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EDiTORS' PREFACE.

The volume called Higher Mathematics, the first edition

of which was published in 1896, contained eleven chapters by

eleven authors, each chapter being independent of the others,

but all supposing the reader to have at least a mathematical

training equivalent to that given in classical and engineering

colleges. The publication of that volume is now discontinued

and the chapters are issued in separate form. In these reissues

it will generally be found that the monographs are enlarged

by additional articles or appendices which either ampUfy the

former presentation or record recent advances. This plan of

publication has been arranged in order to meet the demand of

teachers and the convenience of classes, but it is also thought

that it may prove advantageous to readers in special lines of

mathematical hterature.

It is the intention of the publishers and editors to add other

monographs to the series from time to time, if the call for the

same seems to warrant it. Among the topics which are under

consideration are those of elliptic functions, the theory of num-

bers, the group theory, the calculus of variations, and non-

Euclidean geometry; possibly also monographs on branches of

astronomy, mechanics, and mathematical physics may be included.

It is the hope of the editors that this form of pubHcation may

tend to promote mathematical study and research over a wider

field than that which the former volume has occupied.

December, 1905.



AUTHOR'S PREFACE.

In the following pages is contained a brief introductory

account of some of the more fundamental portions of the theory

of functions of a complex variable. The work was prepared

originally as a chapter for the volume called " Higher Mathe-

matics," pubUshed in 1896. It has been enlarged by the addition

of sections on power series, algebraic functions and their integrals,

functions of two or more independent variables, and differential

equations. Furthermore, the section on uniform convergence

has been extended, and the treatment of Weierstrass's theorem

and of Mittag-Leffler's theorem has been simplified.

It is hoped that the present work will give the uninitiatea

some idea of the nature of one of the most important branches

of modem mathematics, and will also be useful as an introduction

to larger works, such as those in English by Forsyth, Whittaker,

and Harkness and Morley; in French by Jordan, Picard, Goursat,

and Valine-Poussin; and in German by Burkhardt, Stolz and

Gmeiner, and Osgood.

New York, August, 1906.
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FUNCTIONS OF A COMPLEX VARIABLE.

Art. 1. Definition of Function.

If two or more quantities are such that no one of them suf-

fers any restriction in regard to the values which it can assume

when any values whatsoever are assigned to the others, the

quantities are said to be * independent."

A quantity is said to be a function of another quantity or of

several independent quantities if the former is determined in

value whenever particular values are assigned to the latter.

The quantity or quantities upon the values of which the value

of the function depends, are said to be the '* independent vari-

ables " of the function.

A function is *' one-valued," or *' uniform," when to every

set of values assigned to the independent variables there cor-

responds but one value of the function. It is said to be

**w-valued" when to every set of values of the independent

variables n values of the function correspond.

The ''Theory of Functions" has among its objects the

study of the properties of functions, their classification accord-

ing to their properties, the derivation of formulas which exhibit

the relations of functions to one another or to their independ-

ent variables, and the determination whether or not functions

exist satisfying assigned conditions.
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Art. 2. Representation of Complex Variable.

A variable quantity is capable, in general, of assuming both

real and imaginary values. In fact, unless it be otherwise

specified, every quantity w is to be regarded as having the

" complex " form u-\-v V— i, u and v being real. It is cus-

tomary to denote r — i by t, and to write the preceding quan-

tity thus : M -}- ^^' I^ ^ is zero, w is real ; if u is zero, zv is a
** pure imaginary."

A quantity 2 = x-\- ty is said to vary" continuously " when
between every pair of values which it may take, c^ = a^-\- ib^^

^2 = ^2 4" ^^2 » ^ and_;/ must pass through all real values inter-

mediate to a^ and a^ , b^ and b^ , respectively, either once or a

'inite number of times.

It is usual to give to a variable quantity ^ = ;r+ ^^ a graphi-

cal representation by drawing in a plane a pair of rectangular

axes and constructing a point whose abscissa and ordinate are

respectively equal to x and y. To every value of z will corre-

spond a point ; and, conversely, to every point will correspond

a value of z. The terms '* point " and value, then, may be inter-

ohanged without confusion. When z varies continuously the

graphical representation of its varia-

tion, or its *' path," will be a continuous

line. This graphical representation is

of the highest importance. By means

of it some of the most complicated

propositions may be given an exceed-

ingly condensed and concrete expres-

sion.

By putting x = r cos 6, y = r sin 6, where r is a positive real

quantity, the point

z = r(cos 6 -{-t sin 6)

is referred to polar coordinates. The quantity r is called the

absolute value or " modulus " of z. It will often be written \js\.

is known as the ^argument " of 2.
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A function Is sometimes considered for only such values of

each independent variable as are represented graphically by the

points of a certain continuous line. In the study of functions

of real variables, for example, the path of each independent

variable is represented by a straight line, namely, the axis of

real quantities, or^;' = o.

*Art. 3. Absolute Convergence.

The representation of functions by means of infinite series

is one of the most important branches of the theory of func-

tions. In many problems, in fact, it is only by means of series

that it is possible to determine functions satisfying the condi-

tions assigned and to obtain the required numerical results.

Frequent use will be made of the following theorem.

Theorern.— If the moduU of the terms of a series form a

convergent series, the given series is convergent.

Let the given series be W= w^-\-w^-\- . . . + ^n + • • •

in which zv^ = r^ (cos b^+ e sin B^, w, = r, (cos 6^ + zsin 6^,) . . .

By hypothesis the series R= r^-\-r^-\- . . . + r„ + . . . is

convergent. Its terms being all positive, the sum of its first m
terms constantly increases with m, but in such a manner as to

approach a limit. The same will be true necessarily of any

series formed by selecting terms from R. The sum of the first

m terms of the series W is composed of two parts,

r, cos e^ + r,cose^ . . . + r^-. cos 6^,,,

i{r, sin 0^ + r, sin ^, + . . . + r^_, sin 0^.,),

and each of these in turn may be divided into parts which have

all their terms of the same sign. Every one of the four parts

thus obtained approaches a limit as m is increased ; for the

terms of each part have the same sign, and cannot exceed^ in

absolute value, the corresponding terms of R, Hence, as m is

increased, the sum of the first m terms of W approaches a

limit; which was to be proved.

A series, the moduli of whose terms form a convergent

series, is said to be " absolutely convergent."
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Prob. I. Show that the series i -}- 2; -f-
^' + • • • + ^** + • • 'is

absolutely convergent, if | ^
|
< i.

Art. 4. Elementary Functions.

In elementary mathematics the functions are usually con-

sidered for only real values of the independent variables. In

the case of the algebraic functions, however, there is no diffi-

culty in assuming that the independent variables are complex.

The theory of elimination shows that every algebraic equation

can be freed from radicals. Every algebraic function, there-

fore, is defined by an equation which may be put in a form

wherein the second rnember is zero and the first member is

rational and entire in the function and its independent variables.

Besides the algebraic functions, the functions most often

occurring in elementary mathematics are the trigonometric and

exponential functions and the functions inverse to them. The
definitions, by which these functions are generally first intro-

duced, have no significance in the case where the inde-

pendent variables are complex. However, the following

familiar series,

^ = exp^= 1+^+1 + !^+ ^+...,
2 31 41

cos^=i--+^-^+...,

z* z^ z' .smz=z--+ -^--^ + ...

which have been established for the case where the variables

are real, furnish most convenient general definitions for exp Zj

cos z, and sin z, these series being absolutely convergent for

every finite value of z. Defining the logarithmic function by

the equation__

g\ogx — exp (log<3:) = Zy

it follows that

^« _ ^ loga _ gxp {z log a).
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The following equations also are to be regarded as equations

of definition

:

sin^
tan 2 — COS-S:

cot 2 = ,

sin^cos 2

I

sec 2 = .

I

cosec 2 = —
,

cos-s sin ^

It may be shown that the formulas which are usually obtained

on the supposition that the independent variables are real, and

which express in that case properties of and relations between

the preceding functions, still hold when the independent

variables are complex.

Prob. 2. Show that e'^e'* = e'*"^ ", m and n being complex.

Prob. 3. Deduce cos z = i{e'' + e-% sin z — --.(e'' — e'").

Prob. 4. Deduce cos {z^ + z^ = cos z^ cos z^ — sin z^ sin z^
,

sin {z^ 4" ^3) = cos z^ sin z^ + sin 5, cos z^

,

Art. 5. Continuity of Functions.

Let a function of a single independent variable have a

determinate value for a given value c of the independent vari-

able. If, when the independent variable is made to approach

c, whatever supposition be made as to the method of approach,

the function approaches as a limit its determinate value at c,

the function is said to be " continuous " at c.

This definition may be otherwise expressed as follows : A
function of a single independent variable is continuous at the

point c, when, being given any positive quantity e, it is possible

to construct a circle, with center at c and radius equal to a

determinate quantity d, so small that the modulus of the

difference between the value of the function at the center and

that at every other point within the circle is less than e.

A function of several independent variables is said to be

continuous for a particular set of values assigned to those vari-

ables, when it takes for that set of values a determinate value

c, and for every new set of values, obtained by altering the
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variables by quantities of moduli less than some determinate

positive quantity 6, the value of the function is altered by a

quantity of modulus less than any previously chosen arbitrarily

small positive quantity e.

A function of one independent variable is said to be con-

tinuous in a given region of the plane upon which its indepen-

dent variable is represented, if it is continuous at every point

in that region.

From the principles of limits, it follows that if two functions

are continuous at a given point, their sum, difference, and prod-

uct are continuous at that point. As an immediate conse-

quence, every rational entire function of ^ is continuous at

every finite point ; for every such function can be constructed

from 2 and constant quantities by a finite number of additions,

subtractions, and multiplications.

Let a function of a single independent variable be contin-

uous at c, and let it take at that point the value /, different

from zero. Suppose also that at any other point ^+^^ the

function takes the value / + ^^- Then

I I J/

t + Jt t t{t-\- At)

If it be assumed that
|
J/ 1 < |

/ |, the modulus of the preceding

difference cannot exceed

\At\

\t\{\t\-\At\)'

and will, therefore, be less than e if

eUl'
\At\<

\+e\t\

Hence if a function is continuous and different from zero

at a point Cy its reciprocal is also continuous at c. It follows

at once that if two functions are both continuous at c, their

ratio is continuous at c, unless the denominator reduces to zero
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at that point. But every rational function of z may be expressed

as the ratio of two entire functions. It is therefore continuous

for all values of z except those for which its denominator

vanishes.

Consider the function exp^,

Hence if \Az\<\^

but the limit of the third member is zero when \Az\ ap-

proaches zero. Hence exp z is continuous for all finite values

of z,

Prob. 5. Show that cos z and sin z are continuous for all finite

values of z.

Prob. 6. Show that tan z is continuous in any circle described

about the origin as a center with a radius less than ^n.

Art. 6. Graphical Re^presentation of Functions.

It was shown in Art. 2 that a plane suffices for the complete

graphical representation of the values of an independent vari-

able. In the same way it is convenient to use a second plane

to represent graphically the values of any one-valued function.

For example, if w ^=f{z) be such a function, to each point

X -\-iy o{ the independent variable will correspond a point

II + iv of the function. This point u + iv is called the " image "

of the point x -\-iy. If te^ is a continuous function of z, then

every continuous curve in the <^-plane will have an image in

the w-plane, and this image will be also a continuous curve.

Consider the expression u -^ iv = x"^ -\- y^ -\- lixy. Here
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u = X* -\- y and v = 2xy, Since to every value of 2 corre-

spond determinate values of x and j/,

and consequently determinate values

of u and v, this expression falls un-

der the general definition of a func-

tion of ^. It is evidently continuous.

Every straight line x = t parallel to

the axis of / is converted by means

of it into a parabola v^ = 4t\u — /').

Prob. 7. Find the family of curves

into which the straight lines parallel to

the axis of y are converted by means of

the function u -}- w = x^ — y' -{- 2ixy.

of this family imersect.

Show that no two curves

Art. 7. Derivatives.

Let w = f{z) be a given function of 2. If k is an '' infini-

tesimal," that is, a variable having zero as its limit, and if the

expression

' f[z + h)-f{z)
h

has a finite determinate limit, remaining the same under all

possible suppositions as to the way in which /^ approaches zero,

this limit is said to be the " derivative" of the function y(^) at

the point z. In this case w = f{z) is said to be " monogenic "

at z. The derivative is written f'{z) or -r-. A function is said

to be monogenic in a region of the plane of the independent

variable if it is monogenic at every point of that region.

Consider now the circumstances under which a function

w :=. u -\- iv may have a derivative at the point z ^^ x -\- iy.

If 2: be given a real increment, x is changed into x \- Axy while

y is unaltered, so that Az = Ax\ and

Aw __ Au . Av
Az ~~ Ax ""

~Ax'
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If, on the other hand, z is given a purely imaginary incre-

ment, Az = iAyy and

Aw __ Au _, Av
Az ~~ iAy Ay

'

If the second members of these equations approach deter-

minate limits as Ax and Ay approach zero, and if these limits

are equal,

d^'^^d^~~"^dy^^y

Hence, equating real and imaginary parts,

du _ 9^ dv _ 'du

dx~'dy' dx~~dy*

which are necessary conditions for the existence of a derivative.

It can be shown that these conditions are also sufficient *

For let the increment of the independent variable be entirely

arbitrary, no supposition being made as to the relative magni-

tudes of its real and imaginary parts. Then the diffeiiential of

the function, that is, that part of the increment of the function

which remains after subtracting the terms of order higher than

the first, is

^
\dJtr ^ dxl

.

' \dy ' dy J
"^

Hence (^u x-'dA. l^u^
, .^\ dy^

-; .
du + idv _ Va-y a-y/

"^W ^ dyi dx

- ' dx-\-idy~
J

,dy_
•^ dx

which, by virtue of the conditions written above, is equal to

either member of the equation

dx '^ ^dx ~
^dy dy

The value thus obtained is independent of -^, or, what is the

* For a complete discirssion see article by E. Goursat in the Transactions of

the Amer. Math. See, vol. i, p. 14.
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same thing, of the direction of approach to the point z. The
existence of a derivative of the function w depends, therefore,

only on the existence of partial derivatives ;—-, ;:— , —-, --
^x ox djy ^y

satisfying the specified equations of condition.

The same equations of condition express the tact that

w = « + iv^ supposed to be an analytical expression involving

X and 7, and having partial derivatives with respect to each,

involves ^ as a whole, that is, may be constructed from z by

some series of operations, not introducing x ox y except in the

combination x -\- iy. In other words, they indicate that x and

y may both be eliminated from w = (p(x, y) by means of the

equation z = x -\- iy. This property, however, is not sufficient

to define a function as monogenic, for not every function which

possesses it has a derivative with respect to z.

A monogenic function is necessarily continuous ; that is,

the existence of a derivative involves continuity. For, if

it follows that

where tf approaches zero with h. Hence f{z) is the limit of

f{z-\- h) when h approaches zero, or f(z) is continuous at the

point z.

The following pages relate almost exclusively to functions

which are monogenic except for special isolated values of z.

Functions which are discontinuous for every value of the inde-

pendent variable, and functions which are continuous but admit

no derivatives, have been little studied except in the case of

real variables *

* In this connection see G. Darboux, Sur les fonctions discontinues, Annales de

I'Ecole Normale, Series 2, vol. 4 (1875), pp. 51-112. For a systematic treatment

of functions of a real variable, see the German translation of Dini's treatise by

Liiroth and Schepp, Leipzig, 1892. For an illustration of a function constructed

from 2 by a series of arithmetical operations and discontinuous for a particular

value of z, see the expression given on page 53.
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Art. 8. Conformal Representation.

Let z start from the point z^ and trace two different paths

forming a given angle at the point z^y and let z^ and z^ be arbi-

trary points on the first and second paths respectively. Then

z^— z^= r,(cos 6^, + ^ sin d^ = r/^\

where r, denotes the length of the straight line joining z^ and

z^ , and 6*, denotes the inclination of this line to the axis of

reals. In the same way, for the point z^y there is an equation

z^ — z^= r, (cos 8^+ ^ sin 6*,) = r/^-^.

If now w is a one-valued monogenic function of z, in the

region of the <s:-plane considered, to the points z^, z^, z^ corre-

spond points w^yW^yW^'^ and for these points can be formed

the equations

^1 — ^0 = Pi^'** » w^ — w^— p,^'*'.

From the supposition that w is monogenic, it follows at

once that, when z^ and z^ are assumed to approach z^^

hmit ~ ° = limit —^ ?.

z, — z, z,- z.

If the members of this equation are not equal to zero, it may
be put in the form

limit —^ -" limit
^1-

w.
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or

limit ^>^'<*»-^«> = limit !:v
'<'''-••>.

Hence

limit (0,- 0,) = limit {6,- 0,) ;

and the images in the ze^-plane of the two paths traced by J3

form at w^ an angle equal to that at 2„ in the ^-plane. Accord-

ingly, if 2 be supposed to trace any configuration whatever

in a portion of the -s'-plane in which —— is determinate and not

equal to zero, every angle in the image traced by w will be

equal to the corresponding angle in the -a-plane. If, for exam-

ple, such a portion of the -sr-plane be divided into infinitesimal

triangles, the corresponding portion of the «;-plane will be

divided in the same manner, and the corresponding triangles

will be mutually equiangular. Such a copy upon a plane, or

upon any surface, of a configuration in another surface is called

a " conformal representation."

The modulus of the derivative —- := limit —— is the
dw ,. .

-r- = hmit
dz

Aw
Az

" magnification." Its value, which, in general, changes from

point to point, may be obtained from the relations

dw
d^={S)'+©'=(0+©'

'~' ^x -dy -dy dx

The theory of conformal representation has interesting ap-

plications to map drawing.*

*For the literature of the subject, see Forsyth, Theory oi Functions,

p. 500, and Holzmtiller, Einfiihring in die Theorieder isogonalen Verwandschat-

ten und der conforraen Abbildungen, verbunden mit Anwendungen auf mathe-

matische Physik.
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Art. 9. Examples of Conformal Representation.

Example I.—Let w = s -{- c. This function is formed

from the independent variable by the addition of a constant.

Putting for zi/, z^ and ^, respectively, u+ iVy x+ iy^ and a + ib,

one obtains

u-=.x-\-ay v=y-\-d.

Any configuration in the ^-plane appears, therefore, in the

w-plane unaltered in magnitude, and is situated with respect to

the axes as if it had been moved parallel to the axis of reals

through the distance a and parallel to the axis of imaginaries

through the distance d. The following diagrams represent the

transformation of a network of squares by means of the rela-

tion w = 2 -}- c.

y

X

Example II.—Let w =z cs. Writing w = pe^y zr=ire^^,

and c = r^e^^y the following equations result:

The origin transforms into the origin, all distances measured

from the origin are multiplied by a constant quantity, and

all straight lines passing through the origin are turned through

a constant angle. See the following diagrams.
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Example III.—Let w = ^*. Writings ^ x-\-iy, the func-

tion becomes

w = e*^^ = ^*(cos^ 4- / sin^).

Every straight line x = t^ parallel to the axis of y is trans-

formed into a circle p =, ^* described about the origin as a

center, the axis of J becoming the unit circle. Points to the

right of the axis oi y fall without the unit circle, while points

to the left of this axis fall within. Every straight line y = t^

parallel to the axis of x becomes a straight line v/u = tan /,

passing through the origin. The accompanying diagrams*

exhibit in a simple manner the periodicity expressed by the

equation
exp {2 -f 2n7ti) = exp (-3^),

where n is any positive or negative integer.

To every point in the w-plane, excluding the origin, corre-

spond an infinite number of points in the .^-plane. These

points are all situated on a straight line parallel to the axis of

*The figures of this and the following example are taken from Holzmilller's

treatise.
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y, and divide it into segments, each. of length 2;r. If z' be one

of these points, the general value of the inverse function is

log w z=z z' Ar 2ni7r,

where n is any positive or negative integer.

If any straight line beginning at the origin be drawn in the

ij£/-plane, there will correspond in the ^-plane an infinite number*

27t-

of straight lines parallel to the axis of x, dividing that plane

into strips of equal width. To any curve in the w-plane

which does not meet the line just drawn, will correspond in

the -s'-plane an infinite number of curves, of which there will be

one in each strip.

Example IV.—Let w = 'cos z. Writing w = u-{-w, z =
Xr\-iy, and employing as equations of definition cos (/r) =
cosh J, sin {iy) = / sinh y, the given function takes the form

Hence

u -f- iv == cos X cosh y — t sin x sinh y.

u = cos X cosh y, V ^= — sin ;r sinh^.
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Any straight line, x = /,, parallel to. the axis of ^, is trans-

formed into one branch of a hyperbola, ^^

= I,
cos' /, sin'' /,

having its foci at the points + i and — i. Any straight line,

^ = /, , parallel to the axis of x, is transformed into an ellipse,

+ = I,
cosh' /, sinh' /,

having its foci at the same points, any segment of the straight

line equal in length to 27t corresponding to the entire curve

taken once. By means of these confocal conies, the w-plane

is divided into curvilinear rectangles, the conformal represen-

tation breaking down only at the foci, where the condition

dw
that~ should be different from zero is not fulfilled.

az
periodicity of the function, expressed by the equation

.

COS(<S' + 271) — cos-s, r

The

)

y

15 16 1 3 3 4 5 6 7 8 9 10 11 12 13 U 15 16 1. 2

6 P A B C D E F Q H / J K L M N P A B X

B A F N M L K J I H G F E D C B A P
2 1 16 15 14 13 13 11 10 9 8 7 6 5 i 3 2 1 16 15

\

is exhibited graphically

in the accompanying

diagrams.

It is interesting to

note in this example,

as also in the preceding

one, that the conformal

representation intro-

duces well-known sys-

tems of curvilinear

coordinates, the cartesian coordinates, x, f o( a point in the
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^-plane serving to determine its image in the ze/-plane as an

intersection of orthogonal curves.

Example V.—Let w = z^. Writing w = «+ «/, ^ =
X + iy^ the relations

« u = x^ ^ s^y^t 'v = s^y —y
follow at once. If one of the variables x,j/ be eliminated from

these two equations by means of the equation /x -\- my -\-n = Oy

representing a straight line in the ^--plane, equations are ob-

tained representing a unicursal cubic in the w-plane.

By putting w = p{cos (p -{- i sin 0), z = r(cos -{- t sin 6\

the relations p = r\ = 36^, are obtained. Hence the

circle

r' — 2ar cos 6 -{• a* = c*

gives the curve

pi — 2ap^ cos — -f ^' = ^,

which enwraps three times the point corresponding to the

center. The accompanying figure represents this transfor-

mation, the straight Hne /<?^ giving the curve /e^.

div

To each point in the w-plane, excluding the origin, at which

= O and the conformal representation is not maintained,
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there correspond three points in the -s^-plane, having for their

-f- 2;r -f- 4?r
arguments -, respectively. Any straight Hne

drawn from the origin in the w-plane will have, therefore, three

images in the -s^-plane, viz., three straight lines diverging from

the origin, and dividing the plane into three equal regions.

Any continuous curve in the w-plane not meeting the line just

drawn will be represented in the ^-plane by three curves, of

which one will be situated within each of these regions. In the

figure here given are exhibited the three conformal represen-

tations of a square formed in the 7£;-plane by lines u = t^, u =
t^,v=t^^v = t^y parallel to the axes.

If the relation between w and z be reversed, and z be

taken as a function of w, z will be a three-valued function, its

values giving rise to three branches which will remain distinct

and continuous except when w becomes equal to zero.

d c

a h

Prob. 8. U w = z -\ , show that circles in the ^-plane having
z

a common center at the origin transform into confocal ellipses.

Prob. 9. If IV ;. show that the axis of reals in the s'-plane

transforms into the circle \7v\ = i, and the upper half of the ^-plane

into the interior of this circle.
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Art. 10. CoNFORMAL Representation of a Sphere.

Let OPO' be a sphere having its diameter 00' equal in

length to unity. Con-

struct tangent planes at

at 6> and O' . Draw in

the tangent plane at

O rectangular axes Ox
and Oy ; and in the

other plane draw as

axes O'u, parallel to Ox
and measured in the

same direction, and O'v

parallel to Oy but meas-

ured in a contrary di-

rection. Join any point

z in the plane xOy to

C by a straight line, and let O'z meet the sphere in P. Draw

(9Pand produce it to meet the plane uO'v in w.

From the similar triangles O'Oz and OO'w

Oz
00'

00'

O'w

that is,

or Oz . O'w = 00'

w\ = rp= I,

To an observer standing on the sphere at O' rotation about

OO' from O'lc toward O'v is positive, while to an observer

standing on the sphere at O such a rotation is negative.

Hence

Z_xOz = — Z^O'w, or 6^ = — 0.

The following equation results

:

wz pret(<f>+ 0)

The W' and ^-planes are therefore conformal representa-

tions of one another. Any configuration in one plane can be

formed from its image in the other by an ijiyersjon with respect
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to the origin as a center, combined with a reflection in the axis of

reals. Such a transformation was termed by Cayley a " quasi-

inversion." By it points at a great distance from the origin

in one plane are brought near together in the immediate neigli-

borhood of the origin in the other plane.

"Since the Hne O'Pz makes the same angle with the plane

tangent to the sphere at P as with the plane xOy^ any spherical

angle having its vertex at P is projected into an equal angle at

z. The sphere is thus seen to be related conformally to the

plane xOy, and it must be also so related to the plane uO'v,

The representation of the sphere upon a tangent plane in

the manner described above is termed a "stereographic pro-

jection." When to this representation is applied a logarithmic

transformation, that is, one inverse to the transformation

described in Example III of the preceding article, the so-

called * * Mercator's projection
'

' is obtained.

Art. 11. Conjugate Functions.

The real and imaginary parts of a monogenic function,

ze; = « 4" ^^> have been shown to satisfy the partial differential

equations

a« _ a^ 'd;v__ _'du

dx ~ dy 'dx
~

dy'

At any point, therefore, where u and v admit second partial

derivatives, one obtains

a^ ,
a^_ av

,
d'v

_

dx^'^dr ' dx'~^dy
'

that is, the functions u and v are solutions of Laplace's equa-

tion for two dimensions. Any two real solutions / and ^ of

this equation, such that p-\-iq is a monogenic function of

X+ iy, are called " conjugate functions." * Thus the examples

of Art. 9 furnish the following pairs of conjugate functions:

* Maxwell, Electricity and Magnetism, 1873, vol. i, p. 227.
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x -\- a, y -\- d ] r^r cos {B^ + ^)» ^i^ sin (6^, \-B)\ ^* cosj, e^ s\x\y
;

cos X cosh J, — sin x sinhj ; x^ — 3^jk', Z^y^ — y^- Tlie second

pair is expressed in polar coordinates, but may be transformed

to cartesian coordinates by means of the relations

r = Vx' +/, cos e = -_

^
sin 6

Vx'+f , Vx'+f

If one of two conjugate functions be given, the other is

thereby determined except for an additive constant. Let Uy

for example, be given. Then

, 'dv y . dVy
dv = —ax 4- —ay

'dx dy

—ax A ay.
dy ^ dx

-"'

and therefore the value of v is

/( dy ^ dx-"^

The equations u =^ c^, v =^ c^, obtained by assigning con-

stant values to two conjugate functions, represent in the

7^-plane straight lines parallel to the coordinate axes. It

follows that the curves which these equations define in the

^-plane intersect at right angles. Consequently, by varying

the quantities c^ and ^,, two orthogonal systems of curves are

obtained ; and c^ and c^ may be taken as orthogonal curvilinear

coordinates for the determination of position in the ^-plane.

Prob. lo. Show that if / and ^ are conjugate functions of u and

V, where u and v are conjugate functions of x andj, / and ^ will be

conjugate functions of x and y.

Prob. II. Show that if u and v are conjugate functions of x and

y, X and^ are conjugate functions of u and v.

Art. 12. Application to Fluid Motion.

Consider an incompressible fluid, in which it is assumed

that every element can move only parallel to the ^-plane, and

has a velocity of which the components parallel to the coordi-
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nate axes are functions of x and ^ alone. The whole motion

of the fluid is known as soon as the motion in the ^-plane is

ascertained. When any curve in the ^-plane is given, by the

"flux across the curve""* will be meant the volume of fluid

which in unit time crosses the right cyHndrical surface having

the curve as base and included between the ^-plane and a par-

allel plane at a unit distance.

The flux across^ any two curves joining the points js^ and 2

IS the same, provided the curves enclose a region covered with

the moving fluid. For, corresponding to the enclosed region,

there must be neither a gain nor a loss of matter. Let s^ be

fixed, and 2 be variable. Let ip denote the flux across any curve

s^2, reckoned from left to right for an observer stationed at 2^

and looking along the curve toward 2. If /, m be the direction

cosines of the normal (drawn to the right) at any point of the

curve, and /, g be the components parallel to the axes of the

velocity of any moving element, the value of ip will be

where the path of integration is the curve joining z^ and z.

The function ^ is a one-valued function of z in any region

within which every two curves joining z^ to z enclose a region

covered with the moving fluid.

If z moves in such a manner that the value of rp does not

vary, it will trace a curve such that no fluid crosses it, i.e., a

" stream-line." The curves ^ = const, are all stream-lines, and

^ is called the " stream-function." If p and q are continuous,

and if z be given infinitesimal increments parallel to x and y
respectively, one obtains

'dx~ ^'
-dy

^*

If now the motion of the fluid be characterized, as is the

* Lamb's Hydrodynami s (1895). p. 6q.
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case in the so-called " irrotational" motion * by the existence

of a velocity-potential 0, so that

^ 90 90

the following equations result

:

a0_a^ 9^_ _a0

Hence + /^ is a monogenic function of ;tr + iy. The curves

= const., which are orthogonal to the stream-lines, are

called the " equipotential curves."

Consider, as an example, the motion corresponding to the

functionf w = z^. The equipotential curves are given by the

equations

« = ;tr*— 3;ry=COn St.

,

the stream-lines by

the equations

V= 'iyx'y —y^^= const.

In the following fig-

ure the stream-lines

are the heavy lines,

while the equipo-

tential curves are

dotted.

The fluid moves

i in toward the origin,

which is called a '• cross-point," from three directions, and

flows out again in three other directions. At the cross-point

the fluid is at a standstill, since at that point the velocity, for

which the general expression is

\/(g)'+(i)'.
* In irrotational motion each element is subject to translation and pure

strain, but not to rotation.

f F. Klein : Riemann's Theory of Algebraic Functions ; translated by

Frances Hardcastle (1893), p. 3.
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is equal to zero. The stream-lines in the figure represent the

motion of the fluid in each of six different angles, as if the fluid

were confined between walls perpendicular to the ^-plane.

It is of importance to note that if the function considered

be multiplied by i, the equipotential curves and stream-lines

are interchanged, since the function (p -\- tip then becomes

— ^ + i(t>.

An example of particular interest is

w — //log
+ ^

Let z — a =^ ^/'^', 2 -\- a =^ r^e'^^ ; then

« = — // log -i, v= — ^{d, — e,).

The curves u = const., v = const, form two orthogonal sys-

tems of circles, either of which may be regarded as the stream-

lines, the other constituting the equipotential curves.

The velocities are everywhere, except at the points ± ^.

finite and determinate. If the circles r,/r, = const, be taken

as the stream-lines, each of the points ± ^ is a " vortex-point."

If the circles 6*, - ^, = const, be taken as the stream-lines, one
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of the points ± a is a " source," the other a "sink." In the

latter case, besides the hydrodynamical interpretation, a very

sinnple electrical illustration is afforded by attaching the poles

of a battery to a conducting plate of indefinite extent at two

fixed points of the plate.
"

As another example may be taken the relation w = cos ^.

As has been shown, the curves x = const, form a system of

confocal hyperbolas, while the curves ^ = const, form an

orthogonal system of ellipses. Either system may be regarded

as stream-lines. In one case the motion of the fluid would be

such as would occur if a thin wall were constructed along the

axis of reals, except between the foci, and the fluid should be

impelled through the aperture thus formed. In the other case

the fluid would circulate around a barrier placed on the axis of

reals and included between the foci.

Besides their application to fluid-motion, conjugate func-

tions have important applications in the theory of electricity

and magnetism * and in elasticity.f

Art. 13. Singular Points.

Let w be any rational function of js. It can be written in

the form

«'-0(^)'

where /(2') and (p {£) are entire and without common factors.

This function is finite and admits an infinite number of suc-

cessive derivatives for every finite value of ^, except the roots

of the equation (-S") = o. Let a be such a root. Then the

reciprocal of the given function is finite and admits an infinite

number of successive derivatives at the point a. Such a point

*
J. J. Thomson, Recent Researches in Electricity and Magnetism (1893),

p. 208.

\ Love, Theory of Elasticity (1892), vol. i, p. 331.
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is called a "pole." Any rational function having a pole at a
can be put by the method of partial fractions in the form

where A^y . . .^ A,, are constants, A^ being different from zero,

and tl){z) is finite at the point a. The integer k is said to be

the "order'* of the pole, and the function is said to have for

its value at a infinity of the >^th order. In accordance with

the definition of a derivative, w does not admit a derivative at

a. From the character of the derivative in the immediate

neighborhood of a, however, the derivative is sometimes said

to become infinite at a.

The trigonometric function cot^ has a pole of the first

order at every point z = nnty m being zero or any integer posi-

tive or negative.

The function w = log (2' — a) has for every finite value of

2, except z = a, a.n infinite number of values. U z — a is writ-

ten in the form Re*®,

w — log R -\- z{©+ 2m7r)f

where log R is real, and m is zero or any positive or negative

integer. If 3 describes a straight line, beginning at a, S will

remain fixed, but R will vary. The images in the w-plane will

therefore be straight lines parallel to the axis of reals, dividing

the plane into horizontal strips of width 27t. If now the ^--plane

is supposed to be divided along the straight line just drawn,

and z varies along any continuous path, subject only to the

restriction that it cannot cross this line of division, there will

be a continuous curve as the image of the path of z in each

strip of the 2£/-plane. Each of these images is said to corre-

spond to a "branch" of the function, or, expressed otherwise,

the function is said to have a branch situated in each strip.

The line of division in the ^-plane, which serves to separate

the branches from one another is called a " cut."
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At the point 2 = a no definite value is attached to the

function. As z approaches that point the modulus of the real

part of the function increases without limit, while the imagi-

nary part is entirely indeterminate.

Let 2^ be an arbitrary point, distinct from a, and let

log R^ + t&^+ 2m7rt

be any one of the corresponding values of the function. Sup-

pose that 2 starts from 2^ and describes a closed path around

the point a, the values of the function being taken so as to

give a continuous variation. Upon returning to the point 2^

the value of the function will be

log R, + /©„ + 2{m + i)7[t,

or log R,+ iQ^ -{-2(m— i)7ti,

according as the curve is described in a positive or negative

direction. By repeating the curve a sufficient number of times

it is evidently possible to pass from any value of the function

at z^ to any other. When a point is such that a ^-path en-

closing it may lead in this manner from one value of a function

to another value, it is called a " branch-point." In the case

of the function here considered, the point z =1 a is called

a "logarithmic branch-point," or a point of "logarithmic

discontinuity."

The function w = log ^^-)-{, where /{z) and (p{z) are entire,
(p{z)

has a point of logarithmic discontinuity at every point where

either /(^) or (p{z) is equal to zero. For, writing

/{z) = A{z - ay^{z - a.y^ . . .

0(^) = B{z — b,)^^{z — ^,)^» ...

the value of w may be written

Aw = log -B + ^">- log {z — a^) - ^q^ log {z — hi),
£> rn. n
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Take now the function w = e'*. It has a single finite value

for every value of z except 2 = 0. If ^ is supposed to ap-

proach zero, the limit of the value of the function is indeter-

minate.

For let / + iq be perfectly arbitrary, and write

If now a+ lb is the reciprocal of / + iq, so that

— / A _ —^

the preceding equation may be written

e^TTb z= c -\- id.

But whatever the value of the integer m, q -\- imn may be

substituted for q without altering the value of ^ + id, and hence

both a and b may be made less than any assignable quantity.

The given function e^ therefore takes the value c -\- id at points

a + ib indefinitely near to the origin. A point such that, when

z approaches it, a fiinction elsewhere one-valued may be made
to approach an arbitrary value is called an • * essentiajl^ singu-

larity." ^
Prob. 12. Show that for the function ^«^^ ^ = dt is an essei^ial

singularity.

Prob. 13. The function e ^* considered as a function of a real

variable is continuous for every finite value of z, and the same is

true of each of its successive derivatives. Show that when it is

regarded as a function of a complex variable, -? = o is an essential

singularity.

In order to illustrate still another class of special points

take the function

w=s/{z — a^{z — «,)... (^ — ^«).
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niThis function has at every finite point, except <^j, «,,..., ^,

two distinct values differing in sign. At these points, however,

it takes but a single value, zero. From each of the points

a^, a^, . . . , a„\et a. straight line of indefinite extent be drawn in

such a manner that no one of them intersects any other, and

suppose the ^s-plane to be divided, or cut, along each of these

lines. Along any continuous path in the ^-plane thus divided

the values of the function form two distinct branches.

For, writing

js — a^ = r/'*i, z — a^z=z r,^''*9, . . , , ^ — a« = r,^**",

the function takes the form

A+h+ ... +t

w = Vr^r^ . . r„ e*

,
No closed path in the divided plane will enclose any of the

points a^, a^, . . . , a„, and the quantities 6^, d,, . . . , 0„, after

continuous variation along such a path, must resume at the

initial point their original values. No such path, therefore, can

lead from one value of the function at any point to a new

value of the function at the

same point. If, however, the

cuts are disregarded and s

traces in a positive direction,

a closed curve including an odd

number of the points a^, ^,,

. . . y a„, and not intersecting

itself, then an odd number of

the quantities O^y 6^,, . . . , ^„ are each increased by 27r; and

the value of the function is altered by a factor ^(2*+i)t»^ and

so changed in sign. In the same way any closed path de-

scribed about one of these points, and enwrapping it an odd

number of times, leads from one value of the function to

the other. On the other hand, a simple closed path enclosing

an even number of these points, or- a closed path which en-

closes but one of the points, enwrapping it an even number of

times, leads back to the initial value of the function. It fol-
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lows that each of the points ^, , ^, , . . . , ^^ is a branch-point.

Any point in the ^-plane, closed paths about which lead from

one to another of k set of different values of a function, the

number of values in the set being finite, is called an " algebraic

branch-point."

As a further illustration, consider the function

w = 2^-{-(2 — a)\

which is a root of the equation of the sixth degree,

w* —S^w* — 2(2 — ayw"+ S-s'w' — 62(2 — a)w -\- (2—a)^—2*^0.

The function has at every point, except 2 = and 2 ^a^
six distinct values. Six branches are thereby formed which

can be completely separated from one another by making cuts

from the points 2 = and 2 = a to infinity. Putting a> for the

cube root of unity, these six branches can be written

1/2 , , vl/3 1/2 , , .1/3
w^ = 2 -{- {2 — a)' , w^= — 2 -^ {2 — a)^

,

w^ — z^^ -{- gd{2 — d)'\ w^-=^ — 2^ -\- gd{2 — df^^,

^ W^ = 2'^^ + Q0^{2 — dj^^y Zf, = — 2^^+ ^\^ ~ ^)*^'»

The branches w, and w^, w^ and w^, w^ and w^ are interchanged

by a small closed circuit described about s = o, while a small

circuit described about 2-= a permutes cyclically the branches

w^, w^y w^y and also the branches w^, w^, w^.

All of the special points examined above, poles, points of

/ logarithmic discontinuity, essential singularities, and branch-

points, are called singular points. In fact, a function, or a

branch of a function, is said to have a * * singular point '
* at each

point where it fails to have a continuous derivative,* or about

which as a center it is impossible to describe a circle of deter-

minate radius within which the function, or branch, is one-

Valued.

Any point not a singular point is called an " ordinary point."

* Continuity and, therefore, finiteness of the function are implied in the

existence of a derivative.
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An ordinary point at which a function reduces to zero is called

a **zero" of the function.

If in a certain region of the ^-plane a function is uniform

and has no singular points, the function is said to be ''synec-

tic " or *'holomorphic " in that region. If in a certain region

the only singular points of a uniform function are poles, the

function is said to be '* meromorphic " in that region. Under
similar conditions, a branch of a function is also described as

holomorphic or meromorphic.

Prob. 14. When w and z are connected by the relation w — g ^
(z — /lY show that if z describes a circle about >^ as a center, w
describes a circle about g as a center, an angle in the ^-plane hav-

ing its vertex at /i is transformed into an angle in the w-plane t

times as great and having its vertex at g^ and that 2 = ^ is a branch-

point of w except when / is an integer.

Art. 14. Point at Infinity.

In determining the limiting value of a function when the

modulus of the independent variable z is increased indefinitely,

it is usual to introduce a new independent variable z' by the

relation z — \/z' , and consider the function at the point z' — o.

This is equivalent to passing from the ^-plane to another plane,

the^^-plane, related to the former by the geometrical construc-

tion described in Art. 10. It is often very convenient, however,

to go further and to suljgtitute for the ^-plane the surface of the

sphere of unit diameter touching the ^r-plane at the origin. No
difficulty is thus introduced since, as explained in the article

just cited, any configuration in the -a-plane obtains a conformal

representation upon the sphere; and the advantage is gained

that the entire surface upon which the variation of the inde-

pendent variable is studied is of finite extent. The point of

the sphere diametrically opposite to its point of contact with

the ^-plane coincides with the point written above as z' = o.

It is called the point at infinity, 5' = 00 , since a point on the

sphere approaches it at the same time that its image in the

.s:-plane recedes indefinitely from the origin.
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The point at infinity may be either an ordinary or a singular

point. For the function ^, for example, it is an ordinary
I

point, since f» = e*' . For a rational entire function of the «th

degree it is a pole of order «. Consider it for the function

^{z — a^){z — a^ . . .{z — a^), discussed in the preceding article.

Let a circle of great radius be described in the ^-plane inclosing

all the branch-points ^, , tf,, . . . , ^„. Its con formal representa

tion on the sphere will be a small closed curve surrounding the

point <s'= 00. This point must, therefore, be regarded as a

branch-point or not, according as the function changes value or

not when the curve surrounding it is described, that is accord-

ing as «, the number of finite branch-points, is odd or even.

When the point at infinity is taken into account, then, the

total number of branch-points of this function is always even.

The character of the point ^ = 00 for this function can be de-

termined directly, by changing z into i/z' and considering the

point 2' = o.

Prob. 15. Show that = 00 is an ordinary point for ~rr4j where

<p{z) and fp{z) are rational and entire if the degree of (p{z) does
not exceed that of tp(z)»

Art. 15. Integral of a Function.

Let w=/(z) be a continuous function of ^ in a given

region, and suppose z to describe a continuous path L from

the point z^ to the point Z. Let a series of points z,, z^, . . . ,-^„

be taken on Z, and let Z^, /j, . .
.

, t„ be points arbitrarily chosen

on the arcs z^z^, z^z^, . . . , z^Z respectively. Form the sum

s={z,- z:)At:) + (^, - ^,wo + . .
. + (^ - ^j/(/«).

If now the number of points z^y . .
. , ^„ be increased indefi-

nitely in such a manner that the length* of each of the arcs

* It is assumed in regard to every path of integration that the idea of length

maybe associated with the portion of it included between any two of its points,

or, what is the same thing, that the path is rectifiable. This condition is evi-

dently satisfied if the current coordinates x and;)/ can be expressed in terms of
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^^3^fS^JS^f ,,,yZnZ approaches zero as a limit, the sum 5 ap-

proaches a finite Hmit which is inde-

pendent of the choice of the points z^^

^„ ...,^„and t,, t^,..., /«.

For take any other sum

5' = (v-^.)y(0+

formed in a similar manner. Suppose
" for the sake of greater definiteness

and z/f . . . follow one another on thethat the points z^
,

line L in the order

Z^f Z^ , Z^
f Z^f Z^, Z, f , , , f

and form a third sum

in which b )th series of points occur. It may be shown that as

the number of points in each of the series -sr,, . . . and z/, ... is

increased, the differences S'^ — S and S^' — S' both approach

zero, from which it follows that the difference 5 — 5' has a

limit equal to zero. For example, the difference 5'' — 5 has

the value

(^. - ^.)[/(r.) -/('.)] +W - ^,)[/(r.) -/(/,)]

If M denotes the upper limit or bound of the quantities

|y(n)-AOI. \Ar,)-M)U \A-',)-M)\

the modulus of 5" — 5 will be less than

dx dy
. „

any parameter / so that — and j- are continuous. For then the integral

/ ^dx'' + dy* is finite. See, in this connection, Jordan, Cours d'Analyse, 2d

Edition, Vol. I., p. lOO.
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But 1^, — -s-jI is equal to the chord of the arc s^o-S', , and must

therefore be less than or equal to this arc, and a similar result

holds for each of the quantities
|

z^ —z^ \A^\ ~^x I

» • • • Hence

\S" -S\<Ml.

where / denotes the length of the path of integration. When
the number of points of division on the line L is increased, the

differences

/^^) - /('.). A^^ - At.)< /(n) - /(/,), . .

.

approach zero, since f{z) is continuous.* M accordingly

decreases indefinitely and the difference S" — S approaches

zero.

The limit, the existence of which has just been demon-

strated, is called the integral of f\z) along the path L. It is

written I f{z)dz. The definition here given is similar to that

given for the integral of a function of a real variable. It is

unnecessary to specify the path of integration when the inde-

pendent variable is restricted to real values, since in that case

it must be the portion of the axis of reals included between

the limits of integration.

The following well-known principles, applicable to the case

of a real independent variable, may be readily extended to the

general case

:

1. The modulus of the integral cannot exceed the length of

the path of integration multiplied by the upper bound of the

modulus of the function along that path.

2. The independent variable may be altered by any equa-

tion of transformation, but L' , the path of integration in the

transformed integral, must be such that it is described by the

new variable while z describes L.

3. If F{z) is any one-valued function having everywhere

a continuous function f{z) for its derivative, the equation

must be true.

* For a complete discussion it should be shown that the continuity oif{z) is

necessarily '•uniform." See Jordan, Cours d'Analyse, 2d Edition, vol. i, p. 183.
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To prove the third principle, write F{Z) — F{z^ in the

form

Since the derivative of F{z) \sf{z)y

F{2,„+;) - F{2„,) = [/(^,„) + ^J(^«.+, - ^m),

where //,„ has zero for its limit * when z^j^^ is made to approach

z^. Hence

F{Z) - F{z,) = limit 2f{z,,){^^^. - ^n) + limit :2'//,«(^„+, - z^)
;

or, since the second term of the right-hand member is equal

to zero,

F{Z)-F{.,) = J[Az)dz.

If no function F{z) fulfilling the preceding conditions is

known, the value of the integral requires further investi-

Consider as an example the integral j —̂ taken from the

point ^ = — I to the point z = i, the path of integration being

the upper half of the circumference of a unit circle described

about the origin as a center. Writing z = exp {t6), z will

describe the required path while 6 varies from tt to o.

The equations -, = e'""'^, dz = ie^^dd,
z

dz— = ie-^^dB = i cos d dd -\- sin 6 dS ^ id (sin B) — d (cos B\
Z"

follow at once. Hence for the path specified

J —^-=1 Cd (sin B) — Cd (cos <9) = — 2.

~^
It n

The application of the direct and more famihar method

i?'ves the same result:

+ ^ J r- -I r- -1
dz III III

2.J z' L zj,=-i L zj^^^i
1

*The "uniformity" of continuity is involved here. See Jordan, Cours
d'Analyse, 2d Edition, vol i, p. 184.
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For a path along the axis of reals between the limits of

integration this result is unintelligible. The discontinuity of

the differential, —i, at the point 2 = 0, prevents the considera-
JS

tion of such a path ; and that the result should be negative

when the differential is at every point of the path positive

has no significance. The introduction of the complex variable

furnishes a perfectly satisfactory explanation of the result.

Prob. 16, Show that the integral of — along any senii-circum-
z

ference described about the origin as a center is equal to tti.

Art. 16. Reduction of Complex Integrals to Real.

The integral

may be written in the form

or, separating the real and imaginary terms,

/ {udx — vdjy) -\- i I {^dx + udy).

Hence the calculation of the integral may be reduced to

the calculation of two real curvilinear integrals.

The equations

9« _ ?)V 'du _ _'dv
'dx
~ d/ 9j dx

which express the condition that 2/ + ^^ should be monogenic,

express also that

udx — vdy, vdx -\- udy

are the exact differentials of two real functions of the variables

X, y. Consider the case where these functions are one-valued.
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Denoting them by P(x, y) and Q{x^ y) respectively, the inte-

gral may be written

\_P(,X, Y) - I\x„y:i\ + i\_Q{X, Y) - (2(^., jy.)],

(•^o»Jo) 3^rid (X, F) being the initial and terminal points re-

spectively of the path of integration.

Art. 17. Cauchy's Theorem.

Cauchy's Theorem furnishes the necessary and sufficient

conditions that a uniform function /(z), having continuous

partial derivatives with respect to x and j', should yield within

a region bounded by a continuous closed curve a one-valued

integral, that is, an integral the value of which, when the lower

limit is fixed, depends simply on the upper limit, and not on the

path of integration. It will be more convenient, before consider-

ing Cauchy's Theorem, to demonstrate the following lemma:

Lemma.—Let ^ be a portion of the ^-plane, having a bound-

ary 5 which consists of a closed curve not intersecting itself,

or of several closed curves not intersecting themselves or one

another. If at every point of the region A, including its

boundary 5, a function W oi the real variables x and j is one-

valued and continuous and has continuous partial derivatives

—— ,
—— , the relations

fm. =
-Jl^,.,y

(a)

•exist, the integrals in the first members being taken along the

boundary in the positive direction, and those in the second

members being taken over the enclosed area.

Denote by A the inclination to the axis of x of the exterior

normal at any point of the boundary,* that is, the normal drawn

* It is assumed that the boundary has a determinate tangent at every point.

If the boundary of a given region is not of this sort, the theorem holds for any
interior curve ot which this assumption is true.
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to the right as the boundary is described in a positive direction.

If any straight line parallel to the axis of x be traced in

the direction of increasing values of x, at each point where

it passes into the area A^

cos A is negative, and there-

fore in the first member of

{\) dy=. cos \ (is is negative.

At each point where this

straight line passes out ol

the area A, cos A, and there-

fore dy^ in the first member
of equation (i), is positive.

Hence in the first member
of equation (i) the differ-

entials Wdy corresponding

to a given value of y^ and taken in the order of increasing

values of ;r, have signs which, compared with the signs of the

corresponding values of W, first differ, then agree, and so

on alternately. In order now to compare the integral in the

first member of equation (i) with the integral in the second

member, it is necessary to take dy as essentially positive.

The sum of the differentials in the first member, correspond-

ing to a fixed value of jj/, must therefore be written in the

form

where W^, PF, , . . . are the corresponding values of W taken in

the order of increasing values of x. But performing now in

the second member of equation (i) an integration with respect

to X, the same result is obtained, so that the two members of

equation (i) become identical, and the equation is verified.

To obtain equation (2) the same method is used. It is

necessary in this case to observe that if a line parallel to the

axis of jK is traced in the direction of increasing values of j^, at

each point where it enters A, dx in the integral of the first
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member must be taken as positive; and at each point where
this line passes out o( A, dx in that integral must be taken as

negative.

By means of the preceding lemma, Cauchy's Theorem is

easily proved. This theorem may be stated as follows

;

Theorem.— If, on the boundary of and within a given region

Aj a one-valued function w = f{z) is monogenic, and its deriv-

ative f{z) is continuous,* the integral ff{z)dz taken along

the boundary 5 is equal to zero.

For writing the integral in the form

J^wdz = J^{udx — vdy) + iJ{udy + vdx\

the preceding lemma gives

but since at every point of A

the given integral reduces to zero.

Art. 18. Application of Cauchy's Theorem.

From Cauchy's Theorem it follows that, if two different

paths Z, and Z, lead from the point z^ to the point Z, and if

along these paths and in the region inclosed between them a

given function f{z) has no critical points, the integrals of the

function taken along these two paths are equal. For two such

paths taken together, one described directly, the other re-

versed, constitute a closed curve, and the integral taken along

* Otherwise expressed, the one-valued function /"(sr) has no singular points on
the boundary of or within A, (xf.z) is holomorphic in A. It has been shown by
Goursat that this theorem can be proved without assuming the continuity of the
derivative. ,

See Transactions Amer. Math, Soc, vol. I. p. 14.
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it is equal to zero. But, since reversing the direction of the

path of integration is equivalent to changing the sign of the

integral, the equation

J^A^yz - f^Mdz = o

is obtained.

The result just established may be stated in the following

theorem

:

Theorem I.—If a function is holomorphic in any simply

connected region bounded by a continuous closed curve, the

integral of the function, from a fixed lower limit in that region

to any point contained therein, is independent of the path of

integration, and is a one-valued function of its upper limit.

A region whose boundary is composed of disconnected

curves is not necessarily characterized by the property stated

in the theorem. Take, for example, the function

and suppose that o < |^, | < |^, |
< . . . < | ^„ ]. With the ori-

gin as a center, construct a system of concentric circles (7,,

^2, • . •, Cn, C^ passing through ^,, C^ through ^„ and so on.

Denote by 5o the region inclosed within the first circle 6',, by

S^ that inclosed between C^ and C,, and so on, the portion

of the plane exterior to the last circle C^ being denoted by 5«.

At an initial point z^ interior to one of these regions, assign to

w one of the two values possible, and consider the branch of

w resulting from a continuous variation. Then however z may
vary within any such region, this branch of w will be a mono-

genic function, and its derivative will be continuous. Having

regard to the branch-points ^,, ^,, . . ., «„, it is.evident that in

the regions 5o, 5, . . . it will be one-valued, and in the regions

5j, 5,, . . . , it will be two-valued. Thus in the regions 5,, 5^,

. . . , the branch fulfils the required conditions, but the boundary

does not. The theorem is applicable only to S^. It may be

observed that in every other region two paths may be drawn

joining the same two points such that the branch is not one-

valued in the enclosed portion of the ^-plane.
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Theorem II.—If/(-s') is holomorphic in any simply connected

region ^ bounded by a continuous closed curve, the integral

i f{z)dz, taken from a fixed lower limit z^ in that region to any

point Z contained therein, is a holomorphic function of its

upper limit.

Let L be any path from z^ to Z. When the upper limit is

at the point Z -\- dZ, L followed by a straight line from Z to

Z -\- dZ c^n be taken as the path of integration. Hence

*Z+dZ PZ _ . .
pZ+dZ

*Z+dZ nz+dz

pz+dz nz pz-vdz

pZ+dZ pZ+dZ

The first term is equal to f(Z)dZ. The modulus of second

term is equal to or less than M\dZ\j where M is the upper

bound of |/(z) — f{Z)\ along the line joining Z to Z-\-dZ,

But since f{z) is continuous, the Hmit of J/ when Z -\- dZ
approaches Z is zero. Hence

£'^'Az)dB - £j{z)dz = lAZ) + ^¥Z-

where rf approaches zero with dZ. The integral therefore has

y(Z)fora derivative, and is holomorphic in S.

In the case of a region bounded by several disconnected

closed curves, of which one is exterior to all the others,

Cauchy's Theorem may be stated in the following form :

Theorem III.—Let a function f\z) be holomorphic in a

region A bounded by a closed curve ^ and one or more closed

curves C^, C^, . . . interior to C. The integral of f{z) taken

along C will be equal to the sum of its

integrals taken in the same direction

along the curves C^, C^, . . .

For the integral of f{z) taken in a

positive direction completely around the

boundary of A is equal to zero. But

tne curves (.7,, C^, . . . are then described in the direction oppo-
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site to that in which C is described. Hence if all the curves

are described in the same direction, the result may be written

If there is but one interior curve, so that the region A is

included between two curves C and C^, the integral taken along

every closed curve containing C, but interior to C has the

same value, viz., the common value corresponding to the paths

C and 6*,.

Art. 19. Theorems on Curvilinear Integrals.

Theorem I.

—

li fiz) be continuous in a given region except

at the point a, the integral j f{z)dzy taken around a small circle

t, having its center at a, will approach zero as a limit simulta-

neously with the radius r of the circle c, provided only

lim {z — d)/{z) = o when z = a.

For let the upper bound of the modulus of {z — a)f(z) on

the circle c be denoted by M. Then at every point of c^

. ^ X - M _M
mod i\z) - '. r

- —

,

and consequently

modJ^f{z)dz %—J ds %.27tM.

closed curve C containing the point a, is equal to zero, except

when « = I. When « = i, this integral is equal to ini.

For the value of the integral will be the same if any

circle described about <? as a center be taken as the path of

integration. Let then z — a =: r^'^ where r is a constant and

varies from o to 2n. The integral becomes

-• /»2»r — {n-\)ie
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which reduces to zero excepi when « = I. If « = i, its value

is 2niy whence

/ 27tl,

Theorem III.—If f{z) is a function holomorphic in a given

region 5, C a closed curve the interior of which is wholly

within Sf and a a point situated within (7, then

f I^dz = 2niAcf)'

For describing about <3; as a center a small circle c of radius

r, the equation

*J^ z — a ^' 2—

a

is obtained. But at every point of c,

where, by choosing r sufficiently small, the modulus of tf may
be made less than any fixed positive quantity. Hence

^cz—a ^c2 — a *^c z — a

,"jut by the preceding theorems the first term of the right-hand

member is equal to 2nif{a), and the second term is equal to

zero.

If the equation of the theorem just established be differ-

entiated with respect to a, the following important formulas,

expressing the successive derivatives of a holomorphic function

at a given point, are obtained:
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The integrals in the first members of these equations are all

finite and determinate for every position of a within the curve

C. Therefore any function holomorphic in a given region ad-

mits an infinite number of successive derivatives at every

interior point. Each of these derivatives being monogenic

must be continuous. Hence the following:

Theorem IV.—If/C-s^) is holomorphic within a given region,

there exists an infinite number of successive derivatives of

f{z)y which are all holomorphic within the same region.

Denote by r the shortest distance from the point a to thd

curve C, Then at every point of this curve |^ — ^| > r. Let

M be the upper bound of the modulus /(^) on Cy and / the

length of C, Then

n fU\ ^ r M . ^ Ml

and consequently mod/^"^ {a) ^
I .2 ... n Ml

27r r"-^*

In particular, if C is a circle having a for its center,

mod /<«) {a) < .

Art. 20. Taylor's Series.

Theorem.—Let f{z) be holomorphic in a region 5, and let

C be any circle situated in the interior of 5.

If a be the center and a-\- 1 any other point

interior to Cy

fia + =Aci) + tf'{d) + /-/"(«) + . . .

1.2
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From the preceding article, denoting a variable point on C
byC,

_ I fAQdQr t
I

r
,

^+'
^ 1

= A") + tna) + /-/"(«) + . . .+ . r /'"('^) + ^,

where

,
'^-

27tiJ^(Z-ar^\Z-a-t)
^-

By taking « sufficiently great the modulus of R may be

made less than any given positive quantity. Let M be the

upper bound of the modulus of f{s) on the circle Cy p the

modulus of /, and r the modulus of C — <^ or radius of C. Then

^^Jc r''^\r-p) ^r — p\rl '

which, since p < r, has zero for its limit when ^ = 00.

Writing now z for a-\-t, Taylor's Series becomes

The series is convergent and the equality is maintained for

every point ^ included within a circle described about <3: as a

center with a radius less than the distance from a to the nearest

critical point oi f{z).

When a is equal to zero, Taylor's Series takes the form

/W = /(o) + Bf'(0) + f-f"(o) + . . . + -^f'\0)+ . . . ,
1.2 1.2.. .72

expressing /(^r) in terms of powers of -s". This form is known

as Maclaurin's Series.
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Art. 21. Laurent's Series.

Theorem.—Let S, a portion of the ^--plane bounded by two

concentric circles C, and C^, be situated in the interior of the

region £f in which a given function /{js) is holomorphic. If a

be the common center of the two circles, and a -\- t a. point

interior to 5, /{a+ t) can be expressed in a

convergent double series of the form

tn = oo

m =— 00

With a -{-t diS di center construct a circle

c sufficiently small to be contained within

the region 5. If then 6', be the greater of

the two given circles, it follows from Article i8 that

27ti*^Cx Q — a — t 27ti*^c^ C, — a — t 2ni ^cZ — ^ — ^

But from Article 19,

whence

•^^ ^^ 2ni^c^C, - a - t 2ni^c,c-a - t

The two integrals of the right-hand member may be written :

where

I r t-^'AOdz
^' ~

27ii^^^{Z - ^)^+xc -a-ty
_i_ /-(C - ^)-^7(CKC

But |/| <|C — ^1 at every point of C,, and |/|>|C — «| at

every point of (7,, so that i?, and R^ both have zero for a limit
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when « = 00 . The value oif{a -\- 1) can therefore be expressed

in the form

Since in the region 5 the function f{z)/{z — <3:)'"+* is holomor-

phic for both positive and negative values of m^ A^. maybe
written

where C is any circle concentric with C^ and C^ and included

between them.

The series thus obtained is convergent at every point a-\-t

contained within the region S. It is important to notice, how-

ever, that when the positive and negative powers of / are con-

sidered separately, the two resulting series have different

regions of convergence. The series containing the positive

powers of / converges over the whole interior of the circle C^ ;

while the series of negative powers of / converges at every

point exterior to the circle C^. The region 5" can be regarded,

therefore, as resulting from an overlapping of two other

regions in which different parts of Laurent's Series converge.

Writing z ior a -\- t, Laurent's Series takes the form

f{z) = A, + Aiz - a)+A,{z - ay + . . ,

+ A ^, (z- a)-' + A_,(z - a)-' + . .

.

Consider as a special numerical example the fraction

^ = L_ L_ . __J__
(<3: - I) (^ - 2) (^- 3) 2(Z-I) Z — 2^2{Z~2,)

If 1^1 < I, all three terms of the second member, when
developed in powers of z, give only positive powers. If

I < 1^1 < 2, the first term of the second member gives a series

of negative descending powers^ but the others give the same

series as before. If 2 <|^|< 3, the first and second terms

both give negative powers. If \z\ > 3, all three terms give
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negative powers, and the development of the given fraction

can contain no positive powers. Thus a system of concentric

annular regions is obtained in each of which the given frac-

tion is expressed by a convergent power-series. Laurent's

Series gives analogous results for every function which is holo-

morphic except at isolated points of the ^-plane.

Art. 22. Fourier's Series.

Let w = /{z) be holomorphic in a region S^y and let it be

periodic, having a period equal to oo, so that^<8:+ noo) = f{2)r

where n is any positive or negative integer. Denote by 5„ the

region obtained from S^ by the addition of noo to 2 ; and sup-

pose that the regions . . . , 5_„ , . . . , 5. 1
, 5^ , 5, , . . . , 5„ , ...

meet or overlap in such a manner as to form a continuous strip

Sy in which, of course, the function w will be holomorphic.

Draw two parallel straight lines, inclined to the axis of reals at

an angle equal to the argument of oo, and contained within the

strip 5. The band T included between these parallels will be

wholly interior to S.
2itiz

By means of the transformation z' = e '^ the band T in

the ^-plane becomes in the ^'-plane a ring T' bounded by two

concentric circles described about the origin as a center, z and

z + noo falling at the same point z\ Since w is holomorphic

in a region including T, and

dw dw dz 00 _ vtx» dw
dz' ~ dz dz'

~~
2ni •

'^ dz'

w regarded as a function of z' will be holomorphic in T',

Hence, by Laurent's Theorem,

w = ^2 A^z'^,
»«= -00

the quantity a in the general formula of the preceding article

being in this case equal to zero. Substituting for z' its value,

the preceding equation becomes
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where

In the latter integral the path is rectilinear. Denoting its

independent variable by C for the purpose of avoiding confu-

sion, the value of w becomes

»«= -00

»t = l *

Art. 23. Uniform Convergence.

Let the series W := ^o + ^i + ^a +• • • + ^n+ . • . , each

term of which is a function of z^ be convergent at every point

of a given region S. Denote by Wn the sum of the first n

terms of W. If it is possible, whatever the value of the posi-

tive quantity e, to determine an integer p, such that whenever

n> p
\W- ^n|<e

at every point of S, the series W\?, said to be uniformly con-

vergent in the region 5.

For convergent series in general the determination of p
will depend on the value of z. In the case of uniformly

convergent series / can be determined simultaneously for all

points in the region 5.

Uniformly convergent series can in many respects be treated

in exactly the same manner as sums containing a finite num-
ber of terms.



60 FUNCTIONS OF A COMPLEX VARIABLE.

Theorem I.—If in a region S a series of continuous functions

is uniformly convergent, the sum of the series is a continuous

function of z.

For at any point z, W may be written in the form W = W^-{-R\

and at a neighboring point z\ W =W^ -\-R!, Hence

n n

and
\w-w\<\w^-wj\+\R\-\-m.

But by choosing n sufficiently great, \R\ and \R'\ may both be made

less than any given positive quantity e/3 for all values of z and z'

in S. Having chosen n thus, W^ becomes the sum of a finite

number of continuous functions. It is then continuous, and, by

making \z—z'\ less than a suitable quantity d, "^— W'\ may be

made less than e/3. But under these suppositions

\W-W'\<e,

W is therefore continuous at the point 0.

Theorem II.—If in a region S a series of continuous functions

is uniformly convergent, the integral of the series, for any finite

path L in the region, is the sum of the integrals of its terms

:

J Wdz =J w^dz^J Widz+, . . +J 'w^dz+. .

.

For, writing W =W^+R, it is possible to choose n so that,

however small e may be, ]R\<£ at every point of Z. If n be so

chosen.

fwdz ^f^VJz+ fRdz.
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But, by Article 15, denoting by / the length of the path L,

mod / Rdz<elj

which, when w= 00, has zero for its limit. Hence

fwdz= lim Jwjz.
L n= oo L

From the preceding demonstration we have at once the following

result

:

Theorem III.—If in a simply connected finite region S a uni-

formly convergent series of holomorphic functions is integrated

term by term, the resulting series is uniformly convergent in the

same region.

For in a simply connected region the integral of a holomorphic

function is independent of the form of the path of integration.

Only paths whose lengths have a finite upper bound need, there-

fore, be considered.

Theorem IV.—If, in a region 5, the series of uniform functions

is convergent, and the series

dz az az

is uniformly convergent, and if further the terms of PT' are con-

tinuous in the same region, W will be the derivative of W.

For, integrating W^ from a to z along a path L contained in

S, we have, by Theorem II,

J W'dz='w^(z)-w,(a)+, . .+w^(z)-w^(a)+...

= W{z)-W{a).

But sinceW is continuous, it is the derivative of the first mem-
ber, and therefore of the second member, and of the function W,
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Theorem V.—If in a finite region S the terms of a uniformly

convergent series

are holomorphic, the sum of the series is holomorphic, its deriva-

tive being the sum of the derivatives of its terms.

For let C be the boundary of 5, and let C be a closed curve

interior to C. Let ^ be a positive number such that the distance

between C and C is everywhere greater than d. Then if z is any

point interior to C, we will have, when (^ varies along C,

\t:-z\>3.

The given series being uniformly convergent, we can write

W=-W„-\-R,

where \R\<s when n is taken sufficiently great. Accordingly if

L be the length of C, we will have in the equation

the modulus of the last term less than

It follows that the series

converges uniformly. But this gives at once, if we divide by 2^i,

From the preceding demonstration we have at once;
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Theorem VI.—If a series of holomorphic functions is uni-

formly convergent in a given region S, the series formed by the

derivatives of its terms will be uniformly convergent in the same

region.

To illustrate by an example that uniformity of convergence

is essential to the preceding theorems, take the series

W =^-+I
I+Z ,(l+Z^)(l+2^+0*

At the point z=i each term is continuous, and the series

is convergent, having the value 1/2. The series is, however,

discontinuous at z=i. For, writing it in the form

the sum of the first n terms is seen to be

W =^~.

/

But W is the limit of TF^ when w=oo, and is therefore

unity at every point z for which lzl<i, and zero at every point

for which
l^l

>i.

If now this series be considered for the points within and

upon a circle described about the origin as a center with an

assigned radius less than unity, the remainder after n terms, or

z"
I— pr„=-——- can, by a suitable choice of n, be made less in

absolute value than any given quantity. In such a region, then,

the series converges uniformly, and, by Theorem I, can have no

point of discontinuity. A similar result holds for the region

exterior to any circle described about the origin as a center with

an assigned radius greater than unity.
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Art. 24. Power Series.

The nost elementary and at the same time the most impor-

tant series of functions which enters into the theory of functions

is of the form

where a^^ a^, a^, . . . , a^, . . . are constants.

If this series is convergent for a certain value Z of the varia-

ble 2, it will be convergent for every value of z for which \z\ < \Z\,

For if the modulus of z is less than that of Z, the series

z z^ 2**

is an absolutely convergent geometrical progression. Since, now,

the series

a^-^a,Z-^a^Z''+. . .+a^Z"+ . . .

is convergent, the moduli of its terms must have a finite upper

bound A. We can accordingly use its terms as multipliers foi

the corresponding terms of the geometrical progression, and we

will obtain an absolutely convergent series. But this series will be

the given series

a^^a^z-\-a^z^^-. . .+fl^z"+ . . .

subject only to the condition that |z|<|Z|.

It is obvious that every power series of the form here given

converges for z= o. When we consider other values of z three

cases arise:

(i) The series may converge for every finite value of z, as,

for example,

z^ z**

I+Z+-+ ... + +...
2 I . 2 . . . W



POWER SERIES. 55

(2) The series may diverge for every value of z, except z=o,

as, for example,

1+Z+42H. . .+w**2**+. ..

(3) The series may converge for some values of z different

from zero and diverge for others. For example, the series

z z^ z^

12 n

converges for 3= — i and diverges for z=i.

In the third case the modulus of the values of z for which the

series converges must have a finite upper bound. Call this R.

The circle of radius R described about the origin as a center is

known as the circle of convergence. For this circle we have the

following theorem:

Theorem.—A power series is convergent at every point inte-

rior to its circle of convergence, and is divergent at every point

exterior to its circle of Convergence.

No general statement can be made as to the convergence or

divergence of the series upon the circumference of the circle of

convergence. The series may converge at all points of the cir-

cumference, as, for example.

2^ 2**

I+2+-2 + ... + -2+ .

or it may diverge at all such points, as, for example,

1+Z+22H. . .+wz«+. .
.

,

or finally, as already illustrated, it may converge at some points

and diverge at other points of this circumference.
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Art. 25. Uniform Convergence of Power Series.

Theorem I.—A power series is uniformly convergent in every

circle described about the origin as a center with a radius less

than R. For, if R' < R, the series

K|+K|i?'+...+K|i?'-+...

is convergent; and, consequently, whatever the value of the posi*

tive quantity £, we can find an integer p such that \in>p

For all values of z within the circle of radius R', the sum of

the series will then differ from the sum of its first n terms by a

quantity less than £ in absolute value. Hence the series is uni-

formly convergent within the circle of radius R'.

Theorem II.—If a power series is uniformly convergent in a

given circle, the series obtained by integrating its terms or by

differentiating its terms is uniformly convergent in the same

circle.

This theorem follows at once from Theorems III and VI of

Article 23. Since R is the upper bound of R\ the series of primi-

tives and the series of derivatives have exactly the same circle of

convergence as the given po\ver series. We have also as an im-

mediate consequence of Theorems II and V of 'Article 23:

Theorem III.—The primitive of a power series is the sum of

the primitives of its terms; and the derivative of a power series

is the sum of the derivatives of its terms.

As a result of these theorems, we have that, so far as continuity,

differcntiabihty, and integrabilily are concerned, a power series

has within its circle of convergence the same properties as the

simi of a finite number of powers.
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Art. 26. Uniform Functions with Singular Points.

Theorem I.—A function holpmorphic in a region 6" and

not equal to a constant, can take the same value only at iso-

lated points of 5.

For in the neighborhood of any point a interior to 5, by

Taylor's theorem,

Az)-M = {z- aY'{a) + (l=|)! /"(«) + . .

.

Unless y(^) is constant over the entire circle of convergence of

this series, the derivatives /'{a)^ f"{d), . . . cannot all be

equal to zero. Let/"^''^(^) be the first which is not equal to

zero. Then

f{z)- f{a) = (z-ay[-J^-M 1 f^^'^'Y) J^-a)+ . . .1

Since the series within the brackets represents a contin-

uous function, if \z — a\ be given a finite value sufificiently

small, the modulus of the first term of the series will ex-

ceed the sum of the moduli of all the other terms, and the

same result will hold for every still smaller value of \z—a\.

For values of z, then, distant from a by less than a certain

finite amount, /(^r) — fia) is different from zero.

If, on the other hand, the function is constant over the en-

tire circle, described about ^ as a center, within which Taylor's

series converges, it will be possible, by giving in succession

new positions to the point a, to show that the value of the

function is constant over the whole region 5.

Theorem II.—Two functions which are both holomorphic

in a given region 5 and are equal to each other for a system of

points which are not isolated from one another, are equal to

each other at every point of S.

For let f{z) and <i){z) be two such functions. By the pre-

ceding theorem, the difference /(<s:) — 0(^) must be equal to

zero at every point of 5.
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Theorem III.—A function which is holomorphic in every

part of the <s:-plane, even at infinity, is constant.

For, a being any given point, whatever the value of z^

Az) = Aa) + (^- aV'{a) + ... + Y^fr^„f"V) +•
But by Article 19, r being the radius of any arbitrary circle

having its center at ^, and M being the upper bound of the

modulus oi f{z) on the circumference of this circle,

J ^(n)r \ =1.2.. . tlM

But M is always finite, and r may be made indefinitely great,

Hencey^'*^(.3:) = o for all values of «, and

A^) =/{")

Theorem IV.—If a,function/(^), holomorphic in a region 5,

is equal to zero at the point a situated within S, the function

can be expressed in the form

/(^) = {z- ar,p{B),

where m is a positive integer, and (p{z) is holomorphic in 5 and
different from zero at a.

For in the neighborhood of the point a, by Taylor's Theorem,

/(z)=/{a) + {z-ay{a)+..,
LetyM (^) be ^he first of the successive derivatives at ^ which

is not equal to zero. Then

^^ ^
^ Li '2. . ,m ^ 1.2 . . . {m+ ly ^ '

J*

which is the required form. The point a is a, zero oi f{z), and

m is its order.

Theorem V.— If the point ^ is a singular point of a given

function /(-s"), but is interior to a region 5, in which the recip-

rocal oi f{z) is holomorphic, the function can be expressed in

the form

{z - aY
'

where m is a positive integer, and x{^) is holomorphic in the

neighborhood of a.
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For by the preceding theorem

y^ = (^ - ^)"0(^)»

where (J){z) is holomorphic and not equal to zero at z-=. a.

Hence

f{z\ = ^ ^ - ^(^^
•/^^ {2-a)^'(p{2) {z-aY

Further, since in a region of finite extent including the

point a
X(z) = A,-\A,{z - ^) + ...,

-^ ' {z—aY~ ^z — a^^^*'

a being an ordinary point for ^(-s").

The point « is a pole oi f{z) and m is its order.

Theorem VI.—A function, not constant in value, and hav-

ing no finite singular points except poles, must take values

arbitrarily near to every assignable value.

For suppose that f{z) is such a function, but that it takes

no value for which the modulus o{ f{z) — A\.s less than a given

positive quantity e. Then the function

f(?) - A
will be holomorphic in every part of the ^-plane, which, by

Theorem III, is impossible unless /(^) is a constant.

Theorem VII.—A function /(z), having no singular point

except a pole at infinity, is a rational entire function of z.

For the only singular point of/( —
J

is a pole at the origin.

Hence

/©= ^+...+^+*(.),

where (f){z) is holomorphic over the entire plane, including the

point at infinity. (p{z) is consequently equal to a constant A^,

The given function therefore can be written in the form
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Theorem VIII.—A function /(z) whose only singular points

are poles is a rational function of z.

The poles must be at determinate distances from one an«

other ; otherwise the reciprocal of f{2) would be equal to zero

for points not isolated from one another. The number of poles

cannot increase indefinitely as \z\ is increased; for then the

reciprocal of / (
-

) would have an infinite number of zeros indefi-

nitely near to the origin. The total number of poles is there-

fore finite. Let a^ b, , , . denote them. In the neighborhood

of a the function can be expressed in the form

a being an ordinary point for 0(^). In the neighborhood of by

(p{2) can be expressed in the form

a and b being both ordinary points for tp{2). Proceeding in

this way the given function will be expressed as the sum of a

finite number of rational fractions and a term which can have

no singular point except a pole at infinity. This term is a

rational entire function.

Theorem IX.—If the function /(z) has no zeros and no

singular points for finite values of z, it can be expressed in

the form /(z) = e^^^\ where £^{z) is holomorphic in every finite

region of the z-plane.

f(z)
For'^-Ap can have no singular points except at infinity, since

/(2)

in every finite region of the ^-plane /{z) and /'(z) are holomor-

phic and /(z) is different from zero. Hence, choosing an arbi-

trary lower limit z^y the integral

is holomorphic in every finite region. The function f{z) con-

sequently must take the form
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where g{z) = h{z) + log/CzJ.

Theorem X.—If two functions/(z) and 0(z) have no singu-

lar points in the finite portion of the z-plane except poles, and

if these poles are identical in position and in order for the two

functions, and their zeros are also identical in position and

order, there must exist a relation of the form

f{z) = 0(^)^(^),

where g{j3) is holomorphic in every finite region of the ^-plane.

For the ratio of the two functions has no zeros and no

singular points in the finite portion of the 2-plane.

Art. 27. Residues.

If a uniform function has an isolated singular point a, it

is expressible by Laurent's series in the region comprised be-

tween any two concentric circles described about a with radii

less than the distance from a to the nearest singular point.

Hence in the neighborhood of a

The coefficient of {z — d)'"^ in this expansion is called the

"residue" of/(^) at the point a.

If any closed curve C including the point a be drawn in the

region of convergence of this series, and f{z) be integrated

along C in a positive direction, the result will be

Lf{z)dz = 27tiB^.
c

The following may be regarded as an extension of Cauchy's

theorem :

Theorem I.—If in a region 5 the only singular points of the

one-valued function f{z) are the interior points ^, «',... , the
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integral Jf(z)dz taken around its boundary C in a positive

direction is equal to

where B, B' , , , . are the residues of f{z) at the singular points.

For the integral taken along C is equal to the sum of the

integrals whose paths are mutually exterior small circles de-

scribed about the points a^ a\ , , ,

The following theorems are immediate consequences of the

preceding

:

Theorem II.—If in a region having a given boundary Cthe
only singular points of the one-valued function f(z) are poles

interior to C, an equation

exists, M denoting the number of zeros and N the number of

poles within C, each such point being taken a number of times

equal to its order.

For in the neighborhood of the point a

f{z) = {z- ar<p{z)

where (p{z) is finite and different from zero at a^ and m is a,

positive integer if <a: is a zero, a negative integer if ^ is a pole.

Hence
/\z) __ m (l>\z)

f(z) z-a^ <t>(zy

The integrand, therefore, has a pole at every zero and pole of

/(^), and its residue is the order, taken positively for a zero,

and negatively for a pole.

Theorem III.—Every algebraic equation of degree n has n

roots.

For let f{z) represent the first member of the equation

^« _|_ ^j^~-' -|_ . . . _|- ^^ = o. Since f{z) has no poles in the
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finite part of the ^-plane, the number of roots contained within

any closed curve C will be given by the integral

But taking for C a circle described about the origin as a

center with a very great radius, this integral is

j_ rn.-' + (n-,)a,^-'+ ...
^^ ^ j_ fndz

where e has zero for a limit when |^|= oo . Hence the limit

of the preceding integral, as \z\ is increased, is n.

Prob. 17. Show that if 2 = 00 is an ordinary point of/(s^), that

is, if /(^) is expressible for very great value of 2 by a series contain-

ing only negative powers of z, the integral of/(2;) around an infinitely

great circle is equal to 27ti into the coefficient of — . This coeffi-
z

cient with its sign changed is called the residue for 2 = 00 .

Prob. 18. Show that the sum of all the residues oi f{z), of the

preceding problem, including the residue at infinity, is equal to

zero.

Prob. 10. If -77-^ is a rational function of which the numerator
tp{z)

is of degree lower by 2 than the denominator, and if the zeros

^j!, , ^, , . . . , ^„ of the denominator are of the first order, show that

Art. 28. Integral of a Uniform Function.

It was shown in Article 18 that, if a function /"(-s-) is holo-

morphic in a simply connected region S, its integral taken

from a fixed lower limit contained in 5 to a variable upper

limit ^ is a uniform function of z within 5". If F{z) is a function

which takes a determinate value F{zq) at 2- = ^y and is uniform

while 2 remain^ within S, having at every point f{z) for its

derivative, the integral of f{z) from z^ to z is equal to

F{z) — F(2^). If F^(^z) is another function fulfilling these con-
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editions, so that the integral of f{z) can be written also in the

form FJ^z) — F^(z^), the functions F(z) and FXz) differ only by

a constant term ; for

Suppose now thaty"(^) is still uniform in 5, but that it

has isolated critical points ^, , ^,, . . . interior to 5. Any two

paths from z^ to Zy which inclose between them a region con-

taining none of the points ^,, <3:,, . . ., will give integrals identi-

cal in value. Let the two paths Z, , L include between them

a single critical point a^\ and consider the integrals along

these two paths. The integral along Z, will be equal to the

integral along the composite path Z,Z~'Z, where the exponent

— I indicates that the corresponding path is reversed ; for the

integral along L'^L is equal to zero. But L^L~^ is a closed

curve, or" loop," including the critical point a^y and, assuming

that it is described in a positive direction about a^, the inte-

gral along it is equal to 27iiB^y where B^ is the residue oi f{z)

at a^. Hence

rf{z)dz = 27iiB^+ ff{z)dz.

If now the two paths Zj, L from z^ to z include between

them several critical points a^, a^, «^, . . ., draw intermediate

paths Z-„ . . ., L^, so that the region between any two consec-

utive paths contains only one critical point. The integral

along Z, will be equal to the integral along the composite path

L^L'^L^ . . . L^'^L^L'^L, since the integrals corresponding to

L'^L^, . . ., L^'^L^y L~^L are all equal to zero. But L^L'^y

L^L^'\ . . ., L^L'^ are all closed paths or loops, each including

a single critical point, so that, assuming that each is described

in a positive direction and that B^, B^, ^^, . . . denote the resi-

dues of f{z) at the critical points,

£^A^)dz = 2ni[B^ + ^, + ^^ + . . .) + fj{z)dz.

It has been assumed in the preceding that neither of the

paths Zj, L intersects itself. In the case where a path, for
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example Zj, intersects itself in several points c^, <;,,..., it is

possible to consider Z, as made up of a path Z/ not intersect-

ing itself, together with a series of loops attached to Z/ at

the points c^y c^, . . . Each of these loops encloses a single

critical point Uk and, if described in a positive direction, adds

to the integral a term 27tiB^ Each such loop described in a

negative direction adds a term of the form — 2niB^, It is evi-

dent that the form of each loop and the point at which it is

attached to Z/ may be altered arbitrarily without altering the

value of the integral, provided no critical point be introduced

into or removed from the loop. In fact all the loops may be

regarded as attached to Z/ at z^.

It can be proved by similar reasoning that the most gen-

eral path that can be drawn from z^ to z will be equivalent, so

far as the value of the integral is concerned, to any given path

Z preceded by a series of loops, each of which includes a sin-

gle critical point and is described in either a positive or nega-

tive direction. The value of the integral is therefore of the

form

f{z)dz + 27ii{m,B, + m^B^+ •••)»I
where m^^ m^^ . . . are any integers positive or negative.

/*' dz
As an example consider the integral / . The only

critical point is ^ = ^. Any path whatsoever from z^ to z is

equivalent to a determinate path, for example, a rectilinear

path, preceded by a loop containing a and described a certain

number of times in a positive or negative direction. If w de-

note the integral for a selected path, the general value of the

integral will be w + '2'nni. If now a straight line be drawn

joining z^ to a, and if along its prolongation from a to infinity

the -sr-plane be cut or divided, the integral in the ^-plane thus

divided is one-valued. But, with the variation of z thus re-

stricted, any branch of the function log {z — a) is one-valued.

Select that branch, for example, which reduces to zero when

z=^ a-\- \. It takes a determinate value for z = z^, and its
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derivative for every value of z is . Hence, denoting it

by Log {z - a),

/* dz z — a—— = Log {z-a)- Log {z, -a) = Log ^—-.

For a path not restricted in any way, the value of the inte-

gral is

z — a/dz z — a= Log h 2nni = log
,,z -a ^ z,-a^ ^

?o — ^

Prob. 20. If -rT-\ is a rational function of z of which the numer-
i\z)

ator is of degree lower by 2 than the denominator, and if the zeros

/Zj, «,,..., d!„ of the denominator be of the first order, show that

t/«o i\){z) X ip\av) ^ z^ — Uy

where 2<p{av)/tp'(ay) = o. (See Prob. 19, Art. 27.)
1

Art. 29. Weierstrasss Theorem.

Any rational entire function of z, having its zeros at the

points ^,, ^,, . . ., ^^, can be put in the form

A(z- a,p{z - a,y^ . . . (^ - ^^)''m,

where ^ is a constant and «,, «,, . , ,, n„ are positive integers.

More generally, any function which has no singular point in the

finite portion of the ^-plane and has the points a^, . . ., a„ as

its zeros, is of the form

e^'\z - a,p ..,{z- a^Ym,

where ^{z) is holomorphic in every finite region.

The extension of this result to the case where a function

without finite singular points has an infinite number of zeros is

due to Weierstrass. It is effected by means of the following

theorem :

Theorem.—Given an infinite number of isolated points a^^
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a^j . . ., a„, . . ., a function can be constructed holomorphic ex-

cept at_ infinity and equal to zero at each of the given points

only.

For the given points can be taken so that

k, I <kJ <•••!««'<•• •>

I an I
increasing indefinitely with n. Consider the infinite product

(P{s) = nil _^)^^«w,
1 ^ ii„'

where Pn{^) denotes the rational entire function

Any factor may be written in the form

But since

the path of integration being arbitrary except that it avoids

the points a^, a,, . . ., the product may be expressed as

00 /»2

ne'f'n^'\ in which tp„{z) = —J
z^dz

In any finite region of the z-plane it will be possible to

assume that
|
z

|
^ P < |^^|, if P and m be suitably chosen, since

\ay\ increases indefinitely with n. Divide the product into

two parts

n (I- -)-

and
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Since when n>m, \aj >pj the integrand of the exponent

^'^ ' Jo a.»(a„-«)

is holomorphic in the circle |2;| <|0. Accordingly, (l>„(z) is in the

given region a holomorphic function of its upper limit.

But we may write

m
00

Consider now the series 1(1)Jz). For the modulus of each term

we have

'^"^'^'" KHfcp7)'
where / denotes the length of the path of integration. But, if the

path of integration be taken as rectilinear, we will have l<p.

Hence each term o! the series is less in absolute value than the

corresponding term of a convergent geometrical progression in-

dependent of z. The series is, accordingly, uniformly conver-

gent and, by Theorem V of Article 23, represents a function holo-

morphic in the given region. The exponential

also must be holomorphic. The other part of the product

m

^(-f.)
i7 I-- Uf««

containing only a finite number of factors is everywhere holo-

morphic, vanishing at all of the points a^, a^, . . . , which are

situated within the given finite region. But this region may be

extended arbitrarily. The product therefore fulfils the required

conditions.

In the preceding demonstration it was tacitly assumed that

none of the given points a^, ^2, . . . was situated at the origin.

To introduce a zero at the origin it is necessary merely to mul-

tiply the result by a power of z.

The most general function without finite singular points
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having its only zeros at the given points a^, a^, . . ., ^« . . ., can

be expressed in the form

where ^^) is holomorphic except at infinity ; for the ratio of

any two functions satisfying the required conditions is neither

infinite nor zero at any finite point.

By means of Weierstrass's theorem it is possible to express

any function, F^s), whose only finite singular points are poles as

the ratio of two functions holomorphic except at infinity. For,

construct a function ^-(-s-) having the poles of F{2) as its zeros.

The product F{2). ip{s) = (p(z) will have no finite singular point.

The given function can, therefore, be written

which is the required form.

In applying Weierstrass's theorem to particular examples,

it will rarely be found necessary to include in the polynomial?

Fn{^) SO many terms as were employed in the demonstration

given above. It is quite sufficient, of course, to choose these

polynomials in any way which will make the product converge

for finite values of <sr to a holomorphic function. Factors of the

form / „ K

\ aj

where /*„(^) is chosen in such a manner, are called " primary

factors."

As an application of Weierstrass's Theorem take the reso-

lution of sin 2 into primary factors. The zeros of sin z are o,

±;r, ±2;r, . . ., ±«;r, .... Consider factors of the form

\ fZTt'

SO that Pn{^) contains only one term —, and
nn

r' zdz

nninn — z)
^

'
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00

The series I(p^{z) will converge uniformly in any given finite
m

region. For if p and m be suitably chosen we will have

|2|<^<w;r.

Hence

\ mn/

where / is the length of the path of integration from the origin

to the point z. If this path be taken as rectilinear, we will have

/ < iO and (lf^(z) will be less in absolute value than the correspond-

ing term of the convergent numerical series

A similar result holds for the series I ^^{z). These series ac-
— m

cordingly represent holomorphic functions in any region for

which |z| < /O. Hence the expression sought is

sin z=ze^^'^n ( i —— ]en^.
- 00 \ nnj

the value w=o being excluded from the product. It will be

shown in the next article that e^^^^ = i.

Prob. 21. If (jJx and co^ be two quantities not having a real ratio,

the doubly infinite series of which the general term is —
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is absolutely convergent ii p'>2. Hence show that the product

.(.)=.iz(i-i)

where co=mo)i + no)2, defines a holomorphic function in any finite

region of the 2-plane. This function is Weierstrass's sigma func-

tion, and is the basis of his system of elliptic functions.

Prob. 22. Show that the product

'K-i)'

I

2(1 + 2

defines a function holomorphic in every finite region of the 2-plane.

This function is the reciprocal of the gamma function r(z) or, in the

notation employed by Gauss, 77(2— i). It may also be defined as

the limit when w= 00 of the product

z(z+i)(z-\-2) . . . (z-^-n) --
n •

i-2'3 . . . n

Prob. 23. Assuming the relation that

r{i-\-z)=zr(z\

show that

I I sinrrz

r(z)*r(i-2)~~S~'

Art. 30. Mittag-Leffler's Theorem.

Any uniform function j(z) with isolated singular points

ai, a2, . . . can be represented in the neighborhood of one of

these points by Laurent's series; viz.,

}{z)=Ao+Ai{z-aJ+A2(z-aj2^...

+Bi{z-aJ-^+B2{z-aJ-2+...

Hence /(,)=^(,)+G„(j-^),
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where <j>(z) is holomorphic in a region containing the point <z„,

and GJ-—— j is holomorphic over the whole plane excluding

the point a„. If fl„ is a pole of /(z), GJ —^— ) consists of a finite

number of terms; otherwise, it is an infinite series. If the num-

ber of singular points is finite, and the function gJ ) is

formed at each such point, we can obtain by subtracting the

sum of these functions from j(z) a remainder which has no

singular point in the finite part of the plane. This remainder

can therefore be expressed as a series of ascending powers G(z)

converging for every finite value of z. The function /(z) can

accordingly be written in the following form:

m=G(z)+IG„{^),

which is analogous to the expression of a rational function by

means of partial fractions.

The extension of this result to the case where the number

of singular points is infinite is due to Mittag-Leffler. Let ai,

^2, . . . , cin, ... be the singular points of the one-valued func-

tion /(z), and suppose that

kil<la2l< . . . U„|<. .
.

,

\a„\ increasing without limit when n is increased indefinitely.

Let, further, G„(—2— ) be the series of negative powers of

z— a^ contained in the expansion of /(z) according to Laurent's

series in the neighborhood of a„.

The function gJ ), having no singular pomt except at

a„, may be developed by Maclaurin's series in the form
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\z a^/

and the series will converge uniformly within a circle described

about the origin as a center with any determinate radius |0„< \aj^.

Hence, for any point within the circle [2|
= (0„,

Fn(z) representing the first p terms of the development of

GJ ) by Maclaurin's theorem, and R the remainder, which

by a suitable choice of p may be made less in absolute value

than any given quantity.

Choose the positive quantities £i, ^2, • - - , £„,... so that

the series £i + £2 + - • • + ^«+ - • • is convergent. Choose also in

connection with each of the points <ii, fi^2j • • • j ^«> • • • , a suitable

integer p such that

mod[Gi(^^J -Fi(zij < £i, ifl2l^^i< |ai|;

mod|^G2^j^j-i^2(2)J<^2, if \z\<P2<la2\;

and, in general,

mod[G„^^3^j -i^n(2)J < c,:, if \z\<Pn<\an\.

Consider now the series

in any finite region of the plane, the points ai, ^2, . . . , a^, . ,

.
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being excluded. Since \a^\ increases indefinitely with «, it is

possible, in any finite region of the z-plane, to assume that

kl<Pm<kml- Separate from the series its first w-i terms.

These terms will have a finite sum. The remaining terms of the

series taken in order will be less in absolute value than £^>

£„+i, . . . respectively, \z\ being less than the least of the quanti-

ties p„j Ptn+ii ' • • Accordingly, the series

|[°-(;^J-''-«]

is absolutely convergent for every value of z except a^ a^, . .
.

,

a^, . . . It is evident, further, that in any given finite region,

from which the points a^, aj, . . . , a„, . . . are removed by means

of small circles described about them as centers, the series

converges uniformly. In such a region any term of the series

is holomorphic; and, therefore, by Theorem V of Article 23, the

series defines a holomorphic function.

The point a^ is an ordinary point for the difference

since in its neighborhood this difference may be developed as a

convergent series containing only positive powers of z — a^. In

the same way each of the points a^, aj, . .
.

, o„, . . . is an ordinary

point for the function

^(^)-?^"fe)-'^«4

This function, therefore, can have no singular point except at

infinity, and must be expressible as a series G{z) containing

only positive powers of z and converging uniformly in any

finite region of the z-plane. Hence the function f{z) may be

put in the form
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in which the character of each singular point is exhibited.

As an appHcation of Mittag-Leffler's theorem consider cot 2.

Its singular points are ^ = o, ± tt, ± 2;r, . . . . In the neigh-

borhood of ^ — o, cot ^ is holomorphic ; and in the neigh-

borhood of -^ = njt, n being any positive or negative integer,

I

cot z —
z — nn

is holomorphic. The series

+ 00

z— nn

in which m \s an arbitrary positive integer, is not convergent

for finite values of z, even when |^| < mn. The series.

.z — nn nn_ nn(z — nn)

\ nnl

is, however, absolutely convergent at every point for which

1^1 < mn. For the modulus of any term is equal to

nn \ rntinitt

and, therefore, less than the corresponding term in the series

z\

\ mn]

A similar result holds for the series

I

-^ +— -Tnn nnj

It is easy to see now that the reasoning employed in the

demonstration of Mittag-Leffler's theorem may be applied to

show that the series
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where the summation does not include n =o, defines a func-

tion holomorphic in any finite region of the ^-plane, the points

O, ± ;r, ± 2;r, . . . being excluded. The difference

I

cot 2
Z r—^+-1

can have no singular point except at infinity. It must, there-

fore, be expressible as a series G{z) of positive powers of <sr,

having an infinite circle of convergence. Hence

I jti^ r I I
"1

— 00 l— —

'

The next step is to determine G{z). It is to be observed

that, if G{z) is a constant, its value must be zero, since

cot (— 2:) = — cot z. If G{z) is not a constant, differentiation

of the preceding expression for cot z gives

I I ^"^ I

~
s"h?^ ^ ^'(^^ ~? ~^ {z - nnf

It follows, by changing z into z -{- n, that

G\z+ 7t) = G'{z),

Hence G'{z) is periodic, having a period equal to n ; and as the

point z traces a line parallel to the axis of reals, G'{z) passes

again and again through the same range of values. But G\z)j

being the derivative of G{z)y is holomorphic for every finite

value of z. It can, therefore, become infinite, if at all, only

when the imaginary part of z is infinite. If z be written in

the form x-\-iy, the value of G'{z) may be expressed as

Q'U\ = '
, ^ I / 2/4cos;tr4-/sin;tr)

y
^ ^ (x -\- iyf ' ^ {x-^iy—nn)^ \(cos 2;tr+^sin 2;r)— ^>/

When J = ± 00 the first and last terms of the second

member vanish. In regard to the series it can be proved that.
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for any given region is which y is finite and different from

zero, an integer r can be found such that the sum of the moduli

of those terms for which \n\> -k is less in absolute value than

any previously assigned quantity e. As \y\ is increased the

modulus of each of these terms is diminished. The modulus

of their sum, therefore, cannot exceed e when 7 =±00. But

whenj^= ±00 the sum of any finite number of terms of the series

is zero. Hence the limit of the whole series is zero. G'(z)y

therefore, never becomes infinite. Hence, by Theorem HI,

Article 26, it is constant, and is equal to zero. It follows that

G{z) is equal to zero.

The expression for cot z is accordingly

cot ^ = ^+^[^3^+ ^].

The logarithmic derivative of the product expression for

sin Zy given in the preceding article as an example of Weier-

strass's theorem, is

cot z=g'{z)^- +^ r—^—h—

T

Hence ^(^) in that expression is a constant. Making z = o,

its value is seen to be unity.

Prob. 24. From the expression for cot z deduce the equation

where the summation does not exclude n =^ o.

Prob. 25. Show that the doubly infinite series

where go=z mco^ + nao^ , defines a function whose only finite singular

points are z = go. This function is Weierstrass's ^function. (Com-
pare Problem 21.)

Prob. 26. -Prove that
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Prob. 27. Prove that ^\z) = — 2^7—^:—y* where the summa-

tion does not exclude 00=0.

Art. 31. Singular Lines and Regions.

The functions whose properties have been considered in the

preceding articles have been assumed to have only isolated sin-

gular points. That an infinite number of singular points may-

be grouped together in the neighborhood of a single finite

point is evident, however, from the consideration of such ex-

amples as

w = cot-, w = e^°^^^ ^.
z

In the former an infinite number of poles are grouped in the

neighborhood of the origin. In the latter an infinite num-

ber of essential singularities are situated in the vicinity of the

point z =. a.

It is easy to illustrate by an example the occurrence of lines

and regions of discontinuity. Take the series *

The sum of its first n terms is

I

z — I

which converges to unity if |^|< i, and to zero if |-s^!> I.

Hence the circle \z\=. i is a line of discontinuity for this

series.

Consider now any two regions 5, and 5,, the former situated

within, the latter without, the unit circle. Let (p{2) and ip{z)

be two arbitrary functions both completely defined in these

regions. The expression

^(z)ii{£)+<p{z)[_i-e{z)\

* This series is due to J. Tannery. See Weierstrass, Abhandlungen aus der

Functionenlehre (1886), p. 102.
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will be equal to 0(z) in S^ and ^(z) in S^. In regions com-

pletely separated from one another by a singular line, the same

literal expression may thus represent entirely independent

functions.

For a single continuous region, however, in the interior of

which exist only isolated critical points, the character of the

function in one part determines its character in every other

part. Let 5 be such a region, and assume that its boundary is a

singular line. In the neighborhood of any interior point a, not

a critical point, the given function is expressible as a power

series, viz.

:

M

=

/(«)+ (^ - ^yx")++ -r^^/'"'w+ •
• •

This series will converge uniformly over a circle described

about « as a center with any determinate radius less than the

distance from a to the nearest singular point. It serves for the

calculation of/(^) and all its successive derivatives at any point

^ interior to this circle. From the preceding power series, ac-

cordingly, can be obtained another

A^) = Ab)+ (^ - i>V'{.b)+ ...+ If^yLmb) +...,

representing the f{z) within a circle described about /^ as a

center. In general, the point b can be so chosen that a portion

of this new circle will lie without the circle of convergence of

the former power series. At any new point c within the circle

whose center is b, the value of the function and all its succes-

sive derivatives can be calculated ; and so, as before, a power

series can be obtained convergent in a circle described about c

as a center and, in general, including points wot contained in

either of the preceding circles. By continuing in this manner

it will be possible, starting from a given point a with the ex-

pression oi f{z) in ascending powers, to obtain an expression of

the same character at any other point k which can be connected

with <^ by a continuous line everywhere at a finite distance

from the nearest singular point. It follows that the character of
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the function everywhere within 5 can be determined completely

from its expression in ascending power series in the neighbor-

hood of a single interior point.

The process here described, whereby from a single ascending

power series representing a function in the neighborhood of a

given point of the z-plane one can derive a succession of similar

series, the totality of which determines the function throughout a

connected region limited only by the singularities of the function,

is known as the process of " analytical continuation." Each of

the series obtained is called an ** element " of the function. Ac-

cording to the theory of functions of a complex variable as pre-

sented by Weierstrass, the infinite number of elements connected

together by the process of analytical continuation are said to

constitute the definition of an " analytical function."

It will be impossible by the process just explained to derive

any information in regard to a function at points exterior to the

connected region S covered by the circles of convergence of its

elements. Moreover, as has been shown by an example, an

expression which gives a complete definition of /(z) within S

may carry with it the definition of an entirely independent func-

tion outside of 5.

As an example of a function having a singular region con-

sider the function defined by the scries

I -f- 2^ -f-
2^* + 2<S'' 4" . . . ,

which represents a function without singular points in the

interior of the circle j^s"! = I. For points on or without this

circle the series is divergent ; and, further, it is impossible to

obtain from it an expression converging when \s\ = i. The

function thus defined, consequently, exists only in the region

interior to the unit circle. By changing j3 into 1/2 a series

I

2 , 2 , 2,

is obtained, representing a function which has no existence in

the interior of the unity circle. Functions in connection with

which such regions arise are called "lacunary functions."*

* Poincar6, American Journal of Mathematics, Vol. XIV; Harkness and
Morley, Theory of Functions (1893), p. 119



FUNCTIONS HAYING n. VALUES. 81

Art. 32. Functions Having n Values.

Let the function w =/{^) take at the point ^^ of a given re-

gion 5 a value w^^K Suppose that along any continuous path,

beginning at :s^, and subject only to the conditions that it shall

remain in the interior of 5 and shall not. pass through certain

isolated points a^ , a^ , . . . , w is continuous and has a contin-

uous derivative. If it is impossible, when 2 traces such a path,

to return to the point -s-^ so as to obtain there a value of w dif-

ferent from w^^\ w is uniform in the region 5. On the other

hand, certain paths may lead back to z^ with new values of w.

Suppose that at each point of S, except «, , ^, , . . . , zf has

n different values, and that starting from such a point z^ and

tracing any continuous curve not passing through <?;, , ^j, . . . ,

the several values of w give rise to n branches ze/j , w, , . . . , w^,

each of which is characterized by a continuous derivative. In

the neighborhood of a^ any one of the points a^^ a^^ , . .

these branches are said to be distinct or not, according as small

closed curves described about this point lead from each value of

w back to the same value again, or cause some of the branches

to interchange values. In the latter case the point is a branch

point.

About any branch point Uk as a center describe a small cir-

cle ; and suppose that, starting from any point of it with the

value Wa. corresponding to a certain branch, the values

w^ ^Wy ... are obtained by successive revolutions about ak ,

the original value being reproduced after p revolutions. In-

troduce now a new independent variable 2' such that

z' = {z-a,fK

It can be shown that when z makes one revolution about

ak , z' makes only one /th part of a revolution about the ori-

gin of the .a'-plane, and that to a complete revolution of z^
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about the origin of the ^'-plane correspond / revolutions of z

about a^. Considering then the branch w^ as a function of z'

,

the origin cannot be a branch point, for whenever z' describes

a small circle about it, the value w^. is reproduced. The

branch Wa^ must accordingly be expressible by Laurent's

series in the form +«,

— 00

or, substituting for z' its value,

1 3

w^ = A,-\- A,{z - a^V+ AJ,z - a^*+ . .

.

+ ^_.(-sr -^,r^+ yi_,(^ - ^,)"^+ . . .

This expression makes plain the relation between the different

branches of a function in the neighborhood of a branch point.

When the development of a branch in the neighborhood of one

of its branch points gives rise to only a finite number of terms

containing negative powers, the branch point is called a " polar

branch point."

Consider the functions

P^ = W^W^ + W^W^ •\- . . .-\- Wn-^Wny

P^ = W^W^ . . .Wn.

Each of these functions is unchanged in value when several or all

of the quantities w^, ee/,, . , * y w^ are interchanged, and is con-

sequently a one-valued function of z within 5. Hence w must

satisfy an equation of the «th degree,

w^ + P^w''-' + P^ tv^-' + . . . + p^ = o,

the coefficients of which are one-valued functions of z having
only isolated critical points within S. When the entire ^-plane

can be taken as the region S, and those branch points at which
the branches do not all remain finite are polar branch points,

the only other critical points being poles for one or more
branches, the functions P^, P^, . . . , P„ are rational functions
of z. In this case w is an algebraic function of z.
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Art. 33. Algebraic Functions.

Any algebraic function satisfies an equation of the form

F(z, w) = o, where i^(z, w) is a rational entire function of z and w.

It this equation is of the n\h degree in w, to any value of z will

correspond, in general, n dififerent values of w, but for special

values of z, two or more values of w may be equal.

The principle of continuity appHed to the values of an alge-

braic function would lead us to expect that, when F{a, 'w) = o

has q roots equal to h, it should be possible, whatever the value

of the positive number £, to determine a positive quantity d such

that, whenever \z— a\<d, the equation i^(z, 'w) = o would give q
and only q values of w satisfying the condition \w— h\<£.

It is necessary in the demonstration of this fundamental prop-

erty of algebraic functions to consider only the case where a and

h are both zero; for every other case can be reduced to this one

by means of the substitution z=a+2', w= h-\-'u/. Write the

function Fiz, w) in the form

F{z, 'w) = P^+ P^w-\-, . .-VPqW^-\-. . .+P„7t;«,

in which, when z=o, P^==P^ = . . .=Pq.^=^o, but Pq takes a

value different from zero. This expression can be put in the
form

F{z,w)=P^w%i + U^-V\
where

W^Pq^'"^W Pq'

Describe about the points z=o and 7£;=o as centers, in the

is-plane and le^-plane respectively, circles C and T, of radii r and

p. It is possible to choose r and p sufficiently small to satisfy

the following conditions: (i) whenever z and w are interior to C
and r,

\U\<h\
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(2) whenever w is on the circumference T, and z is interior to C,

\V\<i.

It is evidently possible to satisfy the first condition. The ine-

quality

l^'V,
+ ... + -

P

shows, further, since P^, . . . , Pg-^ all approach zero with r,

that for any value of |0, r can be chosen sufficiently small to sat-

isfy the second condition.

But for any assignable position of z within C, the number of

roots of the equation F{z, w) = o contained within F is, by

Theorem II, Article 27, equal to

2mJ
dw^

[PgW%i + U+V)]
•dw,

T PgW%i-\-U-{-V)

or the total variation of any branch of

hglPgW^ii + U+V)],

when w describes the circumference T, divided by 27Ti. But

log [PgW^{i + U+ F)]=log Pg + q log w+log (i + U+ V).

The first term is constant; the total variation of the second term

is 2mq; and, since 1C7+ F| < i when w is on the circumference jT,

the argument of i-\-U-\-V must return to its original value, and

the total variation of log(i + C/+F) is zero. The number of

values of w within F is, therefore, equal to q.

Those values of z for which two or more values of w are equal

must satisfy the equation obtained by eliminating w between

F{z,w)=o,
dw

F(z,w)=o.
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For every other finite value of z, the equation

dF(z, w)

dw dz

dz '^F{z, w)

dw

gives at once a single determinate value for the derivative of w.

It follows from the preceding Article that any branch Wa of

w must be expressible in the neighborhood of any singular point

a A; by a series of the form *

Wa = A^+A,(z-ak)^ +A^(z-ak^ +. .

.

I 2_

-{B,iz-ak)~^ + B^(z-ak) ^+...

uniformly convergent in a small circular band surrounding the

point dk. If dk is not a branch point, p= i.

Art. 34. Integrals of Algebraic Functions.

In determining the value of the integral of an algebraic func-

tion w=/{z) along any path joining z^ to z, it is possible by virtue

of Cauchy's Theorem to alter the path of integration arbitrarily,

provided that no singular point is contained in the region enclosed

between its original and final positions. By employing the same

reasoning as in Article 28, any path joining z^ to z may be reduced

to a determinate path, preceded by a system of loops, of which

each encloses a single singular point. The value of the integral

corresponding to a loop surrounding a branch point requires

special consideration. If z describes such a loop, w returns to

Zq with an altered value. When, however, the initial point is

fixed, the value of the integral is not altered by varying arbi-

* For examples see Briot and Bouquet, Fonctions elliptiques (1875), PP- 40>

57; Chrystal, Algebra, vol. 11 (1889), pp. 356, 370.
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trarily the form of the loop, provided that no singular point is

introduced into or removed from the loop.

To show that a given loop, containing a branch point and

attached to the path of integration at a point c^, different from

Zq, may be transformed into one whose initial point is z^, it is

necessary to observe that the variable passes first from Zq to c^

and then around the loop to c^ again. If now, before continuing

along the remaining part of the path, z be required to retrace its

way to Zq and then return to Ci, the value of the integral will not

be altered thereby; for the integral resulting from the path c^z^c^

is equal to zero. The loop, however, has been made to begin and

end at z^i and it is followed by a path which begins at z^.

For any algebraic function, therefore, just as for a function

without branch points, the most general path of integration can

be reduced to a determinate path, having the same limits, pre-

ceded by a system of loops of which each encloses a single sin-

gular point.

The integral around such a loop enclosing a a-, a singular

point but not a branch point for the branch of /(z) considered, is

equal to ±27:iBk, where Bk is the residue of this branch of /(z)

at a A, and the plus or minus sign is taken according as the loop

is described in a positive or negative direction.

Consider now a loop enclosing a branch point a^. It can be

reduced to a special form, consisting of a small circle described

about a^^ as a center and a line,

straight or curved, joining this

circle to z^. The term Q^ to be

added to the integral on account

of this loop will be obtained by

integrating w=/(z) from z^ along

the line joming z^ to tnc circle, around the circle, and back along

the same line again to z^. The parts resulting from tracing the

line joining z^ to the circle in opposite directions do not cancel;

since on account of the nature of the branch point w does not

take its former system of values when z retraces its path to z^.

If now the integral of /(z) along any determinate path from
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Zq to z be denoted by I{z), the general value of the integral, J{z),

resulting from an arbitrary path between the same limits, is

J(z)=I(z) + 2Q„,

where Q^ is the value of the integral along the wth loop in the

reduced form of the path of J(z).

If the upper limit z of the integral J(z) is situated in the neigh-

borhood of a critical point, w is expressible in a region containing

z by the uniformly convergent series

I _£

w=AQ+A^(z-aky ^A^iz-aky +. .

.

'
I 2

+B,{z-ak) ^+R,iz-ak) ^+...

The integral, therefore, except for a constant term, which includes

IQ^i is equal to

J{z)=A^(z-ak) + j^A,(z-ak) ^ +j^A^(z-ak) ^ +. .

.

+~-^B,(z-ak)~^~-^--^B^(z-ak)~P~+ . , .+pBp.,(z-ak)'^pi p 2

_-1 p _£_
+Bp\og{z-ak)-pBp+z{z-ak) p --Bp+^{z-ak) ^-...

As an example consider the integral

where the initial value of the radical vi— z^ is +i. If under

the integral sign z be replaced by z/, where / is a real quantity vary-

ing from zero to unity, the resulting integral

/(z) =z/^-=4==

will correspond to a rectilinear path joining the origin to z.
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In J{z) the only singular points of the integrand are z= ±1.

The integral for the circumference of a small circle described

about either of these points as a center, by Theorem I of Article

19, approaches zero as a limit simultaneously with the radius of

the circle. A loop enclosing the point +1, therefore, gives a

term equal to

r' dz n^ dz _ />* dz _

the radical taking a negative sign on the way back to the origin

by virtue of the fact that z has turned around the branch point

2= 1. In the same way, a loop enclosing the point 2= — i will

give, if the initial value of the radical is positive,

dz

When z describes a loop about either of the points ±1, the radical

returns to the origin with its sign changed. Hence, if z describe

in succession two loops about the same branch point, the total

effect on the value of the integral is zero. If the path of the in-

tegral J^{z) is equal to that of the integral J{z) preceded by a

single loop enclosing the point +1 or the point — i, the value

of J^{z) will be

Tz—J{z) or —Tz—J{z)

respectively. If the path of J^{z) consist of two loops, the first

about z = I, the second about z= — i, followed by the path of /(2),*

/i(z) = 27r+/(z).

An arbitrary path from z^ to z gives an integral of the form

2mz-\-I{z) or (2W+ i)7r— /(z),
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where n is an integer positive or negative and I{z) is the integral

for a rectilinear path.

Prob. 28. If i?=V(2— <Zi) . . . (2— a„), and the rectilinear inte-

eral value of / ^ is

i^

2m^Ai+ . . . +2w^^^+Z or 2miAi+ . . . +2m„A^+AK—Z,

where mi, . . . , /^„ are any integers, positive or negative.

Art. 35. Functions or Several Variables.

Let f(Zi, Z2) be a function of two independent variables holo-

morphic with respect to each when z^ and z^ are interior to the

regions A^ and A^ respectively. Let Q and Cg be two closed

curves drawn in these regions, and let a^ and aj be points con-

tained within these curves. Then

rAz^z^), ... .
'

J
-——dz, = 2mf(a,,Z2)

*^Cx ^1 — "1

X 1

—

—dz^=2mf{a^, a^),

so that

/fe, ^2)

Differentiating this integral with respect to the parameters a^ ^j*

gives the general result

f*
r /(Zi, z^dz^dz^

(2;ri)
'ba^'ba^
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It follows that /(2i, Zj) has an infinite number of successive par-

tial derivatives holomorphic under the same conditions as4tself.

Let M be the upper bound of the modulus of /(Zj, Zj) when

Zj and Z2 vary along the curves Q and Cj respectively; r^ and rj*

the shortest distances from a^ and a^ to these curves; l^ and /j,

the lengths of these curves: then

^1-2 . . . p'i-2 . . . q MIJ2
<

(27:)' r/+^r2«+^*

If Cj and C2 are circles described about a^ and aj as centers,

/i
= 27rri, l^= 2nr2, and

It is easy now to extend Taylor's Series to the case of a function

of two variables. Let/(Zi, Zj) be holomorphic as long as z^ and

Z2 remain within circles Cj and C^ described about a^ and a^ as

centers. Let flj + Zj, ^2+ ^2 be points chosen arbitrarily within

these circles. Then

I / 3 3 \^,
+ 7:rV'3^+''3a;M'^''"''^)

(•-v Ci \ 3
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The proof that the remainder approaches zero as a limit is anal-

ogous to that given in the case of a single variable.

Corresponding results can be obtained for functions having

any nimiber of independent variables.

Art. 36. Differential Equations.*

Consider the differential equation

dw

where /(z, 7£;)is holomorphic when z and w are near the points

Zq and Wq respectively. By the transformation 'W='WQ-h'u/j z=
dii/

z^\z\ the equation becomes -jy = ^{z', v/), where 9^(2', w) is

holomorphic when 2' and w' are both near zero. Without loss

of generahty, therefore, the discussion can be restricted to the

special case where /(z, w) is holomorphic with respect to z and

w^ when z and w are confined to small regions containing z= o

and w= o respectively.

If the given differential equation admits an integral, holomor-

phic in the neighborhood of z= o, and vanishing at that point,

this integral will be unique; for all its successive differential co-

efficients at the point z= o can be obtained from the given differ-

ential equation. It is sufficient to differentiate that equation

once, and make z = o, w=o, in order to find the second differen-

tial coefficient; to differentiate again and make the same substi-

tution to find the third differential coefficient, and so on. In this

way is obtained the development.

'dw^

dz«'=(:^)/+r^(S)„^'+- •
•=«.^+''.^'+-

•

If this development can be proved to converge when \z\ is suffi-

ciently small, w thus defined satisfies the differential equation.

div
For -7- and/(z, w) have the same value for z=o; and their suc-

* Briot and Bouquet, Fonctions EUiptiques, p. 325 ; Picard, Traite d'Analyse,

vol. n, p. 291.
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cessive differential coefficients with respect to z of any order what-

dw
soever are also equal for 2=0. Hence -7- and/(z, w) are equal.

Describe small circles C and C about the points z= o, w=o
as centers with radii r, /. Let M be the upper bound of the

modulus of /(z, w) within or upon these circles. If now the

function

F(z,w) =

Hi'-?)
be constructed, it will be holomorphic within the circles C and

C. Its development in a convergent series of ascending powers

of z and w, is found by multiplying together the series for

and
z w
r r

and introducing into each term the constant factor M,

The successive partial derivatives of F{z, w) are all positive

and such that

?>zpdw^ \izl<\ 'dzp'dw<i y^rg-

Consider now the differential equation

dW ^, „,,

If it has an integral W^ holomorphic in the neighborhood of

2=0, the integral will be expressible in the form

The coefficients in this series are all positive, and for every value

of w
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The series given above for w, therefore, is convergent at every

point where the series for W converges. But it is easy to demon-

strate the existence of the function W. For the equation

dW M
dz

(-7)(-f)

may be written in the form

/ _W\dW M
V r'l dz~ z

I—
r

The two members are the derivatives respectively of

Mr log [i-^.W-~ and
2r

If the logarithm be chosen so that it vanishes when z= o, it will

be holomorphic within the circle |z| = r. Since W is to vanish

when z=o, the relation between W and z should be

or

where the radical is equal to + 1 for z= o.

The function W thus defined satisfies the equation

dW
~-j~=F{z, W); it vanishes when z= o; and it is holomorphic

in the interior of a circle having for its center the origin, and for

its radius p the root of the equation

2Mr I p\
i + -^log(^i--j=o,
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that is, p=r(i-e''^Mr\

The series for W, consequently, converges in the interior of the

circle of radius p. The series for w must converge in the same

circle. Hence the given differential equation admits an integral

vanishing for z= o, and holomorphic within the circle of radius

p and center at the origin.

The preceding discussion can be extended without modifica-

tion to the case of n equations

:

-3r=/„(2,^i,^2,...,wJ,

The functions in the second members are supposed to be holo-

morphic with respect to z, Wj, . . . , w^ within a circle of radius

r described about z=o, and circles of radius / described about

w;i=o, ...,w„= o.

If, further, M denotes the upper bound of the moduli of/,

fii'-'ifn i^ ^^^ regions considered, the associated differential

equations are

dz dz '" dz ^^^'^i^^^y-'y^nh

where

M
F(z,W,,W,,..,,W) =

(-;-)(-^^)-(.-^-)-
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The functions W^, PTj, . . . , TF„ all vanish for z=o and are

identical, so that only one equation

dW M
dz

(-r)(-7)

need be considered. The radius p of the circles, within which

all the developments converge, is

,=r\i~e («+^)^'-).
P-

As an example take the differential equation

dw

assuming as initial conditions 2 = 0, 110= 0. This equation defines

'Z£; as a holomorphic function of z in any region in which w re-

mains finite. Suppose that w becomes infinite for some finite

value a of the variable z. To determine the nature of the point

2= a, make the substitution

vf

The given differential equation is transformed to

dw'

the initial conditions being 2' = o, ii/ = o. This equation defines

i£/ as a holomorphic function of z' in the neighborhood of 2' = o,

and, consequently, of z in the neighborhood of z= a. The given

differential equation is satisfied, therefore, by a function w whose

only finite critical points are poles.
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The values of 2 for which w takes an assigned value may be

found bv means of the integral

/"" dw I /'"' dw j_ n"" dw

„ i+w^ 21 Jq w — i 2i^o w-^-i

If w describes two paths symmetrical with respect to the origin,

z acquires values numerically equal but of opposite signs. It

follows that w is an odd function of z. A loop enclosing the point

'W=ij described in the positive direction n times, adds to the inte-

gral a term equal to nn. A loop described about w^ —i in a

positive direction n times similarly gives —mz. The function w
is thus periodic, having a period equal to n.

It is possible to express w as the ratio of two functions having

no finite critical points. Assume 'W = 'wjw2. The given differ-

ential equation takes the form

(dw, \ Idw^ \

This equation can be satisfied by making

dw. dw^

and 2=0, 'Z£'i=o, ^2= 1 ^^^7 ^^ taken as initial conditions. From

these equations can be obtained

w^-
dw^

dz

d'w,

dz'

d'w,

dz'

dHv,

dz'

w^-
dw,

dz

d'w^

dz'~

d'w,

dz''

d'w^
~

dz*

Hence, when z =Oj

, ,
/dw,\ /d'w,\ /d?w\ (d*w,\
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and

The series for w^ and w^ are, therefore,

Wi=-- 1
. . . =sin0,

' I I -2 -3 I -2 -3 •4-5

^2=1- -\ : — ...=cos2:
1-2 I -2 -3 -4

sin z
whence w= = tan z.

cos z

Prob. 29. Show that the integral of —= w, with the initial condi-

tions z=o, 10=1, is the series 7£'=i4-zH h. . .= exp. z.

Prob. 30. Show that the equation ;7-^+«^=o is equivalent to the

du dv , , .,,...,
system, j-='^, -i-=—u\ and that with the initial conditions z=o,

u=a, v=b, the solution by series gives u=a cos z+b sin 0.

Prob. 31. Show that the equation -ty=(i— w2)(i— ifeW^ with the
az

initial conditions z=o, w=o, Vi—w^= + i, Vi— )^2'Z£;2= + i, is equiv-

alent to the system ~=uv, j-=—v'w, —=—k^wu, with th^ initial

conditions z=o, w=o, u=i, v=i, and that the functions w, u, v have

no finite critical points except poles. The functions are Jacobi's

elliptic functions sn z, en z, dn z, respectively.
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