BULLETIN NO. 43

FP^{-}BHT TRAIN RESISTANCE

ITS RELATION TO CAR WEIGHT

- +

BY

EDWARD C. SCHMIDT

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

URBANA, ILEINOIS

UNIVERSITY OF ILLINOIS Engineering Experiment Station

Bulletin No. 43
FREIGHT TRAIN RESISTANCE
its relation to average car weight
By Edward C. Schmidt, Professor of Railway Engineering
CONTENTS
PART I
I. Introduction
PAGE

1. Preliminary 3
2. Purpose of the Tests 4
3. Acknowledgments 5
II. Summary and Conclusions
4. Summary 5
5. Conclusions 6
III. Methods and Means Employed in Conducting the Tests
6. Test Car No. 17 7
7. Observed Data 7
IV. Test Conditions and Train Data
8. The Trains Tested 9
9. The Track 11
10. The Weather Conditions 14

V. Methods Employed in Calculating the Results

11. The General Process 15
12. Method 1 15
13. Method 2 16
14. Comparison of the Two Methods 17
15. General Considerations 18
16. The Effect of Stops in Limiting the Selection of Points and Sections 18
17. The Derivation of the Resistance Curves 20
VI. The Results of the Tests
18. Results of the Individual Tests 21
19. Results of all the Tests 22
20. The Effects of Car Weight on Resistance. 24
21. The Results Expressed as Resistance-speed Curves 30
22. The Results Expressed in Tabular Form 32
23. The Results Expressed as Equations 32
24. Final Results 34
VII. Discussion of the Results
25. Variation in Resistance of Different Trains. 35
26. Tests Which Present Abnormal Resistance Values 37
27. Car Weight as a Basis of Expression 38
28. Effect of Variety in Car Weight upon Total Train Resistance 38
29. The Influence of Speed on Resistance 40
30. The Influence of Wind Velocity on Resistance 40
31. Comparison with Other Experiments 41
PART II
Appendix 1. Railway Test Car No. 17 43
Appendix 2. The Tonnage Records of the Trains 51
Appendix 3. The Track 83
Appendix 4. Methods Employed in Calculating the Results 85
Appendix 5. The Results of the Individual Tests 97
Appendix 6. Exact Co-ordinates for the Curves of Fig. 10 and 11 149

FREIGHT TRAIN RESISTANCE:

ITS RELATION TO AVERAGE CAR WEIGHT

PART I

I. Introduction

1. Preliminary.-Train resistance varies not only with the train speed, but also with the average weight of the cars of which the train is composed. At a given speed the tractive effort required for each ton of weight of the train will be greater, for example, for the train which is composed of cars of 20 tons average gross weight, than for the train composed of cars which weigh, on the average, 50 tons each.

While this fact has been known for some years, it has found inadequate expression and but little application. In the establishment of their tonnage ratings, many railroads have altogether ignored it. In the tonnage ratings of a few roads, this variation of resistance with car weight is recognized to the extent of allowing a difference in rating between trains composed of loaded cars and those consisting entirely or partially of empty cars. Generally, in such systems, a certain amount is allowed arbitrarily to be added to the weight of empty cars in determining, for the purpose of rating, the weight of the train in which they are found. In such rating no distinction is made between loaded cars of various weights although such weights vary from 25 to 70 tons. A still smaller group of railroads have fully recognized the significance of the facts above stated in establishing their tonnage ratings, which, in such cases, are usually termed "adjusted"'or "equated" ratings. Under these adjusted ratings, the actual weight of the train allotted to a particular locomotive varies according to the number of cars in the train. The ratings for the same locomotive, with trains of 40,60 , and 80 cars, for example, will be different in each of the three cases. This is, in effect, a variation of the rating with respect to the average car weights. Most of these adjusted ratings have been empirically determined. In the few cases where they rest upon experiments made to determine the variations in train resistance with respect to car weight, the data and results of such experiments have not been fully published.

Existing train resistance formulas likewise fail in most cases to take into account these variations of resistance with car weight, and probably much of the divergence among them is properly to be ascribed to this fact.
2. Purpose of the Tests.-In view of the facts just stated, it has seemed desirable to make the tests whose results are here recorded. They were planned to determine the resistance of freight trains under the usual conditions of operation; and they were designed to disclose at the same time, if possible, the relation existing, at any given speed, between train resistance and average car weight. Since the chief use of such information is in the production of locomotive ratings, the conditions of the tests have been made like those which prevail in normal freight train operation. The speed range, for example, is from 5 to 35 miles per hour; and the trains experimented upon were trains in regular service, and usual in their make-up. The track upon which the tests were made is believed to be representative of good mainline construction.

The tests have been conducted by the Railway Engineering Department of the University of Illinois as part of the research work of the Engineering Experiment Station. They were begun in April, 1908, and were completed in May, 1909. All tests were made by means of Test Car No. 17, a dynamometer car, owned jointly by the University of Illinois and the Illinois Central Railroad, and were carried out on the Chicago division of this road.

In Part I of this report, the aim has been to present as brief a statement of the results and conditions as is compatible with a clear understanding of the tests. It consists, accordingly, of a discussion of the results of the experiments, prefaced by a general statement of conditions and methods. The final results are exhibited in Fig. 11, in Table 3, and in equations 1 to 13, on pages 33, 34 , and 35. A summary of the test conditions and the conclusions is inserted on pages 5 to 7. Part II of the report has been added in order to complete the record so that those interested in the details may verify or modify the results and conclusions presented in Part I. It consists of appendixes in which the aim has been to state fully all the conditions of track, weather, and train make-up, as well as to present the test data, the methods of calculation, and the results.

Throughout the report, the terms "resistance" and "train resistance" mean the number of pounds of tractive effort required for each ton of the train in order to keep it in motion on straight and level track, at uniform speed, and in still air. The report deals exclusively with the resistance of the train behind the locomotive tender. Locomotive and tender resistance are not discussed.
3. Acknowledgments.-The tests have been made possible through the interest and cooperation of Mr. William Renshaw, Mr. J. G. Neuffer, and Mr. R. W. Bell, who were successively superintendents of machinery of the Illinois Central Railroad, during the period of planning and conducting the work. Many other officials of the Chicago division of the road have rendered generous assistance in the investigation, which has entailed for them not a little inconvenience and labor. Such interest and assistance are thoroughly appreciated by those of the University staff who have been concerned with the work.

Throughout the tests, the operation of the dynamometer car and the making of the calculations have been under the direct supervison of F. W. Marquis, Associate in the Railway Engineering Department, Engineering Experiment Station. Much of whatever accuracy and reliability have been attained in the investigation is due to his intelligent and painstaking care in making the tests and in systematizing the work of calculation. He has also rendered great assistance in supervising the preparation of the tables and illustrations, and in the final checking of the manuscript.

II. Summary and Conclusions

4. Summary.-The report deals with the results obtained from tests of 32 ordinary freight trains, whose chief characteristics were as follows:

	Minimum	Maximum
Total weight, tons	- 747	2908
Average weight per car, tons	16.12	69.92
Number of cars in the train.	. 26	89

The trains whose average weights were less than 20 tons or more than 60 tons were composed of cars of nearly uniform weight; while those whose average car weights were between 20 and 60 tons were either homogeneous or mixed as regards the weight of the individual cars.

The weather during the tests was generally fair. The minimum air temperature during any test was $34^{\circ} \mathrm{F}$. the maximum $82^{\circ} \mathrm{F}$. The approximate average,wind velocity prevailing throughout one test was 25 miles per hour; during all the others it was less than 20 miles per hour.

The tests were made upon well-constructed and well-maintained main-line track, 94 per cent of which is laid with $85-\mathrm{lb}$. rail, the remainder being laid with $75-1 \mathrm{i}$. rail. Except through station grounds, where screenings or cinders are used for ballast, the track is full ballasted with broken stone.
5. Conclusions.-The results of the tests are presented in Fig. 10 and 11, pp. 31 and 33 , in Table 3 on p. 35 , and in the equations on p. 34. The curves, the table, and equations are each different expressions of the same facts. It is believed that by their use the probable total resistance of entire freight trains at various speeds may safely be predicted, when running upon straight and level track of good construction, during weather when the temperature is above $30^{\circ} \mathrm{F}$., and the wind velocity is not more than 20 miles per hour, provided the average weight of the cars composing the train be known.

The results are applicable to trains of all varieties of makeup to be met with in service. They may be applied, without incurring material error, to trains which are homogeneous and to those which are mixed as regards individual car weight.

The results are primarily applicable to trains which have been in motion for some time. When trains are first started from yards, or after stops on the road of more than about 20 minutes' duration, their resistance is likely to be appreciably greater than is indicated by the results here presented. In rating locomotives, no consideration need be given this matter, except in determining "dead" ratings for low speeds, and then only when the ruling grade is located within six or seven miles of the starting point or of a regular road stop.

It is to be expected that some trains to be met with in service will have a resistance about 9 per cent in excess of that indicated by Fig. 10 and 11, due to variations in make-up or in external conditions within the limits to which the tests apply. If operating conditions make it essential to reduce to a minimum the risk of failure to haul the allotted tonnage, then this 9 per centallowance should be made. This consideration, like the one preceding, is
important only in rating locomotives for speeds under 15 miles per hour. At higher speeds, the occasional excess in the resistance of individual trains will result in nothing more serious than a slight increase in running time. It should be emphasized that this allowance, if made, is to be added to the resistance on level track-not to the gross resistance on grades.

III. The Methods and Means Employed in Conducting the Tests

6. The tests were carried on by means of the dynamometer car referred to as Test Car No. 17, which, when not in use, is held at Champaign, a district terminus. The car was operated from time to time in the regular trains leaving this point, and the trains selected were partly in the northbound, partly in the southbound traffic.

The plan was to determine, for each of the trains experimented upon, the relation of its resistance to its speed. This information was to be expressed finally as a resistance-speed curve such as is shown in Fig. 1 and in the various figures given in Appendix 5. The trains were so selected that their average car weights would vary throughout as great a range as possible. As will later appear, this range proved to be from the weight of an empty gondola to that of a fully loaded car of 100000 lb . capacity. It was the expectation that when the resistance-speed curves of the individual tests were brought together, their analysis would reveal the relations existing between train resistance and car weight.
7. During each test the following information was obtained:
(a) The drawbar pull of the locomotive upon the train.
(b) The train speed.
(c) A continuous record of the time elapsed from the beginning of the test.
(d) The pressure existing in the brake cylinder of the test car.
(e) The direction of the wind relative to the direction of motion of the car.
(f) The velocity of the wind relative to the car.
(g) A record of the location of the test car upon the road.
(h) Air temperatures and other weather conditions.
(i) Data concerning the train, such as its weight, etc.

The information cited under items (a) to (g) was obtained in the form of continuous graphical records upon the chart which is produced by the apparatus of the dynamometer car. By means of this chart any of the quantities mentioned may be determined at any point upon the road.

The curves of draw-bar pull and speed provide the information essential to the investigation. Supplemented by an accurate profile and a record of train weight, they enable net train resistance to be calculated at any position of the train upon the road. The time record provides a means of calibrating and checking the speed curve. The pressure in the brake cylinder was recorded merely to make it possible to distinguish those periods during the test when the brakes were applied to the train; it being obviously necessary to ignore such portions of the record when making the calculations. The relative wind velocity and relative wind direction were obtained by means of an anemometer and a wind vane mounted on the roof of the test car. When compounded with the known speed and direction of motion of the car, these data permit the determination of the actual wind direction and wind velocity with respect to the track. In Appendix 5, for each test, there are recorded this actual wind velocity and actual wind direction with respect to the track for each point at which train resistance was determined. It is probable that these wind data are, under some circumstances, subject to a considerable error. Considering the length of the run made with each train and the length of time it was on the road, it is believed that the wind data thus obtained are, nevertheless, more reliable than those which might have been recorded by stationary instruments located at one or two points along the track. Item (g), the location of the car upon the road, was defined by marking upon the test car record the position of mile posts and stations at the moment they passed the car. By means of this record, it is possible to correlate any position of the train with the road profile. Data concerning the train were obtained by one or two observers who had no other duties. With the one exception noted beyond, all trains were weighed, to determine their tonnage. In addition to its
weight, there was recorded for each train, its length ${ }^{1}$, and for each car, its number, kind, stenciled "light weight", gross weight, capacity, and the initials of the owning road.

All test car instruments were calibrated before the tests, and their calibrations were frequently checked during the progress of the investigation. All observers were men experienced in the operation of the test car and many of them had participated also in the work of calculation and were consequently aware of the points at which alertness and care were especially needed. No effort has been spared, in conducting the tests, to insure accuracy in the data. These facts are here mentioned as having some significance to any one who may undertake to estimate the reliability of the results. Appendix 1 contains an illustration of one of the test car charts and a detailed description of the car itself.

This report includes the data and results from tests of 32 different trains. For the purposes of this research, tests were made of twelve other freight trains; but their results were finally excluded from the report. Three of these additional tests were rejected because of uncertainty about the train weights; one, because of a break-down in the test car recording apparatus during the progress of the test; and eight were disregarded because the temperatures prevailing were below the range for which it was intended the results should apply, the low temperature in some cases being coupled with high wind.

IV. Test Conditions and Train Data

8. The Trains Tested.-The test trains were all of such makeup as naturally resulted from the traffic conditions in the Champaign yards. For most of the tests the test car was simply coupled into the trains selected by the trainmaster, solely with reference to his convenience in operating and in returning the test car. As the investigation progressed, it became apparent that the accumulated data left certain gaps in the range of average car weights. There were at this stage, for example, few trains experimented upon with average car weights near 25 to 30 tons, and none with an average car weight of 70 tons. The last six or eight

[^0]trains were therefore made up especially to supplement the data at these points. It should be understood, however, that nothing in this process resulted in a train make-up which was in any respect unusual. All the trains tested are, therefore, such as one might expect to find upon any road where the traffic conditions are normal. They include trains made up almost entirely of empty gondolas ${ }^{1}$, others with considerable variation in both load per car and kind of car, and still others composed almost entirely of loaded box cars or of loaded gondolas.

Test S-1018 demands special mention in this connection. The train for this test included Illinois Central Railroad locomotives No. 423 and No. 732, weighing respectively 145200 and 223600 lb. Their combined weight constituted 13.6 per cent of the total train weight. These locomotives with their tenders were being hauled "dead" and had the main rods disconnected, as is usual in such cases. The first is of the 2-6-0 type, the second of the $2-8.0$ type, and they and their tenders had therefore together 17 axles in operation. For the purpose of determining the average car weight for this train, these two locomotives were assumed to be equivalent, in their resistance, to a number of cars having a like number of axles, i. e., $4 \frac{1}{4}$ cars. The results of the calculations warrant the belief that this view of the situation has resulted in no material error. A study of Table 1 will make clear the diversity in the composition of the trains.

All trains except No. S-1016, S-1018, S-1030A, and S-1030B were weighed upon one of the two track scales at Champaign. This weighing was done in the usual manner, by pulling the train over the scales and weighing the cars successively without uncoupling them. These track scales were in good condition and were each inspected four times during the test period. These inspections disclosed a maximum error in one scale of $-\frac{1}{5}$ per cent, in the other of- $\frac{1}{2}$ per cent. The train in test S-1016, composed entirely of empty cars, by an error in arrangements, left the yards without being weighed. The weights stenciled on the cars were accepted as correct in this case. The train in test S-1018 was weighed upon track scales in the Chicago yards; and the trains of

[^1]tests S-1030A and 1030B were weighed in the yards at Centralia. In test S-1021, after leaving the yards, two cars were added to the train, for which the weights were determined from the stenciled weights and the way-bills. In tests S-1030B and S-1048 the weights of one and two cars respectively were similarly determined, and in test S-1061 the stenciled weight was used for one empty car. Obviously no important errors in the total tonnage have resulted from possible inaccuracies in the weights of these cars.

All cars of all trains were of course provided with the usual four-wheeled truck. Presumably the majority of the cars had journals conforming to the specifications of the Master Car Builders' Association, which for some years have required that freight car journals be either $3 \frac{3}{4} \mathrm{in}$. by 7 in ., $4 \frac{1}{4} \mathrm{in}$. by 8 in ., 5 in . by 9 in . or $5 \frac{1}{2} \mathrm{in}$. by 10 in . in size, depending upon the car capacity. It is safe to assume that all trucks were provided with wheels of 33 in. standard diameter.

Throughout each test, observations were repeatedly made to discover such irregularities as hot journal boxes, brakes which were not free from the wheels, and trucks which did not freely follow the track. Such things occurred to the usual extent; a hotbox or two or an unreleased brake being occasionally found on some of the trains, while others were entirely free from such defects. The record of such matters was given consideration in making the calculations; but, as was anticipated, the results showed no discrepancies which could be explained by such causes.

The range over which the train data for all of the tests varied is as follows:

Minimum Maximum

A verage weight of cars composing the train, tons 16.12...................... 69.92
No. of cars in the train...........................26............................. 89
Train length, feet................................... 1120 3480
Complete information concerning each train is given in Appendix 2.
9. The Track.-The track upon which the experiments were carried on extends from Gilman to Mattoon, Illinois, a distance of 91 miles, and lies upon the Chicago division of the main line of the Illinois Central Railroad. Until about ten years ago this was a single track road, and one of the oldest in the State. At that time a second track was constructed, and the roadbed for both tracks is now well settled and in good condition. The maxi-
A Summary of Test Conditions and Train Data

				9	150005－mm0000000000000
				$\stackrel{\sim}{\sim}$	O＠OO＠N－0000000N000000
			भиәอ 兀ə 	\pm	
				$\stackrel{\square}{-1}$	がomictomeray
				－	
			s．ъ，рәреот јо Јəquin	\pm	
			јо ләquinn	$\stackrel{9}{9}$	
	 			$\underset{\sim}{\sim}$	
	$\begin{aligned} & \infty \\ & \text { 合 } \\ & \text { in } \\ & 0 \\ & 0 \end{aligned}$	suof 		\exists	
		$\frac{\text { suoq }}{74 \Omega!)_{M}}$		응	Oが
				0	
			$\stackrel{\circ}{\circ}$	∞	
			$\begin{gathered} \text { I్ } \\ \substack{\text { In }} \end{gathered}$	－	 $++++++++1++++1++$＋＋＋＋
	xnou rəd sə！！ü кұฺэотә ричй әтษயบ！			ω	
			pug 7V	5	H
				＋	
				\cdots	
				\sim	
				\cdots	

S-1052	1-28-09	Wet	36	40	11	$-45^{\circ} \mathrm{L}$	$+70^{\circ} \mathrm{L}$	2430	1514	24.80	61	44	17	28	61	38	1	0
S-1057	3-6-09	Fair	34	40	10	$+20^{\circ} \mathrm{R}$	$-35^{\circ} \mathrm{L}$	1830	2107	41.32	51	8	43	84	49	43	6	2
S-1081	3-13-09		41	38	7	$+45^{\circ} \mathrm{L}$	$-85^{\circ} \mathrm{L}$	1785	2252	51.20	44	3	41	93	5	84	11	0
S-1063	3-19-09	Wet	39	40	12	$+20^{\circ} \mathrm{R}$	$+40^{\circ} \mathrm{R}$	3060	1484	20.04	74	70	4	5	7	93	0	0
S-1070	4-17-09	Fair	58	71	4	$+0^{\circ}$	$-65^{\circ} \mathrm{L}$	2400	1622	24.60	66	49	17	26	58^{*}	42	0	0
S-1072	5-1-09		35	37	17	$+70^{\circ} \mathrm{L}$	$90^{\circ} \mathrm{L}$	1200	1859	66.40	28	1	27	96	4	96	0	0
S-1073	5-4-09	\because	53	63	10	$+25^{\circ} \mathrm{L}$	$+70^{\circ} \mathrm{R}$	1200	1880	67,16	28	1	27	96	4	96	0	0
S-1074	5-7-09	،	45	60	10	$+65^{\circ} \mathrm{L}$	$-80^{\circ} \mathrm{L}$	3180	1340	16.56	81	81	0	0	2	98	0	0
S-1076	5-11-09	\because	51	67	16	$+40^{\circ} \mathrm{R}$	$+75^{\circ} \mathrm{R}$	1120	1818	69.92	26	1	25	96	4	96	0	0
S-1077	5-14-09	"	64	70	13	$-25^{\circ} \mathrm{R}$	- $75^{\circ} \mathrm{R}$	2145	1505	28.40	53	35	18	34	74	26	0	0
S-1079	5-18-09	"،	65	68	18	$+65^{\circ} \mathrm{R}$	$-85^{\circ} \mathrm{R}$	${ }_{2} 2070$	1685	33.04	${ }_{5}^{51}$	14	37	${ }^{73}$	${ }^{90}$	10	0	0
S-1080	5-21-09	،	50	70	11	+ 0°	$+45^{\circ} \mathrm{L}$	2550	1347	21.40	63	57	-	10	16	84	0	0
Notes: 1. Columns'7 and 8-Direction is designated by the angle made with the track. A wind any component of whose velocity helps the train	Columns 7 and 8 -Direction is designated by the angle made with the track. A wind any component of who forward is marked + ; winds with opposing velocity components are marked-. Winds from the right side of the																	
	R, from the left side as L. Thus $+40^{\circ} \mathrm{R}$ means a wind blowing from the rear and from the right hand side,																	
	2 *Columns 11 and 12-Train has two "dead" locomotives and tenders in addition to cars noted.																	
	3.																	
	4. All data apply to the train only-engine and tender are excluded.																	
	5. Columns 9 to 19: a.-from Champaign to Rantoul; b.-from Rantoul to Gilman																	

mum grade against northbound traffic is 29 ft . per mile and against southbound traffic, 31.9 ft . per mile. In all the 91 miles there are only 7850 ft . of curved track.

Through station grounds the tracks are ballasted with screenings or cinders; all other portions of both tracks (about 83 of the 91 miles) are full ballasted with broken limestone. The crossties are of oak, laid 20 in . center to center. About $10 \frac{1}{4}$ miles of the west track are laid with $75-\mathrm{lb}$. A. S. C. E rail, putdown in 1894 and 1895; while the remainder of the west track and all of the east track are laid with $85-\mathrm{lb}$. A. S. C. E rails, the oldest of which was put down in 1900. During eight months of the year there is employed in maintaining this portion of the road a force of men which averages one man per mile of track; during the other four months this force is reduced to one man for each two miles. Further details concerning the track are given in Appendix 3. As regards both its construction and maintenance this track is such as one may expect to find upon the main lines of first-class railroads.

These 91 miles of track were especially surveyed, immediately preceding the tests, by the Railway Engineering Department of the University for the purposes of this and similar investigations. The levels were run on the east track and readings were taken to 0.1 ft . at stations 300 ft . apart; and turning points were taken at every fourth station where levels were read to 0.01 ft . The results of the survey are expressed in a profile drawn to a scale of $\frac{1}{4} \mathrm{in}$. to 100 ft ., which was used in making the test calculations.
10. The Weather Conditions.-In Table 1 the weather prevailing during each test is designated as either fair or wet, wet weather meaning either continuous or intermittent rain. During 7 of the 32 tests the weather was wet. The lowest air temperature recorded at any time during any test is $34^{\circ} \mathrm{F}$.; and the highest recorded temperature is $82^{\circ} \mathrm{F}$.

The column headed "average wind velocity" in Table 1 presents the averages of the calculated wind velocities derived for each point or section of the test in question for which the train resistance was determined. An inspection of the tables in Appendix 5 shows a considerable variation between the wind velocities at different points during the same test. The approximate maximum average wind velocity prevailing during any test was 25 miles per hour; the minimum was 4 miles per hour. The
actual wind direction (with respect to the track) varied during the tests, as would be expected, through the entire 360°. The tables in Appendix 5 show this direction for each point at which train resistance was computed; but it seems impossible to make any useful generalization of the data there presented.

It was intended to so select the tests that the weather conditions, the temperatares, and the wind velocities would be such as usually prevail in most parts of the country from the middle of spring until the middle of autumn when the basic or "summer" tonnage ratings are in force-such conditions, in short, as would give rise to no appreciable difficulties in train operation.

V. Methods Employed in Calculating the Results.

11. The immediate purpose in making the calculations was to produce for each test a curve showing the relation between resistance and speed, for as great a variety of speeds as the data would permit. This involves calculating the train resistance at various positions of the train upon the track, and the first step towards this end is the inspection of the test car record in order to select suitable points or sections at which the resistance may be calculated. The considerations of first importance in this selection are that the points represent finally as great a speed range as possible, and that the speeds be approximately evenly distributed within this range. Points and sections were selected only where the entire train was running and continued to run upon straight track; resistance due to track curvature is therefore entirely eliminated. The data essential to the process of calculation are the draw-bar pull of the engine, the train speed and its acceleration, the tonnage, and the profile. The pull and the speed, as previously stated, are determined from continuous curves drawn on the test car chart. Two processes have been used, designated here as Method 1 and Method 2. By Method 1, the momentary values of pull, speed, acceleration, and grade were determined for a particular position of the train upon the road; by Method 2 the average values of these quantities were determined for the period during which the test car was passing over a definite section of the track.
12. Method 1: Resistance at a Point on the Road.-The point having been chosen, the pull and the speed were found by direct
readings from the chart. This pull divided by the tonnage gives the gross train resistance at this speed, and this gross resistance was next corrected for both acceleration and grade resistances. The acceleration was determined by graphical methods from the speed curve, and the grade was found by correlating the train's position with the profile. The points were all so selected that at the moment under consideration, the entire train was on a nearly uniform grade. Method 1 results in momentary values of train resistance at the points considered.
13. Method 2: Average Resistance Over a Section.-By this method the average value of train resistance was determined for the period during which the test car at the head of the train was passing a selected section of the track. This track section corresponds to a certain length or section on the test car record. It was so selected that the speed of the car when entering was nearly equal to its speed at exit, and further so that no considerable variations in speed occurred during transit over the section. The sections chosen have varied in length from about $\frac{1}{4}$ mile to 1 mile. The variations in speed in passing the section have generally amounted to less than 2.0 miles per hour, and the maximum variation over any selected section is 11.7 miles per hour. In only 58 cases out of a total of 560 does this speed variation exceed 5.0 miles per hour. These portions of the chart having been chosen, the average pull was next found by determining the average ordinate of the curve of draw-bar pull, and the average speed was found by means of the section length and the time record. Gross resistance in pounds per ton was next derived by dividing this value of pull by the tonnage, and this gross resistance was then corrected for the resistances due to acceleration and grade, as in Method 1.

In this case the average acceleration is found by consideration of the speeds at entrance to and exit from the section. In order to correct for grade, the elevation of the center of gravity ${ }^{1}$ of the train was determined for that position of the train at which the test car entered the section, and again for the position at which the car left the section. The difference between these elevations

[^2]establishes the effective average grade, which either helps or opposes the locomotive while the train passes the section. These elevations of the center of gravity of the train may not be determined with sufficient accuracy unless the train at the moment is on a practically uniform grade. The section limits were therefore so chosen.

Method 2 results in a value of average train resistance for the average speed at which the train passes the section under consideration. It would be rigidly correct if train resistance varied uniformly with speed, in other words, if the curve showing the relation of resistance to speed were a straight line. This, of course, is not the case, and the process therefore gives results which are slightly in error. However, as stated above, the section was so chosen that the difference between the speeds at entrance to and exit from the section was small; and for the speed range represented by this difference, the curve of train resistance deviates but little from a straight line. Such error as does result from the process is, therefore, very small and is of no moment whatever when compared with variations, due to natural causes, which occur in the resistance itself.
14. Comparison of the Two Methods.-The two methods are fundamentally alike. Although the first is the less laborious, it requires the determination of acceleration at a point on the speed curve, which it is sometimes difficult to make accurately. For this reason the second method is generally preferable. Method 2 is also to be preferred because it deals with average values and therefore tends to eliminate from the results the incidental momentary variations which occur in the resistance itself. Consequently, the second method has been employed whenever possible, and the first method has been resorted to, as a rule, only in those cases where the limitations imposed in the selection of sections for Method 2 would have resulted in too few values from which to plot the resistance curves. Of all the individual resistance values incorporated in the report, only 32 per cent were determined by Method 1. The care exercised in the calculations, and a study of the plotted values obtained by both processes, seem to warrant the conclusion that their results are equally reliable. In Fig. 1 and in the figures in Appendix 5, the circles represent values derived by Method 1, and the circular black spots represent values obtained by Method 2.
15. General Considerations.-Even in freight train operation the tractive effort required to produce acceleration in the speed is frequently greater than that required to overcome all other resistances combined. To produce, for example, an acceleration of 0.1 mile per hour per second, requires a tractive effort of about 9 lb . per ton, in addition to that required by net train resistance and grade resistance. Since the acceleration resistance may constitute so large a proportion of the gross resistance, it is important that its determination be made with great care. This fact has been impressed upon all who were concerned with these tests. In calculating the acceleration resistance, both the force required to produce acceleration in the rotation of the wheels and axles, and the force required to produce the acceleration in the motion of translation of the train as a whole were determined.

The test car records make it possible to distinguish those portions of each test where the brakes were applied. Such places, few in number, were of course avoided in selecting points and sections for determining resistance. The records also show where hot-boxes and unreleased brakes were discovered in the train, and such defects were given consideration in making the calculations. They occurred infrequently and their effect could not be distinguished in the results. While therefore such portions of the record were avoided if convenient, sections and points on the charts, otherwise suitable for calculation, were not rejected on these accounts.
16. The Effect of Stops in Limiting the Selection of Points and Sections.-Early in the progess of this work, when low air temperatures were first encountered, it became apparent that when the train was first started from rest, its resistance, calculated for a number of points at which the speed was the same, was occasionally unusually high. This was true not only for those portions of the run made immediately after leaving the yards; but also for those portions immediately following stops on the road. In a certain test, for example, the values of net resistance, calculated at various points, at all of which the speed was 20 miles per hour, varied between 6.8 lb . and 5 lb . per ton-a difference of 27 per cent-for points selected within the first 9 miles of the run; whereas values of resistance at the same speed, determined later in the test, differed by only 10 per cent. The air tem-
perature during this test (not included in the report) varied between 22° and 26°.

For a number of tests such resistance values were plotted with respect to the distances from the yards of the points to which they apply. This process disclosed a surprisingly regular decrease in the resistance until a distance of approximately ten miles was reached, after which the resistance had settled down to a fairly uniform value. Similar variations were found to occur to some extent during tests when the air temperature was as high as 50° or 60°. This study ${ }^{1}$ led to the conclusion that this difference in resistance was due to variations in the conditions of lubrication of the car journals, and that such variations were chiefly caused by changes in journal temperature. All this is, of course, in accord with the common belief of those experienced in train operation. The reason for discussing it in this place is that the facts stated have influenced the procedure in making calculations for this series of tests.

Since the variationsin resistance are so great during the early part of the run, no point or section has been selected for calculation within about the first ten miles of any test. If other points or sections, located farther from the start, were near stops, such points were rejected unless further investigation proved that at these places the train resistance had become nearly uniform in value. Fortunately, the operating conditions were such as to entail few stops on the road, and the selection of points and sections for the calculations has not been unduly limited on these accounts ${ }^{2}$.

The effect of these limitations is to make the results of this investigation primarily applicable to trains which have been in motion for some time. Since, however, stops are not usually made upon ruling grades, and since if stops are made atother places on the road, the locomotive has available tractive power in excess of the requirements, the results of these tests are generally applicable in the solution of tonnage rating problems, except where the ruling grade occurs near a yard or other point where the trains are made up. In such cases the tonnage determined from the resistance curves here presented may prove to be somewhat too great.

[^3]17. The Derivation of the Resistance Curves.-The calculations result, for each test, in a series of values of net train resistance at a variety of speeds. These values of resistance were plotted with respect to speed, and gave such a diagram as in Fig. 1.

Fig. 1 The Relation of Resistance to Speed for Test S-1021
The curve, such as is shown there, was next drawn to express, for the test in question, the relation existing between resistance and speed. In order to draw this curve, the plotted points were assumed to be arranged in a number of groups, and for each group the averages of the values of speed and of resistance were determined. By these averages a new point or "center of gravity" of the group was then plotted. The curve was drawn by confining attention to the few points thus determined. The groups of points were arbitrarily selected so that the resulting "centers of gravity" would be distributed nearly equidistantly throughout the speed range. All curves presented in the report, except those exhibited in Fig. 11, were drawn by this process.

All reasonable precautions have been taken to attain accuracy in the calculations. In determining each value of resistance, each step in the process was duplicated at a different time and generally by a different person. The transcription of all tables, the plotting of points and the drawing of curves have been similarly checked.

VI. The Results of the Tests

- 18. Results of the Individual Tests.-The immediate result of each test is a curve which shows for the train under consideration the relation existing between train resistance and speed. Fig. 1 is such a curve derived from test S-1021; similar curves for the other tests are exhibited in Appendix 5. Fig. 1 is fairly representative of the entire group of curves, and such discussion of it as follows is general in its application.
The plotted point ${ }^{1}$ show unmistakably an increase in resistance as the speed increases, and the curve drawn represents the mean relation between resistance and speed. In Fig. 1 the maximum variation from this mean of any calculated value of resistance is about 20 per cent; the next largest variation is 16 per cent and other calculated values of resistance differ from the values determined from the curve by generally less than 10 per cent. In a majority of the tests the maximum variation is less than in Fig. 1 , and the general agreement between the calculated values of resistance and the ordinates of the curve is better than in the test chosen for illustration.

It has been thought desirable to express more specifically this variation between the calculated values of resistance and the mean values as derived from the curves drawn. To this end, for all tests, all calculated values of resistance for speeds between 8 and 12 miles per hour were compared with the ordinates of the curves at the corresponding speeds and the percentage difference was determined in each case. These percentages were then arranged in two groups and averaged. The one group included the results from all points lying above the curve, the other from those lying below it. The whole process was next repeated for speeds between 28 and 32 miles per hour. The results are as follows:-

> Average Deviation (for all tests) of Calculated Resistance from the Mean Values Derived from the Curves-Expressed in

Percentage of the Mean Values.

Speed	Above the Mean	Below the Mean
8 to $12 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	6.4 per cent	7.6 per cent
28 to $32 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.	5.6 per cent	6.6 per cent

[^4]Such variation seems not unduly great for this class of exper imental work.

These differences may be due in part to accumulated errors in instruments or in the calculations. In all cases, however, where the calculated value of resistance varied by an unusual amount from the mean, all calculations leading thereto were repeated a second time and errors thus discovered have been eliminated from the report. The explanation for such differences need not be sought further than in the variations which actually occur from time to time, in the resistance itself. Variations in such components of train resistance as flange friction and wind resistance are probably sufficiently great to account for the differences discussed above. The data do not permit the influences of such components of resistance to be differentiated.

The curve drawn for each test has been accepted as representing the average values of net train resistance with a degree of accuracy sufficient for the purpose of rating locomotives. Such temporary excess of resistance as may be expected to occur will generally be absorbed in that reserve in the tractive effort of the locomotive which must be allowed in any system of tonnage rating.
19. Results of All the Tests.-The resistance curves for the individual tests have all been brought together on one sheet, a reproduction of which is shown as Fig. 2. The curves there drawn are duplicates of those separately shown in Appendix 5^{1}. Fig. 2 displays the immediate results of the whole research. The lower curves give values of resistance varying from 3 lb . to $5^{\frac{1}{2}} \mathrm{lb}$. per ton, while the upper curves show resistance values varying from 7 lb . to 14 lb . per ton. Resistance values at the lower speeds differ by 100 per cent, and values at higher speeds differ by as much as 200 per cent. If further analysis had not revealed the cause of the great variation in resistance here shown, Fig. 2 would have remained a useless exhibit.

The explanation of this variation has been sought in the test conditions enumerated below, each of which, it was conceived, might have contributed in some degree to bring about the differences disclosed in Fig. 2:
(a) Weather and temperature conditions.
(b) Wind velocity and direction.

[^5]
Fig. 2 Curves Showing the Relation Between Resistance and Speed for Eachof the Tests
(c) Kind of cars composing the train.
(d) Position of the loaded cars in the train.
(e) Defects in train equipment.
(f) Average weight of the cars in the train.

The first five conditions are either uncontrollable or were purposely not controlled during these experiments. Attempts to explain the differences between the curves of Fig. 2 by reference to one or the other of these five factors have been altogether unsuccessful. While it is true that difference in wind velocity, for example, might be accepted as a plausible explanation of the differences between two or three curves selected at random from Fig. 2, such explanation will not hold when applied to two or three other curves similarly chosen; and it fails altogether to explain such differences when it is applied to the whole group. The same remarks apply to attempts to explain the differences between the curves of Fig. 2 by referring them to any other of the first five items cited above.

Item f, however, has furnished the clue whereby the apparent confusion in the results of the tests, as exhibited in Fig. 2, has been explained. It may be stated at once that the difference in train resistance for various tests is believed to be due chiefly to differences in the average gross car weights existing during the tests. An explanation of the process which led to this opinton follows immediately below. As was stated at the outset, this conclusion was anticipated when the work was begun, and the average car weight was therefore controlled during the experiments, and made to vary through the widest possible range.
20. The Effects of Car Weight on Resistance.-The four upper curves of Fig. 2 are derived from trains in which the average weight per car was about 16 or 17 tons. The lowest curves are those derived from trains in which the car weight was nearly 70 tons. These facts serve as a rough indication of the part played by car weight in effecting changes in train resistance. This influence is more definitely brought out in the following discussion.

If from each of the curves of Fig. 2 the value of resistance is determined at one speed, say 5 miles per hour, these values of resistance may then be plotted with respect to their corresponding values of car weight; and, since the speed is common, its influence is eliminated and the resulting diagram may be expected to reveal the relation existing between train resistance and aver-
age weight per car. Table 2 was prepared to facilitate this process. In it the tests are arranged in the order of the average car weights. These weights are given in the second column and in the succeeding columns are set down the resistance values obtained from the curves of the individual tests, for each of seven different speeds. Table 2 therefore presents the values of the coordinates of seven points on each of the curves of Fig. 2 and hence, like Fig. 2, summarizes the immediate results of all tests ${ }^{1}$.

Table 2 Values of Resistance at Various Speeds, Derived from the Curves for the Individual Tests. This Table Provides the Co-ordinates of the Points Plotted in Fig. 3 to 9.

In Table 2 the second and third columns present a series of values of average car weight and of train resistance at 5 miles per hour. Each pair of these values represents the results of

[^6]one of the 32 tests. Using these pairs of values as coordinates, a series of points has been plotted to form a new diagram, Fig. 3, For example, the point marked 21 in Fig. 3 is derived from the curve of test S-1021. The curve of resistance for this test (see Fig. 1 or Fig. 2) shows that at 5 miles per hour the mean resistance is 4.21 lb . per ton. During this test the average weight of the cars in the train was 46.16 tons. Table 2 also exhibits both of these values which, when plotted in Fig. 3, determine the point there marked 21. The other points of Fig. 3 were similarly determined. Each point represents the value of resistance at 5 miles per hour derived from a particular test train.

Although there is considerable variation among the points of Fig. 3, they indicate clearly a decrease in the resistance as the car weight increases. The curve drawn in Fig. 3 represents, for the trains tested, the mean relation which existed between resistance at 5 miles per hour and the average car weight ${ }^{1}$. For higher speeds this relation between resistance and car weight is shown by Fig. 4 to 9 , which were derived by the same methods employed in producing Fig. 3.

The variation in resistance represented by the points in Fig. 3 to 9 is sufficient to warrant further discussion. Such discussion will, however, be postponed until later in the report. The conclusion reached is that these variations are largely caused by factors which are uncontrollable in ordinary train operation. If this be admitted, it is clear that the discussion of such variations may enter into the solution of tonnage rating problems only as an argument for reserve tractive effort in the locomotive. An estimate of the desirable amount of such reserve appears beyond.

The curves of Fig. 3 to 9 have been accepted as representing, for these tests, the mean relation which existed between train resistance and the average gross weight of the cars composing the trains. These curves exhibit this relation at seven different speeds, $5,10,15,20,25,30$ and 35 miles per hour. For convenience in use and to make comparison easier, these seven curves have been brought together in one diagram which is reproduced in Fig. 10.

[^7]

Fig. 3 The Relation Between Resistance and Average Car Weight, at a Speed of 5 Miles per Hour

Fig. 4 The Relation Between Resistance and Aveirage Car Weight, at a Speed of 10 Miles per Hour

Fig. 5 The Relation Between Resistance and Average Car Weight, at a Speed of 15 Miles per Hour

Fig. 6 The Relation Between Resistance and Average Car Weight, at a Speed of 20 Miles per Hour

Fig. 7 The Relation Between Resistance and Average Car Weight, at a Speed of 25 Miles per Hour

Fig. 8 The Relation Between Resistance and Average Car Weight, at a Speed of 30 Miles per Hour

Fig 9 The Relation Between Resistance and Average Car Weight, at a Speed of 35 Miles per Hour

Fig. 10 presents the final results of the whole research. Each of the curves there drawn shows the mean relation, which existed during the tests, between car weight and resistance at a definite speed.

It is believed that the curves of Fig. 10 are generally applicable to ordinary American freight trains, provided the conditions surrounding their operation are like those which prevailed during these tests. The curves of Fig. 10 enable one to determine the probable mean resistance of any such train, at speeds between 5 and 35 miles per hour, provided the average weight of the cars composing the train be known.
21. The Results Expressed as Resistance-Speed Curves.-While Fig. 10 presents the main results of the experiments, the form in which these results are there expressed is unusual. Ordinarily, train resistance is expressed either as a curve or equation which defines the relation between resistance and speed, instead of the relation between resistance and car weight as in Fig. 10. Obviously, to express the results of these experiments in the usual form, a single curve will not suffice, since the influence of car weight cannot be thereby made evident. A number of curves will

Fig. 10 The Relation*Between Resistance and Average Car Weight, at Various Speeds
be required for this purpose each of which will apply only to a definite average car weight. Fig. 11 presents such a group of resistance-speed curves, which have been derived directly from the curves of Fig. 10. Fig. 11 therefore exhibits in different form only such information as is obtainable from Fig. 10.

The relation between the two figures may be made clear by explaining the derivation of the upper curve in Fig. 11,-the one applying to a car weight of 15 tons. In Fig. 10 the ordinate corresponding to an average car weight of 15 tons cuts the seven curves there drawn at 7 points, at which the mean resistance values are $7.62,8.20,8.81,9.56,10.37,11.24$ and 12.25 lb . per ton, corresponding to speeds of $5,10,15,20,25,30$ and 35 miles per hour, respectively. These values are the coordinates of 7 points on a resistance-speed curve applying to a car weight of 15 tons. These 7 points have been plotted in Fig. 11 and the upper curve there shown has been passed through them and extended to 40 miles per hour. The other curves of Fig. 11 were derived by a like process. In the original diagram three additional curves, corresponding to 55,65 , and 70 tons per car, were drawn. These three curves have been omitted from the figure to avoid confusion. Fig. 11 reproduces quite exactly the facts presented in Fig. 10^{1}; and presents the final results of the experiments.
22. The Results Expressed in Tabular Form.-From each of the curves of Fig. 11 the values of resistance at various speeds have been determined and set down in Table 3. Table 3 also includes the coordinates of the resistance curves corresponding to 55,65 , and 70 tons per car, which are omitted from Fig. 11.
23. The Results Expressed As Equations.-The relation between resistance and speed shown by each of the curves of Fig. 11 may also be expressed in the form of an equation. Formulas 1 to 13 below are such equations, by means of which resistance may be calculated for any speed and for various car weights. In the formulas, R is the resistance expressed in pounds per ton, s is the speed expressed in miles per hour, and W is the average weight of the cars in the train expressed in tons. The formulas are purely empirical, and are simply equations of parabolas so

[^8]
Fig. 11 The Relation Between Resistance and Speed, for Various Average Weights per Car
selected as to correspond very closely with the curves of Fig. 11. The correspondence between the formulas and the curves is such that the maximum difference between any value of resistance obtained by the formulas and the corresponding value obtained from the curves of Fig. 11 is $\frac{1}{2}$ of one per cent. Since these are empirical equations, their use should not be extended beyond the speed limits shown on Fig. 11.

Train Resistance Formulas.

$$
\begin{align*}
& \text { When } W=15 \text { tons; } R=7.15+0.085 S+0.00175 S^{2} . \tag{1}\\
& \text { When } W=20 \text { tons; } R=6.30+0.087 S+0.00126 S^{2} . \\
& \text { When } W=25 \text { tons; } R=5.60+0.077 S+0.00116 S^{2} . \\
& \text { When } W=30 \text { tons; } ; R=5.02+0.066 S+0.00116 S^{2} . \\
& \text { When } W=35 \text { tons; } R=4.49+0.060 S+0.00108 S^{2} . \\
& \text { When } W=40 \text { tons; } ; R=4.15+0.041 S+0.00134 S^{2} . \\
& \text { When } W=45 \text { tons; } ; R=3.82+0.031 S+0.00140 S^{2} . \\
& \text { When } W=50 \text { tons; } ; R=3.56+0.024 S+0.00140 S^{2} . \\
& \text { When } W=55 \text { tons; } R=3.38+0.016 S+0.00142 S^{2} . \\
& \text { When } W=60 \text { tons; } R=3.19+0.016 S+0.00132 S^{2} . \\
& \text { When } W=65 \text { tons; } R=3.06+0.014 S+0.00130 S^{2} . \\
& \text { When } W=70 \text { tons; } R=2.92+0.021 S+0.00111 S^{2} . \\
& \text { When } W=75 \text { tons; } R=2.87+0.019 S+0.00113 S^{2} .
\end{align*}
$$

The results of the tests may also be approximately expressed by the following single empirical equation in which R is expressed in terms of both S and W.

$$
\begin{equation*}
R=\frac{S+39.6-0.031 \mathrm{~W}}{4.08+0.152 \mathrm{~W}} . \tag{14}
\end{equation*}
$$

When compared with the results of the tests as shown in Figure 11, or in Table 69 in Appendix 6, this equation results in a maximum error of 9.5 per cent. This error occurs when $S=21$ and $W=55$. For all other values of S and W the error resulting from the use of the equation is 9.0 per cent or less.
24. Final Results.-The final results of the research are presented in Fig. 11, in Table 3, and in formulas 1 to 13 . It is believed that by means of the figure, or the table or the formulas, the resistance of ordinary freight trains may be fairly accurately predicted; provided the conditions surrounding their operation are similar to those which prevailed during these tests. These conditions have been fully stated and are restated in the conclusions.

It is sufficient to repeat at this point that the results apply to trains running at uniform speed, on tangent and level track of good construction, during weather when the temperature is not lower than $30^{\circ} \mathrm{F}$., and when the wind velocity does not exceed about 20 miles per hour.

TABLE 3
Values of Resistance at Various Speeds and for Trains of Different Average Weights per Car.

The values are derived directly from the curves of Fig. 11 and represent the final results of the tests.

Speed miles per hour	T Train Resistance-Pounds per ton													Speed miles ner hour
	Column Headings Indicate the Average Weights Per Car													
	$\begin{gathered} 15 \\ \text { tons } \end{gathered}$	$\stackrel{20}{\text { tons }}$	$\begin{gathered} 25 \\ \text { tons } \end{gathered}$	$\begin{gathered} 30 \\ \text { tons } \end{gathered}$	$\begin{aligned} & 35 \\ & \text { tons } \end{aligned}$	$\begin{aligned} & 40 \\ & \text { tons } \end{aligned}$	$\begin{gathered} 45 \\ \text { tons } \end{gathered}$	$\begin{aligned} & 50 \\ & \text { tons } \end{aligned}$	$\begin{gathered} 55 \\ \text { tons } \end{gathered}$	60 tons	$\begin{aligned} & 65 \\ & \text { tons } \end{aligned}$	$\begin{gathered} 70 \\ \text { tons } \end{gathered}$	75 tons	
5	7.6	6.8	6.0	5.4	4.8	4.4	4.0	3.7	3.5	3.3	3.2	3.1	3.0	5
6	7.7	6.9	6.1	5.5	4.9	4.4	4.1	3.8	3.5	3.3	3.2	3.1	3.0	6
7	7.8	7.0	6.2	5.5	5.0	4.5	4.1	3.8	3.6	3.4	3.2	3.1	3.1	7
8	8.0	7.1	6.3	5.6	5.0	4.6	4.2	3.9	3.6	3.4	3.3	3.2	3.1	8
9	8.1	7.2	6.4	5.7	5.1	4.6	4.2	3.9	3.6	3.4	3.3	3.2	3.1	9
10	8.2	7.3	6.5	5.8	5.2	4.7	4.3	4.0	3.7	3.5	3.3	3.2	3.2	10
11	8.3	7.4	6.6	5.9	5.3	4.8	4.3	4.0	3.7	3.5	3.4	3.3	3.2	11
12	8.4	7.5	6.7	6.0	5.4	4.8	4.4	4.0	3.8	3.6	3.4	3.3	3.3	12
13	8.6	7.6	6.8	6.1	5.5	4.9	4.5	4.1	3.8	3.6	3.5	3.4	3.3	13
14	8.7	7.8	6.9	6.2	5.5	5.0	4.5	4.2	3.9	3.7	3.5	3.4	3.4	14
15	8.8	7.9	7.0	6.3	5.6	5.1	4.6	4.2	3.9	3.7	3.6	3.5	3.4	15
16	9.0	8.0	7.1	6.4	5.7	5.1	4.7	4.3	4.0	3.8	3.6	3.5	3.5	16
17	9.1	8.1	7.2	6.5	5.8	5.2	4.8	4.4	4.1	3.9	3.7	3.6	3.5	17
18	9.3	8.3	7.4	6.6	5.9	5.3	4.8	4.5	4.1	3.9	3.7	3.7	3.6	18
19	9.4	8.4	7.5	6.7	6.0	5.4	4.9	4.5	4.2	4.0	3.8	3.7	3.6	19
20	9.6	8.5	7.6	6.8	6.1	5.5	5.0	4.6	4.3	4.0	3.9	3.8	3.7	20
21	9.7	8.7	7.7	6.9	5.2	5.6	5.1	4.7	4.3	4.1	3.9	3.9	3.8	21
22	9.9	8.8	7.9	7.0	6.3	5.7	5.2	4.8	4.4	4.2	4.0	3.9	3.8	22
23	10.0	9.0	8.0	7.1	6.4	5.8	5.3	4.9	4.5	4.3	4.1	4.0	3.9	23
24	10.2	9.1	8.1	7.3	6.6	5.9	5.4	4,9	4.6	4.3	4.2	4.1	4.0	24
25	10.4	9.3	8.3	7.4	6.7	6.0	5.5	5.0	4.7	4.4	4.2	4.1	4.0	25
26	10.5	9.4	8.4	7.5	6.8	6.1	5.6	5.1	4.8	4.5	4.3	4.2	4.1	26
27	10.7	9.6	8.5	7.7	6.9	6.2	5.7	5.2	4.8	4.6	4.4	4.3	4.2	27
28	10.9	9.7	8.7	7.8	7.0	6.3	5.8	5.3	4.9	4.7	4.5	4.4	4.3	28
29	11.1	9.9	8.8	7.9	7.1	6.5	5.9	5.4	5,0	4.8	4.6	4.5	4.4	29
30	11.3	10.0	9.0	8.0	7.3	6.6	6.0	5.5	5.1	4.9	4.7	4.5	4.5	30
31	11.4	10.2	9.1	8.2	7.4	6.7	6.1	5.6	5.2	5.0	4.8	4.6	4.5	31
32	11.6	10.4	9.3	8.3	7.5	6.8	6.2	5.8	5.3	5.0	4.9	4.7	4.6	32
33	11.8	10.5	9.4	8.5	7.6	7.0	6.3	5.9	5.4	5.2	5.0	4.8	4.7	33
34	12.0	10.7	9.6	8.6	7.8	7.1	6.5	6.0	5.5	5.3	5.1	4.9	4.8	34
35	12.3	10.9	9.7	8.8	7.9	7.2	6.6	6.1	5.7	5.4	5.2	5.0	4.9	35
36	12.5	11.1	9.9	8.9	8.0	7.4	6.7	6.2	5.8	5.5	5.3	5.1	5.0	36
37	12.7	11.2	10.0	9.0	8.2	7.5	6.9	6.4	5.9	5.6	5,4	5.2	5.1	37
38	12.9	11.4	10.2	9.2	8.3	7.6	7.0	6.5	6.0	5.7	5.5	5.3	5.2	38
39	13.1	11.6	10.4	9.4	8,5	7.8	7.1	6.6	6,2	5.8	5.6	5.4	5.3	39
40	13.4	11.8	10.6	9.5	8.6	7.9	7.3	6.8	6.3	6.0	5.7	5.6	5.5	40

VII. Discussion of the Results

25. Variation in Resistance of Different Trains.-Reference has been made to the variations among the points of Fig. 3 to 9 . In
each figure about one half of the points lie above the curve there drawn, and their resistance values vary from those of the curve by different amounts. It should be borne in mind that, in these figures, each point represents the average resistance which prevailed throughout a particular test, and differences among the points represent, therefore, differences in the mean resistance of the different trains.

Among those trains which are regarded as normal there are two or three whose resistance at some speed varies from the mean, as expressed in the curves, by as much as 23 per cent. The great majority, however, vary from this mean by about 10 per cent or less. In Fig. 4, for example, there are 19 points which lie above the curve, among which the maximum deviation from the mean is 23 per cent, while the average of the deviations for all 19 points is 8 per cent. The following table presents similar average deviations above and below the mean for each of Fig. 3 to 9 .

Average Deviation of All Points in Fig. 3 to 9, from the Mean as Shown by the Curves There Drawn.-Expressed as Percentages of the Curve Ordinates.

	$\begin{array}{\|c\|c} \text { Fig. } \\ \text { m. p. h. } \end{array}$	$\begin{aligned} & \text { Fig. } 4 \\ & \text { m. p. h. } \end{aligned}$	$\begin{aligned} & \text { Fig. } 5 \\ & \text { 15. } \\ & \text { m. p. h. } \end{aligned}$	$\begin{aligned} & \text { Fig. } 6 \\ & \text { m. p. h. } \end{aligned}$	$\begin{gathered} \text { Fig. } \\ \text { 25 } \\ \text { m. p. h. } \end{gathered}$	$\begin{aligned} & \text { Fig. } 8 \\ & \text { 30. p. } \end{aligned}$	$\begin{aligned} & \text { Fig. } 9 \\ & \text { m. p. h. } \end{aligned}$
Points above the curve Points below the curve	11 13	${ }_{10}^{8}$	8	${ }_{8}^{11}$	${ }_{9}^{13}$	${ }_{9}^{8}$	${ }_{9}^{7}$

The data present no satisfactory general explanation for these differences in the resistance of different trains of like average weight per car. They may be due to difference in external conditions or to difference in train condition and make-up. Whatever may be the explanation for these differences it is significant that about one-half of the trains experimented upon developed a resistance about 9 per cent in excess of the mean resistance which would be predicted by the use of Fig. 3 to 9 and Fig. 10 and 11. Obviously a similar excess may be expected with any train, and it is suggested therefore that, in determining the resistance of trains on level tangent track for the purpose of rating locomotives under operating conditions which demand conservative ratings, 9 per cent be added to the resistance values obtained from the curves, tables, and equations presented. Such considerations are
of little practical importance in rating locomotives for speeds above 15 miles per hour. In such cases an excess in resistance over that expected can result in nothing more serious than failure to realize the expected train speed.

It should be understood that this 9 per cent allowance is intended to cover probable variations in the resistance of different trains under normal operating conditions. It in no way takes the place of that additional reserve which must be allowed to cover unusual variations in resistance due to low temperatures or high winds, or of that reserve in tractive effort of the locomotive which is necessitated by operating conditions which reduce the efficiency of the locomotive itself.
26. Tests Which Present Abnormal Resistance Values.-There are four points in Fig. 3 to 9 whose deviation from the curves is so great as to demand special examination. These are the points corresponding to tests S-1034, S-1074, S-1080, and S-1031 (points $34,74,80$, and 31). These tests show a persistent and great variation from the mean at various speeds. The trains of tests 1034, 1074, and 1080 were alike in having average car weights less than 23 tons and in containing a large proportion of empty gondolas, 99,98 , and 84 per cent, respectively. Any explanation based on the train composition is however nullified by the fact that the trains of tests No. 1016, 1043, and 1063, which show close correspondence with the curves, had similar average car weights and contained almost equally large proportions of empty gondolas. Weather and wind conditions likewise offer no explanation of the divergences presented by these three tests. Explanations are rendered more difficult by the fact that, while the trains of tests 1034 and 1074 show unusually high resistance, the resistance in test 1080 is exceptionally low. The abnormalities presented by these three trains have therefore been accepted as unexplained by the data at hand.

The resistance of the trains of the fourth test mentioned above (S-1031) is low at all speeds. This train had an average car weight of 20.7 tons, contained 94 per cent of box cars, and was only 1425 ft . long. Other test trains of similar average car weight differ from this in having generally less than 60 per cent of box cars and in being all 2400 ft . or more in length. Taking into consideration all the data, neither fact seems, however,
to offer an adequate explanation of the variations exhibited by this train.
27. Car Weight as a Basis of Expression.-Objection may be made to the form of expression adopted in Fig. 3 to 9 and 10,in which the resistance is expressed solely in terms of average car weight, to the apparent neglect of the influence of those elements of resistance, such as air resistance, which are independent of weight and which probably vary only with the number of cars in the train. The neglect is only apparent, however, for the process by which Fig. 10 was derived involves, although indirectly, the recognition of the influence of the number of cars. It is quite likely that, if Fig. 10 were applied to determine the total resistance of a single car, the result would be in error.

Whatever objection may be urged against the form of expression adopted, it remains true that Fig. 10 rests upon experimental results obtained with trains of usual length and that in practice one is not likely to encounter trains which present in this respect any extreme variation from the test data. The form of expression will not lead to error unless misapplied and it was chosen because it permits the results to be conveniently used in establishing tonnage ratings.

It might likewise have been more rational to express the resistance in terms of load per axle instead of load per car, since the latter can operate to cause variations in resistance only in so far as it affects the former. Since, however, all American freight cars have four axles, the expression in either form would be identical. Convenience in application warrants the choice made in this respect also.
28. Effect of Variety in Car Weight upon Total Train Resistance.In Fig. 10 those portions of the curves which apply to average car weights below 20 tons were derived from trains which were quite homogeneous in their make-up as regards weight per car. These trains were necessarily composed almost exclusively of empty cars, since an average car weight of 20 tons or less cannot be obtained with cars of current design unless they are empty or nearly so, and being empty they will be uniform in weight. Similarly for average car weights above 55 or 60 tons, the test trains were necessarily uniform in make-up. For trains of average car weights below 20 and above 60 tons, the curves of Fig. 10 are ac-
cepted, therefore, as valid and applicable to any train to be met with in practice.

In Fig. 10, those portions of the curves corresponding to car weights of from 20 to 60 tons were, on the other hand, derived from trains which presented considerable diversity in make-up as regards weight per car. Some of these trains were composed almost entirely of loaded cars, others contained large proportions of both empty and loaded cars. In presenting the results in the form adopted in Fig. 10 (and Fig. 11) the assumption is that the curves there drawn will be used throughout their entire range of average car weight to determine the total resistance of both homogenous and mixed trains, and that, when so applied, they will lead to no material error. In view of the facts just stated it is pertinent to inquire whether this assumption is justifiable.

Assume two trains of equal tonnage, and of the same average weight per car. Assume further that one is composed of cars uniform in weight, and that the other is composed of cars of different individual weights. Now if such trains are to have equal total resistance, it can be shown that the variation in the resistance per car of the individual cars must be directly proportional to their weight. This implies that the curve showing the relation between total car resistance and car weight at a given speed must be a straight line, if homogeneous and mixed trains are to have equal total resistances at this speed. From Fig. 10 there have been derived curves showing this relation between car resistance and car weight. These curves (not shown in the report) correspond quite closely, but not exactly, with straight lines; and the correspondence is especially close for those portions of the curves which apply to car weights between 20 and 60 tons. From these facts we may conclude that the curves of Fig. 10 are not quite, but are nearly equally applicable to mixed and homogeneous trains, and that, if the curves are applied to both kinds of trains, we may expect a slight error in the resulting total train resistance. The amount of such error is indicated by the following examination of a specific case.

Assume two trains, A and B, the first homogeneous, the second mixed, as regards car weight. Train A is composed of 60 cars, each weighing 45 tons, and its total weight is 2700 tons. Train B is composed of 30 cars of 70 tons each, and 30 cars of 20
tons each; its total weight is 2700 tons and its average car weight is 45 tons. Train B presents about as great a diversity in car weight as may be encountered in current practice. Both trains have equal tonnage and the same average weight per car. Assume that the total resistance of these two trains at a speed of 5 miles per hour is to be determined. By the procedure, which it is intended shall usually be followed in using Fig. 10, the resistance for an average car weight of 45 tons, at 5 miles per hour, is found to be 4.0 lb . per ton; and the total resistance of either train A or train B is $2700 \times 4.0=10800 \mathrm{lb}$.

Train B, however, may be considered as made up of two shorter homogeneous trains of average car weights of 20 and 70 tons respectively and the resistance of each may be determined from those portions of the curves of Fig. 10, about whose validity no question is raised. From Fig. 10, the resistance at 5 miles per hour for a car weight of 20 tons is found to be 6.8 lb . per ton and for a car weight of 70 tons, 3.1 lb . per ton. By the use, therefore, of these portions of the curves of Fig. 10, the total resistance of train B is found to be $30 \times 20 \times 6.8+30 \times 70 \times 3.1=$ 10590 lb ., which differs from the resistance previously found by 2 per cent. If a similar analysis be made for a speed of 40 miles per hour, the corresponding difference is found to be 4 per cent. If these differences be accepted as a measure of the maximum error likely to result from the indiscriminate application of the curves of Fig. 10 to mixed and homogeneous trains, we may conclude that for purposes of rating locomotives the results of the tests as expressed in Fig. 10 and 11 and Table 3 may be so applied without material error.
29. The Influence of Speed on Resistance.-Within the last two years the opinion has been expressed in some quarters that train resistance between speeds of 5 and 35 miles per hour is constant. It is proper to point out that there is nothing in the data here presented to support such a conclusion.
30. The Influence of Wind Velocity on Resistance.-The wind velocities prevailing during the tests were generally less than 20 miles per hour. The data do not permit the influence of such winds to be differentiated from the other elements affecting resistance; but they do warrant the conclusion that this influence is small. In the introduction, train resistance was defined as the
resistance in still air, whereas throughout the report the term is used to apply to the test results from which the influence of wind has not been eliminated. This inconsistency has been deliberateely incurred to avoid unwieldy expression and is partially justified by the facts just stated.
31. Comparison with Other Experiments.-There is no point in comparing the results of these tests with formulas in which the influence of car weight is given no consideration, nor with those which are not derived from tests with American cars of recent design. The results obtained on the Chicago, Burlington and Quincy Railroad and on the Pennsylvania Railroad, and recently published by Mr. F. J. Cole, ${ }^{1}$ take into consideration the influence of car weight and they apply to cars of recent design. They are therefore selected for comparison.

The results obtained on the Chicago, Burlington and Quincy road (curve No. 1, for temperatures above $30^{\circ} \mathrm{F}$. and no wind) apply to a speed of 20 miles per hour. Compared with the curve for 20 miles per hour in Fig. 10, they show resistance values which are from 35 to 60 per cent lower than the corresponding results of these tests. The Pennsylvania Railroad results are claimed to be equally applicable at all speeds between 5 and 30 miles. When plotted on Fig. 10 of this report they show very close correspondence with the curve there drawn for 10 miles per hour, for car weights from 25 to 70 tons; while for car weights below 25 tons they indicate resistance values as much as 20 per cent in excess of the results obtained during these tests.

[^9]
APPENDIX 1

APPENDIX 1

- Railway Test Car No. 17

The dynamometer car by means of which these tests were made was built in 1900. Under the arrangements perfected at that time, the car was built and has since been maintained by the Illinois Central Railroad, while the University has supplied all apparatus, and has manned and operated the car. Both the car body and the apparatus were remodeled in 1907^{1}.

The car body was especially designed for its purpose. It is 40 ft . long over the end sills, and 8 ft .4 in . wide inside. The central sills and the platforms are of steel, while the remainder of the construction is of wood. The general design of the car is shown in Fig. 12, and an interior view is shown in Fig. 13. The working space occupies about two thirds of the length of the car, and in it are placed the recording apparatus, the auxiliary instruments, the storage batteries, work-bench, etc.

During the tests, the test car apparatus made continuous autographic records of drawbar pull, speed, time, mile post positions, airbrake cylinder pressure, wind velocity with respect to the car, and wind direction with respect to the longitudinal axis of the car. These records are made upon a chart 36 in . wide, drawn across the table of the recording apparatus. This chart was driven by gearing from the axle of the central truck below the car, so that ivs travel was proportional to the travel of the car itself. In all tests a car travel of one mile produced a paper travel of 13.2 in . A view of the recording apparatus is shown in Fig. 14.

Fig. 15 is reproduced from a tracing of a portion of the chart made during test $\mathrm{S}-1057$ of this series. The only lines there shown which do not appear on the original record are the profile and the transverse lines which mark the limits of one of the sections selected for calculation. These lines and some of the explanatory lettering have been added to the tracing, in order to make clearer the significance of the various records.

The total pull which comes upon the measuring drawbar of the car is transmitted to oil contained in the receiving cylinder, the design of which is shown in Fig. 16. This cylinder is hung

[^10]

Fig. 12 Railway Test Car No. 17

Fig. 13 Interior of Test Car No. 17

Fig. 14 The Recording Apparatus
from the center sills, immediately behind the drawbar yoke. Its inside diameter is 10 in ., and its piston is $7 \frac{1}{2} \mathrm{in}$. long. Both cylinder and piston are carefully ground to an exact fit and no piston packing is used. The pull is transmitted from the drawbar yoke to the piston through a roller-borne yoke; and the whole device is practically frictionless. Such leakage of oil as takes place proceeds so slowly as to prove no inconvenience, even when operating under maximum pull. The cylinder may be refilled with oil by means of a pump within the car, and this is done while the car is in operation and without impairing the accuracy of the record. The pressure of the oil in this receiving cylinder is transmitted to the cylinder of an indicator located upon the table within the car. This indicator is identical, in its design, with one of the modern types of steam engine indicators, although it is larger and heavier throughout. During its ten years of service this type of dynamometer has demonstrated its reliability and accuracy.

Two speed records are shown on the chart, and both are used. The one is obtained from a speed recorder which resembles in design a "fly-ball" engine governor. This instrument is used in measuring speeds above 15 miles per hour. The second record is obtained from a chain-driven Boyer speed recorder, geared to run at a speed about three times as great as is usual with these instruments. This record is used for speeds up to 35 miles per hour. Within their respective ranges, both instruments produce accurate speed curves.

The air-brake cylinder of the test car is connected to the cylinder of an ordinary steam engine indicator, which is mounted upon the table and which draws a curve of air-brake cylinder pressure.

The velocity of the wind with respect to the car is obtained by means of a Robinson cup-anemometer of the standard United States Weather Bureau type, which is so mounted that the cups revolve 32 in . above the car roof. This instrument controls an electric circuit, which operates an electro-magnet connected to the recording pen. By means of this magnet offsets are made in the line drawn by the pen. During the time which elapses between two successive offsets, the travel of the air past the cups amounts to 0.2 of a mile.

The direction of the wind with respect to the longitudinal axis of the car is derived from a wind vane mounted 3 ft . above the car roof. The spindle of the vane extends downward to a point above the recording apparatus and terminates there in a crank, parallel to the vane. This crank is connected to the recording pen through a rod with a yoke end. The ordinate of the curve drawn by this pen is proportional to the sine of the angle made by the vane with the car axis. The offsets in the datum line for this curve, which appear in Fig. 15, indicate that the vane, at the moment, was pointed toward the front end of the car. While the vane points toward the rear end no offsets are made in the datum line.

Fig. 15 shows a record of "area under the curve of pull" which is made by means of a recording planimeter mounted on the table. This record is inaccurate and was not used in these calculations.

APPENDIX 2

APPENDIX 2

The Tonnage Records of The Trains

Tables 4 to 35 present the records of make-up and tonnage of the trains. The car numbers are arranged in the tables in the order in which the cars were placel in the train, beginning at the head end.

With the few exceptions cited in Part I, the weights given in the last column of the tables were obtained by weighing the train on the track scales. In all tests the dynamometer car was coupled immediately behind the locomotive tender. In the tonnage records for those tests in which the test car ran with its measuring drawbar pointed toward the rear of the train, the test car weight is excluded, since in such cases its own resistance is not included in the pull recorded on the chart.

TABLE 4 Tonnage Record

Test No. S-1013

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	$\underset{\text { Initial }}{\text { Car }}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test Car	E			58000		58000
Gondola	L	82386	I. C.	28700	60000	92300
Refrigerator	E	6641	N. C. L.		60000	36400
Box	$\underline{1}$	48887	I, ${ }_{\text {, }}$ C.	39100	80000	96200
		36476		37000	80000	92000
".	.	92329	N. C. \& St. L.	33300	60000	95000
\because	'،	9842	N. C. \& St. L.	33400	60000	94000
'	..	37688	I. . C .	34600	80000	107000
'"	\cdots	14301		29200	60000	72700
Refrigerator	E	78.726	C. B. T.			38200
Box Gondola	L.	38254 85 804	I. C.	34000 31500	80000 80000	58700 105100
Box	- ${ }^{\text {d }}$	39840		38900	80000	- 82400
B6	\because	9337	L. \& N.	34500	65000	69300
'6	-	94116		35400	65000	64700
"	.	3135		34000	65000	89600
Refrigerator	E	5260	A. R.L.	36500	50000	38100
Box	L	39404	I. C.	38300	60000	122000
Gondola	E	16778	Erie	42800	100000	42600
Box	L.	38711	I. C.	37600	80000	86500
'،		5078	N. C. \& St. L.	38300	60000	76000
' ${ }^{\prime}$.	3954 133684	L. \& N.	33100	65000	94000
Gondola	. ${ }^{\text {c }}$	+ 3193	I. S.	40200	100000	68000 147800
Tank	.	704	B. T. R.			178500
	.	540	D. R. \& U.			80000
' ${ }^{\text {a }}$	،	293	A. C. O.			88100
Gondola	.	82968	I. C.	28400	60000	83700
Box	.	34623		37100	60000	68100
، ${ }^{\text {d }}$.	19773	.	28300	60000	62600
.	-	- 47730	.	30600	80000	108700
"	، $،$		'.			88100
Refrigerator	-،	5223	M. R.T.	31	60.00	74000 50600
Box	.	48273	I. . ${ }^{\text {C. }}$	39700	80000	99600
، ${ }^{\text {c }}$	-.	36741		34500	80000	119200
-'	.	36076	,	35700	80000	122000
"	,	49417	.	35200	80000	90000
'،	*	34147		37000	80000	92300
\because		136690	S. 0 .	34300	60000	87800
*	.	32645		31800	60000	36600
'•	.	17853	İ, C.	29900	60000	63900
\because	\because	45691		39400	80000	100000
'"	..	38217	.	34000	80000	74300
Gondola	*	93582	.	30400	80000	115600
Box	' ${ }^{\circ}$	47588 140	!	41600	80000	89300
,	. ${ }^{\text {d }}$	140760 45432	.	42900	100000	76000
. 6	\bullet	12104	.	36800 28	80000 60000	123300 64300
،	*	22796		37500	80000	113600
'*	L	48388	-	39700	80000	63500
-'	E	22742	L. S. \& M. S.	29300	60000	31000
Gondola	L.	36825	İ, ${ }^{\text {C. }}$	33900	80000	72000
Gondola	-	79267		24800	50000	27000
Box	".	12784	,	28300	60000	63000
Gondola	*	81750		26700	60000	65500
Refrigerator	E	11275	B. T.	28000	60000	32000
Box		11972 12658	W.C.	29900 37400	60000 80	29300
"	E	45051	$1{ }_{\text {i }}$ C.	36000	60000	63 67 0000
،	L	20070	،	28500	60000	84000
		17783		29800	60000	63000
".	\cdots	141980	",	43700	100000	74000
G	.	15026	S.	30000	60000	70000
Gondola	-	6232	S. I.	28500	60000	80000
Refrigerator	*	6003 98018	A. R.L.	34800	50000	45100
Caboose	E	98018	I. C.	34000		34000

TabLe 5 Tonnage Record

Test No. S-1015

Kind of Car	Loaded or Empty	Car No.	$\underset{\text { Initial }}{\mathrm{Ca}}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Gondola	!	89299	I. , C.	32000	80000	82000
Box	،	91712 130646		29400 42300	80000 80000	80000 92000
Tank		1300	Champ'n stock	32100	60000	96000
Box	'.	24678	I. C.	36000	80000	67000
	".	23251		25200	80000	92300
،	".	140501		42700	100000	81500
'"	'	141254	A.	43500	100000	96300
Tank		185	A. P. L.			78000
Box	،	8457	$\mathrm{I}_{\mathbf{i}}{ }^{\text {C }}$.	30100	50000	93100
	،	26732		36100	80000	114400
".	"	13635	.	28900	60000	84600
".	،	11069	,	30200	60000	96600
\because	"،	23530	\ldots	36100	80000	98000
"	، $،$	12235	.	28800	60000	90900
\cdots		17652	\cdots	28900	60000	83300
"	'،	37500	,	34100	80000	100000
\because	، $،$	39126	\because	36700	80000	95500
\because		17644	,	30000	60000	75800
\because	"،	12774	\cdots	30400	60000	81400
\because		33666	.	36100	80000	84300
' ${ }^{\prime}$	'.	6985	\ldots	27700	50000	80600
Gondola	.,	86493		30800	80000	102000
Box	!'	83722		33900	80000	123000
,	.	5000 11598	A. R. L.	34800	50000	38500
.	.	11598	N. C. \& St. L.	33200	6000	99100
\cdots	,	35113	S. L. L. \& S. F.	35100	60000	80400
' ${ }^{\prime}$	\%	29220	S. L. C.	38100	6 ± 000	53500
Gondola	'.	91287		29000	80000	70600
Flat	، $،$	8146	I. S.	33200	100000	115500
Box	..	39343	$I_{i},{ }^{\text {C }}$.	36600	80000	95000
	[141804		43500	100000	84500
"	'	141686		43500	100000	103500
.	E	25 376	M.St.P.\&S.SM	33500	60000	33600
\because	!	140755	I. C.	42900	100000	48500
".	،.	56092	U. P .	25800	50000	72800
،		15503	I. C .	28800	60000	'70 000
F1a	E	13330	C. G. W.	30000	60000	29700
Flat	$\underline{1}$	10638	V .	24500	60000	33800
	,	10521	V.	21200	80000	31700 78 7800
Box	..	45514 142175	İ, ${ }^{\text {C }}$	39100 42800	80000 100000	78600 81300
\because	'.	22064	'،	37800	80000	76000
".	"،	46450	,	37600	80000	78000
Rer		58576		33800	80000	85000
Refrigerator		33476	C. \& N. W.	32200	50000	56000
Box		12530	I. C.	30500	60000	59600
Tank		990	A. P. L.			82300
Box	'.	46660	I. C.	38000	80000	67 700
Refrigerator	\because	49154 6502	U. R. T. C.	35200 30800	80000 100000	70300 47700
Flat	.	65 226	$\mathrm{I}_{\mathrm{i}},{ }^{\text {C. }}$	23900	60000	71200
Box	- 6	140108		42900	100000	125600
Refrigerator	".	4531	N. C. L.		50000	$\begin{aligned} & 41600 \\ & 80100 \end{aligned}$
Tank	-	150 153	A. T_{6} L.			80100 78600
-"	"	1017				82000
Box	' ${ }^{\text {c }}$	140161	I. C.	42700	100000	73600
Tank	' ${ }^{\text {c }}$	904	A. T. L.			81100
Box	E	82244	C. \& N. W.	32600	80000	32800 26000
Flat	$!$	1549 1799	C. H: \& D.	21400 21700	50000 40000	26 38 3800
"	'.	67930	I. C.	26800	80000	35700
.	T	878	G. \& S. I,			54700
\cdots	$\underset{\sim}{\text { E }}$	30237	C. \& H. R.	27000	80000	27100
	.	16056 8849		22600 28900	60000 80000	22400 28 800
${ }_{\text {Caboos }}$,	8249 98.100	N,Y.N.H. \& H.	28900	80000	28800 40000

TABCE 6 Tonnage Record
Test No. S-1016

$\begin{aligned} & \text { Kind } \\ & \text { of } \\ & \text { Car } \end{aligned}$	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	$\begin{aligned} & \text { Gross } \\ & \text { Weight } \end{aligned}$
	L or E			pounds	pounds	pounds
Test	E	17				58000
Gondola		93191	I. ${ }^{\text {C }}$.	35300	80000	35300
		90844		32900	80000	32900
6 6	"	88459	6	31500	80000	31500
'،	6،	9 ± 843	6	31700	80000	31700
'،		82365	،	26800	60000	26800
، 6	6،	92596	،	30200	80000	30200
6 6	" ${ }^{6}$	81323	، 6	28600	60000	28600
6	'6	93948		31800	80000	31800
، 6	'،	84190		27000	60000	27000
، $،$	'،	252	S. S. C.	25500	50000	25500
'،		616	E. F. D. \& Co.	23700	50000	23700
'،	'،	85594	İ, C.	31400	80000	31400
.6	'،	84200		27400	60000	27400
* 6	، 6	95241	I S	30100	80000	30100
'6	،	3252	I. S.	40300	100000	40300
، 6	'،	106404	$1{ }_{6}{ }^{\text {\% }}$	48800	60000	27800
'6	، 6	93494	، 6	29600	60000	29600
6/	"	86663	، 6	31100	80000	31100
، 6	، $،$	96262	"	31800	80000	31800
'6	'،	95707	'،	30800	80000	30800
'6	'،	83544	"	28200	60000	28200
6،	'،	93960	" ${ }^{6}$	31300	80000	31300
66	'،	87697	6	33500	80000	33500
'،	6،	96062	'6	31400	80000	31400
"،	، 6	76634	'6	25700	50000	25700
'،	'،	91067	'6	30200	80000	30200
'،	'6	91424	\% 6	30600	80000	30600
* 6	، 6	89 115 127	، 6	32000	80000	32000
'،	6،	106127	c 6	42600	100000	42600
' 6	'،	104930	6	40600	100000	40600
"،	"،	95782	\%	31500	80000	31500
6،	'،	104131	6 6	40600	100000	40600
6	، 6	92338	'،	30600	80000	30600
"،	، 6	81653	، 6	26400	60000	26400
6،	، 6	96137	، 6	31000	80000	31000
، 6	. 6	88950	'،	31800	80000	31800
، $،$	'،	115043	، 6	43200	100000	43200
'،	'،	80128	"'	28900	60000	28900
، 6	'،	94357	، 6	30900	80000	30900
6،	'،	96123	، 6	31200	80000	31200
'،	'،	91024	، 6	31000	80000	31000
، 6	'6	84272	6،	27500	60000	27500
'،	6،	85516	'،	29400	80000	29400
'،	، 6	86283 87090	c	31600 30900	80000	31600
، 6	6،	83604	، 6	27300	60000	27300
'6	"	80933	، 6	27500	60000	27500
6،	، ،	83243	، $،$	28000	60000	28000
66	"،	85624	6	30800	80000	30800
، $،$	'،	75812	'6	26000	50000	26000
'،	، 6	85649	، $،$	30700	80000	30700
، 6	6،	88925	'،	31900	80000	31900
، ،	6،	93575	6 6	31100	80000	31100
، 6	، 6	104318	'،	40800	100000	40800
6 6	6	86327	'6	30400	80000	30400
'،	'،	94 80 80	، 6	30100	80000	30100
، 6	6	80 82 167	'،	28200 26900	60000 60000	28200
6	'،	101116	‘	26 38500	60000 100000	26900 38500
6 6	'،	86515	6،	30400	80000	30400
، 6	'،	88352	'،	31200	80000	31200
، $،$	، 6	104944	'،	40200	100000	40200
'،	'،	105533	S ${ }^{\prime \prime}$ C	40500	100000	40500
، 6	6	262 89849	S. S. C.	30600	80000	30600
"	'	89849 95296	I_{i} C.	32000 30000	80000 80000	32000
'6	'	93 197	، 6	31400	80000	30 31400
Caboose	'،	106428	'6	40300	100000	40300
Caboo se	*	98172	6	40000		40000

Table 7 Tonnage Record
Test No. S-1017

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\text { Kind } \\
\text { of } \\
\text { of }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Looded } \\
& \text { ompty }
\end{aligned}
$$ \& Car
No. \& $\underset{\text { Initial }}{\text { Car }}$ \& Stenciled
Light Weight \& Capacity \& $\underset{\text { Weight }}{\substack{\text { Gross }}}$

\hline \& L or E \& \& \& pounds \& pounds \& pounds

\hline Box \& ! \& 32302 \& I. C. \& 32500 \& 60000 \& 96500

\hline Gondola \& ، ${ }^{\text {c }}$ \& 3363 \& I. S. \& 40300 \& 100
5000

50 \& 140
7400
7000

\hline Box \& $\ddot{ }$ \& 9099
48654 \& I_{3} C. \& 27700
38500 \& 5000
80000 \& 74000
96100

\hline ، \& ، \& \& " \& ${ }_{29}^{20} 200$ \& ${ }_{60} 8000$ \& ${ }_{65} 100$

\hline ". \& " \& 15086^{7} \& ، \& 3000 \& ${ }^{40} 000$ \& 73700

\hline "، \& "، \& ${ }^{17} 772$ \& ، \& 29400 \& 60000 \& 90800
98800

\hline ، \& ، \& \& ، \& 317300
423 \& 80000
8000 \& 96800
130
600

\hline "، \& " \& 150981 \& " \& 30500 \& 40000 \& ${ }^{75} 9000$

\hline Refrigerator \& " \& +113500 \& U. R. T. \& 297700
34800 \& 60000
40000 \& 69300
52000

\hline ${ }_{\text {Refex }}^{\text {Box }}$ \& " \& 141330 \& U. I_{i}, C . \& ${ }_{43} 700$ \& 100000 \& ${ }_{76} 000$

\hline \& \& 141589 \& \& ${ }^{43600}$ \& 100000 \& 114000

\hline "، \& ، \& 24 682 \& ، ${ }^{\prime}$ \& - 35800 \& 80000 \& 80000
88000

\hline " \& " \& ${ }_{24}^{24}$ \& " \& ${ }_{35} 500$ \& 80000 \& ${ }_{72} 000$

\hline ، ${ }^{\text {a }}$ \& \& -22041 \& \& 37800 \& ${ }^{80} 000$ \& ${ }^{86} 000$

\hline " \& \& 107946 \& C. \& N. W. ${ }_{\text {I }}$ C. \& 36600
41500 \& 80000

80 \& | 37 |
| ---: |
| 1600 |
| 116000 |

\hline ، \& ! \& 47
10485
485 \& $\mathrm{I}_{\text {: }}$ c ${ }^{\text {c }}$ \& 415500
29 \& 80000
80 \& 116000
9200

\hline " \& " \& 130247 \& "، \& 42400 \& 80000 \& 132000

\hline " \& " \& 22942 \& " \& 36800 \& 8000 \& 123800

\hline " \& ، \& ${ }^{22} 9888$ \& ، \& 38600
43500 \& 80
10000
1000 \& (115700

\hline ، \& ، \& 142317 \& ، \& ${ }_{31} 100$ \& 60000 \& ${ }_{98} 900$

\hline \because \& ، \& 22318 \& " \& 38200 \& 80000 \& 56700

\hline ، 6 \& ، \& ${ }^{11} 165$ \& ، $،$ \& | 30300 |
| :--- |
| 31200 | \& 60000

60000 \& 71800
77500

\hline " \& \because \& 142728 \& \& 12800 \& 100000 \& 62000

\hline " \& " \& 7698
1807 \& L, \& N . \& 28400
34200 \& 60000
65000 \& 60000
98000

\hline Refrigerator \& E \& 4056 \& M. R. T. \& 40400 \& 60000 \& 40000

\hline Box \& " \& ${ }_{53} 573$ \& C. R. I. \& P. \& 32400 \& 60000 \& 32000

\hline ، - \& L \& - 56432 \& C. M. \& I. Ct. P. \& 29900
38800 \& 60000
80 \& 29000
105
1000

\hline . \& E \& 10428 \& W. C. \& 39
2900 \& 80000
80 \& 29700

\hline " \& \because \& 2786 \& A. \& W, P. \& 35000 \& 65000 \& 33200

\hline Refrigerator \& "، \& 397 \& \& ${ }^{34} 700$ \& ${ }^{40} 000$ \& ${ }^{35} 000$

\hline Gondola Box \& L \& 1025

49236 \& C, \& If, C . . \& | 32200 |
| :--- |
| 34800 | \& 100

80
8000 \& 32000
103000

\hline \& ، \& 14943 \& \& 30800 \& 60000 \& 84600

\hline " \& " \& ${ }^{17} 1424$ \& . \& 30500 \& ${ }^{60} 0000$ \& | 84 |
| ---: |
| 000 |

\hline "، \& "، \& 150265 \& \& 29300 \& 40000 \& ${ }_{65} 000$

\hline " \& " \& 5298 \& Ga. \& 31800 \& ${ }^{60} 000$ \& 73100

\hline ، \& " \& ${ }_{36} 980$ \& I، ${ }^{\text {c. }}$ \& ${ }_{31}^{32} 300$ \& ${ }_{80} 0000$ \& 81000

\hline " \& " \& 48699 \& ' \& 39300 \& 8000 \& 59300

\hline "، \& \% \& 21715 \& \& (36 200 \& 80000 \& 81500

\hline " \& "، \& ${ }^{1} 292$ \& I. L. \& M. \& 29200
42900 \& 80
10000
1000 \& 113000
97500

\hline " \& " \& 142
45525
45 \& \& 49
39300
300 \& 100000
80 \& 97500
7500

\hline Refrigerator \& E \& 9056 \& C. R. D. \& 34600 \& \& 34800

\hline Box \& ! \& 48739
45
762 \& I_{3}, C. \& 39100
40300 \& 80000
80
000 \& 74100
7800

\hline ، ${ }^{\text {a }}$ \& E \& 36636 \& ، \& 34100 \& 80000 \& 35300

\hline Gondol ${ }^{\text {a }}$ \& L \& 22995
108302 \& \& 35100
40300 \& 80
1000
1000 \& 943
900
500

\hline ${ }_{\text {Box }}$ \& E \& ${ }_{72} 344$ \& C. M. \& St, P. \& ${ }_{30} 300$ \& 60000 \& 29000

\hline : \& L \& 19880
17825 \& $\mathrm{I}_{\text {i }}$ C. ${ }^{\text {C. }}$ \& 29300
29300 \& 60000
60000 \& 64300
58000

\hline "، \& \& 64599 \& N. \& W. \& -39500 \& 88000 \& ${ }_{38} 800$

\hline Caboose \& L \& | 45 |
| :--- |
| 98 |
| 983 |
| 83 | \& I: , C, \& 38700 \& 80000 \& 79800

40000

\hline
\end{tabular}

TABLE 8 Tonnage Record
Test No. S-1018

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross W eight
	L or E			pounds	pounds	pounds
Test	E	17				58000
Box	$\underline{4}$	28594	A. T. \& S. F.	36700	70000	113600
-		73246	C. $\& \mathrm{~N}$. W.	39300	60000	44200
. \cdot	$\stackrel{\mathrm{L}}{\mathrm{L}}$	49179	1.	29700	80000	38400
Gondola	\cdots	104113	,	40800	100000	131400
Box	E	46485		37800	80000	43400
	L	24331	S. A. L.	28900	60000	39200
"	E	5372	L. R. \& M.	34600	60000	34400
\because	-،	251	O. G. \& N. E.	38700	80000	38800
' ${ }^{\text {c }}$.	19944	South	31900	60000	33 3000
Gondola	..	180614		40100	100000 50000	3. 200
Box	\cdots	56649	L. \& N.	41100 38100	50000 80000	42800 82200
,	$\underline{\square}$	45413 49161	Big 4.	35800	80000	59400
.	E	88250	C. \&N. W .	30000	60000	39200
'*	L	39546		33500	60000	51000 145200
Locomotive		423	I. , C.			145200 65800
Flat	!	66644 6059		29000	80000 Gal .	35200
Tank	E	6059 6052	S. I		8000 Gal .	41600
. ${ }^{\text {a }}$	E	6 699	.		8000 Gaj .	39000
.	-'	6233	\cdots		8000 Gal .	39400
"	'،	6054	'،		8000 Gal .	38400
.	.	6190	.		8000 Gal .	39800
.	-'	600	I. T. Co.	30000	80000	39200
Box	*	130857	I. C.	41000	80000	80800
Tank	L	680	S. C. O. Co.	48100	12500 Gal .	49200
Gondola		3175	I. S.	40400	100000	148000
	E	273	S. C. Co.	30700	80000	$\begin{array}{r}35 \\ 2900 \\ \hline 200\end{array}$
Locomotive		732	I. C.			223600 33400
Box	E	30105	M. L. \& T.	33100	80000 60000	34*400
-،	\ldots	11571	A. G. S.	34700	60 60000	36200
-	.	14533	L. \& N.	33300	65000	34600
"	L	558937	Penn.	45400	100000	71400
.	\%	84494	P. R. R.	30800	60000	55600
.	E	9230	N. C. \& St. L.	33300	60000	34 34600
.	L	9264		30200	60000	29800
.	E	6316		29100	60000	33500
.	.	135068	South	33800	60000	33800
، ${ }^{\text {d }}$	- ${ }^{\text {c }}$	13761	St. L. \& S. F.	34000	60000	34000
'،	، $،$	32482	South	35600	60000	34000
Flat	'.	1276	G. S. I.	28600	80000	27000 28500
	.	803	M. ${ }_{\text {c }}$.	28500	80000	28500
-	'،	621		28500	80000	27800
.	.	413	G. S. F	27200	60000	27600
..	".	553		27200	60000	27500
Caboose	"	799	I. C .	27500	80000	40000

TABLE 9 Tonnage Record
Test No. S-1019

Box	E	46712	I. C.	38100	80000	38100
Box	E	38898	is.	36700	80000	38600
-	،	14965	'6	30100	60000	30400
'.	'،	35160		36900	80000	36900
Flat	L	-500	A. T. L. Co,	41720	60000	103000
Box	:	25173	A. I. C.	37100	80000	70000
	'،	19287	S. A. L.	33300	80000	62000
"	'6	11539	N. C. \& St. L	33800	60000	4300
'6	'،	- 997	P. M	34400	50000	50100
'6	'6	1853	D \& M	33100	60000	71100
'	'6	3768	N. C. \& St. L	37100	60000	62600
'،	'6	57378	C. M. \& St. P	29900	80000	70000
، 6	'،	33580	- I. C.	36000	80000	74000
'،	E	55968	L. \& N.	41400	55000	42000
، 6	-	46836	I. C.	38100	80000	36500
،	L	16200		30000	50000	30000

table 9 Tonnage Record-(Continued)

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Intitial	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Box	$\underset{6}{\text { E }}$	12296	I. ، ${ }^{\text {C. }}$	29400	60000	29000
		12302		29700	60000	30000
	'،	37189		34500	80000	35000
'،	' ${ }^{6}$	24525	6	36400	80000	36400
Gondola	، $،$	37157 88 986	، 6	33600 31900	80000 80	34500
	"،	90907	'،	30900	80000	32000
، 6	'،	81808	'	28800	60000	28000
،	"،	96187	، ${ }^{\prime}$	30500	80000	32100
، ${ }^{\prime}$	،	87235	6	31400	80000	31400
6،	، 6	86649		30900	80000	30800
Box	.	30249	T. R. E.	38700	50000	38700
Refrigerator	"	19529	C. F. X.	34400	50000	37200
Tank	L	6278	C. T. L.	47000		95200
Box	!'	45246 142312	İ ، ${ }_{6}$.	37400	80000	37200
,	E	142342 141780	، 6	42700	100000	42700
،	L	14780 7613	-،	43600 27	100000	43100
Gondola	$\underset{\sim}{\text { E }}$	105880	'،	40399	100000	40400
،'	،	86524	6	31200	80000	31400
,	,	104438	'،	40700	100000	40800
،	'،	106223	،	40400	100000	41000
"،	'،	94144 93670	، $،$	31000	80000	32000
"،	'،	5470	، ${ }^{\prime}$	23200	50000	23100
'،	'،	94433	'6	30900	80000	30600
،	'،	87576	,	31500	80000	32100
'،	،	81635	'،	27700	60000	26900
، 6	،	87931	,	31900	80000	31800
،	،	89415	، 6	31	80	31100
"	، 6	90560	، $،$	32200	80000	32300
"،	,	83302	'6	28400	60000	28400
'6	،	83372	،	28600	60000	28600
'6	، 6	92680	'،	30900	80000	30900
،	"،	95924	،	31700	80000	32100
'،	،	89504 91813	'،	32000	80000	32400
' ${ }^{6}$	، $،$	91813 8681	'،	29600	80000	30000
، 6	'،	81851	'6	28700	60000	28900
'،	'6	90634	"	32300	80000	32500
'،	، 6	82958	\%	28400	60000	28400
"	'6	91289	\because	29000	80000	30100
، $،$	'،	89443	" ${ }^{\prime}$	31800	80000	32100
,	'،	95945	'6	31800	80000	32000
، ،	'،	94941	"،	31000	80000	30900
'،	'6	85915	'6	31600	80000	31900
، 6	، ${ }^{\text {d }}$	87758	'6	31000	80000	31800
، 6	، 6	91822	'6	30400	80000	30600
،	'،	9148	6 6	30	8000	32000
'6	، 6	83017	، ${ }^{\prime}$	27300	60000	28100
6	"	101052	'6	38500	100000	39500
Box	، 6	82279	\%	28100	60000	28200
"،	، 6	31042	I. S.	36300	60000	36500
Gondola	، $،$	22 6 6391	İ ${ }_{6}$ C.	31000	60000	31500
Gondola	6	6391 94066	[،	24200 30500	60000 80000	24200 31100
"	'،	90487	'6	31600	80000	31900
'،	'،	86903	'،	31000	80000	31000
'6	'6	93952	'،	31400	80000	31700
'6	، $،$	91861	"،	33700	80000	33100
،	'6	86214	، $،$	30700	80000	31100
'،	، $،$	88076	، 6	31700	80000	31400
،	".	90050	،	31000	80000	31000
،	،	85151 83526	'،	31300 27	80000	31200 27
Flat		-3790	'،	27100	80000	27000
		1202	M. C.	28100	80000	28100
'،		590	C. S. I	27400	80000	27400
'،	"	272	C. S. I	24400	60000	29400
Caboose	. 6	$88 \mathbf{8 2 5}$	M. C.	28500	80000	28400 40000

TABLE 10 Tonnage Record
Test No. S-1021

K Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Car } \\ \text { Initial } \end{gathered}$	Stenciled Light , Veight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test	E	17				58000
Gondela	L	97430 $\times \quad 9541$	I: , C.	31400	100000	104600
،	"	$\begin{array}{r}\text { ¢ } \\ \hline\end{array} 9534118198$	، $،$	30100 33000	80000 80000	105000 98000
"	"	105823	'	40400	100000	152000
"	،	90733	\because	31400	80000	107000
亿	"	87110	،	32000	80000	108300
،	،	88418 84	،	32000 30 800	80000 80000	105 87000 000
"'	"،	88321	"،	32600	80000	109000
"	"،	81982	، ${ }^{\text {c }}$	29400	60000	88000
،	،	${ }_{92} 914384$	،	30700 31400	80000 80000	110700 106900
،	،	110325		41600	100000	135800
"	"	3 380	I. S.	40400	100000	144000
،	"	83881	I: , C.	28900 27300	60 6000 80	87700 86
"	،	92813	"،	30700	80000	110000
"	،	100242	\because	33100	90000	124400
Box	"	47936	"	39000	80000	104000
Tank	E	17369 6355	C. T. L.			70600 38300
		6315				37800
	$!$	22858 985	N.C. \& St. L.	${ }^{38} 9000$	80 6000 000	86 68 200
Gondiola	"،	104238	İ, ¢ ${ }_{\text {I }}$	40500	100000	148500
،	"	89092 101130		32500 36 700	$\begin{array}{r}80 \\ 100000 \\ \hline 000\end{array}$	115500 134 700
،	"	82069	"	29000	100000 60	134 8800
'،	"،	81382	،	26900	60000	83000
Box	"	130860		42300	80000	96000
،	،	82292 56120	c. \& N. P. W.	34200 31500	80000 50 000	75000 58000
' ${ }^{\text {a }}$	"	12655	İ، ${ }_{\text {c }}$.	29000	60000	58000
Flat	، $،$	66686		28000	80000	105000
Refrigerator	E	131191 9547	A. R. L.	39500 38700	80000 50000	95000 40
Box	$\underline{4}$	7304	H. \& T. ${ }_{\text {c }}$.	30400	60000	69000
		130987	I. , C .	42300	80000	78000
$\underset{\text { Refrigerator }}{\text { Gondola }}$	E	86023 2130	C. R. D.	31200	80000	118000
Box	E	74674	C. \& ${ }^{\text {N. }}$. ${ }_{\text {W }}$.	34000	80000	41000 34 000
Gondiola	L	104603	I: , C.	40500 40 000	100000 100000	149000
،	"	104872 105603		40000 40 200	100000 100000	146000 143800
Refrigerator	E	6417	A. R. L.	31300	50000	35800
		50564	I. C.	35600	50000	36000
Flat	L	807	G. \& S. I.	26400	80000	61800
$\xrightarrow[\text { Refrigerator }]{\text { Box }}$	E	39641 3031	P. B. C. ${ }_{\text {I }}$.	36300 30 700	80000 40000	47900 33700
Box	L	11344	H. \& R.	42000	100000	111200
Gondiola	\%	87136	I: ، C .	31700	80000	112400
".	'،	83896		26600	60000	86000
،	،	90589 87685	، $،$	33300 31800	80000 80 000	112000 109400
"	،	93498	،	31000	80000	107800
، ${ }^{\text {d }}$	"،	95054	،	30200	80000	108000
亿	"،	100041		34400	90000	123000
'	"	270	S. L. B. \& S.	31800 2800	80 60000 000	99000 89000
"	"،	95342	I: C.	29000	80000	105000
Caboose	"	97458		31400	100000	103000 34000
Caboose	E					

Table 11 Tonnage Record
Test No. S-1023

$\begin{gathered} \text { Kind } \\ \text { of } \\ \text { Car } \end{gathered}$	Loaded $\stackrel{\text { or }}{\text { Empty }}$	Car No.	$\underset{\text { Initial }}{\text { Car }}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test	E	17				58000
Box	!	141953	İ، ${ }^{\text {C. }}$	43500	100000	76000
Gondiola	"	104462	'6	40700	100000	110000
،	"	$\begin{array}{r}95110 \\ 110 \\ \hline 88\end{array}$	\because	30000 41000	$\begin{array}{r}80 \\ 10000 \\ \hline 000\end{array}$	83000 100000
'،	"	95949	R. ${ }^{\prime}$	30900	80000	79000
Tank	"	59	R. O. R. Co.		80000	58000
Box	"،	${ }^{80} 880$	P. R. R.	33500	80000	74000
亿	"	10951 133684	N. C. \& St. L.	32700 33200	60000 60000	88000 33000
Gondola	L	138684 85410	Southern	33 33 300	60 8000	33000
،	،	80355	، $،$	27100	60000	80000
Box	،	90035 11893	L. \& N.	29500	80000	112000
Gondola	"	85248	I. C.	31000	80000	112000
	"	89009		32200	80000	106000
،	\because	94119	"	31100	80000	113000
"،	، $،$	81946	"،	28400	60000	96000
، $،$	"،	84309	"،	27500	60000	92000
'	,	88551 87 027	"	32400 31700	80 8000 8000	103000 95000
"	"	87989	\because	32100	80000	110000
"	"	90347	"	33000	80000	111000
"	"	80226	"	24700	60000	80000
"'	"،	84268	\because	29500	60000	78000
،	،	100190	،	34400	90000	124000
،	،	110196 106943	،	40800 40300	100000 100	133000
"	،	80936	"	27900	60000	87000
"	"	90907	"	30900	80000	108000
"	"	82970	"	26900	60000	88000
"،	"،	104451	亿	40700	100000	133800
،	"	84142 89 380	'	28200 31800	60000 80	$\begin{array}{r}89 \\ 108000 \\ \\ \hline 000\end{array}$
Box	"	39074	،	38300	80000	94000
" ${ }^{\text {a }}$	"	141730		43700	100000	105000
Refrigerator	E	6492	N.C. L. C.		60000	43000
$\xrightarrow[\text { Box }]{\text { Bef }}$	L	10049	I. C.	30800	60000	36000
$\underset{\text { Box }}{\text { Refrigerator }}$	E	301 155	U. R. T. Co.	41100 40800	50000 60000	39000 40000
	"	2056	G. B. \& W.	31400	60000	31000
"	"	108260	Erie	40100	80000	38900
"	L	7220 28475	I_{i}, ${ }^{\text {c }}$	${ }_{26} 5500$	50 60000	77800
Tank	L	28475 708	D. R. \& U.	36500	60000	${ }_{76} 8000$
${ }_{\text {Box }}$	$\underset{\sim}{\text { E }}$	48782	I. C .	39100	80000	55000
Gondola	،	50861	Erie	40900	100000	41000
Box	L	116977		42800 43600	100000	42800
Gondola	\square	57131	B. \& 0	28200	60000	67000
Box	E	83308	C. \& N. W.	32600	80000	32000
	\square	56189	U. P.	28000	50000	28000
"،	\because	78219	C. \& N. W.	34450	80000	34000
"	\because	48596		28300	40000	28400
'،	"		S. H. C. Co.	40800	60000	39000
\because	L	13803	$\mathrm{I}_{1}{ }^{\text {C }}$.	29100	${ }_{60}^{60} 000$	71000
Caboose	E	14437 98026		29500	60000	40000

TABLE 12 Tonnage Record
Test No. S-1027

$\begin{gathered} \text { Kind } \\ \text { of } \\ \text { Car } \end{gathered}$	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test	E	17				58000
Gondola	L	104866	I. ${ }^{\text {C }}$.	40300	100000	146700
.		+ 104482		36000	100000	148100
Box	،	106662 15035		40200 29 200	100000	146000
${ }^{1}$.	17391		30000	60000	59800
Gondola	,	3008	I. S.	40200	100000	135400
		609	C. C. \& Co.	31700	80000	105900
"		622	C. C. \& Co.	31700	80000	106500
"	، $،$	92361	I. C.	33000	80000	109800
\because	'،	104423		40900	100000	139300
'		3054	I. S.	40100	100000	142400
.		105824	I. C.	40300	100000	122000
\because	'.	80466		26700	60000	84000
' ${ }^{\text {a }}$	'.	92965	..	30800	80000	98000
',	'،	94160	"	31400	80000	100200
.,		85775	،	31200	80000	100300
'.		88635	.	31400	80000	104400
.	'	83229	.	27200	60000	81000
.	.	81193	\ldots	27500	60000	83600
'.	..	80822	\cdots	27500	60000	81900
.'	'	104540		40500	100000	142000
\cdots	'.	94317	".	30800	80000	108500
.	.	91922	.	30400	80000	101800
!	.	91551	'،	28800	80000	105800
',	'.	88090 93 860	،	31500	80000	101100
,	.	93860 80 889	،	30300 28900	80000 60000	107100 80800
'	، ${ }^{\text {d }}$	75482	.	23000	50000	65900
"	.	86315		31000	80000	103200
".	'.	-629	C. C. \& Co.	31700	80000	106500
!	'.	76275	I. C.	24800	50000	78 300
..	'.	16225	W. M.	39100	80000	117300
	.	87491	I: . ${ }^{\text {c }}$	32000	80000	101800
Box	.	93520 10931		29800	80000	104700
Box	.	+10931	I. I. C.	30 38 200	80000	64100 104500
Gondola	\cdots	- 85133	I: ${ }^{\text {c }}$	31500	80000	62700
Box	,	33362	C. \& N.	32400	50000	38000
Gondola	',	88516	I. C.	31800	80000	918000
Box	"	1614	C. \& O .	37700	80000	90100
.	، $،$	7542 17356	I, ، C.	28200 30100	50 60000	75000
Flat	\cdots	69086	،	301100 33100	60000 100000	73000 75000
Cor	E	67114	.	25600	80000	27600
Caboose	'،		-			38000

TABLE 13 Tonnage Record
Test No. S-1030A

$\begin{aligned} & \text { Kind } \\ & \text { of } \\ & \text { Car } \end{aligned}$	Loaded $\underset{\text { Empty }}{\text { or }}$	Car No.	$\begin{aligned} & \text { Car } \\ & \text { Initial } \end{aligned}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test	E	17				58000
Gondela	!	110699	I: ، ${ }^{\text {c }}$	41100	100000	130900
"	.	111182 87 386	، ${ }^{\text {a }}$	40700 30	100 8000 000	129400 109
"	"	- 3264	I. S.	40400	100000	142300
"،	".	101209	$\mathrm{I}_{\text {: }} \mathrm{C}$.	38100	100000	145000
،	.	106217	،'	40400 31300	100 8000 000	144500
"	'،	101160	"	40200	100000	145000
"،	!	105667	، $،$	40300	100000	142600
، $،$	".	101052	"،	38500	100000	143600
!	.	96213 106888	،	31900 40 000	$\begin{array}{r}80 \\ 1000 \\ \hline 000\end{array}$	106200
"	\because	81275	"	29700	160000	88400
'،	\because	82959	،	27900	60000	87800
"	\because	89028	"	33600	80000	109600
، $،$	".	81296	،	28800	60000	86600
، $،$!	111248		40800	100000	133000
"	"	11375 10 ± 037	I. ${ }_{\text {I. }}^{\text {C. }}$	40500 40 900	100 10000 000	147000 147000
"	".	86480		32000	80000	119000
،	\because	104366	،	40400	100000	154800
،	'.	92183	، ${ }^{\text {a }}$	31000	80 80 8000	116900
،	.	94882 94539	\because	32600 32100	80000 80 000	117 119200
،	".	104877	"،	40300	100000	154000
، $،$	\because	93341	،	30700	80000	118600
\cdots	.	86032	،	29800	80000	111500
"	.	88055	،	312 3200	80000	110500
،	'.	96794	"	32000	100000	113000
،	\because	88577	"،	32 400	80000	111200
Caboose	E	100243 98016	،	32800	90000	125 40 4000

Table 14 Tonnage Record Test No. S-1030B

Kind of Car	Loaded $\stackrel{\text { or }}{\text { Empty }}$	Car No.	$\begin{gathered} \text { Car } \\ \text { Initial } \end{gathered}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test	E	17 11089				58000
Gondola	!	110699	İ، ${ }^{\text {c }}$.	41100	100000	130900
".	,	111182 87386	، ${ }^{\text {a }}$	40700 30 700	100000 80	129400 109300
"	\because	3 264	I. S.	40400	100000	142300
"،	،	101209	I: ${ }_{\text {, }}$ C.	38100	100000	145000
"،	\because	106217	، $،$	40400	100000	144500
\because	"	-101 160	"	31300 40 200	80000 10000	1458000
"،	"،	-105 667	، $،$	40300	100000	142600
"	،	101052	"،	38500	100000	143600
"	"	106888	"	31900 40 200	80000 100000	106200 145200
"	\because	81275	"،	29700	${ }^{60} 000$	88400
"،	"،	82959	"،	27900	60000	87600
،	"	89028	،	33600 28 800	80000	109600
،	"	111248	، ${ }^{\text {c }}$	28800 40800	60000 100000	86600 133000
亿	،	3375	I S.	40500	100000	147000
، ${ }^{\prime}$	"،	104037	1: ، ${ }^{\text {c }}$	40900	100000	147000
"	،	$\begin{array}{r}86480 \\ 104 \\ \hline 66\end{array}$	،	32000 40400	80000 100000	119000 154800
"،	"	92183	\because	31000	80000	116900
"،	،	94862	!	32600	80000	117400
،	،	94539	، 6	32100	80 1000	119200
"	"	$\begin{array}{r}104877 \\ 93 \\ \hline 41\end{array}$	"	40300 30 700	100000 80000	154000 118600
"	"،	86032	"،	29800	80000	111500
'،	"	89078	"	31900	80000	113400
،	،	${ }_{96} 85794$	\because	32200	$\begin{array}{r}80 \\ 10000 \\ \hline 000\end{array}$	110500
،	"،	88577	"	32400	80000	111200
،	"	100243		32800	90000	125500
Box	"،	91482	L. \& ${ }^{\text {a }}$.	35300	65000	106100
Gondola	"	66107	،	37200	80000	102920
Box	${ }_{\text {E }}^{\text {E }}$	95645 13470	M. ${ }_{\text {S }}$.	39800 32600	60000 60000	40000 50000
،	\because	142810	I. C	42900	100000	151900
،	"،	14474		34800	60000	71700
Caboose	E	11845 98 16	L. \& N.	30400	60000	88600 40000

TABLE 15 Tonnage Record Test No. S-1031

Box	E	34853	I: , C.	37300	80000	37300
		37120		34300	80000	34300
'،	، ${ }^{\text {c }}$	33101	،	37800	80000	37900
"	،	11771	،	29500	${ }^{60} 000$	29500
،	،	24366 45812	،	36500	80000	36500
"	"	45859	"	36300	80000	39300
"	"	49227	،	35600	80000	35700
"	،	37430	"	35000	80000	35100
"	"	48723	"	39100	80000	39200
"،	"،	15256	، ${ }^{\text {c }}$	29500	60000	29500
"	،	18369	"	28900	60000	28800
\because	،	46391	"	37100	80000	37100
\because	'6	${ }^{26} 6899$	\because	36300 33 700	80000 80	${ }^{36} 200$
"	'،	38079 49040	،	33700 38000	80000 80 8000	33700 38100
"	"	25514	"	35500	80000	35500
"	"	34974	"	36500	80000	36600
\because	\because	24617	!	35800	80000	35600
"،	"،	47800	، $،$	37700	-80000	37700
"	'،	141461 140995	"	43600 42800	$100-000$ 100000	43600 42800
"	"	49435	"	33800	80000	${ }_{33} 800$
"،	"	36259	"	36400	80000	36400
"	"	16183	، $،$	30000	60000	30000
،	!	49414	!	35300	80000	59050
،	،	22932 19896		37400 29100	80000 60000	72900 73800

TABLE 15-(Continued)

Kind of Car	Loaded or Empty	Car No.	$\underset{\text { Car }}{\text { Car }}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
،	، 6	20289	، 6	28600	60000	74300
،	، 6	15490	6 6	29900	60000	73500
'،	،	49183		35500	80000	74100
	E	6909	L. \& N.	30900	60000	30700
Gondola	،	18273	L. S.	40100	100000	40300
Box	'،	19508	St. L. \& S. W.	32000	60000	32100
Flat	،	66887	İ, C.	27600	80000	27300
Caboose	،		- ،			40000

TABLE 16 Tonnage Record Test No. S-1033

Test	E	17				58000
Gondola	L.	49085	N, \& W.	$3 \% 900$	80000	124000
		731	C. C. \& Co.	31700	80000	110000
"،	،	708		31600	80000	104600
"،	.	619		31700	80000	104000
،	"'	742		31700	80000	108300
،	\because	748		31700	80000	104300
"،	'،	104775	I. C,	40300	100000	132400
، 6	'.	104149	I. ${ }^{\text {c }}$	40700	100000	1331
" ${ }^{\prime \prime}$	"	83232		28300	60000	88900
، 6	"'	12076	D	33500	80000	97100
'،	" ${ }^{\text {c }}$	89448	I. ${ }^{\text {C }}$.	31800	80000	109000
، $،$	، $،$	89505		32500	80000	106400
، $،$	'.	47043	N. \& W	32000	85000	99000
، 6	'،	79189	I. C.	24500	50000	72700
، 6	, ${ }^{\text {c }}$	115666	L . . A. \& W.	40600	60000	92800
، ${ }^{\text {، }}$	'.	115003	I. . C.	43000	100000	122300
'،	- 6	85906		34600	80000	113000
-	-	83928	-	26500	60000	77000
، ${ }^{\prime}$	-	106446	,	39600	100000	133100
، $،$	'.	104846	.	40200	100000	142000
، ،	'.	86763	.	32100	80000	104000
"،	'.	97319	.	32900	100000	98000
"،	،	97061	.	31900	100000	101000
، $،$	‘	81968	* ${ }^{\text {a }}$	26400	60000	88100
، $،$	'،	707	C. C. Co,	31700	80000	107000
، 6	'.	94140	I. . ${ }^{\text {C. }}$	31600	80000	98000
، ${ }^{\text {d }}$	"	88213		31900	80000	105000
، $،$	-	86642 111336	.	31300	80000	106000
, ، $،$..	111336	..	40100	100000	126000
'، ${ }^{\prime}$	"،	80952	'.	26000	60000	84000
،.	'.	79077		34900	50000	82000
.	،	14722	M. \& O.	33900	80000	95100
،	-	90535	، $،$	32700	100 80000	136000
'،	'.	93442	-*	29500	80000	104600
، ${ }^{6}$	، ${ }^{\text {d }}$	16738	Erie	42800	100000	102800
'،	'،	85379	I. . C .	31200	80000	110900
,	،	87672		31300	80000	104000
، 6	- ${ }^{\text {d }}$	30456	C. \& B	39100	100000	128000
، 6	.	80855 85959	I: , C.	28300	60000	86100
،	-	85944	C. C. Co.		80000 80	103100
Caboose	E	19510	I. C.		80	40000

Table 17 Tonnage Record Test No. S-1034

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Gondola	$\underset{6}{\text { E }}$	80223	I. ${ }_{6}$.	26900	60000	25200
Gondola		89617		32200	80000	32400
'،		110863		41000	100000	41200
\cdots	".	34775	N. Y. C.	41600	100000	41700
".	".	86158	I. ..	31300	80000	31100
'.	!.	80338		24500	60000	23900
".	. $،$	87806		31500	80000	31500
".	"	96249		30900	80000	30500
'،	".	9038	T, \& O. C.	26700	60000	24500
".	'.	79089	I. . 4 .	23200	50000	23300
. ${ }^{\text {, }}$	- 6	93123		31100	80000	31800
*	. 6	82546		27900	60000	27500
.	.	104295	.	40500	100000	40400
\because	".	110 722	. .	31500	80000 100000	31300 41700
\because		92260	\cdots	31100	80000	30500
'	'*	84227	,	28400	60000	27200
'،	'.	81254	.	27400	60000	26700
..	*	85110		31400	80000	30400
\because		105192		40300	100000	40200
"		15248	Van. Line	40700	100000	40600
'.	- 6	92465	I. . C.	31200	80000	30200
'.	، $،$	90716		31400	80000	30700
‘	.	800312	Penn.	38400	100000	38300
\cdots		3190	I. S.	40600	100000	40400
.	. $،$	47608	N. \& W.	32600	85000	34000
.	.	93502	I. ${ }^{\text {c }}$.	30100	80000	30400
'.	,	105620 85250	,	40300 30	100 80 8000	40100 30
'،	"	90396	.	31000	80000	30900
،	،	3183	I. S.	40400	100000	40600
.	"،	96492	I. C.	31000	80000	30300
\cdots	".	104730		40400	100000	40500
، 6	.	104667	.	40700	100000	40600
'.	. $،$	94692	.	32000	80000	32100
.	، ${ }^{\text {c }}$	82744		27900	60000	28600
.	,	282388 94128	Penn.	45000	100000	40400
\cdots	.	94 9488	1. ${ }^{\text {c. }}$	30 31	80000 80000	30100 30900
'.	. ${ }^{\text {¢ }}$	104702	"	40600	100000	40500
".	.	96797	. 6	31400	100000	33200
،	. ${ }^{\text {. }}$	96917	.	30200	80000	30200
".	'.	106219		40300	100000	40200
، 6	'6	28743	C. \& O .	39900	100000	38700
'.	-	83171 96089	I. C.	28 31000	60000 80	27200
.	,	96089		31000	80000	31000
'	'	49415 93048	N. \&. C.	381600 31600	100000 80000	37100 31000
'،	-	13930	C. \& O .	25000	60000	25300
.		13648	N. \& W.	34100	80000	34000
'.	.	29059	C. \& O.	41400	100000	41000
.	.	14840		30900	80000	30300
.	-	76008	I. . $\%$.	24300	50000	23000
,	.	86763 83969		32100	80000	30700
. .	.	83969	،	26200	60000	27200
\cdots	-•	89502	.	31800	80000	31500
\because	.	806908	-	40200	100000	40100
".	'6	68698	L. \& N.	35400	80000	35500
،	'	81422	I., C.	26800	60000	27000
".	'.	106388		40800	. 100000	40800
\ldots	'.	11625	C. \& E. E .	32400	80000	31000
.	.	75084 3393	I. S.	38400 40100	100000 100000	38900
. ${ }^{\text {c }}$	-	105811	I. ${ }_{\text {I }}^{\text {C. }}$	40100 40	100000	40000 40800
'.	، \cdot	91161		30000	80000	29600
".	-	27237	Big Four	22500	50000	24600
'.	.	33336	L. \& N.	28400	66000	28500
'.	.	91941 106191	I. ${ }^{\text {C. }}$	33000	80000	31300
.	، $،$	106191	. 6	40000	100000	40200
.	.	78930 85198	.	25 31300	50000 80000	23500 30
\because	..	91102		31300	80000	29700
'.	-	32243	L. \& N	30400	66000	30200
Caboose	' ${ }^{\prime}$	44069 98465	N. \& W.	38100	100000	38000
Caboose	' ${ }^{\text {d }}$	98465	I. C.			40000

TABLE 18 Tonnage Record

Test No. S-1036

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Kind of Car \& Loaded or Empty \& $$
\begin{aligned}
& \text { Car } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{gathered}
\text { Car } \\
\text { Initial }
\end{gathered}
$$ \& Stenciled Light Weight \& Cerpacity \& Gross Weight

\hline \& L. or E. \& \& \& pounds \& pounds \& pounds

\hline Test \& E \& 17 \& \& \& \& 58000

\hline Flat \& ! \& 65913 \& 1. ${ }^{6}$. \& 27900 \& 80000 \& 79600

\hline Gondola \& \& 81595 \& \& 27500 \& 60000 \& 90000

\hline 硡 \& '، \& 97929 \& ، 6 \& 31100 \& 80000 \& 98000

\hline ، \& . 6 \& 95885 \& ، 6 \& 31000 \& 80000 \& 106000

\hline ، 6 \& '، \& 96914 \& ، 6 \& 31900 \& 100000 \& 105000

\hline ، ${ }^{\prime}$ \& ' ${ }^{6}$ \& 76735 \& ، \& 25200 \& 50000 \& 78000

\hline '، \& ، $،$ \& 84272 \& '، \& 37500 \& 60000 \& 76000

\hline " \& ، \& 91429 \& , \& 33000 \& 80000 \& 106000

\hline ' ${ }^{\text {d }}$ \& " ${ }^{6}$ \& 89678 \& \& 32400 \& 80000 \& 110100

\hline Box \& ، 6 \& 13664 \& W, C. \& 29000 \& 60000 \& 32100

\hline Refrigerator \& '، \& 55059 \& I. C. \& 36900 \& 60000 \& 38400

\hline Box \& E \& 14010 \& N. Y. C. \& 33600 \& 30000 \& 31000

\hline \& L \& 21307 \& I. ${ }^{\text {c }}$ \& 37500 \& 80000 \& 56300

\hline '، \& E \& 41633 \& P. M. \& 34500 \& 60000 \& 35600

\hline ، 6 \& L \& 18103 \& C. B. \& Q . \& 25200 \& 40000 \& 64000

\hline ، $،$ \& "، \& 131327 \& I. C. \& 39700 \& 80000 \& 91400

\hline " \& ، 6 \& 122440 \& C. S, N. O. \& P. \& 39500 \& 80000 \& 109100

\hline '، \& 6، \& 8116 \& St. J. \& G. I. \& 35400 \& 80000 \& 73800

\hline "' \& '6 \& 141137 \& ، ، \& 43100 \& 100000 \& 64300

\hline '6 \& '، \& 12971 \& ، \& 30200 \& 60000 \& 46000

\hline '، \& ، 6 \& 7198 \& Big Four \& 31200 \& 60000 \& 93500

\hline ، \& ، \& 19591 \& M. \& O. \& 33700 \& 60000 \& 88200

\hline ، \& \& 18581 \& \& 33500 \& 60000 \& 91500

\hline ، \& ، $،$ \& 9593 \& \& 31200 \& 60000 \& 83600

\hline '، \& ، ${ }^{\text {c }}$ \& \& I. \& L. \& 29800 \& 50000 \& 73100

\hline '، \& E \& 64614 \& C. \& N. W. \& 30100 \& 60000 \& 29400

\hline .، \& ${ }_{6}$ \& 5251 \& N. C. \& St. L. \& 29500 \& 60000 \& 93400

\hline ، \& \& 6714 \& N. ${ }^{6}$ St. \& 29600 \& 60000 \& 69800

\hline '، \& ، \& 49041 \& I. C. \& 39100 \& 80000 \& 106800

\hline Gondola \& , \& 95823 \& \& 31600 \& 80000 \& 74000

\hline Refrigerator \& E \& 5773 \& Armour \& 38700 \& 50000 \& 39600

\hline Box \& L \& 6692
6609 \& T I. C. ${ }_{\text {St }}$ \& 26800 \& 50000 \& 72000

\hline ، \& ! \& 6609

8 \& T. St. L. \& W. \& 38100 \& 80000 \& 82100

\hline ، 6 \& ، \& 28434
14257 \& Nenn. \& 35800
44400 \& 80000
100000 \& 81000
98000

\hline '، \& '، \& 40571 \& M. \& ${ }^{\text {O}}$. \& 34600 \& 60000 \& 90000

\hline Gondola \& '6 \& 85836 \& I. C. \& 30500 \& 80000 \& 60000

\hline Box \& ، 6 \& 11615 \& \& 29800 \& 60000 \& 111000

\hline '، \& ، $،$ \& 13534 \& Q. \& C. \& 33800 \& 60000 \& 80000

\hline ، \& * \& 42169 \& S I. C. \& 33400 \& 60000 \& 76100

\hline '6 \& ${ }_{\text {E }}^{\text {L }}$ \& 27093
10859 \& \& 29300 \& 60000 \& 27000

\hline ، \& L \& 10859
141286 \& İ, C. \& 30000
42600 \& 60000
100000 \& 66400
106200

\hline Gondola \& " \& 14218 \& I. S. \& 40300 \& 100000 \& 91400

\hline Box \& '6 \& 13675 \& I. C. \& 29800 \& 60000 \& 46000

\hline Gondola \& '6 \& 93300 \& ، \& 31900 \& 80000 \& 74100

\hline Refrigerator \& E \& 55987 \& ، $،$ \& 38600 \& 60000 \& 39400

\hline Caboose \& \& 98040 \& ، \& \& \& 40000

\hline
\end{tabular}

TABLE 19 Tonnage Record
Test No. S-1038

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L. or E.			pounds	pounds	pounds
Test	E	17				58000
Gondola	L	91059	I. ${ }_{6} \mathrm{C}$.	29400	80000	115000
		106262		40300	100000	136000
'،		106565		40300	100000	134000
Box	، 6	142548		42900	100000	91800
Gondola	، ،	730 84047	C. C. \& Co.	30900 28500	80000	103300
	'،	84047	I. ${ }_{\text {, }}$ C.	28500	60000	85300
,	، 6	88999		32200	80000	105000
،		85215	'،	31600	80000	102700
"	'،	82640	'	27600	60000	81300
.	'6	81883	6	28800	60000	80000
، 6	'،	76477	، 6	23300	50000	75500
, ,	, 6	93590	،	29800	80000	107300
"	،	93342	، 6	32500	80000	104500
"	'،	102091	'.	37300	80000	120000
'،	'6	31063	C. \& O.	39200	100000	138000
'،	' 6	85304	I. C.	31500	80000	111500
'،	'،	26505	C. \& O.	38100	100000	130200
، $،$	، $،$	110803	I, ، C .	41100	100000	135500
"	"،	104015		40500	100000	146500
،	6	105581	.	40400	100000	139000
' ${ }^{\prime}$	'6	104984	,	40500	100000	146100
'،	، $،$	91126	"	30600	80000	104000
'،	"،	88342	,	31800	80000	105000
"	"،	93901	,	31500	80000	103400
"	!	81303		28100	60000	85000
، 6	'،	44086	N. \& W,	38300	100000	129300
،	"	104532	I. C.	40600	100000	142300
'.	، 6	15820	M. \& O .	34100	80000	104600
"	،	106646	I. ${ }_{6}$ C.	40400	100000	143800
،	" 6	88819		31600	80000	104600
'	" 6	104584		40400	100000	152000
'6	"،	3160	I. S	40300	100000	15 ± 000
Box	"،	87344	W ${ }^{\text {B. }}$ \& ${ }^{\text {d }}$	30400		73300 41000
، 6	E	12694	W. H. ${ }_{\text {W. }}^{\text {W. }}$ C.	29100	60000 60000	41000 28900
'6	L	19705	I. C.	29600	60000	74300
. 6	.	16310	، ،	29800	60000	59600
،	'،	12417	،	29900	60000	91400
Caboose	E	98090	،			40000

TABLE 20 Tonnage Record

Test No. S-1040

Kind of Car	Loaded or Empty	Car No.	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L. or E.			pounds	pounds	pounds
Test	E	17				58000
Box	$\underline{4}$	98633	C. B. \& Q.	34300	80000	54900
Gondola		106306	I. ${ }_{\text {C. }}$	40800	100000	138500
، ${ }^{\text {d }}$	، 6	106368 94314	،	40400 29000	100000 80000	146500 105600
Box	'،	39814	'6	37100	80000	121000
Gondola		86947		31100	80000	110000
		16683	H. V. Y.	32800	80000	110700
،	، 6	97659	I, C.	30200	80000	99300
Box	'،	78121	B. \& O.	31600	60000	70200
Gondola	، 6	90363		33600	80000	95600
	'،	13381	N. \& W.	34100	80000	107600
Box	'،	35061 17 339	St. L. \& S. F.	35100	60000	82200
'،	'،	17339 37489		28600 33500	60000 80000	62000 71200
Tank	، 6	505	F. O. Co.	33500	60000	88900
Box	،	25394	V. S. \& P	32200	60000	80400
، ${ }^{\text {B }}$		131417	I. C.	39900	80000	64500
Gondola	، 6	39626		36200	80000	'79 000
Gondola Box	،	92487		30000	80000	110600
Gondola	،	89843	L. ${ }^{\text {I }}$ (.	33200 30900	65000 80000	86500 86
Box	, 6	4931	N. \& S.	32200	60000	74300
Gondola	، 6	5642	K. \& M.	32500	80000	91600
Gond	، ${ }^{6}$	93209	I. ${ }^{\text {C. }}$	32800	80000	110000
Box	'،	34736		36400	80000	56300
،	,	101264	C. B. \& Q.	35000	80000	60000
'،	، 6	32412	C. R. I. \& P,	38900	80000	67900
Gondola	"	94256	I. C.	33 30 000	80000	78800
Box	، ،	3467	L. E. \& Sit. L.	34300	60000	101000
'،	" ${ }^{\text {c }}$	11192	S.	30900	60000	75800
،	،	46541	I. ${ }_{6}$ C.	38000	80000	67100
Gondola	,	86513		31200	80000	125800
،،	، 6	89288		31800	80000	95800
،	,	105949	,	40300	100000	145600
، $،$	، 6	81129		28800	80000	108100
،	، 6	95929	'	319900	80000	124000
'6	"،	12555	C. \& 0 .	30900	80000	115800
، $،$	، 6	96796	I. ${ }_{6}$ C.	31900	100000	114300
،	، $،$	84200		27400	60000	80000
	، 6	27738	H. V.	40700	100000	147900
Box	،	30778	S. P .	34000	80000	85200
,	،	49450	I, ${ }_{6}$ C.	35300	80000	67700
Caboose	E	17968	، 6	31200	80000	52300 40000

TABLE 21 Tonnage Record
Test No. S-1043

Kind of Car	Loaded or Empty	Car No.	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L, or E.			pounds	pounds	pounds
Gondola	$\underset{6}{6}$	95986	I. ${ }^{\text {C }}$.	30600	80000	30600
		101110		38400	100000	38400
'،	"	5968	P. \& L. L. $^{\text {. }}$	34300	80000	34300
Box	"،	E7 982	I: ${ }_{6}$ C.	37300	80000	37300
، ${ }^{\text {® }}$	'،	15601		29300	60000	29300
،	'6	19314	\because	29900	60000	29900
، $،$	" ${ }^{\text {c }}$	12938	\because	29600	60000	29600
،	، ${ }^{6}$	17905	,	30100	60000	30100
، 6	"،	14809		30400	60000	30400
"	،	37132	".	33000	80000	33000
، $،$	"،	11765	'.	29900	60000	29900
، $،$	، 6	23243	، ${ }^{\prime}$	33800	80000	33800
،	6 6	41230	"'	32900	50000	32900
،	" ${ }^{\text {c }}$	37957	.	33000	80000	33000
"،	"،	35762	\because	35600	80000	35600
، $،$	، 6	36298	'6	36400	80000	36400
'،	،	15281	, T	30400	60000	30400
Tank	L	489	A.T. L.	38000	65000	102900
Gondola	E	643 641	C. Ci \& C.	31700	80000	31700
.	,	182404		31700	80000	31700
، 6	'	182400	C. I. \&	31000	80000	31000
'6	'	638	C. C. \& C.	31700	80000	31700
، 6	،	19570	C. \& A.	37200	100000	37200
"،	"	89865	I. C.	31700	80000	31700
"	"،	105764		40400	100000	40400
، $،$	"	92517	,	32000	80000	32000
، $،$	'،	3303	I. S.	40200	100000	40200
'،	"،	97056	I. C.	32500	100000	32500
، ${ }^{\prime}$	،	83510		28400	60000	28400
'،	"،	97836	"	30900	80000	30900
، 6	، $،$	89837	"	32200	80000	32200
، $،$	، 6	81684	'6	30700	60000	30700
'،	'،	115302	'،	42600	100000	42600
"،	، ${ }^{6}$	81483	"'	28000	60000	28000
'،	، $،$	87171	P	31500	80000	31500
،	، 6	25359	\mathbf{P} \& \mathbf{R}.	33200	100000	31200
، $،$	، 6	95635 92911	I. ${ }_{6}$ C.	30200	80000	30200
،	"	92911		31200	80000	31200
،	, ،	88752 25900		32000 33100	80000	32000
"،	"،	85502	I. C.	31500	80000	31500
'4	"	89559		31900	80000	31200
،	'،	93107	\cdots	31800	80000	31800
، ${ }^{\text {، }}$	'،	81999	".	28300	60000	28700
"،	'	104780	"	40300	100000	40300
"،	'،	93305	.	31200	80000	31200
،	"،	110801	، 6	41100	100000	41100
,	.	97203	،	30200	100000	30200
"	، 6	93068	.	31200 30	8000	31200
،	"	86323	"	30100	80000	30100
'،	،	85904	"	31600	80000	31600
'6	"،	95984	"		80000	32100
'.	"،	93093	، ${ }^{\prime}$	32000	80000	32000
.	'،	89480	'6	30800	80000	30800
-	'	111066	، 6	41100	100000	41100
.'	، 6	111012	'6	41200	100000	41900
\cdots	، $،$	97889	'،	31400	80000	31400
\cdots	، 6	96577	'،	32400	100000	32400
-	-	97927 90488		32000 30600	80000	32000
"	"	9548	T. \& O. C.	26300	60000	26300
'،	6	111311	I. C.	40800	100000	40800
Box	، ${ }^{\prime}$	6498	N. C, \& St. L.	29200	60000	29200
Caboose	،	98185	I. C.	40000		40000

TABLE 22 Tonnage Record

Test No. S-1048

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { Nn. } \end{aligned}$	$\begin{gathered} \text { Car } \\ \text { Initial } \end{gathered}$	Stenciled Light Weight	Capacity	Gross Weight
	L. or E.			pounds	pounds	pounds
Test	E	-17				58000
Box	L	98252	N. Y. C.\&H. R.	35600	80000	43500
Gondola		106449	I. C.	40300	100000	140000
! ${ }^{\text {a }}$	، 6	18867	C. H. \& D.	30200	70000	97200
.,	، 6	15342	C. \& O.	30700	85000	78300
'	، 6	104271	I. C.	40600	100000	146500
\#	"،	68282	L. \& N.	36800	80000	120000
',	'،	10579	İ, ${ }^{\text {C. }}$	41200	100000	134300
- ${ }^{\text {، }}$	'،	83518		27000	60000	82600
\because	'،	95129	.	31200	80000	107900
\because		93198		30800	80000	105000
'		96507	,	32300	100000	111000
.	"	93807	,	29300	80000	107800
\cdots	"	106189	,	40400	100000	142100
.	'،	111300	,	40800	100000	124200
,	"،	105618	.	40300	100000	106600
Box	"	91108		29900	80000	108500
Box	"	2059	C. P. T.	30800	60000	90800
Gondola	،	84458	İ, C .	30800	60000	92400
	، 6	87958		31800	80000	109000
'	، 6	295924	P.	40800	100000	125400
\cdots	،	28318	C \& O		100000	144200
\cdots	,	82790	İ, ${ }^{\text {C }}$	31400	60000	86400
'	"	86569		30600	80000	107700
\cdots	"	87485	\cdots	33000	80000	108600
\cdots	،	94069	"	31000	80000	107400
!	، $،$	89271	'.	32000	80000	109200
\cdots	'،	81366	.	29100	60000	84200
\cdots	" ${ }^{\text {c }}$	95850	"	30500	80000	104600
\because	"	110910	\cdots	40800	100000	140800
.	"،	96255	'.	31000	80000	105000
\cdots	،	94541	. ${ }^{\text {, }}$	31400	80000	107600
\cdots	\cdots	83229	'،	27000	60000	85000
\cdots	"	95820	,	30800	80000	100000
-'	'	82045	,	28900	60000	87300
..	'،	94443	.	30300	80000	105300
\cdots	'	108431	,	40400	100000	121600
Box	E	16036	A R T	30800	60000	80400
\cdots	E	6672 5	A. R. L.	31500 32 800	50000 50000	33600 39400
.	'،	5884 9851		32 3900	50000	39800
'	'	7342	S.			39500
' ${ }^{\prime}$	'،	10458	A.	39500	60000	39600
"	L	8969	A. R. L.	34000	50000	42100
"	E	352	U. R. T.	42000	50000	47300
\because	L	141.533		43700	100000	96600
'،	"،	66182	C. \& N. W.	30000	60000	65300
. ${ }^{\text {. }}$	،	28208	I. C.	35500	60000	68500
\because	، $،$	13088	C. G. W.	30000	60000	58700
'.	،	16008	C. B.	32000	60000	58500
'،	،	41753	P. M.	36700	60000	64 72 7200
'،	،	13494 19247	I: , ${ }^{\text {c. }}$	31100 29600	60000 60000	63900
Caboose	E	98098	،			40000

TABLE 23 Tonnage Record

Test No. S-1050

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L. or E.			pounds	pounds	pounds
Box	L	34403	I. ${ }^{\text {C }}$.	36800	80000	124900
		13.317		30100	60000	81000
' 6	" ${ }^{\text {c }}$	11385	,	29200	60000	91800
\because	"	140166	,	42800	100000	139500
, 4	، 6	42477	. ${ }^{\text {d }}$	34400	60000	84200
"	، ${ }^{\text {، }}$	36731	..	33700	80000	100900
*	، 6	39317	.	37500	80000	125200
!		25435		36600	80000	119500
\because	E	31909	T. R. E.	32100	50000	34800
"	L	25238	I. C.	36900	80000	119300
\because	،	45799		41400	80000	105200
'،	E	12043	O. N. \& T. P.	33550	60000	33500
'،	$\underline{6}$	36163	İ, C.	36800	80000	121600
' ${ }^{\prime}$		24790		35800	80000	120800
'.	"،	6364	.	27600	50000	82400
\cdots	، 6		,	31600	60000	100300
-	، $،$	15686	",	30300	60000	97000
\because	، ،	35619	\ldots	36500	80000	126800
-'	،	15962	".	30400	60000	88800
.	، 6	141521	..	43600	100000	142400
\because	، ،	130492	..	40100	80000	120800
'	"،	45566	".	38500	80000	119900
.	",	131556	",	39000	80000	97600
.	،	21716	.	37800	80000	105600
\cdots	,	39374		37900	80000	125200
\cdots	E	31415	T. R. E.	32400	50000	32400
"	،	31968		32100	50000	33000
''	"	31395	,	34100	50000	34800
Gondola	'"	94837	I. ${ }^{\text {C. }}$	32800	80000	32800
, ${ }^{\text {a }}$	'،	110177		41200	100000	41200
"	" 6	3170	I. S.	38200	100000	38200
!	'،	91705	İ, C.	29700	80000	29700
\because	، 6	90682	[.	30700	80000	30700
".	'،	86138	.	30100	80000	30100
\cdots	' 6	104284	' ${ }^{\text {d }}$	40700	100000	40700
\cdots	'،	104495	.	40700	100000	40700
.	، ،	107359	. ${ }^{\text {d }}$	39600	100000	39600
Caboose	" ${ }^{\prime}$	110117 98197	' ${ }^{\prime}$	41700	100000	41700 34000
Caboose		98197				

Table 24 Tonnage Record
Test No. S-1052

$\begin{gathered} \text { Kind } \\ \text { of } \\ \text { Car } \end{gathered}$	Loaded Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L. or E.			pounds	pounds	pounds
Gondola	E	91208	I. C.	30200	80000	30200
	!	83764		26800	60000	26800
	"	252	S. S. C.	25500	50000	25800
".	\because	89137 83992	$\mathrm{I}_{1}, \mathrm{C}$.	${ }^{31} 2000$	80000	31300 28 400
\cdots	"	112 770		43500	100000	285000
'	"	81989		28900	50000	28900
\because	"	94688		31100	80000	31300
' ${ }^{\prime}$	،	101073		38200	100000	38200
".	،	3351 106100	I. S.	40700 40 200	100000	40800
-	،	106314	I.	40300	100000	40200
\because	"،	82600	,	26800	60000	27000
\because	"،	91316		30200	80000	30500
\because	.	(722	C. C. ${ }_{\text {I. }} \mathrm{C}^{\text {Cob. }}$	31700 29 700	80 80000 8000	31200 30100
\because	"	107030		39800	100000	39800
".	"	${ }_{80}^{641}$	C. C. \& Co.	31700	80000	31500
Box	"	80993 11116	F. I. ${ }_{\text {G. }}$ E.	23600 36 500	60000 50	26500 33200
Box	"	11050	(i)	36500	50000	34600
"	"	31153	T. R_{i} E.	32300	50000	34000
\because	\because	31286		31500	50000	34200
!	\cdots	11243 15945	N. C. \& \& St. L.	33600 34600	60000 60000	33500 34800
.	\because	${ }^{827}$	D. S. D.	35500	50000	37800
\because	"	133280	S	33500	60000	32800
\cdots	"	33886	C. of N. J.	30500	60000	30600
. ${ }^{\text {d }}$	L	24968	I: , C.	36000	80000	119500
\cdots	"	${ }_{21}^{39} 671$		36300 38400	80000	118100
\because	"	${ }_{131} 151$	"	384900 38	80000 80	122600
-	\because	13782	"	29800	60000	92300
	"	45456		38800	80000	98000
!	"	47105 20336	'	40100 28600	80000 60000	100200 89000
"	"	${ }_{13} 831$		29900	60000	89000
\because	E	25361	V. S. \& P.	31800	60000	31800
'	"،	31199	T. Re: E.	32150	50000	34800
Gondola	!	- 92708	I. C.	38700 32000	50000 80 000	36000 84000
		112608		43500	100000	88400
Box	"	580498	U. L.	30500	60000	53500
Gondola	$\underset{\text { L }}{\text { E }}$	30562 92748	I. ${ }^{\text {c }}$	35600 30	60000 80	35400
Box	椠	${ }_{25}^{9231}$	V. S. \& P.	30 32 200	80 6000 000	74000 32400
!	-	17212	L. $\& N$.	31200	60000	31700
"	"	35863	S.	35900	${ }^{60} 000$	35800
-	L	130809	I. ${ }^{\text {C. }}$	40200	80000	97800
Gondola	!	94511		31000	80000	37800
Box	"	141249		${ }^{43} 500$	100000 80	${ }_{79}^{88} 800$
\because	E	$\begin{array}{r}39 \\ 25 \\ \hline 218\end{array}$	A. C. L.	36300 34960	80 60000	${ }_{34} 7800$
\because		19314	St. L. S. W.	32700	60000	32800
،	"،	85683	S. P .	42600	100000	43500
"	،	10255 5803	N. C. \& St. L.	32900 30 500	60000 6000	34000 30
\cdots	"	20864	L. ${ }_{\text {S }}{ }^{\text {N. }}$	32 800	60000	35100
Flat	\because	10016	N. O. \& N. E.	27200	80000	27000
Caboose	"	98093	I. C.			34000

TABLE 25 Tonnage Record
Test No. S-1057

Kind of Car	Loaded or Empty	Car No.	$\begin{aligned} & \text { Car } \\ & \text { Initial } \end{aligned}$	Stenciled Light Weight	Capacity	Gross Weight
	L or \mathbf{E}			pounds	pounds	pounds
I est	E	17				58000
Box	L	12269	C. N. O. \& T. P.	33600	60000	89300
Gondola	!	-91889	I: , ${ }^{\text {c }}$	29500	80000	107400
.	'،	83859		27200	60000	87800
.	،	94023	'	30600	80000	102200
' ${ }^{\prime}$	'،	97927	,	32000	80000	100600
Box	، ${ }^{6}$	46152	.	40000	80000	58700
Gondola	، $،$	93980		30700	80000	105400
	، 6	91254		29400	80000	110800
Box	E	67750 57408	N. Y C. \& H R	26400	50000	68600
,	E	57408	N. Y.C.\& H. R.	31000	60000	36100
Tank	$\%$	108612	D. R. \& U.	39900	80000	69 68 200
Gondola	\cdots	91422	I. C.	30000	80800	105600
Box	E	D27 572	L. S. \& M. S.	28800	60000	33400
	L	15891	I. . C.	28700	60000	70300
\cdots		11267		28400	60000	81100
''،	\%	33918	.	37900	80000	80300
Gondola	',	106527	..	40200	100000	142800
Gona	'،	104823		40300	100000	145100
.	.	$91{ }^{174}$		29900	80000	112800
.	'6	82786		26900	60000	86700
.	,	607	C. C. \& C.	31700	80000	107800
\cdots	، ${ }^{\text {c }}$	106577	I. ${ }_{\text {C }}$	40300	100000	144400
B	، ،	106447		40400	100000	142900
Box	، $،$	130255	.	41000	80000	90300
	،	7086		26600	50000	69000
Flat	,	67554		28800	80000	56200
Box	،	39223		37500	80000	72800
	E	+21 181	P.F.W.	37500	80000	85800
'،	E	515733	P. F. W. C.	43800	100000	41200
	L	29516	I. C.	39800	60000	73000
Flat		2292	G. C.	23500	60000	79200
Gondola	،	105859	İ, ${ }^{\text {C. }}$	40400	100000	146200
! ${ }^{\text {a }}$	، 6	86778		31000	80000	115100
Box	,	112 241		36500 30	80000 60000	80000
Gondola	E	189	C. \& I. W.	32700	90000	33100
-		7162	N. Y. C.\&St. L.	31700	80000	31000
\cdots	L	91371	I. C.	30400	80000	80600
Flat	¢	814	G. \& S. I.	26600	80000	85800
Box	E	15282	I. C.	29400	60000	67400
.	E	1695	A. R.	28200	50000	31200
.	L	15427	I. ${ }^{\text {C. }}$	30000	60000	67800
\cdots	,	24933		35000	80000	102000
"	، 6	27737	B.	29500	60000	61200
'،	"	40712	M. \& O.	34500	60000	72800
Gondola	، 6	85879	I. . ${ }^{\text {C }}$.	30500	80000	79600
Box	'	36585		36000	80000	58200
Caboose	E	98565	.			34000

table 26 Tonnage Record
Test No. S-1061

TABLE 27 Tonnage Record
Test No. S-1063

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Car } \\ & \text { Intial } \end{aligned}$	```Stenciled Light W eight```	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Box	L	22195	I. C.	37800	80000	115400
1		46472		36500	80000	127300
' ${ }^{\prime}$	'6	17530	\cdots	28600	60000	95200
. ${ }^{\text {c }}$	،	49063	'*	37200	80000	125300
Gondola	E	112486	،	43400	100000	43400
	-	112463	،	43700	100000	43700
\cdots	"'	13300	، 6	36500	80000	36500
\cdots	"	112527	,	43400	100000	43400
\because	"	112515	.	43500	100000	43500
-	'،	112428	\cdots	43300	100000	43300
\cdots	' ${ }^{\prime}$	112407	,	43600	100000	43600
-	"	112679	.	43300	100000	43300
"		112403	"	43500	100000	43500
\cdots	' ${ }^{\prime}$	112775	'	43600	100000	43600
- ${ }^{\text {c }}$	"	112585	"	43400	100000	43400
"		92756	، 6	30500	80000	30500
'،	"	88647	.	31500	80000	31500
\ldots		82152	،	26600	60000	26600
\because	،	112633	"	43500	100000	43500
.	،	112578	*	43400	100000	43400
.	".	112596	، ${ }^{\text {c }}$	43700	100000	43700
\cdots	.	112685	،	$+3600$	100000	43600
-•	".	112549	،	43400	100000	43400
.	،	112502	، 6	43500	100000	43500
\cdots	-		'*		100000	43200
-	، 6	112709	،	43400	100000	43400
\cdots	\cdots	112494	*	43800	100.000	43800
\because	"	112684	"	43600	100000	43600
..	'،	106653	'،	40300	100000	40300
\cdots	. ${ }^{\text {. }}$	87789	"	31300	80000	31300
\cdots	".	82875	\% 6	28400	60000	28400
\cdots	" ${ }^{\prime}$	95097	'6	30200	80000	30200
\cdots	"	92650	6 6	30000	80000	30000
-	،	93464	.	30000	80000	30000
-	,	89101	"	31600	80000	31600
\cdots	,	90956	. 6	31400	80000	31400
\cdots	"	86615	"	30500	80000	30500
.	".	96487	\%	30800	80000	30600
\cdots	.	110780	.	41000	100000	41000
-	"	86267	،	31200	80000	31200
\cdots	\cdots	111294	"	41100	100000	41100
\cdots	\because	95713	',	32700	80000	32700
' ${ }^{\prime}$	".	88462	"،	32200	80000	32200
\cdots	\cdots	88685	"	30800	80000	30800
-	\because	81090	"	27200	60000	27200
-	".	81497	'،	29100	60000	29100
\cdots	".	107342	, 6	39500	100000	39500
\cdots	'،	80418	\%	31200	80000	31200
"	'،	80286	'،	26200	60000	26200
\ldots	',	75883	،	27600	50000	27600
\ldots	، 6	87257	"،	26700	60000	26700 39500
\cdots	، 6	104716	6	39500	100000	39500 28200
\cdots	، ${ }^{6}$	80983 88848	،	32300	80000	32300
\cdots	6	95991	' ${ }^{6}$	30500	80000	30500
\cdots	'	112072	'6	35900	80000	35900
\cdots	6	89296	'"	32800	80000	32800
.	'،	87877	'	31000	80000	31000
".	"،	90809	'،	30000	80000	30000
\cdots	' ${ }^{6}$	91004	، ${ }^{6}$	30500	80000	30500
\cdots	. 6	96718	، ${ }^{\prime}$	31600	100000	31600
"	"	95836	'6	32000	80000	32000
"،	'6	87904	'6	32000	80000	32000
'4	'،	95513	، $،$	30800	80000	30800
'،	'،	106236	"،	40400	100000	40400
'*	6	97033	'،	33500	100000	33500
..	6 6	110743	، 6	41100	100000	41100
\cdots	'،	112512	'،	43400	100000	43400
، ${ }^{\prime}$	'،	110531	'،	40600	100000	40600
'.	"،	88994	'،	31300	80000	31300
. ${ }^{\text {. }}$	، 6	85921 70984	'،	31800 23300	80000 40000	31800 23300
Caboose	،	70984 98068	' ${ }^{\text {a }}$	23300	40000	34 34

TABLE 28 Tonnage Record

Test No. S-1070

$\begin{aligned} & \text { Kind } \\ & \text { of } \\ & \text { Car } \end{aligned}$	Loaded $\stackrel{\text { or }}{\text { Empty }}$	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	$\underset{\text { Initial }}{\text { Car }}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test	E	17				58000
Box	I,	10826	I: , ${ }^{\text {c. }}$	31300	60000	96800
-	E	131644 25703	V. S, \& P.	$\begin{array}{r}39 \\ 32000 \\ \hline 200\end{array}$	80 80 8000	127100 32000
'	$\underline{4}$	7628	I_{1}, $\mathrm{C}^{\text {c }}$	27200	50000	91000
\because		12951		29700		99800
-	"	33524 22113.	\because	36500 40200	80 80	120100
Gondola	"	97293	-	31500	100000	78500
	"	96803		34400	100000	74900
Stock	$\underset{\sim}{\text { E }}$	151 150 157	\because		40000	29300
.	,	150457 32589	.	31200	40000 60000	28100 31200
-	"	32738	,	31000	60000	31000
.	"	150986		30000	40000	30000
\because	\because	4206	S. W. S. C. L.	${ }_{23}^{29} 300$	40000	29300
\cdots	،	- 1512714	I..C.	33200 29600	60000 40000	33200 29800
-	"	32663	\because	32600	60000	32600
"	亿	31168	.	29000	50000	29700
,	،	150874 32178	,	32800 32800	60 6000 000	32600 32800
:	"	151497	'،	31100	40000	${ }_{31} 100$
"'	،	151023	.	30300	40000	30300
B	,	32411	,	35000	60000	35000
Box	!	142729		42900	100000	65200
\because	,	39777 19989	,	37400 28300	80000 60000	61100 60900
\because	E	95571	L. \& N.	34500	65000	34500
\because	!	140687	I: . ${ }^{\text {c. }}$	42700	100000	137600
"	"	142979		384800	80 10000	1196900 13900
\because	"	142275	" ${ }^{6}$	42700	100000	135000
- ${ }^{\prime}$	E	30047	T. R. E.	34800	50000	34800
Gondola	"	31974 95202	I. C.	${ }_{30}^{32100}$	50000 80	32100
亿 ${ }^{\text {a }}$	"	96724		32000	100000	32000
.	"،	106393	\because	40400	100000	40400
Box	L	87275	-'	32 200	80000	33200
Gondola	E	${ }_{96} 130$.	32000	80000	32000
Box		55803	,	37700	60000	37700
	"،	21244	F. G. E.	36500	50000	36500
Gondola	"	82606	I_{6}, ${ }^{\text {c. }}$	27500 28 800	${ }_{60}^{60} 000$	27500 28800
Box	L	135028		33700	${ }_{80} 000$	68700
Gondola	$\underset{\text { E }}{ }$	88465	I: . ${ }^{\text {C. }}$	32600	80000	32800
\because	،	91623		30700	80000	30700
\because	"	106682	"	40000	100000	40000
\cdots	، $،$	86231 80 430	.	31700 26500	80000 60000	31700 28500
\because	"	93350	\because	31300	80000	31300
.	\because	94475	'،	31100	80000	31100
,	-'	93620	\because	30400	80000	30400
".	\because	89088	-	30200	80000	30200
.	"	82367	\because	26800	60000	26800
\because	\because	94594	\because	30300	80000	30300
-	,	92570	\ldots	31000 43000	80 10000 000	31000
,	"	81261	-	29000	60000	29000
.	\cdot	84172		28400	60000	28400
	،	83919		28280 31800	60000 80	28200
-	\because	92158	C. C.C. ${ }_{\text {İ }}$ C.	30400	80000	30400
Caboose	،	98130				34000

TABLE 29 Tonnage Record
Test No. S-1072

$\begin{gathered} \text { Kind } \\ \text { of } \\ \text { Car } \end{gathered}$	Loaded Empty	Car	$\underset{\text { Caritial }}{\text { Car }}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Gondola	!	106825	I: , C.	40400	100000	134700
..	"	104661		40300	100000	146700
. \cdot	"	106529 104988	.	40200 39200	100000	144900
"	"	115250	-	42700	100000	1448900
\because	"	111111	\because	40900	100000	148300
"	"	89762	!	31600	80000	114200
\because	\because	${ }^{110} 56596$	\because	40800	100 80 000	147600
,	،	86 107 020	.	31200 39800	80000 100000	114100 144 300
\because	"	91917	\because	30800	80000	114000
",	،	$\begin{array}{r}87 \\ \hline 11078\end{array}$	'،	31800	80000	117900
\because	"	110980 110318	\because	41600 40900	100000 100000	144000 137800
-	"	110318 108382	.	40990 40 400	100 10000	137800 136900
\because	"	107436	\because	39700	100000	147600
\because	،	91606	\because	30400	80000	114100
\because	"،	101156	"			159100
.	،	101075 106878	،		100 10000	120100 144 900
\because	"	102054	.	38000	180000	1178000
\because	"	110951	\because	41800	100000	131000
	"،	105669		40200	100000	139200
\because	،	3345 105713	I. S.	40100 39800	100000	147700
"	،	105813	1: ${ }^{\text {c }}$.	39800 40300	100000 100 000	143900 142 100
"	"	106121	"	40400	100000	144100
Caboose	E	98155	\cdots			35100

Table 30 Tonnage Record
Test No. S-1073

Kind of Car	Loaded or Empty	Car No.	$\begin{aligned} & \text { Car } \\ & \text { Initial } \end{aligned}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	- pounds	pounds
Gondola	¢	104181	I. ${ }^{\text {C }}$.	40800	100000	139300
Gonda		110059		42300	100000	135800
\cdots	'،	110679	.	42000	100000	135700
\cdots	'،	111062	.	41000	100000	134500
"	"،	111336	,	40100	100000	134300
\cdots	'6	112464	.	43400	100000	118600
-	" ${ }^{\text {c }}$	112431	,	43300	100000	118700
"	'6	106038		38800	100000	133700
\cdots	"	107581		40100	100000	130200
"	*	3012	I. S.	40100	100000	145200
"	"	115335	I. C.	43000	100000	141600
\cdots	'،	106459	I.	40000	100000	138800
\because	"'	3400	I. S.	40400	100000	141700
\because	'6	106818	I, . C .	40500	100000	141200
\cdots	"	106087		41200	100000	141900
-	"	3131	I'S.	40200	100000	141400
-	'،	104817	I, C.	40400	100000	141800
'	'،	107217	، ،	39700	100000	141300
"	"،	107599	"	39600	100000	142000
"	"	106101	*	40300	100000	141900
\cdots	'6	106598	\cdots	40200	100000	142500
\cdots	"	106197	\cdots	40400	100000	138600
\cdots	'،	104390	\cdot	40700	100000	140400
.	، ،	105651	.	40300	100000	140600
\cdots	"،	106551	\because	40000	100000	143100
. \cdot	، ${ }^{6}$	107124	"	39600	100000	140500
Caboose	E	106722	" ${ }^{\prime}$	40300	100000	$\begin{array}{r} 141300 \\ 34000 \end{array}$

Table 31 Tonnage Record

Test No. S-1074

$\begin{aligned} & \text { Kind } \\ & \text { of } \\ & \text { Cor } \end{aligned}$	Loaded $\stackrel{\text { or }}{\text { Empty }}$	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	$\underset{\text { Initial }}{\text { Car }}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Test Gondola		17	I. C.	30100		58000
		9245193288705			$\begin{aligned} & 80000 \\ & 80 \\ & 80 \\ & 80 \\ & 000 \end{aligned}$	30500 31500
"	،			30100 30800		312003929
\because	"	9177983029		313300 39 2900	$\begin{aligned} & 80000 \\ & 80000 \end{aligned}$	
"	"			28000	800008000080000	27400
"	"	86841267	"،	31000		3130024600
\because	\cdots		$\text { St. L. L. } \underset{\text { I. } . ~ \& ~ S . ~}{\text { C. }}$	2710028300	80000 80000	
"	"	82261			80000 60000	27 27 200 700
\because	"،	86473		31400	80000	31000
\because	،	94563	،	30600	80000	30700
"	"	92664	亿	30400 31200	80000 80 8000	32000 30 500
،	،	87201	"	32000	80000	32000
\because	"	95260105612	،	29800	100000	40400
\because	، $،$		St. L. B. \& S.	40400		
\because	"	105612 93048		31500 24000	80000 60000	31200 24500
\because	،	82249	$\text { St. L. } \underset{\mathbf{I}_{i}, ~}{\text { B. }} \text { © } \text { S. }$	2700030400	8000080000	${ }_{27}^{27} 000$
"	"،	86327				30600
.	"	85482		31500 27600	80000	31000
\because	"	106064105883	"	276300	60000 10000	27600 40 400
\because	"		"	40400	100000	40800
"	"	105883 86779	"،	31000	80000	33900
\cdots	"	$\begin{array}{r} 93956 \\ 104389 \end{array}$	"	30100 40800	$\begin{array}{r}80 \\ 10000 \\ \hline 000\end{array}$	30400 40
"	"	-86183	"	31000	80000	30700
\because	"	+81183	،	27200	60000	26800
\because	"	$8{ }^{81} 470$	،	30600	80000	30200
"	،	91788	"	32000 30500	80000 80 000	30800 30300
\because	"	${ }_{86} 13$ \%	"	29500	80000	30700
"،	"،	95167	"،	30500	80000	31500
'،	"		"	39600 32000	$\begin{array}{r}100000 \\ 80 \\ \hline 000\end{array}$	${ }^{40} 000$
\because	"	87657 87590	"	32300	80000	${ }_{35} 3200$
\because	"	-89683	،	31400	80000	31200
"	،	7555	،	${ }^{23} 4800$	50000	22200
.	"	$\begin{aligned} & 107148 \\ & 104 \end{aligned}$	،	39800 40 400	100000 100000	40300 40 400
\because	\because	104379 88351	،	31500	80000	31600
\cdots	-	884868	"،	31900	80000	31500
亿	،	101229	"	38400	100000 80 000	${ }^{37} 800$
\because	"	94808	\because	31500	80000	31500
\because	"	95480	"	31900	80000	32000
\because	'،	87780	،	32100	80000	31600
\cdots	،	93494 90871	، 6	29780 30 800	80000 8000	31 30800 800
\because	"	90871 +106167	"	40300	100000	40100
\because	"،	106167 89	"،	32000	80000	31600
\because	،	${ }_{96} 072$.	31800 31500	80000 8000	31700
\because	"	94133	"	31900	80000	30600
".	"	93394	"	30600	80000	31300
.'	"،	106088 89	"،	40400	100000	40200
,	"،	89 94599	"،	30600 30800	80000 80000	30800 30800
\because	"	-945995	"	32100	80000	31500
\because	'،	91986	\because	30500	80000	30000
				31300	80000	31200

SCHMIDT-FREIGHT TRAIN RESISTANCE
 TABLE 31 Tonnage Record (Continued)
 Test No. S-1076

$\begin{aligned} & \text { Kind } \\ & \text { of } \\ & \text { Car } \end{aligned}$	Loaded $\stackrel{\text { or }}{\text { Empty }}$	Car No.	$\begin{gathered} \text { Ca } \\ \text { Initial } \end{gathered}$	Stenciled Light Weight	Capacity	Gross Weight
	L or E			pounds	pounds	pounds
Gondola	E	93848	I. , C.	29500	80000	29700
		106911		40200	100000	40200
'	'،	105727 80466	، ${ }^{\text {c }}$	40400	100000	40900
.	"	80466 110363	،	26700 41500	60000 100 000	26100 40 800
\because	،	-80324	"	${ }_{25} 600$	60000	30300
\because	"	95278	"	31000	80000	30000
\because	"	82246	'،	28500	60000	28200
"	"	106288	\because	39800	100000	40000
.	"	105836 104811	"	40300 40300	100000	40200
\because	\because	104811 3207	I. S.	40300 40	100000 100000	40200 39800
\because	"	91420	$\mathrm{I}_{1}{ }_{\text {, }} \mathrm{C}$.	29200	80000	29600
.	\%	112413	,	43400	100000	43200
\cdots	"	104047	،	29600 40800	$\begin{array}{r}80000 \\ 100 \\ \hline 000\end{array}$	31600 40 400
" ${ }^{\text {a }}$	،	115181	"	41800	100000	42300
Caboose	،	98005	،			32000

TABLE 32 Tonnage Record
Test No. S-1076

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L or E		-	pounds	pounds	pounds
Gondola	L	104098	I. ${ }^{\text {C }}$.	41000	100000	149000
		104679		39200	100000	146000
'	'	105091		40400	100000	148600
'.	,	105690	T	40300	100000	143400
'.	، $،$	3344	I. S.	40000	100000	143300
".		110982	İ. C.	41100	100000	137000
'.	، 6	104698		40600	100000	138500
.	,	104023	',	40600	100000	142500
-•	،	104361	' ${ }^{\prime}$	40200	100000	148000
\cdots	،	107310	،	39700	100000	146000
\cdots	"،	106268	،	40300	100000	147000
\cdots	\%	104087	"	40900	100000	152000
\cdots	"	106161	"	40600	100000	146500
'.	'،	107133	، $،$	39700	100000	144900
\because	، $،$	106144	'	40400	100000	150000
'.	، 6	111280	'،	41600	100000	139000
.	،	111229	، 6	40800	100000	135300
'	، 6	106713	,	40500	100000	139300 143300
'	' ${ }^{\prime}$	110736	,	40700	100000	142000
\cdots	"	110421	'6	43500	100000	148000
".	، 6	110843	، 6	41200	100000	142400
.	، $،$	111061 107126	'،	41200	100000	141000
Caboose	E	107126 98320	'،	39700	100000	143000 36100

TABLE 33 Tonnage Record
Test No. S-1077

Kind of Car	Loaded or Empty	$\begin{aligned} & \text { Car } \\ & \text { No. } \end{aligned}$	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L. or E.			pounds	pounds	pounds
Test	E	17				58000
Gondiola	L	2186	L. E. A. \& W.	36200	80000	120200
		107315	I. C.	39700	100000	138800
-	"،	106426		40500	100000	151800
'.	، ،	104103		37600	100000	153600
${ }^{\prime \prime}$	، $،$	88740		32000	80000	104600
Box	F	82474	B. \& O.	33600	60000	83600
	$\underset{4}{\text { E }}$	33880	S. P.	42700	100000	41900
.		11238	H. \& T. C.	40200	100000	42800
"	L	11150	D. S. S. \& A.	32400	60000	73600
\because	E	10846	N. C. \& St. L.	35400	60000	35000
"	E	337	G. \& F.	32500	60000	31700
\because	6،	34552	I. ${ }_{\text {C }}$.	37700	80000	37000
'.	'،	140487		41900	100000	42000
"	، 6	142394		42900	100000	42000
"	"'	49498		34400	80000	34500
"	"	131662		39500	80000	40000
\cdots	"	38755	N, O. N	36600	80000	36600
، ${ }^{\prime}$	'،	15853	N. O. \&. N. E.	30600	60000	30600
\because	، ${ }^{\text {c }}$	9644	L. $\&_{1} \mathrm{~N}$.	40800	60000	40700
\because	,	11712		30900	60000	30700
"	L	15492	I. C .	30200	60000	90000
"	، 6	141573		43500	100000	63800
'	'	140563		42200	100000	64500
،	$\underset{6}{6}$	10381	L. \& N.	29800	60000	29800
\cdots		11364	S.P.L.A.\&S.L	43500	100000	43100
"	"	11893	N. C. \& St. L.	33400	60000	33300
، ${ }^{\prime}$	'،	65969	S. P.	29600	60000	30300
'	، 6	93651	L. \& N.	36500	65000	35200
\because	"،	94824		34800	65000	34000
'،	، ،	13705		30700	60000	30700
'.	L	9312 98561	N. C. \& St. L. N. Y. C. \& H.R.	32550	60000 8000	$\begin{array}{r}32700 \\ 78 \\ \hline 800\end{array}$
"	E	12887	C. N.O. \& T.P.	35 3400	80000 60	33 400
'	\cdots	4886	N. \& S.	33600	60000	32000
'،	'،	12027	N. \& M .	37000	80000	30200
"	L	131675	I. ${ }_{\text {C }}$.	38900	80000	110400
",	، $،$	14554		32000	60000	75500
'،	'،	10060	.	31000	60000	70000
'،	'،	12724		29300	60000	76500
".	، ،	13276	St. L. S. W.	32000	60000	79900
'	، 6	26615 141284	I. C.	35800	80000	90800
Gondola	E	141284 618	E. F. D. \& Co.	43500 24200	00000	105900 24800
	\cdots	- 744	C. C. \& Co.	31800	80000	30600
'	' ${ }^{\text {c }}$	106729	I. C.	40400	100000	40100
"	"	94563		30600	80000	35800
\because	'،	112570	,	43500	100000	43100
'	'،	112153	,	37200	80000	39500
\because	' ${ }^{\prime}$	107346	\cdots	39700	100000	39900
\because	'،	105529	"	40200	100000	40600
Caboose	، 6	104361	'،	40200	100000	40600
Caboose	'،	98370	'،			35900

TabLE 34 Tonnage Record
Test No. S-1079

$\begin{gathered} \text { Kind } \\ \text { Of } \\ \text { Car } \end{gathered}$	$\begin{gathered} \text { Loaded } \\ \text { or } \\ \text { Empty } \end{gathered}$	Car No.	$\underset{\text { Initial }}{\text { Car }}$	$\begin{gathered} \text { Stenciled } \\ \text { Light } \\ \text { Weight } \end{gathered}$	Capacity	$\underset{\text { Weight }}{\substack{\text { Gross }}}$
	L or E			pounds	pounds	pounds
	E \vdots L L. $\underset{+}{\text { E }}$. . . \because \qquad \because . : $\stackrel{\text { E }}{\text { E }}$. E $\stackrel{\mathrm{L}}{\mathrm{E}} \stackrel{\mathrm{E}}{\mathrm{E}}$. $\stackrel{4}{4}$ $\stackrel{\mathrm{E}}{\mathrm{E}}$				100	36200
					40000 80	80
					60000	69000
					${ }_{50}^{50} 000$	70 30 30
					${ }^{60} 000$	70400
						89600
					80 8000	7250
					80000	74000
					8000	80000
					${ }^{80} 000$	62000
					${ }_{80}^{60} 000$	${ }_{93500}^{6760}$
					${ }^{60} 000$	80
					${ }_{80}^{27} 0000 \mathrm{~K}$	86840
					80000	8040
					${ }^{60} 000$	6960
					100 000	${ }_{80} 8000$
					60000	79000
						${ }^{62} 7700$
					80000	8500
					100 6000 000	86500 65300
					80000	97000
					60000 50	¢ 404000
					${ }_{100} 0000$	${ }_{83}^{34000}$
					+10000 80 8000	39000 88700
						32400
					50000	$\begin{array}{r}33 \\ 880 \\ \hline 800\end{array}$
					50000 80 000	
					100000	78600
					60000 60 600	38500 9000
					60000	
					60000 60 000	88500 7500
						65500
					60000	

Table 35 Tonnage Record
Test No. S-1080

$\begin{gathered} \text { Kind } \\ \text { of } \\ \text { Car } \end{gathered}$	Loaded or Empty	Car No.	Car Initial	Stenciled Light Weight	Capacity	Gross Weight
	L or \mathbf{E}			pounds	pounds	pounds
Test	E	17				58000
Box	!	10315	I. . ${ }^{\text {C. }}$	30400	60000	91200
		141744		43600	100000	147100
\because	"	141622 21	\because	43600 36600	100000 80 000	135200
\because	E	31478	T. R. E.	32200	50000	133400
" ${ }^{\text {a }}$	L	38140	$\mathrm{I}_{1}, \mathrm{C}$.	${ }^{34} 400$	80000	125000
Gondola		48223 104852	\because	39800 40 000	$\begin{array}{r}80 \\ 1000 \\ \hline 000\end{array}$	89300
Gondola	E	104852 105936	\because	40000 40 000	100000 100000	39400 40
"	"،	88440		31600	80000	31600
Box	،	12090	M. L. \& T.	32000	60000	31800
Gondola	"	90647 82853	I: ${ }^{\text {C. }}$	31500 28400	80000 60000	31600 27900
-	"	107665	,	39900	100000	39900
"	"	106701	.	40600	100000	40400
"	"	106321		40400	100000	40200
.	\cdots	3354 104969	I. ${ }_{\text {I }}^{\text {C. }}$	40400 40 000	100000 100000	40100 40000
\because	"	106793		40200	100000	40100
\because	"	101154	"	37600	100000	37800
\because	!	100021	\because	32700 39600	90000 100 000	33000
".	"	107217	\because	39700	100000	39900
\because	"،	106305	\because	39400	100000	40100
\because	،	104027	\cdots	40400	100000	40500
"	\cdots	94971 94 909	\because	33200 30600	80000 80	31900 30800
\because	"	87979	\because	32000	80000	31600
\because	"	76795	\because	30000	50000	29900
\because	\because	110818	.	41600	100000	41400
\cdots	"	107532 92 400	\because	39500 31500	100000 80 8000	40200 31500
\because	"	88001	'"	31200	80000	31100
\because	"،	3009	I. S.	40300	100000	40300
"	"	89391 94566	I: ${ }^{\text {C. }}$	30700 30900	80000 80000	30500 30 700
\because	"	104167	\because	40800	100000	40700
\because	"	91513	\because	30200	80000	30200
\because	"،	91465	\because	30400	80000	30400
\because	"	86 85448	.	34300	80000 80	31600 30 900
\cdots	"،	87389	\because	31400	80000	31400
"	"	91106	\because	31400	80000	31300
\because	،	111131	\because	40800	100000	30700
"	،	+100971	\cdots	31 3200	80 9000	319900
\because	"	89481	\because	31800	80000	31400
亿	"،	104746	\because	40400	100000	40400
\because	"	87877 92491	.	31 2000 800	80 80	30600 30100
.	، $،$	92491 101177	\because	26800 37 700	$\begin{array}{r}80 \\ 1000 \\ \hline 000\end{array}$	30100 37 800
\because	"	86841	\because	31000	80000	31200
\cdots	"	85409	\because	31800	80000	31600 31000
.	،	89100 83948	..	32600 27600	80 60000 6000	31000 27900
"	، $،$	94065	"	30900	80000	30800
".	"	82328	\because	28400	60000	${ }^{27} 9800$
.	\because	87302	\because	30600	80000	38800 37 800
\because	"	102002 88051	"	38000 31300	80000 80	31600
" ${ }^{\text {c }}$	"	91268	\because	30500	80000	30500
Caboose	"	98413	\cdots			34800

APPENDIX 3

APPENDIX 3

The Track

All tests, except No. S-1030A, were made over the 91 miles of Illinois Central main line track lying between Gilman (mile 81.12) and Mattoon (mile 172.38), Illinois.

Roadbed.-This track, formerly a part of one of the oldest single track lines in the State, was converted about ten years ago into a double track road; and the roadbed is now well settled and in good condition. In construction the roadbed has been made to conform as closely as practicable to the standard Illinois Central section for class A double track. This section has a 34 -ft. crown with a slope of $1 \frac{1}{2}$ to 1 for embankments, and a $46 \frac{1}{2}-\mathrm{ft}$. base with slopes of 1 to 1 or $1 \frac{1}{2}$ to 1 for cuts. The drainage of the track is, in general, excellent.

Ballast and Ties.-Except on a few short stretches through station grounds where screenings are used for ballast, both tracks are ballasted with broken limestone throughout this distance. There is not less than 12 in . of ballast beneath the ties, and the ballast shoulder extends 12 in . beyond the ties whence it runs off to the sub grade on a slope of $1 \frac{3}{4}$ to 1 . The cross ties are of either untreated white oak or treated red oak, and are 6 in . by 8 in . by 8 ft . long. They are spaced about 20 in . from center to center.

Rail.-The south-bound or west track between mile $161+3500$ ft . and mile 171 is laid with rail weighing 75 lb . per yard. The remainder of the west track and all of the east track are laid with rail weighing 85 lb . per yard. The $75-\mathrm{lb}$. rail is of the standard American Society of Civil Engineers' section, rolled by the Illinois Steel Company, and is further designated as Illinois Steel Company's section No. 7506. All $85-\mathrm{lb}$. rail is of standard A. S. C. E. section, and Illinois Steel Company's section No. 8504.

Rail Joints and Fastenings.-All rails are laid with square joints, supported on three ties. The $75 \cdot \mathrm{lb}$. rails are joined with Illinois Central Standard $40-\mathrm{in}$. angle-bar splices, weighing 76 lb . per pair; and the $85-1 \mathrm{~b}$. rails are joined with similar splices weighing 80 -lb. per pair. In each joint six track bolts are used, which are $\frac{3}{4}$ by $4 \frac{1}{8} \mathrm{in}$. for the $75-\mathrm{lb}$. rails, and $\frac{7}{8}$ by $4 \frac{1}{2} \mathrm{in}$. for the $85-\mathrm{lb}$. rails. Four ${ }_{16}^{9}$ by $5 \frac{1}{2} \mathrm{in}$. track spikes are used in each cross tie. No tie plates or rail braces are used, except through switches.

Maintenance.-During eight months of the year there is employed in maintaining this portion of the road a force of men averaging one man per mile of track; during the remaining four months this force is reduced to one man for each two miles.

APPENDIX 4

APPENDIX 4

Methods Employed in Calculating the Results

This appendix presents a detailed explanation of the processes used throughout this investigation in deriving the results of the tests. Two methods of calculation have been employed. By one method resistance was determined at a point on the road; by the other, the average resistance was determined for the period during which the test car passed over a certain track section. The former is termed Method 1, the latter, Method 2. A general statement and comparison of the two methods and an explanation of the general limitations imposed upon the selection of points and sections have been given in Part I. Whatever is said under "Methods Employed in Calculating the Results" in Part I is to be considered as supplementary to the contents of this Appendix.

The Elements of Gross Resistance

The various elements which make up gross train resistance are:

1. Net resistance on straight, level track, at uniform speed, in still air.
2. Resistance due to wind, (as distinguished from still air resistance).
3. Resistance due to grade.
4. Resistance due to acceleration.
5. Resistance due to track curvature.

Item 1 is always in operation to retard a moving train. One or more (or none) of the others may also be acting with item 1 to form gross resistance.

The dynamometer car records directly the gross resistance or drawbar pull as here defined. The purpose of the calculations has been to determine net resistance (item 1); or more strictly speaking, the purpose, by force of circumstances, has been to determine the sum of net resistance (item 1), and wind resistance (item 2), since it has been impossible to differentiate the latter from the other elements. Curve resistance has been entirely eliminated from consideration by selecting for calculation only those points and sections where the train was on tangenttrack. Grade resistance and acceleration resistance may always be determined by
calculation; and in order to find the net resistance, it is necessary only to subtract these two items (3 and 4) from the gross resistance recorded on the test car chart.

Since the process employed implies the ability to calculate the grade and acceleration resistances, their determination will be explained before proceeding with the explanation of the two methods by which net resistance was derived.

The following general notation is used throughout. Other special notation needed in the development of the analysis is given as the necessity arises.
Notation:
$P=$ Total gross resistance $=$ drawbar pull. - pounds.
$R=$ Net resistance on tangent, level track, at uniform speed. -pounds per ton.
$R_{\mathrm{g}}=$ Resistance due to grade.-pounds per ton.
$R_{\mathrm{a}}=$ Resistance due to acceleration.--pounds per ton.
$W=$ Total train weight.-tons.
V, V_{1}, etc. $=$ Train speed. - miles per hour.
$G=$ Grade.-feet per mile.
$A=$ Acceleration of the train speed.-miles per hour per second.
$a=$ Acceleration of the train speed.-feet per second per second.
E_{1} and $E_{2}=$ Elevations of the center of mass of the train.—feet.
$S=$ Length of track section used in Method 2.-feet.
$N=$ Number of cars in the train.

Grade Resistance

If the train be on a uniform grade of G feet per mile, the grade resistance in pounds per ton is at the moment:

$$
R_{\mathrm{g}}=0.379 \times G \ldots \ldots \ldots \ldots \ldots \ldots . .
$$

If it be desired to find the average grade resistance during the period in which the test car passes a certain section of track, we must determine the elevations of the center of mass of the train at the moments the car enters and leaves the section. If we call these elevations E_{1} and E_{2} respectively, and the length of the section S (in feet), then the average grade in feet per mile is:

$$
G=\left(E_{2}-E_{1}\right) \times \frac{5280}{S}
$$

and

$$
R_{\mathrm{g}}=0.379 \times\left(E_{2}-E_{1}\right) \times \frac{5280}{S}=\frac{2001\left(E_{2}-E_{1}\right)}{S} \ldots \ldots(16)
$$

G and $\left(E_{2}-E_{1}\right)$ in these equations may be found directly from the profile; and S may be calculated from the profile or from the dynamometer chart. To give correct results, the entire train must be on uniform grade at the moments for which G, E_{1} and E_{2} are determined.

Acceleration Resistance

The total force needed to produce acceleration is made up of two parts. The first is the force needed to produce acceleration in the motion of translation of the train as a whole; and the second is the force needed to produce acceleration in the rotation of the wheels and axles. This total force is the total acceleration resistance $R_{\text {a }}$.
Let
$R_{\mathrm{a}}=$ Acceleration resistance due to both translation and rotation. -pounds per ton.
$F=$ Total drawbar pull needed to produce the acceleration.pounds.
$T=$ Drawbar pull needed to produce acceleration in the translation of the whole train.-pounds.
$f=$ Drawbar pull needed to produce acceleration in the rotation of all wheels and axles. - pounds.
Then

$$
R_{\mathrm{a}}=\frac{F}{W}
$$

and

$$
F=T+f
$$

therefore

$$
\begin{equation*}
R_{\mathrm{a}}=\frac{T+f}{W} \tag{17}
\end{equation*}
$$

T and f in this equation are found as follows:
but

$$
T=\operatorname{mass} \times \text { acceleration }=\frac{W \times 2000}{32.2} \times a
$$

hence

$$
T=\frac{W \times 2000 \times 1.466 A}{32.2}=91.05 A W \ldots \ldots(18)
$$

To find f :
Let
$p=$ Drawbar pull required to produce the acceleration in the rotation of one pair of wheels and their axle.-pounds. This is to be considered as a force applied at the wheel rim.
$p_{1}=$ Force which, applied at the end of the "radius of gyration", would produce the acceleration in rotation produced by p.
$r=$ Wheel radius. 7 -any unit.
$k=$ Radius of gyration of one pair of wheels and axle.-same unit as r.
$w=$ Weight of one pair of wheels and their axle. - pounds.
$a=$ Acceleration in the linear velocity of a point on the wheel rim.-feet per second per second. This equals the acceleration of the train.
$b=$ Acceleration in the linear velocity of a point at the end of the radius of gyration.-feet per second per second.
w is taken as equal to $1950 \mathrm{lb}^{1}$, which is the approximate mean between the weight of a $4 \frac{1}{4}$ by 8 axle and its wheels and the weight of a 5×9 axle and its wheels. $\frac{k}{r}$ is found to be about 0.64 for various axles and wheels ${ }^{1}$.

Since cars have 4 axles, we have:

$$
\begin{gathered}
f=4 N \times p \\
p=\frac{k}{r} \times p_{1} \\
p_{1}=\frac{w}{32.2} \times b=\frac{1950}{32.2} \times b=60.56 b \\
b=a \frac{k}{r}=1.466 \mathrm{~A} \times \frac{k}{r} \\
p_{1}=60.56 \times 1.466 \mathrm{~A} \times \frac{k}{r}=88.82 \mathrm{~A} \times \frac{k}{r} \\
p=88.82 \mathrm{~A} \times \frac{k^{2}}{r^{2}}=88.82 \times(0.64)^{2} \times A=36.38 \mathrm{~A},
\end{gathered}
$$

and

$$
\begin{equation*}
f=4 \times N \times 36.38 A=145.5 \mathrm{AN} . \tag{19}
\end{equation*}
$$

${ }^{1}$ The maximum error in $R a$ which may result from possible variations in w and $\frac{k}{r}$ under
current standards of car design is 1.1 per cent. $R a$ in the calculations seldom exceeds R. and the maximum probable error in R due to such variations is therefore about one per cent. It would occur with a train of empty gondolas equipped with $5 \frac{1}{2} \times 10$ journals and wheels weighing 725 lb. each.

From equations 17,18 , and 19

$$
R_{a}=\frac{T}{W}+\frac{t}{W}
$$

Hence

$$
\begin{equation*}
R_{a}=\left(91.05+145.5 \frac{N}{W}\right) \times A . \tag{20}
\end{equation*}
$$

Formula 20 may be applied to find the momentary acceleration resistance at a point on the road, or to determine its average value while the train passes a certain section. In the former case A denotes the momentary acceleration, and in the latter case A denotes the average acceleration over the section. N and W are derived from the train data. In either case A may be found as explained below.

The determination of acceleration.-In determining the net resistance by Method 1-at a point on the road-the momentary value of A in formula 20 has been determined as follows. In this discussion it should be remembered that all curves on the dycamometer chart are drawn on a distance base, i. e., to some scale their abscissas represent distances, in feet.

On the speed curve in Fig. 17, let B represent the point on the road which is under consideration. At B draw the tangent $O D$ to this curve, and select on this tangent the points C and D equidistant from B. This tangent may be considered as a speed curve which at B represents the same acceleration as the actual speed curve. By direct measurement the ordinates of the tangent at C and D are determined as v_{1} and v_{2}, respectively. Similarly the distance S may be determined. The speed at B is called v. The acceleration A at the point B is then determined thus:
Let
$v, v_{1}, v_{2}=$ Speed.-feet per second.
$V_{1}, V_{2}=$ Speed.-miles per hour.
$t=$ Time.-seconds.
$l=$ Distance.-feet.
$a=$ Acceleration.- feet per second per second.
Then

$$
a=\frac{d v}{d t}
$$

and

$$
d t=\frac{d l}{v}
$$

hence

$$
a=\frac{v d v}{d l}
$$

The equation of the tangent referred to the axes $O v$ and $O l$ is:

$$
\begin{gathered}
v=m l \\
m=\frac{v_{2}-v_{1}}{S} \\
v=\frac{v_{2}-v_{1}}{S} \times l
\end{gathered}
$$

whence

$$
d v=\frac{v_{2}-v_{1}}{S} d l
$$

and

$$
\frac{d v}{d l}=\frac{v_{2}-v_{1}}{S}
$$

also, since v is the mean between v_{1} and v_{2},

$$
v=\frac{v_{2}+v_{1}}{2}
$$

therefore

$$
a=\frac{v d v}{d l}=\frac{v_{2}+v_{1}}{2} \times \frac{v_{2}-v_{1}}{S}=\frac{v_{2}{ }^{2}-v_{1}{ }^{2}}{2 S}
$$

but
and

$$
a=1.466 \mathrm{~A}
$$

$$
\begin{equation*}
v=1.466 \mathrm{~V}, \tag{21}
\end{equation*}
$$

hence
$A=\frac{(1.466)^{2} \times\left(V_{2}^{2}-V_{1}^{2}\right)}{1.466 \times 2 \mathrm{~S}}=0.733 \frac{V_{2}^{2}-V_{1}^{2}}{S}$
Formula 21 is used to determine the momentary acceleration at a point B on the speed curve. V_{1} and V_{2} are ordinates at the two points, C and D, located on the tangent drawn at B and equidistant from B. To draw this tangent with sufficient accuracy, the speed curve must be nearly a straight line for a small distance on either side of B.

In determining the net resistance by Method 2-while the test car passes a certain track section-the average value of A in formula 20 has been determined as follows. The conditions are represented in Fig. 18.

Let $a=$ the uniform acceleration which, acting during the passage of the car through the section, would have caused a speed change the same as that actually produced.-feet per second per second.

Fig. 17 Diagram Used in the Explanation of Method I Fig. 18. Diagram Used in the Explanation of Method II
$A=$ The same, expressed in miles per hour per second. v_{1} and $v_{2}=$ Speeds at entrance and exit.-feet per second. V_{1} and $V_{2}=$ Speeds at entrance and exit.-miles per hour. $S=$ The length of the section.-feet.
$t=$ The time elapsed in transit over the section.-seconds. Then

$$
v_{2}=v_{1}+a t
$$

and

$$
S=v_{1} t+\frac{a t^{2}}{2}
$$

whence, by the elimination of t,

$$
a=\frac{v_{2}^{2}-v_{1}^{2}}{2 S}
$$

and, since

$$
a=1.466 \mathrm{~A}
$$

and

$$
\begin{array}{r}
v=1.466 \mathrm{~V} \\
A=0.733 \frac{V_{2}^{2}-V_{1}{ }^{2}}{S} \cdots \cdots \cdots \tag{22}
\end{array}
$$

This equation is identical in form with equation 21. It is used to determine the average acceleration over a given track section. In it A is to be understood as that hypothetical uniform acceleration which, acting during transit over the section, would have caused the absorption of the same energy as was actually expended to produce acceleration under the prevailing speed changes. $\quad V_{1}$ is the speed at the moment the head of the train enters the section. V_{2} is the speed at the moment the head of the train leaves the section. S is the length of the section.

Formula 22 is correct for all cases, regardless of the shape or variations of the speed curve. However, for reasons which are entirely unrelated to the accuracy of the acceleration determination and which have been explained in Part I, the sections were so chosen that V_{1} and V_{2} varied but slightly, and that the speed curve between the section limits presented no great speed variations.

The Determination of Net Resistance

Net resistance on straight, level track, at uniform speed is termed R, and is expressed in pounds per ton. In both methods of calculation its value was derived from the equation:

$$
\begin{equation*}
R=\frac{P}{W}-R_{g}-R_{a} . \tag{23}
\end{equation*}
$$

In which P is determined from the test car chart, W from train data, and R_{g} and R_{a} as previously explained.

Method No. 1.-To determine R at a point on the track, equations 23,15 , and 20 may be used; these when combined give us:

$$
\begin{equation*}
R=\frac{P}{W}-0.379 G-\left(91.05+145.5 \frac{N}{W}\right) \times A \tag{24}
\end{equation*}
$$

If the train is on a down grade the sign of the second term should be changed to plus. The value of A should be found by means of equation 21, and, as there explained, by drawing a tangent to the speed curve. The other quantities in the equation, $-W, N, P, S$, and G, may be found directly from the train data, or the dynamometer chart, or the profile. Fig. 17 represents the conditions which prevailed at points chosen for the calculations by this method. In Fig. 17 the line $K B$ represents the point on the road which is under consideration. All values of momentary resistance included in this report have been found by means of formula 24.

In the selection of points for the application of Method 1 , the following precautions must be and have been observed:

1. The entire train must be on tangent track and on a uniform grade.
2. The speed curve must be nearly straight for a certain distance either side of the point chosen, in order to permit the tangent to be accurately drawn.
3. The acceleration should preferably be low. The maximum acceleration at any point chosen for the calculation of values included in this report was 0.106 miles per hour per second.
Method No. 2. To determine the mean value of R over a certain track section, equations 23,16 , and 20 may be used; these when combined give:
$R=\frac{P}{W}-\frac{2001 \times\left(E_{2}-E_{1}\right)}{S}-\left(91.05+145.5 \frac{N}{W}\right) \times A \ldots \ldots .(25)$.
In this case the value of A should be found by means of equation 22. The quantities to be determined in order to use formula 25 are W, N, P, S, V_{1}, V_{2} and $\left(E_{2}-E_{1}\right) . \quad W$ and N are derived from
the train data. P is the mean drawbar pull over the section, and is found by determining by the use of a planimeter the mean height of the pull curve between the section limits. S is the section length and may be found directly from the dynamometer chart. V_{1} is the speed as the train enters the section. V_{2} is the speed as the train leaves the section. V_{1} and V_{2} are determined directly from the dynamometer chart. E_{1} is the elevation of the center of mass of the train at the moment its head end enters the section. E_{2} is the corresponding elevation at the moment the head end of the train leaves the section. The quantity ($E_{2}-E_{1}$) is found from the profile. R in this case corresponds to the mean speed over the section. This mean speed is determined by means of the records of time and distance. Fig. 18 represents the conditions which prevailed at sections chosen for the calculations by this method. In Fig. 15, Appendix 1, is represented the section from which the results for item 12 of test S-1057 were derived. All values of mean resistance included in this report have been found by formula 25 .

In the selection of points for the application of Method 2, the following precautions must be and have been observed:

1. The track must be straight over the section and also for a distance (equal to the train length) before the entrance to the section.
2. The entire train must be on a uniform grade at the moment its head end enters the section, and again at the moment it leaves the section. These grades need not, however, be alike.
3. For reasons which have been explained in Part I, the speed curve between the section limits should not present great speed variations nor should the difference between V_{1} and V_{2} be greater than ten or twelve miles per hour.

APPENDIX 5

APPENDIX 5

The Results of the Individual Tests

Appendix 5 exhibits for each test a table showing the main results of the calculations. Where both methods of calculation have been employed, the tables show two groups of items. The one group displays the results obtained by Method 1, and the other shows those obtained by Method 2. The notation following the column headings is the same as that used in Appendix 4. The final values of net resistance on tangent, level track, at uniform speed are given in column 13, and the corresponding values of speed are given in column 12.

Following the table of results for each test is a figure which shows the relation between speed and resistance for the same test. The coordinates of the points plotted in these diagrams are the values of speed and resistance given in columns 12 and 13 of the corresponding table. The points represented in the diagrams by circles are plotted from values of momentary speed and momentary resistance obtained by Method 1. The points represented by circular black spots are plotted from values of average speed and average resistance obtained by Method 2. The numbers shown at the points are the corresponding item numbers given in column 2 in the table.

The curves represent for each test the mean relation between resistance and speed. In order to draw these curves, the plotted points were assumed to be arranged in a number of groups for each of which the "center of gravity" was determined and plotted on the diagram. The curve was then drawn by confining attention to the few points thus determined. The groups of points were arbitrarily selected so that the resulting "centers of gravity" were almost equidistantly distributed throughout the speed range. 9 gondola, 3 tank, 1 test, 1 caboose. Average weight per car $=38.04$ tons.

1	2	3	4	5	6	7	8	9	10	11	12	13
	$\begin{aligned} & \text { 安 } \\ & \text { 罚 } \end{aligned}$	Location on Road Milepost No.				Speeds			Wind			
				P	A	V_{1}	V2	G			V	R
	$\begin{array}{r} 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	116.67 112.23 110.46 108.80 105.86 100.51 99.29 91.00 90.08 87.00 86.15 84.46 83.24 81.86		16400 13750 29600 11990 9850 23000 12550 12500 12550 13100 15000 16400 12500 13000	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ +0.0280 \\ 0 \\ 0 \\ 0 \\ -0.0200 \\ 0 \\ 0 \end{gathered}$					18 19 19 19 25 20 17 21 15 27 17 17 14 21 15	18.20 24.30 11.50 24.60 32.70 12.70 27.50 27.50 26.30 27.50 24.10 20.70 18.40 25.10 16.00	5.86 8.45 5.44 6.54 7.50 5.79 7.78 7.18 5.89 5.81 5.99 6.90 6.00 6.71 5.73
	$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 116.25-117.00 \\ & 110.46-111.00 \\ & 100.82-101.55 \end{aligned}$	$\begin{aligned} & 3980 \\ & { }_{2880}^{3880} \\ & 3880 \end{aligned}$	$\begin{aligned} & 16400 \\ & 30000 \\ & 23700 \end{aligned}$		18.20 11.60 12.60	18.20 11.60 12.60	+2.00 +19.33 +10.60	$+50^{\circ} \mathrm{L}$ $+900^{\circ} \mathrm{L}$ $+900^{\circ} \mathrm{L}$	18 19 17	18.20 11.60 12.60	5.68 4.45 5.49

Fig. 19 to 50 Curves Showing the Relation Between Resistance and Speed for Each of the 32 Tests

Fig. 20
From Champaign to Gilman, April 29, 1908. Weather: Fair. Temperature: 40° F. at start, $48^{\circ} \mathrm{F}$. at end of test. Center
gondola,
13

п	
ヘ	$\begin{aligned} & \dot{\otimes} \\ & \dot{\otimes} \dot{0} \\ & \dot{\Omega} \end{aligned}$

$9 \times 10 \quad 11$ s. bar $=2489$ tons, ex otal weight behind measuring drawba of mass 1200 ft . back of measuring drawbar.
11 flat, 7 tank, 1 caboose. Average weight per 1 nat, 7 tank, 1 caboose eight per car $=36.08$
$1-1$

Test No．S－1016＊ TABLE 38

From Gilman to Champaign，April 30，1908．Weather：Fair．Temperature： 44° F．at start， $48^{\circ} \mathrm{F}$ ．at end of test． Total weight behind measuring drawbar $=1161$ tons，including the test car．Train length $=3030 \mathrm{ft}$ ．Center 1 caboose．Average weight per car $=1612$ tons．

๓		
$\stackrel{\sim}{\sim}$	$\begin{aligned} & \widetilde{\otimes} \\ & \stackrel{\otimes}{n} \end{aligned}$	
\exists		
응	䓂	～if
∞	䍖	
∞		
\sim		
\bullet		0000099900000
\sim	Ba	
＋		
∞	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & 0_{1} \\ & \stackrel{y}{z} \end{aligned}$	
\cdots	发	
－		sənten Kirquamon mous \＆I 076 рив＇ 9 ＇ 9 sumito $70!0^{\circ}$

$+++++++++$

 ＋11।＋ナ।1।111｜

＊For complete table heading see Table 36．p． 99.

Fig. 21

Fig. 22
TABLE 39 TEST No．S－1017＊
From Champaign to Gilman，May 1，1908．Weather：Intermittent rain．Temperature： $48^{\circ} \mathrm{F}$ ．at start， $54^{\circ} \mathrm{F}$ ．at end of test．Total weight behind measuring drawbar $=2532$ tons，excluding the test car．Train length $=$
2670 ft ．Center of mass 1200 ft ．back of measuring drawbar． 66 cars： 13 empty， 53 loaded．Kind of cars： 62 box， 2670 ft ．Center of mass 1200 ft ．back of measuring drawbar． Fr

$\xlongequal{\square}$		 	
$\underset{\sim}{\sim}$	$\begin{aligned} & \text { © } \\ & \mathscr{O}_{A}^{\prime} \\ & \stackrel{\rightharpoonup}{\Omega} \end{aligned}$	 	
\exists	$\begin{aligned} & \text { D } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
응	$\begin{aligned} & \text { a } \\ & \text { 烒 } \\ & \text { U } \\ & .4 . \\ & 0 \end{aligned}$	incioigini $+++++++++++11+++++$	
∞		 ｜｜｜｜｜｜＋＋＋＋＋＋｜｜｜｜｜	 $+1\|1\| 1++1+1+$
∞			
\sim		，	
∞	遏		
\％	$\begin{aligned} & \text { 島 } \\ & \text { 2 } \end{aligned}$	－Tio	
\pm			
∞	$\begin{aligned} & + \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{y}{z} \end{aligned}$	 	
\sim	$\underset{\sim}{\text { E }}$		
\rightarrow		sənโe」 Кледиәu ON имочs \＆I оч 6 pae＇ 9 ＇ς sumnlo， quịd	

From Gilman to Champaign，May 2，1908．Weather：Fair．Temperature： 40° F．at start， 45° F．at end of test． Total weight behind measuring drawbar $=1353$ tons，including the test car．Frain length $=2130 \mathrm{ft}$ ．Center 8 tank， 1 test， 1 caboose，and 2 I．C．locomotives，No． 423 and No． 732 with tenders．Average weight per car $=$ 25.40 tons．

$\underset{\sim}{\square}$		 	
๙		 	
$=$			ツトザへのが
윽		 $++++++1++++++++++++$	
0		 $++++1+11$ 1＋十＋干＋＋＋＋＋11	 + 「 + 「 $+7+7$
∞			
－	$\begin{aligned} & \ddot{\ddot{0}} \\ & \stackrel{0}{0}= \\ & \dot{n} \end{aligned}$		
\bullet	ن্ভ்	 88880° 	
10	تَ	 	四：
\square			
๓		 	
\sim	$\underset{\sim}{g}$		
－		MOYS \＆I O7 6 pur＇9＇я summion quilod	senfr Λ 07 6 рая＇ 9 ＇ c sumion บ๐！ฺขอS

Fig. 23

Fig. 24

SCHMIDT－FREIGHT TRAIN RESISTANCE

$$
\text { TABLE } 41 \text { Test No. S- } 1019^{*}
$$

From Champaign to Mattoon，May 9，1908．Weather：Fair．Temperature： 44° F．at start， 62° F．at end of test． Total weight behind measuring drawbar $=1572$ tons，excluding the test car．Train length $=3480 \mathrm{ft}$ ．Center of mass 1600 ft ．back of measuring drawbar． 89 cars： 75 empty， 14 loaded．Kind of cars： 29 box， 52 gondola， 7.72 tons．

$\stackrel{\square}{\sim}$		 	かかののの○がーか
ヘ	$\begin{aligned} & \widetilde{\ddot{D}_{i}^{\prime}} \\ & i n \end{aligned}$	 	898に818ำ8
$=$	$\begin{aligned} & \text { 言 } \\ & \stackrel{0}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$		
\bigcirc		 	
∞	䍖	 ｜।｜｜।｜11＋＋।＋	 ｜｜｜｜｜ $1++\mid$
∞			
\sim	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{0}{n}= \\ & i n \end{aligned}$		
\bullet	$\begin{aligned} & \dot{\oplus} \dot{4} \\ & \stackrel{4}{4} \end{aligned}$	00000 ＋10490000	
\sim	亏̄	 	
＋			
∞		 	 © 1 T1TT1
\sim	䭅		
－		รәпте of 6 pue＇g qg sumuno zulod	sənT® Λ әがロ －JəムV MOपS \＆L 076 pae＇9＇q suunlo， по！џəәS

For complete table heading see Table 36, p． 99 ．

$\boldsymbol{\square}$		ำ 	
๙	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \dot{0} . 土 \\ & \vdots \Omega \end{aligned}$	888 	
\exists	$\stackrel{3}{2}$ 0 $\stackrel{0}{0}$ $>$	セッロロ	
윽		 $+++++++++++++$	 \qquad
0	馬	ต๐n $1\|1+++++++++++1\|$	888언ㅈํ애ํํ8888
∞			
－	$\begin{aligned} & \text { ". } \\ & \text { ì } \\ & \text { in } \end{aligned}$		
\bullet	苞		
5		ㅇ్రింగ్రీ た్రo	:ibibitis
＋			윰：
๓		 	 T1d
\sim	$\begin{aligned} & \text { g్పi } \\ & \hline \end{aligned}$		
\cdots		 	moчs é of 6 par＇ 9 ‘g sumnion

Fig. 25

Fig. 26
From Champaign to Paxton，May 23，1908．Weather：Fair．Temperature： 62° F．at start， 74° F．at end of test． rol weiogt behind measuring daw．$=24$ ． of mass 1020 ft ．back of measuring drawbar． 58 cars： 17 empty， 41 loaded．Kind of cars： 24 box， 30 gondola， 2 tank， 1 test， 1 caboose．Average weight per car $=38.72$ tons．

$\mathfrak{\sim}$		ガががかったが	
ニ		아앙ㅇㅇ우웅 	
コ	$\begin{aligned} & \stackrel{~}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
응			கiniox
∞		 $+1+7++7+$	
∞			
\sim			
\bullet			－
15	تี		
＋			
∞	$\begin{aligned} & 山_{0}^{0} \\ & \sim_{1} \\ & \stackrel{0}{z} \end{aligned}$		
\sim	$\begin{aligned} & \text { g } \\ & \underset{\sim}{\perp} \end{aligned}$		
－		sənte Λ клequau －OWMOMS EI Ot 6 pue＇9＇s sumnto 7a！̣od	sənten әsiexəaty mous CI 076 pue＇9 © © sumion ио！ŋอәS

From Champaign to Gilman, July 2, 1908. Weather: Intermittent rain. Temperature: 64° F. at start, 80° F. 1710 ft . Center of mass 800 ft . back of measuring drawbar. 46 cars: 3 empty, 43 loaded. Kind of cars: 8 box, 35 gondola, 1 flat, 1 test, 1 caboose. Average weight per car $=47.44$ tons.

Fig. 27

Fig. 28

Test No．S－1030A

From Effingham to Mattoon，July 8，1908．Weather：Fair．Temperature： 60° F．at start， 68° F．at end of the test． Kind of cars： 32 gondola， 1 test，

ロ	әวนยาร！รวบ 	8	＋	
๙	$\cdot \mathrm{U} \cdot \mathrm{d} \cdot \mathrm{u}$ pəəds	\wedge	கฺஜฺஜฺ. ละํ	
7	＇ $\mathrm{C} \cdot \mathrm{d}$＇u ィчюотә」 		$\infty 000$	－000mmirooonco
은	ио！̣ววә！！̣｜ әุหu！ixoIddy			
∞	ә！！̣ய хәд ұәәェ имоб－ 	\bigcirc		아애앤우 여 11＋＋＋＋＋
∞		$\stackrel{\text { ® }}{ }$		
\sim		5		
\bullet	puoəәs ләd xnou ıəd sə！！̣ய ио！ұегәәә○ト	－		
5		8	Roిio	
＋				
∞				ตivivisio－i io 111 $1111 d$. Nịำ
a			のサレロ	
\cdots	јо рочдәณ			sentr ${ }^{6}$ วรึセมəлท Moपs \＆L 076 pue＇ 9 ＇＇s sumion uo！̣ขวS

\cdots		 	
$\stackrel{\sim}{\sim}$		 	
\because	1 0 0 0 0	NT-000<	®サーツ
응		 $++++++++$	
0		$191+++1++1$	둑
∞	$\begin{aligned} & \text { d } \\ & \mathbb{E}_{N}^{\prime N} \\ & \text { N } \end{aligned}$		
\bigcirc	$\begin{aligned} & \text { O} \\ & \mathbb{O}_{5} \\ & \text { on } \end{aligned}$		
\bullet	$\begin{aligned} & \dot{\Psi} \\ & \stackrel{\text { Un }}{4} \end{aligned}$		
15	$\begin{aligned} & \vec{\Xi} Q_{1} \\ & p_{1} \end{aligned}$		80888888.
$+$			NㅓㅇㅓN
∞	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i=1 \end{aligned}$	Eiod	
N	$\begin{aligned} & \text { g } \\ & \underset{H}{4} \end{aligned}$		
\cdots		səпโ® Кледаәи －OW MOYS ELOT 6 pue 9 ＂ 9 sumion qu！̣od	\＆І 076 рия 9 ＇s sumnto uо！̣อว

Fig. 29

Fig. 30
TABLE 47

From Ch Tota of m 1 cab	mpa weig ss 100 ose．	to Dorans behind meas t．back of m verage weig	July 22 uring asuring t per ca	908. awbar rawb $=20$ ．	ather： 747 ton 36 cars ons．	air． excl 30 em	emper ding t ty， 6 l	re： 70° test ca ed．K	at star Train le of cars：	$\begin{aligned} & 82^{\circ} \mathrm{F} \\ & \text { ghth }= \\ & 33 \text { box } \end{aligned}$	at en 25 ft gond	f test． Center ， 1 flat，
1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	Pull	$\underset{A}{\text { Accel. }}$	$\underset{V^{1}}{\text { Speed }}$	$\underset{V 2}{\text { Speed }}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	$\stackrel{\text { Speed }}{V}$	Resist－ ance R
	$\begin{array}{r} 4 \\ 6 \\ 10 \\ 13 \\ 19 \\ 20 \\ 21 \end{array}$	142.06 147.10 159.81 163.09 166.83 164.40 164.75		4700 2600 4200 4400 7900 12400 9650	$\begin{gathered} -0.0204 \\ 0 \\ 0 \\ 0 \\ 0 \\ +0.0275 \\ -0.0550 \end{gathered}$			$\begin{array}{r}-1.50 \\ -13.84 \\ -3.01 \\ -1.89 \\ \hline 10.20 \\ \hline-1.80 \\ \hline\end{array}$	$\begin{aligned} & +0^{\circ} \\ & +0^{\circ} \\ & +0^{\circ} \\ & +0^{\circ} \\ & +0^{\circ} \\ & +40^{\circ}{ }^{\circ}{ }^{\circ} 0^{\circ} \mathrm{L} \end{aligned}$	5 7 8 7 2 4 4	26.00 34.50 26.00 27.50 21.75 15.00 18.50	$\begin{aligned} & 7.25 \\ & 8.73 \\ & 6.76 \\ & 6.60 \\ & 6.70 \\ & 5.68 \\ & 6.95 \end{aligned}$
	3	139．57－140．36	4180	4350		26.70	26.70	-4.13	$+0^{\circ}$			
	4	143．90－144．25	4460	3900		29.75	29.75	－6．81	＋ 0°	5	30.10	7.76
	5	146．68－147．51	4405	2500		33.90	33.90	-13.65	$+0^{\circ}$	7	34.20	8.53
＋9\％	6	151．94－152．77	4390	4950		26.60	26.60	＋0．18	＋ 0°	4	26.60	6.56
๑．${ }^{\text {a }}$	7	155．70－156．45	4016	7100		22.00	22.00	＋ 9.60	-0°	4	22.00	6.01
＇0\％	12	149．00－149．53	${ }_{2}^{2760}$	4650		28.36	${ }^{27.77}$	± 0.77	$\pm 0^{\circ}$	7	28.50	7.36
．	14	153．88－154．74	4568	4380		27.61	25.62	＋2．14	-0°	5	27.10	${ }^{6.72}$
＂to ${ }^{\circ}$	15	160．31－160．78	$\stackrel{2468}{4412}$	4450 2900		25.95	28.94	-16.15	-0°	7	28.00	7.24
－	18	$147.51-148.35$	4312	2900		3353	31.36	-5.04	$+0^{\circ}$	7	32.70	8.07
的㬉	19 20	$153.20-153.87$ 164 164	3528 1812	4470 11800		28.30	28.30	－ 2.25	-0°		28.30	${ }^{6.85}$
品	20	$164.40-164.74$ $164.74-165.50$	1812 3980	11800 7700		15.00	${ }_{28}^{18.00}$	+13.70 +0.40	$\pm 0^{\circ}$	1	15.40	6.69
号	22	$164.74-165.50$ $159.63-159.16$	3980 2464	7700 5500		18.00 24.80	${ }_{23}^{2.75}$	－ 0.40	$+0^{\circ}$	5	20.90	6.65
రֹ¢	23	157．40－158．36	5064	5450		24.80 22.60	$\stackrel{23.65}{23.85}$	＋ +0.30 $+\quad .94$	$\pm 0^{\circ}$	5	24.00 23.30	${ }_{6}^{6.22}$
	24	146．17－146．68	2652	3000		31.90	33.50	-19.90	$+0^{\circ}$	7	32.90	${ }_{8.74}$
	25	161．24－161．62	2014	4100		30.5 C	30.50	－6．84	$+0^{\circ}$	6	30.50	8.09

＊For complete table heading see Table 36，p． 99.
From Champaign to Gilman, Sept. 26, 1908. Weather: Fair. 'Temperature: $66^{\circ}{ }^{\circ}$ F. at start, 82° F. at end of test. of mass 850 ft . back of measuring drawbar.

Fig. 31

Fig. 32
From Champaign to Mattoon, October 3, 1908. Weather: Fair. Temperature: 42° F. at start, 60° F. at end of test. of mass 1500 ft . back of measuring drawbar. 76 cars: 76 empty, 0 loaded. Kind of cars: 75 gondola, 1 caboose. Average weight per car $=16.56$ tons.

From Champaign to Gilman, October 10, 1908: Weather: Fair. 'Temperature: $40^{\circ} \mathrm{F}$. at Total weight behind measuring drawbar - 1961 tons, including the test car. Tra of mass 966 ft . back of measuring drawbar. 52 cars: 8 empty, 44 loaded. Kind of c 1 test, 1 caboose. Average weight per car $=37.72$ tons.												
1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	$\underset{P}{\text { Pull }}$	$\underset{A}{\text { Accel. }}$	$\underset{V_{1}}{\text { Speed }}$	$\underset{V_{2}}{\text { Speed }}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	$\underset{V}{\text { Speed }}$	Resistance R
	$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 19 \\ 21 \\ 23 \\ 26 \end{array}$	111.03 103.06 95.32 93.75 92.16 90.02 86.10 83.51 81.38 104.14 103.67 111.20 117.18 114.26 103.62		24350 30450 3300 3200 1800 5500 8750 7400 5800 14800 20150 23900 11800 15100 23450	0 0 0 0 0 0 0 0 0 -0.0440 -0.0620 -0.0260 0 -0.0070 -0.0440			+20.30 +30.10 -17.60 -11.55 -11.80 -8.90 -0.50 -4.70 +1.00 +68.03 +28.90 +0.96 +8.793 +89.93		5 3 11 8 7 7 3 5 4 5 9 4 4 5 10	9.14 5.73 36.65 31.50 29.15 29.50 21.60 24.75 22.50 18.14 12.90 9.90 16.23 12.54 10.90	4.71 4.12 8.35 6.01 5.39 6.17 4.65 5.55 4.85 5.65 5.20 5.19 6.32 4.99 5.07
	3 4 5 6 7 8 9 10 11 12 13 14	$118.27-117.73$ $117.73-117.18$ $111.20-110.68$ $101.46-101.01$ $96.30-95.71$ $94.14-93.40$ $90.51-90.02$ $89.18-88.72$ $83.72-82,99$ $81.99-81.64$ $104.61-103.13$ $109.85-109.10$	2888 2904 2768 2372 23100 3924 2572 2412 3856 2348 3884 3972	11850 11750 23900 17350 4600 3300 5850 6200 77250 6200 14700 11600		16.41 16.50 9.44 14.45 30.40 30.95 28.80 27.75 24.50 22.86 21.53 15.17	16.41 16.50 9.44 12.82 34.50 31.25 29.50 26.95 25.95 28.86 14.85 23.90	+0.18 +0.36 +18.70 +12.91 -28.45 -11.70 -9.96 -1.97 5.89 4.92 17.00 -17.22	$-500^{\circ} \mathrm{R}$ $-50{ }^{\circ} \mathrm{R}$ $-15{ }^{\circ} \mathrm{R}$ $-75^{\circ} \mathrm{R}$ $+80^{\circ} \mathrm{R}$ $-75^{\circ} \mathrm{R}$ $-70^{\circ} \mathrm{R}$ $-65^{\circ} \mathrm{R}$ $-25^{\circ} \mathrm{R}$ $-35^{\circ} \mathrm{R}$ $65^{\circ} \mathrm{R}$ $-70^{\circ} \mathrm{R}$	4 4 4 4 5 8 7 6 5 6 4 5 1	16.41 16.50 9.44 13.48 32.50 31.48 29.25 27.42 25.03 22.86 18.25 19.30	5.98 5.86 5.89 5.96 5.26 7.19 5.78 5.64 5.18 4.80 4.95 5.30 8.47

FIG. 33

Fig. 34

ILLINOIS ENGINEERING EXPERIMENT STATION
TABLE 51
From Champaign to Gilman，October 15，1908．Weather：Fair．Temperature： $58^{\circ} \mathrm{F}$ ．at start， $72^{\circ} \mathrm{F}$ ．at end of test． f mass 825 ft ．back of measuring drawbar． 41 cars： 3 empty， 38 loaded．Kind of cars： 7 box， 32 gondola， 1 test， 1 caboose．Average weight per car $=52.28$ tons．

$\mathfrak{\square}$		 	
$\underset{\sim}{\sim}$	$\begin{aligned} & \text { O} \\ & \otimes \\ & \dot{\sim} \\ & \stackrel{\sim}{\Omega} \end{aligned}$	8뇨 8 꿑 	
\exists	$\begin{aligned} & 2 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		
윽		コココココロコココココロロココココヘ inininaine in oेininocincinin 	inco ${ }^{\circ}$ Qి十十干十 ++ ＋+ ＋十
0		 $+++1++1+1+++11++1$	 $+111977171+7$
∞			
\sim	$\begin{aligned} & \text { O} \\ & \dot{0}=1 \\ & \dot{0} \end{aligned}$		
ω	$\begin{aligned} & \dot{\otimes} \\ & \stackrel{0}{e} \\ & \text { < } \end{aligned}$	$000000000000001900^{\circ}$	
15	$\begin{aligned} & \vec{\Xi} A \\ & a_{1} \end{aligned}$		
＋			ต
∞	$\begin{aligned} & 0_{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	 	 な 1
\sim	$\begin{aligned} & \neq ్ ప \\ & \text { H } \end{aligned}$		
－	$\begin{aligned} & \text { ర } \\ & 0 \\ & \text { din } \\ & \text { N } \end{aligned}$	 	\＆1 076 рия＇ 9 ＇q sumn＇o， uо！ұ02S

From Champaign to Gilman, October 24,1908 . Weather: Intermittent rain. Temperature: $57^{\circ} \mathrm{F}$. at start, $53^{\circ} \mathrm{F}$. at 1830 ft . Center of mass 900 ft . back of measuring drawbar. $47 \mathrm{cars}: 2$ empty, 45 loaded. Kind of cars: 21 box , 23 gondola, 1 tank, 1 test, 1 caboose. Average weight per car $=45.76$ tons.

1	2	3	4	5	6	7	8	9 ,	10	11	12	13
Method	Item	Mile Post	Section Length	$\underset{P}{\text { Pull }}$	$\underset{A}{\text { Accel. }}$	$\underset{V 1}{\text { Speed }}$	$\underset{V 2}{\text { Speed }}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	$\underset{V}{\text { Speed }}$	$\begin{aligned} & \text { Resist- } \\ & \text { ance } \end{aligned}$
	$\begin{array}{r} 6 \\ 10 \\ 12 \\ 15 \\ 16 \\ 20 \\ 23 \\ 24 \\ 25 \end{array}$	114.68 102.99 100.64 88.71 86.32 101.55 100.85 103.48 108.45		16500 28400 15100 8990 9850 8900 13600 23000 13200	0 0 0 0 0 -0.0441 -0.0194 -0.0511 -0.0255			+7.72 +27.10 +7.22 -1.53 -0.26 +9.53 -10.97 +30.00 +9.81	$+40^{\circ} \mathrm{R}$ $-20^{\circ} \mathrm{R}$ $-35^{\circ} \mathrm{R}$ $-20^{\circ} \mathrm{R}$ $-15{ }^{\circ} \mathrm{R}$ $-35^{\circ} \mathrm{R}$ $-30^{\circ} \mathrm{R}$ $-40^{\circ} \mathrm{R}$ $35^{\circ} \mathrm{R}$	$\begin{array}{r} 8 \\ 8 \\ 8 \\ 10 \\ 13 \\ 11 \\ 13 \\ 10 \\ 10 \\ 11 \end{array}$	$\begin{array}{r} 10.77 \\ 3.82 \\ 12.45 \\ 28.20 \\ 24.82 \\ 18.72 \\ 13.25 \\ 11.40 \\ 17.05 \end{array}$	$\begin{aligned} & 4.75 \\ & 2.92 \\ & 4.28 \\ & 4.71 \\ & 4.67 \\ & 4.66 \\ & 3.99 \\ & 4.13 \\ & 4.82 \end{aligned}$
	$\begin{array}{r} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{array}$	$90.52-90.03$ $89.29-88.52$ $86.32-95.91$ $83.83-83.16$ $93.64-93.20$ $83.83-83.00$ $106.10-105.70$ $103.87-104.64$	$\begin{aligned} & 2584 \\ & 3768 \\ & 2180 \\ & 3548 \\ & 2200 \\ & 4360 \\ & 1988 \\ & 4056 \end{aligned}$	$\begin{array}{r} 8500 \\ 8750 \\ 10150 \\ 7000 \\ 4000 \\ 77250 \\ 7750 \\ 15100 \end{array}$		28.70 28.80 24.62 26.70 22.37 26.70 29.20 22.75	29.62 28.20 24.62 27.10 21.74 27.80 29.85 16.70	-9.61 -1.64 -0.70 $=4.99$ $=5.04$ -5.82 -1.76 +17.20	$+25^{\circ} \mathrm{R}$ $+20^{\circ} \mathrm{R}$ $+15^{\circ} \mathrm{R}$ $+15^{\circ} \mathrm{R}$ $+20^{\circ} \mathrm{R}$ $-15{ }^{\circ} \mathrm{R}$ $+25^{\circ} \mathrm{R}$ $+20^{\circ} \mathrm{R}$	$\begin{array}{r} 13 \\ 13 \\ 11 \\ 12 \\ 12 \\ 12 \\ 13 \\ 9 \end{array}$	$\begin{aligned} & 29.36 \\ & 28.54 \\ & 24.77 \\ & 26.88 \\ & 23.10 \\ & 27.00 \\ & 30.10 \\ & 19,75 \end{aligned}$	$\begin{aligned} & 6.14 \\ & 5.33 \\ & 498 \\ & 4.72 \\ & 4.84 \\ & 4.64 \\ & 5.45 \\ & 4.56 \end{aligned}$

* For complete table heading see Table 36, p. 99,

Fig. 35

Fig. 36
From Champaign to Mattoon, November 7, 1908. Weather: Clear. Temperature: 38° F. at start, 53° F. at end of Train length $=2580 \mathrm{ft}$. Kind of cars: 15 box, 49

1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	$\underset{P}{\text { Pull }}$	Accel. A	$\underset{V 1}{\text { Speed }}$	$\underset{V 2}{\text { Speed }}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	$\underset{V}{\text { Speed }}$	Resistance R
	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 142.05 \\ & 143.05 \\ & 150.77 \\ & 156.70 \\ & 157.78 \\ & 168.23 \\ & 168.78 \\ & 147.29 \\ & 143.90 \end{aligned}$		$\begin{array}{r} 11300 \\ 9400 \\ 11000 \\ 113300 \\ 11700 \\ 17100 \\ 177000 \\ 7400 \\ 8650 \end{array}$	$\begin{gathered} 0 \\ +0.0124 \\ +0.0185 \\ 0 \\ 0 \\ 0 \\ +0.0106 \\ 0 \\ 0 \end{gathered}$			-0.14 -8.80 +2.00 -9.21 -2.97 -14.13 +14.21 -12.11 -7.96		$\begin{array}{r} 8 \\ 11 \\ 7 \\ 6 \\ 7 \\ 4 \\ 4 \\ 4 \\ 13 \\ 11 \end{array}$	24.35 28.70 19.50 15.80 17.75 12.55 11.80 32.30 27.75	$\begin{array}{r} 10.15 \\ 10.51 \\ 7.43 \\ 8.41 \\ 9.33 \\ 8.14 \\ 8.76 \\ 11.21 \\ 10.75 \end{array}$
	$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	$139.25-140.49$ $143.70-144.40$ $146.20-147.52$ $147.52-148.31$ $151.00-152.47$ $152.47-153.45$ $155.27-156.20$ $156.20-157.16$ $159.65-166.66$ $160.66-162.22$ $185.74-166.74$ $168.43-169.53$ $169.53-170.72$ $145.58-146.72$	6540 3652 6980 4172 7832 5112 4952 5028 5316 8248 5276 5792 6272 3276	10500 8800 7500 7660 1100 9450 13350 13850 18620 8500 1600 15400 11400 9150		24.70 27.96 29.43 32.10 20.00 22.50 16.33 15.75 18.80 22.75 20.25 12.40 16.27 26.90	25.50 26.87 32.10 30.42 22.50 23.90 15.75 17.00 22.75 20.90 18.02 18.27 22.15 29.40	-3.97 -5.12 -16.61 $=5.50$ $=0.03$ -4.70 +9.02 8.34 $=5.94$ 3.84 +7.04 +8.20 -7.87 -13.96		$\begin{array}{r} 8 \\ 11 \\ 13 \\ 13 \\ 9 \\ 10 \\ 6 \\ 6 \\ 6 \\ 8 \\ 8 \\ 7 \\ 4 \\ 9 \\ 11 \end{array}$	24.76 27.86 21.80 31.60 32.65 23.24 23.24 16.07 16.32 20.13 23.43 19.45 13.18 20	10.97 11.01 11.29 10.72 8.93 9.31 8.79 8.63 9.41 9.76 8.88 9.40 10.41 10.35

* For complete table heading see Table 36, p. 99.

ILLINOIS ENGINEERING EXPERIMENT STATION
 8 box $-2175 \mathrm{ft}$ （b） $=$ Train length Tr car． er：Fair．Temperature： 36 （a）－Champaign to Rantoul．
（b）－Rantoul to Ludlow．

$\underset{\sim}{\sim}$		न2 	8889
$\stackrel{\square}{\square}$	$\begin{aligned} & \text { ס} \\ & \otimes_{\Lambda} \\ & \dot{\sim} \end{aligned}$	 	
\exists	$\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$		12000150018
앙		 	
\bullet		 T＋$+++1++++++++1+1+7+$	
∞			がべゥのー்
\cdots		＊	※示に が
\bullet			
10	$\underset{B}{F}$	 	
＋			
∞		 	
\sim	$\begin{aligned} & \text { g } \\ & \underset{\sim}{\underset{H}{0}} \end{aligned}$		ャッパース
\square	$\begin{aligned} & \text { ס } \\ & \text { O } \\ & \text { + } \\ & \text { 心 } \end{aligned}$	 7u！ण्d	sวnten Өภื่ォəムV MOपS 81076 рив я sumino प0！1702S

Fig. 37

Fig. 38

ILLINOIS ENGINEERING EXPERIMENT STATION

					L 55	TEST	. $\mathrm{S}-$					
From Champaign to Mattoon, January 23, 1909. Weather: Fair. Temperature: 53° F. a Total weight behind measuring drawbar $=1618$ tons, excluding the test car. Train of mass 660 ft . back of measuring drawbar. 40 cars: 16 empty, 24 loaded. Kind caboose. Average weight per car $=40.44$ tons.												
1	2	ε	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	$\underset{P}{\text { Pull }}$	$\underset{A}{\text { Accel. }}$	$\begin{gathered} \text { Speed } \\ V 1 \end{gathered}$	$\begin{gathered} \text { Speed } \\ V 2 \end{gathered}$	Grade G	Direction	Velocity	${ }_{\text {Speed }}$	Resistance R
ठ	1	141.33		7800	0			-1.50	$+0^{\circ}$		27.20	5.39
สิจ	2	142.12		7900	0			-1.83	$+11^{\circ} \mathrm{R}$	5	28.55	5.57
- c^{0}	3	144.65		7500	0			-4.04	$+0^{\circ}$	7	30.20	6.17
${ }^{-\infty}$	3	145.56		6050	0			-5.25	$+0^{\circ}$	6	31.70	5.73
	5	147.33		4550	0			-9.46	$+0^{\circ}$	6	38.00	6.40
"ondm	6	153.18		5900	0			-6.81	$+65^{\circ} \mathrm{R}$	6	29.46	6.23
	7	155.97		14900	0	,		$+9.32$	$-60^{\circ} \mathrm{R}$	8	16.55	5.68
回	8	157.87		7250	0			+ 0.88	$-45^{\circ} \mathrm{R}$	6	15.18	4.15
응	9	156.97		14100	0			+8.15	$-60^{\circ} \mathrm{R}$	11	17.77	5.62
oi	10	158.87		10400	0			+1.08	$-60^{\circ} \mathrm{R}$	14	20.95	6.02
	1	139.00-140.21	6420 7116	9100 8200		23.14	${ }_{2}^{25.72}$	-3.91	$\pm 40^{\circ} \mathrm{R}$	3 4	24.31 26.95	5.75 5.97
	2	140.21-141.56	7116	8200		27.50	29.10	-4.85	$+10^{\circ} \mathrm{R}$	5	27.23	5.67
B	4	142.93-143.80	4616	7100		29.00	31.22	-8.92	$+0^{\circ}$	7	30.00	5.76
O	5	143.80-145.16	7220	6950		31.22	31.20	-4.17	$+0^{\circ}$	7	30.78	5.89
\%	6	146.25-147.49	6560	4950		35.30	37.90	-15.13	+ 0°	6	37.30	6.79
On	7	148.22-148.91	3632	4950		36.25	3382	$+1.67$	$+15^{\circ} \mathrm{R}$	6	35.36	5.68
-3	8	150.79-151.78	5216	6950		30.20	29.10	-0.40	$+35^{\circ} \mathrm{R}$	4	29.63	5.32
¢\%	9	151.78-152.57	4196	7400		29.10	2 \%. 55	+ 0.06	+60 ${ }^{\circ} \mathrm{R}$	5	28.60	5.08
-	10	152.57-153.18	3176	7500		28.55	29.46	-5.94	$+65^{\circ} \mathrm{R}$	6	28.87	5.74
	11	156.11-156.97	4552	14800		16.90	17.77	$+8.15$	$-80^{\circ} \mathrm{R}$	11	17.25	5.60
-	12	157.48-158.25	4016	8850		17.23	17.23	+1.01	$-45^{\circ} \mathrm{R}$	6	16.11	5.09
0210	13	159.30-159.87	3032	13550		19.77	19.77	+5.48	$-60^{\circ} \mathrm{R}$	14	19,70	6.29
¢	14	160.80-161.79	5212	7750		26.64	26.64	-5.68	-60 ${ }^{\circ} \mathrm{R}$	14	27.35	6.94
当	15	163.59-163.28	3644	9200		22.90	24.37	-4.35	$-55^{\circ} \mathrm{R}$	12	23.66	6.01
\bigcirc	16	164.96-165.66	3696	10550		20.37	21.73	-0.16	- $30^{\circ} \mathrm{R}$	9 8	21.00 19.40	5.51 5.01
0	17 20	$166.19-166.84$ $165.66-166.19$	3412 2828	11800 10000		20.55 21.73	18.60 20.55	+10.13 +5.45	$\underline{-25}{ }^{\circ} \mathrm{R}$	8	19.40 21.41	5.01 5.34
	20 21	$165.66-166.19$ $159.87-160.62$	2828 3956	10000 10400		21.73 19.77	20.55 25.55	+10.13 -11.88	- $60^{\circ} \mathrm{R}$	13	22.46	6.34
	22	147.49-148.22	3860	4700		37.80	36.25	-5.27	$+10^{\circ} \mathrm{R}$	7	37.60	6.96
	23	145.16-146.25	5716	6600		31.20	35.30	-13.76	$+0^{\circ}$	6	32.50	5.99

Fig. 39

Fig. 40

ILLINOIS ENGINEERING EXPERIMENT STATION

ท

ベロ～に

ザ～ザ

 Nom

səпโ飞 Λ әภiciə moपs \＆i ot 6 pue＇e sumuto廿о！̣ə0əS
From Champaign to Gilman, March 6, 1909. Weather: Fair. Temperature: $34^{\circ} \mathrm{F}$. at start, $40^{\circ} \mathrm{F}$. at end of test. Total weight behind measuring drawbar $=2107$ tons, including the test car. Train length $=1830 \mathrm{ft}$. Center 1 tank, 1 test, 1 caboose. Average weight per car $=41.32$ tons. 1 tank, 1 test, 1 caboose.
※i゚

[^11]
moqs \&I of 6 pur c sumnion
廿о!ุวәอ

From Champaign to Gilman, March 13, 1909. Weather: Fair. Temperature: 41° F. at start, 38° F. at end of test. of mass 850 ft . back of measuring drawbar. 44 cars: 3 empty, 41 loaded. Kind of cars: 37 Gondola, 5 flat, 1 test, 1 caboose. Average weight per car $=51.20$ tons.

1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	$\underset{P}{\text { Pull }}$	Accel. A	$\underset{V_{1}}{\text { Speed }}$	$\begin{gathered} \text { Speed } \\ V 2 \end{gathered}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	$\underset{V}{\text { Speed }}$	Resistance R

 ヘiso

моч: \&i 076 pareq sumnto
पо!̣ขəS

* For complete table heading see Table 36, p. 99

Fig. 41

Fig. 42

Test No. S-1063*

From Champaign to Mattoon, March 19, 1909. Weather: Intermittent rain. Temperature: $39^{\circ} \mathrm{F}$. at start, $40^{\circ} \mathrm{F}$. at ft. Center of mass 1200 ft . back of measuring drawbar. 74 cars: 70 empty, 4 loaded. Kind of cars: 4 box, 69 gondola, 1 caboose. A verage weight per car $=20.04$ tons.

1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	$\begin{gathered} \text { Pull } \\ P \end{gathered}$	$\underset{A}{\text { Accel. }}$	$\underset{V_{1}}{\text { Speed }}$	$\underset{V 2}{\text { Speed }}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	${ }_{V}^{\text {Speed }}$	$\begin{gathered} \text { Resist- } \\ \text { ance } \\ R \end{gathered}$
	910111213141415181819	141.71-142.84	6000	10800		20.7420.7422.9122.1022.7127.2128.6128.0028.0520.3514.3015.1015.2417.7327.7021.6918.1119.8013.9511.96						
		143.53-144.45	4900 4872	10800 8850 9800						${ }_{14}^{13}$	20.45 2.45 23.00 2.00	$\begin{aligned} & 8.20 \\ & 8.29 \\ & 8.15 \\ & 8.12 \end{aligned}$
		${ }_{\text {145.34-146.42 }}$	${ }_{5700}^{4672}$	980088508000						15		
		- $1146.42-147.20$	4144							15	28.25	
		$147.20-147.83$ $147.83-148.60$	-3336	6900 6700 7000						15	28.40	8.69 8.64
		$147.83-148.60$ $152.50-153.52$	4064	7200 10100						15 13	26.40 21.10	${ }_{7} 7.66$
		155.78-156.82	5484	1805018000						10	14.40	
		156.82-157.37	2912							10	15.30	7.10 7.71
		$157.37-158.16$ $158.16-159.35$	4156 6338							10 10	16.20 19.65	
		161.21-161.48	1472 148 18	$\begin{array}{r} 12450 \\ 9200 \end{array}$						13	25.00	8.14 8.79
		162.17-163.12	5028	1200013200						12	20.75	8.097.85
		${ }_{165.07-165.77}^{185}$	3720							12	19.25	
		$165.77-186.85$ $169.38-169.66$	5880 1492	130501495022200						12 9	18.70 14.55	7.24 8.08 8.08
		171.55-171.71	870							8	10.78	6.84

[^12]| 9 | |
 |
| :---: | :---: | :---: |
| ～ | |
 |
| \exists | $\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \\ & p \end{aligned}$ | |
| 윽 | | コーニコニコココココンココココヘコココムコ
 $+++++++++++++++++++11111$ |
| ∞ | 范 |

 |
| ∞ | |
 |
| \cdots | |
 |
| \bullet | | |
| 15 | $\begin{aligned} & \text { İ } \\ & \text { in } \end{aligned}$ | 示忈示 |
| ＋ | |
 |
| ∞ | $\begin{aligned} & 0_{2}^{2} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & i=1 \end{aligned}$ |

 |
| － | $\begin{aligned} & \text { E } \\ & \underset{\sim}{\mathbf{~}} \end{aligned}$ | |
| \rightarrow | | sənteム əsิeıəムv moपs \＆i 076 pur c sumnion u0！102S |

Fig. 43

Fig. 44

SCHMIDT-FREIGHT TRAIN RESISTANCE weight benind measuring drawbar $=1859$ tons, excluding the test car. Train length $=1200 \mathrm{ft}$. Center of mass weight per car $=66.40$ tons.

9		
$\underset{\sim}{\sim}$		
\exists	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & 0 \\ & > \end{aligned}$	
윽		 $t+t+++1+1++++1++++++++++1+++$
∞	E	 $+1++1++1 T 1+1\|+7+++1\| 1\|1\| 1\|1\| 1\|+1++1\|$
∞		
-		
∞		
10	$\begin{aligned} & \text { Ï } \\ & \text { an } \end{aligned}$	
*	$\begin{aligned} & \text { 톱 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { Wn 0 } \end{aligned}$	
\cdots		 TM T1 l 1
N	$\begin{aligned} & \text { G } \\ & \underset{\sim}{ \pm} \end{aligned}$	
\cdots	$\begin{aligned} & \text { © } \\ & \text { O } \\ & \text { N } \\ & \text { N } \end{aligned}$	sənfeム әŝejəav moपs ๕ા 076 рия с suunto u0!!02S

ILLINOIS ENGINEERING EXPERIMENT STATION

Fig. 45

Fig. 46

* For complete table heading see Table 36, p. 99.

1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	$\underset{P}{\text { Pull }}$	$\begin{gathered} \text { Accel. } \\ A \end{gathered}$	$\underset{V_{1}}{\text { Speed }}$	Speed V2	Grade G	Direction	Velocity	Speed	Resistance R
	1	117.91-117.15	3976	8450		28.52	28.80	$+0.40$	$+55^{\circ} \mathrm{R}$	19	28.60	4.23
	2	117.15-116.10	5588	8700		28.80	27.82	+ 3.02	$+55^{\circ} \mathrm{R}$	19	28.20	4.32
	3	116.10-115.38	3820	8900		27.88	27.10	+3.87	$+55^{\circ} \mathrm{R}$	19	27.40	4.13
	4	114.77-114.28	2620	11000		24.78	23.70	+ 7.86	+ $60^{\circ} \mathrm{R}$	18	23.80	4.44
	5	113.24-112.56	3590	8900		25.95	31.60 30.09	15.60 +5.48	+ $+55^{\circ} \mathrm{R}$ $+55^{\circ} \mathrm{R}$	21 21	28.90 31.80	4.63 4.45
	6	112.56-112.04	2795	7550		31.60	30.02	+5.48	$+55^{\circ} \mathrm{R}$ $+60^{\circ} \mathrm{R}$	21 17	31.80 22.90	4.45 3.79
	8	$112.04-111.16$ $111.16-110.64$	4710 2670	11050 14250		30.02 18.27	18.27 15.09	+27.70 +18.60	$+60^{\circ} \mathrm{R}$ $+65^{\circ} \mathrm{R}$	17 13	22.90 16.50	3.79 3.50
	8 9	$111.16-110.64$ $110.64-110.34$	2670 1575	14250 16000		18.27 15.09	15.09 15.25	+18.60 +13.40	+65 ${ }^{\text {R }}$	13	14.30	3.51
	10	110.34-109.94	2130	13650		15.25	19.25	-0.99	+65 ${ }^{\circ} \mathrm{R}$	13	17.10	3.49
	11	119.94-109.56	2015	11650		19.25	24.12	-12.83	+ $60^{\circ} \mathrm{R}$	17	21.10	4.13
	12	109.56-109.20	1940	9000		24.12	28.75	-21.76	+ $60^{\circ} \mathrm{R}$	17	26.40	4.60
	13	109.20-108.30	4700	7950		28.75	27.92	+ 2.70	+ $60^{\circ} \mathrm{R}$	17	29.20	4.03
	14	106.93-106.26	3550	7700		35.26	38.38	-14.55	+750 ${ }^{\circ}$	16	37.10	5.35
	15	106.26-105.34	4855	6250		38.38	37.40	-2.61	+ $75^{\circ} \mathrm{R}$	16	39.00	5.47
	16	105.34-104.25	5780 3180	7050		37.40	30.45	$+12.96$	+ $75^{\circ} \mathrm{R}$	16	34.40	4.53
	17	104.25-103.65	3180	8200		30.98	23.57	+25.08	$+75^{\circ} \mathrm{R}$ $+75^{\circ} \mathrm{R}$	16	27.10 18.50	3.69 393
	18	103.65-103.16	2580	12250		23.57	14.80	+30.90	+ $75^{\circ} \mathrm{R}$	16	18.50 32.50	3.93 5
	19	98.06-97.43	3340	2200		30.20	34.75	-26.70	$+60^{\circ} \mathrm{R}$ $+60^{\circ} \mathrm{R}$	28 28	32.50 35.60	5.28 4.77
	20	97.43-96.79	3404	1300		34.75 24.65	35.75 93.12	-14.40	+ $60^{\circ} \mathrm{R}$	16	35.90 3.90	4.77 3.93
	21 22	$90.42-89.63$ $87.62-87.40$	4204 1180	650 7250		24.65 4.13	23.12 6.93	-6.28	- $50^{\circ} \mathrm{R}$ $+45^{\circ} \mathrm{R}$	16 5	23.90 4.73	3.93 3.05
	23	$87.40-86.94$	2405	2150		6.93	5.73	-3.07	+ $45^{\circ} \mathrm{R}$	5	8.42	2.77
	24	$86.46-85.84$	3288	4950		7.53	8.90	- 1,60	$+40^{\circ} \mathrm{R}$	6	7.88	2.86
	25	$85.84-85.21$	3344	2700		8.90	10.33	-5.53	+ $40^{\circ} \mathrm{R}$	6	10.36	3.02
	26	$8388-83.09$	4170	7800		23.00	25.03	-5.82	$+60^{\circ} \mathrm{R}$	21	$\stackrel{23.70}{ }$	4.90
	27	83.09-82.40	3652	6100		25.03	27.21	-9.11	$+60^{\circ} \mathrm{R}$	21	26.20	4.69

Fig. 47

Fig. 48

Test No. S-1077*
 TABLE 65

From Champaign to Mattoon, May 14, 1909. Weather: Fair. Temperature: 6
weipht behind matare: $64^{\circ} \mathrm{F}$. at start, $70^{\circ} \mathrm{F}$. atend of test. Total 930 ft . back of measuring drawbar. 53 cars: $35 \mathrm{empty}, 18$ loaded. Kind of cars. 37 box . 14 . Center of mass caboose. Average weight per car $=28.40$ tons.

1	2	3	4	5	6	7	8	9	10	11	12	13
Method	Item	Mile Post	Section Length	Pull	Accel. A	$\underset{V 1}{\text { Speed }}$	$\underset{V 2}{\text { Speed }}$	$\underset{G}{\text { Grade }}$	Direction	Velocity	$\underset{V}{\text { Speed }}$	Resistance R
	1	139.56-140.29	3885	8900		22.56	22.18					
	${ }_{3}^{2}$	140.29-141.04	3930	8650		22.18	23.05	- 7.00	${ }_{-65}{ }^{\circ} \mathrm{R}$	14	22.00 22.30	7.77 7.70
	4	142.04-142.03	5785 3820	9000 8850		$\stackrel{23.05}{ }$	21.33	-0.70	-65 ${ }^{\circ} \mathrm{R}$	14	21.90	7.18
	5	142.85-143.65	4195	8050		${ }_{23}^{21.33}$	$\stackrel{23.20}{ }$	- 7.20	$-65^{\circ} \mathrm{R}$	13	21.70	7.08
	6	143.65-144.07	2200	7700		${ }_{25.15}^{23.20}$	$\stackrel{25.15}{25.40}$	-9.20 -7.00	-65 ${ }^{\circ} \mathrm{R}$	13	23.80	7.26
	7	146.08-147.07	5235	7000		27.31	31.55		- $65^{\circ}{ }^{\circ} \mathrm{R}$	13	25.00	7.37
	8	147.07-148.03	5555	7350		31.55	31.20	-18.90 -8.60	- $75{ }^{\circ} \mathrm{R}$ -75	19	29.75	8.47
	9	148.13-148.62	2630	7350		31.20	29.27	+ 1.40	-75 ${ }^{\circ} \mathrm{R}$ R	19 19	31.60 29.90	8.42
	11	149.09-149.53	2350	8350		27.76	26.72	- 0.20	-75 ${ }^{\circ} \mathrm{R}$	13	${ }_{26.70}$	7.47 7.33
	12	150.98-151.79	4310	8100 8750		${ }_{25.35}^{27.09}$	25.35	-0.30	-750 R	13	25.90	6.90
	13	154.82-155 50	3620	10300		${ }_{22.45}^{25.35}$	${ }_{19}^{25.45}$	$\bigcirc 0.30$	-75 ${ }^{\circ} \mathrm{R}$	13	24.50	6.65
	14	155.50-156.11	3190	11400		19.70	19.70 17.25	-7.90	- $55^{\circ}{ }^{\circ} \mathrm{R}$	12	20.50	6.09
	15 18	$156.11-156.65$ $1565-15 \%$	2900	12450		17.25	11.42	- 9.60 9.50	$-50^{\circ} \mathrm{R}$ $-55^{\circ} \mathrm{R}$	12	18.10	5.94
	${ }_{17}^{16}$	156.65-157.79	2840	12650		16.42	16.19	+ 7.10	$-55{ }^{\circ} \mathrm{R}$ -5	12	16.40 16.10	5.35
	18	$158.01-158.66$ $164.89-165.17$	3440 1484	11000 6950		18.27	21.58	-4.90	$-65^{\circ} \mathrm{R}$	12	19.50	${ }_{6.53}$
	19	165.17-165.63	2458	4950		10.90 10.18	10.18	-15.20	$-30^{\circ} \mathrm{R}$	8	10.40	4.66
	20	165.63-166.01	2036	7600		10.18 7.98	7.98 7.22	- 0.40	$-30^{\circ} \mathrm{R}$	8	8.80	4.59
	21	166.21-166.53	1664	15000		8.57	10.17	- 10.80	- $30{ }^{\circ} \mathrm{R}$	8	7.80	4.46
	${ }_{23}^{22}$	$166.53-166.87$ $166.87-167.23$	1812 $18 \% 6$	13500 12650		10.17	10.33	+9.30 +9.10	$-25^{\circ} \mathrm{R}$	10	9.40 10.30	4.60
		166.87-167.23	1876	12650		10.33	11.55	$+5.10$	$-25^{\circ} \mathrm{R}$	10	10.\%	5.48

From Champaign to Gilman, May 18, 1909. Weather: Fair. Temperature: 65° F. at start, 68° F. at end of test. Total 1015 ft . back of measuring drawbar. 51 cars: 14 empty, 37 loaded. Kind of cars: 45 box, 5 gondola, 1 caboose Average weight per car $=33.04$ tons.

Fig. 49

Fig. 50

From Champaign to Mattoon，May 21，1909．Weather：Fair．Temperature： 50° F．at start， 70° F．at end of test． Train length $=2550 \mathrm{ft}$ ．（enter 2550 ft ． 53 gondola， 1 test， car． of mass 920 ft ．back of measuring drawbar． 63 cars： 57 empty， 6 loaded．

$\stackrel{\square}{\square}$		
$\stackrel{\sim}{\sim}$	$\begin{aligned} & \ddot{\otimes} \\ & \stackrel{\otimes}{\omega} \\ & \dot{\sim} \end{aligned}$	
च	$\begin{aligned} & \text { त्ల్ } \\ & \text { O } \\ & \stackrel{0}{0} \end{aligned}$	
윽		
∞		
∞		
\sim	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{0}{0} \\ & \vdots \end{aligned}$	
\bullet	$\begin{aligned} & \dot{U} \\ & \stackrel{⿺}{4} \\ & \hline \end{aligned}$	＊
15	\#̈	R8888： IJo
＋		が
∞		 TITDTdTIT1 1
\sim	$\underset{\sim}{\underset{\sim}{0}}$	
\square		səntra әsirizav Moपs el of 6 pue c sumion ио！̣əәS

APPENDIX 6

APPENDIX 6

Exact Coordinates for the Curves of Fig. 10 and 11.
The original drawings from which Fig. 10 and 11 have been reproduced were drawn to a scale about twice as great as that of the cuts shown in the report. From these original drawings, the values of the coordinates of the various curves of both figures have been determined as accurately as possible; and these values are presented in Tables 68 and 69.

The curves of Fig. 10 (and of Fig. 3 to 9) may be accurately reproduced by the use of Table 68; the curves of Fig. 11 may be reproduced from the values given in Table 69. The tables are presented merely to permit the accurate reproduction, to any scale, of the curves of the report; they are not intended for use in determining values of resistance. For the latter purpose Table 3 is more convenient and sufficiently accurate.

TABLE 68

Valués of Resistance for Trains of Various Average Car Weights and for Different Speeds

This table presents the co-ordinates of the original curves from which Figures 3 to 9 and Figure 10 were reproduced.

Average Weight Per Car tons		Train Resistance-Pounds Per Ton							Average Weight Per Car tons	
		Column Headings Indicate the Various Speeds								
		5	10	15	20	25	30	35		
15		7.62	8.20	8.81	9.56	10.37	11.24	12.25		15
	16	7.44	8.00	8.61	9.34	10.13	10.98	11.95	16	15
	18	7.10	7.63	8.22	8.92	9.68	10.47	11.39	18	
	20	6.77	7.30	7.85	8.53	9.26	10.00	10.89	20	
	$\stackrel{22}{24}$	6.45	6.97	7.49	8.16	8.84	9.56	10.41	22	
25	24	6.16 6.02	6.64 6.50	7.14 6.98	7.79	8.46	9.16	9.94	24	
	26	5.88	6.35	6.81	7.62	8.28	8.95	9.72		25
	28	5.61	6.07	6.51	7.11	7.76	8.40	9.12	28	
	30	5.38	5.80	6.23	6.80	7.43	8.05	8.75	30	
	32	5.13	5.54	5.98	6.51	7.12	7.72	8.40	32	
	34	4.92	5.31	5.72	6.24	6.82	7.40	8.06	34	
35		4.82	5.20	5.61	6.11	6.68	7.26	7.91	34	35
	36	4.72	5.10	5.50	5.99	6.55	7.11	7.77	36	35
	38	4.55	4.90	5.28	5.74	6.29	6.83	7.48	38	
	40	4.38	4.70	5.06	5.50	6.03	6.57	7.20	40	
	42	4.22	4.52	4.88	5.29	5.80	6.32	6.95	42	
	44	4.08	4.38	4.70	5.09	5.59	6.10	6.71	44.	
45		4.01	4.30	4.61	4.99	5.49	6.00	6.60	-	45
	46	3.95	4.21	4.52	4.90	5.38	5.90	6.49	46	
	48	3.82	4.08	4.38	4.71	5.20	5.71	6.28	48	
	50	3.72	3.96	4.24	4.56	5.03	5.52	6.10	50	
	52 54	3.61 3.52	3.85 3.75	4.11 3.99	4.42	4.88	5.36	5.91	52	
55	5	3.48	3.71	3.99 3.94	4.30 4.25	4.74 4.68	5.20 5.12	5.74 5.67	54	
	56	3.43	3.67	3.90	4.20	4.68 4.62	5.05	5.67 5.60	56	55
	58	3.37	3.58	3.81	4.10	4.50	4.93	5.47	58	
	60	3.30	3.50	3.73	4.02	4.42	4.83	5.36	60	
	62	3.23	3.44	3.67	3,97	4.34	4.74	5.27	62	
	64	3.18	3.39	3.60	3.90	4.29	4.68	5.18	64	
65		3.15	3.36	3.58	3.88	4,25	4.64	5.14		65
	66	3.12	3.32	3.55	3.85	4.22	4.61	5.11	66	65
	68	3.09 3.05	3.30	3.50	3.80	4.18	4.57	5.06	68	
	70	3.05	3.26	3.47	3.76	4.13	4.52	5.01	70	
	72	3.02	3.22	3.44	3.73	4.10	4.49	4.98	72	
	74	3.01	3.19	3.42	3.71	4.08	4.48	4.93	74	
75		3.00	3.18	3.41	3.70	4.07	4.47	4.91		75

TABLE 69

Values of Resistance at Various Speeds and for Trains of Different Average Weights Per Car

This table presents the co-ordinates of the original curves from which Fig. 11 is reproduced

Speed miles per hour	Train Resistance-Pounds Per Ton													Speed miles per hour
	Column Headings Indicate the Average Weights Per Car													
	15	20	25	30	35	40	45	50	55	60	65	70	75	
	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	tons	
5	7.62	6.77	6.02	5.38	4.82	4.39	4,01	3.72	3.49	3.30	3,16	3.05	3.00	5
6	7.73	6.86	6.12	5.46	4.90	4.43	4.07	3.77	3.52	3.33	3.19	3,08	3.03	6
7	7.83	6.97	6.21	5.53	4.98	4.50	4.12	3.81	3.56	3.37	3.23	3.12	3.07	
8	7.96	7.06	6.31	5.62	5.04	4.57	4.18	3.86	3,60	3.40	3.26	3.16	3.10	8
9	8.07	7.18	6.40	5.71	5.11	4.62	4.22	3.90	3.64	3.44	3.30	3.20	3.13	9
10	8.19	7.29	6.50	5.80	5,20	4.69	4.28	3.96	3.69	3.49	3.34	3.24	3.18	10
11	8.30	7.40	6.60	5.90	5.29	4.76	4.33	4.00	3.73	3.52	3.38	3.29	3.21	I1
12	8.42	7.51	6.71	5.98	5.37	4.83	4.40	4.04	3.78	3.58	3.42	3.33	3.26	12
13	8.56	7.63	6.81	6.08	5.46	4.90	4.47	4.11	3.83	3.62	3.47	3.38	3.31	13
14	8.70	7.76	6.92	6.18	5.53	4.98	4.53	4.18	3.89	3.68	3.52	3.43	3.36	14
15	8.82	7.88	7.01	6.28	5.64	5.06	4.60	4.24	3.94	3.73	3.57	3.48	3,41	15
16	8.98	8.00	7.12	6.39	5.73	5.13	4.68	4.31	4.00	3.80	3.62	3.53	3.47	16
17	9.10	8.13	7.24	6.49	5.82	5.23	4.75	4.38	4.05	3.86	3.68	3,60	3.52	17
18	9.25	8.27	7.37	6.60	5.92	5.32	4.83	4.45	4.12	3.92	3.74	3.66	3.58	18
19	9.40	8.40	7.49	6,71	6.01	5.41	4.91	4.52	4.19	3.98	3.81	3.72	3.64	19
20	9.56	8.53	7.60	6.82	6.11	5.50	5.00	4.60	4,27	4.04	3.88	3.79	3.71	20
21	9.71	8.69	7.72	6.93	6.22	5.60	5.08	4.69	4.32	4.11	3.94	3.85	3.78	21
22	9.88	8.82	7.86	7.03	6.33	5.70	5.17	4.78	4.41	4.18	4.00	3.92	3.84	22
23	10.02	8.97	7.99	7.14	6.44	5.80	5.27	4.86	4.49	4.25	4.07	3.99	3.92	23
24	10.20	9.11	8.11	7.27	6.55	5.90	5.37	4.94	4.58	4.33	4.15	4.06	3.98	24
25	10.37	9.26	8.25	7.40	6.67	6.01	5.46	5.03	4.66	4.41	4.23	4.13	4.04	25
26	10.52	9.42	8.38	7.52	6.79	6.11	5.57	5.12	4.75	4.50	4.31	4.21	4.12	26
27	10.71	9.57	8.51	7.65	6.91	6.21	5.67	5.22	4.83	4.58	4.40	4.29	4.20	27
28	10.89	9.72	8.67	7.78	7.01	6.33	5.78	5.32	4.92	4.67	4.48	4.38	4.29	28
29	11.06	9.89	8.81	7.91	7.12	6.45	5.88	5.43	5.01	4.76	4,57	4.46	4.36	29
30	11.25	10.03	8.96	8.04	7.26	6.58	5.99	5.53	5.11	4.86	4.66	4.53	4.45	30
31	11.43	10.20	9.10	8.18	7.39	6.71	610	5.64	5.21	4.95	4.75	4.63	4.53	31
32	11.63	10.37	9.26	8.31	7.51	6.83	6.21	5.76	5.32	5.04	4.85	4.73	4.62	32
33	11.84	10.53	9.41	8.46	7.63	6.96	6.33	5,87	5.43	5.15	4.95	4.83	4.72	33
34	12.04	10.71	9.57	8.60	7.78	7.08	6.47	5.99	5.54	5.26	5.05	4.92	4.82	34
35	12.25	10.89	9.72	8.75	7.91	7.20	6.60	6.10	5.67	5.36	5.16	5.01	4.92	35
36	12.47	11.07	9.89	8.90	8.04	7.35	6.73	6.23	5.78	5.48	5.27	5.12	5.01	36
37	12.69	11.23	10.04	9.04	8.19	7.49	6.87	6.36	5,90	5.59	5.38	5.22	5.12	37
38	12.91	11.42	10.21	9.20	8.33	7.64	7.00	6.49	6.02	5.71	5.48	5.33	5.22	38
39	13.12	11.61	10.39	9.36	8.48	7.79	7.13	6.63	6.15	5.83	5.60	5.44	5.33	39
40	13.35	11.80	10.55	9.51	8.62	7.93	7.29	6.78	6.28	5.95	5.72	5.55	5.45	40

UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

LIST OF PUBLICATIONS

*Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904.
*Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905.
*Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905.
*Circular No. 2. Drainage of Earth Koads, by Ira O. Baker. 1906.
Circular No. 3. Fuel Tests with Illinois Coal. (Compiled from tests made by the Technologic Branch of the U. S. G. S., at the St, Louis, Mo., Fuel Testing Plant, 1904-1907, by L. P. Breckenridge and Paul Diserens. 1909.
*Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906.
*Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.
*Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906.
*Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. . 1906.
*Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906.
*Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1906.
*Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1908.
*Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907.
*Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907.
*Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1908, by Arthur N. Talbot. 1907.
*Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.
*Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907.

Bulletin No. 15. How to Burn Illinois Coal without Smoke, by L. P. Breckenridge. 1908.
Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908.
*Bulletin No. 17. The Weathering of Coal, by S. W. Parr, N. D. Hamilton, and W. F. Wheeler. 1908.

Bulletin No. 18. The Strength of Chain Links, by G. A. Goodenough and L. E. Moore 1908.
*Bulletin No. 19. Comparative Tests of Carbon, Metallized Carbon and Tantalum Filament Lamps, by T. H. Amrine. 1908.
*Bulletin No. 20. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, by Arthur N. Talbot. 1908.

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. 1808.
*Bulletin No. 22. Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N. Talbot. 1908

[^13]
PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION—(Continued)

Bulletin No. 23. Voids, Settlement and Weight of Crushed Stone, by Ira O. Baker. 1908.
Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation, by S. W. Parr and C. K. Francis. 1908.

Bulletin No. 25. Lighting Country Homes by Private Electric Plan'ts, by T. H. Amrine. 1908.

Bulletin No. 26. Higb Steam-Pressures in Locomotive Service. A Review of a Report to the Carnegie Institution of Washington, by W. F. M. Goss. 1908.

Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909.

Bulletin No. 28. A Test of Three Large Reinforced Concrete Beams, by Arthur N. Talbot. 1909.

Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, Series of 1907 and 1908, by Arthur N. Talbot. 1909.

Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams, and C. N. Haskins. 1909.

Bulletin No. 31. Fuel Tests with House-heating Boilers, by J. M. Snodgrass. 1909.
Bulletin No. 32. The Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909.
Bulletin No. 33. Tests of Tungsten Lamps, by T. H. Amrine and A. Guell. 1909.
Bulletin No. 34. Tests of Two Types of Tile Roof Furnaces under a Water-tube Boiler, by J. M. Snodgrass. 1909.

Bulletin No. 35 A Study of Base and Bearing Plates for Columns and Beams, by N. Clifford Ricker. 1909.

Bulletin No. 36. The Thermal Conductivity of Fire-Clay at High Temperatures, by J. K. Clement and W. L. Egy. 1909.

Bulletin No. 37. Unit Coal and the Composition of Coal Ash, by S. W. Parr and W. F. Wheeler. 1909.

Bulletin No. 38. The Weathering of Coal, by S. W. Parr and W. F. Wheeler. 1909.
Bulletin No. 39. Tests of Washed Grades of Illinois Coal, by C. S. McGovney. 1909.
Bulletin No. 40. A Study in Heat Transmission, by J K. Clement and C. M. Garland, 1910.

Bulletin No. 41. Tests of Timber Beams, by Archur N. Talbot. 1910.
Bulletin No. 42. The Effect of Keyways on the Strength of Shafts, by Herbert F. Moore. 1910.

Bulletin No. 43. Freight Train Resistance: Its Relation to Car Weight, by Edward C. Schmidt. 1910.

UNIVERSITY OF CALIFORNIA LIBRARY, BERKELEY

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW
Books not returned on time are subject to a fine of 50 c per volume after the third day overdue, increasing to $\$ 1.00$ per volume after the sixth demand may be renewed
expiration of loan period.

[^0]: ${ }^{1}$ Train length was determined by counting, during the test, the number of rail lengths corresponding to the length of the train and multiplying this number by 30 feet, which is the rail length for this track.

[^1]: ${ }^{1}$ In all parts of the report except Appendix 2. cars are designated as box, stock, gondola, flat, and tank cars. The term box car is made to include refrigerator cars, the test car and the caboose. The term gondola includes all unroofed cars with sides, such as coal cars, hopper cars, etc. In the tonnage records in Appendix 2, further distinctions are made.

[^2]: ${ }^{1}$ The location in the train of its center of gravity was determined thus: Assume a train which weighs 1800 tons, is 2400 feet long, and is composed of 60 cars. By inspection of the tonnage record we find that one half of this weight (900 tons) lies in the first 25 cars. Hence the center of gravity is located ${ }_{6}{ }^{\circ} \mathrm{E} \times 2400=1000 \mathrm{ft}$. from the front end.

[^3]: ${ }^{1}$ Further investigation of this matter is in progress, and the results will probably be published soon.
 ${ }^{2}$ During the 32 tests included in the investigation only 68 stops, all told, were made after leaving the yards. Of these, one was of 55 minutes duration, nine lasted between 20 and 40 minutes. twenty-two between 10 and 20 minutes, and thirty-six less than 10 minutes.

[^4]: 1 The numbers shown near the points are the item numbers of the tables in Appendix 5. The tables exhibit the calculated values of resistance and speed, which are the co-ordinates of the plotted points.

[^5]: ${ }^{1}$ The numbers shown on the curves are the last two figures of the test numbers. The curve marked 43 is derived from test $\mathrm{S}-1043$.

[^6]: ${ }^{1}$ Table 2 has been prepared from the original curves of the individual tests, only one of which is separately presented in Part I (see Fig. 1). It gives no information not obtainable from Fig. 2 , but presents the information in more convenient form, since the number of curves drawn in the figure makes it confusing.

[^7]: ${ }^{1}$ As has been previously explained, the curve is drawn by finding the "centers of gravity" of several groups of points These centers are defined in Fig. 3 to 9 by the crosses within circles. Points 34 and 74 were virtually ignored in drawing the curves of Fig. 6 and 7. The numbers at the points are the last two figures of the test numbers.

[^8]: ${ }^{1}$ The points derived from F g. 10 have been omitted from the tracing from which Fig. 11 was reproduced. All such points lie very close to the curves drawn in Fig, 11, the maximum deviation amounting to but $3 / 4$ of one per cent of the corresponding curve ordinate. In Appendix 6 there are presented tables of coordinates, by means of which Fig. 10 and 11 may be exactly reproduced.

[^9]: ${ }^{1}$ Railway Age Gazette, August 27 to October 1, 1909.

[^10]: ${ }^{1}$ A more detailed description of the present equipment is contained in an article by $\mathrm{F} . \mathrm{W}$. Marquis, in the Railway Age Gazette February 19, 1909.

[^11]:

[^12]: For complete table heading see Table 36, p. 99.

[^13]: * Out of Print.

