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FLOW NETWORK DESIGN

FOR MANUFACTURING SYSTEMS LAYOUT

Abstract

One way to solve a facilities layout planning problem is to use a component

approach; the components being a) block design, b) input/output station location, c)

material flow network design, and d) aisle netting out (accounting for aisle space). Material

flow network design is an important component of this approach. In this paper a shortest

rectilinear flow network problem is defined and formulated as an optimization problem. A

Lagrangian relaxation of the problem gives separable, linear time solvable, shortest path

problems. A heuristic, with ties to this formulation, is presented. An expression for the gap

between the heuristically derived solution and the optimal solution is given. Some

computational experiments using the heuristic are reported.





FLOW NETWORK DESIGN

FOR MANUFACTURING SYSTEMS LAYOUT

Preleminaries

Recently, renewed interest in the efficient design of facilities has developed, in

part, because of increased global competition in manufacturing and an increased

consciousness toward reducing manufacturing costs. By effectively arranging and

coordinating physical facilities, the greatest efficiency of men, machines, and materials,

supporting a business operation, can be realized. Tompkins and White (1984) suggest that

about 20% to 50% of the total operating expenses within manufacturing are attributed to

material handling. Efficient facilities design can reduce these costs by at least 10% to 30%

(Tompkins and White, 1984) and thus increase productivity. Facilities design has three

interrelated components: structure, layout, and the determination of a (network) system to

support material flow interaction between facilities, e.g. material handling systems. For

best results, decisions regarding these components should not be made in isolation.

However, at present, a decomposition approach is usually taken, e.g. the material handling

system (network) is determined after the structure (size and shape) and layout (orientation

of facilities) has been determined.

Classical layout design approaches have primarily focused on laying out the block

plan rather than a detailed layout. A block plan is a scaled diagrammatic representation of

the building, and normally shows the location of internal partitions and columns (e.g.

Figure 1) (Foulds, 1983). Activities which are to be grouped together and physically

located together are called departments . The two-letter codes in the example block layout in

Figure 1 correspond to departments. See Figure 5 for department names corresponding to

these codes. Interactions between pairs of departments are given in terms of flows or

preferences and the layout objective is to have pairs of departments which have large flows

between them close to each other thus minimizing the sum (over all pairs of departments) of

the flow quantities times the distance between the departments.

Two important analytical approaches to facilities layout planning have been



suggested in the literature. First is the quadratic assignment formulation (Koopmans and

Beckmann ,1987; Hillier and Connors, 1966) and the second is based on graph theory

(Foulds, 1983; Giffin, 1984). However it has been shown that both of these approaches

are computationally intractable (Giffin, 1984; Sahni and Gonzalez, 1976). Thus, heuristic

solution procedures have been developed to solve real-sized problems. Foulds (1983), and

Kusiak and Heragu (1987) give a comprehensive survey of various research efforts in this

direction.

The approaches discussed above derive only a block plan. Operational details such

as circulation regions, aisle structure and the location of departmental input/output stations

are generally not modeled. Recently, several researchers have come to recognize that

considering aisle travel explicitly in the major layout design phase provides significant

potential for improvement in flow travel (via aisles) and space devoted to the aisle system.

O'Brien and Abdul Barr (1980) proposed a layout improvement algorithm named S-

ZAKY which computes the expected flow distance savings based on the location of the

input/output stations. The INTALA interactive layout software of Warnecke and

Dangelmaier (1983), which uses a construction approach, permits three internal

configurations (shape with input/output locations) for each department. During the

interactive design process, INTALA selects the configuration most suited to the already

existing material flow structure and partial layout. Instead of directly generating a layout

with aisles using a myopic approach, Montreuil and Ratliff (1988(a)) and Montreuil (1987)

have proposed a component approach to layout design where the components are a) block

plan, b) input/output station location, c) flow network design, and d) aisles netting out

(defined below).

In the above two papers, initially a block plan is generated. Given a block plan,

departmental input/output station locations can then be determined (Figure 2). All material

flow between departments occurs through these stations. Given the block layout and the

location of input/output stations, an optimum flow network must be designed (Figure 3).

This network is the basic structure on which the flow of material and people will take place.

Finally, this network is transformed to a set of aisles and circulation areas (Figure 4). The

circulation area is the area which accommodates the movement of people, material and



equipment through or by a department from/to another department or input/output station.

The area of each department considered during the development of the block layout is the

gross area which consists of the net area plus an estimate of the needed circulation area

(10% to 25% of net area (Hicks, 1987)). The flow network is expanded (in width) to

appropriately net-out the area from each department and at the same time keep the width of

the aisles proportional to the amount of flow and the type of flow (for example, heavy parts

versus human beings) using it.

The block design can be generated by using any of the classical approaches

mentioned earlier (Foulds, 1983) or by using the layout methodology proposed by

Montreuil and Ratliff (1988(b)). In this latter approach a cut tree (Gomory and Hu, 1961)

is used as a design skeleton to support interactive layout generation. A polynomially

solvable model for optimally locating the input/output stations, when all the departments are

rectangular, is given in Montreuil and Ratliff (1988(a)). Montreuil and Venkatadri (1988)

have developed a comprehensive linear programming model generating a net layout from an

aggregate layout coupled with a flow network.

In our paper we concentrate on the flow network component of the layout design

problem ( c) above). The outline of the rest of the paper is as follows. In Section 1, we

discuss various topologies of networks. In Section 2 we give a brief review of the literature

related to flow network design as it relates to the layout design problem. In Section 3 we

define the problem of Shortest R-Flow Network (SRFN) design and present a formulation

of this problem in Section 4. We present a two phase heuristic for the problem of SRFN in

Section 5 where theoretical justification along with some properties of the heuristic are also

given. We then report some computational experience with the heuristic in Section 6, and

provide some concluding remarks in Section 7. Appendix 1 contains formal statements of

the algorithms, and Appendix 2 gives details on finding a shortest path in a grid graph.



1 Flow Networks

In this paper we concentrate on the flow network component of the layout design

problem. Before the flow network design can be attempted, careful thought on various

issues is required For example, some situations require the bulk of interdepartmental

material handling to occur along departmental boundaries (contours). On the other hand, if

there is flexibility in laying out production equipment within the block design, the aisle

structure may not be required to follow the departmental contours. In such a situation, the

aisle structure is permitted to be of any form. We denote such situations asfreeflow. The

travel norm is also of consideration during the network design phase. Let p(su) and q(su)

represent the horizontal-coordinate and the vertical-coordinate, respectively, of an

input/output station, su . Then d(su ,sv)= abs(p(su) - p(sv)) + abs(q(su) - q(sv)), where

abs(.) is the absolute value function, is the length of a shortest path between stations su and

sv when the rectilinear norm is used; whereas \ (p(su)-p(sv))
2+(q(su ) - q(sv))

2
is the

length of a shortest path when the Euclidian norm is used. The designer may want the

length of the path of actual flow between su and sv , on the flow network, to be within a

certain percentage of the length of a shortest path between su and sv (under the particular

travel norm assumptions). Thus the flow network can have various topologies (Gaskins

and Tanchoco, 1987; Maxwell and Muckstadt, 1982). The appropriate topology may be

selected by seeking answers to questions such as the following, for the particular layout

problem under consideration:

1. Flow Assumption - Is flow permitted to occur only along departmental contours, or is it

permitted to flow anywhere (free flow) through the building enclosing the departments ?

2. Direction - Does the network permit only unidirectional flows, or can it support bi-

directional flows ?

3. Norm - When free flow is permitted, is the travel norm Euclidian, rectilinear, or some

other norm ?

4. Travel Distance - Is every flow required to take a path of the shortest length (under the

travel norm assumption) or a path whose length is within a certain percentage of the length



of a shortest path, or is no restriction placed on the distance used by a flow ?

5. Redundancies - Is the designer required to include redundant links in the flow network

for greater reliability during peak traffic and blockage situations ?

The general objective of the network design phase is to minimize the sum of the

fixed cost of links (network construction) and the variable cost of flows.



2 Related Work

Maxwell and Muckstadt (1982) discussed the need for the design of a flow

network, which they called a track layout, and presented a method to determine the number

of vehicles to support the flow requirement on a given track layout. In (Maxwell and

Wilson, 1981), a method to analyze a given track layout was given, which is useful to

investigate the dynamic performance of any flow network, including those designed based

on our models.

Gaskin and Tanchoco (1987) gave a mathematical programming formulation of

flow path design for automated guided vehicle systems. They dealt with the design of

directed flow paths with the objective of minimizing the total travel between departments.

Their formulation involved variables (discrete variables) for arcs only. Unlike their

formulation, we will have continuous flow variables in addition to discrete arc variables. In

(Gaskin and Tanchoco, 1987) no specific solution technique to obtain a solution (except

enumeration or branch and bound) was given.

Egbelu and Tanchoco (1986) discussed the merits of deploying bi-directional flow

paths versus uni-directional flow paths. Their simulation experiments suggest significant

savings in the number of vehicles required and in the production time, at the cost of

increased control requirements. Gaskin, et al. (1989) developed an integer programming

formulation for the problem of optimal flow path design for an automated guided vehicles

system with a virtual flow path and multiple lanes of vehicle flow.

Ho, Vijayan, and Wong (1990) considered the problem of constructing a minimal

rectilinear Steiner tree of a given set of points, starting from a minimum spanning tree. The

minimum spanning tree specifies the pairs of points which must be connected by a

rectilinear path and hence plays the same role as the flow set (which specifies which points

have material flow between them) during the flow network design stage of plant layout.

Ho, Vijayan, and Wong gave a polynomial time solution procedure to construct the

rectilinear Steiner tree, which is a special case of the flow network we are about to discuss.

We now define a new problem in flow network design and present a solution

technique for it.



3 Shortest R-Flow Network

We consider one particular design topology which is extremely useful during the

design phase of most layouts. This topology assumes free flow, an undirected network,

and the rectilinear travel norm. A path of length abs(p(su) - p(sv)) + abs(q(Su) - q(sv))

between stations su and sv consisting of arcs parallel to the axes is called an r-path. We

require that for every flow there exists an r-path on the network and no redundant links are

required in the network (we note that the designer may add some redundant links after the

optimal design is found, based on his own post-design analysis). Figure 3 shows such a

network for the flows in Figure 5 and station locations in Figure 2.

The objective is to minimize the cost of a network (fixed cost) which will permit

flow between all pairs of stations which have flows between them, subject to the above

assumptions. Since in such a network every flow takes an r-path, the variable cost of day-

to-day material handling is minimum and thus we focus on minimizing the fixed cost. In

this paper we take length of the network as a surrogate for cost and minimize the total

length of the r-flow network. We call the the underlying design problem the shortest r-flow

network problem (SRFNP) and the optimal network is called the shortest r-flow network

or SRFN.



4 Formulation of SRFNP

We first reiterate the statement of the shortest r-flow network problem.

Given a set of stations S (Input/Output (I/O) points of departments); their locations on a

two dimensional coordinate system, (p(su), q(su)) V su € S; and a set of pairs of stations F

= {f=(su , sv) : there is a flow between su and sv }; we desire to construct a network on

which each flow is connected via an r-path and the network is of minimum length. We will

use subscripts u and v to refer to departments. In this paper we concentrate on minimizing

the total length of the network (sum of lengths of all arcs in the network), but our approach

is extendable to the case when each link may have a cost not necessarily proportional to its

length. Note that once the locations of the stations are given, the contours of the

departments can be ignored in the SRFN problem because of the free flow assumption.

Hence, throughout our discussion, department contours will not be of concern to us. Also,

we will occasionally refer to a flow by the symbol f, with the understanding that the flow is

defined by a pair of stations.

4.1 Initialization

Given the station locations (p(su), q(su)) for each su e S on a two dimensional

coordinate system, draw a horizontal and a vertical line through each station (Figures 6, 7).

Number the vertical lines 1, 2, ... from left to right and the horizontal lines 1, 2, ... from

bottom to top. The intersection of each horizontal line and vertical line defines a grid point.

The grid points, the station set and the collection of horizontal and vertical lines define a

grid graph, G (see Figure 7). The node set V(G) of this grid graph consists of the station

set and the grid points. Two nodes are connected by an arc in the arc set E(G) of this grid

graph if and only if the nodes lie on the same horizontal (vertical) line and consecutive

vertical (horizontal) lines. Grid graph G is said to be defined by stations in the set S.

Initially, it is convenient to think of all the arcs in E(G) as being painted yellow. We will

eventually change the color of some of these arcs. Let vl(*) and hl(*) refer to the vertical

and the horizontal line passing through node *, respectively. For any arc a, Ca represents



the length of the arc.

In Chhajed (1989) it is shown that there exists at least one SRFN contained in the

grid graph defined by the set of stations, S. This enables us to reduce the optimization

problem on the Cartesian plane to a problem on the grid graph, G. It can also be shown

that some of the arcs in G can be removed without affecting the value of the solution to

SRFN. For example, in Figure 11, any flow using the shaded arcs can use the darkened

arcs. Thus the shaded arcs can be deleted. Such reduction can be systematically done by

finding the Rectilinear Hull of the stations and taking its intersection with G. The

Rectilinear Hull is defined and an 0(n*log(n)) procedure for computing it is given in

Chhajed and Chandru (1988). This reduces the graph in Figure 7 to the one given in Figure

9 (This Figure also shows modified costs on the arcs which are computed by a method to

be discussed later). From now on, G will refer to this reduced grid graph.

4.2 Preprocessing

Before we solve the problem using an optimization model or a heuristic, we

preprocess the data to reduce the size of the problem. The following notations are needed

for describing the preprocessing step. For each flow f, let R(f,G) represent the sub-graph

formed by intersection of G with the smallest rectangle (having sides parallel to the axes)

enclosing f. Thus R(f,G) consists of precisely those arcs of E(G) which may be used by f

when some r-path is taken. For example, if G is the graph in Figure 9 and f =(S3, S6) then

R(f,G) is given in Figure 10. For f =(S1, S3), Figure 1 1 shows R(f,G). As Figure 1

1

shows, R(f,G) may not be "rectangular" for every flow f. Given a set of weights for every

arc in G, the cost of a path is the sum of the weights of the arcs in the path. Let S(f,G,c) be

a least-cost r-path for flow f with arc weights given by vector c. Henceforth we will write a

least-cost r-path as lcr-path. An algorithm called LEASTCOST to find an lcr-path is given

in Appendix 2. In this algorithm we assume that R(f,G) is "rectangular" as shown in

Figure A 1 in Appendix 2. If some of the edges are missing, we add additional arcs to

complete the rectangle and assign an arbitrary large weight M to each of these added arcs in

order to apply the algorithm. The set of arcs used by a path are called path-arcs. The path-

arcs of an lcr-path correspond to an r-path of f in G. When each arc has unit weight, every
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r-path is also an lcr-path, and each such path is denoted by S(f,G,l). We now give a

verbal description of the preprocessing algorithm. The reader is referred to Algorithm

PREPROCESS (see Appendix 1) for an exact description of the algorithm.

We examine each flow (su,sv) e F to see if both stations lie on the same horizontal

or vertical line. Clearly, for such a case, the r-path for the pair is unique and it is the

straight line segment, joining the two stations. Thus all the arcs on this path will be in any

optimal solution. We repaint these arcs red and set the cost of these arcs to zero. This

process is called fixing arcs. We also delete the flow (su,sv) from the flow set F. For

example, in Figure 9 the arcs on the unique path between (S4, S5) can be fixed and this is

shown by dark lines.

We note that a unique r-path between su and sv for (Su,sv ) e F may exist in R(f,G)

even when the two stations are not on the same line. This occurs if there is a single r-path

between the stations in the rectilinear hull (see Section 4.1). In this case also, we fix (paint

red) all the path-arcs and delete the flow from F.

At the end of this process if there exists an r-path in G for a remaining flow-pair in

F using only red arcs, then the flow is removed from F. If F becomes empty then the set of

red arcs is an optimal solution to our problem and we can stop. If not, we proceed to the

next step.

4.3 Formulation

We now formulate the SRFN problem as a mixed integer programming

optimization program (Magnanti and Wong, 1984). For each flow f=(su , sv ) e F, if p(sv )

< p(su) then replace (su, sv ) in F by (sv , su ). Thus, the first entry Sk of a pair (sk,si)£ F

satisfies p(Sk) < p(si). Partition the flow set into two sets, F+ and P, as follows: If we

draw a line segment joining stations su and sv of flow (su , sv ) and the slope of this line is

strictly positive then (su , sv ) e F+ , otherwise (su , sv ) e F". In other words,

F" = {(su , sv)e F: (su , sv) « F+ ).
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Although our problem calls for design of an undirected network, we form a

separate directed graph for each fe F. This is done as follows: For each f e F+ we create a

copy of R(f,G), call it Gf
, and direct the arcs in Gf toward the East and North, i.e., all

vertical arcs are directed Northward and all horizontal arcs are directed Eastward

Similarly, for each f e F* we create a copy of R(f,G), call it Gf
, and direct the arcs in G f

toward the West and North (Figure 12). Let E(Gf
) and V(Gf

) denote the arcs and nodes of

Gf
. For each f we designate the station with lower vertical-coordinate as the source and the

station with higher vertical-coordinate as the sink.

Let Mf be the node-arc incidence matrix of the directed graph Gf we have just

defined for flow f. Thus Mf has IE(G0l columns and IV(G0l rows. An entry (iy of Mf

corresponding to i^ row (node) and j
1*1 column (arc) has a value of +1 if the arc

corresponding to the j^ row is incident on the node corresponding to the i
1*1 column, -1 if

the arc corresponding to the j^ row is originating from the node corresponding to the i
1*1

column, and zero otherwise. Let bf correspond to a column vector having a -1 in the

position of the source node, a +1 in the position of the sink node and a in all other

positions corresponding to other nodes of G f
. For any arc a in G, the corresponding arc in

the f induced network G f
, if it exists, is denoted by af. We will refer to a as the original arc

and af as the induced arc corresponding to flow f and arc a. When no confusion exists we

will use a to refer to an induced arc as well. For example, ae E(Gf
) refers to the induced arc

corresponding to flow f and original arc a. The induced arcs are directed, the direction of

which is uniquely determined by the type of flow (membership in F+ or F-

) and the type of

arc (horizontal or vertical). Two induced arcs af and ap corresponding to flows f and f

may have different directions.

In our formulation we have two kinds of variables. For each arc af € E(G0, we

have continuous flow variables y which represent the amount of flow f on induced arc af.

For each arc a e E(G) we have a 0-1 variable xa , where xa =1 if arc a is chosen,

otherwise. y
f
is a column vector of variables y a

with entries corresponding to af e E(G f
).

Finally, for each arc a, we set Ca to the length of arc a if arc a is not fixed, and otherwise.

We now have the following formulation:
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(P) min X Cax a

aeE(G)

Subject to: Mfyf = t>f VfeF (1)

y[ <xa Vfe F,a f €E(G0 (2)

Xa=(0,l} (3)

y
f

a
> (4)

Here constraints (1) are the flow balance equations. Constraints (2) permit flow on an arc if

and only if the arc is selected. Constraints (3) force an arc either to be in the solution or out

of the solution and (4) are the non-negativity constraints on the flow variables.

The number of constraints in the above formulation can be reduced by generating an

aggregate formulation, where constraints of type (2) are aggregated for all flows that could

potentially use an arc. This gives:

(P') min I Caxa

aeE(G)

Subject to: Mfyf = r/ V f e F (5)

I y
f

a
<IFalxa V ae E(G) (6)

f€Fa

xa ={0,l} (7)

y
f

a * (8)

where Fa is the set of flows which can use arc a.

Problems P and F are equivalent in the sense that the optimal objective functions of

both have the same value. Let (Plp) and (P'lp) refer to the LP relaxation of problems (P)

and (P'), respectively. It can be shown that Z*(Plp) ^ Z*(P'lp) , where Z*(Plp) is the

optimal solution value of (Plp) and Z*(P'lp) is the optimal solution value of (P'lp)-

Thus, although (P) has more constraints, it is preferred over (F) (Magnanti and Wong,

1984; Dror, et al., 1988) because while solving the original problem by branch and bound,

lower bounds are frequently generated by LP relaxation, in which case one prefers the

formulation which generates better bounds.

4.4 Lagrangian Relaxation

We now explore the possibility of solving (P) by forming its Lagrangian dual by
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relaxing constraints (2) and including them in the objective function with multipliers v . We

denote the vector of these multipliers as v . This gives the following relaxed problem:

(P(yJ) min I (Ca - Iv fJxa + I X v
f

a y^
aeE(G) feFa aeE(G)feFa

Subject to: (1), (3) and (4).

The ideal choice of multipliers is such that they solve the Lagrangian dual problem:

(DP(v)) maxy (P(v)).

The objective function in P(v) has terms involving xa , but there are no constraints

involving xa except for (3). We can set the value of xa as or 1 based on the sign of

f
(Ca - X v )• The remainder of the problem decomposes into one independent problem

feFa
(P(v)f) for each flow f and is given by:

(P(v) f) min X v[ y!"

aeE(G0

Subject to: Mfyf = r/

We note that each of these problems is equivalent to a shortest path problem.

Because the underlying network is a grid network, we can solve each of these shortest path

problems in O(m) time where m is the number of nodes in R(f,G) ( see Appendix 2).

Finally, we want to select the multipliers so that (P(yJ) is maximized, which will provide a

lower bound to (P). The dual problem can be solved by using, for example, the

subgradient approach (Fisher, 1981). We note that the optimal value of the xa variables in

(P(v)) is unaffected when constraints (3) are relaxed and each xa is constrained to be

between and 1 . Thus the Lagrangian dual problem has the integrality property

(Geoffrion, 1974) implying that the solution of the dual will be no better than the linear

programming relaxation of (P). However, this does not render the relaxation useless since

the Lagrangian dual may be easier to solve than solving the LP due to the fact that each

subproblem of (P(v)), for fixed set of multipliers, can be solved very efficiently.
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One can also find an upper bound on problem (P) by constructing a primal feasible

solution while solving each problem P(v)f. While finding the shortest path in P(v)f we

collect the original arcs corresponding to the path-arcs of the shortest paths for each f in F.

The collection of these arcs is a feasible solution. However, in this case, as the lower

bound increases (via multiplier change in the dual problem), the upper bound may not be

non-increasing. A remedy for this is to retain the best primal feasible solution found thus

far. (

In the next Section we give a simple heuristic to find a good primal solution to the

SRFN problem. Unlike the above method, the heuristic is simple to implement, has ties

with the above formulation, and is attractive from a computational point of view as well.
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5 Heuristic

Our problem is a special case of the fixed charge network design problem which is

known to be NP-complete (Johnson, et al., 1978). Although we have not proven that a

fixed charge network design problem is NP-complete on a grid graph, most problems that

are hard on a general graph are found to be hard on a grid graph as well (Gary and

Johnson, 1977; Itai, et al., 1982). Additional evidence of the complexity of this problem

comes from the fact that if we relax the requirement that each flow must take an r-path and

instead allow each flow to take a path consisting of a sequence of horizontal and vertical

moves, the problem of finding a minimum length network reduces to the NP-complete

rectilinear Steiner tree problem (Gary and Johnson, 1977).

In this Section we present a two phase heuristic. Formal statements of the

algorithms appear in Appendix 1. Subsequently, we present a theoretical justification of the

heuristic. We also give cases where the Phase I solution is an optimal solution, providing

further evidence of the appropriateness of the heuristic.

5.1 Phase I - Build Phase

We construct a feasible solution during the Build phase of the heuristic. As alluded

to in Section 4, because of our r-path assumption, each flow defines a rectangular subgraph

R(f,G) consisting of all the arcs the flow can possibly use. The nodes corresponding to the

two stations (the origin and destination of f) lie on the opposite comers of this rectangular

subgraph. Thus the number of flows which can potentially use an arc a can be easily

determined. This number is called the potential of arc a and is denoted by pa . Thus pa is the

number of rectangular subgraphs R(f,G) which contain arc a. For the red arcs, we do not

calculate the potentials (these arcs are fixed in the solution) and the modified cost of each

red arc will be set to zero. For each yellow arc, define its modified cost ca to be the length

of the arc divided by its potential (Figure 9) (note that Ca is the length of the arc and ca , as

defined above, is the modified cost). This is motivated by the fact that the larger the number

of potential users of an arc, the less must be its price per user, whereas the longer the
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length (or larger the cost) of an arc, the larger must be the price since our objective is to

minimize the total length of the network. The modified cost of each red arc is set to zero,

since these arcs are already fixed and other flows may use them at zero cost.

Next, find an lcr-path, denoted by S(f,G,cJ, for each flow f using the modified

costs £ = {ca : a € E(G)} as weights. The collection of original arcs corresponding to the

lcr-paths of each flow in F, along with the red arcs, is denoted by graph N (Figure 13). No

additional arc is painted red during the Build phase. It is easy to see that N is a feasible

solution of SRFN. We note that the lcr-path for each flow has been found in an

independent fashion. That is to say that while finding the lcr-path for a given flow, the

information about the original arcs collected so far (from flows considered earlier in the

procedure) is ignored. One could use a variation of the algorithm in which, after finding an

lcr-path for an arbitrary flow fe F, the original arcs corresponding to this path are fixed.

Then flow f is deleted from F and the potential and modified cost of each remaining yellow

arc is adjusted to reflect this change. The procedure repeats until the set F is empty. This

modification, however, increases the computational time quite substantially. Our present

approach is justified in light of Phase n, where we identify and delete the redundant arcs.

If there exist multiple lcr-paths for any flow, we include in N the original arcs

which correspond to the path-induced arcs by ajl these paths. The rationale is that

redundant arcs will be deleted during the improvement phase and since it is not known

which of these arcs can be used by other flows in the final solution, we include all of them

at this stage. The output of Phase I is a feasible grid network N (with each arc painted

either red or yellow). From now on, we only work with network N. Algorithm BUILD in

Appendix 1 gives the summary of what we have just described. We shall see later

(Corollary 2) under which circumstances this solution can be an optimal one. If the

condition of Corollary 2 is not true, then we implement the Improvement phase.

5.2 Phase II - Improvement Phase

We now attempt to improve (in terms of the sum of the lengths of the arcs) the

feasible solution generated during the Build phase. The Improvement phase has two stages:

Path Improvement and Arc Improvement

.
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Path Improvement Stage: During this stage, we fix some additional arcs and delete

those flows for which there exists an r-path consisting entirely of fixed arcs.

The approach in Path Improvement is to look at an entire path for a flow. We select

an unexamined flow, f, and find all of the yellow (unfixed) arcs in N which are essential to

connect stations (su,sv ) of f by an r-path (Figure 14). These arcs are cut arcs, denoted by

CA(f,N), the removal of any one of which will disconnect aH r-paths between su and sv in

N. In Figure 14 the arcs defined by the node pairs (f,g),(g,h), and (h,k) are cut arcs for

f=(A,B). Let R(f,N) =NnR(f,G). To determine if a yellow arc a in R(f,N) is a cut arc for

flow f, we check whether an r-path exists in NNa for flow f. If the answer is "No" then arc

a is a cut arc. This process can be repeated for every yellow arc in R(f,N) to obtain

CA(f,N).

To check whether an r-path exists for f in NNa we assign a weight of 1 to every arc

in R(f,N\a), introduce (temporarily) additional arcs so that R(f,N\a) is "rectangular" and

assign a very large weight M to these additional arcs. Then we use Algorithm

LEASTCOST (see Appendix 2) to find an lcr-path. If the cost of this path is more than M
then no r-path exists in N\a for f.

We fix the arcs in CA(f,N) (paint them red and set their cost to zero). None of the

arcs will be painted red if and only if there exist two or more edge disjoint r-paths for flow

f. Next we check whether there exists an r-path for f consisting of only red arcs. If such an

r-path exists, we remove f from F. Otherwise we choose another unexamined flow and

repeat the above until all the flows are examined.

At the end of this procedure, some of the arcs may have been fixed and the flow set

may have been reduced.

Arc Improvement Stage: During the arc improvement stage, for each yellow arc a

in N we determine whether a feasible solution to the SRFN problem exists in NNa. This is

done by checking for each of those flows which can potentially use the arc, whether an

alternate r-path exists which does not use arc a. The verbal details of the algorithm now

follows.

We first recompute the potential of each yellow arc in N. However, now flow f

may not contribute to the potential of every yellow arc in R(f,N). There may be some arcs
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in R(f,N) which are not in any r-path for f in R(f,N). For each such arc, flow f contributes

nothing to the arc's potential. For example, in Figure 14 the darkened arcs correspond to

arcs in N and note that arcs defined by (d,e) and (h,i) will not be used in any r-path

between A and B. Another reason for recomputing the potentials is that the flow set may

be smaller now because some flows may have been deleted during the Path Improvement

stage.

After recomputing the potentials, we choose a yellow arc a, with minimum

potential and check whether NNa remains feasible. If this is true, i.e. N\a is feasible, then

arc a can be deleted and we set N <— NNa and recompute the potentials. On the other hand,

if NNa is not feasible then arc a must be present for N to remain feasible and we fix arc a

(paint it red). This process is repeated using the yellow arc (from the remaining yellow

arcs) having the smallest potential until no yellow arcs remain. At the end of the process all

the arcs in N are fixed, implying that none of them are redundant Figure 15 shows the

result of applying the Improvement phase on the graph of Figure 13.

5.3 Justification of the Heuristic

We now relate our heuristic with the formulation and the relaxation given in Section

4. First we prove that it is optimal to set the multipliers in (DP(v)) such that the coefficient

of xa is zero in (P(v)).

Theorem 1 : There exists an optimal dual solution in which Ca =£fG p
v
a

. V a e E(G).

Proof: We assume that the above condition is not true for some optimal solution v* and

derive another solution of greater or equal value satisfying the condition. Choose an arc a in

the optimal solution violating the above condition. There are two cases,

Case I: (Ca - I v*
f

J =d>0.
feFa

a
f

In the optimal solution to (P(yJ), x*a is set to 0. We increase each v*
a
by an amount A

where A = d/lFa l. With the new multipliers, it is still optimal to set xa to 0. However, an

increase in the cost of arcs a, v , for all the flows which can potentially use it does not

decrease the shortest (cheapest) path for these flows. Hence this new solution does not

decrease the solution value of the dual and makes the condition of the Theorem true for one
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more arc.

Case II: (Ca - £ v*
f
J =d<0.

feFa
a

In this case x*a is set to 1 and contributes the negative term d to the value of (P(v)). If we

now decrease the value of each multiplier by A where A = -d/lFa l there will be an increase in

the value of (P(v)) by -d since it still remains optimal to set x*a = 1. Let F°a be the flows

which use arc a with the original multipliers. Clearly with the new multipliers, each f€ F°a

will also use arc a and the change in the length of the shortest path will be -A. Let Fa be the

set of flows using arc a with the new multipliers, but not using arc a with the original

multipliers. The change in the value of the shortest path lengths for each fe Fa will be

negative, but no smaller than -A. Thus the total change in shortest path lengths, over all

flows, will be no smaller than -A(IF°al+IFal). However, IF°al+IFa l < IFal, so that the total

change is bounded below by -A(IFal) = d. Thus the net change in the objective function is at

least as large as (-d+d) = 0, and so changing the multipliers on arc a cannot decrease the

value of the dual problem.«»

By the above theorem it is optimal to set the multipliers so that,

Ca=Iv f

a
VaeE(G). (9)

feFa
a

f f
In addition, if we set v„ = v V f, f e Fa , then to satisfy (9) we must have,

a a

v
a

=
j^

Vf€ Fa ,a€ E(G). (10)

But IFa l is merely the maximum number of flows which can use arc a, i.e., the

potential pa , as defined in the heuristic. In this case, the multiplier values in (10) are exactly

the weights used in the Build phase of the heuristic. The heuristic subsequently finds an

lcr-path for each flow, and a similar computation is also done to solve (P(v)), for any

choice of the multipliers. Note that in (P(v)) and (P(y)f), any (directed) path from the

source to the sink is an r-path due to the directions on the arcs. Hence a shortest path in

(P(yJ) and (P(v)f) refers to an lcr-path. Thus, the sum of the costs of lcr-paths is actually a

lower bound to (P) and the heuristic constructs an upper bound by considering all the path-
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induced arcs. This provides a sound basis for the weights used and the steps carried out in

the Build phase of our heuristic. The Improvement phase obviously tries to construct a

better solution by removing arcs wherever possible.

We now show that using the heuristic with this particular choice of weights is in

fact equivalent to solving the LP relaxation of the aggregate formulation (P'). To do this we

first need the following lemma:

Lemma 1 : Let (P'lp) denote the LP relaxation of (P'), then there exists an optimal solution

(x*,y*) to (P'lp), in which constraints (6) are tight, i.e.,

£ y*
f

a
= IFJx.* V a € E(G).

feFa

Proof: Let (x*, y*) be an optimal solution to (P'lp) and suppose there exists an arc a' such

that

X y*
f

a - <«y*rf*. (id

feFa
.

The objective function of (P'lp) has terms involving only xa , ae (G) , and the coefficient

of xa' is non-negative (Ca
- is the length of arc a'). Hence, we can reduce the value of xa

* to

make (11) tight without making the objective function value worse. «»

By the virtue of this Lemma, we can substitute xa = -tf-t X y a , V a g E(G) in
a
feF

the objective function of (P'lp) giving:
a

(P'lp) min I Ca -^ I y
f

a
= I I J^l

aeE(G) irfll
feF. feF aeE(G0 a

Subject to: (5), (8) and

0<-ff| I y a
<1 (12)

Iral
feFa

Since the costs are positive and we are minimizing, no y a
will exceed one and so

ZfeF y a
£ IFa l. Hence, (12) will be automatically satisfied and can be dropped. This

enables us to decompose (P'lp) into a separate shortest path problem for each flow. Again
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the weights on arcs in these shortest path problems are the same weights as used in the

heuristic. This gives us the following theorem:

Theorem 2 : The sum of the costs of lcr-paths during the Build phase of the heuristic is

equal to Z*(P'lp).

5.4 Bounds

Let Z*(P(v) ) be the optimal value of (P(yJ ) for a particular choice of the

multipliers. Let (jf be the original arcs which correspond to the arcs in an lcr-path for flow

f, and let G be the graph where a e E(G ) if and only if a e (jf for some f. Let Fa be the

set of flows using arc a in their shortest path. Let Z*(P) denote the optimal solution value

to problem (P) and Z*
p
denote the sum of the lengths of the arcs in E(G). We now have the

following bound on the gap between the primal and the optimal solution value (see

Erlenkotter (1978) for a similar bound for the uncapacitated facility location problem).

Theorem 3;

Z*
p
-Z*(P)< Z(Ca

- SvJ) + I max{0, I v
f

a
- Ca } (13).

a€E(G) feFa aeE<G>
feFa

Proof: In solving (P(v)) for a particular choice of the multipliers, it is optimal to set xa = 1

f f
if Ca - Z v

a
- 0' and otherwise. Also, for fixed f, the length of the lcr-path is Z V

Q
•

f(=F ~
a aeE(Gf)

This gives,

Z*(P(v)) = I min{0,Ca
- Z v|j + £ ( £v[)

aeE(G)

i — , ~a
feFa

a
feF

aeE<G)

= X min
aeE<G)

i{0,Ca
-

feFa
a

ae E(Gf)fe Fa

z*p = I Ca

aeE(G)

= I [

ae E(G)

v f

feFa

+ (Ca - I v£) ]

feFa

= I
ae E(G)

v f

feFa

+ I (Ca - Z y[)

ae E(G) fe Fa
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So, Z* P -Z*(P) < Z*p -Z*(P(v))

= I(Ca - Zv[) - I min{0,Ca
- I v^

}

aeE(G) feFa aeE(G) f€Fa

= Z(C.- Iv[) + I max{0, I v£ - Ca ). «»

aeE(G) feFa aeE(G) feFa

We now have the following Corollaries of Theorem 3:

Corollary 1 : If G is the graph as defined above when the multipliers are set as in the Build

phase of the heuristic and if Z*p is the sum of the lengths of the arcs in this graph then,

Z*
p
-Z*(P) £ I Ca fl -'j&f

aeE(G)
V

f Cq
Proof: During Build phase, we set v = j^r so that max {0, Xfe p v

a
- Q) = for all a e

E(G). Thus, (13) reduces to:

v

ae E(G) fe F
Z*p -Z*(P) < I(Ca

- Svp

= I
ae E(G)

IFal

C a - I
feF a

I Ca ( " jcj \
«»

ae E(G)

Corollary 2 : If the flow on each arc in G as defined in Corollary 1 is equal to the potential

of the arc, then G is an optimal solution to problem (P).

Corollary 2 gives us a sufficient condition for the Phase 1 solution to be an optimal solution

to problem (P).
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6 Empirical Study

The heuristic was programmed in Pascal language on IBM 3081 mainframe

computer. The following main steps were carried out.

Data Generator: We first generated the station locations and flows. Each station's

location was generated by randomly selecting the x-coordinate and the y-coordinate. These

coordinate values were restricted to be integers from 1 to 25. Care was taken to make sure

that no two stations in same problem have identical x- and y-coordinates. Next, a total of 9

flows were generated by randomly selecting pairs of distinct stations. The selection was

conditioned so that no two flows had an identical pair of stations and each station was used

by at least one flow. For a given number, s, of stations, the number of flows (0) was set

at three different densities: a) = s, b) = 1.5s, and c) = 2s. For a choice of flows and

stations, five different problems were generated. In Table 1, the notation 10.15.2 in the

first column refers to the second problem with 10 stations and 15 flows. We will now refer

to the columns of this table without mentioning the Table itself.

Heuristic: The data generated by Data Generator is fed to the Heuristic program.

First, a Phase I solution is generated. The sum of the costs of the least cost r-paths for all

flows gives a lower bound (column 3). The sum of the lengths of the arcs used in these

paths provides an upper bound (column 2). This upper bound serves as an input to the

Improvement phase. In the Improvement phase, we simply examined each edge of the

input feasible solution and checked whether deleting it would still give a feasible solution.

This phase often gave an improved feasible solution (column 4) which is the output of the

heuristic. Column 5 reports the time taken by the heuristic in seconds (including the

input/output time).

LP Lower Bound: As we have shown in Section 5.3, the lower bound obtained in

Phase I is a solution to the Lagrangian relaxation problem with one particular set of values

of the multipliers. Since the best solution of the Lagrangian dual problem is the same as the

LP relaxation (see Section 4.3) we computed the LP solution for our test problems. First a

code generator was created to produce the constraints and the objective function of problem
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(Plp) for a given set of stations and flows (data generated by Data Generator). This

problem was then solved using a linear programming code. Column 6 reports the LP

solution and column 7 reports the number of iterations taken by the LP code to obtain the

optimal LP solution.

For four of the problems solved (those with an asterisk in column 1) the heuristic

did not provide a very good feasible solution to the original problem (as measured by the

comparison between the upper and lower bounds. For these problems we perturbed the

data to create a new (perturbed) problem , but in such a way that the heuristically generated

feasible solution to the new problem is feasible to the original problem. Thus the cost of the

feasible solution to the new problem is an upper bound on the cost of the optimal solution

to the original problem. An example of such a perturbation is illustrated by Figure 16.

Suppose that the flow set for the original problem included {(1,2), (1,3)} (Figure 16(a)). In

the perturbed problem, we replaced this flow set with {(1,2), (2,3)} (Figure 16(b)). Note

that any feasible solution to the new problem must contain an r-path between 1 and 2, and

an r-path between 2 and 3. But, the union of these two r-paths is an r-path between 1 and

3, and so the solution is feasible to the original problem. By making such perturbations, we

significandy reduced the upper bounds on these four problems. For example, on problem

12.18.2, the upper bound was reduced from 122 (original problem) to 94 (perturbed

problem). We believe that other such perturbations are possible, and we intend to explore

this area in our follow-on work.

In column 8, we report the percent difference between the improved upper bound

an the lower bound (LP solution). The lower bound for each problem with an asterisk was

generated from the LP relaxation of the original (unperturbed) problem, and so is a valid

bound to the original problem.

For many problems (in fact 31 out of 45), the percent gap between the objective

value of the feasible solution given by the heuristic and the linear programming lower

bound is less than or equal to 5%. The largest gap found was 12.37% while the average

gap was 3.92%. As column 8 indicates, for 14 problems the heuristic gave an optimal

solution. For seven of these problems, the feasible solution found by the Build phase itself

was optimal. This is especially interesting because the Build phase considers only one



25

particular set of values of Lagrangian multipliers. The average time taken by the heuristic

was 1.09 seconds with the maximum time being 3.37 seconds. On the other hand,

computing the linear programming lower bound (which was found to compute the gap)

took a lot more time, which is reflected by the number of iterations taken by the LP code

(column 7). We do not report the exact time taken by the linear programming code because

some of these were solved on a different machine (some were solved on the IBM

mainframe computer using LINDO and others were solved on a Sun workstation using the

CPLEX linear programming code). But to give an idea, for example, the average time taken

by problems with 12 stations and 18 flows was about 115 seconds on a Sun workstation

and this excludes the time taken to generate the formulation and the input/output time.

We note that the primary purpose of a solution to SRFN is to provide a starting

point for the design of a material handling network. The assumptions of the model, like

most mathematical models, do not capture all aspects of a real design. Thus, these solutions

will be "moulded" by the designer to incorporate the assumptions and conditions not

explicidy considered in the model. In practice, many different block layouts are generated;

for each block layout, a flow network can be developed for a given design of station

locations and an "optimal" layout is chosen with respect to many tangible and intangible

factors. Thus, the network design model will be used a large number of times before

arriving at a final detailed layout design. Thus the model should be able to generate good

solutions without consuming a large amount of time. Our heuristic is very fast, easy to

program, and provides, on an average, good solutions.
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7 Concluding Remarks

In this paper, we have defined the shortest r-flow network problem which has

applications in the material handling network design phase of the facility layout problem.

We have given a multicommodity-flow-based formulation of this problem, the

Lagrangian relaxation of which gives shortest path sub-problems. We have shown that

each of these shortest path problems can be solved in linear time.

We have also presented a two-phase heuristic and shown its ties with the

formulation. An expression for the gap between the heuristically derived feasible

solution and the optimal solution is given. One can solve a series of problems using the

subgradient approach to simultaneously generate feasible solutions and lower bounds.

The gap, discussed above, can give a good stopping criterion. Note that one can improve

the feasible solution formed with path-induced arcs by applying the Improvement phase

of the heuristic. A limited computational study showed very promising results on the

quality of the solution obtained via the heuristic.

Our formulation and the heuristic is extendable to some of the other topologies

discussed in Section 1. The topologies which easily fit our framework are those in

which,

a) direction of travel is important,

b) some additional arcs (for example, diagonal arcs) in the grid graph are present and the

flows are permitted to use them,

c) certain arcs are not available for travel for certain flows (when complete free flow is

not possible due to the presence of immovable machines or other structures),

d) every flow can take a path whose length is within a certain percentage of the length of

a shortest rectilinear path.
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FLOW-BETWEEN
DEPARTMENT CODE AREA RE MI PR LA DR WE PL GR AS WR SH ST

RECEIVING RE 18 30 30

MILLING MI 12 40 10 10

PRESSES PR 20 35 5 20

LATHES LA 32 20 20 45 30

DRILLS DR 48 5 20 10

WELDING WE 10 5 20 15 10

PLATING PL 35 45 10 20

GRINDING GR 20 25 60

ASSEMBLY AS 20 50

WAREHOUSE WR 27

SHIPPING SH 20

STORES ST 15

Figure 5. A Flow Matrix
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Table 1. Empirical Results 34

1 2 3 4 5 6 7 8

UB
S.F.# UB LB Improved Time LP #iter %gap
8.8.1 63 56.50 63 0.327 63.00 185 0.00
8.8.2 52 47.83 51 0.495 49.00 1 19 4.08
8.8.3 65 53.75 65 0.424 64.99 255 0.02
8.8.4 85 68.83 85 0.391 82.00 225 3.66
8.8.5 56 45.58 56 0.199 55.00 173 1.82

8.12.1 34 29.80 34 0.39 34.00 284 0.00
8.12.2 57 44.70 55 0.695 54.00 444 1 .85

8.12.3 87 59.68 87 0.501 82.00 476 6.10
8.12.4 46 40.17 46 0.54 46.00 365 0.00

8.12.5 66 46.82 66 0.706 59.00 355 11.86
8.16.1 56 39.92 52 0.589 51.00 582 1.96

8.16.2 88 55.78 82 0.991 79.00 1037 3.80
8.16.3* 80 45.50 80 0.25 77.00 495 3.90

8.16.4 64 47.45 64 0.427 58.00 374 10.34

8.16.5 80 51.97 80 0.951 78.00 396 2.56

10.10.1 74 60.20 74 0.345 72.00 325 2.78
10.10.2 61 48.33 61 0.738 58.99 518 3.41

10.10.3 66 46.83 66 0.498 62.00 493 6.45

10.10.4 73 53.33 73 0.746 73.00 463 0.00

10.10.5 84 68.08 84 0.596 84.00 190 0.00

10.15.1 103 62.80 79 1.65 79.00 974 0.00

10.15.2 93 59.33 93 1.147 92.50 3272 0.54
10.15.3 102 62.30 101 1.372 93.00 1979 8.60
10.15.4 85 54.93 74 1.04 69.99 1720 5.73
10.15.5 105 57.93 1 05 1.735 93.99 301 1 1 1.71

10.20.1 97 56.87 92 1.549 88.99 6015 3.38
10.20.2 96 62.39 86 1.805 86.00 1364 0.00

10.20.3 1 10 62.38 106 1.971 97.00 2884 9.28

10.20.4 108 54.48 82 2.077 77.99 5736 5.14
10.20.5* 90 55.40 90 1.374 88.00 1282 2.27

12.12.1 88 65.63 77 0.947 75.00 385 + 2.67

12.12.2 56 44.10 56 0.331 52.50 207 + 6.67

12.12.3 69 53.42 66 0.946 65.00 285 + 1 .54

12.12.4 85 56.68 83 0.903 78.00 1 061 + 6.41

12.12.5 1 10 63.70 103 1.295 103.00 492 + 0.00

12.18.1 91 55.64 84 2.169 76.00 751 + 10.53
12.18.2* 94 66.74 94 0.55 92.00 680 + 2.17

12.18.3* 87 51 .91 87 0.45 84.00 855 + 3.57

12.18.4 101 58.61 88 1.746 86.50 384 + 1.73

12.18.5 89 53.87 87 2.7 85.00 606 + 2.35

12.24.1 130 74.65 123 2.314 1 13.00 2082 8.85

12.24.2 1 09 61.66 1 09 2.945 97.00 2679 I 12.37

12.24.3 1 03 66.03 1 02 1.633 96.00 947 6.25

12.24.4 99 53.29 92 1.505 92.00 2787 0.00

12.24.5 1 1 1 70.37 99 2.031 99.00 3581 0.00

Average 1 .09 Average 3.92

+on SUN workstation using CPLEX
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Appendix 1. Formal Statements of Algorithms

ALGORITHM PREPROCESS

For each flow f=(su ,sv ) e F do

if hl(su ) = hl(sv) or vl(su) = vl(sv ) then

fix arcs in S(f, G, 1);

F = F\f;

else if R(f,G) has a unique path in G between su and sv then

fix the path and set

F = F\f.

(S(f,G,l) is the set of arcs on the lcr-path in R(f,G) with weight 1 on each arc.}

We note that after preprocessing, if (su ,sv) e F, then p(su)*p(s v ) and q(su)*q(sv).

ALGORITHM BUILD

Given: Flow set F, station set S, network G.

Objective: To find a good SRFN.

Step 0: For each a € E(G) do

Pa = 0.

(Initialize the potential of all arcs to zero.

}

Step 1 : For each flow f e F do

For each a e E(R(f,G)) and ( arc a yellow) do

Pa = Pa+ 1.

{For all the arcs which are in the rectangle formed by the flow and which are

also yellow increment the potential by 1
.

}

Step 2: For all (a e E(G)) and (a yellow) do

ca = Ca/pa ;

For all red arcs do

ca = 0.

{ For the yellow arcs in G set the weight equal to the length of the arc divided

by its potential. For the red arcs, set the weights to zero.

}
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Step 3: Set N =
<)>

;

For all f g F do

N=Nu all (S(f,G,cJ).

{For each flow find all the lcr-paths using weights c = { ca : a e G}and add

them to the network N.

}

Step 4: Return N. Stop.

ALGORITHM PATHIMPROVE

Given: N ( a feasible solution) and the flow set F.

Objective: To improve the given solution by examining flows

Step 1: SetF' = F.

Step 2: While F*Q> do

Select f = (su , sv ) e F;

Paint CA(f, N) red;

Set cost of CA(f, N) as zero;

If there exists an r-path from su to sv in R(f, N) consisting of only red arcs,

then F = F\f;

F = F\f.

Step 3: Return N, F.

{CA(f, N) is defined to be those yellow arcs such that the removal of any one

of them disconnects su from sv in the graph R(f,N).}

ALGORITHM ARCIMPROVE

Given: A flow set F, Feasible SRFN N .

Objective : To improve the current solution by examining arcs.

Step 1 : For each f e F do

For all (a e Pathset(f, N)) and (a yellow) do

Pa<-Pa+ L

{Each flow contributes to the potential of an arc if there exists a shortest

rectilinear path in N using the arc.
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Pathset(f, N ) consists of all the arcs in R(f,N) which are in some r-path

between su and sv of flow f.

}

Step 2: N «- N\{a: a € E(N) , a yellow and pa = 0}:

{Arcs which are not not in any r-path of any flow are deleted.

}

Step 3: Let a' = (a: min
a ™^ (pa ) and a yellow};

If a' = go to Step 7

else go to Step 4.

(Choose a yellow arc with minimum potential. If no such arc exists, Stop.

}

Step 4: If for each f € F , S(f, N\a, 1) exists, then go to Step 5

else go to Step 6.

{Check whether there exists an r-path for each flow after deleting a.

}

Step 5: Set N <- NNa. Go to Step 1.

{ Delete arc a and go to Step 1
.

}

Step 6: Fix arc a. Go to Step 3.

Step 7: N is the improved solution. Stop.
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Appendix 2. Finding Shortest Path in a Grid Graph

Problem: Given a grid graph G with weights on each arc and two diagonally opposite

vertices (A,B) defining G, find a least-cost r-path between A and B in G.

We assume that G is rectangular as shown in Figure Al (otherwise add missing

arcs and vertices and place a very high cost on these arcs) and that vertex A is the South-

East vertex and B is the North-West vertex. Let there be M vertical lines and N horizontal

lines in G.

We create a directed grid graph D by directing the arcs in G as shown in Figure A2.

An r-path in G is the same as a directed path in D from A to B. Number the nodes from 1

to MN, beginning with vertex A as 1 and moving from left to right and bottom to top (see

Figure A2). Define sets Ii,I2,...Jm+N-1> recursively as follows:

Ii = { 1}

Ii = {n: n e V(D) and 3 a node n'e l[.\ such that there is a directed arc from

n' to n in E(D)}, for i = 2,3,...,M+N-1.

Let Wy denote the weight on the arc from node i to node j. We now give a recursive

(Dynamic Programming) method to find the shortest directed path from A to B in D. Let

fj(k) denote the shortest directed path from A to k € I;.

ALGORITHM LEASTCOST

fid) = (1)

fi(k) = min {fi-i(k-l) + wk .u , fM (k - M) + wk .M)k }, (2)

where fi.i(k-l) and wk_i >k are not defined if k-1 e Ij.i. Similarly for f;.i(k - M) and

Wk-Mjc- We find fj (k) for all k e I; after finding fj.i(k') Vk'e 1^. in+m-i(NM) is the

desired solution.

The correctness of the above algorithm is evident from the fact that a directed path

from A to B in D passes through exactly M + N -1 grid points (including A and B) and

uses exacdy one grid point in each set Ij. There are at most two arcs, ak.i,k and ak.M,k

incident to any vertex k (provided these arcs exist). Once optimal solutions to reach vertices
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ak-ijc and ajc-Mjc are known, the optimal path to vertex k can be computed by using (2).

To show the complexity of this procedure, we note that every node is examined

only once and at every node at most two additions and a comparison are done. Hence the

complexity of the algorithm is O(MN) which is linear in the number of nodes in G.
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