


UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
BOOKSTACKS







Faculty Working Paper 92-0128

330 ST"

77ZSl^O LUhf JL

Forecasting Exchange Rates Using

Feedforward and Recurrent Neural Networks

UrtversrtyofHanote

Chung-Ming Kuan Tung Liu
Department of Economics Department of Economics

University of Illinois Ball State University

Bureau of Economic and Business Research

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign





BEBR
FACULTY WORKING PAPER NO. 92-0128

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

May 1992

Forecasting Exchange Rates Using

Feedforward and Recurrent Neural Networks

Chung-Ming Kuan
Department of Economics

Tung Liu

Department of Economics



Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/forecastingexcha92128kuan



FORECASTING EXCHANGE RATES USING

FEEDFORWARD AND RECURRENT

NEURAL NETWORKS

Chung-Ming Kuan

Department of Economics

University of Illinois at Urbana-Champaign

and

Tung Liu

Department of Economics

Ball State University

May 15. 1992

t We would like to thank Roger Koenker, Bill Maloney and Paul Newbold for useful discussions. We are

most grateful to Richard Baillie for providing us the data set and Hal White for permitting us to access

his NEUTON program, which helped us to improve our program significantly. C.-M. Kuan also thanks

the Research Board of the University of Illinois for partial research support.





Abstract

In this paper we investigate the forecasting ability of feedforward and recurrent networks

based on empirical foreign exchange rate data. A two-step procedure is proposed to con-

struct suitable networks, in which networks are selected based on the predictive stochastic

complexity (PSC) criterion. We find that PSC is a sensible criterion in selecting networks

and that neural networks perform reasonably well in terms of out-of-sample MSE and sign

predictions. In particular, the networks selected based on PSC have rather satisfactory

sign prediction results and compare favorably with the ARMA models selected based on

the SIC criterion.





1 Introduction

Neural network is a general class of nonlinear models which has been successfully applied in

many different fields. Numerous empirical and computational applications can be found in

the Proceedings of the International Joint Conference on Neural Networks and Conference

of Neural Information Processing Systems. In spite of its success in various fields, there

are only a few applications of neural networks in economics. Neural networks are novel

in econometric applications in the following two respects. First, the class of multi-layer

neural networks can well approximate a large class of functions (Hornik, Stinchcombe,

and White (1989) and Cybenko (1989)), whereas most of commonly used nonlinear time

series models do not have this property. Second, the approximation capability of neural

networks requires only that the number of parameters grow linearly (Barron (1991)).

This is in contrast to polynomial, spline, and trigonometric expansions which require the

number of parameters to grow exponentially to achieve the same approximation rate.

Thus, if the behavior of economic variables exhibits nonlinearity, a suitably constructed

neural network can serve as a useful tool to capture such regularity.

In this paper we investigate possible nonlinear patterns in foreign exchange data using

feedforward and recurrent networks. It has been widely accepted that foreign exchange

rates are 1(1) (integrated of order one) processes and that changes of exchange rates are

uncorrelated over time. Hence, exchange rates are not predictable in general. For a

comprehensive review in these issues we refer to Baillie and McMahon (1989). Since the

empirical studies supporting these conclusions rely mainly on linear time series techniques,

it is not unreasonable to conjecture that the linear unpredictability of exchange rates

may be due to limitations of linear models. Hsieh (1989) finds that changes of exchange

rates may be nonlinearly dependent, even though they are linearly uncorrelated. Some

researchers also give evidence in favor of nonlinear forecasts, e.g., Taylor (1980,1982),

Engel and Hamilton (1990), Engel (1991), and Chinn (1991). On the other hand, Diebold

and Nason (1990) find that nonlinearities of exchange rates, if any, cannot be exploited to

improve forecasting. Therefore, we focus on whether neural networks can provide superior

out-of-sample forecasts.

In our application, a two-step procedure for network construction is proposed. In the

first step, we compute the so-called "predictive stochastic complexity" (Rissanen (1987))
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using a computationally efficient, recursive estimation method, from which we can select

suitable networks. In the second step, the recursive estimates are "smoothed" to improve

statistical efficiency. Our procedure differs from previous applications of feedforward net-

work in economics, e.g., White (1988) and Kuan and White (1990), in that networks are

selected objectively. Also, the application of recurrent network appears to be new in eco-

nomics; as a recurrent network can be viewed as a model with dynamic latent variables,

its performance relative to feedforward network should also be of interest to researchers.

Our results show that predictive stochastic complexity is a sensible criterion in selecting

networks and that neural networks perform reasonably well in terms of out-of-sample MSE

and sign predictions. In particular, the networks obtained from the proposed procedure

yield rather satisfactory sign prediction results, especially for the Japanese Yen, Deutsche

Mark, and Swiss Franc series, and compares favorably with ARMA models.

This paper proceeds as follows. We review various network architectures and estima-

tion methods in section 2. The network construction procedures are described in section 3.

Empirical results are analyzed in section 4. Section 5 concludes the paper. We summarizes

a "recurrent Newton" algorithm in the Appendix.

2 Feedforward and Recurrent Networks

In this section we briefly describe feedforward and recurrent networks and associated

estimation methods. For more details see Kuan and White (1991a).

2.1 Network Architectures

A typical single-output, feedforward neural network consists of an input layer with n input

units, a hidden layer with q hidden units, and an output layer with an output unit. Let

x be an n-vector of input variables. The input variables first simultaneously activate q

hidden units through some function $, and the hidden unit activations h{,i = 1,- ••,<?,

then activate output units through some function $ to produce the network output o.

Symbolically, we have

n



o = $(/?o + X>M- C
1
)

!=1

More compactly, we can write

<7 n

o = $ (#) + XI A*(7io + £ 7ii*j
))

=: f(x,9), (2)

where is the vector of parameters containing all /Ts and 7's. This is a flexible nonlinear

functional form in that the activation functions ^ and $ can be chosen quite arbitrarily,

except that $ is generally required to be a bounded function. Hornik, Stinchcombe, and

White (1989) and Cybenko (1989) show that the function / in (2) can approximate a

large class of functions arbitrarily well (in a suitable metric), provided that the number of

hidden units, q, is sufficiently large. This property is very similar to that of nonparamet-

ric methods. Barron (1991) also shows that, to achieve the same approximation rate, a

feedforward network uses only linearly many parameters 0{qn), whereas traditional poly-

nomial, spline, and trigonometric expansions use exponentially many parameters 0{q
n

).

These two properties make feedforward networks an attractive econometric tool in (non-

parametric) applications.

However, the inputs x included in a feedforward network may not be sufficient to

characterize the behavior of targets in some applications. In view of this deficiency, various

networks allowing feedbacks have been proposed. In particular, we consider the following

recurrent network due to Elman (1988):

n q

hi, t = ¥(7to + $37«jxj,t + 5^tf&*,«-i)> » = l,---,g,

j=i £=1

o t = *(A> +£#M- (3)

t=i

Here, the hidden-unit activations /i, feed back to the input layer with delay and serve to

"memorize" the past information, cf. (1). Note that we have added the time index t to (3)

to indicate the feedback (time delay) effect. It is straightforward to see that by recursive

substitution,

q n q

o
t = $ [pQ + Y, W7*o + Yl 7W,< + Y 6uht,t-i

))
1=1 j=i e=\



<7

£=1 ifc=l m= l

=: 0(*',0), (4)

where x l — (x t , x t-\, • • • , a'i ) and is the vector of parameters containing all /i's, 7's, and

#'s. In contrast with (2), the network output o
t is a function of x t and its entire history.

We thus expect that a recurrent network may capture more dynamic characteristics of y t

than does a feedforward network.

2.2 Estimation Methods

Given a target variable y and a feedforward network (2), we want to find suitable param-

eters 9" minimizing

E\y - f(x,9)\
2 = E\y - E(y\x)\

2 + E\E(y\x) - f(x,9)\
2

. (5)

This is equivalent to minimizing E\E(y\x) — f(x,9)\
2

. That is, we want to use feedforward

network to approximate the unknown conditional mean function. Since E(y\x) is the best

L2-predictor of y given x, the network output f{x,9
m

)
should match the target variables

fairly closely, at least in the Li sense. In view of (5), the unknown parameters can be

estimated using the method of Nonlinear Least Squares (NLS). Alternatively, recursive es-

timation methods may be used. Although recursive estimation is important for adaptive

learning and on-line signal processing, it is well known that recursive algorithms do not

utilize the data efficiently in finite samples. However, recursive estimation can provide use-

ful starting values for the NLS estimator and facilitate network selection (see discussions

in Section 3). Specifically, we consider the following stochastic Newton algorithm:

t+ i = 9 t + vt GT
l Vf(xu 9 t )[y t

- f(x tjt )],

Gt+i = Gt + Vt[Vf(x t ,9 t )Vf(x tJ t )'-G t ], (6)

where Vf(x,9) is the (column) gradient vector of / with respect to 9 and {r]t } is a sequence

of learning rates of order \/t. Kuan and White (1991a) show that the estimates of the



algorithm (6) are root-T consistent and asymptotically equivalent to the NLS estimator

under very general conditions. In practice, an algebraically equivalent form of (6) can

be employed to avoid matrix inversion in the algorithm; see Kuan and White (1991a) for

details.

Similarly, the parameters of interest of a recurrent network are 9" that minimize

E\y t
-g{x\9)\\

and <7(x
f
,<?*) can be viewed as an approximation of Eiy^x 1

). However, estimation of a

recurrent network is not straightforward. In view of (4), the network output o depends on

6 directly and indirectly through the presence of lagged hidden-unit activations. Hence

g is a very complex function of 9. In particular, in calculating the derivatives of g with

respect to 9, parameter dependence of feedbacks /i,,j_i must be taken into account. Ow-

ing to this "state dependent" structure, the method of NLS becomes infeasible and the

algorithm (6) is invalid. In our applications, a "recurrent Newton" algorithm analogous to

(6) is adopted. Kuan and Liu (1992) show that this algorithm is strongly consistent, pro-

vided that recurrent connections <5's are constrained suitably, and is computationally more

efficient than the "recurrent back-propagation" algorithm proposed in Kuan, Hornik, and

White (1991). To avoid introducing excessive notations here, the details of this algorithm

are deferred to the Appendix. The working papers cited above are available upon request

from the first author.

3 Network Construction

In this paper, we choose the activation functions $ as the logistic function and $ as the

identity function. These choices are quite standard in neural network literature. We adopt

the following two-step procedure to estimate networks.

1. Perform recursive estimation using the stochastic Newton algorithm (6) or its recur-

rent counterpart described in the Appendix.

• We generate 10 sets of parameters and choose the one with the lowest mean

squared error (MSE) as the initial values for recursive algorithms.

• We let the algorithm run through the data set 10 times; the final estimates

from each pass of the data are used as the initial values of the next pass.



2. Perform NLS estimation using FORTRAN subroutine MINPACK.

• For feedforward network, the final recursive estimates from the last pass of the

data are used as initial values of the NLS estimator for 9.

• For recurrent network, we fix the recurrent connection 6's at the final recursive

estimates and use the final estimates as initial values of the NLS estimator for

forward connections /Ts and 7's.

From our experience, performing recursive estimation more than 5 times yields quite stable

results. In "smoothing" the estimates for recurrent network, the parameters 6's are fixed

to avoid constraint minimization. (Recall that <S's must be constrained suitably to ensure

proper convergence behavior.) Hence, the second step for recurrent network is analogous

to building a partially hard-wired recurrent network (Kuan and Hornik (1991)).

The more difficult problem is to determine network complexity. A very simple network

may not be able to approximate the unknown conditional mean function well; an exces-

sively complex network may over fit the data. There is, however, no definite conclusion

regarding the determination of network complexity. One possible criterion is the Schwarz

(1978) Information Criterion (SIC). Rissanen (1983,1984) shows that this criterion can be

applied to a more general setting than linear models; in particular, the SIC is asymptot-

ically equivalent to stochastic complexity of a model (Rissanen (1987)). When the SIC is

applied to determine the order of an ARMA model, it is also known that the SIC is di-

mensionally consistent (Hannan (1980)). Note, however, that selecting networks based on

SIC is computationally demanding because NLS is required for estimating every possible

network.

An alternative criterion to regularize network complexity is the "Predictive Stochastic

Complexity" (PSC) criterion due to Rissanen ( 1986a,b); see also Rissanen (1987). Given

a function h(x,9), where 9 is a fc-dimensional parameter vector, and a sample of T obser-

vations, PSC is computed from honest prediction errors as

T

£ (» -&(*«,

$

t-i))
2
/cr-*), (")

where 9
t _\ is the parameter estimate obtained using the data up to time t — 1. The

prediction error y t
— h(x t ,9 t -i) is "honest" in the sense that no information at time t



or beyond is used to calculate 9t -\. A particular model is selected if it has the smallest

PSC within a class of models. If two models have the same PSC, the simpler one is

selected. Clearly, the PSC criterion is based on forward validation, which is particularly

important in forecasting. Rissanen also shows that for encoding a sequence of numbers,

the PSC criterion can determine the code with the shortest code length asymptotically.

For a thorough discussion of the notion of stochastic complexity we refer to Rissanen

(1989). This criterion has also been applied to determine the order of ARMA models, e.g.,

Gerencser (1990), Hemerly and Davis (1989), and Hannan, McDougall, and Poskitt (1989).

Obviously, calculation of PSC is also computationally demanding if NLS is required to

estimate 0t at each t. Following the idea of Gerencser and Rissanen (1991), we can compute

9
t
using the recursive estimation method, which is more tractable computationally. In our

two-step procedure, PSC can be computed easily in the first step; specifically, PSC is

computed from the last pass of the data in recursive estimation.

4 Empirical Results

In this paper five exchange rates, including Canadian Dollar (CD), Deutsche Mark (DM),

Japanese Yen (JY), Pound Sterling (PS), and Swiss Franc (SF), are investigated. The

data are daily opening bid prices of NY Foreign Exchange Market from March 1, 1980 to

January 28, 1985, consisting of 1245 observations. All series except PS are US dollars per

unit of foreign currency. This data set has also been used in Baillie and Bollerslev ( 1989).

Let 5 t-,£ denote the i-th exchange rate at time t, and yi it
— log Sui

— log Sut -\, i =

CD, DM, JY, PS, SF. By applying various unit-root tests of Phillips (1987), Phillips and

Perron (1988), and Perron (1988), Baillie and Bollerslev (1989) find that log S t , t
are unit

root processes without drift and that changes of log exchange rates behave like a martingale

difference sequence. In addition, we estimate 36 ARMA models from ARMA(0,0) to

ARMA(5,5) on y, it
and evaluate the resulting SIC values. These SIC values, which are

summarized in Table 1, indicate that ARMA( 0,0) is the best model for all five series.

As the SIC is dimensionally consistent, this result agrees with the finding of Baillie and

Bollerslev.

[ Table 1 About Here 1



To construct neural networks, we follow the two step procedure described in Section 3

and take yi jt
as target variables. We use 1194 observations for in-sample estimation and

reserve the last 50 observations for out-of-sample forecasting. In the first step, 36 feed-

forward and recurrent networks (with 1-6 lagged targets as inputs and 1-6 hidden units)

are estimated using the Newton algorithms. We shall write the network with L lags and

H hidden units as the network (Z,i/). For each series, five networks with best PSC

are selected. In the second step, the parameter estimates of the selected networks are

"smoothed" using NLS. Table 2 contains the PSC values of all feedforward and recurrent

networks. To save space, we do not report in-sample MSE here. It is not surprising to

note that, in general, in-sample MSE from NLS estimation are much better than those

from recursive estimation.

[ Table 2 About Here
]

It is typical to evaluate forecasting performance based on out-of-sample MSE. Another

important criterion is to compare out-of-sample sign predictions of different models. Sign

prediction provides forecasts of the direction of future changes, hence gives important

information in financial forecasting. In an extreme case, a model could have small out-of-

sample MSE but predict all the signs incorrectly, hence is virtually useless. We summarize

out-of-sample MSE and percentage of correct sign predictions of the selected networks in

Table 3. As a comparison, out-of-sample forecasting results from five ARMA models,

including ARMA(0,0) which is the best model based on the SIC, are also included. It

can be seen that the PSC criterion selects a wide variety of networks for each series.

Note, however, that the PSC criterion tends to select more complex networks; most of the

selected networks contain 3-6 hidden units. From Table 3 we also observe the following.

1. Out-of-sample MSE:

(a) The selected feedforward and recurrent networks do not dominate each other,

and a better network (i.e., a network with smaller PSC) need not have better

out-of-sample MSE.

(b) For the DM and JY, four out of five selected feedforward networks perform

better than all ARMA models; for the SF, three out of five selected feedforward

networks perform better than all ARMA models.
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(c) For the JY and SF, four out of five selected recurrent networks perform better

than all ARMA models.

(d) For the CD, ARMA models perform better than network models.

(e) The best feedforward network performs better than ARMA(0,0) for all five

series, and the best recurrent network performs better than ARMA(O.O) for the

DM, JY, and SF.

2. Out-of-sample sign predictions:

(a) Correct sign predictions of ARMA models fluctuate around 50%, except for the

PS, which are close to 60%.

(b) For the DM, JY, and SF, the selected feedforward networks perform better than

ARMA models and usually have more than 60% correct sign predictions. In

particular, for the JY, all five selected feedforward networks have correct sign

predictions more than 60%, and two of them have 66% correct; for the SF, four

best feedforward networks have correct sign predictions more than 60%.

(c) For the DM, JY, PS, and SF, the selected recurrent networks perform better

than ARMA models; and for the PS and SF, three out of five selected recurrent

networks have more than 60% correct sign predictions.

(d) For all series except the CD, almost all the selected networks have more than

50%) correct sign predictions.

[ Table 3 About Here
]

The results above suggest that the PSC criterion is a quite sensible criterion. The

best network selected based on PSC has good out-of-sample performance and compares

favorably with the best ARMA model selected based on the SIC. As far as out-of-sample

MSE being concerned, the selected networks seem to perform well for the DM. JY, and SF.

but their performance does not dominate ARMA models significantly. In terms of out-of-

sample sign predictions, while ARMA models usually perform no better than tossing a coin

(i.e., 50% chance being correct), network models have rather satisfactory predicting ability.

This is especially true for the DM, JY, and SF series. It also appears that feedforward

networks have more stable sign prediction results than recurrent networks. It is somewhat



surprising to us that recurrent networks do not perform as good as feedforward networks.

One possible interpretation is that the feedback structure in recurrent networks cannot be

very effective if there is very little correlation across target variables.

To obtain a complete picture of the performance of feedforward and recurrent networks,

we "smoothed" all other networks not selected by the PSC criterion. By inspecting the

resulting SIC values, we find that the SIC criterion almost always selects the simplest

network (1,1). This is true for both feedforward and recurrent networks. (We do not give

a detailed table of the SIC values here.) Note that the SIC penalizes a model in terms of

the number of parameters. Thus, the SIC of the network (2,2) has the same complexity

penalty as the SIC of the network (6,1), but clearly, the nonlinear structures of these two

networks are very different. The out-of-sample MSE and sign predictions results of all

36 networks are collected in Tables 4 and 5. We compare these results with four ARMA
models used in Table 3 and give a summary in Table 6. As ARMA(1,0) and ARMA(O.l)

perform very similarly, comparison with ARMA(0,1) is not included in Table 6.

Tables 4 and 5 show that feedforward and recurrent networks perform similarly; in

particular, networks models have quite satisfactory sign prediction results for the DM,

JY, PS, and SF series. We also observe that a more complex network need not predict

better than a simpler network and that no network with certain number of hidden units

can systematically beat other networks with different number of hidden units. In view of

Table 6, we can see that for three exchange rates (DM. JY, and SF), both feedforward and

recurrent networks usually perform better than ARMA models in terms of out-of-sample

MSE. Again, the out-of-sample MSE of network models do not significantly dominate

those of ARMA models. For all five exchange rates, network models have much better

sign prediction results than ARMA models. This is compatible with previous prediction

results based on selected networks. We have also estimated networks without the bias

term (3q to see whether sign predictions can be improved. However, the estimation results

turn out to be unstable; many parameter estimates tend to be extremely large or small

with huge variances.

[ Tables 4-6 About Here
]
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5 Conclusions

In this paper we have carefully estimated feedforward and recurrent networks to fore-

cast changes of log exchange rates. We find that PSC is a sensible criterion in selecting

networks. Based on this criterion, it is possible to construct a network with better out-

of-sample MSE and/or sign prediction than ARMA models. Therefore, the proposed

two-step procedure may be used as a standard network construction procedure in other

applications. As far as out-of-sample MSE being concerned, we share the same conclusion

with Diebold and Nason (1990) that nonlinearities of exchange rates, if any, may not be

exploited to improve point prediction. On the other hand, if we are not so ambitious

about point forecasts and confine ourselves to sign predictions, our results also suggest

that network models perform quite well for this purpose. In particular, it usually per-

forms better than ARMA models and coin tossing. Finally, different exchange rates have

different behavior and characteristics. In our application, network models do not predict

well for the CD but perform quite well for the DM, JY, and SF series. It also appears

that feedforward networks perform slightly better than recurrent networks and have more

stable prediction results.

11



Appendix

A Summary of Recurrent Newton Algorithm:

We write a recurrent network as

q n q

o
t = $ (fa + J2 & * ( 7io + Y, T»j x J<t + Y 6" ht,t-i))

q

=: *(ft + £ft&(**,J»t-i,0))
1=1

= : <f>(xt,ht-i,0),

where 9 includes all /J's, 7's, and <!>'s. Note that /i
f_ ! is also a function of 9. The recurrent

Newton algorithm contains the following updating equations:

e
t

= yt ~ <!>(xt,ht-iJt),

Ve t
= -<f>e(xt,h t-iJt)' - & t <Ph(xtJh-iJt)',

0~t+i = 9
t
~ r]tG^

l Ve
t
e

t ,

G t +i = Gt + T)
t
(Ve

t
Ve

t
- Gt ),

where the i-th hidden unit is updated according to

hij = ii>i(x t ,ht-i,0t)

n q

= (7io,< + Y yiUxJ,t + Y *«,<^,*-i)» * = !'
- '

"
'9'

J=l ^=1

the j'-th column of /\t+\ is updated according to

Ah t+i = il>j,e(xt,ht-i,0ty + A>ti>j,h(xt,ht-iJt)', J = l»---»9>

and the initial values #o, ^0, and ^0 are chosen arbitrarily. Here, 0# and ^ are (row)

vectors of the first order derivatives of with respect to 9 and h, respectively, and tjjtjQ

and x^i
y
h are (row) vectors of the first order derivatives of the i-th hidden unit tpi with

respect to 9 and /i, respectively.

This algorithm differs from the recurrent back-propagation algorithm of Kuan, Hornik,

and White (1991) in that a Newton direction G',
-1

is added in the updating equation of 9
t

.

Note that in this algorithm the derivatives of prediction error e with respect to 9 contains

12



two parts because e depends on directly and indirectly through the presence of lagged

hidden-unit activations, i.e.,

Ve t = -<f>0(x t ,h t-i,0 t ) jg-<t>h{xt,ht-ii0t)

Hence, the updating equation for A t
allows us to update the dh t^i/d9 term recursively.

Clearly, a recurrent network not depend on h
t -\ is a feedforward network. In this case, <p^

term is zero, and there is no need to consider A
t
term. The recurrent Newton algorithm

simply reduces to the standard Newton algorithm ((3). For more details see Kuan and

Liu (1992).

13
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Table 1. The SIC Values of ARMA Models for Changes of log Exchange Rates.

ARMA
Models

SIC Values

CD DM JY PS SF

(0,0) -11.9439 -9.8901 -9.9605 -10.0422 -9.7273

(0,1) -11.9392 -9.8850 -9.9588 -10.0372 -9.7222

(0,2) -11.9333 -9.8810 -9.9529 -10.0316 -9.7201

(0,3) -11.9276 -9.8762 -9.9476 -10.0273 -9.7142

(0,4) -11.9228 -9.8704 -9.9461 -10.0233 -9.7084

(0,5) -11.9182 -9.8648 -9.9421 -10.0174 -9.7039

(1,0) -11.9389 -9.8843 -9.9596 -10.0385 -9.7214

(1,1) -11.9335 -9.8786 -9.9537 -10.0333 -9.7160

(1,2) -11.9338 -9.8759 -9.9478 -10.0278 -9.7134

(1,3) -11.9316 -9.8697 -9.9446 -10.0249 -9.7076

(1,4) -11.9294 -9.8637 -9.9412 -10.0191 -9.7019

(1,5) -11.9122 -9.8580 -9.9372 -10.0139 -9.6971

(2,0) -11.9340 -9.8792 -9.9531 -10.0327 -9.7184

(2,1) -11.9317 -9.8742 -9.9472 -10.0268 -9.7126

(2,2) -11.9236 -9.8695 -9.9417 -10.0222 -9.7074

(2,3) -11.9275 -9.8635 -9.9410 -10.0183 -9.7017

(2,4) -11.9227 -9.8573 -9.9415 -10.0127 -9.6953

(2,5) -11.9089 -9.8517 -9.9368 -10.0070 -9.6916

(3,0) -11.9293 -9.8745 -9.9474 -10.0284 -9.7122

(3,1) -11.9242 -9.8688 -9.9419 -10.0230 -9.7063

(3,2) -11.9197 -9.8632 -9.9361 -10.0169 -9.7005

(3,3) -11.9147 -9.8588 -9.9374 -10.0115 -9.6969

(3,4) -11.9167 -9.8526 -9.9315 -10.0099 -9.6901

(3,5) -11.9104 -9.8453 -9.9303 -10.0043 -9.6930

(4,0) -11.9266 -9.8678 -9.9445 -10.0242 -9.7057

(4,1) -11.9261 -9.8619 -9.9413 -10.0183 -9.6999

(4,2) -11.9161 -9.8563 -9.9359 -10.0130 -9.6940

(4,3) -11.9107 -9.8501 -9.9306 -10.0094 -9.6889

(4,4) -11.9053 -9.8454 -9.9253 -10.0033 -9.6825

(4,5) -11.9119 -9.8402 -9.9199 -9.9974 -9.6801

(5,0) -11.9224 -9.8616 -9.9423 -10.017 -9.7002

(5,1) -11.9205 -9.8556 -9.9363 -10.011 -9.6942

(5,2) -11.9157 -9.8501 -9.9337 -10.006 -9.6897

(5,3) -11.9057 -9.8439 -9.9293 -10.003 -9.6830

(5,4) -11.9048 -9.8380 -9.9244 -9.9974 -9.6771

(5,5) -11.8976 -9.8328 -9.9167 -9.9929 -9.6710
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Table 2. The PSC Values of Feedforward and Recurrent Networks.

Network

Models

PSC Values

Feedforward Networks Recurrent Net works

CD DM JY PS SF CD DM JY PS SF

(1.1) .6906 .5580 .5143 .4872 .6428 .6936 .5580 .5172 .4973 .6430

(2,1) .6923 .5577 .5028 .4869 .6426 .6907 .5574 .5144 .4868 .6415

(3,1) .6869 .5590 .5149 .4863 .6423 .6913 .5566 .5159 .4863 .6411

(4,1) .6905 .5571 .5173 .4873 .6407 .6889 .5586 .5161 .4871 .6408

(5,1) .6914 .5530 .5159 .4877 .6395 .6901 .5531 .5170 .4866 .6425

(6,1) 1.200 .5569 .5146 .4850 .6400 .6868 .5579 .5174 .4844 .6427

(1,2) .6827 .5577 .5143 .4873 .6398 .6931 .5567 .5174 .4861 .6426

(2,2) .6906 .5580 .5028 .4865 .6425 .6882 .5589 .5146 .4863 .6408

(3,2) .6918 .5563 .5131 .4864 .6418 .6904 .5533 .5148 .4870 .6403

(4,2) .6852 .5560 .5126 .4843 .6410 .6880 .5575 .5143 .4843 .6406

(5,2) .6875 .5544 .5152 .4827 .6417 .6826 .5579 .5166 .4849 .6421

(6,2) .6893 .5577 .5137 .4842 .6360 .6913 .5570 .5120 .4847 .6415

(1,3) .6817 .5567 .5125 .4906 .6409 .6905 .5578 .5052 .4894 .6433

(2,3) .7125 .5595 .5084 .4862 .6396 .7003 .5571 .5509 .4849 .6430

(3,3) .6904 .5571 .5143 .4848 .6399 .7888 .5581 .5167 .4948 .6373

(4,3) .6885 .5520 .5123 .4834 .6402 .6859 .5556 .5144 .4853 .6417

(5,3) .6908 .6847 .5120 .4821 .6414 .6889 .5552 .5205 .4819 .6411

(6,3) .6855 .5579 .5136 .4864 .6428 .6796 .5544 .5143 .4828 .6380

(1,4) .7005 .5555 .4941 .4884 .6452 .8418 .5578 .6200 .5046 .6712

(2,4) .7144 .5564 .5095 .4992 .6349 .7323 .5539 .4962 .4886 .6419

(3,4) .6807 .5550 .5144 .4853 .6391 .6885 .5572 .5130 .4838 .6405

(4,4) .6834 .5537 .5153 .4820 .6421 .6846 .5561 .5112 .4805 .6396

(5,4) .6875 .5545 .5061 .4838 .6423 .6839 .5520 .5107 .4851 .6400

(6,4) .6909 .5520 .5051 .4805 .6348 .6845 .5485 .5141 .4805 .6412

(1,5) .6824 .5617 .4885 .4867 .6419 .7093 .5625 .5094 .5022 .6457

(2,5) .6853 .5544 .4960 .4856 .6431 .6880 .5532 .5432 .4908 .6419

(3,5) .7247 .5520 .5108 .4835 .6390 .6846 .5566 .5028 .4840 .7249

(4,5) .6874 .5769 .5050 .4836 .6628 .1075 .5544 .5134 .4810 .6417

(5,5) .6863 .5559 .5057 .4836 .6329 .6850 .5524 .5112 .4724 .6320

(6,5) .6830 .5550 .5118 .4821 .6401 .6698 .5457 .5091 .4786 .6412

(1,6) .6868 .5701 .4875 .4868 .6385 .7016 .5575 .5819 .4875 .6950

(2,6) .7125 .5593 .5091 .4822 .6389 .7058 .5505 .5313 .4819 .6572

(3,6) .6862 .5543 .4934 .4896 .6422 .6738 .5548 .5079 .4819 .6328

(4,6) .7251 .5519 .5139 .4918 .6378 .6739 .5544 .4899 .4861 .6397

(5,6) .6815 .5528 .5055 .4773 .6399 .6800 .5514 .5089 .4820 .6403

(6,6) .6810 .5580 .5055 .4759 .6252 .6890 .5532 .5084 .4795 .6362

Notes: Network model (L,H) is the network with L lagged targets as inputs and H hidden units.

The other tables follow this convention. The PSC values are the numbers in the table xlO -1
,

except for the CD, which are xlO -2 .
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Table 3. Out-of-Sample MSE and Sign Predictions of the Selected Networks.

Exchange

Rates

Feedforward Networks Recurrent Networks ARMA
Selected MSE Sign Selected MSE Sign Models MSE Sign

CD

(3,4)

(6,6)

(5,6)

(1,3)

(1,5)

.1896

.2423

.2730

.1884

.1875

.52

.44

.36

.54

.58

(6,5)

(3,6)

(4,6)

(6,3)

(5,6)

.2350

.1862

.1924

.2353

.2196

.42

.50

.54

.42

.38

(0,0)

(1,0)

(0,1)

(1,1)

(2,2)

.1906

.1889

.1888

.1884

.1895

N/A

.46

.46

.46

.44

DM

(4,6)

(6,4)

(4,3)

(3,5)

(5,6)

.1795

.1962

.1830

.1899

.2017

.68

.56

.58

.60

.66

(6,5)

(6,4)

(2,6)

(5,6)

(5,4)

.2041

.2416

.1984

.1873

.2107

.56

.54

.64

.62

.52

(0,0)

(1,0)

(0,1)

(1,1)

(2,2)

.2098

.2098

.2098

.2096

.2033

N/A

.48

.48

.46

.54

JY

(1,6)

(1,5)

(3,6)

(1-4)

(2,5)

.1160

.1158

.1205

.1162

.1127

.66

.62

.60

.62

.66

(4,6)

(2,4)

(3,5)

(1,3)

(3,6)

.1168

.1133

.1220

.1166

.1122

.58

.60

.58

.60

.58

(0,0)

(1,0)

(0,1)

(1,1)

(2,2)

.1225

.1199

.1201

.1198

.1202

N/A

.52

.50

.52

.50

PS

(6,6)

(5,6)

(6,4)

(4,4)

(5,3)

.3880

.4204

.3866

.3929

.3902

.52

.50

.46

.62

.64

(5,5)

(6,5)

(6,6)

(4,4)

(6,4)

.4034

.4295

.4004

.3895

.3838

.62

.54

.62

.66

.48

(0,0)

(1,0)

(0,1)

(1,1)

(2,2)

.3884

.3893

.3896

.3915

.3909

N/A

.60

.60

.56

.58

SF

(6,6)

(5,5)

(6,4)

(2,4)

(6,2)

.2129

.1929

.1897

.1954

.2146

.62

.64

.64

.62

.50

(5,5)

(3,6)

(6,6)

(3,3)

(6,3)

.1796

.1965

.2490

.1950

.1958

.62

.64

.50

.66

.54

(0,0)

(1,0)

(0,1)

(1,1)

(2,2)

.2157

.2162

.2162

.2158

.2124

N/A

.56

.54

.58

.52

Notes: For each exchange rate, the selected networks are ordered from the best to the 5-th best,

according to the PSC values in Table 2. "MSE" stands for out-of-sample MSE; "Sign" stands for

the percentage of correct sign predictions of corresponding models. MSE are the numbers in the

table xlO -4 , except for the CD, which are xlO -5 .
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Table 4. Out-of-Sample MSE of Feedforward and Recurrent Networks.

Network

Models

Out-of-Sample MSE
Feedforward Networks Recurrent Networks

CD DM JY PS SF CD DM JY PS SF

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

1861

1883

1879

1830

1839

1886

1998

1982

1947

1937

1830

2025

1184

1192

1217

1181

1191

1243

.3681

.3653

.3785

.3721

.3697

.3902

2063

1995

1972

2005

2032

1992

.1881

.1874

.1887

.1931

.1879

.2028

1998

1982

1960

1882

1845

2001

1217

1192

1196

1162

1179

1240

.3704

.3750

.3735

.3751

.3888

.3555

.2098

.1992

.2003

.2005

.2008

.1946

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

1902

1860

1687

1872

2080

2128

1948

1982

2015

1887

2124

1984

1202

1168

1238

1171

1147

1174

.3681

.3748

.3913

.4042

.3812

.3619

1974

1960

1966

1957

2033

2146

.1881

.1833

.1973

.1896

.1819

.1878

1878

1929

1921

1896

1995

1893

1159

1161

1154

1142

1167

1148

.3496

.3767

.3800

.3862

.3857

.3809

.2058

.2006

.1989

.1993

.1952

.2041

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

1884

1808

1884

1971

1908

2086

1930

2044

1934

1830

1985

2069

1206

1187

1185

1136

1183

1287

.3580

.3875

.3842

.3612

.3902

.3651

1966

1963

2003

2012

2081

2087

.1873

.1894

.1878

.1878

.1890

.2353

1936

1974

1925

1797

1817

1870

1166

1163

1113

1159

1156

1192

.3543

.3856

.3791

.3949

.3927

.3750

.2057

.1933

.1950

.1977

.2127

.1958

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

1885

1873

1896

1913

2072

2130

1935

1911

1807

1872

1842

1962

1162

1188

1 146

1089

1090

1080

.3610

.3936

.3686

.3929

.4094

.3866

2044

1954

1910

1990

2038

1897

.1897

.1871

.1912

.1840

.2009

.2138

1915

1892

1822

1981

2107

2416

1146

1133

1101

1066

1022

1070

.3750

.3996

.3758

.3895

.3834

.3838

.1998

.1913

.2053

.2026

.2002

.1903

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

1875

1819

1836

1878

2035

1998

1933

1923

1899

1796

1926

2155

1158

1127

1149

1202

1258

1123

.3672

.4045

.3861

.4033

.3954

.4002

1985

1984

1908

2039

1928

1934

.1901

.1829

.2010

.1953

.1758

.2350

1877

1967

1935

1979

2050

2041

1152

1138

1220

1276

1139

1151

.3638

.3714

.3888

.3722

.4034

.4295

.2010

.2021

.1932

.2264

.1796

.2293

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

1907

1895

1826

2121

2730

2423

1933

1953

1853

1795

2017

1999

1160

1150

1205

1069

1061

1344

.3699

.3788

.3854

.4051

.4204

.3880

2011

1920

1845

2000

1784

2129

.1882

.1747

.1862

.1924

.2196

.2236

1963

1984

1933

1969

1873

1995

1166

1122

1122

1168

1361

1116

.3731

.4195

.3842

.3915

.3885

.4004

.1995

.2094

.1965

.1956

.1954

.2490

Notes: MSE are the numbers in the table x 10
4

, except for the CD, which are xlO -5
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Table 5. Out-of-Sample Sign Predictions of Feedforward and Recurrent Networks.

Network

Models

Percentages of Correct Sign Predictions

Feedforward Networks Recurrent Networks

CD DM JY PS SF CD DM JY PS SF

(1.1) .56 .64 .60 .72 .66 .56 .62 .60 .72 .64

(2,1) .56 .62 .64 .72 .60 .56 .62 .64 .70 .66

(3,1) .56 .54 .60 .72 .56 .56 .62 .62 .54 .62

(4,1) .54 .58 .60 .58 .64 .50 .60 .60 .72 .64

(5,1) .56 .60 .52 .64 .68 .56 .58 .52 .46 .54

(6,1) .56 .62 .46 .72 .54 .30 .52 .50 .50 .62

(1,2) .50 .62 .50 .72 .66 .56 .62 .66 .70 .66

(2,2) .56 .62 .62 .58 .66 .52 .54 .56 .60 .66

(3,2) .58 .58 .50 .42 .60 .46 .56 .62 .66 .58

(4,2) .56 .60 .60 .60 .68 .48 .60 .58 .58 .54

(5,2) .26 .52 .50 .64 .54 .54 .58 .58 .68 .58

(6,2) .44 .60 .60 .58 .50 .56 .60 .52 .64 .60

(1,3) .54 .60 .62 .64 .66 .56 .66 .60 .60 .54

(2,3) .52 .54 .62 .66 .72 .54 .56 .60 .60 .56

(3,3) .54 .56 .62 .56 .62 .52 .60 .64 .68 .66

(4,3) .42 .58 .68 .60 .58 .58 .64 .60 .66 .66

(5,3) .52 .58 .60 .64 .56 .56 .62 .62 .60 .56

(6,3) .56 .54 .54 .60 .60 .42 .62 .56 .40 .54

(1,4) .54 .60 .62 .58 .60 .50 .64 .66 .72 .68

(2,4) .56 .54 .50 .62 .62 .56 .60 .60 .68 .62

(3,4) .52 .64 .62 .60 .66 .52 .60 .62 .70 .46

(4,4) .50 .64 .62 .62 .60 .56 .58 .64 .66 .54

(5,4) .46 .64 .56 .50 .56 .48 .52 .64 .64 .60

(6,4) .44 .56 .66 .46 .64 .14 .54 .60 .48 .62

(1,5) .58 .58 .62 .68 .66 .54 .68 .66 .64 .58

(2,5) .56 .64 .66 .62 .64 .52 .58 .58 .68 .62

(3,5) .52 .60 .64 .62 .64 .48 .62 .58 .68 .64

(4,5) .56 .60 .60 .52 .56 .54 .58 .52 .68 .62

(5,5) .52 .64 .44 .48 .64 .60 .54 .56 .62 .62

(6,5) .52 .58 .58 .46 .54 .42 .56 .54 .54 .60

(1,6) .52 .58 .66 .62 .62 .56 .66 .58 .72 .62

(2,6) .52 .60 .58 .62 .64 .56 .64 .64 .52 .60

(3,6) .52 .58 .60 .52 .68 .50 .64 .58 .60 .64

(4,6) .38 .68 .70 .60 .58 .54 .58 .58 .66 .60

(5,6) .36 .66 .70 .50 .62 .38 .62 .50 .54 .64

(6,6) .44 .50 .50 .52 .62 .40 .58 .56 .62 .50
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Table 6. Out-of-Sample Forecasting Comparison: Networks vs. ARMA Models.

Out-

of-

Sample

Target

ARMA
Models

Number of Better Networks

Feedforward Network Recurrent Network

CD DM JY PS SF CD DM JY PS SF

MSE (0,0) 22 34 31 23 36 23 34 33 24 33

(1,0) 19 34 26 23 36 18 34 31 27 33

(1,1) 17 34 26 26 36 17 34 31 29 33

(2,2) 20 32 28 25 34 20 32 31 28 32

Sign Coin 28 36 34 32 36 26 36 36 33 35

(1,0) 29 36 29 22 32 30 36 34 27 29

(1,1) 29 36 29 27 28 30 36 34 28 27

(2,2) 32 34 34 26 35 31 34 36 28 34

Notes: Each numbers in the table is the number of networks (out of 36 estimated networks) that

predict better than or the same as corresponding target models. "Coin" stands for 50% chance of

getting correct sign prediction.
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