IN $\mathbb{N} E M O R \mathbb{R} \mathbb{M}$

 L. P. SHIDY

Gume aks blyaiot

FORMULAS AND TABLES

FOR

ARCHITECTS AND ENGINEERS

CALCULATING THE STRAINS AND CAPACITY

OF

STRUCTURES IN IRON AND WOOD,

BY
F. SCHUMANN, C. E.

ILLUSTRATED WITH MORE THAN THREE HUNDRED DIAGRAMS, DESIGNEN ASN̄ ENGRAVED ESPECLALLT FOR TEIS WORK BY J. O. LYONS.

WASHINGTON CITY:
WARREN CHOATE \& CO. 1873.

$T G 267$

Entered according to Act of Congress, in the year 1873, by F. SCHUMANN,

In the Office of the Librarian of Congress, at Washington.

THIS VOLUME

Is

RESPECTFULLY DEDICATED

то
A. B. MULLET, supervising architect of the u. s. treasury department, BYTHEAUTHOR.
(iii)

CONTENTS.

ERRATA.

On page 4,10 th line from bottom, read $\frac{30}{100}$ instead of 30 .
On page 4,10 th line from bottom, read 10.0036 instead of 10.036 .

On page 4,14 th, 15 th, and 16 th lines from bottom, read $\frac{a}{100}$ instead of a.

On page 32, Fig. 70, insert $l=$ distance between supports.
On page 34, Fig. 72, insert $l=$ distance between supports.
On page 34, Fig. 74, insert $l=$ length of beam.
On pages 38 and $39 w=$ total weight of beam between supports
On page 39, 5th line from top, read 1099000 instead of 1000000.
On page 39, 5th line from top, read 1754 instead of 1757.
On pages 144 and 145 , in formulas for H_{n}, change places of last minus sign with foregoing plus sign. (See 13th line from top.)

Page 145, lines 1 to 7 from bottom, Change places of C and T Page 146, lines 1 to 3 from top, $\} \quad$ under strains in Figs. Page 146, lines 13 to 22 from top, $225,226,227$, and 228.
On page 149, 1st line from bottom, read $\frac{l w}{N} \frac{D}{H-\bar{D}}$ instead of $\frac{l w}{N}$.

On page 197, 7th line from bottom, read 3.14159 instead of 1.14159.

On page 204,1 st line from bottom, read $A+A$, instead of $A A$, on prage 199 for ellipes insert faeter 77

CONTENTS.

PAGES.
Summary of definitions and general principles. 1-5
Moments of inertia and resistance of various sections. 5-25
Strength of materials, \&c 26-29
Resistance to cross-breaking and shearing 29
Capacity and strength of beams 29-99
Pressure on supports 100-102
Compressive strains and pressure on supports 102
Sloping beams, rafters, \&c 102-103
Resistance to crushing 103
Strength of columnis, pillars, and struts 103-110
Parallelogram of forces 111
Strains in frames 112-114
Strains in boom derricks 114-115
Strains in trusses 115-121
Strains in trussed beams. 122-125
Strains in trusses with parallel booms 126-146
Strains in parabolic crrved trusses 147
"Bow-string girders" 147-153
Capacity and strength of parabolic arched beams or ribs originally curved 153, 154
Strains in a polygonal frame 154, 155
Strains in roof trusses 156-178
Pressure of wind on roofs 178, 179
Pressure of snow on roofs. 180
Tie rods and bars 181, 183
Joints or connections in iron constructions 184-186
Dimensions of bolts and nuts 187, 188
Compound strain in horizontal and sloping beams 188-190
Weight of moving loads 191
Static and moving loads on bridges of wrought iron 192, 193

MISCELLANEOUS.

PAGES.
Geometry .. 197-201
Center of gravity of planes.. 202-204
Trigonometrical formulas.. 205
Trigonometrical functions....................................... 206-217
Circumference, area, and cubic contents of circles......... 218-223
Specific gravities of materials................................... 224-226
Weight of a superficial inch of wrought and cast iron... 227
Weight per square foot of metals.............................. 228
Weight of a lineal foot of flat and square bar iron........ 229-233
Weight of a lineal foot of rolled round iron................. 234
Weight of bolts, nuts, and heads................................ 235-237
Weight of materials used in building......................... 238 -
Divisions of a foot expressed in equivalent decimals...... 239
Table for comparing measures and weights of different
countries..240. 240, 241
To cut the strongest and stiffest beam from a log.......... 242

FORMULAS AND TABLES

FOR

ARCHITECTS AND ENGINEERS.

Summary of Definitions and General Principles.

External forces are those forces (loads, \&c.) which cause or tend to cause the rupture of a structure.

Internal forces are those forces which resist the external forces; when one balances the other, the structure is said to possess Stability.

External forces.
Compressive strain. Tensional strain. Shearing strain. Cross-breaking strain.

INTERNAL FORCES.
Resistance to Compression. Resistance to Tension. Resistance to Shearing. Resistance to Cross-breaking.

Compression causes the material to fail by crushing or buckling, or both.

Resistance to direct Crushing: In case pillars, blocks, struts, or rods, along which the strains act, are not so long in proportion to their diameter as to have a tendency to give way by bending sideways. This includes-

Stone and brick pillars and blocks, of ordinary proportions;
Pillars, struts, and rods of cast iron, in which the length is not more than five times the diameter, approximately;

Pillars, struts, and rods of wrought iron, in which the length is not more than ten times the diameter, approximately;

Pillars, struts, and rods of dry timber, in which the length is not more than twenty times the diameter.

Let $W=$ Crushing load in lbs.
$C=$ Ultimate resistance of material to crushing in lbs. per square inch.
$A=$ Sectional area of pillar, \&c., in square inches.
Then will $W=A \times C$; and $A=\frac{W}{C}$
Tension, causes the material to be torn asunder.

Resisiance of bars, \&e., to teaing: the ultimate strength of a bar (L vearing) is: when
$T=$ Ultimate resistance of the material to tearing, in lbs. per square inch.
$W=$ Tearing load in lbs.
$A=$ Sectional area of bar, in square inches.
Then will $W=A \times T$; and $A=\frac{W}{T}$
Shearing causes the fibres of the material to be shorn by each other; when a bolt pulls out of its nut, the threads of the screw are said to be sheared.

Resistance of bars, bolts, \&c., when sheared at one place, is: when
$S=$ Ultimate resistance of material to shearing, in lbs. per square inch.
$W=$ Shearing load in lbs.
$A=$ Sectional area of bar, \&c., in square inches.
Then will $W=A \times S$; and $A=\frac{W}{S}$
Cross-breaking a beam, \&c., supported at one or both ends, with a force at right angles to its length, sufficient to cause rupture, is said to be broken across.

Resistance to cross-breaking is the resistance of the material to compression, tension, and shearing combined;

The flanges or booms, in beams or trusses, resist the bending moment, or moment of rupture.

The web or braces, in beams or trusses, resist the shearing forces.

Capacity means the load or pressure a structure is capable of sustaining with safety.

Deflection is the displacement of a beam from a horizontal, caused by its own weight or the applied load, or both.

Camber is given a beam to counter balance the deflection, so that the beam may be horizontal when loaded; the camber should be equal to the computed deflection.

To find the effect of combining several loads on one beam, whose separate actions are known: for each cross section, the shearing force is the sum of the shearing forces, and the bending moment the sum of the bending moments, which the loads would produce separately.

When a load on a structure is partly static and partly moving, multiply each part of the load by its proper factor of safety, and
add together the products: the sum will be the load to which the structure is to be adapted.

For a Bridge with two platforms, one carrying a road and the other a railway, those two loads are to be combined.

Of Iron Ties, Struts, and Beams.

In designing ordinary structures of wrought iron, it saves time and expense to use iron bars of such forms of cross section as are usually to be met with in the market. An engineer should avoid introducing new sections for bars into his designs, except when, by so doing, some important purpose is to be served, or some decided advantage to be gained. The most common forms of rolled bars is shown by the following enumerated figures:

No. of figure.	Name of Form.	Applicable for-
4	Square ir	Ties.
13	Round iron.	Ties, bolts, and rivets.
$\stackrel{2}{29}$	Flat iron...................................	Ties. ${ }^{\text {Beams, rafters, and stru }}$
30	Channel iron.................................	Rafters and struts.
37	T-iron.	Rafters and struts.
$\stackrel{47}{1}$	L or angle iron..	Various purposes.
1	Deck Beam..	Beams and rafters.

Avoid the use of cast iron for ties, also trussed cast-iron beams.
When a member of a structure acts alternately as a strut and as a tie, it must have sufficient total sectional area, and sufficient stiffness, to resist the greatest compressive strain that can act, and sufficient effective sectional area to resist the greatest tensional strain which can act along it.

Let all pins, bolts, rivets, \&c., exposed to a shearing strain, fit tight in its hole or socket.

Roof trusses, the divisions of a rafter, and also the struts, may be considered as hinged at the ends.

In members under a compound strain, as for instance a trussed beam with a distributed load, be careful to take into account the additional compression, caused by the bending moment.

The best distribution of the material in a section of a cast-iron beam, for cross-breaking, is that $\frac{T}{s}=\frac{C}{s,}$; or $\frac{s,}{s}=\frac{C}{T}$

When $T=$ Ultimate resistance of the material to tension. $C=$ Ultimate resistance of the material to compression.
$s=$ Distance from neutral axis to most extended fibres.
$s,=$ Distance from neutral axis to most compressed fibres.
That is, the fibres most in tension should be nearest the neutral axis of beam.

In wrought-iron beams, the section may be made alike above and below the neutral axis.

The Modulus of Rupture should be applied to beams with full section, or beams with continuous web only; for all open web beams, or beams with very thin web, the resistance of the material to crushing or tearing, respectively, must be used instead.

Expansion and Contraction of long beams, which arise from the changes of atmospheric temperature, are usually provided for by supporting one end of each beam on rollers of steel or hardened cast iron. The following table shows the proportions in which the length of a bar of certain materials is increased by an elevation of temperature from the melting point of ice (32° Fahr., or 0° Centigrade) to the boiling point of water under the mean atmospheric pressure, (212° Fahr., or 100° Cent.;) that is, by an elevation of 180° Fahr., or 100° Cent.:

EARTHY MATERIALS.
Brick, common.................. 0.00355
Brick, fire 0.00050
Cement............................... 0.00140
Glass, average 0.00090
Granite 0.00085
Marb!e................................... 0.00087
Sandstone 0.00105
Slate
0.00104

Reference.

Let $u=$ Value given in above table, for a certain material.
$l=$ Length of a bar at 0° Centigrade,
and $\quad l_{l}=$ its length at a given number of degrees Centigrade.
$a=$ Given number of degrees, at which l, is required.
$A=$ Superficial area of a plate;
and $A_{1}=$ its area at a given number of $0^{\circ} \mathrm{C}$.
$B=$ Cubic contents of a body,
and $B=$ its contents at a given number of $0^{\circ} \mathrm{C}$.
Then will $l,=l(1+a u)$;

$$
\begin{aligned}
& A=A(1+2 a u) \\
& B=B(1+3 a u)
\end{aligned}
$$

Example: A bar of wrought iron 2 inches square, is 10 feet long at a temperature of 0° Centigrade; what is its length at an increased temperature of 30° ?

Ans : $l,=10(1+30 \times 0.00120)=10.036$ feet.
The Neutral Axis, in a cross section of a beam, is that layer of fibres which are neither in compression or tension, by the action of a load on the beam; it always passes through the centre of gravity of the section: provided the limits of elasticity of the material is not exceeded. A beam supported at both ends, with a load acting perpendicular between the supports, will cause the fibres above the neutral axis to be compressed, and those below, extended: the farther from the fibres to the neutral axis, the greater the stress.

Under Moment of Inertia of a cross section, may be understood: an internal force at rest; a static force resisting an external force; it means the sum of all the area elements, multiplied by the square of their perpendicular heights from the neutral axis of the section. The moment of inertia, which we have denoted with I, depends on the form and dimensions of the cross section, and is expressed in square inches.

Moment of Resistance of a cross section is that static force resisting an external force of compression or tension; it is equal to the moment of Inertia divided by the distance of the most extended or compressed fibres, respectively, from the neutral axis.

MOMENTS OF INERTIA AND RESISTANCE OF VARIOUS SECTIONS.

To find the moment of inertia of any given cross section-
First. Divide the section into as many simple figures as possible. (See diagram, fig. 1.)

Second. Find the moment of inertia of each of the simple figures about its own neutral axis, and insert the value in the following formula:

Reference.
Letters $A, A_{/,} A_{/ /}$= area of simple figure, respectively ; and
$d_{1} d_{/}, d_{/ /},=$its distance from its centre of gravity to that of the whole section.
$i_{,} i_{/}, i_{/ /}=$moment of inertia of simple figures, respectively.

Fig. 1.

Formula.
$I=\left(i+d^{2} A\right)+\left(i,+d_{,}{ }^{2} A\right)+$ $\left(i_{/ \prime}+d_{/,}{ }^{2} A_{/ \prime}\right)+\&_{i} \cdot,=$ moment of inertia of whole section.

Moments of Inertia I and Moments of Resistance $\frac{I}{\delta}$

Reference.

$m-n=$ neutral axis of section.
$r=$ radius.
$s=$ distance from neutral axis to most compressed or extended fibres.
$b, h, \& c .=$ dimensions.
$A=$ area.
No. of Section. \mid No. of Figure.

| Moment of Inertia I. |
| :---: | :---: |
| $\frac{1}{1^{2}} b h^{3}=\frac{1}{1^{2}} A h^{2}$ |
| $\frac{h^{4}-h^{4}}{12}$ |
| $\frac{h^{4}=\frac{1}{12} A h^{2}}{6}$ |
| $\frac{h^{4}-h^{4}}{12}$ |

No. of Section.	No. of Figure.	Form of Section.
VI.	8	
VII.	9	
VIII.	10	
IX.	11	
X.	12	

Moment of Inertia I.	Moment of Resistance $\frac{I}{8}$
$\frac{1}{48} b h^{3}$	$\frac{1}{24} b h^{2}$
$\frac{1}{48}\left(b h^{3}-b, h,^{3}\right)$	$\frac{b h^{3}-b, h^{3}}{h}$
$\frac{1}{48} b h^{3}=\frac{1}{24} A h^{2}$	
$\frac{1}{24} g h^{3}=\frac{1}{18} A h^{2}$	

No. of Section.	No. of Figure.	Form of Section.
XI.	13	
XII.	14	
XIII.	15	
XIV.	16	
XV.	17 and 18	

Moment of Inertia I.	Moment of Resistance $\frac{I}{S}$
$\frac{1}{4} \pi r^{4}=\frac{1}{16} A d^{2}$	$\frac{1}{4} \pi r^{3}=\frac{1}{4} A r$
${ }^{\frac{1}{4} \pi\left(r, 4-r r^{4}\right)}$	$\frac{1}{4} \pi \frac{r_{l^{4}}-r_{/ / 4}^{4}}{r_{/}}$
$\frac{\pi}{64} d^{4}-\frac{h^{4}}{12}=0.0491 d^{4}-\frac{h^{4}}{12}$	$\frac{I}{\frac{1}{2} d}$
$\frac{h^{4}}{12}-\frac{\pi}{64} d^{4}=\frac{h^{4}}{12}-0.0491 d^{4}$	$\frac{I}{\frac{1}{2} h}$
$\frac{12}{175} \cdot A h^{2}=\frac{8}{175} b h^{3}$	$\begin{aligned} & s=0.576 h=\left(1-\frac{4}{3 \pi}\right) h \\ & s_{1}=0.424 h=\frac{4}{3 \pi} h \end{aligned}$

No. of Section. No. of Figure. \mid NVI.

| $\frac{1}{30} b h^{3}=\frac{1}{20} A h^{2}$ |
| :---: | :---: |
| $\frac{1}{64} \pi b h^{3}=\frac{1}{16} A h^{2}$ |
| $\frac{8}{175} b h^{3}=\frac{12}{175} A h^{2}$ |
| $\frac{\pi}{15}=\frac{1}{10} A h$ |
| $\frac{1}{32} \pi h^{2}=\frac{1}{20} A h^{2}$ |

No. of Section.	No. of Figure.	Form of Section.
XXI.	24	
XXII.	25	
XXIII.	26	
XXIV.	27	
XXV.	28, 29, and 30	

Moment of Inertia I.	Moment of Resistance $\frac{I}{s}$
$\frac{1}{5} A\left[\frac{1}{4} h,{ }^{2} \cos ^{2} v+\frac{12}{3} h^{2} \sin ^{2} v\right]$	$\frac{I}{h_{/ /}}$
$\frac{1}{12} A\left[h^{2} \cos ^{2} v+h,{ }^{2} \sin ^{2} v\right]$	$\frac{I}{h_{/ /}}$
$\frac{1}{6} A\left[\frac{1}{4} h h^{2} \cos ^{2} v+\frac{1}{3} h^{2} \sin ^{2} v\right]$	$\frac{I}{h_{/ /}}$
${ }_{6 \times 9}^{1} \pi\left(b h^{3}-b, h^{8}\right)$	$\frac{I}{\frac{1}{2} h}$
$\frac{b h^{3}-b, h^{3}}{12}$	$\frac{6 h^{3}-b, h^{3}}{6}$

No. of Section.	No. of Figure.	Form of Section.
XXVI.	31	
XXVII.	32	
XVIII.	33	
XXIX.	34	
XXX.	35	

Moment of Inertia I.	Moment of Resistance $\frac{I}{s}$
$\frac{b h^{3}-b, h^{3}}{12}$	$\frac{b h^{3}-b, h^{3}}{6} / h$
$\frac{1}{12}\left[b h^{3}-b, h^{3}-\left(b-b_{j}\right) h_{/ \prime}{ }^{3}\right]$	$\frac{1}{6 h}\left[b / l^{3}-b, h^{3}-(b-b,) h / i^{3}\right]$
$\frac{1}{12} b\left[h^{3}-h^{3}\right]$	$\frac{b\left(h^{3}-h,^{3}\right)}{6 h}$
$\frac{1}{12}\left[6 h^{3}-6 h_{l^{3}}+6, h h^{3}\right]$	$\frac{1}{6 h}\left[b h h^{3}-b l,,^{3}+b, h,^{3}\right]$
$\frac{1}{12}\left[\left(b h^{3}-b, h, 3\right)-\left(b, h^{3}\right)\right]$	$\frac{\left(b h^{3}-b, h, 3\right)-\left(b, h^{3}\right)}{6 h} .$

No. of Section.	No. of Figure.	Form of Section.
XXXI.	36 and 37	
XXXII.	38	
XXXIII.	39	
XXXIV.	40	
XXXV.	41	

Moment of Inertia I.	Moment of Resistance
$\frac{1}{12}\left(b h^{3}+b, h^{3}\right)$	$\frac{b h^{3}+b, h_{j}{ }^{3}}{6 h}$
$\frac{1}{12}\left(h b^{3}+h_{1,} b^{3}\right)$	$\frac{h b^{3}+h_{l,} b_{,}^{3}}{6 b}$
$\begin{gathered} \frac{1}{1^{2}}\left[\left(b^{3} h-3 b^{2} b, h_{,}+3 b b_{2}{ }^{2} h_{\prime}\right.\right. \\ \left.\left.\left.-b,{ }^{3} h_{f}\right)-\left(h b,,^{3}\right)\right)\right] \end{gathered}$	$\frac{I}{\frac{1}{2} b}$
$\begin{gathered} \frac{1}{12}\left[h,^{4}+b\left(h^{3}-h,^{3}\right)+(h-h,)\right. \\ \left.b^{3}-b, 4\right] \end{gathered}$	$\frac{I}{\frac{1}{2} h}$
$\begin{aligned} & \frac{1}{12}\left[\frac{3}{16} \pi D^{4}+b\left(h^{3}-D^{3}\right)+\right. \\ & \left.(h-D) b^{3}\right]-0.0491 d^{4} \end{aligned}$	$\frac{I}{\frac{1}{2} h}$

No. of Section.	NJ. of Figure.	Form of Section.
XXXVI.	42	
XXXVII.	43	
XXXVIII.	44	
XXXIX.	45	
XL	46,47 , and 48	

Moment of Inertia I.	Moment of Resistance $\frac{I}{3}$
$\begin{gathered} \frac{1}{2}\left[h_{,}^{4}+b\left(h^{3}-h^{3}\right)+\right. \\ \left.(h-h,) b^{3}\right] \end{gathered}$	$\frac{I}{\frac{1}{2} h}$
$\begin{gathered} \frac{1}{12}\left[\frac{3}{16} \pi D^{4}+b\left(h^{3}-D^{3}\right)+\right. \\ \left.(h-D) b^{3}\right] \end{gathered}$	$\frac{I}{\frac{1}{2} h}$
$\begin{gathered} \frac{1}{12}\left[h_{,}^{4}+b\left(h^{3}-h_{,}^{3}\right)+\right. \\ \left.\left(h-h_{\jmath}\right) b^{3}\right] \end{gathered}$	$-\frac{I}{\frac{1}{2} h_{/ /}}$
$\frac{1}{12}\left[3 \pi\left(r^{4}-r_{i j^{4}}\right)+2 b l^{3}\right]$	$\frac{I}{\frac{1}{2} h_{\rho}}$
$\frac{\left(b h^{2}-b, h,^{2}\right)^{2}-4 b h b, h,(h-h,)^{2}}{12(b h-b, h,)}$	$\frac{\left(b h^{2}-b, h,{ }^{2}\right)^{2}-4 b h b, h,(h-h, h)^{2}}{6\left(b h^{2}-b, h{ }^{2}\right)}$

No. of Section. \mid No. of Figure.

Moment of Inertia 1.	Moment of Resistance $\frac{I}{s}$
$\frac{\left(b h^{2}-b, h_{,}{ }^{2}\right)^{2}-4 b h_{,} h_{,}\left(h-h_{,}\right)^{2}}{12\left(b h-b, h_{\prime}\right)}$	$\frac{\left(b h^{2}-b, h_{,}\right)^{2}-4 b h b, h,\left(h-h_{,}\right)^{2}}{b\left(b h^{2}+b, h_{,}^{2}-2 b, h h_{ر}\right)}$
$\frac{5}{16} r^{4} \sqrt{3}=0.5413 r^{4}$	$\frac{I}{\frac{1}{2} h}$
$\frac{1+2 \sqrt{2}}{6} r^{4}=0.6381 r^{4}$	$\frac{I}{\frac{1}{2} h}$
$\begin{aligned} & \frac{5}{16} \sqrt{3}\left(r^{4}-r_{,}^{4}\right) \\ & =0.5413\left(r^{4}-r_{1}^{4}\right) \end{aligned}$	$\frac{I}{\frac{1}{2} h}$
$\begin{aligned} & \frac{1+2 \sqrt{2}\left(r^{4}-r_{1}^{4}\right)}{6} \\ & =06381\left(r^{4}-r_{,}^{4}\right) \end{aligned}$	$\frac{I}{\frac{1}{2} / l}$

No. of Section.	No. of Figure.	Form of Section.
XLVI.	56	
XLVII.	57	
XLVIII.	58	
XLIX.	59	
L.	60	

Moment of Inertia I.
Moment of Resistance $\frac{I}{s}$
$n,=$ number of sides.
$\frac{1}{24} n, r^{4} \sin . v(2+\cos . v)$
$\frac{1}{24} n, r^{3} \sin . v(2+\cos . v)$
$n_{\boldsymbol{\prime}}=$ number of sides.
$b=$ length of a side.
$\frac{1}{12} A\left(3 h^{2}+\frac{1}{4} b^{2}\right)$
$\frac{b h^{3}-b, h,^{3}+b, h,{ }^{3}}{12}$

$$
\frac{1}{12} \frac{A}{h}\left(3 h^{2}+\frac{1}{4} b^{2}\right)
$$

\qquad
$\frac{b h^{3}-b, h_{,}{ }^{3}+b, h,{ }^{3}}{6 h}$

$$
I=\frac{1}{3}\left\{\begin{array}{ll}
b, / & \left(a,{ }^{3}-x,{ }^{3}\right)+ \\
b & \left(x,,^{3}+x^{3}\right)+ \\
b, & \left(a,,^{3}-x,^{3}\right)
\end{array}\right\}
$$

$$
\begin{gathered}
x_{/}=b h^{2}-b_{,} h_{,}^{2}+h_{/,} h_{/ \prime}^{2}+ \\
\hline
\end{gathered}
$$

$2\left(b h+b_{1} h,+b_{/ \prime} h_{/ \prime}\right)$

$$
\begin{aligned}
& x_{1 /}=h-x_{/} \\
& a_{/}=x_{1 /}+h_{/ \prime} \\
& a_{/ /}=x_{1}+h_{\prime}
\end{aligned}
$$

$$
\frac{I}{a_{/ /}}
$$

STRENGTH OF MATERIALS, \&c.,
In lhs., avoirdupois, per square inch of cross-section.

Materials.		Ultimate Resistance to-				
		Tcaring.	Crushing.	Shearing.	Cross-br'k. Modulus of Rupture.	
Metals. Brass, cast, average. \qquad wire. \qquad						
	505.7 53.3	18000	10300	9170000
Bronze or gun metal, (copper 8, tin 1) Copper, cast	224	49000 36000	…….	14230000 9900000
	537	19000	117000			
Copper, cast....................	549	30000	11700			
" bolts.....................		$3: 100$				
Iron, cast, averace.................	сож\%)				17000000
	445	16510	112000	27700	17000000
Iron, cast, averacre..............	4:3	13400	80000	14000060
	to	to	to			to
	456	29000	115000			22900000
" " open work.	28800	
opon work. " solid rect. bars,	……....	170\%0	
varions quallities.				tor	
Iron, wrought, average.......	481$\ldots . . .$.	65000	$\begin{gathered} 36000 \\ \text { to } \\ 40000 \end{gathered}$	50000	43500	
beams plates.				38000	
" joints, d'ble	...	$\begin{aligned} & 51006 \\ & 357 \div 0 \end{aligned}$				
riveted. Iron, wrought, joints, single riveted. Iron, wrought, bars and bolts.						
	28600				
	..	61000	29000000
		70000				
hoop, best best		64\%以				
		7\%яо0	\ldots	25300000
" wire ropes....		90000	...			15000000
Steel, a verage..bars	490...				80000	
	$\begin{aligned} & 100000 \\ & t 0 \\ & 130000 \end{aligned}$	12000	15000	29000000
						to
						42000000
". plates	7.....	80600				
Tin. cast................................ Zine	462436	4600	15500	4000000
		7000	13000000
		to				
Timber, (well seasoned and dry.)		8000				
Ash	47	17000	9000	1400	12000	1600000
					to	
	$\begin{aligned} & 25 \\ & 43 \end{aligned}$	$\begin{array}{r} 6300 \\ 11500 \end{array}$			14000	
Bamboo ..			9360	9000	1350000
					to	

Materials.		Ultimate recistance to-				
		Tearing.	Crushing.	Shearing.		
Stones-Continued. Chalk 	$\begin{aligned} & 145.5 \\ & 173 \\ & 168 \end{aligned}$	$\begin{array}{r} 118 \\ 9400 \end{array}$	330	8000000
Glass.						
Granite............................			5500			
	$\begin{aligned} & 172 \\ & 197 \end{aligned}$	….......	11000			
Limestone, marble................			5500 4000			
			to			
			4500			
Mortar, hydraulic*	100				
		170				
" ${ }^{\text {a }}$ ordinary..........	109	50				
Rubble masonry	116	About $t-10$ cut			
Sandstone, strong...........			stone. 5500	2360	
" ordinary	$14 \pm$	to 3300			
" weak..............						
Slate................................	178	9600	5000	
		1 2800				16000000
Miscrllaneous.						
Flaxen yarn	${ }_{14000}^{25100}$				
Hide, ox, undressed..............	6300				
Leather, ox.....................	...	+200				
Silk fibre.................	5200				
Whalebone		7700				

Modulus of Rupture R.
According to Professor Rankine, the modulus of rupture is eighteen times the weight that is required to break a bar of a given material one inch square (section) and one foot between supports, the weight concentrated at the middle.

Modulus of Elasticity E

Is that power (in lbs. generally) through which a prismatic body of a given material, of section $=1$, is assumed to be extended double its length, or compressed to 0 .

Let $A=$ Sectional area of a rod of the material.
$W=$ Weight or power in lbs., which causes the extension or compression of the rod.
$l=$ Length in inches of rod before W is applied.
$\gamma=$ The extension or compression of the rod in inches, caused by W.
Then will $E=\frac{W l}{A l} ; r=\frac{W}{A E} . l$.

Factors of Safety k.

The ultimate resistance of material should be divided by-
Average, Steel and For Proof Strength. For Working Stress. rought Iron.
Steady load.
Moving load
2
3

Cast Iron.
Steady load.................. 2 to 3 3 to 4
Moving load.................. 6 to 8
Timber.
Average
3
8 to 10

RESISTANCE TO CROSS-BREAKING AND SHEARING.

Capacity and Strength of Beams.

Reference.

$A=$ Area of cross-section of beam.
$D=$ Deflection of beam from a horizontal.
$E=$ Modulus of elasticity.
$I=$ Moment of inertia of cross section.
$M=$ Maximum moment of rupture, or bending moment.
$R=$ Modulus of rupture.
$S=$ Vertical shearing force.
$V=$ Pressure on supports.
$W=$ Capacity or weight of load.
$c, d, l=$ Dimensions in units of length.
$k=$ Factor of safety.
$w=$ Weight of load per unit of length.
$\frac{I}{s}=$ Moment of resistance of cross-section.
For the stability of a beam : $M=K=\frac{R}{k} \cdot \frac{I}{s}$.
The web of a metal beam must have sufficient area to resist the shearing force S; that is, $A=\frac{S k}{\text { Ultimate resistance to shearing. }}$

The weight of the beam must be added to W, except in small beams, under 60 lbs . per lineal foot, when it may be disregarded.
[Note.-Always use the same units of dimensions or weight.]

	Manner of loading and fastening beams.		
61		W.l	$\frac{K}{l}$
62	$\frac{1}{1}$	W. $\frac{l}{2}$	$2 \frac{K}{l}$
63		W. $\frac{l}{4}$	$4 \cdot \frac{K}{l}$
64		$W \cdot \frac{l}{5.333}$	$5.333 \frac{\mathrm{~K}}{l}$
65		$W \cdot \frac{l}{8}$	8. $\frac{K}{l}$

Maximum deflec- tion D.		Shearing force S.	Pressure on sup. ports V.
$\frac{W}{E .1} \cdot \frac{l^{3}}{3}$	l	At any point. W	W
$\frac{W}{E I I} \cdot \frac{l^{3}}{8}$	l	At any point. w.d	-W
$\frac{W}{E \cdot I} \cdot \frac{l^{3}}{48}$	$\frac{l}{2}$	At any point. $\frac{W}{2}$	$V_{1}=V_{2}=\frac{W}{2}$
$\frac{W \cdot l^{3}}{E \cdot I} \cdot 0.00931$	0.553.l	$\frac{3}{8} W \cdot \frac{l}{2}$	$V_{1}=V_{2}=\frac{W}{2}$
${ }^{\frac{5}{8}} \frac{W}{E \cdot I} \cdot \frac{l^{3}}{48}$	$\frac{l}{2}$	$\begin{aligned} & \text { At any point, } \\ & \quad d<d ; \\ & u^{*}\left(\frac{l}{2}-d\right) \end{aligned}$	$V_{1}=V_{2}=\frac{W}{2}$

	Manner of loading and fastening beams.		
66		$W \cdot \frac{l}{8}$	8. $\frac{K}{l}$
67		$W \cdot \frac{l}{8}$	8. $\frac{K}{l}$
68		$W \cdot \frac{l}{12}$	$\text { 12. } \frac{K}{l}$
69		$\begin{aligned} & W . l+ \\ & W \cdot . l+ \\ & W_{2} \cdot l_{2} \end{aligned}$	
70		$W \cdot \frac{l_{1} l_{2}}{l}$	$\frac{l}{l_{1} l_{2}} . K$

$\begin{aligned} & \text { Maximum deflec- } \\ & \text { tion } D \text {. } \end{aligned}$		Shearing force S.	Pressure onsupports F .
$\frac{W}{E . I} \cdot \frac{l^{3}}{4.48}$	$\frac{l}{2}$	$\frac{W}{2}$	$V_{1}=V_{2}=\frac{W}{2}$
$\frac{W . l^{3}}{E . I} \cdot 0.0054$	$0.572 . l$	$w \cdot\left(\frac{3 l}{8}-d\right)$	$V_{1}=V_{2}=\frac{W}{2}$
$\frac{W}{E \cdot I} \cdot \frac{l^{3}}{8.48}$	$\frac{i}{2}$	$\begin{gathered} d<d_{l} ; \\ w \cdot\left(\frac{l}{2}-d\right) \end{gathered}$	$V_{1}=V_{2}=\frac{W}{2}$
$\left.\begin{array}{l} \left(\frac{W_{2}}{E \cdot I} \cdot \frac{l}{2}_{3}^{3}\right. \end{array}\right)+ \text { } \begin{aligned} & \left(\begin{array}{l} W_{1} \\ \overline{E \cdot I} \cdot l_{1}^{3} \\ 3 \end{array}\right)+ \\ & \left(\frac{W}{E \cdot I} \cdot \frac{l^{3}}{3}\right) \end{aligned}$	l	At any point between loads. $\begin{aligned} & S=W \cdot S_{1}= \\ & W+W_{1} \cdot S_{2}= \\ & W+W_{1}+W_{2} \end{aligned}$	$W+W_{1}+W_{2}$
$\frac{W}{E \cdot I} \cdot \frac{l^{3}}{3} \frac{l_{2}{ }^{2}}{l^{2}}{ }^{-} \cdot \frac{l_{1}{ }^{2}}{l^{2}}$		At any point and under any load. $S=W \cdot \frac{l_{2}}{l}$ Constant bet. $A \& W$ $S_{1}=W \cdot \frac{l_{1}}{l}$ Constant bet. B \& W.	$\begin{aligned} & V_{1}=\frac{l_{2}}{l} W \\ & V_{2}=\frac{l_{1}}{l} W \end{aligned}$

Capacity W of any section.	Maximum deflection D.		Shearing force S.	Pressure on supports V.
$\frac{K}{l_{1}}$	$\begin{gathered} \frac{W}{E \cdot I} \\ \frac{l_{2}{ }^{3}}{8} \\ \frac{l_{1}}{l_{2}} \\ \hline \end{gathered}$	$\frac{l}{2}$	W	$V_{1}=V_{W}=$
$\frac{K l}{l_{1} l_{2}\left(1-\frac{c}{2 l}\right)}$			$\begin{aligned} & S \text { at } A= \\ & W \frac{l_{2}}{l} \\ & S \text { at } B= \\ & W \frac{l_{1}}{l} \end{aligned}$	$\begin{aligned} & V_{1}= \\ & \frac{l_{2}}{l} W \\ & V_{2}= \\ & \frac{l_{1}}{l} W \end{aligned}$
$\frac{K}{l_{1}}$	$\begin{aligned} & D=\frac{W l_{2}{ }^{2} l_{1}}{8 E . I} \\ & D_{1}=\frac{W l_{1}{ }^{2}}{l} . \\ & \left(\frac{l_{2}}{2}+\frac{l_{1}}{3}\right) \end{aligned}$		W	$V_{1}=V_{W}=$
$\frac{2\left(l+2 l_{1}\right)}{\left(\frac{l}{2}\right)^{2}-l_{1}^{2}} K$			$\begin{aligned} & w \cdot l_{1} \text { or } \\ & w \cdot \frac{l_{2}}{2} \end{aligned}$	$V_{1}=V_{W} \Rightarrow$
$\frac{2\left(l+\frac{\left.2 l_{1}\right)}{l_{1}{ }^{2}} K\right.}{}$			The greater value to be taken.	2

Example.-Capacity of wrought-iron I-shaped beams; top and bottom flange alike; load equally distributed; ends not fixed.

Dimensions of Cross-section.

$h=$ Height $=10$ inches.
$b=$ Width of flange $=4$ inches.
$t=$ Thickness of flange $=0.8$ inches.
$t_{\boldsymbol{j}}=$ Thickness of web $=0.5$ inches.
$h_{,}=h-2 t ; b_{,}=b-t_{\text {, }}$.
Distance between supports $=20$ feet $=240$ inches. Factor of safety $=3$.

$$
\begin{aligned}
& \text { Moment of Resistance. } \\
& \frac{I}{s}=\frac{b h^{3}-\frac{b, h,^{3}}{6}=\frac{4 \times 10^{3}-3.5 \times 8.4^{3}}{6 \times 10}=32.09 .}{\text { Capacity } \mathrm{W} .} \\
& w=(4 \times 0.8 \times 2+8.4 \times 0.5) \times 240 \times 0.28=712.32 \mathrm{lbs} \\
& K=\frac{R}{k} \cdot \frac{I}{s}=\frac{38000}{3} \cdot 32.09=406473.33 \\
& W=8 \frac{K}{l}-w=8 \cdot \frac{406473.33}{240}-712.32=12836.72 \mathrm{lbs}
\end{aligned}
$$

Example.-Capacity of cast-iron $\boldsymbol{\perp}$-shaped beams; load equally distributed; ends not fixed; flange down.

Dimensions of Cross-section.

Let $h=$ Height $=18$ inches.
$b=$ Width of flange $=9$ inches.
$t=$ Thickness of tlange $=1.25$ inches.
$t,=$ Thickness of web $=1 \mathrm{inch}$.
$h_{,}=h-t ; b_{,}=b-t_{\text {, }}$.
Area $=28$ square inches. Distance between supports $=20$ feet $=240$ inches. Factor of safety $k=4$.

Moment of Resistance.

$$
\begin{aligned}
& \frac{I}{s}=\frac{1}{6}\left[\frac{\left(b h^{2}-b, h_{,}\right)^{2}}{b h^{2}-2 b, h h,+b, h^{2}}-\frac{4 b h b, h,(h-h,)^{2}}{b h^{2}-2 b, h h_{,}+b, h,^{2}}\right] \\
&=\frac{1}{6}\left[\frac{\left(9 \times 18^{2}-8 \times 16.75^{2}\right)^{2}}{9 \times 18^{2}-2 \times 8 \times 18 \times 16.75+8 \times 16.75^{2}}-\right. \\
&\left.\frac{4 \times 9 \times 18 \times 8 \times 16.75(18-16.75)^{2}}{9 \times 18^{2}-2 \times 8 \times 18 \times 16.75+8 \times 16.75^{2}}\right]
\end{aligned}
$$

$$
=\frac{1}{8}\left[\frac{452256.25}{336.5}-\frac{135675.00}{3365}\right]=157 .
$$

Capacity W.
$w=28 \times 240 \times 0.261=1754$. lbs.

$$
\begin{aligned}
& K=\frac{R}{k} \cdot \frac{I}{s}=\frac{28000}{4} \cdot 157=1099000 . \\
& W=8 \frac{K}{l}-w=8 \cdot-\frac{1000000}{240}-1757=34879 \mathrm{lbs} .
\end{aligned}
$$

For light beams no attention need be paid to weight of beam w.

Capacity W of Rolled 1 -shaped Beams.

Load equally distributed.

The calculations are based upon the patterns or sections used
 all similar beams rolled in the United States, the difference in the profile of section being slight.

In the following table the factor of safety $k=2.53$:

Reference.

$W=$ Load in tons of $2,000 \mathrm{lbs}$., equally distributed.
$w=W$ eight of beam in tons of $2,000 \mathrm{lbs}$.
$L=$ Distance between supports in feet.
$l=$ Distance between supports in inches.
$w_{0}=$ Weight per square foot of floor.
$\mathrm{W}_{1}=$ Capacity of coupled or trebled beams in tons of $2,000 \mathrm{lbs}$.
$D=$ Deflection in inches at centre, between supports.
$d=$ Distance between centres of beams, when spacing for floors, in feet.
$W=8 \cdot \frac{K}{l}-w, K=\frac{R}{k} \cdot \frac{I}{s}, \frac{R}{k}=\frac{38000}{2.53}=15000 \mathrm{lbs}=$
7.5 tons. $d=\frac{W}{L . w_{l}}$, or $d=-\frac{W}{L \cdot w,}, D=\frac{5}{8} \frac{W+w}{E . I} \cdot \frac{l^{3}}{40}$.
$K^{1}=$ Constant, computed by formulas. (See under examples.)

The rivets for coupled or trebled beams should be about $\frac{3}{4}$ inch m diameter, and 8 inches apart.

Trebled Beams.

Fig. 70.
Examples explanatory of the following Table.
Example.-What is the capacity of a 15 -inch light beam, load equally distributed, distance between supports $=20$ feet?
$K^{1}=\frac{K .8}{12}$, and $W=\frac{K^{1}}{L} ;$ for 15 -inch light beam $\frac{K^{1}}{L}=$ 345. 19
$20-17.2$ tons. This is also found at the intersection of 20 feet and column under capacity W.

Example.-What distance apart should 9 -inch medium beams be placed, the distance between supports being 20 feet, and to carry a total load of 140 lbs per square foot of floor surface?

Ans. $4 .+$ feet; being found at the intersection of the horizontal line from 20 feet and the vertical column under 140 lbs .

Exampie.- What is the capacity of 12 inch light beams trebled, load equally distributed, distance between supports $=25$ feet?

Ans. IV for 12 -inch light beam $=9.19$ and $W,=W \times 5.33=$ $9.19 \times 5.33=48.98$ tons.

Capacity of Rolled Beams.

Explanation of Tables for I Beams.

The first column gives the distance between supports in feet.
The second column gives the capacity in tons of $2,000 \mathrm{lbs}$., equally distributed.
The third column gives the deflection in inches at centre of beam.

The fourth column gives the weight of beam in lbs. for length between supports.
The fifth to fifteenth column (inclusive) gives the distance in feet that the beams should be spaced from centre to centre, for weight in lbs., per sq. ft. of surface for floors.

Pounds in decimals of a ton.

$$
\begin{aligned}
& l b s . \quad \text { tons. } \\
& 60=0.03 \\
& 70=0.035 \\
& 80=0.04 \\
& 90=0.045 \\
& 100=0.05 \\
& 140=0.07 \\
& 160=0.08 \\
& 180=0.085 \\
& 200=01 \\
& 250=0.125 \\
& 300=0.15
\end{aligned}
$$

In using these beams for floors, with brick arching, the ends resting on supports should have a bearing of about 8 inches, resting on a cast-iron plate, $8 \times 12 \mathrm{in}$. sq., by 1 in . thick.
Tie rods should be used where floors are subject to heavy concentrated moving loads, (as trucks with merchandise, \&c. ;) these rods should be about 8 times the depth of beam apart, fastened about $\frac{1}{3}$ from the bottom of beam.
When beams are used to support walls, or as girders to carry floor beams, and put side by side (II,) they should be fastened together with cast-iron blocks, fitting between the flanges, so as to securely combine the two beams. The blocks may be put about the same distance apart as the tie-rods.

15" "Heavy" Beam. Weight per lf. $=66.66$ lbs.
Fig. 81.

Sectional area......... $=20.0^{\prime \prime}$
Moment of inertia $I=652.42$
Constant K^{\prime},
$W=\frac{K^{\prime}}{L}$.

$\begin{aligned} & \frac{\pi_{3}}{4} \\ & \frac{0}{0} \end{aligned}$			¢	Distance d bet. centres of beams in feet, fo weight in lbs. per sq. foot of-										
$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{Q}} . \mathrm{E} \\ & \stackrel{0}{2} \end{aligned}$		$\begin{aligned} & \text { © } \\ & \dot{\Phi} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\text { an }} \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\frac{\stackrel{0}{8}}{8}$	$\begin{gathered} \dot{*} \\ \stackrel{\rightharpoonup}{\theta} \\ i \end{gathered}$	$\frac{\dot{0}}{\frac{0}{\infty}}$	$\frac{\stackrel{0}{2}}{8}$	$\stackrel{\stackrel{\rightharpoonup}{2}}{\stackrel{\circ}{8}}$		$\begin{aligned} & \dot{\infty} \\ & \stackrel{\text { ® }}{\gtrless} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\dot{\infty}}{\stackrel{\circ}{\theta}} \\ & \stackrel{\otimes}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\dot{\omega}}{\stackrel{\rightharpoonup}{\theta}} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{o}} \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{0}{8} \\ & \stackrel{e}{0} \end{aligned}$
	72.49	0.037	400.0											
7	62.13	0.050	466.6											
8	54.35 4832	0.065												
${ }_{10}^{9}$	43.48	${ }^{0.084}$	600.0 666.6											
11	39.54	0.126	733.3											
12	36.24	0.150	800.0											20.1
13	33.45	0.177	866.6										20.9	17.6
14	31.05	0.205	933.3									22.1	17.7	14.7
15	28.99	0.236	1000.0								22.3	19.3	15.5	12.8
16	27.18	0.270	1066.6							21.2	18.8	16.9	13.5	11.3
17	2558	0305	1133.3						21.4	19.6	17.0	15.0	12.0	10.2
18	24.16	0.342	1200.0						19.1	16.7	14.9	13.4	10.7	8.9
19	22.89	0.383	1266.6					17.6	15.2	13.4	12.0	9.6	8.0
20	21.73	0.426	1333.3					21.7	15.5	13.5	12.0	10.8	8.6	7.2
21	20.71	0.471	1400.0				22.0	19.7	14.7	12	11.5	9.8	7.9	6.7
22	19.58	0.515	1466.6				19.7	17.8	127	11.1	9.8	8.9	7.1	5.9
23	18.91	0.569	1533.3			21.0	18.9	17.1	11.8	10.5	9.4	8.2	6.7	5.5
24	18.12	0.623	1600.0	21.5	18.8	16.7	15.1	10.7	9.4	8.3	7.5	6.0	50
25	17.39	0.677	1666.6		19.9	17.3	15.5	14.4	10.2	8.6	7.7	6.9	5.6	4.7
26	16.72	0.735	1733.3	21.4	18.3	16.7	15.2	12.8	9.2	8.0	7.2	6.4	5.2	4.2
27	16.10	0.795	1800.0	19.8	17.1	14.9	13.4	11.9	8.5	7.4	6.7	5.9	4.7	3.9
28	15.53	0860	1866.6	18.2	15.8	13.8	12.3	10	7.9	6.9	6.2	5.5	4.4	3.6
29	14.99	0.925	1933.3	17.2	14.8	12.9	11.5	10.7	7.4	6.8	5.7	5.1	4.1	3.4
30	14.49	0.994	2000.0	16.1	13.8	12.0	10.7	9.8	6.9	6.0	5.3	4.8	3.8	3.2
31	14.03	1.067	2066.6	15.0	12.9	11.3	10.0	9.0	6.4	5.6	5.0	4.5	3.6	3.0
32	13.59	1.141	2133.3	14.0	12.0	10.0	9.4	8.4	6.0	5.3	4.7	4.2	3.3	2.8
33	13.17	1.219	2200.0	13.3	11.4	9.9	8.8	7.9	5.7	4.9	4.4	3.9	3.1	2.6
34	12.79	1.304	2266.6	12.5	10.7	9.4	8.2	7.5	5.3	4.7	4.1	3.7	3.0	2.5
35	12.42	1.384	2333.3	11.8	10.1	8.8	7.9	7.1	5.0	4.4	3.9	3.5	2.8	2.3
36	12.08	1.473	2400.0	11.1	9.5	8.4	7.4	6.6	4.7	4.1	37	3.3	2.6	2.2
37	11.75	1.564	2466.6	10.8	9.1	7.9	7.0	¢. 3	4.4	39	3.5	3.1	2.5	2.1
38	11.43	1.656	2533.3	10.0	8.5	7.5	6.6	6.0	4.2	3.7	3.3	3.0	2.4	2.0
39	11.15	1.754	2600.0	9.5	8.1	7.1	6.3	5.7	4.0	3.5	3.1	2.8	2.2	
40	10.87	1.854	2666.6	9.0	7.7	6.7	6.0	5.4	3.8	3.3	2.9	2.7	2.1	1.8

15" "Light" Beam. Weight per lf. $=51.66 \mathrm{lbs}$.
Fig. 82.

$\begin{aligned} & \infty \\ & \frac{\infty}{L} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{\underset{g}{E}} \\ & \stackrel{y}{g} \end{aligned}$	$\stackrel{\text { ®i }}{\Xi}$		Distance d bet. centres of beams in feet, for weight in lbs. per sq. foot of-										
$\begin{aligned} & \dot{8} \Xi \\ & \dot{0} \Xi \\ & \dot{\ddot{Q}} \\ & \hline \end{aligned}$	య็		$\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{0}} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\frac{\stackrel{8}{e}}{\stackrel{0}{8}}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{8} \end{aligned}$	$\frac{\dot{\dot{~}}}{\stackrel{\circ}{8}}$	$\begin{aligned} & \dot{\rho} \\ & \stackrel{\dot{\delta}}{8} \end{aligned}$	$\frac{\stackrel{\dot{x}}{=}}{\stackrel{s}{=}}$	$$	$\frac{\stackrel{u i}{0}}{\stackrel{-}{6}}$	$\stackrel{\dot{\sim}}{\stackrel{\dot{c}}{=}}$	-		-
6	57.52	00	310.0											
7	49.	0.050	361.6											
8	43.13	0.065	413.3											
9	38.35	0.084	465.0											
10	34.50	0.103	516.6											23.0
11	31.38	0.124	567.3										22.9	19.0
12	28.76	0.150	620.0										19.1	15.9
13	26.55	0.176	671.6								22.7	20.4	16.4	13.6
14	24.65	0.205	723.3							22.0	19.5	17.6	14.0	11.7
15	23.01	0.236	775.0						21.9	19.1	17.0	15.3	12.3	10.2
16	21.57	0.269	806.6						19.2	16.8	14.9	13.4	10.7	8.9
17	20.30	0.304	858.3						17.9	14.9	13.2	11.9	9.5	7.9
18	19.16	0.341	930.6					21.3	15.2	13.3	11.8	10.6	8.5	7.1
19	18.15	0.381	981.6			21.3	19.1	13.6	11.9	10.6	9.5	7.6	6.3
20	17.24	0.424	1033.3		21.5	19.1	17.2	12.3	10.7	9.5	8.6	6.9	5.7
21	16.43	0.469	1085.0			19.5	17.4	15.6	11.1	9.8	8.7	7.8	6.2	5.2
22	15.68	0.515	1136.6		20.3	17.8	15.8	14.2	10.1	8.9	7.9	7.1	5.7	4.7
23	15.00	0.565	1187.3	21.7	18.7	16.3	14.5	13.0	9.3	8.1	7.2	6.5	5.2	4.3
24	14.38	0.620	1240.0	19.9	17.1	14.9	13.3	11.9	8.5	7.4	6.6	59	4.8	3.9
25	13.80	0.674	1291.6	18.4	15.8	13.8	12.3	11.0	7.8	6.9	6.1	5.5	4.4	3.6
26	13.27	0.732	1343.3	17.0	14.5	12.8	11.3	10.2	7.2	6.3	5.6	5.1	4.0	3.4
27	12.78	0.791	1395.0	15.7	13.6	11.8	10.5	9.4	6.7	5.9	5.2	4.7	3.7	3.1
28	12.32	0.855	1446.6	14.6	12.5	11.0	9.7	8.8	6.2	5.5	4.8	4.4	3.5	2.9
29	11.93	0.921	1498.3	13.7	11.8	10.2	9.1	8.2	5.8	5.1	4.5	4.1	3.2	2.7
30	11.50	0.989	1550.0	12.7	10.9	9.5	8.5	7.6	5.4	4.7	4.2	3.8	3.0	2.5
31	11.13	1.060	1601.6	11.9	10.3	8.9	8.0	7.1	5.1	4.4	3.9	3.5	2.8	2.3
32	10.78	1.133	1653.3	11.2	9.6	8.4	7.4	6.7	4.8	4.2	3.7	3.3	26	2.2
33	10.46	1.211	1705.0	10.5	9.0	7.9	7.0	6.3	4.5	3.9	3.5	3.1	2.5	2.1
34	10.14	1.292	1756.6	9.9	8.5	7.4	6.6	5.9	4.2	3.7	3.3	2.9	2.3	1.9
35	9.86	1.375	1808.3	9.3	8.0	7.0	6.2	5.6	4.0	3.5	3.1	2.8	2.2	1.8
36	9.58	1.463	1860.0	8.8	7.6	6.6	5.9	5.3	3.8	3.3	2.9	2.6	2.1	1.7
37	9.32	1.553	1911.6	8.3	7.2	6.2	5.6	5.0	3.5	3.1	2.7	2.5	2.0	1.6
38	9.08	1.645	1963.3	7.9	6.8	5.9	5.3	4.7	3.4	2.9	2.6	2.3	1.9	1.5
39	8.85	1.742	2015.0	7.5	6.5	5.6	5.0	4.5	3.2	2.8	2.5	2.2	1.8	1.4
40	8.62	1.841	2066.6	7.1	6.1	5.3	4.7	4.3	3.0	2.6	2.3	2.1	1.7	1.4

```
12＂／＂Heavy＂Beam．Weight per lf．\(=56.66\) lbs．
Fig． 83.
```


$\begin{aligned} & 0 \\ & \stackrel{y}{0} \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \dot{\Delta} \\ & \dot{\theta} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\dot{\theta}} \\ & \stackrel{\pi}{0} \end{aligned}$		Distance d bet．centres of beams in feet，for weight in lbs．per sq．foot of－										
	$\begin{aligned} & \text { む̈ } \\ & \text { む̈ } \\ & \text { © } \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \stackrel{\circ}{0} \\ & \AA \end{aligned}$	$\begin{aligned} & \stackrel{.1}{3} \\ & \frac{50}{8} \\ & 0 \end{aligned}$	$\frac{\dot{x}}{\frac{0}{8}}$	$\begin{gathered} \dot{0} \\ \stackrel{0}{\circ} \\ \hline 尺 \end{gathered}$	$\frac{\dot{\oplus}}{\stackrel{\circ}{8}}$	$\begin{aligned} & \stackrel{8}{=} \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & \stackrel{\dot{0}}{\stackrel{1}{8}} \\ & \stackrel{1}{8} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{7} \\ & \stackrel{1}{4} \\ & \hline \end{aligned}$	$\stackrel{\dot{0}}{\stackrel{0}{E}}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{0}{\sigma} \\ & \hline \end{aligned}$	$\stackrel{\dot{\text { ® }}}{\stackrel{\rightharpoonup}{8}}$		$\begin{aligned} & \text { 坒 } \\ & \frac{8}{8} \\ & \hline \end{aligned}$
6	51.88	0.046	340.0											
7	44.54	0.063	396.6											
8	38.70	0.082	453.3											
9	34.58	0.105	510.0											
10	31.12	0.131	566.6											20.7
11	28.29	0.158	623.3	．．．．									20.5	17.1
12	25.94	0.188	680.0									21.6	17.2	14.4
13	23.94	0.222	736.6				．．．			23.0	20.4	18.4	14.7	12.2
14	22.22	0258	793.3					．．．．	22.1	19.8	17.6	15.8	12.6	10.5
15	20.75	0.297	850.0						19．7	17.2	15.3	13.8	11.0	9.2
16	19.50	0.339	906.6						17.4	15.2	13.5	12.1	9.7	8.1
17	18.31	0.383	963.3					21.5	15.3	13.4	11.9	10.7	8.6	7.1
18	17.29	0.431	1020.0				21.3	19.2	13.7	12.0	10.6	9.6	7.6	6.4
19	16.38	0.481	1076.6			21.5	19.1	17.2	12.3	10.7	9.5	8.6	6.8	5.7
20	15.61	0.538	1133.3			19.5	17.3	15.6	11.1	9.7	8.6	7.8	6.2	5.2
21	14.82	0.592	1190.0		20.1	17.6	15.6	14.1	10.0	8.8	7.8	7.0	5.	4.7
22	14.14	0.652	1246.6	21.4	18.3	16.0	142	12.8	9.1	8.0	7.1	6.4	5.	4.2
23	13.53	0.717	1303.3	19.6	16.8	14.7	130	11.7	8.4	7.3	6.5	5.8	4.	3.9
24	12.97	0.786	1360.0	18.0	15.4	13.5	12.0	10.8	7.7	6.7	6.0	5.4	4.3	3.6
25	12.45	0.855	1416.6	16.6	14.2	12.4	11.0	9.9	7.1	6.2	5.5	4.9	3.9	3.3
26	11.97	0.927	1473.3	15.3	13.1	11.5	10.2	9.2	6.5	5.7	5.1	4.6	3.6	3.0
27	11.52	1.003	1530.0	14.2	12.1	10.6	9.4	8.5	6.0	5.3	4.7	4.2	3.4	2.8
28	11.11	1.084	1586.6	13.2	11.3	9.9	8.8	7.9	5.6	4.9	4.4	3.9	3.1	2.6
29	10.73	1.170	1643.3	12.3	10.5	9.2	8.2	7.4	5.2	4.6	4.1	3.7	2.9	2.4
30	10.37	1.257	1700.0	11.5	9.8	8.6	7.6	6.9	4.9	4.3	3.8	3.4	2.7	2.3
31	10.04	1.350	1756.6	10.	9.2	8.0	7.1	6.4	4.6	4.0	3.6	3.2	2.5	2.1
32	9.71	1.443	1813.3	10.1	8.6	7.5	6.7	6.0	4.3	3.7	3.4	3.0	2.4	2.0
33	9.43	1.546	1870.0	9.5	8.2	7.1	6.3	5.7	4.0	3.5	3.1	2.8	2.2	1.9
34	9.15	1.650	1926.6	8.9	7.6	6.7	5.9	5.3	3.8	3.3	2.9	2.6	2.1	1.7
35	8.89	1.758	1983.3	8.4	7.2	6.3	5.6	5.0	3.6	3.1	2.8	2.5	2.0	1.6
36	8.64	1.871	2040.0	8.0	6.8	6.0	5.3	4.8	3.4	3.0	2.6	2.4	1.9	1.6
37	8.41	1.987	2096.6	7.5	6.4	5.6	5.0	4.5	3.2	2.8	2.5	2.2	1.8	1.5
38	8.18	2.104	2153.3	7.1	6.1	5.3	4.7	4.3	3.0	2.6	2.3	2.1	1.7	1.4
39	7.98	2.234	2210.0	6.8	5.8	5.1	4.5	4.0	2.9	2.5	2.2	2.0	1.6	1.3
40	7.78	2.336	2266.6			4.8	4.3	3.8	2.7	2.4	2.1		1.5	1.2

Fig． 84.

$\begin{aligned} \text { Sectional area．．．．．．．．} & =12.5^{\prime \prime} \\ \text { Moment of inertia } & =275.92 \\ \text { Constant } K^{\prime} \cdot \ldots ~ & =229.94 \\ W & =\frac{K^{\prime}}{L} .\end{aligned}$

$\begin{aligned} & \text { H } \\ & \text { Bे } \end{aligned}$	$\begin{aligned} & \dot{g} \\ & \stackrel{1}{\circ} \end{aligned}$			Distance d bet．centres of beams in feet，for weight in lbs．per sq．foot of－										
$\stackrel{\dot{R}}{\stackrel{\rightharpoonup}{\square}}$	$\begin{aligned} & \text { ভ̈ } \\ & \text { 巛ु } \\ & \text { だ } \end{aligned}$		$\begin{aligned} & \text { ? } \\ & \text { B0 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \stackrel{0}{8} \end{aligned}$	$\stackrel{\dot{\oplus}}{\stackrel{\circ}{8}}$	$\frac{\dot{\infty}}{\stackrel{0}{8}}$	$\frac{\dot{\text { ®i }}}{\stackrel{\circ}{8}}$	$\begin{aligned} & \dot{\infty} \\ & \frac{\dot{\infty}}{8} \\ & \stackrel{0}{8} \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\dot{\infty}}{\stackrel{\infty}{\circ}}$	$\stackrel{\dot{\sim}}{\stackrel{\rightharpoonup}{\circ}}$		$\begin{aligned} & \dot{\text { s⿳亠丷厂犬}} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$
6	39.31	0.047	250.0											
7	32.84	0.063	291.6											
8	28.74	0.083	333.3											24.0
9	25.54	0.105	375.0										23.0	18.9
10	22.98	0.131	416.6									22.0	18.3	15.3
11	20.90	0.158	458.3							23.0	21.0	19.0	15.2	12.6
12	19.16	0.189	500.0						22.0	19.9	17.7	15.9	12.7	10.6
13	17.68	0.222	541.6						19.4	17.0	15.1	13.6	10.9	9.0
14	16.42	0.258	583.3						16.7	14.6	13.0	－1．7	9.3	7.8
15	15.32	0.297	625.0				22.0	20.0	14.5	12.7	11.3	10.2	8.1	6.7
16	14.37	0.339	666.6			22.0	19.9	17.9	12.8	11.2	9.9	8.9	7.1	5.9
17	13.52	0.383	708.3			19.9	17.7	15.9	11.3	9.9	8.8	7.9	6.3	5.3
18	12.77	0.431	750.0		20.0	17.7	15.7	14.1	10.1	8.8	7.8	7.1	5.6	4.7
19	12.10	0.481	791.6	21.0	18.3	15.9	14.2	12.7	9.1	7.9	7.0	6.3	5.1	4.2
20	11.48	0.538	833.3	19.1	16.4	14.3	12.7	11.4	8.2	7.1	6.3	5.7	4.5	3.8
21	10.94	0.592	875.0	17.3	15.0	13.0	11.6	10.4	7.4	6.5	5.7	5.2	4.1	3.4
22	10.44	0.652	916.6	15.8	13.5	11.8	10.5	9.5	6.7	5.9	5.2	4.7	3.7	3.1
23	9.99	0.717	958.3	14.4	12.5	10.8	9.7	8.6	6.2	5.4	4.8	4.3	3.4	2.8
24	9.58	0.786	1000.0	13.3	11.4	9.9	8.8	7.9	5.7	4.9	4.4	3.9	3.1	2.6
25	9.19	0.855	1041.6	12.2	10.5	9.1	8.2	7.3	5.2	4.5	4.0	3.	2.9	2.4
26	8.84	0.927	1083.2	11.3	9.7	8.5	7.5	6.8	4.8	4.2	3.7	3.4	2.7	2.2
27	8.51	1.003	1125.0	10.5	9.0	7.8	7.0	6.3	4.5	3.9	3.5	3.1	2.5	2.1
28	8.21	1.084	1166.6	9.7	8.3	7.3	6.5	5.8	4.1	3.6	3.2	2.8	2.3	1.9
29	7.92	1.170	1208.3	9.1	7.8	6.8	6.1	5.4	3.8	3.4	3．	2.	2.1	1.8
30	7.66	1.257	1250.0	8.5	7.2	6.3	5.6	5.1	3.6	3.1	2.8	2.	2.0	1.7
31	7.41	1.350	1291.6	7.9	6.8	5.9	5.3	4.8	3.4	2.9	2.6	2.	1.9	1.5
32	7.18	1.443	1333.3	7.4	6.4	5.6	4.9	4.4	3.2	2.8	2.4	2.	1.7	1.4
33	6.96	1.542	1375.0	7.0	6.0	5.2	4.7	4.2	3.0	2.6	2.3	2.1	1.6	1.4
34	6.75	1.645	1416.6	6.6	5.6	4.9	4.4	3.9	2.8	2.4	2.2	2.	1.5	1.3
35	6.57	1.754	1458.3	6.2	5.3	4.7	4.1	3.7	2.6	2.3	2.0	1.8	1.5	1.2
36	6.38	1.871	1500.0	5.9	5.0	4.4	3.9	3.5	2.5	2.2	1.9	1.7	1.4	1.1
37	6.21	1.987	1541.6	5.5	4.8	4.2	3.7	3.3	2.3	2.0	1.8	1.6	1.3	1.1
38	6.05	2.109	1583.3	5.3	4.5	3.9	3.5	3.1	2.2	1.9	1.7	1.5	1.2	1.0
39	5.89	2.229	1625.0	5.0	4.3	3.7	3.3	3.0	2.1	1.8	1.6	1.4	1.1	1.0
40	5.74	2.366	1666.6	4.7	4.1	3.5	3.1	2.8	2.0	1.7	1.5	1.	1.0	0.9

Fig． 85.

$\begin{aligned} & \text { ⿹丁口⿹丁口㇒ } \\ & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{\text { g }} \\ & \text { g } \end{aligned}$	घ		Distance d bet．centres of beams in feet，for weight in lbs．per sq．foot of－										
$\begin{aligned} & 0 . \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { e. } \\ & \text { Ẽ } \\ & \text { हु } \end{aligned}$		$\begin{aligned} & \frac{1}{80} \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$	$\frac{\dot{\text { ®i }}}{\stackrel{2}{8}}$	$\stackrel{\dot{\text { Di }}}{\stackrel{\rightharpoonup}{\mathrm{B}}}$	$\frac{\dot{\infty}}{\stackrel{\infty}{8}}$	$\frac{\dot{8}}{8}$	$\frac{\dot{0}}{\stackrel{0}{8}}$	$\frac{\dot{\text { ®i }}}{\stackrel{\text { ® }}{\sigma}}$	$\frac{\dot{0}}{\hat{0}}$	$\begin{aligned} & \stackrel{\dot{D}}{=} \\ & \stackrel{8}{\sigma} \end{aligned}$		$\begin{aligned} & \stackrel{\dot{\infty}}{=} \\ & \stackrel{\rightharpoonup}{6} \\ & \dot{\hat{N}} \end{aligned}$	$\begin{aligned} & \text { oi } \\ & \stackrel{0}{8} \\ & \stackrel{0}{0} \end{aligned}$
6	2.4 .48	0.053	2100											
7	21.41	0.072	245.0											23.2
8	21.36	0.095	250.0										21.3	17.8
9	18.98	0.120	315.0								23.4	21.1	17.0	14.0
10	17.019	0.149	350.0							21.3	189	17.0	13．6	11.4
11	15.53	0.181	385.0						20.1	17.6	15.6	14.1	11.3	9.3
12	14.21	0.216	420.0						16.9	14.8	13.1	11.8	9.4	7.9
13	13.14	0.254	455.0		．．．		20.6	20.2	14.4	12.6	11.1	10.1	8.1	6.7
14	12．20	0.295	490.0			21.7	19.2	17.4	12.4	10.9	9.6	8.7	6.9	5.8
15	11．：8	0.340	525.0		21.9	18.9	17.0	15.1	10.8	9.4	8.4	7.5	6.0	5.0
16	1068	0.383	560.0	22.2	19.0	16.6	14.9	13.3	9.5	8.3	7.4	6.6	5.3	4.4
17	10.0 .5	0.439	595.0	19.7	17.0	14.7	13.2	11.8	8.4	7.3	6.5	5.9	4.7	3.9
18	9.49	0.494	630.0	17.5	15.0	13.1	11.7	10.5	7.6	6.5	5.8	5.2	4.2	3.5
19	8.93	0.553	6650	15.7	13.6	11.7	10.5	9.4	6.7	5.9	5.2	4.7	3.7	3.1
$2)$	8.54	0.614	700.0	14.2	12.2	10.6	9.4	85	6.1	5.3	4.7	4.2	3.4	2.8
21	8．1：3	0.681	735.6	12.9	11.1	9.6	8.6	7.7	5.5	4.8	4.3	3.8	3.1	2.5
22	7.75	0.752	770.0	11.7	10.0	9.1	7.8	7.0	5.0	4.4	3.9	3.5	2.8	2.3
23	7.43	0.823	805.0	10.7	0.2	8.0	7.2	6.4	4.6	4.0	3.5	3.2	2.5	2.1
24	7.12	0.903	840.0	9.8	8.4	7.4	6.5	5.9	4.2	3.7	3.2	2.9	2.3	1.9
25	6.83	0.980	875.0	9.1	7.8	6.8	6.0	5.4	3.9	3.4	3.0	2.7	2.1	1.8
21	657	1.067	910.0	8.4	7.2	6.3	5.6	5.0	3.6	3.1	2.8	2.5	20	1.6
27	6.32	1.154	945.0	7.8	6.7	5.8	5.2	4.6	3.3	2.9	2.6	2.3	1.8	1.5
28	6.10	1.251	980.0	7.2	6.2	5.4	4.8	4.3	3.1	2.7	2.4	2.1	1.7	1.4
29	5.89	1.346	1015.0	6.7	5.8	5.0	4.5	4.0	2.9	2.5	2.2	2.0	1.8	1.3
30	5.69	1.450	1050.0	6.3	5.4	4.7	4.2	3.7	2.7	2.3	2.1	1.8	1.5	1.2
31	5.51	1.556	1085.0	5.9	5.1	4.4	3.9	3.5	2.5	2.2	1.9	1.7	1.4	1.1
32	5.31	1.672	1120.0	5.5	4.7	4.1	3.7	3.3	2.3	2.0	1.8	1.6	1.3	1.1
33	5.17	1.783	1155.0	5.2	4.4	3.9	3.4	3.1	2.2	1.9	1.7	1.5	1.	1.0
34	5.02	1.906	1190.0	4.8	4.2	3.6	3.2	2.9	2.1	1.8	1.6	1.4	1.1	
35	4.88	2.033	1225.0	4.6	4.0	3.4	3.1	2.7	1.9	1.7	1.5	1.3	1.1	
36	4.69	2.143	12.30 .0	4.3	3.7	3.2	2.8	2.6	1.8	1.6	1.4	1.3	1.1	
37	4.61	2.297	1295.0	4.1	3.5	3.1	2.7	2.4	1.7	1.5	1.3	1.2		
38	4.50	2.444	1330.0	3.9	3.3	2.9	2.6	2.3	1.6	1.4	1.3	1.1		
39	4.38	2589	1365.0	3.6	3.2	2.8	2.5	2.2	1.6	1.4	1.2	1.1		
40	4.20	2.711	1400.0	3.5	3.0	2.6	2.3	2.1	1.5	1.3	1.1	1.0		

$9 / \prime$ "Heavy" Beam. Weight per lf. $=50 \mathrm{lbs}$.

Fig. 86.

Sectional area......... $=15.0^{\prime \prime}$
Moment of inertia $I=188.55$
Constant K^{\prime}.

$$
=\frac{K^{\prime}}{L} .
$$

5.37
$9 / \prime$ "Medium" Beam. Weight per lf. $=30 \mathrm{lbs}$.

$\begin{gathered} 0 \\ \vdots \\ \vdots \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \dot{\oplus} \\ & \text { ®̈ } \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\dot{D}} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$		Distance d bet. centres of beams in feet, for weight in lbs. per sq. foot of-										
$\begin{aligned} & \stackrel{.}{0} . \approx \\ & \stackrel{\infty}{\ddot{\circ}} \end{aligned}$		$\begin{aligned} & \dot{\oplus} \\ & \stackrel{\oplus}{\overleftarrow{~}} \\ & \stackrel{\oplus}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{4}{60} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\frac{\dot{\ddot{\omega}}}{\frac{2}{8}}$	$\stackrel{\dot{0}}{\stackrel{\rightharpoonup}{8}}$	$\stackrel{\dot{\circ}}{\stackrel{\rightharpoonup}{\bar{\infty}}}$	$\frac{\dot{0}}{\stackrel{\rightharpoonup}{=}}$	$\begin{aligned} & \dot{\dot{\circ}} \\ & \frac{\stackrel{y}{0}}{-} \end{aligned}$	$\begin{aligned} & \dot{\dot{D}} \\ & \stackrel{\rightharpoonup}{=} \\ & \stackrel{H}{4} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \frac{0}{8} \\ & \stackrel{0}{6} \end{aligned}$	$\begin{aligned} & \dot{\omega} \\ & \stackrel{\rightharpoonup}{\sigma} \\ & \stackrel{\circ}{2} \end{aligned}$		$\begin{aligned} & \dot{0} \\ & \stackrel{\rightharpoonup}{3} \\ & \dot{\hat{N}} \end{aligned}$	\%
6	20.60	0.062	1800											. 0
7	17.67	0.085	210.0									25.0	20.0	16.0
8	15.46	0.111	210.0							24.0	21.0	19.0	15.0	12.0
9	13.74	0.141	270.0						21.0	19.0	160	15.0	11.0	10.0
10	12.36	0.174	300.0						17.0	15.9	13.0	12.0	9.8	8.2
11	11.24	0.211	330.0				22.0	20.0	14.0	12.0	11.0	10.0	8.1	6.8
12	10.30	0.252	360.0			21.0	19.0	17.0	12.0	10.0	9.5	8.5	6.8	5.7
13	9.51	0.297	390.0		21.0	18.0	16.0	14.0	10.0	9.1	8.1	7.3	5.8	4.8
14	8.83	0.345	420.0	21.0	18.0	15.0	14.0	12.0	9.0	7.8	7.0	6.3	5.0	4.2
15	8.24	0.398	450.0	18.0	15.0	13.0	12.0	10.0	7.8	6.8	6.1	5.4	4.3	3.6
16	7.73	0.455	480.0	16.0	13.0	12.0	10.0	9.6	6.9	6.0	5.3	4.8	3.8	3.2
17	7.21	0.511	510.0	14.0	12.0	10.0	9.4	8.4	6.0	5.3	4.7	4.2	3.2	2.8
18	6.87	0.580	540.0	12.0	10.0	9.5	8.1	7.6	5.4	4.7	4.2	3.8	3.0	2.5
19	6.51	0.650	570.0	11.0	9.7	8.5	7.6	6.8	4.8	4.2	3.8	3.4	2.7	2.2
20	6.18	0.722	600.0	10.0	8.8	7.7	6.8	6.1	1.4	3.8	3.4	3.0	2.4	2.0
21	5.88	0799	630.0	9.3	8.0	7.0	6.2	5.6	4.0	3.5	3.1	2.8	2.2	1.8
22	5.62	0.884	660.0	8.5	7.2	6.3	5.6	5.1	3.6	3.1	2.8	2.5	2.0	1.7
23	5.37	0.969	690.0	7.7	6.6	5.8	5.1	4.6	3.3	2.9	2.5	2.3	1.8	1.5
24	5.15	1.065	720.0	7.1	6.1	5.3	4.7	4.2	3.0	2.6	2.3	2.1	1.7	1.4
25	4.94	1.157	750.0	6.5	5.6	4.9	4.3	3.9	2.8	2.5	2.1	1.9	1.5	1.3
26	4.83	1.277	780.0	6.1	5.3	4.6	4.1	3.7	2.6	2.3	2.0	1.8	1.4	1.2
27	4.58	1.365	810.0	5.6	4.8	4.2	3.7	3.3	2.4	2.1	1.8	1.6	1.3	1.1
28	4.41	1.476	840.0	5.4	4.5	3.9	3.5	3.1	2.2	1.9	1.7	1.5	1.2	1.0
29	4.26	1.593	870.0	4.8	4.1	3.6	3.2	2.9	2.0	1.8	1.6	1.4	1.1	
30	4.12	1.718	900.0	4.5	3.9	3.4	3.0	2.7	1.9	1.7	1.5	1.3	1.0	
31	3.99	1.846	930.0	4.2	3.6	3.2	2.8	2.5	1.8	1.6	1.4	1.2	1.0	
32	3.86	1.982	960.0	4.0	3.4	3.0	2.6	2.4	1.7	1.5	1.3	1.2		
33	3.74	2.119	9900	3.7	3.2	2.8	2.5	2.2	1.6	1.4	1.2	1.1		
34	3.63	2.235	1020.0	3.5	3.0	2.6	2.3	2.1	1.5	1.3	1.1	1.0		
35	3.53	2.416	1050.0	3.3	2.8	2.5	2.2	2.0	1.4	1.2	1.1	1.0		
36	3.43	2.577	1080.0	3.1	2.7	2.3	2.1	1.9	1.3	1.1	1.0			
37	3.34	2.742	1110.0	3.0	2.5	2.2	2.0	1.8	1.2	1.1	1.0			
38	3.25	2.918	1140.0	28	2.4	2.1	1.9	1.7	1.2	1.0				
39	3.17	3.098	1170.0	2.7	2.3	2.0	1.7	1.6	1.1	1.0				
40	3.09	3.289	1200.0	2.5	2.2	1.9	1.6							

9" "Light" Beam. Weight per lf. $=23.33 \mathrm{lbs}$.

```
Fig. 88.
```



```
    F1.s.88.
```

```
    F1.s.88.
```


$8^{\prime \prime}$ Beam. Weight per lf. $=21.66 \mathrm{lbs}$.
Fig. 89.

Fig． 90.

$7^{\prime \prime}$ Beam．Weight per lf．$=18.33 \mathrm{lbs}$.

Sectional area．．．．．．．．．$=5.5^{\prime \prime}$
Moment of inertia $I=44.84$
Constant K^{\prime} ．．．．．．．．．．．．．$=64.06$
$W_{=}=\frac{\ddot{K}^{\prime}}{L}$.

䯚	坒	$\underset{\sim}{\otimes}$	0	Distance d bet．centres of beams in feet，for weight in lbs．per sq．foot of－										
		$\begin{aligned} & \stackrel{1}{\circ} \\ & \AA \end{aligned}$	$\begin{aligned} & \stackrel{+1}{30} \\ & \stackrel{10}{6} \\ & \beta \end{aligned}$	$\frac{\dot{\infty}}{\stackrel{\infty}{8}}$	$\frac{\dot{0}}{\circ}$	$\frac{\dot{8}}{\frac{1}{8}}$	$\frac{\text { gi }}{8}$	$\begin{aligned} & \text { 吕 } \\ & \stackrel{0}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{0}{7} \\ & \underset{\sim}{i} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{8} \\ & 8 \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & =0 \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{\infty}{\approx} \\ & \stackrel{\circ}{8} \\ & \hline \end{aligned}$		$\frac{\dot{0}}{\stackrel{0}{8}}$
6	10.67	0.080	110.0						25.4	222	19.7	17.7	14.2	11.8
7	9.15	0.109	128.3						18.6	16.3	14.5	13.0	10.5	8.7
8	8.00	0.143	146.6			25.0	22.2	20.0	14.2	12.5	11.1	10.0	8.0	6.6
9	7.11	0.181	165.0		22.9	19.7	17.5	15.8	11.2	9.8	8.7	7.9	6.3	5.2
10	6.40	0.224	183.3	21.3	18.2	16.0	14.2	12.8	9.1	8.0	7.1	6.4	5.1	4.2
11	5.82	0.272	201.6	17.6	15.3	13.2	11.7	10.5	7.5	6.6	5.8	5.2	4.2	3.5
12	5.33	0.325	220.0	14.8	12.6	11.1	9.8	8.8	6.3	5.5	4.9	4.4	3.5	2.9
13	4.92	0.382	238.3	12.6	10.9	9.4	8.3	7.5	5.4	4.7	4.1	3.7	3.0	2.5
14	4.56	0.444	256.6	10.8	9.3	8.1	7.2	6.5	4.6	4.0	3.6	3.2	2.6	2.1
15	4.27	0.513	275.0	9.4	8.2	7.1	6.3	5.7	4.0	35	3.1	2.8	2.2	1.8
16	3.99	0.585	293.3	8.3	7.1	6.2	5.5	4.9	3.5	3.1	2.7	2.4	1.9	1.6
17	3.76	0.665	311.6	7.3	6.5	5.5	4.9	4.4	3.1	2.7	2.3	2.1	1.7	1.4
18	3.55	0.749	330.0	6.5	5.6	4.9	4.3	3.9	2.8	24	2.1	1.9	1.5	1.3
19	3.37	0.840	348.3	5.9	5.1	4.4	3.9	3.5	2.5	2.2	1.9	1.7	1.4	1.1
20	3.20	0.936	366.6	5.3	4.5	4.0	3.5	3.2	2.2	2.0	1.7	1.6	1.2	1.0
21	3.05	1.038	385.0	4.8	4.1	3.6	3.2	2.9	2.0	1.8	1.6	1.4	1.1	
22	2.91	1.146	403.3	4.4	3.7	3.3	2.9	2.6	1.8	1.6	1.4	1.3	1.0	
23	2.78	1.257	421.6	4.0	3.4	3.0	2.7	2.4	1.7	1.5	1.3	1.2		
24	2.66	1.381	440.0	3.6	3.1	2.7	2.4	2.2	1.6	1.3	1.2	1.1		
25	2.56	1.504	458.3	3.4	2.9	2.5	2.2	2.0	1.5	1.2	1.1	1.0		
26	2.45	1.630	476.6	3.1	2.6	2.3	2.0	1.8	1.4	1.1				
27	2.37	1.775	495.0	2.9	2.5	2.1	1.9	1.7	1.3	1.0				
28	2.27	1.871	513.3	2.7	2.3	2.0	1.8	1.6	1.2					
29	2.20	2.075	531.6	2.5	2.1	1.8	1.7	1.5	11					
30	2.12	2.229	550.0	2.3	2.0	1.7	1.5	1.4	1.0					

Fig. 91.

$\begin{aligned} & \sum_{0}^{\infty} \\ & 0 . \\ & 0.0 \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { dig } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \\ & \stackrel{\pi}{0} \end{aligned}$	¢	Distance d bet. centres of beams in feet, for weight in lbs. per sq. foot of-										
		© ®̈ ® ®	$\begin{aligned} & \frac{4}{30} \\ & 30 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{8} \\ & \stackrel{8}{8} \end{aligned}$	$\frac{\dot{\infty}}{\stackrel{\circ}{8}}$	$\begin{aligned} & \dot{\infty} \\ & \frac{8}{8} \\ & 8 \end{aligned}$	$\frac{\dot{0}}{\stackrel{0}{8}}$	$\begin{aligned} & \dot{0} \\ & \stackrel{0}{2} \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \frac{0}{\theta} \\ & \stackrel{i}{i} \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{0}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\dot{0}}{8} \\ & \stackrel{8}{\infty} \end{aligned}$	$\frac{\dot{\oplus}}{\stackrel{\circ}{8}}$	-	\%
6	6.27	0.094	80.0				23.2	20.9	14.9	13.0	11.6	10.4	8.3	6.9
7	5.37	0.128	93.3		19.1	17.3	15.3	10.0	9.5	8.4	7.6	6.1	5.1
8	4.70	0.168	106.6	19.5	16.8	14.6	13.0	11.7	8.5	7.3	6.5	5.8	4.7	3.9
9	4.18	0.213	120.0	15.4	13.4	11.6	10.4	9.2	6.6	5.8	5.1	4.6	3.7	3.1
10	3.75	0.263	133.3	12.5	10.7	9.3	8.3	7.5	5.3	4.7	4.1	3.7	3.0	2.5
11	3.42	0.320	146.6	10.3	9.0	7.7	6.9	6.2	4.4	3.8	3.4	3.1	2.4	2.0
12	3.13	0.382	160.0	8.6	7.0	6.5	5.7	5.2	3.7	3.2	2.9	2.6	2.0	1.7
13	2.89	0.450	173.3	7.4	6.4	5.5	4.9	4.4	3.1	2.7	2.4	2.2	1.7	1.4
14	2.68	0.524	186.6	6.3	5.4	4.7	4.2	3.8	2.7	2.3	2.1	1.9	1.5	1.2
15	2.51	0.607	200.0	5.5	4.8	4.2	3.7	3.3	2.3	2.1	1.8	1.6	1.3	1.1
16	2.34	0.689	213.3	4.8	41	3.6	3.2	2.9	2.0	1.8	1.6	1.4	1.1	
17	2.21	0.786	226.6	4.3	3.7	3.2	2.9	2.5	1.8	1.6	1.4	1.8		
18	2.09	0.888	240.0	3.8	3.3	2.9	2.5	2.3	1.6	1.4	1.2	1.1		
19	1.98	0.995	253.3	3.4	3.0	2.6	23	2.1	1.4	1.3	1.1			
20	1.88	1.110	266.6	3.1	2.7	2.3	2.1	1.8	1.3	1.1				
21	1.79	1.231	280.0	2.8	2.4	2.1	1.9	1.7	1.2	1.0				
22	1.70	1.350	293.3	2.5	2.2	1.9	1.7	1.5	1.1					
23	1.63	1.493	306.6	2.3	2.0	1.7	1.5	1.4	1.0					
24	1.56	1.641	320.0	2.1	1.8	1.6	1.4	1.3						
25	1.50	1.787	333.3	2.0	1.7	1.5	1.3	1.2						
26	1.44	1.950	346.6	1.8	1.5	1.3	1.2	1.1						
27	1.39	2.129	360.0	1.7	1.4	1.2	1.1							
28	1.33	2.286	373.3	1.5	1.3	1.1								
29	1.29	2.489	386.6	1.4	1.2	1.0								
30	1.25	2.698	400.0	1.3	1.1									

Cast-Iron Beams.

Factor of rupture C for cast-iron beams of various sections.
The factor C is based on practical experiments by Hodgkinson. Its value alters with the different proportions of the cross-sections of beam.
Beam supported at the ends; load concentrated at the center.
Reference.
$C=$ Factor of rupture.
$W=$ Breaking weight in lbs.
$A=$ Sectional area of beam in square inches.
$l=$ Distance between supports in inches.
$h=$ Height of beam in inches.

$$
C=\frac{W \cdot l}{A \cdot h}, W=\frac{A \cdot h}{l} \cdot C .
$$

Dimensions in inches. $b=$ Thickness of web at center is the unit.

Fig. 94.
$1.07=3.34 b$

$$
A=2.88 \quad C=30330
$$

Fig. 95.

Fig. 96.

$$
2.33=8.75 b
$$

$5.125=19.26 b$

$$
A=6.23 \quad C=44176
$$

Theoretical cross-section of equal resistance, according to Moll and Reuleaux.

Theoretical cross-section of equal resistance-Continued.

	Form of section.	Moment of inertia I.	$\begin{aligned} & \text { Moment of re- } \\ & \text { sistance } \frac{I}{\mathrm{~s}} \\ & \hline \end{aligned}$	Sectional area Λ in inches.
99		$440{ }^{4}$	553^{3}	$25 b^{2}$
100		9226^{4}	$102.4 b^{3}$	$40.82 b^{2}$

Load concentrated at center: $W=\frac{K^{1}}{l}$, or $K^{1}=l . W$.
Beam fixed at one end; principal flange at top.
Load equally distributed: $W=\frac{K^{1}}{2 . l}$, or $K^{1}=2 . l . W$.
Load concentrated at free end: $W=\frac{K^{1}}{4 . l}$, or $K^{1}=4 . l . W$.
[Note.-The more the sectional area is contained in coefficient K^{1}, the more is the section economical.]

Example.-Section No. 34. Load equally distributed; beam supported at both ends; thickness of web $=1$ inch; thickness of flange $=1 \frac{1}{4}$ inch; height $=10$ inches; width of flange $=5.9$ inches. Distance between supports $=20$ feet $=240$ inches.
$W=\frac{K^{1}}{\frac{1}{2} l}=\frac{658}{120}=5.48$ tons capacity.
The moment of resistance of cross-section $\frac{I}{8}=\frac{K^{1}}{14}$

Fig． 102.	1	6	5.0	10.0	238
	2	$6 \frac{1}{2}$	5.2	10.7	280
\mathbb{N}	3	7.	5.5	11.5	322
N \quad H	4	$7 \frac{1}{2}$	5.7	12.2	364
＊	5	8	6.0	13.0	420
	6	$8 \frac{1}{2}$	6.2	13.7	476
Fig． 103.	7	9	6.5	14.5 ．	532
$\chi^{\prime \prime}$	8	$9 \frac{1}{2}$	6.7	15.2	602
	9	10	6.9	15.9	672
H	10	$10 \frac{1}{2}$	7.1	16.6	742
，	11	11	7.4	17.4	812
I ${ }^{\text {Whew }}$	12	$11 \frac{1}{2}$	7.6	181	882
	13	12	7.9	18.9	966
－ $7^{\prime \prime}$	14	$12 \frac{1}{2}$	8.1	－ 19.6	1050
	15	13 ：	8.4	20.4	1134
	16	$13 \frac{1}{2}$ ，	8.6	21.1	1232
	17	14．	8.8	21.8	1316
$\ddot{1}^{\prime \prime}$	18	142，	9.0	22.5	1428
$-\boldsymbol{B}-\cdots$	19	15	9.3	23.3	1526
Fig． 105.	20	151 ${ }^{\text {，}}$	9.5	「24．0	1624
	21	16 ．	9.8	24.8	1750
家；	22	161，	10.0	25.5	1848
家，恶	23	17	10.3	26.3	1960
	24	$17 \frac{1}{2}$	10.5	27.0	2086
	25	18	10.8	27.8	2212

Fig. 106. (1";	26	6	4.5	10.4	224
	27	$6 \frac{1}{2}$	4.6	11.1	266
	28	7	4.8	11.8	322
	29	$7 \frac{1}{2}$	5.0	12.5	364
	30	8	5.2	13.2	420
	31	$8 \frac{1}{2}$	5.4	13.9	476
Frig 107	32	9	5.6	14.7	532
- 1 "'	33	$9 \frac{1}{2}$	5.7	15.4	588
	34	10	5.9	16.2	658
	35	101 ${ }^{\frac{1}{2}}$	6.1	16.9	728
	36	11	6.3	17.6	798
	37	111 $\frac{1}{2}$	6.5	18.3	882
---- B---->	38	12	6.7	19.1	952
	39	$12 \frac{1}{2}$	6.9	19.8	1036
	40	13	7.1	20.6	1134
	41	$13 \frac{1}{2}$	7.3	21.3	- 1218
	42	14	7.5	22.1	1316
	43	141 $\frac{1}{2}$	7.7	22.8	1414
$\cdots----x^{2}$	44	15	7.9	23.6	1512
Fig. 109.	45	151	8.0	24.3	1610
汭近	46	16	8.2	25.1	1722
	47	$16 \frac{1}{2}$	8.4	25.8	1834
H	48	17	8.6	26.5	1946
	49	$17 \frac{1}{2}$	8.8	27.2	2072
Lesinus	50	18	9.0	28.0	2198

	51	6	4.2	10.5	224
	52	$6 \frac{1}{2}$	4.3	11.4	266
	53	7	4.5	12.3	308
	54	$7 \frac{1}{2}$	4.6	12.9	364
	55	8	4.7	13.6	406
	56	$8 \frac{1}{2}$	4.8	14.3	462
Fig. 111.	57	9	5.0	15.0	532
	58	$9 \frac{1}{2}$	5.1	15.7	588
	59	10	5.3	16.5	658
	60	$10 \frac{1}{2}$	5.4	17.2	728
	61	11	5.6	17.9	798
	62	112	5.7	18.6	868
	63	12	5.9	19.4	952
: $\chi^{\prime \prime \prime}$	64	$12 \frac{1}{2}$	6.0	20.1	1036
翏	65	13	6.3	20.9	1120
	66	$13 \frac{1}{2}$	6.4	21.6	1204
	67	14	6.6	22.4	1302
	68	141	6.7	23.1	1400
$\cdots-\boldsymbol{B}-\cdots{ }^{\text {a }}$	69	15	6.9	23.8	1498
Fig. 113.	70	$15 \frac{1}{2}$	7.0	24.5	1610
	71	16	7.2	25.3	1708
	72	163	7.3	26.0	1820
	73	17	7.5	26.8	1932
	74	171 $\frac{1}{2}$	7.7	27.5	2058
	75	18	7.9	28.3	2184

	114	6	5.3	13.6	280
	115	$6 \frac{1}{2}$	5.4	14.4	336
	116	7	5.6	15.3	392
	117	$7 \frac{1}{2}$	5.7	16.1	448
	118	8	5.9	17.0	518
	119	$8 \frac{1}{2}$	6.0	$17.8{ }^{\circ}$	588
$\begin{gathered} \text { F-B- }-\cdots, ~ \\ \text { Fig. } 123 . \end{gathered}$	120	9	6.2	18.7	658
$11 / 4$	121	$9 \frac{1}{2}$	6.4	19.6	742
	122	10	6.6	20.5	814
	123	1012	6.8	21.4	910
	124	11	7.0	22.4	994
1/2	125	1112	7.2	23.3	1092
$k--\quad B>$	126	12	7.4	24.2	1190
Fig. 124. $3 / 3 / 4$	127	$12 \frac{1}{2}$	7.6	25.1	1288
	128	13	7.8	26.1	1400
H	129	$13 \frac{1}{2}$	8.0	27.0	1512
	130	14	8.2	27.9	1624
$\underline{Z 1 / 2}$	131	$14 \frac{1}{2}$	8.4	28.8	1750
K-B--	132	15	8.6	29.8	1876
${ }_{\left(5 \%^{\prime \prime}\right.}{ }^{\prime}$ Fig. 125.	133	$15 \frac{1}{2}$	8.8	30.7	2002
	134	16	9.0	31.6	2142
	135	163	9.2	32.5	2282
H	136	17	9.4	33.5	2422
	137	$17 \frac{1}{2}$	9.6	34.4	2562
$\underset{K--D}{ }$	138	18	9.8	35.3	2716

RESISTANCE TO CROSS－BREAKING AND SHEARING．

Fig． 126. ｜ $71 / 4$	139	6	5.0	15.0	280
T	140	7	5.1	16.4	378
	141	8	5.3	18.0	504
Fig． 127.	142	9	5.5	197	644
	143	10	5.7	21.4	798
	144	11	6.0	23.2	980
$:-\cdots \cdots$ Fig 128.	145	12	6.3	25.0	1162
$-\operatorname{li}_{\pi}^{-\cdots-\cdots}$	146	13	6.5	26.8	1372
\dot{H}	147	14	6.8	28.6	1610
W-M-B-Cl	148	15	7.1	30.5	1848
	149	16	7.4	32.3	2114
$\frac{1}{H}$	150	17	7.7	34.2	2394
	151	18	8.0	36.0	2688

	152	6	6.3	16.2	336
	153	$6 \frac{1}{2}$	6.5	17.2	406
	154	7	6.7	18.3	476
	155	$7 \frac{1}{2}$	6.9	19.3	546
	156	8	7.1	20.4	616
	157	$8 \frac{1}{2}$	7.3	21.5	700
11\%2	158	9	7.5	22.6	784
	159	912	7.7	23.6	882
	160	10	8.0	24.7	980
	161	$10 \frac{1}{2}$	8.2	25.8	1078
	162	11	8.4	26.9	1190
	163	112	8.6	28.0	1302
$\leftrightarrow--\boldsymbol{B - - - >}$	164	12	8.9	29.1	1428
$\text { Fig. } 132 .$	165	$12 \frac{1}{2}$	9.1	30.1	1554
\square^{-1}	166	13	9.3	31.2	1680
,	167	$13 \frac{1}{2}$	9.5	32.3	1806
	168	14	9.8	33.5	1960
	169	$14 \frac{1}{2}$	10.0	34.6	2100
$\|----3-\cdots\|$	170	15	10.3	35.7	2254
Fig. 133.	171	$15 \frac{1}{2}$	10.5	36.8	2408
	172	16	10.8	38.0	2562
	173	161	11.0	39.1	2730
	174	17	11.3	40.2	2912
	175	171	11.5	41.3	3080
	176	18	11.8	42.5	3262

Fig. 134. " $1 / 2$!',	177	6	6.0	18.0	336
	178	7	6.1	19.7	463
2^{11}	179	8	6.3	21.6	602
Fig. 135.	180	9	6.6	23.6	770
	181	10	6.9	25.7	966
	182	11	7.2	27.9	1176
	183	12	7.5	30.0	1400
	184	13	7.8	32.2	1652
	185	14	8.2	34.4	1932
	186	15	8.5	36.7	2212
	187	16	8.9	38.8	2534
H	188	17	9.2	41.0	2370
	189	18	9.6	43.2	3220

$1 z^{3} / 1$	190	6	7.0	21.0	392
	191	7	7.1	23.0	532
$2^{\prime \prime}$ M	192	8	7.4	25.2	714
Fig. 139.	193	9	7.7	27.6	896
	194	10	8.0	30.0	1120
城	195	11	8.4	32.5	1372
$\text { Fig. } 140 \text {. }$	196	12	8.8	35.0	1638
	197	13	9.1	37.5	1932
	198	14	9.6	40.1	2240
\cdots - -	199	15	10.0	42.7	2590
178%	200	16	10.4	45.2	2954
H	201	17	10.8	47.8	3346
2"x	202	18	11.2	50.4	3766

Fig. 146.	1	6	6	1.4	11.4	294
-	2	6	7	1.9	12.9	336
	3	6	8	2.3	14.3	392
$1^{\prime \prime} \quad \frac{H}{T}$	4	6	9	2.7	15.7	448
	5	6	10	3.1	17.1	504
-	6	6	11	3.6	18.6	560
- 147.	7	6	12	4.0	20.0	602
- $\mathrm{il}_{1}^{k-6->_{1}}$	8	6	13	4.4	21.4	658
人	9	6	14	4.9	22.9	714
$\boldsymbol{I}^{\prime \prime} \text { 荃 }$	10	6	15	5.3	24.3	770
	11	6	16	5.7	25.7	826
\cdots	12	6	17	6.2	27.2	868
. 148.	13	6	18	6.6	28.6	924
: -6	14	7	6	1.2	12.2	350
	15	7	7	1.7	13.7	420
H	16	7	8	2.1	15.1	490
	17	7	9	2.6	16.6	560
	18	7	10	3.0	18.0	616
	19	7	11	3.4	19.4	686
	20	7	12	3.9	20.9	756
	21	7	13	4.3	22.3	826
	22	7	14	4.8	23.8	896
	23	7	15	5.2	25.2	966
	24	7	16	5.7	26.7	1022
	25	7	17	6.1	28.1	1092

				$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ =0 \end{array}\right.$		
Fig. 146.	26	7	18	6.5	29.5	1162
${ }_{7}$	27	8	6	1.0	13.0	434
	28	8	7	1.5	14.5	504
$1^{\prime \prime}=\frac{H}{1}$	29	8	8	1.9	15.9	588
	30	8	9	2.4	17.4	672
$\underline{1}$	31	8	10	2.8	18.8	742
g. 147.	32	8	11	3.3	20.3	826
	33	8	12	3.7	21.7	910
	34	8	13	4.2	23.2	994
\boldsymbol{H} "	35	8	14	4.6	24.6	1078
	36	8	15	5.1	26.1	1148
	37	8	16	5.5	27.5	1232
g. 148.	38	8	17	6.0	29.0	1316
$\stackrel{\text { : }}{ }$	39	8	18	6.4	30.4	1386
	40	9	7	1.3	15.3	588
\underline{H}	41	9	8	1.7	16.7	686
	42	9	9	2.2	18.2	84
	43	9	10	2.6	19.6	868
	44	9	11	3.1	21.1	966
	45	9	12	3.5	22.5	1064
	46	9	13	4.1	24.1	1162
\ldots	47	9	14	4.5	25.5	1246
	48	9	15	4.9	26.9	1344
沴	49	9	16	5.4	28.4	1442
	50	9	17	5.8	29.8	1526

				$\begin{aligned} & 10 \div \pm \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
Fig. 146.	51	9	18	6.3	31.3	1624
	52	10	7	1.1	16.1	672
	53	10	8	1.5	17.5	784
$\mathbf{1}^{\prime \prime}$	54	10	9	2.0	19.0	896
	55	10	10	2.4	20.4	1008
K------	56	10	11	2.9	21.9	1106
g. 147.	57	10	12	3.3	23.3	1218
- ${ }^{\prime \prime}$	58	10	13	38	24.8	1330
	59	10	14	4.3	26.3	1428
I' ${ }^{\text {或 }}$	60	10	15	4.7	27.7	1540
	61	10	16	5.2	29.2	1652
$\mathbf{I}_{-\infty}^{i=-\infty}$	62	10	17	5.7	30.7	1750
g. 148.	63	10	18	6.1	32.1	1862
$a-b \rightarrow$	64	11	8	1.3	18.3	896
	65	11	9	1.7	19.7	1008
	66	11	10	2.2	21.2	1134
	67	11	11	2.7	22.7	1246
2	68	11	12	3.1	24.7	1372
$\text { Fig. } 149 .$	69	11	13	3.6	25.6	1498
	70	11	14	4.1	27.1	1610
	71	11	15	4.5	28.5	1736
	72	11	16	5.0	30.0	1862
$1 / 2 \quad$ H	73	11	17	5.5	31.5	1974
	74	11	18	5.9	32.9	2100
$\underset{\sim}{x \rightarrow-\mathcal{B}^{-\cdots}}$	75	12	8	1.1	19.1	994

Fig． 146.	76	12	9	1.5	20.5	1120
	77	12	10	2.0	22.0	1260
	78	12	11	2.5	23.5	1400
$1^{\prime \prime} \times$ H	79	12	12	2.9	24.9	1526
	80	12	13	3.4	26.4	1666
－	81	12	14	3.9	27.9	1806
Fig． 147.	82	12	15	4.3	29.3	1932
	83	12	16	4.8	30.8	2072
	84	12	17	5.3	32.3	2198
$\boldsymbol{I}^{\prime \prime}$ 翏 $\underline{H}^{\underline{H}}$	85	12	18	5.7	33.7	2338
	86	13	9	1.3	21.3	1232
	87	13	10	1.8	22.8	1386
． 148.	88	13	11	2.2	24.2	1540
，	89	13	12	2.7	25.7	1680
\mathbb{N}^{2}	90	13	13	3.2	27.2	1834
＊${ }^{\boldsymbol{H}}$	91	13	14	3.7	28.7	1988
	92	13	15	4.1	30.1	2128
	93	13	16	4.6	31.6	2282
$\text { Fra. } 149$	94	13	17	5.1	33.1	2422
	95	13	18	5.5	34.5	2576
	96	14	9	1.1	22.1	1358
	97	14	10	1.5	23.5	1512
	98	14	11	2.0	25.0	1680
药	99	14	12	2.5	26.5	1834
若	100	14	13	3.0	28.0	2002

		$\begin{aligned} & \text { I } \\ & \text { E. } \\ & \text { E.E } \\ & \mathbb{4} . \Xi \end{aligned}$				
Fig. 146.	101	14	14	3.4	29.4	2170
\cdots	102	14	15	3.9	30.9	2324
	103	14	16	4.4	32.4	2492
$1^{\prime \prime} \quad$ H	104	14	17	4.8	33.8	2650
	105	14	18	5.3	35.3	2814
R	106	15	10	1.3	24.3	1638
g. 147.	107	15	11	1.8	25.8	1820
k- -1	108	15	12	2.3	27.3	2002
	109	15	13	2.7	28.7	2170
	110	15	14	3.2	30.2	2352
	111	15	15	3.7	31.7	2520
I'	112	15	16	4.2	33.2	2702
	113	15	17	4.6	34.6	2884
: - b $\rightarrow 1$	114	15	18	5.1	36.1	3052
\mathbb{E}	115	16	10	1.1	25.1	1764
7'1 ${ }^{\text {N }}$	116	16	11	1.6	26.6	1960
	117	16	12	2.0	28.0	2156
Six	118	16°	13	2.5	29.5	2338
W	119	16	14	3.0	31.0	2534
	120	16	15	3.5	32.5	2730
	121	16	16	3.9	33.9	2912
	122	16	17	4.4	35.4	3108
	123	16	18	4.9	36.9	3290
	124	17	11	1.3	27.3	2100
$\underset{\sim}{2}$	125	17	12	1.8	28.8	2310

ig. 15	165	7	16	5.7	36.6	1246
1-buc	166	7	17	6.1	38.7	1330
	167	7	18	6.5	40.8	1414
\ddot{z}	168	8	5	1.1	14.2	1022
园	169	8	6	1.5	16.3	546
	170	8	7	2.0	18.5	644
Fig. 151.	171	8	8	2.4	20.6	742
k-b-	172	8	9	2.8	22.7	840
	173	8	10	3.2	24.8	938
$1{ }^{\text {\% }}$ - ${ }^{\text {H }}$	174	8	11	3.6	26.9	1036
	175	8	12	4.1	29.2	1148
	176	8	13	4.5	31.3	1246
$\text { ig. } 152 .$	177	8	14	4.9	33.4	1344
$k-b \rightarrow$	178	8	15	5.3	35.5	1442
$1 / 2$	179	8	16	5.7	37.6	1540
$\mathrm{I}^{\prime \prime}$ H	180	8	17	6.2	39.8	1638
	181	8	18	6.6	41.9	1750
	182	9	5	1.0	15.0	518
$\cdots-B^{-\cdots--\cdots}$ Fig. 153.	183	9	6	1.4	17.1	644
76: $\frac{1}{6}$	184	9	7	1.9	19.4	770
	185	9	8	2.3	21.5	882
	186	9	9	2.7	23.6	1008
$\frac{6}{2}=\frac{1}{H}$	187	9	10	3.1	25.7	1120
	188	9	11	3.6	27.9	1246
	189	9	12	4.0	30.0	1358

Fig. 151. Fig. 152. Fig. 153.						或
	190	9	13	4.4	32.1	1484
	191	9	14	4.9	34.4	1610
	192	9	15	5.3	36.5	1722
	193	9	16	5.7	38.6	1848
	194	9	17	6.2	40.8	1960
	195	9	18	6.6	42.9	2086
	196	10	6	1.3	18.0	756
	197	10	7	1.7	20.1	896
	198	10	8	2.2	22.3	1036
	199	10	9	2.6	24.4	1176
	200	10	10	3.1	26.7	1316
	201	10	11	3.5	28.8	1456
	202	10	12	3.9	30.9	1596
	203	10	13	4.4	33.1	1736
	204	10	14	4.8	35.2	1876
	205	10	15	5.2	37.3	2016
	206	10	16	5.7	39.6	2156
	207	10	17	6.1	41.7	2296
	208	10	18	6.5	43.8	2436
	209	11	6	1.2	18.8	854
	210	11	7	1.6	20.9	1022
	211	11	8	2.1	23.2	1176
	212	11	9	2.5	25.3	1344
	213	11	10	3.0	27.5	1498
	214	11	11	3.4	29.6	1666

g． 150.	215	11	12	3.8	31.7	1820
｜c－bul	216	11	13	4.3	340	1974
	217	11	14	4.7	36.1	2128
$\ddot{\prime}$	218	11	15	5.2	38.3	2296
全	219	11	16	5.6	40.4	2464
1彦	220	11	17	6.1	42.7	2618
151.	221	11	18	6.5	44.8	2786
$\underline{k-b \rightarrow 1}$	222	12	6	1.0	19.5	966
y/x	223	12	7	1.5	21.8	1148
I＇${ }^{\text {人 }}$－H	224	12	8	1.9	23.9	1330
	225	12	9	2.4	26.1	1512
IIE．0．	226	12	10	2.8	28.2	1680
$\begin{aligned} & \|-\boldsymbol{B} \cdots \cdots\| \\ & \text { Fig. } 152 . \end{aligned}$	227	12	11	3.3	30.5	1862
$-b \rightarrow i$	228	12	12	3.7	32.6	2044
II／2	229	12	13	4.2	34.8	2226
	230	12	14	4.6	36.9	2408
	231	12	15	5.1	39.2	2590
－1． $\mathrm{I}^{1 / 2}$	232	12	16	5.5	41.3	2772
$-B-\cdots$	233	12	17	6.0	43.5	2954
	234	12	18	6.4	45.6	3136
	235	13	7	1.4	22.6	1274
	236	13	8	1.8	24.7	1470
楊 哜	237	13	9	2.3	27.0	1680
	238	13	10	2.7	29.1	1876
	239	13	11	3.2	31.3	2072

Fig. 150.	240	13	12	3.6	33.4	2282
-	241	13	13	4.1	35.7	2478
	242	13	14	4.5	37.8	2674
-	243	13	15	5.0	40.0	2884
	244	13	16	5.4	42.1	3080
11/2.-1/	245	13	17	5.9	44.4	3276
g. 151.	246	13	18	6.3	46.5	3486
k-b	247	14	7	1.2	23.3	1400
11/0.9	248	14	8	1.7	25.6	1624
7 为	249	14	9	2.1	27.7	1848
	250	14	10	2.6	29.9	2058
7\%\% momen	251	14	11	3.0	32.0	2282
---3	252	14	12	3.5	34.3	2506
$k-b$	253	14	13	3.9	36.4	2730
I/2	254	14	14	4.4	38.6	2954
	255	14	15	4.9	40.9	3178
	256	14	16	5.3	43.0	3388
T1071/2	257	14	17	5.8	45.2	3612
$\cdots-\cdots-\cdots$	258	14	18	6.2	47.3	3836
7	259	15	7	1.1	24.2	1526
	260	15	8	1.5	26.3	1764
	261	15	9	2.0	28.5	2016
	262	15	10	2.4	30.6	2254
	263	15	11	2.9	32.9	2492
	264	15	12	3.4	35.1	2744

			$\begin{aligned} & \sim \dot{0} . E \\ & 0.0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
Fig. 150.	265	15	13	3.8	37.2	2982
iv-buri	266	15	14	4.3	39.5	3220
	267	15	15	4.7	41.6	3472
\boldsymbol{I}	268	15	16	5.2	43.8	3710
	269	15	17	5.7	46.1	3948
WMM M M \boldsymbol{P}	270	15	18	6.1	48.2	4200
g. 151.	271	16	8	14	27.1	1918
k-b	272	16	9	1.8	29.2	2184
11\%	273	16	10	2.3	31.5	2450
	274	16	11	2.8	53.7	2702
	275	16	12	3.2	35.8	2968
	276	16	13	3.7	38.1	3234
	277	16	14	4.1	40.2	3500
-b	278	16	15	4.7	42.6	3766
	279	16	16	5.2	44.8	4018
	280	16	17	5.7	47.1	4284
	281	16	18	6.1	49.2	4550
$11 / 2$	282	17	8	1.2	27.8	2072
$\leftrightarrow--B^{-\cdots-\cdots 1}$	283	17	9	1.7	30.1	2352
	284	17	10	2.1	32.2	2632
	285	17	11	2.6	34.4	2926
	286	17	12	3.1	36.7	3206
	287	17	13	3.5	38.8	3486
]	288	17	14	4.0	41.0	3766
	289	17	15	4.5	43.3	4060

Fig． 154.	304	6	7	1.8	17.7	378
$\cdots i \leqslant-b-\gg$	305	6	8	2.2	19.8	448
，	306	6	9	2.5	21.8	504
I1／2 ${ }^{11}$	307	6	10	2.9	23.9	574
，走	308	6	11	3.3	26.0	630
71／2．	309	6	12	3.7	28.1	686
Fig． 155.	－ 310	6	13	4.1	30.2	756
$2 \mathrm{k}-7$	311	6	14	4.5	32.3	812
	312	6	15	4.9	34.4	882
$7 / 2$	313	6	16	5.2	36.3	938
－	314	6	17	5.6	38.4	1008
$11 /$	315	6	18	6.0	40.5	1064
$\stackrel{--\neq 1}{ }$ Fig． 156.	316	7	7	1.6	18.9	490
i $-\mathbf{Z} \rightarrow$ i	317	7	8	2.0	21.0	574
	318	7	9	2.4	23.1	658
$71 / 2=\boldsymbol{H}$	319	7	10	2.8	25.2	742
	320	7	11	3.3	27.5	826
Meram I/2	321	7	12	-3.7	29.6	896
	322	7	13	4.1	31.7	980
3：$\frac{\square}{\square}$	323	7	14	4.5	33.8	1し64
	324	7	15	4.9	35.9	1148
	325	7	16	5.3	38.0	1232
	326	7	17	5.7	40.1	1302
気						
気	327	7	18	6.1	42.2	1386
	328	8	8	1.9	22.4	714

Fig. 154.	329	8	9	2.3	24.5	812
1--b->	330	8	10	2.7	26.6	910
	331	8	11	3.1	28.7	1008
$11 / 2$	332	8	12	3.6	30.9	1106
	333	8	13	4.0	33.0	1218
11/2.-	334	8	14	4.4	35.1	1316
g. 155.	335	8	. 15	4.8	37.2	1414
, k-Z.-3'	336	8	16	5.2	39.3	1512
122	337	8	17	5.7	41.6	1610
	338	8	18	6.1	43.7	1708
	339	9	8	1.7	23.6	840
$11 / 2$	340	9	9	2.1	25.7	966
----B---	341	9	10	2.6	27.9	1092
;	342	9	11	3.0	30.0	1204
-	343	9	12	3.4	32.1	1330
$71 /$	344	9	13	3.9	34.4	1442
	345	9	14	4.3	36.5	1568
Minumuy $1 / 2$	346	9	15	4.7	38.6	1694
Fig. 157.	347	9	16	5.1	40.7	1806
$\frac{3}{2}$	348	9	17	5.6	42.9	1932
-1/20 \| -	349	9	18	6.0	45.0	2044
獥	350	10	8	1.5	24.8	980
	351	10	9	2.0	27.0	1120
	352	10	10	2.4	29.1	1260
	353	10	11	2.8	31.2	1400

				0		
g. 154.	354	10	12	3.3	33.5	1540
	355	10	13	3.7	35.6	1680
	356	10	14	4.1	37.7	1820
112	357	10	15	4.6	39.9	1960
	358	10	16	5.0	42.0	2100
	359	10	17	5.5	44.3	2240
Fig. 155.	360	10	18	5.9	46.4	2380
年 $\frac{k-b-\cdots}{}$	361	11	9	1.8	28.2	1288
2	362	11	10	2.2	30.3	1442
12\%	363	11	11	2.6	32.4	1610
	364	11	12	3.1	34.7	1764
	365	11	13	3.5	36.8	1932
Fig. 156.	366	11	14	4.0	39.0	2086
	367	11	15	4.4	41.1	2240
1212	568	11	16	4.9	43.4	2408
IV2 $=\frac{H}{1}$	369	11	17	5.3	45.5	2562
	370	11	18	5.8	47.7	2730
Lemamy	371	12	9	1.6	29.4	1442
$\begin{gathered} \text { Frg. } 157 . \\ \\ \text { Fi- } \end{gathered}$	372	12	10	2.0	31.5	1624
	373	12	11	2.5	33.8	1806
	374	12	12	2.9	35.9	1988
	375	12	13	3.4	38.1	2170
$\frac{H}{1}$	376	12	14	3.8	40.2	2352
	377	12	15	4.2	42.3	2534
	378	12	16	4.7	44.6	2716

Fig. 158.	429	6	6	1.5	18.0	336
$\frac{\|k-b-3\|}{n+3}$	430	6	7	1.8	20.6	392
H.	431	6	8	2.2	23.4	462
$3 \% \sim \quad H$	432	6	9	2.5	26.0	518
	433	6	10	2.8	28.6	588
2^{-i}	434	6	11	3.2	31.4	624
Fig. 159.	435	6	12	3.5	34.0	714
$k-b \rightarrow$	436	6	13	3.8	36.6	770
215	437	6	14	4.2	39.4	840
	438	6	15	4.5	42.0	896
	439	6	16	4.8	44.6	952
2^{π}	440	6	17	5.2	47.4	1022
$\text { Fig. } 160$	441	6	18	5.5	50.0	1078
7	442	7	7	1.8	22.1	532
	443	7	8	2.2	24.9	616
	444	7	9	2.6	27.7	714
	445	7	10	2.9	30.3	798
2	446	7	11	3.3	33.1	882
$\begin{gathered} --B_{1}-\cdots \\ \text {.Fiq. } 161 . \end{gathered}$	447	7	12	3.7	35.9	966
	448	7	13	4.0	38.5	1050
2	449	7	14	4.4	41.3	1134
	450	7	15	4.7	43.9	1218
3 3 3/4 H	451	7	16	5.1	46.7	1302
	452	7	17	5.5	49.5	1386
\cdots	453	7	18	5.8	52.1	1470

Fig. 158.	454	8	7	1.8	23.6	686
$5 \cdot b-1$	455	8	8	2.2	26.4	714
	456	8	9	2.5	29.0	896
7\% H	457	8	10	2.9	31.8	1008
	458	8	11	3.3	34.6	1120
$2 "$	459	8	12	3.7	37.4	1232
g. 159	460	8	13	4.1	40.2	1344
-	461	8	14	4.5	43.0	1456
	462	8	15	4.9	45.8	1551
1% \%	463	8	16	5.2	484	1666
	464	8	17	5.6	51.2	1778
	465	8	18	6.0	54.0	1890
$\underset{\text { Fig. } 160 .}{ }$	466	9	7	1.7	24.9	826
<-	467	9	8	2.1	27.7	966
	468	9	9	2.5	30.5	1106
	469	9	10	2.9	33.3	1232
	470	9	11	3.3	36.1	1372
	471	9	12	3.7	38.9	1498
$\text { Fig. } 161 .$	472	9	13	4.1	41.7	1638
	473	9	14	4.5	44.5	1778
	474	9	15	4.9	47.3	1904
	475	9	16	5.3	50.1	2044
$\frac{H}{1}$	476	9	17	5.7	52.9	2184
	477	9	18	6.1	55.7	2310
	478	10	7	1.6	26.2	980

			$\left\|\begin{array}{\|c\|} \wedge \\ 0 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 00 . \\ & 0 \\ & 0 \\ & =0 \\ & 0 \end{aligned}\right.$		$\stackrel{\rightharpoonup}{\Xi}$ ©ig 0 0 0
Fig 158.	479	10	8	2.0	290	1134
$\mid-6-1$	480	10	9	2.4	31.8	1302
A.	481	10	10	2.8	34.6	1456
7\% $2 \sim \quad H$	482	10	11	3.2	37.4	1624
	483	10	12	3.6	40.2	1778
-	484	10	13	4.0	43.0	1946
Fig. 159.	485	10	14	4.4	45.8	2100
$k-b-1$	486	10	15	4.9	48.8	2268
2-1	487	10	16	5.3	51.6	2422
$1 / 2$	488	10	17	5.7	54.4	2590
	489	10	18	6.1	57.2	2744
$2^{\pi i}$	490	11	8	1.9	30.3	1316
$\text { Fig. } 160 .$	491	11	9	2.3	33.1	1512
$\cdots-z^{-3}$	492	11	10	2.7	35.9	1694
$2^{\prime \prime}$	493	11	11	3.1	38.7	1876
I゙1/k	494	11	12	3.5	41.5	2072
	495	11	13	4.0	4.5	2254
	496	11	14	4.4	47.3	2436
$\cdots-B \cdots$	497	11	15	4.8	50.1	2632
b	498	11	16	5.2	52.9	2814
$\frac{\pi}{2}$	499	11	17	5.6	55.7	2996
	500	11	18	6.1	58.7	3192
	501	12	8	1.7	31.4	1512
	502	12	9	2.1	34.2	1722
	503	12	10	2.6	37.2	1932

				$0 . g$ 0.0 0 0		
Fig. 158.	504	12	11	3.0	40.0	2142
(3-3-3)	505	12	12	3.4	42.8	2360
-	506	12	13	39	45.8	2576
$-\quad H$	507	12	14	4.3	48.6	2786
	508	12	15	4.7	51.4	2996
2π	509	12	16	5.2	54.4	3220
- - B--->>> Fig. 159.	510	12	17	5.6	57.2	343
$k-b \rightarrow i$	511	12	18	6.0	60.0	3640
	512	13	8	1.6	32.7	1080
$1 / 2=$	513	13	9	2.0	35.5	1932
	514	13	10	2.4	38.3	2170
	515	13	11	2.9	413	2408
*---B---->i	516	13	12	3.3	44.1	2646
	517	13	13	3.8	47.1	2884
	518	13	14	4.2	49.9	3122
İ1\% $=$ H	519	13	15	4.6	52.7	3360
T	520	13	16	5.1	55.7	3598
	521	13	17	5.5	58.5	3850
Fig. 161.	522	13	18	5.9	61.3	4088
$\frac{b}{2} \quad \frac{b}{2}$	523	14	9	1.9	36.8	2142
	524	14	10	2.3	39.6	2408
	525	14	11	2.7	42.4	2674
	526	14	12	3.2	45.4	2940
	527	14	13	3.6	48.2	3206
$k---B--->\mid$	528	14	14	4.1	52.2	3472

		$\begin{aligned} & \mathbb{N} \\ & \text { 告 } \\ & \text { ex } \\ & 0 \\ & 0 \end{aligned}$		od:	$0 \text { An }$	范
Fig． 158.	529	14	15	4.5	54.0	3738
	530	14	16	4.9	56.8	4004
15	531	14	17	5.4	59.8	4270
I $2=14$	532	14	18	5.8	62.6	4536
\cdots	533	15	9	1.7	37.9	2351
	534	15	10	2.2	40.9	2646
Fig． 159.	535	15	11	2.6	43.7	2940
$\ldots-b \rightarrow$	536	15	12	3.0	46.5	3234
	537	15	13	3.5	49.5	3528
1\％20	538	15	14	3.9	52.3	3822
，	539	15	15	4.4	55.3	4116
	540	15	16	4.8	58.1	4410
$\text { Fig. } 160 .$	541	15	17	5.3	61.1	4704
(win	542	15	18	5.7	63.9	4998
	543	16	9	1.6	39.2	2562
$\mathbf{I}_{1}^{\prime \prime}=$	544	16	10	$2.0^{\text {－}}$	42.0	2881
	545	16	11	2.5	45.0	3206
	546	16	12	2.9	47.8	3528
$\text { Fig. } 161 .$	547	16	13	3.4	50.8	3850
$\frac{b}{2}$ 迷	548	16	14	3.8	53.6	4172
	549	16	15	4.3	56.6	4494
	550	16	16	4.7	59.4	4816
	551	16	17	5.2	65.4	5138
W2	551	16	18	5.6	62.2	5460
$\cdots \cdots$	552	17	10	1.9	43.3	3150

						$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ 0 . \\ 0 .{ }_{4}^{4} \\ 0 \\ 0 \\ \hline \end{array}$
Fig. 158. $\|x-b-3\|$	554	17	11	2.3	46.1	3486
-	555	17	12	2.8	49.1	3836
	556	17	13	3.2	51.9	4186
$2 "$	557	17	14	3.7	54.9	4536
Fig. 159.	558	17	15	4.1	57.7	4872
I	559	17	16	4.6	60.7	5222
1/2\%	560	17	17	5.0	63.5	5572
2^{π}	561	17	18	5.5	66.5	5922
K---B----->i Fig 160	562	18	10	1.6	44.2	3346
	563	18	11	2.1	47.2	3724
\mathscr{H}	564	18	12	2.6	502	4102
	565	18	13	3.0	53.0	448.
$\text { Fig. } 161 .$	566	18	14	3.5	56.0	4868
$\frac{5}{2}$	567	18	15	3.9	58.8	5236
2.	568	18	16	4.4	61.8	5628
T	569	18	17	4.9	64.8	6006
	570	18	18	5.3	67.6	6384
$k-\cdots \cdot B-\cdots \mid$						

Fig． 162.	598	8	16	4.9	49.8	1638
京	599	8	17	5.3	52.6	1750
	600	8	18	5.7	55.4	1848
2＂綵 H	601	9	9	2.1	32.2	1064
	602	9	10	2.5	35.0	1204
$\rightarrow \cdots$	603	9	11	2.9	37.8	1330
33.	604	9	12	3.3	40.6	1470
i	605	9	13	3.7	43.4	1596
析	606	9	14	4.1	46.2	1736
2＇	607	9	15	4.5	49.0	1876
	608	9	16	4.9	51.8	2002
	609	9	17	5.3	54.6	2142
64.	610	9	18	5.7	57.4	2282
ic－b－b	611	10	10	2.4	36.8	1414
	612	10	11	2.8	39.6	1582
	613	10	12	3.2	42.4	1736
	614	10	13	3.6	45.2	1904
	615	10	14	4.0	48.0	2058
崖艮	616	10	15	4.4	50.8	2226
Fig． 165.	617	10	16	4.8	53.6	2380
6 － 6	618	10	17	5.2	56.4	2595
	619	10	18	5.7	59.4	2702
．－	620	11	10	2.2	38.4	1638
7	621	11	11	$2 \cdot 6$	41.2	1820
	622	11	12	3.0	44.0	2016
	623	11	13	3.5	47.0	2198
\cdots	624	11	14	3.9	49.8	2380

					E. E E. 0 0 0 0 0 0	
Fig. 162.	625	11	15	4.3	52.6	2576
-	626	11	16	4.7	55.4	2758
	627	11	17	5.1	58.2	2954
$2^{\prime \prime}=\frac{1}{1}$	628	11	18	5.6	61.2	3136
	629	12	11	2.4	42.8	2086
Mex	630	12	12	2.9	45.8	2296
g. 163.	631	12	13	3.3	48.1	2506
$\frac{k-b}{-3}$	632	12	14	3.7	51.4	2716
	633	12	15	4.1	54.2	2940
	634	12	16	4.6	57.2	3150
IEl/	635	12	17	5.0	60.0	3360
	636	12	18	5.4	62.8	3570
$\|<--\boldsymbol{B}-\cdots\|$	637	13	11	2.2	44.4	2338
$\|--b-\rightarrow\|$	638	13	12	2.7	47.4	2576
M-2-	639	13	13	3.1	50.2	2814
"M Tr	640	13	14	3.5	53.0	3052
$2 \text { 苗 }$	641	13	15	4.0	56.0	3290
	642	13	16	4.4	58.8	3528
	643	13	17	4.9	61.8	3780
$\text { Fig. } 165 .$	644	13	18	5.3	64.6	4018
	645	14	11	2.0	46.0	2604
$\frac{\frac{b}{2}}{\frac{1}{2}}$	646	14	12	2.5	49.0	2870
	647	14	13	2.9	51.8	3136
't	648	14	14	3.4	54.8	3402
$\frac{H}{1}$	649	14	15	3.8	57.6	3668
	650	14	16	4.2	60.4	3934
-B---1)	651	14	17	4.7	63.4	4208

			$\begin{aligned} & 40.5 \\ & 00 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
Fig. 162.	652	14	18	5.1	66.2	4452
	653	15	12	2.3	50.6	3164
	654	15	13	2.7	54.4	3444
W_{0}	655	15	14	3.2	56.4	3738
π	656	15	15	3.6	59.2	403:
	657	15	16	4.1	62.2	4296
Fig. 163.	658	15	17	4.5	65.0	4606
\cdots	659	15	18	4.9	67.8	4900
,	660	16	13	2.5	55.0	3742
$2^{\prime \prime} \quad$ H	661	16	14	3.0	58.0	4074
主	662	16	15	3.4	60.8	4396
	663	16	16	3.9	63.8	4718
Fig. 164.	664	16	17	4.3	66.6	5026
$\frac{-b}{}$	665	16	18	4.8	69.6	5348
	666	17	13	2.3	56.6	4060
$2 \rightarrow$ H	667	17	14	2.8	59.6	4410
	668	17	15	3.2	62.4	4760
$2^{\prime \prime}$	669	17	16	3.7	65.4	5110
Fig. 165.	670	17	17	4.1	68.2	5460
	671	17	18	4.6	71.2	5810
	672	18	13	2.1	58.2	4382
	673	18	14	2.5	61.0	4746
,	674	18	15	3.0	64.0	5124
	675	18	16	3.4	66.8	5502
	676	18	17	3.9	69.8	5080
	677	18	18	4.4	72.8	6258

Strengtif of Wooden Beams.

Capacity W in lbs. of American white and yellow pine beams, joists, \&c., from $1^{\prime \prime} \times 1^{\prime \prime}$ to 15×15 in.
The modulus of rupture is taken at $\frac{10000}{8}=1250$ lbs., or 8 times safety.
$K^{\prime}=$ tabulated coefficient, to be divided by
$l=$ distance between supports in inches, or length of beams in inches from support to free end of beam.

	Coefficient						
	Height in						
	1	2	3	4	5	6	7
1	1666	6666	15000	26666	41666	60000	81666
11/2	2500	10000	22500	39999	62499	90000	122499
2	3333	13333	30000	53333	83333	120000	163333
21/2	4166	16666	37500	66666	104166	150000	204166
3	5000	19999	45000	80000	124999	180000	244999
$31 / 2$	5833	23:333	52700	93333	145833	210000	2858333
4	6666	26666	60000	106666	166666	240000	326666
41/2	7499	29999	67500	119999	187499	270000	367499
5	8333	33333	75000	133333	208333	300000	408333
51/2	9166	36666	82500	146666	229166	330000	449166
6	10000	39999	90000	159999	249999	360000	489999
$61 / 2$	10833	43333	.97500	173333	270833	390000	530833
7	11666	46666	105000	186666	291666	420000	571666
$71 / 2$	12500	49999	112600	199999	312499	450000	612499
8	13333	53333	120000	213333	333333	480000	653333
$81 / 2$	14166	566666	127500	226666	354166	510000	694166
9	14998	59999	135000	239999	374999	540000	734999
$91 / 2$	158.31	63333	142500	2533333	395833	570000	775833
10	16666	66666	150000	266666	416666	600000	816666
101/2	17500	69999	157500	279999	437499	. 630000	857599
$11{ }^{1}$	$18: 333$	73333	165000	293333	458:333	660000	898533
111/2	19166	76666	172500	306666	479166	690000	939366
12	206100	79999	180000	319999	499999	720000	979999
121/2	20833	83333	187500	3333333	520833	750000	1020833
13	21666	86666	195000	346666	541666	780000	1061666
131/2	22500	89799	202500	3 399999	562499	810000	1102499
14	23333	93:3:3	210000	373333	583333	840000	1143333
141/2	24166	96666	217500	386666	604166	870900	1184166
15	25000	99999	225000	399999	624999	900000	1224999

Beams supported at the ends.
Load equally distributed, $\quad W=\frac{K^{\prime}}{\frac{l}{K^{\prime}}}$ or $K^{\prime}=l W$. $\quad 1$
Load concentrated at centre, $W=\frac{K}{2 l}$ or $K^{\prime}=2 l W . \quad 2$
Beams fixed at one end.

$$
\begin{aligned}
& \text { Load equally distributed, } \quad W=\frac{K^{\prime}}{4 l} \text { or } K^{\prime}=4 l W . \\
& \text { Load concentrated at free end, } W=\frac{K^{\prime}}{8 l} \text { or } K^{\prime}=8 l W .
\end{aligned}
$$

K^{\prime}.
inches.

8	9	10	11	12	13	14	15
106666	135000	166666	201757	240000	281666	320666	375000
159999	202500	249999	302636	360000	422499	489999	562500
213333	270000	333333	403515	480000	563333	653333	750000
266666	337500	416666	504393	600000	714166	816666	937500
319999	405000	499999	605272	720000	844999	979999	1125000
373333	472500	583:33	706151	840000	985833	1143333	1312500
426666	540000	666666	807030	960000	1126666	1306666	1500000
479999	607500	749999	907908	1080000	1267499	1469999	1687500
533333	675000	833:333	1008787	1200000	1408333	16333333	1875000
586666	742500	916666	1109666	1320000	1549166	1796666	2062500
639999	810000	999999	1210545	1440000	1689999	1959999	2250000
693333	877500	1083333	1311423	1560000	1831833	2123333	2437500
746666	945000	1166666	1412\%02	1680000	1971666	2286666	2625000
799999	1012500	1249999	1513181	1800000	2112499	2449999	2812500
853333	1080000	1333333	1614060	1920000	2253333	2613333	3000000
906666	1147500	1416666	1714938	2040000	2394166	2776666	3187500
959999	1215000	1499999	1815817	2160000	2534999	2939999	3375000
1013333	1232500	1583333	1916696	2280000	2675833	3103333	3562500
1066666	1350000	1666666	2017575	2400000	2816666	3266666	3750000
1119999	1417500	1749999	2118453	2520000	2957499	3429999	3937500
1173333	1485000	1833333	2219332	2640000	3098333	3593333	4125000
1226666	${ }^{1} 15.52500$	1916666	2320211	2760000	32:39166	3756666	4312500
1279999	1620000	1999999	2421090	2880000	3379999	3919999	4500000
1333333	1687500	2083333	2521968	3000000	3520833	4083333	4687500
1386666	1755000	2168666	2622847	3120000	3661666	1246666	4875000
1439999	1822500	2249999	2723726	3240000	3802499	4409999	5062500
1493333	1890000	2333333	2824605	3360000	3943333	4573333	5250000
1546666	1957500	2416666	2925483	3480000	4084166	4736666	5437500
1599999	2025000	2499999	3026362	3600000	4224999	4890999	5625000

PRESSURE ON SUPPORTS.

Reaction of Supports.

For a continuous beam, horizontal or inclined. Load W, equally distributed, and supports equal distance apart. Applicable to trussed beams, rafters, or beams supported by three or more supports.

Reference. (Fig. 166.)
$W_{1}=$ Weight of load per unit of length in lbs.
$L=$ Distance between supports in units of length.
$P, P_{1}, P_{2}=$ Pressure on supports in lbs., counting from end support to center of beam.
$M, M_{1}, M_{2}=$ Moments of rupture over supports.
$m, m_{1}, m_{2}=$ Moments of rupture between supports.
$l, l_{1}, l_{2}=$ The distance from a support to section where moments m, m_{1}, m_{2} occur.
By this table the pressure upon any support, from 3 to 9 in number, can be ascertained; also the moments of rupture. The table is used in calculating the strains in roof trusses, \&c.

$$
\text { Fig. } 166 .
$$

		5cery			
			$\left\lvert\, \begin{aligned} & -(-2 x \\ & p \end{aligned}\right.$	$\left\lvert\, \begin{array}{ll} 2 & 1 \\ 73 & 2 \end{array}\right.$	P_{4}
	Number of Supports.				
	3	4	5	7	9
$\begin{aligned} & P \\ & P_{1} \\ & P_{2} \\ & P_{3} \\ & P_{4} \end{aligned}$	$\begin{array}{ll} 0.375 & W_{t} L \\ 1.25 & W_{九} L \end{array}$	0.41.1W	$\begin{aligned} & 0.3929 W, L \\ & 1.1429 W, L \\ & 0.9286 W, L \end{aligned}$	$0.3942 W^{L} L$	
				$1.1346 W$ W	$0.3943 W_{1} L$ $1.1340 W_{L} L$
	$\left\|\begin{array}{cc} 1.25 & W, L \\ \ldots \ldots ~ \end{array}\right\|$			0.9615 W, $L$$1.0192 W, L$	$0.9629 W^{2} L$
		$1.0103 W, L$$0.9948 W^{\prime} L$
M_{1}	$0.125 W_{1} L^{2}$	$0.1 W_{1} L^{2}$	$0.1071 W^{\prime} L^{2}$	$0.1058 W$ W L 2	$0.1057 W_{l} L^{2}$
M_{2}			0.0714 W, L ${ }^{2}$	$0.0769 W^{2} L^{2}$	$0.0773 W L^{2}$
M_{3}				$0.0865 W_{1} L^{2}$	$0.0850 \mathrm{~W}, L^{2}$
M_{4}				$0.0824 W_{l} L^{2}$

	Number of Supports.				
	3	4	5	7	9
m	$0.0703 W_{6} L^{2}$	$0.08 W_{1} L^{2}$	$0.0772 W_{1} L^{2}$	0.0777 W, L^{2}	$0.0777 W^{2} L^{2}$
m_{1}	-0703 W.	$0.025 W_{l} L^{2}$	$0.0364 W_{l} L^{2}$	$0.0340 W^{\prime} L^{2}$	0.0339 W, L2
m_{2}			$0.0434 W_{1} L^{2}$	$0.0438 W^{\prime} L^{2}$
m_{3}				$0.0412 W_{1} L^{2}$
l	$0.375 L$	$0.4 L$	0.3928 L	$0.3942 L$	0.3943 L
l_{1}		0.5 L	$0.535 L$	0.5288 L	0.5283 L
l_{2}				$0.4903 L$	0.4922 L
l_{3}					$0.5025 L$

Reference. (Figs. 167, 168, and 169.)
$W, W_{1}, W_{2}=$ Load in lbs.
$l, l_{1}, l_{2}^{2}=$ Dimensions in units of length.
$P, P_{1}, P_{2}=$ Pressure on supports in lbs.

Fig. 167.

Three supports, unequal distances apart.

Load equally distributed:

$$
\begin{array}{ll}
l_{1}<l_{2} ; & P=\frac{3}{8} W_{1}=\frac{3}{8} \frac{l_{1}}{l} W \\
W_{1}=\frac{l_{1}}{l} W & P_{1}=\frac{5}{8}\left(W_{1}+W_{2}\right)=\frac{5}{8} W \\
W_{2}=\frac{l_{2}}{l} W & P_{2}=\frac{3}{8} W_{2}=\frac{3}{8} \frac{l_{2}}{l} W
\end{array}
$$

Fig. 168.

One support, and fixed at one end.

Load equally distributed:

$$
\begin{aligned}
l_{1} & >l_{2} \\
W_{1} & =\frac{l_{1}}{l} W \\
W_{2} & =\frac{l_{2}}{l} W
\end{aligned}
$$

$$
P=\frac{1}{2} \frac{W l}{l_{1}}
$$

$$
P_{1}=W-P=\left(1-\frac{1}{2} \frac{l}{l_{2}}\right) W
$$

Fig. 169.

One support, and fixed at one end.

Load concentrated at free end:

$$
\begin{aligned}
P & =\frac{l}{l_{1}} W \\
P_{1} & =P-W=\left(\frac{l}{l_{1}}-1\right) W=\frac{l_{2}}{l_{1}} W
\end{aligned}
$$

COMPRESSIVE STRAIN AND PRESSURE ON SUPPORTS.
Sloping Beams, Rafters, \&c.
Load W equally distributed.
For the cross-breaking strain, the rafter, \&c., is to be treated as a horizontal beam of the length l. (See Compound Strains in Beam, \&ec.)

Reference.
$C=$ Compression in direction of beam.
$H=$ Horizontal strain acting on support.
$V=$ Pressure on supports.
Lower end supported vertically and horizontally; upper end resting on inclined support:

Fig. 170.

$$
\begin{array}{ll}
C=\frac{W}{2} \sin . v & V=W-V_{1}=W\left(1-\frac{1}{2}(\cos . v)^{2}\right) \\
H=\frac{W}{2} \sin . v \cos . v & V_{1}=\frac{W}{2}(\cos . v)^{2}
\end{array}
$$

Upper end fixed; lower end supported horizontally :
Fig. 171.

$$
\begin{array}{r}
n=0 \\
H=0
\end{array}
$$

$$
V=V_{1}=\frac{W}{2}
$$

Upper end resting against a vertical surface; lower end supported vertically and horizontally :

Fig. 172.

$$
\begin{aligned}
C & =\frac{W}{2 \sin \cdot v} \\
H & =\frac{W}{2} \operatorname{cotg} v \\
V & =W \\
V_{1} & =0
\end{aligned}
$$

RESISTANCE TO CRUSHING.

Strengtil of Columns, Pillars, and Struts.

Reference.

$A=$ Area of cross-section in inches.
$C=$ Coefficient, depending on the material.
$I=$ Least moment of inertia of cross-section.
$W=$ Capacity of column, pillar, or strut in lbs.
$a=$ Coefficient, depending on the material in respect to flexure.
$c=$ Coefficient, depending on the material.
$h=$ The least dimension across the section in inches.
$k=$ Factor of safety.
$l=$ Length of column, \&c., in inches.
$r=$ Least radius of gyration.

To find the square of the radius of gyration $\left(r^{2}\right)$ of a plane about a given axis, divide the least moment of inertia by the sectional area of the plane; that is, $r^{2}=\frac{I}{A}$.
Values of For Malleable Iron. For Cast Iron. For Dry Timber.

$C=$	36,000 lbs.	$80,000 \mathrm{lbs}$.	7,200 lbs.
$c=$	36,000 "	3,200 "	3,000 "
$a=$	0.000333	0.0025	0.004

The factor of safety k should be, for wrought iron $=6$; for cast iron $=8$; for timber $=10$. This applies to moving loads.

Case 1.

Rounded or hinged at both ends, as perFig. 173.

For square, rectangular, or circular cross-section :

$$
W=\frac{1}{k} \frac{C A}{1+4 a \frac{l^{2}}{h^{2}}}
$$

For any other cross-section:

$$
W=\frac{1}{k}-\frac{C A}{1+\frac{4 l^{2}}{c r^{2}}}
$$

Case 2.
Fixed, or having a flat base at one end, and rounded or hinged at the other, as per-

Fig. 174.
For square, rectangular, or circular cross-section:

$$
W=\frac{1}{k} \frac{C A}{1+2 a \frac{l^{2}}{l^{2}}}
$$

For any other cross-section:

$$
W=\frac{1}{k}-\frac{C A}{1+\frac{16 \cdot l^{2}}{9 \cdot c \cdot r^{2}}}
$$

Case 3.
Fixed, or having flat bases at both ends, as perFig. 175.

For square, rectangular, or circular cross-section:

$$
W=\frac{1}{k}-\frac{C A}{1+a \frac{l^{2}}{h^{2}}}
$$

For any other cross-section:

$$
W=-\frac{1}{k} \frac{C A}{1+\frac{l^{2}}{c \cdot r^{2}}}
$$

Examples.
Case 1.
Rounded at both ends:
What is the capacity of a urought-iron strut of the annexed figure and dimensions?
$l=10$ feet $=120$ inches.
$A=4.68$ inches.
Fig. 176.

$$
W=\frac{1}{4} \frac{36000 \times 4.68}{1+\frac{4 \times 120^{2}}{36000 \times 0.689}}=\frac{1}{4} \frac{168480}{1+\frac{57600}{24804}}=
$$

$$
\frac{1}{4} \frac{168480}{3.322}=12,679 \mathrm{lbs} .
$$

The same as above, in Case 3, fixed at both ends:

$$
\begin{aligned}
& W=\frac{1}{4} \frac{36000 \times 4.69}{1+\frac{120^{2}}{36000 \times 0.689}}=\frac{1}{4} \frac{168480}{1+\frac{14400}{24804}}= \\
& \frac{168480}{1.58}=26,677 \mathrm{lbs} .
\end{aligned}
$$

For the annexed figure and dimensions; otherwise, same as above :
$A=7$ inches.
Case 1.
Rounded at both ends:
Fig. 177.

Same as above, in Case 3, fixed at both ends:

Case 3.
Fixed ends:
What is the capacity of a cast-iron pillar of the annexed figure and dimensions?
$l=10$ feet $=120$ inches.
$A=11$ inches.
Fig. 178.

$$
W=\frac{1}{8}--\frac{80000 \times 11}{1+0.0025 \frac{120^{2}}{4^{2}}}=\frac{1}{8} \frac{880000}{3.25}=33,846 \mathrm{lbs}
$$

For the annexed figure and dimensions; otherwise, same as above.

Fig. 179.

$$
\begin{gathered}
A=28 \text { inches. } \\
W=\frac{1}{8} \frac{80000 \times 28}{1+0.0025 \frac{120^{2}}{8^{2}}}= \\
\frac{1}{8} \frac{2240000}{1.5625}=179,200 \mathrm{lbs} .
\end{gathered}
$$

For the annexed figure and dimensions; otherwise, same as above.

Fig. 180.

$A=22$ inches.

$$
\begin{aligned}
& W=\frac{1}{8} \frac{80000 \times 22}{1+0.0025 \frac{120^{2}}{8^{2}}}= \\
& \frac{1760000}{1.5625}=140,800 \mathrm{lbs} .
\end{aligned}
$$

To find the capacity of a Column, Pillar, or Strut of any cross-section by the following Table:

Find how many times the least dimension h across the section is contained in the length l of column, \&c.-that is, $\frac{l}{h}$-then multiply the corresponding number on the same horizontal line, under $K^{\prime \prime}$, by the sectional area of cross-section. This gives the capacity in tons of $2,000 \mathrm{lbs}$.

Let $l=$ Length of column, \&c.
$h=$ Least dimension of cross-section.
$K^{\prime \prime}=$ Capacity in tons of one square inch of cross-section, to be multiplied by sectional area of desired crosssection.
Various sections for which this table is applicable: Fig. 181.

Fig. 182.

Fig. 183.

Fig. 184.

Fig. 186.
Fig. 185.

Fig. 187.

Fig. 188.

[Nore.-This table is strictly correct, only for columns, \&c., with circular or rectangular cross-section. As the error is small, it may be used for any cross-section.]

Example explanatory of the following table.
What is the capacity of a cast-iron column 10 feet $=120$ inches long, fixed at both ends, and of the annexed cross-section and dimensions?

Fig. 189.

Column, \&c., fixed at both ends.

Cast Iron-eight times safety.						Wrought Iron-six times safety.					
$\frac{l}{h}$	$K^{\prime \prime}$	$\frac{l}{h}$	$K^{\prime \prime}$	$\frac{l}{h}$	$K^{\prime \prime}$	$\frac{l}{h}$	$K^{\prime \prime}$	$\frac{l}{h}$	$K^{\prime \prime}$	$\frac{l}{h}$	$K^{\prime \prime}$
	Tons.		Tons.		Tons.		Tons.		Tons.		Tons.
1	4.987	25	1.951	49	0.714	1	2.999	25	2.487	49	1.674
2	4.950	26	1.858	50	0.689	2	2.996	26	2.452	50	1.644
3	4.890	27	1.771	51	0.666	3	2.991	27	2.418	51	1.615
4	4.807	28	1.689	52	0.644	4	2.984	28	2.383	52	1.585
5	4.705	29	1.611	53	0.623	5	2.975	29	2.348	53	1.557
6	4.587	30	1.538	54	0.603	6	2.964	30	2.313	54	1.529
7	4.450	31	1.469	55	0.584	7	2.953	31	2.277	55	1.501
8	4.310	32	1.404	56	0.565	8	2.938	32	2.242	56	1.474
9	4.158	33	1.343	57	0.548	9	2.921	33	2.206	57	1.448
10	4.000	34	1.285	58	0.531	10	2.905	34	2.172	58	1.422
11	3.838	35	1.230	59	0.515	11	2.885	35	2.136	59	1396
12	3.676	36	1.179	60	0.500	12	2.863	36	2.101	60	1.371
13	3.514	37	1.130	61	0.485	13	2.841	37	2.067	61	1.347
14	3.355	38	1.084	62	0.471	14	2.817	38	2.032	62	1.32
15)	3.200	39	1.041	63	0.457	15	2.792	39	1.998	63	1.299
16	3.048	40	1.000	64	0.445	16	2.766	40	1.963	64	1.276
17	2.902	41	0.961	65	0.432	17	2.738	41	1.930	65	1.253
18	2.762	42	0.924	66	0.420	18	2.711	42	1.896	66	1.22
19	2.628	43	0.889	67	0.409	19	2.680	43	1.863	67	1.209
20	2.500	44	0.856	68	0.398	20	2.650	44	1.831	68	1.187
21	2378	45	0.824	69	0.387	21	2.619	45	1.798	69	1.167
22	2.252	46	0.794	70	0.377	22	2.586	46	1.767	70	1.146
23	2.152	47	0.766	71	0.367	23	2.554	47	1.735	71	1.126
24	2.049	48	0.739	72	0.358	24	2.520	48	1.704	72	1.107

Strength of Columns, Pillars, or Struts, of seasoned wood, round or square section.
Fixed at both ends. All dimensions in inches.
Find how many times the least dimension across the section is contained in the length or height of column, \&c.; that is, $\frac{H}{D}$; then multiply the corresponding figures on the same horizontal line under $K^{\prime \prime}$ by the sectional area of cross-section. This gives the capacity of column, \&c., in tons of $2,000 \mathrm{lbs} ., 10$ times safety.

Reference.
$H=$ Length of column, \&c.
$D=$ Least dimension of cross-section.
$K^{\prime \prime}=$ Capacity in tons of one square inch of cross-section, to be multiplied by sectional area of desired cross-section.

The coefficient C for white and yellow pine in the following table is taken at $\frac{6000}{10}=600 \mathrm{lbs}$. for safety:

For oak at $\frac{80000}{10}=800 \mathrm{lbs}$. per square inch for safety.
Example.-What is the capacity of a pillar of oak, section 4×6 inches, length $=12$ feet $=144$ inches $?$

$$
\frac{H}{D}=\frac{144}{4}=36, K^{\prime \prime} \text { for } 36=0.064 \times 4 \times 6=1.536 \text { tons }
$$

Capacity $K^{\prime \prime}$ of one square inch in tons of $2,000 \mathrm{lbs}$.

White and Yellow Pine.

$\frac{H}{D}=$	$h^{\prime \prime}$	$\frac{H}{D}=$	$K^{\prime \prime}$	$\frac{H}{D}=$	$K^{\prime \prime}$	$\frac{H}{D}=$	$K^{\prime \prime}$
1	0.299	26	0.081	1	0.399	26	0.108
2	0.2:) 5	27	0.076	2	0.394	27	0.102
3	0.289	28	0.072	3	0.386	23	0.096
4	0.282	29	0.068	4	0.376	29	0.091
5	0.272	30	0.065	5	0.363	30	0.086
6	0.262	31	0.061	6	0.349	31	0.082
7	0.251	32	0.058	7	0.334	32	0.078
8	0239	33	0.056	8	0.319	33	0.074
9	0.226	34	0.053	9	0.302	34	0.071
10	0.214	35	0.050	10	0.285	35	0.067
11	0.202	36	0.048	11	0239	36	0.064
12	0.190	37	0.046	12	0.254	37	0.061
13	0.179	38	0.044	13	0.238	38	0.059
14	0.168	39	0.042	14	0.224	39	0.056
15	0.158	40	0.010	15	0.210	40	0.054
16	0.148	41	0.038	16	0.197	41	0.051
17	0.139	42	0.037	17	0.185	42	0.049
18	0.130	43	0.035	18	0.174	43	0.047
19	0.123	44	0.034	19	0.163	44	0.045
20	0.115	45	0.033	20	0.154	45	0.044
21	0.108	46	0.031	21	0.144	46	0.042
22	0.102	47	0.030	22	0.136	47	0.040
23	0.096	48	0.029	23	0.128	48	0.039
21	0.030	49	0.028	24	0.121	49	0.037
25	0.085	50	6.027	25	0.114	50	0.036

PARALLELOGRAM OF FORCES.

Composition and Resolution of Forces.

Reference.

$A, B, C=$ Forces, or strains, acting on a single point. $v, v^{\prime},=$ angles.

Fig. 190.

$$
\begin{aligned}
& A=\frac{C \sin \cdot v_{l}}{\sin \cdot\left(v+v_{\jmath}\right)} \\
& B=\frac{C \sin \cdot v}{\sin \cdot\left(v+v_{\jmath}\right)}, \text { when } v=v_{\jmath}, A=B=
\end{aligned}
$$

$$
\frac{C}{2} \sec . v
$$

when $v+v,<90^{\circ} \quad C=\sqrt{A^{2}+B^{2}+\left(2 A B \cos \left(v+v_{\jmath}\right)\right)}$
when $v+v>90^{\circ} \quad C=\sqrt{A^{2}+B^{2}-\left[2 A B \cos .\left(180^{\circ}-\right.\right.}$

$$
\left.\left.\left(v+v_{\jmath}\right)\right)\right]
$$

Fig. 191.

$$
\begin{aligned}
v+v & =90^{\circ} \\
A & =C \cos . v \\
B & =C \sin . v=C \cos . v \\
C & =\sqrt{A^{2}+B^{2}}
\end{aligned}
$$

Fig. 192.

$$
\begin{aligned}
& v=\Omega 0_{1} \\
& A=\frac{C}{\cos \cdot v} \\
& B=C \text { tang. } v \\
& C=\sqrt{A^{2}-B^{2}}
\end{aligned}
$$

STRAINS IN FRAMES.

Reference.

$C=$ Compressive strain in units of weight.
$T=$ Tensile
$V=$ Vertical
$H=$ Horizontal
$W=$ Load in units of weight.
$l=$ Dimensions in units of length.
$v=$ Angle between horizontal and inclined member.
For cross-breaking strain, see "Resistance to cross-breaking."
Fig. 193.

$$
\begin{aligned}
& C=\frac{W}{2 \sin \cdot v} \\
& C=\frac{W}{2} \operatorname{cotg} \cdot v=H
\end{aligned}
$$

$$
\text { Fig. } 194 .
$$

$C=-\frac{11}{1} \frac{W}{\sin . v}$
$C_{1}=H=\frac{11}{1} W \operatorname{cotg} \cdot v=$ cross-breaking strain at H.
$H_{l}=\frac{l_{/}}{l} H=\frac{11}{2} \cdot \frac{l_{l}}{l} W \operatorname{cotg} \cdot v=$ tension in H_{l}.
$H=H,=\frac{11}{16} \cdot\left(\frac{l-l}{l}\right) W \operatorname{cotg} \cdot v=$ comvression in C,
$V=\frac{11}{1}$,
$V_{J}=\frac{3}{16} W$.

Fig. 195.

$$
\begin{aligned}
C & =\frac{l W}{l, \sin \cdot v}=\text { compression } . \\
C_{/} & =\frac{H,}{\cos \cdot y}=\frac{W \cdot l}{l_{/ /} \cdot \cos \cdot y}=\text { comn- } \\
C_{\mu} & =W \cdot \\
H & =W \cdot l \cdot \\
H_{i} & =\frac{W \cdot l}{l_{/ /}}
\end{aligned}
$$

$$
V=H, \text { tang. } y=\frac{W \cdot l}{l_{/ \prime}} \text { tang. } y
$$

When $l>l_{3}$ the portion $l_{/ /}$is in tension $=V-W=$

$$
W\left(\frac{l}{l /,} \text { tang. } y-1\right)
$$

When $l<l_{3}$ the portion $l_{l,}$ is in compression $=W-V=$ $W\left(1-\frac{l}{l_{l}}\right.$ tang. $\left.y\right)$
$V_{l}=\frac{l-l,}{l,} . W=$ tension.

Fig. 196.

Fị!. 197.

Ends of beams built into wall or fixed:

$$
\begin{aligned}
V= & \frac{l}{l_{,}} W \\
V_{/}= & V-W=\left(\frac{l-l,}{l}\right) W_{1}=T_{1}(\text { tension })=C_{1}(\text { com }- \\
& \quad \text { pression.) }
\end{aligned}
$$

$C=\left(\frac{3 l-l_{l}}{2 l_{l}}\right) \frac{W}{\sin . v}=($ compression $)=T$ (tension.)
$H=\left(-\frac{3 l-l}{2 l_{l}}\right) W \operatorname{cotg} \cdot v=($ tension $)=H$, (compression.)
Ends of beams not built into wall or fixed:
$V:=\frac{l}{l}, W$
$V_{l}=V-W=\left(\frac{l-l_{l}}{l,}\right) W=C_{l}($ compression $)=T_{1}$
(tension.)
$C=\frac{V}{\sin . v}=\frac{l W}{l, \sin . v}=F \cdot($ tension. $)$
$H=V \operatorname{cotg} \cdot v=\frac{l}{l_{l}} W \operatorname{cotg} \cdot v=($ tension $)=H_{l}($ comp̀ression. $)$

STRAINS IN BOOM DERRICKS.

Reference.
$C=$ Compression in boom.
$C_{,}=$Compression in mast.
$T=$ Tension in tackling.
$T,=$ Tension in guy.
$t=$ Tension in runner from mast head to weight.
$t_{\nu}=$ Tension in runner from boom head to weight.
$W=$ Weight or load.
$H=$ Horizental strain.
$V=$ Vertical strain.
$v, v_{1}, v_{2}=$ Angles. (See Figure.)
Fig. 198.

$t=\frac{W \sin \cdot v_{1}}{\sin \cdot\left(v+v_{1}\right)}$	$t_{/}=\frac{W \sin \cdot v}{\sin \cdot\left(v+v_{1}\right)}$
$V=t / \operatorname{cosin} . v_{1}$	$H=V \operatorname{cotg} \cdot v_{3}$
$C=V \operatorname{cosec} \cdot v_{2}$	$C_{/}=W$
$T=V \operatorname{cosec} \cdot v_{3}$	$T_{\prime}=V \operatorname{cotg} . v_{3} \sec . v_{4}$

STRAINS IN TRUSSES.

Load equally distributed.

Reference.

$W=$ Load equally distributed in lbs.
$l=$ Distance between abutments.
$v=$ Angle between horizontal and diagonal.
$C=$ Compression in lbs., (denoted by thick lines.)
$T=$ Tension in lbs., (denoted by thin lines.)

$$
2 \text { Bays }=\frac{l}{2}
$$

Fig. 199.

$$
\begin{aligned}
& C=\frac{5}{16} W \operatorname{cotg} \cdot v \\
& C_{1}=\frac{5}{8} W \\
& T=\frac{5}{16} \frac{W}{\sin . v}
\end{aligned}
$$

$$
3 \text { Bays }=\frac{l}{3}
$$

Fig. 200.

$$
\begin{aligned}
& C=T=\frac{W}{3} \\
& C_{1}=\frac{W}{3} \\
& T_{1}=\frac{1}{3} \frac{W}{\sin \cdot v}
\end{aligned}
$$

$$
4 \text { Bays }=\frac{l}{4}
$$

Fig. 201.

$$
\begin{aligned}
& C=T=\frac{4 C_{2}}{n} \operatorname{cotg} . v \\
& C_{1}=T_{1} \\
& C_{2}=\frac{W}{4} \\
& C_{3}=\frac{3 C_{2}}{2} \\
& T_{1}=\frac{3 C_{2}}{2} \operatorname{cotg} \cdot v \\
& T_{2}=\frac{C_{2}}{2} \operatorname{cosec} . v \\
& T_{3}=3 T_{2}
\end{aligned}
$$

$$
5 \text { Bays }=\frac{l}{5}
$$

Fig. 202.

$$
\begin{aligned}
& C=T=3 C_{2} \operatorname{cotg} . v \\
& C_{1}=T_{1}=2 C_{2} \operatorname{cotg} \cdot v \\
& C_{2}=\frac{W}{5} \\
& C_{3}=2 C_{2} \\
& T_{2}=C_{2} \operatorname{cosec} . v \\
& T_{3}=2 T_{2}
\end{aligned}
$$

$$
6 \text { Bays }=\frac{l}{6}
$$

Fig. 203.

$$
\begin{array}{ll}
C=T=\frac{9 C_{3}}{2} \operatorname{cotg} \cdot v & C_{4}=\frac{3 C_{3}}{2} \\
C_{1}=T_{1}=\frac{8 C_{3}}{2} \text { cotg. } v & C_{5}=\frac{5 C_{3}}{2} \\
C_{2}=T_{2}=-\frac{5 C_{3}}{2} \text { cotg.v } & T_{3}=\frac{C_{3}}{2} \text { cosec. } v \\
C_{3}=\frac{W}{6} & T_{4}=3 T_{3} \\
T_{5}=5 T_{3}
\end{array}
$$

Table of Constants, based on foregoing Formula.
Load equally distributed.
Table of constants for strains in respective member of trusses, from 2 to 6 bays, with diagonals inclined from 5° to 45° :

Reference.

$W=$ Load in lbs., equally distributed over whole length of truss, to be multiplied by constant for strain in repective member.
$v=$ Angle between horizontal and diagonal.
$C=$ Compression in lbs. in respective member.
$T=$ Tension in lbs. in respective member.
Example.-Required, the strain in the various members of a truss of 4 bays. Length $=40$ feet; load $W=80,000 \mathrm{lbs}$.; angle $v=20^{\circ}$.

$$
\begin{array}{cc}
\text { Members. Constants. } \quad \text { W. } & \text { Strains. } \\
C=T=1.372 \times 80,000=109,760 \mathrm{lbs} . \\
C_{1}=T_{1}=1.029 \times 80,000=82,320 & " \\
C_{2}=0.25 \times 80,000=20,000 " \\
C_{3}=0.375 \times 80,000=30,000 & " \\
T_{2}=0.365 \times 80,000=29,200 " \\
T_{3}=1.095 \times 80,000=87,600 "
\end{array}
$$

[Note.-When the trusses are inverted, the strains change in kind, but not in amount.]
2 Bays $=\frac{l}{2}$
3 Bays $=\frac{l}{3}$

Fig. 204.
Fig. 205.

| v | C | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |

4 Bays $=\frac{l}{4}$
Fig. 201.

v	$C=T$	$C_{1}=T_{1}$	C_{2}	C_{3}	T_{2}	T_{3}
5	5.723	4290	0.250	0.375	1.434	4.032
6	4.750	3.570	,	"	1.200	3.600
7	4.068	3.051	،	"	1.025	3.075
8	3.560	2.(70		"	0.897	2591
9	3.164	2.373	"	"	0.799	2.397
10	2.852	2.124	.	\because	0.720	2.160
11	2.568	1.926	,	"	0.655	1.965
12	2.388	1.791	-	"	0.601	1.803
13	2.164	1623	\cdots	"	0.556	1.668
14	2.000	1.500	.	"	0.516	1.548
15	1.864	1.398	،	"	0.482	1.446
16	1.740	1.305	.	"	0.454	1.362
17	1.632	1.224	"	"	0.428	1.284
18	1.532	1.149	"	"	0.405	1.215
19	1.448	1.086	'	"	0.384	1.152
20	1.372	1.029	"	"	0.365	1.095
21	1.300	0.975	"	*	0.349	1.047
22	1.236	0.927	،	*	0.334	1.002
23	1.172	0.879	"	"	$0.32)$	0.960
24	1.124	0.843	"	"	0.306	0.918
25	1.068	0801	"	"	0.295	0.885
26	1.024	0.768	'	"	0.285	0.855
27	0.980	0.735	"		0.275	0.825
23	0.940	0.705	'	"	0.266	0.798
27	0.900	0.675	'	"	0.258	0.754
30	0.864	0.648	"	'	0.250	0.750
31	0.523	0.621	"	"	0.243	0.729
32	0.800	0.600	\cdots	"	0236	0.708
33	0.768	0.576	\%	"	0.230	0.690
34	0.740	0.55 ลั	'	"	0.224	0.672
35	0.720	0.540	"	"	0.218	0.654
36	0.688	0.516	"	"	0.212	0.636
37	0.664	0.498	\%	\%	0.207	0.621
38	0.640	0.480	"	"	0.203	0.609
39	0.616	0.462	,	"	0.199	0.597
40	0.600	0.450	\%	"	0.195	0.585
41	0.576	0.432	'	"	0.190	0.570
42	$0.5 \% 0$	0.420	\cdots	"	0.186	0.558
43	0.536	0.402	'	\cdots	0.183	0.549
44	0.520	0.390	"	*	0.180	0.540
45	0.500	0.375	،	'	0.177	0.531

$$
5 \text { Bays }=\frac{l}{5}
$$

Fig. 207.

v	$C^{\prime}=T$	$C_{1}=T_{1}$	C_{2}	C_{3}	T_{2}	\boldsymbol{i}^{\prime} 's
5	6.858	4.572	0.200	0.400	2.294	4.588
6	5.706	3.804	,	. 6	1.912	3.824
7	4.884	3.256	*	"	1.640	3.280
8	4.272	2.848	،	"	1.436	2.872
9	3.786	2.524	'	6.	1.278	2.556
10	3.402	2.268	"	"	1.152	2.304
11	3.084	2.056	"	*	1.048	2.096
12	2.820	1.880	*	"	0.962	1.9:4
13	2.598	1.732	"	"	0.850	1.780
14	2.406	1.604	"	*	0.826	1.652
15	2.238	1.492	¢	"	0.772	1.544
16	2.088	1.392	"	"	0.726	1.452
17	1.962	1.308	"	"	0.684	1.368
18	1.842	1.228	"	"	0.648	1.296
19	1.740	1.160	"	\%	0.614	1.228
23	1.650	1.100	"	"	0.584	1.168
21	1.560	1.040	*	"	0.558	1.116
22	1.482	0.988	"	"	0.534	1.068
23	1.410	0.940	"	"	0.512	1.024
24	1.350	0.900	"	"	3.490	0.980
25	1.284	0.856	"	"	0.472	0.944
26	1.230	0.820	"	"	0.456	0.912
27	1.176	0.784	"	"	0.440	0.880
28	1.128	0.752	"	"	0.426	0.852
29	1.080	0.720	"	"	0.412	0.824
30	1.038	0.692	"	"	0.400	0.800
31	0.996	0.664	"	"	0.388	0.776
32	0.960	0.640	"	"	0378	0.756
33	0.924	0.616	"	"	0.368	0.736
34	0.888	0.592	"	"	0.358	0.716
35	0.858	0.572	"	\%	0.348	0.696
36	0.828	0.552	"	"	0.340	0.680
37	0.798	0.532	"	¢.	0.332	0.664
38	0.768	0.512	:	"	0.324	0.648
39	0.738	0.492	"	"	0.318	0.636
40	0.714	0.476	"	c	0.312	0.624
41	0.690	0.460	"	"	0.304	0.608
42	0.666	0.444	"	"	0.298	0.596
43	0.642	0.428	"	"	0.292	0.584
44	0.618	0.412	"	"	0.288	0.576
45	0.600	0.400	"	6	0.284	0.568

6 Bays $=\frac{l}{6}$
Fig. 208.

v	$C=T$	$C_{1}=T_{1}$	$C_{2}=T_{2}$	C_{3}	C_{4}	C_{5}	T_{3}	${ }^{\prime}{ }_{4}$	T_{5}
5	8.568	7.616	4.760	0.166	0.230	0.416	0.952	2.856	4.760
6	7.123	6.336	3.960		"	"	0.793	2.379	3.965
7	6.102	5.424	3.390	"	"	"	0.680	2.041	3.402
8	5.337	4.744	2.965	6	"	"	0.596	1.788	2.980
9	4.62)	4.200	2.625	'.	"	"	0.530	1.590	2.650
10	4.218	3.776	2.360	"	"	"	0.478	1.434	2.390
11	3.852	3.424	2.140	"	،	"	0.435	1.305	2.175
12	3.519	3.128	1.955	،	"	"	0.399	1.197	1.995
13	3.240	2.880	1.800	"	"	"	0.369	1.107	1.845
14	3.006	2.672	1.670	"	"	"	0.343	1.029	1.715
15	2.799	2.488	1.555	.	"	"	0.320	0.960	1.600
$1{ }^{1}$	2.610	2.320	1.450	${ }^{\prime}$	"	"	0.301	0.903	1.505
17	2.448	2.176	1.360	"	"	"	0.284	0.852	1.420
18	2.304	2.048	1.280	6	"	"	0.269	0.807	1.345
19	2.169	1.928	1.205	"	'*	"	0.255	0.765	1.275
20	2.061	1.832	1.145	6	"	"	0.242	0.726	1.210
21	1.944	1.728	1.080	"	"	"	0.231	0.693	1.155
22	1.854	1.648	1.030	"	"	"	0.221	0.663	1.105
23	1.764	1.568	0.980	"	"	"	0.212	0.636	1.060
21	1.683	1.496	0.935		"	"	0.203	0.609	1.015
25	1.602	- 1.424	0.890	"	"	"	0.196	0.588	0.980
2.3	1.539	1.368	0.855	.	- "	"	0.189	0.567	0.945
27	1.467	1.304	0.815		"	،	0.182	0.546	0.910
28	1.404	1.248	0.780		"	*	0.177	0.531	0.885
29	1.350	1.200	0.750	'	"	,	0.171	0.513	0.855
30	$1.2) 6$	1.152	0.720	"	"	6	0.166	0.498	c.830
31	1.242	1.104	0.690	"	*	"	0.161	0.483	0.805
32	1.197	1.064	0.665	"	"	"	0.156	0.468	0.780
3:3	1.152	1.024	0.640	"	"	"	0.152	0.456	0.760
34	1.107	0.984	0.615	"	،	"	0.148	0.444	0.740
35	1.071	0.952	0.595	*	"	"	0.144	0.432	0.720
36	1.035	0.920	0.575	"	"	"	0.141	0.423	0.705
37	0.999	0.888	0.555	"	"	"	0.138	0.414	0.690
38	0.954	0.848	0.530	"	"	"	0.134	0.402	0.670
39	0.918	0.816	0.510	*	"	"	0.132	0.396	0.660
40	0.891	0.792	0.495	"	،	"	0.129	0.387	0.645
41	0.864	0.768	0.480	"	"	"	0.126	0.378	0.630
42	0.823	0.736	0.460	"	"	"	0.123	0.369	0.615
43	0.801	0.712	0.445	"	"	"	0.121	0.363	0.605
44	0.774	0.688	0.430	"	"	"	0.119	0.357	0.595
45	0.747	0.664	0.415	"	"	"	0.118	0.354	0.590

STRAINS IN TRUSSED BEAMS.

When a beam supported at the ends, is required to carry a greater load than its given capacity, and trussing is resorted to, it may become necessary to find what portion of the load is borne by the different members of the trussed beam.

Reference.

Let $W=$ Load acting on truss at a supported point. (See figure.) $W_{1}=$ That portion of W acting on ciiagonals.
$W_{\overline{2}}=$ That portion of W acting on beam.
$A_{1}=$ Sectional area of diagonal.
$A_{2}=$ Sectional area of beam.
$E_{1}=$ Modulus of elasticity of material in diagonals.
$E_{2}=$ Modulus of elasticity of material in beam.
$a=$ Length of diagonal.
$b=$ Distance between center of beam and point of support.
$c=$ Distance between abutment and point of support.
$f=$ Depth of beam.
$h=$ Depth of truss.
$l=$ Distance between center of beam and abutment.
[Note.-Use the same unit of length and weight.]
No. 1.

$$
\text { Fig. } 209
$$

$$
\frac{W_{1}}{W_{2}}=\frac{l^{3}}{a^{3}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}^{1}}{E_{2}}
$$

$$
W_{1}=\frac{l^{3}}{a^{3}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}}{E_{2}} W_{2}
$$

$$
W_{2}=\frac{a^{3}}{l^{3}} \cdot \frac{f^{2}}{h^{2}} \cdot \frac{A_{2}}{A_{1}} \cdot \frac{E_{2}}{E_{1}} W_{1}
$$

$$
A_{1}=\frac{W_{1}}{W_{2}} \cdot \frac{a^{3}}{l^{3}} \cdot \frac{f^{2} A_{2}}{h^{2}} \cdot \frac{F_{2}}{E_{1}}
$$

$$
\begin{gathered}
A_{2}=\frac{W_{2}}{W_{1}} \cdot \frac{l^{3}}{a^{3}} \cdot \frac{\hbar^{2} A_{1}}{f^{2}} \cdot \frac{E_{1}}{E_{2}} \\
W_{1}=\frac{\frac{W_{1}}{W_{2}}}{\frac{W_{1}}{W_{2}}+1} \cdot W \quad W_{2}=\frac{}{\frac{W_{1}}{W_{2}}+1}
\end{gathered}
$$

When load is equally distributed W becomes $\frac{5}{8} \mathrm{~W}$.

No. 2.

Fig. 210.
Fig 211.

$$
\begin{aligned}
\frac{W_{1}}{W_{2}} & =\frac{1}{2} \cdot \frac{l^{3}}{a^{3}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}}{E_{2}} \\
W_{1} & =\frac{W_{2}}{2} \cdot \frac{l^{3}}{a^{3}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}}{E_{2}} \\
W_{2} & =2 W_{1} \cdot \frac{a^{3}}{l^{3}} \cdot \frac{f^{2}}{h^{2}} \cdot \frac{A_{2}}{A_{1}} \cdot \frac{E_{2}}{E_{1}} \\
A_{1} & =\frac{2 W_{1}}{W_{2}} \cdot \frac{a^{3}}{l^{3}} \cdot \frac{f^{2} A_{2}}{h^{2}} \cdot \frac{E_{2}}{E_{1}} \\
A_{2} & =A_{1} \frac{W_{2}}{2 W_{1}} \cdot \frac{l^{3}}{a^{3}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{E_{1}}{E_{2}} \\
W_{1} & =\frac{\frac{W_{1}}{W_{2}}}{W_{2}}=\frac{W_{1}}{\frac{W_{1}}{W_{2}}+1}
\end{aligned}
$$

When load is equally distributed W becomes $\frac{5}{8} W$.

No. 3.

$$
\text { Fig. } 212 .
$$

$$
W_{1}=\frac{h^{2}}{f^{2}} \cdot \frac{\left(l^{2}-b^{2}\right) c}{a\left(a^{2} \times b c\right)} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}}{E_{2}} \cdot W_{2}
$$

$$
W_{2}=\frac{f^{2}}{h^{2}} \cdot \frac{a\left(a^{2}+b c\right)}{\left(l^{2}-b^{2}\right) c} \cdot \frac{A_{2}}{A_{1}} \cdot \frac{E_{2}}{E_{1}} \cdot W_{1}
$$

$$
A_{1}=\frac{W_{1}}{W_{2}} \cdot \frac{f^{2}}{h^{2}} \cdot \frac{a\left(a^{2}+b c\right)}{\left(l^{2}-b^{2}\right) c} \cdot \frac{A_{2} \cdot E_{2}}{E_{1}}
$$

$$
A_{2}=\frac{W_{2}}{W_{1}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{\left(l^{2}-b^{2}\right) c}{a\left(a^{2}+b c\right)} \cdot \frac{A_{1} \cdot E_{1}}{E_{2}}
$$

$$
W_{1}=\frac{\frac{W_{1}}{W_{2}}}{\frac{W_{1}}{W_{2}}+1} \cdot W
$$

$$
W_{2}=\frac{W}{\frac{W_{1}}{W_{2}}+1}
$$

When load is equally distributed W becomes $\frac{3}{8} W$.

No. 4.

Figs. 213 and 214.

$$
\begin{aligned}
\frac{W_{1}}{W_{2}} & =\frac{h^{2}}{2 f^{2}} \cdot \frac{\left(l^{2}-b^{2}\right) c}{a\left(a^{2}+b c\right)} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}}{E_{2}} \\
W_{1} & =\frac{h^{2}}{2 f^{2}} \cdot \frac{\left(l^{2}-b^{2}\right) c}{a\left(a^{2}+b c\right)} \cdot \frac{A_{1}}{A_{2}} \cdot \frac{E_{1}}{E_{2}} \cdot W
\end{aligned}
$$

$$
W_{2}=2 W_{1} \frac{f^{2}}{h^{2}} \cdot \frac{a\left(a^{2}+b c\right)}{\left(l^{2}-b^{2}\right) c} \cdot \frac{A_{2}}{A_{1}} \cdot \frac{E_{2}}{E_{1}}
$$

$$
A_{1}=\frac{2 W_{1}}{W_{2}} \cdot \frac{f^{2}}{h^{2}} \cdot \frac{a\left(a^{2}+b c\right)}{\left(l^{2}-b^{2}\right) c} \cdot \frac{A_{2} \cdot E_{2}}{E_{1}}
$$

$$
A_{2}=\frac{W_{2}}{2 W_{1}} \cdot \frac{h^{2}}{f^{2}} \cdot \frac{\left(l^{2}-b^{2}\right) c}{a\left(a^{2}+b c\right)} \cdot \frac{A_{1} \cdot E_{1}}{E_{2}}
$$

$$
W_{1}=\frac{\frac{W_{1}}{W_{2}}}{\frac{W_{1}}{W_{2}}+1} \cdot W
$$

$$
W_{2}=\frac{W}{\frac{W_{1}}{W_{2}}+1}
$$

When load is equally distributed W becomes $\frac{8}{8} W$.

STRAINS IN TRUSSES, WITH PARALLEL BOOMS.

(Caused by Static and Moving Loads.)

The strain in the upper boom is always compressive.

- The strain in the lower boom is always tensile.

All braces inclined down from the nearest abutment are in tension.

All braces inclined $u p$ from the nearest abutment are in com pression.

The strains in the verticals and diagonals increase from the center of truss to abuiment.

The strains in the booms decrease from the center of truss to abutment.

A moving load, advancing over a truss, \&c., causes the maximum moment of rupture (which under an equally distributed load is at the center of truss) to shift to one side of the center, thereby changing the nature and amount of strain in web only. This requires either the enlargement of those members constituting the web or the addition of so-called counters, (braces, struts, or ties.)

To find the point from center of truss to where the addition of counters must commence, the following formula is used:

Let $d=$ Distance from center of truss to point where maximum moment of rupture occurs, and where counter bracing must commence.
$d^{\prime}=$ Distance from nearest abutment to ditto.
Then will $d=l\left[\frac{1}{2}+\frac{w}{u_{j}}-\sqrt{\frac{w}{w_{j}}\left(1+\frac{w}{w_{j}}\right)}\right]$
And $d_{l}=\frac{l}{2}-d=\frac{l w}{w_{l}}\left[\left(\sqrt{\left.1+\frac{w_{l}}{w}\right)}-1\right]\right\}$
These results will be found to agree with formulas for "Counter Strains" when V_{m} becomes negative.

Reference.

$N=$ Total number of bays in a truss.
$H_{\mathrm{n}}=$ Horizontal strains in booms.
$V_{n}=$ Strains in verticals.
$Y_{\mathrm{n}}=$ Strains in diagonals.
$V_{\mathrm{m}}=$ Vertical strains acting on counters Y_{m}.
$Y_{m}=$ Strains in counters, opposite in kind to Y_{n}.
$W=$ Weight of static load, equally distributed over whole length of truss.
$W_{1}=$ Weight of moving load, equally distributed over whole length of truss.
$h=$ Height or depth of truss between the center of gravity of booms.
$l=$ Span or length of truss from abutment to abutment.
$n=$ Number of member, counting from abutment A.
$m=$ Number of member, between center and abutment B.
$r=$ Half the length of a panel or bay.
$s=$ Length of a panel or bay.
$w=$ Weight of static load per unit of length l.
$w_{1}=$ Weight of moving load per unit of length l.
$v=$ Angle between horizontal and diagonal.
For other designations, see diagrams and examples.
The angle v for Howe Truss is generally 45°. The angle v for Whipple Truss is generally 45°.
The angle v for Lattice Truss is generally 45°.
The angle v for Warren Truss is generally 60°.
The proportion of height h to span l is from $\frac{1}{7}$ to $\frac{1}{15}$, generally $\frac{1}{10}$.
Fig. 215.-Lower boom loaded.

Howe Truss. (Figs. 215, 216, 217, and 218.)
Additional Reference.
$x_{\mathrm{n}}=$ Distance from abutment A to center of bay. $y_{\mathrm{n}}=$ Distance from abutment A to apex of bay.

Static or Permanent Load, equally distributed over whole length of Truss.

Strains in Booms.

$$
H_{\mathrm{n}}=\frac{W}{2 h} \cdot y_{\mathrm{n}}-\frac{W}{2 h l} \cdot y_{\mathrm{n}}{ }^{2}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} x_{\mathrm{n}}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v
$$

Moving and Static Load, each equally distributed per unit of length.
Strains in Booms.

$$
H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot y_{\mathrm{n}}^{2}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} x_{\mathrm{n}}+\frac{W_{1}}{2 l^{2}}\left(l-x_{\mathrm{n}}\right)^{2}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \cdot \operatorname{cosec} . v
$$

Strains in Counters.
$V_{m}=\frac{W}{2}-\frac{W}{l} x_{m}+\frac{W_{1}}{2 l^{2}}\left(l-x_{m}\right)^{2} \quad Y_{m}=V_{m} \operatorname{cosec} . v$.

Example. (Figs. 215, 216, 217, and 218.)
Moving Load, (as railway train passing over bridge.)
We will assume $W=50,000 \mathrm{lbs}$.
$W_{1}=100,000 \mathrm{lbs}$.
$l=100$ feet.
$h=10$ feet.
$v=45^{\circ},($ cosec. $=1.414$.
H_{1}, \cdots izontul Strains in Booms, (compression in upper, tension in lower.)

$$
\begin{aligned}
& I_{\mathrm{a}}= \frac{W+W_{1}}{2 h} \cdot y_{\mathrm{n}}-\frac{W+}{2 h l} \cdot W_{1} \\
& y_{\mathrm{n}}{ }^{2}=\frac{50000+100000}{20} . \\
& y_{\mathrm{n}}-\frac{50000+100000}{2000} \cdot y_{\mathrm{a}}{ }^{2}=7500 \cdot y_{\mathrm{n}}-75 \cdot y_{\mathrm{n}}{ }^{2} \\
& I_{1}=7500.10-75.100=67,500 \mathrm{lbs} . \\
& H_{2}=7500.20-75.400=120,000 \mathrm{lbs} . \\
& H_{3}=7500.30-75.900=157,500 \mathrm{lbs} . \\
& I I_{4}=7500.40-75.1600=180,000 \mathrm{lbs} . \\
& H_{5}=7500.50-75.2500=187,500 \mathrm{lbs} .
\end{aligned}
$$

Strains in Verticals.
$V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{2 l^{2}} \cdot\left(l-x_{\mathrm{n}}\right)^{2}=\frac{50000}{2}-\frac{50000}{100}$.

$$
x_{\mathrm{n}}+\frac{100000}{20000} \cdot\left(l-x_{\mathrm{n}}\right)^{2}=25000-500 \cdot x_{\mathrm{n}}+5\left(l-x_{\mathrm{n}}\right)^{2}
$$

Strains in Figs. $215 \quad 216 \quad 217 \quad 218$
$V_{1}=25000-500.5+5.95^{2}=67625$ Ten. T'en. Com. Com.
$V^{2}=25000-500.15+5.85^{2}=53625$
$V^{3}=25000-500.25+5.75^{2}=40625$
$V^{4}=25000-500.35+5.65^{2}=28625$
$V_{5}^{4}=25000-500.45+5.55^{2}=17625$
Counter Strains (V_{m}) for Strains in Counters.
$V_{6}=25000-500.55+5.45^{2}=7625$.
$V_{7}=25000-500.65+5.85^{2}=5625$.

> Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} v
$$

Strains in Figs. $215 \quad 216 \quad 217 \quad 218$
$Y_{1}=67625 \cdot 1.414=95,6201 \mathrm{bs}$. Com. Com. 'T'en. Ten.
$Y_{2}=53625.1 .414=75,826 \mathrm{lbs}$.
$Y_{3}=40625.1414=57,44 \mathrm{llbs}$.
$Y_{4}=28625 \cdot 1.414=40,476 \mathrm{lbs}$.
$Y_{5}^{4}=17625.1 .414=24,922 \mathrm{lbs}$.
Strains in Counters, (dutted lines, Fig. 215, for example.)

$$
Y_{\mathrm{m}}^{\prime}=V_{\mathrm{m}} \operatorname{cosec} . v
$$

$Y_{7}=5625.1 .414=7,954 \mathrm{lbs} . \quad$ " \quad " \quad "

Fig. 219.

Lattice Truss with Vertical Numbers.

Fig. 219. Load on either Boom.

To compute the strains in this truss, the easiest method is to find the values of $H_{\mathrm{n}}, V_{\mathrm{n}}$, $V_{\mathrm{m}}, Y_{\mathrm{n}}$, and Y_{n} for a Howe Truss, (Figs. 215, 216,217 , and 218) loaded in the same manner, (upper or lower boom.) These values in the following formulas for the above truss will give the required strains:

Strains in Booms. (S.)

$$
\begin{array}{ll}
S_{1}=\frac{H_{1}}{2} & S_{4}=\frac{H_{3}+H_{4}}{2} \\
S_{2}=\frac{H_{1}+H_{2}}{2} & S_{5}=\frac{H_{4}+H_{5}}{2} \\
S_{3}=\frac{H_{2}+H_{3}}{2} \text { Generally } S_{\mathrm{n}}=\frac{H_{\mathrm{n}}-\frac{1+H_{\mathrm{n}}}{2}}{2}
\end{array}
$$

Strains in Verticals. (U.)

Upper boom loaded-compression. Lower boom loaded-tension.

$$
U=\frac{W+W_{1}}{2 N} \text { constant. }
$$

Strains in End Post ($U_{0^{*}}$)
Upper boom loaded.
$U_{0}=U+S_{1}=$ compression.
Lower boom loaded.
$U_{0}=S_{1}=$ compression.
Strains in Diagonals. (D.)

$$
\begin{array}{lr}
D_{1}=\frac{Y_{1}}{2} & D_{4}=\frac{Y_{4}}{2} \\
D_{2}=\frac{Y_{2}}{2} & D_{5}=\frac{Y_{5}}{2} \\
D_{3}=\frac{Y_{3}}{2} & \text { Generally } D_{\mathrm{n}}=\frac{Y_{\mathrm{n}}}{2}
\end{array}
$$

Strains in Counters.

$$
\text { Generally } D_{\mathrm{m}}=\frac{Y_{\mathrm{m}}}{2}
$$

Fig. 220.

Warren Truss.

Fig. 220. Lower Boom Loaded. Additional Reference.
$x_{\mathrm{n}}=$ Distance from abutment A to center of diagonal.
$y_{\mathrm{n}}=$ Distance from abutment A to apex of bay of upper boom.
$z_{\mathrm{n}}=$ Distance from abutment A to apex of bay of lower boom.

Static or Permanent Load, equally distributed over whole length of Truss.

Strains in Booms. Upper.

$$
H_{\mathrm{n}}=\cdot \frac{W}{2 h} z_{\mathrm{n}}-\frac{W}{2 h l} \cdot z_{\mathrm{n}}^{2}
$$

Lower.
$H_{\mathrm{n}}=\frac{W}{2 h} \cdot y_{\mathrm{u}}-\frac{W}{2 h l} \cdot y_{\mathrm{n}}{ }^{2}$
Strains in Verticals.
$V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} x_{\mathrm{n}} \quad\left(V_{\mathrm{n}}\right.$ acts at the end of x_{n}.)

$$
\begin{aligned}
& \text { Strains in Diagonals. } \\
& Y_{\mathrm{n}}=V_{\mathrm{n}} \text { cosec. } v .
\end{aligned}
$$

Moving and Static Load, each equally dis. tributed per unit of length.

Strains in Booms.
Upper.

$$
H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot z_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot z_{\mathrm{n}}^{2}
$$

Lower.

$$
H_{\mathrm{n}}=\frac{W+W_{1}}{2 \bar{h}} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} y_{\mathrm{n}}^{2}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} x_{\mathrm{n}}+\frac{W_{1}}{2 l^{2}}\left(l-x_{\mathrm{n}}\right)^{2}
$$

Strains in Diagonals.

$$
Y_{n}=V_{n} \operatorname{cosec} v
$$

Strains in Counters.
$V_{\mathrm{m}}=\frac{W}{2}-\frac{W}{l} x_{\mathrm{m}}+\frac{W_{1}}{2 l^{2}}\left(l-x_{\mathrm{m}}\right)^{2} \quad Y_{\mathrm{m}}=V_{\mathrm{m}} \operatorname{cosec} . v$.
Example. (Fig. 220.)
Moving Load (as railway train passing over bridge) on lower Bocm.
We will assume $W=50,000 \mathrm{lbs}$.
$W_{1}=100,000 \mathrm{lbs}$.
$l=100$ feet.
$h=10$ feet.
$v=63^{\circ} 20^{\prime}$, (cosec. $=1.12$.)
Horizontal Strains in Upper Boom. (Compression.)

$$
\begin{gathered}
H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot z_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot z_{\mathrm{n}}^{2}=\frac{50000+100000}{2.10} . \\
z_{\mathrm{n}}-\frac{50000+100000}{2.10 \cdot 100} \cdot z_{\mathrm{n}}^{2}=\frac{150000}{20} \cdot z_{\mathrm{n}}- \\
\frac{150000}{2000} z_{\mathrm{n}}^{2}=7500 \cdot z_{\mathrm{n}}-75 \cdot z_{\mathrm{n}}^{2}
\end{gathered}
$$

$H_{1}=7500.10-75.100=67,500 \mathrm{lbs}$.
$H_{2}=7500.20-75.400=120,000 \mathrm{lbs}$.
$H_{3}=7500.30-75.900=157,500 \mathrm{lbs}$.
$H_{4}=7500.40-75.1600=180,000 \mathrm{lbs}$.
$H_{5}^{4}=7500.50-75.2500=187,500 \mathrm{lbs}$.
Horizontal Strains in Lower Boom. (Tension.)
$H_{\mathrm{n}}=\frac{W+W_{1}}{2 \bar{h}} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot y_{\mathrm{n}}^{2}=\frac{50000+100000}{2.10}$.
$y_{\mathrm{n}}-\frac{50000+100000}{2.10 \cdot 100} \cdot y_{\mathrm{n}}{ }^{2}=\frac{150000}{20} \cdot y_{\mathrm{n}}-\frac{150000}{2000} \cdot y_{\mathrm{n}}{ }^{2}$
$H_{1}=7500.5-75.25=37500-1875=35,625 \mathrm{lbs}$.
$H_{2}=7500.15-75.225=112500-16875=95,625 \mathrm{lbs}$.
$H_{3}^{2}=7500.25-75.625=187500-46875=140,625 \mathrm{lbs}$.
$H_{4}=7500.35-75.1225=262500-91875=170,625 \mathrm{lbs}$.
$H_{5}^{4}=7500.45-75.2025=337500-151875=185,62 \mathrm{Jlbs}$.

$$
\begin{gathered}
\text { Strains in Verticals. } \\
Y_{\mathrm{n}}=V_{\mathrm{n}} \text { cosec. } v . \\
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{2 l} \cdot\left(l-x_{\mathrm{n}}\right)=\frac{50000}{2}-\frac{50000}{100} . \\
x_{\mathrm{n}}+\frac{100000}{2.100^{2}} \cdot\left(100-x_{\mathrm{n}}\right)^{2}=25000-500 x_{\mathrm{n}}+5 .\left(100-x_{\mathrm{n}}\right)^{2} \\
V_{1}=25000-500 \cdot 2.5+5 \cdot 9506.25=71281.25 . \\
V_{2}=25000-500 \cdot 7.5+5 \cdot 8556.25=64031.25 . \\
V_{3}=25000-500 \cdot 12.5+5 \cdot 7656.25=57031.25 . \\
V_{4}=25000-500 \cdot 17.5+5 \cdot 6806.25=50281.25 . \\
V_{5}=25000-500 \cdot 225+5 \cdot 6006.25=43781.25 . \\
V_{6}=25000-500 \cdot 27.5+5 \cdot 5256.25=37531.25 . \\
V_{7}=25000-50 \cdot \cdot 32.5+5 \cdot 4556.25=31531.25 . \\
V_{8}=25000-500 \cdot 37.5+5 \cdot 3906.25=25781.25 . \\
V_{9}=25000-500 \cdot 42.5+5 \cdot 3306.25=20281.25 . \\
V_{10}=25000-500 \cdot 47.5+5 \cdot 2756.25=14031.25 . \\
\quad \text { Counter Strains. } \quad\left(V_{\mathrm{m}} .\right) \\
V_{11}=25000-500 \cdot 52.5+5 \cdot 2256.25=10031.25 . \\
V_{12}=25000-500 \cdot 57.5+5 \cdot 1806.25=528125 . \\
V_{13}=25000-500 \cdot 62.5+5 \cdot 1406.25=781.25 . \\
V_{14}=\text { Null. }
\end{gathered}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v
$$

$Y_{1}=71281.25 \cdot 1.12=79,835 \mathrm{lbs}$. Compression in Y_{1} and Y_{20}. $Y_{2}=64031.25 \cdot 1.12=71,715 \mathrm{lbs}$. Tension in Y_{2} and Y_{19}. $Y_{3}=57031.25 \cdot 1.12=63,875 \mathrm{lbs}$. Compression in Y_{3} and Y_{18} $Y_{4}=50281.25 \cdot 1.12=56,315 \mathrm{lbs}$. Tension in Y_{4} and Y_{17}. $Y_{5}^{4}=43781.25 \cdot 1.12=49,035 \mathrm{lbs}$. Compression in Y_{5} and Y_{16}. $Y_{6}=37531.25 \cdot 1.12=42,035 \mathrm{lbs}$. Tension in Y_{6} and Y_{15}. $Y_{7}=31531.25 \cdot 1.12=35,315 \mathrm{lbs}$. Compression in Y_{r} and Y_{14} $Y_{8}=25781.25 \cdot 1.12=28,875 \mathrm{lbs}$. Tension in Y_{8} and Y_{13}. $Y_{9}=20281.25 .1 .12=22,715 \mathrm{lbs}$. Compression in Y_{9} and Y_{12}. $Y_{10}=14031.25 \cdot 1.12=15,715 \mathrm{lbs}$. Tension in Y_{10} and Y_{11}.

Counter Strains.

$$
Y_{\mathrm{m}}=V_{\mathrm{m}} \operatorname{cosec} . v
$$

$Y_{11}=10031.25 \cdot 1.12=11,235 \mathrm{lbs}$. Compression in Y_{10} and Y_{11}. $Y_{12}=5281.25 \cdot 1 \cdot 12=5,915 \mathrm{lbs}$. Tension in Y_{9} and Y_{12}.
$Y_{13}=781.25 \cdot 1.12=875 \mathrm{lbs}$. Compression in Y_{8} and Y_{13}.

Fig. 221.

Warren Truss.
Fig. 221. Upper Boom Loaded.

Additional Reference.

$x_{\mathrm{n}}=$ Distance from abutment A to center of bay of upper boom.
$y_{\mathrm{n}}=$ Distance from abutment A to apex of bay of upper boom.
$z_{\mathrm{n}}=$ Distance from abutment A to apex of bay of lower boom.

Static or Permanent Load, equally distributed over whole length of Truss.

Strains in Booms.
Upper.

$$
H_{11}=\frac{W}{2 h}-\cdot z_{\mathrm{n}}-\left(\frac{W}{2 h l} \cdot z_{\mathrm{n}}^{2}+\frac{W_{r}^{2}}{2 h l}\right)
$$

Lower.

$$
I_{\mathrm{n}}=\frac{W}{2 h} \cdot y_{\mathrm{n}}-\frac{W}{2 h l} \cdot y_{\mathrm{n}}^{2}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} \cdot x_{\mathrm{n}}
$$

Strains in Diagonals. $Y_{\mathrm{n}}=V_{\mathrm{n}}$ cosec. v.

MLuving and Static Load, each equally distributed per unit of length.

Strains in Booms.
Upper.

$$
\begin{gathered}
H_{\mathrm{n}}=\frac{W+W_{1}}{2 n} \cdot z_{\mathrm{n}}-\left(\frac{W+W_{1}}{2 h l} \cdot z_{\mathrm{n}}^{2}+\right. \\
\left.\frac{\left(W+W_{1}\right) r^{2}}{2 h l}\right)
\end{gathered}
$$

Lower.

$$
H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot y_{\mathrm{n}}^{2}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} x_{\mathrm{n}}+\frac{W_{1}}{2 l^{2}}\left(l-x_{\mathrm{n}}\right)^{2}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v .
$$

Strains in Counters.
$V_{\mathrm{m}}=\frac{W}{?}-\frac{W}{l} x_{\mathrm{m}}+\frac{W_{\mathrm{l}}}{2 l^{2}}\left(l-x_{\mathrm{m}}\right)^{2} \quad Y_{\mathrm{m}}=V_{\mathrm{m}} \operatorname{cosec} . v$.

Example. (Fig. 221.)
Moving Load (as railway train passing over bridge) on Upper Boom.
We will assume $W=50,000 \mathrm{lbs}$.

$$
W_{1}=100,000 \mathrm{lbs} .
$$

$$
l=100 \text { feet. }
$$

$$
h=10 \text { feet. }
$$

$$
v=63^{\circ} 20^{\prime}, r=5 \text { feet. }
$$

Horizontal Strains in Upper Boom. (Compression.)
$H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot z_{\mathrm{n}}-\left[\frac{W+W_{1}}{2 h l} \cdot z_{\mathrm{n}}{ }^{2}+\frac{\left(W+W_{1}\right) r^{2}}{2 \pi}\right]=$

$$
\begin{gathered}
\frac{150000}{20} \cdot z_{\mathrm{n}}-\left[\frac{150000}{2000} \cdot z_{\mathrm{n}}^{2}+\frac{150000 \cdot 5^{2}}{2000}\right]= \\
7500 \cdot z_{\mathrm{n}}-\left[75 \cdot z_{\mathrm{n}}^{2}+1875\right]
\end{gathered}
$$

$$
\begin{aligned}
& H_{1}=7500.5-[75.25+1875]=33,750 \mathrm{lbs} . \\
& H_{2}=7500.15-[75.225+1875]=93,750 \mathrm{lbs} . \\
& H_{3}=7500.25-[75.625+1875]=138,750 \mathrm{lbs} . \\
& H_{4}=7500.35-[75.1225+1875]=168,750 \mathrm{lbs} . \\
& H_{5}=7500.45-[75.2025+1875]=183,750 \mathrm{lbs} .
\end{aligned}
$$

Horizontal Strains in Lower Boom (Tension.)

$$
\begin{aligned}
& H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot y_{\mathrm{a}}^{2}=7500 \cdot y_{\mathrm{n}}-75 . y_{\mathrm{n}}^{2} \\
& H_{1}=7500.10-75.100=67,500 \mathrm{lbs} . \\
& H_{2}=7500.20-75.400=120,000 \mathrm{lbs} . \\
& H_{3}=7500.30-75.900=157,500 \mathrm{lbs} . \\
& H_{4}=7500.40-75.1600=180,000 \mathrm{lbs} . \\
& H_{5}=7500.50-75.2500=187,500 \mathrm{lbs} .
\end{aligned}
$$

Strains in Verticals.

$$
\begin{gathered}
V_{\mathrm{n}}=\frac{W}{2}-\frac{W}{l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{2 l^{2}}\left(l-x_{\mathrm{n}}\right)^{2}=25000-500 \cdot x_{\mathrm{n}}+ \\
5 \cdot\left(l-x_{\mathrm{n}}\right)^{2} \\
V_{1}=25000-500.5+5.95^{2}=67,625 \mathrm{lbs} . \\
V_{2}=25000-500.15+5.85^{2}=53,625 \mathrm{lbs} . \\
V_{3}=25000-500.25+5.75^{2}=40,625 \mathrm{lbs} . \\
V_{4}=25000-500.35+5.65^{2}=28,625 \mathrm{lbs} . \\
V_{5}=25000-500.45+5.55^{2}=17,625 \mathrm{lbs} .
\end{gathered}
$$

Counter Strains.

$V_{6}=25000-500.55+5.45^{2}=7,625 \mathrm{lbs}$.
Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec}
$$

$Y_{1}=67625.1 .12=75,740 \mathrm{lbs}$. Tension in Y_{1} and Y_{10}; compression in Y_{a} and Y_{a}.
$Y_{2}=53625^{\circ} \cdot 1.12=60,060 \mathrm{lbs}$. Tension in Y_{2} and Y_{9}; compression in Y_{b} and Y_{b}.
$Y_{3}=40620^{\circ} \cdot 1.12=45,500 \mathrm{lbs}$. Tension in Y_{3} and Y_{δ}; compression in Y_{c} and Y_{o}.
$Y_{4}=28625 \cdot 1.12=32,060 \mathrm{lbs}$. Tension in Y_{4} and Y_{7}; compression in Y_{d} and Y_{d}.
$Y_{5}=17625.1 .12=19,740 \mathrm{lbs}$. Tension in Y_{5} and Y_{6}; compression in Y_{0} and Y_{0}.

Counter Strains.

$$
Y_{\mathrm{m}}=V_{\mathrm{m}} \text { cosec. } v
$$

$Y_{6}=7625.1 .12=8,540 \mathrm{lbs}$. Compression in Y_{5} and Y_{6}; tension in Y_{θ} and \dot{Y}_{e}.

Lattice Truss. (Figs. 222, 223, and 224.)
Lower Boom Loaded.
Additional Rejerence.
$r=$ Half the length of a bay of simple truss. (Figs. 222 and 223.)
$x_{\mathrm{n}}=$ Distance from abutment A to center of bay of lower boom.
$y_{\mathrm{n}}=$ Distance from abutment A to apex of bay of upper boom.
$z_{\mathrm{n}}=$ Distance from abutment A to apex of bay of lower boom.
The formulas are for the strains in the simple trusses, (Figs. 222 and 223.) Fig. 224 shows the simple trusses combined, constituting the Lattice Truss.

When the upper boom is loaded, treat the strains as acting upward and the truss inverted: the strains will be of the same amount in each member, but different in kind.

Static or Permanent Load, equally distributed over whole length of Truss.

Strains in Booms.
Upper.

$$
\begin{aligned}
& H_{\mathrm{n}}=\frac{W}{2 h} \cdot\left(z_{\mathrm{n}}+\frac{r}{2}\right)-\frac{W}{2 h l} \cdot\left(z_{\mathrm{n}}+\frac{r}{2}\right)^{2}+\frac{W r^{2}}{8 h l} \\
& H_{\mathrm{n}}=\frac{W}{2 h} \cdot\left(y_{\mathrm{u}}-\frac{r}{2}\right)-\frac{W}{2 h l} \cdot\left(y_{\mathrm{n}}-\frac{r}{2}\right)^{2}-\frac{3 W r^{2}}{8 h l}
\end{aligned}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{n}}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v
$$

Muving and Static Load, each equally distributed per unit of length.
Strains in Booms.
Upper.
$H_{\mathrm{n}}=\frac{W+}{2} h \frac{W_{1}}{2} \cdot\left(z_{\mathrm{n}}+\frac{r}{2}\right)-\frac{W+}{2 h} h-W_{1} \cdot\left(z_{\mathrm{n}}+\frac{r}{2}\right)^{2}+\frac{\left(W+W_{1}\right) r^{2}}{8 h l}$ Lower.

$$
H_{\mathrm{n}}=\frac{W+}{2} h \frac{W_{1}}{} \cdot\left(y_{\mathrm{n}}-\frac{r}{2}\right)-\frac{W+W_{1}}{2 h l} \cdot\left(y_{\mathrm{n}}-\frac{r}{2}\right)^{2}-\frac{3(W+1) \cdot W^{2}}{8 h l}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{4 l^{2}} \cdot\left(l-x_{\mathrm{n}}\right)^{2}
$$

Struins in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} v .
$$

Strains in Counters.
$V_{\mathrm{m}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{m}}+\frac{W_{i}}{4 l^{2}} \cdot\left(l-x_{\mathrm{m}}\right)^{2} \quad Y_{\mathrm{m}}=V_{\mathrm{m}} \operatorname{cosec} . v$.
[Note.-The strains in $Y_{\mathrm{a}}, \mathrm{b}, \mathrm{c}, \ldots \ldots$ are equal in amount, but different in kind to the strains in $Y_{1,2,3}, \ldots \ldots$

Example. (Figs. 222, 223, and 224.)
Moving Load (as railway train passing over bridge) on Lower Boom.
We will assume $W=50,000 \mathrm{lbs}$.

$$
\begin{aligned}
W_{1} & =100,000 \text { lbs. } \\
l & =100 \text { feet. } \\
h & =10 \text { feet. } \\
v & =63^{\circ} 20^{\prime}, \text { (cosec. }=1.12, \text {) } r=5 \text { feet.. }
\end{aligned}
$$

Horizontal Strctins in Upper Boom. (Compression. Fig. 2et.)

$$
\begin{gathered}
H_{\mathrm{n}}=\frac{W+W_{1}}{2 h}\left(z_{\mathrm{n}}+\frac{r}{2}\right)-\frac{W+W_{1}}{2 h l}\left(z_{\mathrm{n}}+\frac{r}{2}\right)^{2}+ \\
\frac{\left(W+W_{1}\right) r^{2}}{8 h}=7500\left(z_{\mathrm{n}}+2.5\right)-75\left(z_{\mathrm{n}}+2.5\right)^{2}+468.75
\end{gathered}
$$

$$
H_{0}=7500 \cdot(0+2.5)-75 \cdot(0+2.5)^{2}+468.75=18,750 \mathrm{lbs} .
$$

$$
H_{1}=7500 \cdot(5+2.5)-75 \cdot(5+2.5)^{2}+468.75=52,500 \mathrm{lbs} .
$$

$$
H_{2}=7500 \cdot(10+2.6)-75 \cdot(10+2.5)^{2}+468 \cdot 75=82,500 \mathrm{lbs}
$$

$$
H_{3}=7500 \cdot(15+2.5)-75(15+2.5)^{2}+468.75=108,750 \mathrm{lbs} .
$$

$$
H H_{4}=7500 \cdot(20+2.5)-75 \cdot(20+2.5)^{2}+468.75=131,250 \mathrm{lbs} .
$$

$$
H_{3}=7500 \cdot(25+2.5)-75 \cdot(25+2.5)^{2}+468.75=150,000 \mathrm{lbs}
$$

$$
H_{6}=7500 \cdot(30+2.5)-75 \cdot(30+2.5)^{2}+468.75=165,000 \mathrm{lbs}
$$

$$
H_{7}=7500 \cdot(35+2.5)-75 \cdot(35+2.5)^{2}+468.75=176,250 \mathrm{lbs} .
$$

$$
H_{8}=7500 \cdot(40+2.5)-75 \cdot(40+2.5)^{2}+468.75=183,750 \mathrm{lbs} .
$$

$$
H_{9}=7500 \cdot(45+2.5)-75 \cdot(45+2.5)^{2}+458.75=187,500 \mathrm{lbs}
$$

Horizontal Strains in Lower Boom. (Tension. Fig. 224.)

$$
H_{\mathrm{n}}=\frac{W+W_{1}}{2 \bar{h}} \cdot\left(y_{\mathrm{n}}-\frac{r}{2}\right)-\frac{W+W_{1}}{2 h l} \cdot\left(y_{\mathrm{n}}-\frac{r}{2}\right)^{2}-
$$

$\frac{3\left(W+W_{1}\right) r^{2}}{8 / l}=7500 \cdot\left(y_{\mathrm{n}}-2.5\right)-75 \cdot\left(y_{\mathrm{n}}-2.5\right)^{2}-1406.25$
$H_{1}=7500 .(5-25)-75 \cdot(5-2.5)^{2}-1406.25=16,875 \mathrm{lbs}$. $H_{2}=7500 \cdot(10-2.5)-75 \cdot(10-2.5)^{2}-1406.25=50,625 \mathrm{lbs}$. $H_{3}=7500 .(15-2.5)-75 \cdot(15-2.5)^{2}-1406.25=80,625 \mathrm{lbs}$. $H_{4}=7500 \cdot(20-2.5)-75 \cdot(20-2.5)^{2}-1406.25=106,875 \mathrm{lbs}$. $H_{5}=7500 \cdot(25-2.5)-75 \cdot(25-2.5)^{2}-1406.25=129,375 \mathrm{lbs}$. $H_{6}=7500 .(30-2.5)-75 .(30-2.5)^{2}-1406.25=148.125 \mathrm{lbs}$. $H_{7}=7500 \cdot(35-2.5)-75 \cdot(35-2.5)^{2}-1406.25=163,125 \mathrm{lbs}$. $H_{8}=7500 \cdot(40-2.5)-75 \cdot(40-2.5)^{2}-1406.25=174,375 \mathrm{lbs}$. $H_{9}=7500 \cdot(45-2.5)-75 \cdot(45-2.5)^{2}-1406.25=181,875 \mathrm{lbs}$. $H_{10}=7500 \cdot(50-2.5)-75 \cdot(50-2.5)^{2}-1406.25=185,625 \mathrm{lbs}$.

Simple Truss. (Fig. 222.)
Strains in Verticals. (V_{n}.)

$$
\begin{gathered}
V_{\mathrm{n}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{4 l^{2}} \cdot\left(l-x_{\mathrm{n}}\right)^{2}=12500-250 \cdot x_{\mathrm{n}}+ \\
2.5 \cdot\left(l-x_{\mathrm{n}}\right)^{2}
\end{gathered}
$$

$V_{1}=12500-250 \cdot 0+2.5 \cdot 100^{2}=37,250 \mathrm{lbs} . \quad$ Com. in U.
$V_{2}=12500-250.10+2.5 \cdot 90^{2}=30,250 \mathrm{lbs}$.
$V_{3}=12500-250 \cdot 20+2.5 \cdot 80^{2}=22,500 \mathrm{lbs}$.
$V_{4}=12500-250 \cdot 30+2.5 .70^{2}=17,250 \mathrm{lbs}$.
$V_{5}^{2}=12500-250.40+2.8 .60^{2}=11,500 \mathrm{lbs}$.
Counter Strains. (V_{m}.)
$V_{6}=12500-250 \cdot 50+2.5 \cdot 50^{2}=6,250 \mathrm{lbs}$.
$V_{7}=12500-250.60+2.5 \cdot 40^{2}=1,500 \mathrm{lbs}$.
Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \text { cosec. }
$$

$Y_{1}=37250 \cdot 1.12=41,720 \mathrm{lbs} . \quad$ Tension in Y_{1} and Y_{10}; compression in Y_{a} and Y_{s}.
$Y_{2}=30250 \cdot 1.12=33,880 \mathrm{lbs} . \quad$ Tension in Y_{2} and Y_{9}; compression in Y_{b} and Y_{b}.
$Y_{3}=22500 \cdot 1.12=25,200 \mathrm{lbs} . \quad$ Tension in Y_{3} and $Y_{8} ;$ compression in Y_{o} and Y_{c}.
$Y_{4}=17250 \cdot 1.12=19,320 \mathrm{lbs} . \quad$ Tension in Y_{4} and Y_{7}; compression in Y_{d} and Y_{d}.
$Y_{5}=11500 \cdot 1.12=12,880 \mathrm{lbs}$. Tension in Y_{5} and Y_{6}; compression in Y_{o} and Y_{e}.

Counter Strains.

$$
Y_{\mathrm{m}}=V_{\mathrm{m}} \operatorname{cosec} . v
$$

$Y_{6}=6250 \cdot 1.12=7,000 \mathrm{lbs}$. Compression in Y_{5} and Y_{6}; tension in Y_{e} and Y_{e}.
$Y_{7}=1500: 1.12=1,680 \mathrm{lbs}$. Compression in Y_{4} and Y_{7}; tension in Y_{d} and Y_{d}.

Simple Truss. (Fig. 223.)
Strains in Verticals. (V_{n}.)
$V_{1}=12500-250 \cdot 5+2.5 .95^{2}=338125$.
$V_{v}=12500-250.15+2.5 \cdot 85^{2}=26812.5$.
$\mathrm{V}_{3}^{\prime}=12500-250.25+2.5 .75^{2}=20312.5$.
$V_{4}=12500-250.35+2.5 .65^{2}=14312.5$.
$V_{5}^{\prime}=12500-250.45+2.5 .55^{2}=8812.5$.
Countcr Strains. (V_{m}.)
$V_{6}=12500-250.55+2.5 .45^{2}=3812$.
Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v .
$$

$Y_{1}=33812.5 \cdot 1.12=37,870 \mathrm{lbs}$. Compression in Y_{1} and Y_{10}, tension in Y_{a} and Y_{a}.
$Y_{2}=26812.5$. I. $12=30,030 \mathrm{lbs}$. Compression in Y_{2} and $Y_{9} ;$ tension in Y_{b} and Y_{b}.
$Y_{3}=203125 \cdot 1.12=22,750 \mathrm{lbs} . \quad$ Compression in Y_{3} and $Y_{8}:$ tension in Y_{c} and Y_{c}.
$Y_{4}=14312.5 \cdot 1.12=16,030 \mathrm{lbs} . \quad$ Compression in Y_{4} and Y_{7} : tension in Y_{d} and Y_{d}.
$Y_{5}=88125 \cdot 1.12=9,870 \mathrm{lbs} . \quad$ Compression in Y_{5} and $Y_{6} ;$ tension in Y_{e} and Y_{e}.

$$
\begin{aligned}
& \text { Counter Strains. } \\
& Y_{\mathrm{m}}=V_{\mathrm{m}} \operatorname{cosec} . v .
\end{aligned}
$$

$Y_{6}=3812.5 \cdot 1.12=4,270 \mathrm{lbs}$. Tension in Y_{5} and $Y_{6} ;$ compression in Y_{e} and Y_{e}.

$$
\text { Fig. } 22 \check{0} .
$$

Lower boom loaded.

Whipple Truss. (Figs. 225, 226, 227, and 228.)
Additional Reference.
$x_{\mathrm{n}}, y_{\mathrm{n}}=$ Distance from abutment A to end of bay. $x_{1}=0$

Static or Permanent Load, equally distributed over whole length of Truss.
Strains in Booms.

$$
H_{\mathrm{n}}=\frac{W}{2 h} \cdot y_{\mathrm{n}}-\frac{W}{2 h l} \cdot y_{\mathrm{n}}{ }^{2}+\frac{s W}{2 h l} \cdot y_{\mathrm{n}}-\frac{s W}{4 h}
$$

Strains in Verticals.

$$
V_{\mathrm{n}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{n}}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v
$$

Moving and Static Load, each equally distributed per unit of length.

Strains in Booms.

$$
\begin{gathered}
H_{\mathrm{n}}=\frac{W+W_{1}}{2 h} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot y_{\mathrm{n}}{ }^{2}+\frac{s\left(W+W_{1}\right)}{2 h l} \cdot y_{\mathrm{n}}- \\
\frac{s\left(W+W_{1}\right)}{4 h}
\end{gathered}
$$

Strains in Verticals.

$$
V_{\mathrm{a}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{4 l^{2}} \cdot\left(l-x_{\mathrm{a}}\right)^{2}
$$

Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v
$$

Strains in Counters.
$V_{m}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{m}+\frac{W_{1}}{4 l^{2}} \cdot\left(l-x_{m}\right)^{2} \quad Y_{m}=V_{m} \operatorname{cosec} . v$.

Example. (Figs. 225, 226, 227, and 228.)
(With 20 Bays.)
Moving Load, (as railway train passing over bridge.)
Let $W=50,000 \mathrm{lbs}$.
$W_{1}=100,000 \mathrm{lbs}$.
$l=100$ feet.
$h=10$ feet, $s=5$ feet.
$v=45^{\circ}$. (End diagonals $v=26^{\circ} 30^{\prime}$.)
Horizontal Strains in Booms. (Compression in upper, tension in lower.)

$$
\begin{aligned}
& H_{\mathrm{n}}= \frac{W+W_{1}}{2 h} \cdot y_{\mathrm{n}}-\frac{W+W_{1}}{2 h l} \cdot y_{\mathrm{n}}^{2}+\frac{s\left(W+W_{1}\right)}{2 h l} \cdot y_{\mathrm{n}}- \\
& \frac{s\left(W+W_{1}\right)}{4}=7500 \cdot y_{\mathrm{n}}-75 \cdot y_{\mathrm{n}}{ }^{2}-375 \cdot y_{\mathrm{u}}+18750 \\
& H_{\mathrm{o}}=7500 \cdot 0-75 \cdot 0^{2}-375 \cdot 0+18750=18,750 \mathrm{lbs} . \\
& H_{1}=7500 \cdot 5-75 \cdot 5^{2}-375 \cdot 5+18750=52,500 \mathrm{lbs} \\
& H_{2}=7500 \cdot 10-75 \cdot 10^{2}-375 \cdot 10+18750=82,500 \mathrm{lbs} \\
& H_{3}=7500 \cdot 15-75 \cdot 15^{2}-375 \cdot 15+18750=108,750 \mathrm{lbs} \\
& H_{4}=7500 \cdot 20-75 \cdot 20^{2}-375 \cdot 20+18750=131,250 \mathrm{lbs} \\
& H_{5}=7500 \cdot 25-75 \cdot 25^{2}-375 \cdot 25+18750=150,000 \mathrm{lbs} \\
& H_{6}=7500 \cdot 30=75 \cdot 30^{2}-375 \cdot 30+18750=165,000 \mathrm{lbs} \\
& H_{7}=7500 \cdot 35=75 \cdot 35^{2}-375 \cdot 35+18750=17,250 \mathrm{lbs} \\
& H_{8}=7500 \cdot 40-75 \cdot 40^{2}-375 \cdot 40+18750=183,750 \mathrm{lbs} . \\
& H_{9}=7500 \cdot 45-75 \cdot 45^{2}-375 \cdot 45+18750=187,500
\end{aligned}
$$

$$
=\left(\frac{\left(W+W_{1}\right) l}{8}\right) \mathrm{lbs}
$$

Strains in Verticals.

$$
\begin{gathered}
V_{\mathrm{n}}=\frac{W}{4}-\frac{W}{2 l} \cdot x_{\mathrm{n}}+\frac{W_{1}}{4 l^{2}} \cdot\left(l-x_{\mathrm{n}}\right)^{2}=12500-250 \cdot x_{\mathrm{n}}+ \\
2.5 \cdot\left(l-x_{\mathrm{n}}\right)^{2}
\end{gathered}
$$

$V_{0}=\frac{W}{2}=W_{1}=75,000 \mathrm{lbs}$.
Strains in Figs. 225223227228
$V_{1}=12500-250 \cdot 0+2.5 \cdot 100^{2}=37,500 \mathrm{lbs}$. C. C. T. T.

$V_{2}=12500-250 \cdot 5+25 \cdot 95^{2}=33,812 \mathrm{lbs}$	"	"	"	"
$V_{3}=12500-250 \cdot 10+2.5 \cdot$	$90^{2}=30,250 \mathrm{lbs}$	"	"	"
$V_{4}=12500-250 \cdot 15+25 \cdot$	$85^{2}=26,812 \mathrm{lbs}$	"	"	"
$V_{5}=12500-250 \cdot 20+2.5 \cdot$	$80^{2}=23,500 \mathrm{lbs}$.	"	"	"
$V_{6}=12500-250 \cdot 25+2.2 \cdot$	$75^{2}=20,312 \mathrm{lbs}$	"	"	"
$V_{7}=12500-250 \cdot 30+2.5$.	$70^{2}=17,250 \mathrm{lbs}$.	"	"	"

Strains in Figs.
$V_{8}=12505-2250$

$$
V_{\mathrm{m}} \text { Acting on Counters. }
$$

$V_{11}=12500-250.50+2.5 .50^{2}=6,250 \mathrm{lbs}$.
$V_{12}=12500-250.55+2.5 \cdot 45^{2}=3,812 \mathrm{lbs}$.
$V_{13}=12500-250.60+25 \cdot 40^{2}=1,500 \mathrm{lbs}$.
Strains in Diagonals.

$$
Y_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v
$$

Strains in Figs. 225 $226 \quad 227 \quad 223$

$Y_{1}=37500$	$1.117=41,887 \mathrm{lbs}$.	Ten.	Ten.	Com.	Com.
$Y_{2}=33812$	$1.414=47,810 \mathrm{lbs}$.	"	"	-	"
$Y_{3}=30250$	$1.414=42,773 \mathrm{lbs}$.	"	*	"	"
$Y_{4}=26812$	$1.414=37,913 \mathrm{lbs}$.	"	"	"	"
$Y_{5}=23500$	$1.414=33,229 \mathrm{lbs}$.	"	"	"	"
$Y_{6}=20312$	$1.414=28,722 \mathrm{lbs}$.	"	"	"	"
$Y_{7}=17250$	$1.414=24,391 \mathrm{lbs}$.	"	"	"	"
$Y_{8}=14312$	$1.414=20,238 \mathrm{lbs}$.	"	"	"	"
$Y_{9}=11500$	$1.414=16,261 \mathrm{lbs}$.	"	"	"	"
$Y_{10}=8812$	$1.414=12,461 \mathrm{lbs}$.	"	"	"	

Strains in Counters.

$Y_{11}=6250 \cdot 1.414=8,837 \mathrm{lbs}$.
$Y_{12}=3812 \cdot 1.414=5,391 \mathrm{lbs}$.
$Y_{13}=1500 \cdot 1.414=2,121 \mathrm{lbs}$.
[Note.- If counter braces are not inserted, V_{11}, V_{12}, and V_{13}, and Y_{8}, Y_{9}, and Y_{10} will have an additional strain, opposite in kind and equal to V_{11}, V_{12}, and V_{13}, and Y_{11}, Y_{12}, and $Y_{13} ;$ but if counters are used, the strain V_{11}, V_{12}, and V_{13} will not occur in the structure, but will be necessary to determine the strain in Y_{11}, Y_{12}, and Y_{13} on!y. Y_{11}, Y_{12}, and Y_{18} will then be inclined in the same direction as the diagonals from abutment \boldsymbol{A} to center of truss, the character of strain being the same. (See also "Howe Truss.")

Keep in mind that each half truss, as to the character and amount of strain in the respective members, is alike.]

STRAINS IN PARABOLIC CURVED TRUSSES - "BOWSTRING GIRDERS."

(Figs. 229, 230, 231, 232, 233, and 234.)
The strains in the lower boom (when horizontal) are the greatest, and equal in every bay, when the load is equally distributed over the whole length.

The strains in the arch or apper boom are also greatest when the load is equally distributed over the whole length; the strains gradually increasing from the middle to the supports.

The strains in the diagonals, whether single or double, in a bay are, when the load is equally distributed, everywhere null. When the load is unequally distributed, and one diagonal to each bay is used, they will be either in compression or tension. The character of the maximum of strains will be as follows: Assume the left half of truss to be loaded. All diagonals inclined up from left to right abutment are in tension; if inclined down, in compression. The character of strains will be vice versa when the right nalf only is loaded.

The strains in verticals are either compression, tension, or null. The maximum of compressive strain occurs when the diagonals in connection are under the greatest strain; that is, under an unequally distributed load. For other explanation, see diagram under variously-disposed loads.

In the following formulas and examples the diagonals (for a moving load) resist a tensional strain only, and the verticals a compressive. This would not be the case if one diagonal to each bay were used. In the latter case the diagonals and verticals would have to resist an alternate compressive and tensional strain.

When the trusses are inverted, the strains are different in kind, but not in amount.

Reference.

$A, B=$ Reaction of support.
$C=$ Compression in arch or upper boom.
$T=T$ Tension in lower boom.
D and $H=$ Rise of arch.
F and $f=$ Vertical forces.
$W=$ Weight of moving and static load per unit of span or length.
$V=$ Strain in verticals.
$N=$ Total number of bays.
$a=$ Length of a bay.
$c=$ Length of a diagonal.
d and $h=$ Ordinates to parabola.
$l=$ Distance between supports or span.
$k=$ Total number of verticals $=N-1$.
$m=$ Number of bays between support and V_{n}.
$n=$ Number of a member, counting from support to middle of truss.
$t=$ Tension in diagonal.
v and $z=$ Angle between horizontal and member of polygon.
$w=$ Weight of static load per unit of span or length.
$w_{1}=$ Weight of moving load, equally distributed per unit of span or length.
$u, x, y=$ Abscissas.
In the following diagrams, one-half of truss only is shown, the strains being alike in the respective members of each half:

Lower Boom Horizontal.
To find the ordinates h when H is given:

$$
h_{\mathrm{n}}=\frac{4 H x_{\mathrm{n}}\left(l-x_{\mathrm{n}}\right)}{l^{2}}
$$

The value of T given, to find h :

$$
h_{\mathrm{n}}=-\frac{W(l-a) x_{\mathrm{n}}}{2 T}-\frac{1}{2} x_{\mathrm{n}}{ }^{2} \frac{w}{T}
$$

Fig. 230.

Lower Boom Curved.
To find the ordinates h or d when H or D is given:

$$
h_{\mathrm{n}}=\frac{4 H x_{\mathrm{n}}\left(l-x_{\mathrm{n}}\right)}{l^{2}} \quad d_{\mathrm{n}}=\frac{4 D x_{\mathrm{n}}\left(l-x_{\mathrm{n}}\right)}{l^{2}}
$$

The value of T given, to find h :

$$
h_{\mathrm{n}}=\frac{W(l-a) x_{\mathrm{n}}}{2}-\frac{1}{2} x_{\mathrm{n}}{ }^{2} \frac{w}{T}
$$

Load equally distributed-Static Load. (Figs. 231 and 232.) $W=$ The weight of construction and applied load.

Fig. 231.

Lower Boom Loaded.
$C_{n}=\frac{1}{8} \frac{W l^{2}}{H}$ sec. $v_{\mathrm{n}} \quad T=\frac{1}{8} \frac{W l^{2}}{H}=C \quad V=\frac{w l}{N}=$ tension.
Upper Boom Loaded.
$C_{n}^{\prime}=\frac{1}{8} \frac{W l^{2}}{H}$ sec. $v_{\mathrm{n}} \quad T=\frac{1}{8} \frac{W l^{2}}{H}=C \quad V=$ null.

Fig. 232.

Upper Boom Loaded. $\quad(C=T$.)

$$
\begin{array}{r}
C_{\mathrm{n}}=\frac{1}{8} \frac{W l^{2}}{H-D} \sec . v_{\mathrm{n}} \\
V=\frac{l w}{N}=\text { tension. }
\end{array}
$$

$$
T_{\mathrm{n}}=\frac{1}{8} \frac{W l^{2}}{H-D} \text { sec. } z_{\mathrm{n}}
$$

Load unequally distributed-Moving Load. (Figs. 233 and 234.)
(Strains in Booms, same as for Static Load.)
Fig. 233.

$$
y_{\mathrm{n}}=h_{\mathrm{n}} \cot \cdot v_{\mathrm{n}} ; u_{\mathrm{n}}=y_{\mathrm{n}}-m a
$$

Lower Boom Loaded.

$$
\begin{array}{ll}
t_{\mathrm{n}}=\frac{w, l}{8 H} c_{\mathrm{n}} & V_{\mathrm{n}}=F_{\mathrm{n}}-f_{\mathrm{n}}=\text { compression. } \\
F_{\mathrm{n}}=B_{\mathrm{n}}\left(\frac{u_{\mathrm{n}}+N a}{u_{\mathrm{n}}+m a}\right) & f_{\mathrm{n}}=A_{\mathrm{n}}\left(\frac{u_{\mathrm{n}}}{u_{\mathrm{n}}+m a}\right) \\
A_{\mathrm{n}}=a w\left[\frac{(1+k-m)(k-m)}{2 \cdot N}\right] & B_{\mathrm{n}}=a\left(w+w_{\mathrm{c}}\right)\left[\frac{(1+m) m}{2 N}\right]
\end{array}
$$

Upper Boom Loaded.

$$
V_{\mathrm{n}}=\frac{W l}{8}=\text { compression. } \quad t_{\mathrm{n}}=\frac{w, l}{8 H} c_{\mathrm{n}}
$$

Fig. 234.

Upper Boom Loaded.
$V_{\mathrm{n}}=\frac{W l}{8}=$ compression.

$$
t_{\mathrm{n}}=\frac{w_{0}, l}{8(H-D)} c_{\mathrm{n}}
$$

Example. (Fig. 233.)
Moving Load on Lower Boom.

Reference.

l	$=64$ feet.	$c_{1}=8.7$ feet.	$w=125 \mathrm{lbs}$.
$H=8$ feet.	$c_{2}=c_{3}=10.0$ fect.	$w=6.5 \mathrm{lbs}$	
$\alpha=8$ feet.	$c_{4}=c_{5}=10.9$ feet.	$W=w+w=750 \mathrm{lbs}$.	
$N=8, k=7$.	$c_{6}=11.3$ feet.		

$h_{1}=\frac{4 \times 8 \times 9(64-8)}{64^{2}}=3.5$ feet. $\begin{aligned} & u_{1}=8.0-8=19.2-16=3.2 \text { feet. } \\ & u_{2}=19.0-24=16.0 \text { feet. } \\ & u_{3}=40.0-20.0\end{aligned}$
$h_{2}=4 \times 8 \times 16(64-16)-6.0 u_{4}=128.0-32=96.0$ feet.
$h_{3}=\frac{4 \times 8 \times 24(64-24)}{64^{2}}=7.5$ feet.
$h_{4}=H=8.0$ feet.
Tang. $v_{1}=\frac{h_{1}}{a}=\frac{3.5}{8}=23^{\circ} 37^{\prime}$.
'Tang. $v_{2}=\frac{h_{2}-h_{1}}{a}=\frac{6-3.5}{8}=17^{\circ} 21^{\prime}$.
Tang. $v_{3}=\frac{h_{3}-h_{2}}{a}=\frac{7.5-6}{8}=10^{\circ} 38^{\prime}$.
Tang. $v_{4}=\frac{h_{4}-h_{3}}{a}=\frac{8-7.5}{8}=3^{\circ} 34^{\prime} 30^{\prime \prime}$.
$y_{1}=3.5 \times 2.28=8.0$ feet. $\quad y_{3}=7.5 \times 5.37=40.0$ feet.
$y_{2}=6.0 \times 3.20=19.2$ feet. $\quad y_{4}=8.0 \times 16.00=128.0$ feet.

$$
T=C=\frac{1}{8} \frac{W l^{2}}{H}=\frac{1}{8} \frac{750 \times 64^{2}}{8}=48,000 \mathrm{lbs} .
$$

$$
C_{\mathrm{n}}=C \text { sec. } v_{\mathrm{n}} .
$$

$C_{1}=48000 \times 1.090=52,320 \mathrm{lbs} . C_{3}=48000 \times 1: 017=48,816 \mathrm{lbs}$.
$C_{2}=48000 \times 1.047=50,256 \mathrm{lbs} . C_{4}=48000 \times 1.0019=48,091 \mathrm{lbs}$.

$$
\begin{aligned}
& t_{1}=\frac{625}{8} \times 84 \\
& t_{2}=t_{3}=\frac{625 \times 64}{8 \times 8} \times 10.0=6250.0 \mathrm{lbs} .
\end{aligned}
$$

$$
\begin{aligned}
& t_{4}=t_{5}=\frac{625 \times 64}{8 \times} \times 10.9=6802.5 \mathrm{lbs} . \\
& \quad t_{6}=\frac{625}{8} \times \frac{64}{8} \times 11.3=7062.5 \mathrm{lbs} . \\
& A_{1}=8 \times 125\left[\frac{(1+7-1)(7-1)}{2 \times 8}\right]=2625 \\
& A_{2}=8 \times 125\left[\frac{(1+7-2)(7-2)}{2 \times 8}\right]=1875 \\
& A_{3}=8 \times 125\left[\frac{(1+7-3)(7-3)}{2 \times 8}\right]=1250 \\
& A_{4}=8 \times 125\left[\frac{(1+7-4)(7-4)}{2 \times 8}\right]=750 \\
& B_{1}=8(125+625)\left[\frac{(1+1) 1}{2 \times 8}\right]=750 \\
& B_{2}=8(1.25+625)\left[\frac{(1+2) 2}{2 \times 8}\right]=2250 \\
& B_{3}=8(125-1625)\left[\frac{(1+3) 3}{2 \times 8}\right]=4500 \\
& B_{4}=8(125+625)\left[\frac{(1+4) 4}{2 \times 8}\right]=7500 \\
& F_{1}=750\left(-\frac{0+8 \times 8}{0+1 \times 8}\right)=6000.0 \\
& F_{2}=2250\left(\frac{3.2+8 \times 8}{3.2+2 \times 8}\right)=7812.5 \\
& F_{3}=4500\left(\frac{16+8 \times 8}{16+3 \times 8}\right)=9000.0 \\
& F_{4}=7500\left(\frac{96+8 \times 8}{96+4 \times 8}\right)=9375.0 \\
& f_{1}=2625\left(-\frac{0}{0+1 \times 8}\right)=0 \\
& f_{2}=1875\left(\frac{3.2}{3.2+\frac{8}{2} \times 8}\right)=312.5 \\
& \hline
\end{aligned}
$$

$$
f_{3}=1250\left(\frac{16}{16+3 \times 8}\right)=500.0
$$

$$
f_{4}=750\left(\frac{96}{96+4 \times 8}\right)=562.5
$$

$$
V_{1}=6000-0=6,000 \mathrm{lbs} . \quad V_{3}=9000-500=8,500 \mathrm{lbs}
$$

$$
V_{2}=7812.5-312.5=7,500 \mathrm{lbs} . \quad V_{4}=9375-562.5=8,812.5 \mathrm{lbs}
$$

FAPACITY AND STRENGTH OF PARABOLIC ARCHED BEAMS OR RIBS ORIGINALLY CURVED.

Reference. (All dimensions in inches.)
$A=$ Sectional area of beam.
$C=$ Compressive strain in direction of arch.
$E=$ Modulus of elasticity.
$H=$ Horizontal thrust at abutment, or tension on tie rod.
$I=$ Moment of inertia of cross-section of beam.
$R=$ Resistance of material to crushing, (to be divided by faotor of safety.)
$W=$ Concentrated load at crown of arch.
$a=$ Vertical deflection at crown.
$b=$ IIorizontal deflection at abutments.
$h=$ Rise of arch.
$2 l=$ Distance between abutments $=$ span.
$s=$ Distance between neutral axis and farthest edge of section.
$w=$ Load per unit of length, equally distributed horizontally.
$x=$ Vertical distance from crown to point of arch, intersected by y, say at 0 on diagram.
$y=$ Horizontal distance from middle of arch to section where the amount of strain is desired.
$v=$ Angle between horizontal and tangent to curve.
Horizontal Thrust, (resisted either by abutments or tie rod.)
Fig. 235. (All dimensions to line of pressure.),

To determine the curve or line of pressure:
$\frac{x}{h}=\frac{y^{2}}{l^{2}} \quad \frac{y}{l}=\sqrt{\frac{x}{h}} \quad y=l \sqrt{\frac{x}{h}} \quad x=h \frac{y^{2}}{l^{2}}$
Tang. v at any point $=\frac{2 x}{y}=\frac{2 \sqrt{h x}}{l}$
Tang. v at abutment $=\frac{2 h}{l}$
Load concentrated at crown or middle of arch:

$$
\begin{aligned}
& a=\frac{W l_{3}}{256} \frac{b=0 \quad H=\frac{1}{2} W\left(\frac{25 l}{32 h}-\frac{h}{28 l}\right)}{C}=\left(\frac{25 l}{64 h}-\frac{h}{56 l}+\frac{h y}{l^{2}}-\frac{25 h y^{2}}{32 l^{3}}\right) W \\
& R=\frac{25 l}{64 h} \frac{W}{A}+\frac{81 W l s}{1600 I} \\
& A=\frac{25 l \times 1600 I}{64 h(R 1600 I-81 W l s)}
\end{aligned}
$$

Load equally distributed:

$$
\begin{aligned}
& a=0 \quad b=0 \quad H=\frac{w l^{2}}{2 h} \quad C=\frac{w l^{2}}{2 h}+\frac{w h y^{2}}{l^{2}} \\
& R=\frac{C}{A}=\left(\frac{l^{2}}{2 h}+\frac{h y^{2}}{l^{2}}\right) \frac{w}{A} \quad A=\frac{\left(\frac{l^{2}}{2 h}+\frac{h y^{2}}{l^{2}}\right)^{w}}{R}
\end{aligned}
$$

STRAINS IN A POLYGONAL FRAME IN FQUILIBRIUM.

Load equally distributed over nembers of Frame.
Reference.
$H=$ Horizontal strain in units of weight at foot.
$V_{\mathrm{n}}=$ Vertical strain in units of weight at foot.
$C_{n}=$ Compressive strain in units of weight in direction of member.
$W_{\mathrm{n}}=$ Load in units of weight, equally distributed over a member of the polygon.
$v_{\mathrm{n}}=$ Angle between horizontal and member.

Fig. 236.

$$
H=\frac{1}{2} W \operatorname{cotg} \cdot v_{\mathrm{n}} \quad C_{\mathrm{n}}=V_{\mathrm{n}} \operatorname{cosec} . v_{\mathrm{n}}
$$

$V_{1}=\frac{1}{2} W_{1}$
$V_{2}=V_{1}+\frac{W_{1}+W_{2}}{2}=\frac{W_{1}}{2}+\frac{W_{1}+W_{2}}{2}$
$V_{3}=V_{2}+\frac{W_{2}+W_{3}}{2}=\frac{W_{1}}{2}+\frac{W_{1}+W_{2}}{2}+\frac{W_{2}+W_{3}}{2}$
$V_{4}=V_{3}+\frac{W_{3}+W_{4}}{2}=\frac{W_{1}}{2}+\frac{W_{1}+W_{2}}{2}+\frac{W_{2}+W_{3}}{2}+$

$$
\frac{W_{3}+W_{4}}{2} \ldots \ldots . .8 c .
$$

For the equilibrium, v_{1} being given:
Tang. $v_{2}=\frac{V_{1}}{H}=$ tang. $v_{1}+\frac{\frac{1}{2}\left(W_{1}+W_{2}\right)}{H}$
Tang. $v_{3}=\frac{V_{2}}{H}=$ tang. $v_{1}+\frac{\frac{1}{2}\left(W_{1}+W_{2}\right)+\frac{1}{2}\left(W_{2}+W_{3}\right)}{H}$
Tang. $v_{4}=\frac{V_{3}}{H}=$ tang. $v_{1}+$

$$
\frac{\frac{1}{2}\left(W_{1}+W_{2}\right)+\frac{1}{2}\left(W_{2}+W_{3}\right)+\frac{1}{2}\left(W_{3}+W_{4}\right.}{H}
$$

The above can be used to compute the strains in ribs for dome construction.

STRAINS IN ROOF TRUSSES.

Reference. (Figs. 237 to 255.)
$W=\left\{\begin{array}{l}\text { Weight of construction. } \\ \text { Pressure of wind. } \\ \text { Pressure of snow. }\end{array}\right\}=$ Load in units of weight, equally distributed over one rafter. (See Fig. 233.)
$C=$ Compression of member in units of weight.
$T=$ Tension of member in units of weight.
$L=$ Total span, or distance between abutments in units of length.
d, h, l, and $S^{\prime}=$ Dimensions in units of length. (See Figures.) $v, y=$ Angles. (See Figures.)
The diagrams show only one-half of truss, (except Fig. 238, the thick lines indicating compression, and the thin ones tension. (See "Reaction of Supports" for pressure on joints; also "Compound Strains in Trussed Beams.")

Compression in Rafters. (Trusses Nos. 1, 3, and 4.)
The compressive strain in the rafter gradually increases from ridge to abutments. Let $x=$ Horizontal distance from abutment to point where the strain is desired, and l half the span $=\frac{L}{2}$.
C for Truss No. $1=W \sin . v\left(1-\frac{x}{l}\right)+\frac{W}{2} \frac{\cos \cdot v}{\operatorname{tg} \cdot v}$
C for Truss No. $3=W \sin . v\left(1-\frac{x}{l}\right)+\frac{W}{2} \frac{\cos . v}{\operatorname{tg} \cdot\left(v+v_{1}\right)}$
C for Truss No. $4=W$ sin. $v\left(1-\frac{x}{l}\right)+\frac{W}{2} \frac{\cos . v}{\operatorname{tg} \cdot\left(v-v_{1}\right)}$
In the following examples the maximum of C is given :

Truss No. 1.

$$
\begin{aligned}
& C=W \sin \cdot v+\frac{W}{2} \cdot \frac{\cos \cdot v}{\operatorname{tg} \cdot v} \\
& T=\frac{W}{2} \operatorname{cotg} \cdot v
\end{aligned}
$$

Exampie.
Let $W=8,000 \mathrm{lbs}$.

$$
v=26^{\circ} 30^{\prime} .
$$

$C=8000 \times 0.44619+\frac{8000}{2} \frac{0.89493}{0.49858}=10,666 \mathrm{lbs}$. Com.
When $x=\frac{l}{2}$ then will $C=\frac{8000}{2 \times 0.44619}=8,968 \mathrm{lbs}$. Com.
$T=\frac{8000}{2} 2.00=8,000 \mathrm{lbs}$. Tension.

Truss No. 2.

Fig. 238.

$$
\begin{gathered}
C=\frac{W}{2} \sin . v \quad C_{1}=W(\cos . v)^{2} \\
T=\frac{W}{2} \sin . v \cos . v=\frac{W}{4} \sin .2 v
\end{gathered}
$$

Example.
Let $W=8,000 \mathrm{lbs}$. $v=26^{\circ} 30^{\prime}$.
$C=\frac{8000}{2} \times 0.4462=1,785$ lbs. Compression.
$C_{1}=8000 \times 0.895^{2}=6,568 \mathrm{lbs}$. Compression.
$T=\frac{8000}{4} \times 0.7986=\mathrm{I}, 597 \mathrm{lbs}$. Tension.
[Note.-When the rafters are fastened together at the ridge, they are under a cross-breaking strain only. Consequently there is no horizontal thrust at the abutments; that is, $T=0$, and the compression in $C_{1}=W$.]

Fig. 239.

Truss No. 3.

$$
\begin{aligned}
& C=W \sin \cdot v+\frac{W}{2}-\frac{\cos \cdot v}{\operatorname{tg} \cdot\left(v+v_{1}\right)} \\
& C_{1}=W \frac{\cos \cdot v \sin \cdot v_{1}}{\sin \cdot\left(v+v_{1}\right)} \\
& T=\frac{W}{2} \frac{\cos \cdot v}{\sin \cdot\left(v+v_{1}\right)}
\end{aligned}
$$

Truss No. 4.

$$
\begin{aligned}
& C=W \sin \cdot v+\frac{W}{2} \frac{\cos \cdot v}{\operatorname{tg} \cdot\left(v-v_{1}\right)} \\
& T=\frac{W}{2} \frac{\cos \cdot v}{\sin \cdot\left(v-v_{1}\right)} \\
& T_{1}=W \frac{\cos \cdot v \sin \cdot v_{1}}{\sin \cdot\left(v-v_{1}\right)}
\end{aligned}
$$

Example.

Let $W=8,000 \mathrm{lbs}$.

$$
v=26^{\circ} 30^{\prime} .
$$

$$
v_{1}=5^{\circ} 0^{\prime} .
$$

$C=8000 \times 0.44619+\frac{8000}{2} \frac{0.89493}{0.394}=12,653 \mathrm{lbs} . \quad$ Com.
$T=\frac{8000}{2} \frac{0.894}{0.366}=9,920 \mathrm{lbs} . \quad$ Tension.
$T_{1}=8000 \frac{0.894 \times 0.087}{0.366}=1,720 \mathrm{lbs}$. Tension.

Truss No. 5.

Fig. 241.
$C=\frac{13}{1} \frac{1}{6} W \operatorname{cosec} . v \quad C_{1}=\frac{1}{2} W \operatorname{cotg} . v \quad T=\frac{1}{2}\left(1+\frac{l_{2}}{l}\right) W \operatorname{cotg} . v$
When there is no tie T, C_{1} is under a tensile strain $\doteq \frac{L W}{4 h}$, h being the height from C_{1} to ridge.

Example.
Let $W=8,000 \mathrm{lbs}$.
$l=22.36$ feet.
$\begin{aligned} l_{1}=l_{2}= & =11.18 \text { feet. } \\ v & =26^{\circ} 30^{\prime} .\end{aligned}$
$C=\frac{13}{13} 8000 \times 2.241=14,566 \mathrm{lbs}$. Compression.
$C_{1}=\frac{1}{2} 8000 \times 2 .=8,000$ lbs. Compression.
$T=\frac{1}{2}\left(1+\frac{11.18}{22.36}\right) 8000 \times 2 .=12,000 \mathrm{lbs}$. Tension.
Txuss No. 6.
Fig. 242.

$$
C=\frac{W S^{2}-\frac{13}{1} W\left(S^{2}-h h_{1}\right)}{h_{1} S} \quad T=\left(W-\frac{3}{16} W\right) \frac{l_{1}}{h_{1}}
$$

$$
C_{1}=\frac{5}{8} W \frac{l}{h} \quad T_{1}=2\left(W-\frac{3}{16} W\right) \frac{h-h_{1}}{h_{1}}
$$

Example.
Let $W=8,000 \mathrm{lbs}$.
$l=20$ feet.
$l_{1}=20.6$ feet.
$h=10$ feet.
$h_{1}=5$ feet.
$S=22.36$.
$C=\frac{8000 \times 500-1500(500-10 \times 5)}{5 \times 22.36}=29,264 \mathrm{lbs} . \quad$ Com.
$C_{1}=0.625 \times 8000 \frac{20}{10}=10,000 \mathrm{lbs} . \quad$ Compression.
$T=(8000-1500) \frac{20.6}{5}=26,780 \mathrm{lbs} . \quad$ Tension.
$T_{1}=2(8000-1500) \frac{10-5}{5}=13,000 \mathrm{lbs}$. Tension.

$$
\begin{array}{ll}
C=W \frac{l}{2 l \sin . v}=\frac{W}{2} \operatorname{cosec} . v & C_{2}=\frac{5}{8} W \frac{l_{1}}{h}=\frac{5}{8} W \frac{\operatorname{cosec} . v_{1}}{2} \\
C_{1}=\frac{13}{16} W \operatorname{cosec} . v & C_{2}=\frac{5}{8} W \frac{\cos . v}{\sin .2 v} \\
T=\frac{5}{8} W \frac{h_{1}}{h} 2=\frac{5}{8} W & T_{1}=\frac{13}{1} W W \operatorname{cotg} . v
\end{array}
$$

Example.
Let $W=8,000 \mathrm{lbs}$.

$$
h=10 \text { feet. }
$$

$$
l=20 \text { feet }
$$

$$
v=26^{\circ} 30^{\prime}
$$

$$
l_{1}=11.18 \text { feet. } \quad v_{1}=26^{\circ} 30^{\prime}
$$

$C=8000 \frac{20}{2 \times 20 \times 0.44619}=8,964 \mathrm{lbs} . \quad$ Compression.
$C_{1}=08125 \times 8000 \times 2.2411=14,567 \mathrm{lbs} . \quad$ Compression.
$C_{2}=0.625 \times 8000 \times 1.12=5,600 \mathrm{lbs}$. Compression.
$T=0.625 \times 8000=5,000 \mathrm{lbs}$. Tension.
$T_{1}=0.8125 \times 8000 \times 2.0=13,000 \mathrm{lbs}$.

Truss No. 8.

Fig. 244.

$$
C=-\frac{T_{1}+\frac{3}{8} W}{2 \sin \cdot v}=W \frac{l}{2 l_{1} \sin \cdot\left(v-v_{1}\right)}=\frac{W}{2} \frac{\cos \cdot v_{1}}{\sin \cdot\left(v-v_{1}\right)}
$$

$C_{1}=\frac{13}{16} W \frac{\cos . v_{1}}{\sin \cdot\left(v-v_{1}\right)}$
$C_{2}=\frac{5}{8} W \frac{\cos v}{\sin \left(v-v_{1}+v_{2}\right)}=\frac{5}{8} W \frac{l_{2}}{h}$
$T=\frac{13}{16} W \frac{\cos \cdot v}{\sin .\left(v-v_{1}\right)}$
$T_{1}=2 W\left[\frac{13}{16} \frac{\cos . v \sin . v_{1}}{\sin \cdot\left(v-v_{1}\right)}+\frac{5}{8} \frac{\cos . v \sin \cdot\left(v_{2}-v_{1}\right)}{\sin \left(v-v_{1}+v_{2}\right)}\right]=$

$$
2\left(T \sin \cdot v_{1}+C_{2} \sin \cdot\left(v_{2}-v_{1}\right)\right)=W \frac{\sin . v}{\sin \cdot\left(v-v_{1}\right)}-\frac{\cos . v_{1}}{3} W
$$

Example.
Let $W=8,000 \mathrm{lbs}$.

$$
\begin{aligned}
& v=26^{\circ} 30^{\prime} \\
& v_{1}=9^{\circ} 20^{\prime} \\
& v_{2}=19^{\circ} 0^{\prime}
\end{aligned}
$$

$C=\frac{9000+0.375 \times 8000}{0.892}=13,452 \mathrm{lbs} . \quad$ Compression.
$C_{1}=0.812 \times 8000 \frac{0.986}{0.295}=21,710 \mathrm{lbs} . \quad$ Compression.
$C_{2}=0.625 \times 8000 \frac{0.895}{0.590}=7,585 \mathrm{lbs} . \quad$ Compression.
$T=0812 \times 8000 \frac{0.895}{0.295}=19,702 \mathrm{lbs}$. Tension.
$T_{l}=2 \times 8000\left[0.812 \frac{0.812 \times 0.162}{0.295}+0.625 \times\right.$

$$
\left.\frac{0.895 \times 0.168}{0.590}\right]=9,000 \mathrm{lbs} . \quad \text { Tension. }
$$

Truss No. 9.

$C=\frac{13}{16} W \frac{1}{\sin . v}-\frac{5}{8} W \sin . v$
$C_{1}=\frac{13}{16} W \cdot \frac{1}{\sin . v}=\frac{13}{16} W \operatorname{cosec} . v$
$C_{2}=\frac{5}{8} W \cos . v$
$T=\frac{5}{16} W \operatorname{cotg} \cdot v$
$T_{1}=\frac{13}{1} \frac{W}{6} W \operatorname{cotg} \cdot v-\frac{5}{16} W \operatorname{cotg} . v=\frac{1}{2} W \operatorname{cotg} . v$
$T_{2}=\frac{13}{1} \frac{W}{6} \operatorname{cotg} \cdot v$
Example.
Let $W=8,000 \mathrm{lbs}$.

$$
v=26^{\circ} 30^{\prime}
$$

$C=0.812 \times 8000 \times 2.241-0.625 \times 8000 \times 0.446=12,336 \mathrm{lbs}$. Compression.
$C_{1}=0.812 \times 8000 \times 2.241=14,56 \mathrm{Clbs}$. Compression.
$C_{2}=0.625 \times 8000 \times 0.895=4,475$ lbs. Compression.
$T=0.312 \times 8000 \times 2=4,992 \mathrm{lbs}$. Tension.
$T_{1}=0.812 \times 8000 \times 2-0.312 \times 8000 \times 2=8,000 \mathrm{lbs}$. Tension.
$T_{2}=0.812 \times 8000 \times 2=12,992 \mathrm{lbs}$. Tension.

Truss No. 10.

Fig. 246.

$$
C=\frac{13}{1} W W \frac{\cos . v_{1}}{\sin \cdot\left(v-v_{1}\right)}-\frac{5}{8} W \sin . v
$$

$$
C_{1}=\frac{13}{1} W W \frac{\cos . v_{1}}{\sin \cdot\left(v-v_{1}\right)}
$$

$C_{2}=\frac{5}{8} W \cos . v$.

$$
\begin{aligned}
& T=\frac{1}{\sin \cdot\left(2 v-v_{1}\right)}\left[\frac{1}{1} \frac{3}{6} W \cdot \frac{\cos . v \sin . v_{1}}{\sin \cdot\left(v-v_{1}\right)}+\frac{5}{8} W \cos .^{2} v\right] \\
& T_{1}=\frac{13}{16} W \frac{\cos . v}{\sin \left(v-v_{1}\right)}-T \cos . v_{1} \\
& \hline \cos \left(2 v-v_{1}\right)-\frac{5}{8} W \sin . \cos . v
\end{aligned}
$$

$$
=\frac{W}{2} \frac{l}{h-} \overline{h_{1}}
$$

$$
T_{2}=\frac{13}{16} W \frac{\cos . v}{\sin \cdot\left(v-v_{1}\right)}
$$

Example.
Let $W=8,000 \mathrm{lbs} . \quad v_{1}=9^{\circ} 20^{\prime} . \quad h=10$ feet.

$$
v=26^{\circ} 30^{\prime} . \quad l=20 \text { feet. } \quad h_{1}=2 \text { feet. }
$$

$C=0.8125 \times 8000 \frac{0.987}{0.295}-0.625 \times 8000 \times 0.446=19,517 \mathrm{lbs}$.
Compression.
$C_{1}=0.8125 \times 8000 \frac{0.987}{0.295}=21,747 \mathrm{lbs}$. Compression.
$C_{2}=0.625 \times 8000 \times 0.895=4,475 \mathrm{lbs}$. Compression.
$T=\frac{1}{0.6905}\left(0.8125 \times 8000 \frac{0.895 \times 0.162}{0.295}+0.625 \times 8000 \times\right.$
$\left.0.895^{2}\right)=7,163 \mathrm{lbs}$. Tension.
$T_{1}=\frac{8000}{2} \times \frac{20}{10-2}=10,000 \mathrm{lbs}$. Tension.
$T_{2}=0.8125 \times 8000 \frac{0.895}{0.295}=19,720 \mathrm{lbs}$. Tension.

$$
C=\frac{13}{16} W \frac{\cos \cdot v_{1}}{\sin .\left(v-v_{1}\right)}-\frac{5}{8} W \sin . v
$$

$$
C_{1}=\frac{13}{16} W \frac{\cos . v_{1}}{\sin .\left(v-v_{1}\right)} \quad C_{2}=\frac{11}{3} \frac{W}{\cos . v} \frac{\cos . y}{}
$$

$$
T=\frac{1}{8} W \frac{\cos \cdot v}{\sin \cdot\left(2 v-v_{1}\right)}\left(\frac{13}{2} \frac{\sin \cdot v_{1}}{\sin \cdot\left(v-v_{1}\right)}+5 \cos \cdot v\right)
$$

$$
T_{1}=\frac{W}{2} \frac{l}{h-h_{1}} \quad T_{2}=\frac{13}{16} W \frac{\cos . v}{\sin \left(v-v_{1}\right)}
$$

Example.
Let $W=8,000 \mathrm{lbs} . \quad y=50^{\circ} . \quad h=10$ feet. $\quad l=20$ feet. $v=26^{\circ} 30^{\prime} . \quad v_{1}=9^{\circ} 20^{\prime} . h_{1}=2$ feet. $\quad S=22.36$ feet. $C=0.8125 \times 8000 \frac{0.981}{0.295}-0.625 \times 8000 \times 0.446=19,517 \mathrm{lbs}$. Compression.
$C_{1}=0.8125 \times 8000 \frac{0.987}{0.295}=21,747 \mathrm{lbs} . \quad$ Compression.
$C_{2}=0.366 \times 8000 \frac{0.894}{0.64 \frac{2}{2}}=4,070 \mathrm{lbs} . \quad$ Compression.
$T=0.125 \times 8000 \frac{0.894}{0.690}\left(6.5 \frac{0.162}{0.295}+5.0 .894\right)=11,050 \mathrm{lbs}$.
Tension.
$T_{1}=19486 \times 0.986-7421 \times 0.723-4930 \times 0.446=10,0001 \mathrm{~h} \%$. Tension.
$T_{2}^{\prime}=0.812 \times 8000 \frac{0.894}{0.295}=19,486 \mathrm{lbs}$. Tension.

Truss No. 12.
Fig. 248.
$C=\frac{43 h^{2}+39 l^{2}}{30 \times h \times l} W$
$C_{1}=\frac{11}{30} W \frac{l}{h}$
$C_{2}=\frac{11}{30} \frac{W}{2} \frac{S}{h}$
Example.
Let $W=8000 \mathrm{lbs}$. $l=20$ feet.
$T=\frac{13}{1} \frac{W}{2} \frac{\sqrt{h^{2}+9 t^{2}}}{h}$
$T_{1}=\frac{37}{3} 7 W$
$h=10$ feet.
$S=22.36$ feet.
$C=\frac{43 \times 100 \times 15600}{30 \times 10 \times 22.36} 8000=23,704 \mathrm{lbs} . \quad$ Compression.
$C_{1}=0.356 \times 8000 \frac{20}{10}=5,856 \mathrm{lbs}$. Compression.
$C_{2}=0.366 \times \frac{8000}{2} \frac{22.36}{10}=3,280 \mathrm{lbs} . \quad$ Compression.
$T=0.866 \times \frac{8000}{2}-\frac{\sqrt{100+3600}}{10}=20,992 \mathrm{lbs}$. Tension.
$T_{1}=1.23 \times 8000=9,840 \mathrm{lbs}$. Tension.

Truss No. 13.

 Fig. 249.$C=\frac{1}{2} W \frac{l_{2}}{l_{3}}$
$C_{1}=\frac{41}{60} W \frac{\cos . v_{1}}{\sin \cdot\left(v-v_{1}\right)}$
$C_{2}=\frac{13}{15} W \frac{\cos . v_{1}}{\sin \cdot\left(v-v_{1}\right)}$
$C_{3}=\frac{11}{20} W \frac{l_{4}}{l_{3}}$
$C_{4}=\frac{11}{20} \times W \frac{l_{6}}{l_{3}}$
Example.
Let $W=20,000 \mathrm{lbs} . \quad h=20$ feet. $\quad v=21^{\circ} 40^{\prime}$.

$$
l=50 \text { feet. } \quad l_{2}=53.8 \text { feet. } \quad v=0^{\circ}
$$

$C=0.5 \times 20000-\frac{53.8}{20}=26,900 \mathrm{lbs} . \quad$ Compression.
$C_{1}=0.683 \times 20000 \frac{1}{0.369}=37,018 \mathrm{lbs} . \quad$ Compression.
$C_{2}=0.866 \times 20000 \frac{1}{0.369}=46,937 \mathrm{lbs} . \quad$ Compression.
$C_{3}=0.55 \times 20000 \frac{21.4}{20}=11,770 \mathrm{lbs} . \quad$ Compression.
$C_{4}=0.55 \times 20000 \frac{18}{20}=9,900 \mathrm{lbs} . \quad$ Compression.
$T=0.683 \times 20000 \times 2.517=34,382 \mathrm{lbs}$. Tension.
$T_{1}=0.866 \times 20000 \times 2.517=43,594 \mathrm{lbs}$. Tension.
$T_{2}=\frac{20000 \times 20}{20}-5333.33=14,666 \mathrm{lbs}$. Tension.
$T_{3}=0.183 \times 20000=3,660 \mathrm{lbs}$. Tension.

Truss No. 14.

$$
\text { Fig. } 250 .
$$

$$
\begin{array}{ll}
C_{1}=\frac{1}{2} W \frac{S}{h} & T_{1}=\left(W-\frac{1}{10} W\right) \frac{l_{4}}{h} \\
C_{2}=C_{3}-\frac{16}{10} W \frac{S}{2 h} & T_{2}=T_{1}-\frac{2}{7} W \times \frac{l_{1}}{h_{2}} \\
C_{3}=C_{4}-\frac{2}{7} W \frac{S}{2 h} & T_{3}=T_{2}-C_{6} \frac{l_{2}}{d_{1}} \\
C_{4}=\frac{9}{70} W \frac{S}{h} & T_{4}=\frac{W D}{h}-\frac{1}{5} W \frac{H}{h} \\
C_{5}=\left(T_{5}+\frac{2}{7} W\right) \frac{d}{h} & T_{5}=C_{6} \frac{h_{2}}{d_{1}} \\
C_{6}=\left(T_{6}+\frac{16}{70} W\right) \frac{d_{1}}{h_{1}} & T_{6}=C_{7} \frac{h_{3}}{d_{2}}=\frac{2}{7} W \frac{h_{3}}{h_{2}} \\
C_{7}=\frac{2}{7} W \frac{d_{2}}{h_{2}} &
\end{array}
$$

Example.
Let $W=24,000 \mathrm{lbs} . \quad$ Span $=100$ feet $\quad l=l_{1}=l_{2}=l_{3}=1.25$ feet.

$$
h=20 \text { feet. } \quad H=0 . \quad S=53.85 \text { feet. }
$$

$C_{1}=12000 \times \frac{53.85}{20}=32,310 \mathrm{lbs} . \quad$ Compression.
$C_{2}=49088-0.228 \times 24000 \frac{53.85}{2 \times 20}=41,728 \mathrm{lbs} . \quad$ Com.
$C_{3}=58320-0.286 \times 24000 \frac{53.85}{2 \times 20}=49,088 \mathrm{lbs} . \quad$ Com.
$C_{4}=21600 \frac{53.85}{20}=58,320 \mathrm{lbs} . \quad$ Compression.
$C_{5}=(5801+0.286 \times 24000) \frac{19.5}{20}=12,493 \mathrm{lbs} . \quad$ Com.
$C_{6}=3432+5484 \frac{16}{15}=9,282 \mathrm{lbs} . \quad$ Compression.
$C_{\mathrm{i}}=0.286 \times 24000 \frac{13.47}{10}=9,245 \mathrm{lbs} . \quad$ Compression.
$T_{1}=(24000-0.1 \times 24000) \frac{50}{20}=54,000 \mathrm{lbs} . \quad$ Tension.
$T_{2}=51000-0.286 \times 21000 \frac{12.5}{10}=45,420 \mathrm{lbs} . \quad$ 'rension.
$T_{3}=45120-9282 \frac{12.5}{16} 38,170 \mathrm{lbs}$. Tension.
$T_{4}=24000-\frac{1}{5} 24000=19,200 \mathrm{lbs}$. Tension.
$T_{5}=9282 \frac{10}{16}=5,801 \mathrm{lbs} . \quad$ Tension.
$T_{6}=0.286 \times 24000 \frac{5}{10}=3,432 \mathrm{lbs}$. Tension.
Truss No. 15.
Fig. 251.
$C=\frac{13}{15} W \frac{\cos . v_{1}}{\sin .\left(v-v_{1}\right)}-\frac{11}{15} W \sin . v-\frac{11}{60} W \cos . v \operatorname{cotg} .\left(v-v_{1}\right)$
$C_{1}=\frac{13}{15} W \frac{\cos . v_{1}}{\sin .\left(v-v_{1}\right)}-\frac{11}{30} W \sin . v \quad T_{2}=\frac{11}{66} W \frac{\cos . v}{\sin .\left(v-v_{1}\right)}$
$C_{2}=\frac{13}{15} W-\frac{\cos \cdot v_{1}}{\sin .\left(v-v_{1}\right)}$
$T_{3}=\frac{W}{2} \frac{l}{\left(h-h_{1}\right) \cos . v_{1}}$
$C_{3}=\frac{11}{20} W \cos . v$
$C_{4}=\frac{11}{30} \mathrm{~W}$ cos. v
$T_{4}=\frac{41}{60} W \frac{\cos \cdot v}{\sin .\left(v-v_{1}\right)}$
$T=W \frac{l}{\left(h-h_{1}\right)}$ tang. v_{1}
$T_{5}=\frac{13}{15} W \frac{\cos . v}{\sin .\left(v-v_{1}\right)}$
$T_{1}=\frac{\left(T_{4}-T_{3}\right) \cos \cdot\left(v-v_{1}\right)}{\cos . v_{2}}$
Example.
Leet $W=20,000 \mathrm{lbs} . \quad h=20$ feet. $\quad v_{1}=0$. $l=50^{\prime}$ feet. $\quad v=21^{\circ} 40^{\prime} . \quad v_{2}=46^{\circ} 30^{\prime}$.
$C=0.866 \times 20000 \frac{1}{0.369}-0.733 \times 20000 \times 0.369-0.183 \times$ $20000 \times 0.929 \times 2.517=32,959 \mathrm{lbs}$. Compression.
$c_{1}=0.866 \times 20000 \times \frac{1}{0.369}-0.366 \times 20300 \times 0.369$ $=44,236 \mathrm{lbs}$. Compression.
$C_{2}=0.866 \times 20000 \times \frac{1}{0.369}=46,937 \mathrm{lbs} . \quad$ Compression.
$C_{3}=0.55 \times 20000 \times 0.929=10,219 \mathrm{lbs} . \quad$ Compression.
$C_{4}=0.366 \times 20000 \times 0.929=6,800 \mathrm{lbs} . \quad$ Compression.
$T=20000 \times \frac{40}{20} \times$ tang. $v=$ Null.
$T_{1}=\frac{\left(T_{4}-T_{3}\right) 0.929}{0.688}=10,920 \mathrm{lbs} . \quad$ Tension.
$T_{2}=0.183 \times 20000 \times 2.5=9,150 \mathrm{lbs}$. Tension.
$T_{3}=10000 \times \frac{50}{20 \times 1}=25,000 \mathrm{lbs}$. Tension.
$T_{4}=0.683 \times 20000 \times 2.5=34,150 \mathrm{lbs}$. Tension.
$y_{5}^{\prime}=0.866 \times 20000 \times 2.5=43,300 \mathrm{lbs}$. Tension.

Truss No. 16.

Fig. 252.
$C=C_{1}-\frac{2}{7} W \sin . v$
$C_{1}=C_{2}-\frac{16}{7} \frac{6}{0} \sin v$.
$C_{2}=\frac{9}{10} W \frac{\cos \cdot v_{1}}{\sin \left(v-v_{1}\right)}-\frac{2}{7} W \sin . v$
$C_{3}=\frac{9}{10} W \frac{\cos . v_{1}}{\sin .\left(v-v_{1}\right)}$
$C_{4}=\frac{2}{7} W \cos . v$.
$C_{5}=\frac{1}{7} 6 W \cos . v+\frac{2}{7} W \cos . v=\frac{18}{3} \frac{8}{5} W \cos . v$
$T=\left[\frac{9}{10} W \cdot \frac{\cos . v_{1} \sin . v}{\sin .\left(v-v_{1}\right)}-\frac{4}{5} W \sin .{ }^{2} v-\frac{1}{10} W\right] \frac{1}{\sin .\left(2 v-v_{1}\right)}$
$T_{1}=T-\frac{1}{7} W \frac{\cos . v}{\sin \left(v-v_{1}\right)}=T-T_{5}$
$T_{2}=\frac{W}{2} \frac{l}{h-h_{1}}$
$T_{3}=\frac{9}{10} W \frac{\cos . v}{\sin \cdot\left(v-v_{1}\right)}-T_{5}=\frac{53}{70} W \frac{\cos . v_{1}}{\sin \left(v-v_{1}\right)}$
$T_{4}=\frac{9}{10} W \frac{\cos \cdot v}{\sin \cdot\left(v-v_{1}\right)}-$
$T_{5}=T_{6}=T-T_{1}=\frac{1}{7} W \frac{\cos \cdot v}{\sin \cdot\left(v-v_{1}\right)}$
$T_{6}=T_{5}$
Example.

$$
\begin{array}{rlrl}
\text { Let } W & =20,000 \mathrm{lbs} . & & h=20 \text { feet. } \\
& & h_{1}=0 . \\
l & =50 \text { feet. } & & v=21^{\circ} 40^{\prime} .
\end{array}
$$

$C=41885-0.286 \times 20000 \times 0.369=39,774 \mathrm{lbs}$. Compression. $C_{1}=43567-0.228 \times 20000 \times 0.369=41,885 \mathrm{lbs}$. Compression.
$C_{2}=48780-5213=43,567 \mathrm{lbs} . \quad$ Compression. $C_{3}=0.9 \times 20000 \frac{1}{0.369}=48,780 \mathrm{lbs} . \quad$ Compression.
$C_{4}=0.286 \times 20000 \times 0.929=5.213 \mathrm{lbs} . \quad$ Compression.
$C_{5}^{4}=0.514 \times 20000 \times 0.929=9,550$ lbs. Compression.
$T=\left(0.9 \times 20000 \frac{0.369}{0.369}-0.8 \times 20000 \times 0369^{2}-0.1 \times\right.$
20000) $\frac{1}{0.686}=20,000 \mathrm{lbs}$. Tension.
$T_{1}=T-T_{5}=20000-7188=12,812 \mathrm{lbs}$. Tension.
$T_{2}=\frac{20000}{2} \times \frac{50}{20}=25,000 \mathrm{lbs}$. Tension.
$T_{3}=T_{4}-T_{5}=0.757 \times 20000 \frac{0.929}{0.369}=38,118 \mathrm{lbs}$. Tension.
$T_{4}=0.9 \times 20000 \frac{0.929}{0.369}=45,306 \mathrm{lbs}$. Tension.
$T_{5}=T_{6}=T-T_{1}=7,188 \mathrm{lbs}$. Tension.
$T_{6}=T_{5}=7,188 \mathrm{lbs}$. Tension.

When the rafter is resting on joint A :
$C=\frac{W}{4 \sin . v}$

$$
C_{3}=\frac{1}{2} \frac{W \cos . v \cos \cdot\left(v_{1}-v\right)}{\sin . v_{1}}
$$

$C_{1}=\frac{W}{4 \sin \cdot v}+\frac{1}{2} W \sin . v$

$$
T^{\prime}=C_{2} \cos . v_{1}+T_{1}
$$

$C_{2}=\frac{1}{2} \frac{W \cos . v^{2}}{\sin . v_{1}}$

$$
T_{1}=C_{1} \cos . v
$$

Bending moment at point $B=C_{2} \sin . v_{1} . l$.

When rafter is fixed at joint A :

$$
\begin{array}{ll}
C=\frac{W}{4 \sin \cdot v} & C_{3}=\frac{1}{2} \frac{W \cos \cdot v \cos \cdot\left(v_{1}-v\right)}{\sin \cdot v_{1}} \\
C_{1}=C & T=\frac{1}{2} W \operatorname{cotg} \cdot v_{1}+T_{1} \\
C_{2}=\frac{1}{2} \frac{W}{\sin \cdot v_{1}} & T_{1}=\frac{W}{4} \operatorname{cotg} \cdot v
\end{array}
$$

Bending moment at $B=\frac{W}{2} . l$

Truss No. 18.
Fig. 254.

$$
C_{1}=\frac{1}{2} \frac{W \cos \cdot v_{1}}{\sin \cdot\left(v+v_{1}\right)}
$$

$$
C_{2}=\frac{1}{2} \frac{W}{2 \sin . v_{1}}+C_{1}
$$

$$
C_{3}=\frac{1}{2} \frac{W \cos \cdot v_{2}}{\sin \cdot\left(v+v_{1}\right)}
$$

$$
T=0
$$

$$
T_{1}=C_{3} \cos . v+C_{2} \cos . v_{1}
$$

$C=\frac{1}{2} W$ cosec. v
$C_{1}=\frac{41}{60} W \operatorname{cosec} . v$
$C_{5}=\frac{1}{6} W$ tang. v_{1}
$C_{2}=\frac{13}{1} \frac{1}{5} W \operatorname{cosec} . v$
$C_{6}=\frac{1}{3} W$
$T=\frac{1}{3} W$
$C_{3}=\frac{2}{3} W$ cotg. v
$C_{4}=\frac{1}{6} W \operatorname{cotg} . v$
$T_{1}=\frac{2}{3} W \operatorname{cotg} . v+\frac{1}{6} W$ tang. v_{1}
$T_{2}=\frac{5}{6} W \operatorname{cotg} . v$

Exampie.

Let $W=20,000 \mathrm{lbs} . \quad v=21^{\circ} 40^{\prime} . \quad v_{1}=56^{\circ} 30^{\prime}$. $C=27,000 \mathrm{lbs}$. Compression. $C_{5}=3,533 \mathrm{lbs}$. Compression. $O_{1}=36,900 \mathrm{lbs}$. Compression. $C_{6}=6,666 \mathrm{lbs}$. Compression. $C_{2}=46,800 \mathrm{lbs}$. Compression. $T=6,666 \mathrm{lbs}$. Tension. $C_{3}=33,466 \mathrm{lbs}$. Compressian. $T_{1}=37,000 \mathrm{lbs}$. Tension. $C_{4}=6,867 \mathrm{lbs}$. Compression. $T_{2}=41,831 \mathrm{lbs}$. Tension.
Table of Constants.

$L=$ Span in feet. $\quad h=$ Height in feet. $\quad C=$ Compression in $W=$ Weight in lbs. equally distributed over a rafter, to be multipli nember. $v=$ Angle between horizontal and rafter.									
Reference to Figures.	$\frac{L}{h}=2$	$\frac{L}{h}=3$	$\frac{L}{h}=4$	$\frac{L}{h}=5$	$\frac{L}{h}=6$	$\frac{L}{h}=7$	$\frac{L}{h}=8$	$\frac{L}{h}=9$	$\frac{L}{h}=10$
	$v=45^{\circ}$	$=33^{\circ} 40^{\prime}$	$v=26^{\circ} 30^{\prime}$	$=21^{\circ} 45^{\prime}$	$=18^{\circ} 20^{\prime}$	$=15^{\circ} 50^{\prime}$	$=14^{\circ} 15^{\prime}$	$=12^{\circ} 30^{\prime}$	$=11^{\circ} 10^{\prime}$
Truss No. 1. (See Fig. 237, page 156.)	$C=1.060$ $T=0.500$	$C=1.178$ $T=0.750$	$C=1.333$ $T=1.000$	$C=1.535$ $T=1.250$	$C=1.746$ $T=1.500$	$C=1.969$ $T=1.750$	$C=2.154$ $T=2.000$	$C=2.417$ $T=2.250$	$C=2.678$ $T=2.500$
Truss No. 2. (See Fig. 238, page 157.)	$\begin{aligned} & C=0.353 \\ & C_{1}=0.500 \\ & T=0.250 \end{aligned}$	$\begin{aligned} & C=0.277 \\ & C_{1}=0.692 \\ & T=0.261 \end{aligned}$	$\begin{aligned} & C=0.223 \\ & C_{1}=0.800 \\ & T=0.199 \end{aligned}$	$\begin{aligned} & \hline C=0.185 \\ & C_{1}=0.863 \\ & T=0.172 \end{aligned}$	$\begin{aligned} & C=0.157 \\ & C_{1}=0.902 \\ & T=0.149 \end{aligned}$	$\left\|\begin{array}{l} C=0.136 \\ C_{1}=0.925 \\ T=0.131 \end{array}\right\|$	$\begin{aligned} & C=0.123 \\ & C_{1}=0.940 \\ & T=0.119 \end{aligned}$	$\begin{aligned} & C=0.108 \\ & C_{1}=0.952 \\ & T=0.105 \end{aligned}$	$\begin{aligned} & C=0.096 \\ & C_{1}=0.962 \\ & T^{\prime}=0.095 \end{aligned}$
Truss No. 5. (See Fig. 241, page 159.)	$\begin{aligned} & C=1.456 \\ & C_{1}=0.500 \\ & T=0.750 \end{aligned}$	$\left\|\begin{array}{l} C=1.465 \\ C_{1}=0.750 \\ T=1.125 \end{array}\right\|$	$\begin{aligned} & C=1.820 \\ & C_{1}=1.000 \\ & T=1.500 \end{aligned}$	$\begin{aligned} & C=2.194 \\ & C_{1}=1.250 \\ & T=1.875 \end{aligned}$	$\begin{aligned} & C=2.576 \\ & C_{1}=1.500 \\ & T=2.250 \end{aligned}$	$\begin{aligned} & C=2.974 \\ & C_{1}=1.750 \\ & T=2.625 \end{aligned}$	$\begin{aligned} & C=3.315 \\ & C_{1}=2.000 \\ & T=3.00 \end{aligned}$	$\begin{aligned} & C=3.754 \\ & C_{1}=2.250 \\ & T=3.375 \end{aligned}$	$\begin{aligned} & C=4.193 \\ & C_{1}=2.500 \\ & T=3.750 \end{aligned}$

			$\begin{aligned} & a=5 . \\ & c_{i}=1 . \\ & =4 . \\ & =1 . \end{aligned}$	$\begin{aligned} & \\ & 0=.5 \\ & \hline \end{aligned} .$			
							$\begin{aligned} & =4.192 \\ & \begin{array}{l} =4.161 \\ =0.512 \\ =1.562 \\ 0=2.500 \\ 2=4.111 \end{array} \end{aligned}$
		$\left\{\begin{array}{c} c_{0}=3.550 \\ 0 \end{array}\right]$					

Reference to Figures.	$\frac{L}{h}=2$	$\frac{L}{h}=3$	$\frac{L}{h}=4$	$\frac{L}{h}=5$	$\frac{L}{h}=6$	$\frac{L}{h}=7$	$\frac{I}{h}=8$	$\frac{L}{h}=9$	$\frac{L}{h}=10$
	$v=45^{\circ}$	$v=33^{\circ} 40^{\prime}$	$v=26^{\circ} 30^{\prime}$	$v=21^{\circ} \cdot 45^{\prime}$	$v=18^{\circ} 20^{\prime}$	$v=15^{\circ} 50^{\prime}$	$v=14^{\circ} 15^{\prime}$	$v==12^{\circ} 30^{\prime}$	$v=11^{\circ} 10^{\prime}$
Truss No. 13. (See Fig. 249, page 166.)	$C_{2}=1.211$	$C_{2}=1.559$	$C_{2}=1.940$	$C_{2}=2.338$	$C_{2}=2.745$	$C_{2}=3.170$	3	0	$C=4.468$
	$C_{3}^{2}=0.404$	$C_{3}=0.460$	$C_{3}=0.523$	$C_{3}=0.594$	$C_{3}=0.660$	$C_{3}=0.731$	$C_{3}^{2}=0.797$	$C_{3}^{2}=0.902$	$C_{3}^{2}=0.990$
	$C_{4}^{\prime}=0.261$	$C_{4}=0.330$	$C_{4}=0.413$	$C_{4}^{\prime}=0.495$	$C_{4}=0.567$	$C_{4}=0.661$	$C_{4}^{3}=0.742$	$C_{4}=0.837$	$C_{4}=0.936$
	$\eta^{\prime}=0.683$	$7^{\prime}=1.024$	$T=1.366$	$T^{\prime}=1.707$	$T=1.956$	$T==2.304$	$7^{\prime}=2.705$	$T^{\prime}=3.080$	$\eta^{\prime}=3.456$
	$T_{1}=0.866$	$T_{1}=1.299$	$T_{1}=1.732$	$T_{1}=2.165$	$T_{1}=2.606$	$T_{1}=3.048$	$T_{1}=3.429$	$T_{1}=3.905$	$T_{1}=4.382$
	$T_{2}=0.734$	$T_{2}=0.731$	$Z_{1}=0.734$	$T=0.734$	$T_{2}=0.734$	$T_{£}^{1}=0.734$	$T_{2}=0.734$	$\eta_{9}=0.734$	$\eta_{2}=0.734$
	$T_{8}=0.180$	$T_{0}=0.183$	$7_{i}=0.183$	$T_{3}=0.183$	$T_{3}=0.183$	$T_{5}=0.183$	$T_{3}^{\prime}=0.183$	$T_{3}^{2}=0.183$	$T_{3}^{\prime}=0.183$
$\begin{gathered} H=0 \\ h=D \end{gathered}$	$C_{4}=1.269$	$C_{4}=1.620$	$C_{4}=2.016$	$C_{4}=2.430$	$C_{4}=2.853$	$C_{4}=3.294$	$C_{4}=3.672$	$C_{4}=4.158$	$C_{4}=4.644$
	$C_{5}=0.420$	$C_{5}=0.476$	$C_{5}=0.447$	$C_{5}=0.521$	$C_{5}=0.563$	$C_{5}=0.616$	$C_{5}=0.670$	$C_{5}=0.731$	$C_{5}=0.781$
	$C_{6}=0.285$	$C_{6}=0.305$	$C_{6}=0349$	$C_{6}=0.393$	$C_{6}=0.428$	$C_{6}=0.515$	$C_{6}^{r}=0.571$	$C_{6}=0.605$	$C_{6}^{-}=0.667$
	$C_{7}=0.203$	$C_{7}=0.257$	$C_{7}=0.320$	$C_{7}=0.386$	$C_{7}=0.451$	$C_{7}=0.52$.	$C_{7}=0.582$	$C_{7}=0.660$	$C_{7}=0.737$
	$T_{1}=0.900$	$T_{1}=1.350$	$T_{1}=1.800$	$T_{1}=2.250$	$T_{1}=2.710$	$T_{1}=-3.168$	$T_{1}=3.560$	$T_{1}=4.059$	$T_{1}=4.554$
Truss No. 14. (See Fig. 250.) page 167.)	$T_{2}=0.757$	$T_{2}=1.136$	$7_{2}^{1}=1.514$	$T_{2}^{\prime}=1.893$	$T_{2}=2.279$	$T_{2}=2.665$	$T_{2}=2.998$	$T=3.415$	$T_{2}=3.831$
	$T_{3}=0.631$	$T_{3}^{2}=0.921$	$T_{3}^{2}=1.267$	$T_{3}=1.589$	$T_{3}^{2}=-1.926$	$T_{3}=2.222$	$T_{3}^{2}=2.496$	$T_{3}=2.862$	$T_{3}=3.214$
	$T_{4}=(0.800$	$T_{4}=0.800$	$T_{4}^{\prime}=0.800$	$T_{4}^{\prime}=0.800$	$T_{4}^{i}=0.800$	$T_{4}=0.800$	$T_{4}=0.800$	$T_{4}^{\prime}=0.800$	$T_{4}=0.800$
	$7_{5}^{\prime}=0.253$	$T_{5}=0.253$	$T_{5}^{4}=0.253$	$T_{5}^{4}=0.253$	$T_{5}=0.253$	$T_{5}^{\prime}=0.253$	$T_{5}=0.253$	$T_{5}^{4}=0.253$	$T_{5}^{*}=0.253$
	$T_{6}=0.143$	$T_{6}^{\prime}=0.143$	$T_{6}^{\prime}=0.143$	$\eta_{6}^{1}=0.143$	$T_{6}=0.143$	$T_{6}=0.143$	$T_{6}=0.143$	$T_{6}^{\top}=0.143$	$T_{6}=0.143$

H11111i 111011	11110119101010
8kancimisige	
Tiidioivicioin	Hiolititioim
Mijuisicis	Til
Sosiogmien	2100
Midividivio	Oidididididid
	diotidition
	-
MiviviviTitit	वidididitiiil
$\pi \mathrm{min} 0$	9idivititiin
\%inciem ink	-
	9iiliilitili
	Tinidi川idiोiा
	(i)

Example to Table of Constants. (Tuuss No. 13.)

What is the amount of strain in the various members of a truss, according to Fig. 249, of the following dimensions, viz: Span 60 feet, distance between trusses 10 feet, height at center 10 feet, weight to be carried, including weight of construction, $66 \frac{2}{3} \mathrm{lbs}$. per square foot horizontally; hence total weight on one rafter $=30 \times 10 \times 66 \frac{2}{3}=20,000 \mathrm{lbs}$?

$$
\begin{array}{ll}
L=60 \text { feet. } & L \\
h=10 \text { feet. } & \frac{L}{h}=\frac{60}{10}=6 . \quad W=18^{\circ} 20^{\prime} \\
\hline, 000 \mathrm{ibs}
\end{array}
$$

$\left.\begin{array}{c}\text { Member. Constant. } \quad W \quad \text { Strains. } \\ C_{2}=2.745 \times 20,000=54,900 \mathrm{lbs} . \\ C_{3}=0.660 \times 20,000=13,200 \mathrm{lbs} . \\ C_{4}=0.567 \times 20,000=11,340 \mathrm{lbs} . \\ T=1.956 \times 20,000=39,120 \mathrm{lbs} . \\ T_{1}=2.606 \times 20,000=52,120 \mathrm{lbs} . \\ T_{2}=0.734 \times 20,000=14,680 \mathrm{lbs} . \\ T_{3}=0.183 \times 20,000=3,660 \mathrm{lbs} .\end{array}\right\}$ Compression.
[Note.-In the foregoing table the proportion of h to L is approximate. The constants are based on the angles.]

PRESSURE OF WIND ON ROOFS.

In the following table the maximum pressure of wind is taken at 50 lbs . per square foot:

The angle between horizontal and direction of wind is generally $10^{\circ} 00^{\prime}$. (See diagram.)

$$
\text { Fig. } 256 .
$$

Reference.
$F=$ Force of wind in lbs. $=50$.
$w,=$ Pressure at right angles to surface per square foot in lbs.
$w_{/ /}=$Pressure, vertical, per square foot in lbs.
$w_{\rho}=F \sin .^{2}(v+10)$
$w_{1 /}=\frac{w_{/}}{\cos v}$

Proportion of height h to span l.	Angle v.	Pressure w_{1}^{\prime} in lbs.	Pressure $w_{\prime \prime}$ in lbs.
$h=\frac{l}{0}$	$90^{\circ} 00^{\prime}$	50.00	0.00
$h=\frac{l}{2}$	$45^{\circ} 00^{\prime}$	33.53	47.40
$h=\frac{l}{3}$	$33^{\circ} 41^{\prime} 50^{\prime \prime}$	23.80	28.60
$h=\frac{l}{4}$	$26^{\circ} 33^{\prime} 50^{\prime \prime}$	17.64	19.70
$h=\frac{l}{5}$	$21^{\circ} 48^{\prime}$	13.83	14.80
$h=\frac{l}{6}$	$18^{\circ} 26^{\prime}$	11.23	11.80
$h=\frac{l}{7}$	$15^{\circ} 54^{\prime} 40^{\prime \prime}$	9.46	9.80
$h=\frac{l}{8}$	$14^{\circ} 02^{\prime} 10^{\prime \prime}$	8.56	8.80
$h=\frac{l}{9}$	$12^{\circ} 31^{\prime} 40^{\prime \prime}$	7.29	7.40
$h=\frac{l}{10}$	$11^{\circ} 18^{\prime} 40^{\prime \prime}$	6.51	6.60

PRESSURE OF SNOW ON ROOFS.

The average pressure of snow on a level surface, in the United States, is about 15 lbs. per square foot.

The following table gives the pressure per square foot on various inclined surfaces:

Reference.
$P=$ Pressure per square foot in lbs. $=15$.
$p_{1}=$ Vertical pressure in lbs.
$p_{2}=$ Pressure at right angles to surface in lbs.
$v=$ Angle between surface and horizontal.
$p_{1}=P \cos . v$.
$p_{2}=p_{1} \cos . v$.

Proportion of height h to span l.	Angle v.	Pressure P_{1} in lbs.	Pressure P_{2} in lbs.
$h=\frac{l}{2}$	$45^{\circ} 00^{\prime}$	10.60	7.49
$h=\frac{l}{3}$	$33^{\circ} 41^{\prime} 50^{\prime \prime}$	12.48	10.38
$h=\frac{l}{4}$	$26^{\circ} 33^{\prime} 50^{\prime \prime}$	13.42	12.00
$h=\frac{l}{5}$	$21^{\circ} 48^{\prime}$	13.93	12.94
$h=\frac{l}{6}$	$18^{\circ} 26^{\prime}$	14.23	13.50
$h=\frac{l}{7}$	$15^{\circ} 54^{\prime} 40^{\prime \prime}$	14.41	13.86
$h=\frac{l}{8}$	$14^{\circ} 02^{\prime} 10^{\prime \prime}$	14.52	14.05
$h=\frac{l}{9}$	$12^{\circ} 31^{\prime} 40^{\prime \prime}$	14.64	14.29
$h==\frac{l}{10}$	$11^{\circ} 18^{\prime} 4 J^{\prime \prime}$	14.71	14.43
$h=\frac{l}{\infty}$	$0^{\circ} 00^{\prime} 00^{\prime \prime}$	15.00	15.00

TIE RODS AND BARS.

Capacity and Proportional Dimensions of Wrought-iron Tie Rods

 Tie Bars, and Pins or Bolts.Ultimate resistance to tearing $=60,000$ lbs. $=30$ tons pe square inch.
Ultimate resistance to shearing $=50,000 \mathrm{lbs} .=25$ tons pe square inch. (See Fig. 258.)

Capacity of tie or bar.

3 times safety.		5 times safety.	
Lbs.	Tons.	Lbs.	'Tons.
5,000	2.50	3,000	1.50
6,200	3.10	3,720	1.86
7,400	3.70	4,440	2.22
8,600	4.30	5,160	2.58
10,000	5.00	6,000	3.00
11,200	5. 0	6,720	3.36
12,400	6.2)	7,440	3.72
13,600	6.80	8,160	3.88
15,000	7.50	9,000	4.50
7,400	3.70	4,440	2.22
9,200	4.60	5,520	2.76
11,200	5.60	6,720	3.36
13,000	6.50	7,800	3.90
15,000	7.50	9,000	4.50
16,800	8.40	10,080	5.04
18,600	9.30	11,160	5.58
20,600	10.30	12,350	6.18
22,400	11.20	13,440	6.72
10,000	5.00	6,000	3.00
12,400	6.20	7,440	3.72
15,000	7.50	9,000	4.50
17,400	8.70	10,440	5.02
20,000	10.00	12,000	6.00
22,400	11.20	13,440	6.72
25,000	12.50	15,000	7.50
27,400	13.70	16,440	8.22
30,000	15.00	18,000	9.00
12,400	6.20	7,440	3.72
15,600	7.80	9,360	4.68
18,600	9.30	11,160	5.58
21,800	10.90	13,080	6.54
25,000	12.50	15,000	7.50
28,000	14.00	16,800	8.40
30,533	15.27	18,720	9.36

		Dimension of flat bars in in., uniform thickness.			Diamete D of pi or bolt	
						¢ ¢ ¢ 0 0
0.25	0.56	$1 / 4$	1	0.75	0.62	
0.31	0.62		11	0.93	0.69	
0.37	0.70			1.12	0.75	
0.43	0.74		13	1.31	0.80	
0.50	0.79		,	1.50	0.88	
0.56	0.84		21	1.68	0.92	
0.62	0.89		21	1.87	0.97	
0.68	0.93		$23 / 4$	2.06	1.01	
0.75	0.97			2.25	1.08	
0.37	0.68	3/8	1	0.75	0.75	
0.46	0.76		11/4	0.93	0.83	
0.56	0.84		11	1.12	0.92	
0.65	0.91		$13 / 4$	1.31	0.99	
0.75	0.97		2	1.50	1.08	
0.84	1.04		21	1.68	1.13	
0.93	1.09		21	1.87	1.19	
1.03	1.15		$23 / 4$	2.06	1.24	
1.12	1.19			2.25	1.29	
0.50	0.79	1/2	1	0.75	0.88	
0.62	0.88		11/4	0.93	0.97	
0.75	0.97		11/2	1.12	1.08	
0.87	1.05		13/4	1.31	1.16	
1.00	1.13		2	1.50	1.24	
1.12	1.20		21	1.68	1.32	
1.25	1.26		$21 / 2$	1.87	1.39	
1.37	1.32		$23 / 4$	2.06	1.45	
1.50	1.39		3	225	1.52	
0.62	0.90	\% 8	1	0.75	0.98	
0.78	1.00		11/4	0.93	1.09	
0.93	1.09		$11 / 2$	1.12	1.20	
1.09	1.18		13/4	1.31	1.29	
1.25	1.26	*	2	1.50	1.39	
1.40	1.34	,	21/4	1.68	1.47	
1.56	1.41	${ }^{\prime}$	21/2	1.87	1.5	

Capacity of tie or bar．						Dimension of flat bars in in．， uniform thick－ ness．			Diameter D of pin or bolt．	
3 tim		5 tim	ty．			$\overline{0_{2}^{2}}$		－$\stackrel{\circ}{\circ}$		${ }_{0}^{\infty}$
Lbs．	Tons．	Lbs．	Ton			$\left\lvert\, \begin{aligned} & \text { 总菏 } \end{aligned}\right.$	荌	荷荡	E_{0}^{5}	－
	17.10	20，5	10	1.71	1.48	5／8	$23 / 4$	2.06	1.62	1.1
37,	18.75	22，440	11.22	1.87	1.54		，	2.25	1.69	1.2
15，000	7.50	9,000	4.5	0.75	0.9	$3 / 4$		0.75	1.08	0.7
18，600	9.30	11，160	5.58	0.93	1.09		$11 / 4$	0.93	1.20	，
22，400	11.20	13，440	6.72	1.12	1.19	＂	$11 /$	1.12	1.31	0.9
26，200	13.10	15，720	7.86	1.31	1.30	＂	$13 /$	1.31	1.41	1.0
${ }^{30,000}$	15.00	18，000	${ }^{9.00}$	1.50	1.39			1.50	1.52	1.0
33，600	16.80	20，160	10.08	1.68	1.46		21	1.68	1.62	1.1
37，400	${ }_{20}^{18.70}$	${ }^{22,440}$	11．22	1.87	1.54	＂		1.87	1.69	1.20
41，200	20.60	24，720	12.36	2.06	1.62	＂	$23 / 4$	2.06	1.77	1.26
45，000	22.50	27，000	13.50	2.25	1.69			2.25	1.86	1.32
17，400	8.70	10，4	5.22	0.87	1.0	7／8		0.7	1.16	0.8
21，800	10.90	13，080	6.54	1.09	1.18		$11 / 4$	0.93	1.29	0.91
26，200	13.10	15，720	7.86	1.31	1.29	＂	$11 / 3$	1.12	1.41	1.00
30，600	15.30	18，360	9.18	1.53	1.40	＂	$13 / 4$	1.31	1.53	1.08
34，800	17.40	20，880	10.44	1.74	1.49			1.50	1.63	1.16
39，200	19.60	23，520	11.76	1.96	1.58		21	1.68	1.73	1.23
43，600	21.80	26，160	13.08	2.18	1.66	＂		1.87	1.82	1.29
48，000	24.00	28，800	14.40	2.40	1.75		$23 / 4$	2.06	1.89	1.34
52，400	26.20	31.440	15.72	2.62	1.83			2.25	2.00	1.42
20，000	10.00	12，000		1.0	1.13		1	0.7	1.39	0.80
25，00	12.50	15，000	7.50	1.25	1.26		$11 / 4$	0.93	1.45	．
30,000	15.00	18，000	9.00	1.50	1.39		$11 / 2$	1.12	1.52	1.08
35，000	17.50	21，000	10.50	1.75	1.49		13／4	1.31	1.64	1.16
40，000	${ }^{20.00}$	24，000	12.00	2.00	1.60	＂	2	1.50	1.75	1.24
45，000	22.50	27，000	1350	2.25	1.70	＂		1.68	1.86	1.32
，000	25.00	30，000	15.00	2.50	1.79	＂	${ }_{2}$	1.87	1.96	1.39
$\begin{aligned} & 55,000 \\ & 60,000 \end{aligned}$	27.50 30.00	$\begin{aligned} & 33,000 \\ & 36,000 \end{aligned}$	16.50	2.75 3.00	1.87 1.96		$23 / 4$	2.06 2.25	2	1.45
28，000	14.00	16，800	8.40	1.40	1.34	11／8	$11 / 4$	0.93	1.47	
33，600	16.80	20，160	10.08	1.68	1.47			1.12	1.60	1.13
39，600	19.80	23，520	11.76	1.98	1.58	＂	$13 / 4$	1.31	1.73	1.23
45，000	22.50	27，000	13.50	2.25	1.69			1.50	1.86	1.32
，600	25.30 28.10	30，360	15.18	${ }_{2}^{2.53}$	1.80		${ }_{21}^{21}$	1.68	1.97	1.39
，200	28.10 30.90	${ }_{37,080}^{33,720}$	16.86 18.54	2.81 3.09	1.89 1.98	＂	234	1.87	${ }_{2.18}^{2.09}$	1.54
67，400	33.70	40，440	20.22	3.37	2.08	＂	3	2.25	2.26	1.60
73，000	36.50	43，800	21.90	3.65	2.16	＂		2.43	2.36	1.67
78，600	39.30	47，160	23.58	3.93	2.24	＂	$31 /$	2.62	2.45	1.74
84，200	42.10	50，520	25.26	4.21	2.32	＂	$33 / 4$	2.81	2.53	1.80
90，000	45	54，000	27.	4.50	2.40			3.0	2.63	1.86
，200	15.60	18，720	9.36	1.56	1.41	11／4	11／4	0.93	1.54	1.09
37，400	18.70	${ }^{22,440}$	11.22	1.87	1.55				1.69	1.20
43,600 50,000	21.80 25.00	26,160 30,000	13.08 15.00	${ }_{2.50}^{2.18}$	1.67 1.79	＂	$13 / 4$	1.31 1.50	${ }_{1.96}^{1.8}$	1.29 1.39
56，200	28.10	33，720	16.86	2.81	1.89	＂	2	1.68	2.09	48
62，400	31.20	37，440	18.72	3.12	1.99	＂	21／2	1.87	2.19	1.55

Capacity of tie or bar.						Dimension of flat bars in in., uniform thickness.			Diameter D of pin or bolt.	
3 times	fety.	5 time	fety.			$\begin{aligned} & n \\ & 0 \\ & 0 \\ & =\sim \end{aligned}$	${ }^{2}$	$0 \dot{0}$	©	
Lbs.	Tons.	Lbs.	'Tons.				苞菏	E		(1)
68,600	3430	41,160	20.58	3.43	2.10	11/4	23/4	2.06	2.29	1.62
75,000	37.50	45,000	22.50	3.75	2.19	1		2.25	2.40	1.70
81,200	40.60	48,720	24.36	4.06	2.27	"	$31 / 4$	2.43	2.49	1.76
87,400	43.70	52,440	26.22	4.37	2.36	"	$31 / 2$	2.62	2.60	1.84
93,600	46.80	56,160	28.08	4.68	2.44	"	$33 / 4$	2.81	2.68	1.89
100,000	50.00	60,000	30.00	5.00	2.53	'6	4	3.00	2.77	1.96
41,200	20.60	24,720	12.36	2.06	1.62	$13 / 8$	$11 / 2$	1.12	1.77	1.26
48,000	24.00	28,800	14.40	2.40	1.75	6	$13 / 4$	1.31	1.89	1.34
55,000	27.50	33,000	16.50	2.75	1.87	"	2	1.50	2.05	1.45
61,800	30.90	37,080	18.54	3.09	1.98	"	21/4	1.68	2.18	1.54
68,600	31.30	41,160	20.58	3.43	2.09	"	$21 / 2$	1.87	2.29	1.62
75,600	37.80	45,360	22.68	3.78	2.19	"	$23 / 4$	2.06	2.41	1.71
82,400	41.20	49,440	24.72	4.12	2.29	"	3	2.25	2.51	1.78
89,200	44.60	58,520	26.76	4.46	2.38	"	$31 / 4$	2.43	261	1.85
96,200	48.10	57,720	28.86	4.81	2.47	"	$31 / 2$	2.62	2.71	1.92
103,000	51.50	61,800	30.90	5.15	2.56	"	$33 / 4$	2.81	2.81	1.99
110,000	55.00	66,000	33.00	5.50	2.65	"		3.00	2.90	2.05
45,000	22.5	27,000	13.50	2.25	1.70	11/2	11/2	1.12	1.86	1.32
52,400	26.20	31.440	15.72	2.62	1.83		13/4	1.31	2.00	1.42
60,000	30.00	36,000	18.00	3.00	1.96	"	2	1.50	2.15	1.52
67,400	33.70	40,440	20.22	3.37	2.07	"	21/4	1.68	2.27	1.61
75,000	37.50	45,000	22.50	3.75	2.19	"	$21 / 3$	1.87	2.40	1.70
82,400	41.20	49,440	24.72	4.12	2.29	/	$23 / 4$	2.06	2.51	1.78
90,000	45.00	54,000	27.00	4.50	2.40	,	$3{ }^{4}$	2.25	2.63	1.86
97,400	48.70	58.440	29.22	4.87	2.49	'	$31 / 4$	2.43	2.73	1.93
105,000	52.50	63,000	31.50	5.25	2.59	'	$31 / 2$	2.62	2.84	2.01
113,400	56.20	67,440	33.72	5.62	2.67	'	$33 / 4$	2.81	2.93	2.08
120,000	60.00	72,000	36.00	6.00	2.77	،	4	3.00	3.03	2.15
127,400	63.70	76,440	38.22	6.37	2.85	"	41/4	3.18	3.12	2.21
135000	67.50	81,000	40.50	6.75	2.93	"	$41 / 2$	3.37	3.22	2.28
142,400	71.20	85,440	42.72	7.12	3.01	/	$43 / 4$	3.55	3.30	2.34
150,000	7500	90,000	45.00	7.50	3.10	,	5	3.75	3.39	2.40

JOINTS OR CONNECTIONS IN IRON CONSTRUCTION.

Proportions of Bolts, Nuts, Rivets, \&c.

Refirence.
$A=$ Sectional area of bolt, rivet, or pin.
$A_{1}=$ Sectional area of all rivets in a joint.
$A_{2}=$ Sectional area of one plate.
$D=$ Diameter of bolt, rivet, or pin.
$S=$ Ultimate resistance to shearing of material.
$T=$ Ultimate resistance to tearing of material.
$T_{1}=$ Tensional strain on joint, \&c.
$a=$ Number of times that a bolt, \&c., will have to be sheared. (See 2 on Fig. 258.)
$d=$ Distance between centres of rivets.
$k=$ Factor of safety.
$l=$ Overlap, approximately $1 \frac{2}{3} d$ to $1 \frac{3}{4} d$.
$m=$ Number of rivets in a joint.
$n=$ Number of lines of rivets in a joint at right angles to strain.
$t=$ Thickness of a plate.
Rivets.
Fig. 257.

For tension in direction of rivet:

$$
D=\sqrt{\frac{T_{i} k}{T 0.7854}}
$$

For shearing at right angles :
If at one place $D=\sqrt{\frac{T_{1} k}{S 0.7854}}$
If at two places $D=\sqrt{\frac{T_{1}^{\prime} k}{S 1.5708}}$
Approximately: $l=3 t \quad D=3 t$

Plate Joints.
No. I.-Plate Joint Overlapped, four lines of Rivets. Fig. 259.

No. 2.-Plate Joint Overlapped, single line of Rivet.
Fig. 260. (Same as No. 1.)

No. 3.-Plate Joint Overlapped, two lines of Rivets.
Fig. 261. (Same as No. 1.)

No. 4.-Fish Joints, two lines of Rivets.
Fig. 262.

One fish plate. (Same as No. 1.)
Two fish plates. Thickness of each fish plate $=\frac{1}{2} t$.
$D=\frac{1}{m} \sqrt{\frac{T_{1} k}{S 1.5708}}$
(Otherwise same as No. 1.)

DIMENSIONS OF BOLTS AND NUTS.

(Whitworth's proportions.)
Figs. 263, 264, 265, 266, 267, 268, 269, 270, and 271.

Dia. of Bolt.

Dimension of Nuts and Heads.

Inch. Inch. Inch. Inch. Inch.

3	$4 \frac{1}{2}$	5.18	5	7.07	3	2.57	3.5	1.50
$2 \frac{3}{4}$	$4 \frac{1}{8}$	4.76	$4 \frac{1}{2}$	6.37	$2 \frac{3}{4}$	2.35	3.5	1.75
$2 \frac{1}{2}$	$3 \frac{3}{4}$	4.33	$4 \frac{1}{8}$	5.83	$2 \frac{1}{2}$	2.13	4.0	2.00
$2 \frac{1}{4}$	$3 \frac{3}{8}$	3.89	$3 \frac{3}{4}$	5.30	$2 \frac{1}{4}$	1.91	4.0	2.12
2	3	3.46	$3 \frac{3}{8}$	4.76	2	1.69	4.5	2.25
$1 \frac{7}{8}$	$2 \frac{3}{4}$	3.17	3	4.24	$1 \frac{7}{8}$	1.58	4.5	2.37
$1 \frac{3}{4}$	$2 \frac{5}{8}$	3.03	$2 \frac{3}{4}$	3.89	$1 \frac{3}{4}$	1.47	5.0	2.50
$1 \frac{5}{8}$	$2 \frac{1}{2}$	2.38	$2 \frac{5}{8}$	3.71	$1 \frac{5}{8}$	1.36	5.0	2.75
$1 \frac{1}{2}$	$2 \frac{1}{4}$	2.59	$2 \frac{1}{2}$	3.53	$1 \frac{1}{2}$	1.25	6.0	3.00
$1 \frac{3}{8}$	2	2.30	$2 \frac{1}{4}$	3.18	$1 \frac{3}{8}$	1.14	6.0	3.25
$1 \frac{1}{4}$	$1 \frac{7}{8}$	2.16	2	2.82	$1 \frac{1}{4}$	1.08	7.0	3.50
$1 \frac{1}{8}$	$1 \frac{5}{8}$	1.87	$1 \frac{7}{8}$	2.64	$1 \frac{1}{8}$	0.92	7.0	4.00
1	$1 \frac{1}{2}$	1.73	$1 \frac{5}{8}$	2.29	1	0.81	8.0	5.00
$\frac{7}{8}$	$1 \frac{5}{16}$	1.51	$1 \frac{1}{2}$	2.12	$\frac{7}{8}$	0.70	9.0	6.00
$\frac{3}{4}$	$1 \frac{3}{16}$	1.38	$1 \frac{5}{16}$	1.86	$\frac{3}{4}$	0.59	10.0	6.00
$\frac{5}{8}$	1	1.15	$1 \frac{3}{16}$	1.67	$\frac{5}{8}$	0.48	11.0	7.00
$\frac{9}{16}$	$\frac{7}{8}$	1.01	1	1.41	$\frac{9}{16}$	0.42	11.0	7.00
$\frac{1}{2}$	$\frac{3}{4}$	0.86	$\frac{7}{8}$	1.23	$\frac{1}{2}$	0.37	12.0	8.00
$\frac{7}{16}$	$\frac{3}{4}$	0.86	$\frac{3}{4}$	1.06	$\frac{7}{16}$	0.31	14.0	8.00
$\frac{3}{8}$	$\frac{9}{16}$	0.64	$\frac{3}{4}$	1.06	$\frac{3}{8}$	0.26	16.0	9.00
$\frac{5}{16}$	$\frac{7}{16}$	0.50	$\frac{9}{16}$	0.79	$\frac{5}{16}$	0.20	18.0	9.00
$\frac{1}{4}$	$\frac{3}{8}$	0.43	$\frac{9}{16}$	0.79	$\frac{1}{4}$	0.15	20.0	10.00

Fig. 272.

Approximate proportions of bolts, nuts, and heads in inches:

$$
\begin{aligned}
& d=1.4 D+0.25=\text { Inscribed circle. } \\
& h=D=\text { Height of nut. } \\
& h_{1}=0.7 D=\text { Height of head }
\end{aligned}
$$

COMPOUND STRAINS IN HORIZONTAL AND SLOPING BEAMS.

(Load equally distributed or between supports.)
Area of Cross-section necessary to resist a Cross-breakiny and Compressive Strain in Beams acting as a Boom in Trusses, \&ec., or Beams acting as Rafters, \&c.

Reference.

$m=$ Bending moment (See Page 100.)
$C=$ Compressive strain. (See Poof and Simple Trusses.)
$q=\mathrm{A}$ factor depending on form of cross-section.
$I=$ Moment of inertia of cross-section.
$\varepsilon=$ Distance from neutral axis to most compressed fibres.
$A=$ Sectional area of beam, \&c.
$h=$ Depth of beam, \&c.
$p=$ Resistance to compression with safety per square inch of section.
$W=$ Total load.
$l=$ Length of beam, \&c.

$$
q=\frac{I}{\frac{s}{h} h^{2} A}
$$

For horizontal beams, \&c.:

$$
A=\frac{1}{p}\left(\frac{M}{q h}+C\right) \quad p=\frac{1}{A}\left(\frac{M}{q h}+C\right)
$$

For sloping beams, \&c., $v=$ angle between horizontal and beam:

$$
\begin{aligned}
& A=\frac{W}{p}\left[\frac{1}{2}\left(\frac{1}{\sin . v}+\sin . v\right)+\frac{l \cos . v}{12 q h}\right] \\
& p=\frac{W}{A}\left[\frac{1}{2}\left(\frac{1}{\sin . v}+\sin . v\right)+\frac{l \cos . v}{12 q h}\right]
\end{aligned}
$$

Rafter of a Roof Truss.

$$
\text { Fig. } 273 .
$$

EXAMPLE.
Reference.
$W=2.5$ tons. $\quad C=2.8$ tons. $\quad l=10$ feet. $\quad v=26^{\circ} 30^{\prime}$ $p=5$ tons per square inch.
We will assume a Phœnix Co's six-inch beam of the following dimensions: $h=6$ inches; $A=4$ inches; $I=22.5$

$$
q=\frac{22.5}{0.5 \times 6^{2} \times 4}=0.312
$$

$A=\frac{2.5}{5}\left[\frac{1}{2}\left(\frac{1}{0.446}+0.446\right)+\frac{120 \times 0.895}{12 \times 0.312 \times 6}\right]=3.06$ ins.; showing that the six-inch beam has a greater sectional area than required.

If the load is concentrated at the apex of roof, the compressive strain $C=2.8$ tons, and the area necessary to resist this strain would be (taking p at five tons per square inch) $\frac{2.8}{5}=0.56 \mathrm{sq}$. inches, provided this is able to resist buckling.

By comparing this with the above result, it will be seen how much greater the sectional area will have to be to resist a crossbreaking strain, caused by the load being distributed. These remarks also apply to simple trusses.

Simple Truss, (Beam continuous over Strut.)

Fig. 274.

Example.

Reference.

$W=20$ tons. $l=20$ feet. $v=15^{\circ} \quad p=5$ tons per sq. inch.
We will assume a Phœnix Co's twelve-inch beam of the following dimensions:

$$
\begin{array}{ll}
h=12 \text { inches. } & I=275.92 \\
A=12.5 \text { inches. } & s=6 \text { inches. }
\end{array}
$$

$$
q=\frac{275.92}{0.5 \times 12^{2} \times 12.5}=0.306
$$

$$
\begin{aligned}
m & =0.0703 \times 1 \times 120^{2}=84.36 \quad \text { (See Reaction of Supports.) } \\
C & =23.32 \text { tons. }
\end{aligned}
$$

$$
A=\frac{1}{5}\left(\frac{84.36}{0.306 \times 12}\right)+23.32=-\frac{46.26}{5}=9.25 \text { inches. }
$$

Consequently the sectional area of the twelve-inch beam is amply sufficient.
[Note.-The formulas for horizontal beams are also applicable to rafters of roof trusses, m and C being given. For the bending moments (m) the various distances are the horizontal projections of those on the rafter from abutment to ridge.
The foregoing formulas also apply to beams under a cross-breaking and tensional strain. If the truss (Fig. 274) is inverted, the horizontal member will be in tension. Hence, insert the resistance of the material to tension instead of compression, and put tensional for compressive strain; otherwise, the formulas remain the same.]

WEIGHT OF MOVING LOADS.

Variable and Accidental Loads.
(Weight of construction not included.)

Character of structure.	How loaded.	Weight in lbs. per square foot of surface.	
Street bridges for horse cars and heavy traffic.	Crow'd with persons.	Minimum Maximum Average.	40 lbs. 120 80 "
Street bridges for general traffic, foot passengers, \&c.	Persons, animals, and wagons.	Public travel... Private travel... Heavy business wagons. Light business wagons.	$\begin{aligned} & 80 \text { lbs. } \\ & 40 \\ & 80 \\ & 80 \\ & 40 \end{aligned}$
Floors, \&c........	Crow ded public places. Dwellings Churches, courtrooms, theatres, and ball-rooms. Storage of grain... General merchandise................ Warehouses Factories. Hay lofts. \qquad	Minimum Maximum Average..........	$\begin{array}{r} 40 \mathrm{lbs} . \\ 120 \\ 80 \\ 40 \end{array} \text { " }$

STATIC AND MOVING LOADS ON BRIDGES OF WROUGHT IRON.

The following table gives an approximate weight per lineal foot in pounds of the static load or weight of construction complete for Single-Line Railway Bridges, supported at the ends, from ten to four hundred feet span; also the weight of the moving load per lineal foot of span, based on the assumption that the heaviest locomotives exert a pressure of three thousand pounds per lineai foot between their extreme bearings.

The table is applicable in computing the strains in all trusses with parallel booms mentioned in this work.

Weight of Construction and Moving Load of Wrought- Iron SingleLine Railway Bridges for the heaviest traffic.
(From 20 to 400 feet span.)

The following gives the actual weight of some well-known Bridges (single line) in America, Germany, and England:

Name of Bridge.	System.	$\underset{\Xi}{\stackrel{\oplus}{ \pm}}$			
		㖘	Lbs.	Lbs.	Lbs.
"Brenz," near Königsbronn...	$\left\{\begin{array}{c} \text { Open Web, } \\ \text { parallel booms. } \end{array}\right\}$	63.0	760	3,131	7,530
"Colomak"........	"	111.0	1,090	3,067	9,516
"Iser," near Mu- nich	"	164.7	1,770	3,656	8,532
"Donau," near Ingolstadt..	"	178.0	1,954	3,312	8,532
"Elb," near Meissen.	"	179.0	1,324	2,783	10,390
$\begin{gathered} \text { "Rhine," near } \\ \text { Mainz } \end{gathered}$	$\left\{\begin{array}{c} \text { "Pauli's" " par- } \\ \text { abolic arched } \\ \text { booms. } \end{array}\right\}$	345.0	2,170	1,970	11,660
"Royal Albert," near Saltash..	"	455.0	4,418	2,240	9,954
"Boyne"	Lattice....	264.0	3,225		
"Leven".	"	36.0	566		
"Kent".	"	36.0	580		
"Harper's Ferry"	Truss.................	124.0	770		

MISCELLANEOUS.

GEOMETRY.

LONGIMETRY AND PLANIMETRY.

(Lines and Areas.)
Reference.
$A=$ Area.
$\pi=$ Periphery of circle $=3.14159$ when diameter $=1$.
$r=$ Radius of circle.
$c=$ Length of cord of segment.
$p=$ Circumference of circle for given diameter.
$l=$ Length of circle arc, \&c.
$h=$ Height of segment.
$v=$ Angles, expressed in decimals, as $15^{\circ} 30^{\prime}=15.5$.
For other designations, see Figures.
[Note.-Always use the same unit for dimensions.]

Values of π.

$$
\begin{array}{rlrl}
\pi & =1.14159 & \frac{\pi}{3} & =1.04720 \\
2 \pi & =6.28319 & \frac{\pi}{\pi} & =0.31831 \\
\frac{1}{2 \pi} & =0.15915 & \frac{\pi}{4} & =0.78540 \\
\frac{1}{\pi^{2}} & =0.10132 & \frac{\pi}{6} & =0.52360 \\
\frac{2}{\pi} & =0.63662 & \pi^{2} & =9.86960 \\
\frac{\pi}{2} & =1.57080 & \sqrt{3} & =31.00628 \\
\hline & \sqrt{\frac{1}{\pi}}=1.77245 \\
& =1.46459 \\
& & =0.56419
\end{array}
$$

Fig. 275.

Fig. 276.

Fig. 277.

Fig. 278.

Fig. 279.

$$
\begin{aligned}
p & =\pi d \\
d & =-\frac{p}{\pi} \\
r & =-\frac{p}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& l=-\frac{v}{360^{\circ}} p=\frac{v \pi d}{360^{\circ}}=\frac{v \pi r}{180^{\circ}} \\
& v=\frac{l}{\pi r} 180^{\circ} \\
& r=\frac{180^{\circ}}{v} \frac{l}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& v_{1}=180^{\circ}-\frac{v}{2} \\
& v=2\left(180^{\circ}-v_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{c^{2}+4 h^{2}}{8}=\frac{b^{2}}{2 h} \\
& c=2 \sqrt{2 h r-h^{2}} \\
& h=r-\sqrt{r^{2}-\left(\frac{c}{2}\right)^{2}}
\end{aligned}
$$

$$
r=\frac{a c}{2 \sqrt{a^{2}-\left(\frac{a^{2}+b^{2}-c^{2}}{2 b}\right)^{2}}}
$$

Fig. 280.

Fig. 281.
Ellipse.

Fig. 282.

Fig. 283.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 b d \\
& h=\sqrt{a^{2}-d^{2}} \\
& d=\frac{a^{2}+b^{2}-c^{2}}{2 b}
\end{aligned}
$$

Fig. 284.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}+2 b d \\
& h^{2}=\sqrt{a^{2}-d^{2}} \\
& d=\frac{c^{2}-a^{2}-b^{2}}{2 b}
\end{aligned}
$$

Fig. 285. (Circle plane.)

Fig. 286. (Circle ring.)

Fig. 287. (Sector.)

Fig. 288. (Segment.)

Fig.289. (Circle ring sector.)

$$
\begin{aligned}
& A=\pi r^{2}=\frac{\pi d^{2}}{4}=0.7554 d^{2} \\
& r=\sqrt{\frac{A}{\pi}}=0.5642 \sqrt{A} \\
& d=\sqrt{\frac{4 A}{\pi}}=1.1284 \sqrt{A}
\end{aligned}
$$

$$
A=\pi\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)
$$

$$
=\pi\left(r_{1}+r_{2}\right)\left(r_{1}-r_{2}\right)
$$

$$
\begin{aligned}
& A=\frac{1}{2} l r=\frac{1}{2} v r^{2}=\frac{v}{360^{\circ}} \pi r^{2} \\
& =0.008727 v r^{2} . \quad v=\frac{A}{\pi r^{2}} 360^{\circ}
\end{aligned}
$$

$$
r=\sqrt{\frac{360^{\circ}}{v}} \frac{A}{\pi}=\sqrt{\frac{2 A}{v}}
$$

$$
\begin{aligned}
A & =(v-\sin . v) \frac{r^{2}}{2} \\
& =\left(\frac{v \pi}{180^{\circ}}-\sin . v\right) \frac{r^{2}}{2} \\
& =(0.017453 v-\sin . v) \frac{r^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{v\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)}{2} \\
& =\frac{v \pi}{360^{\circ}}\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right) \\
& =0.008727 v\left(r_{1}{ }^{2}-r_{2}{ }^{2}\right)
\end{aligned}
$$

Fig. 294. (Triangle.)

$$
\begin{aligned}
A & =a b \sin \cdot v \\
& =a h
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{c h}{2}=\frac{1}{2} b c \sin . v \\
& =\frac{c^{2} \sin . v \sin . v_{1}}{2 \sin . v_{2}}
\end{aligned}
$$

When the three sides are given:
Let $a+b+c=s$
$A=\sqrt{\frac{1}{2} s\left(\frac{1}{2} s-a\right)\left(\frac{1}{2} s-b\right)}$

$$
\left(\frac{1}{2} s-c\right)
$$

CENTER OF GRAVITY OF PLANES.

Reference.

$x=$ Distance from a fixed base to center of gravity.
$r=$ Radius.
$c=$ Chord.
$b, p, h=$ Dimensions.
$A=$ Area.
$v=$ Angle.

Fig. 295. (Quadrangle.)	a and b parallel. $x=\frac{h}{2}-\frac{h}{6}\left(\frac{b-a}{b+a}\right)$
Fig. 296. (Triangle.)	$x=\frac{\hbar}{3}$
Fig. 297. (Half circle, or elliptic plane.)	$\begin{gathered} \frac{b}{2}=\text { radius }=r \\ x=0.4244 r \end{gathered}$
Fig. 298. (Concentric ring.)	$x=\frac{4}{3} \frac{\sin . \frac{1}{2} v}{v} \frac{r^{3}-r_{1}{ }^{3}}{r^{2}-r_{1}{ }^{2}}$

Fig. 299. (Circle, or elliptic arc.)

$$
x=\frac{r c}{p} \frac{2 \sin . \frac{1}{2} v}{v} r
$$

Fig. 300. (Half circumference of circle or ellipse.)

Fig. 301. (Circle sector.)

$$
x=\frac{4}{3} \frac{\sin \cdot \frac{1}{2} v}{v} r
$$

Fig. 302. (Circle segment.)

Fig. 303. (Parabola.)

$$
x=\frac{2 h}{5}
$$

Fig. 305. (Half parabola.)

TRIGONOMETRICAI FORMULAS.

Reference.

$a, b, c=$ Length of sides.
$A, B, C=$ Angles opposite to a, b, c respectively.
Right Angle Triangle.
Fig. 306.

$$
\begin{aligned}
A & =90^{\circ} \\
a & =\sqrt{b^{2}+c^{2}} \\
a & =\frac{c}{\sin . C}
\end{aligned}
$$

$a=\frac{b}{\cos . C}$
Tang. $C=\frac{c}{b}=\frac{\sin . C}{\cos . C}=\frac{1}{\cot . C}$
$b=a \cos . C$
$b=c \cot . C$
$b=a \sin . B$
$b=c$ tang. B
$c=b$ tang. C
$c=a \sin . C$
$\operatorname{Sin} . C=\frac{c}{a}$
$\operatorname{Cos.} C=\frac{b}{a}$

Oblique Angle Triangle.

Fig. 307.

$$
\begin{aligned}
& a=\frac{c \sin . A}{\sin . C} \\
& a=\frac{c \sin . A}{\sin \cdot(A+B)}
\end{aligned}
$$

$$
a=\sqrt{b^{2}+c^{2}-2 b c \cos . A}
$$

$$
b=\frac{c \sin \cdot B}{\sin \cdot C}
$$

$$
e=\frac{1}{2}\left(b-\frac{(a+c)(a-c)}{b}\right)
$$

$$
d=\frac{1}{2}\left(b+\frac{(a+c)(a-c)}{b}\right)
$$

$\operatorname{Sin} . C=\frac{c \sin . B}{b}={ }^{c \sin . A} a^{-}$
$\operatorname{Sin} . A=\frac{a \sin . C}{c}$

Natural Sine

Deg.	Minutes.						
	0	5	10	15	20	25	30
0	. 00000	. 00145	. 00291	. 00436	. 00582	. 00727	. 00873
1	. 01745	. 01891	. 02036	. 02181	. 02327	. 02172	. 02618
2	.03490	. 03635	. 03781	. 03926	. 04071	. 04217	. 04362
3	. 05234	. 05379	. 05524	. 05669	. 05814	. 05960	. 06103
4	. 06976	. 07121	. 07266	. 07411	. 07556	. 07701	. 07846
5	. 08716	. 08860	. 19005	. 09150	. 09295	. 09440	. 09585
6	.10453	. 10597	. 10742	. 10887	. 11031	. 11176	. 11320
7	. 12187	.12331	. 12476	. 12620	. 12764	. 12908	. 13053
8	. 13917	.14061	. 14205	. 14349	. 14493	. 14637	. 14781
9	.15643	.15787	. 15931	. 16074	. 16218	. 16361	. 16505
10	. 17365	. 17508	. 17651	. 17794	. 17937	. 18081	. 18224
11	. 19081	. 19224	. 19366	. 19509	. 19652	. 19794	. 19937
12	. 20791	. 20933	. 21076	. 21218	. 21360	. 21502	. 21644
13	. 22495	. 22637	. 22778	. 22320	. 23062	. 23203	.23345
14	. 24192	. 24333	. 21474	. 24615	. 21756	. 24897	. 25038
15	. 25882	. 25022	. 26163	. 26303	. 26443	. 23584	. 26724
16	. 27564	. 27704	. 27843	. 27983	.29123	. 28292	. 28402
17	.23237	. 29376	. 29515	. 29654	. 29793	. 29932	. 30071
18	. 30902	. 31040	. 31178	.31316	. 31454	. 31593	. 31730
19	. 32557	. 32694	. 32832	. 32969	. 33106	. 33244	. 33381
20	. 34202	. 34339	. 34475	. 34612	. 34748	. 34884	. 35021
21	. 35837	. 35973	. 36108	. 36244	. 36379	. 36515	. 36650
22	. 37461	. 37595	. 37730	. 37865	.37999	. 38134	. 38268
23	. 39073	. 39207	. 39341	. 39474	. 39608	. 39741	. 39875
24	. 40674	. 40806	. 40939	. 41072	. 412.4	. 41337	. 41469
25	. 42232	. 42394	. 42525	. 42657	. 42788	. 42920	. 43051
26	. 43837	. 43968	. 44098	. 44229	. 44359	. 44494	. 44620
27	. 45399	. 45529	. 45658	. 45787	. 45917	. 46046	. 46175
28	. 46947	. 47076	. 47204	.47352	. 474.60	. 47588	. 47716
29	. 48481	. 48608	. 48735	. 48862	. 48989	. 49116	. 49242
30	. 50000	. 50126	. 50252	. 50377	. 50503	. 50628	. 50754
31	. 51504	. 51623	. 51753	. 51877	. 52002	. 52123	. 52250
32	. 52942	. 53115	. 53238	. 53361	. 53484	. 53607	. 53730
33	. 54464	. 54586	. 54708	. 54829	. 54951	. 55072	. 55194
34	. 55919	. 56040	. 56160	. 56280	. 56401	. 56521	. 56641
35	. 57358	. 57477	. 57596	. 57715	. 57833	. 57952	. 58070
36	. 58779	. 58869	. 59014	. 59131	. 59248	. 59365	. 59482
37	. 60182	. 60298	. 60414	. 60529	. 60645	. 60761	. 60876
38	. 61566	. 61681	. 61795	.61909	. 62024	. 62138	. 62251
39	. 62932	. 63045	. 63158	. 63271	. 63383	. 63496	. 63608
40	. 64279	. 64390	. 64501	. 64612	. 64723	. 64834	. 64945
41	. 65606	. 65716	. 65825	. 65935	. 66044	. 66153	. 66262
42	. 66913	. 67221	. 67129	. 67237	. 67344	. 67452	. 67559
43	. 68200	. 68306	. 68412	. 68518	. 68624	. 68730	. 68835
44	. 69466	. 69570	. 69675	. 69779	. 69883	. 69987	. 70091
Deg.	60	55	50	45	40	35	30
	Minutes.						

Natural Cosine.

Natural Sine.

Minutes.						Deg.
35	40	45	50	55	60	
. 01018	. 01164	. 01309	. 01454	. 01600	. 01745	89
. 02763	. 02308	. 03054	. 03199	. 03345	. 03490	88
. 04507	. 04653	. 04798	. 04943	. 05088	. 05234	87
. 06250	. 06395	. 06540	. 06685	. 06831	. 06976	86
. 07991	. 08136	. 08281	. 08426	. 08571	. 08716	85
. 09729	. 09874	. 10019	. 10164	. 10308	. 10453	84
. 11465	.11609	. 11754	. 11898	. 12043	. 12187	83
. 13197	. 13341	. 13485	. 13629	. 13802	. 13917	82
.14925	. 15069	. 15212	. 15356	. 15500	. 15643	81
. 16648	. 16792	. 16935	. 17078	. 17222	. 17365	80
. 18367	. 18509	. 18652	. 18795	. 18938	. 19081	79
. 20079	. 2222	. 20364	. 20507	. 20649	. 20791	78
. 21786	. 21928	. 22070	. 22212	. 22353	.22495	77
. 23486	. 23627	. 23769	. 23910	. 24051	. 24192	76
. 25179	. 25320	.25460	. 25601	. 25741	. 25882	75
. 25864	. 27004	. 27144	. 27284	. 27421	. 27564	74
. 28541	. 23680	. 28820	. 28959	. 29098	. 29237	73
. 30209	. 30348	. 30486	. 30625	. 30763	. 30902	72
. 31868	. 32006	. 32144	. 32282	. 32419	. 32557	71
. 33518	. 33655	. 33792	. 33929	. 34065	. 34202	70
. 35157	. 35293	. 35429	. 35565	. 35701	. 35837	69
. 36785	. 36921	. 37056	. 37191	. 37326	. 37461	68
. 38403	. 38537	. 38671	. 38805	. 38939	. 39073	67
. 40008	. 40141	. 40275	. 40408	. 40541	. 40674	66
. 41602	. 41734	. 41866	. 41998	. 42130	. 42232	65
. 43182	. 43313	. 43445	. 43575	.43706	. 43837	64
. 44750	. 44880	. 45010	. 45140	. 45269	. 45399	63
. 46304	. 46433	. 46561	. 46690	. 46819	. 46947	62
. 47844	. 47971	.48099	. 48226	. 483.54	. 48481	61
. 49369	. 49495	. 49622	. 49748	. 49874	. 50000	60
. 50879	. 51004	. 51129	. 51254	. 51379	. 51504	59
. 52374	. 52498	. 52621	. 52745	. 52869	. 52992	58
. 53853	. 53975	. 54097	. 54220	. 54342	. 54464	57
. 55315	. 55436	. 55557	. 55678	. 55799	. 55919	56
. 56760	. 56880	. 57000	. 57119	. 57238	. 57358	55
. 58189	. 58307	. 5842.5	. 58543	. 58661	. 58779	54
. 59599	. 59716	. 598832	. 59949	. 60065	. 60182	53
. 60991	. 61107	. 61222	. 61337	. 61451	. 61566	52
. 62365	. 62179	. 62595	. 62706	. 62819	. 62932	51
. 63720	. 63832	. 63944	. 64056	. 64167	. 64279	50
. 65055	. 65166	. 65276	. 65386	. 65496	. 65606	49
. 66371	. 66480	. 66588	. 66697	. 66805	. 66913	48
. 67666	. 67773	. 67880	. 67987	. 68093	. 68200	47
. 68941	. 69046	. 69151	. 69256	. 69361	. 69446	46
. 70195	. 70238	. 70401	. 70505	. 70608	. 70711	45
25	2)	15	10	5	0	
Minutes.						

Natural Cosine.

Natural Sine.

Deg.	Minutes.						
	0	5	10	15	20	25	30
45	. 70711	. 70813	. 70016	. 71019	. 71121	. 71223	. 71325
46	. 71934	. 72035	. 72136	. 72236	. 723337	. 72437	. 72537
47	. 73135	. 73234	. 73333	. 73432	. 73531	. 73629	. 73728
48	. 74314	. 74412	. 74509	. 74606	. 747103	. 74799	. 74896
49	. 75471	. 75556	. 75661	. 75756	. 75851	. 75946	. 76041
50	. 76604	. 76698	. 76791	. 76881	. 76977	. 77070	. 77162
51	. 77715	. 77806	. 77897	. 77988	. 78079	. 78170	. 78261
52	. 78801	. 78891	. 78080	. 79069	. 79158	. 79247	.79335
53	. 79864	. 79951	. 80038	. 80125	. 80212	. 80299	. 80386
54	. 80902	. 80987	. 81072	. 81157	. 81212	. 81327	. 81412
55	. 81915	. 81999	. 82082	. 82165	. 82218	. 822330	. 82413
56	. 82904	. 82985	. 83066	. 83147	. 83228	. 83308	. 83389
57	. 83867	. 83946	. 84025	. 84104	. 84182	. 84261	. 81339
58	. 84805	. 84882	. 84959	. 85035	. 85112	. 85188	. 85264
59	. 85717	. 85792	. 85866	. 85941	. 86015	. 86089	. 86163
60	. 86603	. 86675	. 86748	. 86820	. 86892	. 86964	. 87036
61	. 87462	. 87532	. 87603	. 87673	. 87743	. 87812	. 87882
62	. 88295	. 88383	. 88431	. 88499	. 88566	. 88634	. 88701
63	. 89101	. 89167	. 89232	. 89238	. 89363	. 89428	. 89493
64	. 89879	. 89943	. 90007	. 90070	. 90133	. 90196	. 90259
65	. 90631	. 90692	. 90753	. 90814	. 90875	. 90936	. 90996
66	. 91355	. 91414	. 91472	. 91531	. 91590	. 91648	. 91706
67	. 92.550	. 92107	. 92164	. 92220	. 92276	. 92332	. 92388
68	. 92718	. 92773	. 92827	. 92381	. 92935	. 92388	. 93042
69	. 93358	. 93410	. 93462	. 93514	. 93565	. 93616	. 93667
70	. 93969	. 94019	. 94068	. 94118	. 94167	. 94215	. 94264
71	. 94552	. 94599	. 94646	. 94693	. 94740	. 94786	. 94832
72	. 95106	. 95150	. 95191	. 95240	. 95284	. 95328	. 95372
73	. 95630	. 95673	. 95715	. 95757	. 95799	. 95841	. 95882
74	. 96126	. 96166	. 96206	. 96246	. 96235	. 96324	. 96363
75	. 96593	. 96630	. 96667	.96705	. 96742	. 96778	. 96815
76	. 97030	. 97065	. 97100	. 97134	. 97169	. 97203	. 97237
77	. 97437	. 97470	. 97502	. 97534	. 97566	. 97598	. 97630
78	. 97815	. 97845	. 97875	. 97905	. 97934	. 97963	. 97992
79	. 98163	. 98190	. 98218	. 98245	. 98272	. 98299	. 98325
80	. 98481	. 98506	. 98531	. 98506	. 98580	. 98604	. 98629
81	. 98769	. 98791	. 98814	. 988836	. 98858	. 98880	. 98902
82	. 99027	. 99047	. 99067	. 99087	. 99106	. 99125	. 99144
83	. 99235	. 99272	. 99290	. 99307	. 99324	. 99341	. 99357
84	. 99452	. 99467	. 99482	. 99497	. 99511	. 99526	. 99540
85	. 99619	. 99632	. 99644	. 99657	. 99668	. 99680	. 99692
86	. 99756	. 99766	. 99776	. 99786	. 99795	. 99804	. 99813
87	. 99863	. 99870	. 99878	. 99885	. 99892	. 99898	. 99905
88	. 99939	. 99944	. 99949	. 90953	. 99958	. 99962	. 99966
89	. 99985	. 99987	. 99989	. 90991	. 99993	. 99995	. 99996
	60	55	50	45	40	35	30

Minutes.

Natural Cosine.

Natural Sinf.

Minutes.						Deg.
${ }^{\circ} 35$	40	45	50	55	60	
. 71427	. 71529	. 71630	. 71732	. 71833	. 71934	44
. 72637	. 72737	. 72837	.72937	. 73036	. 73135	43
.73826	. 73924	.74022	. 74123	. 74217	. 74314	42
. 74992	. 75088	. 75184	. 75280	. 75375	. 75471	41
. 76135	. 76229	. 76323	. 76417	. 76511	. 76604	40
. 77255	. 77317	. 77439	. 77531	. 77623	. 77715	39
. 78351	. 78442	. 78532	. 78622	. 78711	. 78801	38
. 79424	. 79512	. 79300	. 79688	. 79776	. 79864	37
. 80472	. 80558	. 89644	. 80730	. 80816	. 80902	36
. 81496	. 81589	. 81664	. 81748	. 81832	. 81915	35
. 82493	.82577	. 82659	. 82741	. 82822	. 82904	34
. 83469	. 83549	. 83629	. 83708	. 83788	. 83867	33
. 84417	. 84495	. 84573	. 84650	. 84728	- 84805	32
. 85340	. 85416	. 85491	. 85567	. 85642	. 85717	31
. 86237	. 86317	. 86384	. 86457	. 86530	. 86603	30
. 87107	. 87178	. 87250	. 87321	. 87391	. 87462	29
. 87959	. 88020	. 88089	. 88158	. 88226	. 88295	28
. 88768	. 88835	-88902	. 88968	. 89035	. 89101	27
. 89555	.89623	. 89687	. 89752	. 89816	. 89879	26
. 90321	. 90383	. 90446	. 90507	. .00569	. 90631	25
. 91056	. 91116	. 91176	. 91236	. 91295	. 91355	24
. 91764	. 91822	. 91879	. 91936	. 91994	. 92050	23
. 92444	. 92499	. 92554	. 92509	. 92664	. 92718	22
.93095	. 93148	. 93201	. 93253	. 93306	. 93358	21
. 93718	. 93769	. 93819	. 93869	. 93919	. 93969	20
. 94313	. 94361	. 94409	. 94457	. 94504	. 94552	19
. 94878	. 94924	. 94970	. 95015	. 95061	. 95106	18
. 95415	. 95459	. 95502	. 95545	. 95588	. 95630	17
. 95923	. 95964	. 96005	. 96646	. 96086	. 96126	16
. 96402	. 96440	. 96479	. 96517	. 96555	. 96593	15
.96851	. 96888	. 96923	. 96959	. 96994	. 97030	14
. 97271	. 97304	. 97338	. 97371	. 97404	. 97437	13.
. 97661	. 97602	. 97723	. 97754	. 97784	. 97815	12
. 98021	. 98050	. 98079	. 98107	. 98135	. 98163	11
. 98352	. 98378	. 98404	. 98430	. 98455	. 98481	10.
. 986552	. 98676	. 98700	. 98723	. 98746	. 98769	9
. 98923	. 98944	. 98965	. 98986	. 99006	. 99027	8
.99163	. 99182	. 99200	. 99219	. 99237	. 99255	7
. 99337	. 93390	. 99406	. 99421	. 99437	. 99452	6
. 995553	. 995077	. 999 ã80	. 99594	. 99607	. 99619	5
.99703	. 99714	. 99725	. 99736	. 99746	. 99756	4
. 99822	. 99831	. 99839	. 99847	. 99855	. 99863	3.
. 99971	. 99917	. 99923	. 99929	. 99034	. 99939	2
$.99969$. 99973	. 99976	. 99979	. 99982	- . 999885	1
. 99997	. 99998	. 99999	1.00000	1.00000	1.00000	0
25°	20	15	10	5	0	
Minutes.						

Natural Cosine.

Natural Tangent.

Deg.	Minutes.						
	0	5	10	15	20	25	30
0	0.0000	0.0014	0.0029	0.0044	0.0058	0.0073	0.0087
1	0.0175	0.0189	0.0204	0.0218	0.0233	0.0247	0.0262
2	0.0349	0.0364	0.0378	0.0393	0.0407	0.0422	0.0437
3	0.0524	0.0539	0.0553	0.0568	0.0582	0.0597	0.0612
4	0.0699	00714	0.0728	0.0743	0.0758	0.0772	0.0787
5	0.0875	0.0889	0.0914	0.0919	0.0933	0.0948	0.0963
6	0.1051	0.1066	0.1080	0.1095	0.1110	0.1125	0.1139
7	0.1228	0.1243	0.1257	0.1272	0.1287	0.1302	0.1316
8	0.1405	0.1420	0.1435	0.1450	0.1465	0.1480	0.1495
9	0.1584	0.1599	0.1614	0.1629	0.1644	0.1658	0.1673
10	0.1763	0.1778	0.1793	0.1808	0.1823	0.1838	0.1853
11	0.1944	0.1959	0.1974	0.1989	0.2004	0.2019	0.2034
12	0.2126	0.2141	0.2156	0.2171	0.2186	0.2202	0.2217
13	(1.2309	0.2324	0.2339	0.2355	0.2270	0.2385	0.2401
14	0.2493	0.2509	0.2524	0.2540	0.2555	0.2571	0.2586
15	0.2679	0.2695	0.2711	0.2726	$0.27+2$	0.2758	0.2773
16	0.2867	0.2883	0.2899	0.2915	0.2930	0.2946	0.2962
17	0.3057	0.3073	0.3089	0.3105	0.3121	0.3137	0.3153
18	0.3249	0.3265	0.3281	0.3297	0.3314	0.3320	0.3346
19	0.3443	0.3460	0.3476	0.3492	0.3508	0.3525	0.3541
20	0.3640	0.3656	0.3673	0.3689	0.3706	0.3722	0.3739
21	0.3839	03855	0.3872	0.3889	0.3905	0.3922	0.3939
22	0.4040	0.4057	0.4074	0.4091	0.4108	0.4125	0.4142
23	0.4245	0.4262	0.4279	0.4296	0.4314	0.4331	0.4348
24	0.4452	0.4470	0.4487	0.4505	0.4522	0.4540	0.455%
25	0.4663	0.4681	0.4698	0.4716	0.4734	0.4752	0.4770
26	0.4877	0.4895	0.4913	0.4931	0.4950	0.4968	0.4986
27	0.5095	0.5114	0.5132	0.5150	0.5169	0.5187	0.5206
28	0.5317	0.5336	0.5354	0.5 .373	05392	0.5411	0.5430
29	0.5543	0.5562	0.5581	0.5600	05619	0.5638	0.5658
30	0.5774	0.5793	0.5812	0.5832	0.5851	0.5871	0.5891
31	0.6008	0.6028	0.6048	0.6068	0.6088	0.6108	0.6128
32	0.6249	0.6269	0.6289	0.6309	0.6330	0.6350	0.6371
33	0.6494	0.6515	0.6535	0.6556	0.6577	0.6598	0.6619
34	0.6745	0.6766	0.6787	0.6809	0.6830	0.6851	0.6873
35	0.7002	0.7024	0.7045	0.7067	0.7089	0.7111	0.7133
36	0.7265	0.7288	0.7310	0.7332	0.7355	0.7377	0.7400
37	0.7536	0.7558	0.7581	0.7604	0.7627	0.7650	0.7673
38	0.7813	0.7836	0.7860	0.7883	0.7907	0.7931	0.7954
39	0.8098	0.8122	0.8146	0.8170	0.8195	0.8219	0.8243
40	0.8391	0.8416	0.8441	0.8466	0.8491	0.8516	0.8541
41	0.8693	0.8718	0.8744	0.8770	0.8795	0.8821	0.8847
42	0.9004	0.9030	0.9057	0.9083	0.9110	0.9137	0.9163
43	0.9325	0.9352	0.9380	0.9407	0.9434	0.9462	0.9490
44	0.9657	0.9685	0.9713	0.9742	0.9770	0.9798	0.9827
Deg.	60	55	50	45	40	35	30
	Minutes.						

Natural Cotangent.

Natural Tangent.

Natural Cotangent.

Natural Tangent.

Deg.	Minutes.						
	0	5	10	15	20	25	30
45	1.0000	1.0029	1.0058	1.0088	1.0117	1.0146	1.0176
46	1.0355	1.0385	1.0416	1.0446	1.0477	1.0507	1.0538
47	1.0724	1.0755	1.0786	10818	1.0850	1.0881	1.0913
48	11106	1.1139	1.1171	1.1204	1.1237	1.1270	1.1303
49	1.1504	1.1537	1.1571	1.1606	1.1640	1.1674	1.1708
50	1.1917	1.1953	1.1988	1.2024	1.2059	1.2095	1.2131
51	1.2349	1.2386	1.2423	1.2460	1.2497	1.2534	1.2572
52	1.2799	1.2838	1.2876	1.2915	1.2954	1.2993	1.3032
53	1.3270	1.3311	1.3351	1.3302	1.3432	1.3472	1.3514
54	1.3764	1.3806	1.3848	1.3891	1.39?4	1.3976	1.4019
55	1.4281	1.4326	1.4370	1.4415	1.4460	1.4505	1.4550
56	1.4826	1.4872	1.4919	1.4966	1.5013	1.5061	1.5108
57	1.5399	1.5448	1.5497	1.5547	1.5597	1.5647	1.5697
58	1.6003	1.6055	1.6107	1.6160	1.6212	1.6265	1.6318
59	1.6643	1.6698	1.6753	1.6808	1.6864	1.6920	1.6976
60	1.7320	1.7379	1.7437	1.7496	1.7556	1.7615	1.7675
61	1.8040	1.8102	1.8165	1.8228	1.8291	1.8354	1.8418
62	1.8807	1.8873	1.8940	1.9007	1.9074	1.9142	1.9210
63	1.9626	1.9697	1.9768	1.9840	1.9912	1.9984	2.0057
64	2.0503	2.0579	2.0655	2.0732	2.0809	2.0887	2.0965
65	2.1445	2.1527	2.1609	2.1692	2.1775	2.1859	2.1943
66	2.2460	2.2549	2.2637	2.2727	2.2817	2.2907	2.2998
67	2.3558	2.3654	2.3750	2.3847	2.3945	2.4043	2.4142
68	2.4751	2.4855	2.4960	2.5065	2.5171	2.5279	2.5386
69	2.6051	2.6165	2.6279	2.6394	2.6511	2.6628	2.6746
70	2.7475	2.7600	2.7725	2.7852	2.7980	2.8109	2.8239
71	2.9042	2.9180	2.9319	2.9456	2.9600	2.9743	2.9886
72	3.0777	3.0930	3.1084	3.1240	3.1397	3.1556	3.1716
73	3.2708	3.2879	3.3052	3.3226	3.3402	3.3580	3.3759
74	3.4874	3.5067	3.5261	3.5457	3.5656	3.5856	3.6059
75	3.7320	3.7539	3.7760	3.7983	3.8208	3.8436	3.8667
76	4.0108	4.C358	4.0611	4.0867	4.1126	4.1388	4.1653
77	4.3315	4.3604	4.3897	4.4194	4.4494	4.4799	4.5107
78	4.7046	4.7385	4.7729	4.8077	4.8430	4.8788	4.9152
79	5.1445	5.1848	5.2257	5.2671	5.3093	5.3521	5.3955
80	5.6713	5.7199	5.7694	5.8197	5.8708	5.9228	5.9758
81	6.3137	6.3737	6.4348	6.4971	6.5605	6.6252	6.6912
82	7.1154	7.1912	7.2687	7.3479	7.4287	7.5113	7.5957
83	8.1443	8.2434	8.3450	8.4490	8.5555	8.6648	8.7769
84	9.5144	9.6493	9.7883	9.9310	10.0780	10.2290	10.3850
85	11.4300	11.6250	11.8260	12.0350	12.2510	12.4740	12.7060
86	14.5010	14.6060	14.9240	15.2570	15,6050	15.9690	16.3500
87	19.0810	19.6270	20.2060	20.8190	21.4700	22.1640	22.9040
88	28.6360	29.8820	31.2420	32.7300	34.3680	36.1780	38.1880
89	57.2900	62.4990	68.7500	76.3900	85.9480	98.2180	114.5900
Deg.	60	55	50	45	40	35	30
	Minutes.						

Natural Cotangent.
natural Tangent.

Minutes.						Deg
35	40	45	50	55	60	
1.0206	1.0235	1.0265	1.0295	1.0325	1.0355	44
1.0568	1.0590	1.0630	1.0661	1.0692	1.0724	43
1.0945	1.0977	1.1009	1.1041	1.1074	1.1106	42
1.1236	1.1369	1.1403	1.1436	1.1470	1.1504	41
1.1743	1.1778	1.1812	1.1847	1.1882	1.1917	40
1.2167	1.2203	1.2239	1.2276	1.2312	1.2349	39
1.2609	1.2647	1.2685	1.2723	1.2761	1.2799	38
1.3071	1.3111	1.3151	1.3190	1.3230	1.3270	37
1.3555	1.3597	1.3638	1.3680	1.3722	$1 \cdot 3764$	36
1.4063	1.4106	1.4150	1.4193	1.4237	1.4281	35
1.4595	1.4641	1.4687	1.4733	1.4779	1.4826	34
1.5156	1.5204	1.5252	1.5301	1.5350	1.5399	33
1.5747	1.5798	1.5849	1.5900	1.5952	1.6003	32
1.6372	1.6426	1.6479	1.6534	1.6588	1.6643	31
1.7033	1.7090	1.7147	1.7205	1.7263	1.7320	30
1.7735	1.7795	1.7856	1.7917	1.7979	1.8040	29
1.8482	1.8546	1.8611	1.8676	1.8741	1.8807	28
1.9278	1.9347	1.9416	1.9486	1.9556	1.9626	27
2.0130	2.0204	2.0278	2.0353	2.0428	2.0503	26
2.1044	2.1123	2.1203	2.1283	2.1364	2.1445	25
2.2028	2.2113	2.2199	2.2286	2.2373	2.2460	24
2.3090	2.3183	2.3276	2.3369	2.3464	2.3558	23
2.4242	2.4342	2.4443	2.4545	2.4648	2.4751	22
2.5495	2,5605	2.5715	2.5826	2.5938	2.6051	21
2.6865	2.6985	2.7106	2.7228	2.7351	2.7475	20
2.8370	2.8502	2.8636	2.8770	2.8905	2.9042	19
3.0032	3.0178	3.0326	3.0475	3.0625	3.0777	18
3.1877	3.2041	3.2205	3.2371	3.2539	3.2708	17
3.3941	3.4124	3.4308	3.4495	3.4684	3.4874	16
3.6264	3.6471	3.6680	3.6891	3,7105	3.7320	15
3.8900	3.9136	3.9375	3.9616	3.9861	4.0108	14
4.1921	4.2193	4.2468	4.2747	4.3029	4.3315	13
4.5420	4.5736	4,6057	4.6382	4.6712	4.7046	12
4.9520	4.9894	5.0273	5.0658	5.1049	5,1445	11
5.4397	5.4845	5.5301	5.5764	5.6234	5.6713	10
6,0296	6.0844	6.1402	6.1970	6.2549	6.3137	9
6.7584	6.8269	6.8969	6.9682	7.0410	7.1154	8
7.6821	7.7703	7.8606	7.9530	8.0476	8.1443	7
8.8918	9.0098	9.1309	9.2553	9.3831	9.5144	6
10.5460	10.7120	10.8830	11.0590	11.2420	11.4300	5
12.9470	13.1970	13.4570	13.7270	14.0080	14.3010	4
16.7500	17.1690	17.6110	18.0750	18.5640	19.0810	3
23.6940	24.5420	25.4520	26.4320	27.4900	28.6360	2
40.4360	42.9640	45.8290	49.1040	52,8820	57.2900	1
137.5100	171.8800	229.1800	343.7700	687.5500		0
25	20	15	10	5	0	
Minutes.						

Natural Secant.

Deg.	Minutes.						
	0	5	10	15	20	25	30
0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1	1.0001	1.0002	1.0002	1.0002	1.0003	1.0003	1.0003
2	1.0006	1.0007	1.0007	1.0008	1.0008	1.0009	1.0019
3	1.0014	1.0014	1.0015	1.0016	1.0017	1.0018	1.0019
4	1.0021	1.0025	1.0023	1.0027	1.0023	1.0030	1.0031
5	1.0038	1.0039	1.0041	1.0042	1.0043	1.0045	1.0046
6	1.0055	1.0057	1.0058	1.0060	1.0061	1.0063	1.0065
7	1.0075	1.0077	1.0079	1.0080	1.0082	1.0084	1.0086
8	1.0098	1.0100	1.0102	1.0104	1.0107	1.0109	1.0111
9	1.0125	1.0127	1.0129	1.013:	1.0134	1.0136	1.0139
10	1.0154	1.0157	10159	1.0162	1.0165	1.0167	1.0170
11	1.0187	1.0190	1.0193	1.0196	1.0199	1.0202	1.0205
12	10223	1.0223	1.0229	1.0233	1.0233	1.0239	1.0243
13	1.0263	1.0266	1.0270	1.0274	1.0277	1.0280	1.0284
14	1.0306	1.0310	1.0314	1.0317	1.0321	1.0325	1.0329
15	1.0353	1.0357	1.0361	1.0365	1.0369	1.0373	1.0377
16	1.0403	1.0407	1.0412	1.0416	1.0420	1.0425	1.0429
17	1.0457	1.0461	1.0466	1.0471	1.0476	1.0480	1.0485
18	1.0515	1.0520	1.0525	1.0530	1.0535	1.0540	1.0545
19	1.0577	1.0581	1.0587	1.0592	1.0598	1.0603	1.0608
20	1.0642	1.0647	1.0653	1.0659	1.0664	1.0670	1.0676
21	1.0711	1.0717	1.0723	1.0729	1.0736	1.0742	1.0748
22	1.0785	1.0792	1.0798	1.0804	1.0811	1.0817	1.0824
23	1.0864	1.0870	1.0877	1.0884	1.0891	1.0897	1.0504
24	1.0946	1.0953	1.0961	1.0968	1.0975	1.0982	1.0989
25	1.1034	1.1041	1.1049	1.1056	1.1064	1.1072	1.1079
26	1.1126	1.1134	1.1142	1.1150	1.1158	1.1166	1.1174
27	1.1223	1.1231	1.1240	1.1248	1.1257	1.1265	1.1274
28	1.1326	1.1334	1.1343	1.1352	1.1361	1.1370	1.1379
29	1.1433	1.1443	1.1452	1.1461	1.1471	1.1480	1.1489
30	1.1547	1.1557	1-1566	1.1576	1.1586	1.1596	1.1606
31	1.1666	1.1676	1.1687	1.1697	1.1707	1.1718	1.1728
32	1.1792	1.1802	1.1830	1.1824	1.1835	1.1846	1.1857
33	1.1923	1.1935	1.1946	1.1958	1.1969	1.1980	1.1992
34	1.2062	1.2974	1.2068	1.2098	1.2110	1.2122	1.2134
35	1.2208	1.2220	1.2233	1.2245	1.2258	1.2270	1,2283
36	1.2361	1.2374	1.2387	1.2400	1.2413	1,2427	1.2440
37	1.2521	1.2535	1.2549	1.2563	1.2577	1.2591	1.2605
38	1.2690	1.2705	1.2719	1.2734	1.2748	1,2763	1.2778
39	1.2867	1.2883	1.2898	12913	1.2929	1.2944	1.2960
40	1.3054	1.3070	4.3086	1.3102	1.3118	1.3134	1.3151
41	1.3250	1.3267	1.3284	1.3301	1.3318	1.3335	1.3352
42	1.3456	1.3474	1.3492	1.3509	1.3507	1.3540	1.3563
43	1.3673	1.3692	1.3710	1.3729	1.3748	1.3767	1.3786
44	1.3902	1.3921	1.3941	1.3960	1.3980	1.4000	1.4020
Deg.	60	55	50	45	40	35	30
	Minutes.						

Natural Cosecant.

Natural Secant.

Minutes.						Deg.
35	40	45	50	55	60	
10010	1.0001	1.0001	1.0001	1.0001	1.0001	89
1.0004	1.0004	1.0005	1.0005	1.0005	1.0606	88
1.0010	1.0011	1.0011	1.0012	1.0013	1.0014	87
1.0019	1.0020	1.0021	1.0022	1.0023	1.0024	86
1.0032	1.0033	1.0034	1.0036	1.0037	1.0038	85
1.0048	1.0049	1.0050	1.0052	1.0053	1.0055	84
1.0066	1.0068	1.0070	1.0071	1.0073	1.0075	83
1.0088	1.0090	1.0092	1.0094	1.0096	1.0098	82
1.0113	1.0115	1.0118	1.0120	1.0122	1.0125	81
1.0141	1.0145	1.0146	1.0149	1.0152	1.0154	80
1.0173	10176	1.0179	1.0181	1.0184	1.0187	79
1.0208	1.0211	1.0214	1.0217	1.0220	1.0223	78
1.0246	1.0249	1.0253	1.0256	1.0260	1.0263	77
1.0288	1.0291	1.0295	1.0298	1.0302	1.0306	76
1.0333	1.0337	1.0341	1. 345	1.0349	1.0353	75
1.0382	1.0386	1.0390	1.0394	1.0399	1.0403	74
1.0434	1.0438	1.0443	1.0448	1.0452	1.0457	73
1.0490	1.0495	1.0500	1.0505	1.0510	1.0515	72
1.0550	1.0555	1.0560	1.0565	1.0571	1.0577	71
1.0644	1.0619	1.0625	1.0630	1.0636	1.0642	70
1.0682	1.0688	1.0694	1.0699	1.0705	1.0711	69
1.0754	1.0760	1.0766	1.0773	1.0779	1.0785	68
1.0830	1.0837	1.0844	1.0850	1.0857	1.0864	67
1.0911	1.0918	1.0925	1.0932	1.0939	1.0946	66
1.0997	1.1004	1.1011	1.1019	1.1026	1.1034	65
1.1087	1.1095	1.1102	1.1110	1.1118	1.1126	64
1.1182	1.1190	1.1198	1.1207	1.1215	1.1223	63
1.1282	1.1291	1.1299	1.1308	2.1317	1.1326	62
1.1388	1.1397	1.1406	1.1415	1.1424	1.1433	61
1.1499	1.1508	1.1518	1.1528	1.1537	1.1547	60
1.1616	1.1626	1.1636	1.1646	1.1656	1.1666	59
1.1739	1.1749	1.1760	1.1770	1.1781	1.1792	58
1.1868	1.1879	1.1819	1.1901	1.1912	1.1923	57
1.2004	1.2015	1.2027	1.2039	1.2050	1.2062	56
1.2146	1.2158	1.2171	1.2183	1.2195	1.2208	55
1.2296	1.2309	1.2322	1.2335	1.2348	1.2361	54
1.2453	1.2467	1.2480	1.2494	1.2508	1.2521	53
1.2619	1.2633	1.2647	1.2661	1.2676	1.2690	52
1.2793	1.2807	1.2822	1.2837	1.2852	1.2867	51
1.2975	1.2991	1.3006	1.3022	1.3038	1.3054	50
1.3167	1.3184	1.3200	1.3217	1.3233	1.3250	49
1.3369	1.3386	1.3404	1.3421	1.3439	1.3456	48
1.3581	1.3600	1.3618	1.3636	1.3655	1.3673	47
1.3805	1.3824	1.3843	1.3863	1.3882	1.3902	46
1.4040	1.4056	1.4081	1.4101	1.4122	1.4142	45
25	20	15	10	5	0	
Minutes.						

Natural Secant.

Deg.	Minutes.						
	0	5	10	15	20	25	30
45	1.4142	1.4163	1.4183	1.4204	1.4225	1.4246	1.4267
46	1.4395	1.4417	1.4439	1.4461	1.4483	1.4505	1.4527
47	1.4663	1.4686	1.4709	1.4732	1.4755	1.4778	1.4802
48	14945	1.4969	1.4993	1.5018	1.5042	1.5067	1.5092
49	1.5242	1.5268	1.5294	1.5319	1.5345	15371	1.5398
50	1.5557	1.5584	1.5611	1.5639	1.5666	1.5694	1.5721
51	1.5890	1.5919	1.5947	1.5976	1.6005	1.6034	1.6064
52	1.6243	1.6273	1.6303	1.6334	1.6365	1.6396	1.6427
53	1.6616	1.6648	1.6681	1.6713	1.6746	1.6779	1.6812
54	1.7013	1.7047	1.7081	1.7116	1.7151	1.7185	1.7220
55	1.7434	1.7471	1.7507	1.7544	1.7581	1.7618	1.7655
56	1.7883	1.7921	1.7960	1.7999	1.8039	1.8078	1.8118
57	1.8361	1.8402	1.8443	1.8485	1.8527	1.8569	1.8611
58	1.8871	1.8915	1.8959	1.9004	1.9048	1.9093	1.9139
59	1.9416	1.9463	1.9510	1.9558	1.9606	1.9654	1.9703
60	2.0000	2.0050	2.0102	2.0152	2.0204	2.0256	2.0308
61	2.0627	2.0681	2.0735	2.0790	2.0846	2.0901	2.0957
62	2.1300	2.1359	2.1418	2.1477	2.1536	2.1596	2.1657
63	2.2027	2.2090	2.2153	2.2217	2.2282	2.2346	2.2411
64	2.2812	2.2880	2.2949	2.3018	2.3087	2.3158	2.3228
65	2.3662	2.3736	2.3811	2.3886	2.3961	2.4037	2.4114
66	2.4586	2.4666	2.4748	2.4829	2.4912	2.4995	2.5078
67	2.5593	2.5681	2.5770	2.5859	2.5949	2.6040	2.6181
68	2.6695	2.6791	2.6888	2.6986	2.7085	2.7185	2.7285
69	2.7904	2.8010	2.8117	2.8225	2.8334	2.8444	2.8554
70	2.9238	2.9355	2.9474	2.9593	2.9713	2.9835	2.9957
71	3.0715	3.0846	3.0977	3.1110	3.1244	3.1379	3.1515
72	3.2361	3.2506	3.2653	3.2801	3.2951	3.3102	3.3255
73	3.4203	3.4366	3.4532	3.4697	3.4867	3.5037	3.5209
74	3.6276	3.6464	3.6651	3.6840	3.7031	3.7224	3.7420
75	3.8637	3.8848	3.9061	3.9277	3.9495	3.9716	3.9939
76	4.1336	4.1578	4.1824	4.2072	4.2324	4.2579	4.2836
77	4.4454	4.4736	4.5021	4.5831	4.5604	4.5901	4.6202
78	4.8097	4.8429	4.8765	4.9106	4.9452	4.9802	5.0158
79	5.2408	5.2803	5.3205	5.3612	5.4023	5.4447	5.4874
80	5.7588	5.8067	5.8554	5.9049	5.9554	5.9963	6.0588
81	6.3924	6.4517	6.5121	6.5736	6.6363	${ }^{6.7003}$	6.7655
82	7.1853	7.2604	7.3372	7.4156	7.4957	7.5776	7.6613
83	8.2055	8.3 C 39	8.4046	8.5079	8.6138	8.7223	8.8337
84	0.5668	9.7010	9.8391	9.9812	10.1270	10.2780	10.4330
85	11.4740	11.6680	11.8680	12.0760	12.2910	12.5140	12.7450
80	14.3350	14.6400	14.9580	15.2900	15.6370	16.0000	16.3800
87	19.1070	19.6530	20.2300	20.8430	21.4940	22.1860	22.9250
88	28.6540	29.8090	31.2570	32.7450	34.3820	36.1910	38.2010
89	57.2990	62.5070	(i8.7570	76.3960	85.9460	98.2230	114.5900
Deg.	60	55	50	45	40	35	30
	Minutes.						

Natural Cosecant.

Natural Secant.

Minutes.						Deg.
35	40	45	50	55	60	
1.4288	1.4310	1.4331	1.4352	1.4374	1.4395	44
1.4550	1.4572	1.4595	1.4617	1.4640	1.4663	43
1.4825	1.4849	1.4873	1.4897	1.4921	1.4945	42
1.5116	1.5141	1.5166	1.5192	1.5217	1.5242	41
1.5424	1.5450	1.5477	1.5503	1.5530	1.5557	40
1.5749	1.5777	1.5805	1.5833	1.5862	1.5890	39
1.6093	1.6123	1.6153	1.6182	1.6212	1.6243	38
1.6458	1.6489	1.6521	1.6552	1.6584	1.6616	37
1.6845	1.6878	1.6912	1.6945	1.6979	1.7013	36
1.7256	1.7291	1.7327	1.7362	1.7398	$1 \cdot 7434$	35
1.7693	1.7730	1.7768	1.7806	1.7844	1.7883	34
1.8158	1.8198	1.8238	1.8279	1.8320	1.8361	33
1.8654	1.8697	1.8740	1.8783	1.8827	1.8871	32
1.9184	1.9230	1.9276	1.9322	1.9369	1.9416	31
1.9752	1.9801	1.9850	1.9900	1.9950	2.0000	30
2.0360	2.0413	2.0466	2.0519	2.0573	2.0627	29
2.1014	2.1070	2.1127	2.1185	2.1242	2.1300	28
2.1717	2.1778	2.1840	2.1902	2.1964	2.2027	27
2.2477	2.2543	2.2610	2.2676	2.2744	2.2812	26
2.3299	2.3371	2.3443	2.3515	2.3588	2.3662	25
2.4191	2.4269	2.4347	2.4426	2.4506	2.4586	24
2.5163	2.5247	2.5333	2.5419	2.5506	2.5593	23
2.6223	2.6316	2.6410	2.6504	2.6599	2.6695	22
2.7386	2.7488	2.7591	2.7694	2.7799	2.7904	21
2.8666	2.8778	2.8892	2.9006	2.9122	2.9338	20
3.0081	3.0206	3.0331	3.0458	3.0586	3.0715	19
3.1653	3.1792	3.1932	3.2074	3.2216	3.2361	18
3.3409	3.3565	3.3722	3.3881	3.4041	3.4203	17
3.5383	3.5559	3.5736	3.5915	3.6096	3.6279	16
3.7617	3.7816	3.8018	3.8222	3.8428	3.8637	15
4.0165	4.0394	4.0625	4.0859	4.1096	4.1336	14
4.3098	4.3362	4.3630	4.3901	4.4176	4.4454	13
4.6507	4.6817	4.7130	4.7448	4.7770	4.8097	12
5.0520	5.0886	5.1258	5.1636	5.2019	5.2408	11
5.5308	5.5749	5.6197	5.6653	5.7117	5.7588	10
6.1120	6.1661	6,2211	6.2772	6.3343	6.3924	9
6,8320	6.8393	6.9690	7.0396	7.1117	7.1853	8
7.7469	7.8344	7.9240	7.9971	8.1094	8.2055	7
8.9479	9.0651	9.1855	9.3092	9.4362	9.5668	6
10.5930	10.7580	10.9290	11.1040	11.2080	11.4740	5
12.9850	13.2350	13.4940	13.7630	14.0430	14.3350	4
16.7790	17.1980	17.6390	18.1930	18.5910	19.1070	3
23.7160	24.5620	25.4710	26.1500	27.5080	28.6540	2
39.9780	42.9760	45.8400	49.1140	52.8910	57.2090	1
137.5100	171.8900	229.1800	343.7700	687.5500	∞	0
25	20	15	10	5	0	
Minutes.						

	Circumference in inches.	Area in square inches.	Contents of one foot in length in cubic inches.		Circumference in inches.	Area in square inches.	Contents of one foot in length in cubic inches.		Circumference in inches.	Area in square inches.	Contents of one foot in length in cubic inches.
	0.1963	0.003	0.	18	4.4320	1.48489			8.4430	5.67266	68.071
	0.3927	0.012	0.14726		4.5160	1.52295	19.4754		8.6394	5.93957	71.2749
	0.5890	0.02761	0.33134		4.7124	1.76715	21.2057	$2 \frac{13}{3} 6$	8.8357	6.2126%	74.5515
	0.7854	0.04909	0.58905		4.9087	1.91718	23.0097		9.0321	6.4918 i	77.9017
	0.9817	0.07670	0.92039		5.1051	2.07394	24.8873	$2 \frac{1}{1} \frac{5}{6}$	9.2284	6.77713	81.3255
	1.1781	0.11045	1.32536	111	5.3014	2.23654	26.8385	${ }^{16}$	9.4248	7.06858	84.8230
	1.3744	0.15033	1.80996	$1 \frac{3}{4}$	5.4978	2.40528	28.8634		9.6211	7.36618	88.3941
$\frac{1}{2}$	1.5708	0.19635	2.35619	118	5.6941	2.58015	30.9619	$3 \frac{1}{8}$	9.8175	7.66990	92.0338
	1.7671	0.24850	2.9820 S	$1 \frac{7}{8}$	5.8905	2.76116	33.1340		10.0138	7.97977	95.7572
	1.9635	0.30680	3.68155	115	6.0868	2.94831	35.375		10.210 2	8.29577	99.5492
	2.1598	0.37122	4.45468	2	6.2832	3.14159	37.6991		10.4065	8.61790	103.4148
	2.3562	0.44179	5.30143	2	6.4795	3.34101	40.0921		10.6029	8.94618	107.3541
	2.5525	0.51849	6.22182	21	6.6759	3.54656	42.5588		10.7992	9.28058	111.3670
	2.7489	0.60132	7.21584	2	6.8722	3.75825	45.0990	2	10.9956	9.62113	115.4535
	2.9452	0.69029	8.28349	2	7.0686	3.97608	47.7129		11.1919	9.96781	119.6137
1	3.1416	0.78540	9.42477		7.2649	4.20004	50.4005	$3{ }^{15}$	11.3883	10.32062	123.8475
1	3.3379	0.88664	10.63970	2	7.4613	4.43014	53.1616	3118	11.5846	10.67957	128.1549
11	3.5343	0.99402	11.92820	$2 \frac{7}{16}$	7.6576	4.66637	55.9964	33^{10}	11.7810	11.04466	132.5359
1	3.7306	1.10753	13.29040	$2 \frac{1}{2}$	7.8540	4.90874	58.9049	$3 \frac{1}{1} \frac{3}{6}$	11.9773	11.41588	136.9906
$1 \frac{1}{4}$	3.9270	1.22718	14.72620	$2 \frac{9}{16}$	8.0503	5.15724	61.8869	$3 \frac{7}{8}$	12.1737	11.79324	141.5189
$1 \frac{5}{16}$	4.1233	1.35297	16.23560	25	8.2467	5.4 .1188	64.9426	$31 \frac{1}{6}$	12.3700	12.17674	146.1209

	 みた No
＊sə ปəұәนษ！ฺ	
－səyou！ụ ．Іəұә山ห！ฺ	
－ธə૫วu！̣ U！ ェәฉәนย！ฺ	

 サーツ
 ๓10． MN H以

	N下心 onm m Ho
－รə૫วu！̣ प！ дәдәшв！̆	

	万1010 कr om ○ THM
	ল〇下 いHCNNWNON以
สəұәแษ！（1	

－SəUอU！U！ エə૧จนも！（

 W M OP H H W

－sə पou！̣ u！̣ ェəұวนย！ฺ

－ธəuอu！u！ ェəұәயย！વ	

	小の 1515 M M WW NGWWWMM H
－sə ェəฉวน๐！（I	
	にハハー 10 上N
＇Sวบวu！U！ ェəヤวนル！！T	

	以心 M ザ
	○म心 ज ण ๗் सं
－sə पəu！U！」əวəuル！	

＊Səuつu！U！ 	1012102010101020101010201510101010100
	 10101010101010101010101010101010101010

SPECIFIC GRAVITIES OF MATERIALS.

		Weight of a cubic foot in lbs. avoirdupois.
Gases at 32° Fahr., and under the pressure of one atmosphere of 2116.4 lbs . on the square foot:		
		0.080728
Carbonic acid...		0.12344
Hydrogen.		0.005592
Oxygen.		0.089256
Nitrogen.		0.078596
Steam (ideal)		0.05022
不ther vapor (ideal).		0.2093
Bisulphuret-of-carbo		02137
Liquids at 32° Fahr. (except water, which is taken at $39^{\circ} .4$ Fahr.):	Weight of a cubic foot in lbs. avoirdupois.	Specific gravity, pure water $=1$.
Water, pure, at $39^{\circ} .4$ \qquad sea, ordinary \qquad	62.425	1.000
	64.05	1.026
Alcohol, pure.........................	49.38	0.791
" proof	57.18	0.916
※ther... Mercury	44.70	0.716
	848.75	13.596
Naphtha..	52.94	0.848
Oil, linseed	58.68	0.940
" olive	57.12	0.915
" whal	57.62	0.923
" of turpe	54.31	0.870
Petroleum...	54.81	0.878
Solid Mineral Substances, nonmetallic:		
Basalt.	187.3	3.00
Brick.	125 to 135	2 to 2.167
Brickwork	112	1.8
Chalk.	117 to 174	1.87 to 2.78
Clay..	120	1.92
Coal, anthracite	100	1.602
" bituminous	77.4 to 89.9	1.24 to 1.44
Coke.	62.43 to 103.6	1.00 to 1.66
Felspar	162.3	2.6
Flint..	164.2	2.63

	Weight of a cubic foot in lbs. avoirdupois.	Specific gravity, pure water $=1$.
Solid Mineral Substances-continued:		
Glass, crown, average	156	2.5
" flint.........................	187	3.0
" green.	169	2.7
" plate	169	2.7
Granite...	164 to 172	2.63 to 2.76
Gypsum..	143.6	2.3
Limestone, (including marble)...	169 to 175	2.7 to 2.8
" magnesian.............	100 178	2.86
Marl................................	100 to 119 116 to 144	1.6 to 1.9
Masonry	116 to 144	1.85 to 2.3
Mortar.	109	1.75
Mud.	102	1.63
Quartz	165	2.65
Sand (damp)	118	1.9
" (dry).	88.6	1.42
Sandstone, average.	144	2.3
" various kinds.	130 to 157	2.08 to 2.52
Shale.	162	2.6
Slate..	175 to 181	2.8 to 2.9
Trap..	170	2.72
Metals, solid:		
Brass, cast...	487 to 524.4	7.8 to 8.4
" wire..	533	8.54
Bronze..	524	8.4
Copper, cast.	537	8.6
" sheet.	549	8.8
hammered	556	8.9
Gold .	1186 to 1224	19 to 19.6
Iron, cast, various	434 to 456	6.95 to 7.3
" average................	474	7.11
Iron, wrought, various............	474 to 487	7.6 to 7.8
" average...	480	7.69
Lead..	712	11.4
Platinum	1311 to 1373	21 to 22
Silver	655	. 10.5
Steel.	487 to 493	7.8 to 7.9
Tin..	456 to 468 ,	7.3 to 7.5
Zinc..	424 to 449	6.8 to 7.2
Timber: *		
Ash	47	0.753
Bamboo	25	0.4
Beech................................	43	0.69

	Weight of a cubic foot in lbs. avoirdupois.	Specific gravity, pure water $=1$.
Timber:*-continued.		
Birch..	44.4	0.711
Blue-gum	52.5	0.843
Box...	60	0.96
Bullet-tree	65.3	1.046
Cabacalli	56.2	0.9
Cedar of Lebanon.	30.4	0.486
Chestnut..	33.4	0.535
Cowrie.	36.2	0.579
Ebony, West Indian	74.5	1.193
Elm...	34	0.544
Fir, red pine.	30 to 44	0.48 to 0.7
" spruce.............	30 to 44	0.48 to 0.7
" American yellow	$\begin{array}{r}29 \\ \hline 10\end{array}$	0.46
" larch.	31 to 35	0.5 to 0.56
Greenhart.	62.5	1.001
Hawthorn	57	0.91
Hazel.	54	0.86
Holly.	47	0.76
Hornbeam.	47	0.76
Laburnum.	57	0.92
Lancewood..	42 to 63	0.675 to 1.01
Larch. (See "fir".)		
Lignum-vitæ..........	41 to 83	0.65 to 1.33
Locust........	44	0.71
Mahogany, Honduras	35	0.56
Spanish..	53	0.85
Maple	49	0.79
Mora	57	0.92
Oak, European.	43 to 62	0.69 to 0.99
" American red.	54	0.87
Poon.	36	0.58
Saul..	60	0.96
Sycamore.	37	0.59
Teak, Indian.	41 to 55	0.66 to 0.88
" African	61	0.98
Tonka..	62 to 66	0.99 to 1.06
Water-gum	62.5	1.001
Willow	25	0.4
Yew.	50	0.8

*The timber in every case is supposed to be dry.

WEIGHT OF A SUPERFICIAL INCH OF WROUGHT AND CAST IRON.
(From one-sixteenth to one-inch thickness.)

	Wrought Iron. Cubic foot $=480 \mathrm{lbs}$.	Cast Iron. Cubic foot $=450 \mathrm{lbs}$.
	Weight in lbs.	Weight in libs.
$\frac{1}{16}$	0.017356	0.0163
$\frac{1}{8}$	0.0347	0.0326
$\frac{3}{16}$	0.0520	0.0489
$\frac{1}{4}$	0.0694	0.0652
$\frac{5}{16}$	0.0867	0.0815
$\frac{8}{8}$	0.1041	0.0978
$\frac{7}{16}$	0.1214	0.1141
$\frac{1}{2}$	0.1388	0.1304
$\frac{9}{16}$	0.1562	0.1467
$\frac{5}{8}$	0.1735	0.1630
$\frac{11}{16}$	0.1909	0.1793
$\frac{3}{4}$	0.2082	0.1956
$\frac{18}{16}$	0.2256	0.2119
$\frac{7}{8}$	0.2429	0.2282
$\frac{1}{1} \frac{5}{6}$	0.2603	0.2445
1	0.2777	0.2608

WEIGHT PER SQUARE FOOT IN POUNDS AVOIRDUPOIS.

	Wrought Iron.	Cast Iron.	Copper, sheet.	Lead.	Zinc.
	480 lbs. per cubic foot.	450 lbs . per cubic foot.	549 lbs . per cubic foot.	712 lbs. per cubic foot.	436 lbs. per cubic foot.
$\frac{1}{16}$	2.50	2.34	2.86	3.71	2.27
$\frac{1}{8}$	5.00	4.69	5.72	7.42	4.54
$\frac{3}{16}$	7.50	7.03	8.58	11.12	6.81
$\frac{1}{4}$	10.00	9.37	11.44	14.83	9.08
$\frac{5}{16}$	12.50	11.72	14.30	18.54	11.35
$\frac{3}{8}$	15.00	14.06	17.16	22.25	13.62
$\frac{7}{16}$	17.50	16.41	20.02	25.96	15.89
$\frac{1}{2}$	20.00	18.75	22.88	29.66	18.16
$\frac{9}{16}$	22.50	21.09	25.74	33.37	20.43
$\frac{5}{8}$	25.00	23.44	28.60	37.10	22.70
$\frac{11}{16}$	27.50	25.78	31.46	40.79	24.97
$\frac{3}{4}$	30.00	28.12	34.32	44.50	27.24
$\frac{13}{16}$	32.50	30.47	37.18	48.20	29.51
$\frac{7}{8}$	35.00	32.81	40.04	51.91	31.78
$\frac{1}{1} \frac{5}{6}$	37.50	35.16	42.90	55.62	3405
1	40.00	37.50	45.75	59.33	36.33

WEIGHT OF A LINEAL FOOT OF FLAT AND SQUARE BAR IRON IN POUNDS AVOIRDUPOIS.

(480 pounds per cubic foot.)

$\frac{1}{4}$	$\frac{1}{8}$	0.104	$1 \frac{1}{2}$	1	5.000	21	$\frac{1}{4}$	1.875
		0.208		$1 \frac{1}{8}$	5.625			2.813
$\frac{1}{2}$	$\frac{1}{8}$	0.208	"	$1{ }^{1}$	6.250	"	$\frac{1}{2}$	3.750
"	$\frac{1}{4}$	0.416	"	$1 \frac{3}{8}$	6.874	"	5	4.687
"	$\frac{1}{2}$	0.832	"	$11 \frac{8}{2}$	7.500	"	-	5.624
$\frac{3}{4}$	$\frac{1}{8}$	0.312	$1 \frac{3}{4}$		0.739	"	$\frac{7}{8}$	6.562
${ }^{\prime}$	$\frac{1}{4}$	0.624		$\frac{1}{4}$	1.459	"	1	7.500
"	$\frac{3}{8}$	0.937	"	$\frac{3}{8}$	2.187	"	$1 \frac{1}{8}$	8.437
"	$\frac{1}{2}$	1.249	"	$\frac{1}{2}$	2.916	"	$1{ }^{1}$	9.374
"	5	1.562	"	$\frac{2}{5}$	3.646	"	$1 \frac{4}{8}$	10.310
"	$\frac{3}{4}$	1.874	"	$\frac{3}{4}$	4.375	"	$1 \frac{1}{2}$	11.250
1	$\frac{1}{8}$	0.416	"	$\frac{7}{8}$	5.103	"	$1 \frac{5}{8}$	12.190
"	$\frac{1}{4}$	0.833	"	1	5.833	"	$1 \frac{3}{4}$	13.120
"	$\frac{3}{8}$	1.249	"	$1 \frac{1}{8}$	6.562	${ }^{\prime}$	$1 \frac{7}{8}$	14.060
		1.667	"	$1{ }^{1}$	7.291	"	2	15.000
"		2.089	"	$1{ }^{3} 8$	8.020	"	21	15.940
"	$\frac{8}{4}$	2.500	"	$1{ }_{1} 1$	8.750	"	$2{ }^{1}$	17.810
"	8	2.916	"	$1{ }^{8}$	9.478	$2 \frac{1}{2}$		1.041
"	1	3.333	"	$1{ }^{3}$	10.930	"		2.089
$1 \frac{1}{4}$		0.521	2	1	0833		$\frac{3}{8}$	3.125
	$\frac{1}{4}$	1.041	"		1.667	"	2	4.166
"	8	1.562	"		2.500	"		5.208
"	$\frac{1}{2}$	2.089	"		3.333	"	$\frac{8}{4}$	6.250
"	$\frac{5}{8}$	2.603	"	8	4.166	"	$\frac{7}{8}$	7.291
"	$\frac{3}{4}$	3.124	"	$\frac{3}{4}$	5.000	"	1	8.333
"	8	3.646	"	$\frac{7}{8}$	5.833	"	$1 \frac{1}{8}$	9.398
	1	4.166	"	1	6.666	"	$1 \frac{1}{4}$	10.410
"	$1 \frac{1}{8}$	4.687	"	$1 \frac{1}{8}$	7.500	"	13	11.460
11	$1 \frac{1}{4}$	5.728	"	$1{ }^{1}$	8.333	"	$1 \frac{1}{2}$	12.500
$1 \frac{1}{2}$		0.624	"	1 18	9.156	"	$1{ }^{15}$	13.540
		1.250	"	$1{ }^{\frac{1}{2}}$	10.000	"	$1{ }^{1}$	14.580
"		1.875	"	15	10.830	"	$1{ }^{\frac{7}{8}}$	15.620
"	,	2.500	"	$1{ }^{13}$	11.660	"	2	16.660
"	- ${ }^{8}$	3.125	"	$1{ }^{\frac{7}{8}}$	12.500	"	21	17.710
"	-	3.750	"	2	13.330	"	2	18.750
"		4.375	$2 \frac{1}{4}$	$\frac{1}{8}$	0.937	"	$2 \frac{1}{2}$	20.820

$2 \frac{1}{2}$	$2 \frac{3}{8}$	19.800	$3 \frac{1}{4}$	2	21.660	4	2	26.660
$2{ }_{4}^{3}$		1.146		21	24.370	"	21	30.000
		2.292	"	21	27.080	"	21	33.330
"		3.437	"	2^{3}	29.790	"	$2{ }^{3}$	36.660
"		4.583	"	3	32.500	"	3	40.000
"	㖪	5.729	"	31	24.200	"	31	43.330
"		6.874	$3 \frac{1}{2}$		2.916	"	$3 \frac{1}{2}$	46.660
"		8.020		$\frac{1}{2}$	5.833	"	$3{ }_{4}^{3}$	50.000
"	1	9.154	"	$\frac{3}{4}$	8.750	"	4	53.330
"	11	10.310	"	1	11.660	$4 \frac{1}{4}$	$\frac{1}{4}$	3.541
"	14	11.460	"	$1 \frac{1}{4}$	14.580	,	$\frac{1}{2}$	7.082
"	$1 \frac{3}{8}$	12.600	"	$1 \frac{1}{2}$	17500	"	4	10.620
"	$1{ }^{1}$	13.750	"	13	20.430	"	1	14.160
"	15	14.900	"	2	23.330	"	$1 \frac{1}{4}$	16.800
"	$1{ }^{\frac{3}{4}}$	16.030	"	21	26.250	"	$1 \frac{1}{2}$	21.330
"	17	17.190	"	$2 \frac{1}{2}$	29.160	"	$1 \frac{3}{4}$	24.780
"	2	18.330	"	$2{ }_{4}^{3}$	32.080	"	2	28.330
"	21	19.480	"	3	35.000	"	21	31.870
"	21	20.620	"	31	37.910	"	$2 \frac{1}{2}$	35.410
"	$2{ }^{3}$	21.770	"	$3 \frac{1}{2}$	40.830	"	$2 \frac{3}{4}$	38.950
"	$2 \frac{1}{2}$	22.910	$3 \frac{3}{4}$	1	3.125	"	3	42.500
"	$2 \frac{5}{8}$	24.060		2	6.250	"	31	46.030
"	$2 \frac{3}{4}$	25.200	"	$\frac{3}{4}$	9.375	"	$3 \frac{1}{2}$	49.570
3	4	2.500	"	1	12.500	"	$3 \frac{3}{4}$	53.120
"		5.000	"	11	15.620	"	4	56.660
"	$\frac{8}{4}$	7.500	"	$1 \frac{1}{2}$	18.750	"	41	60.200
"	1^{4}	10.000	"	$1 \frac{3}{4}$	21.870	$4 \frac{1}{2}$	1	3.750
"	11	12.500	"	2	25.000	1	$\frac{1}{2}$	7.500
"	$1 \frac{1}{2}$	15.000	"	21	28.120	"	$\frac{3}{4}$	11.250
"	$1 \frac{3}{4}$	17.500	"	21	31.250	"	1	15.000
"	2	20.000	"	$2 \frac{3}{4}$	34.370	"	$1 \frac{1}{4}$	18.750
"	21	22.500	"	3	37.500	"	112	22.500
"	$2 \frac{1}{2}$	25.000	"	31	40.620	"	$1 \frac{3}{4}$	26.250
"	$2{ }^{3}$	27.500	"	$3 \frac{1}{2}$	43.750	"	2	30.000
"	3	30.000	"	$3 \frac{3}{4}$	46.860	"		33.750
31	$\frac{1}{4}$	2.708	4		3.330	"	21	37.500
		5.416	"	$\frac{1}{2}$	6.660	"	$2 \frac{3}{4}$	41.250
\cdots	$\frac{3}{4}$	8.124	"	$\frac{3}{4}$	10.000	,	3	45.000
,	1	10.830	"	1	13.330	"	31	48.750
"	11	13.500	"	11	16.660	"	$3 \frac{1}{2}$	52.500
"	$1 \frac{1}{2}$	16.250	"	$1 \frac{1}{2}$	20.000	"	$3 \frac{3}{4}$	56.250
"	$1{ }_{4}$	18.950	"	$1 \frac{3}{4}$	23.330	"	4	60.000

WEIGHT OF A LINEAL FOOT, ETC.

$4 \frac{1}{2}$	41	63.750	51		8.753	$5 \frac{3}{4}$	$\frac{1}{4}$	4.788
	$4 \frac{1}{2}$	67.500		. $\frac{3}{4}$	13.130			9.587
$4 \frac{3}{4}$		3.953	"	1	17.500	"	4	14.370
4	$\frac{1}{2}$	7.910	"	$1 \frac{1}{4}$	21.870	"	1	19.160
"	$\frac{3}{4}$	11.860	"	$1 \frac{1}{2}$	26.250	"	$1 \frac{1}{4}$	23.950
"	1	15.830	"	$1 \frac{3}{4}$	30.620	"	$1 \frac{1}{2}$	28.750
"	11	19.760	"	2	35.000	"	$1{ }^{4}$	33.540
"	$1 \frac{1}{2}$	23.750	"	21	39.370	"	2	38.330
"	$1 \frac{3}{4}$	27.700	"	$2 \frac{1}{2}$	43.750	"	21	43.120
"	2	31.670	"	23	48.110	"	$2 \frac{1}{2}$	47.910
"	$2{ }^{1}$	35.620	"	3	52.500	"	23	52.700
"	$2 \frac{1}{2}$	39.580	"	31	56.680	"	3	57.500
"	$2{ }_{4}^{3}$	43.540	"	$3 \frac{1}{2}$	61.250	"	31	62.300
"	3	47.500	"	$3 \frac{3}{4}$	65.620	"	$3 \frac{1}{2}$	67.080
"	31	51.460	"	4	70.000	"	$3{ }_{4}$	71.860
"	$3 \frac{1}{2}$	55.410	"	$4{ }_{4}^{1}$	74.370	"	4	76.650
"	$3{ }_{4}^{3}$	59.370	"	$4 \frac{1}{2}$	78.750	"	41	81.450
"	4	63.330	"	$4 \frac{3}{4}$	83.110	"	$4 \frac{1}{2}$	86.240
"	41	67.290	"	5	87.500	"	$4 \frac{3}{4}$	91.030
"	$4 \frac{1}{2}$	71.250	"	$5 \frac{1}{4}$	91.860	"	5	95.820
"	$4{ }_{4}^{4}$	75.200	$5 \frac{1}{2}$	+	4.587	"	51	100.600
5	+	4.166		$\frac{1}{2}$	9.164	"	$5 \frac{1}{2}$	105.400
"	$\frac{1}{2}$	8.330	"	$\frac{3}{4}$	13.750	"	54	119.700
"	4	12.500	"	1	18.330	6	$\frac{1}{2}$	10.000
"	1	16.660	"	$1{ }^{1}$	22.900	c.	1	20.000
"	$1{ }_{1}^{1}$	20.830	"	$1 \frac{1}{2}$	27.500	"	$1 \frac{1}{2}$	30.000
"	$1 \frac{1}{2}$	25.000	"	$1 \frac{3}{4}$	32.080	"	2	40.000
"	$1 \frac{3}{4}$	29.160	"	2	36.660	"	$2 \frac{1}{2}$	50.000
"	2	33.330	"	21	41.250	"	3	60.000
"	21	37.500	"	$2 \frac{1}{2}$	45.830	"	$3 \frac{1}{2}$	70.000
"	$2 \frac{1}{2}$	41.660	"	$2{ }^{3}$	50.310	"	4	80.000
"	23	45.830	"	3	55.000	"	$4 \frac{1}{2}$	90.000
"	3	50.000	"	31	59.570	"	5	100:000
"	31	54.160	,	$3 \frac{1}{2}$	64.160	"	$5 \frac{1}{2}$	110.000
"	$3 \frac{1}{2}$	58.330	"	$3 \frac{3}{4}$	68.740	"	6	120.000
"	$3 \frac{3}{4}$	62.500	"	4	73.330	$6 \frac{1}{2}$	$\frac{1}{2}$	10.830
"	4	66.660	"	$4 \frac{1}{4}$	77.910	"	1	21.660
"	$4 \frac{1}{4}$	70.830	"	$4 \frac{1}{2}$	82.500	"	112	32.500
"	$4 \frac{1}{2}$	75.000	${ }^{\prime \prime}$	$4{ }_{4}^{3}$	87.080	"	2	43.330
"	$4{ }_{4}^{3}$	79.160	"	5	91.560	"	$2 \frac{1}{2}$	54.160
"	5	83.330	"	51	96.240	"	3	65.000
$5 \frac{1}{4}$	$\frac{1}{4}$	4.376	"	$5 \frac{1}{2}$	100.600	"	$3 \frac{1}{2}$	75.830

62	4	86.66	8	4	106.60	9	$8 \frac{2}{2}$	255.00
${ }^{\prime}$	$4 \frac{1}{2}$	97.50	"	$4 \frac{1}{2}$	120.00	"	9	270.00
"	5	108.30	"	5	133.30	$9 \frac{1}{2}$	$\frac{1}{2}$	15.83
"	$5 \frac{1}{2}$	119.10	"	$5 \frac{1}{2}$	146.60		1	31.66
"	6	130.00	"	6	160.00	"	$1 \frac{1}{2}$	47.50
"	$6 \frac{1}{2}$	140.80	"	$6 \frac{1}{2}$	173.30	"	2	63.33
7	$\frac{1}{2}$	11.66	"	7	186.60	"	$2 \frac{1}{2}$	79.16
1	1	23.33	"	$7 \frac{1}{2}$	200.00	"	3	95.00
"	$1 \frac{1}{2}$	35.00	"	8	213.30	"	$3 \frac{1}{2}$	110.80
"	2	46.66	$8 \frac{1}{2}$	$\frac{1}{2}$	14.16	"	4	126.60
"	$2 \frac{1}{2}$	58.33	"	1	28.33	"	$4 \frac{1}{2}$	142.50
"	3	70.00	"	$1 \frac{1}{2}$	42.48	"	5	158.30
"	$3 \frac{1}{2}$	8166	"	2	56.66	"	$5 \frac{1}{2}$	174.10
"	4	93.33	"	$2 \frac{1}{2}$	70.83	"	6	190.00
"	$4 \frac{1}{2}$	105.00	"	3	85.00	"	$6 \frac{1}{2}$	205.80
"	5	116.60	"	$3 \frac{1}{2}$	99.16	"	7	221.60
"	$5 \frac{1}{2}$	128.30	"	4	113.30	"	$7 \frac{1}{2}$	237.60
"	6	140.00	"	$4 \frac{1}{2}$	127.50	"	8	253.30
"	$6 \frac{1}{2}$	151.60	"	5	141.60	"	$8 \frac{1}{2}$	269.10
	7	163.30	"	$5 \frac{1}{2}$	155.80	"	9	285.00
$7 \frac{1}{2}$	$\frac{1}{2}$	12.50	"	6	170.00	"	$9{ }^{1}$	300.80
	1	25.00	"	$6 \frac{1}{2}$	184.10	10	$\frac{1}{2}$	16.66
"	$1 \frac{1}{2}$	37.50	"	7	198.30	"	1	33.33
"	2	50.00	"	$7 \frac{1}{2}$	212.50	"	$1 \frac{1}{2}$	50.00
"	$2 \frac{1}{2}$	62.50	"	8	226.60	"	2	66.66
"	3	75.00	"	$8 \frac{1}{2}$	240.70	"	$2 \frac{1}{2}$	83.33
"	$3 \frac{1}{2}$	87.50	9	$\frac{1}{2}$	15.00	"	3	100.00
"	4	100.00	"	1	30.00	"	$3 \frac{1}{2}$	116.60
"	$4 \frac{1}{2}$	112.50	"	$1 \frac{1}{2}$	45.00	"	4	133.30
"	5	125.00	"	2	60.00	"	$4 \frac{1}{2}$	150.00
"	$5 \frac{1}{2}$	137.50	"	$2 \frac{1}{2}$	75.00	"	5	166.60
"	6	150.00	"	3	90.00	"	$5 \frac{1}{2}$	183.30
"	$6 \frac{1}{2}$	162.50	"	$3 \frac{1}{2}$	105.00	"	6	200.00
"	7	175.00	"	4	120.00	"	$6 \frac{1}{2}$	216.60
"	$7 \frac{1}{2}$	187.50	"	$4 \frac{1}{2}$	135.00	${ }^{\prime \prime}$	7	233.30
8	$\frac{1}{2}$	13.33	"	5	150.00	"	$7 \frac{1}{2}$	250.00
"	1	26.66		$5 \frac{1}{2}$	165.00	"	8	266.60
"	$1 \frac{1}{2}$	40.00	"	6	180.00	"	$8 \frac{1}{2}$	283.30
"	2	53.33	"	$6 \frac{1}{2}$	195.00	"	9	300.00
"	$2 \frac{1}{2}$	66.66	"	7	210.00	"	$9 \frac{1}{2}$	316.60
"	3	80.00	"	$7 \frac{1}{2}$	225.00	"	10	333.30
"	$3 \frac{1}{2}$	93.33	"	8	240.00	102	$\frac{1}{2}$	17.50

$10 \frac{1}{2}$	1	35.00	11	112	55.00	112	$1 \frac{1}{2}$	57.50
	$1 \frac{1}{2}$	52.50		2	73.33		2	76.66
"	2	70.00	"	$2 \frac{1}{2}$	91.56	"	$2 \frac{1}{2}$	95.83
"	$2 \frac{1}{2}$	87.50	"	3	110.00	"	3	115.00
"	3	105.00	"	$3 \frac{1}{2}$	128.30	"	$3 \frac{1}{2}$	134.10
"	$3 \frac{1}{2}$	122.50	"	4	146.60	"	4	153.30
"	4	140.00	"	$4 \frac{1}{2}$	165.00	"	$4 \frac{1}{2}$	172.50
"	$4 \frac{1}{2}$	157.50	"	5	183.30	"	5	191.60
"	5	175.00	"	$5 \frac{1}{2}$	201.60	"	$5 \frac{1}{2}$	210.80
"،	$5 \frac{1}{2}$	192.50	"	6	220.00	"	6	230.00
"	6	210.00	"	$6 \frac{1}{2}$	238.30	"	. $6 \frac{1}{2}$	249.10
"	$6 \frac{1}{2}$	227.50	"	7	256.60	"	$7{ }^{2}$	268.30
"	7	245.00	"	$7 \frac{1}{2}$	275.00	"	$7 \frac{1}{2}$	287.50
"	$7 \frac{1}{2}$	262.50	"	8	293.30	'	8	306.60
"	8	280.00	"	$8 \frac{1}{2}$	311.60	"	$8 \frac{1}{2}$	325.80
"	$8 \frac{1}{2}$	297.50	"	9	330.00	${ }^{\prime \prime}$	9	345.00
"	9	315.00	"	$9 \frac{1}{2}$	348.30	"	91	364.10
"	$9 \frac{1}{2}$	332.50	"	10	366.60	"	10^{2}	383.30
"	10	350.00	"	1012	385.00	"	1012	402.50
"	101	367.50	"	11	403.30	"	11	421.60
11	$\frac{1}{2}$	18.33	$11 \frac{1}{2}$	$\frac{1}{2}$	19.16	"	112	440.70
"	1	36.66		1	38.33	12	12	480.00

WEIGHT OF A LINEAL FOOT OF ROLLED R()UND IRON IN POUNDS AVOIRDUPOIS.

(480 pounds per cubic foot.)

16	0.010	238	14.77	55	82.79	$8 \frac{7}{8}$	206.2
	0.011	$2 \frac{1}{2}$	16.36	$5 \frac{3}{4}$	86.52	9	212.2
16	0.091	25	18.04	$5 \frac{7}{8}$	90.34	91	218.0
	0.163	23	19.80	6	94.26	91	223.9
	0.255	$2 \frac{7}{8}$	21.64	61	98.18	$9 \frac{3}{8}$	230.1
$\frac{3}{8}$	0.368	3	23.56	61	102.20	$9 \frac{1}{2}$	236.2
$\frac{7}{16}$	0.501	31	25.56	$6 \frac{3}{8}$	106.40	95	242.5
$\frac{1}{2}$	0.655	31	27.64	6.1	110.60	93	248.9
1.6	0.828	$3 \frac{3}{8}$	29.82	65	114.90	$9 \frac{7}{8}$	255.2
1	1.022	$3 \frac{1}{2}$	32.07	$6{ }_{4}^{3}$	119.30	10^{8}	261.7
16	1.237	35	34.39	$6 \frac{7}{8}$	123.70	101	263.4
$\frac{3}{4}$	1.473	$3 \frac{3}{4}$	36.81	7	128.30	10^{1}	275.0
	1.728	$3 \frac{7}{8}$	39.30	78	132.90	$10 \frac{3}{8}$	281.8
$\frac{7}{8}$	2.004	4	41.88	71	137.60	$10 \frac{1}{2}$	288.6
$\frac{1}{1} \frac{5}{6}$	2.301	$4 \frac{1}{8}$	44.57	$7 \frac{3}{8}$	142.30	10^{5}	295.6
	2.618	$4 \frac{1}{1}$	47.28	$7 \frac{1}{2}$	147.30	10^{3}	302.5
18	3.310	$4 \frac{3}{8}$	50.10	$7 \frac{5}{8}$	152.20	$10^{\frac{7}{7}}$	309.5
$1 \frac{1}{4}$	4.094	$4 \frac{1}{2}$	53.02	$7 \frac{1}{1}$	15720	11	316.8
$1 \frac{3}{8}$	4.950	$4 \frac{5}{8}$	56.03	$7 \frac{7}{8}$	162.40	$11 \frac{1}{8}$	323.9
$1 \frac{1}{2}$	5.885	$4 \frac{3}{4}$	59.05	8	167.50	114	331.3
$1 \frac{5}{8}$	6.911	$4 \frac{7}{8}$	62.17	81	172.80	1138	338.7
$1 \frac{3}{4}$	8.018	5	65.49	81	178.20	$11 \frac{1}{2}$	346.2
$1 \frac{7}{8}$	9.205	51	68.71	88	183.60	$11 \frac{5}{8}$	353.7
2	10.470	51	72.13	8.1	189.10	$11 \frac{3}{4}$	361.5
21	11.820	$5 \frac{3}{8}$	75.65	$8 \stackrel{5}{8}$	$19 \pm .80$	$11 \frac{7}{8}$	369.1
21	13.250	$5 \frac{1}{2}$	79.17	$8 \frac{3}{4}$	200.40	12	376.9

BOLTS, NUTS, AND HEADS. (Whitworth's Proportions.)

Weight in lbs. of Heads and Nuts.

	Hexagonal.		Square.		Hexagonal.		Square.	
	Head.	Nut.	Head.	Nut.	$\begin{gathered} \text { Two } \\ \text { Heads. } \end{gathered}$	$\begin{aligned} & \text { Head } \\ & \text { \& Nut. } \end{aligned}$	$\begin{gathered} \text { Two } \\ \text { Heads. } \end{gathered}$	$\begin{gathered} \text { Head } \\ \text { \& Nut. } \end{gathered}$
4	0.0	0.005	0.022	0.019	0.017	0.013	0.044	0.041
$\frac{5}{16}$	0.014	0.007	0.027	0.021	0.029	0.022	0.055	0.048
	0.029 0.059	0.017 0.040	0.061 0.069	0.049 0.050	0.057 0.119	0.046 0.101	0.122 0.138	0.110 0.119
	0.068	0.041	0.104	0.076	0.136	0.109	0.208	0.181
$\frac{9}{18}$	0.104	0.065	0.157	0.118	0.208	0.169	0.315	0.276
	0.151 0.254 0.	$\left[\begin{array}{l} 0.097 \\ 0.101 \end{array}\right.$	0.246	$\begin{aligned} & 0.193 \\ & 0.269 \end{aligned}$	$\begin{aligned} & 0.302 \\ & 0.508 \end{aligned}$	0.248 0.415	0.493 0.724	
	0.367	0.219	0.551	0.408	0.734	0.586	1.102	0.959
1	0.546	0.326	0.683	0.463	1.092	0.872	1.366	1.146
11	0.724	0411	1.109	0.797	1.448	1.135	2.217	1.906
$1{ }_{1}^{18}$	1.060	0.630	1.400	0.971	2.120	1.690	${ }^{2} .800$	2.371
1	1.330	0.759 1.098	${ }_{2}^{1.949}$	1.379	${ }_{3}^{2.660}$	2.088	3.898 5.250	3.328 4.508
1	2.460	1.517	3.135	2.192	4.920	3.977	6.27	5.327
17	2.920	1.742	3.704	2.532	5.840	4.662	7.409	6.236
$1{ }^{\frac{7}{8}}$	3.440	1.991	4.725	3.276	6.880	5.431	9.450	8.001
2	4.370	2.611	6.384	4.625	8.740	6.981	12.77	11.00
$2{ }_{2}$	6.150	3.645	8.858	6.353	12.30	9. 795	17.71	15.21
$2 \frac{1}{2}$	8.480	5.045	11.91	8.476	16.96	13.52	23.82	20.39
$2{ }^{2}$	11.32	6.747	15.59	9.019	22.64	18.06	31.18	24.61
3	14.72	8.783	21.00	15.06	29.44	23.50	42.00	36.06

WEIGHT IN POUNDS OF ROUND IRON FOR

	Length in inches.									
$\stackrel{\ddot{A}}{\text { A. }}$	1/8	1/4	$3 / 8$	3/2	5/8	$3 / 4$	7/8	1	2	3
$\frac{1}{4}$	0.002	0.003	0.005	0.007	0.008	0.010	0.012	0.014	. 027	0.041
16	0.003	0.005	0.008	0.011	0.013	0.016	0.019	0.021	0.043	0.064
	0.004	0.007	0.011	0.015	0.019	0.023	0.027	0.031	0.062	0.093
$\frac{7}{16}$	0.005	0.010	0.016	0.021	0.026	0.031	0.036	0.042	0.084	0.126
	0.007	0.014	0.021	0.027	0.034	0.041	0.048	0.055	0.110	0.166
$\frac{9}{16}$	0.009	0.017	0.026	0.035	0.043	0.052	0.061	0.069	0.139	0.208
	0.011	0022	0.032	0.043	0.054	0.065	0.076	0.087	0.174	0.261
	0.015	0.031	0.046	0.062	0.077	0.093	0.108	0.124	0.249	0.373
$\frac{7}{8}$	0.021	0.042	0.063	0.084	0.105	0.126	0.148	0.170	0.338	0.508
1	0.027	0.055	0083	0.110	0.138	0.165	0.193	0.221	0.442	0.663
118	0.035	0.070	0.105	0.140	0.185	0.210	0.245	0.280	0.560	0.840
$1{ }^{1}$	0.043	0.087	0.131	0.173	0.217	0.262	0.304	0.347	0.695	1.043
13	0.053	0.104	0.157	0.209	0.261	0.314	0.366	0.418	0.836	1.255
$1 \frac{1}{2}$	0.062	0.124	0.186	0.249	0.3110	0.373	0.435	0.497	0.995	1.493
$1{ }^{5}$	0.072	0.143	0.215	0.287	0.358	0.430	0.502	0.584	1.168	1.752
$1{ }^{3}$	0.084	0.168	0.253	0.337	0.421	0.506	0.590	0.677	1.354	2.032
$1{ }^{\frac{7}{8}}$	0.097	0.194	0.291	0.389	0.486	0.583	0.680	0.778	1.555	2.333
2	0.111	0.221	0.332	0.442	0.553	0.663	0.774	0.884	1.770	2.654
21	0.140	0.280	0.420	0.560	0.700	0.840	0.980	1.120	2.240	3.360
$2 \frac{1}{2}$	0.174	0.347	0.521	0;695	0.869	1.042	1.216	1.390	2.781	4.172
$2{ }^{4}$	0.209	0.418	0.627	0.836	1.045	1.254	1.463	1.673	3.346	5.019
3	0.250	0.500	0.750	1.000	1.250	1.500	1.750	1.990	3.981	5.972

Example.-Required, the weight of a bolt $1 \frac{1}{4}$ inches diameter, 4 inches between inside of head and nut.

Weight of bolt $=1.39$
Weight of square head $=1.40$
Weight of hexagonal nut $=1.06$ taken as a hexagonal head
Ans. 3.85 lbs .

BOLTS, ETC., BETWEEN HEAD AND NUT.

	Length in inches.								
g	4	5		7	8	9	10	11	12
1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	0.151	
	0.086	0.107	0.128	0.150	0.171	0.192	0.214	0.235	0.257
	0.124	0.155	0.186	0.217	0.248	0.279	0.311	0.342	0.373
	0.167	0.209	0.251	0.293	0.335	0.377	0.419	0.461	0.503
	0.221	0.276	0.331	0.386	0.442	0.497	0.552	0.607	0.663
	0277	0.347	0.416	0.486	0.555	0.624	0.694	0.763	0.833
	0.347	0434	0.521	0.608	0.695	0.782	0.869	0.956	1.043
	0.497	0.622	0.746	0.871	0.995	1.119	1.244	1.36	1.493
	0.677	0.846	1.016	1.185	1.354	1.524	1.693	1.862	2.032
	0.884	1.105	1.326	1.548	1.769	1.990	2.211	2.432	2.654
$1 \frac{1}{8}$	1.120	1.400	1.680	1.960	2.240	2.520	2.800	3.080	3.360
1	1.390	1.738	2.085	2.433	2.781	3.128	3.476	3.823	4.172
138	1.673	2.091	2.510	2.92	3.346	3.765	4.182	4.601	5.019
$1{ }^{1}$	1.990	2.488	2.985	3.483	3.981	4.478	4.976	4.973	5.972
15	2.336	2.920	3.504	4.088	4.673	5.257	5.841	6.425	7.010
$1 \frac{3}{4}$	2.709	3.386	4.064	4.741	5.418	6.096	6.773	7.450	8.128
18	3.111	3.888	4.666	5.334	6.221	6.999	7.777	8.547	9.333
2	3.538	4.423	5.307	6.192	7.077	7.961	8.846	9.730	10.610
	4.480	5.600	6.720	7.840	8.960	10.080	11.200	12.320	13.440
$2 \frac{1}{2}$	5.562	6.953	8.343	9.734	11.120	12.510	13.910		16.690
${ }^{4}$	6.692	8.365	10.040	11.710	13.380	15.060	16.730	18.400	20.070
,	7.962	9.953	11.940	13.930	15.920	17.910	19.910	21.8	23.890

WEIGHT OF MATERIALS USED IN BUILDING．

（Per square foot from one inch thickness to a cubic foot．）
Stones，Earths，\＆c．

			Brick．								家	
				这								
1	6.5	14.5		11.41				6.5				
	13.16	29.16	17.00	22.83	18.66	12.25	18.16	33.0	28.16	16.33	17.0	21.6
3	19.74	43.74	25.50	34.24	28.00	18.36	27.24	49.5	42.25	24.50	25.5	32.49
4	26.32	58.32	34.00	45.66	37.33	24.50	36.33	66.0	56.32	32.66	34.0	43.33
5	32.90	72.90	42.50	57.08	46.66	30.61	45.41	82.5	70.40	40.83	42.5	54.16
6	39.48	87.48	51.00	68.50	56.00	36.74	54.50	99.0	84.48	49.00	51.0	65.00
7	46.06	102.06	59.50	80.00	65.33	42.86	63.60	115.5	98.56	57.16	59.5	75.83
8	52.64	116.64	68.00	91．32	74.66	49.00	72.66	132.0	112.64	65.32	68.0	86.66
9	59.22	131.22	76.50	102.75	84.00	55.10	81.75	148.5	126.72	72.50	76.5	97.50
10	65.80	145.80	85.00	114.16	93.33	61.23	90.83	165.0	140.80	81.66	85.0	108.33
11	72.38	160.38	93.50	125.60	102．66	67.35	99.13	181.5	154.90	89.82	93.5	119.16
12	79.00	175.00	102.00	137.00	112.00	73.501	109.00	198.0	169.00	98.00	102．0	130.00

Stones，Earths，\＆c．

	E	$\begin{aligned} & \dot{\tilde{x}} \\ & \text { تِ } \\ & \text { む̃ } \end{aligned}$	宅	Clay with gravel．					$\stackrel{\text { ® }}{\stackrel{\Xi}{む}}$	Granite．		
1	6.75	11.16	10.0	12.91	10.	11.41	13		12.25	13.75	14.	5.21
2	13.50	22.33	20.0	25.82	20.83	22.83	2750	17.33	24.50	27.50	28.16	10.42
3	20.25	33.50	30.0	38.73	31.25	34.25	41.25	26.00	36.75	41.25	42.24	15.62
4	27.00	44.66	40.0	51.64	41.66	45.66	55.00	34.66	49.00	55.00	56.32	20.83
5	33.75	55.83	50.0	64.55	52.08	5708	6875	43.33	61.25	68.75	70.40	26.04
6	40.50	67.00	60.0	77.46	64.50	68.50	82.50	52.00	73.50	82.50	84.48	31.24
7	47.25	78.16	70.0	90.37	73.00	80.00	96.25	60.66	85.75	96.25	98.56	36.45
8	54.00	89.33	800	103.28	83.32	91.32	110.00	69.22	98.00	110.00	112.64	41.66
9	60.75	100.50	90.0	116.19	93.75	102.75	123.75	80.00	110.25	123.75	126．72	4687
10	67.50	111.66	100.0	129.10	104.16	114.16	137.50	86.66	122.50	137.50	140.80	52.08
11	74.25	122.83	110.0	142.01	114.57	12557	150.25	95.32	134.75	150.25	154.88	57.28
12	81.00	134.00	120.0	155.00	125.00	137.00	165.00	104．00	147.00	165.00	169.00	62.50

TABLE FOR COMPARING MEASURES AND WEIGHTS OF DIFFERENT COUNTRIES.

Weights.

$\begin{aligned} & \text { United } \\ & \text { States and } \\ & \text { England. } \end{aligned}$	Prussia.	Austria.	Baden and Switzerland.	France.
Pound.	Pound, Z. V.	Pound.	Pound.	Kilogra'e.
1	0.9072	0.8100		0.4536
1.1023	1	0.8928	Same as	0.5000
1.2346	1.1200	1	Prussia.	0.5600
1.2346	1.1200	0.9999		0.5600
2.2046	2.0000	1.7857		1

Measures of Length.

Foot.	Foot.	Foot.	Foot.	Meter.
- 12 inches.	$=12$ inches.	$=12$ inches.	$=10$ inches.	$=100 \mathrm{Centi}$.
	0.9711	0.9642	$1 . .0160$	0.3048
1.0297	1	0.9929	1.0462	0.3138
1.0371	1.0072	1	1.0537	0.3161
0.9843	0.9559	0.9490	1	0.3000
3.2809	3.1862	3.1635	3.3333	1

Measures of Surface-Square Measure.

Square foot.	Square foot.	Square foot.	Square foot.	Sq. Meter.
	Sq.			
	0.9431	0.9297	1.0322	0.0929
1.0603	1	0.9858	1.0945	0.0985
1.0756	1.0144	1	1.1103	0.0999
0.9688	0.9137	0.9007	1	0.0900
10.7643	10.1519	10.0074	11.1111	1

Cubic Measure.

United States and England.	Prussia.	Ausiria.	$\underset{\text { SWITEERLAND. }}{\text { Baden }}$	France.
Cubic foot.	Cubic foot.	Cubic foot.	Cubic foot.	Cubic meter
1	0.9159	0.8964	1.0487	0.0283
1.0918	1	0.9787	1.1450	0.0309
1.1156	1.0217	1.	1.1699	0.0316
0.9535	0.8733	0.8548	1	0.0270
35.3166	32.3459	31.6578	37.0370	,

Weight per Unit of Length.

Lbs. per lineal foot.	Lbs. per lineal foot.	Lbs. per lineal foot.	Lbs. per lineal foot.	Kil. per lineal meter
1	0.9342	0.8400	0.8929	1.4882
1.0705	1	0.8993	0.9559	1.5931
1.1904	1.1120	1	1.0629	1.7716
1.1199	1.0462	1.9408	1	1.6667
0.6720	0.6277	0.5645	0.6000	1

Weight per Unit of Surface.

Lbs. per square inch.	Lbs. per square inch.	Lbs. per square inch.	Lbs. per square inch.	Kil. per square cent.
	0.9619	0.8712	1.2656	0.0703
1.0396	1	0.9057	1.3157	0.0731
1.1478	1.1041	1	1.4526	0.0807
0.7902	0.7601	0.6884	1	0.0556
14.2223	13.6811	12.3910	18.0000	1

RESISTANCE TO CROSS-BREAKING.

To Cut the Strongest and Stiffest Rectangular Beam from a Log,
Fig. 308. (Strongest.)

The diameter $a \alpha=d$, divided into three equal parts, with per. pendiculars $\frac{1}{3} d$ from a erected thereon, intersecting the circle at b, will give section for greatest capacity.

Fig. 309. (Stiffest.)

The diameter $a a=d$, divided into four equal parts, with perpendiculars $\frac{1}{4} d$ from a erected thereon, intersecting the circle at b, will give section with least deflection, but less capacity than Fig. 308.

I NDEX.

PAGE.
Area, crrcumference, and cubic contents of circles 218
Axis, neutral 4
Bars, tie rods, \&c. 181
resistance of, to tearing 2
Beams, capacity and strength of. 29
of rolled 39
of cast-iron 57
W of rolled I-shaped 39
and strength of parabolic arched 153
cast-iron 53
iron ties, struts, and 3
sloping rafters and 102
strains in trussed 122
horizontal and sloping 188
strength of wooden 88
Bolts and nuts, dimensions of. 187
nuts, and heads 235
Boom derricks, strains in 114
Booms, strains in trusses with parallel 126
Bow-string girders. 147
Bridges, static and moving loads, of wrought iron 192
Camber 2
Capacity 2
and strength of beams 29
W of rolled I-shaped beams 39
of rolled beams 41
of cast-iron beams 57
and strength of parabolic arched beams 153
Cast-iron beams 3, 53
Center of gravity of planes 202
Circumference, area, and cubic contents of circles 218
Columns, pillars, and struts, strength of 110
Composition and resolution of forces 111
Compound strains in horizontal and sloping beams. 188
Compression 1
Compressive strain and pressure on supports 102
Contraction and expansion 4
PAGE.
Constants for strain in trusses 117
roof trusses 174
Connections in iron construction, joints or 184
Cross-breaking 2
and shearing, resistance to 29
Crushing, resistance to 103
direct 1
Deflection 2
Derricks, strains in boom. 114
Dimensions of bolts. 187
Divisions of a foot, expressed in equivalent decimals. 239
Expansion and contraction 4
External forces 1
Factors of safety 29
Forces external 1
internal 1
composition and resolution of 111
parallelogram of 111
Frame, strains in polygonal 154
Functions, trigonometrical 207
Geometry 197
Girders, strains in parabolic and bow-string. 147
Gravities of materials, specific 224
Heads, nuts, and bolts 235
Horizontal and sloping beams, compound strains in 188
Howe truss 129
Inertia and resistance o various sections, moments of. 5
Internal forces 1
Iron beams, capacity of cast 57
cast 53
bridges, static and moving loads, of wrought 192
construction, joints or connections in 184
ties, struts, or beams 3
Joints or connections in iron construction 184
Lattice truss 139
with vertical members 131
Longimetry and planimetry 197
Materials, \&c., strength of. 26
Miscellaneous 195
PAGI.
Modulus of rupture 4
Moment of inertia and resistance of various sections 5
Moving loads, weight of. 191
Natural sine, cosine, \&c 306
Neutral axis 4
Nuts, heads, and bolts. 235
dimensions of. 187
Parallelogram of forces 111
Parallel booms, strains in trusses with 126
Parabolic arched beams, capacity and strength of. 153
curved trusses, strains in 147
Planimetry, longimetry, \&c 197
Pillars, columns, and struts, strength of 110
Pins, \&c., in tie bars 185
Polygonal frame, strains in 154
Pressure on supports 100
compressive strain and 102
of snow on roofs 178
of wind on roofs 180
Rafters, \&c., sloping beams 102
Reactions of supports 100
Resistance to direct crushing 1
of bars, \&c., to tearing 2
to cross-breaking and shearing 29
crushing 103
Resolution of forces, composition, \&c. 111
Rolled beams, capacity of. 41
I-shaped beams, capacity of. 39
Rods and bars, tie 181
Roof trusses. 3
strains in 156
constants for strains in 174
Roofs, pressure of wind on 178
of snow on 180
Rupture, modulus of. 4
Shearing 2
and cross-breaking, resistance to 29
Sloping beams, rafters, \&c 102
and horizontal beams, compound strains in 188
Specific gravities of materials 224
Static and moving loads of wrought-iron bridges 192
Strength of materials 26
wooden beams 98
columns, pillars, and struts. 110
PAGE.
Strength of beams, capacity, \&c 29
Strains in frames. 112
boom derricks 114
trusses 115
trussed beams 122
trusses with parallel booms 126
parabolic curved trusses, or bow-string girders 147
polygonal frame 154
roof trusses. 156
constants for 174
trusses, constants for 117
Strongest and stiffest rectangular beam from a log, to cut the. 242
Struts and beams, iron ties 3
Supports, reaction of 100
compressive strain and pressure on 102
Table for comparing measures and weights 240
Tearing, resistance of bars, \&c., to 2
Tension 1
Tie rods and bars. 181
Trigonometrical functions 207
formulas 205
Truss, Howe 129
Warren 132
Whipple 144
lattice 139
with vertical members 131
Trusses parallel booms, strains in 126
parabolic curved, or bow-string 147
constants for strains in roof 174
constants for strains in 117
strains in 115
roof 156
Trussed beams, strains in 122
Warren truss 132
Weight of moving loads 191
static and moving loads of wrought-iron bridges. 192
a lineal foot of flat or square bar iron 229
rolled round iron 234
materials used in building 238
superficial inch of wrought and cast iron 227
rolled round iron for bolts. 236
heads and nuts 235
per square foot of metals 228
Whipple truss 144
Wooden beams, strength of 98

YA OI388

$$
\begin{aligned}
& \text { RETURN } \\
& \text { TO } \rightarrow \text { LOAN PEF } \\
& \text { HOMM }
\end{aligned}
$$

