## 




# Food as a Factor in Student Life 

A Contribution to the Study of Student Diet


Ellen H．Richards and Marion Talbot


CHICAGO
Ube 子aibersity of（fbicago 誛ress 1894
(1)

# Digitized by the Internet Archive in 2008 with funding from Microsoft Corporation 



## SOCIAL AND DOMESTIC CONDITIONS OF THE INVESTIGATION.

## CHARACTER OF INVESTIGATION.

It has seemed fitting to many students of sociology that there should be exemplified in some college or other educational institution the possibilities of healthful physical and mental life, as they have been made known by recent advances in both social and physiological science. Under the auspices of the University of Chicago, a practical study of the subject has been made. Its results seem of sufficient value and interest to warrant the presentation of a brief account of them.

## NEGLECT OF DIETETICS.

In nearly every state in the Union there is an agricultural experiment station, and in many there are agricultural colleges. The government, representing the people, in this way expends large sums annually for the study of the food of cattle and other animals, but it rarely makes any appropriation for the study of the food of any citizen, even though his body and brain may represent hundreds of thousands of dollars in invested capital, while the brute animal is worth only one or two hundred dollars.

## HUMAN BODY AS A MACHINE.

The animal body both of brute and of human being is a living machine, capable of doing work-raising weights, pulling loads and the like. The power of the engine to do its work comes from the consumption of fuel-the burning of wood, coal, or gas. The power of the animal body to do its work comes from the
consumption of fuel which is furnished to it in the form of food. Animals are more economical machines than the most perfect steam-engine. The latter cannot convert more than one eighth of its available energy into work; the animal may yield as much as one fifth. In spite of its superiority, however, it is incapable of evolving something from nothing. Nevertheless, it is a common delusion that the animal can go on and do its work indefinitely without fuel, and, therefore, that it has nothing in common with the locomotive or engine. The reason for this delusion is that the latter runs only so long as the supply of visible fuel lasts and then stops dead; while the human body runs on comfortably for a long time with very little fuel, and it may keep on for some three weeks without any visible supply at all. The explanation of this difference is that the body contains a store of fuel laid up in itself against the time of need. Fat is just as available as fuel when stored up in the body as if supplied from an external source. Five pounds of fat will last ten or twelve days, and the body will support itself on other reserve materials still longer. The work which the human machine can do may be measured by the same standard as the work of any machine, i.e., by the mechanical unit of energy, the foot ton, or the Calorie. The foot ton represents the amount of energy required to raise one ton one foot. The Calorie represents energy in the form of heat sufficient to raise one kilogram of water one degree Centigrade. One Calorie corresponds to 1.53 foot tons.

The animal body, however, is more than a machine. It requires fuel, not only to enable it to work, but it must live or exist, even though it does no work in the ordinary meaning of the term. About two thirds of the food eaten goes merely to sustain existence. While the inanimate machine is sent periodically to the repair shop, the living machine must do its own repairing day by day, and minute by minute.

The food eaten over and above the amount needed to sustain life is the source of the energy which may be manifested in the power to think, to create artistic designs, to write essays and poems, to stimulate others to high endeavor, as well as in the activities which are more purely physical. When its importance
is thus measured, it becomes a matter of wonder why the study of food is a subject that is so generally ignored.

There is another phase of the subject which often escapes notice. It is not enough to shovel fuel into the locomotive. It must burn. So food must be assimilated and made a part of the body, and thus become the available capital of the brain. It is therefore necessary that the conditions of nutrition should be as favorable as possible. The engineer knows that he must not clog his drafts with smoke, nor load his fire-box with stony coal. The student does not seem to know that his fire of genius will not burn clear if he clogs his brain with irritating substances, loads his stomach with indigestible or semi-poisonous food, and neglects exercise and sleep.

## SPECIAL NEGLECT OF STUDENT DIETETICS.

The prevalent disregard of the importance of human dietetics is especially noticeable in connection with the life of students. Farmers know that their oxen and horses must be well fed in order that they may do their best work. On the other hand, college trustees and professors too frequently think that they do their duty by their students if they provide a sufficiently heavy load to be hauled. If a student breaks down, the remark is heard on all sides, "What a pity he studied so hard," and no one asks, "Was he well fed?"

## PRESENT EXPERIMENT.

It was the privilege of the University of Chicago to take the first step toward remedying this condition, undaunted by the evident difficulties which, owing to the apathy of the community in regard to such matters, seemed almost insurmountable.

To make the experiment in a college was eminently suitable, and as young women are proverbially more exacting and critical as to the table than young men, and at the same time more conversant with household matters, it was quite appropriate to make the first trial in a women's dormitory.

The conditions existing at the University of Chicago were very favorable for an experiment of this kind. The authorities were in sympathy with the movement and the students coming from all parts of the world formed a cosmopolitan community.

## ARRANGEMENT OF BUILDINGS.

Three well-appointed, adjoining buildings, each providing accommodations for about 40 students, were ready or nearly ready for occupancy. Each hall had its well-equipped dining room and serving room. Supplementary cooking apparatus only was placed in the two end buildings, the central kitchen, in which the bulk of the cooking was done, being placed in the central building, Kelly Hall. From this the food, ready cooked, was carried to the dining rooms. To these were admitted only the officers and students living in the houses and their guests, or the guests of the University.

It was also at this time possible to secure not only the apparatus used in the widely known Rumford Kitchen at the World's Fair but also the invaluable services of its manager.

## THEORETICAL PLAN.

The three halls were organized with the aim in view of establishing a healthful mental and physical life for the ioo or more women who should live in them. In order to help secure the latter end, it was decided to provide a limited variety of food of the best attainable quality, prepared in the best manner, and selected so as to give sufficient nutriment in the right proportion. The low sum of three dollars and a half per week was the price tentatively fixed for board, in the hope that the advantages of life in the halls might thus be made possible to a large number of students. This theoretical plan was held very elastic in order to make it possible to adapt instantaneously the results of the study of the existing conditions. A working scheme having been established, it was hoped that the details might give to others a basis for further accomplishment.

## TIME COVERED.

The time assigned to the experiment was from October 1 , 1893, to April 1, 1894. Owing to delays in obtaining possession of the halls, and to the difficulty in securing workmen or service during the last month of the World's Fair, the whole plant was not in full working order until nearly the end of the first quarter, so that in reality, the plan as perfected was in operation only three months. During that time the average number of students occupying the halls was io6.

## THE STAFF.

The entire staff of service for the three halls included, besides the director of the experiment, three housekeepers,one for each hall, - two indoor men, three cooks, one kitchen maid, seven waitresses, seven chambermaids, one scrubbing woman, one laundress, twenty-five persons in all.

## SOCIAL SIDE.

The life in the Women's Quadrangle began without any fixed traditions save those which had been forming gradually, while the women students were temporarily residing in an apartment house during the first year of the University.

It was the desire of the Deans that the new life should have as far as possible the simple quiet attractions of a home, and be freed from the objectionable features of an ordinary students' boarding house. Hence it was attempted to adopt the standard of living which prevails in good American homes, and it was deemed an economy of mental power, as well as of physical strength, to secure the relief of the students from duties which could be performed by others. The saving of time and potential energy which was thus effected, although involving considerable outlay for service, was believed to outweigh the advantages which have been claimed for domestic work done by students themselves. The possibilities of the social side of the life were not overlooked. An element of educational value is added to a college home when hospitality may be extended with freedom and ease, and in the new University the contribution of the Women's Halls to the general social life seemed of significance, apart from the direct benefit to those partaking in it. At best the life of any student living in a dormitory has a monastic tinge, a selfish or self-absorbed side unfavorable to the best development of character. Provision was therefore made not only for the occasional entertainment of guests privately, but for weekly receptions to members of the University and their friends, the expense of which should not be met by any special tax, but which should be included in the general price for board. This hospitality increased the expense of service far more than that of food, and it should be taken into consideration in comparing the cost of this experiment with that of any other institution.

## AUXILIARY MEASURES.

To secure this amount of service and this freedom and dignity in the dining rooms for the limited sum of three and one half dollars a week would have been difficult with full numbers of paying members and with years of experience; with two thirds the maximum number and with little or no precedent, it was not an easy task. It was evident that the outlay for food material must be kept as low as possible, but it was believed that inexpensive food, if it were at the same time wholesome and nutritious, would be eventually, if not at first, acceptable to the majority, provided that it could be made perfect of its kind, and could be served attractively. Special attention was therefore given to the choice of table ware, to the quality and freshness of the table linen, and to serving the food in courses and so quickly that it would be quite hot on reaching the table. The closest attention was paid to securing the greatest attainable digestibility of the food material by means of the best known methods of cookery. It seems to be true that for this purpose a low degree of heat applied for a greater length of time is in general more effective than a high degree applied for a shorter time; hence the largest part of the cooking has been done with apparatus designed according to this idea. Coal, gas, steam and kerosene were all used as fuel, each in the most efficient form.

It is, however, true that even the best methods of cookery will not always make an article of inferior grade equal to one of superior grade ; therefore special attention was given to securing the best quality of the food material bought. Even after the standard of quality was once set, constant vigilance was needed to maintain it, as is the common experience. Excellent cold storage facilities aided greatly in the possibilities of economical buying at wholesale rates.

## FINANCIAL RESULTS.

The financial results were very satisfactory. By unremitting attention to every detail of expenditure and administration, the income was made to meet the entire cost of the experiment, although it had not been thought probable that, in addition to the current expenses, the extra items of the cost of the inaugura-
tion and the salary of the director of the experiment could be met within so short a time. These last expenses once incurred will not be needed again, and the sum thus saved can go in future for greater variety in food, repairs, replacement, etc.

Since detailed records were kept of each item and of the time of service required for each part of the work, it has been possible to gain valuable information for future use.

For instance, the following facts were learned as to the apportionment of the $\$ 3.50$ received per week, per person :


SUMMARY OF SCIENTIFIC RESULTS.
The scientific results may be summed up as follows: The family was well fed, having, after all allowances for waste and refuse, a ration of equal food value to that furnished to the American soldier, if the relative weights of the man and woman are taken into consideration. The proportion of the several ingredients, as will be seen in the statement in Table VI, was also closely corresponding to the theoretical.

An additional proof of the sufficiency of the food was the fact that nearly all gained in weight, in general physical condition, and were able to work with less headache than usual, in spite of the fact that fundamental principles of right living were occasionally ignored, as is unfortunately too frequently the case when the liberty of the individual is unrestricted.

Lest it should be supposed that the simple diet necessitated monotony, there is taken from the record books the menu of three consecutive weeks in the most difficult month of the year, when the winter diet palls and the spring vegetables are yet costly.

In order to indicate the liberality of the diet, there is given in the following pages a comparison of the quantity and cost of each class of food with that of the most economical dietary known to us, that of the Normal School and Business Institute at Valparaiso, Indiana, kindly furnished by Mr. O. P. Kinsey.

Many other results of value from a scientific point of view might be deduced from the tables, notably the large proportion of food purchased which never reaches the table, and the large proportion of that so prepared which is not eaten.

This is due in part to the method in vogue in the market of selling without trimming, so that each household has much garbage, and in part to careless ways of providing, and in part to the fact that service costs more than food, and that it is cheaper to lose one third of a bushel of potatoes by paring than to pay for careful peeling.

COÖPERATION OF HOUSEHOLD.
As to the readiness with which the students accepted the diet, there is less assurance of complete success. So many people are in the habit of finding fault with whatever food is provided, and expect, usually with good reason, to have a choice of a dozen dishes, out of which number one or two may suit, that it would be unreasonable to expect that a simple, nourishing diet, known to be of low cost, would be entirely pleasing to every one, especially in a household made up of people used to the most varied standards of living. It is not too much to say, however, that while a few of the college women failed to enter into the experiment with sympathy, the general body of students were pleased, and made frequent expressions of their interest and approval.

A large measure of the success of the plan and its establishment on a firm foundation is due to the Heads of the Houses, Miss Myra Reynolds, Miss Elizabeth Wallace, and Miss F. C. Brown.

The carrying out of the matter was entrusted to the Deans, Mrs. Alice Freeman Palmer and Miss Marion Talbot, with Mrs. Ellen H. Richards, of the Massachusetts Institute of Technology, as expert adviser, and Miss Maria Daniell as manager. Their efforts were ably seconded in a technical way by Miss S. E. Wentworth, of the Ncw England Kitchen, Miss Antoinette Cary, Mrs. Biggers, Miss Knapp, and Miss Yeomans.

The employees, although laboring under many difficulties with new kinds of apparatus, new methods of work and unusual division of labors, contributed largely to the success of the experiment by their willing efforts.

## II.

## SCIENTIFIC RESULTS OF THE INVESTIGATION.

## Table I.-Detailed Statement of the Cost and Composition of the Food Materiads Used in the Kitchen at Kelly Hall, University of Chicago, during the Six Months from October 1 to April 1.

The three most important classes of the nutritive ingredients of foods are proteids, fats, and carbohydrates. The human being must have enough of proteid or tissue building substance to make up for the wear and tear of the body, and since many have not reached the period of full development, students must also be furnished with enough to allow also for growth. In the second place, there must be a supply of the energy and heat producing ingredients of food, viz., the proteids, fats and the carbohydrates. The right proportion of fat must be introduced in a palatable and digestible form, since there are indications that its general use in this country may in part account for the excess of energy of the American over his continental neighbors. It is becoming increasingly probable that fat in the daily diet is one of the most necessary ingredients for brain workers, partly for the reason above stated, that it is a storehouse of energy, but also in that it can produce energy without the intervention of some of the processes required in the conversion of starch. After the proteid and fat elements of the food are supplied, there remain the starch, sugars, etc., the so-called carbohydrates, which furnish the rest of the heat and energy needed by the body.

The following table gives therefore not only the quantities and prices, but also the nutrients in the food material purchased and sent to the Kitchen.

|  | Total lbs. | Cost. | Per cent. waste. | Proteid, net. | Fat, net. | Carbohydrate, net. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beef: |  |  |  |  |  |  |
| Rib roast | 3887 | \$426 97 | 31.7 | 332 | 584 |  |
| Tongue | 429 | 5595 | 34 | 75 | 34 |  |
| Canned | 162 | 1475 |  | 46 | 12 |  |
| Dried. | 210 | 2745 |  | 52 | 25 |  |
| Shoulder | 473 | 3571 |  | 59 | 118 |  |
| Corned | 738 | 5532 |  | 164 | 125 |  |
| Shin. | 3553 | 10679 | 50 | 296 | 70 |  |
| Round | 298 | 2298 |  | 52 | 24 |  |
| Chuck | 510 | 2627 |  | 89 | 41 |  |
|  | 10260 | \$772 19 |  | 1165 | 1033 |  |


|  | Total lbs. | Cost. | Per cent. waste. | Proteid, net. | Fat, net. | Carbohy drate, net. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mutton : |  |  |  |  |  |  |
| Whole | 3314 \} | 824708 | 27.6 | 336 | 360 |  |
| Quarters . . . . . . . . . . . | 981 \} | \$247 08 | 10 | 124 | 133 |  |
| Veal: |  |  |  |  |  |  |
| Fore-quarter . . . . . . . . . | 366 | 2062 | 33.3 | 33 | 7 |  |
| Solid roasts. . . . . . . . . . | 1445 | 16512 |  | 192 | 44 |  |
| Chicken ................ | 1696 | 18953 | 15 | 192 | 72 |  |
| Turkey . . . . . . . . . . . . . . | 783 | 5889 | 15 | 89 | 33 |  |
| Fresh Pork | 262 | 2267 |  | 32 | 23 |  |
| Sausage . . . . . . . . . . . . . | 252 | 1843 |  | 23 | 101 |  |
| Liebig Extract.......... <br> Gelatine | 11 | 1245 |  | 6 |  |  |
|  | 9110 | \$734 79 |  | 1027 | 773 |  |


|  | Total lbs. | Cost. | Per cent. waste. | Proteid, net. | Fat, net. | Carbohydrate, net |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ham | 534 | \$65 29 | 30 | 90 | 112 |  |
| Bacon | 157 | 2206 |  | 15 | 110 |  |
| Liver | 123 | 678 |  | 24 | 6 |  |
| Fresh fish | 684 | 8121 |  | 70 | 21 |  |
| Oysters | 120 | 1650 |  | 7 | . 2 |  |
| Salmon (canned) | 180 | 720 |  | 35 | 26 |  |
| Shrimps... | 24 | 460 |  | 6 | . 2 |  |
| Salt fish. | 236 | 2370 |  | 53 | 5.2 |  |
| Salt pork | 222 | 2187 |  | 67 | 173 |  |
|  | 2277 | \$249 21 |  | 367 | 453.6 |  |
| Milk | 28776 | \$647 46 |  | 1007.2 | 1063.7 | 1351.5 |
| Butter | 2132 | 61783 |  | 43 | 1770 | 10.6 |
| Butterine | 355 | 6986 |  |  | 309.5 |  |
| Cream | 2852 | 24996 |  | 85.6 | 342.3 | 85.6 |
| Cheese | 96 | 1389 |  | 29 | 30 |  |
| Eggs | 936 | 16295 |  | 117 | 112.3 |  |
| Olive oil | 88 | 2925 |  |  | 88 |  |
| Nuts. | 150 | 375 |  | 24 | 79.5 |  |
| Sugar. | 3228 | 17609 |  |  |  |  |
| Candy | 50 | 700 |  |  |  | \} 3259.8 |
| Molasses | 248 | 1524 |  |  |  | 171.1 |
| Maple syrup. | 168 | 2225 |  |  |  | 119.3 |
|  | 39179 | \$2015 53 |  | 1305.8 | 3795.3 | 4997.9 |


|  | Total lbs. | Cost. | Per cent. waste. | Proteid, net. | Fat, net. | Carbohydrate, net. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Flour : |  |  |  |  |  |  |
| White | 1030 | \$21 35 |  | 113 | 13.4 | 731 |
| Whole wheat | 1890 | 5240 |  | 227 | 37.8 | 1204 |
| Bread : |  |  |  | 。 |  |  |
| White | 2052 | 9308 | $)$ |  |  |  |
| Rolls . | 6496 | 31548 | \}..... | 702 | 50 | 5716 |
| Brown | 670 | 3104 | ) |  |  |  |
| Oatmeal | 700 | 2120 |  | 98 | 49 | 445 |
| Corn products | 982 | 2035 |  | 93.2 | 39.3 | 668 |
| Crackers.... | 140 | 1575 |  | 9.8 | . 7 | 79 |
| Rice. | 224 | 1456 |  | 16.6 | . 9 | 177 |
| Macaroni | 125 | 1339 |  | 10.6 | . 4 | 94 |
| Tapioca | 60 | 270 |  | . 7 |  | 50 |
| Barley . | 20 | 85 |  | 2.1 | . 5 | 13 |
| Peas.. | 100 | 280 |  | 23 | 2 | 53 |
| Beans | 280 | 1067 |  | 67.2 | 4.2 | 144 |
|  | 14779 | \$615 62 |  | 1363.3 | 198.2 | 9374 |


|  | Total lbs. | - Cost. | Per cent. waste. | Proteid, net. | Fat, net. | Carbohydrate, net. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Potatoes | 14142 | \$173 86 | 30 | 180.0 | 20.0 | 1910.0 |
| " sweet | 2034 | 4485 | 10 | 27.5 | 7.3 | 475.0 |
| Squash | 280 | 790 | 10 | 3.5 | 0.3 | 20.2 |
| Celery | 220 | 2015 | 10 | 1.7 | 0.6 | 12.6 |
| Onions | 186 | 265 | 10 | 2.8 |  | 18.4 |
| Beets | 670 | 490 | 10 | 7.9 | 8.4 | 53.7 |
| Carrots | 75 | 153 | 10 | 0.6 | 1.3 | 5.4 |
| Parsnips | 350 | 365 | 10 | 5.0 | 0.6 | 25.8 |
| Turnips . | 825 | 882 | 10 | 7.4 | 1.4 | 59.4 |
| Lettuce | 250 | 535 | 10 | 3.1 | 0.6 | 5.0 |
| Cabbage | 830 | 1455 | 10 | 14.5 | 3.7 | 48.5 |
| Tomatoes (canned) | 1113 | 3845 |  | 11.1 | 2.2 | 41.2 |
| Corn (canned) | 324 | 2220 |  | 10.0 | 4.3 | 76.8 |
| Peas.. | 100 | 1620 |  | 6.0 | 0.5 | 12.0 |
|  | 21399 | \$365 06 |  | 281.1 | 51.2 | 2764.0 |


|  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |


|  | Total lbs. | Cost. | Per cent. waste. | Proteid, net. | Fat, net. | Carbohydrate, net. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Apples | 3648 | \$106 10 |  | 14.6 |  | 551.7 |
| Grapes | 2260 | 5109 |  | 13.4 |  | 382.2 |
| Oranges | 3283 | 5014 | 20 | 26.3 |  | 299.0 |
| Bananas | 1900 | 5900 | 50 | 45.6 | 5.7 | 187.2 |
| Lemons. | 263 | 250 |  | 2.1 |  | 30.5 |
| Melons | 100 | 250 |  |  |  |  |
| Plums | 90 | 320 |  | 1.0 |  | 39.0 |
| Peaches. | 70 | 525 |  |  |  |  |
| " (canned) ........ | 144 | 1280 |  |  |  |  |
| Pineapple (canned)....... | 144 | 1560 |  | 3.0 |  | 72.0 |
| Cranberries.............. | 180 | 685 |  | 1.0 |  | 14.4 |
|  | 12082 | \$315 03 |  | 107.0 | 5.7 | 1536.0 |
| Cakes and biscuit | 202 | \$28 56 |  | 14.1 | 18.0 | 51.5 |
| Ice cream | 40 | 1000 |  | 1.0 | 2.0 | 16.0 |
| Cocoа .................. <br> Chocolate | 148 | 6182 |  | 22.7 | 34.2 | 73.8 |
|  | 390 | \$100 38 |  | 37.8 | 54.2 | 141.3 |

Table II.-Summary of Food Materials, Cost, and Composition.

|  | Total lbs. | Cost. | Per cent. waste. | Proteid, net | Fat, net. | Carbohydrate, net. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Beef. | 10260 | \$772 19 | 30 | 1165. | 1033. |  |
| Other fresh meats | 9110 | 73479 | 20 | 1027. | 774. |  |
| Ham, etc. . . . . . . . . . . . . | 2277 | 24921 | 7 | 367. | 453.6 |  |
| Milk, butter, eggs, sugar, etc. | 39179 | 201553 |  | 1305.8 | 3795.3 | 4997.9 |
| Grains . | 14779 | 61562 |  | 1363.3 | 198.2 | 9374.0 |
| Potatoes and vegetables... | 21399 | 36506 | 22 | 281.1 | 51.2 | 2764.0 |
| Fresh fruit. | 12082 | 31503 | 12.5 | 107. | 5.7 | 1536.0 |
| Dried " | 2143 | 18719 |  | 35.1 | 1.3 | 1139.1 |
| Cakes, etc | 390 | 10038 |  | 37.8 | 54.2 | 141.3 |
|  | 119232 | \$5355 00 |  | 5689.1 | 5365.5 | 19952.3 |
| Coffee, tea |  | 14717 |  |  |  |  |
| Sundries and unclassified groceries |  | 49825 |  |  |  |  |
|  |  | \$6000 42 |  |  |  |  |

These figures divided by the number of persons and days give per person per day:

|  | Lbs. | Cost. | Proteid, grams. | Fat, grams. | Carbohydrate, grams. | Calories. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Food purchased.......... | 5 | \$0 25 | 126 | 131 | 402 | 3383 |
| Nutrients remaining after deducting actual wastes. |  |  | $108$ | $102$ | 381 | 2953 |

## Table III.-Tabular Statement of Bills of fare of Three Consecutive weeks, with Costs and Quantities.

Table III. gives bills of fare for a period of three consecutive weeks. These are presented with a view to showing the variety secured and the daily apportionment of expense. The proposed limit of expenditure was fixed at $\$ 29.00$ per day, or $\$ 0.223$ per day per person for 130 persons fed. Any sum spent in excess of this on one day was necessarily offset by the choice of some less expensive articles of food on a following day. After some careful study it was learned that nearly the same amount of certain articles (constants) was used daily. Their value (13.5I) deducted from the day's appropriation of $\$ 29.00$ gave the sum to be spent on variables.

It will be noted that the season when these bills of fare were given is one when it is difficult to secure much variety. With the advance of spring many articles can be procured which add to the variety and relish.

The following abbreviations are used:
K-Kelly Hall.
B-Beecher Hall.
F-Nancy Foster Hall.
Ciphers indicate that the cost of the article was charged on the account of a previous day.



Dinner :
60 lbs. Beef shank for soup................. \$1 85
35 lbs. Beef, roast . . . . 660
25 " Turkey, roast... 288
25 " Potatoes, mashed 25
10 " Parsnips ....... 14
4 cans Peas. . . . . . . . . . . 55
3 qts. Olives . . . . . . . . . . 85
Frozen Pudding....... . 171
1483
Supper:
Cold meat. . . . . . . . . . . \$0 00
8 lbs. Peaches for sauce, 12
8 lbs. Sugar ........... 40
2 boxes Wafers. . . . . . . . 46
Crackers ............. . . . 32

Total for the day........ $\$ 3433$

## Monday, March 5.

Constants
$\$ 1351$
Breakfast:
12.5 doz. Oranges . . . . . . $\$ 188$

5 lbs. Farinose . . . . . . . . 22
36 " Ham .......... 405
40 " Potatoes, baked, 40
Luncheon :
Cold meat. . . . . . . . . . . $\$ 000$
Fried Potato balls .... . 00
Peach sauce ........... 00
Apple sauce ........... 24
Dinner :
Beef soup . . . . . . . . . . . \$0 00
Beef, roast (K.) . . . . . . 00
14 lbs. Lamb Chops (B.
and F.) . . . . . . . . . . 119
39 lbs. Potatoes ....... . 39
Beets ................... . 25
Cabbage . . . . . . . . . . . . 20
Dressing . . . . . . . . . . . . . 17
Prune Pudding . . . . . . . . 47
Reception and supper, Beecher:
Salmon . . . . . . . . . . . . . \$0 64
Mayonaise ........... 53
Cold Ham. . . . . . . . . . . . 00
Celery . . . . . . . . . . . . . . . 45
5 lbs. Tea . . . . . . . . . . . . 30
9 boxes Wafers ....... 239
2 doz. Oranges........ 30
1.5 doz. Lemons . . . . . . . 18
. 5 bunch Bananas ..... 75
$\$ 2851$



## Monday, March 12.

Constants ................... $\$ 1351$
Breakfast :
5 lbs. Farinose . . . . . . . . \$0 22
10 pots Marmalade . . . 140
Sausage (beef)......... 00
6 doz. Eggs . . . . . . . . . . 96
Potato Balls . . . . . . . . . . 00
Luncheon :
Cold Meat (K. and B.). $\$ 000$
Hashed Turkey (F.) ... 00
20 lbs. Baked Potatoes (F.) 25
Creamed Potatoes (K. and B.) ............. 00
12 lbs. Prune Sauce.... 78
Biscuit............... . . . 12
Dinner :
10 cans Corn for soup. . $\$ 090$
30 lbs. Lamb Chops... 255
39 " Mashed Potatoes 49
Beans ................. 00
3 heads Cabbage . . . . . . $\quad 21$
Dressing . . . . . . . . . . . 17
Delicate Pudding. . . . . . 64
496
Reception and supper, Kelly:
.5 lb . Tea............. $\$ 030$
4 cans Salmon . . . . . . . . 60
4 boxes Wafers ....... . 15
1 doz. Lemons . . . . . . . . 25
1.2 doz. Oranges ...... 25

1 doz. Bananas........ . 25
Mayonaise ............ 53
333
Total for the day. . . . . . . \$25 53
Tuesday, March 13.
Constants
$\$ 1351$
Breakfast:
Bananas .............. \$1 25
4.5 lbs. Rolled Wheat. . 18

Broiled Ham and Eggs
(F.) ................ 63

33 lbs. Cold Ham . . . . 372
33 " Potatoes, baked. 41

Luncheon:
Hash . . . . . . . . . . . . . . . \$0 00
23 lbs. Potatoes . . . . . . . 29
4 " Apple Butter ... 32
620
Drasing ............... 17
3 boxes Wafers ........ 69
8 lbs. Sugar ........... 40
Total for the day $\$ 3181$

Dinner:57 lbs. Beef shank forsoup................. . \$1 71
$\simeq 4 \mathrm{lbs}$. Oxtail for stew. ..... 72
53 " Mashed Potatoes ..... 66
Beets ..... 00
16 lbs. Parsnips ..... 16
Cabbage salad ..... 21
1.6 doz. Eggs ..... 30
. 3 box Oranges ..... 75
.4 bunch Bananas ..... 83
Total for the day ..... $\$ 2621$
Friday, March 16.$\$ 1351$
Breakfast:
.3 bunch Bananas (K.). ..... \$0 48
.5 box Oranges (B. and
F.) ..... 108
5 lbs. Rolled Oats ..... 18
25 " Potatoes ..... 32
Minced Beef ..... 00
Sausages ..... 00
4.5 doz. Eggs, scrambled ..... 90
Potato balls (F.) ..... 00
Luncheon :
51 lbs . Irish stew (K.and B.)433
6 cans Salmon, cream'd ..... 90
38 lbs. Potatoes, baked. ..... 48
4 " Apple Butter ..... 32
294
$\qquad$
603

Dinner:
2 gals. Tomatoes forsoup................ \$0 60

11 lbs. Beef Steak (K.). 154
51 " Lamb, boiled (B.and F.)433
51 lbs. Potatoes ..... 64
22 " Turnips ..... 107
Lemon Sauce ..... 24764
Total for the day ..... \$30 14
Saturday, March 17 .$\$ 1351$
Breakfast:
1 bunch Bananas ..... $\$ 125$
2.5 doz. Oranges (K.). ..... 30
5 lbs. Farinose ..... 22
00
6 doz. Eggs, scrambled
(B. and K.) ..... 108
Beef, frizzled (F.) ..... 00
15 lbs. Potatoes (F.) ..... 19

| Iuncheon: |  |  |
| :---: | :---: | :---: |
| Irish Stew (F.) . | \$0 00 |  |
| Meat in brown gravy ( B . and K.) | 00 |  |
|  | 128 |  |
| 60 lbs. Sweet Potatoes, baked | 100 |  |
| Fruit Sauce | 00 |  |
| Dinner: |  |  |
| 9 lbs. Potatoes for soup \$0 12 |  |  |
| 26 " Turkey, roast (F.) | 260 |  |
| 14 " Steak (B.)...... | 196 |  |
| 41 " Lamb, boiled (K.) | 348 |  |
| 50 " Potatoes | 63 |  |
| 3 " Boiled Hominy. | 06 |  |
| Tapioca Pudding (K. and B.) |  |  |
| Lemon Sherbet (F.) | 80 |  |
| Water Cress . . . . . . . . . | 25 | 1053 |
| Total for the day....... \$29 36 |  |  |
| Sunday, March 18. |  |  |
| Constants |  | \$13 51 |
| Breakfast: |  |  |
| . 6 box Oranges. . . . . . . $\$ 169$ |  |  |
| 4.5 lbs. Rolled Wheat. . | 18 |  |
| Baked Beans ......... 63 |  |  |
| Brown Bread . . . . . . . . 77 |  |  |
| Fish balls | 130 |  |
| Dinner: - 457 |  |  |
| Beef Soup............. \$1 92 |  |  |
| 52 lbs. Turkey, roast (B. |  |  |
| 25.5 lbs . Beef, roast (F.) | 318 |  |
| 51 lbs . Potatoes, mashed | 75 |  |
| 16 " Parsnips | 16 |  |
| Cranberry Jam | 80 |  |
| Water Cress | 25 |  |
| Lemon Sherbet | 167 |  |
| 2 boxes Wafers |  |  |
| Supper: - 1453 |  |  |
| 2.3 lbs. Chipped Beef . . \$0 24 |  |  |
| 1 can Beef, corned. . . . | 20 |  |
| 4 lbs. Apple Butter | 32 |  |
| Loaf Cake | 00 |  |
|  |  | 076 |
| Total for the day........ \$33 37 |  |  |
| Monday, March 19. |  |  |
| Constants |  | \$13 51 |
| Breakfast: |  |  |
| 5 lbs. Farinose . . . . . . \$0 22 |  |  |
| 11 pots Marmalade . . . 154 |  |  |
| Cold Meat . . . . . . . . . 00 |  |  |
| Potato Balls . . . . . . . . 00 |  |  |

Luncheon :
Meat in brown gravy .. $\$ 000$
60 lbs. Sweet Potatoes. . 100
Corn Bread (K.) . . . . . . 20
Fruit Sauce............ 110
Dinner:
Soup, vermicelli. . . . . . \$0 00
55 lbs. Veal, roast . . . . . 550
50 " Potatoes . . . . . . 63
2 cans Tomatoes ...... 60
Water Cress . . . . . . . . . . 25
Rice Pudding.......... 30

Reception and supper, Foster :
Turkey for salad . . . . . \$0 00
11 lbs. Ham, cold . . . . . 121
Mayonaise ............ 27
Water Cress . . . . . . . . . . 00
Celery . . . . . . . . . . . . . . 70
Tapioca............... . . 05
6 cans Peaches . . . . . . . 95
1 doz. Lemons . . . . . . . . 15
. 5 lbs. Tea. . . . . . . . . . . 30
3 boxes Crackers ...... . . 69

## 432

Total for the day. . . . . . . $\$ 2917$

## Tuesday, March 20.

Constants . . . . . . . . . . . . . . . . $\$ 1351$
Breakfast :
. 7 box Oranges. . . . . . . . $\$ 169$
5 lbs. Oatmeal . . . . . . . . 18
8 " Sausage ........ 52
Chops . . .............. . . 75
Potatoes, fried . . . . . . . . 00
Luncheon:
Minced Meat . . . . . . . . \$0 00
60 lbs . Sweet Potatoes. . 100
Corn Bread (F.). . . . . . 45
12 lbs. Apricot Sauce . . 198
. 5 gal. Pickles ........ 27
Din - 370
Dinner :
10 cans Corn for soup. . \$0 90
54 lbs. Lamb, roast . . . . 459
50 " Potatoes ....... 63
3 " Hominy . . . . . . . 06
3 qts. Olives .......... 65
9 lbs. Dried Fruit. . . . . 90
. 5 bunch Bananas. . . . . 65
2 cans Peaches....... 32


Table IV．－One Day＇s Food，March 17，at the University of Chicago，ćalcu－ lated to Determine the Amounts and Proportions of the Various Constituents and their Comparison with the General Average．

| 号 |  |  | 淢 |  |  |  |  | 管 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | Stew and cold | 21.0 | 8.0 |  | 10.5 | 4.0 |  |  |
| 90 | White potatoes． | 1.8 | ． 2 | 19.1 | 1.6 | ． 18 | 17.2 |  |
| 45 | Sweet potatoes | 1.5 | ． 4 | 26.0 | ． 7 | 2 | 11.7 |  |
| 4 | Dried beef． | 34.0 | 7.5 |  | 1.4 | 3 |  |  |
| 77 | Flour and grain． | 11.5 | 1.8 | 70.0 | 8.9 | 1.4 | 53.9 |  |
| 3 | Tapioca．．．．．．． | 1.3 |  | 83.0 |  |  | 2.5 |  |
| 13 | Cream | 3.5 | 3.7 12.0 | 4.7 3.0 | 6.8 .4 | 7.1 | 9.0 |  |
| 15 | Butter | 2.0 | 83.0 | － 5 | ． 3 | 12.5 |  |  |
| 15 | Sugar． |  |  | 96.5 |  |  | 14.5 |  |
| 6 | Prunes | 3.5 |  | 65.0 | ． 2 |  | 4.0 |  |
| 9 | Oranges，less $20 \%$ waste，． | 1.0 |  | 11.0 |  |  | ． 8 |  |
| 50 | Bananas，less $50 \%$ waste， | 4.85 |  | 19.7 | 1.3 |  | 5.0 |  |
| 41.2 | Eggs． Lamb． | 12.5 20.0 | 12.0 15.0 |  | ． 9 | ． 8 |  |  |
| $\stackrel{41}{26}$ | Lamb Turke | 20.0 19.0 | 15.0 5.0 |  | 8.2 5.0 | 6.2 1.3 |  |  |
| 14 | Steak． | 15.0 | 22.0 |  | 5.0 2.1 | 1.3 3.1 |  |  |
| 657.2 |  |  |  |  | 48.3 | 38.68 | 119.0 |  |
| $76.0$ | （Less turkey，lamb and bread left－over）．．．．．．．．．．．．．．． |  |  |  | 7.9 | 2.06 | 23.6 |  |
| 581.2 | Divided by 130. |  |  |  | 40.4 | 36.62 | 95.4 |  |
| 4.4 | Per person，nutrients |  |  |  | $\begin{gathered} .310 \\ \text { grams. } \\ 126.5 . \end{gathered}$ | $\begin{array}{r} .281 \\ \text { grams. } \\ 114.7 \end{array}$ | $\begin{gathered} .733 \\ \text { grams. } \\ 332.0 \end{gathered}$ |  |
|  | Daily average for the 6 mos．， nutrients． |  |  |  | $108 .$ | $102 .$ | 381. | 2953 |

## Table V.-Comparison of a School Dietary with the University of Chicago Dietary.

Several significant and interesting facts are shown by an examination of the following comparison of a wholesome and sufficient dietary of a school in Indiana, where 600 students were boarded at $\$ \mathrm{I} .40$ per week, with that of the University of Chicago, where 106 students were boarded at $\$ 3.50$ per week. One source of advantage on the side of the school is that a much larger number of persons are fed and certain expenses are proportionately reduced. In the second place, very little service beside student help is furnished at the school, and a large item of expense is thus removed. Another difference is seen in the substitution at the school of cheaper foods, such as cereals, vegetables, syrup, and butterine, for meat, milk, cream, fruits, and other more expensive foods, though the actual amount of nourishment furnished was practically the same in both cases.

|  | $\underset{\text { PERSON PER DER }}{\text { Quay. }}$ |  | Percentage ofTotal Cost of Total Cost of Article. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { Lbs. } \\ \text { Indiana. } \end{gathered}$ | Lbs. Chicago. | $\begin{aligned} & \text { Per cent. } \\ & \text { Indiana. } \end{aligned}$ | Per cent. Chicago |
| Beef. | . 476 | . 442 | . 17 | . 128 |
| Other meats |  | . 401 |  | . 141 |
| Fish. | . 119 | . 052 | . 067 | . 022 |
| Flour and Grain | . 785 | . 437 | . 125 | . 103 |
| Potatoes | 1.085 | . 680 | . 090 | . 036 |
| Vegetables (other than potatoes). | . 490 | . 219 | . 05 | . 024 |
| Beans | . 057 | . 015 | . 008 | . 002 |
| Milk. | . 666 | 1.295 | . 073 | . 108 |
| Cream |  | . 120 |  | . 041 |
| Sugar. | . 135 | . 140 | . 056 | . 029 |
| Syrup. | . 095 | . 017 | . 017 | . 006 |
| Butter |  | . 089 |  | . 103 |
| Butterine. | . 119 | . 014 | . 134 | . 011 |
| Dried fruits. | . 171 | . 090 | . 057 | . 031 |
| Fresh " | . 259 | . 508 | . 070 | . 052 |
| Canned " | . 259 | . 508 | . 070 | . 052 |
| Sundries ..... |  | . 022 |  | . 013 |
| Tea, coffee. | . 026 | . 020 | . 047 | . 025 |
| Cocoa, chocolate |  | . 006 |  | . 013 |
| Eggs and Cheese |  | . 043 |  | . 029 |
| Unclassified groceries | . 095 | . 020 | . 036 | . 083 |

## Table VI.-Standard and Actual Dietaries.

The question arises of how much significance are such computations as to real nutrition. In other words how much dependence can be put upon calculations of nutritive values. It can only be completely answered by many experiments of a character similar to the present one, but the results of many investigations in Germany and elsewhere have given considerable confidence in certain standards for the average person, although it is granted at the outset that there are personal idiosyncrasies in the human animal more often than in the domestic animal, so that only a general average dietary can be assumed. From this, however wisely it may be chosen, a few individuals will of necessity vary in their needs.

To the zeal of Professor W. O. Atwater, of Wesleyan University and the Storrs Agricultural Experiment Station, is due most of the work in the investigation of foods and dietaries which has been done in this country. From his tables are taken the following standard dietaries with which the one now reported is compared:

|  |
| :--- |
| Standard Dietaries. |

## Table VII.-University of Chicago Dietary.

In order to establish a factor for future calculations, an estimate of actual waste was made, which, although far from being as exact as is desirable, is a distinct contribution to our knowledge. It shows that ten per cent., the usual estimate, is the minimum amount which must be deducted from the usual dietaries, while the actual amount is frequently much larger.

The per cent. of indigestibility would be in most cases somewhat greater than in the present one, since in this case great pains was taken to secure the highest limit of digestibility as well as the lowest limit of waste.

|  | Nutrients. |  |  |  | Potential Energy. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| Food as bought | 126 | 131 | 402 | 659 | 3370 | 4398 |
| Less $10 \%$ waste | 113 | 118 | 362 | 593 | 3045 | 3958 |
| Less actual waste | 108 | 102 | 381 | 591 | 2953 | 3838 |

III.

## BIBLIOGRAPHY OF SOME RECENT PUBLICATIONS

Abel, Mary H., Practical Sanitary and Economic Cooking, Rochester, N. Y., 1890.
Atkinson E., The Science of Nutrition. Damrell \& Upham, Boston, 2d ed., 1892. Atwater, W. O., Reports of Connecticut Agricultural Experiment Station.
Brigham A., Influence of Mental Cultivation in Producing Dyspepsia. 3rd ed. New York, 189 I .

Burnet, R. W., Foods and Dietaries; A Manual of Clinical Dietetics. London, 1890.

Church, A. H., Food : Some Account of its Sources and Uses. London. Latest edition.

Cyr, J., Traité de l'Alimentation dans ses Rapports avec la Physiologie et la Therapeutique. Paris.

Davis, C. W., A Compendium of the World's Food Production and Consumption. Goddard, Kansas, 189 I .

Ebstein, W., Ueber eiweissreiches Mehl und Brot als Mittel zur Aufbesserung der Volksernährung. Wiesbaden, 1892.

Fothergill, J. M., The Food We Eat; Why We Eat it and Whence it Comes. London, I892.

Goodfellow, John, The Dietetic Value of Bread. New York: Macmillan \& Co., 1892.

Greenleaf, R. W., M.D., The Diet of Harvard Students. Harvard Graduates Magazine, I894.

Health Exhibition Literature. London, 1884.
Holloway, L. C., The Buddhist Diet Book. New York, 1886.
Kingsford, A., The Perfect way in Diet. London, 188ı.
Koenig, F. J., Chemie der menschlichen Nahrungs- und Genussmittel mit einer Einleitung ueber die Ernährungslehre. 3te Auf. Berlin, 1889.

Mills, C. K., Mental Overwork and Premature Disease among Public and Professional Men. Washington, 1885.

Munk, I., Einzelernährung und Massernährung. Jena, 1893.
Minert, C. A., Wie nährt man sich gut und billig? Mainz.
Munk Uffelmann, Die Ernährung des Gesunden und Kranken Menschen. Wien und Leipzig, 1887.

Reports of the American Public Health Association.
Richardson, B. W., On Health and Occupation. London, 1879.
Rumford, Count, Works, Volume IV. American Academy, Boston.
See, G., Du régime alimentaire. Traitement hygienique des malades. Paris, 1887.

Thompson, Sir H., Diet in Relation to Age and Activity. Boston, 1888.
" " " Food and Feeding. London, 1880.
Voit, C. von, Physiologie des allgemeinen Stoffwechsels und der Ernährung. Leipzig, 1881.

Wilder, B. G., Health Notes for Students. 2d ed. New York, 1890.
Williams, W. M., The Chemistry of Cooking. New York, 1885.
Wolff, M. P., Food for the Million. London, 1884.
Woltering, Diätetisches Handbuch für praktische Arzte. Berlin, 1892.
Yeo, I. B., Food in Health and Disease. London, 1889.

RETURN TO the circulation desk of any University of California Library or to the
NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station University of California
Richmond, CA 94804-4698

## ALL BOOKS MAY BE RECALLED AFTER 7 DAYS

 2 -month loans may be renewed by calling (415) 642-67531 -year loans may be recharged by bringing books to NRLF
Renewals and recharges may be made 4 days prior to due date

## DUE AS STAMPED BELOW

$\qquad$
$\square$



Cロ61436368

?


