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TRANSLATOR'S PREFACE

FOEMUL^E and equations are necessary evils ; they repre-

sent, as it were, the shorthand of the mathematician and the

engineer, forming as they do the simplest and most con-

venient method of expressing certain relations between

facts and phenomena which appear complicated when

dressed in everyday garb. Nevertheless, it is to be feared

that their very appearance is forbidding and strikes terror

to the hearts of many readers not possessed of a mathematical

turn of mind. However baseless this prejudice may be

as indeed it is the fact remains that it exists, and has in

the past deterred many from the study of the principles of

the aeroplane, which is playing a part of ever-increasing

importance in the life of the community.
The present work forms an attempt to cater for this class

of reader. It has throughout been written in the simplest

possible language, and contains in its whole extent not a

single formula. It treats of every one of the principles of

flight and of every one of the problems involved in the

mechanics of the aeroplane, and this without demanding
from the reader more than the most elementary knowledge
of arithmetic. The chapters on stability should prove of

particular interest to the pilot and the student, containing
as they do several new theories of the highest importance
here fully^set out for the first time.

In conclusion, I have to thank Lieutenant T. O'B.

Hubbard, my collaborator for many years, for his kind and

diligent perusal of the proofs and for many helpful

suggestions.
J. H. L.
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Flight without Formulae

Simple Discussions on the Mechanics

of the Aeroplane

CHAPTER I

FLIGHT IN STILL AIE

SPEED

NOWADAYS everyone understands something of the main

principles of aeroplane flight. It may be demonstrated

in the simplest possible way by plunging the hand in

water and trying to move it at some speed horizontally,

after first slightly inclining the palm, so as to meet or
" attack

"
the fluid at a small "

angle of incidence." It

will be noticed at once that, although the hand remains

very nearly horizontal, and though it is moved horizon-

tally, the water exerts upon it a certain amount of pressure
directed nearly vertically upwards and tending to lift

the hand.

This, in effect, is the principle underlying the flight of

an aeroplane, which consists in drawing through the air

wings or planes in a position nearly horizontal, and thus

employing, for sustaining the weight of the whole machine,

the vertically upward pressure exerted by the air on these

wings, a pressure which is caused by the very forward

movement of the wings.

Hence, the sustentation and the forward movement of

an aeroplane are absolutely interdependent, and the former
1



2 FLIGHT WITHOUT FORMULA

can only be produced, in still air, by the latter, out of which

it arises.

But the entire problem of aeroplane flight is not solved

merely by obtaining from the "
relative

"
air current which

meets the wings, owing to their forward speed, sufficient

lift to sustain the weight of the machine; an aeroplane,

in addition, must always encounter the relative air current

in the same attitude, and must neither upset nor be thrown

out of its path by even a slight aerial disturbance. In

other words, it is essential for an aeroplane to remain in

equilibrium more, in stable equilibrium.
This consideration clearly divides the study of aeroplane

flight in calm air into two broad, natural parts :

The study of lift and the study of stability.

These two aspects will be dealt with successively, and

will be followed by a consideration of flight in disturbed air.

First we will proceed to examine the lift of an aeroplane
in still air.

Following the example of a bird, and in accordance with

the results obtained by experiments with models, the wings
of an aeroplane are given a span five or six times greater

than their fore-and-aft dimension, or "
chord," while they

are also curved, so that their lower surface is concave.* It

is desirable to give the wings a large span as compared
to the chord, in order to reduce as far as possible the

escape or leakage of the air along the sides; while it

has the further advantage of playing an important part

in stability. Again, the camber of the wings increases their

lift and at the same time reduces their head-resistance or

"drag."
The angle of incidence of a wing or plane is the angle,

* In English this curvature of the wing is generally known as the
*' camber." On the whole, it would perhaps be more accurate to describe

the upper surface as being convex, since highly efficient wings have been

designed in which the camber is confined to the upper surface, the lower

surface being perfectly flat. TRANSLATOR.
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expressed in degrees, made by the chord of the curve in

profile with the direction of the aeroplane's flight.

As stated above, the pressure of the air on a wing mov-

ing horizontally is nearly vertical, but only nearly. For,

though it lifts, a wing at the same time offers a certain

amount of resistance known either as head-resistance or

drag
* which may well be described as the price paid for

the lift.

As the result of the research work of several scientists,

and of M. Eiffel in particular, with scale models, unit figures,

or "
coefficients," have been determined which enable us to

calculate the amount of lift possessed by a given surface

and its drag, when moving through the air at certain angles
and at certain speeds.

Hereafter the coefficient which serves to calculate the

lifting-power of a plane will be simply termed the lift,

while that whereon the calculation of its drag is based will

be known as the drag.

M. Eiffel has plotted the results of his experiments in

diagrams or curves, which give, for each type of wing, the

values of the lift and drag corresponding to the various

angles of incidence.

The following curves are here reproduced from M. Eiffel's

work, and relate to :

A flat plane (fig. 1).

A slightly cambered plane, a type used by Maurice

Farman (fig. 2).

A plane of medium camber, adopted by Breguet

(fig. 3).

A deeply cambered plane, used by Bleriot on his

No. XI. monoplanes, cross-Channel type (fig. 4.)

* The word "
drag

"
is here adopted, in accordance with Mr Archibald

Low's suggestion, in preference to the more usual "
drift," in order to

prevent confusion, and so as to preserve for the latter term its more

general, and certainly more appropriate meaning, illustrated in the ex-

pression
" the drift of an aeroplane from its course in a side-wind," or

4

'drifting before a current." TRANSLATOR.
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These diagrams are so simple as to render further

explanation superfluous.

0.02 0.01 0-00

Drag.

FIG. 1. Flat plane.

0.02 O.OJ 0.00

Drag.

FIG. 2. Maurice Farraan plane.

The calculation of the lifting-power and the head-resist-

ance produced by a given type of plane, moving through
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the air at a given angle of incidence and at a given speed,

is exceedingly simple. To obtain the desired result all that

10? 10'

I

0.02

Drag.

FIG. 3. Breguet plane.

0.00

o.oa P.OQ

O.Oi

0.00

002
Drag.

FIG. 4. Bleriot XI. plane.

0.00

is needed is to multiply either the lift or the drag co-

efficients, corresponding to the particular angle of incidence,
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by the area of the plane (in square metres, or, if English
measurements are adopted, in square feet) and by the square
of the speed, in metres per second (or miles per hour).*

EXAMPLE. A Bleriot monoplane, type No. XI., has an
area of 15 sq. m., and flies at 20 m. per second at an angle

of incidence of 7. (1) What weight can its wings lift,

and (2) what is the power required to propel the machine ?

Referring to the curve in fig. 4, the lift of this particular

type of wing at an angle of 7 is 0'05, and its drag 0*0055.

Hence
T ift Arpa Square of
Lltt Area<

the Speed.

0-05 x 15 x 400

gives the required value of the lifting-power, i.e. 300 kg.

Again

0-0055 x 15 x 400

gives the value of the resistance of the wings, i.e. 33 kg.

Let us for the present only consider the question of lift,

leaving that of drag on one side.

From the method of calculation shown above we may
immediately proceed to draw some highly important de-

ductions regarding the speed of an aeroplane. The fore-

and-aft equilibrium of an aeroplane, in fact, as will be

shown subsequently, is so adjusted that the aeroplane can

only fly at one fixed angle of incidence, so long as the

elevator or stabiliser remains untouched. By means of the

elevator, however, the angle of incidence can be varied

within certain limits.

In the previous example, let the Bleriot monoplane be

taken to have been designed to fly at 7. It has already

been shown that this machine, with its area of 15 sq. m.

and its speed of 72 km. per hour, will give a lifting-power

equal to 300 kg. Now, if this lifting-power be greater than

*
Throughout this work the metric system will henceforward be

strictly adhered to. TRANSLATOR.
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the weight of the machine, the latter will tend to rise
;
if the

weight be less, it will tend to descend. Perfectly horizontal

flight at a speed of 72 km. per hour is only possible if the

aeroplane weighs just 300 kg.
In other words, an aeroplane of a given weight and a

given plane-area can only fly horizontally at a given angle
of incidence at one single speed, which must be that at

which the lifting-power it produces is precisely equal to

the weight of the aeroplane.

Now it has already been shown that the lifting-power

for a given angle of incidence is obtained by multiplying
the lift coefficient corresponding to this angle by the plane
area and by the square of the speed. This, therefore, must

also give us the weight of the aeroplane. It is clear that

this is only possible for one definite speed, i.e. when the

square of the speed is equal to the weight, divided by the

area multiplied by the inverse of the lift. And since the

weight of the aeroplane divided by its area gives the load-

ing on the planes per sq. m., the following most important
and practical rule may be laid down:

The speed (in metres per second) of an aeroplane, flying
at a given angle of incidence, is obtained by multiplying
the square root of its loading (in kg. per sq. m.) by the

square root of the inverse of the lift corresponding to the

given angle.

At first sight the rule may appear complicated. Actually
it is exceedingly simple when applied.

EXAMPLE. A Breguet aeroplane, with an area of 30 sq. m.

and weighing 600 kg., flies with a lift of 0*04, equivalent

(according to the curve inflg. 3) to an angle of incidence

of about 4. What is its speed ?

The loading is -^- = 20 kg. per sq. m.

Square root of the loading = 4'47.

Inverse of the lift is
;r^-r

= 25.
U04<

Square root of inverse of the lift= 5.
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The speed required, therefore, in metres per second = 4*47

X 5 = 22*3 m. per second, or about 80 km. per hour. But
if a different angle of incidence, or a different figure for

the lift which is equivalent, and, as will be seen here-

after, more usual be taken, a different speed will be

obtained.

Hence each angle of incidence has its own definite speed.

For instance, if we take the Breguet aeroplane already

considered, and calculate its speed for a whole series of

angles of incidence, we obtain the results shown in Table I.

But before examining these results in greater detail, so far

as the relation between the angles of incidence, or the lift,

and the speed is concerned, a few preliminary observations

may be useful.

TABLE I.

Lift.
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a cambered plane. While a flat plane meeting the air

edge-on has no lift whatever, as is evident, a cambered

plane striking the air in a direction parallel to its chord

still retains a certain lifting-power which varies according

to the plane section.

Thus, in those conditions a Breguet wing still has a lift of

0-019, and if figs. 4 and 2 are examined it will be seen that

at zero incidence the Bleriot No. XI. would similarly have

a lift of 0-012, but the Maurice Farman of only O'OOG. It

follows that a cambered plane exerts no lift whatever only

when the wind strikes it slightly on the upper surface. In

other words, by virtue of this property, a cambered plane

may be regarded as possessing an imaginary chord if the

expression be allowed inclined at a negative angle (that is,

in the direction opposed to the ordinary angle of incidence)

to the chord of the profile of the plane viewed in section.

If the necessary experiments were made and the curves

on the diagrams were continued to the horizontal axis, it

would be found that the angle between this "imaginary
chord" and the actual chord is, for the Maurice Farman

plane section about 1, for that of the Bleriot XI. some 2,
and for that of the Breguet 4.

Let it be noted in passing that in the case of nearly

every plane section a variation of 1 in the angle of incidence

is roughly equivalent to a variation in lift of 0'005, at any
rate for the smaller angles. One may therefore generalise
and say that for any ordinary plane section a lift of 0'015

corresponds to an angle of incidence of 3 relatively to the
"
imaginary chord," a lift of 0*020 to an angle of 4, a lift

of 0-025 to 5, and so forth.

Turning now to the upper portion of the curves in the

diagrams, it will be seen that, beginning with a definite

angle of incidence, usually in the neighbourhood of 15, the

lift of a plane no longer increases. The curves relating to

the Breguet and the Bleriot cease at 15, but the Maurice

Farman curve clearly shows that for angles of incidence

greater than 15 the lift gradually diminishes. Such coarse
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angles, however, are never used in practice, for a reason

shown in the diagrams, which is the excessive increase in

the drag when the angle of incidence is greater than 10.

In aviation the angles of incidence that are employed there-

fore only vary within narrow limits, the variation certainly

not surpassing 10.

We may now return to the main object for which Table I.

was compiled, namely, the variation in the speed of an

aeroplane according to the angle of incidence of its planes.

First, it is seen that speed and angle of incidence vary

inversely, which is obvious enough when it is remembered

that in order to support its own weight, which necessarily

remains constant, an aeroplane must fly the faster the

smaller the angle at which its planes meet the air.

Secondly, it will be seen that the variation in speed is

more pronounced for the smaller angles of incidence
; hence,

by utilising a small lift coefficient great speeds can be

attained. Thus, for a lift equal to 0'02, at which the

Breguet wing would meet the air along its geometrical

chord, the speed of the aeroplane, according to Table I.,

would exceed 113 km. an hour.

If an aeroplane could fly with a lift coefficient of 0*01,

that is, if the planes met the air with their upper surface

the imaginary chord would then have an angle of incidence

of no more than 2 the same method of calculation would

give a speed of over 160 km. per hour.

The chief reason which in practice places a limit on the

reduction of the lift is, as will be shown subsequently, the

rapid increase in the motive-power required to obtain high

speeds with small angles of incidence. And further, there

is a considerable element of danger in unduly small angles.

For instance, if an aeroplane were to fly with a lift of 0*01

so that the imaginary chord met the air at an angle of

only 2 a slight longitudinal oscillation, only just exceeding

this very small angle, would be enough to convert the fierce

air current striking the aeroplane moving at an enormous

speed from a lifting force into one provoking a fall. It is
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true that the machine would for an instant preserve its

speed owing to inertia, but the least that could happen
would be a violent dive, which could only end in disaster

if the machine was flying near the ground.
Nevertheless there are certain pilots, to whom the word

intrepid may be justly applied, who deny the danger and

argue that the disturbing oscillation is the less likely to

occur the smaller the angle of incidence, for it is true, as

will be seen hereafter, that a small angle of incidence is an

important condition of stability. However this may be,

there can be no question but that flying at a very small

angle of incidence may set up excessive strains in the frame-

work, which, in consequence, would have to be given
enormous strength. Thus, if it were possible for an aeroplane

to fly with a lift coefficient of O01, and if, owing to a wind

gust or to a manoeuvre corresponding to the sudden "
flatten-

ing out
"

practised by birds of prey and by aviators at the

conclusion of a dive, the plane suddenly met the air at an

angle of incidence at which the lift reaches a maximum
that is, from 0*06 to 0*07 according to the type of plane
the machine would have to support, the speed remaining
constant for the time being by reason of inertia, a pressure
six or seven times greater than that encountered in normal

flight, or than its own weight.
In practice, therefore, various considerations place a limit

on the decrease of the angle of incidence, and it would

accordingly appear doubtful whether hitherto an aeroplane
has flown with a lift coefficient smaller than 0*02.*

It is easy enough to find out the value of the lift co-

efficient at which exceptionally high speeds have been

attained from a few known particulars relating to the

machine in question. The particulars required are :

The velocity of the aeroplane, which must have been

carefully timed and corrected for the speed of the wind
;

The total weight of the aeroplane fully loaded
;

The supporting area.

* See footnote on p. 12,
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The lift may then be found by dividing the loading of

the planes by the square of the speed in metres per second.

EXAMPLE. An aeroplane with a plane area of 12 sq. m.

and weighing, fully loaded, 360 kg. has flown at a speed of
130 km. or 36' 1 m. per second. What was its lift coefficient ?

The loading = 9
=30 kg. per sq. m.

Square of the speed = 1300.
OA

Required lift = T^ = about 0-023.*

Table I. further shows that when the angle of incidence

reaches the neighbourhood of 15 (which cannot, as has

been seen, be employed in practical flight) the lift reaches

its maximum value, and the speed consequently its minimum.

* At the time of writing (August 1913) the speed record, 171*7 km.

per hour or 47 '6 m. per second, is held by the Deperdussin monocoque
with a 140-h.p. motor, weighing 525 kg. with full load, and with a plane
area of about 12 sq. m. (loading, 43*7 kg. per sq. m.). Another machine

of the same type, but with a 100-h.p. engine, weighing 470 kg. in all, and

with an area of 11 sq. m., has attained a speed of 168 km. per hour or

46*8 m. per second. According to the above method of calculation, the

flight in both cases was made with a lift coefficient of about 0'0195-

AUTHOR.
Since the above was written, all speed records were broken during

the last Gordon-Bennett race in September 1913. The winner was

Prevost, on a 160-h.p. Gnome Deperdussin monoplane, who attained a

speed of a fraction under 204 km. per hour
;
while Vedrines, on a 160-

h.p. Gnome-Ponnier monoplane, achieved close upon 201 km. per hour.

The Deperdussin monoplane, with an area of 10 sq. m., weighed, fully

loaded, about 680 kg. ;
the Ponnicr, measuring 8 sq. m., weighed ap-

proximately 500 kg. Adopting the same method of calculation, it is

easily shown that the lift coefficients worked out at 0'021 and 0'020

respectively. It is just possible that these figures were actually slightly

smaller, since it is difficult to determine the weights with any consider-

able degree of accuracy. However, the error, if there be any, is only

slight, and the result only confirms the author's conclusions. Since that

time Emile Vedrines is stated to have attained, during an official trial,

a speed of 212 km. per hour, on a still smaller Ponnier monoplane,

measuring only 7 sq. m. in area and weighing only 450 kg. in flight.

This would imply a lift coefficient of 0'0185, a figure which cannot be

accepted without reserve. TRANSLATOR.
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If the angle surpassed 15 the lift would diminish and the

speed again increase.

A given aeroplane, therefore, cannot in fact fly below a

certain limit speed, which in the case of the Breguet already

considered, for instance, is about 63 km. per hour.

It will be further noticed that in Table I. one of the

columns, the second one, contains particulars relating only
to the Breguet type of plane. If this column were omitted,

the whole table would give the speed variation of any
aeroplane with a loading of 20 kg. per sq. m. on its

planes, for a variation in the lift coefficient of the planes.

It was this that led to the above remark, made in passing,

that it was more usual to take the lift coefficient than the

angle of incidence
;

for the former is independent of the

shape of the plane.

The speed variation of an aeroplane for a variation in its

lift coefficient can easily be plotted in a curve, which would

have the shape shown in fig. 5, which is based on the figures

in Table I.

The previous considerations relate more especially to a

study of the speeds at which a given type of aeroplane can

fly. In order to compare the speeds at which different

types of aeroplanes can fly at the same lift coefficient, we
need only return to the basic rule already set forth (p. 7).

It then becomes evident that these speeds are to one

another as the square roots of the loading.
The fact that only the loading comes into consideration

in calculating the speed of an aeroplane shows that the

speed, for a given lift coefficient, of a machine does not

depend on the absolute values of its weight and its plane
area, but only on the ratio of these latter. The most heavily
loaded aeroplanes yet built (those of the French military
trials in 1911) were loaded to the extent of 40 kg. per

sq. m. of plane area.* The square root of this number

being 6*32, an aeroplane of this type, driven by a sufficiently

* The 140-h.p. Deperdussin monocoque had a loading of 43*8 kg.

per sq. m.
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powerful engine to enable it to fly at a lift coefficient of

0*02 (the square root of whose inverse is 7'07), could have

attained a speed equal to 6*32 x 7 '07, that is, it could have

exceeded 44*5 m. per second or 160 km. per hour.

It is therefore evident that there are only two means for

increasing the speed of an aeroplane either to reduce the

20

JO

00

'sr

1"

i
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could only have been achieved with the aid of good engines

developing from 120 to 130 h.p.* So that we are still far

removed from the speeds of 200 and even 300 km. per hour

which were prophesied on the morrow of the first advent

of the aeroplane.f
In concluding these observations on the speed of aero-

planes, attention may be drawn to a rule already laid down
in a previous work,J which gives a rapid method of calculat-

ing with fair accuracy the speed of an average machine

whose weight and plane area are known.

The speed of an average aeroplane, in metres per second,

is equal to five times the square root of its loading, in kg.

per sq. m.

This rule simply presupposes that the average aeroplane
flies with a lift coefficient of 0'04, the inverse of whose

square root is 5. The rule, of course, is not absolutely

accurate, but has the merit of being easy to remember and

to apply.
EXAMPLE. What is the speed of an aeroplane weighing

900 kg., and having an area of 36 sq. m. ?

Loading=- =25 kg. per sq. m.
ob

Square root of the loading = 5.

Speed required = 5 x 5 = 25 m. per second or 90 km.

per hour.

* In previous footnotes it has already been stated that the Deper-
dussin monocoques, a 140-h.p. and a 100-h.p., have already flown at

about 170 km. per hour. But these were exceptions, and, on the whole,
the author's contention remains perfectly accurate even to-day, TRANS-
LATOR.

t The reference, of course, is only to aeroplanes designed for everyday
use, and not to racing machines. TRANSLATOR.

{ The Mechanics of the Aeroplane (Longmans, Green & Co.).



CHAPTER II

FLIGHT IN STILL AIR

POWER

IN the first chapter the speed of the aeroplane was dealt

with in its relation to the constructional features of the

machine, or its characteristics (i.e. the weight and plane

area), and to its angle of incidence. It may seem strange

that, in considering the speed of a motor-driven vehicle, no

account should have been taken of the one element which

usually determines the speed of such vehicles, that is, of the

motive-power. But the anomaly is only apparent, and

wholly due to the unique nature of the aeroplane, which

alone possesses the faculty denied to terrestrial vehicles

which are compelled to crawl along the surface of the

earth, or, in other words, to move in but two dimensions of

being free to move upwards and downwards, in all three

dimensions, that is, of space.

The subject of this chapter and the next will be to

examine the part played by the motive-power in aeroplane

flight, and its effect on the value of the speed.

In all that has gone before it has been assumed that, in

order to achieve horizontal flight, an aeroplane must be

drawn forward at a speed sufficient to cause the weight of

the whole machine to be balanced by the lifting-power

exerted by the planes. But hitherto we have left out of

consideration the means whereby the aeroplane is endowed

with the speed essential for the production of the necessary

lifting-power, and we purposely omitted, at the time, to

16
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deal with the head-resistance or drag, which constitutes, as

already stated, the price to be paid for the lift.

This point will now be considered.

Reverting to the concrete case first examined, that of the

horizontal flight at an angle of incidence of 7 of a Bleriot

monoplane weighing 300 kg. and possessing a wing area of

15 sq. m., it has been seen that the speed of this machine

flying at this angle would be 20 m. per second or 72 km.

per hour, and that the drag of the wings at the speed
mentioned would amount to 33 kg.

Unfortunately, though alone producing lift in an aero-

plane, the planes are not the only portions productive of

drag, for they have to draw along the fuselage, or inter-

plane connections, the landing chassis, the motor, the

occupants, etc.

For reasons of simplicity, it may be assumed that all these

together exert the same amount of resistance or drag as

that offered by an imaginary plate placed at right angles
to the wind, so as to be struck full in the face, whose area

is termed the detrimental surface of the aeroplane.
M. Eiffel has calculated from experiments with scale

models that the detrimental surface of the average

single-seater monoplane amounted to between f and 1

sq. m., and that of an average large biplane to about

1J sq. m.* But it is clear that these calculations can

only have an approximate value, and that the detrimental

surface of an aeroplane must always be an uncertain

quantity.

But in any case it is evident that this parasitical effect

should be reduced to the lowest possible limits by stream-

lining every part offering head-resistance, by diminishing
exterior stay wires to the utmost extent compatible with

safety, etc. And it will be shown hereafter that these

measures become the more important the greater the

speed of flight.

The drag or passive resistance can be easily calculated
* These figures have since been undoubtedly reduced.

2
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for a given detrimental surface by multiplying its area

in square metres by the coefficient O08 (found to be the

average from experiments with plates placed normally), and

by the square of the speed in metres per second.

Thus, taking once again the Bleriot monoplane, let us

suppose it to possess a detrimental surface of 0'8 sq. m.
;

its drag at a speed of 72 km. per hour 'or 20 m. per second

will be :

n . . Detrimental Square of
Coefficient. ^ SpeecL

0-08 x 0-8 x 400 -26 kg. (about).

As the drag of the planes alone at the above speed
amounts to 33 kg., it is necessary to add this figure of

26 kg., in order to find the total resistance, which is

therefore equal to 59 kg. The principles of mechanics

teach that to overcome a resistance of 59 kg. at a speed
of 20 m. per second, power must be exerted whose amount,

expressed in horse-power, is found by dividing the product
of the resistance (59 kg.) and the speed (20 m. per second)

by 75.* We thus obtain 16 h.p. But a motor of 16 h.p.

would be insufficient to meet the requirements.
For the propelling plant, consisting of motor and pro-

peller, designed to overcome the drag or air resistance of

the aeroplane, is like every other piece of machinery subject

to losses of energy. Its efficiency, therefore, is only a

portion of the power actually developed by the motor.

The efficiency of the power-plant is the ratio of useful

power that is, the power capable of being turned to effect

after transmission to the motive power.

Thus, in order to produce the 16 h.p. required for

horizontal flight in the above case of the Bleriot mono-

* This is easily understood. The unit of power, or horse-power, is

the power required to raise a weight of 75 kg. to a height of 1 m. in

1 second, so that, to raise in this time a weight of 59 kg. to a height of

20 m., we require -
h.p. Exactly the same holds good if, instead

75

of overcoming the vertical force of gravity, we have to overcome the

horizontal resistance of the air.
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plane, it would be necessary to possess an engine develop-

ing 32 h.p. if the efficiency is only 50 per cent., 26'6 h.p.

for an efficiency of 60 per cent, etc.

But if the aeroplane were to fly at an angle of incidence

other than 7 which, as already stated, would depend on

the position of the elevator the speed would necessarily

be altered. If this primary condition were modified, the

immediate result would be a variation in the drag of the

planes, in the head-resistance of the aeroplane, in the

propeller-thrust, which is equal to the total drag, and lastly,

in the useful power required for flight.

Each value of the angle of incidence and consequently
of the speed therefore has only one corresponding value

of the useful power necessary for horizontal flight.

Returning to the Breguet aeroplane weighing 600 kg.
with a plane area of 30 sq. m., on which Table I. was based,

we may calculate the values of the useful powers required
to enable it to fly along a horizontal path for different

angles of incidence and for different lifts. The detrimental

surface may be assumed, for the sake of simplicity, to be

1*2 sq. m.

The values of the drag corresponding to those of the

lift will be obtained from the polar diagram shown in

fig. 3.

Table II., p. 20, summarises the results of the calcula-

tion required to find the values of the useful powers for

horizontal flight at different lift coefficients.

Various and interesting conclusions may be drawn from

the figures in columns 8 and 9 of this Table.

In the first place, it will be noticed from the figures in

column 8 that the propeller-thrust (equivalent to the drag
of the planes added to the head-resistance of the machine,
i.e. column 6 and column 7) has a minimum value of 91 kg.,

corresponding to a lift coefficient of 0'05, and to the angle

6J. This angle, which, in the case under consideration,

is that corresponding to the smallest propeller-thrust, is

usually known as the optimum angle of the aeroplane.
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TABLE II.
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increase in the thrust exactly balances the decrease in the

The figures in column 9 again show the great expenditure

of power required for flight at a low lift coefficient. Thus,

the Breguet aeroplane already referred to, driven by a

propelling plant of 50 per cent, efficiency, flying at a lift of

0'05 that is, at a speed of 72 km. per hour only requires

an engine developing 46 h.p. ; but it would need a 136-h.p.

engine to fly with a lift of 0*02, or at about 113 km. per

hour. It is mainly on this account that, as we have already

stated, the use of low lift coefficients is strictly limited.

The variations in power corresponding to variations in

speed (and in lift) can be plotted in a simple curve.

Fig. 6 is of exceptional importance, for it may be said to

determine the character of the machine, and will hereafter

be referred to as the essential aeroplane curve.

After these preliminary considerations on the power

required for horizontal flight, we may now proceed to

examine the precise nature of the effect of the motive-

power on the speed, which will lead at the same time to

certain conclusions relating to gliding flight
*

For this, recourse must be had to one of the most elemen-

tary principles of mechanics, known as the composition
and decomposition of forces. The principle is one which

is almost self-evident, and has, in fact, already been used in

these pages, when at the beginning of Chapter I. it was

shown that in the air pressure, which is almost vertical, on

a plane moving horizontally, a clear distinction must be

made between the principal part of this pressure, which is

strictly vertical (the lift), and a secondary part, which is

strictly horizontal (the drag).

And, conversely, it is evident that for the action of two

forces working together at the same time may be substituted

* There is really no excuse for the importation into English of the

French term "vol plane," and still less for the horrid anglicism
"
volplane," since "

gliding flight
"

is a perfect English equivalent of the

French. TRANSLATOR.
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that of a single force, termed the resultant of these two

forces. This proceeding is known as the composition of

forces. So, in compounding the vertical reaction con-

stituting the lift, and the horizontal reaction which forms

70

40
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-I-

/_

5 10 IS 20 25 30

Flying Speeds (m/s)

FIG. 6.

The figures OD the curve indicate the lift.

the drift, one obtains the total air pressure, which is simply
their resultant.

Both the composition and decomposition of forces is

accomplished by way of projection. Thus (fig. 7), the force

Q,* which is inclined, can be decomposed into two forces,

* A force is represented by a straight line, drawn in the direction in

which the force operates, and of a length just proportional to the

magnitude of the force.
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F and r, vertical and horizontal respectively, by projecting

in the horizontal and vertical directions the end point A on

two axes starting from the point 0, where the forces are

applied. Conversely, these two forces F and r may be

FIG. 7.

1

Flight Path.

FIG. 8.

compounded into one resultant Q, by drawing the diagonal

of the parallelogram or rectangle of which they form two

of the sides. We may now return to the problem under

consideration.

If we take the aeroplane as a whole, instead of dealing

with the planes alone, it will be readily seen that the

horizontal component of the air pressure on the whole
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machine is equal to the drag of the planes added to the

passive or head-resistance, the while the vertical component
remains practically equal to the bare lift of the planes,

since the remaining parts of the structure of an aeroplane
exert but slight lift, if at all.* The entire pressure of the

air on a complete aeroplane in flight is therefore farther

inclined to the perpendicular than that exerted on the planes
alone.

If (see fig. 8) the aeroplane is assumed to be represented

by a single point 0, in horizontal flight, the air pressure Q
exerted upon it may be decomposed into two forces, of

which the lift F is equal and directly opposite to the

weight P, and the drag r, or total resistance to forward

movement, which must be exactly balanced by the thrust

t of the propeller.

But, supposing the engine be stopped and the propeller

consequently to produce no thrust (fig. 9), the aeroplane
will assume a descending flight-path such that the planes
still retain the single angle of 7, for instance, which we
have assumed, so long as the elevator is not moved, and

such that the air pressure Q on the planes becomes

absolutely vertical, in order to balance the weight of the

machine, instead of remaining inclined as heretofore. This

is gliding flight.

Relatively to the direction of flight, the air pressure Q
still retains its two components, of which r is simply the

resistance of the air opposed to the forward movement of

the glider. The second component F is identical to the

lifting-power in horizontal flight, and its value is obtained

by multiplying the lift coefficient corresponding to the

angle 7 by the plane area, and by the square of the speed
of the aeroplane on its downward flight path.

Fig. 9 shows that, by the very fact of being inclined, the

force F is slightly less than the weight of the machine, but,

since the gliding angle of an aeroplane is usually a slight

* For the sake of simplicity, we may consider that the tail plane,

which will be hereinafter dealt with, exerts no lift.
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one, the lifting-power F may still be deemed to be equal to

the weight of the aeroplane.

Clearly, therefore, every consideration in the first chapter

which related to the speed in horizontal flight is equally

applicable to gliding flight, so that it may be said that

FIG. 9.

when an aeroplane begins to glide, without changing its

angle, the speed remains the same as before.

In fact, horizontal flight is simply a glide in which the

angle of the flight-path has been raised 'by mechanical

means.

On comparing figs. 8 and 9 it will be seen that this angle

is that which, in fig. 8, is marked by the letter p. If this
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angle is represented, as in the case of any gradient, in

terms of a decimal fraction, it will be found to depend on
the ratio which the forces r and F bear to one another.

Hence, the following rule may be stated :

RULE. The gliding angle assumed at a given angle of
incidence by any aeroplane is equal to the thrust required

for its horizontal flight at the same angle, divided by the

weight of the machine.

Thus the Bleriot monoplane dealt with in the first

instance, which requires for horizontal flight at an angle of

7 a thrust of 59 kg., and weighs 300 kg., would assume

on its glide, at the same angle of incidence, a descending
59

flight-path equal to -, or 0197, which is equivalent to

nearly 20 cm. in every metre (1 in 5). The Breguet

aeroplane on which Tables I. and II. were based, weighing
600 kg., would assume at different angles (or lift coefficients)

the gliding angles shown in Table III.

TABLE III.

Lift.
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angle of the aeroplane. The latter, therefore, is the best

from the gliding point of view, so far as the length of the

glide is concerned.

In fig. 10, starting from a point O, are drawn dotted lines

corresponding to the gliding angle given in column 6 of

Table III., and on these lines are marked off distances

proportional to the speed values set out in columns 3 or 4
;

the diagram will then give, if the points are connected

into a curve, the positions assumed, in unit time, by a

glider, launched at the various angles from the point O.

It will be observed in the first place that any given

gliding path, such as OA, for instance, cuts the curve at

two points, A and B, thus showing that this gliding path
could have been traversed by the aeroplane at two different

speeds, OA and OB, corresponding to the two different

angles of incidence, 1 and 15 in the present case.

Only for the single gliding path OM, corresponding to

the smallest gliding slope and the optimum angle of inci-

dence, do these two points coincide.

But it is not by following this gliding path that an aero-

plane will descend best in the vertical sense during a given

period of time
;
for this it will only do by following the

path OE corresponding to the highest point on the curve,

and the angle of incidence to be adopted to achieve this

result is none other than the economical angle. But the

difference in the rate of fall is only slight for the example
in question.

It will be noted that as the angle of incidence diminishes,

the gliding angle rapidly becomes steeper. If the curve

were extended so as to take in very small angles of

incidence, it would be found that at a lift coefficient of

0'015 the gliding path would already have become very

steep, that this steepness would increase very rapidly for

the coefficient 0*010, and that at 0'005 it approached a

headlong fall. The fall, in fact, must become vertical when
the lift disappears, that is, when the plane meets the air

along its imaginary chord.
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In these conditions, a slight variation in the lift there-

fore brings about a very large alteration in the gliding

angle, and this effect is the more intense the smaller the

lift coefficient. The glide becomes a dive. Hence it is

clear that this is another danger of adopting a low lift

coefficient.

This brief discussion on gliding flight, interesting enough
in itself, was necessary to a proper understanding of the

part played by power in the horizontal flight of an aero-

plane, for we can now regard the latter in the light of

a glide in which the gliding path has been artificially

raised.

And this raising of the gliding path is due to the power
derived from the propelling plant.

This will be better understood if we assume that, during
the course of a glide, the pilot started up his engine again
without altering the position of the elevator, so that the

planes remained at the same angle as before
;
the gliding

path would gradually be raised until it attained and even

surpassed the horizontal, while the aeroplane (as has been

seen) would approximately maintain the same speed

throughout.
Hence it may be said that when the angle of incidence

remains constant, the speed of an aeroplane is not produced

by its motive-power, as in the case of all other existing

vehicles, since, when the motor is stopped, this speed is

maintained.

The function of the power-plant is simply to overcome

gravity, to prevent the aeroplane from yielding, as it

inevitably must do in calm air, to the attraction of the

earth
;
in other words, to govern its vertical flight.

In the case now under consideration, the speed therefore

is wholly independent of the power, since, as has been seen,

it is entirely determined by the angle of incidence, and if

this remains constant, as assumed, any excess of power will

simply cause the aeroplane to climb, while a lack of power
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will cause it to come down, but without any variation in
the speed.

But this must not be taken to imply that the available

motive-power cannot be transformed into speed, for such,

happily, is not the case. Hitherto the elevator has been

assumed to be immovable so that the incidence remained

constant.

As a matter of fact, the incidence need only be diminished

through the action of the elevator in order to enable the

aeroplane to adopt the speed corresponding to the new

angle of the planes, and in this way to absorb the excess

of power without climbing.

Nevertheless and the point should be insisted upon as

it is one of the essential principles of aeroplane flight the

angle of incidence alone determines the speed, which cannot

be affected by the power save through the intermediary of

the incidence.

Hitherto we have constantly alluded to the different

speeds at which an aeroplane can fly, as if, in practice,

pilots were able to drive their machines at almost any

speed they desired. In actual fact, a given aeroplane

usually only flies at a single speed, so that we are in

the habit of referring to the X biplane as a 70 km.

per hour machine, or of stating that the Y monoplane
does 100 km. per hour. This is simply because up to

now, and with very few exceptions, pilots run their engines
at their normal number of revolutions. In these conditions

it is evident that the useful power furnished by the

propelling plant determines the incidence, and hence

the speed.

Thus, referring once again to Table II., it will be seen

for example that, if the Breguet biplane receives 29 h.p.

in useful power from its propelling plant, the pilot, in

order to maintain horizontal flight, will have to manipulate
his elevator until the incidence of the planes is approxi-

mately 4, which corresponds to the lift 0*040.

The speed, then, would only be about 80 km. per hour.
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Experience teaches the pilot to find the correct position

of the elevator to maintain horizontal flight. Should the

engine run irregularly, and if the aeroplane is to maintain

its horizontal flight, the elevator must be slightly actuated

in order to correct this disturbing influence.

Horizontal flight, therefore, implies a constant mainten-

ance of equilibrium, whence the designation equilibrator

which is often applied to the elevator, derives full justifi-

cation.

But if the engine is running normally, the incidence, and

consequently the speed, of an aeroplane remain practically

constant, and these constitute its normal incidence and

speed.

Generally the engine is running at full power during

flight, and so in the ordinary course of events the normal

speed of an aeroplane is the highest it can attain.

But there is a growing tendency among pilots to

reserve a portion of the power which the engine is

capable of developing, and to throttle down in normal

flight. In this case the reserve of power available may
be saved for an emergency, and be used the case will be

dealt with hereafter for climbing rapidly, or to assume

a higher speed for the time being. In this case the

normal speed is, of course, no longer the highest possible

speed.

In the example already considered, the Breguet biplane
would fly at about 80 km. per hour, if it possessed useful

power amounting to 29 h.p.

But by throttling down the engine so that it normally

only produced a reduced useful power equivalent to 24 h.p.,

the normal speed of the machine, according to Table II.,

would only be 72 km. per hour (the normal incidence being
6i and the lift 0*050).

The pilot would therefore have at his disposal a surplus
of power amounting to 5 h.p., which he could use, by
opening the throttle, either for climbing or for temporarily

increasing his speed to 80 km. per hour.
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Although, therefore, an aeroplane usually only flies at

one speed, which we call its normal speed, it can perfectly
well fly at other speeds, as was shown in Chapter I. But,
in order to obtain this result, it is essential that on each

occasion the engine should be made to develop the precise

amount of power required by the speed at which it is

desired to fly.

Speed variation can therefore only be achieved by

simultaneously varying the incidence and the power, or, in

practice, by operating the elevator and the throttle together.
This may be accomplished with greater or less ease

according to the type of motor in use, but certain pilots

practise it most cleverly and succeed in achieving a very
notable speed variation, which is of great importance,

especially in the case of high-speed aeroplanes, at the

moment of alighting.

As has already been explained, the horizontal flight of an

aeroplane may be considered in the light of gliding flight

with the gliding angle artificially raised. From this point

of view it is possible to calculate in another way the power

required for horizontal flight.

For instance, if we know that an aeroplane of a given

weight, such as 600 kg., has, for a given incidence,

a gliding angle of 16 cm. per metre (approximately
1 in 6) at which its speed is 22*3 m. per second, we

conclude that in 1 second it descended 016 x 22'3 =
3*58 m. Hence, in order to overcome its descent and

to preserve its horizontal flight, it would be necessary to

expend the useful power required to raise a weight of

600 kg. to a height of 3'58 m. in 1 second. Since

1 h.p. is the unit required to raise a weight of 75

kg. to a height of 1 m. in 1 second, the desired

useful power = =-= = about 29 h.p. This, as a matter
75

of fact, is the amount given by Table II. for the Bre"guet

biplane which complies with the conditions given.

In order to find the useful power required for the
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horizontal flight of an aeroplane flying at a given

incidence, and hence at a given speed, multiply the weight

of the machine by this speed and by the gliding angle

corresponding to the incidence, and divide by 75.

By a similar method one may easily calculate the useful

power required to convert horizontal flight into a climb at

any angle.

Thus, if the aeroplane already referred to had to climb,

always at the same speed of 22*3 m. per second, at an angle
of 5 cm. per metre (1 in 20), it would be necessary to expend
the additional power

0-05 x 600 x 22-3
^ - = about 9 h.p.75

Of course, this expenditure of surplus power would be

greater the smaller the efficiency of the propeller, and

would be 12 h.p. for 75 per cent, efficiency, and 18 h.p.

for 50 per cent, efficiency.

Clearly, this method of making an aeroplane climb by

increasing the motive-powercan only be resorted to if

there is a surplus of power available, that is, if the engine
is not normally running at full power, which until now is

the exception.

For this reason, when, as is generally the case, the engine
is running at full power, climbing is effected in a much

simpler manner, which consists in increasing the angle of

incidence of the planes by means of the elevator.

Let us once more take our Br6guet biplane which, with

motor working at full power, flies at a normal speed of

22'3 m. per second (80'3 km. per hour) at 4 incidence (or

a lift coefficient of 0'040). The useful power needed to

achieve this speed (see Table II.) is 29 h.p.

Assume that, by means of his elevator, the pilot increases

the angle of incidence to 10 (lift coefficient OO60). Since

horizontal flight at this incidence, which must inevitably
reduce the speed to 18'2 m. per second or 65*6 km.

per hour, would only require 23 h.p., there will be an
3
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excess of power amounting to 6 h.p.,* and the aeroplane
will rise.

The climbing angle can be calculated with great ease.

The method is just the converse of the one we have just

employed, and thus consists in dividing 6x75 (representing

the surplus power) by 600 x 20 (weight multiplied by speed),

which gives an angle of 3'75 cm. per metre (1 in 27

about).

This climbing rate may not appear very great ; still, for

a speed of 18*2 m. per second, it corresponds to a climb

of 68 cm. per second = 41 m. per minute = 410 m. in 10

minutes, which is, at all events, appreciable.

The aeroplane, therefore, may be made to climb or to

descend by the operation of the elevator by the pilot.

More especially is the elevator used for starting. In

this case the elevator is placed in a position corresponding

to a very slight incidence of the main planes, so that these

offer very little resistance to forward motion when the

motor is started and the machine begins to run along the

ground. As soon as the rolling speed is deemed sufficient,

the elevator is moved to a considerable angle, which causes

the planes to assume a fairly high incidence, and the aero-

plane rises from the ground.

* This is not strictly correct, since, as will be seen hereafter, the

propeller efficiency varies to some extent with the speed of the aeroplane ;

still, we shall not make a grievous error in assuming that the efficiency

remains the same.



CHAPTER III

FLIGHT IN STILL AIR

POWER (concluded)

THE second chapter was mainly devoted to explaining how
one may calculate the useful power required for horizontal

flight, at the various angles of incidence and at the different

lift coefficients in other words, at the various speeds of a

given aeroplane.

In addition, gliding flight has been briefly touched on,
and has served to show the precise manner in which the

power employed affects the speed of the aeroplane.
In the present chapter this discussion will be completed ;

it will be devoted to finding the best way of employing the

available power to obtain speed. Incidentally, we shall

have occasion to deal briefly with the limits of speed which
the aeroplane as we know it to-day seems capable of

attaining.

It has been shown that the flight of a given aeroplane

requires a minimum useful power, and that this is only

possible when the angle of incidence is that which we have
termed the economical angle.

The power would therefore be turned to the best account,

having regard merely to the sustentation of the aeroplane,

by making it fly normally at its economical angle.

But, on the other hand, this method is most defective

from the point of view of speed, for as fig. 6 (Chapter II.)

clearly shows, when the machine flies at its economical

angle, a very slight increase in power will increase the
35
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speed to a considerable extent. Besides, the method in

question would be worthless from a practical point of view,

since it is evident that an aeroplane flying under these

conditions would be endangered by the slightest failure of

its engine.

Such, in fact, was the case with the first aeroplanes which

actually rose from the ground; they flew "without a

margin," to use an expressive term. And even to-day the

same is true of machines whose motor is running badly :

in such a case the only thing to be done is to land as soon

as possible, since the aeroplane will scarcely respond to the

controls.

The other characteristic value of the angle of incidence

referred to in Chapter II., there called the optimum angle,

corresponds to the least value of the ratio between the

propeller-thrust and the weight of the aeroplane, or to its

equivalent the best gliding angle.

For the best utilisation of the power in order to obtain

speed, which alone concerns us for the moment, there is a

distinct advantage attached to the use of the optimum angle

for the normal incidence of the machine
;
Colonel Renard,

indeed, long ago pointed out that by using the optimum

angle for normal flight in preference to the economical

angle, one obtained 32 per cent, increase in speed for an

increase in power amounting to 13 per cent. only.

In any case, when the incidence is optimum the ratio

between the speed and the useful power required to obtain

it is largest. This is easily explained by reference to

Chapter II., which showed that the useful power required

for horizontal flight at a given incidence is proportional to

the speed multiplied by the gliding angle of the aeroplane

at the same incidence.

When the gliding angle is least (i.e. flattest), that is,

when the incidence is that of the optimum angle, the ratio

of power to speed is also smallest, and hence the ratio of

speed to maximum power.

It would therefore appear that by using the optimum
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angle as the normal incidence we would obtain the best

results from the point of view with which we are at present

concerned, which is that of the most profitable utilisation

of the power to produce speed. This, in fact, is generally

accepted as the truth, and in his scale model experiments
M. Eiffel always recorded this important value of the angle

of incidence, together with the corresponding flattest gliding

angle.

Nevertheless we are not prepared to accept as inevitably

true that the optimum angle is necessarily the most

advantageous for flight, so far as the transmutation of

power into speed is concerned. This will now be shown

by approaching the question in a different manner, and by

finding the best conditions under which a given speed can

be attained.

The power required for flight is proportional, as has been

shown, to the propeller-thrust multiplied by the speed.

Hence, on comparing different aeroplanes flying at the same

speed, it will be found that the values of the power ex-

pended to maintain flight will have the same relation to one

another as the corresponding values of the propeller-thrust.

If we assume that the detrimental surface of each one

of these aeroplanes is identical, the head-resistance will be

the same in each case, since it is proportional to the

detrimental surface multiplied by the square of the speed

(which is identical in every case).

It follows that the speed in question will be attained

most economically by the aeroplane whose planes exert

the least drag. Now, it was shown in Chapter II. that

the drag of the wings of an aeroplane is a fraction of the

weight of the machine equal to the ratio between the

drag coefficient and the lift coefficient corresponding to

the incidence at which flight is made.

If we assume, therefore, that the weight of each aero-

plane is identical, it follows that the best results are given

by that machine whose planes in normal flight have the

smallest drag-to-lift ratio.
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Reference to the polar diagrams (Chapter I., figs. 1, 2, 3,

and 4) shows that the minimum drag-to-lift ratio occurs

at the angle of incidence corresponding to the point on

the curve where a straight line rotated about the centre

O'OO comes into contact with the curve. This angle of

incidence is beyond all question, for any aeroplane provided
with planes of the types under consideration, the most

profitable from our point of view
;

this angle, in other

words, is that at which an aeroplane of given weight can

fly at a given speed for the least expenditure of power,
and this for any weight and speed. Hence this is the

angle at which an aeroplane possessing one of these wing
sections should always fly in theory. Accordingly, it may be

termed the best angle of incidence, and the corresponding
lift coefficient the best lift coefficient.

The value of the best incidence only depends on the

wing section, but it is always smaller than the optimum
angle, which in its turn depends not only on the wing
section but also on the ratio of the detrimental surface to

the plane area.

A straight line rotated from the centre O'OO in figs. 2,

3, and 4 indicates that the best lift coefficients for M. Farman,

Br6guet, and Bleriot XL plane sections are respectively

0'017, O035, and 0*047, corresponding to the best angles
of incidence 1J, 2J, and 6. These values can only be

determined with some difficulty, however, since the curves

are so nearly straight at these points that the rotating line

would come into contact with the curves for some distance

and not at one precise point alone.

On the other hand, it is evident that the drag-to-lift ratio

only varies very slightly for a series of angles of incidence,

the range depending on the particular plane section, so

that one is justified in saying that each type of wing

possesses not only one best incidence and one best lift, but

several good incidences and good lifts.

Thus, for the Maurice Farman section, the good lifts lie

between 0*010 and 0'025 approximately, and the corre-
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spending good incidences extend from 1 to 4, while the

drag-to-lift ratio between these limits remains practically

constant at 0'065.

For the Breguet wing, the good lifts are between 0'030

and 0'045, the good incidences between 3 and 6, and the

drag-to-lift ratio remains about 0'08.

Lastly, for the Bleriot XI. the same values read as

follows : 0-030 and 0'055, 3 and 6, and about 0'105.

Even at this point it becomes evident that the use of

slightly cambered wings is the more suitable for flight

with a low lift coefficient, and that for a large lift a heavily

cambered wing is preferable.

If the optimum angle of an aeroplane, which depends,
as already shown, on the ratio between the detrimental

surface and the plane area, is included within the limits

of the good incidences, its use as the normal angle of

incidence remains as advantageous as that of any other
"
good

"
incidence. But if it is not included,* flight at the

optimum angle would require, in theory at all events, a

greater expenditure of power than would be required under

similar conditions if flight took place at any of the good
incidences.

This shows that the optimum angle is not necessarily

that at which an aeroplane should fly normally in order to

use the power most advantageously.
To sum up : the normal speed should always correspond

to a "
good

"
angle of incidence.

Should this not be the case in fact, it would be possible

to design an aeroplane which, for the same weight and

detrimental surface as the one under consideration, could

achieve an equal speed for a smaller expenditure of power.
A concrete example will render these considerations

clearer.

In Table II. (Chapter II.) there was set out the variation

* This would be possible more particularly in the case of aeroplanes
with very slightly cambered planes and small wing area and considerable

detrimental surface.
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of the useful power required for the horizontal flight of a

Bre"guet aeroplane weighing 600 kg., with a plane area of

30 sq. m. and a detrimental surface of T20 sq. m., according

to its speed.

Let us assume that the useful power 24 h.p. developed

by the propeller makes the aeroplane fly normally at

O'OSO lift, or at its optimum incidence. The speed will

then be 72 km. per hour or 20 m. per second. This lift

coefficient O'OSO, be it noted, is slightly greater than

the highest of the good incidences peculiar to the

Br6guet section.

Now let us take another aeroplane of the same type, also

weighing 600 kg. and with the same detrimental surface

of 1'20 sq. m., but with 40 sq. m. plane area, which should

still fly at the same speed of 20 m. per second.

The lift coefficient may be obtained (cf. Chapter I.) by

dividing the loading of the planes (15 kg.) by the square of

the speed in metres per second (400), which gives 0'0375.

Now this is one of the good lift coefficients of the Bre'guet

plane. In these conditions, therefore, the drag-to-lift ratio

will assume the constant value of about 0*08 common to all

good incidences.

It follows that the drag of the planes will be equal to

the weight, 600 kg. x 0*08 = 48 kg.

The head-resistance, on the other hand, will remain the

same as in the original aeroplane whose speed was 72 km.

per hour, since head-resistance is dependent simply on the

amount of detrimental surface and on the speed (neither of

which undergoes any change). The head-resistance, there-

fore (cf. Chapter II.), equals 38 kg.

The propeller-thrust, equal to the sum of head-resistance

and drag of the planes, will be 86 kg., and the useful power

required for flight
=

Thrust (86) x speed = abQut ^
75

The figure thus obtained is less than the 24 h.p. of useful
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power required to make the aeroplane first considered fly

at 72 km. per hour.

Therefore, in theory at all events, the optimum angle is

not necessarily the most advantageous from the point of

view of the least expenditure of power to obtain speed.

But in practice the small saving in power would probably
be neutralised owing to the difficulty of constructing two

aeroplanes of the same type with a plane area of 30 and

40 sq. m. respectively without increasing the weight and

the detrimental surface of the latter. Hence the advantage
dealt with would appear to be purely a theoretical one in

the present case.

But this would not be so with an aeroplane whose normal

angle of incidence was smaller than the good incidences

belonging to its particular plane section. For instance, let

us assume that the propeller of the Breguet aeroplane

(vide Table II.) furnishes normally 68 useful h.p., which

would give the machine a speed of 113'6 km. per hour or

31 '6 m. per second, at the lift 0*020, which is less than the

good lifts for this plane section.

Now take another Breguet aeroplane of the same weight
and detrimental surface, but with a plane area of only
20 sq. m. Calculating as before, it will be found that in

order to achieve a speed of 113'6 km. per hour, this machine

would have to fly with a lift of 0'030, which is one of the

good lifts, and that useful power amounting to only 60 h.p.

would be sufficient to effect the purpose. This time the

advantage of using a good incidence as the normal angle is

clearly apparent.
As a matter of fact, in practice the advantage would

probably be even more considerable, since a machine with

20 sq. m. plane area would probably be lighter and have

less detrimental surface than a 30 sq. m. machine.

Care should therefore be taken that the normal angle of
an aeroplane is included among the good incidences

belonging to its plane section, and, above all, that it is not

smaller than the good incidences.
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This manner of considering good incidences and lifts

provides a solution of the following problem which was

referred to in Chapter I. :

Since there are only two means of increasing the speed

of an aeroplane either by increasing the plane loading
or by reducing the lift coefficient which of these is the

more economical ?

To begin with, the question will be examined from a

theoretical point of view, by assuming that the adoption of

either means will have the same effect in each case on the

weight and the detrimental surface, since the values of

these must be supposed to remain the same in the various

machines to enable our usual method of calculation to be

applied.

This being so, it will be readily seen that as long as the

normal lift remains one of the good lifts, both means of

increasing the speed are equivalent as far as the expenditure
of useful power is concerned.

On the one hand, since the drag-to-lift ratio retains

approximately the same value for all good lifts, the drag
of the planes will remain for every angle of incidence a

constant fraction of the weight, which is assumed to be in-

variable. On the other hand, at the speed it is desired to

attain, the head-resistance, proportional to the detrimental

surface, which is also assumed to be invariable, will remain

the same in both cases. Consequently, the propeller-thrust,

equal to the sum of the two resistances (drag of the planes

-h head-resistance), and hence the useful power, will retain

the same value by whichever of the two methods the

increase in speed has been obtained.

But if the lift had already been reduced to the smallest

of the good lift values, and it was still desired to increase

the speed, the most profitable manner of doing this would

be to increase the loading by reducing the plane area. So

much for the theoretical aspect of the problem.

Purely practical considerations strengthen these theor-

etical conclusions, in so far as they clearly prove the ad-
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vantage of increasing the speed by the reduction of plane

area, even where the lift remains one of the good lift

values.

Indeed, in practice the two methods are no longer equiva-

lent in the latter case, since, as already mentioned, the

reduction of the wing area is usually accompanied by a

decrease in the weight and detrimental surface.

Generally speaking, it is therefore preferable to take the

highest rather than the lowest of the good lifts as the

normal angle of incidence, and this conclusion tallies,

moreover, with that arising from the danger of flying

at a very low lift. Finally, the normal angle would thus

remain in the neighbourhood of the optimum angle,

which is an excellent point so far as a flat gliding angle
is concerned.*

Obviously, the advantage of the method of increasing
the speed by reducing the plane area over that consisting
in reducing the lift becomes greater still in the case where

the latter method, if applied, would lead to the lift being
less than any of the good lift values.

The disadvantage of greatly reducing the plane area

to obtain fast machines is the heavy loading which it

entails and the lessening of the gliding qualities. The best

practical solution of the whole problem would therefore

appear to consist in a judicious compromise between these

two methods.

As usual, a concrete example will aid the explanation

given above.

Let the Bre"guet aeroplane already referred to be supposed
to fly at a speed of 92'8 km. per hour with a lift of O f

030,

which is the lowest of its good lift values. Table II. shows

that this would require 38 h.p.

Another machine of the same type, and having the same

weight and detrimental surface, but with an area of only
20 sq. m. (instead of 30), in order to attain the same speed
*

Chapter X. will show that this conclusion is strengthened still

further by the effect of wind on the aeroplane.
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would have to fly at 0'040 lift, which is also one of the

good lift values.

The necessary calculations would show that the latter

machine, like the former, would also require 38 h.p. This is

readily explicable on the score that the drag of the planes
is 0'08 of the weight, or 48 kg., while the head-resistance

also remains constant and equal to 64 kg. (Table II.).

In theory, therefore, there is nothing to choose between
either solution. But in practice the latter is preferable,
since the 20 sq. m. machine would in all likelihood be lighter
and possess less detrimental surface.

But if a speed of 11 3'6 km. per hour were to be attained,

the 20 sq. m. aeroplane has a distinct advantage both in

theory, and even more in practice, for the machine with

30 sq. m. area would have to fly at 0*020 lift, which is

lower than the good lift values belonging to the Breguet

plane section, which would, as already shown, require
useful power amounting to 68 h.p., whereas 60 .h.p. would
suffice to maintain the smaller machine in flight at the

same speed.

We have already set forth the good lift values belonging
to the Maurice Farman, Breguet, and Bleriot XI. plane

sections, and the corresponding values of the drag-to-lift

ratio or, its equivalent, the ratio of the drag of the planes
to the weight of the machine.

Reference to these values has already shown that slightly
cambered planes are undoubtedly more economical for low

lift values, which are necessary for the attainment of high

speeds, especially in the case of lightly loaded planes, as in

some biplanes.

But the good lift values of very flat planes are usually

very low from 0*010 to 0*025 in the case of the Maurice

Farman which greatly restricts the use of these values,

since, as already stated, it is doubtful whether hitherto an

aeroplane has flown at a lower lift value than 0*020.

The advantages and disadvantages of these three wing
sections, from the point of view at issue, will be more readily
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O.Q a

seen by plotting their polar curves in one diagram, as

shown in fig. 11.

The Breguet and Maurice Farman curves intersect at

a point corresponding to the

lift value O030, whence we

may conclude that for all lift

values lower than this, the

Maurice Farman section is

the better,* but for all lift

values higher than 0'032

(which at present are more

usual), the Breguet wing
has a distinct advantage.

In the same way, the

Maurice Farman is better

than the Bleriot XI. for

lift values below 0'042,

whereas the latter is better

for all higher lift values.

Finally, the Bleriot XI.

only becomes superior to

the Breguet for lift values

in excess of O065, which

are very high indeed, and

little used owing to the

fact that they correspond
to angles in the neighbour-
hood of the economical

angle.

To apply these various

considerations, we will now

proceed to fix the best con-

ditions in which to obtain

of 160 km. per

0.07

Q.06

0.05

0.0*

0.03

0.02

0.01

0.00
0.00

FIG. 11.

hour or about 44'5 m. per second, which appears to be

the highest speed which it seems at present possible to

* Since it has a smaller drag for the same lift.
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reach,* that is, by assuming it to be possible to have a

loading of 40 kg. per sq. m. of surface and to fly at a lift

value of 0-020.

In laying down this limit to the speed of flight we also

stated our belief that, in order to enable it to be attained,

engines developing from 120 to 130 effective h.p. would

have to be employed.
This opinion was founded on the results of M. Eiffel's

experiments, from which it was concluded that an aeroplane
to attain this speed would have to possess a detrimental

surface of no more than 0'75 sq. m.

Now, the last two Aeronautical Salons, those of 1911

and 1912, have shown a very clearly marked tendency

among constructors to reduce all passive resistance to the

lowest possible point, especially in high-speed machines,

and it would appear that in this direction considerable

progress has been and is being made.

One machine in particular, the Paulhan-Tatin "
Torpille,"

specially designed with this point in view, is worthy of

notice.

Its designer, the late M. Tatin, estimated the detrimental

surface of this aeroplane at no more than 0*26 sq. m., and

its resistance must in fact have been very low, since it had

the fair-shaped lines of a bird, every part of the structure

capable of setting up resistance being enclosed in a shell-like

hull from which only the landing wheels, reduced to the

utmost verge of simplicity, projected.

Taking into account the slightly less favourable figures

obtained by M. Eiffel from experiments with a scale model,

the detrimental surface of the "
Torpille

"

may be estimated

at 0'30 sq. m.

According to information given by M. Tatin himself, the

weight of this monoplane was 450 kg., and its plane area

12'5 sq. m.

* It should, however, be remembered that this limit has actually

been exceeded, with a loading of 44 kg. per sq. m. and a lift value

of slightly less than 0*020. See also Translator's note on p. 12.
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Let us assume that the planes, which were only very

slightly cambered, were about equivalent to those of the

Maurice Farman, and that they flew at a good lift coefficient.

In that case the drag of the planes would be equal to 0*065

of the weight of the machine, or to 29'5 kg.

On the other hand, at the speed of 44'5 m. a second, the

head-resistance=
r. . Detrimental Square of
Coefficient.

gurface> J gpeed>

0-08 x 0-3 x 1980 = 47*5 kg.

The propeller-thrust, consequently, the sum of both

resistances, would = 77 kg.

The useful power required would thus =

77x44-5 = about45 n..p.

Propeller efficiency in this case must have been exception-

ally high (as will be seen hereafter), and was probably in

the region of 80 per cent.

The engine-power required to give the "
Aero-Torpille

"
a

46
speed of 160 km. per hour must therefore have been T^

=

57 h.p., or approximately 60 h.p.

M. Tatin considered that he could obtain the same result

with even less motive-power, and that some 45 h.p. would

suffice. If this proves to be the case, the detrimental

surface of the aeroplane would have to be less than 0*30

sq. m. and the propeller efficiency even higher than 80 per

cent., or else and this was M. Tatin's own opinion the

coefficients derived from experiments with small scale

models must be increased for full-size machines, their

value possibly depending in some degree on the speed.*

* No proof, as a matter of fact, was possible owing to the short life of

the machine. But the results obtained from other machines in which

stream-lining had been carried out to an unusual degree, such as the

Deperdussin "monocoque" which, with an engine of 85-90 effective

h.p., only achieved 163 km. per hour would appear to show that the
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It should also be noted that, in order to attain 160 km.

per hour, the Tatin "
Torpille

"
would have to fly at a lift

coefficient equal to_36 (loadi g) = 0-018
1980 (square of the speed)

Perhaps it will seem strange that simply by estimating
the value of the detrimental surface at 0'30 instead of the

previous estimate of 0*75, the motive-power required for

flight at 160 km. per hour should have been reduced by
one-half. Yet there is no need for surprise ; for if the

method for calculating the useful power necessary for

horizontal flight (set forth in Chapter II., and since applied
more than once) is carefully examined, it becomes evident

that, whereas that portion of the power required only for

lifting remains proportional to the speed, the remaining

portion, used to overcome all passive resistance, is propor-
tional to the cube of the speed.

For this reason it is of such great importance to cut down
the detrimental surface in designing a high-speed machine.

Thus, in the present case, of the 46 h.p. available, only
18 h.p. are required to lift the machine. The remain-

ing 28 h.p., therefore, are necessary to overcome passive
resistance.

Had the detrimental surface been 0'75 sq. m. instead of

0*30, the useful power absorbed in overcoming passive

resistance would have been

521^ = 70 h.p. instead of 28 h.p.

To complete our examination of the high-speed aeroplane,

Table IV. has been drawn up, and includes the values of the

useful power required on the one hand for the flight of a

Maurice Farman plane at a good incidence, and weighing

estimate of 0*30 sq. m. for the detrimental surface was too low, a con-

clusion supported by M. Eiffel's experiments.

It is doubtful whether an aeroplane has yet been built with a detri-

mental surface of much less than half a square metre.
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1 ton (metric), and on the other for driving through the

air a detrimental surface of 1 sq. m. at speeds from 150

to 200 km. per hour.

TABLE IV.

Km.
per hr.

Metres

per sec.

Drag of

Planes (kg.)

per aeroplane
ton.

13
" ^

> fS (N

?-
1

-PCs ST a'

" O
&C .

'55 H "
<B "H -

6

150

160

170

180

190

200

41-6

44^ !

47-2

50-0

52-8

55-6

65 36

38

41

43

46

48

138

157

178

200

232

248

76

93

112

132

157

184

According to this Table, an aeroplane weighing 500 kg.,

and possessing, as we supposed in the case of the Tatin
"
Torpille," a detrimental surface of 0'30 sq. m., would require

a useful power of about 80 h.p. to attain a speed of 200

km. per hour. This high speed could therefore be achieved

with a power-plant consisting of a 100-h.p. motor and

a propeller of 80 per cent, efficiency. It could only be

obtained just as the "
Torpille

"
could only achieve 160

km. per hour at a lift coefficient of 0*018 with a plane

loading of about 56 kg. per sq. m. Consequently, the

500
area of the planes would be only

- ~ = 9 sq. m.

If the theoretical qualities of design of machines of the
"
Torpille

"

type are borne out by practice
* our present

*
But, according to what has already been said, this does not seem to

be the case. Hence, a speed of 200 km. per hour is not likely to be

4
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motors would appear to be sufficient to give them a speed
of 200 km. per hour. But this would necessitate a very

heavy loading and a lift coefficient much lower than any
hitherto employed a proceeding which, as we have seen, is

not without danger. Moreover, one cannot but be uneasy
at the thought of a machine weighing perhaps 500 or 600

kg. alighting at this speed.

This, beyond all manner of doubt, is the main obstacle

which the high-speed aeroplane will have to overcome, and

this it can only do by possessing speed variation to an

exceptional degree. We will return to this aspect of the

matter subsequently.

To-day an aeroplane, weighing with full load a certain

weight and equipped with an engine giving a certain power,
in practice flies horizontally at a given speed.

These three factors, weight, speed, and power, are always
met with whatever the vehicle of locomotion under con-

sideration, and their combination enables us to determine

as the most efficient from a mechanical point of view that

vehicle or machine which requires the least power to attain,

for a constant weight, the same speed.

Hence, what we may term the mechanical efficiency

of an aeroplane may be measured through its weight

multiplied by its normal speed and divided by the motive-

power.
If the speed is given in metres per second and the power

in h.p., this quotient must be divided by 75.

RULE. The mechanical efficiency of an aeroplane is

obtained by dividing its weight multiplied by its normal

speed (in metres per second) by 75 times the power, or, what

is the same thing, by dividing by 270 times the power the

product of the weight multiplied by the speed in kilometres

per hour.

EXAMPLE. An aeroplane weighing 950 kg., and driven

attained with a 100-h.p. motor. Whether an engine developing 140 h.p.

or more will succeed in this can only be shown by the future, and

perhaps at no distant date. See footnote, p. 12.
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by a IQQ-h.p. engine, flies at a normal speed of 117 km. per
hour. What is its mechanical efficiency ?

950x117 '

Reference to what has already been said will show that

mechanical efficiency is also expressed by the propeller

efficiency divided by the gliding angle corresponding to

normal incidence. This is due to the fact that, firstly, the

useful power required for horizontal flight is the 75th part
of the weight multiplied by the speed and the normal

gliding angle, and, secondly, because the motive-power is

obtained by dividing the useful power by the propeller

efficiency. Accordingly, a machine with a propeller efficiency

of 70 per cent., and with a normal gliding angle of 0*17,

0'7
would have a mechanical efficiency

= .

p-
= 4r12.

This conception of mechanical efficiency enables us to

judge an aeroplane as a whole from its practical flying

performances without having recourse to the propeller

efficiency and the normal gliding angle, which are difficult

to measure with any accuracy.

Even yesterday a machine possessing mechanical efficiency

superior to 4 was still, aerodynamically considered, an

excellent aeroplane. But the progress manifest in the

last Salon entitles us, and with confidence, to be more

exacting in the future.

Hence, the average mechanical efficiency of the ordinary
run of aeroplanes enables us in some measure to fix definite

periods in the history of aviation. In 1910, for instance,

the mean mechanical efficiency was roughly 3*33, on which

we based the statement contained in a previous work that,

in practice, 1 h.p. transports 250 kg. in the case of an

average aeroplane at 1 m. per second.

This rule, which obviously only yielded approximate

results, could be applied both quickly and easily, and enabled

one, for instance, to form a very fair idea of the results
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that would be attained in the Military Trials of 1911. In

fact, according to the rules of this competition, the aero-

planes would have to weigh on an average 900 kg

To give them a speed of 70 km. per hour or ^ m. per

900 70
second, for instance, the rule quoted gives x .

But 250 x 3*6 remains the denominator whatever the speed

it is desired to attain, and is exactly equal to 900, the

weight of the aeroplane. From this, one deduced that in

this case the power required in h.p. was equivalent to

the speed in kilometres per hour :

70 km. per hour .... 70 h.p.

80 .... 80 h.p.

100 . . . .100 h.p.

If, on the other hand, certain machines during these trials,

driven by engines developing less than 100 effective h.p.,

flew at over 100 km. per hour, this was due simply to

their mechanical efficiency being better than the 3 '33 which

obtained in 1910, and was already too low for 1911.

At the present day, therefore, accepting 4 as the average
mechanical efficiency, the practical rule given above should

be modified as follows :

RULE. 1 h.p. transports 300 kg, of an average aeroplane

at 1 m. per second.



CHAPTER IV

FLIGHT IN STILL AIR

THE POWER-PLANT

BOTH this chapter and the next will be devoted to the

power-plant of the aeroplane as it is in use at the present
time. This will entail an even closer consideration of the

part played by the motive-power in horizontal and oblique

flight, and will finally lead to several important conclusions

concerning the variable-speed aeroplane and the solution of

the problem of speed variation.

The power-plant of an aeroplane consists in every case

of an internal combustion motor and one or more propellers.

Since the present work is mainly theoretical, no description

of aviation motors will be attempted, and only those of

their properties will be dealt with which affect the working
of the propeller.

Besides, the motor works on principles which are beyond
the realm of aerodynamics, so that from our point of view

its study has only a minor interest. It forms, it is true, an

essential auxiliary of the aeroplane, but only an auxiliary.

If it is not yet perfectly reliable, there is no doubt that it

will be in a few years, and this quite independently of

any progress in the science of aerodynamics.

Deeply interesting, on the other hand, are the problems

relating to the aeroplane itself, or to that mysterious
contrivance which, as it were, screws itself into the air

and transmutes into thrust the power developed by the

engine.
53



54 FLIGHT WITHOUT FORMULA

The power developed by an internal combustion engine
varies with the number of revolutions at which the

resistance it encounters enables it to turn. There is a

generally recognised ratio between the power developed
and the speed of revolution.

Thus, if a motor, normally developing 50 h.p. at 1200

revolutions per minute, only turns at 960 revolutions per
50x960

minute, it will develop no more than = 40 h.p.

The rule, however, is not wholly accurate, and the

variation of the power developed by a motor with the

number of revolutions per minute is more accurately shown
in the curve in fig. 12. It should be clearly understood

that the curve only relates to a motor with the throttle

fully open, and where the variation in its speed of rotation

is only due to the resistance it has to overcome.

For the speed of rotation may be reduced in another

manner by shutting off a portion of the petrol mixture by
means of the throttle. The engine then runs "

throttled

down," which is the usual case with a motor car.

In such a case, if the petrol supply is constant, the curve

in fig.
12 grows flatter, with its crest corresponding to a

lower speed of rotation the more the throttle is closed and

the explosive mixture reduced.

Fig. 13 shows a series of curves which were prepared at

my request by the managing director of the Gnome Engine

Company ;
these represent the variation in power with the

speed of rotation of a 50-h.p. engine, normally running at

1200 revolutions per minute, with the throttle closed to a

varying extent.

In practice, it is easier to throttle down certain engines

than others ;
with some it is constantly done, with others

it is more difficult.

Even to-day the working of a propeller remains one of

the most difficult problems awaiting solution in the whole

range of aerodynamics, and the motion, possibly whirling,

of the air molecules as they are drawn into the revolving
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Horse-Power.
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Horse-Power.
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propeller has never yet been explained in a manner satis-

factory to the dictates of science.

All said and done,the rough method of likening a propeller

to a screw seems the most likely to explain the results

obtained from experiments with propellers.

The pitch of a screw is the distance it advances in one

revolution in a solid body. The term may be applied in a

similar capacity to a propeller. The pitch of a propeller,

therefore, is the distance it would travel forwards during
one revolution if it could be made to penetrate a solid body.
But a propeller obtains its thrust from the reaction of an

elusive tenuous fluid. Clearly, therefore, it will not travel

forward as great a distance for each revolution as it would

if screwing itself into a solid.

The distance of its forward travel is consequently always
smaller than the pitch, and the difference is known as the

slip. But, contrary to an opinion which is often held, this

slip should not be as small as possible, or even be altogether

eliminated, for the propeller to work under the best

conditions.

Without attempting to lay down precisely the phenomena

produced in the working of this mysterious contrivance, we

may readily assume that at every point the blade meets the

air, or
"
bites

"
into it, at a certain angle depending, among

other things, on the speed of rotation and of forward travel

of the blade and of the distance of each point from the

axis.

Just as the plane of an aeroplane meeting the air along
its chord would produce no lift, so a propeller travelling
forward at its pitch speed that is, without any slip

would meet the air at each point of the blades at no angle
of incidence, and consequently would produce no thrust.

The slip and angle of incidence are clearly connected

together, and it will be easily understood that a given

propeller running at a given number of revolutions will

have a best slip, and hence a best forward travel, just as

a given plane has a best angle of incidence.
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When the propeller rotates without moving forward

through the air, as when an aeroplane is held stationary on
the ground, it simply acts as a ventilator, throwing the air

backwards, and exerts a thrust on the machine to which

it is attached. But it produces no useful power, for in

mechanics power always connotes motion.

But if the machine were not fixed, as in the case of an

aeroplane, and could yield to the thrust of the propeller,

it would be driven forward at a certain speed, and the

product of this speed multiplied by the thrust and divided

by 75 represents the useful power produced by the

propeller.

On the other hand, in order to make the propeller rotate

it must be acted upon by a certain amount of motive power.
The relation between the useful power actually developed
and the motive power expended is the efficiency of the

propeller.

But the conditions under which this is accomplished

vary, firstly, with the number of revolutions per minute

at which the propeller turns, and secondly, with the speed

of its forward travel, so that it will be readily understood

that the efficiency of a propeller may vary according to the

conditions under which it is used.

Experiments lately conducted notably by Major
Dorand at the military laboratory of Chalais-Meudon and

by M. Eiffel have shown that the efficiency remains

approximately constant so long as the ratio of the forward

speed to its speed of revolution, i.e. the forward travel per

revolution, remains constant.

For instance, if a propeller is travelling forward at 15

m. per second and revolving at 10 revolutions per second,

its efficiency is the same as if it travelled forward at 30

m. per second and revolved at 20 revolutions per second,

since in both cases its forward travel per revolution is

1-50 m.

But the propeller efficiency varies with the amount of

its forward travel per revolution. 9
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Hence, when the propeller revolves attached to a

stationary point, as during a bench test, so that its forward

travel is zero, its efficiency is also zero, for the only

effect of the motive power expended to rotate the propeller

is to produce a thrust, which in this instance is exerted

upon an immovable body, and therefore is wasted so far

as the production of useful power is concerned.

Similarly, when the forward travel of the propeller per

revolution is equal to the pitch, and hence when there is

no slip, it screws itself into the air like a screw into a

solid
;
the blades have no angle of incidence, and therefore

produce no thrust.*

Between the two values of the forward travel per

revolution at which the thrust disappears, there is a value

corresponding on the other hand to maximum thrust.

This has already been pointed out, and has been termed

the best forward travel per revolution.

This shows that the thrust of one and the same propeller

may vary from zero to a maximum value obtained with a

certain definite value of the forward travel. The variation

of the thrust with the forward travel per revolution may
be plotted in a curve. A single curve may be drawn to

show this variation for a whole family of propellers,

geometrically similar and only differing one from the other

by their diameter.

Experiments, in fact, have shown that such propellers

had approximately the same thrust when their forward

travel per revolution remained proportional to their

diameter.

Thus two propellers of similar type, with diameters

measuring respectively 2 and 3 m., would give the same

thrust if the former travelled 1*2 m. per revolution and

* This could never take place if the vehicle to which the propeller

was attached derived its speed solely from the propeller ;
it could only

occur in practice if motive power from some outside source imparted
to the vehicle a greater speed than that obtained from the propeller-

thrust alone.
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the latter 1*8 m., since the ratio of forward travel to

diameter = 0'60.

This has led M. Eiffel to adopt as his variable quantity
not the forward travel per revolution, but the ratio of this

advance to the diameter, which ratio may be termed

reduced forward travel or advance.

Fig. 14, based on his researches, shows the variation in

thrust of a family of propellers when the reduced advance

assumes a series of gradually increasing values.*

The maximum thrust efficiency (about 65 per cent, in

this case) corresponds to a reduced advance value of 0'6.
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favourable than any other, and may thence be termed the

best reduced advance, which enables any of these propellers

to produce their maximum thrust.

It has been shown that all geometrically similar

propellers in other words, belonging to the same family

give approximately the same maximum thrust efficiency.

But when the shape of the propeller is changed, this

maximum thrust value also varies.

It depends more especially on the ratio between the

pitch of the propeller and its diameter, which is known as

the pitch ratio.

But, as the value of the highest thrust varies with the

pitch ratio, so does that of the best reduced advance corre-

sponding to this highest thrust.

In the following Table V., based on Commandant Dorand's

researches at the military laboratory of Chalais-Meudon

with a particular type of propeller, are shown the values

of the maximum thrust and the best reduced advance

corresponding to propellers of varying pitch ratio.

TABLE V.

Pitch ratio .
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highest thrust efficiency is 0'7. Further, this table shows

that to obtain this thrust the reduced advance should

= 0'55. In other words, the speed of the machine divided

by 50 (the number of revolutions per second, 50 x diameter,

2-5) should =0-55.

Hence the speed = 0'55 x 50 = 27-5 m. per second, or

99 km. per hour.

Again, Table V. proves, according to Commandant
Dorand's experiments, that even at the present time it is

possible to produce propellers giving the excellent efficiency

of 84 per cent, under the most favourable running conditions,

but only if the pitch ratio is greater than unity that is,

when the pitch is equal to or greater than the diameter.

It is further clear that, since the best reduced advance

increases with the pitch ratio, the speed at which the

machine should fly for the propeller (turning at a constant

number of revolutions per minute) to give maximum

efficiency is the higher the greater the pitch ratio. This is

why propellers with a high pitch ratio, or the equivalent,

a high maximum thrust, are more especially adaptable

for high-speed aeroplanes. At the same time, they are

equally efficient when fitted to slower machines, provided

that the revolutions per minute are reduced by means of

gearing.
These truths are only slowly gaining acceptance to-day

although the writer advocated them ardently long since,

and this notwithstanding the fact that the astonishing

dynamic efficiency of the first motor-driven aeroplane

which in 1903 enabled the Wrights, to their enduring

glory, to make the first flight in history, was largely due to

the use of propellers with a very high pitch ratio, that is,

of high efficiency, excellently well adapted to the relatively

low speed of the machine by the employment of a good

gearing system.

The only thing that seemed to have been taught by this

fine example was the use of large diameter propellers.

This soon became the fashion. But, instead of gearing
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down these large propellers, as the Wrights cleverly did,

they were usually driven direct by the motor, and so that

the latter could revolve at its normal number of revolutions

the pitch had perforce to be reduced.

As the pitch decreased, so the maximum efficiency and

the best reduced advance that is, the most suitable flying

speed fell off, while at the same time the development of

the monoplane actually led to a considerable increase in

flying speed.

The result was that fast machines had to be equipped
with propellers of very low efficiency whic'h, even so, they
were unable to attain, as the flying speed of the aeroplane

was too high for them. At most these propellers might
have done for a dirigible, but they would have been poor
even at that.

Fortunately, a few constructors were aware of these

facts, and to this alone we may ascribe the extraordinary

superiority shown towards the end of 1910 by a few types
of aeroplanes, among which we may name, without fear

of being accused of bias, those of M. Breguet and the late

M. Nieuport.

But, since then, progress has been on the right lines, and

those who visited the last three Aero shows must have

been struck with the general decrease in propeller diameter,

which has been accompanied by an increase in efficiency

and adaptability to the aeroplanes of to-day.

To take but one final example : the fast Paulhan-Tatin
"
Torpille," already referred to, had a pitch ratio greater

than unity. For this reason its efficiency was estimated in

the neighbourhood of 80 per cent.

The foregoing considerations may be summed up as

follows :

1. The same propeller gives an efficiency varying accord-

ing to the conditions in which it is run, depending on its

forward travel per revolution.

2. Each propeller has a speed of forward travel or

advance enabling it to produce its highest efficiency.
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3. For propellers of identical type but different diameters

the various speeds of forward travel corresponding to the

same thrust are proportional to the diameters, whence

arises the factor of reduced advance, which, in other words,

is the ratio between the forward travel per revolution and

the diameter.

4. The maximum efficiency of a propeller and its best

reduced advance depend on its shape, and more especially
on its pitch ratio.

Hitherto the propeller has been considered as a separate

entity, but in practice it works in conjunction with a

petrol motor, whether by direct drive or gearing.

But the engine and propeller together constitute the

power-plant, and this new entity possesses, by reason of the

peculiar nature of the petrol motor, certain properties

which, differing materially from those of the propeller by

itself, must therefore be considered separately.

First, we will deal with the case of a propeller driven

direct off the engine.

Let us assume that on a truck forming part of a railway

train there has been installed a propelling plant (wholly

insufficient to move the train) consisting of a 50-h.p. motor

running at 1200 revolutions per minute, and of a propeller,

while a dynamometer enables the thrust to be constantly

measured and a revolution indicator shows the revolutions

per minute.

The train being stationary, the motor is started.

The revolutions will then attain a certain number, 950

revolutions per minute for instance, at which the power

developed by the motor is exactly absorbed by the propeller.

The latter will exert a certain thrust upon the train (which,

of course, remains stationary), indicated by the dynamo-
meter and amounting to, say, 150 kg.

The power developed by the motor at 950 revolutions per

minute is shown by the power curve of the motor, which

we will assume to be that shown in fig. 12. This would

give about 43 h.p. at 950 revolutions per minute.
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The useful power, on the other hand, is zero, since no

movement has taken place.

Now let the train be started and run at, say, 10 km. per
hour or 5 m. per second, the motor still continuing to run.

The revolutions per minute of the propeller would

immediately increase, and finally amount to, say, 1010

revolutions per minute.

The power developed by the motor would therefore have

increased and would now amount, according to fig. 12, to

45-5 h.p.

But at the same time the dynamometer would show a

smaller thrust about 130 kg.

But this thrust would, though in only a slight degree,
have assisted to propel the train forward and the useful

130 x 5
power produced by the propeller would be

=-^
= 8'7 h.p.7o

The acceleration in rotary velocity and the decrease in

thrust which are thus experienced are to be explained on

the score that the blades, travelling forward at the same

time that they revolve, meet the air at a smaller angle
than when revolving while the propeller is stationary.

In these conditions, therefore, the propeller turns at

a greater number of revolutions, though the thrust

falls off.

If the speed of the train were successively increased to

10, 15 and 20 m. per second, the following values could be

established each time :

The normal number of revolutions of the power plant ;

The corresponding power developed by the motor
;

The useful power produced by the propeller.

We could then plot curves similar to that shown in
fig. 15,

giving for every speed of the train the corresponding

motive-power (shown in the upper curve) and the useful-

power (lower curve). The dotted lines and numbers give

the number of revolutions.

The lower curve representing the variation in the useful-

power produced by the propeller according to the forward
5
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speed of travel is of capital importance, and will hereafter

be referred to as the power-plant curve.

Usually the highest points of the two curves, L and M,
do not correspond. This simply means that generally, and

unless precautions have been taken to avoid this, the pro-

peller gives its maximum thrust, and accordingly has its

best reduced advance, at a forward speed which does not

enable the motor to turn at its normal number of revolu-

tions, 1200 in the present case, and consequently to develop
its full power of 50 h.p.

It is even now apparent, therefore, that one cannot mount
any propeller on any motor, if direct-driven, and that there

exists, apart altogether from the machine which they drive
t

a mutual relation between the two parts constituting the

power-plant, which we will term the proper adaptation of
the propeller to the motor.
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Its characteristic feature is that the highest points in the

two curves representing the values of the motive-power
and the useful-power at different speeds of nights lie in a

perpendicular line (see fig. 16).

The highest thrust efficiency is then obtained from the

propeller at such a speed that the motor can also develop
its maximum power.

10 /5

FIG. 16.

25

The expression maximum power-plant efficiency will be

used to denote the ratio of maximum useful-power Mm
(see fig. 15) developed at the maximum power LI of which
the motor is capable (50 h.p. in the case under consideration).
The maximum power-plant efficiency, it is clear, corre-

sponds to a certain definite speed of flight Om. This may
be termed the best speed suited to the power-plant.

If the adaptation of the propeller to the motor is good
(as in the case of fig. 16), the maximum power-plant

efficiency is the highest that can be obtained by mounting
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direct-driven propellers belonging to one and the same

family and of different diameters on the motor.

Hence there is only one propeller in any family or series

of propellers which is well adapted to a given motor.

We already know that in a family of propellers the

characteristic feature is a common value of the pitch ratio

supposing, naturally, that the propellers are identical in

other respects. The conclusion set down above can there-

fore also be expressed as follows :

There can be only one propeller of given pitch ratio that

is well adapted to a given motor. The diameter of the

propeller depends on the pitch ratio, and vice versa.

Propellers well adapted to a given motor consequently

form a single series such that each value of the diameter

corresponds to a single value of the pitch, and vice versa.

According to the results of Commandant Dorand's experi-

ments with the type of propellers which he employed, the

series of propellers properly adapted to a 50-h.p. motor

turning at 1200 revolutions per minute can be set out as

in Table VI., which also gives the best speed suited to the

power-plant in each case, and the maximum useful-powers

developed obtained by multiplying the power of the motor,

50 h.p., by the maximum efficiency as given in Table V.

To summarise :

1. The useful-power developed by a given power-plant
varies with the speed of the aeroplane on which it is

mounted. The variation can be shown by a curve termed

the characteristic power-plant curve.

2. To obtain from the motor its full power and from the

propeller its maximum efficiency the propeller must be

well adapted to the motor, and this altogether independently

of the aeroplane on which they are mounted.

3. There is only a single series of propellers well adapted
to a given motor.

4. For a power-plant to develop maximum efficiency the

aeroplane must fly at a certain speed, known as the best

speed suited to the power-plant under consideration.
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TABLE VI.

Pitch

Ratio.



CHAPTER V

FLIGHT IN STILL AIR

THE POWER-PLANT (concluded)

IN the last chapter we confined ourselves mainly to the

working of the power-plant itself, and more particularly to

the mutual relations between its parts, the motor and the

propeller, without reference to the machine they are

employed to propel. The present chapters, on the other

hand, will be devoted to the adaptation of the power-plant
to the aeroplane, and incidentally will lead to some con-

sideration of the variable-speed aeroplane and of the greatest

possible speed variation.

In Chapter II. particular stress was laid on the graph
termed the essential curve of the aeroplane, which enables

us to find the different values of the useful-power required

to sustain in flight a given aeroplane at different speeds,

that is, at different angles of incidence and lift coefficients.

In fig. 17 the thin curve (reproduced from fig. 6,

Chapter II.) is the essential aeroplane curve of a Breguet

biplane weighing 600 kg., with an area of 30 sq. m. and

a detrimental surface of 1'2 sq. m.

But in the last chapter particular attention was also

drawn to the graph termed the power-plant curve, which

gives the values of the useful-power developed by a given

power-plant when the aeroplane it drives flies at different

speeds.

In fig. 17 the thick curve is the power-plant curve, in the

case of a motor of 50 h.p. turning at 1200 revolutions per
70
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minute and a propeller of the Chalais-Meudon type, direct-

driven, well adapted to the motor, and with a pitch ratio

of 0-7.

Table VI. (p. 69) gives the diameter and pitch of the

propeller as 2'24 m. and 1*57 m. respectively. The

maximum power-plant efficiency corresponds to a speed of

FIG. 17.

22'1 m. per second. The maximum useful-power is 30'5 h.p.
These are the factors which enable us to fix M, the highest

point of the curve.

It will be clear that, by superposing in one diagram (as in

fig. 17, which relates to the specific case stated above) the

two curves representing in both cases a correlation between

useful-powers and speeds, and referring, in one case to the

aeroplane, in the other to its power-plant, we should obtain
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some highly interesting information concerning the adapta-
tion of the power-plant to the aeroplane.
The curves intersect in two points, R

x
and R

2 ,
which

means that there are two flight speeds, Or^ and Or
2 ,

at

which the useful-power developed by the power-plant is

exactly that required for the horizontal flight of the

aeroplane. These two speeds both, therefore, fulfil the

definition (see Chapter II.) of the normal flying speeds.
From this we deduce that a power-plant capable of

sustaining an aeroplane in level flight can do so at two
different normal flying speeds. But in practice the machine
flies at the higher of these two speeds, for reasons which
will be explained later.

These two normal flying speeds will, however, crop up
again whenever the relation between the motive-power and
the speed of the aeroplane comes to be considered. Thus,
when the motive-power is zero, that is, when the aeroplane

glides with its engine stopped, the machine can, as already

explained, follow the same gliding path at two different

speeds. The same, of course, applies to horizontal flight,

since, as has been seen, this is really nothing else than an

ordinary glide in which the angle of the flight-path has

been raised by mechanical means, through utilising the

power of the engine.
Let us assume that the ordinary horizontal flight of the

aeroplane is indicated by the point Rp which constitutes its

normal flight.

The speed OEl
will be roughly 23 m. per second, and the

useful power required, actually developed by the propeller,
about 30 h.p.

According to Table II. (Chapter II.), the normal angle of

incidence will be about 4, corresponding to a lift coefficient

of 0-038.

Let it be agreed that in flight, which is strictly normal,

the pilot suddenly actuates his elevator so as to increase

the angle of incidence to 6J (lift coefficient 0'05), and hence

necessarily alters the speed to 20 m. per second.
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From the thin curve in fig. 17 (and from Table II., on

which it is based) it is clear that the useful-power required

to sustain the aeroplane at this speed will be 24 h.p.

On the other hand, according to the thick curve in the

same figure, the power-plant at this same speed of 20 m.

per second will develop a useful-power of 30*3 h.p., giving
a surplus of 6*3 h.p. over and above that necessary to

sustain the machine. The latter will therefore climb, and

climb at a vertical speed such that the raising of its weight
absorbs exactly the surplus, NN' or 6*3 h.p., useful-power

6'3 x 75
developed by the power-plant, that is, at a speed of -

= about 0*79 m. per second.

Since this vertical speed must necessarily correspond to a

horizontal speed of 20 m. per second, the angle of the climb,

as a decimal fraction, will be the ratio of the two speeds, i.e.

0'79-- = 0-0395 = about 4 centimetres per metre = 1 in 25.

As a matter of fact, we have already seen that by using
the elevator the pilot could make his machine climb or

descend
;
but by considering the curves of the aeroplane

and of the power-plant at one and the same time, we gain
a still clearer idea of the process.

Should the pilot increase the incidence to more than 6

the speed would diminish still more, and fig. 17 shows that,

in so doing, the surplus power, measured by the distance

dividing the two curves along the perpendicular correspond-

ing to the speed in question, would increase. And with it

we note an increase both in the climbing speed and in the

upward flight-path.

Yet is this increase limited, and the curves show that

there is one definite speed, CM, at which the surplus of

useful-power exerted by the power-plant over and above

that required for horizontal flight has a maximum
value.

If, by still further increasing the angle of incidence,

the speed were brought below the limit 01, the climb-
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ing speed of the aeroplane would diminish instead of

increasing.

Nevertheless, the upward climbing angle would still

increase, but ever more feebly, until the speed attained

another limit, Op, such that the ratio between the climbing

speed to the flying speed, which measures the angle of the

flight-path, attained a maximum.

Thus, there is a certain angle of incidence at which an

aeroplane climbs as steeply as it is possible for it to climb.

If, when the machine was following this flight-path,

the angle of incidence were still further increased by
the use of the elevator, in order to climb still more, the

angle of the flight-path would diminish. Relatively to

its flight path the aeroplane would actually come down,

notwithstanding the fact that the elevator were set for

climbing.
The same inversion of the effect usually produced from

the use of the elevator would arise if the aeroplane were

flying under the normal conditions represented by the point

R
2
in fig. 17. For a decrease in the angle of incidence

through the use of the elevator would have the immediate

and inevitable result of increasing the speed of flight, which

would pass from Or
2
to 0(/, for instance. But this would

produce an increase QQ' in the useful-power developed by
the power-plant over and above that required for horizontal

flight, so that even though the elevator were set for descend-

ing, the aeroplane would actually climb.

This inversion of the normal effect produced by the

elevator has sometimes caused this second condition of

flight to be termed unstable.

For if a pilot flying in these conditions, and not aware

of this peculiar effect, felt his machine ascending through

some cause or other, he would work his elevator so as to

come down. But the aeroplane would continue to ascend,

gathering speed the while. The pilot, finding that his

machine was still climbing, would set his elevator still

further for descending until the speed exceeded the limit
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Op, and the elevator effect returned to its usual state and

the machine actually started to descend. The pilot, unaware

of the existence of this condition and brought to fly under

it by certain circumstances (which, be it added, are purely

hypothetical), would therefore regain normal flight by using

his controls in the ordinary manner.

Nevertheless, one is scarcely justified in applying to this

second condition of horizontal flight the term "unstable"

if employed in the sense ordinarily accepted in mechanics,

for one may well believe that a pilot, aware of its

existence, could perfectly well accomplish flight under

this condition by reversing the usual operation of his

elevator.

Still, it would be a difficult proposition for machines

normally flying at a low speed, since the speed of flight

under the second condition (indicated by the point R2
. fig.

17) would be lower still.

But in the case of fast machines the solution is obvious

enough. For instance, according to Table II., the minimum

speed of the aeroplane represented by the thin curve in

fig. 17 is about 63 km. per hour, whereas in the early

days of aviation the normal flying speed of aeroplanes

was less.

Now, note that by making an aeroplane fly under the

second condition the angle of the planes would be quite

considerable. In the case in question the angle would be

in the neighbourhood of 15, which is about 10 in excess of

the normal flying angle.

The whole aeroplane would therefore be inclined at an

angle equivalent to some ten degrees to the horizontal, with

the result that the detrimental surface (which cannot be

supposed constant for such large angles) would be increased,

and with it the useful-power required for flight.

In practice, therefore, the power-plant would not enable

the minimum speed Or2
to be attained, and the second condi-

tion of flight would take place at a higher speed and at a

smaller angle of incidence. Still, it would be practicable
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by working the elevator in the reverse sense to the

usual.*

Now let us just see how a pilot could make his aeroplane

pass from normal flight to the second condition
; although,

no doubt, in so doing we anticipate, for it is highly im-

probable that any pilot hitherto has made such an attempt.

When the aeroplane is flying horizontally and normally,
the pilot would simply have to set his elevator to climb, and

continue this manosuvre until the flight-path had attained

its greatest possible angle. The aeroplane would then return

(and very quickly too, if practice is in accordance with

theory) to horizontal flight, and now, flying very slowly, it

would have attained to the second condition of flight. At

this stage it would be flying at a large angle to the flight-

path, very cabre, almost like a kite.

The greater part of the useful-power would be absorbed

in overcoming the large resistance opposed to forward

motion by the planes. It will now be readily seen that,

under these conditions, any decrease in the angle of incidence

would cause the machine to climb, since, while it would

have but little effect on the lift of the planes, it would

greatly reduce their drag.

By the process outlined above, the aeroplane would

successively assume every one of the series of speeds

between the two speeds corresponding to normal and the

second condition of flight (i.e. it would gradually pass from

Or
t
to Or

2 , fig. 17), though it would have to begin with

climbing and descend afterwards.

But we know that the pilot has a means of attaining

these intermediaryspeeds while continuing to fly horizontally,

namely, by throttling down his engine. This, at all events,

is what he should do until the speed of the machine had

* At present we are only dealing with the sustentation of the aeroplane.

From the point of view of stability, which will be dealt with in subsequent

chapters, it seems highly probable that the necessity of being able to fly at

a small and at a large angle of incidence will lead to the employment of

special constructional devices.



FLIGHT IN STILL AIR 77

reached a certain point 01 (fig. 18) corresponding to that

degree of throttling at which the power-plant curve (much
flatter now by reason of the throttling-down process) only
continues to touch the aeroplane curve at a single point L.

Below this speed, if the pilot continues to increase the angle
of incidence by using the elevator, horizontal flight cannot

be maintained except by quickly opening the throttle.

It would therefore seem feasible to pass from the normal

to the second condition of flight, without rising or falling,

FIG. 18.

by the combined use of elevator and throttle. But up till

now all this remains pure theory, for hitherto few pilots

know how to vary their speed to any considerable extent^
and probably not a single one has yet reduced this speed
below the point 01 and ventured into the region of the

second condition of flight, that wherein the elevator has to

be operated in the inverse sense.

The reason for this view is that the aeroplane, when its

speed approaches the point 01, is flying without any

margin, and consequently is then bound to descend. If

therefore it obeys the impulse of descending given by the

elevator, it no longer responds to the climbing manipulation.
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As soon as the pilot perceives this,* he hastens to increase

the speed of his machine again by reducing the angle of

incidence and opening his throttle, whereas, in order to pass
the critical point, he would in fact have to open the throttle

but still continue to set his elevator to climb.

The possibility of achieving several different speeds by
the combined use of elevator and throttle forms the solution

to the problem of wide speed variation.

The greatest possible speed variation which any aeroplane
is capable of attaining is measured by the difference between

the normal and the second condition of flight. But, up to

the present at any rate, the latter has not been reached, and

the lowest speed of an aeroplane is that (indicated by O,
fig. 18) corresponding to flight at the "limit of capacity."

This particular speed, not to be mistaken for one of the

two essential conditions of flight, is usually very close to

that corresponding to the economical angle of incidence

(see Chapter II.). Hence the economical speed constitutes the

lower limit of variation, which has probably never yet been

attained.

In the future, if the second condition of flight is achieved

in practice, one will be able to fly at the lowest possible

speed an aeroplane can attain. This conclusion may prove
of considerable interest in the case of fast machines, for

any reduction of speed, however slight, is then important.

The highest speed is that of the normal flight of an aero-

plane. In the example represented in fig. 17 this speed is

23 m. per second, or about 83 km. per hour. Since the

economical speed of the machine in question is about 66

km. per hour, the absolute speed variation would be 17 km.

per hour, or, relatively, about 20 per cent. This, however,

is a maximum, since the economical speed, as we know, is

never attained in practice.

The above leads to the conclusion that the way to obtain

* He is the more prone to do this owing to the fact that, with present

methods of design and construction, stability decreases as the angle of

incidence is increased.
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a large speed variation is to increase the normal flying

speed.

In the previous example we assumed that the 50-h.p.

motor turning at 1200 revolutions per minute was equipped
with a propeller with a 0'7 pitch ratio, well adapted,

whose characteristic qualities are given in Table VI.

Now let us replace this propeller by another, equally well
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adapted, but with a pitch ratio of 115. According to

Table VI. the diameter of this propeller would be 1*98 m.

and its pitch 2 '28 m. The best speed corresponding to

the new propeller would be 33 m. per second, and the

maximum useful-power developed at this speed 42 h.p.

Now let the new power-plant curve (thick line) be super-

posed on the previous aeroplane curve (see fig. 19). For
the sake of comparison the previous power-plant curve is

also reproduced in this diagram.
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The advantage of the step is clear at a glance. In fact,

the normal flying speed increases from Or
t equivalent

to 23 m. per second or 83 km. per hour to Or\

equivalent to 26 in. per second, or about 93 km. per
hour. This increases the speed variation from 17 to 27

km. per hour, or from 20 to 29 per cent.

Again, the maximum surplus power developed by the

power-plant over and above that required merely for

sustentation, amounting to about 7 h.p. with the former

propeller, now becomes about 12 h.p. The quickest climb-

7 x 75
ing speed therefore grows from = 0'88 m. per second

12 x 75
to =1*5 m. per second.

oOO

Hence, by simply changing the propeller, one obtains the

double result of increasing the normal flying speed of the

aeroplane together with its climbing powers. Nor is the

fact surprising, but merely emphasises our contention that

since highly efficient propellers can be constructed, it will

be just as well to use them.

In order to gain an idea of the relative importance of

increasing the pitch ratio when this ratio has already a

certain value, we may superpose in a single diagram

(fig. 20), on the aeroplane curve, all the power-plant curves

representing the various propellers, well adapted, used with

the same 50-h.p. motor turning at 1200 revolutions per

minute, according to Table VI.

Firstly, it will be evident that a pitch ratio of 0'5 would

not enable the aeroplane in question to maintain horizontal

flight, since the two curves that of the power-plant and of

the aeroplane do not meet. In fact, the pitch ratio must

be between 0*5 and 0'6 0'54, to be exact for the power-

plant curve to touch the aeroplane curve at a single point.

Horizontal flight would then be possible, but only at one

speed and without a margin.
But as soon as the pitch ratio increases, the normal flying

speed and the climbing speed increase very rapidly. On
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the other hand, once the pitch ratio amounts to O9, the

advantage of increasing it still further, though this still

exists, becomes negligible. Beyond 1/0 a further increase

of pitch ratio (in the specific case in question) need not be

considered. All of which are, of course, theoretical con-

siderations, although they point to certain definite principles
which cannot be ignored in practice a fact of which

Speed of fUffh tfan, ffl.j.
erJec)

15

FIG. 20.

JO 35

constructors, as already remarked, are now becoming
cognisant.

At the same time, the reduction of the diameter
necessitated by the use of propellers of great efficiency is

not without its disadvantages, more especially in the case

of monoplanes and tractor biplanes in which the propeller
is situated in front. In these conditions, the propeller
throws back on to the fuselage a column of air which
becomes the more considerable as the propeller diameter is

6
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reduced, since practically only the portions of the blades

near the tips produce effective work.

It is on this ground that we may account for the fact

that reduction in propeller diameter has not yet, up to a

point, given the good results which theory led one to

expect.

But when the propeller is placed in rear of the machine
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The figures at the side of the curve indicate the lift.

and the backward flowing air encounters no obstacle, there

is every advantage in selecting a high pitch ratio, and we
have already seen that M. Tatin, in consequence, on his

Torpille fitted a propeller with a pitch exceeding the

diameter.*

* It may also be noticed that the need for reducing the diameter

gradually disappears as the power of the motor increases, because the

diameter of propellers well adapted to a motor increases with the power
of the latter.
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The use of propellers of high efficiency, therefore,

obviously increases the speed variation obtainable with any

particular aeroplane.

The lower limit of this speed variation has already been

seen to be the economical speed of the aeroplane.

Now, it should be noted that, in designing high-speed

machines, the use of planes of small camber and with a

very heavy loading has the result of increasing the value

of the economical speed. Thus, the Torpille, already
referred to, appeared to be capable of attaining a speed of

160 km. per hour;* but its economical speed would have

been about 28 m. per second or 100 km. per hour. Fig. 21

shows, merely for the sake of comparison, the curve of an

aeroplane of this type (weight, 450 kg. ; area, 12'50 sq. m.
;

detrimental surface, 0'30 sq. m.) plotted from the following
table.

TABLE VII.

1



84 FLIGHT WITHOUT FORMULAE

The speed variation of such a machine would be 60 km.

per hour = 38 per cent.

If it could fly in the second condition of flight, i.e. at

90 km. per hour, the speed variation would be 70 km. per

hour, or 44 per cent.

In a machine of similar type, able to attain a speed of

200 km. per hour (weight, 500 kg. ; area, 9 sq. m.
;
detri-
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FIG. 22.

The figures by the side of the curve indicate the lift.

mental surface, 0'03 sq. m.), whose characteristic curve is

plotted in fig. 22, according to Table VIII., the economical

speed would be 34 m. per second, or 125 km. per hour,

giving a speed variation of 75 km. per hour, or 38 per cent.

If it could attain the second condition of flight, i.e. 110 km.

per hour, the variation would be 90 km. per hour, or

45 per cent.

Fortunately, as may be seen, the high-speed machine of
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the future should possess a high degree of speed variation.

And in the case of really high speeds even the smallest

advantage in this respect becomes of great importance. It

may well be that the necessity for achieving the greatest

TABLE VIII.
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In Chapter IV. it was shown that the highest point of

the power-plant curve corresponds the propeller being

supposedly well adapted to the motor to a rotational

velocity of 1200 revolutions per minute, the normal number
of revolutions at which it develops full power. If, there-

fore, this highest point lies to the left of the aeroplane

curve, the motor is turning at over 1200 revolutions per
minute when the aeroplane is flying at normal speed. On
the other hand, if the highest point lies to the right of the

aeroplane curve, in normal flight the motor will be running
at under 1200 revolutions per minute.

In neither case will it develop full power. Moreover,

there is danger in running the motor at too high a number

of revolutions, particularly if it is of the rotary type. Only
a propeller with a pitch ratio of 0'85 could enable the

motor to develop its full power (in the special case in

question).

This immediately suggests the expedient of keeping the

motor running at 1200 revolutions per minute while allow-

ing the propeller to turn at the speed productive of its

maximum efficiency through some system of gearing.

Thus we are brought by a logical chain of reasoning to the

geared-down propeller, a solution adopted in very happy
fashion in the first successful aeroplane that of the brothers

Wright.
Let us suppose that an aeroplane whose curve is shown

by the thin line in fig. 23 has a power-plant curve re-

presented by the thick line in the same figure, the propeller

direct-driven, having a pitch ratio of 115, and hence possess-

ing (according to Commandant Dorand's experiments) 84 per
cent, maximum efficiency.

Evidently, however good this power-plant might be

when considered by itself, it would be very badly adapted
to the aeroplane in question, since, firstly, it would only
enable the machine to obtain the low speed OT^ ; and,

secondly, the maximum surplus of useful-power, the measure

of an aeroplane's climbing properties, would fall to a very
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low figure. Hence, the machine would only leave the

ground with difficulty, and would fly without any

margin. And all this simply and solely because the best

speed, O?TI, suited to the power-plant would be too high for

the aeroplane.
Now let the direct-driven propeller be replaced by

another of the same type, but of larger diameter, and geared
down in such fashion that the best speed suited to this

power-plant corresponds to the normal flying speed Or\ of

the aeroplane (see fig. 23).

FIG. 23.

The maximum useful-power developed by this power-

plant remains in theory the same as before, since the

propeller, being of the same type, will still have a maximum

efficiency of 84 per cent. The new power-plant curve will

therefore be of the order shown by the dotted line in

the figure.

It is clear that by gearing down we first of all obtain an

increase of the normal flying speed, and secondly, a very

large increase in the maximum surplus of useful-power
that is, in the machine's climbing capacity. In practice,

however, this is not a perfectly correct representation of
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the case, since gearing down results in a direct loss of

efficiency and an increase in weight. Whether or not to

adopt gearing, therefore, remains a question to be decided

on the particular merits of each case. Speaking very

generally, it can be said that this device, which always
introduces some complication, should be mainly adopted in

relatively slow machines designed to carry a heavy load.

In the case of high-speed machines it seems better to

drive the propeller direct, though even here it may yet

prove desirable to introduce gearing.
This study of the power-plant may now be rounded off

with a few remarks on static propeller tests, or bench tests.

These consist in measuring, with suitable apparatus, on the

one hand, the thrust exerted by the propeller turning at a

certain speed without forward motion, and, on the other,

the power which has to be expended to obtain this result.

Experiment has shown that a propeller of given diameter,

driven by a given expenditure of power, exerts the greatest
static thrust if its pitch ratio is in the neighbourhood of

0'65.* On the other hand, we have seen that the highest
thrust efficiency in flight is obtained with propellers of a

pitch ratio slightly greater than unity. Hence one should

not conclude that a propeller would give a greater thrust

in flight simply from the fact that it does so on the bench.

Thus, the propeller mounted on the Tatin Torpille, already
referred to, which gave an excellent thrust in flight, would

probably have given a smaller thrust on the bench than a

propeller with a smaller pitch.

Consequently, a bench test is by no means a reliable

indication of the thrust produced by a propeller in flight.

Besides, it is usually made not only with the propeller

alone but with the complete power-plant, in which case the

result is even more unreliable owing to the fact that the

power developed by an internal combustion engine varies

with its speed of rotation.

For instance, suppose that a motor normally turning at

* From Commandant Dorand's experiments,
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1200 revolutions per minute is fitted with a propeller of

ri5 pitch ratio which, when tested on the bench by itself,

already develops a smaller thrust than a propeller of 0'65

pitch ratio
;
the motor would then only turn at 900 revolu-

tions per minute, whereas the propeller of 0'65 pitch ratio

would let it turn at 1000 revolutions per minute, and hence

give more power. The propeller with a high pitch ratio

would therefore appear doubly inferior to the other, and
this notwithstanding the fact that its thrust in flight

would undoubtedly be greater.

A propeller exerting the highest thrust in a bench test

n^ust not for that reason be regarded as the best.



CHAPTER VI

STABILITY IN STILL AIR

LONGITUDINAL STABILITY

AT the very outset of the first chapter it was laid down

that the entire problem of aeroplane flight is not solved

merely by obtaining from the "
relative

"
air current which

meets the wings, owing to their forward speed, sufficient

lift to sustain the weight of the machine
;
an aeroplane, in

addition, must always encounter the relative air current in

the same attitude, and must neither upset nor be thrown

out of its path by a slight aerial disturbance. In other

words, it is essential for an aeroplane to remain in

equilibrium ; more, in stable equilibrium*
We may now proceed to study the equilibrium of an

aeroplane in still air and the stability of this equilibrium.

Since a knowledge of some of the main elementary

principles of mechanics is essential to a proper understand-

ing of the problems to be dealt with, these may be briefly

outlined here.

* The very fact that an aeroplane remains in flight presupposes, as

we have seen, a first order of equilibrium, which has been termed the

equilibrium of sustentation, which jointly results from the weight of the

machine, the reaction of the air, and the propeller- thrust. The mainten-

ance of this state of equilibrium, which is the first duty of the pilot,

causes an aeroplane to move forward on a uniform and direct course.

We are now dealing with a second order of equilibrium, that of the

aeroplane on its flight-path. Both orders of equilibrium are, of course,

closely interconnected, for if in flight the machine went on turning and

rolling about in every way, its direction of flight could clearly not be

maintained uniformly.
90
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The most important of these is that relating to the

centre of gravity.

If any body, such as an aeroplane, for instance (fig. 24),

is suspended at any one point, and a perpendicular is

drawn from the point of suspension, it will always pass,

whatever the position of the body in question, through
the same point G, termed the centre of gravity of the

body.
The effect of gravity on any body, in other words, the

FIG. 24.

force termed the weight of the body, therefore always

passes through its centre of gravity, whatever position the

body may assume.

Another principle is also of the greatest importance in

considering stability ; namely, the turning action of forces.

When a force of magnitude F (fig. 25), exerted in the

direction XX, tends to make a body turn about a fixed

point G, its action is the stronger the greater the distance,

Gee, between the point G and the line XX. In other words,

the turning action of a force relatively to a point is the

greater the farther away the force is from the point.

Further, it will be readily understood that a force F1
,

double the force F in magnitude but acting along a line

YY separated from the fixed point G by a distance Gy,
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which is just half of Gx, would have a turning force equal
to F. In short, it is the well-known principle of the

lever.

The product of the magnitude of a force by the length
of its lever arm from a point or axis therefore measures

the turning action of the force. In mechanics this turning
action is usually known as the 'moment or the couple.

When, as in
fig. 25, two turning forces are exerted in

inverse direction about a single point or axis, and their

FIG. 25.

turning moment or couple is equal, the forces are said to be

in equilibrium about the point or axis in question.

For a number of forces to be in equilibrium about a point
or axis, the sum of the moments or couples of those acting
in one direction must be equal to the sum of the couples of

those acting in the opposite direction.

It should be noted that in measuring the moment of a

force, only its magnitude, its direction, and its lever arm

are taken into account. The position of the point of its

application is a matter of indifference. And with reason,

for the point of application of a force cannot in any way
influence the effect of the force

; if, for instance, an object
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is pushed with a stick, it is immaterial which end of the

stick is held in the hand, providing only that the force is

exerted in the direction of the stick.

Before venturing upon the problem of aeroplane stability

a fundamental principle, derived from the ordinary theory

of mechanics, must be laid down.

FUNDAMENTAL PRINCIPLE. So far as the equilibrium of

an aeroplane and the stability of its equilibrium are con-

cerned, the aeroplane may be considered as being suspended

from its centre of gravity and as encountering the relative

wind produced by its own velocity.

This principle is of the utmost importance and absolutely

essential
; by ignoring it grave errors are bound to ensue,

such, for instance, as the idea that an aeroplane behaves in

flight as if it were in some fashion suspended from a certain

vaguely-defined point termed the " centre of lift," usually

considered as situated on the wings. An idea of this sort

leads to the supposition that a great stabilising effect is

produced by lowering the centre of gravity, which is thus

likened to a kind of pendulum.

Now, it will be seen hereafter that in certain cases the

lowering of the centre of gravity may, in fact, produce a

stabilising effect, but this for a very different reason.

The " centre of lift
"
does not exist. Or, if it exists, it is

coincident with the centre of gravity, which is the one and

only centre of the aeroplane.

The three phases of stability, which is understood to

comprise equilibrium, to be considered are :

Longitudinal stability.

Lateral stability.

Directional stability.

First comes longitudinal stability, which will be dealt

with in this chapter and the next.

Every aeroplane has a plane of symmetry which remains

vertical in normal flight. The centre of gravity lies in

this plane. The axis drawn through the centre of gravity
at right angles to the plane of symmetry may be termed
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the pitching axis and the equilibrium of the aeroplane
about its pitching axis is its longitudinal equilibrium.

Hereafter, and until stated otherwise, it will be assumed

that the direction of the propeller-thrust passes through
the centre of gravity of the machine. Consequently,
neither the propeller-thrust nor the weight of the aeroplane,

which, of course, also passes through the centre of gravity,

can have any effect on longitudinal equilibrium, for, in

accordance with the fundamental principle set out above,

the moments exerted by these two forces about the pitch-

ing axis are zero.

Hence, in order that an aeroplane may remain in longi-

tudinal equilibrium on its flight-path, that is, so that it

may always meet the air at the same angle of incidence,

all that is required is that the reaction of the air on the

various parts of the aeroplane should be in equilibrium
about its centre of gravity.

Now, in normal flight all the reactions of the air must

be forces situated in the plane of symmetry of the machine.

These forces may be compounded into a single resultant

(see Chapter II.), which, for the existence of longitudinal

equilibrium, must pass through the centre of gravity.

We may therefore state that: when an aeroplane is

flying in equilibrium, the resultant of the reaction of

the air on its various parts passes through the centre of

gravity.

This resultant will be called the total pressure.

Let us take any aeroplane, maintained in a fixed position,

such, for instance, that the chord of its main plane were at

an angle of incidence of 10, and let us assume that a

horizontal air current meets it at a certain speed.

The air current will act upon the various parts of the

aeroplane and the resultant of this action will be a total

pressure of a direction shown by, say, P10 (fig. 26). Without

moving the aeroplane let us now alter the direction of the

air current (blowing from left to right) so that it meets

the planes at an ever-decreasing angle, passing successively
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from 10 to 8, 6, 4, etc. In each case the total pressure

will take the directions indicated respectively by P
8 ,
P6 ,

P
4 ,

etc. Let G be the centre of gravity of the aeroplane.

Only one of the above resultants P
6 ,

for instance will

pass through the centre of gravity. From this it may be

deduced that equili-

brium is only possible

in flight when the

main plane is at an

angle of incidence of

6.

Thus, a perfectly

rigid unalterable

aeroplane could only
in practice fly cut a

single angle of in-

cidence.

If the centre of

gravity could be

shifted bysome means

or other, to the posi-

tion P
4,

for instance,

the one angle of in-

cidence at which the

machine could fly

would change to 4.

But this method for

varying the angle of

incidence has not

hitherto been success-

fully applied in

practice.*

The same result, however, is obtained through an auxil-

iary movable plane called the elevator.

It is obvious that by altering the position of one of the

* It will be seen hereafter that, if the method can be applied, it would

have considerable advantages.
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planes of the machine the sheaf of total pressures is altered.

Thus, figs. 27 and 28 represent the total pressures in the

case of one aeroplane after altering the position of the

FIG. 27.

elevator (the dotted outline indicating the main plane).

If G is the centre of gravity, the normal angle of incidence

passes from the original 4 to 2 by actuating the elevator.
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Therefore, as stated in Chapter I., by means of the

elevator the position of longitudinal equilibrium of an

FIG. 28.

aeroplane, and hence its incidence, can be varied at

will.

The action of the elevator will be further considered in

the next chapter.
But the longitudinal equilibrium of an aeroplane must
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also be stable
;
in other words, if it should accidentally lose

its position of equilibrium, the action of the forces arising

through the air current from the very fact of the change
in its position should cause

Pio PS P* P* ^ To
^ ^ reSa^n this position

instead of the reverse.

If we examine once

again the sheaf of total

pressures we may be able

to gain an idea of how
this condition of affairs

can be brought about.

Returning again to fig.

26, let us suppose that by
an oscillation about its

pitching axis the move-

ment being counter-clock-

wise the angle of the

planes, which is normally
6 since the total pressure
P

6passes through the centre

of gravity, decreases to 4,
the resultant of pressure

on the aeroplane in its new

position will have the direc-

tion P
4 ;
hence this resultant

will have, relatively to the

pitching axis, a moment

acting clockwise, which

will therefore be a righting

oscillation which called it

FIG. 29.

couple since it opposes the

into being.

The same thing would come to pass if the oscillation was

in the opposite direction.

In this case, therefore, equilibrium is stable.

On the other hand, if the sheaf of pressures was arranged

as in fig. 29, the pressure P
4
would exert an upsetting
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couple relatively to the pitching axis, and equilibrium
would be unstable.

The stability or instability of longitudinal equilibrium
therefore depends onthe relative positions of the sheaf of total

pressures and of the centre of gravity, and it may be laid

down that when the line
T

. . 0-0
or normal pressure is in-

tersected by those of the

neighbouring total pres-

sures at a point about

the centre of gravity,

equilibrium is stable,

whereas it is unstable in

the reverse case.

Several experimenters,
and among them notably
M. Eiffel, have sought to

determine by means of

tests with scale models

the position of the total

pressures corresponding
to ordinary angles of

incidence. Hitherto M.

Eiffel's researches have
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FIG. 30. Angles i of the chord and the wind.

been confined to tests on

model wings and not on

complete machines, but

the latter are now being

employed. Moreover,

the results do not indi-

cate the actual position

and distribution of the pressure itself, but only the point
at which its effect is applied to the plane, this point being
known as the centre of pressure.
The results of these tests have been plotted in two series

of curves which give the position of the centre of pressure
with a change in the angle of incidence. Figs. 30 and 31
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reproduce, by way of indicating the system, the two series

of curves relating to a Bleriot XI. wing.

It has already been remarked that the point from which

a force is applied is of no importance ; accordingly, a centre

FIG. 81.

of pressure is of value only in so far as it enables the

direction of the pressures themselves to be traced.

By comparing the curve shown in fig. 31 with the polar

curves already referred to in previous chapters, one obtains
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a means of reproducing both the position and the magnitude,

relatively to the wing itself, of the pressures it receives at

varying angles.*

3

FIG. 32. Sheaf of pressures on a flat plane.

Figs. 32, 33, and 34 show the sheaf of these pressures in

the case, respectively, of :

A flat plane.

A slightly cambered plane (e.g. Maurice Farman).
A heavily cambered plane (Bleriot XL).

These diagrams, be it repeated, relate only to the plane

by itself and not to complete machines.

* A. description of the method may be found in an article published

by the author in La Technique Atronautique (January 15, 1912).
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Comparison of these three diagrams brings out straight

away a most important difference between the flat and the

two cambered planes. That relating to the flat plane,
in fact, is similar in its arrangement to that shown in

Pi

fc

>.p p*

FIG. 33. Sheaf of pressures on a Maurice Farman plane.

fig. 26, which served to illustrate a longitudinally stable

aeroplane.

The diagrams relating to cambered planes, on the other

hand, are analogous, so far as the usual flying angles are

concerned, to fig. 29, which depicted the case of a longi-

tudinally unstable aeroplane.
Thus we can state that, considered by itself, a flat plane

is longitudinally stable, a cambered plane unstable (the
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A

FIG. 84. Sheaf of pressures on a Bleriot XI. plane.
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latter statement, however, as will subsequently be seen, is

not always absolutely correct). On the other hand, every
one knows nowadays that flat planes are very inefficient,

producing little lift with great drag.

Hence the necessity for finding means to preserve the

valuable lifting properties of the cambered plane while

counteracting its inherent instability. The bird, inciden-

tally, showed that it is possible to fly with cambered wings.
And it was by adopting this example and improving upon
it that the problem was solved, by providing the aeroplane
with a tail.

An auxiliary plane, of small area but placed at a con-

siderable distance from the centre of gravity of the aero-

plane, and therefore possessing a big lever arm relatively

to the centre of gravity, receives from the air, when in

flight the aeroplane comes to oscillate in either direction,

a pressure tending to restore it to its original attitude.

Since this pressure is exerted at the end of a long lever

arm, the couples, which are always righting couples, are of

considerably greater magnitude than the upsetting couples

arising from the inherent instability of the cambered type
itself.

The adoption of this device has rendered it possible to

utilise the great advantage possessed by cambered planes.

Of course it is true that a machine with perfectly flat

planes would be doubly stable, by virtue both of its main

planes and of its tail, but to propel a machine of this type
would mean an extravagant waste of power.

Provided the tail is properly designed, there is nothing
to fear even with an inherently unstable plane and

the full lifting properties of the camber are nevertheless

retained.

Subsequently it will be shown that the use of a tail

entirely changes the nature of the sheaf of pressures, which,

in an aeroplane provided with a tail, and even though its

planes are cambered, assumes the stable form corresponding
to a flat plane.
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The aeroplane therefore really resolves itself into a main

plane and a tail.*

Assuming, once and for all, that the propeller-thrust

passes through the centre of gravity, the longitudinal

equilibrium of an aeroplane about the centre of gravity
can be represented diagrammatically by one of the three

figs., 35, 36, and 37.

In fig. 35 the tail CD is normally subjected to no

pressure and cuts the air with its forward edge. In this

case, equilibrium exists if the pressure Q (in practice equal

to the weight of the machine) on the main plane AB passes

through the centre of gravity G.

In fig. 36 the tail CD is a lifting tail, that is, normally
it meets the air at a positive angle and therefore is sub-

jected to a pressure q directed upwards. For equilibrium
to be possible in this case the pressure Q on the main

plane AB must pass in front of the centre of gravity G of

the aeroplane, so that its couple about the point G is equal

to the opposite couple q of the tail.

The pressures Q and q must be inversely proportional to

the length of their lever arms. When compounded they

produce a resultant or total pressure equal to their sum

(and to the weight of the aeroplane), which, as we know,
would pass through the centre of gravity.

Lastly, in fig. 37 the tail CD is struck by the air on its

top surface and receives a downward pressure q. To obtain

equilibrium the pressure Q on the main plane AB must

pass behind the centre of gravity G, the couples exerted

about this point by the pressures Q and q being, as before,

equal and opposite. Once again, the pressures Q and q
must be inversely proportional to the length of their lever

arms. If compounded they would produce a resultant

total pressure equal to their difference (and to the weight

* In the case of a biplane both the planes will be considered as

forming only a single plane, a proceeding which is quite permissible
and could, if necessary, be easily justified.
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A r~A 4 ft B CD
FIG. 35.

1!
CD

FIG. 36.

V*
FIG. 37
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of the aeroplane), which would again pass through the

centre of gravity.

A fourth arrangement (fig. 38), and the first to be adopted
in practice since the 1903 Wright and the 1906 Santos-

Dumont machines were of this type is also possible. It

has lately been made use of again in machines of the
" Canard

"
type (e.g. in the Voisin hydro-aeroplane), and

consists in placing the tail, which must of course be a

lifting tail, in front of the main plane. The conditions of

equilibrium are the same as in fig. 36.

In an aeroplane, to whichever type it belongs, the term

longitudinal dihedral, or Vee, is usually applied to the angle
formed between the chords of the main and tail planes.

Hitherto the relative positions of the main plane and
the tail have been considered only from the point of view
of equilibrium. We have now to consider the stability of

this equilibrium. For this purpose we must return to the

sheaf of pressures exerted, not on the main plane alone,

but on the whole machine, that is, we have to consider the

sheaf of total pressures.
This is shown in fig. 39,* which relates to a Bleriot XI.

* At the time when this treatise was first published, no experiments
had been made to determine the actual sheaf of pressures as it exists in

practice. The accompanying diagrams were drawn up on the basis of

the composition of forces.
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FIG. 39. Sheaf of total pressures on a complete Bleriot XI. monoplane.

wing provided with a tail plane of one-tenth the area of

the main plane, making relatively to the main plane a longi-
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tudinal Yee or dihedral of 6, and placed at a distance

behind the main plane equal to twice the chord of the

latter.

Let it be assumed that the normal angle of incidence of

the machine is 6, which would be the case if its centre

of gravity coincided with the pressure P
6,

at Gp for

instance.

An idea of the longitudinal stability of the machine in

these conditions may be guessed from calculating the couple

caused by a small oscillation, such as 2.

Since the normal incidence is 6, the length of the

pressure P
6

is equivalent to the weight of the machine.

By measuring with a rule the length of P
4 and P

8,
it will

be found to be equal respectively to P
6 x 0*74 and to

P
6 xl*23. The values of P

4
and P8 therefore are the

products of the weight of the aeroplane multiplied by 0*74

and 1*23 respectively.

Further, the lever arms of these pressures will, on

measurement, be found to be respectively 0*043 and 0*025

times the chord of the main plane.

By multiplying and taking the mean of the results

obtained, which only differ slightly, it will be found that an

oscillation of 2 produces a couple equal to 0*031 times the

weight of the aeroplane multiplied by its chord.

This couple produced by an oscillation of 2 can obviously
be compared to the couple which would be produced by an

oscillation of 2 imparted to the arm of a pendulum or

balance of a weight equal to that of the aeroplane.
For these two couples to be equal, the pendulum arm

must have a length of 0*88 of the chord, or, if the latter be

2 m., for instance, the arm would have to measure 1*76 m.

Hence, the longitudinal stability of the machine under

consideration could be compared to that of an imaginary

pendulum consisting of a weight equal to that of the aero-

plane placed at the end of a 1*76 m. arm. It is evident

that the measure of stability possessed by such a pendulum
is really considerable.
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Having laid down this method of calculating the longi-

tudinal stability of an aeroplane, fig. 39 may once again be

considered.

To begin with, it is evident that if the centre of gravity
is lowered, though still remaining on the pressure line P

6 ,

the longitudinal stability of the machine will be increased

since, the pressure lines being spaced further apart, their

lever arms will intersect. Therefore, under certain condi-

tions, the lowering of the centre of gravity may increase

longitudinal stability, though this has nothing whatsoever

to do with a fictitious
" centre of lift." Besides, in practice

the centre of gravity can only be lowered to a very small

extent, and the possible advantage derived therefrom is

consequently slight, while, on the other hand, it entails

disadvantages which will be dealt with in the next

chapter.

Finally, the use of certain plane sections robs the lower-

ing of the centre of gravity of any advantages which it

may otherwise possess, a point which will be referred to in

detail hereafter.

Returning to fig. 39 the normal angle of incidence being

6, and the non-lifting tail forming this same angle with the

chord of the main plane, the tail plane will normally be

parallel with the wind (see fig. 35).

If the centre of gravity, instead of being at Gv were at

G
2 on the pressure line P

8 ,
the tail would become a lifting

tail (see fig. 36), having a normal angle of incidence of 2.

Calculating as before, the length of the arm of the imaginary

equivalent pendulum is found to be only 0'63 of the chord,

or 1-26 m. if the chord measures 2 m.

The aeroplane is therefore less stable than in the previous

example.
On the contrary, if the centre of gravity were situated at

G3 , corresponding to a normal incidence of 4, so that the

tail is struck by the wind on its top surface at an angle of

2 (in other words, is placed at a "
negative

"
angle of 2,

see fig. 37), the equivalent pendulum would have to have
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an arm 3*50 m. long,* or about twice as long as when the

normal incidence is 6.

From this one would at first sight be tempted to conclude

that the longitudinal stability of an aeroplane is the greater
the smaller its normal flying angle, or, in other words, the

higher its speed ; but, although this may be true in certain

cases, it is not so in others. Thus, if the alteration in the

angle of incidence were obtained by shifting the centre of

gravity, the conclusion would be true, since the sheaf of

total pressures would remain unaltered.

But if the reduction of the angle is effected either by
diminishing the longitudinal dihedral or, and this is really
the same thing, by actuating the elevator, the conclusion no

longer holds good, for the sheaf of total pressures does

change, and in this case, as the following chapter will show,
so far from increasing longitudinal stability, a reduction

of the angle of incidence may diminish stability even to

vanishing point.

It should further be noted that the arrangement shown

diagrammatically in
fig. 37, which consists in disposing

the tail plane so that it meets the wind with its top surface

in normal flight, is productive of better longitudinal

stability than the use of a lifting tail.f This conclusion

will be found to be borne out by fig. 40, showing the pressures
exerted on the main plane by itself.

By measuring the couples, it is clear that if the centre of

gravity is situated at G
I}
for instance, the plane is unstable,

as we already knew; but if the centre of gravity were

placed far enough forward relatively to the pressures, at G
2 ,

for instance, a variation in the angle may set up righting

couples even with a cambered plane. The couple resulting
from a variation of this kind is the difference between the

*
Actually, the arm is longer if tlie oscillation is in the sense of a dive

than in the case of stalling, which is quite in agreement with the con-

clusions which will be set out later.

t It will be seen later that this arrangement also seems to be excellent

from the point of view of the behaviour of a machine in winds.
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P.5

FIG. 40.
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couples of the pressure, before and after the oscillation,

about the centre of gravity.

Cambered planes in themselves may therefore be rendered

stable by advancing the centre of gravity.

This is not difficult to understand ;
as a plane is further

removed from the centre of gravity it begins to behave
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the main plane owing to the fact that the latter is situated

far behind the centre of gravity.

Fig. 40 (which relates to the pressures on the main

plane) further shows that if the centre of gravity is low

enough, at G\, for instance, a Bleriot XL wing would become

stable from being inherently unstable. This is the reason

for the stabilising influence of a low centre of gravity,

which the examination of the sheaf of total pressures

already revealed.

For the sake of comparison, fig. 41 is reproduced, showing
the sheaf of total pressures belonging to an aeroplane of

the type previously considered, but with a Maurice Farman

plane instead of a Bleriot XL section.

The pressure lines are almost parallel.

Lowering the centre of gravity in a machine of this type
would produce no appreciable advantage.

It will be seen that the pressure lines draw ever closer

together as the incidence increases, and become almost

coincident near 90. This shows that if, by some means or

other, flight could be achieved at these high angles which

could only be done by gliding down on an almost vertical

path, the machine remaining practically horizontal, which

may be termed "parachute" flight, or, more colloquially,
a "pancake" longitudinal stability would be precarious
in the extreme, and that the machine would soon upset,

probably sliding down on its tail. Parachute flight and

"pancake" descents would therefore appear out of the

question, failing the invention of special devices.



CHAPTER VII

STABILITY IN STILL AIR

LONGITUDINAL STABILITY (concluded)

IN the last chapter it was shown that the longitudinal

stability of an aeroplane depends on the nature of the sheaf

of total pressures exerted at various angles of incidence on

the whole machine, and that stability could only exist if

any variation of the incidence brought about a righting

couple.

But this is not all, for the righting couple set up by
an oscillation may not be strong enough to prevent the

oscillation from gradually increasing, by a process similar

to that of a pendulum, until it is sufficient to upset the

aeroplane.

The whole question, indeed, is the relation between the

effect of the tail and a mechanical factor, known as the

moment of inertia, which measures in a way the sensitive-

ness of the machine to a turning force or couple.

A few explanations in regard to this point may here be

useful.

A body at rest cannot start to move of its own accord.

A body in motion cannot itself modify its motion.

When a body at rest starts to move, or when the motion

of a body is modified, an extraneous cause or force must
have intervened.

Thus a body moving at a certain speed will continue to

move in a straight line at this same speed unless some force

intervenes to modify the speed or deflect the trajectory.
115
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The effect of a force on a body is smaller, the greater the

inertia or the mass of the latter.

Similarly, if a body is turning round a fixed axis, it will

continue to turn at the same speed unless a couple exerted

about this axis comes to modify this speed.

This couple will have the smaller effect on the body, the

more resistance the latter opposes to a turning action, that

is, the. more inertia of rotation it possesses. It is this

inertia which is termed the moment of inertia of the body
about its axis. The moment of inertia increases rapidly as

the masses which constitute the body are spaced further

apart, for, in calculating the moment of inertia, the

distances of the masses from the axis of rotation figure, not

X

FIG. 42. Perspective.

in simple proportion, but as their square. An example will

make this principle, which enters into every problem

concerning the oscillations of an aeroplane, more clear.

At 0, on the axis AB (fig. 42) of a turning handle a rod

XX is placed, along which two equal masses MM can slide,

their respective distances from the point O always remain-

ing equal. Clearly, if the rod, balanced horizontally, were

forced out of this position by a shock, the effect of this

disturbing influence would be the smaller, the further the

masses MM were situated from the point O, in other words,

the greater the moment of inertia of the system.

If the rod were drawn back to a horizontal position by
means of a spring it would begin to oscillate

;
these oscilla-

tions will be slower the further apart the masses
; but, on

the other hand, they will die away more slowly, for the
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system would persist longer in its motion the greater its

moment of inertia.

These elementary principles of mechanics show that an

aeroplane with a high moment of inertia about its pitching

axis, that is, whose masses are spread over some distance

longitudinally instead of being concentrated, will be more

reluctant to oscillate, while its oscillations will be slow, thus

giving the pilot time to correct them. On the other hand,

they persist longer and have a tendency to increase if the

tail plane is not sufficiently large.

This relation between the stabilising effect of the tail

and the moment of inertia in the longitudinal sense has

already been referred to at the beginning of this chapter.

It may be termed the condition of oscillatory stability.

In practice most pilots prefer to fly sensitive machines

responding to the slightest touch of the controls. Hence

the majority of constructors aim at reducing the longi-

tudinal moment of inertia by concentrating the masses.

It should be added that the lowering of the centre of

gravity increases the moment of inertia of an aeroplane
and hence tends to set up oscillation, one of the dis-

advantages of a low centre of gravity which was referred

to in the last chapter.

By concentrating the masses the longitudinal oscillations

of an aeroplane become quicker and, although not so easy
to correct, present one great advantage arising from their

greater rapidity.

For, apart from its double stabilising function, the tail

damps out oscillations, forms as it were a brake in this

respect, and the more effectively the quicker the oscillations.

The reason for this is simple enough. Just as rain, though

falling vertically, leaves an oblique trace on the windows
of a railway-carriage, the trace being more oblique the

quicker the speed of travel, so the relative wind caused by
the speed of the aeroplane strikes the tail plane at a

greater or smaller angle when the tail oscillates than when
it does not, and this with all the greater effect the quicker
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the oscillation. It is a question of component speeds
similar to that which will be considered when we come to

deal with the effect of wind on an aeroplane.

The oscillation of the tail therefore sets up additional

resistance, which has to be added to the righting couple due

to the stability of the machine, as if the tail had to move

through a viscous, sticky fluid, and this effect is the more

intense the quicker the oscillation. It is a true brake effect.

In this respect the concentration of the masses possesses

a real practical advantage.

According to the last chapter, an entirely, rigid aeroplane,
none of whose parts could be moved, could only fly at a

single angle, that at which the reactions of the air on its

various parts are in equilibrium about the centre of gravity.

In order to enable flight to be made at varying angles the

aeroplane must possess some movable part a controlling

surface.

Leaving aside for the moment the device of shifting the

centre of gravity (never hitherto employed), the easiest

method would be to vary the angle formed by the main

plane and the tail, i.e. the longitudinal dihedral.

The method was first adopted by the brothers Wright,
and is even at the present time employed in several

machines. Very powerful in its effect, the variations in

the angle of the tail plane affect the angle of incidence by
more than their own amount, and this in greater measure

the bigger the angle of incidence.

Figs. 43 and 44 represent two different positions of the

sheaf of total pressures on an aeroplane with a Bleriot XI.

plane, and a non-lifting tail of an area one-tenth that of

the main plane and situated in rear of it at a distance equal

to twice the chord. In fig. 43 the tail plane forms an

angle of 8 with the chord of the main plane ;
in fig. 44

this angle is only 6.

If the centre of gravity is situated at Gv the normal

angle of incidence passes from 4 in the first case to 2 in

the second. This variation in the angle of incidence is
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FIG. 43. Sheaf of total pressures on a Bleriot XI. monoplane with

longitudinal V of 8.
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therefore integrally the same as that of the angle of the

tail plane.

If the centre of gravity is at G
2 ,
the normal angle of

incidence would pass from 6 to 3J, and would therefore

vary by 2J for a variation in the angle of the tail of

only 2.

Lastly, if the centre of gravity is at G
8 ,
the normal angle

of incidence would pass from 8 to 5, a variation equal to

one and a half times that of the angle of the tail.

A comparison of figs. 43 and 44 further shows that the

lines of total pressure are spaced further apart the greater
the longitudinal dihedral. Now, other things being equal,

the farther apart the lines of pressure the greater the

longitudinal stability of an aeroplane. Hence the value of

the longitudinal dihedral is most important from the point
of view of stability.

If the tail plane (non-lifting) is normally parallel to the

relative wind, the longitudinal dihedral is equal to the

normal angle of incidence. But if a lifting tail is employed,
the longitudinal dihedral must necessarily be smaller than

the angle of incidence (this is clearly shown in
fig. 36).

If the normal angle of incidence is small, as in the case of

large biplanes and high-speed machines, the longitudinal
dihedral is very small indeed and stability may reach a

vanishing point.

But if, in normal flight, the tail plane meets the wind

with its upper surface (i.e. flies at a negative angle), the

longitudinal dihedral, however small the normal angle of

incidence, will always be sufficient to maintain an excellent

degree of stability. This conclusion may be compared
with that put forward in the previous chapter in regard
to the advantage of causing the tail to fly at a negative

angle.

The foregoing shows that the reduction of the angle of

incidence by means of a movable tail plane i.e. by alter-

ing the longitudinal dihedral has the disadvantage that

every alteration in the position of the tail plane brings
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about a variation in the condition of stability of the

aeroplane.

By plotting the sheaf of total pressures corresponding
to very small values of the longitudinal dihedral, it would

soon be seen that if the latter is too small, equilibrium

may become unstable.

A machine with a movable tail and normally possessing
but little stability such, for instance, as a machine whose

tail lifts too much may lose all stability if the angle of

incidence is reduced for the purpose of returning to earth.

This effect is particularly liable to ensue when, at the

moment of starting a glide, the pilot reduces his incidence,

as is the general custom.

Losing longitudinal stability, the machine tends to

pursue a flight-path which, instead of remaining straight,

curls downwards towards the ground, and at the same time

the speed no longer remains uniform and is accelerated.

The glide becomes ever steeper. The machine dives,

and frequently the efforts made by the pilot to right it by

bringing the movable tail back into a stabilising position

are ineffectual by reason of the fact that the tail becomes

subject, at the constantly accelerating speed, to pressures

which render the operation of the control more and more

difficult.

In the author's opinion, the use of a movable tail is

dangerous, since the whole longitudinal equilibrium depends
on the working of a movable control surface which may
be brought into a fatal position by an error of judgment,
or even by too ample a movement on the part of the pilot.

For, apart from the case just dealt with, should the

movable tail happen to take up that position in which

the one angle of incidence making for stability is that

corresponding to zero lift, i.e. when the main plane meets

the wind along its
"
imaginary chord

"
(see Chapter I.)

longitudinal equilibrium would disappear and the machine

would dive headlong.

In this respect, therefore, the movements of a movable
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tail should be limited so that it could never be made to

assume the dangerous attitude corresponding to the rupture

or instability of the equilibrium.

A better method is to have the tail plane fixed and rigid,

and, in order to obtain the variations in the angle of

incidence required in practical flight, to make use of an

auxiliary surface known as the elevator.

Take a simple example, that of the aeroplane dia-

grammatically shown in fig. 45, possessing a non-lifting tail

FIG. 45.

plane CD, normally meeting the wind edge-on, to which is

added a small auxiliary plane DE, constituting the elevator,

capable of turning about the axis D.

So long as this elevator remains, like the fixed tail,

parallel to the flight-path, the equilibrium of the aeroplane
will remain undisturbed. But if the elevator is made to

assume the position DE (fig. 46), the relative wind strikes

its upper surface and tends to depress it. Hence the

incidence of the main plane will be increased until the

couple of the pressure Q exerted about the centre of

gravity, and the couple of the pressure q' exerted on the

elevator, together become equal to the opposite moment of

the pressure q on the fixed tail.

Again, if the elevator is made to assume the position
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DE
2 (fig. 47), the incidence decreases until a fresh condition

of equilibrium is re-established.

Each position of the elevator therefore corresponds to

FIG. 46.

one single angle of incidence; hence the elevator can be

used to alter the incidence according to the requirements
of the moment.

FIG. 47.

It will be obvious that the effectiveness of an elevator

depends on its dimensions relatively to those of the fixed,

tail, and, further, that if small enough it would be incapable,

even in its most active position, to reduce the angle of
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incidence to such an extent as to break the longitudinal

equilibrium of the aeroplane.

This, in the author's opinion, is the only manner in

which the elevator should be employed, for the danger of

increasing the elevator relatively to the fixed tail to the

point even of suppressing the latter altogether has already
been referred to above.

In the position of longitudinal equilibrium corresponding
to normal flight, the elevator, in a well-designed and well-

tuned machine, should be neutral (see fig. 45). It follows

that all the remarks already made with reference to the

important effect on stability of the value of the longitudinal

dihedral apply with equal force when the movable tail

has been replaced by a fixed tail plane and an elevator.

The extent of the longitudinal dihedral depends on the

design of the machine, and more especially on the position

of the centre of gravity relatively to the planes, and on its

normal angle of incidence, which, again, is governed by
various factors, and in chief by the motive-power.
The process of tuning-up, just referred to, consists

principally in adjusting by means of experiment the

position of the fixed tail so that normally the elevator

remains neutral. Tuning-up is effected by the pilot; in

the end it amounts to a permanent alteration of the

longitudinal dihedral
;
wherefore attention must be drawn

to the need for caution in effecting it.

There are certain pilots who prefer to maintain the

longitudinal dihedral rather greater than actually necessary

(i.e. with the arms of the V close together), with the con-

sequence that their machines normally fly with the elevator

slightly placed in the position for coming down, or meeting
the wind with its upper surface. In the case of machines

with tails lifting rather too much, the practice is one

to be recommended, for machines of this description are

dangerous even when possessing a fixed tail, since if the

elevator is moved into the position for descent the longi-

tudinal dihedral is still diminished, though in a lesser
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degree, and if it were already very small, stability would

disappear and a dive ensue.

Therefore the tuning-up process referred to has this

advantage in the case of an aeroplane with a fixed tail

exerting too much lift, that it reduces the amplitude of

dangerous positions of the elevator and increases the

amplitude of its righting positions.

If the size of the elevator is reduced, with the object of

preventing loss of longitudinal equilibrium or stability,

to such a pitch as to cause fear that it would no longer
suffice to increase the angle of incidence to the degree

required for climbing, an elevator can be designed which

would act much more strongly for increasing the angle
than for reducing it, by making it concave upwards if

situated in the tail, or concave downwards if placed in

front of the machine.

For it may be placed either behind or in front, and

analogous diagrams to those given in figs. 46 and 47

would show that its effect is precisely the same in either

case.

But it should also be noted that if an elevator normally

possessing no angle of incidence is moved so as to produce
a certain variation in the angle of incidence of the main

plane, of 2, for instance, the angle through which it must

be moved will be smaller in the case of a front elevator

than in that of a rear elevator, the difference between the

two values of the elevator angle being double (i.e. 4 in the

above case) that of the variation in the angle of incidence

(assuming, of course, that front and rear elevators are of

equal area and have the same lever arm).

This is easily accounted for by the fact that a variation

in the angle of incidence, which inclines the whole machine,

is added to the angular displacement of a front elevator,

whereas it must be deducted from that of the rear elevator.

Thus, if we assume that the elevator must be placed at

an angle of 10 to cause a variation in the incidence of 2,

the elevator need only be moved through 8 if placed in
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front, whereas it would have to be moved through 12 if

placed in rear.

A front elevator therefore is stronger in its action than

a rear elevator. But it is also more violent, as it meets the

wind first, which may tend to exaggerated manoeuvres.

Finally, referring to the remarks in the previous chapters

regarding the "tail-first" arrangement, the longitudinal

stability of an aeroplane is diminished to a certain degree

when the elevator is situated in front. These are no doubt

the reasons that have led constructors to an ever-increasing

extent to give up the front elevator.*

All these facts plainly go to show, as already stated, that

stability does not necessarily increase with speed. Aero-

planes subject to a sudden precipitate diving tendency only

succumb to it when their incidence decreases to a large

extent and their speed exceeds a certain limit, sometimes

known as the critical speed, at which longitudinal stability,

far from increasing, actually disappears altogether. The

term critical speed is not, however, likely to survive long,

if only because it refers to a fault of existing machines

which, let us hope, will disappear in the future. And it

would disappear all the more rapidly if the variations in

the angle of incidence required in practical flight could be

brought about, not by a movable plane turning about a

horizontal axis, but by shifting the position of the centre of

gravity relatively to the planes, which could be done by
displacing heavy masses (such as the engine and passengers'

seats, for example) on board or, also, by shifting the planes
themselves.

In this case, as we have seen, the variations of the

incidence would have no effect on the longitudinal dihedral,

so that the sheaf of total pressures would not change, and
then it would be true that stability increased with the

speed. Then, also, there would be no critical speed.

* The placing of the propeller in front and the production of tractor

machines though, in the author's opinion, an unfortunate arrangement
has also formed a contributory cause.
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As stated previously, the horizontal flight of an aeroplane
is a perpetual state of equilibrium maintained by con-

stantly actuating the elevator. The idea of controlling

this automatically is nearly as old as the aeroplane itself.

But, as this question of automatic stability chiefly arises

through the presence of aerial disturbances and gusts, its

discussion will be reserved for the final chapter, which

deals with the effects of wind on an aeroplane.

Hitherto it has been assumed that the propeller-thrust

passes through the centre of gravity, and therefore has

no effect on longitudinal equilibrium. The angle of inci-

dence corresponding to a given position of the elevator

therefore remains the same in horizontal, climbing, or

gliding flight.

But if the propeller-thrust does not pass through the

centre of gravity, it will exert at this point a couple which,

according to its direction, would tend either to increase or

diminish the incidence which the aeroplane would take up
as a glider (assuming that the elevator had not been

moved). In that case any variation in the propeller-thrust

more particularly if it ceased altogether either by engine

failure or through the pilot switching off", would alter the

angle of incidence.

Thus if the thrust passed below the centre of gravity

the stopping of the engine would cause the angle of

incidence to diminish, and thus produce a tendency to dive.

On the other hand, if the thrust is above the centre of

gravity, the stopping of the engine would increase the

angle of incidence, and therefore tend to make the machine

stall.

Practical experience with present-day aeroplanes teaches

that in case of engine stoppage it is better to decrease the

angle of incidence than to leave it unchanged, and, above

all, than to increase it.

The reason for this is that the transition from horizontal

flight to gliding flight is not instantaneous as is often

thought from purely theoretical considerations. An aero-
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plane moving horizontally tends, through its inertia, to

maintain this direction. Since there is now no longer any

propeller-thrust to balance the head resistance of the

machine, it loses speed, which is to be avoided at all

costs by reason of the ensuing dive. Therefore a pilot

reduces his angle of incidence in order to diminish the

drag of the aeroplane, and hence to maintain speed as far

as possible.

This action usually produces the desired effect, as the

normal angle of incidence of most aeroplanes is greater
than their optimum angle ;

but this would not be the case if

the optimum angle, or a still smaller angle, constituted the

normal flying angle.

The reduction of the angle of incidence at the moment
the engine stops has the additional effect of producing the

flattest gliding angle, which, as has already been shown,

corresponds to the use of the optimum angle. On the

other hand, stability increases through the reduction of

the incidence (which is here equivalent to an increase

in speed) so long as this does not reduce the longitudinal
dihedral.

Bearing these various considerations in mind, it would
seem preferable, in contradiction to a very general view

which at one time the author shared, to make the propeller-
thrust pass below rather than above the centre of gravity,
at any rate in the case of machines normally flying at a

fairly large angle of incidence.

As a general rule the propeller-thrust passes approxi-

mately through the centre of gravity, and this, perhaps, is

the best solution of all.

Since the direction of the propeller-thrust is under con-

sideration, it may be as well to note that this direction need

not necessarily be that of the flight-path of the aeroplane.
Take the case where the thrust passes through the centre

of gravity ;
it will be readily understood that if the direction

of the thrust is altered this cannot have any effect on

longitudinal equilibrium. Hence there is no theoretical

9
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reason why an aeroplane with an inclined propeller shaft

should not fly horizontally.

The only effect on the flight of an aeroplane by tilting

the propeller shaft up at an angle would be to reduce the

speed, because the thrust doing its share in lifting, the planes
need only exert a correspondingly smaller amount of lift.

Therefore the lifting of the propeller shaft virtually amounts

to diminishing the weight of the aeroplane, thereby, other

things being equal, reducing the speed.

If the thrust became vertical, the planes could be dispensed

with, horizontal speed would disappear, and the aeroplane
would become a helicopter.

It can easily be shown that the most advantageous
direction to give to the propeller-thrust is that wherein the

shaft is slightly inclined upwards, as is done in the case of

certain machines, though in others the thrust is normally
horizontal.

To wind up these remarks on longitudinal stability, we
will describe various types of little paper gliders which

will afford in practical fashion some interesting information

concerning certain aspects of longitudinal equilibrium and

of gliding flight. The results, of course, are only approxi-

mate in the widest sense, since such paper gliders are very
erratic as they do not preserve their shape for any length

of time.

Experiments with these little paper models are most

instructive and are to be highly recommended to every

reader; however childish they may at first appear, they
will not be waste of time. By experimenting oneself with

such miniature flying-machines one can learn many valuable

lessons in regard to points of detail, only a few of which

can here be set out. To make these little models it is best

to use the hardest obtainable paper, though it must not be

heavy ;
Bristol-board will serve the purpose. Even better

is thin sheet aluminium about one-tenth of a millimetre in

thickness, but in this case the dimensions given hereafter

should be slightly increased.
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TYPE I.

An ordinary rectangular piece of paper, in length about

twice the breadth (12 cm. by 6 cm., for instance), folded

longitudinally down the centre (see fig. 48) so as to form a

very open angle (the function of this, which affects lateral

stability, will be explained in the next chapter).

Reference to fig. 32, Chapter VI., will show that for a

single flat plane to assume one of the ordinary angles of

incidence (roughly, from 2 to 10), its centre of gravity
must be situated at a distance of from one-third to one-

quarter of the fore-and-aft dimension of the plane from the

forward edge. This is easily obtained by attaching to

FIG. 48. Perspective.

the paper a few paper clips or fasteners, fixed near one of

the ends of the central fold at a slight distance from the

edge (about |- cm.).

If the ballasted paper is held horizontally by its rear end

and is thrown gently forward, it will behave in one of the

three following ways :

(a) The paper inclines itself gently and glides down

regularly without longitudinal oscillations.

This is the most favourable case, for at the first attempt
the ballast has been placed in the position where the

corresponding single angle of incidence was one of the

usual angles. Practice therefore confirms theory, which

taught that a single flat plane is longitudinally stable.

(b) The paper dips forward and dives.

The centre of gravity is too far forward and in front

of the forward limit of the centre of pressure. To obtain
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a regular glide the ballast must be moved slightly toward

the rear. In effecting this, it will probably be moved too

far back and the paper will in that case behave in the

opposite manner, which is about to be described.

(c) The paper at first inclines itself, but, after a dive

whose proportions vary with several factors, and chiefly

with the force with which the model has been thrown, it

rears up, slows down, and starts another dive bigger than

the first, and thus continues its descent to the ground, stall-

ing and diving in succession (see fig. 49).

FIG. 49.

As a matter of fact, the dive following the first stalling

may be final and become vertical if during the accompany-

ing oscillation the paper should meet the air edge-on, so

that actually it has no angle of incidence, for such a glider

if dropped vertically, leading edge down, has no occasion

to right itself and continues to fall like any solid body.
The above experiment is quite instructive. It corresponds

to the case where the single angle of incidence at which

flight is possible, owing to the centre of gravity being too

far back, is greater than the usual angles of incidence.

As it begins its descent the sheet of paper, having been

thrown forward horizontally, has a small angle of incidence,

and hence tends to acquire the fairly high speed correspond-

ing to this small angle. But the pressure of the air, passing
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in front of the centre of gravity, produces a stalling

couple which increases the incidence. Owing to its inertia,

the paper will tend to maintain its speed, which has now
become higher than that corresponding to its large angle
of incidence, and so the pressure of the air becomes greater

than the weight, on account of which the flight-path

becomes horizontal again and even rises.

The same thing, in fact, always happens if for some

reason or other a glider or an aeroplane should attain to

a higher speed than that corresponding to the incidence

given it by the elevator, and also if the angle of the planes
is suddenly increased. This rising flight-path by an in-

crease in the angle of incidence is constantly followed by
birds, and especially by birds of prey such as the falcon,

which uses it to seize its prey from underneath.

Pilots also use it in flattening out after a steep dive or

vol pique, though the manoeuvre is distinctly dangerous,
since it may produce in the machine reactions of inertia

which may cause the failure of certain parts of the

structure.

Returning to the ballasted sheet of paper : as the flight-

path rises, the glider loses speed; in fact, it may stop

altogether. It is then in the same condition as if it were

released without being thrown forward, and falls in a

steep dive which, as already stated, may prove final.

There are many variants of the three phenomena described.

Thus, the stalling movement may become accentuated to

such an extent as to cause the sheet of paper to turn right
over and "

loop the loop."
*

Again, the paper may start to

glide down backwards and do a "
tail-slide."

These variants depend mainly on how far back the

centre of gravity is situated, that is, on the value of the

single angle of incidence at which the sheet can fly. If

* It is interesting to note that this and many of the following
manoeuvres are precisely those practised by Pegoud and his imitators,

although the above was written long before they were attempted in

practice. TRANSLATOR.
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this angle is only slightly greater than the usual angles of

incidence, the stability of the glider which is less, of

course, at large angles than at small ones will still be

sufficient to prevent the effect of inertia of oscillation from

bringing it into a position where it is liable to dive, to turn

over on its back, or slide backwards. It will therefore

follow a sinuous flight-path consisting of successive stalling

and diving, but will not actually upset.

But if the centre of gravity is brought further back and

the angle of incidence corresponding to this position is

much greater than the usual angles of incidence, the stabilis-

ing couples no longer suffice to overcome the effects of

inertia to turning forces, the condition of stability in

oscillation is no longer fulfilled, and the glider behaves in

one of the ways already described.

It should, however, be pointed out that a rectangular
sheet of paper has a far larger moment of inertia in respect
to pitching than a glider generally conforming, as our next

models will do, to the shape of an aeroplane.

To prevent these occurrences from taking place, all that

is required is to bring the ballast further forward and to

adjust the incidence by cutting off thin strips from the

forward edge. By these means it is possible eventually
to obtain a regular gliding path without longitudinal
oscillations.

If thin strips of paper are thus cut off with sufficient

care,* the various properties of gliding flight set forth in

Chapter II. can be very easily followed.

It will be seen that by gradually reducing the angle
of incidence by cutting back the forward edge, the glide

becomes both longer and faster. Next, when the angle
has become smaller than the optimum angle of this embryo

glider, the length of the glide diminishes, the path becomes

steeper, and the glider tends to dive.

Towards the end the process of adjustment becomes

* In case the ballast should be in the way, the paper can be cut away

diagonally and equally on either side, as shown in
fig. 50.
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exceptionally delicate, for since the optimum angle of a

model of this nature is very small indeed, by reason of the

fact that its detrimental surface is almost zero relatively

to its lifting area, the slightest shifting of the centre of

gravity is enough to cause a large variation in the gliding

angle and to upset longitudinal stability.

Now let us suppose that, the ballast being so placed that

the glider tends to dive, we proceed to rectify by cutting

away pieces of the trailing edge as in fig. 50. If the outer

rear tips thus symmetrically formed are bent upwards,

FIG. 50.

the glider will no longer tend to dive and will assume a

position of equilibrium.

By bending these outer tips through various degrees, and

also, if necessary, bending up the inner portion of the

trailing edge, all the various forms of gliding flight can be

reproduced which were previously obtained by shifting the

ballast and cutting back the forward edge.*
But to whatever degree the tips may be bent up, hence-

forward the stalling movement will not be followed by a

dive, nor will the glider loop the loop or do a tail-slide.

This is due to the fact that instead of being constituted

by a single flat plane, the glider now possesses a tail, which

gives it much better longitudinal stability. The effects of

* The rear tips may not be bent exactly equally on either side, with

the result that the glider may tend to swerve to left or right. To
counteract this, the tip on the side towards which the paper swerves

should be bent up a little more,
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inertia are now overcome by the stabilising moments arising

from the tail. Moreover, a glider of this description when

dropped vertically rights itself. It can no longer dive

headlong.
If the tips are bent back to their original horizontal

position, it is evident that the sheet of paper will dive once

more, and to an even greater extent if the tips were bent

down instead of up. This plainly shows the danger of

allowing the elevator to constitute the solitary tail plane,

for, unless its movement is limited, it could cause equili-

brium to be lost.

TYPE II.

1. Fold a sheet of paper in two, and from the folded

paper cut out the shape shown in
fig. 51.

2. Fold back the wings and the tail plane along the

dotted lines. The wings should make a slight lateral V or

dihedral.

3. Ballast the model somewhere about the point L the

exact spot must be found by experiment. with one or

more paper fasteners.

This model approaches more nearly to the usual shape of

an aeroplane. By finding the correct position for the

ballast, so that the centre of gravity is situated on the

total pressure line corresponding approximately to the

optimum angle, this little glider can be made to perform
some very pretty glides.*

The ballast may be brought further forward or additional

paper fasteners may be affixed without making the model

dive headlong.
It will dive, and on this account may be brought to fall

headlong if the height above the ground is only slight ;
but

if there is room enough it will recover and, though coming
down steeply, will not fall headlong. It is still gliding,

* Should it tend to swerve to either side, bend up slightly the rear

tip of the wing on the opposite side of that towards which the aeroplane
tends to turn.
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since during its descent the air still exerts a certain amount
of lift. Longitudinal equilibrium is not upset, and if the

glider does not lose its proper shape on account of its high

speed, it cannot fall headlong, whatever the excess of load

carried, by reason of the fact that the main and tail planes
are placed at an angle to one another.

The reduction in the angle of incidence by bringing the

centre of gravity further forward therefore maintains

stability, and even increases it as the speed grows. And
this because the longitudinal dihedral has not been touched.

By shifting the ballast toward the rear, the model will

n

FIG. 51.

also follow a steep downward path, but this time the angle
of incidence is large, the speed slow, and therefore the glider
remains almost horizontal and "pancakes." This shows

conclusively that the same gliding path can be followed at

two different normal angles of incidence and at two different

speeds.

By still shifting the ballast farther back, the model may
be made to glide as if it belonged to the tail-foremost or

"Canard" type (cf. the third model described hereafter).

Flight at large angles of incidence is now possible and
will not cause the model to overturn as in the case of the

single sheet of paper, as the moment of pitching inertia

is much feebler than in the former case. The stability of
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oscillation is therefore still adequate at large angles of

incidence.

Now let us shift the ballast back again so that the glide

becomes normal once more
;
at the rear of the tail plane,

bend down either the whole or half the trailing edge to

the extent of 2 mm. This will give us an elevator, while

the fixed tail is retained.

By moving this elevator the conditions of gliding flight

can obviously be modified
;
for instance, if the outer halves

of the rear edge are evenly bent down to an angle of some

45 that is, to have their greatest effect in reducing the

angle of incidence the glider will extend the length of

its flight and travel faster (see fig. 52).

FIG. 52. Perspective.

But it will still be impossible by the operation of the

elevator to make the model fall headlong. The fixed tail

will prevent this, and will overcome the action of the

elevator because the latter is small in extent. Hence, an
elevator small enough relatively to the tail plane cannot

make an aeroplane dive headlong.
If the whole of the trailing edge is bent down it might

possibly cause longitudinal equilibrium to be upset and

make the glider dive. And should this not prove to be

the case, it could be done without fail by increasing the

depth of the elevator.

The experiment shows that the size of the elevator

should not be too large ;
it should merely be sufficient to

cause the alterations of the angle of incidence required for

ordinary flight and should never be able to upset stability.
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TYPE III.

1. Cut out from a sheet of paper folded in two a piece

shaped as in fig. 53,

2. Fold back the wings along the dotted lines.

3. Fold the wing-tips upwards along the outer dotted

line.

This tail-first glider will be stable without ballast and

FIG. 53.

glides very prettily on account of its lightness. It will be

referred to again in connection with directional stability.*

TYPE IV.

1. Cut out from a sheet of paper folded in two the shape
shown in fig. 54.

2. Cut away from the outer edge of the fold two portions

about 1 mm. deep, and of the length shown at AB and CD.

3. Inside the fold fix with glue

(a) At AB a strip of cardboard or cut from a visiting

card
;
5 cm. long, 1 cm. broad. The inner end

of the strip is shown by the dotted line at AB.

(b) At CD glue a similar strip as shown.

* If it tends to swerve, slightly bend the whole of the front tail in

the opposite sense.
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4. Fold back the wings and the tail plane along the

dotted lines.

Fio. 54.

FIG. 55. Perspective.

5. Ballast the model with a paper clip placed at the end
of the strip AB, and with another in the neighbourhood of
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L. The exact positions are to be found by experiment, and

it may therefore be as well to turn the cardboard about its

glued end before the glue has set.

If this glider is thrown upwards towards the sky, it will

right itself and glide away in the attitude shown in fig.
55.

Now the centre of gravity of a glider of this kind lies

somewhere about G.

On the other hand, the point sometimes termed the
" centre of lift" is situated on the plane at the spot which,

in equilibrium, is on the perpendicular from the centre of

gravity and shown at S. This point S lies below the

centre of gravity.

Now, if an aeroplane ought to be considered as suspended
in space from a so-called "centre of lift," its centre of

gravity could not, perforce, be anywhere but below this

" centre of lift."

In the case just mentioned the opposite took place, which

shows very clearly that this idea of a " centre of lift
"

is

erroneous.

An aeroplane has one centre only, its centre of gravity.



CHAPTER VIII

STABILITY IN STILL AIE

LATERAL STABILITY

FOR the complete solution of the problem of aviation the

aeroplane must possess, in addition to stable longitudinal

equilibrium, stable lateral equilibrium or, more briefly,

lateral stability.

The fundamental principle laid down in Chapter VI. is

equally applicable to lateral equilibrium.*
But in the case of longitudinal equilibrium the move-

ments that had to be considered in respect of stability

could be simply reduced to turning movements about a

single axis, the pitching axis. The matter becomes exceed-

ingly complicated in the case of lateral equilibrium, for

the turning movements can take place about an infinite

number of axes passing through the centre of gravity and

situated in the symmetrical plane of the machine.

For instance, assume that the aeroplane diagrammatically
shown in fig. 56 were moving horizontally and that the

path of the centre of gravity G were along GX. If the

machine were to turn through a certain angle about the

path GX, clearly no change would take place in the manner
in which the air struck any part of the machine,f and

no turning moment would arise tending to bring the

* From the point of view of equilibrium and stability, the aeroplane

may be regarded as if it were suspended from its centre of gravity, and

were thus struck by the relative wind created by its own speed.

t Assuming, of course, that the turning movement does not alter the

path of the centre of gravity.
142
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machine back to its former position or to cause it to depart

therefrom still further.

It can therefore be stated that the lateral equilibrium

of an aeroplane is neutral about an axis coincident with

the path of the centre of gravity.

But when we come to consider turning movements about

other axes such as G^ or GX
2
which do not coincide with

the path of the centre of gravity, it is evident that such

movements will have the effect of causing the aeroplane to

meet the air dissymmetrically, and consequently to set up
lateral moments tending to increase or diminish the tilt of

the machine that is, upsetting or righting couples.

Before going further it is readily evident that, the axis

X
X

GX being neutral, axes such as GX
X
and GX

2 , lying on

opposite sides of GX, will have a different effect, and that

a turning movement begun about one series of axes will

encounter a resistance due to the dissymmetrical reaction of

the air which it creates, while any turning movement begun
about the other series of axes, again owing to the dis-

symmetrical reaction of the air, will go on increasing until

the machine overturns.

The former series will be known as the stable axes, the

latter as the unstable axes. The neutral axis is that

coinciding with the path of the centre of gravity. Further,
the term raised axis will be used to denote an axis

with its forward extremity raised like GX
X
and lowered

axis for that which, like GX
2,

has its forward extremity
lowered.



144 FLIGHT WITHOUT FORMULA

The shape of the aeroplane determines which axis is

unstable.

In many aeroplanes, and in monoplanes in particular,*

the forward edges of the wings do not form an exact

straight line, but a dihedral angle or V opening upwards.
We shall also have to examine though the arrangement

in question has never to the author's knowledge been

adopted in practice the case of the machine with wings

forming an inverted dihedral or /\.f Lastly, the forward

edges of the two wings may form a straight line, and such

wings will hereafter be described as straight wings.
In an aeroplane with straight wings, a turning movement

imparted about an axis situated in the symmetrical plane
of the machine increases the angle of incidence if the axis

FIG. 57.

is a lowered axis, and diminishes the angle if the axis is a

raised axis. This can easily be proved geometrically, and

can be shown very simply by the following experiment.

Make a diagonal cut in a cork, as shown in fig. 57 (front

and side views). In this cut insert the middle of one of

the longer sides of a visiting-card, and thrust a knitting-

needle or the blade of a knife into the centre of the cork

on the side where the card projects. Now place this con-

* In the case of large-span biplanes the flexing on the planes in flight

forces them into a curve which in its effects is equivalent, for purposes

of lateral stability, to a lateral dihedral.

t The "Tubavion" shown at the 1912 Salon is stated to have flown

with wings thus disposed.

TRANSLATOR'S NOTE. The same device was adopted by Cody in his

earlier machines, and in the "June Bug," the first machine designed

by Glenn Curtiss.
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trivance in the position shown in
fig. 58, with the needle

horizontal and at eye-level. If the needle is rotated slowly,

the card will always appear to have the same breadth

whatever its position.

If this visiting-card is taken to represent the straight

FIG. 58.

wings of an aeroplane struck by the wind represented by
the line of sight, this shows that a turning movement about

the neutral axis of an aeroplane with straight wings

produces no change in the angle of incidence, as already
known.

FIG. 59.

But if the needle is inserted in the position shown in

fig. 59, it will be found that by rotating the needle without

altering its position, the breadth of the card will appear to

increase, thus showing, retaining the same illustration, that

when the axis of rotation of a machine with straight wings
is a lowered axis, the incidence increases as the result of

the turning movement.
10
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This effect is the more pronounced the smaller the angle

of incidence.

But if the needle is inserted as shown in fig. 60, the

breadth of the card when the needle is rotated will appear
to diminish.

If the needle is parallel to the card, a turn of the needle

through 90 brings the card edge-on to the line of sight.

Lastly, if the needle and the card are in converging

positions, a slight turn of the needle brings the card edge-on,

and beyond that its upper surface alone is in view.

From this we may conclude that if the axis of rotation

of an aeroplane with straight wings is a raised axis, the

angle of incidence diminishes as the result of a turning

FIG. 60.

movement, and if the axis is raised to a sufiicient degree,

the angle of incidence may become zero and even negative.

This effect is the more pronounced the larger the angle of

incidence.

It should be noted that in neither case is the action

dissymmetrical and that both wings are always equally

affected. In other words, should a machine with straight

wings turn about an axis lying within its plane of

symmetry, no righting or upsetting couple is produced by
the turning movement.

On the other hand, if the eye looks down vertically upon
the cork from above, it will be seen that a turning move-

ment about a lowered axis has the effect of causing the

rising wing to advance, while in the case of a raised axis

a turning movement causes it to recede (fig. 61). Now, by



STABILITY IN STILL AIR 147

advancing a wing, the centre of pressure is slightly

shifted; this may produce a couple tending to raise the

advancing wing.
Should the advancing wing be the lower one, which

corresponds to the case of a raised axis, this couple is a

righting couple. In the reverse case it is an upsetting

couple.

In this respect, for aeroplanes with straight wings a

raised axis is stable, a lowered axis unstable.

This effect in itself is very slight, but it represents the

nature of the lateral equilibrium of an aeroplane with

Raised Axis,

FIG. 61.

straight wings ;
for if it were not present, a machine with

straight wings would be in neutral equilibrium and possess
no stability.

But as soon as the wings form a lateral dihedral, whether

upwards or downwards, this effect practically disappears
and becomes negligible. This is the case next to be

examined.

Let us suppose, to begin with, that the wings form an

upward lateral dihedral, or open V- Each of the wings

may be considered in the light of one-half of a set of

straight wings which has begun to turn about the axis

represented by the apex of the \J ,
the movement of each
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wing being in the opposite direction, i.e. while one is falling

the other is rising.

The considerations set forth above show that a turning

movement about a raised axis causes the incidence of the

rising wing to diminish

while that of the fall-

ing wing increases
;
the

contrary takes place in

the case of a lowered

axis.

This is easily demon-

strated by tilting up-

FIG. 82,-Stable. Lateral V and raised axis, ward the two halves of

the visiting-card used in

the previous experiment. If the contrivance is looked at

as before, so that the axis of the cork is horizontal and

on a level with the eye, it will be found that any rotation

about the needle, when this is directed upwards, causes the

rising wing to appear to

diminish in surface while

the falling wing in-

creases (see fig. 62).

But if the needle points

downwards, the opposite
takes place (fig. 63).

In the first case, there-

fore, the turning move-

ment produces a righting

couple, in the second case

an upsetting couple.

This effect is the more

pronounced the larger

the angle of incidence.

Therefore in the case of wings forming a lateral dihedral,

a raised axis is stable, a lowered axis unstable, and the

more so the greater the angle of incidence.

This effect is added to the secondary effect already referred

FIG. 63. Unstable. Lateral V with lowered
axis.
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FIG. 64. Unstable. Lateral A with
raised axis.

to in the case of straight wings ;
but as soon as the dihedral

is appreciable, the former effect becomes by far the stronger.

Now consider the case of wings forming an inverted

dihedral or A. The same line of reasoning shows (see figs.

64 and 65) that :

In the case ofwings forming an inverted lateral dihedral

a raised axis is un-

stable, a lowered axis

stable, and this the more

so the smaller the angle

of incidence.

In this case the

secondary effect acts

in opposition, but it

becomes negligible as

soon as the inverted dihedral is appreciable.

These various effects are increasingly great, it will

be readily understood, as the span is increased in size,

for the upsetting or righting couples have lever arms

directly proportional to the span. Besides, but quite

apart from the value of the incidence in a given case,

it is clear that the

righting couples are

greater the higher the

speed of flight, since

they are proportional
to the square of the

speed. Broadly speak-

ing, therefore, though
with certain reserva-

tions into which we need not here enter in detail, it may
be stated that the higher the flying speed the greater is

lateral stability.

Although the stability or instability of any axis depends

chiefly on the main planes, other parts of the aeroplane can

affect it to a certain extent, hence their effect should be

taken into account as well.

FIG. 65. Stable.

Lateral /\ with
lowered axis.



150 FLIGHT WITHOUT FORMULA

The tail plane, which is usually straight, only affects

lateral stability to an inappreciable extent.

But it should be noted, as already stated, that any turning
movement about an axis other than the neutral axis will

affect the incidence at which the tail plane meets the air
;

and, since such a turning movement also affects, as already

known, the incidence of the main plane, this dual effect

must needs disturb the longitudinal equilibrium of the

machine. Hence, we arrive at the general proposition that

rolling begets pitching.

As regards the remaining parts of the aeroplane fuselage,

chassis, vertical surfaces, etc. they experience from the

relative wind, when the aeroplane turns about an axis

in the median plane, certain reactions which may be dis-

symmetric and would thus affect the equilibrium of the

machine on its flight-path. More particularly when the

parts in question are excentric relatively to the turning
axis can they influence though usually only to a small

extent lateral equilibrium.

For the sake of convenience and in a manner similar to

that previously adopted in the case of the detrimental

surface, the effects of all these parts may be concentrated

and assumed to be replaced by the effect of a single fictitious

vertical surface, which may be termed the keel surfo.ee,

which would, as it were, be incorporated in the symmetrical

plane of the machine.

Certain parts of the aeroplane, such as the vertical rudder,

the sides of a covered-in fuselage, vertical fins, form actual

parts of the keel surface.

Evidently, according to whether the pressure exerted on

the keel surface, by reason of a turning movement about

a given axis, passes to one side or the other of this axis, the

couple set up will be either a righting or upsetting couple.

It is easily shown that a keel surface which is raised

relatively to the axis of rotation can be compared, pro-

portions remaining the same, to a plane with an upward

dihedral, or V> an(i that a keel surface which is low relatively
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to the axis of rotation to a plane with a downward dihedral

or A-
For this purpose, the cork, visiting-card, and needle

previously employed may be discarded in favour of a

visiting-card fixed flag-wise to a knitting-needle. It is

clear, as shown in fig. 66, that when the axis of rotation

is raised, a high keel surface renders this axis stable and a

low keel surface renders it unstable, while the reverse is the

case if the axis of rotation is lowered (see fig. 67).

Stable. Raised axis and high keel.

Unstable. Raised axis and low keel.

FIG. 66.

But this effect, as previously explained, is of small

importance as compared with that due to the shape of the

main plane ; for, while the pressures on the keel surface are

never far removed from the axis of rotation, the differential

variations in the pressure exerted on the two wings of a

plane folded into a dihedral have, relatively to the axis, a

lever arm equal to half the span of the wing, and accord-

ingly these variations are considerable.

The effect of the dihedral of the main plane is therefore

not equivalent in magnitude to that of the keel surface

formed by the projected dihedral
(fig. 68). The dihedral
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has a much greater effect on lateral stability than a similar

keel surface.

We now know the position of the stable and the un-

stable axes of rotation according to the particular struc-

Unstable. Lowered axis and high keel.

Stable. Lowered axis and low keel.

FIG. 67.

ture of the aeroplane, and we have found that the same

machine can be stable laterally for one axis of rotation,

and unstable for another.

This is scarcely reassuring and inevitably leads to the

FIG. 68.

question : About which axis can an aeroplane,flying freely
in space, be brought to turn ?

In the first place, the position of the axes obviously

depends on the causes which can bring about the turning
movement. But these causes are known ; so far as lateral
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equilibrium is concerned, they can only consist in excess of

pressure on one wing or on the keel surface.

Here, then, we have one important element of the

question already settled. Nevertheless, the problem cannot

be solved in its entirety without having recourse to ordinary

mechanics and calculations, though the results thus obtained

may well be called into question, since the calculations have

to be based on hypotheses which are not always certain in

the present state of aerodynamical knowledge.

Without attempting to examine this difficult problem in

all its details,we may never-

theless remark that in its

solution the most important

part is played by the dis-

tribution of the masses

constituting the aeroplane

or, in other words, by its

structure considered from

the point of view of inertia.

Let us take a long iron

rod AB (fig. 69), ballasted

with a mass M, and sus-

pend it from its centre of

gravity G; add a small

pair of very light wings in the neighbourhood of the

centre of gravity.

If, with a pair of bellows, pressure is created beneath one

of the wings, the device will start to oscillate laterally, and

these oscillations will obviously take place about the axis

of the iron bar. If this is placed in the position shown in

fig. 69, the axis of rotation will be a raised axis
;

if in the

position illustrated in fig. 70, it will be a lowered axis.

Now every aeroplane, and every long body in fact, has a

certain axis passing through the centre of gravity, about

which axis we can assume the masses to be distributed, as

in the case of the present device they are about the axis of

the iron bar,

FIG. 69.
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FIG. 70.

Lateral oscillations tend to take place about this axis,

which may be termed the rolling axis. The term, it is

true, is not absolutely accurate, and lateral oscillations do

not take place mathe-

matically about this

axis; but at the same

time, as further investi-

gations would show, the

true rolling axes only
differ from it to a very

slight extent, and are

always slightly more

raised than the rolling

axis. Thisbringsus tothe

moment of rolling inertia.

In Chapter VII. was defined the moment of inertia of

a body about any axis
;
in the examination of longitudinal

stability the moment of inertia of an aeroplane about its

pitching axis was considered as the moment of pitching
inertia. But in the present case we have only to deal

with the moment of inertia of an aeroplane about its rolling

axis that is, its moment of rolling inertia.

As a matter of fact, the true axis of lateral oscillations

coincides more closely with the rolling axis as, on the one

hand, the incidence of the main plane is nearer to the best

incidence (see Chapter III.) and the corresponding drag-to
lift-ratio is smaller, and, on the other hand, as the ratio

between the moment of rolling inertia and the moment
of pitching inertia is smaller.

Owing to the fact that this latter ratio is very small in

the diagrammatic case just considered, the lateral oscilla-

tions of this device take place almost exactly about the

rolling axis, i.e. about the axis of the iron bar.*

* The moment of rolling inertia is very slight, since those parts

which are at any distance from the rolling axis, i.e. the wings, are very

light, while the moment of pitching inertia is great, owing to the

length and the weight of the iron bar.
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From all this it is clear that, according to the position of

the aeroplane in flight, its natural axis of lateral oscillation,

or approximately its rolling axis, will be either a raised or

a lowered axis. For an aeroplane to possess lateral stability,

its natural axes of oscillation must obviously be stable axes.

Thus, if the wings of an aeroplane form an upward
dihedral or V

'

>
or if the machine has a high keel surface, its

natural axes of oscillation must be raised axes, if lateral

stability is to be ensured. This condition is complied with

if the rolling axis of the aeroplane is itself a raised axis,

and even when the rolling axis is slightly lowered, since

the natural axes of oscillation are relatively slightly raised.

It is also clear that the stability will be better the greater
the angle of incidence.

On the other hand, if the main planes form a downward
dihedral or f\, the machine will be unstable laterally if the

rolling axis is a raised one or even if it is only slightly

lowered. But the aeroplane can be made stable if its

rolling axis is lowered to a sufficient extent, and the more

so the smaller the angle of incidence.

This conclusion is distinctly interesting since it is directly
at variance with the views held by the late Captain Ferber,

whose great scientific attainments lent him all the force of

authority, to the effect that an upward dihedral was
essential to lateral stability.

But it is even more important by reason of the fact

which will be duly discussed in the final chapter, already
noted by Ferber himself, that whereas the upward dihedral

or V is disadvantageous in disturbed air, the downward
dihedral has distinct advantages in this respect.

On the whole, however, Ferber's view is correct at

present, since in the majority of aeroplanes of to-day the

rolling axis is practically identical with the trajectory of

the centre of gravity or only very slightly lowered. But
in an aeroplane with a rolling axis lowered to an appreciable

extent, the upward dihedral might be highly injurious from
the point of view of lateral stability, whereas the inverted
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dihedral or A would, contrary to general opinion, be

eminently stable.

How is this arrangement to be carried out in practice ?

The rolling axis is a line which passes through the centre

of gravity and lies close to the masses situated at the end

of the fuselage, such as the tail plane and controlling
surfaces. When the centre of gravity is normal, this line

consequently lies along the axis of the fuselage. But if

the centre of gravity is situated low relatively to the wings,
the rolling axis is also lowered. The same would occur if

the machine was so arranged as to fly with its tail high, so

that the axis of its fuselage would form an angle, distinctly

greater than the normal incidence, with the chord of the

main plane.

On the other hand, a low centre of gravity, if unduly

exaggerated, presents certain disadvantages.
The best method of obtaining a rolling axis such that

the inverted dihedral of the main plane produces lateral

stability would seem to be by combining both devices, i.e.

by slightly lowering the centre of gravity and raising the

tail in flight.

This conclusion was formed by the author several years

ago ;
and in 1909, somewhat fearful of running counter to

the authoritative views of Captain Ferber, the opinion was

sought of the eminent engineer, M. Rodolphe Soreau, another

recognised authority, in regard to the position of the axis

about which an aeroplane's natural lateral oscillations take

place. In 1910 in a previous work,* the author first

enunciated in definite form the proposition that an aero-

plane with its main planes arranged to form an inverted

dihedral could, under given conditions, remain stable

laterally. Since then the point has been dealt with in an

article in La Technique Aeronautique and in a paper read

before the Acade'mie des Sciences.f

* The Mechanics of the Aeroplane (Longmans, Green & Co.).

t La Technique Aeronautique, December 15, 1910
; Comptes Rendus,

May 15, 1911.
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Summing up :

(1) In aeroplanes of the shape hitherto generally employed,
a straight plane produces no lateral stability, apart
from the very slight stabilising effect produced by
the secondary cause, already referred to.

(2) In such aeroplanes a dihedral angle of the wings or

the use of a high keel surface produces lateral

stability, and this in an increasing degree as the

angle of incidence is greater.

(3) If the centre of gravity of the aeroplane is low, or if

its tail in normal flight is high (or if both these

features are incorporated in the machine), an

inverted dihedral or f\ of the wings with a low

keel surface may produce lateral stability, and this

to an increasing extent the smaller the angle of

incidence.

Lateral stability, therefore, depends on several different

parts of the structure, but it can never attain the same

magnitude as longitudinal stability,which is easily explained.

For, whereas in the case of longitudinal stability any

angular displacement in the sense of diving or stalling

affects to its full extent the angle of the main and the

tail planes, as regards lateral stability a great angular

displacement in the sense of rolling is required to pro-
duce even a slight, difference in the incidence of the two

wings.
The righting couples are therefore much smaller in

the lateral than the longitudinal sense for any given
oscillations. If, as in Chapter VI., the degree of lateral

stability of an aeroplane is represented by the length of

a pendulum arm, it will be found that even with the

most stable machines this length is hardly in excess of

0*5 m., while attaining 2'5 and even 3 m. in the case of

longitudinal stability.

As with longitudinal stability, so here again there exists

a condition of stability of oscillation that is, a definite
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proportion must exist between the stabilising effect of

the shape of the machine and the value of its moment of

rolling inertia, so that the lateral oscillations can never

increase to the point of making the aeroplane turn turtle.

For this reason, since lateral stability is relatively small,

the moment of rolling inertia should not be too great.

On the other hand, an increase in span, which increases

this moment of inertia, also gives the stabilising effect

a long lever arm. Hence, a middle course had best be

adopted.

Aeroplanes with a large rolling inertia oscillate slowly,

so that there is time to correct the oscillations, but these

tend to persist.

So far as the wind is concerned, it would appear an

advantage to concentrate the masses, thus keeping the

moment of inertia small (see Chapter X.).

A low centre of gravity, as already shown, increases to a

considerable extent the moment of inertia both to pitching

and to rolling. Hence, if unduly low, it may set up lateral

oscillations, which constitutes the disadvantage previously

referred to. If, therefore, a low centre of gravity is resorted

to with the object of inclining the rolling axis to permit the

use of wings with an inverted dihedral or f\, care should

be taken that it be not too low, and it would seem in every

respect preferable to obtain the same result by raising

the tail.*

Aeroplanes with little rolling inertia oscillate more

quickly than the others. If this is slightly disadvantageous
since these oscillations cannot be so easily corrected, quick

oscillations, on the other hand, possess the advantage of

being accompanied by a damping effect similar to that

existing in the case of longitudinal oscillations and referred

to above. For, if a plane oscillates laterally, the wind

strikes it at either a greater or smaller angle than when

it is motionless, and this becomes the more marked the

quicker the oscillation.

* Such a tail should obviously offer as little resistance as possible.
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The small degree of lateral stability possessed by

aeroplanes, especially of those with straight planes would,

generally speaking, usually not suffice to prevent the

upsetting of the machine owing to atmospheric disturb-

ances, the more so since, as Chapter X. will show, the very

shapes and arrangements which produce lateral stability

may at times interfere with the flying qualities of the

machine in disturbed air.

Hence it is necessary to give the pilot a means of power-
ful control over lateral balance in order to counteract the

effects of air disturbances.

This means consists in warping, which was probably
first conceived by Mouillard, and first carried out in practice

by the brothers Wright. Other devices, such as ailerons,

have since been brought out, the object in each case being
to produce, differentially or not, an excess of pressure on

one wing.
The pilot therefore controls the lateral balance of his

machine, and this has to be constantly corrected and

maintained by him.

Naturally, the idea of providing some automatic device

to replace this controlling action by the pilot has arisen,

but this question will be left for discussion in the last

chapter, which deals with the effects of wind on the

aeroplane.

The rotation of a single propeller causes a reaction in

an aeroplane tending to tilt it laterally to some extent.

This could easily be corrected by slightly overloading the

wing that shows the tendency to rise ; but in this event the

reverse effect would take place when the engine stopped*
either unintentionally or through the pilot's action when
about to begin a glide that is, at the very moment when

longitudinal balance is already disturbed.

Lateral balance is bound to be disturbed in some degree

owing to the propeller ceasing to revolve, but it would seem

preferable that at the moment when this occurs both wings
should be evenly loaded.



160 FLIGHT WITHOUT FORMULA

For this reason constructors generally leave it to the

pilot to correct the effect referred to by means of the warp
(which term includes all the different devices producing
lateral stability). Probably the effect is responsible for

the tendency which most aeroplanes possess of turning
more easily in one direction than the other.*

* Another effect due to the rotation of the propeller, the gyroscopic

effect, will be briefly considered in the following chapter.



CHAPTER IX

STABILITY IN STILL AIR

LATERAL STABILITY (concluded) DIRECTIONAL

STABILITY TURNING

OUR examination of lateral stability may well be brought
to a conclusion by considering the interesting lessons that

may be learned from experiments with little paper gliders.

First, we will take some of those gliders which have been

described in previous chapters and examine them in regard
to lateral stability.

Type 1 (see Chapter VII.) This, it will be remembered,

is a simple rectangular piece of paper. It has already been

explained that it was necessary to bend ifc so as to form a

lateral \J.

This arrangement is essential for obtaining lateral

stability with this particular glider, since its rolling axis,

which corresponds approximately with the fold along the

centre, is a raised axis, for the reason that the path followed

by the centre of gravity must be at a lesser angle than this

central fold, in order to give the gliders an angle of

incidence. Practice here will be seen to confirm theory.

Cut out a rectangular sheet of very stiffpaper and, without

folding it, load it with ballast as shown in Chapter VII.

During the process of finding, by experiment, the correct

position for the ballast, it will be found that the flight of

such a glider is accompanied by considerable lateral

oscillations. More, these oscillations are both lateral and

directional; in other words, the path followed by the
161 11

*
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centre of gravity is a sinuous one, and the glider not

only tilts up on to one wing and the other in succession,

but each time it tends to change its course and swerve round

towards the lower wing, and thus it is virtually always

skidding or yawing sideways.
In this way it appears to oscillate not about an axis

passing through the centre of gravity, but about a higher
axis.

The reason for this, which will be entered into more fully

in connection with directional stability, is the extremely
small keel surface of such a glider. This might at first

appear to conflict with the fundamental principle,* but the

anomaly is simply due to the fact that the lateral oscillations

which, as always, do indeed occur about an axis passing

through the centre of gravity, are combined with the zig-

zag movement due to the small keel surface, which is

moreover the outcome of the oscillations.

The tendency to roll is the result of the very slight

lateral stability of a straight plane, which possesses practi-

cally no keel surface, and this tendency is counteracted by

nothing but the small secondary damping effect referred

to in Chapter VIII.

Oscillatory stability is therefore almost absent, and the

first rolling movement would increase until the glider was

overturned, but for the fact that, the air pressure being no

longer directed vertically upwards, the path followed by
the centre of gravity is deflected sideways and the glider

tends to turn bodily towards its down-tilted side.

The glider promptly obeys this tendency, for its mass is

feeble while it possesses practically no keel surface offer-

ing lateral resistance ;
hence the centre of pressure moves

towards the side in which movement is taking place and

thus creates a righting couple. Consequently, in a measure,

the yawing saves the glider from overturning.

This tendency to yaw which is displayed by machines with

* That an aeroplane should be considered as being suspended from

its centre of gravity (see p. 93).
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straight wings and a small keel surface is to be observed,

for it would seem to furnish the reason for the side-slips to

which aeroplanes devoid of a lateral dihedral are prone.

Now, if the sheet of paper is slightly folded upwards
from the centre, these various movements decrease, and,

finally, if folded up still further, disappear altogether.

The dihedral angle increases lateral stability and oscillatory

stability, while the considerable keel surface which the

glider now possesses stops all tendency to yaw.
Since the stabilising effect of the dihedral in the example

chosen is due to the rolling axis being a raised axis, it is

to be expected that, when launched upside down, the

glider will prove to be laterally unstable. This, in fact, is

what occurs if the dihedral is pronounced enough. The

glider immediately turns right side up.

If the glider has no dihedral, or only a slight one, and if

the span is reduced (in this case either the ballast must be

moved back or and this is preferable the wing-tips must

be turned up aft, for the weight of the ballast is now

disproportionate to the weight of the paper so that the

centre of gravity has moved forward), it may be observed

that the lateral oscillations become quicker, which is due

to the moment of rolling inertia having diminished.

Type 2 (see Chapter VII.). This model represents the

normal shape of an aeroplane (fig. 51). It has already
been explained that it should be given a slight dihedral,

which, in any case, it will tend to assume of its own accord

owing to the combined forces of gravity and air pressure.

This glider will be found to possess good lateral stability,

its rolling axis coinciding approximately with the central

fold, so that it is a raised axis.

Oscillatory stability is good and rolling almost absent.

If the glider is bent into a downward dihedral or /\ (this

fold should be somewhat emphasised in view of the tendency
of the glider to assume an ordinary V f its own accord),
it will overturn, which is quite in accord with theory, as

the natural rolling axis is a raised axis.
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Type 3 (see Chapter VII.). This is the " Canard
"
or tail-

first type (fig. 53). The wing-tips being bent vertically

upward, form a high keel surface, while, as in the previous

case, the glider naturally tends to assume a V-
Hence it is laterally stable, and the rolling axis, coincid-

ing with the central fold, is a raised axis.

There are no appreciable oscillations. If it is bent

downward into a /\, and this to a pronounced extent owing
to the stabilising effect of the fins, or if these latter are

folded down, the glider overturns.

These three types, therefore, are in accordance with the

principle laid down by Captain Ferber, to the effect that

a lateral V is necessary for lateral stability.

Examination of the following two models, on the other

hand, shows them to be in contradiction with this principle,

and bears out the author's contention that lateral stability

may be obtained in an aeroplane possessing a downward

dihedral or /V

Type 5* 1. Cut out from a sheet of paper folded in two

the outline shown in
fig. 71.

2. Cut away, in the dimensions shown, the folded edge
at AB and CD.

3. Glue to the inside of the fold : (a) at AB, a small

strip of cardboard cut from a visiting-card (5 to 6 cm.

long and 1 cm. broad), (b) at CD a rectangular piece of

paper (4 cm. by 15 mm.).
4. Fold back the wings and the tail plane along the thick

dotted lines. The wings should be folded so as to form a

lateral A- (If any difficulty is experienced in maintaining
this shape, a thin strip of cardboard, 4 to 5 mm. wide,

may be glued along the forward edge.)

5. Affix the ballast, consisting of one or more paper

fasteners, to the end of the paper strip in front. (The

correct position must be found by experiment, and it

may be useful, for this purpose, to adjust the forward

* This number was given so as not to break the numerical sequence.

Type 4 was dealt with in Chapter VII.
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strip of cardboard to the correct position before the glue

is quite dry.)

FIG. 71.

Type 6. 1. Cut out from a sheet of paper folded in two
the outline shown in fig. 72.

A Fold along this line.

FIG. 72.

2. Fold back the wings and the tail plane along the

thick dotted lines. The wings are folded so as to form an
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inverted dihedral or A> tne edge of the fold being upper-
most in this model.

3. Glue to the inside of the fold : (a) in front and so as

to form a continuation of the fold, a strip of cardboard cut

from a visiting-card, and measuring 5 or 6 cm. by 1 cm.
;

(b) in the rear and at right angles to the fold, another strip

of cardboard measuring 4 cm. by 15 mm.
4. Affix ballast in the shape of two or three paper clips

at the extremity of the foremost cardboard strip.

These models belonging to types 5 and 6 have to be

adjusted with great care and will probably turn over at

the first attempt, until balance is perfect, but this need not

discourage further attempts.
If they display a marked tendency to side-slip or yaw

or to turn to one side, the trailing edge of the opposite

wing-tip should be slightly turned up, until balance is

obtained.

But if the model rolls in too pronounced a fashion,

such oscillations may be caused to disappear either by

shifting the ballast or even by turning up or down the

rear edge of the tail plane. In some cases the same

result may be obtained simply by emphasising the A of

the wings.
Once they are properly adjusted, these gliders assume on

their flight-path the attitudes shown respectively in figs.

73 and 74. These are the attitudes imposed by the laws

of equilibrium ;
and if the gliders are thrown skyward

anyhow, they will always resume these positions, provided

they are at a sufficient height above the ground.
Model 5 displays a slight tendency to roll, but model 6

follows its proper flight-path, which can be made perfectly

straight, in quite a remarkable manner.

This is all in accordance with the theory put forward in

Chapter VIII. Because the rolling axis is a lowered axis

since in model 5 the centre of gravity is situated very low

and in model 6 the tail is very high the inverted dihedral

or A of the wings produces stable lateral equilibrium.
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On the other hand, in model 5 the centre of gravity is

exceptionally low
;
hence the moment of rolling inertia is

FIG. 73. Perspective.

FIG. 74. Perspective.

great, so that oscillatory stability is not quite perfect and

there remains a tendency to swing laterally, whereas in
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model 6 this defect is absent, since the centre of gravity is

only slightly lowered.

The latter arrangement is therefore the one to be adopted
in designing a full-size aeroplane of this type.

In both cases, by increasing the A the tendency to

oscillate is reduced, owing to the fact that, up to a certain

limit, the value of the righting couples is hereby increased

likewise. The same is true of a decrease in the angle of

incidence, effected either by displacing the ballast farther

forward or by adjusting the tail, because, as has been

shown previously, any decrease in the incidence augments
lateral stability if the wings are placed at a A-
Our theory would be even more conclusively proved

correct, if, when the wings were turned up into a V> the

glider overturned.

As a matter of fact this does occur sometimes, especially
with model 6, but not always, and with its wings so

arranged the model may still retain a certain amount of

lateral stability.

This apparent conflict of practice and theory may be

explained by the fact that, by turning up the wings of

such a model the centre of gravity is raised, since the

wings constitute an important part of the weight of these

little gliders ; consequently the rolling axis is also raised,

and since, as previously stated, lateral oscillation occurs

not precisely about the rolling axis but about a higher axis

still, the true rolling axis may prove to be a stable axis

for V-snaPed wings. This is borne out further by the

fact that in many cases, and especially with model 6, this

does not occur and that the glider overturns.

With the kind assistance of M. Eiffel, the author carried

out in the Eiffel laboratory a series of tests with a scale

model of greater size and so designed that its wings could

be altered to form either an upward or a downward

dihedral, and these tests appear to be conclusive.

The model, perfectly stable when its wings formed a

A, showed a strong tendency to overturn when the wings
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formed a V- (The raising of the centre of gravity caused

by upturning the wings was neutralised by lowering the

ballast to a corresponding extent.)

But even if this further proof were absent, it would

nevertheless remain true and the fact is most important,
as will be shown in Chapter X. that it seems possible to

build aeroplanes, with wingsforming an inverted dihedral

angle, which in spite of this are laterally stable.

DIRECTIONAL STABILITY

An aeroplane must possess more than longitudinal and

lateral stability; it must maintain its direction of flight,

must always fly head to the relative wind, and must not

swing round owing to a slight disturbance from without.

This is expressed by the term directional stability.

In other words, an aeroplane should
^

behave, in the wind set up by its own

speed through the air, like a good
weathercock. . & j^

In
fig. 75, let AB represent, looking \

downwards, a weathercock, turning about \ /

the vertical axis shown at O, the direction

of the wind being shown by the arrow.

From our knowledge of the distribu-

tion of pressure on a flat plane (fig. 32,

Chapter VI.), it is clear that if the axis

O is situated behind the limit point of

the centre of pressure, the weathercock,
in order to be in equilibrium, would have

to be at an angle with the wind such

that the corresponding pressure passed

through the point O. Hence, the weathercock would
assume the position A'B' or A"B".

It would be a bad weathercock because it formed an

angle with the wind. A good weathercock always lies

absolutely parallel with the wind, which thus always meets
it head-on.

V
FIG. 75. Plan.
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Therefore, in a good flat weathercock the axis of rotation

must be situated in front of the limit point of the centre

of pressure, i.e. in the first fourth from front to rear.

In so far as its direction in the air is concerned, an

aeroplane behaves in exactly tlie same way as the weather-

cock which we have termed its keel surface, the axis of

rotation being approximately a vertical axis passing

through the centre of gravity.
It can therefore be stated that for an aeroplane to possess

directional or weathercock stability, the limit point of the

centre of pressure on its keel surface, when it meets the air

at even smaller angles, must lie behind the centre of gravity.
Directional equilibrium is thus obviously stable, since

any change of direction sets up a righting couple, because

the pressure on the keel surface always passes behind the

centre of gravity.*

Directional stability is usually maintained by the means

already provided to secure lateral stability, the rear portion
of the fuselage, which is often covered in with fabric, con-

stituting the rear part of the keel surface. Moreover, this

is further increased by the presence of a vertical rudder

still further aft.

But there are certain machines in which special means

have to be taken to secure directional stability the tail-

first or " Canard
"
machine is of this type.

In Chapters VI. and VII. it was stated that the fact that

this type of machine has its tail plane in front tends to

longitudinal instability, which is only overcome by the

unusually high stabilising efficiency of the main planes,

* Reference to Chapters VI. and VII. will show that longitudinal

equilibrium is also, in effect, weathercock equilibrium. But in this

respect, the planes must always form an angle with the relative wind,

which constitutes the angle of incidence and produces the lift. In

regard to longitudinal stability, the aeroplane should therefore be a bad

weathercock. Further, it will be shown in Chapter X. that, in con-

sidering the effect of the wind on an aeroplane, two classes of bad

weathercocks have to be distinguished, and that an aeroplane should be,

if the term be allowed to pass, a "
good variety of bad weathercocks."
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which are of relatively great size and situated at a con-

siderable distance behind the centre of gravity.

The same is true in regard to directional stability, and

the existence in the forward part of the machine of a long

fuselage, comparable to a weathercock turned the wrong
way round, would speedily cause the aeroplane to turn

completely round if it were not provided with considerable

keel surface behind the centre of gravity. The necessity
for this arrangement will readily appear if, in the little

paper glider No. 3, already described, the vertical fins at

the wing-tips are removed. The glider will then turn

about itself without having any fixed flight-path.*

In Chapter VIII. it was shown that lateral stability

is affected by raising or lowering the vertical keel surface.

But even if it is neither high nor low, and though it may
appear to affect only directional stability, every bit of keel

surface plays an important part in lateral stability. For

these two varieties of stability are not absolutely distinct.

Both, in fact, relate to the rotation of the aeroplane about

axes situated in the plane of symmetry.
When these axes are close to the flight-path of the centre

of gravity, only lateral stability comes in question; but

when they are more nearly vertical, the rotary movement
about them belongs to directional stability.

Nevertheless, any turning movement about any axis

other than that formed by the path of the centre of gravity

plays its part in both lateral and directional stability, and

it is only in so far as it affects the one more than the other

that it is classified as belonging to lateral or directional

stability. The line of cleavage between these two varieties

of stability is by no means clear.

From this it follows, in the author's opinion, that the

means for obtaining lateral stability gain considerably in

effectiveness if they also produce directional stability. If

* To obtain good directional stability, those paper models with a

ballasted strip of cardboard in front were all provided with a vertical

fin in the rear.
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aeroplanes with wings forming a /\ are ever built, they
should be provided with a considerable amount of keel

surface aft (placed low rather than high).

In conclusion, it may be said that, of the three varieties

of stability, directional stability is at the present time the

most perfect, which is to be accounted for on the ground
that the pressure on the keel surface must always pass
behind the centre of gravity, whence arise strong righting

couples.

In the order of their effectiveness at the present day,
the three classes of stability can therefore be arranged as

follows :

Directional stability.

Longitudinal stability.

Lateral stability.

By careful observation of the oscillations of an aeroplane
the truth of this statement will be borne out. Every

aeroplane betrays some tendency to roll
;
at times it also

tends to pitch, but it hardly ever swerves from side to side

on its flight-path, zigzag fashion.

TURNING

The vertical flight-path of an aeroplane is controlled by
the elevator

;
but the pilot must also be able to change his

direction and to execute turning movements to right and

left.

A few points of elementary mechanics may here be

usefully recalled.

If a body is freely abandoned to its own devices after

having been launched at a certain speed (omitting from

consideration the action of gravity), it continues by reason

of its inertia to advance in a straight line at its original

speed, and an outside force is required in order to modify
this speed or to alter the direction followed by the body.

A body following a curved path therefore only does so

through the action of an outside force.

If the body follows a circular path, the force which pre-
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vents it from getting further away from the centre of the

circle, although its inertia seeks to propel it in a straight

line, to move away at a tangent, is termed centripetal force.

For instance, if a stone attached to the end of a string

is whirled round, it describes a circle instead of following

a straight line only because the string resists and exerts

on it a centripetal force. If this force is stopped and the

string is let go, the stone will fly off at a tangent.

On the other hand, a body, in this case the stone, always
tends to fly off; it thus reacts, exerting in its turn on the

cause which maintains it in a circular path in this case,

on the string a force termed centrifugal force, which, in

accordance with the well-known principle of mechanics

concerning the equality of action and reaction, is exactly

equal and opposite to the centripetal force which causes it.

In the example chosen, the value of the centripetal and

centrifugal forces (the same in both cases) could be

measured by attaching a spring balance to the string. It

would be found that, as is easily shown in theory, this

value is proportional to the square of the speed of rotation

and inversely proportional to the radius of the circle

described.

From this it is clear that in order to curve the flight-

path of an aeroplane, that is, to make it turn, it is

necessary to exert upon it by some means or other a centri-

petal force directed from the side in which the turn is to

be made. This can be done by creating, through movable

controlling surfaces, a certain lack of symmetry in the

shape of the aeroplane which will result in a correspond-

ing lack of symmetry in the reactions of the air upon it.

The most obvious proceeding is to provide the aeroplane
with the same device by which ships are steered and to

equip it with a rudder. But, just as a ship without a

keel responds only in a slight measure to the action of a

rudder, so an aeroplane offering little lateral resistance

that is, having but little keel surface only responds to the

rudder in a minor degree.
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In order to make this clear, we will take the case of an

aeroplane entirely devoid of keel surface, though this is

an impossibility on a par with the case of an aeroplane

wholly devoid of detrimental surface, since the structure

of an aeroplane must perforce always offer some lateral

resistance, even though the constructor has tried to reduce

this to vanishing-point.

However, let us assume that such an aeroplane, having

Q

its centre of gravity at G (fig. 76), is provided with a

rudder CD.

If the rudder is moved to the position CD', the aero-

plane will turn about its centre of gravity until the rudder

lies parallel with the wind. But there will not be exerted

on the centre of gravity any unsymmetrical reaction, any

centripetal force capable of curving the flight-path.

The aeroplane will therefore still proceed in a straight

line, and the only effect of the displacement of the rudder
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will be to make the aeroplane advance crabwise, without

any tendency to turn on its flight-path.

But if the machine is equipped with a keel surface AB

(fig. 77), directional equilibrium necessitates that this keel

surface should present an angle to the wind, and become

thereby subjected to a pressure Q, whose couple relatively

B

! C

D

FIG. 77. Plan.

to the centre of gravity is equal and opposite to the

pressure q exerted on the displaced rudder CD'. Since Q
is considerably greater than q, there is exerted on the

centre of gravity, as the result of their simultaneous effect,

a resultant pressure approximately equal to their difference

(which could be found by compounding the forces), and

this forms a centripetal reaction capable of curving the

flight-path that is, of making the machine turn.
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It should be observed that the nearer the keel surface

is to the centre of gravity the greater is the centripetal
force set up by the action of the rudder. Similarly, the

intensity of this force also depends on the extent of the

keel surface. And lastly, since the centripetal force has

a value equal to the difference between the pressures Q
and q, it becomes greater the smaller the latter pressure.
Hence there is an advantage in using a small rudder, which

must, in consequence,
have a long lever arm
in order to balance the

effect of the keel surface.

A turn might also be

effected by lowering a

flap CD, as shown in

fig. 78 at the extremity
of one wing, this flap

constituting a brake.

In this case, too, a keel

surface is essential and

equilibrium would exist

if the couples set up by
the pressures Q and q,

exerted on the keel sur-

face and on the brake

respectively, were equal.

A centripetal reaction,

the resultant of these pressures, would act on the centre

of gravity and bring about a turn.

There remains a third and last means of making an

aeroplane perform a turn, and this requires no keel surface.

This consists in causing the aeroplane to assume a permanent
lateral tilt.

The pressure exerted on the plane (which is roughly

equal to the weight of the machine) is tilted with the

aeroplane and has a component p (fig. 79) which assumes

the part of centripetal force, and makes the machine turn.

FIG. 78. Plan.
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The machine can be tilted in various ways for instance,

by overloading one of the wings. But the more usual

method is that of the warp, which has already been referred

to as the pilot's means of maintaining lateral balance.

By increasing the incidence, or its equivalent the lift, of

one wing-tip and decreasing that of the other, the former

wing is raised and the latter lowered, so that the machine

is tilted in the manner required to make a turn.

But in warping, the wing with increased lift also

has an increased drag or head resistance, while the

reverse takes place with the other wing.
This secondary effect

is analogous with that of

the air brake just con-

sidered and is exerted in

the opposite way to that

required to perform the

turn. It is usually smaller

than the main effect of the

warp, but still interferes

with its efficacity. On
the other hand, in some

aeroplanes it may gain
FlG - 79 Front elevation.

the upper hand, as in the noteworthy case of the Wright
machines.

In order to overcome this defect, the brothers Wright

produced, through the means of the rudder (which played
no other part), a couple opposed to the braking effect,

which left its entire efficiency to the differential pressure
variation exerted on the wings by the action of the warp.

Further, the warp and rudder could be so interconnected

as to act simultaneously by the movement of a single
lever (this constituted the main principle of the Wright
patents).

This detrimental secondary effect could, it would appear,
be easily overcome by using a plane with wing-tips uptilted

in the rear as at BC in fig. 80.

12

Centripetal Force.
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By depressing the trailing edge BC of the wings, which

are purposely made flexible, the lift is increased and the

drag diminished at the wing-tip. By turning up the trailing

edge the lift is decreased and the drag increased. Both

effects therefore combine to assist in making the turn

instead of impeding it. Instead, finally, of adopting this

particular warping method, the same result could be obtained

by using negative-angle ailerons.

It should be noted and the fact is of importance both

so far as turning and lateral balance are concerned that

the effect of the warp is definitely limited. It is known

that beyond a certain incidence (usually in the neighbour-

hood of 15 to 20) the lift of a plane diminishes while the

drag increases rapidly.

If the warp is therefore used to an exaggerated extent,

the detrimental secondary effect referred to above comes

into play, with the result

_ that its effect is the reverse

o of the usual one. This may
prove a source of danger,

FIG. 80. Profile. . _.
fe

.

and it might be well in

certain machines, if not to limit the warp absolutely, at

any rate to provide some means of warning the pilot that

he is approaching the danger-point.

Since the rudder sets up a couple tending to counteract

this secondary effect, it should be resorted to in case an

undue degree of warp causes a reverse action to the one

intended.

The banking of the planes which, as already seen,

may provoke a turn, always results from it; for, as the

aeroplane swings round, the outer wing travels faster than

the inner wing, so that the pressure on the one differs

from that on the other, with the result that the outer one

is raised.

Therefore, if the centripetal force which causes the

turn does not originate from the intentional banking of

the planes, this banking which results from the turning
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movement produces the necessary force to balance the

centrifugal force set up by the circular motion of the

machine.

It follows that the amount of the bank during a turn

depends on those factors which determine the amount of

centrifugal force. Hence, the bank is steeper the faster the

flying speed (being proportional to the square of the speed),

and the sharper the turn. It may therefore be dangerous
to turn too sharply at high speeds.

Equilibrium between centripetal and centrifugal force is

important simply in so far as it concerns the movement of

the aeroplane along its curved path, or, in other words, the

movement of its centre of gravity. But, in addition, the

machine itself should be in equilibrium about its centre of

gravity that is, the couples exerted upon it by the air in

its dissymmetrical position during the turn must exactly
balance one another.

This position of equilibrium during a turn evidently

depends on various factors, among which are the means

whereby the turn has been produced and the distribution

of the masses of the machine.

For instance, if the turn is caused by banking, it might
be thought that so long as the cause remained, the bank
would continue to grow more and more steep. But usually
this is not the case, for if the aeroplane possesses any
natural stability, the bank will itself set up a righting

couple balancing the couple which produced the bank.

The value of this righting couple depends, of course, on

the shape of the aeroplane and especially on the position
of its rolling axis. If the machine has little natural

stability, the pilot may have to use his controls in order to

limit the bank, as otherwise the machine would bank ever

more steeply and the turn become ever sharper until the

aeroplane fell.*

* Pilots have often mentioned an impression of being drawn towards
the centre when turning sharply.
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As a rule, the warp is not used for producing a turn, for

the majority of machines possess sufficient keel surface to
*J /

answer the rudder perfectly.

Often the rudder aids the warp in maintaining lateral

balance : for instance, by turning to the left a downward tilt

of the right wing may be overcome.

Possibly in future the warp will become even less

important, so that this device, which is generally thought
to have been imitated from birds (which have no vertical

rudder), may eventually vanish altogether.* The Paulhan-

Tatin "
Torpille," referred to in previous chapters, had no

warp, neither had the old Voisin biplane, one of the first

aeroplanes that ever flew. This was due to the fact that

in both cases the keel surface (a pronounced curved dihedral

in the "
Torpille," and curtains in the Voisin) was sufficient

to render the rudder highly effective.

It is to be noted that, whatever the cause of the turn, the

dissymmetrical attitude adopted as a result by the aeroplane

simultaneously causes the drag to increase while the lift

decreases owing to the bank. At the same time, the angle

of incidence alters, since any alteration in lateral balance

brings about an alteration in longitudinal balance, for rolling

produces pitching.

For these reasons an aeroplane descends during a turn.

The pilot feels that he is losing air-speed and puts the

elevator down. Theory, on the other hand, would appear to

teach that he ought to climb. But, as already stated, this

apparent divergence is due to the fact that theory applies

chiefly to a machine in normal flight. When an aeroplane

changes its flight and passes from one position to another,

effects of inertia may arise during the transition stage

which may vitiate purely theoretical conclusions, and in

*
Although the author has carefully studied the flight of large soaring

and gliding birds in a wind, he has never found them to warp their wing-

tips to a perceptible extent to obtain lateral balance, while, on the other

hand, probably for this very purpose, they continually twist their tails

to right and left.
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such a case theory must give way to practice. In any
event, practice need not necessarily remain the same should

the shape of the aeroplane undergo considerable alterations

and, more especially, if in future the lift coefficient becomes

very small.*

In conclusion, something remains to be said of the

gyroscopic effect of the propeller. Any body turning about

a symmetrical axis tends, for reasons of inertia, to preserve
its original movement of rotation.

The direction of the axis about which turning takes

place remains fixed in space, and, in order to alter it, a force

must be applied to it, which must be the greater the higher
the speed of rotation, the greater the movement of inertia,

and the sharper the effort to alter it.

But now arises the curious fact that if it is sought to

move the axis in a given direction, it will actually move in

a direction at right angles to this. This characteristic of

rotating bodies may be observed in the case of gyroscopic

tops, which only remain in equilibrium and only adopt a

slow conical motion when their axis becomes inclined

towards the end of their spinning, for this very reason.

Now a propeller which has a high moment of inertia,

especially if of large diameter, and turning at a great speed,

constitutes a powerful gyroscope (which is further increased

if the motor is of the rotary type).

It follows that any sudden action tending to modify the

direction of flight results in a movement at right angles to

that desired. Thus, a sudden swerve to one side may pro-

* It may be added that at very high speeds an aeroplane during a

sharp turn actually rises instead of coming down, but this is due to

quite a different cause. At the moment of turning, when already
banked and the rudder is brought into play, the machine for a fraction

of time, owing to its inertia, slides outward and upward on its planes.

This effect was particularly noticeable during the Gordon-Bennett race-

in 1913, when, long before the turning-point was reached, the aeroplanes
were gradually banked over, until at the last moment a sudden move-

ment of the rudder bar sent them skimming round, the while shooting

sharply upward and outward. TRANSLATOR.
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duce a tendency either to dive or to stall, according to which

side the swerve is made and to the direction of rotation of

the propeller.

Accidents have sometimes been ascribed to this gyroscopic

effect, but its importance would appear to have been greatly

exaggerated, and so long as the controls are not moved

very sharply, it remains almost inappreciable.



CHAPTER X

THE EFFECT OF WIND ON AEKOPLANES

EVERY previous chapter related to the flight of an aero-

plane in perfectly still air. To round off our treatise, the

behaviour of the aeroplane must be examined in disturbed

air in other words, we now have to deal with the effect of

wind on an aeroplane.

The atmosphere is never absolutely at rest; there is

always a certain amount of wind. The two ever-present

characteristic features of a wind are its direction and its

speed. No wind is ever regular. Both its velocity and its

direction constantly vary and, save in a hurricane, these

variations do not depart from the mean beyond certain

limits. Hence, the wind as it exists in Nature may be

regarded as a normal wind, as if it had a mean speed and

direction, with variations therefrom.

These variations may be in themselves irregular or

regular up to a point. Near the ground the wind follows

the contour of the earth, encounters obstacles, and flows

past them in eddies
;
hence it is perforce irregular, like the

flow of a stream along the banks.

Eddies are formed in the air, as in water: valleys,

forests, damp meadows where humidity is present all these

produce in the air that lies above them descending currents,

sometimes called
" holes in the air

"
;
while hills and bare

ground radiating the sun's heat produce rising currents

of air.

These effects are only felt up to a certain height in the

atmosphere, and the higher one flies the more regular
183
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becomes the wind. In the upper reaches the wind seems

to pulsate and to undulate in waves comparable to the

waves of the sea.

The regular mean wind which reigns there may there-

fore be considered as possessing atmospheric pulsations,

propagated at a speed differing from the speed of the wind

itself, comparable to the ripples produced by throwing a

stone in flowing water ripples which move at a speed

differing from that of the current itself.

This comparison of a regular wind with a flowing stream

enables the effect of such a wind on an aeroplane to be

studied in a very simple manner.

For the last time we will refer to that elementary

principle of mechanics applicable to any body moving

through a medium which itself is in motion the principle

of the composition of speeds.

A speed, just as a force, may be represented by an arrow

of a length proportional to the speed and pointing in the

direction of movement.

For example, let us suppose that a boat is moving

through calm water at a speed represented by the arrow

OA (fig. 81).

Now, if instead of being still, the water were flowing at

a speed represented by the arrow OB, the ship, although

still heading in the same direction, would have a real speed

and direction represented by the arrow OC. This speed is

the resultant of the speeds OA and OB, and this composition

of speeds, it will be seen, is simply effected by drawing the

parallelogram.
The ship will appear still to be following the course OA,

which will be its apparent course, while in fact following

the real course OC.

Instead of a ship through flowing water, let us now take

the case of an airship or aeroplane moving through a

current of air or regular wind. Such a craft, while driven

forward through the air by its own motive power at the

.speed it would attain if the air were perfectly calm, is at
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the same time drawn along by the wind together with the

surrounding air, of which it forms, as it were, a part, and

this without the pilot being able to perceive this motion,

unless he looks at some fixed landmark on the ground.
An aeroplane may be likened to a fly in a railway

carriage, which is unable to perceive, and remains unaffected

by, the speed at which the train is moving.
In a free spherical balloon drifting before a regular wind

not a breath of air is perceptible. On board an aeroplane

or airship only the relative wind is felt which is created by
the speed of flight, no matter whether in still air or in wind.

In a side-wind, in order to attain to a given spot, a pilot

does not steer straight for his objective, but allows for the

drift, like a boatman crossing a swift-flowing river.

When the direction of the wind coincides with the path
of flight the speeds are either added to or subtracted from

one another
;
for instance, an aeroplane with a flying speed

of 80 km. per hour in a calm will only have a real speed of

50 km. per hour against a 30-km. per hour wind, but will

attain 110 km. per hour when flying before it.

In order to be dirigible, an aircraft must have a speed
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greater than that of the wind. In practice an aeroplane

virtually never flies in a wind of greater velocity than its

own flying speed, and hence is always dirigible.

The wind further affects the gliding path of an aeroplane.
For example, if an aeroplane with a normal gliding path
OA in a calm (fig. 82) comes down against the wind, its

real gliding path will be OC
X ,
which is steeper than OA,

while with the wind behind it will be flatter, as shown by
OC2

. The arrows OC^ and OC2 represent the resultant

speeds of the gliding speed OA in calm air and of the

speeds of the wind OB
1
and OB

2
.

But in all these different gliding paths, the gliding angle

B. o Ba

FIG. 82.

of the aeroplane remains the same, since the apparent gliding

path relatively to the wind always remains the same.

If the speed of the wind is equal to that of the aeroplane,

the machine, still preserving its normal gliding angle,

would come down vertically and would alight gently on

the earth without rolling forward.

Birds often soar in this manner without any perceptible

forward movement, but, apart perhaps from the brothers

Wright during the course of their gliding experiments in

1911, no aeroplane pilot would appear to have attempted
the feat hitherto.*

* This statement is no longer correct. Many pilots have undoubtedly
flown in winds equal and even superior to their own flying speed.

Moreover, this vertical descent is sometimes made intentionally with

such machines as the Maurice Farman, the engine being stopped and

the aeroplane being purposely stalled until forward motion appears
to cease and the machine seems to float motionless in the air.

TRANSLATOR.
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A regular wind may be a rising current. In this case,

if sufficiently strong, it may render the gliding path
horizontal. Thus, if an aeroplane in calm air glides at a

speed OA (fig. 83), which has a horizontal component equal
to 15 m. per second, and follows a descending path of 1

in 6, a regular ascending current with a speed OB t
or OB

2,

with a vertical component equal to 2 -5 m. per sec., would

enable an aeroplane to glide horizontally.

The existence of such ascending currents is sometimes

taken in order to explain the soaring flight practised by
certain species of large birds over the great spaces of the

ocean or the desert. But it is difficult to accept this as

the only explanation of this wonderful mode of flight,

which often extends for < hours at a time, and would pre-

suppose the permanency of such rising currents. Another

explanation will be given hereafter.

We may now examine the effects on an aeroplane of

irregularities in the wind.

Any disturbance in the air may at any time be character-

ised by the modification in speed and direction of the wind ;

such modifications could be measured by means of a very

sensitive anemometer mounted on a universal joint.

The first effect of a disturbance is to tend to impart its

own momentary speed and direction to anything borne by
the air which it affects. Very light objects, feathers,

tissue-paper, etc., immediately yield to a gust.

If an aeroplane were devoid of mass, and therefore of

inertia, it would behave in the same way ;
it would instantly

assume the new speed and direction of the wind and would
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promptly obey its every whim. In this case the pilot

would be unable to perceive, except by looking at the

ground, any gusts or their effect
;
for him it would be the

same as though he were flying in a regular wind.

But all aircraft possess considerable mass, and therefore

do not immediately obey the modifications resulting from

a wind gust in which they are flying. The disturbance

therefore exerts upon it, during a variable period, a certain

action, also variable, which can be likened to that which

would be experienced if the movements of the aeroplane
were restrained. This action, which may be termed the

relative action of a disturbance, modifies both in speed and

in direction the relative wind which the aeroplane normally

encounters, and these modifications can be felt by the

pilot and measured by an anemometer.

For the sake of simplicity, let us suppose that a wind

of a certain definite value is quite instantaneously succeeded

by a wind of another value, the wind being regular in each

case. A craft without mass would forthwith conform to

the new wind. The primary gust effect would be complete,

its relative action would be zero.

For any craft possessing mass the primary gust effect

would at first be zero and the relative action at a maximum
;

but, as the machine gradually yields to the gust, the re-

lative action grows smaller and finally vanishes altogether

when the aeroplane has completely conformed to the new

wind. The greater the inertia of the machine, the longer

will be the transition period.

Still keeping to our hypothesis of an instantaneous

change of condition, an anemometer fixed in space and

another carried on the aeroplane might for one brief

instant record the same indications ; but while those of the

fixed anemometer would be constant, the other instrument

would sooner or later, according to the aeroplane's inertia,

return to its original indications.

If it is remembered that gusts, even the most violent,

are never perfectly instantaneous, it seems probable that
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the relative action of a gust on an aeroplane is never so

intense as it would be were the machine fixed in space,

and that it dies away the more quickly the lighter the

aeroplane.

But the pilot of a machine in flight does not perceive

this relative action in the same way that he would if the

machine were immovable for instance, if the aeroplane
were struck by a gust coming from the right at right

angles, the pilot of a stationary aeroplane would only feel

the gust on his right cheek, while in flight he would only

perceive the existence of a gust by the fact that the

relative wind was just a little stronger on his right

cheek than on the left. It is simply a question of the

composition of speeds.

We have distinguished a primary gust effect and a

relative effect. The results of each may now be examined.

The primary effect modifies in magnitude and in direction

the real speed of the aeroplane, which yields the more

slowly the greater its mass and inertia.

Now, instead of consisting, as our hypothesis required,

of an instantaneous succession of two winds of different

value, a gust is a more or less gradual and wavelike modi-

fication of the mean speed of the wind, lasting usually not

more than a few seconds.

Hence, if the aeroplane's inertia be sufficient, the cause

may cease before the gust has exerted its primary effect on

the aeroplane, the whole energies of the gust being absorbed

in producing the relative effect.

The direction of flight and the real speed of the aeroplane,

provided it has enough inertia, may consequently be only

slightly altered by the gust which would pass like a wave

past a floating body. This is why, whereas a toy balloon

is tossed by every little gust, a great passenger balloon sails

majestically on its way without being affected in the

slightest degree.

Why, therefore, should this not be the case with an

aeroplane which has a mass not differing widely from that
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of a balloon ? The cause must be sought for in the relative

effect of the gust. This relative effect is only slight in the

case of a balloon which is based on static support according
to the Archimedean law

;
but it affects the very essence of

the equilibrium of an aeroplane based on the dynamic

principle of sustentation by its speed and incidence.

Any variation in the speed or direction of the relative

wind, therefore, usually affects the values of the pressures

on the various planes, and consequently further affects its

attitude in the air which is determined by a perpetual

equilibrium.

The effects produced by the relative action of a gust may
be divided into two classes : the displacement effect and the

rotary effect

The displacement effect is that produced by the relative

action of the gust on the machine as a whole, and seen

in the modification of the path followed before by the

centre of gravity and the speed at which it moved until

then.

The displacement effect must not be confused with the

primary gust effect previously referred to.

For instance, if an aeroplane in horizontal flight is struck

head-on by a horizontal gust, the primary gust effect takes

the shape of a reduction in the real flying speed, which

reduction is the greater the smaller the inertia of the

machine. But this will not alter the horizontal nature of

the flight-path.

On the other hand, the displacement effect produced by
the gust will result in raising the whole machine which,

owing to its inertia and in increasing measure as its inertia

is greater, experiences an increase in the speed of the

relative wind, with the result that the lift on the planes

also increases.

The rotary effect is that produced by the relative action

of the gust on the equilibrium of the aeroplane about its

centre of gravity. This is due to the fact that the modi-

fications in the relative wind destroy the harmony between
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the pressures on the various parts of the aeroplane, which

balanced one another and thus maintained the machine in

stable equilibrium.

Certain rotary effects are due to the fact that no gust is

instantaneous, but always moves at a speed which, however

great, is still limited. A gust may therefore first strike

one part of the aeroplane and produce a first rupture of

equilibrium ; then, continuing, it may strike the opposite
side which may already have been shifted out of position,

and affect this in turn either in the sense of restoring

equilibrium or the reverse.

The displacement and rotary effects due to a gust will

now be successively examined, beginning with those which

affect equilibrium of sustentation and longitudinal equili-

brium, these being closely interconnected. For the time

being, therefore, we will only deal with gusts moving in

the plane of symmetry of the aeroplane that is, with

straight gusts, which affect the speed and the angle at

which the relative wind meets the planes.

First, let us examine the displacement effect. It will

result in a modification in the lift of the planes. The lift,

normally equal to the weight of the machine, has for its

value the lift coefficient of the planes multiplied by their

area and the square of the speed. If the lift coefficient

remains constant, and the relative wind increases as a

result of the gust, the lift of the planes increases
;

if the

speed of the wind diminishes, so does the lift.

It is readily seen that in the case of small variations in

the speed, the variations in the lift are increasingly large,
the greater the weight of the machine and the lower its

normal flying speed. These variations depend neither on
the wing area nor on the value of the lift coefficient.

For instance, if an aeroplane weighing 400 kg. and flying
at 20 m. per second or 72 km. per hour, experienced, as the

result of a gust from the rear, a decrease in the relative

speed of 2 m. per second, the lift will decrease by 76 kg. If

it weighed 600 kg. instead of 400, its normal flying speed
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being still 20 m. per second, the same decrease in the speed
600

400

f*(\(\

would bring about a reduction in the lift of 76 x j^ = 114 kg.

proportional to the weight.

If, weighing 400 kg., its normal speed were 30 m. per
second instead of 20, the same decrease of 2 m. per second in

the speed would produce a reduction in the lift of only
52 kg. instead of 76 as before.

These results remain true irrespectively of the plane
area and the lift coefficient.*

Now, suppose that, the speed of the relative wind re-

maining constant, the angle at which it meets the aero-

plane changes ;
the value of the angle of incidence of the

planes is thereby modified and with it the lift coefficient.

The lift therefore also varies in this case, and a simple cal-

culation shows that these variations are the greater the

greater the weight and the smaller the lift coefficient.

For example, a machine weighing 400 kg. and possessing
a lift coefficient of 0*05, will, if this lift coefficient is

reduced by 0*005 which is equivalent to lessening the

angle of incidence by one degree experience a loss of lift of

about 40 kg. If the weight were 600 kg., the loss of lift

would be 60 kg.

If it weighed 400 kg. and the normal lift coefficient were

0*025 instead of 0'05, the loss of lift resulting from a re-

* The method of calculation is quite simple.

Example. If the weight is 400 kg. and the speed 20 m. per second

the square of the latter being 400, the product of the plane area and

the lift coefficient remains 1 whether the area be 20 sq. m. and the lift

coefficient 0'05, or the area 25 sq. m. and the lift coefficient 0'04, or

whatever be the combination. This being so, if the speed decreases to

18 m. per second, the square of which is 324, it is clear that the lift is

reduced from 400 to 324 kg., and consequently there is a reduction in

the lift of 76 kg. as stated.

If the normal speed were 30 m. per second, the product of the area and

the lift coefficient would be = 0-444 the decrease in the speed to
900

28 m. per second (the square of which is 784) would give the lift a value

of 0'444 x 784 = 348 kg. The loss of lift therefore would be only 52 kg.
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duction of the lift coefficient by 0*005 would be 80 kg.

instead of 40 kg.

These results hold good irrespectively of the area and

the speed.

Finally, if both the speed and the angle of wind vary
at one and the same time, both results are added to one

another.

From this it may be deduced that for an aeroplane to

experience the least possible loss of lift owing to an

atmospheric disturbance, it should be light, fly at a high

speed, and possess a big lift coefficient.

These two latter conditions are not so contradictory as

might be supposed ;
and if considered together, further

confirm the view expressed in Chapter III., as the result

of totally different considerations, that an increase in

the speed of aeroplanes should be sought for rather in

the reduction of their area than of their lift coefficient.

Apart from the question of weight, which will be dealt

with further on, this may be one of the reasons why,
as a general rule, monoplanes behave better in a wind

than biplanes.*

The relative action of a gust moving in the plane of

symmetry of an aeroplane, results, as we have just seen,

in a modification of the lift of the planes. This modifica-

tion produces the displacement effect.

Suppose, for instance, that an aeroplane flying hori-

zontally at a definite speed suddenly were to lose the

whole of its lift; it would become comparable to a

projectile launched horizontally, and, while retaining a

certain forward speed, would fall. If the air in no way
resisted its fall, this would take place at the rate of any
body falling freely in a vacuum

; that is, after one second

it would have fallen about 5m., at the end of 2 seconds

20 m., etc.

Its trajectory would be a curve bending ever more steeply
*

Responsibility for this statement, in which I do not concur, rests

entirely in the author. TRANSLATOR.

13
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towards the earth. Naturally this curve would be flatter

the higher the flying speed of the aeroplane.

Actually the air opposes, in the vertical sense, con-

siderable resistance to the fall of a machine provided with

planes, so that an aeroplane would not fall so fast as men-

tioned above.

Moreover, as a gust is not instantaneous and only lasts

a short while, the flight-path straightens out again fairly

quickly as soon as the lift returns, and this the more

quickly the smaller the mass of the aeroplane.

This modification of the flight-path constitutes the dis-

placement effect due to the gust.

The pilot only feels, in the case under consideration, the

sensation of a vertical fall though actually this move-

ment is progressive. According to pilots' accounts these

vertical falls are considerable, from which one judges that

either the duration of the gusts is fairly long or that the

planes may, under given conditions, lose more than their

total lift.*

This displacement effect is devoid of danger, when it is

not excessive, if it is in the sense of raising the machine.

When it is considerable, the pilot corrects it by reducing
his incidence by means of the elevator.

On the other hand, if it tends to make the aeroplane

fall, it may be dangerous if occurring near the ground ;
it

is here, moreover, that there always exists a source of

danger, for eddies are more frequent than higher up in

the atmosphere.

Besides, pilots always fear a loss of lift or, what is often

the equivalent, a loss of air speed, for, apart altogether

* The discovery made during the inquiry into certain accidents that

the upper stay-wires of monoplanes have broken in the air, would at first

sight appear to confirm the view that their wings may at times be

struck by the wind on their upper surface.

Nevertheless this view should be treated with caution, for the break-

age of the overhead stay-wires could be attributed equally well to the

effects of inertia produced when, at the end of a dive, the pilot flattens

out too abruptly.
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from the ensuing fall, the aeroplane then flies in a con-

dition where the ordinary laws normally determining the

equilibrium and stability of an aeroplane no longer apply.

This stability may become most precarious, and this is

apparent to the pilot by the fact that the controls no

longer respond. The only remedy is to regain air speed,

which is effected by diving.*

Usually, therefore, the correction of displacement effects

due to gusts consists in diving. Nevertheless, if a head

gust slanting downward forced the aeroplane down, the

pilot would naturally have to elevate. In this case there

would be no loss of air speed, and the loss of lift would be

due to the reduction of the relative incidence.

Let us now turn to the rotary effects of atmospheric
disturbances acting in the plane of symmetry of the aero-

plane. A machine with a fixed elevator can only fly at a

single angle of incidence. Therefore, if the relative wind

which normally strikes an aeroplane changes its inclination

by reason of a gust, the machine will of its own accord

seek to resume, relatively to the new direction of the

relative wind, the only angle of incidence at which it flies

in longitudinal equilibrium.

The same thing will happen if the displacement effect

already referred to should modify the trajectory of the

centre of gravity ;
the latter will always tend to adhere to

its flight-path.

The rotary effect resulting will take place all the quicker,
and will die away all the more rapidly, as the longitudinal
moment of inertia of the machine is smaller. Thus, in

the case, already considered, of an aeroplane losing air speed
and falling, it may do this bodily, without any appreciable

dive, if its moment of inertia is big ; whereas, if bow and

tail are lightly loaded, it yields to the gust and dives in a

more or less pronounced fashion.

*
Air-speed indicators, consisting of some form of delicate anemo-

meter, constantly record the relative speed and enable the pilot to

operate his controls in good time.
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This latter quality would appear to be the better one

of the two, since, in the case under consideration, the pilot

always has to dive to re-establish equilibrium. Hence, in

this respect, an aeroplane should have as small a longi-

tudinal moment of inertia as possible.

Another rotary effect may arise through a cause already
referred to if the disturbance does not reach the main plane
and the tail simultaneously. In this case there is exerted

on the first surface struck, if considered independently from

the rest, a modification in the magnitude and the position

of the pressure, which in turn brings about a modification

in the couple which it normally exerted about the centre

of gravity.
If the couple due to the main plane takes the upper hand,

the machine tends to stall; if the reverse takes place, it

tends to dive. A stalling aeroplane always loses some of

its air speed ; moreover, if the gust strikes it head-on the

machine is still further exposed, being stalled, to its dis-

turbing effect. As has already been shown, the correcting

movement for the majority of cases of displacement effect

consists not in stalling but in diving.

For these various reasons, and excepting always the case

of a downward current forcing the machine down, the

rotary effect of a gust should cause the aeroplane to dive

of its own accord.

In this respect, the manner in which fore-and-aft balance

is maintained is most important. If the tail is a lifting tail

(see fig. 36, Chapter VI.), the pressure normally exerted on

the main plane passes in front of the centre of gravity.

This being so, the action of a gust striking the main plane

first, would produce as its rotary effect a stalling move-

ment, except only if the gust had a pronounced downward

tendency, in which case the stalling movement is the

right one.

A gust from the rear, striking the tail first, decreases its

lift and also provokes stalling. In every case, therefore,

the rotary effect of the gust is detrimental to stability.
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A lifting tail which, as seen in Chapter VI., is the most

defective in regard to lateral stability in still air, is con-

sequently equally unfavourable in disturbed air.

On the other hand, if the tail is normally placed at a

negative angle (see fig. 42, Chapter VI.), the normal pressure

on the main plane passes behind the centre of gravity.

The action of a head gust, unless pointing downward to a

considerable extent, in this case produces as its rotary effect

a diving movement, and the same is true of a gust from

behind which diminishes the downward pressure normally
exerted on the tail plane. If the gust is a downward one

to a marked extent, it will tend to stall the machine, which,

again, is as it should be. In every case the rotary effect of

the gust is favourable.

The use of a negative tail plane, which has already been

seen to be excellent in regard to stability in still air, is

therefore equally beneficial in disturbed air. Nor should

this cause surprise.

Previously it was shown that the presence of a plane

normally acting in front of the centre of gravity was

productive of longitudinal instability, since it really acted

as a reversed and overhung weathercock. It is quite clear

that if a gust strikes such a plane first, it will tend, being
a bad weathercock, to be displaced still further and thereby
become still more exposed to the disturbing action of

the gust.

On the other hand, if both the main plane and the tail

act behind the centre of gravity, where they combine to

procure for the machine an excellent degree of longitudinal

stability in still air, they will constitute a good weather-

cock which will always float in a head gust so that the

upsetting action vanishes,* and the aeroplane itself absorbs

the gust. In so far as gusts from behind are concerned,

*
Earlier, it was stated (see p. 170) that longitudinally an aeroplane

must necessarily always be a bad weathercock, but some distinction of

quality still remains and, so far as the effects of wind are concerned, an

aeroplane should belong to a "
good variety of bad weathercocks."
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this arrangement is again productive of good stability

since the rotary effect due to the gust brings about the

very manoeuvre which the pilot would have otherwise to

perform in order to correct the displacement effect.

These rotary effects have an intensity and duration

depending on the moment of longitudinal inertia of the

machine. The science of mechanics proves that a definite

amount of disturbing energy applied to aeroplanes possess-

ing the same degree of longitudinal stability* gives them

an identical angular displacement irrespective of their

moment of inertia. The latter only affects the duration

of the displacement. The greater the moment of inertia,

the slower does the oscillation come about.

Nevertheless, it should be remembered that a force,

however great, can only put forth an amount of energy

proportional to the displacement produced.f

Hence, if the gust is only a brief one, the disturbing

energy applied to the aeroplane and the ensuing angular

displacement will be all the smaller the more reluctantly

the aeroplane yields to the gust. Wherefore, there is a

distinct advantage to be derived from increasing the

longitudinal moment of inertia.

But, if the gust lasts some considerable time, this

advantage disappears and the great moment of inertia has

the effect of prolonging the disturbing impulse. Besides,

it may happen that two gusts follow one another at a

brief interval and that the second, which would encounter

an aeroplane with little inertia already re-established in

a position of equilibrium, would strike a machine heavily

loaded fore and aft before it had recovered, or even when

it was still under the influence of the first gust.

* In Chapter VI. it was shown that the longitudinal stability of an

aeroplane can be represented by the length of a pendulum arm weighted
at the end with the weight of the aeroplane.

t If a pony is harnessed to a heavy wagon, it will be unable to move

it ;
its force will be wasted, since it will produce no energy. But if it

is harnessed to a light cart, its force, though smaller than that put forth

in the former case, will produce useful energy.
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Moreover, for the same reason, the first machine would

more readily answer its controls and would respond more

perfectly to the wishes of most pilots, who desire, above

all, a controllable aeroplane.
It should be noted that, in so far as rotary effects are

concerned, it is desirable that gusts should clear an aeroplane
as quickly as possible, and, for this reason, it should be

fairly short fore and aft, after the example of birds who

fly particularly well.

The negative-angle tail complies well with this require-

ment and also compensates the lessening of the lever arm of

the tail plane which ensues through its important increase

in stability due to the increase in the longitudinal V-

Moreover, by bringing the main and tail planes closer

together, the longitudinal moment of inertia is reduced,

whereby the machine is rendered more responsive to its

controls.

For these reasons, the author is of opinion that the

present type of aeroplane with its tail far outstretched

will give way to a machine at once much shorter, more

compact, and easier to control.*

Summarising our conclusions, we find that :

(1) In regard to the relative action of gusts, which are

the main cause of loss of equilibrium, an aeroplane should

be as light as possible, so as to be able to yield in the

greatest possible measure to the displacement effect of

gusts, which reduces their relative effect. This conclusion

is clearly open to question, and may be opposed by the

illustration that large ships have less to fear from a storm

than small boats. But the comparison is not exact, for the

simple reason that boats are supported by static means,

whereas aeroplanes are upheld in the air dynamically.

* Not that it will be possible to suppress the tail entirely, as some

have attempted to do. Oscillatory stability (see Chapter VII.) would

suffer if this were done, and the braking effect would disappear. Besides,

Nature would have made tailless birds, could these have dispensed with

their tails.
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(2) Regarding its behaviour in a wind, an aeroplane
should :

(a) possess high speed, with the proviso that its speed
should not be obtained by reducing its lift co-

jefficient, so that any increase in speed should

be achieved rather by reducing the area than

the lift coefficient;

(6) be naturally stable longitudinally ;

(c) have a small longitudinal moment of inertia
;

(d) be short in the fore-and-aft dimension
;

(e) be so designed that any initial displacement due

to a gust causes it to turn head to the gust
instead of exposing it still further to its

disturbing effect.

The negative tail arrangement seems to answer the

most perfectly to (6), (c), (d), and (e).

It has often been stated that those provisions ensuring

stability in still air were harmful to stability in disturbed

air. If this were true, the future of aviation would indeed

be black. Fortunately it is erroneous, even though practice

has borne it out hitherto with few exceptions.

It has been attempted, as in the case of the brothers

Wright, to overcome this difficulty by only providing the

minimum degree of stability essential to the correct be-

haviour of a machine in still air, leaving the pilot to

make the necessary corrections to counteract the disturbing

effects of the wind by giving him exceptionally powerful
means of control.

The slight degree of natural stability possessed by such

an aeroplane renders it most responsive to its controls a

feature agreeable to the majority of pilots. On the other

hand, by actuating the control a pilot may unduly modify,

even to a dangerous extent, the normal state of equilibrium.

More especially is this true of longitudinal equilibrium,

for here, as has been shown, a slight degree of stability

may change into actual instability for instance, by putting

the elevator down too far. This is due (as explained in
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Chapters VI. and VII.) to the fact that the sheaf of total

pressures of the aeroplane is thereby altered, with the result

that the longitudinal V is diminished, and consequently
the diminution of the angle of incidence, instead of increas-

ing stability, as in the case of advancing the centre of

gravity, would bring it down to vanishing-point.

Aeroplanes which display a tendency towards uncontrol-

lable dives, are simply momentarily unstable longitudinally

and refuse to answer the pilot's controls because, owing
to their acceleration, their dive soon becomes a headlong

fall, so that the precarious degree of stability which they

possessed in normal flight has disappeared. In such a case

it would be incorrect to say that an increase of speed

augments stability, for, on the contrary, when the speed

passes a certain limit termed the "
critical speed

"
(in the

author's opinion, this term is not correct, since a well-

designed aeroplane should have no critical speed), all stability

vanishes.

An aeroplane should always be so designed as to be

naturally stable in still air, and at the same time every
effort should be made to arrange its structure so as to

render it stable also in disturbed air.

It has already been shown that it seems possible, in

regard to longitudinal stability, to achieve this result with-

out sacrificing controllability, which would appear to be

dependent, above all, on a small moment of inertia.

Whether the negative tail arrangement, previously re-

ferred to, or some other similar device should prove the

better in the long run, this for the time being is the right
road along which to make endeavours and to try to reduce

to the lowest possible degree the intervention of the pilot

in controlling the stability of an aeroplane. The whole

future of aviation is bound up in the solution of this problem.
An aeroplane should be able to fly in the worst weather

without demanding from its pilot an incessant, tiring, and
often dangerous, struggle against the elements. Not until

this is achieved will aviation cease to be the sport of the
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few and become a speedy and practical, and above all, safe,

means of locomotion.

It has ere now been sought to reduce the necessity for

constant control on the part of the pilot by rendering

aeroplanes automatically stable. The problem is an

unusually complex one, for automatic stability devices are

required to correct not only the effects of gusts that come
from without, but faults that arise from within the aero-

plane itself, such as a loss of power, motor failure, mis-

takes in piloting, etc.

This being so, if a device of this nature fulfils one part
of its required functions, almost inevitably it will fail in

others, and this is the rock against which all attempts so

far made have been shattered. Not that the difficulty

cannot be overcome, but it is undoubtedly a grave one.

Hitherto such attempts at solution as have been made
have usually related to longitudinal stability. Among such

devices may be mentioned the ingenious invention of

M. Doutre, who utilised the effects of inertia exerted on

weights to actuate, at any change of air speed, the elevator

through the intermediary of a servo-motor.

Even now some lessons may be drawn from previous

attempts. More especially would it seem desirable to

prevent the effects of gusts rather than to correct them

once they have been produced. The use of
" antennse

"
or

"
feelers

"
that is, of some kind of organ instantaneously

yielding to aerial disturbances and thus preparing, through
the intermediary of the requisite controls, an aeroplane to

meet the gust would seem preferable to organs which only

right it once it has assumed an inclined position after

having been struck by the gust.

Important results, in this respect, also appear to have

been obtained by M. Moreau, who seems to have succeeded

in applying the principle of the pendulum to produce a

self-righting device.

In addition it has been sought to ensure automatic

stability by constantly maintaining the air speed of an
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aeroplane. But it has already been shown that this is

inadequate in certain circumstances, more especially if the

aeroplane has a small lift coefficient, which is the case with

machines of large wing area, and the lift often decreases

to a far greater extent as the result of a decrease in the

relative incidence than in the speed. Hence, not only the

relative speed, but the relative incidence should be preserved.

In regard to the effects of wind alone, therefore, the

problem is already complicated enough ; but it becomes

even more complex if disturbances due to the machine

itself are taken into consideration.

Without the slightest wish to deny the great importance
of the problem, the author, nevertheless, reiterates his

opinion that the first necessity is to so design the structure

of an aeroplane as to render it immune from dangers

through wind. Later, an automatic stability device could

be added in order to correct in just proportion the effects

of gusts and further to correct disturbances due to the

machine itself. If this were done, the functions of automatic

stability devices would be greatly simplified.

In addition, it should not be forgotten that by adding to

an aeroplane further moving organs which are consequently

subject to lagging and even to breakdowns, an element of

danger is created. In any event, any such device must

perforce constitute a complication.*

Until now only those gusts have been considered which

blow in the plane of symmetry of the aeroplane straight

gusts which only affect the flying and longitudinal

*
Virtually, this stricture, while perfectly correct in itself, only applies

to such extraneous stability devices as those of Doutre and Moreau, and
not to the automatic stability inherent in the forms of the aeroplane
itself which has been produced by J. W. Dunne. This latter possesses
automatic stability in both senses, and in principle is based on the

automatic maintenance of air speed without the pilot's intervention.

In this respect it undoubtedly constitutes one of the greatest advances

yet made in aviation, though opinions may well differ on the point
whether it is desirable to rob the pilot of control in order to confide it

to automatic mechanism. TRANSLATOR.
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equilibrium of the machine. Let us now examine the

effect of side-gusts. By doing so, we shall have considered

the effect of almost every variety of aerial disturbance,

which can in most cases be resolved into an action directed

in the plane of symmetry of the aeroplane and into one

acting laterally.

In this case again we distinguish a primary effect and a

relative effect.

If the aeroplane had no inertia, it would immediately be

FIG. 84.

carried away by the gust together with the mass of

supporting air, and this movement would not be perceptible

to the pilot except by observing the ground beneath. But

this is a purely hypothetical case, and the gust exerts

a relative action on the machine, which is the more

pronounced the greater the mass of the latter.

This action is perceptible by a modification in the

direction and speed of the relative wind. For, if the

aeroplane were flying in still air, thereby encountering a

relative wind GA (fig. 84), and were struck by a lateral

gust whose action is represented by the speed GB, the

relative speed of the machine becomes GC. Both the
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magnitude and direction of the speed have, consequently,

altered.

The fact of the relative speed varying in magnitude
shows that, apart from effects due to its dissymmetrical

position, the relative action of a side-gust must exert on

the flying and longitudinal equilibrium an influence similar

to that produced by the straight gusts already considered.

A lateral gust, therefore, can cause an aeroplane to rise or

fall at the same time that it disturbs its longitudinal

equilibrium. But for the sake of simplicity this part of

the effects of side-gusts may be ignored, and only those

effects need be taken into account which modify the

direction of flight, and lateral and directional stability.

First, the displacement effect due to the relative action of

a side-gust consists in creating a centripetal force tending
to curve the flight-path and to produce a turn in the

direction opposite to that from which the gust comes.

Among the rotary effects, as in the case of straight gusts,

that particular one should first be distinguished which

causes an aeroplane, in regard to directional equilibrium,
to adhere to its flight-path or, in other words, to behave

like a good weathercock.

If the flight-path curves, as the result of the displacement
effect of a gust, in the opposite direction to that from which

the gust comes, the rotary effect which will tend to make
the aeroplane adhere to its new flight-path will cause it to

be exposed still further to the disturbing effect of the gust.
It will turn away from the wind. So far as this point is

concerned, it would seem desirable that an aeroplane should

take up its new flight-path as slowly as possible.

But a second rotary effect causes the aeroplane to assume
the new direction of the relative wind, like a good weather-

cock, and this is an advantage, since, by heading into the

wind, the lateral disturbing effect of the gust is damped out.

Of these two rotary effects the second is probably the

first to occur and to remain the more intense.

In order to reduce the first rotary effect, the lateral



206 FLIGHT WITHOUT FORMULAE

resistance of the aeroplane that is, its keel surface should

not exceed certain proportions. Moreover, the directional

stability should also be reduced to a minimum from this

point of view
;
the second and more important rotary effect,

on the other hand, points to an increase in directional

stability as desirable.

Both theories have their friends and foes, and here again

the view has been advanced that the aeroplane should be

given only that measure of stability which is strictly

necessary in order to prevent it from yielding too easily

to the rotary effects of gusts and to render it easily

controllable. Such a reduction in directional stability

is not so detrimental as a diminution of longitudinal

stability, since it in no way affects the cardinal principles

of sustentation.

Nevertheless, in the author's opinion a definite degree of

directional stability is desirable, since this would also

produce some amount of lateral stability which is always

somewhat defective. In any case, usually the structure of

the aeroplane and the rudder in the rear suffice for the

purpose.
There remain the most important rotary effects due to

side-gusts those which affect lateral stability.

Any modification in the direction of the relative wind

results in a lateral displacement of the normal pressure on

the main planes, which causes a couple tending to tilt the

aeroplane sideways. If that wing which is struck by the

gust rises, the aeroplane will turn into the opposite direction,

thus turning away from the wind, and thereby, as already

seen, exposes itself still further to the disturbing effect of

the gust.

But if the wing struck by the gust falls, the aeroplane

swings round, heading into the wind, which damps out the

disturbing effect. These movements are intensified by

reason of the gust not striking both wings at once.

According to the principle already cited, the initial

displacement due to a gust should cause an aeroplane to
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turn into the wind instead of causing it to become exposed

to the disturbing influence still further, which renders the

second rotary effect the more favourable.

If the wings are straight and, still more, if they have a

lateral dihedral or V> the first effect is produced. Hence

a lateral dihedral seems unfavourable in disturbed air.

Besides, it is fast disappearing, and pilots of such machines

are obliged to counteract the effects of gusts by lowering
the wing struck first that is, of momentarily suppressing,

as far as is in their power, the lateral dihedral, while

swinging round into the wind.

On the other hand, if the wings have an inverted

dihedral or A, the rotary effect of a side-gust will be the

second and desirable effect; the aeroplane will turn into

the wind of its own accord, which will cause the disturbing
effect to disappear.

Captain Ferber from the very first pointed out this fact

and remarked that sea-birds only succeeded in gliding in

a gale because they placed their wings so as to form an

inverted dihedral angle. But he also thought that these

birds could only assume this attitude, believed by him to

be unstable, by constant balancing. In Chapters VIII. and

IX. it was shown that it is possible, by lowering the rolling

axis of an aeroplane in front (by lowering the centre of

gravity or, better, by raising the tail), to build machines

with wings forming a downward dihedral and nevertheless

stable in still air.*

In regard to lateral stability, as with longitudinal, the

natural stability of an aeroplane and good behaviour in a

wind are, contrary to general opinion, in no wise incom-

patible, and both these important qualities can be obtained

in one and the same machine by a suitable arrangement of

its parts.

* As previously mentioned, the "Tubavion" monoplane has flown
with its wings so arranged, and the pilot is stated to have noted a great

improvement in its behaviour in winds. This machine had a low
centre of gravity and a high tail.
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Attempts to produce automatic lateral stabilisers have

hitherto not given very good results.*

So far as the moment of rolling inertia is concerned,

previous considerations point to the desirability of reducing
this as much as possible by the concentration of masses.

The machine is thus rendered easily controllable, and the

rapidity of its oscillations guards against the danger

arising from too quick a succession of two gusts. This is

of exceptional importance from the point of view of lateral

stability, which we know to be the least effective of all or,

at any rate, the most difficult to obtain in any marked

degree.

Summarising these conclusions, it may be stated, that

for good behaviour in winds, an aeroplane should :

(1) be light, thus yielding more readily to the primary
effect of gusts, whereby it is not so much affected by
their relative action

; only if this relative action

could be wholly eliminated would an increase in the

weight become an advantage ;

(2) fly normally at high speed, provided that an increase

in speed be not obtained by unduly reducing the lift

coefficient ;

(3) be naturally stable both longitudinally and laterally ;

(4) have a small moment of inertia and its masses con-

centrated ;

(5) head into the wind instead of turning away from it.

The fulfilment of the last condition is the most likely to

produce the best results in regard to the behaviour of an

aeroplane in a wind, and this has been shown to be in

no way incompatible with excellent stability in still air

and adequate controllability. The arrangement proposed

by the author a negative-angle tail and a downward

* This is hardly correct so far as the Dunne aeroplane is concerned,

which is automatically stable in a wind. This machine, it should be

noted, has in effect a downward dihedral and a comparatively low

centre of gravity, coupled with a relatively high tail which is constituted

by the wing- lips. TRANSLATOR.
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dihedral* is not perhaps that which careful experiment

methodically pursued would finally cause to be adopted;
but at any rate it provides a good starting-point.

What is required first of all is to so design the structure

itself of the aeroplane as to render it immune to danger
from gusts. The future of aviation depends upon this to

a large extent, and it is for this reason that attention has

been drawn to it with such insistence in these pages, for

in this respect much, if not almost all, remains to be done.

Afterwards, may come the study of movable organs

producing automatic stability, and in all probability this

study will have been greatly simplified if the first essential

condition has been complied with.

Who knows whether one day we shall not learn how to

impress into our service, like the birds, that very internal

work of the wind which now constitutes a source of

danger and difficulty ? Some species of birds appear to

know the secret of how to utilise the external energy of the

movements of the atmosphere and to remain aloft in the

air for hours at a time without expending the slightest

muscular effort.

It is certain that for this purpose they make use of ascend-

ing currents, but it is difficult to believe that these currents

are sufficiently permanent to explain the mode of soaring

flight alluded to.

More probable is it that birds which practise soaring flight

be it noted that they are all large birds, and consequently

possessing considerable inertia meeting a head gust, give
their wings a large angle of incidence and thus rise upon
the gust, and then glide down at a very flat angle in the

ensuing lull.

Even in our latitudes certain big birds of prey, such as

the buzzard, rise up into the air continuously, without any
motion of their wings, but always circling, when the wind

* This arrangement was first proposed by the author in a paper con-

tributed to the Academic des Sciences on March 25, 1911 (Comptes Rendus,
vol. clii. p. 1295).

14
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is strong enough. This circling appears essential, and may
possibly be explained on the supposition that the circling

speed is in some way connected with the rhythmic wave-

like pulsations of the atmosphere in such a fashion that

these pulsations, whether increasing or diminishing, are

always met by the bird as increasing pulsations, and on

this account it circles.

It appears in no way impossible that we should one day
be able to imitate the birds and to remain, without expend-

ing power, in the air on such days when the intensity of

atmospheric movements, an inexhaustible supply of power,
is sufficient for the purpose.

One thing is to be remembered : wind, and probably

irregular wind, is absolutely essential to enable such flight

to be possible ;
it would be an idle dream to hope to over-

come the never-failing force of gravity without calling

into play some external forces of energy, and on those

days when this energy could not be derived from the wind,

it would have to be supplied by the motor.

But in any event this stage has not yet been reached,

and before we attempt to harness the movements of the

atmosphere they must no longer give cause for fear. To

this end the aerial engineer must direct all his efforts for

the present.

The really high-speed aeroplane forms one solution, even

though probably not the best, since such machines must

always remain dangerous in proximity to the surface of

the earth.*

Without a doubt, a more perfect solution awaits us some-

where, and the future will surely bring it forth into the

light. On that day the aeroplane will become a practical

means of locomotion.

Let the wish that this day may come soon conclude this

*
Slowing up preparatory to alighting forms no solution to the

difficulty, since the machine would lose those very advantages, conferred

by its high speed, precisely at the moment when these were most

needed, in the disturbed lower air.
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work. Every effort has been made to render the chapters
that have gone before as simple and as attractive as the

subject, often it is to be feared somewhat dry, permitted.
Not a single formula has been resorted to, and if the

author has succeeded in his task of rendering the under-

standing of his work possible with the simple aid of such

knowledge as is acquired at school, this is mainly due to

the distinguished research work which has lately furnished

aeronautical science with a mass of valuable facts : to the

work of M. Eiffel, to which reference has so often been

made in the foregoing pages.
No more fitting conclusion to these chapters could there-

fore be devised than this slight tribute to the indefatigable
zeal and the distinguished labours of this great scientific

worker who has rendered this book possible.
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