineke data. The suggestion is brought out here because of the later conclusive evidence that there are two concentration zooes in northeastern Lake Michigan (p. 353). No good cvidence of a concentration at 111-120 feet was found in other Lake Huron waters.
 ${ }^{3}$ The September data obscure the presence of two concentrations of legal whitefish. If the September data are excluded the average numbers of legal whitefish per lift become 18.7 at 101-110 leet and 30.3 at 111-120 feet.

[^87]: ${ }^{32}$ There was some indication of a similar distrabution of whitefish on the Alpena-Ossineke erounds (p, 350). The data for the Saginaw Bay area (p. 351) offered only a sughestinu of two concentrathen zones.

[^88]: ${ }^{33}$ Temperature data were not available from the north channel (region north of the Beaver lsland arohipelago), the center of the deep-trap-net fishery. However, the relatively litaited local variation in temperature conditions at stations southeast, south, and northwest of Beaver lsland and southeast of Manistique suggests that the data from these localities may be indicative of conditions is the area in which the deep-trap-net fishery was centered.
 4. The average posithons of the thermocline were: last half of June, 24-33 feet; July, 67-77 feet; August, 69-80 feet; first 10 days of September, 72-86 feet. The thermocline had not yet formalil in the first half of Jane; no readings were made in the area after Septernher 10.

[^89]: Frgera 23.-Bathymetric distribution of legal-sized (aolid lines) and illegal-sized (broken lines) whitefish in Lakes Huron and Michigan as deternmed

[^90]: ${ }^{3} 3$ The present policy of fishery regulation in the State of Michigan waters of the Great Lakes does oot include coatrol of production through the iimitation of the amount of gear fished or the setting of arbitrary limits oo the season's catch.

[^91]: ${ }^{2}$ In the original compilatints the nats were grouped according en mish size by half-inch intorvals. This groupmg proved unsatisfactory, however, since nets that fell within som int rety of to xh stz were fishal chinfly on grounds aith an abundance of undersized whitefish whereas the nets of other mesh sizes were fished predominantly on grounds where young whtefish were extremely scarce. in order to reduce irregularities from this source, only two size groups of mesh were employed io the preparition of datia on the release of illegal-sized whitefish.

[^92]: ${ }^{1}$ Includes only lifts in which bloated fish were counted.

 - Only 63 perceat of the bloated fish were separated as to size.

[^93]: ${ }^{37}$ Fish were considered to be gilled only when it was obvious that they had become enmeshed while the net was actually fishing. Freshly gilled Hve fish were considered to have become enmesbed during the lifting process, and were not counted; usually they were not injured.

[^94]: this district.

[^95]: ${ }^{3 n}$ Smith, Oliver H. and John Van Oosten. Tagging Experiments with Lake Trout, Whitefish, and Other Species of Fish from Lake Michigan. Trans. Am. Fish. Soc., vol. 69, (1939) 1940, pp. 63-84.
 ${ }^{40}$ The data of table 47 do not represent 648 different nets as some nets were visited more than once. Several nets of mesh size larger than $4^{1 / 2}$ inches as manufactured were measured, but there were not enough of any single mesh size to yield reliable averages.

[^96]: "International Board of laquiry for the Great Lakes Fisheries. Report and Supplement. Washingtod, 1943.
 Ford, Marjory A. Annual Landings of Fish on the Canadian Side of the Great Lakes from 1567 to 1939 a Officially Record.d. Ott.ma, 1943

[^97]: *2 This section is condensed from the unpublished "Report to the Conservation Commission of the State of Wisconsin on the Investration of Deep Trap Neta, Conducted Juintly by the Slate Fisheries fepartment and the l'nited States Bureau of Finheries during the Perion, Juls if to 11, 1931 , io tbe Waters of Door County, Wisconsin." The investigation was made by Dr. John Van Oosten of the United States Bureau of Fisheries (now the Fish and Wildife Service) and Messrs. B, O. Webster and Ira G. Smith of the Wisconsin Conservation Department.

 * There are certain diserepancies between the data of table 49 of this appendix anif those of table 1 of part 1 . These arise from the fact tbat the former table has been based entirele on State of Wisensin reeords (in order to have data for Green Bay and Lake Michigan separately) whereas the records of wbitefish prodigetion in Wiscman waters in the latter table were obtained from spveral sources. .hee appendiv A.

[^98]: ${ }^{44}$ Both gears can operate on the concentrations of whitefish at denths of 50 or 60 feet. Attempts of deep-trap-net fishormen to locate whitefish in deeper water (ca. 100 fept । were unsuctersful.

[^99]: 'hess than 0.5 .

[^100]: 1 Inadequate data.
 ${ }^{2}$ No production.

[^101]: ${ }^{45}$ In this appendix as in part 11 references to "Lake Huron," "Lake Michigan," "the entire lake," or "the lake" should be understood to mean the State of Michigan waters only, unless otherwise specified

