

JAN 34 1922

DEPARTMENT OF COMMERCE

TECHNOLOGIC PAPERS

BUREAU OF STANDARDS

OF THE

S. W. STRATTON, DIRECTOR

No. 201

FRICTION AND CARRYING CAPACITY OF BALL AND ROLLER BEARINGS

BY

 H. L. WHITTEMORE, Mechanical Engineer
 S. N. PETRENKO, Assistant Mechanical Engineer Bureau of Standards

OCTOBER 6, 1921

PRICE, 10 CENTS Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE

DEPARTMENT OF COMMERCE

TECHNOLOGIC PAPERS

BUREAU OF STANDARDS

OF THE

S. W. STRATTON, DIRECTOR

No. 201

FRICTION AND CARRYING CAPACITY OF BALL AND ROLLER BEARINGS

BY

H. L. WHITTEMORE, Mechanical Engineer S. N. PETRENKO, Assistant Mechanical Engineer Bureau of Standards

OCTOBER 6, 1921

PRICE, 10 CENTS

Sold only by the Superintendent of Documents, Government Printing Office Washington, D. C.

> WASHINGTON GOVERNMENT PRINTING OFFICE 1921

STATE ONLINE TRAMERED

FRICTION AND CARRYING CAPACITY OF BALL AND ROLLER BEARINGS

By H. L. Whittemore and S. N. Petrenko

ABSTRACT

The experiments were undertaken by the Bureau of Standards to determine the maximum safe load and the static friction under load of ball and flexible roller bearings. Tests were made on balls of 1.00, 1.25 and 1.50 inches diameter in grooved races

and on rollers 1.25 inches in diameter and 5.25 inches long in flat and cylindrical races.

The total deformation and area of contact of bearings and races were measured and compared with Hertz's theory.

Conclusions.—1. The results agree roughly with Hertz's theory. The differences are ascribable to inhomogeneity of the material.

2. The ratio of friction to load is practically constant and equal to 0.00055 for all three sizes of balls up to a "critical" load, which varies with the diameter of ball: 1300 pounds for 1.00-inch, 1700 pounds for 1.25-inch, and 2200 pounds for 1.5-inch balls. 3. A similar "critical" load, 25 000 pounds, was found for the roller bearings with a ratio of friction to load equal to 0.00075.

4. This "critical" load at which the friction began to increase more rapidly was in all cases lower than the safe load as determined by permanent deformation and as calculated from Stribeck's law.

test on ball bearing; and 4, compression test on roller bearing

	CONTENTS	Page
I.	Introduction	4
Ί.	Apparatus 1. Balls	4
113	1. Balls	DC 4
ot	om 2. Ball races. and do men and or has allott add abrahan	124
	3. Rollers.	5
	4. Roller races.	5
	5. Hardness and dimensions	6
I.	Tests	8
R	1. Static friction test on ball bearing	8
	(a) Method of test	8
	(b) Results	9
	(c) Conclusions	10
	2. Static friction test on roller bearing.	12
	(a) Method of test	12
	(b) Results	12
P.	(c) Conclusions	9114
	3. Compression test on ball bearing	14
	(a) Method of test.(b) Compression and set.	14
	(b) Compression and set	14
	(c) Contact area	16
iv	(d) Results.	18
	(e) Conclusions.	20
ter	4. Compression test on roller bearing	26
n	(a) Method of test	26
2	b = b (b) Results.	27
11	(c) Conclusions	27

D

I. INTRODUCTION

In order to facilitate the training of large guns, it is very desirable to reduce the friction at the trunnion bearings. These bearings are moved infrequently and at very low speeds. They may be, however, subjected to great loads when the gun is fired. These conditions are very different from those usual for bearings in engineering work. For the latter the speed is much greater and the periods of operation much longer. They, however, are not often subject to great loads or to impact.

The use of ball and roller bearings for line shafts, vehicle wheels, etc., has become quite extensive, due to their high efficiency. The results obtained from service tests of this kind give very little data for the design of ordnance bearings.

These tests were undertaken by the Bureau of Standards, at the request of the Navy Department, to obtain experimental data on the frictional resistance of both ball and roller bearings at very low speeds and also the loads which they will safely sustain.

The tests may be listed as follows: 1, Static friction test on ball bearing; 2, static friction test on roller bearing; 3, compression test on ball bearing; and 4, compression test on roller bearing.

II. APPARATUS

The special apparatus required for these tests was designed and built by the Navy Department in consultation with the Bureau of Standards. The balls and rollers were obtained from commercial manufacturers and were such as were considered suitable for this use.

1. BALLS

The hardened steel balls were 1.00, 1.25 and 1.50 inches diameter. Four of each size were provided.

2. BALL RACES

The cost of making complete bearings was prohibitive. If, however, complete bearings had been tested, the results could not be used for a bearing having a different diameter, due to the impossibility of measuring the load on the individual balls. Sections of a complete race, only, were represented by small rectangular steel blocks. These are shown in Figs. 1 and 4. Each block had a cylindrical groove on one face, parallel to the opposite face, having a radius slightly greater than that of the ball with which it was to be used. These races were hardened and the groove ground to the required radius. In an actual ball bearing, the axis of the groove would be an arc of a circle about the axis of rotation. Bureau of Standards Technologic Paper No. 201

FIG. 1.—Measuring the static friction of a ball bearing

FIG. 2.—Measuring the static friction of a roller bearing

Bureau of Standards Technologic Paper No. 201

FIG. 3.—Measuring the deformation of a ball and race under load

FIG. 4.—Apparatus for measuring deformation of a ball and race

The experimental work was much easier because races having straight grooves were used and it is believed that the results apply with reasonable accuracy to bearings having a large diameter such as are used for ordnance work.

Grooved races are used in practice as with them the area of contact between the ball and the race is greater than is obtained with plane races, and therefore the allowable load on the bearing is increased. The load is without doubt a maximum for races grooved to the same diameter as the ball; the friction, however, would be excessive in a bearing of this kind. Two pairs of races were therefore made for each size of ball. One had, perhaps, the smallest practicable radius and the other was somewhat greater. The ratios of groove radii to ball radii are given in Table 1. These races were used both for the friction and the load tests.

Ball diameter, inches	Small groove	Large groove
1.00	1.03	
1. 25	1.04	1.12
1. 50	1.04	1.12

TABLE 1.-Ratio of Groove Radii to Ball Radii

3. ROLLERS

The rollers were of the flexible roller type. They were closed helices made from steel bars of about 0.52 by 0.30 inch in cross section. The length was about 5.25 inches and the internal diameter about 0.65 inch. They were hardened and the external cylindrical surface ground to about 1.25 inches diameter. These rollers are shown in Fig. 2. Six were provided for these experiments.

4. ROLLER RACES

Two flat plates were used in the roller tests to represent bearings having a large diameter. These are shown in Fig. 2. In order to obtain data also upon bearings such as might be used—for example, for gun trunnions—two segmental bearings having inner diameters of 7 and 20 inches were made. The outer diameter was, of course, greater than the inner diameter by twice the diameter of the rollers. The smaller bearing is shown in Fig. 5. The larger bearing is shown in Figs. 6 and 7. Each of these bearings consisted of the inner race, two portions of the outer race, with apparatus for holding these parts in their proper relative position in a hydraulic testing machine having a capacity of 230 000 pounds. The smaller bearing is shown in the machine in Fig. 8. Side plates furnished bearings for a shaft through the inner race (see Fig. 7) constraining it to rotate about the axis of the bearing. Two rollers, diametrically opposite each other, were used in each of these bearings. As it was found that the rollers tended to become displaced, so that their axes were not parallel to the axis of the bearing, retainers or "cages" were made which rotated about the same shaft as the inner race. One of these cages is shown in Fig. 7. A lever attached to the shaft through the inner race allowed the torque required to rotate the inner race to be measured as shown in Fig. 8.

The bearing surfaces of all flat plates and bearings were hardened and ground.

5. HARDNESS AND DIMENSIONS

The hardness of all bearing parts was measured by the scleroscope, using the universal diamond pointed hammer. The dimensions of the bearing surfaces were also measured. These data are given in Table 2. In the case of the ball races it was found that the ends of grooves were harder than the middle portion of the groove. As the latter portion was used in the experimental work its hardness is given for the average value.

	They, a	Scleroscon	ope hard- ess	3. ROL	NIGTO, OF		ope hard-
Specimen No.	Diameter or radius of curvature	Extreme variations of readings	Average	Specimen No.	Diameter or radius of curvature	Extreme variations of readings	Average
Diameter of	Inches	inches	22.1 JI	Diameter of	rface gri	ical su	thail?
balls	1.0003	62-69	66	rollers:	Inches	they are a	- and the
Do	1.2503	57-63	60	1	1.249	71-73	72
Do	1.5000	64-70	68	2	1.249	67-73	2311970
Radius of ball	All a Contractor	1 COMPLEX	At mid-	3	1.249	69-71	70
races:	and the second		dle of	4	1.249	67-72	70
	15891997	01-2129	groove	5	1.250	68-70	0 6
31	.515	62-92	62	6	1.250	68-73	Dering 7
32	.515	65-95	65	Radius of inner	and a start of the	Part	Parts and
33	. 550	65-86	65	roller races:	10813 33	ED IIII	1300 Q
34	. 550	60-93	60	43	3.499	80-92	8
35	.650	69-89	69	44	10.000	97-102	99
36	.650	63-90	63	Radius of outer	7 and 7	10 519	namen
37.1	.700	70-92	70	roller races:	oreater	course	10 287
38	.700	61-91	61	39,	11.252	70-93	81
9027	.779	64-67	211164	ne sma ₄₀	11.252	95-97	erer ol
egzanood.a	Podt .778	60-91	- bri60	8 241. H. mi. a	word 4.750	62-70	1 79976
29	. 839	71-93	. 71	42	4.750	71-74	73
130	.843	71-91	1017100	Plates:	ne umer	10 D9	dereno:
re position	r relativ	r prop	in the	these zarts	Flat within	93-101	STRUCT
		1 1		26	.0002	94-100	9
1 230 000	pacity q	SO E	gurv Bu	Sundann 3	it testin	yarau	A B D

TABLE 2 .- Dimensions and Hardness of Balls, Rollers, and Races

Bureau of Standards Technologic Paper No. 201

FIG. 5.—Apparatus for measuring the deformation of a roller in a race having an inner diameter of 7 inches

FIG. 6.—Apparatus for measuring deformation of a roller in a race having an inner diameter of 20 inches

Bureau of Standards Technologic Paper No. 201

FIG. 7.—Retainer for roller with inner race

FIG. 8.—Apparatus for making static friction test of roller and races having an inner diameter of 7 inches

	ALSA R	adius of rad	ces 0.515 in	ch NOI	TOLS R	adius of rac	es 0.550 in	ch	
Load on ball, pounds	Friction.	Ratio fr	iction to ad	Coeffi- cient of	Friction.	Ratio fri		Coeffi- cient of	
ed condition.	pounds	Observed value	Graph value	rolling friction	pounds	Observed value	Graph value	rolling friction	
250	0.11	0.00044	0.00044	0.00022	0.12	0.00048	0.00048	0.00024	
500	.23	.00046	.00046	.00023	.31	.00062	.00052	.00026	
750	. 37	.00049	.00049	.00025	.42	.00056	.00056	.00028	
1000	.51	.00051	.00054	.00027	. 62	.00062	. 00062	.00031	
1250	291 .79	.00063	. 00063	.00032	edit .84	.00067	.00068	.00034	
1500	1.19	.00079	.00075	. 00038	1.15	.00077	.00078	. 00039	
1750	1.53	.00087	. 00089	.00045	1.63	.00093	. 00092	.00046	
2000	2.13	.00107	.00105	. 00053	2.13	.00107	.00106	00.00053	
2250	2.81	.00125	.00123	. 00062	2.71	.00120	. 00120	. 00060	
2500	3.49	.00140	.00140	.00070	3.40	.00136	. 00135	.00068	

TABLE 3.-Static Friction of Ball (1 Inch Diameter)

TABLE 4.-Static Friction of Ball (1.25 Inches Diameter)

pring balance	R the s	adius of rac	es 0.650 in	ch anw	Radius of races 0.700 inch					
Load on ball, pounds	Friction,	Ratio fri loa		Coeffi- cient of	Friction.	Ratio fr	Coeffi- cient of			
No attempt	pounds	Observed value	Graph value	rolling friction	pounds	Observed value	Graph value	rolling friction		
250	0.12	0.00048	0.00044	0.00028	0.14	0.00056	0.00052	0.00032		
500	.19	. 00038	.00046	.00029		.00052	.00053	.00033		
750	.35	.00047	.00049	.00031	.43	,00057	.00054	.00034		
1000	.50	.00050	.00051	.00032	011.52	.00052	.00055	.00034		
1250	.69	.00055	.00053	.00033	.66	.00053	.00057	.00036		
1500	.87	.00058	.00057	.00036	.81	.00054	.00061	.00038		
1750	1.00	.00057	. 00064	.00040	1.16	.00066	.00071	.00044		
2000	1.44	.00072	.00076	.00048	1.69	.00084	.00086	.00054		
2250	2.10	. 00093	.00090	.00056	2.49	.00111	.00106	.00066		
2500	2.61	. 00104	.00106	.00061	3.21	.00128	.00128	.00080		

TABLE 5.—Static Friction of Ball (1.50 Inches Diameter)

	R	adius of rad	es 0.779 in	ch Di	Radius of races 0.841 inch					
Load on ball, pounds	Friction.	Ratio fr		Coeffi-	Friction, pounds	Ratio fri los	Coeffi- cient of			
el to the axis	pounds	Observed value	Graph value	rolling friction		Observed value	Graph value	rolling		
250	0.15	0.00060	0.00055	0.00041	0.13	0.00052	0.00054	0.00041		
500	.29	.00058	.00056	. 00042	.27	.00054	.00054	.00041		
750	.42	.00056	.00056	.00042	.43	.00057	.00055	.00041		
1000	. 54	.00054	.00056	.00042	.52	. 00052	.00055	.00041		
1250	. 69	.00055	.00057	.00043	.70	.00056	.00056	.00042		
1500	.88	.00059	.00057	.00043	.90	.00060	.00056	.00042		
1750	1.02	.00058	. 00059	.00044	1.02.	.00058	.00058	.00044		
2000	1.19	.00060	.00064	.00048	1.17	.00059	. 00062	.00047		
2250	1.65	.00073	.00072	.00054	1.60	.00071	.00069	. 00053		
2500	2.19	.00088	.00086	.00065	1.95	.00078	. 00080	. 00060		

TABLE 3 .--- Static F STSTT BIII I Inch Diameter)

1. STATIC FRICTION TEST ON BALL BEARING

(a) Method of Test.—The arrangements of the apparatus for these tests is shown in Fig. 1. Two balls were used with each pair of races in order to secure stability in the loaded condition. The lower ball race rests upon a plate mounted on two rollers. The upper ball race is loaded by a universal three-screw testing machine having a capacity of 50 000 pounds. A spherical bearing was used between the movable head of the testing machine and the upper ball race. After the desired load had been applied the lower ball race was drawn forward by a force exerted through the spring balance shown which rested on an antifriction roller. The smallest division on the spring balance represented 1 ounce.

The friction of the rollers was found by the method shown in Fig. 2 for each of the loads used for the balls. One-half of the friction for the four rollers was subtracted from the spring balance reading for the ball tests which gave the frictional resistance of the two balls.

In every case the bearings were started from rest. No attempt was made to measure the friction of the bearing after motion occurred, due to the fluctuations in the force and the short distance the bearing could be moved. The starting or static friction is always greater than the moving friction, so that the values given here are in any case the maximum. Care was taken to secure the following conditions during these tests:

1. All bearing surfaces were parallel to each other and also perpendicular to the action line of the load.

2. The balls and rollers were placed symmetrically with relation

3. The axes of the rollers were perpendicular to the axis of the ball groove.

4. The action line of the moving force was parallel to the axis of the ball groove.

5. The load was applied equally to the balls and rollers by a spherical bearing block.

It was found that the magnitude of the starting force varied considerably. The load exerted by the testing machine also fluctuated at the instant of starting but rarely more than 50 pounds. These fluctuations may have been due to the following causes: 08000

1. Slight variations in the diameter of the balls and the rollers and variations in the surfaces of the races from the true cylinder or plane.

2. Nonuniform hardness of the bearing surfaces of the races. (The balls and rollers were much more uniform in hardness than the races.)

The conditions under which these tests were made represent ideal rolling friction along a straight line. They are never obtained in practice, so that values in practice may be much larger,

FIG. 9.-Static friction test on 1-inch ball and races (r1=0.515 inch, r2=0.550 inch)

due to the sliding friction which occurs. Even in these experiments there was some sliding friction, due to the fact that the area of contact between ball and race, although small, was appreciable. It was also impossible to secure exact arrangement of the parts of the apparatus.

(b) Results.—The results are given in Tables 3, 4, and 5 and in Figs. 9, 10, and 11. The values given in the tables for the friction are the averages of several trials for slightly different positions of the balls, rollers, and races. The graph values are

57715°-21-2

obtained from the smooth curve drawn to represent the most probable values.

The coefficients of rolling friction were computed from the graph values by the following formula:¹

Coefficient of rolling friction =
$$\frac{Pd}{2Q}$$

The conditions under which these tests were made : hindwini

IO

 $\frac{P}{2}$ = starting friction on one side for one ball or roller, in pounds. d = diameter of ball or roller in inches. Q = load on the ball or roller in pounds.

FIG. 10.-Static friction test on 11/4-inch ball and races (r1=0.650 inch, r2=0.700 inch)

For some of these tests the balls, rollers, and races were well coated with a good mineral lubricating oil. The observed values of the friction, when this was done, appeared to be the same as those obtained when no oil was used.

(c) Conclusions.—1. The starting friction is nearly the same for both sizes of groove. The groove having the larger radius gave the lowest value for the friction.

R. Thurston, A Treatise on Friction and Lost Work, p. 82, 1885.

2. The ratio of starting friction to the load increases slowly as the load increases, then much more rapidly. The critical loads are approximately as follows:

Ball	diameter in inches							is si			cal load in
	inches 1.00				 	uo	1.11	1 21	1613	10.3	1300
	1.25	12.8.201	V.R.C	ne.	 RU	1.21	tite	1.2	Lur.	hyd	1700
	1.50				 	• • • •					2200

If the frictional resistance is to be kept low, these critical loads should not be exceeded. The very rapid rise in the friction at

FIG. 11.-Static friction test on 11/2-inch ball and races (r1=0.779 inch, r2=0.841 inch)

greater loads would seem to indicate that internal work was being performed on the material of either the balls or races which might cause heating and their destruction if the bearings were operated continuously under loads greater than the critical loads.

3. The ratio of frictional resistance to load is practically the same for balls of all diameters up to the critical load and may be taken as 0.00055. For this reason the coefficient of rolling friction as found from the above equation was of little use in these tests.

4. Oil is of little, if any, use upon ball bearings in reducing the static frictional resistance.

II

2. STATIC FRICTION TEST ON ROLLER BEARING

(a) Method of Test.—The static friction of the rollers loaded between two steel plates was measured as for balls. The arrangement of apparatus is shown in Fig. 2.

The tests of static friction for the two segmental bearings were made in a hydraulic testing machine having a capacity of 230 000 pounds.

The arrangement of the apparatus for the smaller of these bearings is shown in Fig. 8. Two rollers diametrically opposite

FIG. 12.-Static friction test of 14-inch rollers and plates

each other were used for each test. These were held in the retainers shown in Fig. 7.

The lever shown in Fig. 8, used for rotating the bearings under load, was 41 inches from the center of rotation to the point of application of the force. This lever was counterbalanced by one of equal length extending in the opposite direction. The force was applied through a spring balance, the smallest graduation of which represented 0.5 pound. Care was taken that the action line of the force was perpendicular to the lever arm. The observed force was used to compute the equivalent frictional force required to cause rotation if applied at the surface of the inner race.

(b) Results.—The results for these tests are given in Tables 6 and 7 and in Figs. 12 and 30. The values given for the friction are the averages of at least five determinations for each load, as it was found that the friction fluctuated considerably, depending on the position of the rollers with respect to the plane through the axis of the bearing. This was particularly true with the smaller bearing for which it was very difficult to secure satisfactory readings. This was due probably to the condition of unstable equilibrium of the whole system which existed during these tests and which was beyond the control of the experimenter.

This is the only explanation of the unexpected character of the curve for the smaller bearing in Fig. 30. Several other conditions such as inaccuracies in or nonuniform hardness of the bearing surfaces also affected the friction.

Comparison of the scleroscope hardness values for these bearings as given in Table 2 shows that the smaller bearing averaged about 78, while the larger bearing averaged about 94. It seems very probable that the low hardness values for the small bearing had an important influence on the friction of this bearing.

The coefficient of friction in Table 7 was computed by the formula given above.

TABLE 6.-Static Friction of Roller (1.25 Inches Diameter Between Plates)

ation. (See Tables'8, 9, and ro.)	Friction,	Ratio of fri	ction to the	Coefficient
	pounds	Observed value	Graph value	of rolling friction
250. Diverti Anticiante Anticiante Anticiante	0.09	0.00036	0.000400	0.000250
500	.20	.00040	.000405	.000253
750	.31	.00041	.000410	.000256
1000	.42	.00042	.000415	. 000259
1250	.54	.00043	.000420	. 000262
1500	.65	.00043	.000425	. 000265
1750	.75	.00043	.000430	.000268
2000	.85	.00042	.000435	.000271
2250	1.01	.00045	.000440	.000274
2500	1.14	.00046	.000445	. 000277
short sheel lover carried by a horizon-	E State	intensity	Jose Gar	tra anne

TABLE 7.-Static Friction of Roller (1.25 Inches Diameter)

I springs, Experience	Radius o	f inner race	3.5 inches	Radius of inner race 10.0 inches				
Load on roller, pounds	Friction.	Coefficien		Friction.	Coefficient frict			
but were later turned	pounds	Observed value	Graph value	pounds	Observed value	Graph value		
5 000	8.8	0.00110	0.00110	6.1	0.00076	0.00075		
10 000	29.3	.00183	.00190	12.3	.00077	.00077		
15 000	58.5	.00244	.00245	19.5	. 00081	. 00080		
20 000	87.8	. 00275	.00275	26.6	. 00083	. 00083		
25 000	120.0	.00300	.00305	34.8	. 00087	. 00091		
30 000	170.0	.00354	. 00330	53.3	.00110	. 00105		
40 000	234.4	.00366	.00378	92.3	.00144	.00145		
50 000	316.5	.00396	. 00420	153.7	. 00192	. 00192		

14

Rt seems

by the

(c) Conclusions.—Consideration of the values for the coefficient of rolling friction for the bearing having a radius of 10 inches shows that the static friction is nearly constant up to a load of 25 000 pounds. For greater loads the friction increases rapidly. This is similar to the behavior of the balls, and it is believed that this critical load should be considered the allowable load on the roller.

Due to the unexpected character of the curve the critical load for the bearing having an inner diameter of 7 inches could not be determined.

The critical loads as obtained from the load friction diagram (Fig. 30) are approximately as follows:

adius of inner races		10.00	irger bearn		Critical load in pounds
10.0		SSOUT	21811 WOL 5	ad Jenj	25 000
3.5	ю. понт	111.96	d Juo andau	lloi.106	an import

3. COMPRESSION TEST ON BALL BEARING

(a) Method of Test.—The allowable load on a bearing may be determined by noting the greatest load which it will sustain without permanent deformation. (See Tables 8, 9, and 10.) The apparatus for this test was that used for the friction tests but arranged as shown in Fig. 3. A single ball was placed between the races and the load applied by the testing machine previously used.

(b) Compression and Set.—As it was impossible to measure the deformation of the ball under load, special apparatus was designed to measure the relative motion of the two races; that is, the deformation of balls and races combined. This apparatus is shown in Figs. 3 and 4. At each corner of the races is a steel rod secured to one race. Opposite it is a short steel lever carried by a horizontal shaft which is held in any position in which it may be placed by caps for the bearing loaded by long helical springs. Experience with this apparatus showed that the best results were obtained when the shaft rested in a triangular groove in the supports. The caps for the bearings were also grooved but were later turned over to present a plane surface to the shaft which was, therefore, held in a three-line bearing.

The end of the shaft which projects from the bearing carries a curved pointer, the end of which opposes the end of the pointer on the other side of the races. In Fig. 4, the rod secured to the upper race is seen at the left and the one secured to the lower race at the right. The levers are not visible but the pointers are clearly shown.

In use, the pointers are turned away from each other, the desired load is applied to the bearing, then the pointers are turned toward each other by hand so that each lever comes in contact with the corresponding rod. The distance between the two pointers is then measured by the micrometer microscope shown in Fig. 3. The arrangement of this apparatus is such as to give correct values, even if the races are slightly tilted during the test. The total deformation of ball and race combined under load may be obtained as well as the permanent deformation after removing the load. The pointers multiplied the movement of the levers to times. The arrangement of the pointers, in pairs, made the change in distance between pointers 20 times the change in the distance between the races.

Load in	Radius	Total deformation of ball and races					t 2000. Contact area				
pounds	of races	Ob- served value	Graph value	Hertz value	Ob- served value	Graph value	2a	CORCO. 2b	2b (Hertz value)	Area	
1820.	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch ³	
500	0.515	0.00079	0.00088	0.00112	0.00003	0.00002	Contraction of the second	- and -	Ancia	Incu-	
	. 550	.00097	.00099	.00112	. 00003	.00003		******			
	.779					1201-04-07	1				
1000	. 515	.00140	.00156	.00179	.00006	.00006	0.292	0.038	0.040	0.008	
	. 550	.00170	.00172	.00177	. 00007	.00007	.188	.043	.040	.005	
50521	.779		·				. 098	.051		.003	
.0150	00						. 056	.056	.056	.002	
1500	. 515	.00212	.00213	. 00234	.00013	.00012					
	. 550	.00231	. 00233	. 00232	.00014	.00014					
	. 779										
2000	. 515	.00265	.00264	.00283	.00021	00021	. 360	.050	.050	.014	
	. 550	.00283	.00287	.00282	.00023	.00024	.245	.058	.052	.011	
	.779		10//				.122	.070		.006	
stin.	00		+				.073	.073	.072	.004	
2500	. 515	.00314	.00310	.00329	.00033	.00032	••••••	•••••••		•••••	
	.550	.00336	.00336	. 00327	.00038	.00037				•••••	
3000	.515	.00355	00352	.00371	.00048	.00047	.397	.057	.058	.017	
	. 550	.00333	.00332	.003/1	.00048	.00053	.273	.057	.058	.017	
	. 779	.00302	.00002	.00505	.00034	.00035	.134	.080	.030	.008	
	00	Il ad		erviter	Instr	ne en	.083	.083	.082	.005	
3500	.515	.00397	. 00393	.00412	.00067	.00067					
010191	. 550	.00425	.00425	. 00409	.00075	.00077	POBLE C	1.0	ALC'MINE C	N. Para	
surface	.779	o fro	1.1	ndril	0	and t	WINS S	WOEK	RICH) I	156(1.)	
4000	. 515						. 423	.062	.064	.020	
	. 550		1				.288	.073	.064	.016	
	.779						.141	.084		.009	
	00						.089	.089	.090	.006	

TABLE 8.—Compression Test of Ball (1 Inch Diameter)

Two microscopes, one at each end of the race, were used by which a difference in the distance between the pointers of 0.00004 inch could be observed by estimation. The displacement of either end of the ball race could therefore be measured within 0.000004 inch.

nem h	en loa		formation and races		Perman of bal rac		tion o Il as ti	Contac	t area	The do be obt
Load in pounds	Radius of races	Ob- served value	Graph value	Hertz value	Ob- served value	Graph value	2a	2b	2b (Hertz value)	Area
500	Inch 0.650 .700	Inch 0.00081 .00063	Inch 0.00085 .00087	Inch 0.00104 .00104	Inch 0.00002 .00002	Inch 0.00002 .00003	Inch	Inch	Inch	Inch ²
1000	.650 .700 .779	.00154	.00150 .00157	.00166 .00165	.00005	.00005	0.283 .183 .144 .058	0.044 .048 .053 .058	0.044 .044	0.0098 .0069 .0060 .0027
1500	. 650 . 700 . 779	.00207	.00207	.00217	.00009	.00008				
2000	.650 .700 .779 	.00254	.00253	.00263	.00014	.00014	.367 .237 .182 .075	.056 .063 .070 .075	.054 .056 .076	.0161 .0117 .0100 .0044
3000	.650 .700 .779 .650	.00299 .00314 .00339	.00299 .00317	.00303 .00303	.00021 .00023	.00021		. 063	.062	. 0202
	.700 .779 ∞	.00362	.00363	.00342	.00035	.00037	.265 .205 .086	.072 .079 .086	.064	.0150 .0126 .0058
4000	.650 .700 .779 .650	.00381	.00378	.00382	.00042	.00043	.432		.070	. 0234
	.700 .779 ∞						282 .220 .094	.078 .085 .094	. 070	.0172

TABLE 9.—Compression Test of Ball (1.25 Inches Diameter)

(c) Contact Area.—Several different methods were tried of making visible the area of contact between the ball and the race. The one which was best suited for the purpose and was, therefore, used in this work was a thin film of lubricating oil on the surface of the race. This film applied with the fingers, which were used to wipe the surface almost dry, was extremely thin. The ball was well cleaned.

Load in pounds	Radius of races	Total deformation of ball and races		Permanent set of ball and races		Contact area				
		Ob- served value	Graph value	Hertz value	Ob- served value	Graph value	2a	2b	2b (Hertz value)	Area
contines	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch 3
500	0.779	0.00071	0.00072	0.00098	0.00002	0.00002				
	.841	.00078	.00082	. 00098	.00003	.00003			11.100	b.o. ot
1000	.779	.00126	.00131	.00156	.00005	.00005	0.270	0.045	0.046	0.009
Same and	.841	.00149	.00147	.00155	.00005	.00006	. 189	.049		. 007
DESCRIPTION	10 20 20	2 308	1000.10	. area	Le jot :	prit bn	.059	.059	.064	. 002
1500	.779	. 00177	.00182	.00204	.00007	.00007	m. ad			
A LIGHT MAN	.841	.00203	.00205	.00203	.00009	.00009				
2000	. 779	.00225	.00228	.00247	.00011	.00012	. 373	.058	.058	.017
	.841	.00256	.00257	.00246	.00014	.00014	.249	. 065		012
Contraction	00						. 080	.080	. 082	. 005
2500	. 779	.00272	.00271	.00287	.00016	.00016				10,2113
	.841	.00305	00303	.00285	.00021	.00020				
3000	. 779	.00311	.00311	.00324	. 00022	.00022	.427	.065	.066	. 021
as there	.841	.00348	.00349	.00322	.00028	.00028	. 285	.075		.016
	8						. 094	. 094	.094	. 006
3500	.779	.00349	.00348	.00359	.00030	.00029				
the hast	.841	.00395	.00393	.00357	. 00038	. 00038				
4000	.779						. 458	.072	.074	. 025
	.841						. 309	. 083		.020
	0						. 103	.103	.104	. 008

TABLE 10.-Compression Test of Ball (1.5 Inches Diameter)

TABLE 11.—Compression Test of Balls

-2(511-51)(511-51)(cos 200	Total deformation of ball and races						
Load on ball, in pounds	eter; r	Ball, 1 inch diam- eter; radius of races, 0.550 inch		Ball, 1.25 inch di- ameter; radius of races, 0.700 inch		Ball, 1.5 inch di- ameter; radius of races, 0.841 inch	
an the direct steasatene	Observed value	Graph value	Observed value	Graph value	Observed value	Graph value	
The second second second	Inch	Inch	Inch	Inch	Inch	Inch	
500		0.00080	100	0.00080		0.00080	
4 000	0.00376	.00445	0.00389	. 00430	0.00348	. 00420	
8 000	00671	.00753	.00679	.00740	.00618	. 00690	
12 000	00950	.01040	. 00932	.01010	.00844	. 00930	
16 000	01231	.01320	.01167	.01250	.01066	. 01150	
20 000	01528	.01600	.01367	.01475	.01277	. 01360	
24 000	01790	.01870	.01598	. 01695	.01482	. 01570	
28 000		.02145	.01834	.01915	.01698	. 01775	
32 000		20201	.02070	.02125	.01806	. 01875	

The area of contact between the race and the ball was distinctly visible, as it appeared darker than the surrounding surface. $57715^{\circ}-21-3$

 $z(A+B) = \frac{1}{2}$

The edges of this area were sharply defined. The thickness of the oil film was estimated by drawing a ball lightly across an oiled plate and measuring the width of the dark band. Knowing the diameter of the ball, the angle subtended by the band at the center of the ball was easily computed, and from this the versine of half this angle. This, multiplied by the radius of the ball, was assumed to be the thickness of the oil film. The area of contact was measured by means of a microscope reading (by estimation) to 0.0004 inch.

After applying the load to the ball resting on the oiled surface, the ball was removed and the total area of contact was computed.

(d) Results.—The results of these tests are given in Tables 8, 9, 10, and 11. In the tables are also given the values of the deformations and of the areas of contact calculated by Hertz's theory.² Hertz's results may be written:

$a = \mu \sqrt{\frac{3}{2}}$	$\frac{P}{H^{\delta}}$
$b = \nu \sqrt{\frac{3}{3}}$	$\overline{\frac{P_{\delta}}{H^{\delta}}}$
$\alpha = \xi \sqrt{3}$	$\left(\frac{P}{H}\right)^{2} \frac{1}{\delta}$

 $2(A+B) = \frac{4}{\delta} = \zeta_{11} + \zeta_{12} + \zeta_{21} + \zeta_{22}$

 $2(A - B) = +\sqrt{(\zeta_{11} - \zeta_{12})^2 + (\zeta_{21} - \zeta_{22})^2 + 2(\zeta_{11} - \zeta_{12})(\zeta_{21} - \zeta_{22})\cos 2\omega}$ $\cos \tau = \frac{A - B}{A + B}, H = \frac{4}{3}\frac{E}{1 - \delta^2}$

141

329.000

where:

01150

 α = total deformation of ball and races combined

Observed Graph Observed Graph

2a ab = diameters of area of contact

P = load

E = Young's modulus = 30 000 000 lbs./in.³

 $\delta = \text{Poisson's ratio} = 3/10$

H = 44 000 000 lbs./in.²

 $\zeta_{11}, \zeta_{12}; \zeta_{21}, \zeta_{22}$ are the reciprocals of the principal radii of curvature of the two bodies; ω , the angle between their principal planes

² Heinrich Hertz, Gesammelte Werke, Leipzig 1895, 1, pp. 155 to 173; and F. Heerwagen, Zeitschrift des Vereins deutscher Ingenieure, 45, pp. 1701 to 1795; 1901.

18

84200

8310

enod:

330

of curvature and μ , ν and ξ , transcendental functions of the auxiliary angle τ , expressed in terms of elliptic integrals. μ , ν and ξ have been taken from the tables of Hertzand Heerwagen and are given below in Table 12 which was prepared by Dr. L. B. Tuckerman.

the law of a	also,	awellows,	150 10	The permane	.absc	ase of 1	increa
30 degrees	2.731	0.493	1.453	70 degrees	1.284	0.802	1.944
35 degrees	2.397	. 530	1.550	75 degrees	1.202	.846	1.967
40 degrees	2.136	.567	1.637	80 degrees	1.128	. 893	1.985
45 degrees	1.926	.604	1.709	85 degrees	1.061	.944	1.996
50 degrees	1.754	.641	1.772	90 degrees	1.000	1.000	2.000
55 degrees	1.611	.678	1.828	95 degrees	. 944	1.061	1.996
60 degrees	1.486	. 717	1.875	100 degrees	.893	1.128	1.985
65 degrees	1.378	.759	1.912			2	

TABLE 12.-Coefficients for Hertz's Theory as field to not

The values of total deformation approach closely those given by theory as shown in Figs. 20, 21, and 22. The existing differences may be explained by the nonuniform hardness, the difference between the actual and the assumed elastic properties of the material, and in addition by the fact that the major diameter of the area of contact is not as assumed by the theory, very small in comparison with the diameter of the ball. The same is true for the area of contact.

These tests show that the radii of the races influence the amount of the total deformation and of the permanent set more than the theory would indicate and in the opposite direction, that is, the larger the radii of races, the greater the deformation.

The total deformation of the ball was not measured separately but the direct measurements of the set of the races and the ball showed that the permanent set of a ball even for a load of 30 000 pounds does not exceed 0.00020 inch for 1½-inch diameter ball nor 0.00015 inch for a 1-inch diameter ball. Thus the permanent set observed is due almost exclusively to the races. The carrying capacity of balls with races given in Tables 13 and 14 are therefore limited by the deformation of the races. If the races had been harder, the values would have been higher. The theoretical value of 2a (the major diameter of contact area) is not given in the tables since it is so large that even approximate agreement could not be expected.

20

The values for the area of contact are plotted in Figs. 13, 14, 15, 16, and 17. Those for the deformation are shown in Figs. 20, 21, 22, and 23. The tests showed that even up to very high loads, far beyond those actually used in practice, the law of strains does not undergo any sharp change. The total deformation of ball and races follows pretty closely the law of a straight line with only a slight tendency to decrease gradually with an increase of load. The permanent set follows, also, the law of a

straight line but tends to increase gradually with an increase of load.

(e) Conclusions.—The allowable load on balls, as far as the permanent set is concerned, is limited to the load, which if increased, will produce a permanent set of either the balls or races, which would cause the bearing to fail to function properly. The permanent set will, in practice, first occur, probably, in the races. As the permanent set of the races grows very gradually, there is no definite indication of this load limit so that any limit selected is more or less arbitrary.

Fig. 13.—Area of contact of 1-inch ball and races ($r_1=0.515$ inch, $r_2=0.550$ inch, $r_3 = 0.779 inch, r_4 = \infty$)

If we select 0.0001 inch³ as the allowable permanent set of a race, we have from these tests the values of Table 13 for the carrying capacities of balls.

Lood in pounds

Pig. 14.—Area of contact of $1\frac{1}{4}$ -inch ball and races $(r_1=0.650 \text{ inch}, r_2=0.700 \text{ inch}, r_2=0.700 \text{ inch}, r_2=0.779 \text{ inch}, r_4=\infty)$

		Radius of race		Allowable load	
1.	Diameter of ball			-	
		r 1	0/012	r ₁	r ₂
		Inch .	Inch	Pounds	Pounds
1.00 inch		0.515	0.550	2000	180
1.25 inches		. 650	.700	2500	230
1.50 inches		.779	. 841	2800	250

TABLE 13.-Carrying Capacities of Balls with Races

A comparison of these values, with those given by the static friction test, shows that they are about 30 per cent larger. The allowable load on a ball may also be computed from the formula, $P = cd^2$, derived by Prof. Stribeck,⁴ in which P is the load on the ball in kilograms; d is the diameter of the ball in centimeters,

Fun_in. - Area of rantact of bulk and plates (a=1-inch, b=1) (such, c=r/s such diameter)

⁴ Zeitschrift des Vereines deutscher Ingenieure, 45, p. 79; 1901.

³ This value is often used as the allowable variation in the diameter of balls for bearings.

Load in pounds

FIG. 15.—Area of contact of I_{2}^{\prime} -inch ball with races $(r_1=0.779 \text{ inch}, r_2=0.841 \text{ inch}, r_3=\infty)$

FIG. 16.—Area of contact of ball and plates (a=1-inch, $b=1\frac{1}{4}$ -inch, $c=1\frac{1}{2}$ -inch diameter)

with a testing machine having a capacity of 100 000 pounds.

25

... riperi t

and c is a constant depending on the material. This formula gives the following approximate values:

	Diameter of ball	C=100 Allowable load P	C=150 Allowable load P
	100	Pounds	Pounds
1.00 inch		1400	2100
1.25 inches 1.50 inches		2200	3300 4800

The values for P have been converted into English units.

In Table 14 are given, for comparison, the values of allowable load, as found from the friction test, compression test, and those found by Stribeck's formula. It will be seen that the lowest values of the load are obtained from the friction test. These values should, probably, be used in design if the efficiency of the bearing is of importance. The larger values obtained from the compression tests may be, however, used before rapid deterioration of the bearings will result.

	And I have been been and	the second se	Allowable load, ball with races			
	Diameter of ball	Radius of races	Friction	Compres-	Stribeck	
	and Al	1 Al	test	sion test	(c=100)	
		Inch	Pounds	Pounds	Pounds	
1 inch	1 Martin Call	0.515 .550	1300	{ 2000 1800	140	
1.25 inches			1700	{ 2500 2300	2200	
1.5 inches			2200	1 2800	320	
1.5 inches		.700	} 1700 } 2200	2300 2800 2500	} }	

TABLE 14 .- Carrying Capacities of Ball Bearings

4. COMPRESSION TEST ON ROLLER BEARING

(a) Method of Test.—These tests were made in the same manner as the compression tests for balls. The arrangement of the apparatus for the compression tests with the bearing having the smaller diameter is shown in Fig. 5. The two opposed pointers attached to the outer and inner race, respectively, were used to measure the deformation of the roller and races combined. A micrometer microscope was used at both ends of the roller to measure the distance between the ends of the pointers. The load was applied with a testing machine having a capacity of 100 000 pounds.

The compression tests with the bearings having the larger radius were made in a hydraulic testing machine having a capacity of 2 300 000 pounds in compression. The apparatus is shown in Fig. 6. Two dial micrometers were used to measure the deformation. The smallest division of these micrometers is 0.001 inch and fifths of a division could be estimated. A similar arrangement was used in testing the rollers between plates and the same testing machine and measuring apparatus were used. With this apparatus some compression tests were carried beyond the elastic limit of the rollers and, from the stress diagrams, the proportional limit was obtained.

(b) Results.—The data for the compression tests of rollers are given in Tables 15, 16, 17, and 18. The deformations are in each case the values for both roller and race. The theoretical values given in the tables are computed according to the formula of Hertz given above. The results are plotted in Figs. 24, 25, and 26, which show the relation of the deformation to the load. Figs. 18, 19, and 27 show the relation of area of contact to the load. The stress diagrams are shown in Figs. 28 and 29.

Inspection of the rollers and races showed that unlike the results with ball bearings the permanent set of the races was quite negligible compared with the permanent set of the rollers. Measurements of the diameters of a roller which had been broken under compressive loading show that the diameter at the middle of the length of the roller parallel to the line of application of the force was reduced, that perpendicular to the action line of the force it was increased. This was to be expected. Both these diameters at the ends of the rollers were reduced. This behavior seems to show that the ends of the rollers twist under load so as to decrease the diameter. It follows that the ends of a "flexible" roller carry less load than the middle portion.

(c) Conclusions.—The maximum load for a flexible roller (1.25) inches diameter and 5.25 inches long) is 135 000 pounds. This is the proportional limit for these rollers. It is believed that this value tends to become smaller as the radius of the races increases. It should be noted that the critical load found from the friction tests was only 25 000 pounds, a much lower value.

. Fut, as - Compression feet on the inch rolly battaan room of 35 inch and 4.75

Carve 1 shows total deformation, curve a show's shall e deformation, and curve a shows the permanent set

Technologic Papers of the Bureau of Standards

Curves in group 1 show total deformation; curves in group 2 show permanent set; curve a is the test on the 1-inch ball, curve b is on the 1¼-inch ball, curve c on the 1¼-inch ball

FIG. 24.—Compression test on 1¹/₄-inch roller between races of 3.5 inch and 4.75 inch radius

Curve 1 shows total deformation, curve 2 shows elastic deformation, and curve 3 shows the permanent set

Ball and Roller Bearings

Curve 1 shows total deformation, curve 2 shows elastic deformation, and curve 3 permanent set

Tatal advancestor of miles and software, such a

Technologic Papers of the Bureau of Standards

FIG. 27.—Area of contact of 11/4-inch roller between races of 10 inch and 11.25 inch radius

Total deformation of roller and both races, inches

FIG. 28.—Compression test on 1¼-inch rollers No. 3 and No. 5 with radius of inner race 3.5 inches

Ball and Roller Bearings

FIG. 29.—Compression tests on 1¼-inch rollers No. 6 and No. 1 with radius of inner race 10 inches

Rupping 2.5-sound range in chippe and and S.I) telloR to the Tanisan generation of AlaAT

	17	n
	ê	5
	and and a sum	5
	5	1
	c	s
	2	1
	F.	1
	1	đ
1		1
1	c	2
		ā
	*	ŝ
	PT KACAT	1
	п	L
	L	
	ä	5
	2	c
	5	2
		1
		ï
6	Y	1
		٠
	ā	s
2	•	2
		1
		1
1	-	1
	-	J
		2
		2
	С	2
		1
	S OT INTEL	1
		1
	e	1
2		J
	E.	١
	2	1
		1
1	Y	d
P	2	s
		1
	-	đ
1	PETET)	1
		J
		,
		5
-	a	3
		1
	=	l
	-	ı
2		٢.
		1
	-	c
1		l
		٩
14		
	H	t
		2
	F	1
-	Ì	ł
-		
The state of the s		
T	Inch.	
A Town		
The state	Dun C	
AT TANK	C2 Inch	
A T T	The month	
	I-22 Inch	
AC =/	UDUI CZ-I	
14 AF 7. 1	upur cz-r)	
- / ar T 1.		
Total The Party of The Hard of The Party of		
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
and a far the state of the stat	ession test of koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
And a set of a second	-Compression Lest of Koller	
and a far the state of the stat	-Compression Lest of Koller	

-0			Permanel	nt set of			Width of contact area	intact area				Contact area	tt area	
Load in munda	TOOR	1 Otal Gelormation	router inner and outer race	ice and	1	Inner race	to su	ind	Outer race	Ridth	Inner race	race	Outer race	race
Read and Read	Ob- served value	Graph value	Ob- served value	Graph value	Ob- served value	Graph value	Hertz value for solid roller	Ob- served value	Graph value	Hertz value for solid roller	Flerible roller (actual)	Solid roller (theoret- ical)	Flexible roller (actual)	Solid roller (theoret ical)
10 000	Inch 0.00198	Inch 0.00198	Inch	Inch 0.00006	Inch 0.033	Inch 0.027	Inch 0.020	Inch 0.035	Inch 0.036	Inch 0.022	Inch ² 0.1215	Inch ² 0.0900	Inch ² 0.1620	Inch ²
20 000	00382	.00387	0.00016	.00012	.041	.038	. 028		.049	-	.1710	· Lie	.2206	.13
40 000			.00031	.00026	.047	.049	.040	.065	.065	.043	.2206	.1800	.2923	.1934
60 000	01104		.00049	.00046	.053	.057	.049	.075	.075		.2566		.3373	.23
80 000	01467	.01467	.00073	. 000073	.063	.064	. 056	.083	.083	1	.2880		.3734	cz.
100 000	01648	ę	.00100	.00088	.073	170.	.063	160 .	160.	.065	.3060	FI	. 3914	.30
2	1				8		707d	10	K					
auto au	1001	1002		1.023	1004	-	of lesi	No in	000	- 0200			-	- sas

contract of the without

北方

Internation rotest itluest and outer race Graph Ob- value Ob- Graph Ob- Graph Graph Served value Graph Ob- value Inch Inch Inch 0.0003 0.00210 0.00003 0.030 0.030 0.00590 0.00010 0.0003 0.038 0.00770 0.00034 0.00210 .048 0.11125 .00047 .00059 .052 0.1313 .00059 .0055 .048	elormation zonter race outer race Graph served value value value Inch Inch Inch	Inner race Graph value Inch	Harley Land State	Out ob- served value	Outer race Graph value		10 10 10 10	6.0		-
Ob- served value Ob- served value Ob- served value Ob- served value Ob- served value Ob- served value Ob- served value Ob- served value Ob- value Ob- value	Graph Ob- Graph served value value value Inch Inch Inch	Graph value Inch	In clear Dian	200.00	The second second second		Inner race	race	Outer race	race
Inch Inch <th< th=""><th>Inch Inch Inch</th><th></th><th>A COLOR</th><th></th><th></th><th>solid roller</th><th>Flexible roller (actual)</th><th>Solid roller (theoret- ical)</th><th>Flexible roller (actual)</th><th>Solid roller (theoret- ical)</th></th<>	Inch Inch Inch		A COLOR			solid roller	Flexible roller (actual)	Solid roller (theoret- ical)	Flexible roller (actual)	Solid roller (theoret- ical)
0.00208 0.00210 0.0003 0.030 0.300 0.0034 0.0040 0.00010 0.030 0.38 0.00588 0.00590 0.00010 00008 0.38 0.00540 0.00340 0.00010 00038 0.48 0.0043 0.0043 0.0034 0043 0.48 0.01128 0.01128 0.0034 0043 0.48 0.0128 0.01128 0.0034 0030 0.48 0.0128 0.0128 0.0034 0.0030 0.48 0.0128 0.0128 0.0047 0.0033 0.623 0.0130 0.0132 0.0047 0.0033 0.652			Inch	Inch 1	Inch	Inch	Inch 2	Inch 2	Inch ²	Inch 2
.00394 .00403 0.00010 .0008 .038 .00588 .00590 .00010 .0008 .038 .00770 .00770 .00734 .00034 .0048 .00710 .00770 .00770 .0048 .00710 .00770 .00704 .00634 .00128 .0049 .00649 .00694 .00128 .01125 .00647 .0020 .01301 .01324 .01255 .00647 .01301 .01324 .01255 .00647	0.00210 0.00003		0.020	0.033	0.034	0.022	0.1216	0.0900	0.1530	0.0990
.00588 .00590 .00013 .00013 .00770 .00770 .00034 .00020 .048 .00710 .00034 .00020 .048 .0033 .01128 .01125 .00047 .0033 .052 .01301 .0132 .00047 .0033 .052 .01301 .0132 .00047 .0033 .052 .01301 .0133 .0037 .0037 .052	.00403 0.00010 .00008	1	.028	.047	.046	.030	.1666	. 1262	.2070	.1350
.00770 .00770 .00200 .048 .00170 .00034 .00020 .048 .00122 .00043 .00030 .052 .01128 .01125 .00047 .00030 .01312 .01125 .00047 .00530 .01312 .01125 .00047 .00530 .01312 .01125 .00047 .00043 .01312 .01125 .00047 .00043	.00590	044	.034	10 mm	. 054	.036	.1980	. 1530	.2430	.1620
	.00770 .00034 .00020		.040	.060	.060	.042	.2207	.1800	.2700	.1890
	. 00948	054	.045		.066	.048	.2430	.2027	.2970	.2160
	.01125 .00047 .00043	.058	.050	.069	.071	.052	.2610	.2250	.3195	.2340
01482 01482 00075 00075 00075	. 01303	062	.053		.075	.057	.2790	.2385	.3375	.2566
	.01484 .00075 .00072		.057	.077	.080	.061	.2970	.2566	.3600	.2747
90 000	.01665	069	090.		.083	.063	.3105	.2700	.3734	. 2835
100 000	.01840 .00110 .00110	74 .072	.064	.088	.087	.067	.3240	.2880	. 3915	.3015

TABLE 16.-Compression Test of Roller (1.25 Inches Diameter), Radius of Race=10 Inches

33

2003-038

a

WASHINGTON, Marc

Technologic Papers of the Bureau of Standards

	Total def	ormation	Permane roller an		Width	h of contac	t area	Conta	ct area
Load in pounds	Ob- served value	Graph value	Ob- served value	Graph value	Ob- served value	Graph value	Hertz value for solid roller	Flexible roller (actual)	Solid roller (theoret- ical)
	Inch	Inch	Inch	Inch	Inch	Inch	Inch	Inch ²	Inch 1
5 000					0.022	0.021	0.015	0.0945	0.0675
10 000	0.00243	0.00246	1 1 1 1	0.00007	.030	.029	.021	.1305	. 0945
20 000	.00444	.00434	0.00008	.00013	.039	.039	.029	. 1755	. 1305
30 000	.00617	.00620		.00020	.046	.046	.036	.2070	. 1620
40 000	.00800	.00803	. 00035	.00029	.051	.051	.041	. 2296	. 1845
50 000	.00979	. 00983		.00040	.055	.055	.046	.2474	. 2070
60 000	.01162	.01164	.00049	.00053	.059	.059	.051	. 2655	. 2295
70 000	.01345	.01345		.00068	. 063	.063	. 055	. 2835	. 2474
80 000	.01522	.01523	.00079	.00085	.067	.067	.059	.3015	. 2653
90 000	.01701	.01702		.00103	.071	.071	.062	.3193	.2787
100 000	.01892	.01880	.00128	.00125	.076	.075	.065	. 3372	. 2924

TABLE 17.-Compression Test of Roller (1.25 Inches Diameter), Between Two Plates

TABLE 18.—Compression Test of Roller (1.25 Inches Diameter)

		inner race iches	Radius of inner race 10.0 inches	
Specimen (roller) No.	Propor- tional limit	Ultimate strength	Propor- tional limit	Ultimate strength
3.	Pounds 143 000	Pounds 211 000	Pounds	Pounds
5	130 000	199 000	130 000 140 000	184 00 206 00

001.10 000010 001.10

100308

1980 0.110 0.110 0.110 0.110 0.110 0.110 0.000 0.000 0.0000 -40

-do barren LVBTE 10'--Combie

WASHINGTON, March 21, 1921.

14 DAY USE RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.

This book is due on the last date stamped below, or on the date to which renewed. Renewed books are subject to immediate recall.

4

) 2 31 🐮

