

DECEMBER 22, 1908

No. 18

ond-class matter under Act of Congress July 16, 1894]

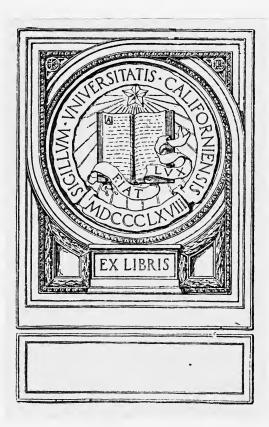
CIRCULAR NO. 3

FUEL TESTS WITH ILLINOIS COAL

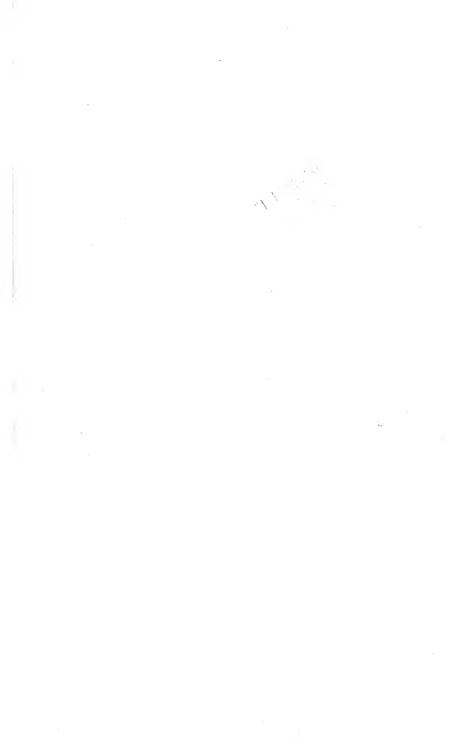
(COMPILED FROM TESTS MADE BY THE TECHNOLOGIC BRANCH OF THE UNITED STATES GEOLOGICAL SURVEY, AT THE ST. LOUIS FUEL TESTING PLANT, 1904-JUNE 30, 1907).

BY

L. P. BRECKENRIDGE


AND

PAUL DISERENS



UNIVERSITY OF ILLINOIS ENGINEERING EXPERIMENT STATION

URBANA, ILLINOIS PUBLISHED BY THE UNIVERSITY

UNIVERSITY OF ILLINOIS

ENGINEERING EXPERIMENT STATION

CIRCULAR NO. 3

DECEMBER 1908

ه د و د روو و در دود را را و ^{مس}د در در در مدد در در در در ا مرد درد در در ماه در ایدر در در در در در می م

UC

FUEL TESTS WITH ILLINOIS COAL

(COMPILED FROM TESTS MADE BY THE TECHNOLOGIC BRANCH OF THE UNITED STATES GEOLOGICAL SURVEY, AT THE ST. LOUIS, MO., FUEL TESTING PLANT, 1904-JUNE 30, 1907.)

BY

L. P. BRECKENRIDG., DIRECTOR OF THE ENGINEERING EXPERIMENT STATION, ALSO CONSULTING ENGINEER, TECHNOLOGIC BRANCH, U. S. G. S.

AND

PAUL DISERENS, M. E.

CONTENTS

		rage
I.	Introduction	2
II.	A Summary of Conclusions	2
	The Coals Tested	
IV.	Chemical Properties of the Coals Tested	9
v .	Washing Tests	18
VT.	Coking Tests	23
VII.	Steaming Tests	26
VIII.	Producer-Gas Tests	43

I INTRODUCTION

The United States Geological Survey Technologic Branch has conducted at the St. Louis, Missouri, fuel testing plant, a series of investigations on the fuels of the United States. These tests included a large number of Illinois coals. The results of the tests have been published from time to time in a series of government bulletins which contain very full descriptions of methods and very complete details of the results obtained. A complete list of the government bulletins is given at the end of this publication.

The tests included:

- (a) Steaming tests under boilers
- (b) Producer-gas tests
- (c) Washing tests
- (d) Coking tests
- (e) Briquetting tests
- (f) Chemical tests for composition and heating values

(g) Field work tests, sampling tests and a few other minor investigations.

It is the purpose of this circular to present in compact form the important results of the government tests so far as these tests relate to Illinois coals. The Engineering Experiment Station hopes that by bringing together in one circular the tests made by the government on Illinois coals, it may do a service to the engineering, industrial and fuel interests of the State. The compiler has presented a few conclusions which seem justified by a study of the results recorded from tests already made. It is, however, fair to say that in a few cases the number of tests made is scarcely sufficient to warrant any general application of the conclusions stated.

II A SUMMARY OF CONCLUSIONS

The results of the United States Geological Survey tests of Illinois coal, presented in the following pages, seem to justify the conclusions given below.

1. The chemical properties of the coals tested indicate that

on a basis of the volatile-carbon total-carbon ratio $(\frac{VC}{C})$, all Illinois coals tested belong in Class B or Class D^{*}. The maximum value of this ratio is 33.4 per cent and the minimum value is 20.9 per cent.

2. The average calorific value of Illinois coal is 14319 B. t. u. per pound of pure coal (ash and moisture free). But few samples tested varied from this value by an amount more than 2 per cent.

3. The quality of Illinois coal is greatly increased by washing. The reduction in ash and in sulphur is as follows:—

When raw coal contains 8% ash, the reduction in ash is 20%. When raw coal contains 12% ash, the reduction in ash is 30%. When raw coal contains 16% ash, the reduction in ash is 43%. When raw coal contains 20% ash, the reduction in ash is 53%. When raw coal contains 2% sulphur, the reduction in sulphur is 13%. When raw coal contains 3% sulphur, the reduction in sulphur is 17%. When raw coal contains 4% sulphur, the reduction in sulphur is 22%. When raw coal contains 5% sulphur, the reduction in sulphur is 22%.

4. The material rejected by the washing jig contains $\frac{2}{3}$ coal and $\frac{1}{3}$ noncombustible refuse.

5. One-fourth of the coal tested may be used for the manufacture of coke.

6. The evaporative efficiency of Illinois coal when burned in a hand-fired furnace under a water-tube boiler averages 62.7 per cent. This performance compares favorably with that of any other bituminous coal tested at the United States Geological laboratory.

7. The evaporative efficiency of Illinois coal is but slightly affected by the moisture contained in it.

8. The evaporative efficiency of Illinois coal decreases as the ash and sulphur increase. Each additional per cent of ash and sulphur results in 0.4 per cent decrease in efficiency.

9. The evaporative efficiency of Illinois coal, when burned in a hand-fired furnace, decreases as the percent of fine coal contained in it increases.

10. Briquetting improves the evaporative efficiency of Illinois coal only when the raw coal is in the form of slack or screenings.

11. The performance of Illinois coal in a gas producer compares favorably with that of any other bituminous coal tested at the United States Geological Survey laboratory.

12. The value of Illinois coal as fuel for a gas-producer

^{*}Professor Parr's classification of coal, see page 11 of this circular.

decreases as the ash contained in it increases and as the caloritic value decreases.

13. In small plants it requires at least two and one-half times as much coal to develop one horse-power when used in steam boiler service as when used in gas producer service.

14. Gas producers can be continuously operated with Illinois coal developing one electrical horse-power with 1.7 lb. of dry coal.

III THE COALS TESTED

1. The mining centers and districts of Illinois, recognized by the trade and defined with reference to geographical position, have been described as follows.*

(a) Williamson, Franklin, and Perry Counties. Williamson County led the production of the State in 1907 with more than 5,500,000 tons. No. 7, the Blue Band seam, which is from 5 to 10 feet thick, averaging 9 feet over a large area, is the greatest producer. It maintains an approximate uniformity in physical character and thickness but varies from place to place in fuel value. At Spillertown another seam, 4 feet thick, is mined 60 feet below No. 7. This seam is probably equivalent to No. 5 of Saline County and may have a wide distribution in the Williamson County district.

(b) Sangamon, Macoupin, Christian, Logan, and Macon Counties. The Springfield district, extending into several adjoining counties, has long been one of the most important. Sangamon produced more than 5,000,000 tons in 1907. The coal of the district is commonly known as No. 5, though recent work tends to confirm the suggestion that there are probably two distinct beds mined in this district,-No 5, in the area north of Chatham, and in No. 6 south of that town. The average thickness is a little less than 6 feet at Springfield, about 4.5 feet at Decatur and from 6 to 8 feet in Macoupin County.

(c) St. Clair, Madison, Clinton, and Randolph Counties. St. Clair County produced more than 4,500,000 tons in 1907. This district, known as the Bellville district, is not sharply set off from its neighbors since the same coal bed is mined under similar conditions in adjoining counties. It is the Blue Band seam and has a thickness of from 5 to 7 feet over much of the area. The seam is reached by shafts from 100 to 300 feet deep.

^{*}The Coal Resources of Illinois, by Frank W. DeWolf, Amer. Inst. of Mining Engineers, October, 1908,

(d) Vermilion County. During 1907 Vermilion County produced nearly 3,000,000 tons. It has long been an important area, shipping principally to the Chicago market. There are three persistent seams, two of which are worked. The top or Danville, No. 7, appears west of Vermilion river and is mined along the outcrop and by shafts from 75 to 200 feet deep. The other, known as the Grape Creek coal, No. 6, lies from 20 to 80 feet below the Danville and is the more important of the two.

(e) Saline County. Saline County is one of the newest and most rapidly growing producers. In 1907 its output was about 2,125,000 tons, a gain of 125 per cent over 1906. There are two seams, No. 7 and No. 5, underlying the northern two-thirds of this county and much of Gallatin on the east, each approximately 5 feet thick and lying 90 to 150 feet apart vertically.

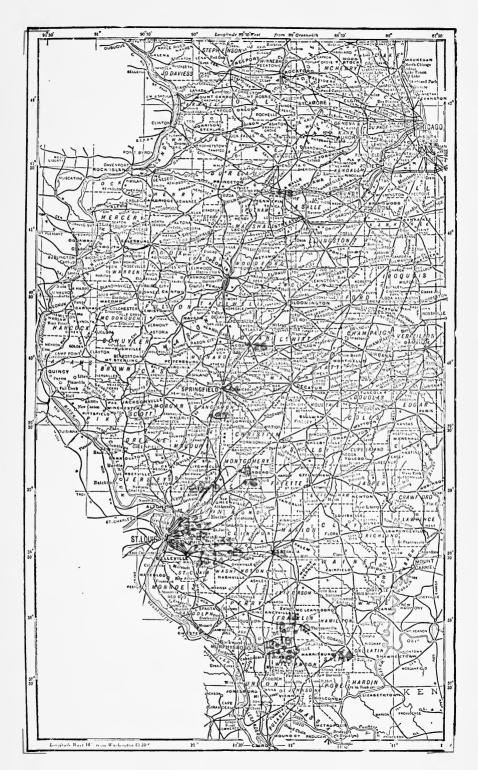
(f) Fulton and Peoria Counties. Fulton County produced more than 2,000,000 tons in 1907 and Peoria about half as much. Here the principal seam, called No. 5, is from 4 to 4.5 feet thick. Shafts reach the coal at from 75 to 150 feet. In all, seven beds are present.

(g) La Salle, Bureau and Grundy Counties. The La Salle district includes three principal counties and produces more than 5,000,000 tons yearly. The largest production is by long-wall mining from seam No. 2, or the Third Vein. The coal averages 3 feet thick and is of good quality. About 140 feet above it, lies seam No. 5. It is about 4 feet thick. About 40 feet above No. 5 is seam No. 7. This is extensively mined by room-and-pillar methods.

2. The samples tested were procured from 5 of the 7 districts described in the preceding paragraph. They were furnished by the several coal mining companies of the state free of cost, and were shipped to the fuel testing laboratory under the supervision of an expert inspector whose chief care was to secure a sample for testing which fairly represented the normal product of the mine. The cars were numbered consecutively in the order of shipment, and this number has been retained as the laboratory designation of the sample. When two or more car lots consisting of different grades, such as lump, nut, etc., were shipped from the same mine, each lot was designated by a letter. For example, Illinois 11A is screened coal, 11B run-of-mine and 11C No. 5 washed coal, all from the same mine.

A complete list of the car-load samples of Illinois coal received and tested is given in Table 1. In this table the location

OAL TESTED
F ILLINOIS C
SAMPLES OF
TABLE 1


Depth of Mine, feet	7	l
Name or Number of Mine	9	Nigger Hollow No. 1 No. 3 No. 3 Clover Leaf Shaft No. 1. Clover Leaf Shaft No. 1. No. 2 No. 2 No
Operator	£	Western Anthracite Coal and Coke Co Southern Illinois Coal Co Donk Brothers Coal and Coke Co Clover Leaf Coal Co Lamaghi Coal Co During Coal Co Dering Coal Co Dering Coal Co Dering Coal Co Dering Coal Co Br. Louis and Big Muddy Coal Co St. Louis and Big Muddy Coal Co Dering Coal Co Dering Coal Co Capital Coal Co Capital Coal Co Capital County Carbon Coal Co Leagital County Carbon Coal Co Leigier Coal Co Capital County Carbon Coal Co Leigier Coal Co
County	4	St. Clair Williamson Madison Montgomery Madison Madison Macoupin Franklin Williamson Williamson La Salle Franklin Williamson Macoupin Madison Madison
Location of Mine	ŝ	O'Fallon Marion Coffeen Coffeen Near Collinsville Near Staunton Vest Frankfort Near Carterville Near Carterville Staunton Bebton East Side of Springfield. La Salle La Salle Centralia Centralia Centralia Carterville Staunton
Coal Bed or Seam	~	© © → → → → → → → → → → → → → ⊕ ⊕ ⊕ ⊕ ⊕
U. S. G. S.	-	289999888857433889998889888889898888888888888888888

6

ILLINOIS ENGINEERING EXPERIMENT STATION

FUEL TESTS WITH ILLINOIS COAL

260		145	145	320	320	345	345	276		167	167	187	286	286	126	200	200	320	165	165
:	:	:	:	New Baden	;	;		Lincoln	Auburn	Herrin Williamson	;	;	Livingston		Shiloh Station St. Clair			'renton	Harrisburg	:
				÷			:	:	:	:			:			:	•	:	:	
÷	:	:	;	:	;	:	:	:	:	:	:	;	;				÷	÷	:	:
:	÷	÷	1	-	÷	÷		-	-	:	÷	-	-				÷		:	:
Ξ	÷	÷	÷	-		÷	-	-	-	-	-	-	:				÷	-	:	÷
÷	÷	÷	:	:	:	:	:	:	:	:	:		:		1		:	:	:	:
:	:	:	:		:	:	:	:	:	:	:	:	:	: :		:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	:			:	:	:	:	:
÷	:	÷	Ī	÷	-	3	3	-	-	-	3	-					÷	÷	÷	÷
÷	÷	:	÷	-	:	:	:		:	:	:					:	÷	:	1	:
:	÷	:	•	:		:	:	:	:	:	:	•	1	1	:	:	:	:	:	:
÷	÷	÷	÷	÷	:	:	:	-	:	:	-	-					÷	÷	-	:
:	:	:	:	:	:	:	:	:	:		:	:	:			:	:	:	:	:
:	:	:	:	:	:	:	:	:	•	:	:	:	:	: :		:	:	:	:	•
÷	÷	÷	÷	÷	;	;	:	-	:	:	:	:	:				÷	÷		;
÷	÷	÷	÷	÷	:	:	3	:	:	:	-	-	3				÷	÷	3	÷
:	:	:	:	:	:	:	:	:	:		:	:	:				:	:	:	:
÷	÷	÷	÷	÷	:	:	•	;	;	;	:	;	:				÷	:	;	÷
÷	÷	Ξ	÷	÷	:	:	:	;	;		÷	;	-				÷	:	;	:
:	:	÷	÷	:	:	:	:	- 3	:	:	:	:	-			:	:	:	:	:
:	:	:	:	:	:	:	:	:	:	:	:	:	•	. :		:	:	:	:	:
÷	÷	•	÷	÷	÷	:	:	;	;	:	:	;	:				÷	÷	:	÷
÷	÷	:	÷	:	÷		3	:	:	:	÷	:	3				:	÷	÷	:
:	÷	:	:	÷	:	:	:		:	:	:	:	:			:	:	:	:	:
:	:	:	:	•	:	:	:	:	:	:	:	-	:			:	;	•	:	:
÷	÷	÷	÷	÷	÷	:		;	;	-	:	:	:				÷	÷	:	÷
÷	÷	:	÷	÷	÷	:	-	:	-	:	:	÷	:			:	÷	÷	:	:
:	:	:	•	:	:	:	:	:	:	:		:	:	1		:	:	:	:	:
:	:	:	:	;	•	:	:	:	:	÷	•	:	:	:			;	:	;	:
÷	÷	÷	÷	÷	÷	÷	:	:	:	÷	:	:	:				÷	÷	:	:
÷	÷	÷	÷	÷	÷	÷	:	-	-	:	÷	:	-	- 3			÷	÷	:	÷
÷	:	÷	:	:	:	:	:	:	:	:	:	:	:	1		:	:		:	:
:	:	;	:	-	:	:	:	:	:	•	:	:	:	1		:	:	:	:	:
÷	÷	÷	;	:	:	:	;	;	;	:	:	÷	;	1			÷	:	•	:
÷	•	•	•	•	•	•	•	•	•	•	-	-		-			•	•	•	•
÷	÷	÷	÷	÷	÷	÷	÷	:	-	:	÷	:	:	-			÷	÷	:	÷
:	:	:	:	:	:	:	:	÷	:	:	:	:	:			:	:	:	:	:
:	:	;	:	:	:	:	:	:		:	:	:	:	. 1			;	:	;	:
:	÷	÷	÷	÷	:	:	:	-	:	:	:	:	:				÷	÷	:	÷
1	÷	÷	÷	÷	÷	:	:	÷	:	:	-						÷	÷	3	÷
:	÷	:	÷	:	:	:	:	:	:	:	:	:	:			:	÷	:	:	•
:	÷	÷	:	:	:	:	:	:	3	ä	:	:	:				;	:	:	:
•	•	•	•	÷	•	•	•	:	5	š	•	•	_				•	÷	:	•
				g				ä	E	H			5		-2			ğ		
:	1	. :		5	:	:	-	101	50	ΞĦ	: :	:	lis	:	ĉ			5	ğ	:
				ΗĽ				ő	an	E			ĕ		÷.	;	;	11	9	
-	_	-		0				1	<i>U</i>	2		_	2		U,)	2	2	ິ	
:		Donkville		÷		;		:	:	3			:				Wailuct	÷	:	
:	:	÷		:	:	1	•	:	:	:	:		:			:	:	:	:	:
÷	÷	÷	:	:	:		:	3	:		:	;	:				÷	:	:	:
÷	÷	÷	÷	:	÷	:	:	:	:	:	:	:	:				:	÷	:	÷
÷	:	÷	:	:	:	:	:	:	:		:	-	:			:	:	:	:	:
:	:	:	:	÷	:	3	:	:	;		:	:	:	:	5	1	÷	:	:	:
:	÷	÷		å	:	Ν'n	:		:	:	;	:	:		ti		÷	:		:
e	÷	Ð	·	lei	:	õ	;	:	:	:	:	:	⁰		t a		:	÷	11G	•
3	-	Ē		ă		D		ä	a	:			st		Ű.	1		ä	ā	
Maryville	,	É,		Щ.		ä	:	õ	'n	Ľ.		:	ng	-	6	5	ž	Ĕ	r_{ls}	:
E.		8		ev.		eri		ĭ	db	er			ΙĀ		Ę	Ċ	3	Ē	18	i.
ξ	(ź.		Ż		Germantown	_	5	Ā	Ξ			Ľ		đ,	58	2	Ε	Ħ	
			ç	\$	ç	8	ę	10	¢	~	~	~	20					-	<u>م</u>	20
0			1	1			2		-		-									
0																				
			-					-	-				-				_			
0 °		4	n	V	m	v	m			¥	Ŧ	0	A	æ					•	В
Q VZZ	972	23A	23B	24A	24B	25A	25B	26	27	28A	2×B	280	29A	808	30		21	Ę.	34A	34B

of the mine, the geological bed or seam and the name of the mine or its depth are given. Referring to the table it will be seen that fifty-three car samples from thirty-three different mines were tested, and that the mines are distributed throughout twelve of the principal coal mining counties of the State. The location of each mine is plotted on the map, Fig 1.

A comparison of the coal output of the several localities designated in paragraph 2, with the number of mines submitting samples, shows that the coal tested is fairly representative and while it is true that two comparatively important coal producing localities are not included, the results of tests should be accepted as characteristic of Illinois coal in general.

3. The plan of the tests as adopted by the United States Geological Survey included a complete chemical analysis of samples submitted, an investigation of the advantages of washing, an investigation of the coking qualities of the coal, and a series of boiler and gas producer trials. In carrying out this plan each sample was tested under conditions as nearly identical as possible, and every effort was made to secure results which would admit of direct comparison.

IV CHEMICAL PROPERTIES OF THE COALS TESTED

To determine the chemical properties of the coals tested, samples were taken both from the working face of the mine and from each car-load shipped.

4. The mine samples were obtained as follows: After a general inspection of the mine to determine the variations of coal in thickness and in quality, two representative points were selected in opposite parts of the mine. The face of the coal at these places was cleaned in order to remove any weathered coal or powder smoke, and a cut made across the face of the coal from roof to floor, including all the benches mined and such impurities as were not removed in ordinary work. The coal obtained, amounting to 25 or 30 pounds, was pulverized and quartered down according to generally accepted rules, and the sample placed in an air-tight iron can. This was mailed to the chemical laboratory where it was received and analyzed within two or three days.

10

5. The car samples were obtained during the process of unloading at the testing plant. A quantity never less than 200 pounds and often as great as 600 pounds was collected, a shovelful at a time from every part of the car. This was thoroughly crushed and quartered down until 25 or 30 pounds remained, placed in an airtight can and immediately shipped to the chemical laboratory. Here the sample was pulverized and again quartered until a convenient amount for analysis was obtained.

6. The chemical work included calorific determinations, and ultimate and proximate analyses. The calorific value was determined in duplicate for each car sample. A determination was also made for one of the two mine samples corresponding to each carload. An ultimate analysis was made in duplicate on each car sample. The approximate analysis and the determination of sulphur were made for practically every sample that came into the laboratory, and were made in duplicate for all car samples.

The results of the chemical analyses are given in Tables 2 7. and 3, (p. 12, et seq.) Column 1 gives the laboratory number, Column 2 the U.S.G.S. number, Column 3, the coal bed or seam and Column 4, the location from which the sample was taken. Column 5 gives the designation of the sample. The proximate analysis is given in Columns 6 to 14. These results are given both for airdry coal (Columns 7 to 10) and for pure coal (Columns 12 to 14). The calorific value is given in terms of dry coal in Column 11 and in terms of pure coal in Column 15. Referring to the latter it will be seen that the maximum value is 14900 and the minimum 13900, a range of about 6.7 per cent. The average, however, is 14319 and but few of the recorded values vary from this by an amount greater than two per cent. The ultimate analysis is given in Columns 16 to 21. For convenience in comparing the results this is put in terms of dry coal. Columns 22, 23 and 24 have been calculated from the ultimate and proximate analyses. The combustible volatile is equal to the difference between the total volatile (Column 12) and the inert volatile (Column 23). The inert volatile is equal to 100 minus the total carbon, the ash, the water, the sulphur and the available hydrogen all divided by 100 minus the ash and water. The ratio of the volatile carbon to the total carbon (Column 24) is equal to total carbon as shown by the ultimate analysis minus the fixed carbon as shown by the proximate analysis divided by the total carbon.

The values included in Columns 22, 23 and 24 have been calculated in order to make possible a classification based on the ratio of volatile carbon to total carbon. This is the classification suggested by Professor S. W. Parr, and, in brief, is as follows.*

	Anthracite Semi-A	cite ProperRatio $\frac{VC}{C}$ below 4% nthraciteRatio $\frac{VC}{C}$ between 4% and 8% ituminousRatio $\frac{VC}{C}$ between 10% and 15%
COAL	Bituminous Proper	ARatio $\frac{VC}{C}$ from 20% to 32% Inert Volatile from 5% to 10%BRatio $\frac{VC}{C}$ from 20% to 27% Inert Volatile from 10% to 16%CRatio $\frac{VC}{C}$ from 32% to 44% Inert Volatile from 5% to 10%DRatio $\frac{VC}{C}$ from 27% to 44% Inert Volatile from 10% to 16%
	Black Lignites	$\begin{cases} \text{Ratio } \frac{VC}{C} \text{ from 27\% up} \\ \text{Inert Volatile from 16\% to 20\%} \end{cases}$
	Brown Lignites	$\begin{cases} \text{Ratio } \frac{VC}{C} \text{ from 27\% up} \\ \text{Inert Volatile from 20\% to 30\%} \end{cases}$

It will be seen that in this system of classification all samples of Illinois coal tested fall in one of two divisions, bituminous B and bituminous D. In Table IV (p. 18) they have been arranged in the order of their volatile-carbon total-carbon ratio. Referring to VC

Column 2 of this table the minimum value of the ratio $\frac{VC}{C}$ is 20.9 and the maximum 33.4. The inert volatile calculated on the pure coal basis varies from 12.5 to 16.3.

The classification of the several coal beds or seams of the state as used in the state coal reports has often been questioned; nevertheless it is of interest to note that in so far as the present tests can be taken as an index, seam No. 7 falls in Class B, and seam No. 6 falls in Class D. Furthermore if, as has been pointed out, (paragraph 2, section b, Chapter II) certain of the Blue Band

^{*}Composition and Character of Illinois Coals, by S. W. Parr, Illinois State Geological Survey, Bulletin No. 3.

12	

ILLINOIS ENGINEERING EXPERIMENT STATION

to buuc Is	B. t. u. per pound of Pure Coal		14294 14294 14294 14600 14600 14600 14600 14600 14600 14005 1405 14
Ash Ash ree),	undquz	14	8080-000
Proximate Analysis of Pure Coal (Ash and Moisture Free), Per cent	rodrsO bexiA	13	&&###888888888888888888888888888888888</td></tr><tr><td>Proxin of Pu and Mo</td><td>Volatile TetteN</td><th>12</th><td>0028882088044864468464446444444444444444</td></tr><tr><td>to bund Iso</td><td>В. t, u, рег ро Дагадари О</td><th>11</th><td>11738 11448 11448 12556 12556 12556 11520 11520 11520 11520 11162 10856 10856 10856 10856 10856 10856 10856 10850 10850 10850 11950 9730 9730 9730 9730 9730 9730 9730 973</td></tr><tr><td>Air- it</td><td>ųsy</td><th>10</th><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></tr><tr><td>alysis of Per cer</td><td>Fixed Carbon</td><th>6</th><td>85,088,088,888,888,894,444,444,444,408,408,444,444,444,444,44</td></tr><tr><td>Proximate Analysis of Air- Dry Coal, Per cent</td><td>Volatile TotteM</td><th>80</th><td>448255555555555555555555555555555555555</td></tr><tr><td>Proxin Di</td><td>AutsioM</td><th>2</th><td>8.800.000 8.800.0000 8.800.000 8.800.0000 8.800.0000 8.800.0000 8.800.0000 8.800.0000 8.800.0000 8.80000 8.8000000 8.8000000 8.80000000000</td></tr><tr><td>e in Air- r cent</td><td>utsioM ni seo.I 1994 , 2017 jug. Del</td><th>9</th><td>48866449886499986988946686466864666894 6866658666688899889988966666668988</td></tr><tr><th></th><th colspan=2>Designation of Sample</th><th>Mine Sample No. 1 Mine Sample No. 1 Car Sample No. 2 Car Sample No. 2 Mine Sample No. 2 Car Sample No. 1 Mine Sample No. 1 Mine Sample No. 2 Car Sample No. 2 Car Sample No. 3 Mine Sample No. 3 Car Sample No. 2 Car Sample No. 2</th></tr><tr><td></td><td colspan=2>County in Which Mine is Located</td><td>St. Clair Willtamson Madison Montgomery Montgomery Montgomery Mortgomery</td></tr><tr><td>mr92</td><td>Coal Bed or</td><th>3</th><td></td></tr><tr><td>.0N</td><td>n. s. e. s.</td><th>2</th><td>1108888444866666666666666666666666666666</td></tr><tr><td>.0N</td><td>Laboratory</td><th>-</th><td>- ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °</td></tr></tbody></table>

TABLE 2 CHEMICAL ANALYSES

	FUEL TESTS	WITH ILLINOIS COAL	13
14648 14723 14613 14613 14613 14613 14454 14454 14578 14578 14547	14257 14257 14267 14267 14267 14482 14482	14486 14571 11388 14572 14573 14573 14533 14238 14338 1435858 1435858 1435858 1455858 1455858 1455858 1455858 1455858 14	14182 14076 14166 14263 14263 14192 14197
2 41 2 42 2 42	2012 2012	889 867 867 867 867 867 867 867 867 867 867	44677.067.047.478 8.46.77.067.47.7 1.10.834.058 8.46.83 8.46.83 8.46.83 8.46.83 8.46.83 8.46.83 8.46.83 8.47.84 8.47.84 8.48.83 8.49.84 8.49.84 8.49.444 8.49.444 8.49.4444 8.49.44444 8.49.4444444444
66 68 68 68 68 68 68 68 68 68	228222222888888 8882122228888888 8860-10883 6 888888	88888888888888888888888888888888888888	55555555555555555555555555555555555555
8688844444 8688844444 86488884444 86444444 8644444 8644444 86444 864444 864444 864444 8644444 8644444 8644444444			44444444444444444444444444444444444444
11957 11702 11702 11837 11837 11837 11837 11837 10784 11068 11068	10636 10757 11077 10960 12058 11959 11959	113393 12001 100558 116856 100557 100507 10615 10610000000000	10937 10958 11290 10733 10733 10733
10.61 11.68 11.68 11.88 12.95 10.55	12.23 12.25 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55 12.55	5.38 5.39 5.38	9,18 8,09 8,09 8,09 8,09 8,09 8,09 8,18 8,18 8,18 8,18 8,18 8,18 8,18 8,1
50 50 50 50 50 50 50 50 50 50	8253526552655265555555555555555555555555	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44444444444444444444444444444444444444
23.25.25 28.25.25 28.25.25 28.25.25 29.25 29.25 29.25 29.25 29.25 29.25 20.25	33.38.39.38.37.38.33.38.38.38.38.38.38.38.38.38.38.38.	888.838.828.828.828.828.828.828.828.828.	33.02 35.41 35.41 35.41 35.41 35.41 35.41 37.17 41 41 37.17
7.7 8.8 9.0 10 10 10 10 10 10 10 10 10 10 10 10 10	11.88 1.	22 23 23 23 23 23 23 23 23 23	13.43 11.44 11.44 11.45 11.35 14.77 15.68 14.77 14.29
4.4.6.9.9.9.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0	011877474441 080088057800	25 25 28 28 28 28 28 28 28 28 28 28 28 28 28	10.10 9.60 6.70 6.70 10.20 10.
Car Sample A Car Sample B Car Sample B Car Sample B Mine Sample No. 1 Mine Sample No. 2 Car Sample A Car Sample B Mine Sample No. 2 Mine Sample No. 2 Mine Sample No. 2 Mine Sample No. 2 Car Sample No. 2 Mine Sample No. 2 Car Sa		Mine Sample No. 2 Car Sample No. 1 Mine Sample No. 1 Mine Sample No. 2 Car Sample B. Mine Sample No. 3 Mine Sample No. 1 Mine Sample No. 2 Car Sample. No. 2 Mine Sample No. 2 Car Sample No. 2 Mine Sample No. 1 Mine Sample No. 2 Car Sample No. 2 Mine Sample No. 2 Car Sample No. 2 Car Sample No. 2 Mine Sample No. 2	Mine Sample No. 1 Mine Sample No. 2 Car Sample No. 1 Mine Sample No. 1 Mine Sample No. 2 Mine Sample No. 1 Mine Sample No. 2 Mine Sample No. 1 Mine Sample No. 1
Williamson.	Sangamon Marion Williamson La Salle	Franklin Macoupin Madison.	Clinton Logan Sangamon
	- 13 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		2688332252525252525555555555555555555555	

ILLINOIS	ENGINEERING	EXPERIMENT	STATION

to bane Is	B. t. u. per pound of Pure Coal		14153 14583 14583 14583 14583 14583 14583 14583 14583 14423 144333 14433 14433 14433 14433 14433 14433 14433 14433 14433 14431
alysis Ash ree),	anyding	14	477-70 477-70
Proximate Analysis of Pure Coal (Ash and Moisture Free), Per cent	Fixed Carbon	13	¥88.88 4.88 1.88 1.98 1.99 1.99 1.99 1.99 1.99 1
Proxit of Pu and Mo	Volatite Matter	12	8488888444448844488888864 0.99888844444888999999999999999999999999
to band Iso	B, t. u. per pe O vib-riA	п	9940 9940 12200 11959 11959 11959 11959 9983 9983 9983 11236 11439 10719 10719 10719 10735 10735 10735 10735 10735 10735 10735 11435 10735 10735 11435 10735 11455 114555 11455 11455 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 114555 1145555 114555 114555 1145555 11455555 11455555555
f Air-	qsy	10	8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
alysis o Per cen	Fixed Carbon	6	827555555555555555555555555555555555555
Proximate Analysis of Air- Dry Coal, Per cent	Volatile Matter	8	* 888888888888888888888888888888888888
Proxir Dı	Moisture	2	4 16 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e in Air- r cent	utsioM ni seo.I Drying, Pe	9	0.01 0.01 0.02
	County in which Mine Designation of Sample is Located		Míne Sample No. 2 Car Sample No. 1 Míne Sample No. 1 Míne Sample No. 1 Car Sample No. 1 Míne Sample No. 2 Car Sample No. 1 Míne Sample No. 2 Car Sample No. 1 Míne Sample No. 2 Míne Sample No. 2 Car Sample No. 2 Car Sample No. 2 Míne Sample No. 2 Car Sample
			Sangamon. Wililiamson Madison St. Clair Clinton Clinton
S	Coal Bed or	ლ 	ณณ ส.ศ.ศ. ชชชช .ศ.ศ.ศ.ณณณ ส.ศ.ศ.ชช
.0N	U. S. G. S	8	88888888888888888888888888888888888888
٥N	Laboratory	-	$\begin{smallmatrix} & 8.8\\ & 8.8$

TABLE 2 CHEMICAL ANALYSES (continued)

FUEL TESTS WITH ILLINOIS COAL

е Сатроп троп	Ratio of Volatil Ro Tota C	24	:	33.8 33.0	:	22.5	:	28.3	: :	21.5	22.9	:	33.6	32.1	:	31.8	30.8	26.2	
, siit (sie s t	Inert Volatile. (Pure Coal Basis)		·:	13.0 12.9	:	12.2	:	12.3	: :	13.5	13.2		13.2	12.7		13.0	12.9	13.3	:
, 9litsio (sissi	V əlditsudmoD I laoO əruY)	ន	:	35.6 35.7		24.6	:	30.1	: :	26.3	27.4		35.9	35.0 33.5	:	35.0	34.8	27.1	:
	dsA	21	:	14.63		12.31		13.37		15, 53	16.10		19.55	14.79		12.41	11.96	12.63	
Coal	JudqluZ	20	:	4.54	:	1.89	:	1.51	:	4 69	4 87		4.97	5.05		4.65	4.59	4.50	:
Ultimate Analysis of Dry Coal (Per cent)	Охувел	61	:	8.84 8.84		8.18	:	9.48	:	10.16	× 89		6.53			9.11	9.11	8.03 9.03	:
tte Analys (Per (Nitrogen	18	:	1.14		1.52	:	1.32	:				1 06	1.11		1.10	1.13	1.50	:
Ultime	подтвЭ	17	:	66.16 57.09		71.57	:	69.74	:		AL AN		61.69	65.76 85.76		67.87	68.32	03.00 70.54	:
	Нудгоgen	16	:	4.69		4.53	:	4.58	÷	4 54			4.97	4.64	3 :	4.86	68.4	4.70	:
	Designation of Sample	20		Car Sample. Car Sample.		Car Sample.		Car Sample.		Cor Commis A			Car Samula R	Car Sample D.		Car Samula A	Car Sample B.	Car Sample C.	
msəZ	Coal Bed or	m	e	66 6	- 10		2		6 0 x	א מי כ	אטינ	. 0	64	000	90	66	00	91-	2
.0 ^N	U, S. G. S.	8	1	0	ه به	ee co	4	44	NO G	0.00	500	3	с. Ц	<u>.</u>	00	9 0	9B	20	11
.0 ^N	Laboratory	-		es co 4	r 10	91-	- 00	80	11	13	15	25	81	28	32	23	12	82	82

TABLE 3 CHEMICAL ANALYSES

16

ILLINOIS ENGINEERING EXPERIMENT STATION

roon Pon	Ratio of Volatile to Total Car	24	24.6 25.0 24.7	22.22 24.7	24.7	30.6	29.5	22.9	31.8	21.0
, siite, (siss)	Inert Volatile, (Pure Coal Basis)		11.6 11 8 12.6	13.0 12.1		12.4	13.2		12.7	13.3 11.3
, 9litslo (siss)	V 9lditendmoD B lsoO 9rnT)	22	26.9 27.5 26.1	24.7 27.0 26.9	26.0	33.5	32.0	24.2	34.2	21.7 26.1
	ųs ∀	21	11.50 12.80 8.38 8.38 14.10	11.18 12.01 12.35	11.43	13.15	14.70	10 49	10.18	10.50 10.48
Coal	andqing	20	2.14 2.70 1.81	25.73 25.73 25.73	 1.69	4.77	4.30	1.25	4.47	
Ultimate Analysis of Dry Coal (Per cent)	OXYgen	19	7. 85 8.95 8.95 8.95	9.16 8.35 8.35	8.83	 8.48	9.02	8.47	9.15	9.13
tte Analy: (Per	Nitrogen	18	1.43 1.41 1.46 	1.26 1.06 1.23	1.61	1.25	1.15	1.64	1.14	1.59
Ultima	nodasO	17	72.15 70.54 70.56	70.91 71.13 70.73	71.97	67.33	66.22	73.51	69.95	73.75
	Нудгоgen	16	4.4.44. 9.8.7.4.	4.71 4.54 4.61	4.65	4.67	4.61	4.63	5.10	4.60
	Designation of Sample	2	Car Sample A Car Sample B Car Sample C Car Sample A	Car Sample B	Car Sample.	Car Sample.	Car Sample	Car Sample.	Car Sample. Mine Sample No. 1	Mine Sample No. 2
ms92	Coal Bed or	en	i= t= i= t= t= t=	t- t- t- t	- I- I- K	າດາດແ	9005	• t~ t~ ल	C1 69 1-	1-1-1-
.0 ^N	U. S. G. S.	2	28 C C C C C C C C C C C C C C C C C C C	12B 12B 12B 12B 12B 12B 12B 12B 12B 12B	<u>.</u> 2 22•02 Z	1745	2222	2998	81 81 61	19 19A 19B
.0N	Laboratory	1	82 82 8 8 7 7 8 8 8 8 8 8 7 8	6 5 3 % 83	86644	1 63 67 4 7 63 67 4 7 63 67 4	14 4 4 16 9 5	50 84 86 86 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	52 52 52	56 55 26 55

TABLE 3 CHEMICAL ANALYSES (Continued)

26.9	23.7	: :		31.3	27.1	::	1 06	20.2	:		R.02	:	29.2			0.62	:	29.8	:	20.9			26.1	20.0			0.16	:	27.6	:	31.0	:		25.4
13.6	16.3	: :		12.6	12.8	:	19.5	13.20	:		0-21	:	13.4	:		0.21	:	13.5	:	19.5		:	13.8	1940	:		0.51	:	13.1	::	12.8			13.1
30.2	26.2	:::		34.9	32.3	:	20.2	33.55		:	1.15	:	32.6	:		32.3	:	32.7	:	23.8			29.6	20.5			00.00	:	30.6	:	7. 16			26.1 27.3
16 03	12.95			14.77	16.70	:	10 00	18.49			12.10	:	15.11	:::::::::::::::::::::::::::::::::::::::		14.34	:	16.39	:	10.82			18.42	14.30			14.V1	:	15.25	:	93, 38			13.11 9.09
4.55	1.63	:		6.06	2.00	:		4.72	:		50.0	÷	5.37	:		4.10	:	4 .83	:	1 43			4.80	4.99 7			4.30	:	4.21	:		: :	::	3.05 2.56
9.11	10.86	:	:	8.51	8.58	:		8.64			8.71	:	8.95	:		8.40	:	9.06	:	9.74			8.8 8.8	800			A.02	:	8.82	:	04.0	;;;	:	8.80 8.80
1.17	1.29	÷	:	1.14	1.02	:		891		:	1.15	:	1.19	:	::;	1.26	:	1.08	:				1.02	1.14			8.T	:	1.18	:		*	:	1.43 1.56
64.71	68.70	:	:	65.10	64.33		00 00	00.00 69 79			67.81	i	64.70			67.31	:	64.15	:	- 1 - 1	01.01		62.43	65.31	04.00	:	64.71		65.95	:	a1 10	0E-10		69.32
4.43	4.57	:	:	4.42	4.37	:		4 37		:	4.65	:	4.68	3		4.53	:	4.49	:		00.1	: :	4.37	4.56	4.00		4.71	:	4.59			31.0		4.50
7 Mine Sample No. 3 6 Mine Sample 6 Mine Sample No. 1	6 Mine Sample No. 2		6 Mine Sample No. 1		6 Car Sample B.			6 Car Sample A					6 Mine Sample No. 2.				6 Mine Sample No. 1	6 Mine Sample No. 2.	7 Mine Sample No. 1.	7 Mine Sample No. 2.	7 Car Sample C	5 Mine Sample No. 2.	5 Car Sample A.	5 Car Sample B.	2 Mine Sample B	7 Mine Sample No. 2	7 Car Sample	6 Mine Sample No. 1.	6 Mine Sample No. 2	7 Mine Sample No. 1.	7 Mine Sample No. 2	7 Car Sample K Mine Sample No. 1	5 Mine Sample No. 2.	5 Car Sample A
20 20 21 20 21	21	21	55	22	22B	1	23	23A	2315	24	24B	25	ខ្លួ	002	26	26	27	27	28	8	282	R Co	29A	29B	2915	38	30	31	57 5	:8	8	82	5.55	34A
29 22 22	60	623	63	4 9	38	29	68	69	27	2	13	74 、	22	61	: %	62	8	18 8	38	3	23	8 5	538	68	83	85	93	8	88	26	8	89	101	102

FUEL TESTS WITH ILLINOIS COAL

coals of Sangamon County in reality belong to Seam 6 instead of 5, Class B would also include all coals tested from seam No. 5. The single sample from Seam No. 2, (U. S. G. S. 18) falls in Class D, well up towards the lignites.

TABLE IV

CLASSIFICATION OF ILLINOIS COAL ON THE BASIS OF THE VOLATILE-CARBON AND TOTAL-CARBON RATIO

U. S. G. S. Number	Ratio of Volatile Carbon to Total Carbon	Inert Volatile (Pure Coal Basis)	Class	Coal Bed or Seam
1	2	3	4	5
28	20.90	12.50	в	7
6	22.20	13.35	B	5
3	22.50	12.20	B	
16	22.90	12.50	B	757776775766566
19	23.00	12.30	B	7
12	23.63	12.20	B	7
21	23.70	16.30	B	6
13	24.70	13.00	B	7
11 I	24.77	12,00	B	7
34	25.40	12.90	B	5
10	26.20	13.30	B	7
24	26.90 .	12.50	D	6
20	26.90	13.60	D	6
29	27.13	13.50	D	5
31	27.60	13.10	D	6
4	28.30	12.30	D	6
9	29.00	13.00	D	6
22	29,20	12.70	D	6
23	29.30	13.30	D	6 6 6
25	29.20	13.40	D	6
15	29 50	13.20	Đ	6
26	29 80	12.50	D	$\frac{6}{5}$
27	29.80	13.50	Đ	ĕ
8	30.30	12.70	D	6
14	30.60	12.40	Đ	5
30	31.00	14.00	D	6
33	31.00	12.80	$\tilde{\mathbf{D}}$	6 5 6 7 2 6
18	31.80	12.70	$\tilde{\mathbf{D}}$	2
7	32.80	12.95	Ď	6
1 & 2	33.40	12.95	Ď	6

V WASHING TESTS

8. The equipment for the washing tests of Illinois coal consists of one modified Stewart jig and one jig especially designed for the laboratory, a Cornish tooth-roll crusher, an adjustable-mesh bumping screen, and bins of suitable capacity for storing the coal. The Stewart jig, shown in Fig. 2, provides for the washing of coal not exceeding $1\frac{1}{2}$ inches in diameter. The special jig may be used for larger sizes. It is of the center-plunger type, that is, the plunger is directly beneath the screen. Its upward stroke causes the pulsation, and its downward stroke, by an arrangement of valves at the side of the jig body, admits the water sup-

ply. The screen is 4 feet wide by 5 feet long and is constructed of No. 10 wire set 1-16 inch apart. The length of stroke and the depth of the coal bed are adjustable.

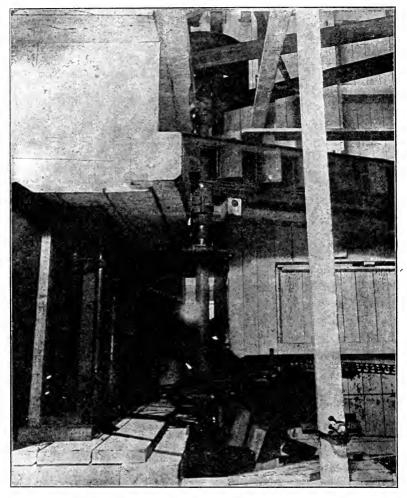


FIG. 2 STEWART JIG (PROF. PAPER 48, p. 1460)

9. The tests involved the weighing of the raw and washed coal, and the refuse. Samples of the coal were collected before and after it was fed to the jig. These were sent to the chemical laboratory for analysis. Altogether 31 tests were made on 24 kinds of coal.

10. The results of the tests are given in Table 5. Column 1 of this table is the U. S. G. S. coal number, Column 2 the jig used

ILLINOIS ENGINEERING EXPERIMENT STATION

			<u>ц</u>	roximat Coi	Proximate Analysis of Raw Coul, Per cent	sis of Ra ent	M	Proxis of W J	Proximate Analysis of Washed Coal. Per cent	alysis oal,	ไม	լեօ	tuso
	Jir Used	Size of Coul	ornteioM	Volatile Matter	baxi ^M nodusO	ųs¥	Sulphur (Separately Determined)	97012ioM	ųs v	Determined) Separately Determined)	sbnuoq sbnuod	spunod Эрэцsv <u>M</u>	
	2	e	4	ŝ	9	-		6	10	11	12	13	·
	Stewart	Slack	12.03			22.41	4.00	19.07	9.42	3.35	27280		1.
<u>.</u>	: :	Run of Mine		:		10.59	1.45	:	5.86	1.41			
		No. 5 Nut		:		17.56	3.25		9.18	2.71	•		
	Stewart, moulhed	Kun of Mine crushed to 2 in.	14.43	29.48 29.48	42.81	13.28	1.E	15.33	8.61	3.30	14710	13586	
	:	Bun of Mine emished to 9 in	10.63	80.08 80.08	36. 1	20.08	4.6	15.61	200 200 200	50 19 19	15809	11238	
	:	INUIT OF TATILLE CLUSHER TO 2 10.	2.01	30.24 25. 80	81.15 40.03	13.12	 20.0	Cf. 21	9.30 7	9.62 9.62	14000	06211	
	:	Slack	9.50	31.98	17.08	11.44	s 19 7 -	3 2	1.0.1 6.67	0.00 280	14710	19795	
		Run of Mine crushed to 2 in.	6 8 8	32.26	46.59	13 95		2.8 .8 .8	6.8	2.48	18000	15900	
		Egg crushed to 2 in.	8.31	31.65	49.56	10.48	1.55	11.15	7.49	1.27	29950	27550	
		Lump crushed to 2 in.	12.77	34.68	40.77	11.78	4.16	16.52	9.37	3.29	18000	15955	
	;	11ump & Eggerushed to 2 in.	8: 5: 7:	9. . .	21 21 21 21 21 21 21 21 21 21 21 21 21 2	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	22 l 22 l	= : ;;;		3.00 	18000	13055	
	:	Tumn anitched to 9 in	6 6 6 6 7 7 7	00-19 00-96	00.11	10,43	33	9.9	1.49	12:	00802	00017	
_	:	Screenings ernshed to 9 in	14.63	90,03 81,99	11 00	28.01	22.0	14.98	17.0 ae 01	2.92	000x1	14400	_
		Lumb crushed to 2 in.	15 30	30.59	13 10	8.0	6 7 7	0,0	0. 20 20 20	 	1:000	14000	
			16.11	35.65	39,43	13 01	, c	100	i x	3.69	19100	17000	
<u>2:13</u>		Nut & Slack crushed to 2 in.	13.03	32.65	30.79	14.53	÷.	16.78	66.6	3.79	40000	32000	-
		Lump crushed to 2 in.	13.47	34.35	40.65	11.53	4.41	13.81	8.78	3.54	28000	24000	
_	. :	Screenings crushed to 2 in.	15.68	31.28	37.45	15.59	3.95	16,83	8. 1 <u>5</u>	3.22	80:00	63000	
			H.II	33.93	43.92	10.91	4.91	15.10	9.75	3.18	20000	15000	
		Nut crushed to 2 in.	11.44	33.93	43.92	10.91	4.9I	14.36	8.38	3.31	18745	16660	
	:	Kun of Mine crusned to z in.	12.96	933.01 93	30.60	14.43	4.8 8.1	14.14	86.8 86.9	8.8 8.8	14556	12000	_
	:	•••	59. cl	F 22	23	81	3.51	15.96	9.40	3. <u>1</u> 9	18000	16000	
	:	Lumn emished to 9 in	20.01	15,35 91,95	20.10	13.11	9. 9. 3	1	0 2	02.5	12000	10045 20001	
	:	Servenings crushed to 9 in	101	6 F 3 S	96. 20 80 19	16.00	20. 4	ы 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21.12	38	24000	19750	
			13.10	30. 19 11	40.12	16.00		15.86 86.61	02.2	8.8 99.8	59500	41500	30.4
		Nut erushed to 21/2 in.	11.69	35.70	30.42	13.19	4 38	12.36	9.44	3.26	30000	23200	
_	LIDeci 2	Nut arushad to 1 in	11 00	0.00									_

20

TABLE 5 WASHING TESTS

and Column 3 the size of the coal. The proximate analysis of the raw and washed coal is given in Columns 4 to 11. The weight of raw coal tested is given in Column 12 and the washed coal produced in Column 13. Column 14 gives the refuse expressed in per cent of raw coal fed to the jig.

11. The improvement in quality of the coal effected by washing is well shown in Columns 4 to 11. For example the percent of ash content is, in every case, decreased by washing. This is shown graphically in Fig. 3. In this figure the per cent of ash in the washed coal is plotted against per cent of ash in the raw coal. The average line shows that by resorting to the process of washing, it is possible to reduce the ash content from 22 per cent to 8.7 per cent and from 10 per cent to 6.9 per cent. Expressed in per cent the amount of reduction is as follows:

When raw coal contains 8% ash, the reduction is 20%. When raw coal contains 12% ash, the reduction is 30%. When raw coal contains 16% ash, the reduction is 43%. When raw coal contains 20% ash, the reduction is 53%.

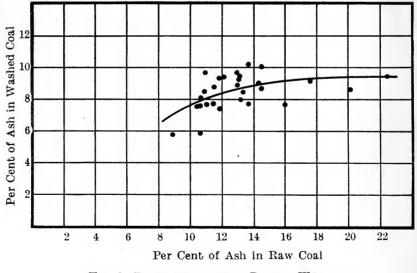


FIG. 3 REDUCTION OF ASH DUE TO WASHING

In a similar way the reduction in sulphur due to washing is shown in Fig. 4. Referring to this figure it will be seen that:

> When raw coal contains 2% sulphur, the reduction is 13%. When raw coal contains 3% sulphur, the reduction is 17%. When raw coal contains 4% sulphur, the reduction is 22%. When raw coal contains 5% sulphur, the reduction is 28%.

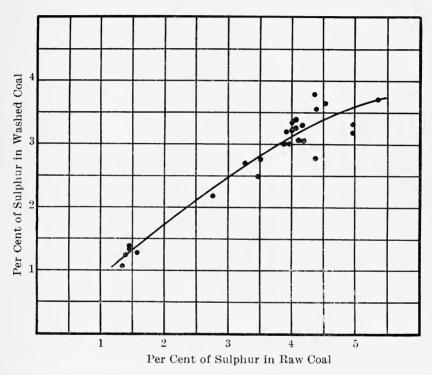


FIG. 4 REDUCTION OF SULPHUR DUE TO WASHING

In bringing about this improvement in the quality of coal by washing, much good coal which can not be recovered is carried off with the refuse from the jig. For example, the tests show that, based on the average of all tests, the refuse amounts to 16.8 per cent of the raw coal. The ash in the raw coal is 12.6 per cent, but in the washed coal this is reduced to 8.34 per cent, therefore $12.6 - 83.2 \times 8.34$ or 5.7 per cent is the ash content in the refuse. It appears, then, that the material thus discharged is made up of about $\frac{2}{3}$ pure coal and $\frac{1}{3}$ ash.

VI COKING TESTS

12. The ovens in which tests of the coking qualities of the coal were made are of the regular beehive pattern. Originally they were arranged in a battery of three, two of standard size, 12 feet in diameter, by 7 feet high, and the third 12 feet in diameter by 6 feet 4 inches high; later, however, one of the standard ovens was removed. Since the two remaining ovens may be considered as end ovens, that is, those placed at the ends of the battery, the results obtained are directly comparable.

13. The tests.—To prepare the coal for test it was finely crushed in a Williams mill. It was then placed on the larry and delivered to the oven. The larry used when the work was begun had a capacity less than one ton. This necessitated the filling and emptying of the larry six or eight times before the charge was complete. Each portion thus had time to emit a large amount of gas and often to burst into flames before the next portion of the charge was added. This resulted in much injurious cross lamination of the coke in many of the earlier tests. Afterwards when a larger larry was installed and the time of charging reduced from one hour to less than seven minutes the laminations and cross-breakage disappeared.

Directly after drawing the charge the ovens were closed for a period of one or two hours during which time they were allowed to gather heat for the next charge.

A sample of coal was taken at regular intervals as the charge was emptied into the larry. The total weight collected was 40 or 50 pounds. A sample of coke was taken from 5 different parts of the oven, one piece 2 feet from the oven floor, one 2 feet from each side on a line drawn from the center of the oven, one from the center of the oven, and one 2 feet from the back wall: The separate pieces of coke extended the whole height of the charge and were as nearly uniform in size as possible.

14. The results of the tests are given in Table 6. Column 1 of this table is the test number, Column 2 the U. S. G. S. number, and Column 3 the size as shipped to the laboratory. The proximate analysis of the coal and coke produced from it is given in Columns 4 to 13. Column 14 gives the weight of coal in the charge. The coke produced in per cent of the weight of the coal charged is given in Column 15, and the per cent of breeze in Column 16. The total yield as given in Column 17 is the sum of the coke and breeze produced. A brief description of the physical

24 ILLINOIS ENGINEERING EXPERIMENT STATION

	гидриг Separately Determined	13			1.13	:	: :	3.95	3.24	++- I	1.27		1.02	:		3.01	2.73	:	1 81	10.1	3.65	8.09 8.09	10.2	5;	:	2.97	:	2.33	98.9 98.9	3.4U 98	2.57	2.49	1.48
of Coke	ųs¥	12	90.16		10.92	:		23.20	16.25	11.91 18.61	11.64		12.44	:		16.28	14.31		06 10	æ0.1æ	16.99	15.15	11.69	14.02	:	13. 73		14.93	15.40	13.80	13.76	13.13	11.55
Analysis	Fixed Carbon	11		2F-01	82.55	:		72.68	82.10 82.01	70.30	82.08	:	83.96	:	:	82.49	84.87	:	01.04	01.31	80.76	83.52 57 52	00.20	02.20	:	79.01		77.69	22.38	81.14	84.62	83.35	87.91
roximate	Volatile Matter	10		00.2	42	:		1.84	-01 19	. 43 96	1.68	;	1.46	:	:		.29	:		2	1.60	.74	+1-1	61.1	:	1.46	:	4.67	3.36	1.55	88	F	.35
Ц	91utsioM	6	: 10		6.11	:	: :	2.26	1.04	6 C	4.60	:	2,14	:	:	0.57	0.53	:		00.	.65	8.8	95. F	1.30	:	5.62	:	2.71	22.22	3.51 9 9	20.2	2.78	1 61.
	Sulphur Separately Determined	8	4.14 9.09	1.45	1.41	0 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		4.53	3.64	8.5	1.25	:	1.09		6	3.23	3.23	1.46	21		3.79	3.57	22.00	6 - F	3.5	3.41	4.09	2.99	2.13	3.22	3.13	3.06	1.75
of Coal	ųs¥	7	15.95	10.59	5.86	17.56	18.16	15.41	9.30 	10.7	7.45		8.07	38 200	0.38	9.60	8.40	12.31	2.2.80	CF.01	10.14	00 g 00 g	8.90 0.00	8.03 27 70	0.00	9.56	14.43	9.11	6.83 6	2.78 8.00	0.03 7.68	7.21	6.11
e Analysis	rixed Carbon	9	37.48	50.95	52.57	32.93 26.00	36.48	38.44	42.08	12.20	50.16		51.79	49.50 10 50	70.06 20.06	40.77	42.63	43.15	41.24	21.10	39.53	41.01	10.57	40.16	00.80 27 01	46.29	39.60	43.66	41.53	41.57	25.50 42.81	41.53	50.65
Proximate	Volatile Matter	ъ	36.11	30.32	32.05	31.65	30.76	35.27	36.17	31.64	80.08		30.35	26.66	00.02	32.59	34.61	31.17	30.01	10.00	34.14	36.47	35.02	80.88 80.88	66.62	35.29	33.01	33.83	33.46	34.26	80.38 33.88	32.87	33.33
	AntsioM	4	10.46	2.5 2.5	9.52	17.86	14 60	10.88	12.45	8.24 5.24	11.44		9.79	14.91	19.41	17.04	14.36	13.37	17 45	06.11	16.19	13.74	15.85	15.93	02.5	0.03	12.96	13.40	15.18	16.39	9.37 15.63	18.39	16.6
Proximate Analysis of Coal Moisture Proximate Analysis of Coal Moisture Proximate Analysis of Coal Moisture Trainate Analysis of Coal Moisture					Lump crushed and washed		Run-of-mine crushed and washed																										
.0	U.S.G.S.U	~		5 8 07	000	، O I	с и	.e	2D	<u> </u>	<u>m</u> <u>m</u>	19	16	19A	19A	0.06	28	21	21	n n		23A	23B	•33B	ZHA	24A 91R	22A	25A	26	27	28C	29A	34B
	.0N test No.	1	10	5 Ç	5 80 200	45	60	8-	4	in c	00 ex	11-	10	=	15	106	107	126	127	112	110	111	112	114	611	155	190	140	143	144	166	170	190

TABLE 6 COKING TESTS

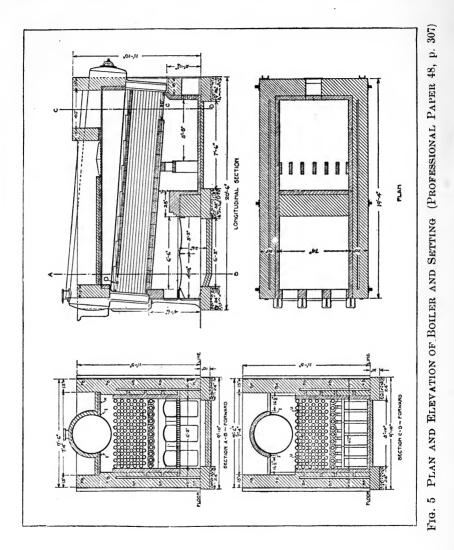
(Continued)	
TESTS	
COKING	
9	
TABLE	
F	

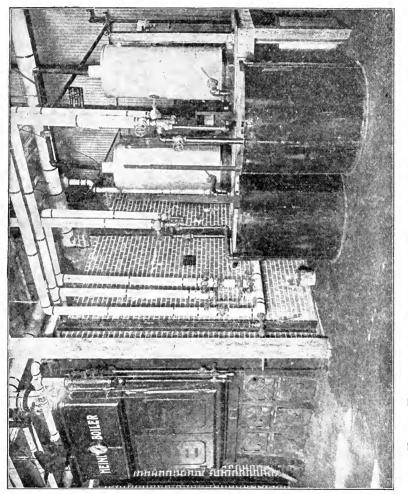
F	TUE	L TESTS	WITH	ILLINOIS	COAL		25
REMARKS	18	No valuable coke produced Poor dark colored coke No ooke produced Comparatively good, light colored coke; brittle and friable No coke produced	Good hard coke: supphur and ash too high Good strong. light colored coke; sulphur too high. Good strong. light colored coke Dull colored. comparatively soft coke. Good hard oke.	Test discontinued on account of accident. Dull gray colored: poor coke physically No coke produced. Poor, dull gray coke. Dull gray coke. Slightly better phys cally than coke from unwashed coal.	No coke produced	Fairly good, light colored coke. No coke produced. Poor soft, dense, coke. No coke produced	Dense, sout, coke Poor dense, dark colored, soft coke Poor dense, coke Good likht colored coke
Total Yield per cent	17	40.55.44 0.055.44 0.000	0 51,49 57.00 53.71 53.18	64.89 0 0 50.57	0 551.58 451.58 47.58 60 60 60 60 60 60 60 60 60 60 60 60 60	50.31 51.22 51.22 51.22	60.43 47.38 55.65 46.92 52.68 52.68
Breeze Produced per cent	16	0 9.9 9.9	0 2.85 2.86 2.86 2.86 2.86 2.86 2.86 2.85 2.86 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85	9,10 9,10 8,28 3,98	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.00 0.00 0.00 0.00 0.00	2.25 2.25 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43
Coke Produced Der cent	15	37.6 37.6 0 0 0	0 52,00 54,00 46,00	55.79 0 42.55 46.59	0 50.46 42.11	46.02 46.02 0 39.81 45.27	49.79 50.40 50.33 50.25 50.25
Coal Charged	14	5000 5000 5000 5000 5000 5000 5000 500	8000 12000 12000 12000 12000 12000 12000 12000	10000 10000 10000 10000 10000	12000 11690 12000 12000	114000 114000 11830 11830 11830	11750 11550 12600 12980 12980
U. S. G. S. No.	~	- el el el re- el el e	200 <u>18</u> 8	20 20 20 20 20 20 20 20 20 20 20 20 20 2	22 22 22 23 23 23 23 23 23 23 23 23 23 2	22488888888888888888888888888888888888	20 29 29 31 29 29 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
Test No.	-	0 0 8 8 9 9	8-4000 8	100 100 101 102 102 103 104 104 104 104 104 104 104 104 104 104	126 117 118 111	112 113 145 140 140	8448886688

properties of the coke produced is given in Column 18.

In reviewing the results of the tests as set forth in Table 6, it should be remembered that the necessary routine work involved in the testing of so many coals made it possible to make but few tests on each coal. The data presented, therefore, show the results obtained under conditions which of necessity had to be controlled by observations made from time to time as the coking proceeded, a procedure which tended to make the conditions of operations by no means ideal.

Of the 37 tests made with Illinois coal 9 resulted in the production of comparatively good coke and 14 in the production of a poor grade of coke. The remaining 14 samples apparently proved to be non-coking coals. Referring to the approximate analyses of the coke produced it will be seen that in a number of cases the quality of the coke is by no means inferior, though in all cases the ash and sulphur content is slightly greater than is desirable. Seven samples (11D washed, 13, 13 washed, 16, 22B washed, and 29 washed) were successfully used in a foundry cupola.


VII STEAMING TESTS


15. The apparatus comprising the plant for steaming tests consisted of two standard Heine water-tube boilers equipped with hand-fired furnaces and an Allis-Chalmers Corliss engine operating a 200 kilowatt Bullock generator. A plan and elevation of one of the boilers and its setting are shown in Fig. 5 and the general appearance as set up in the laboratory in Fig. 6.

The equipment used for testing the boilers provided convenient and accurate means for measuring the coal and water and for making all observations of pressure, temperature, etc., specified in the boiler testing code of the American Society of Mechanical Engineers. It consisted principally of water-weighing tanks, scales, charging cars, sampling cans, apparatus for analyzing flue gases, pressure gages, calorimeters, thermometers and draft gages^{*}.

^{*} This apparatus is described in detail in "Professional Paper No. 48" United States Geological Survey.

FUEL TESTS WITH ILLINOIS COAL

The principal dimensions of the boiler and furnace are as follows:---

Length of drum		
Inside diameter of drum	inches	42.
Number of tubes, 11 tubes high by 11 tubes	wide	116
Outside diameter of tubes	.inches	3.5
Width of furnace	.feet	6.16
Length of furnace	.feet	6.58
Mean height of furnace	inches	26.00
Grate area	.square feet	40.55
Ratio of grate area to air space		40.17
Water-heating surface in tubes	.square feet1	897
Water-heating surface in water legs	.square feet	91
Water-heating surface in shell	.square feet	43
Total water-heating surface	.square feet2	031
Ratio of heating surface to grate area		50.1

16. The Tests. Since the establishment of the fuel testing division of the United States Geological Survey, more than 500 boiler trials have been made, and of these, 112 involved the use of Illinois coal. Tests were made with each of the 34 samples submitted, the coal being used either in its natural state or in the form of briquets, or both. A number of tests were also made with washed coal.

A summary of the principal observed and derived results of tests with Illinois coals is given in Tables 7 and 8. In these tables only such values as have a direct relation to boiler performance are included; additional data, however, may be found in the reports published by the United States Geological Survey.*

17. The description of the coal tested given in Table 7, Column 1, of this table is the serial number of the test and is useful as a means of identification. The number describing the location from which the sample was taken, is given in Column 2 and the number of the coal bed or seam, in Column 3. The size of the coal is given

^{*} Bulletin No. 332 and Professional Paper No. 48.

in Columns 4 to 9. The size as shipped (Column 9) was not always the same as that used in the tests since in some cases it was crushed or screened after it was received. The actual size as determined from samples taken during each test is given in precise terms in Columns 5, 6, 7 and 8, and the average diameter calculated from these data is given in Column 9. The proximate analyses (Columns 10 to 14) were made from samples collected for each test and are given in the tables in terms of coal as fired. Calorific values were not determined for every test. The values given (Column 15) were calculated from the proximate analysis and the calorific value determined from the car sample, on the assumption that the B. t. u. per pound of pure coal (ash and moisture free) is the same for each car load shipped to the testing plant.

18. The performance of the boiler and furnace is given in Table 8. Column 17 gives the average boiler pressure in pounds per square inch. The standard pressure was 75 but it will be seen that the values given vary from 68 to 81. The draft above the fire (Column 18) was measured in inches of water. In some tests it was as great as .3 inch; the average however, is a little less than .2 inch.

The furnace temperature (Column 19) was observed with a Wanner optical pyrometer. The results given are averages of a number of readings which varied over a considerable range throughout the test. The lowest temperature recorded is 1887° and the highest 2829° F.

The rate of combustion in terms of dry coal fired per hour, per square foot of grate surface (Column 20) is, for most tests, about 25 pounds. This rate, it will be seen, is sufficient to evaporate, in most cases $5\frac{1}{2}$ pounds of water from and at 212° F. per square foot of heating surface per hour (Column 21) or 100 per cent of the rated horse-power (Column 22).

The evaporative efficiency is given in Columns 23, 24 and 25. In Columns 23 and 24 the equivalent evaporation per pound of coal as fired and per pound of dry coal, respectively, is given. The values given in Column 25 represent the over-all efficiency, that is, the ratio of the heat absorbed by the water in the boiler to the potential heat in the coal fed to the furnace. It is evident, therefore, that this is the best measure of the value of any particular fuel for steam generation since it expresses the exact proportion of heat purchased in the form of coal which can be converted into useful energy in the form of steam. Referring to the TABLE 7 STEAMING TESTS-DESORIPTION OF COAL

en to pu	Heating val B. t. u. per Poul Dry Coal	16	11855	12569	12857	12427	66921	12762	12028	12101	6666	12730	11919	11088	10283	12047	12002	12506	12463	19047	19438	12037	12429	12685	12373	12929	13545	10150	19954	12505	12043
Size of Coal Size of Coal Per cent Der cent Der cent No. No.	Per cent of Su in Coal	14	5.86	3.75	1.64	1.48	8.1	3.12	3.61	3.70	4.18	3.22	4.20	80.4	3.73	5.16	4.68	8.8	3.09	4,00 9,4	4.11	3.51	1.45	1.44	1.46	1.40	1.22	2.30	212	2.09	0 80
	цs¥	13	15.19	10.06	11.55	11 45	200 200 200 200 200 200 200 200 200 200	8.73	11.80	2.71	25.30	8.8	12.01	10.90	22.23	12.69	13.10	10.34	11.14	20.01	11.64	13.87	12.86	11.63	13.40	10.08	6.09	12.04 00 01	13 08	11.79	00 61
	rixed Carbon	12	38.21	41.72	48.75	41.59	43.63	42.18	42.86	42.12	32.98	40.18	59.02 90.02	8.98	35.16	39.39	40.00	40.78	40.27	41.10	41.89	39.13	44.93	47.84	46.27	48.11	49.87	10.04	40.21	50.50	10 01
	Volatile Tetter	=	36.91	37.77	31.19	33.48	32.44	33.76	31.54	31.96	31.18	34.43	20.53 20.53	20.04 29 18	28.14	34.61	34.23	36.12	36.38	96 71	37.84	32.38	30.59	31.24	30.01	32.54	32.37	20.02	00.00	30.08	01 10
	Moisture	10	9.64	10.45	8.51	13.47	12.58	15.23	13.80	13.21	10.54	16.45	10.38	82.01	14.47	13.31	12.67	12.76	12.21	14 28	10.20	14.62	11.62	9.29	10.32	9.29	11.67	1.84	00.1	7.65	11
	Average Dian of Coal, incl	6			:	÷	÷	.42			30	e E		R 02	47	1.12	1.05	::		ŝī	5		44	45	.73	- 20	8	8	RC.	88	
	doni 1⁄4 19baU				:	:	÷	54.5		:	68.9	040	20.20	0.2	45.4	11.4	13.5	:		R. 42	2.00		47.6	52.1	29.8	29.8	36.3	37.0	40.0	8.50	
	ųdui 3% od 3%	2	40.	.08	50.	10.	40.	40. 21.5			18.3	22.52 2.52	10.0	0.01	1.2	2.3	10.6	:		0.00	2 ¥		26.4	21.1	17.3	18.4	23.4	2.2	10.0	18.5	
	<u>пэпі і 03 ж</u>	9	60.	S0.	50.	8.		00. 19.3		:	12.8	10.5	22.00	0.00	24.7	21.9	25.5	:		0.02	0.10		23.1	19.2	30,1	22.6	27.5	9.92	21.9	10.1	
	Луег і ілед					:	:	4.7			:		6.92 7	04.9	, 4	58.0	50.4	:		29.99	10		2.9	7.6	22.8	19.2	12.8	2.12	17.9	90.4	
	Size of Coal as Shipped	4						Run of Mine. washed	Briquets		Slack	Slack, washed	Kun or Mine		Screened nut	Nut		Run-of-Mine		Dun of Mine mached	Tumn-UT-TALLIE, Washed	Brights	Slack				Slack, washed.	Screenings		•	
	Coal Bed or S	m	8	9	-		~ 1	o 10		10	9	9	99	0 4	9.6	9	9	9		0 4	2	6	-1	4	7	2	-	r- 1	- 1	• 1 •	• 1
	U.S.G.S.U	~		. 61	°°	4.	4 " :	6B	6)3	6B	5	29	55	÷ć	12	000	œ	9A	84 84	WR VO	d H O	10	10	10	10	10	10	HIA VII	A II	VII	
	.oV tesT	-	81	19	38	80	20	106	313	314	122	129	241	148	516	101	102	103	1 0	601	161	492	107	108	109	110	114	137	0.01	141	

FUEL TESTS WITH ILLINOIS COAL

əni Jue	Heating Va B. t. u. per Posl Dry Coal	15	12775 12321 12323	12537	12801	13370	13361	12154	11840	13104	19859	12528	12667	13306	12008	12731	11749	13104	19051	13554	12991	13432	11991	13068	12857
anyay	Per cent of Su lsoD ni	14	2.33 2.24 50	3.47	3.1±	1.64	1.92 3.79	3.92	4.18	2.58	3.56	1.32	1.59	1.34	4.62	3.24	4.36	3.00	0.1	2.98	3.37	2.72	-fa	15	02
of	ųs¥	13	12.13 14.95 11 30	12.77	11.72	7.50	7.94	14.04	15.97	9.24	15.58	12.10	11.05 7.56	2.18	13.56	13.49 9.29	15.41	8.41	10.23	5.63	62.6	5.27	ю «	8.04	100
Size of Coal Size of Coal per cent No.	Fixed Carbon	12	48.21 48.08 50.07	47.59	48.91 50.58	52.33	50.92 45.25	46.18	43.97	47.27	44.64 50.94	47.73	48.81 50.19	50.84	40.12	41.38	41.20	51.04	41.73	42.14	42.00	41.51	51.13 20.02	50.80	
	Volatile TetteM	11	30.73 28.12 31.34	32.95	53.53 53.53	31.03	31.60 31.04	31.85	29.52	33.30	29.39 29.38	30.22	30.50	31.38	34.67	23. 50 33. 50	33.39	37.09	10.62	37.94	37.11	36.13	21-24	28.30	
	97ntsioM	10	8.93 8.85 90	6.69	6.16 6.13	9,14	9.54 49.49		9.54 40.0	10.19	10.39 6.00	9.95	9.64	10.60	11.65	12.01	10.00	11.81	9.16	11.99	11.10	16.64	12. 12 12. 12	12.86	
	Average Dian of Coal, incl	6	81.8	383	.61	9. 9.	:2	.6	35		-59	11	5.5	69.	25	2.0	89	8.2	66.0	ŝ:ŝ	12	02.0	29 S	; 89	
	doni ¼ rəbaU	8	32.0 33.2 1	35.3	44.0 e0.e	37.8	25 A	20,1	41.5	21.8	41.0	31.4	31.6	36.0	29.5	20.7	32.5	21.4	18.6	24.0 35.4	29.3	26.8	10.1 20.9	47.6	
Coal ent	doni 24 ot 14	2	17.8 18.2 15.9	16.3	17.4	45.8	1.41	12.3	16.6	24.1	20.8	15.0	80.8 8.08	20.1	19.6	17.7	21.1	21.8	12.3	20.6 80.6	17.9	28.8 8.8	0.22 0.22 0.22	34.7	
Size of per c	doni l 01 24	9	21.3 24.0 816	2 1 .8	18.2	24.3 16.4	296	21.2	18.1	28.6 28.6	22.9	22.6	83 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80	18.7	27.9	2.02	25.9	31.3	21.0	22.22	25.7	22.7	21.3 8.01	17.7	
	dəni i rəvO	2	28.9 24.6	33.6	20.4	0.12	30.8	46.4	8 8 9	22.5	15.3	31.0	23,8 23,8	25.2	23.3	30.4	20.5	25.5	48.1 88.1	6.16	27.1	21.7	:	: :	
Size of Coal Der cent Ver cent No.	Size of Coal as Shipped	4	Run-of Mine	Lump		½ to 5-16 in	Briquets			Run-of-Mine, washed	Duistrote	Diducts	1/ to 0 in	72 vo o m. washed	Lump			Lump	Lump and egg	Lump washed	Lump	Lump, washed	¾ in. Nut		
msə	S ro b9H IsoO	en	1-1-1	- 1 -	t- 1	- 1-	r 1	- 1 -	(- I	-1-	r-1	- [-	r-1	- 1-	ı دىر	ωu	. c	9		20	1 ex	es 1	1-1	- {-	
.01	U, S. G. S. U	2	HIB HIB HIB HIB HIB HIB HIB HIB HIB HIB	118	11B		11C	2 22	2	2 22	12	0 00	13	<u>n</u> 12	7	# -	: 12	15	99	<u>x x</u>	2 20	18	19A	19A	
	.oN 329T	1	115	117	813	120	312	128	131	135	136	132	134	115	123	125	8	152	150	11	148	149	, 160 1 e1	163	

TABLE 7 STEAMING TESTS - I) ESCRIPTION OF COAL (Continued)

LOGGERSERE 80999 9009 9009 9009 9009 9009 9009 9009 9009 9000 9000 9000 $\begin{smallmatrix} 1.00\\ -2.59\\$ ÷ 79 8.5 ÷ 33 : : ÷ 31.2 : : ÷ 19.5 : ŝ 21.1 21.5 . 8. ÷ : ÷ 80.2 80.2 80.2 837.9 837.0 837.9 837 84.6 87.4 34.1 37.3 37.3 18.9 32.3 34.1 4.3 ÷ ÷ ÷ ÷ Lump and Run-of-mine..... Run-of-mine..... Screenings, washed.... : : ***** Soreenings : : ****** ****** ********************** : ip. Nut. ***** Soreenings, washed..... Lump, washed ----- dian 7 washed in Lump..... Lump..... Nut..... : Run-of-mine. **Run-of-Mine**. Run-of-mine. Lump. Cump. Lump : : : : : : : : : 2 n n 1

*Briquets. †Briquets broken

3

FUEL TESTS WITH ILLINOIS COAL

ILLINOIS ENGINEERING EXPERIMENT STATION

Equivalent Evaporation from and at 212° F. per sq. ft. of Heating Surface Per Hour, pounds Temperature of Furnace Degrees F. Equivalent Dry Coal Per Electrical Horsepower Hour, pounds Per Cent of Rated Horsepower Developed Dry Coal per sq. ft. of Grate Surface Per Hour, pounds Pounds of Efficiency of Boiler Including the Grate Per Cent Draft above Fire inches of Water Water Evap-**Boiler** Pressure orated from lb. per sq. in. and at 212º F. Test No. Per Pound Of Coal as Fired Of Dry Coal 20 21 22 23 24 25 1 16 17 18 19 6.51 7.21 18 .18 1887 24.90 3.59 100.7 58.734.85100.195.5 81.9 .15 22.36 3.57 $7.16 \\ 7.35$ 8.00 61.47 4.3819 .21 21.23 $3.41 \\ 2.92$ 8.04 60.39 4.343816 19.84 6.38 7.34 57.27 4.73 48 81.9 94.2 92.5 95.3 78.7 95.9 .21 23.136.36 $\frac{7.27}{7.40}$ 56.36 $\frac{4.80}{4.72}$ 3.365061.64 .23 3.30 73 22.34 6.4375 72 2213 6.56 .25 $49.64 \\ 65.51$ 106 25.943.395.565.32 .17 17.24 2.81 7.03 8.16 313 6.91 5.99 314 68 .07 2359 24.81 3.42 55.145.74 72 .30 2.19 61,4 $5,44 \\ 6,70$ 6.08 58.71 20.0812273 89.6 8.02 60.84 4.36 199 .24 19.92.16 81 20.07 $2.97 \\ 2.69$ 83.3 $6.65 \\ 6.46$ 7.44 61.39 4.70 142 79 .18 18.74 75.5 7.20 62.01 4.85 143 $2.68 \\ 3.70$ $64.45 \\ 54.38$ 4.72 $75.2 \\ 103.7$ 7.40.22 6.64146 6720.21. . . . 5.796.03 516 79.13 31.99 4.956.22 49.86 101 83.5 .32 28.823.21 90.15.395.616.39 51.4178 .25 38.363.62 101.5 5.585.46102 .27 103 81 2218 26.533.61 101.1 5.916.8152.595.13.19 3.01 6.50 50.28 5.37 80 23.22 84.4 5.70104 9155 .25 4.08 6.75 51.92 5.175.2478 30.26 114.3 5.932220 5.68.20 6.66 49.67 113 7525.60 3.0585.6 7.497.797.657.047.7058.15 4.66 26.60 3.57 6.69 121 75.19 100.016 62.50 4.48 492 76.5 22.52 3.5098.2 6.6576 .32 2229 21.00 3.20 89.9 6.76 59.444.56107 .21 22.24 3.13 87.6 6.39 53.604.96108 7660.10 109 78.29 21.46 2.9683.0 6.90 4.536.71 75 2.48 69.6 50.12 5.20 .26 20.666.08 110 $75 \\ 74$.21 24.23 $3.52 \\ 3.17$ 98.7 $7.16 \\ 7.76$ 8.11 $57.82 \\ 64.51$ 4.30 114 8.42 88.8 4.14 137 . 16 20.982376 8.32 66.08 68.33 19.94 2.97 4.20138 74 .18 83.4 7.688.67 139 .18 2435 19.70 3.06 85.9 8.024.038 29 4.21141 79.15 18.81 3.11 87.3 7.66 64.026.70 .28 24.35 2.93 82.0 6.15 51.185.2173.5111 .27 2.90 81.2 6.59 7.2354.65 4.83112 80 22.36 $3.42 \\ 3.61$ 95.9 101.3 76 .26 22.896.83 7.49 58.714.66 . 22 6.94 7.48 55.85 76 24.194.67 116 .20 $6.71 \\ 6.74 \\ 6.84$ 7.19 55.38 95.8 4.8575.523.803.427.19 54.26 4 85 118 77. 16 23.163.3293.1 7.31 53.97 4.78 .25 25.70 $3.75 \\ 3.55$ 105.0 119 757.79 56.27 120 72.23 25.4199.57.081.488.80 7.967.157.547.04312 .11 2400 19.38 3.40 95.463.60 $\frac{...}{4.50}$ 7.81 .19 3 35 94.0 63.04 127 7321.49 $75 \\ 74$ 21.45 3.51 98.3 8.19 65.07 4.26 128 .19 7.74 20.87 $2.91 \\ 3.15$ 81.50 64.08 4.49. 19 88.2 7.67 62.51 81 74 4.55 22.917,00 . 22 7.86 8.75 101.3 $64.48 \\ 63.56$ 3.99 135 ,18 23.093.62. . . . $7.81 \\ 8.58$ 4.47 136 75 .21 20.77 2.9181.5 7.00 $\frac{89.7}{94.5}$ 7.987.677.5864.44 4.07 81 .11 2490 18.67 3.20463 8.52 65.67132 76.13 22.063.37 4.10 8.39 .18 3.39 95.063.96 4.16 134 78 22.559.08 66.12 79.10 20.42 $\frac{3.70}{3.38}$ 103.88.20 3.84144 94.7 758.37 9.36 67.93 3.73 20.14145 .13 3.10 87.0 6.49 $7.34 \\ 7.58$ 59.034.76 123 23.6073.28 86.2 4.61 6.6260.37 125 74. 20 20.303.087.71 $58.48 \\ 62.62$ 4.53 93.3 6.49130 77 .14 21.63 3.33 7.62 4.58 126 69 20.44 3.11 87.2 6.86 .18

TABLE 8 STEAMING TESTS—PERFORMANCE OF BOILER AND FURNACE

FUEL TESTS WITH ILLINOIS COAL

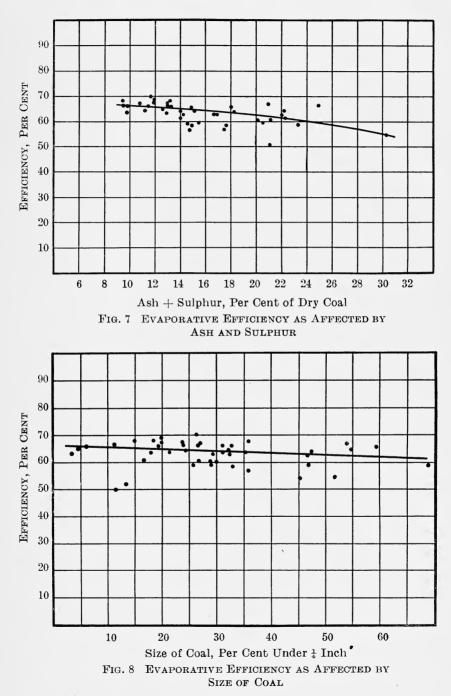
Test No.	Boiler Pressure lb. per sq. in.	Draft above Fire inches of Water Temperature of Furnace Degrees F. Dry Coal per sq. ft. of Grate Surface per hour, pounds from and at 2120 F. per from and at 2120 F. per from and at 2120 F. per Per Hour, pounds Per Cent of Rated Horsepower Developed		nt of Rated ver Developed	Equiv Pour Water orated and at Per H	valent nds of Evap- d from 212° F Pound	Efficiency of Boiler Including the Grate Per Cent	Dry Coal Per Electrical Horsepower Hour, pounds		
Ĩ	Boile lb. r	Draft inche	Temperat Der	Dry Coa Grate S hour	Equivalen from and sq. ft. of H	Per Ce Horsepov	Of Coal as Frired	Of Ury Coal	. Efficier Includin Pe	Dry Electrica Hou
1	16	17	18	19	20	21	22	23	24	25
$\begin{array}{c} 152\\ 150\\ 140\\ 147\\ 148\\ 149\\ 161\\ 163\\ 170\\ 171\\ 204\\ 420\\ 423\\ 424\\ 422\\ 292\\ 292\\ 301\\ 302\\ 315\\ 316\\ 324\\ 324\\ 325\\ 336\\ 328\\ 306\\ 321\\ 321\\ 322\\ 335\\ 338\\ 337\\ 338\\ 338$	$\begin{array}{c} 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\ 75\\$	$\begin{array}{c} .13\\ .11\\ .11\\ .18\\ .17\\ .19\\ .14\\ .20\\ .17\\ .16\\ .17\\ .16\\ .17\\ .16\\ .12\\ .12\\ .14\\ .12\\ .14\\ .12\\ .16\\ .15\\ .04\\ .20\\ .16\\ .22\\ .26\\ .20\\ .21\\ .21\\ .34\\ .30\\ .17\\ .16\\ .18\\ .18\\ .16\\ .17\\ .16\\ .18\\ .18\\ .16\\ .19\\ .14\\ .15\\ .18\\ .16\\ .19\\ .14\\ .15\\ .18\\ .16\\ .19\\ .14\\ .15\\ .18\\ .16\\ .19\\ .14\\ .15\\ .18\\ .16\\ .19\\ .14\\ .15\\ .18\\ .16\\ .19\\ .10\\ .22\\ .21\\ .21\\ .21\\ .21\\ .22\\ .21\\ .21$	2439 2060 2428 2080 2227 2039 2447 2447 2447 2447 2448 2020 2401 2508 2499 2401 2508 2850 2828 2850 2828 2829 2402 2397 2708 2708 2402 2397 2708 2402 2402 2402 2402 2402 2402 2402 24	$\begin{array}{c} 19.63\\ 19.63\\ 19.63\\ 18.51\\ 19.53\\ 18.86\\ 17.83\\ 18.86\\ 17.83\\ 18.86\\ 17.87\\ 20.22\\ 20.061\\ 20.$	$\begin{array}{c} 3.36\\ 3.56\\ 2.86\\ 3.12\\ 2.99\\ 3.207\\ 3.12\\ 3.73\\ 3.10\\ 3.23\\ 3.38\\ 3.35\\ 2.89\\ 3.35\\ 3.38\\ 3.35\\ 3.38\\ 3.32\\ 3.39\\ 2.37\\ 3.54\\ 3.32\\ 3.39\\ 2.37\\ 3.54\\ 3.87\\ 3.87\\ 3.87\\ 3.60\\ 3.64\\ 4.34\\ 3.01\\ 3.28\\ 3.30\\ 3.29\\ 3.54\\ 3.10\\ 4.34\\ 3.60\\ 3.29\\ 3.54\\ 3.10\\ 4.34\\ 3.114\\ 3.08\\ 3.29\\ 3.104\\ 3.16\\ 3.14\\ 3.16\\ 3.14\\ 3.68\\ 3.14\\ 3.68\\ 3.42\\ 3.62\\ 3.59\\ 3.$	$\begin{array}{c} 94.3\\ 99.8\\ 80.1\\ 87.6\\ 88.9\\ 992.1\\ 87.6\\ 87.0\\ 99.6\\ 87.0\\ 99.6\\ 87.0\\ 99.6\\ 87.0\\ 99.6\\ 87.0\\ 99.6\\ 87.0\\ 99.5\\ 99.3$	$\begin{array}{c} 7.57\\ 8.24\\ 7.60\\ 7.70\\ 7.62\\ 7.70\\ 7.762\\ 7.75\\ 8.54\\ 8.54\\ 7.75\\ 7.75\\ 8.54\\ 8.54\\ 7.75\\ 8.54\\ 8.54\\ 7.75\\ 8.54\\ 8.54\\ 7.75\\ 8.54\\ 8.54\\ 7.75\\ 8.54\\ 8.54\\ 7.75\\ 8.54\\ 7.75\\ 8.54\\ 7.75\\ 8.24\\ 7.75\\ 7.75\\ 8.24\\ 7.75\\ 7.75\\ 8.24\\ 7.75\\ 7.75\\ 7.75\\ 7.75\\ 8.24\\ 7.75$	$\begin{array}{c} 8.59\\ 8.61\\ 8.94\\ 9.23\\ 8.80\\ 8.61\\ 8.94\\ 9.23\\ 8.80\\ 8.56\\ 8.910\\ 9.45\\ 9.45\\ 9.45\\ 8.53\\ 8.61\\ 8.53\\ 8.60\\ 8.64\\ 8.66\\ 8.25\\ 8.64\\ 8.60\\ 8.25\\ 8.64\\ 8.60\\ 8.25\\ 8.64\\ 8.60\\ 8.25\\ 8.64\\ 8.60\\ 8.25\\ 8.64\\ 8.60\\ 8.25\\ 8.64\\ 8.52\\ 8.60\\ 8.25\\ 8.52$	$\begin{array}{c} 63.30\\ 68.11\\ 64.29\\ 63.80\\ 65.81\\ 61.58\\ 63.62\\ 61.71\\ 65.82\\ 63.63\\ 61.73\\ 62.82\\ 65.92\\ 65.93\\ 65.93\\ 66.93\\ 65.93\\ 66$	$\begin{array}{c} 4.06\\ 3.85\\ 3.85\\ 4.06\\ 3.92\\ 4.40\\ \ldots \\ 9.97\\ 4.08\\ 3.97\\ 4.08\\ 3.84\\ 3.70\\ 3.77\\ 4.16\\ 4.09\\ 4.02\\ 4.12\\ 4.28\\ 4.39\\ 4.22\\ 4.39\\ 4.29\\ 4.38\\ 8.9\\ 3.92\\ 4.31\\ 4.06\\ 4.23\\ 4.29\\ 4.23\\ 4.29\\ 4.24\\ 4.24\\ 5.69\\ \ldots \end{array}$

TABLE 8 Steaming Tests—Performance of Boiler AND FURNACE (Continued)

values given, it will be seen that but few fall below 55 per cent or above 65 per cent, the maximum and minimum efficiency recorded being 68.11 and 49.64 respectively.

In reviewing the results set forth in Tables 7 and 8 it should be remembered that they apply only to the performance of a hand-fired water-tube boiler of the Heine type and that any conclusions which may be drawn are thus limited. Had it been possible to provide a furnace especially adapted to the burning of each particular coal, the relative efficiency as established by the tests might have been slightly different. The results obtained, however, may be accepted as fairly indicative of the value of the coals tested. With this in view, then, it will be of more than ordinary interest to study the effect of the physical and chemical properties of the fuel upon the performance of the boiler and furnace as set forth in the tables.

19. Furnace temperature. It will be seen that while the results do not show any exact relation between efficiency, furnace temperature and rate of combustion, nevertheless they clearly indicate that as the rate of combustion increases, the temperature increases, but that efficiency is only slightly affected by change in combustion-chamber temperature. A comparison with values representing capacity (Column 22) shows that as the combustion chamber temperature increases the capacity is increased.


20. The evaporative efficiency as affected by moisture in the coal is not well defined by the results of the tests. While they seem to indicate that coals high in moisture generally give low efficiency it must be remembered that high moisture is often accompanied by high ash content or by poor mechanical structure, either of which properties has a more deleterious effect on efficiency than moisture. That this is true is emphasized by the fact that the heat required to evaporate the water in Illinois coal containing 15 per cent moisture is but little more than 1.5 per cent of its total calorific value.

21. The effect of sulphur and ash upon evaporative efficiency. Sulphur is an undesirable element in coal. It generally occurs in combination with iron, as pyrites, and in combination with calcium as gypsum. Of the two sulphur compounds, the former is generally contained in larger quantity in coal and is harmful because it increases the tendency of the coal to clinker. The clinkering is especially bad if the percentage of ash is small in proportion to the sulphur. In such coals the pyrites and the ash fuse and form a thin layer of solid clinker, which effectively stops the

passage of air through the grate, thus permitting the grate bars to become heated from the hot fuel bed just above. The heat warps the grate bars and the clinker has such corrosive action on the hot iron that destruction results in a short time. When such clinkering occurs, any attempt to slice the fire fails and only slow and very difficult cleaning of the fires will remove it. Most Illinois coals having a large sulphur content are also high in ash so that the injurious effect of sulphur is not so pronounced as in some other coals. In making the tests it was found that the use of steam served to prevent the clinker from melting into the grate when the ash and sulphur content is large.

Referring to Columns 13, 14, and 25 of Tables 7 and 8 the decrease in efficiency with increasing ash and sulphur will be readily seen. In Fig. 7, which shows this relation graphically, efficiency is plotted against per cent of ash plus sulphur based on dry coal, for all tests run with lump, egg and nut coal. Although many of the plotted points lie at a considerable distance from the average line, its position and direction are rather well defined. It shows that the efficiency drops from 66.5 per cent when the ash plus sulphur is 10 per cent to 55 per cent when ash plus sulphur is 30 per cent. For increases in ash and sulphur beyond 18 per cent the drop in efficiency is relatively rapid.

The effect of size on evaporative efficiency. The discussion 22.in the preceding paragraph does not take into account the fact that size has much to do with the efficiency with which coal can be burned, and this is one of the chief reasons for the poor alignment of many of the points. The efficiency shown by the same tests together with those made with slack have therefore been plotted against size, expressed in percent of coal under 4 inch in diameter. The resulting relation is shown in Fig 8. Here, too, the points are widely scattered but the slope of the average line is fairly well Thus a coal giving an efficiency of 66 percent when 10 fixed. per cent of it is under 4-inch in diameter, will give an efficiency of only 62 per cent when 60 per cent of it is under $\frac{1}{4}$ inch in diameter.

FUEL TESTS WITH ILLINOIS COAL

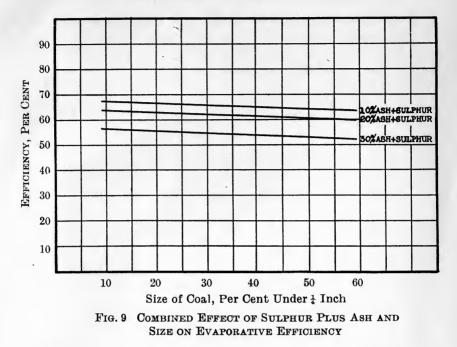


Fig. 9 has been drawn to show the combined effect of sulphur plus ash and size, on the evaporative efficiency of Illinois coal. In it lines have been drawn showing the decrease in efficiency with decrease in size for coals having 10, 20 and 30 per cent ash plus sulphur based on dry coal. There are, of course, other factors which affect efficiency but the results of the present tests seem to point to these as the most important. The lines given therefore, may be accepted as defining with considerable accuracy, the performance of Illinois coal when burned in a handfired furnace under a water-tube boiler.

23. Comparative efficiency resulting from the use of washed and unwashed coal.—It has been shown that the process of washing Illinois coal is effective in reducing the ash and sulphur content. That the evaporative efficiency of the coal thus treated is increased follows directly from the facts just developed. The extent of the

40

improvement is set forth by Table 9. In this table tests are grouped in the order of the size of coal used. A comparison of the average values given shows that where slack is used washing effects an increase of 4.2 per cent in evaporative efficiency, 2.3 per cent where nut is used, .7 per cent when run-of-mine is used and .6 per cent when lump is used. The extremely small gain for

TABLE 9

COMPARATIVE EFFICIENCY OF WASHED AND UNWASHED COAL

U. S. G. S. Coal	Size	Efficie	ney				
No.							
1	2	3	4				
$\begin{array}{c}1\\7\mathrm{C}\\10\end{array}$	Slack Slack Slack	$58.73 \\ 58.71 \\ 50,12$	$61.47 \\ 60.84 \\ 57.82$				
Ave	rage	55.85	60.04				
9A 12	R. o. m. R o. m.	50.28 62.51	$\begin{array}{c} 49.67\\ 61.48\end{array}$				
Ave	erage	56.40	57.08				
13 13	Nut Nut	$65.67 \\ 63.96$	$\begin{array}{c} 67.93 \\ 66.12 \end{array}$				
Ave	rage	64.68	67.02				
23 A 18 18	Lump Lump Lump	$\begin{array}{c} 66.93 \\ 64.20 \\ 59.02 \end{array}$	$ \begin{array}{r} 62.12 \\ 63 48 \\ 66.39 \end{array} $				
Ave	erage	63.38	64.00				

the last two sizes named is explained by the fact that, in the process of washing, the coal was crushed to a size under 2 inches, a size which has been shown not to be so well adapted to the kind of grate and furnace used as the larger size.

24. Comparison of efficiency resulting from the use of raw and briquetted coal.—Of the 112 boiler tests made, 15 tests were run with briquetted coal. Comparing the results shown in Table 8 with the results of similar tests with raw coal, it will be seen that in most cases where the raw coal is in the form of screenings or

slack, briquetting improves the evaporative efficiency, but where it is in the form of egg, nut or lump, but little difference in performance results. As in the case of coal in its natural state, efficiency decreases as the ash and sulphur content increases. This is shown graphically in Fig. 10. The rather close alignment of the plotted points in this figure is due principally to the uniformity in size of the fuel.

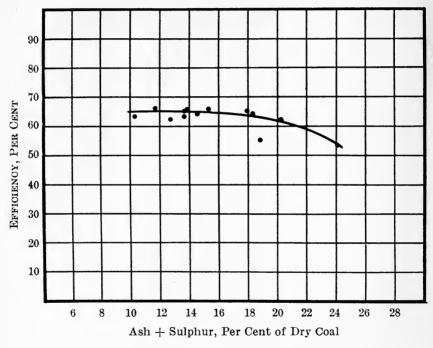


FIG. 10 EVAPORATIVE EFFICIENCY AS AFFECTED BY ASH AND SULPHUR IN BRIQUET

42 ILLINOIS ENGINEERING EXPERIMENT STATION

25. The evaporative efficiency of Illinois coal compared with that of coal from other states, as shown by the United States Geological Survey tests, is presented in Table 10. Only tests with bituminous and semi-bituminous coal are here included and the average values given are based only on tests which were made under simi-

TABLE 10 COMPARATIVE RESULTS OBTAINED FROM COAL

State	Kind of Coal	No. of Tests	No. of Coals	Average per cent of Rated Horse-Power Developed	Equivalent Evaporation from and at 212° F. per pound Dry Coal	Efficiency of Combined Boiler and Furnace	B. t. u. per pound of Dry Coal
1	2	3	4	5	6	7	8
Arkansas. Colorado. Illinois. Iowa. Indiana. Kansas. Kentucky. Missouri. New Mexico. Ohio. Pennsylvania. Tennessee. Virginia.	Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous	$10 \\ 8. \\ 1 \\ 52 \\ 5 \\ 24 \\ 8 \\ 8 \\ 3 \\ 9 \\ 6 \\ 18 \\ 18 \\ 24 \\ 10 \\ 36$	4 7 1 25 5 11 6 3 3 7 3 9 9 9 4 21	$\begin{array}{c} 91.9\\ 89.3\\ 71.9\\ 89.6\\ 90.7\\ 89.5\\ 83.4\\ 91.0\\ 88.9\\ 92.2\\ 104.3\\ 92.2\\ 89.9\\ 102.3\\ 94.2\\ 95.5\end{array}$	$\begin{array}{c} 8.43\\ 9.03\\ 7.21\\ 7.95\\ 7.13\\ 8.23\\ 8.10\\ 9.77\\ 8.37\\ 7.73\\ 8.28\\ 8.82\\ 9.75\\ 8.81\\ 9.73\\ 9.86\end{array}$	$\begin{array}{c} 64.31\\ 63.54\\ 55.36\\ 62.66\\ 59.55\\ 63.76\\ 61.26\\ 65.41\\ 62.82\\ 60.18\\ 64.88\\ 64.88\\ 66.22\\ 64.18\\ 65.07\\ 65.89\end{array}$	$\begin{array}{c} 12656\\ 13707\\ 12577\\ 12249\\ 11650\\ 12549\\ 12780\\ 14417\\ 12883\\ 12260\\ 14417\\ 12863\\ 12257\\ 13130\\ 14248\\ 13261\\ 14436\\ 14451\end{array}$

FROM VARIOUS STATES

lar conditions of operation. Column 1 gives the name of the state, Column 2 the kind of coal, Column 3 the number of tests included in the average, Column 4 the number of samples of coal, Column 5 the average rate of power developed, Column 6 the efficiency in terms of equivalent evaporation per pound of dry coal, Column 7 the efficiency in per cent and Column 8 the heating value of the coal in B. t. u., per pound of dry coal. The values given in the table show that the average evaporative efficiency of Illinois coal is 62.66 per cent. This compares favorably with the results from any other coal tested and in fact is nearly identical with the general average, 63.1.

VIII PRODUCER-GAS TESTS

26. The producer-gas plant used for the United States Geological Survey tests of Illinois coal consists of two Taylor pressure producers arranged to discharge into a single scrubber, a Westinghouse three-cylinder vertical gas engine rated at 235 horse-power, and a six-pole, 175 kilowatt Westinghouse direct current generator. Auxiliary apparatus was provided for measuring accurately the coal and gas, the steam used by the producer, and all temperatures and pressures necessary for a complete determination of plant efficiency. The general arrangement of the plant is well shown in Fig. 11, and a section through the producer in Fig. 12, (pp. 45, 46).

The principal dimensions of the producer plant are as follows:--

D 1

rioducer	
Capacity, horse-power	250
Outside diameterfeet	
Inside diameterfeet	6.5
Heightfeet	15
Area of fuel-bedsquare feet	38.5
Diameter of gas delivery pipeinches	
Type of feed, Bildt automatic continuous feed.	
Economizer	
Diameterfeet	3
Heightfeet	16.5
Number of 7-inch tubes	6

Scrubber	
Diameter	feet 8
Height	feet 20
Material used in scrubber, gas-house coke.	
Tar extractor	•
Speed, revolutions per minute	
Purifier	
Length of sides.	feet 8
Height	feet 3.25
Material used in purifier, oxidized iron filings	s and wood shavings.
Gas holder	
Diameter	feet 20
Height	,feet 13
Capacity	

27. The tests were conducted alternately on the two producers, one being charged while the other was in operation. The schedule adopted involved two sixty-hour runs per week. The first eight or twelve hours of each test were used for bringing the fuel bed to a uniform condition. During this preliminary running, observations were made as in the regular tests, but the record data include only the last 48 or 50 hours, when the running conditions were maintained as uniform as possible. Special attention was directed to the accurate measurements of the coal actually used and charts and checking devices were introduced for this purpose.

Owing to the lack of reliability in the operation of the gas engine, many of the tests made at the beginning of the series were only of a few hours' duration; later, however, no difficulty was experienced in starting the engine and continuing it in operation for a period of 120 hours. During this time two different coals were tested. Altogether 30 tests were made involving the use of 23 different samples of Illinois coal.

28. Results of the tests.—The more important observed and calculated results of the tests are given in Table 11. Column 1 of this table is the laboratory number of the test, Column 2 the U. S. G. S. number of the sample tested and Column 3 the size of the coal tested. The proximate analyses of the coal as fired are given in Columns 4 to 8 and the heating value in B. t. u. per pound of dry coal is given in Column 4. The brake horse-power given in Column 10 is the power delivered by the gas engine. Column 11 is the cubic feet of gas delivered by the producer per hour, in terms of standard gas, that is, gas at atmospheric pressure and 60° F. temperature. Column 12 is the calorific value of the gas expressed in B. t. u. per cubic foot of standard gas. Column 13

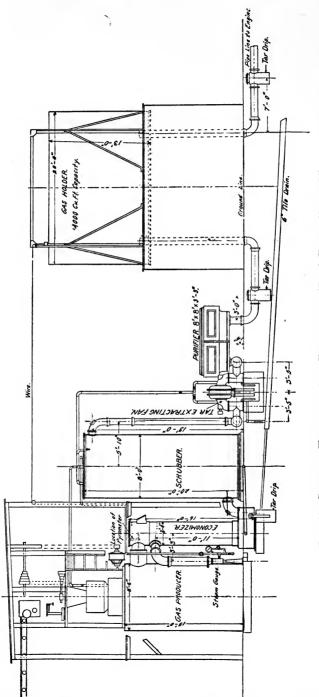


FIG. 11 SECTION THROUGH GAS PRODUCER (Prof. Paper 48, p. 984)

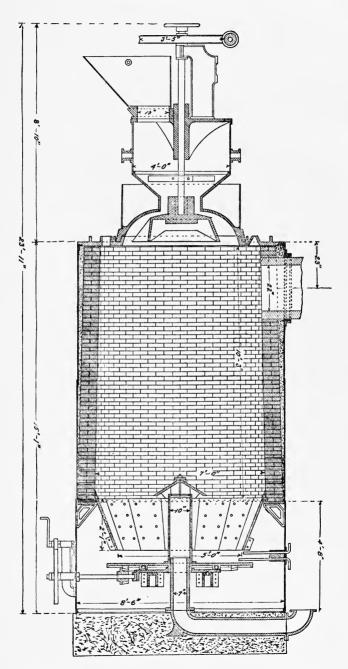


FIG. 12 ELEVATION SHOWING GENERAL ARRANGEMENT OF PRODUCER-GAS PLANT (Prof. Paper 48, p. 983)

Power hour Pounds of Dry Coal Con- Power bour			1.43	3.69	2.24	1.43	1.24	1.18 9.60	1.04	1.33	1.32	1.39	1.42	1.13	1.68	1.16	1.43	1.45	1.27	1.45	2.13	1.38
B. t. u. Contained in Gas Per pound of Dry Coal Fired		14	8330 8840 7985	3350	5540	8220	9660	11275	12020	9280	8900	8900	8480 0360	11340	9080	8730	8280	8640	8620	9290	7280	7980
ndard Gas	sats to test sidu) I to banoq req I	13	53.9 58.4 4	30.6	46.2	55.9	68.7	65.0 43.1	82.3	59.2	59.1	62.3	56.7	69.1	65.8 7.8	9.09	56.0	59.6	51.3	63.1	59.4	51.6
to toot of 285	B. t. u. per cubi bishadard (12	154.8	138.6	120.2	147.0	140.7	173.4	146.1	156.8	150.6	142.9	149.5	164.1	137.8	160.5	147.9	145.0	168.0	147.2	122.5	141.2
tandard our	2 to teet of dud d red zsd	11	17412 17881 17881	17320	19780	18610	19580	17630	18925	18320	17172	19130	12814	17430	12100	15730	17760	17520	14540	17560	16910	15800
тэтод	Втаке Ногзе-	10	235.0 233.0 243.0	0.6310	205.8	244.8	244.2	247.0 904 6	236.5	245.5	234.1	236.0	236.7	236.7	166.0	236.0	233.3	213.5	236.0	205.4	147.0	234.0
to bau [,	B. t. u. per po Dry Coa	8	13041 12834 11453	10721	11072	12263	12874	12919	13534	12798	12231	12107	12911	13140	12744	12375	12103	12676	12105	11547	11828	12250
r cent ermined)	Sulphur, Per (Separately Det	8	1.69	3.82	4.15	4.64	1.35	2.09 1.65	1.53	1.68	4.16	4.06	1.47	53.	.49	36.4	4.65	3.46	4 8 9 9 7 9 7	3.52	4.54	3.37
<u>s</u>	deA	7	9.22 16.08	21.52	18.95	11.59	10.67	10.86	7.28	10.27	12.39	13.55	10.37	9.46	10.20	10.71	11.89	9.02	13.40	15.88	13.86	9.66
Proximate Analysis of Coal as Fired, per cent	Fixed Carbon	9	51.78 45.70 40.78	33.37	38.26	41.67	48.45	49.44 47.63	53.36	52.70 49.94	41.57	41.53	51.33	50.22	50.34	43.92	39.87	40.98 80.98	40.63	38.81	41.20	41.66
oximate An I Coal as Fi per cent	Volatile Matter	2	30.87 32.65 31.67	32.35	32.71	33.83 33.83	32.31	32.62 98.03	30.69	31.07	33.36	35.48	30.62 30.62	30.68	29.64	33.93	36.37	22 22 22 23 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	34.62	32.02	33.59	33.76 39.30
Pro	Moisture	*	7.62 12.43	12.76	10.08	12.91	8.57	7.08	29.82	8.72	12.68	9.44	13 10	9.64	9.82	11.48	11.87	14.77	11.35	13.29	11.35	5.59
	Size of Coal	3		Slack.		Nut			D No. 3 washed	_	Lump				I Run-of-mine		-	A Lumb		Run-of-mine		Washed
.0N	U. S. G. S. No.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A7 A7	10	20 20 20	10		=	38	4 12	22	9 x	19B	190	24B	23A	2315	122	36	122	38
•(.oN 129T			26	8	62 62	31	88	42	1	30	9 9	4 4	13	821	103	88	36	101	126	121	157.

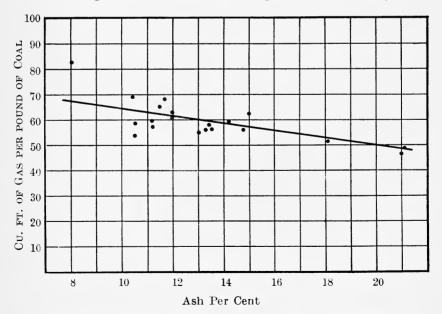
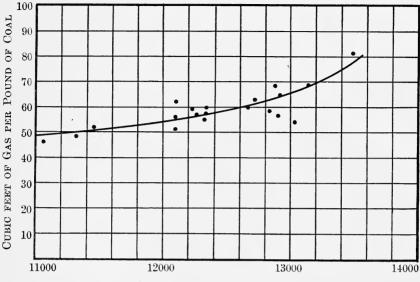
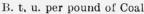
FUEL TESTS WITH ILLINOIS COAL

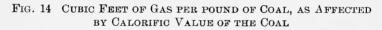
TABLE 11 PRODUCER TESTS

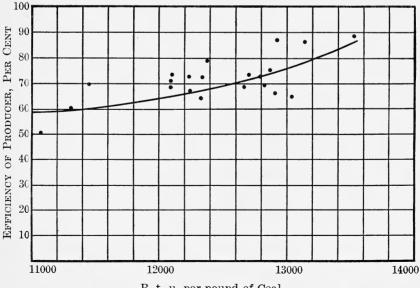
is the cubic feet of standard gas per pound of dry coal. Column 14 is the B. t. u. contained in the gas per pound of dry coal fired. This value divided by the heating value of the coal (Column 9) equals the thermal efficiency of the producer. Column 15 is the pounds of dry coal consumed by the producer per brake-horse-power available for outside purposes.

In comparing the results of the producer tests as set forth in Table 11, too much emphasis can not be given the fact that they were subjected to absolutely no refinements. With the exception of three coals one test only has been made on each kind and grade, and the result of each test has, to a great extent, depended upon the ability of the operator to discover the best methods of handling a given coal within the 8 or 10 hours allowed preliminary to the official test. Moreover, all tests were made on one type and in one size of producer, a type designed primarily for anthracite coal, and in carrying out the plan of the tests more effort was made to develop the required power than to observe the proper relation between the gas producing qualities of the coal and the area of the fuel bed.

In spite of all these restrictions it is the opinion of those who were in charge of the tests that certain general relationships have


FIG. 13 CUBIC FEET OF GAS PER POUND OF COAL AS AFFECTED BY PER CENT OF ASH IN DRY COAL been fairly well established. They may be subject to modification in the light of future investigations, but the conclusions to be drawn from them are sufficiently significant for presentation.


29. Efficiency as affected by ash in the coal.—The cubic feet of gas delivered by the producer per pound of coal fired is, perhaps, the most convenient measure of efficiency. Referring to Column 13, Table 11, it will be seen that in general as the ash in the coals increases this quantity decreases. The exact relation for all tests made at full load is shown graphically in Fig. 13. In this figure, cubic feet of standard gas per pound of dry coal is plotted against ash expressed in per cent of dry coal. The average line is drawn so as to include as many of the plotted points as possible. It shows that when the coal contains 8 per cent ash the output of the producer is 67 cubic feet per pound of dry coal fired and that when ash is 20 per cent the output is decreased to 50 cubic feet.

30. Efficiency as affected by calorific value of the coal.—The cubic feet of gas per pound of dry coal plotted against B. t. u. per pound of dry coal for all tests made at full load is shown in Fig. 14. Since the heating value of Illinois coal is very nearly inversely proportional to the ash content the relation shown is merely a restatement of the facts brought out in Fig. 13. The points, however, fall in better alignment. It appears from the curve that the output of gas in cubic feet per pound of coal increases from 49 when the calorific value is 11000 B. t. u. per pound of dry coal, to 65 when the calorific value is 13000. Fig. 15 shows the efficiency expressed in per cent plotted against the heating value of the coal. Here the same rise in efficiency is again shown. The average value at 11000 is 58 per cent and at 13000 it is 76 per cent.

B. t. u. per pound of Coal

EFFICIENCY OF PRODUCER AS AFFECTED BY CALORIFIC FIG. 15 VALUE OF THE COAL

31. A comparison of Illinois coal with other bituminous coals. A condensed summary of the more important items relating to Illinois coals compared with those relating to all other bituminous coals tested, is presented in Table 12. The average values given

TABLE 12

A COMPARISON OF ILLINOIS COAL WITH BITUMINOUS COALS FROM OTHER STATES FOR GAS PRODUCER SERVICE

	Average of Tests with Ill. Coal	Average of All Tests with Bitum inous Coal
Composition of fuel, per cent:		
Moisture Volatile matter Fixed carbon Ash Sulphur. B. t. u, per pound of dry coal	10.84 33.06 44.06 12.04 3.15 12000.	$\begin{array}{r} 6.82 \\ 33.06 \\ 49.80 \\ 10.32 \\ 2.41 \\ 13150. \end{array}$
Composition of gas, volume per cent:		
Carbon dioxide Oxygen Nitrogen Hydrogens Carbon monoxide Hydrogen B, t. u, per foot of standard gas	9.60 .03 56.81 3.21 18.31 12.01 146.5	9.84 .04 55.60 3.30 18.28 12.90 152.1
Cubic feet of standard gas per pound of dry coal Pounds of dry coal per brake horse power, hour	59.1 1.36	64.7 1.26

are computed only from tests in which the producer was operated at its rated capacity. It will be noted that while the analysis shows that the Illinois coal contains 4 per cent more moisture and $2\frac{1}{3}$ per cent more ash the quality of the gas produced is but slightly inferior. Thus the heating value is 146.5 B. t. u. per foot of standard gas when Illinois coal is used and 152.1 when other bituminous coal is used. The output of gas, measured in cubic feet per pound of dry coal, is 59.1 in the one case and 64.7 in the other. Comparing the efficiency at the engine it will be seen that it requires 1.36 pounds of Illinois coal to develop a horse-power and 1.26 pounds when other bituminous coals are used. This comparison is by no means unfavorable and considering the lower selling prices which prevail for Illinois coals the very slight difference in efficiency is almost insignificant.

32. Relative results of steam and producer-gas tests.—From theoretical considerations it may easily be shown that it is possible for the gas engine to utilize a much larger amount of the

52 ILLINOIS ENGINEERING EXPERIMENT STATION

Relative Amount of Illinois Coal Used by Steam and Producer Plant

POUNDS PER BRAKE HORSE-POWER HOUR

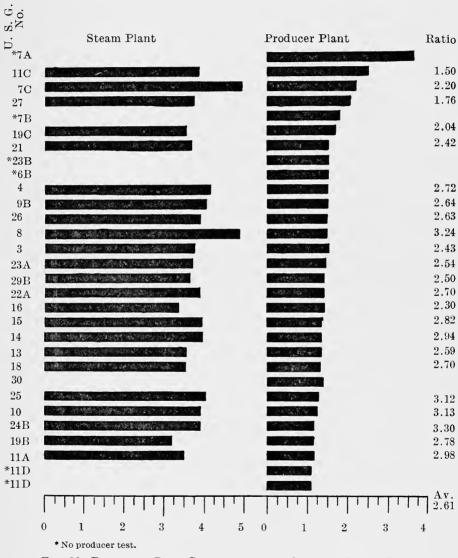


FIG. 16 RELATIVE COAL CONSUMPTION IN GAS AND STEAM PLANTS.

i

FUEL TESTS WITH ILLINOIS COAL 53

heat supplied than the steam engine. The results of the present tests show how much of this saving is realized in practice.

The ratios of the total coal per brake horse-power hour required by the steam plant and producer gas plant under full load conditions are presented in Fig. 16. The values representing producer plant performance are those of Column 15, Table 11, and those representing steam plant performance are calculated from those of Column 25, Table 8, allowing 85 per cent as the efficiency of the dynamo. It will be seen that the maximum ratio is 3.13 and the minimum 1.50 while the average is 2.61.

UNITED STATES GEOLOGICAL SURVEY PUBLICATIONS ON FUEL TESTING

The following publications, except those to which a price is affixed, can $b \uparrow obtained$ free by applying to the Director. Geological Survey, Washington, D. C. The priced publications can be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C.

Bulletin No. 261. Preliminary report on the operations of the coal-testing plant of the Unit¹ d States Geological Survey at the Louisiana Purchase Exposition, in St. Louis, Mo., 1904; E. W. Parker, J. A. Holmes, M. R. Campbell, committee in charge. 1905. 172 pp. 10 cents.

Professional Paper No. 48. Report on the operations of the coal-testing plant of the United States Geological Survey at the Louisiana Purchase Exposition, St. Louis, Mo., 1904; E. W. Parker, J. A. Holmes, M. R. Campbell, committee in charge. 1906. In three parts. 1492 pp. 13 pls \$1.50.

Bulletin No. 290. Preliminary report on the operations of the fuel-testing plant of the United States Geological Survey at St. Louis, Mo., 1905, by J. A. Holmes. 1906. 240 pp. 20 cents.

Bulletin No. 323. Experimental work conducted in the chemical laboratory of the United States fuel-testing plant at St. Louis, Mo., January 1, 1905, to July 31, 1906, by N. W. Lord. 1907, 49 pp.

Bullelin No. 325. A study of four hundred steaming tests, made at the fuel-testing plant, St. Louis, Mo., 1904, 1905, and 1906, by L. P. Breckenridge. 1907. 196 pp.

Bulletin No. 332. Report of the United States fuel-testing plant at St. Louis, Mo., January 1, 1906, to June 30, 1907; J. A. Holmes, in charge. 1908. 299 pp.

Bulletin No. 334. The burning of coal without smoke in boiler plants: a preliminary report, by D. T. Randall. 1908. 26 pp.

Bulletin No. 336. Washing and coking tests of coal and cupola tests of coke, by Richard Moldenke, A. W. Belden, and G. R. Delamater. 1908. 76 pp.

Bulletin No. 339. The purebase of coal under Government and commercial specifications on the basis of its heating value, with analyses of coal delivered under Government contracts, by D. T. Randall. 1908. 27 pp.

Bulletin No. 343. Binders for coal briquets, by J. E. Mills. 1908. 56 pp.

Bulletin No. 362. Mine sampling and chemical analyses of coals tested at the United States fuel-testing plant, Norfolk, Va. in 1907, by J. S. Burrows. 1908. 23 pp.

Bulletin No. 363. Comparative tests of run-of-mine and briquetted coal on locomotives, by W. F. M. Goss. 1908. 57 pp.

Bulletin No. 366. Tests of coal and briquets as fuel in house-heating boilers, by D. T. Randall. 1908. 44 pp.

Bulletin No. 368. Washing and coking tests of coal, by A. W. Belden, G. R. Delamater and J. W. Groves. 1908. 53 pp.

PUBLICATIONS OF THE ENGINEERING EXPERIMENT STATION

Bulletin No. 1. Tests of Reinforced Concrete Beams, by Arthur N. Talbot. 1904. (Out of print.)

Circular No. 1. High-Speed Tool Steels, by L. P. Breckenridge. 1905. (Out of print.) Bulletin No. 2. Tests of High-Speed Tool Steels on Cast Iron, by L. P. Breckenridge and Henry B. Dirks. 1905. (Out of print.)

Circular No. 2. Drainage of Earth Roads, by Ira O. Baker. 1906. (Out of print.)

Circular No. 3. Fuel Tests with Illinois Coal. (Compiled from tests made by the Technologic Branch of the U. S. G. S., at the St. Louis, Mo., Fuel Testing Plant, 1904-1907, by L. P. Breckenridge and Paul Diserens. 1909.

Bulletin No. 3. The Engineering Experiment Station of the University of Illinois, by L. P. Breckenridge. 1906. (Out of print.)

Bulletin No. 4. Tests of Reinforced Concrete Beams, Series of 1905, by Arthur N. Talbot. 1906.

Bulletin No. 5. Resistance of Tubes to Collapse, by Albert P. Carman. 1906. (Out of print.)

Bulletin No. 6. Holding Power of Railroad Spikes, by Roy I. Webber. 1906. (Out of print.)

Bulletin No. 7. Fuel Tests with Illinois Coals, by L. P. Breckenridge, S. W. Parr and Henry B. Dirks. 1906. (Out of print.)

Bulletin No. 8. Tests of Concrete: I. Shear; II. Bond, by Arthur N. Talbot. 1908. (Out of print.)

Bulletin No. 9. An Extension of the Dewey Decimal System of Classification Applied to the Engineering Industries, by L. P. Breckenridge and G. A. Goodenough. 1906.

Bulletin No. 10. Tests of Concrete and Reinforced Concrete Columns, Series of 1906, by Arthur N. Talbot. 1907. (Out of print.)

Bulletin No. 11. The Effect of Scale on the Transmission of Heat through Locomotive Boiler Tubes, by Edward C. Schmidt and John M. Snodgrass. 1907. (Out of print.)

Bulletin No. 12. Tests of Reinforced Concrete T-beams, Series of 1906, by Arthur N. Talbot. 1907. (Out of print.)

Bulletin No. 13. An Extension of the Dewey Decimal System of Classification Applied to Architecture and Building, by N. Clifford Ricker. 1907.

Bulletin No. 14. Tests of Reinforced Concrete Beams, Series of 1906, by Arthur N. Talbot. 1907. (Out of print.)

Bulletin No. 15. How to Burn Illinois Coal without Smoke, by L. P. Breckenridge. 1908. Bulletin No. 16. A Study of Roof Trusses, by N. Clifford Ricker. 1908.

Bulletin No. 17. 'The Weathering of Coal, by S. W. Parr, N. D. Hamilton, and W. F. Wheeler. 1908. (Out of print.)

Bulletin No. 18. The Strength of Chain Links, by G.A. Goodenough and L. E. Moore. 1908. Bulletin No. 19. Comparative Tests of Carbon, Metallized Carbon and Tantalum Filament Lamps, by T. H. Amrine. 1908.

Bulletin No. 20. Tests of Concrete and Reinforced Concrete Columns, Series of 1907, by Arthur N. Talbot. 1908.

Bulletin No. 21. Tests of a Liquid Air Plant, by C. S. Hudson and C. M. Garland. 1908

Bulletin No. 22. Tests of Cast-Iron and Reinforced Concrete Culvert Pipe, by Arthur N. Talbot. 1908.

Bulletin No. 23. Voids, Settlement and Weight of Crushed Stone, by Ira O. Baker. 1908.

Bulletin No. 24. The Modification of Illinois Coal by Low Temperature Distillation, by S. W. Parr and C. K. Francis. 1908.

Bulletin No. 25. Lighting Country Homes by Private Electric Plants, by T. H. Amrine. 1908.

Bulletin No. 26. High Steam-Pressures in Locomotive Service. A Review of a Report to the Carnegie Institution of Washington. By W. F. M. Goss. 1908.

Bulletin No. 27. Tests of Brick Columns and Terra Cotta Block Columns, by Arthur N. Talbot and Duff A. Abrams. 1909.

Bulletin No. 28, A Test of Three Large Reinforced Concrete Beams, by Arthur N. Talbot. 1909.

Bulletin No. 29. Tests of Reinforced Concrete Beams: Resistance to Web Stresses, by Arthur N. Talbot. 1909.

Bulletin No. 30. On the Rate of Formation of Carbon Monoxide in Gas Producers, by J. K. Clement, L. H. Adams, and C. N. Haskins 1909.

Bulletin No. 31. Fuel Tests with House-heating Boilers, by J. M. Snodgrass. 1909.

Bulletin No. 32. The Occluded Gases in Coal, by S. W. Parr and Perry Barker. 1909.

P326 U6B8 357045 recke ac UNIVERSITY OF CALIFORNIA LIBRARY

lllinols State Reformatory Print