المؤسسةةالمامة للتمليم الفني والتدريبالمهني الإدارة الحامة لتصميهم وتطوير المنـاهج

قررت المؤسسة العامة للتعليم الفني والتدريب المهني تدريس هذه الحقيبة يٌ" "مراكز التدريب المهني "

البرنـامج : الأجهزة السمعيلة والمرئية

الحقيبة:ورشة أسساسيـات الإلكتوونيـات

الفتزة : (الثانية)

مقلدمة

الحمد لله وحده، والصـلاة والسـلام على من لا نبي بعده، محمدل وعلى آله وصحبـه، وبعد : تسعى المؤسسة العامة للتعليم الفني والتدريب المهني لتأهيل الكوادر الوطنية المدربة القادرة على شغل الوظائف التقنية والفنية والمهنية المتوفرة ِ2 سـوق العمل، ويأتي هذا الاهتمـام نتيجة للتوجهات السديدة من لدن قادة هذا الوطن التي تصب پِ مجملها نحو إيجاد وطن متكامل يعتمد ذاتياً على موارده
 الله تعالى لمصـاف الدول المتقدمة صناعياً.

وقد خطت الإدارة العامة لتصميم وتطوير المناهـج خطوة إيجابية تتفق مع التجارب الدولية المتقدمة ِथْ بناء البرامـج التدريبية، وفق أسـاليب علمية حديثة تحاكي متطلبات سـوق العمل بكافة تخصصـاته لتلبي متطلباته، وقد تمثلت هذه الخطوة يِّ مشروع إعداد المعايير المهنية الوطنية الذي يمثل الركيـزة
 تمثل سـوق العمل والمؤسسـة العامة للتعليم الفني والتدريب المهني بحيث تتوافق الرؤية العلمية مع الواقع العملي الذي تفرضه متطلبات سوق العمل، لتخرج هذه اللجان ِپْ النهاية بنظرة متكاملة لبرنامـج تدريبي أكثر التصـاقاً بسوق العمل، وأكثر واقعية يوْ تحقيق متطلباته الأسـاسيـة.
وتتتاول هذه الحقيبة التدريبية " ورشة أسـاسيات الإلكترونيات " لمتدربي برنامـ" إلكترونيات الأجهزة السهعيـة والمرئية" يِّ مراكز التدريب المهني موضوعات حيوية تتتـاول كيفية اكتسـاب المهارات الـلازمة لهذا البرنامـج.
والإدارة العامة لتصهيم وتطوير المناهـج وهي تضع بين يديك هذه الحقيبة التدريبية تأمل من الله عز وجل أن تسهم بشكل مباشـر يٌْ تأصيل المهارات الضرورية الـلازمة، بـأسلوب مبسط يخلو من التعقيد ، وبالاستتعانة بالتدريبات والتطبيقات والأشـكال التي تدعم عملية اكتسـاب هذه المهارات. والله نسـأل أن يوفق القائمـين على إعدادهـا والمستفيدين منها لما يحبـه ويرضاه؛ إنه سميع مـيـب الدعاء.

الإدارة العامة لتصـيـم وتطوير المناهـج

حقيبـــة أساسيـات إلكتوونيـات الأجهزة السمعية والمرئية

الهدف من الحقيبة/

تهدف الحقيبة إلى إكســاب المتـدرب المهـارات الأساسـية هٌِ مهنــة (إلكترونيـات الأجهـزة السـمعية والمرئيـة) وأن يكـون قـادراً على استخدام الكاويـة وأجهزة القيـاس والعـد اليدويـة لفني الإلكترونيـات ويتدرب على طريقة فك وتركيب القطع الإلكترونية.

تـريف بـالحقيبة/

تحتـوي هــذه الحقيبـة علـى المهـارات اللازمــة لتتفيــن المهـارات الأسـاسـية لمهنــة الإلكترونيـات مـن
 القيـاس بنوعيـه الرقمـي والتمـاتلي، ومهـارة فـك وتركيـبـ القطـ الإلكترونيـة وطريقـة فحصـها وتوصيل

الدوائر الإلكترونية بالإضافة إلى هذه المهارات يتم التدرب على المهارات الخاصة بالسـالامة المهنية. وتعتبر هذه الحقيبة هي الجزء الأول من حقائب البرنامج وتدرب على فترتين هي الفترة الأولى والفترة الثانية على مدى 544حصة تدريبية.

الوقتتالمتوقي لإتقام الحقيبة التدريبية/

107	الوحدة الأولى: تمارين على أساسيات اللحام بالقصدير وكيفية استخدام العدد اليدوية
52	
90	
100	الوحدة الرابعة: تمارين على توصيل التوالي والتوازي والما والمركب
140	الوحدة الخامسة: تمارين باستخدام الشنطة الإلكترونية
55	الوحدة السادسـة : تمارين على إنشاء دوائر إلكترونية

ورشـة أسـاسيات الإلكترونيات
دوائر التوالي والتوازي والمركب

حقيبة ورشة أساسيـات الإلكتوونيـات

الهدف العام مز الحقيبة :

تهدف هذه الحقيبة إلى إكســاب المتـدرب المهـارات الأسـاسـية يٌ توصيل الـدوائر الإلكترونيـة على الـى التوالي والتوازي والمركب ، وعمل دوائر بواسطة الشنطة الإلكترونيـة ، وكيفيـة إنشــاء وطبع الـدوائر الإلكترونية .

تعريفالحقيبة :

تحتوي هذه الحقيبة على المهارات اللازمة لتتفيذ المهارات الأسـاسية لورشة أسـاسيات الإلكترونيات وذـلك بتـدريب المتـدرب وإكسـابه مهـارة كيفيـة التعـرف على الـــوائر الإلكترونيـة المتصـلة على التـوالي
 إكسـاب المتدرب مهارة عمل دوائر إلكترونية مبسطة بواسطة استتخدام الشـنطة الإلكترونيـة ، وكــذلك الـكـ تدريب المتدرب على مهارة كيفية تخطيط الدوائر الإلكترونية وتحويلها من دائرة نظريـة إلى دائرة عمليـة وطبعها على لوحات من الفيبر مغطاة بالنتحاس من جهة واحدة وكـيفية استخدام المحاليل الخاصـة بإذابـة
 الإلكترونية الخاصة بالدوائر الإلكترونية والموجودة على المخطط وتلحيهها باللوحة لتكون جاهزة لعهـل القياس الـلازم لتشغيل الـدائرة واختبـارهـا.

الوقت المتوقع لإتــام هذه الحقيبة:

يتم التدريب على مهارات هذه الحقيبة پِ عدد 295 حصة تدريبية موزعة كالتالي

1. الوحدة الرابعة: تمارين على توصيل دوائر التوالي والتوازي والمركب 100 حصة.

140 حصة.
55 حصة.
2. الوحدة الخامسة: تمارين باستخدام الشنطة الإلكترونية 3. الوحدة السـادسة: تمارين على إنشاء الدوائر الإلكترونية

$$
\text { المجموع العام = } 295 \text { حصة . }
$$

توصيل التوالي والتوازي والمركب

هدف الوحلدة العام:
أن يكـون المتـدرب قـادراً على التعـرف على توصيـلات دوائـر التوالي والتوازي والمركب وكيفيـة قياسها.

الأهداف الإجرائية:

- أن يكون المتدرب قادراً على التعرف على الدوائر المتصلة على التوالي. أن يكون المتدرب قادراً على التعرف على الدوائر المتصلة على التوازير الميا - أن يكون المتدرب قادراً على التعرف على الدوائر المركبـة.

الوقت المتوقع لإتمام هذه الوحدة : 100 حصة تدريبية.

المقاومات الكهربـائية

عند مرور أي تيار كهربائي پِّ دائرة كهربائية فإن هذا التيار الكهربائي يحـدث لـه انخفـاض ســرعة الإلكترونـات نتيجــة لارتفــاع درجـة حـرارة الموصــل أو الســلك وهــذه الخاصـيـة تسـمى بالمقاومــة

المقاومة الكهربـائية:

هـي إعاقـة مـرور التيـار الكهريـائي وِّ دائـرة كهربائيــة والـتي تتسـبـب وِ فقــد جـزء مـن الطاقـة
 الكهريائي. ويمـكن أيضـاً تعريفها بأنها هي الممـانعة الـتي يـلاقيهـا التيـار الكهربـائي عنـد المـرور ِِّ دايـرة كهربائية

وحدة قيـاس المقاومة:

تقاس قيمة المقاومة الكهربـائية بوحـدة قيـاس تســى الأوم نسـبـة إلى العـالم الألمـاني Ohm ويرمـز لوحـدة قيـاس المقامـة بـالرمز الـلاتيني Ω و نرمـز للمقاومـة يِ حســابات المقاومـات بـالحروف الإنجليزيـة بالرمز

أنواع المقاومات:

1. مقاومة ثابتة : وقيمتها لا تتغير وهـذا النوع يسـهى بالمقاومة ثابتة القيمة.وهي مصنوعة من مادة الكربون أو من أسـلاك النيكروم مغطاة بهادة الخزف (السيراميك)
 المطلوبة ومن أشهر المقاومات المتغيرة مفتاح الصوت يٌْ أجهزة الراديو والمسـجل والتليفزيون.

الفتزة الثـانية
 ورشة أساسيـات الإلكتوونيـات

 توصيل المقاومات

 توصيل المقاومات}

1. تـوصيل المقاومـات على التوالي :

وذلك عندمـا يكون هناك أكثر من مقاومة متصلة على سلك أو خط كهربائي واحد بحيث تكـون نهايـة المقاومة الأولى متصلة ببداية المقاومـة الثانية ونهاية المقاومة الثانيـة متصـلة ببدايـة المقاومـة الثالثتة وهـكـذا... انظر الشكل.

 مجهوع المقاومة الكلية يٌِ الدائرة السابقة Rt هي:
$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
V_{t}=V_{1}+V_{2}+V_{3}
$$

أما فرق الجهد هِّ المقاومـات الثڭلاث:

خواص توصيل المقاومات على التوالي :

 2. الجهد الكلي يتجزأ على المقاومات حسب قيمتها.

$$
\begin{aligned}
& \text { احسب المقاومة الكلية للمقاومات التالية المتصلة معاً على التوالي وهي } \Omega=\quad R_{2}=70 \Omega, \quad R_{3}=100 \Omega, R_{4}=120 \Omega 0 \\
& \Omega, \quad R_{1}=30
\end{aligned}
$$

الحـل

$$
\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}=30+70+100+120=320 \Omega
$$

2. مقاومات على التوازي :

تكون المقاومـات متصـلة على التوازي عنـدما تكـون جهيع البـدايات مجتمعـة معـاً پٌِ نقطة وجميع النهايات مجتمعة معاً يٌن نقطة أخرى أو بمعنى آخر توصل بداية المقاومات مـع بعضها ونهاية المقاومـات مع بعضها انظر الشكل.

جميع المقاومات پٌِ الشـكل السـابق متصـالات على التوازي
قـانـون حسـاب قيمة المقاومات المتصلة على التوازي.

$$
\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}
$$

خواص توصيل المقاومات على التوازي :

1. الجهد يكون متساوياً على جهيع المقاومات.
2. التيار الكلي يتجزأ على المقاومات حسب قيمتها والتيار الكلي يساوي مجموع التيارات الفرعية. مثال 2: احسب المقاومة الكلية للمقاومات الأربعة التالية المتصلة على التوازي:

$$
\mathrm{R}_{1}=50 \Omega \quad \mathrm{R}_{2}=90 \Omega \quad \mathrm{R}_{3}=150 \Omega \quad \mathrm{R}_{4}=450 \Omega
$$

$$
\begin{aligned}
\frac{1}{\mathrm{R}_{\mathrm{t}}} & =\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\frac{1}{\mathrm{R}_{4}} \\
\frac{1}{\mathrm{R}_{\mathrm{t}}} & =\frac{1}{50}+\frac{1}{90}+\frac{1}{150}+\frac{1}{450}
\end{aligned}
$$

$$
\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{9+5+3+1}{450}=\frac{18}{450}=\frac{450}{18}
$$

$$
\mathrm{R}_{\mathrm{t}}=25 \Omega
$$

نـاحظ أن المقاومة الكلية أصغر من أقل مقاومة بالدائرة السـابقة.

قــانون أوم

مثال 1: احسب التيار المار بالدائرة التالية علمـا بأن الجهد يسـاوي 220 :

لحل هذه المسـألة يجب أولاً إيجاد قيمة المقاومة الكلية ، وبهـا أن المقاومـات متصلة على التوالي فيكون $\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}$

$$
\mathrm{R}_{\mathrm{t}}=10+20+30+50=110 \Omega
$$

مز قانون أوم

$$
\mathbf{I}=\frac{\mathrm{V}}{\mathrm{R}}
$$

$$
I=\frac{220}{110}=2 \mathrm{~A}
$$

مثال 2:
احسب شدة التيار للدائرة التالية إذا وضعت المقاومات على التوازي وتم توصيلها بهصدر جهد220فولت

$\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\frac{1}{\mathrm{R}_{4}}$
$\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{10}+\frac{1}{20}+\frac{1}{30}+\frac{1}{60}$
$\frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{6+3+2+1}{60}=\frac{12}{60}=\frac{60}{12}$

التيار
 بالنتيجة السابقة ؟

الحل :

شدة التيار الكلي = 22 + $21.67+7.33$ + 44 أمبير

قّائمة بتـمـارين الوحلدة

التمرين الأول : قياس قيمة المقاومة .	0
التمريِن الثاني : قياس قيمة مقاومة هِ دائرة .	0
التمريِ الثالث : قياس المقاومة	0
التهرين الرابع : قياس ثالاث مقاومات (${ }^{\text {(}}$) ${ }_{1}$, $\mathrm{R}_{2}, \mathrm{R}_{3}$)	0
	0
التمريّن السادس : إيجاد قيمة التيار المار بالمقاومة.	0
التهرين السابع : إيجاد قيمة فرق الجهد.	0
	0
التمرين التاسع : قياس المقاومة	0
	0
التمرين الحادي عشر : حساب قيمة التيار الكلي للدائرة .	0
	0
التمرين الثالث عشر : إيجـاد قيمـة فـرق الجهـد يوْ الدوائر المتصـلة على التوازي باستـخدام قانون أوم	0
التمرين الرابع عشر :	0
	0
التمرين السادس عشر : قياس فرق الجهد على أريع بطاريات متصلة على التوالي	0
التترين السابع عشر : قياس فرق الجهد على البطاريات المتصلة على التوازي	0
التمرين الثامز عشر : قياس فرق الجهد على أربع بطاريات متصلة على التوازي	0
التمربن التاسع عشر : إيجاد القيمة الكلية للمقاومات فٌ الدوائر المركبة	0
التمربِ العشرون : توصيل الدوائر المركبة	0
	0
التهرين الثاني والهشرون : قياس المقاومات بِّ الدائرة المركبـة .	0
	0
التمرين الرابع والهشروز : إيجاد السعة الكـراد	0

الوحلدة الرابعة
 لفتزةالثـانية
 برنـامج
 إجراوات الـسلامهة :ـ

\author{

- لبس الملابس الملائمـة للعمـل
 مراعاة أقطاب البطاريات عند التوصيل.
 استتخدام العدد والأدوات المناسبـة لإجراء التمرين.
 حفظ العدد والأدوات وِن الأماكن المخحص لها .
}

النشاط المطلوب : قياس قيمة المقاومة R

العلد والأدوات لتنفيذ التهرين :
جهاز قياس متعدد الأغراض تماثلي ـ لوحة تجارب ـ عراية أسـلاك .
المواد الخام :
مقاومة معلومة القيمة ـ أسـالاك توصيل .
لقيـاس قيمة المقاومة R اتبع خطوات العمل التالية :

شكل 1

2. ضـ مدرج جهاز القياس متعدد الأغراض التماثلي على الأوميتر .
3. ضت طرٌِِ جهاز القياس مـع بعض لضبط الجهاز .
4. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) .

6. اقرأ عداد جهاز القياس
7. 7. غيّر المقاومة بقيم جديدة .
8. دوّن مشاهداتك وقراءات جهاز القياس .

العلدد والأدوات لتثنفيـذ الاتممريـن :
جهاز قيـاس متعدد الأغراض رقمي ـ لوحة تجـارب.ـ عرايـة أســلاك
المواد الخـام :
مقاومتان معلومتـا القيــة ـ أسـلالك توصيل

شكل 2

1. وصل الدائرة كما هو موضح بالشكل 2
2. ضع مدرج الجهاز على الأوميتر .

3. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) . 5.
4. اقرأ عداد جهاز القياس
5. ا. غيّر المقاومة بقيم جديدة .
6. دوّن مشاهداتك وقراءات جهاز القياس .

						R
						\| المجموع
						قوراءة الجهاز

الفتزةالثانية
 دوائر التوالي والتوازي والمركب
 التمريز الثالث : قيـاس المقاومة \mathbf{R}_{2} معا على التوالي

برنامج

العلد والأدوات لتنفيذ التهرين :

المواد الخام :
مقاومتان معلومتا القيمة ـ أسـالاك توصيل

لقيـاس قيمة المقاومات \mathbf{R}_{1}, \mathbf{R}_{2} اتبع خطوات العمل التالية :.

شكل 3

الوحدة الرابعة دوائر التوالي والتوازيي والمركب	الفتزةالثانية ورشة أساسياتالإلكترونيـات	برنامج إلكتونيـياتالأجهزة السمعيةوالمرئية
	$\text { كـل } 3$.) a, b	1. وصل الدائرة كمـا هو 2. اـ ضع مدرج الجهاز على 4. قـم بتهيئة جهاز القياس 5. 5. 6. اقرأ عداد جهاز القياس 7. الـيّر المقاومة بقيم جديدة 8. دوّن مشاهداتك وقراءا
$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}$	من قانون التوالي المقاومة الكلية Rt تساوي مججموع المقاومات المتصلة معأُ	
		المقاومة
		المقاومة
		\| المجموع
		قراءة الجهاز

العلد والأدوات لتنفيذ التهرين :
جهاز قياس متعدد الأغراض تماثلي ـ ـوحة تجارب. عراية أسـالاك.

المواد الخام :
ثلاث مقاومات معلومة القيمة ـ أسـالك توصيل.

لقياس قيمة المقاومات $\quad \mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}$ اتبع خطوات العمل التالية :ـ.

> 1. وصل الدائرة كهـا هو موضـح بالشـكل 4
> 2. ضـع مدرج الجهاز على الأوميتر .
> 3. ضـع طرٌِ جهاز القياس مع بعض لضبط الجهاز .
> 4. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) .

$$
\begin{aligned}
& \text { 6. اقرأ عداد جهاز القياس } \\
& \text { 7. غيّر المقاومـة بقيم جديدة . } \\
& \text { 8. دوّن مشاهداتك وقراءات جهاز القياس . }
\end{aligned}
$$

$\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

						R المقاومة
						المقاومة
						المقاومة
						المجموع
						القراءة

الفتزةالثانية
 برنـامج
 دوائر التوالي والتوازي والمركب

العلد والأدوات لتنفيذ التهريز :
جهاز قياس متعدد الأغراض تماثلي ـ لوحة تجارب ـ عراية أسـلاك .
المواد الخام :
أريع مقاومات معلومة القيم ـ أسـلاك توصيل.

شكل 5

> 1. وصل الدائرة كما هو موضح بالشكل 5 2. ضـ مدرج الجهاز على الأوميتر .
4. قم بتهيئة جهاز القياس (وضتع المؤشر عند الصفر) .
5.
6. اقرأ عداد جهاز القياس
7. 8. غيّر المقاومة بقيم جديدة .
8. دوّن مشاهداتك وقراءات جهاز القياس .

من قانون التوالي المقاومة الكلية Rt تساوي مجموع المقاومات المتصلة معاً $\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}$

						R
						R2 المقاوهة
						المقاومة
						ا المقاومة
						المجهوع
						القراءة

الفتزة الثـانية
 ورشة أساسيـاتالإلكتزونيـات

 التمرين السـادس : إيجـاد قيهة التيـار الماربـالمقاومة

 التمرين السـادس : إيجـاد قيهة التيـار الماربـالمقاومة}

النشـاط المطلوب :
إيجاد قيمةالتيـار المار بالمقاومة R باستخخدام قانون أوم

لإيجاد التيـار المار بـالمقاومة R نستخلدم قـانون أوم :

من قانون أوم : التيار = فرق الجهد مقسوماً على قيمة المقاومة

$$
\mathrm{I}=\mathrm{V} / \mathrm{R}
$$

شكل 6

$$
\text { 1. } 1 . \text { غيّر المقاومـة بقيهر جديدة . }
$$

الفترةالثانية
برنامج
ورشة أساسيـاتالإلكتزونيـات

التمرين السابع : إيجاد قيمة فرق الجهل

النشاط المطلوب :

إيجاد قيمة فرق الجهد على المقاومة R باستخدام قانون أوم

لإيجاد قيمة الجهد على المقاومةR R نستخدم قـانون أوم :

$$
\mathbf{V}=\mathbf{I} * \mathbf{R}
$$

1. غيّر المقاومة بقيم جديدة .
2. دوّن مشاهداتك .

						(المقاومة

الوحلدة الرابعة
 الفتزة الثـانية
 برنـامجج
 دوائر التوالي والتوازي والمركب
 ورشة أساسيـاتالإلكتزونيـات

 التمرين الثامز : إيجاد فرق الجهلد على المقاومتين R2, R1 المتصلتين معا على التوالي

 التمرين الثامز : إيجاد فرق الجهلد على المقاومتين R2, R1 المتصلتين معا على التوالي}
:الايجاد قيمة فرق الجهلد على المقاوماتـ

1. نحسب قيمة المقاومة الكلية .
2. نستخدم قانون أوم .

من قانون التوالي المقاومة الكلية Rt تساوي مجموع المقاومات المتصلة معا $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{1}+\mathrm{R}_{2}$

$$
\mathrm{V}=\mathrm{I} * \mathrm{R}
$$

ومن قانون أوم الجهد = التيار X المقاومة

شكل 8

1. غيّر المقاومات بقيم جديدة .
2. دوّن مشاهداتك وقراءات جهاز القياس.

						R
						R2 المقاومة
						مجهوع المقاومات
						\| الجهل حسابيا'
						القراءة

الفتزةالثانية
 دوائر التوالي والتوازي والمركب
 التمرين التاسع : قياس المقاومة \mathbf{R}_{2} معا على التوازي

برنـامجج

العلد والأدوات لتنفيلد هذا التمرين :
جهاز قياس متعدد القياس ـ لوحة تجارب. عراية أسلاك

المواد الخام :
مقاومات معلومة القيمة ـ أسـلاك توصيل
لقياس قيمة المقاومات1

شكل 9

$$
\begin{aligned}
& \text { 1. وصل الدائرة كما هو موضح بالشكل } 9 \\
& \text { 2. ضـ مدرج الجهاز على الأوميتر . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. اقرأ عداد جهاز القياس } \\
& \text { 7. 7. غيّر المقاومة بقيم جديدة . } \\
& \text { 8. دوّن مشاهداتك وقراءات جهاز القياس . }
\end{aligned}
$$

من قانون التوازي المقاومة الكلية Rt تساوي مجموع المقاومات المتصلة معا
$1 / R_{t}=1 / R_{1}+1 / R_{2}$

العلد والأدوات لتنفيدن هلاً التمرين :
جهاز قياس متعدد الأغراض تماثلي ـ لوحة تجارب ـ مصدر تيار.
المواد الخام :
ثالاث مقاومات معلومات القيم ـ أسـالاك توصيل .

لقيـاس قيمة المقاومات ,

شكل 10

1. وصل الدائرة كما هو موضح بالثشكل 10 2. ضـ مدرج الجهاز على الأوميتر .
 4. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) .

 6. اقرأ عداد جهاز القياس.
 7. 7. غيّر المقاومة بقيم جديدة .
 8. دوّن مشاهداتك وقراءات جهاز القياس .

من قانون التوازي المقاومة الكلية Rt تساوي مجموع المقاومات المتصلة معا $1 / \mathrm{R}_{\mathrm{t}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$

						ا المقاومة
						ا المقاومة
						ا المقاومة
						المجهوع
						القراءة

الوحدة الرابهة	الفتّةالثانية	برنـامج
دوائر التوالي والتوازي والمركب	ورشة أساسيات الإلكتزونيـات	جهزة السمعية والمرئية

حساب التيـار على المقاومتين \mathbf{R}_{2}, المتصلتين مما على التوازي بـاستخدام قـانون أوم :

1. نحسب قيمة المقاومة الكلية .
2.
3. غير المقاومات بقيم جديدة

$$
\begin{aligned}
& \text { من قانون التوازي المقاومة الكلية Rt تساوي مجموع المقاومات المتصلة معا } \\
& \frac{1}{\mathrm{R}_{\mathrm{t}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \\
& \text { التيار = فرق الجهد مقسوماً على المقاومة الكلية } \\
& \mathrm{I}_{\mathrm{t}}=\mathrm{V} / \mathrm{R}_{\mathrm{t}}
\end{aligned}
$$

شكل 11

						R1 المقاوهة
						المقاومة
						مجهوع\| اللقاومات
						التيار حسابيا
						القراءة

الفتزةالثانية
 برنـامجج
 التمريز الثاني عشر : حسـاب قيمة التيـارات الفرعية لللائرة المتصلة على التوازي

لحساب قيمة التيـار المار في المقاومات
1. نستخدم قانون أوم حيث إن

$\mathrm{I}_{1}=\mathrm{V} / \mathrm{R}_{1}$
$\mathrm{I}_{2}=\mathrm{V} / \mathrm{R}_{2}$
$\mathrm{I}_{3}=\mathrm{V} / \mathrm{R}_{3}$
2. نفير قيم المقاومات بقيه جديدة .

شكل 12

						الالقاومة20
						المقاومة
						I التيار
						I التييار
						التيار

الفتزةالثانية
برنـامجج

التمريز الثالث عشر : إيجاد قيمة فرق الجهد في الدوائر المتصلة على التوازي بـاستخدام قـانوز أوم

المواد الخام :
ثلات مقاومات كل منهما 220 :

لإيجاد قيمة فرق الجهد في دائرةبها المقاومات ,

$$
\begin{aligned}
& \text { 1. وصل الدائرة كمـا هو موضح بالشكـل } 13 . \\
& \text { 2. غـيّر المقاومات بقيم جديدة . } \\
& \text { 3. دوّن مشاهداتك. }
\end{aligned}
$$

R R R
$1 / \mathrm{R}_{\mathrm{t}}=1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}$
$\mathrm{V}=\mathrm{I} * \mathrm{R}$
ومن قانون أوم الجهد = التيار X المقاومة

						R1
						المقاومة20
						المقاومة
						مجموع\|الققاومات

الوحدةالرابعة دوائر التوالي والتوازيي والمركب	الفترةالثانية رششة أساسياتاتالالكترونيـات	برنامج إلكتوونيـات الأجهزة السمعيةوالمرئية
		الجهلد حسابياً
		القراءة

التمرين الرابع عشر : قيـاس فرق الجهلد على بطارية 1.5 فولت المتصلة على التوالي
العدد والأدوات لتنفيلد هلذا التمرين :
جهاز قياس متعدد الأغراض تماثلي ـ لوحة تجارب .
المواد الخام :
بطارية 1.5 فولت ـ أسـالك توصيل.
الأمن والسلامة :
التأكد من صحة توصيل أطراف جهاز القياس مع أقطاب البطاريات.
قيـاس فرق الجهلد على نقطة b
لقيـاس فرق الجهلد اتبع خطوات العمل التالية :

شكل 14

> 1. وصل الدائرة كما هو موضح بالثشكل 14 2. ضـ مـ مدرج الجهاز على الفولتميتر
> 3. فع طرٌِ جهاز القياس على النقطتين
> 4. اقرأ عداد جهاز القياس.
> 5. دوّن مشاهداتك وقراءات جهاز القياس.

	القراءة

الوحلدة الرابعة
 الفتزة الثـانية
 برنامج
 دوائر التوالي والتوازي والمركب

العلد والأدوات لتنفيدن هلّا التمرين :
جهاز قيـاس متعدد الأغراض تـمـاثلي ـ لـوحة تـجـارب .
المواد الخحام :
بطاريات 1.5 فولت ـ أسـلاك توصيل

شكل 15

> 1. وصل الدائرة كما هو موضح بالشكل 15 2. ضـ مدرج الجهاز على الفولتميتر
> 3. ضع طرٌ جهاز القياس على النقطتين
> 4. اقرأ عداد جهاز القياس.
> 5. دوّن مشاهداتك وقراءات جهاز القياس.

العلد والأدوات لتنفيدْ هذا التهرين :
جهاز قياس متعدد الأغراض تماثلي ـ لوحة تجارب. .
المواد الخام :

$$
\text { أريع بطاريات } 1.5 \text { فولت . أسـالاك توصيل }
$$

قيـاس فرق الجهلد على أربع بطـريــات متصلة على التوالي :

شكل 16

> 1. وصل الدائرة كهـا هو موضح بالشكل 16 2. ضـ مـدرج الجهاز على الفولتميتر
> 3. فع طرٌِ جهاز القياس على النقطتين 4. اقرأ عداد جهاز القياس.
> 5. دوّن مشاهداتك وقراءات جهاز القياس.

التمرين السـابع عشر : قيـياس فرق ا لجهل على البطاريـات المتصلة على التوازي

قياس فرق الجهد على بطاريتين متصلتين على التوازي :

العلد والأدوات لتنفيلد هلذا التمرين :
جهاز قياس متعدد الأغراض تماثلي ـ لوحة تجارب .

المواد الخام :
بطاريات 1.5 فولت ـ أسـالاك توصيل

قيـاس فرق الجهل على بطاريتين متصلتين على التوازي :

شكل 17

لفتزة الثانية
برنـامج

1. وصل الدائرة كمـا هو موضح بالشكل 17. 2. اـ ضع مدرج الجهاز على الفولتميتر
2.
3. اقرأ عداد جهاز القياس.
4. دوّن مشاهداتك وقراءات جهاز القياس.

	القراءة

العلد والأدوات لتنفيلّ هلذا التمرين :
جهاز قياس متعدد الأغراض تماثلي . لوحة تجارب .
المواد الخام :
أريع بطاريات 1.5 فولت . أسـلاك توصيل

قياس فرق الجهل على أربع بطاريـات متصلة على التوازي :

شكل 18

> 1. وصل الدائرة كما هو موضح بالشكل 18. 2. ضـ مـدرج الجهاز على الفولتميتر
> 3. فع طرِّ جهاز القياس على النقطتين
> 4. اقرأ عداد جهاز القياس.
> 5. دوّن مشاهداتك وقراءات جهاز القياس.

الوحلدة الرابعة
 الفترةالثانية
 برنـامج

 التمرين التاسع عشر : إيجاد القيمة الكلية للمقاومات في الدوائر المركبة

 التمرين التاسع عشر : إيجاد القيمة الكلية للمقاومات في الدوائر المركبة}

النشاط المطلوب :

إيجاد قيمة المقاومة الكلية للدائرة المركبة يْ الشـكل 19.

شكل 19

$$
\text { 2. } 1 \text {. غيّر المقاومـات بقيـم جديدة . }
$$

	المقاومة الكليةة

التمرين العشرون : تـوصيل اللدوائر المركبة

العلد والأدوات لتلنفيذ هلذا التمرين :
جهاز قياس متعدد القياس ـ لوحة تجارب ـ عراية أسـلاك .
المواد الخام :
مقاومات معلومة القيمة ـ أسـالاك توصيل .
لقياس قيمة المقاومة الكلية للشكل 20 اتبع خطوات العمل التالية :

شكل 20

1. وصل الدائرة كما هو موضح بالشكل 20
2. ضت مدرج الجهاز على الأوميتر .

3. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) .

4. اقرأ عداد جهاز القياس.
5. 7. غيّر المقاومة بقيم جديدة .
1. دوّن مشاهداتك وقراءات جهاز القياس.

						المقاومة
						المقاومة
						المقاومة
						المجهوع
						القراءة

التهرين الحادي والعشرون : قيـاس المقاومات في الدائرة المركبة

العلد والأدوات لتنفيلذ هذا التمرين :
جهاز قياس متعدد القيـاس ـ لوحة تجارب ـــ عراية أسـلاك
المواد الخام :
مقاومات معلومة القيمـة ـ أسـلاك توصيل .
لقيـاس قيمة المقاومات بين النقطتين a , b اتبع خطوات العمل التالية :

شكل 21

1. وصل الدائرة كما هو موضح بالشكل 21
2. ضـ مدرج الجهاز على الأوميتر .

3. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) .

4. اقرأ عداد جهاز القياس
5. 7 غيّر المقاومة بقيم جديدة .
6. دوّن مشاهـداتك وقراءات جهاز القياس

						R1 المقاومة
						R2 المقاومة
						R
						R4
						المجموع

التمرين الثاني والعشرون : قيـاس المقاومات في الدائرة المركبة
العلد والأدوات لتنفيلد هلذا التهرين :
جهاز قياس متعدد القياس ـلوحة تجارب ــ عراية أسـالاك

المواد الخـام :
مقاومات معلومة القيمة ـ أسـالاك توصيل

لقياس قيمة المقاومة الكلية للدائرة التالية اتبع خطواتالعمل التالية :

شكل 22

1. وصل الدائرة كمـا هو موضح بالشكل 22 2. ضع مدرج الجهاز على الأوميتر .
 4. قم بتهيئة جهاز القياس (وضع المؤشر عند الصفر) .

2. اقرأ عداد جهاز القياس
3. غيّر المقاومة بقيم جديدة.
4. دوّن مشاهداتك وقراءات جهاز القياس.

الوحدةالرابعة دوائر التواليوالتوازيو والمركب	الفترةالثانية ورشة أساسياتالإلكتزونيـات	برنامج إلكتوونيات الأجهزة السمعيةوالمرئية
		ا المقاوهة
		المقاوهة20
		المقاومة
		المقاوهة
		المقاوهة
		المجهوع
		القراءة

الوحدة الرابعة
 |لفزة الثانية
 كيفية توصيل المكثفاتووإيجاد سعتها

برنامج

المكثف عنصر إلكتروني يتكون من لوحين موصلين بينهما مادة عازلة كهربائياً.

يرمز للمكثف وِّ الدائرة الكهربية بالرمز C أما الرموز رسهاً :

وتقـاس سـعة المكثف بهقدرتـه على اختزان الشـحن الكهربـائي وتقـاس بالفـاراد ويقوم المكثف باختزان الطاقة الكهربائية فترة من الزمن .

العوامل التي يتوقف عليها سعة المكثف :

1. مسـاحة اللوح الموصل وهي تتـاسب تتاسباً طردياً مع سعة الشحن. 2. المسافة بين اللوحين وتتـاسب تـاسباً عكسياً.
2. نوع الوسط العازل.

والمكثفات بصفة عامة تتعامل مع التيار المتردد فقط ولا تتعامل مع التيار المستهر .

أنواعالمكثفات:

1. المكثفات المتفيرة : ونستخدم هذا النوع من المكثفات مع دوائر الموالفة .

2. المكثفات الثابتة : وهي تتقسم إلى عدة أنواع حسب نوع الوسط العازل.

- المكثف الميكا : وهو عبارة عن لوحين من المعدن بينهها مادة الميكا.
- المكثف السيراميك : ويسمى أحياناً بالمكثف الخزٌٌِ ويدخل وٌِ صناعته مادة السيرامياك.

- المكثف الورقي : ويتكـون من لوحين معدنيـين بينهمـا عازل من الورق المشـبـع بالشـــع أو أي عـازل
ورقي من أي نوع آخر.
- المكثف الكيميائي ويسهى بالمكثف الإلكتروليتي وهذا النوع من المكثفات الذي يحتوي على قطبين كهربائيـين سـالب وموجب ويتعين عند توصيله بأي دائرة كهربائية مراعاة القطبية.

2. توصيل المكثفات على التوازي :

$$
\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}
$$

عكس قوانين حسـاب المقاومات.

ملحوظات:

1. المكثف المستعمل يٌ الراديو كهغير للموجات يسهى بالمكثف المتغير وهو عبارة عن لوحين

من الألمنيوم والمادة العازلة بينهها الهواء.
 سـالب وطرف موجب أما المكتف الكيميائي فهو الوحيد الـذي نلتزم يٌ توصيله بالسـالب
والموجب .
3. عند شراء المكثف يتم شراؤه على أسـاس سعته وفرق الجهد.

التمرين الثـالثوالعشرون : إيجاد السعة الكلية للمكثفات على التوالي

إيجاد سعة المكثفات
النشاطالمطلوب : إيجاد قيمة السعة الكلية .
المواد الخام : مكثفات مختلفة السعة .
لإيجاد قيمة المكثفات

شكل 23

1. غيّر المكثفات بقيم جديدة .
2. دوّن مشاهداتك

لإيجاد السعة الكلية للمكثفات وِّ الشكـل 23 :
$\mathrm{C}_{\mathrm{t}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}$

						C_{1} المكثف المكفوع الكلي
						C_{2}

الوحلدة الرابعة

الفتزة الثـانية
برنامج

النشاطالمطلوب :
إيجاد سعة المكثفات C1, C ${ }^{\text {إمات }}$ المتصلة على التوازي: المواد الخام : مكثفات هختلفة السعة

لإيجاد سعة المكثفات

شكل 24

1. غيّر المكثفـات بقيـم جديـة .
2. دوّن مشـاهـداتك.

						المكثف
						المكثف
						المجهوع الكا

تقويب ذاتي

بعـد الانتهـاء هـن التـدريب على دوائر التـوالي والتـوازي والمركـب قيّمّ نفسـك وقـدراتك عـن طريق إكهـال هذا التقويم لكل مـن العناصـر المـذكورة، وذلـك بوضع علامــة (ل) أمـام مستوى الأداء الـذي أتقنته، وٌِْ حالة عدم قابلية المههة للتطبيق ضح العلامة يٌِ الخانة الخاصة بذلك.

مستوى الأداء (هل أتقنتالألاء)				العناصر
نعم	جزئياً	y	غير قابل للتطبيق	
				تسجل هنا الههارات التفيلية التي يكتسبها المتدرب من الوحدة
				\| ا قياس قيمة المقاومات المتصلة على التى التوالي.
				باستخدام قانون أوم.
				¢
				Fَ قياس المقاومة
				7 إيجـاد قيهـة فــرق الجهـد يٌْ الــدوائر المتصــة علـى التـوازي باستخدام قانون أوم.
				3 قياس فرق الجهد على البطاريات المتصلة على التوازي .
				9 قياس المقاومات
				(كيفية توصيل المكثفات وطريقة جمعها.

 أو " جزئياً " فيجب إعادة التدرب على هذا النشاط مرة أخرى بسساعلدة الملدرب

تقويه الملدرب

معلومات المتلدرب

\square
\qquad
\qquad

للملدرب إضافة المزيد من العنـاصر .

 جزئيـاً " فيجب إعادة التدرُب على هلذه المهارة مرة أخرى بمساعلـدة الملدرب.

ورشة أسـاسيـات الإلكترونيـة

الشنطة الإلكترونية

الشنطة الإلكترونية

هدف الوحلة العام:
أن يكـون المتـدرب قـادراً على التـرف على توصـيل العناصـر الإلكترونيـة باسـتخدام التوصـيلات الخارجية وذلك لعمل دائرة معينة باستخدام المخطط الخاص بالشنطة الإلكترونية.
الأهدافالإجرائية:

$$
\begin{aligned}
& \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • أن يكون المتدرب قادراً على التعرف على عمل الدائرة. }
\end{aligned}
$$

مقدمة عز الشنطة الإلكتوونية

الشنطة الإلكتوونية :

هي عبارة عن حقيبـة تحتوي على مجموعة من العناصر الإلكترونيـة لتسـاعد المتدرب على إنشاء دوائر إلكترونية هختلفة ويتم عمل الدوائر الإلكترونية إما عن طريق استخدام المخطط أو استتخدام الأرقام الخاصة بتوصيل الدائرة والموجودة پِ كتيب التمـارين المرفق مع الشنطة الإلكترونية.

محتويـات الشنطة الإلكتوونية :

مقاومة كـربونية 1 ¹/2 وات 470 أوم	مككفف كيميائي $16 \mathrm{~V}-33 \mu \mathrm{~F}$	حاكمة بوضعين (تماسيين)
	مكثف كيميائي 16 V - $1000 \mu \mathrm{~F}$	خلية شمسية
	مككف كيميائي $16 \mathrm{~V}-100 \mu \mathrm{~F}$	لمبة دليل
	مكثف كيميائي $16 \mathrm{~V}-47 \mu \mathrm{~F}$	مفتاح متفير
مقاومة كـربونية ½ وات 1 وات 10 ميجا أوما	مكثف كيميائي $25 \mathrm{~V}-10 \mu \mathrm{~F}$	مفتاح أنبوبي
	مكثف كيميائي $50 \mathrm{~V}-3.3 \mu \mathrm{~F}$	ON / OFF مفتاح
مقاومة كـربونية ½ وات 680 كآ 6 كيلو إو	مكثف كيميائي $50 \mathrm{~V}-1 \mu \mathrm{~F}$	مفتاحكـك
	مكثف كيميائي $10 \mathrm{~V}-25 \mu \mathrm{~F}$	سماعة
	مكثف كيميائي	جرس كهربائي BUZZER
	مككف سيراميك 25V - 104nF	ثنائي زينر
	77nF مكثف سيراميك	ثنائي ضوئي أحمر / أخضر
	22nF مكثف سيراميك	ثنائي كاشف إنف
	10nF مكفف سيراميك	1N4148 ثنائي كاشف
	5nF مكثف سيراميك	A 101 ترانزيستور
مقاومة كـكربونية 1/4 وات 1 1/ 1 كيلو أوم	1nF مكف سيرامياك	ترانزيستور
مقاومة كـربونية 1/4 وات 22 كـيلو إو أوم	220PF مكثف سيراميك	C1816 ترانزيستور
مقاومة ضوئية	100PF مكثف سيراميك	A1015 ترانزيستور
	2200PF مكثف سيراميك	C945 ترانزيستور
دائرة مضخم استطاعة وتتألف من دائرة متكاملة LM386	7400PF مكثف سيراميك	2N6565 ثايرستور
ELS-546 AP وحدة إظهار طراز	TUNNER مكثف متفير	محول دخل
دائرة موسيقية	مقاومة كـربونية ½ وات 10 إوم	محول خرج
هوائي استقبال	مقاومة كـربونية	RFC محول خرل
حامل بطارية مزدوج عدد 1	مقاومة كـربونية ½ وات1 1 وات 220 أوم	مقياسل إشارة / بطارية
مشبك بطارية 9 فولت	مقاومة كـربونية ½ وات 10 كإيلو أوم	مكثف كـيميائي $16 \mathrm{~V}-470 \mu \mathrm{~F}$

مبـادئ أساسية

الدائرة الإلكتوونية :
الــدائرة الإلكترونيـة هــي دائــرة تتـكــون مـن بعـض العناصــر الإلكترونيــة (مثــل المقاومـات والمكثفات والملفات والدوائر المتـكاملـة IC إلخ) لأداء غـرض معـين وتتصـل بهـكونـات كـل الـدائرة حسب الغرض المطلوب وحسبب قوانـين الدائرة الإلكترونيـة .

ٌِِ الشـكل التالي مخطط بسيط لدائرة إلكترونيـة تتكون مـن لمبـة وبطاريـة ومفتـاح منزلـق انظر

الهدف مز التمرين :
تشغيل وإطفاء المصباح الكهربائي بواسطة المفتاح المنزلق.
المكونـات :
مفتاح منزلق (on / off) .
-
طريقة التوصيل :
توصل هذه الدائرة على التوالي .
فكرة عمل الدائرة :
عند توصيل الدائرة حسب المخطط وتشغيل المفتاح المنزلق على الوضـع تشغيل (on) فإن المصباح يتوهج وذلك لمرور التيار الكهربائي الصـادر من البطارية عبر المصباح ـ أما يِّ حالة وضـح المفتاح الكهربائي على الوضع (off) فإن المصباح لا يضيء.

الوحلدة الخامسلة
الشنطة الإلكتوونية
,

الفتزةالثانية
ورشة أسـاسيـات الإلكتوونيات

برنـامج
الإلكترونيـات الأجهزة السمعية والمرئية

المْاتيّ

تستخدم المفاتيح لوصل أو فصل التيار يٌٌ الدوائر الكهربائية وهي أنواع متعددة منها المنزلق ومنهـا
الضاغط انظر الشكل.

=

مفتا ع منزلوت

$$
\begin{array}{|ccc|}
\hline 0 & 0 \\
0 & 0 \\
0 & 0 & b \\
0 & 0 & b \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\infty
$$

المقاومات :
هي إعاقة مرور التيار الكهربائي پِّ دائرة كهربائية ويمكن أيضـا تعريفها بأنها هي الممـانعة التي يـلاقيها التيار الكهريائي عند المرور يفِ دائرة كهريائية ووحدة قياس المقاومة الأوم.

تترين (1)

استخلدام مفتـاح وصل / فصل ضمن دائرة المصبـاح الكهربـائي والبطارية

فكرة عمل الدائرة:

يقوم المفتاح المنزلق بفصل أو وصل المصباح الكهربائي بالتيار ففي حالـة وضـع المفتاح على الوضع

الكهربائي ينطفئ.

شكل 1

المكونات اللازمة لعمل الدائرة:

$$
\text { 2. 2. أسـالاك توصيل. } 9 \text { فولت. }
$$

3. 4. مصباح كهربـائي.

الهدف مز التمرين:
استخدام مفتاح وصل / فصل ضمن دائرة المصباح الكهربائي والبطارية.

الوحلة الخامسلة	الفترةالثانية	برنـامج
الشنطة الإلكتوونية	ورشة أساسيـاتالإلكتوونيـات	الإلكتونيبات الأجهزة السمعيةوالمرئية

ملحوظظات المتلـوبِ:
\qquad
\qquad
\qquad
\qquad

تترين (2)
 تقرين المصباح الكهربـائي مع جهاز القياس

فكرة عمل الْدائرة:

 ودائرة جهاز القياس فعندما يكون المفتاح يفو وضع التشغيل ON فإن التيار يهـر عبر المصـباح الكهربـائي
 يضيء المصباح الكهربائي.

شكل 2

المكونات اللازمةل لعمل الدائرة:

2. مفتاح منزلق.
4. مقاومة 47k
6. أسـلاك توصيل.

1. مصباح كهربائي.
2. مقياس بمؤشر.

5v 5. 5 بطارية

الهدف من التمرين
استخدام المفتاح المنزلق لتشغيل المصباح الكهربائي أو جهاز القياس

ملحوظات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

 لهذه المقاومة وكلمـا زادت قيمة المقاومة قل التيار والعكس صحيح.

شكل 3

المكونات الالازمة لعمل الدائرة:

2
4. 3 C .

1. مقياس بمؤشر.

30k 3 ـ مقاومة متفيرة
5. أسـلاك توصيل.

الهدف مز التمريز
التعرف على عمل المقاومة المتفيرة وِّ الدائرة .

ملحوظات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

الفترةالثثانية
ورشة أسـاسيـات الإلكتوونيـات

برنـامتج
الإلكتوونيـات الأجهزة السمعيةوالمرئية

المكثفات

يتكون المكثف من لوحين موصلين بينهها مادة عازلة كهربائياً ويمكنه أن يخزن (مؤقتا) شـحنة كهربائية، ويمرر المكثف التيار المتردد ولا يمرر التيار المستمر وتقاس سعة المكثف بالفاراد

تقرين (4)
 شحن وتفريغ المكثفات على التوازي

فكرة عمل الدائرة:
عند الضغط على مفتاح الوصل والفصل فإن التيـار يمـر عبر مؤشـر القيـاس ويشـير إلى قيمـة معينــة وِِْ نفس الوقت يتم شـحن المكثف حتى يصل إلى قيمـة جهـد البطاريـة، وعنــد فتح مفتـاح الوصـل والفصـل فإن المكثف يقوم بتفريغ شتحنته عبر المقاومة وجهاز القياس.

المكونات الالازمةٌ لعمل الدائرة:
2 $10 \mathrm{k} \Omega$ مقاومة
4. 2. مكثف كيميائي 100MF
6. مفتاح وصل وفصل.

1. مقياس بمؤشر.
2. 3v بطارية
3. أسـلاك توصيل.

الهدف من التمرين
التعرف على شدحن وتفريغ المكثفات المتصلة على التوازي .

الوحلة الخامسلة	الفترةالثانية	برنـامج
الشنطة الإلكتوونية	ورشة أساسيـاتالإلكتوونيـات	الإلكتونيبات الأجهزة السمعيةوالمرئية

ملحوظظات المتلـوبِ:
\qquad
\qquad
\qquad

تترين (5)

تمرين توصيل المكثفات على التوالي والتوازي

فكرة عمل الدائرة:
عنــد توصـيل المكثفـات علـى التـوالي أو التـوازي فـإن قـوانين حسـابات السـعـة الكليــة C عـكس قوانـين حسـابات قيمة المقاومـات حيث إن:

$$
\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{1}+\mathrm{C}_{2}
$$

قانون حسـاب قيمة السعة لمكثفات تواز

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{t}}=\mathrm{C}_{1} \mathrm{X} \mathrm{C}_{2} \\
& \mathrm{C}_{1}+\mathrm{C}_{2} \\
& 1=1 \\
& \mathrm{C}_{\mathrm{t}}=\mathrm{C}_{1}+\mathrm{C}_{2}+{ }^{1} \\
& \mathrm{C}_{3}
\end{aligned}
$$

قانون حسـاب قيمة السعة لمكثفات توال

قانون حسـاب قيمة السعة لمكثفات توال
 التشغيل ON ونوصل طرف التوصيل عنـد النقطة العليا فإن التيار المار بالمكثفات سيقل ويقل هعهـا السـعة

 النقطة العليا فإن التيـار المـار بالمكثفـات سـيزيـد ويزيـد معـه السـعة الكليـة للمكثفـات أمـا المفتاح 1 المـات لتفريغ الشـحنة.

المكونات الهازمهة لعمل الدائرة:

2 $10 \mathrm{k} \Omega$ مقاومة
4. مكثف كيميائي 4 .
6. أسـلاك توصيل.
8. مفتاح منزلق.

\author{

1. مقياس بمؤشر.
 3v. 3 . بطارية
 5. مك مكف كيميائي 5 .470MF.
 7. مفتاح وصل وفصل.
 9. مفتاح وصل وفصل.
}

الهدف من التهريز
التعرف على شحن وتفريغ المكثفات المتصلة على التوازي والتوالي .

ملحوظات المتلدرب:
\qquad
\qquad
\qquad
\qquad

تمرين (6)

دائرة الثنائي البـاعث(المثع) للضوء LED

فكرة عمل الدائرة:
الثنائي البـاعث للضوء لهه نفس خواص الثنـئي العـادي ولكـن هِّ توصيله توصيلاً أمامياً (انحيـاز
 ولذلك يستخدم هذا النوع من الثنائيات كمصابيح إثشارات يٌ الدوائر الإلكترونية.

شكل 6

المكونات اللازمة لعمل الدائرة:
2. أسـالاك توصيل.
4. بطارية3v.

1. ثـنائي مشع للضوء.
2. مفتاح وصل وفصل.
3. مقاومة100 5 .

LED التعرف على طريقة توصيل الثنائي الباعث (المشع) للضوء

ملحوظـات المتلدرب:
\qquad

تستخدم هذه الدائرة يٌٌ معرفة حالة الترانزيستور وهل يعمل بصورة جيدة أم لا فعنـد تطبيق الجهـد بين المجمع والباعث لا يمر أي تيار يٌ الترانزيستور وحتى يمر تيار يلزم تطبيـق جهـد منـاسـب على القاعـدة فإذا مر التيار بها فإن الترانزيستور تكون حالته جيدة.
مفتاح منزلق مخطط الدار

ترانزستر PNP	2SAOOO	تاعـة
	$2 S B \times \times \times$	
$\begin{aligned} & \text { ترانزسنّر NPN } \\ & \text { N } \end{aligned}$	$2 S C \triangle \triangle \triangle$	or
	$2 S D \square \square \square$	

شكل 7

بعض أنواع التزانزيستور

المكونـات الالازمة لعمل الدائرة:

2. مؤشر قيـاس.
4. أسـالاك توصيل.
6. 6 . بطارية
8. 8. مقاومة 1k

1. عـدد 2 مفتاح منزلق.
2. ترانزيستور NPN من نوع 2SC945.

50k 5 . مقاومة متفيرة

الهدفَ من التمرينز :

دائرة فـحص التـراتـزيستور

ملحوظات المتلـرب:
\qquad
\qquad
\qquad
\qquad

تقريز (8)

توليد الكهربـاء بواسطة ملف ومفنـاطيس

فكرة عمل الدائرة:

 الدائرة الكهربائية التالية نسـتخدم محـولا لتشـــكيل ملف حيـث يوصـل كــلا مـن الملف الابتـدائي والملف الثانوي معا على التوالي وبذلك نحصل على ملف ذي عدد لفـات أكبر وبالتـالي زيـادة كميـة التيـار المولـدة
 جهاز القياس وهـا يعني بالطبع مرور تيار كهربـائي يٌ الـدائرة الكهربائيـة وهـذه الـــائرة هـي عبـارة عـن مولد كهربائي صغير الحجم.

المكونات اللازمةل لعمل الدائرة:
2. مغناطيس كبير الحـجم. 4. أسـلاك توصيل.

1. ملف كهربائي.
2. مؤشـر قيـاس.

ماحوظمات المتلـرب! :

تتريز (9)

توليـل الكهربـاء بـواسطة السمـاعة

فكرة عمل الدائرة:
 كهربائيـة تصـل إليهـا بطريقـة معينـة إلى موجـات صـوتية يميزهــا المسـتـمع وهـي تتكـون مـن ملف متحـرك موضوع بالقرب من مغناطيس حيث يتولـد الصـوت نتيجـة مـرور تيـار كهربـائي وبتـأثير المجـال المفناطيسـي الذي يتولد عن مغناطيس ثابت.

أمـا يٌ هذا التمـرين فسيتم العكس حيث سـنرسـل موجة صوتية يتم تحويلها إلى تيـار كهربائي يمر بـالملف، فيجـب أن نقـوم أولا بتوصـيل الـدائرة، ثـم نـتـكلم بصـوت مـرتفـع بـالقرب مـن الســماعة ونـلاحــ حركة المؤشر وبالنسبـة للثـائي فيقوم بتقويم التيار الكهربائي المتولد نتيجة حركة السهـاعة حتى يهـكن قيـاس هـذا التيـار بواسـطة مؤشـر القيـاس، وهــذه الـدائرة تشـبـه فـكـرة الميـكروفـون وطريقـة التسـجيل باستخخدام جهاز الكاسيت.

المكونـات الالازمةّ لممل الدائرة:

2.
3. أسـلاك توصيل.
4. وصلة ثـائية.
5. 1 ملف كهربائي.
6. مؤشر قيـاس.
7. مكثف:10MF
8. ملف كهربائي.

الهدفِ من الاتهمريّن :
 توليـد الكهرباء بواسـطة السـهـاعة وذلك بتحويل الصوت إلى تيـار .

ملجوظّات المتلـلـب:
\qquad
\qquad
\qquad
\qquad

التمريز (10)

موللد نفهة متفيرة بـاستخلدام متعلدد الاهتزاز

فكرة عمل التمرين:

 نفس الوقت يكون الترانزيستور الآخر ٌِِ حالة توصيل وبالتالي يكون خرجـي

 وهكذا تظل الدائرة يٌِ حالة عدم استقرار بشكل مستمر وبذلك يتولد نغمة نستطيع سماعها عن طريق

المكونات اللازمةل لعمل الدائرة:

2.	1. مفتاح منزلق.
4. أسـالاك توصيل.	3. 3 . P .
6.	5. 5 عدد 2-0.01MF
8. 8 عدد 2 ترانزيستور	7. 7 مقاومة 5 20k
	9. عدد 2 مقاومة 1k

الهدوِ مز التهريّن :

توليـد نغـمـة متتيـرة بـاسـتخـدام متعدد الاهتـزاز

ملحوظـات المتلـرب:

تقرين (11)

دائرة مذبذلّب عليم الاستقرار

فكرة عمل الدائرة:

تتكون هذه الدائرة من ترانزيستورين يتصل مجمع كـل منهها بباعث الآخر وبذلك عنـدما يكـون أحدهما موصلا يكون الآخر قاطعاً، والعكس صـحيح وبـذلك نحصـل على إثشـارة ضوئية متتاوبـة لكـل من الموصلين الثنائيين ويِّ حالة ما كنا نريد تفيير تردد الوميض للثائيين نفير قيم المكثفات.

شكل 11

المكوناتاللالازمة لعمل الدائرة:

$$
\begin{aligned}
& \text { 2SC945 عد } 2 \text { ترانزيستور } 2 \\
& \text { 4. عدد } 2 \text { مكثف كـيميائي } 100 \text { MF } \\
& \text { 6. بطارية } 3 \text { ع } 3 \text { 6 } \\
& \text { 1. عدد } 2 \text { ثنائي ضوئي. } \\
& \text { 3. عدد } 2 \text { مقاومة } 2220 \text { عدئئ } \\
& \text { 5. عدد } 2 \text { مقاومة } 2 \text { عد } \\
& \text { 7. أسـلاك توصيل. }
\end{aligned}
$$

الهدفِ هز التهريـن :
 التتعرف على كيفية عمـل المذبذب وذلك بـاسـتخخدام الثتـائي الضوثي.

ملجوظّات المتلـلـب:
\qquad
\qquad
\qquad

تقريّن (12)

تقرين على الثايرستور

فكرة عمل الدائرة:
الثايرسـتور عنصـر إلكترونـي بثـلاثـة أطـراف هـي المهبط والمصـعـد والبوابـة وهـو يزيـد عـن الثــائي العادي بالطرف المسمى بالبوابة، وعندما يكون هناك جهداً على طرف البوابة فإن تيـاراً كهربائياً سيمر مباشرة بين طريٌْ الثايرستور المصعد والمهبط. فإذا كانت قيمة التيار أكبر من قيمـة تيـار الإمسـاك (التي تمر بين المهبط والمصعد) هٌِ تلك اللحظة فإن هذا التيـار سيستمر بـالمرور حتى لـو أزلنـا جهـد الإثشـارة عـن طرف البوابة، ولكـن إذا كـانت قيــة التيـار أصـر مـن قيمـة تيـار الإمســك فقي هـذه الحـالـة فـإن التيـار
 عبر المقاومة مهـا يتسبب بتوصيل الثايرستور ومـرور التيـار عبر المصباح الكهربـائي وإضـاءتا وهــذا يعني استخدام الثايرستور كمفتاح إلكتروني.

شكل 12

المكونات اللازمةل لعمل الدائرة:

2.
3. مفتاح منزلق.
4. أسـالك توصيل.
5. خلية ثايرستور.
6. بـارية9v.
7. مصباح كهربائي أو LED

الهدفِ هز التمريـز :

توليـد نغـمـة متتيـرة بـاسـتخـدام الثايرسـتور.

ملحوظطات المتلـرب:

تهرين (13)
 دائرةكاشف المفناطيسية باستخدام الثنائي الضوئي

فكرة عمل الدائرة:
عند تقريب مغناطيس من المفتاح الأنبوبي فإنها يغلق الدائرة كأنه مفتاح على الوضـع ON وبالتـالي
 المفتاح الأنبوبي يعمل كـأنه مفتـاح على الوضـع OFF وبالتـالي لا يـــر تيـار كهربـائي بالـدائرة وبالتـالي لا يضيء الثـائي المشع LED

ملحوظة: يِّ حالة عدم إضاءة عند تقريب المفناطيس فيـجب عمل التوجيـه الصحيح لـه.

شكّ13

المكونات اللازمةل لعمل الدائرة:

$$
\text { 2. 2. بطاريةvمة 3. } 100 \text {. }
$$

1. ثـائي مشع للضوء LED
2. مفتاح أنبوبي.
3. أسـلاك توصيل.

الهدف من التمريز:
التعرف على عمل المفتاح الأنبوبي .
ملحوظات المتلـرب:

تترين (14)

دائرة كاشف المفنـاطيسيلة بـاستخدام الثنـائي الضوئي والثايرستور

فكرة عمل الدائرة:

پٌِ الدائرة السـابقة عندما كنا نقـرب المغنـاطيس مـن المفتاح الأنبوبي يتم غلق الـدائرة وبالتـالي مـرور تيـار وإضاءة الثنائي LED، وعند إبعاد المفناطيس تفتح الدائرة وبالتالي لا يمر تيـار ولا يضـيء الثنـائي، أمـا يِّ حالة استتخدام الثايرستور كمـا يٌ هذه التمرين فإنه يستخدم لتوصيل التيـار للثــائي حيـث يمـر التيـار مـن بوابـة الثــائي LED عنــد تقريـب المفنــاطيس مـن المفتـاح الأنبـوبي والــني يعهـل علـى إغــلاق الــــائرة الكهربائية، ولكن وْ حالة إبعـاد المفنـاطيس عن المفتاح الأنبوبي فإن الثــائي LED سـيبقى مضيئاً ولا يمكن إطفاؤه إلا بفصل تغذية البطارية.

المكونات اللازمةل لعمل الدائرة:
2. مفتاح منزلق.
4. بطارية 3 فولت.
6. ثايرستور
8. عدد 2 مقاومة 1K

1. ثـائي مشع للضوء LED 3. 3.
2. أسـلاك توصيل.
3. 7 . مقاومة 100Ω.
4. 920Ω مقاومة

الهدفِ من التهرينز :
التعرف على عمل المفتاح الأنبوبي .

ملحوظّات المتّلـبـ:

تقرين (15)

دائرة إضاءةة الرقتم 1 من وحلدة الإظهار

ذات السبع شرائع7 Segment

فكرة عمل الدائرة:

تتكـون دائرة السبع شـرائح 7 Segment مضيئة مستقلة ولها طـرف مشترك وتستخدم هــنه
الدوائر لإظهار الأرقام من 1 إلى الرقم 9 وكذلك الصفر وكتابـة بعض حـروف اللــات الأجنبيـة ويمكـن

شكل 15

وكها نلاحظ أن دائرة الإضاءة تحتوي على عدد من العلامات المصدرة للضوء وهذه العلامات نعبر عنها بحروف أبجدية بديلة متعارف عليها ومرتبة بطريقة معينة كما يٌ الشُ الشكل(15) وهذه الحروف هي :

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{DP}
$$

وكل علامة من هذه العلامات تضيء عندما تتصل نقاط توصيلها بالكهرباء ، وعندما نريد إظهار الرقم 1 فيجب توصيل العلامات B, C بهصدر تيار وٌِْ حالة مـا نريد إظهار أي رقم نوصل نقاط التوصيل ثم نضع مفتاح الوصل والفصل على وضع التشغيل ON فيظهر الرقم أو الحرف المطلوب.

المكونات اللازمةل لعمل الدائرة:

2. مفتاح وصل وفصل.
4. أسـلاك توصيل.

1. عدد ثهان مقاومات.
2. 9v بطارية

الهدف من التمريز:

7 Segment التعرف على طريقة توصيل الرقم1 من وحدة الإظهار ذات السبع شرائح

ملحوظـات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

تقرينّ (16)

دائرة إضاءة الرقم 2 من وحلدة الإظهار

ذات السبع شرائح7 Segment

فكرة عمل التمرين :
لا يوجد فارق بين دوائر الإضاءة باستتخدام وحـدة الإظهـار 7 يوْ 7 وْ حالـة إظهـار أي رقمى أو
حرف ولا يمكن إظهاره إلا وٌ عملية توصيل نقـاط الإظهار بهصــر فـرق جهـد ، ولإظهـار الـرقم 2 يجب توصيل نقاط العلامات A , B , E , D , G بالدائرة الكهريائية ومصـدر التيـار ثموضـع مفتاح الفصـل والوصل على الوضع ON

شكل 16

> يمكن إضاءة الحرف E بتوصيل النقاط A , F , E , D , G .

المكونات اللازمةل لعمل الدائرة:
2. مفتاح وصل وفصل.
4. أسـلاك توصيل.

1. عدد ثمان مقاومات.
2. 3 . بطارية

الهدف من التترين:
7 Segment التعرف على طريقة توصيل الرقم 2من وحدة الإظهار ذات السبع شرائح

ملحوظـات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

تقرينّ (17)

دائرة إضـائة الرقم 3 من وحلدة الإظهار

7 Segment ذات السبع شرائح

لإظهار الرقم 3 يجب توصيل نقاط العلامـات A , B , C , D , G بالـدائرة الكهريائيـة ومصـدر
التيار ثم وضع مفتاح الفصل والوصل على الوضع ON

شكل 17

> الوحلدة الخامسلة
> الفتزةالثانية
> برنـامج

ملحوظة :
يمكن إضاءة الحرف H بتوصيل النقاط B , C , F , E , G.

المكونات اللازممة لعمل الدائرة:

2. مفتاح وصل وفصل.
3. أسـلاك توصيل.
4. عدد ثمان مقاومات.
5. 9v بطارية

الهدف من التمرين:

7 Segment التعرف على طريقة توصيل الرقم 3من وحدة الإظهار ذات السبع شرائح ملحوظـات المتلرب:
\qquad
\qquad
\qquad
\qquad

تقرين (18)
دائرةإضاءة الرقم 4 من وحلدةالإظهار
ذات السبع شرائع7 7 انرائ
فكرة عمل التمريز :
لإظهار الرقم 4 يجب توصيل نقاط العلامات B , C , F , G بالدائرة الكهريائية ومصـدر التيـار
ثم وضع مفتاح الفصل والوصل على الوضع ON

شكل 18

2. مفتاح وصل وفصل.
4. أسـلاك توصيل.

3. 3 . بطارية

الهدف من التمرين:

7 Segment التعرف على طريقة توصيل الرقم 4من وحدة الإظهار ذات السبع شرائح

ملحوظـات المتلدرب:
\qquad
\qquad
\qquad
\qquad

$$
\text { تقريز (} 19 \text {) }
$$

دائرة إضـاءة الرقم 5 من وحلدة الإظهـار

ذات السبع شرائع7 7

لإظهار الرقم 5 فيجب توصيل نقاط العلامات A, C , D , F , G بالـدائرة الكهريائيـة ومصـدر
التيار ثم وضح مفتاح الفصل والوصل على الوضح ON

شكل 19

2. مفتاح وصل وفصل.
4. أسـالاك توصيل.

1K 1K عدد 8 مقاومات
3. بطارية.9v.

الهدف مز التتريز:

تقرين (20)
 دائرةإضاءة الرقم 6 من وحلدة الإظهار

ذات السبع شرائع7 7 انرائ
فكرة عمل التمريز :
لإظهار الرقم 6 يجب توصيل نقـاط العلامـات A , C , D , F , G بالـدائرة الكهربيائــة ومصـدر
التيار ثم وضع مفتاح الفصل والوصل على الوضع ON .

شكل 20

المكونات اللازممة لعمل الدائرة:
2. مفتاح وصل وفصل.
4. أسـالاك توصيل.

3. 9v بطارية 3.

الهدف من التمرين:

7 Segment التعرف على طريقة توصيل الرقم 6من وحدة الإظهار ذات السبع شرائح

ملحوظـات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

شكل 21

المكوناتاللاززمة لعمل الدائرة:

2. مفتاح وصل وفصل.
4. أسـالك توصيل.

3. 9v بطارية

الهدف مز التمريز :

7 Segment التعرف على طريقة توصيل الرقم 7من وحدة الإظهار ذات السبع شرائح

ملححوظـات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

تقريّن (22)

دائرةإضاءة الرقم 8 من وحلدة الإظهار

ذاتالسبع شرائح7 Segment

فكرة عمل التمرين :
لإظهار الرقم 8 يجب توصيل جميع نقـاط العلامـات بالـدائرة الكهربائيـة ومصـدر التيـار ثمرضـع
ON مفتاح الفصل والوصل على الوضع

شكل 22

المكونات اثالوزمةٌ لمهل اثلدائرة؛ :

2. مفتاح وصل وفصل.
4. أسـالك توصيل.

1. 1K عدد 8 مقاومات 1 .
2. 9v بطارية

الهدف مز التمريز:

7 Segment التعرف على طريقة توصيل الرقم 8من وحدة الإظهار ذات السبع شرائح

ملحوظـات المتدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

تقرينّ (23)
 دائرة إضاءة الرقّم 9 من وحلة الإظهار
 ذات السبعشرائع7 Segment

فكرة عمل التمرين :
لإظهار الرقم 9 يجب توصيل جميع نقاط العلامات مـا عـدا E بالـدائرة الكهربائيـة ومصـدر التيـار ثم وضع مفتاح الفصل والوصل على الوضع ON .

2. مفتاح وصل وفصل.
4. أسـالك توصيل.

1K 1K عدد 8 مقاومات
3. بطارية 9v.

الهدف مز التمريز:

7 Segment التعرف على طريقة توصيل الرقم 9 من وحدة الإظهار ذات السبع شرائع

ملحوظات المتلرب:
\qquad
\qquad
\qquad
\qquad
\qquad

الوحلدة الخامسلة
الشنطة الإلكترونية
الشنطة الإكتروبي

تقريّن (24)

دائرة إضاءة الرقم 0 من وحلدة الإظهار

ذاتا السبع شرائح7 Segment

فكرة عمل التمرين :

لإظهـار الـرقم (0)فيجـب توصـيل جميـع نقـاط العلامـات مـا عـدا G بالـدائرة الكهربائيـة ومصــر
التيار ثم وضع مفتاح الفصل والوصل على الوضح ON

المكونـات الالوزمةٌ لمهل الدالـرة ؛

```
2. مفتاح وصل وفصل.
    4. أســلاك توصيـل.
```

$$
\text { 3. } 1 . \text { عدد } 8 \text { هقاومـات } 8 \text { 1K } .
$$

الهدف من التمرين :

7 Segment التعرف على طريقة توصيل الرقم من وحدة الإظهار ذات السبع شرائح

ملحوظات المتدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

المكونـات الالوزمةٌ لمهل الدالـرة ؛

2. مفتاح وصل وفصل.
4. أسـلاك توصيل.

1. $1 \mathrm{~K} \Omega$ عدد 8 مقاومات
2. 9v بـطارية 8.
3. مفتاح منزلق

الهدف من التمريز:

7 Segment التعرف على طريقة توصيل الوحدة بكاملها من وحدة الإظهار ذات السبع شرائح

ملحوظات المتدرب:
\qquad
$\ldots . . .$.

التمريز (26)

دائرة تحويلِ التيـار المستمر إلى تيـار متردد

فكرة عمل الدائرة:

تقوم هذه الدائرة بتتحويل التيار المستمر إلى تيار متردد حيث تولد تردد منخفض ويقوم الترانزيستور بتكبير هـا التردد ويهـكن زيادة التردد الداخل على قاعدة التترانزيستور عن طريق المقاومة المتغيرة، حيث يزداد التردد كلما انخفضت قيمـة المقاومة.

المكونات الالازمة لممل الدائرة:

1. سماعة
2. 3 مكثف 0.1MF
3. مفتاح منزلق.
4. مفتاح فصل ووصل.
5. 9 مقاومة متفيرة $50 \mathrm{~K} \Omega$.

11 . أسـلاك توصيل.

$$
\begin{aligned}
& \text { 2. ملف محول. } \\
& \text { 4. } 4 \text { مكث 0.05MF } \\
& \text { 6. } 3 \text {. بطارية } \\
& \text { 87 8. مقاومة } 8 \text {. } \\
& \text { 10. } 10 \text { ترانزيستور } 1 \text { 2SC945. }
\end{aligned}
$$

الهدفِ مز التهرينز :

تحـويل التيـار مـن مسـتمـر إلى متردد.

ملحوڤّات المتلـرب! :
\qquad
\qquad
\qquad
\qquad
\qquad

التمريز (27)

دائرة تـوليد صوت العصفور تتمل بـالضوء

فكرة عمل الدائرة:

تقـوم هــنه الــدائرة بتوليــد صـوت طـائر العصـفور حيـث تتـكـون مـن مذبـذب يسـتخخدم ترانزيسـتور واحـــ ويمكن ضبط تردد الصوت عن طريق المقاومة المتغيرة وعند سقوط الطاقة الضوئية على المقاومة الضـوئية فإن هذه المقاومة تتحكم پٌٌ التيـار المار إلى قاعدة الترانزيستور وبالتالي تعمل الدائرة.

المكوناتـات الالازمة لمهل الدائرة:
2. ملف محول.
4. مكثف 0.1 مايكرو فاراد.
6. 6 ترانزيستور 8SC945
8. 8. مكثف كيميائي 100MF
10. مقاومة ضوئية.
12. أسـلاك توصيل.

1. سماعة.

2مفتاح منزلق.
5.05MF مكثف
7. 1 C مقاومة
9. 9 مقاومةת 100 K .
11. 3v . 11 بطارية

الهدفِ من التهرينز :
اسـتخـدام المقاومـة الضنوئية يٌ توليـد صوت طائر العصفور.
ملحوظظات المتلـورب:

\qquad
\qquad
\qquad
\qquad
\qquad

التهريز (28)

دائرة تولييل صوت المصفور تتمل بـالضوء بفتزة زمنية أطول

فكرة عمل الدائرة:
 ويمكن ضبط تردد الصوت عن طريق المقاومة المتغيرة وعند سقوط الطاقة الضوئية على المقاومة الضـوئية
 الدائرة والـدائرة السـابقة أن المدة الزمنيــة لتوليـد الصـوت هنـا أطـول مـن الـدائرة السـابقة وذلكـك لاستـخدام

المكوناتاتاللازمة لعمل الدائرة:

> 2. ملف محول.
> 4. مكثف.0.01MF
> 6. ترانزيستور.
> 8. 870MF مكثف كيميائي
> 10. 10 مقاومة $1 \mathrm{~K} \Omega$
> 12. أسـالاك توصيل.

1. سماعة.
2. مفتاح وصل وفصل.
3. 5 عدد 2 مكتف
4. مقاومة ضوئية.
5. $10 \mathrm{~K} \Omega$ مقاومة
6. 11 . بطارية

> 13. مقاومة متغيرة 50K.

الهدفِ من التهرينز :
اسـتخدام المقاوهـة الضوئيـة يْ توليـد صوت طاءر العصفور لزهـن أطول باسـتخـدام المكثفـات.

ملحوظـات المتلـرب :
\qquad
\qquad
\qquad
\qquad
\qquad

التمريز (29)

دائرة توليلد صوت الرشاش

فكرة عمل الدائرة:

تقوم هذه الدائرة بعد توصيلها ووضع مفتـاح الفصـل والوصـل يٌٌ الوضـع تشـغيل ON بتوليـد صـوت يشبـه صوت الرشـاش ، أمـا الدائرة فهي عبارة عن مذبذب عادي يولد إثشارة مهتزة.، ويتم ضبط الـتردد عـن طريق المقاومة المتفيرة.

المكونـات الالازمة لممل الدائرة:
2. ملف محول .
4. 4 . 9 .
6. 6.1 MF مكثف
8. هـ

100MF 10 . مكثف كيميـئئي
12. مقاومة متغيرة 50K

1. سمـاعة.
2. مفتاح وصل وفصل.
3. ترانزيستور.
4. 7 .
5. مقاوهـة 202K.
6. أســلاك توصيل.

الهدفِ مز التهرينز :

استخخدام دائرة المذبذب ٌِِ توليد صوت الرشـاش.

ملحوظـات المتلـرب:
\qquad
\qquad
\qquad
\qquad

التمريز (30)

دائرة تـوليد صوت سيـارات الشرطة

فكرة عمل الدائرة:

 على الوضع ON يتم شـحن المكثف الكيميـائي حتى يصـل إلى قيــة الجهـد الـلازم لتشـغيل الترانزيستور TR1 ويمر التيار إلى المجمع هذا الترانزيستور وبالتالي يصل التيار منه إلى قاعدة الترانزيستور الأول TR2 وبالتالي نسمع صوتاً يشبه صوت سيارات الشرطة .

المكوناتا اللازمةة لعمل الدائرة :
2. ملف محول.
4. 4 مكثف 2.05MF
6. مفتاح منزلق.
8.7K 8 .
10. 10 مقاومة $1 \mathrm{~K} \Omega$.
12. 12 مقاومة $220 \mathrm{~K} \Omega$.
14. أسـالاك توصيل.

1. سماعة.
2. مكثف2.1MF.
3. عدد 2 ترانزيستور.
4. مفتاح وصل وفصل.
5. 9 مقاومة 90 K .
6. 10MF مكثف كيميائي 13 .
7. بطارية.3v.

ملحوظظات المتّلـوب:

\qquad
\qquad
\qquad
\qquad
\qquad

التمريز (31)

دائرة إنذار مفنـاطيسية

فكرة عمل الدائرة:
عندما يقترب المفناطيس من المفتاح الأنبوبي فإنها يغلق الدائرة ويكـون المفتاح ٌِْ حالـة وصـل ويعهـل

 تشغيل الترانزيستور الثاني TR2 وبالتالي يضيء الثائي الثاني المتصل به.

شكل 31

المكوناتالدلازمةل لعمل الدائرة :

$$
\begin{aligned}
& \text { 2. 3v . بطارية } \\
& \text { 4. مقاومة 100 } \\
& \text { 6. } 4.7 \mathrm{~K} \text { مقاومة } \\
& \text { 8. عدد } 2 \text { ثنائي ضوئي. } \\
& \text { 10. هفتاح ضوئي. }
\end{aligned}
$$

1. مفتاح منزلق .

3SC945 عدد 2 ترانزيستورئتو

7. 7 مقاومة 220Ω.
9. 97 .
11. مفتاح ضوئي.

الهدفِ من التهريـن :
اسـتخـدام المفتاح الأنبوبي لعمـل دائرة إنـذار .

ملحوظثات المتلـرب! :
\qquad
\qquad
\qquad

التمرين (32)

مفتاح ضوئي عـالي الحساسية

فكرة عمل الدائرة:

عنـد سقوط الضوء على المقاومة الضوئية فإنها تقـوم بتخفـيض مقاومتهـا للتيـار بحيـث تســـح لــه بـالمرور من خـلالها ويته تطبيق جهد انحياز على قاعدة الترانزيسـتور وبالتـالي تتحقـق الناقليـة بـين البـاعـث والمجهـع
 الإضاءة حتى يصـل لمسـتوى معـين وبعـد ذلـك يـتم فصـل التيـار أتوماتيـيـيـاً عنــد الوصـول لمســتوى معـين يـتم تحديده بواسطة المقاومة المتفيرة.

المكوناتاللاززمة لعمل الدائرة:
2. ملف حاكمة.
4. 4 بطارية
6. عدد 2 ثـائي .
8. مقاومة 10K
10.
12. أســلاك توصيل.
1.
3. مفتاح منزلق.
5. 5 . ترانزيستور
7. 7 مقاومة متفيرة 50 K .
9. 9 ترانزيستور 2SC945.
11. 11 مقاومة

الهدفِ من الاتمرين :

ملحوڤظاتٌ المتّلـوب :
\qquad
\qquad
\qquad
\qquad
\qquad

التمرين (33)

دائرة راديويتكون من دائرة متكـاملة وترانزيستور

فكرة عمل الدائرة:
ٌِْ دوائـر الراديـو يقـوم الهوائي بالتقـاط الموجـات الإذاعيـة ويقـوم المكثف المتتفير السـعة VC وملـف الهوائي بتحديد تردد الموجة المطلوبة وتوليفها وبعد ذلك تتم عمليـات التقويم لهذه الموجة وتتـم عملية التكبير لهذه الموجة عن طريق الترانزيستور وتقوم الدائرة المتكاملة باسـتقبال الموجـة المعدلــة وتكبيرهـا وترشـيـحها هـن الـترددات غـير المرغـوب فيهـا وتقـوم بزيـادة مسـتوى الصـوت الــني يـتم التتحكم بـهـ عـن طريـق المقاوهـة
 حسـاسية الراديو ويجعله يعطي أداءً أفضل.

شكل 33

المكوناتاتاللازمة لعمل الدائرة:

1. 2.
1. سماعة.
2. دائرة متكاملة.
3. مكثف 1MF.
4. مقاومة متغيرة 1K .

$$
\begin{aligned}
& \text { 12. ملف RFC } \\
& \text { 14. عدد } 2 \text { ثنائي موحد. } \\
& \text { 16. } 16 \text { مقاومة } 470 \mathrm{~K} \Omega \\
& \text { 0.01MF 18. مكثف } \\
& \text { 20. هوائي. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 11. مقاومة } 10 \text { كيلو أوم. } \\
& \text { 13. مكثف } 220 \text { بيكو فاراد. } \\
& \text { 2SC945 15 ترانزيستور } \\
& \text { 17. } 17 \text {. مقاومة } 680 \mathrm{~K} \Omega \text {. } \\
& \text { 19. مكثف متفير السعة. } \\
& \text { 21. أسـلاك توصيل. }
\end{aligned}
$$

الهدف من التمرين:
التعرف على مراحل جهاز الراديو.

ملحوظات المتلدرب:
\qquad
\qquad
\qquad
\qquad

التمريز (34)

دائرة راديويتكون من دائرة متكاملة وترانزيستورين

فكرة عمل الدائرة:
نفس فكـرة الدائرة السـابقة مـا عدا إضـافة المؤشـر لقياس مستوى الصوت بالإضـافة إلى وجود الثتائي البـاعث للضوء لـإلشارة على تشغيل الدائرة.

المكونـات الالازمة لممل الدائرة:
2. ثـائي باعث للضوء.
4. مفتاح وصل وفصل.
6. ملف محول.
8. عدد 2 ترانزيستور 2SC945.
10. مؤشر قياس تيـار.
12. دائرة متكاملة.
14. مكثف كيميائي100 مـيكرو فاراد.

$$
\text { 16. مقاومة } 10 \text { كيلو أوم. }
$$

$$
\text { 18. مقاومة } 680 \text { كيلو أوم. }
$$

1. مقاومة 1 كيلو أوم.
2. مؤشر قيـاس.
3. 5. مفتاح منزلقـق
1. بطارية 9 فولت.
2. سمـاعة.
3. عدد 2 مكثف كـيميائي 470 مـايكرو فاراد. 13. مكثف كـيميائي 0.01 مـايكرو فاراد.
4. ملف RFC

470K 17 . مقاومة

20. مكثف متفير السعة
 22. مكثف 0.001MF.

19. عدد 2 ثنائي .
. 21 . هوائي
20. أسـلاك توصيل.

الهدف من التمريز:
التعرف على مراحل جهاز الراديو باستخخدام دائرة متكاملة وترانزستورين.

ملحوظات المتلدرب:
\qquad
\qquad
\qquad
\qquad
\qquad

بعلد الانتهاء من التـدريب على الشنطة الإلكتوونية قيّم نفسكك وقـلـراتك عن طريق إكهـال هلذا التقويم لكل من العناصر المذكورة، وذلك بوضع علامة (V) أمام مستـوى الأداء الــني أتقنتـه، وفي حالـة عـدم قابليـة المهمـة للتطبيـق ضع العلامة في الخانة الخاصة بدنلك.

مستوى الأداء(هل أتقنت الأداء)				العناصر	
نعم	جزئياً	y	غير قابل للتطبيق		
				وصـل مفتـاح وصــل / فصـل ضــمن دائـرة المـــباح الكهريــائي والبطارية	1
				وصل المصباح الكهربائي مح جهاز القياس	2
				وصل المقاومة المتفيرة هٌِ دائرة	3
				شحن وتفريغ المكا لمثات على التوازي	4
				وصل المكثفات على التوالي والتوازي	5
				فخصص الثائي الباعث (المثع) للضوء	6
				فخص الترانزيستور	7
					8
				توليد الكهرباء بواسطة السماعة	9
				توليد نفمة متغيرة باستخدام متعدد الاهتزاز	10
				وصل دائرة مذبذب عديم الاستقرار	11
				وصل الثايرستور بٌ> دائرة	12
				وصل دائرة كاشض مغنا	13
				والثايرستور	14
				وصل دائرة إضاءة الرقم 1 من وحدة الإظهار ذات السبع شرائح 7 Segment	15

الوحدة الخامسة الشنطة الإلكتوونية					
مستوى الأداء (هل أتقنت الأداء				العناصر	
نهم	جزئياً	y	غير قـابل للتطبيق		
				تسجل هنا المهارات التفصيلية التي يكتسبها المتلرب من الوحلدا	
				وصل دائرة إضاءة الرقم 2 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 16
				وصل دائرة إضاءة الرقم 3 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 17
				وصل دائرة إضاءة الرقم 5 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 18
				وصل دائرة إضاءة الرقم 6 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 19
				وصل دائرة إضاءة الرقم 7 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 20
				وصـل دائـرة إضـاءة الـرقم 8 مـن وحـدة الإظهـار ذات السـبع 7 Segment شرائح	. 21
				وصل دائرة إضاءة الرقم 9 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 22
				وصل دائرة إضاءة الرقم 0 من وحدة الإظهار ذات السبع شرائح 7 Segment	. 23
				وصـل دائرة إضـاءة وحـدة الإظهـار بكاملها ذات السبع شـرائح 7 Segment	. 24
				وصل دائرة تحويل التيار المستمر إلى تيار متردد	. 25
				وصل دائرة توليد صوت العصفور تعمل بالضوء	. 26
				\|وصل دائرة توليد صوت العصفور تعمل بالضوء بفترة زمنية أطول	. 27
				وصل دائرة توليد صوت مدفع رشا	. 28
				وصل دائرة توليد صوت سيارات الشرطة	. 29
				وصل دائرة إنذار مغناطيسية.	. 30

معلومات المتلدرب

معلومات المتدرب	
\cdots	\ldots
الوحلة ويمكن للملدرب إضافة المزيد من العناصر .	

مستوى الأداء (هل أتقن بههارة)					العناصر	
غير متقن	متقن جزئيـا	متقن	متقن جداً	متقن بتثيز		
					تسجل هنا جميع المهارات التفصيلية التي اكتسبها المتدرب من الوحدة والقابلة للقياس	
					قـام بوصـل مفتـاح وصــل / فضـل ضــمن دائـرة المصـبـاح الكهربـائي والبطارية	. 1
					قام بوصل المصباح الكهربائي مع جهاز القياس	. 2
					قام بوصل المقاومة المتغيرة يٌ دائرة	. 3
					قام بشـحن وتفريغ المكثفات على التوازي	. 4
					قام بوصل المكثفات على التوالي والتوازي	. 5
					قام	. 6
					قام بفحص الترانزيستور	. 7
					قام بتوليد الكهرباء بواسطة ملف ومغناطيس	. 8
					قام بتوليد الكهرباء بواسطة السماعة	. 9
					قام بتوليد نغمة متغيرة باستخدام متعدد الاهتزاز	10
					قام بوصل دائرة مذبذب عديم الاستقرار	11
					قام بوصل الثايرستور هِّ دائرة	12
					قام بوصل دائرة كاثف مغناطيسي باستخدام الثنائي الضوئي	13
						14

مستوى الأداء (هل أتقن بههارة)					العناصر
غير متقن	متقن جزئيـا	متّقن	متقن جداً		
					تسجل هنـا جميع المهارات التفصيلية التي اكتسبها المتدرب من الوحدة
					29 قام بوصل دائرة توليد صوت مدفع رشاش
					30 قام بوصل دائرة توليد صوت سيارات الثرطة
					31 قام بوصل دائرة إنذار مغناطيسية.
					32 قام بوصل مفتاح ضوئي عالي الحسـاسية
					33 قام بوصل دائرة راديو يتكون من دائرة متكاملة وترانزيستور
					34 قام بوصل دائرة راديو يتكون من دائرة متكاملة وترانزيستورين
يجب أن تصل النتيجة لجميع العنـاصر الملكورة إلى درجة الإتقان الكلى، وفي حـالة وجود عنصر في القائمة" له يتقن " أو " أتقن جزئيـاً " فيجب إعادة التلدرِب على هلذه المهـارة مرة أخرى بهسـاعلدة الملدرب.					

ورشـة أسـاسيـات الإلكترونيات

إنشـاء دوائر إلكترونية

إنشاء دوائر إلكتوونية

هلـف الوحدة العام:
أن يــون المتـدرب قــادراً علـى تتفيــن تمـرين طبـع دائـرة إلكترونيـة علـى لوحـة مـن الفيـبر مغطــاة بالنـحاس من جهة واحدة.

الأهداف الإجرائية :

- أن يكون المتدرب قادراً على التعرف على قراءة المخطط النظري.
- أن يكون المتدرب قادراً على تحويل المخطط النظري إلى مخطط عملي.
- أن يكون المتدرب قادراً على التعرف على أنواع المحاليل الخاصة بطباعة اللوحات.
- أن يكون المتدرب قادراً على استخخدام الدريل اليدوي.
- أن يكون المتدرب قادراً على تركيب القطع الإلكترونية الخاصة بالدائرة وتلحيمها ..

الوقتت المتوقِع لإتقام :الوحلة 55 حصة تدريبية

إنشاء اللدوائر الإلكتوونية

مقدمة:
منذ أكثر من ستين عامـا (وِّ الأربعينيات من القرن الماضـي) بـدأت مصـانع الأجهـزة الإلكترونيـة ِّن تتفيذ دوائر أجهزتها على لوحات مصنوعة من الفيبر بعد أن كانـت تجهـع دوائرهـا باللـحـام المباشـر بـين المكونات الإلكترونية الداخلية التي كانت مليئة بالصعوبات والمشثاكل سـواء يِ عملية التجمميع أو عمليـة الصيانة، ولكن بعد إدخال لوحات الفيبر كلوحات مطبوعة ظهرت مهيـزات لها وتلافت العيـوب القديمـة لما وهذا النوع من التوصيـلات له مـميزات كثيرة ومنها على سيبل المثال : 1. توفير المال الكثير بٌِ تكلفة الإنتاج.
2. سـهولة التعرف على القطع المعطوبة يٌ الدائرة .
3. تصغير حجم ووزن الدوائر الإلكترونية بشكـل كبير.
4. استتخدام التـكنولوجيات الحديثة يِّ تجميع الدوائر حيـث يمـكـن تخطيط وطبـع وتخـريم وإضـافة

العناصر الإلكترونية وتلحيمها بكميات كبيرة أوتوماتيكياً.
5. قلة الأخطاء التي قد تحدث أثتاء عمليـات التخطيط والطبع الخ.

أنواع اللوحات

1. لوحات تـوصيل جـاهزة :

وهـي عبـارة عـن لوحـة إلكترونيــة تحتـوي علـى عـدد مـن الصـفوف والأعهـدة ومثبـت بأحـد
طرفيها موصلين للتيار.
2. لوحات الفيبر :

لوحات الفيبر عدة أنواع:

- لوحات فيبر مثقبة بدون طبقة من النحاس.
- لوحات فيبر مثقبة ومغطى أحد وجهيها بطبقة من النحاس.
- لوحات فيبر مغطى أحد وجهيها بطبقة كاملة من النحاس .
- لوحات فيبر مغطى وجهيها بطبقة كاملة من النحاس.

قبل تجهيز اللوحة

1. يجـب أن نـكـون على درايـة كـاملـة بحـجم الـدائرة الإلكترونيـة الـتي نريـد تجهيزهــا وذلـك لاختيار الحـجم المناسب للوحة .
2. يجـب التعـرف على جميـع مكونـات الـدائرة وأن تكـون موجـودة قبـل بدايـة إجـراء عمليـات

التجهيز لتتحديد وتقدير الأمـاكن الـلازمة لكل عناصر الدائرة.
3. يجب ترك مسـاحات كافية ومناسبـة بين عناصر الدائرة بحيث لا تكون العناصر مـلاصقة

لبعضها.
4. وِْ حالة توصيل ملفات أو محولات يجب ترك مسـاحة كافية لتركيب القطع البـلاسـتيكية ومسـامير التتبيت الـلازمة للملف أو المحول.
5. . 6. يجب أن تكـون اللوحة سهلة التتبع والتجميع والصيـانة والإصـلاح . 7. يْ حالة وجود دائرة متـكاملة يجب أخذ المسـافات المناسـبة لمقاسـات الأرجل .
الإلكتوونيـات الأجهزة السمهية والمرئية

العلد والأدوات اللازمة لتخطيط وطبـاعة لوحات الدوائر الإلكتوونية

1.اللوحة النـحاسية.

إنشاء دوائر إلكتزونية السادسة

> 2.شـريط لاصق مخصص لهذا الغرض.

3.آلة قطع (مشرط).

الوحلدة السادسة
 الفتزةالثانية
 ورشة أساسياتالإلكتوونيـات
 الإلكتزونيـات الأجهزة السميية والمرئية

4.نقاط نهـايـة التوصيـلات (الوسـائد).

5.حوض مصنوع من البـلاستيك خاص بالمحاليل.

الوحلدة السادسة	الفتزةالثانية	برنـامج
إنشاء دوائر إلكتونية	ورشة أساسيات الإلكتوونيات	الإلكتوونيات الأجهزة السمعية والمرئية

تخطيط دائرة فليشر

أهم الخطوات اللازمة لتخطيط الدائرة:

2. تحويل المخطط النظري إلى مخطط عملي .

أ ـ التخطيط اليدوي .

3. فِّ حالـة عـدم القـدرة على تفـادي تقـاطع أحـد الوصــلات مـع آخـر فإنـه يمـكـن عمـل جسـر

موصل يثبت على اللوحة من الجهة التي توضع عليها المكونات الإلكترونية.
4. رسـم المخطط العملي على لوحـة الفيبر بواسـطة القلـم الرصـاص مـن الجهـة النحاسـيـة وذلـك
لتحديد الشـكل النهائي للوحة.

5. نقوم بوضع الشـريط اللاصق الخاص على الخطوط المرسومة بالقلم الرصاص .
الإلكتوونيـات الأجهزة السمينية والمرئية

6. نقوم بوضح الوسـائد يٌن نهاية أطراف التوصيـلات مع التأكد بأن لا تكون ضعيفة.
7. نضع اللوحة يٌْ الحامل الخاص بحوض المحاليل بعد التأكـد من ثبات الثريط اللاصق.

9. ترك اللوحة داخل الحوض مدة كافية حتى إذابة النحاس وهي تقريبا من 15 إلى 25 دقيقة حسب نوع اللوحة والمحلول المستخدم.
10. نخرج اللوحة من المحلول ونغسلها بالماء لتتظيفها من المحلول.

الوحلدة السادسة الفتزةالثانية ورشة أساسيـات الإلكتوونيـات الإلكتوونيـات الأجهزة السمعية والمرئية
 11. نـزيل الشـريط الـلاصق مـن اللوحة .

12. نبدأ بتخريم اللوحة باستخدام الدريل اليدوي مكان تركيب القطع .

الوحلدة السادسة
13. نركب القطع الإلكترونية حسب مواضعها على اللوحة .

14. نقوم بلحام القطع الإلكترونية يٌ اللوحة مع اتباع إجراءات السـلامة يٌٌ التلحيه.

15. نوصل الدائرة بالمصدر الكهربائي الخاص بالدائرة وذلك للتأكـد من عمل الدائرة.

16. بعد التأكـد من عمل الدائرة نقوم بعمل الاختبارات اللازمة لها.

الفتزةالثانية
 برنـامج
 إنشاء دوائر إلكتوونية
 ورشة أساسيـات الإلكتزونيـات
 الإلكتوونيـات الأجهزة السمعية والمرئية
 اتبع الخطوات السابقة في عمل التمرين التالي ::

المخطط العملي للدائرة

تقويم ذاتي

بعد الانتهاء من التدريب على طبع الدوائر الإلكترونيـة قيّم نفسـك وقدراتك عن طريق إكمـال هــذا التقويم لك من العناصر المذكورة، وذلك بوضـع علامـة (V) أمـام مستوى الأداء الـذي أتقنتـه، وٌِ حالـة عدم قابلية المههـة للتطبيق ضـع العـلامـة يٌ الخانة الخاصة بذلك.

مستوى الأداء (هل أتقنتالأداء)				العناصر	
نهم	جزئياً	У	غير قـابل للتطبيق		
				تسجل هنا المهارات التفصيلية التي يكتسبها المتلرب من الوحدة	
				رسم المخطط النظري	. 1
				تحويل المخطط النظري إلى عملي	. 2
				رسـم المخطط العملي على لوحة الفيبر	. 3
				وضع الشريط اللاصق على الخطوط المرسومة	4
				وضع الوسـائد الخاصة بنهاية الأطراف	. 5
				وضح اللوحة وِّ الحامل الخاص بحوض المحاليل	. 6
				إخراج اللوحة بعد الانتهاء من المحلول وغسلها بالماء	. 7
				إزالة الثـريط اللاحق	. 8
				خرم اللوحة باستخدام الدريل اليدوي	. 9
				تركيب القطع الإلكترونية حسب مواقعها	. 10
				لحام القطع الإلكترونية	. 11
				اتأكـد من سـلامة عمل الدائرة	. 12

يجب أن تصل النتيجة لجـيع العنـاصر إلى درجـة الإتقـان الكلي أو أنهـا غيـر قابلـة للتطبيـق ، وٌِِ حالـة وجود مفردة يِّ القائمـة " لا " أو " جزئياً " فيـجـب إعـادة التـدرًب علـى هـذا النشـاط مـرة أخـرى بمسـاعدة

تّقولم الملدرب

معلومات المتدرب

معلوماتالمتلرب	
.....................................	...

مستوى الأداء (هل أتقن بههارة)					العناصر	
غير متقن	متقن جزئيـا	متّق	متقن جلاً	متقن بتثيز		
					تسجل هنا جميع المهارات التفصيلية التي اكتسبها المتدرب من الوحدة والقابلة للقياس	
					قام برسم المخطط النظري	. 1
					قام تحويل المخطط النظري إلى عملي	. 2
					قام برسـم المخطط العملي على لوحة الفيبر	. 3
					قام بوضـ الثـريط اللاصق على الخطوط المرسـومة	. 4
					قام بوضـ الوسـائد الخاصة بنهاية الأطراف	. 5
					قام بوضع اللوحة يٌ الحامل الخاص بحوض المحاليل	. 6
					قام بإخراج اللوحة بعد الانتهاء من المحلول وغسلها بالماء	. 7
					قام بإزالة الشريط الـلاصق	. 8
					قام بخرم اللوحة باستخدام الدريل اليدوي	. 9
					قام بتركيب القطع الإلكترونية حسب مواقعها	10
					قام بلحام القطع الإلكترونية	11
					تأكد من سـلامـة عمل الدائرة	12

يجب أن تصل النتيجة لجميع العنـاصر المذكورة إلى درجة الإتقان الكلى، وفي حالة وجود عنصر في القائمة " لم يتقن " أو " أتقن جزئيياً " فيجبب إعادة التلـربً على هذه المهارة مرة أخرى بمسـاعلدة الملدرب

المراجع

1. تـكنولوجيـا الكهربـاء .

كتب تصليمية فنية ـ المؤسسلة العامةٌ للتعليه الفني والتلدريب المهني تأليف : روبرت أرنولد . الطبهة الثانية عام 1985
2. 250 مركز الموسوعة الئرة إلكتزونية عملية.
4. مطوية NIDA Corporation.
5. مجلة العلوم والتقنية .

العلد السابع والستون - شهر رجب 1424 ه

برنامج
الإلكتوونيـاتالأجهزة السمعية والمرئية

قتائمة المحتويـات

		الوحدة
1	.. المقدما	0
1	.. حقيبة ورشة أساسيات الإلكا	0
2	..	0
3	.. المقاومات الكهربائية	0
4	..	0
7	..	0
10		0
12	...	0
14		0
16	التمرين الثالث : مياس المقاومة R1 , R2 عأ على التوالي.	0
18	التمرين الرابع : فياس ثلات مقاومات (R1 , R2 , R3) متصلة على التوالي.	0
20	التمرين الخامس : فياس أريع مقاومات (R1 , R2 , R3 , R4) متصلة على التوات التوالي..	0
22	التمرين السادس : إيجاد	0
23		0
24	التمرين الثامن :إيجاد فرق الجهد على المقاومتين R1 , R2 المتصلتين معاً على التوالي ...	0
25		0
27	التمرين العاشر: قياس ثالاث مقاومات (R1 , R2 , R3) متصلة على التوازي	0
29	التمرين الحادي عشر العر:	0
30		0
31		0
32		0
34		0
36		0
38		0
40		0
42	التمرين التاسع عشر	0
43	..	0
44	التمرين الحادي والعشرون قياس المقاومات ٌِ丷 الدائرة المركبة	0

100	7 Segment تمرين (21 21)ائرة إضاءة الرقم 7 من وحدة الإظهار ذات السبع شرائح
102	
104	
106	
108	
110	تمرين (26) دائرة تحويل التيار المستمر إلى تيار متردد
112	
114	
116	
118	تمرين (30) دائرة (29) دايرة (31 ((
120	
122	
124	
126	تمرين (34) دائرة داديرة راديو يتكون من دائرة متكاملة وترانزيستورين
128	تقويم ذاتي
130	تقويم المدرب
132	المحتويات
	الوحدة السادسلة.
135	مقدمة
136	أنواع اللوحات
137	
141	تخطيط دائرة فليشر
148	تمرين دائرة تقويم موجة كاملة
149	تقويم ذاتي
150	تقويم الدرب
151	المراجع

```
تقدر المؤسسـة العامة للتعليم الفني والتدريب المهني الدعم
المالي المقدم من شركة بي آيه إي سيستتمز (العمليات) المحدودة
```

GOTEVOT appreciates the financial support provided by BAE SYSTEMS

BAE SYSTEMS

